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Abstract

Modelling high dimensional time series and non-stationary time series are two import as-

pects in time series analysis nowadays. The main objective of this thesis is to deal with

these two problems. The first two parts deal with high dimensionality and the third part

considers a change point detection problem.

In the first part, we consider a class of spatio-temporal models which extend popular

econometric spatial autoregressive panel data models by allowing the scalar coefficients for

each location (or panel) different from each other. The model is of the following form:

yt = D(λ0)Wyt +D(λ1)yt−1 +D(λ2)Wyt−1 + εt, (1)

where yt = (y1,t, . . . , yp,t)
T represents the observations from p locations at time t, D(λk) =

diag(λk1, . . . , λkp) and λkj is the unknown coefficient parameter for the j-th location, andW

is the p×p spatial weight matrix which measures the dependence among different locations.

All the elements on the main diagonal of W are zero. It is a common practice in spatial

econometrics to assume W known. For example, we may let wij = 1/(1 + dij), for i ̸= j,

where dij ≥ 0 is an appropriate distance between the i-th and the j-th location. It can

simply be the geographical distance between the two locations or the distance reflecting

the correlation or association between the variables at the two locations. In the above

model, D(λ0) captures the pure spatial effect, D(λ1) captures the pure dynamic effect,

and D(λ2) captures the time-lagged spatial effect. We also assume that the error term

εt = (ε1,t, ε2,t, . . . , εp,t)
T in (1) satisfies the condition Cov (yt−1, εt) = 0. When λk1 = · · · =

λkp for all k = 1, 2, 3, (1) reduces to the model of Yu et al. (2008), in which there are

only 3 unknown regressive coefficient parameters. In general the regression function in
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(1) contains 3p unknown parameters. To overcome the innate endogeneity, we propose a

generalized Yule-Walker estimation method which applies the least squares estimation to a

Yule-Walker equation. The asymptotic theory is developed under the setting that both the

sample size and the number of locations (or panels) tend to infinity under a general setting

for stationary and α-mixing processes, which includes spatial autoregressive panel data

models driven by i.i.d. innovations as special cases. The proposed methods are illustrated

using both simulated and real data.

In part 2, we consider a multivariate time series model which decomposes a vector

process into a latent factor process and a white noise process. Let yt = (y1,t, · · · , yp,t)T

be an observable p× 1 vector time series process. The factor model decomposes yt in the

following form:

yt = Axt + εt, (2)

where xt = (x1,t, · · · , xr,t)
T is a r × 1 latent factor time series with unknown r ≤ p and

A = (a1, a2, · · · , ar) is a p × r unknown constant matrix. εt is a white noise process

with mean 0 and covariance matrix Σε. The first part of (2) is a dynamic part and the

serial dependence of yt is driven by xt. We will achieve dimension reduction once r ≪ p

in the sense that the dynamics of yt is driven by a much lower dimensional process xt.

Motivated by practical needs and the characteristic of high dimensional data, the sparsity

assumption on factor loading matrix is imposed. Different from Lam, Yao and Bathia

(2011)’s method, which is equivalent to an eigenanalysis of a non negative definite matrix,

we add a constraint to control the number of nonzero elements in each column of the

factor loading matrix. Our proposed sparse estimator is then the solution of a constrained

optimization problem. The asymptotic theory is developed under the setting that both the
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sample size and the dimensionality tend to infinity. When the common factor is weak in the

sense that δ > 1/2 in Lam, Yao and Bathia (2011)’s paper, the new sparse estimator may

have a faster convergence rate. Numerically, we employ the generalized deflation method

(Mackey (2009)) and the GSLDA method (Moghaddam et al. (2006)) to approximate the

estimator. The tuning parameter is chosen by cross validation. The proposed method is

illustrated with both simulated and real data examples.

The third part is a change point detection problem. we consider the following covariance

structural break detection problem:

Cov(yt)I(tj−1 ≤ t < tj) = Σtj−1
, j = 1, · · · ,m+ 1,

where yt is a p × 1 vector time series, Σtj−1
̸= Σtj and {t1, . . ., tm} are change points,

1 = t0 < t1 < · · · < tm+1 = n. In the literature, the number of change points m is usually

assumed to be known and small, because a large m would involve a huge amount of com-

putational burden for parameters estimation. By reformulating the problem in a variable

selection context, the group least absolute shrinkage and selection operator (LASSO) is

proposed to estimate m and the locations of the change points {t1, . . ., tm}. Our method

is model free, it can be extensively applied to multivariate time series, such as GARCH

and stochastic volatility models. It is shown that both m and the locations of the change

points {t1, . . . , tm} can be consistently estimated from the data, and the computation can

be efficiently performed. An improved practical version that incorporates group LASSO

and the stepwise regression variable selection technique are discussed. Simulation studies

are conducted to assess the finite sample performance.
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Chapter 1: Generalized Yule-Walker

Estimation for Spatio-Temporal

Models with Unknown Diagonal

Coefficients

1.1 Introduction

The class of spatial autoregressive (SAR) models is introduced to model cross sectional

dependence of different economic individuals at different locations (Cliff and Ord, 1973).

More recent developments extend SAR models to spatial dynamic panel data (SDPD)

models, i.e. adding time lagged terms to account for serial correlations across different

locations. See, e.g. Lee and Yu (2010a). Baltagi et al. (2003) considers a static spatial

panel model where the error term is a SAR model. Lin and Lee (2010) shows that in the

presence of heteroskedastic disturbances, the maximum likelihood estimator for the SAR

models without taking into account the heteroskedasticity is generally inconsistent and

proposes an alternative GMM estimation method. Computationally the GMM methods
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are more efficient than the QML estimation (Lee, 2001). Lee and Yu (2010a) classifies

SDPD models into three categories: stable, spatial cointegration and explosive cases. As

pointed out by Bai and Shi (2011), the cases with a large number of cross sectional units

and a long history are rare. Hence it is pertinent to consider the setting with short time

spans in order to include as many locations as possible. Both estimation method and

asymptotic analysis need to be adapted under this new setting. Yu et al. (2008) and Yu

et al. (2012) investigate the asymptotic properties when both the number of locations and

the length of time series tend to infinity for both the stable case and spatial cointegration

case, and show that QMLE is consistent.

Motivated by the evidence in some practical examples, we extend the model in Yu et

al. (2008) and Yu et al. (2012) by allowing the scalar coefficients for each location (or

panel) different from each other. This increase in model capacity comes with the cost of

estimating substantially more parameters. In fact that the number of the parameters in this

new setting is in the order of the number of locations. The model considered in this paper

has four additive components: a pure spatial effect, a pure dynamic effect, a time-lagged

spatial effect and a white noise. Due to the innate endogeneity, the conventional regression

estimation methods such as the least squares method directly based on the model lead to

inconsistent estimators. To overcome the difficulties caused by the endogeneity, we propose

a generalized Yule-Walker type estimator for estimating the parameters in the model, which

applies the least squares estimation to a Yule-Walker equation. The asymptotic normality

of the proposed estimators is established under the setting that both the sample size n and

the number of locations (or panels) p tend to infinity. Therefore the number of parameters

to be estimated also diverges to infinity, which is a marked difference from, e.g., Yu et al.
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(2012). We develop the asymptotic properties under a general setting for stationary and

α-mixing processes, which includes the spatial autoregressive panel data models driven by

i.i.d. innovations as special cases.

The rest of the paper is organized as follows. Section 1.2 introduces the new model, its

motivation and the generalized Yule-Walker estimation method. The asymptotic theory

for the proposed estimation method is presented in Section 1.3. Simulation results and real

data analysis are reported, respectively, in Section 1.4 and 1.5. All the technical proofs are

relegated to an Appendix.

1.2 Model and Estimation Method

1.2.1 Models

The model considered in this paper is of the following form:

yt = D(λ0)Wyt +D(λ1)yt−1 +D(λ2)Wyt−1 + εt, (1.2.1)

where yt = (y1,t, . . . , yp,t)
T represents the observations from p locations at time t, D(λk) =

diag(λk1, . . . , λkp) and λkj is the unknown coefficient parameter for the j-th location, and

W is the p × p spatial weight matrix which measures the dependence among different

locations. All the main diagonal elements of W are zero. It is a common practice in spatial

econometrics to assume W known. For example, we may let wij = 1/(1 + dij), for i ̸= j,

where dij ≥ 0 is an appropriate distance between the i-th and the j-th location. It can

simply be the geographical distance between the two locations or the distance reflecting

the correlation or association between the variables at the two locations. In the above

model, D(λ0) captures the pure spatial effect, D(λ1) captures the pure dynamic effect,
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and D(λ2) captures the time-lagged spatial effect. We also assume that the error term

εt = (ε1,t, ε2,t, . . . , εp,t)
T in (1.2.1) satisfies the condition Cov (yt−1, εt) = 0. When λk1 =

· · · = λkp for k = 0, 1, 2, (1.2.1) reduces to the model of Yu et al. (2008), in which there

are only 3 unknown regressive coefficient parameters. In general the regression function in

(1.2.1) contains 3p unknown parameters.

The extension to use different scalar coefficients for different locations is motivated by

practical needs. For example, we analyze the monthly change rates of the consumer price

index (CPI) for the EU member states over the years 2003-2010. The detailed analysis

for this data set will be presented in section 1.5. Figure 1.1 presents the scatter-plots of

the observed data yi,t versus the spatial regressor wT
i yt and yi,t−1, for some of the EU

member states, where wT
i is the i-th row vector of the weight matrix W which is taken

as the sample correlation matrix with all the elements on the main diagonal set to be 0.

The superimposed straight lines are the simple regression lines estimated using the newly

proposed method in Section 2.2 below. It is clear from Figure 1.1 that at least Greece and

Belgium should have a different slope from those of France or Iceland.

1.2.2 Generalized Yule-Walker estimation

As yt occurs on both sides of (1.2.1), Wyt and εt are correlated with each other. Apply-

ing least squares method directly based on regressing yt on (Wyt,yt−1,Wyt−1) leads to

inconsistent estimators. On the other hand, applying the maximum likelihood estimation

requires to profile a p× p nuisance parameter matrix Σε = Var(εt), which leads to a com-

plex nonlinear optimization problem. Furthermore when p is large in relation to n, the

numerical stability is of concern.
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Figure 1.1: Plots of the monthly change rates yi,t of CPI against the spatial regressor w
T
i yt

(on the top) and the dynamic regressor yi,t−1 (on the bottom) for four EU member states in

2003-2010. The superimposed straight lines were estimated by the newly proposed method

in Section 2.2.

We propose below a new estimation method which applies the least squares method to

each individual row of a Yule-Walker equation. To this end, let Σk = Cov(yt+k,yt) for any

k ≥ 0. Note that we always assume that yt is stationary, see condition A2 and Remark 1

in Section 1.3 below. Then the Yule-Walker equation below follows from (1.2.1) directly.

(I−D(λ0)W)Σ1 = (D(λ1) +D(λ2)W)Σ0,

where I is a p× p identity matrix. The i-th row of the above equation is

(eTi − λ0iw
T
i )Σ1 = (λ1ie

T
i + λ2iw

T
i )Σ0, i = 1, . . . , p, (1.2.2)

where wi is the i-th row vector of W, and ei is the unit vector with the i-th element equal

to 1. Note that (1.2.2) is a system of p linear equations with three unknown parameters

λ0i, λ1i and λ2i. Since Eyt = 0, we replace Σ1 and Σ0 by the sample (auto)covariance
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matrices

Σ̂1 =
1

n

n−1∑
t=1

yt+1y
T
t and Σ̂0 =

1

n

n∑
t=1

yty
T
t .

We estimate (λ0i, λ1i, λ2i)
T by the least squares method, i.e. to solve the minimization

problem

min
λ0i,λ1i,λ2i

∥Σ̂
T

1 (ei − λ0iwi)− Σ̂0(λ1iei + λ2iwi)∥22.

The resulting estimators are called generalized Yule-Walker estimators which admits the

explicit expression:

(λ̂0i, λ̂1i, λ̂2i)
T = (X̂T

i X̂i)
−1X̂T

i Ŷi, (1.2.3)

where

X̂i = (Σ̂
T

1wi, Σ̂0ei, Σ̂0wi) and Ŷi = Σ̂
T

1 ei.

More explicitly,

X̂i =

(
1

n

n∑
t=1

yt−1(w
T
i yt),

1

n

n∑
t=1

yt−1yi,t−1,
1

n

n∑
t=1

yt−1(w
T
i yt−1)

)
, Ŷi =

1

n

n∑
t=1

yt−1yi,t.

Then it holds that for i = 1, · · · , p,
λ̂0i

λ̂1i

λ̂2i

−


λ0i

λ1i

λ2i

 = (X̂T
i X̂i)

−1


1
n

∑n
t=1 y

T
t−1(w

T
i yt)× 1

n

∑n
t=1 εi,tyt−1

1
n

∑n
t=1 y

T
t−1yi,t−1 × 1

n

∑n
t=1 εi,tyt−1

1
n

∑n
t=1 y

T
t−1(w

T
i yt−1)× 1

n

∑n
t=1 εi,tyt−1

 .

1.2.3 A root-n consistent estimator for large p

When p/
√
n → ∞, the estimator (1.2.3) admits non-standard convergence rates (i.e. the

rates different from
√
n); see Theorems 2 and 4 in Section 1.3 below. Note that there are p

equations with only 3 parameters in (1.2.2). Hence (1.2.3) can be viewed as a GMME for

an over-determined scenario. The estimation may suffer when the number of estimation

14



equations increases. See, for example, a similar result in Theorem 1 of Chang, Chen and

Chen (2015). A further compounding factor is that the estimation for the covariance

matrices Σ0, Σ1 using their sample counterparts leads to non-negligible errors even when

n → ∞ (as long as p is very large). Below we propose an alternative estimator which

restricts the number of the estimation equations to be used in order to restore the
√
n-

consistency and the asymptotic normality.

For i = 1, · · · , p, put Xi = (ΣT
1wi,Σ0ei,Σ0wi). Note that the k-th row of Xi is

(eTkΣ
T
1wi,

eTkΣ0ei, e
T
kΣ0wi) which is the covariance between yk,t−1 and (wT

i yt, yi,t−1, w
T
i yt−1). Let

ρ
(i)
k =

∣∣eTkΣT
1wi

∣∣+ ∣∣eTkΣ0ei
∣∣+ ∣∣eTkΣ0wi

∣∣ , k = 1, · · · , p. (1.2.4)

Then ρ
(i)
k may be viewed as a measure for the correlation between yk,t−1 and (wT

i yt, yi,t−1,w
T
i yt−1)

T .

When ρ
(i)
k is small, say, close to 0, the k-th equation in (1.2.2) carries little information

on (λ0i, λ1i, λ2i). Therefore as far as the estimation for (λ0i, λ1i, λ2i) is concerned, we only

keep the k-th equation in (1.2.2) for large ρ
(i)
k .

Let zit−1 be the di × 1 vector consisting of those yk,t−1 corresponding to the di largest

ρ̂
(i)
k (1 ≤ k ≤ p), where ρ̂

(i)
k is defined as in (1.2.4) but with (Σ1, Σ0) replaced by (Σ̂1, Σ̂0).

The new estimator is defined as

(λ̃0i, λ̃1i, λ̃2i)
T = (ẐT

i Ẑi)
−1ẐT

i Ỹi, i = 1, · · · , p. (1.2.5)

where

Ẑi =
( 1
n

n∑
t=1

zit−1(w
T
i yt),

1

n

n∑
t=1

zit−1yi,t−1,
1

n

n∑
t=1

zit−1(w
T
i yt−1)

)
, (1.2.6)

and

Ỹi =
1

n

n∑
t=1

zit−1yi,t.
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Now it holds that
λ̃0i

λ̃1i

λ̃2i

−


λ0i

λ1i

λ2i

 = (ẐT
i Ẑi)

−1ẐT
i


1
n

∑n
t=1 εi,tz

i
t−1

1
n

∑n
t=1 εi,tz

i
t−1

1
n

∑n
t=1 εi,tz

i
t−1

 .

Theorem 3 in Section 3 below shows the asymptotic normality of the above estimator

provided that the number of estimation equations used satisfies condition di = o(
√
n).

1.3 Theoretical properties

We introduce some notations first. For a p× 1 vector v = (v1, · · · , vp)T , ∥v∥2 =
√∑p

i=1 v
2
i

is the Euclidean norm, ∥v∥1 =
∑p

i=1 |vi| is the L1 norm. For a matrix H = (hij), ∥H∥F =√
tr(HTH) is the Frobenius norm, ∥H∥2 =

√
λmax(HTH) is the operator norm, where

λmax(·) is the largest eigenvalue of a matrix. We denote by |H| the matrix (|hij|) which is a

matrix of the same size as H but with the (i, j)-th element hij replaced by |hij|. Note the

determinant of H is denoted by det(H). A strictly stationary process {yt} is α-mixing if

α(k) ≡ sup
A∈F0

−∞,B∈F∞
k

∣∣P (A)P (B)− P (AB)
∣∣→ 0, as k →∞, (1.3.7)

where F j
i denotes the σ-algebra generated by {yt, i ≤ t ≤ j}. See, e.g., Section 2.6 of Fan

and Yao (2003) for a compact review of α-mixing processes.

Let S(λ0) ≡ I−D(λ0)W be invertible. It follows from (1.2.1) that

yt = Ayt−1 + S−1(λ0)εt,

where A = S−1(λ0)(D(λ1) +D(λ2)W). Some regularity conditions are now in order.

A1. The spatial weight matrix W is known with zero main diagonal elements; S(λ0) is

invertible.
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A2. (a) The disturbance εt satisfies

Cov(yt−1, εt) = 0.

(b) The process {yt} in model (1.2.1) is strictly stationary and α-mixing with α(k),

defined in (1.3.7), satisfying
∞∑
k=1

α(k)
γ

4+γ <∞,

for some constant γ > 0.

(c) For γ > 0 specified in (b) above,

sup
p

E
∣∣wT

i Σ0yt

∣∣4+γ
<∞, sup

p
E
∣∣wT

i Σ1yt

∣∣4+γ
<∞, sup

p
E
∣∣eTi Σ0yt

∣∣4+γ
<∞,

sup
p

E
∣∣wT

i yt

∣∣4+γ
<∞, sup

p
E
∣∣eTi yt

∣∣4+γ
<∞,

where wi denotes the i-th row of W. The diagonal elements of Vi defined in (1.3.8)

are bounded uniformly in p.

A3. The rank of matrix (ΣT
1wi,Σ0ei,Σ0wi) is equal to 3.

Remark 1. Condition A1 is standard for spatial econometric models. Condition A3 en-

sures that λ0i, λ1i and λ2i are identifiable in (1.2.2). Condition A2(c) limits the dependence

across different spatial locations. It is implied by, for example, the conditions imposed in

Yu et al. (2008). Lemma 2 in the Appendix shows that Condition A2 holds with γ = 4

under conditions A1 and B1 – B3 below. Note that conditions B1–B3 are often directly

imposed in the spatial econometrics literature including, for example, Lee and Yu (2010a),

and Yu et al. (2008).
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B1. The errors εi,t are i.i.d across i and t with E(εi,t) = 0, Var(εi,t) = σ2
0, and E |εi,t|4+γ <

∞. The density function of εi,t exists.

B2. The row and column sums of |W| and |S−1(λ0)| are bounded uniformly in p.

B3. The row and column sums of
∑∞

j=0 |Aj| are bounded uniformly in p.

Now we are ready to present the asymptotic properties for (λ̂0i, λ̂1i, λ̂2i)
T , i = 1, . . . , p,

with fixed p and n→∞ first, and then p→∞ and n→∞.

1.3.1 Asymptotics for fixed p

For i = 1, . . . , p, let

Σy,εi(j) = Cov(yt−1+jεi,t+j,yt−1εi,t), j = 0, 1, 2, · · · ,

Σy,εi = Σy,εi(0) +
∞∑
j=1

[
Σy,εi(j) +ΣT

y,εi
(j)
]
,

Vi =


wT

i Σ1Σ
T
1wi wT

i Σ1Σ0ei wT
i Σ1Σ0wi

wT
i Σ1Σ0ei eTi Σ0Σ0ei eTi Σ0Σ0wi

wT
i Σ1Σ0wi eTi Σ0Σ0wi wT

i Σ0Σ0wi

 , (1.3.8)

and

Ui =


wT

i Σ1Σy,εiΣ
T
1wi wT

i Σ1Σy,εiΣ0ei wT
i Σ1Σy,εiΣ0wi

wT
i Σ1Σy,εiΣ0ei eTi Σ0Σy,εiΣ0ei eTi Σ0Σy,εiΣ0wi

wT
i Σ1Σy,εiΣ0wi eTi Σ0Σy,εiΣ0wi wT

i Σ0Σy,εiΣ0wi

 . (1.3.9)

Theorem 1 Let conditions A1 – A3 hold and p ≥ 1 be fixed. Then as n → ∞, it holds

that

√
n




λ̂0i

λ̂1i

λ̂2i

−


λ0i

λ1i

λ2i




d−→ N(0,V−1

i UiV
−1
i ), i = 1, . . . , p,
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where Vi and Ui are given in (1.3.8) and (1.3.9).

1.3.2 Asymptotics with diverging p

When p diverges together with n, Ui,Vi in (1.3.9) and (1.3.8) are no longer constant

matrices. Let U
− 1

2
i be a matrix such that (U

− 1
2

i )2 = U−1
i .

