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Abstract

General solution concepts in cooperative game theory are static, e.g., the core, the Shap-

ley value and the Nash bargaining solution. Dynamic implementation procedures have

been proposed in order to support these static solution concepts. This thesis studies an

N-dimensional Markov chain motivated by a dynamic interactive trial-and-error learn-

ing model. The state space of the Markov chain is based on a cooperative game (v,N)

whose characteristic function v is superadditive and monotone, with conditions on v en-

suring non-emptiness of the core. Agents repeatedly bargain over a cooperative surplus

by submitting their demand for their share. Each round the payable coalition is chosen,

the feasible coalition with the maximum sum of demands. Players in the payable coali-

tion receive their demands as payoffs, the other players receive no payoff. Players adjust

their demands according to the following rule: In an efficient state (where the demand

sum of all players equals the total surplus, 1) one player is chosen uniformly at random

and increases his demand by ε. If demands sum to 1+ ε, one player not in the payable

coalition is then chosen to reduce her demand with probability proportional to the size of

her demand.

An individual’s demand update decision in the learning model is based solely on the

observation of his last payoff. Individual updates are in the tradition of reinforcement

learning, aspiration adaption, and fictitious play. Selten (1972) found empirical evidence

for an inherent equity principle in many outcomes of experimental cooperative bargaining

games. By construction, the dynamic learning model presented in this thesis also has an

inherent equity principle. The model is a simple modification (and the limit process) of a

model introduced by Nax (2010). To our knowledge, this thesis presents the first general

results of such a dynamic learning model for general 3-player games and all interesting

cases of 4-player games.

The transition probabilities of the Markov process studied in this thesis are the tran-

sition probabilities between efficient states, obtained by the two steps from an efficient

state to a state with demand sum 1+ ε and back, of the described trial and error process.

The process is a biased random walk on the simplex of efficient states, of which the poly-

tope formed by the grid of core points forms the subset of particular interest. For general

N-player games we introduce a coalition structure that exhibits an asymmetry of power
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between its members: the asymmetric coalition set. We believe the concept of an asym-

metric coalition set to be both novel and relevant to the study of dynamic learning models

with incremental demand updates for general cooperative games. Along a face of the core

polytope generated by an asymmetric coalition set, the asymmetric face, the bias of the

process is determined by the interplay between two dynamics: the inherent equity bias,

which “drags” the process towards equity, and the asymmetric power, which “drags” the

process away from equity. If the core polytope does not contain an asymmetric face, the

equity bias of the random walk determines the expected movement along the faces of the

polytope. The process can only leave the core polytope from a state on an asymmetric

face.

We study a special Markov chain in dimension N derived from the N-player bargaining

game, where no coalitional constraints are present. Then the bias of the random walk is

solely determined by the inherent equity principle: the random walk drifts towards equity,

and the equilibrium distribution is concentrated around the equal split, the most equitable

allocation.

For N = 3, no asymmetric coalition set exists. We show that the set of recurrent

states of the Markov chain is the “core polygon”, formed by the grid points in the core.

The cooperative outcome co is the unique vector in the core with smallest L2-distance

from the equal split. At every state of the core polygon outside a small ball around co,

the random walk moves in expectation over one time step towards co. The equilibrium

distribution of the Markov chain is concentrated around the vector co. For 3-player games

this vector equals the egalitarian allocation, a concept developed by Dutta and Ray (1989).

For N ≥ 4, games (v,N) can contain an asymmetric coalition set. For N = 4 the only

possible asymmetric coalition set is formed by two distinct two player coalitions. We give

three example games (v,4) with combinatorially isomorphic core. Each of the example

games has an asymmetric edge in the core. Along the asymmetric edge the inherent eq-

uity bias creates a drift dynamic “down” the asymmetric edge, and the asymmetric power

creates a drift dynamic “up” the asymmetric edge. In each example game the asymmetric

power is extreme, zero or moderate respectively: the equilibrium distribution of the pro-

cess is concentrated at the “upper” endpoint, the “lower” endpoint (which is co) or around

a demand vector in the interior of the asymmetric edge. Furthermore we give simulation
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results, which indicate that the concept of asymmetric power can be generalized to other

dynamic learning processes.

Coupling is a powerful and elegant probabilistic tool with which one is often able to

calculate tight bounds on the speed of convergence to equilibrium of Markov chains. We

believe this technique to be novel to the study of dynamic stochastic learning processes in

evolutionary game theory and hence present a general introduction to the technique. We

use coupling arguments to show rapid mixing for the cooperative game process for the

N-player bargaining game and for general 3-player games.
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Chapter 1

Literature Review

Many interesting static solution concepts have been introduced in cooperative game the-

ory. A brief summary is presented in the second part of Section 1.1. However, somewhat

less successful have been the attempts to explain why, and how, particular cooperative

outcomes come about. The challenge has been to find a model that dynamically supports

cooperative solutions, and for which individual strategies are simple enough to model

strategic play by a whole population in a realistic way.

One solution to this challenge is to find a learning model that is simple in its update

rule and requires little understanding by the individual agents other than their own payoffs.

Nax (2010) introduces such a model. In this evolutionary model of incremental demand

updates, individuals do not have a strategic model at all. They experiment rarely by

increasing their demands when “satisfied” with their payoff, and decreasing their demands

when not satisfied. A detailed analysis is given in Chapter 2 Section 2.1. The dynamic

learning model studied in this thesis is a modification of the Nax model amenable to

analysis. In Chapter 3 Section 3.3 we show that the dynamic learning model studied in

this thesis is the limit of the Nax model when the “rate of experimentation” tends to zero.

In this chapter we survey the literature on dynamic learning, forming the background

to, and giving motivations for, the particular model we study. A comparison of the pre-

sented literature with the dynamic learning model studied in this thesis is given in Chapter

2 in Section 2.7.
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In the model an individual’s demand update decision is based solely on the observa-

tion of her last payoff. Such a learning rule is completely uncoupled. Earlier models of

uncoupled learning dynamics are described in Section 1.5.

The incremental demand updates of the learning process are motivated by models

in behavioral psychology such as reinforcement learning (described in Section 1.1) and

aspiration adaption (described in Section 1.3).

The most significant new concept developed in this thesis is that of the asymmetric

coalition set which gives asymmetric power to the players in its intersection. We believe

this power to be present naturally in dynamic learning models on cooperative games based

on reinforcement learning or aspiration adaption. Section 1.2 describes early concepts in

social power situations and motivates our concept of asymmetric power in cooperative

learning processes.

By construction, the learning process in this thesis has an inherent equity principle,

which is motivated by the results of experimental games, which are described in Section

1.2.

One dynamic learning model, which has been successful in “finding” many equilibria

of noncooperative games, and some of cooperative games, is adaptive play described in

Section 1.4. Another branch of dynamic learning models is based on Bayesian decision

theory and described at the end of Section 1.4.

1.1 Reinforcement Learning and Static Cooperative So-

lution Concepts

Estes (1950) develops a statistical theory of learning. He attempts to derive a statistical

interpretation to the concept of stimulus and response. He explains behavior in terms

of “experimentally manipulable variables” and uses mathematical modeling to describe

the consequences of changes in assumptions to summarize well established empirical

relationships in a statistical sense. “It is proposed that the theory be evaluated solely by

its fruitfulness in generating quantitative functions relating various phenomena of learning

and discrimination.”
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He defines quantitative laws that well describe simple behavior systems. Behavior

samples that share common quantitative properties are called dependent variables, inde-

pendent variables relate to environmental events. In a situation where an organism has

initial probabilities of various responses, a model based on Estes theory predicts changes

in these probabilities as a function of changes in the independent variables. In this sense

learning is defined mathematically as the “transfer of probability between certain response

classes”. Estes theory of statistical learning does not intend to replicate real behavior and

mechanisms within organisms or species but rather develops mathematical summaries or

statistics of common behavior that is, predictions of changes in the relative probabilities

of certain behaviors.

Bush and Mosteller (1955) introduce a general model of stochastic learning where

“reinforcement (reward) increases the probability of the rewarded response”. The model

focuses on “how much a reward increments response probability”. In order to model re-

wards and their effect on a learning process they created a linear operator model. Each

reinforcement increments the response probability by a constant fraction of the difference

between the current probability and the maximum probability (one). Non-reinforcement

reduces the response probability by a fraction of the difference between the current re-

sponse probability and the minimum (zero) probability.

The distinct multipliers associated with response and non-response depend on differ-

ent variables such as deprivation level, reward size and reinforcement history. The model

is completely deterministic with respect to the changes in the response probability (al-

though it is probabilistic with respect to the response probability itself). One can derive

deterministic predictions for average acquisition and extinction curves as the linearity of

the model allows to aggregate across individuals. The Bush-Mosteller model predicts

exponential form for the extinction and acquisition curves. Empirical verification or ev-

idence has been mixed especially with respect to paths and variability between different

asymptotic states. However the fact that the model has been able to account for asymptotic

or equilibrium performance has proved highly valuable.

The model has since been extended, for example by Rescorla and Wagner (1972).

There have been other more recent reinforcement learning models in research on exper-

imental games. One such notable model is the “payoff sum model” of Roth and Erev

(1995, 1998). The model describes automatized routine behavior where reinforcement
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learning occurs in men as well as animals of relatively low complexity. In a simple ver-

sion of the model, whenever a payoff for a decision alternative has been received, the

payoff sum for that alternative is increased. The probability of choosing a decision alter-

native is proportional to its payoff sum. An interesting and strong feature of the model is

that all information needed by participants is in their own payoff sums of their decision

alternatives.

Neumann (1947) models situations where “adjustments are made in a population of

agents playing a cooperative game”. The concept of the core dates back to Edgeworth

(1881). In game theory it is famously studied by Gillies (1959), Bondareva (1963), and

Shapley (1967) who show that the set of games with nonempty core is the set of “bal-

anced” games. All games analyzed in this thesis are balanced. Dutta and Ray (1989)

introduce a solution concept called the egalitarian allocation and they show that for all

3-person games where the egalitarian allocation exists and the core is non-empty the egal-

itarian allocation lies in the core.

1.2 Equal Share Analysis and Power

Selten (1972) analyzes the empirical outcomes of cooperative bargaining. He develops

theories that aim to explain many experimental allocation results. Equal share analysis is

based on three hypotheses that should hold for payoff allocations in characteristic function

games:

1. “no union of coalitions which have been formed could have secured a greater col-

lective payoff

2. no alternative coalition could have been formed by giving each of its members the

same amount and more than he received in the end

3. within a coalition the stronger player does not receive less than a weaker player”.

A vector satisfying the above conditions is in the equal division core. Strong players

are players whose cooperation is essential to form coalitions with high equal share. He

finds remarkable empirical evidence in conducted experiments with different groups of

people: allocations in the equal division core are formed most of the time.
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Selten later refined this concept. One such refinement is the equal division payoff

bounds predicting outcomes for experimental three player superadditive games. The first

experimental cooperative games were introduced in 1954 with “some experimental n-

person games” by Kalish, Milnor, Nash and Nering (1954).

Harsanyi (1962a) develops concepts to measure social power and opportunity costs in

the two-player bargaining setting. Furthermore Harsanyi (1962b) extends the measure-

ment of social power to N-player reciprocal power situations. In “reciprocal” or “bilat-

eral” power situations “not only can A exert pressure on B in order to get him to adopt

certain specific policies, but B can do do the same to A.” In these situations the extent

of compliant behavior and extent of net incentives are bargained over. When “A’s power

over B is based on A’s ability to set up rewards and or punishments for B conditional

upon B’s behavior” the weaker player can usually exert pressure on the stronger player by

“withholding his compliance” or by raising the cost of conflict for the strong player.

In Harsanyi’s (1977) “Blackmailer’s fallacy” a would-be-blackmailer can cause a

damage of 1000 dollars to a person. He then reasons (prematurely) that he can extract

any ransom just short of 1000 dollars. However, the person he threatens to damage could

argue in the same way that the blackmailer would be happy with just 1 dollar. Both argu-

ments are not conclusive, the only real conclusion to be drawn is that the ransom must lie

somewhere between zero and 1000 dollars. Harsanyi calls these limits the “concession

limits”. Within the concession limits the so-called “Nash-Zeuthen” theory predicts that

the value of the ransom is mainly determined by the attitude towards risk of both parties

involved. Furthermore, if both follow the Nash-Zeuthen theory of two-person bargain-

ing and the situation is a bilateral power situation, then “the amount of A’s power over

B with respect to some action X tends to be equal to half the net strength of A’s power

over B with respect to the same action X”. The net strength is the difference between the

“gross relative strength of A’s power over B with respect to action X and the gross relative

strength of B’s power over A with respect to some complementary action X*”.

In N-player conflict situations the definition of the strength and amount of power are

less obvious. The amount of a person’s power “is a measure of the probability of his

being able to achieve adoption of joint policies agreeing with his own preferences”. “In

this situation it is natural to define the amount of individual i’s power over the joint policy
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of all n individuals as the probability p1 of his being able to get his favorite joint policy

Xi adopted by all individuals.”

A more satisfactory power is Harsanyi’s vector measure for i’s power which states the

whole probability vector p = (p1, p2, ...pn) giving the probabilities for the adoption of

each of the alternative policies X1, ...,Xn. The strength of a person’s power measures the

incentives he can provide to the other players to agree to his proposals, and “more general

the strength of his bargaining position against the other participants”.

Other definitions and descriptions of power have been given such as power in a com-

mittee system proposed by Shapley and Shubik (1954) and their measures are special

cases of Harsanyi’s game theoretical measure for power in n-person situations.

1.3 Bounded Rationality, Aspiration Adaption and Ex-

perimental Games

Simons (1954a,1954b) created the theory of bounded rationality to account for the fact

that individuals are not fully rational. “The fully rational man is a mythical hero who

knows the solutions of all mathematical problems and can immediately perform all com-

putations.” Furthermore participants are often driven by psychological or emotional fac-

tors that are not modeled by “fully rational Bayesian maximizers of utility”. Experimental

evidence that agents can divert strongly from fully Bayesian rationality in their decision

making is found for example by Kahneman and Tversky (1982). Simons modeled deci-

sion making as a “search process guided by aspiration levels”. He defines goal variables

such as profit for a firm. An aspiration level is a value of a goal variable that is to be

achieved by a viable decision. A search process finds possible decision alternatives, it

ends once the aspiration level is satisfied. Simmons termed the notion of “satisficing” for

this search. Then, once satisfied, aspiration levels are adapted dynamically and the search

for a new alternative decision starts anew.

Sauermann and Selten (1962) develop an aspiration adaption theory (“Anspruchsan-

passungstheorie”) for the firm based on the ideas of Simons. Selten (1998) translates the

theory into English and presents the theory in a more formal way. He discusses possible

modifications in the light of recent experimental evidence. Selten elaborates further on
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the early aspiration adaption with bounded rationality by Simons. For Selten the decision

maker has several goal variables, for each of which he prefers more to less. “Goal in-

comparibility” is if neither of two different vectors of values for goal variables dominates

the other, i.e. has a higher or equal value for each goal variable. An aspiration level is

a vector with values for each goal variable. The aspiration levels vary in discrete steps

and form a grid in the space of the goal variables. Aspiration adaption is then done by

adjusting the aspiration levels: An upward adjustment is an increase in one partial aspira-

tion level of one goal variable to a neighboring point on the aspiration grid, a downward

adjustment an equivalent decrease. A ranking of the goal variables in terms of urgency

is given. Furthermore every grid point is assigned a retreat variable that is to be reduced

in case of downward adjustments at this particular grid point. An aspiration scheme is a

combination of aspiration grid, retreat variable specified for every point on the grid and

an urgency order on the goal variables. It is important to note that both urgency order

and retreat variable are ”local procedural preferences”. ”An upward adjustment step is

”feasible” if it leads to a feasible aspiration level.

Selten (1978) analyzes power in economic behavior and develops and finds evidence

of an inherent equity principle in many bargaining situations. He compares normative re-

sults of Bayesian decision theory and empirically observed human behavior with bounded

rationality. He looks at resulting allocations with respect to their equity properties and

their “symmetry of power”. He defines power as “the capability to secure more than

one’s equitable share”. All experiments are conducted on an individual basis, popula-

tions are anonymous. He concluded that superior power could lead to more. Selten finds

strong empirical evidence for equity allocations as long as the differences in power are

not too great: “it is not advisable to follow the natural inclination of a game theorist to

concentrate attention on power explanations”. Results of characteristic function game

experiments with face to face coalition bargaining agree surprisingly well with a rather

simple theory called “equal share analysis”. He develops the “proportional equity rule”

which gives the “same reward for every unit of achievement”. An equitable reward com-

bination can be described as a combination which allocates the same number of reward

units to every weight unit where the weighting is based on power. However the tendency

to find equitable allocations has bounds. “One may conjecture that the influence of social

norms is diminished in the face of substantial monetary incentives”.
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Selten (1986) develops a learning theory approach based on the analysis of sequences

of finite prisoner’s dilemma supergames with respect to end behavior. He analyzes the

effect that experience has on the play of repeated prisoner’s dilemma games. His analysis

contains both theoretical and experimantal results. For the experimental results 35 par-

ticipants played finitely repeated prisoner’s dilemma games where the number of rounds

was fixed at 10 periods. Cooperation was common until close to the last rounds.

Albers and Albers (1983) analyze the “perception of degree of roundedness of num-

bers”. An example of a recently more accurate but even more complex theory is that of

Hertwig, Hoffrage, Martiguon (1999) who find that estimates are often restricted to some

much smaller set of “prominent numbers”. Becker and Leopold (1996) develop an “inter-

esting experimentally based theory of expectation formation in an environment in which

a subject predicts the next value of a univariate time series on the basis of past observa-

tions”. The more previous local maxima are surpassed, the less likely is a continuation of

an increase.

Nash (2008) develops an agencies method for modeling coalitions and cooperations in

games. He studies the “evolution of cooperation among robot players through a coalition

formation game with a non-cooperative procedure of acceptance of another player.” Based

on this theoretical study Nash, Nagel, Ockenfels and Selten (2012) conduct a laboratory

experiment based on Nash’s theoretical work. In the first round human players can accept

a transfer of power to another player called agent. This procedure can end in either no

agent at all being accepted or an agent being accepted by exactly one or both other players.

No agent being accepted leads to zero payoff to all players. If several agents are accepted

one is selected at random. In the second round the agent can then distribute payoffs

as long as the distribution satisfies the coalitional constraints for the coalition that he is

representing as agent.

Players have different strength according to their fixed position in different three-

player cooperative games. The results are represented with focus on two factors: coalition

building and payoff distribution. Cooperation is very successful. More than 90 percent

of rounds end in the cooperation of all players, represented by the formation of the grand

coalition. “Although neither cooperative nor non-cooperative game theory predicts how a

grand coalition can emerge, one might speculate that the key to successful cooperation is

a commonly accepted, stable agency”. “The symmetry of the voting procedure induces a
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balance of power: Selfish agents tend to be voted out of their agency and are disciplined

by reciprocal behavior”.

With respect to payoff allocation the results are very interesting: In more than 50 per-

cent of all rounds the equal split in the grand coalition is implemented. In the groups

where the equal split is not prominent, focusing on divisions to the strong player, the

Shapley value is the best descriptor. Allocations close to the nucleolus are also quite

prominent. “Reciprocity explains the strong prominence of the equal split in the aggre-

gate, ...both gifts and demands are highly correlated between players.” The strong player

on average receives more than the other players. However he receives less than his power

in the cooperative game would suggest.

It is to the joint effort of the group to form the grand coalition. “However, one problem

is that the core can exist of many points without distinguishing a preferred point.”. He

pays attention to the Shapley value as a measure of power in the game. However he

only considers three player games without singleton coalitions, “...the nucleolus serves

the most dissatisfied player most”. One of the interests into the research was trying to

understand why humans interact in a cooperative way. “The evolution of human altruism

and cooperation is a puzzle. Unlike other animals, people frequently cooperate even

absent of any material or reputational incentive to do so.” This research highlights that

“efficiency requires people’s willingness to accept the agency of others”.

1.4 Adaptive Play and Rational Learning

Brown (1951) introduced fictitious play as a learning process for zero-sum games. In

the course of the game players assume that the average play of the historical choices of

the opponents is the best prediction for the players’ future play and hence choose a best

response in return. In fictitious play all players base their decisions on the entire history

of the game. The distribution of strategy choices is stationary. After a large number of

plays it quickly becomes unreasonable to assume that players “remember” the complete

past and that players are able to base their best response on the entire historic distribution

of the other players’ actions.

In “evolution of conventions” Young (1993) develops adaptive play which extends

the model of fictitious play by assuming that players base their decision on a sample of
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the recent history. “One way to think about the sampling procedure is to ask around, to

find out how the game was played in recent rounds” or they “randomly hear about certain

precedents” that have occurred recently. If an equilibrium has been played long enough, it

becomes a convention: people will keep playing it. Eventually some equilibrium will be

played with probability one. “Finite memory allows past mis-coordination to be forgotten

eventually.” For weakly acyclic games such as coordination games or common interest

games adaptive play will converge to a Nash equilibrium if players make no mistakes and

histories to sample from are sufficiently long relative to the sample size. The main con-

vergence Theorem relies on the underlying game to be weakly acyclic. “A game is weakly

acyclic if and only if from every strategy tuple there exists a finite sequence of best replies

by one agent at a time that ends in a strict pure Nash equilibrium”. A necessary assump-

tion for adaptive play is that any possible sample of specific length of the recent history

has positive probability. Young deliberately models players with little sophistication. “I

have deliberately chosen to focus on the case where agents do not learn in order to show

that convergence to equilibrium can occur with no common knowledge and with only a

minimum degree of rationality on the parts of the agents. Society can learn even when its

members do not.”

People make errors for a variety of reasons. Young (1993) introduces random “errors”

or “experiments” where sometimes a player randomly chooses any strategy instead of

his best response. In such a random error model all equilibria will be played some of

the time. One can say which equilibrium is played most of the time when the rate of

experimentation is small enough. To differentiate between the different equilibria Young

introduces the concept of stochastically stable states: A state is stochastically stable if its

limit exists when the error goes to zero, and when the state has positive measure under the

invariant distribution. The concept of stochastic stability can be described as robustness

against perturbations.

The process of strategy updates is modeled as a Markov chain. One individual is

chosen to update his best reply from each group of players in each round. Transition

between states are from sets of histories to the successor set of histories, where a new

history is added and the oldest one deleted. Transition probabilities are between successor

states, only successor states have positive probability for which all strategies chosen in

the new history are best replies to some subset of the previous set of histories. A state
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of histories of a fixed length T is an absorbing state if it consists of T identical pure

Nash equilibria in a row. ”If any other response than a pure Nash equilibrium has left

the collective memory of a set of groups, they will continue to behave according to the

conventions of their own group”.

Young (1998) introduces a variety of “simple adaptive learning processes”. These

concern individual participants, that have only partial knowledge of the economic situa-

tion they are in. However, over time, these simple learning rules can “converge to complex

equilibrium patterns of behavior”. He finds that for quite a large number of classical solu-

tions in game theory, there exist induced random processes, which under their equilibrium

measure, will be close to the classical solution most of the time. “Indeed a surprising num-

ber of classical solution concepts in game theory can be recovered via this route”. Other

models with evolutionary stable strategies are Axelrod (1984) and Fudenberg and Maskin

(1990).

For processes based on transferable utility games the dynamics are determined by two

features: coalition formation and bargaining about the appropriate split of the surplus

within each coalition. Dynamic learning models provide a framework for analyzing the

path that the process takes from a starting state into the core or to a more refined solution

concept. Arnold (1990) develops a dynamic learning model with local interaction and

player mobility. Players move freely between locations, choosing a location and an action

for the game. A theoretical paper on coalition formation is Shenoy (1979).

Packel (1981) develops a model of endogenous coalition formation. His process is

a Markov chain on the set of payoff allocations. Transitions between two states depend

on the number of coalitions that prefer a new state to the old one. He shows that for

games with non empty core the process moves with probability one into the set of core

allocations. The strong core is a singleton set of un-dominated states to which there is a

path of positive probability from every other state. If the strong core is non empty, the

process will settle in it with probability one.

In Konishi and Ray’s (2003) model the transition probabilities between coalition struc-

tures are determined by a Markov chain. Players maximize their discounted expected fu-

ture payoffs conditional on the transition probabilities between coalition structures. For

any initial state there is a value function for each player that describes the respective play-

ers expected discounted payoff. A state in this model consists of a coalition structure and
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a respective vector of value functions. Transitions between two states have only positive

probability if there is a coalition such that all players in that coalition prefer (not necessar-

ily strictly) the new state to the old. Furthermore there is no other state that this coalition

strictly prefers. If there is a new coalition structure for which all members of one coali-

tion are strictly better off then the process will have zero probability of remaining in the

old state. However players in this model are farsighted, myopic players only exist for an

extreme discount factor of zero. Given a discount factor that is large enough, Konishi and

Ray prove an equivalence relation between the core and a unique limit state.

Based on Peyton Young’s (1993a) adaptive play Agastya (1997) develops a version

of adaptive play on the state space derived from cooperative games. In this model of

social learning with coalition formation and allocation, conventions are core allocations.

Agastya provides sufficient conditions for global convergence to the core.

In the model there are N classes of players and a discrete demand space where all

demands are multiples of a “smallest money unit”. The updating process is directly taken

from Peyton Young: One player is chosen from each class in each round to play a coop-

erative game. To decide on a strategy for that round each player inspects or “samples” k

demand vectors from the last T . This models a situation where a player finds out what has

happened in the recent past and forms beliefs about his opponents behavior. He then plays

a best response to the beliefs generated by the sample of recent history he has observed.

If a player’s sample consists of a single strategy of his opponents repeated k times, he

assumes that the same strategy will be played in the next period. Again it is essential that

all possibilities of sampling of the recent past have positive probability. Demands are sub-

mitted simultaneously and players stay committed to their demand for that period. At the

end of the period the surplus is divided amongst the players taking part in that particular

round.

The resulting process is a Markov chain on a discrete state space. The assumption

of a “smallest money unit” is made to avoid an infinite dimensional strategy space and

ensures that a best response exists for every vector of histories. Additionally it ensures

that demands can be increased to exactly the value of a coalition. Transitions between

states depend on the likelihood for particular samples of size k being drawn given the

sample history of size T . The joint transition probabilities are the product of the marginal
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(individual) transition probabilities and so independence of the belief formation of the

individual players is assumed. Players use the same k and T to form beliefs.

The process is a model of social, not individual, learning. In each round, one player

from a group of players is chosen. The players belief formation are independent of each

other and Agastya assumes weak acyclicity of the process. Weak acyclicity is the main

feature of the model that allows to obtain global stability (in probabilistic sense) of core

allocations. The assumption of convexity of the characteristic function of the cooperative

game simplifies the proof of acyclicity. Assuming convexity is equivalent to assuming

non decreasing returns to scale in economic terms and hence is a reasonable assumption

for many real world situations.

Further assumptions on the underlying cooperative game are that no dummy player

exists and the core is non-empty. If the core is empty it is not hard to construct examples

in which the space is not weakly acyclic. Agastya’s assumptions impose little restriction

on institutional details but strong restrictions with convexity of characteristic function.

The rule for coalition formation is maximal in terms of set inclusion. The decision on

the final coalition may depend on the sequence in which demands are processed. If it

is possible to satisfy the demands of a coalition without hurting any other player, then

their demands will be met for sure. Amongst others Agastya gives an example game

with a convention that is not in the core and an example game with empty core where no

convention exists.

Agastya (1999) adds the feature of random perturbations to his model on adaptive

play for cooperative games (1997). The main result of Agastya is that an allocation is

stochastically stable if and only if it maximizes a certain real valued function on the do-

main of core allocations. Furthermore he finds that this maximum always exists. If there

are four or more players multiple stochastically stable allocations are possible. He again

adapts Peyton Young’s methods from evolution of conventions. The evolution of play is

modeled as a Markov chain with the set of all histories of length T as state space. The

transition probabilities are induced by the behavior rules. The updating rule in each round

for each player is identical to the unperturbed dynamics apart from a small probability

of error with which the player adopts a strategy that is not a best reply to the k histories

sampled from the size T set of histories that players can remember. The non best reply

strategy is chosen arbitrarily from the set of feasible strategies. Such a strategy is called
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a “mistake”. The probabilities of mistakes for different players are independent of each

other.

Restricting the behavior rules of the players to be time independent makes the pro-

cess stationary. The assumptions are adapted from the unperturbed case: the core is

discrete and restricted to multiples of the smallest money unit, demands must be strictly

individually rational. When players err with positive probability, conventions cannot be

established. Nevertheless, if the probability of errors is small, the process continues to

be attracted towards conventions without actually settling down. The process will spend

more time in some conventions than in others.

To prove which conventions are stochastically stable Agastya adapts a proof technique

from Young (1993a). Given a convention x, an x-tree is a directed graph with the set of

conventions as its vertices such that from every convention other than x there is a unique

path directed to x and there are no cycles. Resistance is defined as the minimum number

of mistakes necessary for the one period transition from a state s to s′. For any two states

s and s′ r (s,s′) is the minimum number of mistakes required to reach s′ from s through a

sequence of one period transitions. The resistance of an x-tree is defined as the resistance

summed over all of its edges.

The stochastic potential of a convention x is the resistance of the tree that has the least

resistance among all x-trees. Agastya’s main theorem states that a state s is stochastically

stable if and only if it is a convention and has the least stochastic potential among all

conventions. Exact results for allocations under the stochastically stable allocation can

only be given for players that get more than in the Nash bargaining solution. For these

players exact limits exist. However, for the remaining players, these limits do not exist.

Arnold and Schwalbe (2000) develop a model of dynamic coalition formation where a

player switches coalition only if his expected payoff in new the coalition is higher. Given

feasibility he demands as much as possible. They analyze the path of the process into the

core.

An allocation is feasible if the demands to players are at most equal to the maximum

sum available to all under the optimal coalition structure. In each round, each player sub-

mits a choice of demand and coalition. Each player can only choose to join one coalition.

Players can stay in their present coalition, join any other existing coalition or can form
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a singleton. If the demands in one coalition are feasible then all players in that coalition

receive their demand. Each round a player is chosen at random according to the binomial

distribution to update his choice of coalition and demand. The player chosen to update

expects the current coalition structure and the demands of the other players to remain

unchanged in the next round. These assumptions are close to reality as one can choose

the binomial distribution in such a way that the probability of two players simultaneously

updating their demands is very small.

Players have a “reservation payoff” that they receive if their chosen coalition does not

form or if they choose the singleton coalition. Players’ strategy is to maximize their pay-

off myopically: they choose the coalition which will give the player the highest possible

payoff. Further conditions are that his demand is the maximum he can receive whilst the

chosen coalition remains just feasible given the previous demands of the other members

of that coalition. If there is more than one coalition that would yield him the maximum

payoff, he chooses one randomly. However a player would only switch a coalition if it

yielded him a strictly higher payoff. A real world interpretation of the coalition formation

process might be that people come together at certain meeting points or different loca-

tions, and so a player that wants to change to a new coalition has to go to the meeting

point of that coalition.

This strategy profile of the players results in a Markov chain for which each state of

the state space consists of a coalition structure and a set of demands for all players. The

probability to move to a new state from a given state is the product of the individual tran-

sition probabilities multiplied by the probability of other players not adjusting demands

between these two states. As players can only choose existing coalitions, the process can

get stuck in suboptimal strategies if the current choice of coalition is the best reply for

each player. So potentially blocking coalitions can exist. As an example of a cycle for

this process the three player majority game is presented: Coalitions with cardinality of at

least two have worth ten, all other coalitions’ worth is zero. The process based on this

majority game will get stuck in a dominated allocation or cycle.

A perturbed version of the model in adaption to Young and Agastya is introduced.

With small probability, players are allowed to change to strategies that are myopically

suboptimal. However - different to Young and Agastya - only if they are members of

a potentially blocking coalition. So a player accepts a temporarily lower payoff by ex-
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perimenting in order to break a suboptimal coalition structure. Experimenting occurs

deliberately, conditional on the current situation. For the process with experimentation

and for superadditive transferable utility games Arnold and Schwalbe show that the set

of demand vectors associated with an absorbing state of the best-reply-process coincides

with the set of core allocations. The set of stochastically stable states is a subset of the set

of absorbing states for the model with no noise.

Newton (2012) develops another adaptive play process in the tradition of Young and

Agastya, with some redefinition of what generates a best response. He shows convergence

for any superadditive characteristic function with non-empty core. The process selects the

stochastically stable states within core allocations, where the stability of a core allocation

increases with the the wealth of the poorest player. Players randomly sample from the

recent histories, and play a best response. Randomly (from some distribution with full

support over all strategies) they commit an error and choose another strategy. States

consist of a demand and a set of players to form a coalition with. Players will form larger

coalitions rather than smaller ones. The change in actions from period to period can then

be modeled as a Markov chain where the actions of opponents are correlated. A related

process was introduced in Karandikar et al (1998).

Bayesian Updating or Rational dynamic learning models have been successful in dy-

namically “finding” equilibria in games. In Kalai and Lehrer’s (1993) N-player game

model players form subjective beliefs about the opponents strategies according to which

they choose their own strategies. The subjective beliefs are updated according to a Bayesian

rule. The main results are the following: If players know only their own payoff matrices

(and discount factor) and play to maximize expected utility they end up eventually play-

ing an approximate (ε-)Nash equilibrium of the repeated game. However the play of a

repeated game, in the rational learning model of Kalai and Lehrer, must not necessarily

eventually resemble play of exact equilibria. Levy (2014) shows that play can remain

distant from the play of any equilibrium of the original game. Levy shows further that the

same holds true in Bayesian games.

Kalai and Lehrer’s model does not require full knowledge of each player’s strategies,

and neither requires knowledge of the full prior distributions (subjective beliefs) of the

other players but relies on the “grain of truth” assumption: Each player’s “belief distribu-

tion on play paths” cannot rule out events with positive probability in the game; absolute
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continuity of the beliefs distribution with respect to the distribution of possible paths is

required. However it is important to note that the belief distribution must not assign zero

probability to any possible path.

The model exhibits path dependence on the assumed prior distributions of players.

“Players who hold optimistic prior probabilities will follow a cooperative path while pes-

simistic players must eventually follow a non-cooperative path. Thus, in the case of mul-

tiple equilibria, initial prior beliefs determine the final choice.” A player in Kalai and

Lehrer’s model will experiment when he believes that this will benefit his final present

value of expected payoff. The subjective belief distribution converges to the distribution

of actual paths, eventually being contained in any ε neighborhood of the real probability

distribution of the path of the game for any small ε. Amongst others the model is applied

to the infinite prisoner’s dilemma and the chicken game.

One major difference to adaptive play is that the Bayesian updating rule of Kalai and

Lehrer needs perfect recall in all payoff matrices for the complete history of the game.

This results from the reliance on Kuhn’s Theorem which enables the authors to replace a

probability distribution over many strategies (mixed strategy) by a single behavior strat-

egy. “Thus, a strategy specifies how a player randomizes over his choices of actions after

every history”. The “rational learning” requires intellect and memory of the players and

it is rather complicated. Experimentation depends on the understanding and intellect of

the player. This highlights one weakness of these models: the reliance on the maximiza-

tion of future expected payoffs. It can be very difficult to determine the best strategy for

maximizing expected future payoff in non trivial games.

Earlier approaches of learning in a similar way have been studied by Harsanyi (1967),

and Aumann and Maschler (1967).

1.5 Uncoupled Stochastic Learning Dynamics

In an uncoupled process the adjustment of a player’s strategy does not depend on the

payoff functions of the other players. The strategy adjustment may however depend on

the player’s own past payoffs or the other players’ strategies.
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Hart and Mas-Colell (2006) showed the impossibility of stationary deterministic un-

coupled dynamics to converge to Nash equilibria for bounded recall for all games. Bounded

recall implies that there is a finite integer T , so that each player bases its play only on the

last T rounds of play. For stochastic uncoupled dynamics convergence results have been

shown.

Foster and Young’s (2003) regret testing is a process that learns to play a Nash equi-

librium. The response rule of a player depends solely on his own payoffs, neither on other

players past or present actions nor on their payoffs. Foster and Young define the concept of

radically uncoupled. In the subsequent literature this is known as completely uncoupled.

In regret testing periods of play are grouped into finite sets of periods called rounds. Dur-

ing each round each player commits to play a mixed strategy profile according to which

he chooses an action each period. At the end of each period players receive a payoff.

At random a player sometimes chooses an action drawn from a different mixed strategy

profile. At the end of each round each player compares the average payoff received from

the strategy committed to play to each of the payoffs he received when experimenting

with a random strategy. If at least one of the payoffs from a random play is higher by a

fixed threshold (the “regret”) than the average payoff over the mixed strategy committed

to play, the player chooses a new mixed strategy profile uniformly at random from the set

of all mixed strategies for the next round. Otherwise he continues to play the same mixed

strategy profile for the next set. A payoff resulting from a random diversion in play is a

statistical estimate of the average payoff the player could have achieved if he committed

to that strategy for the whole set of periods. Hence the difference to the average payoff

over the chosen mixed strategy profile is the regret of not having committed to the other

strategy.

Foster and Young show that for finite two-player games “players” period-by-period

behaviors are close to equilibrium with high probability” after a sufficiently long time.

They prove convergence in probability to the set of Nash equilibria by “annealing” the

parameters. More and more refined parameters are used over new rounds. The proof

shows convergence of period-by-period behavior which is a stronger result than showing

only convergence in “time average behaviors” such as in regret matching.

Even close to the equilibrium players can occasionally choose other strategies and

hence the process can in theory move away again from equilibrium. One essential argu-
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ment in the proof of Foster and Young is that “the expected time it takes to get close to

equilibrium is much shorter than the expected time it takes to move away again”. The

model is very flexible in the amount of information players need to have. It is not neces-

sary that players all use the same fixed number of periods before revision, nor is it essential

that they all use the same random distribution. None of these relaxations of assumptions

will change the nature of the proof structure significantly. The one essential feature that

needs to be preserved is that players, when they experiment, assign positive probability to

each possible mixed strategy profile, that is, they need to use a measure that is absolutely

continuous with respect to the uniform measure. In comparison to the Bayesian updating

rules players beliefs and strategies need not be aligned before the game and the required

“sophistication” of players is relatively small.

Germano and Lugosi (2004) create a variant of Foster and Young’s Regret testing for

which they manage to show almost sure convergence to Nash equilibria by annealing the

search procedure via a procedure of localization. They show the existence of a globally

convergent learning rule. Similarly to Foster and Young’s regret testing players observe

their own payoffs for sufficiently long periods of time. Time is divided into periods of

some fixed length T . At the beginning of each period, each player chooses a mixed

strategy profile at random to which he remains committed during the duration of T rounds

of play. If a strategy was close to optimal over the previous period (i.e. he could not have

performed much better with any other strategy), a player will repeat that strategy profile in

the next period, otherwise the player will choose a new mixed strategy profile at random.

“The procedure thus implements a kind of exhaustive search with agents separately testing

their own actions through summary statistics of past payoffs”.

The method developed here guarantees convergence to just one Nash equilibrium,

the limiting equilibrium may depend on the actual random realization of the sequence

of plays. The main proof uses Doeblin’s condition which assumes that one can change

from any strategy to any other strategy in the state space in one adjustment of the chosen

mixed strategy. So changes in behavior are not incremental but can be complete. Any

measure absolutely continuous to the uniform distribution will work, the essential feature

is again that each strategy profile is assigned non-zero probability. The procedure is some

probabilistic trial and error search over all possible strategies.
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Germano and Lugosi introduce a version of persistent randomness or permutation to

the model: with some small probability players change their strategy even in the case

when their strategy is close to optimal with respect to the past payoffs. The process

of mixed action profiles taken at the beginning of each period is an irreducible Markov

chain. The basic idea of the proofs is to anneal experimental regret testing: First one set

of parameters for a fixed number of periods is used, then for the next set of periods the

parameters are “refined” where for example the length of the period is increased. This

ensures that not an infinite sequence of periods where strategies are far away exists. It

is essential for the proof that after each change of parameter the search is localized such

that each player limits its choice to a small neighborhood of the mixed action played

right before. Another challenge is that the values of the parameters of the procedure

(sequences) do not depend on parameters of the game since the game is uncoupled.

After some short searching over of a set of periods, by chance a mixed action profile

will be played that will be ε close to a Nash equilibrium. Once in a close neighborhood

of a Nash equilibrium players will have a small expected regret: the process continues

with this value for a much longer time than the search period. It is essential that the

length of time spent in the search period is negligible compared to the time spent ε-close

to a Nash equilibria. This procedure is uncoupled as well, i.e. the actions of each player

only depend on the players own past payoffs and not on the payoffs of the other players.

However players require more coordination than in Foster and Young’s regret testing: All

players use the same parameters and the intervals of playing a fixed strategy over a period

must be synchronized. The proof is very complex and the model is less applicable to real

world phenomena.

As with Foster and Young’s regret testing, the model has a variant which extends to

the unknown game model: players observe their own past realized payoffs but not the

actions of the other players. The unknown actions of each player can depend only on own

past realized payoffs, without seeing the actions taken by the rest of the players.

The speed of convergence is rather slow. As the length of play is MT until a mixed

action profile is ε-close to a Nash equilibrium with probability at least 1−ε of the time, the

bound on the mixing time is O
((1

ε

)C)
where C can be large. The speed of convergence

is at least exponentially slow as a function of the number of players and the number of

actions of each player.
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A similar model with faster mixing time is for example Cesa-Bianchi and Lugosi

(2003). They show that there exists an uncoupled way of play such that after O
(
ε−2 logC

)
convergence has occurred where C is some constant.

Young (2008) introduces trial-and-error model with a completely uncoupled learning

rule. In his “interactive trial and error learning” players randomly experiment with new

strategies, keeping the new strategy if it leads to a higher payoff. Furthermore if a player

experiences a lower payoff due to a strategy change of another person he will start a search

for a new strategy.

This process models situations where “people interact, but they do not know how their

interactions affect their payoffs. They are engaged in a game but they do not know what

the game is or who the other players are. ” As examples of such situations Young gives

commuters on the road or a market with many competing firms, where no single firm has

exact knowledge of the other firms’ strategies. In a similar way, traders in a financial

market cannot observe strategies of the other participants. However their actions can have

beneficial or detrimental effects on each other. The “search procedures are triggered by

different psychological states or moods” where mood changes depend on both the player’s

current payoffs and his payoff expectations. The different mood states can lead to a more

directed search if the player is content or a more random, or mutational, search if the

player is not content. Before changing their strategies players can wait for a specified

period of rounds. A “mood” is for Young “a state variable that determines how an agent

responds to the recent payoff history given the agent’s current expectations”.

Two phases in the process are prominent: combined they lead to the play of a Nash

equilibrium with a high proportion of the time. In one phase cautious amendment and

adaption of strategies leads to higher and higher payoffs until a Nash equilibrium is

reached. In the other phase dissatisfied players implement a random search which can

then lead to other players also starting a random search which enables the process “find”

other Nash equilibria that are far away from the previous states.

In Nax, Pradelski & Young (2013) a similar process is studied. It is interesting that

the rule for the class of assignment games leads to the least core (another refinement of

the core).
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Chapter 2

Summary of Results

The most significant new concept developed in this thesis is that of asymmetric power

explained in Section 2.5. The dynamic of asymmetric power is present along the face

generated by an asymmetric coalition set (explained with example on page 51). We be-

lieve this concept to be of general interest to the study of dynamic learning models on

cooperative games for which incremental updates of the dependent variables are in the

tradition of reinforcement learning and aspiration adaption processes.

Section 2.4 explains the analysis of equity in 3-player games. In 3-player games no

asymmetric coalition set exists. We show that the grid points in the core form the set of

recurrent states of the Markov chain. We prove that for all balanced games (v,3), where v

is superadditive, the equilibrium distribution of the Markov chain is concentrated around

co, the vector in the core with smallest L2-distance from the equal split.

