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ABSTRACT 

 

The field of behavioral economics enhances the ability of social science research to 

effectively inform socially efficient climate policy at the microeconomic level, in part due to the 

dependence of climate outcomes upon present and future human consumption patterns.  Since the 

behavioral field is relatively new, environmental and resource economists still have scarce 

evidence as to why people make particular decisions.  For this thesis, I have conducted both field 

and laboratory experiments to address market failures highly relevant to environmental outcomes, 

namely international public goods problems and externalities from fuel and resource 

consumption. 

 

My methodology capitalizes upon the benefits of each experimental methodology—

laboratory, artefactual, framed, and natural—to capture the effects of particular informational and 

contextual elements on subsequent behavior.  While each methodology has its potential 

advantages and shortcomings, I contend that the complete toolkit is necessary to study a broad 

range of relevant environmental contexts.  For instance, while natural field experiments are 

generally considered the “gold standard” in terms of exogeneity and generalizability, many 

settings in which field experimentation may provide tremendous insight preclude randomization 

across unknowing subjects.  Similarly, researchers may not have access to populations of interest, 

though lab experimentation may still provide insights into the behavior of these populations or 

reveal motivations not yet captured in neoclassical utility functions.  In this thesis, I will detail 

results from one of each experimental type, each suited to the context of interest.   

 

The natural field experiment in Chapter 2 aims to discern whether there is a role for 

environmental preferences and cognitive dissonance to play in encouraging individuals to engage 

in resource-conserving behaviors, and suggests that the latter may be effective in changing the 

behavior of green consumers.  Chapter 3 presents the results of a large-scale framed field 

experiment comprising all eligible captains in Virgin Atlantic Airways, which tested the impacts 

of personalized information, tailored targets, and prosocial incentives on captains’ performance 

of fuel-efficient behaviors.  In addition to documenting a substantial Hawthorne effect, we 

provide intent-to-treat estimates of the three types of feedback to show that tailored targets are the 

most (cost) effective strategy of those implemented.  I introduce a complementary artefactual 

field experiment in Chapter 4, which allows for detailed scrutiny of captains’ fuel efficiency 

based on their social preferences as well as preferences and attitudes toward risk and uncertainty.  
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I find that more risk-averse captains are more prone to over-fuel, that prosocial incentives 

increase captains’ well-being, and that revealed altruism increases responsiveness to prosocial 

incentives.  Finally, Chapter 5 aims to provide insight into the effects of “side deals” in 

facilitating cooperation on international climate agreements.  Using a lab experiment, we find that 

side deals alter the composition of group contribution to climate change mitigation, eliciting 

increased effort on the part of players with higher wealth. 
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CHAPTER I 

 

EXPERIMENTAL FOUNDATIONS IN ENVIRONMENTAL ECONOMICS 

 

“Three elements of policy for mitigation are essential: a carbon price, technology policy, and the 

removal of barriers to behavioural change. Leaving out any one of these elements will 

significantly increase the costs of action.” 

-Stern Review (2007) 

 

 

1.  Introduction 

 

The global climatic effects of anthropogenic greenhouse gas (GHG) emissions arguably 

constitute the most pressing political and economic issue of the 21st century.  As climate science 

becomes less uncertain regarding human impacts on the global environment, the appropriate 

response of industry and politicians is increasingly polarizing (e.g., Stern, 2007; Nordhaus, 

2007).  The uncertain and potentially extreme long-term consequences of climate change 

undoubtedly validate calls for coordinated political and economic action on a grand scale, while 

the short-term incentives of politicians and polluting industries—together with information 

deficiencies and limited state funds—preclude straightforward policy solutions (Stavins, 1998; 

List and Sturm, 2006; Allcott and Mullainathan, 2010).  Market-based mechanisms and 

regulation are politically unpopular, and their implementation requires lengthy processes that can 

result in failure to realize intended objectives (e.g., Jaffe and Stavins, 1995; Convery, 2009).  As 

nations seek solutions on national and international scales, growing atmospheric GHG contents 

continue to alter essential ecosystems while increasing the unpredictability of future climate 

outcomes.  A crucial and immediate objective of policymakers, therefore, is to reveal and 

implement climate change initiatives that are simultaneously politically feasible and cost-

effective. 

 

Despite historical political failure to curb emissions on a coordinated global scale, small-

scale actors—including private businesses and local governments—have taken action 

independently.  In all sectors, there are low- and negative-cost options for reducing GHG 

emissions (Enkvist, Nauclér, and Rosander, 2007; Stern, 2007).  That is, reducing emissions is 

actually efficiency enhancing, but hidden costs (e.g., high transaction costs and lack of salient 
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information) preclude the uptake of such options.  Many of these ‘low-hanging fruits’ rest upon a 

change in private consumption or technology adoption behavior.  Overcoming these hidden costs 

is essential to realizing immediate climate benefits.   

 

A growing body of experimental literature attempts to break down these unseen barriers 

by determining the drivers of prosocial human behavior (e.g., List and Lucking-Reiley, 2002; 

Johnson and Goldstein, 2003; Karlan and List, 2007; Meier, 2007; Ariely, Bracha, and Meier, 

2009). Studies in the environmental realm have, for example, demonstrated the effects of social 

norms on water consumption (Ferraro and Price, 2013) and residential energy use (e.g., Allcott, 

2011a; Dolan and Metcalfe, Mimeo), as well as the impact of defaults on carbon offsetting 

behaviors (Löfgren et al., 2012; Araña and León, 2013).   

 

Policymakers are increasingly relying upon such experimental research in the social 

sciences for policy and project decision making. Recent findings of behavioral economics 

indicate a growing need to enhance both the quality and quantity of empirical research in policy-

relevant realms and to incorporate the findings into decisions on government regulation 

(Sunstein, 2011).  Empirical research to date already suggests that there are a number of existing 

inefficiencies due to government and market failures—e.g., lack of information, externalities, and 

public goods—that inexpensive policy measures can help to surmount (for examples, see 

DellaVigna, 2009). 

 

“Libertarian paternalism” in policymaking may work to overcome many of the political 

economic concerns associated with government intervention to correct market failure, if applied 

ethically and cautiously (Glaeser, 2006; Thaler and Sunstein, 2008; Reisch and Sunstein, 2014).  

Proposals for governments’ adoption of this concept derive from its potential to breed bipartisan 

(or multi-partisan) agreement, in that libertarian policies do not restrict citizens’ choices but 

rather capitalize upon behavioral tendencies in order to enhance social well-being in ways that 

are empirically demonstrated to be effective.  In this thesis, I will discuss various interventions 

into relevant decision-making contexts that aim to decrease the extent of globally harmful 

environmental externalities.  I will focus on the extent to which decision contexts, individual 

preferences (e.g., altruism, risk), and behavioral ‘biases’ can inform micro-level climate change 

mitigation policy at the government and industry levels.  I argue that policymakers and industry 

leaders should, where possible and cost-effective, use economic experimentation—the foremost 

methodological standard in economics for making causal inference—as part of a comprehensive 



13 
 

environmental policy strategy.  Specifically, I aim to demonstrate the benefits of both lab and 

field experimentation in understanding human behavior with respect to global climate agreements 

as well as resource (i.e. paper and fuel) use.  

 

This thesis is structured as follows.  This chapter will provide background on the 

shortcomings of neoclassical economics and the consequent incorporation of concepts and 

findings from psychology and experimental economics into the burgeoning field of behavioral 

economics, concluding with short descriptions of the papers to follow.  The remainder of the 

thesis comprises four experiment-based essays—inclusive of each experimental method, as 

classified by Harrison and List (2004)—and a brief concluding chapter.  Chapter 2 details the 

implementation and results of a natural field experiment with a UK utility that uses interventions 

rooted in psychology to reduce paper use via consumer switching to online billing.  Chapter 3 

introduces a large-scale framed field experiment in the aviation industry aimed at reducing the 

contingency fuel use of airline captains.  Chapter 4 extends this research into the well-established 

economic domains of agency theory and risk preference elicitation, providing novel insights into 

the effects of captains’ preferences and attitudes toward risk and uncertainty, as well as their 

social preferences, on performance outcomes. Chapter 5 demonstrates the potential for lab 

experimentation to inform global diplomatic structures within which national governments may 

enter into binding climate change mitigation agreements. Finally, the conclusion summarizes my 

findings and provides implications for researchers, policymakers, and industry practitioners. 

 

 

2.  The decline of Homo economicus 

 

Traditional economic theories of decision making are contingent upon neoclassical 

assumptions of human rationality and optimization.  Neoclassical economic theory presumes that 

human incentives are purely self-interested and unboundedly rational (DellaVigna, 2009).  That 

is, human beings are assumed to predicate all decisions on an internal calculation of their own 

self-serving and well-behaved utility functions.  This purely rational and optimizing creature is 

commonly referred to as Homo economicus (“economic man”), and economists generally assign 

to him four basic features: 1) well-defined preferences entering into a utility function that he 

seeks to maximize; 2) preferences accurately reflecting the true costs and benefits of the available 

alternatives; 3) developed beliefs that inform him as to how uncertainty resolves itself; and 4) the 

ability to update beliefs when new information becomes available (Camerer et al., 2003).   
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Over the last few decades, the neoclassical interpretation of utility maximization has been 

critiqued for its inability to explain particular real-world behavioral phenomena.1  Behavioral 

economics has consequently emerged from the convergence of psychological and economic 

studies.  The field initiated with the publication of empirical findings on reference dependence 

and loss aversion (or “the endowment effect”). The endowment effect was evident in a simple 

experiment that tested the willingness-to-pay and willingness-to-accept of experimental subjects 

for mugs randomly distributed to half of the study’s participants (Kahneman, Knetsch, and 

Thaler, 1990, 1991).  The median selling price was $5.79, while the median buying price was 

only $2.25, less than half of the former.  To control for wealth effects, they reported another 

study in which “buyers” became “choosers” and were asked whether they would prefer to take 

the money or the mug for a series of monetary amounts.  Still, the median selling price was twice 

the median choosing price.  Kahneman and Tversky’s (1979) Prospect Theory, which seeks to 

model ‘real’—as opposed to ‘optimal’—human decision making under conditions of risk and 

uncertainty, is often used to explain this and other anomalistic findings indicating reference 

dependence (Abeler et al., 2011; Farber, 2008).2   

 

Kahneman and Tversky also contend that, under conditions of uncertainty, humans are 

driven by heuristic shortcuts that generate probability judgments straying from statistical reality.  

Standard economic models assume that humans make probability judgments based on 

mathematical calculations derived from prior experience; for instance, Bayes’ rule states that 

humans statistically update their probability judgments when confronted with new information.  

In reality, heuristic “shortcuts” drive a wedge between subjective and objective probabilities, so 

that standard models will not be descriptive of behavior (Tversky and Kahneman, 1973). 

 

In sum, the founding of Prospect Theory uncoupled the normative framework of decision 

making—that of rational utility maximization—from actual observed behavior, deeming the 

normative model incompatible with real world outcomes.  Their findings made clear the 

benefits—even the necessity—of incorporating psychological approaches into the economic 

                                                
1 The recent emphasis of social scientists—and particularly economists—on the importance of empirical results to supplement 
theory stems from the increasingly clear distinction between Homo economicus (or “rational economic man”) and Homo sapien.  
That is, actual human behavior has been shown to deviate markedly in several respects from the predicted behavior of the 
neoclassical economic agent.  For instance, human responses to stimuli may depend upon the manner in which decisions are 
presented, how others behave, or initial reference points (for overviews, see Dawnay & Shaw, 2011; Dolan et al., 2012).   
2 Kahneman and Tversky (1979) uncovered the irrational effects of risk aversion and framing of alternatives—which can alter 
perceptions of true value—on the decision-making process.  They find a “certainty effect,” a higher aversion to reductions in 
probability from a reference point of attaining an outcome with certainty than to reductions in probability from a reference point 
where probability is lower, even though expected utilities remain the same. 
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discipline and considerably challenged traditional economic assumptions of rationality and self-

interest. 

 

Needless to say, these early discoveries spurred the inception and evolution of behavioral 

economics and, inevitably, initiated a reversion of Homo economicus to Homo sapien in many 

policy-relevant contexts.  Non-traditional economists have since unveiled several additional 

irrational decision-making tendencies.  For example, humans can be strong reciprocators; that is, 

they may respond to free-riding actors through retaliation, even if there does not exist a realistic 

expectation of personal gain or if there is a personal cost (Gintis, 2000; Fehr and Gächter, 2000).  

They tend to discount the future hyperbolically, employing a higher discount rate in the near term 

than in the more distant future (Laibson, 1997; Ashraf, Karlan, and Yin, 2006; Hepburn, Duncan, 

and Papachristodoulou, 2010).  These and other deviations from neoclassical theory have been 

termed “behavioral failures” (Shogren and Taylor, 2008), also often described in the literature as 

anomalies, heuristics, paradoxes, and biases.  Mullainathan and Thaler (2000) group these 

failures into three categories: bounded rationality (e.g., endowment effects, heuristics, and self-

serving bias), bounded self-interest (e.g., other-regarding preferences), and bounded willpower 

(e.g., lack of self-control).  As a complementary means to traditional policy solutions that aim to 

overcome market failure, this thesis focuses on the potential to capitalize upon bounded 

rationality and bounded self-interest to increase environmental efficiency and welfare.  

 

 

3.  Behavioral failure: Are markets to blame? 

 

While behavioral failure appears to permeate through many economic sectors, neglecting 

to acknowledge its consequences may be especially toxic for policies targeting environmental 

sectors. Traditional economists point to particular market failures—such as missing markets, non-

excludable/non-rival goods, and imperfect information—to explain social and environmental 

inefficiencies.  In the absence or weakness of markets for most environmental amenities, 

individuals act as “asocial beings,” unaccountable to others due to the inability of collective 

market institutions to arise (Crocker, Shogren, and Turner, 1998).  While studies have shown that 

individuals behave more rationally with experience (List, 2003), ecosystem services often lack 

markets within which experience may be accumulated.  These market-focused claims suggest that 

creation of markets for environmental goods and services will lead to environmental efficiency. 
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Accordingly, the notion that market failure is the sole problem underpinning 

environmental damage has historically driven most policy research and outcomes.  Tools such as 

payment for ecosystem services and carbon pricing (i.e. emissions permits and carbon taxes) rest 

upon the assumption that human beings are (or behave as though they are) rational actors 

(Shogren and Taylor, 2008).  While market failures undoubtedly play a prominent role in 

environmental inefficiency, this assumption is clearly unrealistic and suggests that market 

failures cannot fully explain environmental deadweight loss.  Is it possible to lessen the severity 

of these commonly cited market failures in the environmental sector—especially in those 

contexts where markets are unlikely to succeed or exist—by targeting human behavior?  Is 

market failure the lone culprit, or does behavioral failure exacerbate environmental 

inefficiencies?  Incorporation of behavioral anomalies into economic models may provide 

potentially significant scope for more efficacious and cost-effective environmental policy 

(Kunreuther and Weber, 2014). 

 

Behavioral economics has already shaped research in areas within environmental 

economics involving risk, valuation, and strategic interaction (Shogren, 2012).  Perhaps the most 

prominent example followed the Exxon Valdez oil spill, when a NOAA panel debated—and 

ultimately upheld—the merits of using stated preference methods (SPMs) to conduct a valuation 

of social damage, thereby identifying a comprehensive social compensation value.  The disparity 

between willingness-to-pay (WTP) and willingness-to-accept (WTA; Horowitz and McConnell, 

2002), which follows from behavioral failures such as the endowment effect and status quo bias, 

led to controversy and subsequent alterations in non-market valuation using SPMs.  The panel 

held similar discussions around an embedding effect (Kahneman and Knetsch, 1992) or 

insensitivity to scope (Desvousges, 1992), claiming that this behavioral failure was the “most 

important internal argument” against SPM valuation (Arrow et al., 1993).  Explanations for scope 

insensitivity may rest upon other behavioral aspects that are rarely acknowledged in rational 

choice theory, such as warm glow effects and mental accounting (see Andreoni, 1989; Thaler, 

1999).  While this debate remains controversial, there have been many subsequent applications of 

behavioral economics to environmental contexts (for a comprehensive overview see Shogren, 

2012).  Given that markets for environmental goods and services are difficult to establish, such 

application is widely viewed as a promising step toward the enhancement of environmental 

policy and welfare. 
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4.  A role for experimentation 

 

While economists have developed a large suite of tools for identifying correlations and 

inferring causation under various assumptions (Angrist and Pischke, 2010), studies of 

observational data that aim to infer causality often suffer from critiques related to endogeneity.  A 

seminal paper by Vernon L. Smith argued for a transformation of the economic discipline from a 

social science based on observational data to an experimental science rooted in exogeneity 

(Smith, 1982). Randomization has swiftly become one of the most embedded and important tools 

in the economist’s toolkit, and Smith—along with psychologist and behavioral economist Daniel 

Kahneman—was recognized for his contribution to the discipline with the Nobel Memorial Prize 

in Economic Sciences in 2002.  The simultaneous awarding of this honor to pioneers in 

experimental and behavioral economics is testament to the two fields’ complementarity and 

symbiotic nature; each field acts as a support and a catalyst for the other.  For example, the 

application of this ongoing relationship to contingent valuation has improved insights and 

methodologies surrounding non-market valuation, a concept with extreme relevance to 

environmental economists (List and Price, 2013).  

  

Yet, lab experiments often suffer criticisms associated with generalizability.  Critics 

question whether student behavior can inform our understanding of economic agents in the field, 

and whether variance in the size or type of incentive offered render lab results inapplicable to 

many field contexts.  To bridge the gap between randomization (a prominent tool for assessing 

causality in microeconomic systems) and observational data (a means to understand economic 

agents in relevant contexts), economists have more recently introduced field experimental 

methodologies (see Harrison and List, 2004).  For instance, to eliminate the concern of sample 

generalizability, one may simply perform an “artefactual field experiment” (AFE) by 

implementing a lab experiment with a population of interest.   

 

Better yet, one may further improve generalizability by executing the experiment in the 

context of interest, matching the field setting with respect to the scale and type of incentives as 

well as the specific behavior of interest.  Oftentimes field experimentalists must operate within 

the constraints of businesses and governments or under strict requirements of ethics committees, 

and a common stipulation is that the researcher obtains subjects’ consent, introducing potential 

for experimenter effects.  When subjects are aware of their participation, the methodology is 

defined as a “framed field experiment” (FFE), according to the typology in Harrison and List 
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(2004).  If subjects must participate voluntarily, the methodology may additionally suffer from 

selection bias.  In contrast, a “natural field experiment” operates within the context of interest 

with the population in question, and subjects do not know their behavior is being observed.  In 

this case, treatment effects are assumed to be causal and unbiased. 

 

While the latter methodology may suffer potential flaws of its own—perhaps including 

generalizability to other field contexts and diminished control over the experimental environment 

(see Heckman and Smith, 1995; Deaton, 2010; and Al-Ubaydli and List, 2015, for a glimpse into 

these debates)—it is nonetheless among the cleanest methods for reaching the empirical gold 

standard of causal inference (List, 2011a).  Of course, many questions pertinent to economics do 

not lend themselves to field experimental settings, and in these settings lab experiments can help 

to generate understanding of particular scenarios, perhaps especially when the researcher 

introduces contextual features relevant to the underlying research question at hand.  

 

i. Laboratory experiments in environmental decision making 

 

Lab experiments have long been used to identify and address environmentally relevant 

market failure.  One of the most heavily researched lab experimental games is that of the 

voluntary contribution mechanism (VCM), which models a social dilemma mirroring the 

predicted “tragedy of the commons” scenario inherent in public goods (Hardin, 1968).  Similar to 

findings from ultimatum and dictator games (see Güth, Schmittberger, and Schwartze, 1982; 

Camerer and Thaler, 1995), VCM experiments have established that individuals tend to display 

some degree of cooperation inconsistent with either the privately or socially optimal outcomes. 

While a vast amount of research has been done to identify frameworks and mechanisms that may 

lead to cooperative outcomes in public goods games (for a review see Ledyard, 1995), most of 

these experiments lack contextual features that make them directly relevant to environmental 

settings.  That is, they tend to occur in computer laboratories on university campuses amongst 

college students, and they generally study abstract games involving tokens or money without 

relevance to particular public good contexts. 

 

Perhaps the most pressing public goods issue in the field of environmental economics is 

that of atmospheric greenhouse gas emissions, a problem with a top-down solution that requires 

coordination with little enforcement capability.  Since there are high barriers to conducting 

experiments with the sample of interest in this context (i.e. high-level policymakers), lab 
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experimentation that maximizes contextual relevance is perhaps the closest that researchers can 

get to causal inference in this particular domain.  Thus, where field experimentation is 

impractical or infeasible, experimentalists may instead attempt to glean insights from well-

designed lab experimentation. 

 

The question of how applicable findings from VCM experiments in the lab may be to 

questions pertaining to global climate negotiations rests upon a number of contextual features.  

For instance, it is generally accepted that climate change requires a minimum amount of 

cooperation in order for any cooperation to be meaningful (i.e. it is a threshold public good; 

Tavoni and Levin, 2014; Dannenberg et al., 2014).  Additionally, meaningful cooperation 

involves a large number of heterogeneous players (Kolstad, 2010; Barrett, 2010) who may exhibit 

self-serving bias in their perspectives on fairness (Babcock and Loewenstein, 1997; Babcock, 

Loewenstein, Issacharoff, and Camerer, 1995).   

 

Therefore, a number of recent laboratory experiments have attempted to improve the 

generalizability of the standard VCM experiment by contextualizing the game to mimic the 

circumstances of global climate change negotiations (e.g., Milinski et al., 2008; Tavoni et al., 

2011; Barrett and Dannenberg, 2013; Dannenberg et al., 2014).  These games have suggested, for 

example, that group members only cooperate when the risk of loss is sufficiently high (Milinski 

et al., 2008), that inequality in wealth further complicates the coordination problem and pledges 

can aid in coordination (Tavoni et al., 2011), and that reducing uncertainty drastically facilitates 

cooperation (Barrett and Dannenberg, 2013; Dannenberg et al., 2014).  The findings from such 

experiments foster discussion surrounding, for example, the importance of resolving uncertainties 

and amending the infrastructure within which global climate negotiations transpire. 

 

ii. Field experiments in nonmarket valuation 

 

In the case of missing markets for environmental amenities, the question of how to 

appropriately engage in non-market valuation is immensely important.  Accordingly, the NOAA 

panel spurred a thread of literature examining the WTP-WTA gap, and experimental economic 

literature in this domain has since multiplied.  Lab experiments in cheap talk (Cummings 

Harrison, and Osborne, 1995; Cummings and Taylor, 1999)—the explicit incorporation of 

hypothetical bias into the design of the contingent valuation survey—inspired experimental 

investigation into improvements in stated preference methodology.  For instance, List (2001) and 
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Carlsson, Frykblom, and Lagerkvist (2005) implemented FFEs—the former among sports card 

traders and the latter among Swedish meat and poultry consumers—to investigate the impact of 

cheap talk, finding evidence in support of its effectiveness in lowering valuations.  In the vein of 

List (2003) and List (2011b), several cheap talk FFEs have found that cheap talk influences 

behavior among subjects unfamiliar with the good being valued, while it does not influence 

experienced consumers of the good in question (e.g., List, 2001; Lusk, 2003; Aadland and 

Caplan, 2003, 2006; Blumenschein et al., 2008).  Following from a FFE demonstrating the 

effects of consequentiality on contingent valuation responses regarding a referendum vote 

(Cummings and Taylor, 1998), Landry and List (2007) compare cheap talk and consequentiality 

and find that the results under the two scenarios are indistinguishable.3   

 

An additional set of experiments explores the extent to which the context of survey 

administration influences valuation.  List et al. (2004) use a FFE to study the effects of 

respondent anonymity, finding that social pressure plays a sizable role in valuation.  In a natural 

field experiment (NFE), Alpizar, Carlsson, and Johansson-Stenman (2008) vary anonymity to 

study the impacts of donations to a Costa Rican national park, finding that social anonymity 

decreases donations by 25% relative to donations solicited by an interviewer.  Leggett et al. 

(2003) conduct a similar experiment to detect differences in valuation responses for Fort Sumter 

National Monument, finding that self-administration of surveys leads to 23-29% lower valuations 

than do interview responses.4  Clearly, lab and field experimentation have contributed greatly to 

our understanding of biases in contingent valuation—often considered the “only game in town” 

when it comes to total valuation of environmental amenities—encouraging the continuous 

evolution and refinement of the method to increase its credibility.  

 

iii. Field experiments in waste disposal 

 

Additionally, a number of small-scale experiments have contributed to our understanding 

of human behavior in the context of waste disposal.  For example, experimental literature on 

littering highlights the tendency of individuals to litter significantly more when they are subject 

to littered environments as opposed to uncontaminated ones (Geller, Witmer, and Tuso, 1977; 

                                                
3 A number of other experiments explore the results and nuances of consequentiality.  For instance, Herriges et al. (2010) 
implement a natural field experiment to value water quality in Iowa lakes, finding that the degree of consequentiality is 
unimportant in contingent valuation; so long as there is at least a weak perception of policy influence, valuations are consistent.  
Additionally, Vossler et al. (2012) find similar results in a repeated valuation study centered upon riparian buffers in Quebec.   
4 Additional experiments seek to reveal the nuances behind such experimenter effects, such as the formality of the interviewer 
(Bateman and Mawby, 2004), the association between the interviewer and the product (Loureiro and Lotade, 2005), and 
demographic characteristics of the interviewer (Gong and Aadland, 2011).  
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Krauss Freedman, and Whitcup, 1978; Reiter and Samuel, 1980; Cialdini, Reno, and Kallgren, 

1990; Ramos and Torgler, 2010; Keizer, Lindenberg, and Steg, 2011).5   Most of these studies 

involved varying the extent of litter or other contamination (e.g., graffiti) then distributing flyers 

and recording whether they were properly discarded. Dur and Vollaard (2012) implement a field 

experiment to test if policy efforts to erase this normative effect of littering—i.e. provision of 

public cleanup services—contribute to less littering (i.e. due to the “broken window effect”) or 

more littering (i.e. due to free riding).  Having randomized the frequency of cleanup services over 

three months, they find evidence for both phenomena, with free riding outweighing contributions. 

 

Similarly, field experiments have revealed cost-effective means to increase responsible 

recycling behavior. These experiments have revealed the influence of exogenous goal setting 

(McCaul and Kopp, 1982), community leaders (Hopper and Nielsen, 1991), salience (Krendl, 

Olson, and Burke, 1992), and social norms (Schultz, 1999) on household-level recycling 

behavior. In a work environment, Holland, Aarts, and Langendam (2006) use a natural field 

experiment to demonstrate a significant effect of implementation intentions (i.e. planning) on 

recycling behavior. Randomizing group-level public exposure in a recent framed field 

experimental threshold public goods game, Alpizar and Gsottbauer (2015) capitalize upon human 

pride and (especially) aversion to guilt to promote increased recycling effort in Costa Rica.  They 

additionally demonstrate a crowding-in effect of regulatory policy that reduces the risk of falling 

short of the threshold.  Hence, while rational incentives are undoubtedly present in waste disposal 

and sorting decisions, policymakers may target a number of behavioral mechanisms to cost-

effectively improve responsible disposal of waste. 

 

iv. Field experiments in energy and water conservation 

 

Relatively recently, field experimentation has been used to address resource conservation 

and attenuation of environmental externalities in the economy at large.  For instance, several field 

experiments have demonstrated effectiveness of interventions in residential electricity and water 

use.  Perhaps most famously, Opower’s experiments demonstrate that provision of social norm 

information to households can lead to an average 2% savings in electricity use (Allcott, 2011b).  

Ayres, Raseman, and Shih (2012) also analyze Opower experiments, finding that the messages 

are most effective among households with the highest consumption and that the frequency of 

                                                
5 Few experimental studies reject this effect (e.g., Crump et al., 1977; Reno et al., 1993).  
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messaging matters.6  Similarly, in a natural field experiment on residential water conservation, 

Ferraro and Price (2013) demonstrate that the use of normative messages is more effective than 

either prosocial appeals or technical information on their own, and again that high-use 

households—i.e. the most price insensitive subjects—are most susceptible to these messages.  

The norms’ effects persisted well beyond the intervention relative to control groups (and relative 

to prosocial and technical messaging groups in the water conservation experiment), indicating 

that norms may ‘nudge’ individuals into making more energy- and water-efficient decisions on a 

habitual basis (Ferraro, Miranda, and Price, 2011; Allcott and Rogers, 2014).  However, 

Tiefenbeck et al. (2013) warn against the potential negative spillovers, demonstrating a perverse 

effect of a water-saving campaign on residential electricity consumption. 

 

In addition to testing norms-based messaging, experimental economists have explored the 

potential for dynamic pricing schemes to increase the efficiency of residential energy 

consumption.  Wolak (2006) was the first to randomize dynamic energy pricing.  In a field 

experiment in Anaheim, experimental subjects received smart meters and were assigned to 

remain on the business-as-usual pricing plan or to receive a critical peak pricing (CPP) plan.  In 

the CPP plan, customers received rebates worth $0.35 per kWh reduction relative to their 

household’s average use for the most consumptive non-CPP days during that time period.  While 

treated customers reduced their consumption by 12% relative to control customers during critical 

peaks, there is a large perverse effect on non-CPP days due to the structure of the CPP plan, 

which incentivizes treated subjects to consume more on non-CPP days to increase their rebate.  

Additionally, customers were guaranteed their CPP bill would not exceed their bill under a 

standard increasing block tariff, potentially dampening incentive to reduce consumption. 

 

In an extension, Wolak (2011) verifies the effectiveness of CPP plans in reducing 

consumption during peak events, especially when CPP does not simply reward a customer with 

rebates if consumption is below a reference level; the most effective treatment by far is the CPP 

plan where a customer pays the high tariff for every kWh consumed during peak events.  

Additionally, he investigates the existence of an individual “cost of taking action” phenomenon 

whereby an individual’s cost of reducing energy use must be overcome by a sufficiently large 

price spike; he finds no evidence for such a cost of action, as (price adjusted) reductions in 

consumption on hourly and CPP tariffs are equal. Allcott (2011b) also detects significant effects 

of dynamic pricing in the context of salient hourly price changes, finding that consumers are 
                                                
6 Costa and Kahn (2013) detect heterogeneity in the effects of the home energy reports according to political ideology, 
demonstrating a perverse effect on households in conservative areas that is outweighed by the effect on households in liberal ones. 
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fairly price elastic, reducing consumption considerably during peak hours, and that they do not 

consequently increase consumption in off-peak hours. 

 

Having demonstrated the effects of dynamic pricing, others have introduced interventions 

to evaluate additional or relative efficiencies.  Jessoe and Rapson (2012) demonstrate an effect of 

real-time price change updates (0-7 percent), which grows considerably when interacted with 

real-time consumption feedback (8-22 percent), demonstrating the importance of salience in both 

price and quantity information.  Kahn and Wolak (2013) also find that improved comprehension 

of marginal pricing schemes in combination with understanding of the consumption of 

electricity-consuming appliances reduces consumption 1.5 and 3 percent on average for the 

customer bases of two California utilities.  Ito, Ida, and Tanaka (2015) compare dynamic pricing 

(i.e. extrinsic motivation) to moral suasion (i.e. intrinsic motivation).  They find that consumption 

decreases monotonically with increases in the marginal CPP price; while moral suasion 

significantly reduces consumption during peak events (3 percent), the effect is only a fifth as 

strong as that of the marginal price increase (15 percent).  Using follow-up data, they find that 

only economic incentives have a persistent effect, likely owing to habit formation and the 

incentives’ effectiveness among low-income households.   

 

Finally, a recent line of literature aims to understand and price the effects of behavioral 

phenomena on energy-saving technology adoption.  For instance, in a door-to-door field 

experiment, Herberich, List, and Price (2011) structurally estimate the effects of social pressure 

and norms on the purchase of compact fluorescent light bulbs (CFLs), finding that both have an 

influence on buyers’ decisions in this context.  While social norms (i.e. informing the buyer of 

the proportion of similar households using CFLs) affect buyer decisions on the extensive 

margin—that is, whether to buy CFLs—price variation influences decisions on the intensive 

margin, so that buyers purchase more CFLs when they are cheaper.  Interestingly, the data 

suggest that individuals who are not warned that a solicitor will approach the house may 

experience negative utility from the purchase due to social pressure to buy when confronted with 

the solicitor, a finding concordant with DellaVigna, List, and Malmendier (2012).  Finally, Yoeli 

et al. (2013) demonstrate the importance of observability—what they term ‘indirect 

reciprocity’—in voluntarily contributing to peak demand reductions. 

 

In sum, economic experiments have revealed an impactful role for social norms and 

extrinsic incentives in promoting residential energy conservation.  Further experimentation in this 
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domain will continue to reveal and refine mechanisms by which utilities and policymakers may 

influence consumption. 

 

v. New directions in environmental field experimentation 

 

Field experiments have come to play a ubiquitous role in development economics 

(Kremer, 2003; Banerjee and Duflo, 2006; Duflo, 2006; Glewwe and Kremer, 2006; Banerjee 

and Duflo, 2009).  This thesis argues that environmental economists should capitalize upon the 

methodology in a similarly pervasive manner, creating exogeneity in relevant contexts to 

understand cause and effect in environmental decision making.  This endeavor should be pursued 

along two dimensions: replication of well-documented observational and laboratory findings 

across a number of field contexts to determine external validity—as with Gneezy and List’s 

(2006) field experimental test of the gift exchange findings in Fehr, Kirchsteiger, and Riedl’s 

(1993) lab experiment, which endorse the use of efficiency wages—and pursuit of innovative 

insights regarding environmentally-relevant behavioral phenomena.  

 

With regard to the former, some environmental economists have begun to investigate 

well-documented laboratory findings—or field findings from non-environmental contexts—in 

environmental field experiments. For instance, Stoop, Noussair, and van Soest (2012) explore the 

social dilemma problem of the VCM in the context of a privately owned fishery, replicating a 

VCM incentive structure in a framed field experiment among recreational fishermen.  In contrast 

to the findings of myriad laboratory experiments, they find support for the classic theoretical 

outcome of no cooperation, refining the experimental design to determine that the reason for the 

divergence from lab outcomes is the nature of the activity.  That is, contrary to the most common 

critique of laboratory experiments, the cause of the divergence is not the nature of the subject 

pool but rather simply that the fishermen enjoy the act of fishing.  Other studies have replicated 

the well-established finding that defaults influence behavior in ‘green’ contexts such as reducing 

junk mail (Liebig and Rommel, 2014) and increasing uptake of carbon offsets (Löfgren et al., 

2012), or the finding from the economics of charitable giving that 1:1 matching is most effective 

at inducing carbon offsetting contributions from bus travelers (Kesternich, Löschel, and Römer, 

2014). 

 

In addition to testing existing findings in environmentally relevant contexts, traditional 

and behavioral economists should target environmental behaviors to test bed new and existing 
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theories (see Card, DellaVigna, and Malmendier, 2011, for a discussion of the synergistic 

relationship between theories and experiments).  For instance, theories of social norms have 

benefited from the randomization of norm information in a number of environmentally relevant 

contexts, significantly influencing policy on consumer behavior and opening up a large strand of 

literature in the energy space.  As discussed below, this thesis presents an additional novel 

context for field experiments to reduce externalities by using interventions to target excess fuel 

use in the aviation industry.  Such research will serve to demonstrate the benefits to practitioners 

of participation in academic research—thereby mainstreaming such mutually beneficial 

partnerships— and to open new and important lines of academic inquiry. 

In sum, the field is rife with opportunity for creative and intellectual minds to identify 

behavior-induced environmental inefficiencies and test the effectiveness of various interventions 

in eliminating social deadweight loss, especially in contexts where Pigouvian taxes, permits, or 

regulation are impractical or infeasible in the short run.  On a large scale, the methodology can 

quickly narrow in on socially and privately cost-effective means to accomplish the environmental 

goals of consumers, businesses, and policymakers alike.  

 

 

5.  Dissertation outline  

 

This thesis aims to demonstrate a role for the various types of experimental methodology 

in furthering the field of environmental economics.  The first paper (Chapter II) describes a 

simple natural field experiment across the customer base of Good Energy—a British all-

renewable energy supplier—that aims to maximize take-up of its new online billing service.  The 

goal of the study is to understand the effect on ‘green’ consumers of environmental information 

and cognitive dissonance by varying message content in a regular email communication with 

customers.  In one treatment, we randomize messaging centered on the environmental benefits of 

switching to e-billing.  In an alternative message, we remind consumers of their ‘green’ identity 

and past environmental decision making in signing up to Good Energy.  We compare these 

treatments to a control email highlighting improved access to bills and customer satisfaction, and 

we find that environmental messaging does not enhance customers’ proclivity to sign up to e-

billing, while cognitive dissonance weakly improves take-up. 

 

The second and third papers investigate means by which to reduce greenhouse gas 

emissions from the aviation sector by implementing experimental treatments rooted in a novel 
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economic theory of captain behavior (Chapter III) and by exploring whether captains’ 

preferences and attitudes toward risk and uncertainty—as well as their social preferences—play a 

role in their fuel use (Chapter IV).  From February 2014 through September 2014, all eligible 

captains in Virgin Atlantic Airways knowingly participated in a field experiment to test whether 

performance feedback, tailored performance targets, and prosocial incentives influence captains’ 

implementation of three specific fuel-efficient behaviors.  The advantage of this FFE relative to 

most others is that all eligible captains were included in the subject pool (i.e. the airline opted to 

include the entire population, not just a subset of volunteers), so the results are free from 

selection bias.  We find that exogenous performance targets are the most cost-effective means by 

which to improve fuel efficiency; we show in the following paper that prosocial incentives—

which are equally effective in terms of changing behavior—improve captains’ job satisfaction.  

Given Kahneman and Tversky’s (1981; p. 211) perspective that “the adoption of a decision frame 

is an ethically significant act” in contexts where it “influences the experience of consequences,” 

these findings leave airlines with both efficiency and experiential perspectives to consider. 

 

We additionally implemented an AFE in the study debrief survey in which we ask 

incentive-compatible risk preference elicitation questions, evaluate risk attitudes, and assess 

uncertainty aversion.  In Chapter IV, we investigate whether these innate heterogeneities play a 

role in captains’ fueling decisions, finding that increased risk tolerance on the self-reported 

attitudinal risk scale improves efficiency in aircraft fuel loading decisions.  In addition, among 

captains who receive prosocial incentives in the above framed field experiment, captains who 

donated more to charity prior to the study perform more strongly once the experiment begins than 

do captains who donated less.  As mentioned previously, captains who receive prosocial 

incentives have higher job satisfaction than those captains in the control group, indicating that 

captains have positive levels of altruism that may be harnessed for the improvement of social 

outcomes as well as employee satisfaction. 

 

The final paper (Chapter V) describes a novel Nash bargaining experiment in the 

laboratory with groups of six heterogeneous countries bargaining over a fixed allocation of global 

emissions.  The experiment aims to understand whether side deals—i.e. agreements among 

homogeneous subsets of countries that occur prior to entering a global negotiation—can improve 

prospects for reaching effective global agreement to allocate emissions reductions consistent with 

a collective target.  Given that the population of interest here consists of heads of state and high-

level climate delegates to the United Nations Framework Convention on Climate Change, the 
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research question precludes the design and implementation of a field experiment; thus, the 

appropriate experimental tools exist solely in the laboratory.  We find that inserting pre-

negotiation side agreements into the global bargaining infrastructure does not increase the 

likelihood of success unless there is a strong signal of commitment by relatively rich countries; 

however, the existence of side agreements does serve to reduce the demand of the rich in global 

negotiations. 
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CHAPTER II 

 

BE WHO YOU OUGHT OR BE WHO YOU ARE?  

ENVIRONMENTAL FRAMING AND COGNITIVE DISSONANCE IN GOING PAPERLESS 

 

By Greer Gosnell 

 

 

Abstract: We manipulate message framing to analyze behavioral motivators businesses may 

consider when encouraging customers—here, those with revealed environmental preferences—

from paper billing to online billing.  In a large-scale natural field experiment comprising 38,654 

Good Energy customers in total, we investigate a role for targeted messaging based on consumer 

preferences and beliefs in emails promoting an active switch to paperless billing.  Through 

randomization of environmental information and messaging rooted in theories of cognitive 

dissonance—a phenomenon centered upon a desire for consistency in self-perception—we find 

that environmental information is ineffective in inducing behavior change.  Interestingly, the 

cognitive dissonance treatment weakly improves uptake among our main sample but largely 

backfires among a subsample of individuals with extensive postgraduate education.  Contrary to 

the majority of the literature on gender and environmental behavior, females are less likely to 

switch to paperless billing. 
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1.  Introduction 

 

Businesses and governments are increasingly turning to randomized experiments to 

discover means by which to increase profitability or pursue policy goals.  In a number of 

contexts, such social and private objectives coincide, creating opportunity for partnerships 

between academic researchers and businesses interested in either or both of said objectives.  For 

instance, Opower—a thriving for-profit energy information provider—was founded upon robust 

research originally intended to help energy suppliers transition their business models to increase 

customer satisfaction and retention; the customer-centric approach simultaneously helps the 

utilities’ customers to scale back on inefficient energy consumption in the home, thereby 

reducing environmentally costly greenhouse gas emissions.  Over the last decade, Opower has 

worked alongside utilities and academic researchers to implement randomized experiments that 

demonstrate the effectiveness of their product, i.e. provision of tailored social norm information 

to householders (e.g., see Allcott, 2011).   

 

Indeed, customer communications is of paramount importance to businesses in terms of 

both allocation of costly resources as well as customer retention and satisfaction.  As a means of 

increasing the efficiency of operations, the business world has seen a clear and rapid 

capitalization upon technological advancements—such as mobile phone applications and text 

messaging, or automatic bill pay (ABP)—in endeavors to simplify and expedite everyday 

business practices. However, enrollment in such programs may lead to welfare loss, as 

demonstrated in Sexton (2015).  In this paper, residential customers enrolled in ABP increase 

energy consumption by 4.0% on average, an effect that increases to 7.3% for small- to medium-

sized commercial and municipal customers.  Thus, while enrolling customers in alternative bill 

payment schemes may decrease transaction costs for retailers and improve resourcefulness, the 

act may come at a cost in terms of customer satisfaction and ultimately retention.  Instead, 

companies may offer the option to switch, but status quo bias and potential costs (e.g., from 

increased consumption, as in Sexton, 2015) suggest that many consumers may refrain from 

opting in.  

 

How can companies maximize opt-in rates for resourceful changes in communications?  

In this paper, we investigate means by which to facilitate such cost- and resource-efficient change 

without forcing the change upon the customer.  We manipulate message framing to analyze 

behavioral motivators businesses may consider when encouraging customers—here, those with 
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revealed environmental preferences—from paper billing to online billing.  We investigate a role 

for targeted messaging based on consumer preferences and beliefs through randomization of 

environmental information and messaging rooted in theories of cognitive dissonance—a 

phenomenon centered upon a desire for consistency in self-perception.  Our design relies on the 

assumption that the customer base of Good Energy, a 100% renewable energy supplier in the 

United Kingdom, is characterized by strong environmental preferences.  The assumption is 

founded upon the mission of Good Energy “to keep the world a habitable place by offering 

consumers an active role in addressing climate change.”7  In light of the social mission of Good 

Energy and its customers’ selection into their customer base, we conceptualize a utility function 

susceptible to information and cognitive dissonance, designing interventions to manipulate 

arguments in the utility function related to social preferences and self-perception. 

 

Neoclassical economics holds that information influences behavior through its effects on 

individuals’ internal cost-benefit analyses, which are rooted in preferences characterized by 

selfishness (DellaVigna, 2009). More recent economic theories posit that such cost-benefit 

analyses incorporate altruistic preferences (Becker, 1974; Andreoni, 1989, 1990).  Theories in 

social psychology draw similar conclusions regarding the role of information on attitudes and 

behaviors (e.g., Ajzen and Fishbein, 1980; Stern, 2000; Kollmuss and Agyeman, 2002).  Perhaps 

counter to intuition, there is ample empirical evidence that calls into question the effectiveness of 

information in changing human behavior.  We test whether social information influences the 

decision making of individuals with revealed environmental preferences.  That is, our first 

intervention aims to promote paperless billing through provision of information on environmental 

costs associated with paper use.  

 

More recently, following the publication of the seminal research by Kahneman and 

Tversky (1979), psychological ‘irregularities’ have begun to permeate economic theory; 

economists have since incorporated empirical patterns such as loss aversion, anchoring, and 

probability weighting into traditional utility functions.  As evidenced in Section II below, 

cognitive dissonance is no exception.  While several cognitive dissonance theories have been 

proposed and (to some extent) tested, field experimentalists have arguably underutilized the 

psychological phenomenon, whether as a means to explain behaviors inconsistent with 

neoclassical economic predictions or as a vehicle for behavior change.   Our second intervention 

                                                
7 http://www.goodenergygroup.co.uk/about/mission 
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investigates the role that innate desire for consistency across one’s beliefs and behaviors may 

play in encouraging conservation. 

 

Finally, a sparse literature appears to suggest that imagery can induce behavior change.  

For instance, a series of lab experiments (Haley and Fessler, 2005; Burnham and Hare, 2007; 

Rigdon et al., 2009; Mifune, Hashimoto, and Yamagishi, 2010) and field experiments on honesty, 

littering, and donating (Bateson, Nettle, and Roberts, 2006; Ernest-Jones, Nettle, and Bateson, 

2011; Ekström, 2012) demonstrate that an image of eyes can cause individuals to comply with 

cooperative norms in some contexts.  Additionally, money priming has been shown to lead 

people to make less altruistic decisions or to focus their attention on monetary features of 

products (see Vohs, 2015, for a review).  Here, we test whether images of the environmental 

good under threat (i.e. trees) can serve as a visual reminder of the externality associated with 

subjects’ inaction and therefore increase their probability of acting. 

