The London School of Economics and Political Science

Essays on the Term Structures of

Bonds and Equities

Wen Yan

Thesis submitted to the Department of Finance

of the London School of Economics for the degree of PhD in Finance

July 2015



Declaration

I certify that the thesis I have presented for examination for the PhD
degree of the London School of Economics and Political Science is solely
my own work other than where I have clearly indicated that it is the
work of others (in which case the extent of any work carried out jointly
by me and any other person is clearly identified in it).

The copyright of this thesis rests with the author. Quotation from it
is permitted, provided that full acknowledgement is made. This thesis
may not be reproduced without my prior written consent.

I warrant that this authorisation does not, to the best of my belief,
infringe the rights of any third party.

I declare that my thesis consists of 23528 words.



Abstract

Chapter 1 “The Term Structure of Equities” examines the term structure
of equities. Using observed prices of dividend strips, prices of zero-coupon
equities are extracted, and their yields and returns characteristics are
documented. An affine term structure model is used to model the term
structure of equities. The model is estimated, and model-implied equity
yields and returns are shown to match the data well. However, the model-
implied long-run risk-neutral mean of the short rate is implausible. (The
next chapter takes this into account and estimates bond and equity yield
curves jointly using data on both zero-coupon bonds and zero-coupon
equities.)

Chapter 2 “Estimating a Unified Framework of Co-Pricing Stocks
and Bonds” estimates a maximal identifiable affine term structure model
that explains the joint prices of stocks and bonds. Using the test assets
of Treasury bonds and dividend strips, it is shown that the estimated
model can generally match the time series and cross-sectional proper-
ties of zero-coupon bonds, zero-coupon equities and the aggregate stock
index. Moreover, imposing restrictions prevalent in the co-pricing lit-
erature on the maximal model enhances certain features of the model
such as the high return of the short-term dividend strip, but reduces the

model’s ability to fit other aspects of the data such as the level of the



market risk premium.

Chapter 3 “The Role of Asian Countries” Reserve Holdings on the
International Yield Curves” studies the effect of Asian countries’ reserve
holdings on the yield curves of six industrialized countries: the United
States, the United Kingdom, Germany, Canada, Switzerland and Aus-
tralia. A Gaussian affine term structure model with three yield factors
and three unspanned macro factors including reserves is estimated to fit
the yield curve of each country. Impulse responses and variance decom-
positions show that Asian countries’ reserve holdings are an important

factor affecting the international yield curves.
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Chapter 1

The Term Structure of Equities

1.1 Abstract

This chapter examines the term structure of equities. Using observed
prices of dividend strips, prices of zero-coupon equities are extracted,
and their yields and returns characteristics are documented. An affine
term structure model is used to model the term structure of equities.
The model is estimated, and model-implied equity yields and returns are
shown to match the data well. However, the model-implied long-run risk-
neutral mean of the short rate is implausible. (The next chapter takes
this into account and estimates bond and equity yield curves jointly using

data on both zero-coupon bonds and zero-coupon equities.)

1.2 Introduction

There is an extensive literature on identifying the common factors that
affect the bond yield curve. The work by Litterman and Scheinkman
(1991) showed that three factors, namely “level”, “slope” and “curva-
ture”, explain over 90% of cross-sectional bond yield variations for al-
most any reasonable length of sample period and any combination of
yield maturities. This result is so robust that factor analysis has since
populated the analysis of bond term structure, with a fourth factor coined
by Cochrane and Piazzesi (2005), namely “the return forecasting factor”,
and the discovery of the “hidden factor” by Duffee (2011).

However, despite the advancement of factor analysis on the bond
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yield curve, the equity yield curve is rarely studied. The literature has
mostly focused on studying the risk and return behavior of the aggregate
stock market without looking at the individual terms that comprise it.
However, because the value of the aggregate stock market can be viewed
as the total value of the discounted future dividend payments (Gordon
1962), in addition to studying the aggregate price of these dividend pay-
ments, exploring the properties of each dividend payment should provide
us with valuable information about the way stock prices are formed and
improve our understanding of investors’ risk preferences and the endow-
ment or technology process in macro-finance models. Hence in this paper,
I study the term structure of equities by exploring the properties of the
individual dividend payments that comprise the aggregate stock mar-
ket. More specifically, I focus on zero-coupon equities, a concept created
using the analogy of zero-coupon bonds. Just like a zero-coupon bond
giving the investor a fixed payment at the end of the bond’s maturity,
a zero-coupon equity simply gives the investor a variable payment, that
is, the stochastic dividend, at the end of the security’s maturity. This
stochastic dividend could be paid out by a particular company, industry
or the aggregate economy. And the sum of discounted future dividend
payments will be the value of the company, industry or the aggregate
economy. In this paper, I focus on the term structure of the stochastic
dividends of varying maturities paid out by the aggregate stock market
index. And the first important questions for us are what the yield and
return characteristics of the zero-coupon equities are and whether there
exist common factors that can price the equity yield curve well.
Previously, the lack of study on the equity yield curve was largely due
to data unavailability. To study the bond yield curve, we use monthly

zero-coupon bond yields data dating back to the post war period (or
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carlier) — these are often available for maturities from one month to 30
years. But such data has not been available for equities. However, my
study of the equity term structure is made possible by the availability of
dividend strips data on the S&P 500 from van Binsbergen, Brandt and
Koijen (2012). Specifically, whereas a zero-coupon equity of maturity
n at time ¢ gives the investor a stochastic dividend payment from ¢ +
n — 1 to t + n, buying a dividend strip of maturity n at time ¢ entitles
the investor to all the dividends paid out from time ¢ to t +n. Using
put—call parity and observed put and call prices on the S&P 500, i.e.
Long-Term Equity Anticipation Securities (LEAPS) from the Chicago
Board Options Exchange (CBOE), van Binsbergen, Brandt and Koijen
decompose the index into a long-term equity and a short-term equity,
which is the dividend strip. In particular, prices of dividend strips for
maturities of six, twelve, eighteen and twenty-four months are priced,
and I extract zero-coupon equity prices from the prices of these strips.
The model used to consistently price dividends will follow Lettau and
Wachter (2007), which is an extension of the bond affine term structure
models first proposed by Duffie and Kan (1996). The economy is driven
by three state variables. One is the short rate factor, one is the growth
rate of dividend and the other is the first principal component of the set
of zero-coupon equities, which can be interpreted as a portfolio of equity
yields. The inclusion of the growth rate of dividend and the short rate
is due to the fact that these two variables are crucial components in the
pricing model of zero-coupon equities. Regarding the estimation of the
model, identification is ensured by showing that the three-factor model
is observationally equivalent to the maximally identified canonical model
specified in terms of three entirely latent factors — a method developed

in Joslin, Singleton and Zhu (2011).
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By estimating the term structure of equities, this paper fills the gap
in the literature in which only the term structure of bonds was estimated.
Both Lettau and Wachter (2007) and Lettau and Wachter (2011) study
the equity term structure, but they do not use data on zero-coupon eq-
uities or dividend strips. Moreover, what we learn using an estimated
factor model is that we can see from the data the dynamics among factors.
The calibration exercise usually makes strong and sometimes counterfac-
tual assumptions on the dynamics of factors and the interaction between
them. For example, in Lettau and Wachter (2011), dividend growth fol-
lows an autoregressive process with positive autocorrelation coefficient.
However, in the data, dividend growth is strongly negatively autocorre-
lated. Such restrictions will likely distort the model’s predictions of asset
prices and each factor’s implication on the asset prices.

The rest of the chapter is structured as follows: Section 1.3 outlines
the affine term structure model that is able to price zero-coupon eq-
uities, the aggregate stock market index as well as zero-coupon bonds.
Section 1.4 describes the data, estimation strategy and estimation results

and shows the model implications for bond yields. Section 1.5 concludes.

1.3 The model

This section introduces the general Gaussian affine term structure model
that is able to price both bonds and equities. The model follows the
affine framework first proposed by Duffie and Kan (1996) to price zero-
coupon bonds with different maturities, which has been further extended
in the literature to price zero-coupon equities with different maturities.
Affine term structure models have been widely used in the bond pricing
literature mainly due to their ability to generate tractable solutions for

bond yields. The same benefit of tractability can be carried forward to
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equity pricing. And the way of using affine term structure techniques
to value zero-coupon equities for each maturity and summing over the
prices of zero-coupon equities of all maturities to reach the aggregate
market index has been applied in Ang and Liu (2004), Bekaert, Engstrom
and Grenadier (2010), Lettau and Wachter (2007), Lettau and Wachter
(2011) and Wachter (2006).

1.3.1 The economy

It is assumed that the economy at time ¢ is driven by a state vector X,
that follows a VAR(1) process under both the physical measure P and

the risk-neutral measure Q,

AX; = Koy + Kiy X1 + Sxer (1.1)

AX; = K& + KX X, 1 + Sxe?, (1.2)

where X; is an N x 1 vector, Kly and K3 are N x 1 vectors, KTy,
K2 and Ty are N x N matrices and both €/ and ¢ are N x 1 vectors
of independent shocks to various risk factors affecting the economy with
mean zero and unit variance.

Let r, = log R;, the one-period interest rate, be an affine function of

the state vector,

re = pox + P1x Xt (1.3)

where pox is a scalar and p;x is an N x 1 vector.

The level of the aggregate dividend of the economy is denoted by D;.
Let d; = log D;, and the log dividend growth rate from time ¢t — 1 to time
t be defined as Ad; = log(D;/D;_1). To maintain the affine structure

of the model, the dividend growth process is assumed to be an affine
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function of the underlying state vector, i.e.

Ady = dox + 81 x X4, (1.4)

where dgx is a scalar and d;x is an N x 1 vector.

Let the market price of risk vector A\; be affine in the state vector,

)\t - )\0X + >\1XXt- (15)

Here A\; is an N x 1 vector of time-varying market prices of risk, A\gx is
an NV x 1 vector and A\;x is an N X N matrix.

By no-arbitrage, we obtain the pricing kernel or the stochastic dis-
count factor (SDF) M;; of the economy as

sAA— A€it), (1.6)

M, = exp(—rt -3

which can be used to consistently price all assets. That is, we have the

Euler equation

1 = Ey[M11Ri44], (1.7)

where R;y; is the one-period return on any asset in the economy.

1.3.2 Zero-coupon equities

To price equities, I follow the approach in, for example, Lettau and
Wachter (2007) for defining the zero-coupon equity, which is analogous
to the concept of zero-coupon bond. It is assumed that the zero-coupon
equity is an asset that pays off the aggregate dividend at some fixed ma-
turity, and its price is an exponential affine function of the underlying

state vector. As a result, the price of zero-coupon equity has an analytical
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form that is similar to the price of the zero-coupon bond.

Specifically, let Pd, denote the time-t price of a zero-coupon equity of
maturity n, that is, the time-t price of the aggregate dividend paid out
between time ¢ +n — 1 and time ¢ + n. This implies that its one-period

return from ¢ to ¢ + 1 can be written as

Jo Pr(Li—l,t—&-l _ Prczi—l,t—l—l/Dt-&-l Dy (1.8)
i Py, Py/Dy Dy '

Plugging this into the Euler equation implies that the price scaled by the

aggregate dividend will satisfy the following equation:

Pdt ngl t+1 Dt—H
= B\ My ——————. 1.9
D, ' Dun Dy (1.9)

If we write the scaled equity price as an exponential affine function of

the state vector, i.e.

Pd
2 — exp(AS + BY'X,), (1.10)

t

then all quantities in the Euler equation can now be expressed as expo-
nential affine functions of the state vector. Moreover, using the Euler
equation, we can express the constant AY and the 1 x N loadings of the

d/

<, as functions of the un-

scaled equity price on the state vector, i.e. B
derlying parameters of the model by solving a set of Riccati equations
with the boundary condition Pg/D; = 1.

More specifically, the loadings are solved recursively as follows:

A = —(pox — dox) + AL, + (Six + BL_,) Koy
+ 2 (6ix + Bo_1)'Sx Sy (dix + By_y), (1.11)

BSLI = _P/1X + (51X + BS—I)I(K?X + [)a (1'12)
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with the starting values of Al = 0 and B = 0. Details of the derivation
are provided in Appendix Al.1.

Moreover, we have

1

I 1
n

ynt - 111

BYX,. 1.13
. Dt n t ( )

When we use the affine model to price bonds, bond yields are affine
functions of the state vector, and in estimation we try to match the
estimated bond yields with the observed bond yields. Analogously, when
we use the affine model to price equities, the quantity

1. Pd

d nt
_ —— 1 —_—

Ynt n t D,

will be the equity “yield” that we try to match.

1.3.3 The aggregate market

Since a zero-coupon equity is an asset that pays off the aggregate dividend
at some fixed maturity, by summing the prices of zero-coupon equities of
all maturities, we get the aggregate market index. Note here that, unlike
the prices of zero-coupon equities, which are exponential affine functions
of the state vector, the market index will not be an exponential affine

function of the state vector

Ptm = ZPSt = Zexp(Ai + Bg/Xt) X Dy. (1.14)
n=1 n=1

1.3.4 Zero-coupon bonds

Although zero-coupon bonds are not studied in this chapter, they will

be studied jointly with zero-coupon equities in Chapter 2. Therefore,
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for completeness and convenience, the pricing equations of zero-coupon
bonds are outlined here. To price nominal bonds, let PP, denote the
time-t price of the n-period nominal zero-coupon bond. Assuming bond

price is exponential affine in the state vector
PP, = exp(Ab + BY' X)), (1.15)

where AP is a scalar and BP is an N x 1 vector, by the Euler equation

we have

P??t - Et[MtHP:thH] (1'16>

with the boundary condition Py, = 1.

The price of the zero-coupon bond PP, = exp(AP+ B> X,) has exactly
the same form as the scaled price of the zero-coupon equity, which is
P /D, = exp(Ad + BYX,). And the Euler equation for the zero-coupon
bond is exactly the same as the Euler equation for the zero-coupon equity
without the dividend growth process. Hence we can just take the results
from the zero-coupon equity, set dox = 0 and d;x = 0 and change the
superscript from d to b to get the standard solutions for bond prices’
loadings on the state vector, which are

Ab = —pox +Ap | + BB_1IK§X + %BS—I/EXyXBb

n—1»

(1.17)

Bb/ = _P/1X + BE—1I(K9X + ])a (1-18)

n

with the starting values being A? = 0 and B = 0.

And bond yield of maturity n can be expressed as

1
ﬁBf;'Xt. (1.19)

nt —

1 1 1
W= Pl = (A BYX) = Ay
n n n
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1.4 Estimation

1.4.1 The normalized model

The general Gaussian dynamic term structure model previously stated
in Section 1.3 is not ready to be estimated, as any affine transformations
of the state process are observationally equivalent as shown in Dai and
Singleton (2000). That is, suppose we have two models; they are the
same in all aspects except that the state process in one model is an affine
transformation of the state process in the other model. Then the two
models will generate exactly the same asset prices. In other words, given
the same set of asset prices, there exists an infinite number of models
that can generate this set of asset prices. Therefore, these models are
generally not identified without imposing restrictions. To impose the
minimum number of restrictions on the state process such that the model
is identified, we can follow Joslin, Singleton and Zhu (2011) (JSZ) and
normalize all models to a canonical form, in which the state vector X,
is entirely latent. As a result of this normalization, given the same set
of asset prices, there is only one model in the canonical form that can
generate this set of asset prices. The JSZ canonical form is only able
to price zero-coupon bonds. I extend the canonical form in JSZ to a
canonical form that is able to price zero-coupon equities as well.