Theorem 2 Let condition A1 – A3 hold.

(i) As n→∞, p→∞ and p = o(
√
n),

√
nU

− 1
2

i Vi




λ̂0i

λ̂1i

λ̂2i

−


λ0i

λ1i

λ2i




d−→ N(0, I3), i = 1, . . . , p.

(ii) As n→∞, p→∞,
√
n = O(p) and p = o(n),∥∥∥∥∥∥∥∥∥∥∥∥


λ̂0i

λ̂1i

λ̂2i

−


λ0i

λ1i

λ2i



∥∥∥∥∥∥∥∥∥∥∥∥
2

= Op

(p
n

)
, i = 1, . . . , p.

Intuitively, condition A2(c) reflects the spatial dependence, that is the structures of Σ0

and Σ1. It includes the case that yti and ytj are asymptotically uncorrelated given i and j

are far enough. Hence for yti, as p→∞, the correlation of yti and the far enough elements of

IV yt−1 are asymptotically 0. This means more such IV’s does not add more information to

the estimation. At the same time, adding one more IV means we have one more estimation

equation in GMM, noise then accumulates. This can explain what Theorem 2 says: given

condition A2(c), if p is sufficient small such that p = o(
√
n), using more IV does not

improve the estimation, and the total noise accumulation is dominated by 1/
√
n, hence the
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effect of p can not be seen anymore; When p increases such that
√
n << p << n, using

more IV still does not improve the estimation, however now the total noise accumulation

reaches the extent such that p/n dominates; When p go on increasing such that p ≥ Cn,

the estimator is even inconsistent due to the noise accumulation.

Theorem 2 indicates that the standard root-n convergence rate prevails as long as

p = o(
√
n). However the convergence rate may be slower when p is of higher orders than

√
n. Theorem 2 presents the convergence rates for the L2 norm of the estimation errors.

The rates also hold for the L1 norm of the errors as well. Corollary 1 consider the estimation

errors over p locations together, for which we have established the result for L1 norm only.

Corollary 1 Let condition A1 hold, and condition A2 and A3 hold for all i = 1, · · · , p.

Then as n→∞ and p→∞, it holds that

1

p

p∑
i=1

∥∥∥∥∥∥∥∥∥∥∥∥


λ̂0i

λ̂1i

λ̂2i

−


λ0i

λ1i

λ2i



∥∥∥∥∥∥∥∥∥∥∥∥
1

=


Op(

1√
n
) if p√

n
= O(1),

Op(
p
n
) if p√

n
→∞ and p

n
= o(1).

To derive the asymptotic properties of the estimators defined in (1.2.5), we introduce

some new notation. For i = 1, . . . , p, let

Σi
0 = Cov(yt, z

i
t), Σi

1 = Cov(yt, z
i
t−1),

Σzi,εi(j) = Cov(zit−1+jεi,t+j, z
i
t−1εi,t), j = 0, 1, 2, · · · ,

and

Σzi,εi = Σzi,εi(0) +
∞∑
j=1

[
Σzi,εi(j) +ΣT

zi,εi
(j)
]
.
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Let

V∗
i =


wT

i Σ
i
1(Σ

i
1)

Twi wT
i Σ

i
1(Σ

i
0)

Tei wT
i Σ

i
1(Σ

i
0)

Twi

wT
i Σ

i
1(Σ

i
0)

Tei eTi Σ
i
0(Σ

i
0)

Tei eTi Σ
i
0(Σ

i
0)

Twi

wT
i Σ

i
1(Σ

i
0)

Twi eTi Σ
i
0(Σ

i
0)

Twi wT
i Σ

i
0(Σ

i
0)

Twi

 , (1.3.10)

and

U∗
i =


wT

i Σ
i
1Σzi,εi(Σ

i
1)

Twi wT
i Σ

i
1Σzi,εi(Σ

i
0)

Tei wT
i Σ

i
1Σzi,εi(Σ

i
0)

Twi

wT
i Σ

i
1Σzi,εi(Σ

i
0)

Tei eTi Σ
i
0Σzi,εi(Σ

i
0)

Tei eTi Σ
i
0Σzi,εi(Σ

i
0)

Twi

wT
i Σ

i
1Σzi,εi(Σ

i
0)

Twi eTi Σ
i
0Σzi,εi(Σ

i
0)

Twi wT
i Σ

i
0Σzi,εi(Σ

i
0)

Twi

 . (1.3.11)

Theorem 3 below indicates that the estimators defined in (1.2.5) are asymptotically

normal with the standard
√
n-rate as long as di = o(

√
n). Note that it does not impose

any conditions directly on the size of p.

A4. (a) For γ > 0 specified in A2(b),

sup
p

E
∣∣wT

i Σ
i
0z

i
t

∣∣4+γ
<∞, sup

p
E
∣∣wT

i Σ
i
1z

i
t

∣∣4+γ
<∞, sup

p
E
∣∣eTi Σi

0z
i
t

∣∣4+γ
<∞,

sup
p

E
∣∣wT

i yt

∣∣4+γ
<∞, sup

p
E
∣∣eTi yt

∣∣4+γ
<∞.

and the diagonal elements of V∗
i defined in (1.3.10) are bounded uniformly in p.

(b) The rank of matrix E{Ẑi} is equal to 3, where Ẑi is defined in (1.2.6).

Theorem 3 Let conditions A1, A2(a,b) and A4 hold. As n→∞, p→∞ and di = o(
√
n),

it holds that

√
n(U∗

i )
− 1

2V∗
i




λ̃0i

λ̃1i

λ̃2i

−


λ0i

λ1i

λ2i




d−→ N(0, I3), i = 1, . . . , p,

where V∗
i and U∗

i are given in (1.3.10) and (1.3.11).
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The fact that more such IV’s does not add more information to the estimation is because

condition A2(c) restrict the spatial dependence of yt. If we relax it to include the (special)

case that elements inΣ0 andΣ1 are all bounded away from 0 as p→∞, then the correlation

of yti and ytj are bounded away from 0 no matter how far they are. Under this new

condition, intuitively, more IV’s does add more information to the estimation, which may

improve our estimation. At the same time, the noise accumulation still exists. The tradeoff

is about this two effect. The new condition is condition A5, which includes the case

mentioned above.

A5. For γ > 0 specified in A2(b),

max
{
sup
p

E
∣∣wT

i Σ0yt

∣∣4+γ
, sup

p
E
∣∣wT

i Σ1yt

∣∣4+γ
, sup

p
E
∣∣eTi Σ0yt

∣∣4+γ
}
= O(s0(p)).

max
{
sup
p

E
∣∣wT

i yt

∣∣4+γ
, sup

p
E
∣∣eTi yt

∣∣4+γ
}
= O(s1(p)).

and the diagonal elements of Vi defined in (1.3.8) is in the order of s2(p), where s0(p),

s1(p) and s2(p) are numbers relating to p.

Let us denote C as a constant. When the number of nonzero elements (or elements

bounded away from zero) inwi increases with p but is o(p), we may have s1(p) = o(min{s0(p), s2(p)}).

Simulation scenario 2 is under this case. When there are only finite number of nonzero ele-

ments (or elements bounded away from zero) in wi, we might have s1(p) ≍ C, which is the

case of simulation scenario 1. The reason we assume the diagonal elements of Vi defined in

(1.3.8) are in the order of s2(p) is because we can treat wT
i Σ1Σ

T
1wi, e

T
i Σ0Σ0ei,w

T
i Σ0Σ0wi

as the second moments of three random variables wT
i Σ1x, e

T
i Σ0x and wT

i Σ0x respectively,

where the p× 1 random vector x has mean 0 and covariance matrix Ip.
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Theorem 4 Let conditions A1, A2(a,b), A3 and A5 hold. As n→∞, p→∞, if ps1(p)
s2(p)

=

o(n) and s
1/2
0 (p) = O(ps

1/2
1 (p)s2(p)), it holds that∥∥∥∥∥∥∥∥∥∥∥∥


λ̂0i

λ̂1i

λ̂2i

−


λ0i

λ1i

λ2i



∥∥∥∥∥∥∥∥∥∥∥∥
2

= Op

(
max

{ps3/41 (p)

ns2(p)
,
s
1/4
0 (p)√
ns2(p)

})
.

Let us consider some examples. (1) When s0(p) ≍ p, s1(p) ≍ C and s2(p) ≍ p, the

convergence rate is max
{

1
n
, 1√

np3/4

}
. (2) When s0(p) ≍ p, s1(p) ≍

√
p and s2(p) ≍ p, if

p = o(n2), the convergence rate is max
{

p3/8

n
, 1√

np3/4

}
. (3) When s0(p) ≍ C, s1(p) ≍ C

and s2(p) ≍ C, if p = o(n), the convergence rate is max
{

p
n
, 1√

n

}
, which corresponds with

Theorem 2. Theorem 4 indicates that under different situations of s0(p), s1(p) and s2(p),

we may obtain different convergence rates. These observations are illustrated by simulation

examples in section 4.

Example (2) is similar to the case such that the correlation of yti and ytj are bounded

away from 0 no matter how far they are. Hence Tradeoff explanations is as follows: we

say more IV add more information to the estimation as the positive effect and total noise

accumulation by IV as the negative effect. When p is sufficient small such that p << n4/9,

the positive effect dominates the negative effects, hence more IV increase the convergence

rate; When n4/9 << p << n2, the negative effect dominates the positive effect, hence more

IV reduces the convergence rate. But compared with the case when there is no positive

effect, we gain some convergent rate (for instance p3/8

n
<< p

n
), which means the positive

effect is indeed doing its job; When p ≥ Cn2, negative effect totally dominates positive

effect and the estimator is inconsistent.
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1.4 Simulation study

To examine the finite sample performance of the proposed estimation methods, we conduct

some simulation under different scenarios.

1.4.1 Scenario 1

λ0i, λ1i and λ2i are generated from U(−0.6, 0.6). The spatial weight matrix W used is a

block diagonal matrix formed by a
√
p × √p row-normalized matrix W∗. We construct

W∗ such that the first four sub-diagonal elements are all 1 and the rest elements are all

0 before normalizing. This kind of W corresponds to the pooling of
√
p separate districts

with similar neighboring structures in each district, see Lee and Yu (2013), that is

W =



W∗ 0 0 . . . 0

0 W∗ 0 . . . 0

0 0 W∗ . . . 0

...
...

0 0 0 . . . W∗


.

The error εi,t are independently generated from N(0, σ2
i ), where we generate each σi from

U(0.5, 1.5).

For all scenarios, we generate data from (1.2.1) with different settings for n and p. We

apply the proposed estimation method (1.2.3) and (1.2.5) (with di = min (p, n10/21)) and

report the mean absolute errors:

MAE(i) =
1

3

2∑
j=0

|λ̂ji − λji|, MAE =
1

p

p∑
i=1

MAE(i).
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We replicate each setting 500 times.

Figure 1.2 depicts two boxplots of MAE with p equals to, respectively, 25 and 100.

As the sample size n increases from 100, 250, 500, 750 to 1000, MAE decreases for both

methods.
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Figure 1.2: Boxplots of MAE for estimator (1.2.3) (left panels) and estimator (1.2.5) (right

panels) with p = 25 (top panels) and 100 (bottom panels), n = 100, 250, 500, 750, 1000

for scenario 1.

Figure 1.3 depicts the boxplots of the MAE for the original estimator (1.2.3), the root

n consistent estimator (1.2.5), and the estimator (1.2.5) with the ridge penalty, where we

choose the ridge tuning parameter to be C × p
n
in order to avoid the nearly singularity

problem of ẐT
i Ẑi, and C is chosen via cross validation. With n = 500, the dimension p is
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set at 25,49,64,81,100,169,324 and 529 respectively. The MAE for (1.2.3) remains about

the same level as p increases; see the panel on the left in Figure 1.3. This is in line with the

asymptotic result of Theorem 4 when, for example, s1(p) ≍ C, s0(p) ≍ p and s2(p) ≍ p. In

contrast, the MAE for estimator (1.2.5) increases sharply when p increases; see the panel

in the middle. This is due to the fact that ẐT
i Ẑi is nearly singular for large p. Adding a

ridge in the estimator certainly mitigates the deterioration when p increases; see the panel

on the right in Figure 1.3.
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Figure 1.3: Boxplots of MAE of the original estimator (1.2.3) (the left panel), the root n

consistent estimator (1.2.5) (the middle panel), and the estimator (1.2.5) after adding ridge

penalty (the right panel) with n = 500 and p = 25, 49, 64, 81, 100, 169, 324, 529 for scenario

1.

1.4.2 Scenario 2

λ0i, λ1i and λ2i are generated from U(−0.6, 0.6). The spatial weight matrix W is con-

structed as follows. First, we construct a
√
p × √p row-normalized matrix W∗, where
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W∗ is chosen such that the first two sub-diagonal elements are all 1 and the rest elements

are all 0 before normalizing. Then we treat W as a
√
p × √p block matrix and put W∗

into the main diagonal, 2nd, 4th, 6th and etc. sub-diagonal block positions. This kind of

W corresponds to the pooling of
√
p districts (each district has

√
p locations) which the

evenly numbered districts are connected and the oddly numbered districts are connected

but evenly numbered districts and oddly number districts are separated. Each district has

similar neighboring structures. As p increases, the number of the locations influencing one

specific location increases in the order of
√
p, that is

W =



W∗ 0 W∗ 0 . . . W∗

0 W∗ 0 W∗ . . . 0

W∗ 0 W∗ 0 . . . W∗

...
...

...
... . . .

...


.

The error εi,t are independently generated from N(0, σ2
i ), where we generate each σi from

U(0.5, 1.5).

Figure 1.4 depicts two boxplots of MAE with p equals to, respectively, 25 and 100.

As the sample size n increases from 100, 250, 500, 750 to 1000, MAE decreases for both

methods.

Figure 1.5 depicts three boxplots as Figure 1.3. The MAE for (1.2.3) increases steadily

as p increases, which matches the result of Theorem 4 when, for instance, s1(p) ≍
√
p,

s0(p) ≍ p and s2(p) ≍ p. The MAE for (1.2.5) after adding ridge penalty is slowly increasing

as well. This might be caused by the fact that, similar to A2(c), quantities in condition

A4(a) is also influenced by p since the number of nonzero elements in wi is in the order of

√
p.
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Figure 1.4: Boxplots of MAE for estimator (1.2.3) (left panels) and estimator (1.2.5) (right

panels) with p = 25 (top panels) and 100 (bottom panels), n = 100, 250, 500, 750, 1000

for scenario 2.

1.5 Real data analysis

1.5.1 European Consumer Price Indices

We analyze the monthly change rates of the consumer price index (CPI) for the EU member

states, over the years 2003-2010. We use the national harmonized index of consumer prices

calculated by Eurostat, the statistical office of the European Union. For this data set,

n = 96 and p = 31.

Figure 1.6 presents the time series plots of the monthly change rates of CPI for the 31
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Figure 1.5: Boxplots of MAE of the original estimator (1.2.3) (the left panel), the root n

consistent estimator (1.2.5) (the middle panel), and the estimator (1.2.5) after adding ridge

penalty (the right panel) with n = 500 and p = 25, 49, 64, 81, 100, 169, 324, 529 for scenario

2.
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Figure 1.6: Time series plots of the monthly change rates of CPI for the 31 EU member states.

Each series is subtracted by its mean value.

states. To line up the curves together, each series is centered at its mean value in Figure

1.6. There exist clearly synchronizes on the fluctuations across different states, indicating

the spatial (i.e. cross-state) correlations among different states. Also noticeable is the

varying degrees of the fluctuation over the different states.

Let yt consist of the monthly change rates of CPI for the 31 states. We fit the proposed
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spatial-temporal model (1.2.1) to this data set with the parameters estimated by (1.2.3). We

take a normalized sample correlation matrix of yt as the spatial weight matrix W = (wij),

i.e. we let wij be the absolute value of the sample correlation between the i-th and j-th

states for i ̸= j, and wii = 0, and then replace wij by wij/
∑

k wkj.

Figure 1.7 presents the scatter plots of yi,t against, respectively, the 3 regressors in

model (1.2.1), i.e. wT
i yt, yi,t−1, w

T
i yt−1, for four selected states Belgium, Greece, France

and Iceland. We superimpose the straight line y = λ̂ji x in each of those 3 scatter plots

with, respectively, j = 0, 1, 2. It is clear that the estimated slopes are very different for

those 4 states. Figure 1.8 plots the true monthly change rates of the CPI for those 4 states

together with the fitted values

ŷi,t = λ̂0iw
T
i yt + λ̂1iyi,t−1 + λ̂2iw

T
i yt−1. (1.5.12)

Overall ŷi,t tracks its truth value reasonably well. Figure 1.9 shows the out-of-sample

forecasting performance of our model. For the sake of comparison, predictions are made

using our model and the proposed generalized Yule-Walker estimator, and using the (con-

stant) SDPD model of Yu et al. (2008) and their Quasi-Maximum Likelihood estimator. In

particular, for each location, we leave out from the sample the last six observations and we

compute the (out-of-sample) forecasts with 1,2,....6 step ahead forecasting horizon; then,

we compute the average prediction error over time (i.e. the mean of the 6 prediction errors).

On the left panel of Figure 1.9, the two box-plots summarize the average prediction error

for the 31 locations obtained with our YW estimator and the QML estimator of Yu et al.

(2008), respectively. It is evident that our estimator produces unbiased predictions while

the QML estimator appears to be biased. This advantage also reflects on the forecasting
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Figure 1.7: The scatter plots of yi,t against w
T
i yt (panels on the top), yi,t−1 (panels in the

middle), and wT
i yt−1 (panels on the bottom) for four selected countries Belgium, Greece,

France and Iceland. The straight lines y = λ̂jix are superimposed in the panels on the top

with j = 0, those in the middle with j = 1, and those on the bottom with j = 2.

average square errors, reported on the right panel of Figure 1.9. In conclusion, the SDPD

model of Yu et al. (2008) has a satisfying forecasting performance because several locations

have similar spatial structure and for those locations a model with constant parameters is

sufficient. Anyway, a marginal improvement is observed for our estimator because several

locations have quite different structures and our model is able to capture this difference.

Finally, it is worthwhile to notice that the variability of the two predictors appears to be

the same.

31



B
el

gi
um

−
3

−
1

1
3

G
re

ec
e

−
3

−
1

1
3

F
ra

nc
e

−
3

−
1

1
3

Ic
el

an
d

−
3

0
2

2003 2004 2005 2006 2007 2008 2009 2010 2011

Figure 1.8: The monthly change rates of CPI (thin lines) of Belgium, Greece, France and Iceland,

and their estimated values (thick lines) by model (1.2.1).
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Figure 1.9: Prediction errors generated in the out-of-sample forecasting, leaving out 6 observa-

tions from the sample, using our model with the Generalized Yule-Walker estimator and using

the constant SDPD model of Yu et al. (2008) with the Quasi-Maximum Likelihood estimator.

To further vindicate the necessity to use different coefficients for different states, we

consider a statistical test for hypothesis

H0 : λj1 = · · · = λjp, j = 0, 1, 2
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for model (1.2.1). Then the residuals resulting from the fitted model under H0 will be

greater than the residuals without H0. However if H0 is true, the difference between the

two sets of residuals should not be significant. We apply a bootstrap method to test this

significance. Let λ̃0, λ̃1, λ̃2 be the estimates under hypothesis H0. Define the test statistic

U =
1

n

n∑
t=1

∥yt − ỹt∥1, ỹt = λ̃0Wyt + λ̃1yt−1 + λ̃2Wyt−1.

We reject H0 for large values of U . To assess how large is large, we generate a bootstrap

data from

y∗
t = λ̃0Wyt + λ̃1yt−1 + λ̃2Wyt−1 + ε∗t ,

where {ε∗t} are drawn independently from the residuals

ε̂t = yt − ŷt, t = 1, · · · , n,

and ŷt consists of the components defined in (1.5.12). Now the bootstrap statistic is defined

as

U∗ =
1

n

n∑
t=1

∥y∗
t − (λ∗

0Wyt + λ∗
1yt−1 + λ∗

2Wyt−1)∥1,

where (λ∗
0, λ

∗
1, λ

∗
2) is the estimated coefficients for the regression model

y∗
t = λ0Wyt + λ1yt−1 + λ2Wyt−1 + εt, t = 1, · · · , n.

The P -value for testing hypothesis H0 is defined as

P (U∗ > U |y1, · · · ,yn),

which is approximated by the relative frequency of the event (U∗ > U) in a repeated

bootstrap sampling with a large number of replications. By repeating bootstrap sampling

1000 times, the estimated P -value is 0, exhibiting strong evidence against the null hypoth-

esis H0. Therefore the model with the equal slope parameters across different locations is

inadequate for this particular data set.
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1.5.2 Modeling mortality rates

Now we analyze the annual Italian male and female mortality rates for different ages (be-

tween 0 and 104) in the period of 1950 – 2009 based on the proposed model (1.2.1). The data

were downloaded from the HumanMortality Database (see the website http://www.mortality.org/).

