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Abstract

The behavior of economic agents is characterized by interdependencies that arise
from common shocks, strategic interactions or spill-over effects. Developing
new econometric methodologies for inference in panel data with cross-sectional
dependence is a common theme of this thesis. Another theme is econometric models
that allow for heterogeneity across individual observations. Each chapter takes
a different approach towards modeling and estimating panels with cross-sectional
dependence and heterogeneity. In all chapters, the perspective is one where both
the time series and the cross-sectional dimension are large.

The first chapter develops a methodology for semiparametric panel data models
with heterogeneous nonparametric covariate effects as well as unobserved time and
individual-specific effects that may depend on the covariates in an arbitrary way.
To model the covariate effects parsimoniously, we impose a dimensionality reducing
common component structure on them. In the theoretical part of the chapter,
we derive the asymptotic theory of the proposed procedure. In particular, we
provide the convergence rates and the asymptotic distribution of our estimators. The
asymptotic analysis is complemented by a Monte Carlo experiment that documents
the small sample properties of our estimator.

The second chapter investigates the effects of fragmentation in equity markets on
the quality of trading outcomes. It uses a unique data set that reports the location
and volume of trading on the FTSE 100 and 250 companies from 2008 to 2011 at the
weekly frequency. This period coincided with a great deal of turbulence in the UK
equity markets which had multiple causes that need to be controlled for. To achieve
this, we use the common correlated effects estimator for large heterogeneous panels
that approximates the unobserved factors with cross-sectional averages. We extend
this estimator to quantile regression to analyze the whole conditional distribution
of market quality. We find that both fragmentation in visible order books and
dark trading that is offered outside the visible order book lower volatility. But
dark trading increases the variability of volatility and trading volumes. Visible
fragmentation has the opposite effect on the variability of volatility, in particular at
the upper quantiles of the conditional distribution.

The third chapter develops an estimator for heterogeneous panels with discrete
outcomes in a setting where the individual units are subject to unobserved common
shocks. Like the estimator in chapter 2, the proposed estimator belongs to the
class of common correlated effects estimators and it assumes that the unobserved
factors are contained in the span of the observed factors and the cross-sectional
averages of the regressors. The proposed estimator can be computed by estimating
binary response models applied to regression that is augmented with the cross-
sectional averages of the individual-specific regressors. The asymptotic properties
of this approach are documented as both the time series and the cross-section tend
to infinity. In particular, I show that both the estimators of the individual-specific
coefficients and the mean group estimator are consistent and asymptotically normal.
The small-sample behavior of the mean group estimator is assessed in a Monte Carlo
experiment. The methodology is applied to the question of how funding costs in
corporate bond markets affect the conditional probability of issuing a corporate
bond.
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Chapter 1

A Semiparametric Model for
Heterogeneous Panel Data with
Fixed Effects1

This chapter develops a methodology for semiparametric panel data models in a
setting where both the time series and the cross section are large. Such settings are
common in finance and other areas of economics. Our model allows for heterogeneous
nonparametric covariate effects as well as unobserved time and individual specific
effects that may depend on the covariates in an arbitrary way. To model the covariate
effects parsimoniously, we impose a dimensionality reducing common component
structure on them. In the theoretical part of the chapter, we derive the asymptotic
theory of the proposed procedure. In particular, we provide the convergence rates
and the asymptotic distribution of our estimators. The estimator is shown to have
good small sample properties in a Monte Carlo experiment.

1This chapter is written in jointly with Oliver Linton and Michael Vogt and a version of it is
published in the Journal of Econometrics, Volume 188, Issue 2, October 2015, p. 327-345.
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1.1 Introduction

In this chapter, we develop estimation methodology for semiparametric panel models

in a setting where both the time series and the cross-section dimension are large.

Such settings have become increasingly common over the last couple of years. In

particular, they are frequently encountered in finance and various areas of economics

such as industrial organization or labour economics. Cheng Hsiao has been a pioneer

in the development of panel data techniques and his monograph (Hsiao (2003))

contains the main methodological background for our work.

We investigate a regression model which has a nonparametric covariate effect

along with individual and time specific fixed effects. The covariate effect is allowed

to be heterogeneous across individuals, which is feasible given the long time series

we are assuming. To restrict the heterogeneity to be of low dimension, we propose a

common component structure on the model. In particular, we assume the individual

covariate effects to be composed of a finite number of unknown functions that are

the same across individuals but loaded up differently for each cross-sectional unit.

The covariate effects are thus modelled as linear combinations of a small number of

common functions. The individual and time specific effects of the model are allowed

to be related to the covariate in quite a general way. This allows a potential channel

for endogeneity, which is important in many applications. We recognize that the

endogeneity that is permitted is rather limited, but we remark that this type of

restriction is extremely widely exploited in empirical microeconomics, see Angrist

and Pischke (2009). A rigorous formulation of the model together with a detailed

description of its components is given in Section 1.2. The issue of identifying the

various model components is discussed in Section 1.3.

Our model can be regarded as an intermediate case between two extremes. The

one extreme is the homogeneous model, where the covariate effect is the same

for each cross-sectional unit. This is a very common framework which has been

investigated in various parametric and semiparametric studies, see for example Hsiao

(2003). In a wide range of applications, it is however rather unrealistic to assume

that the covariate effect is the same for all individuals. On the other extreme end,

there is the fully flexible model without any restrictions on the covariate effects. One

example is the classical SURE model. More recently, Chen et al. (2012) among others

have studied a semiparametric version of this very general framework. Even though

it is highly flexible, it is however not well suited to some applications. In particular,

if the number of individuals is in the hundreds or thousands, the estimation output

consists of a huge number of individual functions. This makes the model hardly

interpretable. Furthermore, the estimation precision may be very low. Our model

lies between these two extremes and allows the user to select the degree of flexibility

appropriate for the given application.

Our setting falls in the class of semiparametric panel data models for large
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cross-section and long time series. Most of the models proposed in the literature

for this type of panel data are essentially parametric. Some important papers

include Moon and Phillips (1999), Bai and Ng (2002), Bai (2003), Bai (2004),

and Pesaran (2006). These authors have addressed a variety of issues including

nonstationarity, estimation of unobserved factors, and model selection. Most of the

work on semiparametric panel models is in the context of short time series, see for

example Kyriazidou (1997). Nonparametric additive models have been considered

for instance in Porter (1996). More recent articles include Mammen et al. (2009),

Qian and Wang (2012), and Hoderlein et al. (2011).

Only recently, there have been a number of contributions to the non- and semi-

parametric literature on panels with large cross-section and time series dimension.

Linton et al. (2009) consider estimation of a fixed effect time series. Atak et al.

(2011) are concerned with seasonality and trends in a panel setting; see also Chen

et al. (2013a). Connor et al. (2012) consider a semiparametric additive panel model

for stock returns driven by observable covariates and unobservable “factor returns”.

They allow weak dependence in both time and cross-section direction, but the

covariates are not time-varying and there is no individual effect. This model is suited

for their application but does not allow a channel for endogeneity. The estimation

method is made simpler by the fact that each additive term has a different covariate,

whereas the common functions in our model all have the same covariate. Kneip et al.

(2012) consider a model similar to ours except that they focus on time as the key

nonparametric covariate. Moreover, they do not allow individual effects to be related

to included covariates, that is, there is no endogeneity in their model.

Our method to estimate the common functions and the parameter vectors

which constitute the individual covariate effects is introduced in Section 1.4. The

asymptotic properties of the estimators are described in Section 1.5. In Subsection

1.5.2, we derive the uniform convergence rates as well as an asymptotic normality

result for our estimators of the common functions. Importantly, the estimators can

be shown to converge to the true functions at the uniform rate
√

log nT/nTh which

is based on the pooled number of data points nT with n being the cross-section

dimension and T the length of the time series. Intuitively, this fast rate is possible

to achieve because the functions are the same for all individuals. This allows us

to base our estimation procedure on information from the whole panel rather than

on a single time series corresponding to a specific individual. In Subsection 1.5.3,

we investigate the asymptotic behaviour of our parameter estimators. In particular,

we show that they are asymptotically normal. As will turn out, the parameters are

estimated with the same precision as in the case where the common functions are

known. In particular, our estimators have the same asymptotic distribution as the

oracle estimators constructed under the assumption that the functions are observed.

To investigate the small sample performance of our estimation procedures, Section
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1.8 conducts a series of simulation experiments. Overall, our procedures work well

even for quite small sample sizes.

To keep the arguments and discussion as simple as possible, we derive our

estimation procedure as well as the asymptotic results under the simplifying

assumption that the number of common functions is known. In Sections 1.6 and

1.7, we explain how to dispense with this assumption. In particular, we provide a

simple rule to select the number of unknown common functions. This complements

our estimation procedure and makes it ready to apply to real data.

1.2 The model

In this section, we provide a detailed description of our model framework. We

observe a sample of panel data {(Yit, Xit) : i = 1, . . . , n, t = 1, . . . , T}, where i

denotes the i-th individual and t is the time point of observation. To keep the

notation as simple as possible, we assume that both the variables Yit and Xit are

real-valued and focus on the case of a balanced panel.

The data are assumed to come from the model

Yit = µ0 + αi + γt +mi(Xit) + εit, (1.1)

where E[εit|Xit] = 0. Here, mi are nonparametric functions which capture the

covariate effect, µ0 is the model constant (which may be deterministic or stochastic)

and the variables εit are idiosyncratic error terms. The expressions αi and γt are

unobserved individual and time specific effects, respectively, which may depend

on the regressors in an arbitrary way, e.g., αi = Gi(Xi1, . . . , XiT ; ηi) and γt =

Ht(X1t, . . . , Xnt; δt) for some deterministic functions Gi, Ht and random errors ηi, δt

that are independent of the covariates. As usual there is an identification shortfall

here, and to identify the components of the model, we assume that E[mi(Xit)] = 0

along with
∑n

i=1 αi =
∑T

t=1 γt = 0.

As the functions mi may differ across individuals, the covariate effect in our

model is allowed to be heterogeneous. However, rather than allowing the effect to

vary completely freely, we impose some structure on it. In particular, we assume

the functions mi to have the common component structure

mi(x) =
K∑
k=1

βikµk(x), (1.2)

where µ = (µ1, . . . , µK)
ᵀ

is a vector of nonparametric component functions and

βi = (βi1, . . . , βiK)
ᵀ

are parameter vectors. Like the functions µ and the coefficient

vectors βi, the number of components K is unobserved. Identifying the functions µ

together with the coefficients βi in our setting is not completely straightforward and
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requires some care. We thus devote a separate section to this issue. In particular,

we provide a detailed discussion in Section 1.3.

We are primarily interested in the case where the individual-specific loadings βi

are allowed to be correlated with the regressors Xit. If instead βi are assumed to

be random variables that are distributed independently of the regressors, the model

in (1.1) and (1.2) reduces to a semiparametric panel data model with homogeneous

covariate effects and individual and time fixed effects (but heteroskedastic errors).

The model defined by (1.1) and (1.2) takes into account several issues which are

important in a panel data context. To start with, it captures nonlinearities and

heterogeneity in the covariate effect in a flexible but parsimonious way. Moreover,

since E[αi + γt|{Xit}] 6= 0 in general, the unobserved effects αi and γt introduce

a simultaneity between the covariates and the dependent variable. This allows a

certain type of endogeneity. Our model and the estimation techniques we develop

may thus be applied to a number of different empirical problems where heterogeneity

and endogeneity are potential issues.2

The type of endogeneity allowed for by the unobserved effects αi and γt is rather

limited, but we remark that this type of restriction is extremely widely exploited in

empirical microeconomics, see Angrist and Pischke (2009). An alternative approach

to dealing with endogeneity is to introduce instrumental variables, but there are

advantages and disadvantages with that approach also. Our model has the benefit

of simplicity and is in line with the simple approach to identifying empirical effects

espoused both in Angrist and Pischke (2009) and Manski (2008), for example. It

is a generalization of standard heterogeneous linear regression panel data models

that are widely discussed in Hsiao (2003) and is part of a large developing literature

on semiparametric panel models including Atak et al. (2011), Chen et al. (2012),

Connor et al. (2012), Chen et al. (2013a), and Chen et al. (2013b) that explore

different weakenings of these models.

The elements θ = {µ0, αi, γt : i = 1, . . . , n, t = 1, . . . , T} play the role of nuisance

parameters in our framework. There is a large number of them which is increasing

with the sample size. Nevertheless, we have an even larger number of observations,

which enable us to estimate consistently all the unknown quantities of interest. We

thus do not face the “incidental parameters problem” (Neyman and Scott (1948))

that is of wide concern in other panel data settings; see Hsiao (2003) for some

discussion of this issue.

We take a pragmatic approach to estimation based on first eliminating the

nuisance parameters. To achieve this we make use of a fixed effect transformation.

2We note that a symmetric type of model where the heterogeneity in the covariate effect is
driven by time rather than individual (i.e., mt(·) instead of mi(·)) may be of interest in some cases.
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Denote the time, cross-sectional, and global averages by:

Y i =
1

T

T∑
t=1

Yit, Y t =
1

n

n∑
i=1

Yit, Y =
1

nT

n∑
i=1

T∑
t=1

Yit,

and define Y fe
it = Yit − Y i − Y t + Y . Now note that

Y fe
it = mi(Xit) + εit −

1

T

T∑
t=1

mi(Xit)−
1

T

T∑
t=1

εit −
1

n

n∑
i=1

mi(Xit)−
1

n

n∑
i=1

εit

+
1

nT

n∑
i=1

T∑
t=1

mi(Xit) +
1

nT

n∑
i=1

T∑
t=1

εit

= mi(Xit) + εit +Op(T
−1/2) +Op(n

−1/2), (1.3)

where we require the sample averages to converge to their population means at

standard rates, see also Assumption (A1) in Section 1.5. (1.3) shows that the

nuisance parameters θ can be eliminated by subtracting sample means from the

data, although this method introduces some additional small error terms.

An alternative procedure is based on differencing, which is the most common

method in linear models, see Angrist and Pischke (2009). Specifically, let Y did
ijt =

(Yit− Yit−1)− (Yjt− Yjt−1) denote the difference-in-difference transformation. Then

we have

Y did
ijt = (mi(Xit)−mi(Xit−1))− (mj(Xjt)−mj(Xjt−1)) + uijt, (1.4)

where uijt = (εit − εit−1) − (εjt − εjt−1) is a serially dependent error term. This

approach also eliminates the nuisance parameters θ, but also not completely without

cost. First of all, the right-hand side of (1.4) is an additive regression function of the

covariates Xit, Xit−1, Xjt, Xjt−1. To estimate this function, either higher dimensional

smoothing must be employed, see Linton and Nielsen (1995), or iterative smoothing

techniques like backfitting, see Mammen et al. (1999). Second, the error term

uijt is dependent across time and cross-section, in particular it has a four term

”dyadic” (Fafchamps and Gubert (2007)) structure that needs to be accounted

for. Finally, one needs stronger conditional moment restrictions on the original

error terms to be able to consistently estimate this model. Specifically, we require

E[εit|Xit, Xit−1, Xjt, Xjt−1] = 0 rather than just the assumption E[εit|Xit] = 0

that will be needed for the fixed effect method. Henderson et al. (2008) propose

this method (with just time differencing) in the homogeneous one way model, i.e.,

Yit = µ0 + αi +m(Xit) + εit.
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1.3 Identification

The individual regression functions mi in our model are identified through the

normalizations E[mi(Xit)] = 0 along with
∑n

i=1 αi =
∑T

t=1 γt = 0. We now describe

how to identify the vector of common component functions µ = (µ1, . . . , µK)
ᵀ

and the parameter vectors βi = (βi1, . . . , βiK)
ᵀ

which constitute the functions mi.

Roughly speaking, the idea is to characterize µ and the parameter vectors βi via

an eigenvalue decomposition of a matrix related to the functions mi. Exploiting

the uniqueness properties of this decomposition, we are able to identify µ and the

parameter vectors up to sign. Our strategy is thus very similar to the arguments

usually used in factor analysis which can for example be found in Connor and

Korajczyk (1988) and Bai (2003).

To lay out our strategy, we denote the vector of individual functions by m = (m1,

. . . , mn)
ᵀ

and define B to be a n×K matrix with the entries βik for i = 1, . . . , n and

k = 1, . . . , K. With this notation at hand, we can represent the vector of functions

m as

m = Bµ. (1.5)

We now put some slight regularity conditions on B and µ. In particular, the

functions µ are assumed to be orthonormal with respect to a weighting function

w, i.e.,
∫
µ(x)µ(x)

ᵀ
w(x)dx = IK . Moreover, the coefficient matrix B is supposed to

have full rank K. These assumptions are rather harmless. In particular, the rank

condition on B just makes sure that there is enough variation in the coefficients,

i.e., in the linear combinations of the µ-functions across individuals.

The above two assumptions on µ and B can be replaced by a condition which

parallels the set of assumptions usually used in factor analysis. In particular, they

are equivalent to the following condition:

(I1) The matrix B is orthonormal, i.e. B
ᵀ
B = IK , and

∫
µ(x)µ(x)

ᵀ
w(x)dx is a

diagonal matrix with non-zero diagonal entries.

To see this equivalence, assume that we start off with a matrix B(1) of rank K

and a vector of common component functions µ(1) which are orthonormal in the

sense specified above. Then consider the symmetric, positive definite K×K matrix

(B(1))
ᵀ
B(1) = ODO

ᵀ
, where OO

ᵀ
= O

ᵀ
O = IK and D is a diagonal matrix with

positive entries. Let

B(2) = B(1)OD−1/2 (1.6)

µ(2)(x) = D1/2O
ᵀ
µ(1)(x). (1.7)

Then

(B(2))
ᵀ
B(2) = D−1/2O

ᵀ
(B(1))

ᵀ
B(1)OD−1/2 = IK
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and ∫
µ(2)(x)µ(2)(x)

ᵀ
w(x)dx = D1/2O

ᵀ
OD1/2 = D.

Hence, the normalized versions B(2) and µ(2) satisfy (I1).

Let us now assume that the matrix B and the component functions µ are

normalized according to (I1). In addition, suppose that the functions µ satisfy

the following constraint:

(I2) The diagonal entries of the matrix
∫
µ(x)µ(x)

ᵀ
w(x)dx are all distinct.

This assumption is needed to ensure that the eigenspaces in the spectral decompo-

sition below are one-dimensional, which in turn makes sure that the eigenvectors of

the decomposition are uniquely identified up to sign.

Given (I1) and (I2), the matrix B can be characterized via the “covariance”

structure of the functions m. In particular, we have that

Ω :=

∫
m(x)m(x)

ᵀ
w(x)dx = B

∫
µ(x)µ(x)

ᵀ
w(x)dx B

ᵀ
= BDB

ᵀ
,

where D is a diagonal matrix with the diagonal entries
∫
µ2
k(x)w(x)dx for k =

1, . . . , K. These entries are the non-zero distinct eigenvalues of the matrix

Ω. Moreover, the columns of the matrix B are the corresponding orthonormal

eigenvectors. This spectral decomposition is unique up to the sign of the

eigenvectors, i.e., up to the sign of the columns of the matrix B. Thus, the

coefficients contained in the matrix B are identified up to sign as well.

Exploiting the fact that the columns of B are orthonormal, we can moreover

represent the vector of functions µ by writing

µ = B
ᵀ
m.

This equation almost surely identifies the functions µ up to sign: The functions

mi contained in the vector m are identified almost surely by our normalizing

assumptions. Moreover, as seen above the columns of the matrix B are identified

up to sign. As a result, the functions µ are almost surely identified up to sign as

well.

Rather than working with the system (1.5) of dimension n directly, we transform

it into a system of dimension K. Let W = (ωki) be a K × n weighting matrix of

rank K. Then we can write Wm = WBµ. Introducing the shorthands S = WB

and g = Wm, we obtain that

g = Sµ. (1.8)

Here, g = (g1, . . . , gK)
ᵀ

are weighted averages of the individual functions mi given

by gk =
∑n

i=1 ωkimi. Moreover, the K ×K matrix S contains weighted averages of

the model parameters as its elements, in particular S = (skl) with skl =
∑n

i=1 ωkiβil
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for k, l = 1, . . . , K. Note that the vectors m and g as well as the matrices B, W ,

and S depend on the cross-section dimension n. To keep the notation readable, this

dependence is suppressed throughout the chapter.

Premultiplying the n-dimensional system (1.5) with the matrix W , we form K

different weighted averages of the individual functions m. We thus replace the

system (1.5) which characterizes the individual functions m as linear combinations

of the common components µ by a system which represents weighted averages of

these functions as linear combinations of µ. The reason for this is twofold: Firstly,

the system (1.8) has a fixed dimension K rather than a growing dimension n, which

is technically more convenient. Secondly, the functions g being averages of the

individual functions m, they can be estimated much more precisely than the latter.

In particular, g can be estimated with a much faster convergence rate than the

individual functions. This will help us to achieve a fast convergence rate for our

estimator of µ as well.

The elements of the system (1.8) can be normalized in an analogous way as those

of the system (1.5): To start with, we assume that the matrix S has full rank K and

that the functions µ are orthonormal, i.e.
∫
µ(x)µ(x)

ᵀ
w(x)dx = IK . By the same

arguments as before, this is equivalent to the following assumption:

(IW1) The matrix S is orthonormal, i.e. S
ᵀ
S = IK , and

∫
µ(x)µ(x)

ᵀ
w(x)dx is a

diagonal matrix with non-zero diagonal entries.

Note that the normalization of the functions µ in (IW1) depends on the matrix S

and thus on the chosen weighting matrix W . This becomes visible from equation

(1.7) which shows how the normalized version of µ is constructed. As before, we

additionally suppose that the normalized vector of functions µ has the following

property:

(IW2) The diagonal entries of the matrix
∫
µ(x)µ(x)

ᵀ
w(x)dx are all distinct.

We finally put a slight regularity condition on the weighting scheme W :

(IW3) The weights ωki are of the form ωki = vki/n with non-negative parameters

vki ≤ C <∞ for some sufficiently large constant C. For each k, the number

nk of nonzero weights is such that nk/n→ ck for some positive constant ck.

The above condition is satisfied by a wide range of weighting schemes, for example

by the simple choice

[n/K] times︷ ︸︸ ︷
W =


1
n
. . . 1

n
0

1
n
. . . 1

n
. . .

0 1
n
. . . 1

n

 . (1.9)
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Note that by assuming nk/n to converge to a positive limit, we just make sure that

the averages which result from applying the weighting matrix W are composed of

O(n) terms. This allows us to apply asymptotic arguments to them later on.

Given the normalization conditions (IW1) and (IW2) together with the assump-

tion on the weights (IW3), the functions µ can be represented as follows: As the

columns of the matrix S are orthonormal, we can write

µ = S
ᵀ
g. (1.10)

The matrix S in this equation can be characterized by a spectral decomposition of

the matrix Σ =
∫
g(x)g(x)

ᵀ
w(x)dx. In particular, it holds that

Σ = S

∫
µ(x)µ(x)

ᵀ
w(x)dx S

ᵀ
= SDS

ᵀ
,

where D = diag(λ1, . . . , λK) with λk =
∫
µ2
k(x)w(x)dx. The constants λ1, . . . , λK

are the non-zero distinct eigenvalues of Σ. Moreover, the columns of S are the

corresponding orthonormal eigenvectors, denoted by s1, . . . , sK in what follows.

In the sequel, we shall assume throughout that the functions µ and the matrix

S are normalized to fulfill (IW1) and (IW2). Moreover, we suppose that the matrix

Σ converges to a full-rank matrix Σ∗. These seem like reasonable and innocuous

assumptions. Finally, note that given the existence of a limit Σ∗, the matrix S

converges to a limit S∗ as well. This is due to the fact that the eigenvectors s1, . . . , sK

depend continuously on the entries of the matrix Σ.

1.4 Estimation

We now describe our procedure to estimate the functions µ1, . . . , µK and the

coefficient vectors βi = (βi1, . . . , βiK)
ᵀ

based on kernel methods. Of course,

alternative methods can be used, including the iterative algorithms developed in

Chen et al. (2013a) or the sieve methods described in Chen (2013). One advantage

of our procedures is that they are “in closed form” meaning that one does not have

to rely on nonlinear optimization and that they can be computed very fast and

accurately even with very large datasets.

For simplicity of exposition, we assume throughout the section that the number

K of common components is known. In Sections 1.6 and 1.7, we will dispense with

this assumption and provide a procedure to estimate K. Our approach splits up into

four steps, each of which is described in a separate subsection. To start with, we

construct preliminary estimators of the individual regression functions mi. These

are used to obtain estimators of the µ-functions and the coefficient vectors βi in a

second and third step, respectively. In a final step, we exploit the model structure

to obtain improved estimators of the individual regression functions mi.
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1.4.1 Preliminary estimators of the individual functions

We estimate the individual functions mi by applying nonparametric kernel tech-

niques to the time series data {(Y fe
it , Xit) : t = 1, . . . , T}. More specifically,

Nadaraya-Watson or local linear smoothers may be used. The Nadaraya-Watson

estimator of the function mi is defined as

m̂NW
i (x) =

∑T
t=1Kh(x−Xit)Y

fe
it∑T

t=1 Kh(x−Xit)
,

where h is a scalar bandwidth and K(·) denotes a kernel satisfying
∫
K(u)du = 1

and Kh(·) = h−1K(h−1 ·). The local linear estimator of mi is given by the formula

m̂LL
i (x) =

∑T
t=1wi,T (x,Xit)Y

fe
it∑T

t=1 wi,T (x,Xit)
,

with

wi,T (x,Xit) = Kh(x−Xit)
(
Si,T,2(x)−

(x−Xit

h

)
Si,T,1(x)

)
and

Si,T,k(x) =
1

T

T∑
t=1

Kh(x−Xit)
(x−Xit

h

)k
for k = 1, 2; see Fan and Gijbels (1996) for a detailed account of the local linear

smoothing method. The procedure to estimate the functions µ and the parameter

vectors βi is the same no matter whether we work with Nadaraya-Watson or local

linear smoothers. In what follows, we thus use the symbol m̂i to denote either the

local constant estimator m̂NW
i or the local linear smoother m̂LL

i .

1.4.2 Estimating the common component functions µ

We now use the characterization (1.10) of the functions µ to construct an estimator

of them. We proceed as follows:

Step 1: Construct estimators ĝ = (ĝ1, . . . , ĝK)
ᵀ

of the functions g = (g1, . . . , gK)
ᵀ

according to

ĝk(x) =
n∑
i=1

ωkim̂i(x).

Step 2: Estimate the matrix Σ by

Σ̂ =

∫
ĝ(x)ĝ(x)

ᵀ
w(x)dx.

Step 3: Estimate the eigenvalues and eigenvectors by

Σ̂ = ŜD̂Ŝ
ᵀ
,
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i.e., by performing an eigenvalue decomposition of the matrix Σ̂. Let

λ̂1, . . . , λ̂K be the eigenvalues of Σ̂ (i.e. the diagonal entries of the matrix D̂),

and ŝ1, . . . , ŝK the corresponding orthonormal eigenvectors (i.e. the columns

of the matrix Ŝ).

Step 4: Define the estimator of µ by replacing S and g in (1.10) with their respective

estimators, i.e.,

µ̂ = Ŝ
ᵀ
ĝ.

1.4.3 Estimating the coefficients βi

Consider the time series data {(Yit, Xit) : t = 1, . . . , T} of the i-th individual. These

are assumed to come from the model

Yit = µ0 + αi + γt +
K∑
k=1

βikµk(Xit) + εit

for t = 1, . . . , T , which is linear in the parameters βi = (βi1, . . . , βiK)
ᵀ
. If the

functions µ1, . . . , µK were known, the coefficients βi could be estimated by standard

least squares methods from the time series data {(Y fe
it , Xit) : t = 1, . . . , T}. In

particular, we could use a weighted least squares estimator given by

β̃i =
( 1

T

T∑
t=1

π(Xit)µ(Xit)µ(Xit)
ᵀ
)−1 1

T

T∑
t=1

π(Xit)µ(Xit)Y
fe
it (1.11)

with a weighting function π. As the functions µ are not known, we replace them by

the estimates µ̂, thus yielding the estimator

β̂i =
( 1

T

T∑
t=1

π(Xit)µ̂(Xit)µ̂(Xit)
ᵀ
)−1 1

T

T∑
t=1

π(Xit)µ̂(Xit)Y
fe
it . (1.12)

1.4.4 Re-estimating the functions mi and iterating the

estimation procedure

Exploiting the model structure, we can now define new estimators of the individual

functions mi which have better asymptotic properties than the preliminary estima-

tors m̂i. Specifically, we let

m̂e
i (x) = β̂

ᵀ

i µ̂(x).

As we will see later on, the estimators m̂e
i have a faster convergence rate than the

preliminary smoothers m̂i.

A possible extension of our estimation procedure is to iterate it. To do so, we first

re-estimate the component functions µ and the parameters βi by using m̂e
i instead

of the preliminary smoothers m̂i. This yields updated estimators of µ and βi. In
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addition, we may update the estimated individual effects whose first round estimates

were implicitly given by α̂i = Y i − Y , γ̂t = Y t − Y , and µ̂0 = Y . Specifically, these

may be replaced by:

α̂ei =
1

T

T∑
t=1

{Yit − µ̂0 − m̂e
i (Xit)} ; γ̂et =

1

n

n∑
i=1

{Yit − µ̂0 − m̂e
i (Xit)} ;

µ̂e0 =
1

nT

n∑
i=1

T∑
t=1

{Yit − m̂e
i (Xit)} .

This process can be continued until some convergence criterion is satisfied, which is

likely to be achieved in practice quite quickly. Note that we can view this iterative

algorithm as a procedure to find the minimum of a least squares objective function

along the lines of Connor et al. (2012).

1.5 Asymptotics

In what follows, we derive the asymptotic properties of our estimators. To start with,

we list the assumptions needed for our analysis. We then present the results on the

limiting behaviour of the estimators µ̂, β̂i, and m̂e
i . The proofs of our theoretical

results can be found in Appendix A.1.

1.5.1 Assumptions

We impose the following regularity conditions, which as usual are sufficient but not

necessary for our results. The expression T a � n � T b is used to mean that

CT a+δ ≤ n ≤ CT b−δ for some positive constant C, a small δ > 0 and 0 < a < b.

The symbol � is used analogously.

(A1) The data {Xit : i = 1, . . . , n, t = 1, . . . , T} and disturbances {εit : i =

1, . . . , n, t = 1, . . . , T} are independent across i. Moreover, they are strictly

stationary and strongly mixing (Rosenblatt (1956)) in the time direction. Let

αi(k) for k = 1, 2, . . . be the mixing coefficients of the time series {(Xit, εit), t =

1, . . . , T} of the i-th individual. It holds that αi(k) ≤ α(k) for all i = 1, . . . , n,

where the coefficients α(k) decay exponentially fast to zero as k →∞.

(A2) The densities fi of the variables Xit exist and have bounded support, [0, 1] say.

Moreover, they are uniformly bounded away from zero and from above, i.e.,

0 < c ≤ min1≤i≤n infx∈[0,1] fi(x) as well as maxi supx fi(x) ≤ C < ∞ for some

pair of constants 0 < c ≤ C <∞. Finally, the joint densities fi;l of (Xit, Xit+l)

exist and are also uniformly bounded from above.

(A3) The functions µ1, . . . , µK are twice continuously differentiable on [0, 1].

Moreover, the densities fi are twice continuously differentiable on [0, 1] as
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well with uniformly bounded first and second derivatives f ′i and f ′′i . Finally,

the coefficients βik are bounded by some constant β <∞, i.e., |βik| ≤ β for all

i = 1, . . . , n and k = 1, . . . , K, which ensures that the functions mi as well as

the derivatives m′i and m′′i are uniformly bounded on [0, 1] as well.

(A4) It holds that E[εit|Xit] = 0. Moreover, for some θ > 5 and for all l ∈ Z,

max
1≤i≤n

sup
x∈[0,1]

E
[
|εit|θ

∣∣Xit = x
]
≤ C <∞ (1.13)

max
1≤i≤n

sup
x,x′∈[0,1]

E
[
|εit|
∣∣Xit = x,Xit+l = x′

]
≤ C <∞ (1.14)

max
1≤i≤n

sup
x,x′∈[0,1]

E
[
|εitεit+l|

∣∣Xit = x,Xit+l = x′
]
≤ C <∞, (1.15)

where C is a sufficiently large constant independent of l.

(A5) The cross-section dimension n = n(T ) depends on T and satisfies T 2/3 � n�
T 3/2.

(A6) The bandwidth h is of the order (nT )−(1/5+δ) for some small δ > 0.

(A7) The kernel K is bounded, symmetric about zero and has compact support

([−C1, C1], say). Moreover, it fulfills the Lipschitz condition that there exists

a positive constant L with |K(u)−K(v)| ≤ L|u−v|. Let µ2(K) =
∫
K(ϕ)ϕ2dϕ

and ‖K‖2
2 =

∫
K2(ϕ)dϕ.

Assumption (A1) is very strong for the type of large panel data sets considered

in this paper. By restricting the degree of correlation between the regressors Xit and

the fixed effects αi and γt, it rules out situations where the regressors are generated

by Xit = µX + αi + γt + uit, for example. But it is possible to relax (A1) in several

dimensions as we discuss below.

Note that we do not necessarily require exponentially decaying mixing rates

as assumed in (A1). These could alternatively be replaced by sufficiently high

polynomial rates. We nevertheless make the stronger assumption (A1) to keep the

notation and structure of the proofs as clear as possible.

The cross-sectional independence of the data is maintained for simplicity, one

could however allow some forms of dependence in the cross-section. For example,

one could allow the type of clustering structure used in Connor et al. (2012). Our

results would go through with minimal changes in this case. An alternative approach

is to follow Connor and Korajczyk (1993) and to assume that there exists some

ordering of the observations with respect to which the data {(Xit, εit)} are mixing

across i. Jenish (2012) derives pointwise limit theorems for nonparametric regression

with near-epoch dependent mixing processes defined on a general lattice dimension

d, which includes that setting as a special case. Robinson (2011) has proposed

an alternative approach based on linear processes that does not need a measure
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of cross-sectional distance. His framework allows for strongly dependent and

nonstationary regression disturbances. These types of cross-sectional dependence

are much harder to deal with in our framework and would involve a great deal of

technical and notational effort to cope with. Heuristically speaking, however, we

expect these dependence structures to have no effect on the asymptotic behaviour

of our estimators provided the dependence is weak. Specifically, the cross-sectional

dependence should wash out of the distribution for the nonparametric estimates and

should not affect the univariate asymptotics for the loading coefficients.

We may also allow for nonstationarity in {(Xit, εit)} of the type proposed in

Dahlhaus (1997). This so-called local stationarity may arise in the time direction,

that is, densities change smoothly in the argument t/T . In addition, it may arise

in the cross-section, that is, densities change smoothly in the argument i/n with

respect to an unknown ordering of the individuals. Vogt (2012) establishes a number

of results for nonparametric regression with locally stationary processes, and we

anticipate that his results can be extended to this case, although the technical effort

to accomplish this would be considerable.

It is worth mentioning that our assumptions do not only allow for time series

dependence but also for heteroskedasticity in the error terms εit. The errors may for

example have the form εit = σ(Xit)ηit, where ηit are i.i.d. variables independent of

Xit and σ is an unknown volatility function. The moment bounds (1.13)–(1.15) on

the error terms are needed to derive a couple of uniform convergence results later

on. They are modifications of standard assumptions required to derive uniform

convergence rates for kernel estimators; cp. for example Assumption 2 in Hansen

(2008). They are for instance satisfied when the error terms take the form εit =

σ(Xit)ηit, where ηit are i.i.d. with E|ηit|θ <∞ and σ is a continuous function.

Finally, note that there is a trade-off between the moment condition (1.13) in

(A4) and the conditions on the relative sample sizes in (A5). For example, if we

restrict attention to the case n = O(T ), we can do with θ > 4 in condition (A4).

The restrictions in (A5) reflect two constraints on the relative sample sizes: Firstly,

T needs to be large enough relative to n such that the preliminary estimators are

sufficiently precisely estimated. Secondly, n needs to be large enough such that the

error terms stemming from the fixed effect transformation can be ignored.

1.5.2 Asymptotics for the estimator µ̂

Our first result characterizes the asymptotic behaviour of the estimator µ̂. In

particular, it shows that µ̂ uniformly converges to µ and is asymptotically normal.

To formulate it, we define V (x) to be a K ×K matrix with the entries

Vk,l(x) = ‖K‖2
2 lim
n→∞

(
n

n∑
i=1

ωkiωli
σ2
i (x)

fi(x)

)
,
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where σ2
i (x) = E[ε2

it|Xit = x].

Theorem 1.5.1. Let (A1)–(A7) together with (IW1)–(IW3) be satisfied. Then

sup
x∈Ih
‖µ̂(x)− µ(x)‖ = Op

(√ log nT

nTh

)
. (1.16)

Here, Ih = [C1h, 1 − C1h] if our procedure is based on the Nadaraya-Watson

smoothers m̂NW
i and Ih = [0, 1] if it is based on the local linear smoothers m̂LL

i .

Moreover, for any fixed point x ∈ (0, 1),

√
nTh(µ̂(x)− µ(x))

d−→ N(0, ν(x)) (1.17)

with ν(x) = (S∗)
ᵀ
V (x)S∗ and S∗ being the limit of S.

The first part of the theorem shows that µ̂ converges to µ at a fast rate based on

the pooled number of observations nT . If we set up our estimation procedure with

the local linear smoothers m̂LL
i , the rate is uniform over the whole support [0, 1].

For the Nadaraya-Watson based procedure in contrast, the rate is only uniform on

the subinterval [C1h, 1 − C1h] which converges to the support [0, 1] as the sample

size increases. This is due to the fact that the Nadaraya-Watson estimators m̂NW
i

suffer from slow convergence rates at the boundary of the support.

The second part of the theorem specifies the asymptotic distribution of µ̂. The

asymptotic covariance matrix ν(x) can be seen to depend on the weights ωki. The

reason for this is as follows: The normalization of the functions µ depends on the

choice of the weighting matrix W . In particular, different choices of W generally

result in different eigenvalues λk =
∫
µ2
k(x)w(x)dx, i.e., in different values of the

L2-norm of the functions µk. This becomes reflected in the covariance matrix ν(x)

through its dependence on the weights ωki. Moreover, note that ν(x) need not be

diagonal in general: If the weighting matrix W is diagonal, then V (x) is a diagonal

matrix as well. However, even then the matrix S∗ may have a more complicated

non-diagonal structure. Hence, the components of µ̂ are asymptotically mutually

correlated in general.

