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Abstract

Modelling high dimensional time series and non-stationary time series are two import as-
pects in time series analysis nowadays. The main objective of this thesis is to deal with
these two problems. The first two parts deal with high dimensionality and the third part
considers a change point detection problem.

In the first part, we consider a class of spatio-temporal models which extend popular
econometric spatial autoregressive panel data models by allowing the scalar coefficients for

each location (or panel) different from each other. The model is of the following form:

Yt = D(X)Wy: + D(A1)yi—1 + D( X)Wy + &, (1)
where y; = (y14,...,Yp)" represents the observations from p locations at time ¢, D(A;) =
diag(Ag1, - - -, Akp) and Ag; is the unknown coefficient parameter for the j-th location, and W
is the p x p spatial weight matrix which measures the dependence among different locations.
All the elements on the main diagonal of W are zero. It is a common practice in spatial
econometrics to assume W known. For example, we may let w;; = 1/(1 + d;;), for ¢ # j,
where d;; > 0 is an appropriate distance between the i-th and the j-th location. It can
simply be the geographical distance between the two locations or the distance reflecting
the correlation or association between the variables at the two locations. In the above
model, D(Ag) captures the pure spatial effect, D(A;) captures the pure dynamic effect,
and D(Ag) captures the time-lagged spatial effect. We also assume that the error term
e = (14,694, --,6p4)" in (1) satisfies the condition Cov (y;_1,&;) = 0. When A\jy = -+ =

Ay for all £ = 1,2,3, (1) reduces to the model of Yu et al. (2008), in which there are

only 3 unknown regressive coefficient parameters. In general the regression function in



(1) contains 3p unknown parameters. To overcome the innate endogeneity, we propose a
generalized Yule-Walker estimation method which applies the least squares estimation to a
Yule-Walker equation. The asymptotic theory is developed under the setting that both the
sample size and the number of locations (or panels) tend to infinity under a general setting
for stationary and a-mixing processes, which includes spatial autoregressive panel data
models driven by i.i.d. innovations as special cases. The proposed methods are illustrated
using both simulated and real data.

In part 2, we consider a multivariate time series model which decomposes a vector
process into a latent factor process and a white noise process. Let y; = (Y14, ,Yps)”
be an observable p x 1 vector time series process. The factor model decomposes y; in the

following form:

yi = AX; + €y, (2)
where x; = (214, - ,xr,t)T is a 7 x 1 latent factor time series with unknown r < p and
A = (aj,as, -+ ,a,) is a p X r unknown constant matrix. &; is a white noise process

with mean 0 and covariance matrix Xg. The first part of (2) is a dynamic part and the
serial dependence of y; is driven by x;. We will achieve dimension reduction once r < p
in the sense that the dynamics of y; is driven by a much lower dimensional process x;.
Motivated by practical needs and the characteristic of high dimensional data, the sparsity
assumption on factor loading matrix is imposed. Different from Lam, Yao and Bathia
(2011)’s method, which is equivalent to an eigenanalysis of a non negative definite matrix,
we add a constraint to control the number of nonzero elements in each column of the
factor loading matrix. Our proposed sparse estimator is then the solution of a constrained

optimization problem. The asymptotic theory is developed under the setting that both the



sample size and the dimensionality tend to infinity. When the common factor is weak in the
sense that § > 1/2 in Lam, Yao and Bathia (2011)’s paper, the new sparse estimator may
have a faster convergence rate. Numerically, we employ the generalized deflation method
(Mackey (2009)) and the GSLDA method (Moghaddam et al. (2006)) to approximate the
estimator. The tuning parameter is chosen by cross validation. The proposed method is
illustrated with both simulated and real data examples.

The third part is a change point detection problem. we consider the following covariance

structural break detection problem:

COV(yt)[(tj,1 <t< tj) = Etj,u j = 1, e .m+ 1,

where y; is a p x 1 vector time series, 3, | # X, and {t1,..., t,,} are change points,
1=ty <ty <-- <ty =n. In the literature, the number of change points m is usually
assumed to be known and small, because a large m would involve a huge amount of com-
putational burden for parameters estimation. By reformulating the problem in a variable
selection context, the group least absolute shrinkage and selection operator (LASSO) is
proposed to estimate m and the locations of the change points {¢y,..., t;,}. Our method
is model free, it can be extensively applied to multivariate time series, such as GARCH
and stochastic volatility models. It is shown that both m and the locations of the change
points {t1,...,t,} can be consistently estimated from the data, and the computation can
be efficiently performed. An improved practical version that incorporates group LASSO
and the stepwise regression variable selection technique are discussed. Simulation studies

are conducted to assess the finite sample performance.
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Chapter 1: Generalized Yule-Walker
Estimation for Spatio-Temporal
Models with Unknown Diagonal

Coeflicients

1.1 Introduction

The class of spatial autoregressive (SAR) models is introduced to model cross sectional
dependence of different economic individuals at different locations (Cliff and Ord, 1973).
More recent developments extend SAR models to spatial dynamic panel data (SDPD)
models, i.e. adding time lagged terms to account for serial correlations across different
locations. See, e.g. Lee and Yu (2010a). Baltagi et al. (2003) considers a static spatial
panel model where the error term is a SAR model. Lin and Lee (2010) shows that in the
presence of heteroskedastic disturbances, the maximum likelihood estimator for the SAR
models without taking into account the heteroskedasticity is generally inconsistent and

proposes an alternative GMM estimation method. Computationally the GMM methods



are more efficient than the QML estimation (Lee, 2001). Lee and Yu (2010a) classifies
SDPD models into three categories: stable, spatial cointegration and explosive cases. As
pointed out by Bai and Shi (2011), the cases with a large number of cross sectional units
and a long history are rare. Hence it is pertinent to consider the setting with short time
spans in order to include as many locations as possible. Both estimation method and
asymptotic analysis need to be adapted under this new setting. Yu et al. (2008) and Yu
et al. (2012) investigate the asymptotic properties when both the number of locations and
the length of time series tend to infinity for both the stable case and spatial cointegration
case, and show that QMLE is consistent.

Motivated by the evidence in some practical examples, we extend the model in Yu et
al. (2008) and Yu et al. (2012) by allowing the scalar coefficients for each location (or
panel) different from each other. This increase in model capacity comes with the cost of
estimating substantially more parameters. In fact that the number of the parameters in this
new setting is in the order of the number of locations. The model considered in this paper
has four additive components: a pure spatial effect, a pure dynamic effect, a time-lagged
spatial effect and a white noise. Due to the innate endogeneity, the conventional regression
estimation methods such as the least squares method directly based on the model lead to
inconsistent estimators. To overcome the difficulties caused by the endogeneity, we propose
a generalized Yule-Walker type estimator for estimating the parameters in the model, which
applies the least squares estimation to a Yule-Walker equation. The asymptotic normality
of the proposed estimators is established under the setting that both the sample size n and
the number of locations (or panels) p tend to infinity. Therefore the number of parameters

to be estimated also diverges to infinity, which is a marked difference from, e.g., Yu et al.
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(2012). We develop the asymptotic properties under a general setting for stationary and
a-mixing processes, which includes the spatial autoregressive panel data models driven by
1.1.d. innovations as special cases.

The rest of the paper is organized as follows. Section 1.2 introduces the new model, its
motivation and the generalized Yule-Walker estimation method. The asymptotic theory
for the proposed estimation method is presented in Section 1.3. Simulation results and real
data analysis are reported, respectively, in Section 1.4 and 1.5. All the technical proofs are

relegated to an Appendix.

1.2 Model and Estimation Method

1.2.1 Models

The model considered in this paper is of the following form:

Yt = D(AO)Wyt + D(A1>yt_1 + D(Ag)wyt_l + Et, (121)
where y; = (y14,...,Yps)’ represents the observations from p locations at time ¢, D(\;,) =
diag(Ag1, - - ., Akp) and Ag; is the unknown coeflicient parameter for the j-th location, and

W is the p x p spatial weight matrix which measures the dependence among different
locations. All the main diagonal elements of W are zero. It is a common practice in spatial
econometrics to assume W known. For example, we may let w;; = 1/(1 + d;;), for ¢ # j,
where d;; > 0 is an appropriate distance between the i-th and the j-th location. It can
simply be the geographical distance between the two locations or the distance reflecting
the correlation or association between the variables at the two locations. In the above
model, D(Ag) captures the pure spatial effect, D(A;) captures the pure dynamic effect,
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and D(Ag) captures the time-lagged spatial effect. We also assume that the error term
er = (14,624, --,6p4)T in (1.2.1) satisfies the condition Cov (y,_1,&;) = 0. When Ay =
<o = Mg for £ =0,1,2, (1.2.1) reduces to the model of Yu et al. (2008), in which there
are only 3 unknown regressive coefficient parameters. In general the regression function in
(1.2.1) contains 3p unknown parameters.

The extension to use different scalar coefficients for different locations is motivated by
practical needs. For example, we analyze the monthly change rates of the consumer price
index (CPI) for the EU member states over the years 2003-2010. The detailed analysis
for this data set will be presented in section 1.5. Figure 1.1 presents the scatter-plots of
the observed data y;, versus the spatial regressor w!y; and y;, 1, for some of the EU
member states, where w! is the i-th row vector of the weight matrix W which is taken
as the sample correlation matrix with all the elements on the main diagonal set to be 0.
The superimposed straight lines are the simple regression lines estimated using the newly
proposed method in Section 2.2 below. It is clear from Figure 1.1 that at least Greece and

Belgium should have a different slope from those of France or Iceland.

1.2.2 Generalized Yule-Walker estimation

As y; occurs on both sides of (1.2.1), Wy, and €, are correlated with each other. Apply-
ing least squares method directly based on regressing y; on (Wyy,y:—1, Wy;_1) leads to
inconsistent estimators. On the other hand, applying the maximum likelihood estimation
requires to profile a p X p nuisance parameter matrix ¢ = Var(e;), which leads to a com-
plex nonlinear optimization problem. Furthermore when p is large in relation to n, the

numerical stability is of concern.
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Figure 1.1: Plots of the monthly change rates y;, of CPI against the spatial regressor w!y;
(on the top) and the dynamic regressor y; ;1 (on the bottom) for four EU member states in
2003-2010. The superimposed straight lines were estimated by the newly proposed method

in Section 2.2.

We propose below a new estimation method which applies the least squares method to
each individual row of a Yule-Walker equation. To this end, let 3, = Cov(y; 4, y:) for any
k > 0. Note that we always assume that y; is stationary, see condition A2 and Remark 1

in Section 1.3 below. Then the Yule-Walker equation below follows from (1.2.1) directly.
(I = D(Xo)W)X1 = (D(A1) + D(A2) W)Xy,
where I is a p x p identity matrix. The i-th row of the above equation is
(e] —Xoiw])Z1 = (€] + AW )Xo, i=1,...,p, (1.2.2)

where w; is the i-th row vector of W, and e; is the unit vector with the i-th element equal
to 1. Note that (1.2.2) is a system of p linear equations with three unknown parameters
Aoi, A1; and Ag;. Since Ey; = 0, we replace ¥; and ¥, by the sample (auto)covariance
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We estimate (A, Aij, Ao;)T by the least squares method, i.e. to solve the minimization

problem

. aT S
min |2 (€, — Aiw;) — o(Arie; + Aoyw;)|[3.
A0isA1isA2i

The resulting estimators are called generalized Yule-Walker estimators which admits the
explicit expression:

(Xomxmxzi)T = OAQT)A(@)A}A(ZT?“ (1.2.3)

where

A~

~T —~ e . T
X; = (21 Wi, 2o€;, EOWz‘) and Y; =3 e,

More explicitly,

> 1 1 1 s I
Xi= (E Z Yt—1<W;'FYt): n Z Yt-1Yi,t—1, n ZYt—1(WiTYt—1)> ;Y= n ZYt—lyi,t-
t=1 t=1 t=1 t=1

Then it holds that for i =1,--- ,p,

Aoi Aoi % Z?:1 YtT—l(WiTYt) X % Z?:l Cityt—1
~ NI V-1

Mi | T Au | T (X; X;) % Z?:l Y;_lyi,tfl X % E?:l €itYi—1
A2 A2 % Do Vi (Wl yia) X % D i1 EigYi-1

1.2.3 A root-n consistent estimator for large p

When p/y/n — oo, the estimator (1.2.3) admits non-standard convergence rates (i.e. the
rates different from /n); see Theorems 2 and 4 in Section 1.3 below. Note that there are p
equations with only 3 parameters in (1.2.2). Hence (1.2.3) can be viewed as a GMME for
an over-determined scenario. The estimation may suffer when the number of estimation
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equations increases. See, for example, a similar result in Theorem 1 of Chang, Chen and
Chen (2015). A further compounding factor is that the estimation for the covariance
matrices Xy, 27 using their sample counterparts leads to non-negligible errors even when
n — oo (as long as p is very large). Below we propose an alternative estimator which
restricts the number of the estimation equations to be used in order to restore the y/n-
consistency and the asymptotic normality.

For i = 1,---,p, put X; = (£Tw;, Zpe;, Zow;). Note that the k-th row of X; is
(el Tw;,

e} Xoe;, el Xow;) which is the covariance between yi; 1 and (W]yy, Yit—1, Wy 1). Let

o0 = ] Sw| + el Soer| + [e Bow| . k=1 p (12.4)

Then pg) may be viewed as a measure for the correlation between y;, ;1 and (wiTyt, Yit—1, wly,_ )T
When p,(f) is small, say, close to 0, the k-th equation in (1.2.2) carries little information
on (Aoi, A1i; Agi). Therefore as far as the estimation for (Ag;, A1;, Ag;) is concerned, we only
keep the k-th equation in (1.2.2) for large p,(j).
Let Ziq be the d; x 1 vector consisting of those yi,_1 corresponding to the d; largest

ﬂ,:) (1 <k <p), where ﬁfj) is defined as in (1.2.4) but with (31, %) replaced by (1, o).

The new estimator is defined as

(/)\\/Oia Xl’ia S\/Qi)T = (ZZTZZ)*llefYV'“ 7 = 1’ cee LD (125)
where
7 1 - 7 T 1 = i 1 i i T
Z; = (H Z z; (W ¥i), " Z Ze1Yit-1 Z z;_1(w; Yt—1)), (1.2.6)
=1 t=1 t=1
and



Now it holds that

- R ,

Aoi Aoi P D i1 CitZig

~ 7T \—17T .
— = X . . 1 n

Ali At (Z;Z:)"Z; | Ly ez,

~ . ,

A2i A2i 2D e EitZe 1

Theorem 3 in Section 3 below shows the asymptotic normality of the above estimator

provided that the number of estimation equations used satisfies condition d; = o(y/n).

1.3 Theoretical properties

We introduce some notations first. For a p x 1 vector v = (vy,- -+ ,v,)7, ||v]2 = b v
is the Euclidean norm, ||v|j;y = >"%_| |v;| is the Ly norm. For a matrix H = (hy;), [|[H||r =

tr(HTH) is the Frobenius norm, ||H|js = \/Amax(HTH) is the operator norm, where
Amax(+) 1s the largest eigenvalue of a matrix. We denote by |H| the matrix (|h;;|) which is a

matrix of the same size as H but with the (7, j)-th element h;; replaced by |h;;|. Note the

determinant of H is denoted by det(H). A strictly stationary process {y;} is a-mixing if

alk)=  sup  |P(A)P(B)— P(AB)| =0, as k— oo, (1.3.7)

AeFO _ ,BeFe

where ]—"Z] denotes the o-algebra generated by {y;,7 <t < j}. See, e.g., Section 2.6 of Fan
and Yao (2003) for a compact review of a-mixing processes.
Let S(Ag) =1 — D(Xo)W be invertible. It follows from (1.2.1) that
yi = Ayi1+ S (Xo)ey,
where A = S71(X\g)(D(A;) + D(A2)W). Some regularity conditions are now in order.

Al. The spatial weight matrix W is known with zero main diagonal elements; S(Ag) is

invertible.
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A2. (a) The disturbance e; satisfies

Cov(ys_1,e) = 0.

(b) The process {y;} in model (1.2.1) is strictly stationary and a-mixing with «(k),

defined in (1.3.7), satisfying

o0
N

D a(k)™ < oo,

k=1

for some constant v > 0.

(c) For v > 0 specified in (b) above,

T 44y T 44y T 44y
sup B ‘WZ» Zoyt‘ < oo, supk }Wi Elyt‘ < oo, supk |ei Eoyt| < 00,
p p p

sup E ‘W;prtrlﬂ < oo, supk ‘e?ytrlﬂ < 00,
p p

where w; denotes the i-th row of W. The diagonal elements of V; defined in (1.3.8)

are bounded uniformly in p.
A3. The rank of matrix (27w, Boe;, ow;) is equal to 3.

Remark 1. Condition Al is standard for spatial econometric models. Condition A3 en-
sures that Ag;, A1; and \y; are identifiable in (1.2.2). Condition A2(c) limits the dependence
across different spatial locations. It is implied by, for example, the conditions imposed in
Yu et al. (2008). Lemma 2 in the Appendix shows that Condition A2 holds with v = 4
under conditions Al and B1 — B3 below. Note that conditions B1-B3 are often directly
imposed in the spatial econometrics literature including, for example, Lee and Yu (2010a),

and Yu et al. (2008).

17



B1. The errors g, are i.i.d across i and ¢ with E(g;;) = 0, Var(g;;) = 02, and E ]5i7t|4+“’ <

0o. The density function of ¢;, exists.
B2. The row and column sums of [W| and |[S™()Ag)| are bounded uniformly in p.

B3. The row and column sums of Y % |A/| are bounded uniformly in p.

Now we are ready to present the asymptotic properties for (/):0,-, /):h-, /):gz-)T, 1=1,...,p,

with fixed p and n — oo first, and then p — oo and n — oco.

1.3.1 Asymptotics for fixed p

Fori=1,...,p, let
Z:y,si (]) = COV(ytflJrjEi,tJrja ytflg’i,t)a ] = 07 17 27 )

2)’751' = Ey,&' (0) + Z [Zy,ai (.]) + Zz:,si (])] )
7j=1

W?Elz{wz W?leoei W?Elzowi
V= walEoei 6?202082‘ e;zozowi ) (138)

T T T
W, Elﬁowi €; Eozowi W, Egzowi

and

T T T T
W, Elzy,&zl W, W, Elzy,EiEOei W, Elzy’gizowi

U’i = W?Elzy@iz}()ei 6?202y75i208i eZTZOZy,aiZOWi (139)

T T T
W, Elzy,giﬁowi €; EOEyQEOW@- W, 202y78izowi

Theorem 1 Let conditions A1 — A8 hold and p > 1 be fixred. Then as n — oo, it holds

that
Xoi Aoi
vn i | 7 A 4 N(0, VUV, i=1,...,p,
Aai Ag;

18



where V; and U; are given in (1.3.8) and (1.3.9).

1.3.2 Asymptotics with diverging p

When p diverges together with n, U;, V; in (1.3.9) and (1.3.8) are no longer constant

1 _1
matrices. Let U, ? be a matrix such that (U, 2)? = U; .
Theorem 2 Let condition A1 — A3 hold.

(i) Asn — oo, p— oo and p = o(y/n),

Xoi Aoi
_1
ViU, 2V, /):11' | Au i)N(O,Ig), t=1,...,p.
N A2

(i) Asn — 0o, p— 00, v/n=0(p) and p = o(n),

Xoi Aoi
—~ p .
o | :Op<ﬁ>’ 1=1,...,p.
Ao Aoy
2

Intuitively, condition A2(c) reflects the spatial dependence, that is the structures of ¥
and X;. It includes the case that y,; and y,; are asymptotically uncorrelated given i and j
are far enough. Hence for yy;, as p — oo, the correlation of 3;; and the far enough elements of
IV y;_; are asymptotically 0. This means more such IV’s does not add more information to
the estimation. At the same time, adding one more IV means we have one more estimation
equation in GMM, noise then accumulates. This can explain what Theorem 2 says: given
condition A2(c), if p is sufficient small such that p = o(y/n), using more IV does not
improve the estimation, and the total noise accumulation is dominated by 1/4/n, hence the
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effect of p can not be seen anymore; When p increases such that /n << p << n, using
more IV still does not improve the estimation, however now the total noise accumulation
reaches the extent such that p/n dominates; When p go on increasing such that p > Cn,
the estimator is even inconsistent due to the noise accumulation.

Theorem 2 indicates that the standard root-n convergence rate prevails as long as
p = o(y/n). However the convergence rate may be slower when p is of higher orders than
v/n. Theorem 2 presents the convergence rates for the Ly norm of the estimation errors.
The rates also hold for the L; norm of the errors as well. Corollary 1 consider the estimation

errors over p locations together, for which we have established the result for L; norm only.

Corollary 1 Let condition A1 hold, and condition A2 and A3 hold for alli = 1,--- p.

Then as n — oo and p — oo, it holds that

/)\\01 )\Oi
L O)(L) i £ =0(),
]_QZ )\11 - >\1i =
i=1
- 0,2 if 2 =00 and 2 =9(1
o N »(2) NG (1)
1

To derive the asymptotic properties of the estimators defined in (1.2.5), we introduce

some new notation. For i =1,...,p, let
26 = COV(yt7 Zi)v EZl = COV(yt, Zifl)v

Ezi,ﬁi (j) = COV(Z;L;—I—i-jgiat"v‘j? Zi—lgi,t)7 ] - 07 17 27 )

and

S = Baie(0)+ ) [, () + ki, (5)] -

Jj=1



wliZ (2 Wi wiE(2g) e wlE () w;
Vi | WSS e eSS e el TH(Sh) wi |- (1.3.10)
wiZ(Z0) ws el Z(20) ws wiEH(Eg)
and
WIS, (B) Wi wIEIE, L (B0 e wiEiE, L (5) W,
Ui=| wiZiZ, . (Z)Te; eIZiS, . (Z)Te, elZiS, . (Zi)Tw, [- (13.11)
wisiS,  (Z0)Tw;, el S, () Tw; wisis, . (30)Tw;
Theorem 3 below indicates that the estimators defined in (1.2.5) are asymptotically
normal with the standard /n-rate as long as d; = o(y/n). Note that it does not impose

any conditions directly on the size of p.
A4. (a) For v > 0 specified in A2(b),

4+
< 00

9

sup E ‘W?E%Zirlﬂ < oo, supk !W?Eﬁzﬂzlﬂ < oo, supE ‘eiTEézﬂ
p p p
sup E ‘WiTyt’ZlJW < oo, supk ‘eiTytrlﬂ < 00.
p P
and the diagonal elements of V7 defined in (1.3.10) are bounded uniformly in p.

(b) The rank of matrix E{Z} is equal to 3, where Z; is defined in (1.2.6).

Theorem 3 Let conditions A1, A2(a,b) and A4 hold. Asn — oo, p — o0 and d; = o(\/n),

it holds that

>\0i )\Oz
ViU Eve s = o [ S NvoL),  i=1.
XZi /\22

where VI and U} are given in (1.3.10) and (1.3.11).
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The fact that more such IV’s does not add more information to the estimation is because
condition A2(c) restrict the spatial dependence of y;. If we relax it to include the (special)
case that elements in 3, and 3, are all bounded away from 0 as p — oo, then the correlation
of y,; and y;; are bounded away from 0 no matter how far they are. Under this new
condition, intuitively, more IV’s does add more information to the estimation, which may
improve our estimation. At the same time, the noise accumulation still exists. The tradeoff
is about this two effect. The new condition is condition A5, which includes the case

mentioned above.

A5. For v > 0 specified in A2(b),

’4—&-7 ’4-"—’?

e
max { sup E ’W?E()yt , supkE ’W?Elyt , supkE ’e?EOyt‘ 7 } = O(so(p))-
P p P

max { sup E ‘WZ-Tyt‘4er , supk ‘eZ-Ty,g‘4+7 } = O(s1(p)).
p p

and the diagonal elements of V; defined in (1.3.8) is in the order of so(p), where so(p),

s1(p) and sy(p) are numbers relating to p.

Let us denote C' as a constant. When the number of nonzero elements (or elements
bounded away from zero) in w; increases with p but is o(p), we may have s;(p) = o(min{so(p), s2(p)})-
Simulation scenario 2 is under this case. When there are only finite number of nonzero ele-
ments (or elements bounded away from zero) in w;, we might have s;(p) =< C, which is the
case of simulation scenario 1. The reason we assume the diagonal elements of V; defined in
(1.3.8) are in the order of s5(p) is because we can treat WZTElElTWZ-, el 3e;, wl XX ow;

T

as the second moments of three random variables w! X;x, e r

Yox and w; 3px respectively,

where the p x 1 random vector x has mean 0 and covariance matrix I,,.
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Theorem 4 Let conditions A1, A2(a,b), A3 and A5 hold. Asn — oo, p— oo, if ’%%) =

o(n) and 3(1)/2(])) = O(psy*(p)sa(p)), it holds that

/)\\01 )\Oz
3/4 1/4
R psy (p) sg' (p)

. - y = O '
/\1Z )\lz p<maX{ nsz(p) ’ \/532(]9) })
/):21 )\22

2

Let us consider some examples. (1) When so(p) < p, s1(p) < C and sy3(p) < p, the

convergence rate is max{%, W} (2) When s¢(p) < p, s1(p) < /p and s3(p) < p, if
p = o(n?), the convergence rate is max{j%/s, W} (3) When so(p) < C, s1(p) < C
and ss(p) < O if p = o(n), the convergence rate is max {%, \/iﬁ}, which corresponds with
Theorem 2. Theorem 4 indicates that under different situations of s¢(p), s1(p) and sa(p),
we may obtain different convergence rates. These observations are illustrated by simulation
examples in section 4.

Example (2) is similar to the case such that the correlation of y; and y;; are bounded
away from 0 no matter how far they are. Hence Tradeoff explanations is as follows: we
say more IV add more information to the estimation as the positive effect and total noise
accumulation by IV as the negative effect. When p is sufficient small such that p << n*/?,
the positive effect dominates the negative effects, hence more IV increase the convergence
rate; When n*? << p << n?, the negative effect dominates the positive effect, hence more
IV reduces the convergence rate. But compared with the case when there is no positive
effect, we gain some convergent rate (for instance ’%/8 << B), which means the positive

effect is indeed doing its job; When p > Cn?, negative effect totally dominates positive

effect and the estimator is inconsistent.
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1.4 Simulation study

To examine the finite sample performance of the proposed estimation methods, we conduct

some simulation under different scenarios.

1.4.1 Scenario 1

Aoi, A1; and Ag; are generated from U(—0.6,0.6). The spatial weight matrix W used is a
block diagonal matrix formed by a ,/p X ,/p row-normalized matrix W*. We construct
W* such that the first four sub-diagonal elements are all 1 and the rest elements are all
0 before normalizing. This kind of W corresponds to the pooling of /p separate districts

with similar neighboring structures in each district, see Lee and Yu (2013), that is

W 0 0 0
0 W* 0 0
W = 0 0 W+ 0
0 0 0 . W*

The error €;; are independently generated from N(0,0?), where we generate each o; from
U(0.5,1.5).

For all scenarios, we generate data from (1.2.1) with different settings for n and p. We
apply the proposed estimation method (1.2.3) and (1.2.5) (with d; = min (p,n'%/?!)) and

report the mean absolute errors:

2 p
1 Z ~ 1 Z
i=1

24



We replicate each setting 500 times.
Figure 1.2 depicts two boxplots of MAE with p equals to, respectively, 25 and 100.
As the sample size n increases from 100, 250, 500, 750 to 1000, MAE decreases for both

methods.
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Figure 1.2: Boxplots of MAE for estimator (1.2.3) (left panels) and estimator (1.2.5) (right
panels) with p = 25 (top panels) and 100 (bottom panels), n = 100, 250, 500, 750, 1000

for scenario 1.

Figure 1.3 depicts the boxplots of the MAE for the original estimator (1.2.3), the root
n consistent estimator (1.2.5), and the estimator (1.2.5) with the ridge penalty, where we
p

choose the ridge tuning parameter to be C' x * in order to avoid the nearly singularity

problem of ZTZ, and C'is chosen via cross validation. With n = 500, the dimension p is
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set at 25,49,64,81,100,169,324 and 529 respectively. The MAE for (1.2.3) remains about
the same level as p increases; see the panel on the left in Figure 1.3. This is in line with the
asymptotic result of Theorem 4 when, for example, s1(p) < C, so(p) < p and s2(p) < p. In
contrast, the MAE for estimator (1.2.5) increases sharply when p increases; see the panel
in the middle. This is due to the fact that ZZTZ is nearly singular for large p. Adding a
ridge in the estimator certainly mitigates the deterioration when p increases; see the panel

on the right in Figure 1.3.
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Figure 1.3: Boxplots of MAE of the original estimator (1.2.3) (the left panel), the root n
consistent estimator (1.2.5) (the middle panel), and the estimator (1.2.5) after adding ridge
penalty (the right panel) with n = 500 and p = 25,49, 64, 81, 100, 169, 324, 529 for scenario

1.

1.4.2 Scenario 2

Aoi, A1; and Ay; are generated from U(—0.6,0.6). The spatial weight matrix W is con-

structed as follows. First, we construct a /p X ,/p row-normalized matrix W*, where
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W* is chosen such that the first two sub-diagonal elements are all 1 and the rest elements
are all 0 before normalizing. Then we treat W as a /p X /p block matrix and put W*
into the main diagonal, 2nd, 4th, 6th and etc. sub-diagonal block positions. This kind of
W corresponds to the pooling of |/p districts (each district has ,/p locations) which the
evenly numbered districts are connected and the oddly numbered districts are connected
but evenly numbered districts and oddly number districts are separated. Each district has
similar neighboring structures. As p increases, the number of the locations influencing one

specific location increases in the order of |/p, that is

w0 W 0 \\A
0 W+ 0 Wr 0
W pu—
w0 W 0 \\A

The error ¢;; are independently generated from N(0,07), where we generate each o; from
U(0.5,1.5).

Figure 1.4 depicts two boxplots of MAE with p equals to, respectively, 25 and 100.
As the sample size n increases from 100, 250, 500, 750 to 1000, MAE decreases for both
methods.

Figure 1.5 depicts three boxplots as Figure 1.3. The MAE for (1.2.3) increases steadily
as p increases, which matches the result of Theorem 4 when, for instance, si(p) < /p,
so(p) < p and sz(p) < p. The MAE for (1.2.5) after adding ridge penalty is slowly increasing
as well. This might be caused by the fact that, similar to A2(c), quantities in condition

A4(a) is also influenced by p since the number of nonzero elements in w; is in the order of
VP
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Figure 1.4: Boxplots of MAE for estimator (1.2.3) (left panels) and estimator (1.2.5) (right
panels) with p = 25 (top panels) and 100 (bottom panels), n = 100, 250, 500, 750, 1000

for scenario 2.

1.5 Real data analysis

1.5.1 European Consumer Price Indices

We analyze the monthly change rates of the consumer price index (CPI) for the EU member
states, over the years 2003-2010. We use the national harmonized index of consumer prices
calculated by Eurostat, the statistical office of the European Union. For this data set,
n =96 and p = 31.

Figure 1.6 presents the time series plots of the monthly change rates of CPI for the 31
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Figure 1.5: Boxplots of MAE of the original estimator (1.2.3) (the left panel), the root n
consistent estimator (1.2.5) (the middle panel), and the estimator (1.2.5) after adding ridge
penalty (the right panel) with n = 500 and p = 25,49, 64, 81, 100, 169, 324, 529 for scenario

2.
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Figure 1.6: Time series plots of the monthly change rates of CPI for the 31 EU member states.

Each series is subtracted by its mean value.

states. To line up the curves together, each series is centered at its mean value in Figure
1.6. There exist clearly synchronizes on the fluctuations across different states, indicating
the spatial (i.e. cross-state) correlations among different states. Also noticeable is the
varying degrees of the fluctuation over the different states.

Let y; consist of the monthly change rates of CPI for the 31 states. We fit the proposed
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spatial-temporal model (1.2.1) to this data set with the parameters estimated by (1.2.3). We
take a normalized sample correlation matrix of y; as the spatial weight matrix W = (w;;),
i.e. we let w;; be the absolute value of the sample correlation between the ¢-th and j-th
states for ¢ # j, and w; = 0, and then replace w;; by w;;/ >, wy;-

Figure 1.7 presents the scatter plots of y;; against, respectively, the 3 regressors in
model (1.2.1), i.e. W]y, Yir—1, W, yi1, for four selected states Belgium, Greece, France
and Iceland. We superimpose the straight line y = in x in each of those 3 scatter plots
with, respectively, 7 = 0,1,2. It is clear that the estimated slopes are very different for
those 4 states. Figure 1.8 plots the true monthly change rates of the CPI for those 4 states

together with the fitted values

Yir = AoiW, yi + Milit—1 + oW, Yi 1. (1.5.12)

Overall y; ; tracks its truth value reasonably well. Figure 1.9 shows the out-of-sample
forecasting performance of our model. For the sake of comparison, predictions are made
using our model and the proposed generalized Yule-Walker estimator, and using the (con-
stant) SDPD model of Yu et al. (2008) and their Quasi-Maximum Likelihood estimator. In
particular, for each location, we leave out from the sample the last six observations and we
compute the (out-of-sample) forecasts with 1,2,....6 step ahead forecasting horizon; then,
we compute the average prediction error over time (i.e. the mean of the 6 prediction errors).
On the left panel of Figure 1.9, the two box-plots summarize the average prediction error
for the 31 locations obtained with our YW estimator and the QML estimator of Yu et al.
(2008), respectively. It is evident that our estimator produces unbiased predictions while
the QML estimator appears to be biased. This advantage also reflects on the forecasting
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Figure 1.7: The scatter plots of y;; against w]y; (panels on the top), y; ;1 (panels in the
middle), and wly; ; (panels on the bottom) for four selected countries Belgium, Greece,

France and Iceland. The straight lines y = A\;;x are superimposed in the panels on the top

with 5 = 0, those in the middle with j = 1, and those on the bottom with 7 = 2.

average square errors, reported on the right panel of Figure 1.9. In conclusion, the SDPD
model of Yu et al. (2008) has a satisfying forecasting performance because several locations
have similar spatial structure and for those locations a model with constant parameters is
sufficient. Anyway, a marginal improvement is observed for our estimator because several
locations have quite different structures and our model is able to capture this difference.
Finally, it is worthwhile to notice that the variability of the two predictors appears to be

the same.
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Figure 1.8: The monthly change rates of CPI (thin lines) of Belgium, Greece, France and Iceland,

and their estimated values (thick lines) by model (1.2.1).
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Figure 1.9: Prediction errors generated in the out-of-sample forecasting, leaving out 6 observa-
tions from the sample, using our model with the Generalized Yule-Walker estimator and using

the constant SDPD model of Yu et al. (2008) with the Quasi-Maximum Likelihood estimator.

To further vindicate the necessity to use different coefficients for different states, we

consider a statistical test for hypothesis

H0:>\j1:“':)\ j:0,172

P
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for model (1.2.1). Then the residuals resulting from the fitted model under Hy will be
greater than the residuals without H,. However if Hy is true, the difference between the
two sets of residuals should not be significant. We apply a bootstrap method to test this

significance. Let Xo, Xl, X2 be the estimates under hypothesis Hy. Define the test statistic

1< - - - -
U= n Z lye = yells, yi = AWy + Aiyi-1 + AWy .
t=1

We reject Hy for large values of U. To assess how large is large, we generate a bootstrap

data from
Vi = 3\/0‘7‘/-}’1: + 5\/1}’15—1 + XQWYt—l + €7,
where {ef} are drawn independently from the residuals
Er=Y:— Y t=1,---,n,

and y, consists of the components defined in (1.5.12). Now the bootstrap statistic is defined

as
% ]_ “ * * * *
U == i = AWy + Ay + Wy
t=1

where (A, Aj, A3) is the estimated coefficients for the regression model
Vi = AWy + iy + oWy, + &, t=1,---,n.
The P-value for testing hypothesis Hy is defined as
PU" > Ulyy, -+ ,yn),

which is approximated by the relative frequency of the event (U* > U) in a repeated
bootstrap sampling with a large number of replications. By repeating bootstrap sampling
1000 times, the estimated P-value is 0, exhibiting strong evidence against the null hypoth-
esis Hy. Therefore the model with the equal slope parameters across different locations is
inadequate for this particular data set.
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1.5.2 Modeling mortality rates

Now we analyze the annual Italian male and female mortality rates for different ages (be-
tween 0 and 104) in the period of 1950 — 2009 based on the proposed model (1.2.1). The data
were downloaded from the Human Mortality Database (see the website http: //www.mortality.org/).
Let m;; be the log mortality rate of female or male at age ¢ and in Year ¢t. Those data
are plotted in Figure 1.10. Two panels on the left plot are the female and male mortal-
ity against different age in each year. More precisely the curves {m;;, i = 1,---,21} for
t < 1970 are plotted in red, those for ¢ > 1990 are in blue, those with 1970 < ¢ < 1989
are in grey. Those curves show clearly that the mortality rate decreases over the years for
almost all age groups (except a few outliers at the top end). Two panels in the middle
of Figure 1.10 plot the log mortality for each age group against time with the following
color code: black for ages not great than 10, grey for ages between 11 and 100, and green
for ages greater than 100. They indicate that the mortality for all age groups decreases
over time, the most significant decreases occur at the young age groups. Furthermore,
the fluctuation of the mortality rates for the top age groups reduces significantly over the
years, while the mean mortality rates for those groups remain about the same. This can be
seen more clearly in the two panels on the right which plot differenced log mortality rates
{yit, t =1951,--- 2009}, using the same colour code, where y;; = m;; — m; ;1.

We fit the differenced log mortality data with model (1.2.1) with the parameters esti-
mated by (1.2.5) and d; = 20. Note that now p = 104 and n = 59. Let the off-diagonal

elements of the spatial weight matrix W be

1

-~ 1<i<j<104
1+ i — ] ==

wij
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Figure 1.10: Log mortality rates of Italian female (3 top panels) and male (3 bottom panels) are
plotted against age from each year in 1950-2009 (2 left panels), against year for each age group
between 0 and 104 (2 middle panels). Differenced log mortality rates are plotted against year for

each age in 2 right panels.

We then replace w;; by w;;/ Y. w;;. Moreover, we can also fix a threshold 7 and set to zero
all the elements of matrix W such that |z — w| > 7 (for simplicity, we fix 7 = 5 in this
application, but the results are substantially invariant for different values of 7).

The results of the estimation are shown in table 1.1, for a selection of cohorts of different

ages. Figure 1.11 shows the fitted series for ages ¢ = 60, 80, 100.
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age Xm’ 3\\12' /)\\21' age X(n’ Xu /)\\21‘
5 | 041 -0.52 0.06 | 55 | 0.19 -0.88 0.28
10 | 0.20 -0.42 0.05 | 60 | -0.09 -0.72 0.01
15 | 0.44 -0.65 0.18 | 65 | 0.22 -0.63 0.21
20 | 0.64 -0.v8 040 | 70 | 0.21 -0.69 0.08
25 |-0.04 -043 0.03 | 75 | 0.33 -0.59 0.22
30 | 0.78 -0.80 0.55 | 80 | 0.33 -0.89 0.27
35 | 0.11 -0.55 029 | 8 | 0.37 -0.76 0.18
40 | -0.04 -0.66 -0.01| 90 | 0.29 -0.62 0.16
45 1 029 -046 0.12 | 95 | 0.27 -0.77 0.26
50 |-0.10 -0.45 -0.05| 100 | 0.44 -0.69 -0.03

Table 1.1: Estimated coefficients for a selection of cohorts of different ages. The left column
is the estimated pure spatial coefficients 3\\01; The middle column is the estimated pure dynamic

coeflicient Xu; The right column is the estimated spatial-dynamic coefficients Xgi.

1.6 Final remark

We propose in this paper a generalized Yule-Walker estimation method for spatio-temporal
models with diagonal coefficients. The setting enlarges the capacity of the popular spatial
dynamic panel data models. Both the asymptotic results and numerical illustration show

that the proposed estimation method works well, although the number of the estimation

equations utilized should be of the order o(y/n).
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Figure 1.11: Observed time series (thin line) and fitted time series (bold line), for female mortality

rate for ages ¢ = 60, 80, 100.

1.7 Appendix: Proofs

We present the proofs for Theorems 2, Corollary 1 and Theorem 4 in this appendix. The
proofs for Theorem 1 and 3 are similar and simpler than that of Theorem 2, and they are
therefore omitted. We also present a lemma (i.e. Lemma 1) at the end of this appendix,
which shows that condition A2 is implied by conditions A1 and B1 — B3; see Remark 1.

We use C' to denote a generic positive constant, which may be different at different places.

Proof of Theorem 2. We first prove (i) of Theorem 2. We only need to prove the
assertions (1) and (2) below, as then the required conclusion follows from (1) and (2)

immediately.
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\/EU" ’ % Z?:l ygﬂ%‘,t-l% Z::l Cityt—1 = N(0, ).

% Z?:l ytT—l(szyt—l)% 2?21 €itYt—1

To prove (1), it suffices to show that for any nonzero vector a = (a1, as, az)?, the linear

combination

% Z?:I Y?q(‘”?)’t)% 2?11 €itYi-1
a % 2;1 yf_lyz-,t_li Z?:l €itYt—1

% 23;1 YtTfl(WiTYzfA)% Z?zl EitYt—1

is asymptotic normal.

Let us take out the dominant term in = 37 | yi (W] y)= >0 €14y first.

1 — 1<
n ; ytT—l(WzTyt)E ; Eityi—1

1 n
- E;}’?A(W?yﬂ—]@[yf_l(wfyt ] Z’slt}’t 1+ Ely (W] yi)] Zftht 1

t=1

n n
1 1 T
— E €itYt—1 1+ — E W, 21y 1€i
n n

t=1 t=1

1 n
1 Z yz—l(W;fYt) - W;-‘le
L =1

:El + EQ.

(1.7.13)
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For term E; and k= 1,2,--- ,p, by Proposition 2.5 of Fan and Yao (2003), we have

n 2

1
E n Z(egyt—lwz‘TYt — e/ S w)
t=1

Z\/ar ekyt 1w Y +—ZCOV ekyt 1W ytvekys 1W; yS)

B 7 o (17.14)
C
=5 T _280‘ [t — s)) 7 [E!ekyt W Yt\qu [E|ek3’s W, ys’%w]m
n t#s
C 1
T4 SN a4 Za =0(>),
t#s
where C' is independent of p. Then it holds that
I~ 7 T T T 1
— Wy —e X w;) =0, (—).
n ;(ek}’t W, Y — €, 2 W) p(\/ﬁ)
Therefore
n P n 2
1 T T 1 T T TN T b
ﬁ Z Vi—1W; Yi — X Wi|| = E Z(ek Yi-1W; y: — €, 2 Wz) = Op( E)
= 2 k=1 t=1

Similarly,

= 0,4/ ).

n
1
— E EitYt—1
n
t=1 2

Since Ey < H% Z?:l Yt—lwzr}’t - Z?WiHQ H% Zle 51‘,th71‘

,» it holds that By = O,(2).

Similar to (1.7.14), we have Var(y/nE;) = O(1). Given 4= = o(1), it holds that VnE; =

0p(1). Hence if p = o(y/n),

1 1 ¢ RN
Vi L Wiy D i = 5 3 WSy i+ o(1)
t=1 t=1 t=1

Similarly, given p = o(y/n), we have

1<~ 1< I & o
X — Z Yi—1Yit—1— Zgi,t}’t—l = —F Z €; EOYt—lﬁi,t + Op<1)a
o L vn t=1

l
\/_X _Zyt 1 W Yt 1 Z&,t}’tq = \/—ZW Eoyt 152t+0p(1)
t=1
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Now it suffices to prove

1 & 1 <« 1 &
Snp = a1—= WiTEIYt—léTi,t + ay—= eiTEOYtAéTz‘,t + a3—= WZTEOthlgi,t

is asymptotic normal.

Note that it holds that
Blw] Sy ags*3 < [BIw Sayi 1) )2 [Eles|* )2 < oo,
Now we calculate the variance of S, ,. It holds that
Var (L i wl S yi_ie t)
V= ’

. | (1.7.15)
T2, O w + 3 (1 1) WIS [2ya () + 25, )] 2w
j=1

and it follows from 7, a( §)™7 < oo that
sup Z |wi %, [2y78i (7) + E}T,’,ai (j)} >Twl
3
<C supZa(j)ﬁ {E|WZT§]1yt_1\4+7}m {E|L€i7t|4+7}m < 0.
3
Similarly,
Cov L i WTElYt—lé"t L i eTEOthlg't
vn = Tvn = 7
n—1 ]
=w! %, ..(0)20e; + Z (1 — ﬁ) w31 [y, () + 30, ()] Soes,
j=1

and sup,, 377 [w{ 3,3y ., (j)Zoe;| < oo. Calculating all the variance and covariance and

summing up them, it follows from dominate convergence theorem that

S,
Var [ —22— ) — 1.
( V aTUz-a>
To prove the asymptotic normality of S, ,, we employ the small-block and large-block

arguments. We partition the set {1,2, -, n} into 2k, + 1 subsets with large blocks of size

40



I, small blocks of size s, and the last remaining set of size n — k, (I, + s,). Put

= [vn/logn], s,=[vnlogn]*, k,=[n/(l,+ s,

where ﬁ <z < 1. Hence
Y

Note that 1, /v/n — 0 is important when we derive the Lindeberg condition of the truncated
partial sum T)-, defined in (1.7.16).

_iy

Since > 77| a(j )T < 0o, we have a(s,) = o(sn * ). It then holds that

~

kna(sy) = o(kn/s:%v) = o(y/nlog n/[\/ﬁlogn]z%) =o(1).

Then we can partition S, , in the following way

kn kn
(2) 1 ?)
S Zf +ar—= Zs‘ ta=) 6
+ CL1L kzn 77(-1) + CL2L kzn 7](.2) + CL3L - 77(.3)
J J J
v j=1 v j=1 Vi j=1
1 1 1
M _— 2 R G))
+ ai \/ﬁg + a2 \/ﬁc + as \/ﬁc ’
where
Jln4+(G—1)sn J(n+sn)
1 1
fj( ) = Z Wi Z1Yi i, 77J(- = Z Wi Sy g,
t=(j—1)(In+sn)+1 t=jln+(G—1)sn+1
jln+(j_1)57L j(lvz+5n)
2 2
53(' = Z el XoYi-18is, 7]]( )= Z e; Xoyi-18it,
t=(j—1)(In+sn)+1 t=jln+(j—1)sn—+1
Jln4+(G—1)sn J(ln+sn)
53(3) = Z W Z0Yi 1€, 77]('3) = Z W S0yi1€i4,
t=(—1)(In+sn)+1 t=jln+(G—1)sn+1
C(l) = Z Wz‘TEIYt—lgi,ta C(2) = Z ezTEOYt—lgi,ta C(g) = Z WzTEOYt—lgi,t'
En (In+sn)+1 En(In+sn)+1 En(ln+sn)+1

41



__(24+v/2)2 . ..
Note that a(n) = o(n™2+72=2 ) and ks, /n — 0, (I, +s,)/n — 0, by applying proposition

2.7 of Fan and Yao (2003), it holds that

1 1 1
_ an(,) =0,(1), and %C(l) —0,(1), 1=1,2,3.

Therefore

k k k
1 n 1) 1 n (2) 1 n (3)
Snp = a1— W 4 a—=Y P 4a3—=> 1o (1) =T,, + o,(1).
P \/ﬁ ]Zl J \/ﬁ jzl J \/ﬁ ]Zl J p P P
We calculate the variance of 7T}, ,,. Similar to (1.7.15), it holds that

k l
1 & k., ky, =
Var (alﬁ E :€J(1)> - a%z\/ar <§§1)> {I1+0(1)} = afg\/ar ( E W?Zlyt_lsijt) {1+0(1)}
j=1 t=1

.
1

ln—1

J . 4
WzTElE%&i(O)EfWi + Z (1 - l_) W;‘le [Ey,ai (J) + Zz:,ai (])} E{Wz
j=1 "

{1+ o(1)}.

Calculating all the variance and covariance and summing up them, by dominated conver-

gence theorem and % — 1, it holds that

T,
Var i) — 1.
( valU,a
Now it suffices to prove the asymptotic normality of 7}, ,. We partition 7;, , into two parts

via truncation. Specifically, we define

Jlnt(—1)sn

1L _ T
&= Y WS sy e <y
t=(j—1)(n+sn)+1

and
Jln+(G—1)sn

DR
5]( ) — Z W;'TE1yt—1€i,tl{|w?21y1_16i,t|>L}'
t=(=1)(nts0)+1
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Similarly, we have 53(-2)L, 53(2)1% and §](3)L’ 51(3)1%' Then

Jj=1 Jj=1 Jj=1
k k k
I <~ or L~ c@r [IR S WE (1.7.16)
Flai—=S WP 4y ST ¢®F Lg—3 ¢! .
(e R
_—mL R
=T" +TF

Similar to computing the Var(T,, ), it holds that

k
I & k.
L 2 (L L 2vn (ML L
Var(T,,) = aiVar <\/ﬁ ]521 3 ) + Q" =aj " Var ( 1 > {1+0o(1)} +Q

ln

Ky,
:afg\/ar (Z W?21Yt—15i,tl{|wf21yt15i,t|§L}> {1+0(1)} + Q"

t=1

knly,

T
Var (Wi E1Yt—1€i,tf{|wiTzlyt_1a,-,t|§L}>

In—1 .
J
+2 z : (1 o l_> Cov (erzlyt’1+j€i»t+j[{\W?21Yt71+j€i,t+j|§L}’ WiTElytflgivt[{\WiT21Yt—1€i,t|§L}) ]

=1 "

{14 0(1)} + QF,

where Q% is the sum of all the rest variance and covariance except Var (al\/%; Z?il é»](l)L).

Therefore

2
oL

Var(TE
Var (—ar( nm)) — 1,
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where we denote 02 as the asymptotic variance of Tan. Similarly, we have

Var (Tfp)

2knln
1

T
Var (Wl Elytflgi’tI{|W?21Yt—1€i,t|>L}>

n

In—1 .
J T T
+ 2 Z (1 o l_> COV (WZ 21yt*1+j6i*t+jI{\WiTEIYt—HjEi,Hj|>L}’ Wi Elyt’lgivtl{\WiTzl}’t—la,t|>L}) ]

j=1

{1+0(1)} +QF,

Define

itT, t°
o= o (i) - (+3)

where i = v/—1 now. We bound M/, , as follows

M,, <E Ty Ty .
np SEeXp | ———— | |exp | ——=— | —
P p alUa p 2 Ua
. L L L
N TR
+ |Eexp | —=£— | — H Eexp
alUia j=1 val'Ua

En it <a1 %@”L + az%ﬁgj(?m + a3\%§](‘3)L) 2 o2
+ H E exXp /aTUia - &xp

Following the same arguments as part 2.7.7 of Fan and Yao (2003), for any € > 0, it holds

that M, , < e asn,p — oo. Hence

% Z?:l y?—l(‘ViTyt)% Z:;l €itYi—1

Vi xa % D i Y£1yi,t—1% Yot EitYi1 /valUza = N(0,1).

% Z?:l y?—l(W?Yt—l)% Z?:l €itYi—1
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1
Substituting a by (U, ?)7a, it holds that

( )

% Z?:l Y£1<W?Yt)% Z?:l €itYt—1

B n n T
a \/ﬁUZ % Zt:l y£1y17t_1% Zt:l 51’,th—1 % a N(O, ]:3),

N
ISH

% Z?:l ytT—l(WzTYt—l)% Z?Zl €itYt—1

\ /

which leads to the fact that

% Z?:l yyzll(WiTYt)% Z?:l €itYt—1

1
-3 d
\/ﬁUi ’ % Do ygllyi,tfli D e EitYi-1 = N(0, ).
% Z?:l YtT—1(Wz‘TYt—1)% Z?zl €itYt—1
To prove (2), let us look at the (1,1)-th element of X7X;. We have

] — 1 —
- ; yia(wiye)— ; Vo1 (w]ye)

1 & 18
- <ﬁ ZytTfl(WiTyt) - Wz'TEI) (E Zthl(WzTYO - 21TWi> (1.7.17)
t=1 t=1
1 n
+ 2w, 3 (ﬁ ; Y1 (W] yi) — E?Wi) +w! 3w,

Using the same arguments as (1.7.14), the first term is O,(2) and the second term is

Op(\/iﬁ). Hence given p = o(n), it holds that

% Z?:l YtT—1(WiTYt)% 2?21 yt—l(WzTyt)

— 1.

Applying the same arguments to the other elements of )A(;‘F}A(Z, it holds that

To prove (ii) in Theorem 2, the required asymptotic result follows from (1.7.13) and

(1.7.17) immediately when p = o(n) and y/n = O(p). The proof is completed. O

45



Proof of Corollary 1. By Theorem 2, it holds that

Ao Xoi
A O,(L)  if & =0(),
A | T Au -
~ O,(E if L= — oo and 2 =o0(1
. N (2) 2 2= o1)
1
for all 7. The required asymptotic result follows from the above result directly. O

Proof of Theorem 4. Let us look at term F; and FEj; in (1.7.13) first under the new

condition (A5). Similar to the proof of (1.7.14), it holds that

3/4 1/4
S S
psy (p)% By — 0,(% (p)

n vn

Ey = Op( )

Hence

3/4

Ly Ly psi(p) | 5" ()
n y£1<w?yt)ﬁ iyi—1 = Op( ln + 0\/5 ).
t=1 t=1

Similarly, we have

3/4

RS IR psy (p) | s
- Z ytT,lyi,Hﬁ Z €iryi—1 = Op( ln + NG
=1 =1

n v

For the first diagonal element of }/QTX“ it follows from considering the three terms in

1 & 1 & p33/4p 51/4])
B V) Dy = 0, 1 ),

(1.7.17) separately that

1/4

1 En: T r. 1 En: T psi(p) 5(1)/4(19)51 (p) T T
n a yt—l( i yt)n - Y l( i Yt) p( n + \/ﬁ ) + i 1]

Similarly,

1 n 1 n ps1(p 81/4 D 81/4 D
E;yf_lyi7t_IE;Yt—lyi,t—l = O, i )—i- 0 )5y ( )) +elTXle;,

n vn

I . psi(d) s ®).  ra wr
n Zyt—l(wi }’t—l)ﬁ Z Yie1(W; Y1) = Op( + )+ w; X w;.
t=1 t=1

n vn
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Divide both the numerator and denominator of estimator (2.2.23) by sa(p), it holds that

Xoi Do
s _ (pSi’“(p) N 83/4(29))
. . "\ nsy(p)  Vnsa(p)/
dai X
2
The required result then follows directly. U

Lemma 1 Under conditions A1 and B1 — B3, condition A2 holds with v = 4.

Proof. It is apparent that part (a) of A2 is satisfied under Al and B1 — B3. y; is
strictly stationary because €;; are 7.i.d across ¢ and ¢ and condition B3. Since the density
function of €, ; exists, a(n) decays exponentially fast, see Pham and Tran (1985). Therefore
P a(j)™ < 0o. Now we prove A2(c) when v = 4.

We present a more general result first: for any p x 1 vector a satisfying sup, [|a[|; < oo,

it holds that

sup B |aTyt‘8 < 00.
p
Note that

y: = ZAhsil()\o)Et,h = Z BhEt,h.
h=0 h=0
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Then

00 8
E|a yt = E a'B,e,_,| =E E bfst_h
h=0
o0
_ T T T T T T T T
=E E (et—hlbhlbhget*hz)(et—hgbhsbh4€t*h4)(et—h5bh5bh6€t*h6)(Et—h7bh7bh8€t*h8>
hi,h2,h3,ha,hs5,he,h7,hg=0
[e%e) p p
=E [by, b} e €j [by,bi Jiine €
- h1Phylitji€ir,t—h1<j1,t—ha hsPh,liajeCio,t—h3<jo,t—hy
hi,h2,h3,ha,hs,heh7,hg=0  i1,j1=1 i2,j2=1
p p
T T
X ( E : [bh5bhﬁ]i3j35i3,t*h55j3,t*h6)( E , [bh7bhs]i4j4€i4,t*h75j4¢*h8>
7:37j3:1 i47j4:1
[e%¢) p
_ T T T
=E E E [bhl bhz]iljl [bh:a bh4]i2j2 [bhs)bhg]isjza [bh7 bhg]14]4

hi,h2,h3,ha,hs5,he,h7,hg=0  41,51,i2,52,13,73,%4,54=1

X Ei1,t—h1Eg1,t—haint—h3€ja,t—haCiz,t—h5E€ j3,t—h6Eia,t—h7Eja,t—hg

o] p

< Z Z ‘[bhl bhz]“]l [bh3 bh4]l2]2 [bhsbhg]lsjs [bh7bh8]l4j4

hi,h2,h3,ha,hs5,he,h7,hs=0  i1,j1,12,52,i3,]3,04,j4=1

X E ’ Eil t—hy €j1 Jt—ho €i2 ,t—hs €j2 t—hy €i3 t—hs €j3 ,t—hg €i4 t—h7 6.74 ;t—hsg ‘

o8} p

<C Z Z ’bhl bz;g ‘iljl |bh3bz:4 |i2j2 ‘bhs b;{@ ’i3j3 ’bh7b£g ‘i4j4

hi,h2,h3,ha,hs,he,h7,he=0  i1,j1,i2,52,i3,]3,i4,54=1

:C[iiii |'°h‘°§|ia}4

h=0 g=0 i=1 j=1

(1718)
Aud
—ii(f}builﬂ) Z pl(Dbhr) (Zrbgr)]
:é(gw)i;(;\bg\)j,
(1719

where <Zh 0 \bh]) is the i-th element of the column vector y 7~ ; |by|.
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Since (-2, IBul);; = >ohto (|AhS_1(A0)‘)U < (3, |A" |S_1()\0)])ij where the row
and column sums of >, ‘Ah} |IS71(Ag)| are bounded uniformly in p, it holds that the row

and column sums of Y3, |By| are bounded uniformly in p. Note that

(i), = (X 1Bfal) < (3 mflal).

where the row and column sums of 377 |BY| and |a| are bounded uniformly in p. Hence

the row and column sums of Y ;° , |B}||a| are bounded uniformly in p. It follows from

(1.7.18) and (1.7.19) that

B ary < [ (Sinl) 3 (Sbil) | = o)
p i=1  h=0 "j=1 " g=0 J

It is easy to prove that
sup || Zow;||1 < oo, sup ||EITWZ~||1 < 00, sup||Xee;|l; < oo.
P P P

Thus sup, [|[w;3oy:|[1 < oo and etc.

The row and column sums of ¥y and ¥; are bounded uniformly in p. Then

supw; 2 8Tw; = O(1).
P

Similarly, we can prove the other diagonal elements of V; and U; are bounded uniformly
in p.

The proof is completed. O
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Chapter 2: Sparse Factor Modelling

for Vast Time Series

2.1 Introduction

Modelling multivariate time series has many important applications in the fields such as
finance, economics and environmental studies. Based on the success of univariate time
series modelling, one natural way of modelling such data is the vector autoregressive and
moving average model (ARMA) models. However, without regularization, vector ARMA
models suffers from the over parametrization and the lack of identification problems, see
Lutkepohl (2006). By assuming the transition matrix of vector autoregressive models to be
sparse, Hsu et al. (2008) proposed a lasso type estimator. Han and Liu (2013) exploited
the linear programming technique and the proposed method is very fast to solve via parallel
computing. Another frequently used approach is modelling using factors. Attempts include
Pena and Box (1987), Stock and Watson (2002), Bai and Ng (2002), Hallin and Liska (2007),
Pan and Yao (2008), Lam, Yao and Bathia (2011), Fan et al. (2013), Onatski (2014).

In this paper, we decompose the original process into a dynamic part, i.e. a common

factor process and a static part, i.e. a white noise process. Motivated by practical needs
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and the characteristic of high dimensional data, the sparsity assumption on factor loading
matrix is imposed. Different from Lam, Yao and Bathia (2011)’s method, which is equiv-
alent to an eigenanalysis of a non negative definite matrix, we add a constraint to control
the number of nonzero elements in each column of the factor loading matrix. Our proposed
sparse estimator is then the solution of a constrained optimization problem. Numerical-
ly, we solve it via the generalized deflation method (Mackey 2009) and GSLDA method
(Moghaddam et al. 2006). The tuning parameter is chosen by cross validation. We estab-
lish the asymptotic results when both the sample size and dimensionality go to infinity or
even when the latter is larger. Compared to Lam, Yao and Bathia (2011)’s method, when
the factor is weak in the sense that § > 1/2 in their paper, our newly proposed estimator
may have a faster convergence rate. Our simulation results convinced that when the com-
mon factor is weak, the newly proposed estimator has smaller error compared to Lam, Yao
and Bathia (2011)’s estimator even when we allow the number of nonzero elements in each
column of the factor loading matrix increases with the dimensionality.

The rest of the paper is organized as follows. Section 2.2 introduces the model, the
motivation for sparsity and the new sparse estimator. The asymptotic theory for the
proposed estimation method is presented in section 2.3. Simulation results and real data
analysis are reported, respectively, in section 2.4 and 2.5. The technical proofs are relegated

to Appendix.
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2.2 Model and Estimation Method

2.2.1 Models

Lety; = (Y14, - ,Yps)! be an observable px 1 vector time series process. The factor model

decomposes y; in the following form:

yi = Ax; + &y, (2.2.20)
where x; = (214, -+ ,2.4)7 is a 7 x 1 latent factor time series with unknown r < p and
A = (aj,ay, -+ ,a,) is a p X r unknown constant matrix. &; is a white noise process with

mean 0 and covariance matrix Xg. The first part of (2.2.20) is a dynamic part and the
serial dependence of y; is driven by x;. We will achieve dimension reduction once r < p
in the sense that the dynamics of y; is driven by a much lower dimensional process x;.
Let the rank of A be r. If the rank of A is smaller than r, (2.2.20) can be expressed
using a lower dimensional factor process. We also assume no linear combination of the
components of x; is white noise. The pair (A,x;) itself is not identifiable since model
(2.2.20) is unchanged if we use the pair (AH, H™x;) to replace it for any r x r nonsingular
H. But the r dimensional linear space spanned by the columns of A, denoted by M(A), is
uniquely defined due to M(A) = M(AH). Without loss of generality, we assume A to be
a column orthogonal matrix, that is A’A = I,., where I,. denotes the r x r identity matrix.
This is because A admits the QR decomposition A = QR, where Q is orthogonal and R
is upper triangular, then we can replace (A, x;) by (Q, Rxy).

We see that A is not identifiable. However, this lack of uniqueness of A can be treated

as an advantage since we can choose any particular A of which the estimation can be
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simple. Note that the (k,7)-th element of A, ay;, measures the effect of the i-th common
factor, z;+, on the k-th random variable of y;, y+: large ax,; means x;; is important to y; ¢,
small ay; means z;; is less important to yi, and a;,; = 0 means the z;; has no effect on
the y ;.

In this paper we assume the latent process x; is weakly stationary. Furthermore, we
assume Cov(xy, €;1x) = 0 for any £ > 0. This allows the correlation between the previous
white noise and the factors up to present, which enlarges the model capacity compared with
most factor modelling literature. Pan and Yao (2008) handled with the non-stationary case.

Note that in model (2.2.20), only y, is observable. Once we obtain the estimator A of
A, we can estimate x; by ;‘;Tyt. The number of the common factors r has to be estimated
as well but in this paper, we focus on the estimation of A and we directly use an estimator
proposed by Lam and Yao (2012). Literature of estimating the number of common factor
r includes Bai and Ng (2002), Hallin and Liska (2007) and Pan and Yao (2008).

From the point of interpretation, sparsity is preferred, especially when the dimension-
ality p is very large. If we want to recover what the common factors represent in practice,

we need the following approximation:
Xy R~ ATyt.

For the i-th common factor x;, at time ¢, it holds that z;; ~ al'y;. We need to figure out the
practical meaning of x;; via the practical meaning of y;;’s and their corresponding weights
ar;’s. When p is large, it is essential to reduce the size of explicitly used y,’s in order
to interpret, where sparse assumption is required. From the point of practical concerns,
when we have a large amount of variables and we are seeking their common factors, it is
more likely that each common factor will only affect some of the variables but not all. In
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practice, there might exist such common factor that influences all the variables in y, and it
is more likely to happen especially when p is small, but this fact does not contradict with
our sparsity assumption.

Let us look at one real example. Lam and Yao (2012) analyzed a multivariate environ-
mental time series data which is a collection of monthly average sea surface air pressure
records (in Pascal) for 528 month from January 1958 to December 2001. For each fixed
month, the data are collected over the same 10 x 44 grid in a range of 22.5° longitude and
110° latitude in the North Atlantic Ocean. They denoted the air pressure in the ¢-th month
at location (u,v) by Pi(u,v), wheret =1,2,--- 528 and u =1,2,--- 10, v =1,2,--- ,44.
If we vectorize these 440 locations in y; for each month ¢, then we get a 440 dimension-
al time series data with 528 observations. They analyzed this data using common factor
model above and estimated A, x; and r by their proposed method. Figure 2.12 is the plot

of the factor loadings of the 3 (¥ = 3) common factors.

10 20 a0 40

Figure 2.12: Factor loading surface of the 1st, 2nd and 3rd factors (from left to right)

10 20 i 40

The x-axis is v and y-axis is u. The ¢-th plot represents the loadings of i-th common
factor, which is the i-th column of A. Some patterns are as follows: the 1st factor mainly
influences the north and northeast in particular; the 2nd factor is the main factor for most
part except for the narrow middle part; the southeast is mainly influenced by the 3rd factor.
Also note that there are some small (sky-blue and yellow parts) or even zero (green part)
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loadings of each common factor. For example, the very south part of 1st plot, the narrow
middle part of 2nd plot and the north and west part of 3rd plot are with small factor

loadings. These imply the sparsity condition of A.

2.2.2 Estimation

We introduce some notations first. For a p x 1 vector v = (vy, -+ ,v,)7, ||[v]l2 = b v?

i=1Yi
is the Euclidean norm and ||v||o =card{support(v)} is the number of non zero elements in
v. Let V be the set of p x r orthogonal matrices. Let V+ be the set of p x (p—r) orthogonal
matrices such that (V,V+) is orthogonal, where V € V, V+ € V1. For a set K, |K| is its
cardinality. For a p x 7 matrix U = (uy, -+ ,u,), define [[Ullo = >_¥_, I{||w.[|2 # 0} where
u;, is the j-th row of U. Note that ||U||p counts the number of nonzero rows in U.

Note that A equals to the matrix consisting of the first r orthonormal eigenvectors of

the p x p positive semidefinite matrix

ko
M=) %y (k)Sy (k)" (2.2.21)
k=1
corresponding to its r non-zero eigenvalues, where X, (k) = Cov(yiik,y:) and ko is a

predetermined positive constant. Denote \; as the i-th largest eigenvalue of M. See Lam,

Yao and Bathia (2011) for more details.

Put
M =) 3 (k)2y (k)" (2.2.22)
k=1
where
N 1 n—=k
Sy (k) = (yirre = ¥)(y: =),
n—=k —

and y =n"'>7" v
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We assume ||A o < s. To obtain the estimator M(A) of M(A), it suffices to solve the

following optimization problem:
A= argr\rflagjctr(VTK/I\V) subject to  [[V]lo < s. (2.2.23)
€

Note that for V € V and V+ € V+, we have tr(VTﬁV) = tr(ﬁ) — tr((VL)TﬁVL).
Since tr((VH)TMVL) > 0, it follows that maxtr(VIMYV) = ¢r(M) when V consists of
the r eigenvectors of M corresponding its r non-zero eigenvalues. This means without the
sparsity constraint |[V]|o < s. the solution of (2.2.23) is the same as the estimator of Lam,
Yao and Bathia (2011). Numerically, we employ the generalized deflation method (Mackey

2009) to approximate A in (2.2.23). Specifically, the algorithm is as follows

(1) Input M and the cardinalities of 7 columns {81, , 8-}
(2) Initialize i = 1, s = s; and B =1,,.

(3) Solve v = arg max VT/MV, Compute q = Bv.
vIBv=1,||v|[o<s

(4) Update M by M (I, — qu)M\(Ip —qql).
Update B by B + B(I, — qq”).

Update 1 <~ i+ 1, s < s;.
(5) Return v/||v||2.
(6) Repeat step (3) to (5) until i =r + 1.

Apparently, we totally repeat r times. The i-th, ¢ = 1,--- |7 output in step (5) is the
sparse estimator of the i-th column of A. We also need to numerically approximate the
solution of the optimization in step (3), where we adopt the GSLDA method (Moghaddam
et al. 2006), specifically, the algorithm is as follows
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(3.1) Decompose B = UDUT and set BY/2 = UDY2UT and C = B-1/2MB~1/2,
(3.2) Initialize t = 1 and xq € R?.

(3.3) Compute x; = Ty (%), where T,(x) only keeps elements of x with the largest

s absolute values and sets all other elements to be 0.
(3.4) Compute x; = x;. Update t -t + 1.
(3.5) Repeat step (3.3) and (3.4) until x; is convergent.

The obtained x; is the solution of the optimization problem in step (3).

In practice, we use the ratio-based estimator to get the estimator for r, which is defined

by:
T =arg 12}21R)\j+1//\j (2.2.24)

where Xl >0 > Xp are the eigenvalues of M and the integer R(r < R < p) can be chosen

as, for instance, p/2. More details are in Lam and Yao (2012).

2.3 Theoretical Properties

Summarizing the assumptions, we have

Al. A is column orthogonal, that is, A’A = I,; a’x; is not white noise for any a € RP?;

Ep ~ WN(O, 28)
A2. The factor loading matrix is sparse in the sense that [|Allp < s.

A3. The covariance matrix Cov(xy, &,4x) = 0 for any k£ > 0.

o7



A4. The eigenvalues of M satisfies Ay > --- > A\, > 0= \j1 == A\,

A5. There exist positive constants K and r; € (0, 1] such that the process {y:} in model

(2.2.20) is strictly stationary and a-mixing with mixing coefficients satisfying
CY(U) S exp(_Klum)a
for any u > 1, where

a(u)=  sup  |P(A)P(B) — P(AB)|, (2.3.25)
AeF° _,BEF

and F/ denotes the o-algebra generated by {y;,i <t < j}.
A6. There exist positive constants Ks, K3 and r9 € (0, 2] such that
PV (ye — Eyi)| > 7) < Kyexp(—K37™),
for any 7 > 0 and unit vector v.

Conditions Al, A3 and A4 are regularity conditions the same as Lam, Yao and Bathia
(2011). Condition A2 is the sparsity assumption. Condition A6 requires the linear combi-
nation of y; has exponential type tails. Together with A5, they allow us to apply the large
deviation theory in Merlevéde et al. (2011). the requirements of r; < 2 and ry < 1 are not
necessary. The theoretical results proposed can still be established for r; > 2 and ry > 1.
They are assumed here to simplify the presentation of the theoretical results.

We first present a result for the leading eigenvector estimator a;. This is a special case
of (2.2.23) when we restrict V to be a p x 1 vector, in which case the optimization problem
becomes

a; = arg max v?Mv subject to Ivllo < s. (2.3.26)

[vl2=1

Theorem 5 and 6 are the asymptotic properties when p is fixed.
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Theorem 5 Let conditions A1, A3 — A5 hold and a; be the solution of (2.3.26). When p

18 fized, as n — 00, it holds that

1 — (@Tay)? = op(%).

Theorem 5 is the consistency result of the leading eigenvector estimator a;. Theorem 6

extends the above result to the A.

Theorem 6 Let conditions A1, A3 — A5 hold and A be the solution of (2.2.23). When p

18 fized, as n — 00, it holds that

AAT(I— AAT)|p =0 (-1
|AAT(T - AAT) = Op( 7).

where || - || is the Frobenius norm.

|AAT(I — AAT)||p is the canonical angle between two subspaces M(A) and M(A),
see Vu and Lei (2013) for more details. When r = 1, |[AAT(I — AAT)||p = /1 — (alay)2.
Theorem 5 and 6 and two trivial results since p is fixed. The asymptotic properties are

presented in Theorem 7 and 8 when p increases with n.

Theorem 7 Let conditions A1 — A6 hold and @, be the solution of (2.3.26). As n —

00, p — o0, it holds that

~ M2 [s3plogp
— T 2 —
\/1—(aja;) Op</\1 Y \/ . ) (2.3.27)

Theorem 8 Let conditions A1 — A6 hold and A be the solution of (2.2.28). Asn —

00, p — o0, it holds that

~ A2 [g3p]
|AAT(I — AAT)||p = op( : /2 pnogp), (2.3.28)

where || - || is the Frobenius norm.
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Compared with Lam, Yao and Bathia (2011)’s estimator, which owns the convergent
rate 5—; for 6 € [0, 1], if the factor is weak enough in the sense that § is large than 0.5, our

plogp
n

sparse estimator will obtain a faster convergent rate , for example, when s and \;’s

are all constants.

2.4 Choice of Tuning Parameter

In practice, the cardinality of A is unknown. We can choose it via cross validation. Let the
training sample size and validation sample size be n, and ns respectively, where n;+ns = n.
Assume the set of the possible cardinality s is S. For each fixed s € S, we fit model
(2.2.20) using y1,- - , ¥n, With our proposed sparse estimation procedure and obtained :&8.
Consequently, we estimate the factors by X; = KsTyt,t =1,---,n1. We can then make a
one step ahead prediction for y; by y,, 11 = Ksﬁfjl) 41, Where §7(111) .1 is a one step forecast
for x;, based on the estimated past Xi,---,X,,, for example by fitting a autoregressive
model to Xp,--+,X,,. Then we obtained the test error for y,, .1, which is defined as
|YVni41 — Yny+1ll2/p- We then perform the above procedure of ny rolling windows each of

length n; and compute the test error of the one step forecast of y;. Hence we obtained the

error for the ¢-th rolling window

”yn1+’i - S,\nl‘i’iHQ’i — 1
p

y o, Na.

The measure of the prediction with tuning parameter s is defined as

1 ymiti = Pl
Erry = — UL AL Ral Y 2.4.29
M; . (2.4.29)

We then choose the tuning parameter minimizing Err, among s € S.
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2.5 Simulation Studies

To examine the finite sample performance of the proposed estimation methods, we conduct

some simulations under different scenarios.

2.5.1 scenario 1

We consider a simple sparse one factor model. We generate a s x 1 unit vector z firstly,
where we set s = [\/p| + 1. We then construct A such that the 1st to s-th elements of
A equal to z, and the rest of A are all zeros. Note that in this simple one factor model,
the true factor loading matrix we are estimating is simply the vector A we construct. The
factor process is generate from x; = 0.8z;_1 + n; and 7; are independently generated from
N(0,1). The noise terms ¢;; are independently generated from N (0, 1) for all i, .

We generate data from (2.2.20) with different setting for n and p. We apply the proposed
method and compare the error (2.3.27) with the estimation method of Lam, Yao and
Bathia (2011). For simplicity, we set the tuning parameter cardinality to be the true
number of nonzero elements s. In practice, we need to use cross validation to choose the
cardinality as shown in section 2.4. And in later section 2.5.4, we will see that even if the
chosen cardinality is not the same as the true cardinality, the performance of our proposed
estimator is better than Lam, Yao and Bathia (2011)’s method. The replication time is
200 in all experiments.

Figure 2.13 depicts two boxplots of (2.3.27) with p equals to, respectively, 20 and 200.
The left panel is for the Lam et al,’s method and the right panel is the sparse estimator.

As the sample size n increases from 100, 200, 300, 500 to 1000, (2.3.27) decreases for both
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methods. The performance of the right panel is better than the left.
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Figure 2.13: Boxplots of (2.3.27) for p = 20,200 and n = 100, 200, 300, 500, 1000.

Figure 2.14 depicts three boxplots of (2.3.27) with n equals to, respectively, 200, 300,
500. As p increases from 100, 200, 300, 400 to 500, (2.3.27) increases for both methods.

Again, the performance of the right panel is better than the left.

2.5.2 scenario 2

We consider a three common factor model, that is » = 3. We generate a s x r orthogonal
matrix Z firstly, where we set s = [,/p]+1. We then construct A such that the (i—1)s+1-th
to is-th elements of A, ; equal to Z,; for i = 1,--- ,r and the rest of A are all zeros, where
A, ; represents the i-th column of A. We then independently generated three common

factors from AR(1) process with coefficient 0.8, 0.6, 0.4 respectively. The noise terms ¢;
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Figure 2.14: Boxplots of (2.3.27) for n = 200, 300, 400 and p = 100, 200, 300, 400, 500.

are independently generated from N(0,1) for all i,¢.

Figure 2.15 depicts two boxplots of (2.3.28) with p equals to, respectively, 20 and 200.
The left panel is for Lam et al. (2011)’s method and the right panel is estimator (2.2.23).
As the sample size n increases from 100, 200, 300, 500 to 1000, (2.3.28) decreases for both
methods. Lam et al. (2011)’s method outperforms the estimator (2.2.23) when p = 20.
When p increases to 200, the newly proposed sparse estimator performs better than Lam
et al.’s estimator except for n = 1000.

Figure 2.16 depicts three boxplots of (2.3.28) with n equals to, respectively, 200, 300,
500. As p increases from 100, 200, 300, 400 to 500, (2.3.28) increases for both methods.

Again, the performance of the right panel is better than the left.
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Figure 2.15: Boxplots of (2.3.28) for p = 20,200 and n = 100, 200, 300, 500, 1000.

2.5.3 scenario 3

We consider a three common factor model. We generate A and ¢;, the same as scenario 2.

The factor process x; = (14, T2y, 73,)" is defined by

Tit = Wy, Top = Weg—1, T3t = Wi—2,

where wy; = 0.8z;,_1 + z; and z; are independently generated from N(0,1). The noise terms
e:+ are independently generated from N(0,1) for all ,¢.

Figure 2.17 depicts three boxplots of (2.3.28) with n equals to, respectively, 200, 400.
As p increases from 100, 200, 300, 400 to 500, (2.3.28) increases for both methods. Again,

the performance of the right panel is better than the left.
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Figure 2.16: Boxplots of (2.3.28) for n = 200, 300, 400 and p = 100, 200, 300, 400, 500.

2.5.4 Cross Validation

We consider a single factor model and generate all parameters the same as scenario 1.
We apply the proposed sparse estimation method and use the cross validation method in
section 2.4 to choose the cardinality. We consider four cases: (1) p = 50,n = 500, (2)
p = 200,n = 500, (3) p = 200,n = 300 and (4) p = 500,n = 300. Table 2.2 lists the
mean, standard error of the chosen cardinality and the mean of test errors (2.4.29) for both
methods.

Figure 2.18 depicts four boxplots of (2.3.27) of cases (1) to (4) respectively. The left
panel in each plot is the performance of the eigenanalysis estimator and the right panel is
the sparse estimator where we choose the number of cardinality by cross validation. As we

can see from the plots, even if we the chosen cardinality might be different from the true
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Figure 2.17: Boxplots of (2.3.28) for n = 200,400 and p = 100, 200, 300, 400, 500.

p n | true s s Erreigen | Fyy-sparse

Case 1| 50 | 500 | 8 | 5.7(3.6) | 0.147 | 0.142

Case 2 | 200 | 500 15 12.9(3.0) | 0.070 0.070

Case 3 | 200 | 300 15 13.2(4.5) | 0.070 0.070

Case 4 | 500 | 300 23 11.8(5.5) | 0.045 0.045

Table 2.2: 3 is the chosen cardinality by cross validation, Err¢9¢" and Err®Pas¢ are the

mean of test errors (2.4.29) for both methods.

value, the performance of the sparse estimator still dominates the original eigenanalysis

estimation for all cases.
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Figure 2.18: Boxplots of (2.3.27) for different p and n.

2.6 Real Data Analysis

Let us revisit the monthly sea surface air pressure example in section 2.2. We observe the
air pressure for 528 months and for each month (that is n = 528), we observe 10 x 44 grid,
hence p = 440. The air pressure of (u,v)-th grid is denoted by Pi(u,v), u=1,---,10 and
v =1,---,44. Note that the 440 grids we use in this paper might be different from the
Lam and Yao (2012). We first subtract each data point by the monthly mean over 528
months at each location. The centralized data is plotted in Figure 2.19.

We then employ the ratio-based estimator to estimate the number of common factors.

The estimated eigenvalues in descending order and their ratios are plotted in Figure 2.20.

Note that we choose kg = 1 since the ratio-based estimator is not sensitive to the choice
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Figure 2.19: Time series plot of the sea surface air pressure data at (u,v) = (1,1) (top

panel), (u,v) = (5,5) (middle panel) and (u,v) = (10,5) (bottom panel).

ko. It is clear that 7 = 3.

We fit the model via two methods: Lam and Yao (2012) and the newly proposed sparse
estimator. The number of cardinality is chosen using the cross validation method in section
2.4 and we choose the number of training observations as 475 (roughly 0.9n) and the test
dataset size as 0.1n. The chosen cardinality is 250. Figure 2.21 is the color map of the
estimated factor loading matrix. The test error (2.4.29) using the original method is 26.3,
and 19.8 using the sparse estimation. From this point of view, the newly proposed method

outperforms the previous eigenanalysis method.
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Figure 2.20: Top panel: plots of eigenvalues in descending order and bottom panel: ratios

of eigenvalues of M.

2.7 Appendix: Proofs

In this section we give the proof of theorem 7 and 8. The proof of theorem 5 and 6 are
similar to theorem 7 and 8 but are simpler, hence omitted. We use C' to denote a generic

positive constant, which may be different at different places.
Lemma 2 The estimator a; in (2.3.26) of a; satisfies

sup ]vT(M\ —M)v|.

T
1—(aja;)? < h A\
1 = A2 ||lv|la=1n]v]o<2s

Proof. Recall that the r non-zero eigenvalues of M are \; > --- > A\, with a;,--- ,a,

the corresponding eigenvectors. And let a,;q,a, be the eigenvectors corresponding to the
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Figure 2.21: Factor loading surface of the 1st (top panel), 2nd (middle panel) and 3rd
(bottom panel) factors for the eigenanalysis estimator (left panel) and sparse estimator
(right panel).
0 eigenvalues of M such that ala; = 0 for i # j. Since A\;a; = May, it holds that
M — Alalaf =M — Alalaf — Alala:f + Alalaf
=M —a;al M — Maja! +a;(alMa,)a’
=(I—a;al)M — (I — a;al)Majal

=(I—a,al )M(I — ajal).
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Hence for any ||a||; = 1, it holds that
tr{M(a;a] —aa’)} =tr{Maa] } — tr{Maa’}
=tr{Maa] } — tr{\jajajaa’ } — tr{(M — \ja;a] )aa’ }
=\ — M(a’a;)? —a’ (I —ajal )M(I — ajal )a.
Let b = (I — a;al)a/||(I — a;al)al|y, since b"a; = 0, we have b € M(ay,--- ,a,). Since

"_ya;aj =1, it holds that

i bTa)? Z (aTa;)? B a’(3F_,a;af)a _ al(I-ajal)a _1
: 2 I@T—aial)al;  [T-aal)al;  [(I-aaf)alf3

It then follows that

p p
bTMb =b" > Najalb =Y ;(bTa))? < .

J=1 Jj=2

Hence
a’ (I —ajal )M(I — ajal )a < \||(I—ajal)al|z = Xy — Ay(a’ay)?
Substituting a by a;, we then obtain
tr{M(aja] —a;a;)} > (M — A)(1 — (@] a1)?).
Note that a; = arg [nax, vIMv subject to ||v]jo < s, since |ja;|| < s, it holds that

tr{M(@al —a,al)} =alMa, — alMa, > 0.

Then we have

1 — (ala;)? S/\ <tr{M(a1a1T —aa))} + tr{l/\/I\(ﬁlﬁlT - alalT)})
1= A

1
IPYEDY

tr{ (M — M)(a;al —&,a!)}.
The rest work is to bound tr{(M — M)(a;al — a;al)}. Let IT be a diagonal matrix with

diagonal values being 1 if and only if the corresponding entries in a; or a; are nonzero.
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Then there are at most 2s nonzero elements in II. Then Ila; = a; and IIa; = a;. It then

holds that
tr{ (M — M)(aia] —aa])}
—tr{ (M — M)TI(ayal — a,a7)IT}
—tr{TI(M — M)TI(a;al —a,al)}.

For any two p x p matrices A and B, by SVD, we have

hS]

p
tr(A"B) = tr(A"UDV") = tr(VTA"UD) = > ") (V'ATU); Dy
=1 k=1
p p
= (VIATU);D; < [VIA™U|, Y Dyi = |A]]B s,
=1

=1

where ||B||s denotes the sum of singular values of B. Hence
tr{H(M—ﬁ)H(alaf ﬁlal)} < |ITI(M — M)HH lajal —a,a] ||,

and

tr{ (M — M)(a;al — &a!)} < |TI(M — M)T||; x 24/1 — (aTa,)?,

due to lemma A.1.1 of Vu and Lei (2012) which shows ajal —a;a] has the following singular

values: v/1 — (aTa;)?, /1 — (aTa;)2,0,0,--- ,0. Therefore,

2

1—

1 - (aTa,)? < ITL(M — M),
A Ao

=3 2 ” Hsﬁzplx H(M—ﬁ)l‘[x
2 x TI —  IIx
= 2 e ™M M
2 x TI —  IIx
>\1 >\2||x||21||XTH||2( - )m
2

sup vi(M — /1\/\.[)V|

T AL = A2 |v]a=1n||v]jo<2s
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Lemma 3 Under conditions A1 — A6, let 4y = r' + 2yt and 451 = ri' + 1yt As
n — oo and p — 0o, for any ||v||2 = 1,||v|lo < 2s and t > 0, it holds that

P(|VT(M ~ M)v]| > t>

nM /2

<C'spnexp { — CSTle/Q

n’YQ t72/4
§72/2 pr2/4 }

}—l—Cspnexp{ - C

t t
+C’spexp{—C’%—}jLC’spexp{—Cﬁ —}
s°p SV P
n’Yl t71

n? $2/2 }

+ Cspnexp { - C $72/2 A¥2/4p“/2/4

}+C’spnexp{ - C

S7 /\’;1/2])’71/2

+ C’spexp{ — C’%%Zp} + C’spexp{ — Cg\//t\Tp}

Proof. WLOG, for simplicity, we set ko = 1. For any ||v|[2 = 1, ||v|lo < 2s, we have

v (M~ M)v|
— VTS, (1), (1)v — VIS, (1) (1)v]
— VT (Sy(1) = By (1))(E, (1) = S (1) + 297 (8 (1) — 2y (1)3 (1)
(2.7.30)
VT (Sy(1) = 3y (1))(Z, (1) — =L (1))v

where we denote F = vT (S (1) — £y (1))(S, (1) — BT (1)v.

Denote the (i, 7)-th element of f]y(l) and Xy (1) by 5" and o' respectively and v =

.3 1,3
(vy, -+ ,v,)T. WLOG, we assume the first 2s elements of v are non zeros. It then holds
that
S W S NP N (S ()
B= (e ol Xl - o) |, =X (X u@l - o)
i=1 i=1 j=1 =1
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For any 7 > 0, it holds that

PE>T1)=

s
/N
()=
/N
&
Q)
N
|
Q
NG
N
)
IV
\]
N——

j=1

p 2s

=S P (| St - ofl)
i=1

>, /%)
=1 p
fP(Zmuou NG
J=1 P
<> r(Xe o= 7)
J=1 p
P& 1 /7
~(1
<33P - o1z 55\/5)

j=1 i=1 p

It follows from lemma 9 of Chang, Guo and Yao (2014) that
P13 ~ ol > 1 )
ij Wl =95\ p
<Cnexp { — C(i Z>Mn71} + Cnexp { — C(i Z>72/2n72}
- 2s\I p 2s\l p
1 2 1
+Cexp{—0<— Z) n}—l—Cexp{—C— Zn}
2s\/ p 2s\I p

n’yl T'Yl/z n'YQ 7-72/4
:Cnexp{ - C = p71/2} —|—Cnexp{ 0_372/2 p—72/4}
+Cexp{—C%Z}—i-Cexp{—CE Z}.
s°p syp

Therefore,

n’Yl 7—'71/2
P(E>T) SC’spnexp{ CEp’ﬂ/?

n’YQ 7—'72/4
§72/2 pr2/4 }

} + Cspnexp { —
(2.7.31)

+ C’spexp{ — C’%%} + C’spexp{ — C’g %}
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By (2.7.30) and (2.7.31), for any ¢ > 0, we have

P{]VT(ﬁ ~M)v| > t}

SP{(E +2VEVN) > t}

2

t
<P{E > -} P{E > }
- -2 * — 16X\
nt t'Yl/Q no2 t72/4
t t
+ C’spexp{ — C%—} + C’spexp{ _cZ —}

S“p S p

/”L'Yl t"Yl

n2 $12/2
5v2/2 >\¥2/4p“/2/4 }

—I—C'spnexp{—C’ }+C’spnexp{—0

S7 A¥1/2p71/2

+ C’spexp{ — C’%%Zp} + C’spexp{ — Cg\//t\Tp}

O

Proof of Theorem 7. Let SP~! be the set of p-dimensional unit vector and B(s) be the
set such that all elements satisfies ||x|lo < s. Let K be a fixed subsect K C {1,2,---,p}

with |K| = 2s, for example, K = {1,2,--- ,2s}. Define
BK:{V| for any (&S {1a2) 7p}/K7Uz:0}

In order to proceed, we need the following result: An e-net N, of a sphere SP~! is a subset

of SP7! such that for any v € SP~1, there exists u € N, subject to [J[u—v| < e. Two existed

results we will use are (1) for any € > 0, it holds that |[N.| < (1 + 2/€)P. (2) for any p X p

matrix A and e € (0,1/2), it holds that supy, cg-1 |v{ Avy| < (1 —2€) 7' supy,en, [V3 Aval.
Now we can go on with the original proof.

Let the 1-net of S"* N By be Nk, for any ¢ > 0, according to the above results (1) and (2),
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we have

P( sup l\/_[ M)v\>t>

vesp— 1ﬁIB%K

<P((1—-2x1/4)""sup |VT(M\—M)V| Zt)

(
(U

{ (M — M)v]| > t/2}>

veNg

P

Z (yv (M — M)v|>t/2)

<Nl sup (V' (M = M)v| > /2)

veNg

<(1+2/(1/4)* sup P(Iv" (M~ M)v| > 1/2)

veNg

=9 sup P(\VT(ﬁ —M)v| > t/2),

veNg

where the 2s (instead of p) in the last inequality is because for a fixed K C {1,2,--- ,p}
with |K| = 2s, SP7! N By is equivalent to a subset of S>*7!, hence we can employ the e-net
arguments on such a subset.

Now we allow for arbitrage subset K C {1,2,--- ,p} with |K| = 2s, it then follows that

P( sup |VT(ﬁ —M)v| > t)

veSP—INBg(2s)

< Z P( sup |VT<M\ —M)v| > t)
KC{1727"'7p} VESP?lmBK (2732)

veNg

g( Y )928 sup P(M(ﬁ ~M)v| > t/2>.
2s
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Therefore, by lemma 2, lemma 3 and (2.7.32), we have

2t
P< 1—(afa;)? > )\1_)\2)
2 . ot
M — M)v| > )
sup v ( Jv| = N

AL — Az veSP—1NBy(2s)

gP(2

:P< sup |VT(/M —M)v| > t)

veSP—1NBy(2s)

veNg

g( P )928 sup P(|VT<ﬁ—M)vy > t/2>
2s

b 2s n /2 nY2 r2/4
< 9 CszmeXp{ C—pw2} +Cspnexp{ _CWW}
2s

nt n |t
+Cspexp{—0—2—}+08pexp{ —\/j
s°p SVPp

}
(-

n’Yl t’Yl
+ Cspnexp { - 37—)\? /va1/2 } + C'spnexp C 572/2 A\ /4p72 /4
+Ospop { - 0B C Y b Cspep { - 02
Sp ex T Sp ex — 00— .
D €exXp ) D €Xp s voup

For a sufficient large constant M > 0, let

t = M>\11/21 /s:”pl—ogp’
n

p
(note that the s in s* comes from bounding (

>92S and s? in s comes from the expo-
2s

nential terms). We then have

~ )\11/2 s¥plogp
1_(3{5‘1)2:0”<A1—A2 n )

Lemma 4 The estimator A in (2.2.23) of A satisfies

2y/TSUD |y = 11w lo<2rs | VT (M — M)V

|AAT(I- AAT)|p < N

7



Proof. It is straightforward by employing lemma 5, lemma 6 and lemma 7 of Wang, Han
and Liu (2013). Note that the assumption [|All¢ < s is used in the proof of lemma 6 in

Wang, Han and Liu (2013). O

NN T su — VT A* v
Proof of Theorem 8. Since ||[AAT(I—AAT)||r < 2 p"“"Q_lm""")f’S"’”S' (M= |, replac-

ing s by rs in lemma 3 and Theorem 7 and following the same arguments as above, we

N M2 [s3plo
T7 T _ 1 plogp
IAAT(I— AA )HF—Op( Vo )

have
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Chapter 3: Group Lasso for

Covariance Matrix Break Detection

3.1 Introduction

Detecting multiple change points in univariate time series has been widely discussed, see
Chen and Gupta (1997), Davis et al. (2006) and Davis et al. (2008) for example. The
second order nonstationarities observed in large panel of asset returns (see Fan et al. (2011))
implies the importance of the detection of change points of the second order structure of
multivariate time series. Vert and Bleakley (2010) describe other interesting examples
of multivariate, nonstationary time series in many other fields, such as signal processing,
biology and medicine. Current attempts on the detection of second order structure change
include Cho and Fryzlewicz (2015). They considered a piecewise stationary, multivariate
time series with a time varying second order structure, where the autocovariance and
cross-covariance functions are asymptotically piecewise constant and hence the time series
is approximately stationary between change-points in these functions. They proposed a
CUSUM-based binary segmentation method for the multiple change-points case. Based

on the classical CUMSUM test, Aue, Hérmann, Horvath and Reimherr (AHHR) (2009)
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proposed a nonparametric method to assess the stability of volatilities and cross-volatilites
of linear and nonlinear multivariate time series models, but only for a single change point.

We attempted to detect multiple change points of general multivariate time sereis, that
is, unlike Aue, Hormann, Horvath and Reimherr (AHHR) (2009), we allow more than one
or even diverging number of change points and unlike Cho and Fryzlewicz (2015), we do
not consider any specific models. By reformulating the problem in a variable selection
context, the group least absolute shrinkage and selection operator (LASSO) is proposed to
estimate the locations of the change points. Our method is model-free, it can be extensively
applied to multivariate time series, such as GARCH and stochastic volatility models. It is
shown that the locations of the change points can be consistently estimated by the group
LASSO procedure when we have the knowledge of the number of change points, and the
computation can be efficiently performed. However, the number of the change point is
unknown in practice and it can be shown that the group LASSO procedure will over-
estimate the number of the change points most times. Hence an improved practical version
that incorporates group LASSO and the stepwise regression variable selection technique are
discussed. The two-step procedure can consistently estimate both the number of change
points and the locations of the change points.

The rest of the paper is organized as follows. Section 3.2 introduces the model and the
two-step estimation method. The asymptotic theory for the proposed estimation method is
presented in Section 3.3. Simulation results are reported in Section 3.4. A short discussion
of future work is presented in Section 3.5. All the technical proofs are relegated to an

Appendix.
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3.2 Problem and Estimation Method

3.2.1 Problem

Let y; = (w1, - ,¥ip)" be an observable p x 1 vector time series process with mean zero
and covariance matrix Cov(y;) = Xy = (04j1)pxp. Our interest in this paper is to estimate

the following multiple changes of the covariance structure X;:

where 1l =ty <t < -+ <tpyp=n+1land 3, | # %, fori=1,2,--- ,m. When p is
fixed and m = 1, the above question is discussed by Aue, Hormann, Horvath and Reimherr
(AHHR) (2009) by based on classical CUMSUM test. Recently, Cho and Fryzlewicz (2015)
proposed a CUSUM-based binary segmentation method for the multiple change-points case,
but they assume that each of the components of y; follows a piecewise stochastic volatility

model, i.e., for each component y;; of yy,
Y = o(t/n) 22 t=1,--- n,i=1,2,---p, (3.2.34)

where n is the sample size, 0;(t/n) is a piecewise constant function and Zj; is a sequence
of standard normal variables. The purpose of this paper is to propose a model-free and
efficient algorithm for the estimation of the change points in (3.2.33) with big m and

possibly diverging with n.

3.2.2 One-step Estimation
For any matrix A = (a;;)pxp, define

T
VeC(A) - (allv”' y A1p, A21, * *+ , A2p, @31, ,A3p, * ** , Ap1, " ° aapp) ’
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that is, the vector consists of all the elements of the matrix. Let
[I,Z-:VGC(Et), it t,1<t<tj,i=1,---,m+1.

Then the detection of the covariance structure in (3.2.33) is equivalent to identifying the
change-points (¢1,- - ,t,). Denote x; = vec(y;y;). Since E(y;y;) = 3, we can see the
change point detection problem (3.2.33) as the multiple change-points in mean of the fol-

lowing model:

m—+1

xe =Y {p;+e}l(tig <t <ty (3.2.35)

i=1

Thus, we can estimate the change-points via group Lasso procedure as in Chan, Yau
and Zhang (2014), see also Harchaoui and Lévy-Leduc (2010). Specifically, let x(n) =
(X{7Xg7 e 7X£)T7 8(”) = (€{7 T ET)Tv 0(”) = (0{7 T 705)T and Q be an an X np2

matrix defined by

100 0
I 1T0..0
Q=111 0 |
I 11 ..1

where I is the p? x p? identity matrix. Set 8, = p, and

M — p;, when i =t; where t; is a changepoint in (3.2.35),
9,- -

0, otherwise ,

for + = 2,...,n. Throughout this paper, for a vector @, the notations 8 = 0 and 6 # 0
mean that @ has all entries zero and has at least one non-zero entry, respectively. It can

be seen that model (3.2.35) can be expressed as a high dimensional regression model

x(n) = QO(n) +e(n). (3.2.36)
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Since only m+1 of the vectors ;s in 8(n) are non-zero, we look for a sparse solution to the
high dimension regression model (3.2.36). A well-known solution to this problem is given
by the group lasso estimation (Yuan and Lin (2006)). Thus, we propose to estimate 6(n)

by the following group LASSO equation:

0(n) = argming(,) —[x(n) — QO(n)[[* +Au > 1164l (3.2.37)
=1

where A\, > 0 is the regularization parameter. Note that when /B\Z # 0, 1 > 2, there is a
change point at time 7. Thus the structural breaks ¢;, 7 = 1,2,...,m can be estimated by
identifying those 51-, (¢ > 2) which are not zero. We denote the estimates of the change

points by A, = {t > 2: /ét # 0} = {%\1’ vtA\Anl}'

3.2.3 Two-step estimation procedure

Using the GLASSO procedure for estimating the number of change points, which is usually
larger than the true number of change points, see Theorem 10 below. T'wo immediate issues
arise: (i) how to estimate the true number of breaks, and (ii) how to estimate the change
points with a nearly optimal rate? These two issues are dealt with in this subsection.
However, it is known that with probability tending to 1, all the true change points can
be identified within a nv, neighborhood, see Theorem 10 below. Therefore, the change-
points can be consistently estimated and are identified within A4,,. One way to achieve this
mission is to choose the “best possible subset” of change points in 4, according to some
prescribed information criterion (/C'). Given any m and the change points t = (t1,..., %),
an information criterion IC'(m,t) typically consists of a sum of a goodness-of-fit measure
and a penalty term that accounts for the model complexity. Specifically, let ﬁj = (t; —

tj—1

ti1)~! Loy, Xt be the least squares estimator and S, (t;_1,t;) = b1

t=t; 1

Ixe — i;1* be
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the residual sum of squares from time ¢;_; to ¢;—1. Consider a general information criterion

of the form

IC(m,t) = S,(t1,ta, ... tm) + mw, , (3.2.38)
where the least squares criterion S, (t1,to, ..., ty) = Z;n:ﬁl Sn(tj—1,t;) is the goodness-of-fit

measure and w,, is the penalty term. We estimate the number and locations of the change

points by solving

7%,? =ar min 1C(m,t), 3.2.39
(m,t) =arg = min = IC(m,t) ( )
t=(t1,0tm ) C AR

To achieve further computational efficiency, we adopt the following backward elimina-
tion algorithm (BEA) numerically. BEA starts with the set of change points A, then
removes the “most redundant” change points that corresponds to the largest reduction of
IC until no further removal is possible. The estimator A* = (&}, - - - ,tAT 1) is obtained as

follows:
(1) Set K = |An|,tK = An = (tKJ, cee 7tK,K) and Vf; == ]C(K, An)
(2) Fori=1,---,K, compute Vi, = IC(K — 1,tx/{tx;}). Set Vji_, = min; Vi,.

> , then the estimated locations of change points are =tg.
3) If Vg _, > Vi th h i dl i f chang i A
If Vi, <Viand K =1, then A: = 0.
If Vi, < Vg and K > 1, then set j = argmin; Vi, tx_1 = tx/{tx_1,} and

K = K — 1. Then go to step 2.
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3.3 Theoretical Properties

We introduce some notations first. Let A = {t,4 = 1,---  mg} be the set of true change
points and p,? be the true mean vector in the j-th segment, j = 1,--- ,mg + 1. For a set

A, we use |A| to denote its cardinality. A strictly stationary process {y;} is a-mixing if

a(k)=  sup  |P(A)P(B) - P(AB)| =0, as k— oo, (3.3.40)
AeF ,BeFpe

where .7-7 denotes the o-algebra generated by {y;,i <t < j}. See, e.g., Section 2.6 of Fan

and Yao (2003) for a compact review of a-mixing processes. Some regularity conditions

are now in order.

Al. The process y; is strictly stationary in each regime [t? |, ¢9),i = 1,--- ,m°® + 1 with

mixing coefficient a(¥(k) defined in (3.3.40) and there exist a positive constant -,

and a positive ¢ such that

a (k) < exp (—en™),

for any positive integer k and i = 1,--- ,m® + 1.
A2. For any positive z, there exists positive constant 7, such that

sup sup P(|zy; — Exy| > 2) <exp (1 — 27?),
1<i<p? t>0

where x; is the i-th element of x; and suppose furthermore that v < 1 where 7 is

defined by 1/y = 1/v1 + 1/7.

A3. Assume minj<;<pmi1 [|) — pd || > v for some v > 0. As n — 0o, minj<i<m,r1 |60 —

(logn)'/™
n

t2 | |/nvy, — oo for some 7, — 0 satisfying = o(yn) and 7, /N, — oo, where
7 is defined in A2 and ), is the tuning parameter in (3.2.37).
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Condition Al and A2 allow us to obtain the large deviation result for a mixing process.
To ensure a change occur at ¢, minj<;<moi1 || — ;]| > v is imposed in A3. The
sample size t? —t9 | for each segment should go to infinity in order to study the asymptotic
properties. A3 allows min<;<,,,+1 [t?—17_| larger than n+,, which enlarges the assumption
that minj<;<mgt1 [ty — 71| > Cn in most literatures. This allows the fact that mg can be
divergent. Now we are ready to present the theoretical results.

Theorem 9 is about the consistency result for the estimate of change points when the

number of change points mg is known.

Theorem 9 Under assumptions A1, A2 and A3, if mqg is known and |A,| = mg, then as

n — 00,

~ 0
<
P{1£IZ'13X0 [t; —t;| <nvy,} — L

In practice, mg is not known. Theorem 10 shows the consistency result of the estimator
A, obtained from the one-step group LASSO procedure and the fact that the number of
change points estimated from this step is usually larger than mg. Define the Hausdorff

distance between two sets A and B as in Boysen et. al. (2009) by
dy(A, B) = I;leagcrgleigl |b—al,
and dy(A,0) = dy (0, B) = 1, where () is the empty set.
Theorem 10 Under assumptions A1, A2 and A3, as n — oo, we have
P(|A,| > mo) — 1,
and
P(dg(A,, A) <nvy,) — 1.
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Though the one-step procedure overestimate mg, the estimates of the locations are
within a n7, neighborhood of the true change points, which motivates the second step

estimation. Theorem 11 gives the consistency result of the estimator (T/Afz, t) obtained from

the two-step estimation procedure.

Theorem 11 Suppose w, in the information criteria (3.2.38) satisfies lim,,_,oo ny,mo/wyp =

0 and limy, oo Wy/ MiNj<jcpm [t — 89| = 0, then under conditions A1, A2 and A3, as

n — 0o, the minimizer (7:\7\1,13) of (3.2.39) satisfies
P(f = mg) — 1,
and there exists a constant B > 0 such that
P(12}2§10 ]ZA; — 1] < Bnvy,) — 1.
Theorem 12 gives the consistency result of the estimator A} obtained from the backward

elimination algorithm.

Theorem 12 Under conditions of Theorem 11, as n — oo, the estimator A}, obtained

from BEA satisfies
P(J AL =mp) — 1,
and there exists a constant B > 0 such that

~% 0
40 <«
P(lggicm |t; —t]| < Bny,) — 1.

3.4 Simulation Studies

To examine the finite sample performance of the proposed estimation methods, we conduct
some simulations under different scenarios. We used the group LARS algorithm for the
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first step and backward elimination algorithm for the second step. The maximum number
of change points used in the group LARS algorithm step is set to be 20 for all scenarios.
The penalty term w,, in the second step is specified as C'log(n), where C' can be chosen via

cross validation.

3.4.1 Scenario 1

Let the components of y; = (yu1, -+ , Y1)’ be p realizations from AR(1) process. That is
Y = QY1+t = 2,---,p. Let n = 2048, the first and second breaks are chosen at
t1 = 513 and t, = 1537. We generate the p components of y; for each ¢ from AR(1) with
coefficient 0.7 if 1 <t <512, AR(1) with coefficient -0.6 if 513 < t < 1536 and AR(1) with
coefficient 0.8 if 1537 < t < 2048, where ¢; are independently generated from N(0,0.5).
We apply the proposed two step estimation method for 200 times and report the simu-
lation times of correctly estimated number of change points, the mean and standard error

of the relative location estimator with p equals to 2, 5, and 10.

Mean (SE) of 1st break | Mean (SE) of 2nd break | times/200 of m = 2
p=2 0.243 (0.018) 0.752 (0.018) 190/200
p=> 0.247 (0.014) 0.753 (0.013) 200/200
p=10 0.249 (0.011) 0.752 (0.008) 200/200

Table 3.3: Estimated break points from two step estimation method for scenario 1.

Table 3.3 shows that the mean of the estimated 1st and 2nd relative change point
position is very close to the true relative position 0.25 and 0.75. The standard deviations

are small as well. And the number of change points can correctly estimated most times.
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3.4.2 Scenario 2

Let n = 2048, the first and second breaks are chosen at t; = 513 and t, = 1537. Firstly,
we generate n p x 1 random vectors z; from p dimensional standard normal distribution
N(0,I,). Put U; =1, and D is a p x p diagonal matrix which the diagonal elements are
generated from Uniform(1, 2), Uy equals to the Q part of the QR decomposition of a p x p
matrix whose elements are generated from N(0,1) and Dy is a p x p diagonal matrix whose
diagonal elements are generated from Uniform(0, 0.5), Us is generated in the same process
as Uy and and Dj is a p X p diagonal matrix whose diagonal elements are generated from
Uniform(4, 5). The time series we obtain is y; = U1D1/2zt if 1 <t<512,y; = U2D§/2zt
if 513 < t < 1536 and y, = U3D}/?z, if 1537 < t < 2048.

We apply the proposed two step estimation method for 200 times and report the simu-
lation times of correctly estimated number of change points, the mean and standard error

of the relative location estimator with p equals to 2, 5, and 10. Table 3.4 shows that the

Mean (SE) of 1st break | Mean (SE) of 2nd break | times/200 of m = 2
p=2 0.248 (0.015) 0.751 (0.002) 192/200
p=> 0.248 (0.012) 0.751 (0.001) 194/200
p=10 0.249 (0.009) 0.751 (0.001) 195/200

Table 3.4: Estimated break points from two step estimation method for scenario 2.

mean of the estimated 1st and 2nd relative change point position is very close to the true
relative position 0.25 and 0.75. The standard deviations are small as well. And the number

of change points can correctly estimated most times.

89



3.4.3 Scenario 3

Let n = 2048, the first and second breaks are chosen at t; = 513 and t, = 1537. We
generate y; from a one factor model y; = Ax; + ;. We generate x; from a AR(1) process
with coefficient 0.4 with N(0,1) distributed noise term. Let A be a p x 1 vector with
2cos(2mi/p),i = 1,--- ,p as its i-th element if 1 <t < 512, A with all elements to be 0.2

if 513 <t < 1536 and a p x 1 vector with 3cos(27i/p),i = 1,--- ,p as its i-th element if

1537 <t < 2048. &, are generated from N(0,1,).

We apply the proposed two step estimation method for 200 times and report the simu-

lation times of correctly estimated number of change points, the mean and standard error

of the relative location estimator with p equals to 2, 5, and 10.

Mean (SE) of 1st break | Mean (SE) of 2nd break | times/200 of m = 2
p=2 0.245 (0.024) 0.753 (0.005) 187/200
p=5 0.245 (0.025) 0.753 (0.004) 188/200
p=10 0.249 (0.020) 0.754 (0.006) 185/200

Table 3.5: Estimated break points from two step estimation method for scenario 3.

Table 3.5 shows that the mean of the estimated 1st and 2nd relative change point
position is very close to the true relative position 0.25 and 0.75. The standard deviations

are small as well. And the number of change points can correctly estimated most times,

even though not as satisfied as scenario 1 and 2.
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3.5 Future work

Currently, the asymptotic results are established when the dimensionality p is fixed. A
more challenging problem is the detection of multiple change points when p goes to infinity
as the sample size n goes to infinity or even larger than n. Intuitively, when p is large,
we have more parameters to estimate, hence we will obtain less accurate estimators, which
might influence the estimation of breaks. The future work will focus on the asymptotic
results when p can be divergent. If the convergent rate is bad, then future work becomes
how to improve the estimation. Indeed, the asymptotic results for the first group lasso

procedure has been obtained.

3.6 Appendix: Proofs

Lemma 5 Let 8(n) be defined as in (3.2.37), we have

ZZek—leJr Lo, 2 =0, if 6;#0, (3.6.41)

= k=1 ||0J||
and || Z Z 0 — ZX[H < n>\ for all j. (3.6.42)
=75 k=1

Proof. By proposition 1 in Yuan and Lin (2006), we know that a necessary and sufficient

condition for 8(n) to be a solution of (3.2.37) is

~

0,
276,

and || — QT (x(n) — QB(n))| < %mn for all j.

~Q7 (x(n) — QO(n)) =0, if 6;#0,

where Q; is the (j — 1)p-th to jp-th columns. For each j =1,--- n,

l
Tx(n)=>"x, QIQOM)=>> 8



the required result is then obtained. O]

Lemma 6 Under conditions A1 and A2, for any positive a,, and x, for 1 < i < mg+1,

there exist positive constants C, Cy, C3, Cy and Cs depending only on ¢,y and vy such that

t

1
P( max max_| Zslj| > x)

lt—s|>an,t? | <s<t<t? 1<j<p* t — 5 l

=S

YrY
a)x

2.2
a,x >

§p2n3 exp ( — > + p2n2 exp (

C, C Cy(1+Cy(t—s))
R ( an” ( A ))
n‘exp | — ——ex :
e\ e PP\ Gy log(t — s)z )
Furthermore, if a, satisfies (logn)'? = o(ay), for any constant x, it holds that as
n — oo
1<
P( max max_| Zelj| > x) — 0.
|t—s|>an,t?_ | <s<t<t? 1<j<p®>  — S P

Proof. By Theorem 1 of Merlevéde, Peligrad and Rio (2009), there exist positive constant

C1,Cy, C3,Cy and Cy depending only on ¢, and v, such that for any positive constant z,

t—1
1
P( max  max | Z il > x)
l=s

[t—s|>an 1<j<p2{ — &
9| <s<t<t?

gpz Z P<|t_zlelj|2(t—s)x>

j=1 |t—s|>an
9 | <s<t<t?

> Y r( |ieljrz<t—s>x)

- <k<t—
J=1  |i—s|>an s<k<t—1
9 | <s<t<t?

<p’n’ ((t — 5)exp ( B %) exp ( B Cz(l(tJr_st)(tx— 8)))
)2 — §)Y@=7) (A=)

% (tC5(10>g(t — s)z)7 >>>

§p2n3 exp ( — %) +p2n2 exp < - 02(1 _:%Z(t — s)))

N Qngex (_an$2 o ( a%(lfv)aﬂ(l_”) >>
s "o P\ Gy (log(t — s)z)

+ exp (— exp (
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The required result is then straightforward for the first part.

Given (logn)Y” = o(a,,), for any constant z, we have

2.3 a,r’
pn exp(— C ) = exp (210gp+310gn—a%) — 0.
1
Similarly, we have
2,.2
2 2 X >
nexp| — — 0,
prexp ( Co(1+ Cs(t—5))

and

2

i exp (- 2 exp (5D Yy
P P c, P Cs(log(t — s)z)7 ’

1t
hence P(ma’X\t—s|>an,tg_1§s<t§t? Maxi<j<p? |75 2 iy €15 > x) — 0. O

Lemma 7 Under the conditions of Theorem 11, for m < my, there exists a constant v

such that
ry ry 2 - 0_ 40
Sn(tr, -+ s tm) > 21 l&ill® + v |t — tiql
in probability, where Sy,(t1, - ,t,) = argming, ... ;. Sp(t1, tm).
Proof. The proof is the same as Lemma 6.4 of Chan, Yau and Zhang (2014). U

Proof of Theorem 9. Define A,,; = {ﬁ\l — 19 > ny,},i=1,2,--- ;myg, it holds that

mo mo
£ —1¢9 < t.— 9 — .
Pl [0~ #1>m0a} 3 PUR 81> wu) = 3 P
Define the set C,, by C,, = {maxi<j<pm, [t; — t°] < min, [t0 — % ,|/2}, it is enough to prove
that > 7" P(AnC,) — 0 and Y™ P(A,;,C¢) — 0, where C¢ is the complement of C,.

The proof is similar to Proposition 5 of Harchaoui and Lévy-Leduc (2010) and hence we

only give the proof of Y~ P(A,;C,) — 0. Note that C,, implies that

0 <t <t for 1<i<my.
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First consider the case when #; < 9. Applying lemma 5 with t; and 9, we have

n ! n
”%E@”%’””S%W and ”ZZO—leM Lo,

=¥ i=1 1=t?
It follows from triangle inequality that

t2—1 t9—1

1Y x - ZZekH < nAn.
I=t;

I=t;

Note that when [ € [t;,t? — 1], we have x; = pu? + g and l: §k = I;., it holds that
i 7 k=1 i+1

0 0 0
91 91 91

I Z €+ Z(N? — pie) F Z(H?ﬂ = Biga)| < na.

I=t; I=t; I=t;

It follows that

—~ 1 —~ —~
P(AuC 0 {E < 80}) <P ({508 = D)l = plall < nd} 0 {[F = 1] > n7})
t9-1

(8 = t)lpd = il < 1) elly N {JE — €21 > n%}>

I=t;

(i

1 ~ _
+ P((G 1! = sl < sy = Bsiallly 0 (17 = 191 > )
Since ming<j<mgs1 ||pd — 0, || > v, in the set {|t; — 9] > nv,} we have
<i<mo+ i i—1 i
Lo =0 0
5(751‘ =)l — i |l > Cnoy,.

Since X—Z — 00, we have P(A,;1) — 0.

In the set {[t; — t%] > ny,} we have

)1 t—1
1 1 1
ZslH < max | ZEZH < max max \p—Zalj].
t — t [t—s|>ny t— S [t—s|>nyn 1<j<p? T — S
I=t; 10 <s<t<t? [=s 10 <s<t<t? I=s

Note that ||p) — pd_,|| > tv and by lemma 6, we have

0
91

1 ~ —~
P<{§(t? — )l — pdll < 1D ally 0t — )] > mﬂ})

I=t;

§P<{ max — max | — E ;| > 1/}) — 0.
[t—s|>nvyn 1<5<p?
19 | <s<t<t?
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Hence P(A,i2) — 0.
Note that C,, N {t; < 9} implies 7,41 > (£ +19,,)/2. Hence if I € [t?, (19 + 19,,)/2], it
0 l 7N ~ . . 0 t?-‘rt?_,'_l
holds that x; = pg,, +& and Y, _, 6, = p;,;. Applying lemma 5 with ¢} and ~—=** and

using triangle inequality we have

(t9+2,1)/2-1 (t+0,1)/2-1
| Z €+ Z (N?Jrl — i)l < nAs
1=t 1=t?

Hence

0 (t9+42,1)/2-1

0 40 R
%I\M?ﬂ—mﬂllémnﬂ\ >, el
1=t9

which implies

(#9+12,1)/2-1

(o =K =il Smda+l D all)

—40
I=t7

1
P(Api3) §P<6

<P(5;

12(t?—|—1 - t?)”#’? - “’?—I—l” < 7’L>\n>

Ty ) ] (t9+0,1)/2-1
+ P (gl = sl < g3 > eill)
=P + P,
where P; — 0 by minj<icpmor1 [t — 9 1|/(ny,) — oo and 7,/\, — oo and P, — 0 by
lemma 6. Hence P(A,;3) — 0. Now we finish the proof of P<Aan N {tAz < tg}) — 0.
Similarly, we can show that P(Am-C'n N {tAZ > t?}) — 0. Thus P(A,;C,) — 0.
When my is fixed, the required result is apparent. When my — oo, by lemma 6, the rate

of convergence of P(A,;) can be fast enough such that moP(A,;) — 0 foralli=1,--- ,m;.

O

Proof of Theorem 10. To prove |A,| > myg, suppose on the contrary that |A,| < my,

then there exist some ) and %, € A, such that ) , — 2 < %4 — #,, thus we have
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=1 Vi, > M and 9 5 Aty — 19 . > ™= Applying lemma 5 to &), V1, and )

we have
t?o+1—1
(t?o-‘rl - t?o v th)Hl’l”?()-i-l - ﬁlo“ S n)\n + H Z 61”7
I=t) Vi,

and applying lemma 5 to 2 ., and ) ., A1 we have

0 —~
tz‘0+2/\tl0+171

(tZQ0+2 A tl0+1 - t,?0+1)||“?0+2 - i‘\‘l’l0|| S n)\n _I_ || Z €l||
1=t?
ig+1

since ) | —t0 Vi, > "% and ) ) At — 1) > ", we have

3 3
A 1 gt
-~ n
HN?OH — |l < —+ 40 RV I Z ell,
Tn g = i Vo 1=t9 Vi,

0
£ 411

lemma 6 leads to +—Ls— ~
£ 41~ toy Viig H Zl:t%\/tlo

gi|| — 0, together with A, /7, — 0 we have

42,41 = Bau || = 0,

similarly,
143,12 = B, || = 0,
which means p ,, and p ., are the same. This contradicts with py ., # p) .. Hence
P(|A,| > mg) — 1.
The proof of P(dy(A,, A) < nvy,) — 1 is the same as the second part of Theorem 2.3

of Chan, Yau and Zhang (2014), hence omitted. O

Proof of Theorem 11. To prove P(ﬁl = myg) — 1, it suffices to prove P(T:\;L <mp) — 0

and P(ﬁz > mg) — 0. First let us prove P(ﬁz < mp) — 0. It follows from Theorem 10

that there exist points #p; € An,i = 1,2,---,mg such that MAax| <i<my |?m — 19 < ny,.
Now it suffices to show that if m < mo, we have IC’(?%,%\) > Sn(tAnl, e ,tAan) + mow,, 1
probability.
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Denote R, (mg) = {(t1,t2, + stmg) : |t = 9] < nyp,i = 1,2--+ 'mp}. For any t €

R, (mg), we have

t(l)—n”/n—l —nyn—1 n
Sultita, o tmg) = Y |Ixi — iy |2 +Z Z i = 117+ > 1 = Bl
i=1 J=2 j= to _1Tnm i=t9, +nyn
mo t —1 mo t?Jrn’}/n 1
+ Z I; — ujH2+Z o i — g
J=1i= to—nwn = to

=L+ Ly + Ls+ Ly + Ls,

where ﬁj are the least square estimators of p;,1 < j < mg+ 1 on [tj—1,t; — 1]. It can be

shown that in probability

9 1—nyn—1 mo t —nyp—1 n
Ltletlas 30 lelf+d 3 lelf+ 3l +Otmoma)
J=2 i= to _1tnyn i:tg,L+n’Y7L

and the proof is as follows: take L; for an example, denote @1; as the LSE obtained by

using the data on [1,t9 — nv, — 1], given E||x;|| exists, we have in probability

t(l)fn'ynfl
L= ) lx—p’
=1
t9—nyn—1
= Z 1% = o+ g — )2
i=1
t?—nyn—l t(l)—n'yn—l R t(l)—n'yn—l R
< D k= mlP Y la P2 Y k= Al - Rl
=1 i=1 i=1
t(l)—n'yn—l
< D el + (1 =y = Dl = Ball® + 208 = ny = Dl — ),
i=1

where the O(-) is obtained by Markov inequality.
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Since 0 < t; — ¢§ + ny, < 2ny,, given E|/x;|| exists, it holds that in probability

(87 = nn = Dl — B |

19 —nyn—1 t1—1

’Yn_l
B
177'/7"71 0 t1—1
ty —t7 + Ny,
=l > - =t ) xil
i=1 =1
t1—1 0 t1—1
tl—t +Tl’)/n
S il + =" >oxil
i:t(l)—rwn ! i=1

=0(t, — t[l) + nvy,) = O(ny,),

where the O(+) is obtained by Markov inequality. Hence L; < Zt P |12+ O(ny).
We then have similar results to Ly and Ls, hence the above result has been proved.

Now let’s turn to Ls + Ls. It can be shown that there exists Ay > 0 such that in

probability
t —1 mo ]+n'7n_1
L4+L5 < Z Z |€Z||2+Z Z |€z | +A0m0n7’n7
Jj=1 i= to—nwn 1= tU

and the proof of this equation is as follows:

take L4 for an example, Ly = 7™ l|x; — ﬁsz and

= to—n’y
91 t9-1
STl Bl = Dk P
i:t?fn'yn i:tgfn'yn
t9-1 91 R t9-1 R
< >0 e+ D0 e —mllP+2 D llellley -yl
i:t?—n'Yn z—t?—n'yn i:tg—n’yn
t9-1
= Z ledl|> + ADnry,,
i:t?—rwn

0
tj_l

4 N 2 0
AW — ”y,j — p,sz + W Z HEiH”IJJj - “’jH'

n . .9
z:tj —NYn
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Then
01

<y ¥ ||ez||2+ngA

7=1 = tofnﬁ/n

Similarly, we have
mo J'Hwn_l

Ly < &il|? + nyn " BY,
Z > | )

i= tO j=1
where
| R 5 t94+nyn—1 R
BU) — 101 — By 1P+ n— Z leilllleej i = Eejpall-
’Yn . 40
z—tj
Then

mo mo
= A9 /mg+> " BY /my.
j=1 j=1
Note that Ay = O,(1) given E|/e;|| exists.

Hence if t € R, (myo), it holds that in probability
Sultita - tg) < 3 el + (Ao + O mony,
Since (tAnl, e nmo) € R,(mg), we have in probability

Sn(%\nla"' nmo < ZH51H2 AO+O( ))mon%

At the same time, by lemma 7 we have in probability

Sulbr, -+ 1 >Z||sz||2+u min |12~ 10,

m
i=1

Hence it holds that in probability

~ ~
-~

IC(i,t) = Su(ty, - 1

~
/\

)—i—mwn

m

>ZH€’H2+V IIllIl |t0—t0 1|+mwn
=1

> So(tnts - s tomg) +Mown + v min |t — 10| — (Ag 4+ O(1))meny, —

1<i<mg
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Since wy,/miny<i<pm, |t — 1| = 0 and ny,/ ming<j<m, [t9 — t9_;] — 0, we have

o~
-~

[C(%a t) Z Sn(%\nla Tt 7%\an) + mMoWn,
in probability and this implies
P(i < mg) — 0.

Now let us prove P(T/Ar\z > mg) — 0, which suffices to show that if m > mo, we have

~ -~ -~

IC(i by, =) > IC(mg, f1, -+, bmy). Note that
St Fume) = Sulr ) =SBy 112) =SBy a0 10
It can be shown that
Sullrs - st 10,) > Z ledl® = (@ + mo)nya,
hence it holds that
Sulln, ) = Sul 1)

<Sulure Fume) = SulEr - Tt 10,)

< (i + mo + moAo)n Y.
Since mony, /w, — 0, it then follows that

IC(?% /tA\ : ,;An:l) — IC(mO,;Al, e ,?mo) > (7% — mg)wy, — (7721 + mg + moAg)ny, > 0,

which implies

P(T:\T\L > mg) — 0.
The proof of P(maxi<;<m, \Z — t?] < Bny,) — 1 can be obtained following Theorem
2.4 and lemma 6.4 of Chan, Yau and Zhang (2014). O
Proof of Theorem 12. The proof is the same as Theorem 2.5 of Chan, Yau and Zhang

(2014). 0
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Chapter 4: Two Simple Results

This chapter presents two small theoretical results which extend two theorems for high
dimensional, independent processes to high dimensional and dependent processes. They
come from the effort of proving the results in the previous three chapters, but failing to

obtain the target.

4.1 An extension of Bickel, P.J. and Levina, E (2008)’s

result

In this section, we extend the result of Bickel and Levina (2008) to (auto)covariance ma-
trices of high-dimensional a-mixing dependent data. Let y; = (y14, ..., ype) ,t =1,--- ,n
be a p x 1 strictly stationary a-mixing process. Denote the (auto)covariance matrices of
ye at lag k by Cov(yiir,yi) = Zy(k) = [0'14(7];)]1‘7]‘:1727...713,]{3 > 0. For each k, we assume it
belongs to the following matrix class:
p p
Yo < Mmax Y | oi; "< si(p),max Y |01 [°< sa(p) ¢, (4.1.43)
R T

where 0 < g < 1 and M is a positive constant.
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Considering such a class above, we employ a thresholding estimator defined as

~ ~(k ~(k
Tu(Zy (k) = [691(1 5 1> w)]ijm1 2

i
where Efz(’kj) is the (7, )-th element of the sample (auto)covariance matrix estimator f]y(k;) =

) D (Yt+k —¥)(y: — y)". We assume

(A1) There exist positive constants by, by, 71 such that for any s > 0 and i < p
P(| yir — E(yiz) [> s) < byexp(—bas™).

(A2) y, is strictly stationary and there exist positive constants bs, 7y such that the a-mixing
coefficient satisfies

a(m) < exp(—bym') for any m > 1.
We have the following result

Theorem 13 If ¥,(k),k > 0 belongs to the sparse matrices class defined in (4.1.43),
under assumptions A1, A2, assume 0 < v; < 1 where 1/v; = 2/ry + 1/ry and 1, 79 are
defined in A1, A2, if logp)?"~! = o(n) and the thresholding parameter u is

log p

)
n

for sufficient large M'. Then

TSy () ~ Sy ()] = O, ((bfp) N sﬁ’“><p>s§’“’<p>> .

Proof. Without loss of generality, we assume E(y;+) = E(y;;) =0 for i, = {1,2,--- ,p}.

For £ =0,1,2,--- we have the following decomposition
1 n—k
~(k k
05,]-) - U§,j) ~n (Yi1Yik — E(ir+ryik) Z Yiprk — Yip— Z Yjt+k
t=1 t=1 (4.1.44)

_ k
R o Ehentin)
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where g;. = = >y, and ;. = £ 31 y;,. Note that when k = 0, the last four terms of
(4.1.44) becomes —;.y;.. This difference does not affect the asymptotic results discussed
following.

Now let’s consider the first term in (4.1.44). From Lemma 7 of Chang, Guo and Yao (2014),

for any s > 0, under assumption Al we have

P([Yisintin — EWirrntin)| > 8) < 2by exp (—bys™/?).

By Theorem 1 of Merlevéde et al (2011), there exists constants Cy, Cy, C3, Cy, C5 > 0 only
depending on by, by, 71,79 (that is not depending on i, j, k) such that the upper bound for

the first term in (4.1.44)

?r

1« ns)n (ns)?
PU=S " Wirrin — E@Wirryin))] > s) < _Be ___
(nt:1(y,t+kyj,k (Wissryin))| 2 s) <nexp (=—5—) + exp( ool +n03))
— for all 1, 5.
+ exp ( Cim eXp(Cg,(logns)’Yl)) or all 7, j
By Bonferroni’s method we have
1 n—k 1 n—k
P(max |~ > (yierryin = E(Wicrin))| 2 5) < P’ max P(\— > (yierrin = B(Wioratiin))| 2 5)-
’ t=1 b t=1
Set s = u = My/" %2 when (logp)*"~! = o(n) we have
(ns)™ | o (ns)? (ns)? (ns)m ()
_\e) ) _ Ay = o(1).
prnexp(==5 =)+ p exp( CQ(Han))er exp (=g - exp 05(logns)71)) o(1)
Hence

??‘

n—

1
E (yz’7t+kyj,k: - E(yi,t+kyj,k))
t=1

log p

= Op( )

max

,J n

As for the second term in (4.1.44), we have

n—k

1 Z Yit+k

t=1

P( > s) < P(|g;.| > s"%) + P( > s1/2).

Z Yit+k
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Hence there exists constants C},C5,C5,Cy,C: > 0 only depending on by, by, 71,79 and

define + = L + L we have
2 T1 72

Plma]i | = 51%) <pmesp (-2 0) 4 pexp (g )
max |;.| > s nexp (— exp (— =~
iy el = o) SPREPAT T A TP AT A o)
) n2s n2(1=72) gr2(1—72)/2
+ p~ exp (_CZTL exp( C’g(lognsl/z)w
Similar to the above arguments, let s = u = M /"2 when (log p)*/*2~1/% = o(n) we have
max |7;. 1 S Fy, t+k‘ = O,(1/™82). Similarly when (log p)*/*27/3 = o(n) we have
i
log p n—k_ _ log p
max Zya t+k ~) and max 915 | = Op(y/ = =),

And max |2 E(y; 1 4yj.)| = O(2) which is irrelevant with p. Note that when 7y < 7o < 1,
irj

we have 2/7; — 1 > 4/3v, — 1/3, hence when (log p)*7~! = o(n) we have

S0 _ 1) log p
95 — i

= Op(

max ) k=0,1,2,---

,J

n

The following is simply a recap of Bickel and Levina (2008).

IT(Zy (k) = Sy (B)ll2 < 1T(Ey (F)) = Tu(Sy (k)ll2 + 1 T(Sy (k) — Sy ()2
Under the sparse matrices class defined in (4.1.43), the second term has the following upper

bound

p
k k
ITu(By () = By (B)]l2 < maxz (1053 < )2 maxd_1(] off |< u))*/?
i=1

< (W0 () At s (0) 2 =t s )5 ).

Hence

ITu(Sy (k) = Sy (k)] = O (<1ogp) W <p>s§’“><p>) . (4.1.45)

n

We also have

| Tu(Zy (K)) = Tu(Sy (k)2 < maxz

~k k k
1178 2 w) =010 0l 12w/

ZJ 1]

(k)1<| a(f;) 1> u) — (k‘)l(| (k) > u)‘)l/Q.
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And

79115 12 w) — o®1( o) |> u)

1,7 2,7 ]
j=1
p
<maxy (5] o} | 1057 12 w| o} |2 w)
1 j:1
p
+max Y (7715 2w, o] |<u)
1 ]:1
p
+max Y |0y | 1 75 1< u,| o3 > w)
K2 ]:1
- ]1 -+ _[2 -+ I3.
It is easy to check
L < max (517 — o) |u1s{ (p),
2,7 k ’
I3 < max (577 — o) |u9s{" (p) + u' 951" (p).
2,7 ” k

Hence when u = M /"2 and (log p)*"1~! = o(n), we have

o 7 o
L =0, (( in) sgk)(p)> , and I3 =0, (( in) sgk)(p)> )

For term I, take a constant 7 € (0,1), we have

P
I, < max g
K3
J=1

P
< max E
1
Jj=1

~(k k k
5t — o) 1(| o < u)

2y

ol

p
175 12w ] o1 |<w) +max Y
j=1

1|78 1> u ] ol |<u) + a5 (p),

55? _ O-i(,’;)
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where

~(k k
1|78 1> u] ol |< )

max E

Z] Z]

<max |0 (k O'Z(Z) |> (1 —7)u)
+ max 5§§) - af? mlaxz 1(] 5§5) |> u, Tu <| O'Z-(S) |< w)
< max |0 ( Hl&XZl |<7” ” |_(1—7')u)
+ max bvffcj) — az(? sgk) (p)(Tu)~%

When u = M4/ and (logp)?"~! = o(n), it is not hard to check

1 =
o (120)7 ),

Hence we have

1—q
lo E
A 7Y [2 ) - §’§>1<ra§?rzu>\=op(( i) sﬁ’“’(p)).

Similarly, we have

- lo ER
W15 2 w) = o1 o) 12 w)| = 0 (( = sé’“><p>>.

ITu(8y (k) — Tu(Sy )]z = O, ((bgp) VAT ><p>s§’“><p>) |

n

Hence

Together with (4.1.45), we get

ISy (k) — 2y (Kl = O, ((bgp) N sﬁ’“><p>s§’“’<p>> .

n

given (log p)>"~! = o(n).

106



4.2 A result of U-statistics of high dimensional 5 mix-

ing processes

Hoeffding (1948) investigated the theory of U-statistics for fixed dimensional independent
data. Serfling (1980) presented a good summary of U-statistics. Zhong and Chen (2011)
extended hoeffding (1948) to high dimensional independent data. The theory of U-statistics
for fixed dimensional dependent process was discussed by Yoshihara (1976), where they
considered fixed dimensional S-mixing process. Dehling and Wendler (2010) extended
Yoshihara (1976) to strong mixing data where the kernel function of the U-statistics need
to satisfy some continuity conditions. We devote this section to discuss U-statistics for

high dimensional S-mixing process. A strictly stationary process {y;} is f-mixing if

B(k) EE{ sup |P(B)—P(B|y0,y_1,y_2,---)‘} — 0, as k— oo,

BeFg®
where F/ denotes the o-algebra generated by {y,,i <t < j}.
Suppose W1, Wy, ..., W, are n observations of a p x 1 dimensional, strictly stationary
and [-mixing process W, with S-mixing coefficient S(n). We denote the distribution

function of W, by F(W,). Consider a functional of order s for a fixed s <n

0(F) = /RP.../RP h(wi, wa, ..., ws)dF(wi)dF(ws)...dF(ws),

defined over F = {F : |0(F)| < oo}, where the kernel function h(wy, wa,..., ws) is sym-
metric, i.e. its value is invariant to the permutations of its s arguments. We estimate 6(F)

by the following U-statistics,
-1

Unvp - Z h’(wila Wigu o 7Wis>7 (4246)
S Cn,s
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where C,, ¢ represents all distinct combinations of {iy,is,...7s} from {1,2,... . n}.

For every 1 < ¢ < s, define the projection via

hc(W1,W2,...,WC):/ / h(wi,Wo, ..., Ws)dF(Wei1)dF (Wei2) ... dF(ws),
Rp RP

and denote h, = h, — §(F). Following the notation of Zhong and Chen (2011), let

c—1
gc(wl,wg,...,wc):hc(wl,WQ,...,WC)—Z Z G5 (Wi, Wiy, o, Wi ),

j=11<i1<...<ij<c

where g1 (w1) = hi(w1). Denote

Mnc: Z gc(Wl,Wg,...,Wc).

1<ii <...<ic.<n

By Hoeffding’s decomposition we have

-1

Unp = 0(F) = M=y U, (4.2.47)

For fixed dimension cases, under some regularity conditions, E(Ur(fl)))2 = O(n™?) for 2 <
¢ < s, see lemma 2 of Liu, Chen and Yao (2010). This means the dominant term of the
U-statistics is U&z. However, when p — oo, E(U,S?,)Q, 1 < ¢ < s are also affected by p.
Hence the dominated term may not be the first term anymore. We need to compare each
Vafr(Uffg) for c =1,2,...,s. In the following, we will compute the largest order that Ur(f})j
for ¢ > 2 can obtain under some regularity conditions. Then we can, at least, compare the
relative order of U,S}; to the rest terms U,(f,)), c=2,3,...,8.

Assume that for some r > 2,

(C1) p, = pr . fRP \h(W1, W, ..., W[ dF(w)dF(ws)...dF(w,) = O(p™™) for n,(r) >

0.
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and

(C2) v, = E|h(wi,, Wiy, ..., w;.)|" = O@(p™") for ny(r) > 0 and all integers 4y, i, . . . , is.

Now we have the following proposition,

Theorem 14 If there is a positive number § such that for r = 2+ 6 condition C1 and C2

hold, and ), nB(n)%C+) < 0o, then we have

2+ 2+
E(Uéf;)Q = O | max <p ) , <p ) (2<e<s).

n n

Proof. The proof is straight forward following lemma 2 of Yoshihara (1976) by replacing

h by
h
n1(2498)  ma(2+6) Y °
max {p 2448 ’p 246 }

as the kernel function. O
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