Let mi,t be the log mortality rate of female or male at age i and in Year t. Those data

are plotted in Figure 1.10. Two panels on the left plot are the female and male mortal-

ity against different age in each year. More precisely the curves {mi,t, i = 1, · · · , 21} for

t < 1970 are plotted in red, those for t > 1990 are in blue, those with 1970 ≤ t ≤ 1989

are in grey. Those curves show clearly that the mortality rate decreases over the years for

almost all age groups (except a few outliers at the top end). Two panels in the middle

of Figure 1.10 plot the log mortality for each age group against time with the following

color code: black for ages not great than 10, grey for ages between 11 and 100, and green

for ages greater than 100. They indicate that the mortality for all age groups decreases

over time, the most significant decreases occur at the young age groups. Furthermore,

the fluctuation of the mortality rates for the top age groups reduces significantly over the

years, while the mean mortality rates for those groups remain about the same. This can be

seen more clearly in the two panels on the right which plot differenced log mortality rates

{yi,t, t = 1951, · · · , 2009}, using the same colour code, where yi,t = mi,t −mi,t−1.

We fit the differenced log mortality data with model (1.2.1) with the parameters esti-

mated by (1.2.5) and di = 20. Note that now p = 104 and n = 59. Let the off-diagonal

elements of the spatial weight matrix W be

wij =
1

1 + |i− j|
, 1 ≤ i < j ≤ 104.
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Figure 1.10: Log mortality rates of Italian female (3 top panels) and male (3 bottom panels) are

plotted against age from each year in 1950-2009 (2 left panels), against year for each age group

between 0 and 104 (2 middle panels). Differenced log mortality rates are plotted against year for

each age in 2 right panels.

We then replace wij by wij/
∑

i wij. Moreover, we can also fix a threshold τ and set to zero

all the elements of matrix W such that |x − w| > τ (for simplicity, we fix τ = 5 in this

application, but the results are substantially invariant for different values of τ).

The results of the estimation are shown in table 1.1, for a selection of cohorts of different

ages. Figure 1.11 shows the fitted series for ages i = 60, 80, 100.
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age λ̂0i λ̂1i λ̂2i age λ̂0i λ̂1i λ̂2i

5 0.41 -0.52 0.06 55 0.19 -0.88 0.28

10 0.20 -0.42 0.05 60 -0.09 -0.72 0.01

15 0.44 -0.65 0.18 65 0.22 -0.63 0.21

20 0.64 -0.78 0.40 70 0.21 -0.69 0.08

25 -0.04 -0.43 0.03 75 0.33 -0.59 0.22

30 0.78 -0.80 0.55 80 0.33 -0.89 0.27

35 0.11 -0.55 0.29 85 0.37 -0.76 0.18

40 -0.04 -0.66 -0.01 90 0.29 -0.62 0.16

45 0.29 -0.46 0.12 95 0.27 -0.77 0.26

50 -0.10 -0.45 -0.05 100 0.44 -0.69 -0.03

Table 1.1: Estimated coefficients for a selection of cohorts of different ages. The left column

is the estimated pure spatial coefficients λ̂0i; The middle column is the estimated pure dynamic

coefficient λ̂1i; The right column is the estimated spatial-dynamic coefficients λ̂2i.

1.6 Final remark

We propose in this paper a generalized Yule-Walker estimation method for spatio-temporal

models with diagonal coefficients. The setting enlarges the capacity of the popular spatial

dynamic panel data models. Both the asymptotic results and numerical illustration show

that the proposed estimation method works well, although the number of the estimation

equations utilized should be of the order o(
√
n).
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Figure 1.11: Observed time series (thin line) and fitted time series (bold line), for female mortality

rate for ages i = 60, 80, 100.

1.7 Appendix: Proofs

We present the proofs for Theorems 2, Corollary 1 and Theorem 4 in this appendix. The

proofs for Theorem 1 and 3 are similar and simpler than that of Theorem 2, and they are

therefore omitted. We also present a lemma (i.e. Lemma 1) at the end of this appendix,

which shows that condition A2 is implied by conditions A1 and B1 – B3; see Remark 1.

We use C to denote a generic positive constant, which may be different at different places.

Proof of Theorem 2. We first prove (i) of Theorem 2. We only need to prove the

assertions (1) and (2) below, as then the required conclusion follows from (1) and (2)

immediately.

37



(1)

√
nU

− 1
2

i


1
n

∑n
t=1 y

T
t−1(w

T
i yt)

1
n

∑n
t=1 εi,tyt−1

1
n

∑n
t=1 y

T
t−1yi,t−1

1
n

∑n
t=1 εi,tyt−1

1
n

∑n
t=1 y

T
t−1(w

T
i yt−1)

1
n

∑n
t=1 εi,tyt−1


d−→ N(0, I3).

(2) Vi(X̂
T
i X̂i)

−1 P−→ I3.

To prove (1), it suffices to show that for any nonzero vector a = (a1, a2, a3)
T , the linear

combination

aT


1
n

∑n
t=1 y

T
t−1(w

T
i yt)

1
n
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T
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T
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1
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t=1 εi,tyt−1


is asymptotic normal.

Let us take out the dominant term in 1
n

∑n
t=1 y

T
t−1(w

T
i yt)

1
n

∑n
t=1 εi,tyt−1 first.

1

n

n∑
t=1

yT
t−1(w

T
i yt)

1

n

n∑
t=1

εi,tyt−1

=

[
1

n

n∑
t=1

yT
t−1(w

T
i yt)− E[yT

t−1(w
T
i yt)]

]
1

n

n∑
t=1

εi,tyt−1 + E[yT
t−1(w

T
i yt)]

1

n

n∑
t=1

εi,tyt−1

=

[
1

n

n∑
t=1

yT
t−1(w

T
i yt)−wT

i Σ1

]
1

n

n∑
t=1

εi,tyt−1 +
1

n

n∑
t=1

wT
i Σ1yt−1εi,t

=E1 + E2.

(1.7.13)
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For term E1 and k = 1, 2, · · · , p, by Proposition 2.5 of Fan and Yao (2003), we have

E

[
1

n

n∑
t=1

(eTk yt−1w
T
i yt − eTkΣ

T
1wi)

]2

=
1

n2

n∑
t=1

Var(eTk yt−1w
T
i yt) +

1

n2

∑
t ̸=s

Cov(eTk yt−1w
T
i yt, e

T
k ys−1w

T
i ys)

≤C

n
+

1

n2

∑
t̸=s

8α(|t− s|)
γ

4+γ

[
E|eTk yt−1w

T
i yt|2+

γ
2

] 2
4+γ
[
E|eTk ys−1w

T
i ys|2+

γ
2

] 2
4+γ

≤C

n
+

C

n2

∑
t̸=s

α(|t− s|)
γ

4+γ ≤ C

n
+

C

n

n∑
j=1

α(j)
γ

4+γ = O(
1

n
),

(1.7.14)

where C is independent of p. Then it holds that

1

n

n∑
t=1

(eTk yt−1w
T
i yt − eTkΣ

T
1wi) = Op(

1√
n
).

Therefore∥∥∥∥∥ 1n
n∑

t=1

yt−1w
T
i yt −ΣT

1wi

∥∥∥∥∥
2

=

√√√√ p∑
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[
1

n

n∑
t=1

(eTk yt−1wT
i yt − eTkΣ

T
1wi)
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√
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n
).

Similarly, ∥∥∥∥∥ 1n
n∑
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εi,tyt−1
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2
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√
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n
).

Since E1 ≤
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T
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1wi
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2

∥∥ 1
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∑n
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2
, it holds that E1 = Op(

p
n
).

Similar to (1.7.14), we have Var(
√
nE2) = O(1). Given p√

n
= o(1), it holds that

√
nE1 =

op(1). Hence if p = o(
√
n),

√
n× 1

n

n∑
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yT
t−1(w

T
i yt)

1
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t=1
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1√
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wT
i Σ1yt−1εi,t + op(1).

Similarly, given p = o(
√
n), we have

√
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Now it suffices to prove

Sn,p ≡ a1
1√
n

n∑
t=1

wT
i Σ1yt−1εi,t + a2

1√
n

n∑
t=1

eTi Σ0yt−1εi,t + a3
1√
n

n∑
t=1

wT
i Σ0yt−1εi,t

is asymptotic normal.

Note that it holds that

E|wT
i Σ1yt−1εi,t|2+

γ
2 ≤ [E|wT

i Σ1yt−1)
4+γ|

1
2 [E|εi,t|4+γ]

1
2 <∞.

Now we calculate the variance of Sn,p. It holds that
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(
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n

n∑
t=1

wT
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and it follows from
∑n

j=1 α(j)
γ
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wT
i Σ1yt−1εi,t,

1√
n

n∑
t=1

eTi Σ0yt−1εi,t

)

=wT
i Σ1Σy,εi(0)Σ

T
0 ei +

n−1∑
j=1

(
1− j

n

)
wT

i Σ1

[
Σy,εi(j) +ΣT

y,εi
(j)
]
Σ0ei,

and supp

∑∞
j=1 |wT

i Σ1Σy,εi(j)Σ0ei| < ∞. Calculating all the variance and covariance and

summing up them, it follows from dominate convergence theorem that

Var

(
Sn,p√
aTUia

)
→ 1.

To prove the asymptotic normality of Sn,p, we employ the small-block and large-block

arguments. We partition the set {1, 2, · · · , n} into 2kn +1 subsets with large blocks of size
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ln, small blocks of size sn and the last remaining set of size n− kn(ln + sn). Put

ln = [
√
n/ log n], sn = [

√
n log n]x, kn = [n/(ln + sn)],

where γ
4+γ
≤ x < 1. Hence

ln/
√
n→ 0, sn/ln → 0, kn = O(

√
n log n).

Note that ln/
√
n→ 0 is important when we derive the Lindeberg condition of the truncated

partial sum TL
n,p defined in (1.7.16).

Since
∑∞

j=1 α(j)
γ

4+γ <∞, we have α(sn) = o(s
− 4+γ

γ
n ). It then holds that

knα(sn) = o(kn/s
4+γ
γ

n ) = o(
√
n log n/[

√
n log n]x

4+γ
γ ) = o(1).

Then we can partition Sn,p in the following way

Sn,p =a1
1√
n

kn∑
j=1

ξ
(1)
j + a2

1√
n

kn∑
j=1

ξ
(2)
j + a3

1√
n

kn∑
j=1

ξ
(3)
j

+ a1
1√
n

kn∑
j=1

η
(1)
j + a2

1√
n

kn∑
j=1

η
(2)
j + a3

1√
n

kn∑
j=1

η
(3)
j

+ a1
1√
n
ζ(1) + a2

1√
n
ζ(2) + a3

1√
n
ζ(3),

where

ξ
(1)
j =

jln+(j−1)sn∑
t=(j−1)(ln+sn)+1

wT
i Σ1yt−1εi,t, η

(1)
j =

j(ln+sn)∑
t=jln+(j−1)sn+1

wT
i Σ1yt−1εi,t,

ξ
(2)
j =

jln+(j−1)sn∑
t=(j−1)(ln+sn)+1

eTi Σ0yt−1εi,t, η
(2)
j =

j(ln+sn)∑
t=jln+(j−1)sn+1

eTi Σ0yt−1εi,t,

ξ
(3)
j =

jln+(j−1)sn∑
t=(j−1)(ln+sn)+1

wT
i Σ0yt−1εi,t, η

(3)
j =

j(ln+sn)∑
t=jln+(j−1)sn+1

wT
i Σ0yt−1εi,t,

ζ(1) =
n∑

kn(ln+sn)+1

wT
i Σ1yt−1εi,t, ζ(2) =

n∑
kn(ln+sn)+1

eTi Σ0yt−1εi,t, ζ(3) =
n∑

kn(ln+sn)+1

wT
i Σ0yt−1εi,t.
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Note that α(n) = o(n− (2+γ/2)2
2(2+γ/2−2) ) and knsn/n→ 0, (ln+sn)/n→ 0, by applying proposition

2.7 of Fan and Yao (2003), it holds that

1√
n

kn∑
j=1

η
(l)
j = op(1), and

1√
n
ζ(l) = op(1), l = 1, 2, 3.

Therefore

Sn,p = a1
1√
n

kn∑
j=1

ξ
(1)
j + a2

1√
n

kn∑
j=1

ξ
(2)
j + a3

1√
n

kn∑
j=1

ξ
(3)
j + op(1) ≡ Tn,p + op(1).

We calculate the variance of Tn,p. Similar to (1.7.15), it holds that

Var

(
a1

1√
n

kn∑
j=1

ξ
(1)
j

)
= a21

kn
n
Var

(
ξ
(1)
1

)
{1 + o(1)} = a21

kn
n
Var

(
ln∑
t=1

wT
i Σ1yt−1εi,t

)
{1 + o(1)}

=a21
knln
n

[
wT

i Σ1Σy,εi(0)Σ
T
1wi +

ln−1∑
j=1

(
1− j

ln

)
wT

i Σ1

[
Σy,εi(j) +ΣT

y,εi
(j)
]
ΣT

1wi

]
{1 + o(1)}.

Calculating all the variance and covariance and summing up them, by dominated conver-

gence theorem and knln
n
→ 1, it holds that

Var

(
Tn,p√
aTUia

)
→ 1.

Now it suffices to prove the asymptotic normality of Tn,p. We partition Tn,p into two parts

via truncation. Specifically, we define

ξ
(1)L
j =

jln+(j−1)sn∑
t=(j−1)(ln+sn)+1

wT
i Σ1yt−1εi,tI{|wT

i Σ1yt−1εi,t|≤L},

and

ξ
(1)R
j =

jln+(j−1)sn∑
t=(j−1)(ln+sn)+1

wT
i Σ1yt−1εi,tI{|wT

i Σ1yt−1εi,t|>L}.
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Similarly, we have ξ
(2)L
j , ξ

(2)R
j and ξ

(3)L
j , ξ

(3)R
j . Then

Tn,p =

(
a1

1√
n

kn∑
j=1

ξ
(1)L
j + a2

1√
n

kn∑
j=1

ξ
(2)L
j + a3

1√
n

kn∑
j=1

ξ
(3)L
j

)

+

(
a1

1√
n

kn∑
j=1

ξ
(1)R
j + a2

1√
n

kn∑
j=1

ξ
(2)R
j + a3

1√
n

kn∑
j=1

ξ
(3)R
j

)

≡TL
n,p + TR

n,p.

(1.7.16)

Similar to computing the Var(Tn,p), it holds that

Var(TL
n,p) = a21Var

(
1√
n

kn∑
j=1

ξ
(1)L
j

)
+ ΩL = a21

kn
n
Var

(
ξ
(1)L
1

)
{1 + o(1)}+ ΩL

=a21
kn
n
Var

(
ln∑
t=1

wT
i Σ1yt−1εi,tI{|wT

i Σ1yt−1εi,t|≤L}

)
{1 + o(1)}+ ΩL

=a21
knln
n

[
Var

(
wT

i Σ1yt−1εi,tI{|wT
i Σ1yt−1εi,t|≤L}

)
+ 2

ln−1∑
j=1

(
1− j

ln

)
Cov

(
wT

i Σ1yt−1+jεi,t+jI{|wT
i Σ1yt−1+jεi,t+j |≤L},w

T
i Σ1yt−1εi,tI{|wT

i Σ1yt−1εi,t|≤L}

)]

{1 + o(1)}+ ΩL,

where ΩL is the sum of all the rest variance and covariance except Var
(
a1

1√
n

∑kn
j=1 ξ

(1)L
j

)
.

Therefore

Var

(
Var(TL

n,p)

σ2
L

)
→ 1,
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where we denote σ2
L as the asymptotic variance of TL

n,p. Similarly, we have

Var(TR
n,p)

=a21
knln
n

[
Var

(
wT

i Σ1yt−1εi,tI{|wT
i Σ1yt−1εi,t|>L}

)
+ 2

ln−1∑
j=1

(
1− j

ln

)
Cov

(
wT

i Σ1yt−1+jεi,t+jI{|wT
i Σ1yt−1+jεi,t+j |>L},w

T
i Σ1yt−1εi,tI{|wT

i Σ1yt−1εi,t|>L}

)]

{1 + o(1)}+ ΩR.

Define

Mn,p =

∣∣∣∣E exp

(
itTn,p√
aTUia

)
− exp

(
−t2

2

)∣∣∣∣ ,
where i =

√
−1 now. We bound Mn,p as follows

Mn,p ≤E

∣∣∣∣∣exp
(

itTL
n,p√

aTUia

)[
exp

(
itTR

n,p√
aTUia

)
− 1

]∣∣∣∣∣
+

∣∣∣∣∣∣E exp

(
itTL

n,p√
aTUia

)
−

kn∏
j=1

E exp

 it
(
a1

1√
n
ξ
(1)L
j + a2

1√
n
ξ
(2)L
j + a3

1√
n
ξ
(3)L
j

)
√
aTUia

∣∣∣∣∣∣
+

∣∣∣∣∣∣
kn∏
j=1

E exp

it
(
a1

1√
n
ξ
(1)L
j + a2

1√
n
ξ
(2)L
j + a3

1√
n
ξ
(3)L
j

)
√
aTUia

− exp

(
−t2

2

σ2
L

aTUia

)∣∣∣∣∣∣
+

∣∣∣∣exp(−t2

2

σ2
L

aTUia

)
− exp

(
−t2

2

)∣∣∣∣ .

Following the same arguments as part 2.7.7 of Fan and Yao (2003), for any ϵ > 0, it holds

that Mn,p < ϵ as n, p→∞. Hence

√
n× aT


1
n

∑n
t=1 y

T
t−1(w

T
i yt)

1
n

∑n
t=1 εi,tyt−1

1
n

∑n
t=1 y

T
t−1yi,t−1

1
n

∑n
t=1 εi,tyt−1

1
n

∑n
t=1 y

T
t−1(w

T
i yt−1)

1
n

∑n
t=1 εi,tyt−1

 /
√
aTUia

d−→ N(0, 1).
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Substituting a by (U
− 1

2
i )Ta, it holds that

aT


√
nU

− 1
2

i


1
n

∑n
t=1 y

T
t−1(w

T
i yt)

1
n

∑n
t=1 εi,tyt−1

1
n

∑n
t=1 y

T
t−1yi,t−1

1
n

∑n
t=1 εi,tyt−1

1
n

∑n
t=1 y

T
t−1(w

T
i yt−1)

1
n

∑n
t=1 εi,tyt−1




d−→ aTN(0, I3),

which leads to the fact that

√
nU

− 1
2

i


1
n

∑n
t=1 y

T
t−1(w

T
i yt)

1
n

∑n
t=1 εi,tyt−1

1
n

∑n
t=1 y

T
t−1yi,t−1

1
n

∑n
t=1 εi,tyt−1

1
n

∑n
t=1 y

T
t−1(w

T
i yt−1)

1
n

∑n
t=1 εi,tyt−1


d−→ N(0, I3).

To prove (2), let us look at the (1, 1)-th element of X̂T
i X̂i. We have

1

n

n∑
t=1

yT
t−1(w

T
i yt)

1

n

n∑
t=1

yt−1(w
T
i yt)

=

(
1

n

n∑
t=1

yT
t−1(w

T
i yt)−wT

i Σ1

)(
1

n

n∑
t=1

yt−1(w
T
i yt)−ΣT

1wi

)

+ 2wT
i Σ1

(
1

n

n∑
t=1

yt−1(w
T
i yt)−ΣT

1wi

)
+wT

i Σ1Σ
T
1wi.

(1.7.17)

Using the same arguments as (1.7.14), the first term is Op(
p
n
) and the second term is

Op(
1√
n
). Hence given p = o(n), it holds that

1
n

∑n
t=1 y

T
t−1(w

T
i yt)

1
n

∑n
t=1 yt−1(w

T
i yt)

wT
i Σ1Σ

T
1wi

→ 1.

Applying the same arguments to the other elements of X̂T
i X̂i, it holds that

Vi(X̂
T
i X̂i)

−1 P−→ I3.

To prove (ii) in Theorem 2, the required asymptotic result follows from (1.7.13) and

(1.7.17) immediately when p = o(n) and
√
n = O(p). The proof is completed. �
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Proof of Corollary 1. By Theorem 2, it holds that∥∥∥∥∥∥∥∥∥∥∥∥


λ̂0i

λ̂1i

λ̂2i

−


λ0i

λ1i

λ2i



∥∥∥∥∥∥∥∥∥∥∥∥
1

=


Op(

1√
n
) if p√

n
= O(1),

Op(
p
n
) if p√

n
→∞ and p

n
= o(1).

for all i. The required asymptotic result follows from the above result directly. �

Proof of Theorem 4. Let us look at term E1 and E2 in (1.7.13) first under the new

condition (A5). Similar to the proof of (1.7.14), it holds that

E1 = Op(
ps

3/4
1 (p)

n
), E2 = Op(

s
1/4
0 (p)√

n
).

Hence

1

n

n∑
t=1

yT
t−1(w

T
i yt)

1

n

n∑
t=1

εi,tyt−1 = Op(
ps

3/4
1 (p)

n
+

s
1/4
0 (p)√

n
).

Similarly, we have

1

n

n∑
t=1

yT
t−1yi,t−1

1

n

n∑
t=1

εi,tyt−1 = Op(
ps

3/4
1 (p)

n
+

s
1/4
0 (p)√

n
),

1

n

n∑
t=1

yT
t−1(w

T
i yt−1)

1

n

n∑
t=1

εi,tyt−1 = Op(
ps

3/4
1 (p)

n
+

s
1/4
0 (p)√

n
).