Regarding inference, we propose a simple plug-in method. Let ε̂it = Y fe
it −m̂i(Xit)

and

V̂k,l(x) = ‖K‖2
2 n

n∑
i=1

ωkiωli
σ̂2
i (x)

f̂i(x)
,

where σ̂2
i (x) is a local constant or local linear time series regression smoother of ε̂ 2

it on

Xit and f̂i(x) = T−1
∑T

t=1 Kh(Xit − x) is the time series kernel density estimator of

fi(x). Then, ν̂(x) = Ŝ
ᵀ
V̂ (x)Ŝ consistently estimates ν(x), and pointwise confidence

intervals based on this are consistent under our assumptions, see Haerdle (1991).

To derive the results of Theorem 1.5.1, we work with the undersmoothing

assumption (A6) on the bandwidth h. Moreover, we use the same bandwidth both
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to estimate the average functions g and the matrix Σ. It is however also possible to

employ different bandwidths. In particular, one may use a slightly undersmoothed

bandwidth hΣ of the order (nT )−(1/5+δ) to construct the estimate Σ̂ and a bandwidth

hg of the optimal order (nT )−1/5 to set up the estimator ĝ. Inspecting the proof of

Theorem 1.5.1, it is easily seen that in this case

√
nThg(µ̂(x)− µ(x)) = S

ᵀ[√
nThg

(
ĝ(x)− g(x)

)]
+ op(1)

with √
nThg

(
ĝ(x)− g(x)

) d−→ N(B(x), V (x)),

where the variance V (x) has already been defined above and the bias term B(x) is

given by BNW(x) and BLL(x) in the Nadaraya-Watson and the local linear based

case, respectively. The latter two expressions are defined by

BNW
k (x) =

c0µ2(K)

2
lim
n→∞

n∑
i=1

ωki
(
2m′i(x)f ′i(x) +m′′i (x)fi(x)

)/
fi(x)

BLL
k (x) =

c0µ2(K)

2
lim
n→∞

n∑
i=1

ωkim
′′
i (x)

for k = 1, . . . , K, where c0 is the limit of the sequence values
√
nTh5

g.

Given the above remarks, we suggest a straightforward rule of thumb for

bandwidth selection. In particular, we first select the bandwidth hg and then choose

the bandwidth hΣ simply by picking a value slightly smaller than the choice of hg.

To select the bandwidth hg (or rather hg,k if we allow a different bandwidth for each

function gk), we optimize the integrated mean-squared error criterion

IMSE(hg,k) = h4
g,k

∫
B2
k(x)dx+

1

nThg,k

∫
Vk,k(x)dx

for k = 1, . . . , K. Minimizing with respect to hg,k, the optimal bandwidth turns out

to be given by

h∗g,k =

( ∫
Vk,k(x)dx

4
∫
B2
k(x)dx

) 1
5

(nT )−1/5.

This expression still depends on some unknown quantities which have to be replaced

by estimators. To do so, we apply a simple plug-in rule similar to the methods

discussed in Fan and Gijbels (1996).

1.5.3 Asymptotics for the parameter estimators β̂i

The next theorem describes the asymptotic properties of the parameter estimates

β̂i for a fixed individual i. To state the asymptotic distribution of β̂i, we introduce
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the shorthands

Γi = E[π(Xi0)µ(Xi0)µ(Xi0)
ᵀ
] and Ψi =

∞∑
l=−∞

Cov(χi0, χil),

where χit = {π(Xit)µ(Xit)− E[π(Xit)µ(Xit)]}εit − E[π(Xit)µ(Xit)]mi(Xit) and π is

a bounded weighting function.

Theorem 1.5.2. Suppose that all the assumptions of Theorem 1.5.1 are fulfilled

and let Γi have full rank. Then for any fixed i,

√
T (β̂i − βi)

d−→ N
(
0,Γ−1

i Ψi(Γ
−1
i )

ᵀ)
.

If our procedure is based on Nadaraya-Watson smoothers, we have to restrict the

weighting function π to equal zero within the boundary region [0, C1h)∪(1−C1h, 1].

This is necessary because the convergence rate of µ̂ is only uniform over the interval

[C1h, 1−C1h] in this case. If the local linear based procedure is applied, we do not

have to impose any restrictions on π.

From the proof of Theorem 1.5.2, we can see that our parameter estimators

β̂i have some type of oracle property. In particular, it holds that
√
T (β̂i − β̃i) =

op(1). Our estimators β̂i thus have the same asymptotic distribution as the oracle

estimators β̃i which are constructed under the assumption that the functions

µ1, . . . , µK are known. To estimate the asymptotic variance Ψi, we may apply

standard long-run variance estimation procedures to the residuals χ̂it given by

χ̂it = {π(Xit)µ̂(Xit)− π̂µ}ε̂it − π̂µm̂e
i (Xit),

where we define π̂µ = T−1
∑T

t=1 π(Xit)µ̂(Xit), ε̂it = Y fe
it − m̂e

i (Xit) and m̂e
i (x) =

β̂
ᵀ

i µ̂(x).

1.5.4 Asymptotics for the estimators m̂e
i and a parameter

of interest

We finally discuss the asymptotic properties of the estimator m̂e
i (x) = β̂

ᵀ

i µ̂(x). It

holds that

m̂e
i (x)−mi(x) = (β̂i − βi)

ᵀ
µ(x) + β

ᵀ

i (µ̂(x)− µ(x)) + op

( 1√
nT

)
. (1.18)

The first term on the right-hand side is of the order T−1/2, while the second one has

the (pointwise) order (nTh)−1/2 under our conditions. Given assumption (A5) on

the relationship between the dimensions n and T , the leading term is the first one

of order T−1/2. It follows that m̂e
i (x) is asymptotically normal at the rate T−1/2,

i.e., at a faster rate than the preliminary estimator m̂i(x) which converges at the
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(pointwise) rate (Th)−1/2.

In some empirical applications, a parameter of interest is ci = mi(1) − mi(0).

Defining ĉi = m̂e
i (1)− m̂e

i (0), we obtain that

ĉi − ci = (β̂i − βi)
ᵀ
(µ(1)− µ(0)) + β

ᵀ

i (µ̂(1)− µ(1))− βᵀ

i (µ̂(0)− µ(0)) + op

( 1√
nT

)
.

Under the null hypothesis that ci = 0, we should observe that

√
T ĉi

d−→ N (0, τi) with τi = (µ(1)− µ(0))
ᵀ
Γ−1
i Ψi(Γ

−1
i )

ᵀ
(µ(1)− µ(0)),

which could form the basis of a test. Specifically, we can use the strategy to estimate

the covariance matrix Γ−1
i Ψi(Γ

−1
i )

ᵀ
from the previous subsection together with the

estimators µ̂ to obtain a consistent estimator τ̂i of the asymptotic variance τi and

let

ti =
ĉi√
τ̂i/T

,

which is asymptotically standard normal.

1.6 Robustness of the estimation method

So far, we have worked under the simplifying assumption that the number K of

common component functions µ1, . . . , µK is known. We now drop this assumption

and take into account that K is usually not observed in applications. We only

suppose that there is some known upper bound K of the number of component

functions. In what follows, we investigate how our procedure behaves if we work

with this upper bound instead of the true number of components.

To do so, let W = (ωki) be a K × n weighting matrix satisfying (IW3). Writing

g = Wm and S = WB, we obtain that

g = S µ.

Using an analogous normalization as in Section 1.3, we can assume that (i) the

matrix
∫
µ(x)µ(x)

ᵀ
w(x)dx is diagonal with positive and distinct diagonal entries

and that (ii) S is a K × K matrix with orthonormal columns. Note that this

normalization is somewhat different from that used in the previous sections as

we have replaced the weighting scheme W by W . For simplicity, we suppress

this difference in the notation in what follows and again denote the normalized

component functions by µ. We thus obtain that

µ = S
ᵀ

g.

As in the case with known K, the matrix S can be characterized by an eigenvalue
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decomposition of the K ×K matrix

Σ =

∫
g(x)g(x)

ᵀ
w(x)dx.

In particular, it holds that Σ = SDS
ᵀ

with D =
∫
µ(x)µ(x)

ᵀ
w(x)dx. Note that this

way of writing the spectral decomposition implicitly presupposes that K is known.

For this reason, it is more appropriate to rewrite the decomposition as Σ = U DU
ᵀ

.

Here, U is an orthonormal K×K matrix with the first K columns being equal to S.

Moreover, D =
∫
µ(x)µ(x)

ᵀ
w(x)dx is a diagonal K×K matrix with µ = (µ, 0, . . . , 0)

being a vector of length K. Similarly to the case with known K, we assume that Σ

converges to a matrix Σ
∗

of rank K.

To estimate the vector of functions µ = (µ, 0, . . . , 0), we mimic the estimation

procedure from Subsection 1.4.2. In particular, we proceed as follows:

Step 1: Estimate the function gk(x) by g̃k(x) =
∑n

i=1 ωkim̂i(x) for k = 1 . . . , K.

Step 2: Estimate the matrix Σ by Σ̃ =
∫
g̃(x)g̃(x)

ᵀ
w(x)dx.

Step 3: Perform an eigenvalue decomposition of Σ̃ to obtain estimators of U and

D. In particular, write Σ̃ = ŨD̃Ũ
ᵀ

with D̃ being diagonal and Ũ being

orthonormal.

Step 4: Estimate the vector of functions µ = (µ, 0, . . . , 0) by

µ̃ = Ũ
ᵀ
g̃.

Inspecting the proof of Theorem 1.5.1, it is straightforward to see that for

k = 1, . . . , K, the estimator µ̃k has analogous asymptotic properties as µ̂k. In

particular, it uniformly converges to µk and is asymptotically normal. The next

theorem summarizes the properties of µ̃k for k = 1, . . . , K. To formulate it, we let

V (x) be a K ×K matrix with the entries

V k,l(x) = ‖K‖2
2 lim
n→∞

(
n

n∑
i=1

ωkiωli
σ2
i (x)

fi(x)

)
,

where ωki are the elements of the weighting matrix W .

Theorem 1.6.1. Let (A1)–(A7) be fulfilled. Then it holds that

sup
x∈Ih

∣∣µ̃k(x)− µk(x)
∣∣ = Op

(√ log nT

nTh

)
(1.19)

for all k = 1, . . . , K. As before, Ih = [C1h, 1−C1h] for the Nadaraya-Watson based

case and Ih = [0, 1] for the local linear based procedure. Moreover, for any fixed point
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x ∈ (0, 1), √
nTh [µ̃(x)− µ(x)]

d−→ N(0, ν(x)), (1.20)

where ν(x) = (S
∗
)
ᵀ
V (x)S

∗
and S

∗
is the limit of S.

In addition, we can show that for k = K + 1, . . . , K, the estimators µ̃k converge in

an L2-sense to zero.

Theorem 1.6.2. Let (A1)–(A7) be fulfilled. Then it holds that∫
µ̃2
k(x)w(x)dx = op

( 1√
nTh

)
(1.21)

for all k = K + 1, . . . , K.

The proof of Theorem 1.6.2 is given in Appendix A.1. Taken together, Theorems

1.6.1 and 1.6.2 show that our procedure is robust to overestimating the number of

component functions K. In particular, applying it with the upper bound K instead

of K, the first K components of the estimator µ̃ still uniformly converge to the

vector of functions µ. Moreover, the remaining components converge to zero in an

L2-sense and thus become negligible as the sample size grows.

1.7 Selecting the number of components K

In this section, we propose a simple method to estimate the unknown number of

components K. To define our estimator, let λ = (λ1, . . . , λK)
ᵀ

be the vector of

eigenvalues of the matrix Σ arranged in descending order. Analogously, let λ̃ be the

eigenvalues of the estimator Σ̃. Finally, let {δn,T} be any null sequence of positive

numbers which converges to zero at the order O(1/
√
nTh) or at a slower rate. With

this notation at hand, our estimator of K is defined as

K̂ = min

{
k ∈ {1, . . . , K}

∣∣∣∣∣ λ̃1 + . . .+ λ̃k

λ̃1 + . . .+ λ̃K
≥ 1− δn,T

}
.

The intuition behind this estimator is simple: Under our assumptions, the matrix

Σ has K non-zero eigenvalues, i.e., the first K entries of λ are non-zero. The first K

entries of the estimator λ̃ thus converge to some positive values, whereas the other

ones approach zero as the sample size increases. Hence, the ratio

λ̃1 + . . .+ λ̃k

λ̃1 + . . .+ λ̃K

should converge to a number strictly smaller than 1 for k < K and to 1 for k ≥ K.

This suggests that K̂ consistently estimates the true number of components K.
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This intuition can easily be turned into a formal argument: First of all, it can

be shown that the convergence rate of λ̃ is at least op(1/
√
nTh), i.e., ‖λ̃ − λ‖ =

op(1/
√
nTh). As a consequence, it holds that

λ̃1 + . . .+ λ̃k

λ̃1 + . . .+ λ̃K
=
λ1 + . . .+ λk
λ1 + . . .+ λK

+ op

( 1√
nTh

)
.

for any k ∈ {1, . . . , K}. In particular,

λ̃1 + . . .+ λ̃K

λ̃1 + . . .+ λ̃K
= 1 + op

( 1√
nTh

)
.

Using these two equations together with some straightforward arguments, it is easily

seen that K̂ is indeed a consistent estimator of the true number of components K,

i.e. K̂ = K + op(1).

When implementing the estimator K̂ in practice, an important question is how

to choose the constant δn,T . We suggest to pick it by a rule of thumb which is

similar to the procedure usually used in principal component analysis for selecting

the number of factors. To understand the intuitive idea behind the rule, first note

that λk =
∫
µ2
k(x)w(x)dx for k = 1, . . . , K and λk = 0 for k = K + 1, . . . , K.

The eigenvalues λk are thus equal to (the square of) a weighted L2-norm of the

component functions µ = (µ, 0, . . . , 0). Put differently, they measure the variation

of these functions. As a result, the ratio

λ1 + . . .+ λk
λ1 + . . .+ λK

can be interpreted to capture the percentage of the overall variation in the functions

µ that stems from the first k components. Hence, by picking a certain value of δn,T ,

we select the number of component functions such that at least a certain percentage

of the overall variation is explained by the chosen number of components. For

instance, if we let δn,T = 0.05, we pick the number of components to capture at least

95% of the total variation. Keeping in mind that our estimation procedure is robust

to picking the number of components too large, we propose to choose the constant

δn,T rather small (e.g. δn,T = 0.01 or δn,T = 0.05). This results in a conservative

rule which tends to overestimate the true number K rather than to underestimate

it. As already noted above, this way of selecting the number of components is very

similar to the usual approach in factor analysis (see e.g. Zhu and Ghodsi (2006) or

chapter 6 of Jolliffe (2002)).

32



1.8 Simulation study

To assess the small sample properties of our estimation methods, we simulate data

from the following model setup: The regressors Xit are i.i.d. draws from a uniform

distribution on the unit interval. Moreover, there are K = 2 common component

functions defined by

µ1(x) =
√

2 sin(2πx) and µ2(x) =
√

2 cos(2πx).

These functions are orthonormal with respect to the standard scalar product on

[0, 1], i.e.,
∫ 1

0
µ1(x)µ2(x)dx = 0 and

∫ 1

0
µ2
k(x)dx = 1 for k = 1, 2. As the regressors

are uniformly distributed on [0, 1], we obtain that E[µk(Xit)] = 0 for k = 1, 2 and

thus E[mi(Xit)] = 0 with mi(x) = βi1µ1(x)+βi2µ2(x). Thus, the regression functions

fulfill the normalization E[mi(Xit)] = 0 that is assumed for identification.

The factor loadings βik (i = 1, . . . , n, k = 1, . . . , K) are generated deterministi-

cally according to

βi1 = 1 +
i− 1

n− 1
and βi2 = 2− i− 1

n− 1
.

With this choice, the coefficient βi1 of the function µ1 linearly increases from 1 to 2

as the index i grows larger. Similarly, the loading βi2 of µ2 decreases from 2 to 1.

Hence, the component function µ1 becomes more and more important as the index

i gets larger and vice versa for the second component µ2. The weighting matrix W

is given by

W =

(
2/n . . . 2/n 0 . . . 0

0 . . . 0 2/n . . . 2/n

)
.

Note that the coefficient matrix B and the weighting matrix W are chosen such that

S = WB has full rank. In addition, the µ-functions are orthonormal. Hence, the

normalization conditions of Section 1.3 are fulfilled. In the simulations, S and µ are

re-normalized such that they fulfill condition (IW1).

The individual and time fixed effects αi and γt are i.i.d. standard normal random

variables. The model constant µ0 is set to zero, and the disturbances εit are i.i.d.

normal random variables with zero mean and standard deviation σε. To vary the

signal-to-noise ratio in the model, we choose two different values for σε, in particular

σε ∈ {1, 2}. As can be seen, there is no time series dependence in the error terms and

the regressors, and we have only included a very limited form of fixed effects. These

simplifications allow us to get a clear picture of the performance of our estimation

methods. It goes without saying that they may be relaxed, i.e., we may allow for

time series dependence in the model variables and add some more complicated forms

of fixed effects.

In what follows, we examine the performance of our estimators µ̂ and β̂i.
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Moreover, we assess the small sample behaviour of two estimators of the average

regression function mav(x) = n−1
∑n

i=1 mi(x) defined by m̂av(x) = n−1
∑n

i=1 m̂i(x)

and m̂e
av(x) = n−1

∑n
i=1 m̂

e
i (x), where m̂e

i (x) = β̂
ᵀ

i µ̂(x) are the reconstructed

regression functions. As performance measures, we employ the mean squared errors

MSE(µ̂k) =

∫ 1

0

[
µ̂k(x)− µk(x)

]2
dx

for k = 1, 2 along with

MSE(m̂av) =

∫ 1

0

[
m̂av(x)−mav(x)

]2
dx

MSE(m̂e
av) =

∫ 1

0

[
m̂e

av(x)−mav(x)
]2
dx.

The small sample behavior of the coefficient estimates β̂i is evaluated by the L1-norm

1

n

n∑
i=1

|β̂ik − βik|

for k = 1, 2. Throughout, we assume the number of components K = 2 to be

known and use the version of our method which is based on local linear estimators.

Moreover, the bandwidth is set to h = 0.15 and we use an Epanechnikov kernel. As

a robustness check, we have varied the bandwidth. As this produces very similar

results, we have however not reported them here. Finally, the number of replications

is set to N = 1000.

Tables 1.1 and 1.2 report the simulation results. Overall, our estimators perform

well even for the moderate sample sizes n = T = 50. The accuracy of the estimators

increases steadily as the dimensions n and T grow larger, the only exception being

the estimates of the factor loadings which improve above all in T but not so much

in n. This is a very natural phenomenon as the factor loadings are estimated from

individual time series regressions. Hence, their quality should depend above all on

the time series dimension and not so much on the length of the cross-section. It

is also worth mentioning that the MSE of the reconstructed average m̂e
av is smaller

and converges faster to zero than the MSE of m̂av. This observation is consistent

with the asymptotic properties of the estimators m̂i and m̂e
i : While m̂i converges at

the rate (Th)−1/2, m̂e
i converges at the faster rate T−1/2 (cp. Section 1.5.4). Finally,

when the standard deviation σε of the disturbance terms is increased to 2, the signal-

to-noise ratio in the model decreases. This makes it harder to estimate the functions

and parameters of interest, which is reflected in higher values of the MSE and the

L1-norm as can be seen upon comparing Tables 1.1 and 1.2.
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1.9 Conclusion

Our model captures in a general way two important features in many applications:

heterogeneity and nonlinearity. We also allow for a limited type of endogeneity

through the unobserved time and cross-section fixed effects. Nevertheless, our

estimation procedures are particularly simple, and are in fact closed form at each

step. We have provided the tools to conduct inference and to select tuning and order

parameters.

We close the chapter by commenting on some extensions of our model. In our

analysis, we have focused on the case of univariate regressors Xit. If the regressors

are multivariate, the usual curse of dimensionality problem arises, cp.Stone (1980).

One way to circumvent this problem is to assume that the regression functions mi

split up into additive components according to

mi(x) = m
(1)
i (x1) + . . .+m

(d)
i (xd),

where d is the dimension of the regressors. Analogously to the univariate case,

we may suppose that for each j, the individual functions m
(j)
i have the common

component structure

m
(j)
i (xj) =

K∑
k=1

β
(j)
ik µ

(j)
k (xj),

where K could also be allowed to differ across j. The additive functions

m
(1)
i , . . . ,m

(d)
i can be estimated by time series backfitting for each individual

i, see Mammen et al. (1999). These backfitting estimators may be used as

preliminary estimators in our procedure. In particular, the common functions

µ(j) = (µ
(j)
1 , . . . , µ

(j)
K ) may be estimated separately for each j by repeating the

estimation steps of Section 1.4 based on the backfitting estimators.

Perhaps one is also concerned that we do not allow for sufficiently general time

effects, since we have assumed homogeneous such effects. A more general model

which allows for additional interactive (exogenous) time effects is given by

Yit = µ0 + αi + γt + gi(t/T ) +mi(Xit) + εit,

where gi(·) is a smooth function of rescaled time. In practice, a number of authors

adopt parametric specifications for gi(t/T ) such as gi(t/T ) = ζit + ηit
2, see for

example Brogaard et al. (2013). In this case, we obtain

Y fe
it = gi(t/T ) +mi(Xit) + εit +Op(T

−1/2) +Op(n
−1/2),

where we have assumed that
∑T

t=1 gi(t/T ) = 0. Similarly to the multivariate case

discussed above, we here have an additive regression model that could be estimated

by time series backfitting. Moreover, one could restrict gi(·) to rely on a small
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number of principal components as we do for mi(·), and do parallel analysis for

both functions.
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Table 1.1: Small sample properties of the estimators in the design with σε = 1

a) MSE of m̂av

T\n 50 100 150 200

50 0.0449 0.0362 0.0331 0.032
100 0.0425 0.0347 0.0324 0.0311
150 0.042 0.0345 0.0321 0.0309
200 0.0418 0.0343 0.0321 0.0308

b) MSE of m̂e
av

T\n 50 100 150 200

50 0.017 0.0124 0.0107 0.0101
100 0.0109 0.0077 0.0071 0.0066
150 0.0092 0.0067 0.0061 0.0058
200 0.0085 0.0062 0.0057 0.0054

c) MSE of µ̂1

T\n 50 100 150 200

50 0.0159 0.0099 0.0064 0.0052
100 0.008 0.004 0.003 0.0024
150 0.0053 0.0029 0.0021 0.0016
200 0.0041 0.0022 0.0016 0.0012

d) MSE of µ̂2

T\n 50 100 150 200

50 0.0159 0.0092 0.0063 0.005
100 0.009 0.0051 0.0039 0.0035
150 0.0065 0.0043 0.0035 0.003
200 0.0054 0.0035 0.003 0.0027

e) L1-norm of the coefficient estimates β̂i1

T\n 50 100 150 200

50 0.129 0.125 0.124 0.123
100 0.089 0.0853 0.0841 0.0837
150 0.072 0.0684 0.0679 0.0675
200 0.0627 0.0591 0.0583 0.0581

f) L1-norm of the coefficient estimates β̂i2

T\n 50 100 150 200

50 0.136 0.13 0.128 0.128
100 0.0973 0.0914 0.0895 0.0886
150 0.0822 0.0752 0.0732 0.0721
200 0.0732 0.0658 0.0641 0.0629
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Table 1.2: Small sample properties of the estimators in the design with σε = 2

a) MSE of m̂av

T\n 50 100 150 200

50 0.0512 0.039 0.0352 0.034
100 0.0456 0.0362 0.0334 0.0318
150 0.0442 0.0354 0.0327 0.0314
200 0.0428 0.035 0.0326 0.0312

b) MSE of m̂e
av

T\n 50 100 150 200

50 0.0233 0.0153 0.0129 0.0118
100 0.0144 0.00936 0.008 0.00749
150 0.0115 0.00779 0.00682 0.00632
200 0.00993 0.0069 0.00634 0.00579

c) MSE of µ̂1

T\n 50 100 150 200

50 0.0343 0.019 0.0129 0.0103
100 0.0169 0.0089 0.00604 0.00465
150 0.0106 0.0057 0.00402 0.00294
200 0.00804 0.00418 0.00292 0.00225

d) MSE of µ̂2

T\n 50 100 150 200

50 0.0339 0.0183 0.0125 0.00993
100 0.0171 0.00942 0.0071 0.00568
150 0.0117 0.007 0.00542 0.00429
200 0.00955 0.00555 0.00433 0.00366

e) L1-norm of the coefficient estimates β̂i1

T\n 50 100 150 200

50 0.233 0.231 0.231 0.231
100 0.162 0.162 0.161 0.161
150 0.134 0.131 0.131 0.131
200 0.115 0.113 0.114 0.114

f) L1-norm of the coefficient estimates β̂i2

T\n 50 100 150 200

50 0.237 0.234 0.234 0.234
100 0.169 0.166 0.164 0.164
150 0.138 0.135 0.134 0.134
200 0.12 0.118 0.116 0.116
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Chapter 2

The Effect of Fragmentation in
Trading on Market Quality in the
UK Equity Market1

We investigate the effects of fragmentation in equity markets on the quality of
trading outcomes in a panel of FTSE stocks over the period 2008-2011. This period
coincided with a great deal of turbulence in the UK equity markets which had
multiple causes that need to be controlled for. To achieve this, we use the common
correlated effects estimator for large heterogeneous panels. We extend this estimator
to quantile regression to analyze the whole conditional distribution of market quality.
We find that both fragmentation in visible order books and dark trading that is
offered outside the visible order book lower volatility. But dark trading increases
the variability of volatility and trading volumes. Visible fragmentation has the
opposite effect on the variability of volatility in particular at the upper quantiles of
the conditional distribution. The transition from a monopolistic to a fragmented
market is non-monotonic with respect to the degree of fragmentation.

1This chapter is written in jointly with Oliver Linton and Michael Vogt and a version of it is
forthcoming in the Journal of Applied Econometrics.
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2.1 Introduction

The implementation of the “Markets in Financial Instruments Directive (MiFID)”

has had a profound impact on the organization of security exchanges in Europe.

Most importantly, it abolished the concentration rule in European countries that

required all trading to be conducted on primary exchanges and it created a

competitive environment for equity trading; new types of trading venues that are

known as Multilateral Trading Facilities (MTF) or Systematic Internalizers (SI)

were created that fostered this competition. As a result, MiFID has served as a

catalyst for the competition between equity marketplaces we observe today. The first

round of MiFID was implemented across Europe on November 1st, 2007, although

fragmentation of the UK equity market began sometime before that (since the UK

did not have a formal concentration rule), and by 13th July, 2007, Chi-X was actively

trading all of the FTSE 100 stocks. In April 2014, the volume of the FTSE 100

stocks traded via the London Stock Exchange (LSE) had declined to 51%.2 Similar

developments have taken place across Europe.

At the same time, there has been a trend towards industry consolidation: a

number of mergers of exchanges allowed cost reductions through “synergies” and also

aided standardization and pan European trading. For example, Chi-X was acquired

by BATS in 2011. There are reasons to think that consolidation fosters market

quality. A single, consolidated exchange market creates network externalities.

In addition, some have argued that security exchanges even qualify as natural

monopolies. On the other hand, there are arguments for why competition between

trading venues can improve market quality. Higher competition generally promotes

technological innovation, improves efficiency and reduces the fees that have to paid

by investors. Furthermore, traders that use Smart Order Routing Technologies

(SORT) can still benefit from network externalities in a fragmented market place.

In view of the ambiguous theoretical predictions, whether the net effect of

fragmentation on market quality is negative or positive is an empirical question.

In this chapter, we investigate the effect of visible fragmentation and dark trading

on measures of market quality such as volatility, liquidity, and trading volume in the

UK equity market. Our analysis distinguishes between the effect of fragmentation

on average market quality on the one hand and on its variability on the other

hand. The first question sheds light on the relationship between fragmentation and

market quality during “normal” times. In contrast, the second question investigates

whether fragmentation of trading has led to an increase in the frequency of liquidity

droughts or to more extraordinary price moves. This latter issue has been raised

in several studies that have analyzed the Flash Crash and other recent market

meltdowns (Madhavan (2012)). Of course, there is no market structure that

can entirely eliminate variability in liquidity or trading volume. But regulators

2http://www.batstrading.co.uk/market data/market share/index/, accessed on April 16, 2014
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aim at constructing a robust market structure that contributes to an orderly and

resilient functioning of equity markets in times of market turmoil. One reason for

this objective is that investors particularly value the ability to trade in times of

market stress and a stable market structure is thus important to maintain investor

confidence (Securities Exchange Commission (2013)).

We use a novel dataset that allows us to calculate weekly measures for overall

fragmentation, visible fragmentation and dark trading that is offered outside the

visible order book for each firm of the FTSE 100 and FTSE 250 indices and

combine it with data on indicators of market quality. To investigate the effect

of fragmentation on market quality, we use a version of Pesaran (2006) common

correlated effects (CCE) estimator for heterogeneous panels. That estimator is

suitable for our data because it can account for common but unobserved factors that

affect both fragmentation and market quality. For example, these factors account

for the activity of High Frequency Traders (HFT) whose activity has generated so

much scrutiny (Foresight (2012)). The unobserved factors also control for the global

financial crisis, changes in trading technology or new types of trading strategies.

We extend Pesaran (2006) estimator to quantile regression (the QCCE estimator)

to analyze the whole conditional distribution of market quality. This estimator is

also robust to extreme observations on the response.

We find that overall fragmentation, visible fragmentation and dark trading

lower volatility at the LSE. But dark trading increases the variability of volatility

and trading volumes. Fragmentation has the opposite effect on the variability of

volatility in particular at the upper quantiles of the conditional distribution. This

result is robust across alternative measures of variability in market quality. Trading

volume both globally and locally at the LSE is higher if visible order books are less

fragmented or if there is more dark trading. Compared to a monopolistic market,

visible fragmentation lowers liquidity measured by quoted bid-ask spreads at the

LSE. We also investigate the transition between monopoly and competition in terms

of the level of fragmentation. We find this transition is non-monotonic for overall

and visible fragmentation and takes the form of an inverted U shape. The level of

optimal fragmentation varies across individual firms but it is positively related to

market capitalization.

The remainder of this chapter is organized as follows. Section 2.2 discusses the

related literature. The data and measures for fragmentation and market quality are

introduced in Section 2.3. Section 2.4 proposes an econometric framework suitable

for answering the questions of interest and Section 2.5 reports the results. Section

2.6 concludes.
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2.2 Related literature

Recently, regulators in both Europe and the US introduced new provisions to

modernize and strengthen their financial markets. The “Regulation of National

Markets (RegNMS)” in the US was implemented in 2005, two years earlier than

its European counterpart MiFID.3 One common theme of these regulations is to

foster competition between equity trading venues. But RegNMS and MiFID differ

in important aspects: under RegNMS, trades and quotes are recorded on an official

consolidated tape and trade-throughs are prohibited, while in Europe, a (publicly

guaranteed) consolidated tape does not yet exist, and trade-throughs are allowed.4

These regulatory changes and institutional differences between Europe and the

US have motivated an ongoing debate among academics and practitioners on the

effect of competition between trading venues on market quality. The remainder of

this section summarizes some theoretical predictions and existing empirical evidence

for both Europe and the US.

Theoretical predictions. On the one hand, there are theoretical reasons for why

competition can harm market quality. Security exchanges may be natural monop-

olies because a single exchange has lower costs when compared to a fragmented

market place. In addition, a single, consolidated exchange market creates network

externalities. The larger the market, the more trading opportunities exist that

attract even more traders by reducing the execution risk. Theoretical models that

incorporate network externalities predict that liquidity should concentrate at one

trading venue (Pagano (1989)). This prediction is at odds with the fragmentation of

order flow we observe today. One possible explanation is that traders that use SORT

can still benefit from network externalities in a fragmented market place. Such a

situation is modelled by Foucault and Menkveld (2008) who study the competition

between Euronext and the LSE in the Dutch equity market. Before the entry of LSE,

the Dutch equity market had a centralized limit order book that was operated by

Euronext. Their theory predicts that a larger share of SORT increases the liquidity

supply of the entrant.

On the other hand, there are reasons why competition between trading venues

can improve market quality. Higher competition generally promotes technological

innovation, improves efficiency and reduces the fees that have to be paid by

investors.5 Biais et al. (2000) propose a model of imperfect competition in financial

markets that is consistent with the observation that traders earn positive profits and

3The different pillars of MiFID are summarized in Appendix B.1.
4A trade-through occurs if a sell (buy) order is executed at a price that is higher (lower) than

the best price quoted in the market.
5For example, the latency at BATS was about 8 to 10 times lower when compared to the LSE

in 2010 (Wagener (2011)), and the LSE has responded by upgrading its system at a faster pace (cp.
Appendix B.3). Chesini (2012) reports a reduction in explicit trading fees on exchanges around
Europe due to the competition between them for order flow.
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that the number of traders is finite. Their model also assumes that traders have

private information on the value of financial assets, giving rise to an asymmetric

information issue. When compared to a monopolistic market, their model predicts

that a competitive market is characterized by lower spreads and a higher trading

volume. Buti et al. (2010) study the competition between a trading venue with a

transparent limit order book and a dark pool. Their model implies that after the

entry of the dark pool, the trading volume in the limit order book decreases, while

the overall volume increases.

Empirical evidence for Europe. After the introduction of MiFID, equity

trading in Europe became more fragmented as new trading venues gained significant

market shares from primary exchanges. Gresse (2011) investigates if fragmentation

of order flow has had a positive or negative effect on market quality in European

equity markets. She examines this from two points of view. First, from the

perspective of a sophisticated investor who has access to SORT and thus to the

consolidated order book. Second, from the point of view of an investor who can

only access liquidity on the primary exchange. Her sample covers stocks listed on

the LSE and Euronext exchanges in Amsterdam, Paris and Brussels for 1 month in

2007 and 3 months in 2009. Gresse (2011) finds that increased competition between

trading venues creates more liquidity both locally and globally, and that dark trading

does not have a negative effect on liquidity.

De Jong et al. (2015) study the effect of fragmentation on market quality in

a sample of 52 Dutch stocks for the period from 2006 to 2009. They distinguish

between platforms with a visible order book and dark platforms that operate an

invisible order book. Their primary finding is that fragmentation on trading venues

with a visible order book improves global liquidity, but has a negative effect on

local liquidity. But visible fragmentation ceases to improve global liquidity when it

exceeds a turning point. Dark trading is found to have a negative effect on liquidity.

Studying UK data, Linton (2012) does not find a detrimental effect of fragmen-

tation on volatility using daily data for the FTSE 100 and FTSE 250 indices for

the period from 2008 to 2011. Hengelbrock and Theissen (2009) study the market

entry of Turquoise in September 2008 in 14 European countries. Their findings

suggest that quoted bid-ask spreads on regulated markets declined after the entry

of Turquoise. Riordan et al. (2011) also analyze the contribution of the LSE, Chi-X,

Turquoise and BATS to price discovery in the UK equity market. They find that

the most liquid trading venues LSE and Chi-X dominate price discovery. Over time,

the importance of Chi-X in price discovery has increased.

Overall, the evidence for Europe suggests that the positive effects of fragmen-

tation on market quality outweighs its negative effects. A possible reason for the

observed improvement in market quality despite the lack of trade-through protection

and a consolidated tape are algorithmic traders and HFT (Riordan et al. (2011)).

43



By relying on SORT, these traders create a virtually integrated marketplace in the

absence of a commonly owned central limit order book.

Empirical evidence for the US. In contrast to Europe, competition between

trading venues is not a new phenomenon in the US where Electronic Communication

Networks (ECN) started to compete for order flow already in the 1990s. Boehmer

and Boehmer (2003) investigate if the entry of the NYSE into the trading of

Exchange Traded Funds (ETFs) has harmed market quality. Prior to the entry of the

NYSE, the American Stock Exchange, the Nasdaq InterMarket, regional exchanges

and ECNs already traded ETFs. Boehmer and Boehmer (2003) document that

increased competition reduced quoted, realized and effective spreads and increased

depth.

O’Hara and Ye (2011) analyze the effect of the proliferation of trading venues on

market quality for a sample of stocks that are listed on NYSE and Nasdaq between

January and June 2008. They find that stocks with more fragmented trading had

lower spreads and faster execution times. In addition, fragmentation increases short-

term volatility but is associated with greater market efficiency. Drawing on their

findings for the US, O’Hara and Ye (2011) hypothesize that trade-through protection

and a consolidated tape are important for the emergence of a single virtual market

in Europe. This hypothesis is supported by the findings of Foucault and Menkveld

(2008). However, Riordan et al. (2011) conclude that the existence of trade-throughs

does not harm market quality.

To summarize, the evidence for the US points to an improvement in average

market quality in a fragmented market place. Notwithstanding these results on

average quality, Madhavan (2012) finds that both trade fragmentation and quote

fragmentation prior to the Flash Crash are associated with larger drawdowns during

the Flash Crash. This finding suggests that fragmentation may be affecting the

variability of market quality. Below, we further investigate this question.

2.3 Data and measurement issues

This section discusses how we measure fragmentation, dark trading and market

quality. Our data on market quality and fragmentation covers the period from May

2008 to June 2011 and includes all individual FTSE 100 and 250 firms. At the

time of writing, the FTSE350 index companies are valued at $3400 billion, which

represents a substantial part of the UK (and European) equity market.
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2.3.1 Fragmentation and dark trading

Weekly data on the volume of the individual firms traded on each equity venue was

supplied to us by Fidessa.6 For venue j = 1, . . . , J, denote by wj the market share

(according to the number of shares traded) of that venue. We measure fragmentation

by the dispersal of volume across multiple trading venues, or 1−
∑
w2
j , where

∑
w2
j

is the Herfindahl index.

