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Abstract

The behavior of economic agents is characterized by interdependencies that arise
from common shocks, strategic interactions or spill-over effects. Developing
new econometric methodologies for inference in panel data with cross-sectional
dependence is a common theme of this thesis. Another theme is econometric models
that allow for heterogeneity across individual observations. Each chapter takes
a different approach towards modeling and estimating panels with cross-sectional
dependence and heterogeneity. In all chapters, the perspective is one where both
the time series and the cross-sectional dimension are large.

The first chapter develops a methodology for semiparametric panel data models
with heterogeneous nonparametric covariate effects as well as unobserved time and
individual-specific effects that may depend on the covariates in an arbitrary way.
To model the covariate effects parsimoniously, we impose a dimensionality reducing
common component structure on them. In the theoretical part of the chapter,
we derive the asymptotic theory of the proposed procedure. In particular, we
provide the convergence rates and the asymptotic distribution of our estimators. The
asymptotic analysis is complemented by a Monte Carlo experiment that documents
the small sample properties of our estimator.

The second chapter investigates the effects of fragmentation in equity markets on
the quality of trading outcomes. It uses a unique data set that reports the location
and volume of trading on the FTSE 100 and 250 companies from 2008 to 2011 at the
weekly frequency. This period coincided with a great deal of turbulence in the UK
equity markets which had multiple causes that need to be controlled for. To achieve
this, we use the common correlated effects estimator for large heterogeneous panels
that approximates the unobserved factors with cross-sectional averages. We extend
this estimator to quantile regression to analyze the whole conditional distribution
of market quality. We find that both fragmentation in visible order books and
dark trading that is offered outside the visible order book lower volatility. But
dark trading increases the variability of volatility and trading volumes. Visible
fragmentation has the opposite effect on the variability of volatility, in particular at
the upper quantiles of the conditional distribution.

The third chapter develops an estimator for heterogeneous panels with discrete
outcomes in a setting where the individual units are subject to unobserved common
shocks. Like the estimator in chapter 2, the proposed estimator belongs to the
class of common correlated effects estimators and it assumes that the unobserved
factors are contained in the span of the observed factors and the cross-sectional
averages of the regressors. The proposed estimator can be computed by estimating
binary response models applied to regression that is augmented with the cross-
sectional averages of the individual-specific regressors. The asymptotic properties
of this approach are documented as both the time series and the cross-section tend
to infinity. In particular, I show that both the estimators of the individual-specific
coefficients and the mean group estimator are consistent and asymptotically normal.
The small-sample behavior of the mean group estimator is assessed in a Monte Carlo
experiment. The methodology is applied to the question of how funding costs in
corporate bond markets affect the conditional probability of issuing a corporate

bond.
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Chapter 1

A Semiparametric Model for

Heterogeneous Panel Data with
Fixed Effects!

This chapter develops a methodology for semiparametric panel data models in a
setting where both the time series and the cross section are large. Such settings are
common in finance and other areas of economics. Our model allows for heterogeneous
nonparametric covariate effects as well as unobserved time and individual specific
effects that may depend on the covariates in an arbitrary way. To model the covariate
effects parsimoniously, we impose a dimensionality reducing common component
structure on them. In the theoretical part of the chapter, we derive the asymptotic
theory of the proposed procedure. In particular, we provide the convergence rates
and the asymptotic distribution of our estimators. The estimator is shown to have
good small sample properties in a Monte Carlo experiment.

!This chapter is written in jointly with Oliver Linton and Michael Vogt and a version of it is
published in the Journal of Econometrics, Volume 188, Issue 2, October 2015, p. 327-345.
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1.1 Introduction

In this chapter, we develop estimation methodology for semiparametric panel models
in a setting where both the time series and the cross-section dimension are large.
Such settings have become increasingly common over the last couple of years. In
particular, they are frequently encountered in finance and various areas of economics
such as industrial organization or labour economics. Cheng Hsiao has been a pioneer
in the development of panel data techniques and his monograph (Hsiao (2003))
contains the main methodological background for our work.

We investigate a regression model which has a nonparametric covariate effect
along with individual and time specific fixed effects. The covariate effect is allowed
to be heterogeneous across individuals, which is feasible given the long time series
we are assuming. To restrict the heterogeneity to be of low dimension, we propose a
common component structure on the model. In particular, we assume the individual
covariate effects to be composed of a finite number of unknown functions that are
the same across individuals but loaded up differently for each cross-sectional unit.
The covariate effects are thus modelled as linear combinations of a small number of
common functions. The individual and time specific effects of the model are allowed
to be related to the covariate in quite a general way. This allows a potential channel
for endogeneity, which is important in many applications. We recognize that the
endogeneity that is permitted is rather limited, but we remark that this type of
restriction is extremely widely exploited in empirical microeconomics, see Angrist
and Pischke (2009). A rigorous formulation of the model together with a detailed
description of its components is given in Section 1.2. The issue of identifying the
various model components is discussed in Section 1.3.

Our model can be regarded as an intermediate case between two extremes. The
one extreme is the homogeneous model, where the covariate effect is the same
for each cross-sectional unit. This is a very common framework which has been
investigated in various parametric and semiparametric studies, see for example Hsiao
(2003). In a wide range of applications, it is however rather unrealistic to assume
that the covariate effect is the same for all individuals. On the other extreme end,
there is the fully flexible model without any restrictions on the covariate effects. One
example is the classical SURE model. More recently, Chen et al. (2012) among others
have studied a semiparametric version of this very general framework. Even though
it is highly flexible, it is however not well suited to some applications. In particular,
if the number of individuals is in the hundreds or thousands, the estimation output
consists of a huge number of individual functions. This makes the model hardly
interpretable. Furthermore, the estimation precision may be very low. Our model
lies between these two extremes and allows the user to select the degree of flexibility
appropriate for the given application.

Our setting falls in the class of semiparametric panel data models for large
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cross-section and long time series. Most of the models proposed in the literature
for this type of panel data are essentially parametric. Some important papers
include Moon and Phillips (1999), Bai and Ng (2002), Bai (2003), Bai (2004),
and Pesaran (2006). These authors have addressed a variety of issues including
nonstationarity, estimation of unobserved factors, and model selection. Most of the
work on semiparametric panel models is in the context of short time series, see for
example Kyriazidou (1997). Nonparametric additive models have been considered
for instance in Porter (1996). More recent articles include Mammen et al. (2009),
Qian and Wang (2012), and Hoderlein et al. (2011).

Only recently, there have been a number of contributions to the non- and semi-
parametric literature on panels with large cross-section and time series dimension.
Linton et al. (2009) consider estimation of a fixed effect time series. Atak et al.
(2011) are concerned with seasonality and trends in a panel setting; see also Chen
et al. (2013a). Connor et al. (2012) consider a semiparametric additive panel model
for stock returns driven by observable covariates and unobservable “factor returns”.
They allow weak dependence in both time and cross-section direction, but the
covariates are not time-varying and there is no individual effect. This model is suited
for their application but does not allow a channel for endogeneity. The estimation
method is made simpler by the fact that each additive term has a different covariate,
whereas the common functions in our model all have the same covariate. Kneip et al.
(2012) consider a model similar to ours except that they focus on time as the key
nonparametric covariate. Moreover, they do not allow individual effects to be related
to included covariates, that is, there is no endogeneity in their model.

Our method to estimate the common functions and the parameter vectors
which constitute the individual covariate effects is introduced in Section 1.4. The
asymptotic properties of the estimators are described in Section 1.5. In Subsection
1.5.2, we derive the uniform convergence rates as well as an asymptotic normality
result for our estimators of the common functions. Importantly, the estimators can
be shown to converge to the true functions at the uniform rate \/W which
is based on the pooled number of data points nT" with n being the cross-section
dimension and 7" the length of the time series. Intuitively, this fast rate is possible
to achieve because the functions are the same for all individuals. This allows us
to base our estimation procedure on information from the whole panel rather than
on a single time series corresponding to a specific individual. In Subsection 1.5.3,
we investigate the asymptotic behaviour of our parameter estimators. In particular,
we show that they are asymptotically normal. As will turn out, the parameters are
estimated with the same precision as in the case where the common functions are
known. In particular, our estimators have the same asymptotic distribution as the
oracle estimators constructed under the assumption that the functions are observed.

To investigate the small sample performance of our estimation procedures, Section

13



1.8 conducts a series of simulation experiments. Overall, our procedures work well
even for quite small sample sizes.

To keep the arguments and discussion as simple as possible, we derive our
estimation procedure as well as the asymptotic results under the simplifying
assumption that the number of common functions is known. In Sections 1.6 and
1.7, we explain how to dispense with this assumption. In particular, we provide a
simple rule to select the number of unknown common functions. This complements

our estimation procedure and makes it ready to apply to real data.

1.2 The model

In this section, we provide a detailed description of our model framework. We
observe a sample of panel data {(Yi, Xy) : i = 1,...,n, t = 1,...,T}, where i
denotes the ¢-th individual and ¢ is the time point of observation. To keep the
notation as simple as possible, we assume that both the variables Y;; and X;; are
real-valued and focus on the case of a balanced panel.

The data are assumed to come from the model
Yie = po + o + v + my(Xit) + i, (1.1)

where E[e;|X;] = 0. Here, m; are nonparametric functions which capture the
covariate effect, yg is the model constant (which may be deterministic or stochastic)
and the variables ¢;; are idiosyncratic error terms. The expressions «; and -y, are
unobserved individual and time specific effects, respectively, which may depend
on the regressors in an arbitrary way, e.g., oy = Gi(Xu,...,Xir;n;) and v =
Hi( X4, -, Xog; 04) for some deterministic functions Gy, H; and random errors 7;, d;
that are independent of the covariates. As usual there is an identification shortfall
here, and to identify the components of the model, we assume that E[m;(X;)] =0
along with 327 a; = 32 v = 0.

As the functions m; may differ across individuals, the covariate effect in our
model is allowed to be heterogeneous. However, rather than allowing the effect to
vary completely freely, we impose some structure on it. In particular, we assume

the functions m; to have the common component structure

mi(r) = Bupn(x), (1.2)
h=1

where = (uy,..., 1K) is a vector of nonparametric component functions and
Bi = (Bi, ..., Bix)" are parameter vectors. Like the functions p and the coefficient
vectors 3;, the number of components K is unobserved. Identifying the functions p

together with the coefficients f; in our setting is not completely straightforward and
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requires some care. We thus devote a separate section to this issue. In particular,
we provide a detailed discussion in Section 1.3.

We are primarily interested in the case where the individual-specific loadings [;
are allowed to be correlated with the regressors X;;. If instead [3; are assumed to
be random variables that are distributed independently of the regressors, the model
in (1.1) and (1.2) reduces to a semiparametric panel data model with homogeneous
covariate effects and individual and time fixed effects (but heteroskedastic errors).

The model defined by (1.1) and (1.2) takes into account several issues which are
important in a panel data context. To start with, it captures nonlinearities and
heterogeneity in the covariate effect in a flexible but parsimonious way. Moreover,
since Eloy; + [{Xit}] # 0 in general, the unobserved effects a; and ~; introduce
a simultaneity between the covariates and the dependent variable. This allows a
certain type of endogeneity. Our model and the estimation techniques we develop
may thus be applied to a number of different empirical problems where heterogeneity
and endogeneity are potential issues.?

The type of endogeneity allowed for by the unobserved effects «; and ~; is rather
limited, but we remark that this type of restriction is extremely widely exploited in
empirical microeconomics, see Angrist and Pischke (2009). An alternative approach
to dealing with endogeneity is to introduce instrumental variables, but there are
advantages and disadvantages with that approach also. Our model has the benefit
of simplicity and is in line with the simple approach to identifying empirical effects
espoused both in Angrist and Pischke (2009) and Manski (2008), for example. It
is a generalization of standard heterogeneous linear regression panel data models
that are widely discussed in Hsiao (2003) and is part of a large developing literature
on semiparametric panel models including Atak et al. (2011), Chen et al. (2012),
Connor et al. (2012), Chen et al. (2013a), and Chen et al. (2013b) that explore
different weakenings of these models.

The elements 0 = {ug, a;, v i =1,...,n, t =1,...,T} play the role of nuisance
parameters in our framework. There is a large number of them which is increasing
with the sample size. Nevertheless, we have an even larger number of observations,
which enable us to estimate consistently all the unknown quantities of interest. We
thus do not face the “incidental parameters problem” (Neyman and Scott (1948))
that is of wide concern in other panel data settings; see Hsiao (2003) for some
discussion of this issue.

We take a pragmatic approach to estimation based on first eliminating the

nuisance parameters. To achieve this we make use of a fixed effect transformation.

2We note that a symmetric type of model where the heterogeneity in the covariate effect is
driven by time rather than individual (i.e., m,(-) instead of m;(-)) may be of interest in some cases.
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Denote the time, cross-sectional, and global averages by:

. 1 T . 1 n _ 1 n T
Yizf;m, Ytzﬁ;‘nt, V=23 > Y

=1 t=1

and define Y =Y, - Y, - Y, + Y. Now note that

T T n n
1 1 1 1
fe
Y;t = ml(th) + € — T t:E 1 ml(Xlt) — ? tzg 1 Eit — E ;21 mZ(Xlt) — ﬁ i:E 1 Eit

n T n T
1 1
S WAL 9
=1 t=1 =1 t=1
= ml(Xlt) + Eit + Op(T_1/2) + Op(n_l/Q), (13)

where we require the sample averages to converge to their population means at
standard rates, see also Assumption (Al) in Section 1.5. (1.3) shows that the
nuisance parameters ¢ can be eliminated by subtracting sample means from the
data, although this method introduces some additional small error terms.

An alternative procedure is based on differencing, which is the most common
method in linear models, see Angrist and Pischke (2009). Specifically, let Y54 =
(Yie — Y1) — (Yje — Yji—1) denote the difference-in-difference transformation. Then
we have

YR = (mi(Xy) — mi(Xie1)) — (my(Xje) — my(Xjee1)) + uage, (1.4)
where w;;; = (€t — €—1) — (€jt — €je—1) is a serially dependent error term. This
approach also eliminates the nuisance parameters 6, but also not completely without
cost. First of all, the right-hand side of (1.4) is an additive regression function of the
covariates X, Xir—1, Xji, Xj:—1. To estimate this function, either higher dimensional
smoothing must be employed, see Linton and Nielsen (1995), or iterative smoothing
techniques like backfitting, see Mammen et al. (1999). Second, the error term
u;;r is dependent across time and cross-section, in particular it has a four term
"dyadic” (Fafchamps and Gubert (2007)) structure that needs to be accounted
for. Finally, one needs stronger conditional moment restrictions on the original
error terms to be able to consistently estimate this model. Specifically, we require
Elei| Xit, Xit—1, Xji, Xji—1] = 0 rather than just the assumption Eley|Xy] = 0
that will be needed for the fixed effect method. Henderson et al. (2008) propose
this method (with just time differencing) in the homogeneous one way model, i.e.,

Y;t = Mo + «; + m(th) + Eit.
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1.3 Identification

The individual regression functions m; in our model are identified through the
normalizations E[m;(X;)] = 0 along with 37, o, = 331 v = 0. We now describe
how to identify the vector of common component functions u = (ug,...,ur)"
and the parameter vectors 3; = (81, ..., ix)" which constitute the functions m;.
Roughly speaking, the idea is to characterize p and the parameter vectors f; via
an eigenvalue decomposition of a matrix related to the functions m;. Exploiting
the uniqueness properties of this decomposition, we are able to identify p and the
parameter vectors up to sign. Our strategy is thus very similar to the arguments
usually used in factor analysis which can for example be found in Connor and
Korajczyk (1988) and Bai (2003).

To lay out our strategy, we denote the vector of individual functions by m = (my,

..., my)" and define B to be a n x K matrix with the entries 3y, for i = 1,...,n and
k=1,..., K. With this notation at hand, we can represent the vector of functions
m as

m = Bpu. (1.5)

We now put some slight regularity conditions on B and p. In particular, the
functions p are assumed to be orthonormal with respect to a weighting function
w, Le., [ p(@)p(z) w(z)de = Ix. Moreover, the coefficient matrix B is supposed to
have full rank K. These assumptions are rather harmless. In particular, the rank
condition on B just makes sure that there is enough variation in the coefficients,
i.e., in the linear combinations of the u-functions across individuals.

The above two assumptions on p and B can be replaced by a condition which
parallels the set of assumptions usually used in factor analysis. In particular, they

are equivalent to the following condition:

(I1) The matrix B is orthonormal, i.e. B'B = I, and [ u(z)u(z) w(z)ds is a

diagonal matrix with non-zero diagonal entries.

To see this equivalence, assume that we start off with a matrix B of rank K
and a vector of common component functions ;') which are orthonormal in the
sense specified above. Then consider the symmetric, positive definite K x K matrix
(BMY'BW = ODO", where OO" = O'O = Ix and D is a diagonal matrix with

positive entries. Let

B® = BOop~1/2 (1.6)
p?(x) = DV2O" M (2). (1.7)

Then
(3(2))73(2) — D20 (B(l))TB(l)ODfl/Z = I
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and
/u@)(:p)M(Q)(m)Tw(x)dx _ D1/20T0D1/2 - D

Hence, the normalized versions B® and p® satisfy (I1).
Let us now assume that the matrix B and the component functions p are
normalized according to (I1). In addition, suppose that the functions p satisfy

the following constraint:
(I2) The diagonal entries of the matrix [ p(z)u(z) w(z)dx are all distinct.

This assumption is needed to ensure that the eigenspaces in the spectral decompo-
sition below are one-dimensional, which in turn makes sure that the eigenvectors of
the decomposition are uniquely identified up to sign.

Given (I1) and (I2), the matrix B can be characterized via the “covariance”

structure of the functions m. In particular, we have that
Q= /m(x)m(m)Tw(x)dx = B/,u(x),u(x)Tw(x)dx B' = BDB',

where D is a diagonal matrix with the diagonal entries [ i (z)w(z)dz for k =
1,..., K. These entries are the non-zero distinct eigenvalues of the matrix
Q2. Moreover, the columns of the matrix B are the corresponding orthonormal
eigenvectors.  This spectral decomposition is unique up to the sign of the
eigenvectors, i.e., up to the sign of the columns of the matrix B. Thus, the
coefficients contained in the matrix B are identified up to sign as well.

Exploiting the fact that the columns of B are orthonormal, we can moreover

represent the vector of functions p by writing
w= B'm.

This equation almost surely identifies the functions g up to sign: The functions
m; contained in the vector m are identified almost surely by our normalizing
assumptions. Moreover, as seen above the columns of the matrix B are identified
up to sign. As a result, the functions p are almost surely identified up to sign as
well.

Rather than working with the system (1.5) of dimension n directly, we transform
it into a system of dimension K. Let W = (wy;) be a K x n weighting matrix of
rank K. Then we can write Wm = W Bpu. Introducing the shorthands S = W B
and g = Wm, we obtain that

g=>5p. (1.8)

Here, g = (g1,...,9x)" are weighted averages of the individual functions m; given
by gr = Y iy wkim,;. Moreover, the K x K matrix S contains weighted averages of

the model parameters as its elements, in particular S = (sy) with sg =D " | wkifa
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for k,l = 1,..., K. Note that the vectors m and g as well as the matrices B, W,
and S depend on the cross-section dimension n. To keep the notation readable, this
dependence is suppressed throughout the chapter.

Premultiplying the n-dimensional system (1.5) with the matrix W, we form K
different weighted averages of the individual functions m. We thus replace the
system (1.5) which characterizes the individual functions m as linear combinations
of the common components p by a system which represents weighted averages of
these functions as linear combinations of p. The reason for this is twofold: Firstly,
the system (1.8) has a fixed dimension K rather than a growing dimension n, which
is technically more convenient. Secondly, the functions g being averages of the
individual functions m, they can be estimated much more precisely than the latter.
In particular, g can be estimated with a much faster convergence rate than the
individual functions. This will help us to achieve a fast convergence rate for our
estimator of p as well.

The elements of the system (1.8) can be normalized in an analogous way as those
of the system (1.5): To start with, we assume that the matrix S has full rank K and
that the functions p are orthonormal, i.e. [ p(z)u(x) w(x)dx = Ix. By the same

arguments as before, this is equivalent to the following assumption:

(Iwl) The matrix S is orthonormal, i.e. 7S = I, and [ p(z)u(z) w(z)de is a

diagonal matrix with non-zero diagonal entries.

Note that the normalization of the functions p in (Iw1) depends on the matrix S
and thus on the chosen weighting matrix W. This becomes visible from equation
(1.7) which shows how the normalized version of u is constructed. As before, we

additionally suppose that the normalized vector of functions p has the following

property:
(Iw2) The diagonal entries of the matrix [ p(x)u(x) w(z)dx are all distinct.
We finally put a slight regularity condition on the weighting scheme W':

(Iw3) The weights wy; are of the form wy; = wvg;/n with non-negative parameters
vk < C < oo for some sufficiently large constant C'. For each k, the number

ng of nonzero weights is such that ny/n — ¢ for some positive constant c.

The above condition is satisfied by a wide range of weighting schemes, for example

by the simple choice

[n/K] times
—
e 0
l o o. . l
0 i 1
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Note that by assuming ny/n to converge to a positive limit, we just make sure that
the averages which result from applying the weighting matrix W are composed of
O(n) terms. This allows us to apply asymptotic arguments to them later on.
Given the normalization conditions (Iw1) and (Iw2) together with the assump-
tion on the weights (Iw3), the functions u can be represented as follows: As the

columns of the matrix S are orthonormal, we can write
w=2=S"g. (1.10)

The matrix S in this equation can be characterized by a spectral decomposition of
the matrix ¥ = [ g(2)g(z) w(x)dz. In particular, it holds that

Y= S/u(x)u(x)Tw(a:)dx ST =8DS",

where D = diag(A1, ..., Ax) with Ay = [ pi(2)w(z)de. The constants A, ..., Ak
are the non-zero distinct eigenvalues of 3. Moreover, the columns of S are the
corresponding orthonormal eigenvectors, denoted by si, ..., sk in what follows.

In the sequel, we shall assume throughout that the functions p and the matrix
S are normalized to fulfill (Iw1) and (Iw2). Moreover, we suppose that the matrix
Y. converges to a full-rank matrix »*. These seem like reasonable and innocuous
assumptions. Finally, note that given the existence of a limit ¥*, the matrix S
converges to a limit S* as well. This is due to the fact that the eigenvectors sy, ..., Sk

depend continuously on the entries of the matrix .

1.4 Estimation

We now describe our procedure to estimate the functions puq,...,ux and the
coefficient vectors 3; = (Bi1,...,0Bix) based on kernel methods. Of course,
alternative methods can be used, including the iterative algorithms developed in
Chen et al. (2013a) or the sieve methods described in Chen (2013). One advantage
of our procedures is that they are “in closed form” meaning that one does not have
to rely on nonlinear optimization and that they can be computed very fast and
accurately even with very large datasets.

For simplicity of exposition, we assume throughout the section that the number
K of common components is known. In Sections 1.6 and 1.7, we will dispense with
this assumption and provide a procedure to estimate K. Our approach splits up into
four steps, each of which is described in a separate subsection. To start with, we
construct preliminary estimators of the individual regression functions m;. These
are used to obtain estimators of the u-functions and the coefficient vectors g; in a
second and third step, respectively. In a final step, we exploit the model structure

to obtain improved estimators of the individual regression functions m;.
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1.4.1 Preliminary estimators of the individual functions

We estimate the individual functions m; by applying nonparametric kernel tech-
niques to the time series data {(Y*, X;) : t = 1,...,T}. More specifically,
Nadaraya-Watson or local linear smoothers may be used. The Nadaraya-Watson

estimator of the function m; is defined as

T e
mi\IW(x) _ Zt:r} Kh(x — Xlt)szg
>im Kz — Xir)

Y

where h is a scalar bandwidth and K(-) denotes a kernel satisfying [ K (u)du = 1
and K(-) = h"'K(h~! -). The local linear estimator of m; is given by the formula

T e
mLL($) _ Zt:% wi,T(x7 Xlt)}/;g
> i1 Wi (T, Xit)

)

with
wir(z, Xit) = Kp(z — Xi) <Si,T,2($) — (m —th‘ )Sz,TJ(I))

and

T
Sirp() = %Z Kz — Xit) (m _hXit>k
t=1

for k = 1,2; see Fan and Gijbels (1996) for a detailed account of the local linear
smoothing method. The procedure to estimate the functions p and the parameter
vectors (3; is the same no matter whether we work with Nadaraya-Watson or local

linear smoothers. In what follows, we thus use the symbol m; to denote either the

local constant estimator M"Y or the local linear smoother mi ",

1.4.2 Estimating the common component functions u

We now use the characterization (1.10) of the functions u to construct an estimator

of them. We proceed as follows:

Step 1: Construct estimators g = (gi,...,gx) of the functions g = (g1,...,9x)"

according to

i=1
Step 2: Estimate the matrix X by
S~ [ §e)gta) wla)de.
Step 3: Estimate the eigenvalues and eigenvectors by
5 =S5DS",
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i.e., by performing an eigenvalue decomposition of the matrix 3. Let

Xl, . ,XK be the eigenvalues of 5 (i.e. the diagonal entries of the matrix lA)),
and 51, ..., Sk the corresponding orthonormal eigenvectors (i.e. the columns

of the matrix S).

Step 4: Define the estimator of u by replacing S and ¢ in (1.10) with their respective
estimators, i.e.,
~ a7~
w=2Sgyg.

1.4.3 Estimating the coefficients 3;

Consider the time series data {(Yj;, Xit) :t = 1,...,T} of the i-th individual. These

are assumed to come from the model

K
Yie = po+ i + 7 + Z Birir(Xit) + €t
k=1
for t = 1,...,T, which is linear in the parameters 8; = (Bi,...,8ix)" . If the
functions py, ..., ux were known, the coefficients f; could be estimated by standard
least squares methods from the time series data {(Vj*, X;) : ¢t = 1,...,7}. In

particular, we could use a weighted least squares estimator given by

Bi= (5 o mXon(Xau(Xa)) 5 S m(XauXayE ()

t=1 t=1

with a weighting function 7. As the functions p are not known, we replace them by

the estimates jz, thus yielding the estimator

(X (Xar) Y (1.12)

o)

Il
/N
Nl =
1]~
A
s
=
s
5
s
~

-
e

T
t=1 t=1

1.4.4 Re-estimating the functions m; and iterating the

estimation procedure

Exploiting the model structure, we can now define new estimators of the individual
functions m; which have better asymptotic properties than the preliminary estima-
tors m;. Specifically, we let
i (x) = Bl ).
As we will see later on, the estimators m¢$ have a faster convergence rate than the
preliminary smoothers m;.
A possible extension of our estimation procedure is to iterate it. To do so, we first

re-estimate the component functions p and the parameters (3; by using m¢ instead

of the preliminary smoothers m;. This yields updated estimators of u and ;. In
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addition, we may update the estimated individual effects whose first round estimates
were implicitly given by @; =Y; =Y, %, =Y, — Y, and iy = Y. Specifically, these
may be replaced by:

1

~
e __
o =

T n

~ ~e ~e 1 i e
Z{Y;t_luo_mi(Xit)}; Tt = EZ{Yit_MO_mi(Xit)};
t=1 i=1

=l

n T
o= 0 D (i — (X))

i=1 t=1
This process can be continued until some convergence criterion is satisfied, which is
likely to be achieved in practice quite quickly. Note that we can view this iterative
algorithm as a procedure to find the minimum of a least squares objective function
along the lines of Connor et al. (2012).

1.5 Asymptotics

In what follows, we derive the asymptotic properties of our estimators. To start with,
we list the assumptions needed for our analysis. We then present the results on the
limiting behaviour of the estimators /i, B\i, and m¢. The proofs of our theoretical

results can be found in Appendix A.1.

1.5.1 Assumptions

We impose the following regularity conditions, which as usual are sufficient but not
necessary for our results. The expression 7% < n < T° is used to mean that
CT* < n < CT* for some positive constant C, a small § > 0 and 0 < a < b.
The symbol > is used analogously.

(A1) The data {X;; : @ = 1,...,n, t = 1,...,T} and disturbances {e; : i =
1,...,n, t =1,...,T} are independent across i. Moreover, they are strictly
stationary and strongly mixing (Rosenblatt (1956)) in the time direction. Let
a;(k) for k = 1,2, ... be the mixing coefficients of the time series { (X, €it),t =
1,...,T} of the i-th individual. Tt holds that a;(k) < a(k) for alli =1,...,n,

where the coefficients «(k) decay exponentially fast to zero as k — co.

(A2) The densities f; of the variables X;; exist and have bounded support, [0, 1] say.
Moreover, they are uniformly bounded away from zero and from above, i.e.,
0 < ¢ < minj<j<p infoep ) fi(x) as well as max; sup,, fi(z) < C < oo for some
pair of constants 0 < ¢ < C' < co. Finally, the joint densities f;; of (X, Xit1)

exist and are also uniformly bounded from above.

(A3) The functions pq,...,ux are twice continuously differentiable on [0, 1].

Moreover, the densities f; are twice continuously differentiable on [0, 1] as

23



well with uniformly bounded first and second derivatives f; and f/’. Finally,
the coefficients B;, are bounded by some constant 5 < oo, i.e., |8| < /3 for all
t=1,....,nand k=1,..., K, which ensures that the functions m; as well as

the derivatives m/ and m/ are uniformly bounded on [0, 1] as well.

(A4) It holds that E[e;| X;:] = 0. Moreover, for some 6 > 5 and for all [ € Z,

max sup E[leq]’| Xy =2] < C < o0 (1.13)
1<i<n 4eio )
max sup E[|5z‘t||Xit =x, Xy = x’] <(C <o (1.14)

1<i<n z,x'€[0,1]
max sup E[|5z‘t5it+l||Xit =x, Xy = x’] < C < oo, (1.15)
1<isn g 27€(0,1]

where C' is a sufficiently large constant independent of [.

(A5) The cross-section dimension n = n(T) depends on T and satisfies T%/3 < n <
T3/,

(A6) The bandwidth & is of the order (nT)~1/5+%) for some small § > 0.

(A7) The kernel K is bounded, symmetric about zero and has compact support
([-C4, (4], say). Moreover, it fulfills the Lipschitz condition that there exists
a positive constant L with |K (u)— K (v)| < Llu—v|. Let pua(K) = [ K(p)p*de
and || K3 = [ K*(p)dp.

Assumption (A1) is very strong for the type of large panel data sets considered
in this paper. By restricting the degree of correlation between the regressors X;; and
the fixed effects «; and ~;, it rules out situations where the regressors are generated
by X = px + a; + v + uy, for example. But it is possible to relax (A1) in several
dimensions as we discuss below.

Note that we do not necessarily require exponentially decaying mixing rates
as assumed in (Al). These could alternatively be replaced by sufficiently high
polynomial rates. We nevertheless make the stronger assumption (A1) to keep the
notation and structure of the proofs as clear as possible.

The cross-sectional independence of the data is maintained for simplicity, one
could however allow some forms of dependence in the cross-section. For example,
one could allow the type of clustering structure used in Connor et al. (2012). Our
results would go through with minimal changes in this case. An alternative approach
is to follow Connor and Korajczyk (1993) and to assume that there exists some
ordering of the observations with respect to which the data {(Xy,¢e;)} are mixing
across ¢. Jenish (2012) derives pointwise limit theorems for nonparametric regression
with near-epoch dependent mixing processes defined on a general lattice dimension
d, which includes that setting as a special case. Robinson (2011) has proposed

an alternative approach based on linear processes that does not need a measure
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of cross-sectional distance. His framework allows for strongly dependent and
nonstationary regression disturbances. These types of cross-sectional dependence
are much harder to deal with in our framework and would involve a great deal of
technical and notational effort to cope with. Heuristically speaking, however, we
expect these dependence structures to have no effect on the asymptotic behaviour
of our estimators provided the dependence is weak. Specifically, the cross-sectional
dependence should wash out of the distribution for the nonparametric estimates and
should not affect the univariate asymptotics for the loading coefficients.

We may also allow for nonstationarity in {(X,ei)} of the type proposed in
Dahlhaus (1997). This so-called local stationarity may arise in the time direction,
that is, densities change smoothly in the argument ¢/7". In addition, it may arise
in the cross-section, that is, densities change smoothly in the argument i/n with
respect to an unknown ordering of the individuals. Vogt (2012) establishes a number
of results for nonparametric regression with locally stationary processes, and we
anticipate that his results can be extended to this case, although the technical effort
to accomplish this would be considerable.

It is worth mentioning that our assumptions do not only allow for time series
dependence but also for heteroskedasticity in the error terms ;. The errors may for
example have the form e;; = o(Xj;)ni, where n;; are i.i.d. variables independent of
X and o is an unknown volatility function. The moment bounds (1.13)—(1.15) on
the error terms are needed to derive a couple of uniform convergence results later
on. They are modifications of standard assumptions required to derive uniform
convergence rates for kernel estimators; cp. for example Assumption 2 in Hansen
(2008). They are for instance satisfied when the error terms take the form ¢; =
o (X )i, where 7;; are i.i.d. with E|ny|’ < oo and o is a continuous function.

Finally, note that there is a trade-off between the moment condition (1.13) in
(A4) and the conditions on the relative sample sizes in (A5). For example, if we
restrict attention to the case n = O(T), we can do with # > 4 in condition (A4).
The restrictions in (A5) reflect two constraints on the relative sample sizes: Firstly,
T needs to be large enough relative to n such that the preliminary estimators are
sufficiently precisely estimated. Secondly, n needs to be large enough such that the

error terms stemming from the fixed effect transformation can be ignored.

1.5.2 Asymptotics for the estimator

Our first result characterizes the asymptotic behaviour of the estimator u. In
particular, it shows that i uniformly converges to p and is asymptotically normal.

To formulate it, we define V() to be a K x K matrix with the entries

n 2
_ 2 1 9 (x)
Via(w) = [ K3 lim (n 21231 ey s ).
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where o7(z) = E[e2| X, = x].

Theorem 1.5.1. Let (A1)-(A7) together with (Iw1)-(Iw3) be satisfied. Then

sup () — (@) = 0, (1200, (1.16)

zelp

Here, I, = [C1h,1 — C1h] if our procedure is based on the Nadaraya-Watson

S NW LL

smoothers m;'" and I, = [0,1] if it is based on the local linear smoothers m;

Moreover, for any fized point x € (0, 1),
VATh(i(x) - plx)) ~> N(0, v(x)) (1.17)

with v(x) = (S*)"V(2)S* and S* being the limit of S.