For the first diagonal element of X̂T
i X̂i, it follows from considering the three terms in

(1.7.17) separately that

1

n

n∑
t=1

yT
t−1(w

T
i yt)

1

n

n∑
t=1

yt−1(w
T
i yt) = Op(

ps1(p)

n
+

s
1/4
0 (p)s

1/4
1 (p)√
n

) +wT
i Σ1Σ

T
1wi.

Similarly,

1

n

n∑
t=1

yT
t−1yi,t−1

1

n

n∑
t=1

yt−1yi,t−1 = Op(
ps1(p)

n
+

s
1/4
0 (p)s

1/4
1 (p)√
n

) + eTi Σ0Σ
T
0 ei,

1

n

n∑
t=1

yT
t−1(w

T
i yt−1)

1

n

n∑
t=1

yt−1(w
T
i yt−1) = Op(

ps1(p)

n
+

s
1/4
0 (p)s

1/4
1 (p)√
n

) +wT
i Σ0Σ

T
0wi.
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Given ps1(p)
s2(p)

= o(n) and
s
1/2
0 (p)

ps
1/2
1 (p)s2(p)

= O(1), we have

ps1(p)

n
= o(s2(p)),

s
1/4
0 (p)s

1/4
1 (p)√
n

= o(s2(p)).

Divide both the numerator and denominator of estimator (2.2.23) by s2(p), it holds that∥∥∥∥∥∥∥∥∥∥∥∥


λ̂0i

λ̂1i

λ̂2i

−


λ0i

λ1i

λ2i



∥∥∥∥∥∥∥∥∥∥∥∥
2

= Op

(ps3/41 (p)

ns2(p)
+

s
1/4
0 (p)√
ns2(p)

)
.

The required result then follows directly. �

Lemma 1 Under conditions A1 and B1 – B3, condition A2 holds with γ = 4.

Proof. It is apparent that part (a) of A2 is satisfied under A1 and B1 – B3. yt is

strictly stationary because εi,t are i.i.d across i and t and condition B3. Since the density

function of εi,t exists, α(n) decays exponentially fast, see Pham and Tran (1985). Therefore∑∞
j=1 α(j)

γ
4+γ <∞. Now we prove A2(c) when γ = 4.

We present a more general result first: for any p× 1 vector a satisfying supp ∥a∥1 <∞,

it holds that

sup
p

E
∣∣aTyt

∣∣8 <∞.

Note that

yt =
∞∑
h=0

AhS−1(λ0)εt−h ≡
∞∑
h=0

Bhεt−h.
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Then

E
∣∣aTyt

∣∣8 = E

∣∣∣∣∣
∞∑
h=0

aTBhεt−h

∣∣∣∣∣
8

≡ E

∣∣∣∣∣
∞∑
h=0

bT
hεt−h

∣∣∣∣∣
8

=E

∣∣∣∣∣
∞∑

h1,h2,h3,h4,h5,h6,h7,h8=0

(εTt−h1
bh1b

T
h2
εt−h2)(ε

T
t−h3

bh3b
T
h4
εt−h4)(ε

T
t−h5

bh5b
T
h6
εt−h6)(ε

T
t−h7

bh7b
T
h8
εt−h8)

∣∣∣∣∣
=E

∣∣∣∣∣
∞∑

h1,h2,h3,h4,h5,h6,h7,h8=0

( p∑
i1,j1=1

[bh1b
T
h2
]i1j1εi1,t−h1εj1,t−h2

)( p∑
i2,j2=1

[bh3b
T
h4
]i2j2εi2,t−h3εj2,t−h4

)
×
( p∑

i3,j3=1

[bh5b
T
h6
]i3j3εi3,t−h5εj3,t−h6

)( p∑
i4,j4=1

[bh7b
T
h8
]i4j4εi4,t−h7εj4,t−h8

)∣∣∣∣∣
=E

∣∣∣∣∣
∞∑

h1,h2,h3,h4,h5,h6,h7,h8=0

p∑
i1,j1,i2,j2,i3,j3,i4,j4=1

[bh1b
T
h2
]i1j1 [bh3b

T
h4
]i2j2 [bh5b

T
h6
]i3j3 [bh7b

T
h8
]i4j4

× εi1,t−h1εj1,t−h2εi2,t−h3εj2,t−h4εi3,t−h5εj3,t−h6εi4,t−h7εj4,t−h8

∣∣∣∣∣
≤

∞∑
h1,h2,h3,h4,h5,h6,h7,h8=0

p∑
i1,j1,i2,j2,i3,j3,i4,j4=1

∣∣∣[bh1b
T
h2
]i1j1 [bh3b

T
h4
]i2j2 [bh5b

T
h6
]i3j3 [bh7b

T
h8
]i4j4

∣∣∣
× E|εi1,t−h1εj1,t−h2εi2,t−h3εj2,t−h4εi3,t−h5εj3,t−h6εi4,t−h7εj4,t−h8 |

≤C
∞∑

h1,h2,h3,h4,h5,h6,h7,h8=0

p∑
i1,j1,i2,j2,i3,j3,i4,j4=1

|bh1b
T
h2
|i1j1 |bh3b

T
h4
|i2j2 |bh5b

T
h6
|i3j3 |bh7b

T
h8
|i4j4

=C
[ ∞∑

h=0

∞∑
g=0

p∑
i=1

p∑
j=1

|bhb
T
g |ij
]4
.

(1.7.18)

And

∞∑
h=0

∞∑
g=0

p∑
i=1

p∑
j=1

|bhb
T
g |ij ≤

∞∑
h=0

∞∑
g=0

p∑
i=1

p∑
j=1

(|bh||bT
g |)ij =

p∑
i=1

p∑
j=1

( ∞∑
h=0

∞∑
g=0

|bh||bT
g |
)
ij

=

p∑
i=1

p∑
j=1

( ∞∑
h=0

|bh|
∞∑
g=0

|bT
g |
)
ij
=

p∑
i=1

p∑
j=1

( ∞∑
h=0

|bh|
)
i

( ∞∑
g=0

|bg|
)
j

=

p∑
i=1

( ∞∑
h=0

|bh|
)
i

p∑
j=1

( ∞∑
g=0

|bg|
)
j
,

(1.7.19)

where
(∑∞

h=0 |bh|
)
i
is the i-th element of the column vector

∑∞
h=0 |bh|.
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Since (
∑∞

h=0 |Bh|)ij =
∑∞

h=0

(∣∣AhS−1(λ0)
∣∣)

ij
≤
(∑∞

h=0

∣∣Ah
∣∣ |S−1(λ0)|

)
ij
where the row

and column sums of
∑∞

h=0

∣∣Ah
∣∣ |S−1(λ0)| are bounded uniformly in p, it holds that the row

and column sums of
∑∞

h=0 |Bh| are bounded uniformly in p. Note that

( ∞∑
h=0

|bh|
)
i
=
( ∞∑

h=0

|BT
ha|
)
i
≤
( ∞∑

h=0

|BT
h ||a|

)
i
,

where the row and column sums of
∑∞

h=0

∣∣BT
h

∣∣ and |a| are bounded uniformly in p. Hence

the row and column sums of
∑∞

h=0 |BT
h ||a| are bounded uniformly in p. It follows from

(1.7.18) and (1.7.19) that

sup
p

E
∣∣aTyt

∣∣8 ≤ C
[ p∑

i=1

( ∞∑
h=0

|bh|
)
i

p∑
j=1

( ∞∑
g=0

|bg|
)
j

]4
= O(1).

It is easy to prove that

sup
p
∥Σ0wi∥1 <∞, sup

p
∥ΣT

1wi∥1 <∞, sup
p
∥Σ0ei∥1 <∞.

Thus supp ∥wiΣ0yt∥1 <∞ and etc.

The row and column sums of Σ0 and Σ1 are bounded uniformly in p. Then

sup
p

wT
i Σ1Σ

T
1wi = O(1).

Similarly, we can prove the other diagonal elements of Vi and Ui are bounded uniformly

in p.

The proof is completed. �
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Chapter 2: Sparse Factor Modelling

for Vast Time Series

2.1 Introduction

Modelling multivariate time series has many important applications in the fields such as

finance, economics and environmental studies. Based on the success of univariate time

series modelling, one natural way of modelling such data is the vector autoregressive and

moving average model (ARMA) models. However, without regularization, vector ARMA

models suffers from the over parametrization and the lack of identification problems, see

Lutkepohl (2006). By assuming the transition matrix of vector autoregressive models to be

sparse, Hsu et al. (2008) proposed a lasso type estimator. Han and Liu (2013) exploited

the linear programming technique and the proposed method is very fast to solve via parallel

computing. Another frequently used approach is modelling using factors. Attempts include

Pena and Box (1987), Stock andWatson (2002), Bai and Ng (2002), Hallin and Liska (2007),

Pan and Yao (2008), Lam, Yao and Bathia (2011), Fan et al. (2013), Onatski (2014).

In this paper, we decompose the original process into a dynamic part, i.e. a common

factor process and a static part, i.e. a white noise process. Motivated by practical needs
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and the characteristic of high dimensional data, the sparsity assumption on factor loading

matrix is imposed. Different from Lam, Yao and Bathia (2011)’s method, which is equiv-

alent to an eigenanalysis of a non negative definite matrix, we add a constraint to control

the number of nonzero elements in each column of the factor loading matrix. Our proposed

sparse estimator is then the solution of a constrained optimization problem. Numerical-

ly, we solve it via the generalized deflation method (Mackey 2009) and GSLDA method

(Moghaddam et al. 2006). The tuning parameter is chosen by cross validation. We estab-

lish the asymptotic results when both the sample size and dimensionality go to infinity or

even when the latter is larger. Compared to Lam, Yao and Bathia (2011)’s method, when

the factor is weak in the sense that δ > 1/2 in their paper, our newly proposed estimator

may have a faster convergence rate. Our simulation results convinced that when the com-

mon factor is weak, the newly proposed estimator has smaller error compared to Lam, Yao

and Bathia (2011)’s estimator even when we allow the number of nonzero elements in each

column of the factor loading matrix increases with the dimensionality.

The rest of the paper is organized as follows. Section 2.2 introduces the model, the

motivation for sparsity and the new sparse estimator. The asymptotic theory for the

proposed estimation method is presented in section 2.3. Simulation results and real data

analysis are reported, respectively, in section 2.4 and 2.5. The technical proofs are relegated

to Appendix.
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2.2 Model and Estimation Method

2.2.1 Models

Let yt = (y1,t, · · · , yp,t)T be an observable p×1 vector time series process. The factor model

decomposes yt in the following form:

yt = Axt + εt, (2.2.20)

where xt = (x1,t, · · · , xr,t)
T is a r × 1 latent factor time series with unknown r ≤ p and

A = (a1, a2, · · · , ar) is a p× r unknown constant matrix. εt is a white noise process with

mean 0 and covariance matrix Σε. The first part of (2.2.20) is a dynamic part and the

serial dependence of yt is driven by xt. We will achieve dimension reduction once r ≪ p

in the sense that the dynamics of yt is driven by a much lower dimensional process xt.

Let the rank of A be r. If the rank of A is smaller than r, (2.2.20) can be expressed

using a lower dimensional factor process. We also assume no linear combination of the

components of xt is white noise. The pair (A,xt) itself is not identifiable since model

(2.2.20) is unchanged if we use the pair (AH,H−1xt) to replace it for any r×r nonsingular

H. But the r dimensional linear space spanned by the columns of A, denoted byM(A), is

uniquely defined due toM(A) =M(AH). Without loss of generality, we assume A to be

a column orthogonal matrix, that is A′A = Ir, where Ir denotes the r× r identity matrix.

This is because A admits the QR decomposition A = QR, where Q is orthogonal and R

is upper triangular, then we can replace (A,xt) by (Q,Rxt).

We see that A is not identifiable. However, this lack of uniqueness of A can be treated

as an advantage since we can choose any particular A of which the estimation can be
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simple. Note that the (k, i)-th element of A, ak,i, measures the effect of the i-th common

factor, xi,t, on the k-th random variable of yt, yk,t: large ak,i means xi,t is important to yk,t,

small ak,i means xi,t is less important to yk,t and ak,i = 0 means the xi,t has no effect on

the yk,t.

In this paper we assume the latent process xt is weakly stationary. Furthermore, we

assume Cov(xt, εt+k) = 0 for any k ≥ 0. This allows the correlation between the previous

white noise and the factors up to present, which enlarges the model capacity compared with

most factor modelling literature. Pan and Yao (2008) handled with the non-stationary case.

Note that in model (2.2.20), only yt is observable. Once we obtain the estimator Â of

A, we can estimate xt by ÂTyt. The number of the common factors r has to be estimated

as well but in this paper, we focus on the estimation of A and we directly use an estimator

proposed by Lam and Yao (2012). Literature of estimating the number of common factor

r includes Bai and Ng (2002), Hallin and Liska (2007) and Pan and Yao (2008).

From the point of interpretation, sparsity is preferred, especially when the dimension-

ality p is very large. If we want to recover what the common factors represent in practice,

we need the following approximation:

xt ≈ ATyt.

For the i-th common factor xi,t at time t, it holds that xi,t ≈ aT
i yt. We need to figure out the

practical meaning of xi,t via the practical meaning of yk,t’s and their corresponding weights

ak,i’s. When p is large, it is essential to reduce the size of explicitly used yk,t’s in order

to interpret, where sparse assumption is required. From the point of practical concerns,

when we have a large amount of variables and we are seeking their common factors, it is

more likely that each common factor will only affect some of the variables but not all. In
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practice, there might exist such common factor that influences all the variables in yt and it

is more likely to happen especially when p is small, but this fact does not contradict with

our sparsity assumption.

Let us look at one real example. Lam and Yao (2012) analyzed a multivariate environ-

mental time series data which is a collection of monthly average sea surface air pressure

records (in Pascal) for 528 month from January 1958 to December 2001. For each fixed

month, the data are collected over the same 10× 44 grid in a range of 22.5◦ longitude and

110◦ latitude in the North Atlantic Ocean. They denoted the air pressure in the t-th month

at location (u, v) by Pt(u, v), where t = 1, 2, · · · , 528 and u = 1, 2, · · · , 10, v = 1, 2, · · · , 44.

If we vectorize these 440 locations in yt for each month t, then we get a 440 dimension-

al time series data with 528 observations. They analyzed this data using common factor

model above and estimated A, xt and r by their proposed method. Figure 2.12 is the plot

of the factor loadings of the 3 (r̂ = 3) common factors.

Figure 2.12: Factor loading surface of the 1st, 2nd and 3rd factors (from left to right)

The x-axis is v and y-axis is u. The i-th plot represents the loadings of i-th common

factor, which is the i-th column of Â. Some patterns are as follows: the 1st factor mainly

influences the north and northeast in particular; the 2nd factor is the main factor for most

part except for the narrow middle part; the southeast is mainly influenced by the 3rd factor.

Also note that there are some small (sky-blue and yellow parts) or even zero (green part)
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loadings of each common factor. For example, the very south part of 1st plot, the narrow

middle part of 2nd plot and the north and west part of 3rd plot are with small factor

loadings. These imply the sparsity condition of A.

2.2.2 Estimation

We introduce some notations first. For a p× 1 vector v = (v1, · · · , vp)T , ∥v∥2 =
√∑p

i=1 v
2
i

is the Euclidean norm and ∥v∥0 =card{support(v)} is the number of non zero elements in

v. Let V be the set of p×r orthogonal matrices. Let V⊥ be the set of p×(p−r) orthogonal

matrices such that (V,V⊥) is orthogonal, where V ∈ V,V⊥ ∈ V⊥. For a set K, |K| is its

cardinality. For a p×r matrix U = (u1, · · · ,ur), define ∥U∥0 =
∑p

j=1 I{∥uj∗∥2 ̸= 0} where

uj∗ is the j-th row of U. Note that ∥U∥0 counts the number of nonzero rows in U.

Note that A equals to the matrix consisting of the first r orthonormal eigenvectors of

the p× p positive semidefinite matrix

M =

k0∑
k=1

Σy(k)Σy(k)
T , (2.2.21)

corresponding to its r non-zero eigenvalues, where Σy(k) = Cov(yt+k,yt) and k0 is a

predetermined positive constant. Denote λi as the i-th largest eigenvalue of M. See Lam,

Yao and Bathia (2011) for more details.

Put

M̂ =

k0∑
k=1

Σ̂y(k)Σ̂y(k)
T , (2.2.22)

where

Σ̂y(k) =
1

n− k

n−k∑
t=1

(yt+k − ȳ)(yt − ȳ)T ,

and ȳ = n−1
∑n

t=1 yt.
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We assume ∥A∥0 ≤ s. To obtain the estimatorM(Â) ofM(A), it suffices to solve the

following optimization problem:

Â = argmax
V∈V

tr(VTM̂V) subject to ∥V∥0 ≤ s. (2.2.23)

Note that for V ∈ V and V⊥ ∈ V⊥, we have tr(VTM̂V) = tr(M̂) − tr((V⊥)TM̂V⊥).

Since tr((V⊥)TM̂V⊥) ≥ 0, it follows that max tr(VTM̂V) = tr(M̂) when V consists of

the r eigenvectors of M̂ corresponding its r non-zero eigenvalues. This means without the

sparsity constraint ∥V∥0 ≤ s. the solution of (2.2.23) is the same as the estimator of Lam,

Yao and Bathia (2011). Numerically, we employ the generalized deflation method (Mackey

2009) to approximate Â in (2.2.23). Specifically, the algorithm is as follows

(1) Input M̂ and the cardinalities of r columns {s1, · · · , sr}.

(2) Initialize i = 1, s = si and B = Ip.

(3) Solve v̂ = arg max
vTBv=1,∥v∥0≤s

vTM̂v, Compute q = Bv̂.

(4) Update M̂ by M̂← (Ip − qqT )M̂(Ip − qqT ).

Update B by B← B(Ip − qqT ).

Update i← i+ 1, s← si.

(5) Return v̂/∥v̂∥2.

(6) Repeat step (3) to (5) until i = r + 1.

Apparently, we totally repeat r times. The i-th, i = 1, · · · , r output in step (5) is the

sparse estimator of the i-th column of A. We also need to numerically approximate the

solution of the optimization in step (3), where we adopt the GSLDA method (Moghaddam

et al. 2006), specifically, the algorithm is as follows
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(3.1) Decompose B = UDUT and set B1/2 = UD1/2UT and C = B−1/2M̂B−1/2.

(3.2) Initialize t = 1 and x0 ∈ Rp.

(3.3) Compute x∗
t = Ts

(
B−1/2Cxt−1

∥Cxt−1∥2

)
, where Ts(x) only keeps elements of x with the largest

s absolute values and sets all other elements to be 0.

(3.4) Compute xt = x∗
t . Update t← t+ 1.

(3.5) Repeat step (3.3) and (3.4) until xt is convergent.

The obtained xt is the solution of the optimization problem in step (3).

In practice, we use the ratio-based estimator to get the estimator for r, which is defined

by:

r̂ = arg min
1≤j≤R

λ̂j+1/λ̂j (2.2.24)

where λ̂1 ≥ · · · ≥ λ̂p are the eigenvalues of M̂ and the integer R(r ≤ R < p) can be chosen

as, for instance, p/2. More details are in Lam and Yao (2012).

2.3 Theoretical Properties

Summarizing the assumptions, we have

A1. A is column orthogonal, that is, A′A = Ir; a
′xt is not white noise for any a ∈ Rp;

εt ∼ WN(0,Σε).

A2. The factor loading matrix is sparse in the sense that ∥A∥0 ≤ s.

A3. The covariance matrix Cov(xt, εt+k) = 0 for any k ≥ 0.
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A4. The eigenvalues of M satisfies λ1 > · · · > λr > 0 = λr+1 = · · · = λp.

A5. There exist positive constants K1 and r1 ∈ (0, 1] such that the process {yt} in model

(2.2.20) is strictly stationary and α-mixing with mixing coefficients satisfying

α(u) ≤ exp(−K1u
r1),

for any u ≥ 1, where

α(u) ≡ sup
A∈F0

−∞,B∈F∞
u

∣∣P (A)P (B)− P (AB)
∣∣, (2.3.25)

and F j
i denotes the σ-algebra generated by {yt, i ≤ t ≤ j}.

A6. There exist positive constants K2, K3 and r2 ∈ (0, 2] such that

P (|vT (yt − Eyt)| > τ) ≤ K2 exp(−K3τ
r2),

for any τ > 0 and unit vector v.

Conditions A1, A3 and A4 are regularity conditions the same as Lam, Yao and Bathia

(2011). Condition A2 is the sparsity assumption. Condition A6 requires the linear combi-

nation of yt has exponential type tails. Together with A5, they allow us to apply the large

deviation theory in Merlevéde et al. (2011). the requirements of r1 ≤ 2 and r2 ≤ 1 are not

necessary. The theoretical results proposed can still be established for r1 > 2 and r2 > 1.

They are assumed here to simplify the presentation of the theoretical results.

We first present a result for the leading eigenvector estimator â1. This is a special case

of (2.2.23) when we restrict V to be a p× 1 vector, in which case the optimization problem

becomes

â1 = arg max
∥v∥2=1

vTM̂v subject to ∥v∥0 ≤ s. (2.3.26)

Theorem 5 and 6 are the asymptotic properties when p is fixed.
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Theorem 5 Let conditions A1, A3 – A5 hold and â1 be the solution of (2.3.26). When p

is fixed, as n→∞, it holds that

√
1− (âT

1 a1)2 = Op

( 1√
n

)
.