 

In a large-scale natural field experiment comprising 38,654 Good Energy customers, we 

randomize environmental information, dissonance-inducing messaging, and environmental 

imagery in emails promoting an active switch to paperless billing.8  In addition to household-

level data on e-billing sign-up, our data include both gender and a proxy for level of education 

(i.e. whether the householder is a ‘Doctor’ or ‘Professor’), two demographic factors that have 

been shown to increase pro-environmental behavior (Kollmuss and Agyeman, 2002).  We find 

that both imagery and information on environmental costs associated with the status quo are 

ineffective in increasing uptake of paperless billing beyond that of a control group.  On the other 

hand, dissonance-inducing messaging increases uptake among our main sample; interestingly, it 

backfires among our highly educated sample.  We attribute the latter finding to a lesser need for 

reassurance of a moral (e.g., socially-minded) self-concept.9  Additionally, we find that women 

are less likely than men to sign up to paperless billing.  The research suggests that individuals 

may be targeted with various forms of messaging to increase low-cost environmentally 

advantageous behaviors, and calls into question the general conclusion in the literature that 

women are more inclined than men to behave in line with environmental objectives. 

This paper is structured as follows. Section 2 provides background on the mechanisms 

investigated in our treatments, namely the role of information in environmental decision making 

and the infusion of cognitive dissonance into the study of economic decision making.  Section 3 

                                                
8 Emails were sent to all customers for whom Good Energy had an email address on file (i.e. 84% of accounts). 
9 Potential alternative explanations include a relatively strong priority for convenience, or knowledge of (and subsequent non-
susceptibility or aversion to) marketing tactics rooted in psychological phenomena.   
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outlines the experimental design and details the interventions implemented across Good Energy’s 

customer base.  Section 4 reveals the results of the field experiment, and Section 5 concludes. 

 

 

2.  Background and motivation 

 

i. Be who you ought: Information provision 

 

While the rational economic man of neoclassical theory is influenced by two primary 

motivators—information and incentives—social psychology and behavioral economics reserve a 

role for evaluative, normative, and identity-driven beliefs and motivations (Ajzen and Fishbein, 

1980; Elster, 1989; Akerlof and Kranton, 2000; Stern, 2000; Kollmuss and Agyeman, 2002).  

According to the norm-activation theory of Schwartz (1973) and the value-belief-norm (VBN) 

theory of Stern et al. (1999), knowledge of negative consequences associated with one’s 

actions—or particular undesirable conditions for which one is perceived to be responsible—spurs 

altruistic behavior.  Therefore, information regarding particular externalities (or internalities) may 

change individuals’ beliefs and intentions, in turn altering their proclivity to engage in socially or 

personally beneficial behaviors (Stern, 2000).10   

 

Empirically speaking, and despite the overwhelming tendency of social campaigns to 

communicate information with the goal of changing behavior, the impact of consequence-based 

information on subsequent behavior has proven negligible in a number of settings.11  In a 

Norwegian experiment, parents were randomly assigned to receive a short informational briefing 

and brochures on smoking and its harmful passive effects on their children during well-child 

appointments, and self-reported smoking behavior did not change (Eriksen, Serrum, and 

Bruusgaard, 1996).12  Similarly, several studies demonstrate a non-effect of information—

including calories per item and recommended daily caloric intake—on subsequent order choice in 

fast food restaurants (Harnack et al., 2008; Downs, Loewenstein, and Wisdom, 2009).  Likewise, 

extreme media coverage of the consequences of Enron’s accounting scandal on 401(k) holdings 
                                                
10 While Stern et al. (1999) find empirical support for their VBN theory, Kollmuss and Agyeman (2002) argue that the 
determinants of pro-environmental behavior are so varied and complex—dependent on myriad interactions between internal and 
external influences, as well as demographic factors10—that no model could possibly predict its (non-) occurrence.  Furthermore, 
they claim that the effect of environmental knowledge and awareness is highly contextual and rests on the preferences and beliefs 
of the individual to which information is imparted, and the ability of that information to trigger emotional involvement.   
11 Zelezny (1999) finds that educational interventions—particularly in classrooms—can improve environmental behaviors, but the 
meta-analysis comprises a number of studies with poor methodology. 
12 In a Dutch experiment, information on the personal and social consequences of smoking altered perceptions of the experience 
of smoking in a negative direction (Dijkstra et al., 1998).  Subjects construed the experience as less tasteful and pleasurable, 
though any resulting changes in behavior were not measured. 
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did not prompt employees in similar companies to diversify their 401(k) investments (Choi, 

Laibson, and Madrian, 2005).13  

 

The consequences discussed above are primarily ‘internalities’, or unintended costs of 

one’s actions that accrue to oneself alone.  A meta-analysis of interventions intended to reduce 

household energy consumption demonstrates that information regarding externalities may 

increase knowledge but does not subsequently alter behavior (Abrahamse et al., 2005). On the 

other hand, Ferraro and Price (2011) find that information on the extent and consequences of 

water use among its (environmentally unconscious) customer base increased the implementation 

of water-saving strategies, especially among high-consumption households.  Additionally, using a 

randomized field experiment in Brazilian favelas, Toledo (2016) finds that environmental 

persuasion increases take-up of LED (energy-efficient) light bulbs by 6 percentage points (or 

13%).  In contrast to our setting, the outcome of interest in these cases is costly, as they require 

that individuals actively change their habits or spend money to reduce their energy and water 

consumption.   

 

In addition, the interventions are applied to individuals who do not necessarily exhibit a 

preference for the healthy or financially advantageous outcomes that constitute the focus of those 

studies.  In a Dutch mass media campaign surrounding the causes of and possible behavioral 

solutions for climate change, individuals who reported a higher willingness to engage in pro-

environmental behaviors were those who had already been behaving in such a manner prior to the 

campaign (Staats, Wit, and Midden, 1996).  That is, information campaigns may be more 

effective in inducing behavior change among individuals already motivated prior to intervention. 

 

We explore a role for information regarding environmental externalities on a targeted 

audience of individuals exhibiting green preferences, where the information provided is directly 

and specifically related to the outcome behavior of interest.  As environmental issues become 

more prominent in media and education, this environmentally conscious audience is growing and 

is arguably the segment of the population most inclined to change their behavior as a result of 

exposure to information on environmental externalities for which they are (partially) responsible; 

such individuals tend to possess a locus of control and have likely already acted prosocially in 

                                                
13 Several additional experiments demonstrate the negligible effects of financial education.  For instance, in a randomized 
experiment, information provided at a benefits information fair was shown to have only a small (though significant) positive 
effect on employee enrollment in a Tax Deferred Account scheme in a university setting (Duflo and Saez, 2003).  Similarly, hour-
long financial education seminars at a large insurance provider proved to stimulate only marginal improvements in 401(k) 
investment (Madrian and Shea, 2001; Choi, Laibson, Madrian, and Metrick, 2002). 
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accordance with their environmental knowledge in signing up to this particular utility.  Unlike 

many studies on the effects of information, our setting controls for any external influences (e.g., 

economic or social incentives) and targets an extremely low-cost behavior—namely making a 

one-time switch from paper billing to online billing—so that attitudinal factors likely play a 

causal role in decision making (Stern, 2000).   

 

ii. Be who you are: Cognitive dissonance 

 

Theories of cognitive dissonance originated in psychology and have since piqued the 

interest of a number of economists.  The theories generally rest upon the assumption that human 

beings are averse to inconsistencies between past or current beliefs and behaviors (Festinger, 

1957).  In general, individuals strive for consistency, competence, and morality in their 

perceptions of themselves, and behaving in a manner that negates these features results in 

psychological discomfort (Aronson, 1992).  Such ‘dissonance’ is morally costly, and economic 

agents will incorporate these costs into their utility maximization problems (e.g., Gilad, Kaish, 

and Loeb, 1984; Konow, 2000).  Hence, cognitive dissonance may be responsible for some 

portion of the ‘noise’ inherent in traditional neoclassical models.   

 

According to Gilad, Kaish, and Loeb (1987), cognitive dissonance can manifest in 

situations in which “a decision is undertaken freely and with the understanding of possible 

adverse outcomes” (p. 64).  In their theory of selective exposure, behavior remains consistent 

with traditional utility maximization if exposure to certain types of information can be controlled 

and dissonance kept at a level below some threshold.  Otherwise, the individual must change her 

beliefs (which is costly), and she will subsequently maximize in accordance with a revised 

objective function.   

 

Rabin (1994) proposes a similar structure for the utility function, adding a more nuanced 

explanation of the contexts in which cognitive dissonance will increase the tension between 

material benefit and psychological cost.  For instance, he conjectures that an individual who 

receives less material benefit from an immoral activity will further convince himself of the 

immorality of the activity.  Interestingly, he shows that a stronger proclivity toward cognitive 

dissonance may pressure an individual with high material benefit from said activity into changing 

her beliefs, thereby augmenting immoral activity.  In his primary example, he discusses the 

acceptance of ethically questionable activity in the meat industry, asserting that strong moral 
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indoctrination combined with high utility from meat consumption will lead to internal 

justification of otherwise unethical practices (i.e. a change in beliefs).  Counter to intuition, the 

agglomerated effects of this phenomenon may mean that inculcating members of society with 

strong moral beliefs could eventually lead to higher levels of immoral activity. 

 

A more recent interpretation of cognitive dissonance also emphasizes the role of context 

in determining the extent to which one may rationalize decisions in light of her beliefs.  Mazar, 

Amir, and Ariely (2008) put forth a theory of cognitive dissonance in which the propensity to 

engage in dishonest behavior is dependent on two types of contextual feature. The first—

‘categorization’—refers to the extent to which the given context facilitates flexibility of 

interpretation with respect to self-perception, or the extent to which the act may plausibly be 

considered consistent with the self-concept (which may, in turn, depend on the strength and 

relevance of social norms; see Wichardt, 2012).  For instance, Nail, Misak, and Davis (2004) 

point out that the dissonance-inducing act must be voluntary and otherwise unjustifiable (or 

difficult to justify), and must involve perception of commitment.  The second type relates to 

individuals’ mindfulness of and attention to their own moral standards.  In several laboratory 

experiments, they find that individuals who have the opportunity to cheat do so, though they are 

less likely to cheat when reminded of their moral beliefs or after signing an honor code.  They 

argue that the salience of self-concept is, therefore, an important driver of congruence between 

belief and behavior. 

 

In a more formal economic theory, Akerlof and Dickens (1982) propose a two-period 

model in which a rational individual first chooses whether to participate in a safe or hazardous 

industry; if she chooses the latter, she will convince herself of the safety of the industry so as to 

justify her past decision.  In the second period, a cost-effective safety device becomes available 

and the individual—who would have purchased the device had it been available prior to her 

perception change—continues to work without it.  According to the authors, their model justifies 

government intervention requiring hazardous industry workers to wear the equipment in order to 

return to Pareto optimal conditions.  While the model focuses on labor selection, it is also applied 

to explain the effectiveness of non-informational advertising, the incidence of crime under 

various degrees of sanctions, and the necessity of Social Security for individuals who are averse 

to acknowledging the inevitability of old age. 
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Finally, Konow (2000) posits a utility function comprising material wealth along with two 

costly parameters: cognitive dissonance and self-deception.  The former characterizes the 

deviation between one’s beliefs and one’s actions—in this case, the deviation between a fair 

allocation and one’s actual allocation in a dictator game—while the latter captures the discomfort 

associated with altering one’s initial fairness perspective to increase consistency between the 

aforementioned allocations.  Experimental results from several variants of the dictator game—

where subjects perform both active and passive dictator roles—provide strong empirical support 

for both phenomena. 

 

Do individuals express opinions or take part in costly activities in order to remain 

consistent with self-perceptions outside of the laboratory?  Can cognitive dissonance explain 

sacrifice for the sake of fairness in the real world?  Indeed, social scientists have cited cognitive 

dissonance as an explanation for voting behavior (Mullainathan and Washington, 2006), investor 

inertia (Goetzmann and Peles, 1997; Rennekamp, Rupar, and Seybert, 2015), sexual risk taking 

(Mannberg, 2012), diminished labor supply in the face of job search discrimination (Goldsmith et 

al., 2004), endogenous class formation (Oxoby, 2003), and honesty in the face of cheating 

opportunities (Mazar, Amir, and Ariely, 2008).  Furthermore, the phenomenon has been exploited 

as a means to ends such as water use reduction (Dickerson et al., 1992), sustained weight loss 

(Axsom and Cooper, 1985), and reducing hypothetical bias in contingent valuation studies 

(Alfnes, Yue, and Jensen, 2010). 

 

We extend the above literatures in a somewhat new direction.  Using a large-scale natural 

field experiment, we test a role for information provision and cognitive dissonance in 

encouraging renewable gas and energy consumers to switch from resource-intensive paper billing 

to online billing.  To investigate a role for information provision in influencing resourceful 

behavior, we provide the utility customers with information on the social consequences of 

continuing to receive communications in the post.  To test the impact of cognitive dissonance on 

e-billing take-up, we promote present decision making consistent with implicit beliefs associated 

with related past decisions. In sum, we implement treatments that both appeal to embedded 

environmental preferences and that target preferences for a consistent self-perception. 

 

In light of the above theories, we hypothesize that ‘green’ consumers of a renewable 

energy utility will respond to the cognitive dissonance intervention by switching from paper 

billing to online billing if the cost of such dissonance sufficiently outweighs the convenience to 
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the consumer of paper billing and any perceived cost savings associated with its salience.  

Additionally, in line with VBN theory and theories of identity, we posit that information on 

environmental damage will trigger motivation to act altruistically, especially if individuals have 

internalized the norms of eco-consciousness associated with being a Good Energy customer.  

Finally, in line with Taylor and Thompson (1982)’s conclusion that vividness may be important 

in the context of everyday informational competition, we conjecture that environmental imagery 

may serve to enhance the salience of environmental costs, thereby augmenting the perceived 

benefits of taking action and increasing the probability of doing so. 

 

 

3. Experimental design 

 

We partnered with Good Energy—the UK’s leading renewable energy supplier—to 

randomize email content in a campaign to encourage customers to switch from their current 

information channel (i.e. quarterly paper bills received by mail) to online billing (i.e. quarterly 

bills received via email).  The six-week campaign ran in September and October of 2014.  

 

As a business founded upon an environmental mission, Good Energy’s objective was to 

achieve a switch rate as close to 100% as possible.  Additionally, online billing constitutes a cost 

reduction, as online billing requires less physical and human capital than does paper billing.  We 

test the effectiveness of information on environmental savings (‘environmental framing’) and a 

reminder of the customers’ environmental preferences (‘cognitive dissonance’).  Each email 

begins by announcing the arrival of the e-billing option and is sent from Good Energy’s Chief 

Operating Officer.  The defining features of each email intervention are detailed below. 

 

 i. Interventions 

 

Control (Groups 1-2). In the control email, the first line unveils the online billing option 

(‘availability line’ hereafter, emphasis included): “It’s finally here! Now you can switch to e-

billing and have your energy bills emailed directly to your inbox rather than receiving them by 

post.” The subsequent line touts online billing access (‘online access line’ hereafter): “Even 

better, you can access your bills online any time, so they won’t fill any valuable space in your 

drawers or bins.”  Both of the previous lines appear identically across all interventions.   
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The key following control statement reads, “Here at Good Energy, we prioritise 

customer satisfaction. The opportunity to switch to e-billing is just one more step we have taken 

to keep you smiling.” Then, three benefits of switching are listed: 1) Reduce paper waste; 2) 

Spend less time sorting through mail; and 3) Access bills 24/7 online.  The email includes a link 

to make the switch, and all emails contain the same closing statement followed by a signature 

from the Chief Operating Officer (for full letter, see Figure A1 in Appendix). 

 

Environmental Framing (Groups 3-4). This treatment provides information on the 

environmental benefits associated with a universal shift of GE customers to e-billing.  Following 

the availability line stated above, this treatment states (emphasis included), “If all customers 

make the switch, we would save 46 trees worth of paper each year!”  This line is followed by 

the online access line. 

 

In addition to emphasizing GE’s attention to customer satisfaction, the next line also 

points out its commitment to the environment (emphasis included): “Here at Good Energy, we 

prioritise customer satisfaction as well as the environment. The opportunity to switch to e-

billing is just one more step we have taken to keep you smiling and help you shrink your 

environmental footprint.”  The subsequent benefits no longer appeal to the customer herself, but 

rather are informative of the extent of paper waste and its environmental costs.  The first bullet 

states, “The average UK family throws away 6 trees worth of paper in their household bin each 

year.”  The second pertains to the energy and climate impacts of the paper industry as a whole: 

“Paper production ranks 3rd and 4th for most energy intensive and greenhouse gas intensive 

manufacturing industries (respectively).”  Finally, we provide aggregate paper use statistics for 

the UK: “12.5 million tonnes of paper and cardboard are used annually in the UK, making us the 

11th worst paper offender in the world.”  The email closes as indicated in the control description 

(for full letter, see Figure A2 in Appendix). 

 

Control and Environmental Framing (Groups 5-6). While the content contained in the 

above treatment email is roughly the same length and format as the control email, it contains 

some fundamentally different information.  We also test whether provision of the environmental 

information (presented to Groups 3 and 4) in addition to the control information (provided to 

Groups 1 and 2) is effective, allowing us to control for the otherwise substantial change in 

content from one email to the next (see Table 1). All information from both the control and the 



51 
 

environmental framing email is aggregated into one email (for full letter, see Figure A3 in 

Appendix). 

 

Cognitive Dissonance (Groups 7-8). Our final treatment quite closely emulates the 

control email with the exception of a single line difference, so that length and format are quite 

similar.14  Instead of emphasizing customer satisfaction, this email appeals to one’s identity as a 

conscious decision maker: “As a Good Energy customer, you are an environmental steward. 

By switching to e-billing, you take another important step to eliminate the environmental impact 

of your energy use.”  The remainder of the email is identical to the control email (for full letter, 

see Figure A4 in Appendix). 

 

Environmental Image (Groups 2, 4, 6, and 8). Finally, we tested the effectiveness of 

imagery—a central and customary component of Good Energy’s communications strategy—in 

capturing customers’ attention. For each of the above treatment emails, an additional treatment 

intervention existed with the same email content but with a vibrant image of trees at the outset 

(see Figure A5 in Appendix).  All other content in the letters remains identical. 

 

 ii.  Data: Good Energy customers 

 

The main sample consists of 36,810 Good Energy customers, which is the entire customer 

base omitting those for whom a working email address had not been provided or for whom 

gender cannot be identified. This sample is 47% female.  The average customer has been with 

Good Energy for 315 days and consumes 6450 kWh in gas and 3435 kWh in electricity on an 

annual basis.  Customers on a dual fuel account (i.e. who have both gas and electricity accounts 

with Good Energy) comprise 41% of the sample, while those with gas or electricity only 

constitute 6% and 53%, respectively.  A separate analysis is performed for those identified as 

either ‘Doctor’ or ‘Professor’ and are therefore gender neutral, of which there are 1844 customers 

(approximately 5% of the sample).  Of these customers, the average customer duration is 320 

days, average annual gas and electricity consumption are 7592 kWh and 3546 kWh 

(respectively), and 41%, 7%, and 52% are on dual-fuel, gas, and electricity contracts 

(respectively).  The difference in the two samples is significant for annual gas consumption 

                                                
14 Since the length and format are very similar, we do not include a treatment that combines the content of the Control and 
Cognitive Dissonance interventions.  Instead, we simply substitute messaging regarding customer satisfaction for messaging 
invoking identity as an environmental steward, so that not signing up to paperless billing may induce cognitive dissonance.   
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(p<0.01) and proportion of gas-only customers (p<0.10).  We control for all of the above 

observables in the analysis. 

 

More generally, the customers of Good Energy are fairly representative of UK households 

more broadly in terms of energy consumption and costs.  In our data, the average estimated 

annual energy consumption is 3,668 kWh, while the average UK household in 2014 consumed 

4,001 kWh.  On the other hand, Good Energy gas customers use slightly more gas (13,827 kWh) 

than the average British household (12,404 kWh).15  Additionally, customers in our data likely 

pay similar prices per kWh.  Due to increased competitiveness of renewable energy in the UK 

market, Good Energy customers pay a competitive price for their energy.  On average, while dual 

fuel customers of the UK’s ‘Big Six’ energy providers paid approximately £1360 per household 

in 2013, Good Energy households paid £1313 (see Figure 1).  Similarly, compared to Ecotricity, 

one of Good Energy’s primary competitors in the UK renewable energy market, Good Energy 

dual fuel customers paid £55 less per annum. Therefore, cost of energy does not distinguish Good 

Energy households from other UK households. 

 

iii. Randomization 

 

All observable variables in the dataset were used in the stratified randomization.  

Specifically, customers were sorted according to their account’s fuel type (gas only, electric only, 

or dual fuel), their estimated annual consumption (partitioned into quartiles), the length of their 

contract with Good Energy (partitioned into deciles), and the gender of the account holder (male, 

female, unidentified).  First, we sorted customers according to the three fuel types, and within 

each fuel type we blocked them according to the estimated annual total consumption quartiles, 

creating twelve blocks.  Having sorted the data into these twelve blocks, we then sorted 

customers in each block according to duration of existing contract with Good Energy, followed 

by the account holder’s gender.  If all blocks had contained at least one customer, this would have 

created 12×10×3=360 blocks in total.  However, there are nine blocks (i.e. combinations of the 

above variables used for stratification) for which no customer in the dataset is representative, so 

the stratification created 351 blocks in total.  Once the data is sorted according to the existing 351 

                                                
15 Goodright, Victoria, and Emily Wilkes. “Chapter 3: Domestic Energy Consumption in the UK between 1970 and 2014.” in 
Energy Consumption in the UK (2015).  
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blocks, a number (1-8) is assigned to each account holder to allocate each customer to one of the 

eight treatments described above.16 

 

Since Good Energy’s email server is limited in terms of the volume of emails that can be 

sent in one day, the trial was planned for six weeks.  We tested for pre-experimental equivalence 

across all group pairs on the above variables as well as the day of week on which the email would 

be sent, as shown in the balance table (see Tables 2a and 2b).  

 

 

4.  Results 

 

 i.  Main results 

 

In total, 13.42% of customers signed up for e-billing.  In almost all cases, the email 

without the image outperformed that with the image; while the difference is not statistically 

significant when comparing all treatments without images to all treatments with images 

(p=0.122), the difference is significant when comparing the cognitive dissonance treatments with 

and without images (p=0.054).  Simple t-tests do not reveal significant differences across 

treatments with varying information (see Table A1 in Appendix).  Below, we investigate 

treatment effects using logistical regression analysis. 

 

Our intent-to-treat analysis considers a binary response variable, and we therefore report 

the results of a logit model (in terms of both logistic coefficients and odds ratios).  The regression 

performed is specified as follows: 

 

𝑙𝑜𝑔𝑖𝑡!  =  𝛼 +  𝛽!𝑇!,! +  𝛾𝑋! + 𝑒!" ,            𝑒!" ~N[0,1] 

 

where 𝑙𝑜𝑔𝑖𝑡!  is the log of the odds of e-billing sign-up for individual 𝑖 , 𝛼  and 𝛽!,…,!  with 

𝑗 ∈ (1, 2, 3) are unknown population parameters to be estimated in the model, 𝑇!,! represent the 𝑗 

treatments, and 𝑋! is a vector of control variables including consumption, tariff type, and gender.   

Controlling for all other variables in the regression, being in treatment group 𝑇! multiplies the 

                                                
16 We calculate sample sizes using the formulas provided in List, Sadoff, and Wagner (2011).  In our power calculations, we use 
conventional power and significance levels of (1-β)=0.8 and α=0.05, respectively, and assume equal outcome variance across 
treatments.  Allocating our sample across eight recipient groups places 4,831 individuals into each arm.  With at least 4,826 
recipients per group, our power calculations show that we can detect treatment effects of 0.057, or about a 1.71% treatment effect.  
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odds of signing up to e-billing by the exponential of the logistic coefficient 𝛽!—i.e. exp(𝛽!), 

which is equivalent to the odds ratio—for recipients of treatment 𝑗, and similarly a unit increase 

in 𝑋! multiplies the odds of sign-up by exp(𝛾). 

 

Receiving the cognitive dissonance message (without image) multiplies the odds that one 

signs up to e-billing by exp(0.105)=1.107, i.e. increases the odds by 10.7%, controlling for 

consumption, tariff type, and gender (p<0.10).  However, including the image appears to distract 

from the dissonance-inducing messaging, eliminating the effect altogether.  While the odds of 

sign-up also tend to increase for the treatment groups containing environmental information, we 

do not have sufficient power to detect such an effect with statistical significance.17  Contrary to 

findings in the literature regarding environmental behavior and gender (see Cheng, Woon, and 

Lynes, 2011, for a review), we find that being female decreases the odds of signing up to 

paperless billing by 26.5%; as shown in Table A2, this result holds if we run the logit without 

treatment indicators within the control treatment alone (26.5% reduction in the odds of sign-up, 

p<0.01). There are no significant interaction effects between gender and treatment (see Table 

A3).   

 

Additionally, it appears that those with smaller observed environmental footprints are 

more likely to sign up to e-billing.  For instance, relative to those on dual-fuel renewable tariffs, 

the odds of signing up among customers on either gas- or electricity-only tariffs are 

approximately 40% and 43% lower (p<0.01).  Finally, for every increase of 1000 kWh in 

estimated annual gas and electricity consumption, the odds of sign-up decrease by 0.004% 

(p<0.10) and 0.014% (p<0.01), respectively.  If we assume that being a dual-fuel consumer is 

indicative of higher environmental preferences than being a single-fuel consumer, and that lower 

consumption is associated with higher environmental preference, these final two results appear to 

imply that individuals with greater preference for the environment are more likely to sign up for 

paperless billing.  Of course, we do not have data on household size or income, so consumption 

may also act as a proxy for wealth as opposed to environmental preference. 

 

  

  

                                                
17 We also do not detect an effect of including control information (Groups 5 and 6) in addition to environmental information 
(Groups 3 and 4). 
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ii.  Heterogeneity 

 

While we find evidence that gender is a significant predictor of our response variable, we 

do not have a measure of education for the individuals in the main sample.  Similarly, we do not 

have gender data for the 1844 individuals identified with the title of either ‘Doctor’ or 

‘Professor’.  Therefore, we run our regressions for the two samples independently.  In the 

absence of an all-inclusive continuous or categorical measure for education, we run the same 

regression as in Table 3 for just the ‘postgraduate education’ sample, excluding the gender 

indicator (see Table 4).  Contrary to the main sample, the cognitive dissonance intervention quite 

drastically backfires when we consider doctors and professors only, decreasing the odds of sign-

up by 43.0%.  Again, provision of statistics on associated environmental damage does not 

significantly affect the odds of paperless take-up.  Consumption does not predict behavior among 

this subsample, while again being a dual-fuel customer improves the probability that the 

individual will sign up quite substantially (p<0.01).   

 

If we instead run a logistic regression on the full sample that includes interaction terms 

between assigned treatment and a dummy indicating whether the individual is in the postgraduate 

education sample, we find a similar result (Table A4).  On average, having extensive 

postgraduate education increases the odds of signing up to e-billing by 32% (p=0.141).  Without 

controlling for gender, the odds of signing up to e-billing in the cognitive dissonance (without 

image) treatment increase by 10.7% (p=0.096) in the main sample, while the odds decrease by 

48.7% (p=0.023) for doctors and professors.18  Thus, we find evidence that cognitive dissonance 

indeed backfires among the highly educated, both in a regression with a stratified sample of 

interest and in a regression using interaction terms among the full sample, suggesting a potential 

role for heterogeneous treatment of individuals to maximize e-billing uptake. 

 

 

5. Discussion 

 

In line with the literature, we find that environmental information does not affect 

individuals’ propensity to opt into receiving paperless communications, even among purportedly 

green consumers.  However, appealing to customers’ desire for consistency of self-concept holds 

                                                
18 Calculation of the odds ratio for the effect of cognitive dissonance on the ‘educated’ sample: exp(0.048-0.342)=exp(-
0.294)=0.745. 
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promise, though it backfires among our sample of individuals titled ‘Doctor’ or ‘Professor’.  

Furthermore, our findings contradict the general conclusion in the literature that females are more 

likely to engage in environmental behaviors than males.  The results indicate that informational 

campaigns are likely ineffective in promoting environmental behaviors, and that individuals with 

revealed altruistic preferences may be susceptible to messaging invoking feelings of cognitive 

dissonance.  Imagery does not encourage environmental behavior in this context. 

 

Given that the information provided is both easily available and free to access, the non-

effect of environmental information speaks to many existing and emerging strands of literature on 

information and behavior.  For example, the results fall in line with the notion of information 

avoidance, where individuals actively choose to evade information that might make them engage 

in altruistic behaviors that they otherwise do not wish to perform (Cain and Dana, 2012; Golman, 

Hagmann, and Loewenstein, 2015).  An alternative explanation stemming from a phenomenon 

called moral licensing suggests that individuals who ‘do good’ along one dimension may allow 

themselves to ‘do bad’ (or simply not ‘do good’) along another (see Merritt, Effron, and Monin, 

2010).  Alternatively, perhaps the information is sufficient to change beliefs and intentions, 

though intentions have only been shown to be poorly correlated with behavior change (Webb and 

Sheeran, 2006).  Another possible explanation could be that GE customers are already well aware 

of such information so that additional information has little effect on their beliefs—in line with a 

‘diminishing returns’ argument (Stern, 2000)—or that the externalities are not sufficiently severe 

to induce change. 

 

Moreover, our experiment demonstrates that particular individuals may be more or less 

susceptible to certain behavioral anomalies.  In our case, individuals titled ‘Doctor’ or ‘Professor’ 

are far less likely to opt into e-billing if they receive the dissonance-inducing intervention as 

opposed to the control intervention.  While education or status may be at play, we conjecture that 

this contrasting effect may be due to such individuals’ altruistic fulfillment in their field of work.  

Therefore, issues of convenience—as highlighted in the control letter—may override concerns 

for maintaining an altruistic self-concept.   

 

In sum, we recommend that green businesses abandon the use of information regarding 

environmental externalities as a tool to encourage environmentally beneficial decision making, 

and rather appeal to their customer base using more subtle tactics rooted in the psychology of 

cognitive dissonance, with careful attention to the audience of the messaging.  Of course, there 
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are many additional tactics that could be equally—or possibly more—effective in encouraging 

particular types of customers to continue to make decisions in line with their past behavior.  We 

note that this particular tactic may well generalize to other groups of socially responsible 

consumers, such as donors to particular causes or voters who have historically engaged in 

altruistic or civic behaviors.  Further research should aim to gain a more nuanced understanding 

of the types of individual who may or may not be susceptible to messaging that appeals to desires 

for consistency in the self-concept.  
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FIGURES AND TABLES 

 
FIGURE 1 

AVERAGE STANDARD DUAL FUEL BILL (£/YEAR, PER HOME) 

 
Notes: The data above was taken from Energy Helpline on 18 November 2013 and is based 
on 3,300 kWh of electricity and 16,500 kWh of natural gas paid using direct debit on the 
standard variable rate.  The source of this chart is “Green Energy Suppliers in the UK 
Compared to the Big 6”, accessed 30 March 2016 < http://shrinkthatfootprint.com/green-
electrical-supply-uk-big-6>. 

 
 
 

FIGURE 2  
E-BILLING UPTAKE ACCORDING TO GROUP ASSIGNMENT 

 
Notes: The above bar graph shows the proportion of each study group that signed up to e-billing, 
with standard error bars. 
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TABLE 1 
EXPERIMENTAL DESIGN 

  Study Groups 

Content Text Control 
(Groups 1-2) 

Environmental 
Framing 

(Groups 3-4) 

Control + 
Environmental 

Framing 
(Groups 5-6) 

Cognitive 
Dissonance 
(Groups 7-8) 

Availability and 
Online Access 

It’s finally here! Now you 
can switch to e-billing and 
have your energy bills 
emailed directly to your 
inbox rather than receiving 
them by post. 

✓ ✓ ✓ ✓ 

Customer 
Benefits 

The benefits of switching 
from paper billing to e-
billing: 
• Access bills 24/7 online ; 
• Spend less time sorting 

through mail;  
• Reduce paper waste; 

 

✓  ✓ ✓ 

Environmental 
Benefits 

If all customers make the 
switch, we would save 46 
trees worth of paper each 
year! 
 
Why reduce paper 
waste? 
• The average UK family 

throws away 6 trees 
worth of paper in their 
household bin each year. 

• Paper production ranks 
3rd and 4th for most 
energy intensive and 
greenhouse gas intensive 
manufacturing industries 
(respectively). 

• 12.5 million tonnes of 
paper and cardboard are 
used annually in the UK, 
making us the 11th worst 
paper offender in the 
world. 

 ✓ ✓  

Environmental 
Steward 

As a Good Energy 
customer, you are an 
environmental steward. 
By switching to e-billing, 
you take another important 
step to eliminate the 
environmental impact of 
your energy use. 

   ✓ 

Notes: While the ‘Control and Environmental Framing’ intervention simply adds environmental information to the Control email, 
the email doubles in length with the addition.  Therefore, we also include the ‘Environmental Framing’ intervention that is a similar 
length and format to the Control email so that we can ‘control’ for the added complexity of including a large amount of additional 
information to the Control email. All even-numbered groups receive the treatment with the image. 
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TABLE 2A 
BALANCE CHECK: GROUPS WITH VS. WITHOUT IMAGES 

 
 
 

Group 1 Group 2 
Test of 

equality: 
G1=G2 

Group 3 Group 4 
Test of 

Equality: 
G3=G4 

Group 5 Group 6 
Test of 

Equality: 
G5=G6 

Group 7 Group 8 
Test of 

Equality: 
G7=G8 

Fuel Type:             
  Dual Fuel 0.409 

(0.492) 
0.411 

(0.492) 
p=0.824 0.408 

(0.491) 
0.407 

(0.491) 
p=0.991 0.410 

(0.492) 
0.409 

(0.492) 
p=0.930 0.409 

(0.492) 
0.409 

(0.492) 
p=0.975 

  Gas  0.062 
(0.241) 

0.062 
(0.241) 

p=0.949 0.062 
(0.241) 

0.062 
(0.241) 

 

p=0.967 0.063 
(0.243) 

0.061 
(0.239) 

p=0.628 0.062 
(0.242) 

0.062 
(0.241) 

p=0.943 

  Electricity  0.529 
(0.499) 

0.527 
(0.499) 

p=0.803 0.530 
(0.499) 

0.531 
(0.499) 

p=0.975 0.527 
(0.499) 

0.530 
(0.499) 

p=0.748 0.529 
(0.499) 

0.530 
(0.499) 

p=0.948 

Gas 
Consumption 

13.949 
(9.352) 

13.807 
(9.025) 

p=0.602 13.633 
(8.757) 

13.781 
(9.092) 

p=0.575 13.863 
(9.038) 

13.605 
(8.590) 

p=0.324 13.886 
(9.284) 

13.672 
(8.864) 

p=0.426 

Electricity 
Consumption 

3.720 
(3.845) 

3.622 
(3.231) 

p=0.190 3.625 
(3.419) 

3.672 
(3.671) 

p=0.531 3.753 
(4.162) 

3.626 
(3.283) 

p=0.107 3.685 
(3.419) 

3.640 
(3.615) 

p=0.548 

Days as 
Customer 

314.8 
(333.9) 

313.9 
(321.0) 

p=0.887 317.4 
(338.3) 

317.2 
(344.0) 

p=0.977 312.1 
(327.5) 

313.3 
(333.8) 

p=0.861 316.7 
(342.4) 

318.8 
(346.7) 

p=0.770 

Gender 0.469 
(0.499) 

0.468 
(0.499) 

p=0.952 0.470 
(0.499) 

0.470 
(0.499) 

p=0.991 0.470 
(0.499) 

0.471 
(0.499) 

p=0.907 0.469 
(0.499) 

0.472 
(0.499) 

p=0.834 

Postgraduate 
Education 

0.045 
(0.208) 

0.046 
(0.210) 

p=0.860 0.048 
(0.213) 

0.051 
(0.220) 

p=0.446 0.050 
(0.217) 

0.051 
(0.219) 

p=0.830 0.046 
(0.210) 

0.045 
(0.207) 

p=0.677 

Day of Week   p=0.777   p=0.846   p=0.962   p=0.983 

Sample size 4817 4825  4834 4850  4830 4838  4825 4836  

Notes: The table checks for balance across observables for groups with identical intervention content, where one group receives the environmental image and the 
other does not.  The p-values in the table derive from chi-square tests (for comparisons of dummy and categorical variables) and t-tests (for comparisons of 
continuous variables).  Group 1 is the Control group, 2 is Control with image, 3 is the Control and Environmental Framing, 4 is Control and Environmental 
Framing with image, 5 is Environmental Framing, 6 is Environmental Framing with image, 7 is Cognitive Dissonance, and 8 is Cognitive Dissonance with image.  
The table pertains to individuals in the entire sample, except for the following: gender balance tests are conducted only for individuals for whom gender is 
identified, and balance tests on annual gas and electricity consumption are conducted only for individuals who consume gas and energy, respectively.  Annual 
estimated energy and gas consumption are measured at the unit of 1000 kWh. The fuel type dummy variables specify the type of fuel the customer receives from 
Good Energy, where “dual fuel” indicates that they receive both gas and electricity.  Gas and electricity consumption are estimated annual usage values measured at 
the unit of 1000 kWh.  Female is equal to one if the customer is female, and postgraduate education is equal to 1 if the customer holds a title of ‘Doctor’ or 
‘Professor’.  Day of week is a categorical variable indicating the day of week on which the customer received the treatment email; since means do not provide 
valuable information for this variable, we simply report the p-value for the chi-square test.  Standard deviations are reported below means in parentheses. 
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TABLE 2B 
BALANCE CHECK: CONTROL VS. TREATMENTS 

 
 
Groups 

Test of 
Equality: 
G1=G3 

Test of 
Equality: 
G1=G4 

Test of 
Equality: 
G1=G5 

Test of 
Equality: 
G1=G6 

Test of 
Equality: 
G1=G7 

Test of 
Equality: 
G1=G8 

Fuel Type:       
  Dual Fuel p=0.886 p=0.877 p=0.923 p=0.993 p=0.998 p=0.971 

  Gas  p=0.934 p=0.968 p=0.762 p=0.856 p=0.947 p=0.972 

  Electricity  p=0.919 p=0.894 p=0.809 p=0.937 p=0.972 p=0.985 

Gas 
Consumption 

p=0.240 p=0.540 p=0.751 p=0.197 p=0.819 p=0.305 

Electricity 
Consumption 

p=0.214 p=0.540 p=0.700 p=0.208 p=0.645 p=0.310 

Days as 
Customer 

p=0.709 p=0.733 p=0.681 p=0.815 p=0.787 p=0.573 

Gender p=0.897 p=0.906 p=0.937 p=0.845 p=0.949 p=0.792 

Postgraduate 
Education 

p=0.622 p=0.210 p=0.330 p=0.234 p=0.820 p=0.850 

Day of Week p=0.925 p=0.992 p=0.998 p=0.971 p=0.912 p=0.759 
Notes: The table checks for balance on observables between the control group and all treatment groups (see Table 1A for 
means and sample sizes). The p-values in the table derive from chi-square tests (for comparisons of dummy and categorical 
variables) and t-tests (for comparisons of continuous variables); see Table.  Group 1 is the Control group, 2 is Control with 
image, 3 is the Control and Environmental Framing, 4 is Control and Environmental Framing with image, 5 is Environmental 
Framing, 6 is Environmental Framing with image, 7 is Cognitive Dissonance, and 8 is Cognitive Dissonance with image.  
The table pertains to individuals in the entire sample, except for the following: gender balance tests are conducted only for 
individuals for whom gender is identified, and balance tests on annual gas and electricity consumption are conducted only for 
individuals who consume gas and energy, respectively.  Annual estimated energy and gas consumption are measured at the 
unit of 1000 kWh. The fuel type dummy variables specify the type of fuel the customer receives from Good Energy, where 
“dual fuel” indicates that they receive both gas and electricity.  Gas and electricity consumption are estimated annual usage 
values measured at the unit of 1000 kWh.  Female is equal to one if the customer is female, and postgraduate education is 
equal to 1 if the customer holds a title of ‘Doctor’ or ‘Professor’.  Day of week is a categorical variable indicating the day of 
week on which the customer received the treatment email; since means do not provide valuable information for this variable, 
we simply report the p-value for the chi-square test.  
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TABLE 3 
LOGIT REGRESSION – MAIN SAMPLE 

 OR Marginal  OR Marginal 
G2: Control, Image 0.971 -0.003  0.968 -0.004 
 (0.060) (0.007)  (0.060) (0.007) 
G3: Control Env 1.017 0.002  1.018 0.002 
 (0.062) (0.007)  (0.063) (0.007) 
G4: Control Env, Image 0.997 -0.000  0.996 -0.000 
 (0.061) (0.007)  (0.062) (0.007) 
G5: Env 1.042 0.005  1.042 0.005 
 (0.064) (0.007)  (0.064) (0.007) 
G6: Env, Image 1.046 0.005  1.047 0.005 
 (0.064) (0.007)  (0.064) (0.007) 
G7: Cog Diss 1.105* 0.012*  1.107* 0.012* 
 (0.067) (0.007)  (0.067) (0.007) 
G8: Cog Diss, Image 0.964 -0.004  0.965 -0.004 
 (0.060) (0.007)  (0.060) (0.007) 
Gas Consumption    0.996* -0.001* 
    (0.002) (0.000) 
Energy Consumption    0.986*** -0.002*** 
    (0.005) (0.001) 
Tariff: Gas Only    0.597*** -0.050*** 
    (0.043) (0.006) 
Tariff: Electric Only    0.569*** -0.065*** 
    (0.026) (0.005) 
Female    0.735*** -0.035*** 
    (0.023) (0.003) 
Constant 0.152***   0.257***  
 (0.007)   (0.015)  
Observations 36,810 36,810  36,810 36,810 
Controls No No  Yes Yes 
Notes: The above logit regression pertains to individuals in the main sample.  Annual estimated energy and gas 
consumption are measured at the unit of 1000 kWh. 
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TABLE 4 
LOGIT REGRESSION –  POSTGRADUATE EDUCATION SAMPLE 

 OR Marginal  OR Marginal 
G2: Control, Image 0.946 -0.007  0.929 -0.009 
 (0.245) (0.032)  (0.242) (0.032) 
G3: Control Env 1.110 0.014  1.100 0.012 
 (0.275) (0.034)  (0.274) (0.033) 
G4: Control Env, Image 0.992 -0.001  0.986 -0.002 
 (0.249) (0.032)  (0.249) (0.032) 
G5: Env 0.943 -0.007  0.936 -0.008 
 (0.243) (0.032)  (0.242) (0.032) 
G6: Env, Image 0.867 -0.018  0.869 -0.017 
 (0.222) (0.031)  (0.224) (0.030) 
G7: Cog Diss 0.582* -0.060**  0.570* -0.061** 
 (0.166) (0.027)  (0.164) (0.026) 
G8: Cog Diss, Image 0.917 -0.011  0.876 -0.016 
 (0.241) (0.032)  (0.232) (0.031) 
Gas Consumption    1.001 0.000 
    (0.009) (0.001) 
Energy Consumption    0.969 -0.004 
    (0.024) (0.003) 
Tariff: Gas Only    0.446*** -0.080*** 
    (0.137) (0.023) 
Tariff: Electric Only    0.655** -0.054** 
    (0.132) (0.026) 
Constant 0.197***   0.285***  
 (0.036)   (0.070)  
Observations 1,844 1,844  1,844 1,844 
Controls No No  Yes Yes 
Notes: The above logit regression pertains to individuals in the main sample.  Annual estimated energy and gas 
consumption are measured at the unit of 1000 kWh. 

 
 
  



70 
 

APPENDIX 
 

TABLE A1 
PROPORTION SIGNED UP TO E-BILLING: 

T-TESTS COMPARING EXPERIMENTAL CONDITIONS 

 

 
 

Control 
(C) 

 
Environmental 

Framing 
(EF) 

Test of 
Equality: 
C vs. EF 

Control + 
Environmental 

Framing 
(CEF) 

Test of 
Equality: 
C vs. CEF 

Test of 
Equality: 

EF vs. 
CEF 

 
Cognitive 

Dissonance 
(CD) 

Test of 
Equality: 
C vs. CD 

         

No Image 0.134 
(0.340) 
N=4817 

0.136 
(0.343) 
N=4830 

p=0.539 0.138 
(0.345) 
N=4834 

p=0.693 p=0.826 0.142 
(0.349) 
N=4824 

p=0.226 

         

Image 0.130 
(0.337) 
N=4825 

0.134 
(0.340) 
N=4838 

p=0.624 0.138 
(0.345) 
N=4850 

p=0.261 p=0.526 0.129 
(0.335) 
N=4836 

p=0.893 

         

Pooled 0.132 
(0.338) 
N=9642 

0.135 
(0.342) 
N=9668 

p=0.532 0.138 
(0.345) 
N=9684 

p=0.219 p=0.546 0.136 
(0.343) 
N=9660 

p=0.439 

Notes: The table shows the results of tests of equality of means (t-tests) for rate of sign-up across experimental conditions for all 
subjects in the study sample, where groups with and without images (e.g., G1 and G2) are pooled in the final row.  Standard 
deviations are presented below means in parentheses.   