The first part of the theorem shows that iz converges to i at a fast rate based on
the pooled number of observations nT'. If we set up our estimation procedure with
the local linear smoothers m! Y, the rate is uniform over the whole support [0, 1].
For the Nadaraya-Watson based procedure in contrast, the rate is only uniform on
the subinterval [Cyh,1 — C1h] which converges to the support [0, 1] as the sample
size increases. This is due to the fact that the Nadaraya-Watson estimators m} "
suffer from slow convergence rates at the boundary of the support.

The second part of the theorem specifies the asymptotic distribution of zi. The
asymptotic covariance matrix v(x) can be seen to depend on the weights wy;. The
reason for this is as follows: The normalization of the functions i depends on the
choice of the weighting matrix W. In particular, different choices of W generally
result in different eigenvalues Ay = [ pi(z)w(x)dz, ie., in different values of the
Lo-norm of the functions py. This becomes reflected in the covariance matrix v(x)
through its dependence on the weights wy;. Moreover, note that v(x) need not be
diagonal in general: If the weighting matrix W is diagonal, then V() is a diagonal
matrix as well. However, even then the matrix S* may have a more complicated
non-diagonal structure. Hence, the components of 11 are asymptotically mutually
correlated in general.

Regarding inference, we propose a simple plug-in method. Let &;; = Y, —m,;(X;;)

and

Vkl = HKHZ nzwmwlz = )
fi :v)

where 07(z) is a local constant or local linear time series regression smoother of €7 on
X, and ﬁ(m) =T"! ZL K (X — x) is the time series kernel density estimator of
fi(x). Then, D(z) = S"V(2)S consistently estimates v(z), and pointwise confidence
intervals based on this are consistent under our assumptions, see Haerdle (1991).
To derive the results of Theorem 1.5.1, we work with the undersmoothing

assumption (A6) on the bandwidth h. Moreover, we use the same bandwidth both
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to estimate the average functions g and the matrix 3. It is however also possible to
employ different bandwidths. In particular, one may use a slightly undersmoothed
bandwidth Ay, of the order (nT)~(/>¥9 to construct the estimate 5 and a bandwidth
h, of the optimal order (nT)~%/° to set up the estimator §. Inspecting the proof of

Theorem 1.5.1, it is easily seen that in this case

VnThy(fi(x) — p(@)) = §"[\/nThe(g(x) — g(x))] + 0,(1)

with
. d
V/nThy(§(z) — g(x)) — N(B(z),V(2)),
where the variance V' (z) has already been defined above and the bias term B(z) is

given by B"W(z) and B™(z) in the Nadaraya-Watson and the local linear based

case, respectively. The latter two expressions are defined by

BEW@»=:@ﬂéﬁzim;iia%<mnxxuﬂx>+nwcwﬁ«w>/ﬁ@»
BE(e) = 22 iy S (0

for k =1,..., K, where ¢y is the limit of the sequence values \/nThg.

Given the above remarks, we suggest a straightforward rule of thumb for
bandwidth selection. In particular, we first select the bandwidth A, and then choose
the bandwidth Ay, simply by picking a value slightly smaller than the choice of h,.
To select the bandwidth A, (or rather hy if we allow a different bandwidth for each

function g ), we optimize the integrated mean-squared error criterion

1
IMSE(hgx) = hy s / Bi(x)dx + Tho / Vi (z)dz
9,

for k =1,..., K. Minimizing with respect to hy, the optimal bandwidth turns out

o S Vig(x)da ; 15
= (i) 0"

to be given by

This expression still depends on some unknown quantities which have to be replaced
by estimators. To do so, we apply a simple plug-in rule similar to the methods
discussed in Fan and Gijbels (1996).

1.5.3 Asymptotics for the parameter estimators B\Z

The next theorem describes the asymptotic properties of the parameter estimates

,/B\i for a fixed individual 7. To state the asymptotic distribution of B\i, we introduce
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the shorthands

T; = Elm(Xi0)u(Xio)u(Xio)'] and ¥y = Y Cov(xio, xa),
l=—00
where i = {m( X ) w(Xir) — E[m (X)) p(Xie) | Jeir — Elm (X)) (X)) mi(Xie) and 7 is

a bounded weighting function.

Theorem 1.5.2. Suppose that all the assumptions of Theorem 1.5.1 are fulfilled
and let I'; have full rank. Then for any fixed 1,

VT(B: - 6:) — N (0,1 w,(rh)).

If our procedure is based on Nadaraya-Watson smoothers, we have to restrict the
weighting function 7 to equal zero within the boundary region [0, C1h)U(1—Ch, 1].
This is necessary because the convergence rate of ji is only uniform over the interval
[C1h,1 — C1h] in this case. If the local linear based procedure is applied, we do not
have to impose any restrictions on 7.

From the proof of Theorem 1.5.2, we can see that our parameter estimators
@ have some type of oracle property. In particular, it holds that /T (BZ — EZ) =
0p(1). Our estimators 5; thus have the same asymptotic distribution as the oracle
estimators EZ which are constructed under the assumption that the functions
[, ..., are known. To estimate the asymptotic variance W;, we may apply

standard long-run variance estimation procedures to the residuals Y;; given by
Xit = {m(Xa) l(Xae) — 7p}Ew — mamg (Xar),

where we define 7 = T2 7(Xi)i(Xa), & = Vil — mS(Xy) and m¢(z) =

~.

B ix).

1.5.4 Asymptotics for the estimators m{ and a parameter

of interest

We finally discuss the asymptotic properties of the estimator m$(z) = S, f(z). It
holds that

L o 1
mi(x) —m(x) = (B; — s x)+ B6; (u(x) — m—i—o(—). 1.18

() = my(x) = (8 = Bi) w(z) + B (1(x) — p(x)) o\ T (1.18)

The first term on the right-hand side is of the order T-'/2, while the second one has
the (pointwise) order (n7'h)~'/2 under our conditions. Given assumption (A5) on
the relationship between the dimensions n and T', the leading term is the first one
of order T7/2. Tt follows that m¢(x) is asymptotically normal at the rate T—1/2,

i.e., at a faster rate than the preliminary estimator m;(x) which converges at the
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(pointwise) rate (Th)~'/2.
In some empirical applications, a parameter of interest is ¢; = m;(1) — m;(0).
Defining ¢; = m$(1) — m$(0), we obtain that

(2 3

G —ci = (Bi— 8) (1) — u(0)) + B (A1) — (1)) — B (7i(0) — p(0)) + %Q%).

Under the null hypothesis that ¢; = 0, we should observe that
VIE =5 N (0,7)  with 7 = (u(1) = p(0) T () (1) - (0)),

which could form the basis of a test. Specifically, we can use the strategy to estimate
the covariance matrix I'; '¥;(I'; )" from the previous subsection together with the
estimators 1 to obtain a consistent estimator 7; of the asymptotic variance 7; and
let

C;
t’i = )
VTl T

which is asymptotically standard normal.

1.6 Robustness of the estimation method

So far, we have worked under the simplifying assumption that the number K of
common component functions p1, ..., ux is known. We now drop this assumption
and take into account that K is usually not observed in applications. We only
suppose that there is some known upper bound K of the number of component
functions. In what follows, we investigate how our procedure behaves if we work
with this upper bound instead of the true number of components.

To do so, let W = (@y,;) be a K x n weighting matrix satisfying (Iyw3). Writing
g =Wm and S = W B, we obtain that

gzgu.

Using an analogous normalization as in Section 1.3, we can assume that (i) the
matrix [ p(z)u(x) w(z)dr is diagonal with positive and distinct diagonal entries
and that (ii) S is a K x K matrix with orthonormal columns. Note that this
normalization is somewhat different from that used in the previous sections as
we have replaced the weighting scheme W by W. For simplicity, we suppress
this difference in the notation in what follows and again denote the normalized

component functions by . We thus obtain that
nw=2S7.
As in the case with known K, the matrix S can be characterized by an eigenvalue
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decomposition of the K x K matrix

In particular, it holds that & = SDS' with D = [ w(x)p(x) w(x)dz. Note that this
way of writing the spectral decomposition implicitly presupposes that K is known.
For this reason, it is more appropriate to rewrite the decomposition as ¥ = UﬁUT.
Here, U is an orthonormal K x K matrix with the first & columns being equal to S.
Moreover, D = [ fi(z)fi(z) w(z)dz is a diagonal K x K matrix with 7 = (1,0, ... ,0)
being a vector of length K. Similarly to the case with known K, we assume that 2
converges to a matrix & of rank K.

To estimate the vector of functions & = (,0,...,0), we mimic the estimation
procedure from Subsection 1.4.2. In particular, we proceed as follows:

Step 1: Estimate the function g,(x) by gx(z) = > i Wrimy(z) for k=1... | K
Step 2: Estimate the matrix & by ¥ = [ §(2)g(z) w(z)dz.

Step 3: Perform an eigenvalue decomposition of Y to obtain estimators of U and
D. In particular, write ¥ = UDU" with D being diagonal and U being

orthonormal.

Step 4: Estimate the vector of functions 7 = (1,0, ...,0) by
p=U7gq.

Inspecting the proof of Theorem 1.5.1, it is straightforward to see that for
k = 1,..., K, the estimator pi; has analogous asymptotic properties as fiy. In
particular, it uniformly converges to u; and is asymptotically normal. The next
theorem summarizes the properties of iy, for £ = 1,..., K. To formulate it, we let
V(z) be a K x K matrix with the entries

n 2
%4 _ 2 1 — — 0 (z)
Vida) = 1K1} Jim (n 3o ).

where @y, are the elements of the weighting matrix .

Theorem 1.6.1. Let (A1)-(A7) be fulfilled. Then it holds that

~ B lognT
sup | (x) — ()| = 0p< T ) (1.19)

forallk=1,...,K. As before, I, = [C1h,1 — C1h] for the Nadaraya- Watson based

case and I, = [0, 1] for the local linear based procedure. Moreover, for any fized point
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z € (0,1),
~ d _
nThp(z) — p(z)] — N(0,7(x)), (1.20)
where 7(x) = (S) V(z) S and S is the limit of S.
In addition, we can show that for k = K + 1,..., K, the estimators i, converge in

an Le-sense to zero.
Theorem 1.6.2. Let (A1)-(A7) be fulfilled. Then it holds that

/ﬁi(m)w(w)dw = 0;,,(\/%) (1.21)

forallk=K+1,... K.

The proof of Theorem 1.6.2 is given in Appendix A.1. Taken together, Theorems
1.6.1 and 1.6.2 show that our procedure is robust to overestimating the number of
component functions K. In particular, applying it with the upper bound K instead
of K, the first K components of the estimator p still uniformly converge to the
vector of functions pu. Moreover, the remaining components converge to zero in an

Lo-sense and thus become negligible as the sample size grows.

1.7 Selecting the number of components K

In this section, we propose a simple method to estimate the unknown number of
components K. To define our estimator, let A = (Xl, e ,X?)T be the vector of
eigenvalues of the matrix ¥ arranged in descending order. Analogously, let X be the
eigenvalues of the estimator 3. Finally, let {d, r} be any null sequence of positive
numbers which converges to zero at the order O(1/v/nTh) or at a slower rate. With

this notation at hand, our estimator of K is defined as

~— >1—0,7

K = min ke{l,...,K}
A+ A

PV }

The intuition behind this estimator is simple: Under our assumptions, the matrix
¥ has K non-zero eigenvalues, i.e., the first K entries of X are non-zero. The first K
entries of the estimator A thus converge to some positive values, whereas the other

ones approach zero as the sample size increases. Hence, the ratio

Ao
M4+ A

should converge to a number strictly smaller than 1 for £ < K and to 1 for £ > K.

This suggests that K consistently estimates the true number of components K.
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This intuition can easily be turned into a formal argument: First of all, it can
be shown that the convergence rate of X is at least 0p(1/v/nTh), ie., X=X =
op(1/v/nTh). As a consequence, it holds that

MAo+ N AN O( 1 )

vnTh
for any k € {1,..., K}. In particular,

Ao A

ﬁ:1+op(;>.
Ao vnTh

Using these two equations together with some straightforward arguments, it is easily
seen that K is indeed a consistent estimator of the true number of components K,
ie. K = K +o0,(1).

When implementing the estimator K in practice, an important question is how
to choose the constant 6, 7. We suggest to pick it by a rule of thumb which is
similar to the procedure usually used in principal component analysis for selecting
the number of factors. To understand the intuitive idea behind the rule, first note
that A\, = [pi(z)w(z)dr for k = 1,...,K and Ay = 0 for k = K + 1,..., K.
The eigenvalues A, are thus equal to (the square of) a weighted Ls-norm of the
component functions @ = (p,0,...,0). Put differently, they measure the variation

of these functions. As a result, the ratio

AL+ A
M+t A

can be interpreted to capture the percentage of the overall variation in the functions
7t that stems from the first £ components. Hence, by picking a certain value of d,, 7,
we select the number of component functions such that at least a certain percentage
of the overall variation is explained by the chosen number of components. For
instance, if we let d,, 7 = 0.05, we pick the number of components to capture at least
95% of the total variation. Keeping in mind that our estimation procedure is robust
to picking the number of components too large, we propose to choose the constant
Op,r rather small (e.g. 6,7 = 0.01 or d, 7 = 0.05). This results in a conservative
rule which tends to overestimate the true number K rather than to underestimate
it. As already noted above, this way of selecting the number of components is very
similar to the usual approach in factor analysis (see e.g. Zhu and Ghodsi (2006) or
chapter 6 of Jolliffe (2002)).
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1.8 Simulation study

To assess the small sample properties of our estimation methods, we simulate data
from the following model setup: The regressors X;; are i.i.d. draws from a uniform
distribution on the unit interval. Moreover, there are K = 2 common component

functions defined by
1 (x) = V2sin(27x) and pi2(x) = V2 cos(2mx).

These functions are orthonormal with respect to the standard scalar product on
[0,1], i.e., fol p1(x)pe(z)dr = 0 and fol pi(z)dr =1 for k = 1,2. As the regressors
are uniformly distributed on [0, 1], we obtain that E[ux(X;)] = 0 for £ = 1,2 and
thus E[m;(X;;)] = 0 with m;(x) = B (2)+Bigpz(x). Thus, the regression functions
fulfill the normalization E[m;(X;;)] = 0 that is assumed for identification.

The factor loadings Sy, (i = 1,...,n, k =1,..., K) are generated deterministi-
cally according to

 — 1 — 1
! and ﬁi2:2—l .
n—1

i =1
Bi1 +n—1

With this choice, the coefficient (;; of the function p; linearly increases from 1 to 2
as the index ¢ grows larger. Similarly, the loading (s of us decreases from 2 to 1.
Hence, the component function p; becomes more and more important as the index

¢ gets larger and vice versa for the second component p5. The weighting matrix W

W:(Q/n .20 . 0>‘
0O ... 0 2/n ... 2/n

Note that the coefficient matrix B and the weighting matrix W are chosen such that

is given by

S = WB has full rank. In addition, the p-functions are orthonormal. Hence, the
normalization conditions of Section 1.3 are fulfilled. In the simulations, S and p are
re-normalized such that they fulfill condition (Iw1).

The individual and time fixed effects «; and v; are i.i.d. standard normal random
variables. The model constant g is set to zero, and the disturbances ¢;; are i.i.d.
normal random variables with zero mean and standard deviation o.. To vary the
signal-to-noise ratio in the model, we choose two different values for o., in particular
o. € {1,2}. As can be seen, there is no time series dependence in the error terms and
the regressors, and we have only included a very limited form of fixed effects. These
simplifications allow us to get a clear picture of the performance of our estimation
methods. It goes without saying that they may be relaxed, i.e., we may allow for
time series dependence in the model variables and add some more complicated forms
of fixed effects.

In what follows, we examine the performance of our estimators i and B\z
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Moreover, we assess the small sample behaviour of two estimators of the average
regression function may(z) = n' Y"1 m;(x) defined by May(z) = n~t >0 my(x)
and M (z) = n '3 mS(x), where m(z) = JBlfi(x) are the reconstructed

regression functions. As performance measures, we employ the mean squared errors

1
~ ~ 2
MSE (¥ix) :/ k() — ()] da
0
for k£ = 1,2 along with

2

MSE(Tin) = [ [ (2) = 2]

MSE(mg,) = /0 (g, (z) — mav(x)fdx.

The small sample behavior of the coefficient estimates B\Z is evaluated by the L;-norm

< ~
= 1B — Bul
ni:l

for k = 1,2. Throughout, we assume the number of components K = 2 to be
known and use the version of our method which is based on local linear estimators.
Moreover, the bandwidth is set to h = 0.15 and we use an Epanechnikov kernel. As
a robustness check, we have varied the bandwidth. As this produces very similar
results, we have however not reported them here. Finally, the number of replications
is set to N = 1000.

Tables 1.1 and 1.2 report the simulation results. Overall, our estimators perform
well even for the moderate sample sizes n = T" = 50. The accuracy of the estimators
increases steadily as the dimensions n and T' grow larger, the only exception being
the estimates of the factor loadings which improve above all in T" but not so much
in n. This is a very natural phenomenon as the factor loadings are estimated from
individual time series regressions. Hence, their quality should depend above all on
the time series dimension and not so much on the length of the cross-section. It
is also worth mentioning that the MSE of the reconstructed average ms, is smaller
and converges faster to zero than the MSE of m,,. This observation is consistent
with the asymptotic properties of the estimators m; and m$: While m; converges at
the rate (Th)~/2, m¢ converges at the faster rate 7-'/2 (cp. Section 1.5.4). Finally,
when the standard deviation o, of the disturbance terms is increased to 2, the signal-
to-noise ratio in the model decreases. This makes it harder to estimate the functions
and parameters of interest, which is reflected in higher values of the MSE and the

Lqi-norm as can be seen upon comparing Tables 1.1 and 1.2.
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1.9 Conclusion

Our model captures in a general way two important features in many applications:
heterogeneity and nonlinearity. We also allow for a limited type of endogeneity
through the unobserved time and cross-section fixed effects. Nevertheless, our
estimation procedures are particularly simple, and are in fact closed form at each
step. We have provided the tools to conduct inference and to select tuning and order
parameters.

We close the chapter by commenting on some extensions of our model. In our
analysis, we have focused on the case of univariate regressors X;;. If the regressors
are multivariate, the usual curse of dimensionality problem arises, cp.Stone (1980).
One way to circumvent this problem is to assume that the regression functions m;

split up into additive components according to
mi(z) =m{(x1) + ...+ m® (z),

where d is the dimension of the regressors. Analogously to the univariate case,
€)

we may suppose that for each j, the individual functions m,” have the common

component structure
2 Z ﬁzk luk .I']

where K could also be allowed to differ across j. The additive functions

U——

. can be estimated by time series backfitting for each individual

i, see Mammen et al. (1999). These backfitting estimators may be used as
preliminary estimators in our procedure. In particular, the common functions
pl) = (ugj), e ,u%)) may be estimated separately for each j by repeating the
estimation steps of Section 1.4 based on the backfitting estimators.

Perhaps one is also concerned that we do not allow for sufficiently general time
effects, since we have assumed homogeneous such effects. A more general model

which allows for additional interactive (exogenous) time effects is given by
Yie = po + i + v + gi(t/T) + mi(Xap) + €,

where g;(+) is a smooth function of rescaled time. In practice, a number of authors
adopt parametric specifications for g;(t/T) such as g;(t/T) = (it + n:t?, see for

example Brogaard et al. (2013). In this case, we obtain
Ve = gilt/T) +mi(Xa) + €+ Op(T2) + O™,

where we have assumed that 3. g;(t/T) = 0. Similarly to the multivariate case
discussed above, we here have an additive regression model that could be estimated

by time series backfitting. Moreover, one could restrict g;(-) to rely on a small
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number of principal components as we do for m;(-), and do parallel analysis for

both functions.
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Table 1.1: Small sample properties of the estimators in the design with . =1

a) MSE of mg,

T\n \ 50 100 150 200

20 0.0449 0.0362 0.0331 0.032
100 | 0.0425 0.0347 0.0324 0.0311
150 | 0.042 0.0345 0.0321 0.0309
200 | 0.0418 0.0343 0.0321 0.0308

b) MSE of i<,

T\n| 50 100 150 200

20 0.017 0.0124 0.0107 0.0101
100 | 0.0109 0.0077 0.0071 0.0066
150 | 0.0092 0.0067 0.0061 0.0058
200 | 0.0085 0.0062 0.0057 0.0054

c) MSE of 1

T\n| 50 100 150 200

20 0.0159 0.0099 0.0064 0.0052
100 | 0.008 0.004 0.003 0.0024
150 ] 0.0053 0.0029 0.0021 0.0016
200 | 0.0041 0.0022 0.0016 0.0012

d) MSE of i

T\n| 50 100 150 200

50 0.0159 0.0092 0.0063 0.005
100 | 0.009 0.0051 0.0039 0.0035
150 | 0.0065 0.0043 0.0035 0.003
200 | 0.0054 0.0035 0.003 0.0027

e) Li-norm of the coefficient estimates Bﬂ

T\n| 50 100 150 200

20 0.129 0.125 0.124 0.123
100 | 0.089 0.0853 0.0841 0.0837
150 | 0.072  0.0684 0.0679 0.0675
200 | 0.0627 0.0591 0.0583 0.0581

f) Li-norm of the coefficient estimates B\ig

T\n| 50 100 150 200

20 0.136  0.13  0.128 0.128
100 | 0.0973 0.0914 0.0895 0.0886
150 | 0.0822 0.0752 0.0732 0.0721
200 |0.0732 0.0658 0.0641 0.0629
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Table 1.2: Small sample properties of the estimators in the design with o, = 2

a) MSE of mg,

T\n| 50 100 150 200
50 [0.0512 0.039 0.0352 0.034
100 | 0.0456 0.0362 0.0334 0.0318
150 | 0.0442 0.0354 0.0327 0.0314
200 | 0.0428 0.035 0.0326 0.0312
b) MSE of ms,
T\n| 50 100 150 200
50 [ 0.0233  0.0153 0.0129  0.0118
100 | 0.0144 0.00936  0.008  0.00749
150 | 0.0115 0.00779 0.00682 0.00632
200 | 0.00993 0.0069 0.00634 0.00579
c) MSE of 1
T\n| 50 100 150 200
50 | 0.0343  0.019  0.0129 0.0103
100 | 0.0169  0.0089 0.00604 0.00465
150 | 0.0106  0.0057 0.00402 0.00294
200 | 0.00804 0.00418 0.00292 0.00225
d) MSE of [z
T\n| 50 100 150 200
50 | 0.0339 0.0183  0.0125 0.00993
100 | 0.0171  0.00942  0.0071  0.00568
150 | 0.0117  0.007  0.00542 0.00429
200 | 0.00955 0.00555 0.00433 0.00366

e) Li-norm of the coefficient estimates Bﬂ

T\n| 50 100 150 200
50 [0.233 0231 0231 0.231
100 | 0.162 0.162 0.161 0.161
150 | 0.134 0.131 0.131 0.131
200 | 0.115 0.113 0.114 0.114

f) Li-norm of the coefficient estimates B\ig

T\n| 50 100 150 200
50 [0.237 0234 0234 0.234
100 | 0.169 0.166 0.164 0.164
150 | 0.138 0.135 0.134 0.134
200 | 0.12 0.118 0.116 0.116
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Chapter 2

The Effect of Fragmentation in
Trading on Market Quality in the
UK Equity Market!

We investigate the effects of fragmentation in equity markets on the quality of
trading outcomes in a panel of FTSE stocks over the period 2008-2011. This period
coincided with a great deal of turbulence in the UK equity markets which had
multiple causes that need to be controlled for. To achieve this, we use the common
correlated effects estimator for large heterogeneous panels. We extend this estimator
to quantile regression to analyze the whole conditional distribution of market quality.
We find that both fragmentation in visible order books and dark trading that is
offered outside the visible order book lower volatility. But dark trading increases
the variability of volatility and trading volumes. Visible fragmentation has the
opposite effect on the variability of volatility in particular at the upper quantiles of
the conditional distribution. The transition from a monopolistic to a fragmented
market is non-monotonic with respect to the degree of fragmentation.

!This chapter is written in jointly with Oliver Linton and Michael Vogt and a version of it is
forthcoming in the Journal of Applied Econometrics.
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2.1 Introduction

The implementation of the “Markets in Financial Instruments Directive (MiFID)”
has had a profound impact on the organization of security exchanges in Europe.
Most importantly, it abolished the concentration rule in European countries that
required all trading to be conducted on primary exchanges and it created a
competitive environment for equity trading; new types of trading venues that are
known as Multilateral Trading Facilities (MTF) or Systematic Internalizers (SI)
were created that fostered this competition. As a result, MiFID has served as a
catalyst for the competition between equity marketplaces we observe today. The first
round of MiFID was implemented across Europe on November 1st, 2007, although
fragmentation of the UK equity market began sometime before that (since the UK
did not have a formal concentration rule), and by 13th July, 2007, Chi-X was actively
trading all of the FTSE 100 stocks. In April 2014, the volume of the FTSE 100
stocks traded via the London Stock Exchange (LSE) had declined to 51%.? Similar
developments have taken place across Europe.

At the same time, there has been a trend towards industry consolidation: a
number of mergers of exchanges allowed cost reductions through “synergies” and also
aided standardization and pan European trading. For example, Chi-X was acquired
by BATS in 2011. There are reasons to think that consolidation fosters market
quality. A single, consolidated exchange market creates network externalities.
In addition, some have argued that security exchanges even qualify as natural
monopolies. On the other hand, there are arguments for why competition between
trading venues can improve market quality. Higher competition generally promotes
technological innovation, improves efficiency and reduces the fees that have to paid
by investors. Furthermore, traders that use Smart Order Routing Technologies
(SORT) can still benefit from network externalities in a fragmented market place.

In view of the ambiguous theoretical predictions, whether the net effect of
fragmentation on market quality is negative or positive is an empirical question.
In this chapter, we investigate the effect of visible fragmentation and dark trading
on measures of market quality such as volatility, liquidity, and trading volume in the
UK equity market. Our analysis distinguishes between the effect of fragmentation
on average market quality on the one hand and on its variability on the other
hand. The first question sheds light on the relationship between fragmentation and
market quality during “normal” times. In contrast, the second question investigates
whether fragmentation of trading has led to an increase in the frequency of liquidity
droughts or to more extraordinary price moves. This latter issue has been raised
in several studies that have analyzed the Flash Crash and other recent market
meltdowns (Madhavan (2012)). Of course, there is no market structure that

can entirely eliminate variability in liquidity or trading volume. But regulators

Zhttp:/ /www.batstrading.co.uk/market_data/market_share/index/, accessed on April 16, 2014
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aim at constructing a robust market structure that contributes to an orderly and
resilient functioning of equity markets in times of market turmoil. One reason for
this objective is that investors particularly value the ability to trade in times of
market stress and a stable market structure is thus important to maintain investor
confidence (Securities Exchange Commission (2013)).

We use a novel dataset that allows us to calculate weekly measures for overall
fragmentation, visible fragmentation and dark trading that is offered outside the
visible order book for each firm of the FTSE 100 and FTSE 250 indices and
combine it with data on indicators of market quality. To investigate the effect
of fragmentation on market quality, we use a version of Pesaran (2006) common
correlated effects (CCE) estimator for heterogeneous panels. That estimator is
suitable for our data because it can account for common but unobserved factors that
affect both fragmentation and market quality. For example, these factors account
for the activity of High Frequency Traders (HFT) whose activity has generated so
much scrutiny (Foresight (2012)). The unobserved factors also control for the global
financial crisis, changes in trading technology or new types of trading strategies.
We extend Pesaran (2006) estimator to quantile regression (the QCCE estimator)
to analyze the whole conditional distribution of market quality. This estimator is
also robust to extreme observations on the response.

We find that overall fragmentation, visible fragmentation and dark trading
lower volatility at the LSE. But dark trading increases the variability of volatility
and trading volumes. Fragmentation has the opposite effect on the variability of
volatility in particular at the upper quantiles of the conditional distribution. This
result is robust across alternative measures of variability in market quality. Trading
volume both globally and locally at the LSE is higher if visible order books are less
fragmented or if there is more dark trading. Compared to a monopolistic market,
visible fragmentation lowers liquidity measured by quoted bid-ask spreads at the
LSE. We also investigate the transition between monopoly and competition in terms
of the level of fragmentation. We find this transition is non-monotonic for overall
and visible fragmentation and takes the form of an inverted U shape. The level of
optimal fragmentation varies across individual firms but it is positively related to
market capitalization.

The remainder of this chapter is organized as follows. Section 2.2 discusses the
related literature. The data and measures for fragmentation and market quality are
introduced in Section 2.3. Section 2.4 proposes an econometric framework suitable
for answering the questions of interest and Section 2.5 reports the results. Section

2.6 concludes.
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2.2 Related literature

Recently, regulators in both Europe and the US introduced new provisions to
modernize and strengthen their financial markets. The “Regulation of National
Markets (RegNMS)” in the US was implemented in 2005, two years earlier than
its European counterpart MiFID.?> One common theme of these regulations is to
foster competition between equity trading venues. But RegNMS and MiFID differ
in important aspects: under RegNMS, trades and quotes are recorded on an official
consolidated tape and trade-throughs are prohibited, while in Europe, a (publicly
guaranteed) consolidated tape does not yet exist, and trade-throughs are allowed.?

These regulatory changes and institutional differences between Europe and the
US have motivated an ongoing debate among academics and practitioners on the
effect of competition between trading venues on market quality. The remainder of

this section summarizes some theoretical predictions and existing empirical evidence
for both Europe and the US.

Theoretical predictions. On the one hand, there are theoretical reasons for why
competition can harm market quality. Security exchanges may be natural monop-
olies because a single exchange has lower costs when compared to a fragmented
market place. In addition, a single, consolidated exchange market creates network
externalities. The larger the market, the more trading opportunities exist that
attract even more traders by reducing the execution risk. Theoretical models that
incorporate network externalities predict that liquidity should concentrate at one
trading venue (Pagano (1989)). This prediction is at odds with the fragmentation of
order flow we observe today. One possible explanation is that traders that use SORT
can still benefit from network externalities in a fragmented market place. Such a
situation is modelled by Foucault and Menkveld (2008) who study the competition
between Euronext and the LSE in the Dutch equity market. Before the entry of LSE,
the Dutch equity market had a centralized limit order book that was operated by
Euronext. Their theory predicts that a larger share of SORT increases the liquidity
supply of the entrant.

On the other hand, there are reasons why competition between trading venues
can improve market quality. Higher competition generally promotes technological
innovation, improves efficiency and reduces the fees that have to be paid by
investors.® Biais et al. (2000) propose a model of imperfect competition in financial

markets that is consistent with the observation that traders earn positive profits and

3The different pillars of MiFID are summarized in Appendix B.1.

1A trade-through occurs if a sell (buy) order is executed at a price that is higher (lower) than
the best price quoted in the market.

5For example, the latency at BATS was about 8 to 10 times lower when compared to the LSE
in 2010 (Wagener (2011)), and the LSE has responded by upgrading its system at a faster pace (cp.
Appendix B.3). Chesini (2012) reports a reduction in explicit trading fees on exchanges around
Europe due to the competition between them for order flow.
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that the number of traders is finite. Their model also assumes that traders have
private information on the value of financial assets, giving rise to an asymmetric
information issue. When compared to a monopolistic market, their model predicts
that a competitive market is characterized by lower spreads and a higher trading
volume. Buti et al. (2010) study the competition between a trading venue with a
transparent limit order book and a dark pool. Their model implies that after the
entry of the dark pool, the trading volume in the limit order book decreases, while

the overall volume increases.

Empirical evidence for Europe. After the introduction of MiFID, equity
trading in Europe became more fragmented as new trading venues gained significant
market shares from primary exchanges. Gresse (2011) investigates if fragmentation
of order flow has had a positive or negative effect on market quality in European
equity markets. She examines this from two points of view. First, from the
perspective of a sophisticated investor who has access to SORT and thus to the
consolidated order book. Second, from the point of view of an investor who can
only access liquidity on the primary exchange. Her sample covers stocks listed on
the LSE and Euronext exchanges in Amsterdam, Paris and Brussels for 1 month in
2007 and 3 months in 2009. Gresse (2011) finds that increased competition between
trading venues creates more liquidity both locally and globally, and that dark trading
does not have a negative effect on liquidity.

De Jong et al. (2015) study the effect of fragmentation on market quality in
a sample of 52 Dutch stocks for the period from 2006 to 2009. They distinguish
between platforms with a visible order book and dark platforms that operate an
invisible order book. Their primary finding is that fragmentation on trading venues
with a visible order book improves global liquidity, but has a negative effect on
local liquidity. But visible fragmentation ceases to improve global liquidity when it
exceeds a turning point. Dark trading is found to have a negative effect on liquidity.

Studying UK data, Linton (2012) does not find a detrimental effect of fragmen-
tation on volatility using daily data for the FTSE 100 and FTSE 250 indices for
the period from 2008 to 2011. Hengelbrock and Theissen (2009) study the market
entry of Turquoise in September 2008 in 14 European countries. Their findings
suggest that quoted bid-ask spreads on regulated markets declined after the entry
of Turquoise. Riordan et al. (2011) also analyze the contribution of the LSE, Chi-X,
Turquoise and BATS to price discovery in the UK equity market. They find that
the most liquid trading venues LSE and Chi-X dominate price discovery. Over time,
the importance of Chi-X in price discovery has increased.

Overall, the evidence for Europe suggests that the positive effects of fragmen-
tation on market quality outweighs its negative effects. A possible reason for the
observed improvement in market quality despite the lack of trade-through protection
and a consolidated tape are algorithmic traders and HFT (Riordan et al. (2011)).
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By relying on SORT, these traders create a virtually integrated marketplace in the

absence of a commonly owned central limit order book.

Empirical evidence for the US. In contrast to Europe, competition between
trading venues is not a new phenomenon in the US where Electronic Communication
Networks (ECN) started to compete for order flow already in the 1990s. Boehmer
and Boehmer (2003) investigate if the entry of the NYSE into the trading of
Exchange Traded Funds (ETFs) has harmed market quality. Prior to the entry of the
NYSE, the American Stock Exchange, the Nasdaq InterMarket, regional exchanges
and ECNs already traded ETFs. Boehmer and Boehmer (2003) document that
increased competition reduced quoted, realized and effective spreads and increased
depth.