Let us first recall the general form of the state process in Section 1.3,

in which the parameters are unrestricted:

AXt = K(])P)X + KiPXXt—l + EX€£5P7

AXt = Ké()QX + KPXXt—I + EXG?,
(1.20)

re = pox + Pix Xt

Ady = dox + 51XXt7
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where ¥ x ¥y is the constant conditional covariance matrix of X, ef, 69 ~
N(0,Iy), r¢ is the short rate, Ad; is the dividend growth.

Next, as this model belongs to the class of Gaussian dynamic term
structure models, it is observationally equivalent up to an affine trans-
formation of the state vector. Hence, using this feature, we can derive
a canonical form of the above general co-pricing model, which is maxi-
mally flexible in the parameterization of both its P and Q distributions
of X; such that the model is identifiable. Here, no assumptions about
the processes of X, are made; only normalizations are used to ensure
econometric identification. Proposition 1 shows the canonical form, and

the proof is given in Appendix A1.2.

Proposition 1. Every canonical affine term structure model is ob-

servationally equivalent to the following canonical model:

AX; = Kjx + Kiy X1 + Sxer
AX; = K& + K& X, 1 + Sxe,
(1.21)
ry =12 +1X,,

Adt - 50)( + 51XXt7

where €, e ~ N(0,Iy), K = 0, K% is in ordered real Jordan form®
such that the diagonal elements are represented by A% = (A?)s with de-
creasing magnitude, Y x is the lower triangular Cholesky decomposition
of ¥ x>y, ¢ is a vector of ones.

The result of this proposition will be used in the estimation to make

sure the model is not unidentified or has any over-identifying restrictions.

! Alternatively, K ?X can be specified to be a diagonal matrix with real and distinct
eigenvalues on the diagonal and the eigenvalues are ordered in decreasing magnitude.
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1.4.2 Estimation strategy

One way to estimate the model is to maintain the assumption that the
underlying state vector is completely latent as in (1.21). However, one
problem with this estimation strategy is that the number of parameters
that need to be estimated can potentially be very large.

An alternative estimation strategy is to estimate P parameters and
Q parameters separately, as in Joslin, Singleton and Zhu (2011). It is
shown below that the canonical model in terms of X; is observationally
equivalent to a unique affine model whose pricing factors P; include the
short rate, the first principal component of the set of equity yields that
can be viewed as a portfolio of equity yields, and the dividend growth.
Under the assumption that the portfolio of yields is observed without
error, the estimation of the canonical model in terms of P; can be carried
out in a two-step procedure. First, the P dynamics of the state process
can be estimated by an unrestricted vector autoregression (VAR). Then,
taking the estimated parameters from the VAR as given, the rest of
the parameters are then estimated using maximum-likelihood estimation
(MLE). The advantage of this estimation procedure is that the number
of parameters to be estimated is greatly reduced. Therefore, the latter
strategy will be adopted in this paper.

Specifically, I assume there are three latent factors driving the econ-
omy. Applying rotation to the latent state vector, it can be shown that
the canonical model in terms of X; defined in (1.21) is observationally
equivalent to a canonical model defined in terms of P;, which consists of
the short rate, the first principal component of equity yields (portfolio of
yields)

PC, =Wy, (1.22)



26

and dividend growth, i.e.

Tt
Pt — PCt
Ad,
Given
ye = Ax + By X, (1.23)
we have
Tt Pox Pix
P, = PC,| = |WAx| + WBS( X, = A+ BX,. (1.24)
Ad, dox 0 x

Therefore, given the affine relationship between P; and X;, we can use the
generic feature of Gaussian affine term structure models to find a model
in terms of P, which is observationally equivalent to the canonical form
of X;. This is summarized in Proposition 2. The proof can be found in

Appendix A1.3.

Proposition 2. Any canonical affine term structure model as defined
in (1.21) is observationally equivalent to a unique affine co-pricing model
whose pricing factors P, include the short rate, the portfolios of yields
Wy, and the dividend growth. Moreover, the Q distribution of P, is

uniquely determined by (A2, rQ, ¥p, ox, d1x), where \¢ = ()\;Q)s are
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ordered in decreasing magnitude. That is,

AP, = Kip + KpPi_y + Spe;

AP, = Ko, K Py + Spe
(1.25)

re = pop + Pip P

Ad; = Sop + &P,

is a canonical Gaussian affine term structure model, where K\p», K}p,
pop, P1p, Oop, O1p are explicit functions of (A, 78, Mp, dox, d1x). The
canonical form is parameterized by (A2, 7% Yp, dox, dix, Kip, Kip).
And the relationship between the parameters in the two canonical forms

can be shown as follows:

Kfy = BIOYB,
K(()@P - —K?PA,
prp = (B4,

(1.26)
pPop = 7“5% - A/,Olp,

Sip = (B éix,

dop = dox — A'dip.

Next given the observational equivalence between the canonical form
in X; and the model in P; outlined above, I estimate the model in P,
rather than in X;. The estimation is implemented in three steps.

In Step 1, I assume there is one portfolio of yields that is measured
without error, i.e. Wy, = Wyy. Here, y; denotes the observed yields.

Hence Wy, can be measured by the first principal component of yields.
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In Step 2, as the state vector

Tt
Pt = PCt
Ad,

is observed, it can be used to estimate the P process of P;. More specif-

ically, as P, follows a VAR process

APy = Kip + K{pPi_1 + Spe

Kjp and Kip can be estimated from an unrestricted VAR using ordinary
least squares (OLS). And these OLS estimates can be viewed as MLE
estimates because of the inherent separation between the parameters of

the P and Q dynamics of P;, that is

F@Rlye15:0) = F(W2 P AL 12, Sp, Sox, d1x, P™)

X f(Pt|Pt—1; K?pngp, 279), (1.27)

where P% is the conditional distribution of the measurement errors y° —
Yt

In Step 3, taking the estimated parameters from OLS as given, we
estimate the rest of the parameters using MLE.

The detailed justification for the estimation strategy is as follows.

By Proposition 2, we can, without loss of generality, use

Tt
P.= |pC,| € RY

Ad,



29

as observed factors. Suppose that the individual bond yields, y;, are
to be used in estimation and that their associated measurement errors,
y° — s, have the conditional distribution P%", for some 6,, € ©,,. It only
requires that, for any P%n, these errors are conditionally independent
of lagged values of the measurement errors and satisfy the consistency

condition

T T
Pl |wy| = |PC| [P ]| =1
Ad, Ady
Then the conditional likelihood function (under P) of the observed data
(y9) can be decomposed as the product of two conditional likelihood func-
tions. The first likelihood function describes the conditional distribution
of the observed yields that are measured with errors, that is, dependent
on the parameters relevant for pricing (A%, r2, ¥p, dox, d1x) and the dis-
tribution assumption of the measurement errors. The second likelihood

function describes the conditional distribution of P;, which depends only

on (Kip, Kip, Xp). We have

f(y§|y?,1; ®> = f(y7(t)|7)t7 AQ7T§;72P750X751X7P97”>

X f(PPi-1; K?’p; K(I)Pp7 Yp).

Now if we assume Py is conditionally Gaussian, then the conditional

PP likelihood of P, i.e. the second part of (1.28) can be expressed as

f(Pi|Pi_y1; Kip, Kip, ¥p)

= 27) V2|25 x exp(— L[S (P — EPD|), (1.28)

where F;, [P = Kip + (I + K{p)Pi_1.
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Moreover, Zellner (1962) shows that, conditional on ¢t = 0 informa-~
tion, the parameters K} and K} that maximize this likelihood function

are their OLS estimates, i.e.

T
(Kip, Kop) = argmaxz F@lyi-1; Kip, Kop, Sp)

t=1

T

= argmin Y_ [|S5! (P — B[P (1.29)

t=1

Hence, (Kip, Kjp) can be estimated from time series of P; alone, and
their OLS estimates are globally optimal, i.e. they are equal to their
maximum likelihood estimates. Hence (K]p, K4p) will no longer need to
be estimated using MLE, and the canonical form in P is now parame-
terized by (A2, r2 Yp, dox, d1x) rather than by (AQ, rE, 3p, dox, dix,
Kip, Kip), effectively eliminating the dependence on (K}p, Kfp). The

separation is formally shown in Proposition 3.

Proposition 3. Using the observed factor, P, = P € R, the
maximum likelihood estimates of (K{p, Kip) are given by their OLS
estimates. Moreover, the canonical form of P; in Proposition 2 is now
parameterized by (A2, %, 3¥p, Sox, d1x), effectively eliminating the de-
pendence on (Kp, Kip).

Moreover, the sample estimates of ¥p can be used as starting values
for their MLE estimation, reducing the estimation time of these param-
eters. The reduction in the number of parameters need to be estimated
using MLE increases with the number of factors that are assumed to
drive the economy. For example, with an N-factor model, we no longer
need to estimate the N(N 4 1) parameters that come from (Kip, Kjp),

which greatly reduces the estimation time.
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1.4.3 Data

This subsection describes the data used in this paper, especially the three
observed factors assumed to drive the whole economy, i.e. the short
rate, dividend growth and portfolio of equity yields. The procedure used
to remove seasonality in the data and the way the equity portfolio is

constructed are also discussed.

Short rate

First, the short rate is included as a state vector in the VAR under P.
Figure 1.1 plots the time series of the one-month interest rate provided
by van Binsbergen, Brandt and Koijen (2012) for the sample period.
Generally, interest rates exhibit extremely high persistence. The first-
order autocorrelation coefficient is usually close to one and a unit root
test could not reject the existence of a stochastic trend (see Goodfriend
(1991) and Jardet, Monfort and Pegoraro (2013)). However, in this pa-
per, I follow the majority of the literature (see Bauer, Rudebusch and
Wu (2012)) and assume that the short rate is stationary. This is because
if we were to allow the short rate to be nonstationary, a unit root will
mean that the short rate will never revert back to its long-run mean and
an explosive root will mean that the short rate will inevitably drop be-
low the zero lower bound; both cases contradict the fact that nominal

interest rates are bounded above zero and remain within a certain range.
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Figure 1.1: Short rate, in annual percentages, 1996m2:2009m10

Dividend and dividend growth

Monthly dividends from January 1996 to October 2009 are provided by
van Binsbergen, Brandt and Koijen (2012). The dashed line in the top
panel of Figure 1.2 shows monthly dividends and the dashed line in the
middle panel shows the monthly log dividend growth rates. We can see
that the level of dividend is nonstationary but log dividend growth rates
are stationary. However, monthly dividends exhibit seasonality in both
level and log growth rates, due to the fact that most companies pay
dividends on a quarterly basis.

If we were to use original monthly dividend in the estimation, because
of its own seasonality, not only will it cause dividend growth to be sea-
sonal, it will also cause equity yields to be seasonal, which will be seen
later in this section. And the seasonality will cause a problem for the es-
timation. This is because seasonality means shocks are not independent
and identically distributed (i.i.d.), which will violate the standard i.i.d.
assumption in estimation. In addition, as seasonality is not explicitly
modeled in the paper, using the data with seasonality in the estimation
will bias the estimates of the model. Therefore, we must filter out the

seasonality in the data before it enters into the estimation. Moreover,
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filtering out seasonality can also help us see more clearly the underlying
trend of the data.

To remove the seasonality in dividend, I deseasonalize the dividend
itself, then use the deseasonalized dividends to calculate dividend growth,
and to scale the prices of zero-coupon equities to calculate equity yields.

More specifically, I choose a simple moving average over three months
to filter out the seasonality in the monthly dividend. The solid line in the
top panel of Figure 1.2 shows the filtered monthly dividends. We can see
that, using the above method of filtering, we are able to remove the quar-
terly seasonality that was previously present in the monthly dividends,
and we can also see the trend of the monthly dividends more clearly.
The solid line in the bottom panel of Figure 1.2 shows the monthly log
dividend growth rates based on the deseasonalized monthly dividends.
By using deseasonalized dividends, the quarterly seasonality that was

previously affecting dividend growth is also reduced.
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Figure 1.2: Monthly dividends and log dividend growth rates, original
and filtered.
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Equity yield portfolio

Finally, an “equity yield portfolio” is included as a state factor in the
estimation. The factor is the first principal component of equity yields,
which is a linear combination of equity yields and hence can be viewed
as a portfolio of equity yields. Equity yields in this paper are defined by

equation (1.13), i.e.

1 pd

d nt
= —— |In—-2

ynt n Dt

P4 is the price of zero-coupon equities and the data on zero-coupon
equities are calculated from the prices of dividend strips provided by
van Binsbergen, Brandt and Koijen (2012). van Binsbergen, Brandt and
Koijen match the S&P 500’s put and call prices of the same maturity and
use put—call parity to back out strip prices. Specifically, the S&P 500
index is decomposed into a portfolio of dividend strips, which entitles the
holder to the realized dividends of the index with maturities of six, twelve,
eighteen and twenty-four months. For example, from the dataset we know
that in January 1996 the price of the dividend strip with twelve-month
maturity is $13.56. Buying this dividend strip in January 1996 entitles
the buyer to a dividend paid out at each month end from February 1996 to
January 1997. And by January 1997 the total amount of dividends paid
out in the past 12 months reaches $14.97. The data for the dividend strips
are available monthly from January 1996 to October 2009. The times
series of the prices of dividend strips and S&P 500 index are plotted in
the top and bottom panels of Figure 1.3. From the figure, we can see that
the prices of dividend strips are monotonically increasing with maturity,
as violations of this would lead to arbitrage opportunities. Ideally, to
extract the prices of zero-coupon equities, we need prices of strips of two

adjacent maturities. For example, to obtain the price of monthly zero-
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coupon equity with a maturity of twenty-four months, we need the prices
of the dividend strips for the twenty-four-month and twenty-three-month
maturities. However, strips of only four maturities, each six months
apart, are available. This means that, to calculate the prices of monthly
zero-coupon equities, we need to interpolate the prices of the dividend
strips in between using the observed relationship between the prices of
dividend strips and their maturities. The method in this paper is to use
nonlinear curve fitting to fit six observed strip prices with maturities of 0,
6, 12, 18, 24 months and oo; the last strip price is actually the S&P 500
stock index. This is because in theory the S&P 500 can be viewed as
the sum of zero-coupon equity prices from maturity one to maturity
infinity. Hence it can be viewed as a strip price of maturity at infinity.
Since the prices of the dividend strip with maturity at zero months and
infinity months are zero and the S&P 500 stock index, the nonlinear
curve is constructed to always satisfy three properties. First, it has to go
through the origin. Second, it has to be monotonically increasing to rule
out any arbitrage opportunities. Finally, the curve should asymptotically

approach the S&P 500 index as the maturity goes to infinity.
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Figure 1.3: Prices of dividend strips and the level of the S&P 500,
1996m1:2009m10

Ideally, for the MLE estimation, we want to have yields across a range
of maturities to pin down the equity term structure. When yields are not
available, we could choose to match prices that are cumulative exponen-
tials of the yields. Given that we have a fitted curve that matches the
strip prices and the index very well, the ideal would be to match the strip
prices and the market index. However, incorporating the index into the
estimation is technically difficult. This is because matching the market
index requires matching the sum of all the model-generated zero-coupon
equity prices from maturity one to maturity infinity with the observed

index. The assumption of which period we take as infinity is arbitrary
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but will nevertheless be large for the market index. Hence, in practice,
matching the market index under the affine model will be too compu-
tationally intensive. Alternatively, given the fact that the entire strip
price curve is generated, we can extract yields directly from the curve.
We could use the fitted curve to extract information regarding the long
end of the equity term structure. More specifically, a zero-coupon equity
of a long-maturity (fifty-year) yield could be taken from the estimated
nonlinear curve and be used as the data on the long-maturity yield in
the estimation. This equity yield at long maturity will not be a perfect
substitute for the market index, but it will nevertheless contain informa-
tion on the long end of the equity term structure. By having the equity
yield at long maturity, the estimation will have a greater ability to fit
the observed market index.

