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Abstract

In this thesis, I study high-dimensional nonlinear time series analysis, and its

applications in financial forecasting and identifying risk in highly interconnected

financial networks. The first chapter is devoted to the testing for nonlinearity in fi-

nancial time series. I present a tentative classification of the various linearity tests

that have been proposed in the literature. Then I investigate nonlinear features of

real financial series to determine if the data justify the use of nonlinear techniques,

such as those inspired by machine learning theories. In Chapter 3 & 5, I develop

forecasting strategies with a high-dimensional panel of predictors while consider-

ing nonlinear dynamics. Combining these two elements is a developing area of

research. In the third chapter, I propose a nonlinear generalization of the statisti-

cal factor models. As a first step, factor estimation, I employ an auto-associative

neural network to estimate nonlinear factors from predictors. In the second step,

forecasting equation, I apply a nonlinear function -feedforward neural network-

on estimated factors for prediction. I show that these features can go beyond co-

variance analysis and enhance forecast accuracy. I apply this approach to forecast

equity returns, and show that capturing nonlinear dynamics between equities sig-

nificantly improves the quality of forecasts over current univariate and multivari-

ate factor models. In Chapter 5, I propose a high-dimensional learning based on

a shrinkage estimation of a backpropagation algorithm for skip-layer neural net-
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works. This thesis emphasizes that linear models can be represented as special

cases of these two aforementioned models, which basically means that if there is

no nonlinearity between series, the proposedmodels will reduce to a linearmodel.

This thesis also includes a chapter (chapter 4, with Negar Kiyavash and Seyedjalal

Etesami), which in this chapter, we propose a new approach for identifying and

measuring systemic risk in financial networks by introducing a nonlinearly mod-

ified Granger-causality network based on directed information graphs. The sug-

gested method allows for nonlinearity and has predictive power over future eco-

nomic activity through a time-varying network of interconnections. We apply the

method to the daily returns of U.S. financial Institutions including banks, brokers

and insurance companies to identify the level of systemic risk in the financial sector

and the contribution of each financial institution.

iv



Contents

1 Introduction 1

2 Testing for Nonlinearity in Financial Time Series 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Definition of a Nonlinear Process . . . . . . . . . . . . . . . . 7
2.3 Tests: A Review . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Testing for Nonlinearity in Financial Time Series . . . . . . . . 21

3 Nonlinear Forecasting Using a Large Number of Predictors 25
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Nonlinear Factor Model . . . . . . . . . . . . . . . . . . . . . 48
3.4 Empirical Analysis . . . . . . . . . . . . . . . . . . . . . . . . 52
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4 EconometricModelingofSystemicRisk: GoingBeyondPair-
wise Comparison and Allowing for Nonlinearity 79
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2 Causal Network . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3 DIG of Linear Models . . . . . . . . . . . . . . . . . . . . . . 89
4.4 DIG of Non-linear Models . . . . . . . . . . . . . . . . . . . . 94
4.5 Experimental Result . . . . . . . . . . . . . . . . . . . . . . . 97

v



4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5 Forecasting in Big Data Environments with a Shrinkage Es-
timation of Skip-layer Neural Networks 111
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.3 Gradient-based Hyperparameter Optimization . . . . . . . . . 119
5.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . 122

References 143

vi



List of Figures

3.3.1 Schematicdiagramof the standardautoassociativeneural network
architecture for calculating the nonlinear principal component
analysis (NLPCA). . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.1 Target time series: prices and returns . . . . . . . . . . . . . . . 54
3.4.2 Visualization of comovement between return series; Right: Cor-

relationmatrix heatmap, Left: Return series inout-of-sampleperiod
55

3.4.3 Linear and nonlinear PCA for the first estimation window. . . . 56
3.4.4 Fractionof the variance in return series explainedby thefirst three

PCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4.5 Correlation between each equity and the first three PCs/NLPCs

as a function of time. equities are on the vertical axis and the hor-
izontal axis represents the time windows. . . . . . . . . . . . . . 58

3.4.6 Testing for nonlinearity in PC series. Right: Plot of Entropy test
statistic of nonlinearity for thePC1 series. at lags 1:10. Thedashed
lines indicate the rejectionbands at 95%(green/light) and at 99%
(blue/dark), Left:Plot of Reset and White test statistics of non-
linearity for the PC1 series. at lags 1:10. y-axis shows the p-value
of the test statistics . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.7 Plot of Reset test statistics of nonlinearity for three different eq-
uities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

vii



3.4.8 Accuracy bounds and residual variances. Sample is divided into
smaller disjunct regions; and accuracybounds aredetermined for
the sum of the discarded eigenvalues of each region. If this sum
is within the accuracy bounds for each region, the process is as-
sumed to be linear. Conversely, if at least one of these sums is
outside, the process is assumed to be nonlinear. As the figure il-
lustrates, the recorded financial data is nonlinear. . . . . . . . . . 62

3.4.9 Comparison of linear and nonlinear factor models based on the
performanceof the portfolio returnduring anout-of-sample period. 66

3.4.10Comparison of linear and nonlinear factor models based on the
performance of the portfolio simulation during an out-of-sample
period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4.11Comparison of linear and nonlinear factor models against an in-
vestmentonS&P500 indexbasedon theperformanceof theport-
folio simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4.12Comparison of linear and nonlinear factor model against Ran-
dom walk based on the performance of the portfolio simulation. 69

3.4.13Comparison of linear and nonlinear factor models, and themod-
els with only one nonlinear step based on the performance of the
portfolio simulation . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4.14Considering idiosyncratic component to forecast return series and
its effect on portfolio return . . . . . . . . . . . . . . . . . . . . 72

3.4.15Comparison of linear and nonlinear factor models and the Hy-
bridmodel based on the performance of the portfolio simulation
during out-of-sample period. . . . . . . . . . . . . . . . . . . . 74

3.4.16Comparison of linear and nonlinear univariate models based on
theperformanceof theportfolio returnduring theout-of-sampleperiod. 75

3.4.17Comparison of linear and nonlinear univariate and factormodels
based on the performance of the portfolio return during an out-
of-sample period. . . . . . . . . . . . . . . . . . . . . . . . . . 77

viii



4.2.1 Corresponding DIG of the system in (4.4). . . . . . . . . . . . 88
4.5.1 Benchmarking of the residual variances against accuracy bounds

of each disjunct region. . . . . . . . . . . . . . . . . . . . . . . 99
4.5.2 Recovered DIG of the daily returns of the financial companies

in Table 4.5.1. The type of institution causing the relationship is
indicated by color: green for brokers, red for insurers, and blue
for banks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.5.3 Recovered DIG of the daily returns of the financial companies
in Table 4.5.1. The type of institution causing the relationship is
indicated by color: green for brokers, red for insurers, and blue
for banks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.5.4 Recovered network of the daily returns of the financial compa-
nies in Table 4.5.1 using linear regression. The type of institution
causing the relationship is indicated by color: green for brokers,
red for insurers, and blue for banks. . . . . . . . . . . . . . . . 104

4.5.5 Recovered network of the daily returns of the financial compa-
nies in Table 4.5.1 using linear regression. The type of institution
causing the relationship is indicated by color: green for brokers,
red for insurers, and blue for banks. . . . . . . . . . . . . . . . 104

4.5.6 Out and In degree distributions of the DIGs obtained in Section
4.5.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.5.7 Out and In degree distributions of the networks obtained using
linear regression. . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2.1 A single-hidden-layer neural network with skip-layer connections 116

ix



Declaration

I certify that the thesis I have presented for examination for the PhD degree
of the London School of Economics and Political Science is solely my own work
other thanwhere I have clearly indicated that it is thework of others (inwhich case
the extent of any work carried out jointly by me and any other person is clearly
identified in it).

Thecopyrightof this thesis restswith the author. Quotation from it is permitted,
provided that full acknowledgement is made. This thesis may not be reproduced
without my prior written consent.

I warrant that this authorisation does not, to the best of my belief, infringe the
rights of any third party.

Statement of conjoint work
I confirm that chapter 4 is jointly co-authored with Negar Kiyavash and Seyed-

jalal Etesami, and I contributed 50 % of this work.

x



Acknowledgments

My deepest gratitude goes to my advisors, Matteo Barigozzi and Angelos Dassios,
for their generous, invaluable support, guidance, patience, and trust. It has been
an honor to be Matteo’s first Ph.D. student. I thank him for introducing me to the
wonders and frustrationsof scientific research. Hehas taughtme, both consciously
and unconsciously, how real research is done. I appreciate all his contributions of
time and ideas to make my Ph.D. experience productive and stimulating.

I am very grateful to fellow researchers. Being a ‘child’ of both Department of
Statistics andSystemicRiskCentre, Iwas particularly lucky to be surroundedby so
many talented, insightful and dedicated people. My time at LSE was made enjoy-
able in large part due to themany friends and groups that became a part of my life.
I gratefully acknowledge the funding sources that mademy Ph.D. work possible. I
was funded by LSE Systemic Risk Centre and the Economic and Social Research
Council (ESRC). My work was also supported by the Department of Statistics.
Last but not least, I am truly thankful to my examiners, Qiwei Yao and Esfandiar
Maasoumi, for taking the time to engage with my thesis.

I would like to dedicate my thesis to my beloved mother, Fereshteh, who was
the source of everlasting love and support over the years and raisedme with a love
of science. Tomy father, Nader, who is my biggest mentor in life. Tomy cherished
sister, Fariba, who has been my best friend, my soul mate and the best part of me.
Tomy uncle, Reza, who is notmy uncle only, but he has always been a good friend.
To my late aunts, Houri and Jahandokht, who played a very important role in cre-
ating who I am today. To my sweet nephew, Sina, who recently joined our family.

1



2



Is it the fault of wine if a fool drinks it and goes stumbling into
darkness? - Importance of statistical model selection

Ibn Sīnā (Avicenna)

1
Introduction

World data currently doubles every couple of years with an on-going steady in-
crease in computing power that poses new challenges for economicmodelling and
forecasting in a big data environment. It challenges state-of-the-art data acqui-
sition, computation and analysis methods. To benefit from many new potential
explanatory variables, feature extraction methods (i.e, Principal component anal-
ysis - Pearson, 1901; Eckart and Young, 1936; Factor models - Stock & Watson,
2002, 2006; Bai & Ng, 2002; Deistler & Hamann, 2005; Forni et al, 2005; Lam &
Yao, 2012), shrinkage techniques (Ridge - Hoerl & Kennard, 1988; LASSO - Tib-
shirani, 1996; Elastic Net - Zou & Hastie, 2005), and subset selection techniques
(Bayesian regression - DeMol, Giannone, Reichlin, 2008; Selecting variables - Bai
&Ng, 2008a) are used to handle high-dimensional data but they are mostly linear
models.

However linear models are adequate to explain many phenomena in the world,
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most important economic and financial phenomena are complex and nonlinear in
nature. In order to explain nonlinear phenomena, different parametric and non-
parametric nonlinear regression models have been developed so far (see Fan &
Yao, 2005; Teräsvirta, Tjøstheim & Granger, 2010).

Parametric nonlinear regressionmodels attempt to characterise the relationship
between predictors and response with parametric nonlinear functions. The pa-
rameters can take the form of a polynomial, exponential, trigonometric, power,
or any other nonlinear function. In other words, in parametric nonlinear models
the shape of the functional relationships between the response and the predictors
are predetermined. Inmany situations, that relationship is unknown and nonpara-
metric nonlinear regressionmodels should be used. In nonparametricmodels, the
shape of the functional relationships between variables can be adjusted to capture
unusual or unexpected features of the data. The main types of nonparametric re-
gressionmodels are kernel-basedmethods, tree-based regressionmodels and arti-
ficial neural networks.

Kernel-based methods can be viewed as a nonlinear mapping from inputs into
higher dimensional feature space in the hope that the data will be linearly sepa-
rable or better structured. It measures distances between observations, then pre-
dicts new values based on these distances. Best known example are support vector
machines (SVMs), introduced by Vapnik (Chervonenkis and Vapnik, 1964, 1974;
Vapnik, 1982, 1995), which provide a structured way to use a linear algorithm in a
transformed feature space. The key advantage this so-called kernel trick brings is
that nonlinear patterns can be found at a reasonable computational cost. Perhaps
the biggest limitation of the kernel-based methods lies in choice of the kernel and
tuning model parameters.

Tree-based regression models are alternative (nonparametric and nonlinear)
approaches to regression that are not based on assumptions of normality and user-
specified model statements.These models originated in the 1960s with the devel-
opment of AID (Automatic Interaction Detection) by Morgan and Sonquist. In
the 1980s, statisticiansBreiman et al. (1984)developedCART(ClassificationAnd
Regression Trees). The fundamental idea is to recursively partition the regressors’
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space in regions (build a tree) until all the subspaces are sufficiently homogeneous
in order to estimate the regression function with the sample average (or the spe-
cific local model employed) in each region.

Another class of nonlinear models that we focus on in this paper are neural
networks. These are flexible function forms motivated by the way the brain pro-
cesses information. neural networks consist of a cascade of simple computational
units calledneurons, which are highly interconnected. Dependingonhow they are
constructed, neural nets can approximate functions that are generally unknown
(see Kuan & White, 1994; Bishop, 1995; Hastie, Tibshirani & Friedman, 2009;
Teräsvirta, Van Dijk &Medeiros, 2005; Teräsvirta, Tjostheim & Granger, 2010;
Varian, 2014).

A neural network is an interesting area ofmachine learning. It is simultaneously
one of the oldest and one of the newest areas. The work on neural networks goes
back to the 1940s when researchers tried to buildmodels of the brain. Perceptron,
which is an extremely simplified computational model of a biological neuron and
a very simple precursor of linear models, goes back to the 50s and people showed
amazing performance of the perceptron on a number of problems. Perceptron of
coursewas limited inwhat it could do, so later on research related to the neural net-
work basically died. It was reborn in the 1980s when researchers figured out how
to put multiple perceptrons together into a network and they learnt how network
weights with the Backpropagation algorithmworked. Again there was a great deal
of excitements because these models finally seemed to be able to solve all kinds
of learning problems. At the same time more powerful regression models came
along, support vector regressions, so neural networks again fell out of fashion and
were shelved. They returned for a second time recently when people finally fig-
ured out how to train them reasonable quickly on a massive scale and a big part of
that is due to the changes in hardware that have occurred since the 1980s. It is also
worth mentioning that there has been a resurgence in the field of artificial neural
networks in recent years, knownas “Deepneural networks”. Deepneural networks
usemultiple stages of nonlinear computation and havewon numerous contests on
an array of complex tasks ranging from pattern recognition and machine learning.
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Only a few attempts considering nonlinear dynamics in high-dimensional set-
ting exist. Bai &Ng (2008b), and Raviv &VanDijk (2014), for instance, included
the quadratic principal components PCs and the first level cross-products of the
original variables to capture nonlinearities. Their model is nonlinear in the vari-
ables, but it is linear in the parameters. Meanwhile, Exterkate et al (2013) applied
kernel methods to a ridge regression to introduce a nonlinear ridge regression.
Giovannetti (2011) improved the factor model by running a nonlinear regression
on linear PCs.

With the rise of big data and the real opportunities that machine learning now
brings, there is no better time to find out how novel techniques can be used for sta-
tistical research. Thepurposeof this thesis is todevelop accurate predictivemodels
based onmachine learning techniques for high-dimensional and complex data. To
overcome the curse of dimensionality and to manage data complexity, we suggest
two high-dimensional nonlinear time series method. First, we introduce a nonlin-
ear forecast model based on a combination of factor models and neural network
and then we introduce another forecast model based on a shrinkage estimation
of neural networks. Regarding financial forecasting, the proposed approaches can
consider the comovement between financial returns and can go beyond the co-
variance structure of data.
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A hair divides what is false and true.

Omar Khayyám

2
Testing for Nonlinearity in Financial Time

Series

2.1 Introduction

Many real-world phenomena and series are nonlinear in nature, however a com-
mon assumption that is often made in time series analysis is that the series con-
forms to a linear model. In this chapter, we provide a tentative classification of
the various linearity tests that have been proposed in the literature and we briefly
review some of them.

Classification of different statistical approaches which are testing nonlinearity
in time series is a challenging task as they entail consideration of various types of
nonlinear dynamics and are coming from different disciplines. There are only a
few papers available in the literature that try to establish a classification of linearity
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tests. Granger and Teräsvirta (1993), Teräsvirta, Tjøstheim and Granger (2010)
and recently Giannerini (2012) are examples of this.

The main idea behind various linearity tests is a hypothesis testing procedure.
Every hypothesis test starts with a null hypothesis (H0) and an alternative (H1). In
general, the null hypothesis of linearity tests states that observed series are gener-
ated by Gaussian linear stochastic processes against an alternative hypothesis that
states observed series are rooted in nonlinear dynamics. To be more precise, H0

tests the hypothesis that the time series is completely specified by its first and sec-
ond order statistics (i.e. mean, variance, and autocorrelation or its frequency do-
main counterpart, power spectrum).

In this thesis, first, we classify linearity tests based on their alternative hypothe-
sis into two broad categories. The tests with a specifiedmodel as an alternative and
those against a nonspecified alternative. Tests with a specified alternative are also
usually called Lagrange Multiplier (LM) tests. LM tests refer to those tests focus-
ing on the coefficients of a nonlinear specifiedmodel (i.e. threshold autoregressive
model: Tong, 1978, 1983 andTong andLim, 1980; and autoregressive conditional
heteroskedasticity: Engle, 1982) and are parametric. In this case, Wald and Like-
lihood Ratio are not applicable directly when a specified nonlinear alternative is
only identified under the null hypothesis of linearity; see Granger and Teräsvirta
(1993, ch 6).

On the contrary, many of the tests proposed in the literature are against a non-
specified alternative. This group of tests has beenmore popular in the applications
when testing linearity is the main aim. However, they can not assist for model
building exercises such as forecast problems. In some of the tests in this group,
classified as Diagnostic tests, the null hypothesis states that the series is explained
by a white noise process and residuals of a properly specified linear fit should be
independent versus the alternative of serial dependence. Therefore different as-
pects of such time series come under the investigation of different diagnostic tests.
For example some tests like RESET (Ramsey, 1969), Keenan (Keenan, 1985) and
Tsay’s F test (Tsay, 1986) consider an auxiliary regression of residuals on a spe-
cific function of Xt, some other ones such as Ljung-Box (Ljung and Box, 1978)
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and Mcleod-Li (McLeod and Li, 1983) employ the autocorrelation function of
the residuals, some like BDS (Broock et al., 1996) also measure the density struc-
ture of such residuals from a linear fit in an embedded phase space and etc.; see
Tong (1990, ch 5) and Li (2004) for an overview of diagnostic tests.

In the rest of the tests against a nonspecified alternative, null hypothesis and al-
ternatives are not based on a linear or nonlinear fit and have the ability to detect
the presence of specific nonlinear features as we call them here tests for nonlinear-
ity. For instance, tests based on higher order statistics can detect asymmetry and
reversibility in time series utilizing the fact that these statistics do not contain new
information for linear series and hence for example the bicorrelation of such data
over time (or the bispectrum over different frequencies) is constant; see Mendel,
1991; Nikias and Petropulu, 1993 and Petropulu, 1999.

Theasymptoticnull distributionof the classical nonlinearity test statisticsmostly
depend on rigorous assumptions and are not always accurate, thus to improve the
power of tests, randomization, and bootstrap approaches are introduced in the lin-
earity tests literature, widely known as themethod surrogate data, themain idea of
which is to compare the value of a discriminating nonlinear measure for observed
series to that of surrogates series in order to detect ameaningful deviation (Theiler
et al., 1992 and Schreiber and Schmitz, 2000). A subsection is devoted to different
surrogate generating algorithms and also the discussion of appropriate test statis-
tics.

To understand better how linearity tests work, we first explain the definition of
a nonlinear process.

2.2 Definition of aNonlinear Process

In contrast to a linear stochastic process which can be defined in terms of an arith-
metic sequence of independent and identically distributed random variables in
time domain or the power spectrum in the frequency domain, a nonlinear process
is generated by a nonlinear dynamic equation of iid random variables consisting of
the current and past shocks. Assume that aweakly stationary and purely stochastic
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process xt is said to be a linear time series when t = 1, ...,T. Hence, Wold’s de-
composition theorem says that xt can be represented as an infinitemoving average
process in time domain as follows

xt =
∞∑
i=0

ψ iεt−i (2.1)

where ψ0 = 1, and εt is the iid terms with E[εt] = 0, E|εt|2 < ∞ and∑∞
i=0 ψ2

i < ∞ . Any stochastic process that does not satisfy the condition of
above equation is said to be nonlinear. xt can also be described in terms of power
spectrum in the frequencydomain. Given theFourier transformationofxt in terms
of amplitude spectrum A(f) and phase spectrum ϕ(f)

y(f) = F[xt] = A(f) ejϕ(f)

note : ejϕ(f) = cos(φ(f)) + j sin(ϕ(f))
(2.2)

Fourier transform maps time series into series of their amplitudes and phases
(frequency) that composed the time series. Moreover, The power spectrum is re-
trievable by A2(f). In general the equation is said to represent a linear process if
amplitude, A(f), retains all the information about xt and even a substitution of the
original phase spectrum,ϕ(f), with a randomsequence between0 and 2π, preserve
all the relevant information contained in the corresponding time series. In other
words, given the inverse Fourier transformation of y(f) with randomized phases
, ˆϕ(f), returns a seriess, x̂, which is indistinguishable from xt in a statistical sense,
otherwise the process is nonlinear. Campbell, Lo, andMacKinlay (1997) define a
nonlinear data generating process as on that can written

xt = f(εt, εt−1, ...) (2.3)

Where f(.) is a nonlinear function. Nonlinearitymay arise in differentways. The
characteristic of nonlinear time series such as higher-moment structures, time-
varying variance, asymmetric fluctuations, thresholds andbreaks canbeonlymod-
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elled by an appropriate nonlinear function like f(.) and a linear process is not ad-
equate to model these features. A slightly more specific nonlinear process can be
defined as

xt = g(εt, εt−1, ...) + εtσ2(εt, εt−1, ...) (2.4)

Where g is a function of past error terms only (if g(.) is nonlinear, model is non-
linear in mean) and σ2 is a variance term (if σ2(.) is nonlinear, model is nonlinear
in variance).

2.3 Tests: A Review

This subsection covers some of the statistical approaches that can be used to test
for nonlinearity in both univariate and multivariate time series.

2.3.1 Nonlinearity Detection Using Higher Order Statistics (Spec-
tra)

Asmentionedbefore, if the time series is linear andhas aGaussian probability den-
sity function, it can be completely characterized by its first and second order statis-
tics (e.g., mean, variance, power spectrum and autocorrelation) and consequently
the higher order statistics (HOS) are either zero or contain redundant information
(see Bendat and Piersol, 1993). Nonetheless, many real-world series encountered
in practice are non-Gaussian andnonlinear in nature andhavenon-zeroHOS.One
may conclude that, second order measures which contains no phase information,
cannot adequately describing processes associated with nonlinearities then mo-
ments of higher orders are needed to fully describe series properties. ¹

The aim of this section is to give a brief overview of some of the applications
of HOS in detecting and caracterizing non-Gaussianity and certain nonlinearity
of time series. In practice, a normalised version of polyspectra are usually used to

¹In practice we usually use the cumulants rather than the moments.
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detect and characterize certain nonlinearities. Polyspectra is a term that use to de-
scribe the family of all frequency domain spectra, including the secondorder. Rep-
resenting series in frequency domain can expose the periodicities of the series and
can aid in understanding the data generating process. In terms of nonlinearity de-
tection, our focus is on the bispectrum(third order spectrum) and the trispectrum
(fourth order spectrum) and their normalised version, bicoherence and tricoher-
ence spectra.² These can be estimated in a way similar to the power spectrum, but
to compute the polspectra of high orders, more data is usually needed to get reli-
able estimates. Rigorous introductions to theHigher order spectral analysis can be
obtained by seeing (Mendel, 1991; Nikias and Petropulu, 1993; Petropulu, 1999;
Brillinger and Rosenblatt, 1967 for the asymptotic properties of the bispectrum).

A formalized nonparametric frequency domain test of Gaussianity and linear-
ity based on third order moments was initially proposed by Subba Rao and Gabr
(1980). They look at the nonconstancy of the bispectrum of a time series as a
measure of non-Gaussianity and nonlinear serial dependence in a stochastic pro-
cess. Shortly afterward Hinich (1982) suggested a more robust statistical test by
estimating the normalized bispectrum on a grid of points by averaging the bivari-
ate periodogram at Fourier frequencies around the points of interest, obtaining a
chi-squared statistic for testing the significance of individual bispectrum estimates
by exploiting its asymptotic distribution. Hinich’s test has the advantage of focus-
ing directly on nonlinear serial dependence in contrast to subsequent approaches,
which actually test for serial dependence of any kind (nonlinear or linear) on data
which have been pre-whitened. It worth noting that a rejection of the null hypoth-
esis of linearity leads automatically to a rejection of Gaussianity. The test can be
applied both to the original series and to the residuals and can also be interpreted
as testing for the significance of the coefficients associated to the linear terms of
the Wiener expansion of the solution of the process (Giannerini, 2012).

In the following,weexplain thebispectrum, the trispectrumand their normalised

²The third and fourth order moments or cumulants (bicorrelation and tricorrelation), which
are the time domain counterparts of Polyspectra, are also found to be useful in analyzing nonlin-
earities in time series.
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versions and we show how these measures estimate the departure of a process
from linearity and Gaussianity. Bispectrum is the easiest polyspectra to compute,
and hence the most popular. We define bispectrum either as the Double Discrete
Fourier Transform (DDFT) of the third order cumulant (or moment) function
or as the mathematical expectation of the triple product of Fourier Coefficients at
different frequencies (Le Caillec and Garello, 2004).

Let {Xt}∞t=1 be a stationary discrete time random process, (t denote discrete
time) and assume, without loss of generality, that E[Xt] = 0. The power spec-
trum is given by

S(ω) =
∑+∞

n=−∞
MX

2 (n)e
−j(ωn) (2.5)

and the bispectrum of Xt is of the form

B(ω1, ω2) =
∑+∞

n1=−∞
∑+∞

n2=−∞MX
3 (n1, n2)e−j(ω1n1+ω2n2)

= E{X̃(ω1)X̃(ω2)X̃∗(ω1 + ω2)}

With

MX
3 (n1, n2) = E{Xt Xt+n1 Xt+n2}

and X̃(ω) =
∑+∞

n=−∞X(n)e−jωn

(2.6)

Where E{.} denotes expectation and the pair (ω1, ω2) is called a bifrequency.
The bispectrum is complex-valued, contains phase information, and is a function
of two independent frequencies. In an analogous manner, we can substitute mo-
ment spectrumMX

3 with third order cumulant spectrum of Xt, CX
3 . Since the es-

timates of the third order momentum and cumulants are hard to interpret, the
DDFT is calculated (Brockett, Hinich, and Patterson, 1988). A nice property of
the bispectral analysis is its robustness to possiblemisspecification in the prefilter-
ing linear model. This following from the fact that the squared skewness function,
is invariant to linear filtering. (Ashley & Patterson, 2001; Rusticelli et al, 2008)

Bispectrum decomposes the skewness of a time series over frequency and it is
sensitive to a particular type of nonlinearity, that is asymmetric nonlinearities, but
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it cannot detect a nonlinearity that depends upon moments higher than the third.
It has been proved (Hinich, 1982), that the skewness function based on the bis-
pectrum is given by

Bic2(ω1, ω2) =
|B(ω1, ω2)|2

S(ω1) S(ω2) S(ω1 + ω2)
=

μ23
σ6ε

(2.7)

Where σ6ε = E(ε2t ) and μ3 = E(ε3t ). Bispectrum is a complex number, there-
fore themodulusof that is taken. BicoherenceBic(ω1, ω2), thenormalisationmethod
for the bispectrum, is constant over all frequency pairs if time series is linear. This
is the basis ofHinich’s test. If theBic(ω1, ω2) ratios differ significantly over different
frequency pairs, he rejects the linearity of the time series. His bispectral test con-
siders the distribution of the estimated standardized bispectrum 2|Bic(ωn1, ωn2)|2.
The asymptotic distribution of such statistics is a noncentral chi-square distribu-
tion χ22 under the null hypothesis of linearity. Hinich derives a test statistic based
on the sample inner quartile range of 2|Bic(ωn1, ωn2)|2 which is bounded to the
choice of a smoothing parameter. A peak in the bicoherence can be interpreted as
the presence of Quadratic Phase Coupling, which is a specific type of nonlinear-
ity and shows a quadratic nonlinearity in data generating process. For a review of
other versions of the bispectral tests see Berg et al. (2010, 2012).

However, the bicoherence is sensitive to the asymmetric nonlinearities, it does
not help to investigate symmetric nonlinearities. Therefore one has the need of
the fourth order spectrum, that is the trispectrum. The trispectrum is sensitive to
the signal kurtosis; therefore it can detect symmetric nonlinearities. The normali-
sation of the trispectrum leads to the tricoherence which is sensitive to the cubic
phase coupling. A useful feature of the bicoherence and tricoherence functions is
that they take values bounded between 0 and 1. (Collis et al., 1998)

2.3.2 Diagnostic Tests

A major, well-known and widely utilized group of linearity tests, applied on the
residuals of a linear model, are called “diagnostic” tests. Themain purpose of such
tests is to go through the residuals looking for any sign of model inadequacy using
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different approaches each related to a specific nonlinear feature. Since any devia-
tion from i.i.d could be a matter of interest and these deviations can be measured
in various forms, the literature on these tests is vast and outside the scope of this
chapter, for more information see Li (2004), Kuan (2008) and Tong (1990). In
this thesis we especially focus on three areas to which the diagnostic tests have
been applied. First subcategory is the tests focusing on the residuals’ autocorre-
lation and the fact that if the preliminary filtering was sufficient there should be
no further autocorrelation between the residuals. The second subcategory ismore
general and tries to examine serial independence. A famous test in this category is
the BDS test of Brock, Dechert, and Scheinkman (Brock et al., 1987). The third
subcategory is what is known as tests of goodness-of-fit which use statistical sig-
nificance of auxiliary regressions of residuals.

Amajor drawbackof diagnostic tests is that the rejection of their null hypothesis
is only an indication for presence of some serial relation in the residuals and hence
model inadequacy. However, this becomes a problem when one interprets that as
a definite sign of nonlinearity. The reason behind the rejection might simply be
that the fittedmodel is not sophisticated enough and there is a better linear model
that can capture the underlying data in a way that the resulting residuals happen to
be i.i.d. Having that in mind, we elaborate on the subcategories mentioned above
in the coming sections.

2.3.2.1 Tests Based on Autocorrelation Function

the basic idea behind this group of tests is to use the asymptotic distribution of
an i.i.d. series’ autocorrelation. The main portmanteau statistic which formed a
basis for the later tests is known as Box-Pierce Q statistic (QBP) (Box and Pierce,
1970). QBP is the sum of the squared sample autocorrelations (̂r) up to m lag and
multiplied by sample size.

QBP(m) = n
m∑

k=1

r̂2k
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Under the assumption that the series is i.i.d. QBP has the asymptotic χ2 distribution
with m degrees of freedom (in case of ARMA residuals, m − p − q degrees of
freedom). Later, Ljung and Box (1978) propased a modified version of QBP with
the same asymptotic distribution having a better performance with finite samples.

QLB(m) = n(n + 2)
m∑

k=1

r̂2k
n− k

Davies andNewbold (1979) useQLB for sample sizes of 50, 100 and 200 and show
that despite the modifications it still has low power for small sample sizes. How-
ever, as the sample size increases the performance of the test improves dramati-
cally. McLeod and Li (1983) later used the same QLB on the squared version of
the residuals and presented a test statistic (QML) with the same assymptotic dis-
tribution for the null hypothesis of no ARCH which is of higher applicability on
financial data and is asymptotically equivalent to LM test of Engle (1982).

2.3.2.2 Tests for Serial Independence

Testing for serial independence is a much broader task since it is not only con-
fined to autocorrelation and one has to check for any kind of relations between the
residual and its time delay. The difference between the tests in this subcategory
and other tests is that in QLB, for example, one is looking for one of the symptoms
of not being i.i.d. which is to have serial correlation and if there are other devia-
tions from randomness there is no guaranty that these tests are going to be capable
of recognizing it. Tests of serial independence, on the other hand, are designed to
reject the null hypothesis if the series shows any sign of not being i.i.d. Thus, the
rejection of null hypotheses in this case is just indicative of the fact that the series
under investigation is not i.i.d. and one cannot draw conclusions about the kind of
existing deviation. This becomes a problem if one wishes to not only show the in-
adequacy of the applied linearmodel, but also to conclude presence of a nonlinear
motion.

Themost famous test in this subcategory is BDS (Brock et al.,1996) named after
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the three authorswho first developed it. Thenull hypothesis for BDSThat the data
arepurenoise and it has been argued tohavepower todetect a variety of departures
from randomness - linear or non-linear stochastic processes, deterministic chaos,
etc. (see Brock et al., 1991). BDS uses correlation sum as an estimator of cor-
relation integral (Cε(m)) which basically indicates the probability of two points
closer than ε in phase space of time delay embedding. BDS then uses the relation
between the correlation integral of the first and other dimensions of an i.i.d series
which states Cε(m) = Cε(1)m and turns it into a test to check whether sample
estimations of the Cε(m) and Cε(1) are sufficiently close.

2.3.2.3 Tests using auxiliary regression

The idea behind the tests in this subcategory is simply an statistical F test in which
a linear regression of the series on its lags is the restricted model and by adding a
nonlinear part to it the unrestrictedmodel is built. Hence, if the coefficients of the
nonlinear part significantly differ from zero the linear part is considered to be in-
adequate. The regression error specification test (RESET) of Ramsey (1969) uses
the higher orders of the fitted value as the nonlinear part. Keenan (1985) later used
Volterra expansion and modified RESET, presenting a simplified version which
only uses square of the fitted values to deal with the problem of multicollinearity.
Tsay (1986) improved the power of theKeenan test, generalizing it by allowing for
the all cross products of the lagged values looking for quadratic serial dependence
in the data.

2.3.3 Specification and Lagrange multiplier tests

As discussed before, linearity tests can be divided into two main categories: the
ones against a non-specified alternative and the ones against a specified alterna-
tive. These Specification tests are especially interesting since not only they are a
test to identify nonlinear time series, but also they help the modeling step. Tests
with a specified alternative are also usually called Lagrange Multiplier (LM) tests.
LM tests refer to those tests focusing on the coefficients of a nonlinear specified
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model and are parametric. In this case, Wald and Likelihood Ratio are not appli-
cable directly when a specified nonlinear alternative is only identified under the
null hypothesis of linearity and Lagrange multiplier tests only require estimation
of the linear model and makes the estimation of the nonlinear model unneces-
sary (Granger and Teräsvirta, 1993, ch 6; Luukkonen, et al., 1988 and Saikkonen
and Luukkonen, 1988). The classic nonlinear models considered for LM test in-
clude the threshold autoregressive (TAR)model (Tong1978, 1983), the exponen-
tial autoregressive (EXPAR) model (Ozaki 1982, 1985) and the bilinear model
(Granger and Andersen 1978, Subba Rao and Gabr 1984). The TAR model has
been especially developed, introducing a verity of other models used as the alter-
native hypothesis of LM tests. Smooth transition autoregression (STAR) models
(Chan and Tong, 1986), self-exciting threshold autoregressive (SETAR) models
(Hansen, 1999), logistic smooth transition autoregressive (LSTAR)model (Chan
and Tong, 1986), Multiple Regime STAR (MRSTAR) model (Dijk and Franses,
1999) are some advancements on the TAR model, to name a few, see Teräsvirta
(1994) and Dijk, et al. (2000). The alternative models of LM tests can also be
an ARCH or GARCH model which makes them of a special interest in the field
of finance. The famous and widely used Engle’s LM test of ARCH effect (Engle,
1982) is an example for such alternatives. It can be shown that many forecasting
techniques arise as a natural extension of, and as a complement to, existing speci-
fication tests.

2.3.4 The method of surrogate data

In traditional linearity tests, the statistic is compared to an asymptotic distribution.
This distribution is in most cases based on rigorous assumptions and conditions
that are hard to satisfy. The method of surrogate data provides us with an interest-
ing approach which in turn gives a better estimation of the statistic’s distribution
with assumptions easier to fulfill and enables us to discriminate between the orig-
inal series and a set of generated linear time series using a vast variety of nonlinear
features. The procedure of surrogate datamethod is essentially similar to paramet-
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ric bootstrap which has been described by Theiler et al. (1992), considered to be
the seminal paper on the subject, and later by Schreiber and Schmitz (2000) in
their review paper. In general, the procedure is as follows: 1- One starts with the
desired null hypothesis regarding the process of the data, i.e., in case of linearity,
the data generating process (DGP) is a linear stochastic one. 2- A set of surro-
gate series are generated consistent with the null hypothesis and resembling the
original series in those aspects but random in all the other aspects. 3- A discrimi-
nating statistic is chosen and its value is calculated for both the original series and
the surrogate set. In the area of linearity tests, this statistic should be capable of
characterizing weak nonlinear signatures. 4- The value of the nonlinear measure
calculated for the original series is compared to the distribution of that for the sur-
rogates and if it falls in the critical region and is atypical of the surrogates, the null
hypothesis is rejected and hence the presence of a nonlinearmovement is inferred.

As it is obvious from the steps mentioned above the method of surrogate data
depends heavily on two areas demanding delicacy. First, the algorithm used to
generate surrogates and second, the discriminating statistic. The surrogate DGP
has to resemble the original data regarding its first and second order statistics as
much as possible and simultaneously perturb any other ostensible relations. For
the latter, it has been discussed previously in this article that different nonlinear
measures focus on different aspects of such series and thus one should be careful
about the implied reasoning behind the used statistic. Another point about the
test statistic is whether it is “pivotal” and also if the surrogate DGP takes this into
account. Formore information on that seeTheiler and Prichard (1996). Thus, the
fact that the null hypothesis is rejected or not might turn out to be spurious if one
does not pay attention to these subtle but crucial points. In the next parts we wish
to investigate these two areas more thoroughly.

2.3.4.1 Algorithms for the generation of surrogate data

The surrogate DGPs are divided into two broad categories: typical realization and
constrained realization. The constrained realization surrogates are limited to take
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the exact same parameter values as the original series. Typical realization on the
other hand assigns a certain type of process to the original series and generates new
sets of data according to that. For example, if the null hypothesis is that the data
was generated by a Gaussian process, the typical realization approach would be to
estimate the mean and standard deviation of the original series and then gener-
ate a set of random values with that asymptotic distribution. As it is obvious, the
surrogate created in this way does not necessarily have the same sample mean and
standard deviation as the original series. The constrained approach, however, is to
generate a random series and then rescale it to take the exact same sample mean
and standard deviation. Theiler et al. (1992) explain that essentially the typical
realization approach is fitting the model and hence good for prediction but the
constrained realization surrogates provide an extremely over fit model suitable for
hypothesis testing.

In case of linear hypothesis, the desired parameters to be preserved are the first
and secondorder statistics specifically the autocorrelation functionor its frequency
domain counterpart, the periodogram³. Because of their characteristics the for-
mer is usually used for the typical realization and the latter is usually utilized for
the constrained realizations. There is a vast amount of literature trying out differ-
ent methods to produce surrogates for the linearity hypothesis each improving a
previous model or dealing with certain obstacles.

2.3.4.1.1 Typical realization approach

In Hjellvik and Tjøstheim (1995) authors describe a naïve bootstrap approach
which feeds back a resampling of the residuals of a fitted model to the model it-
self for the purpose of bootstrap test. This residual bootstrap approach uses an AR
model and for its model selection relies on the idea of sieve approximation and
hence it is also known as AR-sieve bootstrap. See Buhlmann (2002). Two more

³Note that the periodogram is not exactly equivalent to autocorrelation function. In other
words, peridogram represents “periodical” autocorrelation function in the frequency domain and
that is the source of some problem in this field. There are a few ways to circumvent this problem
such as windowing and zero padding. See Schreiber and Schmitz (2000)
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recent typical realization are statically transformed autoregressive process (STAP)
and autoregressive-to-anything (ARTA) inwhich a time series generated byGaus-
sian AR(P) with estimated coefficients based on the original time series is trans-
formed to have the givenmarginal distribution. Theonly difference between these
twomethods is in theirmarginal transform function, seeCario andNelson (1996)
and Kugiumtzis (2002). Later a multivariate version of these two was developed
in order to generate multivariate surrogates Kugiumtzis and Bora-Senta (2014).

2.3.4.1.2 Constrained realization approach

As for constrained realization algorithms the most basic one is known as Fourier
transform (FT). The idea behind this approach is simple. Using discreet Fourier
transform the original series is brought to the frequency domain and is divided to
two parts: the amplitude and the phase of each frequency. For generating a sur-
rogate series, the amplitudes are kept and the phases are replaced by a random
phase between 0 and 2π and then the Fourier transform is inverted. Based on
Wiener-Khinchin Theorem, by reserving the amplitudes the surrogate series has
exactly the same autocorrelation function, however, replacing the phases has de-
structed any possible extra information in the original series. Later, Theiler et al
(1992) improved this process and introduced Amplitude Adjusted Fourier Trans-
form (AAFT) algorithm. The algorithmuses aGaussian series rank-ordered based
on the original series and makes an FT surrogate of it. The original series is then
rank-orderedbasedon theFT surrogate tomake anAAFTsurrogate of the original
series. Schreiber and Schmitz (1996) show that this algorithm has a bias toward a
flat spectrum and suggest and iterative algorithm of AAFT (IAAFT) instead. One
starts with a random shuffle of the original series (without replacement) and then
the process in consisted of two iterative step. First, the amplitudes of the shuffled
series are replaced by that of the original series (using a Fourier transform and then
inversing it). second, the original data is rank-ordered based on the resulting se-
ries. The amplitudes of this new reordered original data is again replaced by the
amplitudes of the original series and so on. The iteration continues until no new
reordering happens in two consecutive iterations. Venema et al (2006) improved
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the IAAFTusing a stochastic approach (SIAAFT) to only replace a part of the am-
plitudes in the first stage. This results in a slower convergence and hence a lower
chance of getting stuck in a local minimum. There is also an abundance of con-
strained realization algorithmswhich do not use the Fourier transform. Simulated
annealing, for example, is a famous onewhich is frequently used and employs con-
cepts of thermodynamic in optimization. In order to achieve that, the problem of
creating surrogate series is transformed to an optimization of a single-valued cost
function. In the area of linearity testing, this cost function is the discrepancy be-
tween the autocorrelation function of the original series and its surrogate. In some
areas of study, the data under investigation is not a stationary one, and hence the
Fourier based algorithms would not be suitable. In order to evade this hindrance,
a set of algorithms are proposed using wavelet transform instead of Fourier. The
basics of such algorithms closely follow that of the FT. Wavelet transform breaks
the data into two set of coefficients known as Approximation and Detail coeffi-
cient and the surrogate generation algorithms keep the approximation coefficient
while manipulating the detail coefficients. This manipulation is often done using
the Fourier based algorithms. For more information, see Breakspear et al (2003)
and Keylock (2006, 2007, 2008 and 2010).

2.3.4.2 Discriminating Statistics

As it was discussed before, virtually any statistic capable of characterizing weak
nonlinearity can be utilized in the method of surrogate data with the hypothesis
of linearity. Schreiber and Schmitz (1997) in their leading paper investigate the
power of a few different statistics used with surrogate data a few of which was dis-
cussed in previous sections. Taken’s estimator and BDS use correlation dimension
and rely on the embedding dimension. They also use bicorrelation as a higher or-
der statistic. There are two other nonlinear measures which we have not discussed
prior to this pointmainly because their asymptotic distribution is either unknown
or hard to estimate and hence are hardly used without surrogate data. The first
one is a simple nonlinear prediction error which predicts one step ahead of each
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point inm dimension by smiley averaging over the future values of all neighboring
delay vectors closer than a certain threshold. The next one is a measure of time-
reversibility. A time series is regarded as “reversible” if its probabilistic proper-
ties do not change when the time is reversed. If this hypothesis is rejected, one
can also reject the hypothesis of linear Gaussian stochastic process. Schreiber and
Schmitz (1997) conclude that other than nonlinear prediction errorwhich consis-
tently gives good discriminating power, rest of the nonlinear measures give better
performance in some cases but completely fail in others. Specifically, time rever-
sal asymmetry measure which has the best power regarding the henon map but
cannot result in any significant rejection for noisy Lorenz data. In their paper, Gi-
annerini et al (2015) propose twometric entropymeasure based onBhattacharya-
Hellinger-Matusita distance. The null hypothesis for the first one is that the gener-
ating process is linear andGaussian, but the second statistic only assumes linearity
as its null hypothesis. In their paper, the proposed statistics show promising result
against simulated data specially in finding the lag with nonlinear motion.

2.4 Testing forNonlinearity in Financial Time Series

In this section, we report the results of the implementation of a selection of tests
introduced before on financial time series in order to test the presence of nonlin-
earity in real world financial data based on an eclectic set of tests. The series ana-
lyzed are daily returns of m = 50 equities on the S&P 500 index from 04.01.2005
through31.12.2014, for a total of 2517observations andwere taken fromtheBloomberg.
In all cases, we have applied fifteen tests in four major groups: HOS, Diagnostic,
LM and Method of surrogate data. As we can see in Table.2.4.1 and Table.2.4.2,
the evidence against linearity is clear in some of the series as almost all tests pro-
vide the same outcome. But, in many cases, the result of the tests are different for
an individual series which means that the return series follow different level and
kind of nonlinearity. As the rational behind tests are different and different tests
has been designed in a way to capture a different kind of nonlinearities, we can
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Table 2.4.1: The results of the application of linearity tests to equity returns.
A rejection of the null hypothesis of linearity is shown by ✓.

ind HOS Diagnostic LM Method of surrogate data
Serial dependence and serial correlation Auxiliary Regression AAFT Simulated Annealing

AR(1) ARMA ARMA-GARCH
BiSpectral BDS LB ML BDS LB ML BDS LB RESET SETAR TA Srho TA Srho

1 × ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ✓
2 × ✓ × ✓ ✓ × ✓ × × × ✓ ✓ ✓ ✓ ✓
3 ✓ ✓ × ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ✓
4 × ✓ ✓ ✓ ✓ × ✓ × × × ✓ ✓ ✓ ✓ ✓
5 × ✓ ✓ ✓ ✓ × ✓ ✓ × × ✓ ✓ ✓ ✓ ✓
6 × ✓ ✓ ✓ ✓ × ✓ ✓ × × × × ✓ ✓ ✓
7 × ✓ ✓ ✓ ✓ ✓ ✓ × × ✓ ✓ ✓ ✓ × ✓
8 × ✓ ✓ ✓ ✓ × ✓ × × ✓ ✓ × ✓ ✓ ✓
9 × ✓ × ✓ ✓ × ✓ × × × ✓ ✓ ✓ ✓ ✓
10 × ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ✓
11 × ✓ ✓ ✓ ✓ × ✓ × × ✓ ✓ ✓ ✓ ✓ ✓
12 × ✓ ✓ ✓ ✓ × ✓ × × ✓ ✓ ✓ ✓ ✓ ✓
13 × ✓ × ✓ ✓ × ✓ × × × ✓ × ✓ ✓ ✓
14 × ✓ × ✓ ✓ × ✓ × × × ✓ ✓ ✓ ✓ ✓
15 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ✓
16 × ✓ ✓ ✓ ✓ × ✓ × × × ✓ ✓ ✓ × ✓
17 × ✓ ✓ ✓ ✓ ✓ ✓ × × × ✓ ✓ ✓ ✓ ✓
18 × ✓ ✓ ✓ ✓ × ✓ ✓ × × × × ✓ ✓ ×
19 × ✓ ✓ ✓ ✓ × ✓ ✓ × × ✓ ✓ ✓ ✓ ✓
20 × ✓ × × ✓ × × ✓ × × ✓ ✓ ✓ ✓ ✓
21 × ✓ ✓ ✓ ✓ × ✓ × × ✓ ✓ ✓ ✓ ✓ ✓
22 × ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ✓
23 ✓ ✓ ✓ ✓ ✓ × ✓ × × × ✓ ✓ ✓ × ✓
24 × ✓ × ✓ ✓ × ✓ ✓ × × × ✓ ✓ × ✓
25 ✓ ✓ × ✓ ✓ × ✓ × × × ✓ × ✓ × ✓

guess about the data generating process of the series.
For all the tests up to three lags (in cases with embedded dimensions such as

the BDS test up to three dimensions) was tested and if the hypotheses of linear-
ity was rejected at 95% significance level on any of those lags, the time series was
considered as nonlinear (shown by check marks in the table). The linear serial
dependence is removed from the series through different pre-whiteningmodels in
the followingway: AR(1)model, ARMA(p,q)model andARMA-GARCHmodel
for values from p,q = 0 to 5. The optimal lag is chosen to minimise the Akaike in-
formation criterion (AIC). LB does not reject the null hypothesis of no serial cor-
relation for 18 of the series in their AR(1) residuals. Oddly enough LB rejects the
null hypothesis for two of these 18 series in their Best ARMA residuals. Thismight
mean that a naive approach such asAR(1)might be better capable of filtering serial
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Table 2.4.2: The results of the application of linearity tests to equity returns.
A rejection of the null hypothesis of linearity is shown by ✓.

ind HOS Diagnostic LM Method of surrogate data
Serial dependence and serial correlation Auxiliary Regression AAFT Simulated Annealing

AR(1) ARMA ARMA-GARCH
BiSpectral BDS LB ML BDS LB ML BDS LB RESET SETAR TA Srho TA Srho

26 × ✓ ✓ ✓ ✓ × ✓ × × × ✓ ✓ ✓ ✓ ✓
27 × ✓ × ✓ ✓ × ✓ ✓ × × ✓ × ✓ ✓ ✓
28 × ✓ × ✓ ✓ ✓ ✓ ✓ × × ✓ ✓ ✓ ✓ ✓
29 × ✓ × ✓ ✓ × ✓ × × × × ✓ ✓ ✓ ✓
30 × ✓ ✓ ✓ ✓ × ✓ × × × ✓ ✓ ✓ × ✓
31 × ✓ ✓ ✓ ✓ × ✓ × × × ✓ ✓ ✓ ✓ ✓
32 × ✓ ✓ ✓ ✓ ✓ ✓ ✓ × × ✓ ✓ ✓ ✓ ✓
33 × ✓ × ✓ ✓ × ✓ × × × ✓ ✓ ✓ × ✓
34 × ✓ ✓ ✓ ✓ ✓ ✓ × × × × ✓ ✓ ✓ ✓
35 × ✓ × ✓ ✓ × ✓ × × ✓ ✓ ✓ ✓ ✓ ✓
36 × ✓ ✓ ✓ ✓ × ✓ × × × ✓ ✓ ✓ ✓ ✓
37 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ✓
38 × ✓ × ✓ ✓ × ✓ ✓ × × ✓ ✓ ✓ ✓ ×
39 × ✓ ✓ ✓ ✓ × ✓ × × × ✓ ✓ ✓ ✓ ✓
40 ✓ ✓ ✓ ✓ ✓ ✓ ✓ × × × ✓ ✓ ✓ ✓ ✓
41 × ✓ × × ✓ × × ✓ × × × ✓ ✓ ✓ ✓
42 × ✓ ✓ ✓ ✓ × ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ✓
43 × ✓ ✓ ✓ ✓ × ✓ × × × ✓ ✓ ✓ ✓ ✓
44 × ✓ ✓ ✓ ✓ × ✓ × × ✓ ✓ ✓ ✓ ✓ ✓
45 ✓ ✓ × ✓ ✓ × ✓ × × × ✓ ✓ ✓ ✓ ✓
46 ✓ ✓ ✓ ✓ ✓ × ✓ ✓ × × ✓ × ✓ ✓ ✓
47 × ✓ ✓ ✓ ✓ × ✓ × × × ✓ × ✓ ✓ ✓
48 × ✓ × × ✓ × × ✓ × × × ✓ ✓ ✓ ✓
49 × ✓ × ✓ ✓ × ✓ × × × ✓ × ✓ ✓ ✓
50 × ✓ ✓ ✓ ✓ × ✓ × × × × ✓ ✓ ✓ ✓

correlation from a series than a roundabout approach such as Best ARMA which
uses AIC to find the best ARMA lag.

Using ARMA-GARCH pre-whitening, one can capture nonlinear motions of
most of financial series in a way which BDS recognizes the residuals as i.i.d and
LB is unable to find any serial correlation in them. However, there are some series
that show captured nonlinearities in their ARMA-GARCH residuals which is in-
dicative of some nonlinear motion other than that of offered by GARCH model.
The fact that the results of different tests overlap but do not cover each other com-
pletely can be construed as an indicative of the fact that the verity of measured
aspects offered by these different tests is a necessity for any researcher wishing to
study nonlinear motions of financial series.

For the method of surrogate data two different algorithms of surrogate genera-
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tion (AAFT and Simulated annealing) were used accompanied by time asymme-
try statistic (TA) and the entropy measure of Giannerini et al (Srho).

We examine the nonlinear dependencies between return series using Kruger et
al. (2008) test in the next chapter. The test is designed to detect nonlinearities
based on nonlinear principal component analysis and between time series.
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Definition of Statistics: The science of producing unreliable
facts from reliable figures.

Evan Esar

3
Nonlinear ForecastingUsing a Large

Number of Predictors

3.1 Introduction

World data currently doubles every couple of years with an on-going steady in-
crease in computing power that poses new challenges for economicmodelling and
forecasting in a big data environment. It challenges state-of-the-art data acqui-
sition, computation and analysis methods. To benefit from many new potential
explanatory variables, dimension reduction methods (i.e, Factor models - Stock
& Watson, 2002, 2006; Bai & Ng, 2002; Deistler & Hamann, 2005; Forni et al,
2005; Lam & Yao, 2012), shrinkage techniques (Ridge - Hoerl & Kennard, 1988;
LASSO -Tibshirani, 1996; ElasticNet - Zou&Hastie, 2005), and subset selection
techniques (Bayesian regression - De Mol, Giannone, Reichlin, 2008; Selecting
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variables - Bai &Ng, 2008a) are used to handle high-dimensional data but they are
mostly linear models. Since the linear models cannot explain a number of impor-
tant features common to much economic and financial data, it is logical to think
about a nonlinear statistical model to concurrently handle high-dimensionality
and nonlinearity. Only a few attempts considering nonlinear dynamics in high-
dimensional setting exist. Bai &Ng (2008b), and Raviv &VanDijk (2014), for in-
stance, included the quadratic principal components PCs and the first level cross-
products of the original variables to capture nonlinearities. Their model is nonlin-
ear in the variables, but it is linear in the parameters. Meanwhile, Exterkate et al
(2013) applied kernelmethods to a ridge regression to introduce a nonlinear ridge
regression. Giovannetti (2011) improved the factormodel by running a nonlinear
regression on linear PCs.

With the rise of big data and the real opportunities that machine learning now
brings, there is no better time to find out how novel techniques can be used for
economic research. To this end, this chaper aims at addressing high-dimensional
econometric models and machine learning techniques to analyse and forecast fi-
nancial big data. Through this study we introduce a nonlinear statistical factor
model based on neural networks (NLFM hereafter).

In theory, the optimal forecast of a variable under quadratic loss is its expecta-
tion conditional on information available. In practice, the relevant information set
might be very large and a factor-based forecast can systematically handle this infor-
mation while keeping the dimension of the forecasting model small. Forecasting
using factormodels has recently receivedmuch attention, especially in themacroe-
conomic literature. However the potential of factor-based forecasts can also be in-
vestigated in the realm of finance. Several papers have been devoted to forecasting
macroeconomic and financial time series with factor models in a data-rich envi-
ronment where, in general, the idea is to forecast the series of interest by using the
common factors estimated from a large panel of predictors, see Stock & Watson
(2002, 2006); Forni et al.(2005); Deistler & Hamann (2005); Stock & Watson
(2004),and Boivin & Ng (2005) for a survey of the ’factor approach methods’ to
forecasting.
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In particular, the problem of forecasting with factor models can be divided into
two steps: (1) The factor estimation step from a large panel of data and the fore-
casting step that uses the factor estimates to forecast the series of interest. Factors
estimation and forecasting equations can be obtained in different ways. For in-
stance, Kalman filter methods and cross-sectional averaging methods as principal
components analysis (PCA) are two kind of estimates of the factors. Concern-
ing forecasting with factor models, several approaches have been proposed based
on how the common factors are estimated and how the forecast equations are for-
mulated. There are two leading approaches in the literature that differ primarily
because of the methodology used to estimate the factors. The static method, sug-
gested by Stock and Watson (2002) (SW hereafter), and the dynamic method of
Forni, Hallin Lippi and Reichlin (2005) (FHLR hereafter). SW performed a fore-
casting experiment for macroeconomic variables using factors estimated by PCA
from a large panel of U.S. monthly predictors. In finance literature, Deistler and
Hamann (2005) applied a static factor model (to be more precise, Quasi-static
principal component analysis, quasi-static factormodelswith idiosyncratic errors)
when forecasting returns on asset prices. FHLR performed a forecasting experi-
ment based on spectral analysis (a dynamic principal components), and then ap-
plied this approach to forecast macroeconomic indicators using a large panel of
Euro-area monthly predictors. Moreover, Forni et al. (2015) recently introduced
a method that complements FHLR by assuming an infinite-dimensional factor
space. Various papers found substantial forecasting improvements based on the
mean squared errors of factor models and those obtained from simple autoregres-
sions and more elaborate structural models, see Stock and Watson (1999); Stock,
WatsonandMarcellino (2003), Forni et al. (2001), andForni andReichlin (2001).

This study introduces a nonlinear financial forecasting methodology based on
two concepts: factor models and neural networks. As we believe that understand-
ing the comovement between financial returns is crucial for forecasting procedure,
we use factor models to describe the covariance structure of financial return and
produce a parsimonious representation of themarket correlation anddemonstrate
that a small number of common components accounts for a large proportion of
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the variability of the equities that we consider. It is worth noting that the nonlin-
ear factor-based forecast model that we propose is based on static factor models,
however the proposed model can be extended to a dynamic setting when we deal
with macroeconomic forecasting.

The rest of the chapter is organized as follows. Section II provides the basic
framework of factor models, the application of factor models in forecasting finan-
cial returns, an overview of nonlinear dimensionality reduction and a review of
neural networks from a statistical perspective. In Section III we introduce a non-
linear factor model concerning a nonlinear factor estimation and nonlinear fore-
cast equation. Section IV summarizes our empirical findings, concerning data, a
quick review of linearity tests in and between series, competing models, tools for
validation of the forecasts and trading (portfolio) simulation. Finally, our conclu-
sion are presented in Section V.

3.2 Preliminaries

In this chapter we answer the question of whether it is possible to forecast with
a large panel of predictors, while considering nonlinear dynamics in data and to
show how a model with such features can improve financial forecast accuracy. We
propose a forecasting model that is able to handle high-dimensionality and non-
linearity by applying a neural network based principal component analysis to esti-
mate common factors from a large panel of data and nonlinearly forecast the series
of interest uses the factor estimates with a feedforward neural network. Such fea-
tures can go beyond the covariance structure analysis. In the following section we
initially review the basic framework of factor models and the dimensionality re-
duction and the neural network model, we then explain our proposed model.

3.2.1 Forecasting financial return series with factor models

Research into modelling and forecasting a financial time series has a long history.
Severalmodels are covered inTsay (2005) andCampbell et al.(1996) that attempt
to explain return time series using linear combinations of one or more financial
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market factors. The most widely studied single factor models is the capital asset
pricing model (CAPM) of Sharpe (1964) and Lintner (1965) that relates the ex-
pected return of equities to the expected rate of return on a market index such as
the Standard and Poor’s 500 Index. Although CAPM is attractive for its simple
logic and intuitively pleasing predictions about risk and expected return, the em-
pirical record of the model is poor and it can not explain the behaviour of asset re-
turns, see Fama and French (2004). The empirical failure of the CAPM is perhaps
because of its simplicity which implies that amodel withmultiple factorsmight be
required to fully explain return time series. Arbitrage pricing theory (APT) was
one general model developed by Ross (1976) to shore up these deficiencies. APT
presents a linear approximate model of expected asset returns using an unknown
number of unidentifiedmacroeconomic factors or theoretical market indices. The
problem then becomes one of identifying the factors. Factors may be classified in
terms of identification into either theoretical or statistical. The theoretical models
explain asset returns based on specifying observable macro-economic and finan-
cial variables (e.g., Chen, Roll and Ross 1986) or observable defined firm-specific
variables (e.g., Tsay, 2005) as factors. The relationships between the factors and
the return time series are determined using linear regression. The two most fre-
quently used statistical methods, that extract the unobservable or latent factors
directly from the portfolios of return time series, are factor analysis and PCA, see
Tsay (2005).

Analysis ofmultiple financial returns often requires high-dimensional statistical
models. In practice, the return time series present similar characteristics and share
the following stylised facts: comovements, nonlinearity, non-gausianity (skew-
ness and heavy tails), volatility clustering and leverage effect, which makes the
modelling of this variable hard, see Hsieh (1991); Bollerslev, Engle and Nelson
(1994); Brooks (1996); Cont (2001). Hence, factor models have been proposed
in the literature to study common patterns of return series. In statistical factor
models, variables are represented as the sum of two mutually orthogonal unob-
servable components: the common components and the idiosyncratic compo-
nent. This chapter focuses on statistical factor models to predict financial return
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series.

3.2.1.1 Linear Factor model general specification

Givenahigh-dimensionalmatrix of stationary time seriesof financial returns,which
we denote by xit (i = 1, ...,m, t = 1, ...,T) the factor model enables us to disas-
semblexit into the fewcommon factors representing themarketor the co-movements
of the returns and idiosyncratic components representing special featuresof a given
company. xit consists of the m series of financial returns and T time series obser-
vations for each company. In terms of matrix notation, let X be the m × T matrix
of observed return series; xt is a row vector denoting all m observations at time t,
while xi is a column vector denoting all T observations for ith company.

The forecast variable of interest is xiT+h|T, the h-step-ahead out-of-sample fore-
cast of a return series in thepanel. It is also assumed that the series hase a zeromean
and covarianceΓX(0). In a high-dimensional settingmusually ismuchgreater than
Tand the factormodel reduces thedimension tomake the estimation feasible. The
idea is that a small number q of factors should be able to explainmost of the covari-
ance of the data. A factor model also describe the covariance structure of returns
and deconstructs risk and return into systemic and systematic components.

A number of different formulations of factor models are imaginable based on
how data is explained by common factors and the idiosyncratic component. If the
factors (shown by ut hereafter) has only a contemporaneous effect on xt and an
idiosyncratic component (shown by ξt hereafter) has no cross–sectional depen-
dence, the setting is known as the exact static model; see Spearman (1904); Law-
ley and Maxwell (1971). This is estimated by

xt = λ′iut + ξt, (3.1)

where ut is a vector of q common factors, λi is the corresponding vector of load-
ings for unit i, and ξit is an idiosyncratic component. In classical factor models,
ξit is serially uncorrelated and iid across i. While in the extension to a dynamic
setting, the model allows factors and the idiosyncratic component to be serially
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correlated. For an exact dynamicmodel see Sargent and Sims (1977) andGeweke
(1997). The dynamic factor model representation is given as:

xt = b′i(L)ut + ξt, (3.2)

where ut is a vector of dynamic factors. In these two last equations, factors are a
q-dimensional vector (q≪ m) and λ or B(L) are loadings matrices of size m× q.
Hereafter, we will refer to xt − ξt as the common component χt in both static and
dynamic cases.

Chamberlain and Rothschild (1983) introduced an approximate (or general-
ized) static factormodel allowingweakcross–sectional dependenceon the idiosyn-
cratic component ξt and for the generalised dynamic factor models (GDFM) see
Forni and Lippi (2001); Forni, Hallin, Lippi, and Reichlin (2000). It is also worth
noting that ut and/or ξt must be serially correlated to guarantee the predictability
of xt.

Since financial returns are often seen tohave very lowautocorrelation and there-
fore are often modelled as white noises, this work focuses on a static method of
estimating factors. The static factor model seems to be an appropriate choice and
unnecessary estimate of the dynamic factor could induce some efficiency loss. The
following section starts with an overview of linear and nonlinear dimensionality
reductionmethods emphasizing PCA and nonlinear PCA as the factor estimation
step.

3.2.2 Overview of Nonlinear Dimensionality Reduction

A variety of dimensionality reductionmethods exist, with a variety of motivations
in many fields including statistics, machine learning, and applied fields for over a
century. In general, dimensionality reduction methods can be used in discover-
ing low-dimensional structure fromhigh-dimensional and noisy observations that
extracts some meaningful features of interest in the data. These methods can be
interpreted as a simple optimization framework that can be broadly classified into:
linear, nonlinear and proximity (graph) based methods.
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In the first class we have principal component analysis PCA (Pearson, 1901;
Eckart and Young, 1936), factor analysis FA (Spearman, 1904), canonical cor-
relations analysis CCA (Hotelling, 1936), multidimensional scaling (Torgerson,
1952; Cox and Cox, 2001; Borg and Groenen, 2005), distance metric learning
(Kulis, 2012; Yang and Jin, 2006), linear discriminant analysis (Fisher, 1936; Rao,
1948), and several others. Recently, Cunningham and Ghahramani (2015) sur-
veyed the literature on linear dimensionality reduction in their work and gave in-
sights to some rarely discussed shortcomings of traditional approaches. Linear
methods are based on a linear projection assuming that the data lives close to a
lower dimensional linear subspace. If the data lies on or near a low-dimensional
nonlinear manifold, then linear methods, even though computationally efficient,
can not model the variability of the data correctly and recover this intrinsic non-
linear structure. However, the basic geometric intuitions behind linear methods
play an important role inmany algorithms for nonlinear dimensionality reduction.

The algorithms designed to address the problem of nonlinear dimensionality
reduction are for instance, Kernel methods (Schölkopf, Smola and Müller, 1997,
1998; Jäkel, Schölkopf andWichmann, 2007),Neural networkmethods (Oja, 1982;
Kramer, 1991; Hsieh, 2004; Hinton and Salakhutdinov, 2006; Kohonen’ 2000).
Modern methods for optimization enable a generic nonlinear dimensionality re-
duction solver, which accepts as input data and anobjective that is to be optimised,
and returns, as output, an optimal low-dimensional projection of the data. Graph
basedmethods, like theLocallyLinearEmbedding(Roweis andSaul, 2000), Isomap
(Tenenbaum, deSilva andLangford, 2000),MaximumVarianceUnfolding (Wein-
berger and Saul, 2006), Laplacian Eigenmaps (Belkin and Niyogi, 2002) and sev-
eral relatedmethods arepowerful andnonlinear, but their computational cost scales
quadraticallywith the number of observations, so they generally cannot be applied
to very large high-dimensional data sets.

Thediversity of dimensionality reductionmethodsmakes a direct intercompar-
ison between different methods very difficult. There are very few studies compar-
ing theperformanceof differentmethodson the sameproblem. SeeFodor (2002),
Burges (2004) and Cayton (2005) for a review of the most common geometrical
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and statistical methods of dimensionality reduction. This section treats in detail
only Linear and Nonlinear PCA methods for the financial data analysis. We will
begin by reviewing the notion of PCA and the extension of ideas from PCA to
a nonlinear setting. Then we describe the neural networks and its application in
nonlinear PCA.

3.2.2.1 Extension of ideas from PCA to a nonlinear setting

SincePCA isperhaps themostpopular instanceofdimensionality reductionmeth-
ods and it has been discussed extensively by other authors, only a brief summary
is given here. PCA (also known as empirical orthogonal function (EOF), proper
orthogonal decomposition (POD) and the Karhunen-Loève decomposition) in
a nutshell is a technique for linearly mapping multidimensional data into lower
dimensional space while preserving as much information as possible. PCA also
transfer a set of correlated variables into a new set of uncorrelated variables.

Given am-dimensional randomvector of the form xt = (x1, ..., xm), where con-
sists of correlated data points and each variable xi (i = 1, ...,m) has T samples la-
beled by the index t, PCA is an optimal matrix factorization of xt into two vectors,
ut called the scores, a q-dimensional orthonormalprincipal components (q≪ m),
and λ, called the loading matrix of size m × q, plus a matrix of residuals ξt when t
is simply the time, and each xi is a time series containing T observations.

xt = λ′iut + ξt (3.3)

PCA searchs for u, a linear combination of the xi, and an associated vector λ.
The condition of optimality on the factorization is that the Euc1idean norm of the
residual matrix, ∥ξt∥2 = ⟨∥xt− λ′iut∥2⟩ , must beminimized for the given number
of factors. One can easily show that the subspace with minimum reconstruction
error is also the subspace with maximum variance. The basis vectors of this sub-
space are given by the top q eigenvectors of them×m covariancematrix.Therefore,
to satisfy this criterion, it is known that the columns of λ are the eigenvectors Cor-
responding to the q largest eigenvalues of the covariance matrix of xt. It is also
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useful to view PCA as a linear projection of data from Rm to Rq. PCA finds the
projection such that the best linear reconstruction of the data is as close as possi-
ble to the original data. Taking λ′λ = Iwithout loss of generality, themapping has
the form:

ut = xtλi (3.4)

The loadings λ are the coefficients for the linear transformation. The informa-
tion lost in this mapping can be assessed by reconstruction of the measurement
vector by reversing the projection back toRm:

x̃t = utλ′ (3.5)

where x̃t = xt−ξt is the reconstructedmeasurement vector. In PCA, input data
are projected into the q-dimensional subspace that minimizes the reconstruction
error. For background and more details on PCA, see Jolliffe (2002). However,
PCA provides optimally parsimonious data compression for any dataset whose
distribution lies along orthogonal axes, the common drawback of this methods
is that only linear structures can be correctly extracted from the data and nonlin-
ear relations are either missed or misinterpreted by this methods and reduction of
dimensions for complex distributions may need non linear processing. In nonlin-
ear PCA, the mapping into feature space is generalized to all arbitrary nonlinear
continuous function expressible by a feedforward neural network. By analogy to
Eq.3.4, we seek a mapping in the form:

linear relation in PCA is now nonlinearly generalized and can be any nonlinear
continuous function representable by a feedforward neural network

ut = φ(x)(xt) (3.6)

where φ(x) is a nonlinear vector function, composed of q individual nonlinear
functions analogous to the columns of λ, such that if ui represents the ith element
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of ut,

ui = φ(x)
i (xt) (3.7)

The inverse transformation, restoring the original dimensionality of the data,
analogous to Eq.3.5, is implemented by a second nonlinear vector function φ(u)

~xt = φ(u)(ut) (3.8)

φ(u) nonlinearly generates a continuousopencurve in thext space andaq-dimensional
approximation of the original data. The loss of information is again measured by
ξt = xt− x̃t, and analogous to PCA, the functions φ(x) and φ(u) are selected tomin-
imise ||ξ||. If φ(x) and φ(u) are linear, the optimal solution is PCA and if these func-
tions are not linear then we are basically doing nonlinear PCA. In neural network
PCA, both mapping (also known as reduction or extraction) and demaping (re-
construction or generation) functions are both approximated by neural networks.
PCA is closely related to a particular form of neural network, an autoassociative
network method of Kramer (1991) and Scholz et al (2007), which is a neural net-
work whose outputs are its own inputs and the goal is to minimise reconstruction
error. An autoassociative neural network has a bottleneck network architecture
and consists of a “reduction” network, representing the function φ(x) , mapping
fromm inputs to q outputs, connected directly to a “reconstruction” network, rep-
resenting the function φ(u) , mapping from q inputs to m outputs.

There is also another class of methods that use artificial neural networks, self
organizing maps - SOM (Kohonen, 2000), as a means of high-dimensional data
projection to a lower-dimensional discrete representation, preserving the locality
between data vectors in the original high-dimensional space. However SOM had
empirical success especially in one-dimensional cases (see Fort, 2006), the theo-
retical justification behind the SOM approach is weak. So this work focuses on
the autoassociative networks. The aim of next subsections is to cover the key con-
cepts of the methods that use multilayer perceptron neural networks as function
approximators (particularly feedforward networks for time series analysis), and
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neural network PCA method.

3.2.3 Neural Networks for Time Series Analysis

When performing time series analysis we would like to characterise how the value
of a target variable changes as some predictors are varied. However linear models
are adequate to explainmany phenomena in the world, most important economic
and financial phenomena are complex and nonlinear in nature. In order to explain
nonlinear phenomena, different parametric and nonparametric nonlinear regres-
sion models have been developed so far.

Parametric nonlinear regressionmodels attempt to characterise the relationship
between predictors and response with parametric nonlinear functions. The pa-
rameters can take the form of a polynomial, exponential, trigonometric, power,
or any other nonlinear function. In other words, in parametric nonlinear models
the shape of the functional relationships between the response and the predictors
are predetermined. Inmany situations, that relationship is unknown and nonpara-
metric nonlinear regression models should be used.

In nonparametric models, the shape of the functional relationships between
variables can be adjusted to capture unusual or unexpected features of the data.
The main types of nonparametric regression models are kernel-based methods,
tree-based regression models and artificial neural networks.

Kernel-based methods can be viewed as a nonlinear mapping from inputs into
higher dimensional feature space in the hope that the data will be linearly sepa-
rable or better structured. It measures distances between observations, then pre-
dicts new values based on these distances. Best known example are support vector
machines (SVMs), introduced by Vapnik (Chervonenkis and Vapnik, 1964, 1974;
Vapnik, 1982, 1995), which provide a structured way to use a linear algorithm in a
transformed feature space. The key advantage this so-called kernel trick brings is
that nonlinear patterns can be found at a reasonable computational cost. Perhaps
the biggest limitation of the kernel-based methods lies in choice of the kernel and
tuning model parameters.
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Tree-based regression models are alternative (nonparametric and nonlinear)
approaches to regression that are not based on assumptions of normality and user-
specified model statements.These models originated in the 1960s with the devel-
opment of AID (Automatic Interaction Detection) by Morgan and Sonquist. In
the 1980s, statisticiansBreiman et al. (1984)developedCART(ClassificationAnd
Regression Trees). The fundamental idea is to recursively partition the regressors’
space in regions (build a tree) until all the subspaces are sufficiently homogeneous
in order to estimate the regression function with the sample average (or the spe-
cific local model employed) in each region.

Another class of nonlinear models that we focus on in this study are neural
networks. These are flexible function forms motivated by the way the brain pro-
cesses information. neural networks consist of a cascade of simple computational
units calledneurons, which are highly interconnected. Dependingonhow they are
constructed, neural nets can approximate functions that are generally unknown.
However Neural networks can use a variety of topologies, based on the univer-
sal approximation theorem, a single hidden layer feedforward network architec-
ture with finite number of neurons can approximate arbitrary well any nonlinear
function (poofs have been given byCybenko (1989), Hornik et al. (1989),White
(1990) and Hornik (1991)). For those inetresred in neural network models, see
Bishop (1995), Hastie, Tibshirani and Friedman (2009), Teräsvirta, Tjostheim
and Granger (2010). Also the following papers provide readers with a statistical
approach to neural networks (Varian, 2014; Teräsvirta, Van Dijk and Medeiros,
2005; Kuan and White, 1994).

A neural network is an interesting area ofmachine learning. It is simultaneously
one of the oldest and one of the newest areas. The work on neural networks goes
back to the 1940s when researchers tried to buildmodels of the brain. Perceptron,
which is an extremely simplified computational model of a biological neuron and
a very simple precursor of linear models, goes back to the 50s and people showed
amazing performance of the perceptron on a number of problems. Perceptron of
coursewas limited inwhat it could do, so later on research related to the neural net-
work basically died. It was reborn in the 1980s when researchers figured out how
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to put multiple perceptrons together into a network and they learnt how network
weights with the Backpropagation algorithmworked. Again there was a great deal
of excitements because these models finally seemed to be able to solve all kinds
of learning problems. At the same time more powerful regression models came
along, support vector regressions, so neural networks again fell out of fashion and
were shelved. They returned for a second time recently when people finally fig-
ured out how to train them reasonable quickly on a massive scale and a big part of
that is due to the changes in hardware that have occurred since the 1980s. It is also
worth mentioning that there has been a resurgence in the field of artificial neural
networks in recent years, knownas “Deepneural networks”. Deepneural networks
usemultiple stages of nonlinear computation and havewon numerous contests on
an array of complex tasks ranging from pattern recognition and machine learning.

In practice, a neural network is an interlinked collection of neurons that the out-
put of some neurons can become inputs to other neurons. A neural network im-
plements a function y = Φ(x; θ) ; the ‘output’ of the network, y, is a nonlinear
function of the ‘inputs’ x; this function is parametrised by weights and the bias is
θ = {w, β}.

To describe neural networks, we will begin by describing the simplest possible
neural network, which is a computationalmodel of a single neuron (known as per-
ceptron). A perceptron follows the “feedforward” model, meaning it takes a set of
observed inputs xit = (x1t, x2t, ..., xNT), multiplies each of them by their own as-
sociated weight wi = (w1,w2, ...,wN), and sums up the weighted values and also
adds a bias β (always +1) to form a pre-activation z. The network then transforms
the pre-activation using a nonlinear activation function φ(z) (e.g. logistic sigmoid
or tanh) to output a final activation yt. So, a single neuron can be formulated as
follows:

z = β +
N∑
i

xitwi, (3.9a)

yt = φ(z) + εt. (3.9b)
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Single neuron networks with an identity activation function or even a sigmoid
function implement linear models, which does not really help us if we want to
model nonlinear phenomena. The sigmoid function is almost linear near themean
and has smooth nonlinearity at both extremes. However, by considering the single
neuron network to be a basic building block, we can construct more complicated
networks, ones that perform powerful nonlinear computations. Instead of a single
neuron, we introduce a set of neuron networks. This set of intermediate networks
is often referred to as a “hidden” layer, as it does not directly observe input or di-
rectly compute the output. By using a hidden layer, we form a multilayered net-
work. Amultilayered network with only one hidden layer has two sets of weights:
those connecting the inputs to the hidden layer (wij), and those connecting the
output of the hidden layer to the output layer(wjk).

Multilayer neural networks form compositional functions that map the inputs
nonlinearly to outputs. If we associate index iwith the input layer, index jwith the
hidden layer, and index kwith the output layer, then an output unit in the network
computes an output value yt given and input xt via the following compositional
function:

yt = φk

[
βk +

L∑
j

φj

(
βj +

N∑
i

xitwij

)
wjk

]
+ εt (3.10)

where xit is the value of the ith input node, which canbe amatrix of lagged values
of yt and someexogenous variables. φj(.) and j are activation functions andnumber
of nodes (L neurons) used at the hidden layer. φk(.) function denotes the output
transfer function than can be either linear or a Heaviside step function. As with
the single neuron networks, the choice of activation function for the output layer
will depend on the task that we would like the network to perform (i.e. catego-
rization or regression). βj and βk are the biases or the weights for the connections
between the constant input and the hidden neurons and between the neurons and
the output respectively.

From a statistical point of view, formulation of a multilayer feedforward neural
network model with more than one hidden layer (i.e. h hidden layers when h =
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1, ...,M) can be generalised to

yt = φk

[
βk +

M∑
h

φh

(
...φj

(
βj +

N∑
i

xitwij
))

whk

]
+ εt, (3.11)

Using identity function for the output unit activation function (in conjunction
with nonlinear activations amongst the hidden units) allows the network to per-
form a powerful form of nonlinear regression. So, the network can predict con-
tinuous target values using a linear combination of signals that arise from one or
more layers of nonlinear transformations of the input. Based on the universal ap-
proximation theorem, a single hidden layer feedforward network architecturewith
a finite number of neurons can approximate arbitrary well any bounded continu-
ous function ofN real variables. So, in this study, we have focused on a feedforward
network with only one hidden layer. And to show that the neural network models
can be seen as a generalisation of linear models, we allowed for direct connections
from the input variables to the output layer and we assumed that the output trans-
fer function {φk(.)} is linear, then the model becomes

yt = βk +
N∑
i

xitwik +
L∑
j

φj

(
βj +

N∑
i

xitwij

)
wjk + εt, (3.12)

where the first summation represents a linear regression term with a constant.
A linear regression term hints the model in a right direction when we know that
the data contains a linear component. Moreover, this is more interpretable from a
statistical perspective andunraveling abit of a structurebehind thenetwork,which
is usually seen merely as a black box. It also has the advantage that, if the problem
is essentially linear, the hidden neurons tend to get pruned and we are left with a
linearmodel. Since the functional formof thismodel is knownandweonlyneed to
find the number of neurons in hidden layer and to estimate the biases andweights,
then feedforward networks are categorized as semiparametric functions. Here, in
this approach, we let the data speak for itself as much as possible.

Choosing the appropriate activation function for hidden and output layers is
important and depends on the task we would like the network to perform. Acti-
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vation functionsmust be differentiable since the learning algorithms such as back-
propagation, which determine parameters in neural networks, require the gradi-
ent of the activation functions. Most commonly-used activation functions are the
identity/linear function, the logistic sigmoid function, and the hyperbolic tan-
gent function. For instance, identity activation function, φlinear(z) = z and y ∈
(−∞,∞), is commonly used for the output layer in regression problems. Sig-
moidal “S” shape functions like Logistic function, φlogistic(z) =

1
(1+e−z)

where y ∈
(0, 1), and hyperbolic tangent function, φtanh(z) =

ez−e−z

ez+e−z where y ∈ (−1, 1), are
other choices for the activation function. What is interesting about these deriva-
tives is that they are either a constant, or are can be defined in terms of the origi-
nal function. This makes them extremely convenient for efficiently training neural
networks, as we can implement the gradient using simple manipulations of the
feedforward states of the network. There are several ways that we can think about
a derivative of a function. The one that sort of immediately comes to mind is the
slopewhichmeans howquickly the function is changing around a particular point.
Another way to interpret derivative is in relation to the optimum. Suppose that
the function is an error function and we are trying to minimise it in some way.
What a derivative tells us is whether our current value of parameters is higher or
lower than where it should be. In general, estimating the set of network param-
eters θ = {W, β} in a way that minimise the errors that the network makes is
known as training/learning neural network. It is equivalent to finding a point in
parameter space that makes the height of the error surface small. The error sur-
face gets more and more complicated as we increase the number of layers in the
network and the number of units in each hidden layer. In principle, four classes of
supervised learning algorithm (desired outputs are available) has been discussed
in literature: steepest descent algorithm (also known as backpropagation), New-
ton’s method, Gauss-Newton’s algorithm and Levenberg-Marquardt algorithm. It
is worth noting that studies in time series and forecasting widely used the conven-
tional feedforward neural network trained with the backpropagation algorithm,
however, we explain why the backpropagation is not an efficient algorithm and
it converges slowly. Therfore, Levenberg-Marquardt algorithm has been imple-
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mented in this study which are fast and have stable convergence. The backprop-
agation algorithm first introduced by Bryson, Denham and Dreyfus in 1963 and
popularised in the field of artificial neural network research byWerbos(1988) and
Rumelhart et al. (1986). The goal of backpropagation learning algorithm is to ad-
just the weights and biases in a way that minimises the network prediction error
function.

To solve this problem, the error function’s sensitivity to network weights and
biases must be quantified based on a gradient descent optimization. Gradient is
normally defined as the first order derivative / gradient of the error function with
respect to each of the model parameters. This gradient information will give us
the direction in parameter space that decreases the height of the error surface. We
then take a step in that direction and repeat, iteratively calculating the gradient and
taking steps in parameter space.

To explain the math behind backpropagation algorithm, we need to rewrite the
neural network formula adding pre-activation signal,zj, for hidden layer and pre-
activation signal,zk, for output layer and their corresponding outputs yj and yk as
these will be used for calculating backpropagated errors and error function gradi-
ents.

yt =

yk︷ ︸︸ ︷
φk

[ zk︷ ︸︸ ︷
βk +

L∑
j

φj

(
βj +

N∑
i

xitwij︸ ︷︷ ︸
zj︸ ︷︷ ︸

yj

)
wjk

]
+εt (3.13)

Backpropagation algorithm is based onWidrow-Hoff learning rule (Delta rule)
and works like this:

1. Propagat the observed input forward through the network layers toward the
outputs. Initial network output/prediction, yk, can be anything, as the ini-
tial weights are small random numbers, typically between -1 and 1.
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2. Calculate network errors E, with respect to a desired target and backpropa-
gate error signal.

The prediction sum of the squared is a standard way of quantifying error.
Given target values and network outputs we can calculate the value of the
error function for each setting of weights.

E =
1
2

∑
k

(yk − tk)2 (3.14)

3. Propagate the errors backward through the network towards the inputs by
weighting it by the weights in previous layers and the gradients of the asso-
ciated activation functions. Unlike the output layer we cannot calculate the
error for the neurons in the hidden layer directly (because we do not have
target variables), so we backpropagate them from the output layer.

Output layer parameters directly affect the error function, so the gradients
for those parameters can be calculated as follows

∂E
∂wjk

= (yk − tk)
∂

∂wjk
(yk − tk) (3.15)

Here, based on Chain Rule and having yk = φ(zk), Thus

∂E
∂wjk

= (yk − tk)
∂

∂wjk
yk (3.16a)

= (yk − tk)
∂

∂wjk
φk(zk) (3.16b)

= (yk − tk)φ′
k(zk)

∂

∂wjk
zk (3.16c)

Recall that zk = βj +
∑

j φj(zj)wjk and ∂zk
∂wjk

= φj(zj) = yj and again using
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Chain Rule we have

∂E
∂wjk

= (yk − tk)φ′
k(zk)yj (3.17)

For notation purposes, we define δk to be all the terms that involve index k,
andcanbe interpretedas thenetworkoutput error afterbeingback-propagated
through theoutput activation function, sowecan rewrite the equationabove
as

∂E
∂wjk

= δkyj (3.18)

Where this equation shows how much each output layer parameter con-
tributes to the error signal.

We follow the same routine for output layer biases, thus the gradient for the
biases is

∂E
∂βk

= (yk − tk)φ′
k(zk)(1) = δk (3.19)

4. Update all the weights and biases in the output layer using the calculated
gradients for the parameters. The derivative of the activation function is
used to find the rate of change. The weight adjustment is given by

wnew
jk = wold

jk − η
∂E
∂wjk

(3.20)

Where the constant η is the learning rate (step size) and its value falls be-
tween zero and one. The direction of search in weight space for the new
value of the weights is elected by ∂E

∂W , that shows the sensitivity of the error
function to the weights.

5. Having obtained the error for the hidden layer neurons, now using the cal-
culated gradients for the parameters in the hidden layer to update all the
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weights in the hidden layer.

The process of calculating the gradients for the hidden layer weights starts
just the same but, due to the indirect effect on the output error, the forward
and backward signals are used to determine the direction in the parameter
space to a move that lowers the network error.

∂E
∂wij

=
∑

k

(yk − tk)
∂

∂wij
yk (3.21)

The sum does not disappear in this case due to the fact that each of the hid-
den unit outputs affects the state of each output unit. Thus

∂E
∂wij

=
∑

k

(yk − tk)
∂

∂wij
φk(zk) (3.22a)

=
∑

k

(yk − tk)φ′
k(zk)

∂

∂wij
zk (3.22b)

Where zk is indirectly dependent onwij andbyusing theChainRulewehave

∂zk

∂wij
=

∂zk

∂yj

∂yj

∂wij
(3.23a)

=
∂

∂yj
yjwjk

∂yj

∂wij
(3.23b)

= wjk
∂yj

∂wij
(3.23c)

= wjk
∂φj(zj)

∂wij
(3.23d)

= wjkφ′
j(zj)

∂zj

∂wij
(3.23e)

= wjkφ′
j(zj)

∂

∂wij
(βi +i xiwij) (3.23f)

= wjkφ′
j(zj)xi (3.23g)
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Plugging the last two Equations gives

∂E
∂wij

=
∑

k

(yk − tk)φ′
k(zk)wjkφ′

j(zj)xi (3.24a)

= φ′
j(zj)xi

∑
k

(yk − tk)φ′
k(zk)wjk (3.24b)

= xiφ′
j(zj)

∑
k

δkwjk (3.24c)

= δjxi (3.24d)

Thus, the gradient for the hidden layer weights is simply the output error
signal backpropagated to the hidden layer, then weighted by the input to
the hidden layer and this can be interpreted as a proxy for the contribution
of theweights to the output error signal. Similar towhat we have seen in the
output layer, the gradient for the biases is

∂E
∂βi

= δj (3.25)

The weight adjustment for hidden layer is given by

wnew
ij = wold

ij − η
∂E
∂wij

(3.26)

6. By repeating iteratively the steps network can be trained in a way that con-
verges to optima. The set of newweights are repeatedly presented to thenet-
work until the error value is minimised. Around the optimum point, all the
elements of the gradient would be very small, which leads to tiny changes
in new weights.

For Newton’s method the second-order derivatives of the error function need
to be calculated for each elements of gradient vector and the weights update rule
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is calculated by the following formula:

Wnew = Wold − H−1 ∂E
∂W

(3.27)

Where H−1 denotes the inverse of Hessian matrix and is calculated by getting
the second-order derivatives of error function. The inverse of Hessian matrix can
be too complicated and may be singular.

In Gauss-Newton algorithm, in order to simplify the calculation process, Hes-
sian matrix is approximated by Jacobian matrix and the update rule is defined as:

Wnew = Wold −
(
J′J
)−1 ∂E

∂W
(3.28)

In this case, it does not require the calculation of second-order derivatives of
the error function, but again this approximation of Hessian matrix J′J may not be
invertible.

The Levenberg-Madquardt (LM) algorithm algorithm has been proposed by
Levenberg (1944) andMarquardt (1963) independently. This learning algorithm
is based on a modification of the Gauss-Newton method and provides a numer-
ical solution to iteratively minimise a least square error function without having
to compute the Hessian matrix. This algorithm approximates the Hessian matrix
and the gradient by calculation of the Jacobian matrix (J), which contains the first
derivatives of themodel output errors (e)with respect to the network weights and
biases. Weight updates rule of the LM algorithm can be formulated as follow:

Wnew = Wold −
(
J′J + μI

)−1 J′e (3.29)

When μ (combination coefficient) is positive, elements on the diagonal of the
approximatedHessianmatrix will be larger than zero and guarantee that (J′J+ μI)
is always invertible. It also converges to the Gauss-Newton algorithm when μ is
zero and converges to a gradient descent with a small learning rate when μ is large
enough. The LM algorithm is much faster and more stable than previous learn-
ing algorithms since it can switches efficiently between those algorithmduring the
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learning process.
Developments in neural network modelling have further led to the nonlinear

generalization of PCA. The next subsection explains how the feed forward neural
network can be extended to perform nonlinear PCA (NLPCA).

3.3 Nonlinear FactorModel

3.3.1 Factor estimation using neural network PCA

The NLPCA basically employs a standard feedforward neural network with four
layers of transfer functionsmapping from the inputs to the outputs or as explained
before one can think of an overall network consisting of two feedforward neural
networks (reduction and reconstruction network), which are connected directly
and the output of first network is the input for the second one. The layer in the
combined network that joins the reduction and reconstruction networks is called
the bottleneck layer and contains q neurons, where (q≪ m), giving a reduced di-
mensionality representation of the input data. By replacing all the layers of transfer
functions with the identity function, neural network PCA returns the same result
as classical PCA.

Figure.3.3.1 illustrates such a networkwith three layers of hidden neurons sand-
wiched between the input layer and the output layer. m dimensional data are com-
pressed to q nonlinear component in the bottleneck reduced layer. This architec-
ture, called an autoassociative network. In this architecture bothweight (and bias)
parameters of the network and nonlinear component are optimised simultane-
ously through an unsupervised learning procedure tominimise the reconstruction
error. Note when the bottleneck layer has more than one neuron to accomplish
the dimension reduction, the residual of the first nonlinear component can be in-
put into the same network to extract the second nonlinear component and so on.
Although a better strategy is to penalize the reconstruction error term by adding
(u1 · u2)2 penalty term to extract a curve surface force the nonlinear components
to be uncorrelated with each other (Hsieh, 2004).
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Figure 3.3.1: Schematic diagram of the standard autoassociative neural net-
work architecture for calculating the nonlinear principal component analysis
(NLPCA).

Writingxt, x̃t ∈ Rm for the input andoutputdataof theoverall network, y(x)t , y(u)t ∈
Rj for the values of the neurons in the input and output hidden layers, z(x), z(u) for
the values of the pre-activation (sum of each input variable multiply by the corre-
sponding weight plus the bias) in the input and output hidden layers and u ∈ Rq

for the values of the bottleneck neurons, the network transfer functions can be for-
mulated as follow

y(x)t = φ(x)
j (z(x)) (3.30a)

u = φ(x)
k (y(x)t ) (3.30b)

y(u)t = φ(u)
j (z(u)) (3.30c)

x̃t = φ(u)
k (y(u)t ) (3.30d)
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Where the transfer function φ(x)
j in Eq.3.30a, maps from the input vector of

length m, to the first hidden layer (reduction layer). Likewise the second transfer
function φ(x)

k in Eq.3.30b, which is usually an identity function, maps from the re-
duction layer to the bottleneck layer to extract nonlinear component values. In the
following, φ(u)

j in Eq.3.30c, maps from the nonlinear component vector of length
q, to the final hidden layer (reconstruction layer). φ(u)

k in Eq.3.30b, is usually an
identity function and produces an approximation of the original data.

Here we briefly describe the model fitting considerations of NLPCA. First of
all, note that in contrast to PCA, NLPCA approximation is not an unique analytic
solution and must be found through numerical minimisation. In other words, an
iterativeminimisation procedure carries. Entire samples will be divided into train-
ing and validation, and optimisation terminates when either an error over training
data stop changing or an error over validation data start increasing. We do not
just pick the approximation with the lowest error, but also ensure the approxi-
mation is robust. Robustness happens when validation and training share same
shape and orientation approximation. It is also worth mentioning that the advan-
tages of NLPCA over the PCA is highly dependent on the data. Noisy and short
data can effect on the performance of NLPCA. When underlying relation in data
is linear andGaussian, NLPCA should yield PCA solution. To control themodel’s
complexity and subsequently avoid over fitting, the following strategies can be em-
ployed. A model validation based on a missing data approach and regularisation
with a weight penalty ensures that NLPCA robustly characterises the underlying
structure and it does not describe data in a nonlinear way when the inherent data
structure is, in fact, linear (For more details see Christiansen, 2005). A number
of runs with random initial weights parameters helps optimization procedure to
reach a solution as close as possible to the global minimum in error space. More-
over, Monahan (2001) shows in his work how to measure explained variance of
the first nonlinear component in NLPCA, similarly to PCA, by defining residual
vectors.
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3.3.2 Nonlinear forecasting step

Herewe compare different linear and nonlinear ways that the forecast equation for
the variable of interest xiT+h|T can be formulated in the factormodel setting. There
are also two different ways to obtain an h-step-ahead forecast directly from a long-
horizon equationor a sequenceof 1-step-ahead forecasts. For instance,Marcellino,
Stock and Watson (2006) have shown that the sequential approach outperforms
the direct approach (current study focuses on 1-step-ahead forecast of financial
return series). Assuming the factors and the loadings are observed, the general
formulisation of forecast equation is

xiT+h|T = λ′iuT+h|T + ξiT+h|T = χ iT+h|T + ξiT+h|T (3.31)

But in practice, the parameters and the factors are unknown and have to be esti-
mated and the forecast of factors ûT+h|T, idiosyncratic component ξ̂iT+h|T, and/or
the common component χ̂ iT+h|T are needed tomake the forecast feasible. This can
be done by an univariate autoregressive model when there is only one factor and a
vector-autoregressive when there is more than one factor. A forecast of common
components can be obtained by projecting each common component on factors.

Empirical studies, for instanceStock andWatson(2002), Boivin andNg(2005),
Bai andNg (2006), and Ludvigson andNg (2009), predict series of interest by us-
ing factors ignoring the idiosyncratic component. If this is the case, we only use
the information that is common to all predictors, and not idiosyncratic informa-
tion that might also be relevant for prediction. Here three different types of 1-
step-ahead forecasts are considered in order to forecast a series using factors and
an idiosyncratic component (given a static approach for factor estimation),

Linear Factor Model (SW)


x̂iT+1|T = β̂

′
i ûT (3.32)

x̂iT+1|T = λ̂
′
iuT+1|T (3.33)

x̂iT+1|T = λ̂
′
iuT+1|T + ξ̂iT+1|T (3.34)
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Where β̂i estimated by a linear regression between variable of interest and the
lags of factors. One can also add the lags of the variable of interest to the model.

Basedonautoassociativeneural networks and feedforwardneural networksmod-
els as explained in the previous section, nowwe can define the nonlinear extension
of factor models. First of all, a factor estimation step in nonlinear setting is done
by NLPCA producing u(NL)

t .

Nonlinear Factor Model


x̂iT+1|T = Φ(û(NL)

T ) (3.35)

x̂iT+1|T = φ(uNL)
k (φ(uNL)

j (û(NL)
T+1|T)) (3.36)

x̂iT+1|T = φ(uNL)
k (φ(uNL)

j (û(NL)
T+1|T)) + ξ̂

(NL)
iT+1|T (3.37)

In 3.35 first we estimate the common factor usingNLPCA, thenwe use them as
the input for a feedforward neural networkwhere the targeta variable is the 1-step-
ahead forecast of variable of interest. In 3.36 after estimating the factor, we forecast
the factor using a feedforward neural network thenwepropagate a predicted factor
through reconstruction layer ofNLPA. In 3.37 ,similar tomodel explain in 3.36, we
propagate the forecast value of the factor through a reconstruction layer of NLPA
and we also add the forecast value of the corresponding idiosyncratic component
obtained from a feedforward neural network. In the next section we illustrate our
modelling strategy on a financial empirical example.

3.4 Empirical Analysis

3.4.1 Data

Thedata aredaily returnsofm = 418 equities on theS&P500 index from04.01.2005
through 31.12.2014, for a total of 2517 observations. We will use the 03.01.2005 -
31.12.2013 period (T = 2265 in-sample size) to estimate our forecasting models,
and we will use the holdout sample period 02.01.2014 - 31.12.2014 (252 observa-
tions) to examine models’ out-of-sample forecasting performance. We calculate
1-step (here one day) ahead forecasts of targets (x̂it+1|t return series to be forecast)
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based on a rolling (moving) estimation window. The estimators of the real value
parameters are updated at every time instance. Choice of window size T is a com-
promise between overly noisy and overly smoothed estimate of parameters and is
usually chosen such thatT/N ≥ 1. Our empirical experiments show that different
values of T can have an effect on a models’ forecasting performance (notably the
Random Walk model).

We show the entire series in Figure 3.4.1 , which display clear comovements be-
tween the return time series. Heavy tails, leverage effects, nonlinear dependencies
and volatility clustering are some other stylized facts that are common to a wide
set of high-frequency (e.g., daily) financial return series. Figure 3.4.1 also demon-
strate that market become more tightly coupled in volatile periods.

We also zoom in on the 02.01.2014 - 31.12.2014 out-of-sample period in Figure
3.4.2.a in order to reveal the comovement pattern in better detail. Understanding
of the comovement between financial equities is crucial for forecasting procedure,
therefore we use PCA and NLPCA to produce a parsimonious representation of
market correlation (NLPCA is beyond correlation) and demonstrate that a small
number of components account for a large proportion of the variability of equities
that we consider. In general, we are interested in understanding what factors, lead
to movements in an asset’s return. One way of identifying these factors, which
presumes no knowledge of any factors, and hence is entirely statistical in nature,
is via principal component analysis. PCA can be used to identify the underlying
statistical factors that explain comovement in asset returns (See Fenn et al. (2011)
for a use of principal component analysis and randommatrix theory to investigate
financial market correlations).

Figure 3.4.2.b visualises the returns’ correlationmatrix using a heatmap, ranging
from black (zero) to white (one). PCA and NLPCA are principally useful when
the data under consideration is correlated. In this studyPCAandNLPCAare used
to analyse the correlated returns of 418 equities.

The first principal component is typically assumed to represent the broad mar-
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Figure 3.4.1: Target time series: prices and returns

ket. The next few are assumed to be the sector/style related factors. The remaining
components represent the idiosyncratic properties of stocks. For the given set of
equities we can conclude that about 35% of all the variance is because of the broad
market factor (systematic risk).

It is worthmentioning that the fraction of the variance in return series explained
by the first few linear and nonlinear PCs changes overtime. In Figure 3.4.4, we
show how the fraction of the variance explained by first three PCs changes as a
function of time for time windows of length 200. Both linear and nonlinear PCs
follow the same pattern and in all windows, explained the variance by nonlinear
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Figure 3.4.2: Visualization of comovement between return series; Right: Cor-
relation matrix heatmap, Left: Return series in out-of-sampleperiod

PCA are somewhat higher than the explained variance by linear PCA.
Figure 3.4.4 suggests that market returns have become more correlated during

the period of crisis and a sharp increase in the fraction of the variance explained by
the first component coincided with major shocks to the financial system (i.e. the
collapse of Lehman Brothers in September 2008). It is very instructive for build-
ing forecast models and input selection to consider the changes in the variance
explained by the first few PCs. We may include the second component (or macro
factors) asmodel predictorwhen the first component could not account for a large
proportion of the variability of data. The square of the first component (a proxy
for volatility of the first component) may also improve the forecast performance
of the mean returns.

In Figure 3.4.5, we characterize the time-evolving relationships between the dif-
ferent equities by investigating the correlations between the return series and the
first three PCs/NLPCs. This figure highlights that there are many time steps at
which the correlation between the in the first linear and nonlinear component
and return series are significantly large (greater than 0.7). However the correla-
tions decreases between the equity returns and the second and the third compo-
nentswhich implies thatmuch of the key structure from the correlationmatrices is
contained in the first component. Again after Lehman Brothers’ collapse, the first
component became strongly correlated with nearly all equities implies that many
different equities were being driven by the same macroeconomic forces.
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Figure 3.4.3: Linear and nonlinear PCA for the first estimation window.

3.4.2 Testing for nonlinearity in and between financial return se-
ries

Another point this thesis tries to emphasize is that statistical tests to detect non-
linearity in and between time series can assist in terms of choosing the appropriate
factor estimation and forecast equation. Before we apply nonlinear models to fi-
nancial data, it is logical to first ask if the use of such models is justified by the
data. To this purpose, we examine the nonlinear dependencies in and between
return series and in first principal component series by applying some of the well-
known and novel tests introduced in the literature. For instance, applying a non-
linear principal component analysis (NLPCA) for factor extraction step could be
justified when the test shows that there is nonlinear dependencies between return
series. On the other hand, testing for nonlinearity on the principal component
series helps in terms of forecasting them in an appropriate way.

In this chapter we use the following tests to detect nonlinearity in a time series:
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Figure 3.4.4: Fraction of the variance in return series explained by the first
three PCs

RESET test of Ramsey (1969), that tests for functional form, BDS test of Brock
et al. (1987), that tests for the iid series, Teraesvirta NN test of Teraesvirta and
Granger (1993), and White NN test of White and Granger (1993), which test for
neglected nonlinearity. For the methods of surrogate data, we apply Amplitude
Adapted Fourier Transform (AAFT) of Theder et al. (1992), and Iterative Am-
plitude Adapted Fourier Transform (IAAFT) of Schreiber and Schmitz (1996)
algorithms for the generation of surrogate data and Bi-Correlation and Time Re-
versal as discriminating statistic. See Schreiber and Schmitz (1997) for more de-
tails. Finally, we apply Entropy testing for nonlinear serial dependence in a time
series based upon the combination of the entropy measure together with resam-
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Figure 3.4.5: Correlation between each equity and the first three PCs/NLPCs
as a function of time. equities are on the vertical axis and the horizontal axis
represents the time windows.

plingmethods thatwere recently introducedbyGiannerini andMaasoumi (2015).
They have proposed a test for identification of nonlinear serial dependence in a
time series against the general H0 of linearity, in contrast to the more widely ex-
amined H0 of “independence”.

To shows how the underlying structure within the recorded data can be exam-
ined to determine whether a conceptually more demanding NLPCA model is re-
quired, a test introduced by Kruger et al. (2008) has been applied in this study.
The idea behind this test is explained in the following section.

3.4.2.1 Linearity test results

The following subsection presents the results of the linearity tests applied to the
sample. The nonlinear dependence in and between return series for 418 compa-
nies and their first PCs are examined by applying the tests mentioned above. For
the BDS test, an AR model and a best ARMA model is used to remove any serial
correlation in the data, and the tests apply to the residual series of the model. It is
also difficult to determine if complex real world time series like financial returns
behave in a linear or nonlinear fashion. The experimental results that we have got
from different nonlinearity tests indicated that the financial time series are rarely
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pure linear and they consists of nonlinear patterns.
Figure 3.4.6.a, shows the results of the test of nonlinearity based on the Reset

test andWhiteNNtest. SinceTeräsvirta theneural network test for neglectednon-
linearity uses a Taylor series expansion of the activation function, the test statistic
and the result are quite similar to what we see in the Reset test, therefore we ignore
plotting the result of the Teräsvirta test. The evidence against linearity is clear in
the series in all lags for Reset test and in first five lags for White NN test. Figure
3.4.6.b, shows the results of the Entropy test of linearity based on surrogate data
obtained through the sieve bootstrap to PC series. The evidence against linearity
is clear in the series in all lags.

Figure 3.4.6: Testing for nonlinearity in PC series. Right: Plot of Entropy test
statistic of nonlinearity for the PC1 series. at lags 1:10. The dashed lines indicate
the rejection bands at 95% (green/light) and at 99% (blue/dark), Left:Plot of
Reset and White test statistics of nonlinearity for the PC1 series. at lags 1:10.
y-axis shows the p-value of the test statistics

Figure 3.4.7, shows the results of the linearity test based on the Reset test on
three stocks. The evidence against linearity is different in different equities.The
major limitation of a linearmodel is the pre-assumed linear form of themodel and
therefore, no nonlinear patterns can be captured. A pure nonlinear model is not
also adequate to handle fairly both linear and nonlinear patterns, especially when
the linear component is superior to the nonlinear component. Theperformance of
the linear model and neural networks is not robust when the time series contains

59



complex linear and nonlinear patterns. To overcome this issue, we add a skip-layer
to a neural network and thenwe penalise the loss function to guarantee thatmodel
will reduce to a linear model if no nonlinearity exists in the data.

Figure 3.4.7: Plot of Reset test statistics of nonlinearity for three different
equities

3.4.2.2 Testing for nonlinearity between time series

In this section, we examine the nonlinear dependencies between return series to
show how the underlying structure within the recorded data can be examined to
determine whether a conceptually more demanding NLPCA model is required.
The test applied in this section introduced by Kruger et al. (2008) and it is de-
signed to detect nonlinearities based on nonlinear principal component analysis
and between time series. This test divides the entire data into several disjunct re-
gions through prior knowledge of the process or by direct analysis of the recorded
data, and it takes advantage of the residual variance in each of the regions. The test
then examineswhether the sumof the residual variances ormore precisely its PCA
equivalent, the sum of the discarded eigenvalues, are significantly different among
these regions. For this, the accuracy bounds are calculated for the sum of the dis-
carded eigenvalues of one of the regions taking advantage of the confidence limits
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for the mean and variances, and hence each value of the correlation matrix. The
sum of the residual variances for other regions are then benchmarked against this
accuracy bound. If at least one of the sum of the discarded eigenvalues lies out-
side this bound, the null hypothesis is rejected andNLPCA approaches should be
considered. The power of the test is also increased utilizing the principal of cross-
validation and thus calculating the accuracybounds for each region andcomparing
sum of the discarded eigenvalues of the other regions with it.

In our case, we divided the sample into 4 disjunct regions. The accuracy bounds
for each disjuct region and also sum of the discarded eigenvalues were computed.
These bounds were based on thresholds for each element of the correlation ma-
trix corresponding to confidence level of 95Note that the processes were normal-
ized with respect to the mean and variance of the regions for which the accuracy
bounds were computed. After performing the test, the third region falls out of ac-
curacy bounds of the first region. The third region contains the data starting from6
July 2009 until 29 September 2011. One can speculate that the nonlinearity could
be traced back to the aftermath of the 2008 financial crisis. Fig 3.4.8 Benchmark-
ing of the residual variances against accuracy bounds of each disjunct region and
illustrates that the relationship between recorded financial data is nonlinear.

3.4.3 Proposed and competing models

In this studywe attempt to answer the question of whether it is possible to forecast
with a large panel of predictors, while considering nonlinear dynamics in a high-
dimensional dataset and to show how a model with such features can improve fi-
nancial forecasting accuracy. We proposed a nonlinear high-dimensional forecast-
ing model that is able to handle high-dimensionality and nonlinearity by applying
a neural network based principal component analysis to estimate common factors
from a large panel of data and nonlinearly forecasts the series of interest uses the
factor estimates with a feedforward neural network. We compare our proposed
nonlinear factor model NLFM with several competing models and benchmarks.
As a benchmark for comparison, we use the sample mean of xt in the in-sample
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Figure 3.4.8: Accuracy bounds and residual variances. Sample is divided into
smaller disjunct regions; and accuracy bounds are determined for the sum of the
discarded eigenvalues of each region. If this sum is within the accuracy bounds
for each region, the process is assumed to be linear. Conversely, if at least one
of these sums is outside, the process is assumed to be nonlinear. As the figure
illustrates, the recorded financial data is nonlinear.

window as the 1-step ahead forecast. This corresponds to assuming that the log
daily price of stocks follows a random walk with drift and it is almost equivalent
to the “zero forecast” when the in-sample window is large enough. Furthermore,
a buy-and-hold strategy in the market portfolio has been considered as another
benchmark. To understand whether considering the comovemen of returns im-
proves forecast accuracy we compare univariate forecasting methods with high-
dimensional forecastingmethods. Theunivariatemodels thatweestimatehere can
be categorised in two groups, linear univariate models: specifically, AR(1) model
and best ARMA(p,q)model, and nonlinear univariatemodel: feedforward neural
networks. The high-dimensinal models are also in two groups, linear static factor
models and nonlinear neural network factor models. Since the information inside
an idiosyncratic componentmight also be relevant for prediction, we compare the
forecast accuracy of linear/nonlinear factor models considering an idiosyncratic
component to forecast a return serieswithmodels, ignoring the idiosyncratic com-
ponent.
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3.4.4 Forecast evaluation

Since the predictability of financial returns is used to guide decisions, forecast ac-
curacy and comparing the forecastability of alternative models is of obvious im-
portance to finance managers to discriminate among forecast models and choose
an adequate model that is inextricably linked to the predictive performance of the
model. Forecast error can be defined simply as êit+1 = xit+1 − x̂it+1, when xt+1

denotes the observation at time t+ 1 and x̂it+1 denotes the forecast of xit+1. Among
various models, the one that has the minimal forecast error is often deemed opti-
mal. However, the model with minimum forecast error does not necessarily guar-
antee profitmaximisation, which is the ultimate objective ofmaking predictions of
returns in financial markets. There are some forecast accuracy measures from the
time series approach, of which themost commonly used are scale-dependentmea-
sures based on the absolute errors or squared errors like the Mean Square Error
(MSE). These are useful and generally straightforward especially when compar-
ing different models on the same set of data. Root Mean Square Error (RMSE)
is often preferred as it is on the same scale as the data. As financial models with
minimal direct measures, such as RMSE, do not necessarily guarantee maximised
investment profits, an alternative approach, which explicitly addresses these is-
sues, is to evaluate the merits of the alternative financial forecasting models based
on indirect measures such as performance of a trading strategy. Armstrong and
Collopy (1992), Pesaran and Timmermann (1995, 2000), Granger and Pesaran
(2000) and Engle and Colacito (2006) argue that a forecast evaluation criterion
should be related to decision making and judge predictability of financial returns
in terms of portfolio simulation. More specifically, a trading (portfolio) simula-
tion approach assumes that all competing models are applied with stock market
virtual investment decisions, and out-of-sample portfolio performances are used
to evaluate the predictability of alternative models. The accuracy measures that
this study employs to discriminate between a competing set of forecasting mod-
els are from both time series approach (the out-of-sample RMSE and the out-of-
sample coefficient of determination (R2

i = 1− (̂ei−¯̂ei)′ (̂ei−¯̂ei)
(xi−x̄i)′(xi−x̄i)

)) and trading simula-
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tion approach (the out-of-sample hit rate - also called the probability of detection
given by hi =

∑T2
t=T1+1 sign(xit x̂it|t−1)

T2−T1
- and the portfolio performance during the out-

of-sample period). Moreover, to test the equality of forecast accuracy between
competing models, we employ the Diebold Mariano (DM) test, which can easily
be applied to a wide variety of criteria including RMSE (see Diebold and Mari-
ano (1995) and Harvey, Leybourne, and Newbold (1997)). The portfolio con-
struction is based on passive equally weighted (1/N) portfolios with short sell that
are known to be a very stringent benchmarks and that many optimization models
fail to outperform (see DeMiguel et al., 2009). We compute the portfolio’s out-
of-sample return and volatility as well as the Sharpe ratio¹. It worth mentioning
that the hit rate shows the proportion of correctly predicted signs of returns and
it is sensitive only to missed events rather than false forecasts and should be inter-
preted with care, but, in contrast to hit rate, portfolio simulation can count in false
forecasts.

3.4.5 Results

This section compares our proposed nonlinear factormodel (NLFM)with several
competing models and benchmarks. As mentioned in previous section, three dif-
ferent types of 1-step-ahead forecast are considered in this study in order to fore-
cast return series using factors and idiosyncratic components. First we compare
linear/nonlinear factor models estimating a regression between the return series
and the lags of estimated factor² (x̂iT+1|T = β̂

′
i ûT shown by FM(ut) , x̂iT+1|T =

Φ(û(NL)
T ) shown by NLFM(ut)). Then we compare linear/nonlinear factor mod-

els multiplying estimated loadings (and weights in nonlinear setting) by 1-step-
ahead forecast of factors(x̂iT+1|T = λ̂

′
i ûT+1|T shown by FM(ut+1) , x̂iT+1|T =

φ(uNL)
k (φ(uNL)

j (û(NL)
T+1|T)) shown by NLFM(ut+1)).

Figure 3.4.9.a illustrates portfolio returns during an out-of-sample period for

¹In this work we have also constructed portfolios including only one stock for each competing
model. In general, trading simulation results from these portfolios were aligned with the results we
get from portfolio simulation, including all 418 stocks and other criterion.

²Only the first principal component has been chosen as the predictor in the models.
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a linear factor model FM(ut) and a nonlinear factor model NLFM(ut) without a
forecast of factors. AlsoFigure 3.4.9.b illustrates portfolio returnsduring anout-of-
sample period for the linear factormodel FM(ut+1) and the nonlinear factormodel
NLFM(ut+1)with a forecast of factors. In both figures nonlinear factormodels sig-
nificantly outperform linear factor models in terms of portfolio return and Sharpe
ratio. Sharpe ratio is a measure for calculating risk-adjusted return and a portfolio
with a greater Sharpe ratio gives more returns for the same risk. If a portfolio with
lower Sharpe ratio has returned better over a time period than another portfolio
with a comparatively higher ratio, it means that the risk of losing by investing in
the former fund will be higher. (see table 3.4.1)
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(a) Linear and nonlinear factor models without a forecast of factors

(b) Linear and nonlinear factor models with a forecast of factors

Figure 3.4.9: Comparison of linear and nonlinear factor models based on the
performance of the portfolio return during an out-of-sample period.

Figure 3.4.10 illustrates portfolio returns during an out-of-sample period for all
four linear/nonlinear factor models with and without a forecast of factors. Be-
tween two nonlinear factor models, one without a forecast of factor could outper-
form the alternative model on the contrary, however, a linear factor model with
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a forecast of factor outperforms the alternative. So for the rest of the chapter we
keep FM(ut+1) as representative of linear factor models and NLFM(ut) as repre-
sentative of nonlinear factor models. One of the preferential property that a non-
linear factor model has is its low fluctuating portfolio performance during an out-
of-sample period, which is appealing for investors.

Figure 3.4.10: Comparison of linear and nonlinear factor models based on the
performance of the portfolio simulation during an out-of-sample period.

Table 3.4.1

Portfolio Return Sharp Ratio
FM(ut) 4.35% 9.1770
FM(ut+1) 7.51% 17.4927
NLFM(ut) 7.87% 25.0019
NLFM(ut+1) 7.41% 18.8963

Based onDMtest 55 out of 418 predictionswere significantly different between
FM(ut) andFM(ut+1), which in 48 cases FM(ut+1) returned lower forecast RMSE.
In 280 stocks FM(ut+1) showed higher R2 than the alternative model. In a nonlin-
ear factor model 74 out of 418 prediction were significantly different which for

67



NLFM(ut) 55 times could bit NLFM(ut+1) in terms of RMSE. NLFM(ut) also
showed in 310 stocks a higher R2 than the alternative model. We also used the
DM test to compare nonlinear factor models with linear factor models. In 77 out
of 418 the predictions were significantly different between twomodels, in 61 cases
of which NLFM returned a lower forecast RMSE.

Two benchmark forecasts that we compare our models with are random walk
with drift (RW) and a buy-and-hold strategy in the market portfolio (S&P 500
Index). We also compare the NLFM model with AR(1) later in this section.

Figure ?? illustrates linear and nonlinear factor models against a buy-and-hold
investment strategy on S&P 500 index. The portfolio return for this strategy at the
end of the out-of-sample period is equal to 4.68% and the corresponding Sharpe
ratio is 15.0060, whichmeans that both linear and nonlinear factormodels outper-
form the market.

Figure ?? shows linear andnonlinear factormodels againstRandomWalk. How-
ever RW leads to a higher return (10.42%) at the end of out-of-sample period, the
Sharpe ratio corresponding to this model (17.4608) is lower than nonlinear factor
models.

Figure 3.4.11: Comparison of linear and nonlinear factor models against an
investment on S&P 500 index based on the performance of the portfolio simu-
lation.
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Figure 3.4.12: Comparison of linear and nonlinear factor model against Random
walk based on the performance of the portfolio simulation.

Theresult shows that a nonlinear factormodel significantly outperforms the lin-
ear factormodel, nevertheless the result does not tell us whether the nonlinear fac-
tor estimation caused this improvement or whether it was the nonlinear forecast
equation. So we decided to also compare our linear/nonlinear factor models with
two competingmodels; amodel with nonlinear factor estimation still with a linear
forecast equation, and a model with linear factor estimation benefits with a non-
linear forecast equation.

Figure 3.4.13 first shows that neither a model with nonlinear factor estimation
nor amodel with a nonlinear forecast equation could outperform a proposed non-
linear factor model, however they could outperform the linear factor model. On
the other hand, the result shows that factor estimation in a nonlinear way is more
important than having a nonlinear forecast equation on linear components. (see
table 3.4.2)

69



Figure 3.4.13: Comparison of linear and nonlinear factor models, and the
models with only one nonlinear step based on the performance of the portfolio
simulation

Table 3.4.2

Portfolio Return Sharp Ratio
Linear FM 7.51% 17.4927
Nonlinear FM 7.87% 25.0019
Nonlinear in factor estimation step 7.61% 18.6259
Nonlinear in forecast equation step 6.83% 17.8577

The fraction of the variance in financial series explained by the first few com-
ponents are much less than the fraction of the variance in the macroeconomic se-
ries explained by the first few linear and nonlinear components. It indicates that
the idiosyncratic component is not just a noise and there is information inside id-
iosyncratic components that might also be relevant for financial forecasting. For
this purpose, we compare the forecast accuracy of linear/nonlinear factor models
considering idiosyncratic components (x̂iT+1|T = λ̂

′
iuT+1|T + ξ̂iT+1|T , x̂iT+1|T =

φ(uNL)
k (φ(uNL)

j (û(NL)
T+1|T))+ ξ̂

(NL)
iT+1|T) to forecast return series withmodels ignoring the
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idiosyncratic component³.
Figure 3.4.15 illustrates the effect of adding idiosyncratic components in fore-

cast models. By looking at the individual RMSEs and hit rates, we will see im-
provements inmany stocks, however, in terms of Portfolio simulation, it wasmore
effective to improve a linear factormodel. It can be interpreted thatNLPCA could
extract more information from data and less information remained in the idiosyn-
cratic component. (See table 3.4.3)

³We forecast the idiosyncratic component with an AR(1) process in the linear factor model
and a feedforward neural network in the nonlinear factor model
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(a) Nonlinear Factor model

(b) Linear Factor model

Figure 3.4.14: Considering idiosyncratic component to forecast return series
and its effect on portfolio return
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Table 3.4.3

Portfolio Return Sharp Ratio

Linear FM 7.51% 17.4927
Nonlinear FM 7.87% 25.0019
Linear FM + ξ̂iT+1|T 7.55% 22.4096
Nonlinear FM + ξ̂iT+1|T 7.61% 23.5331

A hybrid forecast model is also proposed in this chapter to show how linear fac-
tor models can be improved. In this approach, first we estimate the linear model
and we collect the residuals obtained from the fitted model. Then we let neural
network to model the residuals which contain information about the nonlinear-
ity. In theory, the hybrid model can be an effective tool with a superior forecast
when both linear model and neural network model are specified well and are sub-
optimal. But, in practice we are combining two model specification errors and it
is assumed that the time series has only a linear structure in the first step and a
nonlinear structure in the second step which can be imprecise.

Figure 3.4.15 illustrates linear and nonlinear factor models against the hybrid
model. The hybridmodel outperforms linear factormodel however it can not out-
performnonlinear factormodel in terms of Sharpe ratio. Then again, if a fundwith
lower Sharpe ratio has returned better over a time period than another fund with
a comparatively higher ratio, it means that the risk of losing by investing in the
former fund will be higher. (see table 3.4.4)

Tounderstandwhether considering the covariance structure of returns improve
forecast accuracywe compare linear and nonlinear univariate forecastingmethods
with factor models as well.

Figure 3.4.16.a shows how trading strategies based on AR(1) model noticeably
outperform best ARMA(p,q) model⁴, in terms of portfolio return during out-of-
sample period. Portfolio return and Sharpe ratio calculated for the best ARMA

⁴ARMA model is obtained from a minimization of the penalized AICc and MLE, but it seems
overfit.
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Table 3.4.4

Portfolio Return Sharp Ratio
Linear FM 7.51% 17.4927
Nonlinear FM 7.87% 25.0019
Hybrid model 9.32% 19.2152

model is %2.3 and 10.3660 against %7.7 and 18.3059 for AR(1) model. Therefore
an AR(1) model is chosen as representative of linear univariate models. AR(1)
model is more successful than a best ARMAmodel based on all other criterion we
used for forecast evaluation.

Figure 3.4.16.b Complares AR(1) model with a feedforward neural network
which we used to forecast return series based on their first lags. Portfolio return
follows almost the same pattern during an out-of-sample period. Portfolio return
and Sharpe ratio calculated for the neural networkmodel is %7.3 and 18.4610. It is
worth mentioning that financial series follow a different level of nonlinearity and
testing for nonlinearity can help us to choose the appropriate forecast model. In
our study, in %86⁵ when test shows that time series follows a linear/nonlinear pat-
tern, a linear/nonlinear model returns a better result. However figure 3.4.16.b il-
lustrate portfolios constructed with linear and nonlinear models separately.

⁵This number is based on linearity test results on 418 stocks and AR(1) and NN forecasts.
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(a) AR(1) vs Best ARMA(p,q)

(b) AR(1) vs Neural Network

Figure 3.4.16: Comparison of linear and nonlinear univariate models based on
the performance of the portfolio return during the out-of-sampleperiod.

Figure 3.4.17.a illustrates the linear univaritae model , AR(1), against the linear
factor model. It seems as having the first lag of each stock return as the predictor
returns better results in terms of portfolio simulation. However the DM test result
for this two competing models show that in only 35 stocks the RMSEs are signif-
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icantly different and 24 out of 35 stocks have a lower RMSE when a linear factor
model is used for forecasting. Furthermore 235 out of 418 stocks have a higher
R2 when a linear factor model is used for forecasting. AR(1) outperforms FM in
terms of hit rate.

Figure 3.4.17.b illustrates a neural network as the representative of nonlinear
univaritaemodels , against the nonlinear factormodel. Here nonlinear factormod-
els notably beat univariate model. DM test result for these two competingmodels
shows that in only 40 stocks the RMSEs are significantly different and 36 out of 40
stocks has lower RMSE when NLFM is used. Furthermore, 310 out of 418 stocks
has higher R2 when NLFM is used. Another notable issue here is the comparison
of NLFM and AR(1) which can be seen as a benchmark in financial forecasting.
The NLFM model count also beat the AR(1) model in terms of portfolio simula-
tion criterion. (See Table 3.4.5)
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(a) AR(1) vs Linear Factor Model

(b) Neural Network vs Nonlinear Factor model

Figure 3.4.17: Comparison of linear and nonlinear univariate and factor models
based on the performance of the portfolio return during an out-of-sample period.

Based on the univariate model one can build a forecast model by considering
both common factors and the lags of target variable as the predictors. Alsomacroe-
conomic variables can be added to the model.
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Table 3.4.5

Portfolio Return Sharp Ratio
AR(1) 7.55% 22.4096
Linear FM 7.51% 17.4927
Neural Network 7.12% 17.4610
Nonlinear FM 7.87% 25.0019

3.5 Conclusion

Forecasting with many predictors has received a good deal of attention in recent
years. The most common approach for forecasting with many predictors is to lin-
early extract common factors, and use them as predictors in a linear forecast equa-
tion. Such methods are not efficient because they disregard nonlinear dynamics
among predictors and between common factors and the target variable. In this
chapter, our focuswas on answering the questionwhether “it is possible to forecast
with a high-dimensional panel of predictors while considering nonlinear dynamic
among variables?”

To answer this question, we proposed a nonlinear generalization of the statis-
tical factor model which at the first step (factor estimation) employs an autoas-
sociative neural network to estimate nonlinear factors from predictors and at the
second step (forecasting equation) applies a nonlinear function -feedforward neu-
ral network- on estimated factors to predict the dependent variable. This model
can go beyond the covariance structure analysis. The method also behave notice-
ably better in the empirical analysis. The empirical application to forecasting daily
returns of equities on the S&P 500 index from 2005 to 2014 provide support for
the out-of-sample forecasting ability of this model vis-à-vis exist competing ap-
proaches both in terms of the time series approach and the trading simulation ap-
proach. We showed how adopting statistical tests to detect nonlinearity in and
between time series helps for model selection. Our empirical results encourage
further research toward other possible applications of nonlinear factor models.
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Risk is like fire: If controlled it will help you; if uncontrolled it
will rise up and destroy you.

Theodore Roosevelt

4
EconometricModeling of Systemic Risk:
Going Beyond Pairwise Comparison and

Allowing for Nonlinearity

4.1 Introduction

Understanding the interconnection between the financial institutions is of great
importance. In principle, there are two main approaches to measure such inter-
connections between financial institutions in the literature. One is based on a
mathematical model of financial market participant relations as a graph using a
combination of information extracted from financial statements like the market
value of liabilities of counterparties, and the other one that is also the approach of
this work is based on statistical analysis of financial series.
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Most of the existing approaches in the literature are built on pairwise compari-
son or assuming linear relationship between the time series. For instance the au-
thors in Billio et al. (2012) propose several measures of systemic risk to capture
the connections between the daily returns of different financial institutions (hedge
funds, banks, brokers, and insurance companies) based onGranger-causality tests.
They propose a definition of systemic risk as “any set of circumstances that threat-
ens the stability of or public confidence in the financial system”. This definition im-
plies that the risk of such events is unlikely to be captured by any singlemetric that
ignores the connections between the financial institutions. Billio et al. (2012) uses
principle component analysis to estimate the number and importance of common
factors driving the returns of financial institutions, and it uses pairwise Granger-
causality tests to identify the network of Granger-causal relations among those in-
stitutions.

Another related work is Diebold and Yılmaz (2014). In this work, the authors
propose a connectedness measure based on generalized variance decomposition
(GVD) and consequently, define a weighted, directed network. However, the
measure introduced in this work is limited to linear dynamical systems, more pre-
cisely, data-generating processes (DGPs). Moreover, as we will discuss later in
Section 4.3.2, their measure suffers from disregarding the entire network akin to
pairwise analysis commonly used in the literature.

In Barigozzi and Hallin (2016), the authors focus on one particular network
structure: the long-runvariancedecompositionnetwork (LVDN).Similar toDiebold
and Yılmaz (2014), the LVDN defines a weighted and directed graph where the
weight that is associated with edge (i, j) represents the proportion of h-step-ahead
forecast error variance of variable i which is accounted for by the innovations in
variable j. LVDNs are characterized by the infinite vector moving average (VMA)
that limits them to linear systems.

Connectedness measures based on correlation remain widespread, however,
they measure only pairwise association and are mainly used for linear Gaussian
dynamics. This makes them of limited value in financial-market contexts. Differ-
ent approaches have been developed to relax these conditions. For example, equi-
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correlation approach in Engle and Kelly (2012) uses average correlations across
all pairs. The CoVaR approach of Adrian and Brunnermeier (2008) measures the
value-at-risk (VaR) of financial institutions conditional on other institutions expe-
riencing financial distressand. The marginal expected shortfall (MES) approach
of Acharya et al. (2010) measures the expected loss to each financial institution
conditional on the entire set of institutions‚ poor performance. Although these
measures rely less on linear Gaussian methods and are certainly of interest, they
measure different things, and a general framework that can be used to capture the
connectedness in different networks remains elusive. Introducing suchmeasure is
the main purpose of this work.

In this work, we develop a method that allows for nonlinearity of the data and
does not depend on pairwise relationships among time series. We also show how
the model improve the measurement of systemic risk and explain the connection
between Granger-causality and variance decompositions method.

4.1.1 Organization

The rest of this chapter is organized as follows. In Section 4.2, we review the liter-
ature on graphical models, Granger causality, and introduce directed information
graphs. In Section 4.3, we study the causal network of linear models. Section 4.4
studies the causal network of non-linearmodels. In Section 4.5, we apply our non-
linear method to learn the causal network of set of financial institutions and com-
pare it with the linear regression method in the literature. Finally, we conclude in
Section 4.6.

4.2 Causal Network

In order to investigating the dynamic of systemic risk, it is important to measure
the causal relationship between financial institutions. In this section, we propose a
statistical approach to learn such causal interconnections using Granger causality
Granger (1969).
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4.2.1 Graphical Models and Granger Causality

Researchers from different fields have developed various graphical models suit-
able for their applicationof interest to encode interconnections among variables or
processes. Markov Networks, Bayesian networks (BNs), and Dynamic Bayesian
networks (DBNs) are three example of such graphical models that have been used
extensively in the literature. In these particular graphical models, nodes represent
random variables Koller and Friedman (2009), Murphy (2002).

Markov networks are undirected graphs that represent the conditional inde-
pendence between the variables. On the other hand BNs and DBNs are directed
acyclic graphs (DAGs) that encode conditional dependencies in a reduced factor-
ization of the joint distribution.

Since the size of such graphical models depends on the time-homogeneity and
the Markov order of the random processes. Therefore, in general, the graphs can
grow with time. As an example, the DBN graph of a vector autoregressive (VAR)
withm processes each of orderL requiresmL nodesDahlhaus and Eichler (2003).
As such they are not suitable for succinct visualization of relationships between
the time series such as systemic risks.

In this work, we use directed information graphs (DIGs) to represent intercon-
nections among the financial institutions in which each node represents a time se-
riesMassey (1990),Quinn et al. (2015). Below, we formally introduce this type of
graphical models. We use an information-theoretical generalization of the notion
of Granger causality to determine the interconnection between time series. The
basic idea in this framework was originally introduced by Wiener Wiener (1956),
and later formalized by Granger Granger (1969). The idea reads as follows: “we
say that X is causing Y if we are better able to predict the future of Y using all avail-
able information than if the information apart from the past of X had been used.”

Granger formulated this framework for practical implementation using mul-
tivariate autoregressive (MVAR) models and linear regression. This version has
been widely adopted in econometrics and other disciplines Dufour and Taamouti
(2010),Granger (1963). More precisely, in order to identify the influence ofXt on
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Yt in a MVAR comprises of three time series {X, Y,Z}, Granger’s idea is to com-
pare the performance of two linear regressions: the first predictor is non-nested
that is it predicts Yt given {Xt−1, Yt−1,Zt−1}, where Xt−1 denotes the time series
X up to time t − 1 and the second predictor is nested that is it predicts Yt given
{Yt−1,Zt−1}. Clearly, the performance of the second predictor is bounded by the
first predictor and if they have the same performance, then we say X does not
cause Y. In this framework, since the dynamic between time series is linear, lin-
ear regression has been chosen. Next, we introduce directed information (DI), an
information-theoretical measure that generalized Granger causality beyond linear
models Quinn et al. (2011a).

DI has been used in many applications to infer causal relationships. For exam-
ple, it has been used for analyzing neuroscience dataKimet al. (2011),Quinn et al.
(2011b) and market data Etesami and Kiyavash (2014).

4.2.2 Directed Information Graphs (DIGs)

In the rest of this section, wedescribe how theDI can capture the interconnections
in causal¹ dynamical systems (linear or non-linear) and formally define DIGs.

Consider a dynamical system comprised of three time series {X, Y,Z}. To an-
swer whetherX has influence on Y or not over time horizon [1,T], we compare the
average performance of two particular predictors with predictions p and q over
this time horizon. The first predictor uses the history of all three time series while
the second one uses the history of all processes excluding process X. On average,
the performance of the predictor with less information (the second one) is up-
per bounded by the performance of the predictor withmore information (the first
one). However, when the prediction of both predictors, i.e., p and q are close over
time horizon [1,T], then we declare that X does not cause Y in this time horizon;
otherwise, X causes Y.

In order to measure the performance of a predictor, we consider a nonnegative
loss function, ℓ(p, y), which defines the quality of the prediction. This loss func-

¹In causal systems, given the full past of the system, the present of the processes become inde-
pendent. In other words, there are no simulations relationships between the time series.
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tion increases as thepredictionpdeviatesmore from the trueoutcome y. Although
there are many candidate loss functions, e.g. the squared error loss, absolute loss,
etc, for the purpose of this work we consider the logarithmic loss.

Moreover, in our setting, the prediction p lies in the space of probability mea-
sures over y. More precisely, we denote the past of all processes up to time t1 by
F t−1 that is the σ-algebra generated by {Xt−1, Yt−1,Zt−1}, where Xt−1 represents
the time series X up to time t − 1, and denote the past of all processes excluding
process X, up to time t− 1 byF t−1

−X .
The prediction of the first predictor that is non-nested at time t is given by pt :=

P(Y(t)|F t−1) that is the conditional distribution of Y(t) given the past of all pro-
cesses and the second predictor which is nested is given by qt := P(Yt|F t−1

−X ).
Given a prediction p for an outcome y ∈ Y , the log loss is defined as ℓ(p, y) :=

− log p(y). This loss function has meaningful information-theoretical interpreta-
tions. The log loss is the Shannon code length, i.e., the number of bits required to
efficiently represent a symbol y drawn fromdistribution p. Thus, itmay be thought
of the description length of y.

When the outcome yt is revealed for Yt, the two predictors incur losses ℓ(pt, yt)

and ℓ(qt, yt), respectively. The reduction in the loss (description length of yt),
known as regret is defined as

rt := ℓ(qt, yt)− ℓ(pt, yt) = log
pt

qt
= log

P(Yt = yt|F t−1)

P(Yt = yt|F t−1
−X )
≥ 0.

Note that the regrets are non-negative. The average regret over the time horizon
[1,T] given by 1

T

∑T
t=1 E[rt], where the expectation is taken over the joint distri-

bution of X, Y, and Z is called directed information (DI). This will be our measure
of causation and its value determines the strength of influence. If this quantity is
close to zero, it indicates that the past values of time seriesX contain no significant
information that would help in predicting the future of time series Y given the his-
tory of Y and Z. This definition may be generalized to more than 3 processes as
follows,
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Definition 1 Consider a network of m time series R := {R1, ...,Rm}. We declare Ri

influences Rj over time horizon [1,T], if and only if

I(Ri → Rj||R−{i,j}) :=
1
T

T∑
t=1

E

[
log

P(Rj,t|F t−1)

P(Rj,t|F t−1
−{i})

]
> 0, (4.1)

where R−{i,j} := R \ {Ri,Rj}. F t−1 denotes the sigma algebra generated by Rt−1 :=

{Rt−1
1 , ...,Rt−1

m }, andF t−1
−{i} denotes the sigma algebra generated by {Rt−1

1 , ...,Rt−1
m }\

{Rt−1
i }.

Definition 2 Directed information graph(DIG)of a set ofmprocessesR = {R1, ...,Rm}
is a weighted directed graph G = (V, E,W), where nodes represent processes (V = R)
and arrow (Ri,Rj) ∈ E denotes that Ri influences Rj with weight I(Ri → Rj||R−{i,j}).
Consequently, (Ri,Rj) /∈ E if and only if its corresponding weight is zero.

Remark 1 Pairwise comparison has been applied in the literature to identify the causal
structure of time series Allen et al. (2010), Billio et al. (2010, 2012). Such comparison
is not correct in general and fails to capture the true underlying network as we will see in
the next example. For more details please see Quinn et al. (2015).

Example 1 As an example, consider a network of three times series {X, Y,Z}with the
following linear model:

Xt = a1Xt−1 + a2Zt−1 + εxt ,

Zt = a3Zt−1 + εzt ,

Yt = a4Yt−1 + a5Zt−1 + εyt ,

(4.2)

where εx, εy, and εz are three independent white noise processes, and {a1, ..., a5} are
non-zero coefficients of the model. Due to the functional relationships between these
time series, we have that the causal network of this model is X ← Z → Y, i.e., there is
an arrow from Z to X and Z to Y because Xt and Yt depend on Zt−1, respectively. This
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can also be inferred using the DIs in (4.1), it is straight forward to show that

I(X→ Y||Z) = 0, I(X→ Z||Y) = 0,

I(Y→ X||Z) = 0, I(Y→ Z||X) = 0,

I(Z→ Y||X) > 0, I(Z→ X||Y) > 0.

Notice that none of the aboveDIs are pairwise as they have conditioned on the remaining
time series. However, considering the pairwise causal relationships, for instance between
X and Y will give us

I(X→ Y) =
1
T

T∑
t=1

E
[
log

P(Yt|Yt−1,Xt−1)

P(Yt|Yt−1)

]
> 0.

Hence, looking into pairwise causal relationships, we obtain that X directly causes Y
that is not the case in this example.

A causal model allows a factorization of the joint distribution in some specific
ways. It was shown in (Quinn et al., 2015) that under a mild assumption, the joint
distribution of a causal discrete-time dynamical system with m time series can be
factorized as follows,

PR =
m∏
i=1

PRi||RBi
, (4.3)

where Bi ⊆ −{i} := {1, ...,m} \ {i} is the minimal² set of processes that causes
process Ri, i.e., parent set of node i in the corresponding DIG. Such factorization
of the joint distribution is called minimal generative model. In Equation (4.3),
P(·||·) is called causal conditioning and defined as follows

PRi||RBi
:=

T∏
t=1

PRi,t|F t−1
Bi∪{i}

,

andF t−1
Bi∪{i} = σ{Rt−1

Bi∪{i}}.
It is important to emphasize that learning the causal network using DI does not

require any specific model for the system. There are different methods that can

²Minimal in terms of its cardinality.
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estimate (4.1) given i.i.d. samples of the time series such as plug-in empirical es-
timator, k-nearest neighbor estimator, etc Frenzel and Pompe (2007), Jiao et al.
(2013), Kraskov et al. (2004).

In general, estimatingDI in (4.1) is a complicated task andhashigh sample com-
plexity. However, knowing some side information about the system can simplify
the learning task. In the following section, we describe learning the causal net-
workof linear systems. Later in Section4.4, wediscuss generalization tonon-linear
models.

4.2.3 Quantifying Causal Relationships

The purpose of this section is to justify that the DI introduced in (4.1) also quan-
tifies the causal relationships in a network. We do so using a simple linear model
and then generalize it to nonlinear systems.

Consider a network of three time series X⃗t = (X1,t,X2,t,X3,t)
T with the follow-

ing dynamic

X⃗t =

0 0.1 0.3
0 0 −0.2
0 0 0

 X⃗t−1 + ε⃗t, (4.4)

where ε⃗t denotes a vector of exogenous noises that has normal distribution with
mean zero and covariance matrix I. Figure 4.2.1 shows the corresponding DIG of
this network. Note that in this particular example that the relationships are linear,
the support of the coefficient matrix also encodes the corresponding DIG of the
network.

In order to compare the strength of causal relationships X2 → X1 and X3 → X1

over a time horizon [1,T], we compare the performance of two linear predictors of
X1,t over that time horizon. The first predictor (L1) predictsX1,t using {Xt−1

1 ,Xt−1
3 }

and the other predictor (L2) uses {Xt−1
1 ,Xt−1

2 }. If L1 shows better performance
compared to L2, it implies that X3 contains more relevant information about X1

compared to X2. In other words, X3 has stronger influence on X1 compared to X2.
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Figure 4.2.1: Corresponding DIG of the system in (4.4).

To compare the performance of L1 and L2, we consider their mean squared errors
over the time horizon [1,T].

L1 : e1 :=
1
T

T∑
t=1

min
yt∈At

E||X1,t − yt||2, where At := span{Xt−1
1 ,Xt−1

3 },

L2 : e2 :=
1
T

T∑
t=1

min
zt∈Bt

E||X1,t − zt||2, where Bt := span{Xt−1
1 ,Xt−1

2 }.

It is easy to show that e1 = 1+ 0.12 and e2 = 1+ 0.32. Since e1 < e2, we infer that
X3 has stronger influence on X1 compared to X2.

Analogous to thedirected informationgraphs,wecangeneralize the above frame-
work to non-linear systems. Consider a network ofm time seriesR = {R1, ...,Rm}
with corresponding DIG G = (V, E,W). Suppose (Ri,Rj) and (Rk,Rj) belong to
E, i.e.,Ri andRk both are parents ofRj. We sayRi has stronger influence onRj com-
pared to Rk over a time horizon [1,T] if P(Rj,t|F t−1

−{k}) is a better predictor for Rj,t

compared to P(Rj,t|F t−1
−{i}) over that time horizon. In other words, Ri has stronger

influence on Rj compared to Rk, if

1
T

T∑
t=1

E

[
log

P(Rj,t|F t−1
−{k})

P(Rj,t|F t−1
−{i})

]
> 0.

Theabove inequalityholds if andonly if I(Ri → Rj||R−{i,j}) > I(Rk → Rj||R−{k,j}).
Thus, the DI in (4.1) can quantify the causal relationships in a network. For in-
stance, looking again at the system in (4.4), we obtain

I(X2 → X1||X3) =
1
2
log(1+ 0.12) <

1
2
log(1+ 0.32) = I(X3 → X1||X2).
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4.3 DIG of LinearModels

Herein, we study the causal network of linear systems. Consider a set of m sta-
tionary time series, and for simplicity assume they have zeromean, such that their
relationships are captured by the following model:

R⃗t =

p∑
k=1

AkR⃗t−k + ε⃗t, (4.5)

where R⃗t = (R1,t, ...,Rm,t)
T, and Aks are m × m matrices. Moreover, we assume

that the exogenous noises, i.e., εi,ts are independent and also independent from
{Rj,t}. For simplicity, we assume that the {εi,t} have mean zero. For the model in
(4.5), it was shown in Etesami and Kiyavash (2014) that

I(Ri → Rj||R−{i,j}) > 0,

if and only if
∑p

k=1 |(Ak)j,i| > 0, where (Ak)j,i is the (j, i)th entry of matrix Ak.
Thus, to learn the corresponding causal network (DIG) of this model, instead of
estimating the DIs in (4.1), we can check whether the corresponding coefficients
are zero or not. To do so, we use the Bayesian information criterion (BIC) as the
model-selection criterion to learn the parameter p Schwarz et al. (1978), and use
F-tests to check the null hypotheses that the coefficients are zeroLomax andHahs-
Vaughn (2013).

Wiener filtering is another alternative approach that can estimate the coeffi-
cients and consequently learn the DIG Materassi and Salapaka (2012). The idea
of this approach is to find the coefficients by solving the following optimization
problem,

{Â1, ..., Âp} = arg min
B1,...,Bp

E

[
1
T

T∑
t=1

||R⃗t −
p∑

k=1

BkR⃗t−k||2
]
.
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This leads to a set ofYule-Walker equations that canbe solvedefficientlybyLevinson-
Durbin algorithm Musicus (1988).

4.3.1 DIG of GARCH models

The relationship between the coefficients of the linear model and the correspond-
ingDIGcaneasily be extended to thefinancial data inwhich thevarianceof{εi,t}Tt=1

are no longer independent of {Ri,t} but due to the heteroskedasticity, they are
F t−1

i -measurable. More precisely, in financial data, the returns are modeled by
GARCH that is given by

Ri,t|F t−1 ∼ N (μi,t, σ
2
i,t),

σ2i,t = α0 +
q∑

k=1

αk(Ri,t−k − μi,t)
2 +

s∑
l=1

βlσ
2
i,t−l,

(4.6)

where αks and βls are nonnegative constants.

PROPOSITION 1 Consider anetwork of time serieswhose dynamic is givenby (4.6).
In this case, there is no arrowfromRj toRi in its correspondingDIG, i.e., Rj does not cause
Ri if and only if

E[Ri,t|F t−1] = E[Ri,t|F t−1
−{j}], ∀t. (4.7)

See Appendix 4.7.1.
Multivariate GARCH models are a a generalization of (4.6) in which the vari-

ance of ei,t isF t−1-measurable. In this case, not only μi,t but also σ2i,t capture the in-
teractions between the returns. More precisely, in multivariate GARCH, we have

R⃗t|F t−1 ∼ N (⃗μt,Ht),

vech[Ht] = Ω0 +

q∑
k=1

Ωkvech[⃗εt−k⃗εTt−k] +

p∑
l=1

Γlvech[Ht−l],

where μ⃗t is an m × 1 array, Ht is an m × m symmetric positive definite andF t−1-
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measurable matrix, and ε⃗t = R⃗t − μ⃗t. Note that vech denotes the vector-half
operator, which stacks the lower triangular elements of an m × m matrix as an
(m(m + 1)/2)× 1 array.

PROPOSITION 2 Consider a network of time series whose dynamic is captured by
a multivariate GARCH model. In this case, there is no arrow from Rj to Ri in its corre-
spondingDIG, i.e., Rj does not influenceRi if and only if both the condition inProposition
1 and the following condition hold

E[(Ri,t − μi,t)
2|F t−1] = E[(Ri,t − μi,t)

2|F t−1
−{j}], ∀t. (4.8)

See Appendix 4.7.2.
Next example demonstrates the connection between the DIG of a multivariate

GARCH and its corresponding parameters.

Example 2 Consider the following multivariate GARCH(1,1) model(
R1,t

R2,t

)
=

(
0.2 0.3
0 0.2

)(
R1,t−1

R2,t−1

)
+

(
ε1,t
ε2,t

)
,

σ21,t
ρt

σ22,t

 =

 0
0.3
0.1

+

0.2 0 0.3
0 0.2 0.7
0.1 0.4 0


 ε21,t−1

ε1,t−1ε2,t−1

ε22,t−1

+

0.3 0.5 0
0.1 0.2 0
0 0 0.4


σ21,t−1

ρt−1

σ22,t−1

 ,

(4.9)

where ρt = E[ε1,tε2,t]. The correspondingDIGof thismodel isR1 ↔ R2. This is because
R2 influences R1 through the mean and variance and R1 influences R2 only through the
variance.

Remark 2 Recall that as we mentioned in Remark 1 and Example 1, the pairwise
Granger-causality calculation, in general, fails to identify the true causal network. It was
proposed in Billio et al. (2012) that the returns of the ith institution linearly depend on
the past returns of the jth institution, when

E[Ri,t|F t−1] = E
[
Ri,t|Rj,t−1,Ri,t−1, {Rj,τ − μj,τ}

t−2
τ=−∞, {Ri,τ − μi,τ}

t−2
τ=−∞

]
.

91



This test is obtained based on pairwise Granger-causality calculation and does not con-
sider non-linear causation through the variance of {εi}. For instance, if the returns of
two institutions Rj andRk cause the returns of the ith institution, then the above equality
does not hold, because Rk cannot be removed from the conditioning.

4.3.2 DIG of Moving-Average (MA) Models

Themodel in (4.5)maybe represented as an infinitemoving average (MA)ordata-
generating process (GDP), as long as R⃗(t) is covariance-stationary, i.e., all the roots
of |I−

∑p
k=1 Akzk| fall outside the unit circle Pesaran and Shin (1998):

R⃗t =
∞∑
k=0

Wk⃗εt−k, (4.10)

whereWk = 0 fork < 0,W0 = I, andWk =
∑p

l=1 Wk−lAl. In this representation,
{εi}s are called shocks and if they are independent, they are also called orthogonal
Diebold and Yılmaz (2014).

In this section, we study the causal structure of a MA model of finite order p.
Consider a moving average model with orthogonal shocks given by

R⃗t =

p∑
k=0

Wk⃗εt−k, (4.11)

where Wis are m × m matrices such that W0 is non-singular with nonzero diag-
onals and without loss of generality, we can assume that diag(W0) is the iden-
tity matrix. Equation (4.11) can be written as R⃗t = W0⃗εt + P(L)⃗εt−1, where
P(L) :=

∑p
k=1 WkLk−1. Subsequently, we have

W−1
0 R⃗t = ε⃗t +

∞∑
k=1

(−1)k−1 (W−1
0 P(L)

)k W−1
0 R⃗t−k. (4.12)

This representation is equivalent to an infinite AR model. Hence using the result
in Etesami and Kiyavash (2014), we can conclude the following corollary.
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COROLLARY 1 Consider a MA model described by (4.11) with orthogonal shocks
such thatW0 is non-singular and diagonal. In this case, Rj does not influence Ri if and
only if the corresponding coefficients of {Rj,t−k}k>0 in Ri’s equation are zero.

In the interest of simplicity and space, we do not present the explicit form of these
coefficients, but we show the importance of this result using a simple example.

Example 3 Consider a MA(1) with dimension three such thatW0 = I, and

W1 =

0.3 0 0.5
0.1 0.2 0.5
0 0.4 0.1

 , W2
1 =

0.09 0.2 0.2
0.05 0.24 0.2
0.04 0.12 0.21

 ,

Using the expression in (4.12), we have R⃗t = ε⃗t +
∑∞

k=1(−1)k−1Wk
1 R⃗t−k. Because,

W2
1 has no nonzero entry, the causal network (DIG) of this model is a complete graph.

We studied theDIG of aMAmodel with orthogonal shocks. However, the shocks
are rarely orthogonal in practice. To identify the causal structure of such systems,
we can apply the whitening transformation to transform the shocks into a set of
uncorrelated variables. More precisely, supposeE[⃗εt⃗εTt ] = Σ, where the Cholesky
decomposition of Σ is VVT Horn and Johnson (2012). Hence, V−1⃗εt is a vector
of uncorrelated shocks. Using this fact, we can transform (4.11) with correlated
shocks into

R⃗t =

p∑
k=0

W̃k⃗ ε̃t−k, (4.13)

with uncorrelated shocks, where⃗̃εt := V−1⃗εt and W̃k := WkV.

Remark 3 The authors in Diebold and Yılmaz (2014) applied the generalized vari-
ance decomposition (GVD) method to identify the population connectedness or in an-
otherword the causal structure of aMAmodelwith correlated shocks. Using thismethod,
they monitor and characterize the network of major U.S. financial institutions during
2007-2008 financial crisis. In this method, the weight of Rj’s influence on Ri in (4.11)
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was defined to be proportional to

di,j =

p∑
k=0

(
(WkΣ)i,j

)2
, (4.14)

where (A)i,j denotes the (i, j)-th entry of matrix A. Recall thatE[⃗εt⃗εTt ] = Σ. Applying
the GVD method to Example 3, where Σ = I, we obtain that d1,2 = d3,1 = 0. That
is R2 does not influence R1 and R1 does not influence R3. This result is not consistent
with the Granger-causality concept since the corresponding causal network (DIG) of
this example is a complete graph, i.e., every node has influence on any other node. Thus,
GVD analysis of Diebold and Yılmaz (2014) is also seems to suffer from disregarding
the entire network akin to pairwise analysis commonly used in traditional application
of the Granger-causality.

4.4 DIG ofNon-linearModels

DIG as defined in Definition 2 does not require any linearity assumptions on the
model. But, similar to Billio et al. (2010), side information about the model class
can simplify computation of (4.1). For instance, let us assume thatR is a first-order
Markov chain with transition probabilities:

P(Yt|Rt−1) = P(Rt|Rt−1).

In this setup, I(Ri → Rj||R−{i,j}) = 0 if and only if

P(Rj,t|Rt−1) = P(Rj,t|R−{i},t−1),∀t.

Recall that R−{i},t−1 denotes {R1,t−1, ...,Rm,t−1} \ {Ri,t−1}. Furthermore, suppose
that the transition probabilities are represented through a logistic function again as
inBillio et al. (2010). More specifically, for any subsetof processesS := {Ri1 , ...,Ris} ⊆
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R, we have

P(Rj,t|Ri1,t−1, ...,Ris,t−1) :=
exp(⃗αT

SU⃗S)

1+ exp(⃗αT
SU⃗S)

,

where U⃗T
S :=

⊗
i∈S(1,Ri,t−1) = (1,Ri1,t−1) ⊗ (1,Ri2,t−1) ⊗ · · · ⊗ (1,Ris,t−1), ⊗

denotes the Kronecker product, and α⃗S is a vector of dimension 2s × 1. Under
these assumptions, the causal discovery in the network reduces to the following
statement: Ri does not influence Rj if and only if all the terms of U⃗R depending on
Ri are equal to zero. More precisely:

U⃗R = U⃗R−{i}
⊗ (1,Ri,t−1) = (U⃗R−{i}

, U⃗R−{i}
Ri,t−1).

Let α⃗T
R = (⃗αT

1 , α⃗
T
2 ), where α⃗1 and α⃗2 are the vectors of coefficients corresponding

to U⃗R−{i}
and U⃗R−{i}

Ri,t−1, respectively. Then Ri ̸→ Rj if and only if α⃗2 = 0.
Another such non-linear models are Multiple chain Markov switching mod-

els (MCMS)-VAR Billio and Di Sanzo (2015), in which the relationship between
time series Yt is given by

Yi,t = μi(Si,t) +

p∑
k=1

m∑
j=1

(Bk(Si,t))i,jYj,t−k + εi,t, for i ∈ {1, ...,m}, (4.15)

and ε⃗t := (ε1,t, ..., εm,t) ∼ N (0, Σ(⃗St)), where the mean, the lag matrices, and
the covariance matrix of the error terms all depend on a latent random vector S⃗t

known as the state of the system. Si,t represents the state variable associated with
Yi,t that can take values from a finite set S . The random sequence {⃗St} is assumed
to be a time-homogenous first-order Markov process with one-step ahead transi-
tion probability P(⃗St|St−1, Yt−1) = P(⃗St|St−1). Furthermore, we assume that given
the past of the states, their presents are independent, i.e.,

P(⃗St|St−1) =
∏

j

P(Sj,t|St−1).
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Next result stresses a set of conditions under which by observing the time series
Yt, we are able to identify the causal relationships between them.

PROPOSITION 3 Consider aMCMS-VAR in which Σ(⃗St) is diagonal for all S⃗t. In
this case, I(Yj → Yi||Y−{i,j}) = 0 if

• (Bk(si,t))i,j = 0 for all realizations si,t,

• (Σ(⃗St))i,i = (Σ(Si,t))i,i,

• P(Sk,t|St−1, S−{k},t) = P(Sk,t|Sk,t−1) for every k.

SeeAppendix 4.7.3. Note that the third condition in this proposition seems strong
compared to the condition inBillio andDiSanzo(2015). Butnotice thatBillio and
Di Sanzo (2015) studies the causal relationships between the time series given the
state variables, which is not realistic as they are hidden. Below, we show a simple
example in which Y1 does not functionally depend on Y2 and S1 is statistically in-
dependent of S2. However, in this example, observing the states leads to Y2 has no
influence on Y1, but without observing the states we infer differently.

Example 4 Consider a bivariate MCMS-VAR {Y1, Y2} in which the states only take
binary values and

Y1,t = b1,1(S1,t)Y1,t−1 + 0.1ε1,t,

Y2,t = μ2(S2,t) + 0.5Y1,t−1 + 0.1ε2,t,

where (ε1,t, ε2,t) ∼ N (0, I), μ2(0) = 10, μ2(1) = −5, b1,1(0) = 0.5, and b1,1(1) =
−0.5. Moreover, the transition probabilities of the states are P(S1,t|S1,t−1, S2,t−1) =

P(S1,t|S1,t−1) = 0.8 whenever S1,t = S1,t−1, and S2,t equals to S1,t−1 with probability
0.9. Based on Billio and Di Sanzo (2015), in this setup, Y2,t−1 does not Granger-cause
Y1,t given Y1,t−1, S1,t−1, i.e.,

P(Y1,t|Y2,t−1, Y1,t−1, S1,t−1) = P(Y1,t|Y1,t−1, S1,t−1).

Note that in this example, P(Y1,t|Y2,t−1, Y1,t−1) ̸= P(Y1,t|Y1,t−1). This is because, Y2,t−1

has information about S2,t−1 which contains information about S1,t−2.
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4.5 Experimental Result

In we have introduced tools for identifying the causal structure in a network of
time series. In this section, we put those tools to work and use them to identify
and monitor the evolution of connectedness among major financial institutions
during 2006-2016.

4.5.1 Data

Weobtained thedata for individual banks, broker/dealers, and insurers frombloomberg,
from which we selected the daily returns of all companies listed in Table 4.5.1.

Table 4.5.1: . List of companies in our experiment.

Banks
FNMA US BNS US
AXP US STI US
FMCC US C US
BAC US MS US
WFC UN SLM US
JPM US BBT US
DB US USB US
NTRS US TD US
RY US HSBC US
PNC US BCS US
STT US GS US
COF US MS US
BMO US CS US
CM US
RF UN

Insurances
MET US PFG US
ANTM US LNC US
AET US AON US
CNA US HUM US
XL US MMC US
SLF US HIG US
MFC US CI US
GNW US ALL US
PRU US BRK/B US
AIG US CPYYY US
PGR US AHL US
CB US
BRK/A US
UNH US
AFL US

Brokers
MS US WDR US
GS US EV US
BEN US ITG UN
MORN US JNS US
LAZ US SCHW US
ICE US ETFC US
AINV US AMTD US
SEIC US
FII US
RDN US
TROW US
AMP US
GHL US
AMG US
RJF US

We calculated the causal network for different time periods that will be consid-
ered in the empirical analysis: 2006-2008, 2009-2011, 2011-2013, and 2013-2016.
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4.5.2 Non-linearity Test

In this section, we applied a non-linearity test on the data to determine whether
the underlying structure within the recorded data is linear or nonlinear. The non-
linearity test applied in this section is based on nonlinear principle component
analysis (PCA)Kruger et al. (2008). This test is based on twoprinciples: the range
of recorded data is divided into smaller disjunct regions; and accuracy bounds are
determined for the sum of the discarded eigenvalues of each region. If this sum is
within the accuracy bounds for each region, the process is assumed to be linear.
Conversely, if at least one of these sums is outside, the process is assumed to be
nonlinear.

More precisely, the second principle in this test requires computation of the
correlation matrix for each of the disjunct regions. Since the elements of this ma-
trix are obtained using a finite dataset, applying t-distribution and χ2-distribution
establish confidence bounds for both estimated mean and variance, respectively.
Subsequently, these confidence bounds can be utilized to determine thresholds
for each element in the correlation matrix. Using these thresholds, the test cal-
culates maximum and minimum eigenvalues relating to the discarded score vari-
ables, which in turn allows the determination of both aminimum and amaximum
accuracy bound for the variance of the prediction error of the PCA model. This
is because the variance of the prediction error is equal to the sum of the discarded
eigenvalues. If this sum lies inside the accuracy bounds for each disjunct region,
a linear PCA model is then appropriate over the entire region. Alternatively, if at
least one of these sums is outside the accuracy bounds, the error variance of the
PCA model residuals then differs significantly for this disjunct region and hence,
a nonlinear model is required. For more details see Kruger et al. (2008).

We divided the operating region into 3 disjunct regions. The accuracy bounds
for each disjuct region and also sum of the discarded eigenvalues were computed.
These bounds were based on thresholds for each element of the correlation ma-
trix corresponding to confidence level of 95%. Note that the processes were nor-
malized with respect to the mean and variance of the regions for which the ac-
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curacy bounds were computed. Figure 4.5.1 shows the accuracy bounds and the
sum of the discarded eigenvalues. As figures 4.5.1-(a) and 4.5.1-(b) illustrate, the
recorded financial data is nonlinear.
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Figure 4.5.1: Benchmarking of the residual variances against accuracy bounds
of each disjunct region.

4.5.3 Estimating the DIs

As we mentioned earlier, there are different methods that can be used to estimate
(4.1) given i.i.d. samples of the time series. Plug-in empirical estimator and k-
nearest neighbor estimator are such twomethods Frenzel and Pompe (2007), Jiao
et al. (2013),Kraskov et al. (2004). For our experimental results, weusedk-nearest
method to estimate theDIs since it shows relatively better performance compared
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to the other non-parametric estimators. To do so, we used the fact that

I(Ri → Rj||R−{i,j}) =
1
T

T∑
t=1

I(Rj,t;Rt−1
i |Rt−1

−{i,j},R
t−1
j ),

where I(X; Y|Z) denotes conditional mutual information between X and Y given
Z Cover and Thomas (2012). Then, we estimated each of the above conditional
mutual information using k-nearest method in Sricharan et al. (2011). Below, we
describe the steps of k-nearest method to estimate I(X; Y|Z).

Suppose thatN+M i.i.d. realizations {X1, ...,XN+M} are available from PX,Y,Z,
where Xi denotes the ith realization of (X, Y,Z). The data sample is randomly di-
vided into two subsets S1 and S2 of N and M points, respectively. In the first stage,
an k-nearest density estimator P̂X,Y,Z at the N points of S1 is estimated using the
M realizations of S2 as follows: Let d(x, y) denote the Euclidean distance between
points x and y and dk(x) denotes the Euclidean distance between a point x and its
k-th nearest neighbor among S2. The k-nearest region is Sk(x) := {y : d(x, y) ≤
dk(x)} and the volume of this region is Vk(x) :=

∫
Sk(x)

dn. The standard k-nearest
density estimator Sricharan et al. (2011) is defined as

P̂X,Y,Z(x) :=
k− 1

MVk(x)
.

Similarly, we obtain k-nearest density estimators P̂X,Z, P̂Y,Z, and P̂Z. Subsequently,
the N samples of S1 is used to approximate the conditional mutual information:

Î(X; Y|Z) := 1
N

∑
i∈S1

log P̂X,Y,Z(Xi) + log P̂Z(Xi)− log P̂X,Z(Xi)− log P̂Y,Z(Xi).

For more details corresponding this estimator including its bias, variance, and
confidence, please see Loftsgaarden et al. (1965), Sricharan et al. (2011).

4.5.4 DIG of the Financial Market

In this section, we learned theDIG of the aforementioned financial institutions by
estimating the directed information quantities in (4.1). To do so, we divided the
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data into four sectors each of length almost 36 months, 2006-2008, 2009-2011,
2011-2013, and 2013-2016. We assumed that the DIG of the network did not
change over each of these time periods. Furthermore, the data collected per work-
ing day are assumed to be i.i.d.. Hence, in this experiment the length of each time
series was almost 36 and for each time instance we had nearly 19 independent re-
alizations.

As we discussed in Section 4.2.2, in order to identify the influence from node
i on node j, we need to estimate I(Ri → Rj||R−{i,j}), which in this experiment,
required estimating a joint distribution of dimension 76. In general, without any
knowledge about the underlying distribution, estimating such object requires a
large amount of independent samples. Unfortunately, in this experiment, we had
limited number of independent samples. Thus, we reduced the dimension by in-
stead of conditioning onR−{i,j} that is a set of size 74, we conditioned on a smaller
subset Ki,j of R−{i,j} with size 7. This set contained only those institutions with
highest correlationwithRj. In anotherwords, we ordered the institutions inR−{i,j}

based on their correlation value with Rj, and picked the first 7 of them. Afterward,
we estimated I(Ri → Rj||Ki,j) to identify the connection between Ri and Rj.

Figures 4.5.2 and 4.5.3 show the resulting graphs. Note that the type of institu-
tion causing the relationship is indicated by color: green for brokers, red for insur-
ers, and blue for banks.

In order to compare our results with other methods in the literature, we also
learned the causal network of these financial institutions by assuming linear rela-
tionships between the institutions and applying linear regression. Similarly, we
reduced the dimension of the regressions by bounding the number of incoming
arrows of each node to be a subset of size 20. More precisely, we picked 20 most
correlated institutions with node i, let say {Rj1 , ...,Rj18} and obtained the parents
of i by solvingminaj

∑
t |Ri,t −

∑18
k=1 akRjk,t−1|2 The resulting graphs are depicted

in Figures 4.5.4 and 4.5.5.
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(b) January 2009 to December 2011

Figure 4.5.2: Recovered DIG of the daily returns of the financial companies
in Table 4.5.1. The type of institution causing the relationship is indicated by
color: green for brokers, red for insurers, and blue for banks.

From these networks, we constructed the following network-basedmeasures of
systemic risk.
Wecalculated the fractionof statistically significantGranger causality relationships
among all pairs of financial institutions. This is known as the degree of Granger
causality (DGC)and it is ameasure of the risk of a systemeventBillio et al. (2012).
Table 4.5.2 presents theDGCvalues and total number of connections of theDIGs
and the networks obtain by linear regression.

Table 4.5.2: . DGC values and total number of connections.

DIGs
2006-2008 0.1225 698
2009-2011 0.1114 635
2011-2013 0.1065 607
2013-2016 0.0930 530

LinearModels
2006-2008 0.1453 828
2009-2011 0.1288 734
2011-2013 0.1174 669
2013-2016 0.1216 693

In order to assess the systemic importance of single institutions, we computed
the number of financial institutions that are caused by institution i and also the
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(a) January 2011 to December 2013
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(b) January 2013 to June 2016

Figure 4.5.3: Recovered DIG of the daily returns of the financial companies
in Table 4.5.1. The type of institution causing the relationship is indicated by
color: green for brokers, red for insurers, and blue for banks.

number of financial institutions that are causing institution i. Figure 4.5.6 demon-
strates the average number of out-degree and in-degree distributions of the DIGs.
Correspondingly, Figure 4.5.7 shows these quantities for the networks obtain by
linear regression.

Tables 4.5.3 and4.5.4 represent the average number of connections between the
sectors e.g., 0.1719 fraction of connections are from Banks to Insurances during
2006-2008 in the DIG.

Table 4.5.3: . Average number of connections between different sectors in the
DIGs.

2006-2008 2009-2011 2011-2013 2013-2016
Ins. Ba. Br. Ins. Ba. Br. Ins. Ba. Br. Ins. Ba. Br.

Insurance .1390 .1719 .1074 .1291 .1575 .1213 .1054 .1301 .1104 .1075 .1151 .1340
Bank .1361 .1332 .0702 .0866 .1402 .1039 .1417 .1631 .1021 .0774 .1830 .1302
Broker .0774 .1017 .0630 .0740 .929 .0945 .0906 .0873 .0692 .0774 .0774 .0981
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(b) January 2009 to December 2011

Figure 4.5.4: Recovered network of the daily returns of the financial compa-
nies in Table 4.5.1 using linear regression. The type of institution causing the
relationship is indicated by color: green for brokers, red for insurers, and blue
for banks.
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(b) January 2013 to June 2016

Figure 4.5.5: Recovered network of the daily returns of the financial compa-
nies in Table 4.5.1 using linear regression. The type of institution causing the
relationship is indicated by color: green for brokers, red for insurers, and blue
for banks.

4.6 Conclusion

In this work, we developed a data-driven econometric framework to understand
the relationshipbetweenfinancial institutionsusing anon-linearlymodifiedGranger-104



Table 4.5.4: . Average number of connections between different sectors in the
networks obtained using regression.

2006-2008 2009-2011 2011-2013 2013-2016
Ins. Ba. Br. Ins. Ba. Br. Ins. Ba. Br. Ins. Ba. Br.

Insurance .1896 .0688 .0737 .1785 .1076 .0640 .2033 .0792 .1016 .2107 .0851 .0678
Bank .0906 .1872 .0809 .1322 .1431 .0899 .1136 .1226 .1001 .1010 .1515 .1053
Broker .0857 .1063 .1171 .0790 .0708 .1349 .1226 .0673 .0897 .1082 .0895 .0808

causality. Unlike existing literature, it is not focused on a linear pairwise estima-
tion. The proposed method allows for nonlinearity and it does not suffer from
pairwise comparison to identify the causal relationships between financial institu-
tions. We also showhow themodel improve themeasurement of systemic risk and
explain the link betweenGranger-causality and variance decomposition. We apply
the model to the daily returns of U.S. financial Institutions including banks, bro-
ker, and insurance companies to identify the level of systemic risk in the financial
sector and the contribution of each financial institution.
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Figure 4.5.6: Out and In degree distributions of the DIGs obtained in Section
4.5.4.
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Figure 4.5.7: Out and In degree distributions of the networks obtained using
linear regression.
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4.7 Appendix

4.7.1 Appendix A. Proof of Proposition 1

Note that in this model, since the variance of each ei,t isF t−1
i -measurable, the only

term that contains the effect of the other returns on the i-th return is μi,t. Hence, if
(4.7) holds, then μi,t is independent ofRj. This implies the result. Moreover, when
μi,t =

∑p
k=1
∑m

l=1 a
(k)
i,l Rl,t−k, using the result in Etesami and Kiyavash (2014), we

declare Rj affects Ri if and only if
∑p

k=1
∑m

l=1 |a
(k)
i,l | > 0, where a(k)i,l denotes the

(j, l)-th entry of matrix Ak in (4.5).

4.7.2 Appendix B. Proof of Proposition 2

First, we need to show that if there is no arrow from Rj to Ri in the corresponding
DIG, then (4.7) and (4.8) hold. This case is straight forward, since when I(Rj →
Ri||R−{i,j}) = 0, then for all t,Ri,t is independent ofRj givenF t−1

−{j}. This concludes
both (4.7) and (4.8).

To showthe converse,weuse the fact that inmultivariateGARCHmodel, R⃗t|F t−1

is a multivariate Gaussian random process. Thus, if the corresponding mean and
variance of Ri,t do not contain any influence of Rt−1

j given the rest of the network,
then Ri,t is independent of Rt−1

j given Rt−1
−{j}. This holds if both conditions in (4.7)

and (4.8) that are corresponding to the mean and the variance, respectively, are
satisfied.

4.7.3 Appendix C. Proof of Proposition 3

Suppose the conditions inProposition 3hold. We show that I(Yj → Yi||Y−{i,j}) =

0.

P(Yi,t|Yt−1) =
∑
Si,t

P(Yi,t|Yt−1, Si,t)P(Si,t|Yt−1)

=
∑
Si,t

P(Yi,t|Yt−1
−{j}, Si,t)P(Si,t|Yt−1).
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ThesecondequalityholdsbecausegivenSi,t,Yi,t is a linear functionof (μi(Si,t), Y⃗t−p, ..., Y⃗t−1)

plus the error term εi,t. From the first and second conditions in Proposition 3, we
have the coefficients corresponding to Yj are zero and also the error term is inde-
pendent of Yj. Thus, Yi,t is independent of Yt−1

j given Yt−1
−{j}, Si,t.

If we show P(Si,t|Yt−1) = P(Si,t|Yt−1
−{j}), using the above equality, we obtain that

P(Yi,t|Yt−1) = P(Yi,t|Yt−1
−{j}) for all t. This implies I(Yj → Yi||Y−{i,j}) = 0. To do

so, we have

P(Si,t|Yt−1) =
∑
Si,t−1

P(Si,t|Yt−1, Si,t−1)P(Si,t−1|Yt−1)

=
∑
Si,t−1

P(Si,t|Yt−1
−{j}, Si,t−1)P(Si,t−1|Yt−1)

=
∑
Si,t−1

P(Si,t|Yt−1
−{j}, Si,t−1)P(Si,t−1|Yt−1

−{j}) = P(Si,t|Yt−1
−{j}).

The second equality is due to condition three and the fact that S⃗t is conditionally
independent of Yt−1 given St−1. The third equality is due to the following

P(Si,t−1|Yt−1) = P
(
Si,t−1|Yt−2, Yi,t−1, Y−{i,j},t−1, Yj,t−1

)
= P

(
Si,t−1|Yt−2, Fi(Yt−2

−{j}, Si,t−1), Y−{i,j},t−1, Fj(Yt−2, Sj,t−1)
)

= P
(
Si,t−1|Yt−2, Fi(Yt−2

−{j}, Si,t−1), Y−{i,j},t−1

)
,

whereFjs represent the functional dependencybetween time series given in (4.15),
i.e., Ym,t−1 := Fm(Yt−2, Sm,t−1). The above equality holds due to the third condi-
tion that states are mutually independent and the fact that all the Yj’s coefficients
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are zero in Yi’s equation. Same reasoning implies

P
(
Si,t−1|Yt−2, Fi(Yt−2

−{j}, Si,t−1), Y−{i,j},t−1

)
= P

(
Si,t−1|Yt−3, Fi(Yt−2

−{j}, Si,t−1), Yi,t−2, Yt−1
−{i,j},t−2, Yj,t−2

)
= P

(
Si,t−1|Yt−3, Fi(Yt−2

−{j}, Si,t−1), Fi(Yt−3
−{j}, Si,t−2), Yt−1

−{i,j},t−2, Fj(Yt−3, Sj,t−2)
)

= P
(
Si,t−1|Yt−3, Fi(Yt−2

−{j}, Si,t−1), Fi(Yt−3
−{j}, Si,t−2), Yt−1

−{i,j},t−2

)
...

= P
(
Si,t−1|Fi(Yt−2

−{j}, Si,t−1), Fi(Yt−3
−{j}, Si,t−2), ..., Yt−1

−{i,j}

)
= P

(
Si,t−1|Yt−1

−{j}

)
.

Recall that Yt
K,t′ denotes the time series with index setK from time t′ up to time t.
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The world is one big data problem.

Andrew McAfee

5
Forecasting in BigData Environments

with a Shrinkage Estimation of Skip-layer
Neural Networks

5.1 Introduction

One of the important steps in designing the modern predictive models is to cope
with high-dimensional data, which contain large numbers of correlated variables
and present complex properties. Big data is not just an increase in the number of
samples collected over time, but also is an increase in the number of potential ex-
planatory variables and predictors that are simultaneously measured on a process.
When the dimension grows, the specificities of high-dimensional spaces and data
must then be taken into account in the design of predictive models. While this
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statement is valid in general, its importance is even higher when using nonlinear
tools such as artificial neural networks. Most nonlinear models involve more pa-
rameters than the dimension of the data space which may result in a lack of model
identifiability, instability, and overfitting (Huber (2011);Cherkassky et al. (1994);
Moody (1991)). Therefore, selection of the significant predictors and the level
of model complexity are the key tasks of designing accurate predictive models in
data-rich environments.

Feature extraction (i.e, principal component analysis - Pearson (1901); Eckart
andYoung (1936); factor analysis - Spearman (1904); canonical correlations anal-
ysis - Hotelling (1936)) and feature selection (i.e, Ridge - Hoerl and Kennard
(1970a); LASSO - Tibshirani (1996); Elastic Net - Zou and Hastie (2005)) are
broadly the twogeneral approaches fordimensionality reduction, the former trans-
forms the original features into a lower dimensional space preserving all its funda-
mental characteristics whereas the latter selects a small subset of the original fea-
tures without a transformation. In this work, our focus is in particular on feature
selection techniques, and we apply shrinkage approaches (In machine learning,
this is called regularization). We embed feature selection in backpropagation al-
gorithm as part of its overall operation. To bemore precise, we penalize the neural
network loss functionwith theL1 norm forweights in thehidden layer andL2 norm
for weights in skip-layer¹.

Doing shrinkage is, therefore, an implicitly embedded manner of doing feature
selection, which is an example of model selection problem, since only a subset of
variables contributes to the final predictor. It has frequently been observed that L1

regularization inmanymodels causesmanyparameters to equal zero and can result
in dropping some features and getting a sparse model, so that only those parame-
terswhose impact on the empirical risk is considerable and consequently appear in
the fittedmodelNg (2004). Thismakes it a proper candidate for the nonlinear part
to control the complexity of the model and from an optimization point of view it
is equivalent to a neural network learned/estimated by LASSO. It prevent hidden

¹Direct connections from each of the input variables to each of the output variables. This part
of the model is equivalent to a linear regression.
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units getting stuck near zero and weights exploding. On the other hand, we apply
L2 regularization on the skip-layer connections (linear part of the model), which
penalizes groups of parameters and encourages the sum of the squares of the pa-
rameters to be small. Therefore we will not drop specific features from linear part
and there is the possibility of directly interpreting the marginal impact of predic-
tors on target variable. It is worthmentioning that the linear part of themodel can
be seen as a Ridge regression.

In fact, that’s not the only benefit of using regularization. Empirically, regular-
ization is also a way to reduce overfitting and to increase prediction accuracies Ng
(2004). This is especially true in modern networks, which often have very large
numbers of weights. The proposed algorithm combines the neural network’s ad-
vantage of describing the nonlinear process with the superior accuracy of feature
selection that is provided by penalized loss function combining L1 and L2 norms.

Althoughmany time series studies have suggested neural networks as a promis-
ing alternative to the linear regressionmodels, there are empirical evidences show-
ing deceptive results in terms of their superiority in out-of-sample forecasting per-
formance. It is also challenging to determine if complex real world time series be-
have in a linear or nonlinear fashion. Hence, it is not wise to apply neural networks
blindly to any type of data. The experimental results from different linearity tests
indicated that the real world series are rarely pure linear or nonlinear. They con-
sists of both linear andnonlinear patterns. If that is the case, we can assume that the
financial time series (yt) are composed of a linear structure (Lt) plus a nonlinear
component (Nt).

yt = Lt +Nt (5.1)

The major limitation of a linear model is the pre-assumed linear form of the
model and therefore, no nonlinear patterns can be captured. The neural network
is not also adequate to handle fairly both linear and nonlinear patterns especially
when the linear component is superior to the nonlinear component. The perfor-
mance of the linear model and neural networks is not remarkable when the time
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series contain complex linear and nonlinear patterns.
Two different approaches to model and forecast time series with both linear

and nonlinear patterns are imaginable. The first approach is a hybrid methodol-
ogy with combined linear time series models and neural networkmodels which is
capable to capture different aspects of the data. In this approach, first we estimate
the linear component using a linear model and then we collect the residuals ob-
tained from the fittedmodel êt = yt− L̂t. Finally we let a nonlinear approach (i.e,
GARCH familymodels, Neural networks) tomodel the residuals which are repre-
senting the nonlinear component and will contain information about the nonlin-
earity. In theory, the hybrid model can be an effective tool with a superior predic-
tive ability when both linear model and neural network model are specified well
and are suboptimal. But, in practice we are combining two model specification
errors.

There is another approach to model time series with complex patterns that we
are proposing in this paper and is based on a neural network with skip-layer con-
nections including both linear and nonlinear structure. Therefore, we optimize a
neural network model containing a linear part simultaneously. Themodel consid-
ers both linear and nonlinear patterns in the time series at the same time.

5.2 TheModel

In this study, we focus on feedforward neural networkswith only one hidden layer.
And to show that the neural networkmodels can be seen as a generalisation of lin-
ear models, we allow for direct connections from the input variables to the output
layer and we assume that the output transfer function is linear², then the model

²Using linear function for the output unit activation function (in conjunction with nonlinear
activations amongst the hidden units) allows the network to perform a powerful form of nonlinear
regression. So, the network can predict continuous target values using a linear combination of
signals that arise from one layer of nonlinear transformations of the input.
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becomes

yt = Φ(x;w) =
∑
i→k

xitwik +
∑
j→k

φj

(∑
i→j

xitwij

)
wjk + εt, (5.2)

where Φ describe network by a vector function. We associate subscript i with
the input layer, subscript j with the hidden layer, and subscript k with the output
layer. xit = (x1t, x2t, ..., xmn) is the value of the ith input node, which can be a con-
stant input representing biases, a matrix of lagged values of yt and some exogenous
variables. φj(.) and J are activation functions and number of neurons used at the
hidden layer. A single-hidden-layer neural network with skip-layer connections is
shown in Figure 5.2.1. A network with only one hidden layer and skip-layer con-
nections has three sets of weights: those direct connections between the inputs
and the output (wik), those connecting the inputs to the hidden layer (wij), and
those connecting the output of the hidden layer to the output layer(wjk).

First summation of the Eq.(5.2) represents a linear regression term. A linear
regression term hints the model in a right direction when we know that the data
contains a linear component. Moreover, this ismore interpretable froma statistical
perspective andunraveling a bit of a structure behind the network, which is usually
seenmerely as a black box. It also has the advantage that, whenwe apply shrinkage
techniques to estimate network parameters, if the problem is essentially linear, the
hidden neurons tend to get pruned and we are left with a linear model.

In general, estimating the set of network elementary parameters (weights,w) in
away thatminimise the errors that thenetworkmakes is knownas training/learning
neural network. It is equivalent to finding a point in parameter space that makes
the height of the error surface small. The error surface getsmore andmore compli-
cated as we increase the number of input variables in the network and the number
of units in hidden layer. Themean squared prediction error, E = 1

n

∑n
t=1(yt− ŷt)

2,
is a standardway of quantifying error. Given target values and network outputs we
can calculate the value of the error function for each setting of weights.

In principle, studies in time series and forecasting widely use the conventional
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Figure 5.2.1: A single-hidden-layer neural network with skip-layer connections

feedforwardneural network trainedwith the gradient descent type algorithm(also
known as backpropagation). The backpropagation algorithm first introduced by
Bryson et al. (1979) and popularised in the field of artificial neural network re-
search by Werbos (1988) and Rumelhart et al. (1986). The goal of backpropaga-
tion learning algorithm is to adjust theweights in away thatminimises the network
prediction error function.

To solve this problem, the error function’s sensitivity to network weights must
be quantified based on a gradient descent optimization. Gradient is normally de-
fined as the first order derivative /gradient of the error function with respect to
each of the model parameters. This gradient information will give us the direction
in parameter space that decreases the height of the error surface. We then take
a step in that direction and repeat, iteratively calculating the gradient and taking
steps in parameter space. The weight adjustment is given by

wnew = wold − η
∂E(w)
∂w

(5.3)
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Where the constant η is the learning rate (step size) and its value falls between
zero and one. The direction of search in weight space for the new value of the
weights is elected by ∂E(w)

∂w , that shows the sensitivity of the error function to the
weights. By repeating iteratively the steps network canbe trained in away that con-
verges to optima. The set of new weights are repeatedly presented to the network
until the error value is minimised. Around the optimum point, all the elements of
the gradient would be very small, which leads to tiny changes in new weights.

ImplementingL1 andL2 regularization in a backpropagation algorithmof a neu-
ral network is relatively easy. In particular,method error returns the total error plus
penalties or constraints and theobjectiveof learning isminimizationof the regular-
ized loss function. If weight values are included in the total error term that’s being
minimized, then smaller weight values will generate smaller error values. There-
fore, network parameters are the solutions to the following optimization problem

w∗ = argmin
w

E(w) + λ Ω(w) (5.4)

where the regularization termΩ(w) is multiplied by a shrinkage/regularization
hyperparameter λ. Assuming a fixed λ, to learn network parametersw∗ using back-
propagation algorithm, we just need to add derivative of penalty term to the gra-
dient and iteratively update parameters³.{

Δ = ∂E(w)
∂w + λ ∂Ω(w)

∂w

wnew = wold − ηΔ
(5.5)

Where Δ is the gradient of regularized loss function and λ > 0 is known as
the regularization hyperparameter. In many practical applications, the simplest
method to set λ is to train the neural network with a number of different λ values,
and then choose the model having the smallest validation error. A more attractive
approach is to use an optimization algorithm to adapt the model hyperparame-
ters λ automatically. In the next section we will explain how to estimate a set of λ
for each network weight in order to minimize a validation error during training of

³It is worth noting that the regularization term does not include the biases.
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neural networks.
L1 sparsity norm and L2 smoothing norm are two closely related regularization

that can be used by machine learning training algorithms to select model features
and reduce model overfitting. Regularization in neural networks limits the mag-
nitude of network parameters by adding a penalty for weights to the model er-
ror function. L1 weight regularization penalizes weight values by adding the sum
of their absolute values to the error term. L2 regularization uses the sum of the
squared values of the weights. In this study, L2 regularization penalizes weight val-
ues in skip-layer connections by adding the sumof their squared values to the error
term andL1 regularization penalizesweight values in hidden layer to encourage the
topology of the learned network to be sparse.

w∗ = argmin
w

E(w) +
λ2
2

∑
i→k

w2
ik + λ1(

∑
i→j

|wij|+
∑
j→k

|wjk|) (5.6)

Then the learning rule for the weights becomes:
wnew

ik = wold
ik − η(∂E(w)

∂wik
+ λ2 wold

ik )

wnew
ij = wold

ij − η(∂E(w)
∂wij

+ λ1 sgn(wold
ij ))

wnew
jk = wold

jk − η(∂E(w)
∂wjk

+ λ1 sgn(wold
jk ))

(5.7)

This is exactly the same as the usual gradient descent learning rule, except we
rescale theweights thatmakes them smaller. Intuitively, the effect of penalty terms
is to lead the network to learn small weights, all other things being equal. Large
weights will only be allowed if they considerably improve the first part of the cost
function. Therelative importanceof the compromisebetweenfinding smallweights
and minimizing the original loss function depends on the size of λ. When λ is
small we prefer to minimize the original loss function, but when it is large we pre-
fer small weights. There are different ways to tune hypeparameters such as λ. We
explain later how to estimate λ instead of setting thatmanually using grid search or
cross-validation.
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To use L2 regularization, we add a λ2w term to the gradient as the derivative of
w2 is 2w. L2 regularization works with all forms of learning algorithm, but does
not provide implicit feature selection. The derivative of the absolute value of w is
w/|w|, however L1 norm is not differentiable at 0 and hence poses a problem for
gradient-based methods.

The problem can be solved using the exact gradient, which is discontinuous at
0. We can also solve the problem by the smooth approximation approach which
will allow us to use gradient descent. To smooth out theL1 normusing an approxi-
mation, we use

√
w2 + ε place of |w| , where ε is a smoothing parameter which can

also be interpreted as a sort of sparsity parameter. When ε is large compared to w,
the w+ ε is dominated by ε and taking the squared root yields approximately

√
ε.

Lee et al. (2006)

5.3 Gradient-basedHyperparameterOptimization

Themajor downsides of using shrinkagemethod is that it introduces additional hy-
perparameters thatmust be determined. In practicewehave two set of parameters:
model elementary parameters (network weights), and learning algorithm hyper-
parameters (lambdas; size of an L1 or L2 penalty). We would ideally like to deter-
mine these hyperparameters to get optimal generalization⁴. There are different ap-
proaches to this problem. Grid search andmanual search are themost widely used
strategies for hyperparameter optimization in the literature. However, in many
practical applications manually searching the space of hyperparameter settings is
tedious and tends to lead to unsatisfactory outcomes. Bergstra and Bengio (2012)
show empirically and theoretically that random search is more efficient than grid
search for hyperparameter optimization in the case of several learning algorithms
on several data sets. Statistical techniques such as cross-validationWahba (1990),
bootstrapping Efron and Tibshirani (1994), and the Bayesian method MacKay
(1992) can also assist in terms of determining the hyperparameters.

⁴Generalization means building a model on one set of training data and hope that it makes
effective predictions on a different set of test data.
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Cross-validation (CV) is popular practical method to select hyperparameters.
The rationale behindCV is to split the data into the training sample used for learn-
ing the algorithm, and the validation sample (once or several) for estimating the
risk of each algorithm and for evaluating its performance. Validation sample is not
used for training, but are used to evaluate how well the model generalizes to data
it hasn’t seen before. In brief, CV consists in averaging several hold-out estimators
(folds) of the risk corresponding to different splits of the data and selects the al-
gorithm with the smallest estimated risk. Within each fold, hyperparameters are
fixed and we only estimate model elementary parameters. The validation sample
plays the role of new data as soon as data are i.i.d.⁵ For a general description of
the CV strategy See ?, and Arlot and Celisse (2010) for a comprehensive review
on cross-validation procedures and their applications in different algorithms and
frameworks. However, Several studies such as Rivals and Personnaz (1999) show
that CV performance is not always good.

Recently, automatedapproaches for estimationof thehyperparametershasbeen
proposed in the literature and led to substantial improvements specially when the
researcher did not have a strong intuition regarding good values to try for the hy-
perparameters. There are anumberof gradient-free automatedoptimizationmeth-
ods (Hutter et al. (2011); Bergstra et al. (2011); Bergstra et al. (2013); Snoek et al.
(2012)), all of which rely onmultiple complete training runs with varied fixed hy-
perparameters, with the hyperparameter selection based on the validation set per-
formance. Hyperparameters are chosen to optimize the validation loss after com-
plete training of the model parameters.

In the late 1990s, gradient-based automated approaches proposed by Larsen
et al. (1996) and Andersen et al. (1997). They formulate an iterative gradient de-
scent scheme for adapting the hyperparameters by minimizing the validation er-
ror calculated from a single validation set. They treat hyperparameters similar to
elementary parameters during training and simultaneously update both sets of pa-
rameters. Following this scheme, we can estimate a single regularization parame-
ter or separate regularization parameter for each individual weight in the network.

⁵This assumptions can be relaxed. see: Chu and Marron (1991).
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The details of this approach can be summarized in few steps as follows:
(1) In the first step, we split the data set into two disjoint sets: a validation set

for estimation of hyperparameters and optimization of network architecture, and
a training set for estimation of network elementary parameters. wewill refer to the
training set as T , with nT observations, and to the validation set (used exclusively
for training the hyperparameters) as V, with nV observations.

(2) Then we initialize the weights and λ to train the network with fixed λ to
achieve ŵ(λ). The validation error EV of the trained network is given by

EV(ŵ(λ)) =
1
nV

nV∑
t=1

(yt − ŷt)
2 (5.8)

Where ŵ(λ) is the λ-dependent vector ofweights estimated fromthe training set
T . Validation error is a function of network weights, and the network weights are
affected by the hyperparameters through the regularized loss function. Therefore,
the validation error is an implicit function of λ.

(3)The last step includes updating λ using the gradient of validation error until
the relative change in validation error is below a small percentage. After each up-
date, the network is again trained to convergence. The optimal λ can be found by
a gradient descent scheme as follow

λnew = λold − γ
∂EV

∂λ
(ŵ(λold)) (5.9)

Where γ > 0 is the gradient step size (learning rate) and ŵ(λold) is the estimated
weight vector using λ from previous iteration.

Similar approacheshavebeenproposed since the late1990s; Larsenet al. (2012)
extended their framework to amulti-fold validation sets. Chen andHagan (1999)
extended the gradient descent hyperparameter optimization by introducing a sec-
ond derivative of validation error based regularization algorithm using the Gauss-
Newton approximation to the Hessian. Bengio (2000) shows that the implicit
function theorem can be used to derive a formula for the hyperparameter gradient
involving second derivatives of the training criterion. His method require compu-
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tation of the inverse Hessian. Snoek et al. (2012) optimize separate regularization
parameters for each layer in a neural network, and found that it improved perfor-
mance. Maclaurin et al. (2015) compute exact gradients of cross-validation per-
formance with respect to all hyperparameters by chaining derivatives backwards
through the entire training procedure. They compute hyperparameter gradients
by exactly reversing the dynamics of stochastic gradient descent withmomentum.

5.4 Concluding Remarks

In this study, we suggested a high-dimentional learning algorithm of a neural net-
work with skip-layer connections as an accurate predictive model in a data-rich
environment. We explained how skip-layer connections hints the model in a right
direction when the data contains both linear and nonlinear components. To over-
come the curse of dimensionality and to manage model complexity, we penalized
the model loss function with L1 and L2 norms. Setting the size of regularization is
still an open question. Recent studies proposed automated approaches for estima-
tion of algorithm hyperparameters. We briefly explained the gradient-based auto-
mated approaches which treats shrinkage hyperparameters similar to the network
weights during training and simultaneously optimize both sets of parameters.
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