For N = 4 the situation is very different. In Section 2.5 we show that the core of a

4-player game has an asymmetric edge if and only if the core polytope contains a face

generated by two distinct 2-player coalitions. We introduce three example games with

combinatorially isomorphic core, all containing an asymmetric edge. We calculate the

drift along the asymmetric edge and show that the equilibrium distribution of the Markov

chain can be concentrated at a state far away from co. To argue for the general applica-

bility of the concept of asymmetric power, we show further, with a different method, that

the asymmetric power exists even when the Markov chain is restricted to the core.

The main methodological contribution of this thesis is to introduce the coupling tech-

nique to bound the speed of convergence to the equilibrium measure of the cooperative
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game process. We believe the introduction of coupling to be novel to the study of speed

of convergence to equilibrium of stochastic learning processes. The concept of coupling

is explained in Section 2.6.

The coalition’s surplus is the demand sum of players in a coalition in excess of the

worth of the coalition. In Section 2.3 we show that the coalition’s surplus is a birth-and-

death chain that returns frequently to the 0-state if and only if the worth of the coalition

divided by the worth of the grand coalition is strictly larger than the proportion of players

in that coalition. This transformation is useful to determine which facets of the core are

“relevant” to the dynamics of the process.

2.1 The Original Process

The Markov chain studied in this thesis is a modified version of the completely uncoupled

chain introduced by Nax in his PhD thesis (2011). In his thesis Nax introduces a learning

rule in which players experiment rarely when “satisfied” by increasing demands with

a fixed, small probability called the “rate of experimentation” e. A player adapts his

strategies quickly when “unsatisfied” by reducing demands with a different probability

proportional to the magnitude of his demand.

The process of incremental demand updates is in the tradition of Selten’s (1998) as-

piration adaption theory; the process transitions only to states in a local neighborhood.

Furthermore the demand decreases proportional to the magnitude of the demand are in

the tradition of reinforcement learning. Small adjustments to the demands cause small

changes of the probabilities of the response. Selten (1972) found evidence for an inher-

ent equity principle in many bargaining situations. The combination of uniform demand

increases and proportional demand decreases results in an “inherent equity principle” in

the process: All else being equal, players with higher demands reduce demands more

frequently. This gives the process a tendency to “search” for equitable allocation.

The process has features that make it a model for many real world bargaining sit-

uations: the process is simple and generic and requires very little sophistication of the

players. It is well suited to model social learning, where players are assumed to be indi-

viduals from a certain group or party. The simple rules and little sophistication required
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by the players make the process suited as a theoretical model for real word experimental

research with groups of players.

From now onwards the chain studied in this thesis will be referred to as the “modified”

process and the chain introduced by Nax as the “original” process.

The behavior of the original process is determined by:

• how coalitions form,

• how demands are updated.

The main coalition formation rule introduced by Nax is the following:

In each round the payable coalition, the feasible coalition with the maximum sum

of demands is chosen. Ties are broken by a simple rule. The payable coalition can be

thought of as selected by nature or an administration. Players in the payable coalition will

be paid their demand and possibly will experiment in the next round for a greater share by

incrementally increasing their demand. Players not in the payable coalition tend to reduce

demands in an attempt to adjust their unsuccessful demand bid.

The demand updating rule introduced by Nax is the following: Each round one player

is selected uniformly at random to update his demand. All other players’ demands remain

unchanged.

The player selected to update his demand:

1. increases his demand by a positive constant amount ε with small constant probabil-

ity e if he forms part of the payable coalition (a player knows that he forms part of

the payable coalition from the fact that he receives his demand as payoff),

2. decreases his demand by ε with positive probability proportional to the value of his

demand if he does not form part of the payable coalition (a player knows that he is

not part of the payable coalition if he does not receive his demand as payoff),

3. does not change his demand with the remaining probability.

The constant ε can be seen as the smallest money unit, in an adaption from Agastya

(1997). For this process this smallest unit ε is assumed to be very small, and the value

function of the coalitions are restricted to multiples of ε. The rate of experimentation
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e is thought to be small too. A player who receives his demand as payoff, experiments

only rarely in order to gain a higher payoff. A player who receives no payoff, will react

faster and decrease his demand with higher probability, if his demand is not close to zero.

An interpretation of the coalition formation process is that nature or a governing body

decides on the payable coalition. Different algorithms for choosing the payable coalition

are possible. The player’s decision is totally based on what he receives, therefore the

original process is a completely uncoupled game process. The process requires very little

sophistication of the players compared to adaptive learning, Bayesian updating or other

stochastic learning models.

The process is a Markov chain that moves moving on an N-dimensional ε-mesh. The

state dependent factors that determine the transition probabilities of the players are:

• which players form the payable coalition (these players increase demands with

equal probability),

• the magnitude of the demands of all players not in the payable coalition (those play-

ers will reduce demands with probability proportional to the size of their demand).

The 1-step transition probabilities depend on the payable coalition at the current state.

The difference between the sum of demands of players in a coalition and the worth of

a coalition is the coalition’s surplus. In the core, a coalition is feasible if the coalition’s

surplus is zero. A coalition with zero surplus is called a binding coalition. The n-step tran-

sition probabilities depend on the set of coalitions that can become the payable coalition

over the next n steps. Informally, the process is “locally impacted” only by such coali-

tions, whose coalition’s surplus is negative or close to the worth of the coalition (close

meaning some small constant number of ε steps).

Consider the following example game: the worth of the grand coalition is 1, the worth

of C12 is 0.9, the worth of C13 is 0.7 and all other coalitions have worth 0.

The state (0.7,0.2,0.1) is an efficient state as the demands sum up to one. The state is

in the core since d1 +d2 ≥ 0.9 and d1 +d3 ≥ 0.7. C12 is binding since d1 +d2 = 0.9. If

player one increases his demand to state d1 = (0.7+ ε,0.2,0.1), then at the new state no

coalition is feasible any more and so no player can be in the payable coalition. The process

will remain in that state until one of the three players decreases his demand and the process
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is in a new efficient state. If player one decreases his demand (with probability 0.7+ε

1+ε
) the

next efficient state is again (0.7,0.2,0.1). If player two decreases his demand (with prob-

ability 0.2
1+ε

) the next efficient state is (0.7+ ε,0.2− ε,0.1) and if player three decreases

his demand (with probability 0.1
1+ε

) the next efficient state is (0.7+ ε,0.2,0.1− ε).

At a particular state the original process can move away from the set of efficient

states by at most (k+1)ε steps where k is the size of the set of binding coalitions at

that state. For example, consider the following possible transition from the efficient state

d0 = (0.7,0.2,0.1). In round one, player three increases his demand and the process is

in state d1 = (0.7,0.2,0.1+ ε). Now coalition C12 is still binding and so in round two, if

chosen to update, player one (or two) can increase his demand so that the process is in

state d2 = (0.7+ ε,0.2,0.1+ ε), where the sum of demands is 1+2ε. However, observe

that if e is small relative to the size of player three’s demand, it is much more likely that

player three will reduce his demand again (with probability 0.1+ε

1+ε
) taking the process back

to the original state before player one (or two) increases his demand (with probability e).

So most of the time the process will evolve in a way that a player increases his demand

and in the next round a player decreases her demand.

The original process moves along the set of efficient states, making short excursions

away from this set. The process started in an efficient state can (in theory) move “far”

away from the starting state until it reaches the next efficient state. Consider for ex-

ample the state d2 = (0.7+ ε,0.2,0.1+ ε) from the previous example. In round three

now player two can reduce demands as no coalition is feasible and the process can reach

state d3 = (0.7+ ε,0.2− ε,0.1+ ε). The transitions of round two and three can repeat

now p-times to take the process to the state in dp+1 = (0.7+ pε,0.2− pε,0.1+ ε), if

now player three decreases demands the process is in the next efficient state dp+2 =

(0.7+ pε,0.2− pε,0.1). Such a combination of transitions occurs with probability of

order O(ep) and so a “far away” transition to the next efficient state is very unlikely.

The rate of experimentation e is assumed to be small. One could restrict players’

demands to some global minimum level below which they would not reduce demands

by introducing a global outside option and then choose e small relative to this global

minimum demand. For any results in this thesis this is not required.

Although transitions to new efficient states far away from a starting efficient state

happen rarely, the calculation of all possible transition paths is very complicated. Con-
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sider for example the state d0 = (0.7,0.2,0.1) in the previous example. Let’s assume that

ε= 0.00001. Then in theory the process could transition to the state dT = (0.79,0.11,0.1)

and any other state between d0 and dT with 0.7≤ d1 ≤ 0.79, d2 = 0.9−d1 and d3 = 0.1.

The probability of such paths are very small but positive, to calculate all these probabil-

ities is tedious and complicated. The analysis of the stopped process, which moves only

on the set of efficient states, is hence not easily tractable for the original process.

2.2 The Modified Process

In this thesis a modified version of the original Markov chain, which is amenable to

analysis, is studied. A neighbor d(i, j) of state d is the efficient state that can be reached

from d by player i increasing his demand, and player j decreasing her demand. The

modified process, in an efficient state, is restricted to have zero probability to move to

states that are not neighbors of this efficient state.

Compared to the original process, the coalition formation rule and principles 2. and

3. of the demand update rule, introduced on page 34, remain the same for the modified

process, only demand update rule 1. is changed. We state again the complete coalition

formation and demand update rule; the part that has changed compared to the original

process is in bold.

• Each round the payable coalition, the feasible coalition with the maximum sum of

demands, is chosen.

• Each round one player is selected uniformly at random to update his demand. All

other players’ demands remain unchanged.

The player selected to update his demand

1. increases his demand by a positive constant amount ε with small constant probabil-

ity e if the payable coalition is the grand coalition (a player does not know that

he forms part of the grand coalition from the payoff received),

2. decreases his demand by ε with positive probability proportional to the value of his

demand if he does not form part of the payable coalition (a player knows that he is

not part of the payable coalition if he does not receive his demand as payoff),
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3. not change his demand with the remaining probability.

This modified process is not completely uncoupled. A player now requires informa-

tion about the total sum of demands of all players. However it is shown in Chapter Section

3.3 that the modified process is the limit of the original completely uncoupled process

when the rate of experimentation e tends to zero. We show that the transition probabil-

ity between efficient states of the original process converges to the transition probability

of the modified process. Then we show that the unique equilibrium distribution of the

modified process is the limit of the equilibrium distribution of the original process when

the rate of experimentation goes to zero. Hence any results in this thesis hold in the limit

as well for the completely uncoupled original process. Intuitively, the modified process,

that moves on the set of efficient states, is the embedded original process, for which all

paths that have probability of order e2 or smaller are ignored. Simulations are presented

in Chapter 5 where even for e = 0.001 and e = 0.01 the modified process is a very good

approximation to the original process.

One step of the random walk implies one player increasing demands and one player

decreasing demands. The state space of the modified process is the N− 1-dimensional

simplex formed by the efficient states in the convex hull of the selfish splits, (1,0, ...,0),

(0,1, ...,0),...,(0,0, ...,1), the states where one player demands the whole surplus and all

other players demand nothing. The well-known core is the set of states (or demand vec-

tors) at which all linear coalition constraints are satisfied simultaneously. At a state in the

core the demand sum of each coalition is at least the worth of the coalition. Geometrically,

the grid of core points forms a polytope. Facets, representing the states where exactly one

coalition is binding, have dimension N − 2. Faces representing the set of states where

exactly the same k-coalitions are binding, have dimension N−k−1. The boundary of the

core is the set of all states that are on at least one face of the core. Each state can have at

most N2−N neighbors, however coalitional constraints reduce the number of neighbors,

if the state is on a face of the core polytope.

The modified process is a biased random walk on the core polytope. In the inte-

rior of the core, the bias of the random walk depends only on the magnitude of the

demand of the players. For example, suppose the state di = (0.6,0.15,0.14,0.11) is in

the interior of the core. The most likely transitions from di are to neighbors di (2,1) =

(0.6− ε,0.15+ ε,0.14,0.11), di (3,1) and di (4,1), since player one has the largest de-
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mand and hence reduces with highest probability in the interior of the core. The least

likely transitions are to neighbors di (1,4), di (2,4) and di (3,4) since player three has

the smallest demand. In the interior of the core the modified process has hence an inher-

ent equity bias (demand reductions are proportional to the magnitude of the demand of a

player). Unless the equal split state, where all players demand 1
N , forms part of the core,

the modified process will drift in the interior of the core until it reaches the boundary of

the core.

3-player game

structure dimension name

core 2 polygon

N−2-facet 1 edge

N−3-face 0 vertex

For three player games the N− 2-dimensional facets of the core form edges. N− 3-

dimensional faces of the core are sets of states where exactly two coalitions are binding

simultaneously. For three player games they are vertices, and hence each vertex is unique

state.

4-player game

structure dimension name

core 3 polyhedron

N−2-facet 2 polygon

N−3-face 1 edge

N−4-face 0 vertex

N− 3-dimensional facets of the core of 4-player games are edges. We call the edge

where, e.g., the coalitions C12 and C13 are binding the edge generated by coalitions C12

and C13.

On a face of the core, the bias of the random walk depends on the magnitude of

the demand of the players and on the membership of the players to the coalitions that

generate the face. Suppose the same state db = (0.6,0.15,0.14,0.11), in a different game,

is now on the boundary of the core. Let’s assume that for this different game v(C12) =

0.75 and v(C13) = 0.74. The state db is now on the edge generated by the coalitions

C12 and C13. If player two increases his demand and the modified process is now in
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the intermediate inefficient state db (2) = (0.6,0.15+ ε,0.14,0.11). Coalition C13 is still

binding since d1+d3 = 0.6+0.14 = v(C13) = 0.74. Hence from db (2) player one cannot

reduce his demand. The random walk has zero probability to transition from state db =

(0.6,0.15,0.14,0.11) to states db (2,1), db (3,1) and db (4,1).

In the modified process all players increase demands with equal probability. The state

dependent factors determining the transition probabilities of the random walk are:

• which players form part of a feasible coalition at the efficient state (these players can

possibly form part of the payable coalition once a player has increased demands),

• the magnitude of the demands of all players.

Of particular interest is the movement of the modified process along edges of the

core. In Section 2.5 page 51 we introduce a coalition structure that exhibits an asymmetry

of power between its members: the asymmetric coalition set. Along a face of the core

polytope generated by an asymmetric coalition set, the asymmetric face, the demand sum

of the players in the union of the coalition set is not constant. For example consider again

the state db = (0.6,0.15,0.14,0.11) in the second example game, where v(C12) = 0.75

and v(C13) = 0.74. The state db2 = (0.6+ ε,0.15− ε,0.14− ε,0.11+ ε) is as well on the

edge generated by v(C12) and v(C13). The demand sum for the players in the union of

C12 and C13 is 0.89 at db, and 0.89− ε at db2. When the player in the intersection of C12

and C13, player one, increases his demand, both players two and three need to decrease

their demand to reach the new efficient state db2 on the edge. No new state on the edge

can be reached by a simple rearrangement of demands of players within the coalition set.

The symmetry of the coalition set is broken and the movement between states on the edge

cannot be explained solely by the equity bias anymore.

The bias of the modified process is determined by the interplay between two dynam-

ics: the inherent equity bias, which “drags” the process towards equity, and the asymmet-

ric power, which “drags” the process away from equity. If the core polytope does not

contain an asymmetric face, the equity bias of the random walk determines the expected

movement along the faces of the polytope. A detailed explanation of the movement of the

modified process along different symmetric and asymmetric faces of the core is given in

Section 2.5 on pages 50–52.
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The modification of the process makes the analysis more tractable. It enables us to

solve large classes of games by calculating the one-step drift of the random walk and

to analyze general games locally by applying techniques and standard results from the

theory of random walks and birth and death chains. The transformation that enables the

use of these techniques is explained in Section 2.3.

2.3 The Cooperative Game Process for Simple N-Player

Games

The Cooperative Game Process for the N-Player Bargaining Game

In Chapter 3 Section 3.4, the state space of the process is derived from a version of

Harsanyi’s N-player bargaining game. The worth of the grand coalition is one, all other

coalitions have zero worth. The core for this game is the set of efficient states.

The vertex states on the boundary of the core are the selfish splits. All transitions to

neighbors on the simplex are possible. The bias of the random walk at a particular state

depends on the differences in demands only. Transitions to states happen with probability

proportional to the size of the demand of the player decreasing demands.

The process is called a cooperative game process if v(C) is a multiple of ε for all

coalitions C.

The cooperative outcome is the state with smallest Euclidean norm in the intersection

of the core of the underlying game and the states on the ε-mesh forming the simplex. For

the cooperative game process for the N-player bargaining game, this state is the equal

split where each player demands 1
N .

The solution concept we introduce and apply in this thesis is the Markovian coopera-

tive equilibrium. If it exists, it is the unique state d∗, such that for all α> 0 the equilibrium

distribution of the cooperative game process on all states that have a greater L2-distance

than α from d∗, tends to zero as ε tends to zero. Intuitively, by refining the ε-mesh enough

the process will have limit mass one in any α-neighborhood of the Markovian cooperative

equilibrium.
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It is proved in Chapter 3 Section 3.4 that the equal split is a Markovian cooperative

equilibrium for any N ≥ 2. We show that, for any α > 0, the equilibrium distribution on

all states with L2-distance of at least α from equal split is ε

Nα
.

The main concepts of the proof are the following: We analyze the expected change

over one step of the biased random walk’s L2-distance from equal split, called the 1-step

drift. We show that the cooperative game process for the N-player bargaining game has a

strong negative 1-step drift at all states outside an α- neighborhood around the cooperative

outcome.

From the definition of the equilibrium distribution of an irreducible Markov chain

it follows that the average drift over all states in equilibrium must be zero. It then fol-

lows that the (few) states with (bounded) positive drift, which must lie within the α-

neighborhood around the cooperative equilibrium, must have very high mass under the

equilibrium distribution to compensate the very many states with strong negative drift

outside the α-neighborhood. Since the neighborhood around equal split is chosen arbi-

trarily, it follows that equal split is a Markovian cooperative equilibrium.

The negative 1-step drift of a state is proportional to the L2-distance at that state.

Hence, the further the cooperative game process is away from equal split, the stronger

it drifts towards it. This behavior is “caused” by the inherent equity bias of the process,

which is implemented via the rule that demand reductions are proportional to the size of

the demands of the players in the demand update rule. If demand reductions were uniform

(as demand increases are), the equilibrium distribution of the random walk would not be

concentrated around a single state in general.

Expected Return Times to Facets of the Core

In an extension to the N-player bargaining set-up, we analyze a “well behaved” family

of N-player cooperative game processes. For a major coalition, the average payout in the

coalition is higher than the average payout at equal split (v(C)
|C| >

1
N ).

In the major coalition game set-up, all coalitions, of which the major coalition is not

a subset, have zero worth. We show that the cooperative game process returns frequently

to the facet generated by the major coalition C0 if and only if
v(C0)
|C0| > 1

N . This is very

interesting: on its “journey through the core” for general balanced N-player games it is
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of interest to which facets of the core the Markov process returns frequently. Facets, for

which
v(C0)
|C0| < 1

N , are of little relevance for the understanding of the long term behavior

of the process in the core. Although these results are shown in the major coalition set-up

only, in a general balanced cooperative game, the cooperative game process’ “behavior”

along any facet is identical to the behavior along a major coalition as long as the process

is reasonably far away from another face of the core.

We give sharp bounds for the expected return time to the facet generated by the major

coalition as a function of the worth of the major coalition. The more the coalition is

worth, the faster the cooperative game process will return to the facet. The expected

return time satisfies E(T1)<
1

1−φ
where φ = |C0|(1−v(C))

(N−|C0|)v(C)
, where C0 is the major coalition.

Furthermore we show that P
(

CSC0
(Vt)

ε
> K

)
<

1
1−φ

K for all K > 0 and so we derive a

probabilistic bound on how far the process can move away from the facet generated by

the major coalition.

In order to show these results, we apply a trick: Recall that the coalition’s surplus

is the demand sum in that coalition in excess of the worth of the coalition. When the

cooperative game process moves in the core, the demand sum of a coalition is in fact a

birth and death chain, where the zero state corresponds to the cooperative game process

being in a state on the facet generated by that coalition. This trick, or better understanding,

enables us to apply standard results from birth-and-death chains and random walks to the

calculation of the expected return time of the cooperative game process to facets of the

core.

Consider for example the four player game where the worth of coalition C123 is 0.9, the

grand coalition C1234 is worth 1 and all other coalitions have worth 0. So φ = 3(0.1)
0.9 = 1

3 .

Then the expected return time of the cooperative game process to the set of states where

coalition C123 is binding is less than 1
1− 1

3
and hence is less than 1.5. The process moves in

very close proximity to the facet generated by coalition C123. If the worth of coalition C123

is 0.76 instead, the expected return time is less than 19 time steps of the cooperative game

process, so the process still moves in close proximity of the facet, however its excursions

away take longer time and hence the process on average moves further away from the

facet before returning. If the worth of C123 is 0.7 the process will not return frequently to

the set of states where C123 is binding, in fact such a major coalition game is very much

like the N-player bargaining game and the process will settle at equal split. The facet of
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the core generated by a coalition with
v(C0)
|C0| < 1

N is not really relevant for the dynamics

of the cooperative game process since the cooperative game process will drift away from

the facet.

We introduce the major coalition set-up to show how to analyze the cooperative game

process in a more generic way than through the analysis of 1-step drifts. By construction

(demand reductions proportional to the magnitude of the demand) a general cooperative

game process for N-player games moves along coalition structures that form some subset

of the “boundary” of the core. There are specific faces of the core along which the pro-

cess moves, that is to which the process returns frequently. We make an important and

interesting connection in this chapter between the worth of a coalition (set) and the local

return behavior of the process to the face generated by this coalition (set). We show in

this chapter that a random walk is a very accurate approximation of the local behavior of

the process in the neighborhood of states where exactly one coalition is binding, a facet

of the core. By the use of this transformation we can precisely answer the question, if the

process returns frequently to the face generated by that coalition structure, and if so, how

likely far away transitions are.

The following reasons make this analysis attractive and very useful:

• one step drift analysis is tedious as each state has up to N2−N neighbors and a

1-step drift towards cooperative outcome does not always exist, for an example of

a set of states which do not exhibit a 1-step drift towards the cooperative outcome

see Chapter 5

• in contrast to other dynamic learning processes (such as adaptive learning or Bayesian

updating) the original and the modified processes studied in this thesis are only im-

pacted by “local” constraints and hence analyzing only “relevant” faces of the core

polytope simplifies the analysis. Determinining which faces of the core are “re-

current” and calculating the “drift” of the process along these faces is a promising

route for a generic N-player analysis of the cooperative game process and possibly

of similar dynamic learning processes with incremental demand updates or aspira-

tion adaption.

Given a coalition C, we can calculate at each state d the coalition’s surplus CSC (d).

For example if the worth of a coalition is 0.9 and the sum of demands of all players in
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that coalition is 0.9+ 5ε the coalition’s surplus is 5ε. To express it differently, the birth

and death chain formed by CSC(d)
ε

is in state 5.

We show that the process CSC(Vt)
ε

for the family of games defined in this section is in

fact a birth and death chain. We bound the expected return time of the chain by defining a

random walk that is a “pessimistic” version of the birth-and-death chain. Then “locally”

the coalition’s surplus CSC(Vt)
ε

behaves very much like the birth and death chain defined

here. Using the bound of the random walk we show, under which conditions the process

stays in close neighborhood of the face generated by the major coalition.

We make a conjecture about the return behavior of the cooperative game process to the

face generated by two coalitions, say C1 and C2. The process
(

CSC1
(d)

ε
, CSC2

(d)
ε

)
behaves

much like a process whose coordinates are two dependent random walks. Suppose that
v(C1)
|C1| >

v(C2)
|C2| > 1

N , then we say that C1 is the leading coalition of the two. How will

the process move along the face generated by coalitions C1 and C2? We calculate the

proportions of time when the leading coalition’s surplus is zero and non-zero. The return

behavior of coalition C2 is dependent on the proportion of times that the leading coalition,

C1, is in the 0-state; and the proportion of time that the leading coalition is in the non-

zero states. The average transition probability of C2’s coalition’s surplus to increase by

1 is taken over the proportion of times that C1’s coalition’s surplus is in the 0-state or

in the non-0-states. The conjecture states: If the average probability of CSC2

ε
to increase

by 1 is smaller than the average probability of CSC2

ε
to decrease by 1, then the process(

CSC1
(d)

ε
, CSC2

(d)
ε

)
will return frequently to the face generated by C1 and C2. We have

conducted Monte Carlo simulations for three and four player games that strongly support

this conjecture. A mathematical proof is not trivial. However we believe this analysis to

be very interesting for the general understanding of a game. Given a game, one can focus

the analysis on those faces of the core that are “recurrent”. We believe this analysis to

be relevant as well for faces generated by more than two coalitions (although for three

and four player games that is not needed). By knowing which faces are “recurrent” one

can focus on calculating the drift of the cooperative game process along all these faces.

This simplifies the analysis enormously compared to analyzing the drift at each step of

the state space. If the game does not contain an asymmetric coalition set (expalined in

Section 2.5), then one can apply symmetry arguments to show that the drift along the face

is directed towards equity.
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We show further that at each state there is a 1-step drift towards the cooperative out-

come in the major coalition set-up. The Markovian cooperative equilibrium is co. This

last part is a simple adaption of the drift analysis in the N-player bargaining game.

2.4 Equity in General 3-Player Games

In Chapter 4 we analyze the cooperative game process for balanced superadditive 3-player

games. The main theorem of this chapter is a global convergence result. The cooperative

outcome, the most equitable state in the core, is a Markovian cooperative equilibrium for

any three player balanced superadditive game.

We summarize the set of intermediate results that are used to prove the global conver-

gence result.

We prove that all three player games satisfying condition 4.4 are balanced and hence

have a non-empty core. This proof closely follows Gilles (2010) and is added for com-

pleteness.

In order to prove convergence to the cooperative equilibrium for each three player

game, We first need to derive an algorithm that finds the cooperative outcome for each

game. A candidate cooperative outcome is determined: the state with smallest Euclidean

norm in the core of the ‘reduced’ three-player game, where the worths of the singleton

coalitions are set to zero. The core of this reduced game is called the 2-core.

If this candidate cooperative outcome is a member of the core of the original game

then it is the cooperative outcome as the core of the original game is a subset of the

2-core. Otherwise, one singleton coalition must have worth more than assigned to its cor-

responding player under the candidate cooperative outcome. In this case the cooperative

outcome is the state with smallest norm in the intersection of the core and the hyperplane

corresponding to the singleton coalition of that player.

Then we show that the set of recurrent states for all balanced superadditive three player

games is the core. So the process will eventually reach the core, never leave it again and

have positive mass under the equilibrium distribution for every state in the core (albeit

very small for most of them).
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We first show that the process, once in the core, will never leave the core again. An

elegant proof of this fact is given in Chapter 5 where we define a certain coalition structure

and show that the process can only leave the core at a state where both coalitions in that

particular coalition structure are binding. Since the coalition structure does not exist in

the three player setting, a cooperative game process for the three-player game, once in the

core, will not leave the core again. For a sketch of the proof, we refer the reader here to

Chapter 5.

Then we show that from any state outside the core there is a path of positive probability

into the core. We first show that there is a path of positive probability into the 2-core and

then from any state in the 2-core there is a path of positive probability into the core.

To show connectedness of the core, we show that all interior states, states where no

coalition is binding, are connected. Then we show that if an interior state exists, from any

state there is a positive probability of transitioning to an interior state and each state can

be reached from at least one interior state. The connectedness of the core follows.

To calculate the bound on the drifts for all states outside an α-neighborhood of the

cooperative outcome is not trivial. There are many cases to be considered. We partition

the core into three sets of states and derive a bound on the drift for each set. It is not in

general true for N-player cooperative game processes that at every state a drift towards

the cooperative outcome co exists, as shown ,e.g., in Chapter 5.

The first set in the partition of the core is the set of states where no coalition is binding.

We calculate the drift for these states. The calculation of the drift for these states is straight

forward and follows the same principle as in the N-player bargaining game.

Given a game (v,3) let C co (v,3) be the set of coalitions that are binding at co. For

the second set of states in the partition of the core the only binding coalitions are coali-

tions not in C co (v,3). We apply a trick: we compare the drift at a state in this set for a

particular game with the drift at the same state of the equivalent game with the worths

of all coalitions not in C co (v,3) set to zero. The trick can be applied as the cooperative

outcome does not change if the worth of a coalition not in C co (v,3) is altered. This ‘trick’

reduces the amount of cases significantly, still some special cases remain. The principle

used is the following: we split the drift at a state into the drift components arising from

each of the three players increasing demands at that state. Then we compare each of the
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three drift components with the equivalent drift component in the game where the binding

coalitions are removed. Consider the following example games (3,v) and (3,vco):

For both games the grand coalition has worth one, and C12 has worth 0.9. The worth of

C13 is 0.5 for (3,v) and zero for (3,vco). The cooperative outcome (for both games) is the

state (0.45,0.45,0.1). The coalition C12 is binding at the cooperative outcome whereas

the coalition C13 (for game (3,v)) is not (as 0.45+0.1 6= 0.5).

We want to compare the drift at state d = (0.425,0.5,0.0725) for both games. For

game (3,v) at state d only coalition C13 is binding. So if either player one or three increase

demands the component drifts for (3,v) and (3,vco) are identical. If player two increases

his demand for game (3,v) C13 is the payable coalition and so player two has to decrease

demands again and the drift component is zero. However if player two increases his

demand for game (3,vco) players one and three can decrease demands as well. Both

player one and three have demands below their cooperative outcome at state d and so

reducing their demands ‘moves’ the process away from the cooperative outcome. The

drift towards the cooperative outcome at d is stronger for the game (3,v) where players

one and three cannot reduce demands.

We show that for all states where drift components are not identical, the drift com-

ponent is stronger (more negative) for the game (3,v). Intuitively speaking players that

cannot reduce demands because they are in the payable coalition that forms not part of the

set C co (v,3), have on average demands that are below the cooperative outcome, and let-

ting them reduce demands would on average ‘move’ the process away instead of towards

the cooperative outcome.

Finally, we calculate the drift for all states in the core, where at least a coalition in

the set C co (v,3) is binding. There are few cases left to be considered, however the above

tricks have reduced the possible combinations considerably.

Combining the drift on all three sets of the partition, we deduce a global bound on the

drift for a cooperative game process (v,3,ε) as −2ε

9(1+ε)D(d)+2ε2.

We apply the same argument as for the N-player bargaining game that the average

drift in equilibrium is zero over all states. Given the drift outside a small α neighborhood

is at most −2ε

9(1+ε)D(d)+2ε2 we deduce the mass on the states in the neighborhood of the

cooperative outcome must be very high. Since this holds for all α > 0 this completes
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the proof that the cooperative outcome is a Markovian cooperative equilibrium for all

balanced superadditive three player games.

2.5 Power in 4-Player Games

In this chapter, we introduce the main contribution of this thesis, the analysis of a new

concept of power for evolutionary cooperative game processes, which arises in games

with more than three players. According to Harsanyi, “Power is the ability to generate

more than the equal share.” The cooperative game process is the result of a very simplistic

and generic updating rule that involves a minimum of intellect. Individuals can be seen as

quasi-robots executing behavior according to a simple rule. In such a setting power will

not arise through intellect or clever decision choices but can only arise through the given

situation or position in the game.

Selten (1972) found evidence that a strong equity principle is present in many social

situations. The main a priori feature of the cooperative game process is that this equity

principle is modeled via the probability of demand reductions being proportional to the

size of the demand. All else being equal, players with larger demands will reduce de-

mands more often. In the bargaining setting the process spends most of the time in the

allocation where complete symmetry of power exists, the equal split. In the three player

game setting the players can have superior power but the power is not stronger than the

equity bias: the ‘force’ that establishes power is the core; all coalition structures in the

three-player setting have an inherent symmetry of power and so the equity principle pre-

vails. In equilibrium the process spends most of the time around the state in the core with

least power to the strong player(s). For four players (and for all N > 4) a specific coalition

structure, the ‘asymmetric coalition structure’ exists that gives rise to a new concept of

power. That is, despite the implicit equity bias, the cooperative game process drifts away

from the cooperative outcome, which is the state in the core where the ‘strong’ player has

least power. The Markovian cooperative equilibrium can be a state with superior power

to the strong player, ‘far’ away from the most egalitarian allocation in the core.

The asymmetric coalition structure exists only for N ≥ 4. The inherent power in the

coalition structure, the ‘asymmetric power’, can be stronger than the inherent equity bias

of the process. This asymmetric power is present in the trial and error setting, where
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strategies or demands are updated incrementally in the tradition of reinforcement learning

and aspiration adaption. It would be interesting to conduct experiments or analyze more

general processes where the state space is based on games with asymmetric coalition

structures.

Recall from Section 2.3 that specific coalition structures exist to which the process

returns frequently on its “journey through the core”. In order to understand the concept

of asymmetric power, we first present two coalition structures which exhibit symmetry of

power of its members. Then we will introduce one coalition structure, where the members

have asymmetric power, and where the cooperative game process can drift away from the

most equal allocation in the core. We analyze the dynamics which lead to superior power

of the strong player in detail, and we explain why, and how, asymmetric power can arise.

In an adaption to Harsanyi’s (1962b) definitions of power we define the limit power

of a player for a specific game. We split the limit power then into the sum of the player’s

‘core power’ and ‘asymmetric power’. Then we analyze three example games with respect

to the inherent equity properties and their ‘symmetry of power’ and calculate the power

to each player in the three example games.

Consider the following example game:

example game

v(C1234) v(C123) v(C124) v(C134) v(C12) v(C13)

1 1 0.88 0.79 0.78 0.75 0.74

Table 2.1 v(C) for all coalitions C with v(C) 6= 0

The state ds1 = (0.75,0.02,0.21,0.02) is on the face of the core polytope generated

by the coalitional constraint of C124. This face is an example of a symmetric coalition

structure. For sufficiently small ε, in the neighborhood of ds1, all states are from one of

two ‘types’: states where coalition C124 is binding, or states where no coalition is bind-

ing. Since v(C)
|C| >

1
N or (0.79

3 > 0.25) the random walk frequently returns to states where

coalition C124 is binding. (In fact, from Section 2.3 we know that in this neighborhood the

expected return time to states where C124 is binding is less than 5, as φC124 = 31−0.79
0.79 and

ET ≤ 1
1−φ

). At each state where C124 is binding, player three’s demand is 0.21, and so

while the random walk moves along the recurrent structure where coalition C124 is bind-

ing, player one’s, two’s and four’s demands will change materially. Player one has much

50



larger demands than the other players and hence will reduce demands more frequently

than the other players in states where no coalition is binding. If C124 is binding, none of

the players in C124 can reduce demands. So, on average, player one reduces demands,

and players two and four, on average, increase demands until the random walk reaches a

neighborhood where a new coalition structure is present.

In the neighborhood around the state ds2 =(0.71,0.04,0.21,0.04) both coalitions C124

and coalition C12 are binding. We call the set of states where two coalitions are binding

an ‘edge’. There are four types of states: states where both C124 and C12 are binding

(states on the edge), two types of states where exactly one of the two coalitions is binding,

and states where no coalition is binding. In all states on the edge, demands of players

three and four are fixed at 0.21 and 0.04 respectively. The only ‘free’ players within this

coalition structure are players one and two. Since both ‘free’ players are members of C12

and C124, the potentially binding coalitions in this local neighborhood, player one and

two reduce demands proportional to their magnitude of demands while the random walk

‘drifts along the edge’ and so player one’s demand reduces on average and player two’s

demand increases on average until the random walk reaches a neighborhood where a new

coalition structure exists.

In the neighborhoods around ds1 and ds2, the ‘free’ players, are symmetric in the sense

that the only difference in the transition dynamics of their demands is the magnitude of

their demands. They are member of the same coalitions relevant in the neighborhood. So

the equity bias inherent in the process prevails, and the cooperative game process drifts

along the coalition structure “towards equity”.

The new power concept is only prevalent in the neighborhood of a special coalition

set.

An asymmetric coalition set satisfies the following conditions:

1. No coalition is a subset of another coalition in the set.

2. The intersection of all coalitions is non-empty,

3. The union of all coalitions is not the grand coalition.

The point is that the face generated by the asymmetric coalition set is asymmetric:

Along the face, the demand sum of the players in the union of the coalitions in the asym-
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metric coalition set is not constant: If the player in the intersection increases his demand,

for each coalition in the asymmetric coalition set one player not in the intersection needs

to reduce her demand so that a new state on the asymmetric face can be reached. Thus in

order to reach the next state on the asymmetric face the total demand sum in the union of

the asymmetric coalition set will go down, if the player in the intersection increases his

demand, and up, if the player in the intersection reduces his demand. Or alternatively, the

demand of player(s) in the complement of the asymmetric coalition set varies along that

face.

The player in the intersection is called the “strong” player. The only way that the in-

herent equity bias can be countered by a stronger dynamic, is if there exists an asymmetry

in the coalition structure, making the strong player a member of more coalitions than the

weaker players in the structure. So the intersection needs to be non-empty for a strong

player to exist.

For all coalitions in the asymmetric coalition structure to be binding simultaneously

at different states along the asymmetric structure, an additional player is needed to com-

pensate for the asymmetry: When player one increases his demand, both weaker players

decrease their demands. In order for states in this structure to be in the core (demands

summing to one) there needs to be the complement player who ‘copies’ the strong play-

ers’ demand updates.

We believe that if a coalition structure does not satisfy all the three conditions for

an asymmetric coalition structure, then the process moves along that structure driven by

the inherent equity bias. This implies that the cooperative game process should settle in

the most equal allocation for all games where no asymmetric coalition structure exists.

However this is not proven in this thesis and is an interesting avenue for further research.

In the neighborhood around the next example state an asymmetric coalition structure

exists, and so the asymmetric power concept is relevant here. In the neighborhood around

the state (0.55,0.2,0.19,0.04) both coalitions C12 and coalition C13 (and no other coali-

tions) can be binding. Player one is the player in the intersection, the ‘strong’ player,

players two and three are the ‘weak’ players that are both only member of one coalition,

player four is the player in the complement of the union, and so is the complement player.

Observe that a complement player is not a dummy player. Without the complement player

the asymmetric power does not exist. In the neighborhood around (0.55,0.2,0.19,0.04)
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there are four types of states in the core: states where both C12 and C13 are binding (states

on the ‘asymmetric’ edge), states where exactly one of the two coalitions is binding, and

states where no coalition is binding. Furthermore there are states outside the core (where

the sum of demands of players in coalition C13 is less than 0.74. The existence of states

outside the core is not necessary for prevalence of asymmetric power, see Chapter (5.4)).

Each state on the asymmetric edge is uniquely determined by the demand of player

one. The ‘free’ players are now players one, two and three. To reach the ‘next’ state on

the edge, player one increases (or decreases) his demand by ε, and players two and three

each decrease (or increase) their demand respectively. In order for the state to be efficient,

the complement player four needs to increase (or decrease) his demand by ε as well. The

important point is that player one is member of both coalitions C12 and C13 whereas both

players two and three are only member of one of the coalitions each. The complement

player four is not member of any coalition. The coalition structure is ‘asymmetric’: Player

one can only reduce his demand in states where no coalition is binding, whereas players

two and three can reduce their demand in other states. Between returns to the asymmetric

edge there are two ‘opposing forces’ impacting the drift of the random walk:

1. Inherent equity bias:

Player one has higher demands than players two and three and hence reduces de-

mands more frequently in states where no coalition is binding.

2. power through asymmetric coalition structure (asymmetric power):

Player one is more often member of a binding (or strictly feasible) coalition than

players two and three. So he will not reduce demands on the set of states where

at least one coalition is binding (or strictly feasible), and so he will hence reduce

demands less frequently than players two and three.

Will the process drift ‘up’ or ‘down’ the asymmetric edge? This depends on which of

the two effects described above is stronger: The equity bias or the asymmetric power of

the coalition structure. To determine whether the process drifts up or down the asymmetric

edge requires calculating the probability (or bounds on the probability) of the process

being in the different kind of states, and it requires to calculate the drift (or bounds on

the drift) for each of these states on a trajectory of the process between two states on the
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asymmetric edge. Before we give a summary of the techniques to calculate the drift along

the asymmetric edge, we define power for the cooperative game process.

Harsanyi (1962b) defines the amount of power of a player with respect to a preferred

strategy as the probability with which the player can “enforce” that strategy. In the coop-

erative game process players cannot “enforce” strategies. Harsanyi’s definition of a vector

measure of the amount of power ranks a players’ strategies according to preference. The

amount of power for each strategy is then given by the vector of probabilities with which

the player can enforce the respective strategies.

In similar fashion, states with non zero equilibrium measure for the cooperative game

process are ranked by the demand to a player, and then the vector of the amount of power

is the respective equilibrium distribution of each state sorted by preference (magnitude of

demand).

However the state space for the cooperative game process can be large, the smaller ε

is taken, the larger the state space is. So we define power to a player in the cooperative

game process as the limit power when ε tends to zero, giving measure one to the Marko-

vian cooperative outcome and zero to all other states. The limit strength of power for a

cooperative game process is then the sum of the following two components:

• The core power of a player in a cooperative game process is the difference between

a player’s demand at the cooperative outcome, the state i the core with closed dis-

tance to equal split, and at equal split. This power is adapted from Harsanyi’s

(1962b) or Selten’s concept of power as the ‘capability to secure more than the eq-

uitable share’. The ‘force’ generating the core power to a player is the constraints

of the core.

• The asymmetric power of a player in a cooperative game process is the difference

between a player’s demand at the Markovian cooperative equilibrium and at the

cooperative outcome. The asymmetric power is the ‘capability to secure more than

at the most equitable core allocation’. The ‘force’ generating the asymmetric power

are the dynamics inherent in the asymmetric coalition structure. We believe this

concept of power to be very interesting and novel to the study of (cooperative)

game theory and stochastic learning processes.
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The limit power or (simply) power to a player in a cooperative game process is the

sum of the core power and the asymmetric power.

We discuss three specific example games. These games will all have an asymmetric

edge and we give a heuristic analysis backed up by simulations to show, that each game

has a Markovian cooperative equilibrium on the asymmetric edge but they appear on

different parts of the edge. We will analyze for each example game for each player the

core power and the asymmetric power of the players.

We now specify the three example games and describe their geometric structure. The

first example game has already been introduced as example before, we repeat it here for

ease of comparison with the other games.

example game

v(C1234) v(C123) v(C124) v(C134) v(C12) v(C13)

1 1 0.88 0.79 0.78 0.75 0.74

2 1 0.88 0.86 0.85 0.75 0.74

3 1 0.95 0.79 0.78 0.75 0.74

Table 2.2 v(C) for all coalitions C with v(C) 6= 0 for example games 1, 2 and 3

In each case {C12,C13} is an asymmetric coalition structure. Concession limits are

the extreme outcomes, between which the outcome must fall in bargaining between ratio-

nal players, Harsanyi (1962a, 1962b). Hence the two extreme states on the asymmetric

edge where player one has largest demand and where player one has smallest demand are

named the ‘upper concession limit’ and the ‘lower concession limit’ respectively. The

Markovian cooperative equilibrium must lie between (inclusive) the upper and lower con-

cession limits. In all three example games the cooperative outcome corresponds to the

lower concession limit.

1. For game one the upper concession limit is (0.61,0.14,0.13,0.12), the lower con-

cession limit is (0.53,0.22,0.21,0.04).

In the neighborhood around the lower concession limit, there is a strong positive

drift in the demand of player one based on the probability distribution “in equilib-

rium” over the 2-dimensional localized chain. The random walk cooperative game

process drifts up the asymmetric edge.
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Figure 2.1 Graphical representation of the core for example game 1. The asymmetric edge is

sketched in red with G1 and G2 representing the upper and lower concession limits

respectively.

In the neighborhood around the upper concession limit, there is a strong negative

drift in the demand of player one based on the probability distribution “in equilib-

rium” over the 2-dimensional localized chain. The random walk cooperative game

process drifts “down” the asymmetric edge. For game one the Markovian cooper-

ative equilibrium is the state on the asymmetric edge where the drift in d1 is zero.

The drift in d1 for the restricted localized chain is zero at

(0.583586,0.166414,0.156414,0.093586) and so the Markovian cooperative equi-

librium is in the “interior” of the asymmetric edge.
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Figure 2.2 Sketch of the asymmetric edge of example game 3 with simulated values of the drift

along the edge for different starting states in the immediate neighborhood of the

upper concession limit (max1). The process drifts “up” the whole asymmetric edge

and so the Markovian cooperative equilibrium equals the upper concession limit in

this game.