By subtracting the fitted strip prices of two adjacent maturities, we
obtain the prices of the zero-coupon equities. The prices of zero-coupon
equities (6m, 12m, 18m, 24m and 50y) from January 1996 to October
2009 are plotted in the top panel of Figure 1.4. We can see that the prices
of zero-coupon equities follow the same trend as those of dividend strips.
And because the four zero-coupon equities’ maturities are close to each
other, their prices are generally at the same level. As pointed out by van
Binsbergen, Brandt and Koijen (2012) (BBK), dividend strip prices are
nonstationary over time; they scale the four dividend strip prices by the
level of the S&P 500 index to obtain stationary data series. Indeed, the
prices of the zero-coupon equities are nonstationary, as seen from the top
panel of Figure 1.4. However, if we scale zero-coupon equity prices by the
dividend provided by BBK, then P& /D; is stationary, as shown by the
middle panel of Figure 1.4. The prices of zero-coupon equities scaled by

monthly dividends provided in BBK are stationary but seasonal, which is
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caused by the seasonality in monthly dividends as shown in the previous
section. The bottom panel of Figure 1.4 shows that zero-coupon equity
prices scaled by deseasonalized dividends are stationary and are no longer

affected by seasonality. We can then use these to extract yields.
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Next, we extract the principal component from the group of equity

yields of maturities 6m, 12m 18m, 24m and a long maturity of 50 years,
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and the first principal component explains over 99% of the total varia-

tions in this group of equity yields. Figure 1.5 plots the time series of

the five yields. The two spikes in 2001 and 2009 are indicative of two

economic recessions. Figure 1.6 plots the time series of the first principal

component of the equity yields.
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Figure 1.6: First principal component of zero-coupon equities

1.4.4 Estimation results

Model parameters

2010

As the likelihood function is optimized over (A, 7%, ¥p, dox, d1x), these

parameters’ estimates are shown in Table 1.1 and Table 1.2. Estimates
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are in annual numbers with their standard deviations in parentheses.
From the estimates of the (A? 4+ 1)s, we can see that the estimated state
process has real and distinct eigenvalues, and because all (5\9 + 1)s are
between zero and one, the estimated state process is stationary under
Q. The initial value of ¥p is obtained from the VAR estimate of the P
process of the state vector, and the final estimate of ¥p obtained from
the MLE is reported in Table 1.2. Table 1.3 reports the OLS estimates

of Kip and Kip + 1.

Table 1.1: Maximum likelihood estimates of the risk-neutral parameters,
equity term structure

A2 A3+ AZ+1 rQ
Estimate 0.9967 0.3761 0.3068  —670.2887
Standard deviation (0.0010) (0.0170) (0.6789)  (0.3190)
dox d1x.1 01x 2 d1x3
Estimate —6.7241 0.9983 —0.7104 —1.3359

Standard deviation (0.0117) (0.0030) (0.8033)  (1.1760)

Table 1.2: Maximum likelihood estimates of the conditional covariance,
equity term structure

2pa1
Estimate 0.4655
Standard deviation (0.0304)
2 pa 2 pa
Estimate —0.6509 19.6996

Standard deviation (1.2707) (2.0452)
> pal > p.3 > .33
Estimate 5.0893  23.7969 51.0953
Standard deviation (4.5313) (7.0941) (3.6709)
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Table 1.3: Maximum likelihood estimates of the physical parameters,
equity term structure

Kip Kips Kips
Estimate 0.0585 —2.9820 0.9645
Standard deviation  (0.0764) (3.4513) (9.0396)
Kipy +1 Kip s Kip s
Estimate 0.9820 —0.0023 —0.0008

Standard deviation  (0.0200)  (0.0011)  (0.0006)
Kipp,m KFP,QQ—F]- KFP,Q?;

Estimate 1.6157 0.7616  —0.0425
Standard deviation ~ (0.9032)  (0.0491)  (0.0263)
KFP,?A Kl]PP,SQ K?P,Ss +1

Estimate 2.6735  —0.5392  —0.2203

Standard deviation  (2.3657)  (0.1286)  (0.0690)

Equity yields

Given the model parameters, we can generate the model-implied equity
yields and compare them with the equity yields observed in the data. The
top panel of Table 1.4 reports the summary statistics for equity yields
in the data. We can see that the mean of equity yield is decreasing in
maturity and the standard deviation of equity yield is also decreasing in
maturity. The bottom panel of Table 1.4 reports the summary statistics
for equity yields implied by the model. The estimated yields can match
the observed yields very well in terms of both the first moment and the
second moment. Hence these results demonstrate that this estimation
framework, originally designed to match bond yields, is able to match

the basic features of equity yields as well.
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Table 1.4: Estimation results: moments comparison for equity yields,
annual percentages, equity term structure

Maturity (years) 0.5 1 1.5 2 long maturity (50)
Panel A: Data

Mean 6.91 438 3.53 3.11 1.85
Standard deviation 28.60 14.17 9.36 6.96 0.38
Panel B: Model
Mean 6.91 438 3.53 3.11 1.85
Standard deviation 28.60 14.21 9.34 6.90 0.10

Return of the dividend strip and the aggregate market

BBK construct the return of the short-term strip and compare it with the
return of the market. They find that the return of the short-term strip is
much higher than that of the market. Given the return of the market can
be viewed as a weighted average of the return of the short-term strip and
the return of the long-term strip, the above observation implies that the
return of the short-term strip is higher than the return of the long-term
strip, i.e. the equity term structure is downward sloping. This can be

illustrated by Table 1.5.

Table 1.5: Data: summary statistics of the return of the short-term strip
and the market, annual percentages

Behort strip Rehort strip — By Rparket  Pmarket — B
Mean 13.90 10.53 6.67 3.29
Standard 27.03 27.04 16.26 16.22
deviation
Sharpe ratio 0.39 — 0.20 —

We can see that the annual mean return of the short-term strip is
13.90% whereas the annual mean return of the market is only 6.67%. The
annual mean excess return of the short-term asset is 10.53% whereas the
annual mean excess return of the market is only 3.29%. All these imply a

downward sloping equity term structure. In addition, the Sharpe ratio of
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the short-term asset is higher than the Sharpe ratio of the market despite
its high volatility.

We can also check whether this evidence can be generated by the
model in the paper. In particular, the two returns are calculated as

follows. For the short-term strip, its return can be calculated as

S
s it Din
+1 = .
Pmt

—1, (1.30)

where P, is the time-¢ price of the dividend strip of maturity n, and
Pro=>0 Pﬁt, that is, it is the cumulative price of zero-coupon equities
of maturity 1 to maturity n. For the market return, given the time series
of zero-coupon equities of maturities one to infinity, we can construct
the equity index of each period, together with each period’s aggregate
dividend. The return on the market index can be computed using

m P2+ Dy

tH1 = pm - L (1.31)

Using the two formulas above, Table 1.6 shows that the above features
within the BBK data can be matched well by our model. In BBK’s
data, the maturities of the short-term strip vary between 1.3 years and
1.9 years. Here, the returns of the strip of maturity 15 months to 23
months are listed in the table to match the maturities used by BBK.
The means and the standard deviations of the maturities are largely in
line with those provided in BBK. The last column of the table provides
the model-generated market return, which closely matches that in the
data. Table 1.7 also lists the excess return, standard deviation and the
Sharpe ratio of the short-term strip and the market. All can be shown

to match the data well.
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Table 1.6: Summary statistics of the return of the short-term strip and
the market, equity term structure, annual percentages

RlSm Rlﬁm Rl?m R18m RlQm RQOm R21m R22m R23m Rmarket

Mean 11.79 11.66 11.55 11.44 11.35 11.26 11.19 11.11 11.05 6.59
Standard 26.15 26.26 26.35 26.43 26.51 26.57 26.62 26.67 26.71 16.17
deviation

Sharpe 032 032 031 031 030 030 029 029 0.29 0.20
ratio

Table 1.7: Summary statistics of the excess return of the short-term strip
and the market, equity term structure, annual percentages

R15m Rl()'m R17m RlSm RlQm RQOm RZlm R22m RQSm Rmarket

Mean 843 830 819 809 799 791 783 776 7.69 3.23
Standard 26.17 26.28 26.37 26.45 26.52 26.59 26.64 26.69 26.73 16.18
deviation

Risk premiums of zero-coupon equities

In this section, we look at the equity term structure from another per-
spective. In particular, we look at the risk premiums of zero-coupon
equities, that is, the one-period return of these assets in excess of the
risk-free rate. The reason we look at these quantities is because Lettau
and Wachter (2007) use them as empirical support for the value pre-
mium. Their rationale is that if we think of value stocks as short-horizon
equities since their cash flows are weighted more towards the present, and
think of growth stocks as long-horizon equities since their cash flows are
weighted more towards the future, then we can only observe the value
premium if we see that zero-coupon equities of shorter maturities have
higher premiums than zero-coupon equities with longer maturities. Value
premium implies a downward sloping equity term structure.

The risk premium or the one-period excess return on zero-coupon
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equity is calculated using the following equation:

R;iz,tJrl — Ry = % - Ry. (1.32)

The top panel of Figure 1.7 shows the estimated average annual risk
premiums for the zero-coupon equities. The middle panel shows the
annual volatility and the bottom panel shows the Sharpe ratios. Zero-
coupon equities with maturities up to forty years are examined (the same
set of maturities as examined in Lettau and Wachter (2007)). We can
see that the basic features of the model’s implied excess returns of zero-
coupon equities are largely consistent with the calibration of Lettau and
Wachter (2007). Although the risk premiums in their calibration are
generally higher than those generated from the estimation in this paper,
both have risk premiums of zero-coupon equities decline with maturity.
The return volatility initially increases with maturity, then decreases.

The unconditional Sharpe ratio generally decreases with maturity.
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Figure 1.7: Estimated risk premiums of zero-coupon equities, equity term
structure

Therefore, we can see that, for the purpose of matching dividend
strips or zero-coupon equities’ yields and returns characteristics, the cur-

rent model setup is sufficient.
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1.5 Conclusion

This chapter examines the term structure of equities. Using the observed
prices of dividend strips on the stock market index in van Binsbergen,
Brandt and Koijen (2012), the prices of zero-coupon equities are ex-
tracted and their yields and returns characteristics are documented. An
affine term structure model with three risk factors (the short rate, an eq-
uity yield portfolio and the aggregate dividend growth) is used to model
the term structure of the equities. Identification is ensured by extend-
ing the canonical form for bonds outlined in Joslin, Singleton and Zhu
(2011) to a canonical form for equities. The model is estimated, and
model-implied equity yields and returns are shown to match the data
well. However, as the model is estimated without taking into account
data on zero-coupon bond yields, the model-implied risk-neutral long-
run mean of the short rate is implausible. The second chapter takes this
into account and estimates the bond and equity yield curves jointly using

data on both zero-coupon bonds and zero-coupon equities.



Chapter 2

Estimating a Unified Framework of

Co-Pricing Stocks and Bonds

2.1 Abstract

This chapter estimates a maximal identifiable affine term structure model
that explains the joint prices of stocks and bonds. Using the test assets
of Treasury bonds and dividend strips, it is shown that the estimated
model can generally match the time series and cross-sectional proper-
ties of zero-coupon bonds, zero-coupon equities and the aggregate stock
index. Moreover, imposing restrictions prevalent in the co-pricing lit-
erature on the maximal model enhances certain features of the model
such as the high return of the short-term dividend strip, but reduces the
model’s ability to fit other aspects of the data such as the level of the

market risk premium.

2.2 Introduction

In the literature stocks and bonds have been priced well under sepa-
rate frameworks. Stocks are usually priced by using equilibrium models.
Examples of such models include the external habit formation model
of Campbell and Cochrane (1999), the long-run risks model of Bansal
and Yaron (2004), and the rare disasters model of Gabaix (2012), which
builds upon the work of Barro (2009). Bonds are more often priced by

affine term structure models. Examples of such include Duffie and Kan
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(1996), Dai and Singleton (2000) and Ang and Piazzesi (2003). However,
if investors have access to both stocks and bonds, then the assumption
of no-arbitrage will imply cross-market restrictions on the pricing kernel
or the stochastic discount factor, which can be used to price all assets in
the market. Hence there should exist a unified framework that is able to
price both stocks and bonds.

There is now a small and growing literature that tries to use the no-
arbitrage affine framework to jointly price stocks and bonds, although
each paper has its own focus. In Lettau and Wachter (2011), the focus
is on matching an upward sloping bond yield curve and a downward
sloping equity yield curve. Koijen, Lustig and Van Nieuwerburgh (2013)
is a reduced-form model that uses a cyclical factor to price the book-
to-market sorted stock portfolios and maturity sorted bond portfolios.
Ang and Ulrich (2012) decomposes expected equity returns into various
yields and risk premiums. The key advantage that these affine models
have in common is tractability: both stock yields and bond yields are
affine functions of the state vector, and the loadings on the state vector
are functions of the model parameters. Hence we can easily see how the
state vector affects yields analytically.

However, as these papers all belong to the class of Gaussian affine
term structure models, they also share a common generic feature: as
shown in Dai and Singleton (2000), any affine transformations of the
state process are observationally equivalent. That is, suppose we have
two models, the same in all aspects except that the state process in one
model is an affine transformation of the state process in the other model.
Then the two models will generate exactly the same asset prices. In
other words, given the same set of asset prices, there exists an infinite

number of models that can generate this set of asset prices. Therefore,
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these models are generally not identified without imposing restrictions.
To impose the minimum number of restrictions on the state process such
that the model is identified, we can follow Joslin, Singleton and Zhu
(2011) (JSZ) to normalize all the models to a canonical form, in which
the state vector X, is entirely latent. As a result of this normalization,
given the same set of asset prices, there is only one model in the canonical
form that can generate this set of asset prices. And all the state vectors
in the models that can generate this set of asset prices are just rotations
(affine transformations) of X;. Therefore, if we denote the state vector
in the existing papers of co-pricing stocks and bonds as Z;, then the
rotation between Z; and X, and the minimum number of restrictions on
the process of X; imply that the process of Z; will also face parameter
restrictions. As the existing models of co-pricing stocks and bonds are
usually calibrated and fail to take into account these restrictions in the
calibration, this could lead to some of the model parameters being over-
restricted (in the sense that the canonical form implies these parameters
should be freely estimated but they are instead restricted to zeros or
ones) or not identified (in the sense that the canonical form implies these
parameters should be restricted to zeros or ones but instead they are
freely estimated), which may cause spurious predictions of asset pricing
moments.

In this chapter, I develop and estimate a co-pricing model that jointly
prices nominal bonds and equities, taking into account the restrictions
implied by the canonical form. The model belongs to the class of Gaus-
sian affine term structure models in the sense that all shocks are normally
distributed and asset prices are exponential affine in the underlying state
vector that drives the economy. Existing papers under this framework

only use data on zero-coupon bonds and the aggregate market index, but
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this paper also utilizes zero-coupon equities in the estimation.

I estimate the model following Joslin, Singleton and Zhu (2011). I first
normalize the general model to the canonical form. Then I show that the
canonical form is observationally equivalent to another model, in which
the N x 1 state vector includes dividend growth and N — 1 principal
components (PCs) extracted from the yields of zero-coupon bonds and
the yields of zero-coupon equities, which can be seen as portfolios of these
yields. Including dividend growth in the state vector is motivated by the
fact that dividend growth cannot be spanned by the PCs of yields: it can
be shown that, when dividend growth is regressed on a constant and the
N — 1 PCs of yields, the R-squared is very low, i.e. variation in dividend
growth cannot be explained by the PCs of yields. If we do not include
dividend growth as a state factor, as the pricing function of zero-coupon
equities requires dividend growth to be expressed as an affine function of
the state vector we would implicitly assume dividend growth is an affine
function of the PCs of yields, which is not the case in the data. Therefore,
we must include dividend growth explicitly in the state vector.