O’Hara and Ye (2011) analyze the effect of the proliferation of trading venues on
market quality for a sample of stocks that are listed on NYSE and Nasdaq between
January and June 2008. They find that stocks with more fragmented trading had
lower spreads and faster execution times. In addition, fragmentation increases short-
term volatility but is associated with greater market efficiency. Drawing on their
findings for the US, O’Hara and Ye (2011) hypothesize that trade-through protection
and a consolidated tape are important for the emergence of a single virtual market
in Europe. This hypothesis is supported by the findings of Foucault and Menkveld
(2008). However, Riordan et al. (2011) conclude that the existence of trade-throughs
does not harm market quality.

To summarize, the evidence for the US points to an improvement in average
market quality in a fragmented market place. Notwithstanding these results on
average quality, Madhavan (2012) finds that both trade fragmentation and quote
fragmentation prior to the Flash Crash are associated with larger drawdowns during
the Flash Crash. This finding suggests that fragmentation may be affecting the

variability of market quality. Below, we further investigate this question.

2.3 Data and measurement issues

This section discusses how we measure fragmentation, dark trading and market
quality. Our data on market quality and fragmentation covers the period from May
2008 to June 2011 and includes all individual FTSE 100 and 250 firms. At the
time of writing, the FTSE350 index companies are valued at $3400 billion, which

represents a substantial part of the UK (and European) equity market.
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2.3.1 Fragmentation and dark trading

Weekly data on the volume of the individual firms traded on each equity venue was
supplied to us by Fidessa.® For venue j = 1,...,J, denote by w; the market share
(according to the number of shares traded) of that venue. We measure fragmentation
by the dispersal of volume across multiple trading venues, or 1 — > wjz, where > wjz
is the Herfindahl index.

In May 2008, equity trading in the UK was consolidated at the LSE as reflected
by an average fragmentation level of 0.4 (Figure 2.1). By June 2011, the entry of new
trading venues has changed the structure of the UK equity market fundamentally:
fragmentation has increased by about half over the sample period. The rise of
HFT is one explanation of the successful entry of alternative trading venues. These
venues could attract a significant share of HFT order flow by offering competitive
trading fees and sophisticated technologies. In particular, MTF’s typically adopt the
so-called maker-taker rebates that reward the provision of liquidity to the system,
allow various new types of orders, and have small tick sizes. Additionally, their
computer systems offer a lower latency when compared to regulated markets. This
is probably not surprising since MTFs are often owned by a consortium of users,
while the LSE is a publicly owned corporation.

The data allow us to distinguish between public exchanges with a visible order
book (“lit”), regulated venues with an invisible order book (“regulated dark pools”),
over the counter (“OTC”) venues, and systematic internalizers (“SI”).” We use this
information in our analysis to distinguish between fragmentation in visible order
books (Figure 2.1) and dark trading (Figure 2.2). Following Gresse (2011) and
De Jong et al. (2015), dark trading is measured as the share of volume traded on
OTC venues, regulated dark pools and SI. The share of these different categories of
dark trading increased over the sample period, while the share of volume traded at
lit venues has fallen considerably. For all categories, the observed changes are largest
in 2009. In the period after 2009, volumes have approximately stabilized with the
exception of regulated dark venues where volume kept increasing. Quantitatively,
the majority of trades are executed on lit and OTC venues while regulated dark and

SI venues attract only about 1% of the order flow.

2.3.2 Market quality

We measure market quality by volatility, liquidity, and trading volume of the FTSE
100 and 250 stocks. Since our measure of fragmentation is only available at a weekly

frequency, all measures of market quality are constructed as weekly medians of the

6In the Appendix B.2, we give a full list of the trading venues in our sample.
"Not all trading venues with an invisible order book are registered as dark pools: unregulated
categories of dark pools are registered as OTC venues or brokers (Gresse (2012)).

45



daily measures.®

With the exception of trading volume, our measures of market quality are
calculated using data from the LSE. In that sense, our measures are local as
compared to global measures that are constructed by consolidating measures from all
markets. Global measures are relevant for investors that have access to SORT, while
local measures are important for small investment firms that are only connected to
the primary exchange (perhaps to save costs) or for retail investors that are restricted
by the best execution policy of their investment firm.” For example, Gomber et al.
(2012) provide evidence that 20 out of 75 execution policies in their sample state

that they only execute orders at the primary exchange.

Volatility. Volatility is often described in negative terms, but its interpretation
should depend on the perspective and on the type of volatility.! For example,
Bartram et al. (2012) argue that volatility levels in the US are in many respects
higher than in other countries but this reflects more innovation and competition
rather than poor market quality.

One well known method to estimate volatility is due to Parkinson (1980). The
Parkinson estimator is based on the realized range that can be computed from
daily high and low price. It has recently been shown to be relatively robust to
microstructure noise (Alizadeh et al. (2002)). The Rogers and Satchell (1991)
estimator is an enhancement of the Parkinson estimator that makes additional use of
the opening and closing prices. Rogers and Satchell (1991) show that their estimator
is unbiased for the volatility parameter of a Brownian motion plus drift, whereas
the Parkinson estimator is biased in that case. Formally, the Rogers and Satchell

volatility estimator can be computed as
Vi, = (0 PY — 10 PS)(n P2 — 10 PS) + (n PE, — n PS)(In P, — n PQ), (2.1)

where V;;, denotes volatility of stock ¢ on day j within week ¢, and po. pc pH plL
are daily opening, closing, high and low prices that are obtained from Datastream.
Total volatility increased dramatically during the financial crisis in the latter half of
2008 (Figure 2.3). Figure 2.4 shows total volatility for the FTSE 100 index jointly
with entry dates of new venues and latency upgrades at the LSE. Casual inspection
suggests that total volatility declined when Turquoise and BATS entered the market.
However, this conclusion would be premature because many other events took place

at the same time, most importantly, the global financial crisis.

8While the available measures of market quality are positive, we wish to emphasize that market
quality is a normative concept. Translating positive measures of market quality into welfare is
difficult and subject to much controversy (Hart and Kreps (1986), Stein (1987)).

9Under MIFID, investment firms are required to seek best execution for their clients, cp.
Appendix B.1 for details.

0There is a vast econometric literature on volatility measurement and modelling that is
summarized by Andersen et al. (2010).
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We also decompose total volatility into temporary and permanent volatility.
Permanent volatility relates to the underlying uncertainty about the future payoff
stream for the asset in question. If new information about future payoffs arrives
and that is suddenly impacted in prices, the price series would appear to be volatile,
but this is the type of volatility that reflects the true valuation purpose of the
stock market. On the other hand, volatility that is unrelated to fundamental
information and that is caused by the interactions of traders over- and under-reacting
to perceived events is thought of as temporary volatility. 'To decompose total
volatility into a temporary and permanent component, we assume that permanent
volatility can be approximated by a smooth time trend. For each stock, temporary
volatility is defined as the residuals from the nonparametric regression of total
volatility on (rescaled) time (this is effectively a moving average over 1 quarter
with declining weights). This approach has been used previously by e.g. Engle and
Rangel (2008). The evolution of temporary volatility is shown in the upper right
panel of Figure 2.3.

Liquidity. Liquidity is a fundamental property of a well-functioning market, and
lack of liquidity is generally at the heart of many financial crises and disasters.
In practice, researchers and practitioners rely on a variety of measures to capture
liquidity. High frequency measures include quoted bid-ask spreads (tightness),
the number of orders resting on the order book (depth) and the price impact of
trades (resilience). These order book measures may not provide a complete picture
since trades may not take place at quoted prices, and so empirical work considers
additional measures that take account of both the order book and the transaction
record. These include the so-called effective spreads and quoted spreads, which are
now widely accepted and used measures of actual liquidity. Another difficulty is
that liquidity suppliers often post limit orders on multiple venues but cancel the
additional liquidity after the trade is executed on one venue (Kervel and Vincent
(2015)). Therefore, global depth measures that aggregate quotes across different
venues may overstate liquidity. On the other hand, the presence of “iceberg orders”
and dark pools suggest that there is substantial hidden liquidity.

Since we do not have access to order book data, our main measure of liquidity

is the percentage bid-ask spread.'? The quoted bid ask spread for stock ¢ on day ¢;

1A good example is the “hash crash” of April 24, 2013 when the Dow Jones index dropped
by nearly 2% very rapidly due apparently to announcements emanating from credible twitter
accounts (that had been hacked into) that there had been an explosion at the White House.
It subsequently recovered all the losses when it became clear that no such explosion had
occurred. See http://blueandgreentomorrow.com/2013/04 /24 /twitter-hoax-wipes-200bn-off-dow-
jones-for-five-minutes/, accessed on June 20, 2013

12Mizen (2010) documents that trends in quoted bid-ask spreads are similar to trends in effective
bid-ask spreads.
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is defined as
A PB

BA o P’it]' it (2 2)
it; = T4 BB .
5(P + Pi))
where daily ask prices P* and bid prices P? are obtained from Datastream. P# and
PB are measured by the last bid and ask prices before the market closes for London
stock exchange at 16:35. The time series of weekly bid-ask spreads is reported in
the bottom left panel of Figure 2.3. Inspection of Figure 2.4 seems to suggest that
bid-ask spreads declined at the entry of Chi-X but this decline can also attributed to
the introduction of Trade Elect 1 at the LSE one day before. Trade Elect 1 achieved

a significant reduction of system latency at the LSE.

Volume. Volume of trading is a measure of participation, and is of concern to
regulators (Foresight (2012)). The volume of trading has increased over the longer
term, but the last decade has seen less sustained trend increases, which has generated
concern amongst those whose business model depends on this. Some have also
argued that computer based trading has led to much smaller holding times of stocks
and higher turnover and that this would reflect a deepening of the intermediation
chain rather than real benefits to investors.

We investigate both global volume and volume at the LSE. Global volume is
defined as the number of shares traded at all venues and volume at the LSE is the
number of shares traded at the LSE, scaled by the number of shares outstanding.
The volume data is obtained from Fidessa. Towards the end of the sample period,

global and LSE volume diverge, as alternative venues gain market share (Figures 3
and 4).

2.4 Econometric methodology

Figure 2.3 shows the time series of market quality measures for the FTSE 100
and FTSE 250 indices. All measures clearly show the effect of the global financial
crisis that was associated with an increase in total volatility, temporary volatility
and bid-ask spreads as well as a fall in traded volumes in the early part of the
sample that was followed by reversals (except for volume). As we saw in Figure 1,
average fragmentation levels increased for most of the sample. If there were a simple
linear relationship between fragmentation and market quality then we would have
extrapolated continually deteriorating market quality levels until almost the end of
the sample. We next turn to the econometric methods that we will use to exploit
the cross-sectional and time series variation in fragmentation and market quality to
measure the relationship more reliably.

We extend the CCE estimator of Pesaran (2006) in three ways. First, we allow

for some nonlinearity, allowing fragmentation to affect the response variable in a
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quadratic fashion. This functional form was also adopted in the De Jong et al. (2015)
study. Second, we use quantile regression methods based on conditional quantile
restrictions rather than the conditional mean restrictions adopted previously.'® This
method is valid under weaker moment conditions and is robust to outliers. A quantile
CCE estimator for homogeneous panels is also considered in Harding and Lamarche
(2013). Third, we also model the conditional vaiability of market quality using
the same type of regression model; we apply the median regression method for
estimation based on the squared residuals from the median specification or on the
conditional interquartile range. This allows us to analyze not just the average effect

of fragmentation on market quality but also the variability of that effect.

2.4.1 A model for heterogeneous panel data with common

factors

We observe a sample of panel data {(Yi, Xy, Zir,dy) i =1,...,n, t =1,...,T},
where i denotes the i-th stock and ¢ is the time point of observation. In our data, Yj;
denotes market quality and X; is a measure of fragmentation, while Z;; is a vector
of firm specific control variables such as market capitalization and d; are observable
common factors as for example VIX or the lagged index return. We assume that

the data come from the model
Yie = a; + B1iXi + 521'Xi2t + ﬁ;iZit + 5Z-Tdt + /f;ft + €4, (2.3)

where f, € R* denotes the unobserved common factor or factors. We allow
for a nonlinear effect of the fragmentation variable on the outcome variable by
including the quadratic term. We assume that the regression error term satisfies the

conditional quantile restrictions
Q- (€it| Xt Zir, di, fr) =0 (2.4)

but is allowed to be serially correlated or weakly cross-sectionally correlated. The

regressors Wi, = (X, Z;,)" are assumed to have the factor structure
Wi = a; + D;dy + K; f; + w, (2.5)

where D; and K; are matrices of factor loadings. The error term wu; is assumed
to satisfy Fuy; = 0 for all ¢, but is also allowed to be serially correlated or
weakly cross-sectionally correlated, see Assumptions 1-2 in Pesaran (2006). The

econometric model (2.3)-(2.5) also allows for certain types of “endogeneity” between

13We provide a justification of this method in Appendix B.4.
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the covariates and the outcome variable represented by the unobserved factors f;.'4
The model is very general and contains many homogenous and heterogeneous panel
data models as a special case.

We adopt the random coefficient specification for the individual parameters, that

is, 8; = (Bus, Bai, By;)" are i.i.d. across i and
Bi=B+wv;, v;~I1ID(0,%,), (2.6)

where the individual deviations v; are distributed independently of €, X, Zj;; and
d; for all 7, 5, t.

To estimate the model (2.3)-(2.5), we extend Pesaran (2006) CCE mean group
estimator to quantile regression. Taking cross-sectional averages of (2.5), we obtain
(under the assumption that u;; has weak cross-sectional dependence and some finite

higher order moments)
Wt =a-+ Edt + Fft + Op(n_l/Q). (27)

Equation (2.7) suggests that we can approximate the unknown factor f; with a linear
combination of d; and the cross-sectional average of X;;.'> In contrast to Pesaran
(2006), our version of the CCE estimator does not include the cross-sectional average
of Y. One reason for this is that because of the quadratic functional form, Y, would
be a quadratic function of f;, and so would introduce a bias. Instead, we add the
Chicago Board Options Exchange Market Volatility Index (VIX) to the specification.
Because of the high correlation between VIX and cross-sectional averages of market
quality, we expect that VIX is a good and predetermined proxy for cross-sectional
averages of market quality in our regressions.

But because only cross-sectional averages of the regressors are used to approxi-
mate the common factors, our framework requires that the regressors are driven by
the same set of unobserved common factors f; as the dependent variable.

The effect of fragmentation on market quality can be obtained by performing
(for each i) a time series quantile regression estimation of (2.3) replacing f; by W,.

Specifically, let @ minimize the objective functions

T
QiTT(Qi) = Z PT(YQt — 7 — B Xie — 51'2Xi2t - 5;321‘1; - %-Tdt - fiTWt) (2-8)
t=1

with respect to 6;, where 0; = (;, Bi1, Bi2, Bi3, 7 » & )" and p.(z) = z(1 — 1(z < 0)),

7

see Koenker (2005). Then EZ are the estimators of the corresponding parameters of

M However, the CCE method cannot address simultaneity of Y and X at the individual level
due to time varying but firm-specific determinants.

3If f, is a vector, i.e., there are multiple factors, then we must form multiple averages
(portfolios). Instead of the equally weighted average in (2.7), we can also use an average that
is e.g. weighted by market capitalization.
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interest.

At any quantile, the quantile mean group estimator (QCCE) B\ =nty ", BZ
is defined as the cross-sectional average of the individual quantile estimates @ =
(Blu 327;, B;Z)T This measures the average effect. Some idea of the heterogeneity can
be obtained by looking at the standard deviations of the individual effects. Following

similar arguments as in Pesaran (2006), (as n — 00) it follows that

where the covariance matrix X can be estimated by

S =

Z(ﬁz’ —B)(Bi —B)". (2.10)

=1

n—1

The regression model above concentrates on the average effect, or the effect in normal
times. We are also interested in the effect of fragmentation on the variability of
market quality. One approach to address this issue is to investigate the conditional

variance of market quality. We adopt a symmetrical specification whereby
VaI'(Y;t|Xit, Zita dt, ft) = a; + blz'Xit —+ bQZXth + b;,LZzt -+ w;dt + q;ft, (2].1)

where the parameters b; = (bli,bgi,b;i)T have a random coefficient specification
like (2.6). We estimate this by median regression of the squared residuals €%
from (2.3)-(2.5) on Xy, X2, Zy,d;, W;. We argue in Appendix B.4 that, under
suitable regularity conditions, (2.9) holds in this case with a covariance matrix >
(corresponding to the covariance matrix of the parameters of the variance equation).

As an alternative specification for the variability of market quality, we assume

that the conditional interquartile range of market quality satisfies

Qo.75(Yit| Xits Zit, diy f1)—qo.25(Yite| Xit, Zig, di, fr) = ai"‘bliXit+b2iXi2t+b;iZit+w; di+q; fr,
(2.12)
where q.(Yi|Xit, Zit, di, f) denotes the conditional 7 quantile. (2.12) is estimated

by median regression of the conditional interquartile range on Xy, X2, Zy, dy, W.

2.4.2 Parameter of interest

Motivated by the large increase in market fragmentation over the sample period,
we are interested in measuring the market quality at different levels of competition,
holding everything else constant. In particular, we would like to compare monopoly
with perfect competition. In our data, the maximum number of trading venues
is 24 and were trading to be equally allocated to these venues, we might achieve

(fragmentation) X = 0.96. In fact, the maximum level reached by X is some way
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below that.
The parameter of interest in our study is the difference of average market quality
between a high (H) and low (L) degree of fragmentation or dark trading normalized

by H — L. We therefore obtain the measure

_ Ex_pgY — Ex_1Y
N H-—L

where the coefficients are estimated by the QCCE method. For comparison, we

Ay = 51+ Bo(H + L), (2.13)

also report the marginal effect 5, 4+ 2X3,. We estimate these parameters from the
conditional variance and interquartile range specifications, too, in which case it is
to be interpreted as measuring differences in variability between the two market
structures. Standard errors can be obtained from the joint asymptotic distribution

of the parameter estimates given above.!6

2.5 Results

Before reporting our regression results, we investigate a few characteristics of our
dataset in more detail.!” The particular characteristics we are interested in are
cross-sectional dependence and unit roots. The median value of the cross-sectional
correlation for different measures of market quality ranges from 0.21 to 0.57 which
points to unobserved shocks that are common to many firms. We also carried out
a principal-component analysis to investigate if the regressors and the dependent
variable are driven by the same set of common shocks. In the regressions where
we use fragmentation and market capitalization as regressors, more than 80% of
the variance in the regressors and the dependent variable is explained by the first
two components (on average across firms), providing evidence for common factors
in the data. For the specifications including visible fragmentation, dark trading and
market capitalization as regressors, more than 90% of the variation is explained by
the first 3 factors. The econometric model we use can control for these common
shocks.

We also investigated stationarity of the key variables as this can impact statistical
performance, although with our large cross-section, we are less concerned about
this.!® The results from augmented Dickey Fuller tests indicate little support for a

unit root in fragmentation or market quality.! The average value of fragmentation

16 An alternative way of comparing the outcomes under monopoly and competition is to compare
the marginal distributions of market quality by means of stochastic dominance tests. We report
these results in Appendix B.5.

ITFor our empirical analysis, we eliminate all firms with less than 30 observations and all firms
where the fraction of observations with zero fragmentation exceeds 1/4. That leaves us with 341
firms for overall fragmentation and 236 firms for visible fragmentation.

8Formally, Kapetanios et al. (2011) have shown that the CCE estimator remains consistent if
the unobserved common factors follow unit root processes.

9The test results are available upon request.
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does trend over the period of our study but it has levelled off towards the end and
the type of nonstationarity present is not well represented by a global stochastic

trend.

2.5.1 The effect of total fragmentation, visible fragmenta-

tion and dark trading on the level of market quality

Table 2.1 reports QCCE mean group coefficients together with our parameter of
interest Apyqq. Appeg is defined as the difference in market quality between a low
and high level of fragmentation evaluated at the minimum and maximum level of
fragmentation (equation (2.13)). For comparison, we also report marginal effects,
which tend to agree with A,y in most specifications. As observable common
factors, we include VIX, the lagged index return, and a dummy variable that
captures the decline in trading activity around Christmas and New Year.?

Inspecting Apyqq, we find that a fragmented market is associated with higher
global volume but lower volume at the LSE when compared to a monopoly. These
effects are uniform across different quartiles (Table 2.1b)). The increase in global
volume in a fragmented market place is consistent with the theoretical prediction in
Biais et al. (2000)).

We also find that temporary volatility is lower in a competitive market which
is in contrast with what O’Hara and Ye (2011) document using US data for 2008.
O’Hara and Ye (2011) also find that fragmentation reduces bid-ask spreads while
there is no significant effect in our sample. But O’Hara and Ye (2011) measure
market quality globally (using the NMS consolidated order book and trade price),
while our measures are local with the exception of global volume.

It is also interesting to split overall fragmentation into visible fragmentation and
dark trading where we define dark trading as the sum of volume traded at regulated
dark pools, OTC venues and SI (Table 2.2). When measured by Avs frqg., we find
that visible fragmentation reduces temporary volatility and lowers trading volume.
These effects are larger in absolute value in the third quartile of the conditional
distribution (Table 2.2b)).

In addition, a market with a high degree of visible fragmentation has larger
bid-ask spreads at the LSE when compared to a monopoly, albeit that result is
only statistically significant at 10%. De Jong et al. (2015) also find that visible
fragmentation has a negative effect on liquidity at the traditional exchange. The
finding that visible fragmentation may harm local liquidity is also supported by
survey evidence: According to Foresight (2012), institutional buy-side investors

believe that it is becoming increasingly difficult to access liquidity and that this

20The coefficients on the observed common factors and on the cross-sectional averages do not
have a structural interpretation because they are a combination of structural coefficients, cf. Section
2.4.1.
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is partly due to: its fragmentation on different trading venues, the growth of
“dark” liquidity, and to the activities of HFT. To mitigate these adverse effects
on liquidity, investors could employ SORT that create a virtually integrated market
place. However, the survey reports buy-side concerns that these solutions are too
expensive for many investors. In contrast to this evidence, Gresse (2011) finds that
visible fragmentation improves local liquidity.

Turning to dark trading, our results suggest that dark trading reduces volatility
in particular for firms in the first and second quartile of the conditional volatility
distribution (Table 2.2). Dark trading also increases volume while it does not have
a significant effect on bid-ask spreads. In comparison, Gresse (2011) also does not
find a significant effect of dark trading on liquidity while De Jong et al. (2015) find
that dark trading has a detrimental effect on liquidity.

2.5.2 Turning points

In addition to investigating the difference between perfect competition and a
monopolistic market, it is also interesting to assess the transition between these
extremes. Figure 2.5 illustrates the estimated relationship between market quality
on the one hand and overall fragmentation, visible fragmentation and dark trading
on the other. We find that the transition between monopoly and competition is non-
monotonic for overall and visible fragmentation and takes the form of an inverted
U shape. The maximum occurs at a level of visible fragmentation of about 0.2, 0.3
and 0.5 for global volume, total volatility and bid-ask spreads, respectively. That is,
at low levels of fragmentation, fragmentation of order flow improves market quality
but there is a turning point after which fragmentation leads to deteriorating market
quality. For temporary volatility and LSE volume, there is no interior optimum on
[0, 1].

Securities Exchange Commission (2013) has hypothesized that the turning point
may depend on the market capitalization of a stock. For each individual stock,
Figure 2.6 plots the maximal level of fragmentation against the time series average of
market capitalization.?? We find that there is positive but weak relationship between
the maximal level of fragmentation and market capitalization that is statistically

significant with the exception of temporary volatility.?2

21We restrict attention to interior maxima within [0, 1].
Z2These results are qualitatively identical for visible fragmentation.
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2.5.3 The effect of total fragmentation, visible fragmenta-
tion and dark trading on the variability of market
quality

In this section, we investigate whether overall fragmentation, visible fragmentation
and dark trading have led to an increase in the variability of market quality. For
example, Madhavan (2012) finds that higher fragmentation prior to the Flash Crash
is associated with larger drawdowns during the Flash Crash. In addition, fragmented
equity markets have been a seedbed for HF T that are not obliged to provide liquidity
in times of market turmoil. This development can lead to “periodic illiquidity” as
for example, during the Flash Crash (Foresight (2012)).

When estimating the conditional variance specification (equation (2.11)), we find
that at the median, Ap,4, is not statistically significant but there is variation across
quartiles (Table 2.3): The variability of volatility is lower in a fragmented market for
firms in the third quartile of the conditional distribution. Fragmentation increases
the variability of bid ask spreads at the first quartile of the distribution but this
result is only marginally significant. There is also a decline in the variability of LSE
volume for firms in both the first and third quartile.

Table 2.4 distinguishes between visible fragmentation and dark trading. The
effect of visible fragmentation on the variability of volatility are similar to
those of overall fragmentation. But in contrast to overall fragmentation, visible
fragmentation increases the variability of LSE volume in the first quartile. Dark
trading increases the variability of both volatility and volumes but the latter effect
is only significant at the first quartile.

Table 2.5 reports the results when the variability of market quality is measured
by the conditional interquartile range of volatility (equation (2.12)). Overall, the
results are similar: Visible fragmentation reduces the variability of volatility, while
dark trading has the opposite effects. Also, dark trading increases the variability of
LSE volume.

But there are also some differences between these alternative variability mea-
sures: The positive effect of overall and visible fragmentation on the variability
in bid-ask spreads is more significant for the inter-quartile range measure of
variability when compared to the residual measure. In contrast to the latter, visible

fragmentation has no significant effect on the variability of LSE volume.

2.5.4 Robustness

In Appendix B.5, we assess the robustness of our results to: (i) alternative market
quality measures, (ii) splitting our sample into FTSE 100 and FTSE 250 firms
and (iii) different estimation methods. Our finding that visible fragmentation and

dark trading have a negative effect on total and temporary volatility is robust to
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using alternative measures of volatility such as Parkinson or within-day volatility.
If we measure market quality by the Amihud (2002) illiquidity measure, we find
that a higher degree of overall or visible fragmentation is associated with less liquid
markets, and that dark trading is found to improve liquidity. For efficiency, we
cannot find significant effects.

When comparing the effect of market fragmentation on market quality for FTSE
100 and FTSE 250 firms, interesting differences emerge: The negative effect of dark
trading on volatility is only observed for FTSE 250 firms. That effect is even positive
for FTSE 100 firms. But in contrast with FTSE 250 firms, visible fragmentation is
associated with lower volatility for FTSE 100 firms.

Finally, we re-estimate our results using a heterogeneous panel data model
without common factors. This model can be obtained as a special case of model
(2.3)-(2.5) where f; is a vector of ones and there are no observed common factors
dy. A version of this model with homogenous coefficients has been used in related
work by Gresse (2011), among others. However, that model cannot account for
unobserved, common shocks in the data and gives inconsistent results in the presence
of common shocks that are correlated with the regressors (Pesaran (2006)). We
report in Appendix B.5 that omitting observed and unobserved common factors leads
to results that differ in magnitude and statistical significance with the exception of
LSE volume. However, the large value in our measure of cross-sectional dependence
(CSD) indicates that this model is misspecified because unobserved common shocks
such as changes in trading technology or HFT are omitted that are likely to affect

both market quality and fragmentation.

2.6 Conclusions

After the introduction of MiFID in 2007, the equity market structure in Europe
underwent a fundamental change as newly established venues such as Chi-X started
to compete with traditional exchanges for order flow. This change in market
structure has been a seedbed for HF'T, which has benefited from the competition
between venues through the types of orders permitted, smaller tick sizes, latency
and other system improvements, as well as lower fees and, in particular, the so-called
maker-taker rebates.

Against these diverse and complex developments, identifying the effect of
fragmentation on market quality is difficult. To achieve this, we use a version
of Pesaran (2006) common correlated effects (CCE) estimator that can account
for unobserved factors such as the global financial crisis or HF'T. Compared to
Pesaran (2006), our QCCE mean group estimator is based on individual quantile
regressions that enable us to characterize the whole conditional distribution of the

dependent variable rather than just its conditional mean. This estimator is suitable
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for heterogeneous panel data that are subject to both common shocks and outliers
in the dependent variable.

We applied our estimator to a novel dataset that contains weekly measures of
market quality and fragmentation for the individual FTSE 100 and 250 firms. We
decompose the effect of overall fragmentation into visible fragmentation and dark
trading, and assess their effects on both the level and the variability of market
quality.

We find that fragmentation and dark trading lower volatility. A more fragmented
market is also associated with less variability in volatility in particular at the upper
quantiles of the conditional distribution. But dark trading increases the variability

of trading volumes and variability which gives rise to some concern.
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Table 2.1: The effect of fragmentation on the level of market quality

a) Median regression

‘ Total volatility Temp. volatility BA spreads Global volume LSE volume

Constant -7.745 -10.511 4.468 1.713 2.365
(-9.97) (-17.162) (5.803) (2.552) (3.497)
Frag. 0.45 -0.856 0.195 0.064 0.413
(0.805) (-1.906) (0.726) (0.22) (1.338)
Frag. sq. -0.719 0.618 -0.217 0.122 -1.662
(-1.619) (1.694) (-0.933) (0.426) (-5.752)
Market cap. -0.475 -0.27 -0.343 -0.214 -0.236
(-6.372) (-5.767) (-4.951) (-3.172) (-3.492)
ME (frag.) -0.367 -0.154 -0.051 0.202 -1.475
(-3.432) (-1.823) (-0.782) (2.408) (-18.03)
Aprag.(0.5) -0.15 -0.341 0.014 0.166 -0.973
(-0.735) (-2.139) (0.154) (1.918) (-10.108)
Adjusted R? 0.732 0.111 0.775 0.78 0.758
CSD 0.033 0.025 0.011 0.035 0.038

b) Difference between monopoly and competition at 7 € {0.25,0.75}

‘ Total volatility Temp. volatility BA spreads Global volume LSE volume

A Frag.(0.25) -0.219 -0.356 -0.067 0.14 20.944
(-1.208) (-2.255) (-0.818) (1.677) (-8.988)
Afrag (0.75) -0.23 -0.406 0.128 0.137 -0.986
(-0.982) (-2.501) (0.876) (1.264) (-8.161)

Notes: Coeflicients are quantile CCE mean group estimates. t-statistics are shown
in parenthesis. Market capitalization and dependent variables (except of temporary
volatility) are in logs. Lagged index return, VIX and Christmas and New Year
effects are included as observable common factors. Ap,qy (7) is defined as 31 (1) +
BQ(T)(H + L) and evaluated at H = max(Frag.) and L = min(Frag.). ME denotes
marginal effects. The adjusted R? is the R? calculated from pooling the individual
total and residual sums of squares, adjusted for the number of regressors. CSD is
the mean of the squared value of the off-diagonal elements in the cross-sectional
dependence matrix.
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Table 2.2: The effects of visible fragmentation and dark trading on the level of

‘ Total volatility

market quality

a) Median regression

Temp. volatility BA spreads Global volume LSE volume

Constant 8475 ~11.295 1.28 1.189 2.333
(-10.602) (-18.629) (1.615) (1.89) (2.988)
Vis. frag. 0.817 -0.564 0.436 0.158 -0.151
(2.663) (-2.171) (2.085) (0.759) (-0.682)
Vis. frag. sq. -1.429 0.317 -0.425 -0.451 -1.199
(-3.937) (1.019) (-1.536) (-1.728) (-4.323)
Dark -0.212 0.388 -0.212 0.332 0.232
(-0.946) (1.951) (-1.068) (1.673) (1.11)
Dark sq. 0.041 -0.704 0.177 1.724 0.986
(0.178) (-3.47) (0.897) (9.605) (4.867)
Market cap. -0.399 -0.288 -0.32 -0.243 -0.293
(-5.328) (-5.364) (-4.851) (-4.29) (-4.595)
ME (vis. frag) -0.288 -0.318 0.108 -0.191 -1.078
(-2.511) (-3.405) (1.394) (-2.233) (-13.056)
ME (dark) -0.175 -0.246 -0.052 1.886 1.121
(-2.628) (-4.311) (-1) (29.009) (18.205)
Avis frag (0.5) -0.181 -0.342 0.139 -0.157 -0.988
(-1.523) (-3.537) (1.86) (-1.85) (-11.891)
Apar(0.5) -0.171 -0.315 -0.035 2.055 1.217
(-2.518) (-5.446) (-0.689) (34.419) (20.626)
Adjusted R 0.75 0.131 0.754 0.852 0.799
CSD 0.03 0.026 0.01 0.05 0.04

b) Difference between monopoly and competition at 7 € {0.25,0.75}

‘ Total volatility Temp. volatility BA spreads Global volume LSE volume

Avis frag.(0.25) 0.01 -0.263 0.081 -0.034 0.917
(0.09) (-2.879) (0.959) (-0.41) (-11.698)

Avis.frag.(0.75) -0.487 -0.61 0.112 -0.22 -1.094
(-3.483) (-5.432) (1.309) (-2.036) (-10.128)

Apari(0.25) -0.286 -0.463 -0.004 2.022 0.986
(-3.735) (-6.63) (-0.07) (32.67) (16.361)

Apar(0.75) -0.005 -0.064 0.048 2.072 1.374
(-0.061) (-0.935) (0.785) (29.979) (19.166)

Notes: See Table 2.1 except that X = {Vis.frag, Dark}.

