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Abstract

The thesis consists of three parts. The first one presents an exhaustive study of three new
models arising in the context of the so-called optimal liquidation problem. This is the problem
faced by an investor who aims at selling a large number of stock shares within a given time
horizon and wants to maximise his expected utility of the cash resulting from the sale. Such
an investor has to take into account the impact that his selling strategy has on the underlying
stock price. The models studied in the thesis assume that market risk follows a fairly general
Lévy process and that the investor has an exponential utility. In each of the three different
model formulations, an explicit or semi-explicit expression for the optimal liquidation strategy
is derived.

The second part of the thesis presents a study of an optimal liquidation problem embedded
in a contractual problem. In particular, a contractual relationship between an investor and
a broker is modelled on the basis of a suitable liquidation strategy and the corresponding
affected mark-to-market assert price. The analysis of the model determines the broker’s
compensation and the liquidation strategy that maximise the broker’s as well as the investor’s
expected utilities.

The third part of the thesis studies a continuous time principal-agent problem in which
the agent’s outside options depend on his past performance. In this new model, even if the
agent does not expect any compensation from the principal at all, the agent may still apply
work effort with a view to improving his outside options. Formulated as an optimal control

and stopping problem for both the agent and the principal, the optimal contract is identified.
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Introduction

This thesis consists of three themes of studies: i) the optimal liquidation problem in different
models with stock prices driven by Lévy processes; ii) a liquidation problem involving a
contractual agreement between an investor and a broker; and iii) the principal-agent problem

taking consideration of the agent’s outside options.

I. Optimal liquidation

The optimal liquidation problem considers an investor who aims to sell a large amount of
shares within a given time. Rapid sale of shares may depress the stock price, while slicing the
big order into many smaller blocks of orders to be executed sequentially over time may take
too long to complete the liquidation hence the market volatility risk becomes large. Therefore,
the investor needs to find an optimal way to slice the big order over time so that his execution
cost get minimised.

A good modelling of the investor’s execution price is crucial for studying the optimal
liquidation problem. It is common in the literature that an execution price is assumed to have
an additive form of an unaffected price and a price impact. The unaffected price is usually
interpreted to be the mark-to-market stock price if the investor does not make any trades,
while the price impact describes the manner of how the investor’s trades can influence the stock
price. With this structure of the execution price, Almgren and Chriss (1999} 2000) assume that
the price impact is a sum of a so-called permanent price impact and a temporary price impact.
The permanent impact hits the stock price fundamentally, and this kind of influence never
disappears. The temporary impact changes the stock price only instantaneously, it disappears
immediately if the investor stops trading. In particular in |[Almgren and Chriss (1999} 2000),
the permanent impact is described by a linear function of the investor’s total size of orders
that have been executed, the temporary impact is a linear function of the investor’s trading
speed, and the unaffected stock price follows a Brownian motion. Formulated as a problem
of a mean-variance minimisation of the investor’s execution cost over a set of deterministic
trading strategies, the optimal liquidation strategy is derived explicitly. |Almgren| (2003)

generalises this model by taking the temporary impact function to be a power function. Then



for the power-law temporary impact, Almgren et al. (2005) give out a result of calibration.
Following |Almgren and Chriss| (2000) but instead of the mean-variancce criterion, |Schied and
Schoneborn| (2009) study the optimal liquidation problem with a utility optimisation. In this
model, the investor’s risk aversion depends on the how many risk-neutral assets he is holding.
Schied et al.| (2010) prove that in the Almgren-Chriss model, for any investor with a constant
absolutely risk aversion (CARA), the optimal liquidation strategy is deterministic.

Instead of the Almgren-Chriss type model, Obizhaeva and Wang| (2013]) describe the price
impact using limit order books. They assume that the price impact is determined by how
deep the investor’s orders eat into a limit order book as well as how quickly new limit orders
refill into the book. But these two factors are essentially determined by the shape of a limit
order book together with the speed of it’s resilience. With this kind of modelling, the price
impact is neither permanent nor temporary, but it is transient meaning that it decays over
time due to the new coming limit orders into the book. By considering a flat shaped limit
order book with it’s resilience following an exponential function of the difference between the
current and the unaffected statuses of the limit order book, as well as that the unaffected best
bid/ask price following a Brownian motion, Obizhaeva and Wang (2013)) solve the problem of
minimising the investor’s final expect execution cost. Alfonsi et al.| (2010) extend this model
by concerning a limit order book with a general continuous shape. [Predoiu et al| (2011)
extend this model further by working on a discrete shaped limit order book and a general
resilience function. Based on the setting of Alfonsi et al.| (2010), Lokkal (2014) solves the
optimal liquidation problem for a CARA investor when the unaffected best bid/ask price
follows a Brownian motion.

Describing the unaffected stock price using a Brownian motion may allow it to become
negative. To deal with this drawback, |Gatheral and Schied (2011) study an Almgren-Chriss
type model where the unaffected price process is a geometric Brownian motion. By imposing
a special optimisation criterion, they compare the geometric Brownian motion model to the
linear Brownian motion model, and conclude that the difference between the corresponding
optimal liquidation strategies is little. Instead of an additive price impact, to prevent the
execution price from being negative, Guo and Zervos (2015) study an optimal liquidation
model with multiplicative price impact, in which the unaffected stock price is driven by a
geometric Brownian motion.

All of the aforementioned models are about liquidating by submitting scheduled market
orders. This kind of strategy may be too aggressive, since in reality submitting limit orders to

take some advantage from choosing a preferred execution price is always considered in prior,



rather than using market orders directly. The optimal liquidation problem involving using
limit orders is studied in |Avellaneda and Stoikov| (2008]), Guéant et al. (2012), Bayraktar and
Ludkovski| (2014), Cartea and Jaimungal| (2015), etc. Moreover, Kratz and Schoneborn| (2014,
2015) consider trading involving dark pools for the optimal liquidation problem.

In reality, liquidation can usually finish in a very short time. It is well-known that Lévy
processes can provide rather good fits to the distributions of observed stock returns, and this
is in particular within short time horizons (see e.g. Madan and Seneta, 1990; Eberlein and
Keller, [1995| etc). This therefore motivates us to study the optimal liquidation problem with
market risk described by Lévy processes. To reserve the mathematical tractability, we study
the liquidation problem that only allows to submit market orders, and the price impact is in
an additive form. We establish three models. Two of them are of the Almgren-Chriss type
and the rest one involves a limit order book. In all of our three models, a CARA investor is
considered.

In the first model, we study the optimal liquidation problem with infinite time horizon
in the Almgren-Chriss framework, where the unaffected stock price follows a general Lévy
process. The temporary price impact is described by a general function satisfying some
conditions which makes the problem to be well-formulated. We suppose the investor wants to
maximise the expected utility of the cash received from the sale of his shares, and show that
this problem can be reduced to a deterministic optimisation problem which we are able to solve
explicitly. In order to compare our results to exponential Lévy models which are supposed to
be more natural to describe stock prices, we derive the (linear) Lévy process approximation
of such models. In particular we derive expressions for the Lévy process approximation of the
exponential variance gamma Lévy process, and study properties of the corresponding optimal
liquidation strategy. We find that for the power-law temporary impact function, the optimal
strategy is to liquidate so quickly that it may be infeasible in practice. This is because that
the power-law price impact doesn’t give out big enough penalisations to very large trading
speeds. We therefore try to study what kind of temporary price impact is associated with a
feasible optimal liquidation strategy in the Lévy model. In particular, we obtain an explicit
expression for the connection between the temporary impact function for the Lévy model
and the temporary impact function for the Brownian motion model, for which the optimal
liquidation strategies from the two models coincide.

In the second model, we consider an Almgren-Chriss type of liquidation model and aim to
maximise the expected utility of the investor’s cash position at a given finite time. The unaf-

fected stock price follows a general Lévy process. The temporary price impact is described by



a general function satisfying some conditions which makes the problem to be well-formulated.
We reduce the problem to a deterministic optimisation problem and we derive the optimal
liquidation strategy and the corresponding value function in closed forms. It turns out that,
if the unaffected asset price has a positive drift, then it might be optimal to wait for a while
during selling, or it might be optimal to buy back at the beginning of trading, and price ma-
nipulation in the sense of [Huberman and Stanzl (2004)) is allowed in the case of positive drift.
We solve the deterministic optimisation problem using the theory calculus of variations. In
particular, we characterise the optimal liquidation strategy using the Beltrami identity which
is a first order ordinary differential equation. This characterisation allows us to get a closed-
form solution.

In the last model, we consider a general bid limit order book with a general resilience
function where the unaffected price process follows a general Lévy process. Our formulation
also allows for limit order books with discontinuous shapes which can provide reasonable
approximations for limit order books with discrete shapes in reality. It is assumed that the
unaffected bid price provides a lower bound for the best ask price and that the bid limit order
book is unaffected by the investor’s buy orders. These assumptions allow us to exclude any buy
orders in the optimal strategy, and they also exclude any price manipulations. The number of
available limit orders in the book is assumed to be finite. This limits the investor’s strategy
in the way that he cannot sell more than currently available bid orders. With an infinite time
horizon, we solve the problem of maximising the expected utility of the investor’s the finial
cash. Due to a certain structure of the market we consider, combining with the CARA utility,
we simplify the optimisation problem to be deterministic. Formulated as a two-dimensional
singular optimal control problem, we derive an explicit expression for the value function. The
optimal intervention boundary completely characterises the optimal liquidation strategy. In
particular, this problem provides an example of a solvable two-dimensional singular optimal

control problem with an optimal intervention boundary can be discontinuous.

II. Contracted liquidation

The contracted liquidation problem extends the classical optimal liquidation problem by con-
sidering additionally a contractual agreement made between an investor (she) and a broker
(he). Precisely, instead of concerning an investor is liquidating by herself, she is assumed to
be unable to access to the market, a broker is therefore hired to liquidate on behalf of the

investor under some conditions stipulated in a contract. The contract specifies a liquidation



position, a time to complete the liquidation, how much liquidation proceeds that the broker
should deliver to the investor and how much compensation that the investor should pay to the
broker. Also, the investor can propose some liquidation strategy that the broker is expected
to (or have to) follow. The aim of this problem is to maximise both of the investor’s and the
broker’s expected utilities by finding out the optimal contract offered by the investor as well
as the associated optimal liquidation strategy implemented by the broker.

We study this problem in an Almgren-Chriss type of liquidation model (Almgren and
Chriss, [2000; |Almgren), | 2003|) embedded in a continuous-time principal-agent model. In terms
of an optimal liquidation model, we suppose there is no permanent price impact in the market,
the temporary price impact is described by some general function, and the unaffected stock
price is driven by a Brownian motion. In addition to the price impact cost, we consider some
additional implementation cost depending on the trading speed, which is described by some
general function. In terms of a principal-agent model, in our study, the principal is identified
by a CARA investor and the agent is identified by a risk-neutral broker. We assume that
the liquidation has to finish within a finite time, and that the proceeds from the sale as well
as the compensation are paid to each other at the end of liquidation as lump-sums (see e.g.
Holmstrom and Milgrom| [1987; |Cvitani¢ et al.) 2006} [2008| 2009, etc, for continuous-time
models with lump-sum payments). Depending on whether the investor is able to observe
the liquidation strategy that the broker actually implements, we study two different types
of contracts which are respectively referred to as the first-best and the second-best (moral
hazard) in the literature of the principal-agent problem.

The first-best case assumes that the investor is able to observe which liquidation strategy
that the broker implements. The broker therefore has to follow any liquidation strategy
recommended by the investor. The optimal contact and the optimal liquidation strategy are
explicitly solved out. It shows that under the condition of the optimal contract, the risk-averse
investor recommends a trivial liquidation strategy which is usually optimal for a risk-neutral
investor in an optimal liquidation model (see e.g. Almgren and Chriss| 2000)), and she transfers
all of the market volatility risk to the risk-neutral broker via the compensation so that receives
a deterministic amount of proceeds.

The second-best case assumes that the investor is unable to observe the liquidation strat-
egy that the broker actually implements. However, she does observe the stock price which
is affected by the broker’s trades. The investor requires to receive amount of proceeds com-
puted according to her recommended strategy against the observed stock price. Due to the

asymmetric information between the investor and the broker, the broker has chance to collect
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some private benefit throughout the sale, and this is done by taking the difference between
the actual proceeds he receives from the liquidation and the amount of money that have to
be delivered to the investor. The investor is supposed to seek for an optimal contract which
induces the broker to implement the recommended strategy as his optimal choice. Under this
condition, the optimal compensation and the optimal recommended liquidation strategy are
solved in closed-forms. Similar to the deterministic optimal liquidation strategy for a CARA
investor in an optimal liquidation model (see e.g. Schied and Schoneborn, 2009; |Schied et al.|
2010; |Guéant and Royer, [2014; [Lgkkal, [2014) that the optimal recommended strategy also
turns out to be deterministic in our contracted liquidation model. An explicit example with
a linear temporary price impact function and a quadratic implementation cost function is
given. It shows that compare to the Almgren-Chriss optimal liquidation strategy for a CARA
investor (see e.g. |Schied et al., [2010), the contractual agreement allows the investor to share
some market volatility risk with the risk-neutral broker.

The study of the continuous-time principal-agent problem is initiated by [Holmstrom and
Milgrom, (1987). They introduce a moral hazard model with a finite time horizon, where
the compensation is paid at the terminal time as a lump-sum, and both of the principal and
the agent have exponential utilities. The agent’s optimal effort of working for the principal
is derived to be deterministic. Their setting is close to the problem formulation about the
contractual agreement in our model, and our optimal implemented liquidation strategy (anal-
ogous to the optimal effort) is also deterministic. Within the category of continuous-time
moral hazard models, various extensions have been done. In particular, in contrast to the
deterministic effort in Holmstrom and Milgrom| (1987), many of researches focus on dynamic
incentive contracts, e.g. DeMarzo and Sannikov| (2006)); Biais et al.| (2007)); Sannikov| (2008));
Cvitani¢ et al.| (2008, 2009); |Anderson et al.| (2017)), etc. |Cvitani¢ and Zhang) (2012)) establish
general mathematical frameworks for the principal-agent problem in different contexts, char-
acterising solutions using the forward-backward stochastic differential equations. In contrary
to most principal-agent models (e.g. the aforementioned models), the output process in our
model, namely the process of liquidation proceeds, has a more meaningful financial structure,
rather than just being a general diffusion.

Compare to optimal liquidation models, the investor’s recommended strategy in our model
is usually referred to as a benchmark strategy in the literature of optimal liquidation. The
benchmark liquidation strategy usually determines directly how much the broker have to
deliver to the investor when liquidation finishes. The broker can trade against the benchmark

to gain some profit (see e.g. (Guéant and Royer}, 2014; [Frei and Westrayl, [2015|, ect). Amoung
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them, (Guéant and Royer (2014) do some indifference pricing for the amount of shares need
to be sold with respect to the broker’s optimal expected utility maximised over a set of
admissible liquidation strategies. This indifference price is quoted by the broker, and it serves
as a premium so that the broker agrees to liquidate for the investor. In terms of our model,
the aforementioned liquidation models involving benchmarks are equivalent to the broker’s

problem, where the investor’s utility optimisation is completely not considered.

III. Contract with outside options

The principal-agent problem studies how a principal incentivises an agent to manage a project
based on some contractual agreement. The principal receives the profit generated from the
project, meanwhile compensates the agent for his effort which impacts the profit that the
principal receives. Therefore, the aim of this problem is to find an optimal contract and the
agent’s associated optimal managerial effort.

The continuous-time principal-agent problem is first studied by [Holmstrom and Milgrom
(1987) in the context of moral hazard, meaning that the agent can employ some hidden
action which is unobservable for the principal. In their finite time horizon model, all payoffs
are made as lump-sums at the end of time. Receiving a compensation from the principal, the
agent applies effort to maximise his expected utility. Having understood the agent’s optimal
response, the principal optimises over contracts to maximise her own expected utility. In the
context of moral hazard, DeMarzo and Sannikov| (2006)); Biais et al.| (2007) study the optimal
structure of financing a company whose manager can employ an unobservable shirking action
to reduce the value of the company. They find the optimal contract for which the manager does
not reduce the company’s value, and implement this optimal contract using realistic financing
tools. |Sannikov| (2008)) introduces a continuous-time model for a risk-averse agent and a risk-
neutral principal who can terminate the project inefficiently. |Cvitani¢ et al.| (2008) extends
the Holmstrom and Milgrom| (1987) model by taking the consideration that the principal is
allowed to dismiss the agent. When the agent exits, an exogenous payoff is paid to him. Based
on DeMarzo and Sannikov] (2006, DeMarzo and Sannikov| (2017) study a stealing model in
which the principal and the agent have different believes about the intrinsic drift of the output
process of the project. In addition, when the agent is dismissed by the principal, he gets some
outside option whose value depends on both of their believes of the outcome’s drift.

DeMarzo and Sannikov| (2006)); Sannikov| (2008) first connect the principal-agent problem

to the theory of optimal control. In particular, given any contract, the agent’s optimal effort
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is characterised by his optimal value process which can be taken as a state process of the prin-
cipal’s optimal control problem. The principal then chooses the optimal contract, therefore,
the agent’s optimal effort associated with this contract is induced at the same time.

In a setting similar to Sannikov| (2008)), we study a principal-agent problem where the
agent receives an outside option when he chooses to stop working for the principal. In contrast
to |Cvitani¢ et al. (2008)) and DeMarzo and Sannikov| (2017), the agent can terminate the
contract when the outside option is sufficiently attractive. The value of the outside option
depends on agent’s past performance. The higher output the agent has produced, the higher
value his outside option becomes. Therefore, the agent not only works for the compensation
paid by the principal, but also to improve his perspective from the outside option. The value
of outside option is assumed to be linear in the present value of the accumulated cash flow
generated from the project. This assumption allows the outside option to be incorporated
into the agent’s running cost, which reduces the dimension of the principal’s control problem
and effectively enhances the mathematical tractability.

Mathematically, the agent’s problem is formulated as a non-Markovian stochastic control
and stopping problem. For any given compensation, using a martingale representation tech-
nique, the agent’s optimal effort and optimal stopping time are characterised by his optimal
value process. Then the principal’s problem is formulate as a stochastic control problem with
mixed classical control and singular control. Similar to Sannikov| (2008), the agent’s optimal
value process is used as the state value for the principal. In contrast to DeMarzo and San-
nikov| (2006) and [Sannikov (2008, where the contract sensitivity is assumed to be bounded,
we first show that principal’s value function is a unique continuous viscosity solution to the
principal’s fully nonlinear Hamilton-Jacobi-Bellman variational inequalities (HJBVI) without
assuming a bounded control. This result is mathematically interesting in its own right. Im-
posing an additional assumption on admissible contracts’ sensitivity, which makes sure the
principal’s HJBVTI is uniformly elliptic, we upgrade the regularity of the viscosity solution to
be twice continuously differentiable. This allows us to derive the optimal contract, and hence
the agent’s associated optimal effort and optimal time to exist are induced at the same time.
It turns out that for the optimal contract, the compensation is paid with a minimum amount
such that the agent’s optimal value process remains below a certain finite level. The agent’s
optimal effort is a function of the optimal contract’s sensitivity, and the agent is optimal to

stop working once his optimal value process drops down to 0.
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IV. Structure of the thesis

Part I

Chapter 1: Section 1.1 introduces an Almgren-Chriss type of liquidation model with infi-
nite time horizon and the investor’s optimal liquidation problem; Section 1.2 simplifies the
problem; solution to the optimal liquidation problem is given in Section 1.3; Section 1.4 gives
out an approximation scheme for an liquidation model with exponential Lévy processes, using
the model developed in previous sections; some numerical examples are given in Section 1.5;

Section 1.6 contains all of the proofs in this chapter.

Chapter 2: Section 2.1 introduces an Almgren-Chriss type of liquidation model with finite
time horizons and the investor’s optimal liquidation problem; Section 2.2 simplifies the prob-
lem; this problem is solved in Section 2.3; Section 2.4 shows that the finite time horizon
model converges to the model with infinite time horizon; all of the proofs in this chapter are

contained in Section 2.5.

Chapter 3: Section 3.1 introduces a liquidation model in the context of limit order book, and
the investor’s optimal liquidation problem is introduced; Section 3.2 simplifies the problem;
solution to this problem is derived in Section 3.3; all of the proofs in this chapter are given in
Section 3.4.

Part 11

Chapter 4:  Section 4.1 introduces an Almgren-Chriss type of liquidation model with a
contractual agreement between an investor and a broker; Section 4.2 studies the first-best
contract; the second-best contract is studied in Section 4.3; all of the proofs in this chapter

are contained in Section 4.4.

Part 111

Chapter 5:  Section 5.1 introduces a principal-agent model with agent’s outside options;
Section 5.2 formulates the agent’s and the principal’s problems, and the agent’s optimal effort
as well as the optimal time to exit are solved out for a given contract; the principal’s optimal

contract is derived in Section 5.3; Section 5.4 contains all of the proofs in this chapter.
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Part 1
Optimal Liquidation

This part is based on joint works with Dr. Arne Lgkka.

Chapter 1

Optimal liquidation trajectories for
the Almgren-Chriss model with Lévy
processes

1.1 Problem formulation

Let (22, F,P) be a complete probability space, equipped with a filtration F = (F;);>¢ satisfying
the usual conditions, which supports a one dimensional, non-trivial, F-adapted Lévy process

L. We assume that the Lévy process L possesses the following properties.

Assumption 1.1. L; has finite second moment. Moreover, the set {(5 <0 E[e‘ng} < oo} is

non-empty.

For future reference, we observe that this assumption ensures that L; has finite first and

second moments, for all ¢ > 0. Hence, L admits the decomposition

Ly = pt+ oW+ / z (N(t,dz) — tv(dz)),
R

where p € R and o > 0 are two constants, W is a standard Brownian motion, N is a Poisson

random measure which is independent of W with compensator tv(dz), and v is the Lévy
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measure associated with L (see e.g. Kyprianou, |2006). Write
§ =inf{6 <0|E[e’"] < 00} < 0. (1.1)

Assumption also ensures that the cumulant generating function of L is finite on the
interval (&, 0]. This property will be made extensive use of in the sequel.

We consider an investor who aims to sell a large amount of shares of a single stock in
an infinite time horizon. For ¢ > 0, we denote by Y; the investor’s position in the stock at
time ¢, and let y > 0 be the investor’s initial stock position. We consider the following sets of

admissible liquidation strategies.

Definition 1.2. Given an initial share position y > 0, the set of admissible strategies, denoted

by A(y), consists of all F-adapted, absolutely continuous, non-increasing processes Y satisfying

| Wikt <coituo (1.2
and

/ Vil dt <00 if p=0. (1.3)

0

Let Ap(y) be the set of all deterministic strategies in A(y).

The reason for operating with different sets of admissibility depending on the drift pa-
rameter p is related to the asymptotic properties of the cumulant generating function of Ly
around 0. If y is 0 then the cumulant generating function is of order two around zero, while it
is of order one if p is different from zero (the importance of the cumulant generating function
of Ly will be explained later). The integrability conditions in and make sure that
the investor’s finial cash position is well-defined (see Proposition , at the same time, they
also rule out some arbitrage in some weak sense (see Remark [1.6]).

Let Y € A(y). Then there exists an F-adapted, positive-valued process § such that Y

t
Yt:y—/ €. ds,
0

i.e. —& is the time derivative of Y at time ¢. In the literature of optimal liquidation, the

admits the representation

function t — Y; is referred to as the liquidation trajectory and the associated process & as the
liquidation speed (see Almgren and Chriss, 2000; |Almgren, 2003|, etc). They are identified by
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each other.
As it is common in the optimal liquidation literature, we refer to the unaffected stock price
process the price process observed in the market, if the investor does not trade. Throughout

this chapter, we consider that the unaffected stock price process is modelled by the process
s + Lt, t>0,

where s > 0 is some constant which denotes the initial stock price. In reality, liquidation can
usually finish in a very short time. It is well-known that Lévy processes can provide rather
good fits to the distributions of observed stock returns, and this is in particular within short
time horizons. Therefore, the study of liquidation problem with Lévy processes should give
out a good result of the optimal liquidation strategy.

Following |Almgren and Chriss (1999} 2000)) and |Almgren| (2003)), we split a market impact
into two components: a permanent impact and a temporary impact. We therefore assume

that the stock price at time ¢ > 0 is given by
StZS—FLt—i—Oé(Y;—Y())—F(gt), (14)

where o > 0 is a constant describing the permanent impact and F' : [0,00) — [0,00) is a
function describing the temporary impact. It is common in the literature of optimal liquidation
that in a continuous time model, an admissible strategy is assumed to be absolutely continuous
(see |Schied and Schoneborn), 2009; [Schied et al., |2010, etc), and therefore for some ¢ > 0, the
associated liquidation speed might be undefined. As a consequence, the stock price given
by might be undefined for some ¢t > 0 as well. However, this is fine in the context of
optimal liquidation, because for instance in our study, we only focus on the proceeds from
selling shares, which is well-defined with such definition of S (see (1.5)). We assume that F’

satisfies the following assumptions.
Assumption 1.3. The temporary impact function F : [0, 00) — [0, 00) satisfies that
(i) F e C([0,00)) N CL((0,00));
(il) F(0) = 0;
(iii) the function z — xF(z) is strictly convex on [0, c0);

(iv) the function z +— x2F’(z) is strictly increasing, and it tends to infinity as # — oo.
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In the above assumption, condition (iii) serves for the convexity of the objective function
in the optimisation problem we are going to solve (see ) and hence the uniqueness
of solution holds (see Theorem [I.15); condition (iv) ensures that the value function in our
optimisation problem is solved in an explicit form (see Proposition and the optimal
liquidation speed process can be solved in a feedback form (see Theorem . Assumption
is satisfied by a large class of functions, for example, F(z) = Sz7 with 5,7 > 0. Under

this assumption, we derive the following technical properties of F' for future references.
Lemma 1.4. F is strictly increasing and lim,_ o xF'(z) = 0. Hence lim,_,o 2>F'(x) = 0.

For t > 0, let C’tY denote the cash position of the investor at time ¢ associated with some
admissible strategy Y. Denote by ¢ € R the investor’s initial cash position. Then a direct

calculation verifies that his cash position at some finite time T is given by
T
Y =c— / Sy dY;
0
a, ) T T
=c—(s—ay)(Yr —y) + 5 (y" = Y1) = L7 + / Y;—dL; — / &F(&)dt.  (1.5)
0 0

The next result states that the investor’s cash position at the end of time is well-defined.
Proposition 1.5. For any Y € A(y), we have

(i) LrYr — 0 in L*(P), as T — oo;

(ii) [° Yie dL; is well-defined in L' (P).

Therefore,
1 o0 oo
CY =c+sy— iay2 + / Y;_ dL; — / EF (&) dt, a.s., (1.6)
0 0

forany Y € A(y).

From the expression of ng, we can make a few observations. The term ¢ + sy can
be viewed as the initial mark-to-market wealth of the investor. His total loss due to the
permanent impact of trading is given by %OzyQ which is deterministic and only depends on the
initial liquidation size. In particular, it does not depend on the choice of liquidation strategy.
The term fooo & F (&) dt represents the total cost due to the temporary impact, and it does
depend on the liquidation strategy. The term fooo Y, dL; represents the gain or loss due to
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the market volatility. A relatively slow liquidation speed reduces the temporary impact, but
provides a substantial market volatility risk. The optimal liquidation strategy is therefore
a compromise between the loss due to the temporary impact and the market volatility risk.
We assume that the investor has a constant absolutely risk aversion (CARA), thus his utility
function U satisfies U(z) = — exp(—Ax), for some constant A > 0. Suppose the investor aims

to maximise the expected utility of his cash position at the end of time, i.e. he wants to solve

sup E[U(Cgfo)] (1.7)
YeA(y)

In view of (|L.6]), this problem takes the form of

inf e*Aé E
YeA(y)

exp<— /OOO AY;_ dL, +A/DOO &F(&)dt)], (1.8)

where

1
C:c+sy—§ay2.

To solve the above problem, it is sufficient to look at

oo oo
inf E [exp (— / AY,_dL; + A/ & F (&) dt)] . (1.9)
YeA(y) 0 0

Remark 1.6. Suppose that we do not impose integrability conditions (|1.2)) and (1.3) on an
admissible strategy. Then cash position at time infinity may not be well-defined. In this case,

we may consider to solve the problem

sup E [— exp (—A lim sup C%:)} .
YeA(y) T—o0
However, without and , our model admits an arbitrage in some week sense. To see
this, we consider the Lévy process L as a standard Brownian motion and consider some stock
price p > s. Write 7, = inf{t > 0|L; > p} which is finite a.s. (see Rogers and Williams
(2000), Lemma 3.6). Suppose Y is an absolutely continuous, non-increasing strategy which
consists of a waiting until time 7, and then decreases to 0 following a deterministic way, i.e.

(v

,+t)¢>0 is a deterministic process starting from y. Such strategy is admissible. Let { be
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the associated speed process. We calculate that

Yil,latlzy) E [— exp (—A hzrpjolip C%f)}

>E [— exp(—A li;njolip C%)]

>E [— exp(—AC’%_TPM

= —exp AC+A/ Etary F (G4ry) dt> [ AY; th)]

( exp<

= exp( AC+ A / i, F (6 r,) dt) [exp< AyW-, — / o AYP th)]
( A
S

T+Tp

up — AO+A/ &, (£t+7p)dt>E[ (/T+Tp2A2(lft)2dt>]

1
= —exp| —Ayp — AC+A/ Str, I (§t+7p) dt—l—/ 2A (Y;i—l-fp)2 dt),

= —exp

where C = c+sy— %ay2, and notice that the two integrals in the above line are two constants.

Taking p to +o0o gives

E [— exp(—AC%/Jerﬂ =0.

Then Jensen’s inequality results in

lim — exp(—AE [C’};TP]) > plLIEOE[— exp(—AC%/Jer)} =0,

p—o0

which implies that

lim E[C’TJrT ] = o0.

pP—00

Therefore, for some large enough p, C’%/ 7 has a strictly positive expectation. This is an
arbitrage in the sense that the investor can receive strictly positive proceeds for sure by
repeating this strategy. However, Y clearly violates and . O
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1.2 Problem simplification

Throughout this section, we reduce problem ([1.9) to be a deterministic optimisation problem.
Let’s first write 4 = —6/A, where ¢ is the negative number appearing in (1.1) and A is the
risk aversion parameter appearing in the utility function U. We impose further the following

assumptions.
Assumption 1.7. The initial stock position y is strictly less than é4.
Assumption 1.8. The drift u of the Lévy process L satisfies p < 0.

Assumption [1.7] restricts the investor’s maximum initial liquidation position cannot be
too large. This assumption helps us to reduce our problem. It ensures the objective function
we are going to deal with does not explode, as intuitively market volatility risk associated
with a significantly large amount of shares can be severe, which may cause some degeneracy.
Assumption excludes a degenerate case of our reduced problem (see the discussion after
equation (1.14)).

Define function x4 : [0,04) — R by ka(x) = k(—Az), where & is the cumulant generating
function of L. This function will play an important role in the sequel and it has the following

properties.
Lemma 1.9. The function k4 possesses the following properties
(i) £a(0) =0;

(ii) k4 is strictly convex;

(iii) if p =0, then lim,_o ralz) _ K, for some constant K > 0;

2

iv) if p # 0, then lim,_0 ra@) _ —Apu.
(i)

x

Lemma 1.10. Let Y be a continuous process starting form y € [0,64). Then

| Willeey dt < o0

if and only if
/0 EA([[Yull Lo (py) du < o0,
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where it =1 if p <0, and i = 2 if p = 0. Moreover, with u > 0,

/0 1Yl oo dit < 00

implies
oo
/0 HA(HYUHLOO(]P)) du < oo.
In order to reduce problem ([1.9)), we also require the following technical result.

Lemma 1.11. For any Y € A(y), the process MY given by

t t
MY = exp< —AY,_dL, — / ka(Yy) du>, t>0, (1.10)
0 0

1s a uniformly integrable martingale.

It follows from Lemma and Lemma that, for any Y € A(y), the process MY is a

strictly positive martingale closed by MY . We can therefore define a new probability measure
Q" by

dQY

AP

Based on the idea in Schied et al. (2010) Theorem 2.8, and with reference to and

Lemma [1.11] we calculate that

inf El|ex —/ AY,_dL —i—A/ dt)]

Yedw) [ p( ) t— Ly & F ft

= inf E{exp(—/ AY;_dL; — / ka(Yy) dt—i—/ ka(Yy) + AGF (§t)>dt>]
YeA(y) 0 0

= inf, 8 e [ (rat v agrie) o)

<yt e [ (ka0 +A§tF(§t)> dt]. (1.11)

YeAp(y)

= MY,

Now suppose that Y* is a solution to problem ((1.11), then it must also be a solution to
problem ([1.9), and hence an equality holds in ([1.11)). This is because that otherwise there
must be some Y € Ap(y) which coincides with some sample path of some Y € A(y) such that

exo| [ (ma) + Asr @) )
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<E?" [exp < /0 b (F.;A(Yt) + AgtF(gt)> dt)]
<exp [ I (myt*) ¥ AM(SZ‘)) dt}

This contradicts with Y* being a solution to problem ([1.11)). Therefore, it suffices to solve
the problem

V(y) = inf J(Y), €[0,6 1.12
W)=, nf J¥). ye .o (112

where V' denotes the value function and J is given by
J(Y) =/ </<cA(Yt) +A§tF(§t)> dt. (1.13)
0

If we take Y € Ap(y) such that Y; = (t — \/7)°, for t € [0,\/7], and Y; = 0, for t > /3,
then it can be checked that

J(Y) = /f(m((t —VB)’) + ARV - 2)F (25 - 2t)> dt <oo,  (1.14)

which implies that V < oo. Lemmam implies k4 > 0, if © < 0. Hence we have 0 <V < oo,
for all 4 < 0.