 
 
 

TABLE A2 
EFFECTS OF CONTROL VARIABLES  

(CONTROL GROUP ONLY) 
 OR Marginal 
Electricity Consumption 0.993 -0.001 

 
(0.007) (0.001) 

Gas Consumption 0.985 -0.002 

 
(0.014) (0.002) 

Tariff: Gas Only 0.581*** -0.051*** 

 
(0.118) (0.016) 

Tariff: Electricity Only 0.530*** -0.072*** 

 
(0.069) (0.015) 

Female 0.735*** -0.034*** 

 
(0.065) (0.010) 

Constant 0.272*** 
 

 
(0.032) 

 Observations 4,598 
Notes: The above logit regression pertains to the individuals in the 
control group (without image) of the main sample.  Annual 
estimated energy and gas consumption are measured at the unit of 
1000 kWh. 
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TABLE A3 
GENDER AND TREATMENT 

 
OR Marginal 

G2: Control, Image 0.942 -0.007 
 (0.077) (0.009) 
G3: Control Env 1.091 0.010 
 (0.087) (0.010) 
G4: Control Env, Image 0.976 -0.003 
 (0.080) (0.009) 
G5: Env 0.969 -0.004 
 (0.079) (0.009) 
G6: Env, Image 1.090 0.010 
 (0.087) (0.010) 
G7: Cog Diss 1.118 0.013 
 (0.089) (0.010) 
G8: Cog Diss, Image 0.972 -0.003 
 (0.079) (0.009) 
G2*Female 1.069 0.008 
 (0.135) (0.015) 
G3*Female 1.182 0.020 
 (0.146) (0.016) 
G4*Female 0.906 -0.011 
 (0.113) (0.013) 
G5*Female 0.842 -0.018 
 (0.106) (0.013) 
G6*Female 1.049 0.006 
 (0.131) (0.015) 
G7*Female 0.977 -0.003 
 (0.120) (0.014) 
G8*Female 0.982 -0.002 
 (0.124) (0.014) 
Gas Consumption 0.996* -0.001* 
 (0.002) (0.000) 
Energy Consumption 0.986*** -0.002*** 
 (0.005) (0.001) 
Tariff: Gas Only 0.596*** -0.050*** 
 (0.043) (0.006) 
Tariff: Electric Only 0.569*** -0.065*** 
 (0.026) (0.005) 
Female 0.737*** -0.034*** 
 (0.065) (0.010) 
Constant 0.256***  
 (0.018)  
Observations 36,810 
Notes: The above logit regression pertains to the individuals in the 
main sample.  Annual estimated energy and gas consumption are 
measured at the unit of 1000 kWh. 
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TABLE A4 
POSTGRADUATE EDUCATION AND TREATMENT 

 
OR Marginal 

G2: Control, Image 0.969 -0.004 
 (0.060) (0.007) 
G3: Control Env 1.018 0.002 
 (0.063) (0.007) 
G4: Control Env, Image 0.996 -0.000 
 (0.062) (0.007) 
G5: Env 1.042 0.005 
 (0.064) (0.007) 
G6: Env, Image 1.047 0.005 
 (0.064) (0.007) 
G7: Cog Diss 1.107* 0.012 
 (0.067) (0.007) 
G8: Cog Diss, Image 0.965 -0.004 
 (0.060) (0.007) 
G2*Educ 0.956 -0.005 
 (0.256) (0.030) 
G3*Educ 0.898 -0.012 
 (0.238) (0.028) 
G4*Educ 0.826 -0.020 
 (0.219) (0.026) 
G5*Educ 1.074 0.008 
 (0.276) (0.031) 
G6*Educ 0.987 -0.002 
 (0.256) (0.030) 
G7*Educ 0.513** -0.060*** 
 (0.150) (0.020) 
G8*Educ 0.912 -0.010 
 (0.247) (0.029) 
Gas Consumption 0.996 -0.000 
 (0.002) (0.000) 
Energy Consumption 0.987*** -0.002*** 
 (0.005) (0.001) 
Tariff: Gas Only 0.605*** -0.049*** 
 (0.042) (0.006) 
Tariff: Electric Only 0.581*** -0.063*** 
 (0.026) (0.005) 
Educ 1.319 0.035 
 (0.248) (0.026) 
Constant 0.220***  
 (0.012)  
Observations 38,654 
Notes: The above logit regression includes all individuals in the study 
sample.  Annual estimated energy and gas consumption are measured at 
the unit of 1000 kWh. 
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FIGURE A1 
CONTROL INTERVENTION

  

From: Good Energy noreply@goodenergy.co.uk
Subject: Go paperless with Good Energy!

Date: September 4, 2014 at 5:58 AM
To: Adam Johnstone Adam.Johnstone@goodenergy.co.uk

Dear Treatment 1, 

It’s finally here! Now you can switch to e-billing and have your energy bills emailed directly to
your inbox rather than receiving them by post. 

Even better, you can access your bills online any time, so they won’t fill any valuable space in
your drawers or bins. 

Here at Good Energy, we prioritise customer satisfaction. The opportunity to switch to e-
billing is just one more step we have taken to keep you smiling. 

The benefits of switching from paper billing to e-billing:

Reduce paper waste
Spend less time sorting through mail
Access bills 24/7 online

Go on – it’s easy!  Switch to e-billing here. 

Let’s work together to better the world of energy. 

Best wishes, 

 

Dave Ford 
Chief Operating Officer

Good Energy, Monkton Reach, Monkton Hill, Chippenham, SN15 1EE 
Registered Office: Good Energy Limited, Monkton Reach, Monkton Hill, Chippenham, SN15 1EE 
Company Registration No. 3899612, Place of Registration: England and Wales. VAT No. 811 3295 57 

Notes: This e-mail (and any attachments) may be confidential and may contain personal views which are not the views of
Good Energy Limited unless specifically stated. If you have received it in error, please delete it from your system, do not
use, copy or disclose the information in any way nor act in reliance on it and notify the sender immediately. Please note
that Good Energy Limited monitors e-mails sent or received. Further communication will signify your consent to this.

goodenergy.co.uk Contact us Facebook Twitter Blog



74 
 

FIGURE A2 
ENVIRONMENTAL FRAMING INTERVENTION 

From: Good Energy noreply@goodenergy.co.uk
Subject: Go paperless with Good Energy!

Date: September 4, 2014 at 7:55 AM
To: Adam Johnstone Adam.Johnstone@goodenergy.co.uk

Dear Treatment 5, 

It’s finally here! Now you can switch to e-billing and have your energy bills emailed directly to
your inbox rather than receiving them by post. 

If all of our customers make the switch, we would save 46 trees worth of paper each year!*

Even better, you can access your bills online any time, so they won’t fill any valuable space in
your drawers or bins. 

Here at Good Energy, we prioritise customer satisfaction as well as the environment. The
opportunity to switch to e-billing is just one more step we have taken to keep you smiling and
help you shrink your environmental footprint. 

Why reduce paper waste?

The average UK family throws away 6 trees worth of paper in their household bin each
year.
Paper production ranks 3rd and 4th for most energy intensive and greenhouse gas
intensive manufacturing industries (respectively).
12.5 million tonnes of paper and cardboard are used annually in the UK, making us the
11th worst paper offender in the world.

Go on – it’s easy!  Switch to e-billing here. 

Let’s work together to better the world of energy. 

Best wishes, 

 

Dave Ford 
Chief Operating Officer 

* Note: This calculation is based on 8333 sheets per tree and 64,000 two-page bills, which we
send to our customers each quarter.

Good Energy, Monkton Reach, Monkton Hill, Chippenham, SN15 1EE 
Registered Office: Good Energy Limited, Monkton Reach, Monkton Hill, Chippenham, SN15 1EE 
Company Registration No. 3899612, Place of Registration: England and Wales. VAT No. 811 3295 57 

Notes: This e-mail (and any attachments) may be confidential and may contain personal views which are not the views of
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FIGURE A3 
CONTROL AND ENVIRONMENTAL FRAMING INTERVENTION 

 
 
  

From: Good Energy noreply@goodenergy.co.uk
Subject: Go paperless with Good Energy!

Date: September 4, 2014 at 7:41 AM
To: Adam Johnstone Adam.Johnstone@goodenergy.co.uk

Dear Treatment 3, 

It’s finally here! Now you can switch to e-billing and have your energy bills emailed directly to
your inbox rather than receiving them by post. 

If all of our customers make the switch, we would save 46 trees worth of paper each year!*

Even better, you can access your bills online any time, so they won’t fill any valuable space in
your drawers or bins. 

Here at Good Energy, we prioritise customer satisfaction as well as the environment. The
opportunity to switch to e-billing is just one more step we have taken to keep you smiling and
help you shrink your environmental footprint. 

The benefits of switching from paper billing to e-billing:

Reduce paper waste
Spend less time sorting through mail
Access bills 24/7 online

Why reduce paper waste?

The average UK family throws away 6 trees worth of paper in their household bin each
year.
Paper production ranks 3rd and 4th for most energy intensive and greenhouse gas
intensive manufacturing industries (respectively).
12.5 million tonnes of paper and cardboard are used annually in the UK, making us the
11th worst paper offender in the world.

Go on – it’s easy!  Switch to e-billing here. 

Let’s work together to better the world of energy. 

Best wishes, 

 

Dave Ford 
Chief Operating Officer 

* Note: This calculation is based on 8333 sheets per tree and 64,000 two-page bills, which we
send to our customers each quarter.
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FIGURE A4 
COGNITIVE DISSONANCE INTERVENTION 

 
 
  

From: Good Energy noreply@goodenergy.co.uk
Subject: Go paperless with Good Energy!

Date: September 4, 2014 at 8:02 AM
To: Adam Johnstone Adam.Johnstone@goodenergy.co.uk

Dear Treatment 7, 

It’s finally here! Now you can switch to e-billing and have your energy bills emailed directly to
your inbox rather than receiving them by post. 

Even better, you can access your bills online any time, so they won’t fill any valuable space in
your drawers or bins. 

As a Good Energy customer, you are an environmental steward. By switching to e-billing,
you take another important step to eliminate the environmental impact of your energy use. 

The benefits of switching from paper billing to e-billing:

Access bills 24/7 online
Spend less time sorting through mail
Reduce paper waste

Go on – it’s easy!  Switch to e-billing here. 

Let’s work together to better the world of energy. 

Best wishes, 

 

Dave Ford 
Chief Operating Officer

Good Energy, Monkton Reach, Monkton Hill, Chippenham, SN15 1EE 
Registered Office: Good Energy Limited, Monkton Reach, Monkton Hill, Chippenham, SN15 1EE 
Company Registration No. 3899612, Place of Registration: England and Wales. VAT No. 811 3295 57 

Notes: This e-mail (and any attachments) may be confidential and may contain personal views which are not the views of
Good Energy Limited unless specifically stated. If you have received it in error, please delete it from your system, do not
use, copy or disclose the information in any way nor act in reliance on it and notify the sender immediately. Please note
that Good Energy Limited monitors e-mails sent or received. Further communication will signify your consent to this.

goodenergy.co.uk Contact us Facebook Twitter Blog
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FIGURE A5  
EMAIL IMAGE 
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CHAPTER III 

 

A NEW APPROACH TO AN AGE-OLD PROBLEM: SOLVING EXTERNALITIES BY INCENTING 

WORKERS DIRECTLY 

 

By Greer Gosnell, John List, and Robert Metcalfe 

 

 

Abstract: Understanding motivations in the workplace remains of utmost import as economies 

around the world rely on increases in labor productivity to foster sustainable economic growth. 

This study makes use of a unique opportunity to “look under the hood” of an organization that 

critically relies on worker effort and performance. By partnering with Virgin Atlantic Airways on 

a field experiment that includes over 40,000 unique flights covering an eight-month period, we 

explore how information and incentives affect captains’ performance. Making use of more than 

110,000 captain-level observations, we find that our set of treatments—which include 

performance information, personal targets, and prosocial incentives—induces captains to improve 

efficiency in all three key flight areas: pre-flight, in-flight, and post-flight. We estimate that our 

treatments saved between 266-704 tons of fuel for the airline over the eight-month experimental 

period. These savings led to between 838-2,200 tons of CO2 abated at a marginal abatement cost 

of negative $250 per ton of CO2 (i.e. a $250 savings per ton abated). Methodologically, our 

approach highlights the potential usefulness of moving beyond an experimental design that 

focuses on short-run substitution effects, and it also suggests a new way to combat firm-level 

externalities: target workers rather than the firm as a whole.  
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1.  Introduction  

 

Many scientists believe that global climate change represents the most pervasive 

externality of our time (Stern, 2007).  Perhaps one of the lowest-hanging fruits in combating 

climate change is to design firm-level incentive schemes for workers to engage in green 

behaviors.  Given the Environmental Protection Agency estimate that 21 percent of carbon 

emissions in the United States are from firms (U.S. Environmental Protection Agency, 2015), 

there is undoubtedly much to gain.  Yet, very few studies have explored incentive aspects within 

the workplace that pertain to sustainability, whether it is shifting work hours to less energy-

intensive times of the day or incenting employees to use fewer resources per unit of output.19  

Indeed, when resource use is linked to production costs (as is almost always the case), mitigating 

the externality has the potential to foster increased profits, providing distinct possibilities of a 

win-win scenario.  

 

Consider the transportation sector, and in particular air transportation of humans and 

cargo.  The airline industry is a significant contributor to human welfare, with over three billion 

passengers per year and 35% of the value of world trade transported by air (Federal Aviation 

Administration, 2015).  However, the global aviation industry is directly responsible for 

significant health costs among vulnerable population groups (Schlenker and Walker, 2016).20  

Moreover, excessive fuel use in the industry affects profits—fuel represents an average 33% of 

airlines’ operating costs (Air Transport Action Group, 2014)—and poses a severe risk to the 

global environment.  Emissions from the air transport sector currently account for 3.5-5% of 

global radiative forcing and 2-3% of global carbon dioxide emissions (Penner et al., 1999; Lee et 

al., 2009; Burkhardt and Kärcher, 2011), deeming the industry a significant force in climate 

change discussions.21   

 

Technology adoption and market-based instruments continue to appear on the industry’s 

agenda as primary means to reach its dual goals of carbon neutral growth by 2020 and halving 
                                                
19 Atkin et al. (2015) demonstrate low adoption of waste-reducing technology among soccer ball producers in Pakistan, 
demonstrating that incentives to use the technology increase uptake. Freeman and Kleiner (2005) study the use of incentive pay 
on production costs, finding that piece rate wages may increase individual productivity, though not enough to offset the costs 
associated with monitoring and requisite managerial policies.  
20 Schlenker and Walker (2016) focus on the effects of network delays in the east coast of the United States on congestion at large 
airports in California to assess health effects from daily variation in air pollution. These effects are presumed to be generalizable 
across large airports globally and are a consequence of the aviation industry as a whole.  
21 Past research has shown that the airline industry has also not fully internalized social costs associated with crashes (Borenstein 
and Zimmerman, 1988). Here we highlight yet another means by which the social cost of the industry is not incorporated into its 
decision calculus. Nonetheless, demand for air travel is forecasted to increase over the next two decades and, as a result, airline 
emissions will likely trend upwards (Borenstein, 2011).  
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greenhouse gas emissions from 2005 levels by 2050 (International Civil Aviation Organization, 

2013).  Yet, despite large potential to reduce fuel burn from eliminating operational inefficiencies 

(Green, 2009; Singh and Sharma, 2015), almost no research has been undertaken to understand 

the potential for cost and emissions savings from changes in the behavior of transport personnel.  

In fact, we are unaware of research, more generally, on the optimal incentive structure for 

employees to engage in conservation activities in the workplace.  

 

Our study takes a strong initial step toward such an understanding by partnering with 

Virgin Atlantic Airways (VAA) on a field experiment.  We observe over 40,000 unique flights 

over a 27-month period for the entire population of captains eligible to fly both before and during 

the experiment.22  In the aviation industry, airline captains maintain a considerable amount of 

autonomy when it comes to fuel and flight decisions. We capitalize on recent technological 

developments that capture detailed flight-level data to measure captains’ fuel efficiency across 

three distinct phases—pre-flight, in-flight, and post-flight.23  The pre-flight measure (denoted 

Fuel Load) assesses the accuracy with which captains implement final adjustments to aircraft fuel 

load given all relevant factors (e.g., weather and aircraft weight).24  The in-flight measure 

(denoted Efficient Flight) assesses how fuel-efficiently the captain operates the aircraft between 

takeoff and landing.  The post-flight measure (denoted Efficient Taxi) provides information on 

how fuel-efficiently the captain operates the aircraft once on the ground.  The experiment 

explores the extent to which several experimental treatments—implemented from February 2014 

through September 2014—influence captains’ behaviors.25   

 
                                                
22 The “captain”—as opposed to the “first officer”—is the pilot on the aircraft who makes command decisions and is ultimately 
responsible for the flight’s safety. As a rule, captains are the most senior pilots in an airline (see Smith (2013) for insight into 
captains’ roles and responsibilities). In the cockpit of a typical flight from New York to London, there would be one captain and 
one first officer on board who both engage (more or less equally) in aircraft operations, though the captain is ultimately 
responsible for all aspects of flight operation. A vast majority of airline captains survive rigorous job market competition to secure 
their jobs, investing thousands of hours of training (privately or elsewhere) before obtaining the opportunity to be considered for a 
flying career with a major airline. A handful of VAA captains who were on leave for personal reasons or were fulfilling duties 
outside of their usual obligations were excluded from the sample. 
23 The Fuel Efficiency team within Virgin Atlantic Airways was responsible for identification of the fuel-efficient behaviors 
targeted in this study, which represent the outcomes of just a few of the many decisions that a captain engages with during a given 
flight.  
24 Captains do not have much in the way of decision support tools for calculating the correct Fuel Load apart from pen and a 
receipt-like sheet of paper—printed in the cockpit prior to departure—indicating the final weight of the aircraft. They then use pen 
and paper to make two calculations using a rule of thumb that first prescribes the amount of additional fuel to load for the flight 
and subsequently dictates the additional fuel necessary to carry added fuel.  
25 Captains were assured on several occasions that their participation in the experiment held no implications or consequences for 
their salaries or career prospects. For instance, the initial letter sent to all (treatment and control) captains in January 2014 
included the following statements (emphasis included): “This is not, in any way, shape or form, an attempt to set up a ‘fuel 
league table’, or any attempt at moving in the direction of a fuel league table. It is an independent research project to see 
whether information provided in different ways affects individual decisions. All data gathered during this study will remain 
anonymous and confidential... Again, we would like to stress that Captains’ anonymity will be maintained throughout the study; 
whilst somebody in Flight Ops Admin has to correlate which Captain gets which letter, Flight Operations Management will have 
no visibility of which Captain is in which Group, and who is doing what in response to which information. Information will be 
sent to all Captains in the active study groups. What you choose to do with that information is entirely up to you.”  
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The treatments are inspired by a simple principal-agent model wherein we attempt to 

influence the behaviors of VAA captains.  Our theoretical model yields predictions on how the 

act of measurement itself might yield behavioral change, in the spirit of the Hawthorne effects 

described in Levitt and List (2011).  In addition, the model shows how performance information, 

personal targets, and prosocial incentives for reaching those targets can motivate behavioral 

change.  As such, our experimental design revolves around understanding how the act of 

measurement itself as well as each of these three factors—information about recent fuel 

efficiency, exogenous targets, and prosocial incentives (a donation to the captain’s chosen charity 

conditional on achieving the target provided)—affect captains’ behaviors from pre-flight to post-

flight.  The present study is the first to evaluate the separate elements of performance-related pay 

(PRP) schemes in a high-stakes setting with experienced professional workers.  Many other 

studies test base pay versus PRP; however, PRP has three distinct behavioral elements that may 

drive a change in behavior: informational feedback, a conditional target, and the incentive itself.  

Here, these elements are broken down and distributed across treatment conditions.   

 

We are unaware of any previous research that tests the impacts of targets or prosocial 

incentives on worker productivity in a high-stakes professional setting.  Moreover, it should be 

noted that the present context is not a typical principal-agent setting in which the principal does 

not observe effort.  Here, the principal has accurate measures of effort. However, since the highly 

unionized labor force holds significant bargaining power, the principal faces restrictions against 

contracting on effort—or on output, for that matter, which is the typical contracting variable in a 

basic principal-agent model.  Therefore, the firm is in a “second-best” world of needing to use 

behavioral incentives instead of the financial incentives in PRP.  

 

Making use of more than 110,000 observations of behavior across 335 captains, we find 

several interesting insights that have the potential to alter conventional approaches to motivating 

employee effort in the workplace while reducing both operating costs and environmental damage.  

Perhaps most surprisingly, by simply informing captains that we—i.e. the academic researchers 

and VAA Fuel Efficiency personnel overseeing the study—are measuring their behaviors on 
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three dimensions, we are able to considerably reduce fuel inefficiency.26  For example, captains 

in the control group significantly increased the implementation of Efficient Flight and Efficient 

Taxi by nearly 50 percent from the pre-experimental period.  These behavioral changes generated 

more than 6,800 tons of fuel saved for the airline over the eight-month experimental period (i.e. 

$5.37 million in fuel savings), which translates to more than 21,000 tons of CO2 abated. 

 

Despite these large Hawthorne effects, we find a significant role for the three 

experimental treatments.  The information treatment increases effort for Efficient Taxi, but does 

not increase effort for Fuel Load or Efficient Flight.  We find, however, that personal targets 

increase effort for Efficient Flight and Efficient Taxi.  Finally, prosocial incentives increase effort 

across all three dimensions.  Furthermore, we find significant differences between information 

and the two treatments that provide targets, while we do not detect differential effects between 

the target and prosocial treatment groups.  That is, adding conditional prosocial incentives in the 

form of a donation to the captain’s chosen charity does not provide further lift beyond the effects 

of a personal target.27  Yet, there is an interesting effect of prosocial incentives: they induce a 

reduction in flight time by an average of 1 minute and 30 seconds per flight relative to the control 

group, equivalent to more than 80 hours of reduced flight time over the course of the study.28   

 

The difference-in-difference treatment effect estimates indicate that the various 

interventions increased implementation of fuel-efficient activities by 1-10 percentage points 

above the pre-experimental period (i.e. additional to the Hawthorne effect).29  Based on these 

effects, we estimate that the three treatments saved between 266-704 tons ($209,000-$553,000) 

of fuel for the airline over the eight-month experimental period. This fuel savings corresponds to 

838-2,220 tons of CO2 abated.  Since the cost of the treatments is merely the cost of postage 

                                                
26 This pure monitoring effect aligns with agency theory (e.g., Alchian and Demsetz, 1972; Stiglitz, 1975), as well as with 
experimental results such as those in Boly (2011). These results are also related to the work of Hubbard (2000, 2003), who found 
that monitoring truckers’ performance using GPS technology leads to improved performance for those workers where driver 
effort is important and where verifying drivers’ actions to insurers is valuable. He estimates that such technology has increased 
capacity utilization by around 3% in the trucking industry. VAA policies precluded the designation of an uninformed control 
group, so estimates of Hawthorne effects are based on before-and-after comparisons, as in Bandiera, Barankay, and Rasul (2007, 
2009). Nonetheless, our results suggest that the data before the experiment was stationary and there was an upward trend once the 
experiment started. Importantly, since all information provided to captains in treatment groups is individual-specific, we are able 
to rule out contamination (i.e. spillover effects of information) as a possible contributor to the change in behavior exhibited by the 
control group.  
27 To our knowledge, we are the first to experimentally estimate the impact of an incentive given to a charity if the worker reaches 
a certain performance target in his or her job. Our notion of prosocial incentives is therefore different to the social incentives 
presented in Bandiera et al. (2009, 2010), who demonstrate the manner in which social connections in the workplace influence 
workers’ and managers’ motivations.  
28 These results are based on all flights and are presented in Table A4. The total flight time reduction is calculated by multiplying 
the average effect of captains in the prosocial treatment group relative to control by the number of flights undertaken in the 
prosocial treatment group during the study period.  
29 Since there were no upward trends before the experiment began—that is, a Dickey-Fuller test indicates that pre-treatment 
behaviors were stationary—we can be confident that the experiment improved fuel efficiency from business as usual.  
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materials (here, $855 per treatment group), the marginal abatement cost (MAC) of the treatments 

is minuscule, falling between $1.02 and $0.39 per ton of carbon saved.  However, since the 

airline benefited from significant cost savings via reduced fuel usage as a result of the 

interventions, the MAC in this context is approximately -$250 per ton in actuality (using 2014 

prices).  Such an astonishingly low MAC outperforms every other reported carbon abatement 

technology of which we are aware (see Enkvist, Nauclér, and Rosander, 2007; McKinsey, 

2009).30  

 

Our experimental design highlights the usefulness of moving beyond short-run effects in 

favor of understanding long-term embedded behavior change.  First, in terms of persistence of the 

treatment effects throughout the experiment, we find that the largest effects for Fuel Load and 

Efficient Flight arise in the middle months of the experiment, while the treatment effect for 

Efficient Taxi is consistently high throughout.  Interestingly, the largest effects occur on the 

behavior that is the easiest to change (Efficient Taxi).  Once the experiment finishes, however, 

we find that captains’ effort reverts to post-experiment baseline levels (i.e. equivalent attainment 

to the control group once the experiment terminates) for Fuel Load and Efficient Flight, while the 

treatment effects attenuate for Efficient Taxi.  With regards to the persistence of the Hawthorne 

effect, the post-experiment baseline remains considerably improved from the pre-experiment 

baseline, indicating that monitoring induces captains to make low-effort efficiency improvements 

that are quickly and easily habituated.  An alternative interpretation to the Hawthorne effect could 

be that the captains now learn that the firm values fuel efficiency (a value that captains likely 

share).  This interpretation relates to the work by Bloom and Van Reenen (2007) and Bloom et al. 

(2014) on the impact of “soft” management styles and structures on worker productivity.  

 

Our findings are relevant for academics, businesses, and policymakers alike. For 

academics, the theory and experimental results hold implications for environmental, behavioral, 

labor, and public economics.  For example, there exist movements within both applied economics 

(“X-efficiency”; see Leibenstein, 1966) and environmental economics (the “Porter Hypothesis”; 

see Porter and van der Linde, 1995) arguing that substantial “free gains” exist within firms.  The 

premise is a behavioral one: rather than modeling firms as fully aware and understanding of all 

extant means to maximize resource efficiency—thereby exhausting all cost-efficient measures at 

each moment in time—this approach considers the firm as a composition of networks of 

                                                
30 The most cost-effective abatement strategy according to McKinsey (2009) is switching residential lighting from incandescent 
bulbs to LED bulbs at a MAC of approximately -165 Euros, or about -$177.  
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boundedly rational individuals burdened by problematic principal-agent incentive conflicts 

(Leibenstein, 1966; Perelman, 2011).  To support this view, a survey of evidence argues that a 

typical firm operates at 65% to 97% efficiency (Button and Weyman-Jones, 1992), though much 

of this evidence is based on observational data and does not assess impacts based on a true 

counterfactual.  Our work complements this environmental and behavioral research by moving in 

a hitherto unconsidered direction: rather than focus on capital improvements or research and 

development, we explore efficiency effects of incenting labor directly during their normal course 

of work. For labor economists considering principal-agent settings, our study suggests that 

allowing the agent flexibility to achieve goals might be a key trigger in enhancing effort profiles.  

 

For businesses and policymakers, we present a novel and promising approach to 

combating firm-level externalities: design appropriate incentives for workers.  More narrowly, 

the study provides practical and cost-effective fuel solutions for the air transport industry.  Our 

empirical approach lends itself naturally to related tests across other sectors of the economy.  By 

making use of our theoretical framework to guide experimental treatments in the field, businesses 

and policymakers can learn not only what works, but also why it works.  This understanding will 

provide decision makers with a more effective toolkit to advance efficient policies and 

procedures.  

 

The remainder of the paper is structured as follows. Section 2 provides contextual 

background, a sketch of the theory of captain behavior, and the experimental design. Section 3 

presents the experimental results. Section 4 provides a discussion related to policy implications 

and related avenues for future research.  

 

 

2.  Background, theory, and experimental design  

 

In 2012, we began discussions with VAA to partner on a field experiment with the aim of 

understanding behavioral components of fuel usage without adversely affecting safety practices 

or job satisfaction.31  We developed a theoretical framework and a field experiment (detailed 

further below) that allowed us to remain within institutional constraints while maintaining the 

integrity of lending theoretical insights to the experimental data.  We agreed to provide monthly 

tailored feedback to 335 airline captains—the entire eligible captain population of VAA—from 
                                                
31 The study is a component of Change is in the Air, VAA’s wider sustainability initiative (see http://www.virgin-atlantic.com/ 
content/dam/VAA/Documents/sustainabilitypdf/SustainabilityPolicy201407.05.14.pdf).  
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February 2014 through September 2014.  Importantly, all eligible VAA captains were included in 

the experiment—in either control or treatment.  These captains have absolute authority to make 

all fuel-related decisions.  They range in experience and fly long-haul flights on various aircraft 

types (Airbus 330-300, Airbus 340-300, Airbus 340-600, Boeing 744-400, Boeing 787-9).  We 

include a map of destinations in Figure 1.32  

 

While many of the captains’ choices are important in terms of fuel efficiency outcomes, 

VAA identified three primary measurable levers to change behavior for the purpose of this study. 

The first lever is a pre-flight consideration, which VAA refers to as the Zero Fuel Weight (ZFW) 

adjustment. Approximately 90 minutes before each flight, captains utilize flight-specific flight 

plan information (e.g., expected fuel usage, weather, and aircraft weight) in conjunction with 

their own professional judgment to determine initial fuel uptake, which usually corresponds to 

approximately 90% of the anticipated fuel necessary for the flight.  This amount is fueled into the 

aircraft simultaneous to the loading of passengers and cargo.  Near to completion of passenger 

boarding and cargo/baggage loading, the pilots—now on the flight deck—receive updated 

information regarding the final weight of the aircraft and may adjust the fuel on the aircraft 

accordingly.  The information they receive from Flight Operations includes a ZFW measure, 

which indicates the weight of the aircraft with the revenue load (i.e. passengers and cargo), as 

well as the Takeoff Weight (TOW), which includes both revenue load and fuel.  

 

Captains then perform a ZFW calculation in which they first calculate the amount by 

which they should increase or decrease fuel load based on the final ZFW—a formula that is 

standard across the airline industry.  If they have decided to increase the fuel load, they 

subsequently compute a second iteration to account for the additional fuel necessary to carry the 

fuel that they have decided to add to the aircraft.  If the amount of fuel already on the aircraft is 

sufficient according to these calculations, the captain may choose not to add any additional fuel.  

 

For mnemonic purposes, rather than use ZFW we denote this binary outcome variable as 

Fuel Load.  Fuel Load indicates whether the double iteration calculation has been performed and 

the fuel level adjusted accordingly. 33  We deem the captains’ behavior successful if their final 

                                                
32 All operations to Aberdeen and Edinburgh are VAA Little Red operations (i.e. branded VAA flights operated by a third party) 
and were excluded from the analysis. In April 2015, VAA removed its service to Cape Town; this route change took place 
subsequent to the period covered in our dataset.  
33 Using data from an anonymous major U.S. airline, Ryerson et al. (2015) estimate that 4.5% of fuel burned on an average flight 
is attributable to carrying unused fuel, and that more than 1% of fuel burned on an average flight is due to addition of contingency 
fuel "above a reasonable buffer".   
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fuel load is within 200 kg of the “correct” amount of fuel as dictated by the calculation.  This 

allowance prevents penalizing captains for rounding and slight over- or under-fueling on the part 

of the fueler while providing measurable targets for captains in two of our treatment groups.  

According to our partner airline, accurate Fuel Load adjustment should ideally be performed on 

every flight regardless of circumstances, which would correspond to 100% attainment for the 

performance metric provided.  

 

The second lever is an in-flight consideration: Efficient Flight.  The Efficient Flight 

metric captures whether captains (and their co-pilots) use less fuel during flight than is allotted in 

the updated flight plan.34  We use this metric to understand whether captains have made fuel-

efficient choices between takeoff and landing.  It incorporates several in-flight behaviors that 

augment fuel efficiency, such as requesting and executing optimal altitudes and shortcuts from air 

traffic control, maintaining ideal speeds, optimally adjusting to en route weather updates, and 

ensuring efficient aerodynamic arrangements with respect to flap settings as well as takeoff and 

landing gear.  The Efficient Flight metric affords captains the flexibility to achieve the target 

while using professional judgment to ensure that safety remains the first priority.  Under some 

uncommon circumstances, operational requirements dictate that captains sacrifice fuel efficiency 

(and VAA accepts the captains’ decisions as final), so we would not expect even a “model” 

captain to perform this metric on 100% of flights, though the metric should be attainable on a 

vast majority of flights.  In our analysis, Efficient Flight equals 1 if the captain does not exceed 

the projected fuel use for that flight (adjusted for actual TOW), and 0 otherwise.35 

 

The final lever—reduced-engine taxi-in (Efficient Taxi or Efficient Taxiing, hereafter)— 

occurs post-flight.  Once the aircraft has landed and the engines have cooled, captains may 

choose to shut down one (or two, in a four-engine aircraft) of their engines while they taxi to the 

gate, thereby decreasing fuel burn per minute spent taxiing.  Captains meet the criteria for this 

metric if they shut down (at least) one engine during taxi in.36  As with Efficient Flight, there are 

circumstances under which the airline would not expect or prescribe the implementation of 

Efficient Taxi.  Obstacles include geographical constraints (e.g., the placement or layout of the 

runway) and the complexity of the taxi route (e.g., number of stops, turns, or cul-de-sacs).  Still, 

                                                
34 The flight plan is updated subsequent to decisions made on Fuel Load so that decisions regarding the first metric do not affect 
one’s ability to meet this in-flight metric.  
35 Note that it was essential to create binary metrics for Fuel Load and Efficient Flight so we could assign targets to captains in the 
targets and prosocial incentives group.  
36 Fuel savings from Efficient Taxi depend on scheduling and delays as savings are accrued on a per-minute basis. Savings also 
depend on aircraft type and only begin to accrue after engines have cooled, which takes 2-5 minutes from touch down. Savings 
per minute for aircraft operated within our study are as follows: 12.5 kg (B744, A330), 8.75 kg (A346), and 6.25 kg (A343).  
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the metric should also be attainable on a vast majority of flights, and obstacles to implementation 

are uncorrelated with treatment.  

 

Fuel Load, Efficient Flight, and Efficient Taxi are the three primary outcome variables in 

the experiment.  It is important to recognize that fuel is a major cost to airlines—accounting for 

roughly 33 percent37 of total operating costs—and has been rising over the last fifteen years 

(Borenstein, 2011; International Air Transport Association, 2014).  Thus, airlines are interested in 

cost-effective means to reduce fuel burn.  Given their renowned expertise and experience in the 

industry, however, airline captains are granted significant autonomy in their decision making 

across several fuel-relevant behaviors, including those described above.  Moreover, captains’ 

strong unionization makes it contractually difficult to use performance-related pay to induce 

efficiency.38  As such, we focus on alternative motivations to reduce fuel usage.  

 

 

i. Theoretical sketch of captains’ behavior  

 

We model an airline captain’s choices using a static game of a principal-agent model that 

determines a captain’s chosen effort in a given period (for parsimony, we briefly sketch the 

model here and provide details in Appendix II).  The tasks consist of the aforementioned pre-

flight to post-flight fuel usage metrics.  Captains observe their own effort and a signal of optimal 

fuel usage; the signal is noisy unless the captain receives information.  Captains’ perspectives on 

fuel usage and their fuel-relevant decisions are rooted in their own experiences and preferences 

and are conditional on contextual (i.e. flight- and day-specific) factors.  

 

Captains choose how much effort to exert to maximize a utility function that includes 

utility from wealth, job performance, and charitable giving, as well as disutility from effort 

exertion and social pressure.  The model has the standard prediction from the first-order 

conditions that the captain will expand effort until its marginal cost equals the marginal utility 

gained from the associated decrease in fuel usage.  This prediction occurs on several dimensions, 

such as utility from job performance, utility from giving to a charity, as well as disutility from 

social pressure (a la DellaVigna, List, and Malmendier, 2012).  

 

                                                
37 For the airline represented in this study, fuel accounts for 35% of operating costs. 
38 For a discussion of how unionization can affect the long-run outcomes of firms, see Lee and Mas (2012).  
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Although our base model follows DellaVigna et al. (2012), we extend the model to 

incorporate a reference-dependent component to capture the effects of exogenous targets. In line 

with existing theories of reference dependence, we posit that a change in one’s personal 

expectations from the status quo to an improved outcome can boost performance and, 

consequently, utility.  We therefore introduce feedback to employees providing non-binding 

targets—i.e. focal points for attainment of the three fuel-relevant behaviors—that encapsulate 

reference-dependent preferences.39  We expect utility from job satisfaction to increase for those 

who meet their targets.  As in the Köszegi and Rabin (2006) model of reference-dependent 

preferences, we assume individuals are loss averse so that performing below the target level will 

cause more disutility than exceeding the target level will benefit the individual.  

 

The notion that prosocial incentives can motivate behavior change is rooted in theories of 

pure and impure altruism (Becker, 1974; Andreoni, 1989, 1990).  Pure altruism requires that 

individuals derive utility from the benefits they directly receive from the provision of a public 

good.  Impure altruism posits that individuals gain utility from the act of giving itself, so that an 

individual whose altruism is completely impure will provide the same dollar value toward the 

public good regardless of the provision of others.  Both pure and impure altruism provide positive 

utility to (altruistic) economic agents, and we assume that individuals are characterized by some 

combination of the two (we do not attempt to distinguish between them in our experiment).  This 

characterization provides a prediction that altruistic motivations combined with charitable 

incentives will augment fuel efficiency.  

 

 In equilibrium, captains choose the corresponding effort level that satisfies the first-order 

conditions.  These choices lead to several propositions.40  First, if social pressure is important, 

then captains in the control group will improve their fuel efficiency due to the enhanced scrutiny 

of their fuel usage.  Second, providing information to captains will cause them to increase 

(weakly decrease) their effort if estimated fuel usage is lower (higher) than their actual fuel 

usage.  The intuition is that the relationship between captains’ estimated fuel usage and their 

actual fuel usage importantly determines their utility from job performance.  For example, 

informing captains that they are fuel-inefficient will induce captains to exert greater effort if they 

derive disutility from consuming more fuel than their estimated usage.  Alternatively, if their fuel 
                                                
39 There is a rich psychology literature on goal setting. Heath, Larrick, and Wu (1999) present evidence that goals act as reference 
points inducing loss aversion and diminishing sensitivity in a manner consistent with Prospect Theory (see also Locke and 
Latham, 2006). Psychology studies do not exist that address the complex and high-stake field environment in which our 
experiment takes place.  
40 These propositions would remain unchanged if we set up the model in the vein of a multi-tasking model.  
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usage is deemed lower than the estimated usage, they might exert less effort since effort is costly.  

 

Third, targets set above pre-study fuel use will cause captains to weakly increase their 

effort.  Captains will increase their effort if the marginal gain from the associated decrease in fuel 

usage due to the target is greater than the marginal cost of effort.  Alternatively, captains will not 

increase their effort if the marginal cost of effort is larger than the marginal gain from the 

associated decrease in fuel usage in the job performance parameter.  Fourth, conditional 

donations to charity will increase effort if captains’ altruism is strictly positive and will not affect 

their effort otherwise.  Fifth, of the three dimensions to lower fuel usage—pre-flight, in-flight, 

and post-flight—captains will choose to increase their effort the most in tasks for which the 

targets are least costly to meet (i.e. Efficient Taxi).  

 

In light of these predictions, we design a field experiment to measure how behaviors 

related to fuel usage are affected by: i) information about recent fuel efficiency, ii) information 

about target fuel efficiency, and iii) a donation to a chosen charity conditional on achieving the 

target efficiency.  To our knowledge, we are the first to perform a large-scale field experiment on 

firm employees in a high-stakes professional labor setting (where the average salary of a captain 

is roughly $175,000-$225,00041).42  In doing so, we overcome prominent labor market frictions 

in the airline industry by implementing interventions that do not change contracts of the 

captains.43  We outline the field experimental design below.  

  

                                                
41This salary range is based on information updated in June 2015: http://www.pilotjobsnetwork.com/jobs/Virgin_Atlantic.  
42 There is a growing literature surrounding field labor economics, but most experiments have focused on simple tasks (List and 
Rasul, 2011; Bandiera et al., 2011; Levitt and Neckermann, 2014). Using a before-and-after design within the same company, 
Bandiera et al. (2007, 2009, 2010) demonstrate the effects of managerial compensation and social connections in the workplace 
on worker productivity and selection in the fruit picking industry. Shearer (2004) finds that piece-rate wages improve worker 
productivity relative to fixed-rate wages in tree planting; Lazear (1999) finds similar incentive effects of piece-rate wages in an 
observational study of automobile glass installers. Field experiments on the impact of retail store-level tournaments on sales show 
mixed results (Delfgaauw et al., 2013, 2014, 2015), while a quasi-experiment showed that simply informing warehouse 
employees of relative wage standing permanently improved productivity (Blanes i Vidal and Nossol, 2011). One exception to 
such task simplicity is Gibbs, Neckermann, and Siemroth (2014), who analyze the effects of a rewards program on innovation at a 
large Asian technology firm in a field experimental setting. They find that providing rewards for idea acceptance substantially 
increases the quality of ideas submitted. In an envelope-stuffing experiment, Al-Ubaydli et al. (2015) find that quality is actually 
higher under piece-rate wages (contrary to predictions from economic theory), speculating a role for beliefs about employers’ 
ability to monitor. In an artefactual field experiment with bicycle messengers, Burks et al. (2009) find that performance-related 
pay reduces cooperation in a prisoner’s dilemma game relative to a flat wage. There has been some research by Rockoff et al. 
(2012) that demonstrates that simple information on teacher performance to employers can improve productivity in schools, 
increase turnover for teachers with low performance estimates, and produce small test score improvements.  
43 While a standard principal-agent model would prescribe the use of contracted performance-related pay to align captains’ fuel 
use incentives with those of the airline, the airline workforce is a different labor market to most due to the high skill requirements 
(and often government safety certifications) necessary to enter this particular labor force. See Borenstein and Rose (2007) for a 
further discussion of the labor market frictions of the aviation industry.  
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ii. Experimental design  

 

In accordance with our theoretical model, our field experiment focuses on three 

behavioral motivations for optimizing fuel use: personalized information, performance targets, 

and prosocial incentives.  The three treatments centered upon three behaviors central to fuel use: 

Fuel Load, Efficient Flight, and Efficient Taxi. Respectively, these three behaviors allow us to 

capture captains’ behavior before takeoff, during the flight, and after landing.  Airline captains 

did not receive detailed information relating their decision making to their fuel efficiency prior to 

this experiment (consistent with both airline and industry standards).  Recent advances in aircraft 

data collection allow us to obtain precise data to inform captains of the link between their effort 

and their efficiency.  

 

We partnered with VAA’s Sustainability and Fuel Efficiency teams to provide accurate 

monthly feedback to three treatment groups over the course of eight months across 335 captains; 

a control group did not receive any feedback but was aware that their fuel usage was being 

monitored.44  Printed feedback reports with information from the previous month’s flights were 

sent to the home addresses of treated captains, so that captains received their first feedback report 

in mid-March 2014 and their final feedback report in mid-October 2014.  The three experimental 

treatments can be summarized as follows:  

 

Treatment Group 1: Information.  Each feedback report details the captain’s 

performance of the three fuel-relevant behaviors for the prior month.  Specifically, the feedback 

presents the percentage of flights flown during the preceding month for which the captain 

successfully implemented each of the three behaviors.  For instance, if a captain flew four flights 

in the prior month, successfully performing Fuel Load and Efficient Taxi on two of the flights 

and Efficient Flight on three of the flights, his feedback report would indicate a 50% attainment 

level for the former behaviors and a 75% attainment level for the latter.  

 

  

                                                
44 In keeping with VAA’s culture of transparency, carefully crafted study information sheets were posted to captains’ home 
addresses on January 20, 2014. These information sheets guaranteed captains of the anonymity of their data and assured them that 
the study was not a step in the direction of competitive league tables. Additionally, captains in treatment groups received a 
notification of their assigned treatment group with a sample feedback form, including the appropriate targets for captains in 
Treatment Groups 2 and 3, which were posted on January 27, 2014, five days prior to the first day of monitoring. Since 
participants were aware that they were part of an experiment, our field experiment should be considered a framed field experiment 
in the parlance of Harrison and List (2004). Yet, unlike any other framed field experiment of which we are aware, we are 
estimating a parameter devoid of selection bias since all captains are experimental subjects. In this way, our behavioral parameter 
of interest shares much with that estimated in a natural field experiment (see Al-Ubaydli and List, 2015).  



92 
 

Treatment Group 2: Targets.  Captains in this treatment group received the same 

information outlined above but were additionally encouraged to achieve personalized targets of 

25% above their pre-experimental baseline attainment levels for each metric (capped at 90%).  

The targets were communicated to these captains prior to the start of the experiment.  An 

additional box is included in the feedback report to provide a summary of performance (i.e. total 

number of targets met).  If at least two of the three targets were met, captains were recognized 

with an injunctive statement (“Well Done!”) and encouraged to continue to fly efficiently the 

following month.  If fewer than two targets were met, captains were encouraged to fly more 

efficiently to reach their targets. Captains were not rewarded or recognized in any public or 

material fashion for their achievements.  