29



Table 2.3: The effect of fragmentation on the variability of market quality
(conditional variance model)

a) Median regression

‘ Total volatility Temp. volatility BA spreads Global volume LSE volume

Constant -0.536 -0.198 0.28 0.275 0.498
(-1.893) (-0.686) (1.429) (1.15) (2.662)
Frag. -0.029 -0.064 -0.037 -0.215 -0.128
(-0.256) (-0.603) (-0.463) (-1.716) (-1.522)
Frag. sq. 0.06 0.071 0.041 0.189 0.115
(0.565) (0.762) (0.548) (1.73) (1.455)
Market cap. -0.01 -0.02 -0.009 -0.035 -0.034
(-0.477) (-1.099) (-0.482) (-2.302) (-2.312)
ME (frag.) 0.039 0.017 0.01 0 0.003
(1.287) (0.639) (0.45) (-0.001) (0.139)
Aprag.(0.5) 0.021 -0.005 -0.002 -0.057 -0.032
(0.581) (-0.128) (-0.096) (-1.488) (-1.178)
Adjusted R? -0.013 -0.014 -0.041 0.056 0.064
CSD 0.015 0.011 0.01 0.016 0.016

b) Difference between monopoly and competition at T € {0.25,0.75}

‘ Total volatility Temp. volatility BA spreads Global volume LSE volume

AFrag (0.25) 0.028 0.021 0.03 0.011 -0.03
(1.464) (1.429) (1.861) (0.737) (-1.847)

Afrag.(0.75) -0.604 -0.347 -0.014 -0.194 0.24
(-2.28) (-1.921) (-0.161) (-1.17) (-1.82)

Notes: Dependent variables are squared median regression residuals. Coefficients are
quantile CCE mean group estimates. t-statistics are shown in parenthesis. Market
capitalization is in logs. Lagged index return, VIX and Christmas and New Year
effects are included as observable common factors. Ap,q, (7) is defined as f1(7) +
Ba(7)(H + L) and evaluated at H = max(Frag.) and L = min(Frag.). ME denotes
marginal effects. The adjusted R? is the R? calculated from pooling the individual
total and residual sums of squares, adjusted for the number of regressors. CSD is
the mean of the squared value of the off-diagonal elements in the cross-sectional
dependence matrix.
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Table 2.4: The effect of visible fragmentation and dark trading on the variability

of market quality (conditional variance model)

a) Median regression

‘ Total volatility Temp. volatility BA spreads Global volume LSE volume

Constant -0.708 -0.034 0.208 -0.145 0.054
(-2.005) (-0.111) (0.917) (-0.972) (0.287)
Vis. frag. -0.237 -0.301 0.006 0.017 -0.033
(-1.745) (-1.545) (0.089) (0.314) (-0.37)
Vis. frag. sq. 0.261 0.326 0.016 0 0.094
(1.546) (1.453) (0.17) (-0.005) (0.777)
Dark 0.014 -0.044 -0.073 -0.157 -0.185
(0.134) (-0.471) (-1.13) (-1.931) (-2.551)
Dark sq. 0.084 0.1 0.072 0.133 0.197
(0.885) (1.112) (1.106) (2.267) (3.262)
Market cap. 0.02 0.007 0.004 -0.037 -0.021
(1.065) (0.334) (0.197) (-2.752) (-1.378)
ME (Vis. frag) -0.035 -0.049 0.018 0.017 0.039
(-0.917) (-0.928) (0.661) (1.136) (1.633)
ME (Dark) 0.09 0.046 -0.008 -0.037 -0.007
(2.945) (1.846) (-0.453) (-1.138) (-0.296)
Avis frag.(0.5) -0.055 -0.073 0.017 0.017 0.032
(-1.359) (-1.231) (0.636) (1.213) (1.403)
Apark(0.5) 0.098 0.055 -0.001 -0.024 0.012
(3.554) (2.49) (-0.064) (-0.853) (0.619)
Adjusted R? -0.011 -0.02 -0.028 0.03 0.021
CSD 0.013 0.011 0.01 0.022 0.018

b) Difference between monopoly and competition at T € {0.25,0.75}

‘ Total volatility Temp. volatility BA spreads Global volume LSE volume

Avis frag.(0.25) 0.052 -0.007 0.007 0.009 0.019
(1.701) (-0.224) (0.387) (1.273) (2.095)
Avis frag.(0.75) -0.614 -0.244 0.201 -0.169 -0.162
(-3.145) (-1.955) (1.566) (-1.324) (-1.228)
Apari(0.25) 0.03 0.022 0.011 0.013 0.024
(1.771) (1.853) (1.211) (1.966) (2.599)
Apark(0.75) 0.19 0.223 0.028 -0.07 -0.046
(2.054) (2.66) (0.387) (-1.667) (-0.687)

Notes: See Table 2.3 except that X = {Vis.frag, Dark}.
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Table 2.5: The effects of overall fragmentation, visible fragmentation and dark
trading on the variability of market quality (conditional interquartile range model)

‘ Total volatility Temp. volatility BA spreads Global volume LSE volume

Aprag.(0.25) -0.021 0.021 0.214 -0.001 -0.038
(-0.235) (0.326) (2.31) (-0.021) (-0.418)

Aprag.(0.5) -0.084 -0.022 0.195 -0.022 -0.096
(-0.933) (-0.347) (2.111) (-0.334) (-1.07)

Afrag.(0.75) -0.09 -0.041 0.179 -0.058 -0.106
(-0.975) (-0.627) (1.923) (-0.873) (-1.154)

Avis frag.(0.25) -0.253 -0.162 0.084 0.004 0.001
(-1.67) (-1.931) (1.257) (0.047) (0.008)

Avis frag.(0.5) -0.23 -0.169 0.116 0.007 0.005
(-1.524) (-2.033) (1.726) (0.074) (0.063)

Avis. frag.(0.75) -0.228 -0.158 0.148 0.01 0.015
(-1.501) (-1.881) (2.14) (0.109) (0.178)

Aparr(0.25) 0.133 0.099 0.053 -0.016 0.07
(3.13) (2.489) (1.257) (-0.587) (2.657)

Apark(0.5) 0.14 0.152 0.053 0.003 0.087
(3.292) (3.911) (1.273) (0.12) (3.21)

Apark(0.75) 0.13 0.149 0.056 0.001 0.085
(3.054) (3.701) (1.309) (0.042) (3.089)

Notes: See Table 2.3 except that dependent variables are the conditional
interquartile range of market quality.

Figure 2.1: Fragmentation and visible fragmentation
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Notes: Fragmentation is defined as 1-Herfindahl index and visible fragmentation
as 1-visible Herfindahl index. The time series are calculated as averages of
the individual series weighted by market capitalization. Data sources: Fidessa,
Datastream and own calculations.
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Figure 2.2: Share of volume traded by venue category

a) Lit venues b) OTC venues
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Notes: The time series are calculated as averages of the individual series weighted
by market capitalization. Data sources: Fidessa, Datastream and own calculations.

Figure 2.3: Market quality measures

a) Total volatility
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Notes: The time series are calculated as averages of the individual series weighted
by market capitalization. Bid-ask spreads and volatility are multiplied by 1000.
The sharp declines in volume occur during Christmas and New Year. Data sources:

Datastream and own calculations.
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Figure 2.4: Venue entry, latency upgrades at the LSE and market quality for the
FTSE 100 index
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Bid-ask spreads and volatility are multiplied by 1000. Series for volume are shorter
due to data availability. The sharp declines in volume occur during Christmas and
New Year. Data sources: Fidessa, Datastream and own calculations.
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Figure 2.5: Visible fragmentation, dark trading and market quality
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Notes: 'Y = BlX + B\QX 2 is shown where Y is market quality, X is either visible
fragmentation, dark trading or OTC trading, and f3; are the median CCE estimates
from Tables 1 and 2. The vertical lines indicate interior optima.

Figure 2.6: The maximal level of fragmentation and market capitalization
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Chapter 3

A Discrete Choice Model For
Large Heterogeneous Panels with
Interactive Fixed Effects

This paper develops an estimator for heterogeneous panels with discrete outcomes
in a setting where the individual units are subject to unobserved common shocks.
The proposed estimator belongs to the class of common correlated effects estimators
that approximate the unobserved factors with cross-sectional averages. This paper
adopts this approach for nonlinear panel data models under the assumption that the
unobserved factors are contained in the span of the observed factors and the cross-
sectional averages of the regressors. The asymptotic properties of this approach
are documented as both the time series and the cross-section tend to infinity. In
particular, we show that both the estimators of the individual-specific coefficients
and the mean group estimator are consistent and asymptotically normal. The
small-sample behavior of the mean group estimator is assessed in a Monte Carlo
experiment. The methodology is applied to the question of how funding costs in
corporate bond markets affect the conditional probability of issuing a corporate
bond.
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3.1 Introduction

Panel data offer a lot of time series and cross-sectional variation which can facilitate
the identification of parameters which are difficult to identify with only time series
or cross-sectional data (Mavroeidis et al. (2014)). Recently, researchers have
increasingly used panel data to better understand financial and macroeconomic
phenomena, such as the transmission of monetary policy (Keys et al. (2014)).
In many panel data sets, the popular assumption that individual units are
cross-sectionally independent is difficult to maintain. Instead, their behavior is
characterized by interdependencies. One source of these dependencies is shocks
that are common to all individual units. For example, macroeconomic shocks
like financial crises affect household wealth and the balance sheets of firms and
financial intermediaries. Both conventional and unconventional monetary policy
affects the level of interest rates in the economy and hence consumption decisions of
households, investment decisions of firms and the portfolio compositions of financial
market participants. Taxes and government subsidies affect the decisions of firms
on where to locate a factory, and the decisions of households on whether to take out
a mortgage.’

Some common shocks are observable while others are not, and the impact of
common shocks typically differs across individual units. For example, a bank with
a small equity position will reduce its loan supply by more than a well-capitalized
bank after a tightening in capital requirements. Andrews (2005) shows that common
shocks create problems for inference if data are available for a single cross-sectional
unit and the model is estimated by least squares or instrumental variable methods.
But the increased availability of panel data where both the time series and cross-
sectional dimensions are large offers new opportunities for controlling for these
unobserved shocks (Bai (2009), Pesaran (2006)).

This paper contributes to that literature by developing an estimator for
large heterogeneous panels with cross-sectional dependence in a framework where

outcomes are discrete.?

The proposed estimator belongs to the class of common
correlated effects (CCE) estimators that approximate the unobserved factors with
cross-sectional averages (Pesaran (2006)). But this approach is complicated in
nonlinear models where the unobserved factors and the cross-sectional averages are

3 This paper adopts the CCE estimation

linked by an unknown functional form.
methodology to discrete choice models under the assumption that the unobserved

factors are contained in the span of the observed factors and the cross-sectional

! Andrews (2003) discusses a variety of common shocks including macroeconomic, political,
legal, environmental and health shocks.

2Discrete choice models are probably the most popular nonlinear panel data models in
econometrics. But the methodology developed here is also applicable to other nonlinear panel
data models.

30ne exception is the state-dependent pricing model of Dhyne et al. (2011) where it is possible
to solve for the unobserved factors as a function of cross-sectional averages.
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averages of the regressors. In situations where the number of unobserved factors is
likely to be large relative to the number of regressors, I discuss how instrumental
variable methods can be applied. Finally, I sketch a more general approach to adopt
the CCE methodology to nonlinear panels that is based on simultaneous sieve M-
estimation.

To derive the asymptotic properties of the estimators of the individual-specific
coefficients and their mean, I take a perspective where both the time dimension T’
and the cross-sectional dimension N are large. I first show that the estimator of the
individual-specific coefficients is consistent and asymptotically normal. It turns out
that this estimator has the same asymptotic distribution as an infeasible estimator
that counterfactually assumes that the unobserved factors are known. An important
part of the asymptotic theory is uniform consistency of the preliminary estimator.
Specifically, the preliminary estimator converges to the true function at the uniform
rate log(T)/vV/N.

Based on the asymptotic properties of the estimators of the individual-specific
coefficients, consistency and asymptotic normality results for the mean group
estimator are derived. Inference is easy: I show that the asymptotic variance of the
mean group estimator can be estimated by the covariance matrix of the individual-
specific coefficient estimates. This covariance estimator is identical to the estimator
obtained in linear regression models (Pesaran (2006)).

By means of a simulation study, I document that for a wide range of factor
structures, the mean group estimator is comparable in terms of RMSE and bias to
an infeasible estimator that counterfactually assumes that the common factors are
known. In addition, the mean group estimator has good empirical power and size.

I apply the methodology developed in this chapter to the question of how yields
in corporate bond markets affect the conditional probability of issuing a bond. I find
that conditional probability of issuing a bond is larger in low yield environments for
non-financial firms. This question is of policy interest because it sheds light on a
particular transmission mechanism of monetary policy: central banks can affect the
interest rates that firms face in corporate bond markets by means of conventional
and unconventional monetary policy tools. Bond issuance, on the other hand, is
often related to corporate investment.

Recently, a growing literature has documented that CCE estimators are consis-
tent and asymptotically normal in a variety of situations, such as quantile regression
(Harding and Lamarche (2013)), structural breaks (Baltagi et al. (2016)), and
dynamic panels (Chudik and Pesaran (2015a)). But there is not yet a CCE
estimator for panels with binary outcomes when both N and T are large which is the
contribution of this chapter. Alternative approaches to estimation and inference in

nonlinear panel data models with interactive fixed effects are the two-step estimators
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of Chen (2014) and Chen et al. (2014).* In contrast to the estimator proposed here,
these estimators are computed in an iterative procedure and assume that the slopes
are homogeneous which requires bias correction due to the incidental parameter
problem.

The remainder of this chapter is organized as follows. Section 3.2 discusses
alternative approaches to model cross-sectional dependence in disturbance terms.
The econometric model is presented in Section 3.3 and Section 3.4 develops the
estimation methodology. Section 3.5 establishes the asymptotic properties of the
estimators of the individual-specific coefficients and the mean group estimator.
Section 3.6 reports the results of a Monte Carlo experiment and Section 3.7 applies
the methodology to the question of how yields affect the decision to issue a corporate

bond. Section 3.8 concludes.

3.2 Modeling cross-sectional dependence

A variety of alternative approaches have been proposed to address cross-sectional
dependence in disturbance terms. Broadly, they can be classified into two main
categories: spatial processes and factor structures. The remainder of this section
discusses both approaches in more detail.’

Spatial models assume that cross-sectional dependence arises because of interac-
tions among economic agents. Such interactions are predicted by economic theory.
For example, when faced with idiosyncratic shocks, rational agents will take out
insurance contracts to smooth consumption which makes individual consumption
profiles cross-sectionally correlated (Conley (1999)). Other examples include trade
or financial spill-over effects.

Conley (1999) observed that the strength of these interactions is related to the
economic distance between individual units. Economic distance is determined by
a variety of socio-economic characteristics and it can be measured by a distance
metric as for example the Euclidean norm. Once a spatial ordering is established,
Conley (1999) adopts mixing coefficients from the time-series literature to study the
asymptotic properties of GMM estimation.

A parametric alternative to mixing conditions are spatial autoregressive frame-
works (SAR). They rely on a weight matrix that summarizes the strength of the
cross-sectional correlations. The weight matrix is usually known up to a small
number of parameters. However, these methods assume that the econometrician
has prior knowledge about how to measure interactions.

Recently, Robinson (2011) has proposed an alternative approach based on linear
processes that does not need a measure of cross-sectional distance and includes

the SAR model as a special case. This approach was used in e.g. Lee (2012) to

41 learned about these papers after completing a first draft of this paper.
5See also Chudik and Pesaran (2015b), Bailey et al. (2015) and Lee (2012) for an overview.
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derive the asymptotic properties of a series estimator in panels with cross-sectional
dependence.

But spatial approaches assume that the cross-sectional dependence is local or
weak as defined in Chudik et al. (2011). If the data exhibit strong cross-sectional
dependence, factor structures are better suited to model it. The motivation behind
factor structures is that there are common but unobserved shocks that can have
different impacts on the individual units. These shocks are allowed to be correlated
with the regressors which is more general compared to spatial settings. The
unobserved factors can be estimated by principal components methods (Coakley
et al. (2002), Bai (2009)), or by cross-sectional averages (Pesaran (2006)).

Coakley et al. (2002) develop a two-step principal components estimator where
in a first step, the common factors are extracted by computing the principal
components from the OLS residuals. In the second step, the regression model
augmented with the principal components is estimated. However, as shown by
Pesaran (2006), this estimator is not consistent if the unobserved common factors
are correlated with the explanatory variables. To overcome this problem, Bai (2009)
develops an iterative principal components estimator that alternates the first and
second step of Coakley et al. (2002) until convergence. The iterative principal
components estimator is consistent even if regressors and unobserved factors are
correlated.

The common correlated effects (CCE) estimator of Pesaran (2006) is based on
the idea that the unobserved factors can be approximated by cross-sectional averages
of the dependent and independent variables. Compared to the principal components
estimator, CCE estimators have the advantage that the number of common factors
does not need to be known. In Monte Carlo studies, CCE estimators are found
to be more efficient and robust when compared to alternative estimators including
principle component estimators (Coakley et al. (2006), Chudik et al. (2011)).

A growing literature has documented that CCE estimators are consistent in a
variety of situations: Pesaran and Tosetti (2011) combine the factor approach with
spatial models by assuming that the disturbances net of the common factors follow
a spatial process, see also Chudik et al. (2011). Kapetanios et al. (2011) show that
the CCE estimator is consistent even if the unobserved factors are non-stationary.
Chudik and Pesaran (2015a) extend the CCE estimator to dynamic panels.® Baltagi
et al. (2016) develop a CCE estimator for data with structural breaks. Harding and
Lamarche (2013) propose a quantile CCE estimator for homogeneous panel data with
endogenous regressors, and Boneva et al. (2015) develop a quantile CCE estimator
for heterogeneous panels. The contribution of this chapter is to extend the CCE

approach to discrete outcomes.

6 Alternative estimators for dynamic panels with cross-sectional dependence are Moon and
Weidner (2015) and Song (2013).
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3.3 Econometric model

This section describes the econometric framework. I observe a sample of panel data
{(Yi, Xigydy) i=1,...,n, t =1,..., T}, where i denotes the i-th unit and ¢ is the
time point of observation. To keep the notation simple, I assume that the panel is

balanced. The data are assumed to come from the model
Yi=ajd + B3 Xy +ey, i=1,... Nt=1..T, (3.1)

where Y} is a latent variable that is related to the observed response variable Y;; via

the indicator function I(.),

Yie = 1(Yy). (3.2)

That is, Y;; is unity if Y;; > 0 and zero otherwise. Alternatively,
Pr(Yiy = 1|Xa, di, fi) = 1 — (b(—Oé;dt - ﬁiTXit - /‘f;ft) = @(@Zdt + B;Xit + /‘%Tft)a

where ® (.) is the standard normal CDF. Xj; is a K, x 1 vector of individual-specific
regressors that are assumed to be strictly exogenous and stationary and d; is a
K4 x 1 vector of observed common factors that do not vary across individual units.
This chapter is concerned with inference for the heterogeneous coefficients [; and
their mean. This is complicated by cross-sectional dependence which is modeled by

assuming that the disturbances exhibit the factor structure
eir = Ky fi + €, (3.3)

where f; is a Ky x 1 vector of unobserved common factors and &; is a Ky x 1 vector
of factor loadings. The disturbances ¢;; are 11D conditional on the factors and have
a normal distribution with zero mean and unit variance (although our method can
be defined for any link function with some regularity conditions). The normalization
of the variance is necessary for identification of 3;.”

The panel data model (3.1)-(3.3) contains popular panel data models with
additive factor structures as a special case. For example, if ; and k; are
homogeneous across ¢ and d; only includes a constant, the model reduces to a
discrete choice panel model with homogeneous slopes and individual and time fixed
effects. As documented in Fernandez-Val and Weidner (2015), this model is subject
to the incidental parameter problem (Neyman and Scott (1948)) which results in
biased estimates that need to be corrected with jackknife methods, for example. By
assuming that the coefficients in the discrete choice panel data model (3.1)-(3.3) are
heterogeneous, I can avoid this problem.

In many panel data applications, the unobserved common factors f; are

" Alternative identification assumptions can be made as e.g. aq; = 1.
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correlated with both the response variable and the regressors, introducing a certain
type of endogeneity. To allow for this possibility, the individual-specific regressors

are assumed to follow the model
Xip = A;dt + K;ft + U, (3.4)

where A; is a coefficient matrix of dimension Ky x K, K; is a Ky x K, matrix of
factor loadings and wu;; have a zero mean and are 1D conditional on the common
factors.

To analyze the asymptotic properties of the estimators of the individual-specific

coefficients B\Z and the mean group estimator

1 M
5:N;@'- (3.5)

I make the following assumptions which are maintained throughout the chapter:

(A1) Random coefficient model: the coefficients 5; are generated by

Bi = B+ ni, (3.6)

where n; ~ I1D(0,3,) and is distributed independently of x;, K;, €1, uji, dy, fi
Vi, j.t, 18] < Cs, ||IE,]] < Cx is symmetric and non-negative definite and
|Al| = v/tr(ATW A) for any matrix A and a symmetric positive definite matrix
W.

(A2) Common factors: the (K; + K4) X 1 vector of common factors g, = (f;,d;)"
is assumed to be bounded and covariance stationary with absolute summable

covariances, and distributed independently of the disturbances €; and wu;s,
Vi, t, s.

(A3) Factor loadings: the factor loadings ; and K; are IID across i, and distributed
independently of the disturbances €;; and u;; and the common factors f; and

dy, for all 7, 7, t with finite means and variances.

3.4 A common correlated effects estimator for

discrete choice panels

The econometric model (3.1)-(3.4) depends on the unobserved factors f; which
makes estimation difficult. One approach to control for unobserved factors is
to approximate them by cross-sectional averages of X;; and Yj; (Pesaran (2006)).
Section 3.4.1 adopts this approach for discrete choice models under the assumption

that the unobserved factors are contained in the span of the observed factors and
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8 In situations where the number

the cross-sectional averages of the regressors.
of unobserved factors is likely to be large relative to the number of regressors,
instrumental variable methods can be applied. This is discussed in Section 3.4.2.
Section 3.4.3 sketches a more general approach based on simultaneous sieve M-

estimation.

3.4.1 Approximating the unknown factors by cross-sectional

averages of the regressors

In nonlinear panel data models, approximating the unobserved factors by cross-
sectional averages of both the regressors and the dependent variable as in Pesaran
(2006) is difficult. Instead, I adopt the same approach as in chapter 2 of this thesis
and approximate the unobserved factors by cross-sectional averages of the regressors.
This approach, however, assumes that the regressors are driven by the same set of
factors as the dependent variable.

I start by taking cross-sectional averages of equation (3.4) to obtain

715 - szt + KTft + ﬂt (37)
= Ag'di + Ko fi + 7 + (Z — Ao)Tdt + (K - Ko)Tft
= Ay dy + Ko fi + O0,(1/V'N).

Under the assumption that

rank(K) = Ky < K, VN, (3.8)
the unobserved factors can be represented as
fi=(KK)'KX,— (KK 'KAd, - (KK 'K,

where it is possible to show that @, —— 0 (Pesaran (2006)). Therefore, the
unobserved factors can be approximated by a linear combination of cross-sectional

averages of the regressors the observed common factors.’

3.4.2 Instrumental variables

But in situations where the number of unobserved factors is likely to be large relative

to the number of regressors, the approach outlined above may not work very well.

8In case of microeconometric panels where individual-specific unobserved characteristics like
ability are likely to be correlated with the regressors, the indices ¢ and 7 can be interchanged and
time-series averages can be used to approximate the unobserved loadings.

9Rather than taking simple averages, any weighted average can be used provided that the
weights are “granular” as defined in Pesaran (2006)
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This section describes how instrumental variable methods can be applied in these
cases.

If an instrument W, for f; is available that is related to Y;; only via the common
factors f; then that instrument can be used to approximate the common factors
together with X;. Specifically, assume that there is an instrument available that is
generated as

Wi =AY + KiWTft + Wi,

where w;; is an IID disturbance term. The unobserved factors can then be
—T

approximated by a linear combination of d; and Z; = [X, : WI]T

3.4.3 A more general approach based on sieve estimation

In Section 3.4.1, it was assumed that the unobserved factors are contained in the
span of the observed factors and the cross-sectional averages of the regressors.
This is more restrictive compared to the CCE approach in Pesaran (2006) that
also approximates the unobserved factors with the cross-sectional average of the
dependent variable. This section sketches a more general approach for CCE-type
estimation in nonlinear panels that also includes the cross-sectional average of the

dependent variable. The individual regression models are first averaged to obtain

N N
1 1 T T T
N ; Pr(Yy = 1|dy, Xit, fi) = N Z O(a,;di + 5; Xie + K; [t)

= Hy(ds, fi, i), (3.9)

N _
where N7'>S"Pr(Y;, = 1|di, Xit, f1) = Y, because Y is a discrete random
i=1

variable. p;¥ is a vector with cross-sectional sample moments of X, that completely
characterizes the cross-section of X;;. For simplicity, I assume that utX = X, but the
approach outlined in this section can be generalized to cases where X also contains
higher moments.! This assumption is equivalent to assuming that higher moments

are time-invariant. Equation (3.9) implies that f; is given by
ft = G(?tv ytv dt)7 (310)

where G(.) is an unknown function that can be estimated by series estimation, for
example.'? Series estimation replaces the unknown function G(.) by the first ¢ terms
of a sequence of approximating functions p?(Y, Xy, d;)"¢; where p?(.) = (pi(.), ...

,pg(.))" and ¢; is a fixed vector of parameters. I consider the case where p;(.) are

10X = X holds exactly if Hy(.) is linear.
A sufficient (but not necessary) condition for uniqueness of f; is %J—f"’ > 0 or 88% < 0.
12The dependence on N is implicit.
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multivariate polynomials of order j which can be motivated by a Taylor expansion.!?

Newey (1994) develops a two-step series estimator for the case where f; is
known. If f; is unobserved, the individual-specific coefficients 5; can be estimated

in one-step by replacing the unobserved factors f; by the approximating functions
pU(Y 4, Xo,dy) G

Pr(Yie—i|dy, Xit, fr) = q)(a;dt + B;Xit + Kf;q<?t77t7 dt)T<i>- (3.11)

In general, ¢ is chosen by data-driven procedures such as cross-validation, for
example. In same applications, including higher order terms like cross-sectional
variances can be desirable. For a general link function F(.), equation (3.11) is a
semiparametric regression model that can be estimated by simultaneous sieve M-

estimation, see Chen (2007) for a survey.

3.5 Asymptotic theory

This section characterizes the asymptotic properties of both the estimators of the
individual-specific coefficients and the mean group estimator in discrete choice panels

with interactive fixed effects.

Notation: the true individual-specific coefficients and their population means are
denoted by 6y, = (ap,;, By ko) and 0y = (g, By, Fp) where T use ~  to denote
the coefficients in the regression model augmented with cross-sectional averages. I
define the K, x 1 vector /Ht =X, = ZTdt + ?T ft + u; which can be interpreted as
an estimator of the K, x 1 vector hg, = Ao dy + Ky fi. Et and hg; can be stacked
to form the TK, x 1 vectors E(T) = (7171, . ,7K171,Y172, . ,YKEQ, . ,Ylj, e
, Xk,r) and ho(T) = (B, ... WS 1,08 5o h%, 0 WS s oo b, 1), which can be
embedded within the sequence space H whose metric is d(h, g) = sup;>; |hi — gil,
in which case I write ho = (hY,,...,h% 1, hYo, ... Ry o, W1y B, £,0,...) and
likewise / (suppressing dependence on T'), and let ||h|y = d(h, k). I use © to denote
the finite dimensional parameter set for ; (where the dependence on i is suppressed)
and H for the infinite dimensional parameter set of sequences {h;}32,. C denotes a

finite constant.

3.5.1 Asymptotics for the estimators of the individual-

specific coefficients

This section shows that the estimators of the individual-specific coefficients @ are

consistent and have the same asymptotic distribution as an infeasible estimator

13To reduce multicolinearity, orthogonal polynomials such as Chebyuchev polynomials can be
used instead.
The coefficients x; and (; are not individually identified.
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that counterfactually assumes that the unobserved common factors f; are known.
Observe that the vector @ contains both the coefficients of interest ,73’\2 and the
auxiliary coefficients on the known factors d, and the cross-sectional averages X,
which play the role of nuisance parameters. For notational simplicity, the asymptotic
theory is presented for 51 rather than for the parameter of interest B\l 15

The estimator 52 is defined to minimize minus the log-likelihood function

T
Qr(0:) = Qr(0:.h) = — Zlog F (Yl Xig, oy, dy, 0;)
T

Z ZthgF Oé dt+5 th +RTht)

=1
+ (1 — Yi) log(1 — F(a;dy + B; Xy + E:/i;t))]

The probability limit of Qi(6;, k) for a given sequence {h;} is defined as

Q6(917 h) = _E [log f(}/;t|Xit7 ht7 dt7 01)] .

Define likewise the infeasible objective function

Q?F(Q) QT(‘%hO _—_ZIng zt’th:hOtadtae) (3-12)

t=1

An important condition to derive the asymptotic properties of /H\Z is uniform

consistency of he. To obtain the uniform convergence rate of
/fzt —hoe =0 — (Ao — A)'dy — (Ko — K)' f,

I make the following assumptions:!

(B1) E(|u,|*) < C,, k > 6, where u/, denotes the jth element in the K, x 1 vector

Ut
(B2) E||A;i — Ao||> < C < 0, E||K; — Ko||? < C < 00

(B3) T/N — 0

Assumption (B1) is required for Bernstein’s exponential inequality. Condition

(B2) requires that the matrices A; and K; have finite variances and is implied by

>The coefficients a; on the observed common factors d; are not identified in the regression
model augmented with cross-sectional averages. But under the assumption that the unobserved
factors f; are orthogonal to the observed factors dy, there are two possible approaches to estimate
a;: (1) estimate X;; = A dy + ¢, where u;; = K ft + wi; (il) estimate Yi; = a; Td, + €;; where
)/it ﬂth

16Ramdorn variables are understood as triangular arrays of random variables. This is left implicit
to keep the notation simple.
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assumptions (A1) and (A3) provided that the parameters in A; have finite second
moments. The following lemma gives an upper bound on the uniform convergence

rate of by — hoy. 7

Lemma 3.5.1. Suppose that assumptions (A2), (B1)-(B3) hold. Then

~ logT
h—h =0, —= |- 3.13
I~ hall = 0, (55 ) .13

Furthermore, for weight sequence {w;} with 31w, =1 and 3., w? < C, I have

~ 1
;wt (e = hot) = O, (\/W) .

An important assumption to obtain the uniform rate in (3.13) is boundedness
of the factors that is assumed in (A2). If the factors are not bounded, the penalty
term is T° instead of log T where § depends on the number of moments that the
observed and unobserved factors g; possess.

After having established uniform consistency of the preliminary estimator, I next
show that the estimators of the individual-specific coefficients is consistent. To this

objective, I make the following assumptions:

(C1) The parameter space © is compact and 6;y € ©
(C2) 0; € © and Q% (0, h) = infg,co Q4 (6, h)
(C3) [[h = holln = 0,(1)

(C4) For all §; > 0, there exists €(;) such that

inf |Q5(6:, ho) — Q4 (0oi, ho)| > €(6;) >0
”91‘7901'H>6

(C5) 6; 2 6y, for each fixed i where §; = argmin,_, Q&(0, ho) and Q%(0, ho) is
defined in (3.12)

(C6) For dr = 0,(1),

sup sup ‘Q%"(‘gv h) - Q%"(‘gu ho)l = Op(l)‘

[lh—ho||<dT oco

Compactness of the parameter space (C1) can be dropped provided that the
log-likelihood function is concave. Here, concavity of the log-likelihood follows from
concavity of log F((v) and 1 — log F'(v) because v = @, d; + 3; X;; + K, h is linear in

the coefficients given h;. But log F'(v) is concave in v because the first derivative

17 All proofs are relegated to Appendix C.1.
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of log F'(v) with respect to v is monotonically decreasing (Newey and McFadden
(1994)). Assumption (C2) defines the estimator and can be weakened to Q%.(6;, h) =
infg,co Qi(6;, h) + 0p(1). The uniform consistency condition for the preliminary
estimator (C3) was established in Lemma 3.5.1. Assumption (C4) is an identification
condition that requires 6y; to uniquely minimize Q}(6;, ho) over 6; € ©. A necessary
condition for identification (in a neighborhood of 6;9) is that the second derivative of
the objective function with respect to 6; has full rank. Consistency of the infeasible
estimator 6; (assumption (C5)) that counterfactually assumes that the unobserved

factors are known follows from standard arguments for extremum estimators (e.g.
Wald (1949), Newey and McFadden (1994)).

Theorem 3.5.1. Suppose that assumptions (C1)-(C6) hold. Then, as (T, N) SN
00, (/9\1 L5 0y for each fized i.

To derive the asymptotic distribution of the individual-specific estimators @, I

assume that (/9\1 is consistent and that 0,7 € ©. In addition, I assume that:
(D].) %(@'07 ho) = O
(D2) For some sequence o7 = o(1)

6262171(0, h) _ aZQZT(07 h())
00007 00007

= o)

sup sup
lh—hol|<o7 |0—8i0|<dT

where the K; + 2K, x K;+ 2K, matrix % has full rank.

(D3) There is a matrix H;2(6, h) of dimensions K, + 2K, x T K, that satisfies for

some sequence dr = o(1)

Qi
000h"

sup sup (91, h) — H,L'Q(eio, ho) i) O,

[10:—0:0]| <7 [|h—hol|1 <67

where sup;s |[Hiz(0io, ho)|| < C for each Ky + 2K, x Kx submatrix
Hi2t<91'07 hO)

(D4) For some J; > 0 and J; < C'

ﬁ%(em, ho) =% N(0, J;)

(D5) T2 _, g

(D6) There is a K, x K, matrix

83@?]‘(62'07 h)

Wirs(6: h) = 55 Snron
7 s
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that satisfies for some sequence dr = o(1)

Sup HVVJtSszah)H < Civj7t75
|h—hol|<éT

(D7) |7 = hollx = 0,(1)

Assumption (D3) is a uniform convergence condition of the Hessian in a shrinking
neighborhood of the true parameters 6,y and hy and it can be replaced by a more
primitive ULLN (Andrews (1993)). Assumption (D4) is analogous to asymptotic

normality of the score and is satisfied because

0Q7 1 3 Y;e — Fig .
ei ’h = — — —_——— Ji X . d . h
89 ( 0 0) T — Eto(l _ Eto)fto[ ot t Ot]

is a sample average with zero mean that is II1D conditional on the factors. The
restriction on the relative size of T and N in (D5) ensures that the estimated
preliminary functions h do not affect the asymptotic distribution. Theorem 3.5.2

summarizes the asymptotic normality result for the individual-specific estimators @

Theorem 3.5.2. Suppose that assumptions (A2) and (D1)-(D7) hold. Then, as
(T,N) == oo,
VT (6; — 0;) 2 N(0,V;)

for each fized i, where:
Vi = Hi;(6oi, ho) ™' JiH1; (6o, ho)flT

o 0%QH(6; Jh
Hu’(@io,ho) :pjll_fgo %-

3.5.2 Asymptotics for the mean group estimator

In this section, I investigate the asymptotic properties of the mean group estimator B\
defined in equation (3.5) which is a subset of the parameter estimates contained in 9.
Consistency of 0 follows by similar arguments as in the case of the individual-specific

estimators @ and is summarized in the following theorem:

Theorem 3.5.3. Suppose that assumptions (C1)-(C6) hold. Then, as (T, N) AN
oo, é\L 00.