Assumption [I.8] excludes some degeneracy. To see this, suppose p > 0. Then Lemma [T.9]
(iv) implies that there exists some constant z > 0 such that —oco < k4(z) < 0. Suppose that
the investor’s initial stock position is z and let’s consider the strategy Y € Ap(z) satisfying
Y/ = —& =0 for t € [0, s] with some s > 0. Then

V(z) < /Os ka(z)dt +V(z) = ska(z) + V(2).

This can happen only if V(2) = —oco. Let Y € Ap(y) with y > 2z and set t, = inf{t > 0 |
Y, = 2} < 0o. Then

V(y) < /O - (m(f@) + A&F(é)) dt +V(2),

which implies that V(y) = —oco. As z can be chosen to be arbitrarily close to zero, it follows
that V(y) = —oo, for all y € (0,04). We therefore conclude that the value function is
degenerate when p > 0. Let y € (0,04), and suppose (in order to get a contradiction) that
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there exists an optimal strategy Y* € Ap(y). Define k4 to be the function which is identical
to k4 with g = 0. Then with reference to the Lévy-Khintchine representation of L (see
(1.35)), we can write k4(z) = —Aux + Ka(z). By Assumption and Lemma [1.9] we have
that £4(Y;") + A& F (&) is positive. Thus,

Vi) = [ (-Ans + a0V + AGFED ) de = —oc, >0

implies fooo Y/ dt = oo, which contradicts the definition of an admissible strategy. We conclude
that if g > 0, then there is no optimal admissible liquidation strategy.

Before finishing this section, we give out the following two remarks. Remark[1.12|compares
the CARA utility to the mean-variance optimisation criterion for our problem, and Remark
discusses that it is not optimal to buy back during the liquidation in our setting.

Remark 1.12. It is mentioned in |Schied et al.| (2010) that in the Almgren-Chriss model with
Brownian motion describing the unaffected stock price, the problem of optimising the finial
cost/reward of a CARA investor over a set of adapted strategies is equivalent to the same
problem but with a mean-variance optimisation criterion and over the corresponding set of
deterministic strategies. Nevertheless, this is not the case in our model, i.e. this equivalence
does not hold if the unaffected stock price is modelled by a general Lévy process. To see this,
as we know in our problem, the set of admissible strategies A(y) can be replaced by Ap(y).
Then in view of , it suffices to consider

inf E [e_ACéVO]
YEAD(y)

)

where

1 o °°
CY =c+sy— §ay2 +/ Yi—dLy — / §F(Er) dt.
0 0

Let’s try to express E[e‘ACg/ﬂ in terms of E[CY ] and Var(CY). It can be calculated that

1 o o
E[CY] =c+ sy — 504/2 + M/ Y; dt — / §F' (&) dt
0 0

and
Var(CY) = 02/ Y2 dt —I—/ </ Y2a? V(dnn)) dt.
0 0 R
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Then,
]E[exp(—ACzo)]
1 o (o)
= exp [—AE[C’OYO] + -~ A%5? / Y2 dt + / / (e*AYﬂ -1 +Am) v(dz) dt]
2 0 0o JR
1 e 1
= exp [—AE[C’O};] + §A2Var(00};) + / / (e_AY”” -1+ AYx — §A2Yf:r2) v(dz) dt} .
0o Jr
From the above expression, it is clear that the problem is equivalent to

1
sup E[CY] - §AVar(Cg/o),
YeAp(y)
if v(R) = 0, i.e. the Lévy process L has no jumps. However, for any general Lévy process,

this equivalence does not hold. ]

Remark 1.13. Let’s suppose that the large investor is allowed to buy shares. In this situation,
in order to well-define the finial cash position, in addition to the conditions in Definition [1.2)
we assume that any admissible strategy Y satisfies lim;—, oo t[|Yy||poo(p) = 0 (see Lemma m
and proof of Proposition for more details). We also suppose Y is positive-valued, Y; < 04
for all t > 0, and it admits Y; = y + fg &, du with & € R. Denote by A% (y) the set of all
admissible strategies, and by .Aff,(y) the collection of all deterministic admissible strategies.

Then the liquidation problem can be reduced in a similar way as before to be that

V(y) = inf(y) /OOO<HA(1@)+AI§4F(]&\)> dt.

+
YeA,

Let Y € A%(y) be a strategy including intermediate buying. Then there exists two time
points r and s with » < s such that ¥, = Y; and ¥; > Y, for all ¢t € (r,s). Consider the
admissible strategy X such that X; =Y, for ¢t € (r,s) and X; =Y, for t € [0,7]U[s, 00). Then

with reference to Lemma [1.9

/: <,$A(Xu) + A\ff!F(!&ffl)) du = rA(X;)(s —7) < / <HA(YU) - A|§u|F(|§u|)) du,

where ¥ is the speed process associated with X. Therefore, J(X) < J(Y). This shows Y is

not optimal. ]
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1.3 Solution to the problem

With reference to the previous section, recall that the original optimal liquidation problem
(1.7) is equivalent to solving

V(y)= inf )/Ooo </€A(Yt)+A§tF(ft)> dt,

YeAp(y

with

dY; = =& dt, YYo=y €[0,64).
According to the theory of optimal control, the corresponding Hamilton-Jacobi-Bellman equa-

tion is given by

ka(y) + érzl%{A:rF(x) —z'(y)} =0, (1.15)

with associated boundary condition v(0) = 0. Define G : [0, 00) — [0, 00) be the inverse func-
tion of x — 22 F’(x). Assumption and Lemma together imply that G is a continuous,

strictly increasing function satisfying G(0) = 0. The following result gives out a classical

solution to (1.15)).

Proposition 1.14. Fquation with boundary condition v(0) = 0 has a classical solution

given by
v(y):/oy{cw+AF<G</€AIL§U)>>}du, 0<y<da (1.16)

A

The next theorem gives out the optimal liquidation strategy, and it identifies the value
function V' with the function v in ([1.16)).

Theorem 1.15. Let y € [0,64). Define

Y 1

Let Y* satisfy

y
/ —————du=t, ift<t, and Y =0, ift>r. (1.18)
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Then Y* € Ap(y), and its associated speed process £ satisfies

Y*
& —G(KAilt )>, for all t > 0. (1.19)
Moreover, V in is equal to v in , for all y € [0,04), and Y* is the unique optimal
liquidation strategy for problem .

Note that because of the continuity of function G, (1.19)) implies that the strategy Y™ in
is continuously differentiable. Since functions k4 and G are both strictly increasing,
it follows from that with a larger stock position at time ¢, the associated optimal
liquidation speed at time t is larger. Moreover, it can be shown by the strict convexity of
the cumulant generating function of L; that A — k4(x)/A is strictly increasing. Hence, the
optimal liquidation speed at any time is strictly increasing in the risk aversion parameter
A. These two relations coincide with the intuition that with a larger position in stock, the
investor potentially encounters bigger risk from the market volatility, as any tiny fluctuation
of stock price can be amplified by huge number of shares held, therefore it is optimal to
liquidate faster; and that if the investor is more risk averse, then he cares more about the
volatility risk, which makes him to employ a liquidation strategy with larger speed of sale.
Observe that given an initial stock position y € [0,54), the quantity 7 in indicates the
first time of the stock position getting 0, if the large investor liquidates following the optimal
strategy Y*. Depending on properties the temporary impact function F, 7 may or may not
be finite, i.e. it happens in some cases that liquidation can optimally finish in a finite time
period, even though there is no restriction on terminal time. The next theorem gives out
some sufficient conditions of whether the optimal liquidation strategy Y* has an endogenous

time of termination.
Proposition 1.16. Under the condition that y > 0

(1) suppose i < 0 and there exist constants p < 1 and K > 0 such that lim,_,o 2PF'(z) = K,

then T < 0.

(i1) suppose = 0 and there exist constants p < 1 and K > 0 such that lim,_,0 2P F'(x) = K.
If pe[0,1), then T =o00. If p <0, then T < 0.
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1.4 Approximation for exponential Lévy model

To model stock prices using Lévy processes, it is more natural to consider exponential Lévy
processes (see e.g. [Madan and Seneta, |1990; |[Eberlein and Keller, [1995; Barndorff-Nielsen,
1997, etc). However, due to the mathematical complexity of exponential Lévy processes, the
corresponding liquidation model is not tractable. Instead of dealing with an exponential Lévy
model directly, we try to approximate such model using the liquidation model established
before. To this end, we are going to derive a Lévy process which can be regarded as a linear
approximation for a corresponding exponential Lévy process. We show that this Lévy process
satisfies all of the assumptions of being a driving process of the unaffected stock price in
the liquidation model introduced in previous sections. Therefore, our optimal liquidation
strategy derived in the previous section can be regarded as an approximation for the result of
the corresponding exponential Lévy model. This linear approximation argument is reasonable
since in practice liquidation can usually finish in a very short time period.

Let’s first introduce a liquidation model with exponential Lévy processes. Consider a non-

trivial, one dimensional, F-adapted Lévy process L which admits the canonical decomposition

Et:m+&v~vt+/

SNt d2) + / 2 (N(t,d2) — ti(d2)), ¢ >0, (1.20)
|21>1

|z|<1

where i € R and 6 > 0 are two constants, W is a standard Brownian motion, N is a Poisson
random measure which is independent of W with compensator tv(dz), and © is the Lévy

measure associated with L. We assume that L possesses the following properties.

Assumption 1.17. We assume that 7 is absolutely continuous with respect to Lebesgue

measure, and that
/ e* i(dz) < . (1.21)
|z[>1
Suppose the unaffected stock price is described by the process Su satisfying
cu o .
t _SeXp(Lt)a tZOa

where § > 0 is some constant denoting the initial stock price. Note that 1' ensures 5’;‘
to be square integrable, for all t > 0 (see e.g. Kyprianou, 2006, Theorem 3.6). Suppose the
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affected stock price at time ¢t > 0 is given by
St = §exp(l~}t) + It,

where I} = a(Y; — Yp) — F(&) is the price impact at time ¢ appearing in the previous liqui-
dation model with function F' satisfying Assumption (Gatheral and Schied, 2011}, study
a liquidation model with the affected stock price in this form with a geometric Brownian

motion). By Itd’s formula, for all ¢ > 0, S, can be rewritten as
~ t t ~ t oo ~
S = §+/ S;‘j_mdu+/ SY_Gdw, +/ /S;j_ (e* = 1) (N(t,dz) — ti(dz)) + I,
0 0 o JR

where m = 1 + %2 + Jple® =1 — z1y2j<1}) (dz). In order to approximate the exponential

Lévy model, consider the process S such that

Sp = 5+ &t + 56W; + / 5(e* —1) (N(t,dz) — tir(dz)) + I;, >0,
R

which can be considered as a linear approximation of S. Recall that the affected stock price

in the preceding model is given by
Si=s+Li+1;, t>0,

where Ly = put + oWy + [p @ (N(t,dz) — tv(dz)). Comparing this to the expression of S, it

can be seen that if we take s = § and choose L to be such that

Ly = &t + 56W, + / §(e" — 1) (N(t,dz) — tio(dz)), >0, (1.22)
R
then it follows that
S;=5+L;+1I;, forallt>D0.

We may therefore consider S as the affected stock price process in the liquidation model
introduced in previous sections. The next proposition verifies that L with the above expression

is a Lévy process satisfying Assumption [1.1

Proposition 1.18. Let L be given by . Write L = L/5. Then L is an F-adapted Lévy
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process whose Lévy measure, denoted by U, satisfies
A(d)—i1 f(l( +1))d >—-1,z#0
1 = n .
x 1 x x, x , T

Therefore, L is an F-adapted Lévy process satisfying Assumption [1.1]

Remark 1.19. From equation (1.50) (in the proof of Proposition [1.18) we know that

/ e U(dr) < oo, forall u<0.
lz|>1

This implies that § given by (1.1]) is equal to +o00, and therefore, Assumption is satisfied
for any initial stock position y > 0. In other words, if we consider an exponential Lévy model
and use the approximation scheme discussed above, we do not need to concern any restriction

on the maximum volume of liquidation. O

With L given by and L defined in Proposition in view of — we

consider the optimisation problem

v =, [T (ko +asre) ) vz (123

where A > 0 denotes the investor’s risk aversion, A = A3 and & i :[0,00) = [0,00) is defined

by & ;(z) = f(—Az) with & being the cumulant generating function of L.

Theorem 1.20. The unique optimal liquidation speed for problem s given by

& = G<%’Z‘<Yt*)>, t>0, (1.24)

A

where G : [0,00) — [0,00) is the inverse function of ¥ +— x?F'(z) and Y* is the associated

unique optimal admissible stock position process satisfying

v 1
/ Wdu:t, 'lftST, and )/;S*ZO, th>7',
e G(=)

with 7 defined by




The value function in satisfies

V(y) = /Oy{(;?“(ig) —l—AF(G(’%Af(lu)))}du, y>0.

A

»
oS

1.5 Numerical examples

In this section, we give out some numerical examples following the approximation scheme
discussed in the previous section. We consider the process L in (1.20)) as a variance gamma
(VG) Lévy process, which is obtained by subordinating a Brownian motion using a gamma

process. Precisely, we consider L to be such that
Z—/t = 97} + pWTta t> O,

where # € R and p > 0 are some constants, W is a standard Brownian motion and 7 is a

%, %) for some constant > 0. Then L is a VG Lévy
process whose Lévy density is given by

gamma process such that 7 ~ F(

]
where
/ 2p2
9 02 4+ 222
C = o) and D = 7277,
1Y P

and its cumulant generating function £ admits the expression

1 2 2
R(z) = —ln(l— |
n 2

- 977x> (1.25)

(see e.g. |Cont and Tankovj [2004). It can be shown that Assumption is satisfied if
D — C > 2. We calculate according to Proposition [I.18] that the Lévy measure ¥ of process

'T'(a, b) denotes a gamma distribution with shape parameter a > 0 and rate parameter b > 0, for which the
probability density function is given by f(z) = 2% e for & > 0, where I'(-) is the gamma function.

For any X ~ T'(a,b), E[X] = § and Var[X] = .

ba
T(a)
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L satisfies

-1
Tl e+ N, ze(—1,0),
1 1
p(de) = " H(TF )
m(l’ —+ 1)07D71 d[]f, T € (0, OO)

Therefore, the function 4 ; : [0,00) — [0,00) in 1’ denoting it by /%EG in the example of
VG Lévy process, is given by

A% (u) = — Aru + / 1 (e*f‘“z —1+ Aua;) v(dx), (1.26)

where the drift parameter m = &(1).

The next result gives out an explicit expression of a lower bound of 4%, which will be

A
useful for deciding the limit behaviour of price impact function later.
Proposition 1.21. For u > 0, write
Au j C+D+2 Au C+D+1

VG < e et Ay 1 > e < 1 >

k7 (u)=—-Amu+ —|———| =— A1l +—(=—A1

£z () 77[ C+D+2<Au C+D+1\ Ay

. Au 1+ Au
C+D+2 C+D+1)|

1

and in particular, for u > e

g%%):—gmwe[(})Cw“eﬁu( .

A n L\ Au C+D+1 C+D+2
Au 1+ Au
+C+D+2_C+D+1]'

Then we have I%EG(U) > EEG(U), for all u > 0.

In order to get a comparison between a liquidation model with a VG Lévy process and a
liquidation model with a Brownian motion, when L is considered as a Brownian motion, we
derive that the function & ; : [0,00) — [0,00) in l) denoting it by /%EM , has expression

~2

- 1 -
REM (u) = —A(ﬂ + %)u + A, (1.27)
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where i € R and ¢ > 0 are some constants which represent drift and volatility of L, respec-
tively. In the case of Brownian motion, Assumption |[1.17]is always satisfied.

Throughout this section, we use the following reasonable daily data for our VG Lévy
process. We take § = —0.002, p = 0.02 and n = 0.6. For more details about empirical studies
of parameters of VG stock price model, we refer to Rathgeber et al. (2013). For parameters
in the Brownian motion case, in order to get a good comparison, we make the expectation
and the second moment of et when L is considered as a Brownian motion to be the same as
when it is considered as a VG Lévy process. Hence, i and & in @D are taken to be such
that & + "—22 = (1) and 2fi + 262 = &(2), where & is given by @ . Therefore, throughout

this section,

Moreover, we choose 5 = 100 for simplicity.

1.5.1 Power-law price impact function

Consider the power-law temporary impact function, i.e. F' : [0,00) — [0,00) is given by
F(z) = pa7,

where 5 > 0 and v > 0 are constants. This kind of impact function is widely believed and has
been well-studied in the literature of price impact (see e.g. Lillo et al.l 2003; Almgren et al.|
2005, etc). It can be checked that F' satisfies Assumption and the function G appearing

in ([1.24) is given by

1

G(z) = <;y>m’ x> 0.

Applying Proposition we see that if L is a strict supermartingale, then 7 in |i is

finite, for all v > 0; if L is a martingale, then 7 = oo for v € (0,1], and 7 < co when vy > 1.
It follows from (1.24]) that the optimal liquidation speed takes the expression

1
* ’%A()t*)> v
= , for all t > 0. 1.28
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We adopt the values of 8 and ~ suggested in |Almgren et al.| (2005) where parameters of the
power-law temporary impact are studied empirically. Particularly, we take v = 0.6 and choose
B=47x10°[

Consider a stock with average daily volume 2 x 10%. Suppose the investor wants to liqui-
date a position of 2 x 10° E|of this stock. Figure gives out optimal liquidation trajectories
in both VG Lévy process case and Brownian motion case when the risk aversion parameter
A takes values of 1076, 1075 and 107 E| . We see that when A = 1079, optimal strategies for
two models are almost identical. As A increases, optimal speeds increase in both models, and
in particular, speeds increase much faster in VG model for big positions. In each case, liqui-
dation finishes in a short time period, which confirms that the linear approximation scheme
of exponential model is reasonable. Now we may make a conclusion that if one believes that
the unaffected stock price follows an exponential VG Lévy process and the temporary price
impact is described by a 0.6 power-law, then optimal liquidation strategy for the Brownian
motion model is suboptimal unless A is very small.

As shown in the first graph of Figure that when A = 107° and A = 1074, at the
beginning of liquidation, stock positions drop immediately by a large proportion of its initial
value. In order to get more details about these two trajectories, we compute that when
A = 1075, time spent on liquidating 40% of 2 x 10° shares is about 0.00018, if the investor
follows the optimal strategy for the VG case. Suppose the time parametrisation is the same
as clock time, then 0.00018 is just a few seconds. If the investor’s risk aversion takes the value

10~*, then according to the optimal strategy for VG model, he spends roughly 1.34 x 10714

B 2\jVith our notations, the temporary impact function F' in |Almgren et al|(2005)) is given by F(z) = fz” =
So— ﬂ&(%)v, where V' denotes the daily volume of a given stock, the value of exponent v is argued to be

0.6 (as the main result in their paper) and B is a constant which is suggested to be 0.142. From the values
of parameters of the VG Lévy process that we have chosen, it can be calculated that the volatility & in the
Brownian motion case is roughly equal to 0.02. Comparing this number to the values of volatilities and daily
volumes of stocks provided in examples in |Almgren et al.| (2005)), we may take V = 2 x 10% as a reasonable
choice. Moreover, we choose § = 100 for simplicity. Then § is calculated to be 4.7 x 107>,

Note that the empirical study in|Almgren et al.| (2005) is based on a model parametrised by the volume time
which is defined as fractions of a daily volume. Therefore, any results of number regarding time derived from
a model with power-law impact function in this section should be interpreted as volume time.

3Since the study of parameters of impacts in [Almgren et al| (2005) is based on liquidating the amount of
shares that weighted as 10% of daily volume, in order to keep consistent with the values of parameters of the
temporary impact function that we have chosen, we let the initial stock position to be 2 x 10% which is 10% of
the daily volume that we have chosen as explained before.

41t seems that these values of A may be too small, however, they are reasonable in a liquidation model, and
can be understood as that the investor is not sensitive to any large costs which are insignificant comparing to
his total wealth. We refer to |Almgren and Chriss| (2000) and |Almgren| (2003|) for more details about the risk
aversion parameter for the Almgren-Chirss liquidation model.
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Figure 1.1: Optimal liquidation trajectories for variance gamma Lévy process model and Brownian motion
model with 0.6 power-law temporary impact function. Thin curves are for A = 10~°, dashed curves are when

A =107° and thick curves are for A = 107%.
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amount of time to liquidate 90% of his initial position.

With a large stock position, due to the nature of jumps of VG Lévy process, as we expect
that the investor should liquidate much faster compare to using the optimal strategy from
the Brownian motion model. However, as the above examples show that with the 0.6 power-
law temporary impact function, in the VG case, optimal liquidation speeds can be too large
so that the strategies are infeasible in practice, while speeds in the Brownian motion model
stay in a reasonable range. Intuitively, an unreasonably high optimal liquidation speed is
due to that price impact for a large trading speed is sub-estimated. In other words, cost
resulted from large speeds is too small. This argument can be confirmed by the expression of
the optimal liquidation speed in that if the temporary impact function F' has a small
growth rate, then growth rate of function G is large, and therefore optimal speed can be very
high, when stock position is large. It is mentioned in |[Rosul (2009); |Gatheral (2010), etc that
impact function should be concave for small trading speeds, and for large speeds it is convex.
However, to the best of our knowledge, there are no suggestions in price impact literature
about what exact kind of function is suitable to describe price impact caused by executing
large block orders. Therefore, we next try to explore a mode of growth of the price impact

function for which the optimal liquidation speed for the Lévy model is reasonable.

1.5.2 An equivalent relation

We derive a connection between a temporary impact function for the Lévy liquidation model
and a temporary impact function for the Brownian motion liquidation model such that the
optimal strategy for each model coincide with each other. From this connection, a suitable
increasing rate of impact function for the Lévy model is indicated.

Let FL :[0,00) — [0,00) and FBM : [0,00) — [0,00) be temporary impact functions,
satisfying Assumption [I.3] considered in a Lévy model and a Brownian motion model, re-
spectively. Write G : [0,00) — [0,00) and GBM : [0,00) — [0,00) as the inverse functions
of x +— 22(FL)Y(z) and z — 2?(FBM)'(x), respectively. Then in view of (1.24)), the optimal
liquidation speed at time ¢ for each model, denoted by ftL and §tBM , are given by

/%L~ YL /%BiM YBM
ftL:GL<A(I4t )> and {75BM:GBM<A (14t )>,

M

where &% and /%g are different versions for of & 3, and YE and YBM are corresponding

L
A
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optimal liquidation strategies in each model. Suppose for all ¢t > 0, Y;* = Y,/ = Y,BM  then

GL<'%%EF)> = GBM<'%§AZY;)), t>0. (1.29)

REM (V)

Write z = GBM<#). So by ([1.27) we have

i+ /U2 + 2A5222(FBMY (2)

vy = o
Ac?

9

where 4 = i + %2 Then we obtain from 1} that

(FL)/(Z') = 1.2 R A&Q

b

1, ( i+ /U2 + 245222 (FBM)(7) )

which is equivalent to

Phz) /w A1 i ( i+ /i + 245222 (FBM)(7) ) " (1.30)
o Az

AG2?

It can be shown that Assumption [1.3]is satisfied by the above expression. We can therefore
conclude that if F'¥ and FBM satisfy , then Y = YBM  provided that the initial stock
positions in both Lévy and Brownian motion models are the same; but if does not hold,
then the Brownian motion model gives out a suboptimal strategy compare to the solution for
the Lévy model.

Suppose FBM in follows a power-law such that the optimal speed in Brownian
motion case is practically reasonable (this kind of model is indeed used in practice), then
the relation in tells that for optimal speed in VG case being practically reasonable, the
function F' needs to increase to infinity faster than any power functions. This is because that
with VG Lévy process, the lower bound of function /%EG given in Proposition tends to
infinity faster than any power functions. Moreover, also indicates that there might be
a relationship between the distribution of stock returns and the temporary impact function.

We will investigate this in our future study.
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1.6 Proofs

Proof of Lemma [1.4] For A € (0,1) and = € (0,00), Assumption (ii) and (iii) imply
that F(Az) < AF(x) < F(x), which shows that F' is strictly increasing.

The derivative of x — xF(x), together with the convexity of this function, implies that
lim,_,o 2 F'(z) exists. As F'(x) > 0, for all x > 0, it follows that lim,_,o 2F’(x) > 0. Suppose
lim, o zF’(z) > 0. Then there exist constants £ > 0 and ¢ > 0, such that for all = € (0, ),

But then,

which contradicts the continuity of F. Hence, lim, o xF’(x) = 0, and therefore it follows
that lim,_ 0 22F'(z) = 0. O

The next lemma, is used in the proof of Proposition [1.5

Lemma 1.22. Let Z be a positive-valued, decreasing process satisfying fooo Zidt < 0o. Then
tZy — 0, ast — oo.

Proof. Suppose liminf; ,., tZ; > 0, then there exists some constant ¢ such that
liminftZ; > ¢ > 0.
t—o00
This implies that we can find some s > 0 such that for all £ > s,

C
Ly > —.
t

00 © .
/ thtz/ —dt = oo,
s s t

which contradicts with fooo Z; dt < 0o. Thus, we have shown that

It follows therefore

hglogftZt =0. (1.31)

We know that Z is a decreasing process, which is of finite variation. By It6’s formula we
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calculate that

t t
tZ = / udZ, —|—/ Zny, du.
0 0

It can be observed that t — f(f udZ, is negative and decreasing while ¢ — f(f Zdu is positive

and increasing. Then,

t t s e8]
0 <suptzZ; < sup/ wdZy + sup/ Zydu = / wdZy +/ Zy du. (1.32)
t>r t>r Jo t>r Jo 0 0
Also,
t t [e¢) r
inftZ; > inf/ udZ, + inf/ Zydu = / udZ, + / Zy du. (1.33)
tZT tZ'r’ 0 tZT 0 0 0

Taking r to infinity in (1.33) and (1.32]), and by (1.31]) we have

o o
0 <limsuptZ; = lim suptZ; < / udZ, + / Zy du,
0 0

t—o00 T=00 t>r

0 =liminftZ; = lim inftZ; > / wdZ, + / Z, du.
t—o00 0 0

r—00 t>

Therefore, we conclude that lim; ,o, tZ; = 0. ]

Proof of Proposition [1.5]

(i) Let f be the characteristic function of Ly, so
flw) = Bl = )

where ¢ (u) is given by the Lévy-Khintchine representation of L. By Assumption we
know that f, hence v, are twice differentiable at 0. Hence, we calculate that f'(0) =
iE[L;] = t'(0) and f”(0) = —E[L?], and therefore,

E[L7] = (ut)* — 4" (0)t.
Then,

2
E[(LiY0)?] < BLLAIYi I3y = 12 (t1Yil o) = " Ot Vil 3ey (1.34)
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If o # 0, then for any ¥ € A(y), (HYtHLoo(P))tzO and (||Y75||%00(]P,))t20 are con-

tinuous, positive and decreasing. The integrability condition in (1.2) implies that
I Y3 Loo(py dt < 00. Therefore, according to Lemma we have
. _ . 2 _
B Vil =0 and  Jim Y e =0
Hence, by ((1.34) and the finiteness of p and " (0) we conclude that
lim E[(L:Y;)?] = 0.
A, BT )]

When p = 0, we get fooo HY}H%OO(P) dt < oo directly as a condition of admissible strategies.

Therefore, the same result follows.

(ii) Using Cauchy-Schwarz inequality and It6 isometry we obtain

e

T
SME[ Yt_dtHJrE[
0
<u/ 1Yl e dmaw v, (awt+/
T
—Jul / |rn|rm»)dt+(a2+ >IE[ / Ytdt]
0 R\{O} 0
T 1
) [/ ¥l e dt]
0

/0 <0Wt+/Rx(N (t, dz) — tu( d@))U
:c(Nt dz) — tu dm))) ]

[NIES

vl A

T
<l [ Wil + (02 n E

R\{O}

From the existence of first and second moments of L;, we know that u, o and

fR\ (0} 2?v(dx) are all finite. Then, result follows from the integrability conditions in

(1.2) and (1.3) of an admissible strategy.

O

Proof of Lemma [1.9

(i) Let t(u) be given by the Lévy-Khintchine representation of L. Then for all u € [0,54),
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(iii)

(iv)

we have

ka(u) = Y([iAu) = —Apu + %A2u202 + / (efA“x -1+ Aum) v(dz). (1.35)

R

Therefore, k4(0) = 0 follows directly.

Observe that —Auu, %A2u202 and e~ 4" — 14 Auz are all convex in u, and in particular
that %A2u202 and e 4% — 1 4+ Aux are strictly convex in u. Thus, with reference to
(1.35)), the strict convexity of k4 can be concluded from the assumption that L is non-

trivial.

Let 4 = 0. In view of () in order to proof lim,_.q ”‘;—(f) = K > 0, it suffices to show
that

—Aux
. e — 14 Aux ,
i [ (e = ¢

for some constant K’ > 0. Let 0 < A% < §4. It can be checked that for all u € (0,),

2

e AT _ 1 4 Ayx T .
<?, if z >0,

A2qy2

and _
e~ A% _ 1 4+ Aux

A2,a2 ’

e~ Aur _ 1 4+ Aux

22 if z <O0.

Because of the finite second moment of L; and the fact that k4(@) < oo, both % and

Mi}:}%‘m are v-integrable. Thus, by the dominated convergence theorem, it follows

that

u—0

—Auzx 2
e — 1+ Aux T
li dz) = | = v(dzx) = K',
im R( Yo > v(dr) /R 5 v(dr)
where K’ is some strictly positive constant.

Let p # 0. Then lim, o 242 = — Ay follows from l} as well as (iii).

T

O]

Proof of Lemma [1.10. Let = 0. Then Lemma (iii) implies that there exists strictly
positive constants Z, C; and Cy such that C12? < ka(z) < Coz?, for all z € (0,Z). Suppose
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that [;° HYtH%m(P) dt < oo. Then Y; tends to zero as t tends to infinity. Hence, there exists
s > 0, such that ||Y| z(p) € (0,7), for all £ > s. Then

O [T dt < [ (Wil de < Co [ IVl gyde (130

from which it follows that [ kA (||Yullpeo)) du < co. Since ||Vl 10 is bounded for ¢ €
[0, 5], we have [ ra(||Yall Loo(]p)) du < oco. A similar argument together with the inequality
(1.36) also establishes the reverse implication. The proofs regarding the cases of p < 0 and

@ > 0 are similar to above. O

Proof of Lemma [1.11]. By It6’s formula and using the expression of k4 in (|1.35)) we cal-
culate that

¢
MY =1-— / MY _AY,_ ((,u — / zv(dz)) du+ o*qu>
0 R
t
1
_ Y _2y2 2
/0 M, _ (/@A(Yu,) 2A Y. o )du
t
—I—/ / MY (e‘AYuJ - 1) ((N(du, dz) — v(dz)du) + V(dl‘)du)
0o Jr
¢ t
=1-— / MY AY, odW, —I—/ / M, — (e_AY”J - 1) (N(du, dz) — v(dz)du),
0 0o Jr
which shows M is a local martingale. Define
t B t
X, = / “AY,_dL, and  K(0) = / Fa(0Y,) du,
0 0

where 6 € [0,1], Y € A(y) with y € [0,54), L is the martingale part of L and &4 is equal to
k4 with g = 0. It can be checked that the process MY in (1.10)) can be rewritten as

MY =exp(X — K(1)).

With reference to Definition 3.1 and Theorem 3.2 in |Kallsen and Shiryaev| (2002), in order to
show MY is a uniformly integrable martingale, it suffices to check that for § € (0, 1),

640 teR4

lim sup & log <E [exp((ls ((1 ~OEK(1) — K(1 - 5)0)]) = 0. (1.37)
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Observe that
lim sup 6 log E[exp(l (0 &) E (), — K- 6»))}
310 teRr, 6

o))

1
< 1i — — — —
< l(slgtselgiﬂog (exp(H 5 ((1 NHK(1),— K(1 5)t)

— i 1 6)K(1), — K(1 -
b P I DR (e = K My
t t
= lim sup (1—5)/ /%A(Yu)du—/ Fa((1-0)Y,)du
0 ter 0 0 Lo>o(P)
t
< i 1— 0)fa(Yy) — fa((1—6)Y,
<t ow [0 - 0ma) - ma( -],
<1 —0)k — R — . .
<tim | H(1 Ofa(¥a) = Ra((L=OWa)|| . du (1.38)

For § € (0,1), we have that

[(1 = 0)Ea(Yu) = Ra((1 = 0)Yu) || oo ey
< H(l - 5)%A(YU)HL°°(]P’) + H’%A((l - 5)Yu) HLOO(]P)
=1 = 8)Ra(IYaullpoo@)) + Fa((L = 0)||Yull Loo(ry)
<284 (|| Yull Lo (m))-

The last two steps are because & 4(x) is positive and non-decreasing for x > 0, which follow

from LemmalL.9] (i), (ii) and (iii). According to (L.2) or (1.3)) as well as Lemma we have
/O o (Yl oo ey )t < .