Theorem 5 is the consistency result of the leading eigenvector estimator â1. Theorem 6

extends the above result to the Â.

Theorem 6 Let conditions A1, A3 – A5 hold and Â be the solution of (2.2.23). When p

is fixed, as n→∞, it holds that

∥ÂÂT (I−AAT )∥F = Op

( 1√
n

)
,

where ∥ · ∥ is the Frobenius norm.

∥ÂÂT (I −AAT )∥F is the canonical angle between two subspaces M(Â) and M(A),

see Vu and Lei (2013) for more details. When r = 1, ∥ÂÂT (I−AAT )∥F =
√
1− (âT

1 a1)2.

Theorem 5 and 6 and two trivial results since p is fixed. The asymptotic properties are

presented in Theorem 7 and 8 when p increases with n.

Theorem 7 Let conditions A1 – A6 hold and â1 be the solution of (2.3.26). As n →

∞, p→∞, it holds that

√
1− (âT

1 a1)2 = Op

( λ1
1/2

λ1 − λ2

√
s3p log p

n

)
. (2.3.27)

Theorem 8 Let conditions A1 – A6 hold and Â be the solution of (2.2.23). As n →

∞, p→∞, it holds that

∥ÂÂT (I−AAT )∥F = Op

(λ1
1/2

λr

√
s3p log p

n

)
, (2.3.28)

where ∥ · ∥ is the Frobenius norm.
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Compared with Lam, Yao and Bathia (2011)’s estimator, which owns the convergent

rate pδ√
n
for δ ∈ [0, 1], if the factor is weak enough in the sense that δ is large than 0.5, our

sparse estimator will obtain a faster convergent rate
√

p log p
n

, for example, when s and λi’s

are all constants.

2.4 Choice of Tuning Parameter

In practice, the cardinality of A is unknown. We can choose it via cross validation. Let the

training sample size and validation sample size be n1 and n2 respectively, where n1+n2 = n.

Assume the set of the possible cardinality s is S. For each fixed s ∈ S, we fit model

(2.2.20) using y1, · · · ,yn1 with our proposed sparse estimation procedure and obtained Âs.

Consequently, we estimate the factors by x̂t = ÂT
s yt, t = 1, · · · , n1. We can then make a

one step ahead prediction for yt by ŷn1+1 = Âsx̂
(1)
n1+1, where x̂

(1)
n1+1 is a one step forecast

for xt based on the estimated past x̂1, · · · , x̂n1 , for example by fitting a autoregressive

model to x̂1, · · · , x̂n1 . Then we obtained the test error for yn1+1, which is defined as

∥yn1+1 − ŷn1+1∥2/p. We then perform the above procedure of n2 rolling windows each of

length n1 and compute the test error of the one step forecast of yt. Hence we obtained the

error for the i-th rolling window

∥yn1+i − ŷn1+i∥2
p

, i = 1, · · · , n2.

The measure of the prediction with tuning parameter s is defined as

Errs =
1

n2

n2∑
i=1

∥yn1+i − ŷn1+i∥2
p

. (2.4.29)

We then choose the tuning parameter minimizing Errs among s ∈ S.
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2.5 Simulation Studies

To examine the finite sample performance of the proposed estimation methods, we conduct

some simulations under different scenarios.

2.5.1 scenario 1

We consider a simple sparse one factor model. We generate a s × 1 unit vector z firstly,

where we set s = [
√
p] + 1. We then construct A such that the 1st to s-th elements of

A equal to z, and the rest of A are all zeros. Note that in this simple one factor model,

the true factor loading matrix we are estimating is simply the vector A we construct. The

factor process is generate from xt = 0.8xt−1 + ηt and ηt are independently generated from

N(0, 1). The noise terms εi,t are independently generated from N(0, 1) for all i, t.

We generate data from (2.2.20) with different setting for n and p. We apply the proposed

method and compare the error (2.3.27) with the estimation method of Lam, Yao and

Bathia (2011). For simplicity, we set the tuning parameter cardinality to be the true

number of nonzero elements s. In practice, we need to use cross validation to choose the

cardinality as shown in section 2.4. And in later section 2.5.4, we will see that even if the

chosen cardinality is not the same as the true cardinality, the performance of our proposed

estimator is better than Lam, Yao and Bathia (2011)’s method. The replication time is

200 in all experiments.

Figure 2.13 depicts two boxplots of (2.3.27) with p equals to, respectively, 20 and 200.

The left panel is for the Lam et al,’s method and the right panel is the sparse estimator.

As the sample size n increases from 100, 200, 300, 500 to 1000, (2.3.27) decreases for both
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methods. The performance of the right panel is better than the left.
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Figure 2.13: Boxplots of (2.3.27) for p = 20, 200 and n = 100, 200, 300, 500, 1000.

Figure 2.14 depicts three boxplots of (2.3.27) with n equals to, respectively, 200, 300,

500. As p increases from 100, 200, 300, 400 to 500, (2.3.27) increases for both methods.

Again, the performance of the right panel is better than the left.

2.5.2 scenario 2

We consider a three common factor model, that is r = 3. We generate a s× r orthogonal

matrix Z firstly, where we set s = [
√
p]+1. We then constructA such that the (i−1)s+1-th

to is-th elements of A∗,i equal to Z∗,i for i = 1, · · · , r and the rest of A are all zeros, where

A∗,i represents the i-th column of A. We then independently generated three common

factors from AR(1) process with coefficient 0.8, 0.6, 0.4 respectively. The noise terms εi,t
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Figure 2.14: Boxplots of (2.3.27) for n = 200, 300, 400 and p = 100, 200, 300, 400, 500.

are independently generated from N(0, 1) for all i, t.

Figure 2.15 depicts two boxplots of (2.3.28) with p equals to, respectively, 20 and 200.

The left panel is for Lam et al. (2011)’s method and the right panel is estimator (2.2.23).

As the sample size n increases from 100, 200, 300, 500 to 1000, (2.3.28) decreases for both

methods. Lam et al. (2011)’s method outperforms the estimator (2.2.23) when p = 20.

When p increases to 200, the newly proposed sparse estimator performs better than Lam

et al.’s estimator except for n = 1000.

Figure 2.16 depicts three boxplots of (2.3.28) with n equals to, respectively, 200, 300,

500. As p increases from 100, 200, 300, 400 to 500, (2.3.28) increases for both methods.

Again, the performance of the right panel is better than the left.
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Figure 2.15: Boxplots of (2.3.28) for p = 20, 200 and n = 100, 200, 300, 500, 1000.

2.5.3 scenario 3

We consider a three common factor model. We generate A and εi,t the same as scenario 2.

The factor process xt = (x1,t, x2,t, x3,t)
T is defined by

x1,t = ωt, x2,t = ωt−1, x3,t = ωt−2,

where ωt = 0.8zt−1 + zt and zt are independently generated from N(0, 1). The noise terms

εi,t are independently generated from N(0, 1) for all i, t.

Figure 2.17 depicts three boxplots of (2.3.28) with n equals to, respectively, 200, 400.

As p increases from 100, 200, 300, 400 to 500, (2.3.28) increases for both methods. Again,

the performance of the right panel is better than the left.
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Figure 2.16: Boxplots of (2.3.28) for n = 200, 300, 400 and p = 100, 200, 300, 400, 500.

2.5.4 Cross Validation

We consider a single factor model and generate all parameters the same as scenario 1.

We apply the proposed sparse estimation method and use the cross validation method in

section 2.4 to choose the cardinality. We consider four cases: (1) p = 50, n = 500, (2)

p = 200, n = 500, (3) p = 200, n = 300 and (4) p = 500, n = 300. Table 2.2 lists the

mean, standard error of the chosen cardinality and the mean of test errors (2.4.29) for both

methods.

Figure 2.18 depicts four boxplots of (2.3.27) of cases (1) to (4) respectively. The left

panel in each plot is the performance of the eigenanalysis estimator and the right panel is

the sparse estimator where we choose the number of cardinality by cross validation. As we

can see from the plots, even if we the chosen cardinality might be different from the true
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Figure 2.17: Boxplots of (2.3.28) for n = 200, 400 and p = 100, 200, 300, 400, 500.

p n true s ŝ Erreigen Errsparse

Case 1 50 500 8 5.7(3.6) 0.147 0.142

Case 2 200 500 15 12.9(3.0) 0.070 0.070

Case 3 200 300 15 13.2(4.5) 0.070 0.070

Case 4 500 300 23 11.8(5.5) 0.045 0.045

Table 2.2: ŝ is the chosen cardinality by cross validation, Erreigen and Errsparse are the

mean of test errors (2.4.29) for both methods.

value, the performance of the sparse estimator still dominates the original eigenanalysis

estimation for all cases.

66



eigen sparse
0.

2
0.

4
0.

6
0.

8
1.

0

p=500, n=300

estimaton method

E
rr

or

eigen sparse

0.
2

0.
4

0.
6

0.
8

1.
0

p=200, n=300

estimaton method

E
rr

or

eigen sparse

0.
2

0.
4

0.
6

0.
8

1.
0

p=200, n=500

estimaton method

E
rr

or

eigen sparse
0.

2
0.

4
0.

6
0.

8
1.

0

p=50, n=500

estimaton method

E
rr

or

Figure 2.18: Boxplots of (2.3.27) for different p and n.

2.6 Real Data Analysis

Let us revisit the monthly sea surface air pressure example in section 2.2. We observe the

air pressure for 528 months and for each month (that is n = 528), we observe 10× 44 grid,

hence p = 440. The air pressure of (u, v)-th grid is denoted by Pt(u, v), u = 1, · · · , 10 and

v = 1, · · · , 44. Note that the 440 grids we use in this paper might be different from the

Lam and Yao (2012). We first subtract each data point by the monthly mean over 528

months at each location. The centralized data is plotted in Figure 2.19.

We then employ the ratio-based estimator to estimate the number of common factors.

The estimated eigenvalues in descending order and their ratios are plotted in Figure 2.20.

Note that we choose k0 = 1 since the ratio-based estimator is not sensitive to the choice
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Figure 2.19: Time series plot of the sea surface air pressure data at (u, v) = (1, 1) (top

panel), (u, v) = (5, 5) (middle panel) and (u, v) = (10, 5) (bottom panel).

k0. It is clear that r̂ = 3.

We fit the model via two methods: Lam and Yao (2012) and the newly proposed sparse

estimator. The number of cardinality is chosen using the cross validation method in section

2.4 and we choose the number of training observations as 475 (roughly 0.9n) and the test

dataset size as 0.1n. The chosen cardinality is 250. Figure 2.21 is the color map of the

estimated factor loading matrix. The test error (2.4.29) using the original method is 26.3,

and 19.8 using the sparse estimation. From this point of view, the newly proposed method

outperforms the previous eigenanalysis method.
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Figure 2.20: Top panel: plots of eigenvalues in descending order and bottom panel: ratios

of eigenvalues of M̂.

2.7 Appendix: Proofs

In this section we give the proof of theorem 7 and 8. The proof of theorem 5 and 6 are

similar to theorem 7 and 8 but are simpler, hence omitted. We use C to denote a generic

positive constant, which may be different at different places.

Lemma 2 The estimator â1 in (2.3.26) of a1 satisfies

√
1− (âT

1 a1)2 ≤
2

λ1 − λ2

sup
∥v∥2=1∩∥v∥0≤2s

|vT (M̂−M)v|.

Proof. Recall that the r non-zero eigenvalues of M are λ1 > · · · > λr with a1, · · · , ar

the corresponding eigenvectors. And let ar+1, ap be the eigenvectors corresponding to the
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Figure 2.21: Factor loading surface of the 1st (top panel), 2nd (middle panel) and 3rd

(bottom panel) factors for the eigenanalysis estimator (left panel) and sparse estimator

(right panel).

0 eigenvalues of M such that aT
i aj = 0 for i ̸= j. Since λ1a1 = Ma1, it holds that

M− λ1a1a
T
1 =M− λ1a1a

T
1 − λ1a1a

T
1 + λ1a1a

T
1

=M− a1a
T
1M−Ma1a

T
1 + a1(a

T
1Ma1)a

T
1

=(I− a1a
T
1 )M− (I− a1a

T
1 )Ma1a

T
1

=(I− a1a
T
1 )M(I− a1a

T
1 ).
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Hence for any ∥a∥2 = 1, it holds that

tr
{
M(a1a

T
1 − aaT )

}
=tr
{
Ma1a

T
1 } − tr{MaaT

}
=tr
{
Ma1a

T
1

}
− tr

{
λ1a1a

T
1 aa

T
}
− tr

{
(M− λ1a1a

T
1 )aa

T
}

=λ1 − λ1(a
Ta1)

2 − aT (I− a1a
T
1 )M(I− a1a

T
1 )a.

Let b = (I − a1a
T
1 )a/∥(I − a1a

T
1 )a∥2, since bTa1 = 0, we have b ∈ M(a2, · · · , ap). Since∑p

j=1 aja
T
j = I, it holds that

p∑
j=2

(bTaj)
2 =

p∑
j=2

(aTaj)
2

∥(I− a1aT
1 )a∥22

=
aT (
∑p

j=2 aja
T
j )a

∥(I− a1aT
1 )a∥22

=
aT (I− a1a

T
1 )a

∥(I− a1aT
1 )a∥22

= 1.

It then follows that

bTMb = bT

p∑
j=1

λjaja
T
j b =

p∑
j=2

λj(b
Taj)

2 ≤ λ2.

Hence

aT (I− a1a
T
1 )M(I− a1a

T
1 )a ≤ λ2∥(I− a1a

T
1 )a∥22 = λ2 − λ2(a

Ta1)
2.

Substituting a by â1, we then obtain

tr
{
M(a1a

T
1 − â1â

T
1 )
}
≥ (λ1 − λ2)(1− (âT

1 a1)
2).

Note that â1 = arg max
∥v∥2=1

vTM̂v subject to ∥v∥0 ≤ s, since ∥a1∥ ≤ s, it holds that

tr
{
M̂(â1â

T
1 − a1a

T
1 )
}
= âT

1 M̂â1 − aT
1 M̂a1 > 0.

Then we have

1− (âT
1 a1)

2 ≤ 1

λ1 − λ2

(
tr
{
M(a1a

T
1 − â1â

T
1 )
}
+ tr

{
M̂(â1â

T
1 − a1a

T
1 )
})

=
1

λ1 − λ2

tr
{
(M− M̂)(a1a

T
1 − â1â

T
1 )
}
.

The rest work is to bound tr
{
(M− M̂)(a1a

T
1 − â1â

T
1 )
}
. Let Π be a diagonal matrix with

diagonal values being 1 if and only if the corresponding entries in a1 or â1 are nonzero.
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Then there are at most 2s nonzero elements in Π. Then Πa1 = a1 and Πâ1 = â1. It then

holds that

tr
{
(M− M̂)(a1a

T
1 − â1â

T
1 )
}

=tr
{
(M− M̂)Π(a1a

T
1 − â1â

T
1 )Π

}
=tr
{
Π(M− M̂)Π(a1a

T
1 − â1â

T
1 )
}
.

For any two p× p matrices A and B, by SVD, we have

tr(ATB) = tr(ATUDVT ) = tr(VTATUD) =

p∑
i=1

p∑
k=1

(VTATU)ikDki

=

p∑
i=1

(VTATU)iiDii ≤ ∥VTATU∥2
p∑

i=1

Dii = ∥A∥2∥B∥s,

where ∥B∥s denotes the sum of singular values of B. Hence

tr
{
Π(M− M̂)Π(a1a

T
1 − â1â

T
1 )
}
≤ ∥Π(M− M̂)Π∥2∥a1a

T
1 − â1â

T
1 ∥s,

and

tr
{
(M− M̂)(a1a

T
1 − â1â

T
1 )
}
≤ ∥Π(M− M̂)Π∥2 × 2

√
1− (âT

1 a1)2,

due to lemma A.1.1 of Vu and Lei (2012) which shows a1a
T
1 −â1â

T
1 has the following singular

values:
√

1− (âT
1 a1)2,

√
1− (âT

1 a1)2, 0, 0, · · · , 0. Therefore,√
1− (âT

1 a1)2 ≤
2

λ1 − λ2

∥Π(M− M̂)Π∥2

=
2

λ1 − λ2

sup
∥x∥2=1

xTΠ(M− M̂)Πx

=
2

λ1 − λ2

sup
∥x∥2=1

xTΠ

∥xTΠ∥2
(M− M̂)

Πx

∥Πx∥2
∥Πx∥22

≤ 2

λ1 − λ2

sup
∥x∥2=1

xTΠ

∥xTΠ∥2
(M− M̂)

Πx

∥Πx∥2

≤ 2

λ1 − λ2

sup
∥v∥2=1∩∥v∥0≤2s

|vT (M− M̂)v|.

�
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Lemma 3 Under conditions A1 – A6, let γ−1
1 = r−1

1 + 2r−1
2 and γ−1

2 = r−1
1 + r−1

2 . As

n→∞ and p→∞, for any ∥v∥2 = 1, ∥v∥0 < 2s and t > 0, it holds that

P
(
|vT (M̂−M)v| ≥ t

)
≤Cspn exp

{
− C

nγ1

sγ1
tγ1/2

pγ1/2

}
+ Cspn exp

{
− C

nγ2

sγ2/2
tγ2/4

pγ2/4

}
+ Csp exp

{
− C

n

s2
t

p

}
+ Csp exp

{
− C

n

s

√
t

p

}
+ Cspn exp

{
− C

nγ1

sγ1
tγ1

λ
γ1/2
1 pγ1/2

}
+ Cspn exp

{
− C

nγ2

sγ2/2
tγ2/2

λ
γ2/4
1 pγ2/4

}
+ Csp exp

{
− C

n

s2
t2

λ1p

}
+ Csp exp

{
− C

n

s

t√
λ1p

}
.

Proof. WLOG, for simplicity, we set k0 = 1. For any ∥v∥2 = 1, ∥v∥0 < 2s, we have

|vT (M̂−M)v|

=|vT Σ̂y(1)Σ̂
T

y (1)v − vTΣy(1)Σ
T
y (1)v|

=|vT (Σ̂y(1)−Σy(1))(Σ̂
T

y (1)−ΣT
y (1))v + 2vT (Σ̂y(1)−Σy(1))Σ

T
y (1)v|

≤vT (Σ̂y(1)−Σy(1))(Σ̂
T

y (1)−ΣT
y (1))v

+ 2

√
vT (Σ̂y(1)−Σy(1))(Σ̂

T

y (1)−ΣT
y (1))v

√
vTΣy(1)Σ

T
y (1)v

≤E + 2
√
E
√
λ1,

(2.7.30)

where we denote E = vT (Σ̂y(1)−Σy(1))(Σ̂
T

y (1)−ΣT
y (1))v.

Denote the (i, j)-th element of Σ̂y(1) and Σy(1) by σ̂
(1)
i,j and σ

(1)
i,j respectively and v =

(v1, · · · , vp)T . WLOG, we assume the first 2s elements of v are non zeros. It then holds

that

E =
∥∥∥( 2s∑

i=1

vi(σ̂
(1)
i,1 − σ

(1)
i,1 ), · · · ,

2s∑
i=1

vi(σ̂
(1)
i,p − σ

(1)
i,p )
)T∥∥∥2

2
=

p∑
j=1

( 2s∑
i=1

vi(σ̂
(1)
i,j − σ

(1)
i,j )
)2
.
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For any τ > 0, it holds that

P (E ≥ τ) =P
( p∑

j=1

( 2s∑
i=1

vi(σ̂
(1)
i,j − σ

(1)
i,j )
)2
≥ τ

)
≤

p∑
j=1

P
(( 2s∑

i=1

vi(σ̂
(1)
i,j − σ

(1)
i,j )
)2
≥ τ

p

)
=

p∑
j=1

P
(∣∣∣ 2s∑

i=1

vi(σ̂
(1)
i,j − σ

(1)
i,j )
∣∣∣ ≥√τ

p

)
≤

p∑
j=1

P
( 2s∑

i=1

|vi||σ̂(1)
i,j − σ

(1)
i,j | ≥

√
τ

p

)
≤

p∑
j=1

P
( 2s∑

i=1

|σ̂(1)
i,j − σ

(1)
i,j | ≥

√
τ

p

)
≤

p∑
j=1

2s∑
i=1

P
(
|σ̂(1)

i,j − σ
(1)
i,j | ≥

1

2s

√
τ

p

)
.

It follows from lemma 9 of Chang, Guo and Yao (2014) that

P
(
|σ̂(1)

i,j − σ
(1)
i,j | ≥

1

2s

√
τ

p

)
≤Cn exp

{
− C

( 1

2s

√
τ

p

)γ1
nγ1
}
+ Cn exp

{
− C

( 1

2s

√
τ

p

)γ2/2
nγ2
}

+ C exp
{
− C

( 1

2s

√
τ

p

)2
n
}
+ C exp

{
− C

1

2s

√
τ

p
n
}

=Cn exp
{
− C

nγ1

sγ1
τ γ1/2

pγ1/2

}
+ Cn exp

{
− C

nγ2

sγ2/2
τ γ2/4

pγ2/4

}
+ C exp

{
− C

n

s2
τ

p

}
+ C exp

{
− C

n

s

√
τ

p

}
.