 

Treatment Group 3: Prosocial Incentives.  In addition to the information and targets 

provided to captains in treatment group 2, those in the prosocial treatment group were informed 

that achieving their targets would result in donations to charity.  Specifically, for each target 

achieved in a given month, £10 was donated to a charity of the captains’ choice on their 

behalves.45  Therefore, captains in this treatment group each had the opportunity to donate £30 

($49) per month for a total of £240 ($389) to their chosen charity over the course of the eight-

month trial.  Captains were reminded each month of the remaining potential donations that could 

result from realizing their targets in the future.  To our knowledge, ours is the first randomized 

field study to use performance-based charitable incentives to increase employee effort.46  Table 1 

outlines the treatments (see Appendix III for examples of each of the three feedback reports).  

 

This “build-on” design allows us to assess whether there are additional benefits of 

prosocial incentives beyond sole provision of information and personal targets, the latter of which 

have an extremely low marginal cost to the principal.47  Within our experiment, we did not 

change any organizational structures or contracts with the airline captains, although we recognize 

                                                
45 When captains in the prosocial treatment group were informed of their assignment to treatment, they were offered the 
opportunity to choose one of five diverse charities to support with their charitable incentives: Free the Children, MyClimate, Help 
for Heroes, Make A Wish UK, and Cancer Research UK. Eighteen captains selected a charity by emailing the designated project 
email address, and 67 captains who did not actively select a charity were defaulted to donate to Free the Children. Captains could 
choose to remain anonymous; otherwise, exact donations were attributed to each individual (identified by their first initial and last 
name).  
46 See Imas (2014) and Charness, Cobo-Reyes, and Sanchez (2014) for lab experiments on the effect of charitable incentives on 
effort, and Anik et al. (2013) for a field study of unconditional charitable bonuses. Relatedly, field experimental research into 
unconditional gifts is a burgeoning area of research—see Gneezy and List (2006); Bellemare and Shearer (2009); Hennig-Schmidt 
et al. (2010); Englmaier and Leider (2012); Kube, Maréchal, and Puppe (2012); and Cohn, Fehr, and Goette (2015).  
47 The closest research to this “free lunch” approach is depicted in the field experiments of Grant and Gino (2010); Kosfeld and 
Neckermann (2011); Bradler et al. (2013); Chandler and Kapelner (2013); Gubler, Larkin, and Pearce (2013); Ashraf, Bandiera, 
and Jack (2014); Ashraf, Bandiera, and Lee (2014); Kosfeld, Neckermann, and Yang (2014).  
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that these could be important to productivity and efficiency.48  Importantly, our design uses 

incentive schemes that permit flexibility for workers to achieve their goals.  In this way, rather 

than mandate or incent a particular course of action, we follow a more adaptable approach that 

permits gains to be had in accord with the captains’ personal and professional discretion.  

 

iii. Additional experimental details  

 

Randomization. To randomize subjects across the four groups, the pre-experimental data 

(September-November, 2013) were first blocked on five dummy variables that captured whether 

subjects were above or below average for: i) number of engines on aircraft flown, ii) number of 

flights executed per month, and iii) attainment for the three selected fuel-relevant behaviors.  The 

former two variables were those that proved significant in determining the selected outcome 

behaviors in preliminary regressions, while the three target behaviors are our main dependent 

variables.  Once blocked, subjects in each block were randomly allocated to one of the four study 

groups through a matched quadruplet design.  To ensure that individual-specific observable 

characteristics are balanced across groups, we performed balance tests for gender, seniority, age, 

trainer status, and whether the captain participated in the selective pre-study focus group.  In 

addition to checking for balance across the variables on which the data were blocked, we checked 

for balance on flight plan fuel (i.e. as a proxy for average flight distance).  In short, an 

exploration of all available aspects of captain and flight data reveals that the randomization was 

successful in that the observables are balanced across the four experimental conditions (see 

Tables 2 and 3).  

 

Communication with captains. Two weeks prior to the beginning of the study, all 

captains were informed that VAA would be undertaking a study on fuel efficiency as part of its 

Change is in the Air sustainability initiative.  The initial letter outlined the behaviors to be 

measured and the possible study groups to which the captains may be assigned.  Captains in 

treatment groups were to receive letters the following week to inform them of what to expect in 

the coming months.  In the final week of January 2014, letters were sent to all treated captains 

informing them of the intervention to which they had been assigned.  The letter contained a 

sample feedback report including targets, if applicable.  

 

                                                
48 See Nagin et al. (2002); Hamilton, Nickerson, and Owan (2003); Karlan and Valdivia (2011); Bandiera et al. (2013); Bloom et 
al. (2013); Karlan, Knight, and Udry (2015); Bloom et al. (2015). Our context is the single firm experimental setting in the insider 
econometrics approach (Shaw, 2009).  
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From February 1, 2014 to October 1, 2014, we gathered all flight-level data on a monthly 

basis for each captain and mailed a feedback report to the home address of each treated captain.49  

Captains were encouraged to engage with the material and send any questions to an email address 

created specifically for study inquiries.  Once the experiment was complete, we sent treated 

captains a debrief letter informing them of their overall monthly results with respect to their 

targets (if in the targets or prosocial treatment groups) and their total charitable donations (if in 

the prosocial treatment group). All (treatment and control) captains were informed that a follow-

up survey would be sent to their company email addresses in early 2015.50  

 

Sample.  Our data consist of the entire eligible universe of VAA captains (N=335), of 

which 329 are male and 6 are female.  Of the debrief survey respondents, 97 classified their 

training as military and 102 as civilian (the remaining declined to state).  Eleven captains are 

“trusted pilots” who were selected for consultation regarding study feasibility and 

communications, and 62 captains are “trainers” who are responsible for updating and training 

captains and first officers with the latest flight techniques.  Captains ranged from 37 to 64 years 

of age, where the average captain was 52 years old and had been an employee of the airline for 

over 17 years when the study initiated.  Captains in the sample flew five flights per month on 

average, where the captain flying most averaged almost eight flights per month and the captain 

flying least averaged just over two flights per month. 

 

The resulting dataset consists of 42,012 flights and 110,489 observations of behavior from 

January 2013 through March 2015 for the captains sampled.51  We exclude domestic and 

repositioning flights from our analysis.  Among other variables, we observe fuel (kg) onboard the 

aircraft at four discrete points in time: departure from the outbound gate, takeoff, landing, and 

arrival at the inbound gate.  In addition, we observe fuel passing through each of the aircraft’s 

engines during taxi, which provides a precise measure of fuel burned while on the ground.  We 

also observe flight duration, flight plan variables (i.e. expected fuel use, flight duration, departure 
                                                
49 During the study, Rolls Royce (Controls and Data Services) provided monthly data to VAA. We (the academic researchers) 
almost always received access to the data within two weeks of the start of the month, and feedback reports were compiled and 
returned to VAA within 24 hours to be postmarked the following day. VAA subsequently provided post-study data (October 2014 
through March 2015) for persistence analysis.  
50 The follow-up survey was designed and administered by the academic researchers alone. Again, captains were assured that data 
from their responses would be used for research purposes only, that their responses would remain anonymous, and that VAA 
would not be privy to individual-level information provided by survey respondents.  
51 Efficient Taxiing data is physically stored on QAR cards inside the aircraft, which are removed every 2-4 days to pull data. 
These cards can corrupt or overwrite themselves, and also can reach full memory capacity before being removed. Therefore, data 
capture for Efficient Taxi is not complete—exactly 37% of flights are missing data for this metric. The reason for the missing data 
is purely technical and cannot be influenced by captains. We regress an indicator variable of missing Efficient Taxi data on 
treatment indicators and find no statistically significant relationship at any meaningful level of confidence (individual and joint p 
> 0.4). Consequently, this phenomenon should not affect results beyond reducing the power of estimates.  
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destination, and arrival destination), and aircraft type.  We control for several flight-level 

variables—e.g., ports of departure and arrival, weather on departure and arrival, whether the 

aircraft had just received maintenance (e.g., belly wash, engine change), and aircraft type—as 

well as captain-level time-varying observables such as current contracted work hours and 

whether the captain had attended the annual Ops Day training. 

 

 

3.  Results  

 

i. Main results 

 

 Table 4 and Figures 2a-2c provide a summary description of captains’ performance of the 

fuel-efficient behaviors before and during the experimental period.  A preliminary insight is that 

the pre-experimental behavioral outcomes are balanced across various study groups (see Tables 2 

and 3).  For instance, roughly 42% of flight observations were characterized by efficient Fuel 

Load before the experiment started, and attainment within the experimental groups is 

approximately 41-43%(Table 4, Row 1).  Likewise, figures are similar for Efficient Flight 

(roughly 31%) and Efficient Taxi (roughly 34%).  None of the differences across groups are 

statistically significant at conventional levels.  

 

A second noteworthy insight is the large difference in behaviors before and during the 

experiment for the control captains, leading to our first formal result:  

 

Result 1. Captains in the control group change their behavior considerably after they are 

informed that they are being monitored.  

 

Preliminary evidence for this result is contained in Column 1 of Table 4.  For example, 

whereas control captains met the Efficient Flight threshold on 31.1% of flights before the 

experiment, they met the threshold on 47.6% of flights during the experiment (p<0.01).  

Likewise, control captains implemented Efficient Taxi on 50.7% of flights during the experiment 

compared to 35.2% before the experiment (p<0.01).  While the results are not economically large 

for the Fuel Load variable, they again point in the same direction as the other two measures: after 

the control captains become aware that their actions are being measured, they increase the 

precision of their fuel load (44.3% versus 42.1% of flight observations; p<0.05).  Figures 2a-2c 



96 
 

provide a visual summary of this result, and reinforce the substantial difference in captains’ 

behavior once the experiment began. 

 

While these statistics are certainly consistent with Result 1, we have not yet accounted for 

the data dependencies that arise from each captain’s provision of more than one data point.  To 

control for the panel nature of the data set, we estimate a regression model of the form:  

 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟!" =  𝛼 +  𝐸𝑥𝑝!" × 𝑇!"𝛽 +  𝑋!"𝛾 +  𝜔!  +  𝑒!" 

 

where EfficientBehaviorit equals one if captain i performed the fuel-efficient activity on flight t, 

and equals zero otherwise.  Expit indicates the experimental period, Tit represents a vector with 

indicator variables for the three treatments, Xit is a vector of control variables, and ωi is a captain 

fixed effect.  We include all available and relevant flight variables as controls, which include 

weather (temperature and condition) on departure and arrival, number of engines on the aircraft, 

airports of departure and arrival, engine washes and changes, and airframe washes.  Additionally, 

we control for captains’ contracted flying hours and whether the captain has completed training.52 

 

We estimate the above difference-in-difference model specification for each of the fuel-

efficient activities using panel data from January 2013 through September 2014, and we treat the 

first day of the experiment as February 1, 2014, when monitoring of captains begins.  Three 

different empirical approaches yield qualitatively similar results: linear probability model (LPM), 

probit, and logit.  For ease of interpretation, we only present the results of the LPM in Table 5.  

Robust standard errors are clustered at the captain level.  As an alternative, we present Newey-

West standard errors for the same model. 

 

We first note the coefficient estimate of the experimental period (“Expt”), which provides 

a measure of how the control group changed behavior over time.  We find a staggering effect: the 

control group increased their implementation of Efficient Flight by 14.4 percentage points 

(46.3% effect, 0.31 standard deviations (σ), p<0.05) and of Efficient Taxi by 12.5 percentage 

points (36% effect, 0.26σ, p<0.05).  Figures 3a-3c demonstrate the pre-experimental trends (from 

January 2013 through January 2014) and provide a visual representation of the differences in 

                                                
52 There are various types of training courses, foremost of which is time spent in the simulator (majority of training) in which 
captains must pass assessments; we do not have accurate data on these trainings. We instead control for attendance at the two-day 
“Ops Day” seminar, a gathering of small groups of pilots (approximately 20 per training) for briefing that includes discussion of 
the goals and directions of the airline and presentations from various teams, with some informal training for pilots.  
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implementation of the prescribed metrics before and during the experiment.  Across both Fuel 

Load and Efficient Flight, it is clear that there is no upward trend for any group before the 

experiment started.  For Efficient Taxi, we see a slight upward trend, although there is a large 

increase in the level of implementation during the experimental period across all groups.53 It is 

clear that including this trend changes the estimates slightly, especially for the Hawthorne effect 

in Efficient Taxi—the metric drops by 8.7 percentage points (see Table A1). The Hawthorne 

effect for Fuel Load increases by 1.5 percentage points and becomes statistically significant 

(p<0.05).  We also analyze different time trends (cubic, polynomial, etc.) and they provide very 

similar estimates to the linear trend analysis.54   

 

The above insights lend evidence in favor of a Hawthorne effect, a result consistent with 

the importance of social pressure in our theoretical structure.55  They do not, however, shed light 

on the effectiveness of the treatments in stimulating fuel-efficient behaviors. Results 2-4 address 

this central question:  

 

Result 2. Providing captains with information on previous performance moderately improves 

their fuel efficiency, particularly with respect to Efficient Taxi.  

 

Result 3. The inclusion of personalized targets significantly increases captains’ implementation 

of all three measured behaviors: Fuel Load, Efficient Flight, and Efficient Taxi.  

 

Result 4. While captains in the prosocial treatment significantly outperform the control group, 

adding a charitable component does not induce greater effort than personalized targets.  

   

Overall, Table 5 shows that the effects for all three behaviors are statistically significantly 

different from the control group at conventional levels for nearly every behavior-treatment 

combination, both with clustered and with Newey-West standard errors (with a lag of one 

period).  Preliminary evidence of Result 2 can be found in Table 4 and Figures 2-4, which 

demonstrate that—despite increased performance in Fuel Load and Efficient Flight—the 

differences between the information and control groups are slight.  Yet, there is a considerable 
                                                
53 For robustness, we also estimate the specifications in Table 5 with a linear trend—see Table A1.   
54 These analyses are not evidence for the violation of SUTVA, since we reasonably assume that the Hawthorne effect we observe 
would be applied equally across all groups and not just one or two groups separately.  
55 Table A2 presents three separate Dickey-Fuller tests of a unit root in the pre-experimental data for the three behaviors. The tests 
provide insight as to whether an upward trend in the pre-experimental data might explain our sizable Hawthorne effects. We 
collapse the four study groups and analyze each of the three behaviors for 51 weeks preceding the captains’ notification of the 
experiment. For each of the measured behaviors, we reject the null hypothesis that the data exhibit a unit root and therefore argue 
that the metrics were stationary prior to January 2014.  
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change in Efficient Taxi implementation between the information and control groups (58.8% 

versus 50.7%).  The standard difference-in-difference estimates in Table 5 complement the raw 

data in Table 4, demonstrating that the information treatment induces captains to engage in more 

efficient taxiing.  The coefficient estimate suggests that the percentage of flights for which 

captains receiving the information treatment turned off at least one engine while taxiing to the 

gate increased by 8.1 percentage points (p<0.05) relative to the improvement identified in the 

control group.  

 

Alternatively, when considering the behavior of captains who received personalized 

targets in addition to information on previous performance, we observe consistent treatment 

effects across all three performance metrics.  In Tables 4 and 5 and Figures 2-4, we see rather 

clearly that the targets treatment moved the metrics for each of the three behaviors in the fuel-

saving direction.  For instance, captains in the targets treatment increased implementation by 3.7 

percentage points for Efficient Flight (i.e. a 7.7% treatment effect, 0.074σ, p<0.05).  Most 

striking is the effect of the intervention on the occurrence of Efficient Taxi, which occurred on 

almost 10 percentage points more flights for those in the targets treatment (19.1% effect, 0.194σ, 

p<0.01).56 

 

Since each treatment builds upon the last—e.g., feedback in the targets group builds upon 

that in the information group by adding personalized exogenous targets, holding everything else 

constant—we “control” for the contents of previous treatments and are therefore able to make 

comparisons across treatments as well.  As shown in Table 5, the information treatment appears 

to have a positive effect on the incidence of fuel-efficient behaviors compared to the control 

group, though motivating captains with personalized targets is more effective than using 

information alone.  For instance, the information treatment only significantly increases the 

Efficient Taxi behavior while targets also significantly increase Efficient Flight (a more difficult 

metric to achieve).  Furthermore, magnitude and significance of the point estimates are increased 

for captains who receive targets. 

 

That said, prosocial incentives do not appear to provide substantial additional motivation 

for behavior change beyond targets.  The empirical results across the targets and prosocial 

treatments in Table 5 and Figures 2-4 are very similar.  However, captains in these two groups 

appear to outperform those who received information alone.  To statistically validate this 

                                                
56 For robustness, we also include specifications where we control for the quadruplet nature of the randomization (see Table A3).  
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supposition, we pool all captains that receive personalized targets, i.e. target and prosocial 

treatment groups, and compare the pooled group to the information treatment in an additional 

regression.  We find that receiving targets significantly increases fuel-efficient behavior for 

Efficient Flight (p<0.05) and Efficient Taxi (p<0.10).  A similar exercise also confirms that 

prosocial incentives do not significantly improve behavior beyond targets alone.  Thus, while 

information is an important mechanism in encouraging fuel-efficient behavior change, targets add 

an additional effect that prosocial incentives do not further augment. 

 

In sum, the experimental treatments provide behavioral structure to our theoretical model. 

Recall that the effect of information on effort in the model depends on the realized difference 

between estimated and actual fuel efficiency.  Given that the estimates suggest a move toward 

fuel efficiency among captains in the information group (especially with respect to Efficient 

Taxi), we argue that captains’ ex ante beliefs regarding their fuel efficiency are optimistic; 

therefore, information moderately encourages increased fuel efficiency.  Our model suggests that 

targets set above the baseline performance should (weakly) increase effort.  Consistent with this 

conjecture, we find that targets improve captains’ attainment of all three behaviors.  

 

Furthermore, the model predicts that the prosocial treatment should increase effort if a 

captain’s altruism is strictly positive and should not affect his effort otherwise.  The performance 

of captains in this treatment group does not significantly exceed that of the captains in the targets 

treatment on any dimension.  Therefore, we cannot conclude that captains’ altruism is strictly 

positive as measured by our experimental manipulation.   

 

Finally, according to the model, captains should allocate effort disproportionately toward 

behaviors that require the least effort.  We know from interviews with captains and airline 

personnel that Efficient Taxi is the least effortful behavior of the three that were monitored.  Our 

findings support this notion, as the treatment effect sizes for Efficient Taxi are considerably 

larger than the treatment effect sizes for both Fuel Load and Efficient Flight for all treatment 

groups.57 

 

  

                                                
57 Note that we are making positive, not normative, statements. In computing welfare effects, one might be concerned with 
treatment impacts on flight duration and safety. Since there is no variation in safety outcomes (zero incidents or flight diversions 
due to issues pertaining to fuel), we cannot address this concern.  As for flight duration, the treatments did not influence flight 
duration apart from the reduction in flight time for the prosocial group.  In Chapter 4, I aim to address concerns regarding the 
welfare of captains themselves through measurement of captains’ job satisfaction.  
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ii. Temporal Effects  

 

Importantly, our data provide the opportunity to move beyond short-run substitution 

effects and explore treatment effects in the longer run.  In this sub-section, we conduct a more 

nuanced investigation of the treatment effects by exploring their persistence as the experiment 

progresses.58  Upon doing so, we find a fifth result:  

 

Result 5. We do not observe decay effects of treatment within the experimental time frame.  

 

To examine the treatment effects over the course of the experiment, we plot the month-

by-month treatment effects in Figures 4a-4c.  The largest effects relative to the baseline appear to 

be in May for Fuel Load and Efficient Flight and in April for Efficient Taxi.  That is, the 

treatment effects appear to be strongest around the middle of the study (and not immediately after 

monitoring begins), with no consistent pattern of decay for any of the three behaviors.  

 

Although our theory does not have a dynamic decay prediction, given the experimental 

results in Gneezy and List (2006), Lee and Rupp (2007), Hennig-Schmidt, Sadrieh, and 

Rockenbach (2010), and Allcott and Rogers (2014), we expected that our treatment effect might 

decay through time.  Indeed, our results are more consonant with Hossain and List (2012), who 

report that their incentives maintained their influence over several weeks for Chinese 

manufacturing workers.  What our environment shares with Hossain and List’s is the context of a 

repeated intervention whereas the other studies that find a decay effect are typically set within 

one-shot work environments or weaker reputational environments.  We conjecture that repeated 

interaction with subjects serves to habituate the incented behaviors, thereby diminishing 

susceptibility to decay effects.  Accordingly, this insight serves to enhance our understanding of 

the generalizability of the decay insights provided in this literature to date. 

 

Another interesting temporal feature in our data is the ability to test for persistence of the 

treatment effects after the experiment concludes.  Inspection of the post-experiment data yields a 

sixth result:  

 

Result 6. Treatment effects attenuate or disappear after the treatment is removed, though 

Hawthorne effects remain high and even increase with the passage of time. 
                                                
58 Relatedly, we also explored a measure of salience in our experiment, namely that behavior changed in the week following 
receipt of the message and reverted to the mean thereafter. We do not find such an effect.  
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Once again we find preliminary evidence for this result in Table 4.  For instance, while 

control captains met the Efficient Flight metric on 31.1% of flights before the experiment and 

47.6% of flights during the experiment, they actually increased their attainment to 54.8% of 

flights in the six-month period following the experiment’s end date.  Similarly, control captains 

turned off at least one engine while taxiing for 54.7% of flights after the experiment, compared to 

50.7% of flights during the experiment and 35.2% before the experiment.  This post-experiment 

increase is not present for Fuel Load, but the original boost in implementation remains after the 

experiment ends.  

 

Further evidence of persistence is summarized in Table 6, a difference-in-difference 

specification comparing pre-study behavior to post-study behavior.  We see that the control group 

captains continue to outperform their pre-experimental attainment with significance across all 

three fuel-efficient behaviors, and even more astoundingly so.  The findings indicate that there 

are no significant differences between control and treatment for Fuel Load and Efficient Flight.  

However, we still detect significant increases in terms of Efficient Taxi for the targets (p<0.05) 

and prosocial (p<0.05) treatment groups, albeit with attenuated treatment effects.  These results 

indicate that the benefits of receiving consistent feedback on fuel-efficient tasks do not persist 

once the feedback is removed.    

 

iii. Fuel savings 

 

Given the substantial treatment effects during the experimental period of the study, we 

report an economically significant fuel and cost savings:  

 

Result 7. The experimental treatments directly led to 704 tons in fuel savings and $553,000 in 

cost savings for Virgin Atlantic. These estimates dramatically increase after incorporating the 

estimated Hawthorne effect.  

 

To provide support for this result, we present two estimations of fuel saved as a result of 

the experimental treatments. We are in a unique position to use engineering and data-supported 

fuel estimates to understand the denoted impact of our interventions on efficiency, and we 

provide both here given that there are pros and cons to each approach.  
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First, we apply engineering estimates to assess fuel savings without requiring data on 

actual fuel usage or statistical power to detect differences in fuel use pre- and post-intervention.  

However, the engineering estimates do not account for actual changes to fuel usage as a result of 

behavior change.  While the data-supported estimates do incorporate actual changes to fuel use as 

a result of the study, the approach is generally one that requires statistical power to detect 

significant differences in fuel use.  Our experimental design was powered to detect differences in 

fuel-efficient behaviors, not changes in fuel use.  As such, we use coefficients that capture 

average effects of treatments on fuel use without the statistical power to demonstrate 

significance.  Therefore, we use both engineering estimates and data-driven estimates to provide 

an approximation of fuel saved and CO2 emissions abated as a result of the treatment groups.  

 

Engineering estimates. VAA projects an average fuel savings of 250 kg per flight as a 

result of proper execution of Fuel Load.  The 0.7%, 2.1% and 2.5% treatment effects for the 

information, targets, and prosocial incentives groups (respectively) correspond to an increase in 

the implementation of Fuel Load by 169 flights (saving 250 kg each flight), equivalent to a 

savings of 42,250 kg of fuel over an eight-month period.  Moreover, VAA estimates that an 

Efficient Flight uses (at least) 500 kg less fuel than the alternative, on average.  The effect sizes 

for the three groups were 1.7%, 3.7%, and 4.7% (respectively), which translates to 323 additional 

“efficient” flights over the eight-month period, or 161,500 kg in fuel savings.  Finally, VAA 

estimates average fuel wastage of 9 kg per minute if no engines are shut down while taxiing, and 

the average treatment effects for the three groups were 8.1%, 9.7%, and 8.9%, respectively.  

Given an average taxi-in time of 8 minutes in our dataset, we approximate fuel savings per flight 

to be 72 kg.  An additional 853 extra flights having met Efficient Taxi corresponds to a fuel 

savings of 61,400 kg over the eight-month study period.  

 

Summing these savings, the interventions led to just under 266,000 kg of fuel saved over 

the course of the study. Combining the industry’s standard conversion of 3.1497 kg of CO2 per 

kg of fuel burned with the February 2014 IATA global jet fuel price of $786 per 1000 kg, we 

estimate a cost savings of $209,000 and a CO2 savings of 838,000 kg (i.e. $31,000 environmental 

savings using $37/ton of CO2 at 3% discount rate in 2015; Interagency Working Group on Social 

Cost of Carbon, 2013).  The engineering estimates suggest that targets provide the largest 

benefits to social and private efficiency.  These calculations constitute fuel and cost savings 

stemming directly from the treatments and do not incorporate the sizable Hawthorne effects, 

which increase the overall cost savings to $1,079,000 and CO2 savings to 4,324,000 kg.  The 
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savings associated with the Hawthorne effects come from captains having performed Fuel Load 

on 233 more flights, Efficient Flight on 1,861 more flights, and Efficient Taxi on 1,616 more 

flights. 

  

Data-supported estimates. The data allow us to estimate actual fuel savings from changes 

in captains’ behavior.  We estimate differences in captains’ fuel usage from before the 

experiment to the experimental period within each group.  In essence, we employ an Intent-to-

Treat approach and use average treatment effects from this difference-in-difference regression to 

calculate average fuel savings, which we subsequently aggregate.   

 

For Fuel Load, we measure the deviation of the actual fuel load from the “ideal” fuel 

load—the latter stemming from the double iteration calculation.  We identify the average group-

level deviation, which is positive if the captain over-fuels relative to the ideal.  We then estimate 

average fuel savings per group, which entails summing the corresponding average treatment 

effect with the control group’s average fuel savings from the pre-experimental to the 

experimental period (see Table 8).  In doing so, we assume that the Hawthorne effect is constant 

across groups.  On average, captains in the control group decreased fuel use relative to the ideal 

by 128.1 kg per flight, the information group by 98.5 kg per flight, the targets group by 141.3 kg 

per flight, and the prosocial group by 159.8 kg per flight.  

 

Similarly, for Efficient Flight, we examine changes in captains’ fuel use relative to the 

“ideal” fuel use, or the anticipated fuel use according to the flight plan (adjusted for updates to 

Fuel Load).  We find that captains in the control, information, targets, and prosocial groups 

reduced in-flight fuel use by 345.2, 371.9, 451.6, and 419.9 kg per flight, respectively.  Finally, 

for Efficient Taxi, we examine changes to fuel use during taxi-in from pre-intervention to the 

experimental period.  Fuel savings per flight amounted to 0.4, 3.7, and 5.1 kg for the control, 

information, and targets interventions, while the prosocial group increased fuel use during taxi-in 

by 5 kg.  

 

As a next step, we take these group-level effects and scale them up by the number of 

flights per treatment group.  Put differently, total savings for a given treatment cell are the sum of 

the average treatment effect and the average Hawthorne effect multiplied by the number of 

unique flights during the experimental period flown by captains in that group.  Results from this 

exercise are presented in Table 9.  Standard error calculations are based on Newey-West standard 
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errors (lag=1) in the underlying difference-in-difference specifications.  Using the data-driven 

estimates, our interventions led to roughly 6.83 million kg in fuel savings in aggregate.  Of these 

savings, about 1.57 million kg were saved in both the control and information groups, whereas 

the targets and prosocial group saved more than 1.8 million kg each.  Using the same conversions 

as above (see Table 7), total savings correspond to cost savings of $5.37 million (equivalent to a 

reduction of 0.56% of overall fuel costs) and CO2 savings of 21.5 million kg.   

 

Interestingly, there are quite substantial differences between the engineering and data-

driven estimates, especially for those that account for Hawthorne effects.  The disparity may be 

attributable to underestimates of average savings from the three behaviors—especially for the 

Efficient Flight metric—as well as differences in the nature of the estimations.  That is, unlike the 

engineering estimates, the data-supported estimates do not account for differences in percentages 

of flights for which a behavior was met.  Rather, they estimate overall average fuel use changes 

in the study itself and apply these changes to all flights.  Even if we apply the most conservative 

fuel savings estimates to the changes in behavior, we find that these interventions, especially the 

target groups, led to remarkable cost-savings and return on investment for the airline.  

 

We calculate an approximate MAC for such behavioral interventions, which is negative 

(since abatement is highly profitable in this context).  Specifically, the MAC (assuming costless 

interventions) is simply the price per ton of jet fuel divided by 3.15 tons CO2 per ton of fuel.  

Using the February 2014 jet fuel price of $786 per ton, we calculate an average MAC of -$250.  

In other words, each ton of CO2 abated yields a private cost savings to the airline of $250.  

Businesses and policymakers should take note of the potential cost-effectiveness of such 

behavioral interventions in mitigating prominent global externalities. 

 

iv. Treatment effect heterogeneity by prior attainment 

 

Are the results driven by a broad behavioral shift amongst all captains or a handful of 

captains adjusting completely?  To address this question, we explore within-captain differences in 

attainment from the pre-experimental period to the intervention period.  A first result is that the 

Hawthorne effect is prevalent across captains, as is apparent in Figures 5a-5c.  These figures 

show the change in average attainment of the three behaviors for each control captain.  Almost all 

captains increase their implementation of fuel-efficient behaviors in the experimental period, 

albeit to varying degrees.  Indeed, we find that a majority of captains improve their performance 
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relative to the baseline for Fuel Load (60% of captains), Efficient Flight (89% of captains), and 

Efficient Taxi (82% of captains).  Looking at the raw data (i.e. without controls), the standard 

deviations around the mean changes in these behaviors are quite large (Fuel Load: µ = 0.036, σ = 

0.105; Efficient Flight: µ = 0.170, σ = 0.123; Efficient Taxi: µ = 0.147, σ = 0.149).  

 

Turning to the question of whether the treatment effects are uniform across captains, we 

construct similar charts that net out the mean change in behavior of the control group (see Figures 

6a-6c).  In other words, we deduct the means reported above from each captains’ average 

difference in implementation between the pre-experimental and experimental periods.  For 

example, a captain who implemented Efficient Taxi on 50% of flights before the experiment and 

75% during the experiment experienced a 25% increase in attainment, but the Hawthorne effect 

confounds this increase; therefore, we subtract 14.7%—the average difference among captains in 

the control group—from 25%, so that the net “effect” on the captain is a 10.3% increase in 

implementation of Efficient Taxi.  Figure 6 displays such within-subject differences in attainment 

for each of the three measured behaviors across experimental conditions.  

 

There does not appear to be a consistent pattern for Fuel Load and Efficient Flight 

indicating predictable heterogeneity of treatment effects according to initial attainment levels.  

However, for Efficient Taxi, relatively low-achieving captains in all three treatment groups 

appear to outperform similar captains in the control group.  Interestingly, for Fuel Load, there is a 

tendency for the highest-achieving captains to respond negatively to the experiment, perhaps 

implying a phenomenon akin to “crowding out” of intrinsic motivation.  These results are not 

significant at conventional levels.  

 

 

4.  Discussion  

 

The next time you sit on an airplane next to a policymaker, ask what is the best way to 

combat pollution externalities.  We have posed this question repeatedly working alongside 

Congresswomen, Senators, and policymakers across governmental agencies.  The stock answer is 

“raise taxes”, “create a cap-and-trade scheme”, or “make firms install pollution control devices”.  

Not once have we heard: design incentives for workers to produce more sustainably.  In this 

study, we introduce this approach to combating firm-level pollution externalities.  
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We showcase this approach by implementing a field experiment in a partnership with 

Virgin Atlantic Airways.  The overarching goal was to improve the fuel efficiency of their 

captains without compromising safety or service quality.  While our workplace setting is complex 

with myriad competing incentives at play, clear measurement of captains’ behavior enables 

innovative strategies to provide the right set of interventions to improve employee productivity 

and firm performance.  Based on our principal-agent model, we randomize three interventions to 

understand the impact on employee performance of basic informational feedback, exogenous 

targets associated with said information, and prosocial incentives associated with the above 

targets and information.  We find that all three interventions are successful at inducing fuel-

efficient behaviors, and that provision of exogenous targets is the most cost-effective 

intervention.  We conclude that our inexpensive strategies are both a feasible and a profitable 

means to induce airline captains to fly aircraft more efficiently.  

 

This research speaks to many fields within economics. For example, in labor economics, 

how best to incent workers to motivate effort in the workplace has been a principal topic of 

inquiry for decades. The imperfect relationship between employees’ effort and productivity 

renders firms incapable of rewarding effort with precision (Miller, 1992; Lazear, 1999; 

Malcomson, 1999; Prendergast, 1999).  A burgeoning experimental literature on incentives and 

workplace initiatives attempts to understand the employee-employer relationship and effective 

means by which employers may increase effort and productivity (see List and Rasul, 2011; Levitt 

and Neckermann, 2014).  We attempt to advance this literature by understanding the separate 

impacts of basic information, personalized targets, and prosocial incentives on workplace 

performance in a high-stakes setting among well salaried, experienced, and unionized employees.  

Our setting does not comprise information asymmetry or team production externalities (i.e. there 

is no undetected shirking), and therefore there is potential to align individual self-interest with 

firm efficiency.  

 

This research also has clear policy implications with respect to cost-effective greenhouse 

gas abatement. We find that the marginal abatement cost (MAC) estimated from no- to low-cost 

behavioral interventions is around -$250 (using 2014 prices).  To our knowledge, this MAC is the 

lowest currently estimated in academic or policy circles.  Thus, such “low-hanging fruits” 

provide complements—and in some cases perhaps even alternatives—to more traditional 

approaches to pollution control.  Future research should aim to identify additional behavioral 

motivators to improve the efficiency of workers as a means to minimize abatement costs while 
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simultaneously reducing the operation costs of firms in an effort to promote win-win strategies 

for the economy and the environment.  
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FIGURES 

 
 

FIGURE 1 
GLOBAL DESTINATIONS OF VAA 

 

 
 
 

FIGURE 2A 
FUEL LOAD, BY TIME PERIOD 
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FIGURE 2B 
EFFICIENT FLIGHT, BY TIME PERIOD 

 

 
 
 

FIGURE 2C 
EFFICIENT TAXI, BY TIME PERIOD 
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FIGURE 3A 
FUEL LOAD BEFORE AND DURING THE EXPERIMENT 

 

 
 
 

FIGURE 3B 
EFFICIENT FLIGHT BEFORE AND DURING THE EXPERIMENT 
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FIGURE 3C 
EFFICIENT TAXI BEFORE AND DURING THE EXPERIMENT 

 

 
 
 

FIGURE 4A 
TREATMENT EFFECTS FOR FUEL LOAD DURING THE EXPERIMENT 
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FIGURE 4B 
TREATMENT EFFECTS FOR EFFICIENT FLIGHT DURING THE EXPERIMENT 

 

 
 
 

FIGURE 4C 
TREATMENT EFFECTS FOR EFFICIENT TAXI DURING THE EXPERIMENT 
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FIGURE 5A 
WITHIN-SUBJECT CHANGES IN CONTROL GROUP: 

AVERAGE FUEL LOAD IMPLEMENTATION FROM BEFORE TO DURING EXPERIMENT 

 
 
 

FIGURE 5B 
WITHIN-SUBJECT CHANGES IN CONTROL GROUP: 

AVERAGE EFFICIENT FLIGHT IMPLEMENTATION FROM BEFORE TO DURING EXPERIMENT 
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FIGURE 5C 
WITHIN-SUBJECT CHANGES IN CONTROL GROUP: 

AVERAGE EFFICIENT TAXI IMPLEMENTATION FROM BEFORE TO DURING EXPERIMENT 

 
 
 

FIGURE 6A 
WITHIN-SUBJECT CHANGES IN ALL GROUPS: AVERAGE FUEL LOAD IMPLEMENTATION  

FROM BEFORE TO DURING THE EXPERIMENT (NET OF RAW HAWTHORNE EFFECTS) 
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FIGURE 6B 
WITHIN-SUBJECT CHANGES IN ALL GROUPS: AVERAGE EFFICIENT FLIGHT IMPLEMENTATION  

FROM BEFORE TO DURING THE EXPERIMENT (NET OF RAW HAWTHORNE EFFECTS) 

 
 
 

FIGURE 6C 
WITHIN-SUBJECT CHANGES IN ALL GROUPS: AVERAGE EFFICIENT TAXI IMPLEMENTATION  

FROM BEFORE TO DURING THE EXPERIMENT (NET OF RAW HAWTHORNE EFFECTS) 
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TABLES 
 
 
 

TABLE 1 
TREATMENT GROUP DESIGN 

 Information Targets Prosocial Incentives 
Control    
Treatment Group 1 ✓   
Treatment Group 2 ✓ ✓  
Treatment Group 3 ✓ ✓ ✓ 

 
 
 

TABLE 2 
BALANCE ON CAPTAIN CHARACTERISTICS 

 
 
 

 
C: 
Control 

 
T1: 
Information 

Test of 
equality: 
C=T1 

 
T2: 
Targets 

Test of 
Equality: 

C=T2 

Test of 
Equality: 
T1=T2 

 
T3: 

Prosocial 

Test of 
Equality: 

C=T3 

Test of 
Equality: 
T1=T3 

Test of 
Equality: 
T2=T3 

Seniority 177.93 
(94.68) 

157.16 
(97.38) 

p=0.161 174.56 
(102.00) 

p=0.825 p=0.263 171.87 
(97.17) 

p=0.682 p=0.327 p=0.863 

Age 52.23 
(5.34) 

51.93 
(5.10) 

p=0.707 51.20 
(5.73) 

p=0.232 p=0.387 52.31 
(5.15) 

p=0.926 p=0.633 p=0.193 

Trainer 0.165 
(0.373) 

0.188 
(0.393) 

p=0.687 0.185 
(0.391) 

p=0.728 p=0.960 0.202 
(0.404) 

p=0.527 p=0.817 p=0.780 

Trusted 
Pilot 

0.035 
(0.186) 

0.047 
(0.213) 

p=0.700 0.025 
(0.156) 

p=0.690 p=0.440 0.024 
(0.153) 

p=0.660 p=0.414 p=0.971 

Sample n=85 n=85  n=81   n=84    

Notes: The table reports means and standard deviations (in parentheses) for captains in the four experimental conditions in the pre-
experimental data (January 2013-January 2014), in addition to tests of equality for each pair of groups (t-test for continuous variables, 
chi-square test for indicator variables).  Seniority and age are continuous variables (t-test), while trainer and trusted pilot are indicator 
variables.  Seniority captures the captain’s ranking amongst VAA captains.  Age is the captain’s age in years (in 2014).  Trainer captures 
whether the captain trains other captains in the latest flight techniques, and trusted pilot indicates whether the captain was included in 
pre-study focus groups. 
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TABLE 3 
BALANCE ON FLIGHT CHARACTERISTICS 

 
 
 

 
C: 
Control 

 
T1: 
Information 

Test of 
equality: 
C=T1 

 
T2: Targets 

Test of 
Equality: 

C=T2 

Test of 
Equality: 
T1=T2 

 
T3: 

Prosocial 

Test of 
Equality: 

C=T3 

Test of 
Equality: 
T1=T3 

Test of 
Equality: 
T2=T3 

Plan Ramp  76,750 
(14,993) 

78,559 
(15,467) 

p=0.440 76,666 
(14,815) 

p=0.971 p=0.764 76,042 
(15,587 

p=0.422 p=0.294 p=0.793 

Engines 3.439 
(0.629) 

3.483 
(0.615) 

p=0.648 3.419 
(0.640) 

p=0.840 p=0.515 3.392 
(0.658) 

p=0.633 p=0.354 p=0.786 

Flights/Month 5.182 
(1.372) 

5.150 
(1.310) 

p=0.877 5.305 
(1.406) 

p=0.571 p=0.465 5.261 
(1.328) 

p=0.706 p=0.586 p=0.837 

Fuel Load 0.417 
(0.208) 

0.422 
(0.175) 

p=0.866 0.424 
(0.180) 

p=0.831 p=0.769 0.408 
(0.185) 

p=0.956 p=0.616 p=0.589 

Eff Flight 0.322 
(0.124) 

0.322 
(0.114) 

p=0.979 0.327 
(0.130) 

p=0.778 p=0.835 0.326 
(0.130) 

p=0.789 p=0.849 p=0.942 

Eff Taxi 0.365 
(0.230) 

0.359 
(0.229) 

p=0.874 0.367 
(0.222) 

p=0.947 p=0.460 0.339 
(0.226) 

p=0.821 p=0.561 p=0.418 

Sample n=85 n=85  n=81   n=84    

Notes: The table reports means and standard deviations (in parentheses) for captains in the four experimental conditions in the pre-experimental data 
(January 2013-January 2014), in addition to tests of equality for each pair of groups (t-test for continuous variables, chi-square test for indicator 
variables).  Plan ramp measures the amount of fuel anticipated for the entire flight (including taxi-out and taxi-in) and therefore acts as a proxy for 
distance flown.  Engines is the average number of engines on aircraft flown.  Flights/Month is the average number of flights a captain flew in a given 
month in the thirteen months leading up to the study.  Fuel Load, Eff Flight, and Eff Taxi represent the proportion of each captain’s flights on which 
each of the three fuel-efficient behaviors targeted by the study were met in the pre-experimental period. 
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TABLE 4 
AVERAGE ATTAINMENT OF FUEL LOAD, EFFICIENT FLIGHT, AND EFFICIENT TAXI IN ALL TIME 

PERIODS (RAW DATA) 

  
Control  

(1) 

Treatment 1: 
Information  

(2) 

Treatment 2: 
Targets  

(3) 

Treatment 3: 
Prosocial 

(4) 

All 
Captains 

(5) 

Fuel Load      

Pre-
intervention 

0.421 
(0.494)  

5258 obs 

0.428 
(0.495) 

5429 obs 

0.434 
(0.496) 

5070 obs 

0.414 
(0.493) 

5140 obs 

0.424 
(0.494) 

20,897 obs 

Intervention 
period 

0.443  
(0.497) 

3321 obs 

0.462  
(0.499) 

3330 obs 

0.475  
(0.499) 

3016 obs 

0.458  
(0.498) 

3258 obs 

0.459 
(0.498) 

12,925 obs 

After 
intervention 

0.446  
(0.497) 

2,140 obs 

0.446  
(0.497) 

2,120 obs 

0.469  
(0.499) 

1,867 obs 

0.412  
(0.492) 

2,063 obs 

0.442 
(0.497) 

8190 obs 

Efficient Flight     

Pre-
intervention 

0.311  
(0.463) 

5258 obs 

0.314  
(0.464) 

5429 obs 

0.313  
(0.464) 

5070 obs 

0.312  
(0.463) 

5140 obs 

0.312 
(0.463) 

20,897 obs 

Intervention 
period 

0.476  
(0.500) 

3,321 obs 

0.503  
(0.500) 

3,330 obs 

0.528  
(0.499) 

3,016 obs 

0.510  
(0.499) 

3258 obs 

0.504 
(0.500) 

12,925 obs 

After 
intervention 

0.548  
(0.498) 

2140 obs 

0.521  
(0.500) 

2120 obs 

0.536  
(0.499) 

1867 obs 

0.525  
(0.499) 

2063 obs 

0.533 
(0.499) 

8190 obs 

Efficient Taxi     

Pre-
intervention 

0.352  
(0.478) 

3380 obs 

0.339  
(0.473) 

3596 obs 

0.348  
(0.476) 

3260 obs 

0.318  
(0.466) 

3341 obs 

0.339 
(0.473) 

13,577 obs 

Intervention 
period 

0.507  
(0.500) 

2117 obs 

0.588  
(0.492) 

2,109 obs 

0.622  
(0.485) 

1864 obs 

0.590  
(0.492) 

2014 obs 

0.575 
(0.494) 

8104 obs 

After 
intervention 

0.547  
(0.498) 

1277 obs 

0.585  
(0.493) 

1201 obs 

0.643  
(0.479) 

1,090 obs 

0.607  
(0.489) 

1,218 obs 

0.594 
(0.489) 

4786 obs 

Notes: The table reports the proportion of flights for which captains in a given group performed each of the three selected 
behaviors.  Due to random memory errors, Efficient Taxi data is unavailable for 35.0% of pre-experimental flights and 37.2% of 
post-experimental flights.  This missing data is in no way systematic and therefore does not bias the results, though it moderately 
reduces the power of the Efficient Taxi estimates.  Standard deviations are reported in parentheses, which are followed by the 
total number of observations (flights) from which the summary statistics are calculated. 
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TABLE 5 
TREATMENT EFFECT IDENTIFICATION USING DIFFERENCE-IN-DIFFERENCE REGRESSION  

 

Fuel Load 
(1) 

Eff Flight 
(2) 

Eff Taxi 
(3) 

 Fuel Load 
(4) 

Eff Flight 
(5) 

Eff Taxi 
(6) 

