The London School of Economics and Political Science

Twin-Constrained Hamiltonian Paths
on Threshold Graphs

- an Approach to the Minimum Score Separation Problem

Kai Helge Becker

A thesis submitted to the Department of Management
of the London School of Economics and Political Science
for the degree of Doctor of Philosophy, London, July 2010.

Declaration

I certify that the thesis I have presented for examination for the PhD degree of the London
School of Economics and Political Science is solely my own work other than where I have clearly
indicated that it is the work of others (in which case the extent of any work carried out jointly
by me and any other person is clearly identified in it).

The copyright of this thesis rests with the author and no quotation from it or information
derived from it may be published without the author’s written consent. This thesis may not be
reproduced without the prior written consent of the author.

I warrant that this authorization does not, to the best of my belief, infringe the rights of

any third party.

Abstract

The Minimum Score Separation Problem (MSSP) is a combinatorial problem that has been
introduced in JORS 55 as an open problem in the paper industry arising in conjunction with
the cutting-stock problem. During the process of producing boxes, flat papers are prepared
for folding by being scored with knives. The problem is to determine if and how a given
production pattern of boxes can be arranged such that a certain minimum distance between
the knives can be kept. While it was originally suggested to analyse the MSSP as a specific
variant of a Generalized Travelling Salesman Problem, the thesis introduces the concept of
twin-constrained Hamiltonian cycles and models the MSSP as the problem of finding a twin-
constrained Hamiltonian path on a threshold graph (threshold graphs are a specific type of
interval graphs).

For a given undirected graph G(N,E) with an even node set N and edge set E, and a bijective
function b on N that assigns to every node i in N a "twin node" b(i)#i, we define a new graph
G’(N,E’) by adding the edges {i,b(i)} to E. The graph G is said to have a twin-constrained
Hamiltonian path with respect to b if there exists a Hamiltonian path on G’ in which every
node has its twin node as its predecessor (or successor).

We start with presenting some general findings for the construction of matchings, alter-
nating paths, Hamiltonian paths and alternating cycles on threshold graphs. On this basis it
is possible to develop criteria that allow for the construction of twin-constrained Hamiltonian
paths on threshold graphs and lead to a heuristic that can quickly solve a large percentage of in-
stances of the MSSP. The insights gained in this way can be generalized and lead to an (exact)
polynomial time algorithm for the MSSP. Computational experiments for both the heuristic
and the polynomial-time algorithm demonstrate the efficiency of our approach to the MSSP.

Finally, possible extensions of the approach are presented.

Acknowledgements

First of all, I am very much indebted to my supervisor Professor Gautam Appa, who has greatly
inspired my research, and my life beyond - in fact, to far greater an extent than he is probably
aware of. Also, I am very grateful for his permanent support and his understanding of what
drives me academically.

Also, T would like to thank the staff members (and later colleagues) at the Operational
Research Group at LSE, who all contribute to making the group (and LSE in general) an
inclusive and stimulating environment for research that brings to life the spirit that characterises
a true university. In particular I am thankful to Dr Barbara Fasolo, Dr Gilberto Montibeller, Dr
Alec Morton, Dr Katerina Papadaki, Professor Larry Phillips, Dr Alan Pryor and Professor Paul
Williams for interesting insights and both helpful comments and advice on various academic
matters in the past years. Moreover, the working environment of the Operational Research
Group would have been much less productive and pleasant a place, if the group were not run as
excellently on the administrative side as it actually is. I am very grateful to Brenda Mowlam,
Jenny Robinson, Richard Szadura and Lucy Underhill for their great support, helpful advice
and amazing kindness over all the years, from my first steps at LSE to my time as a member
of staff.

I would also like to thank all my fellow PhD students at LSE, especially Dr Nikos Argyris,
Florian Gebreiter, Nayat Horozoglu, Attila Marton and Dr Kostas Papalamprou, who all have,
in one way or the other, contributed to making LSE my home, on both the academic and the
personal level. T am particularly thankful to Dr Nikos Argyris, with whom I undertook the very
first steps in analysing the problem that would later become the topic of this thesis; unfortu-
nately, he had to focus his attention on his own thesis after a short time. Also, I am thankful
to Dr Kostas Papalamprou for a great introduction into the topic of total unimodularity, and I
would like to thank my fellow PhD students for their friendship and great sense of community.

Moreover, I am grateful to Frits Spieksma from the Univeristy of Leuven for his interest in
the theoretical aspects of this thesis and several insightful discussions.

Many thanks are also due to British Petroleum who generously funded most of the research
undertaken in this thesis.

Finally, I would like to thank Professor Gautam Appa, Dr Katerina Papadaki and Edson
Franco de Morais for ensuring that I would not lose my thesis out of sight given my commitments

as a member of staff at LSE.

Contents

Declaration 3
Abstract 4
Acknowledgements 5
Contents 6
List of Figures 9
List of Tables 9
Overview of main Propositions, Theorems and Corollaries 10
1 The Minimum Score Separation Problem (MSSP) 11
2 Two ways of modelling the MSSP 14

2.1 Starting point: the Hamiltonian Path Problem asa TSP 14

2.2 First approach: the MSSP as a Travelling Politician Problem 15

2.3 Second approach: the MSSP as a Twin-Constrained Hamiltonian Path Problem . 19

3 The MSSP, Hamiltonian paths, variants of the TSP and complexity theory 23

3.1 Notation o e 23
3.2 Hamiltonian paths and alternating Hamiltonian paths 25
3.3 The Travelling Salesman Problem and generalisations 28
3.4 Relevant results of complexity theory 0oL 32
4 Threshold graphs: definition and basic characteristics 38
4.1 Definition and examples 38
4.2 Basic characteristics of threshold graphs 40

5 Maximum cardinality matchings, alternating paths and Hamiltonian paths

on threshold graphs 46
5.1 Alternating paths and maximum cardinality matchings 46
5.2 Hamiltonian paths and maximum cardinality matchings 52
5.3 Summary and a remark on the complexity of the MSSP 56

6 Alternating cycles and maximum cardinality matchings on threshold graphs 58

6.1 Definition and relevance of alternating T-cycles 58
6.2 Criteria for the existence of alternating T-cycles. 61
6.3 Alternating T-cycles and the case of greedy matchings 64
6.4 Summary of our results about maximum cardinality matchings on threshold graphs 70
7 Constructing twin-constrained Hamiltonian paths on threshold graphs 72
7.1 General considerations, modified matchings 72
7.2 Twin-induced structure and the case [M|#n—1. 7
7.3 Thecase [M|=m—1 e 80
7.4 Structure-preserving solutions for matchings with [M|=n—-1. 84
7.5 Classification of non-structure-preserving solutions for matchings with |[M|=n—1 88
7.6 Existence of non-structure-preserving solutions for matchings with |M|=n—-1 . 97
7.7 Existence of non-structure-preserving solutions for a greedy matching with | M| =
no— 1 . 107
7.8 A heuristic for the MSSP (MSSPH) 117
8 Recognising twin-constrained Hamiltonian threshold graphs 120
8.1 Motivation L 120
8.2 Patching graph and a necessary criterion for twin-constrained Hamiltonicity . . . 123
8.3 Sufficient criterion for twin-constrained Hamiltonicity of threshold graphs 126
8.4 Constructing suitable families of alternating Tg-cycles 132
8.5 An algorithm for recognising twin-constrained Hamiltonian threshold graphs
(TGHRA) . . .« o o s 138
9 Computational results 142
9.1 General remarks about the implementation 142
9.2 Evaluation of MSSPH 144
9.3 Evaluation of TGHRA e e 150
10 Conclusion 154

References
A MSSPH 3.6: C+-+ source code
B TGHRA 3.6: C++ source code

C MSSP 3.4: C++ source code

158

166

194

209

List of Figures

© 00 N O Ot ks W N

e e e e e e T
O I O U = W N = O

Feasible alignment of boxes I oo 11
Feasible alignment of boxes IT 12
The MSSP as a Traveling Politician Problem 16
The MSSP as a twin-constrained Hamiltonian path problem 21
Examples of threshold graphs L. 39
Examples of non-threshold graphs 40
Degree partition of a threshold graph 42
Structures of Gand G’ L 54
The twin-induced structure of a matching 7
Thecase [M|=n. 80
The case [M|=n-1. 81
Matching, twin-node function and (in)feasibility 82
Constructing a feasible solution to the MSSP 83
Types of structure-preserving solutions 84
Irreducible path-splitting solutions L. 89
Solutions with a cycle-split o 96
A-matrix of the modified flow problem 114
Constructing a solution by means of alternating T-cycles 122

List of Tables

© 00 N O Ot = W N

—_
o

MSSPH, uniform distribution I00 146
MSSPH, uniform distribution IT. 0. 147
MSSPH, uniform distribution ITT 148
MSSPH, triangular distribution I o oo 149
MSSPH, triangular distribution IT oo 150
TGHRA, uniform distribution I 151
TGHRA, uniform distribution IT 151
TGHRA, uniform distribution IIT 152
TGHRA, triangular distribution I. 152
TGHRA, triangular distribution IT 152

Chapter 4: Threshold Graphs (TGs) Overview of the main Propositions, Theorems and Corollaries
- Definitions and Basic Characteristics
. . . . 1
T33: Characterisation of TG by value function Chapter 5; Maximum Cardinality Matchings,
P34: mm MSSP —final approach 4—' Alternating Paths and Hamiltonian Paths on TGs
L38: Dominating and isolated nodes on TG! p—p>T44: Existence of alternating T-paths
= Chapter 6: Alternating Cycles and Maximum Cardinalit

T36: Characterisation of TG <_|) ‘ o) _p_ gty v

by degree partition® C50: p= TGMA yields maximum cardinality matching Matchings on TGs

‘ T53: Split graph criterion for Hamiltonian TGs T62: Matching criterion for alternating T-cycles

T40: Chatja_cterisation of TG) 1 C55: Degree partition criterion . o .

by vicinal preorder and as a split graph for Hamiltonian TGs2 T63: Path criterion for alternating T-cycles

C56: Complexity of the MSSP b T65: Strong path criterion for alternating T-cycles
P51: Degree property of TGMA ——
gree property e = C68: Existence of sorted alternating T-cycles
C70: Existence of sorted canonical alternating

T-cycles on subsets

Chapter 7: Constructing Twin-Constrained] Hamiltonian Paths on TGs

v
> P80: MSSP for | M][#n-1 P75: MTGMA yields maximum \ k Chapter 8: Recognizing Twin-Constrained Hamiltonian TGs
I cardinality modified matching
, T103: Patching graph for twin-constrained Hamiltonian TGs
P82: R Existence of structure-preserving solutions = P79: Degree property
of MTGMA o« \ C104: Necessary condition for twin-constrained Hamiltonian TGs__
p87: Classification of path-splitting solutions j / T108: Sufficient condition for twin-constrained Hamiltonian TGs | <=
P91: Classification of cycle-splitting solutlons - T111: Necessity of solution by FCA <
P93: Edge criterion for the existence < < \ T110: Sufficiency of solution by FCA <
of path- and cycle-splitting solutlons - 1 -
. v v v
PI4: Necessary polyhedral criterion for the exns GENERA- \\ T114: Complete recognition of twin-constrained Hamiltonian TGs
enee of path and cyclesplting solations } LIZATION l// P116: Complexity of complete recognition 4J
T96: | Polyhedral criterion for the existence P P
of path- and cycle-splitting solutions C117: Complexity of the MSSP 4J
Cc97: Complexity of polyhedral criterion J J
4 |

A98: Heuristic for the MSSP (MSSPHj
P99: Complexity of MSSPH

! Chvatal and Hammer (1973, 1977)
2 Mahadev and Peled (1994)

1 The Minimum Score Separation Problem (MSSP)

The Minimum Score Separation Problem (MSSP) has recently been introduced in the OR
literature by Goulimis (2004) in JORS 55 as an open combinatorial problem associated with the
cutting stock problem. Goulimis encountered this problem during consultancy projects in the
paper and related industries where it arises in the process of producing boxes. Manufacturing
boxes involves two steps: first cutting out flat sheets from the raw material and second folding
these sheets. The first step of this procedure, which consists of finding a feasible pattern of
sheets that minimizes waste, has been well known and investigated for quite some time as the
"cutting-stock problem", and is classically solved by delayed column-generation (Gilmore and
Gomory 1961, 1963). In contrast to this, the second stage, which, for mechanical reasons,
involves an additional constraint, has not received due attention and had not been addressed
before the article mentioned.