To show that the mean group estimator is asymptotically normal, I assume that
9 is consistent and asymptotically normal and that 6, is an interior point in ©.
Additionally, I assume that:

N
(E1) % > 83%(01‘0,%) =0
i=1
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(E2) There is a matrix Hs(6, h) that satisfies for some dy = o(1)

1 <L 9200

— _H P
sup sup N pa O0OhT (97 h‘) 2(007 hO) —0

10—00l|<én [[h—holl2<5n

Assumptions E are similar to Assumptions D that have been imposed to establish
asymptotic normality of the individual-specific estimators.
Theorem 3.5.4 contains the asymptotic normality result for the mean group

estimator.

Theorem 3.5.4. Suppose that assumptions (E1)-(E5), (D4) hold. Then, as
(T,N) = oo,
VNG~ o) —= N(0,%,).

Observe that the asymptotic variance of the mean group estimator is equal
to that of the random coefficients (assumption (Al)). In practice, X, can be

consistently estimated by
. 1 M
=N 1 ;(ﬂi —B)(Bi—B)". (3.14)

The estimator in is identical to the one that is obtained in OLS and quantile

regression settings (Pesaran (2006), Boneva et al. (2015)).

3.6 Small sample experiments

To complement the asymptotic analysis, this section studies the small sample
properties of the CCFE mean group estimator and compares them to the following

set of alternative estimators:

1. The infeasible mean group estimator that counterfactually assumes that the

unknown factors can be observed.

2. The CCE mean group estimator with W, that approximates the unknown
factors with the cross-sectional averages of the regressors X, and instruments
W,.

3. The naive mean group estimator that does not account for unobserved common

factors.

4. The linear probability mean group estimator that replaces the probit model by

a linear probability model.
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The small sample performance of these estimators is evaluated in five experiments

that cover a wide range of factor structures than can be encountered in economic

and financial panel data sets: 18

Experiment 1 The data generating process (DGP) is

Yii = a; + B Xuie + B2 Xow + Krifie + Koifar + €, Yie = 1(Yy})
Xjit = aji + kjifre + Kjiofor +wjie,  j=1,2

Wi = al + kY fie + Kl for + wi

e ~ NID(0,1)

wiie ~ NID(0,1), j=1,2

wy ~ NID(0,1) (3.15)

where the factors are generated by'?

fuw =psfu—1 +vipe, t=-50,...
T 0=1,2 (3.16)
vige ~ NID(ug(1 = pg), 1= p7),  py=0.5,pp =0.5,1=1,2. (3.17)

The coefficients a;, a;; and a)” are held fixed across replications and are initially

generated as

o; ~ NID(—0.5,0.1)
aj ~ NID(0.5,0.1), j=1,2
a) ~ NID(0.5,0.1). (3.18)

The remaining coefficients are drawn independently across replications according to

Bri = 0.5+ 1, ni; ~ NID(0,0.02)
Bai = =05+ 12, 12 ~ NI1D(0,0.02)
kij ~ NID(0.5,0.1), j=1,2

kjin ~ NID(0.5,0.1), j=1,2

8When estimating binary choice models, one occasionally encounters the problem of quasi-
complete separation. Quasi-complete separation occurs when the dependent variable separates the
independent variables to certain degree. In that case, the maximum likelihood estimator does not
exist and attempting to compute it usually results in an upward biased estimate. To mitigate
this problem in the Monte Carlo experiments, I use the bias-reduction method of Firth (1993).
Asymptotically, this estimator is equivalent to maximum likelihood to first order.

19The DGP for the factors (3.16) does not satisfy assumption (A2) because the factors are not
bounded. But this does not affect the asymptotic theory because under normality as assumed here,
the penalty term in the uniform rate (Lemma 3.5.1) is 1/log(T") which is smaller than the current
penalty of log(T).
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kj{ ~ NID(0.5,0.1). (3.19)

Experiment 2 is identical to experiment 1 except that £y; = 0.5, B; = —0.5V4.

There is no slope heterogeneity.

Experiment 3 is identical to experiment 1 except that kj5 ~ NID(0,0.1). The

rank condition (3.8) is not satisfied.

Experiment 4 is identical to experiment 1 except that
Yii = ;i + BiXi + Kuifie + Koifor + Ksifar + €, Yie = 1(Yy)) (3.20)

where k;3 and f;3 are generated as k;; and f;;. In this experiment, there are more

unknown factors than proxies which illustrates another failure of the rank condition

(3.8).

3.6.1 Coeflicient estimates

To assess the small sample performance of the different estimators, I compute the
maximal bias and RMSE for 3; that are defined as:*

R
1 ~
RMSE; = R Z(ﬁw — p)?
r=1
1 o -~
Biasg = (51 - E Z 1r> )
r=1

where R is the number of replications.

Tables 3.1-3.4 report RMSE and bias for experiments 1-4.2! The naive estimator
has poor small sample properties in all experimental settings. This result is not
surprising because this estimator omits the unobserved common factors that play
an important role in the DGP. In contrast, the CCE mean group estimator is
comparable to the infeasible estimator in terms of RMSE even if the coefficients
are homogeneous (Table 3.2). If the rank condition is not satisfied, the performance
of the CCEMG estimator deteriorates (Tables 3.3 and 3.4).

The estimator that uses additional instruments W, to approximate the unob-
served factors performs similar to the CCE mean group estimator in terms of bias
and RMSE with exception of experiment 3 where the estimator with W performs
well despite of a failure of the rank condition (Table 3.3). In this situation, an

instrument is available that is strongly correlated with the dependent variable. In

20Results for By are almost identical.
2IThe linear probability estimator is excluded in this section because the coefficients represent
marginal effects and are thus not comparable to the other estimates.
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contrast, the estimator with W, is biased in experiment 4. This experiment mimics
a situation where the instruments are weak: in contrast to the other experiments,
the instruments W, are generated by less factors than the dependent variable Y,
which reduces the correlation between W, and Y.

Tables 3.1-3.4 also report empirical sizes and power. Power is computed under
the alternative f; = 0.45 and the variance of B\l is calculated using the formula in
equation (3.14). While the naive estimator has distorted empirical sizes across all
experiments, the empirical sizes of the CCE mean group estimator are close to the
nominal size of 5% in all experiments except if the rank condition fails (Tables 3.3
and 3.4). With exception very small sample sizes, the CCE mean group estimator
also has good power. The empirical sizes and powers of CCE mean group estimator
with W, are similar to those of the CCE mean group estimator with exception of

experiment 3 where it outperforms the CCE mean group estimator (Table 3.3).

3.6.2 Marginal effects

Applied research usually reports marginal effects rather than coefficient estimates
when estimating discrete choice models. Unlike coefficient estimates, marginal
effects can be used to assess the economic significance of the results which is
important to inform debates about economic policy. For the probit model, the

average marginal effect is defined as:

T —
1 ~T Pl X
MIZZ = BZT E ¢(C¥Z dt + Blinit + BZiX%t + Ky t)'

t=1

Bias and RMSE for the marginal effect are computed as for the coefficient estimates
in Section 3.6.1.

Tables 3.5-3.8 report RMSE and bias for marginal effects. Marginal effects
computed from either CCE mean group estimates or CCE mean group estimates
with 7, have similar bias and RMSE when compared to the infeasible marginal
effects and outperform naive marginal effects that do not account for unobserved
common factors. These conclusions hold even if the rank condition is not satisfied
(Tables 3.7, 3.8).2> The linear probability model augmented with cross-sectional
averages has good small sample properties, too.?3

Overall, the Monte Carlo evidence indicates that the CCE mean group estimator
has good small sample properties compared to the infeasible estimator. These

conclusions are robust to the case where coefficients are homogeneous.

22The robustness of marginal effects even if coefficient estimates are biased has been documented
before, see e.g. Fernandez-Val and Weidner (2015).

23The linear probability model performs worse if the marginal effects at the average are
computed instead of the average marginal effects. These results are available from the author
on request.
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3.7 The effect of corporate bond yields on bond

issuance by US corporates®

At least since Modigliani and Miller (1958), the capital structure of firms has
attracted much attention and there is a large empirical and theoretical literature
that explores why the capital structure matters (Brealey et al. (2008)). For example,
the mix of debt and equity is relevant in the presence of the bankruptcy costs or
asymmetric information (Frank and Goyal (2008)).

Relative to equity, debt financing is an important source of external funds for
US corporations (Denis and Mihov (2003)). Debt financing can take the form of
bank loans, other loans or public debt. The focus here is on public debt. But
in contrast to earlier studies (Frank and Goyal (2008)), I adopt an incremental
approach that investigates the conditional probability of issuing a corporate bond
which is particularly suitable for questions related to time-variation in the regressors.
In my study, the yield paid by issuers in the corporate bond market is the regressor
of primary interest.

Answering the question of how funding costs in corporate bond markets affect
issuance decisions sheds light on a particular transmission mechanism of monetary
policy: by means of conventional and unconventional monetary policy tools, the
central bank can affect the interest rates firms face in corporate bond markets.
Bond issuance, on the other hand, is often related to corporate investment and thus
aggregate demand (Farrant et al. (2013)).

There is already a large literature that explores the determinants of bond
issuance (e.g. Mizen and Tsoukas (2013), Badoer and James (2015), Adrian et al.
(2012), Denis and Mihov (2003), Becker and Ivashina (2014)). These studies have
documented that issuer characteristics like size, rating, profitability, leverage, equity
prices, monetary policy and the supply of bank credit are important determinants
of bond issuance. Other papers have investigated the effects of Quantitative Easing
(Lo Duca et al. (2016)) or the Basel reforms on issuance decisions of banks or non-
financial corporations (Baba and Inada (2009)). However, there is not much evidence
yet on the effect of yields on bond issuances which is the contribution of this study.
Additionally, previous studies have not controlled for common unobserved factors

that affect both bond issuance and its determinants.

3.7.1 Data

The data set includes bond issuances by US corporates between 1990 and 2015
on a monthly frequency. The sample is restricted to bonds in US dollar, with a

fixed coupon and short-run unsecured collateral. Non-bullet and callable bonds are

24T would like to thank Lu Liu, Menno Middeldorp and Magda Rutkowska for useful discussions
about the empirical application and their help with the data.
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excluded. The number of issuances is 5610 with an average size of approximately
300 million USD made by 1004 different firms. Time series of individual bond yields
are obtained from Datastream and aggregated by issuer. Issuer-specific yields are
constructed as the median of the individual bond yields. 2

Figure 3.1 reports time series of the number of bond issuances and the average
issuer-specific yield between 1990 and 2015. Over the sample period, the number of
bond issuances increased and remained at high levels since 2003 with exception of
a drop at the beginning of the financial crisis when yields increased sharply. The
time series of yields and the number of issuances for financial sector firms co-move
closely with the aggregate series. Albeit only one quarter of all firms are in the
financial sector, a large number of issuances can be attributed to them. Figure 3.2
reports the cross-sectional mean, median and dispersion of yields over time. Yields
exhibit a downward trend over the sample period. In 2008, both the level and the
dispersion of yields increased sharply but started to fall again in 2009 which is in
part explained by the Quantitative Easing program of the Federal Reserve.

Figure 3.3 illustrates the unconditional correlation between the cross-sectional
average of yields and the number of issuances per month. For the pre-crisis period,
there is a negative correlation for yields below 8. However, this correlation could be
driven by common, unobserved shocks which will be controlled for in the regression
analysis below. Finally, Figure 3.4 documents the number of issuances by firm.
The distribution of the number of issuances is highly skewed with many firms only
issuing one bond over the sample period: the average number of issuances is 6 but

the median number of issuances is only 2.

3.7.2 Results

To investigate the effect of yields on bond issuance by US corporates, I estimate
the econometric model in (3.1)-(3.3) where Y, indicates whether firm ¢ has issued a
bond in time ¢t and X;; contains the issuer’s corporate bond yield and assets at the
end of the previous month. The observed common factors d; include a constant, a
measure of monetary policy and broker-dealer leverage which is a measure of bank
credit conditions (Adrian et al. (2012)). For the pre-crisis period, the stance of
monetary policy is measures by the federal funds rate, and in the post-crisis period,
the change in Federal Reserve Holdings of Treasury Notes is used. In this specific
empirical application, the unobserved factors can represent financial innovation that
makes it easier for firms to tap the corporate bond market or policies that aim at
deepening these markets, for example.

For the empirical analysis, the data set is restricted to firms with at least 30

time series observations and results are reported separately for the pre-and post

25This method ignores differences in duration and maturity across bond issuances. Constructing
a better measure of issuer-specific yields is subject of ongoing work.
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crisis period. In the post-crisis period, policies such as Quantitative Easing or credit
guarantee schemes are likely to fundamentally change the incentives for corporates
to issue bonds relative to the pre-crisis period.

Columns 1 to 3 in Table 3.9 report the mean group estimate of § and marginal
effects for the pre-crisis period. I find that the conditional probability of issuing a
bond is higher if yields are low. This effect is statistically significant with exception
of financial corporations but the marginal effects reveal that it is small in absolute
magnitude. The effect of firm size is not statistically significant. For comparison,
column 4 reports the mean group estimates when the common factors are omitted
which differ from the CCE mean group estimates in size and statistical significance.
Table 3.10 divides the pre-crisis sample in corporates with a low and high credit
rating. With exception of financial firms where sample sizes are very small, yields
are negatively related to the probability of issuing a bond for low-rated firms. In
contrast, that effect is statistically insignificant conditional on a high credit rating.

In the post-crisis period, qualitatively the same observations can be made: for
non-financial corporations, higher yields are associated with a less issuance activity
(Tables 3.11). This result is driven by firms with a low credit rating (Table 3.12).
Additionally, non-financial corporations that are relatively small are more likely to
issue a bond. One explanation for this finding builds on the substitution from bank
loans to bonds in the post-crisis period (Farrant et al. (2013)). This effect is likely
to be stronger for relatively small firms that relied more heavily on bank loans prior

to the financial crisis.

3.8 Conclusions

Economic variables are affected by common shocks such as financial crises, natural
disasters, technological innovation or changes in the political or regulatory environ-
ment. These shocks tend to be difficult to measure and their impact differs across
individual observations. As documented by Andrews (2005), common shocks create
problems for inference if data are available for a single cross-sectional unit and the
model is estimated by least squares or instrumental variable methods. But the
increased availability of panel data where both the time series and cross-sectional
dimensions are large offer new opportunities to control for these unobserved shocks
(Bai (2009), Pesaran (2006)).

This chapter contributes to a growing literature on panel data models with cross-
sectional dependence. The specific setting studied in this chapter is one where
outcomes are discrete which introduces a nonlinearity. Discrete choice models are
probably the most popular nonlinear panel data models in econometrics but the
methodology developed here is applicable to nonlinear panel data models in general.

The estimator I propose controls for unobserved common factors by means of cross-
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sectional averages of the regressors. The proposed estimator can be computed by
estimating binary response models applied to regression that is augmented with
the cross-sectional averages of the individual-specific regressors. The asymptotic
properties of the individual-specific coefficients and their mean are documented. A
Monte Carlo study assesses the behavior of the proposed methodology in small
samples. The estimator is applied to the question of how of funding costs in
corporate bond markets affect the decision to issue a corporate bond. I find that
conditional probability of issuing a bond is larger in low yield environments for
non-financial firms.

There are many ways in which this work can be developed further. An interesting
extension of the empirical application is to examine how participation in a credit
guarantee scheme affects the issuance decisions of corporates. These schemes were
adopted in 2008 as part of financial sector rescue packages in order to help banks
to retain access to funding markets (Grande et al. (2011)). In addition, I expect
that constructing a firm-specific measure of credit supply from individual loan data
can reveal additional insights on the substitution between bonds and loans. On the
theoretical side, one area of future research is to extend the methodology proposed

here to endogenous regressors or to homogeneous panels.

87



88

Table 3.1: Small sample properties of the mean group estimator B : Experiment 1

T/N Bias (x 1000) RMSE (x 1000) POWER SIZE
20 100 200 300 20 100 200 300 50 100 200 300 50 100 200 300

INFEASIBLE ESTIMATOR

50 3.947 2.831 1.902 3.25 | 3539 25.09 17.27 14.7 | 0.276 0.558 0.826 0.
100 |-0.3039 0.4454 1.152 03768 | 22.8 16.59 11.3 9.548 | 0.522 0.848 0.995

200 | 0.1387 0.1602 0.3321 0.4307 | 15.71 11.1 7975 6.496 | 0.868 0.993 1

300 |-0.5534 0.158  0.2649 -0.1933 | 12.89 9.285 6.526 5.369 | 0.963 1 1

CCEMG ESTIMATOR
50 -0.7777  -0.698 -0.7033 0.5362 | 35.26 24.48 17.03 14.23 | 0.236 0.508 0.809 0.948 | 0.051 0.045 0.044 0.042
100 -4.91 -2.995 -1.86 -2.35 2295 16.53 11.35 9.881 | 0.436 0.804 0.989 1 0.045 0.057 0.046 0.054
200 -4.564  -3.678  -2.515 237 116.26 11.72 8398 6.868 | 0.795 0.987 1 1 0.046 0.055 0.065 0.056
300 -5.24 -3.36 -2.634 -2.89 | 13.72 9.865 7.055 6.024 | 0.923 0.998 1 1 0.057 0.058 0.061 0.073

CCEMG ESTIMATOR WITH W
50 0.599 0.02083 -0.2738 1.314 | 36.18 24.84 17.13 14.59 | 0.234 0.498 0.793 0.949 | 0.052 0.053 0.046 0.042
100 -4.078 -2.469 -1.457  -2.043 | 23.03 16.76 11.44 9.887 | 0.446 0.804 0.99 1 0.047 0.058 0.045 0.055
200 -3.679 -3.251 -2.26 -2.187 | 16.16 11.66 8&8.34 6.832 | 0.806 0.985 1 1 0.045 0.052 0.063 0.059
300 -4.413 -2.953 -2.386 -2.743 | 13.47 9.786 6.974 5.967 | 0.933 0.998 1 1 0.056 0.051 0.054 0.067

NAIVE ESTIMATOR
50 159.4 158.7 158.7 158.2 | 163.4 161.3 160.5 159.7
100 157.4 157.8 157.9 157.8 | 159.1 158.9 158.7 158.5
200 158.4 157.7 158.2 158.6 | 159.2 158.3 158.6 158.9
300 158.3 158.4 158.3 157.7 | 158.9 158.8 1585 157.9

6 | 0.045 0.043 0.037 0.04
0.047 0.047 0.039 0.044
0.04 0.044 0.04 0.046
0.046 0.035 0.038 0.037

— == e

0.998
1
1
1

1
1
1
1

— = = =

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

Notes: The mean group estimator is defined in (3.5) and the data generating process in (3.15)-(3.19). The nominal size is 5% and power is
computed under the alternative $; = 0.45. The number of replications is set to 1000.



Table 3.2: Small sample properties of the mean group estimator B : Experiment 2

68

T/N Bias (x 1000) RMSE (x 1000) POWER SIZE

50 100 200 300 50 100 200 300 50 100 200 300 50 100 200 300

INFEASIBLE ESTIMATOR
50 2.848 1.518 2.094 2456 | 35.26 24.73 17.3 14.81 | 0.28 0.511 0.839 0.951 | 0.046 0.038 0.043 0.05
100 | -0.9409 0.2678  0.5554 0.473 |23.04 16.1 11.96 9.294 | 0.512 0.861 0.99 1 0.047 0.035 0.058 0.048
200 | -0.2583 -0.1573 0.04374 0.1231 | 16.15 11.29 8&.073 6.608 | 0.853 0.994 1 1 0.042 0.047 0.05 0.045
300 | 0.04022 0.3875 0.1868 -0.05547 | 12.28 &8.838 6.341 5.108 | 0.98 1 1 1 0.037 0.04 0.041 0.037
CCEMG ESTIMATOR
50 -1.784  -1.505 -1.041 -0.02763 | 34.44 24.2 16.99 14.34|0.236 0.463 0.805 0.939 | 0.05 0.055 0.04 0.052
100 -5.404  -3.303 -2.29 -2.163 | 23.72 16.22 11.91 9.452 | 0.448 0.812 0.985 1 0.056 0.049 0.055 0.051
200 -4.977  -3.716 -2.91 -2.599 | 16.91 11.89 8.569 7.101 | 0.787 0.989 1 1 0.064 0.056 0.073 0.079
300 -4.805 -3.101  -2.823 -2.777 | 1345 945 6.907 5.861 | 0.942 0.999 1 1 0.062 0.059 0.066 0.079
CCEMG ESTIMATOR WITH W
50 -0.6561 -0.7614 -0.3792 0.6817 | 35.28 24.48 17.34 14.76 | 0.232 0.459 0.798 0.938 | 0.055 0.044 0.038 0.046
100 -4.396 -2.732  -1.939 -1.872 | 23.81 16.32 11.92 9.431 | 0.471 0.817 0.985 1 0.058 0.046 0.054 0.047
200 -4.075  -3.261  -2.658 -2.404 | 16.86 11.83 849 7.057 | 0.799 0.989 1 1 0.065 0.058 0.069 0.076
300 -3.99 -2.685  -2.557 -2.597 13.2  9.369 6.823 5.782 | 0.952 0.999 1 1 0.055 0.052 0.067 0.079
NAIVE ESTIMATOR

50 158.4 157.6 156.2 158 161.9 160.2 157.9 159.5 1 1 1 1 1 1 1 1
100 156.1 157.5 157.3 157.5 | 157.9 158.6 158.1 158.2 1 1 1 1 1 1 1 1
200 157.9 157.6 158.2 158.1 158.8 158.1 1585 1584 1 1 1 1 1 1 1 1
300 158.2 158.4 158.3 158.2 158.7 158.7 158.5 1584 1 1 1 1 1 1 1 1

Notes: The mean group estimator is defined in (3.5) and the data generating process in (3.15)-(3.19) except that 1; = 0.5,Vi. The nominal
size is 5% and power is computed under the alternative 8; = 0.45. The number of replications is set to 1000.
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Table 3.3: Small sample properties of the mean group estimator B : Experiment 3

T/N Bias (x 1000) RMSE (x 1000) Power SIZE
20 100 200 300 50 100 200 300 20 100 200 300 20 100 200 300

INFEASIBLE ESTIMATOR
50 2.456  2.582 2.393 2.867 | 3547 2588 17.79 14.51 | 0.267 0.547 0.839 0.963 | 0.051 0.053 0.046 0.042
100 | 0.8102 0.6675 1.358  0.7839 | 23.8 1594 11.56 9.35 | 0.534 0.868 0.995 1 0.047 0.028 0.047 0.042
200 1.054 0.3152 -0.1941 0.03611 | 16.28 11.74 8 6.61 | 0.865 0.992 1 1 0.043 0.052 0.048 0.035
300 | 0.1421 04703 0.06673  0.13 1272 9.217 6.451 5.344 | 0.974 1 1 1 0.036 0.043 0.036 0.047

CCEMG ESTIMATOR
50 -47.42 -46.41 -46.59 -45.1 57.65 52.3 49.65 47.59 | 0.041 0.046 0.055 0.081 | 0.257 0.481 0.762 0.856
100 -49.9  -49.36 -48.45 -48.62 | 54.68 51.74 49.96 49.67 | 0.026 0.026 0.051 0.052 | 0.501 0.817 0.97 0.998
200 -50.8 -50.53 -50.48 -50.09 | 53.06 51.74 51.16 50.56 | 0.01 0.011 0.021 0.028 | 0.766 0.98 1 1
300 | -51.69 -50.5 -50.82 -50.34 | 53.12 51.25 51.25 50.65| 0.005 0.012 0.016 0.016 | 0.911 0.999 1 1

CCEMG ESTIMATOR WITH W
50 -1.72  0.5095 1.569 2573 | 35.89 26.03 18.14 14.75| 0.23 0.478 0.832 0.951 | 0.046 0.045 0.049 0.038
100 -3.459 -1.789  0.2207 0.03279 | 24.43 16 11.58 9.353 | 0.457 0.824 0.991 1 0.051 0.032 0.046 0.039
200 -3.883  -2.221 -1.446 -0.7808 | 16.87 12.01 8.176 6.68 | 0.772 0.983 1 1 0.047 0.055 0.051 0.037
300 -4.742  -2.005 -1.232 -0.7198 | 13.56 9.452 6.571 5.405 | 0.933 0.999 1 1 0.058 0.053 0.043 0.044

NAIVE ESTIMATOR

50 56.14  57.36  56.35 58.45 | 66.39 63.84 61.45 63.34 | 0.907 0.991 0.999 1 0.432 0.673 0.851 0.919
100 | 56.09  55.97 55.6 56.08 | 60.91 59.06 58.14 584 | 0.996 1 1 1 0.651 0.899 0.977 0.99
200 | 56.72  55.15 55.2 595.38 | 59.23 56.84 56.35 56.41 1 1 1 1 0.886 0.986 0.999 1
300 | 55.82  55.86  55.19 04.89 | 57.47 56.84 5597 55.61 1 1 1 1 0.963 1 1 1

Notes: The mean group estimator is defined in (3.5) and the data generating process in (3.15)-(3.19) except that kj2 ~ NID(0,0.1). The
nominal size is 5% and power is computed under the alternative 5; = 0.45. The number of replications is set to 1000.
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Table 3.4: Small sample properties of the mean group estimator B : Experiment 4

T/N Bias (x 1000) RMSE (x 1000) PowERr SIZE
20 100 200 300 20 100 200 300 50 100 200 300 50 100 200 300

INFEASIBLE ESTIMATOR
50 3.073 1.965 2.254 1.226 | 37.17 26.36 18.29 14.44 | 0.239 0476 0.808 0.917 | 0.044 0.046 0.033 0.032
100 | 0.2937  1.201  0.4822 0.7025 | 245 16.99 12.69 9.811 | 0.515 0.828 0.985 0.999 | 0.05 0.041 0.059 0.041

200 |-0.1682 -0.9886 0.6583 0.2589 | 16.72 11.87 8&8.387 7.068 | 0.82 0.988 1 1 0.04 0.041 0.036 0.053
300 |-0.1418 0.2268 -0.2255 -0.1925 | 13.21 9.568 6.746 5.646 | 0.961 0.999 1 1 0.042 0.039 0.044 0.05
300 |-0.5534 0.158  0.2649 -0.1933 | 12.89 9.285 6.526 5.369 | 0.963 1 1 1 0.046 0.035 0.038 0.037

CCEMG ESTIMATOR
50 -50.76  -51.18 -49.94 -51.33 | 60.48 57.1 53.32 53.82|0.046 0.062 0.066 0.095 | 0.329 0.567 0.788 0.923
100 | -55.86  -54.05 -54.37 -53.56 | 60.29 56.38 55.94 54.67 | 0.063 0.056 0.11 0.114 | 0.66 0.905 0.992 0.999
200 | -56.63  -56.4  -54.43 -54.81 | 58.77 57.54 55.11 55.36 | 0.067 0.095 0.103 0.158 | 0.935 0.998 1 1
300 | -56.67 -55.36  -55.3  -55.35 | 58.03 56.12 55.73 55.68 | 0.069 0.089 0.149 0.198 | 0.989 1 1 1

CCEMG ESTIMATOR WITH W
50 -49.67  -49.86 -49.2 -50.75 | 60.02 56.12 52.71 53.32| 0.04 0.063 0.065 0.092 | 0.309 0.539 0.769 0.915
100 -55.07 -53.51 -53.98 -53.29 | 59.57 55.87 55.59 54.41 | 0.056 0.056 0.109 0.118 | 0.643 0.897 0.989 0.998
200 -55.99  -56.09 -54.24 -54.66 | 58.19 57.24 54.93 55.21 | 0.064 0.091 0.103 0.161 | 0.928 0.998 1 1
300 -56.08 -55.04 -55.1 -55.22 | 57.44 55.81 55.53 5556 | 0.062 0.083 0.141 0.194 | 0.987 1 1 1

NAIVE ESTIMATOR

20 103.9 103.4 100.8 102.1 | 1104 108.2 104.9 105.7 | 0.998 1 1 1 0.889 0.976 0.993 0.997
100 99.93 101.6 100.5 100.7 | 103.4 103.8 102.5 102.3 1 1 1 1 0.993 0.999 1 1
200 99.69 99.92 100.9 101.2 | 1014 101 101.9 102 1 1 1 1 1 1 1 1
300 100.8 100 100.9 100.2 | 101.9 100.8 101.4 100.8 1 1 1 1 1 1 1 1

Notes: The mean group estimator is defined in (3.5) and the data generating process in (3.16)-(3.19) and (3.20). The nominal size is 5% and
power is computed under the alternative 81 = 0.45. The number of replications is set to 1000.



Table 3.5: Small sample properties of the marginal effect ME: Experiment 1

T/N Bias (x 1000) RMSE (x 1000)

50 100 200 300 50 100 200 300

INFEASIBLE ESTIMATOR
50 -4.493  -4.719  -4979 -4.644 | 9.805 7.8 6.531 5.848
100 | -2.692 -2.537 -2.308 -2.541 | 6.626 5.056 3.777 3.58
200 -1.294  -1.265 -1.225 -1.196 | 4.445 3.284 2.488 2.131
300 | -1.024 -0.8424 -0.7979 -0.9292 | 3.682 2.678 1.959 1.733
CCEMG ESTIMATOR
50 -4.66  -4.805 -4.993 -4.721 | 9.959 7.796 6.534 5.897
100 -2.77 -2.55 -2.373  -2.591 | 6.604 5.046 3.811 3.63
200 -1.34 -1.383 -1.237 -1.242 | 4.488 3.349 2.513 2.163
300 | -1.085 -0.8714 -0.8167 -0.9492 | 3.687 2.713 1.988 1.73
CCEMG ESTIMATOR WITH W
50 -5.647 -5.855  -6.066 -5.75 1 10.53 8.489 7.397 6.772
100 | -3.403 -3.179 -2.975 -3.194 | 6.911 5.435 4.226 4.087
200 | -1.649 -1.717 -1.567  -1.57 | 4.595 3.503 2.691 2.368
300 | -1.296 -1.093 -1.035 -1.176 | 3.76 2.8 2.087 1.866
NAIVE ESTIMATOR
50 58.72  58.69 58.72 58.45 | 59.54 59.25 59.14 58.83
100 62.32 62.48 62.46 62.46 | 62.68 62.71 62.66 62.63
200 64.45  64.31 64.44 64.58 | 64.62 64.44 64.53 64.65
300 65.08  65.12 65.08 64.91 | 65.19 65.2 65.14 64.97
LINEAR PROBABILITY ESTIMATOR

50 5.597  5.295 5.031 5.31 10.82 835 6.71 6.484
100 2.568  2.686 2.862 2.657 | 6.798 5.286 4.224 3.728
200 1.355 1.326 1.477 1.445 | 4.618 3.411 2.719 2.342
300 | 0.7102 0.9556  1.006  0.8585 | 3.719 2.807 2.126 1.72

Notes: The mean group estimator of the average marginal effect is reported. The
data generating process in (3.15)-(3.19). The number of replications is set to 1000.
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Table 3.6: Small sample properties of the marginal effect ME: Experiment 2

T/N Bias (x 1000) RMSE (x 1000)
50 100 200 300 | 50 100 200 300

INFEASIBLE ESTIMATOR

50 -4.692  -5.052 -4.835 -4.808 | 9.854 7.935 6.483 6.022
100 | -2.917  -2.557 -2.488  -2.529 | 6.794 4.964 4.047 3.541
200 -1.41 -1.343  -1.287 -1.287 | 4.612 3.36 2.551 2.208
300 |-0.8469 -0.7705 -0.8212 -0.8939 | 3.466 2.548 1.914 1.661

CCEMG ESTIMATOR

50 -4.756  -4.992  -4.952 -4.803 | 9.786 7.843 6.546 5.996
100 -2.94  -2.609 -2.505 -2.558 | 6.86 4.958 4.016 3.557
200 -1.464 -1.394 -1.33 -1.318 | 4.671 3.406 2.585 2.234
300 |-0.9196 -0.7918 -0.8693 -0.9161 | 3.605 2.594 1.945 1.69

CCEMG ESTIMATOR WITH W

50 -5.804 -6.007 -6.014 -5.832 | 10.43 8.557 7.397 6.875
100 -3.53 -3.219 -3.128 -3.175 | 7.163 5.325 4.431 4.027
200 -1.775  -1.726 -1.66 -1.648 | 4.794 3.564 2.765 2.445
300 -1.139 -1.015 -1.088 -1.138 | 3.661 2.681 2.052 1.819

NAIVE ESTIMATOR

50 58.66 58.24 57.95 58.51 | 59.38 H8E8 5838 H&KT
100 61.96 62.48 62.32 62.35 | 62.32 62.72 62.52 62.52
200 64.4 64.32 64.46 64.42 | 64.57 64.44 64.55 64.51
300 65.09 65.06 65.09 65.09 | 65.19 65.13 65.15 65.14

LINEAR PROBABILITY ESTIMATOR

20 5.395 4.987 2.23 5.221 | 10.61 8.089 6.97 6.444
100 2.389 2.64 2.753 2.738 | 6.861 5.093 4.262 3.731
200 1.26 1.294 1.362 1.371 | 4.721 3.451 2.68 2.306
300 | 0.9391 1.033 0.9373 0.8923 | 3.663 2.752 2.02 1.707

Notes: The mean group estimator of the average marginal effect is reported. The
data generating process in (3.15)-(3.19) except that /1; = 0.5,Vi. The number of
replications is set to 1000.
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Table 3.7: Small sample properties of the marginal effect ME: Experiment 3

T/N Bias (x 1000) RMSE (x 1000)
50 100 200 300 | 50 100 200 300

INFEASIBLE ESTIMATOR

50 -4.772 4809 -4.849 -4.719 |9.979 7911 6.549 5.891
100 | -2.432 -2.463 -2.286 -2.444 |6.774 4916 3.816 3.47
200 | -1.018 -1.204 -1.364 -1.299 | 4.533 3.422 2.572 2.226
300 |-0.8342 -0.7421 -0.856 -0.8362 | 3.576 2.625 1.964 1.684