Expt 0.018 0.144*** 0.125**  0.018 0.144*** 0.125** 
 (0.012) (0.012) (0.017)  (0.011) (0.011) (0.013) 
Expt × Information 0.007 0.017 0.081***  0.007 0.017 0.081*** 

 
(0.017) (0.016) (0.025)  (0.015) (0.014) (0.017) 

Expt × Targets 0.021 0.037** 0.097***  0.021 0.037** 0.097*** 

 
(0.018) (0.018) (0.026)  (0.015) (0.015) (0.018) 

Expt × Prosocial 0.025 0.047** 0.089***  0.025 0.047** 0.089*** 

 
(0.016) (0.017) (0.027)  (0.015) (0.014) (0.018) 

Observations 33,822 33,822 21,681  33,822 33,822 21,681 
N 335 335 335  335 335 335 
Controls Yes Yes Yes  Yes Yes Yes 
Standard Errors:        
     Clustered Yes Yes Yes     
     Newey-West     Yes Yes Yes 
Notes: The table shows the results of two difference-in-difference regression specifications with captain fixed effects comparing pre-
experiment behavior (January 2013-January 2014) to behavior during the experiment (February 2014-September 2014).  The dependent 
variables in the regressions are dummies capturing whether the fuel-efficient behavior was performed, and since predicted values are not 
constrained between 0 and 1, we do not report a constant and instead focus on treatment effects.  As such, the coefficients indicate the 
increase in the proportion of flights beyond the control group for which the behavior of interest was successfully performed.  We provide 
conventional robust standard errors, which are clustered at the captain level, and Newey-West standard errors (lag=1).  Total flight 
observations are provided.  Controls include weather on departure and arrival, number of engines on the aircraft, ports of departure and 
arrival, aircraft maintenance, captains’ contracted hours, and whether the captain has completed training.  ***p<0.01 **p<0.05 *p<0.10 
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TABLE 6 
PERSISTENCE: TREATMENT EFFECT IDENTIFICATION USING DIFFERENCE-IN-DIFFERENCE 

REGRESSION COMPARING BEFORE EXPERIMENT TO AFTER EXPERIMENT FOR ALL EXPERIMENTAL 
CONDITIONS 

 
Fuel Load 

(1) 
Eff Flight 

(2) 
Eff Taxi 

(3) 
 Fuel Load 

(4) 
Eff Flight 

(5) 
Eff Taxi 

(6) 
Expt 0.049** 0.215*** 0.152***  0.049** 0.215*** 0.152*** 
 (0.024) (0.021) (0.035)  (0.021) (0.020) (0.029) 
Expt × Information -0.007 -0.021 0.040  -0.007 -0.021 0.040 

 
(0.020) (0.021) (0.030)  (0.017) (0.016) (0.021) 

Expt × Targets 0.018 0.003 0.057**  0.018 0.003 0.057** 

 
(0.020) (0.022) (0.026)  (0.018) (0.017) (0.022) 

Expt × Prosocial -0.020 0.002 0.058**  -0.020 0.002 0.058** 

 
(0.021) (0.020) (0.025)  (0.017) (0.016) (0.021) 

Observations 29,087 29,087 18,363  29,087 29,087 18,363 
N 335 335 335  335 335 335 
Controls Yes Yes Yes  Yes Yes Yes 
Standard Errors:        
     Clustered Yes Yes Yes     
     Newey-West     Yes Yes Yes 
Notes: The table shows the results of two difference-in-difference regression specifications with captain fixed effects comparing 
pre-experiment behavior (January 2013-January 2014) to post-experiment behavior (October 2014-March 2015).  The dependent 
variables in the regressions are dummies capturing whether the fuel-efficient behavior was performed, and since predicted values 
are not constrained between 0 and 1, we do not report a constant and instead focus on treatment effects.  As such, the coefficients 
indicate the increase in the proportion of flights beyond the control group for which the behavior of interest was successfully 
performed.  We provide conventional robust standard errors, which are clustered at the captain level, and Newey-West standard 
errors (lag=1).  Total flight observations are provided.  Controls include weather on departure and arrival, number of engines on the 
aircraft, ports of departure and arrival, aircraft maintenance, captains’ contracted hours, and whether the captain has completed 
training.  ***p<0.01 **p<0.05 *p<0.10 

 
 
 

TABLE 7 
COSTS OF FUEL USAGE 

 Purchase Cost CO2 Cost Total Cost 
Fuel (1 ton) $786 $116.55 $902.55 
Notes: The table shows the cost of fuel usage.  We use IATA global jet fuel prices in February 
2014 (first month of treatment), the EPA estimate of the social cost of carbon of $37/ton, and the 
September 30, 2014 exchange rate ($1 = £0.6167) for all calculations.  One ton (1000kg) of fuel 
emits about 3.15 tons of CO2.  These values are used for calculations of savings in the text. 
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TABLE 8 
DATA-SUPPORTED ESTIMATES OF AVERAGE FUEL SAVINGS PER FLIGHT (IN KG) 
 Fuel Load Efficient Flight Efficient Taxi 
Control -128.12*** -345.21*** -0.43 
 (24.24) (30.79) (3.97) 
Information -98.46*** -371.90*** -3.67 
 (22.93) (28.98) (3.56) 
Targets -141.26*** -451.57*** -5.07 
 (22.07) (27.69) (4.14) 
Prosocial -159.77*** -419.94*** 5.00 
 (24.14) (29.95) (3.87) 
Notes: The table presents estimates of average fuel savings by treatment group in kilograms. Savings are 
based on regression coefficients from a difference-in-difference specification with captain fixed effects 
comparing pre-experiment behavior (January 2013-January 2014) to behavior during the experiment 
(February 2014-September 2014). The Fuel Load and Efficient Flight dependent variables represent the 
deviation from ideal fuel, whereas the Efficient Taxi dependent variable is simply the fuel used during 
taxi in. We calculate fuel savings with an Intent-to-Treat approach where we sum the regression 
coefficient of each group (i.e. the group’s average treatment effect) and the average Hawthorne effect 
(i.e. the coefficient of the Experimental-period indicator). In other words, we assume that the Hawthorne 
effect is constant across groups. Standard error calculations are based on Newey-West standard errors 
(lag=1). Controls include weather on departure and arrival, number of engines on the aircraft, aircraft 
type, ports of departure and arrival, aircraft maintenance, captains’ contracted hours, and whether the 
captain has completed training. ***p<0.01 **p<0.05 *p<0.10  

 
 
 

TABLE 9 
DATA-SUPPORTED ESTIMATES OF TOTAL FUEL SAVINGS (IN TONS) 

 Fuel Load Efficient Flight Efficient Taxi Total Per Flight 
Control -425.48*** -1146.46*** -1.45 -1573.38 -0.474 
 (80.51) (102.26) (13.17)   
Information -327.88*** -1238.44 -12.21 -1578.52 -0.474 
 (76.37) (96.51) (11.86)   
Targets -426.03*** -1361.95*** -15.28 -1803.26 -0.598 
 (66.58) (83.53) (12.50)   
Prosocial -520.53 -1368.16*** 16.30 -1872.39 -0.575 
 (78.65) (97.58) (12.60)   
Total -1699.91 -5115.01 -12.63 -6827.55 -0.828 
Notes: The table presents estimates of total fuel savings by treatment group.  Savings are based on regression coefficients from a 
difference-in-difference specification with captain fixed effects comparing pre-experiment behavior (January 2013-January 2014) 
to behavior during the experiment (February 2014-September 2014).  The dependent variable is the deviation from ideal fuel 
usage in each of the three flight periods described in the text.  We calculate fuel savings with an Intent-to-Treat approach where 
regression coefficients for each group (i.e. the group’s average treatment effect) plus the average Hawthorne effect (i.e. the 
coefficient of the ‘Expt’ indicator) are multiplied by the number of flights in each group (3321, 3330, 3016, and 3258, 
respectively).  In other words, we assume that the Hawthorne effect for each group is proportional to the number of flights flown 
by that group during the study period.  Standard error calculations are based on Newey-West standard errors (lag=1).  Controls 
include weather on departure and arrival, number of engines on the aircraft, aircraft type, ports of departure and arrival, aircraft 
maintenance, captains’ contracted hours, and whether the captain has completed training. ***p<0.01 **p<0.05 *p<0.10 
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APPENDIX I: ADDITIONAL TABLES  
 
 

TABLE A1 
TREATMENT EFFECT IDENTIFICATION USING DIFFERENCE-IN-DIFFERENCE  

REGRESSION, WITH LINEAR TREND 

 
Fuel Load Efficient Flight Efficient Taxi 

Expt 0.033** 0.132*** 0.038** 
 (0.013) (0.013) (0.016) 
Expt × Information 0.007 0.017 0.079*** 

 
(0.015) (0.014) (0.017) 

Expt × Targets 0.022 0.037** 0.096*** 

 
(0.015) (0.015) (0.018) 

Expt × Prosocial 0.025* 0.047*** 0.088*** 

 
(0.015) (0.014) (0.018) 

Observations 33,822 33,822 21,681 
N 335 335 335 
Controls Yes Yes Yes 
Notes: The table shows the results of a panel difference-in-difference regression specification 
with captain fixed effects and Newey-West standard errors (lag=1), controlling for linear trends 
in the data.  The regressions compare pre-experiment behavior (January 2013-January 2014) to 
behavior during the experiment ‘Expt’ (February 2014-September 2014).  The dependent 
variables in the regressions are dummies capturing whether the fuel-efficient behavior was 
performed, and since predicted values are not constrained between 0 and 1, we do not report a 
constant and instead focus on treatment effects. As such, the coefficients indicate the increase in 
the proportion of flights beyond the control group for which the behavior of interest was 
successfully performed.  Robust errors are clustered at the captain level. Controls include 
weather on departure and arrival, number of engines on the aircraft, aircraft type, ports of 
departure and arrival, aircraft maintenance, captains’ contracted hours, and whether the captain 
has completed training. ***p<0.01 **p<0.05 *p<0.10  

 
 
 

TABLE A2 
TEST OF A UNIT ROOT OF PRE-EXPERIMENTAL BEHAVIORS 

 Fuel Load Efficient Flight Efficient Taxi 
Z(t) -3.765*** 

(0.003) 
-2.562* 
(0.010) 

-6.431*** 
(0.000) 

Observations (wks) 51 51 51 
Notes: The table shows the Dickey-Fuller (DF) test for a unit root for the 51 weeks before the 
experiment started, collapsing all the groups into one for each behavior. The null of the DF test 
is a unit root, and the rejection of the null is that the data follows a random walk. Z(t) is the DF 
test statistic. ***p<0.01 **p<0.05 *p<0.10 
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TABLE A3 
TREATMENT EFFECT IDENTIFICATION USING DIFFERENCE-IN-DIFFERENCE REGRESSION,  

WITH QUADRUPLET CONTROLS 

 
Fuel Load Eff Flight Eff Taxi  Fuel Load Eff Flight Eff Taxi 

Expt 0.022 0.146*** 0.140***  0.022** 0.146*** 0.140*** 
 (0.015) (0.013) (0.016)  (0.010) (0.009) (0.011) 
Expt × Information 0.017 0.023 0.065***  0.017 0.023** 0.065*** 

 
(0.020) (0.016) (0.022)  (0.012) (0.011) (0.014) 

Expt × Targets 0.022 0.041** 0.092***  0.022* 0.041*** 0.092*** 

 
(0.020) (0.016) (0.022)  (0.012) (0.012) (0.015) 

Expt × Prosocial 0.011 0.042*** 0.078***  0.011 0.042*** 0.078*** 

 
(0.019) (0.016) (0.023)  (0.012) (0.011) (0.014) 

Observations 33,822 33,822 21,681  33,822 33,822 21,681 
N 335 335 335  335 335 335 
Controls Yes Yes Yes  Yes Yes Yes 
Standard Errors:        
     Clustered Yes Yes Yes     
     Newey-West     Yes Yes Yes 
Notes: The table shows the results of two difference-in-difference regression specifications with quadruplet fixed effects comparing 
pre-experiment behavior (January 2013-January 2014) to behavior during the experiment (February 2014-September 2014). The 
dependent variables in the regressions are dummies capturing whether the fuel-efficient behavior was performed, and since predicted 
values are not constrained between 0 and 1, we do not report a constant and instead focus on treatment effects. As such, the coefficients 
indicate the increase in the proportion of flights beyond the control group for which the behavior of interest was successfully 
performed. We provide conventional robust standard errors clustered at the captain level and Newey-West standard errors (lag=1). 
Total flight observations are provided. Controls include weather on departure and arrival, number of engines on the aircraft, aircraft 
type, ports of departure and arrival, aircraft maintenance, captains’ contracted hours, and whether the captain has completed training. 
***p<0.01 **p<0.05 *p<0.10  

 
 
 

TABLE A4 
DIFFERENCE-IN-DIFFERENCE REGRESSION OF FLIGHT TIME 

 Flight Time 
Expt 1.788*** 
 (0.522) 
Expt × Information 0.011 
 (0.687) 
Expt × Targets 0.114 
 (0.733) 
Expt × Prosocial -1.586* 
 (0.849) 
Observations 33,822 
N 335 
Controls Yes 
Notes: The dependent variable in this regression is flight time in minutes. 
Captain fixed effects are included and Newey-West standard errors (lag = 1) 
are reported below estimates in parentheses. Total flight observations are 
provided. Controls include weather on departure and arrival, number of engines 
on the aircraft, aircraft type, ports of departure and arrival, aircraft 
maintenance, captains’ contracted hours, and whether the captain has 
completed training. ***p<0.01 **p<0.05 *p<0.10 
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APPENDIX II: THEORETICAL MODEL  

 

Model Setup  

We consider a static-choice problem that determines a captain’s chosen effort on the job 

in a certain period.  In our model, we assume that captains—who have vast flying experience—

are at an equilibrium fuel usage with respect to their wealth, experience, effort, and concerns for 

safety, the environment, and company profitability.59  

 
A captain faces the following additively separable utility function: 

 

            𝑈(𝑤, 𝑠, 𝑒, 𝑓,𝑔) = 𝑢(𝑤, 𝑒,𝑔)+ 𝑎 ∙ 𝑣(𝑑 𝑒 ∙ 𝑔,𝑔! ,𝐺!!)+ 𝑦(𝑠, 𝑒, 𝑓) – 𝑐(𝑒)− 𝑠(𝑒)          

 

where 𝑢(. ) is utility from monetary wealth, 𝑣(. ) is utility from giving to charity, 𝑦(. ) is utility 

from job performance, 𝑐(. ) is disutility from exerting effort, and 𝑠(. ) is disutility from social 

pressure.  Effort is chosen for all three flight tasks, 𝑗, i.e. Fuel Load, Efficient Flight, and 

Efficient Taxi.  Captains observe their effort perfectly.  They also receive a noisy signal of fuel 

usage 𝑓!" + 𝜖!" = 𝑓!".  𝑓!" describes the estimated fuel usage by captain i  for flight t, which 

depends on the chosen effort for the fuel-efficient activities.  𝑓!" is actual fuel use, observed ex 

post by the airline, which also includes a random component.60   Furthermore, each captain has 

ideal fuel usage 𝑓!, which is based on his own experience and environmental and firm profit 

preferences.  By revealed preference, the equilibrium pre-study fuel usage is 𝑓! = 𝑓. 

 

Experimental treatments in this study alter three model parameters.  First, receiving 

information on fuel use, 𝑖 = 1 (information), removes the noisiness of the fuel signal, i.e. 

𝑓!" + (1− 𝑖)𝜖!" = 𝑓!". Second, provision of a target, 𝑟 = 1 (targets), changes the captain’s ideal 

fuel usage, 𝑓!, because the employer exogenously imposes a target level for attainment.  Then, 

𝑓! = 𝑓! if 𝑟 = 1, where 𝑓! reflects the signaled optimal usage from the point of view of the 

airline.  Third, in the prosocial behavior treatment, a donation g is made by the airline in the name 

of the captain.  This donation is conditional on meeting that target, which has a probability of 

                                                
59 In a survey, captains in the study expressed a concern over fuel usage and fuel cost, both for environmental reasons and 
company profitability.  To become an airline captain requires many years of training and experience within an airline; if a captain 
loses his job with one airline and seeks employment in another, he loses his prior seniority and must work for many years to 
reinstate it.  Thus, for the sake of their own job security, captains care about minimizing fuel costs. 
60 Due to the vast experience of captains, we assume E(𝜖!")=0, i.e. captains predict fuel usage correctly, on average. 



134 
 

𝑑 𝑒  in this treatment.61  In all other treatments, reaching particular fuel use levels does not lead 

to donations, i.e. 𝑑 𝑒  = 0.  Parameters and elements of the utility function are explained in more 

detail below. 

 

(Dis)utility from social pressure. In the spirit of DellaVigna et al. (2012, DLM hereafter) 

and Bénabou and Tirole (2006), we assume that captains are either affected by social pressure 

due to their actions being observed or exhibit some sort of social signaling in which they want to 

appear to be good employees.  In this framework, captains are aware of an optimal social effort 

level, 𝑒!"#$%& .  Because exerting effort is costly to the captain and because his actions are 

imperfectly observed with probability 𝜋!"#$%&$'  < 1, generally 𝑒 < 𝑒!"#$%& .62  In this study, 

captains in both the control group and the treatment groups are made aware that their actions are 

monitored and data on their effort are used for an internal academic study.  Consequently, we 

expect the probability of detection of deviations from the social effort level to increase for all 

participants in the study relative to the pre-study period, i.e. 𝜋!"#$%!"#$%&$' > 𝜋!"#!"#$%&$' .  We 

parameterize social pressure as follows: 

 

𝑠(𝑒) = 𝜋!"#$%&$' ∙ 𝑒!"#$%& − 𝑒 + 1− 𝜋!"#$%&$' ∙ 0 ∙ 1 𝑒 < 𝑒!"#$%&  

 

Social pressure decreases utility if the chosen effort level is below the socially optimal 

effort level of the captain.  This disutility is increasing in the distance from the optimal effort 

level and in the probability of these actions being observed by the airline.  The second term is an 

indicator function implying that unobserved deviations do not lead to disutility.  For agents that 

exert more effort than 𝑒!"#$%&, 𝑠 𝑒  simply drops out of their utility function.  Consequently, 

captains can directly impact that level of disutility by exerting more (costly) effort. 

 

Note that 𝑠 𝑒  enters the utility of every captain below the social effort level, regardless 

of treatment assignment.  If social pressure is important, even control captains should respond to 

                                                
61 Captains can directly influence the probability through their effort.  That is, captains can be certain that they do not meet a 
target if they put in little effort, and they can be certain that they have achieved the target if they put in sufficient effort. 
62 It is plausible to argue that effort is perfectly observed in the aviation industry with modern technology.  However, captains 
likely do not expect these data to be analyzed on a regular basis. 
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this increased cost of low effort.63  Because 𝑠 𝑒  is orthogonal to treatment, we omit it in the 

following discussion and in the derivation of comparative statics.64   

 

Utility from wealth.  Similar to DLM, for wealth 𝑤, charitable giving from the airline g 

for meeting the target (if applicable), and other charitable giving go, u is defined as follows: 

 

𝑢 𝑤, 𝑒,𝑔 ∶= 𝑢(𝑤 − 𝑔!(𝑑 𝑒 ∙ 𝑔)+ 𝑎 ∙ 𝑑 𝑒 ∙ 𝑔)       

 

where, 𝑎 =  
0 𝑖𝑓 𝑎 < 0

𝑎 𝑖𝑓 0 ≤ 𝑎 ≤ 1
1 𝑖𝑓 𝑎 > 1

  

 

Private consumption is an individual’s wealth minus the amount given to charity from 

that person’s wealth (i.e. not from this study).  However, to ensure that u is continuously 

differentiable, we need to account for the effect of charitable donations resulting from our 

treatments on utility from private consumption.  To capture this effect, we multiply the 

individual’s expected donation, 𝑑(𝑒) ∙ 𝑔, by a function of 𝑎—a parameter capturing preferences 

for giving—which we call 𝑎.  As in DLM, the parameter 𝑎 is non-negative in the case of pure or 

impure altruism and negative in the case of spite65, and 𝑎 is simply 𝑎 truncated at 0 and 1.   

 

The reasons for creating such boundaries on the term capturing preferences for giving are 

twofold.  First, an individual with spiteful preferences (𝑎 < 0) does not get less utility from 

private consumption when he donates to charity than when he does not donate to charity; 

therefore, 𝑎 is censored from below at 0.   Second, an individual with pure or impure altruistic 

preferences will get additional utility from his private consumption by giving to charity through 

our treatment because it corresponds to an outward shift in the budget constraint in the dimension 

of giving to the chosen charity.  However, 𝑎 is censored from above at 1 because an individual 

will experience weakly more utility from increases in 𝑤 than from giving to the chosen charity 

                                                
63 Alternatively, we could interpret 𝑒!"#$%& as a level of effort induced by the researcher, leading to experimenter-demand effects.  
Stated differently, captains in the study could think they are expected to increase effort and not doing so imposes utility costs on 
them. 
64 Social pressure is additively separable from other utility elements in a linear model.  Consequently, it does not affect the sign of 
comparative statics derived below and, if interactions are present, only attenuates treatment effect estimates. 
65 As defined in Andreoni (1989, 1990), pure and impure altruism capture two possible motivations for giving.  The first stems 
from a preference solely for provision of the public good, so that an individual’s donations are entirely crowded out by donations 
from other sources.  Impure altruism, on the other hand, refers to the phenomenon whereby individuals receive direct utility from 
the act of giving itself, i.e. through “warm glow”.  Spite, as defined in DLM, exists when an individual gets disutility from 
donating to the charity. 



136 
 

(i.e. !"
!" 

≥  !"
!" 

).  This relation holds since increases in 𝑤 shift the budget constraint outward in all 

dimensions—including the charitable giving dimension—so these must be weakly preferred to 

shifts in only one dimension.  This stipulation is important to assume differentiability in u in a 

standard expected utility framework, as in DLM. 

 

Please note that the amount an individual gives to other charities will be related to the 

amount that he gives to charity in the context of this study.  Captains will smooth their 

consumption for giving.  If a captain normally gives $100 to charity each year and this year he 

gives $10 through the context of the study, we would expect his total giving to be between $100 

and $110, or 𝑔! + 𝑔 𝜖 [100,110]. The realization of the sum depends on the value of 𝑎 and 

whether 𝑎 stems from pure altruism, impure altruism, or spite.  We should expect that an 

individual who has a negative 𝑎 value does not donate to charity outside of the context of this 

study since donating to charity decreases that individual’s utility.  

 

Utility from charitable giving.  The 𝑣 term is also adapted from DLM and follows the 

same properties for each type of individual (pure or impure altruistic and spiteful).  The main 

difference between the 𝑣 term in this study and that in DLM is that in this study, not everyone has 

the opportunity to donate to charity (i.e. 𝑑 𝑒 > 0 for only one treatment group).  We also 

assume that 𝑣 is separable in its parameters, as follows:   

 

𝑣(𝑑 𝑒 ∙ 𝑔,𝑔! ,𝐺!!)  =  𝑣!(𝑑 𝑒 ∙ 𝑔,𝐺!!)+ 𝑣!(𝜃𝑔! ,𝐺!!) 

 

where 𝜃 is the cost of giving through channels other than the study and 𝐺!! is total giving by 

other individuals.  In this specification, 𝑣! represents utility from giving in the study context and 

𝑣! represents utility from giving from one’s personal wealth.  Note that 𝑣!(0,𝐺!!) = 0 since if 

𝑑(𝑒) = 0, then a captain is not able to donate to the charity through the context of the study, so 

𝑣! should not affect the utility function (similar to the spite case).  Based on the arguments made 

above with respect to consumption smoothing, 𝑣|!!! ≤  𝑣|!!! , 0 =  𝑣!|!!! ≤  𝑣!|!!! , 

 𝑣!|!!! ≥  𝑣!|!!! .  That is, utility from giving is at least as high for those captains for whom 

𝑑(𝑒) = 𝑝 as it is for those captains for whom 𝑑(𝑒) = 0, which follows from our assumption that 

giving in the study context can only decrease giving from one’s own wealth or not affect it at all.  

Finally, since  !"
!"
> 0, we have !"

!"
≥ 0. 
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In the case of pure altruism, an individual should get the same utility from giving to 

charity from his personal wealth as from giving to charity through the context of the study, since 

the benefit to the charity is identical.  In this sense, 𝑣 can be thought to represent the charity’s 

production function.  In the case of impure altruism, an individual should also get the same utility 

from donating to charity through his personal wealth as he does from donating through the 

context of the study because the amount donated on his behalf is the same.  Lastly, in the case of 

spite, 𝑔! = 0 since giving to charity decreases utility and so those individuals will not give to 

charity independently of the study.  Note, 𝑣(0) = 0 because if a person does not give to charity 

privately then his utility from giving to charity privately is 0.  

   

Utility from job performance.  Since captains care about fuel efficiency, and since 

imposing exogenous targets on performance affects a captain’s perception of how well he is 

doing his job, we include a parameter 𝑦 capturing job performance.66  We assume 𝑦 is separable 

in safety (𝑠) and fuel (𝑓) because changes in fuel as a result of the study do not affect safety 

levels, as argued in our assumption above.  A captain whose performance exceeds his target will 

achieve higher utility under this parameter than a captain who does not achieve his target.  

Similarly, a captain will experience less (more) utility the further below (above) the target is his 

performance.  We therefore incorporate job performance into the model as follows: 

 

𝑦 (𝑠, 𝑒, 𝑓) = 𝑦! 𝑠 + 𝑦! 𝑒, 𝑓 =  𝑦! 𝑠 +  𝑦! −𝑓 −𝑓!  

where 

𝑦! −𝑓 −𝑓! =  𝑦!! −𝑓 +  𝑦!! −𝑓 −𝑓!   

and  

𝑦!! −𝑓 −𝑓! = 𝑟 ∙ 𝜇(𝑦!! −𝑓 −  𝑦!!(−𝑓!)) 

 

Here, 𝑦! is defined as in Köszegi and Rabin (2006; KR hereafter).  We denote the 

components of 𝑦! “m” and “n” to mirror the notation in KR.  As in KR, m represents the 

“consumption utility” and n represents the “gain-loss utility.”  These terms are separable across 

dimensions.  Finally, µ is the “universal gain-loss function” and has the associate properties 

outlined in KR.  To be clear, we assume that captains who receive exogenous targets perceive 

these targets as reference points for their own attainment. 

 
                                                
66 Evidence indicates that influencing job performance positively influences job satisfaction (or utility), whether through increased 
self-esteem or perceived managerial support for autonomous decision making (Christen, Iyer, and Soberman, 2006; Pugno & 
Depedri, 2009).   
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Note that captains get utility from using less fuel !"!
!"

≤ 0 and, conditional on receiving a 

reference point, get utility (disutility) from performing above (below) the target, which increases 

with distance from the target according to 𝜇.  We assume 𝜇 is linear and 𝜇(𝑥) = 𝜂𝑥 if 𝑥 > 0 and 

𝜇(𝑥) = 𝜂𝜆𝑥 if 𝑥 ≤ 0 for 𝜂 > 0, 𝜆 > 1, in accordance with theories of loss aversion.  Moreover, 

following naturally from our definition of 𝜇, we assume 𝑦(𝑥) = 𝑥.  If a captain does not receive a 

reference point, his utility does not comprise gain-loss utility, so for these individuals 𝑦! = 𝑦!!.  

That is, if 𝑟 = 0, captains do not receive information regarding ideal performance with respect to 

fuel efficiency, so their job performance parameter depends solely on fuel consumption.67 

 

Additionally, based on industry standards and emphasis on safety—as well as the design 

of the treatments—we assume that captains’ job performance utility from flying safely is constant 

across treatments, therefore: 

 

𝜕𝑦
𝜕𝑠 = 𝑆 ≥ 0 

 
 

(Dis)utility from effort.  Finally, c represents the cost of effort.  Importantly, the individual 

cost functions for each fuel-efficient task are allowed to differ to convey that various tasks have 

different costs associated with them.  The cost structure is a function of the difficulty of the task 

itself (e.g., it may be easier to turn off one engine after landing than to have an efficient flight for 

several hours) and resistance due to previous habit formation (e.g., captains who for many years 

have not properly performed the Zero Fuel Weight calculation may find it difficult or bothersome 

to begin doing so).  Additionally, the costs for each task are separable since the tasks are done 

independently.  Therefore, 

 

𝑐(𝑒) =  𝑐!(𝑒!
!

) 

 

For a captain to decrease his fuel use, he must also increase his effort, i.e. !"
!"
< 0. Note 

that 𝑐(𝑒) is subtracted in the utility equation, so !"
!"
< 0, !"

!"
> 0.  Based on interviews with 

captains, the cost of effort increases at an increasing rate.  Defining the cost of effort as a 

                                                
67 To be clear, given that our reference point is exogenously imposed, one cannot clearly assess whether the individual captain is 
better off in the targets group than in another group. 
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quadratic function of effort implies that the cost of effort increases with the amount of effort 

exerted (i.e. !
!!

!!!
> 0).   

 

 

Model Predictions 

 

Captains will choose how much effort to exert based on the treatments (information, 

targets, prosocial incentives) as in the moral hazard model (see Holmström, 1979).  The model is 

simplified because agents are current employees whose base salaries are not affected by the 

study. The treatments do affect job satisfaction and charitable giving, however.  Different 

treatments represent different contracts.  

 

We now define 𝑉(−𝑓) to be the utility of the firm (the principal) from the perspective of 

the employee (the agent) as a function of firm costs, i.e. fuel costs. 𝑉 is highly related to 𝑦 since 

an employee’s job satisfaction is linked to the well-being of the firm itself.  We assume 𝑉 is 

independent of treatment status, 𝜏, because the marginal benefit and marginal cost to the firm do 

not depend directly on treatment, but rather on the amount of fuel used (i.e. for the same level of 

fuel but two different treatments, 𝑉 is the same).  Additionally, salaries are fixed and donations to 

charity are paid by an outside donor.  

 

We now define 𝑈(𝑒, 𝜏) to be the utility function under treatment 𝜏 with  effort 𝑒 and 𝑈 as 

a captain’s outside option.68  Let 𝑒 be the pre-study amount of effort and 𝑒 be the chosen effort 

under 𝜏.  Note that the profit-maximizing principal (VAA) wants to design contracts (treatments) 

that induce the optimal level of effort from the point of view of the principal.  In this case, the 

principal observes both the outcome (fuel usage) and the effort by the agent, but is restricted from 

making contractual changes that introduce monetary compensation based on effort levels.  

 

Therefore, the problem becomes: 

 

 max !,!! 𝐸 𝑉 −𝑓  

 

 𝑠. 𝑡.  𝐸 𝑈 𝑤, 𝑠, 𝑒, 𝑓! ,𝑔, 𝜏 ≥ 𝑈 

                                                
68 Our notation differs slightly from Holmström (1979) since the cost of the action is embedded in the utility function of the agent.  
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 𝑎𝑛𝑑 𝑒  ∈ 𝑎𝑟𝑔max
!!

𝐸[𝑈 𝑤, 𝑠, 𝑒!, 𝑓! ,𝑔, 𝜏 ] 

 

The first-order condition is !!(!!)
!! !,!,!,!!,!,!

 = 𝜆  and so  𝑈′(𝑤, 𝑠, 𝑒, 𝑓! ,𝑔, 𝜏) =
!!(!!)
!

 .  Captains 

choose the corresponding effort level that satisfies the marginal conditions. 

 

Proposition 1. Captains in the control group will change their behavior if they are influenced by 

social pressure.  That is, they will generally increase effort if their effort level is below the social 

effort level. 

 

Proof: We argued above that scrutiny due to the intervention is likely to (weakly) increase the 

probability of detection of sub-optimal effort (𝜋!"#$%&$') or the perceived socially optimal effort 

level (𝑒!"#$%&), or both.  Both effects increase the social cost component of the utility function for 

captains in all treatment cells, including the control group.  Put differently, for a given level of 

effort 𝑒 < 𝑒!"#$%&, the intervention increases the marginal social cost of exerting low effort !"
!"
|𝑒.  

Consequently, captains respond to these new marginal conditions and increase their effort if they 

are below the (perceived) socially optimal level.69 

 

Proposition 2. Information will cause captains to increase or decrease their effort and thereby 

increase or decrease fuel usage (respectively) or choose the outside option, depending on the 

realization of the difference between estimated (𝑓!") and actual (𝑓!") fuel usage (i.e. the value of 

the parameter 𝜖!"). 

Proof: Let the pre-study period be 𝑡 = 0 and the study period be 𝑡 = 1.  Assume in period 𝑡 = 0, 

𝜖!! < 0, then  𝑓!! >  𝑓!!, so that when captains receive information in 𝑡 = 1, they learn that 

𝑦!! −𝑓 > 𝐸[𝑦!! −𝑓 ].  In other words, they were more fuel-efficient in 𝑡 = 0 than they had 

expected to be. Therefore, if they provide the same level of effort in period 𝑡 = 1, they will 

experience a level of utility greater than their pre-study equilibrium.  They pay the same cost of 

effort but receive more utility from job performance.  They will then weakly decrease their 

chosen level of effort.  How much depends on the functional form of the 𝑦 and 𝑐 functions and 

their pre-study effort level.  Captains in the information or targets treatments—where wealth and 

                                                
69 Because of orthogonality to treatment, the condition of being observed simply increases captains’ baseline effort.  Furthermore, 
because utility is additively separable, qualitative findings from the subsequent comparative statics analysis are unchanged.  As 
mentioned above, if there are interactions between social pressure and the treatments, these interactions just attenuate point 
estimates since all treatments are designed to increase effort against a now greater baseline. 
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the charities’ production functions are independent of effort—will not decrease their effort if 𝑦 is 

steeper than 𝑐 around their chosen values.  This scenario is possible since there is a random shock 

of 𝜖!! to their location of −𝑓 and we are agnostic about the functional form of 𝑦.  Without the 

shock, they would not be in equilibrium if 𝑦 were steeper with respect to effort than 𝑐 at the 

chosen level of effort because they could increase effort and pay a slightly higher cost but get 

much more utility from job satisfaction.  They will not choose their outside option since if 

 

 𝐸 𝑈 𝑤, 𝑠, 𝑒, 𝑓! ,𝑔, 𝜏 = "𝑝𝑟𝑒 − 𝑠𝑡𝑢𝑑𝑦,𝑛𝑜 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡" ≥ 𝑈, then 

 

𝐸 𝑈 𝑤, 𝑠, 𝑒, 𝑓! ,𝑔, 𝜏 = "𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛" ≥ 𝑈. 

 

In other words, they can hold 𝑦 constant and decrease effort and thereby increase 𝑈, while 𝑈 is 

held fixed.  

 

Now assume 𝜖!! > 0, then 𝑓!! <  𝑓!!, so when captains receive information, they learn that 

𝑦!! −𝑓 < 𝐸[𝑦!! −𝑓 ], i.e. they were less fuel-efficient than expected.  Therefore, if they 

provide the same level of effort in period 𝑡 = 1, they will receive below their pre-study 

equilibrium amount of utility.  They pay the same cost of effort but receive less utility from job 

performance.  They will weakly increase their effort if the change in 𝑦 is more than the change in 

𝑐, which depends on the functional form of these functions and the captains’ pre-study effort 

levels.  They will not increase their effort if 𝑐 is steeper than 𝑦 for similar reasons described in 

the previous case.  They will choose their outside option if the change in 𝑦  leads to 

𝐸 𝑈 𝑤, 𝑠, 𝑒, 𝑓! ,𝑔, 𝜏 = "𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛" < 𝑈, which could occur if increases in effort lead to 

larger increases in 𝑐 than in 𝑦.  Whether it occurs also depends on the outside option. 

Finally, assume 𝜖!! = 0.  Then captains are at their equilibrium with 𝑦!! −𝑓 =

𝑦!! −𝑓!  and do not change their effort.  

 

Proposition 3. Targets set above pre-study use will cause captains to weakly increase their effort 

or choose their outside option.70 

 

Proof: Since the target is set above pre-study use (i.e. captains are meeting the targets fewer times 

than is optimal from the perspective of the firm), upon receiving a target, the captains learn 

                                                
70 All targets were set above the pre-study attainment level, so this is the only case we consider. 
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𝑓 > 𝑓! and get reference-dependent loss utility equal to 𝑦!! < 0.  Therefore, captains are strictly 

below their equilibrium in effort and strictly above in fuel usage since in the pre-study period 

𝑦!! = 0 from the assumption that 𝑓! =  𝑓.  

 

Captains will not increase their effort if the increased cost of effort is larger than the gain 

from the associated decrease in fuel usage in the job performance function.  Captains will 

increase their effort if the gain from the associated decrease in fuel usage is more than the cost of 

effort.  This depends on the functional form of these parameters, the value of 𝜇, and the captains’ 

initial values during the pre-study period.  Their chosen level of effort comes from the first-order 

condition with 𝜏 = "𝑟𝑒𝑐𝑒𝑖𝑣𝑒 𝑡𝑎𝑟𝑔𝑒𝑡𝑠. "  Since captains experience a negative utility shock from 

receiving a target, they will choose the outside option if 

𝐸 𝑈 𝑤, 𝑠, 𝑒, 𝑓! ,𝑔, 𝜏 = "𝑟𝑒𝑐𝑒𝑖𝑣𝑒 𝑡𝑎𝑟𝑔𝑒𝑡𝑠" ≤ 𝑈. 

 

Proposition 4. Donations made to charity for meeting targets will weakly increase effort if  

captains’ altruism is strictly positive and the donations do not affect their effort otherwise. 

Proof: Let 𝑉!(𝑑 𝑒 ,𝑔) be the production function of the charity. Note that in the case of pure 

altruism 𝑉! = 𝑣!, as defined in the previous section. ∀ 𝑑 𝑒 ∙ 𝑔 ≥ 0,𝑤𝑒 ℎ𝑎𝑣𝑒 𝑉!  > 0 𝑎𝑛𝑑 𝑉! = 0 

if and only if 𝑑 𝑒 ∙ 𝑔 = 0.  Then, captains solve the following optimization problem: 

max
!,!!

𝐸 𝑉 −𝑓 + 𝑎 ∙ 𝑉!  

𝑠. 𝑡.  𝐸 𝑈 𝑤, 𝑠, 𝑒, 𝑓! ,𝑔, 𝜏 ≥ 𝑈 

𝑎𝑛𝑑 𝑒  ∈ 𝑎𝑟𝑔max
!!

𝐸[𝑈 𝑤, 𝑠, 𝑒!, 𝑓! ,𝑔, 𝜏 ] 

with first-order condition !
! !! ! !∙!!!

!! !",!,!,!,
= 𝜆.  If a captain has zero altruism, i.e. 𝑎 = 0, then this 

equation reduces to the original and effort does not increase above the effect described in 

Proposition 1.  If 𝑎 > 0, then the numerator of the first-order condition is weakly larger than the 

control case.  It is strictly larger if 𝑑 > 0.  Captains with strictly positive altruism may choose an 

effort level corresponding to 𝑑 = 0 if the additional cost of increased effort required for meeting 

the target is more than the gain in utility from donating to charity.  The probability of this 

outcome occurring is decreasing in the level of altruism.  

 

Since λ is a constant, increases in the sum of the production functions of the firm and 

charity cause increases in effort, 𝑒 <  𝑒.  
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Proposition 5. Captains in the targets and prosocial conditions will choose to increase their 

effort the most in tasks for which the targets are easiest to meet. 

 

Proof: Since the firm sets the targets and donations exogenously71, the utility for meeting a target 

is constant across tasks. The donation to charity is the same across tasks as exogenously 

determined, and since the targets are also exogenously determined, the captains believe that the 

firm values them equally by revealed preference.  If the firm did not value them equally, then it 

would not offer the same reward.  However, the cost function is not constant across tasks for 

reasons described earlier, which implies that the captains will choose to increase their effort on 

tasks for which targets are easiest to meet.72  Within the airline context, the least effortful 

behavior to attain is Efficient Taxi, followed by Fuel Load, then Efficient Flight.  The 

determination of this ordering is based on discussions with airline captains and trusted pilots 

groups. 

  

                                                
71 Note that the “firm” here refers to both VAA and the academic researchers, who jointly made most decisions with respect to 
experimental design. 
72 Our theory and interventions are rooted in Holmström’s (1979) Informativeness Principle, which states that any accessible 
information about an agent’s effort should be used in the design and enforcement of optimal contracts.  Our interventions are not 
aimed at the efficient allocation of effort across these tasks—as proposed in Holmström & Milgrom (1991) and Baker (1992)—
since we assume our three behaviors are not substitutable (since they occur during different phases of flight).  We acknowledge 
the possibility that additional fuel-efficient behaviors exist that we do not measure that may be fully or partially neglected due to 
our treatments. 



144 
 

APPENDIX III: TREATMENT LETTERS 
 

FIGURE A1 
TREATMENT GROUP 1: INFORMATION 

 
  

 

 
We will continue to keep you updated on your monthly performance for the next 7 months, John. 

 
Please see reverse side for further details of the three behaviours.  

 
Questions?  We are here to help!  Please email us at project.uoc@fly.virgin.com. 

 

	
 
 
 

Fuel and carbon efficiency report for Capt. John Smith 
 

Below is your monthly fuel and carbon efficiency report for February 2014 
 
 

 

1. ZERO FUEL WEIGHT 
 
Proportion of flights for which 
the ZFW calculation was 
completed and fuel load 
adjusted as necessary 
 

RESULT: 0% of flights 

2. EFFICIENT FLIGHT 
 
Proportion of flights for which 
actual fuel use is less than 
planned fuel use (e.g. 
optimised speed, altitude etc) 

 
RESULT: 75% of flights 

3. REDUCED ENGINE TAXY IN 
 
Proportion of flights for which 
at least one engine was shut 
off during taxy in 
 
 

RESULT: 25% of flights 

All data gathered during this study will remain anonymous and confidential.  Safety remains the absolute 
and overriding priority.  This study will be carried out within Virgin’s existing and highly robust safety 
standards, using our existing fuel procedures and policies. Captains retain full authority, as they always 
have done in VAA, to make decisions based on their professional judgment and experience.	
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FIGURE A2 
TREATMENT GROUP 2: TARGETS 

 
  

 

WHAT WAS YOUR OVERALL OUTCOME? 
 

You achieved 2 of your 3 targets last month. 
   

 WELL DONE! We will continue to keep you updated on your monthly performance  
for the next 7 months, John. 

 
Please continue to fly efficiently next month to achieve your targets. 

 
Please see reverse side for further details of the three behaviours.  

 
Questions?  We are here to help!  Please email us at project.uoc@fly.virgin.com. 

 

!
 
 
 

Fuel and carbon efficiency report for Capt. John Smith 
 

Below is your monthly fuel and carbon efficiency report for February 2014 
 
 

 
  

1. ZERO FUEL WEIGHT 
 
Proportion of flights for which 
the ZFW calculation was 
completed and fuel load 
adjusted as necessary 
 

TARGET: 75% of flights 
 

RESULT: 0% of flights 
 

You MISSED your target. 

2. EFFICIENT FLIGHT 
 
Proportion of flights for which 
actual fuel use is less than 
planned fuel use (e.g. 
optimised speed, altitude etc) 
 

TARGET: 25% of flights 
 

RESULT: 75% of flights 
 
You ACHIEVED your target. 

3. REDUCED ENGINE TAXY IN 
 
Proportion of flights for which 
at least one engine was shut 
off during taxy in 
 
 

TARGET: 25% of flights 
 

RESULT: 25% of flights 
 
You ACHIEVED your target. 

All data gathered during this study will remain anonymous and confidential.  Safety remains the absolute 
and overriding priority.  This study will be carried out within Virgin’s existing and highly robust safety 
standards, using our existing fuel procedures and policies. Captains retain full authority, as they always 
have done in VAA, to make decisions based on their professional judgment and experience.!
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FIGURE A3 
TREATMENT GROUP 3: PROSOCIAL INCENTIVES 

 

  

 

WHAT WAS YOUR OVERALL OUTCOME? 
 

 Due to your fuel and carbon efficient decision making last month, 
you achieved 2 of your 3 targets and secured £20 of a possible £30 

 for your chosen charity, Charity Name. 
 

WELL DONE! For the next 7 months, you still have the ability to donate £210 to Charity 
Name.  Please continue to fly efficiently next month to achieve your targets so your 

charity does not lose out. 
 

Please see reverse side for further details of the three behaviours.  
 

Questions?  We are here to help!  Please email us at project.uoc@fly.virgin.com. 
 

!
 
 

Fuel and carbon efficiency report for Capt. John Smith  
 

Below is your monthly fuel and carbon efficiency report for February 2014 
 
 

 
  

1. ZERO FUEL WEIGHT 
 
Proportion of flights for which 
the ZFW calculation was 
completed and fuel load 
adjusted as necessary 
 

TARGET: 75% of flights 
 

RESULT: 0% of flights 
 

You MISSED  your target 
and missed out on £10 in 

donations to Charity Name. 
 

2. EFFICIENT FLIGHT 
 
Proportion of flights for which 
actual fuel use is less than 
planned fuel use (e.g. 
optimised speed, altitude etc) 
 

TARGET: 25% of flights 
 

RESULT: 75% of flights 
 
You ACHIEVED your target 

and earned £10 in 
donations to Charity Name. 

 

3. REDUCED ENGINE TAXY IN 
 
Proportion of flights for which 
at least one engine was shut 
off during taxy in 
 
 

TARGET: 25% of flights 
 

RESULT: 25% of flights 
 
You ACHIEVED your target 

and earned £10 in 
donations to Charity Name. 
 