In May 2008, equity trading in the UK was consolidated at the LSE as reflected

by an average fragmentation level of 0.4 (Figure 2.1). By June 2011, the entry of new

trading venues has changed the structure of the UK equity market fundamentally:

fragmentation has increased by about half over the sample period. The rise of

HFT is one explanation of the successful entry of alternative trading venues. These

venues could attract a significant share of HFT order flow by offering competitive

trading fees and sophisticated technologies. In particular, MTF’s typically adopt the

so-called maker-taker rebates that reward the provision of liquidity to the system,

allow various new types of orders, and have small tick sizes. Additionally, their

computer systems offer a lower latency when compared to regulated markets. This

is probably not surprising since MTFs are often owned by a consortium of users,

while the LSE is a publicly owned corporation.

The data allow us to distinguish between public exchanges with a visible order

book (“lit”), regulated venues with an invisible order book (“regulated dark pools”),

over the counter (“OTC”) venues, and systematic internalizers (“SI”).7 We use this

information in our analysis to distinguish between fragmentation in visible order

books (Figure 2.1) and dark trading (Figure 2.2). Following Gresse (2011) and

De Jong et al. (2015), dark trading is measured as the share of volume traded on

OTC venues, regulated dark pools and SI. The share of these different categories of

dark trading increased over the sample period, while the share of volume traded at

lit venues has fallen considerably. For all categories, the observed changes are largest

in 2009. In the period after 2009, volumes have approximately stabilized with the

exception of regulated dark venues where volume kept increasing. Quantitatively,

the majority of trades are executed on lit and OTC venues while regulated dark and

SI venues attract only about 1% of the order flow.

2.3.2 Market quality

We measure market quality by volatility, liquidity, and trading volume of the FTSE

100 and 250 stocks. Since our measure of fragmentation is only available at a weekly

frequency, all measures of market quality are constructed as weekly medians of the

6In the Appendix B.2, we give a full list of the trading venues in our sample.
7Not all trading venues with an invisible order book are registered as dark pools: unregulated

categories of dark pools are registered as OTC venues or brokers (Gresse (2012)).
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daily measures.8

With the exception of trading volume, our measures of market quality are

calculated using data from the LSE. In that sense, our measures are local as

compared to global measures that are constructed by consolidating measures from all

markets. Global measures are relevant for investors that have access to SORT, while

local measures are important for small investment firms that are only connected to

the primary exchange (perhaps to save costs) or for retail investors that are restricted

by the best execution policy of their investment firm.9 For example, Gomber et al.

(2012) provide evidence that 20 out of 75 execution policies in their sample state

that they only execute orders at the primary exchange.

Volatility. Volatility is often described in negative terms, but its interpretation

should depend on the perspective and on the type of volatility.10 For example,

Bartram et al. (2012) argue that volatility levels in the US are in many respects

higher than in other countries but this reflects more innovation and competition

rather than poor market quality.

One well known method to estimate volatility is due to Parkinson (1980). The

Parkinson estimator is based on the realized range that can be computed from

daily high and low price. It has recently been shown to be relatively robust to

microstructure noise (Alizadeh et al. (2002)). The Rogers and Satchell (1991)

estimator is an enhancement of the Parkinson estimator that makes additional use of

the opening and closing prices. Rogers and Satchell (1991) show that their estimator

is unbiased for the volatility parameter of a Brownian motion plus drift, whereas

the Parkinson estimator is biased in that case. Formally, the Rogers and Satchell

volatility estimator can be computed as

Vitj = (lnPH
itj
− lnPC

itj
)(lnPH

itj
− lnPO

itj
) + (lnPL

itj
− lnPC

itj
)(lnPL

itj
− lnPO

itj
), (2.1)

where Vitj denotes volatility of stock i on day j within week t, and PO, PC , PH ,PL

are daily opening, closing, high and low prices that are obtained from Datastream.

Total volatility increased dramatically during the financial crisis in the latter half of

2008 (Figure 2.3). Figure 2.4 shows total volatility for the FTSE 100 index jointly

with entry dates of new venues and latency upgrades at the LSE. Casual inspection

suggests that total volatility declined when Turquoise and BATS entered the market.

However, this conclusion would be premature because many other events took place

at the same time, most importantly, the global financial crisis.

8While the available measures of market quality are positive, we wish to emphasize that market
quality is a normative concept. Translating positive measures of market quality into welfare is
difficult and subject to much controversy (Hart and Kreps (1986), Stein (1987)).

9Under MiFID, investment firms are required to seek best execution for their clients, cp.
Appendix B.1 for details.

10There is a vast econometric literature on volatility measurement and modelling that is
summarized by Andersen et al. (2010).
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We also decompose total volatility into temporary and permanent volatility.

Permanent volatility relates to the underlying uncertainty about the future payoff

stream for the asset in question. If new information about future payoffs arrives

and that is suddenly impacted in prices, the price series would appear to be volatile,

but this is the type of volatility that reflects the true valuation purpose of the

stock market. On the other hand, volatility that is unrelated to fundamental

information and that is caused by the interactions of traders over- and under-reacting

to perceived events is thought of as temporary volatility. 11To decompose total

volatility into a temporary and permanent component, we assume that permanent

volatility can be approximated by a smooth time trend. For each stock, temporary

volatility is defined as the residuals from the nonparametric regression of total

volatility on (rescaled) time (this is effectively a moving average over 1 quarter

with declining weights). This approach has been used previously by e.g. Engle and

Rangel (2008). The evolution of temporary volatility is shown in the upper right

panel of Figure 2.3.

Liquidity. Liquidity is a fundamental property of a well-functioning market, and

lack of liquidity is generally at the heart of many financial crises and disasters.

In practice, researchers and practitioners rely on a variety of measures to capture

liquidity. High frequency measures include quoted bid-ask spreads (tightness),

the number of orders resting on the order book (depth) and the price impact of

trades (resilience). These order book measures may not provide a complete picture

since trades may not take place at quoted prices, and so empirical work considers

additional measures that take account of both the order book and the transaction

record. These include the so-called effective spreads and quoted spreads, which are

now widely accepted and used measures of actual liquidity. Another difficulty is

that liquidity suppliers often post limit orders on multiple venues but cancel the

additional liquidity after the trade is executed on one venue (Kervel and Vincent

(2015)). Therefore, global depth measures that aggregate quotes across different

venues may overstate liquidity. On the other hand, the presence of “iceberg orders”

and dark pools suggest that there is substantial hidden liquidity.

Since we do not have access to order book data, our main measure of liquidity

is the percentage bid-ask spread.12 The quoted bid ask spread for stock i on day tj

11A good example is the “hash crash” of April 24, 2013 when the Dow Jones index dropped
by nearly 2% very rapidly due apparently to announcements emanating from credible twitter
accounts (that had been hacked into) that there had been an explosion at the White House.
It subsequently recovered all the losses when it became clear that no such explosion had
occurred. See http://blueandgreentomorrow.com/2013/04/24/twitter-hoax-wipes-200bn-off-dow-
jones-for-five-minutes/, accessed on June 20, 2013

12Mizen (2010) documents that trends in quoted bid-ask spreads are similar to trends in effective
bid-ask spreads.
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is defined as

BAitj =
PA
itj
− PB

itj
1
2
(PA

itj
+ PB

itj
)
, (2.2)

where daily ask prices PA and bid prices PB are obtained from Datastream. PA and

PB are measured by the last bid and ask prices before the market closes for London

stock exchange at 16:35. The time series of weekly bid-ask spreads is reported in

the bottom left panel of Figure 2.3. Inspection of Figure 2.4 seems to suggest that

bid-ask spreads declined at the entry of Chi-X but this decline can also attributed to

the introduction of Trade Elect 1 at the LSE one day before. Trade Elect 1 achieved

a significant reduction of system latency at the LSE.

Volume. Volume of trading is a measure of participation, and is of concern to

regulators (Foresight (2012)). The volume of trading has increased over the longer

term, but the last decade has seen less sustained trend increases, which has generated

concern amongst those whose business model depends on this. Some have also

argued that computer based trading has led to much smaller holding times of stocks

and higher turnover and that this would reflect a deepening of the intermediation

chain rather than real benefits to investors.

We investigate both global volume and volume at the LSE. Global volume is

defined as the number of shares traded at all venues and volume at the LSE is the

number of shares traded at the LSE, scaled by the number of shares outstanding.

The volume data is obtained from Fidessa. Towards the end of the sample period,

global and LSE volume diverge, as alternative venues gain market share (Figures 3

and 4).

2.4 Econometric methodology

Figure 2.3 shows the time series of market quality measures for the FTSE 100

and FTSE 250 indices. All measures clearly show the effect of the global financial

crisis that was associated with an increase in total volatility, temporary volatility

and bid-ask spreads as well as a fall in traded volumes in the early part of the

sample that was followed by reversals (except for volume). As we saw in Figure 1,

average fragmentation levels increased for most of the sample. If there were a simple

linear relationship between fragmentation and market quality then we would have

extrapolated continually deteriorating market quality levels until almost the end of

the sample. We next turn to the econometric methods that we will use to exploit

the cross-sectional and time series variation in fragmentation and market quality to

measure the relationship more reliably.

We extend the CCE estimator of Pesaran (2006) in three ways. First, we allow

for some nonlinearity, allowing fragmentation to affect the response variable in a
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quadratic fashion. This functional form was also adopted in the De Jong et al. (2015)

study. Second, we use quantile regression methods based on conditional quantile

restrictions rather than the conditional mean restrictions adopted previously.13 This

method is valid under weaker moment conditions and is robust to outliers. A quantile

CCE estimator for homogeneous panels is also considered in Harding and Lamarche

(2013). Third, we also model the conditional vaiability of market quality using

the same type of regression model; we apply the median regression method for

estimation based on the squared residuals from the median specification or on the

conditional interquartile range. This allows us to analyze not just the average effect

of fragmentation on market quality but also the variability of that effect.

2.4.1 A model for heterogeneous panel data with common

factors

We observe a sample of panel data {(Yit, Xit, Zit, dt) : i = 1, . . . , n, t = 1, . . . , T},
where i denotes the i-th stock and t is the time point of observation. In our data, Yit

denotes market quality and Xit is a measure of fragmentation, while Zit is a vector

of firm specific control variables such as market capitalization and dt are observable

common factors as for example VIX or the lagged index return. We assume that

the data come from the model

Yit = αi + β1iXit + β2iX
2
it + β

ᵀ

3iZit + δ
ᵀ

i dt + κ
ᵀ

i ft + εit, (2.3)

where ft ∈ Rk denotes the unobserved common factor or factors. We allow

for a nonlinear effect of the fragmentation variable on the outcome variable by

including the quadratic term. We assume that the regression error term satisfies the

conditional quantile restrictions

Qτ (εit|Xit, Zit, dt, ft) = 0 (2.4)

but is allowed to be serially correlated or weakly cross-sectionally correlated. The

regressors Wit = (Xit, Z
ᵀ

it)
ᵀ

are assumed to have the factor structure

Wit = ai +Didt +Kift + uit, (2.5)

where Di and Ki are matrices of factor loadings. The error term uit is assumed

to satisfy Euit = 0 for all t, but is also allowed to be serially correlated or

weakly cross-sectionally correlated, see Assumptions 1-2 in Pesaran (2006). The

econometric model (2.3)-(2.5) also allows for certain types of “endogeneity” between

13We provide a justification of this method in Appendix B.4.
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the covariates and the outcome variable represented by the unobserved factors ft.
14

The model is very general and contains many homogenous and heterogeneous panel

data models as a special case.

We adopt the random coefficient specification for the individual parameters, that

is, βi = (β1i, β2i, β
ᵀ

3i)
ᵀ

are i.i.d. across i and

βi = β + vi, vi ∼ IID(0,Σv), (2.6)

where the individual deviations vi are distributed independently of εjt, Xjt, Zjt and

dt for all i, j, t.

To estimate the model (2.3)-(2.5), we extend Pesaran (2006) CCE mean group

estimator to quantile regression. Taking cross-sectional averages of (2.5), we obtain

(under the assumption that uit has weak cross-sectional dependence and some finite

higher order moments)

W t = ā+Ddt +Kft +Op(n
−1/2). (2.7)

Equation (2.7) suggests that we can approximate the unknown factor ft with a linear

combination of dt and the cross-sectional average of Xit.
15 In contrast to Pesaran

(2006), our version of the CCE estimator does not include the cross-sectional average

of Y . One reason for this is that because of the quadratic functional form, Y t would

be a quadratic function of ft, and so would introduce a bias. Instead, we add the

Chicago Board Options Exchange Market Volatility Index (VIX) to the specification.

Because of the high correlation between VIX and cross-sectional averages of market

quality, we expect that VIX is a good and predetermined proxy for cross-sectional

averages of market quality in our regressions.

But because only cross-sectional averages of the regressors are used to approxi-

mate the common factors, our framework requires that the regressors are driven by

the same set of unobserved common factors ft as the dependent variable.

The effect of fragmentation on market quality can be obtained by performing

(for each i) a time series quantile regression estimation of (2.3) replacing ft by W t.

Specifically, let θ̂i minimize the objective functions

Q̂iτT (θi) =
T∑
t=1

ρτ (Yit − πi − βi1Xit − βi2X2
it − β

ᵀ

i3Zit − γ
ᵀ

i dt − ξ
ᵀ

iW t) (2.8)

with respect to θi, where θi = (πi, βi1, βi2, β
ᵀ

i3, γ
ᵀ

i , ξ
ᵀ

i )
ᵀ

and ρτ (x) = x(τ − 1(x < 0)),

see Koenker (2005). Then β̂i are the estimators of the corresponding parameters of

14However, the CCE method cannot address simultaneity of Y and X at the individual level
due to time varying but firm-specific determinants.

15If ft is a vector, i.e., there are multiple factors, then we must form multiple averages
(portfolios). Instead of the equally weighted average in (2.7), we can also use an average that
is e.g. weighted by market capitalization.
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interest.

At any quantile, the quantile mean group estimator (QCCE) β̂ = n−1
∑n

i=1 β̂i

is defined as the cross-sectional average of the individual quantile estimates β̂i =

(β̂1i, β̂2i, β̂
ᵀ

3i)
ᵀ
. This measures the average effect. Some idea of the heterogeneity can

be obtained by looking at the standard deviations of the individual effects. Following

similar arguments as in Pesaran (2006), (as n→∞) it follows that

√
n(β̂ − β) =⇒ N(0,Σ), (2.9)

where the covariance matrix Σ can be estimated by

Σ̂ =
1

n− 1

n∑
i=1

(β̂i − β̂)(β̂i − β̂)
ᵀ
. (2.10)

The regression model above concentrates on the average effect, or the effect in normal

times. We are also interested in the effect of fragmentation on the variability of

market quality. One approach to address this issue is to investigate the conditional

variance of market quality. We adopt a symmetrical specification whereby

var(Yit|Xit, Zit, dt, ft) = ai + b1iXit + b2iX
2
it + b

ᵀ

3iZit + w
ᵀ

i dt + q
ᵀ

i ft, (2.11)

where the parameters bi = (b1i, b2i, b
ᵀ

3i)
ᵀ

have a random coefficient specification

like (2.6). We estimate this by median regression of the squared residuals ε̂2it

from (2.3)-(2.5) on Xit, X
2
it, Zit, dt,W t. We argue in Appendix B.4 that, under

suitable regularity conditions, (2.9) holds in this case with a covariance matrix Σ

(corresponding to the covariance matrix of the parameters of the variance equation).

As an alternative specification for the variability of market quality, we assume

that the conditional interquartile range of market quality satisfies

q0.75(Yit|Xit, Zit, dt, ft)−q0.25(Yit|Xit, Zit, dt, ft) = ai+b1iXit+b2iX
2
it+b

ᵀ

3iZit+w
ᵀ

i dt+q
ᵀ

i ft,

(2.12)

where qτ (Yit|Xit, Zit, dt, ft) denotes the conditional τ quantile. (2.12) is estimated

by median regression of the conditional interquartile range on Xit, X
2
it, Zit, dt,W t.

2.4.2 Parameter of interest

Motivated by the large increase in market fragmentation over the sample period,

we are interested in measuring the market quality at different levels of competition,

holding everything else constant. In particular, we would like to compare monopoly

with perfect competition. In our data, the maximum number of trading venues

is 24 and were trading to be equally allocated to these venues, we might achieve

(fragmentation) X = 0.96. In fact, the maximum level reached by X is some way
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below that.

The parameter of interest in our study is the difference of average market quality

between a high (H) and low (L) degree of fragmentation or dark trading normalized

by H − L. We therefore obtain the measure

∆X =
EX=HY − EX=LY

H − L
= β1 + β2(H + L), (2.13)

where the coefficients are estimated by the QCCE method. For comparison, we

also report the marginal effect β1 + 2Xβ2. We estimate these parameters from the

conditional variance and interquartile range specifications, too, in which case it is

to be interpreted as measuring differences in variability between the two market

structures. Standard errors can be obtained from the joint asymptotic distribution

of the parameter estimates given above.16

2.5 Results

Before reporting our regression results, we investigate a few characteristics of our

dataset in more detail.17 The particular characteristics we are interested in are

cross-sectional dependence and unit roots. The median value of the cross-sectional

correlation for different measures of market quality ranges from 0.21 to 0.57 which

points to unobserved shocks that are common to many firms. We also carried out

a principal-component analysis to investigate if the regressors and the dependent

variable are driven by the same set of common shocks. In the regressions where

we use fragmentation and market capitalization as regressors, more than 80% of

the variance in the regressors and the dependent variable is explained by the first

two components (on average across firms), providing evidence for common factors

in the data. For the specifications including visible fragmentation, dark trading and

market capitalization as regressors, more than 90% of the variation is explained by

the first 3 factors. The econometric model we use can control for these common

shocks.

We also investigated stationarity of the key variables as this can impact statistical

performance, although with our large cross-section, we are less concerned about

this.18 The results from augmented Dickey Fuller tests indicate little support for a

unit root in fragmentation or market quality.19 The average value of fragmentation

16An alternative way of comparing the outcomes under monopoly and competition is to compare
the marginal distributions of market quality by means of stochastic dominance tests. We report
these results in Appendix B.5.

17For our empirical analysis, we eliminate all firms with less than 30 observations and all firms
where the fraction of observations with zero fragmentation exceeds 1/4. That leaves us with 341
firms for overall fragmentation and 236 firms for visible fragmentation.

18Formally, Kapetanios et al. (2011) have shown that the CCE estimator remains consistent if
the unobserved common factors follow unit root processes.

19The test results are available upon request.
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does trend over the period of our study but it has levelled off towards the end and

the type of nonstationarity present is not well represented by a global stochastic

trend.

2.5.1 The effect of total fragmentation, visible fragmenta-

tion and dark trading on the level of market quality

Table 2.1 reports QCCE mean group coefficients together with our parameter of

interest ∆Frag. ∆Frag is defined as the difference in market quality between a low

and high level of fragmentation evaluated at the minimum and maximum level of

fragmentation (equation (2.13)). For comparison, we also report marginal effects,

which tend to agree with ∆Frag in most specifications. As observable common

factors, we include VIX, the lagged index return, and a dummy variable that

captures the decline in trading activity around Christmas and New Year.20

Inspecting ∆Frag, we find that a fragmented market is associated with higher

global volume but lower volume at the LSE when compared to a monopoly. These

effects are uniform across different quartiles (Table 2.1b)). The increase in global

volume in a fragmented market place is consistent with the theoretical prediction in

Biais et al. (2000)).

We also find that temporary volatility is lower in a competitive market which

is in contrast with what O’Hara and Ye (2011) document using US data for 2008.

O’Hara and Ye (2011) also find that fragmentation reduces bid-ask spreads while

there is no significant effect in our sample. But O’Hara and Ye (2011) measure

market quality globally (using the NMS consolidated order book and trade price),

while our measures are local with the exception of global volume.

It is also interesting to split overall fragmentation into visible fragmentation and

dark trading where we define dark trading as the sum of volume traded at regulated

dark pools, OTC venues and SI (Table 2.2). When measured by ∆V is.frag., we find

that visible fragmentation reduces temporary volatility and lowers trading volume.

These effects are larger in absolute value in the third quartile of the conditional

distribution (Table 2.2b)).

In addition, a market with a high degree of visible fragmentation has larger

bid-ask spreads at the LSE when compared to a monopoly, albeit that result is

only statistically significant at 10%. De Jong et al. (2015) also find that visible

fragmentation has a negative effect on liquidity at the traditional exchange. The

finding that visible fragmentation may harm local liquidity is also supported by

survey evidence: According to Foresight (2012), institutional buy-side investors

believe that it is becoming increasingly difficult to access liquidity and that this

20The coefficients on the observed common factors and on the cross-sectional averages do not
have a structural interpretation because they are a combination of structural coefficients, cf. Section
2.4.1.
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is partly due to: its fragmentation on different trading venues, the growth of

“dark” liquidity, and to the activities of HFT. To mitigate these adverse effects

on liquidity, investors could employ SORT that create a virtually integrated market

place. However, the survey reports buy-side concerns that these solutions are too

expensive for many investors. In contrast to this evidence, Gresse (2011) finds that

visible fragmentation improves local liquidity.

Turning to dark trading, our results suggest that dark trading reduces volatility

in particular for firms in the first and second quartile of the conditional volatility

distribution (Table 2.2). Dark trading also increases volume while it does not have

a significant effect on bid-ask spreads. In comparison, Gresse (2011) also does not

find a significant effect of dark trading on liquidity while De Jong et al. (2015) find

that dark trading has a detrimental effect on liquidity.

2.5.2 Turning points

In addition to investigating the difference between perfect competition and a

monopolistic market, it is also interesting to assess the transition between these

extremes. Figure 2.5 illustrates the estimated relationship between market quality

on the one hand and overall fragmentation, visible fragmentation and dark trading

on the other. We find that the transition between monopoly and competition is non-

monotonic for overall and visible fragmentation and takes the form of an inverted

U shape. The maximum occurs at a level of visible fragmentation of about 0.2, 0.3

and 0.5 for global volume, total volatility and bid-ask spreads, respectively. That is,

at low levels of fragmentation, fragmentation of order flow improves market quality

but there is a turning point after which fragmentation leads to deteriorating market

quality. For temporary volatility and LSE volume, there is no interior optimum on

[0, 1].

Securities Exchange Commission (2013) has hypothesized that the turning point

may depend on the market capitalization of a stock. For each individual stock,

Figure 2.6 plots the maximal level of fragmentation against the time series average of

market capitalization.21 We find that there is positive but weak relationship between

the maximal level of fragmentation and market capitalization that is statistically

significant with the exception of temporary volatility.22

21We restrict attention to interior maxima within [0, 1].
22These results are qualitatively identical for visible fragmentation.
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2.5.3 The effect of total fragmentation, visible fragmenta-

tion and dark trading on the variability of market

quality

In this section, we investigate whether overall fragmentation, visible fragmentation

and dark trading have led to an increase in the variability of market quality. For

example, Madhavan (2012) finds that higher fragmentation prior to the Flash Crash

is associated with larger drawdowns during the Flash Crash. In addition, fragmented

equity markets have been a seedbed for HFT that are not obliged to provide liquidity

in times of market turmoil. This development can lead to “periodic illiquidity” as

for example, during the Flash Crash (Foresight (2012)).

When estimating the conditional variance specification (equation (2.11)), we find

that at the median, ∆Frag. is not statistically significant but there is variation across

quartiles (Table 2.3): The variability of volatility is lower in a fragmented market for

firms in the third quartile of the conditional distribution. Fragmentation increases

the variability of bid ask spreads at the first quartile of the distribution but this

result is only marginally significant. There is also a decline in the variability of LSE

volume for firms in both the first and third quartile.

Table 2.4 distinguishes between visible fragmentation and dark trading. The

effect of visible fragmentation on the variability of volatility are similar to

those of overall fragmentation. But in contrast to overall fragmentation, visible

fragmentation increases the variability of LSE volume in the first quartile. Dark

trading increases the variability of both volatility and volumes but the latter effect

is only significant at the first quartile.

Table 2.5 reports the results when the variability of market quality is measured

by the conditional interquartile range of volatility (equation (2.12)). Overall, the

results are similar: Visible fragmentation reduces the variability of volatility, while

dark trading has the opposite effects. Also, dark trading increases the variability of

LSE volume.

But there are also some differences between these alternative variability mea-

sures: The positive effect of overall and visible fragmentation on the variability

in bid-ask spreads is more significant for the inter-quartile range measure of

variability when compared to the residual measure. In contrast to the latter, visible

fragmentation has no significant effect on the variability of LSE volume.

2.5.4 Robustness

In Appendix B.5, we assess the robustness of our results to: (i) alternative market

quality measures, (ii) splitting our sample into FTSE 100 and FTSE 250 firms

and (iii) different estimation methods. Our finding that visible fragmentation and

dark trading have a negative effect on total and temporary volatility is robust to
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using alternative measures of volatility such as Parkinson or within-day volatility.

If we measure market quality by the Amihud (2002) illiquidity measure, we find

that a higher degree of overall or visible fragmentation is associated with less liquid

markets, and that dark trading is found to improve liquidity. For efficiency, we

cannot find significant effects.

When comparing the effect of market fragmentation on market quality for FTSE

100 and FTSE 250 firms, interesting differences emerge: The negative effect of dark

trading on volatility is only observed for FTSE 250 firms. That effect is even positive

for FTSE 100 firms. But in contrast with FTSE 250 firms, visible fragmentation is

associated with lower volatility for FTSE 100 firms.

Finally, we re-estimate our results using a heterogeneous panel data model

without common factors. This model can be obtained as a special case of model

(2.3)-(2.5) where ft is a vector of ones and there are no observed common factors

dt. A version of this model with homogenous coefficients has been used in related

work by Gresse (2011), among others. However, that model cannot account for

unobserved, common shocks in the data and gives inconsistent results in the presence

of common shocks that are correlated with the regressors (Pesaran (2006)). We

report in Appendix B.5 that omitting observed and unobserved common factors leads

to results that differ in magnitude and statistical significance with the exception of

LSE volume. However, the large value in our measure of cross-sectional dependence

(CSD) indicates that this model is misspecified because unobserved common shocks

such as changes in trading technology or HFT are omitted that are likely to affect

both market quality and fragmentation.

2.6 Conclusions

After the introduction of MiFID in 2007, the equity market structure in Europe

underwent a fundamental change as newly established venues such as Chi-X started

to compete with traditional exchanges for order flow. This change in market

structure has been a seedbed for HFT, which has benefited from the competition

between venues through the types of orders permitted, smaller tick sizes, latency

and other system improvements, as well as lower fees and, in particular, the so-called

maker-taker rebates.

Against these diverse and complex developments, identifying the effect of

fragmentation on market quality is difficult. To achieve this, we use a version

of Pesaran (2006) common correlated effects (CCE) estimator that can account

for unobserved factors such as the global financial crisis or HFT. Compared to

Pesaran (2006), our QCCE mean group estimator is based on individual quantile

regressions that enable us to characterize the whole conditional distribution of the

dependent variable rather than just its conditional mean. This estimator is suitable
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for heterogeneous panel data that are subject to both common shocks and outliers

in the dependent variable.

We applied our estimator to a novel dataset that contains weekly measures of

market quality and fragmentation for the individual FTSE 100 and 250 firms. We

decompose the effect of overall fragmentation into visible fragmentation and dark

trading, and assess their effects on both the level and the variability of market

quality.

We find that fragmentation and dark trading lower volatility. A more fragmented

market is also associated with less variability in volatility in particular at the upper

quantiles of the conditional distribution. But dark trading increases the variability

of trading volumes and variability which gives rise to some concern.
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Table 2.1: The effect of fragmentation on the level of market quality

a) Median regression

Total volatility Temp. volatility BA spreads Global volume LSE volume

Constant -7.745 -10.511 4.468 1.713 2.365
(-9.97) (-17.162) (5.803) (2.552) (3.497)

Frag. 0.45 -0.856 0.195 0.064 0.413
(0.805) (-1.906) (0.726) (0.22) (1.338)

Frag. sq. -0.719 0.618 -0.217 0.122 -1.662
(-1.619) (1.694) (-0.933) (0.426) (-5.752)

Market cap. -0.475 -0.27 -0.343 -0.214 -0.236
(-6.372) (-5.767) (-4.951) (-3.172) (-3.492)

ME (frag.) -0.367 -0.154 -0.051 0.202 -1.475
(-3.432) (-1.823) (-0.782) (2.408) (-18.03)

∆Frag.(0.5) -0.15 -0.341 0.014 0.166 -0.973
(-0.735) (-2.139) (0.154) (1.918) (-10.108)

Adjusted R2 0.732 0.111 0.775 0.78 0.758
CSD 0.033 0.025 0.011 0.035 0.038

b) Difference between monopoly and competition at τ ∈ {0.25, 0.75}

Total volatility Temp. volatility BA spreads Global volume LSE volume

∆Frag.(0.25) -0.219 -0.356 -0.067 0.14 -0.944
(-1.208) (-2.255) (-0.818) (1.677) (-8.988)

∆Frag.(0.75) -0.23 -0.406 0.128 0.137 -0.986
(-0.982) (-2.501) (0.876) (1.264) (-8.161)

Notes: Coefficients are quantile CCE mean group estimates. t-statistics are shown
in parenthesis. Market capitalization and dependent variables (except of temporary
volatility) are in logs. Lagged index return, VIX and Christmas and New Year

effects are included as observable common factors. ∆Frag.(τ) is defined as β̂1(τ) +

β̂2(τ)(H +L) and evaluated at H = max(Frag.) and L = min(Frag.). ME denotes
marginal effects. The adjusted R2 is the R2 calculated from pooling the individual
total and residual sums of squares, adjusted for the number of regressors. CSD is
the mean of the squared value of the off-diagonal elements in the cross-sectional
dependence matrix.
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Table 2.2: The effects of visible fragmentation and dark trading on the level of
market quality

a) Median regression

Total volatility Temp. volatility BA spreads Global volume LSE volume

Constant -8.475 -11.295 1.28 1.189 2.333
(-10.602) (-18.629) (1.615) (1.89) (2.988)

Vis. frag. 0.817 -0.564 0.436 0.158 -0.151
(2.663) (-2.171) (2.085) (0.759) (-0.682)

Vis. frag. sq. -1.429 0.317 -0.425 -0.451 -1.199
(-3.937) (1.019) (-1.536) (-1.728) (-4.323)

Dark -0.212 0.388 -0.212 0.332 0.232
(-0.946) (1.951) (-1.068) (1.673) (1.11)

Dark sq. 0.041 -0.704 0.177 1.724 0.986
(0.178) (-3.47) (0.897) (9.605) (4.867)

Market cap. -0.399 -0.288 -0.32 -0.243 -0.293
(-5.328) (-5.364) (-4.851) (-4.29) (-4.595)

ME (vis. frag) -0.288 -0.318 0.108 -0.191 -1.078
(-2.511) (-3.405) (1.394) (-2.233) (-13.056)

ME (dark) -0.175 -0.246 -0.052 1.886 1.121
(-2.628) (-4.311) (-1) (29.009) (18.205)

∆V is.frag.(0.5) -0.181 -0.342 0.139 -0.157 -0.988
(-1.523) (-3.537) (1.86) (-1.85) (-11.891)

∆Dark(0.5) -0.171 -0.315 -0.035 2.055 1.217
(-2.518) (-5.446) (-0.689) (34.419) (20.626)

Adjusted R2 0.75 0.131 0.754 0.852 0.799
CSD 0.03 0.026 0.01 0.05 0.04

b) Difference between monopoly and competition at τ ∈ {0.25, 0.75}

Total volatility Temp. volatility BA spreads Global volume LSE volume

∆V is.frag.(0.25) 0.01 -0.263 0.081 -0.034 -0.917
(0.09) (-2.879) (0.959) (-0.41) (-11.698)

∆V is.frag.(0.75) -0.487 -0.61 0.112 -0.22 -1.094
(-3.483) (-5.432) (1.309) (-2.036) (-10.128)

∆Dark(0.25) -0.286 -0.463 -0.004 2.022 0.986
(-3.735) (-6.63) (-0.07) (32.67) (16.361)

∆Dark(0.75) -0.005 -0.064 0.048 2.072 1.374
(-0.061) (-0.935) (0.785) (29.979) (19.166)

Notes: See Table 2.1 except that X = {V is.frag,Dark}.
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Table 2.3: The effect of fragmentation on the variability of market quality
(conditional variance model)

a) Median regression

Total volatility Temp. volatility BA spreads Global volume LSE volume

Constant -0.536 -0.198 0.28 0.275 0.498
(-1.893) (-0.686) (1.429) (1.15) (2.662)

Frag. -0.029 -0.064 -0.037 -0.215 -0.128
(-0.256) (-0.603) (-0.463) (-1.716) (-1.522)

Frag. sq. 0.06 0.071 0.041 0.189 0.115
(0.565) (0.762) (0.548) (1.73) (1.455)

Market cap. -0.01 -0.02 -0.009 -0.035 -0.034
(-0.477) (-1.099) (-0.482) (-2.302) (-2.312)

ME (frag.) 0.039 0.017 0.01 0 0.003
(1.287) (0.639) (0.45) (-0.001) (0.139)

∆Frag.(0.5) 0.021 -0.005 -0.002 -0.057 -0.032
(0.581) (-0.128) (-0.096) (-1.488) (-1.178)

Adjusted R2 -0.013 -0.014 -0.041 0.056 0.064
CSD 0.015 0.011 0.01 0.016 0.016

b) Difference between monopoly and competition at τ ∈ {0.25, 0.75}

Total volatility Temp. volatility BA spreads Global volume LSE volume

∆Frag.(0.25) 0.028 0.021 0.03 0.011 -0.03
(1.464) (1.429) (1.861) (0.737) (-1.847)

∆Frag.(0.75) -0.604 -0.347 -0.014 -0.194 -0.24
(-2.28) (-1.921) (-0.161) (-1.17) (-1.82)

Notes: Dependent variables are squared median regression residuals. Coefficients are
quantile CCE mean group estimates. t-statistics are shown in parenthesis. Market
capitalization is in logs. Lagged index return, VIX and Christmas and New Year
effects are included as observable common factors. ∆Frag.(τ) is defined as β̂1(τ) +

β̂2(τ)(H +L) and evaluated at H = max(Frag.) and L = min(Frag.). ME denotes
marginal effects. The adjusted R2 is the R2 calculated from pooling the individual
total and residual sums of squares, adjusted for the number of regressors. CSD is
the mean of the squared value of the off-diagonal elements in the cross-sectional
dependence matrix.
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Table 2.4: The effect of visible fragmentation and dark trading on the variability
of market quality (conditional variance model)

a) Median regression

Total volatility Temp. volatility BA spreads Global volume LSE volume

Constant -0.708 -0.034 0.208 -0.145 0.054
(-2.005) (-0.111) (0.917) (-0.972) (0.287)

Vis. frag. -0.237 -0.301 0.006 0.017 -0.033
(-1.745) (-1.545) (0.089) (0.314) (-0.37)

Vis. frag. sq. 0.261 0.326 0.016 0 0.094
(1.546) (1.453) (0.17) (-0.005) (0.777)

Dark 0.014 -0.044 -0.073 -0.157 -0.185
(0.134) (-0.471) (-1.13) (-1.931) (-2.551)

Dark sq. 0.084 0.1 0.072 0.133 0.197
(0.885) (1.112) (1.106) (2.267) (3.262)

Market cap. 0.02 0.007 0.004 -0.037 -0.021
(1.065) (0.334) (0.197) (-2.752) (-1.378)

ME (Vis. frag) -0.035 -0.049 0.018 0.017 0.039
(-0.917) (-0.928) (0.661) (1.136) (1.633)

ME (Dark) 0.09 0.046 -0.008 -0.037 -0.007
(2.945) (1.846) (-0.453) (-1.138) (-0.296)

∆V is.frag.(0.5) -0.055 -0.073 0.017 0.017 0.032
(-1.359) (-1.231) (0.636) (1.213) (1.403)

∆Dark(0.5) 0.098 0.055 -0.001 -0.024 0.012
(3.554) (2.49) (-0.064) (-0.853) (0.619)

Adjusted R2 -0.011 -0.02 -0.028 0.03 0.021
CSD 0.013 0.011 0.01 0.022 0.018

b) Difference between monopoly and competition at τ ∈ {0.25, 0.75}

Total volatility Temp. volatility BA spreads Global volume LSE volume

∆V is.frag.(0.25) 0.052 -0.007 0.007 0.009 0.019
(1.701) (-0.224) (0.387) (1.273) (2.095)

∆V is.frag.(0.75) -0.614 -0.244 0.201 -0.169 -0.162
(-3.145) (-1.955) (1.566) (-1.324) (-1.228)

∆Dark(0.25) 0.03 0.022 0.011 0.013 0.024
(1.771) (1.853) (1.211) (1.966) (2.599)

∆Dark(0.75) 0.19 0.223 0.028 -0.07 -0.046
(2.054) (2.66) (0.387) (-1.667) (-0.687)

Notes: See Table 2.3 except that X = {V is.frag,Dark}.
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Table 2.5: The effects of overall fragmentation, visible fragmentation and dark
trading on the variability of market quality (conditional interquartile range model)

Total volatility Temp. volatility BA spreads Global volume LSE volume

∆Frag.(0.25) -0.021 0.021 0.214 -0.001 -0.038
(-0.235) (0.326) (2.31) (-0.021) (-0.418)

∆Frag.(0.5) -0.084 -0.022 0.195 -0.022 -0.096
(-0.933) (-0.347) (2.111) (-0.334) (-1.07)

∆Frag.(0.75) -0.09 -0.041 0.179 -0.058 -0.106
(-0.975) (-0.627) (1.923) (-0.873) (-1.154)

∆V is.frag.(0.25) -0.253 -0.162 0.084 0.004 0.001
(-1.67) (-1.931) (1.257) (0.047) (0.008)

∆V is.frag.(0.5) -0.23 -0.169 0.116 0.007 0.005
(-1.524) (-2.033) (1.726) (0.074) (0.063)

∆V is.frag.(0.75) -0.228 -0.158 0.148 0.01 0.015
(-1.501) (-1.881) (2.14) (0.109) (0.178)

∆Dark(0.25) 0.133 0.099 0.053 -0.016 0.07
(3.13) (2.489) (1.257) (-0.587) (2.657)

∆Dark(0.5) 0.14 0.152 0.053 0.003 0.087
(3.292) (3.911) (1.273) (0.12) (3.21)

∆Dark(0.75) 0.13 0.149 0.056 0.001 0.085
(3.054) (3.701) (1.309) (0.042) (3.089)

Notes: See Table 2.3 except that dependent variables are the conditional
interquartile range of market quality.

Figure 2.1: Fragmentation and visible fragmentation
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Notes: Fragmentation is defined as 1-Herfindahl index and visible fragmentation
as 1-visible Herfindahl index. The time series are calculated as averages of
the individual series weighted by market capitalization. Data sources: Fidessa,
Datastream and own calculations.
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Figure 2.2: Share of volume traded by venue category
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Notes: The time series are calculated as averages of the individual series weighted
by market capitalization. Data sources: Fidessa, Datastream and own calculations.

Figure 2.3: Market quality measures
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Notes: The time series are calculated as averages of the individual series weighted
by market capitalization. Bid-ask spreads and volatility are multiplied by 1000.
The sharp declines in volume occur during Christmas and New Year. Data sources:
Datastream and own calculations. 63



Figure 2.4: Venue entry, latency upgrades at the LSE and market quality for the
FTSE 100 index
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Figure 2.5: Visible fragmentation, dark trading and market quality
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Figure 2.6: The maximal level of fragmentation and market capitalization
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Chapter 3

A Discrete Choice Model For
Large Heterogeneous Panels with
Interactive Fixed Effects

This paper develops an estimator for heterogeneous panels with discrete outcomes
in a setting where the individual units are subject to unobserved common shocks.
The proposed estimator belongs to the class of common correlated effects estimators
that approximate the unobserved factors with cross-sectional averages. This paper
adopts this approach for nonlinear panel data models under the assumption that the
unobserved factors are contained in the span of the observed factors and the cross-
sectional averages of the regressors. The asymptotic properties of this approach
are documented as both the time series and the cross-section tend to infinity. In
particular, we show that both the estimators of the individual-specific coefficients
and the mean group estimator are consistent and asymptotically normal. The
small-sample behavior of the mean group estimator is assessed in a Monte Carlo
experiment. The methodology is applied to the question of how funding costs in
corporate bond markets affect the conditional probability of issuing a corporate
bond.
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3.1 Introduction

Panel data offer a lot of time series and cross-sectional variation which can facilitate

the identification of parameters which are difficult to identify with only time series

or cross-sectional data (Mavroeidis et al. (2014)). Recently, researchers have

increasingly used panel data to better understand financial and macroeconomic

phenomena, such as the transmission of monetary policy (Keys et al. (2014)).

In many panel data sets, the popular assumption that individual units are

cross-sectionally independent is difficult to maintain. Instead, their behavior is

characterized by interdependencies. One source of these dependencies is shocks

that are common to all individual units. For example, macroeconomic shocks

like financial crises affect household wealth and the balance sheets of firms and

financial intermediaries. Both conventional and unconventional monetary policy

affects the level of interest rates in the economy and hence consumption decisions of

households, investment decisions of firms and the portfolio compositions of financial

market participants. Taxes and government subsidies affect the decisions of firms

on where to locate a factory, and the decisions of households on whether to take out

a mortgage.1

Some common shocks are observable while others are not, and the impact of

common shocks typically differs across individual units. For example, a bank with

a small equity position will reduce its loan supply by more than a well-capitalized

bank after a tightening in capital requirements. Andrews (2005) shows that common

shocks create problems for inference if data are available for a single cross-sectional

unit and the model is estimated by least squares or instrumental variable methods.

But the increased availability of panel data where both the time series and cross-

sectional dimensions are large offers new opportunities for controlling for these

unobserved shocks (Bai (2009), Pesaran (2006)).

This paper contributes to that literature by developing an estimator for

large heterogeneous panels with cross-sectional dependence in a framework where

outcomes are discrete.2 The proposed estimator belongs to the class of common

correlated effects (CCE) estimators that approximate the unobserved factors with

cross-sectional averages (Pesaran (2006)). But this approach is complicated in

nonlinear models where the unobserved factors and the cross-sectional averages are

linked by an unknown functional form.3 This paper adopts the CCE estimation

methodology to discrete choice models under the assumption that the unobserved

factors are contained in the span of the observed factors and the cross-sectional

1Andrews (2003) discusses a variety of common shocks including macroeconomic, political,
legal, environmental and health shocks.

2Discrete choice models are probably the most popular nonlinear panel data models in
econometrics. But the methodology developed here is also applicable to other nonlinear panel
data models.

3One exception is the state-dependent pricing model of Dhyne et al. (2011) where it is possible
to solve for the unobserved factors as a function of cross-sectional averages.
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averages of the regressors. In situations where the number of unobserved factors is

likely to be large relative to the number of regressors, I discuss how instrumental

variable methods can be applied. Finally, I sketch a more general approach to adopt

the CCE methodology to nonlinear panels that is based on simultaneous sieve M-

estimation.

To derive the asymptotic properties of the estimators of the individual-specific

coefficients and their mean, I take a perspective where both the time dimension T

and the cross-sectional dimension N are large. I first show that the estimator of the

individual-specific coefficients is consistent and asymptotically normal. It turns out

that this estimator has the same asymptotic distribution as an infeasible estimator

that counterfactually assumes that the unobserved factors are known. An important

part of the asymptotic theory is uniform consistency of the preliminary estimator.

Specifically, the preliminary estimator converges to the true function at the uniform

rate log(T )/
√
N .

Based on the asymptotic properties of the estimators of the individual-specific

coefficients, consistency and asymptotic normality results for the mean group

estimator are derived. Inference is easy: I show that the asymptotic variance of the

mean group estimator can be estimated by the covariance matrix of the individual-

specific coefficient estimates. This covariance estimator is identical to the estimator

obtained in linear regression models (Pesaran (2006)).

By means of a simulation study, I document that for a wide range of factor

structures, the mean group estimator is comparable in terms of RMSE and bias to

an infeasible estimator that counterfactually assumes that the common factors are

known. In addition, the mean group estimator has good empirical power and size.

I apply the methodology developed in this chapter to the question of how yields

in corporate bond markets affect the conditional probability of issuing a bond. I find

that conditional probability of issuing a bond is larger in low yield environments for

non-financial firms. This question is of policy interest because it sheds light on a

particular transmission mechanism of monetary policy: central banks can affect the

interest rates that firms face in corporate bond markets by means of conventional

and unconventional monetary policy tools. Bond issuance, on the other hand, is

often related to corporate investment.

Recently, a growing literature has documented that CCE estimators are consis-

tent and asymptotically normal in a variety of situations, such as quantile regression

(Harding and Lamarche (2013)), structural breaks (Baltagi et al. (2016)), and

dynamic panels (Chudik and Pesaran (2015a)). But there is not yet a CCE

estimator for panels with binary outcomes when both N and T are large which is the

contribution of this chapter. Alternative approaches to estimation and inference in

nonlinear panel data models with interactive fixed effects are the two-step estimators
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of Chen (2014) and Chen et al. (2014).4 In contrast to the estimator proposed here,

these estimators are computed in an iterative procedure and assume that the slopes

are homogeneous which requires bias correction due to the incidental parameter

problem.

The remainder of this chapter is organized as follows. Section 3.2 discusses

alternative approaches to model cross-sectional dependence in disturbance terms.

The econometric model is presented in Section 3.3 and Section 3.4 develops the

estimation methodology. Section 3.5 establishes the asymptotic properties of the

estimators of the individual-specific coefficients and the mean group estimator.

Section 3.6 reports the results of a Monte Carlo experiment and Section 3.7 applies

the methodology to the question of how yields affect the decision to issue a corporate

bond. Section 3.8 concludes.

3.2 Modeling cross-sectional dependence

A variety of alternative approaches have been proposed to address cross-sectional

dependence in disturbance terms. Broadly, they can be classified into two main

categories: spatial processes and factor structures. The remainder of this section

discusses both approaches in more detail.5

Spatial models assume that cross-sectional dependence arises because of interac-

tions among economic agents. Such interactions are predicted by economic theory.

For example, when faced with idiosyncratic shocks, rational agents will take out

insurance contracts to smooth consumption which makes individual consumption

profiles cross-sectionally correlated (Conley (1999)). Other examples include trade

or financial spill-over effects.

Conley (1999) observed that the strength of these interactions is related to the

economic distance between individual units. Economic distance is determined by

a variety of socio-economic characteristics and it can be measured by a distance

metric as for example the Euclidean norm. Once a spatial ordering is established,

Conley (1999) adopts mixing coefficients from the time-series literature to study the

asymptotic properties of GMM estimation.

A parametric alternative to mixing conditions are spatial autoregressive frame-

works (SAR). They rely on a weight matrix that summarizes the strength of the

cross-sectional correlations. The weight matrix is usually known up to a small

number of parameters. However, these methods assume that the econometrician

has prior knowledge about how to measure interactions.

Recently, Robinson (2011) has proposed an alternative approach based on linear

processes that does not need a measure of cross-sectional distance and includes

the SAR model as a special case. This approach was used in e.g. Lee (2012) to

4I learned about these papers after completing a first draft of this paper.
5See also Chudik and Pesaran (2015b), Bailey et al. (2015) and Lee (2012) for an overview.
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derive the asymptotic properties of a series estimator in panels with cross-sectional

dependence.

But spatial approaches assume that the cross-sectional dependence is local or

weak as defined in Chudik et al. (2011). If the data exhibit strong cross-sectional

dependence, factor structures are better suited to model it. The motivation behind

factor structures is that there are common but unobserved shocks that can have

different impacts on the individual units. These shocks are allowed to be correlated

with the regressors which is more general compared to spatial settings. The

unobserved factors can be estimated by principal components methods (Coakley

et al. (2002), Bai (2009)), or by cross-sectional averages (Pesaran (2006)).

Coakley et al. (2002) develop a two-step principal components estimator where

in a first step, the common factors are extracted by computing the principal

components from the OLS residuals. In the second step, the regression model

augmented with the principal components is estimated. However, as shown by

Pesaran (2006), this estimator is not consistent if the unobserved common factors

are correlated with the explanatory variables. To overcome this problem, Bai (2009)

develops an iterative principal components estimator that alternates the first and

second step of Coakley et al. (2002) until convergence. The iterative principal

components estimator is consistent even if regressors and unobserved factors are

correlated.

The common correlated effects (CCE) estimator of Pesaran (2006) is based on

the idea that the unobserved factors can be approximated by cross-sectional averages

of the dependent and independent variables. Compared to the principal components

estimator, CCE estimators have the advantage that the number of common factors

does not need to be known. In Monte Carlo studies, CCE estimators are found

to be more efficient and robust when compared to alternative estimators including

principle component estimators (Coakley et al. (2006), Chudik et al. (2011)).

A growing literature has documented that CCE estimators are consistent in a

variety of situations: Pesaran and Tosetti (2011) combine the factor approach with

spatial models by assuming that the disturbances net of the common factors follow

a spatial process, see also Chudik et al. (2011). Kapetanios et al. (2011) show that

the CCE estimator is consistent even if the unobserved factors are non-stationary.

Chudik and Pesaran (2015a) extend the CCE estimator to dynamic panels.6 Baltagi

et al. (2016) develop a CCE estimator for data with structural breaks. Harding and

Lamarche (2013) propose a quantile CCE estimator for homogeneous panel data with

endogenous regressors, and Boneva et al. (2015) develop a quantile CCE estimator

for heterogeneous panels. The contribution of this chapter is to extend the CCE

approach to discrete outcomes.

6Alternative estimators for dynamic panels with cross-sectional dependence are Moon and
Weidner (2015) and Song (2013).
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3.3 Econometric model

This section describes the econometric framework. I observe a sample of panel data

{(Yit, Xit, dt) : i = 1, . . . , n, t = 1, . . . , T}, where i denotes the i-th unit and t is the

time point of observation. To keep the notation simple, I assume that the panel is

balanced. The data are assumed to come from the model

Y ∗it = α
ᵀ

i dt + β
ᵀ

iXit + eit, i = 1, . . . , N, t = 1, . . . , T, (3.1)

where Y ∗it is a latent variable that is related to the observed response variable Yit via

the indicator function I(.),

Yit = I(Y ∗it ). (3.2)

That is, Yit is unity if Y ∗it > 0 and zero otherwise. Alternatively,

Pr(Yit = 1|Xit, dt, ft) = 1− Φ(−αᵀ

i dt − β
ᵀ

iXit − κ
ᵀ

i ft) = Φ(α
ᵀ

i dt + β
ᵀ

iXit + κ
ᵀ

i ft),

where Φ (.) is the standard normal CDF. Xit is a Kx×1 vector of individual-specific

regressors that are assumed to be strictly exogenous and stationary and dt is a

Kd × 1 vector of observed common factors that do not vary across individual units.

This chapter is concerned with inference for the heterogeneous coefficients βi and

their mean. This is complicated by cross-sectional dependence which is modeled by

assuming that the disturbances exhibit the factor structure

eit = κ
ᵀ

i ft + εit, (3.3)

where ft is a Kf × 1 vector of unobserved common factors and κi is a Kf × 1 vector

of factor loadings. The disturbances εit are IID conditional on the factors and have

a normal distribution with zero mean and unit variance (although our method can

be defined for any link function with some regularity conditions). The normalization

of the variance is necessary for identification of βi.
7

The panel data model (3.1)-(3.3) contains popular panel data models with

additive factor structures as a special case. For example, if βi and κi are

homogeneous across i and dt only includes a constant, the model reduces to a

discrete choice panel model with homogeneous slopes and individual and time fixed

effects. As documented in Fernandez-Val and Weidner (2015), this model is subject

to the incidental parameter problem (Neyman and Scott (1948)) which results in

biased estimates that need to be corrected with jackknife methods, for example. By

assuming that the coefficients in the discrete choice panel data model (3.1)-(3.3) are

heterogeneous, I can avoid this problem.

In many panel data applications, the unobserved common factors ft are

7Alternative identification assumptions can be made as e.g. α1i = 1.
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correlated with both the response variable and the regressors, introducing a certain

type of endogeneity. To allow for this possibility, the individual-specific regressors

are assumed to follow the model

Xit = A
ᵀ

i dt +K
ᵀ

i ft + uit, (3.4)

where Ai is a coefficient matrix of dimension Kd ×Kx, Ki is a Kf ×Kx matrix of

factor loadings and uit have a zero mean and are IID conditional on the common

factors.

To analyze the asymptotic properties of the estimators of the individual-specific

coefficients β̂i and the mean group estimator

β̂ =
1

N

N∑
i=1

β̂i. (3.5)

I make the following assumptions which are maintained throughout the chapter:

(A1) Random coefficient model : the coefficients βi are generated by

βi = β + ηi, (3.6)

where ηi ∼ IID(0,Ση) and is distributed independently of κj, Kj, εjt, ujt, dt, ft

∀i, j, t, ‖β‖ < Cβ, ‖Ση‖ < CΣ is symmetric and non-negative definite and

‖A‖ =
√

tr(AᵀWA) for any matrix A and a symmetric positive definite matrix

W.

(A2) Common factors : the (Kf + Kd) × 1 vector of common factors gt = (f
ᵀ

t , d
ᵀ

t )
ᵀ

is assumed to be bounded and covariance stationary with absolute summable

covariances, and distributed independently of the disturbances εit and uis,

∀i, t, s.

(A3) Factor loadings : the factor loadings κi and Ki are IID across i, and distributed

independently of the disturbances εjt and ujt and the common factors ft and

dt, for all i, j, t with finite means and variances.

3.4 A common correlated effects estimator for

discrete choice panels

The econometric model (3.1)-(3.4) depends on the unobserved factors ft which

makes estimation difficult. One approach to control for unobserved factors is

to approximate them by cross-sectional averages of Xit and Yit (Pesaran (2006)).

Section 3.4.1 adopts this approach for discrete choice models under the assumption

that the unobserved factors are contained in the span of the observed factors and
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the cross-sectional averages of the regressors.8 In situations where the number

of unobserved factors is likely to be large relative to the number of regressors,

instrumental variable methods can be applied. This is discussed in Section 3.4.2.

Section 3.4.3 sketches a more general approach based on simultaneous sieve M-

estimation.

3.4.1 Approximating the unknown factors by cross-sectional

averages of the regressors

In nonlinear panel data models, approximating the unobserved factors by cross-

sectional averages of both the regressors and the dependent variable as in Pesaran

(2006) is difficult. Instead, I adopt the same approach as in chapter 2 of this thesis

and approximate the unobserved factors by cross-sectional averages of the regressors.

This approach, however, assumes that the regressors are driven by the same set of

factors as the dependent variable.

I start by taking cross-sectional averages of equation (3.4) to obtain

X t = A
ᵀ

dt +K
ᵀ

ft + ut (3.7)

= A0
ᵀ
dt +K0

ᵀ
ft + ut + (A− A0)

ᵀ
dt + (K −K0)

ᵀ
ft

= A0
ᵀ
dt +K0

ᵀ
ft +Op(1/

√
N).

Under the assumption that

rank(K) = Kf ≤ Kx ∀N, (3.8)

the unobserved factors can be represented as

ft = (KK
ᵀ

)−1KX t − (KK
ᵀ
)−1KA

ᵀ

dt − (KK
ᵀ
)−1Kut,

where it is possible to show that ut
p−→ 0 (Pesaran (2006)). Therefore, the

unobserved factors can be approximated by a linear combination of cross-sectional

averages of the regressors the observed common factors.9

3.4.2 Instrumental variables

But in situations where the number of unobserved factors is likely to be large relative

to the number of regressors, the approach outlined above may not work very well.

8In case of microeconometric panels where individual-specific unobserved characteristics like
ability are likely to be correlated with the regressors, the indices t and i can be interchanged and
time-series averages can be used to approximate the unobserved loadings.

9Rather than taking simple averages, any weighted average can be used provided that the
weights are “granular” as defined in Pesaran (2006)
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This section describes how instrumental variable methods can be applied in these

cases.

If an instrument Wit for ft is available that is related to Yit only via the common

factors ft then that instrument can be used to approximate the common factors

together with X t. Specifically, assume that there is an instrument available that is

generated as

Wit = AWi +KW
ᵀ

i ft + wit,

where wit is an IID disturbance term. The unobserved factors can then be

approximated by a linear combination of dt and Zt = [X
ᵀ

t : W
ᵀ

t ]
ᵀ
.

3.4.3 A more general approach based on sieve estimation

In Section 3.4.1, it was assumed that the unobserved factors are contained in the

span of the observed factors and the cross-sectional averages of the regressors.

This is more restrictive compared to the CCE approach in Pesaran (2006) that

also approximates the unobserved factors with the cross-sectional average of the

dependent variable. This section sketches a more general approach for CCE-type

estimation in nonlinear panels that also includes the cross-sectional average of the

dependent variable. The individual regression models are first averaged to obtain

1

N

N∑
i=1

Pr(Yit = 1|dt, Xit, ft) =
1

N

N∑
i=1

Φ(α
ᵀ

i dt + β
ᵀ

iXit + κ
ᵀ

i ft)

= HN(dt, ft, µ
X
t ), (3.9)

where N−1
N∑
i=1

Pr(Yit = 1|dt, Xit, ft) = Y t because Yit is a discrete random

variable. µXt is a vector with cross-sectional sample moments of Xit that completely

characterizes the cross-section of Xit. For simplicity, I assume that µXt = X t but the

approach outlined in this section can be generalized to cases where µXt also contains

higher moments.10 This assumption is equivalent to assuming that higher moments

are time-invariant. Equation (3.9) implies that ft is given by 11

ft = G(Y t, X t, dt), (3.10)

where G(.) is an unknown function that can be estimated by series estimation, for

example.12 Series estimation replaces the unknown function G(.) by the first q terms

of a sequence of approximating functions pq(Y t, X t, dt)
ᵀ
ζi where pq(.) = (p1(.), . . .

, pq(.))
ᵀ

and ζi is a fixed vector of parameters. I consider the case where pj(.) are

10µX
t = Xt holds exactly if HN (.) is linear.

11A sufficient (but not necessary) condition for uniqueness of ft is ∂HN

∂f > 0 or ∂HN

∂f < 0.
12The dependence on N is implicit.
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multivariate polynomials of order j which can be motivated by a Taylor expansion.13

Newey (1994) develops a two-step series estimator for the case where ft is

known. If ft is unobserved, the individual-specific coefficients βi can be estimated

in one-step by replacing the unobserved factors ft by the approximating functions

pq(Y t, X t, dt)
ᵀ
ζi:

14

Pr(Yit=1|dt, Xit, ft) ≈ Φ(α
ᵀ

i dt + β
ᵀ

iXit + κ′qi (Y t, X t, dt)
ᵀ
ζi). (3.11)

In general, q is chosen by data-driven procedures such as cross-validation, for

example. In same applications, including higher order terms like cross-sectional

variances can be desirable. For a general link function F (.), equation (3.11) is a

semiparametric regression model that can be estimated by simultaneous sieve M-

estimation, see Chen (2007) for a survey.

3.5 Asymptotic theory

This section characterizes the asymptotic properties of both the estimators of the

individual-specific coefficients and the mean group estimator in discrete choice panels

with interactive fixed effects.

Notation: the true individual-specific coefficients and their population means are

denoted by θ0i = (ᾱ
ᵀ

0i, β
ᵀ

0i, κ̄
ᵀ

0i)
ᵀ

and θ0 = (ᾱ
ᵀ

0, β
ᵀ

0 , κ̄
ᵀ

0)
ᵀ

where I use ¯ to denote

the coefficients in the regression model augmented with cross-sectional averages. I

define the Kx × 1 vector ĥt ≡ X t = A
ᵀ

dt + K
ᵀ

ft + ut which can be interpreted as

an estimator of the Kx × 1 vector h0t = A0
ᵀ
dt + K0

ᵀ
ft. ĥt and h0t can be stacked

to form the TKx× 1 vectors ĥ(T ) = (X1,1, . . . , XKx,1, X1,2, . . . , XKx,2, . . . , X1,T , . . .

, XKx,T ) and h0(T ) = (h0
1,1, . . . , h

0
Kx,1

, h0
1,2, . . . , h

0
Kx,2

, h0
1,T , . . . , h

0
Kx,T

), which can be

embedded within the sequence space H whose metric is d(h, g) = supi≥1 |hi − gi|,
in which case I write h0 = (h0

1,1, . . . , h
0
Kx,1

, h0
1,2, . . . , h

0
Kx,2

, h0
1,T , . . . , h

0
Kx,T

, 0, . . .) and

likewise ĥ (suppressing dependence on T ), and let ‖h‖H = d(h, h). I use Θ to denote

the finite dimensional parameter set for θi (where the dependence on i is suppressed)

and H for the infinite dimensional parameter set of sequences {ht}∞t=1. C denotes a

finite constant.

3.5.1 Asymptotics for the estimators of the individual-

specific coefficients

This section shows that the estimators of the individual-specific coefficients θ̂i are

consistent and have the same asymptotic distribution as an infeasible estimator

13To reduce multicolinearity, orthogonal polynomials such as Chebyuchev polynomials can be
used instead.

14The coefficients κi and ζi are not individually identified.
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that counterfactually assumes that the unobserved common factors ft are known.

Observe that the vector θ̂i contains both the coefficients of interest β̂i and the

auxiliary coefficients on the known factors dt and the cross-sectional averages X t

which play the role of nuisance parameters. For notational simplicity, the asymptotic

theory is presented for θ̂i rather than for the parameter of interest β̂i.
15

The estimator θ̂i is defined to minimize minus the log-likelihood function

Q̂i
T (θi) = Qi

T (θi, ĥ) =− 1

T

T∑
t=1

log f(Yit|Xit, ĥt, dt, θi)

=− 1

T

T∑
t=1

[Yit logF (α
ᵀ

i dt + β
ᵀ

iXit + κ
ᵀ

i ĥt)

+ (1− Yit) log(1− F (α
ᵀ

i dt + β
ᵀ

iXit + κ
ᵀ

i ĥt))].

The probability limit of Q̂i
T (θi, h) for a given sequence {ht} is defined as

Qi
0(θi, h) = −E [log f(Yit|Xit, ht, dt, θi)] .

Define likewise the infeasible objective function

Qi
T (θi) = Qi

T (θi, h0) = − 1

T

T∑
t=1

log f(Yit|Xit, h0t, dt, θi). (3.12)

An important condition to derive the asymptotic properties of θ̂i is uniform

consistency of ĥt. To obtain the uniform convergence rate of

ĥt − h0t = ut − (A0 − A)
ᵀ
dt − (K0 −K)

ᵀ
ft,

I make the following assumptions:16

(B1) E(|ujit|k) < Cv, k ≥ 6, where ujit denotes the jth element in the Kx × 1 vector

uit

(B2) E‖Ai − A0‖2 ≤ C <∞, E‖Ki −K0‖2 ≤ C <∞

(B3) T/N → 0

Assumption (B1) is required for Bernstein’s exponential inequality. Condition

(B2) requires that the matrices Ai and Ki have finite variances and is implied by

15The coefficients ai on the observed common factors dt are not identified in the regression
model augmented with cross-sectional averages. But under the assumption that the unobserved
factors ft are orthogonal to the observed factors dt, there are two possible approaches to estimate
âi: (i) estimate Xit = A

ᵀ

i dt + ũit, where ũit = K
ᵀ

i ft + uit; (ii) estimate Ỹit = a
ᵀ

i dt + ẽit where

Ỹit = Yit − β̂Xit.
16Random variables are understood as triangular arrays of random variables. This is left implicit

to keep the notation simple.
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assumptions (A1) and (A3) provided that the parameters in Ai have finite second

moments. The following lemma gives an upper bound on the uniform convergence

rate of ĥt − h0t.
17

Lemma 3.5.1. Suppose that assumptions (A2), (B1)-(B3) hold. Then

‖ĥ− h0‖H = Op

(
log T√
N

)
. (3.13)

Furthermore, for weight sequence {ωt} with
∑T

t=1 ωt = 1 and
∑T

t=1 ω
2
t ≤ C, I have

T∑
t=1

ωt

(
ĥt − h0t

)
= Op

(
1√
N

)
.

An important assumption to obtain the uniform rate in (3.13) is boundedness

of the factors that is assumed in (A2). If the factors are not bounded, the penalty

term is T δ instead of log T where δ depends on the number of moments that the

observed and unobserved factors gt possess.

After having established uniform consistency of the preliminary estimator, I next

show that the estimators of the individual-specific coefficients is consistent. To this

objective, I make the following assumptions:

(C1) The parameter space Θ is compact and θi0 ∈ Θ

(C2) θ̂i ∈ Θ and Qi
T (θ̂i, ĥ) = infθi∈ΘQ

i
T (θi, ĥ)

(C3) ‖ĥ− h0‖H = op(1)

(C4) For all δi > 0, there exists ε(δi) such that

inf
‖θi−θ0i‖>δ

∣∣Qi
0(θi, h0)−Qi

0(θ0i, h0)
∣∣ ≥ ε(δi) > 0

(C5) θ̃i
p−→ θ0i for each fixed i where θ̃i = arg min

θ∈Θ
Qi
T (θ, h0) and Qi

T (θ, h0) is

defined in (3.12)

(C6) For δT = op(1),

sup
||h−h0||≤δT

sup
θ∈Θ

∣∣Qi
T (θ, h)−Qi

T (θ, h0)
∣∣ = op(1).

Compactness of the parameter space (C1) can be dropped provided that the

log-likelihood function is concave. Here, concavity of the log-likelihood follows from

concavity of logF (v) and 1− logF (v) because v = α
ᵀ

i dt + β
ᵀ

iXit + κ
ᵀ

iht is linear in

the coefficients given ht. But logF (v) is concave in v because the first derivative

17All proofs are relegated to Appendix C.1.
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of logF (v) with respect to v is monotonically decreasing (Newey and McFadden

(1994)). Assumption (C2) defines the estimator and can be weakened to Qi
T (θ̂i, ĥ) =

infθi∈ΘQ
i
T (θi, ĥ) + op(1). The uniform consistency condition for the preliminary

estimator (C3) was established in Lemma 3.5.1. Assumption (C4) is an identification

condition that requires θ0i to uniquely minimize Qi
0(θi, h0) over θi ∈ Θ. A necessary

condition for identification (in a neighborhood of θi0) is that the second derivative of

the objective function with respect to θi has full rank. Consistency of the infeasible

estimator θ̃i (assumption (C5)) that counterfactually assumes that the unobserved

factors are known follows from standard arguments for extremum estimators (e.g.

Wald (1949), Newey and McFadden (1994)).

Theorem 3.5.1. Suppose that assumptions (C1)-(C6) hold. Then, as (T,N)
j−→

∞, θ̂i
p−→ θ0i for each fixed i.

To derive the asymptotic distribution of the individual-specific estimators θ̂i, I

assume that θ̂i is consistent and that θi0 ∈ Θ. In addition, I assume that:

(D1) ∂Q0

∂θ
(θi0, h0) = 0

(D2) For some sequence δT = o(1)

sup
‖h−h0‖≤δT

sup
‖θ−θi0‖≤δT

∥∥∥∥∂2Qi
T (θ, h)

∂θ∂θᵀ − ∂2Qi
T (θ, h0)

∂θ∂θᵀ

∥∥∥∥ = op(1)

where the Kd + 2Kx ×Kd + 2Kx matrix
∂2QiT (θ0,h0)

∂θ∂θ
ᵀ has full rank.

(D3) There is a matrix Hi2(θ, h) of dimensions Kd + 2Kx × TKx that satisfies for

some sequence δT = o(1)

sup
‖θi−θi0‖≤δT

sup
‖h−h0‖H≤δT

∥∥∥∥ ∂2Qi
T

∂θ∂hᵀ (θi, h)−Hi2(θi0, h0)

∥∥∥∥ p−→ 0,

where supt≥1 ||Hi2t(θi0, h0)|| < C for each Kd + 2Kx × KX submatrix

Hi2t(θi0, h0).

(D4) For some Ji > 0 and Ji < C

√
T
∂Qi

T

∂θ
(θi0, h0)

d−→ N(0, Ji)

(D5) T (log T )2

N
→ 0

(D6) There is a Kx ×Kx matrix

Wjts(θi0, h) =
∂3Qi

T (θi0, h)

∂θj∂h
ᵀ

t∂hs
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that satisfies for some sequence δT = o(1)

sup
‖h−h0‖≤δT

‖Wjts(θi0, h)‖ < C, ∀j, t, s

(D7) ‖ĥ− h0‖H = op(1)

Assumption (D3) is a uniform convergence condition of the Hessian in a shrinking

neighborhood of the true parameters θi0 and h0 and it can be replaced by a more

primitive ULLN (Andrews (1993)). Assumption (D4) is analogous to asymptotic

normality of the score and is satisfied because

∂Qi
T

∂θ
(θi0, h0) = − 1

T

T∑
t=1

Yit − Fit0
Fit0(1− Fit0)

fit0[X
ᵀ

it : d
ᵀ

t : h
ᵀ

0t]
ᵀ

is a sample average with zero mean that is IID conditional on the factors. The

restriction on the relative size of T and N in (D5) ensures that the estimated

preliminary functions ĥ do not affect the asymptotic distribution. Theorem 3.5.2

summarizes the asymptotic normality result for the individual-specific estimators θ̂i.

Theorem 3.5.2. Suppose that assumptions (A2) and (D1)-(D7) hold. Then, as

(T,N)
j−→∞, √

T (θ̂i − θ0i)
d−→ N(0, Vi)

for each fixed i, where:

Vi = H1i(θ0i, h0)−1JiH1i(θ0i, h0)−1
ᵀ

H1i(θi0, h0) = p lim
T→∞

∂2Qi
T (θi0, h0)

∂θ∂θᵀ .

3.5.2 Asymptotics for the mean group estimator

In this section, I investigate the asymptotic properties of the mean group estimator β̂

defined in equation (3.5) which is a subset of the parameter estimates contained in θ̂.

Consistency of θ̂ follows by similar arguments as in the case of the individual-specific

estimators θ̂i and is summarized in the following theorem:

Theorem 3.5.3. Suppose that assumptions (C1)-(C6) hold. Then, as (T,N)
j−→

∞, θ̂
p−→ θ0.

To show that the mean group estimator is asymptotically normal, I assume that

θ̂ is consistent and asymptotically normal and that θ0 is an interior point in Θ.

Additionally, I assume that:

(E1) 1
N

N∑
i=1

∂Q0

∂θ
(θi0, h0) = 0
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(E2) There is a matrix H2(θ, h) that satisfies for some δN = o(1)

sup
‖θ−θ0‖≤δN

sup
‖h−h0‖H≤δN

∥∥∥∥∥ 1

N

N∑
i=1

∂2Q̂i
T

∂θ∂hᵀ (θ, h)−H2(θ0, h0)

∥∥∥∥∥ p−→ 0

Assumptions E are similar to Assumptions D that have been imposed to establish

asymptotic normality of the individual-specific estimators.

Theorem 3.5.4 contains the asymptotic normality result for the mean group

estimator.

Theorem 3.5.4. Suppose that assumptions (E1)-(E5), (D4) hold. Then, as

(T,N)
j−→∞, √

N(β̂ − β0)
d−→ N(0,Ση).

Observe that the asymptotic variance of the mean group estimator is equal

to that of the random coefficients (assumption (A1)). In practice, Ση can be

consistently estimated by

Σ̂η =
1

N − 1

N∑
i=1

(β̂i − β̂)(β̂i − β̂)
ᵀ
. (3.14)

The estimator Σ̂η is identical to the one that is obtained in OLS and quantile

regression settings (Pesaran (2006), Boneva et al. (2015)).

3.6 Small sample experiments

To complement the asymptotic analysis, this section studies the small sample

properties of the CCE mean group estimator and compares them to the following

set of alternative estimators:

1. The infeasible mean group estimator that counterfactually assumes that the

unknown factors can be observed.

2. The CCE mean group estimator with W t that approximates the unknown

factors with the cross-sectional averages of the regressors X t and instruments

W t.

3. The naive mean group estimator that does not account for unobserved common

factors.

4. The linear probability mean group estimator that replaces the probit model by

a linear probability model.
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The small sample performance of these estimators is evaluated in five experiments

that cover a wide range of factor structures than can be encountered in economic

and financial panel data sets: 18

Experiment 1 The data generating process (DGP) is

Y ∗it = αi + β1iX1it + β2iX2it + κ1if1t + κ2if2t + εit, Yit = I(Y ∗it )

Xjit = aji + kji1f1t + kji2f2t + ujit, j = 1, 2

Wit = aWi + kWi1 f1t + kWi2 f2t + wit

εit ∼ NID(0, 1)

ujit ∼ NID(0, 1), j = 1, 2

wit ∼ NID(0, 1) (3.15)

where the factors are generated by19

flt =ρfflt−1 + νlft, t = −50, . . .

, T, l = 1, 2 (3.16)

νlft ∼ NID(µf (1− ρf ), 1− ρ2
f ), ρf = 0.5, µf = 0.5, l = 1, 2. (3.17)

The coefficients αi, aji and aWi are held fixed across replications and are initially

generated as

αi ∼ NID(−0.5, 0.1)

aji ∼ NID(0.5, 0.1), j = 1, 2

aWi ∼ NID(0.5, 0.1). (3.18)

The remaining coefficients are drawn independently across replications according to

β1i = 0.5 + η1i, η1i ∼ NID(0, 0.02)

β2i = −0.5 + η2i, η2i ∼ NID(0, 0.02)

κij ∼ NID(0.5, 0.1), j = 1, 2

kji1 ∼ NID(0.5, 0.1), j = 1, 2

18When estimating binary choice models, one occasionally encounters the problem of quasi-
complete separation. Quasi-complete separation occurs when the dependent variable separates the
independent variables to certain degree. In that case, the maximum likelihood estimator does not
exist and attempting to compute it usually results in an upward biased estimate. To mitigate
this problem in the Monte Carlo experiments, I use the bias-reduction method of Firth (1993).
Asymptotically, this estimator is equivalent to maximum likelihood to first order.

19The DGP for the factors (3.16) does not satisfy assumption (A2) because the factors are not
bounded. But this does not affect the asymptotic theory because under normality as assumed here,
the penalty term in the uniform rate (Lemma 3.5.1) is

√
log(T ) which is smaller than the current

penalty of log(T ).
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kWi1 ∼ NID(0.5, 0.1). (3.19)

Experiment 2 is identical to experiment 1 except that β1i = 0.5, β2i = −0.5∀i.
There is no slope heterogeneity.

Experiment 3 is identical to experiment 1 except that kji2 ∼ NID(0, 0.1). The

rank condition (3.8) is not satisfied.

Experiment 4 is identical to experiment 1 except that

Y ∗it = αi + βiXit + κ1if1t + κ2if2t + κ3if3t + εit, Yit = I(Y ∗it ) (3.20)

where κi3 and ft3 are generated as κi1 and ft1. In this experiment, there are more

unknown factors than proxies which illustrates another failure of the rank condition

(3.8).

3.6.1 Coefficient estimates

To assess the small sample performance of the different estimators, I compute the

maximal bias and RMSE for β1 that are defined as:20

RMSEβ =


√√√√ 1

R

R∑
r=1

(β̂1r − β1)2


Biasβ =

(
β1 −

1

R

R∑
r=1

β̂1r

)
,

where R is the number of replications.

Tables 3.1-3.4 report RMSE and bias for experiments 1-4.21 The naive estimator

has poor small sample properties in all experimental settings. This result is not

surprising because this estimator omits the unobserved common factors that play

an important role in the DGP. In contrast, the CCE mean group estimator is

comparable to the infeasible estimator in terms of RMSE even if the coefficients

are homogeneous (Table 3.2). If the rank condition is not satisfied, the performance

of the CCEMG estimator deteriorates (Tables 3.3 and 3.4).

The estimator that uses additional instruments W t to approximate the unob-

served factors performs similar to the CCE mean group estimator in terms of bias

and RMSE with exception of experiment 3 where the estimator with W t performs

well despite of a failure of the rank condition (Table 3.3). In this situation, an

instrument is available that is strongly correlated with the dependent variable. In

20Results for β2 are almost identical.
21The linear probability estimator is excluded in this section because the coefficients represent

marginal effects and are thus not comparable to the other estimates.
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contrast, the estimator with W t is biased in experiment 4. This experiment mimics

a situation where the instruments are weak: in contrast to the other experiments,

the instruments Wit are generated by less factors than the dependent variable Yit

which reduces the correlation between W t and Y t.

Tables 3.1-3.4 also report empirical sizes and power. Power is computed under

the alternative β1 = 0.45 and the variance of β̂1 is calculated using the formula in

equation (3.14). While the naive estimator has distorted empirical sizes across all

experiments, the empirical sizes of the CCE mean group estimator are close to the

nominal size of 5% in all experiments except if the rank condition fails (Tables 3.3

and 3.4). With exception very small sample sizes, the CCE mean group estimator

also has good power. The empirical sizes and powers of CCE mean group estimator

with W t are similar to those of the CCE mean group estimator with exception of

experiment 3 where it outperforms the CCE mean group estimator (Table 3.3).

3.6.2 Marginal effects

Applied research usually reports marginal effects rather than coefficient estimates

when estimating discrete choice models. Unlike coefficient estimates, marginal

effects can be used to assess the economic significance of the results which is

important to inform debates about economic policy. For the probit model, the

average marginal effect is defined as:

MEi = βi
1

T

T∑
t=1

φ(α̃
ᵀ

i dt + β1iX1it + β2iX2it + κ̃
ᵀ

iX t).

Bias and RMSE for the marginal effect are computed as for the coefficient estimates

in Section 3.6.1.

Tables 3.5-3.8 report RMSE and bias for marginal effects. Marginal effects

computed from either CCE mean group estimates or CCE mean group estimates

with W t have similar bias and RMSE when compared to the infeasible marginal

effects and outperform naive marginal effects that do not account for unobserved

common factors. These conclusions hold even if the rank condition is not satisfied

(Tables 3.7, 3.8).22 The linear probability model augmented with cross-sectional

averages has good small sample properties, too.23

Overall, the Monte Carlo evidence indicates that the CCE mean group estimator

has good small sample properties compared to the infeasible estimator. These

conclusions are robust to the case where coefficients are homogeneous.

22The robustness of marginal effects even if coefficient estimates are biased has been documented
before, see e.g. Fernandez-Val and Weidner (2015).

23The linear probability model performs worse if the marginal effects at the average are
computed instead of the average marginal effects. These results are available from the author
on request.

83



3.7 The effect of corporate bond yields on bond

issuance by US corporates24

At least since Modigliani and Miller (1958), the capital structure of firms has

attracted much attention and there is a large empirical and theoretical literature

that explores why the capital structure matters (Brealey et al. (2008)). For example,

the mix of debt and equity is relevant in the presence of the bankruptcy costs or

asymmetric information (Frank and Goyal (2008)).

Relative to equity, debt financing is an important source of external funds for

US corporations (Denis and Mihov (2003)). Debt financing can take the form of

bank loans, other loans or public debt. The focus here is on public debt. But

in contrast to earlier studies (Frank and Goyal (2008)), I adopt an incremental

approach that investigates the conditional probability of issuing a corporate bond

which is particularly suitable for questions related to time-variation in the regressors.

In my study, the yield paid by issuers in the corporate bond market is the regressor

of primary interest.

Answering the question of how funding costs in corporate bond markets affect

issuance decisions sheds light on a particular transmission mechanism of monetary

policy: by means of conventional and unconventional monetary policy tools, the

central bank can affect the interest rates firms face in corporate bond markets.

Bond issuance, on the other hand, is often related to corporate investment and thus

aggregate demand (Farrant et al. (2013)).

There is already a large literature that explores the determinants of bond

issuance (e.g. Mizen and Tsoukas (2013), Badoer and James (2015), Adrian et al.

(2012), Denis and Mihov (2003), Becker and Ivashina (2014)). These studies have

documented that issuer characteristics like size, rating, profitability, leverage, equity

prices, monetary policy and the supply of bank credit are important determinants

of bond issuance. Other papers have investigated the effects of Quantitative Easing

(Lo Duca et al. (2016)) or the Basel reforms on issuance decisions of banks or non-

financial corporations (Baba and Inada (2009)). However, there is not much evidence

yet on the effect of yields on bond issuances which is the contribution of this study.

Additionally, previous studies have not controlled for common unobserved factors

that affect both bond issuance and its determinants.

3.7.1 Data

The data set includes bond issuances by US corporates between 1990 and 2015

on a monthly frequency. The sample is restricted to bonds in US dollar, with a

fixed coupon and short-run unsecured collateral. Non-bullet and callable bonds are

24I would like to thank Lu Liu, Menno Middeldorp and Magda Rutkowska for useful discussions
about the empirical application and their help with the data.
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excluded. The number of issuances is 5610 with an average size of approximately

300 million USD made by 1004 different firms. Time series of individual bond yields

are obtained from Datastream and aggregated by issuer. Issuer-specific yields are

constructed as the median of the individual bond yields. 25

Figure 3.1 reports time series of the number of bond issuances and the average

issuer-specific yield between 1990 and 2015. Over the sample period, the number of

bond issuances increased and remained at high levels since 2003 with exception of

a drop at the beginning of the financial crisis when yields increased sharply. The

time series of yields and the number of issuances for financial sector firms co-move

closely with the aggregate series. Albeit only one quarter of all firms are in the

financial sector, a large number of issuances can be attributed to them. Figure 3.2

reports the cross-sectional mean, median and dispersion of yields over time. Yields

exhibit a downward trend over the sample period. In 2008, both the level and the

dispersion of yields increased sharply but started to fall again in 2009 which is in

part explained by the Quantitative Easing program of the Federal Reserve.

Figure 3.3 illustrates the unconditional correlation between the cross-sectional

average of yields and the number of issuances per month. For the pre-crisis period,

there is a negative correlation for yields below 8. However, this correlation could be

driven by common, unobserved shocks which will be controlled for in the regression

analysis below. Finally, Figure 3.4 documents the number of issuances by firm.

The distribution of the number of issuances is highly skewed with many firms only

issuing one bond over the sample period: the average number of issuances is 6 but

the median number of issuances is only 2.

3.7.2 Results

To investigate the effect of yields on bond issuance by US corporates, I estimate

the econometric model in (3.1)-(3.3) where Yit indicates whether firm i has issued a

bond in time t and Xit contains the issuer’s corporate bond yield and assets at the

end of the previous month. The observed common factors dt include a constant, a

measure of monetary policy and broker-dealer leverage which is a measure of bank

credit conditions (Adrian et al. (2012)). For the pre-crisis period, the stance of

monetary policy is measures by the federal funds rate, and in the post-crisis period,

the change in Federal Reserve Holdings of Treasury Notes is used. In this specific

empirical application, the unobserved factors can represent financial innovation that

makes it easier for firms to tap the corporate bond market or policies that aim at

deepening these markets, for example.

For the empirical analysis, the data set is restricted to firms with at least 30

time series observations and results are reported separately for the pre-and post

25This method ignores differences in duration and maturity across bond issuances. Constructing
a better measure of issuer-specific yields is subject of ongoing work.
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crisis period. In the post-crisis period, policies such as Quantitative Easing or credit

guarantee schemes are likely to fundamentally change the incentives for corporates

to issue bonds relative to the pre-crisis period.

Columns 1 to 3 in Table 3.9 report the mean group estimate of β and marginal

effects for the pre-crisis period. I find that the conditional probability of issuing a

bond is higher if yields are low. This effect is statistically significant with exception

of financial corporations but the marginal effects reveal that it is small in absolute

magnitude. The effect of firm size is not statistically significant. For comparison,

column 4 reports the mean group estimates when the common factors are omitted

which differ from the CCE mean group estimates in size and statistical significance.

Table 3.10 divides the pre-crisis sample in corporates with a low and high credit

rating. With exception of financial firms where sample sizes are very small, yields

are negatively related to the probability of issuing a bond for low-rated firms. In

contrast, that effect is statistically insignificant conditional on a high credit rating.

In the post-crisis period, qualitatively the same observations can be made: for

non-financial corporations, higher yields are associated with a less issuance activity

(Tables 3.11). This result is driven by firms with a low credit rating (Table 3.12).

Additionally, non-financial corporations that are relatively small are more likely to

issue a bond. One explanation for this finding builds on the substitution from bank

loans to bonds in the post-crisis period (Farrant et al. (2013)). This effect is likely

to be stronger for relatively small firms that relied more heavily on bank loans prior

to the financial crisis.

3.8 Conclusions

Economic variables are affected by common shocks such as financial crises, natural

disasters, technological innovation or changes in the political or regulatory environ-

ment. These shocks tend to be difficult to measure and their impact differs across

individual observations. As documented by Andrews (2005), common shocks create

problems for inference if data are available for a single cross-sectional unit and the

model is estimated by least squares or instrumental variable methods. But the

increased availability of panel data where both the time series and cross-sectional

dimensions are large offer new opportunities to control for these unobserved shocks

(Bai (2009), Pesaran (2006)).

This chapter contributes to a growing literature on panel data models with cross-

sectional dependence. The specific setting studied in this chapter is one where

outcomes are discrete which introduces a nonlinearity. Discrete choice models are

probably the most popular nonlinear panel data models in econometrics but the

methodology developed here is applicable to nonlinear panel data models in general.

The estimator I propose controls for unobserved common factors by means of cross-
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sectional averages of the regressors. The proposed estimator can be computed by

estimating binary response models applied to regression that is augmented with

the cross-sectional averages of the individual-specific regressors. The asymptotic

properties of the individual-specific coefficients and their mean are documented. A

Monte Carlo study assesses the behavior of the proposed methodology in small

samples. The estimator is applied to the question of how of funding costs in

corporate bond markets affect the decision to issue a corporate bond. I find that

conditional probability of issuing a bond is larger in low yield environments for

non-financial firms.

There are many ways in which this work can be developed further. An interesting

extension of the empirical application is to examine how participation in a credit

guarantee scheme affects the issuance decisions of corporates. These schemes were

adopted in 2008 as part of financial sector rescue packages in order to help banks

to retain access to funding markets (Grande et al. (2011)). In addition, I expect

that constructing a firm-specific measure of credit supply from individual loan data

can reveal additional insights on the substitution between bonds and loans. On the

theoretical side, one area of future research is to extend the methodology proposed

here to endogenous regressors or to homogeneous panels.

87



Table 3.1: Small sample properties of the mean group estimator β̂: Experiment 1

T/N Bias (× 1000) RMSE (× 1000) Power Size
50 100 200 300 50 100 200 300 50 100 200 300 50 100 200 300

Infeasible estimator
50 3.947 2.831 1.902 3.25 35.39 25.09 17.27 14.7 0.276 0.558 0.826 0.96 0.045 0.043 0.037 0.04
100 -0.3039 0.4454 1.152 0.3768 22.8 16.59 11.3 9.548 0.522 0.848 0.995 1 0.047 0.047 0.039 0.044
200 0.1387 0.1602 0.3321 0.4307 15.71 11.1 7.975 6.496 0.868 0.993 1 1 0.04 0.044 0.04 0.046
300 -0.5534 0.158 0.2649 -0.1933 12.89 9.285 6.526 5.369 0.963 1 1 1 0.046 0.035 0.038 0.037

CCEMG estimator
50 -0.7777 -0.698 -0.7033 0.5362 35.26 24.48 17.03 14.23 0.236 0.508 0.809 0.948 0.051 0.045 0.044 0.042
100 -4.91 -2.995 -1.86 -2.35 22.95 16.53 11.35 9.881 0.436 0.804 0.989 1 0.045 0.057 0.046 0.054
200 -4.564 -3.678 -2.515 -2.37 16.26 11.72 8.398 6.868 0.795 0.987 1 1 0.046 0.055 0.065 0.056
300 -5.24 -3.36 -2.634 -2.89 13.72 9.865 7.055 6.024 0.923 0.998 1 1 0.057 0.058 0.061 0.073

CCEMG estimator with W
50 0.599 0.02083 -0.2738 1.314 36.18 24.84 17.13 14.59 0.234 0.498 0.793 0.949 0.052 0.053 0.046 0.042
100 -4.078 -2.469 -1.457 -2.043 23.03 16.76 11.44 9.887 0.446 0.804 0.99 1 0.047 0.058 0.045 0.055
200 -3.679 -3.251 -2.26 -2.187 16.16 11.66 8.34 6.832 0.806 0.985 1 1 0.045 0.052 0.063 0.059
300 -4.413 -2.953 -2.386 -2.743 13.47 9.786 6.974 5.967 0.933 0.998 1 1 0.056 0.051 0.054 0.067

Naive estimator
50 159.4 158.7 158.7 158.2 163.4 161.3 160.5 159.7 1 1 1 1 0.998 1 1 1
100 157.4 157.8 157.9 157.8 159.1 158.9 158.7 158.5 1 1 1 1 1 1 1 1
200 158.4 157.7 158.2 158.6 159.2 158.3 158.6 158.9 1 1 1 1 1 1 1 1
300 158.3 158.4 158.3 157.7 158.9 158.8 158.5 157.9 1 1 1 1 1 1 1 1

Notes: The mean group estimator is defined in (3.5) and the data generating process in (3.15)-(3.19). The nominal size is 5% and power is
computed under the alternative β1 = 0.45. The number of replications is set to 1000.
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Table 3.2: Small sample properties of the mean group estimator β̂: Experiment 2

T/N Bias (× 1000) RMSE (× 1000) Power Size
50 100 200 300 50 100 200 300 50 100 200 300 50 100 200 300

Infeasible estimator
50 2.848 1.518 2.094 2.456 35.26 24.73 17.3 14.81 0.28 0.511 0.839 0.951 0.046 0.038 0.043 0.05
100 -0.9409 0.2678 0.5554 0.473 23.04 16.1 11.96 9.294 0.512 0.861 0.99 1 0.047 0.035 0.058 0.048
200 -0.2583 -0.1573 0.04374 0.1231 16.15 11.29 8.073 6.608 0.853 0.994 1 1 0.042 0.047 0.05 0.045
300 0.04022 0.3875 0.1868 -0.05547 12.28 8.838 6.341 5.108 0.98 1 1 1 0.037 0.04 0.041 0.037

CCEMG estimator
50 -1.784 -1.505 -1.041 -0.02763 34.44 24.2 16.99 14.34 0.236 0.463 0.805 0.939 0.05 0.055 0.04 0.052
100 -5.404 -3.303 -2.29 -2.163 23.72 16.22 11.91 9.452 0.448 0.812 0.985 1 0.056 0.049 0.055 0.051
200 -4.977 -3.716 -2.91 -2.599 16.91 11.89 8.569 7.101 0.787 0.989 1 1 0.064 0.056 0.073 0.079
300 -4.805 -3.101 -2.823 -2.777 13.45 9.45 6.907 5.861 0.942 0.999 1 1 0.062 0.059 0.066 0.079

CCEMG estimator with W
50 -0.6561 -0.7614 -0.3792 0.6817 35.28 24.48 17.34 14.76 0.232 0.459 0.798 0.938 0.055 0.044 0.038 0.046
100 -4.396 -2.732 -1.939 -1.872 23.81 16.32 11.92 9.431 0.471 0.817 0.985 1 0.058 0.046 0.054 0.047
200 -4.075 -3.261 -2.658 -2.404 16.86 11.83 8.49 7.057 0.799 0.989 1 1 0.065 0.058 0.069 0.076
300 -3.99 -2.685 -2.557 -2.597 13.2 9.369 6.823 5.782 0.952 0.999 1 1 0.055 0.052 0.067 0.079

Naive estimator
50 158.4 157.6 156.2 158 161.9 160.2 157.9 159.5 1 1 1 1 1 1 1 1
100 156.1 157.5 157.3 157.5 157.9 158.6 158.1 158.2 1 1 1 1 1 1 1 1
200 157.9 157.6 158.2 158.1 158.8 158.1 158.5 158.4 1 1 1 1 1 1 1 1
300 158.2 158.4 158.3 158.2 158.7 158.7 158.5 158.4 1 1 1 1 1 1 1 1

Notes: The mean group estimator is defined in (3.5) and the data generating process in (3.15)-(3.19) except that β1i = 0.5,∀i. The nominal
size is 5% and power is computed under the alternative β1 = 0.45. The number of replications is set to 1000.
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Table 3.3: Small sample properties of the mean group estimator β̂: Experiment 3

T/N Bias (× 1000) RMSE (× 1000) Power Size
50 100 200 300 50 100 200 300 50 100 200 300 50 100 200 300

Infeasible estimator
50 2.456 2.582 2.393 2.867 35.47 25.88 17.79 14.51 0.267 0.547 0.839 0.963 0.051 0.053 0.046 0.042
100 0.8102 0.6675 1.358 0.7839 23.8 15.94 11.56 9.35 0.534 0.868 0.995 1 0.047 0.028 0.047 0.042
200 1.054 0.3152 -0.1941 0.03611 16.28 11.74 8 6.61 0.865 0.992 1 1 0.043 0.052 0.048 0.035
300 0.1421 0.4703 0.06673 0.13 12.72 9.217 6.451 5.344 0.974 1 1 1 0.036 0.043 0.036 0.047

CCEMG estimator
50 -47.42 -46.41 -46.59 -45.1 57.65 52.3 49.65 47.59 0.041 0.046 0.055 0.081 0.257 0.481 0.762 0.856
100 -49.9 -49.36 -48.45 -48.62 54.68 51.74 49.96 49.67 0.026 0.026 0.051 0.052 0.501 0.817 0.97 0.998
200 -50.8 -50.53 -50.48 -50.09 53.06 51.74 51.16 50.56 0.01 0.011 0.021 0.028 0.766 0.98 1 1
300 -51.69 -50.5 -50.82 -50.34 53.12 51.25 51.25 50.65 0.005 0.012 0.016 0.016 0.911 0.999 1 1

CCEMG estimator with W
50 -1.72 0.5095 1.569 2.573 35.89 26.03 18.14 14.75 0.23 0.478 0.832 0.951 0.046 0.045 0.049 0.038
100 -3.459 -1.789 0.2207 0.03279 24.43 16 11.58 9.353 0.457 0.824 0.991 1 0.051 0.032 0.046 0.039
200 -3.883 -2.221 -1.446 -0.7808 16.87 12.01 8.176 6.68 0.772 0.983 1 1 0.047 0.055 0.051 0.037
300 -4.742 -2.005 -1.232 -0.7198 13.56 9.452 6.571 5.405 0.933 0.999 1 1 0.058 0.053 0.043 0.044

Naive estimator
50 56.14 57.36 56.35 58.45 66.39 63.84 61.45 63.34 0.907 0.991 0.999 1 0.432 0.673 0.851 0.919
100 56.09 55.97 55.6 56.08 60.91 59.06 58.14 58.4 0.996 1 1 1 0.651 0.899 0.977 0.99
200 56.72 55.15 55.2 55.38 59.23 56.84 56.35 56.41 1 1 1 1 0.886 0.986 0.999 1
300 55.82 55.86 55.19 54.89 57.47 56.84 55.97 55.61 1 1 1 1 0.963 1 1 1

Notes: The mean group estimator is defined in (3.5) and the data generating process in (3.15)-(3.19) except that kji2 ∼ NID(0, 0.1). The
nominal size is 5% and power is computed under the alternative β1 = 0.45. The number of replications is set to 1000.
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Table 3.4: Small sample properties of the mean group estimator β̂: Experiment 4

T/N Bias (× 1000) RMSE (× 1000) Power Size
50 100 200 300 50 100 200 300 50 100 200 300 50 100 200 300

Infeasible estimator
50 3.073 1.965 2.254 1.226 37.17 26.36 18.29 14.44 0.239 0.476 0.808 0.917 0.044 0.046 0.033 0.032
100 0.2937 1.201 0.4822 0.7025 24.5 16.99 12.69 9.811 0.515 0.828 0.985 0.999 0.05 0.041 0.059 0.041
200 -0.1682 -0.9886 0.6583 0.2589 16.72 11.87 8.387 7.068 0.82 0.988 1 1 0.04 0.041 0.036 0.053
300 -0.1418 0.2268 -0.2255 -0.1925 13.21 9.568 6.746 5.646 0.961 0.999 1 1 0.042 0.039 0.044 0.05
300 -0.5534 0.158 0.2649 -0.1933 12.89 9.285 6.526 5.369 0.963 1 1 1 0.046 0.035 0.038 0.037

CCEMG estimator
50 -50.76 -51.18 -49.94 -51.33 60.48 57.1 53.32 53.82 0.046 0.062 0.066 0.095 0.329 0.567 0.788 0.923
100 -55.86 -54.05 -54.37 -53.56 60.29 56.38 55.94 54.67 0.063 0.056 0.11 0.114 0.66 0.905 0.992 0.999
200 -56.63 -56.4 -54.43 -54.81 58.77 57.54 55.11 55.36 0.067 0.095 0.103 0.158 0.935 0.998 1 1
300 -56.67 -55.36 -55.3 -55.35 58.03 56.12 55.73 55.68 0.069 0.089 0.149 0.198 0.989 1 1 1

CCEMG estimator with W
50 -49.67 -49.86 -49.2 -50.75 60.02 56.12 52.71 53.32 0.04 0.063 0.065 0.092 0.309 0.539 0.769 0.915
100 -55.07 -53.51 -53.98 -53.29 59.57 55.87 55.59 54.41 0.056 0.056 0.109 0.118 0.643 0.897 0.989 0.998
200 -55.99 -56.09 -54.24 -54.66 58.19 57.24 54.93 55.21 0.064 0.091 0.103 0.161 0.928 0.998 1 1
300 -56.08 -55.04 -55.1 -55.22 57.44 55.81 55.53 55.56 0.062 0.083 0.141 0.194 0.987 1 1 1

Naive estimator
50 103.9 103.4 100.8 102.1 110.4 108.2 104.9 105.7 0.998 1 1 1 0.889 0.976 0.993 0.997
100 99.93 101.6 100.5 100.7 103.4 103.8 102.5 102.3 1 1 1 1 0.993 0.999 1 1
200 99.69 99.92 100.9 101.2 101.4 101 101.9 102 1 1 1 1 1 1 1 1
300 100.8 100 100.9 100.2 101.9 100.8 101.4 100.8 1 1 1 1 1 1 1 1

Notes: The mean group estimator is defined in (3.5) and the data generating process in (3.16)-(3.19) and (3.20). The nominal size is 5% and
power is computed under the alternative β1 = 0.45. The number of replications is set to 1000.
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Table 3.5: Small sample properties of the marginal effect M̂E: Experiment 1

T/N Bias (× 1000) RMSE (× 1000)
50 100 200 300 50 100 200 300

Infeasible estimator
50 -4.493 -4.719 -4.979 -4.644 9.805 7.8 6.531 5.848
100 -2.692 -2.537 -2.308 -2.541 6.626 5.056 3.777 3.58
200 -1.294 -1.265 -1.225 -1.196 4.445 3.284 2.488 2.131
300 -1.024 -0.8424 -0.7979 -0.9292 3.682 2.678 1.959 1.733

CCEMG estimator
50 -4.66 -4.805 -4.993 -4.721 9.959 7.796 6.534 5.897
100 -2.77 -2.55 -2.373 -2.591 6.604 5.046 3.811 3.63
200 -1.34 -1.383 -1.237 -1.242 4.488 3.349 2.513 2.163
300 -1.085 -0.8714 -0.8167 -0.9492 3.687 2.713 1.988 1.73

CCEMG estimator with W
50 -5.647 -5.855 -6.066 -5.75 10.53 8.489 7.397 6.772
100 -3.403 -3.179 -2.975 -3.194 6.911 5.435 4.226 4.087
200 -1.649 -1.717 -1.567 -1.57 4.595 3.503 2.691 2.368
300 -1.296 -1.093 -1.035 -1.176 3.76 2.8 2.087 1.866

Naive estimator
50 58.72 58.69 58.72 58.45 59.54 59.25 59.14 58.83
100 62.32 62.48 62.46 62.46 62.68 62.71 62.66 62.63
200 64.45 64.31 64.44 64.58 64.62 64.44 64.53 64.65
300 65.08 65.12 65.08 64.91 65.19 65.2 65.14 64.97

Linear probability estimator
50 5.597 5.295 5.031 5.31 10.82 8.35 6.71 6.484
100 2.568 2.686 2.862 2.657 6.798 5.286 4.224 3.728
200 1.355 1.326 1.477 1.445 4.618 3.411 2.719 2.342
300 0.7102 0.9556 1.006 0.8585 3.719 2.807 2.126 1.72

Notes: The mean group estimator of the average marginal effect is reported. The
data generating process in (3.15)-(3.19). The number of replications is set to 1000.
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Table 3.6: Small sample properties of the marginal effect M̂E: Experiment 2

T/N Bias (× 1000) RMSE (× 1000)
50 100 200 300 50 100 200 300

Infeasible estimator
50 -4.692 -5.052 -4.835 -4.808 9.854 7.935 6.483 6.022
100 -2.917 -2.557 -2.488 -2.529 6.794 4.964 4.047 3.541
200 -1.41 -1.343 -1.287 -1.287 4.612 3.36 2.551 2.208
300 -0.8469 -0.7705 -0.8212 -0.8939 3.466 2.548 1.914 1.661

CCEMG estimator
50 -4.756 -4.992 -4.952 -4.803 9.786 7.843 6.546 5.996
100 -2.94 -2.609 -2.505 -2.558 6.86 4.958 4.016 3.557
200 -1.464 -1.394 -1.33 -1.318 4.671 3.406 2.585 2.234
300 -0.9196 -0.7918 -0.8693 -0.9161 3.605 2.594 1.945 1.69

CCEMG estimator with W
50 -5.804 -6.007 -6.014 -5.832 10.43 8.557 7.397 6.875
100 -3.53 -3.219 -3.128 -3.175 7.163 5.325 4.431 4.027
200 -1.775 -1.726 -1.66 -1.648 4.794 3.564 2.765 2.445
300 -1.139 -1.015 -1.088 -1.138 3.661 2.681 2.052 1.819

Naive estimator
50 58.66 58.24 57.95 58.51 59.38 58.8 58.38 58.87
100 61.96 62.48 62.32 62.35 62.32 62.72 62.52 62.52
200 64.4 64.32 64.46 64.42 64.57 64.44 64.55 64.51
300 65.09 65.06 65.09 65.09 65.19 65.13 65.15 65.14

Linear probability estimator
50 5.395 4.987 5.23 5.221 10.61 8.089 6.97 6.444
100 2.389 2.64 2.753 2.738 6.861 5.093 4.262 3.731
200 1.26 1.294 1.362 1.371 4.721 3.451 2.68 2.306
300 0.9391 1.033 0.9373 0.8923 3.663 2.752 2.02 1.707

Notes: The mean group estimator of the average marginal effect is reported. The
data generating process in (3.15)-(3.19) except that β1i = 0.5,∀i. The number of
replications is set to 1000.
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Table 3.7: Small sample properties of the marginal effect M̂E: Experiment 3

T/N Bias (× 1000) RMSE (× 1000)
50 100 200 300 50 100 200 300

Infeasible estimator
50 -4.772 -4.809 -4.849 -4.719 9.979 7.911 6.549 5.891
100 -2.432 -2.463 -2.286 -2.444 6.774 4.916 3.816 3.47
200 -1.018 -1.204 -1.364 -1.299 4.533 3.422 2.572 2.226
300 -0.8342 -0.7421 -0.856 -0.8362 3.576 2.625 1.964 1.684

CCEMG estimator
50 -6.241 -6.193 -6.335 -6.111 10.72 8.757 7.691 7.074
100 -3.477 -3.55 -3.389 -3.475 7.345 5.563 4.61 4.261
200 -1.953 -2.055 -2.228 -2.156 4.964 3.782 3.152 2.823
300 -1.623 -1.513 -1.654 -1.602 3.938 3.005 2.457 2.183

CCEMG estimator with W
50 -5.933 -5.896 -5.936 -5.779 10.65 8.654 7.421 6.79
100 -3.064 -3.134 -2.921 -3.069 7.147 5.285 4.241 3.94
200 -1.461 -1.572 -1.712 -1.644 4.73 3.578 2.78 2.447
300 -1.135 -0.9892 -1.104 -1.073 3.682 2.718 2.084 1.816

Naive estimator
50 36.29 36.76 36.51 36.93 37.98 37.91 37.57 37.96
100 40.13 40.14 39.92 40.11 40.91 40.7 40.41 40.59
200 42.18 41.73 41.76 41.75 42.59 42.03 41.99 41.96
300 42.57 42.54 42.47 42.22 42.83 42.72 42.64 42.36

Linear probability estimator
50 4.417 4.362 4.256 4.429 10.22 7.913 6.314 5.825
100 2.111 2.089 2.243 2.133 6.985 4.957 3.929 3.342
200 0.95 0.8226 0.6537 0.7341 4.763 3.334 2.368 2.013
300 0.3361 0.4472 0.2769 0.3371 3.666 2.694 1.863 1.539

Notes: The mean group estimator of the average marginal effect is reported. The
data generating process in (3.15)-(3.19) except that kji2 ∼ NID(0, 0.1). The number
of replications is set to 1000.
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Table 3.8: Small sample properties of the marginal effect M̂E: Experiment 4

T/N Bias (× 1000) RMSE (× 1000)
50 100 200 300 50 100 200 300

Infeasible estimator
50 -4.743 -4.935 -4.886 -5.094 9.767 7.852 6.417 6.088
100 -2.571 -2.389 -2.552 -2.476 6.539 4.8 4.027 3.445
200 -1.33 -1.549 -1.118 -1.235 4.432 3.378 2.388 2.154
300 -0.8832 -0.8189 -0.9177 -0.9145 3.476 2.571 1.944 1.705

CCEMG estimator
50 -4.791 -4.977 -4.819 -5.15 9.53 7.837 6.319 6.125
100 -2.593 -2.442 -2.587 -2.485 6.605 4.795 4.063 3.445
200 -1.4 -1.566 -1.134 -1.253 4.497 3.368 2.418 2.19
300 -0.9236 -0.8231 -0.9073 -0.9269 3.557 2.622 1.985 1.718

CCEMG estimator with W
50 -5.82 -5.889 -5.839 -6.156 10.17 8.501 7.129 6.993
100 -3.197 -3.024 -3.189 -3.071 6.841 5.121 4.489 3.888
200 -1.727 -1.89 -1.461 -1.577 4.622 3.536 2.586 2.395
300 -1.136 -1.038 -1.126 -1.146 3.615 2.699 2.092 1.845

Naive estimator
50 54.39 54.38 53.31 54.09 55.5 55.22 54.09 54.83
100 57.76 58.14 57.96 57.88 58.37 58.57 58.34 58.21
200 59.55 59.67 59.98 60.09 59.84 59.87 60.17 60.26
300 60.54 60.21 60.59 60.39 60.72 60.35 60.7 60.5

Linear probability estimator
50 4.826 4.529 4.796 4.322 9.904 7.927 6.499 5.603
100 2.434 2.58 2.453 2.539 6.65 4.97 4.075 3.555
200 1.242 1.027 1.457 1.316 4.592 3.198 2.648 2.253
300 0.8096 0.9192 0.8318 0.814 3.636 2.697 1.997 1.684

Notes: The mean group estimator of the average marginal effect is is reported. The
data generating process in (3.16)-(3.19) and (3.20). The number of replications is
set to 1000.
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Table 3.9: The effect of yields on bond issuance for US corporates in the
pre-crisis period

All Financial Other All (no factors)

Coefficient estimates
Yield -0.162 -0.148 -0.217 -0.091

(-1.938) (-0.853) (-2.122) (-2.653)
Size 0.064 0.006 0.064 0.091

(0.281) (0.168) (0.195) (0.543)
Marginal effects

Yield -0.018 -0.006 -0.025 -0.013
Size 0.015 -0.003 0.02 0.021

Observations 321 62 221 321

Notes: The dependent variable is 1 if a firm issues a bond in a particular month
and zero otherwise. Yield is the the firm-specific corporate bond yield and size is
measured by assets. All specification include a measure of credit supply (leverage in
the broker-dealer market) and the federal funds rate as a common factor. The first
column uses all firms, the second column uses financial sector firms and the third
column uses all other firms (excluding mining and agriculture). The last column
reports the results when the common unobserved factors are omitted. t-statistics
are shown in parenthesis.

Table 3.10: The effect of yields on bond issuance for US corporates in the
pre-crisis period by credit rating

All Financial Other
High Low High Low High Low

Coefficient estimates
Yield 0.017 -0.224 -0.185 -0.026 0.042 -0.258

(0.177) (-2.404) (-0.79) (-0.175) (0.409) (-1.929)
Size 0.009 -0.174 0.062 0.006 0.013 -0.272

(0.091) (-1.065) (1.104) (0.298) (0.1) (-1.065)
Marginal effects

Yield 0.001 -0.018 -0.023 0.01 0.004 -0.02
Size -0.005 -0.024 0.006 0 -0.006 -0.037

Observations 135 135 27 28 99 85

Notes: The dependent variable is 1 if a firm issues a bond in a particular month and
zero otherwise. Yield is the firm-specific corporate bond yield and size is measured
by assets. All specification include a measure of credit supply (leverage in the broker-
dealer market) and the federal funds rate as a common factor. Columns 1-2 use all
firms, columns 3-4 use financial sector firms and columns 5-6 use all other firms
(excluding mining and agriculture). Low (high) means that the issuer has a credit
rating below (above) the sample median. t-statistics are shown in parenthesis.
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Table 3.11: The effect of yields on bond issuance for US corporates in the
post-crisis period

All Financial Other All (no factors)

Coefficient estimates
Yield -0.043 -0.004 -0.099 0.011

(-1.056) (-0.074) (-1.894) (0.47)
Size -0.194 -0.028 -0.273 -0.115

(-2.62) (-0.488) (-2.683) (-1.945)
Marginal effects

Yield -0.007 0.003 -0.015 -0.002
Size -0.024 -0.006 -0.032 -0.015

Observations 378 72 266 378

Notes: The dependent variable is 1 if a firm issues a bond in a particular month
and zero otherwise. Yield is the firm-specific corporate bond yield and size is
measured by assets. All specification include a measure of credit supply (leverage in
the broker-dealer market) and the change in Federal Reserve Holdings of Treasury
Notes as common factors. The first column uses all firms, the second column uses
financial sector firms and the third column uses all other firms (excluding mining
and agriculture). The last column reports the results when the common unobserved
factors are omitted. t-statistics are shown in parenthesis.

Table 3.12: The effect of yields on bond issuance for US corporates in the
post-crisis period by credit rating

All Financial Other
High Low High Low High Low

Coefficient estimates
Yield 0.031 -0.085 0.052 -0.045 0.016 -0.205

(0.6) (-1.174) (0.599) (-0.501) (0.254) (-2.049)
Size -0.007 -0.196 -0.032 -0.045 -0.036 -0.292

(-0.06) (-4.37) (-0.314) (-1.487) (-0.243) (-4.875)
Marginal effects

Yield 0.004 -0.012 0.01 -0.001 0.002 -0.028
Size -0.004 -0.025 -0.01 -0.006 -0.006 -0.036

Observations 160 160 40 25 112 106

Notes: The dependent variable is 1 if a firm issues a bond in a particular month and
zero otherwise. Yield the firm-specific corporate bond yield and size is measured by
assets. All specification include a measure of credit supply (leverage in the broker-
dealer market) and the change in Federal Reserve Holdings of Treasury Notes as
common factors. Columns 1-2 use all firms, columns 3-4 use financial sector firms
and columns 5-6 use all other firms (excluding mining and agriculture). Low (high)
means that the issuer has a credit rating below (above) the sample median. t-
statistics are shown in parenthesis.
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Figure 3.1: Number of bond issuances per month and cross-sectional average of
issuer-specific bond yields
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Notes: Data sources: Bloomberg, Datastream and own calculations.

Figure 3.2: Cross-sectional distribution of issuer-specific bond yields
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Figure 3.3: Unconditional correlation between the number of bond issuances per
month and cross-sectional average of issuer-specific bond yields
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Figure 3.4: Histogram for the number of issuances by firm
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A.1 Proofs

In this appendix, we derive the main results of our theory. In particular, we provide

a detailed proof of Theorems 1.5.1 and 1.5.2, which characterize the asymptotic

behaviour of our estimators. For the proof, we require a series of uniform convergence

results which are derived in Appendix B. Throughout the appendix, the symbol C

is used to denote a universal real constant which may take a different value on each

occurrence. Moreover, we let Ih = [C1h, 1− C1h] denote the interior of the support

of the regressors Xit and use Ich = [0, 1] \ Ih to denote the boundary region. Finally,

we frequently make use of the shorthand κ0(x) =
∫ (1−x)/h

−x/h K(ϕ)dϕ.

Proof of Theorem 1.5.1

We restrict attention to the proof for the Nadaraya-Watson based estimators. The

local linear case can be handled by similar arguments.

To start with, we list some auxiliary results needed to derive the statements

(1.16) and (1.17) of Theorem 1.5.1. The proof of these results is postponed until

the arguments for Theorem 1.5.1 are completed. The following uniform expansion

of ĝk(x)− gk(x) forms the basis of our arguments.

Proposition A1. It holds that

ĝk(x)− gk(x) =
n∑
i=1

ωki
κ0(x)fi(x)

1

T

T∑
t=1

Kh(Xit − x)εit +Rk(x), (A.1)

where the remainder satisfies supx∈Ih |Rk(x)| = op(1/
√
nTh) and supx∈Ich |Rk(x)| =

Op(h).

Using the uniform expansion of Proposition A1, we are able to derive the asymptotic

properties of ĝ. These are summarized in the next proposition.

Proposition A2. It holds that

sup
x∈Ih

∥∥ĝ(x)− g(x)
∥∥ = Op

(√ log nT

nTh

)
(A.2)

sup
x∈Ich

∥∥ĝ(x)− g(x)
∥∥ = Op(h). (A.3)

Moreover, for any fixed x ∈ (0, 1),

√
nTh(ĝ(x)− g(x))

d−→ N(0, V (x)), (A.4)

where V (x) = (Vk,l(x))k,l=1,...,K and Vk,l(x) = ‖K‖2
2 limn→∞(n

∑n
i=1 ωkiωli

σ2
i (x)

fi(x)
) with

σ2
i (x) = E[ε2

it|Xit = x].
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Proposition A1 can further be used to characterize the convergence behaviour of the

matrices Σ̂.

Proposition A3. It holds that

‖Σ̂− Σ‖ = op

( 1√
nTh

)
. (A.5)

Finally, Proposition A3 together with a Taylor expansion argument yields the

following result.

Proposition A4. It holds that

‖Ŝ − S‖ = op

( 1√
nTh

)
(A.6)

‖λ̂− λ‖ = op

( 1√
nTh

)
(A.7)

with λ = (λ1, . . . , λK)
ᵀ

and λ̂ = (λ̂1, . . . , λ̂K)
ᵀ
.

With the help of the above propositions, it is now straightforward to prove the

statements (1.16) and (1.17) of Theorem 1.5.1. We start with the proof of (1.16):

Recalling that the matrix of eigenvectors S converges to a limit S∗ and using (A.2)

together with (A.6), we arrive at

sup
x∈Ih
‖µ̂(x)− µ(x)‖ ≤ ‖Ŝᵀ − Sᵀ‖ sup

x∈Ih
‖ĝ(x)‖

+ ‖Sᵀ‖ sup
x∈Ih
‖ĝ(x)− g(x)‖ = Op

(√ log nT

nTh

)
.

Similarly, we obtain that

√
nTh(µ̂(x)− µ(x)) =

√
nTh(Ŝ

ᵀ − Sᵀ
)ĝ(x) + S

ᵀ√
nTh(ĝ(x)− g(x))

= S
ᵀ√
nTh(ĝ(x)− g(x)) + op(1).

Since S converges to S∗, the normality result (A.4) implies that

S
ᵀ√
nTh(ĝ(x)− g(x))

d−→ N(0, (S∗)
ᵀ
V (x)S∗),

which yields (1.17). �

Proof of Proposition A1

Let f̂i(x) = T−1
∑T

t=1 Kh(Xit − x), Y fe
it = Yit − Y i − Y t + Y and write

ĝk(x)− gk(x) = Qk,V (x) +Qk,B(x) +Qk,γ(x) +Qk,α +Qk,µ0 ,
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where

Qk,V (x) =
n∑
i=1

ωki
1

T

T∑
t=1

Kh(Xit − x)εit
/
f̂i(x)

Qk,B(x) =
n∑
i=1

ωki
1

T

T∑
t=1

Kh(Xit − x)
{
mi(Xit)−mi(x)

}/
f̂i(x)

Qk,γ(x) =
n∑
i=1

ωki
1

T

T∑
t=1

Kh(Xit − x)
{
µ0 + γt − Y t

}/
f̂i(x)

Qk,α =
n∑
i=1

ωki
{
µ0 + αi − Y i

}
Qk,µ0 =

( n∑
i=1

ωki

){
Y − µ0

}
.

In what follows, we analyze these five terms one after the other.

(i) It holds that

Qk,V (x) =
n∑
i=1

ωki
1

T

T∑
t=1

Kh(Xit − x)εit
/
κ0(x)fi(x) +Rk,V (x),

where the remainder term is given by

Rk,V (x) =
M∑
m=1

R
(m)
k,V (x) +R

(M+1)
k,V (x) +R

(B)
k,V (x)

with

R
(m)
k,V (x) =

n∑
i=1

ωki

((E[f̂i(x)]− f̂i(x))m

E[f̂i(x)]m+1

)( 1

T

T∑
t=1

Kh(Xit − x)εit

)
for m = 1, . . . ,M ,

R
(M+1)
k,V (x) =

n∑
i=1

ωki

((E[f̂i(x)]− f̂i(x))M+1

E[f̂i(x)]M+1f̂i(x)

)( 1

T

T∑
t=1

Kh(Xit − x)εit

)
and

R
(B)
k,V (x) =

n∑
i=1

ωki

(κ0(x)fi(x)− E[f̂i(x)]

κ0(x)fi(x)E[f̂i(x)]

)( 1

T

T∑
t=1

Kh(Xit − x)εit

)
.

The remainder term has the property that

sup
x∈Ih

∣∣Rk,V (x)
∣∣ = op

( 1√
nTh

)
(A.8)

sup
x∈Ich

∣∣Rk,V (x)
∣∣ = Op(h). (A.9)

We first derive (A.8): To start with, straightforward calculations yield that max1≤i≤n
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supx∈Ih |κ0(x)fi(x)− E[f̂i(x)]| = Op(h
2). Together with Lemma B1 in Appendix B,

this directly implies that supx∈Ih |R
(B)
k,V (x)| = op(1/

√
nTh). Moreover, by Lemma B3,

it holds that supx∈Ih |R
(m)
k,V (x)| = op(1/

√
nTh) for m = 1, . . . ,M . Finally, if M is

chosen sufficiently large, then an application of Lemma B1 immediately shows that

supx∈Ih |R
(M+1)
k,V (x)| = op(1/

√
nTh) as well. (A.9) follows by analogous arguments.

(ii) We next show that

sup
x∈Ih
|Qk,B(x)| = op

( 1√
nTh

)
sup
x∈Ich
|Qk,B(x)| = Op(h).

To see this, decompose Qk,B(x) into the following two components:

Qk,B(x) = Q
(1)
k,B(x) +Q

(2)
k,B(x)

with

Q
(1)
k,B(x) =

n∑
i=1

ωki
1

T

T∑
t=1

(
Kh(Xit − x)

{
mi(Xit)−mi(x)

}
− E

[
Kh(Xit − x)

{
mi(Xit)−mi(x)

}])/
f̂i(x)

Q
(2)
k,B(x) =

n∑
i=1

ωki
1

T

T∑
t=1

E
[
Kh(Xit − x)

{
mi(Xit)−mi(x)

}]/
f̂i(x).

Exploiting the smoothness conditions on the functions mi and fi in a standard way,

the term Q
(2)
k,B(x) can be shown to satisfy supx∈Ih |Q

(2)
k,B(x)| = Op(h

2) = op(1/
√
nTh)

and supx∈Ich |Q
(2)
k,B(x)| = Op(h). Moreover, Q

(1)
k,B(x) = Q

(1,a)
k,B (x) +Q

(1,b)
k,B (x) with

Q
(1,a)
k,B (x) =

n∑
i=1

ωki
1

T

T∑
t=1

(
Kh(Xit − x)

{
mi(Xit)−mi(x)

}
− E

[
Kh(Xit − x)

{
mi(Xit)−mi(x)

}])/
κ0(x)fi(x)

Q
(1,b)
k,B (x) =

n∑
i=1

ωki

(κ0(x)fi(x)− f̂i(x)

κ0(x)fi(x)f̂i(x)

) 1

T

T∑
t=1

(
Kh(Xit − x)

{
mi(Xit)−mi(x)

}
− E

[
Kh(Xit − x)

{
mi(Xit)−mi(x)

}])
.

Using the proof strategy of Lemma B2, the term Q
(1,a)
k,B (x) can be shown to

be of the order Op(h
√

log nT/nTh) = op(1/
√
nTh) uniformly for x ∈ [0, 1].

Moreover, applying Lemma B1, it is straightforward to see that supx∈[0,1] |Q
(1,b)
k,B (x)| =

op(1/
√
nTh) as well.
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(iii) We now turn to the analysis of Qk,γ(x). In particular, we show that

sup
x∈[0,1]

|Qk,γ(x)| = op

( 1√
nTh

)
.

To do so, first note that

Qk,γ(x) = −
n∑
i=1

ωki
1

T

T∑
t=1

Kh(Xit − x)
{ 1

n

n∑
j=1

(mj(Xjt) + εjt)
}/
f̂i(x).

This expression can be decomposed as follows: Qk,γ(x) = Q
(1)
k,γ(x)+Q

(2)
k,γ(x)+Q

(3)
k,γ(x),

where

Q
(1)
k,γ(x) = −

n∑
i=1

ωki
1

T

T∑
t=1

Kh(Xit − x)
{ 1

n

n∑
j=1

(mj(Xjt) + εjt)
}/
κ0(x)fi(x)

Q
(2)
k,γ(x) = −

n∑
i=1

ωki
1

T

T∑
t=1

Kh(Xit − x)
{ 1

n
(mi(Xit) + εit)

}( 1

f̂i(x)
− 1

κ0(x)fi(x)

)
Q

(3)
k,γ(x) = −

n∑
i=1

ωki
1

T

T∑
t=1

Kh(Xit − x)
{ 1

n

n∑
j=1
j 6=i

(mj(Xjt) + εjt)
}( 1

f̂i(x)
− 1

κ0(x)fi(x)

)
.

To analyze the term Q
(1)
k,γ(x), we further split it up into two components: Q

(1)
k,γ(x) =

Q
(1,a)
k,γ (x) +Q

(1,b)
k,γ (x), where

Q
(1,a)
k,γ (x) = − 1

T

T∑
t=1

( n∑
i=1

ωki
κ0(x)fi(x)

(Kh(Xit − x)− E[Kh(Xit − x)])
)

×
{ 1

n

n∑
j=1

(mj(Xjt) + εjt)
}

Q
(1,b)
k,γ (x) = −

n∑
i=1

ωki
κ0(x)fi(x)

( 1

nT

n∑
j=1

T∑
t=1

E[Kh(Xit − x)](mj(Xjt) + εjt)
)
.

The term Q
(1,a)
k,γ (x) can be handled by similar techniques as applied in Lemma B3.

The details are summarized in Lemma B4 which yields that supx∈[0,1] |Q
(1,a)
k,γ (x)| =

op(1/
√
nTh). Moreover, it is straightforward to verify that supx∈[0,1] |Q

(1,b)
k,γ (x)| =

Op(1/
√
nT ). Turning to the expression Q

(2)
k,γ(x), we can easily see with the

help of Lemma B1 that supx∈[0,1] |Q
(2)
k,γ(x)| = op(1/

√
nTh). To prove that

supx∈[0,1] |Q
(3)
k,γ(x)| = op(1/

√
nTh), some rather involved arguments are needed which

are presented in Lemma B5. Setting φ̂i(x) = (f̂i(x))−1−(κ0(x)fi(x))−1 in this lemma

yields the result.

Finally, it is trivial to see that Qk,α = Op(1/
√
nT ) as well as Qk,µ0 = Op(1/

√
nT ).

Together with (i)–(iii), this yields the expansion (A.1). �
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Proof of Proposition A2

The proof easily follows with the help of the uniform expansion from Proposition

A1. The latter says that

ĝk(x)− gk(x) = Wk,V (x) +Rk(x),

where

Wk,V (x) =
n∑
i=1

ωki
1

T

T∑
t=1

Kh(Xit − x)εit
/
κ0(x)fi(x)

and the remainder term Rk(x) satisfies supx∈Ih |Rk(x)| = op(1/
√
nTh) as well as

supx∈Ich |Rk(x)| = Op(h). Applying Lemma B2 to Wk,V (x), we immediately obtain

that supx∈[0,1] |Wk,V (x)| = Op(
√

log nT/nTh). This yields the uniform convergence

results (A.2) and (A.3). Furthermore, standard arguments show that

√
nThWk,V (x)

d−→ N
(

0, ‖K‖2
2 lim
n→∞

n
n∑
i=1

ω2
ki

σ2
i (x)

fi(x)

)
.

From this, the normality result (A.4) easily follows. �

Proof of Proposition A3

It holds that

Σ̂kl − Σkl =

∫
ĝk(x)ĝl(x)w(x)dx−

∫
gk(x)gl(x)w(x)dx

=

∫ [
ĝk(x)− gk(x)

]
ĝl(x)w(x)dx+

∫
gk(x)

[
ĝl(x)− gl(x)

]
w(x)dx

=

∫ [
ĝk(x)− gk(x)

]
gl(x)w(x)dx+

∫
gk(x)

[
ĝl(x)− gl(x)

]
w(x)dx

+ op

( 1√
nTh

)
,

where the last equality follows by Proposition A2. Using the uniform expansion of

Proposition A1, we obtain∫ [
ĝk(x)− gk(x)

]
gl(x)w(x)dx = JV +R

with

JV =
n∑
i=1

ωki
1

T

T∑
t=1

(∫
Kh(Xit − x)gl(x)(κ0(x)fi(x))−1w(x)dx

)
εit

andR =
∫
gl(x)Rk(x)w(x)dx. As supx∈Ih |Rk(x)| = op(1/

√
nTh) and supx∈Ich |Rk(x)| =

Op(h), we have that R = op(1/
√
nTh). Moreover, applying Chebychev’s inequality
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and exploiting the mixing conditions on the data with the help of Davydov’s

inequality (see Corollary 1.1 in Bosq (1998)), it is not difficult to see that JV =

op(1/
√
nTh). This completes the proof. �

Proof of Proposition A4

Let v(A) = vec(A) be the vectorized representation of a K×K matrix A. There are

fixed vector-valued functions fk(·) and scalar functions ψk(·) with first and second

derivatives existing and being continuous in a neighbourhood of v(Σ∗) such that

sk = fk(v(Σ)) and λk = ψk(v(Σ))

ŝk = fk(v(Σ̂)) and λ̂k = ψk(v(Σ̂))

(cp. Magnus (1985)). In what follows, we show that ‖ŝk− sk‖ = op(1/
√
nTh) for all

k = 1, . . . , K, which immediately yields (A.6). The result (A.7) for the estimates

of the eigenvalues follows by exactly the same argument. From Proposition A3, we

know that

‖v(Σ̂)− v(Σ)‖ = op

( 1√
nTh

)
.

As fk is continuously differentiable in a neighbourhood of v(Σ∗), a first-order Taylor

expansion yields

ŝk − sk = fk(v(Σ̂))− fk(v(Σ)) = f ′k(ξ)
[
v(Σ̂)− v(Σ)

]
with ξ being an intermediate point between v(Σ̂) and v(Σ). Since f ′k(ξ)−f ′k(v(Σ∗)) =

op(1), we immediately arrive at

‖ŝk − sk‖ = op

( 1√
nTh

)
. �

Proof of Theorem 1.5.2

We again restrict attention to the Nadaraya-Watson based case, the arguments for

the local linear case being essentially the same. Write

√
T (β̂i − βi) =

√
T (β̂i − β̃i) +

√
T (β̃i − βi),

where β̃i is the infeasible parameter estimator defined in (1.11). In what follows, we

analyze the two terms on the right-hand side separately.
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(i) First consider the term
√
T (β̂i − β̃i). It holds that

√
T (β̂i − β̃i)

=
( 1

T

T∑
t=1

π(Xit)µ̂(Xit)µ̂(Xit)
ᵀ
)−1 1√

T

T∑
t=1

π(Xit)
{
µ̂(Xit)− µ(Xit)

}
Y fe
it

+
{( 1

T

T∑
t=1

π(Xit)µ̂(Xit)µ̂(Xit)
ᵀ
)−1

−
( 1

T

T∑
t=1

π(Xit)µ(Xit)µ(Xit)
ᵀ
)−1}

× 1√
T

T∑
t=1

π(Xit)µ(Xit)Y
fe
it .

Here,

1√
T

T∑
t=1

π(Xit)µ(Xit)Y
fe
it = L1 + L2 + L3 + L4

with

L1 =
1√
T

T∑
t=1

π(Xit)µ(Xit)εit

L2 =
1√
T

T∑
t=1

π(Xit)µ(Xit)mi(Xit)

L3 =
1√
T

T∑
t=1

π(Xit)µ(Xit)
(
µ0 + γt − Y t

)
L4 =

( 1

T

T∑
t=1

π(Xit)µ(Xit)
)√

T
(
αi − Y i + Y

)
.

It is straightforward to see that L1 = Op(1), L2 = Op(
√
T ), L3 = op(1) and L4 =

Op(1). Hence,

1√
T

T∑
t=1

π(Xit)µ(Xit)Y
fe
it = Op(

√
T ). (A.10)

As supx∈Ih ‖µ̂(x)− µ(x)‖ = Op(
√

log nT/nTh) = op(1/
√
T ), we further obtain that

1

T

T∑
t=1

π(Xit)µ̂(Xit)µ̂(Xit)
ᵀ − 1

T

T∑
t=1

π(Xit)µ(Xit)µ(Xit)
ᵀ

= Op

(√ log nT

nTh

)
= op

( 1√
T

)
(A.11)

as well as
1√
T

T∑
t=1

π(Xit)
{
µ̂(Xit)− µ(Xit)

}
Y fe
it = op(1). (A.12)

Combining (A.10)–(A.12) yields
√
T (β̂i − β̃i) = op(1).
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(ii) We next turn to
√
T (β̃i − βi). Write

√
T (β̃i − βi) =

( 1

T

T∑
t=1

π(Xit)µ(Xit)µ(Xit)
ᵀ
)−1

(L1 + L3 + L4)

with L1, L3 and L4 introduced above. Since L3 = op(1) and T−1
∑T

t=1 π(Xit)µ(Xit)
P−→

E[π(Xit)µ(Xit)], we can rewrite L4 as

L4 = −E[π(Xit)µ(Xit)]
1√
T

T∑
t=1

(mi(Xit) + εit) + op(1).

This yields that

L1 + L3 + L4 =
1√
T

T∑
t=1

χit + op(1),

where χit = (π(Xit)µ(Xit)−E[π(Xit)µ(Xit)])εit−E[π(Xit)µ(Xit)]mi(Xit). Applying

a central limit theorem, we now arrive at

√
T (β̃i − βi)

d−→ N(0,Γ−1
i Ψi(Γ

−1
i )

ᵀ
),

where the matrices Γi and Ψi are given by Γi = E[π(Xit)µ(Xit)µ(Xit)
ᵀ
] and Ψi =∑∞

l=−∞Cov(χi0, χil). �

Proof of Theorem 1.6.2

The same arguments as for the proof of Proposition A3 show that

‖Σ̃− Σ‖ = op

( 1√
nTh

)
.

Moreover, letting λ1 ≥ . . . ≥ λK be the eigenvalues of the matrix Σ and λ̃1 ≥ . . . ≥
λ̃K the eigenvalues of Σ̃, we have that

λ̃k =

∫
µ̃2
k(x)w(x)dx

and λk = 0 for k = K + 1, . . . , K. Finally, note that the mapping of symmetric

matrices to their eigenvalues is Lipschitz continuous. In particular, let A and B be

any real symmetric K × K matrices and let λ1(A) ≥ λ2(A) ≥ . . . ≥ λK(A) and

λ1(B) ≥ λ2(B) ≥ . . . ≥ λK(B) be the corresponding eigenvalues. Then there exists

a constant L independent of A and B such that

|λk(A)− λk(B)| ≤ L‖A−B‖.
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Combining the above remarks, we arrive at∫
µ̃2
k(x)w(x)dx = λ̃k = |λ̃k − λk| ≤ L‖Σ̃− Σ‖ = op

( 1√
nTh

)
.

for all k = K + 1, . . . , K. �

A.2 Supplementary results on uniform conver-

gence

In this appendix, we list some lemmas on uniform convergence which are needed

to derive the main theorems. To prove the lemmas, we use a covering argument

together with an exponential inequality, thus following the common strategy to be

found for example in Bosq (1998), Masry (1996) or Hansen (2008). For the proof

of Lemmas B1 and B2, these standard arguments have to be modified only slightly.

For the proof of Lemmas B3–B5 in contrast, some rather intricate and non-standard

arguments are needed to get the overall strategy to work.

We formulate the results for a general array {(Xit, Zit)} = {(Xit, Zit), i =

1, . . . , n, t = 1, . . . , T} which satisfies the following conditions:

(A1’) The data {(Xit, Zit)} are independent across i. Moreover, they are strictly

stationary and strongly mixing in the time direction. Let αi(k) for k = 1, 2, . . .

be the mixing coefficients of the time series {(Xit, Zit), t = 1, . . . , T} of the

i-th individual. It holds that αi(k) ≤ α(k) for all i = 1, . . . , n, where the

coefficients α(k) decay exponentially fast to zero as k →∞.

(A4’) For some θ > 5 and for all l ∈ Z,

max
1≤i≤n

sup
x∈[0,1]

E
[
|Zit|θ

∣∣Xit = x
]
≤ C <∞

max
1≤i≤n

sup
x,x′∈[0,1]

E
[
|Zit|

∣∣Xit = x,Xit+l = x′
]
≤ C <∞

max
1≤i≤n

sup
x,x′∈[0,1]

E
[
|ZitZit+l|

∣∣Xit = x,Xit+l = x′
]
≤ C <∞,

where C is a sufficiently large constant independent of l.

In addition, we suppose that the variables Xit and (Xit, Xit+l) have densities fi and

fi;l which satisfy (A2) and that the kernel K and the dimensions n and T fulfill

(A5)–(A7).

Throughout the appendix, we assume that the above conditions are satisfied.

We now formulate the various results:
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Lemma B1. For kernel averages Ψi(x) of the form

Ψi(x) =
1

T

T∑
t=1

Kh(Xit − x)Zit,

it holds that

max
1≤i≤n

sup
x∈[0,1]

∣∣Ψi(x)− E[Ψi(x)]
∣∣ = op(1). (A.13)

If the variables Zit are bounded, i.e., if |Zit| ≤ C for some constant C independent

of i and t, then we even have that

max
1≤i≤n

sup
x∈[0,1]

∣∣Ψi(x)− E[Ψi(x)]
∣∣ = Op

(√ log T

Th

)
. (A.14)

Proof of Lemma B1. The proof proceeds by slightly modifying standard

arguments to derive uniform convergence rates for kernel estimators. We are thus

content with giving some remarks on the necessary modifications.

We start with the proof of (A.14). Write

P
(

max
1≤i≤n

sup
x∈[0,1]

∣∣Ψi(x)−E[Ψi(x)]
∣∣ > CaT

)
≤

n∑
i=1

P
(

sup
x∈[0,1]

∣∣Ψi(x)−E[Ψi(x)]
∣∣ > CaT

)
with aT =

√
log T/Th. Going along the lines of the standard proving strategy, the

probabilities on the right-hand side can be bounded by a null sequence {cT} which

does not depend on i. Under our conditions, this sequence can be chosen such that

{ncT} is a null sequence as well. This yields the result.

We now turn to (A.13). As the variables Zit are not bounded, we have to replace

them by truncated versions Z≤it = ZitI(|Zit| ≤ τn,T ) in a first step. Since we maximize

over i, the truncation sequence τn,T must be chosen to go to infinity much faster than

in the standard case where i is fixed. In particular, we take τn,T = (nT )1/(θ−δ) for

some small δ > 0. Applying the same proving strategy as for (35) to the truncated

version of Ψi(x), one can see that the arguments still go through. However, as the

truncation points τn,T diverge much faster than in the standard case with fixed i,

the convergence rate turns out to be slower than the standard rate
√

log T/Th. �

Lemma B2. Let Ψ(x) be a kernel average of the form

Ψ(x) =
1

nT

n∑
i=1

T∑
t=1

Kh(Xit − x)Zit.

It holds that

sup
x∈[0,1]

∣∣Ψ(x)− E[Ψ(x)]
∣∣ = Op

(√ log nT

nTh

)
.

Proof of Lemma B2. As the proof closely follows standard arguments, we only
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provide a short sketch: Let an,T =
√

log nT/nTh and write Ψ(x) = Ψ≤(x) + Ψ>(x)

with

Ψ≤(x) =
1

nT

n∑
i=1

T∑
t=1

Kh(Xit − x)ZitI(|Zit| ≤ τn,T )

Ψ>(x) =
1

nT

n∑
i=1

T∑
t=1

Kh(Xit − x)ZitI(|Zit| > τn,T ),

where the truncation sequence τn,T is given by τn,T = (nT )1/(θ−δ) with some small

δ > 0. We thus have

Ψ(x)− E[Ψ(x)] = (Ψ≤(x)− E[Ψ≤(x)]) + (Ψ>(x)− E[Ψ>(x)]).

Straightforward arguments show that supx∈[0,1] |Ψ>(x) − E[Ψ>(x)]| = Op(an,T ). To

analyze the term supx∈[0,1] |Ψ≤(x)− E[Ψ≤(x)]|, we cover the unit interval by a grid

of points Gn,T that gets finer and finer as the sample size increases. We then replace

the supremum over x by the maximum over the grid points x ∈ Gn,T and show that

the resulting error is negligible. To complete the proof, we write

P
(

max
x∈Gn,T

∣∣Ψ≤(x)− E[Ψ≤(x)]
∣∣ > Can,T

)
≤
∑

x∈Gn,T

P
(∣∣Ψ≤(x)− E[Ψ≤(x)]

∣∣ > Can,T
)

and bound the probabilities P(|Ψ≤(x)−E[Ψ≤(x)]| > Can,T ) for each grid point with

the help of an exponential inequality. To do so, let

Ψ≤(x)− E[Ψ≤(x)] =
n∑
i=1

T∑
t=1

Wit(x)

with Wit(x) = 1
nT
{Kh(Xit − x)ZitI(|Zit| ≤ τn,T )− E[Kh(Xit − x)ZitI(|Zit| ≤ τn,T )]}

and split up the expression
∑T

t=1 Wit(x) into a growing number of blocks of increasing

size. Using Bradley’s lemma (see Lemma 1.2 in Bosq (1998)), we can replace these

blocks by independent versions and apply an exponential inequality. �

Lemma B3. Let

Ψ(x) =
1

n

n∑
i=1

Vi(x)Wi(x)

with

Vi(x) =
( 1

T

T∑
t=1

(
Kh(Xit − x)− E[Kh(Xit − x)]

))ν
Wi(x) =

1

T

T∑
t=1

Kh(Xit − x)Zit

for some fixed natural number ν and assume that the variables Zit satisfy E[Zit|Xit] =
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0. Then

sup
x∈[0,1]

∣∣Ψ(x)
∣∣ = op

( 1√
nTh

)
.

Proof of Lemma B3. Throughout the proof, we use the following notation. Let

CT : the event that maxi supx |Vi(x)1/ν | ≤ C
√

log T/Th and

maxi supx T
−1
∑T

t=1Kh(Xit − x) ≤ C

CiT : the event that supx |Vi(x)1/ν | ≤ C
√

log T/Th and

supx T
−1
∑T

t=1 Kh(Xit − x) ≤ C

for a fixed large constant C. Moreover, write CcT and CciT to denote the complements

of CT and CiT , respectively. Inspecting the proof of Lemma B1, it is easily seen that

P (CcT ) = o(1) and P (CciT ) = o(1), given that the constant C in the definition of the

events CT and CiT is chosen sufficiently large. With this notation at hand, we obtain

that

P
(

sup
x∈[0,1]

∣∣Ψ(x)
∣∣ > Man,T

)
≤ P

(
sup
x∈[0,1]

∣∣Ψ(x)
∣∣ > Man,T ,CT

)
+ P

(
sup
x∈[0,1]

∣∣Ψ(x)
∣∣ > Man,T ,C

c
T

)
= P

(
sup
x∈[0,1]

∣∣Ψ(x)
∣∣ > Man,T ,CT

)
+ o(1),

where an,T = (log nT
√
nTh)−1 and M is a large positive constant. Moreover,

P
(

sup
x∈[0,1]

∣∣Ψ(x)
∣∣ > Man,T ,CT

)
= P

(
sup
x∈[0,1]

∣∣∣ 1
n

n∑
i=1

Vi(x)Wi(x)
∣∣∣ > Man,T ,CT

)
= P

(
sup
x∈[0,1]

∣∣∣ 1
n

n∑
i=1

I(CT )Vi(x)Wi(x)
∣∣∣ > Man,T

)
≤ P

(
sup
x∈[0,1]

∣∣∣ 1
n

n∑
i=1

I(CiT )Vi(x)Wi(x)
∣∣∣ > Man,T

)
.

Now write
1

n

n∑
i=1

I(CiT )Vi(x)Wi(x) = Q≤(x) +Q>(x)

with the two terms on the right-hand side being defined as

Q≤(x) =
1

n

n∑
i=1

I(CiT )Vi(x)W≤
i (x)

Q>(x) =
1

n

n∑
i=1

I(CiT )Vi(x)W>
i (x).
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Here, Wi(x) = W≤
i (x) +W>

i (x) with

W≤
i (x) =

1

T

T∑
t=1

Kh(Xit − x)Z≤it

W>
i (x) =

1

T

T∑
t=1

Kh(Xit − x)Z>
it

and Zit = Z≤it + Z>
it with

Z≤it = ZitI(|Zit| ≤ τn,T )− E[ZitI(|Zit| ≤ τn,T )|Xit]

Z>
it = ZitI(|Zit| > τn,T )− E[ZitI(|Zit| > τn,T )|Xit],

where the truncation sequence τn,T is chosen to equal τn,T = (nT )1/(θ−δ) for some

small δ > 0. We now arrive at

P
(

sup
x∈[0,1]

∣∣∣ 1
n

n∑
i=1

I(CiT )Vi(x)Wi(x)
∣∣∣ > Man,T

)
≤ P

(
sup
x∈[0,1]

|Q≤(x)| > M

2
an,T

)
+ P

(
sup
x∈[0,1]

|Q>(x)| > M

2
an,T

)
.

In the remainder of the proof, we show that the two terms on the right-hand side

converge to zero as the sample size goes to infinity. To do so, we proceed in several

steps.

Step 1. We start by considering the term Q>(x). It holds that

P
(

sup
x∈[0,1]

∣∣∣ 1
n

n∑
i=1

I(CiT )Vi(x)
( 1

T

T∑
t=1

Kh(Xit − x)ZitI(|Zit| > τn,T )
)∣∣∣ > Can,T

)
≤ P

(
|Zit| > τn,T for some 1 ≤ i ≤ n and 1 ≤ t ≤ T

)
≤

n∑
i=1

T∑
t=1

P(|Zit| > τn,T ) ≤
n∑
i=1

T∑
t=1

E
[ |Zit|θ
τ θn,T

]
≤ C

nT

τ θn,T
→ 0.

In addition,

sup
x∈[0,1]

∣∣∣ 1
n

n∑
i=1

I(CiT )Vi(x)
( 1

T

T∑
t=1

Kh(Xit − x)E[ZitI(|Zit| > τn,T )|Xit]
)∣∣∣

≤ C

√
log T

Th
max
1≤i≤n

max
1≤t≤T

E
[
|Zit|I(|Zit| > τn,T )|Xit

]
≤ C

√
log T

Th

1

τ θ−1
n,T

≤ Can,T ,
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where the third line follows by (A4’). As a result,

P
(

sup
x∈[0,1]

|Q>(x)| > M

2
an,T

)
= o(1)

for M sufficiently large.

Step 2. We now turn to the analysis of the term Q≤(x). Cover the region [0, 1] with

open intervals Jl (l = 1, . . . , Ln,T ) of length C/Ln,T and let xl be the midpoint of

the interval Jl. Then

sup
x∈[0,1]

|Q≤(x)| ≤ max
1≤l≤Ln,T

|Q≤(xl)|+ max
1≤l≤Ln,T

sup
x∈Jl
|Q≤(x)−Q≤(xl)|.

For any point x ∈ Jl, we have

I(CiT )
∣∣Vi(x)W≤

i (x)− Vi(xl)W≤
i (xl)

∣∣ ≤ Cτn,T
h2
|x− xl| ≤

Cτn,T
h2Ln,T

.

Therefore,

max
1≤l≤Ln,T

sup
x∈Jl
|Q≤(x)−Q≤(xl)| ≤

Cτn,T
h2Ln,T

.

Choosing Ln,T →∞ with Ln,T = Cτn,T/an,Th
2, we obtain that

max
1≤l≤Ln,T

sup
x∈Jl
|Q≤(x)−Q≤(xl)| ≤ Can,T .

If we pick the constant M large enough, we thus arrive at

P
(

sup
x∈[0,1]

|Q≤(x)| > M

2
an,T

)
≤ P

(
max

1≤l≤Ln,T
|Q≤(xl)| >

M

4
an,T

)
+ o(1).

Step 3. It remains to show that

P
(

max
1≤l≤Ln,T

|Q≤(xl)| >
M

4
an,T

)
= o(1)

for some large fixed constant M . To do so, we write

P
(

max
1≤l≤Ln,T

|Q≤(xl)| >
M

4
an,T

)
≤ P1 + P2

with

P1 = P
(

max
1≤l≤Ln,T

|Q≤(xl)− EQ≤(xl)| >
M

8
an,T

)
P2 = P

(
max

1≤l≤Ln,T
|EQ≤(xl)| >

M

8
an,T

)
.
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First consider the term P2. If ν ≥ 3, then

|EQ≤(xl)| =
∣∣∣ 1
n

n∑
i=1

E[I(CiT )Vi(xl)W
≤
i (xl)]

∣∣∣
≤ 1

n

n∑
i=1

E
[
I(CiT )Vi(xl)

2
]1/2E[W≤

i (xl)
2
]1/2

≤ C√
Th

( log T

Th

)ν/2
= o(an,T ).

For ν ≤ 2, we write

|EQ≤(xl)| =
∣∣∣ 1
n

n∑
i=1

E[I(CiT )Vi(xl)W
≤
i (xl)]

∣∣∣
≤
∣∣∣ 1
n

n∑
i=1

E[Vi(xl)W
≤
i (xl)]

∣∣∣+
∣∣∣ 1
n

n∑
i=1

E[I(CciT )Vi(xl)W
≤
i (xl)]

∣∣∣.
If ν = 1, we have

∣∣E[Vi(xl)W
≤
i (xl)]

∣∣ =
∣∣∣ 1

T 2

T∑
s,t=1

E
[
(Kh(Xis − xl)− E[Kh(Xis − xl)])Kh(Xit − xl)Z≤it

]∣∣∣
=
∣∣∣ 1

T 2

T∑
s,t=1
s 6=t

E
[
(Kh(Xis − xl)− E[Kh(Xis − xl)])Kh(Xit − xl)Z≤it

]∣∣∣
≤ C log T

T
= o(an,T ),

the last line following with the help of Davydov’s inequality and (A4’). For ν = 2,

it holds that

∣∣E[Vi(xl)W
≤
i (xl)]

∣∣ =
∣∣∣ 1

T 3

T∑
s,s′,t=1

E
[
(Kh(Xis − xl)− E[Kh(Xis − xl)])

× (Kh(Xis′ − xl)− E[Kh(Xis′ − xl)])Kh(Xit − xl)Z≤it
]∣∣∣

≤ CT (log T )2

T 3h2
= C

( log T

Th

)2

= o(an,T ),

the last line again following by Davydov’s inequality and (A4’). In addition,

E[I(CciT )Vi(xl)W
≤
i (xl)] ≤ E[I(CciT )]1/2E[Vi(xl)

2W≤
i (xl)

2]1/2.

Repeating the usual strategy to prove uniform convergence for kernel estimates,

it can be shown that under our assumptions, E[I(CciT )] = P(CciT ) ≤ T−C for an

arbitrarily large constant C. This yields that E[I(CciT )Vi(xl)W
≤
i (xl)] = o(an,T ),

which in turn implies that |EQ≤(xl)| = o(an,T ) for ν = 1, 2. As a result, P2 = o(1)

for any ν ≥ 1.
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To cope with the term P1, we apply the bound

P1 ≤
Ln,T∑
l=1

P
(
|Q≤(xl)− EQ≤(xl)| >

M

8
an,T

)
and consider the probability P(|Q≤(xl) − EQ≤(xl)| > Man,T/8) for an arbitrary

fixed grid point xl. Write

Q≤(xl)− EQ≤(xl) =
n∑
i=1

ξi(xl)

with ξi(xl) = n−1{I(CiT )Vi(xl)W
≤
i (xl) − E[I(CiT )Vi(xl)W

≤
i (xl)]}. Recalling the

definition of the events CiT , the variables ξi(xl) can be bounded as follows:

|ξi(xl)| ≤ C

√
log T

Th

τn,T
n
≤ C

(nTh)1/2+δ
:= Cn,T

with some sufficiently large constant C and a small δ > 0, given that n� T 2/3 and

θ > 5. With λn,T = C
−1

n,T/2, we obtain that λn,T |ξi(xl)| ≤ 1/2. As exp(x) ≤ 1+x+x2

for |x| ≤ 1/2,

E
[

exp
(
± λn,T ξi(xl)

)]
≤ 1 + λ2

n,TE[ξi(xl)
2] ≤ exp

(
λ2
n,TE[ξi(xl)

2]
)
.

Using this together with Markov’s inequality, we arrive at

P
(∣∣∣ n∑

i=1

ξi(xl)
∣∣∣ > M

8
an,T

)
≤ exp

(
− M

8
λn,Tan,T

){
E
[

exp
(
λn,T

n∑
i=1

ξi(xl)
)]

+ E
[

exp
(
− λn,T

n∑
i=1

ξi(xl)
)]}

≤ 2 exp
(
− M

8
λn,Tan,T

) n∏
i=1

exp
(
λ2
n,TE[ξi(xl)

2]
)

= 2 exp
(
− M

8
λn,Tan,T

)
exp

(
λ2
n,T

n∑
i=1

E[ξi(xl)
2]
)
.

Now note that

E[ξi(xl)
2] ≤ 1

n2
E[I(CiT )Vi(xl)

2W≤
i (xl)

2] ≤ C log T

n2Th
E[W≤

i (xl)
2]

and

E[W≤
i (xl)

2] =
1

T 2

T∑
s,t=1

E
[
Kh(Xis − xl)Kh(Xit − xl)Z≤isZ

≤
it

]
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=
1

T 2

T∑
s,t=1

Cov
(
Kh(Xis − xl)Z≤is , Kh(Xit − xl)Z≤it

)
≤ C

Th
.

Hence, E[ξi(xl)
2] ≤ C log T/(nTh)2 and

λ2
n,T

n∑
i=1

E[ξi(xl)
2] ≤ C(nTh)1+2δ log T

n(Th)2
≤ C

(nT )2δ

Th
= o(1).

Moreover,

λn,Tan,T =
(nTh)1/2+δ

log nT (nTh)1/2
→∞

at polynomial rate. As a result,

P
(∣∣∣ n∑

i=1

ξi(xl)
∣∣∣ > M

8
an,T

)
≤ CT−p,

where the constant p > 0 can be chosen arbitrarily large. This completes the proof.

�

Lemma B4. Let

Ψ(x) =
1

T

T∑
t=1

Vt(x)Wt,

where Wt = 1
n

∑n
i=1 Zit and

Vt(x) =
1

n

n∑
i=1

(
Kh(Xit − x)− E[Kh(Xit − x)]

)
.

Assume that the variables Zit have mean zero. Then it holds that

sup
x∈[0,1]

∣∣Ψ(x)
∣∣ = op

( 1√
nTh

)
.

Proof of Lemma B4. The proof is similar to that of Lemma B3 with the roles of

i and t being reversed. Let an,T = (log nT
√
nTh)−1 and τn,T = (nT )1/(θ−δ) for some

small δ > 0. Arguments analogous to those for Step 1 in the proof of Lemma B3

yield that Ψ(x) can be replaced by the term

Q≤(x) =
1

T

T∑
t=1

I(Ctn)Vt(x)W≤
t ,

where W≤
t = 1

n

∑n
i=1 Z

≤
it with Z≤it = ZitI(|Zit| ≤ τn,T ) − E[ZitI(|Zit| ≤ τn,T )] and

Ctn is the event that supx |Vt(x)| ≤ C
√

log n/nh for some sufficiently large constant

C. Next cover the unit interval by a grid of Ln,T = Cτn,T/an,Th
2 points. As in the
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proof of Lemma B3, we can show that

sup
x∈[0,1]

|Q≤(x)| = max
1≤l≤Ln,T

|Q≤(xl)|+O(an,T ).

Moreover, again repeating the arguments from Lemma B3, we obtain that for some

sufficiently large constant M ,

P
(

max
1≤l≤Ln,T

|Q≤(xl)| > Man,T

)
≤ P

(
max

1≤l≤Ln,T
|Q≤(xl)− EQ≤(xl)| >

M

2
an,T

)
+ o(1)

≤
Ln,T∑
l=1

P
(
|Q≤(xl)− EQ≤(xl)| >

M

2
an,T

)
+ o(1).

To complete the proof, we bound the probability P(|Q≤(x)−EQ≤(x)| > M
2
an,T )

for an arbitrary point x by an exponential inequality. To do so, we must slightly

vary the arguments for Lemma B3, taking into account the fact that Q≤(x) is not

a sum of independent terms any more. In particular, we write

Q≤(x)− EQ≤(x) =
T∑
t=1

ξt(x)

with ξt(x) = T−1{I(Ctn)Vt(x)W≤
t − E[I(Ctn)Vt(x)W≤

t ]} and split up the expression∑T
t=1 ξt(x) into blocks as follows:

T∑
t=1

ξt(x) =

qn,T∑
s=1

B2s−1(x) +

qn,T∑
s=1

B2s(x)

with Bs(x) =
∑srn,T

t=(s−1)rn,T+1 ξt(x), where 2qn,T is the number of blocks and rn,T =

T/2qn,T is the block length. We now get

P
(∣∣∣ T∑

t=1

ξt(x)
∣∣∣ > M

2
an,T

)
≤ P

(∣∣∣ qn,T∑
s=1

B2s−1(x)
∣∣∣ > M

4
an,T

)
+ P

(∣∣∣ qn,T∑
s=1

B2s(x)
∣∣∣ > M

4
an,T

)
.

In what follows, we restrict attention to the first term on the right-hand side of the

above display. The second one can be analyzed by analogous arguments. We make

use of the following two facts:

(1) Let V(i) = {V(i)
t : t = 1, . . . , T} = {(Xit, Zit) : t = 1, . . . , T} be the time series of

the i-th individual and consider the time series W = {Wt : t = 1, . . . , T} with

Wt = ht(V
(1)
t , . . . ,V

(n)
t ) = ht(X1t, Z1t, . . . , Xnt, Znt) for some Borel functions ht.

Then by Theorem 5.2 in Bradley (2005) and the comments thereafter, the mixing

coefficients αW(k) of the time series W are such that αW(k) ≤
∑n

i=1 αi(k) ≤
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nα(k) for each k ∈ N. In particular, letting αξ(k) be the mixing coefficients of

the time series {ξt(x)}, it holds that αξ(k) ≤ nα(k).

(2) By Bradley’s lemma (see Lemma 1.2 in Bosq (1998), we can construct a

sequence of random variables B∗1(x), B∗3(x), . . . such that (i) B∗1(x), B∗3(x), . . .

are independent, (ii) B∗2s−1(x) has the same distribution as B2s−1(x), and (iii)

for 0 < µ ≤ ‖B2s−1(x)‖∞, it holds that

P
(
|B∗2s−1(x)−B2s−1(x)| > µ

)
≤ 18

(‖B2s−1(x)‖∞
µ

)1/2

αξ(rn,T ). (A.15)

Using fact (2), we can write

P
(∣∣∣ qn,T∑

s=1

B2s−1(x)
∣∣∣ > M

4
an,T

)
≤ P1 + P2

with

P1 = P
(∣∣∣ qn,T∑

s=1

B∗2s−1(x)
∣∣∣ > M

8
an,T

)
P2 = P

(∣∣∣ qn,T∑
s=1

(
B2s−1(x)−B∗2s−1(x)

)∣∣∣ > M

8
an,T

)
.

We first consider P1. Picking the block length to equal rn,T = (nT )η for some

small η > 0, it holds that |B2s−1(x)| ≤ C
√

logn
nh

τn,T rn,T
T

≤ C
(nTh)1/2+δ =: Cn,T with

some sufficiently large constant C and a small δ > 0. Choosing λn,T = C
−1

n,T/2 and

applying Markov’s inequality, the same arguments as in Lemma B3 yield that

P1 ≤ 2 exp
(
− M

8
λn,Tan,T + λ2

n,T

qn,T∑
s=1

E[B∗2s−1(x)2]
)
.

Since
∑qn,T

s=1 E[B∗2s−1(x)2] ≤ C log n log T/n2Th, we finally arrive at

P1 ≤ 2 exp
(
− M

8
λn,Tan,T + Cλ2

n,T

log n log T

n2Th

)
.

Direct calculations show that λn,Tan,T → ∞, whereas λ2
n,T

logn log T
n2Th

= o(1). This

implies that P1 converges to zero at an arbitarily fast polynomial rate. Moreover,

using (A.15) together with the fact that αξ(k) ≤ nα(k) and recalling that the

coefficients α(k) decay exponentially fast to zero, it immediately follows that P2

converges to zero at an arbitrarily fast polynomial rate as well. From this, the result

easily follows. �
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Lemma B5. Let

Ψ(x) =
1

n

n∑
i=1

( 1

nT

n∑
j=1
j 6=i

T∑
t=1

ϕit(x)Zjt

)

with ϕit(x) = Kh(Xit − x)φ̂i(x) and φ̂i(x) an estimator based on the data {Xit : t =

1, . . . , T}. Assume that φ̂i(x) has the following two properties:

(a) P(max1≤i≤n supx∈[0,1] |φ̂i(x)| > Cbn,T ) = o(1) for a sufficiently large constant C

and a null sequence {bn,T} which satisfies b2
n,T/h ≤ C(nT )−η for some small

η > 0.

(b) max1≤i≤n |φ̂i(x)− φ̂i(x′)| ≤ cn,T |x− x′| with probability tending to one for some

sequence {cn,T} which satisfies cn,T ≤ (nT )C for some positive constant C.

In addition, let the variables Zit have mean zero. Then it holds that

sup
x∈[0,1]

∣∣Ψ(x)
∣∣ = op

( 1√
nTh

)
.

Proof of Lemma B5. Let CT be the event that max1≤i≤n supx∈[0,1] |φ̂i(x)| ≤ Cbn,T

and CiT the event that supx∈[0,1] |φ̂i(x)| ≤ Cbn,T . Moreover, write CcT and CciT to

denote the complements of CT and CiT , respectively. By assumption, P (CcT ) = o(1)

and P (CciT ) = o(1). With this notation at hand, we have

P
(

sup
x∈[0,1]

∣∣Ψ(x)
∣∣ > Man,T

)
≤ P

(
sup
x∈[0,1]

∣∣Ψ(x)
∣∣ > Man,T ,CT

)
+ P

(
sup
x∈[0,1]

∣∣Ψ(x)
∣∣ > Man,T ,C

c
T

)
≤ P

(
sup
x∈[0,1]

∣∣Ψ(x)
∣∣ > Man,T ,CT

)
+ o(1),

where an,T =
√

lognT
nTh(nT )η

and M is a positive constant. Moreover,

P
(

sup
x∈[0,1]

∣∣Ψ(x)
∣∣ > Man,T ,CT

)
= P

(
sup
x∈[0,1]

∣∣∣ 1
n

n∑
i=1

( 1

nT

∑
j 6=i

T∑
t=1

I(CT )ϕit(x)Zjt

)∣∣∣ > Man,T

)
≤ P

(
sup
x∈[0,1]

∣∣∣ 1
n

n∑
i=1

( 1

nT

∑
j 6=i

T∑
t=1

I(CiT )ϕit(x)Zjt

)∣∣∣ > Man,T

)
.

Defining

Z≤jt = ZjtI(|Zjt| ≤ τn,T )− E
[
ZjtI(|Zjt| ≤ τn,T )

]
Z>
jt = ZjtI(|Zjt| > τn,T )− E

[
ZjtI(|Zjt| > τn,T )

]
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with τn,T = (nT )1/(θ−δ) for some small δ > 0, we further get that

1

n

n∑
i=1

( 1

nT

∑
j 6=i

T∑
t=1

I(CiT )ϕit(x)Zjt

)
= Q≤(x) +Q>(x)

with

Q≤(x) =
1

n

n∑
i=1

( 1

nT

∑
j 6=i

T∑
t=1

I(CiT )ϕit(x)Z≤jt

)
Q>(x) =

1

n

n∑
i=1

( 1

nT

∑
j 6=i

T∑
t=1

I(CiT )ϕit(x)Z>
jt

)
.

Hence,

P
(

sup
x∈[0,1]

∣∣∣ 1
n

n∑
i=1

( 1

nT

∑
j 6=i

T∑
t=1

I(CiT )ϕit(x)Zjt

)∣∣∣ > Man,T

)
≤ P

(
sup
x∈[0,1]

∣∣Q≤(x)
∣∣ > M

2
an,T

)
+ P

(
sup
x∈[0,1]

∣∣Q>(x)
∣∣ > M

2
an,T

)
.

In what follows, we show that the two terms on the right-hand side converge to zero

as the sample size increases. The proof splits up into several steps.

Step 1. We first consider Q>(x). Similarly to Lemma B3, it holds that

P
(

sup
x∈[0,1]

∣∣∣ 1
n

n∑
i=1

( 1

nT

∑
j 6=i

T∑
t=1

I(CiT )ϕit(x)ZjtI(|Zjt| > τn,T )
)∣∣∣ > Can,T

)
≤ P

(
|Zjt| > τn,T for some 1 ≤ j ≤ n and 1 ≤ t ≤ T

)
→ 0

and

sup
x∈[0,1]

∣∣∣ 1
n

n∑
i=1

( 1

nT

∑
j 6=i

T∑
t=1

I(CiT )ϕit(x)E
[
ZjtI(|Zjt| > τn,T )

])∣∣∣
≤ Cbn,T
n2Th

n∑
i=1

∑
j 6=i

T∑
t=1

E
[
|Zjt|I(|Zjt| > τn,T )

]
≤ Cbn,T

τ θ−1
n,T h

≤ Can,T .

From this, it immediately follows that P(supx∈[0,1] |Q>(x)| > Man,T/2) = o(1) for

M sufficiently large.

Step 2. We now turn to the analysis of Q≤(x). Let Ln,T → ∞ with Ln,T =

max{ τn,T cn,T
han,T

,
bn,T τn,T
h2an,T

, (nT )δ} for some small δ > 0. Cover the region [0, 1] with open

intervals Jl (l = 1, . . . , Ln,T ) of length C/Ln,T and let xl be the midpoint of the
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interval Jl. Then for x ∈ Jl,

∣∣Q≤(x)−Q≤(xl)
∣∣ ≤ Cτn,T

n

n∑
i=1

( 1

nT

∑
j 6=i

T∑
t=1

I(CiT )|ϕit(x)− ϕit(xl)|
)

≤ Cτn,T
n

n∑
i=1

( 1

nT

∑
j 6=i

T∑
t=1

I(CiT )
{
Kh(Xit − x)|φ̂i(x)− φ̂i(xl)|

+ |φ̂i(xl)||Kh(Xit − x)−Kh(Xit − xl)|
})

≤ Cτn,T

(cn,T
h

+
bn,T
h2

)
|x− xl| ≤ C

τn,T
Ln,T

(cn,T
h

+
bn,T
h2

)
≤ Can,T

with probability tending to one. From this, it immediately follows that for

sufficiently large M ,

P
(

sup
x∈[0,1]

∣∣Q≤(x)
∣∣ > M

2
an,T

)
≤ P

(
max

1≤l≤Ln,T

∣∣Q≤(xl)
∣∣ > M

4
an,T

)
+ o(1).

Step 3. It remains to show that

P
(

max
1≤l≤Ln,T

∣∣Q≤(xl)
∣∣ > M

4
an,T

)
= o(1)

for some sufficiently large constant M . Writing

max
1≤l≤Ln,T

∣∣Q≤(xl)
∣∣ ≤ max

1≤i≤n
1≤l≤Ln,T

∣∣∣∑
j 6=i

T∑
t=1

I(CiT )ϕit(xl)Wjt

∣∣∣
with Wjt = 1

nT
{ZjtI(|Zjt| ≤ τn,T )− E[ZjtI(|Zjt| ≤ τn,T )]}, we obtain

P
(

max
1≤l≤Ln,T

∣∣Q≤(xl)
∣∣ > M

4
an,T

)
≤ P

(
max
1≤i≤n

1≤l≤Ln,T

∣∣∣∑
j 6=i

T∑
t=1

I(CiT )ϕit(xl)Wjt

∣∣∣ > M

4
an,T

)

≤
n∑
i=1

Ln,T∑
l=1

P
(∣∣∣∑

j 6=i

T∑
t=1

I(CiT )ϕit(xl)Wjt

∣∣∣ > M

4
an,T

)
.

We now bound the probability P(|
∑

j 6=i
∑T

t=1 I(CiT )ϕit(x)Wjt| > Man,T/4) for

an arbitrary point x with the help of an exponential inequality. To do so, we rewrite

the expression
∑

j 6=i
∑T

t=1 I(CiT )ϕit(x)Wjt. In particular, we split up the inner sum

over t into blocks as follows:

T∑
t=1

I(CiT )ϕit(x)Wjt =

qn,T∑
s=1

Bj,2s−1(x) +

qn,T∑
s=1

Bj,2s(x)
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with

Bj,s(x) =

srn,T∑
t=(s−1)rn,T+1

I(CiT )ϕit(x)Wjt,

where as in Lemma B4, 2qn,T is the number of blocks and rn,T = T/2qn,T is the

block length. We thus get

P
(∣∣∣∑

j 6=i

T∑
t=1

I(CiT )ϕit(x)Wjt

∣∣∣ > M

4
an,T

)
≤ P

(∣∣∣∑
j 6=i

qn,T∑
s=1

Bj,2s−1(x)
∣∣∣ > M

8
an,T

)
+ P

(∣∣∣∑
j 6=i

qn,T∑
s=1

Bj,2s(x)
∣∣∣ > M

8
an,T

)
.

In what follows, we restrict attention to the first term on the right-hand side. The

second one can be analyzed by similar arguments.

To indicate the dependence of the block Bj,s(x) on the i-th time series {Xit}Tt=1,

we use the notation Bj,s(x) = Bj,s(x, {Xit}Tt=1). Moreover, we employ the shorthand

Bj,s(x) = Bj,s(x, {xit}Tt=1) to denote the s-th block for a fixed realization {xit}Tt=1 of

{Xit}Tt=1. With this notation at hand, we write

P
(∣∣∣∑

j 6=i

qn,T∑
s=1

Bj,2s−1(x)
∣∣∣ > M

8
an,T

)
= E

[
P
(∣∣∣∑

j 6=i

qn,T∑
s=1

Bj,2s−1(x)
∣∣∣ > M

8
an,T

∣∣∣{Xit}Tt=1

)]
and bound the term

P
(∣∣∣∑

j 6=i

qn,T∑
s=1

Bj,2s−1(x)
∣∣∣ > M

8
an,T

∣∣∣{Xit}Tt=1 = {xit}Tt=1

)
= P

(∣∣∣∑
j 6=i

qn,T∑
s=1

Bj,2s−1(x)
∣∣∣ > M

8
an,T

)
for an arbitrary but fixed realization {xit}Tt=1. By Bradley’s lemma, we can construct

a sequence of random variables B
∗
j,1(x), B

∗
j,3(x), . . . such that (i) B

∗
j,1(x), B

∗
j,3(x), . . .

are independent, (ii) B
∗
j,2s−1(x) has the same distribution as Bj,2s−1(x), and (iii) for

0 < µ ≤ ‖Bj,2s−1(x)‖∞,

P
(
|B∗j,2s−1(x)−Bj,2s−1(x)| > µ

)
≤ 18

(‖Bj,2s−1(x)‖∞
µ

)1/2

α(rn,T ). (A.16)

This allows us to write

P
(∣∣∣∑

j 6=i

qn,T∑
s=1

Bj,2s−1(x)
∣∣∣ > M

8
an,T

)
≤ P1 + P2
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with

P1 = P
(∣∣∣∑

j 6=i

qn,T∑
s=1

B
∗
j,2s−1(x)

∣∣∣ > M

16
an,T

)
P2 = P

(∣∣∣∑
j 6=i

qn,T∑
s=1

(
Bj,2s−1(x)−B∗j,2s−1(x)

)∣∣∣ > M

16
an,T

)
.

First consider P1. It holds that

|Bj,2s−1(x)| ≤ Cτn,T rn,T bn,T
nTh

≤ Cτn,T rn,T (bn,T/
√
h)

nTh
≤ Cτn,T rn,T
nTh(nT )η/2

=: Cn,T .

Choosing λn,T = C
−1

n,T/2 and applying Markov’s inequality, the same arguments as

in Lemma B3 yield that

P1 ≤ 2 exp
(
− M

16
λn,Tan,T + λ2

n,T

∑
j 6=i

qn,T∑
s=1

E[B
∗
j,2s−1(x)2]

)
.

Noting that

∑
j 6=i

qn,T∑
s=1

E[B
∗
j,2s−1(x)2] =

∑
j 6=i

qn,T∑
s=1

E[Bj,2s−1(x)2]

=
∑
j 6=i

qn,T∑
s=1

E[Bj,2s−1(x)2|{Xit}Tt=1 = {xit}Tt=1]

≤
∑
j 6=i

T∑
s,t=1

I(CiT )|ϕis(x)ϕit(x)|
∣∣E[WjsWjt]

∣∣
≤ Cb2

n,T

∑
j 6=i

T∑
s,t=1

Kh(xis − x)Kh(xit − x)
∣∣E[WjsWjt]

∣∣
≤
Cb2

n,T

h2

∑
j 6=i

( T∑
t=1

|E[W 2
jt]|+ 2

T−1∑
l=1

T−l∑
t=1

|E[WjtWjt+l]|
)

≤ C

nTh(nT )η
,

we arrive at

P1 ≤ C exp
(
− M

16
λn,Tan,T + C

λ2
n,T

nTh(nT )η

)
.

Moreover, choosing

rn,T =

√
nTh

τ 2
n,T log nT

,
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we obtain that
λ2
n,T

nTh(nT )η
= log(nT ) and λn,Tan,T = log(nT ). As a result,

P1 ≤ C exp
([
C − M

16

]
log nT

)
≤ C(nT )−p,

where p can be made arbitrarily large by choosing M large enough. We next turn

to P2. Using (A.16), we obtain that

P2 ≤
∑
j 6=i

qn,T∑
s=1

P
(∣∣Bj,2s−1(x)−B∗j,2s−1(x)

∣∣ > Man,T
16nqn,T

)
≤ C

∑
j 6=i

qn,T∑
s=1

( Cn,T

an,T/nqn,T

)1/2

α(rn,T ) ≤ C(nT )−q,

where q can be chosen arbitrarily large as the α-coefficients decay exponentially fast.

Putting everything together, we arrive at

P
(

max
1≤l≤Ln,T

∣∣Q≤(xl)
∣∣ > M

4
an,T

)
≤

n∑
i=1

Ln,T∑
l=1

P
(∣∣∣∑

j 6=i

T∑
t=1

I(CiT )ϕit(xl)Wjt

∣∣∣ > M

4
an,T

)
≤ CnLn,T

[
(nT )−p + (nT )−q

]
.

If we choose the exponents p and q sufficiently large, then the right-hand side

converges to zero at an arbitrarily fast polynomial rate. This completes the proof.

�
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Appendix B

The Effect of Fragmentation in

Trading on Market Quality in the

UK Equity Market
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B.1 The regulatory framework under MiFID

The “Markets in Financial Instruments Directive (MiFID)” is a directive of the

European Union that was adopted by the Council of the European Union and

the European Parliament in April 2004 and became effective in November 2007.

It replaces the “Investment Services Directive (ISD)” of 1993 that has become

outdated by the fast speed of innovation in the financial industry. MiFID is

the cornerstone of the “Financial Services Action Plan” that aims to foster the

integration and harmonization of European financial markets. It provides a common

regulatory framework for security markets across the 30 member states of the

European Economic Area1 to encourage the trading of securities and the provision

of financial services across borders. The main pillars of MiFID are market access,

transparency and investor protection.

1. Market access. MiFID abolished the monopoly position that many primary

exchanges in the European Economic Area have had in equity trading. Under

MiFID, orders can be executed on either regulated markets (RM), multilateral

trading facilities (MTF) or systematic internalizers (SI). RMs and MTFs have

similar trading functionalities but differ in the level of regulatory requirements.

In contrast to MTFs, RMs must obtain authorization from a competent

authority. While some MTFs have a visible (lit) order book, others operate as

regulated dark pools. In a dark pool, traders submit their orders anonymously

and they remain hidden until execution.2 SIs are investment firms that execute

client orders against other client orders or against their own inventories.

The new entrants differentiate themselves on quality, price and technology that

are usually tailored to speed-sensitive high frequency traders. In particular,

MTF’s typically adopt so-called maker-taker rebates that reward the provision

of liquidity to the system, permit various types of orders and have small

tick sizes. Additionally, their computer systems offer a lower latency when

compared to regulated markets.

While the number of RMs did not significantly increase after the introduction

of MiFID, a large number of MTFs and SIs emerged in the post-MiFID period

and successfully captured market share from the primary markets. At the end

of October 2007, the European Securities and Markets Authority (ESMA)

listed 93 RMs, 84 MTFs and 4 SIs. By the end of 2012, the number of MTFs

had almost doubled to 151. While SIs are rare compared to MTFs, their

number had grown to 13 by December 2012. In contrast, the number of RMs

1The European Economic Area consists of the 27 member states of the European Union as
well as Norway, Iceland, and Liechtenstein.

2There are other, unregulated categories of dark pools that are registered as OTC venues or
brokers (Gresse, 2012)
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had only increased to 94.3

MiFID also extends the single passport concept that was already introduced in

the ISD to establish a homogeneous European market governed by a common

set of rules. The single passport concept enables investment firms that are

authorized and regulated in their home state to serve customers in other EU

member states.

2. Transparency. With an increasing level of fragmentation, information on

prices and quantities available in the order books of different venues becomes

dispersed. In response, MiFID introduced pre- and post-trade transparency

provisions to enable investors to optimally decide where to execute their trade.

Pre-trade transparency provisions apply to RMs and MTFs that operate a

visible order book and require these venues to publish their order book in real

time. Dark venues, OTC markets and SIs use waivers to circumvent the pre-

trade transparency rules. To comply with post-trade transparency regulations,

RMs, MTFs including regulated dark pools and OTC venues have to report

executed trades to either the primary exchange or to a trade reporting facility

(TRF) such as Markit BOAT.

3. Investor protection. MiFID introduces investor protection provisions to

ensure that investment firms keep investors informed about their execution

practises in a fragmented market place. An important part of these regulations

is the best execution rule. Investment firms are required to execute orders that

are on behalf of their clients at the best available conditions taking into account

price, transaction costs, speed and likelihood of execution. Investment firms

have to review their routing policy on a regular basis.

However, the financial crisis exposed several shortcomings of MiFID and the

European Commission reacted to them by proposing a revision. The most important

changes include the regulation of e.g. derivatives trading on “Organised Trading

Facilities”, the introduction of safeguards for HFT, the improvement of transparency

in equity, bonds and derivative markets, the reinforcement of supervisory powers in

e.g. commodity markets and the strengthening of investor protection (European

Commission (2011)).

B.2 Trading venues

This appendix lists the individual trading venues that are used in our study.

3http://mifiddatabase.esma.europa.eu/, accessed on November 11, 2012
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– Lit venues: Bats Europe, Chi-X, Equiduct, LSE, Nasdaq Europe, Nyse Arca,

and Turquoise4

– Regulated dark pools: BlockCross, Instinet BlockMatch, Liquidnet, No-

mura NX, Nyfix, Posit, Smartpool, and UBS MTF.

– OTC venues: Boat xoff, Chi-X OTC, Euronext OTC, LSE xoff, Plus, XOFF,

and xplu/o.

– Systematic internalizers: Boat SI and London SI.

B.3 System latency at the LSE

Table C: System latency at the LSE

System Implementation Date Latency (Microseconds)

SETS <2000 600000
SETS1 Nov 2001 250000
SETS2 Jan 2003 100000
SETS3 Oct 2005 55000
TradElect June 18, 2007 15000
TradElect 2 October 31, 2007 11000
TradElect 3 September 1, 2008 6000
TradElect 4 May 2, 2009 5000
TradElect 4.1 July 20, 2009 3700
TradElect 5 March 20, 2010 3000
Millenium February 14, 2011 113

Source: Brogaard et al. (2013) and own calculations.

B.4 Econometric justification for quantile CCE

estimation

We sketch an outline of the argument for the consistency of the quantile regression

estimators used above. Harding and Lamarche (2013) consider the case with

homogeneous panel data models; their theory does not apply to the heterogeneous

model we study.

We consider a special case where we observe a sample of panel data {(Yit, Xit) :

i = 1, . . . , n, t = 1, . . . , T}. We first assume that the data come from the linear

panel regression model

Yit = αi + βiXit + κift + εit

4On 21 December 2009, the London Stock Exchange Group agreed to take a 60% stake in
trading platform Turquoise.
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where ft denotes the unobserved common factor or factors. The covariates satisfy

Xit = δi + ρift + uit

where in the Pesaran (2006) model the error terms satisfy the conditional moment

restrictions E(u
ᵀ

it, εit|Xit, ft) = 0 with u independent of ε. The unobserved factors ft

are assumed to be either bounded and deterministic or a stationary ergodic sequence.

Then assume that

θi = θ + ηi

where θi = (αi, βi, κi, δi, ρi)
ᵀ
, θ = (α, β, κ, δ, ρ)

ᵀ
and ηi are iid and independent of

all the other random variables in the system. This is a special case of the model

considered by Pesaran (2006). Letting h0t = δ + ρft, we can write (provided ρ 6= 0)

Yit = α∗i + βiXit + κ∗ih0t + εit

with α∗i = αi − δκi/ρ and κ∗i = κi/ρ, and note that E(εit|Xit, h0t) = 0.

Taking cross-sectional averages we have

X t = δ + ρft + ut + δ − δ + (ρ− ρ)ft = h0t +Op(n
−1/2)

since ut = Op(n
−1/2) = δ − δ = ρ− ρ. Therefore, we may consider the least squares

estimator that minimizes
∑T

t=1

{
Yit − a− bXit − cX t

}2
with respect to ψ = (a, b, c),

which yields a closed form estimator. This bears some similarities to the approach

of Pesaran (2006) except that we do not include Y t here Moon and Weidner (2015)

advocate a QMLE approach, which would involve optimizing a pooled objective

function over θi, i = 1, . . . , n and ft, t = 1, . . . , T. In the QMLE case this may be

feasible, but in the case with more nonlinearity such as quantiles as below this seems

infeasible.

We now turn to quantile regression, and in particular median regression. We shall

now assume that med(εit|Xit, ft) = 0 and maintain the assumptions that E(uit) = 0

with u independent of ε, so that X t = δ + ρft + ut = h0t + Op(n
−1/2) as before.

We consider a more general class of estimators based on minimizing the objective

function

QT i(ψ) =
1

T

T∑
t=1

λ(Yit − a− bXit − cX t)

over ψ, where λ(t) = |t|. The approximate first order conditions are based on

MT i(ψ;X1, . . . , XT ) =
1

T

T∑
t=1

 1

Xit

X t

 sign
(
Yit − α− βXit − γX t

)
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=
1

T

T∑
t=1

mit(ψ,X t)

We discuss now the properties of ψ̂i, the zero ofMT i(ψ;X1, . . . , XT ). For this purpose

we can view ψ̂i as an example of a semiparametric estimator as considered in Chen

et al. (2003). That is, X t is a preliminary estimator of the ”function” h0t = δ+ ρft.

An important part of the argument is to show the uniform consistency of this

estimate

max
1≤t≤T

∣∣X t − δ − bft
∣∣ ≤ max

1≤t≤T
|ut|+

∣∣δ − δ∣∣+ ( max
1≤t≤T

|ft|) |ρ− ρ| = op(1).

By elementary arguments we have max1≤t≤T |ut| = op(T
κn−1/2) for some κ

depending on the number of moments that uit possesses. Similarly, max1≤t≤T |ft| =
Op(T

κ) under the same moment conditions.

For compactness, let us denote MT i(ψ;X1, . . . , XT ) by MT i(ψ, ĥ), where ĥ =

(X1, . . . , XT ). The approach of CLV is to approximate the estimator

ψ̂ = arg min
ψ∈Ψ
||MT i(ψ, ĥ)||

by the estimator

ψ = arg min
ψ∈Ψ
||MT i(θ, h0)||

where h0 = (h01, . . . , h0T ) is the true sequence. In the case where mit(ψ, h) is

smooth in h, this follows by straightforward Taylor expansion and using the uniform

convergence result above. In the quantile case, some empirical process techniques

are needed as usual, but they are standard. The estimator ψ is just the standard

quantile regression estimator of the parameters in the case where h0t is observed

and so consistency follows more or less by a standard route, namely, the strong law

of large numbers implies that

MT i(ψ, h0) =
1

T

T∑
t=1

 1

Xit

δ + ρft

 sign (Yit − α− βXit − γδ − ργft)

→ Ei


 1

Xit

δ + ρft

 sign (Yit − α− βXit − γ(δ + ρft))


≡Mi(ψ)

which is uniquely minimized at the true value of ψ. Here, Ei means expectation

conditional on ψi.

In fact, because of the independence of u, ε, the joint distribution of εit, Xit, ft
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factors into the product of the conditional distribution of εit|ft the conditional

distribution of uit|ft and the marginal distribution of ft. We calculate Mi(ψ). We

have

M1i(ψ) =Ei [sign (Yit − α− βXit − γδ − ργft)]

=

∫
[1− 2G((αi − α) + (βi − β)(u+ δi + ρif)

+ (γi − γ)(δ + ρf)|f)]r(u|f)q(f)dεdudf

where G is the c.d.f of ε|f with density g and r is the density of u|f and q is

the marginal density of f. It follows that M1i(ψ0) = 0 by the conditional median

restriction. Similarly with Mji(ψ), j = 2, 3. Under some conditions can establish the

uniqueness needed for consistency. We can further calculate ∂M1i(ψ)/∂ψ.

The next question is whether the estimation of h0 by ĥ affects the limiting

distribution. In this case we consider the sequence h∗ = (h∗1, . . . , h
∗
T )

Ei [mit(ψ, h
∗
t )|ft] =Ei [mit(ψ, h0t)|ft] +

∂

∂h
Ei [mit(ψ, h0t)|ft] [h∗t − h0t]

+
∂2

∂h2
Ei
[
mit(ψ, ht)|ft

]
[h∗t − h0t]

2

for intermediate values ht. Then we can show that ∂Ei [mit(ψ, h0t)|ft] /∂h has a finite

expectation and so

1

T

T∑
t=1

∂

∂h
Ei [mit(ψ0, h0t)|ft]

[
ĥt − h0t

]
=

1

T

T∑
t=1

∂

∂h
Ei [mit(ψ0, h0t)|ft]

[
ut + δ − δ + (ρ− ρ)ft

]
= Op(n

−1/2T−1/2)

because Ei
[
ut + δ − δ + (ρ− ρ)ft|ft

]
= 0. Furthermore,

1

T

T∑
t=1

∂2

∂h2
E
[
mit(ψ, ht)|ft

] [
ĥt − h0t

]2

=
1

T

T∑
t=1

∂2

∂h2
E
[
mit(ψ, ht)|ft

] [
ut + δ − δ + (ρ− ρ)ft

]2
= Op(n

−1)

so that we need T/n2 → 0. It follows that the limiting distribution is the same as

that of ψ. The conditions of CLV Theorem 1 and 2 are satisfied. In particular, for:

Γ1(ψ, ho) =
∂

∂ψ
M(ψ) = −2× p lim

T→∞

1

T

T∑
t=1

 1 Xit h0t

Xit X2
it Xith0t

h0t Xith0t h2
0t

 g(0|Xit, ft)
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V1 = var[mit(ψ0, h0t))]

=

 1 δi + ρiEft δ + ρEft

δi + ρiEft σ2
u + δ2

i + ρ2
iEf

2
t + 2δiρiEft δiδ + δiρEf

2
t + (δiρ+ δρi)Eft

δ + ρEft δiδ + ρiρEf
2
t + (δiρ+ δρi)Eft δ2 + ρ2Ef 2

t + 2δρEft


we have

√
T (ψ̂i − ψi) =⇒ N [0,Ω], where Ω = (Γ

ᵀ

1Γ1)−1Γ
ᵀ

1V1Γ1(Γ
ᵀ

1Γ1)−1.

It follows that for each i

√
T (β̂i − βi)

d−→ N(0,Ωββi)

where Ωββi is the appropriate submatrix of above.

In the case that g(0|Xit, ft) = g(0) we have

Ωi =
1

4g(0)
V −1

1 .

Under some additional conditions we may obtain the asymptotic behaviour of the

mean group estimator β̂ = n−1
∑n

i=1 β̂i. Specifically, we have

√
n(β̂ − β)

d−→ N(0,Σββ)

where Σββ = var(vβi). This follows because

β̂ − β =
1

n

n∑
i=1

(β̂i − βi) +
1

n

n∑
i=1

(βi − β)

=
1

n

n∑
i=1

vβi +Op(T
−1/2n−1/2) +Op(n

−1),

because the averaging over i reduces the orders, for example

1

n

n∑
i=1

1

T

T∑
t=1

 1

Xit

h0t

 sign (εit) = Op(T
−1/2n−1/2).

The argument extends to the more general specification considered in this

chapter.
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B.5 Robustness

Alternative measures of market quality

Measuring market quality is inherently difficult, and there is an ongoing debate on

what constitutes a good measure of market quality. In view of this controversy,

this section investigates the robustness of the results in chapter 2 to a variety

of alternative measures of market quality. The particular measures we consider

are total (Parkinson) volatility, idiosyncratic volatility, within day and overnight

volatility, efficiency, and Amihud illiquidity.

Volatility. In the main paper, total volatility is measured by the Rogers-Satchell

estimator. An alternative measure is due to Parkinson (1980).5 The Parkinson

estimator of total volatility can be computed as

V P
itj

=
1

4 ln 2

(
lnPH

itj
− lnPL

itj

)2

.

Figure B.1 documents that the Parkinson volatility estimator is highly correlated

with the Rogers-Satchell estimator.

Some have argued that HFT activity and the associated market fragmentation

leads to higher volatility through the endogenous trading risk process (Foresight

(2012)). Therefore, we also obtained measures of overnight volatility that reflect

changes in prices that occur between the closing auction and the opening auction

and are therefore not subject to the influence of the continuous trading process. In

particular, we decompose volatility into overnight volatility and intraday volatility,

V day
itj

= (lnPC
itj
− lnPO

itj
)2

V night
itj

= (lnPO
itj
− lnPC

it−1j
)2.

Unfortunately, we can’t completely separate out the auction component and the

continuous trading component, which would also be of interest. Figure B.2 reports

the time series of the cross-sectional quantiles of (the log of) overnight and within

day volatility, as well as their ratio. The two series move quite closely together.

There is an increase during the early part of the series followed by a decrease later,

as with total volatility. The ratio of the two series shows no discernible trend at any

quantile over this period. It seems that volatility increases and decreases but in no

sense has become concentrated intraday relative to overnight.

In addition, we computed a measure of idiosyncratic volatility. In principle,

idiosyncratic risk is diversifiable and should not be rewarded in terms of expected

returns. We consider whether the effects of fragmentation take place on volatility

5We also measured total volatility by the simple range estimator Vitj =
PH

itj
−PL

itj

PL
itj

. The results

for this estimator are very similar to the Parkinson estimator and are available upon request.
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through the common or idiosyncratic part. If it is on the idiosyncratic component

of returns then it should have less impact on diversified investors, i.e., big funds

and institutions. Specifically, idiosyncratic volatility is calculated as the squared

residuals from a regression of individual close-to-close returns on index close-to-

close returns. Common volatility is then obtained as the square of the slope

coefficient multiplied by the variance of the index return. Cross-sectional quantiles of

idiosyncratic and common volatility are shown in Figure B.3. The sharp increase in

volatility during the financial crisis is more pronounced for the common component.

Liquidity. This appendix considers an alternative measures of liquidity based on

daily transaction data. In particular, we use the Amihud (2002) measure that is

defined as

ILitj =
|Ritj |
V olitj

,

where V olitj is the daily turnover and Ritj are daily close to close returns. Goyenko

et al. (2009) argue that the Amihud measure provides a good proxy for the price

impact. Figure B.4 compared the cross-sectional quantiles of the Amihud measure

and bid-ask spreads. The two measures seem to move quite closely together and

share a similar trajectory with volatility measures. Towards the end of the sample

there does seem to be a narrowing of the cross sectional distribution of bid ask

spreads.

Efficiency. A market that is grossly “inefficient” would be indicative of poor market

quality. Hendershott (2011) gives a discussion of market efficiency and how it can be

interpreted in a high frequency world. We shall take a rather simple approach and

base our measure of inefficiency/predictability on just the daily closing price series

(weak form) and confine our attention to linear methods. In this world, efficiency or

lack thereof, can be measured by the degree of autocorrelation in the stock return

series. We compute an estimate of the weekly lag one autocorrelation denoted by

ρit(k) = corr(Ritj , Ritj−k), k = 1, 2, where Rtj denotes the close to close return for

stock i on day j within week t; the variance and covariance are computed with daily

data within week t. Under the efficient markets hypothesis this quantity should be

zero, but in practice this quantity is different from zero and sometimes statistically

significantly different from zero. Since the series is computed from at most five

observations it is quite noisy, we use the small sample adjustment from Campbell

et al. (2012), eq. 2.4.13)

ρ̂Ait = ρ̂it +
1

Nit − 1
[1− ρ̂2

it],

where ρ̂it is the sample autocorrelation based on Nit ≤ 5 daily observations. In this

case, ρ̂Ait is an approximately unbiased estimator of weekly efficiency. We take the
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absolute value of the efficiency measure. Figure B.5 reports cross-sectional quantiles

of our efficiency measure. The median inefficiency is around 0.3.6 The variation of

the efficiency measures over time does not suggest that the efficiency of daily stock

returns either improves or worsens over this time period.

Our finding that visible fragmentation and dark trading have a negative effect

on total and temporary volatility is robust to using alternative measures of volatility

such as Parkinson or within-day volatility (Tables B.1 - B.2). If we measure market

quality by the Amihud (2002) illiquidity measure, we find that a higher degree of

overall or visible fragmentation is associated with less liquid markets. Dark trading

is found to improve liquidity. Because the Amihud (2002) liquidity measure is closely

related to LSE volume, these results probably in part reflect our findings for LSE

volume in the main paper. For efficiency, we cannot find significant effects.

Turning to the effect of fragmentation on the variability of market quality (Tables

B.3-B.4), we find that dark trading increases the variability of total (Parkinson)

volatility which is consistent with the results reported in chapter 2. We also

document that a higher level of overall fragmentation reduces the variability of

Amihud illiquidity.

FTSE 100 and FTSE 250 subsamples

In chapter 2, we only report results for a pooled sample of all FTSE 100 and 250

firms. In this appendix, we complement our main results by splitting the sample

into FTSE 100 and FTSE 250 stocks. The FTSE 100 index is composed of the 100

largest firms listed on the LSE according to market capitalization, while the FTSE

250 index comprises the “mid-cap” stocks.

When comparing the effect of market fragmentation on market quality for FTSE

100 and FTSE 250 firms, interesting differences emerge: the effects of overall

fragmentation on temporary volatility and global volume can be attributed to FTSE

100 firms (Tables B.5-B.6). The negative effect of dark trading on volatility is only

observed for FTSE 250 firms (Tables B.7-B.8). That effect is even positive for FTSE

100 firms. But in contrast with FTSE 250 firms, visible fragmentation is associated

with lower volatility for FTSE 100 firms. Inspecting the results for the variability of

market quality, overall fragmentation reduces the variability of LSE trading volume

only for FTSE 250 firms, while dark trading increases the variability of LSE volumes

for FTSE 100 firms (Tables B.9 - B.12).

6Note that when ρ̂it = 0, ρ̂Ait = 0.25 because Nit = 5 most of the time. Therefore, the bias
adjusted level is quite high.
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Omitting common factors

Related research uses panel data specifications as for example fixed effects estimators

that cannot account for unobserved common factors (Gresse (2011), De Jong

et al. (2015)). To address concerns about endogeneity of fragmentation and dark

trading, some papers use instrumental variable methods. But they do not however

instrument other included covariates which are likely to be jointly determined along

with the outcome variable. Specifically, some include volume and volatility as

exogenous covariates in equations for market quality measures. In contrast, the

CCE methodology used in this chapter can control for common unobserved factors

that affect both dependent and independent variables.

To illustrate the importance of controlling for unobserved common factors, we

re-estimate our results using a heterogeneous panel data model without common

factors. This model can be obtained as a special case of our econometric model

where dt is a vector of ones and there are no unobserved common factors ft.

A version of this model with homogenous coefficients has been used by Gresse

(2011), among others. As reported in Table B.13, omitting observed and unobserved

common factors leads to results that differ in magnitude and statistical significance

with the exception of LSE volume. However, the large increase in our measure of

cross-sectional dependence (CSD) indicates that this model is misspecified because

unobserved common shocks such as changes in trading technology or high frequency

trading are omitted that are likely to affect both market quality and fragmentation.

Stochastic Dominance

Finally, we investigate if the distribution of market quality under competition

stochastically dominates its distribution in a monopolistic market using the method

in Linton et al. (2005). If market quality is measured by bid-ask spreads, we find

evidence of second order stochastic dominance of competition over monopoly, and

vice versa for volatility. However, this evidence is only indicative as we did not

formally obtain critical values for the test statistic.
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Table B.1: The effect of fragmentation on market quality for alternative measures of market quality

Total (Parkinson) volatility Idiosync. volatility Daily volatility Overnight volatility Efficiency Illiquidity

Constant -7.713 -6.987 -5.507 -14.926 0.562 -13.652
(-8.817) (-4.855) (-3.025) (-10.13) (2.738) (-14.019)

Frag. 0.208 0.416 -0.11 -1.916 -0.025 -0.524
(0.383) (0.518) (-0.134) (-1.919) (-0.23) (-1.112)

Frag. sq. -0.534 -0.988 -0.368 1.1 0.056 1.341
(-1.269) (-1.446) (-0.55) (1.356) (0.579) (3.315)

Market cap. -0.499 -0.48 -0.591 -0.48 -0.039 -0.322
(-6.936) (-3.694) (-5.561) (-4.238) (-2.539) (-4.528)

ME (frag.) -0.349 -0.615 -0.495 -0.768 0.033 0.875
(-2.634) (-3.146) (-2.478) (-3.43) (1.303) (8.422)

∆Frag. -0.238 -0.408 -0.418 -0.998 0.021 0.595
(-1.154) (-1.457) (-1.402) (-2.821) (0.592) (3.797)

Adjusted R2 0.755 0.41 0.419 0.442 0.022 0.866

Notes : Coefficients are quantile CCE mean group estimates. t-statistics are shown in parenthesis. Market capitalisation and dependent variables
(except of idiosyncratic volatility and efficiency) are in logs. Lagged index return, VIX and Christmas and New Year effects are included as

observable factors. ∆Frag. is defined as β̂1 + β̂2(H + L) and evaluated at H = max(Frag.) and L = min(Frag.). ME denotes marginal effects.
The adjusted R2 is the R2 calculated from pooling the individual total and residual sums of squares, adjusted for the number of regressors.
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Table B.2: The effects of visible fragmentation and dark trading on market quality for alternative measures of market quality

Total (Parkinson) volatility Idiosync. volatility Daily volatility Overnight volatility Efficiency Illiquidity

Constant -7.061 -7.039 -3.303 -14.786 0.348 -12.065
(-8.882) (-4.277) (-2.046) (-9.409) (1.423) (-12.319)

Vis. frag. 0.263 -1.023 -0.797 0.04 0.019 -0.249
(0.934) (-1.878) (-1.697) (0.081) (0.238) (-0.506)

Vis. frag. sq. -0.815 0.361 0.04 -0.422 -0.011 0.873
(-2.472) (0.547) (0.066) (-0.672) (-0.106) (1.631)

Dark 0.061 -0.237 0.98 -1.033 0.046 -0.752
(0.264) (-0.482) (1.877) (-2.467) (0.59) (-3.023)

Dark sq. -0.202 0.367 -1.398 1.125 -0.031 -0.096
(-0.858) (0.757) (-2.749) (2.555) (-0.384) (-0.397)

Market cap. -0.405 -0.441 -0.497 -0.3 -0.04 -0.217
(-5.698) (-3.066) (-4.329) (-2.447) (-2.228) (-2.989)

ME (Vis. frag) -0.313 -0.768 -0.769 -0.258 0.011 0.368
(-2.99) (-4.004) (-4.029) (-1.23) (0.394) (2.058)

ME (Dark) -0.124 0.1 -0.303 0 0.018 -0.84
(-1.891) (0.585) (-1.991) (0.004) (0.746) (-9.526)

∆V is.frag. -0.306 -0.771 -0.769 -0.255 0.011 0.361
(-2.899) (-3.991) (-4.029) (-1.211) (0.396) (1.99)

∆Dark -0.14 0.129 -0.417 0.092 0.015 -0.848
(-2.111) (0.758) (-2.804) (0.721) (0.62) (-9.679)

Adjusted R2 0.773 0.417 0.429 0.455 0.031 0.871

Notes : See Table B.1 except that X = {Vis. frag, Dark}.
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Table B.3: The effect of fragmentation on the variability of market quality for alternative measures of market quality (conditional variance
model)

Total (Parkinson) volatility Idiosync. volatility Daily volatility Overnight volatility Efficiency Illiquidity

Constant -0.091 1.119 -0.38 -1.47 0.097 0.949
(-0.366) (0.871) (-0.421) (-1.503) (3.753) (2.679)

Frag. 0.015 -0.234 -0.671 -0.004 -0.031 -0.48
(0.154) (-0.418) (-1.413) (-0.007) (-2.057) (-2.377)

Frag. sq. -0.015 0.178 0.708 0.04 0.031 0.404
(-0.158) (0.343) (1.681) (0.08) (2.391) (2.251)

Market cap. -0.008 -0.152 -0.001 0.088 -0.003 -0.023
(-0.366) (-1.663) (-0.018) (1.052) (-1.506) (-0.915)

ME (frag.) 0 -0.048 0.068 0.038 0.001 -0.058
(-0.003) (-0.4) (0.59) (0.225) (0.172) (-1.175)

∆Frag. 0.003 -0.085 -0.08 0.029 -0.006 -0.143
(0.095) (-0.516) (-0.509) (0.139) (-1.034) (-2.125)

Adjusted R2 0.002 -0.04 -0.084 -0.068 -0.088 -0.004

Notes : Dependent variables are squared median regression residuals. Coefficients are quantile CCE mean group estimates. t-statistics are shown
in parenthesis. Market capitalization is in logs. Lagged index return, VIX and Christmas and New Year effects are included as observable
factors. ∆Frag. is defined as β̂ + γ̂(H + L) and evaluated at H = max(Frag.) and L = min(Frag.). ME denotes marginal effects. The adjusted
R2 is the R2 calculated from pooling the individual total and residual sums of squares, adjusted for the number of regressors.
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Table B.4: The effect of visible fragmentation and dark trading on the variability of market quality for alternative measures of market
quality (conditional variance model)

Total (Parkinson) volatility Idiosync. volatility Daily volatility Overnight volatility Efficiency Illiquidity

Constant -0.356 2.445 0.863 -2.094 0.089 0.547
(-1.383) (1.88) (0.834) (-2.168) (2.686) (1.54)

Vis. frag. -0.165 -1.724 -2.016 0.268 0.005 -0.379
(-1.374) (-1.321) (-2.447) (0.747) (0.482) (-3.733)

Vis. frag. sq. 0.17 1.433 2.382 -0.299 0.001 0.591
(1.219) (1.213) (2.985) (-0.598) (0.054) (3.535)

Dark 0.025 -0.396 -0.65 -0.838 -0.017 -0.243
(0.362) (-0.963) (-1.683) (-2.827) (-2.129) (-2.465)

Dark sq. 0.056 0.544 0.711 0.927 0.022 0.257
(0.775) (1.356) (1.825) (2.757) (2.453) (2.671)

Market cap. -0.005 -0.104 -0.026 -0.083 0 0.007
(-0.253) (-1.086) (-0.328) (-0.949) (-0.074) (0.274)

ME (Vis. frag) -0.045 -0.711 -0.333 0.057 0.005 0.039
(-1.009) (-1.394) (-0.984) (0.376) (1.361) (0.605)

ME (Dark) 0.076 0.104 0.003 0.013 0.003 -0.008
(3.447) (0.784) (0.025) (0.149) (1.046) (-0.256)

∆V is.frag. -0.047 -0.724 -0.354 0.059 0.005 0.033
(-1.033) (-1.394) (-1.031) (0.395) (1.355) (0.531)

∆Dark 0.081 0.148 0.061 0.088 0.005 0.013
(3.457) (1.129) (0.507) (0.898) (1.588) (0.452)

Adjusted R2 -0.026 -0.027 -0.074 -0.064 -0.075 -0.037

Notes : See Table B.3 except that X = {Vis. frag, Dark}.

151



Table B.5: The effect of fragmentation on market quality for FTSE 100 firms

Total volatility Temp. volatility BA spreads Global volume LSE volume

Constant -2.74 -8.643 9.955 1.286 3.546
(-2.296) (-10.29) (5.771) (1.032) (3.332)

Frag. 1.141 -2.935 -0.02 1.711 2.197
(1.181) (-3.147) (-0.035) (3.076) (4.326)

Frag. sq. -1.216 2.365 0.184 -1.232 -3.115
(-1.616) (3.252) (0.38) (-2.457) (-7.203)

Market cap. -0.44 -0.38 -0.335 -0.533 -0.52
(-3.857) (-4.993) (-2.952) (-6.469) (-6.71)

ME (frag.) -0.501 0.26 0.229 0.046 -2.012
(-2.403) (1.36) (1.417) (0.269) (-15.503)

∆Frag. 0.087 -0.883 0.14 0.642 -0.506
(0.245) (-2.627) (0.752) (4.153) (-3.223)

Adjusted R2 0.777 0.173 0.605 0.801 0.831

Notes : See Table 2.1.

Table B.6: The effect of fragmentation on market quality for FTSE 250 firms

Total volatility Temp. volatility BA spreads Global volume LSE volume

Constant -8.503 -10.327 3.584 2.195 2.18
(-8.268) (-13.225) (3.743) (2.639) (2.336)

Frag. -0.193 -0.16 0.072 -0.658 -0.276
(-0.282) (-0.316) (0.258) (-1.876) (-0.837)

Frag. sq. -0.162 0.012 -0.164 0.707 -1.091
(-0.297) (0.029) (-0.651) (2.012) (-3.298)

Market cap. -0.437 -0.293 -0.326 -0.058 -0.084
(-4.379) (-4.599) (-3.772) (-0.682) (-0.979)

ME (frag.) -0.359 -0.148 -0.096 0.064 -1.392
(-2.102) (-1.296) (-1.258) (0.635) (-14.205)

∆Frag. -0.328 -0.15 -0.065 -0.069 -1.186
(-1.301) (-0.852) (-0.682) (-0.635) (-11.469)

Adjusted R2 0.713 0.094 0.706 0.738 0.714

Notes : See Table 2.1.
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Table B.7: The effects of visible fragmentation and dark trading on market
quality for FTSE 100 firms

Total volatility Temp. volatility BA spreads Global volume LSE volume

Constant -2.643 -7.637 8.131 4.08 5.067
(-1.852) (-7.171) (4.587) (4.744) (5.14)

Vis. frag. -0.3 -4.244 0.221 -0.87 -0.734
(-0.445) (-8.073) (0.628) (-2.12) (-1.825)

Vis. frag. sq. -0.597 4.121 0.001 0.916 -0.679
(-0.903) (7.412) (0.002) (2.015) (-1.498)

Dark -0.003 1.217 0.052 0.98 0.864
(-0.009) (3.507) (0.14) (3.189) (2.185)

Dark sq. 0.315 -1.395 -0.015 1.504 0.546
(0.676) (-3.213) (-0.037) (4.333) (1.269)

Market cap. -0.332 -0.29 -0.326 -0.46 -0.47
(-2.539) (-3.069) (-3.094) (-5.995) (-5.859)

ME (vis. frag) -0.91 -0.028 0.222 0.068 -1.428
(-4.674) (-0.16) (1.12) (0.525) (-10.759)

ME (dark) 0.234 0.165 0.041 2.114 1.275
(2.098) (1.668) (0.329) (21.692) (9.818)

∆V is.frag. -0.715 -1.378 0.222 -0.233 -1.206
(-2.67) (-6.945) (1.585) (-1.731) (-9.234)

∆Dark 0.303 -0.139 0.038 2.442 1.394
(2.02) (-1.041) (0.321) (23.905) (11.101)

Adjusted R2 0.784 0.193 0.617 0.846 0.848

Notes : See Table 2.2.

Table B.8: The effects of visible fragmentation and dark trading on market
quality for FTSE 250 firms

Total volatility Temp. volatility BA spreads Global volume LSE volume

Constant -9.696 -11.53 0.588 1.368 3.05
(-9.159) (-12.407) (0.465) (1.692) (3.456)

Vis. frag. 1.277 0.839 0.565 0.334 0.03
(3.855) (3.419) (2.107) (1.511) (0.115)

Vis. frag. sq. -1.969 -1.164 -0.787 -1.035 -1.706
(-4.665) (-3.574) (-2.222) (-3.561) (-5.192)

Dark -0.531 0.032 -0.42 -0.071 -0.073
(-1.775) (0.121) (-1.446) (-0.275) (-0.28)

Dark sq. 0.221 -0.325 0.297 1.972 1.312
(0.879) (-1.403) (1.137) (9.367) (5.59)

Market cap. -0.487 -0.371 -0.318 -0.343 -0.311
(-5.184) (-5.328) (-3.531) (-4.021) (-3.494)

ME (vis. frag) 0.031 0.102 0.067 -0.321 -1.05
(0.223) (0.98) (0.654) (-2.879) (-9.37)

ME (dark) -0.308 -0.295 -0.121 1.916 1.25
(-4.202) (-4.625) (-1.644) (26.542) (18.581)

∆V is.frag. -0.097 0.026 0.015 -0.389 -1.161
(-0.728) (0.253) (0.155) (-3.472) (-10.722)

∆Dark -0.31 -0.292 -0.123 1.899 1.238
(-4.162) (-4.519) (-1.665) (25.949) (18.291)

Adjusted R2 0.735 0.114 0.671 0.831 0.764

Notes : See Table 2.1.
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Table B.9: The effect of fragmentation on the variability of market quality for
FTSE 100 firms (conditional variance model)

Total volatility Temp. volatility BA spreads Global volume LSE volume

Constant -0.58 -0.353 0.585 -0.175 -0.122
(-1.958) (-1.076) (1.834) (-1.324) (-0.662)

Frag. -0.092 0.211 0.135 0.229 0.174
(-0.452) (1.026) (1.164) (2.329) (1.874)

Frag. sq. 0.088 -0.188 -0.111 -0.215 -0.142
(0.463) (-1.079) (-1.09) (-2.532) (-1.766)

Market cap. 0.043 0.014 -0.027 -0.006 -0.007
(1.627) (0.588) (-0.861) (-0.442) (-0.626)

ME (frag.) 0.027 -0.043 -0.015 -0.06 -0.017
(0.362) (-0.685) (-0.36) (-2.138) (-0.621)

∆Frag. -0.016 0.048 0.039 0.043 0.051
(-0.277) (0.685) (0.978) (1.387) (1.732)

Adjusted R2 -0.061 -0.07 -0.037 -0.023 -0.022

Notes : See Table 2.3.

Table B.10: The effect of fragmentation on the variability of market quality for
FTSE 250 firms (conditional variance model)

Total volatility Temp. volatility BA spreads Global volume LSE volume

Constant -0.021 -0.381 0.346 0.607 0.178
(-0.041) (-0.682) (1.485) (1.204) (0.53)

Frag. -0.171 -0.225 -0.068 -0.457 -0.412
(-1.24) (-1.884) (-0.745) (-2.165) (-2.676)

Frag. sq. 0.147 0.21 0.087 0.432 0.333
(1.168) (1.833) (0.926) (2.409) (2.475)

Market cap. -0.043 -0.047 0.004 -0.081 -0.084
(-1.31) (-1.685) (0.196) (-3.734) (-4.271)

ME (frag.) -0.021 -0.01 0.02 -0.015 -0.071
(-0.589) (-0.378) (0.883) (-0.333) (-1.787)

∆Frag. -0.049 -0.05 0.004 -0.097 -0.134
(-1.069) (-1.453) (0.157) (-1.383) (-2.526)

Adjusted R2 -0.009 -0.011 -0.06 0.048 0.055

Notes : See Table 2.4.
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Table B.11: The effect of visible fragmentation and dark trading on the
variability of market quality for FTSE 100 firms (conditional variance model)

Total volatility Temp. volatility BA spreads Global volume LSE volume

Constant -0.879 -0.36 0.663 0.01 0.2
(-2.133) (-0.851) (2.255) (0.079) (1.355)

Vis. frag. 0.366 -0.209 -0.045 0.264 0.259
(2.588) (-0.518) (-0.474) (3.244) (2.709)

Vis. frag. sq. -0.498 0.039 0.047 -0.318 -0.308
(-2.845) (0.111) (0.462) (-3.699) (-3.078)

Dark -0.095 -0.23 -0.046 -0.037 -0.042
(-0.74) (-2.136) (-0.542) (-0.838) (-0.909)

Dark sq. 0.252 0.393 0.038 0.057 0.109
(1.552) (2.932) (0.387) (1.076) (1.855)

Market cap. 0.012 0.006 0.005 -0.003 0.005
(0.41) (0.22) (0.237) (-0.284) (0.381)

ME (Vis. frag) -0.143 -0.17 0.004 -0.061 -0.056
(-2.029) (-1.914) (0.1) (-2.795) (-2.382)

ME (Dark) 0.095 0.066 -0.017 0.006 0.04
(2.477) (2.069) (-0.644) (0.53) (2.616)

∆V is.frag. 0.02 -0.182 -0.012 0.043 0.045
(0.378) (-1.048) (-0.331) (1.56) (1.403)

∆Dark 0.15 0.152 -0.009 0.019 0.064
(2.869) (3.605) (-0.305) (1.225) (3.137)

Adjusted R2 -0.049 -0.055 -0.022 -0.012 -0.003

Notes : See Table 2.3.

Table B.12: The effect of visible fragmentation and dark trading on the
variability of market quality for FTSE 250 firms (conditional variance model)

Total volatility Temp. volatility BA spreads Global volume LSE volume

Constant -0.436 -0.045 0.163 0.294 0.054
(-1.004) (-0.101) (0.412) (1.316) (0.185)

Vis. frag. -0.333 -0.28 0.064 -0.126 -0.145
(-2.897) (-1.97) (0.668) (-1.457) (-1.377)

Vis. frag. sq. 0.379 0.318 -0.013 0.153 0.173
(2.169) (1.619) (-0.107) (1.275) (1.192)

Dark 0.046 -0.021 -0.139 -0.183 -0.283
(0.328) (-0.169) (-1.645) (-2.7) (-3.58)

Dark sq. 0.029 0.082 0.125 0.149 0.268
(0.238) (0.752) (1.527) (2.749) (4.031)

Market cap. -0.042 -0.02 0.026 -0.053 -0.052
(-1.359) (-0.703) (1.085) (-3.301) (-2.272)

ME (Vis. frag) -0.093 -0.078 0.056 -0.029 -0.036
(-1.975) (-1.869) (1.564) (-1.342) (-1.375)

ME (Dark) 0.076 0.062 -0.013 -0.033 -0.013
(2.241) (2.185) (-0.701) (-1.77) (-0.653)

∆V is.frag. -0.068 -0.058 0.055 -0.019 -0.024
(-1.372) (-1.431) (1.608) (-0.946) (-1.032)

∆Dark 0.075 0.061 -0.014 -0.034 -0.015
(2.203) (2.135) (-0.757) (-1.809) (-0.755)

Adjusted R2 -0.011 -0.02 -0.044 0.04 0.015

Notes : See Table 2.4.
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Table B.13: The effect of fragmentation on market quality when common factor
are omitted

Total volatility Temp. volatility BA spreads Global volume LSE volume

Constant 4.678 2.375 0.01 4.619 4.932
(9.282) (11.593) (0.03) (15.379) (15.781)

Frag. 2.803 -0.179 0.98 0.176 0.741
(4.749) (-0.541) (3.572) (0.528) (2.226)

Frag. sq. -3.896 0.25 -1.235 -0.055 -2.22
(-7.488) (0.887) (-4.929) (-0.179) (-7.246)

Market cap. -1.737 -0.308 -0.901 -0.176 -0.242
(-27.077) (-14.912) (-20.027) (-4.541) (-5.87)

ME (frag.) -1.624 0.105 -0.424 0.113 -1.782
(-13.806) (1.677) (-6.188) (1.19) (-18.874)

∆Frag. -0.448 0.03 -0.051 0.129 -1.111
(-2.409) (0.275) (-0.584) (1.192) (-10.003)

Adjusted R2 0.625 0.015 0.736 0.681 0.648
CSD 0.065 0.051 0.018 0.149 0.154

Notes : See Table 2.1.
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Figure B.1: Cross-sectional quantiles for Parkinson and Rogers-Satchell volatility
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Notes: 5th, 25th, 50th, 75th and 95th percentiles of the cross-sectional distribution
are shown. Volatilities are in logs. The panels on the right hand side show a
nonparametric trend mi(t/T ) with bandwidth parameter 0.03.
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Figure B.2: Cross-sectional quantiles for within day and overnight volatility
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Notes: 5th, 25th, 50th, 75th and 95th percentiles of the cross-sectional distribution
are shown. Within day and overnight volatilities are in logs and the ratio is the
difference between the two logged variables. The panels on the right hand side show
a nonparametric trend mi(t/T ) with bandwidth parameter 0.03.
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Figure B.3: Cross-sectional quantiles for idiosyncratic and common volatility
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Notes: 5th, 25th, 50th, 75th and 95th percentiles of the cross-sectional distribution
are shown. We took square roots of idiosyncratic and common volatilities. The
panels on the right hand side show a nonparametric trend mi(t/T ) with bandwidth
parameter 0.03.
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Figure B.4: Cross-sectional quantiles for illiquidity measures
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Notes: 5th, 25th, 50th, 75th and 95th percentiles of the cross-sectional distribution
are shown. Bid-ask spreads and Amihud illiquidity are in logs. The panels on the
right hand side show a nonparametric trend mi(t/T ) with bandwidth parameter
0.03.
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Figure B.5: Cross-sectional quantiles for market efficiency measures
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Notes: 5th, 25th, 50th, 75th and 95th percentiles of the cross-sectional distribution
are shown. Efficiency is defined as weekly autocorrelations computed from daily
data a small sample correction as in Campbell et al. (2012).
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Appendix C

A Discrete Choice Model For

Large Heterogeneous Panels with

Interactive Fixed Effects
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C.1 Proofs

Proof of Lemma 3.5.1

To derive an upper bound on the uniform rate of ĥt − h0t, I start by decomposing

ĥt − h0t into two terms that can be analyzed separately:

max
1≤t≤T

‖ĥt − h0t‖ = max
1≤t≤T

‖ut − (A0 − A)′dt − (K0 −K)′ft‖

= max
1≤t≤T

‖ut − (D0 −D)′gt‖

≤ max
1≤t≤T

‖ut‖+ max
1≤t≤T

‖(D0 −D)′gt‖

≤ max
1≤t≤T

‖ut‖+ ‖D0 −D‖ max
1≤t≤T

‖gt‖

≡ T1 + T2

where gt = (d′t, f
′
t)
′, D0 = (A′0, K

′
0)′ and D = (A

′
, K
′
)′. Recall that the disturbances

ujs are IID random variables ∀i, j, t, s which is required for Bernstein’s inequality.

Term T1 I decompose ujit into ujit = uj+it + uj−it where

uj+it = ujitI(|ujit| ≤ L(N))− E(ujitI(|ujit| ≤ L(N))

uj−it = ujitI(|ujit| > L(N))− E(ujitI(|ujit| > L(N))

Below, the terms uj+it and uj+it are analyzed separately.

– By Bernstein’s exponential inequality applied to each element j in uj+it ,

Pr

(
max

1≤t≤T

∣∣∣∣∣
N∑
i=1

uj+it

∣∣∣∣∣ > σ
√
N

log T

)
≤

T∑
t=1

Pr

(∣∣∣∣∣
N∑
i=1

uj+it

∣∣∣∣∣ > σ
√
N

log T

)

≤ 2T exp

− 1
(log T )2

2(1 + L(N)

3σ
√
N log T

)


= o(1) (C.1)

where the last equality follows from L(N)√
N log T

→ 0 under the condition that

L(N) = N1/3.

– The probability that the event uj−it occurs can be bounded by Markov’s

inequality. For any k ≥ 6 (assumption (B1)),

Pr( max
1≤i≤N

max
1≤t≤T

|ujit| > L(N)) ≤
N∑
i=1

T∑
t=1

Pr(|ujit| > L(N))

≤ NT Pr(|ujit| > L(N))

≤ NT
E(|ujit|k)
L(N)k
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≤ NT
Ck
u

L(N)k

= O

(
NT

L(N)k

)
= o(1) (C.2)

where the last equality follows from assumption (B3) and the condition that

L(N) = N1/3. This illustrates the choices for L(N) and the number of

moments k are not independent: One the one hand, L(N) has to be sufficiently

small to ensure uniform consistency of uj+it . On the other hand, a large value

of L(N) requires a large k for (C.2) to hold.

Taken together, the results in (C.1) and (C.2) imply that

max
1≤t≤T

∣∣ujit∣∣ = Op

(
log T√
N

)
,∀j.

Term T2 By Markov’s inequality,

Pr(‖D −D0‖ > ε) ≤ E‖D −D0‖2

ε2

where

E‖D −D0‖2 ≤ E

∥∥∥∥∥ 1

N

N∑
i=1

(Di −D0)

∥∥∥∥∥
2

=
1

N2

N∑
i=1

E‖Di −D0‖2

= O

(
1

N

)
.

Therefore,

‖D0 −D‖ max
1≤t≤T

‖gt‖ = Op

(
1√
N

)
because max1≤t≤T ‖gt‖ is bounded by assumption (A2). By combining the rates of

the terms T1 and T2 it follows that ‖ĥt − h0t‖H = Op

(
log T√
N

)
. �

Proof of Theorem 3.5.1

Because the infeasible estimator θ̃i is consistent (assumption (C5)), it suffices to

show that estimating the unobserved factors does not affect the criterion function.

We have
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Pr

(
sup
θ∈Θ

∣∣∣Qi
T (θ, ĥ)−Qi

T (θ, h0)
∣∣∣ ≥ ε

)
≤ Pr

(
sup

||h−h0||≤δT
sup
θ∈Θ

∣∣Qi
T (θ, h)−Qi

T (θ, h0)
∣∣ ≥ ε

)
+ Pr

(
||ĥ− h0|| > δT

)
(C.3)

→ 0, (C.4)

where we have used assumption (C3) and (C6). �

Proof of Theorem 3.5.2

To show that θ̂i is asymptotically normal, it suffices to show that estimating the

unobserved factors does not affect the limiting distribution, that is,

sup
θ∈Θ

∥∥∥∥∥∂2Qi
T (θ, ĥ)

∂θ∂θᵀ − ∂2Qi
T (θ, h0)

∂θ∂θᵀ

∥∥∥∥∥ = op(1) (C.5)

∥∥∥∥∥∂Qi
T (θi0, ĥ)

∂θ
− ∂Qi

T (θi0, h0)

∂θ

∥∥∥∥∥ = op(T
−1/2) (C.6)

We start with equation (C.5):

Pr

(
sup
θ∈Θ

∥∥∥∥∥∂2Qi
T (θ, ĥ)

∂θ∂θᵀ − ∂2Qi
T (θ, h0)

∂θ∂θᵀ

∥∥∥∥∥ ≥ ε

)

≤ Pr

(
sup

||h−h0||≤δT
sup
θ∈Θ

∥∥∥∥∂2Qi
T (θ, h)

∂θ∂θᵀ − ∂2Qi
T (θ, h0)

∂θ∂θᵀ

∥∥∥∥ ≥ ε

)
+ Pr

(
||ĥ− h0|| > δT

)
→ 0, (C.7)

where we have used uniform consistency of ĥ and assumption (D2). This implies

that ∥∥∥∥∥∂2Qi
T (θ, ĥ)

∂θ∂θᵀ − ∂2Qi
T (θ, h0)

∂θ∂θᵀ

∥∥∥∥∥ = op(1) (C.8)

To show that equation (C.6) holds, consider the expansion

∂Qi
T (θi0, ĥ)

∂θ
− ∂Qi

T (θi0, h0)

∂θ
=
∂2Qi

T (θi0, h0)

∂θ∂hᵀ ·
(
ĥ− h0

)
+Ri

T .

≡ T1 + T2. (C.9)

We examine the terms T1 and T2 separately:
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Term T1 Term T1 can be expressed as

∂2Qi
T (θi0, h0)

∂θ∂hᵀ ·
(
ĥ− h0

)
=

1

T

T∑
t=1

H2it(θi0, h0)
(
ĥt − h0t

)
for some weighting matrix H2it ≡ H2it(θi0, h0) that is of dimensions Kd +

2Kx ×Kx. The rate can be obtained by Markov’s inequality:

Pr

(∥∥∥∥∥ 1

T

T∑
t=1

H2it

(
ĥt − h0t

)∥∥∥∥∥ > ε

)
≤
E
∥∥∥ 1
T

∑T
t=1 H2it

(
ĥt − h0t

)∥∥∥2

ε2

where

E

∥∥∥∥∥ 1

T

T∑
t=1

H2it

(
ĥt − h0t

)∥∥∥∥∥
2

= E

∥∥∥∥∥ 1

T

T∑
t=1

H2it

(
ut − (D0 −D)

ᵀ
gt
)∥∥∥∥∥

2

≤ E

∥∥∥∥∥ 1

T

T∑
t=1

H2itut

∥∥∥∥∥
2

+ E

∥∥∥∥∥ 1

T

T∑
t=1

H2it(D0 −D)
ᵀ
gt

∥∥∥∥∥
2

≤ E

∥∥∥∥∥ 1

T

T∑
t=1

H2it

∥∥∥∥∥
2 ∥∥∥∥∥ 1

T

T∑
t=1

ut

∥∥∥∥∥
2

+ E

∥∥∥∥∥ 1

T

T∑
t=1

H2it

∥∥∥∥∥
2 ∥∥∥∥∥ 1

T

T∑
t=1

(D0 −D)
ᵀ
gt

∥∥∥∥∥
2

≤ O(1)O(1/(NT )) +O(1)O(1/(NT ))

= O(1/(NT )), (C.10)

where we have used assumption (A2), (D3) and that uit are IID random

variables with a finite variance.

Therefore, ∥∥∥∥∥ 1

T

T∑
t=1

H2it

(
ĥt − h0t

)∥∥∥∥∥ ≤ Op(1/
√
T ) (C.11)

Term T2 The remainder term Ri
T can be expressed as (with probability tending to

one)

Ri
T =

(
ĥ− h0

)ᵀ ∂3Qi
T (θi0, h)

∂θ∂hᵀ∂h
·
(
ĥ− h0

)
=

(
1

T

T∑
t=1

T∑
s=1

(
ĥs − h0s

)ᵀ

Wjts(θi0, h)
(
ĥt − h0t

))p

j=1

≤

(
1

T

T∑
t=1

T∑
s=1

sup
‖h−h0‖≤δT

‖Wjts(θi0, h)‖ ×
∥∥∥ĥs − hᵀ

0s

∥∥∥∥∥∥ĥt − h0t

∥∥∥)p

j=1
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≤ T ×
(
‖ĥ− h0‖H

)2

=
T (log T )2

N
(C.12)

for some intermediate values and weighting matrices Wjts and p = Kd +

2Kx. �

Proof of Theorem 3.5.3

By similar arguments as in the proof of theorem 3.5.1

Pr

(
sup
θ∈Θ

∣∣∣∣∣ 1

N

N∑
i=1

Qi
T (θ, ĥ)− 1

N

N∑
i=1

Qi
T (θ, h0)

∣∣∣∣∣ ≥ ε

)

≤ Pr

(
sup

||h−h0||≤δT
sup
θ∈Θ

∣∣∣∣∣ 1

N

N∑
i=1

Qi
T (θ, h)− 1

N

N∑
i=1

Qi
T (θ, h0)

∣∣∣∣∣ ≥ ε

)
+ Pr

(
||ĥ− h0|| > δT

)
≤ Pr

(
max

1≤i≤N
sup

||h−h0||≤δT
sup
θ∈Θ

∣∣Qi
T (θ, h)−Qi

T (θ, h0)
∣∣ ≥ ε

)
+ Pr

(
||ĥ− h0|| > δT

)
→ 0, (C.13)

�

Proof of Theorem 3.5.4

The asymptotic normality proof of θ̂ is similar to that of theorem 3.5.2. Asymptotic

normality of θ̂ follows from:

sup
θ∈Θ

∥∥∥∥∥ 1

N

N∑
i=1

∂2Qi
T (θ, ĥ)

∂θ∂θᵀ − 1

N

N∑
i=1

∂2Qi
T (θ, h0)

∂θ∂θᵀ

∥∥∥∥∥ = op(1) (C.14)

∥∥∥∥∥ 1

N

N∑
i=1

∂Qi
T (θi0, ĥ)

∂θ
− 1

N

N∑
i=1

∂Qi
T (θi0, h0)

∂θ

∥∥∥∥∥ = op(N
−1/2) (C.15)

where equation (C.15) is implied by equation (C.10) and equation (C.14) holds

because

Pr

(
sup
θ∈Θ

∥∥∥∥∥ 1

N

N∑
i=1

(
∂2Qi

T (θ, ĥ)

∂θ∂θᵀ − ∂2Qi
T (θ, h0)

∂θ∂θᵀ

)∥∥∥∥∥ ≥ ε

)

≤ Pr

(
sup
θ∈Θ

1

N

N∑
i=1

∥∥∥∥∥∂2Qi
T (θ, ĥ)

∂θ∂θᵀ − ∂2Qi
T (θ, h0)

∂θ∂θᵀ

∥∥∥∥∥ ≥ ε

)

≤ Pr

(
max

1≤i≤N
sup

||h−h0||≤δT
sup
θ∈Θ

∥∥∥∥∂2Qi
T (θ, h)

∂θ∂θᵀ − ∂2Qi
T (θ, h0)

∂θ∂θᵀ

∥∥∥∥ ≥ ε

)
+ Pr

(
||ĥ− h0|| > δT

)
→ 0, (C.16)

167



Finally, to show that the asymptotic variance of the mean group estimator is given

by the variance of the random coefficients Ση, observe that

β̂ − β0 =
1

N

N∑
i=1

(β̂i − β0i) +
1

N

N∑
i=1

(β0i − β0)

=
1

N

N∑
i=1

(β̂i − β0i) +
1

N

N∑
i=1

ηi

= op(1) +
1

N

N∑
i=1

ηi (C.17)

by theorem 3.5.1. �

168