Therefore,

P (E ≥ τ) ≤Cspn exp
{
− C

nγ1

sγ1
τ γ1/2

pγ1/2

}
+ Cspn exp

{
− C

nγ2

sγ2/2
τ γ2/4

pγ2/4

}
+ Csp exp

{
− C

n

s2
τ

p

}
+ Csp exp

{
− C

n

s

√
τ

p

}
.

(2.7.31)
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By (2.7.30) and (2.7.31), for any t > 0, we have

P
{
|vT (M̂−M)v| ≥ t

}
≤P
{
(E + 2

√
E
√
λ1) ≥ t

}
≤P
{
E ≥ t

2

}
+ P

{
E ≥ t2

16λ1

}
≤Cspn exp

{
− C

nγ1

sγ1
tγ1/2

pγ1/2

}
+ Cspn exp

{
− C

nγ2

sγ2/2
tγ2/4

pγ2/4

}
+ Csp exp

{
− C

n

s2
t

p

}
+ Csp exp

{
− C

n

s

√
t

p

}
+ Cspn exp

{
− C

nγ1

sγ1
tγ1

λ
γ1/2
1 pγ1/2

}
+ Cspn exp

{
− C

nγ2

sγ2/2
tγ2/2

λ
γ2/4
1 pγ2/4

}
+ Csp exp

{
− C

n

s2
t2

λ1p

}
+ Csp exp

{
− C

n

s

t√
λ1p

}
.

�

Proof of Theorem 7. Let Sp−1 be the set of p-dimensional unit vector and B(s) be the

set such that all elements satisfies ∥x∥0 < s. Let K be a fixed subsect K ⊂ {1, 2, · · · , p}

with |K| = 2s, for example, K = {1, 2, · · · , 2s}. Define

BK = {v| for any i ∈ {1, 2, · · · , p}/K, vi = 0}.

In order to proceed, we need the following result: An ϵ-net Nϵ of a sphere Sp−1 is a subset

of Sp−1 such that for any v ∈ Sp−1, there exists u ∈ Nϵ subject to ∥u−v∥ ≤ ϵ. Two existed

results we will use are (1) for any ϵ > 0, it holds that |Nϵ| ≤ (1 + 2/ϵ)p. (2) for any p× p

matrix A and ϵ ∈ (0, 1/2), it holds that supv1∈Sp−1 |vT
1 Av1| ≤ (1− 2ϵ)−1 supv2∈Nϵ

|vT
2 Av2|.

Now we can go on with the original proof.

Let the 1
4
-net of Sp−1 ∩BK be NK, for any t > 0, according to the above results (1) and (2),
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we have

P
(

sup
v∈Sp−1∩BK

|vT (M̂−M)v| ≥ t
)

≤P
(
(1− 2× 1/4)−1 sup

v∈NK

|vT (M̂−M)v| ≥ t
)

=P
( ∪

v∈NK

{
|vT (M̂−M)v| ≥ t/2

})
=
∑
v∈NK

P
(
|vT (M̂−M)v| ≥ t/2

)
≤|NK| sup

v∈NK

P
(
|vT (M̂−M)v| ≥ t/2

)
≤(1 + 2/(1/4))2s sup

v∈NK

P
(
|vT (M̂−M)v| ≥ t/2

)
=92s sup

v∈NK

P
(
|vT (M̂−M)v| ≥ t/2

)
,

where the 2s (instead of p) in the last inequality is because for a fixed K ⊂ {1, 2, · · · , p}

with |K| = 2s, Sp−1 ∩ BK is equivalent to a subset of S2s−1, hence we can employ the ϵ-net

arguments on such a subset.

Now we allow for arbitrage subset K ⊂ {1, 2, · · · , p} with |K| = 2s, it then follows that

P
(

sup
v∈Sp−1∩B0(2s)

|vT (M̂−M)v| ≥ t
)

≤
∑

K⊂{1,2,··· ,p}

P
(

sup
v∈Sp−1∩BK

|vT (M̂−M)v| ≥ t
)

≤

(
p

2s

)
92s sup

v∈NK

P
(
|vT (M̂−M)v| ≥ t/2

)
.

(2.7.32)

76



Therefore, by lemma 2, lemma 3 and (2.7.32), we have

P
(√

1− (âT
1 a1)2 ≥

2t

λ1 − λ2

)
≤P
(
2

2

λ1 − λ2

sup
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+ Csp exp
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+ Csp exp

{
− C

n

s
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.

For a sufficient large constant M > 0, let

t = Mλ1
1/2

√
s3p log p

n
,

(note that the s in s3 comes from bounding

(
p

2s

)
92s and s2 in s3 comes from the expo-

nential terms). We then have√
1− (âT

1 a1)2 = Op

( λ1
1/2

λ1 − λ2

√
s3p log p

n

)
.

�

Lemma 4 The estimator Â in (2.2.23) of A satisfies

∥ÂÂT (I−AAT )∥F ≤
2
√
r sup∥v∥2=1∩∥v∥0≤2rs |vT (M̂−M)v|

λr

.
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Proof. It is straightforward by employing lemma 5, lemma 6 and lemma 7 of Wang, Han

and Liu (2013). Note that the assumption ∥A∥0 ≤ s is used in the proof of lemma 6 in

Wang, Han and Liu (2013). �

Proof of Theorem 8. Since ∥ÂÂT (I−AAT )∥F ≤
2
√
r sup∥v∥2=1∩∥v∥0≤2rs |vT (M̂−M)v|

λr
, replac-

ing s by rs in lemma 3 and Theorem 7 and following the same arguments as above, we

have

∥ÂÂT (I−AAT )∥F = Op

(λ1
1/2

λr

√
s3p log p

n

)
.

�
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Chapter 3: Group Lasso for

Covariance Matrix Break Detection

3.1 Introduction

Detecting multiple change points in univariate time series has been widely discussed, see

Chen and Gupta (1997), Davis et al. (2006) and Davis et al. (2008) for example. The

second order nonstationarities observed in large panel of asset returns (see Fan et al. (2011))

implies the importance of the detection of change points of the second order structure of

multivariate time series. Vert and Bleakley (2010) describe other interesting examples

of multivariate, nonstationary time series in many other fields, such as signal processing,

biology and medicine. Current attempts on the detection of second order structure change

include Cho and Fryzlewicz (2015). They considered a piecewise stationary, multivariate

time series with a time varying second order structure, where the autocovariance and

cross-covariance functions are asymptotically piecewise constant and hence the time series

is approximately stationary between change-points in these functions. They proposed a

CUSUM-based binary segmentation method for the multiple change-points case. Based

on the classical CUMSUM test, Aue, Hörmann, Horváth and Reimherr (AHHR) (2009)

79



proposed a nonparametric method to assess the stability of volatilities and cross-volatilites

of linear and nonlinear multivariate time series models, but only for a single change point.

We attempted to detect multiple change points of general multivariate time sereis, that

is, unlike Aue, Hörmann, Horváth and Reimherr (AHHR) (2009), we allow more than one

or even diverging number of change points and unlike Cho and Fryzlewicz (2015), we do

not consider any specific models. By reformulating the problem in a variable selection

context, the group least absolute shrinkage and selection operator (LASSO) is proposed to

estimate the locations of the change points. Our method is model-free, it can be extensively

applied to multivariate time series, such as GARCH and stochastic volatility models. It is

shown that the locations of the change points can be consistently estimated by the group

LASSO procedure when we have the knowledge of the number of change points, and the

computation can be efficiently performed. However, the number of the change point is

unknown in practice and it can be shown that the group LASSO procedure will over-

estimate the number of the change points most times. Hence an improved practical version

that incorporates group LASSO and the stepwise regression variable selection technique are

discussed. The two-step procedure can consistently estimate both the number of change

points and the locations of the change points.

The rest of the paper is organized as follows. Section 3.2 introduces the model and the

two-step estimation method. The asymptotic theory for the proposed estimation method is

presented in Section 3.3. Simulation results are reported in Section 3.4. A short discussion

of future work is presented in Section 3.5. All the technical proofs are relegated to an

Appendix.
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3.2 Problem and Estimation Method

3.2.1 Problem

Let yt = (yt1, · · · , ytp)T be an observable p × 1 vector time series process with mean zero

and covariance matrix Cov(yt) = Σt ≡ (σijt)p×p. Our interest in this paper is to estimate

the following multiple changes of the covariance structure Σt:

ΣtI(ti−1 ≤ t < ti) = Σti−1
, i = 1, · · · ,m+ 1, (3.2.33)

where 1 = t0 < t1 < · · · < tm+1 = n + 1 and Σti−1
̸= Σti for i = 1, 2, · · · ,m. When p is

fixed and m = 1, the above question is discussed by Aue, Hörmann, Horváth and Reimherr

(AHHR) (2009) by based on classical CUMSUM test. Recently, Cho and Fryzlewicz (2015)

proposed a CUSUM-based binary segmentation method for the multiple change-points case,

but they assume that each of the components of yt follows a piecewise stochastic volatility

model, i.e., for each component yti of yt,

yti = σi(t/n)Z
2
ti, t = 1, · · · , n, i = 1, 2, · · · , p, (3.2.34)

where n is the sample size, σi(t/n) is a piecewise constant function and Zti is a sequence

of standard normal variables. The purpose of this paper is to propose a model-free and

efficient algorithm for the estimation of the change points in (3.2.33) with big m and

possibly diverging with n.

3.2.2 One-step Estimation

For any matrix A = (aij)p×p, define

vec(A) = (a11, · · · , a1p, a21, · · · , a2p, a31, · · · , a3p, · · · , ap1, · · · , app)T ,
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that is, the vector consists of all the elements of the matrix. Let

µi = vec(Σt), if ti−1 ≤ t < ti, i = 1, · · · ,m+ 1.

Then the detection of the covariance structure in (3.2.33) is equivalent to identifying the

change-points (t1, · · · , tm). Denote xt = vec(yty
′
t). Since E(yty

′
t) = Σt, we can see the

change point detection problem (3.2.33) as the multiple change-points in mean of the fol-

lowing model:

xt =
m+1∑
i=1

{µi + εt}I(ti−1 ≤ t < ti). (3.2.35)

Thus, we can estimate the change-points via group Lasso procedure as in Chan, Yau

and Zhang (2014), see also Harchaoui and Lévy-Leduc (2010). Specifically, let x(n) =

(xT
1 ,x

T
2 , · · · ,xT

n )
T , ε(n) = (εT1 , · · · , εTn )T , θ(n) = (θT

1 , · · · ,θT
n )

T and Q be an np2 × np2

matrix defined by

Q =



I 0 0 . . . 0

I I 0 . . . 0

I I I . . . 0

...

I I I . . . I


,

where I is the p2 × p2 identity matrix. Set θ1 = µ1 and

θi =


µj+1 − µj , when i = tj, where tj is a changepoint in (3.2.35) ,

0 , otherwise ,

for i = 2, . . . , n. Throughout this paper, for a vector θ, the notations θ = 0 and θ ̸= 0

mean that θ has all entries zero and has at least one non-zero entry, respectively. It can

be seen that model (3.2.35) can be expressed as a high dimensional regression model

x(n) = Qθ(n) + ε(n) . (3.2.36)
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Since only m+1 of the vectors θis in θ(n) are non-zero, we look for a sparse solution to the

high dimension regression model (3.2.36). A well-known solution to this problem is given

by the group lasso estimation (Yuan and Lin (2006)). Thus, we propose to estimate θ(n)

by the following group LASSO equation:

θ̂(n) = argminθ(n)

1

n
||x(n)−Qθ(n)||2 + λn

n∑
i=1

||θi|| , (3.2.37)

where λn > 0 is the regularization parameter. Note that when θ̂i ̸= 0, i ≥ 2, there is a

change point at time i. Thus the structural breaks tj, j = 1, 2, . . . ,m can be estimated by

identifying those θ̂i, (i ≥ 2) which are not zero. We denote the estimates of the change

points by An = {t ≥ 2 : θ̂t ̸= 0} ≡ {t̂1, · · · , t̂|An|}.

3.2.3 Two-step estimation procedure

Using the GLASSO procedure for estimating the number of change points, which is usually

larger than the true number of change points, see Theorem 10 below. Two immediate issues

arise: (i) how to estimate the true number of breaks, and (ii) how to estimate the change

points with a nearly optimal rate? These two issues are dealt with in this subsection.

However, it is known that with probability tending to 1, all the true change points can

be identified within a nγn neighborhood, see Theorem 10 below. Therefore, the change-

points can be consistently estimated and are identified within An. One way to achieve this

mission is to choose the “best possible subset” of change points in An according to some

prescribed information criterion (IC). Given any m and the change points t = (t1, . . . , tm),

an information criterion IC(m, t) typically consists of a sum of a goodness-of-fit measure

and a penalty term that accounts for the model complexity. Specifically, let ̂̂µj = (tj −

tj−1)
−1
∑tj−1

t=tj−1
xt be the least squares estimator and Sn(tj−1, tj) =

∑tj−1
t=tj−1

∥xt − ̂̂µj∥2 be
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the residual sum of squares from time tj−1 to tj−1. Consider a general information criterion

of the form

IC(m, t) = Sn(t1, t2, . . . , tm) +mωn , (3.2.38)

where the least squares criterion Sn(t1, t2, . . . , tm) =
∑m+1

j=1 Sn(tj−1, tj) is the goodness-of-fit

measure and ωn is the penalty term. We estimate the number and locations of the change

points by solving

( ̂̂m, ̂̂t) = arg min
m∈(0,1,...,|An|),
t=(t1,...,tm)⊂An

IC(m, t) , (3.2.39)

To achieve further computational efficiency, we adopt the following backward elimina-

tion algorithm (BEA) numerically. BEA starts with the set of change points An, then

removes the “most redundant” change points that corresponds to the largest reduction of

IC until no further removal is possible. The estimator A∗
n ≡ (t̂∗1, · · · , t̂∗|A∗

n|
) is obtained as

follows:

(1) Set K = |An|, tK ≡ An = (tK,1, · · · , tK,K) and V ∗
K = IC(K,An).

(2) For i = 1, · · · , K, compute VK,i = IC(K − 1, tK/{tK,i}). Set V ∗
K−1 = mini VK,i.

(3) If V ∗
K−1 > V ∗

K , then the estimated locations of change points are A∗
n = tK .

If V ∗
K−1 ≤ V ∗

K and K = 1, then A∗
n = ∅.

If V ∗
K−1 ≤ V ∗

K and K > 1, then set j = argmini VK,i, tK−1 ≡ tK/{tK−1,j} and

K = K − 1. Then go to step 2.
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3.3 Theoretical Properties

We introduce some notations first. Let A = {t0i , i = 1, · · · ,m0} be the set of true change

points and µ0
j be the true mean vector in the j-th segment, j = 1, · · · ,m0 + 1. For a set

A, we use |A| to denote its cardinality. A strictly stationary process {yt} is α-mixing if

α(k) ≡ sup
A∈F0

−∞,B∈F∞
k

∣∣P (A)P (B)− P (AB)
∣∣→ 0, as k →∞, (3.3.40)

where F j
i denotes the σ-algebra generated by {yt, i ≤ t ≤ j}. See, e.g., Section 2.6 of Fan

and Yao (2003) for a compact review of α-mixing processes. Some regularity conditions

are now in order.

A1. The process yt is strictly stationary in each regime [t0i−1, t
0
i ), i = 1, · · · ,m0 + 1 with

mixing coefficient α(i)(k) defined in (3.3.40) and there exist a positive constant γ1

and a positive c such that

α(i)(k) ≤ exp (−cnγ1),

for any positive integer k and i = 1, · · · ,m0 + 1.

A2. For any positive z, there exists positive constant γ2 such that

sup
1≤i≤p2

sup
t>0

P (|xti − Exti| > z) ≤ exp (1− zγ2),

where xti is the i-th element of xt and suppose furthermore that γ < 1 where γ is

defined by 1/γ = 1/γ1 + 1/γ2.

A3. Assume min1≤i≤m0+1 ∥µ0
i − µ0

i−1∥ > ν for some ν > 0. As n→∞, min1≤i≤m0+1 |t0i −

t0i−1|/nγn → ∞ for some γn → 0 satisfying (logn)1/γ

n
= o(γn) and γn/λn → ∞, where

γ is defined in A2 and λn is the tuning parameter in (3.2.37).
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Condition A1 and A2 allow us to obtain the large deviation result for α mixing process.

To ensure a change occur at t0i , min1≤i≤m0+1 ∥µi − µi−1∥ > ν is imposed in A3. The

sample size t0i − t0i−1 for each segment should go to infinity in order to study the asymptotic

properties. A3 allows min1≤i≤m0+1 |t0i−t0i−1| larger than nγn, which enlarges the assumption

that min1≤i≤m0+1 |t0i − t0i−1| > Cn in most literatures. This allows the fact that m0 can be

divergent. Now we are ready to present the theoretical results.

Theorem 9 is about the consistency result for the estimate of change points when the

number of change points m0 is known.

Theorem 9 Under assumptions A1, A2 and A3, if m0 is known and |An| = m0, then as

n→∞,

P{ max
1≤i≤m0

|t̂i − t0i | ≤ nγn} → 1.

In practice, m0 is not known. Theorem 10 shows the consistency result of the estimator

An obtained from the one-step group LASSO procedure and the fact that the number of

change points estimated from this step is usually larger than m0. Define the Hausdorff

distance between two sets A and B as in Boysen et. al. (2009) by

dH(A,B) = max
b∈B

min
a∈A
|b− a|,

and dH(A, ∅) = dH(∅, B) = 1, where ∅ is the empty set.

Theorem 10 Under assumptions A1, A2 and A3, as n→∞, we have

P (|An| ≥ m0)→ 1,

and

P (dH(An,A) ≤ nγn)→ 1.
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Though the one-step procedure overestimate m0, the estimates of the locations are

within a nγn neighborhood of the true change points, which motivates the second step

estimation. Theorem 11 gives the consistency result of the estimator ( ̂̂m, ̂̂t) obtained from

the two-step estimation procedure.

Theorem 11 Suppose ωn in the information criteria (3.2.38) satisfies limn→∞ nγnm0/ωn =

0 and limn→∞ ωn/min1≤i≤m0 |t0i − t0i−1| = 0, then under conditions A1, A2 and A3, as

n→∞, the minimizer ( ̂̂m, ̂̂t) of (3.2.39) satisfies

P ( ̂̂m = m0)→ 1,

and there exists a constant B > 0 such that

P ( max
1≤i≤m0

|̂̂ti − t0i | ≤ Bnγn)→ 1.

Theorem 12 gives the consistency result of the estimatorA∗
n obtained from the backward

elimination algorithm.

Theorem 12 Under conditions of Theorem 11, as n → ∞, the estimator A∗
n obtained

from BEA satisfies

P (|A∗
n| = m0)→ 1,

and there exists a constant B > 0 such that

P ( max
1≤i≤m0

|t̂i
∗ − t0i | ≤ Bnγn)→ 1.

3.4 Simulation Studies

To examine the finite sample performance of the proposed estimation methods, we conduct

some simulations under different scenarios. We used the group LARS algorithm for the

87



first step and backward elimination algorithm for the second step. The maximum number

of change points used in the group LARS algorithm step is set to be 20 for all scenarios.

The penalty term ωn in the second step is specified as C log(n), where C can be chosen via

cross validation.

3.4.1 Scenario 1

Let the components of yt = (yt1, · · · , ytp)T be p realizations from AR(1) process. That is

yti = αyt,i−1 + εt, i = 2, · · · , p. Let n = 2048, the first and second breaks are chosen at

t1 = 513 and t2 = 1537. We generate the p components of yt for each t from AR(1) with

coefficient 0.7 if 1 ≤ t ≤ 512, AR(1) with coefficient -0.6 if 513 ≤ t ≤ 1536 and AR(1) with

coefficient 0.8 if 1537 ≤ t ≤ 2048, where εt are independently generated from N(0, 0.5).

We apply the proposed two step estimation method for 200 times and report the simu-

lation times of correctly estimated number of change points, the mean and standard error

of the relative location estimator with p equals to 2, 5, and 10.

Mean (SE) of 1st break Mean (SE) of 2nd break times/200 of m̂ = 2

p=2 0.243 (0.018) 0.752 (0.018) 190/200

p=5 0.247 (0.014) 0.753 (0.013) 200/200

p=10 0.249 (0.011) 0.752 (0.008) 200/200

Table 3.3: Estimated break points from two step estimation method for scenario 1.

Table 3.3 shows that the mean of the estimated 1st and 2nd relative change point

position is very close to the true relative position 0.25 and 0.75. The standard deviations

are small as well. And the number of change points can correctly estimated most times.
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3.4.2 Scenario 2

Let n = 2048, the first and second breaks are chosen at t1 = 513 and t2 = 1537. Firstly,

we generate n p × 1 random vectors zt from p dimensional standard normal distribution

N(0, Ip). Put U1 = Ip and D1 is a p× p diagonal matrix which the diagonal elements are

generated from Uniform(1, 2), U2 equals to the Q part of the QR decomposition of a p× p

matrix whose elements are generated from N(0, 1) and D2 is a p×p diagonal matrix whose

diagonal elements are generated from Uniform(0, 0.5), U3 is generated in the same process

as U2 and and D3 is a p× p diagonal matrix whose diagonal elements are generated from

Uniform(4, 5). The time series we obtain is yt = U1D
1/2
1 zt if 1 ≤ t ≤ 512, yt = U2D

1/2
2 zt

if 513 ≤ t ≤ 1536 and yt = U3D
1/2
3 zt if 1537 ≤ t ≤ 2048.