All data gathered during this study will remain anonymous and confidential.  Safety remains the absolute 
and overriding priority.  This study will be carried out within Virgin’s existing and highly robust safety 
standards, using our existing fuel procedures and policies. Captains retain full authority, as they always 
have done in VAA, to make decisions based on their professional judgment and experience.!
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FIGURE A4 
REVERSE SIDE OF ALL TREATMENT LETTERS 

 
  

 

  
THE THREE BEHAVIOURS WE ARE MEASURING 

 
 

Behaviour 1: Zero Fuel Weight Adjustment (ZFW) - Pre Flight 

This measure compares Actual Ramp against Plan Ramp adjusted for changes in ZFW.  
It captures whether a double iteration adjustment has been implemented for ZFW in line 
with Plan Burn Adjustment and any further amendments to flight plan fuel that have 
been entered into ACARS. This behaviour has a tolerance of 200kg, which ensures that 
rounding in the fuel request / loading procedure will not adversely affect the result.   
 
 
Behaviour 2: Efficient Flight (EF) - During Flight 

This measure examines the actual fuel burn per minute compared against the expected 
fuel burn per minute from OFF to ON (expected fuel burn is Plan Trip adjusted for 
ZFW).  It highlights pilot technique (e.g. optimum settings are realised, optimum levels 
are sought, speed is optimised, etc.). 
 
 
Behaviour 3: Reduced Engine Taxy In (RETI) - Post Flight 

This measure observes if an engine has been shut down during taxy in. RETI is 
considered to have taken place if one engine burns less than 70% of the average of 
other engines during taxy in.  If taxy in is shorter than the cool down period required, the 
flight is omitted, as RETI was not possible. 
 
 
We hope the above information is beneficial to you. If you require more information 
about any of the behaviours, please email us at project.uoc@fly.virgin.com. 
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CHAPTER IV 

 

UNDERSTANDING THE ROLE OF CAPTAINS’ PREFERENCES IN THE AVIATION INDUSTRY 

USING COMPLEMENTARY ARTEFACTUAL AND FRAMED FIELD EXPERIMENTS 

 

By Greer Gosnell 

 

 

Abstract: We measure risk preferences in a high-stakes professional setting to determine 

whether firm efficiency is affected by agents’ risk preferences.  Following an eight-month framed 

field experiment exploring captains’ fuel efficiency, we use a conventional economic measure of 

risk preferences—in addition to self-reported attitudes toward risk and uncertainty, and captains’ 

social preferences—to explore whether heterogeneity in these measures influences performance, 

both broadly and with respect to performance feedback and incentives.  Captains with higher self-

reported risk tolerance are more likely to efficiently load fuel onto the aircraft, contributing to 

average fuel savings on a per-flight basis.  Those with higher levels of altruism respond more 

strongly to prosocial incentives for the binary incentivized behavior (i.e. on the extensive 

margin), while altruistic captains receiving non-monetary incentives respond with lower fuel use 

on the intensive margin.  Finally, we infer reference dependence and assess welfare impacts from 

the interventions through analysis of captains’ reported job satisfaction. 

 

 

 
Acknowledgments: I am grateful to Glenn Harrison and Robert Metcalfe for their roles in helping me to consider 

the best methods for eliciting risk preferences.  I would again like to thank all parties at Virgin Atlantic Airways—

especially Paul Morris and Claire Lambert—as well as support teams at MasterCard and Qualtrics who helped to 

make the survey possible.  Finally, I thank the Templeton Foundation for providing the generous funds to support 

this research. 
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1.  Introduction 

 

 The preferences of economic agents are central to the study of decision making at the 

microeconomic level.  Risk-averse economic agents are assumed to exhibit diminishing marginal 

utility (of income, consumption goods), and to prefer the safer option when considering two 

payoffs with equal expected value.  While it is a widely accepted tenet in conventional agency 

theory that agents in the workplace are risk averse—thereby creating problems of moral hazard in 

contracts with presumably risk-neutral principals73—little research exists to identify these agents’ 

risk preferences, nor to understand their effect on a firm’s performance outcomes.  Risk 

preferences of employees may be especially important when the job description entails some 

underlying or explicit element of risk.  This paper aims to shed light on the relationships between 

the preferences of airline captains and their performance in relation to fuel efficiency, both 

generally and with respect to employer monitoring and interventions.  Additionally, we look at 

the knock-on effects of exogenously induced improvements in performance on captains’ utility 

(i.e. job satisfaction). 

 

 The role of risk in the workplace has been empirically investigated in various contexts.   

For instance, firms respond rationally to increases in the probabilities of both inspection and 

worker injury on the job (Scholz and Gray, 1990).  Workers also respond to risk in the 

workplace, whether by demanding higher compensation to accept potentially dangerous jobs 

(e.g., Biddle and Zarkin, 1988; Herzog and Schlottmann, 1990; Smith, Pattanayak, and Van 

Houtven, 2003; Viscusi and Hersch, 2006) or through broader occupation selection (King, 1974; 

Shaw, 1996; Ackerberg and Botticini, 2002; Bonin et al., 2007; Grund and Sliwka, 2010; Di 

Mauro and Musumeci, 2011; Bellemare and Shearer, 2013; Fouarge, Kriechel, and Dohmen, 

2014; Falco, 2014).  Indeed, several studies have found that public sector employees are more 

risk averse than private sector employees (Bellante and Link, 1981; Masclet et al., 2009; 

Buurman et al., 2012).  Finally, risk holds ambiguous implications for labor contracts; while 

some claim it distracts from larger determinants (e.g., Allen and Lueck, 1992, 1995, 1999; 

Lafontaine and Bhattacharyya, 1995), others claim that, for example, it can play a role in 

determining contracts if the inputs to productivity are unknown to the principal (Prendergast, 

2002).   
                                                
73 Agency theory generally posits that principals are risk-neutral while agents are risk averse (Allen and Lueck, 1995), the latter 
preferring certain income to uncertain income (Stiglitz, 1974).  Thus, a moral hazard problem between principal and agent arises 
due to the cost to principals of risk-averse agents’ suboptimal effort levels; that is, the agents’ preferences motivate effort levels 
inconsistent with the first-best outcome, which lead to suboptimal contracts (see e.g., Holmström, 1979; Holmström and Milgrom, 
1991). 
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The risk preferences of workers themselves have been elicited and evaluated in several 

contexts, primarily in relation to agricultural laborers in the developing world who are generally 

subject to decision making in risky environments (e.g., Binswanger, 1980; Groom et al., 2008; 

Tanaka, Camerer, and Nguyen, 2010; Bougherara, Gassmann, and Piet, 2011; Picazo-Tadeo and 

Wall, 2011; Takahashi, 2013).  Outside of this context, far less evidence exists on the 

implications of heterogeneous risk preferences for outcomes in relevant applied settings, an area 

of research that is arguably highly relevant and vastly understudied (Jamison et al., 2012).   

 

However, a handful of examples demonstrate a move in this direction through the study of 

risk preferences and their effects on human capital and employment sorting.  Shaw (1996) finds 

that risk tolerance—proxied by percentage of personal worth invested in risky assets—is 

associated with inherently risky human capital investment, which leads to income growth.  

Elston, Harrison, and Rutström (2006) find that ‘full-time’ entrepreneurs are more risk seeking 

than ‘part-time’ entrepreneurs, who are in turn more risk seeking than non-entrepreneurs, a 

finding that may hold implications for sorting and innovation.  Using survey evidence from the 

German Socioeconomic Panel (SOEP), Cornelissen, Heywood, and Jirjahn (2011) find that self-

reported risk tolerance increases worker satisfaction in jobs that pay conditional on performance 

as opposed to fixed wages.  Along the same dimension, Bellemare and Shearer (2010) find that 

workers in a tree-planting firm—whose daily incomes are subject to high performance-related 

variability—are relatively risk tolerant compared to the general population. 

 

Fewer studies explore the implications of risk preferences and attitudes for relevant 

performance measures of professionals in high-skilled settings with inherent risk.  For example, 

Eil and Lien (2014) find that poker players engage in more risky behavior as their wealth strays 

further from their reference points in either direction, and that they become more conservative in 

response to being ahead, a finding consistent with reference-dependent loss aversion. Coval and 

Shumway (2005) find a similar effect amongst proprietary traders, yielding short-term 

consequences for contract prices.  Kumbhakar and Tveterås (2003) find evidence of downside 

risk aversion among 28 salmon farmers in Norway, leading to significant welfare loss in the 

industry.   

 

These studies do not elicit measures of risk commonly explored in the economics 

literature, nor do they directly investigate the effects of risk preferences on subsequent decision 
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making.   The present study bears more similarity to Rustichini et al. (2016), who elicit two types 

of risk measure among trainee truck drivers and relate these to performance.  The authors find 

that a psychological approach (i.e. assessment of personality traits) outperforms an incentivized 

economic approach in terms of predicting accidents, with the latter demonstrating no predictive 

power.  Here we investigate a role for incentive-compatible risk preferences and self-reported 

risk attitudes—in addition to attitudes over uncertainty—in predicting a relevant job performance 

metric pertaining to fuel efficiency in the aviation sector.74 

 

In addition to preferences and attitudes toward risk, some literature has suggested that 

prosocial motivation may measurably improve job performance.  In a study of costly cooperation 

amongst truck drivers in the United States, Burks et al. (2016) perform an artefactual field 

experiment75 in which they observe the second-mover behavior of a sequential prisoner’s 

dilemma game, finding that behavior in the game predicts behavior that aids fellow drivers in the 

field (though not behavior that serves as a favor to the experimenters).  In a developing country 

context, Dizon-Ross, Dupas, and Robinson (2015) find that altruism (aggregated across 

individuals at the clinic level)—a metric including decisions from an incentivized dictator 

game—predicts higher coverage for eligible patients and less leakage to ineligible patients in a 

bed net distribution program.  In this paper, we explore a role for altruism in an industrialized 

high-skilled labor context where prosocial motivation is directly targeted in a large-scale framed 

field experiment. 

 

 We take a novel approach to the study of employee preferences and attitudes in the 

workplace, incorporating experimental techniques prominent in the economic risk literature into a 

professional setting where risk and uncertainty play a prominent role.  Specifically, we focus our 

attention on captains in the commercial airline industry, whose risk-averse decisions may 

influence the airline’s bottom line through excess fuel use.  Though there are international and 

domestic requirements for fuel uplift on an aircraft, captains are ultimately responsible for 

designating the amount of fuel to be carried onboard a given flight.  Fuel loaded above and 

                                                
74 This research speaks to the psychology and management literatures on whether personality traits should be considered in 
personnel selection due to their correlations with various aspects of employee productivity (for a meta-analysis, see Tett, Jackson, 
and Rothstein, 1991).  For example, Ashton (1991) compares the predictive capacity of the oft-cited Big Five traits versus the 
more narrowly defined Jackson Personality Inventory (JPI), finding that the JPI’s ‘responsibility’ and ‘risk-taking’ measures are 
better predictors of self-reported delinquency in entry-level jobs than broader Big Five traits.  Tett et al. (1991) argue that 
personality measures indeed hold an important role for personnel selection and further research should aim to identify which 
personality measures are relevant for various job types.  Here, we explore a role for risk preferences as measured in the economics 
literature. 
75 For a description of experimental typologies, see Harrison and List (2004). 
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beyond that required—‘contingency fuel’—reflects the downside risks that may induce fuel burn 

additional to that forecasted in the flight plan (Ryerson et al., 2015).  

 

To investigate the role of risk preferences on fuel efficiency, we administered a survey 

whose respondents had participated in an eight-month framed field experiment prior to 

preference elicitation.  In the experiment, each captain in the airline was randomly allocated to 

receive one of four monthly interventions: business as usual (control group), performance 

feedback, exogenous personalized performance targets, and prosocial incentives to reach said 

performance targets (for a full description and analysis of this study, see Chapter III).76  

 

The subsequent online survey elicited captains’ incentive-compatible risk preferences as 

well as their attitudes toward risk and uncertainty, their altruistic tendencies, and their job 

satisfaction.  We elicited risk preferences using a methodology adapted from Binswanger (1980), 

Barr and Genicot (2008), and Eckel and Grossman (2008).  Respondents are asked to select one 

gamble from five options that progressively increase in both expected value and payoff variance.  

We also measure self-reported risk attitudes as in Dohmen et al. (2011), who find that these risk 

measures correlate with incentive-compatible risk preferences.  The self-reported approach has 

several advantages, such as its negligible impact on project budgets and its ability to capture 

preferences over longer time horizons.  However, there is unfortunately very little evidence 

comparing the predictive power of these two types of measure on real-world outcomes (Jamison 

et al., 2012). 

 

We additionally derive measures of uncertainty aversion and altruism.  To gauge the 

former, we use a statement derived directly from the Need for Closure Scale (Webster and 

Kruglanski, 1994), which is meant to assess the extent to which individuals require predictability 

and resolution.  To assess altruism, we ask subjects to recall the extent of their own charitable 

donations in 2013 (i.e. the year before the study began) and use the midpoint of the selected range 

as a proxy for subjects’ altruistic preferences.   

 

                                                
76 Our flight-level data capture decision making on how much fuel to carry and whether this exceeds the amount dictated by 
national and company standards (denoted ‘Fuel Load’). In addition, our data capture two additional fuel-relevant behaviors that 
we perceive to be unrelated to preferences over risk: Efficient Flight (i.e. whether the captain used less fuel during the flight than 
prescribed by the flight plan, updated for Fuel Load adjustments), and Efficient Taxi (i.e. whether the captain turns off at least one 
engine while taxiing in after landing).  While these behaviors will not be a focal point for the analysis of captains’ preferences, 
they were included as behavioral outcomes in the framed field experiment in Chapter 3 and will therefore be alluded to in our 
analysis of reference dependence in Section IV. 
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Finally, we exploit the exogenous variation in reference point provision stemming from 

the framed field experiment to explore whether captains’ preferences are in accordance with 

reference dependence, a prominent concept first proposed in Prospect Theory (Kahneman and 

Tversky, 1979).  Specifically, we examine whether captains who receive exogenous targets in the 

study are more satisfied with their jobs if those targets are met.  Therefore, we provide 

commentary on reference dependence outside of the monetary domain and provide supporting 

evidence of the popular finding to the realm of reference points in job performance. 

 

In line with the findings of Rustichini et al. (2016), our results indicate that risk attitudes 

predict fuel-loading efficiency better than incentive-compatible risk preferences; while the signs 

of the coefficients on risk preferences yield modest support for this finding, they are not 

statistically significant.  Uncertainty aversion is a slightly less accurate predictor of fuel 

efficiency, but still contributes to increased fuel uptake.  Additionally, more altruistic captains 

respond more strongly to prosocial incentives on the extensive margin—that is, they implement 

the incentivized behavior more frequently—while altruism among captains receiving targets 

alone reduces fuel uptake on the intensive margin.  The latter result provides subtle support for 

the finding in Ashraf et al. (2014) that altruism may crowd in the effects of non-monetary 

incentives on social outcomes.   

 

We find some evidence of reference dependence among captains who receive targets: job 

satisfaction increases with the number of targets met for captains who received targets in the 

study, while this finding does not hold when considering placebo targets for those who did not.  

Finally, provision of prosocial incentives appears to have a positive impact on captains’ well-

being.  Since targets and prosocial incentives have very similar impacts on fuel efficiency (see 

Chapter III), this finding induces a tradeoff between employee satisfaction and intervention 

costs77 that airlines considering similar interventions should carefully weigh. 

 

The remainder of the paper is structured as follows.  Section II provides motivation for 

the study of preferences in the context of airline captains and fuel efficiency with a discussion of 

our priors.  Section III describes the methodology for eliciting preferences and attitudes, and 

section IV presents the study results.  Section V briefly discusses study limitations, and section 

VI concludes with a discussion of results and their implications. 

 
                                                
77 The intervention costs may be viewed as a component in airlines’ corporate social responsibility (CSR) strategies to provide 
further support in favor of implementation of prosocial incentives. 
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2.  How might preferences influence outcomes? 

 

 According to principal-agent theory, latent risk preferences—unbeknownst to the 

principal—may influence an agent’s decision frame with respect to productivity-enhancing 

outcomes.  In deciding how much fuel to load onto the plane (‘Fuel Load’), for instance, risk or 

uncertainty aversion may lead airline captains to add excess contingency fuel as a safety reserve 

in case of events with some well-understood probability distribution (e.g., bad weather) or events 

whose probabilities are difficult to estimate (e.g., unexpected re-routing or airport closures).  

Thus, we expect aversion to risk and uncertainty to increase fuel uptake above and beyond the 

‘ideal’ uptake that standard industry calculations would prescribe, leading captains to correctly 

implement Fuel Load (as defined in Chapter III) on fewer occasions.  

 

In the theory of captains’ utility proposed in Chapter III (Appendix II), a captain will respond 

to prosocial incentives by increasing effort only if he possesses a positive level of altruism, and 

effort increases with his degree of altruism.  Accordingly, we expect captains with higher 

altruistic preferences to respond more strongly to the prosocial incentives provided to the third 

treatment group in the framed field experiment, since they have stronger motivation to donate to 

charity.  However, altruistic preferences may influence decision making in more than one 

direction.  For instance, ‘impurely altruistic’ captains that already donate abundantly to charity 

from their private budgets may not feel the need to exert costly effort in order to donate through 

the study, as they have already satisfied their utility from ‘warm glow’ (Andreoni, 1989).  

Alternatively, it may be the case that more altruistic captains simply care more about social 

welfare and therefore perform more strongly on the salient prosocial dimension in spite of 

incentives, as has been found among nurses and doctors in developing country contexts (Callen et 

al. 2013; Dizon-Ross et al., 2015; Brock, Lange, and Leonard, 2016).  We test these competing 

hypotheses. 

 

Finally, if a captain’s utility were indeed characterized by reference dependence and altruism 

(in accordance with the theoretical model set forth in Chapter III), we would expect the 

treatments to influence job satisfaction in two measurable ways.  First, we posit that a change in a 

captain’s personal expectations from the status quo to an improved level of attainment can boost 

performance and, consequently, utility.  We therefore expect job satisfaction to increase for those 

who receive targets and subsequently meet them.  In other words, a captain will seek to meet the 

given targets due to the effect of his own job performance on job satisfaction, and fulfilling those 
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goals will increase his utility.  Second, assuming some positive level of (pure or impure) altruism 

for all captains, those who donated to charity through the study (i.e. 99% of captains in the 

experimental group that received prosocial incentives, and no additional captains) are expected to 

have higher job satisfaction than captains who did not donate money to charity through their 

performance. 

 

 

3.  Methodology 

 

To gather data on captains’ preferences, we administered a post-study debrief survey four 

months after the final day of monitoring for the framed field experiment.  The survey served three 

main purposes: 1) to elicit perceptions on risk and uncertainty; 2) to gauge subjects’ altruism; and 

3) to measure subjects’ job utility (i.e. satisfaction with their jobs).  

 

i. Background: Risk preference elicitation in economics 

 

There are a number of incentive-compatible risk preference elicitation methods that 

economists use to identify preference heterogeneity and predictive power, as well as the shapes of 

utility functions.  Perhaps the most commonly used method is the Multiple Price List (MPL), 

which requires that one assume a functional form for an individual’s utility and then estimates 

latent risk preferences by gathering sufficient data to identify intervals for the assumed curvature 

parameters.  To elicit preferences using this method, the researcher presents subjects with a series 

of binary choices between lotteries with different expected payoffs, and the subject decides which 

lottery to play, as in the seminal Holt and Laury (2002) elicitation method.  In their version of the 

MPL, payoffs remain constant across ten rows of binary lottery choices, but the probability of the 

higher payoff increases, eliciting a ‘switch point’ that identifies the subjects’ degree of risk 

aversion.  While this method is widely used (see Andersen et al., 2006, for a review), several 

studies have called into question its comprehensibility, especially in developing country contexts 

(e.g., Jacobsen and Petrie, 2009; Charness and Viceisza, 2016). 78   The Becker-DeGroot-

Marschak (1964) method—which elicits an incentive-compatible selling price for a series of 

lotteries—has been deemed similarly incomprehensible (Harrison and Rutström, 2008). 

 

                                                
78 On the contrary, Ihli et al. (2016) find low inconsistency rates for MPL methods in Uganda.  
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Another heavily cited method is the random lottery pair (RLP) design.  Hey and Orme 

(1994) implement this design by asking subjects to make a selection (or indicate indifference) for 

each of 100 pairs of lotteries with fixed prizes of £0, £10, £20, or £30, where the probabilities 

associated with the outcomes vary.  For both the MPL and the RLP methods, one lottery is 

generally selected for payout once preferences are elicited.  This exercise was repeated after a 

few days, but with the presentation of lotteries ordered differently.  Subsequently, they estimated 

a utility function characterized by expected utility theory to assess its performance non-

parametrically using behavioral data.  Although comprehensibility is strong with this method, the 

process is quite lengthy and there is not a straightforward ordinal variable that can be used as an 

independent variable to assess the role of risk preferences in decision making, as we aim to do 

here. 

 

We therefore elected to use the ordered lottery selection (OLS) method implemented in 

Binswanger (1980) and Eckel and Grossman (2008), a method that is both succinct and simple to 

understand.  In this method, the subject is presented with an ordered group of (typically 50-50) 

gambles that increase both in expected payout and in riskiness (variance), beginning with a 

certain option where both sides of the coin yield the same payoff.  Subjects select one lottery 

from this ordered set, and their choice implies an interval for the subject’s coefficient of relative 

risk aversion under the assumption of utility functions exhibiting constant relative risk aversion 

(CRRA).  The method is computationally simple and quick to implement since only one decision 

needs to be made and the familiar ‘coin-toss’ probabilities remain constant across gambles 

(Charness, Gneezy, and Imas, 2013).  It also provides measures that correlate well with other risk 

preference elicitation methods (Reynaud and Couture, 2012; Dasgupta et al., 2016) and presents 

significantly less noise than those elicited using more complex methods (Dave et al., 2010).  A 

potential drawback with the OLS method is that the certain option may serve to anchor 

expectations, creating a gain-loss frame that may influence individual decision making based on 

reference dependence (Harrison and Rutström, 2008).   

 

Prior studies that elicit risk preferences as an explanatory variable have used both the 

MPL and OLS methods.79  For instance, Rustichini et al. (2016) find that trainee truck drivers’ 

risk preferences elicited using MPL (i.e. switch points) are poor predictors of a number of 

variables, both economic (credit scores, job persistence) and non-economic (driving accidents, 
                                                
79 Here we focus our discussion on incentive-compatible risk preference elicitation methods.  Other studies have used hypothetical 
elicitation methods.  Barsky et el. (1997), for example, used hypothetical gambles over lifetime income to construct a risk 
tolerance measure that they use to predict risky behaviors such as smoking, drinking, not buying insurance, choosing a risky job, 
and holding risky assets. 
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smoking).  Dohmen et al. (2011) use a variant of the MPL where a single lottery is compared 

with a ‘safe’ option that increases for each line, eliciting a switch point that they use to predict 

self-reported behaviors such as smoking, stockholding, and sports participation.  Similar to our 

study, Cardenas and Carpenter (2013) use the OLS method to extract an ordinal measure of risk 

for use as a right-hand side variable, demonstrating that baseline risk preferences—devoid of 

subtleties such as preferences over ambiguity or losses—are uncorrelated with well-being in a 

developing country context.  Here, we use a similar method to the latter in our analysis of risk 

preferences and fuel efficiency. 

 

ii. Survey measures 

 

Risk preferences.  To accomplish our primary experimental objective of eliciting 

preferences over risk, we asked participants a highly incentivized risk question derived from the 

Binswanger (1980) method of risk preference elicitation that was later adapted by Eckel and 

Grossman (2008; “EG” hereafter).  We implement the latter version, augmenting the stakes by 

multiplying each outcome by 2.5 (see Table 1).  Increasing the stakes amplifies the incentive to 

carefully consider one’s gamble selection, since higher stakes have been found to increase risk 

aversion (Holt and Laury, 2002) and the sample considered here likely has a much smaller 

marginal utility of money than do typical risk experimental samples.80   

 

The question asks subjects to select one of five gambles, each with two possible 

outcomes.  Gamble 1 is the most certain (£25 vs. £25), while Gamble 5 is the most risky (£105 

vs. -£15), and there is a linear relationship between the expected value of the gamble and its 

riskiness (as measured by the standard deviation of payoffs). Gambles 4 and 5 hold potential for 

losses (i.e. the second outcome is negative).  Both outcomes are associated with a 50% 

probability of success, as in EG.  The method provides sufficient variance in outcomes to 

estimate ranges of the coefficient of relative risk aversion r, a risk parameter that appears in 

commonly cited CRRA utility functions.81  The utility function is as follows: 

 

                                                
80 The average salary of a captain is approximately $175,000-$225,000. This salary range is based on information updated in June 
2015: http://www.pilotjobsnetwork.com/jobs/Virgin_Atlantic.  Assuming diminishing marginal utility of income, a standard 
experimental incentive used among student samples is likely to provide far less utility to a high-earning professional. 
81 The ranges for the CRRA coefficient vary slightly from that in Eckel and Grossman (2008) due to differences in the initial 
endowment relative to the incentives provided across the two studies.  Additionally, the method cannot detect r values in the risk-
seeking range. In our sample, 22 captains selected the riskiest gamble in a follow-up question that placed even less probability on 
the higher outcome, indicating that there may have been even more risky gambles that would have provided greater utility.  The 
gambles presented cannot capture the extent of such risk-seeking preferences. 
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𝑈 𝑥 =
𝑥!!!

1− 𝑟 

 

where 𝑥 represents a vector of inputs to the utility function and r represents the coefficient of 

relative risk aversion, and where 𝑟<0 causes 𝑈 to be convex (risk seeking), 𝑟=0 causes 𝑈 to be 

linear (risk neutral), and 𝑟 >0 causes 𝑈  to be concave (risk averse). 82   The function is 

characterized by constant relative risk aversion, so that relative risk aversion has the same value 

regardless of consumption levels; in other words, it captures risk attitudes toward proportional 

changes in wealth at the current level of wealth.  As in Cardenas and Carpenter (2013), we order 

the gambles from 1 to 5 in order of increasing risk tolerance and use this ordinal variable as our 

incentive-compatible risk measure in the analysis that follows. 

 

 Attitudes toward risk and uncertainty.  In addition to the above incentive-compatible risk 

preference elicitation question, we ask subjects to rate their risk tolerance on an 11-point scale, a 

question that is taken directly from the German SOEP survey.  The question asks subjects to 

choose a number on a scale from 0 (“unwilling to take risks”) to 10 (“fully prepared to take 

risks”) in a manner that reflects their own preferences.  Dohmen et al. (2011) demonstrate that 

this question is a good predictor for decisions in incentive-compatible lottery choice experiments; 

therefore, we use responses to this question as an alternative measure of risk preferences in our 

analysis and compare findings across the two measures.  

 

Following the above incentive-compatible and self-reported risk questions, we ask a 

question to assess uncertainty aversion, which is taken directly from the Need for Closure Scale 

commonly used by social psychologists (Webster and Kruglanski, 1994). In this question, 

subjects are asked to rate on an 11-point scale from 0 to 10 how much they agree with the 

following statement: “I don’t like situations that are uncertain.”  We use the subjects’ responses 

to determine whether uncertainty plays a different role to risk in fuel uptake decisions. 

 

Altruism.  To assess captains’ altruism, we asked two questions regarding individuals’ 

private charitable donations in 2013 and in 2014 outside of the context of the study.  Captains 

indicated their past donation behavior by selecting one of ten multiple-choice intervals ranging 

from £0 to £200+ (specifically, £0, £1-£10, £11-£20, £21-£30, £31-£40, £41-£50, £51-£75, £76-

                                                
82 If r=1, then U(x)=lnx. 
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£100, £101-£200, more than £200).83  We then use the midpoints of these ranges as an 

approximation for donations in a given year (with £250 as the max).  In addition to assessment of 

heterogeneity in fuel outcomes, the information provided further allows us to ascertain whether 

the framed field experimental prosocial incentive treatment crowds out private giving. 

 

Job satisfaction. Finally, we asked captains to rank their job satisfaction on a seven-point 

scale.  This question comes directly from the British Household Panel Survey, which allows us to 

compare the satisfaction of VAA captains to the UK national average.  Most importantly, the 

responses allow us to look at both whether job performance influences job satisfaction—as 

proposed in the theory in Chapter III—as well as whether the framed field experimental 

treatments contribute positively or negatively to captains’ well-being. 

 

 

4.  Results 

 

i. Data 

 

Following participation in an eight-month framed field experiment (February 2014 

through September 2014) testing the effects of informational feedback, personalized exogenous 

targets, and prosocial incentives for meeting these targets, each of the 335 field experimental 

participants was prompted to take a study debrief survey.  Following termination of the study, all 

captains had been informed that a 5- to 7-minute follow-up survey would be sent to their 

company email addresses in early 2015.  Each captain received an email with a personalized link 

to a Qualtrics survey on January 29, 2015, and the survey closed three weeks later.84 

 

Out of 335 survey recipients, 202 (60%) answered the job satisfaction questions, 193 

(58%) answered the later risk, uncertainty, and altruism questions, and 189 (56%) completed the 

survey in its entirety.  This response rate was achieved after sending each captain up to three 

emails within four weeks offering incentives as high as £130.  Of the survey respondents, 97 

(49%) reported having received military training and 102 (51%) reported having received civilian 

                                                
83 Since very few individuals in the UK donate more than £100 per year, we created smaller bins for lower donation ranges and 
larger bins for higher donation ranges, though a majority (55% and 56%) of captains in our sample reported having donated more 
than £100 in 2013 and 2014, respectively.   
84 The follow-up survey was designed and administered by the academic researchers alone and bore no affiliation to Virgin 
Atlantic.  Captains were assured that data from their responses would be used for academic research purposes only, that their 
responses would remain anonymous, and that VAA would not be privy to individual-level information provided by survey 
respondents.  
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training, and the remaining declined to state; we do not have access to this information for the 

entire captain population. 

 

Survey sampling did not ensure that respondents’ characteristics were independently and 

identically distributed.  In Table 2, we check for balance on time-invariant observables (age, 

seniority, flying frequency, trainer status, trusted pilot status, and study group) as well as average 

attainment of the fuel-efficient behavior of interest here (Fuel Load) across survey respondents.  

We find that captains who participated in the survey are less senior (p<0.10 for partial survey 

completion, p<0.05 for full survey completion) and properly implement Fuel Load on 5 

percentage points more flights, on average (40.5% for non-participants versus 45.7% for 

participants who completed the survey, p<0.01).   

 

Respondents did not differ across the other observable dimensions, and they are well-

balanced across treatment groups in the framed field experiment (see Table 3).  Apart from a 

weak correlation between age and uncertainty aversion (β=0.05, p=0.10), none of the captain 

observables influence any of our preference measures. The average respondent earned £63.01 and 

donated £20.85 of their survey earnings to charity. 

 

ii. Captains’ risk profiles 

 

We find that incentive-compatible gamble selection is highly predictive of self-reported 

risk attitudes.  In a regression of risk attitudes on gamble selection, an increase of one in a 

subject’s gamble selection leads to an increase of 0.29 points on the 11-point risk attitude scale 

(p<0.01).  Thus, our data support the finding of Dohmen et al. (2011), which asserts that 

incentive-compatible and self-reported risk assessments are correlated.  However, we do not see a 

perfectly linear correlation between gamble selection and risk attitude, as can be seen in Table 4, 

perhaps signaling variation in loss aversion uncorrelated to risk aversion in our sample.85  

 

In the vein of Bellemare and Shearer (2010), we compare the risk preferences of the VAA 

captain population to those of broader populations in various similar studies. EG find an average 

gamble choice of 3.45 (σ=1.17, n=256) among the students in their sample, whereas we find that 

captains are more risk averse with a mean gamble choice of 2.96 (σ=1.48, n=164; p<0.01).  

                                                
85 In other words, captains who are highly loss averse may avoid Gambles 4 and 5, even if they are highly risk loving. We see a 
steady increase in self-reported risk attitudes as gamble selection increases from Gamble 1 to Gamble 3, with a decline thereafter, 
potentially due to some captains’ aversion to losses.  We do not measure loss aversion in this study. 
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Given that our sample is mostly male, and that EG find that men are more risk-seeking than 

females, the difference is even more stark when we compare just the male population of EG 

(3.76, σ=1.18, n=136) with the male captains in our sample (2.95, σ=1.50, n=160; p<0.01).86  

While it is possible that higher stakes induced more risk-averse responses in the survey, we are 

also mindful that we are comparing students—who are typically considered low-income—to 

quite a high-income population, so that the stakes relative to income are likely similar. 

 

Contrarily, the captains’ self-reported risk attitudes on the 11-point German SOEP scale 

are consistent with the findings of Grund and Sliwka (2010), who investigate the correlation 

between risk attitudes and selection into various employment pay schemes (i.e. the risk-incentive 

tradeoff).  They find that individuals in jobs with pay contingencies based on performance 

appraisals have higher risk tolerance (4.48, σ=2.47) than those with performance appraisals more 

generally (4.25, σ=2.44), and the latter are still more risk tolerant than individuals in jobs lacking 

performance appraisals altogether (3.75, σ=2.48).  The captains in our sample report a mean of 

3.48 (σ=2.31) on the 0-10 scale of risk tolerance, demonstrating even more risk aversion than the 

average individual in jobs without performance appraisal in Grund and Sliwka’s sample. 

 

iii. Preferences and performance 

 

To examine the effects of a captain’s preferences and attitudes toward risk and uncertainty 

on fuel loading behavior, we regress two dependent variables on our risk and uncertainty 

parameters using OLS regression (see Table 6).  The first dependent variable is Fuel Load, which 

captures the proportion of a captain’s flights for which he properly implemented the zero fuel 

weight (ZFW) adjustment within a 200 kg margin of error (see Chapter III for further detail).  

Since the outcome variable is binary, these coefficients represent the output of a linear probability 

model.  The second is the difference between the ‘ideal’ fuel load (i.e. the exact amount 

prescribed by the double-iteration ZFW calculation) and the actual fuel load, in kilograms.  We 

look at both incentive-compatible risk preferences and self-reported attitudes toward risk and 

uncertainty (see Table 5 for a list of variable names and definitions, and see Table 6 for 

regression outcomes). 

 

While we do not detect statistically significant improvements in Fuel Load 

implementation (β=0.3 percentage points, p=0.65) or the continuous fuel load measure (β=-22.0 

                                                
86 Since there are only 4 females in our sample, we cannot compare across the female populations in the two studies. 
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kg, p=0.14) based on the incentive-compatible gamble selection, the signs of the coefficients hint 

that more risk-seeking individuals are more likely to implement Fuel Load and to load less fuel 

on a given flight.  This influence is more firmly supported when we use the self-reported risk 

attitude as our independent variable.  For every increase of one point on the German SOEP risk 

scale, implementation of Fuel Load increases by 0.9 percentage points (p=0.02) and fuel uptake 

relative to the ideal decreases by 16.8 kg (p=0.06).87  Similarly, as uncertainty aversion increases, 

we see a negative (though not significant) coefficient for Fuel Load (β=-0.3 percentage points, 

p=0.54) and an increase in the amount of fuel loaded onto the aircraft relative to the ideal (β=14.0 

kg, p=0.09).  Thus, consistent with our priors, we find evidence that more risk-averse captains are 

more likely to over-fuel.88   

 

In Table 7, we use self-reported donations to charity in 2013 (i.e. the year before the study 

began) as a proxy for altruism to explore whether subjects’ prosocial preferences influence their 

response to our treatments.  In the 13 months prior to the study, more altruistic captains use 

slightly less fuel, though the effect is not statistically significant (see Columns 1-2 of Table 7).  

Therefore, altruism does not appear to play a role in fuel efficiency per se. 

 

However, we do find that captains vary in their response to treatment based on their 

revealed altruistic preferences (consistent with Proposition 4 in the theory).  We interact the 

altruism proxy with the difference-in-difference estimator identifying the treatment effects in 

Chapter III, allowing us to investigate whether altruism influences captains’ response to 

treatment.  Once the study begins, we find that captains who receive prosocial incentives for 

meeting the study targets implement Fuel Load on about 0.1 percentage points more flights per 

£10 privately donated in 2013 (p=0.01; Table 7, Column 3).  That is, these captains improve their 

Fuel Load implementation on the extensive margin, on which the conditional incentives were 

                                                
87 Tett et al. (1991) find that correlations between productivity and personality traits are stronger for military personnel than for 
non-military personnel.  On the contrary, we find that the risk attitudes are more strongly predictive of performance for civilian-
trained captains with a coefficient more than double in magnitude; an increase of 1 on the risk attitude scale increases 
implementation of Fuel Load by 1.5 percentage points (p=0.03) for civilian captains, whereas the corresponding effect for military 
captains is 0.7 percentage points (p=0.15). 
88 As a robustness check to ensure that the disparities in Fuel Load are in the direction of over- (and not under-) fueling, we 
regress a dummy variable for whether the captain over-fueled relative to the ideal on incentive-compatible risk preferences, risk 
attitudes, and uncertainty aversion.  An increase of one on the incentive-compatible and self-reported risk scales decreases over-
fueling by 0.2 (p=0.49) and 0.5 (p=0.02) percentage points, respectively, while the same increase on the uncertainty aversion scale 
increases over-fueling by 0.2 percentage points (p=0.41).  The magnitudes of these effects increase or remain constant if we allow 
for the 200 kg margin of error for incentive-compatible risk (β=0.3 percentage points, p=0.67), self-reported risk (β=-0.9 
percentage points, p=0.03), and uncertainty aversion (β=0.2 percentage points, p=0.55).  Under-fueling outside of the margin of 
error only occurred on 2.7% of flights during the study period (2.8% for subjects who completed the survey). 
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predicated.89  This effect is slightly positive though highly indistinguishable from zero for the 

information and targets groups.  Therefore, we find evidence against a warm-glow ‘quota’ that 

may decrease the motivational capacity of prosocial incentives. 

 

Interestingly, however, more altruistic captains who receive targets without receiving 

prosocial incentives decrease their fuel use relative to the prescribed fuel use by 1.25 kg 

compared to the control group (p=0.01), demonstrating fuel loading behavior change on the 

intensive margin.  This result complements the finding of Ashraf et al. (2014) that prosocial 

motivation measured in a charitable dictator game crowds in intrinsic motivation, enhancing the 

treatment effects of non-financial incentives for public service delivery agents. 

 

iv. Performance and utility 

 

In Table 8, we assess whether job performance is a predictor of job satisfaction.90  In the 

theory of captains’ behavior in Chapter III, we argue that a captain whose performance exceeds 

his target will achieve higher utility than a captain who does not achieve his target in accordance 

with reference dependence theory.  To test this conjecture, we aggregated the number of targets 

met over the course of the experiment for each captain.  That is, for those in groups that did not 

receive a personalized target (i.e. control and information groups), we created ‘placebo’ targets 

that mimic those provided to captains in the targets and prosocial incentive groups.  For each 

captain, we summed the number of (hypothetical) targets met during the course of the study and 

regressed job satisfaction on this job performance proxy variable.   

 

For the groups that received targets in the study (i.e. the targets and prosocial groups), we 

find that job satisfaction increases by 0.058 points (0.9% effect; p=0.07) on the seven-point scale 

for each target met during the study; this effect disappears when we restrict the regression to 

groups who did not receive targets (i.e. the control and information groups).  In other words, 

assuming a linear effect, a captain who met all of his targets (out of a possible 24) would rate his 

                                                
89 Importantly, when we examine differences in self-reported giving between 2013 and 2014, we find no evidence that prosocial 
incentives—either being in the treatment condition, or the extent to which prosocial incentives were achieved—crowd out private 
charitable giving behavior outside of the study context. In fact, only 27% of captains selected different donation intervals for 2013 
and 2014, and 11% claimed to have donated more in 2014. 
90 Captains in Virgin Atlantic express a higher job satisfaction than the average UK citizen, as measured in a random sample who 
took the BHPS from 1991-2008 (see Dawson, Veliziotis, and Hopkins, 2014).  On average, job satisfaction averages 5.36 in the 
BHPS compared to 5.78 for captains in our survey; average scores according to study group are 5.58 (control), 5.79 (information), 
5.82 (targets), and 5.94 (prosocial).  While it is not the aim of this paper to assess the influence of preferences on well-being, we 
find that uncertainty aversion decreases our measure of well-being—job satisfaction—by 0.06 points on the 7-point scale 
(p=0.038), consistent with the finding of Cardenas and Carpenter (2013) that ambiguity aversion reduces general well-being.  
Neither the gamble selection nor the altruism proxy influence satisfaction. 
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overall job satisfaction 1.2 points higher than a captain who did not meet any of his targets (i.e. a 

21% improvement on the mean reported job satisfaction).  This finding bodes well with the 

theoretical assumption that performance increases satisfaction, and we interpret this finding as 

evidence of reference dependence in the context of job performance.  Furthermore, since 

treatment assignment is random, we attribute causality to the relationship between job 

performance and satisfaction. 

 

To further refine this estimate, we run a similar regression that instead divides the 

independent variable into three separate variables capturing the number of targets met for each of 

the three fuel-efficient behaviors.  The results of this regression indicate that Efficient Taxi 

attainment is the driver of the effect of performance on satisfaction in this context, increasing 

self-reported job satisfaction by 0.12 points for each successful attainment of the monthly target 

(p=0.03).  One potential reason behind this interesting job satisfaction result is that Efficient Taxi 

is arguably the easiest of the behaviors to achieve and received the most pronounced boost from 

the treatments; however, we (experimenters, VAA) signal them as equivalently desirable by 

giving them equal prominence in the feedback forms and the same prosocial incentives across 

behaviors.  Thus, the exogenously induced increase in Efficient Taxi implementation leads to an 

increase in on-the-job utility for captains who receive targets and achieve them. 

 

Finally, in an era where captains’ well-being is especially central to airlines’ and 

travelers’ considerations, one might inquire whether the captains themselves are better off.  We 

only take a first step down this important path by considering captains’ job satisfaction.  Table 9 

presents the intent-to-treat estimates for the effects of being in each treatment group on job 

satisfaction.  While we do not find that prosocial incentives improve job satisfaction beyond the 

effects of targets in isolation, the three components together—information, targets, and prosocial 

incentives—appear to boost utility in an additively separable manner, culminating in a (weakly) 

statistically distinguishable improvement for the prosocial incentives group compared to the 

control group (β=0.37, p=0.105).91  For context, the difference in self-reported job satisfaction is 

equivalent to that between an employee with poor health compared to an employee with excellent 

health (see Clark and Oswald, 1996).  

 

 
                                                
91 Consistent with the above finding on reference dependence, we also find that captains in the prosocial group who donated more 
to charity through the study by meeting more of their targets report a higher job satisfaction.  Specifically, when we regress job 
satisfaction on number of targets met in the prosocial group, we find a 0.08-point increase in job satisfaction for each target met 
(and, consequently, £10 donated to charity on their behalves; p=0.05). 
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5.  Methodological considerations and limitations 

 

Complementary framed (or natural) and artefactual field experiments in a study of this 

kind can be modified in the following ways.  First, one could measure the variables of interest 

both before and after intervention.  Here, for example, it would be useful to have data on 

captains’ preferences prior to the interventions to ensure that these measures were not influenced 

by the framed field experiment.  However, one must consider how the act of taking such 

measurements may influence subsequent treatment effects, a consideration that precluded our 

implementing a baseline risk elicitation survey.  On a related note, in similar contexts, one could 

assess employee satisfaction prior to experiment implementation to provide a within-subject 

measure of changes in utility; here, we (reasonably) assume job satisfaction prior to the study is 

orthogonal to treatment.    

 

Additionally, participation in our survey was not entirely balanced, though airlines can 

perhaps overcome this issue by inserting a few short questions in an otherwise mandatory form, 

for example.  Finally, critics may argue that respondents do not have incentive to accurately 

report their own risk and uncertainty attitudes or donations to charity, especially if they are driven 

by image concerns.  However, regardless of their incentive compatibility, the attitudinal and 

altruistic measures are clearly predictive of some notable outcomes in this context, and are much 

less costly to elicit.  Moreover, the self-reported risk attitudes have been demonstrated to 

correlate with incentive-compatible measures in this and aforementioned studies. 

 

 

6.  Discussion 

 

When it comes to the external validity of field experiments, perhaps the most pressing 

concern is that an average treatment effect in one context is not necessarily generalizable to 

another.  This concern may stem from a number of inconsistencies across populations or 

contexts, such as differences in population characteristics, political or legal infrastructure, or 

company standards or culture.  Much less do we hear the concern that an average treatment effect 

may only be capturing the effects on a few, while many others are non-responsive or even 

respond poorly, as in Costa and Kahn (2013).  There has been a significant movement in the 

direction of understanding heterogeneities of treatment effects, especially with respect to 

demographic characteristics.  Given the low demographic heterogeneity among commercial pilots 
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in many airlines (e.g., less than six percent of commercial pilots in the entire United States are 

women92) and likely within many organizations, the ability to tailor interventions on observable 

characteristic may be limited.   

 

Here, we explore a new means by which a principal may seek to tailor information and 

incentives in a manner that can inform both employee and firm well-being.  While economists 

generally prefer incentive-compatible risk preference elicitation methods for the study of utility 

functions, we find that self-reported risk attitudes provide more useful information than 

incentive-compatible measures when predicting performance outcomes under conditions of 

risk.93  Using risk attitudes, we find that more risk-averse captains are more inclined to over-fuel 

and less inclined to accurately implement the targeted Fuel Load measure.  Attitudes toward 

uncertainty are less predictive of general fuel loading efficiency, and altruism appears to be 

orthogonal.   