Then, by the dominated convergence theorem, ((1.38|) gives

laifoltselﬁ@ §log (E [exp((ls ((1 —0)K(1): — K(1 - 6%))])

< /OOO %HQ — §)ra(Ya) — Ra((1 = 0)Ys)

(1.39)

43



On the other hand, the convexity of £4(z) and £4(0) = 0 imply
(1—08)ka(z) > Ra((1—08)z), forde(0,1),

hence,
(1-0)K(1);— K(1-6)>0

Combining this with ([1.39)), we get (1.37). O

The next lemma is used in the proofs of Proposition and Theorem [I.15

Lemma 1.23. Let function F' satisfy Assumption . Then x +— G:(EIE) 1§ continuous on
[0,00), where G : [0,00) — [0,00) is the inverse function of x + x> F'(z).

Proof. Assumptionand Lemmaimply that G is continuous and G(0) = 0. Therefore, it
suffices to check that lim,_,¢ % < 00. Let x = u?F'(u). Then it follows that ( y = = uF'(u).
Hence, the result follows from the fact that u — 0, as * — 0, and lim,_,ouF’(u) = 0 (see

Lemma . O

Proof of Proposition [1.1]) We first show that the function v given by (1.16) is continu-
ously differentiable. But it suffices to show that o/(y) = —4W __ 4 AR (G(HA—(y))) is contin-

G(“A(?/))

wous on [0,04), and in particular, it suffices to check the continuity of x ( y for z > 0.
But this is demonstrated by Lemma [1.23

Recall that the Hamilton-Jacobi-Bellman equation in our problem is
. o / —
ka(y) + ;I%%{A.TF(%) zv'(y)} = 0.

In order to prove that v in ((1.16]) is a solution to this equation, because AxF(z) — xv'(y) is
strictly convex in x, it suffices to show that for all y € [0,54), there exists 2* > 0 such that

Ax*F'(z*) + AF(2*) — ' (y) = 0 (1.40)
and
ka(y) + Az*F(z*) — 2™ (y) = 0, (1.41)

where the equality in ((1.40)) comes from the first-order condition of optimality of the expression
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AzF(z) — zv'(y). But with o'(y) = —raly) AF(G(”AT@)), it can be checked that xz* =

(4
G(“AT@) satisfies both 41.40I) and (11.41I). The boundary condition v(0) = 0 is a consequence
of the expression of v(y) and the continuity of v(y) at y = 0. O

Proof of Theorem [1.15. We show the required expression of & in (1.19). We know that

when ¢t < 7,

Y 1
/Y* G (22 du =1,
t
from which it follows that

* dy;” ra(YY)
_ — < T.
& = — T —G( , t<r

On the other hand, when ¢t > 7, Y;* = 0. Hence,

gf:O:G<'€A(Zt*)), t>T.

We next prove that Y* € Ap(y). It is clear that Y* is deterministic and absolutely
continuous. The non-negativity of G implies that Y* is non-increasing. It remains to show
that if 4 < 0, then [°Y*dt < oo; and if p = 0, then [° (1@*)2dt < oo. However, with
reference to Lemma [I.10] it suffices to check that

/ /@A(Y;*)dt:/ ra(Yy) dt < oo.
0 0

By a change of variable, we have that

T 0 Y*
/ k(YY) dt:/ —Mdl@*<oo,
0 v G

(=)

where the finiteness is because of continuity of the integrand on the compact interval [0, y],

which is implied by Lemma [1.23
With reference to (1.40)) and (1.41f), the function v in (1.16)) satisfies

kA(y) + ASF(E) = &'(y) 20, forall £ >0, (1.42)
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and an equality holds only when & = G(F”Afgy)). Let Y € Ap(y). Observe that

w0 = o) - [ g
Taking T' to infinity and using the boundary condition v(0) = 0, it follows that
o) = [0
Then by we have
o) < [ (rath) + AP () dr (1.43)

Now consider the strategy Y™ in (1.18), which has a speed process * satisfying & =
G(%), for all ¢ > 0. Then,

’QA(Y;*) + Ag;F(ézk) - ;U,(Yt*) =0, t=>0,
hence,
o) = [ (kal¥) + AP () ) dr

This together with (1.43)) implies that V(y) = v(y), for all y € [0,04). Therefore, with
reference to the analysis after equation ((1.11]), we get that Y* is the unique optimal strategy

to problem (|1.7)). O

Proof of Proposition [1.16]
(i) Suppose u < 0. Let p < 1 such that lim,_,o 2P F'(z) = K with K being some strictly

positive constant. Write v = 22F’(z). Then we have

= (l‘pF/(Qj‘))ﬁ.

Taking x to 0, so u tends to 0 as well, and it follows that

lim U21p K = 1.44
= 2—
b G(u) " (1.44)
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Lemma (iv) together with ([1.44]) gives

1

xTr2-p
z—0 (3 ( HAA(x) )

/
’

for some other constant K’ > 0. Therefore, there exist strictly positive constants K7,
K> and 7 such that for all x € (0, %),

K 1 K5
m < o <
a7 G(™57) a7

Integrating and taking limit on each term gives

T K T 1 ¢
lim 11 du < lim Al du < lim 12 du.
z—0 J,. wi-r =0 J,. G(HAA“ ) =0 J, w—r

Observe that p < 1 implies ﬁ < 1, and therefore foi —L— du < co. Hence,

w2-p
T
1
lim —— du < 0.
z—0 /., G(NA/EU))

Then the required result follows from ((1.17) and the fact that ffy W du < oo, if
—a

the initial stock position y > z.

(ii) Suppose p = 0. Observe that (|1.44) implies

2
T2-p
lim —— =
LY er A

for some constant C' > 0. Combining this with Lemma (iii), we obtain

2

xT2-p
lim —— ',
20 G (5al2))

for some other constant C’ > 0. Then there exist strictly positive constants C, Cy and
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7 such that for all z € (0, %),

Therefore,
T C o 1 T C
lim 1 du < lim ————du < lim 22 du.
z—0 J, ’LL2 > z—0 G(NA/EU)) =0 Jo 42=p

If p <0, then 2— < 1. Hence T < 0 is obtained by the same argument as in (i) of this

proof. If p € [0,1), then T > 1. It follows that fo du = oo, and therefore

NA(U)
T = 0. o)
[
Proof of Proposition [1.18. We show that L given by
Ly = mt + W, +/ / e” —1) N(dt,dz) — v(dz)dt), t>0, (1.45)

is a Lévy process. Define a random measure N : € x B([0,00)) ® B(R) — Z; and a measure
v : B(R) — Z4 to be such that if B € B(R) and BN (—1,00) # (), then

N(w, A, B) = N(A, In(B N (~1,00) + 1))(@,
#(B) = 7(In(B N (~1,00) +1)); (1.46)
otherwise, they are both equal 0, where Z, is the set of all positive integers and In(B N
(—1,00) 4+ 1) = {ln(z +1)|z € BN (—1,00)} (we have for all A € B(]0,00)) and w € £,
N(A,{0})(w) = #({0}) = 0). Write N(-,-) = N(w,-,-). Then by writing 2 = e* — 1, it follows

from (1.45)) that

Ly = mt + W, —I—/ / N(dt,dz) — v(dx)dt), t>0. (1.47)

With reference to Kallenberg| (2001) Corollary 15.7, to prove Lisa Lévy process, it suffices to
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show that for any B € B(R), (]\7 (t,B)),., is a Poisson process with intensity 7(B) satisfying

t>0

/(g;2 A1) D(dz) < oo. (1.48)
R

But from the definition of N, it is clear that (N (¢, B)) is a Poisson process. Observe that

t>0
E[N(t,B)] = E[N(t,In(B N (-1,00) +1))] = t#(In(B N (~1,00) + 1)) = ti(B),

which proves that #(B) is the intensity of ( (t, B)),~o- From Taylor’s expansion of (e* —1)?,

it can be shown that there exist constants z > 0 and C' > 0 such that for all z € (—%, 2),
z 2 2
(e — 1) < Cz*.

For € € (0,1), consider interval & = (In(1 —€), In(e + 1) ). Then using (1.46) we calculate
that for € close enough to 0 so that S C (—z, z), we have

/ 22 o(dx) :/(e 71 v(dz) <C’/ v(dz) <C’/ 25(dz) < oo, (1.49)
—€,€)

where the finiteness is because of property of Lévy measure 0. Again by (|1.46]), we obtain

/ v(dzr) = / v(dz) < oo,
R\(—¢,¢€) R\S

where the finiteness follows from the property of the Lévy measure ©. This implies that
7(R\ (=1,1)) < co and #((—1,—€] U[e, 1)) < oo. Since 2 is bounded on (—1,—€] U [¢, 1),
together with ([1.49), we get

/ 2% 0(dz) < oo.
(_171)

Combining this with D(R \ (-1, 1)) < o0, we get lb We therefore conclude that N
and 7 are Poisson random measure and Lévy measure associated with the Lévy process L,
respectively. Moreover, we calculate from (1.46)) that for x > —1 and = # 0,

?(dz) = v(d(In(z + 1)) ) = f(In(z + 1)) d(In(z + 1)) = ! lf(ln(x +1))dz.

X
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The relation L = 5L shows that L is also a Lévy process. The expression of L in 1}
shows the adaptedness. Now we check Assumption [1.1| is satisfied by L, but it suffices to

check for L. According to Assumption |1.17, we know f|z‘>1 e?* 7(dz) < oo, and since for any
e >0, ﬂ(R \ (—e, e)) < 00, it follows that on [In2,00), e2* and e* are both F-integrable and

7([In2,00)) < co. Therefore,

/ 22 o(dx) = / (e — l)zﬂ(dz) < 00,
|z|>1 [In2,00)

which implies that Ly has finite second moment (see e.g. Kyprianou, 2006, Theorem 3.8).

Observe that when u < 0, we have
exp(u(e® —1)) <1, forall z>0.

Hence,
/ e u(dx) = / exp(u(e” — 1)) o(dz) < oo,
|z|>1 [In2,00)

from which it follows that E[e“ﬁl] < o0, for all u < 0.
Proof of Theorem [1.20, This is a direct consequence of Theorem [I.15

Proof of Proposition [1.21] For u > 0, we calculate that

/ ’ (e*f‘“ff 1+ Aux) o(dz)

-1

0 . - 1
_ —Aux C+D-1
= -1+ A >7 +1 d
/_1(e ur nln(w—i—l)(x ) *

0
> e/ (e*A“x -1+ Aux) (z+ 1)L dz
mJ-1

n n n

where the first inequality is because that m

20

(1.50)

= ¢ /OI(G_AU(Q:—I):EC—&-D) dr+ & /01 (Au$c+D+1> P /01<(1 N Au)xc-‘!—D) .

(1.51)

7 for all —1 < = < 0, since (z +



1)In(z + 1) is convex with minimum value —e~!. Observe that

/1 (efﬁu(acfl)xCJrD) d
0

1

LAl B
> eA“/Au <(7Aux+1)xC+D) dz
0
AneAu 1 C+D+2 Au 1 C+D+1
- —“e<~/\1> +e<~/\1> (1.52)
C+D+2\ Au C+D+1\ Ay
and
1, 1 - flu l—i—flu
/0< ur )d“ur 0( (14 Au)a )dx c+D+2 Cc+xD+1 1

where we have C'+ D > 0 and the inequality is because that o~ Auw > —Auz + 1 on interval
[0, Alu A 1]. Therefore, the required resu~lt follows from 1)1' and the expression of

/%EG in (1.26) as well as the fact that e 4% — 1 4+ Auz and ¥ are positive for all u > 0 and
x €R. O
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Chapter 2

Optimal liquidation in an Almgren-
Chriss type model with Lévy

processes and finite time horizons

2.1 Problem formulation

We study a finite time horizon version of the liquidation model established in Section 1.1.
Let (2, F,P) be a complete probability space with a filtration F = (F})¢>0 satisfying the
usual conditions, which supports a one dimensional, non-trivial, F-adapted Lévy process L.
We assume that the Lévy process L satisfies Assumption and therefore it admits the

decomposition

Ly :ut—l—aWt—{—/xN(t,dx),
R
where 4 € R and o0 > 0 are two constants, W is a standard Brownian motion, N is a
compensated Poisson random measure which is independent of W. Let v denote the Lévy
measure associated with L. Recall that the cumulant generating function of L1, denoted by
K, is finite on the interval (8, 0], where ¢ is given in . Recall further that the function
ka4 :[0,04) — R defined in Section 1.2 is given by ka(z) = k(—Ax), where A > 0 will be
referred to as the investor’s risk aversion, and § 4 = —AJ. The function k4 satisfies Lemma
Using the expression in of k4 , one can also check that it is continuously differentiable.

Let’s denote
£=minkg(z), and y=argmink(z).

We see that if 4 < 0, then K = y = 0; and if g > 0, then —co <k <0 and 0 < y < oo.
Figure 2.1, Figure 2.2 and Figure 2.3 (see end of this chapter) give out illustrations of x4
with different signs of u.
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We consider an investor who aims to sell a large amount of shares of a single stock before
a finite time. We denote by Y; the investor’s position in the stock at time ¢, and by y > 0
the investor’s initial stock position. We define the set of admissible liquidation strategy as

follows.

Definition 2.1. Given an initial stock position y > 0 and a time horizon T' € (0, c0), the
set A(T,y) of admissible strategies consists of F-adapted, absolutely continuous and positive-
valued processes Y with Y7 = 0 and Y; < 64, for all t € [0,7]. Let Ap(T,y) denote the set
of all deterministic strategies in A(T,y).

Let Y € A(T,y), then there exists an F-adapted process ¢ such that Y admits the

representation
t
Vi—yt [ s
0

The process € is called the liquidation speed process associated with strategy Y, and they can
be identified by each other. Notice that £ is R-valued. Same as in Section 1.1, the unaffected
stock price is modelled by the process s + L, where s > 0 is some constant which denotes
the stock price at the initial time. Following |Almgren and Chriss (2000), Almgren| (2003), we

assume that the affected stock price at time ¢t > 0 is given by
St:S—i-Lt—l-CK(YVt—Y())—FF(gt), (21)

where a > 0 is a constant describing the permanent impact and F' : R — R is a function

describing the temporary impact. We assume that F' satisfies the following assumption.
Assumption 2.2. The temporary impact function F': R — R satisfies
(i) F' is continuous, and it is twice-continuously differentiable on R\ {0};
(i) P(0) =0;
(iii) the function x — xF'(x) is strictly convex on R;
(iv) there exist constants K > 0 and p < 1 such that lim,_, |z|PF'(z) = K;

(v) the function x — x?F’(z) is strictly increasing (resp. strictly decreasing) for x > 0

(resp. < 0), and lim, 4. 22F'(z) = co.
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In the above assumption, condition (iii) serves for the convexity of the objective function
in the optimisation problem we are going to solve and hence the uniqueness of solution holds;
condition (iv) is used to well-define the optimal strategy when buying back is involved (see
the proof of Lemma ; condition (v) ensures that the value function in our optimisation
problem is solved in a closed form and the optimal liquidation speed process can be solved
in a feedback form. Similar to Lemma it can be derived as consequences of Assumption
that F(x) is strictly increasing and lim,_,0 2 F'(x) = 0. Therefore, lim,_, 22F'(x) = 0.
Assumption is satisfied by a large class of functions, for example,

F(z) = Bsgn(z)|z[”, f,7 >0,

where sgn(x) denotes the sign of x. We refer to Almgren (2003), |Almgren et al.| (2005) and
Lillo et al.| (2003) for both theoretical and empirical studies when the temporary impact
function takes the above form. As mentioned in Schied et al.| (2010) and |Guéant and Royer,

(2014) that another popular form of the temporary impact function in application would be
F(z) = Busgn(x)|z|" + Basgn(z)[z|”,

where (31, 82,71,72 > 0.
Let CY be the process describing the investor’s cash position associated with some Y €

A(T,y). Let ¢ € R be the initial cash position. Then,

1 T T
Cy =c+sy— 504342 + / Yi_dL; — / &F (&) dt. (2.2)
0 0

We assume the investor has a constant absolute risk aversion (CARA), so his prefer-
ence between risk and reward/cost is modelled by the utility function U satisfying U(x) =
—exp(—Az), for some constant A > 0. Suppose the investor wants to maximise the expected

utility of his cash position at the end of time, i.e. his problem is

sup E[U(C}/)] (2.3)
YeA(T,y)

In view of ([2.2)), this problem takes the form of

~ T T
inf )eACE{exp<— /0 AY;_dLi+ A /0 gtF(gt)dtﬂ, (2.4)

YeA(T,y
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where

~ 1
C=c+sy— §ay2.
It then suffices to look at
T T
inf E [exp <— / AY;_dL; + A/ & F (&) dt)] . (2.5)
YeA(y) 0 0

2.2 Problem simplification

Similar to Section 1.2, we reduce problem (2.5) to be deterministic by a change of measure
technique. To this end, for any Y € A(T,y), we define the process MY to be

t ¢
MY = exp (/ —AY,_dL, — / ka(Yy) du), te[0,7T].
0 0

By the same proof of Lemma it can be shown that MY defines a strictly positive

uniformly integrable martingale, and hence a new probability measure Q¥ can be defined via

dQY v
b 2 4}
dP T

With reference to (2.5) and the calculation in (|1.11)), we obtain that

T T
inf E — AY;_dL;+ A F dt
Yegl(T,y) [GXP ( /0 t t + /0 & F (&) ) ]

< inf )exp[ /0 T<KA(1@)+A@F(@)> dt]

- YE-AD (Tuy

Following the same analysis after ((1.11]), it suffices to solve the problem

V(T.y) = inf Jp(Y 2.6
(T,y) v T(Y), (2.6)

where V' denotes the value function with 7> 0 and y € [0, 54), and Jr is given by

Jr(Y) = /OT (HA(Yt) + A&F(ft)> dt. (2.7)

It can be checked that kT < V(T,y) < oo, for all (T,y) € (0,00) x [0,34).
The problem in ([2.6))-([2.7)) might be solved by a dynamic programming approach for which
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the corresponding Hamilton-Jacobi-Bellman equation is given by
—v(t,y) + kaly) + irellié{A:cF(x) + zvy(t,y)} =0
x
with the boundary condition v(t,0) = 0 and the singular initial condition

. 0, ify =0,
limo(t,y) =
t=0 0o, otherwise.

However, this non-linear partial differential equation is difficult to be solved. (The solutions in
different cases to this Hamilton-Jacobi-Bellman equation are given in closed-forms in Section
5.3. From those expressions, we can see that it can be indeed very difficult to solve this partial
differential equation directly.) This optimisation problem might also be solved by considering

the corresponding Hamiltonian system

%(t} = Hp (Y(t)7p(t))’

D 1) = 1, (Y (1) (1),

with initial conditions Y (0) = y and %(O) = Hp(y,p(O)), where H(y,p) = sup,{zp —
ka(y) — AzF(x)}. However, this system of first order ordinary differential equations is also
not easy to be solved. In the case of Brownian motion, Theorem 2.14 in |Schied et al.| (2010)
characterises the solution to problem - using this Hamiltonian system. Instead of
these aforementioned approaches, we are going to follow some ideas from the theory of calculus

of variations.

2.3 Solution to the problem

Since the objective functional Jp(-) is time-homogeneous, according to the theory of calculus
of variations, it suffices to use the Beltrami identity to characterise the optimal strategy (see
i.e. |Gelfand and Fomin, 2000, Section 4.2). In our problem the corresponding Beltrami

identity is

KT 4k (V) = A(E)*F' (&), ae te0,T), (2.8)
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where Y is the candidate of the admissible optimal liquidation strategy, é is the associated
speed process, and K1Y is some constant which is determined by f@ =y and Y = 0.

Recall that y = argmink(x), and we have y = 0 if p < 0, and y > 0 if p > 0. We
then separate the problem into two cases by concerning either y > y or y < y. The optimal
liquidation strategy in each case will be constructed according to (graphs of illustrations
of optimal strategies in different cases are given at the end of this chapter), and the value

function in each case will be given in a closed form.

2.3.1 Optimal strategy, case 1 (y > y)

Before going into details of the optimal strategy, we make the following primary observation.

Lemma 2.3. Given an initial stock position y >y, any admissible strategy containing an

intermediate buying is not optimal.

In order to prepare for the construction of an optimal strategy, let’s define the continuous
function G~ : [0,00) — (—00,0] to be the inverse of & ++ x2F’(z) restricted on the interval
(—00,0]. This inverse is well-defined due to Assumption and we have that G~ is strictly
decreasing and G~ (0) = 0. Lemma suggests to look for a decreasing strategy. According
to , we seek for a constant K7¥ such that

) . )
M g—c (K ’ +A”A(m > (2.9)

This requires that K7V > — mine(o,7) KA (Yt) = —kK, where kK = mink4(z). Equation l}

yields (if there is no waiting contained in Y")

iC -1
du=T—1 2.10
/[; G- (KT,y_ZKA(u)> U ) ( )

and in particular for y # 0, we look at

v -1
du=T. 2.11
/0 Gf(LT*yﬂA(u)) B (2.11)

A

Given y € [y, 5,4), y # 0 and any constant K > —k, there is a unique constant 7% > 0
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satisfying

/y _—1du =Tk,
0 G_(K+ZA(u)>

Moreover, since G~ is strictly decreasing and continuous, the mapping K — T is strictly

decreasing and continuous on (—k, 00), hence invertible. Write

y 1 _
T :/ ————————du, fory€ly,da), y#0, (2.12)
0 G- (*E+/IZA(“)) =

which may or may not be finite. Then, when K decreases to —k, TX increases to TY.
Therefore, given any (T,y) € (0,7Y] x [y, d4) with y # 0, we are able to find a unique K7¥ >
—k satisfying with the corresponding strategy described by . This strategy is
strictly decreasing.

However, if T > TY, is impossible to be satisfied by any K¢ > —k. In this
situation, it seems that the given time period for liquidation is too long, so we may integrate
a period of waiting into the strategy. The expression of Jr(-) indicates that it suffices to
consider a waiting when Yt = y. Taking @Ct = 0 and Yt =y in results in KT¥ = —k.
Soif T'>TY, p<0andy > 0, we have K% = 0. In this case, we sell until the stock
position becomes 0, then keep the stock position to be constantly 0 afterwards. In order to
well describe the strategy when 7' > TY, 4 > 0 and y > y, we need to introduce two more

quantities of time. For pu > 0, write

v 1
TY = / ——du 2.13
0o G- (‘ﬁ'i':A(“)) (2.13)

and
Y ! -1
= - > 9. .
Tg /y G_(ifﬂm(u)) du, y=>y (2.14)
= A

Thus when 7" > TY, > 0 and y > y, the strategy stays at y from time Ty until T — TY, and
it is strictly decreasing satisfying at any other time. B

Let’s formally state the definition of the candidate of the optimal admissible strategy.
Figure 2.1 and Figure 2.2 illustrate the strategy in different cases.
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Definition 2.4. For any u € R, let (T,y) € (0,00) x [y,04), and T, T¥ and T}/ be given by
1}1' If y € [y, 54) and y # 0, define the constant K7*¥ to satisfy

Yy —1
/ du =T NTY,
_ ([ KTY+4k,(u ’
0 G < AA( ))

if y=0,let KT = —k for all T € (0,00). We call Y a candidate of an optimal admissible
strategy in Case 1, if it satisfies the following descriptions. Suppose y = 0, then there is

nothing to liquidate, i.e. we wait until time T". Suppose y > 0,
(i) if T < TY, then let Y; be given by (2.10) for all ¢ € [0, T7;

(i) if T > TV and p < 0, then let Y; be given by

Y

¢ -1

/OG(M)‘Z“—T t, forte[o,1V),
A

and define Y; = 0 for t € (T¥,T7;

(i) if 7> T¥ and p > 0, then let Y; satisfy

¥i 1
— Ty _ y
/ _(KT,meA(u)) du=TJ —t, for ¢ € [0, T],
v GO\t

define V; = y for t € (T, T — TY], and let Y; satisfy l) for t € (T —TY,T).

Note that the integrals appearing in (ii) and (iii) in the above definition can never explode,
this is because that they are in the context of 7% < T < co. The next theorem shows that the
candidate strategy given by the above definition is the unique admissible optimal strategy for

our liquidation problem.

Theorem 2.5. For any time horizon T € (0,00) and initial stock position y € [y,04), let the
strategy Y be given by Definition . Then Y is the unique optimal admissible liquidation
strategy for problem .
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2.3.2 Optimal strategy, case 2 (y < y)

Note that in this subsection, we only need to consider x> 0, since for 4 < 0, we have y = 0 but
y > 0. In the situation that there is no buying or waiting in the optimial strategy, using the
same argument as in Case 1, we are able to find a unique constant K% > —k 4(y) satisfying
, and we let the corresponding candidate strategy to be given by . The inequality
K™Y > —ra(y) is because K19 > — minge(o, 7] KA (f/t) is required, and —mine(o ) kA (Yt) =
—ka(y) when p >0 with y < y.

Given any y € [0, y), the largest value of time horizon satisfying the situation of no buying

or waiting is

v —1
7Y —/ du. 2.15
0 G- <—RA(212:"€A(U)) ( )

Therefore if T > 7Y, we may concern to buy back during liquidation. In order to describe
positive trading speeds, analogous to G, we introduce the continuous function G : [0, c0) —
[0,00) which is defined as the inverse of z + x?F’(x) when it is restricted on [0,00). So G

is strictly increasing and G (0) = 0. We have the following properties of G and G~.
Lemma 2.6. For 0 <z <y <y,

/y ! du < d /y — du <
u<oo an U < O0.
. G+<w> . G—(M)

These two integrals both tend to 0, as y — z.

This lemma implies that 7¥ < oo and 7% = 0. The following lemma will help us to identify

the optimal strategy with buying.

Lemma 2.7. Given an initial position y <y, it is never optimal to buy back after a period

of sale, and it is not optimal to have the stock position being larger than y at any time.

According to the above lemma, if buying back is in the optimal strategy, then it can only
happen at the beginning. Then motivated by (2.8, we seek for a constant K7*¥ such that

Y - K1Y 4 k4 (Y, KT 4 k4 (Vs
7; =§=G" (A(t)) Tie(t) +G (A(t)> Lo (1), (2.16)
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where @ € [0,7) and is defined by 6 = inf{t > 0|Y; = x,;'(—K"¥)} with x,' being the

inverse of k4 when it is restricted on [0,y]. Here we must have HZI(—K Tw) >y, which is

implied by the requirement that K% > —k4(y). Also notice that Lemma and KT >
— minge[o, 7] KA (}A/t) implies /-4;11(—KT79) <y, which is equivalent to K1Y < —k.

Lemma 2.8. Given y € [0,y), the function T'(-;y) (—/m(y), —@) — (0,00) defined by

T(K Ky (—K) 1 g iy (—K) -1 p
y) = ————du+ ——————du
( y) /y G+(K+ZA(U)) /0 G_(K—‘FZA(U))

1s continuous and strictly increasing.

Write

(] 1
T;J_/ — _du (2.17)
y —_——

Then,
lim T(K;y) =7, +TY
Am T(Ky) =7y +T%,
and because of Lemma it follows that

lim T(K;y)=r7Y.
Kl—ra(y) ( )
Therefore, Lemma implies that for any 7" € (7Y, Tyg—k TY], the associated constant K7+ is
uniquely determined via T'(K;y) = T. In this situation we buy until time 6 with the strategy
satisfying

SRR = d 0 2.18
=01 .
/Y G+ (KT’yzﬁA(u)> ! ’ (218)

and after time 6, it satisfies (2.10]).
Suppose T > 7'yE + TY, we include a period of waiting into the discussed strategy with
buying, and this waiting happens when Y, = y, which is motivated by the expression of Jr(-).
Let’s state the formal definition of the candidate strategy in Case 2, for which Figure 2.3

gives out an illustration.
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Definition 2.9. Suppose (7, y) € (0,00) x [0,y). Let T%, 7¥ and 7'yg be given by (2.13), 1j
and (2.17) respectively. For T' < 7Y, define the constant K™Y to satisfy (2.11)) and write
6 =0. When T > 7Y, let KT¥ satisfy

[ s [T ey
U + u="TN(ry+12
y G+ (KT,?/-Z,‘@A(u)) 0 o (KT,y-;nA(u)) Yy

and write

Ryl (KT 1
0= du.
/y G*(W) "

We call Y a candidate of an optimal admissible strategy in Case 2, if it satisfies the following

descriptions.
(i) If T < 75 + TY, then let Y; be given by (2.18) when ¢ € [0,6), and let it satisfy (2.10)
for t € [0, T].

(ii) If T > Tg + TY, then let Y; be given by 1} when t € [O,Tyg), define Y; = y for
t € [rf, T —TY), and let it satisfy (2.10) for t € [T — T¥, T).

The following theorem verifies that the candidate strategy given by Definition [2.9]is the

unique admissible optimal strategy.

Theorem 2.10. For any time horizon T € (0,00) and initial stock position y € [0,y), let
strategy Y be given by Definition . Then Y is the unique optimal admissible liquidation

strateqy for problem .

Remark 2.11. Because 7°

= 0, we see that even when the initial stock position y = 0,
the strategy defined by Definition [2.9] contains a intermediate buying back, given a strictly
positive time horizon. We know that Definition [2.9| gives out the unique optimal strategy,
therefore in particular when y = 0 and T > 0, it is strictly optimal to follow a round-trip
strategy. |E| This indicates that when p > 0, our model allows for the price manipulation
in the sense of Huberman and Stanzl (2004), meaning that there exits a round-trip strategy
which gives out strictly positive proceeds in average. To see this, let’s consider pu,T > 0, and

suppose the initial cash position ¢ and the initial stock position y are both equal to 0. Denote

5By round-trip strategy we mean any strategy starting and ending at the same position.
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by Y the liquidation strategy of doing nothing, and by Y the corresponding optimal strategy.
Then,

—exp(—Ac) =E [— exp(—AC%/O)} < E[— exp(—AC%})] < - exp(—AE [C’%/])
Therefore, 0 = ¢ < E[C’r}/ ] O

2.3.3 Value functions

With expressions of optimal liquidation strategies, we are able to write down corresponding
value functions in different cases. To see this, we simply take an optimal strategy into the
performance function (2.7)). For p < 0, we obtain

T
()= [ (mn) +A§tF(£t)> dt

0

0 Y, KTy Y, )
- i) | yp(g- (KRGO g
G- (KT’ywm)) A
Y a
Therefore, when p < 0, the value function V : (0,00) x [0,64) — R admits the expression

vow = [ty (o () e

where KT is given by Definition If i > 0, then the value function takes different forms
in different situations. Let’s first suppose (T,y) € (0,00) x [y,d4) or (T,y) € (0,7Y] x [0,y).

Then there is a waiting period if (T, y) € (1%, 00) x [y, 54), and it happens between time Tgy

and T — TY. Taking the optimal strategy into the performance function gives

Jr(Y) = /yo {G_ (2?52),;(1@)) TAF (G (W)) } ¥

+ (T — TQ — Tﬁ)ﬁA(g) :H'(Ty7OO)X[Q,SA)(T7 y)
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When (T,y) € (7Y,00) x [0,y), buying back exists, and the strategy possibly has a waiting
part between time Tyg and T — T%. Thus, it follows that

R [ ) K704 ma(B)\\) o
B +( T AVE
#) = [ {G(K”) rar(ar (SR ) pan

0 Y, KT Y, .
+/ { Kff t) ] +AF<G*—<—H{LA(?&)))}dy;e
ki (—KTw) G_(K : +:A(Yt)) A

+ (T =T — 1)k aly) Lty o) (T):

Therefore, when u > 0, the value function V : (0,00) x [0,04) — R satisfies that if (T,y) €
(0,00) x [y,04) or (T,y) € (0,7%] x [0,y),

o= [ ey (o ()

(T =T = T))ra(Y) Lizw,coplyin (T:9):

and if (T,y) € (7Y,00) x [0,y), then

G G e G )l
S P Frey ar(o (M) fa

+ (T =T =) k() Loy pu o) (T).

where KT is given by either Definition or Definition

2.4 Connection to the infinite time horizon problem

With out loss of generality, define the optimal liquidation strategy to be 0 for ¢ > T. Let’s
examine the limiting behaviour of the liquidation model as time horizon T tends to infinite.