We apply the proposed two step estimation method for 200 times and report the simu-

lation times of correctly estimated number of change points, the mean and standard error

of the relative location estimator with p equals to 2, 5, and 10. Table 3.4 shows that the

Mean (SE) of 1st break Mean (SE) of 2nd break times/200 of m̂ = 2

p=2 0.248 (0.015) 0.751 (0.002) 192/200

p=5 0.248 (0.012) 0.751 (0.001) 194/200

p=10 0.249 (0.009) 0.751 (0.001) 195/200

Table 3.4: Estimated break points from two step estimation method for scenario 2.

mean of the estimated 1st and 2nd relative change point position is very close to the true

relative position 0.25 and 0.75. The standard deviations are small as well. And the number

of change points can correctly estimated most times.
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3.4.3 Scenario 3

Let n = 2048, the first and second breaks are chosen at t1 = 513 and t2 = 1537. We

generate yt from a one factor model yt = Axt + εt. We generate xt from a AR(1) process

with coefficient 0.4 with N(0, 1) distributed noise term. Let A be a p × 1 vector with

2 cos(2πi/p), i = 1, · · · , p as its i-th element if 1 ≤ t ≤ 512, A with all elements to be 0.2

if 513 ≤ t ≤ 1536 and a p × 1 vector with 3 cos(2πi/p), i = 1, · · · , p as its i-th element if

1537 ≤ t ≤ 2048. εt are generated from N(0, Ip).

We apply the proposed two step estimation method for 200 times and report the simu-

lation times of correctly estimated number of change points, the mean and standard error

of the relative location estimator with p equals to 2, 5, and 10.

Mean (SE) of 1st break Mean (SE) of 2nd break times/200 of m̂ = 2

p=2 0.245 (0.024) 0.753 (0.005) 187/200

p=5 0.245 (0.025) 0.753 (0.004) 188/200

p=10 0.249 (0.020) 0.754 (0.006) 185/200

Table 3.5: Estimated break points from two step estimation method for scenario 3.

Table 3.5 shows that the mean of the estimated 1st and 2nd relative change point

position is very close to the true relative position 0.25 and 0.75. The standard deviations

are small as well. And the number of change points can correctly estimated most times,

even though not as satisfied as scenario 1 and 2.
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3.5 Future work

Currently, the asymptotic results are established when the dimensionality p is fixed. A

more challenging problem is the detection of multiple change points when p goes to infinity

as the sample size n goes to infinity or even larger than n. Intuitively, when p is large,

we have more parameters to estimate, hence we will obtain less accurate estimators, which

might influence the estimation of breaks. The future work will focus on the asymptotic

results when p can be divergent. If the convergent rate is bad, then future work becomes

how to improve the estimation. Indeed, the asymptotic results for the first group lasso

procedure has been obtained.

3.6 Appendix: Proofs

Lemma 5 Let θ̂(n) be defined as in (3.2.37), we have

n∑
l=j

l∑
k=1

θ̂k −
n∑
l=j

xl +
1

2
nλn

θ̂j

∥θ̂j∥
= 0, if θ̂j ̸= 0, (3.6.41)

and ∥
n∑
l=j

l∑
k=1

θ̂k −
n∑
l=j

xl∥ ≤
1

2
nλn for all j. (3.6.42)

Proof. By proposition 1 in Yuan and Lin (2006), we know that a necessary and sufficient

condition for θ̂(n) to be a solution of (3.2.37) is

−QT
j (x(n)−Qθ̂(n)) +

1

2
nλn

θ̂j

∥θ̂j∥
= 0, if θ̂j ̸= 0,

and ∥ −QT
j (x(n)−Qθ̂(n))∥ ≤ 1

2
nλn for all j,

where Qj is the (j − 1)p-th to jp-th columns. For each j = 1, · · · , n,

QT
j x(n) =

n∑
l=j

xl, QT
j Qθ̂(n) =

n∑
l=j

l∑
k=1

θ̂k,
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the required result is then obtained. �

Lemma 6 Under conditions A1 and A2, for any positive an and x, for 1 ≤ i ≤ m0 + 1,

there exist positive constants C1, C2, C3, C4 and C5 depending only on c, γ and γ1 such that

P
(

max
|t−s|>an,t0i−1≤s<t≤t0i

max
1≤j≤p2

| 1

t− s

t∑
l=s

εlj| ≥ x
)

≤p2n3 exp
(
− aγnx

γ

C1

)
+ p2n2 exp

(
− a2nx

2

C2(1 + C3(t− s))

)
+ p2n2 exp

(
− anx

2

C4

exp
( a

γ(1−γ)
n xγ(1−γ)

C5(log(t− s)x)γ

))
.

Furthermore, if an satisfies (log n)1/γ = o(an), for any constant x, it holds that as

n→∞

P
(

max
|t−s|>an,t0i−1≤s<t≤t0i

max
1≤j≤p2

| 1

t− s

t∑
l=s

εlj| ≥ x
)
→ 0.

Proof. By Theorem 1 of Merlevéde, Peligrad and Rio (2009), there exist positive constant

C1, C2, C3, C4 and C5 depending only on c, γ and γ1 such that for any positive constant x,

P
(

max
|t−s|>an

t0i−1≤s<t≤t0i

max
1≤j≤p2

1

t− s
|
t−1∑
l=s

εlj| ≥ x
)

≤
p2∑
j=1

∑
|t−s|>an

t0i−1≤s<t≤t0i

P
(
|
t−1∑
l=s

εlj| ≥ (t− s)x
)

≤
p2∑
j=1

∑
|t−s|>an

t0i−1≤s<t≤t0i

P
(

sup
s≤k≤t−1

|
k∑

l=s

εlj| ≥ (t− s)x
)

≤p2n2
(
(t− s) exp

(
− (t− s)γxγ

C1

)
+ exp

(
− (t− s)2x2

C2(1 + C3(t− s))

)
+ exp

(
− (t− s)x2

C4

exp
((t− s)γ(1−γ)xγ(1−γ)

C5(log(t− s)x)γ

)))
≤p2n3 exp

(
− aγnx

γ

C1

)
+ p2n2 exp

(
− a2nx

2

C2(1 + C3(t− s))

)
+ p2n2 exp

(
− anx

2

C4

exp
( a

γ(1−γ)
n xγ(1−γ)

C5(log(t− s)x)γ

))
.
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The required result is then straightforward for the first part.

Given (log n)1/γ = o(an), for any constant x, we have

p2n3 exp
(
− aγnx

γ

C1

)
≍ exp

(
2 log p+ 3 log n− aγn

)
→ 0.

Similarly, we have

p2n2 exp
(
− a2nx

2

C2(1 + C3(t− s))

)
→ 0,

and

p2n2 exp
(
− anx

2

C4

exp
( a

γ(1−γ)
n xγ(1−γ)

C5(log(t− s)x)γ

))
→ 0,

hence P
(
max|t−s|>an,t0i−1≤s<t≤t0i

max1≤j≤p2 | 1
t−s

∑t
l=s εlj| ≥ x

)
→ 0. �

Lemma 7 Under the conditions of Theorem 11, for m < m0, there exists a constant ν

such that

Sn(t̃1, · · · , t̃m) >
n∑

i=1

∥εi∥2 + ν min
1≤i≤m0

|t0i − t0i−1|

in probability, where Sn(t̃1, · · · , t̃m) = argmint1,··· ,tm Sn(t1, · · · , tm).

Proof. The proof is the same as Lemma 6.4 of Chan, Yau and Zhang (2014). �

Proof of Theorem 9. Define Ani = {|t̂i − t0i | > nγn}, i = 1, 2, · · · ,m0, it holds that

P{ max
1≤i≤m0

|t̂i − t0i | > nγn} ≤
m0∑
i=1

P{|t̂i − t0i | > nγn} =
m0∑
i=1

P (Ani).

Define the set Cn by Cn = {max1≤i≤m0 |t̂i − t0i | ≤ mini |t0i − t0i−1|/2}, it is enough to prove

that
∑m0

i=1 P (AniCn) → 0 and
∑m0

i=1 P (AniC
c
n) → 0, where Cc

n is the complement of Cn.

The proof is similar to Proposition 5 of Harchaoui and Lévy-Leduc (2010) and hence we

only give the proof of
∑m0

i=1 P (AniCn)→ 0. Note that Cn implies that

t0i−1 < t̂i < t0i+1 for 1 ≤ i ≤ m0.
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First consider the case when t̂i ≤ t0i . Applying lemma 5 with t̂i and t0i , we have

∥
n∑

l=t̂i

l∑
i=1

θ̂i −
n∑

l=t̂i

xl∥ ≤
1

2
nλn and ∥

n∑
l=t0i

l∑
i=1

θ̂i −
n∑

l=t0i

xl∥ ≤
1

2
nλn.

It follows from triangle inequality that

∥
t0i−1∑
l=t̂i

xl −
t0i−1∑
l=t̂i

l∑
k=1

θ̂k∥ ≤ nλn.

Note that when l ∈ [t̂i, t
0
i − 1], we have xl = µ0

i + εl and
∑l

k=1 θ̂k = µ̂i+1, it holds that

∥
t0i−1∑
l=t̂i

εl +

t0i−1∑
l=t̂i

(µ0
i − µ0

i+1) +

t0i−1∑
l=t̂i

(µ0
i+1 − µ̂i+1)∥ ≤ nλn.

It follows that

P
(
AniCn ∩ {t̂i ≤ t0i }

)
≤P
(
{1
3
(t0i − t̂i)∥µ0

i − µ0
i+1∥ ≤ nλn} ∩ {|t̂i − t0i | > nγn}

)
+ P

(
{1
3
(t0i − t̂i)∥µ0

i − µ0
i+1∥ ≤ ∥

t0i−1∑
l=t̂i

εl∥} ∩ {|t̂i − t0i | > nγn}
)

+ P
(
{1
3
∥µ0

i − µ0
i+1∥ ≤ ∥µ0

i+1 − µ̂i+1∥|} ∩ {|t̂i − t0i | > nγn}
)

≡P (Ani1) + P (Ani2) + P (Ani3).

Since min1≤i≤m0+1 ∥µ0
i − µ0

i−1∥ ≥ ν, in the set {|t̂i − t0i | > nγn} we have

1

3
(t0i − t̂i)∥µ0

i − µ0
i+1∥ > Cnγn.

Since γn
λn
→∞, we have P (Ani1)→ 0.

In the set {|t̂i − t0i | > nγn} we have

∥ 1

t0i − t̂i

t0i−1∑
l=t̂i

εl∥ ≤ max
|t−s|>nγn

t0i−1≤s<t≤t0i

∥ 1

t− s

t−1∑
l=s

εl∥ ≤ max
|t−s|>nγn

t0i−1≤s<t≤t0i

max
1≤j≤p2

|p 1

t− s

t−1∑
l=s

εlj|.

Note that 1
3
∥µ0

i − µ0
i−1∥ ≥ 1

3
ν and by lemma 6, we have

P
(
{1
3
(t0i − t̂i)∥µ0

i − µ0
i+1∥ ≤ ∥

t0i−1∑
l=t̂i

εl∥} ∩ {|t̂i − t0i | > nγn}
)

≤P
(
{ max

|t−s|>nγn
t0i−1≤s<t≤t0i

max
1≤j≤p2

|p 1

t− s

t−1∑
l=s

εlj| ≥
1

3
ν}
)
→ 0.
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Hence P (Ani2)→ 0.

Note that Cn ∩ {t̂i ≤ t0i } implies t̂i+1 > (t0i + t0i+1)/2. Hence if l ∈ [t0i , (t
0
i + t0i+1)/2], it

holds that xl = µ0
i+1 + εl and

∑l
k=1 θ̂k = µ̂i+l. Applying lemma 5 with t0i and

t0i+t0i+1

2
and

using triangle inequality we have

∥
(t0i+t0i+1)/2−1∑

l=t0i

εl +

(t0i+t0i+1)/2−1∑
l=t0i

(µ0
i+1 − µ̂i+l)∥ ≤ nλn.

Hence

t0i+1 − t0i
2

∥µ0
i+1 − µ̂i+1∥ ≤ nλn + ∥

(t0i+t0i+1)/2−1∑
l=t0i

εl∥,

which implies

P (Ani3) ≤P
(1
6
(t0i+1 − t0i )∥µ0

i − µ0
i+1∥ ≤ nλn + ∥

(t0i+t0i+1)/2−1∑
l=t0i

εl∥
)

≤P
( 1

12
(t0i+1 − t0i )∥µ0

i − µ0
i+1∥ ≤ nλn

)
+ P

(1
6
∥µ0

i − µ0
i+1∥ ≤ ∥

1

(t0i+1 − t0i )/2

(t0i+t0i+1)/2−1∑
l=t0i

εl∥
)

≡P1 + P2,

where P1 → 0 by min1≤i≤m0+1 |t0i − t0i−1|/(nγn) → ∞ and γn/λn → ∞ and P2 → 0 by

lemma 6. Hence P (Ani3) → 0. Now we finish the proof of P
(
AniCn ∩ {t̂i ≤ t0i }

)
→ 0.

Similarly, we can show that P
(
AniCn ∩ {t̂i > t0i }

)
→ 0. Thus P (AniCn)→ 0.

When m0 is fixed, the required result is apparent. When m0 →∞, by lemma 6, the rate

of convergence of P (Ani) can be fast enough such that m0P (Ani)→ 0 for all i = 1, · · · ,m0.

�

Proof of Theorem 10. To prove |An| ≥ m0, suppose on the contrary that |An| < m0,

then there exist some t0i0 and t̂l0 ∈ An such that t0i0+ − t0i0 < t̂l0+1 − t̂l0 , thus we have
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t0i0+1− t0i0 ∨ t̂l0 ≥
nγn
3

and t0i0+2 ∧ t̂l0+1− t0i0+1 ≥
nγn
3
. Applying lemma 5 to t0i0 ∨ t̂l0 and t0i0+1

we have

(t0i0+1 − t0i0 ∨ t̂l0)∥µ0
i0+1 − µ̂l0∥ ≤ nλn + ∥

t0i0+1−1∑
l=t0i0

∨t̂l0

εl∥,

and applying lemma 5 to t0i0+1 and t0i0+2 ∧ t̂l0+1 we have

(t0i0+2 ∧ t̂l0+1 − t0i0+1)∥µ0
i0+2 − µ̂l0∥ ≤ nλn + ∥

t0i0+2∧t̂l0+1−1∑
l=t0i0+1

εl∥.

since t0i0+1 − t0i0 ∨ t̂l0 ≥ nγn
3

and t0i0+2 ∧ t̂l0+1 − t0i0+1 ≥
nγn
3
, we have

∥µ0
i0+1 − µ̂l0∥ ≤

λn

γn
+

1

t0i0+1 − t0i0 ∨ t̂l0
∥

t0i0+1−1∑
l=t0i0

∨t̂l0

εl∥,

lemma 6 leads to 1
t0i0+1−t0i0

∨t̂l0
∥
∑t0i0+1−1

l=t0i0
∨t̂l0

εl∥ → 0, together with λn/γn → 0 we have

∥µ0
i0+1 − µ̂l0∥

p−→ 0,

similarly,

∥µ0
i0+2 − µ̂l0∥

p−→ 0,

which means µ0
i0+1 and µ0

i0+2 are the same. This contradicts with µ0
i0+1 ̸= µ0

i0+2. Hence

P (|An| ≥ m0)→ 1.

The proof of P (dH(An,A) ≤ nγn) → 1 is the same as the second part of Theorem 2.3

of Chan, Yau and Zhang (2014), hence omitted. �

Proof of Theorem 11. To prove P ( ̂̂m = m0) → 1, it suffices to prove P ( ̂̂m < m0) → 0

and P ( ̂̂m > m0) → 0. First let us prove P ( ̂̂m < m0) → 0. It follows from Theorem 10

that there exist points t̂ni ∈ An, i = 1, 2, · · · ,m0 such that max1≤i≤m0 |t̂ni − t0i | ≤ nγn.

Now it suffices to show that if ̂̂m < m0, we have IC( ̂̂m, ̂̂t) ≥ Sn(t̂n1, · · · , t̂nm0) +m0ωn in

probability.
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Denote Rn(m0) = {(t1, t2, · · · , tm0) : |ti − t0i | ≤ nγn, i = 1, 2 · · · ,m0}. For any t ∈

Rn(m0), we have

Sn(t1, t2, · · · , tm0) =

t01−nγn−1∑
i=1

∥xi − ̂̂µ1∥2 +
m0∑
j=2

t0j−nγn−1∑
i=t0j−1+nγn

∥xi − ̂̂µj∥2 +
n∑

i=t0m+nγn

∥xi − ̂̂µm0+1∥2

+

m0∑
j=1

t0j−1∑
i=t0j−nγn

∥xi − ̂̂µj∥2 +
m0∑
j=1

t0j+nγn−1∑
i=t0j

∥xi − ̂̂µj+1∥2

=L1 + L2 + L3 + L4 + L5,

where ̂̂µj are the least square estimators of µj, 1 ≤ j ≤ m0 + 1 on [tj−1, tj − 1]. It can be

shown that in probability

L1 + L2 + L3 ≤
t01−nγn−1∑

i=1

∥εi∥2 +
m0∑
j=2

t0j−nγn−1∑
i=t0j−1+nγn

∥εi∥2 +
n∑

i=t0m+nγn

∥εi∥2 +O(m0nγn),

and the proof is as follows: take L1 for an example, denote µ̃1 as the LSE obtained by

using the data on [1, t01 − nγn − 1], given E∥xi∥ exists, we have in probability

L1 =

t01−nγn−1∑
i=1

∥xi − ̂̂µ1∥2

=

t01−nγn−1∑
i=1

∥xi − µ̃1 + µ̃1 − ̂̂µ1∥2

≤
t01−nγn−1∑

i=1

∥xi − µ̃1∥2 +
t01−nγn−1∑

i=1

∥µ̃1 − ̂̂µ1∥2 + 2

t01−nγn−1∑
i=1

∥xi − µ̃1∥∥µ̃1 − ̂̂µ1∥

≤
t01−nγn−1∑

i=1

∥εi∥2 + (t01 − nγn − 1)∥µ̃1 − ̂̂µ1∥2 + 2O((t01 − nγn − 1)∥µ̃1 − ̂̂µ1∥),

where the O(·) is obtained by Markov inequality.
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Since 0 ≤ t1 − t01 + nγn ≤ 2nγn, given E∥xi∥ exists, it holds that in probability

(t01 − nγn − 1)∥µ̃1 − ̂̂µ1∥

≤∥
t01−nγn−1∑

i=1

xi −
t01 − nγn − 1

t1 − 1

t1−1∑
i=1

xi∥

=∥
t01−nγn−1∑

i=1

xi − (1− t1 − t01 + nγn
t1 − 1

)

t1−1∑
i=1

xi∥

=∥
t1−1∑

i=t01−nγn

xi∥+ ∥
t1 − t01 + nγn

t1 − 1

t1−1∑
i=1

xi∥

=O(t1 − t01 + nγn) = O(nγn),

where the O(·) is obtained by Markov inequality. Hence L1 ≤
∑t01−nγn−1

i=1 ∥εi∥2 + O(nγn).

We then have similar results to L2 and L3, hence the above result has been proved.

Now let’s turn to L4 + L5. It can be shown that there exists A0 > 0 such that in

probability

L4 + L5 ≤
m0∑
j=1

t0j−1∑
i=t0j−nγn

∥εi∥2 +
m0∑
j=1

t0j+nγn−1∑
i=t0j

∥εi∥2 + A0m0nγn,

and the proof of this equation is as follows:

take L4 for an example, L4 =
∑m0

j=1

∑t0j−1

i=t0j−nγn
∥xi − ̂̂µj∥2 and

t0j−1∑
i=t0j−nγn

∥xi − ̂̂µj∥2 =
t0j−1∑

i=t0j−nγn

∥xi − µj + µj − ̂̂µj∥2

≤
t0j−1∑

i=t0j−nγn

∥εi∥2 +
t0j−1∑

i=t0j−nγn

∥µj − ̂̂µj∥2 + 2

t0j−1∑
i=t0j−nγn

∥εi∥∥µj − ̂̂µj∥

≡
t0j−1∑

i=t0j−nγn

∥εi∥2 + A(j)nγn,

where

A(j) = ∥µj − ̂̂µj∥2 +
2

nγn

t0j−1∑
i=t0j−nγn

∥εi∥∥µj − ̂̂µj∥.
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Then

L4 ≤
m0∑
j=1

t0j−1∑
i=t0j−nγn

∥εi∥2 + nγn

m0∑
j=1

A(j).

Similarly, we have

L5 ≤
m0∑
j=1

t0j+nγn−1∑
i=t0j

∥εi∥2 + nγn

m0∑
j=1

B(j),

where

B(j) = ∥µj+1 − ̂̂µj+1∥2 +
2

nγn

t0j+nγn−1∑
i=t0j

∥εi∥∥µj+1 − ̂̂µj+1∥.

Then

A0 =

m0∑
j=1

A(j)/m0 +

m0∑
j=1

B(j)/m0.

Note that A0 = Op(1) given E∥εi∥ exists.

Hence if t ∈ Rn(m0), it holds that in probability

Sn(t1, t2, · · · , tm0) ≤
n∑

i=1

∥εi∥2 + (A0 +O(1))m0nγn.

Since (t̂n1, · · · , t̂nm0) ∈ Rn(m0), we have in probability

Sn(t̂n1, · · · , t̂nm0) ≤
n∑

i=1

∥εi∥2 + (A0 +O(1))m0nγn.

At the same time, by lemma 7 we have in probability

Sn(̂t̂1, · · · ,̂̂t ̂̂m) ≥ n∑
i=1

∥εi∥2 + ν min
1≤i≤m0

|t0i − t0i−1|.

Hence it holds that in probability

IC( ̂̂m, ̂̂t) = Sn(̂t̂1, · · · ,̂̂t ̂̂m) + ̂̂mωn

≥
n∑

i=1

∥εi∥2 + ν min
1≤i≤m0

|t0i − t0i−1|+ ̂̂mωn

≥ Sn(t̂n1, · · · , t̂nm0) +m0ωn + ν min
1≤i≤m0

|t0i − t0i−1| − (A0 +O(1))m0nγn − (m0 − ̂̂m)ωn.
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Since ωn/min1≤i≤m0 |t0i − t0i−1| → 0 and nγn/min1≤i≤m0 |t0i − t0i−1| → 0, we have

IC( ̂̂m, ̂̂t) ≥ Sn(t̂n1, · · · , t̂nm0) +m0ωn,

in probability and this implies

P ( ̂̂m < m0)→ 0.

Now let us prove P ( ̂̂m > m0) → 0, which suffices to show that if ̂̂m > m0, we have

IC( ̂̂m,̂̂t1, · · · ,̂̂t ̂̂m) > IC(m0,
̂̂t1, · · · ,̂̂tm0). Note that

Sn(t̂n1, · · · , t̂nm0) ≥ Sn(̂t̂1, · · · ,̂̂tm0) ≥ Sn(̂t̂1, · · · ,̂̂t ̂̂m) ≥ Sn(̂t̂1, · · · ,̂̂t ̂̂m, t01, · · · , t0m0
).

It can be shown that

Sn(̂t̂1, · · · ,̂̂t ̂̂m, t01, · · · , t0m0
) ≥

n∑
i=1

∥εi∥2 − ( ̂̂m+m0)nγn,

hence it holds that

Sn(̂t̂1, · · · ,̂̂tm0)− Sn(̂t̂1, · · · ,̂̂t ̂̂m)
≤Sn(t̂n1, · · · , t̂nm0)− Sn(̂t̂1, · · · ,̂̂t ̂̂m, t01, · · · , t0m0

)

≤( ̂̂m+m0 +m0A0)nγn.

Since m0nγn/ωn → 0, it then follows that

IC( ̂̂m,̂̂t1, · · · ,̂̂t ̂̂m)− IC(m0,
̂̂t1, · · · ,̂̂tm0) ≥ ( ̂̂m−m0)ωn − ( ̂̂m+m0 +m0A0)nγn > 0,

which implies

P ( ̂̂m > m0)→ 0.

The proof of P (max1≤i≤m0 |
̂̂ti − t0i | ≤ Bnγn) → 1 can be obtained following Theorem

2.4 and lemma 6.4 of Chan, Yau and Zhang (2014). �

Proof of Theorem 12. The proof is the same as Theorem 2.5 of Chan, Yau and Zhang

(2014). �
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Chapter 4: Two Simple Results

This chapter presents two small theoretical results which extend two theorems for high

dimensional, independent processes to high dimensional and dependent processes. They

come from the effort of proving the results in the previous three chapters, but failing to

obtain the target.

4.1 An extension of Bickel, P.J. and Levina, E (2008)’s

result

In this section, we extend the result of Bickel and Levina (2008) to (auto)covariance ma-

trices of high-dimensional α-mixing dependent data. Let yt = (y1,t, . . . , yp,t)
T , t = 1, · · · , n

be a p × 1 strictly stationary α-mixing process. Denote the (auto)covariance matrices of

yt at lag k by Cov(yt+k,yt) = Σy(k) = [σ
(k)
i,j ]i,j=1,2,··· ,p, k ≥ 0. For each k, we assume it

belongs to the following matrix class:{
Σ : σi,i ≤M,max

i

p∑
i=1

| σi,j |q≤ s1(p),max
j

p∑
i=1

| σi,j |q≤ s2(p)

}
, (4.1.43)

where 0 ≤ q < 1 and M is a positive constant.
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Considering such a class above, we employ a thresholding estimator defined as

Tu(Σ̃y(k)) = [σ̃
(k)
i,j 1(| σ̃

(k)
i,j |≥ u)]i,j=1,2,··· ,p,

where σ̃
(k)
i,j is the (i, j)-th element of the sample (auto)covariance matrix estimator Σ̃y(k) =

1
n

∑n−k
t=1 (yt+k − ȳ)(yt − ȳ)T . We assume

(A1) There exist positive constants b1, b2, r1 such that for any s > 0 and i ≤ p

P (| yi,t − E(yi,t) |> s) ≤ b1 exp(−b2sr1).

(A2) yt is strictly stationary and there exist positive constants b3, r2 such that the α-mixing

coefficient satisfies

α(m) ≤ exp(−b3mr2) for any m ≥ 1.

We have the following result

Theorem 13 If Σy(k), k ≥ 0 belongs to the sparse matrices class defined in (4.1.43),

under assumptions A1, A2, assume 0 < γ1 < 1 where 1/γ1 = 2/r1 + 1/r2 and r1, r2 are

defined in A1, A2, if (log p)2/γ1−1 = o(n) and the thresholding parameter u is

u = M ′

√
log p

n
,

for sufficient large M ′. Then

∥Tu(Σ̃y(k))−Σy(k)∥2 = Op

((
log p

n

) 1−q
2
√
s
(k)
1 (p)s

(k)
2 (p)

)
.

Proof. Without loss of generality, we assume E(yi,t) = E(yi,t) = 0 for i, j = {1, 2, · · · , p}.

For k = 0, 1, 2, · · · we have the following decomposition

σ̃
(k)
i,j − σ

(k)
i,j =

1

n

n−k∑
t=1

(yi,t+kyj,k − E(yi,t+kyj,k))− ȳj,·
1

n

n−k∑
t=1

yi,t+k − ȳi,·
1

n

n−k∑
t=1

yj,t+k

+
n− k

n
ȳi,·ȳj,· −

k

n
E(yi,t+kyj,k),

(4.1.44)
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where ȳi,· =
1
n

∑n
t=1 yi,t and ȳj,· =

1
n

∑n
t=1 yj,t. Note that when k = 0, the last four terms of

(4.1.44) becomes −ȳi,·ȳj,·. This difference does not affect the asymptotic results discussed

following.

Now let’s consider the first term in (4.1.44). From Lemma 7 of Chang, Guo and Yao (2014),

for any s > 0, under assumption A1 we have

P (|yi,t+kyj,k − E(yi,t+kyj,k)| > s) ≤ 2b1 exp (−b2sr1/2).

By Theorem 1 of Merlevéde et al (2011), there exists constants C1, C2, C3, C4, C5 > 0 only

depending on b1, b2, r1, r2 (that is not depending on i, j, k) such that the upper bound for

the first term in (4.1.44)

P (

∣∣∣∣∣ 1n
n−k∑
t=1

(yi,t+kyj,k − E(yi,t+kyj,k))

∣∣∣∣∣ ≥ s) ≤n exp (−(ns)γ1

C1

) + exp (− (ns)2

C2(1 + nC3)
)

+ exp (−(ns)2

C4n
exp (

(ns)γ1(1−γ1)

C5(log ns)γ1
)) for all i, j.

By Bonferroni’s method we have

P (max
i,j

∣∣∣∣∣ 1n
n−k∑
t=1

(yi,t+kyj,k − E(yi,t+kyj,k))

∣∣∣∣∣ ≥ s) ≤ p2 max
i,j

P (

∣∣∣∣∣ 1n
n−k∑
t=1

(yi,t+kyj,k − E(yi,t+kyj,k))

∣∣∣∣∣ ≥ s).

Set s = u = M
√

log p
n

, when (log p)2/γ1−1 = o(n) we have

p2n exp (−(ns)γ1

C1

) + p2 exp (− (ns)2

C2(1 + nC3)
) + p2 exp (−(ns)2

C4n
exp (

(ns)γ1(1−γ1)

C5(log ns)γ1
)) = o(1).

Hence

max
i,j

∣∣∣∣∣ 1n
n−k∑
t=1

(yi,t+kyj,k − E(yi,t+kyj,k))

∣∣∣∣∣ = Op(

√
log p

n
).

As for the second term in (4.1.44), we have

P (

∣∣∣∣∣ȳj,· 1n
n−k∑
t=1

yi,t+k

∣∣∣∣∣ ≥ s) ≤ P (|ȳj,·| ≥ s1/2) + P (

∣∣∣∣∣1n
n−k∑
t=1

yi,t+k

∣∣∣∣∣ ≥ s1/2).

103



Hence there exists constants C∗
1 , C

∗
2 , C

∗
3 , C

∗
4 , C

∗
5 > 0 only depending on b1, b2, r1, r2 and

define 1
γ2

= 1
r1
+ 1

r2
we have

P (max
i,j
|ȳj,·| ≥ s1/2) ≤p2n exp (−nγ2sγ2/2

C∗
1

) + p2 exp (− n2s

C∗
2(1 + nC∗

3)
)

+ p2 exp (− n2s

C∗
4n

exp (
nγ2(1−γ2)sγ2(1−γ2)/2

C∗
5(log ns

1/2)γ2
)).

Similar to the above arguments, let s = u = M
√

log p
n

, when (log p)4/3γ2−1/3 = o(n) we have

max
i,j

∣∣∣ȳj,· 1n∑n−k
t=1 yi,t+k

∣∣∣ = Op(
√

log p
n

). Similarly when (log p)4/3γ2−1/3 = o(n) we have

max
i,j

∣∣∣∣∣ȳi,· 1n
n−k∑
t=1

yj,t+k

∣∣∣∣∣ = Op(

√
log p

n
) and max

i,j

∣∣∣∣n− k

n
ȳi,·ȳj,·

∣∣∣∣ = Op(

√
log p

n
).

And max
i,j

∣∣ k
n
E(yi,t+kyj,k)

∣∣ = O( 1
n
) which is irrelevant with p. Note that when γ1 < γ2 < 1,

we have 2/γ1 − 1 ≥ 4/3γ2 − 1/3, hence when (log p)2/γ1−1 = o(n) we have

max
i,j

∣∣∣σ̃(k)
i,j − σ

(k)
i,j

∣∣∣ = Op(

√
log p

n
) k = 0, 1, 2, · · · .

The following is simply a recap of Bickel and Levina (2008).

∥Tu(Σ̃y(k))−Σy(k)∥2 ≤ ∥Tu(Σ̃y(k))− Tu(Σy(k))∥2 + ∥Tu(Σy(k))−Σy(k)∥2.

Under the sparse matrices class defined in (4.1.43), the second term has the following upper

bound

∥Tu(Σy(k))−Σy(k)∥2 ≤ (max
i

p∑
j=1

1(| σ(k)
i,j |< u))1/2(max

j

p∑
i=1

1(| σ(k)
i,j |< u))1/2

≤ (u1−qs
(k)
1 (p))1/2(u1−qs

(k)
2 (p))1/2 = u1−q

√
s
(k)
1 (p)s

(k)
2 (p).

Hence

∥Tu(Σy(k))−Σy(k)∥2 = O

((
log p

n

) 1−q
2
√

s
(k)
1 (p)s

(k)
2 (p)

)
. (4.1.45)

We also have

∥Tu(Σ̃y(k))− Tu(Σy(k))∥2 ≤ (max
i

p∑
j=1

∣∣∣σ̃(k)
i,j 1(| σ̃

(k)
i,j |≥ u)− σ

(k)
i,j 1(| σ

(k)
i,j |≥ u)

∣∣∣)1/2
× (max

j

p∑
i=1

∣∣∣σ̃(k)
i,j 1(| σ̃

(k)
i,j |≥ u)− σ

(k)
i,j 1(| σ

(k)
i,j |≥ u)

∣∣∣)1/2.
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And

max
i

p∑
j=1

∣∣∣σ̃(k)
i,j 1(| σ̃

(k)
i,j |≥ u)− σ

(k)
i,j 1(| σ

(k)
i,j |≥ u)

∣∣∣
≤max

i

p∑
j=1

∣∣∣σ̃(k)
i,j − σ

(k)
i,j

∣∣∣ 1(| σ̃(k)
i,j |≥ u, | σ(k)

i,j |≥ u)

+ max
i

p∑
j=1

∣∣∣σ̃(k)
i,j

∣∣∣ 1(| σ̃(k)
i,j |≥ u, | σ(k)

i,j |< u)

+ max
i

p∑
j=1

∣∣∣σ(k)
i,j

∣∣∣ 1(| σ̃(k)
i,j |< u, | σ(k)

i,j |≥ u)

= I1 + I2 + I3.

It is easy to check

I1 ≤ max
i,j

∣∣∣σ̃(k)
i,j − σ

(k)
i,j

∣∣∣u−qs
(k)
1 (p),

I3 ≤ max
i,j

∣∣∣σ̃(k)
i,j − σ

(k)
i,j

∣∣∣u−qs
(k)
1 (p) + u1−qs

(k)
1 (p).

Hence when u = M
√

log p
n

and (log p)2/γ1−1 = o(n), we have

I1 = Op

((
log p

n

) 1−q
2

s
(k)
1 (p)

)
, and I3 = Op

((
log p

n

) 1−q
2

s
(k)
1 (p)

)
.

For term I2, take a constant τ ∈ (0, 1), we have

I2 ≤ max
i

p∑
j=1

∣∣∣σ̃(k)
i,j − σ

(k)
i,j

∣∣∣ 1(| σ̃(k)
i,j |≥ u, | σ(k)

i,j |< u) + max
i

p∑
j=1

∣∣∣σ(k)
i,j

∣∣∣ 1(| σ(k)
i,j |< u)

≤ max
i

p∑
j=1

∣∣∣σ̃(k)
i,j − σ

(k)
i,j

∣∣∣ 1(| σ̃(k)
i,j |≥ u, | σ(k)

i,j |< u) + u1−qs
(k)
1 (p),
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where

max
i

p∑
j=1

∣∣∣σ̃(k)
i,j − σ

(k)
i,j

∣∣∣ 1(| σ̃(k)
i,j |≥ u, | σ(k)

i,j |< u)

≤max
i

∣∣∣σ̃(k)
i,j − σ

(k)
i,j

∣∣∣max
i

p∑
j=1

1(| σ̃(k)
i,j − σ

(k)
i,j |≥ (1− τ)u)

+ max
i

∣∣∣σ̃(k)
i,j − σ

(k)
i,j

∣∣∣max
i

p∑
j=1

1(| σ̃(k)
i,j |≥ u, τu ≤| σ(k)

i,j |< u)

≤ max
i

∣∣∣σ̃(k)
i,j − σ

(k)
i,j

∣∣∣max
i

p∑
j=1

1(| σ̃(k)
i,j − σ

(k)
i,j |≥ (1− τ)u)

+ max
i

∣∣∣σ̃(k)
i,j − σ

(k)
i,j

∣∣∣ s(k)1 (p)(τu)−q.

When u = M
√

log p
n

and (log p)2/γ1−1 = o(n), it is not hard to check

I2 = Op

((
log p

n

) 1−q
2

s
(k)
1 (p)

)
.

Hence we have

max
i

p∑
j=1

∣∣∣σ̃(k)
i,j 1(| σ̃

(k)
i,j |≥ u)− σ

(k)
i,j 1(| σ

(k)
i,j |≥ u)

∣∣∣ = Op

((
log p

n

) 1−q
2

s
(k)
1 (p)

)
.

Similarly, we have

max
j

p∑
i=1

∣∣∣σ̃(k)
i,j 1(| σ̃

(k)
i,j |≥ u)− σ

(k)
i,j 1(| σ

(k)
i,j |≥ u)

∣∣∣ = Op

((
log p

n

) 1−q
2

s
(k)
2 (p)

)
.

Hence

∥Tu(Σ̃y(k))− Tu(Σy(k))∥2 = Op

((
log p

n

) 1−q
2
√

s
(k)
1 (p)s

(k)
2 (p)

)
.

Together with (4.1.45), we get

∥Tu(Σ̃y(k))−Σy(k)∥2 = Op

((
log p

n

) 1−q
2
√
s
(k)
1 (p)s

(k)
2 (p)

)
.

given (log p)2/γ1−1 = o(n). �

106



4.2 A result of U-statistics of high dimensional β mix-

ing processes

Hoeffding (1948) investigated the theory of U -statistics for fixed dimensional independent

data. Serfling (1980) presented a good summary of U -statistics. Zhong and Chen (2011)

extended hoeffding (1948) to high dimensional independent data. The theory of U -statistics

for fixed dimensional dependent process was discussed by Yoshihara (1976), where they

considered fixed dimensional β-mixing process. Dehling and Wendler (2010) extended

Yoshihara (1976) to strong mixing data where the kernel function of the U -statistics need

to satisfy some continuity conditions. We devote this section to discuss U -statistics for

high dimensional β-mixing process. A strictly stationary process {yt} is β-mixing if

β(k) ≡ E
{

sup
B∈F∞

k

∣∣P (B)− P (B|y0,y−1,y−2, · · · )
∣∣}→ 0, as k →∞,

where F j
i denotes the σ-algebra generated by {yt, i ≤ t ≤ j}.

Suppose W1,W2, . . . ,Wn are n observations of a p× 1 dimensional, strictly stationary

and β-mixing process Wt with β-mixing coefficient β(n). We denote the distribution

function of Wt by F (Wt). Consider a functional of order s for a fixed s ≤ n

θ(F ) =

∫
Rp

. . .

∫
Rp

h(w1,w2, . . . ,ws)dF (w1)dF (w2) . . . dF (ws),

defined over F = {F : |θ(F )| < ∞}, where the kernel function h(w1,w2, . . . ,ws) is sym-

metric, i.e. its value is invariant to the permutations of its s arguments. We estimate θ(F )

by the following U -statistics,

Un,p =

 n

s


−1∑

Cn,s

h(wi1 ,wi2 , . . . ,wis), (4.2.46)
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where Cn,s represents all distinct combinations of {i1, i2, . . . is} from {1, 2, . . . , n}.

For every 1 ≤ c ≤ s, define the projection via

hc(w1,w2, . . . ,wc) =

∫
Rp

. . .

∫
Rp

h(w1,w2, . . . ,ws)dF (wc+1)dF (wc+2) . . . dF (ws),

and denote h̃c = hc − θ(F ). Following the notation of Zhong and Chen (2011), let

gc(w1,w2, . . . ,wc) = h̃c(w1,w2, . . . ,wc)−
c−1∑
j=1

∑
1≤i1<...<ij≤c

gj(wi1 ,wi2 , . . . ,wij),

where g1(w1) = h̃1(w1). Denote

Mnc =
∑

1≤i1<...<ic≤n

gc(w1,w2, . . . ,wc).

By Hoeffding’s decomposition we have

Un,p − θ(F ) =
s∑

c=1

 s

c


 n

c


−1

Mnc =
s∑

c=1

 s

c

U (c)
n,p. (4.2.47)

For fixed dimension cases, under some regularity conditions, E(U
(c)
n,p)2 = O(n−2) for 2 ≤

c ≤ s, see lemma 2 of Liu, Chen and Yao (2010). This means the dominant term of the

U -statistics is U
(1)
n,p. However, when p → ∞, E(U

(c)
n,p)2, 1 ≤ c ≤ s are also affected by p.

Hence the dominated term may not be the first term anymore. We need to compare each

V ar(U
(c)
n,p) for c = 1, 2, . . . , s. In the following, we will compute the largest order that U

(c)
n,p

for c ≥ 2 can obtain under some regularity conditions. Then we can, at least, compare the

relative order of U
(1)
n,p to the rest terms U

(c)
n,p, c = 2, 3, . . . , s.

Assume that for some r > 2,

(C1) µr =
∫
Rp . . .

∫
Rp |h(w1,w2, . . . ,ws)|r dF (w1)dF (w2) . . . dF (ws) = O(pη1(r)) for η1(r) ≥

0.
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and

(C2) νr = E |h(wi1 ,wi2 , . . . ,wis)|
r = O(pη2(r)) for η2(r) ≥ 0 and all integers i1, i2, . . . , is.

Now we have the following proposition,

Theorem 14 If there is a positive number δ such that for r = 2+ δ condition C1 and C2

hold, and
∑

n≥1 nβ(n)
δ/(2+δ) <∞, then we have

E(U (c)
n,p)

2 = O

max


(
p

η1(2+δ)
2+δ

n

)2

,

(
p

η2(2+δ)
2+δ

n

)2

 (2 ≤ c ≤ s).

Proof. The proof is straight forward following lemma 2 of Yoshihara (1976) by replacing

h by

h

max
{
p

η1(2+δ)
2+δ , p

η2(2+δ)
2+δ

} .
as the kernel function. �
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