The vector of the core power of the players is given by the difference between the

cooperative outcome and equal split and equals (0.28,−0.03,−0.04,−0.21). The

vector of the asymmetric power is given by the difference between the Markovian

cooperative outcome and the cooperative outcome and is given approximately by

(0.054,−0.054,−0.054,0.054). The total power to each player is then given by the

sum of the core power and the asymmetric power and equals

(0.334,−0.084,−0.094,−0.156). Observe that the complement player four has the

same asymmetric power as player one. He basically gets a “free power ride” from

player one. A natural bound to the strong player’s asymmetric power is the amount

of free ride that the complement player can get: the complement player can never

have more total power than the weak players.

2. For game two the upper concession limit is (0.61,0.14,0.13,0.12), the lower con-

cession limit is (0.6,0.15,0.14,0.11). There is a strong negative drift at each state

of the asymmetric edge (apart from states in close proximity to the lower con-

cession limit) and so the Markovian cooperative equilibrium is the lower conces-

sion limit (the cooperative outcome). The core power of each player is given by
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(0.35,−0.1,−0.11,−0.14). Since the Markovian cooperative equilibrium is the

cooperative outcome the asymmetric power is zero for all players.

3. For game three the upper concession limit is given by (0.54,0.21,0.2,0.05), the

lower concession limit is given by (0.53,0.22,0.21,0.04) There is a strong positive

drift at each state of the asymmetric edge (apart from states in close proximity of

the upper concession limit) and so the Markovian cooperative equilibrium is the

upper concession limit.

The core power of each player is given by (0.29,−0.04,−0.05,−0.2). The asym-

metric power is given by (0.01,−0.01,−0.01,0.01) and so the total power to each

player is given by (0.3,−0.05,−0.06,−0.19).

To understand the behavior of the cooperative game process in the neighborhood

of the upper concession limit, we simulated the chain for example game 3 and

calculated the drift for states in the close neighborhood of the upper concession

limit. In figure (2.2) the drifts are sketched for different states where ε = 0.000001.

We see that the drift becomes smaller but stays positive even very close to the upper

concession limit.

To calculate the drift of the process along the asymmetric coalition structure, we apply

a localization technique (or trick). Demands on an excursion between two states on the

asymmetric edge are assumed to be constant. If ε is sufficiently small this is a reason-

able assumption. The below table shows an excursion of the random walk between two

states on the asymmetric edge, for each state on the excursion it shows which coalitions

are binding, and it depicts the “localized” demands used in the calculation of transition

probabilities.

time index state binding coalitions localized demands state of localized chain

t0 (0.55,0.2,0.19,0.04) C12,C13 (0.55,0.2,0.19,0.04) (0,0)

t1 (0.55+ ε,0.2,0.19− ε,0.04) C13 (0.55,0.2,0.19,0.04) (1,0)

t2 (0.55+2ε,0.2− ε,0.19− ε,0.04) /0 (0.55,0.2,0.19,0.04) (1,1)

t3 (0.55+ ε,0.2− ε,0.19− ε,0.04+ ε) C12,C13 (0,0)

Between successive returns to the asymmetric edge, the process visits different kinds

of states. At t0, the random walk starts on the asymmetric edge, and in subsequent steps,

it leaves the asymmetric edge. At t1, player one has increased demands, and player three

has decreased demands, now only coalition C13 is binding. At t2, player one has increased
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demands again, and player two reduced demands, now no coalition is binding. At t3 player

four has increased demands and player one decreased demands and the random walk is

back on the asymmetric edge.

On these excursions the random walk may leave the core. At states on the asymmetric

edge, and states not in the core, the process has a positive drift in d1 over one step of the

random walk process. We show in Lemma (5.8), that at all states not on the asymmetric

edge, the drift in d1 is negative.

We introduce the localized 2-dimensional chain, the joint chain of the coalition’s

surplus for C12 and for C13. For example at t0 the localized 2-dimensional chain is

in the state (0,0), this corresponds to the state on the asymmetric edge. At t1, where

only coalition C13 is binding, the equivalent state in the localized chain is (1,0), at t2,

where no coalition is binding, the equivalent state of the localized chain is (1,1) as at

(0.55+2ε,0.2− ε,0.19− ε,0.04) the coalition’s surplus for C12 is ε, and the coalition’s

surplus of C13 is ε. At t3, the 4-dimensional cooperative game process is back in a new

state on the asymmetric edge, and the 2-dimensional local chain is back in the state (0,0).

As a further example, a state where the coalition’s surplus of C12 is 3ε and the coalition’s

surplus of C13 is 2ε corresponds to state (3,2) in the localized 2-dimensional chain.

To understand what the overall drift is over an excursion from the asymmetric edge to

another state on the asymmetric edge, we approximate the probability, “in equilibrium”,

that the chain lies on the asymmetric edge or outside the core. In this thesis two techniques

are introduced:

• The first technique restricts the state space of the localized 2-dimensional chain to

some small fixed number of steps away from the state (0,0) for both coordinates.

This leads to a (small) finite Markov chain, that is solved with traditional Markov

chain techniques using the ‘localized’ demands and drifts. A sketch of an illustra-

tive example of a localized chain restricted to move at most two steps away from

(0,0) is given in figure (2.3). For actual calculations much larger restricted chains

were used to approximate the drift at different states on the asymmetric edge. Simu-

lations confirm that these are accurate approximations of drift along the asymmetric

edge. The coalition’s surplus of C12 can never be negative and hence the first coor-

dinate of the localized chain is non-negative. In figure (2.3) red and orange states
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Figure 2.3 Sketch of restricted localized 2-dimensional chain associated with asymmetric coali-

tion structure {C12,C13}

correspond to states with strong positive drift in d1. Green states correspond to

states with strong negative drift in d1.

In figure (2.4) two localized 2-dimensional chains with equilibrium distribution

at each state are sketched, the difference between them is the “location” on the

asymmetric edge: the first chain “starts” in the state on the asymmetric edge where

the demand of player one is 0.6 ((0.6,0.15,0.14,0.11)); the second chain “starts”

in the state on the asymmetric edge where the demand of player one is 0.54

((0.54,0.21,0.2,0.05)). The equilibrium distribution of the localized restricted

chain on states with strong drift in d1 (orange and red states) is higher for the chain

where the demand of player one is lower (0.54). There is a positive drift in d1 (“up”

the asymmetric edge) at state (0.54,0.21,0.2,0.05). The equilibrium distribution

on states with strong drift in d1 is lower for the chain where the demand of player

one is higher (0.6). There is a negative drift in d1 (“down” the asymmetric edge) at

state (0.6,0.15,0.14,0.11).

• The second technique restricts the process to stay in the core. Then there are only

four types of states for which the “in equilibrium” probability is calculated, states
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where both C12 and C13 are binding, then two sets of states where exactly one of

them is binding, and states where none of them is binding. For a specific example

game, we define “pessimistic” random walks, that always have a higher probability

of increasing by one and a lower probability of decreasing by one than the surpluses

of coalitions C12 and C13. The point is here, that it is very difficult to exactly an-

alyze the dependence of the coalition’s surplus for C12 and C13. However, if the

pessimistic random walks associated with C12 and C13 are in the zero states with

high enough probability so that the sum is greater than one, we know a minimum

probability (lower bound) that the localized 2-dimensional chain must be in the

(0,0)-state - and with which the cooperative game process must be in a state on the

asymmetric edge.

The positive drift in d1 is strong on the asymmetric edge (d1 cannot decrease on the

edge) and it turns out that this lower bound on the probability of being on the asym-

metric edge is high enough to prove a positive drift in d1 all along the asymmetric

edge for a specific example game defined in Chapter 5.4.

Since the demand of player one uniquely defines a state on the asymmetric edge, the

Markovian cooperative equilibrium is the state on the asymmetric edge where the ex-

pected change in the demand of player one between two successive returns to the asym-

metric edge is zero.
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Figure 2.4 Sketch of the equilibrium distributions of two versions of the localized 2-dimensional

restricted chain “started” at states on the asymmetric edge corresponding to a demand

for player one of 0.6 and 0.54 respectively.

2.6 Speed of Convergence Analysis via Coupling

The main methodological contribution of the thesis is to show how to use coupling to

demonstrate speed of convergence for stochastic learning processes. In several branches

of probability theory the coupling technique has been one of the methods of choice to

analyze the speed of convergence of Markov chains. Levin, Peres and Wilmer (2009) is a

good introduction to different applications of couplings with the main focus on analyzing

the speed of convergence to equilibrium of Markov chains.

Young (1998) applies a coupling to the analysis of symmetric 2-person coordination

games. Liggett (1985) applies couplings to particle systems in the context of statistical

physics, biology and economics. However, we believe this technique has not yet become

a general tool in the study of stochastic learning processes. Recently speed of conver-

gence analysis has become a topic of general interest for stochastic learning processes

but, somewhat strangely, the coupling tool seems not to be one tool of choice for the
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analysis of speed of convergence of stochastic learning processes. Hence we present our

analysis in general form.

Coupling is a powerful and elegant tool with which one is often able to calculate tight

bounds on the mixing time and to reduce the complexity or length of calculations com-

pared to other techniques. There are general principles in coupling which we summarize

hereafter. However finding a good coupling is more like an art and a good coupling is

often specific to the inherent dynamics of the process.

The main purpose of Coupling is to find bounds on the mixing time of stochastic

processes. There are a variety of particular cases for which the Coupling method can be

used.

• general purpose of the Coupling method:

Finding bounds on the speed of convergence of stochastic processes

• particular applications of the Coupling method:

– proving existence of stationary measure,

– bounding return times or return probabilities,

– proving limit theorems,

– deriving inequalities,

– obtaining approximations...

To construct a coupling one creates a joint distribution of two Markov chains that pre-

serves the marginal distribution of each chain while moving the two chains ’closer to each

other’ wherever possible. If the two chains are identical chains on the same probability

space then once they have coalesced one can move the chains in sync ever after. A fa-

mous theorem by Aldous (see, e.g., Levin, Peres and Wilmer (2009), Chapter 4.2) states

that one can bound the probabilistic distance between two measures by the probability

that any coupling has not coalesced. Hence finding a good coupling that coalesces fast

with high probability finds a sharp bound on speed of convergence for a Markov chain or

stochastic learning process.

There always exists the independent coupling, where both random variables are inde-

pendent of each other. However, the aim of a coupling is to find a joint distribution that
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“forces” the two random variables to move towards each other as often as possible whilst

preserving the marginal distribution of each.

To analyze the speed of convergence of Markov chains to the equilibrium distribution

one usually compares either two distributions, say µ and v, that are “opposite” or far away

from each other. (v can be taken as the equilibrium distribution). One then calculates after

how many steps the distributions are “close” to each other.

It follows from Aldous theorem, mentioned above, that one can couple two versions

of a Markov chain started at “opposite locations” of the state space. If one can show that

after t time steps the probability that the two have not met is very low, one knows that the

distance between the two distributions after t steps is very small.

In Chapter 6 we define a coupling on the cooperative game process and use it to show

that the cooperative game process converges fast to equilibrium. In particular, we show

for the N-player bargaining set-up that the chain (Vt) started from any efficient state is

close to equal split after at most about CεN steps, for a suitable constant C. For the three-

player cooperative game process, as introduced in Chapter 4, we show that the chain (Vt)

started from any state in the core is close to the cooperative outcome after at most about

CεN steps.

One needs a measure of distance between the two random variables in the coupling in

order to determine if they have coalesced. For the cooperative game process we will use

the L1 distance. One trick is to define (find) a coupling such that the distance between the

two random variables in the coupling will decrease in expectation at each time step. In the

case of the N-player bargaining set-up we define the joint movement of two chains sitting

anywhere on the set of efficient states in such a way that the probability of them moving

further apart is zero and the probability of the distance between the two random variables

to decrease by 2ε is proportional to the L1 -distance between the coupled versions of the

cooperative game process. The instantaneous speed of convergence is faster when the two

chains are further apart.

We define the joint movement by picking the same player in both chains to increase

demands. Then the players that have smaller demands than their corresponding player

in the other chain will mimic the other chains player whenever he reduces demands. If

the same player in both chains reduces demands, the distance does not change. If two
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different players reduce demands, the player that reduces demands in either chain has

higher demands than the respective player in the other chain. So the distance decreases

by 2ε. By this coupling we show that the probability that two chains started anywhere on

the state space will have coalesced, increases rapidly with time. The cooperative game

process for the N-player bargaining game converges to equilibrium rapidly.

In Theorem (6.3) we show that the coupling based on the cooperative game process

for the three player game decreases in expectation by a constant over each time step.

In the three player cooperative game setting, we apply the same coupling rule as in the

N-player bargaining set-up: the same player increases his demand in both chains and the

same player decreases demands in both chains whenever possible. It is not true anymore

that the chains have zero probability to move further apart since in the three player set-up

the probability of demand reductions depends on the coalition structure at a state: it is not

necessarily true anymore that the player with higher demands has a higher probability of

reducing demands. The distance between the two chains forming the coupling reduces by

2ε if both players reducing demands have larger demands than the equivalent players in

the other chain. The distance increases by 2ε if the players reducing demands both have

smaller demands than the equivalent players in the other chains, and the distance stays

zero otherwise. The proof shows case by case that, at each possible joint state, where the

same player has increased demands in both chains, the difference in probability between

decreases and increases of 2ε is positive and proportional to the L1-distance between the

states. So in expectation the distance reduces fast and we can conclude rapid mixing of

the cooperative game process for three player games.

2.7 Comparison with Other Learning Processes

The process studied in this thesis is a fully dynamic model for learning in cooperative

games, suited to be used to model situations with many players. Players base their in-

cremental demand adaptations solely on how well they did in the past. They do not have

a strategic model. Information about others is limited and players do not need to per-

form mathematical calculations, or follow complex strategies dependent on other players’

behavior, in order to update their demand.

There are three major elements to the incremental demand updates of the process:
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1. Players occasionally experiment to discover whether alternative actions could lead

to higher payoffs.

2. Upward and downward adjustments are made locally and in small increments.

3. The higher the loss that a player experiences during cooperative failure, the more

likely this player is to reduce his demand.

In the long run, core outcomes with high levels of equity are favored as long as no

asymmetric face forms part of the core. Along the asymmetric face, there is an interplay

between the asymmetric power and the equity bias of the process.

Estes (1950) introduces a reinforcement learning model to describe a situation where

an organism has initial probabilities of various responses. A model based on Estes’ the-

ory predicts changes in these probabilities as a function of changes in the independent

variables. Estes defined learning mathematically as the “transfer of probability between

certain response classes”. By increasing and decreasing their demands, players in our

model change the probabilities of the dependent variables, the demands.

In Sauermann and Selten’s (1962) model of aspiration adaption, players adapt aspira-

tion levels incrementally in order to achieve success with respect to some goal variables.

The incremental updates of demands in response to the payoff received in our model is in

tradition of their aspiration adaption model.

Bush and Mosteller (1955) develop a model where each reinforcement increments the

response probability by a constant fraction of the difference between the current proba-

bility and the maximum probability. Non-reinforcement reduces the response probability

by a fraction of the difference between the current response probability and the minimum

probability. This model is a precursor to completely uncoupled learning rules. A learning

procedure is completely uncoupled if the behavior of a player depends only on the players

own history. When players do not understand the whole behavioral interplay, they do not

need to play a best response to other players’ actions. Each player only observes how well

he did in the past before taking a decision. When there is a large number of agents, and

there is no common knowledge in repeated complex situations, modeling behavior as an

uncoupled process makes a lot of sense.
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The completely uncoupled demand updating rule is the crucial feature of the dynamic

learning model introduced by Nax (2010) and modified in this thesis. Since the response

is uncoupled, no noncooperative structure or players’ strategies need to be specified. In-

teractions can be modeled dynamically by adaptations of demands. This simple set-up

is ideal for many cooperative situations, including those with a large number of players,

or situations where each player is not a single individual but a set of many individuals

sharing the same constraints (e.g. members of classes, types of workers or voters, etc.)

The regret testing models of Foster and Young (2003), and Germano and Lugosi

(2004) are completely uncoupled, however a much higher sophistication of players is

assumed. The main convergence proof in Germano and Lugosi’s variant of regret testing

uses Doeblin’s condition which assumes that one can change from any strategy to any

other strategy in the state space in one adjustment of the mixed strategy. So changes in

behavior are not incremental. In a sense the regret testing proof depends on the fact that

the procedure is a random trial and error search over all possible strategies. The regret

testing method guarantees convergence to just one Nash equilibrium, where the limiting

equilibrium may depend on the actual random realization of the sequence of plays. Al-

though Germano and Lugosi show almost sure convergence, which is a stronger result

than the convergence that we obtain in this thesis, the proof structure with “annealing re-

gret testing” feels somewhat constructed. The cooperative game process was constructed

as adaptive incremental demand (or aspiration) update process with an inherent equity

bias. The nature of the process has not been amended in order to be able to prove results.

The incremental demand update rule is a major difference to adaptive play, where

a player can choose any other strategy from the space of strategies. The adaptive play

processes from Young (1993), Agastya (1999) or Newton (2010) can “jump” far away in

one step. Furthermore only one person is chosen to update demands each round whereas

in adaptive play one player from each group revises strategies or demands. A similarity to

Newton’s model of stochastic stability is that more egalitarian conventions may be more

stable. The easier ways to leave a convention involve richer players responding to the

errors of poorer players.

The Bayesian updating model of Kalai and Lehrer (1993) needs perfect recall in all

payoff matrices for the complete history of the game. This results from the reliance on

Kuhn’s Theorem which allows to replace a probability distribution over many strategies
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(mixed strategy) by a single behavior strategy. Bayesian updating or rational learning

requires intellect and memory of the players and it is rather complicated. This stands

in stark contrast to the completely uncoupled game model of the original process intro-

duced by Nax where only a minimum requirement on the knowledge and sophistication

of players is made. Another difference of the Kalai Lehrer approach is the dependence

of the paths (and results) of play on the assumed prior distributions of players. The co-

operative game process (on superadditive balanced games) is an ergodic Markov chain

with a single irreducible class and hence converges to a unique equilibrium distribution.

It is independent of any starting state (at least for all models with a unique connected set

of recurrent states studied in this thesis). Experimenting in Kalai Lehrer is different as

well: A player decides rationally when to experiment whereas in adaptive play and the

cooperative game process experimenting is a random event in the tradition of mutations

in evolutionary biology.

68



Chapter 3

The Cooperative Game Process for

Simple N-Player Games

3.1 Definition of the Cooperative Game Process

The set-up is that of an N-person cooperative game. Subsets of {1,2, ...,N} are called

coalitions. Let CG be the grand coalition of all players 1, ..,N, CG = {1, ...,N}. Let

P
(
CG) be the power set of CG. Each coalition C ∈ P

(
CG) has a worth v(C), where v is

a function from P
(
CG) to [0,1] and v

(
CG)= 1. The pair (v,N) is called a game.

Let ε = 1
M for some M > N,M ∈N. A demand vector d is an N-tuple

(
d1,d2, ...,dN),

where each di is a multiple of ε between 0 and 1+ ε inclusive.

We define Ωε = {d | di ∈ {0,ε, ...,1+ε}, ∀i∈ {1,2, ...,N}}, the set of demand vectors,

and ΩE to be the set of demand vectors d such that ∑i di = 1. An efficient state is a demand

vector in ΩE .

The core ΩC = ΩC (v,N) is the set of efficient states d ∈ΩE such that ∀C ∈ P
(
CG),

∑
j∈C

d j ≥ v(C) . (3.1)

Let µ = 1
N =

( 1
N , ...,

1
N ,

1
N

)
. The cooperative outcome co = co(v,N) is the vector in the

core that has the smallest L2 distance from µ, i.e. the ‘most equal’ allocation in the core.

If the core is empty, co is not defined.

69



Lemma 3.1. If the core is non empty, the cooperative outcome is the state d in the core

minimizing ∑i∈{1,...,N}
(
di)2.

Proof: By assumption, the cooperative outcome minimizes ∑i∈{1,...,N}
(
di− 1

N

)2
. Multi-

plying out yields ∑i∈{1,...,N}
(
di− 1

N

)2
= ∑i∈{1,...,N}

(
di)2− 2

N ∑i∈{1,...,N}
(
di)+ 1

N . Since

co is in the core, ∑i∈{1,...,N} di = 1. So ∑i∈{1,...,N}
(
di− 1

N

)2
= ∑i∈{1,...,N}

(
di)2

+ 1
N −

2
N .

So for states in the core ∑i∈{1,...,N}
(
di− 1

N

)2
=∑i∈{1,...,N}

(
di)2− 1

N and co is the most

equal allocation.

We assume superadditivity of the worth function v, that is, that

v
(
C1∪C2)≥ v

(
C1)+ v

(
C2) (3.2)

whenever C1,C2 ⊆CG and C1∩C2 = /0.

A superadditive game is a game (v,N) where v is superadditive. Observe that su-

peradditivity of the worth function implies monotonicity of the worth function, that is, if

C1 ⊂C2, then

v
(
C1)≤ v

(
C2) (3.3)

since v
(
C2)≥ v

(
C1)+ v

(
C2 \C1)≥ v

(
C1).

In this thesis we study a random process, whereby each player iteratively makes a

demand and nature generates payoffs depending on the set of demands. Players adjust

their demand according to a simple rule in response to the distribution of payoffs in the

previous round. The aim is to show that, with some conditions, in the long run the vector

of demands is usually close to co.

Let the demand of player i at discrete time n ∈ N be given by di
n. Each player iter-

atively makes a demand and nature generates payoffs depending on the set of demands.

The process starts from any efficient state. Each period, each agent submits a demand.

Then nature distributes payoffs according to the following rule:

The payable coalition is the coalition C for which the cumulative sum of demands

is the largest one whilst not exceeding the coalitional worth v(C). If there is more than

one coalition achieving this maximum, preference is first by number of players in that

coalition. If two coalitions have the same sum of demands and number of players then
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the coalition is chosen which includes the player with smallest index number not included

in the other coalition. Players in the payable coalition receive their demand as payoff;

players outside that coalition receive 0. If, for all coalitions C in P
(
CG), the sum of

demands of the players in that coalition exceeds the coalitional worths, the payable coali-

tion is the empty set. The payable coalition can be thought of as the chosen allocation by

nature or an administrative body. If players are not chosen for the payable coalition their

only possible action when chosen to update demands is to reduce demands. They have an

incentive to do so as they want to increase their chances of being in the payable coalition.

For the next period, a player is selected uniformly at random, and this player then

changes his demand according to the following rule: If the demands sum to at most 1,

he will increase his demand by ε. Otherwise, if the player is in the payable coalition he

will not change his demand. If neither of the previous two conditions hold the player will

decrease his demand by ε with probability proportional to the size of his demand and else

will not change his demand.

The point is that the learning rule is very simple and can be applied even if the players

know only their own payoff and whether or not the sum of demands is 1. They know

nothing about the history of the game before the previous step. Yet in some games the

vector of demands, in the long run, is close to at least one notion of optimality for the

game.

For distinct i, j...k ∈ {1,2, ...,N}, let Ci j...k be the coalition of players i, j,...,k.

For d∈Ωε, a coalition C is feasible if ∑ j∈C d j ≤ v(C) and strictly feasible if ∑ j∈C d j <

v(C). A coalition C is binding at d ∈ Ωε if ∑ j∈C d j = v(C). For d ∈ Ωε, let C′ = C′ (d)

be the feasible coalition with the maximum sum of demands, i.e. the payable coalition.

If no coalition is feasible, then C′ (d) = /0.

Given an efficient state d =
(
d1,d2, ...,dN), let d(i, j) be the efficient state where

di (i, j) = di+ε,d j (i, j) = d j−ε and dk (i, j) = dk for k 6= i, j. We call d(i, j) a neighbor

of d.

We define the Markov chain (Xn)
∞

n=0 = (dn)
∞

n=0 =
(
d1

n ,d
2
n , ...,d

N
n
)∞

n=0 in discrete time

n, on the finite state space Ωε.

Let (nt)
∞

t=0 be the sequence of times n when Xn is in ΩE . Set Vt = Xnt , for t = 0,1....

One transition of (Vt) from d ∈ ΩE involves two changes of state of the chain (Xn). One
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player i increases his demand, and then the chain (Xn) is in an intermediate inefficient

state d(i), where d (i) j = d j if j 6= i and d (i)i = di + ε and where ∑
N
j=1 d (i) j = 1+ ε;

then one player j (with possibly j = i) decreases demands so that the chain (Vt) is in state

d(i, j) ∈ΩE .

We define pi, j
d to be the probability to go from an efficient state d to d(i, j) over one

step of (Vt). The transition probability pi, j
d depends only on the demands of the players

that are not in the payable coalition at d(i). So pi, j = 1
N

d j

∑l /∈C′(d(i)) dl+ε
1{ j/∈C′(d(i))} if i 6= j

and pi, j = 1
N

d j+ε

∑l /∈C′(d(i)) dl+ε
1{ j/∈C′(d(i))} if i = j.

We work with the chain (Vt), as its chain dynamics are more tractable.

The chain (Xn)
∞

n=0 = (dn)
∞

n=0 =
(
d1

n ,d
2
n , ...,d

N
n
)∞

n=0 is introduced for the first time in

this thesis. It is however motivated, and closely related, to a Markov chain introduced by

Nax (2010) called the original process in this thesis. The definition of the original process

is given in Section 3.2.

The incremental demand update ε is in general assumed to be very small. The next

definitions ensure that the worth function of the cooperative game is consistent with the

ε-grid restricting the possible values for the worth of a coalition to multiples of ε.

Let (v,N) be a superadditive game. Then M ∈N is v-compatible if Mv(C) is an integer

for all C in P (N). We call the Markov chain (Vt) a cooperative game process (v,N,ε) if

ε = 1
M for some v-compatible M.

For a coalition C, let the coalition’s surplus CSC (d) of C be v(C)−∑i∈C di. So a

coalition is feasible at d if CSC (d) ≥ 0, and binding at d if CSC (d) = 0. A state d is in

the core if CSC (d)≤ 0 for all C ∈ P
(
CG).

Given a game (v,N), for 1 < s ≤ N, let the s-simplified game (vs,N) be the game

where vs (C) = 0 if |C|< s and vs (C) = v(C) otherwise.

Given a game (v,N), let the s-core Ωs (v,N) and the s-cooperative outcome cos (v,N)

for s≤ N−1 be the core Ω(vs,N) and the cooperative outcome co(vs,N) respectively for

the s-simplified game (vs,N).

Lemma 3.2. Given a game (v,N), for 1 ≤ s1 < s2 < N the s1-core is a subset of the

s2-core. Therefore the core Ω(v,N) is the 1-core Ω1 (v,N) and co = co1.

Given a coalition C∗ let ΩC∗ = {d | ∑i∈C∗ di ≥ v(C∗)}.
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Proof: The (N−1)-core ΩN−1 is the intersection of all ΩC∗ for |C∗|= N−1.

The (N− s)-core is the intersection of all Ωs for s≥ N− s. So the s1-core is a subset

of the s2-core for 1≤ s1 < s2 < N. It follows that the core is the 1-core and so co = co1.

Lemma 3.3. Given a game (v,N), if cos2 ∈ Ωs1 with s1 < s2, then cos1 = cos2 . So, if

cos ∈ΩC for some 1≤ s < N, then co = cos.

Proof: Suppose that there was another state cos1 in the s1-core with smaller L2-distance

from
( 1

N ,
1
N , ...

1
N

)
than cos2 . Since the s1-core is a subset of the s2-core, cos1 is in the

s2-core and the fact that it has smaller L2 distance from
( 1

N ,
1
N , ...

1
N

)
than cos2 which by

assumption is the state in the s2-core with smallest L2-distance from
( 1

N ,
1
N , ...

1
N

)
is a

contradiction. So we conclude that cos1 = cos2 if s2 > s1 and cos2 is in the s1-core.

For d a demand vector, and co the vector of cooperative outcomes, define

D(d) =
N

∑
k=1

(
dk− cok

)2
(3.4)

the square of the L2 distance between d and co.

The drift DrV (co,d) of a given state d is defined as the expected change in D(d) over

one step of Vt .

DrV (co,Vt) = E[D(Vt+1)−D(Vt) |Vt = d]. (3.5)

Let πV be the equilibrium distribution of the chain (Vt), and πV,Sα
= PπV (Sα) where

Sα = {d|D(d)> α}.

A solution concept is a formal rule for describing which strategies will be adopted

by the players. A solution vector for a given solution concept is a demand vector that is

identified through the application of the solution concept.

Markovian cooperative equilibrium

We now define the Markovian cooperative equilibrium, a solution concept for a coopera-

tive game process as defined in the previous section.

Given a
(
v,N, 1

M

)
-cooperative game process, if there exists a unique state d∗ ∈ ΩC

such that, for all α > 0, PπV,M (||d−d∗||2 > α)→ 0 as M→∞ then d∗ = mce, the Marko-

vian cooperative equilibrium.
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The Markovian cooperative equilibrium is related to Young’s (2009) concept of close-

ness most of the time where a Nash equilibrium will be played a high proportion of the

time.

We will see in the following sections that, under certain conditions, the Markovian

cooperative equilibrium coincides with co, however in many general cases it does not

coincide with any solution concept we are aware of.

Given a game (v,N), for 1 < k ≤ N, let the k-simplified game (vk,N) be the game

where vk (C) = 0 if |C|< k and vk (C) = v(C) otherwise.

Given a game (v,N), let the k-core Ωk (v,N) and the k-cooperative outcome cok (v,N)

for k ≤ N− 1 be the core Ω(vk,N) and the cooperative outcome co(vk,N) respectively

for the k-simplified game (vk,N).

Lemma 3.4. Given a game (v,N), for 1 ≤ k1 < k2 < N the k1-core is a subset of the

k2-core. Therefore the core Ω(v,N) is the 1-core Ω1 (v,N) and co = co1.

Given a coalition C∗ let ΩC∗ = {d | ∑i∈C∗ di ≥ v(C∗)}.

Proof: The (N−1)-core ΩN−1 is the intersection of all ΩC∗ for |C∗|= N−1.

The (N− k)-core is the intersection of all Ωk for k ≥ N− k. So the k1-core is a subset

of the k2-core for 1≤ k1 < k2 < N. It follows that the core is the 1-core and so co = co1.

Lemma 3.5. Given a game (v,N), if cok2 ∈ Ωk1 with k1 < k2, then cok1 = cok2 . So, if

cok ∈ΩC for some 1≤ k < N, then co = cok.

Proof: Suppose that there was another state cok1 in the k1-core with smaller L2-distance

from
( 1

N ,
1
N , ...

1
N

)
than cok2 . Since the k1-core is a subset of the k2-core, cok1 is in the

k2-core and the fact that it has smaller L2 distance from
( 1

N ,
1
N , ...

1
N

)
than cok2 which by

assumption is the state in the k2-core with smallest L2-distance from
( 1

N ,
1
N , ...

1
N

)
is a

contradiction. So we conclude that cok1 = cok2 if k2 > k1 and cok2 is in the k1-core.

3.2 The ‘Original’ O-Cooperative Game Process

We now introduce the chain (Oe
n), the original chain introduced by Nax (2010), that is

closely related to the chain (Vt).

74



Recall the Markov process (Xn)
∞

n=0 = (dn)
∞

n=0 =
(
d1

n ,d
2
n , ...,d

N
n
)∞

n=0 in discrete time n,

on the finite state space Ωε, introduced in 3.1.

The state space for (Oe
n) is Ωε and the chain is similar to the chain (Xn)

∞

n=0 =(dn)
∞

n=0 =(
d1

n ,d
2
n , ...,d

N
n
)∞

n=0.

Let the demand of player i at discrete time n ∈ N be given by di
n. The transition

probabilities differ for the chain (Oe
n). We now describe the rule for updating demands

for the chain (Oe
n).

Each player iteratively makes a demand and nature generates payoffs depending on

the set of demands. Players adjust their demands according to a simple rule in response

to the distribution of payoffs in the previous round.

The process starts from any state d ∈ Ωε. Each period, each agent submits a de-

mand. Then nature distributes payoffs according to the following rule: If a player is in the

payable coalition, he receives his demand as payoff. Otherwise the payoff to that player

is 0.

Each period, one player i is selected uniformly at random and updates his demand.

For all players j 6= i who are not selected, d j
n = d j

n−1. The player will update his demand

according to the following rule:

If the player is in the payable coalition he increases his demand by ε with fixed prob-

ability e for 0 < e≤ 1 and the player will not change his demands with probability 1− e.

Otherwise, the player decreases his demand with probability
di

n−1
1+ε

and with probability

1− di
n−1

1+ε
he will not change his demand.

Let (nt)
∞

t=0 be the sequence of times n when (On) is in ΩE and consider the Markov

chain
(
Oe

nt

)∞

t=0. One transition of
(
Oe

nt

)
from d ∈ ΩE can involve multiple changes of

states of the chain (Oe
n).

For the chain (Vt), for a state d∈ΩE the set of new efficient states, that can be reached

in one time step t, is the set of neighbors d(i, j) for i, j ∈ {1,2,3,4}. For the chain
(
Oe

nt

)
the set of new efficient states that can be reached over one time step t is much larger and

the analysis of transition dynamics for the chain
(
Oe

nt

)
is complicated. We introduced the

chain (Vt) as a version of
(
Oe

nt

)
that is amenable to analysis. We can view (Vt) as a limit to(

Oe
nt

)
as e approaches 0. Suppose the chain (Vt) is in an inefficient state where demands

sum to 1+ ε. Eventually one player will reduce his demand and the chain (Vt) is again
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in an efficient state. Suppose the chain (Oe
n) is in an inefficient state. If e is small, the

probability that a player in the payable coalition increases his demand before any player

not in the payable coalition reduces demands is small. So the chains (Vt) and the chain(
Oe

nt

)
are closely related. For the N-player bargaining game, where the payable coalition

is either the grand coalition or the empty set, the chains (Vt) and
(
Oe

nt

)
are identical.

Let (v,N) be a superadditive game. We call the Markov chain
(
Oe

nt

)
a O-cooperative

game process with rate of experimentation e O(v,N,ε,e) if ε = 1
M for some v-compatible

M and for some constant scalar value e. The rate of experimentation is motivated by

mutations in evolutionary biology and generally assumed to be small.

Given a O
(
v,N, 1

M ,e
)
-cooperative game process, if there exists a unique state d∗ ∈ΩC

such that, for all α > 0, PπV,M (||d−d∗||2 > α)→ 0 as M→ ∞ then d∗ = Zmce, the Oe-

Markovian cooperative equilibrium.

We show via simulation that the chain (Vt) has similar behavior to the chain (Ont ). We

give simulation results for the chain (Ont ) for example games 1− 3 introduced on page

55 and show that the Oe-Markovian cooperative equilibrium is the same as the Markovian

cooperative equilibrium for games 2−3 and that the Oe-Markovian cooperative equilib-

rium is in the interior of the asymmetric edge for game 1 and its location depends on

e.

In this section we give simulation results for the chain
(
Oe

nt

)
for different values of e

and the chain (Vt) for example games 1− 4. We show via simulation that the behavior

of the chain (Vt) is similar to the behavior of the chain
(
Oe

nt

)
. The arguments can easily

be extended to a wider class of games and we believe that the chain (Vt) is very useful

in understanding the behavior of the chain
(
Oe

nt

)
. The analysis of the chain

(
Oe

nt

)
is very

complicated, although still complicated analysis of the chain (Vt) is more tractable.

We now define an estimator for the Markovian cooperative equilibrium and the Oe-

Markovian cooperative equilibrium and then compare the simulated results of the different

chains. The main interest for example games 1− 4 is, where the simulated estimator of

the Markovian cooperative equilibrium is located.

For a specific cooperative game process Vt (v,N,ε) with a Markovian cooperative equi-

librium and a starting state d, let aVT = 1
T ∑

T
t=1Vt . Since the Markov chain (Vt) is ergodic,

we expect that limε→0 limr→∞ aVT,ε almost surely exists and is equal to mce. We simulate
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sample paths of length T for large T = 108 for the chain (Vt) started from any efficient

state d in the core.

Let aOe
T,ε be defined accordingly for the chain Oe

nt
for a given value of e.

Table 3.1 depicts the cooperative outcome co, the upper concession limit ucl1 and the

lower concession limit lcl1 and simulated results for aVT,ε and aOe
T,ε for T = 108,ε= 10−6

and e = 0.1 and e = 0.01.

example game 1 example game 2 example game 3

co1 0.53 0.6 0.53

lcl11 0.53 0.6 0.53

ucl11 0.61 0.61 0.54

aV108 ,10−6 0.583586 0.600001

aO0.1
108 ,10−6 0.5655 0.600001 0.54

aO0.01
108 ,10−6 0.581919 0.600002 0.540001

Table 3.1 Simulated estimators for the Markovian cooperative equilibrium of the chain Vt

(aV108,10−6) for 108 simulations and ε = 10−6 and the estimator for the Markovian

cooperative equilibrium for the original chain (aO0.1
108,10−6 ,aO0.01

108,10−6) with rates of ex-

perimentation 0.1 and 0.01 respectively for example games 1− 3. The demand of

player one (d1) is given, uniquely identifying a state on the asymmetric edge

For e = 0.1 and example game 1 aO0.1
108,10−6 is located in the interior of the asymmetric

edge. It is located significantly lower than aV108,10−6 . However, aO0.01
108,10−6 is located very

close to aV108,10−6 . It seems that for small e the Markovian cooperative equilibrium is

indeed a very good approximation for the O-Markovian cooperative equilibrium.

More simulation results for games with N > 4 and different probabilistic assumptions

are available. All confirm the here presented results.
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3.3 The Cooperative Game Process is the Limit of the

Original Process

In this section we analyze in more detail the relationship between the original and the

modified process. We show that the equilibrium distribution of the modified process is

the limit of the equilibrium distribution of the original process when the rate of experi-

mentation tends to zero.

Let M0 be the transition matrix for the modified cooperative game process, and let Me

be the transition matrix between efficient states of the original cooperative game process

with rate of experimentation e. The state space of efficient states (and hence the size of

the transition matrix) is identical for both chains. The size of both transition matrices is

of order
(1

ε

)N−1×
(1

ε

)N−1
. For the modified process only transitions to neighbors have

non-zero probabilities. Recall that a neighbor d(i, j) of d is the new efficient state where

player i has increased demands and player j has decreased demands by ε. For the N-

player bargaining game the transition matrices for the original embedded process and the

modified process are equal. However this is not true in general. For the 3-player game,

the transition matrices are not equal any more. Examples of transitions that have zero

probability for the modified process but positive probabilities for the original process have

been introduced in Chapter 1 in Section (2). The rate of experimentation e is assumed to

be small. In fact in this section we will analyze the limit behavior when e tends to zero.

The following example is re-introduced to illustrate the analysis in the remainder

of this section. We are comparing possible transitions from the efficient state d0 =

(0.7,0.2,0.1) for both the modified and the original process for the following example

game: The worth of the grand coalition is one, the worth of C12 is 0.9, the worth of C13 is

0.7 and all other coalitions have worth zero.

For the modified process, the only transitions from d0 = (0.7,0.2,0.1) to new effi-

cient states with non-zero transition probabilities are the transitions to states d0 (1,2) =

(0.7+ ε,0.2− ε,0.1), d0 (1,3), d0 (2,1) and d0 (2,3).

For the original process, many more efficient states can be reached with positive (al-

beit very small) probability. Consider for example the following transition to the new

efficient state d∗ = (0.7+2ε,0.2−2ε,0.1): In round one player three increases his de-
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mand and the process is in state d1 = (0.7,0.2,0.1+ ε). Now coalition C12 is still bind-

ing. In round two, if chosen to update, player one can increase his demand so that the

process is in state d2 = (0.7+ ε,0.2,0.1+ ε), where the sum of demands is 1+2ε. Sup-

pose, in round three, player two is chosen to decrease demands and the process transi-

tions to state d3 = (0.7+ ε,0.2− ε,0.1+ ε). After another increase by player one (d4 =

(0.7+2ε,0.2− ε,0.1+ ε)) and decrease by player two (d5 =(0.7+2ε,0.2−2ε,0.1+ ε)),

finally player three decreases demands in round six and the process is in the new efficient

state d∗ = (0.7+2ε,0.2−2ε,0.1). Observe that for the transition from d0 to d∗ three

times a player has increased his demand. This transition happens hence with probability

of order e3 whereas any transition to a state that can be reached by the modified process

happens with probability of order e as only one player needs to be chosen to increase

demands. When e tends to zero, transition probabilities for the original process that have

zero probability for the modified process tend to zero very fast since they are of order at

least e2. Far away transitions are extremely unlikely.

The transition probabilities from a state d of the modified process (ignoring the case

when i = j) are

pi, j =
1
N

d j

∑l /∈C′(d(i)) dl + ε
1{ j/∈C′(d(i))}

if i 6= j.

Recall from Section 3.2 that, for the original chain, if a player is in the payable coali-

tion, he increases his demand by ε with fixed probability e, for 0 < e≤ 1, and the player

will not change his demand with probability 1− e. Otherwise, the player decreases his

demand with probability
di

n−1
1+ε

and with probability 1− di
n−1

1+ε
he will not change his demand.

Recall that (nt)
∞

t=0 is the sequence of times n when (Oe
n) is in ΩE and the Markov

chain
(
Oe

nt

)∞

t=0. One transition of
(
Oe

nt

)
from d ∈ ΩE can involve multiple changes of

states of the chain (Oe
n).

For the original process, it is important to differentiate between the transition prob-

abilities of the embedded chain
(
Oe

nt

)
that only moves between the efficient states and

the 1-step chain (Oe
n) that moves with transition probabilities as specified by the trial and

error rule on a state space including inefficient states. The time indices are different.
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Let pd∗
d(i),e be the sum of the probabilities of all paths of the original chain (Oe

n) from

d(i) to the efficient state d∗. Let the transition probability of the embedded original chain(
Oe

nt

)
between two efficient states d and d∗ be pd∗

d,e = ∑
N
i=1 pd∗

d(i),e. This definition of the

transition probability prevents the transition probabilities of the embedded original chain

to tend to zero with e. The embedded original chain
(
Oe

nt

)
moves faster than the original

chain (Oe
n). The original chain is a lazy version of the embedded chain.

Lemma 3.6. Let (v,N) be a superadditive N-player cooperative game and let ε be equal

to 1
M for some M ∈ N. Let (Vt) be the (v,N,ε) modified cooperative game process. Let(

Oe
nt

)
be the embedded original O(v,N,ε,e) cooperative game process with rate of exper-

imentation e. Let M0 be the transition matrix of the modified cooperative game process

and Me be the transition matrix of the original cooperative game process. Then when e

tends to zero each entry of Me tends to the respective entry of M0.

Proof:

Let pi, j
d(i),e be the probability of the path of the original chain (Oe

n) from state d(i) to

the efficient neighbor d(i, j) of d, where the only inefficient state on the path is d(i). For

such a path player j reduces his demand directly from d(i) and no player in the payable

coalition at d(i) increases his demand along that path. The probability of such a path is

of constant order and does not involve a factor e.

Let pi,2+
d(i),e be the sum of the probabilities of all those paths of the original chain (Oe

n)

from state d(i) to a new efficient state, which include (along the path) at least one in-

efficient state other than d(i) (and hence each path contains at least one more demand

increase from state d(i)). The summands of pi,2+
d(i),e are either probabilities of paths to

states which are not neighbors of d or probabilities of paths from d(i) to neighbors of

d where on the path the chain (Oe
n) visits intermediate inefficient states other than d(i)

before reaching the efficient neighbor. The probability of each summand of pi,2+
d(i),e (each

individual path) is of order eh for h≥ 1 from d(i). Observe that ∑ j∈N pi, j
d(i),e+ pi,2+

d(i),e = 1.