With reference to Chapter 1, for the infinite time horizon problem to be well-defined, we have
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to employ some more conditions on admissible strategies, e.g.

| Wil <o ituzto. (2.20)
0

o
/0 Vil ey dt < 00 i ji=0, (2.21)
and
Jim 2]V | oo ) = 0.

If 4 > 0, then the optimal strategy in the limit as T tends to infinity never reaches
position 0. This kind of strategy gives out a degenerate value function in the limit, which
coincides with the situation of y > 0 discussed in Chapter 1. Now suppose u < 0. Denote by
Y7 the optimal liquidation strategy for time horizon T' < oo, and by éT the associated speed
process. From Definition we get lim7_,oo KT¥ = 0. Therefore, the optimal liquidation

strategy in the limit satisfies

v ~1
/ —  du=t, ift<TY,
limT%oo ?tT G_ (HAA(U))

and

lim V' =0, ift>TY.

T—o0

Moreover, from (2.19)), the dominated convergence theorem gives that

ThgéoV(T,y):/Oy{%_AF<G—<'“A(“)>>}du, Yy €1[0,04).

Write }A/OO, foo and V' (00, y) to be the optimal strategy, the optimal speed process and the value
function for the infinite time horizon version of our liquidation problem when p < 0. Then
with reference to Chapter 1 and above results, we have limp_, }A’tT = }Aftoo, limp o ép = éfo
as well as limp_,oo V(T,y) = V (o0, y). Write C¥™ and C¥" to be the corresponding processes

of cash positions. It follows that C’OZT converges to C’ZOOO in L?(P), as T increases to infinity.
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To see this, we calculate that

£l(cr e

: <02 + /R\{O} a:QV(dx)> /OOO (fftT — Y;’O)zdt
o [ 7 )a] o[ {p(e (P ) r(on () ]
+ <02 + /R\{O} :1721/(d:1;)> /OOO (f/tT - Yﬁ")zdt, (2.22)

where the first inequality is due to that (a4 b)? < 2(a? + b?) for all a,b € R, and It6 isometry

is used. Since when T increases to infinity, K 7Y decreases to 0, and hence Y;T increases to

Y;2°, combining (2.20), (2.21)) and (2.22)), the dominated convergence theorem gives the result.

We can therefore regard the infinite time horizon problem as the limit of the finite time
horizon problem when T tends to infinity. The Almgren-Chriss liquidation model has a certain

robustness.

2.5 Proofs

Proof of Lemma [2.3 Suppose y > y and Y € Ap(T,y) is any strategy including some
intermediate buying. Then we can either find two time points 7 and s with 0 <r < s < T
such that Y, =Y, >y and ¥; > Y, for all t € (r, s), or there exist p and ¢ with 0 <p < ¢ <T
such that ¥, = Y, <y and Y; <Y}, for all ¢ € (p,q). In the first case, consider the admissible
strategy X which consists of a waiting from time r to s, and it is equal to Y at any other

time. Then,

wal)s =) < [ (mav) + A6 (6) )
and therefore, Jr,(X) < Jry(Y). This shows that Y is not an optimal strategy. For the

other case, similarly that the admissible strategy which consists of a waiting from time p to

q and being equal to Y at any other time will lead to a desired conclusion. O
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Proof of Theorem [2.5, The admissibility conditions given by Definition [2.1] are trivially
satisfied by the strategy described by Definition Define the function ¢ by ¢(y,&) =
kA(y) + AEF(€). We claim that the Euler-Lagrange equation

d NN NN
S 0e(Vis&) = 6, (1,6 (223)
holds for a.e. t € [0, T], which requires to show
d oo
agbg(yt,ft) =r4(Yz), fora.e. tel0,T]. (2.24)
For & # 0, we calculate that
0e(Vi,&) = AF (&) + AGF' (6)

R G_(KT’y—i-/iA(f/t)) N KT’y—i-/iA(f/}t) .
A G- <—KT”’+'€A(Yt)>
A

Therefore, a direct differentiation yields (2.24)). Consider some time interval where waiting
occurs. Then on this interval ft = 0 and hence qﬁg(fft,é) is a constant. But according to
Definition on this interval Yt = y, which is a minimum value of k4. Hence on this
interval, &’y(Y;) =0 = %qbg(fft,ft).

Consider any admissible Y # Y, using the strict convexity of k4 and z — zF(x), we

compute that

/OT (Y3, &) dt — /OT gb(Yt,ét) dt > /OT <¢y(fft,ét)(y}/ — Y) + Cf)g(f/t,ét)(& — é)) dt
(

where the last equality is because that Y and Y have the same starting and ending values.
This combining with the analysis after equation |i shows that Y is the unique optimal
admissible liquidation strategy to problem ([2.3)). O
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Proof of Lemma [2.6, Observe that by the convexity of x4, we have that for all u € [z, y]

and some constant C' > 0,

—rkA(y) + ra(u)
Cly—u) < I .

Therefore,

v 1
/Z G*( (y)JmA(u) / G+ )) du. (2.25)

Assumption [2.2)states that there exist constant p < 1 and K > 0 such that lim,_ |z[PF'(z) =
K. Write u = 22F'(z). Then we have

1
u2-p

Gt(u) (e F () 75

Taking x to 0, so u tends to 0 as well, and it follows that

1
u2-» 1
= 2—
S TR

This and (2.25)) together with p < 1 imply that

Y 1 Y ! "2 — 1-p
0§/ dug/ ¢ : du:C( p)(y—z);*§<oo, C'>0.
z Gt (7_KA(y24+HA(u)> z (y — u)ﬂ 1—-p
Hence, we have fzy L du — 0, as y — z. Same proof for G~. O

G+ (ZAWTEATT )

Proof of Lemma [2.7 For it is not optimal to buy after sale, the proof is exactly the same
as the second case in the proof of Lemma Consider any Y € Ap(T,y) with y < y, and
whose largest value is greater than y. Then (Y; A y).ejo,7) is a better admissible strategy. [

Proof of Lemma [2.8 Note that Lemma ensures that T'(-;y) is well-defined, and in
particular, it is real-valued. Let 6 € C*°(R) be a positive-valued function with support [0, 1],

satisfying fol d(z)dz = 1. For n € N, write
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Define

G (2) = /0 G (2 + )6 (u) du.

Thus, Gt € C1(]0,00)), and for all n € N, G} is a strictly increasing function with G (0) > 0.

Since G is continuous and strictly increasing, we have that G,I decreases to G uniformly

on compact intervals, as n tends to infinity (see e.g. Folland, [1984). Let’s denote

+( ) = /KA o ! d ( ( ) )
T (K;y u, K€ (-raly),—kK).
v G (Kreald)

Therefore, by the monotone convergence theorem,

Ky (—K) 1
lim ! ————du=T"(K;y).

n—co J, G <K+ZA(U))

We calculate that

d [ [racm 1
dK / K
dK y G;il-( +’ZA(“)>

_ —(ma)(-K) /~21<—K> —(Gﬁ)’(%"‘(u))ﬁh(u) 1
G (0) y

Observe that for u € [y, s ;' (= K)],

1 o1 1
Ry (ra (—K)) ~ Ey(u) ~ Ky (y)

Then we compute from 1' that for K € (—ra(y), —ﬁ),

d [ Ko (—K) 1
. / S
dK | J,, G (HHTAW)>

_ —(ra)(=K) 1 /~A1<K> Gy (B )
TGO R CR)
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But o (%A(y)_)i;,(n;l 5) is uniformly bounded away from 0 with respect to both n and K €
(—ra(y), —ﬁ). This together with implies that K + T (K;y) is strictly increasing.

Now we prove the continuity of T (+;y), and we first show that it is left continuous. For
a fixed K and some € > 0, consider the interval (T (K;y) — ¢, 77 (K;y)). We claim that
there exist some § > 0 such that for all 6 € (0,9), TY(K —6) € (I'"(K;y) — e, T*(;yK)). To
see this, we take § to be such that

ko (—K+9) 1 .
————du=T"(K;y) -«
/y G (Kl .

Then it is clear that
THK;y) —e <TH(K —0;9) < TH(K = 8;y) < TH(K;y).

This shows the left continuity of T (-;y). For the right continuity, observe that for some
6 >0,

|TH(K +6y) — T (K )|

<

K3 (—K—0) 1 Ky (—K) 1
/ K+0+r4 (1) du_/ K+6+#4(u) du
rRalu Ka(u
y G+ (714 ) y G+ (7A )

+ du

Ky (—K) 1 k' (—K) 1

_|_

o (~K=9) 1 k3 (—K) 1 )
/ s du / a — = du|.
R ) Rt e e )
As § goes to 0, due to Lemma the first term in the above line converges to 0, and the
second term also tends to 0 by the dominated convergence theorem.
A similar proof verifies the properties of the integral regarding the function G~, and

therefore we make the conclusion that T'(-;y) is continuous and strictly increasing. O
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Proof of Theorem [2.10, This proof follows exactly the same argument as of the proof of
Theorem with taking the additional consideration of that for ft #0,

d RN d y y y

Z0c(V1,&) = = |AF (&) + AGF' (&) |

dt
AF<G+<KT,Z/+/@A(Y}))>+ KT,y+f<;A(Y})
Ty 4 pe 4 (Y
A G+(K y+AA(Yt))

dt
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-1 = kA (Vi)

T TY T
Figure 2.1: An illustration of optimal liquidation trajectories with an initial liquidation position y
and different time horizons T and 15 such that Ty > TY > T5.

}/Zﬂ )/t“
y e
w>0
g [
> kA (Y7)

T é/ T, —TY T, T
Figure 2.2: An illustration of optimal liquidation trajectories with an initial liquidation position y
and different time horizons T} and T5 such that T3 > TV > Ts.

N ~

v, A VA
| —
w>0
Y - _ _
|
Yy |
|
|
|
I ~
:liA(Yt)

0 7 T3 Ty—TY Ty T
Figure 2.3: An illustration of optimal liquidation trajectories with an initial liquidation position y
and different time horizons T4, T and T3 such that T; > 7'yg +TYL>Ty > 7Y > Ts.
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Chapter 3

Optimal liquidation in a general
one-sided limit order book for a risk

averse investor

3.1 Problem formulation

Let (Q, F, (Ft)t>0, P) be a complete filtered probability space satisfying the usual conditions

and supporting a one-dimensional non-trivial Lévy process L.

Assumption 3.1. We assume that L is an (F;);>o-martingale, and that there exists some
§ > 0 such that E[e?/1] < oo, for |6] < 6.

Let k denote the cumulant generating function of L4, i.e.
K(0) = In(E [eeLl}), 6 € R.

Assumption guarantees that the cumulant generating function s is continuously differen-
tiable on a neighbourhood of 0. With reference to Assumption , we notice that the Lévy

process L is square integrable, hence admits the representation

Ly =W, + / z(N(t,dz) — tv(dz)), t>0,
R\{0}

where W is a standard Brownian motion, N is a Poisson random measure which is independent
of W with compensator 7(t,dz) = tv(dz), v denotes the Lévy measure associated with L ((see

e.g. Kyprianou, 2006))). The cumulant generating function s can then be expressed as

K(0) = o202 +/ (eaz 1 62) v(dz),  |6] <. (3.1)
2 R\{0}
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In particular,
k'(0) =0, and &"(0) = o? —|—/ 22v(dz).
R\{0}

Moreover, k is lower semi-continuous (see Ganesh et al., 2004, Lemma 2.3). With reference
to (3.1)), one can check that & is strictly convex and continuously differentiable on its effective
domain, and it satisfies k(0) = 0 . Therefore, x(0) is strictly decreasing for § < 0 and strictly

increasing for 6 > 0. Set
Rt =[0,00) and R~ = (—o0,0].
For any given A > 0 define the function k4 : R™ — [0, 0o] by

ka(y) = k(=Ay),  y=>0,

and set
= sup{y >0 ra(y) < oo}.

Then k4 is strictly increasing, strictly convex, lower semi-continuous and continuously differ-
entiable on [0,74] with k4(0) = 0. Using (3.1]), one can deduce that

Cry? < ka(y) < OCay?, 0<y<e (3.2)

where €, C1,Cy > 0. The function k4 will play a predominant role in the sequel, where the
number A will be a parameter describing the large investor’s risk aversion.

We consider an investor who aims to sell a large amount of shares of a single stock in an
infinite time horizon. Let Y; denote the number of shares held by the investor at time t. The
process Y is called a liquidation strategy, if it converges to 0 a.s., as t goes to infinity. We

consider the following set of admissible liquidation strategies.

Definition 3.2. For y € R™, let A(y) denote the set of all (F;);>p-adapted, predictable,

decreasing, cadlag processes Y, satisfying Yy = y and

/0 o (| Vel o) d < 0. (3.3)
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Moreover, let Ap(y) denote the set of all deterministic strategies in A(y).

To describe the investor’s execution price, we explicitly model a bid limit order book.
We assume that the unaffected bid price process B?, which is the process describing best bid

prices in the market if the investor does not act, is given by
BY = b+ Ly, t>0,

where b > 0 is the best bid price at the initial time. The Bachelier price model may seem
simplistic, but this kind of modelling of unaffected price is widely used in the optimal liqui-
dation literature (see e.g. |Almgren and Chriss|, 2000; Kissell and Malamut,, 2005} Schied and
Schoneborn, 2009; Gatheral, |2010, etc). There are studies show that a liquidation model with
linear price processes can provide a good approximation for a model with exponential price
processes (see e.g. |Gatheral and Schied, 2011, and the references there in). In our model, the
unaffected bid price is assumed to provide a lower bound for the best ask price and that the
best bid price as well as all bid prices are unaffected by the large investor’s buy orders (if he
is allowed to buy back). These assumptions are satisfied throughout the whole chapter, and
they allow us to exclude any buy orders in the optimal trading strategy (see Remark ,
and they also exclude price manipulation in our model (see Remark .

In order to describe the bid limit order book, we consider a measure p defined on the
Borel o-algebra on R™, denoted by B(R™). If S € B(R™), then pu(S) represents the number
of bid orders with prices in the set BY + S = {B{ + s | s € S}, provided that the investor
didn’t act before time t. Notice that the undisturbed bid order book described by p is relative
to unaffected bid prices, it shifts together with the movement of the unaffected market price.

Figure 3.1 and Figure 3.2 give out illustrations. We impose the following assumption on p.
Assumption 3.3. We assume that
(i) there exists some Z € (—00,0) such that u((z,0]) = p(R™) < oo;

(ii) p is absolutely continuous with respect to Lebesgue measure, and is non-zero on any

interval properly containing the origin;
(iii) p((x,0]) is concave in x.

The first assumption means that there are finitely may bid orders available in the order

book and the finite number Z is equal to the smallest bid price in the book. We know from (ii)
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* Number of Shares

o u((0)
|

' » Price
b+=x b+x b

Figure 3.1: An illustration of an undisturbed bid limit order book at time 0.

} Number of Shares

o u((@0)
|

] 1
BY +z BY +x BY b

» Price
Figure 3.2: An illustration of an undisturbed bid limit order book at time ¢.

that the right end of the bid order book coincides with the best bid price in the undisturbed
bid order book; in other words, one can always sell some amount of shares at the unaffected
bid price in an undisturbed bid order book. The concavity of p((z,0]) tells that if we look at
the undisturbed bid order book, there are less bid orders placed at a price which is farther
away from the best bid price. Our model captures limit order books with discontinuous
shapes which can be used to reasonably approximate discrete shaped limit order books in
reality. Compare to models with continuous shaped limit order books (see e.g. |Alfonsi et al.|
2010; Lokkal, 2014} etc), a discontinuous shape is much easier to be calibrated.

Write z = —p(R™). We introduce functions ¢ : [—00,0] - R~ and ¢ : R~ — [—00, 0] by

¢(x) = —u((z,0]) and  ¥(z) =97 (2),

where ¢(¢(z)) = z, for all z € [z,0], and ¥(z) = —o0, for all z < zZ. As direct consequences

of Assumption ¢ is convex, 1) is concave, and they are both continuous and strictly

76



' Number of Shares

L » Price
B+ BY BY b

Figure 3.3: An illustration of a disturbed bid limit order book at time ¢ associated
with a strategy Y.

increasing when they are finite. They also have the following properties that

$(0) = ¥(0) = 0; (3-4)

/Ozzb(u) du <oo and P(zZ) > —oc. (3.5)

The state of the limit order book changes during trading. The book recovers itself by
means that new limit orders allocated at larger bid prices or smaller ask prices. In order
to model the dynamic of our bid order book during trading, we need to introduce one more
process. For a given strategy Y, let Z¥ be an R™-valued process such that —Z) represents
the volume spread at time ¢ that is —ZtY is equal to the total number of bid orders which
have already been executed subtracted by the total amount of which have refilled in up to
time t. We call Z¥ the state process of the bid limit order book associated with a trading
strategy Y. Let Zg: = z, where z > Z is the initial state of our bid order book. Therefore,
we have (7)) = B} — B, where B} is the best bid price at time t corresponding to Y,
and 1(Z}) can be understood as the extra price spread at time ¢, caused by the investor who
implements strategy Y (see Figure 3.3). Note that we have defined 9(z) = —o0, for all z < Z.
This implies that the best bid price drops down to —oo, if one sells more than available bids.
This in particular will exclude the possibility that the investor making sale while there is no
available bid orders. The rate of bid orders refilled into the order book is described by a

resilience function i : R~ — R~ which satisfies the following.

77



Assumption 3.4. We assume the resilience function h : R™ — R™ is increasing and locally
Lipschitz continuous. It satisfies h(0) = 0 and h(z) < 0, for all z < 0. We also assume that

1/h is a concave function.
Then, we consider the state process ZY following the dynamic
dz) = —-n(ZY)dt+ady,, Z,_ =zeR". (3.6)

For any admissible strategy Y, we refer to Predoiu et al.|(2011)) Appendix A, for the existence
and uniqueness of a negative, cadlag and adapted solution to this dynamic. Combining
Assumption and equation , we see that the farther the best bid price is away from
the unaffected bid price, the larger the resilience speed of the best bid price is. If the investor

doesn’t trade from time 1 to t9, then (Zty)t1<t<t2 satisfies

dzYy = —h(ZY)dt. (3.7)

Now define a strictly decreasing function H : R~ — RU {—o0} by

H(z) = /_ 1 h(lu) du. (3.8)

Let H~! denote the inverse of H, satisfying H ' (H(z)) = x for all z < 0 and H *(u) = 0
for u € (—oo, limg_o— H(m)] Then, it can be checked that the process Z given by

Zy=H™ ' (H(Zy) — t) (3.9)

has dynamic 1) Hence, for any t between time t; and to, Z} = H~! (H(Zg) —t +t1); and
if Ztg < 0, then

to—t1=H(Z") - H(Z)). (3.10)

Suppose the investor’s initial cash position is ¢ and that he implements a strategy Y €
A(y). Then his cash position at time 7" > 0 is

CT(Y)—C—/TBtYde— > /OM{BS+¢(Zf+x)}da:, (3.11)

0 0<t<T
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which corresponds to the best bids offered at all times being executed first so as to match
the investor’s sell orders, where the first integral is the cost from the continuous component
of the liquidation strategy and the sum of integrals gives out total cost due to all block sales.
We also suppose the investor has a constant absolute risk aversion (CARA). With initial cash
position ¢, an initial share position y and infinite-time horizon, he wants to maximise the
expected utility of his cash position at the final time. Mathematically, the investor’s optimal

liquidation problem is

sup E[U(Cx(Y))], (3.12)
YeA(y)

where the utility function U is given by
Ulc) = —e= 4, A>0.

This can be seen as a generalisation of the problem considered in Lokka (2014)), a risk-
averse formulation of the problem considered by Predoiu et al|(2011), and a limit order book
equivalent formulation of the optimal liquidation problem studied in Chapter 1.

If ZY < z, then B} = BY +(ZY) = —oco. The negative infinity value of best bid price
would be unfavoured to the investor. Indeed, shows that this brings the investor an
infinite cost. Due to this consideration, from now on we restrict ourselves to those admissible
strategies Y with Z} > z, for all t > 0.

3.2 Problem simplification

In this section, we show that the utility maximisation problem in can be reduced to a
deterministic optimization problem. This reduction was first explored in [Schied et al.| (2010),
who proved that with a certain market structure and a CARA investor, the optimal liquidation
strategy is deterministic. Some results of no price manipulation strategies in our model will

also be given in this section.
Let Y € A(y). Then it follows from (3.11)) that

T
Cr(Y) =ctby— b+ Lo)Yr+ [ YidLi+ Y0 ALAY: - Fr(Y),
0 0<t<T
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where Fr is given by

AY;

T
FT(Y):/O G(ZE)ayeE+ > /0 W(ZY + ) da. (3.13)

0<t<T

It follows from Lemma that for any admissible strategy Y € A(y), the condition in (3.3))

implies
C[1i_IQgQTFJA(HYT\|L<>O(1P=)) =0,
and with reference to (3.2,
. 2 . 2 . -1
jlglgoEULTYﬂ ] < Hm K O)T Y7 70 ) < Jim K'(0)CT Tra(Y7 | oo py) = O.
We conclude that BYr tends to 0 in L*(P) as T — oo. Set
te =inf{t > 0| [|Yi]|poo(p) < €}

From (3.2) and (3.3), it follows that

00 2 00
EK [Tv st> } < W'(0) (y2utsum>+ [ Wil dt)
te

<R/l + €71 [ rall¥illime) de) <
te

Hence, [, Y;— dL; is well-defined in L?(P). Due to the predictability of ¥, we also have that
2 00 ,
E[(Z AL@)@) } =E U (AYy) dt] (/ zQy(dz)> =0,
0<t 0 R\{0}

which shows the quadratic covariation of jumps of L and Y is almost surely 0, when T goes to
infinity. Moreover, note that Fr(Y) > 0 is an increasing function of 7', therefore, Fi, is a well
defined function from the set of cadlag non-increasing functions into the extended positive

real numbers. The final cash position is hence given by

Coo(Y) = c+by+/ Y, dL; — Fa(Y), (3.14)
0
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where ¢ + by gives out the mark-to-market value of the total wealth of the large investor at
the beginning of liquidation, fooo Y;— dL; represents the cost due to the market volatility risk,
and the cost from the price impact resulted from the limited liquidity is described by Fi(Y).

Remark 3.5. Suppose we allow for intermediate purchase. Consider any cadlag adapted
strategy which can be decomposed into a pure buy strategy X and a pure sell strategy Y.
We assume X + Y satisfies , limy o0 tha (|| Xt —i—Y}HLm(P)) =0and 0 < Xy +Y; <@g, for
all t > 0. Then the cash position associated with strategy X +Y at time infinity, denoted by
Cx(X,Y), is well-defined in an analogues way of (3.14). We therefore have that

T
Coo(X,Y) < lim Op(Y) — / B dX; (3.15)
T—o0 0
=c+by+ / (Xe— + Vi) dL; — Fo(Y)
0
< c+by+/ (Xe— +Ys) dLy, (3.16)
0

where the first inequality is due to the assumption that the unaffected bid price is an lower
bound of any best ask price. Taking y = 0 shows that the expected cost associated with any
round-trip strategy is always positive. Hence, our model doesn’t allow for price manipulation
in the sense of Huberman and Stanzl (2004).

Note that can be derived without concerning any mode of decay of the price impact.
The only property of order book which contributes to the absence of price manipulation is
that we assume the best ask price gives an upper bounded to the best bid price and the bid
limit order book is not affected by the large investor’s buy trades. We refer to |Alfonsi et al.
(2012)) and |Gatheral et al.| (2012)) for different model settings which do require conditions on

decay of price impact in order to avoid price manipulations. O

Let Y € A(y) and define the process MY by

t t
MtY = exp<—A/ Y, _dLg — / /QA(YS,) ds>, t>0.
0 0

Proposition shows that M"Y is a uniformly integrable martingale. We can therefore define
a probability measure P=PY by

dP
— =M.
dP 0
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Based on the idea of Theorem 2.8 in |Schied et al.| (2010), we calculate that

sup E[U(Cx(Y))] = —e= AT inf E|exp <—A/0 Y dL: +AFOO(Y)>]

YeA(y) YeA(y)

= oAty int E| M exp </ KA (Y}_) dt + AFOO(Y)>]
YeA(y) | 0

— _o Al inf [ exp (/ KA (Yt,) dt + AFOO(Y))]
YeA(y) | 0

< —e Altby)  ipr R [exp (/ KA (Yt,) dt + AF (Y))]
YeAp(y) 0

= —e Aletby) inf {/m Y;_)dt + AF, Y}) 3.17

e ex in K _ . ) )
oy nr {7 i) m}). @

Then with reference to the analysis after ((1.11)), it suffices to solve the problem in (3.17]).

Remark 3.6. Suppose we allow for intermediate buy trades. Consider a pair of strategies
(Y%, V%) which are cadlag and (F;)-adapted, and they satisfy Y =0, Vi’ =y and Y =
—Yo‘i. Moreover, we assume Y is increasing and Y¢ is decreasing, and Y? + Y¢ is positive-
valued and satisfies . We also suppose that the cash position at time infinity is well-defined
(this requires for instance, limy o0 tha ([|Yy + Y| c(r)) = 0). Consider a non-increasing
cadlag process ¢ satisfying {o— = 0. Then with reference to , for all t > 0, we have & < 0

and

t
yd d yd d
2y gyt _/0 <h(zu+5) - h(z}j_)> du + €.
Suppose there exists ¢ > 0 such that ZtydJrg > Ztyd. Let s = inf{t >0 | ZtYdJré > Ztyd}, and
let & > 0 be such that for all ¢ € (s, s+ 4], ZtydJrg > 7Y This § exists, since Z¥"+¢ and Z¥*
are cadlag . Note that although ZY4€ and ZY° have jumps, we can only have z¥ e Zg/d.
This is because jumps of both Z Y and ZY* are negative, and at each time, the jump size

of ZV'+¢ is always more negative than or equal to that of Z ve, Therefore, it follows that

&M§&=AXM2”9—M23>M,
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and

Eors > /0 <h(Z{d+5) - h(zuyf)) du + /:H (h(zfd“) - h(Z}ff)) du.

However, because h is increasing, the second integral in the above expression is positive.
Hence, we get a contradiction, and conclude that for all ¢ > 0, ZtY e <z ‘. This together
with the proof of Lemma 3.1 in [Lgkkal (2014) gives out Fio(Y?) < Foo(Y? + €). This implies
that for any pair (Y, Y%) satisfying the same conditions as the aforementioned (Y?,Y4), we

have Fio (Y2 A 0) < Fiuo(Y'%). Moreover, since k4 is increasing, it follows that
S ~ . ~ S ~
/ ra(Yi +Y24)dt > / ka(YE A0) dt.
0 0

If we ignore any impact cost from buying, then it can be shown that our optimal liquidation

problem in the case of allowing buying back can be simplified to

—e—Aletby) exp( inf {/ kA (Y;tl— + Y;td—) dt + AFOO(Yd)})’
(Yiyd) Lo

from which it is clear that (0,Y? A 0) is a better pair of strategies compared with (Y, V).
According to the above analysis, we can make a conclusion that it is not optimal to buy shares

during liquidation in our model. O

Lemma 3.7. Let F be given by (3.15). Then for every Y € Ap(y) and z € [z,0],

0 oo
Fo(Y) = / Y(s)ds +/ h(ZE ) (Z)Y) dt. (3.18)
z 0
Following the above lemma as well (3.17)), we solve the problem
V(y,z) = inf / (FLA()/t_) +Ah(ZtY)¢(ZtY)) dt, (3.19)
YeAp(y) Jo

with y = Yp— and z = ZSC. Since h and 1 are both negative-valued and x4 > 0, we have
V > 0. Suppose y > §a, which is the smallest upper bound making k4 to be finite (74
might be +00). In such case, the investor will make a block sale so that Yy < 34, otherwise
Y doesn’t satisfy and V(y,z) = co. However, he cannot sell more than z — zZ amount

of shares, otherwise V(y, z) will be infinite as well. We shall therefore specify the solvency
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region to be
D={(y,2) eR" x[5,0] | z>y—Ja+Z2}.

For technical reasons, we don’t consider z = y — 4 + Z, as the value function may explode

along this line.

3.3 Solution to the problem

Our next aim is to derive a solution to the problem in (3.19). The derivation will be based
on applying a time-change, and the principle of dynamic programming. With reference to
the results in [Lgkka (2014)) and the general theory of optimal control (see e.g. |[Fleming and
Soner), 2006), it is natural to think that there exists a decreasing ﬁ caglad function g = g* :
R* — [z,0] which separates the (y, 2) domain into two different regions; a region where the
large investor makes immediate sale and another where he waits. Let (8, denote the cadlag

version of 8%, and set

S ={(,2) eD|z> B(y)}

W ={(,2)eD|2< B WU {(y2) | y=0}

g? =35 nw’.

S’ represents the region for immediate sale, W’ is the waiting region, and G? is the region
of making continuous sale. For y > 0, the Hamilton-Jacobi-Bellman equation corresponding
to V given by (3.19) takes the form

Dyv(y,z) +v.(y,2) =0, for (y,2) € 36, (3.20)
h(z)vs(y, z) — kaly) — Ah(2)e(2) <0, for (y,2) €S\ 67, (3.21)

and
h(2)vs(y, 2) — ka(y) — AR()(z) =0,  for (y,2) € W', (3.22)

SIntuitively, when the volume spread is small but the stock position is large, it might be optimal to sell
rapidly; on the other hand, if the volume spread is large but the stock position is small, then it might be
optimal to wait for a while. This motivates us to make a guess of a decreasing free boundary on the (y, z)
domain.
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Dyv(y,2z) +v.(y,2) <0, for (y,2) € w’ \ G7, (3.23)

with associated boundary condition v(0,z) = A [ ¢(u) du for all z € [Z,0], where

Dy u(y,z) = lim (v(y tez) -y, z)) |

e—0~ €

|Z|The equations (3.20)—(3.23)) can be motivated as follows. When the large investor is trying
to optimise over deterministic strategies, he can either sell a certain number A > 0 of shares

or wait. Given a state (y, z), it may or may not be optimal to sell A amount of shares, thus
/U(y) Z) < U(?/ - A)Z - A))

because the share position is decreased from y to y — A due to A number of shares is sold,
and at the same time the state of bid order book changes from z to z — AA. This inequality
should hold for all 0 < A < y, therefore,

OglAa:éy{v(y, z2)—v(y—AO,z2—A)} <0. (3.24)

On the other hand, during a period of time At > 0, it may or may not be optimal to wait,
hence

At
olo2) < 0(w Zeo) + | <m<y> T Ah(Zuw(zu)) du
= v(y, Z)

+ /ON (m(y) + Ah(Zu-)(Zu-) = v:(y; Zu—)h(Zu—)> du,

where dZ, = —h(Z,)du, for 0 < u < At. Multiplying the above inequality by (At)~! and
sending At to 0, we obtain

h(2)v2(y, 2) = kaly) — Ah(2)y(2) < 0. (3.25)

"It will turn out that the value function is continuously differentiable in z, but it is only continuous and
admits a one-sided derivative in y (see Proposition [3.12).
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Since it is optimal to either sell immediately a certain number of shares or to wait, an equality

must hold in either (3.24)) or (3.25). We have therefore

max{ Oglggy{v(y, 2)—v(y =D,z = D)}, hz)va(y,2) — kaly) - Ah(z)¢(z)} =0,

and (3.20)—(3.23)) follow from this.

We define the liquidation strategy Y? corresponding to an intervention boundary § as

the cadlag function with the following properties:

(i) If (y,2) € 36, then the investor initially makes a block trade of size A such that
(YOB,ZXB): (y— N, z—A) €GP and set t,, = 0.

(i) If (y,2) € W’B, then wait until time ¢, = inf{t >0 | zY" = B(y)}, where

t
ZtY’B:z—/h(Z;/B)du, 0 <t <ty
0

111 Oor 1 =~ 1y, CONtInuously sell snares 1 such a way a y S , wnere
iii) For t >t ti ly sell shares in such that (Y,°, 2)") € G8, wh

t
Zf‘*zztff—/th(zf)dw}gﬁ—l@i, t >ty

(iv) Stop once Y;’B =0.

Figure 3.4 gives out an illustration of such a strategy. We will later characterise an optimal
intervention boundary, and prove that the strategy corresponding to such an optimal boundary
exists, and is admissible and optimal.

Let us examine in more details about the strategy corresponding to any given intervention
boundary function 5. We first need to specify what kind of boundary we are concerning
about. We consider any intervention boundary 3 : Rt — [z, 0] which is decreasing, caglad
and satisfies B(y) < 0, for all y > 0. We also require that lim,_,, 5(y) = z and 3(0) = 0. It
will be shown later that there exists such an optimal intervention boundary which completely
characterises the solution to the investor’s optimisation problem, and the properties that the
optimal boundary may be discontinuous (there might be countably many discontinuities) and
not invertible will complicate our analysis quite a lot. Given any intervention boundary 3, one

may ask whether the corresponding liquidation strategy Y? exists and is unique. In order to
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Figure 3.4: An illustration of the strategy Y? corresponding to a boundary £.

answer this, we need to introduce the following functions relate to 8, which will bring benefits

to our analysis:

5(y) = B(y) — v, for y € R; (3.26)
ps(2) =2z —B71z), forze[z0] (3.27)
B (z) = inf{y eRT ‘ Bly) < z}, for z € [z,0]; (3.28)
’y/;l(x) = inf{y € R" ‘ Y5(y) <z}, for x € R7; (3.29)
pgl(:c) =inf{z € [2,0]|ps(z) >z}, forzeR". (3.30)

Note that B and v are caglad , 371 and ps are cadlag , and 75—1 as well as pgl are both
continuous. Moreover, 3, 3~ and 'yﬁ_l are decreasing, 7g is strictly decreasing, pg is strictly

increasing, and pgl is increasing. Furthermore, it follows directly from the definitions of 571,

8Tt can be checked that for any z € R™, ’ygl(:v) and pgl(m) give out the y-coordinate and the z-coordinate
of the intersection of the line z = y + = and G”, respectively.
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8, 'y/;l, pg and pgl that the following three identities hold:

pgl(x) =z+ fyﬁ_l(:r), for all z € R™; (3.31)
751 (ps(2)) = B7(2), for all z € [z,0]; (3.32)
p5'(vs() = Bly),  forally e RY. (3.33)

Also, by the definitions of G?, 5 and 7!, we see that the set G is the union of the graphs of
functions B and S7!, restricted in D.

Observe that if z > B(y) , then the strategy Y corresponding to the intervention bound-
ary described by 8 consists of an initial sale of A number of shares so that (y — A,z — A) is
in GP (see Figure 3.4). Let Yoﬁ_ =y and YOB =y —A. Suppose (y — A, z—A) is on the graph
of B. Then (y — A,z — A) = (y — A, B(y — A)) and this equality is equivalent to

(V) = B(Y) —Y§ =2y,

from which it follows that YOB = fyﬁ_l(z—y) and A = y—fygl(z—y). Now suppose (y—A, z—A)
is on the graph of =1, and let Zg)/_ﬁ = z and Z{B =z—A. Then (y — A,z — A) =
(B~ 1(z — A),z — A), which is equivalent to

B B _ B
ps(Z3") = 2" — B HZY") = 2 —y,

and it follows that Zg/ﬁ = pgl(z —y)and A =z — pgl(z —19). According (3.31)), the number

A of shares in both of the aforementioned two cases can be expressed by

A=y—v5'(z—y) =2-pz'(z—y)

On the other hand, if z < B(y), then the strategy Y” consists of an initial waiting until
(Ytﬁ ZY 5) being on the graph of § (see Figure 3.4). When there is no action taken, we have
Ytﬁ = y, and with reference to and , we obtain Ztyﬂ = H '(H(z) — t). The first
time t,, that the state process is on the graph of 3 is given by

ty = H(z) - H(B(y))- (3.34)

Once the state process (Y7, Z Yﬁ) is in the set G, the strategy Y? consists of taking minimal

actions such that the state process remains in G# (see Figure 3.4). Therefore, (Ytﬁ , ZtY ﬁ) =
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(Ytﬁ B (Ytﬁ )) whenever ﬁ(Yt’B +) = B(Ytﬂ ) With reference to 1' this implies that Ytﬁ should

solve
dp(Yf) = —h(B(Y/)) dt + av/,
which is equivalent to
dys (V) = —h(B(Y)) dt.

If ﬁ_l(ZtYﬂ) = B_I(Ztyﬂ—), then (Ytﬁ, ZtYﬂ) = (B_l(ZtYﬁ), ZtYﬁ). According to and the
definition of 871, ZY” should solve

dz}" = —n(z77) dt.

Set
- 0, if z > B(y), (3.35)
H(z) - H(B(y)), if 2 < B(y),
and
f=inf{t>0]|Y =0}. (3.36)

Denote by {yn }ner the set of discontinuous points of 5. Then I is countable since f is caglad.
Define {t, }ner by

ty =inf{t >t, | Y = yn}, (3.37)
and {s, }ner by

sp = inf{t > t, | Y, <y,}. (3.38)
If {t >ty | Ytﬁ =y} = 0, write ¢, = co; and write s, = 00, if {t >t | Yt’B < yn} =0. The

following result establishes the existence and uniqueness of such a strategy Y corresponding

to a given intervention boundary .

Lemma 3.8. Let (y,z) € D and B be a function of intervention boundary. Suppose h is a
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resilience function satisfying Assumption|3.4, and H, 71, V8, ’y/gl, tw, t, Yn, tn and s, are
given by , 3.28), (3-26), (3.29) and (3.35)—(3.38) respectively. Let (Ytﬂ)po = (Yf\f)t>0’
with YOB_ =y, which denotes the decreasing cadlag liquidation strategy correspor_Ldz'ng to 3, a_nd
let (Ztyﬂ)t>07 with ngf = z, be the state process of the bid order book associated with Y.

Suppose YP satisfies the following description:

(i) If y =0, then liquidation is completed immediately; otherwise,
(it) If = > B(y),

(a) when y € Uner(z — B(Yn) + Yn, 2 — B(Yn+) + yn), immediately sell y — 5" (z — y)
number of shares. This block trade ensures YOB = 5_1(23/[3).

(b) when y € (2,00) \ Unet(z — B(Wn) + Yn, 2 — BYn+) + yn], immediately sell y —
’y/gl(z —y) number of shares. This block trade ensures ngﬂ = B(Yoﬂ).

Then continuously sell shares so that (Yf, ZtYﬁ) €GP for allt € [ty,1].

(iii) If z < B(y), then wait until time t,,. The time t,, has the property that Z,?;B = B(y).
Continuously sell shares so that (Ytﬁ, ZtYB) €GP for allt € [ty,1].

Such strateqy Y? exists and is unique, and it is continuous for all t > 0. In particular,
Y =y fort € [tw,t]N Unciltn, sn), (3.39)

with corresponding ZtYB being the unique solution to

dz)” = —n(2)") dt, (3.40)
where
Z,};ﬂ = pgl(z —y) if z > B(y), and ZtYn/j = 5(5/;55_) for t, > ty. (3.41)
Moreover,
727" =B(YP),  fort € [tw,t]\ Unetltn, sn), (3.42)
where YP is the unique solution to
dys (Y]) = —n(8(Y/))) dt, (3.43)

90



with

Ytﬁ =y if 2 < B(y), Yti = ’ygl(z —vy)if z> B(y), and Ys’i = yp for sp > ty. (3.44)

If t, > 0, then Y;B =y and ZtYﬁ =H ' (H(z) —t), for 0 <t < ty.

We can also describe Z) “forte [£,00) that it satisfies (3.40) with initial condition

z’, if 7 =ty
7" = i < ty, (3.45)
B(0+4), ift > ty.

The value of §(0+4) could determine the finiteness of liquidation period. Precisely, we have
that 8(0+) < 0 implies ¢ < co. To see this, it is enough to consider

37) ~a0) = [ (302

which follows from , where there is no waiting period between time ¢ and ¢. To get a
contradiction, let’s suppose t = co. Then it is clear that ff—h(ﬁ(Yuﬁ)) du = oo, as ﬁ(YuB)
is bounded away from 0 on the interval (¢,¢). However, v (Yt—ﬁ ) -8 (Ytﬁ ) is finite. The
dynamic of Z) ’ gives out that Z Y7 g cadlag and increasing to 0. Moreover, we notice from
the continuity of Ytﬁ for + > 0 that Z¥” is also continuous for all £ > 0.

We now progress by deriving an explicit expression for the performance function associated
with the strategy Y? described by Lemma for an arbitrary intervention boundary 5. As
a consequence, an explicit expression for the value function of our problem will be deduced
then. For the strategy Y7 with associated state process ZYﬁ, given an initial state (y, z), and
with reference to , we define the performance function Jg by

Js(y,2) = /OOO (;@4 (Yf) + Ah(ZtYB)w(ZtYB)> dt, (3.46)

where YOB_ =y, ZY” = z and (y,2) € D. Since k4(0) = 0, it follows that

zy"

/too (ﬁA (v7) + Ah(ZtYB)w(ZtYﬁ)> dt = A/o C () du. (3.47)
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Therefore, in cases (i) of Lemma
Ja(y,2) = A/ Y (u) du. (3.48)
0

Lemma 3.9. Let 3, Y2, ZY° t,, and T be defined as the same as in Lemma . If t, < t,
then

[ (ma) = anz oz ) o

w

2 ka(v () » B(04)
‘/mﬂ ( oy AV <u>))du+A [ vt

where ,751 and pgl are defined by 432$ and (TS’S’Q), respectively.

In case (ii) (a) of Lemma the strategy Y? consists of an initial sale of ¥ _751(2 —y) =
z— pgl(z — y) number of shares. The state after the block sale is (YOB, Zg/ﬁ) =(p! (p_l(z —

B
y)),pgl(z — y)), Hence, according to and Lemma

To(y:2) = Js (B~ (05" 2 = ) p3' (2 = v)
-1

/pﬁ(ﬂgl(zy)) <W
B

B(0+)
+Aw(pgl(u))> du—l—A/O P(u) du

(04) h(pg*(u))
_[FY (Ka ('ygl(u)) = y B(0+) 2 da

In case (ii) (b), we immediately sell y — Vgl(z — y) number of shares at the beginning. The
state after the block sale is (YOB, Zg)/ﬂ) = ('yﬂ_l(z —v), B(’ygl(z — y))) Hence, similar to the

above calculation, we have
_ -1 -1
To(y:2) =I5 (75" (2 = 1), B(3 (= = ) )

_ [ (ralstw) ) on
_/ﬁ(0+)( noy ) AV >>>d +A/O () du

92



Therefore, we conclude that in case (ii) of Lemma

L (ral )
Tols2) = /B<o+>< (0, ()

Moreover, in case (iii), z < B(y). So we need to wait until time ¢,, > 0 at which ZZUB =

B(y). With reference to (3.8)) and (3.34)), we have

B(0+)
+ Ay (pﬁl(u))> du + A/O ¥(u) du. (3.49)

o= H(:) ~ H(30) = | ( i

Also, observe that
tu » - B tw vé ve B(y)
i h(z )w(z] ") dt=— i v(Zy ") dzy = — Y(u) du.

Hence in case (iii), the performance function is given by

o) = [ (mati) + Az Yo (2) ) di-+ (0 50)

By

z )
— ka) /B Lo a [T gy du

() M) 2

“/ﬂ(y) RA (’Y@_l(u)) B B04)

Although this provides an explicit expression for Jg(y, 2), it is not obvious to see the informa-
tion about continuity and differentiability of Jz(y, ) in y, since § is only a caglad function.

However, we can calculate further that

/ﬁw(y) <W+A¢(pgl(u))> d“:/oy( Ka(u) +A1/1(ﬂ(u))> 5 ()
1

01 \ k(5" (w)) h(B(w))
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From this expression, as well as

Bly) Y Blu+t)
[, v = [To(au)as w3 [, v
and
A H(30) = saOH(00) + [ aa (p00) [ A% apt
Blut) q
—i—O@Z@lm(u) /,B(u) mdw,

it follows from (3.50) that the performance functionJg(y, z) in case (iii) of Lemma [3.8 admits

the expression

Tt ) = kaH() + 4 [ () du — / ( T A% (Bu)) + E’A(U)H(B(U))>dw

(3.51)

In above calculations, we have assumed the existence and finiteness of limu_,0+h”(/‘7éz))
and limy04 &4 (u)H (B(u)). We have also used that lim,,— ra(u) < oo as well as
limyy— k4 (u) < co. The finiteness of limy—o+ &’y (u)H (B(u)) together with implies
that k4(0)H (6(0+)) = 0. For an optimal intervention boundary [, all of these properties
will be demonstrated below by Lemma

Suppose £ is an intervention boundary such that Y? is optimal. Then according to the

Hamilton-Jacobi-Bellman equation as well as (3.51)), we have

Dyo(y, z) +v:(y, 2) = T(z;9) = T(B(y);y) <0, for all (y, z) € D,

where

i) = Av(o) + 20 4 i) H o)

Therefore, for any given y, 3(y) is sufficiently a maximiser of I'(z;y). The next lemma helps
us to characterise an intervention boundary 8 whose value maximises I'(x;y) for a given y,

and it will be shown latter that such g is an optimal intervention boundary in our problem.
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Lemma 3.10. Fory € (0,y4), define the function I'(-;y) : [Z,0] = R by

[(x;y) = AY(z) + IZX(SJ)) + k4 (y)H (), for x € (%,0), (3.52)

and

r'0y) = zli%ir(:”; Y), I(zy) = lim ['(z;y).

T—Z

Let p* = p*(y) and B = Bi(y) denote the functions defined as the largest and smallest
B € [z,0] satisfying

max I'(z;y) =T (8;y), (3.53)

z€|z,0]

respectively. Then for all y € (0,74), we have zZ < Bi(y) < B*(y) < 0. Furthermore, if
ga < oo, write B*(y) = B«(y) = Z, for ally > §a. Set

and

B*(Ha) = lm B*(y),  Bu(ga) = lm Bi(y).

Yy—=ya— y—ya+

This defines two unique decreasing functions 5*, B« : R™ — [2,0] which are caglad and cadlag,

respectively, and they are left and right-continuous versions of each other.

Lemma 3.11. Let 8* be given by Lemma it follows that if lim,_,,— Ka(xz) = oo or

limg_,— K'4(z) = oo, then lim,_,, B*(x) = z. Furthermore, we have

: KA(Y) . ’ *
lim —>=— =0 and lim k H =0. 3.54
Clearly, the function g* given in Lemma [3.10] satisfies all of the properties of an inter-
vention boundary that we were concerning. With this intervention boundary, the proposition
below provides an explicit expression for the value function which solves (3.20)—(3.23|) with
associated boundary condition v(0,2z) = A [; ¥ (u)du, for all z € [2,0], Then as a conse-

quence, we will show that this intervention boundary characterises the optimal liquidation
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strategy. Before proceeding, we make a few comments on the optimal intervention boundary
and the associated optimal liquidation strategy. First of all, the non-increasing property of
the boundary essentially means that when the investor makes continuous sale, it is never
optimal to implement a trading speed which makes the current best bid price to be decreased.
In other words, the sell speed should be at most as large as the current speed of resilience.
Therefore, the possible constant parts in the intervention boundary represent the situation
that the current volatility riskﬂ is too large so that it is optimal to sell as quick as possible in
order to reduce the stock position and hence the volatility risk. Moreover, jump parts in the
intervention boundary correspond to waiting in the optimal strategy. This can be interpreted
as that the current illiquidity cost E is relatively large, comparing to the volatility, thus it is
optimal to wait so that the best bid price increases to a level which is more preferred by the

investor.

Proposition 3.12. Let 8 = B* denote the largest solution to , and let 751 and p/gl be
the corresponding functions defined by (3.29) and (3.30}). Then the function v: D — R given
by that for z > B(y),

Y HA(VEI(U)) ~1(y, u AO+) W) du
v(y,z)_/ﬂ(w (h(pgl(u)) T (o5 )))d +A/O () du, (3.55)

and for z < B(y),

o(y,2) = ra(y)H(z) + A /0 () du — /O ’ (AW) + AY(Bw) + H’A(U)H(ﬁ(u))> du,

(3.56)

is a CYY(D) solution to f with the boundary condition v(0,z) = A [ ¥ (u) du, for

all z € [2,0]. Moreover, D, v(y, z) is caglad in y and continuous in z.

Note that (3.55)-(3.56|) agree with (3.48) when y = 0. The following theorem verifies that

the function v given by (3.55)-(3.56) is equal to the value function V' given by (3.19), and that
the strategy Y corresponding to § characterised by (3.53)) is an optimal liquidation strategy.

Hence, such a Y? provides a solution to the utility maximization problem in 1}

9With reference to 1i fooo Yi— dL, represents the risk due to market volatility, and this integral corre-

sponds to the term [ x4 (Y:)dt in the simplified optimisation problem (3.19).
07The illiquidity cost, or the price impact cost is described by Faso (Y) in (3.14), and it corresponds to the

term fooo h(ZE)(ZY) dt in the simplified problem |)
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Theorem 3.13. Denote the investor’s risk aversion by A, the initial unaffected price by b,
and by c the initial cash position. We take B as the largest solution to and v to be
given by (3.55) and ([3.56). Moreover, let V be given by (3.19). Then v ="V on D and

z—y
sup E[U(Cx(Y))] = — exp<—A(C +by) + A/ P(s) ds> exp(v(y,2)),
YeA(y) z

where z = Zé/_ is the initial state of the bid order book and y is the initial share position. The
optimal strateqy Y* is equal to YP € Ap(y), where YP is the strategqy described in Lemma
corresponding to 8 with Yoﬁ_ =y.

3.4 Proofs
Proof of Lemma [3.7. With reference to the dynamic of ZY | we calculate that for z > Z,

Y
ZT

z T
T vwau= [Cowant [Coz)av;
zy +AYt

—/ Wz w(ZY) dt+2/ du

0<t<T

0
3[wmm+/wwﬂw¢

AYy
—/ WZ )W (Z) ) dt + Z/ (2 + ) du.
0 0<t<T
Then,
AYy
FT(Y):/ »(ZY) dye + Z/ W(ZY +2)da
0

0<t<T
Y
ZT

T
= u u — u u Y Yy
- [ vt AwUd+Ahwnwa>ﬁ
zx T
:/ wwm+/hwmwdvm
z 0

Notice that for any admissible liquidation strategy Y, we have either Y and Z¥ get 0 at the

same time, or Y becomes 0 at some time s while Zz < 0. In the second case, for all ¢t > s,
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ZY satisfies
dzYy = —h(zY)dt.

According to (3.9), we know that the solution to the above dynamic tends to 0, as t — oc.
Therefore, Z} — 0, as t — oo in any case. Then it follows from the above expression of
FT<Y) that

0 [e's)
y) = / W (u) du + / Wz Y(z) ) dr.
]

Proof of Lemma [3.8, We first prove that on any time interval I contained in [t,,t] \
Unet[tn, sn), there exists a unique solution to the dynamic (3.43]). But on such I, the process
Y5 does not cross any jump of 5. Thus, in terms of the function 3, we shall only focus on
those parts without jumps. Also, it is sufficient to consider Y starting from time 0 (rather
than starting at any time in [ty, ]\ Unei[tn, sn)). Write Y,? = Yy > 0 and

YiH = 7§1<{75(YO) - /Oth(ﬂ(yf)) du} A 6(O+)>. (3.57)
Let T € [0,00). Then
sup | B(V) = BV |
0<t<T
(a0 = [ (508 a4 8004) = {30) = [ W30 du} n p104)
+75" ({’m(Yo) - /Ot h(B(YY)) dU} A ﬁ(0+)>

—o5t ({ratr - [ (oot ) son)

= sup
0<t<T

320;1£T {%’(Yo) - /Oth(ﬁ(Yuk)) du} A B(0+) — {'yﬁ(YO) _ /Oth(ﬁ(yuk_l)) du} A B(04) '
<2 sup / t h(B(Y.)) — h(BYS)) du

0<t<T
o [t - ot
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B = BV | du, (3.58)

T
<2L / sup
0 0<t<u
where the first equality is because that when 3 has no jumps we have 3 (’ygl(x)) = x—i—’yﬁ_l(x),
the first inequality is due the triangle inequality and |’y/;1(x) — 'yﬁ_l(y) < |z — yl|, and the
third inequality is followed from the boundedness of processes B(Y*) and S(Y*~!) and the
locally Lipschitz continuity of h with a Lipschitz constant L. By induction and with reference
to (3.58)), it can be shown that

k
sup | B - oy | < D
0<t<T :

2|8(Yo)|.

Taking k to infinity, we have that B(Y}*) converges uniformly on [0,7]. Define 3; =
limy,_o0 B(Y}F), for t € [0,T). Since T € [0, 00) is arbitrary, it follows that 8; = limy_ss B(Y}F)
for all t € [0, 00). With reference to , the dominated convergence theorem gives out that
for every t € [0, 00), (Y;k);o:() is convergent. We define Y;B = limy_,o Y}*. Tt can be checked
that Y decreases to 0. Then since § is continuous, we obtain 8; = /3 (Ytﬁ ), for all t € [0, 00).
Therefore, by sending k to infinity in , since we only consider Ytﬁ before time ¢, we have

that
B 1 B t _
Y, =15 <fm(Yo ) —/0 h(B(Y))) du>, for t <.

This shows the existence of solution to the dynamic (3.43)) on any time interval contained in
[tw,t] \ Uneiltn,sn). For uniqueness, let’s assume that Y1 and Y?) satisfy (3.43)), where
YV =y P for0<t <t and Y < VP for t; <t < ty. Then for t1 < t < ta,

vV =45t <75<Y0“’) - /0 () du)
> ;! @(Yé”) - /O () du)

_y®

which contradicts the assumption that Y;(l) < Y;(Q) for t1 < t < tg. So the uniqueness
holds. The existence and uniqueness of solution to the dynamic in (3.40)) on any time interval

contained in [y, ] N Uper[tn, sn) follow from the locally Lipschitz continuity of function h.
Now let Y2 and ZY” be processes satisfying 1)1) with (Yﬁ, Zé/f) = (y,2) € D.
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Note that (Ytﬁ, ZtYB) € GP for all t € [t,,t]. We need to show 1} is satisfied. We first focus
on the case when t < t,,. Suppose z > ((y), i.e. t,, = 0. Then in case (ii) (a),

Yy v =87 05 e —y) —y

=75 (z—y) —y

= (z-y+'z-y) -2
B B

= 3/ _Z(%/—’

where we have used the identity 81 (pgl(z - y)) = 7,571(2 — y) which follows from 1) and

is valid under the condition of (ii) (a). In case (ii) (b), we obtain

2"~ 2" =Btz —y) — =
—z—y+7'(z—y) -z
=75 (z-y)—y
S = 7

where B(’yﬁ_l(z —y)) = pgl(z —y) was used. Suppose z < 3(y), i.e. t, > 0. It can be checked
that ZY Y= H! (H (2) —t) has dynamic MI) Because Yt’B is now constant, is satisfied.
In the case when t > t,,, Ytﬁ and Z) ? follow (]@b—(]&_%b, which satisfy .

We next prove Y7 is cadlag and decreasing. Note that by the definitions of t,, s,, tw
and t and , and the first part of the proof, we have Ytﬁ and Z} ? are continuous
when (Y;ﬁ A ﬁ) is in each continuous part of the graph of 8 or 1, for t > 0. Also, each
initial condition associated with dynamics d3.40|) and (]3.43[) is chosen to make Ytﬁ and Z} ’
to be continuous at t,, s, and t,, when t,, > 0. It can also be seen that Y” and 7Y% are
right continuous at ¢ = 0. These together with the well-defined YOB_ and Z(})/_ﬂ imply that Y2
and ZY” are continuous for ¢ > 0 and they are right-continuous with left-limit at ¢t = 0. Y#
decreases to 0 follows from (3.39)), (3.40)), (3.43)), and the first part of this proof.

Finally, 2}’ = H~Y(H(z) —t), for 0 < t < t,, follows from . O

Proof of Lemma [3.9 Let {y, }ner be the set of all points at which the intervention bound-

ary [ is discontinuous. Consider a time interval [t, s] C [tp, sn) for some n € I, where ¢, and
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sp, are given by (3.37) and (3.38)). With reference to (3.6]), we note that formally,

_ (7))

Vt tn7 nj
) e

and hence,

/ts (HA(Y;»'B) + Ah(ZXB)¢(ZT¥ﬁ)> 0

t /e —1/7YB
- (s

_ /PB(ZtYﬁ)(/iA('Yﬁ_l(U)) +A¢(P§1<U))) du
P

s(27") \ h(pz' ()
2 (rat ) L
= Y <h(p§1(u))+Aw(pﬁ (u))> du, (3.59)

where we have used the identity in (3.32)). Similarly, since

(YY)
n(B))
applying (3.33)), it can be calculated that on some time interval [s,t] C [tw, ]\ Unetltn, Sn),

for some n € I,

dt = Vt S [tw,E] \ Uneﬂ[tn)sn)a

/St <HA(Y;"6) + Ah(ZXﬁ)¢(ngﬂ)) dr

2y’ ¢ </€A (75 (w)
h(pz'(u))

Yy +Av(py 1(u))> du, (3.60)

Let t, < t. Suppose the number of ¢, and s, in the interval [t,,t] is equal to m < oo
(possibly m = 0). Consider ro < r1 < ... < 1y < Tt1, where 19 = ty, rme1 = t and for
k=1,...,m, r; are equal to those t,, s, € [ty,t]. We assume rq,...,7,, are in an ascending
order. Then it follows from , and the continuity of Y;B and Z) ’ when t > 0 that

/t: <,<JA(Yf) +Ah(ZtYB)¢(ZE’B)> dt
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S [ (s 4 an(2 o2 )

I AN Gl () .
/ZtYB (h(pgl(u)) + Aw(pﬁ (u))> du.

Suppose there are infinitely many ¢, and s, in the interval [¢,,t]. Let r € [t,,t] be an
accumulative point of the sequence {t,}n,er. Then with out loss of generality, consider a
subsequence {t,, }32, C [tw,t] increases to r. Consider some time interval [¢, s] in which r is

the only accumulative point of {t,, }ner. Then, it follows that

/ts (m(Yf) + Ah(ZtYB)w(ZtYB)> dt

— lim tt" <HA(Y;5) +Ah(ZtY5)w(ZtYB)> dt+/rs(/m(¥;5)+Ah(ZtY6)¢(ZtYB)) dt

n—oo

A /fA(’ygl(u))
~ lim (

n—o0 Ztyﬂ _Ytﬂ
n n

)
2 (ra () -
+/zﬁyf <h(—1(u))+A¢(ﬂg (u))> du,

Z

Ztyﬁ_ytﬁ KA ("Yﬁ_l(u)) »
N /zzﬂ_ysﬁ <h(/)/§1(“)) AV (u))> -

+ Ay (,ogl(u))> du

This implies that

[ (sa) - anz oz )

/zzf—ni <m (75" (w))

zY"? h(pg'(u))

Therefore the result follows from the above equality as well as (3.45]) and (3.47]). O

+ Ay (pgl(u))> du.

Proof of Lemma [3.10. First notice that for any y € (0,74), ['(z,y) is concave in z and
this concavity may not be strict. Observe that for y € (0,74),

lim ['(z;y) = —oc.

z—0~
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Also, I'(z;y) € R, for z € [2,0). These imply that z < B, (y) < *(y) <0, for all 0 < y < ya.
The largest and smallest solution to (3.53]) uniquely define the functions §* and (.. For
0<y<y+A<ysandz € [z,0), we calculate that

[P ) - | - EAEE DI sl ) 2l

<0,

(3.61)

since k4 is convex and k'y(u) > 0, for u > 0. We want to show that 8* and S, are decreasing
functions. In order to get a contradiction, suppose that there exists y € (0,54) and A > 0
such that 5*(y + A) > Bi(y). With reference to (3.61)), we obtain

L(B*(y+A);y+A) —T(B(y+L)y) <T(Bu(y)iy+ L) —T(B:(y):y).

However, this contradicts the definitions of 8* and S, which imply that

P(B*(y+AL)y+ L) >T(Buly);y+2A) and  T(Bu(y)sy) = T(B*(y+ A);y).

Therefore, for all 0 < y < g4,

By +A) < By + D) < Bily) < B*(y), (3.62)

and from which it follows that §* and g, are decreasing. By (3.52)), we know that for z < x < 0,
['(z;y) is continuous in y. Then for y € (0,y4), we have

L(Be(y+);y+) =T (Bu(y+):y) < F(ﬁ*() y) = T(B:(y); y+)
L(8*(y—)iy) =T(B*(y—);y—) > T(B*(w)iy—) =T (6*(v);v).

Since 6* and [, are defined as the largest and smallest maximiser to respectively, also
because f* and f(, are decreasing, it follows that S.(y+) = B«(y) and 8*(y—) = B*(y). By
monotonicity, right limit of 8* and left limit of B, exist. Hence, we have proved that g* is
caglad and B, is cadlag . The claim that 8* is the caglad version of 8, and that [, is the
cadlag version of g* follows from . O

Proof of Lemma (3.11] If y > 44, then by the definition of 8%, it is certainly true that if

limg,y— ka(z) = oo or limg,,— k'y(x) = oo, then lim, ,,_ f*(z) = 2. The rest case is for
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y = ya. We proof by contradiction and suppose *(ya4) > z. For any x € (2, ,6’*(3],4)) and
y € (0,74) such that 8*(y) > 8*(ya), we have

Av(a) = A(w(o) - 05 0))

—_

<) (s i)+ (Fw) - Hw)

1 1
<14 (70 )+ st (") ~ @) ).
WE ) ) (7))
Taking y to be arbitrarily close to g4 implies 1)(x) = —oo. This means z < z which contradicts
with > z. Hence, we conclude that *(y4) = —oc.

Now we prove for (3.54). Note that if 5*(0+) < 0, then (3.54) is obviously true. However,
if 5*(0+) = 0, then

Ka(y)

"B (W) > T(xy) — AY(B*(y) — ka()H (8*(y)) > T(x;y) — sa(y)H (B (y)),

from which it follows that for any = € (z,0),

KA(Y)

0> minf ;-0 55 ( W) > Ay(z) — h;l%ﬁp K4 () H (8 (), (3.63)
: Ka(y) .
0> hﬁ%‘ip w5 (s)) > Ay(x) —~ liminf &)y (y) H (8" (y)). (3.64)

Therefore,

0 > limsup &' (y)H (8 (y)) > A(x),
y—0+

0 > liminf x4 (y)H (8*(y)) > A¢(x).
y—0+
Taking = to 0 and by (3 , we get limy 04 mh(y)H(,@* (y)) = 0. Also, by sending z to 0 in

3.63)) and (3.64)), llmy_>0+ h'({g‘((y))) = 0 therefore follows. O

Proof of Proposz'tion . To show v is continuous, we first prove it is finite. But with
reference to (| - , it suffices to show that the function Jg given by (3.46) - is finite with
5 defined by Lemma By the continuity of Y? and Z Y7 after time 0 and condition ,
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we have that there exists some s > 0 such that
/ <RA(Yf) + Ah(ZtYﬁ)w(ZtYﬁ)> dt < oo (3.65)
0

and YSB < ga. According to the condition given by Lemma that

lim ra(Y)

y—0t h(B(y))

= O’
it follows that there exists C'y > 0 and 0 < € < §4 such that

kaly) < —Clh(ﬁ(y)), for all y € [0, €.

Since @ZJ(ZtY 6) is bounded for all ¢ > s (it increases to 0), this together with the above
inequality implies that

/f <m(Ytﬁ) + Ah(zfﬁ)w(zﬁ)) it < /:" <_ Cun(Bv)) - C2h(ZtYﬁ)> "
< /:O ( ~h(2Y7) - cm(z{‘*)) dt

< (O + ) (Y = 2Y") < o0, (3.66)

where Cy > 0 is some constant. Therefore, (3.65) and (3.66) together show that v is finite.

Note that each expression given by or is continuous in y and z. It is therefore
sufficient to prove that v is continuous across G7. Write J,,(y, z) to be the expression of v(y, z)
given by , and let J;(y, z) be the expression in . Suppose (y, z) is a point on the
graph of 8, i.e, z = B(y). Consider a sequence of points (yy, 2,)5>; contained in S’ \ G8,
converging to (y, z). With reference to and, we calculate that

lim U(ym Zn) =Ju (y7 B(y)) =Ji (y7 B(y)) = v(y,ﬁ(y)). (3'67)

n—o0

If (y,2) lies on the graph of 871, i.e, y = B7!(z), then using the property that f~!(u) =
BY(2), foru € (z, B (B‘l(z))), direct calculation results 1' It therefore can be concluded
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that v is a continuous function. Differentiating v gives out

KA (’Yg_l(z —y))
hpg'(z—y))
ra(s' (2 =)

Dyv(y,z) = — — Ap(pg'(z =), z>B(y);  (3.68)

vy, 2) = + AP (p5'(z — ), 2> By);  (3.69)

Dy o(y, 2) = Ka(y)H () - ”A(Z) — AY(B(y)) — K4 H (BW)), 2<By);  (3.70)

oy 2) = A 4 aye), < B 37

These expressions are left-continuous with right limit in y and continuous in z (all of these
expressions are continuous at (0,0), this is guaranteed by ) Also, it can be checked
that for any (yn,zn)5>; C gﬁ, (y,2) € GP and limy, 00 (Yn, 2n) = (v, 2), we have v, (yn, 2n) —
v:(y, 2), as n — oo. Further, lim,_, 5.,y D, v(y,2) = Dy_v(y,ﬁ(y)). Therefore, we conclude
that v.(y, z) is continuous, and D v(y, z) is caglad in y but continuous in 2.

Standard calculations show that v satisfies (3.20) and (3.22)). When z = 0, (3.21)) is clearly
true. For z # 0, in order to verify (3.21)), we compute that when z > 5(y),

h(2)v2(y, 2) — raly) — Ah(2)Y(2)

— h(x KA('Y/g,l(S)) B KA(Z—s) S (s
=M ){ h(pg'(s)) h(z) +A{Y(p5" (s)) — ( )}}, (3.72)

where s = z — y. Observe that h(pgl(s)) = 0 implies y = 0, but 1)1D are under
the condition of y > 0. So h(pgl(s)) is non-zero. By the definition of 751, we must have
’ygl(s) € (0,y4) if B(ya) = z, or 7,671(3) € (0,y4] if B(ya) > z. Then according to the limiting
behaviour of 5 in Lemma KA ('y/@_,l(s)) must be finite, so is £y (’yﬁ_l(s)). However, k4(z—s)
may be infinite, but then it follows that (3.72)) is negative. Otherwise, if k4 (y) < oo, write

s _fiA(’Y/;l(S)) _K;A(z—s) “1(9)) — (s
6s2) = Sty A ) - v}

Then in order to verify |i it suffices to show G(s;z) > 0, for all pgl(s) < z<0. G(s;v)
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can be rewritten as
G(52) = [T (05" ()75 1(5) ~ T (2795 (5))]
~ ka0 ) [H (51 9) = O] + 55 ka5 9) — ke = 9|, 379
where Lemma [3.10Q] verifies
L(pg' ()75 (5)) =T (275 '(5)) 2 0. (3.74)

We calculate that

e 54 051©) — raGe = 9)] =405 @) [H(p5'9) - 1)
/z ( [ka(u—s) — /ﬂA(pgl(s) — )| (u) N Ky (pgl(s) —s) — Ky (u— s)) i

pEl(s) h? (u) h’(u)

\Y]

0. (3.75)

=T(z;y) — F(ﬁ(@)% y)

This verifies that (3.23)) is true.
Finally, the boundary condition is satisfied by ([3.55)), because for any u € [3(0+), 2], we
have Vgl(u) =0 and pgl(u) = u; and it is trivially satisfied by 1' O

Proof of Theorem [3.13. Let ¢ be a positive-valued C*°(R) function with support on [0, 1]
satisfying fol d(z) dz = 1, and define a sequence of functions {0, }22; by

dn(s) =nd(ns), s>0.
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o0

We mollify v to obtain a sequence of functions {v(™ ol

which are given by

1
v ™ (y, z) = /0 v(y — s,2) dp(s) ds.

(One may extend the lower bound of the domain of v(-, z) properly so that v(™ is well-defined
at y = 0.) Then v(™ € CY(D), for all n € N, and

v(y,z) = lim v(”)(y,z),

n—oo

va(y,2) = lim v{”(y, 2),

Dy v(y,2) = lim v{"(y,2),

n—oo

where the last equality is due to D, v(y, 2) being caglad in y. Moreover, for every (yo, 20) € D
there exists a K > 0 such that on the set { (y,2) €D { 2>y + 20— Yo },

| o™ (y, z) | <K, neN, (3.76)
| vZ(I”) (y,2)| <K, neN, (3.77)
| v (y, z) | <K, neNl. (3.78)

(If Y is admissible and (Yo—, Z)_) = (o, z0), then (¥;,2)) € { (y,z) € D ! 2>y+20— Yo},
for all ¢ > 0.) By Itd’s formula, we compute that

T
o™ (Y, ZY) +/ (RA(Y%_) +Ah(ZtY)1/J(ZtY)> dt
0
T
— o0+ [ <“§"> (Y-, Z0) + ol (Vi ZB”>) avy
0

+ /OT (HA(Yt) + AR(Z ) (2)) — ol Mvzt}:)"(Zf—)) o

+ Y {W) (Yie + AY;, ZY + AY:) — o™ (Y, Zty)}, (3.79)

0<t<T

for all Y € Ap(y). Observe that for t > 0,

t
og—/ WMZ)du=2ZF -V —Z) +Yo<y— =
0
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Then, with reference to (3.76)—(3.78]), we have

o0
/O neN

o (Y, ZYR(Z) ) | dt < K(y - 2).

Similarly,
o
/ sup [ o) (Vie, 2) + o0 (Vi 21 | d(=Y5) < 2Ky
0 mneN
and
sup |00 (Vi + AY;, 27+ AY) = o) (Yo, 20) | < 2Ky,
o<t neN
Hence, by (3 and the boundary condition v(0,z) = A fo u) du, the dominated conver-

gence theorem gives out that for any Y € Ap(y ),

/Oo (M(Yt_) +Ah(ZtY)w(ZtY)) dt

0
:v(y,z)—i—/ooo(Dy_v(Yt,Z )+ (Yo, Z )) dyy
+/°° ka(Yio) + AB(Z) )¢(zt{)vz(y;,z§)h(zt{)> dt
+Z{ Yio + AY:, Z) + AY) —v(Yio, Z) )} (3.80)
t>0

asn — oo and T — oo. According to Proposition v satisfies (3.20)—(3.23)), and therefore,

/0 ” <KA(1@) - AR(ZY (2 )> at > v(y, 2). (3.81)

Hence, V > v.

From from (3.65)-(3.66), we know that with 8 being the largest solution to (3.53) and Y
being the strategy described in Lemma corresponding to 8, Y7 is admissible, in particular

(3.3)) is satisfied. Therefore, with reference to (3.81]), in order to complete the proof, we need
to show that 1' holds with equality for Y#. Observe that AY”? < 0 only if ¢t = 0 and

z > fB(y). But by (3.20) and Proposition we have that D, v(y, 2) + v.(y,2) = 0, for
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z > (y). Therefore,

Z{”W +0Y7, 27+ 8YY) —vmﬁ_,zﬁ)} ~0.
t>0

For any z <0, if 0 <t < t,,, where t,, is defined by 1) then d(Y;B)C = 0, hence
tw
_ ]
[ (oot 20 + 0 07.27) ) a7y = o
0
if t > t,, then (Ytﬁ, ZtYB) € G, which implies
o 8 8 8
[ (Dyel 20y 2 )y =
tw
Finally we have
o 8 8 8 8 LyB v8
/ </<;A(Yt_) + AR(ZE )V (Z220) — 0. (Y2, 220 h (2 )> dt =0,
0
since the integrand is equal to 0, for all (Ytﬁ A B) € Wﬁ, and the Lebesgue measure of
time taken when (Y;’B 2y 5) € gf \ G# is 0. With reference to 1} we therefore conclude
that v = V and that Y* = Y? € Ap(y) is an admissible optimal liquidation strategy for

the optimization problem (3.19)), and the result follows from (3.17)) as well the analysis after
(1.11)). O
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Part 11
Contracted Liquidation

This part is based on a joint work with Prof. Mihail Zervos.

Chapter 4

Optimal liquidation with a

contractual agreement

4.1 Contracted liquidation model

Let (Q,F,P) be a complete probability space which supports a one dimensional, standard
Brownian motion B. Let F = (F;):>0 be the filtration generated by this Brownian motion,
and we assume that I satisfies the usual conditions.

We study a market with a single stock, and this market terminates at some finite time 7.
We consider an investor who aims to sell a large amount of shares of this stock within a given
finite time. Denote by Y the investor’s stock position process, i.e. Y; is the number of shares
held by this investor at time ¢, and by £ the associated trading speed process which will be
referred to as the liquidation strategy in the sequel. Define the set of admissible liquidation

strategies as follows.

Definition 4.1. Given an initial stock position y > 0 and a terminal time of liquidation
T € (0,T], let € be an F-adapted, cadlag and positive-valued liquidation speed process with

finite variation such that the associated stock position process Y satisfies
t
Yt:y—/ &dt >0, tel0,T],
0
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and
Yr=0.

Write A(T,y) as the set of all admissible liquidation strategies ¢ satisfying the above condi-
tions. Denote the set of all deterministic admissible liquidation strategies by Ap (T, y).

It follows from the above definition that for any £ € A(T,y), the associated stock position

process Y is F-adapted, positive and decreasing, and we have the constraint that

T
/ Esds = .
0

Note that it might be the case that there exists some s € (0,7") such that ¥; = 0, for all
telsT].

If the investor doesn’t trade, we suppose the stock price is described by
s+ O'Bt, t> O,

where s, > 0 are the initial stock price and the volatility parameter, respectively. Since the
trading volume from this investor is large, due to a lack of enough liquidity in the market,
the stock price drops down during the investor’s sale. Throughout this chapter, we adopt an
Almgren-Chriss type of liquidation model (Almgren and Chriss, 1999, 2000) with absence of
the permanent price impact and a general temporary impact being concerned. Precisely, we

assume that the affected stock price process S is given by
St:S-f-O'Bt—F(gt), tZO,

where the function F': [0, 00) — [0, 00) describes the price impact in response to the investor’s
trading speed (i.e. the temporary price impact). Conditions on F' will be specified at the end
of this section.

In our model interest rate is negligible. This a usual convention for a liquidation model,
since in practice liquidation can usually complete in a very short time period. Therefore, if
the investor is liquidating shares following some £ € A(T,y), the proceeds she receives up to

time ¢ is given by

t t t
/ Subudu = s(y—Yi) —oBY +o / Y, dB, — / CuF(£,) du.
0 0 0
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In particular, at the final time of liquidation she receives totally

T T T
/0 Sufudu—sy—i—a/o YtdBt—/o & (&) dt. (4.1)

The constant sy is the marked-to-market total wealth of the investor at the beginning of
liquidation. The stochastic integral fOT Y, dB; represents the volatility risk encountered by
the investor. The total price impact cost is given by the term f(;[ & F (&) dt.

Now let’s suppose the investor is not able to access to the market, and therefore a broker is
hired to sell shares. In order to study the interaction between the investor and the broker, we
consider a principal-agent problem based on the liquidation problem. From now on, we shall
call this investor as the principal (she) and this broker as the agent (he). The agent liquidates
shares on behalf of the principal under some contractual agreement. The contract specifies
the initial liquidation position, the required terminal time of liquidation and the liquidation
strategy that the agent is expected to follow; moreover, manners of paying liquidation proceeds
and compensation to each other are also written in the contract. The principal may not be
able to observe the actual strategy that the agent implements, and hence the agent may have
opportunity to generate some private benefit. We try to find the optimal contract offered
by the principal as well as the associated liquidation strategy implemented by the agent.

Mathematically, we consider the following agent’s problem

sng[UA(compensation + private benefit — cost)] > A,

where U4 is the agent’s utility function, ¢ is the implemented liquidation strategy, the term
cost indicates any implementation cost which is in addition to the price impact cost, and
A is some constant denoting the agent’s participation constraint. The implementation cost
is described by some function H : [0,00) — [0,00). This function takes liquidation speeds
as inputs. Assumptions on H will be specified at the end of this section. We assume that
A > UA(0) so that the agent only takes any work which can bring him more benefits than
doing nothing. The principal’s problem is

sup E[U P ( proceeds — compensation) ],
é, compensation

where U” is the her utility function and é is the liquidation strategy recommended by her.
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Throughout this chapter, the principal is assumed to have a constant absolutely risk aversion
(CARA), and the agent is risk-neutral, i.e. we take

UP(z) = —exp(—yx) and U?(z) =z,

where v > 0 denotes the principal’s risk aversion.
We list some conditions on the price impact function F' : [0,00) — [0,00) and the imple-

mentation cost function H : [0,00) — [0,00) as follows.

Condition

(I) The function x +— xF(z) is strictly convex with F'(0) = 0; if H is non-zero, then it is
strictly convex with H(0) = 0.

(IT) F’ is decreasing.

(IIT) The function (H'+ F)/F’ has linear growth, i.e. there exists some constant K > 0 such
that (H'(z) + F(x))/F'(z) < K(1 + z), for all x > 0.

(IV) There exists some constant K > 0 such that (H'(z) + F(z))/F'(z) = Kz, for all z > 0.

For future references, notice that Condition (I) implies that F' is strictly increasing and
limg, 0 2 F'(x) = lim,_0 22F’(z) = 0; Condition (I) and (IV) together imply that x — 22 F’(x)
is strictly increasing and lim, oo 22F'(x) = co. We group these conditions into different as-

sumptions which will be used in the sequel.
Assumption
(I) F,H € C'((0,00)), and they satisfy Condition (I).
(IT) F and H satisfy Condition (I), (II) and (III).
(Il) F,H € C?((0,0)), and they satisfy Condition (I), (IT) and (IV).

These assumptions are satisfied by a large class of functions. For example,
F(zx) = Bz and H(x) = 321,

with 81 > 0 and 83 > 0, and Assumption (I) is satisfied if 2 > 0 and £4 > 1; Assumption
(IT) is satisfied if 84 — P2 < 1; and Assumption (III) is satisfied if B4 — B2 = 1. We refer to
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Almgren| (2003) for a theoretical study when F' takes the above form, and refer to |Almgren
et al.[ (2005) and [Lillo et al. (2003]) for some empirical studies about the price impact function

with the above form.

4.2 First-best contract

In this section, we impose Assumption (I) and assume that the principal and the agent share
the same information. The agent has to follow any liquidation strategy recommended by the
principal. At the terminal time of liquidation, the agent delivers the total proceeds received
from the sale to the principal, and he receives a compensation paid by the principal E .
For a general approach to contimuous-time first-best contracts with lump-sum payments, see
Cvitani¢ et al.| (2006). Let Cpr be an Fp-measurable random variable which denotes the

compensation paid at some terminal time of liquidation 7' < T. We formulate the principal’s

T
sup E[—exp{ —'y(/ Si& dt — CT> }], (4.2)
geA(T)yLCT 0

problem as

subject to

T
Blor- [ H@a] > 4, (4.9
0
where A > 0.
Proposition 4.2. The optimal liquidation strategy for problem — s given by

& = t 0,7,

Yy
T7
and the optimal compensation is

T
Ci = A+ TH(y/T) + Uy/o (1—/T)dB,.

We see that although the principal is risk averse, the optimal liquidation strategy is a

trivial strategy which takes no care about the market volatility risk. This kind of strategy is

11 . . . .
A stream form of compensation may also be considered, but in the absence of interest rate, a stream of
compensation is equivalent to a compensation in a lump-sum form.
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usually optimal for a risk-neutral investor (see e.g. Almgren and Chriss|, 2000). The principal
optimally choices a trivial strategy which is because that she can transfer all market volatility
risk to the risk-neutral agent via the term o fOT y(1 —t/T) dBy in the optimal compensation.
The principal also pays the agent a fixed amount of money A which ensures the agent’s
minimal requirement is satisfied. The agent’s implementation cost TH(y/T) is completely

covered by the principal. As a result, the principal is guaranteed to receive
sy—A-F(y/T)y-TH(y/T),

which corresponds to the initial mark-to-market wealth minus the agent’s commission charge,

the price impact cost as well as the agent’s implementation cost; and the agent receives

T
A+ Jy/ (1—-1t/T)dBy,
0
which corresponds to the commission fee and the market volatility cost.

4.3 Second-best contract

In practice, the principal may only observe the affected stock price but not the actual strategy
implemented by the agent. The agent may also have his private time horizon for completing
the liquidation. Throughout this section, we suppose that the principal observes the affected
stock price until the terminal time of liquidation required by her, and we denote this time
by T < T. We also suppose that the principal asks for a liquidation proceeds calculated
according to some strategy recommended by her against the affected stock price she observes.
She requires to receive this proceeds at time 7', and at the same time she pays the agent
amount of compensation denoted by Cp. We refer to |Cvitani¢ et al. (2009) for a general
approach to continuous-time second-best contracts with lump-sum payments. Due to the
unobservable implemented strategy for the principal and in order to generate some private
benefit, the agent can actually follow any strategy which is different from the recommended
one and cannot be detected by the principal. However, we assume that even without any
supervision, the principal expects the agent to follow her recommendation. Therefore, she
has to select an optimal contract which induces the agent to implement the recommended

strategy as his optimal choice.
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Definition 4.3. Any contract is incentive compatible, if with this contract the agent’s optimal

implemented strategy, if it exists, is identical to the principal’s recommendation.

To design an incentive compatible contract, write £ to be the principal’s recommended
liquidation strategy, £ to be the agent’s implemented liquidation strategy and ¥ and Y to
be the corresponding stock position processes. The stock price is affected by &, and we recall

that it satisfies
StZS—FUBt—F(ft), t>0.

Note that if & is different from 0, then the affected price process has a jump at the beginning
of liquidation. Also, S has jumps whenever £ has. Therefore, for any given é , in order to avoid
the principal’s perceiving of cheating, the agent can only take £ to be such that &, = o and
¢ has the same jumps as 5 . Denote by F° = (F? )t>0 the filtration generated by S, and we
assume it satisfies the usual conditions. This filtration captures all of the information accessed
by the principal, while the Brownian filtration F = (F);>¢ contains all of the information
available to the agent. We have that for any ¢t > 0, fts C F¢, which indicates that the agent
is more knowledgeable than the principal, because of his private liquidation strategy £. The

next definition defines formally the recommended and implemented strategies.
Definition 4.4.

(i) The set of all principal’s recommended liquidation strategies, denoted by AT(T,y),
consists of all £ € A(T,y) such that £ is FS-adapted.

(ii) Given any & € AR(T,y), the set of all agent’s implemented liquidation strategies, de-
noted by AI(T,y;é), consists of all £ € A(T,y) such that & = & and ¢ has the same

jumps as 5

Remark 4.5. Denote by T4 < T the agent’s private time horizon for completing the liqui-
dation. Then his actual set of admissible strategy should be A’ (TA, y;g) which is a subset
of AT, y; f) For any incentive compatible contract with a recommended strategy £ satis-
fying 5} > 0, for some t > T, the agent is not able to implement such §~ and hence will
not sign such contract. The principal therefore does not need to concern about this case.
Otherwise, £~ should be the agent’s optimal choice among the set A! (TA,y;é). But since
ALTA y: &) € AT, y; ), it is sufficient for the principal to concern that the agent chooses
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¢ as his optimal implemented strategy over the set A’ (T,y;é). Consequently, the principal

does not need to concern about T4 at all. O

For any £ € AR(T,y) and € € AI(T,y;€), the agent’s expected private benefit at time T

can be expressed as

T T T T
/Ost»stdt—/o St&dt+E[/T Stftdt—/T H(&)dt‘]—}}

which corresponds to the difference between the proceeds got from the sale and the money
delivered to the principal at time 7', plus the expected money received (taking away the
implemented cost) by liquidating the amount of shares left at time T (if Y7 > 0). The above

expression can be rewritten as

T 3 T )
o [ (i-Tiyas+ [ F@)E-ed- o), (1.4)
0 0

where

T

T
I(Yr) = E[/ (€tF(£t) + H(gt)) dt ’ IT] :
which is Fp-measurable and it satisfies I'(Y7) > 0 and I'(0) = 0.

4.3.1 Agent’s problem

In this subsection, we impose Assumtion (II). Base on the assumption that the principal looks
for an optimal incentive compatible contract, we first derive heuristically an admissible form
of compensation. According to this, we state a formal definition of admissible contracts. Then
we study sufficient condition for an admissible contract to be incentive compatible. Finally
the set of admissible incentive compatible contracts will be defined.

Given any £ € AR(T, 1) and some ]:r_,*s:—measurable compensation Cr, with reference to
Remark and the expression of private benefit in , the agent’s problem is

sup E[CT + (0 /OT(Yt ~Y,)dB; + /OT F(&) (& — &)dt — F(YT)> - /OT H(gt)dt}

EEAI(T ysé)
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= &e.ASIl(l%),y;g) E [CT + /(]T{F(ft)(gt — &) — H(§t>} dt — F(YT)} > A,
(4.5)

where A > 0. Suppose

EHCT + /OT{F(&)@ — &) — H(ﬁt)} dt — T'(Yr)

} < 00,
and write

vi=slers | T{F(&)(& ~&) - (&)}t~ 1(v)

]—"t] |
By a martingale representation theorem, we have that

Cr=U — /OT{F(&)(& - &) — H(ﬁt)} dt + /OTUZt dB; +I'(Yr)
T

— Uy /OT{F(&)@ — &) - H(ft)} dt + /0 Z d(St + F(é‘t)> +T(Y7),

where Z is an F-progressively measurable process satisfying fOT Zf dt < oo a.s. Since the
principal expects the agent to implement & € AR(T, %), motivated by the above expression,

we consider any compensation with the form
T T ~
Cp = c+/ H(gt)dt+/ th(st +F(§t)), (4.6)
0 0

where c € R, € € AR(T,y), and Z satisfies fOT Z2dt < oo a.s. and is F-adapted. Note that Cr
in |D is f}s—measurable, and for any given c, é and Z, Cp can be considered as a random

function of £&. Now we are in the position of defining admissible contracts.
Definition 4.6. Any admissible contract is the multiplet (T, Y, C, é, Z), where
(i) T € (0,7 is the principal’s time horizon;
(ii) y > 0 is the initial liquidation position;
(iii) ¢ € R is some reservation compensation;

(iv) fe AR(T,y) is the recommended liquidation strategy;
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(v) Z is the sensitivity of the compensation with respect to the affected stock price’s ran-

domness, it is F-adapted and satisfies fOT ZEdt < oo as.
Therefore, the associated compensation Cr is given by (4.6)).

The following result gives out a motivation for the definition of admissible incentive com-

patible contracts.

Proposition 4.7. Let (T,y, c, é, Z) be an admissible contract such that
c>A and & =0,
and the process Z admits the dynamic

iz, — nggt) FE)+ H'E)| dt, te 0,1, (4.7)

with

Zo=z€R and Zr>0.
Such Z is increasing and bounded. It follows that the agent’s unique optimal implemented
liquidation strategy for problem 18 é, and his optimal expected payoff is c.

Definition 4.8. Any admissible incentive compatible contract is an admissible contract
(T, y, A€, Z) satisfying the condition of Proposition

One can check that with the above definition and in view of Remark (T, y, A, f A )
is indeed incentive compatible. In particular, if ét > 0 for some t > T, then the agent is not
able to implement the unique optimal strategy 5 . Therefore his optimal expected payoff with
respect to the set A’ (TA, Y; §~ ) is strictly less than A, and hence he will not sign this contract.

Otherwise the incentive compatibility is guaranteed by Proposition and é is indeed in
ANTA, y;€).

4.3.2 Principal’s problem

We formulate the principal’s problem under Assumption (II) which guarantees Definition

to be well-defined. Having the set of admissible incentive compatible contracts, the principal

s |- ex{ ([ 'S di cr )] (1438)
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where v > 0 is the parameter of risk aversion and S is the stock price affected by é, which

admits the expression

gt:s+aBt—F(£t), t> 0. (49)

Note that it suffices to solve problem 1) without the constraint & = 0 for any admissible

incentive compatible contract. This is because that this constraint is only at time 7" which is

of Lebesgue measure 0. Then using the expressions in (4.1f), (4.4), (4.6)) and (4.9), we consider

T T T
inf E [exp <—'y/ Sybpdt +~vA + ’)// H(&)dt + ’ya/ Zy dBt>]
0 0 0

2€R, € A(T3y)

T ~
= inf E{exp{v(ﬁ— sy) +70/ (Zt —Yt) dBt+'y/
z€R, E€ A(T3y) 0 0

T

(H(ét) + étF(ét)) dt H .

Then, it is sufficient to look at

2€R, A

mf [exp{w /OT (2, — Vi) dB, + V/OT (H(E) +&F(E)) H ,

with dynamics

1 n 1(¢ —
dZt == % |:F(€t) + H (gt):| dt, ZO =z, ZT Z 07
dY; = & dt, Yo=y.

Write X = Z — Y. Then this problem is equivalent to

inf o E [exp{'ya /0 " X,aB, ¢ 5 /0 ! (H(g}) + étF(ét)) dt H (4.10)

z€R, £c A

with

1= (s [F@ + @] +&) . Xo=a, Xr >0

where z = z — y.
We next show that problem (4.10) can be reduced to be a deterministic optimisation
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problem. A similar reduction is in Schied et al.| (2010). To this end, for ¢ € [0, 7], write

t
MX :'ya/ X, dB,
0
and .
E(M™); = exp(M;* — 5[MX,MX]t),

where [MX, MX] is the quadratic variation process of M*. Since X is bounded, Novikov’s
condition is satisfied by MX. As a result, we can define a probability measure PX, which is

equivalent to P, via

dPX

5 E(MX) . (4.11)

Then following (4.10]), we compute that

inf )E[exp{’ya/OTXt dBt—i—v/oT(H(é) +§}F(§t)) dtH

z€R, E€A(Tsy

T T
1
= inf E[exp{’ya/ X, dBy — / 7202Xt2 dt}x
2€R, EEA(T3y) 0 2 Jo
LTy 0 g s F o
xexpd 3 [ APoiXFdi+y [ (HE)+EF(&))dt
0 0

T
- inf EX [exp{ / (;7202)(,52 +yH(E) + véF(é)) dt H
) 0

T€R, EGA(T;y

T
< it exp{ / (;7202)(3+7H(§t)+7§tF(§:t)> dt}, (4.12)
(Tsy) 0

z€R, E€Ap

where the last expectation is with respect to the probability measure defined by (4.11)). Then
with reference to the analysis after (1.11)), it suffices to solve

inf V(T,z;9) (4.13)
with
T /q . o
Vg =t [ <7202X3+7H(§t)+7§tF(§t)> i, (4.14)
geAD(Tvy) 0 2

122



where T' € (0,T], y > 0 and X satisfies

X, = ( F,E&) [F(E) + H'(E)] + é) dt, Xo=u, Xr>0. (4.15)

4.3.3 Solution to principal’s problem

In order to solve the principal’s problem, we impose Assumption (IIT) under which we can

write .
() + H'(§)] +¢ = ne,
g [FO + H'©)
for some constant > 1. By writing 6; = 7751&, problem 1)1) is equivalent to
T
, 1
V(T,2;y) = | inf ‘/ (27%933-%VH(@/W%+7PK&/UWMW)dt (4.16)
;EAD(T,y) 0
with
dXt = 915 dt, X() =2, (417)

where the constraints y = fOT g} dt and X7 > 0 are equivalent to
Xr=x+ny >0.

Proposition 4.9. V(T,x;y) is convex in x, and it attains a global minimum at © = —ny/2

for all T € (0,T] and y > 0.

According to Proposition it suffices to take

r=-ny/2,

therefore,
Xr=mny/2>0.

Note that these values are independent of the time horizon for liquidation.
Observe that (4.16)-(4.17)) is a standard problem of calculus of variations, where the
objective functional is time-homogeneous. Therefore, according to the theory of calculus of

variations, one natural way to solve this problem is by considering the Beltrami identity
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which is a first order ordinary differential equation characterising the optimiser under certain
conditions (see, e.g, Gelfand and Fomin) 2000). Let 6* and X* be respectively the candidate

of the optimiser and its associated state process. Then, the Beltrami identity associated with

problem ([L16)-([E17) is

1 * * * * * * x
57202(&)2 +H(6; /n) — vH'(6F /m)6; /n — vF'(6F /n) (6 /n)* = =K, t € [0,T],

where KT'* is some constant determined by T and z. After rearranging terms, we get

1/1 2 2 *\2 Tax\ __ *
;(5’70 (Xt) + K >_(I)(9t/77)a

where @ : [0,00) — [0,00) is given by
®(u) = H' (u)u — H(u) + F'(u)u?.

With reference to Condition (I) and (IV), it can be checked that @ is a strictly increasing
function with ®(0) = 0. Define ¥ : [0,00) — [0, 00) to be the inverse of ®, then ¥ is a strictly

increasing function with ¥(0) = 0. It follows therefore

2 2 X* 2 2KT,J;
9;:77\1/(7 o t;f ) t €[0,7). (4.18)

Note that it must hold that

1
KT,:E > _ min = 20_2 X* 2’
= ieom 2 (X¢)

and with z = —ny/2 and X4 = ny/2, we must have K7>* > 0. Then integrating (4.18) yields

X; 1 ]
/_ny/Z 77\If<*7202u2+2KT@> u=t (4.19)
2y

Sending ¢ to T', we get

I
~

ny/2 1
/ du : (4.20)

252,,2 T,z
- Yéolur4+2K*
ny/2 17\11(727 )
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For any fixed y, consider the function 7Y(-) defined by

ny/2
Y(K) / du, K >0. (4.21)

'y 20202 +2K ’ -
ny/2 77\1/ 5

Since ¥ is a continuous strictly increasing function, by the monotone convergence theorem,
TY(-) is a strictly decreasing function, hence invertible. As a result, for any finite 7" such that
T < supy TY(K), there is a unique K7 satisfying . However if supy TY(K) < T < oo,
then one may let 6 = 0 over a period of time, and in this case, K1 = argmaxy TY(K) = 0.
The next definition defines formally the candidate of the optimal state process for —
[E17).

Definition 4.10. For any y > 0 and T € (0,7], take z = —ay/2, and let TY(-) be defined by
- If T%(0) < T, then take K7 = 0; otherwise, let K7** be the unique constant satisfying

. We define the candidate of the optimal state process, X*, for problem (4.16} - ) to
be that

(i) for t € [0, 7], X/ satisfies (4.19)), where 7 =inf{t > 0| X =0};
(ii) for t € (7, 7+ T —T¥(0)], X; =0;

(iii) for t € (1 +T —T%(0), T,

X7 1
/ du=t—r1
252924 2K T :
0 (P

Theorem 4.11. Let X* be defined by Definition [{.10 with the corresponding time derivative
0* given by for allt € [0,T]. Then 6* is the unique admissible optimiser for problem
—. As a result, the principal’s optimal admissible incentive compatible contract is
(T,y,/i,é*, Z*), where for all t € [0,T],

.o
& = 7; Lo (1),

t ~
Z; = (1—n/2)y + /0 (n— DE: du,

Cp=A+ /DTH@:)dqu/OTZ;d(SZ +F(E)),
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with S* being the stock price process affected by é*

4.3.4 Example

For some constants 31 > 0 and B2 > 0, take F(x) = Bz and H(x) = Boz?. Then in view of

(16)- (&-17). we solve

g 2v2 , VP10
V(T,z;y) = inf / (720 X7+ 9t> dt
SeAp(Ty) Jo \2 2n
with
dX, = 0,dt = nédt, Xo=xz=—ny/2,
where n = 2(81 + 2)/61. Then ¥(u) = \/u/\/B1 + B2, and (4.19)) is equivalent to

7B / du— 1
2n ny/2 y?o?u? U u? +KT:E

Write Q = vo/V2KT:® and R = \/nyo?/\/B1. After integrating and rearranging terms of the

above expression we obtain

14+ Q%(ny/2)?
Q

X; = ésinh [Rt + arsinh(—Qny/2)] =

Therefore, by taking t = T, it follows that

sinh(Rt) — cosh(Rt)ny/2.

L+ Q%(py/2)* _ (1+ cosh(RT))ny/2
Q sinh(RT) ’

and then

nysinh (R(T — 2t)/2)
2sinh(RT'/2)

c_ oy . . B
X! = Ssih(RT) [sinh(Rt) — sinh(R(T —t))] = —

Differentiating with respect to t gives out

Rny cosh (R(T — 2t)/2)

b =~ 2sinh(RT/2)
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Substituting X* and 6* back into the expression of V(T z;y), we get

22,2, 2

V(T, —ny/2:y) = % coth(RT/2). (4.22)

Now we verify the constant K7»* > 0. To this end, we consider (4.18)), and it is equivalent to

KT R

=—— 7 TJeosh(RT) + 1]n%y* > 0.
4nsinh?(RT) [cosh(RT) + 1)y

Therefore, according to the above solution to the principal’s problem, her optimal admissible
incentive compatible contract is (T, y, A, é*, Z *), where for all ¢ € [0,T7],

. Rycosh (R(T —2t)/2)

8= sinh(RT/2) 01 ()
g - (oA )y
[ () e

and the optimal stock position process satisfies

-, ysinh(R(T —2t)/2) y
Y/ = . + 2,
2sinh(RT'/2) 2

te[0,7T].

We compare our solution to the solution for the corresponding liquidation model without
any contract. Using the notations in our model, with reference to |Schied et al. (2010)), the
optimal liquidation speed process and the associated stock position process in an Almgren-

Chriss type of liquidation model with a CARA investor are

£ = Ry cosh(R(T —t)/2)

_ ysinh(R(T —1)/2)
"7 2sinh(RT/2)

d Y= -
o ! sinh(RT/2)

where t € [0,7] and R = \/2y02/y/B1 + B2. Figure 4.1 compares the solution for the second-
best contract and the solution for no contract. In the case of second-best contract, the
liquidation speed is small at the beginning, which corresponds to a strategy takes less care of

the market volatility risk. This is because that the principal transfers some volatility to the
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agent via the compensation. At the end of liquidation, the speed in the case with contract

becomes big, this is due to that the liquidation has to finish by time 7.

Position
100000 T T T T T

80000 i
60000 .
40000 | i
20000 | .

0 I I | | |
Speed
80000 . . . T T

70000
60000
50000
40000
30000
20000

10000 ' ' ' ' ' i
0.0 0.5 1.0 15 2.0 2.5 3,0 Ime

Figure 4.1: These two graphs are fory = 10°, T =3, v =10"%, 6 =0.01, 81 = 1072, 32 = 1077, A = —1 and
s = 50. The upper graph plots the optimal stock positions, and the lower graph plots the optimal liquidation
speeds. The thick curves are for the case with the second-best contract, and the thin curves are for the case
with out any contract.

4.4 Proofs

Proof of Proposition [{.2 We first prove that

& t €[0,T],

_Y
T7
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is a solution to problem

EeA(Ty

inf )E[ /0 ! (eF(e) + HE)) dt].

To this end, with A\ = F(y/T) + F'(y/T)y/T + H'(y/T), consider

inf )E[/OT <§tF(§t) +H(§t)) dt] = inf )IE[/OT (&F(&) FH(E) - Agt) dt] + )y,

ECA(Ty ECA(T,y

where the equality is because of the constraint y = fOT & dt. Using first order condition and

convexity of the integrand in the above expression, we obtain that £* is the solution.

To solve problem (|4.2))-(4.3), by taking
p=exp {7(A~sy+ Fly/Tyy+TH(y/T)]) }.

we make the observation that

T
sup E [— exp (—’y / S& dt + ’YCT>]
£EA(T7y)7 C1T 0

— exp(—’y /OT Se&y dt + ’yCT> + p(CT — /UT H(&) dt)] — pA (4.23)

< sup E

© €eA(Ty).Cr

T T -
= sup E{—eXp<—’7/ Stﬁtdt+70%(§)> +ﬂ<0?(§) —/ H(&)dtﬂ — pA

ECA(T,y) 0 0

N p P, (P 4 4 .
= o E {7 + 2 log (;) + psy + po /0 Y, dB; - p /0 (&) +HE) dt} —pA
PP P . T _
== + 5 log (5) + psy — pgeﬂ%;y) E[/O (&F(Et) + H(&)) dt} —pA

= - g +§log (5) +psy—p/0T (étF(éf)JrH(éZ‘)) dt — pA,
where

Cr(§) = ilog <§> + 8y+U/OTYtdBt — /OTftF(gt)dt-

In the above computation, the inequality is because of (4.3]), the first equality is due to the first
order condition as well as the convexity of z — — exp (—7 fOT Sty dt+7$) —{—p(a:—fOT H(&) dt),
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the second equality is a direct computation and the last equality uses the result from the first
part of this proof. It can be checked that

T
ci(e) - [ Hed= A
Therefore, with §{ = £* and Cr = C}.(£*), (4.23) attains an equality, which yields the result.

O]

Proof of Proposition [{.7. The process Z is increasing follows the positivity of its time
derivative. To show Z is bounded, it suffices to have the observation that for all ¢ € [0, T,

t
124 < |2 +/
0

where K > 0 is some constant, and we used the assumptions that x — (F(z) + H'(z))/F'(z)
has linear growth, £ > 0 and that fOT &dt =y.
For any contract (T,y7 c, 57 Z) satisfying the condition of this proposition, by writing

L [F(&HH’(&L)} ds 5K+K/Ot§sds < K + Ky,

FI(Es)

Zy = dZ, /dt, we maximise

slon+ [ {Fe)@ - e - e far-rom)]
—c+&[ [ {6+ 1) - e ar+ [ zia(r) - Fieo) - 1m)
—c+&[ [ {Fe)E -6+ 1) - &) - (FE) - Fle) 21} a
- ZeF(er) - ()]
—c+E UOT{[ <F’(u)§~t — Fl(w)u— F(u) — H'(u) + F’(u)Zt> du} dt

— (ZTF(gT) n P(YT))} : (4.24)

where the term fOT Zyo dBy vanishes in expectation. Since the functions z — zF(z) and H

are strictly convex, F’ is decreasing, as well as the fact that Z + 5 > 0, it follows that

F(2)& — F'(2)x — F(z) — H'(z) + F'(2) 2,
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is strictly decreasing in x, and it is equal to 0 when z = g}. Therefore, the time integral in
is less than or equal to 0, and it is equal to 0 only if & = th, for t € [0,T]. Moreover,
we have ZrF(¢r) + T'(Yr) > 0, and it is equal to 0 if & = &, for t € [0,T]. As a result,
the expression in not greater than ¢, and it attains ¢ uniquely when & = &, for all
0<t<T. O

Proof of Proposition [{.9. For any (), z(?) € R and %1), @ € Ap(T,z(M), consider the

state processes X1 and X @ satisfying

axM = oM at, x{V =W,
dx® =P at, x =22,

Let A € (0,1), and write z = Az® + (1 = N)z®, X = AXD + (1 = X\)X® and 9 = \0D) +
(1 —X\)6?). Then,

dXt == 0,5 dt, Xo =,

and % € Ap(T,y). By the convexity of H and x — xF'(x), we compute that

v<T,m;y>s/T

<17202Xt2 +~H(0;/a) + 7F(9t/a)9t/oz) dt
0

2
Tr
< )\/0 (27202 (Xt(l))2 + 'yH(Ggl)/n) + ’yF(Ht(l)/n)Gt(l)/n) dt
Tr
+(1- )\)/0 (27202 (Xt(Q))2 + 7H(9§2)/n) + PyF(ng)/n)ﬁgz)/n) dt.
Since AV and 6 are arbitrary, it follows that

V(T,z;y) < AV (T, 2W;y) + (1 - WV (T, 2%;y).

Then the arbitrariness of () and 23 implies the convexity of z — V (T, x;y).
To show the remaining result, suppose x < —ny/2. Let 6 be any admissible process for
problem (4.16[)-(4.17) with the corresponding state process denoted by X. Let

T =inf{t > 0| X, > —ny/2}.
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If 7 = oo, consider the state process X starting from —ny/2 with time derivative process

being equal to 6. Then,

T
1
/0 (27202)(3+7H(9t/ﬁ)+7F(‘9t/77)9t/77 dt

T
. (;WX,? A H /) + vF(et/met/n)

> V(T, —ny/2;y), (4.25)

dt

since | Xy| > \Xt], for all t. If 7 < oo, consider the process 0 such that 6; = 04y, for
t €[0,T —7); Op_ryt = 6y, for t € [0,7); and 6; = 6;, for all t > T. Denote by X the state
process associated with 0, starting from —ay/2. Clearly 0/n € Ap(T,—ny/2). Then we have

T

/ (B 60 r) -+ F O )00 ) it = | (1@ + 27 Gt at,
71 5 940 771 5 99
/7270Xtdt—/0 §’YUXtdta

71 T .
/ —VorX}Edt > / —~2o? X} dt,
0 2 T77'2

where the last inequality is due to that X? > ay/2, fort < 7, and X? < ay/2, fort € [T—7,T).

These three equations give out the same inequalities as in (4.25). Taking infimum of (4.25)
over all admissible processes yields

V(T,z;y) = V(T, —ny/2;y). (4.26)

A similar argument with taking consideration about 7 = inf{¢t > 0| X; > ny/2} applies
to the case of x > —ny/2. Thus, the required result follows. O

Proof of Theorem [4.11] The admissibility is a direct consequence of the construction of
X*. Define the function ¢ by

8(,6) = 50207 + Y H(O/) +F(6/n)6/n.
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We claim that the Euler-Lagrange equation

d

00X, 07) = 02(Xy,6;),  ae t€[0,T]

holds, which requires to show that

d

agba()(;",e,f) =202 X}, ae te0,T). (4.27)

For 0 # 0, we calculate that

00(X7,0) = 2 (H'(6; /n) + F(6; /) + F'(0; /n)¥; /)

= g5 (@3 /m) + HO; /n) + F(6; )6 /)

0 (’y o2(X})? + 2K
9* 2y

23

H(O; [n)+ F(0; /n)0; /).

and a direct differentiation verifies (4.27)). Consider some interval on which 6; = 0 a.e. Then
on this interval, ¢g(X;,0;) is a constant, and according to Definition .10} X; = 0. As a
result, holds true on this interval. For any process 6 # 0* with /9 € Ap(T,y) and X
being the associated state process, we compute by the strict convexity of H and = +— xF(x)
that

/ 6(X,,00) dt—/ 6(X7.0) dt

(X7, 65) (Xs — X2+ d0(X7, 076 — 9:)) i

dt
[60(X7,67) (X, — X)) dt

G
/( <Z59Xt,0*}(X Xt)‘i‘fﬁa(Xt,H*)(Ht—@j))dt
/ i

where the last equality is because that X and X* have the same starting values as well as the
same ending values. This shows that 8* is the unique optimiser.
Then the rest results follow directly from the analysis of the simplification of the principal’s

problem. O
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Part 111
Contract with Outside Options

This part is based on a joint work with Dr. Hao Xing.

Chapter 5

Optimal contract under reputation
concern

5.1 Model setting

Let (2,P, F,F) be a filtered probability space, where the filtration F = (F3):>0 is generated
by a one-dimensional standard Brownian motion B, and it satisfies the usual conditions of
completeness and right-continuous. For any two stopping times 7 < o, f: stands for the
integral on the interval [7,0]. All processes are of right-continuous with left-limit. For any
process X and stopping time 7, denote AX,; = X, — X,_. Write E;[-] = E[:|F], t > 0 and
E[] = E[-|Fo].

We consider a Principal who hires an Agent to manage a project. Both of them are risk
neutral. Given Agent’s effort «, this project generates a cash flow whose accumulated value

X follows the dynamic
dX{ = (p+ ap)dt +odB;, X§ =0, (5.1)

where u € R, 0 > 0 are constants. We assume that Agent’s effort « is a real-valued process
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taking values in some compact interval
A= [Q7 a]

with 0 € A. Agent’s effort is costly. The cost of effort oy at time ¢ is g(oy), for some cost
function g which is continuously differentiable, strictly convex and satisfies g(0) = 0.

Any contract offered by Principal can be identified by a non-decreasing process C' with
Co— = 0, which denotes the cumulative compensation received by Agent. While working for
Principal, Agent explores some outside employment opportunity whose expected value may
depend on his past performance. Given a contract C, Agent applies certain effort and also
determines when to stop working for Principal, in order to maximise his expected discounted

payoff received from both Principal and his outside option. Agent’s optimal value is

-

Up— = sup E[/ e_w(dCt —g(y) dt) +e "R(1, X%)|,
(T,a) 0

where v > 0 is Agent’s discount rate, R(t, X“) denotes the value of Agent’s outside option

(or reputation) at time ¢. In this chapter, we consider
R(thg) = ﬁX?, (52)

where Xf‘ =t fot e 7d X describes the present value of the accumulated cash flow generated
from Principal’s project, and 8 > 0 is a constant multiplication factor. Therefore, Agent’s
outside option is an increasing function of X'f‘ The special form of outside option in
allows us to incorporate the value of the outside option into the running cost, therefore, his

optimal value can be rewritten as

Up— = sup E {/T e‘”t(dCt + (Bu + Boy — g(at)> dt)], (5.3)
(T,2) 0

where Su + Ba — g(a) can be regarded as Agent’s net running cost of his effort . We can

see from the above expression that even when C' = 0, it is optimal for Agent to employ some

positive effort, if ¢’(0) < 5. The outside option motivates Agent to work for Principal even if

Principal does not pay Agent, since Agent’s effort can improve the value of the project, hence

enhances the value of his outside option. Agent works for Principal only when Uy_ > A, for

some constant A > 0 describing Agent’s reservation utility.

135



We assume that Principal only observes the cash flow X®. Let FX = (FX);>0 be the
filtration generated by X< and satisfy the usual conditions. Denote by r Principal’s discount

rate, and suppose that
r€(0,7)

which indicates that Agent is more impatient than Principal. Principal chooses some FX-

adapted compensation process C to maximise her expected discounted payoff

sng[/oT* e "t (do@tk - dC’t> + /OOO e "t (de‘* - daf)]

_ a —rt * H
_ slépE[/o e (dat dCt>] +£, (5.4)

where (7%, ") is Agent’s optimal strategy associated with a contract C, u/r represents the
expected value of the project without hiring Agent, and the first term in (5.4)) represents the
additional expected value provided by Agent’s contribution.

5.2 Agent and Principal’s optimisation problems

Agent’s problem (5.3)) is an optimal control-stopping problem, and for any given contract C,
his optimal strategy can be characterised by his optimal value process. To see this, we first

specify the set of Agent’s admissible strategies as follows.

Definition 5.1. For any given contract C, we call (7, «) admissible if « is an F-progressively

measurable process taking values in A, and 7 is an F-stopping time satisfying

E[/ e'ytdCt} < 00.
0

The class of admissible strategies is denoted by A(C).

We define Agent’s optimal value process as

U; = ess Sup(r,a)eAt(C)Utjr’av

where A;(C) is the class of admissible strategies (7,«) such that 7 > ¢, a; = @&, for some
admissible effort & € A(C) and any s € [0,7], and

U;r,a = UtT_’a — AC,
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=E [/j e V(s—1) (dC’s + (ﬂ,u + Bag — g(as)) ds) ‘ft} — AC;.

Since E[fo ef'YSdC’s] < 00 and « is bounded, we have U; < oc.
The next result derives the dynamic of Agent’s optimal value process. Let us first recall
the martingale principle: the process Uy = e Uy + fg e (dCs + (Bu+ Pas — g(as))ds) is a
supermartingale on [0, 7] for arbitrary admissible effort o, and is a martingale for the optimal
effort. Meanwhile, we expect from the optimal stopping theory that Agent’s optimal stopping
time is the first time that U drops below zero. Introduce
* _ . _
9" (p) = min{g(a) — pa}
9) N z/o+B), zlo+Beld(a) g @)
A(z) = argmin{g(e) — (/0 + fla} = | a, z/o+ B <g'(a)
(03
43 2fo+ 8> (@)
Lemma 5.2. For a given contract C' and any admissible effort «, suppose that there exists
an FX -progressively measurable process Z, satisfying f(f Z2ds < oo for any t > 0, such that
the process U® defined via

AU = WUP + " (Zi)o + B) — Bu — pZi/o)dt + Zy)o dX — dCy, (5.5)

together with the stopping time 7§ = inf{t > 0 : Uta < 0}, satisfies that U,O/‘\Tg is of class D

and the transversality condition

Tim E[e’”tﬁf‘(z)l {t<Ta<Z>J —0. (5.6)
STy

t—o00
Moreover, AC’Téx < U%_ when 75¢ < oo. Then

U = Uta(z)7 for any t < TS(Z),

and (TS(Z), &(Z)) is Agent’s optimal strategy.

(2)

Denote 19 = Tg as Agent’s optimal stopping time for a given contract satisfying the

above Lemma.
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Remark 5.3. The assumption ACre < U%_ in Lemma implies that U;, = 0, whenever
To < 0o. In other words, the compensation Agent receives at 79 cannot drop Agent’s opti-
mal value process below zero. This restriction of the compensation process does not reduce
Principal’s value. Indeed, for any C' such that AC;, > U,,— and 79 < oo, Agent stops at 79.
But the contract which agrees with C' up to 79— and pays Agent U, _ at 7o gives Principal a

larger value than C' does. O

In order to solve Principal’s problem, motivated by Lemma [5.2] we consider the following

set of admissible contracts.
Definition 5.4. Define Principal’s admissible contract (Z,C) to be such that
(i) Z is an FX-progressively measurable process satisfying f(f Z2dt < oo, for all t > 0;

(i) C is an FX-adapted, non-decreasing, cadlag process with Co_ = 0 and satisfies
EUOTg e " dCy] < oo, and ACre < U%Y_ when 7§ < 00;

~

(iii) U is given by

A~

AUy = WUE + g*(Zi)o + B) — Bu — pZifo)dt + ZyJo dXP — dCy, U§- =u € R,

and U_?‘\Téx is of class D satisfying lim;_, E [e*”[)}é‘ ) 0,

R

where 78 = inf{t > 0 : U® < 0} and a is any admissible effort of Agent. Denote the set of
all admissible contracts by P(u; FX).

It can be checked that the condition of Lemma [5.2)is satisfied by any admissible contract.
With (Z,C) € P(u;FX), Agent is induced to apply the F¥X-adapted effort &(Z). This makes

F = FX, and at the same time Agent’s value process satisfies the following dynamic
dUy = WU+ G(Zy)] dt + Z, dB — dCy, Up— = u, (5.7)
where
G(2) = g(a(2)) — Ba(z) — Bu.

Similar to Sannikov| (2008), Agent’s optimal value process will be used as the state process
for Principal’s problem. With reference to Lemma Principal’s optimisation problem ([5.4])
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is reduced to

sup V(u) +

1%
u>A r

where the value function V' : [0,00) — R is given by

TO
Vu) = sup E [/ e "® (d(ZS) ds — dCS)] (5.9)
(C,2)eP(wF) 0

with the state process U satisfying (5.7)).

5.3 Main results

In this section we present our main results. Under parameter restrictions, we first show
that the value function V in is a unique continuous viscosity solution to the associated
Hamilton-Jabobi-Bellman variational inequalities (HJBVI). Then with an additional condition
on Agent effort set A, we show further that V is twice-continuously differentiable. Finally, we
obtain Principal’s optimal contract. For future references, we list all further assumptions on

functions &(-), G(-) and g(-) as follows.
Assumption
(I) max.cr{a(z) — G(2)} =0,
(I) ¢'(a) > B,
(III) g € C3(R), ¢ is positive and z/¢”((¢') "' (z/o + B)) is strictly increasing.

From the theory of optimal control, it is expected that V in (5.9)) satisfies the following
corresponding HIBVI

min{ ro(u) — max {d(z) + (yu+ G(2))v' (u) + %zzfu”(u)} , v(u)+1 } =0, u>0, (5.10)

with associated boundary condition v(0) = 0. For future development, let’s impose Assump-

tion (I). Then the following proposition provides an upper bound and a lower bound to V.
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Proposition 5.5. Let functions @,Q: [0,00) = R defined by

1 .
(w) = —u+ - max{a(z) - G(=)},

Then we have

Y(u) < V(u) <p(u),  foru=0. (5.11)

When max.{a(z) — G(z)} = 0, then V(u) = —u. In this case, Principal is optimal to
pay Agent at the beginning with a size of compensation making Agent to stop immediately,
which can be seen by substituting Cy = u into the expression in (5.9)).

The following result characterises V' as a viscosity solution to .

Theorem 5.6. The wvalue function V is a unique continuous viscosity solution to (@)
satisfying the growth constraint (5.11).

Remark 5.7. The result that V' is a (discontinuous) viscosity solution is standard, and it fol-
lows from the dynamic programming principle. The novelty in Theorem [5.6]is the uniqueness.
When the control variable Z is unbound, the uniqueness requires some careful treatment, and
is proved only when the Hamiltonian satisfies certain specific structural condition (see e.g.
Lio and Ley, 2011, Assumption (A)(iii)). To prove the uniqueness here, we first prove that V'

is a viscosity solution to

min {rv(u) — max{&(z) + (yu+ G(2))v (v) + %zzv”(u)}, "

e (w),v'(w) +1} =0, (5.12)

where I = [(¢'(a) — B)o, (¢'(@) — B)o]. Here the concavity of v reduces the control Z to a

compact interval. Then using a similar argument to Lio and Ley| (2006), we prove that V' is

a unique viscosity solution of ([5.12)) satisfying ((5.11]). O

In order to describe V further, let us define @Z :[0,00) — R via

9() = Lo+ - maxfa(z) - G(2)},

and write

up =inf{u>0:V(u) > J(u)}
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To prove some smoothness of V', we need to impose Assumption (II). Under this condition,
the interval I in (5.12)) avoids 0, therefore (5.12)) is uniformly elliptic.

Proposition 5.8. V is a C?([0,00)) solution to

rV(u) — 1;1621]1%({&(2) + (yu+ G(2))V'(u) + %Z2V,/(u)} >0, ué€ (up,00),

V'i(u)+1=0, ué€ [up,00),
rV(u) — Iggﬁ({d(z) + (yu+ G(2))V'(u) + %ZQV//(U)} =0, ue(0,u,
Vi (u)+1>0, ue(0,u),

with boundary condition V(0) = 0.

In general, applying [t6’s formula and making the verification argument work only requires
V' to be smooth enough in the interior of its domain. In the above theorem, the result that
the C? property of V is extended to the boundary is used to show the property of Lipschitz
continuity for the function Z*(-) defined by the following lemma.

Lemma 5.9. Write I = [(¢'(«) — B)o, (¢ (@) — B)o]. For x € [0,uyp), take

Z*(x) = arg max{d(z) + G(2)V'(x) + %z2V”(:1:)}.

zel

Then under the condition of Assumption (III), for any admissible effort a of Agent, there
ezists a unique FX -adapted process U** with Ug‘_’* =u € R, and a unique non-decreasing,
cadlag, FX -adapted process C* with Cy_ = 0 such that

AU = WU + g*(Z7 o + B) — Bu — uZ; Jo] dt + ZF Jo X — dCY,

@, %

To
*
/O H{Uta,*<ub}dct — O7

ﬁta* €[0,up) forall 0<t< TS"*,

where 757" = inf{t > 0 : UM <0} and Z2* = Z*(U**). If u > uy, then Cf = u — up and

Us™ = wp; if u < uyp, then C* is continuous.

With reference to the above lemma, the next theorem identifies Principal’s optimal con-

tract.
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Theorem 5.10. Under Assumption (II1), let Z*, C*, U** and 707" be given by Lemma .
Then (Z*,C*) belongs to P(u;FX). This contract is optimal for Principal’s problem ,

and it induces Agent to apply the effort &(Z*) and to stop at Tg(z*)’*. Principal’s optimal

contract is completely characterised by
A~ t A
00 =u'+ [ DU + g (Z3 /0 + B) = B - uZi o) ds
0
t t
+/ Z¥odX¢ —/ dcCy, t <7,
0 0

where the starting value u* > A is solved from the problem (@ The existence of u* is

guaranteed, and in particular, u* = A, if A>uy.

5.4 Proofs

Proof of Lemma [5.2 For any admissible effort process «, consider
~ t o A~
U; = / efvs(dCs + [Bu+ Bas — g(o)] ds) + e AT )UtaATg, t>0.
0

Then,

dUy = e " dCy + e " [Bp + Boy — gaw)| dt — ve U dt + e dUP
= e " dC; + e " [Bu+ Bay — glou)] dt —ye U dt
+e [qﬁf‘ + g (Zi)o + B) — Bu— pnZyfo] dt + e " Zy(p+ oy) Jo dt
+e MZ,dBy — et dC,
= e_w{g* (Zi)o + B) — [g(ew) — (Ze)o + B)ay) } dt + e " Z; dB;
<e MZ;dB;. (5.13)
For any fixed ¢ > 0, let o be the effort process given by as, = &(Zs) for s € [0,¢), and
as = ag for s > t, where & an arbitrary effort. Consider some (7,a) € A;(C) and some

localising sequence of finite stopping times {7,}5° ; such that each process fOT"/\' e 797, dBy

is a martingale. Then we have for ¢ < 7§,
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Uy
t
— T, — / e (51 (dCs + [Bp+ Bos — glows)] ds)
0

n—o0

_ TNATn t
> lim E, [e’thTm — / e 7z dB, — / e (5= (dCS + [Bu + Bas — g(as)] ds)}
t 0
TNATn .
= ﬁ_)m [, {/ e (=) (dCs + [Bu A+ Bas — glas)] ds) + e_PY(TAT"ATg_t)UTaAm/\Tg} - AG
n—oo t

=E; [/ ef'Y(S*t)(dCs + [Bu+ Bas — glas)] ds) + e'Y(TATgt)UTATg] — ACY, (5.14)
t

where we applied the dominated convergence theorem in the last equality, this is valid since

(A],O/‘\Téx hence e~ V(A6 )[A],%Toa is of class D, and that

<E, [ / e Vst dcs] + [ / e‘”“‘”] Bu+ Bas — glas)
t

t

E; [ ‘ /t T et (dCs + [Bu+ Bas — glas)] dS)

ds} < o0.

Observe that according to the definition of 7§ and the condition ACre < ﬁ%_, we have

U2\ .o > 0. Then it follows from (5.14) that
0

- [/r o~ V(s—1) (dCS + [Bu+ Bas — glo)] ds)] — ACY. (5.15)
t

On the other hand, equality is uniquely attained in 1) if a = d(Z ). Write 19 = 7'5“ 2),
Then,

009 = 1, — /O et (dCs + [Bu+ Ba(2,) — g(a(2,))] ds)

5 TONTRAM
= lim lim Et |:eA/tU-,-O/\7-n/\m —/ G_W(S_t)ZS dBS
t

mM—r00 N—00

0

_ /t 0 (dCy + [Bu+ BalZ,) - 9(a(Z))] ds)}

m—00

— lim E, [ / a0 (40, + B+ Ba(Z) — 6(2.))) ds)
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ToA™M

+ e—’y(To/\m t)U ( ):| AC
. [/70 o (s—1) (dCs + [Bu+ Ba(Zs) — g(a(Zy))] ds)] — ACy, (5.16)
t

where the last equality is because of the dominated convergence theorem, the definition of 7y
and the transversality condition || This equality also shows E| f e 1 dCs] < oo which
implies (79, &(Z)) is admissible. Combining (5.15)) and (5.16]), we get

Ut = €SS SupTyaUtT’a = U;’o,&(Z) = Utd(Z)

O]

Proof of Proposition[5.5. Since v > r, a direct calculation verifies that 1 is a supersolu-
tion to (5.10). This implies that for any z € R,

_ 01 .
19— 6(2) — (yut G)T - 522" > 0.
Let (Z,C) be an admissible control with U being the corresponding controlled state process

starting from u > 0. By It6’s formula and the above inequality, it follows that

—T(T()/\T) w( T()/\T)

ToNT
=(u) + / e’ (—rw<Ut>+(wUt+G<zt>)w’<Ut>+;ZM(Ut)) dt

ToNT o
/ Y (U ACE+ Y e T AY(UY)

0<t<roAT

[en]

ToNT
+ / e Y (Uy) Zy dB,
0

o ToAT ToNT ToNT
< w / Zt dt + / e*’"t dCt — / e*”Zt dBt,
0 0 0

and then

ToNT - oy
E[ /0 —rt( () dt - dC;) +e""<T°AT)w(UroAT)] < (u),

where the stochastic integral vanishes in expectation by a localisation sequence argument.
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Sending 7' to infinity, due to the dominated convergence theorem, the transversality condition
and the fact that 1) is linear and 1(0) > 0 we have therefore,

E { /O Pt (a2 dt - dC’t)} < ().

Hence it follows that V' < 1), since (Z, C) is arbitrary.
To prove the lower bound, for any given u € [0, 00), take C' to be such that Cp = u and
dCy = 0, for all t > 0. Let Z be any admissible control. Denote by U the corresponding

controlled state process starting from uw. Then, 7p = 0 and

Vu) > E [/0 e (a(z) dit - dCt)} = —u= ).

O]

The local boundedness of V' guarantees that the upper semi-continuous (u.s.c.) and the
lower semi-continuous (l.s.c.) envelops of the principal’s value function V are well-defined.
The following two lemmas show that V is both a viscosity supersolution and a viscosity
subsolution to . Hence, it is a viscosity solution to . The proofs of these two

lemmas follow a standard approach (see e.g. Phaml 2009, etc).

Lemma 5.11. The function V : [0,00) — R is a (discontinuous) viscosity supersolution to
15.10)).

Proof. Write V, to be the l.s.c. envelop of V| i.e., Vi (u) = liminf,_,, V(z), for all u > 0. Let
7> 0 and ¢ € C?((0,00)) be such that

0 = min(Vy — ¢)(u) = (Vi — ¢)(u),

so we have V' > V, > ¢, and there exists a sequence of numbers (u,)2° ; contained in [0, 00)
such that as n — oo, u, — @ and V(u,) — Vi(a). Let &, = (V — ¢)(uy), so &, > 0 and
&, — 0, as n — oo. Denote

1
Pn = \/571"' ﬁ]l{ﬁnzo}-

Let (Z,C) be an admissible control with Z being equal to some constant z. Write U%»%¢ as
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the corresponding controlled state process starting from u,,. Define
. Un,Z,C
Tn :mf{tZO U = up| > K} and 0, = pp ATh AT
. Then it follows from the dynamic programming principle that

¢(un) + En = V(un)

en
IE[ / e "t (d(z) dt — dct) +e Y (U;‘n"’z’c)}
0

v

v

E [/9" e Tt (64(2) dt — dCt) + e_r0n¢(U;Lnn’Z’C):|
0

Applying It6’s formula to e*renqb(U ;Ln"’z’c), together with the above inequality, we obtain that

é-n 1 971, —rt un,Z,C ~
= >E|— e —r¢(U; )+ a(z)
Pn Pn Jo

+ (YU PC 1 G(2)) ¢ (U 7C) 4

;ZQQZﬁ”(Utu"’Z’C)) dt

1 9”715 e 2O 1 —rt Un,Z,C ]
- r yYn4 +1 dC¢ + — TAD(U ™ — AC s 5.17
e s acre S 3 e (200 - a0) | o1

where foen e_”qﬁ’(Uf"’Z’C)det vanishes in expectation, since foen/\' e‘”qﬁ’(Uﬁ"’Z’C)des is
a uniformly integrable martingale. Now suppose ¢'(7) + 1 < 0. Note that if we assume in
addition that C has a jump at time 0, then (5.17)) still holds, and it follows therefore,

1

P 3 e*”(Aqﬁ(Uf"’Z’C)—ACO N

0<t<o,

As a consequence, gives out a contradiction, because f)—z — 0, as n — co. We therefore
conclude that ¢/(2) + 1 > 0. On the other hand, if we assume in addition that Cy; = 0, for
0 <t <6, then still holds for such C. By the continuity of paths of U"%C  for
0 <t <6,, the mean value theorem, the dominated convergence theorem and , we have

ro(m) — a(2) — (v + G(2) o (@) — 5226 () 2 0,
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where z is arbitrary. Hence,

ro(a) —max{a(z) + (v + (=) (@) + %z%"(a)} > 0.

z€R

O

Lemma 5.12. The function V : [0,00) — R is a (discontinuous) viscosity subsolution to
15.10).

Proof. Write V* to be the u.s.c. envelop of V, i.e., V*(u) = limsup,_,, V(z), for all u > 0.
Let @ > 0 and ¢ € C?((0,00)) be such that

0 =max(V" = ¢)(u) = (V" - ¢)(a).

So we have V < V* < ¢. Let’s suppose the contrary that

(@) = ro(a) —max{a(z) + (v + G(2)) (@) + %z%ﬁ”(ﬁ)} >0

z€R

and
ho(t) := ¢'(u) +1 > 0.

Then we must have ¢” (i) < 0, otherwise hy(a) = —oo. Consequently,

hi(@) == ro(a) — max{&(z) + (va+ G(z)) ¢ (1) + %ngb"(ﬂ)} >0,

zel

where I := [(¢'(a) — )0, (¢’ (@) — 8)o], since both & and G are bounded functions. It follows
from the maximum theorem (see, e.g. Ahprantm and Border, 2006, Theorem 17.31) that
U — max,er{a(2) + (vu + G(2))¢'(w) + 32%¢"(u)} is a continuous function. Hence, there
exists an interval I(u; K) = {u > 0 : |u — 4| < K} on which hy > € and hy > ¢, where
K, e > 0 are some constants. Let (u,)5% ; be a sequence of numbers contained in I(u; K') such
that as n — oo, u, — u and V(u,) — V*(a). Write &, = ¢(u,) — V(uyp), so &, — 0, as

n — 0o0. Denote

1
Pn = V gn + E]l{gnzo}-
Now for each w,, consider an ep,, /2 + m(py)-optimal admissible control (Z",C™) such that
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ACP = 0, for t < p,, where m(-) is some positive strictly decreasing function satisfying
m(0) = 0. [] Write U"»Z"C™ as the corresponding controlled state process starting from uu,,.
Let

T = inf{t >0: Utu”’Zn’Cn ¢ I(E;K)} and 6, = py AT A To.

Then we compute that

P(un) — &n = V(uy

gE/ e Tt( (Z) dt—dC”)]Jr =+ m(pn)
L/ O
.

<E / ”( (Z]") dt — dC}' >+e—’“9nV Ug " )] +€%+m(pn)
L/ O
r Gn n

<E / —rt( (Z) dt—dC”) +e g (U7 )] +€%+m(pn)

0

On
—T‘ ) n7Cn ~
:IE/O t< o(U7"") + a(Zp)

+ (YUPC LGz e (U + ;z%”(UﬂmZ"vC")) dt

en n n
_ / e (¢ (U ") 1) d(Cm;
0
+ > e (Agb(Uf”’Zn’Cn) —~ ACZ‘)] + Blun) + 2%+ m(pn)

2
0<t<0n,

071 n n
< olun)+ B+ mlpn) +E| [ e (<ro(op ) 4 acz)
0

U U n n 1 U n n
+ (U Gz e (U + g2 (U e )) dt]
€Pn o
< ¢(Un) + o + m(pn) —€eE |:/(; e " dt:|

= ¢(un) + 6’% +m(pp) — €E [i(l — e_ran)},

where the term fOO” e "ty (Utu ”’Zn’C")Zf dB; vanishes in expectation, the strict inequalities

2Let (Z™,C™) be an ep, /2-optimal admissible control. Take Cf* = 0 for t < p,, ACY. = e¥Pn Joret acp
and dC}' = dC}7 for t > p,. Then it can be shown that (Z",C™) is an ep,/2 + pn(e’*» — 1)2K-optimal
admissible control, i.e., m(z) = z(e”® — 1)2K.
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follow from that hy, hy > € on I(u; K). Therefore,

_gl E_ L i
Pn<2 eE[TPn(l e )]

Sending n — oo, by the dominated convergence theorem, we obtain

0§E—elim M

n—00 pTL

(5.18)

Observe that for large n and 6 = (u A K)/2,

‘ 2

)

n n 1 n n
]P’[Tn N1y < pn] <P| sup ‘Utumz Noi Un‘ > 5] < QE[ sup ‘Ufmz cn U,
0<t<pn 5 0<t<pn

where the upper bound tends to 0, as n — oo (see, e.g. Pham, 2009, Theorem 1.3.16). Also,
we have that E[0,] > p,P[r, A 70 > pn), so

E[6n]
Pn

]P)[’Tn N1 > pn] < < ]-7

Therefore, lim,, % =1, and (|5.18) results in a contradiction. L]

The following lemma shows that any viscosity solution to ([5.10)) is also a viscoity solution
to (5.19). The main purpose of this result is to reduce values of the control Z to be on the
compact interval I = [(¢'(a) — B)o, (¢'(@) — B)o]. This reduction serves for the proof of the

comparison principle given by Lemma

Lemma 5.13. Any viscosity supersolution (resp. subsolution) to is also a wiscosity

supersolution (resp. subsolution) to

min {rv(u) — max{&(z) + (yu+ G(2))v (v) + %zzv”(u)}, "

nas (w),v'(w) + 1} =0, (5.19)

where I = [(g'(c) = B)o, (¢'(@) = B)o].
Proof. Supersolution: Let V' be a viscosity supersolution to (5.10) and write Vi as its Ls.c.

envelop. Then Lemma gives out that for any 4 > 0 and ¢ € C?((0,00)) such that
0 =min(Vi — ¢)(u) = (Vi — ¢)(u), we have
1
ré(@) — max {&(z) + (vii+ G(2)) ¢/ (@) + 52%”(@)} >0 and ¢'(a)+1>0.

z€R
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It must hold that ¢”(z) < 0, otherwise, 7V (4) — max.er {a(z) + (va + G(2))¢'(v) +
$22¢/ ()} = —oc. Therefore,

min {ro(a) — max{a(z) + (i + G(=))6 (@) + 322" (W)}, " (w), ¢ (@) + 1} > 0,

z€R

and then

min {r¢(ﬂ) —max{&(z) + (v + G(2))¢ (a) + 320" (@)}, —¢ (), ¢ (a) + 1} > 0.

zel
Subsolution: Let V* be the u.s.c. envelop of V. For any @ > 0, let ¢ € C%((0,0)) such
that 0 = max(V* — ¢)(u) = (V* — ¢)(@). If ¢ (@) > 0, we already have

min {rg(a) — max{a(z) + (i + G())6 (1) + 3226 (@)}, =6 (1), &' (W) + 1} < 0.

zel

If ¢ (@) < 0, we have

max{a(z) + (i + G(2)) (@) + 32°¢" (@)} = max{a(2) + (v + G(2))¢ (@) + 32°¢" (W)}

Therefore

min {ro(a) — max{a(z) + (i + G())¢ (@) + 122" (W)}, ¢ (@) +1} <0

z€R

implies

min {ro(a) - max{a(z) + (i + G(2))6 (@) + 322" (W)}, ~¢" (w), ¢ (@) + 1} < 0.

zel

O]

The following comparison principle is proved using a similar argument to [Lio and Ley
(2006).

Lemma 5.14. Let u : [0,00) — R (resp. v : [0,00) — R) be an wu.s.c viscosity subsolution
(resp. l.s.c. wiscosity supersolution) to . Suppose u(x) + x and v(x) + x are bounded
functions. Suppose further that (u — v)(0) <0, then (u—v)(z) <0, for all x > 0.

Proof. Write wy(z) = u(x) + = and wo(x) = v(x) + . With reference to Lemma it can
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be shown that w; and wso are respectively viscosity subsolution and viscosity supersolution to
min {rw(a:) —yzw'(z) + (y —r)z — malx{d(z) +G(2)(w (z) = 1) + %zQw” ()},
zEe
—w' (z),w (x)} =0,

where I = [(¢'(a) — 8)o, (¢'(@) — B)o]. Let £ > 0 and ¢ € C%((0,00)) be such that w; —ws — ¢

achieves a unique maximum value at Z over some closed ball
B(z;R) :={x>0]|z — 2| < R, R > 0}.
Consider ©,,(z,y) = ¢(z) + n?|z — y|? and
M By (1) 7 20 = )

= wl(mn) — wz(yn) - @n($n, yn)a

for some x,,, y, € B(Z; R). Asn — 00, (7, y,) converges up to a subsequence to some (%, 7).
Since for all n, M, is lower bounded by w1 (Z) — w2 (&) — ¢(Z), we must have & = §. Moreover,

we have

wl(xn) - w2<yn) - (b(xn) - n2’xn - yn|2 > wl(i') - w2(‘%) - ¢(£')7
and then
lim n2|xn - yn|2 < lim wl(xn) - w2(yn) - ¢($n) - wl(j) + w2(£) + ¢(j) <0,
n—oo n—oo
where the last inequality follows from the upper semi-continuity of w; — we. Thus,
lim n%|x, —ya|* = 0.
n—oo

It follows therefore,

> wi(T) — wa(Z) — ¢(7)
> wi (&) — wa(2) — ¢(2)
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This together with Z being the unique maximiser implies £ = Z and also that M,, — w;(Z) —
wo(T) — ¢(Z), as n — oo.

Observe that DO (zp,yn) = 2n%(zn — yn) + ¢/ (zn) and —DyO(xy, yn) = 202 (zy — Yn)-
Using ©,, as the test function, in view of Ishii’s lemma (see, e.g. Phaml [2009), we have for all

p>0,

(2n2($n —Yn) + ¢/(xn) ) An) € jfwl(x”)’
(2n%(2n — yn)» Bn) € T2wa(yn),

and

where

" n 2 2 ) 2

—2n? on?

A, B, € R, and jfwl(a:n) (resp. J2wa(zy)) is the second order limiting superjet for w;

(resp. limiting subjet for ws) at point x,. Then,

A, — B, = tr(c 1) <‘L(1)” _OBn>) < ¢"(xn) + m(pn?), (5.20)

where m is some positive strictly decreasing function with m(0) = 0.
According to the characterisation of viscosity supersolution (resp. viscosity subsolution)
in terms of subjet (resp. superjet) (see, e.g. [Pham)| 2009)), it follows that

mm{’“wmxn) — @ (202 (@0 — yn) + ¢ (20)) + (v — )2

- rglealx{d(z) + G(2)(2n* (2 — yn) + d(zn) — 1) + %zQAn},

- An ) 2n2($n - yn) + QZ)/('TTL)} S O’

152



and

min{rwg(a:n) — YYn2n* (X0 = yn) + (Y = 7)Y

—ma{a(z) + G(2) (202w o) 1) + 3By},

- Bna 2”2(5[3” - yn)} Z 05

Taking the difference between these two inequalities gives out

0 > min {r(wl(xn) — wg(yn)) — 2'yn2(mn —yn)? — YT d (20) + (v — 1) (T — Yn)

— max {G(2)¢ (z,) + %ZQ(ATL — Bn)}, —(4n — By), ¢/(.’L‘n)}

zel

> min {r(wl () — wa(ym)) — 2y (n — yn)? — 7t (20) + (7 — 7)(n — yn)

—max {G(2)¢(z,) + 1a (¢"(zn) +m(pn®)) }, — (8" (2n) + m(pn?)), qﬁ’(xn)},

zel 2

where the second inequality follows from (5.20)). First sending p to 0 then taking n — oo

results in

zel 2

0 > min {r(wl(az) —wy(Z)) — 724 (z) — max {G(2)¢'(z) + 122(1)//(@)} , —¢"(z), d)’(x)}.

where we have used the fact that (z,,p) — max.er {G(2)¢'(zn) + 522 (¢ (zn) + m(pn?)) }
is continuous according to the maximum theorem (see, e.g. |Aliprantis and Border, 2006,

Theorem 17.31). Therefore, for x > 0, (w1 — w2)(z) is a viscosity subsolution to

1
min {rw(a}) — yzw'(x) — max {G(2)w'(z) + izQw”(a:)} , —w"(z), w'(x)} =0. (5.21)
ze
Now we construct an unbounded viscosity supersolution to (5.21)). To this end, we look
at the function ®(z) = n(z + C)"/7 with z > 0, C' > % and 7 > 0. Denote ( =
[willos + fJwallos — (w1 — w2 — @)(0), so &((¢/n)”/" — C) = (. It can be checked that for
x € [O’ (C/U)V/T - C]v
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o' (z) > fglf’v/rnv/ry

v
—(I)H(ZL‘) > T(7 ; T) C1—27/rn27/r’
Y
N / _ / 1 25! N HGHOO 1—v/r ~/r
r®(x) — yxd'(z) max {G(2)?'(z) + 5% o"(z)} >r(C——=)¢ .
z€ Y

Therefore, ® on z € [0, (¢/n)?/" — C] is a strict supersolution to (5.21).
For any z > (¢/n)Y/" — C,

(w1 — w2 = @)(z) < [lwilloo + [[w2lloc = ¢ = (w1 — wy — ©)(0).

Hence, the function w; — wy — ® attains a maximum on [0, ({/n)?/" — C]. Suppose this

maximum value is attained at & and that £ > 0. Then the viscosity subsolution property of

w1 — we to (5.21]) implies that

min {rq)(a?) — yz®' (%) — max {G(2)?'(2) + %,22(1)”(3%)} , —®"(1), @’(5:)} <0,

which contradicts with it being a strict supersolution. We conclude consequently that £ = 0.
It follows then

(w1 —wy — ®)(z) < (w1 —wy — P)(0) <0, z>0.

Sending 7 to 0 results in (w1 — w2)(z) < 0, for all = > 0. O

Proof of Theorem [5.6, The value function V being a viscosity solution to follow
directly from Lemma and Lemma Suppose v is another viscosity solution to ((5.10))
satisfying the growth condition (5.11)). Denote by v* (resp. v,) the u.s.c. (resp. l.s.c.) envelop
of v, and write V* (resp. Vi) to be the u.s.c. (resp. l.s.c.) envelop of V. Then according
to Lemma |[5.14] we have that V* < v, < v* <V, < V*, which shows that v =V and V is

continuous. ]

Proof of Proposition [5.8 Lemma implies that V is a viscosity supersolution to —v” >
0, and hence it is a concave function, by [Touzi (2012) Lemma 5.24. It follows therefore there

exists some @ € [0,00] such that V{ > —1 on (0,4) and Vi = —1 on (@,00), since V is a

154



viscosity solution to (5.10]), where V denotes the right derivative of V. Now suppose 4 < s,
then for u € (4, up), V'(u) = —1. As a result, for all u € (u,up),

rV(u) — %ﬁ({d(z) + (yu+ G(2))V'(u) + %z2V”(u)}

<ru) + yu — max{a(z) - G(:)}

=0.

However, this contradicts with V' being a supersolution to , and we therefore conclude
that for all u € (0,up), V{(u) > —1. This implies that V satisfies V' + 1 > 0 on (0,u;) in
viscosity sense, and hence 7V (u) — max,er{&(2) + (yu+ G(2))V'(u) + $22V"(u) } = 0 on the
same interval.

Define v : R™ — R by

o(u) = V(u), for u € [0, up),

—u+ up + V() for u € Jup, ).

Let’s first try to show v < V. But it suffices to prove v(u) < V(u), for u € (up,00). Since
V is a viscosity supersolution to the equation v' +1 > 0 and by [Touzi (2012) Lemma 5.23,
u +— V(u)+u is non-decreasing. Therefore, the result follows from that v(u)+u is constant, for
u > up. Secondly, we show v > V. It can be checked that v restricted on (up, 00) is a viscosity
supersolution to 1| with v(up) = J(ub). Thus, v > V on (up, 00) can be verified by the same
argument as in the proof of Proposition showing 1) is an upper bound of V. We therefore
have v = V on [0,00). Then, 7V (u) — max,er{&(z) + (yu + G(2))V'(u) + $22V"(u)} > 0
and V'(u) +1 =0 on (up, 00) follow by a direct computation.

We proceed to prove the C? property of V. But it suffices to prove V is twice-continuously
differentiable on [0,u;) as well as at the single point {up}. According to Theorem 1 and
Footnote 21 in [Strulovici and Szydlowski (2015)), the differential equation

ro(u) — I?Ea}({o}(z) + (yu+ G(2))v' (v) + %z%”(u)} =0,

with boundary condition v(0) = 0 and v(up) = ¥(up) has a unique twice-continuously differ-
entiable solution on [0, ), where I = [(¢'(a) — B)o, (¢'(@) — B)o]. Let’s denote the solution
by W. Moreover, by Lemma 7 and the proof of Proposition 1 in [Strulovici and Szydlowski
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(2015), W is continuously differentiable on [0, ;). Now observe that

—rW(u) + &(z) + (yu+ G(2)) W' (u)
5 )

1
—§W”(u) > forall z €I, u e (0,up).

z

But given any u € (0, uy), there exists z, € I such that

—rW(u) + &(zu) + (yu + G(zu) ) W' (u)

1
*§W”(u) —

Thus, for u € (0, uy),

—rW (u) + &(z) + (yu+ G(2)) W' (u)
> :

| — o
—3W (1) = max ;
Since {—rW(u) + &(z) + (yu + G(2))W'(u)}/2*, as a function of (z,u), is continuous on
I x [0,up), by the maximum theorem (see, e.g. Aliprantis and Border} 2006, Theorem 17.31),
W" is continuous on [0, up). On the other hand, Lemma indicates that V' is a viscosity

supersolution to

ro(u) — 1213;{&(2) + (yu+ G(2))v"(u) + %z%"(u)} =0

with boundary condition v(0) = 0 and v(up) = ¥(up). Therefore by a comparison theorem
(see, e.g. Touzi, 2012, Theorem 5.18), V =W on [0, up).

The concavity of V' ensures the existence of left and right derivatives of V' (u3), denoted by
V! (up) and V7 (up) respectively. Moreover, V' (up) > V| (up) = —1. To get the C'* property of
V at uy, we prove by contradiction and assume the contrary that V (uy) > V[ (up). Consider
the test function ¢, € C?((0,00)) defined by

bn(u) =V (up) + nu — up) — g(u —wp)?, (5.22)

where n € (V. (w), V. (up)). Then, ¢,(up) =1 > —1, ¢,(wp) = —n, and uy, is a local maximum
of V.— ¢, with (V — ¢,,)(up) = 0. According to Lemma [5.13] the viscosity subsolution of V'
to ((5.19) implies that

rV (up) — r?g}({d(z) + (yup + G(2))n — %ZQn} <0, (5.23)
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where I = [(¢'(a) — B)o, (¢’ (@) — B)o]. Since ¢'(«) > B, I is a compact interval bounded
away from 0. Therefore, taking n to be sufficiently large in the above expression results in a
contradiction, and we conclude that V' is continuously differentiable at wy.

It now remains to show V is twice-continuously differentiable at u;. Observe that for
u € (0,up), with z, € I being the optimiser of max,er{&(2)+ (yu+G(2))V'(u) + 32°V"(u) },

we have
1
0> 523V”(u) =7rV(u) — a(zy) — (Yu + G(20))V'(u).
Sending u to up and taking a convergent subsequence of z, result in

1 A
0> §z5bV”(ub—) = rV(up) + yup — &(24,) + G(24,)

> rib(up) +yup — max{a(z) — G(2)} =0,
where 22 > 0. Hence, V" (up—) = V" (up+) = 0. ]

The next lemma shows the Lipschitz continuity of the function Z*(-) defined by Lemma
m The proof follows a similar argument to Proposition 6 in |Strulovici and Szydlowski| (2015)).

Lemma 5.15. Under the condition of Lemma[5.9, Z*(-) is Lipschitz continuous on [0, up).

Proof. Let’s first prove Z*(-) is a continuous function. To this end, write

h(zu) = G(2) + G(2)V(u) + %ZQV”(U), cel,ue 0w,

We calculate that for all z € I,

and
ha(z,u) = & (2) + G'(2)V'(u) + 2V (u),
where G”(z) > 0 is due to the assumption that z/¢”((¢')~'(z/c + B)) is strictly increasing.
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Then,

he.(z,u) = &"(2) + G"(2)V'(u) + V" (u)

= a"(z) + 2 (Z);/ () T G (z)(gg/ ”Ezi;;; () J/r V" (u)

— () 4 hz(zau)z— a(z) G (»Z)(J;HEZZ;;; (u)

— (s 4 B2 (gg EEZ;;)Q ez — & (2) - 2V (w))
= &/(2) + (ha(z0) — @' (2)) (i -~ (9228)2 2) 90((35/2(22)/))@)

Therefore, for h,(z,u) <0,

hor(z,u) < —&

—~
N
~—
\)
—
N
~—

This implies that for any fixed u € [0, up], there is at most one z € I such that h,(z,u) = 0.
Consequently, for any u € [0, up], Z*(u) is an I-valued number, and hence Z*(-) is a function.
According to Theorem 17.31 and Theorem 17.11 in|Aliprantis and Border| (2006)), the function
Z*(+) has compact range and closed graph. Hence, it is continuous.
Following a similar argument in the proof of Proposition [5.8| gives out that
—rV(u) + a(z) + (yu+ G(2)) V' (u)

1
—QV”(U) = max > , o u € [0, up).

Then by [Madan and Seneta (1990 Corollary 4, V" exists on (0, up) and

_ 2V'(w) = 26(Z%(u) — 29(V' () + uV"(u)) — G(Z*(w)) V" (u)
(2+(w)’

V" (u) , u € (0,up),

which is continuous. The above expression of V' clearly can be continuously extended onto
the interval [0,up]. Therefore, the function h,(Z*(u),w) is continuous hence bounded on
[0, up]. For the Lipschitz property of Z*(-), it is sufficient to show that the restriction of Z*(-)

to the union of non-empty open intervals on which the values of Z*(+) are in the interior of I
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has bounded derivative. According to the previous part of this proof, along this restriction, we
have h,(Z*(u),u) = 0, h,,(Z*(u),u) and h,,(Z*(u),u) are both continuous, h,(Z*(u),u) is
bounded and h,,(Z*(u), u) is bounded away from 0. Therefore, applying the implicit function

theorem, we have that along this restriction,

z* == 7
(2w = 2 T,
which is continuous and bounded. O

Proof of Lemma [5.9 Note that
AU = WU + g* (27 Jo + B) — Bu — nZ; Jo]dt + Z; Jo dX — dCf
can be rewritten as

AU = (WO + G(Z2*(U)) — a(Z2*(UF) 24 (U)o + aw Z*(US™) [ o] dt
+ Z*(U*)dB; — dCy. (5.24)

We first show this stochastic differential equation with reflection has a unique F-adapted strong
solution. According to Theorem 4.1 in |Tanaka (1979)), it suffices to show that the coefficients
are Lipschitz continuous functions with linear growth. But since Z*(-), G(-), G'(-), a(-), &'(*)
and « are all bounded, it suffices to prove Z*(-) is Lipschitz continuous, which is demonstrated
by Lemma [5.15

Now it remains to show U** and C* are also FX-adapted. By exactly the same proof of
Theorem 4.1 in Tanakal (1979), one can find two sequences of processes {U™}52; and {C™}°2

n=1
such that for all n > 1 and 0 <t < 7,

70 fragx
Ut *UO ’
t

Ur=05"+ | WUt +g" (20U )0+ B) — Bu—pZ*(Ur ) /o] ds

_l’_

o
[+

t
ZX( U Y )odXe — / o,
0

k)
/0 Liop <uydCit =0,

Ul € [0, uy),
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where 7 = inf{t > 0 : U} < 0}, C™ is non-decreasing cadlag starting from 0, and U™
(resp. C™) converges uniformly on compact intervals to U®* (resp. C*) a.s. as n tends to
infinity. Therefore, for all n > 1, U™ and C™ both adapt to FX, this is essentially because
IN Z*(Ur 1) /o dX® is FX-adapted and C™ is given by

Cy = X' — 0H<1?§t(X;L ANuy), 0<t<7y,

where
A t A~ A~ A
Xp = U+ [ 00 g (2007 o+ ) = B = 2 () ) ds
¢
+/ Z*U /o dXE.
0
Thus, both U** and C* are F¥X-adapted. ]

Proof of Theorem [5.10, In the context of Lemma write U* = UMZ)* and 1§ =
78(Z°)*  This proof is based on the result of Lemma [5.2| that for (Z*,C*) € P(u; FX), Agent
applies effort &(Z*). Therefore, F = FX and U* satisfies

AU = [yUf + G(Z})| dt + ZF dB — dC;.

Then the classical argument of verification goes through.

We first show (Z*,C*) € P(u;FX). By the proof of Lemma we know Z*(-) is
continuous. This together with the adaptedness of U implies that the process Z* is FX-
progressively measurable. The boundedness of Z* implies fg e 2 (Z¥)2 ds < oo, for all t > 0.
Since the state process Uj‘\’:g,* is bounded, it is of class D and the associated transversality
condition is satisfied. Following the dynamic in ,

E[ / Do dC;‘]
0

o,k Q,*

:u+E[/ 0 (y = r)e TS Ue" d8+/ 0 e—TS(G(Z;‘) —d(Z:)Z;/U—l—OH,Z:/O’) ds] < 00,
0 0

where the first equality is because e™"T0 Ufa* =0 and fdATO’ e "%Z% dBy is a uniformly inte-
grable martingale, and the finiteness follows from the boundedness of integrands. Therefore,
combining with the result in Lemma we have (Z*,C*) € P(u;FX).
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Using the condition that r < =, it can be checked that any (Z,C) € P(u;FX) also satisfies
Lemma Hence Agent applies effort a(Z). Write U = U then it satisfies

dU; = WU, + G(Zy)] dt + Z; dB — dCy.

Consider any (Z,C) € P(u; FX). Let {7,}5°; be a localisation sequence of stopping times
such that each fOT"A' e "'V'(Uy)Zy dBy is a martingale. Then,

e—?“(’l’o AT ATy) v ( UT() AT AT )

ToNT ATy, . . . 1 .
= V(u) + / e "t (—TV(U,:) + (’)/Ut + G(Zt))V/(Ut) + 223V”(U,5)> dt

=]

ToNT AT, R R
_ / V() dCE+ Y e AV

0 0<t<ToAT ATn

_l’_

ToNT ATy, R
/ e "'V'(Uy) Z; dBy
0

TONT ATp, ToNT ATy, ToNT ATy
< V(U) - / e*”&(Zt) dt + / eirt dCt - / e*TtZt ClBt
0 0 0

It follows that

ToNT ATh, ~
V(u) > lim lim E[ / et (d(Zt)dt - dCt> + e TTOANTAT) V(T rar)
0

> lim lim
—F UOTO ot (a(zt) dt — dCt)], (5.25)

where the equality is due to the dominated convergence theorem, the transversality condition
on U, and the fact that V is bounded by two linear functions going through 0.
On the other hand, consider (Z*,C*) € P(u;FX). It follows from Proposition and a

similar computation as above that

IE[/OTS ot (a(zt*) dt — dct*)] = V().

This together with implies that (Z*,C*) is optimal.

With the optimal choice of (Z*,C*) € P(u;FX) Principal chooses an optimal starting
point u* by solving the problem . The existence of u* is guaranteed by the concavity of
V on [A,00). Since V is strictly decreasing on (up, 00), we have u* = A, if A > wy,. O

161



References

Alfonsi, A., Fruth, A., and Schied, A. (2010). Optimal execution strategies in limit order
books with general shape functions. Quantitative Finance, 10:143-157.

Alfonsi, A., Schied, A., and Slynko, A. (2012). Order book resilience, price manipulation, and
the positive portfolio problem. SIAM Journal on Financial Mathematics, 3:511-533.

Aliprantis, C. and Border, K. (2006). Infinite dimensional analysis. Springer.

Almgren, R. (2003). Optimal execution with nonlinear impact functions and trading-enhanced
risk. Risk, 10:1-18.

Almgren, R. and Chriss, N. (1999). Value under liquidation. Risk, 12(12):61-63.

Almgren, R. and Chriss, N. (2000). Optimal execution of portfolio transactions. Risk, 3(2):5-
39.

Almgren, R., Thum, C., Hauptmann, E., and Li, H. (2005). Direct estimation of equity
market impact. Risk, 18(7):58-62.

Anderson, R., Bustamante, M. C., Guibaud, S., and Zervos, M. (2017). Agency, firm growth

and managerial turnover. The Journal of Finance, forthcoming.

Avellaneda, M. and Stoikov, S. (2008). High-frequency trading in a limit order book. Quan-
titative Finance, 8:217-224.

Barndorff-Nielsen, O. E. (1997). Normal inverse gaussian distribution and stochastic volatility

modelling. Scandinavian Journal of Statistics, 24(1):1-13.

Bayraktar, E. and Ludkovski, M. (2014). Liquidation in limit order books with controlled
intensity. Mathematical Finance, 24(4):627-650.

Biais, B., Mariotti, T., and Plantin, G. (2007). Dynamic security design: convergence to
continuous time and asset pricing implications. The Review of Economic Studies, T4:345—
390.

Cartea, A. and Jaimungal, S. (2015). Optimal execution with limit and market orders. Quan-
titative Fianance, 15(8):1279-1291.

162



Cont, R. and Tankov, P. (2004). Financial modelling with jump processes. Chapman &
Hall/CRC.

Cvitanié, J., Wan, X., and Zhang, J. (2006). Optimal contracts in continuous-time models.
Journal of Applied Mathematics and Stochastic Analysis, 2006:1-27.

Cvitani¢, J., Wan, X., and Zhang, J. (2008). Principal-agent problems with exit options. The
B.E. Journal of Theoretical Economics, 8(1).

Cvitanié, J., Wan, X., and Zhang, J. (2009). Optimal compensation with hidden action and
lump-sum payment in a continuous-time model. Applied Mathematics and Optimization,
59:99-146.

Cvitanié¢, J. and Zhang, J. (2012). Contract Theory in Continuous-Time Models. Springer.

DeMarzo, P. M. and Sannikov, Y. (2006). Optimal security design and dynamic capital

structure in a continuous-time agency model. The Journal of Finance, 61(6):2681-2724.

DeMarzo, P. M. and Sannikov, Y. (2017). Learning, termination and payout policy in dynamic
incentive contracts. The Review of Economic Studies, 84(1):182-236.

Eberlein, E. and Keller, U. (1995). Hyperbolic distributions in finance. Bernoulli, 1(3):281—
299.

Fleming, W. H. and Soner, H. (2006). Controlled Markov Processes and Viscosity Solutions.
Springer.

Folland, G. B. (1984). Real Analysis. John Wiley & Sons.

Frei, C. and Westray, N. (2015). Optimal execution of a VWAP order: a stochastic control
approach. Mathematical Finance, 25(3):621-639.

Ganesh, A., O’Connell, N.,; and Wischik, D. (2004). Big Queues. Springe-Verlag Berlin
Heidelberg.

Gatheral, J. (2010). No-dynamic-arbitrage and market impact. Quantitative Finance,
10(7):749-759.

Gatheral, J. and Schied, A. (2011). Optimal trade execution under geometric brownian motion
in the Almgren and Chriss framework. International Journal of Theoretical and Applied
Finance, 14:353-368.

163



Gatheral, J., Schied, A., and Slynko, A. (2012). Transient linear price impact and Fredholm
integral equations. Mathematical Finance, 22(3):445-474.

Gelfand, I. M. and Fomin, S. V. (2000). Calculus of Variations. Dover Publications.

Guéant, O., Lehalle, C.-A., and Tapia, F. (2012). Optimal portfolio liquidation with limit
orders. SIAM Journal on Financial Mathematics, 3(1):740-764.

Guéant, O. and Royer, G. (2014). VWAP execution and guaranteed VWAP. SIAM Journal
on Financial Mathematics, 5:445—471.

Guo, X. and Zervos, M. (2015). Optimal execution with mulitplicative price impact. SIAM
Journal on Financial Mathematics, 6(1):281-306.

Holmstrom, B. and Milgrom, P. (1987). Aggregation and linearity in the provision of in-

tertemporal incentives. Econometrica, 55(2):303-328.

Huberman, G. and Stanzl, W. (2004). Price manipulation and quasi-arbitrage. Econometrica,
72(4):1247-1275.

Kallenberg, O. (2001). Foundations of morden probability. Springer.

Kallsen, J. and Shiryaev, A. (2002). The cumulant process and Esscher’s change of measure.
Finance and Stochastics, 6:397—428.

Kissell, R. and Malamut, R. (2005). Understanding the profit and loss distribution of trading

algorithms. Institutional Investor.

Kratz, P. and Schoneborn, T. (2014). Optimal liquidation in dark pools. Quantitative Finance,
14:1519-1539.

Kratz, P. and Schéneborn, T. (2015). Portfolio liquidation in dark pools in continuous time.
Mathematical Finance, 25(3):496-544.

Kyprianou, A. (2006). Introductory lectures on fluctuations of Levy processes with applications.

Springer.

Lillo, F., Farmer, J. D., and Mantegna, R. N. (2003). Econophysics - master curve for price-
impact function. Nature, 421(6919):129-130.

164



Lio, F. D. and Ley, O. (2006). Uniqueness results for second order Bellman-Isaacs equa-
tions under quadratic growth assumptions and applications. SIAM Journal on Control and
Optimization, 45(1):74-106.

Lio, F. D. and Ley, O. (2011). Uniqueness results for convex Hamilton-Jacobi equations under
p > 1 growth conditions on data. Applied Mathematics and Optimization, 63(3):309-339.

Lokka, A. (2014). Optimal liquidation in a limit order book for a risk-averse investor. Math-
ematical Finance, 24(4):696-727.

Madan, D. and Seneta, E. (1990). The variance gamma (V.G.) model for share market returns.
The Journal of Business, 63(4):511-524.

Obizhaeva, A. and Wang, J. (2013). Optimal trading strategy and supply/demand dynamics.
Journal of Financial Markets, 16:1-32.

Pham, H. (2009). Continuous-time stochastic control and optimization with financial appli-

cations. Springer.

Predoiu, S., Shaikhet, G., and Shreve, S. (2011). Optimal execution in a general one-sided
limit-order book. SIAM Journal on Financial Mathematics, 2:183-212.

Rathgeber, A., Stadler, J., and Stockl, S. (2013). Modeling share returns - an empirical study
on the variance gamma model. Proceedings of European Financial Management Association,
Reading 20135.

Rosu, I. (2009). A dynamic model of the limit order book. Review of Financial Studies,
22:4601.

Rogers, L. C. G. and Williams, D. (2000). Diffusions, Markov processes and martingales.
Cambridge University Press.

Sannikov, Y. (2008). A continuous-time version of the principal-agent problem. The Review
of Economic Studies, 75:957-984.

Schied, A. and Schéneborn, T. (2009). Risk aversion and the dynamics of optimal liquidation
strategies in illiquid markets. Finance and Stochastics, 13:181-204.

Schied, A., Schéneborn, T., and Tehranchi, M. (2010). Optimal basket liquidation for CARA
investors is deterministic. Applied Mathematical Finance, 17:471-489.

165



Strulovici, B. and Szydlowski, M. (2015). On the smoothness of value functions and the
existence of optimal strategies in diffusion models. Journal of Economic Theory, 159:1016—
1055.

Tanaka, H. (1979). Stochastic differential equations with reflecting boundary condition in
convex regions. Hiroshima Math. J., 9:163-177.

Touzi, N. (2012). Stochastic control and application to finance. Online source available at:
http://www.cmap.polytechnique.fr/ touzi/Master-LN.pdf.

166



	Introduction
	I. Optimal liquidation
	II. Contracted liquidation
	III. Contract with outside options
	IV. Structure of the thesis

	I Optimal Liquidation
	Optimal liquidation trajectories for the Almgren-Chriss model with Lévy processes
	Problem formulation
	Problem simplification
	Solution to the problem
	Approximation for exponential Lévy model
	Numerical examples
	Power-law price impact function
	An equivalent relation

	Proofs

	Optimal liquidation in an Almgren-Chriss type model with Lévy processes and finite time horizons
	Problem formulation
	Problem simplification
	Solution to the problem
	Optimal strategy, case 1
	Optimal strategy, case 2
	Value functions

	Connection to the infinite time horizon problem
	Proofs

	Optimal liquidation in a general one-sided limit order book for a risk averse investor
	Problem formulation
	Problem simplification
	Solution to the problem
	Proofs


	II Contracted Liquidation
	Optimal liquidation with a contractual agreement
	Contracted liquidation model
	First-best contract
	Second-best contract
	Agent's problem
	Principal's problem
	Solution to principal's problem
	Example

	Proofs


	III Contract with Outside Options
	Optimal contract under reputation concern
	Model setting
	Agent and Principal's optimisation problems
	Main results
	Proofs

	References