In particular, as a part of the process of folding, the flat sheets must be prepared by "scoring"
them along the fold lines, which is achieved by knives mounted on a bar. Due to technical lim-
itations, the knives cannot be placed at an arbitrary distance to each other, but their distances
have to exceed a certain minimum a € R% (typically, o could be about 70mm in practice).
This implies that a given pattern of flat boxes as a possible outcome of the first stage of the
production process is feasible for the second stage only if the boxes can be aligned in a way
such that the scores of adjacent boxes are separated by the minimum distance required. The
following diagram (Figure 1) illustrates this setting for a possible production pattern that is

made up by four (not necessarily different) boxes A, B, C and D:

[[[[[[[[
J v v | v v v J
——p —> —>
>=(>=q >=q

a A &|a C C2 (b B by | cu D d

Figure 1: Feasible alignment of boxes I

A possible alignment of boxes in this example consists of arranging the boxes in the order
A, C, B and D as shown in Figure 1. Despite the fact that a box may have several scores, only
the outer ones matter for the MSSP. Moreover, we can assume that the overall widths of the
boxes are large enough that we do not have to take into account the internal distance between
the two outer scores of a certain box. Accordingly, the arrangement above is feasible if and
only if as + ¢1, o + b1, and by + d; > «. (If a box has no score on its left or right side, we will

set the corresponding value of the left or right width as «.)

11

Further combinatorial options arise from the fact that the boxes, when being aligned, can
also be rotated by 180°, as illustrated in Figure 2 where due to rotating box B, the minimum

score separation constraint is satisfied if as + ¢1, o + b, and by + d; > a:

'] '] '] '] '] '] '] 1
|) L)))) |]
Al Ml e e
=g = —
a A ax | o _ Ca ha H byl & D da

Figure 2: Feasible alignment of boxes II

Given such a setting, the MSSP consists in determining whether or not a certain set of
n boxes can be aligned in an order (possibly also by rotating some of the boxes) such that
between each pair of boxes the minimum distance requirement is met. As the number of
possible arrangements of the boxes including rotations is O(%IQ") - the factor % arises due to
symmetry - complete enumeration can easily lead to a practically unmanageable combinatorial
explosion. (Even in the case of only 10 boxes, a typical value in practice, this would amount to
calculating about 1.858 x 10° possible combinations for each candidate production pattern, of
which there can be several thousands in the context of generating columns for solving the cutting
stock problem.) Though in practical applications, a pattern that turns out to be infeasible in
terms of the MSSP is not entirely useless and can still be employed for manufacturing boxes by
running the scoring machine at a slower pace, such a situation would cause considerable costs.
Therefore, infeasible patterns must be singled out at an early stage before the cutting stock
problem is addressed, and be penalised.

In view of this, it must be considered a practically relevant open combinatorial problem to
develop an algorithm that, at least as a heuristic for a large percentage of possible production
patterns, can quickly determine if a certain arrangement of boxes is (in)feasible in terms of the

MSSP, and explicitly generate such an arrangement if this exists at all.

The remainder of this thesis addresses and solves this problem as follows. In chapter 2, we
give a precise account of the problem by modelling it in two different ways: first, by describing it
on the basis of the concept of a "Travelling Politician Problem" as proposed by Goulimis (2004)
in his original description of the MSSP, and second, as an alternative approach, by representing
it as a specifically constrained variant of a Hamiltonian Path Problem on a modified version of
a so-called "threshold graph". Chapter 3 discusses in detail the relationship of the Minimum
Score Separation Problem with the literature on related problems, namely the Hamiltonian
Path Problem, the Travelling Salesman Problem, the Clustered Travelling Salesman Problem,

and the Generalised Travelling Salesman Problem, and addresses the question of the complexity

12

of the MSSP. Chapter 4 lays the graph theoretical foundation for our approach to the MSSP. In
particular, it introduces the concept of threshold graphs and presents some of their basic char-
acterisations. Proceeding from the perspective provided in the two previous chapters, chapter
5 analyses the relation of paths and maximum cardinality matchings on threshold graphs. In
this context, it provides a matching algorithm for threshold graphs that will later form the
basis of our algorithm for the MSSP and presents a new polynomial-time algorithm for the
Hamiltonian Path Problem on this particular type of graphs. Building on these results, chapter
6 provides several criteria that allow for the construction of alternating cycles on threshold
graphs, which will be helpful prerequisites for tackling the MSSP. In chapter 7, we turn our
attention to the MSSP itself and analyse the relation of maximum cardinality matchings on
threshold graphs and solutions to the MSSP. On this basis, we arrive at criteria that enable
us to develop a polynomial-time heuristic for quickly solving a large percentage of instances of
the MSSP. Chapter 8 capitalises on the insights gained in the previous chapters and presents
an exact polynomial-time algorithm that solves the MSSP. In chapter 9, we demonstrate the
efficiency of our approach by giving computational results for a large number of randomly gen-
erated instances. The final chapter 10 presents some concluding remarks and an outlook on
open questions for further research. Three appendices provide the C++ source codes of the

algorithms developed.

13

2 Two ways of modelling the MSSP

The aim of this section is to provide a precise definition of the Minimum Score Separation
Problem by defining it in two different ways: first, by describing it as a variant of the so-called
"Travelling Politician Problem" as proposed by Goulimis (2004), and second, alternatively, by
representing it as a specifically constrained Hamiltonian Path Problem on what we will later call
a "threshold graph". The different notions underlying these two definitions will be illustrated
by giving two different MIP representations of the problem. As a point of departure, we will
start with a definition of the Hamiltonian Path Problem on an undirected graph and its general

MIP representation as a Travelling Salesman Problem (TSP).

2.1 Starting point: the Hamiltonian Path Problem as a TSP

In the following, let G (N, E) be a (finite) undirected graph without loops and multi-edges. We
will denote its set of nodes by Ng = {1,2,...,n} C N* and its set of edges by Eq¢ C Ng x Ng.
It will be assumed that Fg # @ throughout the text.

Definition 1 (Hamiltonian Path Problem)
Let G (N, E) be an undirected graph with a node set No = {1,2,....,n} C N* and a set of
edges Eg C Ng X Ng. Then the Hamiltonian Path Problem consists in finding a path
i1 — iy —d3 — o — Gy 1 — in
with i1,19,13, ..., in—1,1n, € Ng and (ig,ixt+1) € Eqg for all k = 1,2,...,n — 1, where every

node i, € Ng occurs in the path once.

By introducing a dummy node ¢ = 0, a Hamiltonian Path Problem can routinely be modeled
as a TSP. The resulting TSP has constant cost coefficients ¢ := (0,0, ...,0) and is defined on
the extended graph G’ (N, E), with the new node set being given by N¢g := Ng U {0} and the
new edge set by Eg/ := Eg U {0} x Ng U Ng x {0}.

One among several possible MIP representations of the T'SP consists in the single commodity
flow formulation by Gavish and Graves (1974), which we will employ in the following for the
illustrative purpose of this section because it allows for a very transparent description of the
subtour elimination constraints. (See Orman and Williams (2004) for a survey of different MIP
formulations of the TSP.) Given for all nodes i,j € N¢s,i # j, the binary variables z;; with
x;; = 1 iff the edge (4,7) = (j,%) is part of the TSP tour, the continuous variables y;; to denote
possible flows on the edges, and binary constants 0;; = 1 :& (i,7) € E¢ representing the edges
of the graph, the single commodity flow formulation of the TSP for the general Hamiltonian

Path Problem reads as follows:

14

minimize 0 (1)

subject to Z x;j = 1 for all i € Ng (2)
J,j#i
3wy =1forall j € N 3)
1,177
yij < nayj for all j € Ngr,i # j (4)
j>0

D vii—) yir=1forallj € No — {0} (©)

ii#] k,k#j
x;; < d;; for all i,j € Ngr,i # j (7)
257 € {0;1},y5; > 0 for all i, j € Nor,i # j ®)

In this formulation, constraints (2) and (3) represent the assignment relaxation of the TSP.
The "flow" y;; imposed by constraints (4), (5) and (6) ensures the elimination of subtours.
This is achieved by requiring the tour to start at the dummy node with an initial flow of n
units on the first edge, from which one unit is consecutively "dropped" at each node along the
tour until the flow finally becomes zero. (In the case of several subtours instead of one "full"
tour, the subtours without the dummy node would have no initial flow according to (5) so that
consecutively dropping a flow at each node along the subtour would lead to a violation of (6)
at the node where the subtour is completed.) Constraints (7) finally impose the structure of

the graph on the model.

2.2 First approach: the MSSP as a Travelling Politician Problem

Given this context of the Hamiltonian Path Problem and the TSP, Goulimis (2004), in his
problem presentation, suggested to approach the MSSP as a certain type of generalized TSP,
namely as what he calls a "Travelling Politician Problem" (TPP). A TPP is a path in a graph
consisting of pairs of nodes, where the path must pass each node pair exactly once, which can
be imagined as a travelling politician who - during her election campaign - has to visit exactly
one out of two available cities in each constituency (or state), and return finally to where she
started. (Note that Goulimis does not include the idea of returning to the point of departure in
his description of the TPP, however consistency demands so in order to maintain a conceptual
parallel to the TSP.)

15

Figure 3 illustrates this problem for n = 5 constituencies, with the single node in the ellipse
being a dummy node that models the way back to the point of departure. Of course, the general
TPP could also be depicted, analogously to the general TSP, without a dummy node, but with
a direct way back to the starting point instead. However, as our description here is ultimately
intended as a means to represent the MSSP, a dummy node has been included in the diagram.

In terms of the MSSP, the different constituencies represent n = 5 different boxes that have
to be arranged in a certain order, namely as a path that covers all boxes (all constituencies).
The two cities in each constituency denote the two possible ways of including a box ("regular",
and after a 180° rotation) in the alignment. A feasible arrangement of boxes then consists of a
path that passes through all constituencies exactly once. (The dummy node in the ellipse has no
representational value in the MSSP as such and just ensures that the path is extended to a tour
such that we can illustrate this setting down below by building upon the MIP representation
of a TSP.)

Figure 3: The MSSP as a Traveling Politician Problem

Let us now formalise Goulimis’ approach. We can denote the n boxes by two nodes each
(for both ways of placing the box into the alignment) such that we obtain a node set Ng =
{1,2,3,4,...,2n — 1,2n} where the odd numbers represent the "regular" way of placing the
boxes, and the even ones the boxes after rotation. Further, let v1(¢) and vy(7) be the widths of
the ("regular") left and the right hand sides of the "regularly" placed boxes, respectively, i.e.
for all odd nodes ¢ = 1,3, ...,2n—1. Conversely, let v1(¢) and v2(i) be the right and the left hand
sides of the rotated boxes, respectively, i.e. for all even nodes i = 2,4, ...,2n. Consequently,
we have v1(2k — 1) = v2(2k) and v2(2k — 1) = v1(2k) for all k = 1,2,...,n. Then, given a
minimum knife distance o € R* , the minimum score separation constraint is satisfied for two

nodes i,j € Ng that do not belong to the same box iff v1(i) + v2(j) > « or v(i) + v1(j) > .