CCEMG ESTIMATOR

50 -6.241  -6.193 -6.335 -6.111 | 10.72 &.757 7.691 7.074
100 | -3.477  -3.55  -3.389 -3.475 | 7.345 5.563 4.61 4.261
200 -1.953  -2.055 -2.228 -2.156 | 4.964 3.782 3.152 2.823
300 | -1.623 -1.513 -1.654 -1.602 | 3.938 3.005 2.457 2.183

CCEMG ESTIMATOR WITH W

50 -5.933 -5.896 -5.936 -5.779 | 10.65 8.654 7.421 6.79
100 -3.064  -3.134 -2.921 -3.069 | 7.147 5.285 4.241 3.94
200 -1.461 -1.572  -1.712 -1.644 | 4.73 3.578 2.78 2.447
300 -1.135 -0.9892 -1.104 -1.073 | 3.682 2.718 2.084 1.816

NAIVE ESTIMATOR

50 36.29 36.76 36.51 36.93 | 37.98 3791 37.57 37.96
100 40.13 40.14  39.92 40.11 | 40.91 40.7 4041 40.59
200 42.18 41.73 41.76 41.75 | 42.59 42.03 41.99 41.96
300 42.57 4254 4247 4222 | 42.83 42.72 42.64 42.36

LINEAR PROBABILITY ESTIMATOR

50 4.417 4.362  4.256  4.429 |10.22 7.913 6.314 5.825
100 2.111 2.089 2243 2133 |6.985 4.957 3.929 3.342
200 0.95 0.8226 0.6537 0.7341 | 4.763 3.334 2.368 2.013
300 | 0.3361 0.4472 0.2769 0.3371 | 3.666 2.694 1.863 1.539

Notes: The mean group estimator of the average marginal effect is reported. The
data generating process in (3.15)-(3.19) except that kj;2 ~ N1D(0,0.1). The number
of replications is set to 1000.
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Table 3.8: Small sample properties of the marginal effect ME: Experiment 4

T/N Bias (x 1000) RMSE (x 1000)
50 100 200 300 | 50 100 200 300

INFEASIBLE ESTIMATOR

50 -4.743  -4.935 -4.886 -5.094 | 9.767 7.852 6.417 6.088
100 | -2.571  -2.389 -2.552 -2.476 | 6.539 4.8 4.027 3.445
200 -1.33  -1.549 -1.118 -1.235 | 4.432 3.378 2.388 2.154
300 |-0.8832 -0.8189 -0.9177 -0.9145 | 3.476 2.571 1.944 1.705

CCEMG ESTIMATOR

50 -4.791  -4977 -4.819  -5.15 9.53 7.837 6.319 6.125
100 | -2.593  -2.442 -2.587 -2.485 | 6.605 4.795 4.063 3.445
200 -14 -1.566 -1.134 -1.253 | 4.497 3.368 2.418 2.19
300 |-0.9236 -0.8231 -0.9073 -0.9269 | 3.557 2.622 1.985 1.718

CCEMG ESTIMATOR WITH W

50 -5.82 -5.880 -5.839 -6.156 | 10.17 &.501 7.129 6.993
100 -3.197 -3.024 -3.189 -3.071 | 6.841 5.121 4.489 3.888
200 -1.727 -1.89 -1.461  -1.577 | 4.622 3.536 2.586 2.395
300 -1.136  -1.038 -1.126 -1.146 | 3.615 2.699 2.092 1.845

NAIVE ESTIMATOR

50 54.39 54.38 53.31 54.09 55.5  55.22 54.09 54.83
100 57.76 58.14 57.96 57.88 | 5837 5857 5834 58.21
200 59.55 59.67 59.98 60.09 | 59.84 59.87 60.17 60.26
300 60.54 60.21 60.59 60.39 | 60.72 60.35 60.7 60.5

LINEAR PROBABILITY ESTIMATOR

50 4.826 4.529 4.796 4.322 19.904 7.927 6.499 5.603
100 2.434 2.58 2.453 2539 | 6.60 497 4.075 3.555
200 1.242 1.027 1.457 1.316 | 4.592 3.198 2.648 2.253
300 | 0.8096 0.9192 0.8318 0.814 | 3.636 2.697 1.997 1.684

Notes: The mean group estimator of the average marginal effect is is reported. The
data generating process in (3.16)-(3.19) and (3.20). The number of replications is
set to 1000.
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Table 3.9: The effect of yields on bond issuance for US corporates in the
pre-crisis period

‘ All Financial ~ Other  All (no factors)
Coefficient estimates
Yield -0.162 -0.148 -0.217 -0.091
(-1.938) (-0.853) (-2.122) (-2.653)
Size 0.064 0.006 0.064 0.091
(0.281) (0.168) (0.195) (0.543)
Marginal effects
Yield -0.018 -0.006 -0.025 -0.013
Size 0.015 -0.003 0.02 0.021
Observations 321 62 221 321

Notes: The dependent variable is 1 if a firm issues a bond in a particular month
and zero otherwise. Yield is the the firm-specific corporate bond yield and size is
measured by assets. All specification include a measure of credit supply (leverage in
the broker-dealer market) and the federal funds rate as a common factor. The first
column uses all firms, the second column uses financial sector firms and the third
column uses all other firms (excluding mining and agriculture). The last column
reports the results when the common unobserved factors are omitted. t-statistics
are shown in parenthesis.

Table 3.10: The effect of yields on bond issuance for US corporates in the
pre-crisis period by credit rating

All Financial Other
High Low ‘ High Low ‘ High Low
Coeflicient estimates
Yield 0.017 -0.224 | -0.185  -0.026 0.042 -0.258
(0.177) (-2.404) | (-0.79) (-0.175) | (0.409) (-1.929)
Size 0.009 -0.174 0.062 0.006 0.013 -0.272
(0.091) (-1.065) | (1.104) (0.298) (0.1)  (-1.065)
Marginal effects
Yield 0.001 -0.018 | -0.023 0.01 0.004 -0.02
Size -0.005  -0.024 0.006 0 -0.006  -0.037
Observations 135 135 27 28 99 85

Notes: The dependent variable is 1 if a firm issues a bond in a particular month and
zero otherwise. Yield is the firm-specific corporate bond yield and size is measured
by assets. All specification include a measure of credit supply (leverage in the broker-
dealer market) and the federal funds rate as a common factor. Columns 1-2 use all
firms, columns 3-4 use financial sector firms and columns 5-6 use all other firms
(excluding mining and agriculture). Low (high) means that the issuer has a credit
rating below (above) the sample median. t-statistics are shown in parenthesis.
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Table 3.11: The effect of yields on bond issuance for US corporates in the
post-crisis period

| Al Financial ~ Other  All (no factors)

Coefficient estimates

Yield -0.043 -0.004 -0.099 0.011
(-1.056)  (-0.074) (-1.894) (0.47)
Size -0.194 -0.028 -0.273 -0.115
(-2.62)  (-0.488)  (-2.683) (-1.945)
Marginal effects
Yield -0.007 0.003 -0.015 -0.002
Size -0.024 -0.006 -0.032 -0.015
Observations 378 72 266 378

Notes: The dependent variable is 1 if a firm issues a bond in a particular month
and zero otherwise. Yield is the firm-specific corporate bond yield and size is
measured by assets. All specification include a measure of credit supply (leverage in
the broker-dealer market) and the change in Federal Reserve Holdings of Treasury
Notes as common factors. The first column uses all firms, the second column uses
financial sector firms and the third column uses all other firms (excluding mining
and agriculture). The last column reports the results when the common unobserved
factors are omitted. t-statistics are shown in parenthesis.

Table 3.12: The effect of yields on bond issuance for US corporates in the
post-crisis period by credit rating

All Financial Other
High Low ‘ High Low ‘ High Low

Coeflicient estimates

Yield 0031 -0.085 | 0.052 -0.045 | 0.016  -0.205
(0.6)  (-1.174) | (0.599) (-0.501) | (0.254) (-2.049)
Size -0.007 -0.196 | -0.032  -0.045 | -0.036  -0.292

(-0.06) (-4.37) | (-0.314) (-1.487) | (-0.243) (-4.875)

Marginal effects

Yield 0.004 -0.012 0.01 -0.001 0.002 -0.028
Size -0.004 -0.025 -0.01 -0.006 -0.006 -0.036
Observations 160 160 40 25 112 106

Notes: The dependent variable is 1 if a firm issues a bond in a particular month and
zero otherwise. Yield the firm-specific corporate bond yield and size is measured by
assets. All specification include a measure of credit supply (leverage in the broker-
dealer market) and the change in Federal Reserve Holdings of Treasury Notes as
common factors. Columns 1-2 use all firms, columns 3-4 use financial sector firms
and columns 5-6 use all other firms (excluding mining and agriculture). Low (high)
means that the issuer has a credit rating below (above) the sample median. t-
statistics are shown in parenthesis.
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Figure 3.1: Number of bond issuances per month and cross-sectional average of
issuer-specific bond yields
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Figure 3.2: Cross-sectional distribution of issuer-specific bond yields
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Figure 3.3: Unconditional correlation between the number of bond issuances per
month and cross-sectional average of issuer-specific bond yields
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Figure 3.4: Histogram for the number of issuances by firm
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A.1 Proofs

In this appendix, we derive the main results of our theory. In particular, we provide
a detailed proof of Theorems 1.5.1 and 1.5.2, which characterize the asymptotic
behaviour of our estimators. For the proof, we require a series of uniform convergence
results which are derived in Appendix B. Throughout the appendix, the symbol C'
is used to denote a universal real constant which may take a different value on each
occurrence. Moreover, we let I;, = [C1h, 1 — C1h] denote the interior of the support
of the regressors X;; and use I; = [0, 1]\ I, to denote the boundary region. Finally,

we frequently make use of the shorthand kg(z) = f_(;;f)/ "K (p)dep.

Proof of Theorem 1.5.1

We restrict attention to the proof for the Nadaraya-Watson based estimators. The
local linear case can be handled by similar arguments.

To start with, we list some auxiliary results needed to derive the statements
(1.16) and (1.17) of Theorem 1.5.1. The proof of these results is postponed until
the arguments for Theorem 1.5.1 are completed. The following uniform expansion

of gr(z) — gr(x) forms the basis of our arguments.

Proposition Al. [t holds that

n

Gu(r) — () =3 —k ]

‘ ka(xﬁ ST Kn(Xi — 0)ea+ Rilz), (A1)

where the remainder satisfies sup,ey, |[Ri(2)| = 0,(1/vnTh) and sup,ee
Op(h).

Ry ()] =

Using the uniform expansion of Proposition A1, we are able to derive the asymptotic

properties of g. These are summarized in the next proposition.

Proposition A2. [t holds that

sup [70) = o(2)]| = 0,y ) (A2

9(x) — g(@)|| = Op(h). (A.3)

sup
zely

Moreover, for any fived x € (0,1),
nTh(g(r) - g(x)) == N(0.V (). (A4)

. n o2 (z .
k and Vi (z) = || K||3im, e (n Y i, wkiwli%) with

77777

o?(x) = El[e%| X = x].

(2
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Proposition A1l can further be used to characterize the convergence behaviour of the

matrices ..

Proposition A3. [t holds that

IS -5 = 0 (=), (A5)

Finally, Proposition A3 together with a Taylor expansion argument yields the

following result.

Proposition A4. [t holds that

15 =511 = 0, =) (A.6)
I3 =2l = 0y( =) (A7)

with A= (M, ..., x)" and A= (A, ..., \g)".

With the help of the above propositions, it is now straightforward to prove the
statements (1.16) and (1.17) of Theorem 1.5.1. We start with the proof of (1.16):
Recalling that the matrix of eigenvectors S converges to a limit S* and using (A.2)

together with (A.6), we arrive at

sup [|7i(x) — ()| < |S" = 5" sup [|g(x)]

:EE]}L J,’Elh

i R B lognT
157l sup 5(0) — 90 - o,(y/ 5T

Similarly, we obtain that

VATH(E() — u(2) = VaTh(F — ST)3(x) + SVaTh(G(x) - 9(x))
= S"VnTh(g(x) — g(x)) + 0,(1).

Since S converges to S*, the normality result (A.4) implies that
S"VnTh(g(x) = g(x)) == N(0,(5) 'V (2)57),

which yields (1.17). O

Proof of Proposition A1l

Let ﬁ(m) =T! Zthl KXy —2), Y=Y, -Y, - Y, + Y and write

k() — gr(2) = Qrv(2) + Qi) + Qry(2) + Qra + Qo
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where

Qv (@ Zwkz ZKh i — 2)eu/ filz)

Qup(x) = Z rizp Z Kn(Xa = a){mi(Xa) = mi(x)}/ fi(w)

Q)= 3w 3 Ko=)+ 0T} )
Qo = iwki{uo +o; - Y}

Qk,m = <z:;wkz> {? - ,Mo}-

In what follows, we analyze these five terms one after the other.

(i) It holds that

Qry(x Zwm ZKh i — x)ei/Ko() fi(z) + Ry (2),

where the remainder term is given by

with

X
<3
—~
&
Il
]
&
N
—
=
)
3
v
/\
T MH
|
=
f’
N

and

(B) (1) - i ko() fi(z) — E[fi(z)] . Xit — 2)eq
Ryl Z d () fi (2)E[ ()] >< Z =)

The remainder term has the property that

31615 |Ry.v(z)] = op< ) (A.8)
sup Ry v (x ‘ = (A.9)
el

We first derive (A.8): To start with, straightforward calculations yield that max;<;<y,
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sup,er, [Ko(2) fi(x) — E[fi(2)]| = O,(h?). Together with Lemma B1 in Appendix B,
this directly implies that sup,;, |R,(€B‘} (z)| = 0,(1/v/nTh). Moreover, by Lemma B3,
it holds that sup,;, ]R,(K/) (z)| = 0,(1/v/nTh) for m = 1,..., M. Finally, if M is
chosen sufficiently large, then an application of Lemma B1 immediately shows that
Sup,er, | R M+1)( )| = 0,(1/V/nTh) as well. (A.9) follows by analogous arguments.

(ii) We next show that

To see this, decompose @ g(x) into the following two components:

Qus(z) = QL x(2) + QP%(x)

with
T

) (2) = Zwk% S (nl(Xa —2) {mi(X) —mi()}

— ]E[Kh(Xit — x){mi(Xit) - m,(:ﬂ)}])/ﬁ(if)

(2) Zwkz ZE Kp(Xir — ) {mi(Xa mz@)}]/ﬁ(ﬂv)

Exploiting the smoothness conditions on the functions m; and f; in a standard way,
the term QISB( ) can be shown to satisfy SqueIh |Q(2) (z)] = O, (h*) = 0,(1/vV/nTh)
Qi ()] = Op(h). Moreover, Qi p(v) = @y (1) + Qpy (x) with

and sup,c e

0= 3 g X (= () - o)

— E[Kh(Xit — x){mi(Xit) — mz(ﬁ)}})/’%(x)f (z)

() () N (B0 = TN LSS (e e
i@ =3 (" /fo(a:)fz(a:)fz(:)s)) Z( i = o) {mi(Xa) = ()}

— E[K(Xa — 2) {mi(Xa)) = mi(@)}]).

Using the proof strategy of Lemma B2, the term Q,Sg@) can be shown to
be of the order O,(hy/lognT/nTh) = o,(1/v/nTh) uniformly for = € [0,1].

Moreover, applying Lemma B1, it is straightforward to see that sup ¢ 1 |Q,(:7£) (x)] =

op(1/vVnTh) as well.
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(ili) We now turn to the analysis of @y (x). In particular, we show that

1
sup |Qr(z)] = o <—>
x€[071}| k(@) = 0p s

To do so, first note that

n

Qi (x Zwm ZKh it — {% Xit) + e }/fz

]=1

This expression can be decomposed as follows: Q. (x) = Q,(:i(x) —i—Q,%(m) —i—Q,ﬂ(m),

where

n

(1) Zwlm ZKh zt_aj {%Z m] ]t +€]t }/HO f’

Jj=1

(2) Zw;ﬁ ZKh it — { 1( i(Xa) + 5“)} ( :(133) N Ko(x)lfi(w)>

(3) Zwm ZKh =) {1 z;(m](th) Jrgjt)}(fz’(lx) - /fo(if)lfi(x))
J#i

To analyze the term Q,(:z/(x), we further split it up into two components: Q,(:L (x) =
Qi (@) + Q) (x), where

0 () %Z(Z fl (X 7) — B[R (X — o))

K
=1 = i=1 of
n

X {%Z(mj(th) +5jt)}
QY (@ e <an Y iE[Kh(Xit — )] (m;(Xe) +€jt)>‘

=1 7j=1 t=1

3

The term le a)( ) can be handled by similar techniques as applied in Lemma B3.
The details are summarized in Lemma B4 which yields that sup,¢p 1 |Q 1, a)( )| =
0,(1/v/nTh). Moreover, it is straightforward to verify that SUD,e(0,1] \QM)( )| =
O,(1/v/nT). Turning to the expression Q,(fi(x), we can easily see with the
help of Lemma B1 that sup,cq |Q§€23Y(x)| = 0,(1/v/nTh). To prove that
SUD,e[0,1] |Q,(€3;(:1:)| = 0,(1/v/nTh), some rather involved arguments are needed which
are presented in Lemma B5. Setting ¢;(x) = (fi(x)) ™' —(rko(z) fi(x)) " in this lemma
yields the result.

Finally, it is trivial to see that Qo = O,(1/vnT') as well as Qy ., = Op(1/VnT).
Together with (i)—(iii), this yields the expansion (A.1). O
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Proof of Proposition A2

The proof easily follows with the help of the uniform expansion from Proposition
Al. The latter says that

k() — ge(z) = Wi v (7) + Re(7),

where

Wiy (x) = Zwki% Z Kn(Xy — )it/ ko) fi(x)

and the remainder term Ry(z) satisfies sup,c;, [Ri(2)| = 0,(1/vnTh) as well as
Sup,e e | Ri(2)] = Op(h). Applying Lemma B2 to Wiy (x), we immediately obtain

that sup,ep1) (Wi (2)| = Op(y/lognT/nTh). This yields the uniform convergence
results (A.2) and (A.3). Furthermore, standard arguments show that

" 2
VnThWiy (z) — N(o, |3 lim >~ w,zc}(%) )
i=1 ¢

From this, the normality result (A.4) easily follows. O

Proof of Proposition A3

It holds that
S — T = / (@) () () — / g (@) g1 (w)w(z)dz
- / [G(2) — g (2)|Gu(x)w(z)da +

/ 00(2) [Gi() — gu()] w(a)de
_ / [3(2) — gu(2)] (&) (z)dz + / 0(@) [Gi(2) — 91(2)]w(z)dz

+0p<\/%),

where the last equality follows by Proposition A2. Using the uniform expansion of

Proposition Al, we obtain

/ [01(z) — gi(2)] gi(z)w(z)dz = Jy + R

with
n 1 T -
I =i 3 ([ KX = 2)aa) (la) @) (e o

and R = [ gi(z) Re(x)w(z)dz. Assup,e;, |Ri(x)] = 0p(1/v/nTh) and SUP,ere | Bk(2)| =
O,(h), we have that R = 0,(1/vnTh). Moreover, applying Chebychev’s inequality
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and exploiting the mixing conditions on the data with the help of Davydov’s
inequality (see Corollary 1.1 in Bosq (1998)), it is not difficult to see that Jy =
0p(1/v/nTh). This completes the proof. O

Proof of Proposition A4

Let v(A) = vec(A) be the vectorized representation of a K x K matrix A. There are
fixed vector-valued functions fi(-) and scalar functions ¢y (-) with first and second

derivatives existing and being continuous in a neighbourhood of v(¥*) such that

sp = fr(v()) and X, = ¢ (v(X))
5= fwE) and A =Y (w(E))

(cp. Magnus (1985)). In what follows, we show that |5}, — si|| = 0,(1/v/nTh) for all
k =1,..., K, which immediately yields (A.6). The result (A.7) for the estimates
of the eigenvalues follows by exactly the same argument. From Proposition A3, we
know that

[0(8) = o) = 0,(—~=):

As f is continuously differentiable in a neighbourhood of v(¥*), a first-order Taylor

expansion yields

Sk — S = fk(U(i)) — fr(v(¥)) = fi.6) [U@> - U(E)]

~

with £ being an intermediate point between v(X) and v(X). Since f;(§)— fi(v(X*)) =

0p(1), we immediately arrive at

15 = sull = 0y (5= =

Proof of Theorem 1.5.2

We again restrict attention to the Nadaraya-Watson based case, the arguments for

the local linear case being essentially the same. Write
VT (Bi = 8;) = VT(B: — 5:) + VT(B; = 5),

where B; is the infeasible parameter estimator defined in (1.11). In what follows, we

analyze the two terms on the right-hand side separately.
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(i) First consider the term v/T(53; — 3;). It holds that

G- B
= (A KRR S R (X X))}V
H (G rXaaxax))  — (5 S aXouXaux)) )
< = D AKX
Here,
LT > m(Xa)u(Xa) Yt = Ly + Ly + Ly + Ly
with
1 T
L, = ﬁ ; W(Xi )N(Xit)git
1 T
Ly = ﬁ tzz; W(Xit)M(Xit)mi(X t)
Ly = % ; (X)) p(Xie) (Mo + 7= 7t>
Ly = (% ; (X)) (X ))\/T(Ozl -Y, + ?)

It is straightforward to see that L, = O,(1), Ly = O,(V/T), Ls = 0,(1) and L, =
O,(1). Hence,

% Y m(Xa)u(Xa) Y = Op(VT). (A.10)
As sup,e;, [[1(z) — p(x)| = O,(y/log n'T /nTh) = 0,(1/v/T), we further obtain that
= LEHZERLEn) = > (XX
lognT 1
- OP(\/ nTh ) - Of’(ﬁ) (A-11)
as well as .
—= 2K — (X} = 0y(1) (A12)

Combining (A.10)~(A.12) yields vT(B; — 8;) = 0,(1).

117



(i) We next turn to v/T(3; — ;). Write

Z 71' (Xit)T)_l(Ll + L3 + L4)

t=1

VT (B, — (

N =

with Ly, Ls and L, introduced above. Since Ls = 0,(1) and T~ S (X)) p( Xit) —

E[m(Xit)pu(Xit)], we can rewrite Ly as

T
1
Ly = —E[r(X; Z Xit) + €i) + 0p(1).

t=1

ﬂ

This yields that

1
Li+ L3+ Ly = ﬁZXit"i_Op(l)

where xir = (m(Xie) u(Xit) — E[m(Xie) u(Xie)])€ir — E[m (Xir) p(Xie)|mi(Xie). Applying

a central limit theorem, we now arrive at
VI(B; = 5i) =5 N(O,I7 (7)),

where the matrices T'; and ¥, are given by T'; = E[m(X;) (X)) u(Xi)'] and ¥; =
Zi_oo Cov (X0 Xit)- L]

Proof of Theorem 1.6.2

The same arguments as for the proof of Proposition A3 show that

IS -1 = 0 (=).

Moreover, letting N> > X? be the eigenvalues of the matrix Y and Xl >

A the eigenvalues of 5, we have that

v

%= [ ey

and A\, = 0 for k = K +1,..., K. Finally, note that the mapping of symmetric
matrices to their eigenvalues is Lipschitz continuous. In particular, let A and B be
any real symmetric K x K matrices and let A\ (A) > Mp(A) > ... > A\g(A) and
AM(B) > Xa(B) > ... > Ag(B) be the corresponding eigenvalues. Then there exists
a constant L independent of A and B such that

[AR(A) = A(B)| < Lj|A = B,
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Combining the above remarks, we arrive at

_ ~ o~ - - = 1
[ Fi@uta)ds = = R =%l < IS ) = o0, (—=).

foral k=K +1,..., K. O

A.2 Supplementary results on uniform conver-

gence

In this appendix, we list some lemmas on uniform convergence which are needed
to derive the main theorems. To prove the lemmas, we use a covering argument
together with an exponential inequality, thus following the common strategy to be
found for example in Bosq (1998), Masry (1996) or Hansen (2008). For the proof
of Lemmas B1 and B2, these standard arguments have to be modified only slightly.
For the proof of Lemmas B3-B5 in contrast, some rather intricate and non-standard
arguments are needed to get the overall strategy to work.

We formulate the results for a general array {(Xu, Zu)} = {(Xu, Zu), @ =

1,...,n, t=1,...,T} which satisfies the following conditions:

(A1’) The data {(Xi, Zit)} are independent across i. Moreover, they are strictly
stationary and strongly mixing in the time direction. Let a;(k) for k =1,2,...
be the mixing coefficients of the time series {(Xj, Zi),t = 1,...,T} of the
i-th individual. It holds that a;(k) < a(k) for all @ = 1,...,n, where the

coefficients a(k) decay exponentially fast to zero as k — oc.

(A4’) For some 6 > 5 and for all | € Z,

max sup ]E[|Zit|6|Xit = x} <(C<o
1sisn 4e(0,1]

max  sup E“Zit”Xit =, Xit = 33,} <C<o
1<i<n z,x’€[0,1]

max sup E“ZitZitHHXit =x, Xy = x'] < C < oo,
1<i<n z,x’€[0,1]

where C' is a sufficiently large constant independent of /.

In addition, we suppose that the variables X;; and (X;, X;;4;) have densities f; and
fix which satisfy (A2) and that the kernel K and the dimensions n and 7' fulfill
(A5)—(AT7).

Throughout the appendix, we assume that the above conditions are satisfied.

We now formulate the various results:
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Lemma B1. For kernel averages V;(x) of the form

E Kh it T lt7

it holds that
max sup |¥;(z) — E[U;(z)]]| = 0,(1). (A.13)

ISISn oo,

If the variables Zy are bounded, i.e., if |Zy| < C for some constant C' independent

of © and t, then we even have that

B logT'
max zse%pl] Ui(z) — E[¥;(2)])| = Op<\/ T—h> (A.14)

Proof of Lemma B1l. The proof proceeds by slightly modifying standard
arguments to derive uniform convergence rates for kernel estimators. We are thus
content with giving some remarks on the necessary modifications.

We start with the proof of (A.14). Write

P(max sup |W;(z) — E[W,(z) >C’aT> Z[P’( sup |U;(z i(2))| >CaT>

1sisn geo,1] z€[0,1]

with ar = \/W. Going along the lines of the standard proving strategy, the
probabilities on the right-hand side can be bounded by a null sequence {cy} which
does not depend on ¢. Under our conditions, this sequence can be chosen such that
{ner} is a null sequence as well. This yields the result.

We now turn to (A.13). As the variables Z;; are not bounded, we have to replace
them by truncated versions ZZ% = Zyl(|Zi| < T,r) in afirst step. Since we maximize
over ¢, the truncation sequence 7, » must be chosen to go to infinity much faster than
in the standard case where i is fixed. In particular, we take 7,7 = (nT)Y =9 for
some small § > 0. Applying the same proving strategy as for (35) to the truncated
version of W;(x), one can see that the arguments still go through. However, as the

truncation points 7, r diverge much faster than in the standard case with fixed 1,
the convergence rate turns out to be slower than the standard rate y/logT/Th. O

Lemma B2. Let V(z) be a kernel average of the form

A8 ) LALIREE

zltl

It holds that

log nT)

up [¥(x) ~ B[] = 0,(1/ 50

z€(0,1]

Proof of Lemma B2. As the proof closely follows standard arguments, we only
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provide a short sketch: Let a, r = \/lognT/nTh and write ¥(z) = U=(z) 4+ U~ (z)
with

n T
1
= =2 Y KX — ) Zul (| Zu] < Turr)

i=1 t=1

nTZZKh it ZtI(|Zzt| >TnT>a

i=1 t=1

where the truncation sequence 7, 7 is given by 7,7 = (nT)l/ (=9 with some small
6 > 0. We thus have

U(x) — E[¥(2)] = (V=(z) — E[U=(2)]) + (V7 (z) — B[V~ (2))).

Straightforward arguments show that sup,cp 1) [V~ (2) — E[¥~(z)]] = Op(anr). To
analyze the term sup,cpy [¥=(2) — E[¥=(x)]|, we cover the unit interval by a grid
of points G, v that gets finer and finer as the sample size increases. We then replace
the supremum over x by the maximum over the grid points € G,, 7 and show that
the resulting error is negligible. To complete the proof, we write

P max [U5(x) - E[=(2)]| > Canr) < 3 P(|¥5(z) - EW=(@)]] > Canr)

zeGy T
xGGn’T

and bound the probabilities P(|¥=(z) —E[V=(z)]| > Ca, 1) for each grid point with

the help of an exponential inequality. To do so, let

n T

S (2) - B0 ()] = 3. 3 Wala)

i=1 t=1

with Wip(2) = S { Kn(Xie — 2) Ziel (| Zit] < ) — BIEW (Xt — 2) ZiL(| Zse| < 707)]}
and split up the expression Zthl W, (x) into a growing number of blocks of increasing
size. Using Bradley’s lemma (see Lemma 1.2 in Bosq (1998)), we can replace these

blocks by independent versions and apply an exponential inequality. [l

Lemma B3. Let
1 n
== V()W
2 S ViWitz)

with

/\
[—

T
Z Xy — ) — E[Ky(Xu — 2)) )
—1
| I
=7 Z Kn(X Zit
for some fized natural number v and assume that the variables Zy satisfy B[ Zy| Xy] =
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0. Then

1
sup |¥(x)| =o (—)
xE[O,l]‘ ( )| P\V/nTh

Proof of Lemma B3. Throughout the proof, we use the following notation. Let

Cr: the event that max;sup, |Vi(x)"/*| < C'\/log T/Th and
max; sup, T~ S Kp(Xy —2) < C

Cir : the event that sup, |Vi(z)/*| < C'\/log T/Th and
sup, T 3oy Kn(Xiy —2) < C

for a fixed large constant C'. Moreover, write €. and C§ to denote the complements
of Cr and C,r, respectively. Inspecting the proof of Lemma B1, it is easily seen that
P(C%) = o(1) and P(Cr) = o(1), given that the constant C' in the definition of the
events Cr and C;r is chosen sufficiently large. With this notation at hand, we obtain
that

IF’( sup |¥(z)| > Man7T> < IP’( sup |¥(z)| > Man’T,GT)
z€[0,1] z€[0,1]

—HP’( sup ‘\Il ‘ > Man,T,€%>

z€[0,1]

= IP( sup {\I/(x)‘ > May,r, GT) +o(1),

z€[0,1]

where a, 7 = (lognTv/nTh)™' and M is a large positive constant. Moreover,

IP( sup |\I/(x)| > Maan,€T> :IP’< sup —ZV ’ > ManT>€T>
z€[0,1] x€[0,1]
:IP’( sup —ZI (Cr)Vi(x)W;(z )’>M@nT)
z€[0,1]
S]P’( sup —Z[ i) Wi(x )‘>ManT>.

z€[0,1]

Now write

Y H€ Vi) Wile) = Q(e) + @ (0)

with the two terms on the right-hand side being defined as

_ %Znemv;(x)vvf(x)
= % Z 1(Cir) Vi(z)W; ().
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Here, W;(z) = W=(z) + W7 (x) with

1 T
== ZKh(Xit —1)Z
ZKh iw— 1) Z;;

and Zy = Z5 + Z2 with

75 = Zyl(| Zy| < o) — E[Zud (| Zi] < Tor)| Xid]
Zi = Zit](’Zit| > Tn,T) - E[Zitj(lzit| > Tn,T)|Xit]7

)

where the truncation sequence 7,7 is chosen to equal 7,7 = (nT)Y =9 for some

small § > 0. We now arrive at

ZI a)Vi@)Wi(a)| > Mayr)

< IP( sup |Q=(z)| > %an,T> +]P( sup |Q” (z)| > Man,T).

z€0,1] 2 z€[0,1] 2

< sup
z€0,1]' T

In the remainder of the proof, we show that the two terms on the right-hand side
converge to zero as the sample size goes to infinity. To do so, we proceed in several

steps.

Step 1. We start by considering the term @~ (x). It holds that

< sup
xz€[0,1]

Z 1) )(% ZT: Ki(Xi = 2)Zul(1Za] > o)) | > Canr)
t=1

§IP’<]ZZ»t| >Tanorsome1§i§nand1§t§T>

<SS B(Zi] > ) < ZZE['Z”' | < C% S0

=1 t=1 =1 t=1

In addition,

1 n
sup _Z[ ( ZKh it — [Zt[(]th]>TnT)|th]>‘
z€[0,1] ' T el
logT'
< O\ g e s Bl Zall(1Za] > 7o)Xl
<C logT 1
"Th 19 T
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where the third line follows by (A4’). As a result,

IP’( sup |Q”(z)| > %an,T> =o(1)

z€[0,1] 2
for M sufficiently large.

Step 2. We now turn to the analysis of the term Q=(z). Cover the region [0, 1] with
open intervals J; (I = 1,..., L, ) of length C/L, 1 and let x; be the midpoint of
the interval J;. Then

sup |Q=(z)] < max [Q%(x)|+ max sup|Q=(x) — Q% (z)|.

z€[0,1] I<I<Ln,r <I<Ln T z€eJ)
For any point z € J;, we have
Cr, Cr
< < n, T n,T
H(EC)|Vi(r) W () = Vila) Wi ()| < =5l — ol < g
Therefore,
Cr T
< _N=< < L
15:2355,T§25|Q (2) = Q=(z)] < 73 Tor

Choosing L,,r — oo with L, 7 = C7, 1 /a, rh?, we obtain that

< <
| dnax 225@ (z) = Q%(x)| < Capr

If we pick the constant M large enough, we thus arrive at

IP’( sup |Q=(z)| > %an,T> < IP’( max |Q=(z;)| > M%g) +o(1).

z€[0,1] 2 I<ISLy,r 4

Step 3. It remains to show that

IP( max ]Q<(ml)\>%an7gp>:0(1)

1<I<Lp 7 4

for some large fixed constant M. To do so, we write

M
IP’( max |Q=(z;)| > Zan’T> <P +P

I<I<Ln,r

with

P, = IP’( max |Q=(z;) — EQ=(z;)| > %%,T)

1<ISLpr

M
Py, = IP( max |EQ=(x)| > —an7T>.