The model is estimated using maximum likelihood estimation (MLE)
following JSZ. Under the assumption that the PCs (portfolios of yields)
are observed without error, the estimation can be carried out in a two-
step procedure. First, the P dynamics of the state process can be esti-
mated by an unrestricted VAR. Then, taking the estimated parameters
from the VAR as given, the rest of the parameters are then estimated
using MLE. Data on bond yields used in the estimation are Constant
Maturity Treasury yields, and the empirical counterparts of zero-coupon
equities are calculated from the dividend strips data provided in van
Binsbergen, Brandt and Koijen (2012). The estimated model can match

the time series and cross-sectional properties of asset pricing moments



54

for both stocks and bonds well. Moreover, the estimation results show
that it is important to take into account the above restrictions to match
all the asset pricing moments. It will be seen later that imposing ad-
ditional restrictions on top of the identifying restrictions implied by the
maximal identifiable model would strengthen some asset pricing features.
However, this is achieved at the expense of not matching the other asset
pricing features.

By estimating a model of co-pricing stocks and bonds, this paper fills
the gap in the literature in which bonds and stocks are usually priced
separately. Moreover, in the estimation, I use a maximal identifiable
model to make sure I do not impose additional restrictions on the model
that may lead to spurious results. Chernov and Mueller (2012) also
estimate a model for the bond market, guided by the maximal identifiable
model derived from Joslin (2006). Regarding data, I use the dataset on
dividend strips provided in van Binsbergen, Brandt and Koijen (2012)
to empirically estimate zero-coupon equities, a concept defined as, for
example, in Lettau and Wachter (2007) but data on it was missing in the
literature. Bekaert and Grenadier (2001) estimate an affine model of co-
pricing stocks and bonds as well, but they use only data on the aggregate
market index, without using the prices of zero-coupon equities.

The rest of the chapter is structured as follows: Section 2.3 outlines
the Gaussian affine term structure model that is able to price bonds and
equities, and its canonical form that is maximally identifiable. The sec-
tion also describes the data and the estimation strategy and shows the
estimation results. Section 2.4 compares this paper with an existing pa-
per of co-pricing stocks and bonds to illustrate the importance of taking
into account the restrictions implied by the maximal identifiable model.

Section 2.5 concludes.
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2.3 Model and estimation

I assume the economy in this chapter is driven by a latent state vector
X;, which follows a VAR(1) process under both the physical measure P

and the risk-neutral measure Q:

AX; = Koy + Ky Xo 1+ Xxe;

AX; = K& + K5 X, 1 + Sxe,

where X, is an N x 1 vector, K5y and K& are N x 1 vectors, KTy, K3
and Xy are N x N matrices and both €, ; and e?;l are N x 1 vectors of
independent shocks with mean zero and unit variance.

I also assume the short rate and the dividend growth are driven by

X, as follows:

e = pox + Pix X

where pgx is a scalar and p;x is an N x 1 vector.
The level of the aggregate dividend of the economy is denoted by D;.
Let d; = log Dy, and the log dividend growth rate from time ¢ — 1 to time

t is defined as
D,
Dy

Ad; = log ( ) = dox + 01 x X,

where dgx is a scalar and d;x is an N x 1 vector.

Given the above equations, we can derive the prices of zero-coupon
bonds, zero-coupon equities and the aggregate market index as shown in
Chapter 1. To estimate the asset prices, I use the result of observational
equivalence between the latent state vector X; and a set of observable
state factors P; as shown in JSZ. The same method was used in Chapter 1
to price equities. However, because the aim of this chapter is to price both

stocks and bonds, a different set of observable state factors P; is used
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here. Specifically, P, consists of portfolios of yields PC; and dividend

growth, i.e.

PC,
Pt =
Ad,

PC; denotes the principal components of bond and equity yields (port-

folio of yields) and is a (N — 1) x 1 vector. More specifically,
PCt = Wyt

Here 3, is a J x 1 vector and includes all the bond and equity yields at
time t. Wis (N — 1) x J and is the weight of the portfolios. Therefore,

given that y, is affine in X,
Yy = AX + B%Xta
where Ax is J x 1 and By is N x J, P; is also affine in X; as

PC, WAy W Bl
+

Given the affine relationship between P, and X;, we can show that
the economy can be observationally equivalently defined in terms of P;

as follows:
AP, = Kyp + Ki{pPi1 + Spey

AP = K& + KSPi1 + Ypey,
re = pop + Pip P
Adt - 50’P + 517)Pt

This result is shown in Proposition 2 in Chapter 1. And the estimation

can be carried out in a two-step procedure. First, the P dynamics of the
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state process can be estimated by an unrestricted VAR. Then, taking the
estimated parameters from the VAR as given, the rest of the parameters

are then estimated using MLE.

2.3.1 Data

This section describes the data used in the estimation, including bond
yields and the principal components extracted from both zero-coupon
bond yields and zero-coupon equity yields. The data on equity yields
and dividend growth used in this chapter is the same as in Chapter 1.
Previously, there was no empirical counterpart for zero-coupon equities,
so in the literature the estimation of the co-pricing model, e.g. in Bekaert
and Grenadier (2001), can only use the aggregate equity price, which is
the sum of the prices of zero-coupon equities of all maturities. Hence,
the information on the term structure of equities was missing in the
estimation. However, Chapter 1 shows that, using dividend strip prices,
the S&P 500 index and the dividend series provided by van Binsbergen,
Brandt and Koijen (2012), we can construct “equity yields” that are

comparable to “bond yields”.

Bond yields

For bonds, end-of-month Constant Maturity Treasury yields with ma-
turities of 6 months, 1, 2, 3, 5, 7 and 10 years are taken from Febru-
ary 1996 to October 2009. T also include the one-month interest rate
provided by BBK as an additional bond yield. The time series of the
monthly zero-coupon bond yields are plotted in Figure 2.1. The mean
and standard deviation of the yields are shown in Table 2.1. From the
figure and the table, we can see that bond yields for the sample period

exhibit some stylized facts. The mean bond yield curve is upward slop-
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ing. Standard deviations of bond yields generally decrease with maturity.
Finally, yields are highly autocorrelated, with increasing autocorrelation
at longer maturities. In dealing with the stationarity of bond yields at
various maturities, I follow the same reasoning as in Chapter 1 for the
bond yield of one-month maturity. That is, [ assume all bond yields are

stationary, but allow them to have a very low speed of mean reversion.

7 R

—~—10yr | | | | | |
1%96 1998 2000 2002 2004 2006 2008 2010

Figure 2.1: Zero-coupon bond yields, 1996m2:2009m10

Table 2.1: Summary statistics of the U.S. bond yields (all numbers are
in annualized percentages)

Maturity (years) Im 6m 1y 2y 3y by 7y 10y
Panel A: Data

Mean 3.37 3.57 3.69 3.95 4.13 445 4.71 487

Standard deviation 1.87 190 184 1.74 160 133 1.19 1.02

Co-pricing factors

There are eight zero-coupon bond yields and five zero-coupon equity
yields available monthly from February 1996 to October 2009. To es-
timate the model, five principal components are extracted from these
thirteen series. Here, five PCs are chosen due to the fact that existing
factor models on co-pricing such as Lettau and Wachter (2011), Koi-

jen, Lustig and Van Nieuwerburgh (2013) and Ang and Ulrich (2012) all
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happen to use six state factors to drive their economy. If a six-factor
state vector is also employed here, then the state vector in any of the
papers mentioned above can be viewed as a rotation of the state vector
in this chapter. Hence it is easier to translate between each paper’s re-
sults. More importantly, whereas existing papers on co-pricing set many
additional restrictions on top of the minimal set of restrictions imposed
by the maximal identifiable model, we can impose the same set of re-
strictions on the estimated maximal identifiable model in this chapter,
and see how these additional restrictions affect asset pricing moments.
Hence, five PCs are chosen and, together with monthly dividend growth
for the same sample period taken from van Binsbergen, Brandt and Koi-
jen (2012), they make up the six state factors that drive the economy

and all asset prices.

2.3.2 Estimation results

This subsection shows the estimation results and compares the data with
the model-implied asset pricing moments of zero-coupon bonds, zero-

coupon equities, dividend strips and the aggregate stock market index.

Model parameters

(AL, 7@ ¥p, dox, O1x) are estimated in MLE and their estimates are
shown in Table 2.2 and Table 2.3. From the estimates of (A9+1)S, we can
see that the estimated state process has real and distinct eigenvalues, and
because all (S\i@—i— 1)s are between zero and one the estimated state process
is stationary under Q. Moreover, the estimate of the risk-neutral long-run
mean of the short rate is now 6.68% per annum, reflecting the fact that
by adding bond yield data we can achieve a more reasonable estimate of

the short rate parameter than using only equity data. Table 2.4 reports
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the OLS estimates of K{p and K{p+1. Estimates are in annual numbers

and their standard deviations are provided in parentheses.

Table 2.2: Maximum likelihood estimates of the risk-neutral parameters,
unrestricted co-pricing model

AZ41 AZ+1 AZH1 AR AJ+1 A+l re
Estimate  0.9967  0.9930 09358  0.2799  0.2779 0.2761  6.6794
Standard  (0.0010)  (0.0007)  (0.0031) (0.0019) (3.6189e-5) (0.0017) (0.5841)
deviation

dox 51X,1 51X,2 51X,3 51){,4 51X,5 51X,6
Estimate  0.0185  —0.0019  0.7058  0.4636  —0.5838  0.0083  0.5380

Standard (0.0118) (1

deviation

6274e-5)  (

0.0012)  (0.0089)

(0.0013)  (0.0001) (0.0047)

Table 2.3: Maximum likelihood estimates of the conditional covariance,
unrestricted co-pricing model

Yp 11
Estimate 21.0251
Standard  (0.1593)
deviation
Yp a1 Yip 22
Estimate —0.2952  0.5408
Standard  (0.0015) (0.0061)
deviation
Yip 31 Yp 32 Yp 33
Estimate  0.0383 —0.2494  0.2995
Standard  (0.0001) (0.0037) (0.0043)
deviation
Ypa1 Yip a2 Yp 43 Yp a4
Estimate  0.1310 0.0836 —0.0658 0.1194
Standard  (0.0012) (0.0023) (0.0001) (0.0041)
deviation
Yp 51 Yip 52 Y 53 Yp 54 Yp 55
Estimate —0.0507 —0.0234 0.1276 —0.0239 0.2783
Standard (0.0002) (0.0001) (0.0010) (0.0002) (0.0025)
deviation
Yp 61 Yip 62 Yp 63 Yp 64 Yp 65 P 66
Estimate 20.6796  3.7272 1.0947  17.9939 11.3924 45.9478
Standard (0.6679) (0.0294) (0.0033) (0.0384) (0.0361) (0.4947)

deviation




61

Table 2.4: Maximum likelihood estimates of the physical parameters,
unrestricted co-pricing model

Kgp1 K(I)P)P,z Kgp,:& Kgp4 Kgps Kgpa
Estimate 0.2898 0.8491 —0.2154 0.2318 0.4301 42.2813
Standard (15.7761) (0.4531)  (0.2819)  (0.1353)  (0.2344) (41.1135)
deviation

Kiputl  Kipgy Kip s Kip, Kipis Kip s

Estimate 0.7730 0.6810 —0.7070 —3.8695 4.3913 —0.0429
Standard  (0.0484)  (0.3778)  (1.8274)  (3.4290)  (4.6373)  (0.0264)
deviation

Kipo  Kipoptl  Kips Kip o Kipas Kip s
Estimate —0.0043 0.9948 —0.0326 —0.0621  —0.5000 0.0009
Standard  (0.0014)  (0.0109)  (0.0525)  (0.0985)  (0.1332)  (0.0008)
deviation

Kippm KFP,?)Q K1P7>,33+1 K1P7>,34 KFP,SS KFP,ss
Estimate 0.0001 0.0082 0.8817 0.1298 —0.5027  —0.0003
Standard ~ (0.0009)  (0.0068)  (0.0326)  (0.0613)  (0.0829)  (0.0005)
deviation

Kipa Kp.a Kipss  Kiputl  Kipys Kip 6
Estimate —0.0012 —0.0006 0.0154 0.9129 0.1006 —0.0000
Standard ~ (0.0004)  (0.0032)  (0.0157)  (0.0294)  (0.0398)  (0.0002)
deviation

Kipp,m K?P,m K1P7>,53 KiPP,54 K?P,%"‘l Kipp,m
Estimate 0.0010 0.0020 —0.0260 0.0668 0.4512 —0.0006
Standard ~ (0.0007)  (0.0056)  (0.0271)  (0.0509)  (0.0689)  (0.0004)
deviation

Kipp 61 K?P 62 Kipp 63 KiPP 64 K?P,% Kipp et
Estimate —0.5201 1.1313 —1.7847 —16.8210 6.7022 —0.2151
Standard ~ (0.1261)  (0.9846)  (4.7622)  (8.9361) (12.0850) (0.0687)
deviation

Equities

a. Equity yields

Table 2.5 shows that the model’s predictions regarding yields of zero-

coupon equities can match the data well in terms of mean and standard

deviation, just like in Chapter 1.
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Table 2.5: Estimation results: moments comparison for equity yields,
annual percentages, unrestricted co-pricing model

Maturity 6m 12m 18m 24m 50y
Panel A: Data
Mean 6.91 438 353 3.11 1.85

Standard deviation 28.60 14.17 9.36 6.96 0.38
Panel B: Model

Mean 6.94 433 350 3.11 1.89

Standard deviation 28.65 14.13 9.30 6.90 0.38

b. Return of the dividend strip and the aggregate market

Just as in Chapter 1, we calculate the return of the dividend strip
of short maturity and the return of the aggregate market to see whether
the slope of the equity term structure is downward sloping or upward
sloping. However, in this chapter, the slope of the equity term structure
is backed out from the joint estimation of both the bond yield curve and
the equity yield curve. Hence it is interesting to see that, after adding
bond data, the model-implied slope of the equity term structure can still
maintain its downward slope given an upward sloping bond yield curve.

Table 2.6 repeats for convenience Table 1.5 in Chapter 1, which shows
the return of the short-term dividend strip of average maturity between
1.3 years and 1.9 years, the return of the S&P 500 index and their returns
in excess of the short rate.

Table 2.6: Data: summary statistics of the return of the short-term strip
and the market

Hghort strip Hghort strip — By Rparket  Pmarket — U
Mean 13.90 10.53 6.67 3.29
Standard 27.03 27.04 16.26 16.22
deviation
Sharpe ratio 0.39 — 0.20 —

The returns of the dividend strip and of the market index are calcu-
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lated using the equations below:

S
S o pn—17t+1 + Dt+1 1
t+1 — S b
n,t

where P5, = " | Pf, is the time-t price of the dividend strip of matu-

rity n, the sum of the prices of the zero-coupon equities from maturity 1

to n;

m Py + Dy

t+1 — Ptm_ -1

where P» = >°°, Pﬁt is the time-t market index, the sum of prices of
zero-coupon equities from maturity 1 to oo.

Table 2.7 and Table 2.8 show that the model-implied equity term
structure is downward sloping, just as observed in the data. The returns
and excess returns of the short-term dividend strips of maturities of fif-
teen months to twenty-three months are slightly lower than the returns
of the short-term dividend strip, but they are comparable. Moreover the

market return and excess market return are both closely matched.

Table 2.7: Summary statistics of the return of the short-term strip and
the market, unrestricted co-pricing model

R15m Rlﬁm Rl?m Rl&m RlQm RQOm R21m R22m RQSm Rmarket

Mean 11.90 11.76 11.64 11.54 11.44 11.36 11.28 11.21 11.15 7.05
Standard 26.48 26.57 26.65 26.72 26.78 26.84 26.89 26.93 26.97 24.72
deviation

Sharpe 0.32 032 031 031 030 030 029 029 0.29 0.15
ratio

Table 2.8: Summary statistics of the excess return of the short-term strip
and the market, unrestricted co-pricing model

RlSm Rle Rl?m RlSm RlQm R20m R21m R22m R23m Rmarket

Mean 855 842 830 819 810 801 793 786 7.80 3.70
Standard 26.50 26.59 26.67 26.74 26.80 26.86 26.91 26.95 26.99 24.73
deviation
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c. Risk premiums of zero-coupon equities

Using

d

pt oD,

n,t+1 f = pd f
nt

we calculate the risk premiums of the zero-coupon equities to see whether
they follow the downward sloping pattern as in Lettau and Wachter
(2007), and the answer is affirmative. The estimated risk premiums are
strictly decreasing in maturity and the estimated volatilities and Sharpe
ratios are generally decreasing in maturity, which are consistent with the

results in Lettau and Wachter (2007). These are shown in Figure 2.2.
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(a) Estimated annual mean risk premiums for ZCEs, maturity in years
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(c) Estimated annual Sharpe ratios of risk premium for ZCEs, maturity in years

Figure 2.2: Estimated risk premiums of zero-coupon equities, unre-
stricted co-pricing model
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Bond yields

The estimation results regarding bonds are shown in Table 2.9. The table
shows that model-implied bond yields exhibit the same characteristics as
the observed yields, i.e. bond yields means are almost monotonically
increasing with maturity, while the standard deviations of bond yields
are generally decreasing in maturity. The close match in magnitudes of
both the means and the standard deviations between the estimated and
the observed bond yields shows that the co-pricing framework can match
bond yields well. Hence this shows that the co-pricing framework in this
paper can generate both the downward sloping equity yield curve and

the upward sloping bond yield curve.

Table 2.9: Estimation results: moments comparison for zero-coupon
bonds (all numbers are in annualized percentage), unrestricted co-pricing
model

Maturity Im 6m 1y 2y 3y 554 7y 10y
Panel A: Data
Mean 3.37 3.57 3.69 3.95 4.13 445 4.71 4.87

Standard deviation 1.87 190 184 1.74 160 133 1.19 1.02
Panel B: Model

Mean 3.36 3.59 3.70 3.93 4.12 443 4.67 4.94

Standard deviation 1.84 198 186 1.67 154 135 1.21 1.04

In summary, using the maximal identifiable model and using data on
both zero-coupon bonds and zero-coupon equities, the estimated model
can generally match the time-series and cross-sectional properties of asset

pricing moments for both bonds and equities.
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2.4 Restricted Model

2.4.1 Comparison with Lettau and Wachter (2011)

This section illustrates the importance of taking into account the re-
strictions implied by the maximal identifiable model. I will use Lettau
and Wachter (2011), one of the existing papers of co-pricing stocks and
bonds, as an example to show that it is important to take into account
the restrictions in order to match all the asset pricing moments.

The model in this paper and the model in Lettau and Wachter (2011)
are both designed to price bonds and equities and, in particular, to simul-
taneously generate an upward sloping bond yield curve and a downward
sloping equity yield curve. Both papers belong to the same class of mod-
els, i.e. Gaussian affine term structure models, and have the same num-
ber of factors. Hence, once they are normalized to the same canonical
form, the resulting two models should have very similar state processes.
However, in Lettau and Wachter (2011), the model is calibrated rather
than estimated and they implicitly impose additional restrictions on their
canonical form. For example, in their model, one of the assumptions is
that only dividend risk is priced directly and hence the price of risk ma-
trix reduces to a single time varying vector and the time variation in risk
premiums depends only on a one-dimensional state variable. Hence it will
be interesting to see how this restriction affects asset-pricing predictions.

The estimation results of the restricted model are shown below.

2.4.2 FEstimation results

This subsection shows the estimation results of the restricted model and

compares them with the estimation results of the unrestricted model.
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Model parameters

Table 2.10, Table 2.11 and Table 2.12 list the estimates of the model
parameters. From the estimates of the (/\;Q2 + 1)s, we can see that the

restricted state process is also stationary under Q.

Table 2.10: Maximum likelihood estimates of the risk-neutral parameters,
restricted co-pricing model

A241 241 241 AE1 0 A2+ A2 rQ
Estimate  0.9951  0.9919  0.9496  0.2793  0.2772  0.2753  6.2736
Standard  (0.0015) (0.0148) (0.0324) (0.0076) (0.0001) (0.0065) (7.1347)

deviation

dox 51X,1 51X,2 51X,3 51X,4 51X,5 51X,6
Estimate  0.0192 —0.0020 0.7024  0.4603 —0.5866 0.0078  0.5379
Standard  (0.0645) (0.0007) (0.0356) (0.0108) (0.0377) (0.0014) (0.0057)

deviation
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Table 2.11: Maximum likelihood estimates of the conditional covariance,
restricted co-pricing model

Yp 11
Estimate 22.1036
Standard  (0.4268)
deviation
Yp a1 Yp 22
Estimate —0.2913  0.5159
Standard  (0.0177) (0.0203)
deviation
Yp 31 Yip 32 Yp 33
Estimate  0.0242 —0.2276  0.2945
Standard  (0.0016) (0.0191) (0.0309)
deviation
Ypa1 Yip a2 Yp a3 Yp a4
Estimate  0.1003 0.0585 —0.0636 0.1225
Standard (0.0019) (0.0012) (0.0002) (0.0099)
deviation
Yp 51 Yip 52 Yp 53 Yp 54 Yip 55
Estimate —0.0519 —0.0304 0.1291 —0.0237 0.2756
Standard (0.0007) (0.0042) (0.0006) (0.0017) (0.0403)
deviation
Yp 61 Yip 62 2p 63 Yp 64 Yp 65 2P 66
Estimate 20.3495  3.7084 1.0906 17.8574 11.3552 48.2150
Standard (0.1923) (0.0113) (0.0946) (0.0472) (1.1370) (2.3303)

deviation
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Table 2.12: Maximum likelihood estimates of the physical parameters,
restricted co-pricing model

P P P P P P
Kop Kop,z KOP,3 Kop 4 KOP,5 Koypg

Estimate 7.4364 —0.0688 0.1718 0.0090 0.3132 47.2161
Standard (20.7115) (8.7557)  (2.6950)  (2.7586)  (0.8602) (82.3956)
deviation

P P P P P P
KlP 11_+_1 KlP,lQ KlP,lS KlP,M KIP 15 KIP 16

Estimate 0.7791 0.4212 0.7357 —0.9317 —2.8522  —0.0303
Standard  (0.0635)  (0.4960)  (2.3990) (4.5017)  (6.0880)  (0.0346)
deviation

P P P P P P
K17>,21 K17>,22"‘1 K17>723 K17>,24 K17>,25 Kip s

Estimate —0.0047  1.0065  —0.1062  0.1205  —0.5613 —0.0001
Standard  (0.0269)  (0.2097)  (1.0142)  (1.9031)  (2.5737)  (0.0146)

deviation

P P P P P P
K17>,31 K17>,32 KlP,33+1 KlP,34 K17>,35 KlP,36

Estimate  —0.0007 0.0253 0.9684 0.0948 —0.6140  —0.0008
Standard ~ (0.0083)  (0.0645)  (0.3122)  (0.5858)  (0.7922)  (0.0045)
deviation

P P P P P P
Kip s Kipas Kipas Kiputl Kipys Kip 46

Estimate —0.0013 —0.0008 —0.0097 0.9572 0.0932 —0.0004
Standard ~ (0.0085)  (0.0661)  (0.3195)  (0.5996)  (0.8109)  (0.0046)
deviation

P g P P P P
Kw,m K17>,52 KlP,53 KIP,54 KlP,55+1 KlP,SG

Estimate —0.0001 0.0298 0.0056 0.1161 0.2790 —0.0013
Standard ~ (0.0026)  (0.0206)  (0.0996)  (0.1870) (0.2529) (0.0014)
deviation

P P P P P P
KIP 61 KU’ 62 KIP 63 KlP,64 KlP 65 KIP 66+1

Estimate —0.5925 3.2701 4.5274 —9.0586 —17.7648 —0.2270
Standard ~ (0.2528)  (1.9732)  (9.5440) (17.9088) (24.2197) (0.1376)
deviation

Equities
a. Equity yields

Table 2.13 shows that the restricted model’s predictions regarding
yields of zero-coupon equities can also match the data well in terms of
mean and standard deviation. The abilities of the restricted model and

the unrestricted model in matching the data are comparable.
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Table 2.13: Estimation results: moments comparison for equity yields,
annual percentages, restricted co-pricing model

Maturity 6m 12m 18m 24m 50y
Panel A: Data
Mean 6.91 438 353 3.11 1.85

Standard deviation 28.60 14.17 9.36 6.96 0.38
Panel B: Model

Mean 6.92 435 3.52 3.12 1.86

Standard deviation 28.65 14.14 9.30 6.89 0.31

b. Return of the dividend strip and the aggregate market

Table 2.14 and Table 2.15 show that the restricted model-implied
equity term structure is also downward sloping just as observed in the
data. Moreover, comparing with the unrestricted model, as the num-
ber of priced risk factors is restricted to one, the risk premium would
load on the most volatile factor, which in the present model is dividend
growth. As a result we would expect the return of the short-term asset
to be higher in the restricted model. It turns out that the return of the
short-term dividend strip has only improved marginally. However, in the
restricted model, the return of the market is now even higher than in the
data. Hence, although the restriction makes the return of the short-term
dividend strip get closer to the high return of the short-term asset in the
data, it has done so at the expense of a less downward sloping equity
term structure.

Table 2.14: Summary statistics of the return of the short-term strip and
the market, restricted co-pricing model

RlSm Rlﬁm Rl?m RlSm RlQm RZOm R21m R22m R23m Rmarket

Mean 11.93 11.79 11.67 11.56 11.47 11.38 11.30 11.23 11.16 7.41
Standard 26.50 26.59 26.67 26.74 26.81 26.86 26.91 26.95 26.99 23.27
deviation

Sharpe 032 032 031 031 030 030 030 029 0.29 0.17
ratio
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Table 2.15: Summary statistics of the excess return of the short-term
strip and the market, restricted co-pricing model

Rl&m Rlb’m Rl ™ R18m Rl,‘)m RZOm Rle R22m R?‘dm Rmarket
Mean 858 844 832 821 812 803 795 788 781 4.06
Standard 26.52 26.61 26.69 26.76 26.82 26.88 26.93 26.97 27.01 23.29
deviation

c. Risk premiums of zero-coupon equities

As before, the risk premiums of the zero-coupon equities of matu-
rity up to forty years are plotted. Figure 2.3 shows that the estimated
mean, volatility and Sharpe ratio of the risk premiums in the restricted
model are very close to those in the unrestricted model. Hence, imposing
additional restrictions does not affect the risk premiums of zero-coupon

equities much.
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Figure 2.3: Estimated risk premiums of zero-coupon equities, restricted
co-pricing model
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Bond yields

Table 2.16 shows the summary statistics of the bond yields implied by
the restricted model. Bond yields implied by the restricted model exhibit
the increasing mean and decreasing volatility in bond yield maturity that
we observed in the data.

Table 2.16: Estimation results: moments comparison for zero-coupon
bonds (all numbers are in annualized percentage), restricted co-pricing
model

Maturity Im 6m 1y 2y 3y 5y 7y 10y
Panel A: Data
Mean 3.37 3.57 3.69 3.95 4.13 4.45 4.71 4.87

Standard deviation 1.87 190 1.84 1.74 160 1.33 1.19 1.02
Panel B: Model

Mean 3.36 3.58 3.71 3.93 4.12 4.43 4.67 4.93

Standard deviation 1.85 1.95 186 1.68 155 1.35 1.21 1.03

In summary, we can see that imposing the same restriction, i.e. re-
stricting the number of priced risk factors to one, makes the return of the
short-term dividend strip get marginally closer to the high return of the
short-term asset in the data. However, it will lead to a less downward
sloping equity term structure. The overall performance of the model in
matching the asset pricing moments is reduced. Hence this is an over-
restriction that should not be imposed. Therefore, while the co-pricing
models in general try to match many moments, it is important to impose
a minimal number of restrictions on the model, i.e. to use a maximally
identifiable model, to generally match all the asset pricing moments well

without improving the fitness of some moments at the expense of others.

Future Research

In the current setup, stocks and bonds share the same shocks to the

economy, which could potentially lead to tight co-movement between



75

stocks and bonds. However, market frictions, investors’ investment habits
and regulatory rules could result in investors who only trade stocks and
investors who only trade bonds. All of these are conditions could result
in market segregation, reducing the co-movement between stocks and
bonds. Hence the present model, where stocks and bonds share the same
set of shocks, will overestimate the co-movement between stocks and

bonds. A better model should incorporate the above-mentioned frictions.

2.5 Conclusion

This chapter estimates a maximal identifiable affine term structure model
that explains the joint prices of stocks and bonds. Using the test assets
of U.S. Treasury bonds and dividend strips, I show that the estimated
model can generally match the time series and cross-sectional proper-
ties of zero-coupon bonds, zero-coupon equities and the aggregate stock
index. Moreover, imposing restrictions prevalent in the co-pricing lit-
erature on the maximal model enhances certain features of the model,
such as the high return of the short-term dividend strip, but reduces the
model’s ability to fit other aspects of the data, such as the level of the

market risk premium.



Chapter 3

The Role of Asian Countries’ Reserve

Holdings on the International Yield Curves

3.1 Abstract

This chapter studies the effect of Asian countries’ reserve holdings on the
yield curves of six industrialized countries: the United States, the United
Kingdom, Germany, Canada, Switzerland and Australia. A Gaussian
affine term structure model with three yield factors and three unspanned
macro factors including reserves is estimated to fit the yield curve of
each country. Impulse responses and variance decompositions show that
Asian countries’ reserve holdings are an important factor affecting the

international yield curves.

3.2 Introduction

In recent years, Asian countries have been accumulating their reserve
holdings very rapidly. For example, the total foreign reserves of the
three major holders of foreign reserves in Asia, namely China, Japan
and South Korea, increased from $113 billion at the beginning of 1990
to $3.12 trillion at the beginning of 2009. A significant fraction of these
reserves is believed to have been invested in the government bonds issued
by several major industrialized countries, such as U.S. Treasury securi-
ties, U.K. Gilts and German Bunds. For example, at the end of July

2015, China held $1.24 trillion in U.S. Treasury securities, and Japan
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held $1.20 trillion in U.S. Treasury securities (as published on the U.S.
Treasury website). Hence it is important to investigate how Asian coun-
tries’” reserve holdings affect the yield curves across these countries.

The answer to the above question can have important implications
for those countries’” monetary policies, because if Asian reserves can sig-
nificantly affect a country’s yield curve, then the country’s central banks
must take Asian reserves into account in conducting its monetary policy.
Failing to do so could result in monetary policy not reaching its intended
goals. For example, in mid-2004, the Fed began to tighten monetary
policy in order to raise interest rates. However, Greenspan (2005) noted
that the longer-term interest rates failed to rise in response. Such a de-
coupling of long-term interest rates from the short-term interest rate is
believed to have been caused by the strong purchase of U.S. Treasuries
by Asian countries during this period. Therefore, we need to understand
how a country’s yield curve changes in response to Asian reserve holdings.

There exist a number of papers studying the effect that foreign coun-
tries’ reserves or Treasuries holdings have on the U.S. yield curve. They
mainly use two frameworks. The first framework is to regress bond yields
on foreign countries’ reserves holdings and other explanatory variables.
For example, Beltran et al. (2013) first compute the term premium using
an affine model without using reserve holdings, then regress the term
premium on reserve holdings. Warnock and Warnock (2009) regress U.S.
10-year bond yields on standard macroeconomic variables as well as for-
eign official purchases of U.S. Treasury bonds. Sierra (2014) run a series
of forecasting regressions of realized excess returns on measures of net
purchases of Treasuries. However, this framework does not take into ac-
count the no-arbitrage condition when determining bond yields. Hence

the effect of reserve holdings on certain bond yields included in the study
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may not apply to the whole bond yield curve.

The second framework uses affine term structure models to study the
effect of reserves on bond yields, which imposes no-arbitrage condition to
ensure bond yields are priced consistently. For example, Bernanke, Rein-
hart and Sack (2004) include observable economic and monetary variables
into a no-arbitrage term structure model, and find that Treasury yields
declined significantly during intervals around Japanese interventions to
purchase dollars in the 2000-04 period. Rudebusch, Swanson and Wu
(2006) estimate term structure models of Treasury yields including la-
tent factors as state variables and find that foreign official holdings have
no explanatory power. Apart from no-arbitrage, another important fea-
ture common to the second framework is the implicit assumption that
macro variables included in the model are spanned by bond yields. This
implies that, in this type of setup, reserves are often modeled as a risk
factor that is spanned by bond yields, i.e. reserves can be expressed as
a linear combination of bond yields. However, as pointed out by Joslin,
Priebsch and Singleton (2014), when applied to a number of macro vari-
ables commonly included in macro-finance term structure models such
macro-spanning assumptions are often strong and counterfactual. More-
over, including macro factors in addition to a number of latent or yield
factors (yields’ principal components) to price bonds contradicts the fact
that almost all of the cross-sectional variation of bond yields can be ex-
plained by a small number of latent or yield factors.

This paper models Asian countries’ reserve holdings together with
other macro variables as unspanned by bond yields. Macro factors to-
gether with yield factors follow a VAR under the physical measure P.
However, only yield factors determine the pricing of bonds under the

risk-neutral measure Q. The identification of the risk-neutral parameters
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is ensured by the canonical form of the model proposed by Joslin, Sin-
gleton and Zhu (2011), which is maximally identifiable. Although macro
factors do not enter into the pricing of contemporaneous bond yields, be-
cause macro factors and yield factors follow an unrestricted VAR under P,
macro factors can help to predict future yields. Hence impulse responses
and variance decompositions implied from the VAR can be obtained. Fol-
lowing Ang and Piazzesi (2003), these are used to study the yield curve’s
response toward a shock to reserve holdings and to attribute the forecast
variance of a particular yield to shocks to reserves. Moreover, not only
the effect of Asian countries’ reserve holdings on the U.S. yield curve is
studied, because Asian countries also invest their reserves in the bond
markets of other industrialized countries; reserves’ effects on the yield
curves of the U.K., Germany, Canada, Switzerland and Australia are
also investigated. Asian countries’ holdings of government debt issuance
by these countries are not as clearly estimated as their holdings of U.S.
Treasury securities. However, these are the countries whose currencies
are identified in the International Monetary Fund’s Currency Composi-
tion of Official Foreign Exchange Reserves (COFER) database alongside
the U.S. dollar.! Hence, these countries are more likely to have their gov-
ernment debt held by Asian countries and have their government yield
curves affected by the fluctuations of Asian countries’ foreign exchange
reserve holdings.

The same bond pricing model with unspanned macro risks is fitted to
each country’s yield curve. Impulse responses implied by the estimation
results show that an initial one standard deviation shock to Asian reserve
holdings can increase or decrease bond yields of the countries studied by

up to 18 basis points (bp) during the first five years. Variance decompo-

!Germany is used as a proxy for the euro area.
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sitions show that shocks to reserves contribute a significant proportion of
the forecast variances of yields. For example, at the five-year-ahead fore-
cast horizon, the highest proportions of variance explained by reserves
can range from 2.12% to 6.78% for the countries studied. Moreover,
the explanatory power of reserves generally increases with the forecast
horizon across different countries and maturities. Such evidence suggests
that Asian countries’ reserve holdings are an important factor affecting
the yield curves of the above industrialized countries.

The rest of the chapter is organized as follows. Section 3.3 describes
the data used in this chapter. Section 3.4 specifies a Gaussian affine term
structure model with yield factors and unspanned macro factors. Sec-
tion 3.5 summarizes the estimation strategy and presents the estimation

results for each country included in the study. Section 3.6 concludes.

3.3 Data

3.3.1 Bond yields

I use the same international bond yields dataset as in Wright (2011).
Quarterly data on zero-coupon bond yields of fourteen maturities, rang-
ing from one quarter to forty quarters, from the first quarter of 1990 to
the first quarter of 2009, are taken to be the sample for the estimation.
The sample’s starting period is chosen because Asian countries’ accumu-
lation of reserves is a recent phenomenon (beginning around 1990). The
sample period ends in 2009 to exclude the ramifications of the global fi-
nancial crisis, such as central banks’ quantitative easing programs. Bond
yields are constructed using local currencies. A more thorough analysis
could be carried out by rebasing yields to the same currency or by mod-

eling exchange rate explicitly, for example, to jointly estimate the term
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structure of bond yields and the term structure of forward exchange rates,
which is beyond the scope of this chapter. Although to some extent ex-
change rates’ effect on yields is limited by the fact that China’s currency
was pegged to the U.S. dollar until 2005 and China has since been oper-
ating a managed floating exchange rate regime, and another motivation
for China and Japan to accumulate large amounts of foreign reserves is
to be able to intervene in the foreign exchange market as to keep their
currencies at a stable value.

Figures 3.1-3.6 plot the yields of maturities of one, four and twenty
quarters for the United States, the United Kingdom, Germany, Canada,
Switzerland and Australia. The three maturities are chosen to represent
the short end, middle and long end of a country’s yield curve. Impulse

responses and variance decompositions will also be based on the three

yields.
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Figure 3.1: Annual % bond yields, United States
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Table 3.1 presents the summary statistics of the three yields presented
above, along with some other maturities to show a more complete yield
curve for each country. The table shows that, for the selected sample
period, yields of most countries follow the pattern that the average bond
yield is increasing in mean and bond volatility is decreasing in maturity.
The yield curve of Germany closely tracks that of the United States.
Yields of Canadian bonds are on average more than half a percentage
higher than the yields of U.S. Treasuries. Swiss yields are low across
all maturities, often being half of those of the other countries. Australia
and the United Kingdom have higher yields than the other countries, but
their yield curves are also flatter. For Australia, the difference between
its one-quarter yield and twenty-quarter yield is only 60bp compared
with 132bp for the United States. The one-quarter yield of the United
Kingdom is higher than the rest of the maturities. For example, the one-
quarter yield exceeds the four-quarter yield by 38bp, and exceeds the

twenty-quarter yield by 7bp.



85

Table 3.1: Summary statistics of the international bond yields (all num-
bers are in annualized percentages)

Maturity (quarter) 1 4 8 12 20 28 40
United States
Mean 3.85 432 459 4.81 5.17 546 5.79
Standard deviation 1.80 1.88 1.82 1.74 1.61 1.50 1.39
United Kingdom

Mean 6.35 597 6.07 6.17 6.28 6.32 6.32
Standard deviation 2.79 2.40 2.27 221 218 2.17 2.14

Germany
Mean 4.36 4.44 4.61 4.79 5.11 5.35 5.60
Standard deviation 2.33 2.16 2.06 1.98 184 1.73 1.62

Canada
Mean 4.80 5.01 5.27 5.47 577 5.98 6.20
Standard deviation 2.57 2.39 2.25 2.18 2.10 2.04 2.03

Switzerland

Mean 2.88 294 297 3.07 3.32 3.54 3.78
Standard deviation 2.52 2.23 190 1.71 152 1.41 1.31

Australia
Mean 6.22 6.20 6.39 6.57 6.82 6.97 7.09

Standard deviation 2.30 2.18 2.14 2.13 214 2.16 2.18

3.3.2 Asian reserves

Since around 1990, Asian countries (especially those in East Asia) have
started to accumulate reserves on an increasingly large scale. Figure 3.7
plots the time series of reserve holdings by China, Japan and Korea, the
three largest holders of global reserves in the region. We can see that the
accumulation of the three countries’ reserves took off in 1994. At the end
of 1993, China, Japan and Korea’s reserve holdings were U.S.$21.8 bil-
lion, U.S.$98.4 billion and U.S.$20.5 billion, respectively. But by the
beginning of 2009, the reserve holdings for the three countries reached
U.S.$1929.5 billion, U.S.$990.1 billion and U.S.$203.1 billion, a total of
more than U.S.$3 trillion. As a result of this accumulation, these coun-

tries’ reserve holdings as a share of the global total reserves have in-
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creased significantly. For example, in 1990, the reserves of China were
about 5% of world’s total reserves. However, in 2009, China’s reserves
accounted for around 30% of the world’s total reserves. Such an accumu-
lation of reserves is mainly driven by the precautionary motives of these
Asian countries. This is because, after the financial crises of the late
1990s, many emerging markets used reserves as a self-insurance against
the volatility in the global financial market. And these reserves are often
invested in the government bonds issued by the select few of the world’s
industrialized countries mentioned previously. Given the sheer magni-
tude of Asian reserves, it is necessary to understand their impact on the
yield curves of those industrialized countries. And in this chapter, Asian
countries’ reserve holdings are modeled as a macro factor affecting the
advanced economies’ yield curves.

Moreover, as mentioned in the introduction to this chapter, Asian
countries’ reserve holdings will be modeled as a factor unspanned by the
cross-section of bond yields, meaning that they do not enter into the
risk-neutral pricing of bond yields, but they do affect bond risk premi-
ums. Here, I provide empirical evidence for both. Table 3.2 lists the
R? of regressing Asian reserves on a constant and on a country’s yields
based factors (the first three principal components, namely level, slope
and curvature) for each country. We can see that the R? for all countries
ranges from 30% to 40%, showing that Asian reserves are not linearly
spanned by the bond yield curve of any country. Table 3.3 shows the re-
sults of regressing the excess returns of the ten-year bond on yield factors
alone, and on both yield factors and macro factors including reserves. We
can see that, for each country, including macros increases the R? over a
model that only uses yield factors. Moreover, for each country’s regres-

sion, “reserves” are significant at conventional levels, demonstrating the
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“reserves” value’s ability to predict bond risk premiums. Therefore, both

regression results direct us to model Asian reserves as an unspanned fac-

tor.
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Figure 3.7: Reserve holdings of Asian countries, including China, Japan
and South Korea, in billions of U.S. dollars

Table 3.2: R? of regressing reserves on yield curve factors for each country

U.S. U.K. Germany Canada Switzerland Australia
R* 38.38% 30.80% 35.21%  39.25% 31.22% 40.98%
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Table 3.3: Regressions of excess returns on ten-year bonds on yield factors
and macro factors; Newey—-West standard errors with four lags are shown
in parentheses.

U.S. U.K. Germany
Yields Include  Yields Include  Yields Include
only macros only macros only macros

Constant  0.0501  0.1117  0.0310  0.1813  0.0430  0.0341
(0.0141) (0.0743) (0.0132) (0.0768) (0.0110) (0.0569)

Level 03308  1.0663 04575  1.1325  0.1712  0.3719
(0.1586)  (0.2529) (0.0950) (0.3052) (0.1461) (0.4689)

Slope 21116  2.9942 —0.8176 —1.0209 26396  2.9246
(0.8021) (0.6514) (0.6627) (0.5517) (0.5824) (0.7190)

Curvature —1.8747 —1.1130 —2.0630 —1.8286 —3.4300 —3.6296
(3.0548) (3.2379) (2.2669) (2.3232) (2.2237) (1.9204)

GDP —0.0112 —0.0295 —0.0064
growth (0.0145) (0.0168) (0.0117)
Inflation —0.0256 —0.0409 0.0022
(0.0148) (0.0179) (0.0215)

Reserves 0.0010 0.0006 0.0004
(0.0003) (0.0003) (0.0002)

Rr? 22.79%  38.12%  26.64% 37.57%  35.83%  40.26%

Canada Switzerland Australia
Yields  Include  Yields Include  Yields Include
only macros only macros only macros

Constant  0.0528  0.0009  0.0320  0.0562  0.0464  0.0243
(0.0127) (0.0451) (0.0102) (0.0432) (0.0170) (0.0562)

Level 03044 04940 0.0829 08143  0.8406  0.9729
(0.0902) (0.0923) (0.1661) (0.3935) (0.1050) (0.1734)

Slope  —1.8442 —25611 3.7333  4.0073 —1.4647 —2.1210
(0.8208) (0.6057) (0.7601) (1.0459) (1.2277) (1.2312)

Curvature —1.8410 —3.7623 —1.8078 —3.6883 —0.8432 0.3070
(1.5983) (2.0999) (2.0759) (1.8629) (1.7427) (2.2277)

GDP ~0.0009 0.0051 0.0018
growth (0.0056) (0.0114) (0.0095)
Inflation 0.0105 —0.0286 —0.0014
(0.0096) (0.0146) (0.0132)

Reserves 0.0008 0.0004 0.0005
(0.0002) (0.0002) (0.0002)

R 25.14% 37.91% 31.64% 46.25%  38.25%  40.76%

3.3.3 Macro variables

The other two macro variables included in this chapter are GDP growth

and inflation. Data on CPI inflation and GDP growth are from OECD’s
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Main Economic Indicators at the quarterly frequency. Both series have
been smoothed with moving average filters to remove the seasonality.
Figures 3.8-3.13 plot the time series of each country’s annual percentage
GDP growth and inflation for the sample period from the first quar-
ter of 1990 to the first quarter of 2009. For all countries, inflation
largely mirrors GDP growth throughout the sample period. Industri-
alized economies are correlated, especially during times of crises. During
the oil crisis in the early 1990s and the dot-com bubble at the begin-
ning of the century nearly all countries’ GDP growth rates were severely
suppressed, while their inflation increased significantly. Note also that
during the 1997 Asian financial crisis all the countries included here ex-
hibited strong economic performance with high GDP growth and low

inflation.

—GDP growth
---Inflation

_ | | | | | | | | |
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Figure 3.8: Annual % GDP growth and inflation, United States
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Figure 3.9: Annual % GDP growth and inflation, United Kingdom
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Figure 3.10: Annual % GDP growth and inflation, Germany
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Figure 3.11: Annual % GDP growth and inflation, Canada
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Figure 3.12: Annual % GDP growth and inflation, Switzerland
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Figure 3.13: Annual % GDP growth and inflation, Australia

3.4 A term structure model with unspanned macro risk

factors

This section introduces a Gaussian affine term structure model with un-
spanned macro risk factors that is able to price all bond yields consis-
tently. The model follows the affine framework with unspanned macro
risks proposed by Joslin, Priebsch and Singleton (2014).

The features of this framework are as follows. First, bond yields
are driven by a small number of risk factors. Second, macro factors
are unspanned by bond yield factors, that is, macro factors cannot be
expressed as a linear combination of bond yields. Hence macro factors do
not enter into the bond pricing equations under the risk-neutral measure
Q to affect the current period bond yields. However, macro factors can
be correlated with yield factors, and hence help to predict future yields.
Therefore, the third feature of the model is that macro factors and yield
factors follow a joint VAR without any restrictions under the physical

measure P.
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3.4.1 The economy with unspanned macro risks

It is assumed that the economy at time ¢ is driven by a state vector X,
which includes all the risk factors in the economy. X, is set to be an N x 1
vector, meaning that there are in total N risk factors in the economy.
Moreover, it follows a VAR(1) process under both the physical measure

P and the risk-neutral measure Q:

X, = KF + KF X1 + Sxet, (3.1)

X; = K& + K& X, 1 + Sxe, (3.2)

where KJy and K& are N x 1 vectors, KTy, K3 and Yy are N x N
matrices and both € and 2 are N x 1 vectors of independent shocks
to various risk factors affecting the economy with mean zero and unit
variance.

Specifically, X is made up of six risk factors. The first three are
factors specifically affecting bond yields, which are set to be the first
three principal components of bond yields. The other three are macro
factors, which include the first difference of Asian reserves, a country’s
GDP growth and its inflation.

I denote the group of yield factors together by P;, and the group of
macro factors by M,;. Hence, the above process can be written in the
following block structure.

Under the physical measure P, equation (3.1) can be written as

P KE K% K% P
el oP i PP PM t—1 i ZXGED'
M| | Kom| | Eve K| [Mia
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Under the risk-neutral measure Q, equation (3.2) can be written as

P _ Kgp N Kpp 0 P Sl
M, Ko Kip K| [Mia
Note that while all blocks in X;’s IP process are without restrictions,
ie. X, follows an unrestricted VAR under P, the upper right block of
K ;@X is set to zero to take into account the fact that macro risk factors
are unspanned by bond yield risk factors.

It is assumed that r;, the one-period interest rate, is an affine function

of yield factors P; rather than X, i.e.

re = pop + ;0/1797315, (3-3)

where pgp is a scalar and p;p is an R X 1 vector, where R is the number
of yield factors, which is equal to three with the current setup.
And the time-varying market price of risk vector that applies to the

bond market Ap; is also affine in P;:
A’pt - )\07) + Al'PPt' (34)

Here A\p; is an R x 1 vector, Agp is an R x 1 vector and Aip is an R x R
matrix.
Hence, we obtain the bond-market-specific pricing kernel or the stochas-

tic discount factor (SDF) Mp 1 of the bond market as

Mp 41 = exp(—ry — 5 NpApr — Aprepita), (3.5)

which can be used to consistently price all fixed-income assets. That is,
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we have the Euler equation
1 = Ey[My1 Ryl (3.6)

where R, is the one-period return on any asset in the bond market.

3.4.2  Zero-coupon bonds

To price nominal bonds, let P denote the time-t price of the n-period
nominal zero-coupon bond.
By the Euler equation, we have
Pb

nt

= Et[MPJ-HP:Lj—Lt—i-I]' (3.7)

Assuming the bond price is exponential affine in the bond yields’ risk
factors

P> = exp(A> + B”'P,), (3.8)

where AP is a scalar and BP is an R x 1 vector of bond price loadings
on the bond risk factors, A® and BP can be solved by a set of Riccati
equations with the boundary condition Py = 1.
More specifically, the loadings are solved recursively as follows:
AB = —pop + Azfl + BsfllKé%? + %Bgfllzng’Bb

n—1

(3.9)

BY = —plp+ By Kip (3.10)

with the starting values being A = 0 and B = 0.

And the bond yield at maturity n can be expressed as

1
Y = ——In Py = A, + B, P, (3.11)
n
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where A, = —A>/n and B,, = —B"/n.

3.5 Estimation

Section 3.5.1 summarizes the estimation strategy. Sections 3.5.2-3.5.7
present the estimation results for each country. In the latter, to in-
vestigate how macro factors, especially Asian reserve holdings, affect a
country’s yield curve, I look at the impulse responses of different yields
to shocks to reserve holdings. I also investigate how shocks to differ-
ent state factors contribute to yields’ forecast variances using variance

decompositions.

3.5.1 Estimation strategy

The estimation strategy follows Joslin, Priebsch and Singleton (2014).
For each country, the state vector X; comprises three yield factors, which
are the first three principal components of zero-coupon bond yields of
the fourteen maturities mentioned in the data section, and three macro
factors, which are the first difference of Asian reserve holdings, the GDP
growth and the inflation of the bond-issuing country. As the state vector
X, is entirely observable, the maximum likelihood estimates of the P
parameters, i.e. Kiy and KTy, can be obtained from the VAR of X;.
For the Q parameters, because the yield factors are chosen to be the
principal components of bond yields, without loss of generality, yield

factors can be rotated into a set of latent factors £;, whose QQ process

Li=KS + KL, 45,2, (3.12)
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can be written in its canonical form, as follows:

A2 000
Li=10 )\;Q 0 Et—l‘f‘EﬁG%a

0 0 N

ie. K& is normalized to a zero vector. KZQE is a diagonal matrix with
real and distinct eigenvalues {)\;@} on the diagonal, ordered by decreasing
magnitude. X, is the lower triangular Cholesky decomposition of ¥ .37,.

And the short rate under Q can be normalized such that
ry =13 + 1Ly, (3.13)

where ¢ is a vector of ones and 7% can be interpreted as the risk-neutral
long-run mean of the short rate.

The set of Q parameters that needs to be estimated by the maximum
likelihood estimation is reduced from (pop, p1p, K(()@P, K(IQP, Yp) to (1L,

(A2 and ¥p).

3.5.2 Estimation results, United States

Impulse responses

Although macro factors are modeled as unspanned risk factors and do
not enter into the pricing of contemporaneous bond yields, they co-evolve
with yield factors in a VAR under the physical measure. Hence, we can
trace out the dynamic responses of the yield curve from shocks to the
macro variables by looking at the impulse responses of yields to macro
shocks implied from the VAR. Figure 3.14 shows the impulse responses of

yields of maturities of one, four and twenty quarters to shocks in reserves.
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The detailed derivations of impulse response functions can be found in
Appendix 2. From the figure, we can see that positive shocks to Asian
countries’ reserve holdings lower the U.S. bond yields of all maturities and
across all horizons. In general, a one standard deviation shock to reserves
(U.S.$45.8 billion) can lower bond yields of the three maturities by up to
10bp. While a positive shock to Asian reserves initially increases the U.S.
bond yields of maturity of one quarter and four quarters for the first two
quarters, then begins to have negative effects on yields, an increase in
reserves has a pure negative effect on bond yield of 20 quarters. Moreover,
as we move along the yield curve from its short end to its long end, a
reserves shock reaches its maximum effect in less time. For example,
while the response of the one-quarter yield to a shock to reserves reaches
its peak at the 14th quarter, the response of the twenty-quarter yield

reaches its maximum at the 7th quarter after the initial shock.
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Figure 3.14: Impulse response functions of yields to a one standard devi-
ation shock to Asian reserves. Impulse responses for yields of maturities
of one quarter (top panel), four quarters (middle panel) and twenty quar-
ters (bottom panel), United States
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Variance decompositions

This section uses variance decomposition techniques to investigate the
proportion of the yields’ forecast variance attributable to each state fac-
tor. Derivation for the variance decompositions are presented in Ap-
pendix 2. Table 3.4 lists the contribution of each factor to the h-step-
ahead forecast of the one-quarter, four-quarter and twenty-quarter yields.
By construction, we can read the table from two different dimensions.
By fixing our attention at a particular p-quarter yield and varying the
horizon, we can see how various factors (both yield factors and macro
factors) affect the yield at different horizons. On the other hand, we
can fix a particular forecast horizon and look at whether a particular
factor has any effect across different maturities. The top row of the ta-
ble lists the one-quarter-ahead forecast variance of the one-quarter yield
explained by the three yield factors, i.e. the level, slope and curvature
factor can explain 64.45%, 27.52% and 8.03% of the one-quarter-ahead
forecast variance, respectively. Macro variables do not have explanatory
power at the one-quarter-ahead forecast horizon for bond yields because
they are unspanned and do not enter into the pricing of contemporaneous
yields. But they do contribute to the yields’ forecast variances at longer
horizons. For example, for the yield at a maturity of one quarter, 1.98%
of the twenty-quarter-ahead forecast variance is explained by reserves,
24.62% by GDP and 6.71% by inflation.

In order to see more clearly the explanatory power of macro factors,
Table 3.5 lists the contribution of the macro factors to the h-step-ahead
forecast variance of the short end, middle and long end of the yield curve.
It shows that macro factors altogether explain a non-negligible amount
of the variation in bond yields. At the short end of the yield curve, macro

factors can explain 6.32% of the four-quarter-ahead forecast variance, and
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Table 3.4: Variance decompositions, United States

Yield factors Macro factors

h Level Slope Curvature Reserves GDP growth Inflation

1 1 0.6445 0.2752 0.0803 0 0 0
quarter 4 0.8333 0.0740 0.0295 0.0003 0.0456 0.0172
yield 20 0.5516 0.0853 0.0300 0.0198 0.2462 0.0671

4 1 0.9483 0.0483 0.0033 0 0 0
quarter 4 0.9076 0.0152 0.0209 0.0002 0.0389 0.0171
yield 20 0.6069 0.0748 0.0220 0.0213 0.2150 0.0601

20 1 0.9651 0.0346 0.0003 0 0 0
quarter 4 0.9293 0.0408 0.0010 0.0023 0.0107 0.0159
yield 20 0.7190 0.0966 0.0036 0.0321 0.1129 0.0358

The table lists the contribution of factor i to the h-step-ahead forecast of the short
end (one-quarter yield), middle (four-quarter yield) and long end (twenty-quarter
yield) of the yield curve.

Table 3.5: Proportion of yields’ forecast variance explained by macro factors
(reserves, GDP growth, inflation) and reserves, United States

Macro factors Reserves
Forecast horizon 4 quarter 20 quarter ‘ 4 quarter 20 quarter
Short end (1 quarter yield)  6.32% 33.3% 0.03% 1.98%

Middle (4 quarter yield) 5.63% 29.64% 0.02% 2.13%
Long end (20 quarter yield)  2.89% 18.08% 0.23% 3.21%

The table lists the contribution of the macro factors (reserves, GDP growth,
inflation) and the contribution of reserves to the h-step-ahead (four quarters,
twenty quarters) forecast variance of the short end (one-quarter yield), middle
(four-quarter yield) and long end (twenty-quarter yield) of the yield curve.

33.3% of the twenty-quarter-ahead forecast variance. As we move on to
the middle and long end of the yield curve, the overall explanatory power
of the macro factors starts to weaken. For bond yield at a maturity of
twenty quarters, three macro factors together only explain 2.89% of the
four-quarter-ahead forecast variance and 18.08% of the twenty-quarter-
ahead forecast variance. However, for Asian reserves, contrary to the
pattern observed for macro factors as a group, their ability in explaining
forecast variance of bond yields increases with maturity. For example,

at the short end of the yield curve, “reserves” is only able to explain
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1.98% of the twenty-quarter-ahead forecast variance, but this increases
to 3.21% for the long yield. Hence, we can see that reserves can have
important implications for bond yields’ forecast variance, especially at
the long horizon. And their ability to explain yield variations increases
with maturity, unlike the other macro factors namely GDP growth and
inflation. Therefore, it is reasonable to say that while conventional macro
factors, such as GDP growth and inflation, still explain a major propor-
tion of the yield variations across all maturities and at all horizons, Asian
reserves take an increasingly important role in explaining movements in
the long end of the yield curve and at long forecast horizons. Hence, it

is an important factor that affects the U.S. yield curve.

3.5.3 Estimation results, United Kingdom

Impulse responses

For the United Kingdom, impulse responses show that, across all ma-
turities, a positive shock to Asian reserves initially increase U.K. bond
yields for up to two years after the shock, then start to lower the yields,
with the strongest effect at around year 4. Unlike the United States,
whose yields at three maturities respond to reserves of comparable mag-
nitudes, the magnitude of U.K. yields’ responses quickly diminishes with
maturity. While for the one-quarter yield, a positive shock to reserves
can reduce the yield by more than 15bp, reserves can only reduce the

twenty-quarter yield by less than 7bp.
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Figure 3.15: Impulse response functions of yields to a one standard devi-
ation shock to Asian reserves. Impulse responses for yields of maturities
of one quarter (top panel), four quarters (middle panel) and twenty quar-
ters (bottom panel), United Kingdom
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Variance decompositions

The contribution of macro factors toward yields’ forecast variances for the
United Kingdom follows a similar pattern to that of the United States,
i.e. macro factors as a group have more explanatory power at the short
end of the yield curve, while their contribution to yields’ forecast variance
is greater at the long forecast horizon and smaller at the short forecast
horizon. When looking at reserves alone, their behavior follows the pat-
tern described above for the macro factors group. It is worth noting
that while for the United States shocks to Asian reserves affect the long
end of the yield curve more than the short end in terms of contribu-
tion to the forecast variance in absolute values and as a proportion of
the macro factors, it is the opposite for the United Kingdom. For the
United Kingdom, reserves’ explanatory power is strongest at the short
end of the yield curve. At the four-quarter-ahead forecast horizon, re-
serves can explain 3.37% of the one-quarter yield’s variance, but only
0.14% for the twenty-quarter yield. The opposing patterns of the United
Kingdom and the United States can perhaps be understood by looking at
the two countries’ yield curves. Whereas the United States’ yield curve
is upward sloping, the United Kingdom’s yield curve is relatively flat,
with its one-quarter yield higher than the yields of all other maturities.
Hence whereas investment of reserves in dollar-denominated assets is
likely to be invested in U.S. long-term bonds when chasing higher yields,
the same motive when applied to sterling-denominated assets will drive

investments into short-term bonds rather than long-term bonds.
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Table 3.6: Proportion of yields’ forecast variance explained by macro factors
(reserves, GDP growth, inflation) and reserves, United Kingdom

Macro factors Reserves

Forecast horizon 4 quarter 20 quarter ‘ 4 quarter 20 quarter

Short end (1 quarter yield)  5.84% 26.06% 3.37% 3.84%
Middle (4 quarter yield) 3.61% 24.04% 0.76% 2.58%
Long end (20 quarter yield)  2.26% 17.89% 0.14% 0.80%

The table lists the contribution of the macro factors (reserves, GDP growth,
inflation) and the contribution of reserves to the h-step-ahead (four quarters,
twenty quarters) forecast variance of the short end (one-quarter yield), middle
(four-quarter yield) and long end (twenty-quarter yield) of the yield curve.

3.5.4 Estimation results, Germany

Impulse responses

For Germany, although its average yields at all maturities closely track
those of the U.S., their dynamic responses to reserves shocks are very
different. German bond yields largely react positively to reserves shocks
across all maturities. Yields of longer maturities react less to shocks to
reserves. Also the reserves’ effect on bond yields is strongest at around

four to eight quarters after the initial shock.
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Figure 3.16: Impulse response functions of yields to a one standard devi-
ation shock to Asian reserves. Impulse responses for yields of maturities
of one quarter (top panel), four quarters (middle panel) and twenty quar-
ters (bottom panel), Germany
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Variance decompositions

For Germany, reserves’ explanatory power is strongest for mid-maturity
bonds. For a yield of a maturity of four quarters, reserves can explain
2.45% of the forecast variance at the four-quarter forecast horizon. And
at the twenty-quarter forecast horizon, reserves’ explanatory power in-

creases to nearly 4%.

Table 3.7: Proportion of yields’ forecast variance explained by macro factors
(reserves, GDP growth, inflation) and reserves, Germany

Macro factors Reserves

Forecast horizon 4 quarter 20 quarter ‘ 4 quarter 20 quarter

Short end (1 quarter yield)  24.31% 52.43% 0.63% 3.37%
Middle (4 quarter yield) 30.17% 52.61% 2.45% 3.97%
Long end (20 quarter yield)  21.41% 39.68% 1.84% 1.68%

The table lists the contribution of the macro factors (reserves, GDP growth,
inflation) and the contribution of reserves to the h-step-ahead (four quarters,
twenty quarters) forecast variance of the short end (one-quarter yield), middle
(four-quarter yield) and long end (twenty-quarter yield) of the yield curve.

3.5.5 Estimation results, Canada

Impulse responses

Canadian yields’ impulse responses to reserves holdings shocks are very
similar to those of the United States. For both countries, yields respond
at similar magnitudes, with shocks to reserves having an effect at slightly

longer horizons for Canada.
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Figure 3.17: Impulse response functions of yields to a one standard devi-
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Variance decompositions

For Canada, the percentages of yields’ forecast variances explained by
reserves is largest for the long maturity bond and at the long forecast
horizon, just as observed for the United States. Another similarity is
that, while the explanatory power of reserves increases with maturity,
the opposite is true for the explanatory power of all macro factors as a
group. For example, at the twenty-quarter-ahead forecast horizon, the
contribution of reserves shocks towards yields forecast variance increases
from 2.65% for the one-quarter yield to 3.48% for the twenty-quarter
yield. In contrast, shocks to macro factors altogether contribute 23.24%
of the forecast variance of the one-quarter yield and only 16.78% of the
variance of the twenty-quarter yield.

Table 3.8: Proportion of yields’ forecast variance explained by macro factors
(reserves, GDP growth, inflation) and reserves, Canada

Macro factors Reserves

Forecast horizon 4 quarter 20 quarter ‘ 4 quarter 20 quarter

Short end (1 quarter yield)  3.75% 23.24% 0.09% 2.65%
Middle (4 quarter yield) 4.94% 22.06% 0.01% 3.00%
Long end (20 quarter yield)  4.66% 16.78% 0.20% 3.48%

The table lists the contribution of the macro factors (reserves, GDP growth,
inflation) and the contribution of reserves to the h-step-ahead (four quarters,
twenty quarters) forecast variance of the short end (one-quarter yield), middle
(four-quarter yield) and long end (twenty-quarter yield) of the yield curve.

3.5.6 Estimation results, Switzerland

Impulse responses

Like German yields, Swiss yields generally increase with an increase in
reserves. Swiss yields initially have negative responses to reserves shocks,
but the magnitudes are very small across maturities. And the reserves’

effect is strongest between two and three years after the initial shock.
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Variance decompositions

Looking at the yields’ forecast variance decompositions, macro factors
generally have low explanatory power for Swiss bond yields compared
with yields’ variance decompositions of other countries. For example,
for Germany, shocks to macro factors account for 52.43% of the twenty-
quarter-ahead forecast variance of the short maturity bond. For Switzer-
land, this number drops to 17.10%. As we move to longer maturities, the

explanatory power of both macro factors and reserves decreases.

Table 3.9: Proportion of yields’ forecast variance explained by macro factors
(reserves, GDP growth, inflation) and reserves, Switzerland

Macro factors Reserves
Forecast horizon 4 quarter 20 quarter ‘ 4 quarter 20 quarter
Short end (1 quarter yield)  10.59% 17.10% 0.29% 2.12%
Middle (4 quarter yield) 6.16% 14.77% 0.04% 1.25%

Long end (20 quarter yield)  1.59% 8.15% 0.20% 0.41%

The table lists the contribution of the macro factors (reserves, GDP growth,
inflation) and the contribution of reserves to the h-step-ahead (four quarters,
twenty quarters) forecast variance of the short end (one-quarter yield), middle
(four-quarter yield) and long end (twenty-quarter yield) of the yield curve.

3.5.7 Estimation results, Australia

Impulse responses

Looking at Australia, shocks to reserves initially increase bond yields.
Then, after about two to three years, an initial increase in reserves lowers

bond yields.
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Figure 3.19: Impulse response functions of yields to a one standard devi-
ation shock to Asian reserves. Impulse responses for yields of maturities
of one quarter (top panel), four quarters (middle panel) and twenty quar-
ters (bottom panel), Australia
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Variance decompositions

The explanatory power of reserves or macro factors as a group is strongest
at the short end of the yield curve. Whereas reserves explain only 0.59%
and 0.99% at the four- and twenty-quarter forecast horizons for the long-
maturity (twenty-quarter) yield, shocks to reserves contribute to 4.64%
and 6.78%, respectively, of the four-quarter and twenty-quarter-ahead

forecast variance of the short maturity (one-quarter) yield.

Table 3.10: Proportion of yields’ forecast variance explained by macro factors
(reserves, GDP growth, inflation) and reserves, Australia

Macro factors Reserves

Forecast horizon 4 quarter 20 quarter ‘ 4 quarter 20 quarter

Short end (1 quarter yield) — 8.99% 19.15% 4.64% 6.78%
Middle (4 quarter yield) 8.27% 15.68% 3.68% 4.65%
Long end (20 quarter yield)  2.64% 6.14% 0.59% 0.99%

The table lists the contribution of the macro factors (reserves, GDP growth,
inflation) and the contribution of reserves to the h-step-ahead (four quarters,
twenty quarters) forecast variance of the short end (one-quarter yield), middle
(four-quarter yield) and long end (twenty-quarter yield) of the yield curve.

3.6 Conclusion

This chapter studies the effect of Asian countries’ reserve holdings on the
yield curves of six industrialized countries: the United States, the United
Kingdom, Germany, Canada, Switzerland and Australia. A Gaussian
affine term structure model with three yield factors and three unspanned
macro factors is estimated to fit the yield curve of each country. Yields
factors and macro factors are set to follow an unrestricted VAR under the
physical measure. Hence, impulse responses and variance decompositions
of yields to all factor shocks can be obtained. Impulse responses show
that a one standard deviation shock to Asian reserve holdings can move

bond yields of the above countries by up to 18bp during the first five



years after the initial shock. And variance decompositions show that a
significant proportion of the yields’ forecast variance can be attributed to
reserves. For the five-year-ahead forecast horizon, the highest proportions
of variance explained by reserves can be as large as 6.78%. Moreover, the
explanatory power of reserves generally increases with forecast horizon
across all countries and maturities. Therefore, Asian countries’ reserve

holdings are an important factor affecting the international yield curves.
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Appendix 1

A1.1 Solutions for asset prices

Let P4 denote the time-t price of an asset that pays off the aggregate
dividend at time t+n, i.e. the price of the zero-coupon equity of maturity
n. Its one-period holding period return can be specified as the return we
get from buying it at time ¢ at the price P4 and selling it at time ¢ + 1

at the price P2, ;:

d d
R Prii P 1 ii1/Dev1 Dy
nt+l = - i '
Pnt Pnt/Dt Dt

The Euler equation can be written as

P, Pr_1441 D
nt o M, et T
D, ' Dy Dy

with boundary condition
P

= 1.
Dy

Assume the solution to P&/ D; is exponential affine in the state vector

Pr?t d d’
D, exp(Ay + B, X3).

t

Then, given the left-hand side of the Euler equation is exponential affine
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in X;, we need to write the right-hand side of the Euler exponential affine
in X; as well.

Just like the above equation, we have

= exp(Ad_, + B (Kb + (Ky + D)X, + Sxersn))

= eXp<Ag—1 + Bg—llKng + Bg—ll(K?X + )X + Bs—1I2X€t+l)-

Given dividend growth is exponential affine in the state variables, we

have

Dyt
Dy

= exp(Adys) = exp(ox + ) x Xe41)

= exp(Jox + 01y (Kox + (Kix + 1) X; + Sxers1))

= exp(dox + 5£XK(]§PX + 51X(KFX + 1) X; + (%XZXQ-H)'

Finally, recall the SDF is exponential affine in the state variables

l)\;)\t - A;Et-&-l)

My = exp(—r; — 5

= exp(—pox — Pix Xt — $A A — Aj€rg).

Substituting the above affine forms (in X;) into the Euler equation,
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we get 2

exp(A + BYX,)
= Eyfexp(—pox — pix Xt — 3AN — Aj€rsn)
X exp(Ay_, + BgfllKé)PX + Bgfll(KiPX + )X+ BgfllzXGtH)
x exp(dox + O x Koy + 0 x (KT + DXy 4 0y Xx€rs1)]
= Eilexp(—pox + dox — 5MAe + Ay + (d1x + By_) Ko
+ (=phx + (0ux + Biy) (Kix + 1) X,
+ (=X 4 (Oux + Bo_1)'Ex)ers1)]
= exp(—pox + ox — sAA + An 4 + (61x + By 1) Koy
+ (=pix + (d1x + Bg—l)/(KiPX + 1)) Xi
+ 3A + 3(01x + By ExEy (dux + By_y)
— (Oix + By_1)'Sx M)
= exp(—pox + dox + A%, + (d1x + BS_,) Koy
+(=phx + (0ux + By ) (K + 1) X,
+5(01x + By 1) Sx Yy (d1x + By 1)
— (6ix + Bﬁ,l)’Eonx — (6ix + 32,1)/2X)\1XX15)
= exp(—pox + ox + AL |+ (0ix + BE ) (Kox — ZxAox)
+ 3(01x + By 1) Sx ¥ (d1x + By 1)
+ (=phx + (0ux + Biy) (Kix + 1) = TxAix))Xe)
= exp(—(pox — dox) + Ay + (01x + By Koy
%(51)( + By 1) Sx¥x (d1x + By )

+
+ (—phx + (Bix + B (K + 1)) Xy).

2Note Ay = Ao + M Xy is also affine in X;, but it is not decomposed here as,
when taking the expectation of the SDF, the two terms containing \; cancel out, or
the terms that are quadratic in X; cancel out. Then, after the cancellation, we can
decompose A; into Ag + A\ X and get an expression affine in Xj.
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Hence we have

A% = —(pox — box) + A4y + (O1x + Bgfl)/Kgx
+ 1(6ix + By ) ExEy (61x + By_y),

Bg/ = _P/1X + (51X + BSAY(-KPX + I)7

with starting values A3 = 0 and B§ = 0.

A1.2 Proof of Proposition 1

Given

AX; = K& + K5 X, 1 + Sxe,
re = pox + prx' X,

Ad; = dox + 01x' X1,

assume X, is stationary under Q with unconditional mean p such that
_ Q \—17Q
p=—(Kry) " Kox-

Letting X; = X; — = X, + (K% ) 'Ky, the state process becomes

AXt* = K(()@X + K(IQX[Xt*—l - (KPX)_IK?X] + ZXeieQ

- K?XX:—l + Dxel.

For ease of exposition, assume K;@X has non-zero, real and distinct

eigenvalues A\2. Then, by eigendecomposition, we can write

Kpy = A% diag(A%)(A%) 7,
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and hence

AX; = A%diag( \Y)(AY) 71X | + Sxel.

Letting X;* = (A9)"1 X, the state process becomes
AX;* = diag A\ X", + (AD) 18y e,

Given X;* = (AQ)71X; and X; = X, + (K&)' K, we have X;* =
(ADTX, + (K) T Kok, or X = ARX;* — (K% )™ Kg. The short

rate equation can then be written as

re = pox + pr1x' Xy
= pox + PIX,[AQX:* - (KPX)_lKé)QX]

_..Q I ykkk
=re + X,

where 72 = pox — pix' (K% ) 'K and X;** = diag(pix’ AQ) X;*.

With X;** = diag(p1x’A%)X;*, rewrite the state dynamics as

diag(pix'A%) TAX; = diag(A?) diag(pix'AY) X + (AY) 1Sy,
AX;™ = diag(prx'A?) diag(A2) diag(pix'A%) 7 X7
+ diag(plX’AQ) (AQ)_IZXGP,

AX = diag( A\ X* + Bxeeeel,
where
Sy = diag(pix'AY)(A?) 'Sy

or

where V = A%diag(p;x'A9)~L.
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And with
X;* = diag(pix' A9 X"

and

Xy = (A9 X+ (KGy) T Ky

the rotation between X; and X;** is given by

X7 = diag(pix'A%)(AY) X, + (K) ' Ko]

= VX + (Kx) T Koy
Finally, the dividend growth equation can be rewritten as

Ady = dox + 01x' Xy
= dox + 01x (VX — (K;@X)AKE?X)

= (Jox — 01x' (K %) Koy ) + 61X’ VX
Hence, overall, the canonical form of X; is given by

AX, = diag(\?) X, + Yxed,
ry = Tg + L,Xta

Adt — 50X + 51XXt
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A1.3 Proof of Proposition 2

Given the canonical form obtained from Proposition 1, i.e.

AX, = diag \9) X,_; + Zye?,
ry = Tg + [//Xta

Adt == 50){ + 51XX157

and the rotational relationship between P, and X4, i.e.

P,=A+BX, (X,=B'P,—B'A),

substitute X; = B~!'P, — B~ A into the canonical form of X, to obtain

(B~'P, — B'A)— (B 'P,_, — B'A)
= diag(A\®)(B~'P,_; — B A) + Uxe?,
re =1L +/(B7'P, — BT'A),

Ady = dox + 0 (B7'P, — B7'A),

which simplifies to

AP, = —B diag(\%)B'A + Bdiag(A\%) B~'P,_; + BYxe2,
re =12 — VB A+ /B7'P,,

Ady = box — 8 x B A+ 6, B~ P,



127

In order for the canonical form of P, to be consistent with the canonical

form of X;, the following parameter restrictions follow:

K2 = Bdiag(\%)B™,
Kl()@P = _KPPA>

pip = (B™)s,

Por = 7"8; — A'prp,
d1p = (B™)b1x,

dop = dox — A'dip.



Appendix 2

A2.1 TImpulse responses

To derive the impulse responses of the yields from shocks to the state

factors X; = (P}, M})’, consider the physical dynamics of X; in (3.1):
which can be written as an implied Wold MA (c0) representation:

Xe=(- K?X)_lKgDX + Z Pief—i?

=0

where P, = (K{y)'Yx.

Moreover, given the bond yield equation (3.11),
Yo = An + B, Py,
the bond yield at maturity n, y2,, can be written as

Ype = A + [B;L 0’} X,

- An + |:B7/,L 0/:| (I KiPX lK 0X +Z¢n€t 7
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where ¢ = [B;, o'|P,. That is, the yield on an n-period zero-coupon
bond yP, is a linear combination of current and lagged values of ¢;, where
the row vectors i7" are a function of B,,.

The vector 1] is the impulse responses for the n-period yield at hori-
zon ¢ for shocks to the state vector X; at time 0. For k yields of maturities

ny,...,n, we can stack the coefficients of each yield to write
Yt:A+{B/ o}(I KTy X—l—z\lfet 0
where Y; = (y2, ... yb ) and the jth row of U; is ¢

A2.2 Variance decompositions

Working with the MA(co) representation of the yields, the error of the

optimal h-step-ahead forecast at time t, Yt+h|t, is

h—1
Y%Jrh\t —Yin = E Vi€ ni-
i=0

Let W;;,; denote the element in row j, column k of ¥,;. Then

K

J J k k
Yt+h|t Yign = E :(\Ijjkvoet-i-h ot Ukno1€i)
k=1

Denoting the mean squared error of Y we have

e @ MSE(

t+h\t)

N

MSE(Y/ ) =D (Who+- -+ T2, ).

k=1
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The contribution €25, of the kth factor to the MSE of the h-step ahead
forecast of the jth yield is
h—1 3,2
=12
ij,h _ Zz_o gk, 7

MSE(Y/, )

which decomposes the forecast variance at horizon h of the jth yield to

each of the K state factors.