 

However, altruism—as proxied by annual donations prior to the study—is associated with 

a stronger treatment effect of prosocial incentives.  Captains with a higher revealed preference for 

charitable donations in their private lives are also more inclined to implement the prosocially 

incentivized behavior.  Interestingly, more altruistic captains respond more strongly to non-

financial incentives—i.e. exogenous target provision—on the intensive margin, reducing fuel use 

relative to the optimal, even if doing so does not trigger a success on the binary outcome 

encouraged in the study.  A plausible interpretation of this phenomenon is that incentive 

provision places salience on the incentivized behavior itself, whereas the softer targets 

intervention places more emphasis on the importance of the outcome of interest (i.e. fuel use). 

 

Finally, with respect to captain welfare, we find that provision of targets and prosocial 

incentives can increase employee satisfaction if captains are able to meet their targets, indicating 

some degree of reference dependence along this dimension.  Target provision may, therefore, 

provide a highly cost-effective means for an airline to both improve job performance (i.e. fuel 

efficiency) and improve employee satisfaction, perhaps especially if captains are provided with 

additional support or training that allows them to meet their targets consistently.  Adding small 

prosocial incentives layered on top of personalized targets may not lead to increased performance 
                                                
92 “US Civil Airmen Statistics.” 2015. <https://www.faa.gov/data_research/aviation_data_statistics/civil_airmen_statistics/>. 
93 As briefly mentioned in the introduction, a vast literature has argued and provided evidence for selection of workers into 
contracts based on risk preferences; therefore, it is possible that homogeneity of latent risk preferences among the sample under 
scrutiny here may prevent high-powered estimation of the effects of risk on performance outcomes.  Nevertheless, if such 
selection exists and therefore heterogeneity of risk preferences is minimal, the effect of such latent preference heterogeneity on 
performance is irrelevant. 
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across the board (as shown in Chapter III), though it may do so for those captains exhibiting high 

levels of altruism exhibited through their private charitable giving.   Additionally, merely 

receiving the prosocial incentives feedback improved captains’ average job satisfaction relative to 

the control group at statistically discernible levels.  

 

In sum, there may be much we can learn from heterogeneities not only in demographic 

characteristics, but also in self-reported or revealed preferences.  Future field experimental 

research may consider complementing interventions with surveys rooted in preference and 

attitude elicitation so that we may further understand the role of preference and personality traits 

in outcome variables of interest.  In this way, we can seek to provide individuals and businesses 

with feedback and incentives that not only improve outcomes that decision makers in the policy 

and business worlds may care about, but also improve the well-being of the targeted unit of 

analysis, ensuring that both efficiency and welfare objectives are achieved. 
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TABLES 

 

TABLE 1 
RISK PREFERENCE ELICITATION: GAMBLE CHARACTERISTICS 

 Probabilities Event A Event B 
Expected 

Payoff Risk CRRA Range 
Gamble 1 50/50 £25 £25 £25 0 r>2.49 
Gamble 2 50/50 £45 £15 £30 15 0.84<r<2.49 
Gamble 3 50/50 £65 £5 £35 30 0.50<r<0.84 
Gamble 4 50/50 £85 -£5 £40 45 0.33<r<0.50 
Gamble 5 50/50 £105 -£15 £45 60 r<0.33 
Notes: The CRRA range is calculated including the survey endowment of £25.  The ranges represent the r levels for which a 
captain with CRRA utility would select the given gamble. 

 
 
 

TABLE 2 
BALANCE CHECK I: CAPTAIN-LEVEL OBSERVABLES 

 
U: Unopened 

(N=133) 
S: Started 
(N=202) 

Test of 
equality: 
U vs. S 

I: Incomplete 
(N=142) 

C: Complete 
(N=193) 

Test of 
Equality: 

I vs. C Test 
Age (years) 52.03 51.86 p=0.778 52.06 51.83 p=0.695 t-test 
Seniority 157.55 178.74 p=0.052 157.41 179.83 p=0.038 t-test 
Flights 131.80 130.76 p=0.811 131.43 130.98 p=0.917 t-test 
Fuel Load 0.401 0.458 p=0.004 0.405 0.457 p=0.009 t-test 
Trainer 0.150 0.208 p=0.185 0.169 0.197 p=0.516 χ2 
Trusted Pilot 0.015 0.045 p=0.138 0.021 0.041 p=0.302 χ2 
Notes: A total of 202 subjects started the survey, and 193 completed it.  Those who started answered the question pertaining to job satisfaction 
but did not make enough progress in the survey to answer the risk, ambiguity, or social preference questions.  The above represent p-values for 
chi-square tests for differences of sample proportions across various demographic and occupational variables.  “Flights” captures the number 
of flights flown from January 2013 through March of 2015 (the period captured in our dataset), though the test results are unchanged when we 
solely look at flights in the pre-experimental and experimental periods in isolation. 
 

 
 

TABLE 3 
BALANCE CHECK II: STUDY GROUP ASSIGNMENT 

 C: Control I: Info 
Test: 

C vs. I T: Targets 
Test: 

C vs. T 
Test: 

I vs. T P: Prosocial 
Test: 

C vs. P 
Test: 

I vs. P 
Test: 

T vs. P 
Started 41.2% 37.6% 0.638 44.4% 0.671 0.373 35.7% 0.466 0.794 0.252 
Complete 44.7% 40.0% 0.535 45.7% 0.900 0.460 39.2% 0.475 0.924 0.406 
Notes: A total of 202 subjects started the survey, and 193 completed it.  Those who started answered the question pertaining to job satisfaction but 
did not make enough progress in the survey to answer the risk, ambiguity, or social preference questions.  The above represent p-values for chi-
square tests for differences of sample proportions across the experimental study groups.  The above test is based on all project flights from 
January 2013 through March of 2015, though the test results are unchanged when we solely look at flights in the pre-experimental and 
experimental periods in isolation. 
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TABLE 4 
RISK PREFERENCES AND RISK ATTITUDES 

Gamble 
Selection Respondents 

Risk Attitude: 
Mean (SD) 

1 44 (22.8%) 3.23 (1.88) 
2 29 (15.0%) 4.86 (2.49) 
3 45 (23.3%) 5.20 (2.15) 
4 25 (13.0%) 5.16 (2.17) 
5 50 (25.9%) 4.58 (2.19) 

Total 193 (100%) 4.53 (2.26) 
 
 
 

TABLE 5 
SURVEY VARIABLE NAMES AND DESCRIPTIONS 

Variable Name Description Source Values 
Risk_pref Incentive-compatible risk 

preference  
Binswanger (1980); Barr 
and Genicot (2008); Eckel 
and Grossman (2008) 

Integer from 1 (most risk 
averse) to 5 (most risk 
loving) 

Risk_attitude Self-reported risk attitude  German Socio-Economic 
Panel 

Integer from 0 (not at all 
willing to take risks) to 10 
(very willing to take risks) 

Unc_averse Self-reported uncertainty 
aversion 

Need for Closure Scale 
(Webster and Kruglanski, 
1994) 

Integer from 0 (most 
averse) to 10 (least averse) 

Donations Self-reported donations to 
charity in 2013 

- Midpoint of interval 
selected (of which there 
are ten), x10 for ease of 
regression interpretation 

Job Satisfaction Self-reported job 
satisfaction 

British Household Panel 
Survey 

Integer from 1 (lowest) to 
7 (highest) 
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TABLE 6 
RISK, UNCERTAINTY, AND FUEL EFFICIENCY 

  (1) (2) (3) (4) (5) (6) 

 
Fuel Load Fuel Diff Fuel Load Fuel Diff Fuel Load Fuel Diff 

Risk_pref 0.003 -22.044 
    

 
(0.007) (14.808) 

    Risk_attitude 
  

0.009** -16.803* 
  

   
(0.004) (8.826) 

  Unc_averse 
    

-0.003 14.029* 

     
(0.004) (8.136) 

Constant 0.149 1,542.758* 0.062 1,597.365* 0.176 1,360.372 

 
(0.349) (861.115) (0.339) (853.709) (0.351) (876.394) 

Observations 11,770 11,770 11,770 11,770 11,770 11,770 
Controls Yes Yes Yes Yes Yes Yes 
Notes: The dependent variables in these regressions indicate the proportion of flights for which Fuel Load was 
successfully performed ('Fuel Load') and the continuous difference between actual fuel uptake and the 'correct' fuel 
uptake determined by the zero fuel weight calculation ('Fuel Difference').  Robust standard errors (clustered at the 
captain level) are reported below estimates in parentheses.  Total flight observations are provided.  Controls include 
weather on departure and arrival, number of engines on the aircraft, aircraft type, ports of departure and arrival, 
aircraft maintenance, captains’ contracted hours, whether the captain has completed training, and observed captain 
characteristics (age, seniority, and dummies for whether the pilot is a trainer or 'trusted pilot'). ***p<0.01 **p<0.05 
*p<0.10 
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TABLE 7 
SOCIAL PREFERENCES AND FUEL EFFICIENCY 

  (1) (2) (3) (4) 

 
Fuel Load Fuel Diff Fuel Load Fuel Diff 

Donations 0.001 -3.206 0.001 -1.824 

 
(0.001) (2.092) (0.001) (2.537) 

Expt 
  

0.049* -165.053*** 

   
(0.028) (60.867) 

Information 
  

-0.022 -16.918 

   
(0.025) (54.225) 

Targets 
  

-0.010 -170.557*** 

   
(0.025) (55.135) 

Prosocial 
  

-0.090*** 143.366*** 

   
(0.023) (53.656) 

Expt*Information 
  

0.001 57.452 

   
(0.039) (81.959) 

Expt*Targets 
  

0.025 61.783 

   
(0.040) (78.574) 

Expt*Prosocial 
  

-0.053 86.836 

   
(0.036) (77.805) 

Expt*Don13 
  

-0.000 0.314 

   
(0.000) (0.347) 

Information*Donations 
  

0.000 -0.143 

   
(0.000) (0.308) 

Targets*Donations 
  

-0.000 0.854** 

   
(0.000) (0.358) 

Prosocial*Donations 
  

0.000** -0.694** 

   
(0.000) (0.326) 

Expt*Info*Donations 
  

0.000 -0.278 

   
(0.000) (0.449) 

Expt*Targets*Donations 
  

0.000 -1.247*** 

   
(0.000) (0.485) 

Expt*Prosocial*Donations 
  

0.001*** -0.608 

   
(0.000) (0.470) 

Constant 0.293 384.741 0.302 546.635 

 
(0.286) (722.159) (0.255) (652.052) 

Observations 11,434 11,434 18,776 18,776 
Controls Yes Yes Yes Yes 
Notes: The dependent variables in these regressions indicate the proportion of flights for which Fuel Load was successfully performed ('Fuel Load') 
and the continuous difference between actual fuel uptake and the 'correct' fuel uptake determined by the zero fuel weight calculation ('Fuel Diff’). 
Columns (1) and (2) show the results of an OLS regression of the dependent variables on altruistic preferences in the pre-experimental period alone 
(i.e. before any experimental interventions were introduced).  Columns (3) and (4) show the results of a difference-in-difference regression 
specification comparing pre-experiment behavior (January 2013-January 2014) to behavior during the experiment (February 2014-September 2014; 
“Expt”); as such, the coefficients indicate the increase in the proportion of flights beyond the control group for which the behavior of interest was 
successfully performed. Newey-West standard errors (lag = 1) are reported below estimates in parentheses. Total flight observations are provided. 
The covariate specific to this regression is captains’ pro-social behavior proxied by self-reported donations in 2013 (Don13 captures the midpoints of 
ten donation amount intervals).  We divide these midpoints by ten so that Don13 captures the effects of increases of £10 in personal donations. 
Controls include weather on departure and arrival, number of engines on the aircraft, aircraft type, ports of departure and arrival, aircraft maintenance, 
captains’ contracted hours, and whether the captain has completed training. ***p<0.01 **p<0.05 *p<0.10 
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TABLE 8 
JOB SATISFACTION AND JOB PERFORMANCE 

  Groups: Control and Info   Groups: Targets and Charity 
Targets Met:  Job Satisfaction   Job Satisfaction 
Fuel Load  0.093 

(0.062) -   0.065 
(0.060) - 

Efficient Flight  -0.074 
(0.056) -   -0.017 

(0.054) - 

Efficient Taxi  0.025 
(0.043) -   0.120** 

(0.054) - 

        
Overall  - 0.006 

(0.028) 
  - 0.058* 

(0.031) 
Constant  5.691*** 

(0.291) 
5.632*** 
(0.300) 

  5.399*** 
(0.358) 

5.33*** 
(0.358) 

N  N=103 subjects   N=99 subjects 
Obs  103   99 
Controls  None   None 
Notes: The dependent variable in these regressions is a 7-point scale of job satisfaction, where self-reported 
job satisfaction increases in the scale. Robust standard errors are reported below estimates in parentheses.  
The independent variables indicate the number of targets met per behavior as well as overall during the 
course of the study.  ***p<0.01 **p<0.05 *p<0.10 
 

TABLE 9 
JOB SATISFACTION AND  

TREATMENT ASSIGNMENT 
 Job Satisfaction 
TG1: Information 0.212 

(0.224) 
TG2: Targets 0.242 

(0.249) 
TG3: Prosocial 0.365 

(0.223) 
Constant 5.58*** 

(0.174) 
Observations 202 
Controls None 
Notes: The dependent variable in this regression is a 7-
point scale of job satisfaction, where self-reported job 
satisfaction increases in the scale. Robust standard 
errors are reported below estimates in parentheses. 
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APPENDIX: SURVEY MATERIALS 
 
Risk preference elicitation question 
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CHAPTER V 

 

A BARGAINING EXPERIMENT ON HETEROGENEITY AND SIDE DEALS IN CLIMATE 

NEGOTIATIONS 

 

By Greer Gosnell and Alessandro Tavoni 

 

 

Abstract: The recent global climate change agreement in Paris leaves a wide gap between 

pledged and requisite emissions reductions in keeping with the commonly accepted 2°C target.  

A recent strand of theoretical and experimental evidence establishes pessimistic predictions 

concerning the ability of comprehensive global environmental agreements to improve upon the 

business-as-usual trajectory. We introduce an economic experiment focusing on the dynamics of 

the negotiation process by observing subjects’ behavior in a Nash bargaining game. Throughout 

repeated rounds, heterogeneous players bargain over the allocation of a fixed amount of profit-

generating emissions with significant losses attached to prolonged failure to reach agreement. We 

find that the existence of side agreements that constrain individual demands among a subset of 

like countries does not ensure success; however, such side agreements reduce the demands of 

high-emission parties. Our results highlight the importance of strong signals amongst high 

emitters in reaching agreement to shoulder a collective emissions reduction target. 
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1.  Introduction 

 

Recent developments in climate policy have reaffirmed the perceived importance of 

minilateral agreements among a small number of countries prior to engaging in large fora such as 

the annual Conferences of the Parties (COPs). A growing literature in political science points to 

the merits and drawbacks of entering into negotiations among small-n clubs (1-3). At the two 

ends of the spectrum, one finds bilateral negotiations and almost universal groupings like the 

United Nations Framework Convention on Climate Change COPs. Most experts agree that 

bottom-up and top-down approaches are not mutually exclusive (4, 5). Indeed, it appears that 

some countries have resorted to bilateral deals as a stimulus for action by less motivated countries 

in global negotiations, a common reading of the U.S.-China joint announcement to reduce 

emissions that took place ahead of the 21st COP in Paris. The pledges in the announcement were 

cemented in the countries’ Intended Nationally Determined Contributions (INDCs) (6).  

 

Would countries commit to emissions cuts if assured of others’ intentions to invest in 

climate change mitigation? This question is of course an empirical one, and its answer hinges on 

the success of ongoing international climate negotiations and the ensuing burden-sharing 

settlement. However, it will take years before the implications of such agreements can be 

(imprecisely) quantified in terms of emissions reductions. In the meantime, one may approach the 

issue with other tools, such as theoretical modeling and laboratory experimentation. Inspired by a 

bargaining model that aims to capture some of the stylized tradeoffs inherent in climate change 

negotiations (7), we introduce a novel economic experiment that focuses on the role of side deals 

reached by a subset of negotiators in shaping subsequent global negotiations. 

 

Smead and coauthors (7) use an agent-based model with learning dynamics to examine 

past failures and future prospects for an international climate agreement. In the model, agents 

play an N-player Nash bargaining game (8-10), where each player’s strategy set is the interval 

[0,1] representing the range of possible reductions: 1 constituting business-as-usual (BAU) and 0 

constituting a complete reduction to zero emissions. In addition to imposing learning dynamics, 

they modify the Nash bargaining game by introducing an exogenous global emissions target T in 

the interval (0,1). Players maintain the full amount demanded from the global “emissions pie”—

where a higher share translates to a higher payoff—only if the sum of all individual demands 

does not exceed the targeted proportion of BAU emissions (and receive a small fraction δ of their 

demands otherwise). The authors vary a number of parameters in the model and find that player 
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heterogeneity increases the likelihood of success, and that prior minilateral agreements can 

facilitate collective agreement (especially those made among a large number of small players as 

opposed to a small number of large players, ceteris paribus).  

 

We explore this issue of negotiating on costly emissions reductions in the laboratory. The 

experimental literature on the avoidance of dangerous climate change has thus far focused on the 

provision of threshold public goods (11-16). The underlying idea is that, in order to stay within a 

safe operating space and avoid probabilistic losses, players must invest sufficient resources into a 

public account (17-22). One can view this public good as a minimum collective expenditure in 

climate change mitigation that ensures staying below an agreed temperature change, such as the 

often-mentioned 2°C target.  

 

Since climate negotiations entail agreement on emissions reductions with a view toward 

remaining within a given threshold, we instead frame the costly mitigation problem as a modified 

Nash bargaining game.  This approach has thus far been neglected in the experimental literature 

on climate change cooperation.  In the game, payoffs accrue only if the groups’ demands fall 

within a given threshold of available emissions. Negotiators must divide the burden of reducing 

the size of the emissions pie by agreeing on sufficiently ambitious reductions relative to BAU, 

which in the game is represented by players’ initial endowments. The underlying assumption is 

that emissions map one-to-one with wealth. While this assumption is undoubtedly a strong 

simplification of complex dynamics, it allows us to isolate important features of climate change 

negotiations, such as the tension between a country’s incentive to keep the largest possible 

fraction of its emissions and the need to make concessions if the collective target is to be met. 

That is, future emissions reductions generally bear significant opportunity costs in terms of 

burdens associated with compliance. Since historical responsibilities are not explicitly modeled, 

the correlation simply aims to capture the pervasive notion of economic sacrifice on the part of 

countries that commit to future emissions reductions. 

 

In addition to the experimental methodology employed, we depart from (7) in two 

noteworthy ways. First, in our design, the loss incurred by a group that fails to reach agreement is 

independent of individual demands. This feature is consistent with the standard bargaining game 

formulation, which prescribes that out-of-equilibrium payoffs are constant. More importantly, to 

capture the realistic feature that delay in reaching agreement over ambitious emissions reductions 

will result in the need to agree on even more ambitious targets in the future, we designed the 
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game to comprise multiple rounds with increasingly stringent targets (see Figure 1). Hence, while 

selfish motives still push in the direction of high demands in the hope that others will lead the 

effort, there is a critical urgency for the negotiating group to meet its target.  

 

Strategic implications of costly haggling, i.e. costs associated with delay in reaching 

agreement, have been studied extensively. The alternating-offers model entails the partition of a 

cake between a proposer and a second mover (23). If the latter rejects the offer, she becomes the 

proposer and the process is repeated. This alternation of roles continues until an agreement is 

struck, at which point the cake is divided accordingly. The game-theoretic solution predicts 

instantaneous agreement on the division of the cake, with the proposer securing a weakly larger 

share, depending on the discount factor. The game analyzed here differs along the following 

dimensions: number of players (we focus on multilateral bargaining); timing of the proposals 

(negotiators move simultaneously); horizon (players have a finite number of rounds to reach an 

agreement); and disagreement costs. In the alternating-offers model, costs of inaction arise with 

the first rejection, and can be thought of as (partial) spoiling of the cake: in the limit, if both 

players perpetually disagree, their payoffs vanish. Here, the losses are not smooth over time, as is 

evident from Figure 1. Furthermore, players do not bargain on the status quo, as the climate 

change problem requires agreement on shrinking the cake from the outset. 

 

Our bargaining game also relates to the ultimatum game, the simplest form of the 

alternating-offers model where only the final two stages are considered. Hence the ultimatum: the 

responder’s choice is again confined to acceptance or rejection of the offer, with rejection 

implying a 0 payoff for both players. Under complete information, the subgame perfect Nash 

equilibrium involves a rational self-interested proposer offering nothing (or an arbitrarily small 

share) and the responder accepting. However, nontrivial offers have been consistently found in 

experimental settings due to the proposers’ concerns for fairness and fear of rejection of offers 

below an acceptable threshold (24, 25). In common with the above, our game centers upon issues 

of burden sharing that are likely to trigger fairness considerations.  However, the multilateral and 

simultaneous nature of the repeated negotiations we simulate in the lab—coupled with the 

introduction of a target requiring coordination—introduces additional considerations, such as 

group-level efficiency and reputation. We further explain the implications of the lab design 

features and discuss its equilibria as well as its relation to the experimental literature in parts (a) 

and (b) of the Supplementary Information (SI).  
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2.  Methods  

 

In the experiment, groups of six “Countries” negotiate over a maximum of eight rounds 

on increasingly ambitious collective emissions reduction targets. In each round of negotiation, 

Countries individually demand to keep a proportion of their endowed (BAU) emissions with the 

shared group goal of shrinking the global pie in accordance with the exogenous global reduction 

target.  

 

Each treatment consists of up to eight rounds of a Nash bargaining game framed as a 

climate change negotiation, where the negotiation terminates if the group meets the prescribed 

Global Target T in a given round. The Global Target becomes more difficult to attain as the game 

progresses, beginning at T=60% of global wealth and reducing by 10% every two rounds (i.e. 

T=50% in Rounds 3-4, T=40% in Rounds 5-6, and T=30% in Rounds 7-8). If the group does not 

meet the target by the end of Round 8, negotiation terminates and group members each receive 

δ=10% of their initial endowment (regardless of their demands in the final round) as an 

unavoidable consequence of “dangerous” climate change. 

 

In every round, group members—each acting as a delegate representing one Country in 

the negotiation—engage in what we term the Global Negotiation stage. In this stage, each 

delegate demands to keep a proportion of her Country’s endowed emissions, which is perfectly 

correlated with its wealth in the game. If the group’s aggregate demand does not exceed the 

corresponding Global Target in a given round, the target is met and each subject in the group 

receives the proportion she demanded in that round. If the target is not met, there is no payout for 

the round and negotiations continue to the next round. 

 

We implement five variants of the bargaining experiment: Symmetric (SYM), 

Asymmetric (ASYM), Poor Side Deals (PSD), Rich Side Deals (RSD), and All Side Deals 

(ASD).94 All groups’ aggregate monetary endowments are £100 (approximately US$156). In 

treatment SYM, all Countries begin with a symmetric endowment of £16.67. All other treatments 

are characterized by asymmetry in the distribution of endowments (and corresponding impact on 

global emissions). In these treatments, four Poor Country delegates each receive an endowment 

of £10 and two Rich Country delegates each receive an endowment of £30 (see Table 1). 

 
                                                
94 A total of 336 subjects participated in 20 experimental sessions.  Eleven groups participated in SYM, 14 in ASYM , 10 in PSD, 
10 in RSD, and 11 in ASD. 
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All treatment conditions consist of eight rounds of negotiation.  Treatments without Side 

Deals—SYM and ASYM—feature only single-stage rounds, as depicted in Figure 1. In each of 

these rounds, delegates independently and simultaneously decide on individual (i.e. Country-

level) demands. The software computes the aggregated ‘global’ demand of the group and 

displays both global and individual demands in a subsequent screen in absolute and percentage 

terms.  

 

In treatments containing Side Deals (PSD, RSD, and ASD), either one or two subsets of 

delegates—belonging to the same wealth/emissions category, i.e. Poor, Rich, or Poor and Rich, 

respectively—may collectively place binding constraints on own individual demands in the two 

upcoming Global Negotiation stages. Accordingly, these Side Deals take place prior to the Global 

Negotiation stages of Rounds 1, 3, 5, and 7. The outcome of a Side Deal—the Agreed Maximum 

Demand—applies only to Countries who took part in the Side Deal, though it is revealed to all 

Countries within the group prior to the subsequent Global Negotiation stages. The Agreed 

Maximum Demand is the mean of the Maximum Demands, i.e. the answers of the Side Deal 

participants to the following question (in the PSD treatment): “What is the maximum percentage 

of emissions/wealth that you think is appropriate for each Poor Country to demand in each of the 

two upcoming global negotiations?”  

 

To be clear, we provide the following hypothetical example of Side Deal implementation 

in the PSD treatment. Prior to the Global Negotiation stage of Round 1, all four Poor Countries 

will determine an Agreed Maximum Demand, which is a binding constraint on the Poor 

Countries’ individual demands in the Global Negotiation stages of Rounds 1 and 2.  In this Side 

Deal stage, if two Poor Countries choose a Maximum Demand of 80 and two choose a Maximum 

Demand of 60, the resulting Agreed Maximum Demand is (2×60 + 2×80) ÷ 4 = 70.  Poor 

Countries may then only individually demand to keep up to 70% of their own initial endowment 

in the Global Negotiation stages of Rounds 1 and 2.  If the group collectively fails to reach the 

Global Target of 60% of global wealth/emissions by the end of Round 2, Poor Countries will 

again enter a Side Deal stage and similarly determine a new Agreed Maximum Demand that 

pertains to the Global Negotiation stages of Rounds 3 and 4—when the Global Target is reduced 

to 50%—and so on.95   

 

 
                                                
95 See SI for further details, including Screenshots 4-8 for visual representations of the above material as displayed in the 
experimental instructions. 
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3.  Results 

 

i. Global success 

 

Asymmetry and side deals. Table 2 provides a descriptive overview of group performance 

dynamics across treatments.  First, we see that all symmetric groups had reached agreement by 

the end of the fourth round of negotiations. When comparing success rates within the first four 

rounds, the SYM groups outperform the ASYM (proportion test, p=0.101, z=1.64), RSD 

(proportion test, p=0.049, z=1.96), and ASD (proportion test, p=0.062, z=1.86) groups.  This 

finding is in contrast to the results in (7), where the authors find that asymmetry of endowments 

increases the likelihood of agreement.  A second, more relevant finding is the limited impact of 

Side Deals on negotiation outcomes. When comparing ASYM groups to all groups containing 

Side Deals (both pairwise and combined), we do not find conclusive evidence that treatments 

containing Side Deals improve upon global negotiations that occur among asymmetric actors in 

the absence of Side Deals, in terms of both agreement velocity and (individual- and group-level) 

demands. Thus, human behavior in a laboratory setting modeled closely after (7) does not appear 

to corroborate the simulation data of their agent-based model.96 

 

However, we do find evidence that Side Deals among Rich Countries are significantly 

more binding in “successful” groups—which we define to be those groups who reached 

agreement without any efficiency losses (i.e. in Rounds 1 and 2)—than in unsuccessful groups.  

Considering groups who participated in either the PSD or ASD treatments, the Agreed Maximum 

Demands of the Poor do not significantly differ across successful and unsuccessful groups.  

However, if we look at groups in either the RSD or ASD treatments, the Agreed Maximum 

Demand of the Rich significantly differs across successful and unsuccessful groups (Wilcoxon-

Mann-Whitney (WMW) test, 62.3 in successful groups vs. 72.6 in unsuccessful groups, p=0.028, 

z=2.193).  In fact, these differences hold—albeit with reduced statistical power—if we compare 

these groups within RSD (WMW, 58.4 vs. 66.6, p=0.106, z=1.616) and within ASD (WMW, 

65.5 vs. 78.6, p=.067, z=1.830) separately. This result indicates that the extent to which high-

emission countries tie their hands is of paramount importance for group success, though the same 

does not hold for low-emission countries. 

 

                                                
96 For further analysis and robustness checks, see part (f) of SI. 
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Unconditional cooperation. We can also examine the effect of group composition on 

negotiation success in terms of proportion of individuals inclined to cooperate unconditionally, 

where “unconditional cooperators” are those who demand at most a percentage equivalent to the 

Global Target (T=60%) in Round 1. Pooling all treatments together, we find that there is almost 

exactly one additional unconditional cooperator on average in successful groups, as compared to 

unsuccessful groups (WMW, 3.89 vs. 2.86, p=0.003, z=-2.945).  This result remains intact when 

we exclude SYM from the comparison (WMW, 3.821 vs. 2.647, p=0.007, z=-2.703).   

 

We further investigate the importance of Rich versus Poor cooperation and find that successful 

groups have almost double the number of Rich unconditional cooperators as unsuccessful groups, 

on average (WMW, 1.679 vs. 0.882, p=0.001, z=-3.426), while successful groups and 

unsuccessful groups are not significantly different in terms of the number of Poor unconditional 

cooperators (WMW, 2.14 vs. 1.76, p=0.400, z=-0.842).  Taken together, these results reinforce 

the notion that strong commitment and unconditional cooperation by Rich Countries hold 

paramount influence in determining the success of multilateral negotiations. 

 

ii. Individual demands 

 

Wealth redistribution. An interesting question pertains to the behavior of the two different 

player types in the asymmetric treatments: is there evidence of redistribution from the Rich to the 

Poor, in the form of lower demands by the wealthy? In asymmetric groups, we find evidence of 

such redistribution: the Poor demand 66.7% of initial wealth and the Rich demand 60.2% in the 

first round (i.e. across all groups in the sample), on average (WMW, p=0.000, z=3.381). More 

interesting is the apparent dependence of this disparity on whether Side Deals take place prior to 

the first global negotiation stage. Comparing the average initial demands of Poor and Rich 

Countries within treatment groups (Figure 2), we see substantial differences under PSD (WMW, 

67.3 for Poor vs. 57.8 for Rich, p=0.071, z=1.805), RSD (WMW, 66.4 for Poor vs. 58.3 for Rich, 

p=0.031, z=2.154), and ASD (WMW, 66.4 for Poor vs. 60.8 for Rich, p=0.092, z=1.686), though 

this difference is attenuated in ASYM (WMW, 66.7 for Poor vs. 62.9 for Rich, p=0.240, 

z=1.186). Consistent with (16), it thus appears that Side Deals increase the salience of the 

inequality, inciting fairness motivations that are manifested through a downward shift in Rich 

Countries’ demands.  
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This increased salience is especially apparent when the Side Deals pertain to only one 

subgroup (i.e. either the Poor or the Rich), as evidenced by the Side Deal inputs (i.e. Maximum 

Demands) chosen by Poor and Rich negotiators in the various treatments containing Side Deals 

(see Figure 3). For instance, in PSD, the modal Maximum Demand input in the Side Deal 

pertaining to the first two rounds of Global Negotiation is 100%, and a vast majority of Poor 

Countries chooses values at or above the Global Target of 60%. On the contrary, in RSD, not a 

single player chooses a preferred Maximum Demand of 100%, and a majority of Rich Countries 

selects a value in the range of 50-70%. However, when both Poor and Rich Countries engage in 

Side Deals, the distribution of Maximum Demands between the two player types is strikingly 

similar.  Hence, negotiators’ decisions are clearly shaped by the initial conditions and 

institutional frameworks surrounding the bargaining process.   

 

Conditional demands. We additionally explore whether other group members’ demands are an 

important determinant of individual decisions.  Indeed, we find evidence of “carbon leakage” 

across country types; that is, we find a significant positive effect of past cooperation by the Rich 

(Poor) on Poor (Rich) Countries’ demands (Table 3). Specifically, Poor Countries increase their 

average demand in the present round by almost four percentage points for every additional Rich 

Country that cooperated (by demanding a percentage less than or equal to the target) in the 

previous round. Similarly, Rich Countries increase their demands by almost three percentage 

points for each additional Poor Country that cooperated in the prior round. We do not find 

evidence that Countries take advantage of the cooperation of like Countries. 

 

 

4.  Discussion 

 

We explore the impact of country heterogeneity and minilateral agreements on climate 

bargaining processes in a controlled laboratory setting. Our findings stress the importance of 

early unconditional cooperation by high emitters in efficiently allocating emissions reductions 

consistent with a global reduction target.  However, the experimental data also suggest that some 

degree of carbon leakage may take place, in the sense that ambitious commitments from high 

emitters may reduce the abatement efforts of low emitters. That is, we find evidence that the two 

player types tend to take advantage of the other type’s cooperation, demanding to keep a 

proportion of emissions closer to their BAU as the other type’s concessions increase. 
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We do not find that “tying your hands” ahead of the inclusive negotiations necessarily 

promotes cooperation, although Side Deals among various subsets of players do affect bargaining 

dynamics. Importantly, under conditions of heterogeneity, the disparity between the average 

demands of the two negotiator types widens in the presence of Side Deals, suggesting an even 

larger role for high-emission (i.e. industrialized or newly industrializing) countries.  

 

What are the implications for international climate negotiations going forward? In light of 

the vast heterogeneity across countries in terms of both wealth and emissions, the above findings 

suggest that the infrastructure around which climate change negotiations revolve are crucial 

determinants of process dynamics. Specifically, our results indicate that low-emission countries 

will not increase their ambitions in the near term as a result of side agreements by high-emission 

states, such as the joint announcement made by China and the United States late in 2014.  

Therefore, high-emission countries will likely need to commit to still further reductions to 

maintain a current trajectory consistent with limiting mean global temperature rise to 2°C (26).  

Furthermore, given the strong initial commitments by high emitters necessary to ensure success, 

the tendency to free ride off of unlike countries means that (generally poor) low-emitting 

countries—so long as they remain as such—are unlikely to increase their ambitions over time. A 

prompt and effective agreement thus hinges on strong, unconditional commitments by 

industrialized and newly industrializing countries, a condition that led to strong contention under 

the framework of the Kyoto Protocol.  

 

Notwithstanding the recent non-binding global agreement at COP 21 in Paris—which 

depends on future negotiations to close the gap between INDC pledges and the requisite 

emissions reductions to keep with the 2°C threshold—the above conclusions cast a shadow on the 

prospects for a sufficiently ambitious outcome of ongoing global climate negotiations. Our 

results indicate that minilateral agreements are not “game changers”, at least not without 

significantly ambitious reduction commitments by high-emission countries, which thus far have 

not materialized. To make matters worse, while the game analyzed here brings potentially 

disruptive wealth and responsibility heterogeneities to center stage, un-modeled obstacles further 

hinder climate change cooperation. For instance, the game equates current emissions with 

responsibilities, neglecting historical accountability and future development requirements. 

Moreover, only six negotiators must strike an agreement, which simplifies the coordination 

problem faced by the 197 parties to the UNFCCC.  
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Importantly, negotiators outside the lab have to rely mostly on voluntary commitments 

lacking legal force, as demonstrated by the shift from legally binding emission targets to pledge 

and review mechanisms witnessed in the Paris COP in December 2015. Hence, our voting system 

for determining the maximum allowable demands in the global negotiations may oversimplify the 

task of “tying one’s hands” compared to the real negotiations, where processes leading to 

minilateral agreements may vary and countries face incentives to renege on earlier promises if 

they stand to gain from doing so. However, committed coalitions may use the threat of diplomatic 

and economic measures, such as “naming and shaming” and trade sanctions, in order to induce 

cooperation by less ambitious states. Indeed, there are examples of international agreements 

without binding rules that were successful despite their voluntary nature and reliance on 

international scrutiny, such as the Helsinki Declaration on human rights (27). 

 

On the other hand, climate negotiations can rely on more instruments than those available 

to our subjects. Here there are no direct transfer mechanisms, such as the Adaptation Fund and 

climate finance. In addition, climate co-benefits may lure countries to join small-n clubs early on, 

providing much needed leadership (1-3). Our game focuses on short-run costs of mitigation, 

neglecting such opportunities. Yet, policy tends to be defined by short-term incentives and high 

discounting, as confirmed by the insufficient ambition of the INDCs pledged prior to COP 21 (6, 

28).  Hence, under the current framework, the global community runs the risk of bargaining 

toward ineffective agreements in the coming crucial decades.  We therefore urge policymakers to 

consider additional complementary or stand-alone mechanisms to increase the likelihood of 

avoiding dangerous climate change. 
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TABLES 

 
 

Table 1 | Game design 
 SYM ASYM PSD RSD ASD 

Endowments All (×6): £16.67 Poor (×4): £10 
Rich (×2): £30 

Poor (×4): £10 
Rich (×2): £30 

Poor (×4): £10 
Rich (×2): £30 

Poor (×4): £10 
Rich (×2): £30 

Side Deals None None Poor  Rich  Poor 
Rich 

 
 
 

Table 2 | Success rate by target level 

 
 

 
 
 
 
  

 Rounds 1-2 Rounds 1-4 Rounds 1-6 Rounds 1-8 
SYM 63.6% 100.0% 100.0% 100.0% 
ASYM 64.3% 78.6% 85.7% 85.7% 
PSD 80.0% 80.0% 90.0% 90.0% 
RSD 50.0% 70.0% 90.0% 100.0% 
ASD 54.5% 72.7% 90.9% 100.0% 
Notes: Percentages indicate the proportion of groups in each treatment who had reached agreement by a given threshold 
round. 

 Table 3 | Conditional demands of Poor and Rich 
 Poor Demand Rich Demand 
Rich Cooperated 3.865** 

(1.768) 
1.694 

(2.540) 
Poor Cooperated -0.020 

(1.047) 
2.685*** 
(0.813) 

Constant 59.401*** 
(6.194) 

53.175*** 
(3.578) 

Groups 26 26 
Subjects 104 52 
Obs 356 178 
Controls Yes Yes 
Notes: The dependent variable in this regression indicates the individual demands over the 
course of negotiation. The independent variables represent the number of Rich and Poor 
Country representatives (respectively) who cooperated in the prior round by demanding less 
than or equal to the Global Target. Controls include gender, Annex 1 nationality, stated 
primary motivation, Global Target, and the difference between the group demand and the 
target in the prior round of negotiations. There are 26 groups in heterogeneous treatments 
that negotiated past the first period, and these are the groups considered here. Robust errors 
are clustered at the group level. Standard errors are reported below estimates in parentheses. 
***p<0.001, **p<0.05, *p<0.10 
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Figure 1 | Timing and dynamics of the game. The six-player bargaining game begins with a collective “pie” 
of £100, which is split between two Rich Countries (each endowed with 30% of the pie, i.e. £30), and four 
Poor Countries (each endowed with 10% of the pie, i.e. £10). Starting from this initial allocation of 
wealth/emissions, the group faces sequential rounds of bargaining on progressively tighter targets. The figure 
depicts the wealth/emissions distribution ensuing from each target if Countries were to reduce symmetrically. 
 
 
 

 
Figure 2 | Average initial demands (and standard error bars) by Poor (blue) and Rich (red) negotiators in 
treatments with asymmetric endowments. 
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Figure 3 | Distributions of Maximum Demands by Poor (blue) and Rich (red) players in treatments with 
(a) Poor or Rich Side Deals (PSD or RSD), and (b) both Poor and Rich Side Deals (ASD).  Since only 
Poor (Rich) Countries input Maximum Demands in the Poor (Rich) Side Deals treatment, (a) combines 
the data from these two treatments for ease of comparison.  
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SUPPLEMENTARY INFORMATION 

 

(a) Experimental Design and Related Literature 

In an effort to construct an experiment that captured important elements of abrupt climate change 

yet retained the simplicity necessary to ensure internal validity in a laboratory setting, we made 

several simplifying design decisions. In the main text we mention these decisions in our discussion 

of how the game relates to (or departs from) the literature. Here we expand on the motivations for 

and implications of such choices. 

While the experimental literature on climate change negotiations tends to center upon public goods 

games, we depart from this mechanism in several ways for two primary purposes: a) to enhance the 

relevance of the context, and b) to provide an empirical test of the agent-based model proposed in 

(1).  Rather than employing a voluntary contribution mechanism devoid of context, we narrow our 

interest to pertain solely to climate change negotiations, where the instructions provide clear 

background information on the economic complexities associated with this pervasive externality.   

For instance, the dynamic nature of the Global Target captures the cost of delaying legislation to 

curb greenhouse gas emissions, a stock pollutant with long-term atmospheric warming effects. The 

target persists over two rounds to allow for learning.  While any time lapse theoretically increases 

the necessity of stronger future abatement commitments to reach a given target, the slow and 

lagged process of climate change and the relative frequency of negotiations allows for fairly stable 

global goals in the short term, so that learning can occur from one negotiation to the next. Note that 

this game neglects gradual damages, since we are concerned with the large costs associated with 

failure to reach a timely agreement on a target. Such targets can be interpreted as either emerging 

from scientific evidence or from political discourse (for example, 2ºC).  
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In addition to the detailed description of global climate change provided in the instructions, various 

features of the game—e.g., the responsibility dichotomy between asymmetric Country types, the 

termination of negotiation if the target is reached, and the correlation between emissions and 

wealth—were designed to mimic the climate context as closely as possible while maintaining the 

simplicity necessary to ensure the game’s comprehensibility. For instance, assigning players to 

represent either “Rich” (high-emission) or “Poor” (low-emission) Countries mimics the accepted 

categorization of countries in the COP negotiations, where much diplomatic effort revolves around 

sharing the “common but differentiated responsibilities” between developed Annex I countries and 

less developed non-Annex I countries.97 It additionally captures elements of current emissions 

responsibility as well as the disproportionate sacrifice associated with deviating from BAU.  

Finally, the composition of the groups—where a third of the countries represented are responsible 

for 60% of global greenhouse gas emissions—is reflective of the 54% for which the top three 

global players (United States, European Union, and China)—who engaged in pre-COP 21 

minilateral discussions—are responsible (2).98 To ensure that we had sufficient statistical power to 

detect meaningful differences across treatment groups with and without Side Deals, we did not 

                                                
97 “Rich” and “Poor” subjects may behave differently than they would in a symmetric setup, where such labels are not 
assigned, as indicated in (1). Therefore, we also introduced a symmetric treatment where subjects receive equal 
endowments, which serves as a baseline towards which wealth heterogeneity can be assessed.  We note, however, that 
division into two groups—regardless of labels—may be considered an additional departure of the ASYM treatment to 
the SYM treatment.  However, an arbitrary division of SYM groups into two groups of unequal sizes may have further 
confused the instructions, so we opted to ignore this slight departure and assume it holds negligible bearing on the 
results. 
98 In addition to mimicking real-world heterogeneity, our experiment shares the rich-poor dichotomy with the 
theoretical investigation in (1)—whose pertinent findings inspired our behavioral investigation—and with related 
experimental literature pertaining to allocation of emissions in the context of climate change (e.g., 3-6). Our 
experimental design encapsulates additional features from similar experiments, namely (3).  In their experiment, 
groups composed of six (asymmetrically endowed) players aim to avoid the losses associated with catastrophic climate 
change in a dynamic framed experiment.  However, unlike (3), we do not impose a set number of rounds, and we do 
not vary the probability of climate catastrophe if the target is met.  In our game, meeting the target guarantees payout, 
but payout is already associated with sacrifices compared to the status quo (i.e. the initial endowment), as in the COP 
negotiations. Additionally, players in our asymmetric treatments received heterogeneous endowments, whereas those 
in (3) received symmetric endowments and a subset of players were ‘forced’ to contribute to a climate fund in the first 
three rounds to create asymmetry for the following seven rounds. 
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allow Countries in these treatments to opt out of Side Deals. While in real negotiations it is often 

possible to avoid public commitments, political pressure may make doing so costly. One could 

argue, by way of example, that the pressure for China and the U.S. to form an agreement in the 

run-up to COP 21 together with pending U.S. presidential elections meant that opting out of this 

“side deal” was not a politically desirable option for either party. Indeed most countries submitted 

their Intended Nationally Determined Contributions prior to the Paris conference, even if they were 

not obliged to do so. 

(b) Game Equilibria  

As shown in the two propositions contained in the SI to (1), the threshold bargaining game 

employed here features two types of strict Nash equilibria, which can be either disagreement 

outcomes or feasible solutions.  In disagreement outcomes, all players are unwilling to make 

sufficient concessions, i.e. the other five players in one’s group demand too much for any single 

player to facilitate agreement by reducing her demand (so that the threshold in a given round is 

unattainable). In feasible solutions, the threshold is exactly met and everyone is better off than in 

disagreement, i.e. every player’s demand is larger than δ=10% (the amount one can get out of 

agreement).  

For the sake of tractability, let us focus on the treatments without side deals, which allows us to 

bypass the strategic implications of constraining future decisions. As illustrated below, for our 

parameters, feasible solutions are preferable equilibria in the sense that they Pareto dominate the 

disagreement outcomes, yet free-riding incentives pull players toward disagreement. In our game, 

there are four thresholds corresponding to different pairs of rounds—T=60%, T=50%, T=40%, and 

T=30%—so essentially one can treat each pair of rounds as a separate game where bargaining takes 

place on the relevant T.  Given the relative values of δ and T in the game, along with the shrinking 
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of T over time, groups maximize their payoffs by coordinating on a feasible solution in the first two 

rounds. As bargaining continues to later stages, wealth is inevitably lost due to the tightening target 

and agreement becomes less appealing. Note however, that regardless of the distribution of 

endowments, players always have an incentive to strike an agreement compared to a disagreement 

outcome. For example, suppose that the negotiations reached the final round. Failing to strike an 

agreement would mean a take-home payoff of roughly £1.7 in SYM (and £1 and £3 for Poor and 

Rich, respectively, in all other treatments). These values are lower than the payoff that players can 

secure by each demanding to keep 30% of their endowments in Round 8 (i.e. £5 in SYM, £3 and 

£9 for Poor and Rich, respectively,  in all other treatments).  