1<I<Ln,r 8
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First consider the term P,. If v > 3, then

BQ=(a0) = |~ S Bl (€ar) Vil W (o)

IN

% Z E[I(Cir)Vi(z)?] 2R WE(2)?] 1/2

C rlogT\v/?
< (== — .
- w/Th( Th ) olanr)

For v < 2, we write
150w = [ D Bl € Va0
< |5 B + [ 3 Bl Vil
If v = 1. we have

[E[Vi(z) W ()] = ‘%2 > E[(Kn(Xis — 21) — BIKu(Xe — 20))) Kn(Xi — 21) Z5]

_ % S E[(Kn(Xis — 1) — B[Kn(Xis — 20)]) Kn(X — 21)Z5]
s:gt;é:tl
ClogT
>~ T - 0<an,T)7

the last line following with the help of Davydov’s inequality and (A4’). For v = 2,
it holds that

E[Vi(a) Wi (2)]| = )% > E[(Kn(Xis — x1) — B[K,(Xis — 2)])

s,s't=1
X (Kh(Xis’ - l‘z) - E[Kh(Xis’ - l’z)])Kh(Xit - Iz)Zzﬂ
CT(logT)? log T\ 2
<2V ) o =2n) =
=T R C( Th ) o(@n);

the last line again following by Davydov’s inequality and (A4’). In addition,

E[1(C5)Vi(a) W ()] < E[I(C5)] PRV (a1) W= (a)] /2.

)

Repeating the usual strategy to prove uniform convergence for kernel estimates,
it can be shown that under our assumptions, E[I(C%)] = P(C%) < T—C for an
arbitrarily large constant C. This yields that E[I(CS)Vi(z) W= (1) = o(anr),
which in turn implies that [EQ=(z;)| = o(a,r) for v = 1,2. As a result, P, = o(1)
for any v > 1.
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To cope with the term P;, we apply the bound

L ’

P < 3 P(105(m) ~ EQS(m)| > ranr)
=1

and consider the probability P(|Q=(z;) — EQ=(x;)| > Ma, 1/8) for an arbitrary
fixed grid point x;. Write

Q= (z) —EQ>(z) = Z&(@)

with &(z;) = n~{I(Cir)Vi(z))W=(x;) — E[I(Cir)Vi(x))W=(2)]}. Recalling the

definition of the events C;r, the variables &;(x;) can be bounded as follows:

logT' 7,7 C =
Gl@)l < O == < (wThy - Cnt

with some sufficiently large constant C' and a small § > 0, given that n > T%° and
6 >5. With A\, 7 = 6;}/2, we obtain that A, 7|&(2;)] < 1/2. Asexp(x) < 1+z+2?
for |x| < 1/2,

E[GXP (£ An,TSi(ajl))] <14 A pEE(2)?] < exp ()\i,TE[&(l“z)Q])-

Using this together with Markov’s inequality, we arrive at
(S st o)
< oxp (= Fhnrans) {E[exp (An,TiEn;&m))} +E[exp (= g Zf;@(xz))] }
<200 (M ranr) [Lexp (42 Ele )
— 2exp ( - %An,mw) exp ()\ij ZE[@(@«,)Q]).

Now note that

)

Bl (n)?] < g BU(Cr)Vilm) W ()] <
and

E[WE (21)%] = : > E[Kn(Xis — 1) Kn(Xa — 21) 25 25|

s it

N |
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T
! C
=73 Z COV(Kh(Xis — )75, Kp(Xi — xl)Z;) < -

s,t=1

Hence, E[¢;(1;)?] < C'logT/(nTh)?* and

" log T (nT)%
)\i,T;E[fi(xl)Z] < C(nTh)H%n(ThP <C Th o(1).

Moreover,

\ (nTh)l/ZJré
nT0nT = log nT(nTh)'/? o

at polynomial rate. As a result,
- M
P[] > Your) scr
;5 (Il) 3 AnT | >

where the constant p > 0 can be chosen arbitrarily large. This completes the proof.
O

Lemma B4. Let .
1
(r) = T ; Vi(x)Ws,

where Wy = % Yoy Zi and
1 n

i=1

Assume that the variables Z;; have mean zero. Then it holds that

Proof of Lemma B4. The proof is similar to that of Lemma B3 with the roles of
i and t being reversed. Let a, 7 = (lognTv/nTh)™" and 7,7 = (nT)"=% for some
small 6 > 0. Arguments analogous to those for Step 1 in the proof of Lemma B3
yield that W(x) can be replaced by the term

1 T

Q=(r) = = ;T(th)‘/}(w)wﬁ
where W= = 13" 72 with Z5; = Zul(|Zu| < Tax) — E[Zul(|Zu| < Tur)] and
Cin is the event that sup, |Vi(z)| < Cy/logn/nh for some sufficiently large constant
C. Next cover the unit interval by a grid of L, 7 = C7,7/a,7h?® points. As in the
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proof of Lemma B3, we can show that

< — <
Sup Q% (2) = max |Q=(z)| + Olanr).

Moreover, again repeating the arguments from Lemma B3, we obtain that for some

sufficiently large constant M,

p( max  |Q=(z)| > Man,T) < p( max  |Q=(z;) — EQS(a1)] > %aﬂ) +o(1)

1<I<Ly, 7 1<I<Lyr

b‘

M
< Zp( CEQS(a)] > 7“”) +o(1).
To complete the proof, we bound the probability P(|Q=(z) — EQ=(z)| > Xa,r)
for an arbitrary point x by an exponential inequality. To do so, we must slightly
vary the arguments for Lemma B3, taking into account the fact that Q=(x) is not

a sum of independent terms any more. In particular, we write

T
Q=(z) —EQ>(z) = th(x)
=1
with &(z) = T~ HI(Cp)Vi(z)W — E[I(Csn)Vi(2)W;=]} and split up the expression
Zthl &/(z) into blocks as follows:

qn,T qn,T

D G(@) =) Baa(w) + ) Balx)

with Bs(z) = fT"(sT Dt &(x), where 2g, 1 is the number of blocks and 7,7 =

T'/2q,r is the block length. We now get

P36t > Yawr) 28 50> Yo
2[5 ot > Yo,

In what follows, we restrict attention to the first term on the right-hand side of the
above display. The second one can be analyzed by analogous arguments. We make

use of the following two facts:

(1) Let V@) = {\79 ct=1,...,T} ={(Xu, Zy) : t =1,...,T} be the time series of
the i-th individual and consider the time series W = {W, : t = 1,..., T} with
W, = ht(\?gl), . ,vﬁ”)) = he(X1t, Zit, - -+, Xty Zng) for some Borel functions h;.
Then by Theorem 5.2 in Bradley (2005) and the comments thereafter, the mixing
coefficients o"(k) of the time series W are such that o"V(k) < >0, ay(k) <
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na(k) for each k € N. In particular, letting (k) be the mixing coefficients of
the time series {&;(z)}, it holds that a*(k) < na(k).

(2) By Bradley’s lemma (see Lemma 1.2 in Bosq (1998), we can construct a
sequence of random variables Bj(z), Bj(z),... such that (i) Bj(z), Bj(z), ...
are independent, (ii) Bj, ;(x) has the same distribution as Bas_1(x), and (iii)
for 0 < p < ||B2s—1(%)|| 0, it holds that

B85 2(0) — Baa(0)] > ) < 15 (12200) Pty ang

Using fact (2), we can write

with

Py = IP(‘ qi (Bass(x) — B;S_l(x))‘ > %anf).

s=1

We first consider P;. Picking the block length to equal 7,7 = (nT)" for some

small n > 0, it holds that |Bys_1(z)| < C %T"’T;”’T < (nTh)Cl/z+a

=: Oy, r with

some sufficiently large constant C' and a small 6 > 0. Choosing A, = U,ZIT /2 and

applying Markov’s inequality, the same arguments as in Lemma B3 yield that

qn, T

M
Pl S 2€Xp < - g/\n,Tan,T + )‘721,T ZE[BSS—I(JZ)2])

s=1
Since S_"TE[B;, (7)%] < ClognlogT/n?Th, we finally arrive at

M lognlogT
P <2exp ( — §>\H7Tan,T + C’)\,QMT%>

Direct calculations show that A, ra,r — oo, whereas )\iTlognZ;?,fT = o(1). This
implies that P, converges to zero at an arbitarily fast polynomial rate. Moreover,
using (A.15) together with the fact that af(k) < na(k) and recalling that the
coefficients «(k) decay exponentially fast to zero, it immediately follows that P,
converges to zero at an arbitrarily fast polynomial rate as well. From this, the result

easily follows. O
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Lemma B5. Let

1~/ 1 ¢

=2 G

=1 7=1

JFi

with v () = Kp( Xy — x)gg,(m) and g/gl(x) an estimator based on the data { Xy :t =
., T}. Assume that qu(x) has the following two properties:

T
%’t(x)zjt>
1

t=

(a) P(max;<;<n SUP,e( 1] |$Z( )| > Cb, 1) = o(1) for a sufficiently large constant C
and a null sequence {byr} which satisfies b /b < C(nT)™" for some small
n > 0.

(b) maxj<;<n |$1(x) - ggz(:c’)] < epr|r — 2'| with probability tending to one for some

sequence {c, 1} which satisfies c,7 < (nT)C for some positive constant C'.

In addition, let the variables Z; have mean zero. Then it holds that

1
sup |[Y(x)| =o (—)
z€[0,1] } ( )| P\V/nTh

Proof of Lemma B5. Let Cr be the event that max;<i<, Sup,ep \q/g,(x)] < Cbhyr
and C;r the event that sup,c |QASZ(:E)| < Cb,p. Moreover, write €5 and €, to
denote the complements of Cr and C;r, respectively. By assumption, P(C5) = o(1)
and P(CS;) = o(1). With this notation at hand, we have

]P’( sup ’\Il ‘ > Man,T) < IP( sup ‘\If(x)} > MamT,GT)

z€[0,1] z€[0,1]

+P( sup [¥(z)| > Man,T,GCT>

z€[0,1]
< IP’( sup ‘\I/(a:)} > Man,T,GT> +o(1),

z€[0,1]

lognT
nTh(nT)n

where a,, 7 = and M is a positive constant. Moreover,

IP’( sup ‘\If(x)| > Man,T,€T>

z€[0,1]
2 [+ (G ez | > wowr)
<Pzl Z(n@;;f (@) )| > Mow).

Defining

Z5 = Zpl(|1Z3) < Tur) — E[Zid (| Zje] < Toir)]
Z5 = Zpl(| Zjs| > Tar) — B[ Zjd (|Z34] > Tor)]
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with 7,7 = (nT)Y =9 for some small § > 0, we further get that

Z( SO M) = Q) + @0

j#i t=1
with
< IRS 1 3
Q(r) =" (ﬁ DY ICir)pal )Zﬁ>
i=1 Jj#i t=1
. 1 — 1 4 >
Q> (z) = - Z (ﬁ Z Z I(Cir)pir( )th>
=1 J#i t=1
Hence,

i |13 (S ) >

sl Z nTjZ:Z )it (2 > May,r

< ]P’( sup ‘Q | > ManT) —i—]P’( sup ‘Q> | > Man,T).
z€[0,1] 2 z€(0,1] 2

In what follows, we show that the two terms on the right-hand side converge to zero

as the sample size increases. The proof splits up into several steps.

Step 1. We first consider @~ (x). Similarly to Lemma B3, it holds that

P su —Z(nTZZf 2)pu(@) Zul (3] > 70r) )| > Canr)

§IP’<|th|>Tn7Tforsom61§j§nand1§t§T>—>O

and
- I(Cor)ep; Z. (2| > T, )‘
i I Z(m;; )pul0)E (23125 > )]
Cbn Cb,
< HQTZZZZM 2] > 7)) < 55 < o

i=1 j#i t=1

From this, it immediately follows that P(sup,co[Q (2)] > Ma,r/2) = o(1) for
M sufficiently large.

Step 2. We now turn to the analysis of Q<(x). Let L,7 — oo with L, =

Tn,TCn, T bn,TTn,T
max{ , = ,
hay,, T h2a, T

intervals J, (I = 1,...,L,r) of length C/L,r and let z; be the midpoint of the

(nT)°} for some small § > 0. Cover the region [0, 1] with open
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interval .J;. Then for z € Jj,

Cror o=/ 1 a
Q=) = Q%(a)| = =LY (== D2 Y- 1Cin)lpula) — wula))
i=1 j#i t=1
CTnT - 1 T I K ~
<= Z(ﬁgz o) {En(Xa = 2)ldi() = di(a)
o 16i() | n (X — ) — Kn(Xe — )]}
C, bn.T Tm Cn, by,
<CTnT< hT—i- h2 )\x—aﬁll_ L,f;( hT+ h2T> < Capr

with probability tending to one. From this, it immediately follows that for
sufficiently large M,

P( sup |Q=(z)| > %an;p> < IP’( max |Q=(xz;)| > %anf) +o(1).

z€[0,1] 2 1<I<Ln 7 4

Step 3. It remains to show that

M
P( s, 105()| > onr) =0t

for some sufficiently large constant M. Writing
max |Q—( < max

I(Cir) i) Wi
1<I<Ln 1 1<i<n ZZ i) i J

I<IKLnp J#i t=1

with I/Vjt = %{Zﬁ](lzjﬂ S Tan) — E[thl(|th| S Tn,T)]}y we obtain

IP’( max ‘Qg(ajl)| > MCLn,T>

1<I<Ly, 1 4

<#( e [ 1€t > o)
I<IKL,p J#i t=1
n LnrT T M
<D P(| Y HemeuleWa| > Franr).

i=1 1=1 j#i t=1

We now bound the probability P(|>_,, S I(Cor) i (2)Wy| > Mayr/4) for
an arbitrary point x with the help of an exponential inequality. To do so, we rewrite
the expression » ., Zthl I(Cir)pit(z)Wj,. In particular, we split up the inner sum

over t into blocks as follows:

T qn, T qn, T

Z I(GzT ()Ozt ]t = Z B] 25— 1 ) + Z Bj,28<x>
s=1

t=1
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with

STn,T

Biju(x)= Y I(Cx)pulx)Wj,

t:(S—l)’r’n’T-‘rl

where as in Lemma B4, 2¢, r is the number of blocks and r,r = T/2¢,r is the
block length. We thus get

P(‘ Zi[(eﬁ)%t(fﬁ)wjt anT> < P(‘ Z%ZTBJ 25-1( ‘ > %%T>

Jj#i t=1 j#i s=1

qn,T

+P(| 03 Biala)| > o).

j#i s=1

In what follows, we restrict attention to the first term on the right-hand side. The
second one can be analyzed by similar arguments.

To indicate the dependence of the block B;¢(x) on the i-th time series { X},
we use the notation B;(x) = Bjs(x, {Xit}{_;). Moreover, we employ the shorthand
B;s(z) = B;s(z,{zi}L ) to denote the s-th block for a fixed realization {z;}~, of
{Xi:}L,. With this notation at hand, we write

qn,T
()ZZBJ% 1 ‘>%anT>
j#£i s=1
an,T
[ (‘ZZ j.2s-1( ‘ > _anT‘{th}t 1”
j#i s=1
and bound the term
an,T
() ZZBJQS 1 ‘ > _anT‘{Xﬂf}t 1= {xzt}t 1)
j#i s=1
an,T
()ZZBgzs 1 ‘>%anT)
j#i s=1

for an arbitrary but fixed realization {z;}L ,. By Bradley’s lemma, we can construct
a sequence of random variables F;,l(x), E;,g(a:) . such that (i) BJ (z), E;,g(a:), .
are independent, (ii) B;QS_I(x) has the same distribution as B;q, (), and (iii) for
0 < 1 < [Bje1(®)ll

(1B, 1 (0) ~ Braocs(o)] > ) < 18( L2220y Py )

This allows us to write

qn,T

P(‘ZZBJ% 1 ‘ > %aur) <P +D5

j#i s=1
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with

an, T

M
(‘ZZBM 1 ‘>Eam>
i s=1
];é an,T M
(’ZZ j25—1( BJQS 1(95))‘ > E%,T)-
j#i s=1

First consider P;. It holds that

) CTn T'n Tbn T CTn T'n T(bn T/\/E) CTn Trn,T -

B, < Znlndnd o 2l il < = O
[Bj2e(@)] < nTh - nTh ~ nTh(nT)n/? =
Choosing A\, 7 = €;1T /2 and applying Markov’s inequality, the same arguments as
in Lemma B3 yield that

qn,T
P1<2€Xp<__)\nTanT+>\nTZZE ]25 l(x)2]>
j#i s=1
Noting that
qn,T qn, T
> BB (@) =) ) E[Bjaa(r)’]
j#i s=1 j#i s=1
qn, T
= ZZE j,25-1( o) { Xty = {wi iz
j#i s=1
< Z Z zT |9025 Sozt HE W]sVVth
j#i st=1

< Cb2 TZ Z Kh Lis — Kh(xlt - [E ’E VVJSVVJtH

j#i sit=1
Cb T—1T-1
n,T Z (Z |E g2t]| + QZ Z |E[W/thjt+l]|>
o =1 t=1
< L
~ nTh(nT)"’

we arrive at

M A
PL< Coxp (= Thnran + O,
1 n
Moreover, choosing

'nT =
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2

we obtain that W

= log(nT) and A\, ra,r = log(nT). As a result,

Py < Cexp ([C - %] 1ognT) < C(nT)?,

where p can be made arbitrarily large by choosing M large enough. We next turn
to P,. Using (A.16), we obtain that

qn, T

ManT
<Y IP(|3281 ()] > )
j#i s=1 ’ ]2 ' 16ngn,r

C qn, T 1/2 C T .

<Yy < -
7 =1 <“nT/nq T> olrnr) < CnT) ™,

where g can be chosen arbitrarily large as the a-coefficients decay exponentially fast.

Putting everything together, we arrive at

n L'nT

LETRCCIEE OB 3) 31 () 3) SIS

j#i t=1

< CnLyr|(nT)™" + (nT)77).

> i)
(07%
> 7y T

If we choose the exponents p and ¢ sufficiently large, then the right-hand side

converges to zero at an arbitrarily fast polynomial rate. This completes the proof.
O
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Appendix B

The Effect of Fragmentation in
Trading on Market Quality in the
UK Equity Market

136



B.1 The regulatory framework under MiFID

The “Markets in Financial Instruments Directive (MiFID)” is a directive of the
European Union that was adopted by the Council of the European Union and
the European Parliament in April 2004 and became effective in November 2007.
It replaces the “Investment Services Directive (ISD)” of 1993 that has become
outdated by the fast speed of innovation in the financial industry. MiFID is
the cornerstone of the “Financial Services Action Plan” that aims to foster the
integration and harmonization of European financial markets. It provides a common
regulatory framework for security markets across the 30 member states of the
European Economic Area! to encourage the trading of securities and the provision
of financial services across borders. The main pillars of MiFID are market access,

transparency and investor protection.

1. Market access. MiFID abolished the monopoly position that many primary
exchanges in the European Economic Area have had in equity trading. Under
MiFID, orders can be executed on either regulated markets (RM), multilateral
trading facilities (MTF) or systematic internalizers (SI). RMs and MTFs have
similar trading functionalities but differ in the level of regulatory requirements.
In contrast to MTFs, RMs must obtain authorization from a competent
authority. While some MTFs have a visible (lit) order book, others operate as
regulated dark pools. In a dark pool, traders submit their orders anonymously
and they remain hidden until execution.? Sls are investment firms that execute

client orders against other client orders or against their own inventories.

The new entrants differentiate themselves on quality, price and technology that
are usually tailored to speed-sensitive high frequency traders. In particular,
MTF’s typically adopt so-called maker-taker rebates that reward the provision
of liquidity to the system, permit various types of orders and have small
tick sizes. Additionally, their computer systems offer a lower latency when

compared to regulated markets.

While the number of RMs did not significantly increase after the introduction
of MiFID, a large number of MTF's and SIs emerged in the post-MiFID period
and successfully captured market share from the primary markets. At the end
of October 2007, the European Securities and Markets Authority (ESMA)
listed 93 RMs, 84 MTFs and 4 SIs. By the end of 2012, the number of MTFs
had almost doubled to 151. While SIs are rare compared to MTFs, their
number had grown to 13 by December 2012. In contrast, the number of RMs

!The European Economic Area consists of the 27 member states of the European Union as
well as Norway, Iceland, and Liechtenstein.

2There are other, unregulated categories of dark pools that are registered as OTC venues or
brokers (Gresse, 2012)
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had only increased to 94.3

MiFID also extends the single passport concept that was already introduced in
the ISD to establish a homogeneous European market governed by a common
set of rules. The single passport concept enables investment firms that are
authorized and regulated in their home state to serve customers in other EU

member states.

2. Transparency. With an increasing level of fragmentation, information on
prices and quantities available in the order books of different venues becomes
dispersed. In response, MiFID introduced pre- and post-trade transparency
provisions to enable investors to optimally decide where to execute their trade.
Pre-trade transparency provisions apply to RMs and MTFs that operate a
visible order book and require these venues to publish their order book in real
time. Dark venues, OTC markets and Sls use waivers to circumvent the pre-
trade transparency rules. To comply with post-trade transparency regulations,
RMs, MTFs including regulated dark pools and OTC venues have to report
executed trades to either the primary exchange or to a trade reporting facility
(TRF) such as Markit BOAT.

3. Investor protection. MiFID introduces investor protection provisions to
ensure that investment firms keep investors informed about their execution
practises in a fragmented market place. An important part of these regulations
is the best execution rule. Investment firms are required to execute orders that
are on behalf of their clients at the best available conditions taking into account
price, transaction costs, speed and likelihood of execution. Investment firms

have to review their routing policy on a regular basis.

However, the financial crisis exposed several shortcomings of MiFID and the
European Commission reacted to them by proposing a revision. The most important
changes include the regulation of e.g. derivatives trading on “Organised Trading
Facilities”, the introduction of safeguards for HF'T, the improvement of transparency
in equity, bonds and derivative markets, the reinforcement of supervisory powers in
e.g. commodity markets and the strengthening of investor protection (European
Commission (2011)).

B.2 Trading venues

This appendix lists the individual trading venues that are used in our study.

3http://mifiddatabase.esma.europa.eu/, accessed on November 11, 2012
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— Lit venues: Bats Europe, Chi-X, Equiduct, LSE, Nasdaq Europe, Nyse Arca,

and Turquoise®

— Regulated dark pools: BlockCross, Instinet BlockMatch, Liquidnet, No-
mura NX, Nyfix, Posit, Smartpool, and UBS MTF.

— OTC venues: Boat xoff, Chi-X OTC, Euronext OTC, LSE xoff, Plus, XOFF,
and xplu/o.

— Systematic internalizers: Boat SI and London SI.

B.3 System latency at the LSE

Table C: System latency at the LSE

System ‘ Implementation Date  Latency (Microseconds)
SETS <2000 600000
SETS1 Nov 2001 250000
SETS2 Jan 2003 100000
SETS3 Oct 2005 55000
TradElect June 18, 2007 15000
TradElect 2 October 31, 2007 11000
TradElect 3 September 1, 2008 6000
TradElect 4 May 2, 2009 5000
TradElect 4.1 | July 20, 2009 3700
TradElect 5 March 20, 2010 3000
Millenium February 14, 2011 113

Source: Brogaard et al. (2013) and own calculations.

B.4 Econometric justification for quantile CCE

estimation

We sketch an outline of the argument for the consistency of the quantile regression
estimators used above. Harding and Lamarche (2013) consider the case with
homogeneous panel data models; their theory does not apply to the heterogeneous
model we study.

We consider a special case where we observe a sample of panel data {(Yi, Xy) :
i=1,...,n, t =1,...,T}. We first assume that the data come from the linear
panel regression model

Yie = i + Bi Xt + Kift + €t

40n 21 December 2009, the London Stock Exchange Group agreed to take a 60% stake in
trading platform Turquoise.
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where f; denotes the unobserved common factor or factors. The covariates satisfy
Xit = 0; + pife + un

where in the Pesaran (2006) model the error terms satisfy the conditional moment
restrictions E(u,, €| Xu, f;) = 0 with u independent of e. The unobserved factors f;
are assumed to be either bounded and deterministic or a stationary ergodic sequence.
Then assume that

0; =0+ mn;

where 0; = (o4, Bi, ki, 05, p:) 5 0 = (v, B, k,9,p)" and n; are iid and independent of
all the other random variables in the system. This is a special case of the model

considered by Pesaran (2006). Letting ho; = d + pf;, we can write (provided p # 0)
Yio = o] + BiXu + ki hot + €it

with of = oy — 0k;/p and Kk} = K;/p, and note that E(ey| Xy, hot) = 0.

Taking cross-sectional averages we have
Xi=0+pfi+m+0—05+(p—p)fe = hot + Op(n'?)

since u; = Op(n_l/ 2) =0 — 0 = p — p. Therefore, we may consider the least squares
estimator that minimizes Zthl {Yit —a—bX; — cyt}Q with respect to ¥ = (a, b, ¢),
which yields a closed form estimator. This bears some similarities to the approach
of Pesaran (2006) except that we do not include Y; here Moon and Weidner (2015)
advocate a QMLE approach, which would involve optimizing a pooled objective
function over ;, i = 1,...,nand f;, t = 1,...,7T. In the QMLE case this may be
feasible, but in the case with more nonlinearity such as quantiles as below this seems
infeasible.

We now turn to quantile regression, and in particular median regression. We shall
now assume that med(e;| Xy, f;) = 0 and maintain the assumptions that F(u;) =0
with v independent of ¢, so that X; = § + pf; + U = hg; + Op(n~1/2) as before.
We consider a more general class of estimators based on minimizing the objective

function

T
QTz(l/J) = %Z /\<Y;t —a—bX; — Cyt)

t=1

over v, where A(t) = |t|. The approximate first order conditions are based on

1
_ _ 1 . _
Mri(v; X4, ..., X7) =7 g Xt sign (Y — a — BX; — 7Xy)
=1 S a
Xy
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1 & —
= f Z mit(% Xt)
t=1

We discuss now the properties of {D\i, the zero of My;(v; X1, ..., X7). For this purpose
we can view 1@ as an example of a semiparametric estimator as considered in Chen
et al. (2003). That is, X, is a preliminary estimator of the ”function” hg, = & + pfi.

An important part of the argument is to show the uniform consistency of this

estimate
—bfy| < | + [0 — 7—p|l = .
max [Xe =0 —bfi| < max ] + [0 o + (max [ i) [p = p| = 0,(1)
By elementary arguments we have maxj<i<7 || = o0,(T"n"'/?) for some

depending on the number of moments that w;; possesses. Similarly, max;<;<7 |fi| =
O,(T") under the same moment conditions.

For compactness, let us denote My;(v); X1,...,Xr) by MTi(w,ﬁ), where h =
(X1,...,X7). The approach of CLV is to approximate the estimator

Y = argglelgllMTi(w,h)H

by the estimator
P = arg min || Mz4(6, ho)|

where hg = (he1,...,hor) is the true sequence. In the case where my (v, h) is
smooth in A, this follows by straightforward Taylor expansion and using the uniform
convergence result above. In the quantile case, some empirical process techniques
are needed as usual, but they are standard. The estimator ¢ is just the standard
quantile regression estimator of the parameters in the case where hg; is observed
and so consistency follows more or less by a standard route, namely, the strong law

of large numbers implies that

T 1
M4, ho) = = Z X sign (Y;y — a — X5 — 0 — pv fi)
=1 O+ pfi
1
— B, X sign (Y —a — Xy —v(6 + pf))
0+ pf
= M;(¥)

which is uniquely minimized at the true value of . Here, E; means expectation
conditional on ;.

In fact, because of the independence of u, e, the joint distribution of €;;, X, f;

141



factors into the product of the conditional distribution of e;|f; the conditional
distribution of uy|f; and the marginal distribution of f;. We calculate M;(v)). We

have

My;(¥) =E; [sign (Y — o — X0 — 76 — py fe)]
— [1-26((0 ~ ) + (8.~ B)(u+ 8.+ )
+ (v = )0+ p /) )]r(ul f)a(f)dedudf

where G is the c.d.f of ¢|f with density g and r is the density of u|f and ¢ is
the marginal density of f. It follows that Mj;(19) = 0 by the conditional median
restriction. Similarly with M;;(¢), j = 2,3. Under some conditions can establish the
uniqueness needed for consistency. We can further calculate OMy;(v))/0%.

The next question is whether the estimation of hy by h affects the limiting

distribution. In this case we consider the sequence h* = (hj, ..., h%)
* a *
Ei [mae(, )V ] =Ei [mie (v, hoo)|fe] + 50 Bi [maa(, ho) | fe] (1 = ho]
2

9 _
+ sz [mit(w7ht)‘ft} [hi — hOt]2

for intermediate values h;. Then we can show that OE; [my (¢, ho;)| f;] /Oh has a finite

expectation and so

1 0 >
=3 i, Bl [ — o
t=1
1<~ 9 = _ —1/27—1/2
- TZ%EZ [mi (Yo, hoo) | fi] [@ +0 — 6+ (B — p) fi] = Op(n™ 2T~
t=1

because E; [ﬂt +0—-04+(p— p)ft|ft} = 0. Furthermore,

5 . 2
o [ma B [ ]

2

5 B [mie(0. )| F] [ 45— 6+ (p = p)f]” = Op(n )

M| =
[M] =
Qv‘Q)

“
Il
—

I
N3 =
[M] =
QU‘Q)

t=1

so that we need T'/n? — 0. It follows that the limiting distribution is the same as
that of 1. The conditions of CLV Theorem 1 and 2 are satisfied. In particular, for:

9 | 7 1 Xit hot
F1<¢a ho) - %M(ﬂ)) =-2x pjlgfolo f Z Xi X,?t XithOt g<O|Xit7 ft)
=1 hoe Xithot — hd,
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Vi = var[mg(vo, hot))]

1 0 + pil fy 0+ pEf;
O+ pEfi  0:0 + pipEfE + (dip + 0pi) E fi 0% + p*E f} + 20pE f;

we have
VT (; — ;) = N0,9], where Q = (I]T')) "' TTVAT, (I]Ty) .
It follows that for each ¢
VI(Bi = 1) = N(0, )

where (g5, is the appropriate submatrix of above.
In the case that g(0| X, fi) = g(0) we have

Under some additional conditions we may obtain the asymptotic behaviour of the

mean group estimator 3 =n 13" Bz Specifically, we have
~ d
V(B = B) — N(0,245)
where Y35 = var(vg;). This follows because
CRPENEES o SPIEL o P
— n - 7 7 n 4 7
1 —1/2, —1/2 -1
= ;Z%‘ + Op(T™ "0 %) + Op(n),
i=1

because the averaging over i reduces the orders, for example

n T 1

1 1

- E T E X; sign (g1) = O,(T~1/*n~1/2),
i=1 t=1 hOt

The argument extends to the more general specification considered in this

chapter.
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B.5 Robustness

Alternative measures of market quality

Measuring market quality is inherently difficult, and there is an ongoing debate on
what constitutes a good measure of market quality. In view of this controversy,
this section investigates the robustness of the results in chapter 2 to a variety
of alternative measures of market quality. The particular measures we consider
are total (Parkinson) volatility, idiosyncratic volatility, within day and overnight
volatility, efficiency, and Amihud illiquidity.

Volatility. In the main paper, total volatility is measured by the Rogers-Satchell
estimator. An alternative measure is due to Parkinson (1980). The Parkinson

estimator of total volatility can be computed as

Vie, = 41112 (mpl.g - lnPi@y
Figure B.1 documents that the Parkinson volatility estimator is highly correlated
with the Rogers-Satchell estimator.

Some have argued that HFT activity and the associated market fragmentation
leads to higher volatility through the endogenous trading risk process (Foresight
(2012)). Therefore, we also obtained measures of overnight volatility that reflect
changes in prices that occur between the closing auction and the opening auction
and are therefore not subject to the influence of the continuous trading process. In

particular, we decompose volatility into overnight volatility and intraday volatility,

Vi = (In Pg. —In BY)?

Vot = (In P —In P, )%

Unfortunately, we can’t completely separate out the auction component and the
continuous trading component, which would also be of interest. Figure B.2 reports
the time series of the cross-sectional quantiles of (the log of) overnight and within
day volatility, as well as their ratio. The two series move quite closely together.
There is an increase during the early part of the series followed by a decrease later,
as with total volatility. The ratio of the two series shows no discernible trend at any
quantile over this period. It seems that volatility increases and decreases but in no
sense has become concentrated intraday relative to overnight.

In addition, we computed a measure of idiosyncratic volatility. In principle,
idiosyncratic risk is diversifiable and should not be rewarded in terms of expected

returns. We consider whether the effects of fragmentation take place on volatility

pil —ph
5We also measured total volatility by the simple range estimator Vie, = 'tJPL i The results
it

J
for this estimator are very similar to the Parkinson estimator and are available upon request.
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through the common or idiosyncratic part. If it is on the idiosyncratic component
of returns then it should have less impact on diversified investors, i.e., big funds
and institutions. Specifically, idiosyncratic volatility is calculated as the squared
residuals from a regression of individual close-to-close returns on index close-to-
close returns. Common volatility is then obtained as the square of the slope
coefficient multiplied by the variance of the index return. Cross-sectional quantiles of
idiosyncratic and common volatility are shown in Figure B.3. The sharp increase in

volatility during the financial crisis is more pronounced for the common component.

Liquidity. This appendix considers an alternative measures of liquidity based on
daily transaction data. In particular, we use the Amihud (2002) measure that is

defined as
. |Ritj|

ILa; = Voly,’
where Vol is the daily turnover and R;;; are daily close to close returns. Goyenko
et al. (2009) argue that the Amihud measure provides a good proxy for the price
impact. Figure B.4 compared the cross-sectional quantiles of the Amihud measure
and bid-ask spreads. The two measures seem to move quite closely together and
share a similar trajectory with volatility measures. Towards the end of the sample
there does seem to be a narrowing of the cross sectional distribution of bid ask

spreads.

Efficiency. A market that is grossly “inefficient” would be indicative of poor market
quality. Hendershott (2011) gives a discussion of market efficiency and how it can be
interpreted in a high frequency world. We shall take a rather simple approach and
base our measure of inefficiency/predictability on just the daily closing price series
(weak form) and confine our attention to linear methods. In this world, efficiency or
lack thereof, can be measured by the degree of autocorrelation in the stock return
series. We compute an estimate of the weekly lag one autocorrelation denoted by
pit(k) = corr(Ry;, Ry, ), k = 1,2, where R;; denotes the close to close return for
stock ¢ on day j within week ¢; the variance and covariance are computed with daily
data within week ¢t. Under the efficient markets hypothesis this quantity should be
zero, but in practice this quantity is different from zero and sometimes statistically
significantly different from zero. Since the series is computed from at most five
observations it is quite noisy, we use the small sample adjustment from Campbell
et al. (2012), eq. 2.4.13)

[1 - ﬁt]?