16

This yields the following formal definition of the MSSP on a directed graph:

Definition 2 (Minimum Score Separation Problem - Approach 1)

Let G(N, A) be a directed graph with the even node set Ng = {1,2,...,2n — 1,2n}, a € RY,
a positive number (a "minimal value") and v, : Ng — R with p € {1,2} a symmetric pair of
"value functions” that assigns two positive numbers v1(i) and v2(i) to every node i € Ng such
that the symmetry condition

v1(2k — 1) = v2(2k) and v2(2k — 1) = v1(2k) for allk =1,2,....,n

holds. Moreover, let the edge set of the graph be defined by the adjacency condition

A = {(4,7) with v2(i) + v1(j) > a |

i=2kNj#2k—1o0ri=2k—1Aj#2k for somek=1,2,...,n}.

Then the MSSP consists in deciding whether there exists on G a subpath that contains exactly

one node out of each of the node subsets {2k — 1,k} for allk =1,2,...,n.

To state this definition differently: The perspective involved in this approach implies (due
to the symmetry between the odd and the even nodes) that the MSSP is feasible if the graph
just defined can be partitioned into two subsets S and S of nodes of equal cardinality such that
(a) for each k = 1,2,...,n either (2k — 1) € S and (2k) € S or (2k) € S and (2k — 1) € S and
that (b) there exists a Hamiltonian path in one subset (and, due to symmetry, consequently
also in the other subset). Conversely, if such a partition does not exist, the MSSP is infeasible.
In the diagram above, when leaving aside the dummy node and the dotted edges, this partition
is represented by the set of the connected nodes on one side and the set of the unconnected
nodes on the other side. Because of the symmetry between "regular" boxes and their rotated
counterparts, the path drawn in the diagram ensures that there exists also a path covering the
unconnected nodes, and this in the same order of constituencies.

We can illustrate this definition of the MSSP by a MIP formulation gained from the TSP
representation based on the Hamiltonian path property of the subsets. This means the following
TSP is feasible if and only if there exists a subtour in the graph that covers all and only all
of the nodes of a subset S of which for each k = 1,2,...,n either the node (2k) or the node
(2k — 1) is an element. Again, corresponding to the general TSP model for Hamiltonian paths
above, we have to introduce a dummy node 0 (the one already depicted in figure 2 above) and
define the extended graph G’ (N, A), with the new node set given by Ng/ := Ng U {0} and the
new edge set by Ag := AgU{0} x Ng U N¢g x {0}. Also analogously, introducing for all nodes
i, € Ngr,% # j, the binary variables x;;, the continuous flow variables y;;, and the binary
constants d,; = 1 :< (4,7) € Eg yields the following MIP approach to the MSSP.

17

minimize 0 (1)

subject to Z (%9i-1,j + @2,5) = 1 for all i € Ng» — {0} (227)
5 F#2i=1,57#2i
. &
>0
> (i twiyy) = Lorallj € No— {0) (32)
,i#2) — 1,172
> wo; =1 (87
>0
Z Tij — Z zj; =0 for all i € Ngv — {0})
Joj#i JJ#i
yi; < nwj for alli,j € Ng/,i # j (#)
Z?JOJ =n (57
>0
D Vi — D Yk =Y i forall j € Ner — {0} (6)
iyig k,k#j 5iF]
x;j < 6 foralli,j € Ngr,i #j (7)
24 € {0;1},y55 > 0 for all i,j € Nor,i # j ®)

In this formulation, constraints (2a’), (2b'), (3a’) and (3b’) are the equivalents of the assignment
relaxation constraints of the TSP above. Constraints (2a’) and (3a’) refer to all nodes repre-
senting a box. Corresponding to the set S C N¢- that, for each k = 1,2, ...,n, contains either
the node (2k) or the node (2k — 1) as an element, only half of the nodes (namely one for each
box) must be assigned to one successor and one predecessor. Constraints (2b') and (3b’) make
sure that the dummy node definitely is included in the tour with one successor and one prede-
cessor. However, in contrast to the general MIP formulation of the Hamiltonian Path Problem,
these assignment relaxation constraints must be complemented by constraints (9). Without
(9), constraints (2a’) and (3a’) would allow some nodes to have either only predecessors or only
successors. This is avoided by forcing both sums in (9) to either the value 1 or the value 0
for all i € Ng» — {0}. Doing so ensures that all nodes representing boxes have either (a) both
a predecessor and a successor, or (b) neither a predecessor nor a successor, i.e. the nodes are
either fully included in or entirely excluded from the tour.

The flow constraints for the elimination of inappropriate subtours (4'), (5’) and (6") have
been only slightly modified compared to the TSP above. Note however that, despite |[Ng/| =
2n 4+ 1 here, constraints (4') and (5') still have the constant n on their right-hand sides because

we are only interested in a path that covers half of the nodes (and the dummy). The change

18

regarding the constraints (6’) takes into account that a node may be used for the subtour or
not at all. If and only if a node is part of the tour to be found, the right-hand side of (6") equals
1 and a unit of the flow is "dropped" at the node. Otherwise, the right hand side equals 0 and
the corresponding node j is neutral with respect to the flow that enforces the elimination of

subtours. Finally, constraints (7) again impose the structure of the graph on the model.

2.3 Second approach: the MSSP as a Twin-Constrained Hamiltonian
Path Problem

We will now introduce an alternative approach to the MSSP, which is more intuitive in so far
that (as the reader will also observe in terms of notational effort) it goes down more "naturally"
on the basis of the concept of Hamiltonian Paths. Still, we model each box by two nodes and
look for a certain path connecting the nodes. However, while in the first approach the two
nodes for each box represent the two possible positions of a box in the alignment ("regular",
or rotated), here the two nodes correspond to the left and the right sides of the boxes. This
means that if a "regular" box is described by a pair (7, j) € Ng x Ng, its rotated counterpart is
denoted as (j,7). We will call the two nodes that make up a box "twin nodes" in the following.

Analogously to the preceding subsection, we could imagine the left hand sides of the boxes
being represented by the odd node numbers in the node set, and the right hand sides by the
even numbers, but we will not require this in the following because the algorithm for the MSSP
to be developed later will permute the order of nodes anyway. This is why we will remain more
flexible and introduce a "twin node function" as a bijective function b : Ng — Ng from the
set of nodes N¢ onto itself that associates each node i € Ng with its twin node ¢t := b(i) € Ng
(consequently we have b(b(i)) = b(t) = ¢). Then, if a node i represents one side of a certain
box, the node b(7) represents the other side of this box, and it does not matter, if ¢ is the right
or the left side of the box, or if the box is included in the alignment in a "regular" or a rotated
fashion. Note that the notion of "twin nodes" here does not imply that two twin nodes are
adjacent to the same set of other nodes because the two sides of a box could differ with respect
to the other boxes they can be placed next to. In this model, "twins" are closely attached to
each other, but not perceived to be necessarily identical, so to speak.

Similarly to the previous subsection, we will denote the minimum knife distance by a certain
positive & € R% and introduce a "value function" v to model the widths of the left and right
sides of the boxes. However, since we model each side of a box separately from the other side in
this alternative approach, one value function v : Ng — R suffices here, and we can do without
a "symmetry condition" of the kind imposed on the pair of value functions in the previous
subsection. On this simpler basis, two nodes ¢,j7 € Ng fulfil the minimum score separation
constraint, i.e. are adjacent in the graph G, if and only if v(i) + v(j) > a — provided that they
do not belong to the same box, i.e. j # b(4).

As both sides of a box must be part of the final arrangement of boxes (we cannot cut the

19

boxes into halves), both nodes modeling a box must finally be part of the path that represents
the alignment of boxes. In other words: this way of describing the MSSP, in contrast to
Goulimis’ approach, does not require a certain subpath in a partition of nodes for a feasible
solution, but instead a (complete) Hamiltonian Path, which (by definition) covers all nodes of
the graph. In this perspective, the MSSP finally turns out to be a "normal" Hamiltonian Path
Problem on a graph given by the specific adjacency condition v(i) + v(j) > « for all nodes
J # b(4), with the only additional requirement being that each node has its twin node either as
its successor or its predecessor ("twin node condition").

This gives rise to the following definition.

Definition 3 (Twin-Constrained Hamiltonian Path Problem)

Let G (N, E) be an undirected graph with node set Ng = {1,2,...,n} C N*, a set of edges
FE¢ C Ng X Ng, and b: Ng — Ng a bijective function that associates every node i € Ng with
a "twin node" t :=b(i) € Ng, t # i. Moreover, let G' be a graph derived from G by

Ng' := Ng and Eg := Eqg U {(Z,]) 1= b(])}

Then the Twin-Constrained Hamiltonian Path Problem on G with respect to b consists in
deciding whether there exists on G' a Hamiltonian path of the form

i1 — b(i1) — 2 — b(iz) — ... —ip — b(in),

i.e. a Hamiltonian path in which every node is either predecessor or successor of its twin
node ("twin node condition”). G is called the underlying graph and b the twin-node function of

the Twin-Constrained Hamiltonian Path Problem.

Note that, due to the bijectivity of the twin function b, the twin node condition actually
describes all possible types of paths in which every node is either predecessor or successor of
its twin node. Obviously, equivalent formulations of this condition would be, for example, also

b(i1) — i1 — b(ia) —i2 — ... — b(in) — in, and
i1 — b(i1) — b(iz) — iz — i3 — b(i3) — ... = b(in) — in.

The setting of a twin-constrained Hamiltonian path is illustrated for an MSSP with n =5
boxes in Figure 4, in which the two nodes that share a circle (the triangle and the rectangle)
correspond to the same box (imagine the rectangles as their right sides and the triangles as
their left ones, "normal" position given). The inseparability of the twin nodes in the model is
reflected by the bold lines (edges) connecting triangles and rectangles such that any Hamiltonian
Path must either enter a circle at the side of the triangle and proceed to the rectangle, or vice
versa. Again, the ellipse represents a dummy node to turn the Hamiltonian Path Problem into
a TSP.

The mathematical intuition guiding this "twin node" approach can be described as follows:
Goulimis’ model, as presented in the previous section, requires doubling all nodes in order to
account for the fact that boxes can be rotated. Parallel to this, his approach requires a pair of

value functions that, due to their symmetry property, also double the number of mathematical

20

Figure 4: The MSSP as a twin-constrained Hamiltonian path problem

entities for representing rotated boxes. Despite this effort of doubling the mathematical struc-
ture, any solution to the MSSP (if there exists one at all for a certain instance) will use only
half of the nodes in the model. Such a structural redundancy is theoretically unsatisfying and
suggests looking for a more straight forward approach (also in view of the classical method-
ological principle of "Occam’s razor"). This is why our alternative approach models each side
of a box separately from the corresponding other side and additionally imposes the "twin node
condition". In proceeding in this way, we can describe every solution to the MSSP readily as
a Hamiltonian Path in terms of all boxes. Moreover, apart from a certain elegance involved
in this description, this perspective of looking at the MSSP opens up a flexible way to exploit
the adjacency conditions of the graph for each node separately because we do not have to care
about both sides of a box at the same time - at least not in the first instance. In particular,
modeling the sides of the boxes separately leads to a "threshold graph", the properties of which
can fruitfully be exploited for finding a solution to the MSSP. Finally, the algorithm gained in
this way shows a surprisingly effective behaviour, which ultimately justifies this perspective on
the MSSP.

Having presented the ideas underlying our alternative approach, we summarize the second
model of the MSSP in the following formal definition:

Definition 4 (Minimum Score Separation Problem - Approach 2)

Let G(N, E) be an undirected graph with an even set of nodes Ng = {1,2,...,2n — 1,2n} C
N*, and b : Ng — Ng a twin node function. Moreover, let a € R’ a positive constant (a
"minimal value") and v : Ng — R% be a "value function” that assigns a positive number to
each node. The edge set of the graph Eq C Ng X Ng. be defined by the adjacency condition

(i,j) € Eg = v(i) +v(j) > « for alli,j € Ng,j #i.
Then the Minimum Score Separation Problem (MSSP) consists in deciding if there exists a

twin-constrained Hamiltonian path on G with respect to b.

21

Finally, we will illustrate also this definition of the MSSP by a MIP formulation gained
from the TSP presentation of the Hamiltonian Path property of a feasible solution to the
MSSP. The reader will observe that this approach comes much closer to modeling the general
Hamiltonian Path Problem than Goulimis’ approach does. Again, corresponding to the general
TSP model for Hamiltonian Paths above, we have to introduce a dummy node 0 (the one
already depicted in figure 3), and define the extended graph G’ (N, E), with the new node set
given by Ng/ := Ng U {0} and the new edge set by Eq¢ := Eg U {0} x Ng U Ng x {0}. Also
analogously, introducing for all nodes 4, j € Ngr,1 # j, the binary variables x;;, the continuous
flow variables y;;, and the binary constants 0;; = 1 1< (4,j) € Eg yields the following MIP
approach to the MSSP.

minimize 0 (1)
subject to Z Tij = 1 for all 1 € Ng» (2)
JJ#i
Z x;; = 1 for all j € Ng» (3)
i,i#]
T p(i) + Ty, = 1 for all i € Ng» — {0} (10)
Yij < 2nx;; for all i,j € Ngv,i # j (47)
Z Yoj = 2n (57)
7>0
> wij— > yik=1forall j € No — {0} (6)
i,i#] k,j#k
Tij < (Sij for all 1,7 € Ngv,1 7éj (7)
x;; € {0;1}, 935 > 0 for alli,j € Ngv,i# j (8)

In contrast to the first approach formalised above on the basis of Goulimis’ suggestions, our
formulation requires only minor changes of the original MIP for the Hamiltonian Path Problem.
The assignment relaxation constraints (2), (3) and the subtour elimination constraint (6) remain
the same as in the original problem. The only significant difference here is the introduction of the
additional "twin node constraints" (10). Complementing the assignment relaxation constraints,
they ensure that each node has its twin node either as its predecessor or its successor. The
subtour elimination constraints (4”) and (5”) can be kept almost unchanged, with the only
change to the general Hamiltonian Path Problem being that they have to account for the fact
that the node set of the graph here has cardinality |[Ng/| = 2n + 1. Constraints (7) impose the

structure of the graph on the model again.

22

3 The MSSP, Hamiltonian paths, variants of the TSP and
complexity theory

We have seen in the previous chapter that our approach of modelling the Minimum Score Sep-
aration Problem leads to a specific type of Hamiltonian path problem and a specific variant of
the Travelling Salesman Problem. This chapter explores in more detail of how the Mininum
Score Separation Problem is related to existing research about these problems, namely to re-
search about the Hamiltonian Path Problem, the Travelling Salesman Problem, the Clustered
Travelling Salesman Problem, and the Generalised Travelling Salesman Problem. Moreover, it
addresses the question of the complexity of the MSSP. In doing so, we will proceed from the
most specific case, which is the Hamiltonian path problem, to the most general case, namely
the Generalised Travelling Salesman Problem. We begin with some preliminary remarks on the

notation used in this thesis.

3.1 Notation

In the remainder of this paper, we will mostly follow Schrijver’s notation (Schrijver 2003).
Whenever specific aspects of threshold graphs are concerned, we apply Mahadev’s and Peled’s

notation, who have written the major source on this topic (Mahadev and Peled 1995).

Let G (N, E) be a (finite and simple) undirected graph with node set Ng = {1,2,...,n} C N*
and edge set Eg C Ng X Ng It will be assumed that Eg # @ throughout the text. As, in
most cases, we prefer to denote edges by pairs of nodes (instead of using the set notation {i, 5},
which can often be found in the case of undirected graphs), we will always take for granted that
(i,j) € Eg & (j,i) € Eg when using this notation. A graph G(N, E) is called complete iff we
have Eg = Ng x Ng. Given two graphs G(N, E) and G'(N, E) with

Ng' € Ng and Egr C Eg,

the graph G’ is called a subgraph of G and G is said to contain G'. For
Ng/ == P& Ng and Egy := EgN P x P,

the graph G (P, E) is called the subgraph of G induced by P.

A path in an undirected graph G(N, E) is a sequence
(10, €151, ey €nyin)
where g, %1, ...,%, € Ng are distinct nodes and ey, es, ...,e, € Fg edges such that e is an
edge that connects the nodes i1 and ;. We will call iy and 4,, the end nodes of the path and
say that the path connects the nodes ig, i1, ...,7, € Ng. A sequence
(105 €1, 91, +-Cre1sbn—1,En,in)
is called a cycle if ig,i1,...,in—1 € Ng are distinct nodes, ig = i,, and e, e9,....,e, € Eg
edges such that e is an edge that connects the nodes i1 and i, If the context prevents

misunderstanding, we refer to a path or a cycle by just providing the corresponding set of edges

23

{e1,e2,..,en} CF
or the corresponding order of nodes
10 — 81 — . — Gp—1 — in-
A graph G is said to be connected if for any two of nodes ig, 4, € Ng there exists a path
the end nodes of which are ig and i,, and it is called Hamiltonian if there exists a cycle that
connects all nodes in Ng. Such a cycle is called a Hamiltonian cycle. By removing one edge

from a Hamiltonian cycle, we obtain a Hamiltonian path.

For any node i € Ng, the subset of nodes N(v) C Ng is called a neighbourhood of the node
i if N (i) contains all nodes that are adjacent to i, i.e.
N(@i):={j € Ng:(i,j) € Eg}.
The closed neighbourhood N[i] C N¢g of a node i € N¢ is the union of 4 and the neighbour-
hood of i, i. e.
NTi] := N(@) U {¢}.
A node is called isolated if its neighbourhood is empty, and dominating if its closed neigh-
bourhood is the entire set of nodes.
A subset of nodes S C Ng is a stable set when ¢ ¢ N(j) for all nodes ¢,j € S, and a subset
K C Ng is called a cliqgue when ¢ € N(j) for all nodes ¢,j € K.

A preorder is the pair (P,) of a set P and a binary relation 7~ on P when the two following
properties hold:
()prpforallpe P, (reflexivity)

(@) (p1 Z p2) A (P2 Z p3) = (p1 Z p3)
for all p1,p2,p3 € P . (transitivity)

We will say the preorder is total iff all nodes can be compared with respect to the preorder,
i e.
p1 % p2 or py Z p for all py,ps € P.
Defining a binary relation 7~ on the set of nodes Ng by
i = j e Ni] 2 N(j) for all 4,j € Ng,
clearly yields a preorder, which will be called the vicinal preorder of G (and is not total in
the general case). If ¢ - j, we will call the node i greater than j, and j smaller than i. (Note
that it is possible to have both i 7~ j and j - ¢, which is equivalent to N(¢)\{j} = N(j)\{i}.)

The cardinality of the neighbourhood of a node i is called its degree, denoted by
dg(i) == [N (D).
Given the family §; < §2 < ... < d;—1 < &y, Of distinct positive degrees of a graph G, and
0o := 0 (even if there are no isolated nodes in the graph), we define the family of sets
Dy :={i € Ng :dg(i) =6} forall k=0,1,...,m
and call
Neg=Do+D1+Dy+ ..+ Dy,

24

the degree partition of G.

For a graph G(N, E) the relation M C Eg C Ng x Ng¢ is called a matching iff the relation is
(i) symmetric, i.e. (i,7) € M implies (j,1) € M for all 4, j € Ng, (ii) functional, i.e. (i,j) € M
implies (i,k) ¢ M for all 4,5,k € Ng, k # j, and (iii) (¢,4) ¢ M for all i € Ng. A matching
M* is said to be a mazimum cardinality matching if | M| < |M*| for all matchings M C E. If a
matching is a left-total relation, i.e. for all ¢ € N there exists a j € Ng such that (i,7) € M,
the matching is called perfect.

3.2 Hamiltonian paths and alternating Hamiltonian paths

In this section we will address the relationship of the MSSP to research on the Hamiltonian
Path Problem and some of its generalisations. As mentioned in the first chapter, for a given
undirected graph G(N, E) a Hamiltonian path is a path

i1 — iy — i3 — ec. —lp—1 — i

with 41,492,453, ..., In—1, 1, € Ng and

(ig,ik+1) € Bg forall k=1,2,...,n — 1,

such that every node iy € Ng occurs in the path exactly once.

We will speak of a Hamiltonian cycle iff the first and the last node of the path are identical,

and a graph with at least one Hamiltonian cycle is said to be Hamiltonian.

The problem of finding a Hamiltonian path or cycle, while being named after Hamilton
(1858), was already described in an earlier paper by Kirkman (1856), who discussed a planar
graph that is not Hamiltonian (see Biggs, Lloyd and Wilson (1976) for details on the history
of this problem). Since these early publications, more than one thousand papers have been
published, providing theoretical insights, algorithms or applications of the problem. Among
the theoretical insights there are criteria for Hamiltonicity and non-Hamiltonicity based on
certain characteristics of a graph (such as connectedness, toughness or the number of edges),
for example, stochastic analyses on the frequency of Hamiltonian graphs, theorems on the
Hamiltonicity of graphs that do not contain specific subgraphs, and results on the number of
different Hamiltonian cycles that might exists for a particular graph. An overview of the vast
amount of literature on these and related topics can be found in Bermond (1978), Gould (1991)
and Gould (2003).

Regarding the computational question of how to find a Hamiltonian cycle for a given instance
of a graph, various types of general-purpose algorithms have been developed for random graphs
(see Posa (1976), Angluin and Valiant (1979), Bollobas, Fenner and Frieze (1987), Frieze (1988),
Brunacci (1988), Kocay (1992), Broder, Frieze and Shamir (1994), Shufelt and Berliner (1994),
Vandegriend and Culberson (1998), and Wagner and Bruckstein (1999), for example). Some

of these algorithms are heuristics for finding a Hamiltonian path or cycle (such as Wagner and

25

Bruckstein (1999), for example), while others are exact algorithms that give a definite answer
to the question of whether a given graph is Hamiltonian (such as Shufelt and Berliner (1994),
for example). While the latter come with the disadvantage of a long computational time in
the worst case, the former might not find a definite answer on the Hamiltonicity of an input

instance (cf. Shields, 2004, for more details on some of the algorithms).

Additionally, research has led to algorithms for specific classes of graphs that can decide on
the Hamiltonicity of a graph in a comparably short amount of computational time ("polynomial
time", to be precise, see section 4 of this chapter). Among the specific classes of graphs for which
such an efficient algorithm exists there are, for example, proper interval graphs (Bertossi, 1983),
interval graphs (Keil, 1985), circular-arc graphs (Shih, Chern and Hsu, 1992), threshold graphs
(Mahadev and Peled, 1994, see also chapters 4 and 5 of this thesis for more details), graphs
without "claws" and "nets" as subgraph (Brandstaedt, Dragan and Koehler, 2000), distance-
hereditary graphs (Hung and Chang, 2005), strongly chordal graphs that do not contain the
subgraphs

G1(N, E;) and G3(N, E»)
with the (common) node set N := {a, b, c,d, e} and the edge sets
E1 :={(a,b),(a,c),(b,c),(c,d),(c,e)}, Eo := E1 + {(d,e)}

and have an order of at least 5 (Abueida and Sritharan, 2006), and quasi-adjoint graphs
(Blazewicz, Kasprzaka, Leroy-Beaulieuc and de Werra, 2008). Note that the references given
for efficient algorithms here, refer to the first published paper to tackle algorithmically the
question of the Hamiltonicity of a particular class of graphs. For many of these graph classes,
later research led to the development of improved algorithms that solve the Hamiltonian cycle

(or path) problem with less computational effort.

Apart from the result on recognizing Hamiltonian threshold graphs, to which we will come
back in chapter 5 of this thesis, going more into the details of these streams of research on the
Hamiltonicity of graphs is not necessary for discussing our problem, the MSSP. As mentioned
in the previous chapter, the MSSP is a Hamiltonian path problem with one additional type
of constraint, namely the constraints that each node must have its twin-node as a successor
(or predecessor) in the Hamiltonian path. If we would like to arrive at an algorithm that
exploits the specific structure of the MSSP, we can not expect the results of the research on
the (ordinary) Hamiltonian path or cycle problem to be particularly helpful for us. For this
reason, let us turn to a variant of the problem of recognizing Hamiltonian graphs that has a

more specific structure: the problem of finding alternating (Hamiltonian) paths and cycles.

Definition 5 (Alternating Hamiltonian cycles and paths on 2-edge-coloured graphs)

For a given graph G(N, E), we colour some edges "red" and some edges "blue". The graph
G is said to have an alternating Hamiltonian cycle (path) if there exists a Hamiltonian cycle
(path) on G such that successive edges differ in colour. G is said to be alternating Hamiltonian

iff there exists an alternating Hamiltonian cycle on G.

26

Remark 6 We note that the twin-constrained Hamiltonian path problem, and hence the MSSP,
is obviously a special case of the problem of finding an alternating Hamiltonian path, as we can
imagine the edges of our underlying graph G as "blue" edges and the edges (i,b(i)) that connect

a pair of twin nodes as "red" edges.

The following proposition attributed to Héggkvist (1979) states that, in a certain sense,
the problem of finding an alternating Hamiltonian cycle (path) on a 2-edge-coloured graph

generalizes the problem of finding an ordinary Hamiltonian cycle (path).

Proposition 7 (Reducibility of Hamiltonicity to alternating Hamiltonicity)
An algorithm that can decide on the alternating Hamiltonicity of graphs is able to decide on

the Hamiltonicity of graphs.

Proof. For a given (uncoloured) graph G(N, E) we define a new graph G’ by (i) introducing
for each edge (i,5) € E two new nodes k and [, (ii) replacing (4,5) by the four edges (i, k),
(k,j), (i,1) and (I,7), and (iii) colouring the edges (¢,k) and (l,7) "red", while colouring the
edges (k.j) and (i,1) "blue". If we can find an alternating Hamiltonian path (cycle) on G’, we
just have to replace the four edges (i, k), (k,7), (¢,1) and (I,4) by the original edge (¢,) and
remove the nodes k and [in order to construct a Hamiltonian path (cycle) on G. Conversely,
any Hamiltonian path (cycle) on G obviously corresponds to an alternating Hamiltonian path
(cycle) on G'. m

The concept of alternating paths goes back, as do an astonishing number of graph theoretical
problems, to Petersen (1891). (See also Mulder (1992) for a discussion of Petersen’s results in
the light of contemporary graph theory.) The problem of alternating Hamiltonicity is likely to
have first been introduced by Bankfalvi and Bankfalvi (1968), going back to a problem stated
by Erdos (cf. Bang-Jensen and Gutin, 1997). In their paper, Bankfalvi and Bankfalvi gave a
criterion according to which the Hamiltonicity of a 2-edge coloured complete(!) graph with an
even node set depends on the sum of the degrees of the nodes in certain pairs of disjunct subsets
of the node set. Apart from this theorem, three other early results on alternating cycles (paths)
were presented in Daykin (1976), Bollobas and Erdos (1976) and Chen and Daykin (1976), who
gave criteria for the existence of alternating cycles of certain lengths for a complete graph no
node of which is incident to more than k edges of the same colour, provided that the number

of nodes exceeds a certain threshold depending on k.

Up to now, these early results have fostered a stream of research of some hundred papers
(see Bang-Jensen and Gutin, 1997 for a survey). While most contributions to this topic ad-
dress the case of 2-edge coloured alternating paths (cycles) and alternating Hamiltonian paths
(cycles), the scope of research has, more recently, been extended to explore also, among other
cases, the case of alternating cycles on r-edge coloured graphs with r > 2 (see Yao (1996) and

Abouelaoualim et al (2009), for example) and the question of whether there exist, on an edge

27

coloured graph, subgraphs other than paths and cycles (such as trees, or node partitions with
specific properties) such that all edges have the same colour or differ in colour (see Kano and

Li, 2008, for a survey).

The majority of this stream of research on alternating subgraphs focusses almost exclusively
on graphs that are complete and/or bipartite, in particular those papers that deal with Hamil-
tonian paths (cycles). As will become clearer in section 4 of this chapter and in section 3 of
chapter 5, we are well advised to exploit the specific structure of the graph G underlying our
MSSP according to Definition 3. Therefore we cannot expect to benefit from more details of
the literature on alternating paths (cycles) and we will stop our survey on this body of research

here.

3.3 The Travelling Salesman Problem and generalisations

The Hamiltonian path problem of the previous chapter can be generalized to the Travelling
Salesman Problem (TSP).

Definition 8 (Travelling Salesman Problem - TSP)
For an undirected graph G(N, E) and a ("cost") function ¢ : E — R the Travelling Salesman
Problem consists in finding a Hamiltonian cycle
i — iy — i3 — ... — i|Ng| — i1, with iy € Ng for 1 <k < |Ng|
on G such that

cl(ik—1,i1)] + c[(ijng) 1))
1<k<|Ne|

18 minimal.

Remark 9 (1) In the literature the TSP is often defined only for complete graphs. This is
not a restriction as we can transform a TSP on an arbitrary graph G(N, E) into a TSP on a
complete graph by defining
c(f):= > cle)+1 forall f € (Ng x Ng) — E.
Then the TSP on the egerjzph G has a solution if and only if we have
> cllie—1, k)] + cl(ijng|,)] < e;g c(e)

1<k<|Ng|
for an optimal solution of the TSP on the complete graph.

(2) Obviously, the problem of deciding on the Hamiltonicity of a graph is a special case of
the TSP as a graph is Hamiltonian if and only if the TSP on this graph has a feasible solution.

28

The TSP was probably first stated in a German handbook for traveling salesmen (Voigt,
1831; cf. Miiller-Merbach 1983) and found its way into the mathematical literature in the
1930s (see Hoffman and Wolfe (1985) and Schrijver (2003) for more details on the history of
the problem). Since then, it has become one of the most thoroughly investigated combinatorial
problems. Detailed surveys on the development of research on the topic, with respect to the
mathematical structure of the TSP, its applications as well as algorithms for solving it, can be
found in Bellmore and Nemhauser (1968), Lawler, Lenstra, Rinnooy Kan and Shmoys (1985),
Jiinger, Reinelt and Rinaldi (1995), Burkhard, Deineko, van Dal, van der Veen and Woeginger
(1998), and Gutin and Punnen (2002). Additionally, Gutin (2009) provides an excellent intro-
ductory overview, and Orman and Williams (2004) compare various different ways of modelling

the TSP as an Integer Programming problem.

Obviously, our MSSP is not immediately a TSP because the MSSP requires us to find a
Hamiltonian path that satisfies the additional constraint that the successor (or predecessor) of
each node is its twin-node. There are several generalisations of the TSP in the literature that
originate from adding a specific type of constraint to the TSP. Among these there are the TSP
with time-windows, in which some nodes have to be visited during a certain period of time
(see Dumas, Desrosier, Gelinas and Solomon (1995), for example), the TSP with precedence
constraints, in which certain nodes can only be visited after certain other nodes have been
visited (see Balas, Fischetti and Pulleyblank (1995), for example), and the TSP with pickup
and delivery, in which each node is associated with a "pickup quantity" and a "delivery quantity"
and a feasible Hamiltonian cycle satisfies the additional condition that the quantity transported
along the cycle does not exceed a certain capacity (see Gendreau, Laporte, Vigo (1999), for
example). A large variety of further generalisations can be found in the book chapters by Balas
(2002), Barvinok, Gimadi and Serdyukov (2002), Fischetti, Salazar-Gonzéles and Toth (2002),
and Kabadi and Punnen (2002).

A particular one among these generalisations of the T'SP is of interest for us as the MSSP
can be considered a direct subcase of it: the Clustered Traveling Salesman Problem (CTSP).
The CTSP was introduced into the literature by Chisman (1975). A short overview of the

literature and of several applications can be found in Laporte and Palekar (2002).

Definition 10 (Clustered Traveling Salesman Problem - CTSP)

For an undirected graph G, a partition of the node set into sets ("clusters") N;, 1 <i <mn,
with N1 + No + ... + N, = Ng and a function ¢ : Ng X Ng — R, the Clustered Traveling
Salesman Problem consists in finding an optimal solution of the TSP on G under the additional

constraint that the nodes of each cluster appear in the Hamiltonian cycle in a consecutive order.

29

Remark 11 (1) Also the CTSP is typically defined on a complete graph in the literature.
Remark 9(1) applies analogously.

(2) The twin-constrained Hamiltonian path problem on a graph G with respect to the twin
node function b (and hence the MSSP) can directly be stated as an CTSP on a graph G’ that
results from adding to the underlying graph G a twin-node pair of dominating nodes and parti-
tioning the node set of G' into clusters of cardinality 2 such that each cluster contains one of
the nodes i € Ng of the graph and its twin-node b(i). Then the twin-constrained Hamiltonian
path problem on G with respect to b is feasible if and only if the CTSP on G’ has a feasible

solution.

Despite its specific structure of the node set and the additional constraint that all nodes
within a cluster must be visited consecutively, the CTSP is eventually equivalent to the TSP
in the sense that any instance of a TSP can be transformed into an instance of the CTSP, and

vice versa.

Proposition 12 (Reducibility of CTSP to TSP and vice versa)

Let G(N, E) be an undirected graph, a cost function ¢: E — R, and a partition N1 + Na +
... + Ny, = Ng for the CTSP. An algorithm that is able to solve the TSP to optimality is also
able to solve the CTSP to optimality, and vice versa.

Proof. An instance of the TSP can trivially be transformed into an instance of the CTSP
by partitioning the node set into clusters N; with |N;| = 1 for 1 < ¢ < |Ng|. Conversely, an
instance of the CTSP can be transformed into an instance of the TSP in the following way. We

add to the cost of all edges between clusters the constant

M:= > cle)+1.
eckE
As the CTSP has n clusters, a feasible solution of the CTSP must contain n inter-cluster

edges. Therefore, if and only if the TSP on G with the redefined cost function has a solution
with

> cllie—1,ik)] + cl(ng), i) < (R +1)M — 1,
1<k<|Ng|
the CTSP with the original cost function has a feasible solution and the Hamiltonian cycle

found by the TSP algorithm is also the optimal solution of the CTSP. m

Remark 13 Note that a case parallel to the preceding proposition would be a transformation
of the alternating Hamiltonian path problem into a Hamiltonian path problem. However, such
a transformation is not possible because we were able to transform the CTSP into the TSP only

by virtue of a redefined cost function.

Despite the fact that the CTSP is equivalent to the TSP in the sense of the preceding

proposition, solving a CTSP as a TSP cannot necessarily be considered the method of choice

30

as doing so would (at least partly) disregard the particular cluster structure of the CTSP.
Therefore specific algorithms and heuristics for tackling the CTSP have been developed, which
can be found in Jongens and Volgenant (1985), Arkin, Hassin and Klein (1994), Laporte, Potvin
and Quilleret (1997), Renaud and Boctor (1998), Anily, Bramel, and Hertz (1999), Guttmann-
Beck, Hassin, Khuller and Raghavachari (2000), and Dinga, Cheng and He (2007). We will
not go further into the details of these algorithms here as we have reasons (see the following
section) to focus on exploiting both the specific structure of the graph underlying the MSSP
and the specific structure given by the twin-node function — two aspects that, to the best of

our knowledge, have not been addressed in the literature.

Another variant of the TSP is worth being addressed here due to its close relation with our
MSSP: the Generalized Traveling Salesman Problem (GTSP). More details on this problem can
be found in Laporte, Asef-Vaziri and Sriskandarajah (1996).

Definition 14 (Generalized Traveling Salesman Problem — GTSP)

For an undirected graph G, a partition of the node set into sets ("clusters”) N;, 1 < <n,
with N1 + Ny + ... + N, = Ng and a function ¢ : Ng¢ X N¢ — R, the Generalized Traveling
Salesman Problem consists in finding a minimum cost cycle on G that passes through each

cluster N;, 1 < i <mn, exactly once.

Remark 15 (1) In a different version of the GTSP, the minimum cost cycle must pass through
each cluster at least once (see Laporte, Asef-Vaziri and Sriskandarajah ,1996).

(2) The GTSP can be reduced to a CTSP by doubling all nodes and redefining the cost
function ¢ in an appropriate manner (see Laporte and Semet (1999) for details). Consequently,
the GTSP can also be reduced into a TSP. Conversely, each TSP can trivially be transformed
into a GTSP by partitioning the node set into clusters N; with |[N;| =1 for 1 <i < |Ng|.

(3) The original model for the MSSP by Goulimis (see chapter 2.2) can be seen as a GTSP
with clusters of cardinality 2.

(4) More generally, any alternating Hamiltonian cycle problem can be reduced to a GTSP.
For doing so, we replace each node of the alternating Hamiltonian cycle problem by a cluster
of nodes. Each node in such a cluster represents a way of visiting the original node such that
we arrive at that node via taking a blue edge and depart from that node via a red edge (or vice

versa,).

Finally, for the sake of comprehensiveness, we mention two more related problems, Network
Design Problem and Generalized Network Design Problem (Feremans, Labbé and Laporte, 2003;
Feremans, Labbé, Letchford and Salazar, 2009). Network Design Problems consist of finding a
minimum cost subgraph of a given graph, while an optimal solution of a Generalized Network
Design Problem is a minimum cost subgraph of a given graph such that, for a given partition

of the node set, the subgraph consists of exactly one node (or at least one node, or at most

31

one node, depending on the variant of the problem) from each cluster of the node set partition.
Clearly, Network Design Problems are a relaxation of the TSP, while Generalized Network
Design Problems are a relaxation of the GTSP. The theoretical relevance of the concepts of
the Network Design Problem and the Generalized Network Design Problem lies in the fact that
theoretical results (such as polyhedral, algorithmic, and complexity-related results) about these
problems can be applied to a variety of subgraph problems, such as the (Generalized) Minimum
Spanning Tree Problem (Feremans, C., M. Labbé and G. Laporte, 2002), of which the Network

Design Problem and the Generalized Network Design Problem are relaxations.

3.4 Relevant results of complexity theory

In this section we first review some definitions and results from complexity theory and, in a
second step, apply these results to the problems presented in the preceding two sections. Doing
so will give us an insight into the computational "difficulty" of the twin-constrained Hamiltonian
path problem. Our review of definitions and results from complexity theory mainly follows the
presentation in Johnson and Papdimitrou (1985, pp. 42-58) - albeit not always in the order of
their presentation and apart from some references to other sources when we go slightly more
into detail. A rigorous formal treatment based on the concept of the Turing machine can be

found in Jongen, Meer and Triesch (2004, chapters 18-22), for example.

We begin by distinguishing between two types of problems in the computational complexity

of which we are interested.

Definition 16 (Decision and optimization problems)

(1) A problem that can be solved by an algorithm that produces only a "yes" or "no" answer
is called a decision problem.

(2) A problem is referred to as an optimization problem if solving it means finding an optimal
feasible solution to the problem with respect to some objective function. For a given optimization
problem that is a minimization problem and a given number b, we call the decision problem of
whether there exists a feasible solution to the optimization problem with an objective function

value less than or equal to b the decision problem version of the optimization problem.

The branch of complexity theory we deal with here is concerned with analysing the worst case
behaviour of an algorithm with respect to running time. The following definition introduces a
way of describing the running time of an algorithm and introduces the class of decision problems
that is the most relevant for the present thesis. It goes back to a suggestion by Edmonds (1965a)
and, independently, Cobham (1965), according to which an algorithm should be considered
"good" (or "efficient") for practical purposes if the number of computer operations needed to

solve it depends polynomially on the input data.

32

Definition 17 (O(f(n)-notation and the class of polynomial-time decision problems — P)

(1) For a function f: N — R, we say that the running time of an algorithm is O(f(n)) iff
there exists a constant ¢ > 0 such that the number of steps that an algorithm needs to solve a
problem for all instances of size n has an upper bound of cf(n) if n is sufficiently large.

(2) An algorithm for which such a polynomial function f exists is said to be efficient or a
polynomial-time algorithm. The class of all decision problems that can be solved by polynomial-

time algorithms is denoted by P.

Remark 18 In this and all following chapters we will equate the input size n with the cardi-
nality of the node set of the graph that our problem is based on, and we will count as one, single
(unit time) step all summations, multiplications, and all operations that compare the size of
two given numbers (such operations are called elementary arithmetic operations). This simpli-
fication is justified because the number of steps needed for multiplications and comparisons is
polynomially bounded by the number of steps needed for summations and we are only concerned
with the question of whether there exists, or is likely to exist, an efficient, i.e. polynomial time
algorithm for a problem. This simplification also implies that we will disregard the details of
how the actual number of steps needed for an elementary arithmetic operation depends on the
numerical size of the input data. In line with most of the literature on combinatorial optimiza-
tion (cf. Papadimitrou and Steiglitz,1998, chapter 8), it suffices for us to know that this actual
number of steps, and the memory space needed for carrying them out, are bounded by a polyno-
mial in the numerical size of the input data. More precisely speaking, an algorithm that requires
only polynomial time with respect to elementary arithmetic operations and in which the space
needed for carrying out each of these operations is bounded by a polynomial in the numerical

size of the input data is called strongly polynomial (cf. Schrijver, 2003).

The subsequent definition presents two concepts that are important tools for comparing the

complexity of two algorithms.

Definition 19 (Polynomial-time reducibility and polynomial-time transformability)

(1) A problem A is called polynomial-time reducible to a problem B if there exists an al-
gorithm for A that uses an algorithm for B as a subroutine and the algorithm for A runs in
polynomial time if we count each call of the subroutine as a unit time step.

(2) A decision problem A is called polynomial-time transformable to a problem B if A is

polynomial-time reducible to B and the algorithm for A calls only once the subroutine that solves

B.

33

Remark 20 (1) It immediately follows from the definition that, if there exists a polynomial-
time algorithm for problem B and problem A is polynomial-time reducible to problem B, there
exists a polynomial-time algorithm for problem A.

(2) It follows also by means of the concept of polynomial-time reducibility that if the value of
the objective function of the optimization problem can be calculated in polynomial time and the
numerical size of the optimal solution is bounded by a polynomial in the numerical size of the
input data, the decision problem version of an optimization problem can be solved in polynomial
time if and only if the optimization problem can be solved in polynomial time.

(3) We note that the property of polynomial-time transformability is transitive.

We now introduce two more classes of problems. The first class of problems was introduced
by Cook (1971) and Karp (1972), while the second class was first described by Edmonds (1965b)

who referred to problems in this class as problems with "good characterisations".

Definition 21 (Polynomial-time nondeterministic decision problems — NP)

An algorithm that is able to carry out an instruction of the type

goto both label 1, label 2,

i.e. that can carry out arithmetic operations in an exponential number of branches of a search
tree in parallel at the same time, is called a nondeterministic algorithm. A mondeterministic
algorithm is said to solve a decision problem with input size n in polynomial time iff there exists
a polynomial function f such that the number of steps taken in each branch of the search tree is
O(f(n)). The class of decision problems that can be solved by polynomial-time nondeterministic
algorithms is denoted by NP.

The following second class of decision problems consists, loosely speaking, of those decision
problems A for which all mathematical objects S that are solutions of A are sufficiently small
(i.e. bounded by a polynomial in the size of the instance of A) and there exists a (certificate-
checking) algorithm C that can verify in polynomial time for every S that this S is indeed a

"yes" instance of the decision problem A.

Definition 22 (Decision problems with the succinct certificate property)

A decision problem A is said to have the succinct certificate property iff there exists a
polynomial-time algorithm for another decision problem C whose instances are given by an
instance of A and object S whose size is bounded by a polynomial in the size of the instance of
A, such that any instance of A is a "yes" instance for problem A if and only if there exists an

S such that the instance of C' (given by S and the instance of A) is a "yes" instance of C.

34

A famous theorem by Cook (1971) states that the two classes of decision problems previously

introduced are, in fact, equivalent.

Theorem 23 For a decision problem A the following three statements are equivalent:
(1) The problem A has the succinct certificate property.
(2) The problem A is an element of NP.
(3) The problem A is polynomial-time transformable to the decision problem version of a

Binary Integer Programming problem.

Proof. See Cook (1971), or Papadimitrou and Steiglitz (1998), pp. 353-358. m

Two more complexity classes are worth considering here. They consist of problems that,

regarding their complexity, must be considered particularly "difficult".

Definition 24 (NP-complete and NP-hard problems)

(1) A decision problem is called NP -complete if it is an element of NP and if every problem
in NP is polynomial-time transformable to it.

(2) A problem is referred to as NP-hard if it is not an element of NP, and all problems in

NP are polynomial-time reducible to it.

Remark 25 (1) It follows directly from this definition that P = NP if and only if there exists
a polynomial-time algorithm for an NP-complete problem. Up to now neither has such an
algorithm been found, nor could it be proved that such an algorithm does not exist.

(2) The previous theorem implies that Binary Integer Programming is an NP-complete prob-

lem.

We now apply these concepts and results from complexity theory to the problems presented
in the previous two sections. Obviously, the Hamiltonian path (cycle) problem, the alternating
Hamiltonian path (cycle) problem and the twin-constrained Hamiltonian path problem (hence
also the MSSP) are decision problems, while the TSP, the CTSP and the GTSP are optimiza-
tion problems. The following statements address the complexity of these problems. The first
theorem, which was a milestone in the theory of complexity for combinatorial optimization
problems, is due to Karp (1972).

Theorem 26 (Complexity of the Hamiltonian path (cycle) problem)
For a given undirected graph G(N, E), the Hamiltonian path (cycle) problem is NP-complete.

Proof. We have seen in chapter 2.1 that the Hamiltonian path (cycle) problem can be modeled
as a Binary Integer Programming problem, hence we know from Theorem 23 that the Hamil-
tonian path (cycle) problem is in NP. A proof that every problem in NP can be transformed
to the Hamiltonian path (cycle) problem can be found in Karp (1972) or Papdimitrou and
Steiglitz (1998, chapter 15). =

35

Proposition 27 (Complezity of the alternating Hamiltonian path (cycle) problem)
For a given undirected graph G(N, E) and an edge colouring with 2 colours, the alternating
Hamiltonian path (cycle) problem is an NP-complete problem.

Proof. Based on our model in chapter 2.1 it is easy to see that the alternating Hamiltonian
path (cycle) problem can be modeled as a Binary Integer Programme, hence (Theorem 23) the
problem is in NP. The proof of Proposition 7 presents a polynomial-time transformation to
the Hamiltonian path (cycle) problem. Taking into account the preceding theorem finishes the

proof. m

Proposition 28 (Complezity of TSP, CTSP and GTSP)
For a given undirected graph G(N, E), a function ¢ : E — R, and, if applicable, a partition
Ny + Ny + ...+ N, = Ne,
the TSP, the CTSP and the GTSP are NP-hard.

Proof. Being optimization problems, TSP, CTSP and GTSP are not in NP. As noted in
Remark 9(2), the Hamiltonian cycle problem can be reduced to TSP in polynomial time. Then
Theorem 26 implies that TSP is NP-hard. Consequently, because of Proposition 12, CTSP is
NP-hard. With Remark 15(2), or, alternatively, Remark 15(4) we can conclude that GTSP is
NP-hard. =

Theorem 29 (Complexity of the twin-constrained Hamiltonian path problem)
For a given undirected graph G(N,E) with N = {1,2,...,2n} and a twin-node function b,
the twin-constrained Hamiltonian path problem on G with respect to b is NP-complete in the

general case.

Proof. The twin-constrained Hamiltonian path problem on G with respect to b can be modeled
as a Binary Integer Programme (chapter 2.3). Hence we can conclude from Theorem 23 that it
is in NP. For a given graph G'(N’, E’) with N’ = {1,2,...,n} and an (arbitrary) edge set F’,
we define the graph G(N, E) with N = {1,2,...,2n} and
E=F+{(G6j)e NXxN:(i—n,j—n) € FE'}
and define the twin-node function b: N — N by virtue of
b(7):=i+mnforallie N’
and
b(i):=i—nforallie N - N’

Then the twin-constrained Hamiltonian path problem on G with respect to b is feasible if and
only if the Hamiltonian path problem on G’ is feasible. (The feasibility of the Hamiltonian path
problem on G’ follows from the feasibility of the twin-constrained Hamiltonian path problem
on G by contracting the edges given by the twin-node function; the converse is trivial.) The

fact that our construction of G from G’ can be carried out in polynomial time implies that

36

there exists a polynomial-time transformation from the Hamiltonian path problem on G’ to a
twin-constrained Hamiltonian path problem (on G, with respect to the twin-node function b we
have defined). Given this situation, the NP-completeness of the twin-constrained Hamiltonian

path problem follows from Theorem 26. =

Remark 30 For an undirected graph G', the graph G we have just defined is, when we include
in E the edges (i,b(1)) given by our twin-node function, the Cartesian product of G’ with the
complete graph Ko and is called the prism over G'. The Hamiltonicity of the prism over a
graph is a necessary condition for the Hamiltonicity of a graph and plays a significant role in
the theory of Hamiltonicity (Kaiser, Ryjacek, Krdl, Rosenfeld and Voss, 2007). We have just
shown that the twin-constrained Hamiltonicity of the prism over a graph (with the twin-node
function given by the edges that have been "generated" by Ks3) is a sufficient condition for the

existence of a Hamiltonian path on a graph.

We conclude from the preceding theorem that the twin-constrained Hamiltonian path prob-
lem on threshold graphs, i.e. our MSSP, might well be an NP-complete problem. Therefore it
makes sense for us, instead of further following the path of the literature on problems related
to our MSSP (such as the alternating Hamiltonian path problem, the TSP, the CTSP and the
GTSP), to proceed our analysis by exploring more in detail the particularities of the graph
underlying our MSSP.

37

4 Threshold graphs: definition and basic characteristics

In the past chapter, the twin-constrained Hamiltonian path problem (and hence the MSSP)
was looked at in the context of existing research and we clarified the respect in which it is a
specific type of Hamiltonian path problem, a specific variant of the TSP and how it can be
reduced to these problems. One specific aspect of the MSSP that we have not considered yet,
but should consider in view of the final section of the previous chapter, consists in the fact that
the underlying graph has a very specific structure: it is a so-called "threshold graph". This
chapter introduces the concept of threshold graphs, presents some basic properties of threshold
graphs that will be useful for our analysis in the following chapters and, in doing so, provides
the theoretical background on which we will build our approach for solving the problem of

recognising twin-constrained Hamiltonian threshold graphs in later chapters.

4.1 Definition and examples

The term "threshold graph" was coined by Chvétal and Hammer (1973), who were interested
in the type of graphs whose stable sets can be distinguished from unstable sets by a single
hyperplane in the space of the characteristic vectors for all subsets of nodes of a graph. Inde-
pendently from Chvdtal and Hammer, Ecker and Zaks (1977) described the same mathematical
structure in their studies of graph labeling for open shop scheduling, while Henderson and Zalc-
stein (1977) called the same type of graphs "PV,.-definable graphs" when analysing the flow
of information in parallel processing. Another early use of threshold graphs is Koren’s (1973)
work, who came across the concept in his studies of certain degree sequences of graphs. Also
the author of the present thesis, not knowing about the existing literature on threshold graphs
at that point of time, "re-invented" the concept and first studied threshold graphs under the

notion of "graphs with monotonic neighbourhoods".

The standard monograph on the subject is Mahadev and Peled (1995), which lists more than
100 papers related to threshold graphs, most of which were published during a comparably short
period of 10 years. This monograph includes also further applications of threshold graphs, to
problems such as cyclic scheduling and Guttman scales. Apart from practical applications,
research on threshold graphs has primarily been motivated by the fact that threshold graphs
have a beautiful structure due to which they are closely connected to other important types
of (sub-)graphs and therefore a helpful tool for studying their structure. The mathematical
relevance of threshold graphs is illustrated by the fact that the survey of graph classes by
Brandstddt, Le and Spinrad (1999) devotes an entire chapter (one out of altogether 14 chapters)
to "Threshold Graphs and Related Concepts".

The definition of a threshold graph provided here is the original one given by Chvatal and
Hammer (1973).

38

Definition 31 (Threshold Graph)
An undirected graph G(N, E) is called a threshold graph iff there exist positive "node weights"
w; € Ry for alli € Ng and a threshold t € R* such that for all subsets S C Ng

w(S) = Zwi <t if and only if S is a stable set. (11)
€S
Figure 5 provides three examples of threshold graphs with the appropriate node weights and
thresholds (example (c) is given in Golumbic, 1980).

@@)t=7 (b) t=3 ©t=4
1 1 1 1 4
3 3
1 4
1 1
1 3 2 1 1

Figure 5: Examples of threshold graphs

There are also some rather trivial graphs that do not qualify as threshold graphs, among
which are all paths P,, for n > 4, all chordless cycles C,, for n > 4, and the matching 2K5. Four
examples of non-threshold graphs can be found in Figure 6. That the depicted graphs violate
the threshold property (11) can easily be seen on the basis of the nodes 4,7,k and I. As {i,k}
and {j,1} are stable sets, any assignment of node weights and a threshold would imply

w; +w, <t and w; +w; <,
while the cliques {4,!} and {j, k} required the inequalities
w; +w; >t and w; + wy >,
which would lead to a contradiction when summing up the weights of these four nodes.

39

(@) C4 (b) Py (0) 2K, (d)
i i i i l Jl i j
k | k k k

Figure 6: Examples of non-threshold graphs

Some complementary remarks may further clarify the definition of the threshold graph given

above:

Remark 32 (a) The threshold property (11) can be interpreted on the basis of the following
question. 1If, for a graph with node set Ng = {1,2,...,n}, every subset of nodes P C N¢g is
described by its characteristic vector x = (x1, 3, ..., Tn) with
z; =111 € P, and 0 otherwise, for allt =1,2,...,n,
does there exist a single hyperplane (a "separator")

i€ENg
that separates the characteristic vectors of all stable sets from those of all non-stable sets?

If and only if the answer is affirmative, the graph is threshold.

(b) Orlin (1977) has shown that for every threshold graph, the family of node weights w; for
which the threshold t is minimal is unique and integer.

(¢) It follows directly from the definition that every induced subgraph of a threshold graph is
also threshold. Consequently, threshold graphs do not contain the path Py, the chordless cycle
Cy and the matching 2K5. Moreover, Chvdtal and Hammer (1973) have demonstrated that this
property entirely characterizes threshold graphs: any graph without the aforementioned induced

subgraphs is a threshold graph.

4.2 Basic characteristics of threshold graphs

The following theorem characterizes threshold graphs on the basis of a value function on the
set of nodes, and establishes a very convenient approach to analysing threshold graphs. This
theorem (with a slight modification) has first been provided by Chvatal and Hammer (1973)
and, independently, by Henderson and Zalcstein (1977).

40

Theorem 33 (Characterisation of threshold graphs by a value function)
For a graph G(N, E) the following statements are equivalent:
(1) G is a threshold graph.
(it) There exists a minimum value o € RY. and a value function v : Ng — R that assigns

a positive v(i) € R to every node i € Ng such that for all nodes i,j € Ng with i # j
(i,7) € Eg if and only if v(i) +v(j) > « . (12)

Proof. See Chvital and Hammer (1977), Golumbic (1980), or Mahadev and Peled (1995). m

This directly allows us to reformulate the MSSP. We will stick to this way of looking at the
MSSP for the reminder of this thesis.

Proposition 34 (Minimum Score Separation Problem - Final Approach)
Let G(N,E) be a threshold graph and b : Ng¢ — Ng a twin node function. Then the
Mimimum Score Separation Problem consists in solving the Twin-Constrained Hamiltonian Path

Problem on G with respect to b.

Proof. Obviously, condition (12) is the one imposed on the graph in our second model of the
MSSP (see definition 4). m

Note, however, that the graph on which we look for a Hamiltonian path in order to solve
the MSSP affirmatively is not a threshold graph in the general case. Instead, in the MSSP
the twin node property partly destroys the threshold structure because we have not made any
further assumptions about the twin node function b. In the general case, the twin node function
will not induce edges between twin nodes in a way that the threshold property is respected.
So despite the fact that the underlying graph G of the Twin-Constrained Hamiltonian-Path
Problem in question is a threshold graph, we will have to look for a Hamiltonian path on a
non-threshold graph However, we will leave this out of account for the moment, concentrate on
the threshold condition, and come back to the twin node condition in a later chapter, namely

chapter 7.

Remark 35 The preceding theorem directly implies that the complement of a threshold graph
is also threshold. After transforming the values v(i) and « into integers, the complement of G
can be obtained by introducing new values 6(1) =t —wv(i) for all nodes i € Ng, and a new
minimal value & = o — 1. As a consequence, the approach suggested in this paper would work

also for a "Maximum Score Separation Problem".

Another characterization of threshold graphs that we will use in the following also goes back
to early work of Chvatal and Hammer (1973).

41

Theorem 36 (Characterisation of threshold graphs by their degree partition)

For a graph G(N, E) the following statements are equivalent:

(1) G is a threshold graph.

(i1) The indices of the degree partition Ng = Do + D1 + ... + Dy, of G provide the full
information about adjacency for all nodes i € Dy and j € Dy by virtue of

(i,j) € Eg if and only if k+1>m . (13)

Proof. See Chvital and Hammer (1977), Golumbic (1980), or Mahadev and Peled (1995). m

Figure 7, taken from Golumbic (1980), illustrates the general structure of a threshold graph
according to Theorem 36. Lines between the node sets Dy, D1, Do, ..., D,, indicate adjacency.
The dotted set of isolated nodes Dy may be empty, and the dotted set Dymy does not exist if

m is even.