Of course subjects may deviate from symmetric behavior, perhaps due to the presence of obstinate 

free-riders. While this matter is an empirical one, here we briefly show that some degree of free 

riding may be sustained in the game, so long as a sufficient number of players is willing to 

compensate such behavior. Let us restrict attention to SYM, for simplicity. When T=60%, up to 

three free riders can be tolerated in the sense that if the other three players are willing to shoulder 

(equally) the entire burden of shrinking the pie by 40%, they will still earn £3.3 each, which is 

more than they would earn out of agreement. By a similar token, up to two free riders are 

sustainable when T=50% or T=40%, and only one free-rider can be sustained when T=30%.                

(c) Experimental Implementation 

We employ a design that allows for between-subject and between-group analysis. Each subject 

participated in a group negotiation of up to eight rounds. Once all groups finished the negotiation, 

subjects were prompted to complete a brief questionnaire to assess motivation, strategic decision-

making, and demographic heterogeneity (see section (d) for the experimental instructions, as well 

as section (e) for the full questionnaire). Additionally, each subject answered a risk-preference 
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elicitation question equivalent in structure to the standard question used in (7, 8), with payoffs 

scaled down to 10% of those used in their experiment. The question asked subjects to select one of 

five incentive-compatible 50-50 gamble options, where payoffs increase linearly in expected 

payout and “riskiness” of the gamble, as measured by the standard deviation of the two possible 

payouts, which ranged from £0.60 to £4.20. The outcome of the gamble was determined 

individually by a coin toss upon payment for the study. 

At the beginning of the experiment, subjects received both written and oral instructions. Each 

subject must correctly complete a test for understanding before the experiment begins. At the end 

of the experiment, subjects privately received their experimental earnings in cash, in addition to a 

£5 show-up fee, totaling £16.80 on average. All experimental decisions were made on a computer 

screen using the experimental software Z-Tree (9). 

A total of 336 student (undergraduate and postgraduate) and non-student subjects volunteered to 

participate in 20 experimental sessions, most comprising three groups of six subjects (four sessions 

contained only two groups). The experiment took place at the London School of Economics (LSE), 

though experimental participation is not restricted to LSE students. In our sample, 50.9% of 

subjects are female, 42.3% are from Annex I countries (and 52.6% are from countries that engaged 

in “side deals” prior to COP 21: 5.2% USA, 36.3% EU, and 11.1% China), 47.6% are 

undergraduate students, and 33.6% are graduate students. The average age of our subjects is 23.5 

years (SD=5.99). Student participants come from various disciplines (10.4% Business; 14.9% 

International Policy, Law, or Government; 8.0% Geography & Environment, 13.1% Economics). 

(d) Experimental Instructions for participants of the ASD treatment 

Welcome to the experiment!  In this experiment, you can earn money. In addition to your earnings 

from the experiment, you will receive a £5 show-up fee. During the course of the experiment, 
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please do not talk to other participants. We will now read the experimental instructions aloud. Once 

we have finished reading, raise your hand if you have questions and we will be with you shortly to 

answer them. At the end of Part A of the instructions you will find some questions that are meant to 

ensure that you understand the rules of the experiment. Please answer all questions and signal us by 

raising your hand when you have finished, so that we may check your answers. 

Background: Climate change. Climate change is viewed as a serious global environmental 

problem. The vast majority of climate scientists expects the global average temperature to rise by 

1.1-6.4°C before 2100, where a rise of 2°C is generally considered to be dangerous climate change.  

There is hardly any disagreement that mankind largely contributes to climate change by emitting 

greenhouse gases, especially carbon dioxide (CO2). CO2 originates from the burning of fossil fuels 

such as coal, oil, or natural gas in industrial processes and energy production, as well as from 

combustion engines of cars and lorries. CO2 is a global pollutant—that is, each unit of CO2 emitted 

has the same effect on the climate regardless of the location where the emissions occur. Dangerous 

climate change will result in significant global costs, which get worse over time if agreement is not 

reached. International climate change negotiations involve yearly meetings where delegations 

representing different countries try to strike a global agreement on emissions reductions that are 

consistent with the goal of avoiding dangerous climate change. Here you will be asked to negotiate 

such costly emissions reductions on behalf of the Country to which you will be assigned. Your 

choices, together with those of the other ‘Countries’, will determine your payout from the 

experiment. 

Rules of play. Now we will introduce you to a game simulating international climate change 

negotiations. In total, six Countries are involved in the global negotiation.  That is, in addition to 

you, there are five other negotiators in your negotiation group, and each of you represents one 

Country.  The six Countries account for all global wealth and CO2 emissions (for simplicity, we 
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disregard other greenhouse gases in the experiment). While excessive emissions impose global 

costs, individual Countries rely on productive processes which create emissions in order to 

generate wealth: for every 1 billion tons of CO2 ‘emitted’ in the game, you receive £1. Hence, 

reducing emissions is costly. Your decisions in the experiment are anonymous.  To guarantee 

anonymity, you will be randomly assigned to one type of Country (Rich or Poor), and you will be 

identified by one of the following names:  Rich Country 1, Rich Country 2, Poor Country 1, Poor 

Country 2, Poor Country 3, Poor Country 4.  Your name will appear on the lower left side of your 

screen once the experiment begins. At the beginning of the experiment, you will receive a sum of 

money that represents your Country’s wealth. This wealth mirrors your Country’s CO2 emissions. 

Therefore, throughout the instructions and the experiment, we will refer to wealth and emissions 

interchangeably. The current situation in your negotiation group can be summarised as follows: 

Ø Two Rich Countries each emit 30 billion tons of CO2 and earn £30 in doing so; 

Ø Four Poor Countries each emit 10 billion tons of CO2 and earn £10 in doing so; 

Ø The resulting Global Emissions amount to 100 billion tons of CO2 (2×30 billion tons of 

CO2 + 4×10 billion tons of CO2) 

Ø Hence, Global Wealth is equal to £100 (2×£30 + 4×£10) 

Due to the threat of dangerous climate change, the goal is to agree on an aggregate level of Global 

Emissions that does not exceed a given Global Target.  In the following experiment, you will 

participate in up to 8 rounds of climate change negotiations, where the global costs from not 

reaching agreement increase every 2 rounds.  Accordingly, the Global Target decreases every 

two rounds, as follows: 

Ø Rounds 1-2: 60% of current emissions (60 billion tons of CO2) 

Ø Rounds 3-4: 50% of current emissions (50 billion tons of CO2) 
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Ø Rounds 5-6: 40% of current emissions (40 billion tons of CO2) 

Ø Rounds 7-8: 30% of current emissions (30 billion tons of CO2) 

To be clear, since current global emissions are 100 billion tons of CO2, an agreement is only 

reached if total negotiated emissions are at most 60 billion tons of CO2 in the first two rounds.  

Equivalently, Global Wealth must be reduced from an initial level of £100 to a target level of £60 

if the Global Target is to be met in the first two rounds.  This target becomes more difficult to meet 

as the negotiations move forward, as outlined above. Every Country faces a similar decision-

making problem.  In each round of the global negotiation, all six Countries will be asked 

simultaneously: “What percent of YOUR COUNTRY’s emissions/wealth do you demand to keep?” 

If the required Global Target is met, then your group has reached an agreement; negotiations 

terminate and each Country receives its demand from that round.  If agreement is not reached, the 

negotiation continues to the next round. If an agreement is not reached by the end of the 8th Round 

of negotiations, dangerous climate change becomes unavoidable and economic costs for all 

Countries ensue. Each Country will then receive 10% of its initial wealth (£3 for Rich Countries, 

£1 for Poor Countries). 

Example 1. Imagine that you are part of a negotiation group that makes decisions as follows. In 

Round 1 (Global Target=60%), all Countries demand to keep 90% of their emissions/wealth.  If 

the Global Target were to be met, Rich Countries would receive £27 in payout and Poor Countries 

would receive £9 in payout. See Screenshot 1 below, for the screen that will be seen by Poor 

Country 1. However, the Global Target is NOT met and negotiations continue to Round 2. In 

Round 2 (Global Target=60%), demands are as follows: 
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Ø Rich Country 1 and Poor Country 1 each demand to keep 50%. If the Global Target were to 

be met, Rich Country 1 would receive 50% of its initial wealth (£15) and Poor Country 1 

would receive 50% of its initial wealth (£5). 

Ø Rich Country 2 and all remaining Poor Countries (2,3,4) each demand to keep 80%. If the 

Global Target were to be met, Rich Country 2 would receive 80% of its initial wealth (£24) 

and Poor Countries 2, 3, and 4 would receive 80% of their initial wealth (£8 each). 

See Screenshot 2 below. However, Global Demand=68% > Global Target = 60%, so the Global 

Target is not met and negotiations continue. Now imagine that the negotiation group continues to 

demand to keep emissions/wealth above the target level until the 7th Round, when the relevant 

Global Target is 30% of emissions/wealth. In Round 7, demands are as follows: 

Ø Rich Country 1 and Poor Country 4 demand to keep 32% each. 

Ø Rich Country 2 and Poor Countries 1, 2, and 3 demand to keep 20% each.  

See Screenshot 3. 

Hence, Global Demand = 25% ≤ Global Target = 30%. The Global Target is met. Rich Country 1 

receives 32% of its initial wealth (£9.60), Rich Country 2 receives 20% of its initial wealth (£6), 

Poor Countries 1, 2, and 3 each receive 20% of their initial wealth (£2 each), and Poor Country 4 

receives 32% of its initial wealth (£3.20). Please take a brief moment to review and understand the 

rules, then continue to the next page to test your understanding. 

Control questions. Test your understanding:  For the questions below, please check the box of 

the correct answer or fill in your answer on the line provided. For convenience, we summarised the 

main rules below:  

Global Target 
Rounds 1-2: 60% 
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1.  In Round 4’s global negotiation, all members of your negotiation group demand to keep 

60% of their initial emissions/wealth.  What happens next? 

o We’ve met our Global Target; each of us receives 60% of our initial wealth. 

o Our Global Target has not been met; we continue to Round 5. 

 

2.  In Round 3’s global negotiation, all Rich Countries demand to keep 50% of their original 

emissions/wealth.  If two Poor Countries demand to keep 40% and the other two Poor 

Countries demand to keep 60%, is agreement reached? 

o Yes 

o No 

If yes, how much does each Country receive (without show-up fee)?  If no, please leave blank. 

Rich Countries: £__________each 

Poor Countries that demanded 60%: £__________each       

Poor Countries that demanded 40%: £________each 

 

3.  In the final Round’s global negotiation (i.e. Round 8), one Rich Country demands to keep 

20% of its initial emissions/wealth and the other Rich Country demands to keep 30%.  If two 

Rounds 3-4: 50% 

Rounds 5-6: 40% 

Rounds 7-8: 30% 
Country Initial Wealth 
Rich Country 1, Rich Country 2: £30 
Poor Country 1, Poor Country 2,  
Poor Country 3, Poor Country 4: £10 
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Poor Countries demand to keep 30% each and the other two Poor Countries demand to keep 

75% each, is agreement reached? 

o Yes 

o No 

How much does each Country receive as their final payout (without show-up fee)? 

Rich Country that demanded 20%: £__________   

Rich Country that demanded 30%: £__________ 

Poor Countries that demanded 30%: £_________each     

Poor Countries that demanded 75%: £__________each 

 

Please raise your hand when you have answered all questions, and we will come to check your 

answers. 

 

Side Deals. Recall that the Global Target changes every two rounds. Before global negotiations on 

a new target begin, both groups of Countries (the 4 Poor and the 2 Rich) will simultaneously enter 

into separate Side Deals, as follows. 

(i) Side Deal for Poor Countries: 

Prior to the global negotiations in Rounds 1, 3, 5, and 7, each Poor Country will enter its preferred 

‘Maximum Demand’, i.e. the desired maximum percentage of emissions/wealth that each Poor 

Country may demand to keep in the two upcoming global negotiations.  

The average of these four Maximum Demands will determine the ‘Agreed Maximum Demand for 

Poor’, which cannot be exceeded by each Poor Country in the two upcoming global negotiations. 
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(ii) Side Deal for Rich Countries: 

At the same time, and prior to the global negotiations in Rounds 1, 3, 5, and 7, each Rich Country 

will enter its preferred ‘Maximum Demand’, i.e. the desired maximum percentage of 

emissions/wealth that each Rich Country may demand to keep in the two upcoming global 

negotiations.  

The average of these two Maximum Demands will determine the ‘Agreed Maximum Demand for 

Rich’, which cannot be exceeded by each Rich Country in the two upcoming global negotiations. 

Should a global agreement not be reached within the first two rounds, a new target will apply to 

Round 3 (Global Target=50%) and a new Agreed Maximum Demand will be determined by both 

Poor and Rich Countries for the two upcoming rounds (Rounds 3 and 4). This process will 

continue until Round 8 so long as a global agreement is not reached. Please refer to the timeline in 

Screenshot 4 for a recap on the various stages of the game. 

Example 2. Imagine that you are Poor Country 1 and that you have entered into a Side Deal with 

the other Poor Countries.  In the experiment you will see the following screen (Screenshot 5). 

The choices from the Side Deal for Poor Countries are shown at the top of Screenshot 6, which we 

have highlighted with a box: 

Ø Poor Country 1 (you) chooses Maximum Demand = 100% 

Ø Poor Country 2 chooses Maximum Demand = 66% 

Ø Poor Country 3 chooses Maximum Demand = 33% 

Ø Poor Country 4 chooses Maximum Demand = 0% 

The resulting agreed Side Deal is that each Poor Country cannot exceed 50% demand in the two 

upcoming global negotiations, i.e. the Agreed Maximum Demand = 50%. (Note that the outcomes 
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of the Side Deal for Rich Countries, which took place at the same time, are also shown in 

Screenshot 6. All Countries see these outcomes.)   

Example 3. Imagine that you are Rich Country 1 and that you have entered into a Side Deal with 

Rich Country 2. In the experiment you will see the following screen (Screenshot 7). 

The choices from the Side Deal for Rich Countries are shown at the bottom of Screenshot 8, which 

we have highlighted with a box: 

Ø Rich Country 1 (you) chooses Maximum Demand = 75% 

Ø Rich Country 2 chooses Maximum Demand = 25% 

The resulting agreed Side Deal is that each Rich Country cannot exceed 50% demand in the two 

upcoming global negotiations, i.e. the Agreed Maximum Demand = 50%.   
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(e) Questionnaire 

Question Response 

Was the experiment difficult to understand? Not at all difficult 

Somewhat difficult 

Difficult 

Very difficult 

Extremely difficult 

Please select the MOST important reason for your decisions 
during the experiment. Note: the questionnaire also asked for 
the second and third most important reasons. 

Monetary self-interest 

Fairness consideration 

Maximise group performance (i.e. efficiency) 

Minimise time spent negotiating 

Beliefs about actual (international/climate) 
negotiations 

Past behaviour of group members 

Other 

If you could redo the experiment, how would you change your 
choices (if at all)? 

Open-ended 

In the scenario where 'Rich Country 1' and 'Rich Country 2' are 
each endowed with 30 billion metric tons in CO2 emissions (or 
£30) and the four Poor Countres are each endowed with 10 
billion tons in CO2 emissions (or £10) each,  what do you 
think would have been a fair initial demand (%) for each of the 
Rich Countries? 

Open-ended (number) 

What do you think would have been a fair initial demand (%) 
for each of the Poor Countries? 

Open-ended (number) 

Imagine you are in the final round of negotiation.  All of the 
other countries in your group have made their demands and 
your demand could be pivotal (i.e. 'tip the scale' in terms of 
whether an agreement is reached or not).  In this situation, 
what is the minimum demand (%) you would accept if you 
knew that your decision would change the group outcome from 
non-agreement to agreement? 

Open-ended (number) 

Now you will select from among five different gambles the 
one gamble you would like to play.  The five different gambles 
are listed below.  You must select one and only one of these 
gambles. 

Each gamble has two possible outcomes (Event A or Event B), 
each with a 50% probability of occurring.  Your compensation 
for this part of the study will be determined by:  1) which of 
the five gambles you select; and 2) which of the two possible 
events occur.   

Gamble 1: £1.00 vs. £1.00 

Gamble 2: £1.80 vs. ££0.60 

Gamble 3: £2.60 vs £0.20 

Gamble 4: £3.40 vs. -£0.20 

Gamble 5: £4.20 vs. -£0.60 
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Please note that if you should select either gamble 4 or gamble 
5 and Event B occurs, your losses will be deducted from your 
show-up fee. 

For example:  If you select gamble 4 and Event A occurs, you 
will be paid $£3.40.  If Event B occurs, you will have £0.20 
deducted from your £5 show-up fee. 

For every gamble, each event has a 50% chance of occurring. 

At the end of the study, a volunteer will be asked to flip a coin 
to determine whether Event A (heads) or Event B (tails) will 
pay out. 

Please select your preferred gamble and then WRITE THE 
NUMBER OF THE GAMBLE YOU SELECTED ON YOUR 
PAYMENT SLIP. 

Are you generally a person who is fully prepared to take risks 
(risk prone) or do you try to avoid taking risks (risk averse)? 
Please select from the following options, where 0 means 
EXTREMELY RISK AVERSE and 10 means EXTREMELY 
RISK PRONE. 

0     1     2     3     4     5     6     7     8     9     10 

Have you ever donated money or goods to a charitable 
organisation?  If yes, how frequently? 

Very often 

Often 

Sometimes 

Rarely 

Never 

Is global climate change a serious problem? Extremely serious 

Very serious 

Serious 

Somewhat serious 

Not at all serious 

Which of the following guiding principles describes your 
understanding of fairness best in the context of international 
climate negotiations? 

a) Countries with high emissions in the past should 
reduce more emissions. 

b) Countries with high economic performance 
should reduce more emissions. 

c) Countries should reduce their emissions in such 
a way that emissions per capita are the same for 
all countries. 

d) Countries should reduce their emissions in such 
a way that the emissions percentage is the same 
for all countries. 

How often do you recycle? Very Often 

Often 

Sometimes 

Rarely 

Never 
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Generally speaking, would you say that most people can be 
trusted or that you need to be very careful in dealing with 
people? Please tick a box on the scale, where the value 1 
means "need to be very careful" and the value 10 means "most 
people can be trusted". You can use the values in between to 
make your estimate. 

0     1     2     3     4     5     6     7     8     9     10 

Finally, how good are you at working with fractions (e.g. “one 
fifth of something”) or percentages (“e.g. “20% of 
something”)? 

Extremely good 

Very good 

Good 

Somewhat good 

Not good at all 

 

(f) Additional Empirical Analysis 

Velocity, Dynamics, and Distributions. In terms of agreement velocity, the most successful 

treatment group is the one allowing for Side Deals among the Poor (PSD), where on average the 

groups coordinated on the threshold shortly after the second round (Supplementary Table 1). By 

contrast, RSD is the treatment where agreement is most delayed (3.5 rounds on average). While 

ASYM and ASD are comparable in terms of the average agreement round, we note that there are 

two ASYM groups that failed to reach agreement altogether, consistent with the higher variance in 

agreement round for ASYM than for ASD. Similarly, while SYM and PSD are comparable along 

the former dimension, one PSD group was not successful in coordinating on the threshold, 

consistent with the higher variance in outcomes for PSD than for SYM.  

As discussed in the manuscript, all symmetrically endowed (SYM) groups maintained at least 50% 

of the initial pie, which is remarkably efficient given that the maximum attainable proportion of 

global wealth is 60%. However, the PSD treatment is the most successful in securing agreement 

under maximally efficient conditions (i.e. in Rounds 1-2, before the target shrinks), though we do 

not have the power to detect a statistically significant difference between groups’ success rates 

within the first two periods. Regardless, in accordance with (1), endogenous demand restrictions 
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(i.e. binding Side Deals) on a larger number of low-emission “poor” players appear to be more 

successful in inducing coordination than similar restrictions on a smaller number of high-emission 

“rich” players if we are concerned with maximizing the global pie. Importantly, unlike (1), we do 

not find conclusive evidence that outcomes in treatments containing Side Deals improve upon 

global negotiations that occur among asymmetric actors in the absence of Side Deals, in terms of 

either agreement velocity or demands (at both the individual and the group levels).   

Supplementary Figures 1 and 2 provide visual representations of the above statistics in addition to 

the demand dynamics across treatments. The early disparity in agreement rate across treatments is 

clear, as is the tendency of average group demands to respond to the declining values of the Global 

Target T (from 60% to 30%) by clustering, although with some variance, around these values.  

Across successful asymmetric groups, the average difference between Rich and Poor demands in 

the successful round of negotiation is 10.65 percentage points (p<0.01).  This average demand 

distribution translates to a final average income of £15.63 for Rich players and £6.28 for Poor 

players, and a final wealth distribution of 27.7% of global wealth for Rich Countries and 11.1% of 

global wealth for Poor Countries.  Note that this subtle shift in the wealth distribution occurs solely 

in the negotiation over emissions reductions (i.e. it is independent of international wealth and 

technology transfers pervasive in climate change negotiations).   

Moreover, in PSD and RSD, the standard error among players in the group who formed the Side 

Deal (2.45 in PSD, and 3.86 in RSD) is smaller than it is for the subgroup without constraints (6.27 

in PSD, and 4.28 in RSD; Supplementary Figure 3).  Therefore, in the case of the side agreements 

among the US, the EU, and China, we would expect low-emission countries to experience a wider 

variance in proposed emissions limits. 



214 
 

Questionnaire Analysis.  Immediately following the experiment, subjects were asked a series of 

questions to gather demographic information, preferences (i.e. for fairness, risk, environment), and 

motivations in the experiment.  

We look at players’ primary decision-making motivations, acknowledging that the ex post nature of 

the questionnaire may create dependence of answers on dynamics and outcomes of the game 

played previously.  When asked what is the most important motivation behind their decisions in the 

game, most claimed to have been primarily motivated by group efficiency (36.3% of subjects) or 

money (29.1% of subjects), with fairness (19.6% of subjects) following close behind.    The rest 

were motivated by time minimization (7.5% of subjects), beliefs about actual climate negotiations 

(3.6% of subjects), and the past behavior of group members (3.6% of subjects).  If money was a 

subjects’ primary motivation, she initially demanded 6.9 percentage points more than if her 

primary motivation were not money (p=0.001).   

We do not find that stating fairness as one’s primary motivation influences one’s initial demand in 

the SYM treatment.  However, when we introduce asymmetric endowments, fairness influences 

demands considerably.  Poor players who stated fairness as their primary motivation (22% of Poor) 

demanded about 4.5 percentage points more in Round 1 than those who stated another motivation 

(70.1 percent vs. 65.8 percent, p=0.094), consistent with the self-serving notion of fairness found in 

ultimatum games with asymmetric payoffs (10). Likewise, Rich players who stated fairness as their 

primary motivation (16% of Rich) demanded almost 10 percentage points less than those with 

other motivations (61.7 percent vs. 52.0 percent, p=0.025), consistent with social welfare 

preferences (11). 

Additionally, we asked subjects what is the minimum demand they would accept if they were a 

pivotal player in the final round of negotiation, i.e. when the Global Target is 30%.  The average 
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minimum acceptable demand is 30.2 percent (SD=16.8) of one’s endowment, and this is not 

largely dependent on whether one was a Poor (mean=31.9, SD=17.2) or Rich (mean=28.5, 

SD=17.1) player.   

We also ask a series of questions to elicit our subjects’ risk and social preferences.  Using a variant 

of the incentive-compatible risk preference elicitation question posed in (7, 8)—where 1 represents 

a certain outcome (50% chance of £1 vs. 50% chance of £1) and 5 represents the most risky 

outcome (50% chance of £4.20 and 50% chance of -£0.60)— subjects’ average selection is 3.77 

(SD=1.33).  When asked to self-assess the extent to which they are risk prone on a scale from 0 to 

10 (where 10 is extremely risk prone; see 12), subjects’ average selection is 5.38 (SD=2.11).  To 

assess subjects’ altruism, we ask them to state the frequency with which they donate to charity: 

6.9% of subjects give to charity very often, 17.7% give to charity often, 45.8% give to charity 

sometimes, 28.1% give to charity rarely, and 1.6% never give.  We also asked subjects the extent to 

which they think others can be trusted on a scale from 1 (low trust) to 10 (high trust), and the mean 

response is 4.9 (SD=2.1).  To get a reading of subjects’ preferences for the environment, we asked 

how often the subjects recycle.  In our pool, 27.4% claim to recycle very often, 39.0% recycle 

often, 19.1% recycle sometimes, 4.8% recycle rarely, and 9.8% never recycle.  Additionally, when 

asked their opinion on the severity of the problem of climate change, 35.0% of subjects responded 

that it is extremely serious, 36.0% that it is very serious, 19.6% that it is serious, 8.2% that it is 

somewhat serious, and 1.3% that it is not at all serious.  Group-level heterogeneity in self-reported 

charitable spending and  ‘green’ preferences do not play a significant role in determining subjects’ 

decision-making nor the velocity of agreement in the game, contrary to the assertion that 

heterogeneity of preferences increases the transaction costs associated with (and therefore 

decreases the likelihood of) reaching agreement (13). 
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To gauge whether subjects understood the experiment, we ask the extent to which the instructions 

are comprehensible and ask for an evaluation of subjects’ own ability to work with fractions.  

Subjects appear to have understood the experiment, with only six subjects (i.e. less than two 

percent) stating that the experiment was (very) difficult to understand.  Similarly, only 2.3% of 

subjects claim they are not at all good with fractions, while 9.2% are somewhat good with 

fractions, 27.8% are good with fractions, 37.3% are very good with fractions, and 23.5% are 

extremely good with fractions.  

Risk Preferences.  To further understand the dynamics underpinning group coordination, we 

investigate the role of individual risk preferences in predicting behavior in the negotiation. As 

expected, we find that risk aversion reduces demand, on average. In Supplementary Table 2, we 

display the effects of risk preferences on individual demand in a panel OLS regression. Risk is 

measured on a scale from 1 to 5, where 1 represents the most risk-averse gamble option—a gamble 

with payout certainty—and 5 represents the most risk-seeking option.  

Supplementary Table 2 demonstrates that the effect of the risk parameter on demand is robust with 

respect to inclusion of various controls. The initial inclusion of controls—including demographics, 

stated motivation, Global Target, and treatment group assignment—reduces the magnitude of the 

effect from 1.68 to 1.24 percentage points per one-point increase on the risk scale. However, the 

magnitude of the effect is restored when we additionally account for the role of threshold (even) 

rounds—or rounds in which a failure to reach agreement results in negative group-level 

consequences— which have a large negative effect on demand, as expected.  

We further investigate the role of threshold effects through the interaction term between threshold 

rounds and risk preferences. Since threshold rounds threaten to diminish global welfare, we expect 

risk-averse individuals to err on the side of caution by demanding less than risk-prone individuals 
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in these rounds. In regression four of Supplementary Table 2, we see that the state of being in a 

threshold round reduces individual demand by almost six percentage points on average. However, 

the positive coefficient for the interaction term—which is significant both here (p=0.068) and when 

using self-reported risk attitudes as the independent variable (p=0.036; see Supplementary Table 

3)—indicates that this threshold effect is less strongly negative the more risk seeking is the 

individual.  

While risk preferences are important predictors in the game, the question remains as to the 

interpretation of such results when considering actions taken by countries.  We suffice to say here 

that risk preferences may potentially be an important and understudied predictor of (climate) 

bargaining strategies, whether they are risk preferences of the negotiators themselves or broader 

cultural parameters.  For example, countries may signal risk attitudes through policies or military 

and geopolitical strategies, in turn providing information on their bargaining strategies.  Our results 

indicate that risk preferences in bargaining may be a promising avenue for future research. 

Self-Serving Bias.  Our data allows for empirical estimation of self-serving bias (14, 15). In the 

questionnaire described above, subjects were asked a series of survey questions, one of which 

pertained to their perspectives on equity in the context of climate change.  To test for self-serving 

bias, we look at the average marginal effects of logit regressions where the dependent variables are 

dummies for whether the particular equity perspective in question has been selected, and the 

independent variables are indicators for subjects’ nationality (United States, European Union, or 

China).  Controlling for whether subjects played the role of a Rich or Poor Country in the 

experiment, we find that European subjects were less likely to identify with the perspective that 

“Countries with high emissions in the past should reduce more emissions” by 12.95% (p=0.038), 

although they were somewhat more likely than non-Europeans to identify with the perspective that 



218 
 

“Countries with high economic performance should reduce more emissions” by 9.7% (p=.123).  

Additionally, we find that Chinese subjects were less likely to select “Countries with high 

economic performance should reduce more emissions” by 15.64% (p=0.055). We do not find 

definitive evidence of self-serving bias among Americans in our sample; however, American 

subjects were less likely to identify with the perspective that “Countries should reduce their 

emissions in such a way that emissions per capita are the same for all countries” than non-

Americans by 13.8%, though the effect is not quite significant at conventional levels (p=0.140).   

Supporting Analysis: Robustness.  To account for the maximum demand imposed in the 

experimental design, we run a panel Tobit regression (see Supplementary Tables 4 and 5) to 

complement the panel OLS regressions previously discussed (see Table 3 in the manuscript and 

Supplementary Table 2).  These regressions place an upper limit of 100 on individual demands.  

Since subjects may wish to demand more than 100 percent of their endowed share of global 

emissions, the Tobit regressions censor the dependent variable from above at 100.  Note that it is 

not necessary to censor the dependent variable from below since none of the experimental subjects 

demanded zero emissions in the game.  The results of the Tobit regressions align closely with those 

of the OLS regressions, providing a simple robustness check of the conditional demand result and 

the influence of risk preferences on individual demands. 

We run an additional panel OLS regression (see Supplementary Table 3), replacing the incentive-

compatible risk preference with a stated preference for risk as our dependent variable.  Again, the 

results are qualitatively similar to those in Supplementary Table 2.  While the incentive-compatible 

risk responses map preferences on a scale from 1 to 5, the stated risk responses map preferences on 

a scale from 0 to 10.  Standard errors are slightly inflated relative to the OLS regression on the 

incentive-compatible risk preference.  However, the results for Regressions 1-3 across the two 
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tables are qualitatively similar.  Interestingly, the results for Regression 4 indicate a positive though 

non-significant effect of risk preference on demand in the game, while the interaction between 

threshold round and risk becomes significant.  That is, subjects who indicate a higher risk tolerance 

demand more in threshold rounds than do those who report lower risk tolerance. 
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Screenshots from game interface (from the experimental instructions)  

 

Screenshot 1 |  Outcome screen presented to Poor Country 1 in Round 1 of the Global Negotiation if all group 
members demand to keep 90% of their initial wealth/emissions in ASYM, PSD, RSD, and ASD.  The Global 
Demand exceeds the Global Target of 60% in Round 1 and negotiations continue to Round 2.  
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Screenshot 2 | Outcome screen presented to Poor Country 1 in Round 2 of the Global Negotiation if Rich 
Country 1 and Poor Country 1 demand to keep 50% of their initial wealth/emissions and all other players demand 
to keep 80% of their initial wealth/emissions.  The Global Demand exceeds the Global Target of 60% in Round 1 
and negotiations continue to Round 3. 
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Screenshot 3 | Outcome screen presented to Poor Country 1 in Round 7 of the Global Negotiation if Rich Country 1 and 
Poor Country 4 demand to keep 32% of their initial wealth/emissions and all other players demand to keep 20% of their 
initial wealth/emissions.  The Global Demand is less than the Global Target of 30% in Round 7.  Each player receives her 
demand and negotiations terminate. 
 
 

 
 

Screenshot 4 | A schematic representation of the stages in treatment ASD. In even-numbered rounds there is only one 
stage (Global Negotiation), while in odd-numbered rounds that stage follows a Side Deal stage. The same applies to PSD 
and RSD, except that the Side Deal in those treatments are determined by (and pertain only to) Poor and Rich Countries, 
respectively. 
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Screenshot 5 | Input screen presented to Poor Country 1 to designate a preferred Maximum Demand in the Poor Countries’ 
Side Deal prior to Rounds 1 and 2 of the Global Negotiation. 
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Screenshot 6 | Outcome screen presented to Poor Country 1 displaying the selected Maximum Demands of all other 
players in her group.  The red box is included in the Experimental Instructions to highlight the relevant Agreed Maximum 
Demand from the perspective of Rich Country 1, though it does not appear on screen during the experiment.  Agreed 
Maximum Demands for both Rich Countries and Poor Countries are revealed to all group members prior to the subsequent 
Global Negotiation stages. 

 
 



 226 

 
Screenshot 7 | Input screen presented to Rich Country 1 to designate a preferred Maximum Demand in the Rich Countries’ 
Side Deal prior to Rounds 1 and 2 of the Global Negotiation. 
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Screenshot 8 | Outcome screen presented to Rich Country 1 displaying the selected Maximum Demands of all other 
players in her group.  The red box is included in the Experimental Instructions to highlight the relevant Agreed Maximum 
Demand from the perspective of Rich Country 1, though it does not appear on screen during the experiment.  Agreed 
Maximum Demands for both Rich Countries and Poor Countries are revealed to all group members prior to the subsequent 
Global Negotiation stages. 
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Supplementary Figures 

 

Supplementary Figure 1 | Group demand over time (a) and agreement rate (b). Figure 1a illustrates group 
demand dynamics, while Figure 1b shows the percent of groups that reached agreement, by round and 
treatment. Data points in 1(a) should be weighted differently according to the number of groups remaining in the 
negotiation.  For instance, 60% of SYM groups reach agreement in Round 1, so the average group demand for 
SYM in Round 2 represents the average of the 40% of groups who continued to negotiate in Round 2. 
 
 
 
 
 
 

(a)                                                                                  (b) 

 
 
Supplementary Figure 2 | Demands over time by treatment, for the Poor (a) and for the Rich (b). The figure 
illustrates individual demands over time for both player types.  
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Supplementary Figure 3 | Average demands (and standard errors bars) by Poor (blue) and Rich 
(red) negotiators in agreement round of successful groups (i.e. groups who reached agreement in the 
first two rounds).   
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Supplementary Tables 

 
Supplementary Table 1 | Agreement velocity (average round in which negotiations terminated) 

and failures (number of groups that failed to reach an agreement), by treatment 
 SYM ASYM PSD RSD ASD 

Velocity 2.455 3.071 2.300 3.400 3.091 
 (0.934) (2.556) (2.359) (2.413) (2.548) 
Failures 0 2 1 0 0 
Groups 11 14 10 10 11 
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Supplementary Table 2 | Risk preferences and individual demands 

 

(1) 
 

No Controls 

(2)  
 

With Controls 

(3) 
With Threshold 

Control  

(4) 
With Threshold 

Interaction 
Risk 1.680*** 1.241** 1.769*** 1.541** 

 
(0.535) (0.562) (0.666) (0.678) 

Threshold Round 
  

-3.989*** -5.737*** 

   
(0.550) (1.015) 

Threshold Round * Risk 
   

0.476* 

    
(0.276) 

Constant 52.198*** 58.097*** 61.459*** 62.294*** 

 
(2.270) (2.631) (3.105) (3.069) 

Groups 54 54 34 34 
Subjects 324 324 204 204 
Obs 930 930 810 810 
The table displays the results of a panel OLS regression with errors clustered at the group level, where the dependent 
variable is individual demand. The risk question posed to subjects is based on the incentive-compatible risk preference 
elicitation gambles in (7, 8). Robust standard errors are reported in parentheses. Threshold Round is a dummy equal 
to 1 if the present round is the threshold round before a decline in the Global Target (i.e. an even round). The number 
of observations reduces with the threshold control since 20 groups who reach agreement in Round 1 will not 
experience variation in the Threshold Round control and are thus excluded from the regression. Controls include 
gender, Annex 1 nationality, stated primary motivation, Global Target, and treatment group assignment. ***p<0.001, 
**p<0.05, *p<0.10  
 
 
 
Supplementary Table 3 | Stated risk preferences and individual demands 

 

(1) 
No Controls 

 

(2)  
With Controls 

 

(3) 
With Threshold 

Control  

(4) 
With Threshold 

Interaction 
Stated Risk 0.697** 0.728** 0.673* 0.433 

 
(0.313) (0.305) (0.355) (0.350) 

Threshold Round 
  

-3.987*** -6.703*** 

   
(0.550) (1.505) 

TR * Stated Risk 
   

0.496** 

    
(0.236) 

Constant 54.702*** 54.510*** 64.652*** 65.954*** 

 
(1.811) (2.195) (2.746) (2.667) 

Groups 54 54 34 34 
Subjects 324 324 204 204 
Obs 930 930 810 810 

The dependent variable in this regression is individual demand. Stated Risk is measured on a scale from 0 to 10 and 
comes from the general risk question asked in the German Socioeconomic Panel (SOEP; see 12).  Robust standard 
errors are reported in parentheses.  Controls include gender, Annex 1 nationality, stated primary motivation, Global 
Target level, and treatment group assignment. ***p<0.001, **p<0.05, *p<0.10 
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Supplementary Table 4 | Conditional demands of Poor and Rich (Tobit) 
 Poor Demand Rich Demand 
Rich Cooperated 4.074*** 0.766 
 (1.301) (2.024) 
Poor Cooperated -0.265 2.420*** 
 (0.740) (0.805) 
Constant 59.397*** 55.995*** 
 (4.464) (5.315) 
Groups 26 26 
Subjects 104 52 
Obs 356 178 
Controls Yes Yes 

The table displays the results of a panel Tobit regression, where the dependent variable indicates the percentage demanded of 
one's initial endowment. The independent variables represent the number of Rich and Poor Country representatives 
(respectively) who cooperated in the prior round by demanding less than or equal to the Global Target. Controls include gender, 
Annex 1 nationality, stated primary motivation, Global Target, and the difference between the group demand and the target in the 
prior round of negotiations. There are 26 groups in heterogeneous treatments that negotiated past the first period, and these are 
the groups considered here. Robust errors are clustered at the group level. Standard errors are reported below estimates in 
parentheses. ***p<0.001, **p<0.05, *p<0.10 
 
 
 
Supplementary Table 5 | Risk preferences and individual demands (Tobit) 
  (1) (2) (3) (4) 

 

Risk 
 

With Controls 
 

With Threshold 
Interaction 

With Threshold 
Interaction 

Risk 1.659*** 1.269** 1.805*** 1.575** 

 
(0.536) (0.541) (0.604) (0.635) 

Threshold Round 
  

-4.015*** -5.775*** 

   
(0.563) (1.613) 

Threshold Round * Risk 
   

0.480 

    
(0.412) 

Constant 52.429*** 58.142*** 61.541*** 62.382*** 

 
(2.135) (2.910) (3.340) (3.417) 

Groups 54 54 34 34 
Subjects 324 324 204 204 
Observations 930 930 810 810 

The table displays the results of a panel Tobit regression, where the dependent variable is individual demand.  The risk 
question posed to subjects is based on established incentive-compatible risk preference elicitation gambles (7, 8). Robust 
standard errors are reported in parentheses. Threshold Round is a dummy equal to 1 if the present round is the threshold 
round before a decline in the Global Target (i.e. an even round).  The number of observations reduces with the threshold 
control since 18 groups who reach agreement in Round 1 will not experience variation in the Threshold Round control and 
are thus excluded from the regression. Controls include gender, Annex 1 nationality, stated primary motivation, Global 
Target level, and treatment group assignment.  ***p<0.001, **p<0.05, *p<0.10 
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CHAPTER VI 

 

CONCLUDING THOUGHTS 

 

Academics, businesspeople, and policymakers alike are increasingly convinced that exogenous 

variation is key to understanding causal effects of business and government policies and programs.  The 

creation of the Behavioural Insights Team in the UK Government marked the first institutionalization of 

the experimental methodology within a national government.  The United States government has 

followed suit in an Executive Order by Barack Obama mandating government agencies to seek areas 

where behavioral and experimental research can improve policymaking, and to do so under the 

guidance of the new Social and Behavioral Sciences Team.99  While researchers have recently begun to 

investigate the prospects for experimental methodology in improving environmental outcomes, the 

extent of such research in the field of environmental economics is inadequate in relation to its potential 

scope.   

 

This thesis aims to provide impetus for a movement toward much more prolific implementation 

of controlled experiments on small and large scales to improve our understanding of human decision 

making and its consequences for environmental and resource outcomes, as well as the consequences of 

such outcomes on human welfare.  Governments, businesses, and other organizations can benefit from 

partnerships with academics that seek to gain an increasingly nuanced understanding of the motivations 

behind the resource-intensive actions or voluntary contribution decisions of customers, employees, and 

even high-tier decision makers.  Experimental results can test and inform theories of behavior, forming 

a symbiotic relationship that will catalyze knowledge production on important and time-sensitive issues 

such as climate change, biodiversity loss, and non-renewable resource depletion. 

 

The four experiments presented in this thesis have modestly expanded our understanding of the 

subtle influences of choice architecture on decision making in a number of contexts.  With respect to the 

behavior of green consumers, reminding individuals of their past environmentally-conscious decisions 

and encouraging them to be consistent (i.e. to avoid cognitive dissonance) may hold potential for 

eliciting resource-saving decisions.  Such a strategy could be expanded to various contexts, such as food 

choice (e.g., persuading vegetarians to consume local or seasonal produce), transport (e.g., persuading a 

hybrid owner to ride her bicycle for short-distance travel or purchase carbon offsets for flights), or 

                                                
99 Link to Executive Order: https://www.whitehouse.gov/the-press-office/2015/09/15/executive-order-using-behavioral-science-insights-
better-serve-american. 
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investing (e.g., encouraging environmental donors to invest in green funds or open green bank 

accounts).  While some may argue that the margin for behavioral improvement is diminished for those 

with strong personal environmental norms, I argue to the contrary that these individuals may be 

important targets if interventions require that one have sufficient knowledge of or sympathy for 

environmental causes.100 

 

Shifting our attention to employee behavior, provision of salient resource-efficient performance 

information with targets for improvement proved highly effective in increasing airline captains’ fuel 

efficiency.  Moreover, directing charitable incentives at prosocially motivated captains may further 

enhance efficiency.  With new knowledge that risk aversion plays a role in fuel uptake decisions, 

informational interventions or technologies may be designed to correct inflated subjective probabilities 

of flight incidents, or to improve certainty surrounding moving variables such as weather and 

probability of diversions.  Again, such knowledge may be applicable to other relevant industries—such 

as shipping and trucking—and perhaps also to government bodies such as the postal service or the 

military.     

 

Finally, in the realm of international climate bargaining, side agreements—such as those 

negotiated between China and the United States as well as China and the European Union prior to COP 

21 in Paris—appear to dampen the carbon demands of high-emitting countries when facing a global 

carbon budget, and to increase the disparity between the concessions that heterogeneous parties are 

willing to accept.  Additionally, the experiment emphasizes the crucial need for high emitters to 

demonstrate strong commitment and willingness to cooperate in high-N multilateral negotiations with a 

large degree of heterogeneity, though conditionality stipulations may need to be enacted to minimize 

free riding by countries with lesser emissions. 

 

Of course, experimentation is no panacea for the behavioral adjustments necessary to combat 

pressing environmental issues.  There are certainly a number of important questions that cannot 

realistically be resolved (completely) by experiments, and advances in econometric methods have 

undoubtedly improved the ability of observational data to infer causality and inform solutions.  

Additionally, qualitative studies continue to shape the way in which we understand the problems at 

hand.  However, most environmental dimensions can benefit in some capacity from experimentation, 

                                                
100 Additionally, these individuals may exhibit behaviors consistent with moral licensing, whereby they perform environmental behaviors 
in one context and therefore do not feel compelled to do so in another (e.g., Tiefenbeck et al., 2013).  Policies and programs must take into 
account potentially harmful spillovers resulting from this phenomenon that may result and take measures to overcome them. 
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and the more we understand the role of experimentation, the more obvious its potential applications will 

become. 

 

While the experiments presented here have been implemented solely in developed countries—

and despite the stronger presence of experimental methods in development economics—there remains 

wide scope for experimentation to target decision making in the developing world relating to 

environmental issues.  Such experiments could expand upon our knowledge of (for example) optimal 

climate adaptation strategies (e.g., Duflo, Robinson, and Kremer, 2011), common pool resource 

extraction (e.g., Cardenas, Janssen, and Bousquet, 2011), public good provision (e.g., O’Garra, Alfredo, 

and Schneider, 2015; Jack and Recalde, 2015), policy selection or implementation (e.g., Duflo et al., 

2013), improved energy access (e.g., Jack and Smith, 2015), and excess fertility reduction (e.g., Ashraf, 

Field, and Lee, 2014).  Environmental economists may consider teaming up with development and 

health researchers to bring a stronger and more explicit environmental perspective to such projects. 

 

The field of environmental economics only stands to gain from placing a more pronounced 

emphasis on experimental research, both to test its own existing theories as well as those from 

traditional and behavioral economics that speak to environmentally relevant decision making.  As noted 

in The Stern Review, while not sufficient to mitigate climate change and resource destruction, behavior 

change is indisputably an integral component in creating a pathway to an environmentally sustainable 

future.  Thus, research in environmental economics must adopt behavior change as a core tenet of its 

undertaking to optimize social welfare.  Through iterated experimentation across a number of contexts, 

researchers can begin to paint a clearer picture of human motivation and decision making, creating a 

more definitive role for choice architecture in improving environmental outcomes.  
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