A~
pit_plt_‘_Nit_l

where p;; is the sample autocorrelation based on N;; < 5 daily observations. In this

case, p; is an approximately unbiased estimator of weekly efficiency. We take the
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absolute value of the efficiency measure. Figure B.5 reports cross-sectional quantiles
of our efficiency measure. The median inefficiency is around 0.3.° The variation of
the efficiency measures over time does not suggest that the efficiency of daily stock

returns either improves or worsens over this time period.

Our finding that visible fragmentation and dark trading have a negative effect
on total and temporary volatility is robust to using alternative measures of volatility
such as Parkinson or within-day volatility (Tables B.1 - B.2). If we measure market
quality by the Amihud (2002) illiquidity measure, we find that a higher degree of
overall or visible fragmentation is associated with less liquid markets. Dark trading
is found to improve liquidity. Because the Amihud (2002) liquidity measure is closely
related to LSE volume, these results probably in part reflect our findings for LSE
volume in the main paper. For efficiency, we cannot find significant effects.

Turning to the effect of fragmentation on the variability of market quality (Tables
B.3-B.4), we find that dark trading increases the variability of total (Parkinson)
volatility which is consistent with the results reported in chapter 2. We also
document that a higher level of overall fragmentation reduces the variability of
Amihud illiquidity.

FTSE 100 and FTSE 250 subsamples

In chapter 2, we only report results for a pooled sample of all FTSE 100 and 250
firms. In this appendix, we complement our main results by splitting the sample
into FTSE 100 and FTSE 250 stocks. The FTSE 100 index is composed of the 100
largest firms listed on the LSE according to market capitalization, while the FTSE
250 index comprises the “mid-cap” stocks.

When comparing the effect of market fragmentation on market quality for FTSE
100 and FTSE 250 firms, interesting differences emerge: the effects of overall
fragmentation on temporary volatility and global volume can be attributed to FTSE
100 firms (Tables B.5-B.6). The negative effect of dark trading on volatility is only
observed for FTSE 250 firms (Tables B.7-B.8). That effect is even positive for FTSE
100 firms. But in contrast with FTSE 250 firms, visible fragmentation is associated
with lower volatility for FTSE 100 firms. Inspecting the results for the variability of
market quality, overall fragmentation reduces the variability of LSE trading volume
only for FTSE 250 firms, while dark trading increases the variability of LSE volumes
for FTSE 100 firms (Tables B.9 - B.12).

6Note that when p;; = 0, ﬁﬁ = 0.25 because N;; = 5 most of the time. Therefore, the bias
adjusted level is quite high.
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Omitting common factors

Related research uses panel data specifications as for example fixed effects estimators
that cannot account for unobserved common factors (Gresse (2011), De Jong
et al. (2015)). To address concerns about endogeneity of fragmentation and dark
trading, some papers use instrumental variable methods. But they do not however
instrument other included covariates which are likely to be jointly determined along
with the outcome variable. Specifically, some include volume and volatility as
exogenous covariates in equations for market quality measures. In contrast, the
CCE methodology used in this chapter can control for common unobserved factors
that affect both dependent and independent variables.

To illustrate the importance of controlling for unobserved common factors, we
re-estimate our results using a heterogeneous panel data model without common
factors. This model can be obtained as a special case of our econometric model
where d; is a vector of ones and there are no unobserved common factors f;.
A version of this model with homogenous coefficients has been used by Gresse
(2011), among others. As reported in Table B.13, omitting observed and unobserved
common factors leads to results that differ in magnitude and statistical significance
with the exception of LSE volume. However, the large increase in our measure of
cross-sectional dependence (CSD) indicates that this model is misspecified because
unobserved common shocks such as changes in trading technology or high frequency

trading are omitted that are likely to affect both market quality and fragmentation.

Stochastic Dominance

Finally, we investigate if the distribution of market quality under competition
stochastically dominates its distribution in a monopolistic market using the method
in Linton et al. (2005). If market quality is measured by bid-ask spreads, we find
evidence of second order stochastic dominance of competition over monopoly, and
vice versa for volatility. However, this evidence is only indicative as we did not

formally obtain critical values for the test statistic.
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Table B.1: The effect of fragmentation on market quality for alternative measures of market quality

‘ Total (Parkinson) volatility Idiosync. volatility Daily volatility Overnight volatility Efficiency Iliquidity

Constant 7713 ~6.987 ~5.507 ~14.926 0.562 ~13.652
(-8.817) (-4.855) (-3.025) (-10.13) (2.738)  (-14.019)
Frag. 0.208 0.416 -0.11 -1.916 -0.025 -0.524
(0.383) (0.518) (-0.134) (-1.919) (-0.23)  (-1.112)
Frag. sq. -0.534 -0.988 -0.368 1.1 0.056 1.341
(-1.269) (-1.446) (-0.55) (1.356) (0.579)  (3.315)
Market cap. -0.499 -0.48 -0.591 -0.48 -0.039 -0.322
(-6.936) (-3.694) (-5.561) (-4.238) (-2.539)  (-4.528)
ME (frag.) -0.349 -0.615 -0.495 -0.7683 0.033 0.875
(-2.634) (-3.146) (-2.478) (-3.43) (1.303)  (8.422)
Aprag. -0.238 -0.408 -0.418 -0.998 0.021 0.595
(-1.154) (-1.457) (-1.402) (-2.821) (0.592)  (3.797)
Adjusted R2 0.755 0.41 0.419 0.442 0.022 0.866

Notes: Coeflicients are quantile CCE mean group estimates. t-statistics are shown in parenthesis. Market capitalisation and dependent variables
(except of idiosyncratic volatility and efficiency) are in logs. Lagged index return, VIX and Christmas and New Year effects are included as
observable factors. Ap,,, is defined as Bi+ Ba(H + L) and evaluated at H = max(Frag.) and L = min(Frag.). ME denotes marginal effects.
The adjusted R? is the R? calculated from pooling the individual total and residual sums of squares, adjusted for the number of regressors.
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Table B.2: The effects of visible fragmentation and dark trading on market quality for alternative measures of market quality

‘ Total (Parkinson) volatility Idiosync. volatility —Daily volatility Overnight volatility Efficiency Illiquidity

Constant -7.061 -7.039 -3.303 -14.786 0.348 -12.065
(-8.882) (-4.277) (-2.046) (-9.409) (1.423) (-12.319)
Vis. frag. 0.263 -1.023 -0.797 0.04 0.019 -0.249
(0.934) (-1.878) (-1.697) (0.081) (0.238) (-0.506)
Vis. frag. sq. -0.815 0.361 0.04 -0.422 -0.011 0.873
(-2.472) (0.547) (0.066) (-0.672) (-0.106) (1.631)
Dark 0.061 -0.237 0.98 -1.033 0.046 -0.752
(0.264) (-0.482) (1.877) (-2.467) (0.59) (-3.023)
Dark sq. -0.202 0.367 -1.398 1.125 -0.031 -0.096
(-0.858) (0.757) (-2.749) (2.555) (-0.384) (-0.397)
Market cap. -0.405 -0.441 -0.497 -0.3 -0.04 -0.217
(-5.698) (-3.066) (-4.329) (-2.447) (-2.228) (-2.989)
ME (Vis. frag) -0.313 -0.768 -0.769 -0.258 0.011 0.368
(-2.99) (-4.004) (-4.029) (-1.23) (0.394) (2.058)
ME (Dark) -0.124 0.1 -0.303 0 0.018 -0.84
(-1.891) (0.585) (-1.991) (0.004) (0.746) (-9.526)
Avis frag. -0.306 -0.771 -0.769 -0.255 0.011 0.361
(-2.899) (-3.991) (-4.029) (-1.211) (0.396) (1.99)
Apark -0.14 0.129 -0.417 0.092 0.015 -0.848
(-2.111) (0.758) (-2.804) (0.721) (0.62) (-9.679)
Adjusted R? 0.773 0.417 0.429 0.455 0.031 0.871

Notes: See Table B.1 except that X = {Vis.

frag, Dark}.
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Table B.3: The effect of fragmentation on the variability of market quality for alternative measures of market quality (conditional variance
model)

‘ Total (Parkinson) volatility Idiosync. volatility ~Daily volatility Overnight volatility ~Efficiency Iliquidity

Constant -0.091 1.119 -0.38 147 0.097 0.949
(-0.366) (0.871) (-0.421) (-1.503) (3.753)  (2.679)
Frag. 0.015 -0.234 -0.671 -0.004 -0.031 -0.48
(0.154) (-0.418) (-1.413) (-0.007) (-2.057)  (-2.377)
Frag. sq. -0.015 0.178 0.708 0.04 0.031 0.404
(-0.158) (0.343) (1.681) (0.08) (2.391)  (2.251)
Market cap. -0.008 -0.152 -0.001 0.088 -0.003 -0.023
(-0.366) (-1.663) (-0.018) (1.052) (-1.506)  (-0.915)
ME (frag.) 0 -0.048 0.068 0.033 0.001 ~0.058
(-0.003) (-0.4) (0.59) (0.225) (0.172)  (-1.175)
AFrag, 0.003 -0.085 -0.08 0.029 -0.006 -0.143
(0.095) (-0.516) (-0.509) (0.139) (-1.034)  (-2.125)
Adjusted R? 0.002 ~0.04 -0.084 -0.068 -0.088 ~0.004

Notes: Dependent variables are squared median regression residuals. Coefficients are quantile CCE mean group estimates. t-statistics are shown
in parenthesis. Market capitalization is in logs. Lagged index return, VIX and Christmas and New Year effects are included as observable
factors. Apyqg. is defined as § +7(H + L) and evaluated at H = max(Frag.) and L = min(Frag.). ME denotes marginal effects. The adjusted
R? is the R? calculated from pooling the individual total and residual sums of squares, adjusted for the number of regressors.



161

Table B.4: The effect of visible fragmentation and dark trading on the variability of market quality for alternative measures of market
quality (conditional variance model)

‘ Total (Parkinson) volatility Idiosync. volatility —Daily volatility Overnight volatility —Efficiency Illiquidity

Constant -0.356 2.445 0.863 -2.094 0.089 0.547
(-1.383) (1.88) (0.834) (-2.168) (2.686) (1.54)
Vis. frag. -0.165 -1.724 -2.016 0.268 0.005 -0.379
(-1.374) (-1.321) (-2.447) (0.747) (0.482)  (-3.733)
Vis. frag. sq. 0.17 1.433 2.382 -0.299 0.001 0.591
(1.219) (1.213) (2.985) (-0.598) (0.054)  (3.535)
Dark 0.025 -0.396 -0.65 -0.838 -0.017 -0.243
(0.362) (-0.963) (-1.683) (-2.827) (-2.129)  (-2.465)
Dark sq. 0.056 0.544 0.711 0.927 0.022 0.257
(0.775) (1.356) (1.825) (2.757) (2.453)  (2.671)
Market cap. -0.005 -0.104 -0.026 -0.083 0 0.007
(-0.253) (-1.086) (-0.328) (-0.949) (-0.074)  (0.274)
ME (Vis. frag) -0.045 0.711 -0.333 0.057 0.005 0.039
(-1.009) (-1.394) (-0.984) (0.376) (1.361)  (0.605)
ME (Dark) 0.076 0.104 0.003 0.013 0.003 -0.008
(3.447) (0.784) (0.025) (0.149) (1.046)  (-0.256)
Avis frag. -0.047 -0.724 -0.354 0.059 0.005 0.033
(-1.033) (-1.394) (-1.031) (0.395) (1.355)  (0.531)
ADark 0.081 0.148 0.061 0.088 0.005 0.013
(3.457) (1.129) (0.507) (0.898) (1.588)  (0.452)
Adjusted R2 -0.026 -0.027 -0.074 -0.064 -0.075 -0.037

Notes: See Table B.3 except that X = {Vis. frag, Dark}.



Table B.5: The effect of fragmentation on market quality for FTSE 100 firms

‘ Total volatility Temp. volatility BA spreads Global volume LSE volume

Constant 2.74 -8.643 9.955 1.286 3.546
(-2.296) (-10.29) (5.771) (1.032) (3.332)
Frag. 1.141 -2.935 -0.02 1.711 2.197
(1.181) (-3.147) (-0.035) (3.076) (4.326)
Frag. sq. -1.216 2.365 0.184 -1.232 -3.115
(-1.616) (3.252) (0.38) (-2.457) (-7.203)
Market cap. -0.44 -0.38 -0.335 -0.533 -0.52
(-3.857) (-4.993) (-2.952) (-6.469) (-6.71)
ME (frag.) -0.501 0.26 0.229 0.046 -2.012
(-2.403) (1.36) (1.417) (0.269) (-15.503)
AFrag. 0.087 -0.883 0.14 0.642 -0.506
(0.245) (-2.627) (0.752) (4.153) (-3.223)
Adjusted R 0.777 0.173 0.605 0.801 0.831

Notes: See Table 2.1.

Table B.6: The effect of fragmentation on market quality for FTSE 250 firms

‘ Total volatility Temp. volatility BA spreads Global volume LSE volume

Constant -8.503 -10.327 3.584 2.195 2.18
(-8.268) (-13.225) (3.743) (2.639) (2.336)
Frag. -0.193 -0.16 0.072 -0.658 -0.276
(-0.282) (-0.316) (0.258) (-1.876) (-0.837)
Frag. sq. -0.162 0.012 -0.164 0.707 -1.091
(-0.297) (0.029) (-0.651) (2.012) (-3.298)
Market cap. -0.437 -0.293 -0.326 -0.058 -0.084
(-4.379) (-4.599) (-3.772) (-0.682) (-0.979)
ME (frag.) -0.359 -0.148 -0.096 0.064 -1.392
(-2.102) (-1.296) (-1.258) (0.635) (-14.205)
Aprag. -0.328 -0.15 -0.065 -0.069 -1.186
(-1.301) (-0.852) (-0.682) (-0.635) (-11.469)
Adjusted R? 0.713 0.094 0.706 0.738 0.714

Notes: See Table 2.1.
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Table B.7: The effects of visible fragmentation and dark trading on market

quality for FTSE 100 firms

‘ Total volatility Temp. volatility BA spreads Global volume LSE volume

Constant -2.643 -7.637 8.131 4.08 5.067
(-1.852) (-7.171) (4.587) (4.744) (5.14)
Vis. frag. -0.3 -4.244 0.221 -0.87 -0.734
(-0.445) (-8.073) (0.628) (-2.12) (-1.825)
Vis. frag. sq. -0.597 4.121 0.001 0.916 -0.679
(-0.903) (7.412) (0.002) (2.015) (-1.498)
Dark -0.003 1.217 0.052 0.98 0.864
(-0.009) (3.507) (0.14) (3.189) (2.185)
Dark sq. 0.315 -1.395 -0.015 1.504 0.546
(0.676) (-3.213) (-0.037) (4.333) (1.269)
Market cap. -0.332 -0.29 -0.326 -0.46 -0.47
(-2.539) (-3.069) (-3.094) (-5.995) (-5.859)
ME (vis. frag) -0.91 -0.028 0.222 0.068 -1.428
(-4.674) (-0.16) (1.12) (0.525) (-10.759)
ME (dark) 0.234 0.165 0.041 2.114 1.275
(2.098) (1.668) (0.329) (21.692) (9.818)
AvVis. frag. -0.715 -1.378 0.222 -0.233 -1.206
(-2.67) (-6.945) (1.585) (-1.731) (-9.234)
Apark 0.303 -0.139 0.038 2.442 1.394
(2.02) (-1.041) (0.321) (23.905) (11.101)
Adjusted R? 0.784 0.193 0.617 0.846 0.848

Notes: See Table 2.2.

Table B.8: The effects of visible fragmentation and dark trading on market

quality for FTSE 250 firms

‘ Total volatility Temp. volatility BA spreads Global volume LSE volume

Constant -9.696 1153 0.588 1.368 3.05
(-9.159) (-12.407) (0.465) (1.692) (3.456)
Vis. frag. 1.277 0.839 0.565 0.334 0.03
(3.855) (3.419) (2.107) (1.511) (0.115)
Vis. frag. sq. -1.969 -1.164 -0.787 -1.035 -1.706
(-4.665) (-3.574) (-2.222) (-3.561) (-5.192)
Dark -0.531 0.032 -0.42 -0.071 -0.073
(-1.775) (0.121) (-1.446) (-0.275) (-0.28)
Dark sq. 0.221 -0.325 0.297 1.972 1.312
(0.879) (-1.403) (1.137) (9.367) (5.59)
Market, cap. -0.487 -0.371 -0.318 -0.343 -0.311
(-5.184) (-5.328) (-3.531) (-4.021) (-3.494)
ME (vis. frag) 0.031 0.102 0.067 -0.321 “1.05
(0.223) (0.98) (0.654) (-2.879) (-9.37)
ME (dark) -0.308 -0.295 -0.121 1.916 1.25
(-4.202) (-4.625) (-1.644) (26.542) (18.581)
Avis frag. -0.097 0.026 0.015 -0.389 -1.161
(-0.728) (0.253) (0.155) (-3.472) (-10.722)
ADark -0.31 -0.292 -0.123 1.899 1.238
(-4.162) (-4.519) (-1.665) (25.949) (18.291)
Adjusted R2 0.735 0.114 0.671 0.831 0.764

Notes: See Table 2.1.
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Table B.9: The effect of fragmentation on the variability of market quality for
FTSE 100 firms (conditional variance model)

‘ Total volatility Temp. volatility BA spreads Global volume LSE volume

Constant -0.58 -0.353 0.585 -0.175 -0.122
(-1.958) (-1.076) (1.834) (-1.324) (-0.662)
Frag. -0.092 0.211 0.135 0.229 0.174
(-0.452) (1.026) (1.164) (2.329) (1.874)
Frag. sq. 0.088 -0.188 -0.111 -0.215 -0.142
(0.463) (-1.079) (-1.09) (-2.532) (-1.766)
Market cap. 0.043 0.014 -0.027 -0.006 -0.007
(1.627) (0.588) (-0.861) (-0.442) (-0.626)
ME (frag.) 0.027 -0.043 -0.015 -0.06 -0.017
(0.362) (-0.685) (-0.36) (-2.138) (-0.621)
Apyrag. -0.016 0.048 0.039 0.043 0.051
(-0.277) (0.685) (0.978) (1.387) (1.732)
Adjusted R? -0.061 -0.07 -0.037 -0.023 -0.022

Notes: See Table 2.3.

Table B.10: The effect of fragmentation on the variability of market quality for
FTSE 250 firms (conditional variance model)

‘ Total volatility Temp. volatility BA spreads Global volume LSE volume

Constant -0.021 -0.381 0.346 0.607 0.178
(-0.041) (-0.682) (1.485) (1.204) (0.53)
Frag. -0.171 -0.225 -0.068 -0.457 -0.412
(-1.24) (-1.884) (-0.745) (-2.165) (-2.676)
Frag. sq. 0.147 0.21 0.087 0.432 0.333
(1.168) (1.833) (0.926) (2.409) (2.475)
Market cap. -0.043 -0.047 0.004 -0.081 -0.084
(-1.31) (-1.685) (0.196) (-3.734) (-4.271)
ME (frag.) -0.021 -0.01 0.02 -0.015 -0.071
(-0.589) (-0.378) (0.883) (-0.333) (-1.787)
Aprag. -0.049 -0.05 0.004 -0.097 -0.134
(-1.069) (-1.453) (0.157) (-1.383) (-2.526)
Adjusted R? -0.009 -0.011 -0.06 0.048 0.055

Notes: See Table 2.4.
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Table B.11: The effect of visible fragmentation and dark trading on the
variability of market quality for FTSE 100 firms (conditional variance model)

‘ Total volatility Temp. volatility BA spreads Global volume LSE volume

Constant -0.879 -0.36 0.663 0.01 0.2
(-2.133) (-0.851) (2.255) (0.079) (1.355)
Vis. frag. 0.366 -0.209 -0.045 0.264 0.259
(2.588) (-0.518) (-0.474) (3.244) (2.709)
Vis. frag. sq. -0.498 0.039 0.047 -0.318 -0.308
(-2.845) (0.111) (0.462) (-3.699) (-3.078)
Dark -0.095 0.23 -0.046 -0.037 -0.042
(-0.74) (-2.136) (-0.542) (-0.838) (-0.909)
Dark sq. 0.252 0.393 0.038 0.057 0.109
(1.552) (2.932) (0.387) (1.076) (1.855)
Market cap. 0.012 0.006 0.005 -0.003 0.005
(0.41) (0.22) (0.237) (-0.284) (0.381)
ME (Vis. frag) -0.143 017 0.004 -0.061 -0.056
(-2.029) (-1.914) (0.1) (-2.795) (-2.382)
ME (Dark) 0.095 0.066 -0.017 0.006 0.04
(2.477) (2.069) (-0.644) (0.53) (2.616)
Avis frag. 0.02 -0.182 -0.012 0.043 0.045
(0.378) (-1.048) (-0.331) (1.56) (1.403)
AbDark 0.15 0.152 -0.009 0.019 0.064
(2.869) (3.605) (-0.305) (1.225) (3.137)
Adjusted R -0.049 -0.055 -0.022 -0.012 -0.003

Notes: See Table 2.3.

Table B.12: The effect of visible fragmentation and dark trading on the
variability of market quality for FTSE 250 firms (conditional variance model)

‘ Total volatility Temp. volatility BA spreads Global volume LSE volume

Constant -0.436 -0.045 0.163 0.294 0.054
(-1.004) (-0.101) (0.412) (1.316) (0.185)
Vis. frag. -0.333 -0.28 0.064 -0.126 -0.145
(-2.897) (-1.97) (0.668) (-1.457) (-1.377)
Vis. frag. sq. 0.379 0.318 -0.013 0.153 0.173
(2.169) (1.619) (-0.107) (1.275) (1.192)
Dark 0.046 -0.021 -0.139 -0.183 -0.283
(0.328) (-0.169) (-1.645) (-2.7) (-3.58)
Dark sq. 0.029 0.082 0.125 0.149 0.268
(0.238) (0.752) (1.527) (2.749) (4.031)
Market cap. -0.042 -0.02 0.026 -0.053 -0.052
(-1.359) (-0.703) (1.085) (-3.301) (-2.272)
ME (Vis. frag) -0.093 -0.078 0.056 -0.029 -0.036
(-1.975) (-1.869) (1.564) (-1.342) (-1.375)
ME (Dark) 0.076 0.062 -0.013 -0.033 -0.013
(2.241) (2.185) (-0.701) (-1.77) (-0.653)
Avis frag. -0.068 -0.058 0.055 -0.019 -0.024
(-1.372) (-1.431) (1.608) (-0.946) (-1.032)
Apark 0.075 0.061 -0.014 -0.034 -0.015
(2.203) (2.135) (-0.757) (-1.809) (-0.755)
Adjusted R -0.011 -0.02 -0.044 0.04 0.015

Notes: See Table 2.4.
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Table B.13: The effect of fragmentation on market quality when common factor
are omitted

‘ Total volatility Temp. volatility BA spreads Global volume LSE volume

Constant 1673 2.375 0.01 4619 1932
(9.282) (11.593) (0.03) (15.379) (15.781)
Frag. 2.803 -0.179 0.98 0.176 0.741
(4.749) (-0.541) (3.572) (0.528) (2.226)
Frag. sq. -3.896 0.25 -1.235 -0.055 2.22
(-7.488) (0.887) (-4.929) (-0.179) (-7.246)
Market, cap. -1.737 -0.308 -0.901 -0.176 -0.242
(-27.077) (-14.912) (-20.027) (-4.541) (-5.87)
ME (frag.) “1.624 0.105 -0.424 0.113 1782
(-13.806) (1.677) (-6.188) (1.19) (-18.874)
AFrag. -0.448 0.03 -0.051 0.129 -1.111
(-2.409) (0.275) (-0.584) (1.192) (-10.003)
Adjusted R2 0.625 0.015 0.736 0.681 0.648
CSD 0.065 0.051 0.018 0.149 0.154

Notes: See Table 2.1.
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Figure B.1: Cross-sectional quantiles for Parkinson and Rogers-Satchell volatility
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Notes: Hth, 25th, 50th, 75th and 95th percentiles of the cross-sectional distribution

are shown. Volatilities are in logs. The panels on the right hand side show a
nonparametric trend m;(¢/7) with bandwidth parameter 0.03.
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Figure B.2: Cross-sectional quantiles for within day and overnight volatility

Within day volatility
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a nonparametric trend m;(t/T) with bandwidth parameter 0.03.

158



Figure B.3: Cross-sectional quantiles for

Idiosyncratic volatility

idiosyncratic and common volatility

Idiosyncratic volatility (smoothed)
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are shown. We took square roots of idiosyncratic and common volatilities. The
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parameter 0.03.
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Figure B.4: Cross-sectional quantiles for illiquidity measures

Bid-ask spreads Bid-ask spreads (smoothed)
s
¥ \\\
¥ ~ N
4 AN
\/ ~ AN
w AN N
6 ; AN ~<
/ \.\ \
/" ™~ ~
RSN PUPARN = N
“? B “? _ \/. L
, /r\‘_/’\
. Va ~ -
S 1 W [ NIA -
' " v\/"‘\"/,s.lu/‘““\: ' - \\/\___,“A“/
% ©
T T T T T T T T T T T T T T T T
May 08 Mar 09 Jan 10 Nov 10 May 08 Mar 09 Jan 10 Nov 10
Amihud illiquidity Amihud illiquidity (smoothed)
]
I 7N\
il 7 i ™ N N/
0 \/j\l\ll“ il \'M\,\/"\‘\ ,A‘ " I,\ i - \/f\\-/f‘ -~ N
ALY Voo Nyl A gk
AN WV '\"J“fukv\uv\ %]
(i ,/ \
foady / S
KK . o _| ~._ i~ .
o | /‘W'l ;f l,\’t‘th’\. ,\,’. '!1 R < L~ N~ .S N ~‘/ \
N3 At f Vv ‘_,‘\'\k‘,‘.,f;" ,.r‘ PR :
| :
N "\\" 1 o VRSN N
- - (AT n \ ~ -
| Wl v e ' A ' 7 - R - o
”‘/V/\ (M b \”\"/\I./’I ’vI e - - N ~ - \\// \\/ N2
I - < /\/\’\/\/\/\/\/\/‘
T T T T T T T T T T T T T T T T
May 08 Mar 09 Jan 10 Nov 10 May 08 Mar 09 Jan 10 Nov 10

Notes: Hth, 25th, 50th, 75th and 95th percentiles of the cross-sectional distribution
are shown. Bid-ask spreads and Amihud illiquidity are in logs. The panels on the
right hand side show a nonparametric trend m;(t/T") with bandwidth parameter
0.03.
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Figure B.5: Cross-sectional quantiles for market efficiency measures
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are shown. Efficiency is defined as weekly autocorrelations computed from daily
data a small sample correction as in Campbell et al. (2012).
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Appendix C

A Discrete Choice Model For
Large Heterogeneous Panels with

Interactive Fixed Effects
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C.1 Proofs

Proof of Lemma 3.5.1

To derive an upper bound on the uniform rate of /f;t — hot, I start by decomposing

ﬁt — hgy into two terms that can be analyzed separately:
1%85% Hht hol| = lfgag% [ — (Ao — A)'dy — (Ko — K)' fi]

— Y
= max [[@; — (Do — D)'g|

< max @]+ max [|(Do — D)'gi

< s 7] + 1D - D ma o

ET1+T2

where g; = (d,, f])', Dy = (A}, K})) and D = (A, K'Y. Recall that the disturbances
ujs are IID random variables Vi j,t S which is required for Bernstein’s inequality.

Term T; I decompose /, into u/, = ul;" + u!; where

ul” = wl I (Jul,] < L(N)) — E(ulI(|Ju},| < L(N))
ugt_ = uit[<|ugt’ > L(N)) — E(uftl(|uft| > L(N))

Below, the terms u * and ult are analyzed separately.

. . . . . .. i+
— By Bernstein’s exponential inequality applied to each element j in ul,",

N T 0_\/—
J+
(s 5 27) < S (e - )
1
(log T)?
<2Texp | —
21+ )
log ogT
=o(1) (C.1)
where the last equality follows from % — 0 under the condition that

L(N) = N3,

— The probability that the event u/, occurs can be bounded by Markov’s
inequality. For any k£ > 6 (assumption (B1)),

1<i<N 1<t<T

N T
Pr( max max |ul,| > L(N ZZ (Jul,| > L(N))

< NT Pr(ju}| > L(N))

E(Juy,]*)
=MIE
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= o(1) (C.2)

where the last equality follows from assumption (B3) and the condition that

L(N) =

This illustrates the choices for L(N) and the number of

moments & are not independent: One the one hand, L(NN) has to be sufficiently

small to ensure uniform consistency of u . On the other hand, a large value
of L(N) requires a large k for (C.2) to hold.

Taken together, the results in (C.1) and (C.2) imply that

’ ‘ log T Vi
max [T] = Oy JN )

Term T, By Markov’s inequality,

where

Therefore,

E|D — Dy|*
2

Pr(|[D — Dol > €) <

€

=

E|D—-Do|*<E (D; — Dy)

i
M ||M

E||D; — Dol”

I
02

==

()

_ 1
19— Dl s il = 0, ()

because maxj<i<7 ||g¢|| is bounded by assumption (A2). By combining the rates of
the terms T, and T it follows that ||/f;t — hotlln = O, <logT>. O

VN

Proof of Theorem 3.5.1

Because the infeasible estimator 6; is consistent (assumption (C5)), it suffices to

show that estimating the unobserved factors does not affect the criterion function.

We have
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Pr (sup Q}(G,ﬁ) — Q4 (0, ho)‘ > e>
6coe
< Pr ( sup  sup |Q% (6, h) — Q' (0, ho)| > e) + Pr (||ﬁ — hol| > 5T> (C.3)
|lh=hol|<é1 oce

— 0, (C.4)

where we have used assumption (C3) and (C6). O

Proof of Theorem 3.5.2

To show that é\z is asymptotically normal, it suffices to show that estimating the

unobserved factors does not affect the limiting distribution, that is,

0*Q(0.h)  2PQi(0.h)||
S| —eaer ~ ogorr ||~ W (C-5)
0Q4 (00, h)  0Qir (0o, ho) || 1o

56 5 = 0,(T7?) (C.6)

We start with equation (C.5):

Pr | sup
6co

§Pr< sup sup

[lh—ho||<dT 0co

0*Qir(0,h)  9*Qi(9, ho)
9006 9000

)

PPQy(0,h)  9°Qir(0, ho)
90007 0000"

)

— 0, (C.7)

4 Pr (||E— hol| > 5T)

where we have used uniform consistency of i and assumption (D2). This implies
that

0*Qir(0,h)  *Qi(0, ho)
00007 00007

= 0,(1) (€8)

To show that equation (C.6) holds, consider the expansion

0Qi (B0, h)  OQin(Bi0, ho)  9°Qi(0i0,ho) [~ Z.
90 o0 ooon <h h0>+RT'

We examine the terms 77 and T, separately:
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Term T; Term T; can be expressed as

20 (0. = T %
W . (h - ho) - %; Hoit(0:0, ho) (ht — h0t>

for some weighting matrix Ho;y = Hai (6,0, ho) that is of dimensions Ky +

2K, x K,. The rate can be obtained by Markov’s inequality:

‘ 2

) B|% S8 Hai (e ot
€l <

1 « -
7 2 Hau (e = hor)

where
1 & i 1 < 2
E T;HQit(ht_h0t> =F T;HQZt(ﬂt_(DO_D) gt)
1 « i a
< FE szz“ﬂt +FE _ZHQit(DO — D) g,
=1 t=1
1S P&
<E|= ZHM — Zat
T t=1 T t=1
T 2 2

< O(1)O(1/(NT)) + O(1)O(1/(NT))
— O(1/(NT)), (C.10)

where we have used assumption (A2), (D3) and that u; are IID random

variables with a finite variance.

Therefore,

< 0,(1/VT) (C.11)

1 <& .
= > Hau (e = hor)
t=1

Term Ty The remainder term R can be expressed as (with probability tending to

one)
R%z(ﬁ—hof%ﬁ%?'@—@
E5e o)
=1 s= =
1 h ”
(T;;Hh Sﬁ%||Wﬁs(ezo,h>\|><‘ s = hos |||t = hor )jﬂ
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~ 2 T(logT)?
<Tx <||h—h0||H) - (%) (C.12)

for some intermediate values and weighting matrices W, and p = Ky +

2K,. O

Proof of Theorem 3.5.3

By similar arguments as in the proof of theorem 3.5.1

(Sup ZQTQh ZQTGhO _e>
gPr( sup  sup |— ZQTGh ZQTQhO
|

|h—hol||<01 ¢co
< Pr (max sup  sup }QT (0, h) QiT(Q,ho)’ > e) + Pr <HE — hol| > (5T>

)| > e) +Pr(||ﬁ—h0\| > 5T)

1<i<N ||h I’LQ||<6T oco

— 0, (C.13)
O

Proof of Theorem 3.5.4

The asymptotic normality proof of 0 is similar to that of theorem 3.5.2. Asymptotic

normality of 0 follows from:

N i T N i
1 ¢ 0%Qp(0,h) 1~ PQr(0,ho) || _
sup |+ Z oo TN Zl 600 |l = op(1) (C.14)
. Z M L Z 00 9207 holll _ o (v-172) (C.15)
=1

where equation (C.15) is implied by equation (C.10) and equation (C.14) holds

Qi(0,h)  9*Qir(0, hy)
Pr (S;;f N ; ( 20067 0000
2 2
< Pr (Sup PQ(0.h) _ PR, ho) | )
6cO

00007 00007
2/ 2 i
< Pr (max sup  sup 0°Qr (0, h) B 0°Q4(0, hy)

because

T T Z €
1<i<N |[h—ho||<67 oco 3839 3936’
4 Pr (||h — hol| > 5T)

— 0, (C.16)
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Finally, to show that the asymptotic variance of the mean group estimator is given

by the variance of the random coefficients >J,, observe that

R L L
p— B = N ZZI(@, — Boi) + N ;(Bm’ — Bo)
1 .~ 1 &
:N;(ﬁi_ﬂm)‘f‘ﬁ;ni
| XN
=)+ 3o (€17)

by theorem 3.5.1. [
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