Observe that only a player not in the payable coalition at d(i) can decrease his demand

at d(i). If chosen to update at d(i), a player in the payable coalition will increase his

demand with probability e. Hence pi, j
d(i),e =

d j

∑l /∈C′(d(i)) dl+ε+pi,2+
d(i),e

1{ j/∈C′(d(i))}. Since each

individual summand of pi,2+
d,e involves at least one further demand increase, which happens

80



with probability e, we can rewrite the above expression as

pi, j
d(i),e =

d j

∑l /∈C′(d(i)) dl + ε+O(e)
1{ j/∈C′(d(i))}

where O(e) is an expression of order at least e and not to be confused with the original

cooperative game process Oe
n. The transition probability of the embedded chain from d to

the efficient neighbor d(i, j) is then

pi, j
d,e =

1
N

d j

∑l /∈C′(d(i)) dl + ε+O(e)
1{ j/∈C′(d(i))}

. Now when e tends to zero, the transition probability pi, j
d,e tends to the transition proba-

bility of the modified cooperative game process

pi, j
d =

1
N

d j

∑l /∈C′(d(i)) dl + ε
1{ j/∈C′(d(i))}

.

So each transition probability between efficient states of the transition matrix Me for

the embedded original cooperative game process with rate of experimentation e tends to

the respective entry of the transition matrix M0 of the modified cooperative game process

when e tends to zero.

Let the equilibrium distribution of Me and M0 be µe and µ0 respectively. We now show

that µe tends to µ0 when e tends to zero.

Theorem 3.7. Let (v,N) be a superadditive N-player cooperative game and suppose ε is

equal to 1
M for some M ∈ N. Let (Vt) be the (v,N,ε) modified cooperative game process

with a unique communicating class of non transient states. Let
(
Oe

nt

)
be the original

O(v,N,ε,e) cooperative game process defined on the same set of efficient states. Then,

if the rate of experimentation e tends to zero, the equilibrium distribution of the original

embedded cooperative game process tends to µ0.

Proof:

By assumption, (Vt) has a unique communicating class of non-transient states. By el-

ementary results on finite Markov chain theory, see for example Grimmett and Stirzacker

(2001), there exists a unique stationary distribution µ0 for (Vt).
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By Lemma (3.6), when e tends to zero, the transition matrix of the original cooperative

game process defined on the set of efficient states Me tends to M0, the transition matrix

for the modified cooperative game process.

By stationarity of µe, it holds that Meµe = µe, so (Me− I)µe = 0 where I is the identity

matrix. In the same way M0µ0 = µ0 and so (M0− I)µ0 = 0.

We know that ||µe||1 = 1 and µe≥ 0 for each rate of experimentation e. So the space of

vectors µe is compact. Let (Mek) = Me1,Me2 ,Me3... be a sequence of matrices for different

decreasing values of (ek) = e1,e2,e3, ... tending to zero.

Since µe1 ,µe2,µe3... live in a compact space, there is some subsequence µeki
of the

sequence µek converging to a µ∗. Then taking the limit

0 = lim
i→∞

(
Meki
− I
)

µeki
= (M0− I)µ∗.

It follows now from (M0− I)µ∗ = 0 and ||µ∗||1 = 1 and µ∗ ≥ 0 that µ∗ is an equilibrium

distribution for M0. Since M0 has a unique equilibrium distribution, it follows that µ∗= µ0.

Suppose µek does not tend to µ0. Then by compactness there exists a subsequence µen

that converges to some limit µ∗ other than µ0. We have shown that this is a contradiction

and hence we conclude that µek tends to µ0 when ek tends to zero.

For the cooperative game process for the N-player bargaining game, the unique com-

municating class with non-transient states is the set of efficient states. In Chapter 4 Section

4.3 and in Chapter 5, it is shown that the modified cooperative game process has a unique

communicating class of non-transient states: the core for the cooperative game process for

balanced superadditive three player games and balanced superadditive four player games

without asymmetric coalition structure, and the extended core for the cooperative game

process for general balanced superadditive four player games.

Hence, for all processes studied in this thesis, the equilibrium distribution of the mod-

ified cooperative game process is the limit of the equilibrium distribution of the embedded

original cooperative game process when the rate of experimentation tends to zero.
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3.4 Equity in the N-Player Bargaining Game

Let the N-player bargaining game be the game (v,N) where v(C)= 0 for all C∈P
(
CG) ,C 6=

CG and v
(
CG) = 1. The core then consists of all efficient states and co = µ. In this sec-

tion, we first look at the special case where (v,N) is the N-player bargaining game. I show

that co is a Markovian cooperative equilibrium for this game, for every N ≥ 2.

The Theorem is given by

Theorem 3.8. If (v,N) is the N-player bargaining game and ε is equal to 1
M for some

M ∈ N. Let (Vt) be the (v,N,ε) cooperative game process. Then, for ∀α > 0,

Pπv,ε (D(d)> α)≤ ε

Nα
.

and proved at the end of this section.

In this particular case co =
( 1

N , ...,
1
N

)
and D(d) = ||co−d||. Hence in this case the

Markovian cooperative equilibrium equals the Nash Bargaining solution of Peleg et al

(2007).

The following lemma shows that, ignoring the second order terms, the expected change

in the value of the L2-distance between co and the chain (Vt) over one step of (Vt) is neg-

ative and proportional to D:

In the N-player bargaining set-up the transition probabilities for the cooperative game

process are given by pi, j = d j

N(1+ε) if i 6= j and pi, j = d j+ε

N(1+ε) if i = j.

Lemma 3.9. Dr (co,Vt) =
−2ε

1+ε

(
D(d)+ ε

N−1
N2

)
.

Proof: The change in D(d) when i 6= j is given by

D(d(i, j))−D(d) =
1
N

(
2ε

2 +2ε(
(
di−µ

)
−
(
d j−µ

))
(3.6)

.

Since maxi, j∈[1,...N] | di−d j |= 1 the maximum change in D(d) is given by

1
N

(
2ε2 +2ε

)
< 3ε

N ≤ ε for N ≥ 3.
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D(d) =

=
2ε

(1+ ε)N2

N

∑
i=1

∑
j 6=i

d j ((di−µ
)
−
(
d j−µ

)
+ ε
)

=
2ε

(1+ ε)N2 [
N

∑
i=1

∑
j 6=i

d j (di−µ
)
−

N

∑
i=1

∑
j 6=i

d j (d j−µ
)
+ ε

N

∑
i=1

∑
j 6=i

d j]

=
2ε

(1+ ε)N2 [
N

∑
i=1

(
1−di)(di−µ

)
−

N

∑
i=1

∑
j 6=i

(
d j−µ+µ

)(
d j−µ

)
+ ε

N

∑
i=1

∑
j 6=i

d j]

=
2ε

(1+ ε)N2 [
N

∑
i=1

(
di−µ

)
−

N

∑
i=1

di (di−µ
)
−

N

∑
i=1

∑
j 6=i

(
d j−µ

)2−
N

∑
i=1

∑
j 6=i

µ
(
d j−µ

)
+ ε

N

∑
i=1

∑
j 6=i

d j]

=
2ε

(1+ ε)N2 [0−
N

∑
i=1

(
di−µ

)2−
N

∑
i=1

µ
(
di−µ

)
− (N−1)

N

∑
i=1

(
di−µ

)2− (N−1)0+ ε

N

∑
i=1

(
1−di)]

=
2ε

(1+ ε)N2 [−
N

∑
i=1

(
di−µ

)2−0− (N−1)
N

∑
i=1

(
di−µ

)2
+(N−1)ε]

=
2ε

(1+ ε)N2

[
−N

N

∑
i=1

(
di−µ

)2
+(N−1)ε

]

Let π be the equilibrium distribution and πSα
= Pπ (Sα) where Sα = {d|D(d)> α}.

Proof: of Theorem (3.8)

We know from Theorem (3.9) that

f (d) = E [D(Vt+1)−D(Vt) |Vt = d] = 2ε

1+ε

(
−D(d)+ ε

N−1
N2

)
.

Now in equilibrium 0 = ∑d∈ΩE πdE [D(Vt+1)−D(Vt) |Vt = d].

So 0 < 2ε

(1+ε)

(
πSα

(
−α+ ε

N

)
+(1−πSα

) ε

N

)
= 2ε

(1+ε)

(
−απSα

+ ε

N

)
so πSα

< ε

Nα
.
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3.5 Major Coalition Games and Expected Return Times

to Facets of the Core

In this section we analyze a ‘well behaved’ family of N-player cooperative game pro-

cesses: one “major” coalition determines the dynamics of the game. We prove that the

cooperative game process returns freqeuntly to a coalition exactly if the average payout

to a player in that coalition is larger than what he would receive at equal spilt. The main

contribution of this chapter is to show that the process CSC (Vt), the surplus of a coalition,

is in fact a birth and death chain. This transformation enables the application of standard

calculations and results on birth and death chains and random walks to the calculation of

the return time of the cooperative game process.

In Theorem (3.10) we calculate a bound on the expected return time of the chain (Vt)

to the set of states where the major coalition is binding. In Theorem (3.11) we provide a

probabilistic bound on the number of ε-steps that the process can move away from the set

of states where the major coalition is binding.

In the proof of the bound of the expected return time we use the fact that a random

walk can be defined that is a ‘pessimistic’ version of the birth and death chain. We like to

point out that, although the proofs here are only for major coalition games, the behavior

of the cooperative game process for a general N-player game is very similar to that of a

major coalition game, as long as the chain (Vt) is ‘far away’ from states in the intersection

of two hyperplanes H
(
C1)∩H

(
C2). Then ‘locally’ the chain CSC (Vt) behaves very

much like the birth and death chain defined here.

We will see in Chapter 5 that it is not in general true for N-player cooperative game

processes that at every state d ∈ ΩC a drift in D(d) towards the cooperative outcome co

exists. Having a local bound on the return time becomes a useful tool when the core

contains states that do not have a drift towards co.

In Lemma (3.8) we show that at each state d ∈ΩC there is a drift in D(d) towards the

cooperative outcome co and we show that the Markovian cooperative equilibrium is co.

Theorem (3.13) then follows from Lemma (3.8) as in the N-player bargaining case.

For C ∈ P
(
CG), let H (C) = {d ∈ΩC | ∑i∈C di = v(C)}.
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Let C0 be a specific coalition with |C0| ≥ 2 and C0 6=CG, the grand coalition. Suppose

also that

1. v
(
C0)> |C0|

N

2. v(C) = 1 if C =CG; v(C) = v
(
C0) if C0 ⊂C and C 6=CG, v(C) = 0 otherwise.

In a game (v,N), with v satisfying (1.) and (2.) we call C0 the major coalition and the

game (v,N) a major coalition game. Observe that a major coalition game is superadditive.

Let ΩB =H
(
C0), that is ΩB = {d |CSC0

(d) = 0}, the set of all states where the major

coalition is binding. The set ΩB is a N−2-dimensional subset of the N−1-dimensional

set ΩE . Let T0,T1, ... be the sequence of random times defined recursively with T0 = 0

and for j ≥ 1, Tj = min{t > Tj−1 |Vt ∈ΩB}.

We now discuss the chain (Vt) for a major coalition game cooperative process. The

core is the the set {d ∈ ΩE | ∑i∈C0 di ≥ v
(
C0)} = {d ∈ ΩE |CSC0

(d) ≥ 0}. We analyze

the behavior of the chain (Vt) started in a state on ΩB. Once in the core the chain (Vt) will

not leave the core again.

The next Theorem describes the expected return time of the chain (Vt) over excursions

away from the hyperplane. We show that the chain (Vt) stays in close neighborhood of

the hyperplane corresponding to states, where the major coalition C0 is binding.

Theorem 3.10. Let the chain (Vt) start in any state in ΩB.

Then the cooperative game process will return “fast” to ΩB exactly for coalitions

where the equal payout to a player in that coalition is higher than the payout to the

player at equal split. Furthermore the “speed of return” is proportional to the worth of

the coalition with the expected return time of (Vt) to ΩB satisfying E(T1) <
1

1−φ
where

φ = |C0|(1−v(C))

(N−|C0|)v(C)
.

This theorem shows that the chain (Vt) returns fast to states where C0 is binding.

Before we prove Theorem (3.10) we now make the direct link between the chain CSC0
t

ε

and a birth and death chain. This transformation is not obvious however it provides us

with a set of tools from the theory of birth and death chains and then, random walks, that
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we believe is very relevant and useful to analyze general cooperative game processes, not

just in the major coalition setting.

We now discuss the chain CSC0
t

ε
. The chain increases by ε if (Vt) transitions from a state

d to a neighbor d(i, j) for ı, j ∈ {1, ...,N} where i is in C0 and j is in the complement of

C0. Observe that the chain increases by ε with
|C0|∑ j/∈C0 d j

N(1+ε) where |C
0|

N is the probability

that a player in C0 is chosen to increase his demand and
∑ j/∈C0 d j

N(1+ε) is the probability that a

player j /∈C0 decreases demands from d(i). Similarly, the probability that the chain CSC0
t

ε

decreases by ε from an efficient state d /∈ΩB is given by (N−|C0|)∑i∈C0 di

N(1+ε) . Observe further

that if CSC0
t

ε
= i for some i ∈ {0, ..., 1−v(C0)

ε
} then the sum of the demands in coalition

C0 is given by v
(
C0)+ iε and the sum of the demands of the players in the complement

of C0 is given by 1− v
(
C0)− iε. Now we observe that in effect the Markov chain CSC0

t
ε

follows a birth and death chain where state i of the birth and death chain corresponds to

the state where CSC0
(d) = iε. The birth and death chain increases by 1, if a player in

C0 increases his demand and a player in the complement of C0 decreases demands. The

birth and death chain decreases by 1, if a player in the complement of C0 increases his

demand and a player in C0 decreases demands. The maximum sum of demands of the

players in the complement of C0 is 1− v
(
C0)+ ε and the minimum sum of demands in

the complement of C0 is 0. Similarly the maximum the players in the coalition C0 can

demand together is 1+ ε and the minimum v
(
C0).

Now we prove Theorem (3.10).

Proof: As just discussed the Markov chain CSC0
t

ε
follows a birth and death chain BDC0

where state i of the birth and death chain corresponds to the state where CSC0
(d) = iε.

The transition probabilities at state i are given by pi,i+1 = max{ |C
0|

N
1−v(C0)−iε

(1+ε) ,0} and

pi,i−1 = min{N−|C0|
N

v(C0)+iε
(1+ε) ,1}.

Let πBD
0 be the equilibrium probability of the 0-state of BDC0

and let πRW
0 be the

equilibrium distribution of the 0-state of a random walk with transition probabilities

pi,i+1 =
|C0|
N

1−v(C0)
(1+ε) , pi,i−1 =

N−|C0|
N

v(C0)
(1+ε) , p0,−1 = 0 and p 1−v(C0)

ε
,

1−v(C0)
ε

+1
= 0.

We want to show that πRW
0 is a lower bound for πRW

0 .
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From Grimmett and Stirzacker (2001) we know that the equilibrium distribution of

the 0-state of a birth and death chain is given by

π
BD
0 =

1

∑
∞
k=1

p0,1
p1,0

p1,2
p2,1

...
pk−1,k
pk,k−1

.

Observe that pi,i+1
pi+1,i

= |C0|
N−|C0|

1−v(C0)−iε

v(C0)+iε
and

pi,i+1
pi+1,i

< |C0|
N−|C0|

1−v(C0)
v(C0)

and so ∑
∞
k=1

p0,1
p1,0

p1,2
p2,1

...
pk−1,k
pk,k−1

<∑
∞
k=1 φk = 1

1−φ
where φ= |C0|

N−|C0|
1−v(C0)

v(C0)
.

As πBD
0 = 1

∑
∞
k=1

p0,1
p1,0

p1,2
p2,1

...
pk−1,k
pk,k−1

we know that πBD
0 > 1−φ = πRW

0 = 1
∑

∞
k=1 φk .

From Grimmett and Stirzacker (2001) we know that the expected return time to a

state i of an irreducible aperiodic Markov chain is given by 1
πi

where πi is the equilibrium

distribution of state i.

Hence the expected return time of the chain (Vt) to H
(
C0) is less than 1

1−φ
.

We like to make a quick excursion to general N-player cooperative game processes.

If a general cooperative game process (Vt) is ‘close’ to an intersection of two or more

hyperplanes H (C) for different coalitions C ∈ P
(
CG) then the behavior of the process is

similar to a dependent Markov chain where each coordinate corresponds to one birth and

death chain BDC.

The next theorem shows that, if C0 has been binding once, the probability to go far

away from states where C0 is binding, is very small.

Let τC0 be the first time that the chain (Vt) is in H
(
C0).

The next theorem shows that, if C0 has been binding once, the probability to go far

away from states, where C0 is binding, is very small.

Let τC0 be the first time that the chain (Vt) is in H
(
C0).

Theorem 3.11. Let the chain (Vt) start in any state in ΩB. It holds that

P

(
CSC0

(Vt)

ε
> K

)
<

1
1−φ

K
(3.7)

for all K > 0.

Proof: We use Markov’s inequality to prove the bound.
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Observe that the coi =
v(C0)
|C0| for i ∈C0 and co j =

1−v(C0)
N−|C0| for j /∈C0.

We analyze the drift over one time step of the chain (Vt) show that at each state d∈ΩC

there is a drift in D(d) towards co. .

Theorem 3.12. Let the chain (Vt) start in any state on ΩC. Then

Dr (Vt ,co)≤ −εD(d)
N (1+ ε)

+2ε
2. (3.8)

Proof: Let v
(
C0)= c0. The drift is given by

N

∑
i=1

N

∑
j=1

pi, j
d (−D(co,d)+D(co,d(i, j))) . (3.9)

If C0 is not binding at d(i), the payable coalition at d(i) is the empty set and so

pi, j
d = d j

N(1+ε) if i 6= j and pi, j
d = d j+ε

N(1+ε) otherwise. So

Dr (Vt ,co)≤
N

∑
i=1

N

∑
j=1

d j

1+ ε

(
−
(
coi−di)2−

(
co j−d j)2

+
(
coi−

(
di + ε

))2
+
(
co j−

(
d j− ε

))2
)

+2ε
2

Dr (Vt ,co) =
N

∑
i=1

N

∑
j=1

d j

1+ ε

[
−2ε

(
coi−di)+2ε

(
co j−d j)+2ε

2]+2ε
2

Dr (Vt ,co) =
2ε

N (1+ ε)

[
−

N

∑
i=1

N

∑
j=1

d j (coi−di)+ N

∑
i=1

N

∑
j=1

d j (co j−d j)]+ 2ε2

1+ ε
+2ε

2

Dr (Vt ,co) =
2ε

(1+ ε)

N

∑
j=1

[
1
2
(
d j− co j

)(
co j−d j)+ 1

2
(
d j + co j

)(
co j−d j)]+ 2ε2

1+ ε
+2ε

2

and so

Dr (Vt ,co) =− ε

(1+ ε)

N

∑
j=1

(
d j− co j

)2
+

ε

1+ ε

[
N

∑
j=1

(
co j
)2−

N

∑
j=1

(
d j)2

]
+

2ε2

1+ ε
+2ε

2

(3.10a)

It follows that

Dr (Vt ,d)<
2ε

N (1+ ε)
(−D(d))+2ε

2. (3.11)
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Suppose at d, C0 is binding. If a player in C0 increases his demand, the payable

coalition is the empty set and so pi, j
d = d j

N(1+ε) if i 6= j and pi, j
d = d j+ε

N(1+ε) otherwise. If

player k in the complement of C0 increases his demand, C0 is the payable coalition and

so pk, j
d = d j

N(1−c0+ε) if k 6= j and j /∈C0 and pk, j
d = 0 otherwise.

The drift is given by

Dr (Vt ,co)C0 +Dr (Vt ,co)CG\C0 (3.12)

where

Dr (Vt ,co)C0 = ∑
i∈C0

∑
j∈CG

pi, j
d (−D(co,d)+D(co,d(i, j))) (3.13)

and

Dr (Vt ,co)CG\C0 = ∑
k/∈C0

∑
l /∈C0

pk,l
d (−D(co,d)+D(co,d(k, l))) . (3.14)

The drift is given by

Dr (Vt ,co)CG\C0 = ∑
k/∈C0

∑
l /∈C0

dl

1− c0 + ε

(
−
(

cok−dk
)2
−
(

col−dl
)2

+
(

cok−
(

dk + ε

))2
+
(

col−
(

dl− ε

))2

Dr (Vt ,co)CG\C0 = ∑
k∈C0

∑
l∈C0

dl

1− c0 + ε

[
−2ε

(
cok−dk

)
+2ε

(
col−dl

)
+2ε

2
]

Dr (Vt ,co)CG\C0 =
2ε

|CG \C0|(1− c0 + ε)

[
∑

k/∈C0
∑

l /∈C0

dl
(

cok−dk
)
+ ∑

k/∈C0
∑

l /∈C0

dl
(

col−dl
)]

+
2ε2

1− c0 + ε
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Observe that ∑k/∈C0
(
cok−dk)= 0 and so −∑k/∈C0 ∑l /∈C0 dl (cok−dk)= 0

Dr (Vt ,co)CG\C0 =
2ε

(1− c0 + ε) ∑
l /∈C0

[
1
2
(
d j− co j

)(
co j−d j)+ 1

2
(
d j + co j

)(
co j−d j)]

+
2ε2

1− c0 + ε

Dr (Vt ,co)CG\C0 =−
ε

(1− c0 + ε) ∑
l /∈C0

(
d j− co j

)2
+

ε

1− c0 + ε

[
∑

l /∈C0

(
co j
)2− ∑

l /∈C0

(
d j)2

]

+
2ε2

1− c0 + ε

(3.16a)

We use Lemma 4.20 to show that co is a Markovian cooperative equilibrium for all

N-player major coalition games.

Theorem 3.13. Suppose (v,N) is a major coalition game, and ε is equal to 1
M for some

v-compatible M ∈ N. Let (Vt) be the (v,N,ε) cooperative game process. Then, for α > 0,

Pπv,ε (D(d)> α)≤ ε

Nα
.
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Chapter 4

Equity in General 3-Player Games

In this chapter we analyze 3-player cooperative game processes. The chapter is structured

as followed:

In 4.1 we introduce the concept of a balanced coalition, we state the Bondareva-

Shapley Theorem and apply it to prove that the core of a 3-player game is non empty if

and only if v(C12)+v(C13)+v(C23)≤ 2. This subsection directly follows Gilles (2010).

In the remainder of this chapter on 3-player games we assume that the core is non-empty.

In 4.2 we describe an algorithm that finds co for each 3-player cooperative game.

Recall that the cooperative outcome co = (co1,co2,co3) is defined as the state in the core

that minimizes ∑i∈{1,2,3}
(
di− 1

3

)2
. From Lemma (3.1) we know that the cooperative

outcome co is the most equal allocation in the core, that is, the allocation in the core

minimizing ∑i∈{1,2,3}
(
di)2. The algorithm first finds co2, the cooperative outcome for

the 2-core, then it checks if co2 is a member of the core. If so, co = co2. Otherwise

exactly one inequality si > co2
i holds, and co must lie on the hyperplane {d | di = si}. We

give graphical representations of the geometric structure of different 3-player games and

the precise location of the cooperative outcome in the core.

In 4.3 in Lemma (4.7) we show that all states outside the core are transient and then,

in Lemma (4.8) that the set of recurrent states is indeed the core. For this, we show, and

then use the fact, that the core is connected. In the beginning of 4.3 we first state and

prove a set of lemmas, that we frequently apply in the main proofs of this subsection.

Finally, we state and prove Lemma (4.9), that we apply repeatedly in the proofs in the

succeeding subsections.
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In 4.4 we show that, at every state d ∈ΩC there is a drift proportional to D(d). So for

all states not in the close neighborhood of co, there is a negative drift. Given a game (v,3)

let C co (v,3) be the set of coalitions that are binding at co. We partition the core. The

first set in the partition is the set of states where no coalition is binding. We calculate the

drift for these states. The second set of states is the set of states, where coalitions can be

binding that are not in C co (v,3). We compare the drift at a state in this set for a particular

game with the drift of a game, where all coalitions not in C co (v,3) are removed. We hence

deduce a bound on the drift for the second set of states. Finally, we calculate the drift for

all states in the core, where at least a coalition in the set C co (v,3) is binding.

In Lemma (4.20) the drift on all three sets of the partition is combined and a global

bound on the drift for a cooperative game process (v,3,ε) is calculated. In Theorem

(4.21) we use Lemma (4.20) to show that co is a Markovian cooperative equilibrium for

all superadditive 3-player games satisfying (4.4).

4.1 Non-Emptiness of the Core

The definitions and proofs in this subsection directly follow from Chapter 2 of Gilles

(2010).

Let B ⊂ P
(
CG)\ /0 be a set of non-empty coalitions called a collection. The collection

B is balanced if there exist numbers λC > 0 for C∈B such that for each player i∈{1,2,3}

∑
C∈B|i∈C

λC = 1. (4.1)

Let the members of {λC |C ∈ B} be called balancing coefficients of the collection B .

A minimal balanced collection is a balanced collection B that does not contain a proper

balanced subcollection. Observe that any partition of {1,2,3} is balanced as long as the

individual coalitions C in the partition have balancing coefficient λC = 1.

The next theorem is modified from Theorem (2.10) from Gilles (2010) and derives

some basic properties of balanced collections.

Theorem 4.1. Let {1,2,3} be the set of players for a game (v,3). Then

1. the union of balanced collections on {1,2,3} is balanced,
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2. a balanced collection is minimal if and only if it has a unique set of balancing co-

efficients and

3. any balanced collection is the union of minimal balanced collections.

The next lemma follows from Theorem (4.1.2).

Lemma 4.2. A minimal balanced collection consists of at most 3 coalitions.

We now state the Bondareva-Shapley Theorem in terms of minimal balanced coali-

tions.

Theorem 4.3. (Bondareva-Shapley) Let (v,N) be a game. Then the core of (v,N) is non-

empty if and only if for every minimal balanced collection B ⊂ P
(
CG) with balancing

coefficients {λC |C ∈ B} it holds that

∑
C∈B

λCv(C)≤ v
(

CG
)
. (4.2)

We set v(C123) = 1, v(C12) = a,v(C13) = b,v(C23) = c and v(Ci) = si for i = 1,2,3.

We order the players in such a way that

a ≥ b ≥ c. (4.3)

Using the above version of the Bondareva-Shapley Theorem, the 3-player version

reduces to

Lemma 4.4. Let (v,3) be superadditive. Then the core of (v,3) is empty if and only if

a + b + c ≤ 2. (4.4)

Proof: If the balanced collection is trivial and forms a partition of {1,2,3} then the

lemma follows from superadditivity. The only non-trivial minimal balanced collection

is B = {C12,C13,C23} with balancing coefficients
(1

2 ,
1
2 ,

1
2

)
. The results follows immedi-

ately after applying Theorem
(
4.3
)
.

In the remainder of the chapter on 3-player games we assume that condition (4.4)

holds. So from now on we assume that any 3-player game (v,3) has a non-empty core.
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4.2 Finding the Most Equitable Allocation in the Core

Recall from Chapter (3.1) that the 2-simplified game (v2,3) of game (v,3) is the game

where v2 (C) = 0 if |C| < 2 and v2 (C) = v(C) otherwise. Recall further that the 2-core

Ω2 and co2 are the core and cooperative outcome, respectively, of the 2-simplified game.

Let H (C) be the set of states in the core where ∑i di = v(Ci), the set of states where

the surplus of C is zero. Observe that in the 3-player set-up for C 6= /0,C 6=CG, H (C) is a

set of points on a line.

Figure 4.1 Graphical representation of core and outcome I in table (4.5), where v(C23) = c is

small.

In each Figure 4.1, 4.2, 6.1, 6.2, 4.5 and 4.6 the cores of different games (v,3) are

depicted, each corresponding to a different set of functions v, for v satisfying certain

conditions. The location of the cooperative outcome in the core depends on these condi-

tions on v. For example, in Figure 4.1, a
2 ≥ 1− b whereas in Figure 4.2, a

2 < 1− b. If
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a
2 < 1− b then the state

(a
2 ,

a
2 ,1−a

)
is in the 2-core and so the cooperative outcome co

lies in the interior of the hyperplane H (C12), depicted as the blue line {d | d1 +d2 = a}

in Figure 4.2. However, in Figure 4.1, the state
(a

2 ,
a
2 ,1−a

)
is not in the 2-core, and

so the cooperative outcome is in the intersection of H (C12) and H (C13) and given by

(a+b−1,1−b,1−a).

In Figure 6.1, like in Figure 4.2, the state
(a

2 ,
a
2 ,1−a

)
is in the 2-core. However, unlike

in Figures 4.1 and 4.2, the 2-core strictly contains the core and
(a

2 ,
a
2 ,1−a

)
∈ Ω2 \ΩC.

Neither
(a

2 ,
a
2 ,1−a

)
nor any state, where C13 is binding, is in the core. Since s1 > a

2

the hyperplane H (C1) forms a boundary of the core and the cooperative outcome is the

unique state in the intersection of H (C1) and H (C12).

Figure 4.2 Graphical representation of core and outcome II in table (4.5).

The following algorithm finds co for each 3-player cooperative game. It first finds

co2, then it checks if co2 is a member of the core. If so, co = co2. Otherwise the core

is strictly contained in the 2-core and so the algorithm calculates co taking into account
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that exactly one of s1 > co2
1, s2 > co2

2 or s3 > co2
3 can hold, say si and that co is then the

state in the core with smallest Euclidean distance of the set of the set of states on the line

H (Ci).

1. If v(C12) = a≤ 2
3 , then

(a) co2 =
(1

3 ,
1
3 ,

1
3

)
. Otherwise, set co2

3 = 1−a. If v(C13) = b≤ 1− a
2 then

(b) co2 =
(a

2 ,
a
2 ,1−a

)
. Otherwise

(c) co2 = (a+b−1,1−b,1−a).

Now, that the algorithm has identified co2, it finds co by checking whether one

of the singleton coalitions, say Ci, is strictly feasible at co2. If so, co must be on

H (Ci).

2. If si < co2
i for all i ∈ {1,2,3}, then co = co2. This corresponds to cases

co = (a+b−1,1−b,1−a), co =
(a

2 ,
a
2 ,1−a

)
and co =

(1
3 ,

1
3 ,

1
3

)
which corre-

spond to outcomes I,II and III in table (4.5) respectively.

If s1 > co2
1, then co1 = s1. If 2a ≥ 1+ s1, co2 = a− s1 this is case VII in table

(4.5). Else co2 = co3 =
1−s1

2 and this is outcome IV in table (4.5).

If s2 > co2
2, then co2 = s2 and this is outcome V in table (4.5). If 2a ≥ 1+ s2,

co1 = a− s2 else co1 = co3 =
1−s1

2 and co is given by outcome VI in table (4.5).

If s3 > co2
3, then co =

(
1−s3

3 , 1−s3
3 ,s3

)
and is given by outcome VIII.
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All possible combinations of co are given in the table below:

I II III VII

co1 a+b−1 a
2

1
3 s1

co2 1−b a
2

1
3 a− s1

co3 1−a 1−a 1
3 1−a

conditions a
2 ≥ 1−b a

2 ≤ 1−b a≤ 2
3 s1 ≥ a+b−1

s1 ≤ a+b−1 s1 ≤ a
2 s1,s2,s3 ≤ 1

3 s1 ≥ a
2

s2 ≤ a
2 2a≥ 1+ s1

IV V VI VIII

co1 s1 a− s2
1−s2

2
1−s3

2

co2
1−s1

2 s2 s2
1−s3

2

co3
1−s1

2 1−a 1−s2
2 s3

conditions s1 ≥ a+b−1 a
2 ≤ 1−b a

2 ≤ 1−b a≤ 2
3

s1 ≥ a
2 s2 ≥ a

2 s2 ≥ a
2 s3 ≥ 1

3

2a≤ 1+ s1 2a≥ 1+ s2 2a≤ 1+ s2

(4.5)

Lemma 4.5. The algorithm described above finds co, the most equal allocation in the

core.

Proof: We know from Lemma (3.5) that if co2 is in the core, then co2 = co.

By assumption, a ≥ b ≥ c. If 1− a ≥ 1
3 then

(1
3 ,

1
3 ,

1
3

)
∈ Ω2 and so co2 =

(1
3 ,

1
3 ,

1
3

)
.

Otherwise, if 1− a < 1
3 then any state with d3 < 1− a is not in Ω2. So the state with

smallest L2-distance from 1
3 is on the hyperplane H (C12) = {d | d1 + d2 = a} and so

co3 = 1− a. If 1− b ≥ a
2 , then

(a
2 ,

a
2 ,1−a

)
is on H (C12) and so co2 =

(a
2 ,

a
2 ,1−a

)
.

However, if 1− b < a
2 , then

(a
2 ,

a
2 ,1−a

)
is not on H (C12) and co2 will be in the in-

tersection of the hyperplanes H (C12) and H (C13) = {d | d1 + d3 = b} and hence is

(a+b−1,1−b,1−a).

We now show by contradiction that at most one singleton coalition can be strictly

feasible at co2. Given singleton coalitions Ci,C j, by superadditivity v(Ci) + v
(
C j
)
≤

v
(
Ci j
)
. Suppose there were two singleton coalitions with v(Ci) > co2

i and v
(
C j
)
> co2

j
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but then v
(
Ci j
)
> co2

i + co2
j which contradicts that co2 ∈ Ω2. So at most one singleton

coalition, say Ci, can have v(Ci)> co2
i .

Suppose i = 1. Then co has to be on the hyperplane H (C1) and so co1 = s1. If

2a≤ 1+s1 then
(

s1,
1−s1

2 , 1−s1
2

)
∈Ω2. We now show that it is not possible that s2 >

1−s1
2 .

Since 2a≤ 1+s1, it holds that 1−s1
2 +s1 =

1+s1
2 > a. Suppose s2 >

1−s1
2 . Then s2+s1 > a

which is a contradiction. Hence it is not possible that s2 >
1−s1

2 . Since a≥ b we conclude

that s3 >
1−s1

2 cannot hold. So
(

s1,
1−s1

2 , 1−s1
2

)
= co.

If 2a > 1+ s1, co is in the intersection of the hyperplanes H (C1) and H (C12) and so

is (s1,a− s1,1−a).

If i = 2 the identical argument holds with players 1 and 2 exchanged.

Suppose i = 3. The condition s3 > co2
3 can only hold if co3 < 1− a and so co2 =(1

3 ,
1
3 ,

1
3

)
. Then co is on the hyperplane H (C3) and so co3 = s3. We now show by con-

tradiction, that, for i ∈ {1,2}, coi >
1−s3

2 cannot hold. Observe that, if s3 > 1
3 , then

s3 +
1−s3

2 > 2
3 . Suppose now co is in the intersection of H (C3) and another hyperplane

corresponding to a singleton coalition, say H (Ck). But then, by superadditivity, the worth

of coalition Ck3 is at least s3 + sk. This contradicts that
(1

3 ,
1
3 ,

1
3

)
is in Ω2. So we conclude

that no other player k can have sk >
1−s3

2 and so co =
(

1−s3
2 , 1−s3

2 ,s3

)
.

One can show that the algorithm to find co in all cases when a > 2
3 is summarized

below:

For the 3-player game the cooperative outcome is given by

co1 = min[max
(
a+b−1, a

2 ,s1
)
,max

(
a− s2,

1−s2
2

)
]

co2 = max[min
(

1−b, a
2 ,max[a− s1,

1−s1
2 ]
)
,s2]

co3 = min
(

1−a, 1−s1
2 , 1−s2

2

)
.

(4.6)

4.3 The Core is the Set of Recurrent States

Before we prove, that states outside the core are transient, and that the set of recurrent

states is the core, we state and prove the following conditions, that are used repeatedly in

the proofs of Lemma (4.7) and Theorem (4.13).

Let a player’s cooperative distance Pi (d) = Pi be di− coi and let a coalition’s surplus

CSC (d) =CSC = ∑k∈C dk− v(C).
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Let C 2 be the set of 2-player coalitions.

Lemma 4.6. 1. For a state d ∈ΩC feasibility of a coalition implies that the coalition

is binding.

2. For i ∈ {1,2,3} and for d ∈ ΩC it holds that C′ (d(i)) must be binding both at d

and at d(i). Furthermore it holds that a player i cannot be a member of a coalition

that is binding at d(i) and hence cannot be member of C′ (d(i)).

3. For a state d ∈ ΩC, if Ci and C j are both binding, then so is Ci j. Furthermore, for

any state d ∈ ΩE , if two singleton coalitions Ci and C j are feasible, with at least

one of them strictly feasible, then Ci j is strictly feasible.

4. If C ∈ P
(
CG) is strictly feasible at d (or d(i)), then CG \C cannot be feasible at d

(or d(i)).

5. Suppose some 2-player coalition is strictly feasible at d ∈ ΩC or d(i), then C′ (d)

or C′ (d(i)) cannot be a singleton coalition.

In the succeeding enumeration the conditions of Lemma (4.6) are proved.

Proof:

1. A feasible coalition has CSC (d)≤ 0 and for a state in the core it holds that CSC (d)≥

0. So feasibility of a coalition C in the core implies that coalition C is binding, that

is CSC (d) = 0.

2. C′ (d) and C′ (d(i)) are by definition feasible coalitions, so if d is in the core, and

so is d(i), they are binding coalitions. A coalition C, that is binding at d(i) and has

i as member, must have CSC (d)>CSC (d(i)) = 0 which contradicts that d ∈ΩC.

3. Superadditivity of v implies that v(Ci)+ v
(
C j
)
≤ v
(
Ci j
)
. If Ci and C j are binding

then di = v(Ci) and d j = v
(
C j
)
. So di + d j ≤ v

(
Ci j
)

and, in the core, di + d j ≥

v
(
Ci j
)

so di +d j = v
(
Ci j
)
. The other statement is proved similarly.

4. We will proof this by contradiction. Suppose that C ∈ P
(
CG) is strictly feasible at

d ∈ ΩE , that is ∑i∈C di < v(C), and suppose that CG \C is feasible as well, that is

∑ j/∈C d j ≤ v
(
CG \C

)
. But then at d, by superadditivity of v, it holds that ∑i∈C di +

∑ j/∈C d j < v(C)+ v
(
CG \C

)
≤ v
(
CG)= 1, contradicting the fact that d ∈ΩE . We

100



conclude that, at an efficient state d, a coalition cannot be strictly feasible when its

complement is feasible. At an intermediate inefficient state ∑ j∈{1,2,3} d j (i) = 1+ε,

and so the same argument applies to intermediate inefficient states d(i).

5. From item (4) it follows directly that the singleton coalition must be a subset of

C. But in the ordering for C′ a coalition is preferred to its subsets. So if a 2-player

coalition is strictly feasible at d or d(i) then C′ (d) or C′ (d(i)) cannot be a singleton

coalition.

In Figure 4.3 we depict a subset of the set of efficient states ΩE . The set H (C12) is

the set of states on the thick blue line, H (C13) is the set of states on the thick red line and

H (C23) is the set of states that are on the thick black line. In this example a sketch of the

cooperative outcome is the intersection of H (C12) and H (C13).

We depict three different states, co, d and d∗ and their neighbors. Neighbors, that the

chain (Vt) can reach with positive probability, are depicted green. Neighbors, that cannot

be reached, are grey. At co, C′ (co(2)) =C13, C′ (co(3)) =C12 and C′ (co(1)) = /0, so the

only ‘green neighbors’ are states d where d1 = co1+ε. At d, for i∈{1,2,3}, C′ (d(i))= /0

and so all neighbors are green. At d∗, C′ (d∗ (2)) =C13 and so p2,1
d∗ = p2,3

d∗ = 0 neighbors

d∗ (2,1) and d∗ (2,3) are grey.

Lemma 4.7. Any state d ∈ΩE \ΩC is transient.

In the first part of the proof we show that once in ΩC, the chain Vt cannot leave ΩC.

In the second part of the proof we show that from any state d ∈ ΩE \ΩC the chain Vt

has a path of positive probability to ΩC.

Proof: Suppose Vt ∈ ΩC. If Vt+1 /∈ ΩC, then there must exist a pair of players i, j, and a

coalition C∗ that is binding at d and d(i), that has CSC∗ (d(i, j))< 0 with j ∈C∗ and with

pi, j
d > 0. For pi, j

d > 0 and CSC∗ (d(i, j))< 0 to hold, player i cannot be member of C∗ and

C∗ 6=C′ (d(i)).

Let l ∈ {1,2,3}, l 6= i, l 6= j. Since by Lemma (4.6). (2) it holds that i /∈C′, and j /∈C′

by assumption, it follows that C′ =Cl .

By Lemma (4.6.2) it holds that i /∈C∗, and since C∗ 6=C′ (d(i)) it holds that v(C∗)≤

v(Cl). So C∗ can only be C j. But since C j and Cl are binding at d(i), by Lemma (4.6.3)
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Figure 4.3 Sketch of a subset of ΩE for a cooperative game process for a 3-player game with

different states d and their neighbors d(i, j) for i, j ∈ {1,2,3}.

that implies that C jl is binding at d(i) and so C′ =C jl . Since j, l, i were chosen arbitrarily,

that implies that the chain Vt cannot leave ΩC.

Now we show that the chain (Vt) will move from any state in ΩE into ΩC. We first

show that from any state not in the 2-core, there is a path of positive probability into

the 2-core. Then we show that from any state in the 2-core, there is a path of positive

probability into the core.

Suppose at d∈ΩE there exists a strictly feasible 2-player coalition CA =Ci j. We need

to show that there exists a state d(r,k) for r ∈ {i, j}, such that k is not member of a binding

2-player coalition at d(r) and pr,k > 0. Suppose no other two player coalition is binding

at d. Then by Lemma (4.6.4) Ck cannot be binding at d(r) and so pi,k > 0 and p j,k > 0.

Suppose one other 2-player coalition is binding at d, say Cik. Then for r = i it holds
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that Crk is not binding at d(r), and so CSCrk (d(r,k))≥ 0, and CSCr j (d(r,k))>CSCr j (d).

Again Ck cannot be binding at d(r) by Lemma (4.6.4) and so pr,k > 0.

Suppose that C jk is binding at d simultaneously while Ci j is strictly feasible and C jk is

binding. We will show that this contradicts (4.4) which we assumed to hold to guarantee

that the core is non-empty. If di +d j < v
(
Ci j
)
, di +dk = v(Cik) and d j +dk = v

(
C jk
)

all

hold simultaneously, then 2
(
di +d j +dk)< v

(
Ci j
)
+v(Cik)+v

(
C jk
)
. But since d ∈ΩE

it follows that 2
(
di +d j +dk)= 2 < v

(
Ci j
)
+v(Cik)+v

(
C jk
)

and that contradicts (4.4).

So C jk cannot be binding at d simultaneously while Ci j is strictly feasible and C jk is

binding. We conclude that there is a path of positive probability into the 2-core.

Now we will show that from any state in the 2-core, there is a path of positive prob-

ability into the core. By Lemma (4.6.3) we know that if a singleton coalition is strictly

feasible at d, but no 2-player coalition is strictly feasible, then no other singleton coali-

tion can be feasible at d. The same holds directly for d(i) for i ∈ {1,2,3}. Let Ci be the

strictly feasible singleton coalition at d. We know from Lemma (4.6.4) that C jk cannot

be binding at d(i). We know as well from Lemma (4.6.2) that i cannot be member of a

binding coalition at d(i). So there is no 2-player coalition that can be binding at d(i) and

no other singleton coalition and so pi,s > 0 for all s ∈ {1,2,3} and so there is a path of

positive probability from the 2-core into the core.

So there is a path of positive probability from any state into the 2-core and from any

state in the 2-core, there is a path of positive probability into the core. From any state in

the core the chain (Vt) cannot leave the core. Hence each efficient state outside the core

is transient.

Let an interior state be a state where no coalition is binding and let a boundary state

be a state in the core where at least one coalition is binding.

The core is a union of interior states and boundary states. Boundary states of the core

are classified as vertex states, where at least two coalitions are binding, or edge states,

where exactly one coalition is binding.

We first describe two special cases of a game (v,3) where the core does not contain

any interior states.
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For a 3-player game (v,3), if there exists a state d where all 2-player coalitions are

binding, then ΩC = d. By Lemma (4.6.3), if for a game (v,3) there exists at a state

d, where all three singleton coalitions are binding, then at d all 2-player coalitions are

binding and again the core consists of a single point.

If v
(
Ci j
)
= 1−v

(
CG \Ci j

)
and si+s j < v

(
Ci j
)

then the core consists of a set of states

that can be joined by a line.

We will first show that any two interior states are connected through a path of interior

states. Since for interior states all pi, j > 0 for any combination of i, j with i, j ∈ [1,2,3],

this implies that there is a path of positive probability between any two interior states.

Figure 4.4 depicts the interior of the core for a cooperative game process for a general

3-player game. To show that the interior of the core is connected, we show that any

two interior states are connected. To show that states d∗ and d∗∗ in the interior of the

core are connected, we show that the state d∗∗∗ has to lie in the interior of the core as

well. Intuitively, in Lemma (4.8) we argue, that any hyperplane representing a binding

coalition, that intersects either of the green lines in 4.4, implies that d∗∗ is not in the

interior of the core, which contradicts the assumption that both d∗ and d∗∗ are in the

interior of the core.

Then we will show that for any two states on the boundary there is a path of positive

probability in either direction between them.

Finally we show that there is a state on the boundary that has positive probability of

going to an interior state. The transition dynamics of interior states do not change until a

state on the boundary is reached, so there exists always an interior state which has positive

probability of going to a state on the boundary.

Lemma 4.8. The set of recurrent states for all games (v,3) is the core.

Proof: Let d∗ and d∗∗ be any two interior states of the core.

Suppose now that d1∗ = d1∗∗+ k1ε, d2∗ = d2∗∗+ k2ε and d3∗ = d3∗∗+ k3ε, for i ∈

{1,2,3} let ki ∈Z and k1+k2+k3 = 0. Wlog we assume that k1 > 0 and k2 < 0 and k3 < 0.

We claim that the state d∗∗∗ =
(
d1∗∗+(k1− k2)ε,d2∗∗,d3∗∗+ k3ε

)
is in the interior of the

core. Then, by convexity of the core, any state on the line joining d∗ and d∗∗∗ and any

state on the line joining d∗∗ and d∗∗∗ is in the interior of the core.
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Figure 4.4 Sketch of the interior of the core for a cooperative game process for a 3-player game

with different states d∗, d∗∗ and d∗∗∗.

We now prove by contradiction that d∗∗∗ is in the interior of the core. Suppose that

d∗∗∗ is not in the interior of the core. Then there must be a coalition C such that ∑i∈C di ≤

v(C). Observe that C 6=C1 since d1∗∗ < d1∗∗∗ and d∗∗ is by assumption in the interior of

the core. Furthermore C 6=C13 since d1∗∗+d3∗∗< d1∗∗∗+d3∗∗∗. Observe that for no other

coalition the sum of demands decreases between d∗ and d∗∗∗. As well, d2∗∗∗ < d2∗ < 1

and so the state d∗∗∗ lies in the interior of the core. Since the choice of players was

arbitrary, this shows that all states in the interior of the core are connected.

Now we show that for a game (v,3) there is a path of positive probability along the

boundary states of the core.
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We first deal with the case where the core is a set of states that can be joined by a line.

Suppose it holds that v
(
Ci j
)
= 1− v

(
CG \Ci j

)
where si + s j < v

(
Ci j
)
. Then, if d is an

edge state where di + d j = v
(
Ci j
)

and no other coalition apart from CG \Ci j is binding,

states d(i, j) and d( j, i) are boundary states. It holds that pi, j = 1
3

d j

di+d j+ε
> 0 and p j,i =

1
3

d j

di+d j+ε
> 0 and so both d( j, i) and d(i, j) can be reached with positive probability.

Suppose now that the chain (Vt) is in a vertex state where di +dk = v(Cik). Then p j,i = 0

and pi, j = 1
3

d j

di+d j+ε
> 0. If additionally di = si, since by assumption dk = sk, it holds

as well that di + dk = v(Cik) and the argument is the same. For other vertex states very

similar arguments apply.

Suppose that the core has at least one interior point. We want to show that there is a

path of positive probability in either direction between any two boundary states.

Suppose the chain (Vt) is in an edge state. Observe that in any edge state, if a member

of the binding coalition increases his demand, the payable coalition is the empty set and

so pi, j
d > 0 for all i, j ∈ {1,2,3}.

Suppose the chain (Vt) is in a vertex state. The two edges, that the vertex state con-

nects, are either two edges corresponding to a binding singleton coalition, two edges

corresponding to binding 2-player coalitions or the vertex could connect an edge corre-

sponding to a binding singleton coalition and an edge corresponding to a binding 2-player

coalition.

Suppose the vertex state links two 2-player coalitions. If the player in the intersection

of the two coalitions increases his demand, no coalition is feasible any longer and so both

remaining players in either coalition can reduce demands and so the chain can move from

the vertex states to either of the two neighboring edge states. These dynamics are not

changed if the singleton coalition of the player in the intersection is binding.

Suppose the vertex state links two edges where singleton coalitions, Ci and C j re-

spectively, are binding. The respective neighboring edge states are d(i,k) and d( j,k)

respectively. C′ (d(i)) =C j and so pi,k
d > 0. Similarly C′ (d( j)) =Ci and so p j,k

d > 0. So

with positive probability the chain (Vt) moves to either of the adjoint edge states.

Suppose the vertex state links two edges, one where a singleton coalition is binding,

and one where a 2-player coalition is binding. We are now analyzing the case where the

core has a non-empty set of interior states. This implies that the singleton coalition is not
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the complement of the 2-player coalition and so must be a subset. If the player in the

singleton coalition increases his demand, the payable coalition is the empty set and so all

both, the remaining player in the 2-player coalition or the third player, that is not in the

2-player coalition, reduce demands with positive probability . Hence the chain can move

from the vertex state to both neighboring edge states.

From any edge state, if a member of the coalition increases his demand, then C′ = /0

and so each player can reduce demands and hence the chain will move to an interior state

with positive probability. For any interior state d adjoint to an edge state, transitions to

d(i, j) for all i, j ∈ {1,2,3} are possible and so the chain can move with positive proba-

bility to a state on the boundary.

We know from Lemma (4.7), that any state outside the core is transient. We conclude

that the set of recurrent states is the core.

The next lemma states that the player with largest demands at a state in the core

must have demands that are at least equal to his cooperative outcome value. We use this

lemma repeatedly in subsection 4.4 and Chapter 6 Section 6.2. Intuitively, a player with

demands above his cooperative outcome adds a negative contribution to the drift when

decreasing demands and a positive contribution when increasing demands. In this lemma

we conduct a simple case analysis of the different possible cooperative outcomes given in

(4.5) in Section 4.2.

Lemma 4.9. Let d be any state in the core. Let player l be the player with largest demands

at d. Then dl ≥ col and for any other player k with dk ≤ cok it holds that col ≥ cok.

Proof: By our ordering of the players, we assumed in (4.3) that a ≥ b ≥ c. If a ≤ 2
3 , by

(4.5), this implies that co =
(1

3 ,
1
3 ,

1
3

)
or co =

(
1−s3

2 , 1−s3
2 ,s3

)
. For the former, the result

follows trivially. In the latter if the player with largest demands is player 3, the result

follows from the fact that d ∈ ΩC. If l = 1 or l = 2, the result follows directly from the

fact, that players 1 and 2 have the same cooperative outcome value.

Suppose now that a > 2
3 . For any state d ∈ΩC it holds that d1+d2 ≥ a and d1+d2+

d3 = 1. So for d ∈ΩC it holds that d3 < 1
3 and so l, the player with largest demands, has

to be either player 1 or player 2.

Let player m be the player in C12 with the higher cooperative outcome. From 4.2, we

see that m can have

107



(I) com = sm where sm > a
2

(II) com = a
2

(III) com = a+b−1 with co = (a+b−1,1−b,1−a)

In case (I) it holds that dm ≥ sm as d ∈ΩC.

In case (II) if dm > d j, m, j ∈ [1,2] then dm > a
2 since d1 +d2 ≥ a.

In case (III) it must be that m = 1. Let x ∈ Z and set d1 = a+b−1− xε. Suppose

now that d1 < co1, that is, suppose x > 0. But then d2 ≥ 1−b+xε for d1+d2 ≥ a to hold

and d3 ≥ 1−a+ xε for d1 +d3 ≥ b to hold but then d1 +d2 +d3 ≥ a+b−1− xε+1−

b+xε+1−a+xε≥ 1+xε which is a contradiction since for states in the core ∑i di = 1.

Hence x≤ 0 and so dm ≥ com holds for all d ∈ΩC.

So we have shown that m, the player with the largest cooperative outcome com, must

have dm ≥ com. If there is any other player, say k ∈ [1,2,3] with dk > dm then dk > cok

as com > cok by assumption.

Lemma 4.10. Given a game (v,3), let m be a player such that com ≥ coi for i ∈ {1,2,3}.

Then at any state in the core it holds that dm ≥ com.

Proof: The result has been proved in the proof of Lemma (4.9).

4.4 The Markovian Cooperative Equilibrium is the Most

Equitable Allocation in the Core

We define, for i = 1,2,3,

Dr (V,d)i =
1
3
E[D(Vt+1)−D(Vt) |Vt = d,Xnt+1 = d(i)]. (4.7)

The quantity Dr (V,d)i is the contribution to the drift from the case when player i

increases his demand. Observe that ∑
3
i=1 Dr (V,d)i = Dr (V,d).

Lemma 4.11. For any state d ∈ ΩE , and for any player i, j in {1,2,3} it holds that

| di− coi |2 + | d j− co j |2≥ 1
3D(d).
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Proof: Let z be the other player. Observe that | di− coi |+ | d j− co j |≥| dz− coz | since

∑
3
k=1 dk− cok = 0. So

2
(
| di− coi |2 + | d j− co j |2

)
≥| di− coi |2 + | d j− co j |2 +2 | di− coi || d j− co j |

and | di− coi |2 + | d j− co j |2 +2 | di− coi || d j− co j |=
(
| di− coi |2 + | d j− co j |2

)
.

Observe further that
(
| di− coi |2 + | d j− co j |2

)
≥| dz− coz |2 and so

3
(
| di− coi |2 + | d j− co j |2

)
≥D(d) and hence | di−coi |2 + | d j−co j |2≥ 1

3D(d).

To analyze the contribution to the drift at d from a transition to a particular neighbor

d(i, j) there are contributions from both player i that increases his demand and from

player j that decreases demands. If di < coi and d j > co j, both contributions to the drift

are negative. The following Lemma bounds the drift Dr (V,d)i if di ≤ coi, d j ≥ co j and

dz ≥ coz.

Lemma 4.12. For any state d ∈ ΩC where di ≤ coi, d j ≥ co j and dz ≥ coz it holds that

Dr (Vt ,d)i ≤ −2ε

9(1+ε)D(d)+ 2ε2. Furthermore, if di ≤ coi and d j ≤ co j and dz ≥ coz and

only transitions to new efficient states d(i,z) and d( j,z) are possible, then Dr (Vt ,d) ≤
−2ε

9(1+ε)D(d)+2ε2.

Proof: Observe that Dr (Vt ,d)i =
2ε

3

(
pi, j (di− coi−

(
d j− co j

))
+ pi,z ((di− coi

)
−
(
d j− co j

)))
+

2ε2 ≤ −2ε

3(1+ε)

(
d j | d j− co j |+dz | dz− coz |

)
+2ε2.

As d j ≥ co j it holds that d j ≥
(
d j− co j

)
and as dz ≥ coz it holds that dz ≥ (dz− coz).

So Dr (Vt ,d)i ≤ −2ε

3(1+ε)

((
d j− co j

)2
+(dz− coz)

2
)
+2ε2.

Now from Lemma (4.11) it follows that Dr (Vt ,d)i≤ −2ε

3(1+ε)
1
3D(d)+2ε2 and so Dr (Vt ,d)i≤

−2ε

9(1+ε)D(d)+2ε2.

The second part of the lemma is proved similarly.

Let co(v,3) be the cooperative outcome of game (v,3).

We have shown that all states not in ΩC are transient. Now we show that the drift for

all d in ΩC is at most −δ+2ε2 where δ(d,co)> 0 is proportional to the L2 distance of d

and co.
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Theorem 4.13. For any state d ∈ΩC it holds that Dr (d)≤− 2ε

9(1+ε)D(d)+2ε2.

Given a game (v,3) let C co (v,3) be the set of coalitions that are binding at co. Let

the C co-simplified game (vco,3) be the game where vco (C) = 0 if C /∈ C co (v,3) and

vco (C) = v(C) otherwise. Observe that the C co-simplified game (vco,3) is not necessarily

superadditive.

Lemma 4.14. The cooperative outcome of the game (vco,3) is co, the cooperative out-

come of the original game (v,3).

Proof: We will show this by contradiction. Let Ωco be the core of (vco,3). Suppose that

there is a state co′ in Ωco with smaller L2-distance from
(1

3 ,
1
3 ,

1
3

)
than co. Let S be the

line between co and co′ and let ΩP be the set of states in ΩE that lie on S. Observe that

by construction each state in ΩP has smaller L2-distance from
(1

3 ,
1
3 ,

1
3

)
than co.

When constructing Ωco from ΩC, we remove finitely many hyperplanes. Let KC∗ be

the hyperplane that cuts S closest to co. By assumption, C∗ is in C co and so KC∗ cannot

include co. But then, for all sufficiently small ε, there is a point in the intersection of ΩC

and ΩP and so is closer to
(1

3 ,
1
3 ,

1
3

)
than co, contradicting the assumption that co is the

closest point to
(1

3 ,
1
3 ,

1
3

)
in ΩC. We conclude that co′ = co.

Lemma 4.15. If at d ∈ ΩC there are at least 2 binding coalitions C ∈ C co (v,3), then

d = co.

Proof: Observe that for a game (v,3) the set of states, where a coalition is binding, is a

set of points that can be joined by a line. The intersection of two such sets of states is at

most one state. So if at d ∈ ΩC there are at least 2 binding coalitions C ∈ C co (v,3), then

d = co.

We are to prove that at each state d ∈ ΩC there is a drift that is proportional to the

distance D(d).

The first lemma states that this is true if no coalition is binding at d.

The second lemma shows that this is true for states where no coalition in C co (v,3) is

binding at d.

Finally the third lemma shows that this is true for states where one coalition in C co (v,3)

is binding.
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Figure 4.5 Graphical representation of core and outcome V in table (4.5).

Lemma 4.16. Suppose at d ∈ΩC no coalition is binding. Then

Dr (Vt ,d)<
2ε

3(1+ ε)
(−D(d))+2ε

2. (4.8)

Proof: The drift is given by

3

∑
i=1

3

∑
j=1

pi, j
d (−D(co,d)+D(co,d(i, j))) . (4.9)
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If no coalition is binding, the payable coalition is the empty set and so pi, j
d = d j

3(1+ε) if

i 6= j and pi, j
d = d j+ε

3(1+ε) otherwise. So

Dr (Vt ,co) =
3

∑
i=1

3

∑
j=1

d j

3(1+ ε)

(
−
(
coi−di)2−

(
co j−d j)2

+
(
coi−

(
di + ε

))2
+
(
co j−

(
d j− ε

))2
)

+
3

∑
i=1

ε

3(1+ ε)

(
−
(
coi−di)2−

(
coi−di)2

+
(
coi−

(
di + ε

))2
+
(
coi−

(
di− ε

))2
)

Dr (Vt ,co) =
3

∑
i=1

3

∑
j=1

d j

3(1+ ε)

[
−2ε

(
coi−di)+2ε

(
co j−d j)+2ε

2]+ 3

∑
i=1

ε

3(1+ ε)
2ε

2

Dr (Vt ,co) =
2ε

3(1+ ε)

[
−

3

∑
i=1

3

∑
j=1

d j (coi−di)+ 3

∑
i=1

3

∑
j=1

d j (co j−d j)]+2ε
2

Dr (Vt ,co) =
2ε

3(1+ ε)

3

∑
j=1

[
1
2
(
d j− co j

)(
co j−d j)+ 1

2
(
d j + co j

)(
co j−d j)]+2ε

2

it follows that

Dr (Vt ,co) =− ε

(1+ ε)

3

∑
j=1

(
d j− co j

)2
+

ε

1+ ε

[
3

∑
j=1

(
co j
)2−

3

∑
j=1

(
d j)2

]
+2ε

2

(4.10a)

So

Dr (Vt ,d)<
2ε

3(1+ ε)
(−D(d))+2ε

2. (4.11)

Let Drco (d,co) be the drift at state d for the C co-simplified game.

We will compare the drift of a state d ∈ΩC where no coalition in C co (v,3) is binding

with the drift at d for the game (vco,3). We use Lemma (4.14) to deduce that co(v,3) =

co(vco,3). The pi, j
d differ between the two drifts calculations. The basic idea is, that if

at d(i) a coalition is the payable coalition in (v,3,ε) but the payable coalition in d(i) is

the empty set for (vco,3,ε), then players in that coalition in the payable coalition will

not reduce demands in (v,3,ε) and we will show that the drift will be smaller for the

cooperative game process (v,3,ε) than for the cooperative game process (vco,3,ε). Since

we know a bound on the drift for (vco,3,ε) from Lemma (4.16), we know that the same

bound holds for (v,3,ε). There are some special cases, and we analyze them as well in

the following lemma.
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Lemma 4.17. Suppose at d ∈ΩC no coalition in C co (v,3) is binding. Then

Dr (Vt ,d)<
2ε

9(1+ ε)
(−D(d))+2ε

2. (4.12)

Proof: By Lemma (4.16), if no coalition is binding at d, then Dr (Vt ,d)< 2ε

3(1+ε) (−D(d))+

2ε2.

Suppose at d only a 2-player coalition C /∈ C co is binding. Let i be the player not in C

and j,k be the remaining players. Then, if j or k increase demands, no coalition is feasible

and the transition probabilities for v and vco are identical and so Drco
j (Vt ,co)=Dr j (Vt ,co)

and Drco
k (Vt ,co) = Drk (Vt ,co).

If i increases his demand however, the transition probabilities differ and now we show

that Drco
i (Vt ,co)> Dri (Vt ,co).

For (v,3), the probability for i to decrease is 1, pi,i
d = 1, and so Dri (Vt ,co) = 0. Since

C jk /∈ C co (v,3) it holds that di > coi and so d j +dk < co j + cok. So either d j < co j and

dk < cok or d j < co j and dk > cok with | d j− co j |=| di− coi +dk− cok | must hold.

If Drco
i (Vt ,co) ≥ 0 = Dri (Vt ,co) it follows that Drco

i (Vt ,co) > Dri (Vt ,co) and so

Dr (Vt ,co)≤ Drco (Vt ,co)< 2ε

3(1+ε) (−D(d))+2ε2.

Now we show that

Drco
i (Vt ,co) = pi, j

d (−D(co,d)+D(co,d(i, j)))+ pi,k
d (−D(co,d)+D(co,d(i,k)))≥ 0

.

If di > coi, d j < co j and dk < cok then both

−D(co,d)+D(co,d(i, j))> 0 and−D(co,d)+D(co,d(i,k))> 0 and so the lemma

holds for this particular case.

So, the next case we analyze is if dk > cok with | d j−co j |=| di−coi+dk−cok | and

| d j− co j |>| dk− cok |.

As Drco (Vt ,co)i =−2ε

3

(
d j

1+ε

(
coi−di +d j− co j

)
+ dk

1+ε

(
coi−di +dk− cok

))
+2ε2

and since since co j − d j > dk − cok it holds that Drco (Vt ,co)i can only be negative if

dk > d j. Otherwise, if dk ≤ d j we know the lemma holds so for the next case we

assume that dk > d j. When dk > d j we cannot show that Drco (Vt ,co)i > 0. How-

ever our strategy is now to show that Drco
i (Vt ,co) > Drco

j (Vt ,co) +Drco
k (Vt ,co), since
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Dr (Vt ,co) = Dr (Vt ,co)i +Dr (Vt ,co) j +Dr (Vt ,co)k = Drco (Vt ,co) j +Drco (Vt ,co)k we

can then conclude that as long as Drco
i (Vt ,co)> Drco

j (Vt ,co)+Drco
k (Vt ,co) it holds that

Dr (Vt ,co)< 1
2Drco (Vt ,co) which satisfies the bound in the lemma.

The following equations show that Drco
i (Vt ,co)> Drco

j (Vt ,co)+Drco
k (Vt ,co).

Drco (Vt ,co) j =−
2ε

3

(
di

1+ ε

(
co j−d j +di− coi

)
+

dk

1+ ε

(
co j−d j +dk− cok

))
+2ε

2.

Drco (Vt ,co)k =−
2ε

3

(
di

1+ ε

(
cok−dk +di− coi

)
+

d j

1+ ε

(
cok−dk +d j− co j

))
+2ε

2.

Drco (Vt ,co)i =−
2ε

3

(
d j

1+ ε

(
coi−di +d j− co j

)
+

dk

1+ ε

(
coi−di +dk− cok

))
+2ε

2.

Now let Drcom = Drco
j (Vt ,co)+Drco

k (Vt ,co)−Drco
i (Vt ,co). First we cancel the common

terms d j (d j− co j
)

and dk (dk− cok
)
. Then we observe that

(
co j−d j)+(cok−dk)> 0.

Since dk > d j by assumption, dk (co j−d j)+ d j (cok−dk) > 0. So combining these

yields

Dr (Vt ,co)com ≤−
2ε

3

(
di

1+ ε
2
(
di− coi

)
− d j +dk

1+ ε

(
coi−di))+2ε

2.

Since coi−di < 0 we conclude that Drcom < 2ε2 and so Dr (Vt ,co)< 1
2Drco (Vt ,co).

(4.13a)

So since Drco
i (Vt ,co)>Drco

j (Vt ,co)+Drco
k (Vt ,co) we conclude that for this particular

case Dr (Vt ,co)< 1
2Drco (Vt ,co) for all previous cases it was true that Drco

i (Vt ,co)≥ 0 and

so that Dr (Vt ,co)< Drco (Vt ,co).

Now we analyze the case when at d only a singleton coalition C /∈ C co is binding. Let

i be the player in C and j,k be the remaining players. Then, if i increases his demand,

no coalition is feasible and the transition probabilities for both games are identical and so

Drco
i (Vt ,co) = Dri (Vt ,co).

If j or k increase however, the transition probabilities differ and p j,i
d = pk,i

d = 0 for

(v,3). Since Ci /∈ C co (v,3) it holds that di < coi. So at least one of dk > cok or d j > co j

has to hold. We want to show that Dr (v,co) j +Dr (v,co)k ≤ Drco (v,co) j +Drco (v,co)k,

because then we can conclude that Dr (v,co)< Drco (v,co).

Let Drcom = [Drco (v,co) j +Drco (v,co)k−Dr (v,co) j−Dr (v,co)k]. Then, if Drcom ≥

0 we know that Dr (v,co) j +Dr (v,co)k ≤ Drco (v,co) j +Drco (v,co)k and so Dr (v,co)≤
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Drco (v,co) and the bound on Drco (v,co) from Lemma 4.16 for Drco (v,co) holds as well

for Dr (v,co).

So we show that Drcom ≥ 0. For the cooperative game process (v,3,ε) at d(k) and

at d( j) the payable coalition is Ci and p j,k
d = dk

dk+d j+ε
and pk, j

d = d j

dk+d j+ε
. Since di =

1−d j−dk we can rewrite the transition probabilities as p j,k
d = dk

1+ε
+di dk

d j+dk+ε
and pk, j

d =

d j

1+ε
+di d j

d j+dk+ε
. Then, in Drco (v,co) j +Drco (v,co)k−Dr (v,co) j−Dr (v,co)k the terms

2ε

3(1+ε) [
(
co j−d j)+ (dk− cok

)
and 2ε

3(1+ε) [
(
cok−dk)+ (d j− co j

)
cancel out and

Drcom =− 2ε

3(1+ ε)
[
(
co j−d j)+ (di− coi

)
+
(

cok−dk
)
+
(
di− coi

)
]+2ε

2

+
2ε

3
[

dk

dk +d j + ε

((
co j−d j)+(dk− cok

))
+

d j

d j +dk + ε

((
cok−dk

)
+
(
d j− co j

))
]

+2ε
2

Drcom =− 2ε

3(1+ ε)
[3
(
di− coi

)
+2ε

2

+
2ε

3(1+)
[

dk

dk +d j + ε

((
co j−d j)+(dk− cok

))
+

d j

d j +dk + ε

((
cok−dk

)
+
(
d j− co j

))
]

+2ε
2

Drcom =− 2ε

3(1+ ε)
[3
(
di− coi

)
+2ε

2

+
2ε

3
[

d j−dk

dk +d j + ε

((
cok−dk

)
+
(
d j− co j

))
]+2ε

2

(4.14a)

Suppose dk > cok and d j > co j hold. Since di− coi = co j−d j + cok−dk, it follows

that di− coi < co j−d j +dk− cok and di− coi < cok−dk +d j− co j. Since dk

dk+d j+ε
< 1

and dk

dk+d j+ε
< 1 we conclude that Drcom > 0 and so Dr (v,co) j+Dr (v,co)k≤Drco (v,co) j+

Drco (v,co)k, and so Dr (v,co)< Drco (v,co).

Suppose dk < cok and d j > co j hold. From Lemma (4.9) we know that this implies

that player j is the player with largest demands and so d j > dk. Then Drcom > 0 and

so Dr (v,co) < Drco (v,co). Now we have concluded the case analysis in cases that a

singleton coalition or a 2-player coalition are binding.

Suppose now at d more than one coalition is binding.
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Figure 4.6 Graphical representation of core and outcome V I in table (4.5).

Suppose at d two 2-player coalition Ci j /∈ C co and Cik /∈ C co are binding. Then p j,i
d =

p j,k
d = pk,i

d = pk, j
d = 0 and furthermore di < coi, d j > co j and dk > cok. We use Lemma

(4.12) to conclude that Drco (Vt ,co)≤ −2ε

9(1+ε)D(d)+2ε2.

Observe that if at d a 2-player coalition Ci j /∈ C co and a singleton coalition that is not

in C co are binding, that the singleton coalition cannot be the complement of Ci j as neither

of them is in C co.

So suppose that at d a 2-player coalition Ci j /∈ C co and two singleton coalitions Ci

and C j both not in C co are binding. Then observe that pk, j
d = 0, pk,i

d = 0, p j,i
d = 0 and

pi, j
d = 0. The only possible transitions of the chain (Vt) to a new efficient state are to

d(i,k) and d( j,k). Since it holds that di < coi, and d j < co j since both Ci and C j are

binding and not in C co it holds that dk > cok. So we apply Lemma (3.8) to conclude that

Dr (Vt ,d)≤ −2ε

9(1+ε)D(d)+2ε2.
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So suppose now that at d a 2-player coalition Ci j /∈ C co and one singleton coalition

Ci /∈ C co are binding. We will analyze the drift. Observe that p j,k
d > 0, pi, j

d > 0and pi,k
d > 0,

all other transitions to neighbors have zero probability. So the drift simplifies to

Drco (Vt ,co) j =−
2ε

3

(
dk

d j +dk + ε

(
co j−d j +dk− cok

))
+2ε

2.

Drco (Vt ,co)i =−
2ε

3

(
d j

1+ ε

(
coi−di +d j− co j

)
+

dk

1+ ε

(
coi−di +dk− cok

))
+2ε

2.

We know that di < coi since Ci is binding and not in C co and similarly that dk > cok since

Ci j is binding and Ci j /∈ C co. So suppose first that d j < co j. Then we know by Lemma

(4.9) that player k is the player with largest demands at d and so dk

d j+dk+ε

(
co j−d j +dk− cok

)
−

d j

1+ε

(
coi−di +d j− co j

)
> 0 and so

Dr (Vt ,co)com ≤−
2ε

3
dk

1+ ε

(
coi−di +dk− cok

)
+2ε

2.

≤−2ε

3
[
(
coi−di)2

+
(

dk− cok

)2
]+2ε

2.

≤−2ε

9
[D(d)]+2ε

2.

(4.15a)

We conclude that it only remains to show that, if d j > co j and dk > cok and di < coi

at a state d where coalitions Ci and Ci j are binding and neither is in the set C co. We will

compare the drift at this state, with the drift of the game where we have analyzed the

drift before, when only coalition C12 is binding but is not in C co. Observe that if player

i increases, the transition dynamics of the chain (Vt) to neighbors are identical for both

games since in both cases the payable coalition is the empty set. If player k increases

his demand, again the transition dynamics of the chain (Vt) to neighbors are identical

for both games since in both cases the payable coalition is Ci j. So the only difference

arises if player j increases his demand as in the game where two coalitions are binding,

the payable coalition is Ci whereas in the game where only Ci j is binding, the payable

coalition is the empty set. Let the game with two coalitions Ci j be (v,3) and the other
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game with only Ci j be referred to as (v,3)∗ and its drift as Dr∗ (Vt ,co). We want to show

that the drift for (v,3) is less than for (v,3)∗ .

Dr∗ (Vt ,co)−Dr (Vt ,co) =−2ε

3
[

(
di

1+ ε

(
co j−d j +di− coi

)
+

dk

1+ ε

(
co j−d j +dk− cok

))
]

+2ε
2

+
2ε

3

(
dk

d j +dk + ε

(
co j−d j +dk− cok

))
+2ε

2.

(4.16a)

First assume that d j− co j < dk− cok. Then
(
co j−d j +dk− cok

)
> 0 and(

co j−d j +di− coi
)
< 0 and since dk

dk+d j+ε
> dk

1+ε
it follows that the drift for (v,3) is

less than for (v,3)∗ .

Now we assume that d j− co j > dk− cok. Then

(
co j−d j +di− coi

)
<
(

co j−d j +dk− cok

)
< 0.

If we can show that di+dk

1+ε
> dk

dk+d j+ε
then we know that Dr∗ (Vt ,co)−Dr (Vt ,co) > 0

and then we know that the bound on the drift for (v,3)∗ holds as well for (v,3). But

d j +dk + ε = 1−di + ε and so we have, ignoring the ε terms,(
1−di)(di +dk)

d j +dk + ε
=

di (1−di−dk)+dk

d j +dk + ε
>

dk

d j +dk + ε

and so it follows that the drift for (v,3) is less than for (v,3)∗. Since we showed before

that the drift for (v,3)∗ is less than the drift for (vco,3) we have shown that the bound from

Lemma (3.8) holds.

Now we have concluded the analysis of all cases. Over all the cases the worst bound

is Dr (Vt ,d)≤ 2ε

9(1+ε) (−D(d))+2ε2 and this concludes the proof of this lemma.

Lemma 4.18. Let d be any state in the core. Let player l be the player with largest

cooperative outcome at d. Suppose that dl = col . Let player m be the player with the

second largest cooperative outcome in the core, if the second and thirds player have the

same cooperative outcome then let dl be the player with second largest demands. Then

dm ≥ com.
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Proof: If co =
(1

3 ,
1
3 ,

1
3

)
, then d1 = d2 = d3 = 1

3 and Lemma (4.18) holds trivially.

Otherwise, suppose that dm < com. From table ... describing the cooperative outcome

for all case where co 6=
(1

3 ,
1
3 ,

1
3

)
, we see that in cases I, II, III, V , this implies that

d1 + d2 < a. However this contradicts the fact that d ∈ ΩC and so we conclude that in

these cases dm ≥ com has to hold.

In cases IV and V I the players with second and third largest demands have the same

cooperative outcome and so (4.18) holds trivially.

Lemma 4.19. Suppose at d ∈ΩC one coalition C in C co (v,3) is binding. Then

Dr (Vt ,d)<
2ε

3(1+ ε)
(−D(d))+2ε

2. (4.17)

Proof: If C is a singleton coalition, let C = Ci and if C is a 2-player coalition, then let

C = C jk. Then in either case di = coi by assumption and so d j − co j = cok− dk. Let

d j > dk. We know from (4.9) that the player with largest demands has demands at least

equal to his cooperative outcome value. Furthermore we know from Lemma (4.18) that,

if the player with largest demands has demands equal to his cooperative outcome value,

the player with second largest demands has demands at least equal to his cooperative

outcome value. We conclude that d j ≥ co j and as long as d 6= co it holds that d j > co j.

Suppose now that no other coalition but C is binding at d. Then players j,k are

either both member of the coalition in case C = C jk or they are both not member of the

coalition in case C =Ci so in either case C′ (d( j)) =C′ (d(k)). Furthermore
(
d j− co j

)
+(

dk− cok
)
= 0 and

(
di− coi

)
= 0 and so it follows that

−D(co,d)+D(co,d( j, i))−D(co,d)+D(co,d(k, i)) = 0.

Furthermore

pi, j
d (−D(co,d)+D(co,d(i, j)))+ pi,k

d (−D(co,d)+D(co,d(i,k)))=
(

pi, j
d − pi,k

d

)(
d j− co j

)
and

pk, j
d (−D(co,d)+D(co,d(k, j)))+ p j,k

d (−D(co,d)+D(co,d( j,k)))=
(

pk, j
d − p j,k

d

)
2
(
d j− co j

)
since

(
d j− co j

)
=
(
cok−dk).
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We know that d j > dk, d j > co j and d j−co j = cok−dk. From Lemma (4.18) as well

that co j ≥ cok so we conclude that d j−dk ≥
(
d j− co j

)
+
(
cok−dk)= 2

(
d j− co j

)
.

In general,

Dr (Vt ,co) =
3

∑
i=1

3

∑
j=1

pi, j
d

(
−
(
coi−di)2−

(
co j−d j)2

+
(
coi−

(
di + ε

))2
+
(
co j−

(
d j− ε

))2
)

in this particular case

Dr (Vt ,co)≤−2ε[
(

pi, j
d − pi,k

d

)(
d j− co j

)
+
(

pk, j
d − p j,k

d

)
2
(
d j− co j

)
]+2ε

2

If C =Ci then pi, j
d − pi,k

d = d j−dk

1+ and pk, j
d − p j,k

d = d j−dk

d j−dk+ε
, if C =C jk then pi, j

d − pi,k
d = 0

and pk, j
d − p j,k

d = d j−dk

1+ε
so in either case

Dr (Vt ,co)≤−2ε
d j−dk

1+ ε
2
(
d j− co j

)
+2ε

2

and so, finally,

Dr (Vt ,co)≤−2ε[
(
d j− co j

)2
+
(

dk− cok

)2
+2ε

2

≤−2ε

3
D(d)+2ε

2.

(4.18a)

So we have concluded that, if only one coalition C in C co (v,3) is binding, the lemma

holds. Now we will analyze what other coalitions C∗ /∈ C co (v,3) can be binding, and what

that implies for the drift. Since d j > co j the singleton coalition C j cannot be binding and

so C∗ 6= C j. Since di = coi and d j > co j, Ci j cannot be binding and so C∗ 6= Ci j. In

case that C =Ci coalition C jk cannot be binding, because, by assumption, it is not in the

set C co (v,3) and so C∗ 6= C jk. Similarly, in case that C = C jk C∗ 6= Ci. So the only two

coalitions that could be binding at d and are not in C co (v,3) are Cik and Ck.

Now we will analyze, how it impacts the drift if C∗ = Cik is binding as well. The

dynamics only differ at d( j). If player j increases his demand, he will decrease de-

mands again. Since d>co j this will not increase the drift. So we conclude that the bound

Dr (Vt ,co)≤−2ε

3 D(d)+2ε2 holds as well in this case.

Now we analyze, how is the drift impacted, if C∗ =Ck, that is, if Ck is binding as well.

First we analyze how Dr (Vt ,co)i changes. Now it holds that pi,k
d = 0 and pi, j

d = d j

di+d j+ε
≥
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d j

1+ε
. So compared to the case where only a coalition in C co (v,3) is binding, pi,k decreases

and pi, j increases and so Dr (Vt ,co)i cannot increase.

Now we look at Dr (Vt ,co)k. Observe that if C = Ci then by Lemma (4.6.3), Cik is

binding as well and the analysis is the same as when C∗ =Cik and so Dr (Vt ,co)k does not

increase. Now assume that C = C jk. If k increases now, player j will not decrease and

player k decreases with higher probability given by dk+ε

dk+di+ε
compared to the case when

only a coalition in C co (v,3) is binding, in which case he decreases with dk+ε

1+ε
. So again,

Dr (Vt ,co)k does not increase and so we conclude that the bounds on the drift, calculated

for the case when only a coalition in C co (v,3) is binding, holds as well when C∗ =Ck or

C∗ = Cik are binding as well at d. Since no other coalition can be C∗, we conclude that

Dr (Vt ,co)≤−2ε

3 D(d)+2ε2 whenever a coalition in C co (v,3) is binding.

Lemma 4.20. For any state d ∈ΩC

Dr (Vt ,d)<
−2ε

9(1+ ε)
D(d)+2ε

2. (4.19)

Proof: The sets of states, where no coalition is binding, no coalition in C co (v,3) and the

set where a coalition in C co (v,3) is binding, form a partition of the core. So combining

the results for Lemma (4.19), Lemma (4.17) and Lemma (4.16) proves this lemma.

We use Lemma (4.20) to show that co is a Markovian cooperative equilibrium for all

superadditive 3-player games satisfying (4.4).

Theorem 4.21. Suppose (v,3) is a superadditive 3-player game satisfying (4.4), and ε

is equal to 1
M for some v-compatible M ∈ N. Let (Vt) be the (v,3,ε) cooperative game

process. Then, for α > 0,

Pπv,ε (D(d)> α)≤ ε

9α
.
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Chapter 5

Power in 4-Player Games

In Section 5.1 we define asymmetric coalition structures. In Theorem (5.1) we show that

once in the core a cooperative game process can only leave the core via a state where two

coalitions in an asymmetric coalition structure are binding. In Lemma (5.2) we show that

a set of coalitions in a four player game is an asymmetric coalition structure if and only

if the set consists of two distinct two-player coalitions. This is an important result: if no

asymmetric coalition set is present the inherent equity bias is the decisive dynamic and

the cooperative game process drifts towards equity. We give an extensive analysis of the

behavior along the asymmetric edge generated by two distinct two player coalitions in

Section 5.2. Hence all “interesting” cases for 4-player games are analyzed in this chapter.

Finally we make the conjecture (5.4) that for a general N-player balanced superadditive

game every state outside the core is transient if the game does not have a state in the core

where two distinct coalitions in one asymmetric coalition set are binding.

In Section 5.2 we first introduce three particular example games which all have an

asymmetric coalition structure. We analyze in detail the geometric structure of ΩC for

these example games, focusing in general on the sets of states, where one or more coali-

tions are binding, and in particular on the unique set of states where coalitions in the

asymmetric coalition structure are binding, this set is the asymmetric edge. We prove that

at any state not in the asymmetric edge there exists a drift towards the asymmetric edge

for each of the three example games.

We then introduce the concepts of core power and asymmetric power for cooperative

game processes. Core power is an adaption of the power concepts introduced by Harsany
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and Selten. The core power of a player corresponds to the demand of a player at the

state in the core with the smallest distance to equal split. The player in the intersection of

the asymmetric coalition structure has asymmetric power because he is member of more

binding coalitions than the other players in the asymmetric coalition structure. When the

cooperative game process moves along the face of the core polytope generated by the

asymmetric coalition structure (two distinct two-player coalitions for four player games)

the player in the intersection can only reduce demands if the cooperative game process is

in the interior of the polytope. On states where at least one of the coalitions generating

the face of the asymmetric coalition structure is binding he does not reduce demands.

On the excursions of the cooperative game process away from the asymmetric edge and

back there is an interplay between the inherent equity bias of the process that “drags”

the cooperative game process towards equity or “down” the asymmetric edge and the

dynamic of the asymmetric power which “drags” the process away from equity or “up”

the asymmetric edge. We describe the particular power situations for each of three specific

example games. The point is, that the geometric structure of example games 1−3 is very

similar, their cores are in fact combinatorially isomorphic. We want to highlight that

it is not trivial that the power situations in the three example games are very different.

These examples games are not just any three specific games. For 4-player games if no

asymmetric coalition set is present then along all faces of the polytope in the core the

equity bias is the only dynamic. Although a complete analysis of 4-player games is not

given in this thesis, all possible cases of interest are covered with the above example

games. No other coalition structure can be present in a superadditive 4-player game (and

probably in any superadditive N-player game). Thus these examples anlayzed are generic,

highlighting the one main principle of interest for the cooperative trial-and-error game

process.

In Section 5.3 we analyze the interplay between the asymmetric power dynamic and

the inherent equity bias along the asymmetric edge: we give a heuristic analysis backed

up by simulations to show, how the different power situations arise. We show that each

example game from Section 5.2 has a Markovian cooperative equilibrium on the asym-

metric edge but they appear on different parts of the edge, namely the upper concession

limit, where the player in the intersection has highest demands in the asymmetric edge,

the lower concession limit where he has lowest demands in the asymmetric edge and a
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state in the interior of the asymmetric edge. We develop a concept to simplify and investi-

gate the behavior of the chain (Vt) in the neighborhood of an asymmetric edge. We apply

the concept and use it to calculate approximate solutions for the Markovian cooperative

equilibrium for example games 1−3.

We first introduce an “idealized version” of the chain (Vt). We fix a state d∗ on the

asymmetric edge, and then we use the idealized chain started from d∗ to approximate the

behavior of (Vt) during an excursion from and back to the asymmetric edge. The idealized

version of (Vt) transitions according to a law that is calculated with transition probabilities

that assumes constant demands over an excursion. The transition probabilities thus differ

only on different sets of states in the neighborhood of the face: states where both coalitions

generating the asymmetric edge are binding (one dimensional edge), states where one of

the coalitions is binding (two-dimensional plane), the interior of the polytope where no

coalition is binding and states outside the core where the two player coalition with smaller

worth has a negative coalition’s surplus.

We make the connection between the three-dimensional chain (Vt), that moves on

the set of recurrent states, a set, that strictly contains the core, and the two-dimensional

chain where each coordinate represents the coalition’s surplus for the respective coalition(
CSC12(Vt)

ε
, CSC12(Vt)

ε

)
, that moves on a subset of the 2-dimensional Euclidean grid. We

define sets of states Sm,n, where m corresponds to the x-coordinate and n represents the

y-coordinate of a state in the 2-dimensional Euclidean grid. On the sets Sm,n, the transition

dynamics of the idealized 3-dimensional chain are identical for all states in Sm,n. As long

as the chain (Vt) does not hit any hyperplane corresponding to a three-player coalition,

the distribution on these sets of the 2-dimensional idealized chain exactly represents the

distribution on these sets of the 3-dimensional idealized chain.

Along the asymmetric edge (from the lower concession limit up to the upper conces-

sion limit) each state has a unique demand for any player. A state on the asymmetric edge

is uniquely determined by any one of its coordinates, so analyzing the drift in d1 gives us

information on the drift of the chain (Vt). We define the drift in d1 for the different chains.

Important is, that the drift in d1 over a step of the idealized chains is identical on the sets

Sm,n. We then define the equilibrium distribution of the idealized 2-dimensional chain for

a given starting state on the asymmetric edge. We use this equilibrium distribution on the

sets Sm,n and the drifts in d1 on these sets to define the drift in d1 over an excursion from
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the asymmetric edge and back to the asymmetric edge. Then we restrict the state space

and define a restricted idealized chain on this state space. Finally we explicitly calculate

the equilibrium distribution, drift in d1 on the different sets of states, and the drift in d1

over an excursion of the 2-dimensional idealized chain. We use these results to explain,

why the Markovian cooperative equilibrium is located differently for the example games

1−3.

We have shown two interesting results related to asymmetric coalition structures:

• the cooperative game process can leave the core via states where the coalitions in

the structure are binding

• asymmetric power arises to the player(s) in the intersection of the asymmetric coali-

tion structure.

In Section 5.4 we prove that the former is not necessary for the latter to exist: asymmetric

power does not rely on the cooperative game process to leave the core. We want to high-

light that this indicates that the concept of asymmetric power is applicable to much more

general settings than the coooperative game process defined in this thesis. In particular in

Section 5.4 we discuss a Markov chain (Wt) that is closely related to the chain (Vt), it is

in fact a version of the chain (Vt) restricted to the core. For the chain (Wt) we are able to

prove a positive drift on the asymmetric edge for a specific 4-player example game. We

expect that the chain (Wt) is very important for understanding the behavior of the chains

(Vt) and (Ot), restricting the chain to remain in the core does not change the nature of the

chain however it simplifies the analysis of the behavior of the chain between excursions

from the asymmetric edge.

In Section 5.5 we conclude the analysis and give simulation results for example games

1−3. The simulation results confirm the results of this section. Furthermore the simula-

tion results show, that the chain (Vt) does not move ’far away’ from the asymmetric edge

in terms of multiples of ε. We look at the average path of the chain (Vt) to the Marko-

vian cooperative equilibrium from different starting states and give maximum distances

in each coordinate after fixed time intervals.
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5.1 Asymmetric Coalition Sets

In the introduction Chapter 2 we gave examples of symmetric coalition structures and one

example of an asymmetric coalition structure. The asymmetric coalition structure has two

dynamics associated with it that make it very interesting for the study of the cooperative

game process in particular and cooperative trial and error processes in general: In the

neighborhood around the face generated by the asymmetric coalition structure (asymmet-

ric face) a power dynamic is present that can be stronger than the inherent equity bias of

the cooperative game process. Furthermore the cooperative game process can leave the

core via states on the face of the polytope forming the core generated by the coalitions

in the asymmetric coalition set. We will first define an asymmetric coalition set and then

show the latter in Theorem (5.1). The analysis of asymmetric power is conducted in this

chapter in Section 5.2.

In this chapter we analyze games (v,4). The following definition however we give for

N-player games as Theorem (5.1) is an important result for the cooperative game process

for general N-player games (v,N) using this definition.

For a game (v,N), for k < 2N let an asymmetric coalition set {Ci, ...,Ck} = AC ⊂

P
(
CG) be a set of coalitions satisfying the following three constraints:

1. No coalition in AC is a subset of another coalition in AC .

2. The union of the complement of AC is non-empty that is
(
∪k

i=1Ci)c 6= /0.

3. The intersection of AC is non-empty that is ∩k
i=1Ci 6= /0.

The player(s) in the intersection of the asymmetric coalition set is the strong player(s).

The remaining players in the asymmetric coalition structure are the weak players and the

player in the complement is the complement player(s). From the definition it follows

directly that there must be at least two weak players.

Chapter 3 Section 3.5 shows that the cooperative game process moves often along

faces of the core polytope. In this chapter we will show that the cooperative game pro-

cess exhibits interesting behavior when “drifting” along faces generated by an asymmetric

coalition set. The face generated by an asymmetric coalition set is called an asymmetric
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face. Observe that two distinct 2-player coalitions in the 4-player setting form an asym-

metric coalition set. The asymmetric face generated by two distinct two player coalitions

in a game (v,4) is called an asymmetric edge.

Section 5.2 shows that the strong player can have extra power compared to the weak

players. The strong player(s) are member of all coalitions in the structure. Under the

dynamics of the cooperative game process in the neighborhood of a asymmetric face the

strong player only reduces his demand in states where no coalition is binding, whereas

the weak players can reduce demands in other states.

The next Theorem (5.1) shows that a cooperative game process for a superadditive

N-player game can only transition out of the core via a state on an asymmetric face. On

states outside the core at least one of the coalitions of the asymmetric coalition set is

strictly feasible. As long as a coalition in the asymmetric coalition structure is feasible

the strong player will not reduce demands. This gives power to the strong player: he can

increase demands if chosen to update however he cannot reduce demands. This benefits

the strong player’s power as Section 5.2 shows. However the cooperative game process

leaving the core is not a necessary condition for power to the strong player to exist as

Section 5.4 shows.

Theorem 5.1. Suppose for a game (v,N) and a state d in the core there exist i, j ∈

{1, ...,N} such that the neighbor d(i, j) is not in the core. Then if pi, j
d > 0 there must

be two coalitions in one asymmetric coalition set that are binding at d and at d(i).

Proof: In order for d to be in the core and its neighbor d(i, j) to be outside the core,

at d(i) there must be at least two binding coalitions; one of them must be C′ (d (i)), let

C = C′ (d (i)) and the other coalition be called C∗. We show that for pi, j
d > 0 all three

conditions below must hold.

1. Neither of the two coalitions can be a subset of the other.

2. The union of C and C∗ cannot be the grand coalition.

3. The intersection of the two coalitions C and C∗ cannot be empty.
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We show by contradiction that all three conditions must hold.

1. Otherwise their union is C′ (d (i)) and as no player in C′ (d (i)) reduces demands

from d(i) it follows that pi, j
d = 0.

2. As d is in the core, for both coalitions to be binding at d(i) there must exist a player

i that is not a member of either of them and so is not in their union. If their union is

the grand coalition CG then there cannot exist such a player i.

3. If the intersection of the two coalitions is empty and both coalitions are binding,

then their union must be binding by superadditivity and their union is C′ (d (i)), the

preferred payable coalition at d(i), and so player j is member of C′ (d (i)) and can-

not reduce demands at d(i).

Observe that the above conditions imply that C and C∗ must be in the same asymmetric

coalition set.

We have shown that for pi, j
d > 0 all of the above conditions must apply to a pair of

coalitions C and C∗ and states d in the core and its neighbor d(i, j) outside the core.

Observe that if at d(i) (and hence at d as well) two coalitions C′ (d (i)) and C∗ are

binding. Then there must exist a j ∈ C∗ not in C′ (d (i)) since by assumption C∗ is not

a subset of C′ (d (i)). We conclude that if d is in the core and its neighbor d(i, j) is not

in the core, and if pi, j
d > 0 then at d and at d(i) two coalitions in the same asymmetric

coalition set must be binding.

Lemma (5.2) shows that the only asymmetric coalition set for a game (v,4) can be

a set including two distinct 2-player coalitions with non-empty intersection. This is an

important result, it partitions the set of 4-player games (v,4) into two sets: Games where

no asymmetric coalition set is present for which the inherent equity bias lets the process

“drift” towards equity. The second set of 4-player games contains all games of special

interest, and (5.2) shows that all games in this set include an asymmetric edge generated

by two distinct two player coalitions with non-empty intersection.
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Lemma 5.2. Let S ⊂ P
(
CG) for a game (v,4). Then S is an asymmetric coalition struc-

ture if and only if S = {Ci j,Cik} for two distinct 2-player coalitions Ci j and Cik with

{i, j,k} in {1,2,3,4}.

Proof: We first show the ‘only if’ part. We analyze possible pairs of coalitions for (v,4)

that could form an asymmetric coalition set. A singleton coalition cannot have a non-

empty intersection with another coalition without being a subset at the same time. So a

singleton coalition cannot be part of an asymmetric coalition set. The union of a 3-player

coalition with any other coalition that is not its subset is the grand coalition C1234. So a

3-player coalition cannot be part of an asymmetric coalition set.

So it follows that all coalitions must be 2-player coalitions. There can be at most two

2-player coalitions in the asymmetric structure that must have non-empty intersection,

otherwise their union is the grand coalition.

Now we show the ‘if’ part. If there are distinct 2-player coalitions Ci j and Cik that

have a non-empty intersection then there exists a player l that is not in their union and so

all conditions for an asymmetric coalition set are satisfied.

Lemma (5.3) follows directly from Theorem (5.1) and Lemma (5.2) and shows that

for all 4-player games that do not have a face of the core polytope generated by two

distinct 2-player coalitions the cooperative game process cannot leave the core polytope

once in the core.

Lemma 5.3. Let (v,4) be a superadditive cooperative game and
(
4,v, 1

M

)
be a cooperative

game process with non-empty core. Then if no state d in the core exists, where two distinct

2-player coalitions are binding, and the chain is in in the core, the chain cannot leave the

core.

Proof: We show that once in the core, the chain (Vt) cannot leave the core again. From

Lemma (5.1) we know that if for a state d ∈ ΩC it holds that a neighbor d(i, j) is not

in the core and pi, j
d > 0 then the state d must have two binding coalitions that are in one

asymmetric coalition set. By Lemma (5.2) for a game (v,4) an asymmetric coalition set

consists of two distinct 2-player coalitions. By assumption there is no state in the core

where two distinct 2-player coalitions are binding and so the chain (Vt) cannot leave the

core.
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We now make a conjecture about (V,N) superadditive games.

Conjecture 5.4. Suppose a superadditive balanced game (v,N) does not have a state d in

the core, where two distinct coalitions in one asymmetric coalition set are binding. Then

every state outside the core is transient.

We give here the outline of a proof.

Proof: We first show that once in the core, the chain (Vt) cannot leave the core again.

From Lemma (5.1) we know that if for a state d ∈ ΩC it holds that a neighbor d(i, j) is

not in the core and pi, j
d > 0 then the state d must have two binding coalitions that are in

one asymmetric coalition set and the first part of the result follows.

Now we show that from each state outside the core, the chain (Vt) can transition to

the core with positive probability. If no coalition is strictly feasible at d, the state d is in

the core. Otherwise let C be the preferred strictly feasible coalition at d. Then we claim

that there exists a player i ∈C and a player j /∈C such that at d(i) no coalition with j as

member is binding and so pi, j
d > 0.

If at d no coalition is binding, any player in C can be taken as i and any player not

in C can be taken as j and so there exists a pair i, j such that at d(i) no coalition with j

as member is binding and so pi, j
d > 0. Suppose at d a coalition C∗ is binding. If C∗ is a

subset of C then the case is identical to when no coalition is binding at d. Otherwise we

first show that the intersection of C and C∗ is non-empty. We prove this by contradiction.

Suppose the intersection was empty, then the union of C and C∗ would be strictly feasible

by superadditivity. But then as any coalition is preferred to its subsets the union would be

the preferred strictly feasible coalition contradicting the assumption that C is the preferred

strictly feasible coalition. So the intersection cannot be empty. Then we choose i from

the intersection and j from C∗ \C.

So we need to show that there exists not another coalition C∗∗ that is binding at d and

includes j. Again C∗∗ could not be in the complement of C by superadditivity so it would

need to have a non-empty intersection with C.

We need to show that the following conditions cannot be met for all players i in the

complement of C at the same time. We expect them to contradict the assumption of

balancedness of the game (v,N).

C is strictly feasible at d.
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Each player j in the complement of C must be member of two coalitions that have

separate non-empty intersections with C and are binding at d.

If we can show that the above statement leads to a contradiction, (presumably con-

tradicting the assumption of balancedness of the game (v,N)) then the conjecture holds

as there exists a player i ∈ C and a player j /∈ C such that at d(i) no coalition with j as

member is binding and so pi, j
d > 0.
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5.2 Power in 4-Player Cooperative Games

The concept of power for the cooperative game process

Harsanyi (1962a,1962b) analyses the measurement of social power in the 2-player bar-

gaining game and for n-Person reciprocal Power Situations. Harsanyi defines different

concepts and quantitative measurements for Social Power. The amount of a person’s

power “is a measure of the probability of his being able to achieve adoption of joint

policies agreeing with his own preferences”. “In this situation it is natural to define the

amount of individual i’s power over the joint policy of all n individuals as the probability

of his being able to get his favorite joint policy adopted by all individuals.” The amount

of power of a player with respect to a preferred strategy is thus defined as the probability

with which the player can “enforce” that strategy. Under the dynamics of the cooperative

game process players cannot “enforce” strategies.

A more satisfactory power is Harsanyi’s vector measure for i’s power which is the

vector of probabilities p=(p1, p2, ...pn) for the adoption of each of the alternative policies

X1, ...,Xn. For the cooperative game process an equivalent definition of the amount of

power is the equilibrium distribution over states where a preferred outcome of a player

is achieved. Harsanyi’s definition of a vector measure of the amount of power ranks a

players’ strategies according to preference. The amount of power for each strategy is

then given by the vector of probabilities with which the player can enforce the respective

strategies.

In similar fashion, states with non zero equilibrium measure for the cooperative game

process are ranked by the demand to a player, and then the vector of the amount of power

is the respective equilibrium distribution of each state sorted by preference (magnitude

of demand). For states that the player is indifferent (same demand to that player) the

equilibrium distributions are summed. The strength of a player can then be defined as

the weighted sum of the demands of a player at each state, where the weighting is the

equilibrium distribution for that state. This corresponds to the expected demand of a

player in equilibrium.

However the state space for the cooperative game process is in general large, ε is

assumed to be small and the smaller ε is taken, the larger the state space is. It is tedious to
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work with a measure of power taking the whole state space into account. When ε tends to

zero the Markovian cooperative equilibrium is the state which has limit mass one under

the equilibrium distribution. So when ε tends to zero the vector of the amount of power

has entries with limits zero for all states but the Markovian cooperative equilibrium and

one for the Markovian cooperative equilibrium.

We define power to a player under the dynamics of the cooperative game process as

the limit power when ε tends to zero, giving measure one to the Markovian cooperative

outcome and zero to all other states. The limit strength of power or simply power to a

player under the dynamics of the cooperative game process is the sum of the following

two components:

• The core power of a player in a cooperative game process is the difference between

a player’s demand at the cooperative outcome and at equal split. This power is

adapted from Harsanyi’s or Selten’s concept of power as the ‘capability to secure

more than the equitable share’. The ‘force’ generating the core power to a player is

the constraints of the core.

• The asymmetric power of a player in a cooperative game process is the difference

between a player’s demand at the Markovian cooperative equilibrium and at the

cooperative outcome. The asymmetric power is the ‘capability to secure more than

at the most equitable core allocation’. The ‘force’ generating the asymmetric power

are the dynamics inherent in the asymmetric coalition structure. We believe this

concept of power to be very interesting and novel to the study of (cooperative)

game theory and stochastic learning processes.

Introducing three generic example games with asymmetric edge

The three example games from Section 2.5 are re-introduced next and their geometric

structure is described. These are generic examples: Section 5.1 Lemma (5.2) shows that

these example games constitute the only real “interesting” cases of 4-players games, in

fact they represent the only 4-player games that having an asymmetric coalition set with

an associated asymmetric edge in the core. Section 5.3 gives a heuristic analysis backed

up by simulations to show, that each game has a Markovian cooperative equilibrium on

the asymmetric edge but they appear on different parts of the edge. In this section, first
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for each example game for each player the core power and the asymmetric power of the

players are examined.

Remember that co3 is the vector in the 3-core Ω3 with the smallest L2-distance from

µ.

Remember that an asymmetric edge AE of an asymmetric coalition structure AC for

a game (v,4) is a set of states d ∈ ΩC where all coalitions C ∈ AC are binding. For

the example games the asymmetric edge is the face of the core polytope generated by

two distinct two-player coalitions. All three example games are homeomorphic. The

difference between the example games is the length and location of the asymmetric edge.

The asymmetric edge of game 2 is a subset of the asymmetric edge of game 1, located at

the upper end, the asymmetric edge of game 3 is as well a subset of the asymmetric edge

of example game 1, located at the lower end of the asymmetric edge of game 1. Hence

the demand of player one is significantly larger at each state on the asymmetric edge of

game 2 than at any state on the asymmetric edge of game 3.

In each case {C12,C13} is an asymmetric coalition structure. Concession limits are

the extreme outcomes, between which the outcome must fall in bargaining between ra-

tional players Harsanyi (1962a, 1962b). Hence the two extreme states on the asymmetric

edge where player one has largest demand and where player one has smallest demand

are named the upper concession limit and the lower concession limit respectively. The

Markovian cooperative equilibrium must lie between (inclusive) the upper and lower con-

cession limits. In all three example games the cooperative outcome, the state in the core

with smallest Euclidean norm, corresponds to the lower concession limit.

Given an asymmetric edge AE = {H
(
Ci j
)
∩H (Cik)} let max1 ∈ AE be the upper

concession limit the unique state with maximum demands for player i in AE and min1 ∈

AE be the lower concession limit, the unique state with minimum demands for player i

in AE .

We look at the geometric structure of example games 1, 2 and 3. We describe the sets

ΩE , Ω3, ΩC and the asymmetric edges. Figure 5.1 shows ΩC for example game 1. In the

figure, the asymmetric edge AE1 is depicted as a red line.

In figure 5.2 we depict a sketch of AE1 = [(0.53,0.22,0.21,0.04) ,(0.61,0.14,0.13,0.12)].

The asymmetric edge of game 2,
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Figure 5.1 Graphical representation of ΩC for game 1.

AE2 = [(0.6,0.15,0.14,0.11) ,(0.61,0.14,0.13,0.12)], is a subset of AE1 and de-

picted in green. The asymmetric edge of game 3,

AE3 = [(0.53,0.22,0.21,0.04) ,(0.54,0.21,0.20,0.05)], is as well a subset of AE1

and depicted in light blue.

The below description of the three example games uses the terms “negative drift”

and “positive drift” down and up respectively the asymmetric edge. The introduction in

Section 2.5 described two dynamics present along the asymmetric edge: The inherent

equity bias of the cooperative game process, causing a drift “down” the asymmetric edge

as player one has largest demands and in states where no coalition is binding he will

reduce his demand more frequently than the other players. The second dynamic along
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Figure 5.2 Descriptive sketch of AE1.

the asymmetric edge is the asymmetric power to player one: whenever any coalition

generating the asymmetric edge is binding he will not reduce his demand. Thus on a

trajectory of the cooperative game process from the asymmetric edge away and back to

the asymmetric edge these two dynamics compete.

Between successive returns to AE , the chain (Vt) visits different kinds of states. For

the first step, (Vt) is on the asymmetric edge, and in subsequent steps it leaves the asym-

metric edge and may leave the core. At states on AE, and states not in the core, (Vt) has

a positive drift in d1 over one step of (Vt). Lemma (5.8) shows that at all other states of

the state space of games 1−3 the drift in d1 is negative.

To understand, what the overall drift is, over an excursion of (Vt) from the asymmetric

edge to another state on the asymmetric edge, we need to approximate the probability, “in

equilibrium”, that the chain lies on AE or outside ΩC. On the ‘upper part’ of AE1,

during an excursion of the chain (Vt) the value of d1 and d4 are larger, and the value of d2

and d3 are smaller, than on the ‘lower part’ of AE1. The difference in demands implies

different transition probabilities between states. As a result,“in equilibrium”, the chain

(Vt) spends more time on the asymmetric edge or outside the core in the ‘lower part’ of

136



the asymmetric edge than in the ‘upper part’ and so the expected change in d1 over an

excursion from the asymmetric edge is negative for game 2 and positive for game 3.

A detailed analysis of these dynamics and mathematical solutions are presented in

Section 5.3. For now the term “negative drift” (in the demand of player one) on the asym-

metric edge means that the dynamic caused by the equity bias is stronger and “positive

drift” means that the asymmetric power dynamic is stronger.

example game

v(C1234) v(C123) v(C124) v(C134) v(C12) v(C13)

1 1 0.88 0.79 0.78 0.75 0.74

2 1 0.88 0.86 0.85 0.75 0.74

3 1 0.95 0.79 0.78 0.75 0.74

Table 5.1 v(C) for all coalitions C with v(C) 6= 0 for example games 1, 2 and 3

1. For example game 1 the upper concession limit is (0.61,0.14,0.13,0.12), the lower

concession limit is (0.53,0.22,0.21,0.04).

In the neighborhood around the lower concession limit, there is a strong positive

drift in the demand of player one based on the probability distribution “in equilib-

rium” over the 2-dimensional localized chain. The random walk cooperative game

process drifts up the asymmetric edge.

In the neighborhood around the upper concession limit, there is a strong negative

drift in the demand of player one based on the probability distribution “in equilib-

rium” over the 2-dimensional localized chain. The random walk cooperative game

process drifts “down” the asymmetric edge. For game one the Markovian cooper-

ative equilibrium is the state on the asymmetric edge where the drift in d1 is zero.

The drift in d1 for the restricted localized chain is zero at

(0.583586,0.166414,0.156414,0.093586) and so the Markovian cooperative equi-

librium is in the “interior” of the asymmetric edge.

The vector of the core power of the players is given by the difference between the

cooperative outcome and equal split and equals (0.28,−0.03,−0.04,−0.21). The

vector of the asymmetric power is given by the difference between the Markovian

cooperative outcome and the cooperative outcome and is given approximately by
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(0.054,−0.054,−0.054,0.054). The total power to each player is then given by the

sum of the core power and the asymmetric power and equals

(0.334,−0.084,−0.094,−0.156). Observe that the complement player four has the

same asymmetric power as player one. He basically gets a “free power ride” from

player one. A natural bound to the strong player’s asymmetric power is the amount

of free ride that the complement player can get: the complement player can never

have more total power than the weak players.

2. For example game 2 the upper concession limit is (0.61,0.14,0.13,0.12), the lower

concession limit is (0.6,0.15,0.14,0.11). There is a strong negative drift at each

state of the asymmetric edge (apart from states in close proximity to the lower

concession limit) and so the Markovian cooperative equilibrium is the lower con-

cession limit (the cooperative outcome). The core power of each player is given

by (0.35,−0.1,−0.11,−0.14). Since the Markovian cooperative equilibrium is the

cooperative outcome the asymmetric power is zero for all players.

3. For example game 3 the upper concession limit is given by (0.54,0.21,0.2,0.05),

the lower concession limit is given by (0.53,0.22,0.21,0.04) There is a strong pos-

itive drift at each state of the asymmetric edge (apart from states in close proximity

of the upper concession limit) and so the Markovian cooperative equilibrium is the

upper concession limit.

The core power of each player is given by (0.29,−0.04,−0.05,−0.2). The asym-

metric power is given by (0.01,−0.01,−0.01,0.01) and so the total power to each

player is given by (0.3,−0.05,−0.06,−0.19).

To understand the behavior of the cooperative game process in the neighborhood

of the upper concession limit we simulated the chain for example game 3 and cal-

culated the drift for states in the close neighborhood of the upper concession limit.

In figure (2.2) the drifts are sketched for different states where ε = 0.000001. We

see that the drift becomes smaller but stays positive even very close to the upper

concession limit.

In the neighborhood of the ‘upper part’ of AE1, the transitions of the chain (Vt) for

example game 1 and 3 are identical until the chain in example game 3 hits the hyperplane

H (C123); the transitions for example game 1 and 2 are identical in the neighborhood
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of the ‘lower part’ of the AE1 until the chain (Vt) in example game 2 hits one of the

hyperplanes H (C124) or H (C134). So we focus our analysis on the asymmetric edge of

example game 1.

We expect, that the Markovian cooperative equilibrium is the state on the asymmetric

edge, where the drift in d1 is zero. The results indicate that, for z0 ≈ 0.058, the expected

change in d1 between successive returns to the asymmetric edge is negative for states in

AE1 with d1 > 0.53+ z0 and positive for states with d1 < 0.53+ z0. So the long term

behavior of the chain (Vt) is to drifts along the asymmetric edge towards min1 = co for

example game 2 and so mce = co. For example game 3, the long term behavior of the

chain (Vt) is to drift along the asymmetric edge towards max1 6= co and so mce=max1 6=

co. For example game 1, we expect, that the Markovian cooperative equilibrium is the

state at which the expected change in d1 between successive returns to the asymmetric

edge is 0, and so mce≈ (0.53+ z0,0.22− z0,0.21− z0,0.04+ z0).

Figure 5.3 Graphical representation of ΩE for game 1.

We look in detail at the geometric structure of example games 1, 2 and 3.

The set ΩE of efficient states forms a 3-dimensional convex polytope in R4. A sketch

of ΩE is given in figure (5.3).

139



Figure 5.4 Graphical representation of Ω3 for game 1.

The 3-core Ω3 of example game 1 is given by

{0.39+ x+ y+ z,0.22− x,0.21− y,0.2− z}

for x,y,z ∈ R+ and x≤ 0.22,y≤ 0.21,z≤ 0.2. The set Ω3 forms a 3-dimensional convex

polytope and is a subspace of ΩE . A sketch of Ω3 is given in figure 5.4.

The vertices of Ω3 are:

A = (1,0,0,0), B = (0.89,0,0,0.11), C = (0.68,0,0.21,0.11), D = (0.79,0,0.21,0),

E = (0.78,0.22,0,0), F = (0.67,0.22,0,0.11), G = (0.46,0.22,0.21,0.11) and

H = (0.57,0.22,0.21,0).
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In Figure 5.1 the sets H (C) are depicted in light green. Remember from Theorem

(3.11), that, for major coalition games, the probability, that the chain (Vt) is ’far away’

from the hyperplane, where a coalition is binding, is very low. Observe that in the neigh-

borhood, where only one coalition is binding, the chain (Vt) behaves like in a major

coalition game and so will not move ‘far away’ from states where a coalition is binding.

• H (C123) with vertices B,F1,G1 and C1.

• H (C124) with vertices D,C2,G2 and H.

• H (C134) with vertices E,F2,G2 and H.

• H (C12) with vertices F2,F1,G1 and G2.

• H (C13) with vertices C2,C1,G1 and G2.

In Figure 5.5 the asymmetric edge is depicted as solid red line. All other edges are

depicted as solid green lines.

Figure 5.5 Graphical representation of ΩC for game 2.

For C1 and C2 ∈ P
(
CG) let E

(
C1,C2)= {H (

C1)∩H
(
C2)}.

Example games 1,2 and 3 have 6 edges.

• E (C123,C12) with vertices F1 and G1.
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• E (C123,C13) with vertices C1 and G1.

• E (C124,C134) with vertices G2 and H.

• E (C124,C12) with vertices F2 and G2.

• E (C134,C13) with vertices C2 and G2.

• E (C12,C13) with vertices G1 and G2.

The core of example game 1 is given by

{0.53+ x,0.22− y,0.21− z,0.04+ y+ z− x}

for x,y,z ∈ R+, x ≥ y,z and x ≤ 0.08. The core forms a 3-dimensional convex polytope

and is a subset of ΩE . A sketch of the core is given in figure (5.1).

The vertices of ΩC for game 3 are:

A=(1,0,0,0), B=(0.89,0,0,0.11), C1 =(0.75,0,0.14,0.11), C2 =(0.75,0,0.21,0.04),

D=(0.79,0,0.21,0), E =(0.78,0.22,0,0), F1 =(0.74,0.15,0,0.11), F2 =(0.74,0.22,0,0.04),

G1 = (0.6,0.15,0.14,0.11), G2 = (0.53,0.22,0.21,0.04) and H = (0.57,0.22,0.21,0).

Drift towards the asymmetric edge for states in the extended core of

example games 1−3

This subsection first defines the extended core for games (v,4) with an asymmetric edge.

The extended core needs to be defined as from states on the asymmetric edge the coop-

erative game process can leave the core, as shown in Theorem (5.1). Then Lemma (5.6)

shows that all states outside the extended core are transient for example games 1−3. Fi-

nally Lemma (5.8) shows, that the chain (Vt) drifts towards co from any point in the core

not on the asymmetric edge. Combined these results show that the interesting behavior

of the cooperative game process for example games 1−3 is happening around the asym-

metric edge: at all other states in the set of recurrent states there is a drift towards co and

since co is the lower concession limit situated on the asymmetric edge the process drifts

towards the asymmetric edge. Then after these results Section 5.3 finally analyzes the

behavior of the cooperative game process along the asymmetric edge.
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Suppose a game (v,4) has an asymmetric coalition set AC = {C,C∗} where C is

preferred to C∗ in the ordering introduced in Section 3.1 (that is C will be the payable

coalition if both are feasible). Then let Ωπ = ΩC ∪{d′ ∈ ΩE | ∑i∈C∗ d
′i < v(C∗)} be the

extended core.

Recall that a coalition C is strictly feasible at d ∈Ωε if ∑i∈C di < v(C).

Lemma 5.5. Suppose at d ∈ ΩE a coalition C1 is strictly feasible and another coalition

C2 is binding with C1∩C2 = /0. Then C1∪C2 must be strictly feasible.

Proof: By superadditivity it holds that v
(
C1∪C2)≥ v

(
C1)+ v

(
C1). Since C1 is strictly

feasible and C2 is binding, and since C1 and C2 have an empty intersection it holds that

∑i∈C1 di+∑ j∈C2 d j = ∑k∈C1∪C2 dk < v
(
C1)+v

(
C2)≤ v

(
C1∪C2) and the result follows.

Lemma 5.6. Let (v,4) be example game 1,2 or 3 as defined in 5.2 subsection 2 and(
4,v, 1

M

)
be a cooperative game process. Then all states outside the extended core are

transient.

Proof: We shall prove first that from any state in the set Ωπ the chain Vt cannot transition

to any state ΩE \Ωπ.

A player can only reduce demands with positive probability if he is not member of the

largest feasible coalition C
′
(d). For the chain Vt to move out of the extended core there

needs to be a state d in the extended core and a neighbor d(i, j) with pi, j
d > 0 such that a

coalition with j as member has CSd(i, j) < 0, that is a state where the coalition’s surplus of

a coalition with j as member is negative.

As C123 has the largest coalition value with 0.88 the chain Vt cannot transition to a

state with CS123 (d(i, j)) > 0 from a state with CS123 (d) = 0 as C123 will always be the

coalition with the largest sum of demands on Ωπ.

Suppose Vt is in a state d ∈Ωπ such that CSC134 (d) = 0. We want to show that it is not

possible for the chain Vt to transition to a new state d with CSC134 (d(i, j)) =−ε.

To transition to a new state d(i, j) with CSC134 (d(i, j)) = −ε, d2 needs to increase

and one of d1,d3,d4 need to decrease. This implies that at d(2) a coalition with v(C) >

0.78 must be feasible. The only two coalitions with larger coalition value than 0.78 are
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C123 and C124. The fact that d is in Ωπ implies that if either of the two coalitions is

feasible it must be binding. (That is d1+d2+d4 = 0.79 or d1+d2+d3 = 0.89.) Suppose

that CSC124 (d(2)) = 0. This implies that CSC124 (d) = −ε which contradicts the fact that

d is in Ωπ. Suppose that CSC123 (d(2)) = 0. This implies that CSC123 (d) = −ε which

contradicts the fact that d is in Ωπ and so the chain Vt will not transition to any state with

CSC134 (d(i, j)) =−ε.

Suppose Vt is in a state d ∈ Ωπ such that CSC124 (d(i, j)) = 0. Clearly d3 needs to

increase and one of d1,d2,d4 need to decrease for this transition to happen. As only C123

has a larger coalition value than C124 at d(3) there can be no binding coalition with larger

sum of demands and so the chain Vt will not transition to any state with CSC124 (d(i, j)) =

−ε.

Next we will show that if Vt is in a state d∈Ωπ such that CSC12 = 0 it is is not possible

for the chain to transition to a state d with CSC12 (d(i, j)) =−ε.

Clearly d3 or d4 need to increase and one of d1 or d2 need to decrease for this transition

to happen. So at d(3) or at d(4) a coalition with v(C)≥ 0.75 must be feasible. The only

coalitions with v(C) ≥ 0.75 are 3-player coalitions. As d is in Ωπ this implies that the

coalition must be binding.

At d(3) or d(4) coalition C134 cannot be binding as otherwise CSC134 (d) = ε which

contradicts the fact that d ∈Ωπ.

Suppose at d(3) coalition C124 is binding. Since C12 ⊂ C124 neither d2 nor d1 can

decrease demands from d(3). Suppose at d(4) coalition C123 is binding. Since C12⊂C123

neither d1 nor d2 can decrease demands from d(4). We conclude that the chain Vt will

not transition to a state with CSC12 =−ε.

We have shown that from any state d in Ωπ the chain cannot transition to a state in

ΩE \Ωπ.

Now we will show that the chain Vt will transition to a state in Ωπ with positive

probability from any state in ΩE .

Suppose that the chain Vt is in a state where C123 is the largest feasible coalition. This

implies that d4 ≥ 0.12. As long as C123 remains feasible, if d4 increases and hence the

chain transitions to the intermediate state d(4) the only possible transition from d(4) is

that d4 decreases again as C
′
(d(4)) =C123. As long as C123 remains strictly feasible one
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of d1,d2,d3 will increase and d4 will decrease until the chain has reached a state d where

C123 is binding, that is where d4 = 0.12.

In such a state d where C123 is binding, if d4 increases d4 will have to decrease

straight away again. If one of d1,d2,d3 increase, C123 is not feasible anymore. Sup-

pose C′ (d(i)) =C124 for i ∈ [1,2,3]. So d3 will have to decrease from d(i) and until the

chain reaches a state with d4 = 0.11 and d3 = 0.21 the only possible transitions between

efficient states are that d1 or d2 will increase and d3 will decrease.

At a state where d4 = 0.12 and d3 = 0.21 both C123 and C124 are binding.

Suppose that at C′ (d(i)) =C134 for i ∈ [1,2]. That implies that d2 ≥ 0.22. At such a

state d it holds that C′ (d(4)) =C123 and C′ (d(3)) =C124. The only possible transitions

between distinct efficient states are that d1 increases and d2 decreases. This will happen

until d2 = 0.22.

At a state where d4 = 0.12, d3 = 0.21 and d2 = 0.22 it holds that C′ (d(4)) = C123,

C′ (d(3)) = C124, C′ (d(2)) = C134 and C′ (d(1)) = C12. So the only possible demand

transitions between efficient states are that d1 increases and d4 or d3 decreases. So p1,4
d >

0. This is true as well for all states of the form (0.45+ kε,0.22,0.21,0.12− kε) for 0 ≤

kε≤ 0.07. So there is a path of positive probability to the state where d1 = 0.53. Observe

that (0.53,0.22,0.21,0.04) is in Ωπ.

Suppose that at any state d∈ΩE the largest feasible coalition is C124. The chain Vt will

transition in similar fashion to the above paragraphs only that at the state where d3 = d4

the largest feasible coalition will be C123 and the chain Vt will transition as described in

the third paragraph of this proof. A similar argument holds for a state d ∈ ΩE where the

largest feasible coalition is C134.

Hence from any state d /∈Ωπ the chain will transition to the state (0.53,0.22,0.21,0.2)

which is in Ωπ.

Corollary 5.7. The only states in ΩC from which the chain (Vt) can transition to a state

in the set Ωπ \ΩC are states where C12 and C13 are binding.

Proof: This follows directly from 5.1.
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Lemma (5.6) and Lemma (5.7) are proved only for game 1 but the proof for games

2 and 3 is identical if one exchanges the coalitional worths of the 3-player coalitions of

game c) with the respective coalitional worths of the 3-player coalitions from games 2 or

3.

We now prove that at each state in the extended core not on the asymmetric edge the

chain (Vt) has a negative drift in d1.

For d ∈ΩE , let ∆(Vt ,d) = E
(
d1

t+1−d1
t | d

)
be the drift in d1 at d.

Lemma 5.8. If (v,4) is the example game 1,2 or 3, and ε = 1
M for some v-compatible M,

then at all states in the core d ∈Ωπ \AE where d1 = k, ∆(Vt ,d)≤ 1−2k
4(1+ε) .

Proof: Observe that for example games 1− 3 for a state d /∈ AE there exists always a

player i 6= 1 such that C′ (d(i)) = /0. So the transition to the neighbor d(i,1) has probabil-

ity pi,1
d = d1

4(1+ε) .

Furthermore, since player 1 is member of all coalitions in P
(
CG) for example games

1− 3 it holds that at d(1) the payable coalition is always the empty set and so player

1 increases his demand from every state with probability 1−d1

4(1+ε) . So an upper bound for

∆(Vt ,d) for all states not on the asymmetric edge is given by 1
4(1+ε)

(
1−2d1) and if d1 = k

at d it holds that ∆(Vt ,d)≤ 1−2k
4(1+ε) .

Observe that at each state d ∈ ΩC d1 is strictly larger than 0.5 and so for example

games 1− 3, at each state in the core, d1 has a negative drift. The dynamics at states in

the extended core that are not in the core (states where coalition C13 is strictly feasible) are

described in the next section and covered in the behavior of the cooperative game process

in the neighborhood of the asymmetric edge.

5.3 Determining the Winner: Equity Bias vs Asymmetric

Power

Since co is in the asymmetric edge, it follows from Lemma (5.8), that the chain (Vt) drifts

until it reaches the neighborhood of the asymmetric edge. Now the long-term behavior

of (Vt) depends on the drifts in this neighborhood. As d1 varies along the asymmetric
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edge, we investigate the drift in d1 between successive returns of the chain (Vt) to the

asymmetric edge.

Between successive returns to AE , the chain (Vt) visits different kinds of states. For

the first step, (Vt) is on the asymmetric edge, and in subsequent steps it leaves the asym-

metric edge and may leave the core. At states on AE, and states not in the core, (Vt) has

a positive drift in d1 over one step of (Vt).

To understand, what the overall drift is, over an excursion of (Vt) from the asymmet-

ric edge to another state on the asymmetric edge, we need to approximate the probability,

“in equilibrium”, that the chain lies on the different sets of states that it visits over an

excursion. The difference in demands of the players implies different transition probabil-

ities between states. As a result,“in equilibrium”, the chain (Vt) spends more time on the

asymmetric edge or outside the core in the ‘lower part’ of the asymmetric edge than in

the ‘upper part’ and so the expected change in d1 over an excursion from the asymmetric

edge is negative for game 2 and positive for game 3.

In subsection 5.3.1 the “idealized” version of the chain (Vt) is introduuced via the def-

inition of the “idealized” transition probabilities. To calculate the transition probabilities

of the process along the asymmetric coalition structure we apply a localization technique

(or trick). Demands on an excursion between two states on the asymmetric edge are

assumed to be constant. If ε is sufficiently small this is a reasonable assumption.

In subsection 5.3.2 the different kinds of states are partitioned into sets according to

the chain of joint coalition surplus’ for coalition C12 and coalition C13. In Chapter 3

Section 3.5 a random walk approximation to an individual coalition’s surplus chain was

used to bound the return times of a chain
(

CSC

ε

)
. In Section 5.4 a similar approximation

to the joint chain
(

CSC12
ε

, CSC13
ε

)
t

is used to calculate a bound on the probability of being

in a state on the asymmetric edge. In this section since there is dependence between the

two coalition’s surplus chains exact probabilities are required to calculate the equilibrium

distribution and so the transition probabilities of the chain
(

CSC12
ε

, CSC13
ε

)
t

are calculated

explicitly. For example the probability of the chain to go from a state (0,0) to a state

(0,1) or (1,−1) for example are calculated. In fact in this section given a state of the

two-dimensional chain
(

CSC12
ε

, CSC13
ε

)
t

all transition probabilities to states where either

coordinate is increased or decreased by one are calculated.
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The “idealized” transition probabilities of the chain (Vt) are identical on the different

sets corresponding to states of the two-dimensional chain
(

CSC12
ε

, CSC13
ε

)
t
of the coalitions’

surpluses.

Then in subsection 5.3.3 the expected change in d1 over all sets of the state space of

the idealized version of the chain
(

CSC12
ε

, CSC13
ε

)
t

are calculated.

In subsection 5.3.4 the state space of the two-dimensional idealized chain is restricted

to some integer multiples for each coordinate. Since the extended core does not contain

any state with negative coalition’s surplus of C12 the first coordinate is at least 0. To

restrict the chain at a fixed coordinate, all transition probabilities from a given state to

states that would have a larger coordinate than the restriction are set to zero and their

original mass is added to the probability to remain in the same state.

In subsection 5.3.5 finally the equilibrium distribution for the restricted two-dimensional

idealized chain is calculated. The transition probabilities and different restricted state

spaces are described in detail. Finally the drift for a given value of d1 along the asymmet-

ric edge is calculated, in particular for a value of d1 corresponding to the upper and lower

concession limits for example games 1−3. For example game 1 the state in the interior

of the asymmetric edge is identified (approximated) which has a drift of zero in d1.

We now introduce the definitions and develop the concept that we use in this section to

approximate the behavior of the chain (Vt) in the neighborhood of the asymmetric edge.

Suppose the chain (Vt) starts in a state d∗ ∈AE . Let R1 (d∗) =min{t > 0|CSC12
(Vt) =

0,CSC13
(Vt) = 0}. Recall that for d ∈ ΩE pi, j

d = 1
4

d j

∑l /∈C′(d(i)) dl+ε
1{ j/∈C′(d(i))} if i 6= j and

pi, j
d = 1

4
d j+ε

∑l /∈C′(d(i)) dl+ε
1{ j/∈C′(d(i))} if i = j.

The 3-dimensional “idealized chain”
(
V d∗

t
)

We now define an “idealized ” Markov chain, with state space ΩE , where the transition

probabilities of the chain (Vt) during an excursion from d∗ to another state on the asym-

metric edge, are approximated by using the demands at d∗ instead of the demands at dt .

For d∗ ∈ AE ,d ∈ΩE and for t < R1 (d∗), let

pi, j
d (d∗) =

1
4

d∗ j

∑l /∈C′(d(i)) d∗l + ε
1{ j/∈C′(d(i))} (5.1)
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Figure 5.6 Graphical representation of ΩC for game 3.

if i 6= j and

pi, j
d (d∗) =

1
4

d∗ j + ε

∑l /∈C′(d(i)) d∗l + ε
1{ j/∈C′(d(i))} (5.2)

if i = j.

A state on the asymmetric edge is uniquely determined by the value of d1. We can

express the demands of players 1− 3 as a function of d∗1,v(C12) and v(C13). Observe

that for t < R1 (d∗),

(Vt) =
(
d∗1 + l1

t ε,d∗2 + l2
t ε,d∗3 + l3

t ε,d∗4 + l4
t ε
)

which can alternatively be expressed as

(Vt) =
(
d∗1 + l1

t ε,c12−d∗1 + l2
t ε,c13−d∗1 + l3

t ε,1+d∗1− c12− c13 + l4
t ε
)

for some l1, l2, l3, l4 ∈ Z.

So pi, j
d (d∗) are the approximate transition probabilities for the chain (Vt) on the tra-

jectory for t < R1 (d∗), where the demands of (Vt) are replaced by the demands at d∗, that

is where all li
t are set to 0 for t > 0. For small ε, and as long as l1, l2, l3, l4 can be bounded

from above, the approximation is accurate.
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For d∗ ∈ AE , and for t < R1 (d∗), let(
V d∗

t

)
be the Markov chain that starts in d∗ and moves with transition probabilities pi, j

d (d∗).

The 2-dimensional “idealized chain”
(
DV d∗

t
)

and sets Sm,n

Instead of analyzing the 3-dimensional chain (Vt) between successive returns to the asym-

metric edge, we analyze the 2-dimensional chain(
CSC12 (Vt)

ε
,
CSC13 (Vt)

ε

)
.

The state space is given by

Ω
V = {0, ...1− v(C12)

ε
}×{−v(C13)

ε
, ...

1− v(C13)

ε
}.

For 0≤ m≤ 1−v(C12)
ε

and −v(C12)
ε
≤ n≤ 1−v(C12)

ε
, let

Sm,n

be the set of efficient states where CSC12(d)
ε

= m and CSC13(d)
ε

= n and no other coalition is

feasible. Remember that the transition probability pi, j
d depends only on the demands of

the players that are not in the payable coalition at d(i).

Lemma 5.9. For d and d′ in Sm,n, and i ∈ {1,2,3,4}, the payable coalition at the inter-

mediate inefficient states d(i) and d′ (i) is the same for all i ∈ {1,2,3,4}.

Proof: Per definition, the only coalitions that can be feasible in states in Sm,n, are C12 and

C13 and CG. This implies as well that the only coalitions that can be feasible in d(i), for

i∈ {1,2,3,4} are C12 and C13. Suppose d and d′ are in the same set Sm,n. If, for i∈ {3,4},

C12 is binding at d(i), then it must be binding as well at d′ (i). Similarly, for i∈{1,2,3,4},

if C13 is feasible at d(i), then it is feasible as well at d′ (i). So C′ (d(i)) = C′ (d′ (i)) for

all i ∈ {1,2,3,4} and d′,d′ in Sm,n.

It follows directly that

pi, j
d (d∗) = pi, j

d′ (d
∗)

if d′ and d are both in the same set Sm,n.
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We want to approximate the 2-dimensional chain(
CSC12 (Vt)

ε
,
CSC13 (Vt)

ε

)
by using the transition pi, j

d (d∗) instead of pi, j
d .

For d in Sm,n, d∗ ∈ AE and q ∈ {m−1,m,m+1} and r ∈ {n−1,n,n+1}, let

pq,r
d (d∗) = ∑

i, j∈{1,2,3,4}
pi, j

d (d∗)1{d(i, j)∈Sq,r}. (5.3)

Now pq,r
d (d∗) depends on d only through m and n, so we use the notation

pm,n
d (d∗)

as well.

For d∗ ∈ AE , let the dependent two dimensional chain
(
DV d∗

t
)

be the Markov chain

defined on

Ω
V = {0, ...1− v(C12)

ε
}×{−v(C13)

ε
, ...

1− v(C13)

ε
}

that moves with transition probabilities pq,r
m,n (d∗) if m< 1−v(C12)

ε
and −v(C12)

ε
< n< 1−v(C12)

ε
.

Figure 5.7 is a sketch of a subset of the state space of
(
DV d∗

t
)
. Arrows between two

states imply, that the chain
(
DV d∗

t
)

can only transition in the direction of the arrow. Simple

lines between two states imply that transitions in both directions have positive probability.

We set ub1= 1−v(C12)
ε

, the upper boundary for the first coordinate of the chain
(
DV d∗

t
)
.

Similarly we set ub2= 1−v(C13)
ε

and lb2= −v(C13)
ε

, the upper boundary and lower boundary

for the second coordinate of the chain
(
DV d∗

t
)

respectively.

Then

pub1,r
ub1,n (d

∗) = pub1−1,r
ub1−1,n (d

∗)+ ∑
r∈{−1,0,1}

pub1,r
ub1−1,n (d

∗) (5.4)

and set pub1+1,r
ub1,n (d∗) = 0. Similarly, let

pq,ub2
m,ub2 (d

∗) = pq,ub2−1
m,ub2−1 (d

∗)+ ∑
q∈{−1,0,1}

pq,ub2
m,ub2−1 (d

∗) (5.5)

and set pq,ub2+1
m,ub2 (d∗) = 0. Likewise let

pq,lb2
m,lb2 (d

∗) = pq,lb2+1
m,lb2+1 (d

∗)+ ∑
q∈{−1,0,1}

pq,lb2
m,lb2+1 (d

∗) (5.6)
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Figure 5.7 Sketch of a subset of the state space of the chain
(
DV d∗

t
)
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and set pq,lb2−1
m,lb2 (d∗) = 0.

Observe that, if the first coordinate of
(
DV d∗

t
)

is zero, then the chain
(
V d∗

t
)

is in a

state on the hyperplane H (C12). If the second coordinate of
(
DV d∗

t
)

is zero, then the

chain
(
V d∗

t
)

being in a state on the hyperplane H (C13).

For 0 < m≤ ub1 and 0 < ub2, let

S0 =

( ⋃
0<m≤ub1

Sm,0

)⋃( ⋃
0<n≤ub2

S0,n

)

If the second coordinate of
(
DV d∗

t
)

is less than zero, that corresponds to the (Vt) being

in a state outside of the core.

For 0≤ m≤ ub1 and lb1≥ n < 0, let

S− =
⋃

lb1≥n<0

Sm,n.

If both coordinates of
(
DV d∗

t
)

are greater than zero, that corresponds to (Vt) being in

a state in the interior of the the core. Let

S+ =
⋃

0<m≤ub1,0<n≤ub2

Sm,n.

Drift in d1 and equilibrium distribution for
(
DV d∗

t
)

We will now investigate the expected change in d1 over the sets S+, S−, S0 and S0,0. First

we need to define the expected change in d1 for the chain
(
V d∗

t
)
.

For d∗ ∈ AE , d ∈ΩE and t < R1 (d∗), let ∆
(
V d∗

t ,d
)
= E

(
d1

t+1
(
V d∗

t+1
)
−d1

t
(
V d∗

t
)
| d
)

be the drift in d1 over one step of V d∗
t at d. Observe that ∆

(
V d∗

t ,d
)

depends on d only via

the set Sm,n.

For d∗ ∈ AE and d ∈ Sm,n, let ∆d∗
m,n = ∆

(
V d∗

t ,d
)
.

We describe briefly the expected change in d1 over different sets Sm,n. If n < 0, then

this corresponds to the chain
(
V d∗

t
)

to be in a state d not in the core where C13 is strictly

feasible. So for i ∈ {1,2,3,4}, player 1 will always be a member of C
′(d(i)) and so player

1’s demands will increase with probability 1
4 and will not decrease.

If m = 0 and n = 0, then this corresponds to the chain
(
V d∗

t
)

to be in a state d ∈ AE .

So for i∈ {2,3,4}, player 1 will always be a member of C
′(d(i)) and so player 1’s demands

will increase with probability 1
4

(
1−d∗1

)
and will not decrease.
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If m = 0 and n > 0, then this corresponds to the chain
(
V d∗

t
)

to be in a state d ∈

H (C12). So for i ∈ {3,4}, player 1 be a member of C
′(d(i)) and so player 1’s demands

will increase with probability 1
4

(
1−d∗1

)
and will decrease with probability 1

4

(
d∗1
)
. Sim-

ilarly, If m > 0 and n = 0, then this corresponds to the chain
(
V d∗

t
)

to be in a state

d ∈H (C13). So for i ∈ {2,4}, player 1 be a member of C
′(d(i)) and so player 1’s demands

will increase with probability 1
4

(
1−d∗1

)
and will decrease with probability 1

4

(
d∗1
)
.

Finally, if m = 0 and n > 0, then this corresponds to the chain
(
V d∗

t
)

to be an interior

state of the core. So for i ∈ {1,2,3,4}, C
′(d(i)) is the empty set and so player 1’s demands

will increase with probability 1
4

(
1−d∗1

)
and will decrease with probability 3

4

(
d∗1
)
.

We can summarize the drift in d1 over the sets Sm,n.

For states d ∈ S (m,n) with n < 0, it holds that

∆
d∗
− =

1
4
.

On the asymmetric edge,

∆
d∗
0,0 =

1
4
(
1−d∗1

)
.

For on either hyperplane H (C12) or H (C13), if exactly one of n > 0 or m > 0,

∆
d∗
0 =

1
4
[
(
1−d∗1

)
−d∗1] =

1−2d∗1

4
.

Finally, for states in the interior of the core, where both n > 0 and m > 0,

∆
d∗
+,+ =

1
4
[
(
1−d∗1

)
−3d∗1] =

1−4d∗1

4
.

Now we will define the expected change in d1 over one excursion from the asymmetric

edge.

For d∗ ∈ AE let πd∗
Sm,n

be the equilibrium distribution of
(
DV d∗

t
)

on the set Sm,n.

For d∗ ∈ AE let ∆d∗ = ∑m,n πd∗
Sm,n

∆d∗
m,n, the approximate drift in d1 over one excursion

of the chain
(
DV d∗

t
)

from the asymmetric edge with starting state d∗.

The distribution of
(
DV d∗

t
)

over the sets Sm,n is an approximation to the distribution

of the chain
(
CSC12 (Vt) ,CSC12 (Vt)

)
over the sets Sm,n as long as the chain (Vt) hits no

hyperplane corresponding to a 3-player coalition.
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Restrictions to the state space of the “idealized chain”
(
DV d∗

t
)

We now consider restrictions of
(
DV d∗

t
)
, for which we can explicitly calculate the equi-

librium distribution. We will define an upper restriction for the first coordinate of the

chain, ur1, and an upper restriction ur2 and a lower restriction lr2 for the second coordi-

nate of the chain. For some k ∈ N,k > 0, let k = (k,k,−k) be a restriction vector where

ur1 = ur2 =−lr2 = k.

For d∗ ∈AE , let the dependent two dimensional chain
(

DV d∗,k
t

)
be the Markov chain

defined on

Ω
V k

= {0, ...k}×{−k, ...k}

that moves with transition probabilities pq,r
m,n (d∗) if m < k and −k < n < k.

Then

pk,r
k,n (d

∗) = pk−1,r
k−1,n (d

∗)+ ∑
r∈{−1,0,1}

pk,r
k−1,n (d

∗) (5.7)

and set pk+1,r
k,n (d∗) = 0. Similarly, let

pq,k
m,k (d

∗) = pq,k−1
m,k−1 (d

∗)+ ∑
q∈{−1,0,1}

pq,k
m,k−1 (d

∗) (5.8)

and set pq,k+1
m,k (d∗) = 0. Likewise let

pq,−k
m,−k (d

∗) = pq,−k+1
m,−k+1 (d

∗)+ ∑
q∈{−1,0,1}

pq,−k
m,−k+1 (d

∗) (5.9)

and set pq,−k−1
m,−k (d∗) = 0.

Observe that the size of ΩV k
is given by 2(k+1)2− (k+1).

In figure 5.8 we sketch ΩV 2
. As in Figure 5.7, arrows between two states imply,

that the chain
(

DV d∗,2
t

)
can only transition in the direction of the arrow. Simple lines

between two states imply that transitions in both directions have positive probability. For

example, from state (1,−1) the chain
(

DV d∗,2
t

)
can transition to state (1,0) in one time

step, however the chain cannot transition directly from (1,0) to (1,−1). To transition

from (1,0) to (1,0) several transitions are necessary that must include a transition from

(0,0) to (0,−1).

States, that have drift ∆d∗
0,0 =

1
4

(
1−d∗1

)
are colored orange, states with drift ∆+,+ =

1−4d∗1
4 are depicted green, states with drift ∆0 = 1−2d∗1

4 are depicted blue and, finally,
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Figure 5.8 Sketch of the restricted chain
(

DV d∗,2
t

)

states with drift ∆− = 1
4 are colored red. Red states always have a very strong positive

drift, orange states always have a positive drift, green states always have a negative drift

and for blue states, the sign of the drift depends on d∗. For example games 1− 3, blue

states have a slightly negative drift.

In 5.3 we calculate the equilibrium distribution and the drift in d1 over an excursion

of
(

DV d∗,k
t

)
from the asymmetric edge for different starting states d∗ ∈ AE1. What we

are really interested in, is the distribution over the different colored sets.

Calculating the equilibrium distribution of the restricted chain

A neighboring set for a set Sm,n is a set Sm+x,n+y for x,y ∈ [−1,0,1].

The transition probabilities pm+x,n+y
m,n (k) from set Sq,r to all neighboring sets Sm+x,n+y,

as defined in (5.11), for x,y ∈ [−1,0,1] are given in the below tables.

The neighboring sets of set Sm,n are listed in the first column. The new efficient states,

that lie in set Sq,r and can be reached from set Sq,r are depicted in the second column.

The third column lists the pq,r
m,n (d∗). The fourth and fifth column, respectively, list the
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transition probabilities for d∗ = (0.54,0.21,0.2,0.05) and d∗ = (0.6,0.15,0.14,0.11), the

states max1 for example game three and min1 for example game two respectively.

The first table refers to transitions out of the sets S0,0 to all neighboring sets, that can

be reached with positive probability. Since a state d∗ ∈AE is uniquely determined by d∗,

we may use the notation pq,r
0,0
(
d1∗) as alternative to pq,r

0,0 (d
∗).

Sq,r new states in Sq,r 4pq,r
0,0 (d

∗) pq,r
0,0 (0.54) pq,r

0,0 (0.60)

S1,1 d(1,4) d∗4 0.01 0.03

S1,0 d(1,3) ,d(2,4) d∗3 + d∗4
d∗2+d∗4 0.1 0.14

S0,1 d(1,2) ,d(3,4) d∗2 + d∗4
d∗3+d∗4 0.1 0.15

S0,0 d(i, i)for i ∈ {1,2,3,4} d∗1 + d∗2
d∗2+d∗4 +1 0.59 0.54

S0,−1 d(4,3) d∗3
d∗3+d∗4 0.2 0.14

Table 5.2 Transition probabilities from S0,0 to all neighboring sets for example game 1

Recall that states d ∈ S0,0 are states on the asymmetric edge. We like to point the

reader to the special properties of the transitions from set S0,0 to set S0,−1. Lemma (5.7)

states, that the chain (Vt) can only leave the core from states on the asymmetric edge.

For this to happen, player four increases his demand from a state in S0,0 and the payable

coalition is then C12. Player three or player four can decrease demands. If player three

decreases demands, the new efficient state d(4,3) is in set S0,−1. The respective transition

probability, to go from set S0,0 to set S0,−1, is given by d∗3
d∗3+d∗4 = c13−d∗1

1−c12
. To restrict the

chain (Vt) to move only on states in the core, the only restriction to the transition dynamics

would be to set p0,−1
0,0 (d∗) = 0. Observe that at the ‘lower part’ of the asymmetric edge

of game 1, at state d∗ = (0.54,0.21,0.2,0.05), p0,−1
0,0 (d∗) = 0.2 whereas at state d∗ =

(0.6,0.15,0.14,0.11), p0,−1
0,0 (d∗)= 0.14. So the chain transitions more frequently to states

outside the core in the ‘lower part’ of the asymmetric edge.
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Sq,r new states in Sq,r 4pq,r
m,0 (d

∗) pq,r
0,0 (0.54) pq,r

0,0 (0.60)

Sm+1,1 d(1,4) d∗4 0.01 0.03

Sm+1,0 d(1,3) ,d(2,4) d∗3 + d∗4
d∗4+d∗2 0.01 0.14

Sm,1 d(1,2) ,d(3,4) d∗2 +d∗4 0.07 0.07

Sm,0 d(i, i)for i ∈ {1,2,3,4} d∗1 +d∗3 +1 0.44 0.44

Sm−1,1 d(3,2) d∗2 0.05 0.04

Sm−1,0 d(3,1) ,d(4,2) d∗1 + d∗4
d∗4+d∗2 0.34 0.29

Table 5.3 Transition probabilities from Sm,0 for m≥ 1

The states d∈ Sm,0 for m≥ 1 are states on the hyperplane H (C13). For all intermediate

inefficient states reachable from Sm,0, the payable coalition is either C13 or the empty set.

So transitions to a set with negative value in the second coordinate, to the sets Sq+1,−1,

Sq,−1 and Sq−1,−1, are impossible. If players 2 or 4 increase demands, one of the two

will decrease demands. Both d(1,3) and d(2,4) are in set Sm+1,0. Player 1 is chosen to

increase demands with probability 1
4 , the payable coalition is the empty set and so player

3 reduces demands with probability d∗3 = c13− d∗1. If player 2 increases his demand,

C13 is the payable coalition and player 4 reduces demands with d∗4
d∗3+d∗4 = 1+d∗1−c12−c13

1−c12

so pm+1,0
m,0 (d∗) = c13−d∗1

+
1+d∗1−c12−c13

4(1−c12)
.

Sq,r new states in Sq,r 4pq,r
m,n (d∗) pq,r

m,n (0.54) pq,r
0,0 (0.62)

Sm+1,n+1 d(1,4) d∗4 0.01 0.03

Sm+1,n d(1,3) ,d(2,4) d∗3 +d∗4 0.06 0.06

Sm+1,n−1 d(2,3) d∗3 0.05 0.04

Sm,n+1 d(1,2) ,d(3,4) d∗2 +d∗4 0.07 0.07

Sm,n d(i, i)for i ∈ {1,2,3,4} 1 0.25 0.25

Sm,n−1 d(4,3) ,d(2,1) d∗3 +d∗1 0.19 0.19

Sm−1,n+1 d(3,2) d∗2 0.05 0.04

Sm−1,n d(4,2) ,d(3,1) d∗2 +d∗1 0.19 0.19

Sm−1,n−1 d(4,1) d∗1 0.14 0.15

Table 5.4 Transition probabilities from Sm,n for m,n≥ 1

States d ∈ Sm,n for m,n≥ 1 are in the interior of the core and at every possible ineffi-

cient state d(i) the payable coalition is the empty set. So all players can reduce demands
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and do so proportional to their demand at d∗, the ‘reference state’ on the asymmetric

edge. For example, if player 4 increases his demand and player 1 reduces demands, then

the chain V d∗
t transitions to state d(4,1), and the chain DV d∗

t transitions to a state in

Sm−1,n−1.

Sq,r new states in Sq,r 4pq,r
0,n (d

∗) pq,r
0,n (0.54) pq,r

0,n (0.6)

S1,n+1 d(1,4) d∗4 0.01 0.03

S1,n−1 d(2,3) d∗3 0.05 0.04

S1,n d(1,3) ,d(2,4) d∗3 +d∗4 0.06 0.06

S0,n+1 d(1,2) ,d(3,4) d∗2 + d∗4
d∗3+d∗4 0.1 0.15

S0,n d(i, i)for i ∈ {1,2,3,4} d∗1 +d∗2 +1 0.44 0.44

S0,n−1 d(4,3) ,d(2,1) d∗1 + d∗3
d∗3+d∗4 0.34 0.29

Table 5.5 Transition probabilities from S0,n for n≥ 1

The states d ∈ S0,n for n≥ 1 are states on the hyperplane H (C12). The transition dy-

namics are very similar to the dynamics for the states on the hyperplane H (C12) described

above, just the values of the demands of the players 2 and 3 differ.

Sq,r new states in Sq,r 4pq,r
0,−n (d

∗) pq,r
0,−n (0.54) pq,r

0,−n (0.6)

S1,n+1 d(1,4) d∗4
d∗2+d∗4 0.05 0.11

S1,n d(2,4) d∗4
d∗2+d∗4 0.05 0.11

S0,n+1 d(1,2) ,d(3,4) d∗2
d∗2+d∗4 +

d∗4
d∗3+d∗4 0.25 0.25

S0,n d(2,2) ,d(3,3) ,d(4,4) 1+ d∗2
d∗2+d∗4 0.45 0.39

S0,n−1 d(4,3) d∗3
d∗3+d∗4 0.2 0.14

Table 5.6 Transition probabilities from S0,−n for n≤ 1

The states d ∈ S0,−n for n ≤ 1 are states not in the core where coalition C12 is bind-

ing. The transition dynamics are rather complex. At d(4) and d(3), coalition C12 is the

payable coalition, At d(1) and d(2), coalition C13 is the payable coalition.
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Sq,r new states in Sq,r 4pq,r
m,−n (d∗) pq,r

0,0 (0.54) pq,r
0,0 (0.6)

Sm+1,n+1 d(1,4) d∗4
d∗2+d∗4 0.05 0.11

Sm+1,n d(2,4) d∗4
d∗2+d∗4 0.05 0.11

Sm,n+1 d(1,2) ,d(3,4) d∗2
d∗2+d∗4 +d∗4 0.25 0.25

Sm,n d(2,2) ,d(4,4) 1 0.25 0.25

Sm−1,n+1 d(3,2) d∗2
d∗2+d∗4 0.2 0.14

Sm−1,n d(4,2) d∗2
d∗2+d∗4 0.2 0.14

Table 5.7 Transition probabilities from Sm,−n

The states d ∈ Sm,−n for m1, n ≤ 1 are states not in the core where coalition C12

is not binding. Now, for i ∈ {1,2,3,4}, coalition C13 is the payable coalition at d(i).

The probabilities all have the factor 1
1−c13

, showing that only players 2 or 4 can reduce

demands.

The stationary distribution πSm,n of a set Sq,r under the chain
(
DV d∗

t
)

can be expressed

in terms of the stationary distributions of the neighboring sets:

πSm,n = ∑
x∈[−1,0,1]

∑
y∈[−1,0,1]

pm,n
m+x,n+yπSq+x,r+y . (5.10)

For a restricted state space ΩV k
of size K = 2(k+1)2− (k+1), let Ad∗

k be the trans-

pose of the transition matrix for the chain
(

DV d∗,k
t

)
. Each of the K columns contains the,

at most nine non-zero, transition probabilities from a set in Sm,n in ΩV k
to all its neigh-

boring sets in ΩV k
. For large values of k, the matrix is sparse. We will consider only

small integers k for k ∈ {2, ...,10}. Simulations in 5.5 show, that the chain
(

DV d∗,2
t

)
and(

DV d∗,3
t

)
approximate the behavior in the neighborhood of the asymmetric edge reason-

ably well, and the chain
(

DV d∗,10
t

)
approximates the behavior very accurately.

Given a Matrix Q of dimension K let Q1 be the matrix Q where the last row is replaced

by the all-ones vector (1,1, ...1) of dimension m.

Let πd∗,k be the equilibrium distribution of the Markov chain
(

DV d∗,k
t

)
. Then πd∗

k

is the solution to the system of linear equations (A− I)1 .π
d∗
k = 0 where I is the identity

matrix of dimension K and . is the dot product.
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Let ∆d∗
Sm,n,k be the vector with entries ∆d∗

m,n for each Sm,n ∈ ΩV k
where the respective

entry in ∆d∗
k corresponds to the respective entries in πd∗,k. Entries ∆d∗

m,n, corresponding to

sets Sm,n with m = k or n = k or−k, still get assigned the general value ∆d∗
m,n for a set Sm,n.

Let
(
πd∗

k
)t

be the transpose of πd∗
k . We approximate ∆d∗ with ∆d∗

k =
(
πd∗

k
)t

∆d∗
Sm,n,k.

We recall the geometric properties and our conjectures about the asymmetric edges of

example games 1−3.

(a) For example game 1, co3 =(0.37,0.22,0.21,0.2) and co=min1=(0.53,0.22,0.21,0.04)

and max1 = (0.61,0.14,0.13,0.12). The asymmetric edge is given by

AE1 = (0.53+ z,0.22− z,0.21− z,0.04+ z) for z a multiple of ε and 0 ≤ z ≤ 0.08.

We conjecture that neither co nor max1 is a Markovian cooperative equilibrium but

that there is a Markovian cooperative equilibrium with

mce≈ (0.583586,0.166414,0.156414,0.093586)

.

(b) For example game 2, co3 = (0.59,0.15,0.14,0.12), co = min1(0.6,0.15,0.14,0.11)

and max1 = (0.61,0.14,0.13,0.12). The asymmetric edge is the set of points that

can be joined by the line segment between max1 and min1.

The asymmetric edge is given by AE2 = (0.6+ x,0.15− x,0.14− x,0.11+ x) for x

a multiple of ε and 0 ≤ x ≤ 0.01. We conjecture that co = min1 is a Markovian

cooperative equilibrium.

(c) For example game 3, co3 =(0.37,0.22,0.21,0.2), co=min1=(0.53,0.22,0.21,0.04)

and max1 = (0.54,0.21,0.2,0.05). The asymmetric edge is given by

AE3 = (0.53+ y,0.22− y,0.21− y,0.04+ y) for y a multiple of ε and 0 ≤ y ≤ 0.01.

We conjecture that max1 is a Markovian cooperative equilibrium.

Recall that AE2, the asymmetric edge of example game 2 is a subset of the ‘upper

part’, and AE3, the asymmetric edge of example game 3, is a subset of the ‘lower part’

of AE1.

Since a state d∗ ∈ AE is uniquely determined by d1, we use the notation
(

πd∗1
k

)t
and

∆d∗1
k instead of

(
πd∗k

)t
and ∆d∗

k . We want to show that
(
π0.6

k
)t

∆0.6
k < 0 and

(
π0.54

k
)t

∆0.54
k >

0.
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We give now, as an example, the calculations for k = 2 and d1 = 0.6. In table 5.8, the

matrix A0.6
2 of transition probabilities of the chain

(
DV 0.6,2

t

)
is depicted. For example,

the transition probability from a state d ∈ S0,0 to a state in the set S1,1, highlighted with

blue, is given by A0.6
2 (5,1) = p1,1

0,0 (0.6,2) = 0.03 and taken from table 5.2. The transi-

tion probability to stay in set S2,2 over one step of
(

DV 0.6,2
t

)
, highlighted in green, is

A0.6
2 (13,13) = p2,2

2,2 (0.6,2) = 1−
(

p1,1
2,2 (0.6,2)+ p1,2

2,2 (0.6,2)+ p2,1
2,2 (0.6,2)

)
= 0.48.

Observe, that only transition probabilities to neighboring states are non-zero and that

the maximum number of non-zero entries in one row is nine. This holds true of any

restricted chain, irrespective of k.



S0,0 S0,−1 S1,−1 S1,0 S1,1 S0,1 S0,−2 S1,−2 S2,−2 S2,−1 S2,0 S2,1 S2,2 S1,2 S0,2

S0,0 0.54 0.25 0.14 0.29 0.15 0.29 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

S0,−1 0.14 0.39 0.14 0.0 0.0 0.0 0.25 0.14 0.0 0.0 0.0 0.0 0.0 0.0 0.0

S1,−1 0.0 0.11 0.25 0.0 0.0 0.0 0.11 0.25 0.14 0.14 0.0 0.0 0.0 0.0 0.0

S1,0 0.14 0.11 0.25 0.43 0.18 0.04 0.0 0.0 0.0 0.14 0.29 0.14 0.0 0.0 0.0

S1,1 0.03 0.0 0.0 0.07 0.25 0.06 0.0 0.0 0.0 0.0 0.04 0.19 0.15 0.18 0.04

S0,1 0.15 0.0 0.0 0.04 0.19 0.44 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.15 0.29

S0,−2 0.0 0.14 0.0 0.0 0.0 0.0 0.53 0.14 0.0 0.0 0.0 0.0 0.0 0.0 0.0

S1,−2 0.0 0.0 0.0 0.0 0.0 0.0 0.11 0.25 0.14 0.0 0.0 0.0 0.0 0.0 0.0

S2,−2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.11 0.46 0.0 0.0 0.0 0.0 0.0 0.0

S2,−1 0.0 0.0 0.11 0.0 0.0 0.0 0.0 0.11 0.25 0.46 0.0 0.0 0.0 0.0 0.0

S2,0 0.0 0.0 0.11 0.14 0.04 0.0 0.0 0.0 0.0 0.25 0.60 0.30 0.0 0.0 0.0

S2,1 0.0 0.0 0.0 0.03 0.06 0.0 0.0 0.0 0.0 0.0 0.07 0.38 0.18 0.04 0.0

S2,2 0.0 0.0 0.0 0.0 0.03 0.0 0.0 0.0 0.0 0.0 0.0 0.07 0.48 0.06 0.0

S1,2 0.0 0.0 0.0 0.0 0.07 0.03 0.0 0.0 0.0 0.0 0.0 0.04 0.19 0.38 0.06

S0,2 0.0 0.0 0.0 0.0 0.04 0.15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.19 0.61



Table 5.8 A0.6
2 , the matrix of transition probabilities of the chain

(
DV 0.6,2

t

)

Figure 5.9 depicts the state space ΩV 2
, where in the first sketch, states are replaced

with the corresponding equilibrium distribution for chain
(

DV 0.6,2
t

)
, and in the second

sketch with the equilibrium distribution for
(

DV 0.54,2
t

)
.

The chain
(

DV 0.6,2
t

)
, corresponding to the starting state (0.6,0.15,0.14,0.11)∈AE1,

has lower mass on the red states and orange states but higher mass on the green and blue

states. So the chain spends more time in states with negative drift in d1 than the chain(
DV 0.54,2

t

)
, starting at the ‘lower part’ of AE1. Restricting the state space of

(
DV d∗

t
)

to ΩV 2
is a very strong simplification. However, we can see that the mass is strongly

concentrated closely around the states in S0,0.
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Figure 5.9 Sketch of the equilibrium distributions of chains
(

DV 0.6,2
t

)
and

(
DV 0.54,2

t

)
for ex-

ample game 1

In the below table, columns 2− 5 contain the vectors πd∗
2 , summed over the sets S−,

S+,+, S0 and S0,0 for different starting states. Columns 6−9 contain the vectors of respec-

tive drifts ∆d∗
2 . Numeric values are rounded to two decimal places and results are given

for d1 = 0.6, d1 = 0.61, d1 = 0.53 and d1 = 0.54.

π0.6
2 π0.61

2 π0.54
2 π0.53

2 ∆0.6
2 ∆0.61

2 ∆0.54
2 ∆0.53

2

S− 0.12 0.11 0.33 0.36 0.25 0.25 0.25 0.25

S0,0 0.27 0.26 0.32 0.32 0.1 0.1 0.12 0.12

S0 0.48 0.5 0.3 0.27 −0.05 −0.06 −0.02 −0.02

S+,+ 0.12 0.13 0.06 0.05 −0.35 −0.36 −0.29 −0.28

Table 5.9 Equilibrium distribution and drift in the sets S−, S+,+, S0 and S0,0 for the restricted

chain
(

DV d∗,2
t

)
for different starting states

The next table depicts, for a given d∗ ∈ AE1, the results for ∆d∗ = ∑m,n π
d∗,k
Sm,n

∆d∗
m,n,

the drift in d1 over one excursion of the chain
(

DV d∗,k
t

)
from the asymmetric edge with

starting state d∗.
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∆0.6
2 ∆0.61

2 ∆0.54
2 ∆0.53

2

−0.01ε −0.02ε 0.09ε 0.11ε

Table 5.10 Drift over an excursion from the asymmetric edge ∆d∗
2 for different starting states

At the ‘lower end’ of the asymmetric edge for game 1, the approximated drift is pos-

itive. At the ‘upper end’ of the asymmetric edge the drift is negative. Figure 5.10 gives

a sketch of the asymmetric edge with the drifts over an excursion from the asymmet-

ric edge, started in the ‘lower part’ at (0.54,0.21,0.2,0.05) and in the ‘upper part’ at

(0.6,0.15,0.14,0.11). The two states on AE1 correspond to the states max1 for game

3 and min1 for game 2. Observe that, for states closer to min1 in game 2, the set of

trajectories that will hit the hyperplanes C124 or C134 before returning to a state in AE

will increase. This impacts the drift so the approximation given here is accurate outside

a small neighborhood of the state min1. However, this ‘neighborhood’ is independent

of ε and so, for ε tending to zero, the only candidate for mce for example game 2 is

min1 = (0.6,0.15,0.14,0.11) and for example game 3, the only candidate for mce is

max1 = (0.54,0.21,0.2,0.05).

In order to get a more accurate estimate of the Markovian cooperative equilibrium we

increase the state space of the restricted chain. We define a new restricted state space,

taking into account that states Sm,m for larger m have lower mass under the equilibrium

distribution than states close to a hyperplane. We set ΩV 2 =
⋃

i Si,ri for i ∈ {0,1,2,3,4,5}

and −10≤ r0≤ 5,−6≤ r1≤ 4,−2≤ r2≤ 4,0≤ r3≤ 2,0≤ r4≤ 2.

The restricted state space has size 41. We took into account, that states on the positive

and negative diagonal do not have very high mass under the equilibrium distribution.

Solving for d∗1 where ∆d∗ = 0 yields d1 ≈ 0.5955 for
(
DV d∗

t ,2
)
. Solving for d∗1 where

∆d∗ = 0 yields d1 ≈ 0.5838 for the second, more refined restricted state space.

In Section 5.5 we give Monte Carlo simulation results for the chain (Vt) started in a

state d∗ on the asymmetric edge.
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Figure 5.10 Sketch of the asymmetric edge of example game 1 with ∆0.6
2 and ∆0.54

2

5.4 Power in Core-Restricted 4-Player Game

In Section 5.4, we discuss a Markov chain (Wt) that is closely related to the chain (Vt),

it is in fact a version of the chain (Vt) restricted to the core. We only define the chain

(Wt) for games (v,4) as we are able to prove a positive drift on the asymmetric edge for

a specific 4-player example game on the chain (Wt). However one can easily extend that

definition for the chain (Wt) to general N-player games and we expect that the chain (Wt)

is very important for understanding the behavior of the chains (Vt) and (Ot).

In Section 5.3 we analyzed the behavior of the chain (Vt) along the asymmetric edge

for 4-player games in detail. An understanding of the behavior along the asymmetric

edge is essential to an understanding of where the Markovian cooperative equilibrium

is located. We divided the states into sets according to their drift and the set of states

outside the core had the strongest drift in d1. On all sets of states that are in the core,

the chain (Wt) has identical drift in d1 as the chain (Vt). Transition probabilities from a
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state in the core not on the asymmetric edge to neighbors are identical for (Vt) and (Wt).

On the asymmetric edge the chain (Wt) is restricted to ‘stay in the same state’, when the

chain (Vt) transitions to a neighbor outside the core. As the chain (Wt) does not move on

the states with the strongest positive drift and has identical transition probabilities to new

states outside the core, if the chain (Wt) has a positive drift in d1 along the asymmetric

edge, we strongly expect that the chain (Vt) has a stronger drift along the asymmetric

edge.

Let (v,4) be a superadditive game. We call the Markov chain (Wt) a W-cooperative

game process W (v,N,ε) if ε = 1
M for some v-compatible M.

Given a W
(
v,N, 1

M

)
-cooperative game process, if there exists a unique state d∗ ∈ ΩC

such that, for all α > 0, PπV,M (||d−d∗||2 > α)→ 0 as M → ∞ then d∗ = Wmce, the

W-Markovian cooperative equilibrium.

We introduce a specific example game, that has an asymmetric edge. We investigate

the drift in d1 between successive returns of the chain (Wt) to the asymmetric edge and

we show, for the ‘idealized chain’ of (Wt) that this drift is positive for all starting states

on the asymmetric edge. So we expect that the W-Markovian cooperative equilibrium is

max1 and we confirm that by simulations.

We now introduce example game 4.

example

v(C1234) v(C123) v(C124) v(C134) v(C12) v(C13)

1 0.95 0.86 0.64 0.82 0.6 4

Table 5.11 v(C) for all {C ∈ P
(
CG
)
| v(C) 6= 0} for example game 1

For example game 4, co3 = (0.45,0.36,0.14,0.05), co = (0.46,0.36,0.14,0.04) and

max1 = (0.47,0.35,0.13,0.05), min1 = (0.46,0.36,0.14,0.04).

In this section we analyze the equilibrium distribution for an ‘idealized’ version of the

chain (Wt). The chains (Wt) and (Vt) are very closely related.

We like to point out, that if the chain (Vt) started from a state on the asymmetric edge

transitions to a new neighbor in the core, then its behavior is identical to the behavior of

the chain (Wt) until it reaches another state on the asymmetric edge. Only if the chain (Vt)

directly transitions to a neighbor outside the core, by player 4 increasing his demand and
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player 3 decreasing his demand, while the chain (Wt) ‘sits’ and waits on the asymmetric

edge, the behavior will be different for both chains till they reach a new state on the

asymmetric edge.

We define an ‘idealized chain’ (W ∗t ) in the same way that we defined the idealized

version of the chain (V ∗t ) and then the 2-dimensional idealized chain (DWt) in the same

way that we defined the chain (DVt) in the previous section.

In Figure 5.11 we depict a subset of the state spaces of the chains (DVt) and (DWt).

The chain (Wt) cannot transition to states outside the core so the state space of the chain

(DWt) is the state space of the chain (DVt) with the second coordinate restricted to non

negative values.

Figure 5.11 Sketch of a subset of the state space of the chains
(
DV d∗

t
)

and
(
DW d∗

t
)

Another important feature of the chain (Wt) is that it has identical drift as the chain

(Vt) on all states in the core. This is depicted in Figure 5.12 where the actual drifts for the

starting state on the upper end of the asymmetric edge are given.
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Recall that for example game 4, co is in the interior of the asymmetric edge. We

analyze the change in d1 between excursions of the chain (Wt) from and back to the

asymmetric edge of example game 4. Observe that for example game 4, co is in the

interior of the asymmetric edge.

Then we show for this example game, that the expected change in d1 in equilibrium

of the chain
(
DW d∗

t
)

for each ‘reference state’ d∗ is positive.

Figure 5.12 Sketch of the drifts on the subset of the state space of the chain
(
DV d∗

t
)

and
(
DW d∗

t
)

The following definitions are equivalent to the respective definitions in the previous

section when (Vt) is exchanged with (Wt).

For all d∈ΩC \AE , let pi, j
d,W = pi, j

d . For d∈AE , let p4,3
d,W = 0, p4,4

d,W = p4,4
d + p4,3

d and

pi, j
d,W = pi, j

d for all other combinations of i, j with i, j ∈ {1,2,3,4}. The only difference

between the chains (Wt) and (Vt) is that from a state on the asymmetric edge the chain

cannot leave the core. Now we define the ‘idealized’ transition probabilities for the chain

(Wt).

For d∗ ∈ AE , for all d ∈ ΩC \AE , let pi, j
d,W (d∗) = pi, j

d (d∗), and for d ∈ AE , let

p4,3
d,W (d∗) = 0, p4,4

d,W (d∗) = p4,4
d (d∗)+ p4,3

d (d∗).
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The 2-dimensional chain (
CSC12 (Wt)

ε
,
CSC13 (Wt)

ε

)
is now defined on

Ω
W = {0, ...1− v(C12)

ε
}×{0...1− v(C13)

ε
}.

For 0≤ m≤ 1−v(C12)
ε

and 0≤ n≤ 1−v(C13)
ε

, let SW
m,n be the set of efficient states where

CSC12(d)
ε

= m and CSC13(d)
ε

= n and no other coalition is feasible.

Again we want to approximate the 2-dimensional chain(
CSC12 (Wt)

ε
,
CSC13 (Wt)

ε

)
by using the transition pi, j

d,W (d∗) instead of pi, j
d,W .

For d in SW
m,n, d∗ ∈ AE and q ∈ {m−1,m,m+1} and r ∈ {n−1,n,n+1}, let

pq,r
d (d∗,W ) = ∑

i, j∈{1,2,3,4}
pi, j

d,W (d∗)1{d(i, j)∈SW
q,r}. (5.11)

As before pq,r
d (d∗,W ) depends on d only via the sets SW

m,n that is why we may use the

notation pq,r
m,n (d∗,W ) as well.

For d∗ ∈ AE , let the dependent two dimensional chain
(
DW d∗

t
)

be the Markov chain

defined on

Ω
W = {0, ...1− v(C12)

ε
}×{0, ...1− v(C13)

ε
}

that moves with transition probabilities pq,r
m,n (d∗,W ) if 0 ≤ m < 1−v(C12)

ε
and 0 ≤ n <

1−v(C13)
ε

.

Let
(
DW1d∗ (DW d∗

t
)

t

)
be the first coordinate of the chain

(
DW d∗

t
)

and equivalently(
DW2d∗ (DW d∗

t
)

t

)
be the second coordinate of the chain

(
DW d∗

t
)
.

Observe that, if the first coordinate of
(
DW d∗

t
)

is zero, then the chain
(
W d∗

t
)

is in a

state on the hyperplane H (C12). If the second coordinate of
(
DW d∗

t
)

is zero, then the

chain
(
W d∗

t
)

is in a state on the hyperplane H (C13).

Let S0,+ =
⋃

0<m≤ 1−v(C13)
ε

SW
m,0, let S+,0 =

⋃
0<m≤ 1−v(C12)

ε

SW
m,0 and

S+,+ =
⋃

0<m≤ 1−v(C13)
ε

,0<n≤ 1−v(C13)
ε

SW
m,n.
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We will now investigate the expected change in d1 over the sets S+,+, S0,+, S+,0 and

S0,0.

For d∗ ∈ AE , d ∈ΩE , let ∆
(
W d∗

t ,d
)
= E

(
d1

t+1
(
W d∗

t+1
)
−d1

t
(
W d∗

t
)
| d
)

be the drift in

d1 over one step of
(
W d∗

t
)

at d.

As ∆
(
W d∗

t ,d
)

is constant on SW
m,n, for d∗ ∈AE and d∈ SW

m,n we use ∆
d∗,W
m,n =∆

(
W d∗

t ,d
)

as well as notation.

On the asymmetric edge, ∆
d∗,W
0,0 = 1

4

(
1−d∗1

)
.

On either hyperplane H (C12) or H (C13), if exactly one of n > 0 or m > 0,

∆
d∗,W
0,+ = ∆

d∗
+,0 =

1−2d∗1

4
.

Finally, for states in the interior of the core, where both n > 0 and m > 0,

∆
d∗,W
+,+ =

1
4
[
(
1−d∗1

)
−3d∗1] =

1−4d∗1

4
.

This is identical to the the drift on these sets for the chain (Vt).

Now we will define the expected change in d1 over one excursion from the asymmetric

edge.

For d∗ ∈ AE let π
d∗,W
Sm,n

be the equilibrium distribution of
(
DW d∗

t
)

on the set Sm,n.

For d∗ ∈ AE let ∆d∗,W = ∑m,n π
d∗,W
Sm,n

∆d∗
m,n be the drift in d1 of the chain

(
DW d∗

t
)

in

equilibrium.

We try to find a lower bound on the probability that the chain (DWt) is in the sets S0,+,

S+,0 and S0,0.

We assume that ε is small and that demands on the excursion from the asymmetric

edge back to the asymmetric edge can be well approximated by the demands at the starting

state at the asymmetric edge.

Observe that the transition probabilities pq,r
d (d∗,W ) are constant for d in each of the

sets S0,0, S+,+, S+,0 and S0,+. We will use, for example, pq,r
+,+ (d∗,W ) as the probability

pq,r
d (d∗,W ) for all states d ∈ S+,+.

Then, for φ∈{(0,0) ,(0,+) ,(+,0) ,(+,+)} let pC12,+
φ

(d∗)=∑r∈{−1,0,1} pm+1,r
φ

(d∗,W )

and pC12,−
φ

(d∗) = ∑r∈{−1,0,1} pm−1,r
φ

(d∗,W ).
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Equivalently let pC13,+
φ

(d∗) = ∑r∈{−1,0,1} pr,m+1
φ

(d∗,W ) and

pC13,−
φ

(d∗) = ∑
r∈{−1,0,1}

pr,m−1
φ

(d∗,W )

.

In Table 5.12 we summarize the transition probabilities for first and second coordi-

nate of the chain
(
DW d∗

t
)
. pC12,+

+,+ is the probability, that the first coordinate of the chain(
DW d∗

t
)

increases by one if
(
DW1d∗

t
)

is in the set S+,+. Observe that pC12,+
+,+ (d∗) =

pC12,+
0,+ (d∗) and so

(
DW1d∗

t
)
, the first coordinate of the state

(
DW d∗

t
)
, increases by one

with the same probability no matter whether d ∈ΩE is in a state on H (C12) or in a state

in the interior of the core. pC12,−
0,0 (d∗) = pC12,−

0,+ (d∗) = 0, as in a state on the hyperplane

H (C12)
(
DW1d∗

t
)

cannot decrease by one. The same holds true for any state on the

asymmetric edge.

pC12,+
+,+ (d∗) = 1−C12

2 pC12,−
+,+ (d∗) = C12

2

pC12,+
+,0 (d∗) = 1−C12

4 + d∗4

4(d∗2+d∗4)
pC12,−
+,0 (d∗) = d∗2

4(d∗2+d∗4)
+ C12

4

pC12,+
0,+ (d∗) = 1−C12

2 pC12,−
0,+ (d∗) = 0

pC12,+
0,0 (d∗) = 1−C12

4 + d∗4

4(d∗2+d∗4)
pC12,−

0,0 (d∗) = 0

Table 5.12 Transition probabilities for
(
DW1d∗

t
)

Similarly, in Table 5.12 the transition probabilities for the second coordinate of the

chain
(
DW d∗

t
)

are given.

pC13,+
+,+ (d∗) = 1−C13

2 pC13,−
+,+ (d∗) = C13

2

pC13,+
+,0 (d∗) = 1−C13

2 pC13,−
+,0 (d∗) = 0

pC13,+
0,+ (d∗) = 1−C13

4 + d∗4

4(d∗3+d∗4)
pC13,−

0,+ (d∗) = d∗3

4(d∗3+d∗4)
+ C13

4

pC13,+
0,0 (d∗) = 1−C13

4 + d∗4

4(d∗3+d∗4)
pC12,−

0,0 (d∗) = 0

Table 5.13 Transition probabilities for
(
DW2d∗

t
)

Let pC13,+
max (d∗) = max{pC13,+

+,+ (d∗) , pC13,+
0,+ (d∗)} and

pC13,−
min (d∗) = min{pC13,−

+,+ (d∗) , pC13,−
0,+ (d∗)}.

Let pC12,+
max (d∗) = max{pC12,+

+,+ (d∗) , pC12,+
+,0 (d∗)} and

pC12,−
min (d∗) = min{pC12,−

+,+ (d∗) , pC12,−
+,0 (d∗)}
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.

Let
(

RW 12,d∗
t

)
be the ‘pessimistic’ random walk defined on the state space

{0, ..., 1−v(C12)
ε
} with transition probabilities pi,i+1 = pC12,+

max (d∗) for i≥ 0 and pi,i−1 =

pC12,−
min (d∗) if i≥ 1 and p0,−1 = 0. Let

(
RW 13,d∗

t

)
be the second coordinate ‘pessimistic’

random walk defined on the state space {0, ..., 1−v(C13)
ε
}with transition probabilities pi,i+1 =

pC13,+
max (d∗) for i≥ 0 and pi,i−1 = pC13,−

min (d∗) if i≥ 1 and p0,−1 = 0.

We can calculate the equilibrium probability for the 0-state for
(

RW 12,d∗
t

)
and(

RW 13,d∗
t

)
. The point is that no matter at which state the chain

(
DW d∗

t
)

is, the pes-

simistic random walks have a higher probability of increasing by one than the respective

coordinates of the chain, that includes states where either coordinate or both are zero. As

well, no matter at which state the chain
(
DW d∗

t
)

is, the pessimistic random walks have a

lower probability of decreasing by one than the respective coordinates of the chain, apart

from when the random walks are in the 0-state. So we can couple each coordinate of

the chain
(
DW d∗

t
)

started at (0,0) separately with its respective pessimistic random walk

in such a way, that the random walk is always ‘above’ the respective coordinate of the

chain. The point is here, that it is very difficult to exactly analyze the dependence of

the coordinates in the chain
(
DW d∗

t
)
. However, if each coordinate is 0 with high enough

probability so that the the sum is greater than one, we know a minimum probability that

the coordinates must both be 0. As well, both coordinates cannot be zero with a higher

probability than either of the chains alone and so we know a maximum probability that

both coordinates are zero.

As we will show in Theorem (5.11) no matter how the dependence within these limits,

there is always a positive drift on the asymmetric edge of example game 4 and hence the

chain (Wt) drifts towards max1 on the ‘upper end’ of the asymmetric edge, away from co.

We use these bounds to find a upper bound on the equilibrium distribution for the

states d ∈ S+,+. Then we show, using these bounds, that ∆d∗,W > 0 for all starting states

d∗ along the asymmetric edge.

Let π
RW1,d∗
0 and π

RW2,d∗
0 be the equilibrium probabilities for the 0-state of the ‘pes-

simistic ’ random walks. We will use these as lower bounds for ∑m≥0 πDW d∗

(0,m) and ∑n≥0 πDW d∗

(n,0) .

These bounds we will use to calculate a lower bound on the drift in equilibrium of the

chain
(
DW d∗

t
)
.
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pC12,+
+,+ (0.47) = 0.09 pC12,−

+,+ (0.47) = 0.41

pC12,+
+,0 (0.47) = 0.08 pC12,−

+,0 (0.47) = 0.42

pC12,+
0,+ (0.47) = 0.09 pC12,−

0,+ (0.47) = 0

pC12,+
0,0 (0.47) = 0.08 pC12,−

0,0 (0.47) = 0

Table 5.14 Transition probabilities for the first coordinate of the chain
(
DW 0.47

t
)

Similarly, in Table 5.12 the transition probabilities for the second coordinate of the

chain
(
DW 0.45

t
)

are given.

pC13,+
+,+ (0.47) = 0.2 pC13,−

+,+ (0.47) = 0.3

pC13,+
+,0 (0.47) = 0.2 pC13,−

+,0 (0.47) = 0

pC13,+
0,+ (0.47) = 0.17 pC13,−

0,+ (0.47) = 0.33

pC13,+
0,0 (0.47) = 0.17 pC12,−

0,0 (0.47) = 0

Table 5.15 Transition probabilities for the second coordinate of the chain
(
DW 0.47

t
)

Lemma 5.10. For all states d∗ on the asymmetric edge of or example game 4, it holds

that ∑m≥0 πDW d∗

(0,m) ≥ π
RW1,d∗
0 and ∑n≥0 πDW d∗

(n,0) ≥ π
RW2,d∗
0 .

Proof: By construction of
(
RW1d∗

t
)
, it is true that at each state, including states where

either coordinate of
(
DW d∗

t
)

is 0, the ‘pessimistic’ random walk has higher probability

to increase by one than the first coordinate. As well at each state apart from when the

first coordinate is zero, the random walk has a lower probability of decreasing than the

first coordinate of the chain
(
DW d∗

t
)
. So we can couple the first coordinate of the chain(

DW d∗
t
)

started from the (0,0)-state with
(
RW1d∗

t
)

started in the 0-state in such a way

that it always holds that the first coordinate of the chain
(
DW d∗

t
)

is less than
(
RW1d∗

t
)
. So

we can conclude that ∑m≥0 πDW d∗

(0,m) ≥ π
RW1,d∗
0 . The same argument applies to the second

coordinate of the chain.

Theorem 5.11. If (Wt) is the W-cooperative game process for example game 4 then

∆d∗,W > 0 for all starting states d∗ along the asymmetric edge.

Proof: We know from Lemma (5.10) that for all states d∗ on the asymmetric edge of or

example game 4, it holds that ∑m≥0 πDW d∗

(0,m) ≥ π
RW1,d∗
0 and ∑n≥0 πDW d∗

(n,0) ≥ π
RW2,d∗
0 .
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We first show that ∆0.47,W > 0, then we show that ∆0.46,W > 0. So we know that at

both endpoints on the asymmetric edge the theorem holds. Then we argue that the lemma

holds as well for all interior states.

We first calculate a bound on ∑n≥0 πDW d∗

(n,0) by calculating π
RW2,d∗
0 explicitly.

Observe that pC13,+
+,+ (0.47) = 0.2 and pC13,+

0,+ (0.47) = 0.17 and so pC13,+
max (0.47) = 0.2.

Furthermore pC13,−
min (0.47) = 0.3 since pC13,−

+,+ (0.47) = 0.3 and pC13,−
0,+ (d∗) = 0.33.

And pC12,+
max (d∗) = max{pC12,+

+,+ (d∗) , pC12,+
+,0 (d∗)} and

pC12,−
min (d∗) = min{pC12,−

+,+ (d∗) , pC12,−
+,0 (d∗)}

.

From Grimmett, Stirzacker (2001) we know that the equilibrium distribution of a ran-

dom walk is given by 1−φ where φ is the ratio φ =
pi,i+1
pi+1,i

where pi,i+1 is the probability

that the random walk increases one step at a state i 6= 0 and pi+1,i is the probability that

the random walk decreases one step if at i 6= 0. Let φ1 correspond to RW1 and φ2 corre-

spond to RW2. Then φ1 =
0.09
0.41 = 0.22 and so π

RW1,0.47
0 = 0.78 and φ2 =

0.2
0.3 = 2

3 and so

π
RW1,0.47
0 = 1

3 . By Lemma (5.10) it follows that the first coordinate of the chain
(
DW d∗

t
)

is in the zero state with a probability of at least 0.78, and the second coordinate is in a

zero state with probability of at least 1
3 . We do not know the exact dependence of the first

and the second coordinate of the chain
(
DW d∗

t
)

however we know that the chain DW d∗
t in

equilibrium is at least with probability 0.11 and at most with probability 1
3 in the set S0,0.

We claim that as long as the drifts are such that ∆
d∗,W
0,0 > 0, ∆

d∗,W
0,+ > 0, ∆

d∗,W
+,0 > 0 and

∆
d∗,W
+,+ < 0 then the chain

(
DW d∗

t
)

that is with the maximal possible probability in the set

S0,0 gives a lower bound on the drift compared to all other possible such chains that are

in the set S0,0 with lower probability.

Observe that the equilibrium distribution over the different sets Sφ can vary between

π0,0 =
1
3−x, π0,+ = 0.78− 1

3 +x, 1
3 +x, π+,0 = 0+x and π+,+ = 0.22−x for 0≤ x≤ 0.22.

If x increases both the equilibrium probability on S+,+ and on S0,0 decreases by x

whereas the equilibrium probability on S0,+ and S+,0 increases by x. Since ∆
d∗,W
0,0 <

|∆d∗,W
+,+ | the overall change in drift will be positive for x increasing. So it suffices to calcu-

late the drift for the maximum possible probability that the chain DW d∗
t is in S0,0.
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Observe that ∆
0.47,W
0,0 = 0.53, ∆

0.47,W
+,0 = ∆

0.47,W
0,+ = 0.06 and ∆

0.47,W
+,+ =−0.88 and so it

holds that ∆0.47,W = 0.53
3 +0.06∗0.45+0.06∗0−0.88∗0.22 = 0.01.

The same calculation for the d∗1 = 0.46 yields ∆0.47,W = 0.03.

The larger d∗1 (representing a ’higher’ location on the asymmetric edge), the smaller

the drift becomes. However for all states along the asymmetric edge it holds that ∆d∗,W >

0.

5.5 Simulation Results and Conclusions

The code is written in visual C++ and it simulates sample paths of the chain (Vt). Ran-

dom numbers are generated via the boost library uniform number generator.

We fix ε = 0.000001. We start the chain (Vt) in a particular state d∗ on the asymmetric

edge and run the simulation until the chain (Vt) has reached a new state on the asymmetric

edge.

We run 10000 simulations per starting state d∗ corresponding to 10000 excursions

from state d∗ on the asymmetric edge. For 1≤ n≤ 10000, let (Vt,n) be the n-th simulated

sample path, or excursion, of the chain (Vt).

For each (Vt,n), we record the new state on the asymmetric edge d∗∗ (d∗,n), the re-

turn time R1 (d∗,n), as well R(S−,n), R(S+,+,n), R(S0,n) and R(S0,0,n), the times spent

in each of these four sets. Recall that only states, where at most coalitions C12 or C13

are binding, are members of these sets. So R(d∗,S−,n)+R(d∗,S+,+,n)+R(d∗,S0,n)+

R(d∗,S0,0,n) = R1 (d∗,n) if the sample path (Vt,n) does not hit any hyperplane corre-

sponding to a three player coalition. Furthermore, we record

max12(d∗,n) = max
t<R1

(
CSC12 (Vt)

)
ε

, max13(d∗,n) = maxt<R1
(CSC13(Vt,n))

ε
, min13(d∗,n) = mint<R1

(CSC13(Vt,n))
ε

and, finally,

maxd (d∗,n) = maxt<R1,i
|di

t,n−di∗|
ε

.

We then calculate the expected return time from d∗ as ∑n R1(d∗,n)
10000 , the drift ∆d∗ we

approximate with ∑n(d1∗∗(d∗,n)−d1∗)
10000 , the distribution over, for example, set S+, we approx-

imate with ∑n R(S−,n)
∑n(R1(d∗,n))

.
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Let H3(d∗,n) = 1 if the sample path (Vt,n) hits a hyperplane corresponding to a 3-

player coalition and H3(d∗,n) = 0 otherwise. We calculate ∑n H3(d∗,n)
10000 , the fraction of

sample paths that hit another hyperplane than H (C12) and H (C13) before returning to

the asymmetric edge.

Similarly we calculate the maximum over all simulations over max12(d∗,n),

max13(d∗,n), maxd (d∗,n) and the minimum over all simulations of min13(d∗,n).

This is to give us some indication of how ‘far away’ the chain (Vt,n) moves away from

starting states on the asymmetric edge before returning to the edge.

The below table depicts the simulated equilibrium distribution of the chain
(
DV d∗

t
)

over the sets S−, S0, S+,+ and S0,0. Comparing table 5.16 with the simulated results

to table 5.9 with the results for the chain
(

DV d∗,2
t

)
, we can see that

(
DV d∗,2

t

)
already

reasonably well approximates the actual equilibrium distribution of the chain
(
DV d∗

t
)

on

these sets. We will see in table 5.17, that the chain
(
DV d∗

t
)

does not go far away from the

asymmetric edge, and that this explains, why, somewhat surprisingly, the restricted chain

is already a reasonably good approximation, despite the fact that the state space is only of

size 15.

π0.6 π0.54 ∆0.6
2 ∆0.54

2

S− 0.11 0.36 0.25 0.25

S0,0 0.21 0.27 0.1 0.12

S0 0.51 0.3 −0.05 −0.02

S+,+ 0.17 0.07 −0.35 −0.28

Table 5.16 Simulated equilibrium distribution in the sets S−, S+,+, S0 and S0,0 for the chain(
DV d∗

t
)

for different starting states

Table 5.17 displays simulation results for E(R1), max12(d∗) = maxn max12(d∗,n),

max13(d∗) = maxn max13(d∗,n), min13(d∗) = minn min13(d∗,n) and maxd (d∗) =

maxn maxd (d∗,n) for n = 10000 for the chain
(
DV d∗)

t for different starting states on the

asymmetric edge.
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d∗1 = 0.54 d∗1 = 0.56 d∗1 = 0.58 d∗1 = 0.6

E(R1) 3.7 3.7 4 4.6

maxd 32 17 12 17

max12 9 10 10 10

max13 8 8 10 13

min13 −12 −9 −8 −8

Table 5.17 Simulated results for the expected return time to AE1, max12(d∗), max13(d∗),

min13(d∗) and maxd for n = 10000 and different starting states on the asymmetric

edge

The below table depicts the asymmetric edge of game 1 with the simulated drift ∆d∗ for

several starting states along the asymmetric edge. At the ‘lower part’ of the asymmetric

edge, the drift is positive, the drift decreases the more, the more the starting state is located

in the ‘upper region’ of the asymmetric edge. Around (0.584, ...) the drift vanishes and

then turns positive until, in the ‘upper part’ of the asymmetric edge, the drift is strongly

negative.

In Figure 5.14 the upper part of the asymmetric edge for example game 3 is depicted.

Drifts of
(
DV d∗

t
)

for different starting states in close proximity of the Markovian coop-

erative equilibrium are depicted. Surprisingly, the only state with negative drift is max1.

Already from state (0.539999,0.210001,0.200001,0.499999) the drift is positive. For

states with d1 > 0.53999, the drift decreases rapidly, the closer the starting states are to

mce. On the asymmetric edge of example game 1, ∆d∗ for these same states is approx-

imately 0.33 for all of them. We highlight, that the lower drift for the states closer and

closer to the Markovian cooperative equilibrium coincides with a higher and higher frac-

tion of the sample paths (Vt ,n) hitting the hyperplane H (C123) before returning to the

asymmetric edge. In such close proximity to the Markovian cooperative equilibrium, the

equilibrium distribution of the 2-dimensional chain
(
DV d∗

t
)

does not accurately represent

the equilibrium distribution of the 3-dimensional chain
(
V d∗

t
)

as the sample paths that hit

H (C123) include transitions from states, which are not member of any set Sm,n. In the

same way, the equilibrium distribution of the 2-dimensional chain
(
DV d

t
)

does not accu-

rately represent the equilibrium distribution of (Vt) for those sample paths. However, only

for states very close to the Markovian cooperative equilibrium this seems to impact the
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Figure 5.13 Sketch of the asymmetric edge of example game 1 with simulated values of ∆d∗ for

different starting states d∗ along the asymmetric edge.

drift. For states, which are more than 10ε away from the Markovian cooperative equilib-

rium, the drift is almost identical for a state d∗ on the asymmetric edge of example game

3 and on the asymmetric edge of example game 1.
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Figure 5.14 Sketch of the asymmetric edge of example game 3 with simulated values of ∆d∗

ε
for

different starting states d∗ in the immediate neighborhood of max1 = mce.
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Chapter 6

Speed of Convergence Analysis via

Coupling

6.1 Introduction to the Coupling Method

The main methodological contribution of the thesis is to show how to use coupling to

demonstrate speed of convergence for stochastic learning processes. In several branches

of probability theory the coupling technique has been one of the methods of choice to

analyze the speed of convergence of Markov chains. Levin and Peres (2009) is a good

introduction to different applications of couplings with main focus on analyzing the speed

of convergence to equilibrium of Markov chains.

However we believe this technique to be novel to the study of stochastic learning

processes in evolutionary game theory. That is why we present our analysis in general

form. The topic of speed of convergence analysis has recently become a topic of general

interest.

Coupling is a powerful and elegant tool with which one is often able to calculate tight

bounds on the mixing time and to reduce the complexity or length of calculations com-

pared to other techniques. There are general principles in coupling which we summarize

hereafter. However finding a good coupling is more like an art and a good coupling is

often specific to the inherent dynamics of the process.
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The main purpose of Coupling is to find bounds on the mixing time of stochastic

processes. There are a variety of particular cases for which the Coupling method can be

used.

• general purpose of the Coupling method:

Finding bounds on the speed of convergence of stochastic processes

• particular applications of the Coupling method:

– proving existence of stationary measure,

– bounding return times or return probabilities,

– proving limit theorems,

– deriving inequalities,

– obtaining approximations...

How exactly does a coupling work? In order to show the speed of convergence of

Markov chains one first needs to have a notion of distance between two probability distri-

butions.

The following definitions closely follow Levin and Peres (2009). The total variation

distance between two distributions µ and ν on ΩE is given by

‖ µ−ν ‖TV=
1
2 ∑

d∈ΩE

| µ(d)−ν(d) | . (6.1)

A coupling of two probability distributions µ and ν is a pair of random variables

(X ,Y ) defined on a single probability space such that the marginal distribution of X is µ

and the marginal distribution of Y is ν. That is, a coupling (X ,Y ) satisfies P{X = x} and

P{Y = y}.

There always exists the independent coupling, where both random variables are inde-

pendent of each other. However the aim of a coupling is to find a joint distribution that

“forces” the two random vairables to move towards each other as often as possible whilst

preserving the marginal distribution of each.

To analyze the speed of convergence of Markov chains to the equilibrium distribution

one usually compares either two distributions that are “opposite” or far away from each
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other or any possible distribution with the equilibrium distribution. We then calculate

after how many transitions the chain started “far away” from equilibrium is close to the

equilibrium distribution. The following important result bounds the distance between two

distributions (e.g. a particular starting distribution and the equilibrium measure) with the

probabiliy that the coupling of the markov chains started in these two states (or distri-

butions) has not coalesced. Theorem (6.1) is the main theorem linking convergence of

Markov chains to equilibrium and coupling. For a proof we refer the reader to Levin and

Peres (2009).

Theorem 6.1. For any coupling of Vt and V ′t it holds that ‖ Pt (d, ·)− Pt (d′, ·) ‖TV≤

P{Vt 6=V ′t }.

So if one can couple two versions of a Markov chain started at “opposite locations” of

the state space and show that after t time steps the probability that the two have not met

is very low, we know that the total variation distance after t time steps is very small. In

order to show that Markov chains “move closer to each other” or “meet” on a state space,

a notion of distance between the two Markov chains on that state space is essential.

When is a Markov chain “close” to equilibrium? For d ∈ΩE and t ∈N, let Pt (d, ·) be

the distribution of (Vt) conditioned on V0 = d. We want to bound the maximum distance

of the Markov chain started in any state of the state space and the equilibrium distribution

after t steps. So let m(t)=maxd∈ΩE ‖Pt (d, ·)−π ‖where π is the equilibrium distribution

of the chain (Vt).

Then let the mixing time be tmix
(1

4

)
= min{t | m(t) ≤ 1

4}. The mixing time is gen-

erally applied to measure how quick a Markov chain is close to equilibrium. After the

mixing time has elapsed, the Markov chain is close to equilibrium for any possible start-

ing state. The choice of 1
4 in the definition of mixing time is somewhat arbitrary but it is

the generally applied threshold.

What makes a coupling useful to bound the mixing time? First one needs a measure of

distance between the two chains in the coupling. In Section 6.2 the L1 distance between

different states is used to define a distance between two versions of the cooperative game

process. The best (trick) one can hope for is to define (find) a coupling such that the

distance between the two chains in the coupling will never increase and decrease by some

positive probability at each time step. In Theorem (6.2) it is shown that under the coupling
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described Section 6.2 the distance between the two versions of the cooperative game

process for the N-player bargaining game never increases and decreases over each time

step with strictly positive probability proportional to the L1 distance between the two

versions of the chain.

Most of the time it is not possible to find a coupling such that the distance between the

two versions never increases. The next best alternative to look for is to find a coupling for

which the distance between the two chains decreases in expectation over each time step.

In Theorem (6.3) it is shown that under the coupling described in Section 6.2 the distance

between the two versions of the cooperative game process for superadditive balanced

three-player games decreases in expectation by a factor proportional to the L1 distance of

the two versions over each time step.

6.2 The Cooperative Game Process has Rapid Mixing

In this section we define a coupling on the cooperative game process and use it to show

that the cooperative game process converges fast to equilibrium. In particular we show for

the N-player bargaining set-up that the chain (Vt) started from any efficient state is close

to equal split fast. For the cooperative game process for three-player games as introduced

in Chapter 4 we show that the chain (Vt) started from any state in the core is close to the

vector co fast.

Let τ be the first time t that |Vt−V ′t |1 = 0.

For d,d′ ∈ΩE , let ki, j
d,d′ = min

(
pi, j

d , pi, j
d′

)
.

For d,d′ ∈ΩE , let li, j
d,d′ = max{0, pi, j

d − pi, j
d′ }.

We will couple the chains (Vt) and (V ′t ) in the following way:

1. A player is chosen uniformly at random and that player, say i, increases his demand

by ε in both chains (Vt) and (V ′t ).

2. For j ∈ {1,2, ...,N}, player j decreases demands jointly in both chains with prob-

ability ki, j
d,d′ . Then players decrease their demands in both chains according to their

remaining marginal probabilities li, j
d,d′ and li, j

d′,d.
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We couple two copies of Vt , say Vt and V ′t , defined on the same probability space from

any different starting states d and d′ .

The below table describes the effect of the coupling
(

Vt ,V
′

t

)
in the N-player bargain-

ing setting on |d−d′|1 for 3-players started from d= (0.7,0.2,0.1) and d′ = (0.2,0.5.0.3)

over one time step t.

Suppose player one is to update demands (simultaneously in both chains). The cou-

pling is now in the joint state {(0.7+ ε,0.2,0.1) ,(0.2+ ε,0.5.0.3)}. Whenever player

one decreases demands in chain two (with probability k1 (d(1) = 0.2+ε

1+ε
) player one in

chain one will decrease as well his demand. In the same way, whenever players two and

three in chain one decrease demands ( with probabilities 0.2
1+ε

and 0.1
1+ε

so will players two

and three in chain two decrease demands. For all joint demand decreases for players one,

two and three which happen with probabilities k1,k2andk3 the L1 distance for the cou-

pling remains the same. However player one in chain one will decrease demands with an

additional probability of l1
1 = 0.5

1+ε
. The subscript identifies the chain for which l1 strictly

larger than 0. Players two and three in chain two will decrease demands with an additional

probability of l2
2 = 0.3

1+ε
and l3

2 = 0.2
1+ε

respectively. Observe that under the coupling if a

player i reduces demands in chain one while in the chain two another player j reduces

demands, player i must have larger demands in chain one than player i in chain two and

player j in chain two much have larger demands than player j in chain one. Hence these

joint decreases where not the same player reduces demands in both chains reduce the

L1-distance by 2ε.

If player two or three increase demands the effect on the L1 distance is exactly the

same as when player one increases his demand.
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d1 d
′1 d2 d

′2 d3 d
′3

value 0.7 0.2 0.2 0.5 0.1 0.3

decrease by player 1 decrease by player 2 decrease by player 3

increase k j 0.2+ε

1+ε

0.2+ε

1+ε

0.2
1+ε

0.2
1+ε

0.1
1+ε

0.1
1+ε

by l j 0.5
1+ε

0.0 0.0 0.3
1+ε

0.0 0.2
1+ε

player 1 −l jε − 0.5
1+ε

(ε) 0 0 − 0.3
1+ε

(ε) 0 − 0.2
1+ε

(ε)

increase k j 0.2
1+ε

0.2
1+ε

0.2+ε

1+ε

0.2+ε

1+ε

0.1
1+ε

0.1
1+ε

by l j 0.5
1+ε

0.0 0.0 0.3
1+ε

0.0 0.2
1+ε

player 2 −l jε − 0.5
1+ε

(ε) 0 0 − 0.3
1+ε

(ε) 0 − 0.2
1+ε

(ε)

increase k j 0.2
1+ε

0.2
1+ε

0.2
1+ε

0.2
1+ε

0.1+ε

1+ε

0.1+ε

1+ε

by l j 0.5
1+ε

0.0 0.0 0.3
1+ε

0.0 0.2
1+ε

player 3 −l jε − 0.5
1+ε

(ε) 0 0 − 0.3
1+ε

(ε) 0 − 0.2
1+ε

(ε)

Theorem 6.2. Suppose (v,N) is a N-player game satisfying the conditions on v from the N-player

bargaining setting and ε is equal to 1
M for some v-compatible M ∈ N. Let (Vt) and (V ′t ) be two

versions of the (v,N,ε) cooperative game process. Then under the coupling of
(

Vt ,V
′

t

)
it holds

that E
(
|dt+1−d′t+1|1−|dt −d′t |1

)
=− |dt−d′t |1

1+ε
ε for all states d,d′ ∈ΩE .

Theorem 6.3. Suppose (v,3) is a superadditive 3-player game satisfying (4.4), and ε is equal to
1
M for some v-compatible M ∈ N. Let (Vt) and (V ′t ) be two versions of the (v,3,ε) cooperative

game process. Then under the coupling of
(

Vt ,V
′

t

)
it holds that E

(
|dt+1−d′t+1|1−|dt −d′t |1

)
=

−1
6
|dt−d′t |1

1+ε
ε for all states d,d′ ∈ΩC.

We use Theorems 6.2 and 6.3 respectively to deduce a bound on the mixing time for the coop-

erative game process both in the three player superadditive setting and in the N-player bargaining

setting.

Lemma 6.4. The mixing time of the chain Vt in the set-up of the N-player bargaining model and

in the set-up of the three player superadditive game setting is of order O
(1

ε
log 1

ε

)
.

Proof: We know from Theorem (6.2) and (6.3) that

E
(
|dt+1−d′t+1|1 | dt ,d′t

)
≤
(

1− ε

1+ ε

)
|dt+1−d′t+1|1. (6.2)

Then

E
(
|dt −d′t |1 | d0,d′0

)
≤
(

1
1+ ε

)t

|d0−d′0|1. (6.3)

Observe that maxd∈ΩE |d−d′|1 = 2 and is attained in all combination of states (d,d′) where

the demands of the players are such that if di > 0 then d
′i = 0 vice versa.
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So E(|dt −d′t |1 | d0,d′0)≤ 2
(1+ε)t .

Then we use the Markov inequality to deduce that

P
(
|dt −d′t |1 ≥ ε

)
≤ 1

ε
E|dt −d′t |1 ≤

1
ε

2
(1+ ε)t (6.4)

Furthermore we know from Levin and Peres (2009) that ‖ µ(d)− v(d) ‖TV≤ P(dt 6= d′t) =

P(|dt −d′t |1 ≥ ε)≤ 2
ε(1+ε)t and so the mixing time is of order O

(1
ε

log 1
ε

)
.

Proof: of Theorem 6.2

For both chains Vt and V
′

t the same player i is chosen to increase demands by ε.

Then from d(i) and d′ (i) we decrease demands of player j jointly for both chains with prob-

ability ki, j. This has no effect on |d−d′|1 as for both chains player i’s demand is increased and

player j’s demand is decreased (with possibly j = i).

Then with the remaining marginal probabilities to decrease from d(i), whenever either d j or

d
′ j decrease with probability li, j or l

′i,′ j, the distance |d−d′|1 decreases by li, jε or l
′i,′ jε.

Observe that ∑ j∈[1,..,N]

(
li, j + l

′i,′ j
)
= |d−d′|1

1+ε
and so P

(
|d−d′|1t+1 = |d−d′|1t − ε

)
= |d−d′|1

1+ε
.

Proof: of Theorem 6.3

Observe that if the same player reduces in (Vt) and (V ′t ), then
(
|dt+1−d′t+1|1−|dt −d′t |1

)
= 0.

If a player j decreases demands under (Vt) and player k decreases demands under (V ′t ) with

d j > d
′ j and dk < d

′k, then
(
|dt+1−d′t+1|1−|dt −d′t |1

)
= −2ε. If If a player j decreases de-

mands under (Vt) and player k decreases demands under (V ′t ) with d j < d
′ j and dk > d

′k, then(
|dt+1−d′t+1|1−|dt −d′t |1

)
= 2ε. Otherwise, if a player j decreases demands under (Vt) and

player k decreases demands under (V ′t ) with d j > d
′ j and dk > d

′k or with d j < d
′ j and dk < d

′k,

then
(
|dt+1−d′t+1|1−|dt −d′t |1

)
= 0.

We will show that under the coupling a change of 2ε never happens and changes of −2ε

happen frequently.

A feature in the N-player bargaining set-up was that, if di > d
′i, then p j,i

d > p j,i
d′ for all j ∈ N

and hence the distance |dt−d′t |1 will always change by −2ε if not the same players decrease in V

and V ′ and stay constant if the same players in V and V ′ decrease.
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Figure 6.1 Graphical representation of core and outcome III in table (4.5).

Now in the 3-player bargaining set-up the only combined demand decreases for V and V ′ that

are in effect different to the N-player bargaining case can occur if one of the two players, say i,

has di < d
′i but p j,i

d > p j′,i′
d′ for some j in [1,2,3]. In that case the player with smaller demands in

V,V ′ will decrease with higher probability and the contribution to the change in |dt −d′t |1 will be

positive. Our strategy is to show that in case that it happens for a player i that di < d
′i but p j,i

d > p j,i
d′

then this player i will decrease jointly with a player k 6= i in [1,2,3] where dk < d
′k and p j,k

d < p j,k
d′

and so the combined decrease of di,d
′ j contributes at most 0 to the change in |dt −d′t |1.

The table below gives an overview of all possible combinations of states at d(i).

case I II III IV V V I V II

C′ (d(i)) /0 C j C jk C j C j C jk C jk

C′ (d′ (i)) /0 /0 /0 Ck C j C j C jk

Table 6.1 All possible combinations for C′ (d(i)) ,C′ (d′ (i))
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Suppose at (d(i) ,d′ (i)) it holds that C′ (d(i)) = /0 and C′ (d′ (i)) = /0. Observe that this situa-

tion is identical to d(i) ,d′ (i) with the set-up of the 3-player bargaining setting (6.2). We deduce

that the expected change in |d−d′|1 conditioned on d(i) is at least − |d−d′|1
1+ε

ε.

Suppose at (d(i) ,d′ (i)) it holds that C′ (d(i)) = C j and C′ (d′ (i)) = /0. Let i,k be the other

two players.

By assumption the states d and d′ are in the core and so it holds that d j < d
′ j. So di + dk >

d
′i +d

′k and so for at most one of i,k, say i, it can hold that di < d
′i.

If both di > d
′i and dk > d

′k the case is similar to the previous case where in both chains

(Vt) and (V ′t ) the payable coalition was the empty set. However joint demand decreases be-

tween different players happen more frequently since players i, j reduce demands with di

di+dk+ε

and dk

di+dk+ε
since player j forms the payable coalition. So pi,i

d − pi,i
d′ =

di

di+dk+ε
− d

′i

1+ε
> di

1+ε
−d

′i,

pi,k − p
′i,′k = dk

di+dk+ε
− d

′k

1+ε
> dk

1+ε
− d

′k

1+ε
and p

′i,′ j − pi, j = d
′ j

1+ε
> d

′ j

1+ε
− d j

1+ε
. So a change in

|d−d′|1 of −2ε happens with higher probability than in the previous case, where at d no coalition

was binding and so we deduce that the expected change in |d−d′|1 conditioned on d(i) is at least

− |d−d′|1
1+ε

ε.

Suppose that di < d
′i and suppose that di+ε

di+dk+ε
> d

′i+ε

1+ε
. The table below shows the possible

joint demand decreases from d(i) for V,V ′.

d
′i d

′ j d
′k

di 0 +− x

d j x x x

dk x −− 0

Table 6.2 Case C′ (d(i)) =C j,C′ (d′ (i)) = /0,di < d
′i and di+ε

di+dk+ε
> d

′i+ε

1+ε

The third row represents joint demand decreases of d j and d
′i,d

′ j,d
′k respectively. Since

C′ (d(i))=C j, player j will never decrease demands from d(i) and hence none of these is possible.

This is marked with an x in the respective entries in the below table. Joint demand decreases by

the same player in V,V ′ don’t change |d−d′|1 hence the respective entries along the diagonal are

0.

Since pi,k
d > pi,k

d′ , d
′k decreases only jointly with player dk. Similarly since pi,i

d > pi,i
d′ the

probability of a joint decrease of d
′i and dk is 0 which is again marked with an x. We see that there

are only two possible joint demand decreases of different players. If di and d
′ j decrease jointly,

the decrease in di increases and the decrease in d
′ j decreases |d−d′|1 by ε. This is indicated in the

table with a +−. The second possible joint decrease is of dk and d
′ j. Both decreases of demands
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decrease |d−d′|1 and hence the respective entry in the table is marked with a −−. We will show

that the probability of dk and d
′ j decreasing jointly is at least 1

2
|dt−d′t |1

1+ε
.

The overall change of dk and d
′ j decreasing simultaneously is −2ε and this happens with

probability dk

di+dk+ε
− d

′k

1+ε
> dk − d

′k. Since by assumption d j < d
′ j and di < d

′i it holds that

dk−d
′k = d

′ j−d j +d
′i−di = 1

2 |d−d′|1.

Suppose at (d(i) ,d′ (i)) it holds that C′ (d(i)) =C jk and C′ (d′ (i)) = /0.

Then di > d
′i and d j + dk < d

′ j + d
′k. Observe that at least one of d

′ j > d j or d
′k > dk has

to hold. Suppose that both di < d
′i and d j < d

′ j. Then the possible joint demand changes are

summarized in the below table.

d
′i d

′ j d
′k

di 0 −− −−

d j x x x

dk x x x

Table 6.3 Case C′ (d(i)) =C jk,C′ (d(′i)) = /0, d j < d
′ j and dk < d

′k

Suppose now that d j > d
′ j and dk < d

′k. Then the possible joint demand changes are summa-

rized in the below table.

d
′i d

′ j d
′k

di 0 −+ −−

d j x x x

dk x x x

Table 6.4 Case C′ (d(i)) =C jk,C′ (d(′i)) = /0, d j > d
′ j and dk < d

′k

Then d
′k − dk = d j − d

′ j + di− d
′i and so d

′k − dk = 1
2 |d− d′|1 and so the probability that

|d−d′|1 decreases by 2ε is at least 1
2(1+ε) |d−d′|1 conditional on C′ (d(i)) =C jk and C′ (d′ (i)) = /0.

Suppose at (d(i) ,d′ (i)) it holds that C′ (d(i)) =C j and C′ (d′ (i)) =Ck with v(C j)> v(Ck).

Then d j < d
′ j and dk > d

′k and furthermore di +dk < d
′i +d

′k.

If di > d
′i it holds that pi,i = di+ε

di+dk > p
′i,′i = d

′i+ε

d′i+d′ j+ε
and the possible joint demand changes

are summarized in the below table.
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d
′i d

′ j d
′k

di 0 −− x

d j x x x

dk x −− x

Table 6.5 Case C′ (d(i)) =C j,C′ (d(′i)) =Ck, di > d
′i

If di < d
′i but di+ε

di+dk+ε
> d

′i+ε

d′i+d′ j+ε
then the joint demand changes are summarized in the below

table.

d
′i d

′ j d
′k

di 0 +− x

d j x x x

dk x −− x

Table 6.6 Case C′ (d(i)) =C j,C′ (d(′i)) =Ck, di < d
′i and di+ε

di+dk+ε
> d

′i+ε

d′i+d′ j+ε

In this case the expected change in |d−d′|1 conditioned on d(i) is given by di+ε

di+dk+ε
− d

′i+ε

d′i+d′ j+ε
−

dk

di+dk+ε
− d

′ j

d′i+d′ j+ε
which simplifies to di+ε−dk

di+dk+ε
−1<− dk

di+dk+ε
<−dk. Now since di < d

′i, d j < d
′ j

and dk > d
′k it holds that dk−d

′k = 1
2 |d−d′|1 and so −dk <−1

2 |d−d′|1. So the expected change

in |d−d′|1 is at least −1
2 |d−d′|1ε.

So the expected change in |d−d′|1 is smaller than in the case just described.

Suppose at (d(i) ,d′ (i)) it holds that C′ (d(i)) = C j and C′ (d′ (i)) = C j. Then d j = d
′ j and

di + dk = d
′i + d

′k. This case is basically the same as a scaled version of the 2-player bargaining

game where the denominator of pi,i
d , pi,i

d′ , pi,k
d , pi,k

d′ is given by di +dk + ε = d
′i +d

′k + ε instead of

by 1+ ε.

Suppose at (d(i) ,d′ (i)) it holds that C′ (d(i)) =C jk and C′ (d′ (i)) =C j.

Then d j +dk < d
′ j +d

′k which implies di > d
′iand d j > d

′ j. So we conclude that dk < d
′k and

d
′k−dk = 1

2 |d−d′|1.

The possible joint demand decreases are given in the below table.

d
′i d

′ j d
′k

di 0 x −−

d j x x x

dk x x x

Table 6.7 Case C′ (d(i)) =C jk,C′ (d(′i)) =C j
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If di and d
′k reduce jointly with probability d

′k

d′k+d′i+ε
> d

′k− dk = 1
2 |d− d′|1 the change in

1
2 |d−d′|1 is −2ε. So the expected change in |d−d′|1 is at least −|d−d′|1ε.

Suppose at (d(i) ,d′ (i)) it holds that C′ (d(i)) =C jk and C′ (d′ (i)) =C jk. Then di and d
′i will

reduce with probability 1 and no change happens to |d−d′|1. Observe that as long as d 6= d′ this

situation at d(i) can happen for at most one i ∈ [1,2,3].

We have shown that in all cases apart from when C′ (d(i)) =C jk and C′ (d′ (i)) =C jk it holds

that the expected change in |d−d′|1 is at least 1
2 |d−d′|1ε. So we conclude that

E
(
|dt+1−d′t+1|1−|dt −d′t |1

)
=−1

6
|dt −d′t |1

1+ ε
ε

.

Figure 6.2 Graphical representation of core and outcome IV in table (4.5).
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Chapter 7

Remarks and Open Problems

There are three “branches” of open problems that we find interesting and relevant. We give a short

summary in the below list and then elaborate further on them in the next paragraphs.

1. The first branch is to analyze other incremental demand or aspiration adaption processes

on cooperative games. We expect that asymmetric power is present in different dynamic

learning processes on cooperative games. The features a dynamic learning process should

possess so that the power dynamic is likely to be present along an asymmetric face of the

core are: incremental demand updates and some dynamic that results in the process moving

in close proximity of the faces of the core a lot of the time.

2. The second branch is to apply the coupling technique to other dynamic learning models,

such as aspiration adaption, Bayesian updating, and in particular, completely uncoupled

processes.

3. The third branch is to apply and extend the tools developed in this thesis to prove general

results for the N-player cooperative game processes. We expect that this is complicated

when the core polytope contains asymmetric faces. In all other games we expect that via

symmetry arguments , as outlied further below, general proofs are feasible.

The cooperative game process moves as a biased random walk on the polytope formed by

the set of efficient states in the core. The inherent equity bias lets the random walk drift towards

faces of the polytope formed by the core. It is of great interest to analyze other incremental

dynamic learning models where the state space is based on a cooperative game with an asym-

metric face. An extreme example game is the following: v(C12345678) = 1, v(C1i) = 0.8 for i

in {2,3,4,5,6}, with the worths of all other coalitions zero. Considering for example the state

(0.75,0.05,0.05,0.05,0.05,0.05,0,0).
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Player 1 is the strong player, players 2− 6 are the weak players and players 7− 8 are the

complement players. Different incremental learning rules could be analyzed on this game. This

could involve experimental games (on-line experiments) with large populations of agents playing

repeated cooperative games, where some games include, and some games do not include, an asym-

metric edge. It would be interesting to see for these experimental games if the equity achieved in

these different games is statistically significantly lower for games with asymmetric faces. “Ex-

treme” cases of games (such as the one given above) could be used first. Experimental games

could be played where each round one coalition is determined and members paid their payoffs or

demands. We strongly believe that there will be processes exhibiting asymmetric power for such

games.

There seem to be a variety of open problems to apply the coupling method to dynamic learning

models. First of all, previous bounds on convergence to equilibrium in the literature could be re-

examined, furthermore new models can be analyzed. The applicability of the coupling method is

vast, very different dynamic learning models could be analyzed since the coupling technique can

be applied to many different situations. Many interesting results using couplings on a variety of

Markov processes exist, some of which could well be adapted to the dynamic learning models in

the literature.

Conjecture 7.1. Suppose (v,4) is a superadditive balanced game and the polytope corresponding

to its core does not contain a face generated by an asymmetric coalition set and suppose (v,4,ε)

is the respective cooperative game process for some v-compatible ε = 1
M .

Then the Markovian cooperative equilibrium is co the most equal allocation in the core.

For 4-player games we believe the above conjecture to be true. Whether it might hold for N-

player games will be interesting. There is some evidence including Theorem (5.1) that this might

be true. Investigations in this direction seem promising.

An outline of the proof is given. First, all possible edges of such a game (v,4) are listed.

coalitions fixed players free players

C12,C123 4,3 1,2

C12,C134 2,1 3,4

C123,C124 3,4 1,2

Table 7.1 Classification of all symmetric edges for 4-player games

Given a game (v,4), the following “procedure” is an alternative way to determine the Marko-

vian cooperative equilibrium, especially if 1-step drift analysis feels tedious.
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1. Determine all recurrent edges. A recurrent edge is an edge where φC1 < 1 and φC2 < 1 where

φC1 and φC2 are defined in equations (7.1) and (7.2).

2. For all recurrent edges of the game, determine for each edge the free players. For example

for an edge generated by coalitions C123 and C124, with v(C123) = 0.8 and v(C124) = 0.79

the free players are players 1 and 2 since d3 = 0.21 and d4 = 0.2 at each state on the edge.

Along the edge, players 1 ad 2 are both members of both coalitions generating the face and

hence the equity bias is the only dynamic impacting the drift along this edge. The player

with larger demands will reduce his demand with higher probability than the other player

and that defines the direction of the drift.

3. Repeat this analysis for all recurrent edges of the game.

4. Show that once close to a vertex state, the probability to hit a state on a new recurrent edge

is high.

5. The above arguments combined show that for a particular game the path through the core is

known, all recurrent edges lead to an edge with co as member. Once the process is on such

an edge, the process drifts towards co.

6. generalize the procedure to cover all possible combinations of symmetric edges in 4-player

games (for which the core does not contain an asymmetric edge)

We now use the definitions from Chapter 5 Section 5.4. Please refer to this Section for defi-

nitions of, e.g., pC1,+
+,0 (d∗). Recall that an edge is the set of states in the intersection of two facets

H
(
C1
)

and H
(
C2
)

of the core.

Let TE be the first time that the chain (Wt) returns to E
(
C1,C2

)
. We want to analyze what

conditions the coalitions C1 and C2 must satisfy such that the chain (Wt) returns frequently to the

edge.

Suppose the chain (Wt) starts in a state on a symmetric edge, e.g., generated by C123 and C124,

with v(C123) = 0.8 and v(C124) = 0.79. We define now two values φC1 and φC2 that are important

in the analysis of the edges.

φC1 =
π

RW2,d∗
0 pC1,+

+,0 (d∗)+
(

1−π
RW2,d∗
0

)
pC1,+
+,+ (d∗)

π
RW2,d∗
0 pC1,−

+,0 (d∗)+
(

1−π
RW2,d∗
0

)
pC1,−
+,+ (d∗)

(7.1)

and
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φC2 =
π

RW1,d∗
0 pC2,+

+,0 (d∗)+
(

1−π
RW1,d∗
0

)
pC2,+
+,+ (d∗)

π
RW1,d∗
0 pC2,+

+,0 (d∗)+
(

1−π
RW1,d∗
0

)
pC2,−
+,+ (d∗)

. (7.2)

We calculate the proportions of time when the leading coalition’s surplus (in the example

game the leading coalition is C123) is zero and non-zero. The return behavior of coalition C124

is dependent on the proportion of times that the leading coalition, C123, is in the 0-state; and

the proportion of time that the leading coalition is in the non-zero states. The average transition

probability of C124’s coalition’s surplus to increase by 1 is taken over the proportion of times that

C123’s coalition’s surplus is in the 0-state or in the non-0-states. If the average probability of CSC124

ε

to increase by 1 is smaller than the average probability of CSC124

ε
to decrease by 1, then the process(

CSC123 (d)
ε

, CSC124 (d)
ε

)
will return frequently to the face generated by C123 and C124.
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