4 N

\‘D|_m/2_|,'l Clique

Figure 7: Degree partition of a threshold graph

Remark 37 If m is even, the sets Dy, Dip—1, ..., Dym14y contain all nodes i € Ng with v(i) >
S, while the nodes j € Ng with v(j) < § are in the sets Do, D1, Dy . If m is odd, the
sets Diny Din—1, ..., Dymyyq, Dymy contain all nodes i € Ng with v(i) > §, and, additionally,
the set Dy contains also exactly one node j € Ng with v(j) < § that is adjacent to all nodes

i € Ng with v(i) > § (provided there exists any).

We finally provide two more characterisations of threshold graphs (first given in Chvétal
and Hammer, 1977), on which we will build our approach to the Minimum Score Separation
Problem in the following. Further fundamental properties of threshold graphs can be found in
the literature by Chvdtal and Hammer (1973, 1977), Ecker and Zaks (1977), Henderson and

42

Zalcstein (1977), Golumbic (1980), Hammer, Ibaraki and Simeone (1981), and Mahadev and
Peled (1995).

In order to give the reader an idea of how some basic structural elements of threshold graphs
are related to each other, we will present here a proof for the subsequent two characterisations
of threshold graphs. (These two characterisations are also those that the author of this thesis
found before becoming aware of the literature on threshold graphs.) For our proof, we need the

following lemma that was first stated by Chvétal and Hammer (1977).

Lemma 38 Let G(N, E) be a threshold graph with node set Ng = {1,2,...,n}, a certain family
of weights (w;) and a threshold t, from which we build a new graph G’ by adding a node n + 1.
If the node n + 1 is (i) dominating or (ii) isolated, the new graph with the node set Ng: =
{1,2,...,m,n + 1} remains a threshold graph.

Proof. (i) We will assign the weight w1 := ¢ to the new node n 4+ 1 and consider the new
subsets P C Ng + {n + 1} with n +1 € P. Among these, the stable subset {n + 1} certainly
fulfils condition (11). Any other subset P C Ng with n 4+ 1 € P is not stable because n + 1
is a dominating node. As, by definition, all weights of a threshold graphs are required to be
positive, also in this case property (11) still holds.

(79) We will double all weights (w;)1<i<n of the "old" nodes and increase the threshold to
2t + 1. The new node n + 1 will be given the weight w, 41 := 1. This leads to the following
setting: formerly stable subsets obviously remain stable. Previously unstable sets U C N¢g had
at least a sum of weights of w(U) = t+ 1 > ¢, which has become 2t + 2 in the new setting, such
that the weight of these sets still exceeds the new threshold 2¢ + 1. In the case of the new sets
U+ {n+ 1} for formerly unstable sets U, instability is maintained, and the new sum of weights
is at least

wU+{n+1}) =2w{U) +wpy1 =2(t+1)+1>2t+ 1.

Clearly, also the stable subset {n + 1} fulfils property (11). Finally, for all formerly stable
set S C Ng, the new sets S + {n + 1} remain stable with the isolated node n + 1, and the
threshold is not violated because of

w(S+{n+1}) =2w(S)+wp41 <2t+1.m

Remark 39 The preceding lemma can be used to construct threshold graphs by successively
adding (one or more) isolated or dominating nodes. Such a procedure gives rise to the adja-
cency structure that Theorem 36 describes. Consequently, Lemma 38 can be used as the main

ingredient of a proof of Theorem 36.

43

Theorem 40 (Further characterisations of threshold graphs)

For a graph G(N, E) the following statements are equivalent:

(1) G is a threshold graph.

(i4) The vicinal preorder of G is total, i.e. for every pair of nodes i,j € Ng we have i 3 j
orj 3.

(#i1) The graph G is a split graph (i.e. the node set Ng can be partitioned into a clique K
and a stable set S), and the neighbourhoods of the stable nodes are nested, i.e. there exists a
permutation of the stable nodes iy, 1z, ...,45) such that N(i1) C N(iz) C ... C N(i|g)).

Proof. (i) = (ii): Let us assume that the vicinal preorder is not total, i. e. there exists a pair
of nodes i,j € Ng with neighbourhoods N (i) and N(j) and another pair of nodes k,l € Ng
such that k € N(i), k ¢ N(j) and I € N(j), I ¢ N(i). Because G is a threshold graph, it
follows from Theorem 6 that v(i) + v(k) > « and v(j) +v(I) > «, but that v(j) + v(k) < o and
v(i) +v(l) < a, which is a contradiction.

(i) = (iii): Let 4,5 € S be a pair of nodes from the stable set, hence j ¢ N(i). Then
N[j] 2 N(i) yields N(j) 2 N(i), i. e. the neighbourhoods of the stable nodes are nested. In
order to show that G is a split graph, it is sufficient to show that the graph G’ that we obtain
from G by removing all isolated nodes is a split graph. Now, let all nodes 41,2, ...,4, € Ng/
=iy for j > k. Let

~

be numbered in any order that corresponds to the vicinal preorder, i.e. i,
[€ N¢+ be a node adjacent to the second highest node in the order, i.e. 4,1 € N(I). Clearly,
in 27 1. Hence the vicinal preorder property implies that i,,—1 € N(i,), i.e. there exists a pair
of immediately subsequent nodes i, ;11 € Ngs that are adjacent to each other.

Let j be the smallest number so that i; is adjacent to its immediate successor. We observe
that ¢; is adjacent also to all nodes ix 2 ;41 because i; € N(ij41) leads to i; € N (i) due to
the vicinal preorder. Furthermore, all ix,4; 27 4; are adjacent to each other because i, € N (i)
implies iy, € N(4;). Hence, the set K := {i € Ngs : 4 7 4,} is a clique.

If we can show that the set Ng — K is stable, we have finished. Let us assume the opposite
would be the case, i. e. that there were two adjacent nodes iy,%; € Ng/ with i, 4; 7% ij and
i € N(ix). We may assume without loss of generality that ¢; 7= ix. Then, due to the vicinal

~

= i,. However, this result

~

preorder, i; € N (i) implies 4; € N(i;41) as we obviously have 4,4,
contradicts the fact that ¢; is the smallest node that is adjacent to its immediate successor.
Consequently, S := Ng — K is a stable set.

(#91) = (i): If G has an isolated node, we can remove it and will still get a split graph
with nested neighbourhoods for the stable nodes. If G has no isolated node, we will choose a
node j € Ng that is a neighbour of the stable node with the smallest neighbourhood, namely
i1 € Ng. Clearly j € K. Because the neighbourhoods of the stable nodes are nested, j € N (i1)
yields j € N(s) for all stable nodes s € S. Moreover, as j € K, it follows that j is adjacent
to all nodes in Ng, hence j is a dominating node. If we remove j from the node set of G,
we will still have a split graph with nested neighbourhoods for all stable nodes. In sum: we

can deconstruct the whole graph by repeatedly removing isolated or dominating nodes. If we

44

rebuild the graph by reversing this procedure, we can apply Lemma 38 such that G is shown
to be threshold. m

Remark 41 (1) The partition of the node set of G into a clique K and a stable set S is not
necessarily unique. In fact, there can be a subset F' C N¢g the nodes in which are adjacent to
all k € K\F, to no s € S\F, and not to any other f € F either. At most one of these nodes
can be placed in the clique, while all others must go into the stable set. So the maximal clique

Kax and the mazimal stable set Spax are unique except for the placement of one node from F'.

(2) The way in which we have constructed the clique K in the preceding proof ensures at

least that K is maximal, i.e. exactly one f € F' has been placed in the clique iff F' # &.

(8) With respect to the characterization of threshold graphs by the degree partition Ng =
Dy + Dy + ... + Dy, we have the following setting: if and only if m is odd, the mazimal clique
is given by

Knax = LWJ Di:
i=[%]

of3

and the sets
L3

U Di U{f} with f € F:= Dpa;

i=0
are all maximal stable sets of the graph. Conversely, if and only if m is even, the mazximal

stable set is given by

m

2
Srna,x = U Di7
=0

and all mazimal clique; are given by
m
U DiU{f} with f € F:=Dx.
=241
(4) With respect to the characterization of threshold graphs by a value function we have: if
Kmax 1 a mazimal clique in G, all nodes i € Ng with v(i) > S are an element of Kyax, and iff
there exist nodes jo € Ng with v(jo) < § that are adjacent to all nodes i € Ng with v(i) > §,

also one of these nodes is in Kymax. All other nodes j € Ng with v(j) < § constitute a stable

set.
(5) Note that we have k 75 s and k £ s for allk € K and s € S.

(6) If (i,j) € Eqg, then (i € Kpax V § € Kmax), and also (i € K V j € K) for any

K := Ng — Spax with Smax being a maximal stable set.

45

5 Maximum cardinality matchings, alternating paths and

Hamiltonian paths on threshold graphs

Having explored some fundamentals of the general structure of threshold graphs, we are now
prepared to address the topic of matchings on threshold graphs and the way in which these are
related to different types of paths. In particular, the following two subsections will analyse the
relation of matchings with alternating paths and Hamiltonian paths. First of all, this topic is
interesting as such because we will lead to some new insights into the structure of threshold
graphs. The main reason for proceeding in this way, however, consists in the structure of the
MSSP.

Let us recall our (alternative) model of the MSSP. According to our final definition, a
solution to the MSSP consists in a twin-constrained Hamiltonian path on a threshold graph
with the adjacency between two twin nodes being given by a twin node function b : Ng¢ — Ng.

This means that the Hamiltonian path must have the structure

i1 — b(iy) — iy — b(in) — i3 — b(i3) — ... — in_1 — b(in_1) — in — b(in) - (14)

Unfortunately, we must do without any further information about the twin node function.
However, as also the underlying threshold graph structure induces adjacency (or non-adjacency)
between any two nodes, we can be sure nevertheless that the pairs b(i1) — 42, b(i2) — i3, ..., and
b(in—1) — i, constitute a matching on a threshold graph. (While all the other edges of the
Hamiltonian path (14) are given by the twin node property.) In other words: every solution to
the MSSP contains a matching on a threshold graph, the pairs of which are "glued" together
by the twin node function. Hence, if we were able to obtain a proper overview of all possible
perfect matchings on a threshold graph, we would know immediately whether or not a particular
instance of the MSSP can be solved.

This is the reason why it seems to be promising to try to approach the MSSP on the basis
of a matching first, and then take up from there the question of how to construct certain paths
on the graph that might be fruitful for tackling the MSSP.

We will finish this chapter by drawing some conclusions regarding the complexity of the
MSSP.

5.1 Alternating paths and maximum cardinality matchings

For threshold graphs, there exists a very efficient and straight-forward maximum cardinality
matching algorithm (also mentioned in Mahadev and Peled, 1995, without a proof). This
subsection addresses the maximum cardinality property of this algorithm on the basis of the
augmenting path theorem. Moreover, we will show that the matching gained by the algorithm
reveals so much information about the structure of the threshold graph in question that we can

obtain rather strong results about the existence of alternating paths in general.

46

The matching algorithm proceeds as follows:

Algorithm 42 (TGMA - Threshold Graph Matching Algorithm,)

Let G (N, E) be an undirected graph with the set of nodes
Ng =1{1,2,...,n} and neighbourhoods N (i) for all i € Ng.

[01] Sort all nodes in an order of non-decreasing degrees.
Set node i := 0, the matching list M := &, and
the set of matched nodes I := @.

[02] