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Abstract

Chapter 1 “The Term Structure of Equities” examines the term structure

of equities. Using observed prices of dividend strips, prices of zero-coupon

equities are extracted, and their yields and returns characteristics are

documented. An affine term structure model is used to model the term

structure of equities. The model is estimated, and model-implied equity

yields and returns are shown to match the data well. However, the model-

implied long-run risk-neutral mean of the short rate is implausible. (The

next chapter takes this into account and estimates bond and equity yield

curves jointly using data on both zero-coupon bonds and zero-coupon

equities.)

Chapter 2 “Estimating a Unified Framework of Co-Pricing Stocks

and Bonds” estimates a maximal identifiable affine term structure model

that explains the joint prices of stocks and bonds. Using the test assets

of Treasury bonds and dividend strips, it is shown that the estimated

model can generally match the time series and cross-sectional proper-

ties of zero-coupon bonds, zero-coupon equities and the aggregate stock

index. Moreover, imposing restrictions prevalent in the co-pricing lit-

erature on the maximal model enhances certain features of the model

such as the high return of the short-term dividend strip, but reduces the

model’s ability to fit other aspects of the data such as the level of the



market risk premium.

Chapter 3 “The Role of Asian Countries” Reserve Holdings on the

International Yield Curves” studies the effect of Asian countries’ reserve

holdings on the yield curves of six industrialized countries: the United

States, the United Kingdom, Germany, Canada, Switzerland and Aus-

tralia. A Gaussian affine term structure model with three yield factors

and three unspanned macro factors including reserves is estimated to fit

the yield curve of each country. Impulse responses and variance decom-

positions show that Asian countries’ reserve holdings are an important

factor affecting the international yield curves.
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Chapter 1

The Term Structure of Equities

1.1 Abstract

This chapter examines the term structure of equities. Using observed

prices of dividend strips, prices of zero-coupon equities are extracted,

and their yields and returns characteristics are documented. An affine

term structure model is used to model the term structure of equities.

The model is estimated, and model-implied equity yields and returns are

shown to match the data well. However, the model-implied long-run risk-

neutral mean of the short rate is implausible. (The next chapter takes

this into account and estimates bond and equity yield curves jointly using

data on both zero-coupon bonds and zero-coupon equities.)

1.2 Introduction

There is an extensive literature on identifying the common factors that

affect the bond yield curve. The work by Litterman and Scheinkman

(1991) showed that three factors, namely “level”, “slope” and “curva-

ture”, explain over 90% of cross-sectional bond yield variations for al-

most any reasonable length of sample period and any combination of

yield maturities. This result is so robust that factor analysis has since

populated the analysis of bond term structure, with a fourth factor coined

by Cochrane and Piazzesi (2005), namely “the return forecasting factor”,

and the discovery of the “hidden factor” by Duffee (2011).

However, despite the advancement of factor analysis on the bond
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yield curve, the equity yield curve is rarely studied. The literature has

mostly focused on studying the risk and return behavior of the aggregate

stock market without looking at the individual terms that comprise it.

However, because the value of the aggregate stock market can be viewed

as the total value of the discounted future dividend payments (Gordon

1962), in addition to studying the aggregate price of these dividend pay-

ments, exploring the properties of each dividend payment should provide

us with valuable information about the way stock prices are formed and

improve our understanding of investors’ risk preferences and the endow-

ment or technology process in macro-finance models. Hence in this paper,

I study the term structure of equities by exploring the properties of the

individual dividend payments that comprise the aggregate stock mar-

ket. More specifically, I focus on zero-coupon equities, a concept created

using the analogy of zero-coupon bonds. Just like a zero-coupon bond

giving the investor a fixed payment at the end of the bond’s maturity,

a zero-coupon equity simply gives the investor a variable payment, that

is, the stochastic dividend, at the end of the security’s maturity. This

stochastic dividend could be paid out by a particular company, industry

or the aggregate economy. And the sum of discounted future dividend

payments will be the value of the company, industry or the aggregate

economy. In this paper, I focus on the term structure of the stochastic

dividends of varying maturities paid out by the aggregate stock market

index. And the first important questions for us are what the yield and

return characteristics of the zero-coupon equities are and whether there

exist common factors that can price the equity yield curve well.

Previously, the lack of study on the equity yield curve was largely due

to data unavailability. To study the bond yield curve, we use monthly

zero-coupon bond yields data dating back to the post war period (or
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earlier) – these are often available for maturities from one month to 30

years. But such data has not been available for equities. However, my

study of the equity term structure is made possible by the availability of

dividend strips data on the S&P 500 from van Binsbergen, Brandt and

Koijen (2012). Specifically, whereas a zero-coupon equity of maturity

n at time t gives the investor a stochastic dividend payment from t +

n − 1 to t + n, buying a dividend strip of maturity n at time t entitles

the investor to all the dividends paid out from time t to t + n. Using

put–call parity and observed put and call prices on the S&P 500, i.e.

Long-Term Equity Anticipation Securities (LEAPS) from the Chicago

Board Options Exchange (CBOE), van Binsbergen, Brandt and Koijen

decompose the index into a long-term equity and a short-term equity,

which is the dividend strip. In particular, prices of dividend strips for

maturities of six, twelve, eighteen and twenty-four months are priced,

and I extract zero-coupon equity prices from the prices of these strips.

The model used to consistently price dividends will follow Lettau and

Wachter (2007), which is an extension of the bond affine term structure

models first proposed by Duffie and Kan (1996). The economy is driven

by three state variables. One is the short rate factor, one is the growth

rate of dividend and the other is the first principal component of the set

of zero-coupon equities, which can be interpreted as a portfolio of equity

yields. The inclusion of the growth rate of dividend and the short rate

is due to the fact that these two variables are crucial components in the

pricing model of zero-coupon equities. Regarding the estimation of the

model, identification is ensured by showing that the three-factor model

is observationally equivalent to the maximally identified canonical model

specified in terms of three entirely latent factors – a method developed

in Joslin, Singleton and Zhu (2011).
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By estimating the term structure of equities, this paper fills the gap

in the literature in which only the term structure of bonds was estimated.

Both Lettau and Wachter (2007) and Lettau and Wachter (2011) study

the equity term structure, but they do not use data on zero-coupon eq-

uities or dividend strips. Moreover, what we learn using an estimated

factor model is that we can see from the data the dynamics among factors.

The calibration exercise usually makes strong and sometimes counterfac-

tual assumptions on the dynamics of factors and the interaction between

them. For example, in Lettau and Wachter (2011), dividend growth fol-

lows an autoregressive process with positive autocorrelation coefficient.

However, in the data, dividend growth is strongly negatively autocorre-

lated. Such restrictions will likely distort the model’s predictions of asset

prices and each factor’s implication on the asset prices.

The rest of the chapter is structured as follows: Section 1.3 outlines

the affine term structure model that is able to price zero-coupon eq-

uities, the aggregate stock market index as well as zero-coupon bonds.

Section 1.4 describes the data, estimation strategy and estimation results

and shows the model implications for bond yields. Section 1.5 concludes.

1.3 The model

This section introduces the general Gaussian affine term structure model

that is able to price both bonds and equities. The model follows the

affine framework first proposed by Duffie and Kan (1996) to price zero-

coupon bonds with different maturities, which has been further extended

in the literature to price zero-coupon equities with different maturities.

Affine term structure models have been widely used in the bond pricing

literature mainly due to their ability to generate tractable solutions for

bond yields. The same benefit of tractability can be carried forward to
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equity pricing. And the way of using affine term structure techniques

to value zero-coupon equities for each maturity and summing over the

prices of zero-coupon equities of all maturities to reach the aggregate

market index has been applied in Ang and Liu (2004), Bekaert, Engstrom

and Grenadier (2010), Lettau and Wachter (2007), Lettau and Wachter

(2011) and Wachter (2006).

1.3.1 The economy

It is assumed that the economy at time t is driven by a state vector Xt

that follows a VAR(1) process under both the physical measure P and

the risk-neutral measure Q,

∆Xt = KP
0X +KP

1XXt−1 + ΣXε
P
t , (1.1)

∆Xt = KQ
0X +KQ

1XXt−1 + ΣXε
Q
t , (1.2)

where Xt is an N × 1 vector, KP
0X and KQ

0X are N × 1 vectors, KP
1X ,

KQ
1X and ΣX are N ×N matrices and both εPt and εQt are N × 1 vectors

of independent shocks to various risk factors affecting the economy with

mean zero and unit variance.

Let rt = logRt, the one-period interest rate, be an affine function of

the state vector,

rt = ρ0X + ρ′1XXt, (1.3)

where ρ0X is a scalar and ρ1X is an N × 1 vector.

The level of the aggregate dividend of the economy is denoted by Dt.

Let dt = logDt, and the log dividend growth rate from time t−1 to time

t be defined as ∆dt = log(Dt/Dt−1). To maintain the affine structure

of the model, the dividend growth process is assumed to be an affine
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function of the underlying state vector, i.e.

∆dt = δ0X + δ′1XXt, (1.4)

where δ0X is a scalar and δ1X is an N × 1 vector.

Let the market price of risk vector λt be affine in the state vector,

λt = λ0X + λ1XXt. (1.5)

Here λt is an N × 1 vector of time-varying market prices of risk, λ0X is

an N × 1 vector and λ1X is an N ×N matrix.

By no-arbitrage, we obtain the pricing kernel or the stochastic dis-

count factor (SDF) Mt+1 of the economy as

Mt+1 = exp(−rt − 1
2
λ′tλt − λ′tεt+1), (1.6)

which can be used to consistently price all assets. That is, we have the

Euler equation

1 = Et[Mt+1Rt+1], (1.7)

where Rt+1 is the one-period return on any asset in the economy.

1.3.2 Zero-coupon equities

To price equities, I follow the approach in, for example, Lettau and

Wachter (2007) for defining the zero-coupon equity, which is analogous

to the concept of zero-coupon bond. It is assumed that the zero-coupon

equity is an asset that pays off the aggregate dividend at some fixed ma-

turity, and its price is an exponential affine function of the underlying

state vector. As a result, the price of zero-coupon equity has an analytical
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form that is similar to the price of the zero-coupon bond.

Specifically, let P d
nt denote the time-t price of a zero-coupon equity of

maturity n, that is, the time-t price of the aggregate dividend paid out

between time t+ n− 1 and time t+ n. This implies that its one-period

return from t to t+ 1 can be written as

Rd
n,t+1 =

P d
n−1,t+1

P d
n,t

=
P d
n−1,t+1/Dt+1

P d
n,t/Dt

Dt+1

Dt

. (1.8)

Plugging this into the Euler equation implies that the price scaled by the

aggregate dividend will satisfy the following equation:

P d
nt

Dt

= Et

[
Mt+1

P d
n−1,t+1

Dt+1

Dt+1

Dt

]
. (1.9)

If we write the scaled equity price as an exponential affine function of

the state vector, i.e.

P d
nt

Dt

= exp(Ad
n +Bd

n

′
Xt), (1.10)

then all quantities in the Euler equation can now be expressed as expo-

nential affine functions of the state vector. Moreover, using the Euler

equation, we can express the constant Ad
n and the 1×N loadings of the

scaled equity price on the state vector, i.e. Bd
n
′
, as functions of the un-

derlying parameters of the model by solving a set of Riccati equations

with the boundary condition P d
0t/Dt = 1.

More specifically, the loadings are solved recursively as follows:

Ad
n = −(ρ0X − δ0X) + Ad

n−1 + (δ1X +Bd
n−1)

′KQ
0X

+ 1
2
(δ1X +Bd

n−1)
′ΣXΣ′X(δ1X +Bd

n−1), (1.11)

Bd
n

′
= −ρ′1X + (δ1X +Bd

n−1)
′(KQ

1X + I), (1.12)
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with the starting values of Ad
0 = 0 and Bd

0 = 0. Details of the derivation

are provided in Appendix A1.1.

Moreover, we have

ydnt = − 1

n
ln
P d
nt

Dt

= − 1

n
(Ad

n +Bd
n

′
Xt) = − 1

n
Ad
n −

1

n
Bd
n

′
Xt. (1.13)

When we use the affine model to price bonds, bond yields are affine

functions of the state vector, and in estimation we try to match the

estimated bond yields with the observed bond yields. Analogously, when

we use the affine model to price equities, the quantity

ydnt = − 1

n
ln
P d
nt

Dt

will be the equity “yield” that we try to match.

1.3.3 The aggregate market

Since a zero-coupon equity is an asset that pays off the aggregate dividend

at some fixed maturity, by summing the prices of zero-coupon equities of

all maturities, we get the aggregate market index. Note here that, unlike

the prices of zero-coupon equities, which are exponential affine functions

of the state vector, the market index will not be an exponential affine

function of the state vector

Pm
t =

∞∑
n=1

P d
nt =

∞∑
n=1

exp(Ad
n +Bd

n

′
Xt)×Dt. (1.14)

1.3.4 Zero-coupon bonds

Although zero-coupon bonds are not studied in this chapter, they will

be studied jointly with zero-coupon equities in Chapter 2. Therefore,
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for completeness and convenience, the pricing equations of zero-coupon

bonds are outlined here. To price nominal bonds, let P b
nt denote the

time-t price of the n-period nominal zero-coupon bond. Assuming bond

price is exponential affine in the state vector

P b
nt = exp(Ab

n +Bb
n

′
Xt), (1.15)

where Ab
n is a scalar and Bb

n is an N × 1 vector, by the Euler equation

we have

P b
nt = Et[Mt+1P

b
n−1,t+1] (1.16)

with the boundary condition P b
0t = 1.

The price of the zero-coupon bond P b
nt = exp(Ab

n+Bb
n
′
Xt) has exactly

the same form as the scaled price of the zero-coupon equity, which is

P d
nt/Dt = exp(Ad

n +Bd
n
′
Xt). And the Euler equation for the zero-coupon

bond is exactly the same as the Euler equation for the zero-coupon equity

without the dividend growth process. Hence we can just take the results

from the zero-coupon equity, set δ0X = 0 and δ1X = 0 and change the

superscript from d to b to get the standard solutions for bond prices’

loadings on the state vector, which are

Ab
n = −ρ0X + Ab

n−1 +Bb
n−1
′
KQ

0X + 1
2
Bb
n−1
′
ΣXΣ′XB

b
n−1, (1.17)

Bb
n

′
= −ρ′1X +Bb

n−1
′
(KQ

1X + I), (1.18)

with the starting values being Ab
n = 0 and Bb

n = 0.

And bond yield of maturity n can be expressed as

ybnt = − 1

n
lnP b

nt = − 1

n
(Ab

n +Bb
n

′
Xt) = − 1

n
Ab
n −

1

n
Bb
n

′
Xt. (1.19)
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1.4 Estimation

1.4.1 The normalized model

The general Gaussian dynamic term structure model previously stated

in Section 1.3 is not ready to be estimated, as any affine transformations

of the state process are observationally equivalent as shown in Dai and

Singleton (2000). That is, suppose we have two models; they are the

same in all aspects except that the state process in one model is an affine

transformation of the state process in the other model. Then the two

models will generate exactly the same asset prices. In other words, given

the same set of asset prices, there exists an infinite number of models

that can generate this set of asset prices. Therefore, these models are

generally not identified without imposing restrictions. To impose the

minimum number of restrictions on the state process such that the model

is identified, we can follow Joslin, Singleton and Zhu (2011) (JSZ) and

normalize all models to a canonical form, in which the state vector Xt

is entirely latent. As a result of this normalization, given the same set

of asset prices, there is only one model in the canonical form that can

generate this set of asset prices. The JSZ canonical form is only able

to price zero-coupon bonds. I extend the canonical form in JSZ to a

canonical form that is able to price zero-coupon equities as well.

Let us first recall the general form of the state process in Section 1.3,

in which the parameters are unrestricted:

∆Xt = KP
0X +KP

1XXt−1 + ΣXε
P
t ,

∆Xt = KQ
0X +KQ

1XXt−1 + ΣXε
Q
t ,

rt = ρ0X + ρ′1XXt,

∆dt = δ0X + δ′1XXt,

(1.20)
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where ΣXΣ′X is the constant conditional covariance matrix of Xt, ε
P
t , ε

Q
t ∼

N(0, IN), rt is the short rate, ∆dt is the dividend growth.

Next, as this model belongs to the class of Gaussian dynamic term

structure models, it is observationally equivalent up to an affine trans-

formation of the state vector. Hence, using this feature, we can derive

a canonical form of the above general co-pricing model, which is maxi-

mally flexible in the parameterization of both its P and Q distributions

of Xt such that the model is identifiable. Here, no assumptions about

the processes of Xt are made; only normalizations are used to ensure

econometric identification. Proposition 1 shows the canonical form, and

the proof is given in Appendix A1.2.

Proposition 1. Every canonical affine term structure model is ob-

servationally equivalent to the following canonical model:

∆Xt = KP
0X +KP

1XXt−1 + ΣXε
P
t ,

∆Xt = KQ
0X +KQ

1XXt−1 + ΣXε
Q
t ,

rt = rQ∞ + ι′Xt,

∆dt = δ0X + δ′1XXt,

(1.21)

where εPt , ε
Q
t ∼ N(0, IN), KQ

0X = 0, KQ
1X is in ordered real Jordan form1

such that the diagonal elements are represented by λQ = (λQi )s with de-

creasing magnitude, ΣX is the lower triangular Cholesky decomposition

of ΣXΣ′X , ι is a vector of ones.

The result of this proposition will be used in the estimation to make

sure the model is not unidentified or has any over-identifying restrictions.

1Alternatively, KQ
1X can be specified to be a diagonal matrix with real and distinct

eigenvalues on the diagonal and the eigenvalues are ordered in decreasing magnitude.
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1.4.2 Estimation strategy

One way to estimate the model is to maintain the assumption that the

underlying state vector is completely latent as in (1.21). However, one

problem with this estimation strategy is that the number of parameters

that need to be estimated can potentially be very large.

An alternative estimation strategy is to estimate P parameters and

Q parameters separately, as in Joslin, Singleton and Zhu (2011). It is

shown below that the canonical model in terms of Xt is observationally

equivalent to a unique affine model whose pricing factors Pt include the

short rate, the first principal component of the set of equity yields that

can be viewed as a portfolio of equity yields, and the dividend growth.

Under the assumption that the portfolio of yields is observed without

error, the estimation of the canonical model in terms of Pt can be carried

out in a two-step procedure. First, the P dynamics of the state process

can be estimated by an unrestricted vector autoregression (VAR). Then,

taking the estimated parameters from the VAR as given, the rest of

the parameters are then estimated using maximum-likelihood estimation

(MLE). The advantage of this estimation procedure is that the number

of parameters to be estimated is greatly reduced. Therefore, the latter

strategy will be adopted in this paper.

Specifically, I assume there are three latent factors driving the econ-

omy. Applying rotation to the latent state vector, it can be shown that

the canonical model in terms of Xt defined in (1.21) is observationally

equivalent to a canonical model defined in terms of Pt, which consists of

the short rate, the first principal component of equity yields (portfolio of

yields)

PCt = Wyt (1.22)



26

and dividend growth, i.e.

Pt =


rt

PCt

∆dt

 .

Given

yt = AX +B′XXt, (1.23)

we have

Pt =


rt

PCt

∆dt

 =


ρ0X

WAX

δ0X

+


ρ′1X

WB′X

δ′1X

Xt = A+BXt. (1.24)

Therefore, given the affine relationship between Pt and Xt, we can use the

generic feature of Gaussian affine term structure models to find a model

in terms of Pt, which is observationally equivalent to the canonical form

of Xt. This is summarized in Proposition 2. The proof can be found in

Appendix A1.3.

Proposition 2. Any canonical affine term structure model as defined

in (1.21) is observationally equivalent to a unique affine co-pricing model

whose pricing factors Pt include the short rate, the portfolios of yields

Wyt and the dividend growth. Moreover, the Q distribution of Pt is

uniquely determined by (λQ, rQ∞, ΣP , δ0X , δ1X), where λQ = (λQi )s are
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ordered in decreasing magnitude. That is,

∆Pt = KP
0P +KP

1PPt−1 + ΣPε
P
t ,

∆Pt = KQ
0P+, KQ

1PPt−1 + ΣPε
Q
t

rt = ρ0P + ρ′1PPt,

∆dt = δ0P + δ′1PPt

(1.25)

is a canonical Gaussian affine term structure model, where KP
0P , KP

1P ,

ρ0P , ρ1P , δ0P , δ1P are explicit functions of (λQ, rQ∞, ΣP , δ0X , δ1X). The

canonical form is parameterized by (λQ, rQ∞, ΣP , δ0X , δ1X , KP
0P , KP

1P).

And the relationship between the parameters in the two canonical forms

can be shown as follows:

KQ
1P = BJ(λQ)B−1,

KQ
0P = −KQ

1PA,

ρ1P = (B−1)′ι,

ρ0P = rQ∞ − A′ρ1P ,

δ1P = (B−1)′δ1X ,

δ0P = δ0X − A′δ1P .

(1.26)

Next given the observational equivalence between the canonical form

in Xt and the model in Pt outlined above, I estimate the model in Pt

rather than in Xt. The estimation is implemented in three steps.

In Step 1, I assume there is one portfolio of yields that is measured

without error, i.e. Wyt = Wyot . Here, yot denotes the observed yields.

Hence Wyt can be measured by the first principal component of yields.
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In Step 2, as the state vector

Pt =


rt

PCt

∆dt


is observed, it can be used to estimate the P process of Pt. More specif-

ically, as Pt follows a VAR process

∆Pt = KP
0P +KP

1PPt−1 + ΣPε
P
t ,

KP
0P and KP

1P can be estimated from an unrestricted VAR using ordinary

least squares (OLS). And these OLS estimates can be viewed as MLE

estimates because of the inherent separation between the parameters of

the P and Q dynamics of Pt, that is

f(yot |yot−1; Θ) = f(yot |Pt;λQ, rQ∞,ΣP , δ0X , δ1X , P θm)

× f(Pt|Pt−1;KP
1P , K

P
0P ,ΣP), (1.27)

where P θm is the conditional distribution of the measurement errors yot −

yt.

In Step 3, taking the estimated parameters from OLS as given, we

estimate the rest of the parameters using MLE.

The detailed justification for the estimation strategy is as follows.

By Proposition 2, we can, without loss of generality, use

Pt =


rt

PCt

∆dt

 ∈ RN



29

as observed factors. Suppose that the individual bond yields, yt, are

to be used in estimation and that their associated measurement errors,

yot −yt, have the conditional distribution P θm , for some θm ∈ Θm. It only

requires that, for any P θm , these errors are conditionally independent

of lagged values of the measurement errors and satisfy the consistency

condition

P




rt

Wyot

∆dt

 =


rt

PCt

∆dt

 |Pt
 = 1.

Then the conditional likelihood function (under P) of the observed data

(yot ) can be decomposed as the product of two conditional likelihood func-

tions. The first likelihood function describes the conditional distribution

of the observed yields that are measured with errors, that is, dependent

on the parameters relevant for pricing (λQ, rQ∞, ΣP , δ0X , δ1X) and the dis-

tribution assumption of the measurement errors. The second likelihood

function describes the conditional distribution of Pt, which depends only

on (KP
1P , KP

0P , ΣP). We have

f(yot |yot−1; Θ) = f(yot |Pt;λQ, rQ∞,ΣP , δ0X , δ1X , P θm)

× f(Pt|Pt−1;KP
1P , K

P
0P ,ΣP).

Now if we assume Pt is conditionally Gaussian, then the conditional

P likelihood of P , i.e. the second part of (1.28) can be expressed as

f(Pt|Pt−1;KP
1P , K

P
0P ,ΣP)

= (2π)−N/2 |ΣP |−1 × exp(−1
2

∥∥Σ−1P (Pt − Et[Pt])
∥∥2), (1.28)

where Et−1[Pt] = KP
0P + (I +KP

1P)Pt−1.
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Moreover, Zellner (1962) shows that, conditional on t = 0 informa-

tion, the parameters KP
1P and KP

0P that maximize this likelihood function

are their OLS estimates, i.e.

(KP
1P , K

P
0P) = argmax

T∑
t=1

f(yot |yot−1;KP
1P , K

P
0P ,ΣP)

= argmin
T∑
t=1

∥∥Σ−1P (Pt − Et[Pt])
∥∥2 . (1.29)

Hence, (KP
1P , KP

0P) can be estimated from time series of Pt alone, and

their OLS estimates are globally optimal, i.e. they are equal to their

maximum likelihood estimates. Hence (KP
1P , KP

0P) will no longer need to

be estimated using MLE, and the canonical form in P is now parame-

terized by (λQ, rQ∞, ΣP , δ0X , δ1X) rather than by (λQ, rQ∞, ΣP , δ0X , δ1X ,

KP
0P , KP

1P), effectively eliminating the dependence on (KP
1P , KP

0P). The

separation is formally shown in Proposition 3.

Proposition 3. Using the observed factor, Pt = Po
t ∈ RN , the

maximum likelihood estimates of (KP
1P , KP

0P) are given by their OLS

estimates. Moreover, the canonical form of Pt in Proposition 2 is now

parameterized by (λQ, rQ∞, ΣP , δ0X , δ1X), effectively eliminating the de-

pendence on (KP
1P , KP

0P).

Moreover, the sample estimates of ΣP can be used as starting values

for their MLE estimation, reducing the estimation time of these param-

eters. The reduction in the number of parameters need to be estimated

using MLE increases with the number of factors that are assumed to

drive the economy. For example, with an N -factor model, we no longer

need to estimate the N(N + 1) parameters that come from (KP
1P , KP

0P),

which greatly reduces the estimation time.
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1.4.3 Data

This subsection describes the data used in this paper, especially the three

observed factors assumed to drive the whole economy, i.e. the short

rate, dividend growth and portfolio of equity yields. The procedure used

to remove seasonality in the data and the way the equity portfolio is

constructed are also discussed.

Short rate

First, the short rate is included as a state vector in the VAR under P.

Figure 1.1 plots the time series of the one-month interest rate provided

by van Binsbergen, Brandt and Koijen (2012) for the sample period.

Generally, interest rates exhibit extremely high persistence. The first-

order autocorrelation coefficient is usually close to one and a unit root

test could not reject the existence of a stochastic trend (see Goodfriend

(1991) and Jardet, Monfort and Pegoraro (2013)). However, in this pa-

per, I follow the majority of the literature (see Bauer, Rudebusch and

Wu (2012)) and assume that the short rate is stationary. This is because

if we were to allow the short rate to be nonstationary, a unit root will

mean that the short rate will never revert back to its long-run mean and

an explosive root will mean that the short rate will inevitably drop be-

low the zero lower bound; both cases contradict the fact that nominal

interest rates are bounded above zero and remain within a certain range.
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Figure 1.1: Short rate, in annual percentages, 1996m2:2009m10

Dividend and dividend growth

Monthly dividends from January 1996 to October 2009 are provided by

van Binsbergen, Brandt and Koijen (2012). The dashed line in the top

panel of Figure 1.2 shows monthly dividends and the dashed line in the

middle panel shows the monthly log dividend growth rates. We can see

that the level of dividend is nonstationary but log dividend growth rates

are stationary. However, monthly dividends exhibit seasonality in both

level and log growth rates, due to the fact that most companies pay

dividends on a quarterly basis.

If we were to use original monthly dividend in the estimation, because

of its own seasonality, not only will it cause dividend growth to be sea-

sonal, it will also cause equity yields to be seasonal, which will be seen

later in this section. And the seasonality will cause a problem for the es-

timation. This is because seasonality means shocks are not independent

and identically distributed (i.i.d.), which will violate the standard i.i.d.

assumption in estimation. In addition, as seasonality is not explicitly

modeled in the paper, using the data with seasonality in the estimation

will bias the estimates of the model. Therefore, we must filter out the

seasonality in the data before it enters into the estimation. Moreover,
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filtering out seasonality can also help us see more clearly the underlying

trend of the data.

To remove the seasonality in dividend, I deseasonalize the dividend

itself, then use the deseasonalized dividends to calculate dividend growth,

and to scale the prices of zero-coupon equities to calculate equity yields.

More specifically, I choose a simple moving average over three months

to filter out the seasonality in the monthly dividend. The solid line in the

top panel of Figure 1.2 shows the filtered monthly dividends. We can see

that, using the above method of filtering, we are able to remove the quar-

terly seasonality that was previously present in the monthly dividends,

and we can also see the trend of the monthly dividends more clearly.

The solid line in the bottom panel of Figure 1.2 shows the monthly log

dividend growth rates based on the deseasonalized monthly dividends.

By using deseasonalized dividends, the quarterly seasonality that was

previously affecting dividend growth is also reduced.
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(a) Monthly dividends, Dt, original and filtered, 1996m1:2009m10
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Orignal dividend growth

(b) Monthly log dividend growth rates, ∆dt = log(Dt/Dt−1), original,
1996m2:2009m10
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(c) Monthly log dividend growth rates, ∆dt = log(Dt/Dt−1), filtered,
1996m2:2009m10

Figure 1.2: Monthly dividends and log dividend growth rates, original
and filtered.



35

Equity yield portfolio

Finally, an “equity yield portfolio” is included as a state factor in the

estimation. The factor is the first principal component of equity yields,

which is a linear combination of equity yields and hence can be viewed

as a portfolio of equity yields. Equity yields in this paper are defined by

equation (1.13), i.e.

ydnt = − 1

n
ln
P d
nt

Dt

.

P d
nt is the price of zero-coupon equities and the data on zero-coupon

equities are calculated from the prices of dividend strips provided by

van Binsbergen, Brandt and Koijen (2012). van Binsbergen, Brandt and

Koijen match the S&P 500’s put and call prices of the same maturity and

use put–call parity to back out strip prices. Specifically, the S&P 500

index is decomposed into a portfolio of dividend strips, which entitles the

holder to the realized dividends of the index with maturities of six, twelve,

eighteen and twenty-four months. For example, from the dataset we know

that in January 1996 the price of the dividend strip with twelve-month

maturity is $13.56. Buying this dividend strip in January 1996 entitles

the buyer to a dividend paid out at each month end from February 1996 to

January 1997. And by January 1997 the total amount of dividends paid

out in the past 12 months reaches $14.97. The data for the dividend strips

are available monthly from January 1996 to October 2009. The times

series of the prices of dividend strips and S&P 500 index are plotted in

the top and bottom panels of Figure 1.3. From the figure, we can see that

the prices of dividend strips are monotonically increasing with maturity,

as violations of this would lead to arbitrage opportunities. Ideally, to

extract the prices of zero-coupon equities, we need prices of strips of two

adjacent maturities. For example, to obtain the price of monthly zero-
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coupon equity with a maturity of twenty-four months, we need the prices

of the dividend strips for the twenty-four-month and twenty-three-month

maturities. However, strips of only four maturities, each six months

apart, are available. This means that, to calculate the prices of monthly

zero-coupon equities, we need to interpolate the prices of the dividend

strips in between using the observed relationship between the prices of

dividend strips and their maturities. The method in this paper is to use

nonlinear curve fitting to fit six observed strip prices with maturities of 0,

6, 12, 18, 24 months and ∞; the last strip price is actually the S&P 500

stock index. This is because in theory the S&P 500 can be viewed as

the sum of zero-coupon equity prices from maturity one to maturity

infinity. Hence it can be viewed as a strip price of maturity at infinity.

Since the prices of the dividend strip with maturity at zero months and

infinity months are zero and the S&P 500 stock index, the nonlinear

curve is constructed to always satisfy three properties. First, it has to go

through the origin. Second, it has to be monotonically increasing to rule

out any arbitrage opportunities. Finally, the curve should asymptotically

approach the S&P 500 index as the maturity goes to infinity.
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Figure 1.3: Prices of dividend strips and the level of the S&P 500,
1996m1:2009m10

Ideally, for the MLE estimation, we want to have yields across a range

of maturities to pin down the equity term structure. When yields are not

available, we could choose to match prices that are cumulative exponen-

tials of the yields. Given that we have a fitted curve that matches the

strip prices and the index very well, the ideal would be to match the strip

prices and the market index. However, incorporating the index into the

estimation is technically difficult. This is because matching the market

index requires matching the sum of all the model-generated zero-coupon

equity prices from maturity one to maturity infinity with the observed

index. The assumption of which period we take as infinity is arbitrary
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but will nevertheless be large for the market index. Hence, in practice,

matching the market index under the affine model will be too compu-

tationally intensive. Alternatively, given the fact that the entire strip

price curve is generated, we can extract yields directly from the curve.

We could use the fitted curve to extract information regarding the long

end of the equity term structure. More specifically, a zero-coupon equity

of a long-maturity (fifty-year) yield could be taken from the estimated

nonlinear curve and be used as the data on the long-maturity yield in

the estimation. This equity yield at long maturity will not be a perfect

substitute for the market index, but it will nevertheless contain informa-

tion on the long end of the equity term structure. By having the equity

yield at long maturity, the estimation will have a greater ability to fit

the observed market index.

By subtracting the fitted strip prices of two adjacent maturities, we

obtain the prices of the zero-coupon equities. The prices of zero-coupon

equities (6m, 12m, 18m, 24m and 50y) from January 1996 to October

2009 are plotted in the top panel of Figure 1.4. We can see that the prices

of zero-coupon equities follow the same trend as those of dividend strips.

And because the four zero-coupon equities’ maturities are close to each

other, their prices are generally at the same level. As pointed out by van

Binsbergen, Brandt and Koijen (2012) (BBK), dividend strip prices are

nonstationary over time; they scale the four dividend strip prices by the

level of the S&P 500 index to obtain stationary data series. Indeed, the

prices of the zero-coupon equities are nonstationary, as seen from the top

panel of Figure 1.4. However, if we scale zero-coupon equity prices by the

dividend provided by BBK, then P d
nt/Dt is stationary, as shown by the

middle panel of Figure 1.4. The prices of zero-coupon equities scaled by

monthly dividends provided in BBK are stationary but seasonal, which is



39

caused by the seasonality in monthly dividends as shown in the previous

section. The bottom panel of Figure 1.4 shows that zero-coupon equity

prices scaled by deseasonalized dividends are stationary and are no longer

affected by seasonality. We can then use these to extract yields.
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(b) Prices of zero-coupon equities scaled by original dividend
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(c) Prices of zero-coupon equities scaled by filtered dividend

Figure 1.4: Prices of zero-coupon equities, 1996m1:2009m10

Next, we extract the principal component from the group of equity

yields of maturities 6m, 12m 18m, 24m and a long maturity of 50 years,
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and the first principal component explains over 99% of the total varia-

tions in this group of equity yields. Figure 1.5 plots the time series of

the five yields. The two spikes in 2001 and 2009 are indicative of two

economic recessions. Figure 1.6 plots the time series of the first principal

component of the equity yields.
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Figure 1.5: Annual percentage yields of zero-coupon equities
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Figure 1.6: First principal component of zero-coupon equities

1.4.4 Estimation results

Model parameters

As the likelihood function is optimized over (λQ, rQ∞, ΣP , δ0X , δ1X), these

parameters’ estimates are shown in Table 1.1 and Table 1.2. Estimates
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are in annual numbers with their standard deviations in parentheses.

From the estimates of the (λQi + 1)s, we can see that the estimated state

process has real and distinct eigenvalues, and because all (λ̂Qi + 1)s are

between zero and one, the estimated state process is stationary under

Q. The initial value of ΣP is obtained from the VAR estimate of the P

process of the state vector, and the final estimate of ΣP obtained from

the MLE is reported in Table 1.2. Table 1.3 reports the OLS estimates

of KP
0P and KP

1P + I.

Table 1.1: Maximum likelihood estimates of the risk-neutral parameters,
equity term structure

λQ1 + 1 λQ2 + 1 λQ3 + 1 rQ∞
Estimate 0.9967 0.3761 0.3068 −670.2887

Standard deviation (0.0010) (0.0170) (0.6789) (0.3190)
δ0X δ1X,1 δ1X,2 δ1X,3

Estimate −6.7241 0.9983 −0.7104 −1.3359
Standard deviation (0.0117) (0.0030) (0.8033) (1.1760)

Table 1.2: Maximum likelihood estimates of the conditional covariance,
equity term structure ∑

P,11
Estimate 0.4655

Standard deviation (0.0304)∑
P,21

∑
P,22

Estimate −0.6509 19.6996
Standard deviation (1.2707) (2.0452)∑

P,31
∑
P,32

∑
P,33

Estimate 5.0893 23.7969 51.0953
Standard deviation (4.5313) (7.0941) (3.6709)
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Table 1.3: Maximum likelihood estimates of the physical parameters,
equity term structure

KP
0P,1 KP

0P,2 KP
0P,3

Estimate 0.0585 −2.9820 0.9645
Standard deviation (0.0764) (3.4513) (9.0396)

KP
1P,11 + 1 KP

1P,12 KP
1P,13

Estimate 0.9820 −0.0023 −0.0008
Standard deviation (0.0200) (0.0011) (0.0006)

KP
1P,21 KP

1P,22 + 1 KP
1P,23

Estimate 1.6157 0.7616 −0.0425
Standard deviation (0.9032) (0.0491) (0.0263)

KP
1P,31 KP

1P,32 KP
1P,33 + 1

Estimate 2.6735 −0.5392 −0.2203
Standard deviation (2.3657) (0.1286) (0.0690)

Equity yields

Given the model parameters, we can generate the model-implied equity

yields and compare them with the equity yields observed in the data. The

top panel of Table 1.4 reports the summary statistics for equity yields

in the data. We can see that the mean of equity yield is decreasing in

maturity and the standard deviation of equity yield is also decreasing in

maturity. The bottom panel of Table 1.4 reports the summary statistics

for equity yields implied by the model. The estimated yields can match

the observed yields very well in terms of both the first moment and the

second moment. Hence these results demonstrate that this estimation

framework, originally designed to match bond yields, is able to match

the basic features of equity yields as well.
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Table 1.4: Estimation results: moments comparison for equity yields,
annual percentages, equity term structure

Maturity (years) 0.5 1 1.5 2 long maturity (50)
Panel A: Data

Mean 6.91 4.38 3.53 3.11 1.85
Standard deviation 28.60 14.17 9.36 6.96 0.38

Panel B: Model
Mean 6.91 4.38 3.53 3.11 1.85

Standard deviation 28.60 14.21 9.34 6.90 0.10

Return of the dividend strip and the aggregate market

BBK construct the return of the short-term strip and compare it with the

return of the market. They find that the return of the short-term strip is

much higher than that of the market. Given the return of the market can

be viewed as a weighted average of the return of the short-term strip and

the return of the long-term strip, the above observation implies that the

return of the short-term strip is higher than the return of the long-term

strip, i.e. the equity term structure is downward sloping. This can be

illustrated by Table 1.5.

Table 1.5: Data: summary statistics of the return of the short-term strip
and the market, annual percentages

Rshort strip Rshort strip −Rf Rmarket Rmarket −Rf

Mean 13.90 10.53 6.67 3.29
Standard 27.03 27.04 16.26 16.22
deviation
Sharpe ratio 0.39 — 0.20 —

We can see that the annual mean return of the short-term strip is

13.90% whereas the annual mean return of the market is only 6.67%. The

annual mean excess return of the short-term asset is 10.53% whereas the

annual mean excess return of the market is only 3.29%. All these imply a

downward sloping equity term structure. In addition, the Sharpe ratio of
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the short-term asset is higher than the Sharpe ratio of the market despite

its high volatility.

We can also check whether this evidence can be generated by the

model in the paper. In particular, the two returns are calculated as

follows. For the short-term strip, its return can be calculated as

Rs
t+1 =

P s
n−1,t+1 +Dt+1

P s
n,t

− 1, (1.30)

where P s
n,t is the time-t price of the dividend strip of maturity n, and

P s
n,t =

∑n
i=1 P

d
i,t, that is, it is the cumulative price of zero-coupon equities

of maturity 1 to maturity n. For the market return, given the time series

of zero-coupon equities of maturities one to infinity, we can construct

the equity index of each period, together with each period’s aggregate

dividend. The return on the market index can be computed using

Rm
t+1 =

Pm
t+1 +Dt+1

Pm
t

− 1. (1.31)

Using the two formulas above, Table 1.6 shows that the above features

within the BBK data can be matched well by our model. In BBK’s

data, the maturities of the short-term strip vary between 1.3 years and

1.9 years. Here, the returns of the strip of maturity 15 months to 23

months are listed in the table to match the maturities used by BBK.

The means and the standard deviations of the maturities are largely in

line with those provided in BBK. The last column of the table provides

the model-generated market return, which closely matches that in the

data. Table 1.7 also lists the excess return, standard deviation and the

Sharpe ratio of the short-term strip and the market. All can be shown

to match the data well.
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Table 1.6: Summary statistics of the return of the short-term strip and
the market, equity term structure, annual percentages

R15m R16m R17m R18m R19m R20m R21m R22m R23m Rmarket
Mean 11.79 11.66 11.55 11.44 11.35 11.26 11.19 11.11 11.05 6.59
Standard 26.15 26.26 26.35 26.43 26.51 26.57 26.62 26.67 26.71 16.17
deviation
Sharpe 0.32 0.32 0.31 0.31 0.30 0.30 0.29 0.29 0.29 0.20
ratio

Table 1.7: Summary statistics of the excess return of the short-term strip
and the market, equity term structure, annual percentages

R15m R16m R17m R18m R19m R20m R21m R22m R23m Rmarket
Mean 8.43 8.30 8.19 8.09 7.99 7.91 7.83 7.76 7.69 3.23
Standard 26.17 26.28 26.37 26.45 26.52 26.59 26.64 26.69 26.73 16.18
deviation

Risk premiums of zero-coupon equities

In this section, we look at the equity term structure from another per-

spective. In particular, we look at the risk premiums of zero-coupon

equities, that is, the one-period return of these assets in excess of the

risk-free rate. The reason we look at these quantities is because Lettau

and Wachter (2007) use them as empirical support for the value pre-

mium. Their rationale is that if we think of value stocks as short-horizon

equities since their cash flows are weighted more towards the present, and

think of growth stocks as long-horizon equities since their cash flows are

weighted more towards the future, then we can only observe the value

premium if we see that zero-coupon equities of shorter maturities have

higher premiums than zero-coupon equities with longer maturities. Value

premium implies a downward sloping equity term structure.

The risk premium or the one-period excess return on zero-coupon
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equity is calculated using the following equation:

Rd
n,t+1 −Rf =

P d
n−1,t+1

P d
nt

−Rf . (1.32)

The top panel of Figure 1.7 shows the estimated average annual risk

premiums for the zero-coupon equities. The middle panel shows the

annual volatility and the bottom panel shows the Sharpe ratios. Zero-

coupon equities with maturities up to forty years are examined (the same

set of maturities as examined in Lettau and Wachter (2007)). We can

see that the basic features of the model’s implied excess returns of zero-

coupon equities are largely consistent with the calibration of Lettau and

Wachter (2007). Although the risk premiums in their calibration are

generally higher than those generated from the estimation in this paper,

both have risk premiums of zero-coupon equities decline with maturity.

The return volatility initially increases with maturity, then decreases.

The unconditional Sharpe ratio generally decreases with maturity.
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Figure 1.7: Estimated risk premiums of zero-coupon equities, equity term
structure

Therefore, we can see that, for the purpose of matching dividend

strips or zero-coupon equities’ yields and returns characteristics, the cur-

rent model setup is sufficient.
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1.5 Conclusion

This chapter examines the term structure of equities. Using the observed

prices of dividend strips on the stock market index in van Binsbergen,

Brandt and Koijen (2012), the prices of zero-coupon equities are ex-

tracted and their yields and returns characteristics are documented. An

affine term structure model with three risk factors (the short rate, an eq-

uity yield portfolio and the aggregate dividend growth) is used to model

the term structure of the equities. Identification is ensured by extend-

ing the canonical form for bonds outlined in Joslin, Singleton and Zhu

(2011) to a canonical form for equities. The model is estimated, and

model-implied equity yields and returns are shown to match the data

well. However, as the model is estimated without taking into account

data on zero-coupon bond yields, the model-implied risk-neutral long-

run mean of the short rate is implausible. The second chapter takes this

into account and estimates the bond and equity yield curves jointly using

data on both zero-coupon bonds and zero-coupon equities.



Chapter 2

Estimating a Unified Framework of

Co-Pricing Stocks and Bonds

2.1 Abstract

This chapter estimates a maximal identifiable affine term structure model

that explains the joint prices of stocks and bonds. Using the test assets

of Treasury bonds and dividend strips, it is shown that the estimated

model can generally match the time series and cross-sectional proper-

ties of zero-coupon bonds, zero-coupon equities and the aggregate stock

index. Moreover, imposing restrictions prevalent in the co-pricing lit-

erature on the maximal model enhances certain features of the model

such as the high return of the short-term dividend strip, but reduces the

model’s ability to fit other aspects of the data such as the level of the

market risk premium.

2.2 Introduction

In the literature stocks and bonds have been priced well under sepa-

rate frameworks. Stocks are usually priced by using equilibrium models.

Examples of such models include the external habit formation model

of Campbell and Cochrane (1999), the long-run risks model of Bansal

and Yaron (2004), and the rare disasters model of Gabaix (2012), which

builds upon the work of Barro (2009). Bonds are more often priced by

affine term structure models. Examples of such include Duffie and Kan
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(1996), Dai and Singleton (2000) and Ang and Piazzesi (2003). However,

if investors have access to both stocks and bonds, then the assumption

of no-arbitrage will imply cross-market restrictions on the pricing kernel

or the stochastic discount factor, which can be used to price all assets in

the market. Hence there should exist a unified framework that is able to

price both stocks and bonds.

There is now a small and growing literature that tries to use the no-

arbitrage affine framework to jointly price stocks and bonds, although

each paper has its own focus. In Lettau and Wachter (2011), the focus

is on matching an upward sloping bond yield curve and a downward

sloping equity yield curve. Koijen, Lustig and Van Nieuwerburgh (2013)

is a reduced-form model that uses a cyclical factor to price the book-

to-market sorted stock portfolios and maturity sorted bond portfolios.

Ang and Ulrich (2012) decomposes expected equity returns into various

yields and risk premiums. The key advantage that these affine models

have in common is tractability: both stock yields and bond yields are

affine functions of the state vector, and the loadings on the state vector

are functions of the model parameters. Hence we can easily see how the

state vector affects yields analytically.

However, as these papers all belong to the class of Gaussian affine

term structure models, they also share a common generic feature: as

shown in Dai and Singleton (2000), any affine transformations of the

state process are observationally equivalent. That is, suppose we have

two models, the same in all aspects except that the state process in one

model is an affine transformation of the state process in the other model.

Then the two models will generate exactly the same asset prices. In

other words, given the same set of asset prices, there exists an infinite

number of models that can generate this set of asset prices. Therefore,
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these models are generally not identified without imposing restrictions.

To impose the minimum number of restrictions on the state process such

that the model is identified, we can follow Joslin, Singleton and Zhu

(2011) (JSZ) to normalize all the models to a canonical form, in which

the state vector Xt is entirely latent. As a result of this normalization,

given the same set of asset prices, there is only one model in the canonical

form that can generate this set of asset prices. And all the state vectors

in the models that can generate this set of asset prices are just rotations

(affine transformations) of Xt. Therefore, if we denote the state vector

in the existing papers of co-pricing stocks and bonds as Zt, then the

rotation between Zt and Xt and the minimum number of restrictions on

the process of Xt imply that the process of Zt will also face parameter

restrictions. As the existing models of co-pricing stocks and bonds are

usually calibrated and fail to take into account these restrictions in the

calibration, this could lead to some of the model parameters being over-

restricted (in the sense that the canonical form implies these parameters

should be freely estimated but they are instead restricted to zeros or

ones) or not identified (in the sense that the canonical form implies these

parameters should be restricted to zeros or ones but instead they are

freely estimated), which may cause spurious predictions of asset pricing

moments.

In this chapter, I develop and estimate a co-pricing model that jointly

prices nominal bonds and equities, taking into account the restrictions

implied by the canonical form. The model belongs to the class of Gaus-

sian affine term structure models in the sense that all shocks are normally

distributed and asset prices are exponential affine in the underlying state

vector that drives the economy. Existing papers under this framework

only use data on zero-coupon bonds and the aggregate market index, but
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this paper also utilizes zero-coupon equities in the estimation.

I estimate the model following Joslin, Singleton and Zhu (2011). I first

normalize the general model to the canonical form. Then I show that the

canonical form is observationally equivalent to another model, in which

the N × 1 state vector includes dividend growth and N − 1 principal

components (PCs) extracted from the yields of zero-coupon bonds and

the yields of zero-coupon equities, which can be seen as portfolios of these

yields. Including dividend growth in the state vector is motivated by the

fact that dividend growth cannot be spanned by the PCs of yields: it can

be shown that, when dividend growth is regressed on a constant and the

N − 1 PCs of yields, the R-squared is very low, i.e. variation in dividend

growth cannot be explained by the PCs of yields. If we do not include

dividend growth as a state factor, as the pricing function of zero-coupon

equities requires dividend growth to be expressed as an affine function of

the state vector we would implicitly assume dividend growth is an affine

function of the PCs of yields, which is not the case in the data. Therefore,

we must include dividend growth explicitly in the state vector.

The model is estimated using maximum likelihood estimation (MLE)

following JSZ. Under the assumption that the PCs (portfolios of yields)

are observed without error, the estimation can be carried out in a two-

step procedure. First, the P dynamics of the state process can be esti-

mated by an unrestricted VAR. Then, taking the estimated parameters

from the VAR as given, the rest of the parameters are then estimated

using MLE. Data on bond yields used in the estimation are Constant

Maturity Treasury yields, and the empirical counterparts of zero-coupon

equities are calculated from the dividend strips data provided in van

Binsbergen, Brandt and Koijen (2012). The estimated model can match

the time series and cross-sectional properties of asset pricing moments
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for both stocks and bonds well. Moreover, the estimation results show

that it is important to take into account the above restrictions to match

all the asset pricing moments. It will be seen later that imposing ad-

ditional restrictions on top of the identifying restrictions implied by the

maximal identifiable model would strengthen some asset pricing features.

However, this is achieved at the expense of not matching the other asset

pricing features.

By estimating a model of co-pricing stocks and bonds, this paper fills

the gap in the literature in which bonds and stocks are usually priced

separately. Moreover, in the estimation, I use a maximal identifiable

model to make sure I do not impose additional restrictions on the model

that may lead to spurious results. Chernov and Mueller (2012) also

estimate a model for the bond market, guided by the maximal identifiable

model derived from Joslin (2006). Regarding data, I use the dataset on

dividend strips provided in van Binsbergen, Brandt and Koijen (2012)

to empirically estimate zero-coupon equities, a concept defined as, for

example, in Lettau and Wachter (2007) but data on it was missing in the

literature. Bekaert and Grenadier (2001) estimate an affine model of co-

pricing stocks and bonds as well, but they use only data on the aggregate

market index, without using the prices of zero-coupon equities.

The rest of the chapter is structured as follows: Section 2.3 outlines

the Gaussian affine term structure model that is able to price bonds and

equities, and its canonical form that is maximally identifiable. The sec-

tion also describes the data and the estimation strategy and shows the

estimation results. Section 2.4 compares this paper with an existing pa-

per of co-pricing stocks and bonds to illustrate the importance of taking

into account the restrictions implied by the maximal identifiable model.

Section 2.5 concludes.



55

2.3 Model and estimation

I assume the economy in this chapter is driven by a latent state vector

Xt, which follows a VAR(1) process under both the physical measure P

and the risk-neutral measure Q:

∆Xt = KP
0X +KP

1XXt−1 + ΣXε
P
t ,

∆Xt = KQ
0X +KQ

1XXt−1 + ΣXε
Q
t ,

where Xt is an N × 1 vector, KP
0X and KQ

0X are N × 1 vectors, KP
1X , KQ

1X

and ΣX are N ×N matrices and both εPt+1 and εQt+1 are N × 1 vectors of

independent shocks with mean zero and unit variance.

I also assume the short rate and the dividend growth are driven by

Xt, as follows:

rt = ρ0X + ρ′1XXt,

where ρ0X is a scalar and ρ1X is an N × 1 vector.

The level of the aggregate dividend of the economy is denoted by Dt.

Let dt = logDt, and the log dividend growth rate from time t−1 to time

t is defined as

∆dt = log

(
Dt

Dt−1

)
= δ0X + δ′1XXt,

where δ0X is a scalar and δ1X is an N × 1 vector.

Given the above equations, we can derive the prices of zero-coupon

bonds, zero-coupon equities and the aggregate market index as shown in

Chapter 1. To estimate the asset prices, I use the result of observational

equivalence between the latent state vector Xt and a set of observable

state factors Pt as shown in JSZ. The same method was used in Chapter 1

to price equities. However, because the aim of this chapter is to price both

stocks and bonds, a different set of observable state factors Pt is used
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here. Specifically, Pt consists of portfolios of yields PCt and dividend

growth, i.e.

Pt =

PCt

∆dt

 .
PCt denotes the principal components of bond and equity yields (port-

folio of yields) and is a (N − 1)× 1 vector. More specifically,

PCt = Wyt.

Here yt is a J × 1 vector and includes all the bond and equity yields at

time t. W is (N − 1)× J and is the weight of the portfolios. Therefore,

given that yt is affine in Xt,

yt = AX +B′XXt,

where AX is J × 1 and BX is N × J , Pt is also affine in Xt as

Pt =

PCt

∆dt

 =

WAX

δ0X

+

WB′X

δ′1X

Xt = A+BXt.

Given the affine relationship between Pt and Xt, we can show that

the economy can be observationally equivalently defined in terms of Pt

as follows:

∆Pt = KP
0P +KP

1PPt−1 + ΣPε
P
t ,

∆Pt = KQ
0P +KQ

1PPt−1 + ΣPε
Q
t ,

rt = ρ0P + ρ′1PPt,

∆dt = δ0P + δ′1PPt.

This result is shown in Proposition 2 in Chapter 1. And the estimation

can be carried out in a two-step procedure. First, the P dynamics of the
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state process can be estimated by an unrestricted VAR. Then, taking the

estimated parameters from the VAR as given, the rest of the parameters

are then estimated using MLE.

2.3.1 Data

This section describes the data used in the estimation, including bond

yields and the principal components extracted from both zero-coupon

bond yields and zero-coupon equity yields. The data on equity yields

and dividend growth used in this chapter is the same as in Chapter 1.

Previously, there was no empirical counterpart for zero-coupon equities,

so in the literature the estimation of the co-pricing model, e.g. in Bekaert

and Grenadier (2001), can only use the aggregate equity price, which is

the sum of the prices of zero-coupon equities of all maturities. Hence,

the information on the term structure of equities was missing in the

estimation. However, Chapter 1 shows that, using dividend strip prices,

the S&P 500 index and the dividend series provided by van Binsbergen,

Brandt and Koijen (2012), we can construct “equity yields” that are

comparable to “bond yields”.

Bond yields

For bonds, end-of-month Constant Maturity Treasury yields with ma-

turities of 6 months, 1, 2, 3, 5, 7 and 10 years are taken from Febru-

ary 1996 to October 2009. I also include the one-month interest rate

provided by BBK as an additional bond yield. The time series of the

monthly zero-coupon bond yields are plotted in Figure 2.1. The mean

and standard deviation of the yields are shown in Table 2.1. From the

figure and the table, we can see that bond yields for the sample period

exhibit some stylized facts. The mean bond yield curve is upward slop-
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ing. Standard deviations of bond yields generally decrease with maturity.

Finally, yields are highly autocorrelated, with increasing autocorrelation

at longer maturities. In dealing with the stationarity of bond yields at

various maturities, I follow the same reasoning as in Chapter 1 for the

bond yield of one-month maturity. That is, I assume all bond yields are

stationary, but allow them to have a very low speed of mean reversion.
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Figure 2.1: Zero-coupon bond yields, 1996m2:2009m10

Table 2.1: Summary statistics of the U.S. bond yields (all numbers are
in annualized percentages)

Maturity (years) 1m 6m 1y 2y 3y 5y 7y 10y
Panel A: Data

Mean 3.37 3.57 3.69 3.95 4.13 4.45 4.71 4.87
Standard deviation 1.87 1.90 1.84 1.74 1.60 1.33 1.19 1.02

Co-pricing factors

There are eight zero-coupon bond yields and five zero-coupon equity

yields available monthly from February 1996 to October 2009. To es-

timate the model, five principal components are extracted from these

thirteen series. Here, five PCs are chosen due to the fact that existing

factor models on co-pricing such as Lettau and Wachter (2011), Koi-

jen, Lustig and Van Nieuwerburgh (2013) and Ang and Ulrich (2012) all
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happen to use six state factors to drive their economy. If a six-factor

state vector is also employed here, then the state vector in any of the

papers mentioned above can be viewed as a rotation of the state vector

in this chapter. Hence it is easier to translate between each paper’s re-

sults. More importantly, whereas existing papers on co-pricing set many

additional restrictions on top of the minimal set of restrictions imposed

by the maximal identifiable model, we can impose the same set of re-

strictions on the estimated maximal identifiable model in this chapter,

and see how these additional restrictions affect asset pricing moments.

Hence, five PCs are chosen and, together with monthly dividend growth

for the same sample period taken from van Binsbergen, Brandt and Koi-

jen (2012), they make up the six state factors that drive the economy

and all asset prices.

2.3.2 Estimation results

This subsection shows the estimation results and compares the data with

the model-implied asset pricing moments of zero-coupon bonds, zero-

coupon equities, dividend strips and the aggregate stock market index.

Model parameters

(λQ, rQ∞, ΣP , δ0X , δ1X) are estimated in MLE and their estimates are

shown in Table 2.2 and Table 2.3. From the estimates of (λQi +1)s, we can

see that the estimated state process has real and distinct eigenvalues, and

because all (λ̂Qi +1)s are between zero and one the estimated state process

is stationary under Q. Moreover, the estimate of the risk-neutral long-run

mean of the short rate is now 6.68% per annum, reflecting the fact that

by adding bond yield data we can achieve a more reasonable estimate of

the short rate parameter than using only equity data. Table 2.4 reports
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the OLS estimates of KP
0P and KP

1P+I. Estimates are in annual numbers

and their standard deviations are provided in parentheses.

Table 2.2: Maximum likelihood estimates of the risk-neutral parameters,
unrestricted co-pricing model

λQ1 +1 λQ2 +1 λQ3 +1 λQ4 +1 λQ5 +1 λQ6 +1 rQ∞
Estimate 0.9967 0.9930 0.9358 0.2799 0.2779 0.2761 6.6794
Standard (0.0010) (0.0007) (0.0031) (0.0019) (3.6189e-5) (0.0017) (0.5841)
deviation

δ0X δ1X,1 δ1X,2 δ1X,3 δ1X,4 δ1X,5 δ1X,6
Estimate 0.0185 −0.0019 0.7058 0.4636 −0.5838 0.0083 0.5380
Standard (0.0118) (1.6274e-5) (0.0012) (0.0089) (0.0013) (0.0001) (0.0047)
deviation

Table 2.3: Maximum likelihood estimates of the conditional covariance,
unrestricted co-pricing model

ΣP,11
Estimate 21.0251
Standard (0.1593)
deviation

ΣP,21 ΣP,22
Estimate −0.2952 0.5408
Standard (0.0015) (0.0061)
deviation

ΣP,31 ΣP,32 ΣP,33
Estimate 0.0383 −0.2494 0.2995
Standard (0.0001) (0.0037) (0.0043)
deviation

ΣP,41 ΣP,42 ΣP,43 ΣP,44
Estimate 0.1310 0.0836 −0.0658 0.1194
Standard (0.0012) (0.0023) (0.0001) (0.0041)
deviation

ΣP,51 ΣP,52 ΣP,53 ΣP,54 ΣP,55
Estimate −0.0507 −0.0234 0.1276 −0.0239 0.2783
Standard (0.0002) (0.0001) (0.0010) (0.0002) (0.0025)
deviation

ΣP,61 ΣP,62 ΣP,63 ΣP,64 ΣP,65 ΣP,66
Estimate 20.6796 3.7272 1.0947 17.9939 11.3924 45.9478
Standard (0.6679) (0.0294) (0.0033) (0.0384) (0.0361) (0.4947)
deviation
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Table 2.4: Maximum likelihood estimates of the physical parameters,
unrestricted co-pricing model

KP
0P,1 KP

0P,2 KP
0P,3 KP

0P,4 KP
0P,5 KP

0P,6
Estimate 0.2898 0.8491 −0.2154 0.2318 0.4301 42.2813
Standard (15.7761) (0.4531) (0.2819) (0.1353) (0.2344) (41.1135)
deviation

KP
1P,11+1 KP

1P,12 KP
1P,13 KP

1P,14 KP
1P,15 KP

1P,16
Estimate 0.7730 0.6810 −0.7070 −3.8695 4.3913 −0.0429
Standard (0.0484) (0.3778) (1.8274) (3.4290) (4.6373) (0.0264)
deviation

KP
1P,21 KP

1P,22+1 KP
1P,23 KP

1P,24 KP
1P,25 KP

1P,26
Estimate −0.0043 0.9948 −0.0326 −0.0621 −0.5000 0.0009
Standard (0.0014) (0.0109) (0.0525) (0.0985) (0.1332) (0.0008)
deviation

KP
1P,31 KP

1P,32 KP
1P,33+1 KP

1P,34 KP
1P,35 KP

1P,36
Estimate 0.0001 0.0082 0.8817 0.1298 −0.5027 −0.0003
Standard (0.0009) (0.0068) (0.0326) (0.0613) (0.0829) (0.0005)
deviation

KP
1P,41 KP

1P,42 KP
1P,43 KP

1P,44+1 KP
1P,45 KP

1P,46
Estimate −0.0012 −0.0006 0.0154 0.9129 0.1006 −0.0000
Standard (0.0004) (0.0032) (0.0157) (0.0294) (0.0398) (0.0002)
deviation

KP
1P,51 KP

1P,52 KP
1P,53 KP

1P,54 KP
1P,55+1 KP

1P,56
Estimate 0.0010 0.0020 −0.0260 0.0668 0.4512 −0.0006
Standard (0.0007) (0.0056) (0.0271) (0.0509) (0.0689) (0.0004)
deviation

KP
1P,61 KP

1P,62 KP
1P,63 KP

1P,64 KP
1P,65 KP

1P,66+1

Estimate −0.5201 1.1313 −1.7847 −16.8210 6.7022 −0.2151
Standard (0.1261) (0.9846) (4.7622) (8.9361) (12.0850) (0.0687)
deviation

Equities

a. Equity yields

Table 2.5 shows that the model’s predictions regarding yields of zero-

coupon equities can match the data well in terms of mean and standard

deviation, just like in Chapter 1.
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Table 2.5: Estimation results: moments comparison for equity yields,
annual percentages, unrestricted co-pricing model

Maturity 6m 12m 18m 24m 50y
Panel A: Data

Mean 6.91 4.38 3.53 3.11 1.85
Standard deviation 28.60 14.17 9.36 6.96 0.38

Panel B: Model
Mean 6.94 4.33 3.50 3.11 1.89

Standard deviation 28.65 14.13 9.30 6.90 0.38

b. Return of the dividend strip and the aggregate market

Just as in Chapter 1, we calculate the return of the dividend strip

of short maturity and the return of the aggregate market to see whether

the slope of the equity term structure is downward sloping or upward

sloping. However, in this chapter, the slope of the equity term structure

is backed out from the joint estimation of both the bond yield curve and

the equity yield curve. Hence it is interesting to see that, after adding

bond data, the model-implied slope of the equity term structure can still

maintain its downward slope given an upward sloping bond yield curve.

Table 2.6 repeats for convenience Table 1.5 in Chapter 1, which shows

the return of the short-term dividend strip of average maturity between

1.3 years and 1.9 years, the return of the S&P 500 index and their returns

in excess of the short rate.

Table 2.6: Data: summary statistics of the return of the short-term strip
and the market

Rshort strip Rshort strip −Rf Rmarket Rmarket −Rf

Mean 13.90 10.53 6.67 3.29
Standard 27.03 27.04 16.26 16.22
deviation
Sharpe ratio 0.39 — 0.20 —

The returns of the dividend strip and of the market index are calcu-
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lated using the equations below:

Rs
t+1 =

P s
n−1,t+1 +Dt+1

P s
n,t

− 1,

where P s
n,t =

∑n
i=1 P

d
i,t is the time-t price of the dividend strip of matu-

rity n, the sum of the prices of the zero-coupon equities from maturity 1

to n;

Rm
t+1 =

Pm
t+1 +Dt+1

Pm
t

− 1,

where Pm
t =

∑∞
i=1 P

d
i,t is the time-t market index, the sum of prices of

zero-coupon equities from maturity 1 to ∞.

Table 2.7 and Table 2.8 show that the model-implied equity term

structure is downward sloping, just as observed in the data. The returns

and excess returns of the short-term dividend strips of maturities of fif-

teen months to twenty-three months are slightly lower than the returns

of the short-term dividend strip, but they are comparable. Moreover the

market return and excess market return are both closely matched.

Table 2.7: Summary statistics of the return of the short-term strip and
the market, unrestricted co-pricing model

R15m R16m R17m R18m R19m R20m R21m R22m R23m Rmarket
Mean 11.90 11.76 11.64 11.54 11.44 11.36 11.28 11.21 11.15 7.05
Standard 26.48 26.57 26.65 26.72 26.78 26.84 26.89 26.93 26.97 24.72
deviation
Sharpe 0.32 0.32 0.31 0.31 0.30 0.30 0.29 0.29 0.29 0.15
ratio

Table 2.8: Summary statistics of the excess return of the short-term strip
and the market, unrestricted co-pricing model

R15m R16m R17m R18m R19m R20m R21m R22m R23m Rmarket
Mean 8.55 8.42 8.30 8.19 8.10 8.01 7.93 7.86 7.80 3.70
Standard 26.50 26.59 26.67 26.74 26.80 26.86 26.91 26.95 26.99 24.73
deviation
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c. Risk premiums of zero-coupon equities

Using

Rd
n,t+1 −Rf =

P d
n−1,t+1

P d
nt

−Rf

we calculate the risk premiums of the zero-coupon equities to see whether

they follow the downward sloping pattern as in Lettau and Wachter

(2007), and the answer is affirmative. The estimated risk premiums are

strictly decreasing in maturity and the estimated volatilities and Sharpe

ratios are generally decreasing in maturity, which are consistent with the

results in Lettau and Wachter (2007). These are shown in Figure 2.2.
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Figure 2.2: Estimated risk premiums of zero-coupon equities, unre-
stricted co-pricing model
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Bond yields

The estimation results regarding bonds are shown in Table 2.9. The table

shows that model-implied bond yields exhibit the same characteristics as

the observed yields, i.e. bond yields means are almost monotonically

increasing with maturity, while the standard deviations of bond yields

are generally decreasing in maturity. The close match in magnitudes of

both the means and the standard deviations between the estimated and

the observed bond yields shows that the co-pricing framework can match

bond yields well. Hence this shows that the co-pricing framework in this

paper can generate both the downward sloping equity yield curve and

the upward sloping bond yield curve.

Table 2.9: Estimation results: moments comparison for zero-coupon
bonds (all numbers are in annualized percentage), unrestricted co-pricing
model

Maturity 1m 6m 1y 2y 3y 5y 7y 10y
Panel A: Data

Mean 3.37 3.57 3.69 3.95 4.13 4.45 4.71 4.87
Standard deviation 1.87 1.90 1.84 1.74 1.60 1.33 1.19 1.02

Panel B: Model
Mean 3.36 3.59 3.70 3.93 4.12 4.43 4.67 4.94

Standard deviation 1.84 1.98 1.86 1.67 1.54 1.35 1.21 1.04

In summary, using the maximal identifiable model and using data on

both zero-coupon bonds and zero-coupon equities, the estimated model

can generally match the time-series and cross-sectional properties of asset

pricing moments for both bonds and equities.
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2.4 Restricted Model

2.4.1 Comparison with Lettau and Wachter (2011)

This section illustrates the importance of taking into account the re-

strictions implied by the maximal identifiable model. I will use Lettau

and Wachter (2011), one of the existing papers of co-pricing stocks and

bonds, as an example to show that it is important to take into account

the restrictions in order to match all the asset pricing moments.

The model in this paper and the model in Lettau and Wachter (2011)

are both designed to price bonds and equities and, in particular, to simul-

taneously generate an upward sloping bond yield curve and a downward

sloping equity yield curve. Both papers belong to the same class of mod-

els, i.e. Gaussian affine term structure models, and have the same num-

ber of factors. Hence, once they are normalized to the same canonical

form, the resulting two models should have very similar state processes.

However, in Lettau and Wachter (2011), the model is calibrated rather

than estimated and they implicitly impose additional restrictions on their

canonical form. For example, in their model, one of the assumptions is

that only dividend risk is priced directly and hence the price of risk ma-

trix reduces to a single time varying vector and the time variation in risk

premiums depends only on a one-dimensional state variable. Hence it will

be interesting to see how this restriction affects asset-pricing predictions.

The estimation results of the restricted model are shown below.

2.4.2 Estimation results

This subsection shows the estimation results of the restricted model and

compares them with the estimation results of the unrestricted model.
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Model parameters

Table 2.10, Table 2.11 and Table 2.12 list the estimates of the model

parameters. From the estimates of the (λQi + 1)s, we can see that the

restricted state process is also stationary under Q.

Table 2.10: Maximum likelihood estimates of the risk-neutral parameters,
restricted co-pricing model

λQ1 +1 λQ2 +1 λQ3 +1 λQ4 +1 λQ5 +1 λQ6 +1 rQ∞
Estimate 0.9951 0.9919 0.9496 0.2793 0.2772 0.2753 6.2736
Standard (0.0015) (0.0148) (0.0324) (0.0076) (0.0001) (0.0065) (7.1347)
deviation

δ0X δ1X,1 δ1X,2 δ1X,3 δ1X,4 δ1X,5 δ1X,6
Estimate 0.0192 −0.0020 0.7024 0.4603 −0.5866 0.0078 0.5379
Standard (0.0645) (0.0007) (0.0356) (0.0108) (0.0377) (0.0014) (0.0057)
deviation



69

Table 2.11: Maximum likelihood estimates of the conditional covariance,
restricted co-pricing model

ΣP,11
Estimate 22.1036
Standard (0.4268)
deviation

ΣP,21 ΣP,22
Estimate −0.2913 0.5159
Standard (0.0177) (0.0203)
deviation

ΣP,31 ΣP,32 ΣP,33
Estimate 0.0242 −0.2276 0.2945
Standard (0.0016) (0.0191) (0.0309)
deviation

ΣP,41 ΣP,42 ΣP,43 ΣP,44
Estimate 0.1003 0.0585 −0.0636 0.1225
Standard (0.0019) (0.0012) (0.0002) (0.0099)
deviation

ΣP,51 ΣP,52 ΣP,53 ΣP,54 ΣP,55
Estimate −0.0519 −0.0304 0.1291 −0.0237 0.2756
Standard (0.0007) (0.0042) (0.0006) (0.0017) (0.0403)
deviation

ΣP,61 ΣP,62 ΣP,63 ΣP,64 ΣP,65 ΣP,66
Estimate 20.3495 3.7084 1.0906 17.8574 11.3552 48.2150
Standard (0.1923) (0.0113) (0.0946) (0.0472) (1.1370) (2.3303)
deviation
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Table 2.12: Maximum likelihood estimates of the physical parameters,
restricted co-pricing model

KP
0P,1 KP

0P,2 KP
0P,3 KP

0P,4 KP
0P,5 KP

0P,6
Estimate 7.4364 −0.0688 0.1718 0.0090 0.3132 47.2161
Standard (20.7115) (8.7557) (2.6950) (2.7586) (0.8602) (82.3956)
deviation

KP
1P,11+1 KP

1P,12 KP
1P,13 KP

1P,14 KP
1P,15 KP

1P,16
Estimate 0.7791 0.4212 0.7357 −0.9317 −2.8522 −0.0303
Standard (0.0635) (0.4960) (2.3990) (4.5017) (6.0880) (0.0346)
deviation

KP
1P,21 KP

1P,22+1 KP
1P,23 KP

1P,24 KP
1P,25 KP

1P,26
Estimate −0.0047 1.0065 −0.1062 0.1205 −0.5613 −0.0001
Standard (0.0269) (0.2097) (1.0142) (1.9031) (2.5737) (0.0146)
deviation

KP
1P,31 KP

1P,32 KP
1P,33+1 KP

1P,34 KP
1P,35 KP

1P,36
Estimate −0.0007 0.0253 0.9684 0.0948 −0.6140 −0.0008
Standard (0.0083) (0.0645) (0.3122) (0.5858) (0.7922) (0.0045)
deviation

KP
1P,41 KP

1P,42 KP
1P,43 KP

1P,44+1 KP
1P,45 KP

1P,46
Estimate −0.0013 −0.0008 −0.0097 0.9572 0.0932 −0.0004
Standard (0.0085) (0.0661) (0.3195) (0.5996) (0.8109) (0.0046)
deviation

KP
1P,51 KP

1P,52 KP
1P,53 KP

1P,54 KP
1P,55+1 KP

1P,56
Estimate −0.0001 0.0298 0.0056 0.1161 0.2790 −0.0013
Standard (0.0026) (0.0206) (0.0996) (0.1870) (0.2529) (0.0014)
deviation

KP
1P,61 KP

1P,62 KP
1P,63 KP

1P,64 KP
1P,65 KP

1P,66+1

Estimate −0.5925 3.2701 4.5274 −9.0586 −17.7648 −0.2270
Standard (0.2528) (1.9732) (9.5440) (17.9088) (24.2197) (0.1376)
deviation

Equities

a. Equity yields

Table 2.13 shows that the restricted model’s predictions regarding

yields of zero-coupon equities can also match the data well in terms of

mean and standard deviation. The abilities of the restricted model and

the unrestricted model in matching the data are comparable.
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Table 2.13: Estimation results: moments comparison for equity yields,
annual percentages, restricted co-pricing model

Maturity 6m 12m 18m 24m 50y
Panel A: Data

Mean 6.91 4.38 3.53 3.11 1.85
Standard deviation 28.60 14.17 9.36 6.96 0.38

Panel B: Model
Mean 6.92 4.35 3.52 3.12 1.86

Standard deviation 28.65 14.14 9.30 6.89 0.31

b. Return of the dividend strip and the aggregate market

Table 2.14 and Table 2.15 show that the restricted model-implied

equity term structure is also downward sloping just as observed in the

data. Moreover, comparing with the unrestricted model, as the num-

ber of priced risk factors is restricted to one, the risk premium would

load on the most volatile factor, which in the present model is dividend

growth. As a result we would expect the return of the short-term asset

to be higher in the restricted model. It turns out that the return of the

short-term dividend strip has only improved marginally. However, in the

restricted model, the return of the market is now even higher than in the

data. Hence, although the restriction makes the return of the short-term

dividend strip get closer to the high return of the short-term asset in the

data, it has done so at the expense of a less downward sloping equity

term structure.

Table 2.14: Summary statistics of the return of the short-term strip and
the market, restricted co-pricing model

R15m R16m R17m R18m R19m R20m R21m R22m R23m Rmarket
Mean 11.93 11.79 11.67 11.56 11.47 11.38 11.30 11.23 11.16 7.41
Standard 26.50 26.59 26.67 26.74 26.81 26.86 26.91 26.95 26.99 23.27
deviation
Sharpe 0.32 0.32 0.31 0.31 0.30 0.30 0.30 0.29 0.29 0.17
ratio
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Table 2.15: Summary statistics of the excess return of the short-term
strip and the market, restricted co-pricing model

R15m R16m R17m R18m R19m R20m R21m R22m R23m Rmarket
Mean 8.58 8.44 8.32 8.21 8.12 8.03 7.95 7.88 7.81 4.06
Standard 26.52 26.61 26.69 26.76 26.82 26.88 26.93 26.97 27.01 23.29
deviation

c. Risk premiums of zero-coupon equities

As before, the risk premiums of the zero-coupon equities of matu-

rity up to forty years are plotted. Figure 2.3 shows that the estimated

mean, volatility and Sharpe ratio of the risk premiums in the restricted

model are very close to those in the unrestricted model. Hence, imposing

additional restrictions does not affect the risk premiums of zero-coupon

equities much.
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Figure 2.3: Estimated risk premiums of zero-coupon equities, restricted
co-pricing model
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Bond yields

Table 2.16 shows the summary statistics of the bond yields implied by

the restricted model. Bond yields implied by the restricted model exhibit

the increasing mean and decreasing volatility in bond yield maturity that

we observed in the data.

Table 2.16: Estimation results: moments comparison for zero-coupon
bonds (all numbers are in annualized percentage), restricted co-pricing
model

Maturity 1m 6m 1y 2y 3y 5y 7y 10y
Panel A: Data

Mean 3.37 3.57 3.69 3.95 4.13 4.45 4.71 4.87
Standard deviation 1.87 1.90 1.84 1.74 1.60 1.33 1.19 1.02

Panel B: Model
Mean 3.36 3.58 3.71 3.93 4.12 4.43 4.67 4.93

Standard deviation 1.85 1.95 1.86 1.68 1.55 1.35 1.21 1.03

In summary, we can see that imposing the same restriction, i.e. re-

stricting the number of priced risk factors to one, makes the return of the

short-term dividend strip get marginally closer to the high return of the

short-term asset in the data. However, it will lead to a less downward

sloping equity term structure. The overall performance of the model in

matching the asset pricing moments is reduced. Hence this is an over-

restriction that should not be imposed. Therefore, while the co-pricing

models in general try to match many moments, it is important to impose

a minimal number of restrictions on the model, i.e. to use a maximally

identifiable model, to generally match all the asset pricing moments well

without improving the fitness of some moments at the expense of others.

Future Research

In the current setup, stocks and bonds share the same shocks to the

economy, which could potentially lead to tight co-movement between
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stocks and bonds. However, market frictions, investors’ investment habits

and regulatory rules could result in investors who only trade stocks and

investors who only trade bonds. All of these are conditions could result

in market segregation, reducing the co-movement between stocks and

bonds. Hence the present model, where stocks and bonds share the same

set of shocks, will overestimate the co-movement between stocks and

bonds. A better model should incorporate the above-mentioned frictions.

2.5 Conclusion

This chapter estimates a maximal identifiable affine term structure model

that explains the joint prices of stocks and bonds. Using the test assets

of U.S. Treasury bonds and dividend strips, I show that the estimated

model can generally match the time series and cross-sectional proper-

ties of zero-coupon bonds, zero-coupon equities and the aggregate stock

index. Moreover, imposing restrictions prevalent in the co-pricing lit-

erature on the maximal model enhances certain features of the model,

such as the high return of the short-term dividend strip, but reduces the

model’s ability to fit other aspects of the data, such as the level of the

market risk premium.



Chapter 3

The Role of Asian Countries’ Reserve

Holdings on the International Yield Curves

3.1 Abstract

This chapter studies the effect of Asian countries’ reserve holdings on the

yield curves of six industrialized countries: the United States, the United

Kingdom, Germany, Canada, Switzerland and Australia. A Gaussian

affine term structure model with three yield factors and three unspanned

macro factors including reserves is estimated to fit the yield curve of

each country. Impulse responses and variance decompositions show that

Asian countries’ reserve holdings are an important factor affecting the

international yield curves.

3.2 Introduction

In recent years, Asian countries have been accumulating their reserve

holdings very rapidly. For example, the total foreign reserves of the

three major holders of foreign reserves in Asia, namely China, Japan

and South Korea, increased from $113 billion at the beginning of 1990

to $3.12 trillion at the beginning of 2009. A significant fraction of these

reserves is believed to have been invested in the government bonds issued

by several major industrialized countries, such as U.S. Treasury securi-

ties, U.K. Gilts and German Bunds. For example, at the end of July

2015, China held $1.24 trillion in U.S. Treasury securities, and Japan



77

held $1.20 trillion in U.S. Treasury securities (as published on the U.S.

Treasury website). Hence it is important to investigate how Asian coun-

tries’ reserve holdings affect the yield curves across these countries.

The answer to the above question can have important implications

for those countries’ monetary policies, because if Asian reserves can sig-

nificantly affect a country’s yield curve, then the country’s central banks

must take Asian reserves into account in conducting its monetary policy.

Failing to do so could result in monetary policy not reaching its intended

goals. For example, in mid-2004, the Fed began to tighten monetary

policy in order to raise interest rates. However, Greenspan (2005) noted

that the longer-term interest rates failed to rise in response. Such a de-

coupling of long-term interest rates from the short-term interest rate is

believed to have been caused by the strong purchase of U.S. Treasuries

by Asian countries during this period. Therefore, we need to understand

how a country’s yield curve changes in response to Asian reserve holdings.

There exist a number of papers studying the effect that foreign coun-

tries’ reserves or Treasuries holdings have on the U.S. yield curve. They

mainly use two frameworks. The first framework is to regress bond yields

on foreign countries’ reserves holdings and other explanatory variables.

For example, Beltran et al. (2013) first compute the term premium using

an affine model without using reserve holdings, then regress the term

premium on reserve holdings. Warnock and Warnock (2009) regress U.S.

10-year bond yields on standard macroeconomic variables as well as for-

eign official purchases of U.S. Treasury bonds. Sierra (2014) run a series

of forecasting regressions of realized excess returns on measures of net

purchases of Treasuries. However, this framework does not take into ac-

count the no-arbitrage condition when determining bond yields. Hence

the effect of reserve holdings on certain bond yields included in the study



78

may not apply to the whole bond yield curve.

The second framework uses affine term structure models to study the

effect of reserves on bond yields, which imposes no-arbitrage condition to

ensure bond yields are priced consistently. For example, Bernanke, Rein-

hart and Sack (2004) include observable economic and monetary variables

into a no-arbitrage term structure model, and find that Treasury yields

declined significantly during intervals around Japanese interventions to

purchase dollars in the 2000-04 period. Rudebusch, Swanson and Wu

(2006) estimate term structure models of Treasury yields including la-

tent factors as state variables and find that foreign official holdings have

no explanatory power. Apart from no-arbitrage, another important fea-

ture common to the second framework is the implicit assumption that

macro variables included in the model are spanned by bond yields. This

implies that, in this type of setup, reserves are often modeled as a risk

factor that is spanned by bond yields, i.e. reserves can be expressed as

a linear combination of bond yields. However, as pointed out by Joslin,

Priebsch and Singleton (2014), when applied to a number of macro vari-

ables commonly included in macro-finance term structure models such

macro-spanning assumptions are often strong and counterfactual. More-

over, including macro factors in addition to a number of latent or yield

factors (yields’ principal components) to price bonds contradicts the fact

that almost all of the cross-sectional variation of bond yields can be ex-

plained by a small number of latent or yield factors.

This paper models Asian countries’ reserve holdings together with

other macro variables as unspanned by bond yields. Macro factors to-

gether with yield factors follow a VAR under the physical measure P.

However, only yield factors determine the pricing of bonds under the

risk-neutral measure Q. The identification of the risk-neutral parameters
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is ensured by the canonical form of the model proposed by Joslin, Sin-

gleton and Zhu (2011), which is maximally identifiable. Although macro

factors do not enter into the pricing of contemporaneous bond yields, be-

cause macro factors and yield factors follow an unrestricted VAR under P,

macro factors can help to predict future yields. Hence impulse responses

and variance decompositions implied from the VAR can be obtained. Fol-

lowing Ang and Piazzesi (2003), these are used to study the yield curve’s

response toward a shock to reserve holdings and to attribute the forecast

variance of a particular yield to shocks to reserves. Moreover, not only

the effect of Asian countries’ reserve holdings on the U.S. yield curve is

studied, because Asian countries also invest their reserves in the bond

markets of other industrialized countries; reserves’ effects on the yield

curves of the U.K., Germany, Canada, Switzerland and Australia are

also investigated. Asian countries’ holdings of government debt issuance

by these countries are not as clearly estimated as their holdings of U.S.

Treasury securities. However, these are the countries whose currencies

are identified in the International Monetary Fund’s Currency Composi-

tion of Official Foreign Exchange Reserves (COFER) database alongside

the U.S. dollar.1 Hence, these countries are more likely to have their gov-

ernment debt held by Asian countries and have their government yield

curves affected by the fluctuations of Asian countries’ foreign exchange

reserve holdings.

The same bond pricing model with unspanned macro risks is fitted to

each country’s yield curve. Impulse responses implied by the estimation

results show that an initial one standard deviation shock to Asian reserve

holdings can increase or decrease bond yields of the countries studied by

up to 18 basis points (bp) during the first five years. Variance decompo-

1Germany is used as a proxy for the euro area.



80

sitions show that shocks to reserves contribute a significant proportion of

the forecast variances of yields. For example, at the five-year-ahead fore-

cast horizon, the highest proportions of variance explained by reserves

can range from 2.12% to 6.78% for the countries studied. Moreover,

the explanatory power of reserves generally increases with the forecast

horizon across different countries and maturities. Such evidence suggests

that Asian countries’ reserve holdings are an important factor affecting

the yield curves of the above industrialized countries.

The rest of the chapter is organized as follows. Section 3.3 describes

the data used in this chapter. Section 3.4 specifies a Gaussian affine term

structure model with yield factors and unspanned macro factors. Sec-

tion 3.5 summarizes the estimation strategy and presents the estimation

results for each country included in the study. Section 3.6 concludes.

3.3 Data

3.3.1 Bond yields

I use the same international bond yields dataset as in Wright (2011).

Quarterly data on zero-coupon bond yields of fourteen maturities, rang-

ing from one quarter to forty quarters, from the first quarter of 1990 to

the first quarter of 2009, are taken to be the sample for the estimation.

The sample’s starting period is chosen because Asian countries’ accumu-

lation of reserves is a recent phenomenon (beginning around 1990). The

sample period ends in 2009 to exclude the ramifications of the global fi-

nancial crisis, such as central banks’ quantitative easing programs. Bond

yields are constructed using local currencies. A more thorough analysis

could be carried out by rebasing yields to the same currency or by mod-

eling exchange rate explicitly, for example, to jointly estimate the term
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structure of bond yields and the term structure of forward exchange rates,

which is beyond the scope of this chapter. Although to some extent ex-

change rates’ effect on yields is limited by the fact that China’s currency

was pegged to the U.S. dollar until 2005 and China has since been oper-

ating a managed floating exchange rate regime, and another motivation

for China and Japan to accumulate large amounts of foreign reserves is

to be able to intervene in the foreign exchange market as to keep their

currencies at a stable value.

Figures 3.1–3.6 plot the yields of maturities of one, four and twenty

quarters for the United States, the United Kingdom, Germany, Canada,

Switzerland and Australia. The three maturities are chosen to represent

the short end, middle and long end of a country’s yield curve. Impulse

responses and variance decompositions will also be based on the three

yields.
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Figure 3.1: Annual % bond yields, United States



82

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010
0

2

4

6

8

10

12

14

16

Annual % bond yields of maturities 1q, 4q and 20q for UK, 1990q1:2009q1

 

 

1 quarter
4 quarter
20 quarter

Figure 3.2: Annual % bond yields, United Kingdom
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Figure 3.3: Annual % bond yields, Germany
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Figure 3.4: Annual % bond yields, Canada
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Figure 3.5: Annual % bond yields, Switzerland
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Figure 3.6: Annual % bond yields, Australia
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Table 3.1 presents the summary statistics of the three yields presented

above, along with some other maturities to show a more complete yield

curve for each country. The table shows that, for the selected sample

period, yields of most countries follow the pattern that the average bond

yield is increasing in mean and bond volatility is decreasing in maturity.

The yield curve of Germany closely tracks that of the United States.

Yields of Canadian bonds are on average more than half a percentage

higher than the yields of U.S. Treasuries. Swiss yields are low across

all maturities, often being half of those of the other countries. Australia

and the United Kingdom have higher yields than the other countries, but

their yield curves are also flatter. For Australia, the difference between

its one-quarter yield and twenty-quarter yield is only 60bp compared

with 132bp for the United States. The one-quarter yield of the United

Kingdom is higher than the rest of the maturities. For example, the one-

quarter yield exceeds the four-quarter yield by 38bp, and exceeds the

twenty-quarter yield by 7bp.
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Table 3.1: Summary statistics of the international bond yields (all num-
bers are in annualized percentages)

Maturity (quarter) 1 4 8 12 20 28 40
United States

Mean 3.85 4.32 4.59 4.81 5.17 5.46 5.79
Standard deviation 1.80 1.88 1.82 1.74 1.61 1.50 1.39
United Kingdom

Mean 6.35 5.97 6.07 6.17 6.28 6.32 6.32
Standard deviation 2.79 2.40 2.27 2.21 2.18 2.17 2.14

Germany
Mean 4.36 4.44 4.61 4.79 5.11 5.35 5.60

Standard deviation 2.33 2.16 2.06 1.98 1.84 1.73 1.62
Canada
Mean 4.80 5.01 5.27 5.47 5.77 5.98 6.20

Standard deviation 2.57 2.39 2.25 2.18 2.10 2.04 2.03
Switzerland

Mean 2.88 2.94 2.97 3.07 3.32 3.54 3.78
Standard deviation 2.52 2.23 1.90 1.71 1.52 1.41 1.31

Australia
Mean 6.22 6.20 6.39 6.57 6.82 6.97 7.09

Standard deviation 2.30 2.18 2.14 2.13 2.14 2.16 2.18

3.3.2 Asian reserves

Since around 1990, Asian countries (especially those in East Asia) have

started to accumulate reserves on an increasingly large scale. Figure 3.7

plots the time series of reserve holdings by China, Japan and Korea, the

three largest holders of global reserves in the region. We can see that the

accumulation of the three countries’ reserves took off in 1994. At the end

of 1993, China, Japan and Korea’s reserve holdings were U.S.$21.8 bil-

lion, U.S.$98.4 billion and U.S.$20.5 billion, respectively. But by the

beginning of 2009, the reserve holdings for the three countries reached

U.S.$1929.5 billion, U.S.$990.1 billion and U.S.$203.1 billion, a total of

more than U.S.$3 trillion. As a result of this accumulation, these coun-

tries’ reserve holdings as a share of the global total reserves have in-
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creased significantly. For example, in 1990, the reserves of China were

about 5% of world’s total reserves. However, in 2009, China’s reserves

accounted for around 30% of the world’s total reserves. Such an accumu-

lation of reserves is mainly driven by the precautionary motives of these

Asian countries. This is because, after the financial crises of the late

1990s, many emerging markets used reserves as a self-insurance against

the volatility in the global financial market. And these reserves are often

invested in the government bonds issued by the select few of the world’s

industrialized countries mentioned previously. Given the sheer magni-

tude of Asian reserves, it is necessary to understand their impact on the

yield curves of those industrialized countries. And in this chapter, Asian

countries’ reserve holdings are modeled as a macro factor affecting the

advanced economies’ yield curves.

Moreover, as mentioned in the introduction to this chapter, Asian

countries’ reserve holdings will be modeled as a factor unspanned by the

cross-section of bond yields, meaning that they do not enter into the

risk-neutral pricing of bond yields, but they do affect bond risk premi-

ums. Here, I provide empirical evidence for both. Table 3.2 lists the

R2 of regressing Asian reserves on a constant and on a country’s yields

based factors (the first three principal components, namely level, slope

and curvature) for each country. We can see that the R2 for all countries

ranges from 30% to 40%, showing that Asian reserves are not linearly

spanned by the bond yield curve of any country. Table 3.3 shows the re-

sults of regressing the excess returns of the ten-year bond on yield factors

alone, and on both yield factors and macro factors including reserves. We

can see that, for each country, including macros increases the R2 over a

model that only uses yield factors. Moreover, for each country’s regres-

sion, “reserves” are significant at conventional levels, demonstrating the
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“reserves” value’s ability to predict bond risk premiums. Therefore, both

regression results direct us to model Asian reserves as an unspanned fac-

tor.
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Figure 3.7: Reserve holdings of Asian countries, including China, Japan
and South Korea, in billions of U.S. dollars

Table 3.2: R2 of regressing reserves on yield curve factors for each country

U.S. U.K. Germany Canada Switzerland Australia
R2 38.38% 30.80% 35.21% 39.25% 31.22% 40.98%
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Table 3.3: Regressions of excess returns on ten-year bonds on yield factors
and macro factors; Newey–West standard errors with four lags are shown
in parentheses.

U.S. U.K. Germany
Yields Include Yields Include Yields Include
only macros only macros only macros

Constant 0.0501 0.1117 0.0310 0.1813 0.0430 0.0341
(0.0141) (0.0743) (0.0132) (0.0768) (0.0110) (0.0569)

Level 0.3308 1.0663 0.4575 1.1325 0.1712 0.3719
(0.1586) (0.2529) (0.0950) (0.3052) (0.1461) (0.4689)

Slope 2.1116 2.9942 −0.8176 −1.0209 2.6396 2.9246
(0.8021) (0.6514) (0.6627) (0.5517) (0.5824) (0.7190)

Curvature −1.8747 −1.1130 −2.0630 −1.8286 −3.4300 −3.6296
(3.0548) (3.2379) (2.2669) (2.3232) (2.2237) (1.9204)

GDP −0.0112 −0.0295 −0.0064
growth (0.0145) (0.0168) (0.0117)

Inflation −0.0256 −0.0409 0.0022
(0.0148) (0.0179) (0.0215)

Reserves 0.0010 0.0006 0.0004
(0.0003) (0.0003) (0.0002)

R2 22.79% 38.12% 26.64% 37.57% 35.83% 40.26%

Canada Switzerland Australia
Yields Include Yields Include Yields Include
only macros only macros only macros

Constant 0.0528 0.0009 0.0320 0.0562 0.0464 0.0243
(0.0127) (0.0451) (0.0102) (0.0432) (0.0170) (0.0562)

Level 0.3044 0.4940 0.0829 0.8143 0.8406 0.9729
(0.0902) (0.0923) (0.1661) (0.3935) (0.1050) (0.1734)

Slope −1.8442 −2.5611 3.7333 4.0073 −1.4647 −2.1210
(0.8208) (0.6057) (0.7601) (1.0459) (1.2277) (1.2312)

Curvature −1.8410 −3.7623 −1.8078 −3.6883 −0.8432 0.3070
(1.5983) (2.0999) (2.0759) (1.8629) (1.7427) (2.2277)

GDP −0.0009 0.0051 0.0018
growth (0.0056) (0.0114) (0.0095)

Inflation 0.0105 −0.0286 −0.0014
(0.0096) (0.0146) (0.0132)

Reserves 0.0008 0.0004 0.0005
(0.0002) (0.0002) (0.0002)

R2 25.14% 37.91% 31.64% 46.25% 38.25% 40.76%

3.3.3 Macro variables

The other two macro variables included in this chapter are GDP growth

and inflation. Data on CPI inflation and GDP growth are from OECD’s
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Main Economic Indicators at the quarterly frequency. Both series have

been smoothed with moving average filters to remove the seasonality.

Figures 3.8–3.13 plot the time series of each country’s annual percentage

GDP growth and inflation for the sample period from the first quar-

ter of 1990 to the first quarter of 2009. For all countries, inflation

largely mirrors GDP growth throughout the sample period. Industri-

alized economies are correlated, especially during times of crises. During

the oil crisis in the early 1990s and the dot-com bubble at the begin-

ning of the century nearly all countries’ GDP growth rates were severely

suppressed, while their inflation increased significantly. Note also that

during the 1997 Asian financial crisis all the countries included here ex-

hibited strong economic performance with high GDP growth and low

inflation.
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Figure 3.8: Annual % GDP growth and inflation, United States
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Figure 3.9: Annual % GDP growth and inflation, United Kingdom
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Figure 3.10: Annual % GDP growth and inflation, Germany
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Figure 3.11: Annual % GDP growth and inflation, Canada
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Figure 3.12: Annual % GDP growth and inflation, Switzerland
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Figure 3.13: Annual % GDP growth and inflation, Australia

3.4 A term structure model with unspanned macro risk

factors

This section introduces a Gaussian affine term structure model with un-

spanned macro risk factors that is able to price all bond yields consis-

tently. The model follows the affine framework with unspanned macro

risks proposed by Joslin, Priebsch and Singleton (2014).

The features of this framework are as follows. First, bond yields

are driven by a small number of risk factors. Second, macro factors

are unspanned by bond yield factors, that is, macro factors cannot be

expressed as a linear combination of bond yields. Hence macro factors do

not enter into the bond pricing equations under the risk-neutral measure

Q to affect the current period bond yields. However, macro factors can

be correlated with yield factors, and hence help to predict future yields.

Therefore, the third feature of the model is that macro factors and yield

factors follow a joint VAR without any restrictions under the physical

measure P.
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3.4.1 The economy with unspanned macro risks

It is assumed that the economy at time t is driven by a state vector Xt,

which includes all the risk factors in the economy. Xt is set to be an N×1

vector, meaning that there are in total N risk factors in the economy.

Moreover, it follows a VAR(1) process under both the physical measure

P and the risk-neutral measure Q:

Xt = KP
0X +KP

1XXt−1 + ΣXε
P
t , (3.1)

Xt = KQ
0X +KQ

1XXt−1 + ΣXε
Q
t , (3.2)

where KP
0X and KQ

0X are N × 1 vectors, KP
1X , KQ

1X and ΣX are N × N

matrices and both εPt and εQt are N × 1 vectors of independent shocks

to various risk factors affecting the economy with mean zero and unit

variance.

Specifically, X is made up of six risk factors. The first three are

factors specifically affecting bond yields, which are set to be the first

three principal components of bond yields. The other three are macro

factors, which include the first difference of Asian reserves, a country’s

GDP growth and its inflation.

I denote the group of yield factors together by Pt, and the group of

macro factors by Mt. Hence, the above process can be written in the

following block structure.

Under the physical measure P, equation (3.1) can be written as

 Pt
Mt

 =

KP
0P

KP
0M

+

KP
PP KP

PM

KP
MP KP

MM


 Pt−1
Mt−1

+ ΣXε
P
t .
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Under the risk-neutral measure Q, equation (3.2) can be written as

 Pt
Mt

 =

KQ
0P

KQ
0M

+

KQ
PP 0

KQ
MP KQ

MM


 Pt−1
Mt−1

+ ΣXε
Q
t .

Note that while all blocks in Xt’s P process are without restrictions,

i.e. Xt follows an unrestricted VAR under P, the upper right block of

KQ
1X is set to zero to take into account the fact that macro risk factors

are unspanned by bond yield risk factors.

It is assumed that rt, the one-period interest rate, is an affine function

of yield factors Pt rather than Xt, i.e.

rt = ρ0P + ρ′1PPt, (3.3)

where ρ0P is a scalar and ρ1P is an R× 1 vector, where R is the number

of yield factors, which is equal to three with the current setup.

And the time-varying market price of risk vector that applies to the

bond market λPt is also affine in Pt:

λPt = λ0P + λ1PPt. (3.4)

Here λPt is an R× 1 vector, λ0P is an R× 1 vector and λ1P is an R×R

matrix.

Hence, we obtain the bond-market-specific pricing kernel or the stochas-

tic discount factor (SDF) MP,t+1 of the bond market as

MP,t+1 = exp(−rt − 1
2
λ′PtλPt − λ′PtεP,t+1), (3.5)

which can be used to consistently price all fixed-income assets. That is,
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we have the Euler equation

1 = Et[Mt+1Rt+1], (3.6)

where Rt+1 is the one-period return on any asset in the bond market.

3.4.2 Zero-coupon bonds

To price nominal bonds, let P b
nt denote the time-t price of the n-period

nominal zero-coupon bond.

By the Euler equation, we have

P b
nt = Et[MP,t+1P

b
n−1,t+1]. (3.7)

Assuming the bond price is exponential affine in the bond yields’ risk

factors

P b
nt = exp(Ab

n +Bb
n

′Pt), (3.8)

where Ab
n is a scalar and Bb

n is an R × 1 vector of bond price loadings

on the bond risk factors, Ab
n and Bb

n can be solved by a set of Riccati

equations with the boundary condition P b
0t = 1.

More specifically, the loadings are solved recursively as follows:

Ab
n = −ρ0P + Ab

n−1 +Bb
n−1
′
KQ

0P + 1
2
Bb
n−1
′
ΣPΣ′PB

b
n−1, (3.9)

Bb
n

′
= −ρ′1P +Bb

n−1
′
KQ
PP (3.10)

with the starting values being Ab
n = 0 and Bb

n = 0.

And the bond yield at maturity n can be expressed as

ybnt = − 1

n
lnP b

nt = An +B′nPt, (3.11)
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where An = −Ab
n/n and Bn = −Bb

n/n.

3.5 Estimation

Section 3.5.1 summarizes the estimation strategy. Sections 3.5.2–3.5.7

present the estimation results for each country. In the latter, to in-

vestigate how macro factors, especially Asian reserve holdings, affect a

country’s yield curve, I look at the impulse responses of different yields

to shocks to reserve holdings. I also investigate how shocks to differ-

ent state factors contribute to yields’ forecast variances using variance

decompositions.

3.5.1 Estimation strategy

The estimation strategy follows Joslin, Priebsch and Singleton (2014).

For each country, the state vector Xt comprises three yield factors, which

are the first three principal components of zero-coupon bond yields of

the fourteen maturities mentioned in the data section, and three macro

factors, which are the first difference of Asian reserve holdings, the GDP

growth and the inflation of the bond-issuing country. As the state vector

Xt is entirely observable, the maximum likelihood estimates of the P

parameters, i.e. KP
0X and KP

1X , can be obtained from the VAR of Xt.

For the Q parameters, because the yield factors are chosen to be the

principal components of bond yields, without loss of generality, yield

factors can be rotated into a set of latent factors Lt, whose Q process

Lt = KQ
0L +KQ

LLLt−1 + ΣLε
Q
Lt (3.12)
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can be written in its canonical form, as follows:

Lt =


λQ1 0 0

0 λQ2 0

0 0 λQ3

Lt−1 + ΣLε
Q
Lt,

i.e. KQ
0L is normalized to a zero vector. KQ

LL is a diagonal matrix with

real and distinct eigenvalues {λQi } on the diagonal, ordered by decreasing

magnitude. ΣL is the lower triangular Cholesky decomposition of ΣLΣ′L.

And the short rate under Q can be normalized such that

rt = rQ∞ + ι′Lt, (3.13)

where ι is a vector of ones and rQ∞ can be interpreted as the risk-neutral

long-run mean of the short rate.

The set of Q parameters that needs to be estimated by the maximum

likelihood estimation is reduced from (ρ0P , ρ1P , KQ
0P , KQ

1P , ΣP) to (rQ∞,

{λQi } and ΣP).

3.5.2 Estimation results, United States

Impulse responses

Although macro factors are modeled as unspanned risk factors and do

not enter into the pricing of contemporaneous bond yields, they co-evolve

with yield factors in a VAR under the physical measure. Hence, we can

trace out the dynamic responses of the yield curve from shocks to the

macro variables by looking at the impulse responses of yields to macro

shocks implied from the VAR. Figure 3.14 shows the impulse responses of

yields of maturities of one, four and twenty quarters to shocks in reserves.
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The detailed derivations of impulse response functions can be found in

Appendix 2. From the figure, we can see that positive shocks to Asian

countries’ reserve holdings lower the U.S. bond yields of all maturities and

across all horizons. In general, a one standard deviation shock to reserves

(U.S.$45.8 billion) can lower bond yields of the three maturities by up to

10bp. While a positive shock to Asian reserves initially increases the U.S.

bond yields of maturity of one quarter and four quarters for the first two

quarters, then begins to have negative effects on yields, an increase in

reserves has a pure negative effect on bond yield of 20 quarters. Moreover,

as we move along the yield curve from its short end to its long end, a

reserves shock reaches its maximum effect in less time. For example,

while the response of the one-quarter yield to a shock to reserves reaches

its peak at the 14th quarter, the response of the twenty-quarter yield

reaches its maximum at the 7th quarter after the initial shock.
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Figure 3.14: Impulse response functions of yields to a one standard devi-
ation shock to Asian reserves. Impulse responses for yields of maturities
of one quarter (top panel), four quarters (middle panel) and twenty quar-
ters (bottom panel), United States
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Variance decompositions

This section uses variance decomposition techniques to investigate the

proportion of the yields’ forecast variance attributable to each state fac-

tor. Derivation for the variance decompositions are presented in Ap-

pendix 2. Table 3.4 lists the contribution of each factor to the h-step-

ahead forecast of the one-quarter, four-quarter and twenty-quarter yields.

By construction, we can read the table from two different dimensions.

By fixing our attention at a particular p-quarter yield and varying the

horizon, we can see how various factors (both yield factors and macro

factors) affect the yield at different horizons. On the other hand, we

can fix a particular forecast horizon and look at whether a particular

factor has any effect across different maturities. The top row of the ta-

ble lists the one-quarter-ahead forecast variance of the one-quarter yield

explained by the three yield factors, i.e. the level, slope and curvature

factor can explain 64.45%, 27.52% and 8.03% of the one-quarter-ahead

forecast variance, respectively. Macro variables do not have explanatory

power at the one-quarter-ahead forecast horizon for bond yields because

they are unspanned and do not enter into the pricing of contemporaneous

yields. But they do contribute to the yields’ forecast variances at longer

horizons. For example, for the yield at a maturity of one quarter, 1.98%

of the twenty-quarter-ahead forecast variance is explained by reserves,

24.62% by GDP and 6.71% by inflation.

In order to see more clearly the explanatory power of macro factors,

Table 3.5 lists the contribution of the macro factors to the h-step-ahead

forecast variance of the short end, middle and long end of the yield curve.

It shows that macro factors altogether explain a non-negligible amount

of the variation in bond yields. At the short end of the yield curve, macro

factors can explain 6.32% of the four-quarter-ahead forecast variance, and
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Table 3.4: Variance decompositions, United States

Yield factors Macro factors

h Level Slope Curvature Reserves GDP growth Inflation

1 1 0.6445 0.2752 0.0803 0 0 0
quarter 4 0.8333 0.0740 0.0295 0.0003 0.0456 0.0172

yield 20 0.5516 0.0853 0.0300 0.0198 0.2462 0.0671

4 1 0.9483 0.0483 0.0033 0 0 0
quarter 4 0.9076 0.0152 0.0209 0.0002 0.0389 0.0171

yield 20 0.6069 0.0748 0.0220 0.0213 0.2150 0.0601

20 1 0.9651 0.0346 0.0003 0 0 0
quarter 4 0.9293 0.0408 0.0010 0.0023 0.0107 0.0159

yield 20 0.7190 0.0966 0.0036 0.0321 0.1129 0.0358

The table lists the contribution of factor i to the h-step-ahead forecast of the short
end (one-quarter yield), middle (four-quarter yield) and long end (twenty-quarter
yield) of the yield curve.

Table 3.5: Proportion of yields’ forecast variance explained by macro factors
(reserves, GDP growth, inflation) and reserves, United States

Macro factors Reserves

Forecast horizon 4 quarter 20 quarter 4 quarter 20 quarter

Short end (1 quarter yield) 6.32% 33.3% 0.03% 1.98%
Middle (4 quarter yield) 5.63% 29.64% 0.02% 2.13%

Long end (20 quarter yield) 2.89% 18.08% 0.23% 3.21%

The table lists the contribution of the macro factors (reserves, GDP growth,
inflation) and the contribution of reserves to the h-step-ahead (four quarters,
twenty quarters) forecast variance of the short end (one-quarter yield), middle
(four-quarter yield) and long end (twenty-quarter yield) of the yield curve.

33.3% of the twenty-quarter-ahead forecast variance. As we move on to

the middle and long end of the yield curve, the overall explanatory power

of the macro factors starts to weaken. For bond yield at a maturity of

twenty quarters, three macro factors together only explain 2.89% of the

four-quarter-ahead forecast variance and 18.08% of the twenty-quarter-

ahead forecast variance. However, for Asian reserves, contrary to the

pattern observed for macro factors as a group, their ability in explaining

forecast variance of bond yields increases with maturity. For example,

at the short end of the yield curve, “reserves” is only able to explain
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1.98% of the twenty-quarter-ahead forecast variance, but this increases

to 3.21% for the long yield. Hence, we can see that reserves can have

important implications for bond yields’ forecast variance, especially at

the long horizon. And their ability to explain yield variations increases

with maturity, unlike the other macro factors namely GDP growth and

inflation. Therefore, it is reasonable to say that while conventional macro

factors, such as GDP growth and inflation, still explain a major propor-

tion of the yield variations across all maturities and at all horizons, Asian

reserves take an increasingly important role in explaining movements in

the long end of the yield curve and at long forecast horizons. Hence, it

is an important factor that affects the U.S. yield curve.

3.5.3 Estimation results, United Kingdom

Impulse responses

For the United Kingdom, impulse responses show that, across all ma-

turities, a positive shock to Asian reserves initially increase U.K. bond

yields for up to two years after the shock, then start to lower the yields,

with the strongest effect at around year 4. Unlike the United States,

whose yields at three maturities respond to reserves of comparable mag-

nitudes, the magnitude of U.K. yields’ responses quickly diminishes with

maturity. While for the one-quarter yield, a positive shock to reserves

can reduce the yield by more than 15bp, reserves can only reduce the

twenty-quarter yield by less than 7bp.
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Figure 3.15: Impulse response functions of yields to a one standard devi-
ation shock to Asian reserves. Impulse responses for yields of maturities
of one quarter (top panel), four quarters (middle panel) and twenty quar-
ters (bottom panel), United Kingdom
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Variance decompositions

The contribution of macro factors toward yields’ forecast variances for the

United Kingdom follows a similar pattern to that of the United States,

i.e. macro factors as a group have more explanatory power at the short

end of the yield curve, while their contribution to yields’ forecast variance

is greater at the long forecast horizon and smaller at the short forecast

horizon. When looking at reserves alone, their behavior follows the pat-

tern described above for the macro factors group. It is worth noting

that while for the United States shocks to Asian reserves affect the long

end of the yield curve more than the short end in terms of contribu-

tion to the forecast variance in absolute values and as a proportion of

the macro factors, it is the opposite for the United Kingdom. For the

United Kingdom, reserves’ explanatory power is strongest at the short

end of the yield curve. At the four-quarter-ahead forecast horizon, re-

serves can explain 3.37% of the one-quarter yield’s variance, but only

0.14% for the twenty-quarter yield. The opposing patterns of the United

Kingdom and the United States can perhaps be understood by looking at

the two countries’ yield curves. Whereas the United States’ yield curve

is upward sloping, the United Kingdom’s yield curve is relatively flat,

with its one-quarter yield higher than the yields of all other maturities.

Hence whereas investment of reserves in dollar-denominated assets is

likely to be invested in U.S. long-term bonds when chasing higher yields,

the same motive when applied to sterling-denominated assets will drive

investments into short-term bonds rather than long-term bonds.
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Table 3.6: Proportion of yields’ forecast variance explained by macro factors
(reserves, GDP growth, inflation) and reserves, United Kingdom

Macro factors Reserves

Forecast horizon 4 quarter 20 quarter 4 quarter 20 quarter

Short end (1 quarter yield) 5.84% 26.06% 3.37% 3.84%
Middle (4 quarter yield) 3.61% 24.04% 0.76% 2.58%

Long end (20 quarter yield) 2.26% 17.89% 0.14% 0.80%

The table lists the contribution of the macro factors (reserves, GDP growth,
inflation) and the contribution of reserves to the h-step-ahead (four quarters,
twenty quarters) forecast variance of the short end (one-quarter yield), middle
(four-quarter yield) and long end (twenty-quarter yield) of the yield curve.

3.5.4 Estimation results, Germany

Impulse responses

For Germany, although its average yields at all maturities closely track

those of the U.S., their dynamic responses to reserves shocks are very

different. German bond yields largely react positively to reserves shocks

across all maturities. Yields of longer maturities react less to shocks to

reserves. Also the reserves’ effect on bond yields is strongest at around

four to eight quarters after the initial shock.
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Figure 3.16: Impulse response functions of yields to a one standard devi-
ation shock to Asian reserves. Impulse responses for yields of maturities
of one quarter (top panel), four quarters (middle panel) and twenty quar-
ters (bottom panel), Germany
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Variance decompositions

For Germany, reserves’ explanatory power is strongest for mid-maturity

bonds. For a yield of a maturity of four quarters, reserves can explain

2.45% of the forecast variance at the four-quarter forecast horizon. And

at the twenty-quarter forecast horizon, reserves’ explanatory power in-

creases to nearly 4%.

Table 3.7: Proportion of yields’ forecast variance explained by macro factors
(reserves, GDP growth, inflation) and reserves, Germany

Macro factors Reserves

Forecast horizon 4 quarter 20 quarter 4 quarter 20 quarter

Short end (1 quarter yield) 24.31% 52.43% 0.63% 3.37%
Middle (4 quarter yield) 30.17% 52.61% 2.45% 3.97%

Long end (20 quarter yield) 21.41% 39.68% 1.84% 1.68%

The table lists the contribution of the macro factors (reserves, GDP growth,
inflation) and the contribution of reserves to the h-step-ahead (four quarters,
twenty quarters) forecast variance of the short end (one-quarter yield), middle
(four-quarter yield) and long end (twenty-quarter yield) of the yield curve.

3.5.5 Estimation results, Canada

Impulse responses

Canadian yields’ impulse responses to reserves holdings shocks are very

similar to those of the United States. For both countries, yields respond

at similar magnitudes, with shocks to reserves having an effect at slightly

longer horizons for Canada.
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Figure 3.17: Impulse response functions of yields to a one standard devi-
ation shock to Asian reserves. Impulse responses for yields of maturities
of one quarter (top panel), four quarters (middle panel) and twenty quar-
ters (bottom panel), Canada
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Variance decompositions

For Canada, the percentages of yields’ forecast variances explained by

reserves is largest for the long maturity bond and at the long forecast

horizon, just as observed for the United States. Another similarity is

that, while the explanatory power of reserves increases with maturity,

the opposite is true for the explanatory power of all macro factors as a

group. For example, at the twenty-quarter-ahead forecast horizon, the

contribution of reserves shocks towards yields forecast variance increases

from 2.65% for the one-quarter yield to 3.48% for the twenty-quarter

yield. In contrast, shocks to macro factors altogether contribute 23.24%

of the forecast variance of the one-quarter yield and only 16.78% of the

variance of the twenty-quarter yield.

Table 3.8: Proportion of yields’ forecast variance explained by macro factors
(reserves, GDP growth, inflation) and reserves, Canada

Macro factors Reserves

Forecast horizon 4 quarter 20 quarter 4 quarter 20 quarter

Short end (1 quarter yield) 3.75% 23.24% 0.09% 2.65%
Middle (4 quarter yield) 4.94% 22.06% 0.01% 3.00%

Long end (20 quarter yield) 4.66% 16.78% 0.20% 3.48%

The table lists the contribution of the macro factors (reserves, GDP growth,
inflation) and the contribution of reserves to the h-step-ahead (four quarters,
twenty quarters) forecast variance of the short end (one-quarter yield), middle
(four-quarter yield) and long end (twenty-quarter yield) of the yield curve.

3.5.6 Estimation results, Switzerland

Impulse responses

Like German yields, Swiss yields generally increase with an increase in

reserves. Swiss yields initially have negative responses to reserves shocks,

but the magnitudes are very small across maturities. And the reserves’

effect is strongest between two and three years after the initial shock.
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Figure 3.18: Impulse response functions of yields to a one standard devi-
ation shock to Asian reserves. Impulse responses for yields of maturities
of one quarter (top panel), four quarters (middle panel) and twenty quar-
ters (bottom panel), Switzerland
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Variance decompositions

Looking at the yields’ forecast variance decompositions, macro factors

generally have low explanatory power for Swiss bond yields compared

with yields’ variance decompositions of other countries. For example,

for Germany, shocks to macro factors account for 52.43% of the twenty-

quarter-ahead forecast variance of the short maturity bond. For Switzer-

land, this number drops to 17.10%. As we move to longer maturities, the

explanatory power of both macro factors and reserves decreases.

Table 3.9: Proportion of yields’ forecast variance explained by macro factors
(reserves, GDP growth, inflation) and reserves, Switzerland

Macro factors Reserves

Forecast horizon 4 quarter 20 quarter 4 quarter 20 quarter

Short end (1 quarter yield) 10.59% 17.10% 0.29% 2.12%
Middle (4 quarter yield) 6.16% 14.77% 0.04% 1.25%

Long end (20 quarter yield) 1.59% 8.15% 0.20% 0.41%

The table lists the contribution of the macro factors (reserves, GDP growth,
inflation) and the contribution of reserves to the h-step-ahead (four quarters,
twenty quarters) forecast variance of the short end (one-quarter yield), middle
(four-quarter yield) and long end (twenty-quarter yield) of the yield curve.

3.5.7 Estimation results, Australia

Impulse responses

Looking at Australia, shocks to reserves initially increase bond yields.

Then, after about two to three years, an initial increase in reserves lowers

bond yields.
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Figure 3.19: Impulse response functions of yields to a one standard devi-
ation shock to Asian reserves. Impulse responses for yields of maturities
of one quarter (top panel), four quarters (middle panel) and twenty quar-
ters (bottom panel), Australia
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Variance decompositions

The explanatory power of reserves or macro factors as a group is strongest

at the short end of the yield curve. Whereas reserves explain only 0.59%

and 0.99% at the four- and twenty-quarter forecast horizons for the long-

maturity (twenty-quarter) yield, shocks to reserves contribute to 4.64%

and 6.78%, respectively, of the four-quarter and twenty-quarter-ahead

forecast variance of the short maturity (one-quarter) yield.

Table 3.10: Proportion of yields’ forecast variance explained by macro factors
(reserves, GDP growth, inflation) and reserves, Australia

Macro factors Reserves

Forecast horizon 4 quarter 20 quarter 4 quarter 20 quarter

Short end (1 quarter yield) 8.99% 19.15% 4.64% 6.78%
Middle (4 quarter yield) 8.27% 15.68% 3.68% 4.65%

Long end (20 quarter yield) 2.64% 6.14% 0.59% 0.99%

The table lists the contribution of the macro factors (reserves, GDP growth,
inflation) and the contribution of reserves to the h-step-ahead (four quarters,
twenty quarters) forecast variance of the short end (one-quarter yield), middle
(four-quarter yield) and long end (twenty-quarter yield) of the yield curve.

3.6 Conclusion

This chapter studies the effect of Asian countries’ reserve holdings on the

yield curves of six industrialized countries: the United States, the United

Kingdom, Germany, Canada, Switzerland and Australia. A Gaussian

affine term structure model with three yield factors and three unspanned

macro factors is estimated to fit the yield curve of each country. Yields

factors and macro factors are set to follow an unrestricted VAR under the

physical measure. Hence, impulse responses and variance decompositions

of yields to all factor shocks can be obtained. Impulse responses show

that a one standard deviation shock to Asian reserve holdings can move

bond yields of the above countries by up to 18bp during the first five



years after the initial shock. And variance decompositions show that a

significant proportion of the yields’ forecast variance can be attributed to

reserves. For the five-year-ahead forecast horizon, the highest proportions

of variance explained by reserves can be as large as 6.78%. Moreover, the

explanatory power of reserves generally increases with forecast horizon

across all countries and maturities. Therefore, Asian countries’ reserve

holdings are an important factor affecting the international yield curves.
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Appendix 1

A1.1 Solutions for asset prices

Let P d
nt denote the time-t price of an asset that pays off the aggregate

dividend at time t+n, i.e. the price of the zero-coupon equity of maturity

n. Its one-period holding period return can be specified as the return we

get from buying it at time t at the price P d
nt and selling it at time t + 1

at the price P d
n−1,t+1:

Rd
n,t+1 =

P d
n−1,t+1

P d
nt

=
P d
n−1,t+1/Dt+1

P d
nt/Dt

Dt+1

Dt

.

The Euler equation can be written as

P d
nt

Dt

= Et

[
Mt+1

P d
n−1,t+1

Dt+1

Dt+1

Dt

]

with boundary condition

P d
0t

Dt

= 1.

Assume the solution to P d
nt/Dt is exponential affine in the state vector

P d
nt

Dt

= exp(Ad
n +Bd

n

′
Xt).

Then, given the left-hand side of the Euler equation is exponential affine
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in Xt, we need to write the right-hand side of the Euler exponential affine

in Xt as well.

Just like the above equation, we have

P d
n−1,t+1

Dt+1

= exp(Ad
n−1 +Bd

n−1
′
Xt+1)

= exp(Ad
n−1 +Bd

n−1
′
(KP

0X + (KP
1X + I)Xt + ΣXεt+1))

= exp(Ad
n−1 +Bd

n−1
′
KP

0X +Bd
n−1
′
(KP

1X + I)Xt +Bd
n−1
′
ΣXεt+1).

Given dividend growth is exponential affine in the state variables, we

have

Dt+1

Dt

= exp(∆dt+1) = exp(δ0X + δ′1XXt+1)

= exp(δ0X + δ′1X(KP
0X + (KP

1X + I)Xt + ΣXεt+1))

= exp(δ0X + δ′1XK
P
0X + δ′1X(KP

1X + I)Xt + δ′1XΣXεt+1).

Finally, recall the SDF is exponential affine in the state variables

Mt+1 = exp(−rt − 1
2
λ′tλt − λ′tεt+1)

= exp(−ρ0X − ρ′1XXt − 1
2
λ′tλt − λ′tεt+1).

Substituting the above affine forms (in Xt) into the Euler equation,
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we get 2

exp(Ad
n +Bd

n

′
Xt)

= Et[exp(−ρ0X − ρ′1XXt − 1
2
λ′tλt − λ′tεt+1)

× exp(Ad
n−1 +Bd

n−1
′
KP

0X +Bd
n−1
′
(KP

1X + I)Xt +Bd
n−1
′
ΣXεt+1)

× exp(δ0X + δ′1XK
P
0X + δ′1X(KP

1X + I)Xt + δ′1XΣXεt+1)]

= Et[exp(−ρ0X + δ0X − 1
2
λ′tλt + Ad

n−1 + (δ1X +Bd
n−1)

′KP
0X

+ (−ρ′1X + (δ1X +Bd
n−1)

′(KP
1X + I))Xt

+ (−λ′t + (δ1X +Bd
n−1)

′ΣX)εt+1)]

= exp(−ρ0X + δ0X − 1
2
λ′tλt + Ad

n−1 + (δ1X +Bd
n−1)

′KP
0X

+ (−ρ′1X + (δ1X +Bd
n−1)

′(KP
1X + I))Xt

+ 1
2
λ′tλt + 1

2
(δ1X +Bd

n−1)
′ΣXΣ′X(δ1X +Bd

n−1)

− (δ1X +Bd
n−1)

′ΣXλt)

= exp(−ρ0X + δ0X + Ad
n−1 + (δ1X +Bd

n−1)
′KP

0X

+ (−ρ′1X + (δ1X +Bd
n−1)

′(KP
1X + I))Xt

+ 1
2
(δ1X +Bd

n−1)
′ΣXΣ′X(δ1X +Bd

n−1)

− (δ1X +Bd
n−1)

′ΣXλ0X − (δ1X +Bd
n−1)

′ΣXλ1XXt)

= exp(−ρ0X + δ0X + Ad
n−1 + (δ1X +Bd

n−1)
′(KP

0X − ΣXλ0X)

+ 1
2
(δ1X +Bd

n−1)
′ΣXΣ′X(δ1X +Bd

n−1)

+ (−ρ′1X + (δ1X +Bd
n−1)

′((KP
1X + I)− ΣXλ1X))Xt)

= exp(−(ρ0X − δ0X) + Ad
n−1 + (δ1X +Bd

n−1)
′KQ

0X

+ 1
2
(δ1X +Bd

n−1)
′ΣXΣ′X(δ1X +Bd

n−1)

+ (−ρ′1X + (δ1X +Bd
n−1)

′(KQ
1X + I))Xt).

2Note λt = λ0 + λ1Xt is also affine in Xt, but it is not decomposed here as,
when taking the expectation of the SDF, the two terms containing λt cancel out, or
the terms that are quadratic in Xt cancel out. Then, after the cancellation, we can
decompose λt into λ0 + λ1Xt and get an expression affine in Xt.
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Hence we have

Ad
n = −(ρ0X − δ0X) + Ad

n−1 + (δ1X +Bd
n−1)

′KQ
0X

+ 1
2
(δ1X +Bd

n−1)
′ΣXΣ′X(δ1X +Bd

n−1),

Bd
n

′
= −ρ′1X + (δ1X +Bd

n−1)
′(KQ

1X + I),

with starting values Ad
0 = 0 and Bd

0 = 0.

A1.2 Proof of Proposition 1

Given

∆Xt = KQ
0X +KQ

1XXt−1 + ΣXε
Q
t ,

rt = ρ0X + ρ1X
′Xt,

∆dt = δ0X + δ1X
′Xt,

assume Xt is stationary under Q with unconditional mean µ such that

µ = −(KQ
1X)−1KQ

0X .

Letting X∗t = Xt−µ = Xt + (KQ
1X)−1KQ

0X , the state process becomes

∆X∗t = KQ
0X +KQ

1X [X∗t−1 − (KQ
1X)−1KQ

0X ] + ΣXε
Q
t

= KQ
1XX

∗
t−1 + ΣXε

Q
t .

For ease of exposition, assume KQ
1X has non-zero, real and distinct

eigenvalues λQ. Then, by eigendecomposition, we can write

KQ
1X = AQ diag(λQ)(AQ)−1,
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and hence

∆X∗t = AQ diag(λQ)(AQ)−1X∗t−1 + ΣXε
Q
t .

Letting X∗∗t = (AQ)−1X∗t , the state process becomes

∆X∗∗t = diag(λQ)X∗∗t−1 + (AQ)−1ΣXε
Q
t .

Given X∗∗t = (AQ)−1X∗t and X∗t = Xt + (KQ
1X)−1KQ

0X , we have X∗∗t =

(AQ)−1[Xt + (KQ
1X)−1KQ

0X ], or Xt = AQX∗∗t − (KQ
1X)−1KQ

0X . The short

rate equation can then be written as

rt = ρ0X + ρ1X
′Xt

= ρ0X + ρ1X
′[AQX∗∗t − (KQ

1X)−1KQ
0X ]

= rQ∞ + ι′X∗∗∗t ,

where rQ∞ = ρ0X − ρ1X ′(KQ
1X)−1KQ

0X and X∗∗∗t = diag(ρ1X
′AQ)X∗∗t .

With X∗∗∗t = diag(ρ1X
′AQ)X∗∗t , rewrite the state dynamics as

diag(ρ1X
′AQ)−1∆X∗∗∗t = diag(λQ) diag(ρ1X

′AQ)−1X∗∗∗t−1 + (AQ)−1ΣXε
Q
t ,

∆X∗∗∗t = diag(ρ1X
′AQ) diag(λQ) diag(ρ1X

′AQ)−1X∗∗∗t−1

+ diag(ρ1X
′AQ)(AQ)−1ΣXε

Q
t ,

∆X∗∗∗t = diag(λQ)X∗∗∗t−1 + ΣX∗∗∗ε
Q
t ,

where

ΣX∗∗∗ = diag(ρ1X
′AQ)(AQ)−1ΣX

or

ΣX = AQ diag(ρ1X
′AQ)−1ΣX∗∗∗ = V ΣX∗∗∗ ,

where V = AQ diag(ρ1X
′AQ)−1.
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And with

X∗∗∗t = diag(ρ1X
′AQ)X∗∗t

and

X∗∗t = (AQ)−1[Xt + (KQ
1X)−1KQ

0X ]

the rotation between Xt and X∗∗∗t is given by

X∗∗∗t = diag(ρ1X
′AQ)(AQ)−1[Xt + (KQ

1X)−1KQ
0X ]

= V −1[Xt + (KQ
1X)−1KQ

0X ].

Finally, the dividend growth equation can be rewritten as

∆dt = δ0X + δ1X
′Xt

= δ0X + δ1X
′(V X∗∗∗t − (KQ

1X)−1KQ
0X)

= (δ0X − δ1X ′(KQ
1X)−1KQ

0X) + δ1X
′V X∗∗∗t .

Hence, overall, the canonical form of Xt is given by

∆Xt = diag(λQ)Xt−1 + ΣXε
Q
t ,

rt = rQ∞ + ι′Xt,

∆dt = δ0X + δ′1XXt.
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A1.3 Proof of Proposition 2

Given the canonical form obtained from Proposition 1, i.e.

∆Xt = diag(λQ)Xt−1 + ΣXε
Q
t ,

rt = rQ∞ + ι′Xt,

∆dt = δ0X + δ′1XXt,

and the rotational relationship between Pt and Xt, i.e.

Pt = A+BXt (Xt = B−1Pt −B−1A),

substitute Xt = B−1Pt −B−1A into the canonical form of Xt to obtain

(B−1Pt −B−1A)− (B−1Pt−1 −B−1A)

= diag(λQ)(B−1Pt−1 −B−1A) + ΣXε
Q
t ,

rt = rQ∞ + ι′(B−1Pt −B−1A),

∆dt = δ0X + δ′1X(B−1Pt −B−1A),

which simplifies to

∆Pt = −B diag(λQ)B−1A+B diag(λQ)B−1Pt−1 +BΣXε
Q
t ,

rt = rQ∞ − ι′B−1A+ ι′B−1Pt,

∆dt = δ0X − δ′1XB−1A+ δ′1XB
−1Pt.
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In order for the canonical form of Pt to be consistent with the canonical

form of Xt, the following parameter restrictions follow:

KQ
1P = B diag(λQ)B−1,

KQ
0P = −KQ

1PA,

ρ1P = (B−1)′ι,

ρ0P = rQ∞ − A′ρ1P ,

δ1P = (B−1)′δ1X ,

δ0P = δ0X − A′δ1P .



Appendix 2

A2.1 Impulse responses

To derive the impulse responses of the yields from shocks to the state

factors Xt = (P ′t,M′
t)
′, consider the physical dynamics of Xt in (3.1):

Xt = KP
0X +KP

1XXt−1 + ΣXε
P
t ,

which can be written as an implied Wold MA(∞) representation:

Xt = (I −KP
1X)−1KP

0X +
∞∑
i=0

Piε
P
t−i,

where Pi = (KP
1X)iΣX .

Moreover, given the bond yield equation (3.11),

ybnt = An +B′nPt,

the bond yield at maturity n, ybnt, can be written as

ybnt = An +

[
B′n 0′

]
Xt

= An +

[
B′n 0′

]
(I −KP

1X)−1KP
0X +

∞∑
i=0

ψni ε
P
t−i,
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where ψni = [ B′n 0′ ]Pi. That is, the yield on an n-period zero-coupon

bond ybnt is a linear combination of current and lagged values of εt, where

the row vectors ψni are a function of Bn.

The vector ψni is the impulse responses for the n-period yield at hori-

zon i for shocks to the state vector Xt at time 0. For k yields of maturities

n1, . . . , nk, we can stack the coefficients of each yield to write

Yt = A+

[
B′ 0′

]
(I −KP

1X)−1KP
0X +

∞∑
i=0

Ψiεt−i,

where Yt = (ybn1t
. . . ybnkt

)′ and the jth row of Ψi is ψ
nj

i .

A2.2 Variance decompositions

Working with the MA(∞) representation of the yields, the error of the

optimal h-step-ahead forecast at time t, Ŷt+h|t, is

Ŷt+h|t − Yt+h =
h−1∑
i=0

Ψiεt+h−i.

Let Ψjk,i denote the element in row j, column k of Ψi. Then

Ŷ j
t+h|t − Y

j
t+h =

K∑
k=1

(Ψjk,0ε
k
t+h + · · ·+ Ψjk,h−1ε

k
t+1).

Denoting the mean squared error of Ŷ j
t+h|t as MSE(Ŷ j

t+h|t), we have

MSE(Ŷ j
t+h|t) =

K∑
k=1

(Ψ2
jk,0 + · · ·+ Ψ2

jk,h−1).
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The contribution Ωjk,h of the kth factor to the MSE of the h-step ahead

forecast of the jth yield is

Ωjk,h =

∑h−1
i=0 Ψ2

jk,i

MSE(Ŷ j
t+h|t)

,

which decomposes the forecast variance at horizon h of the jth yield to

each of the K state factors.


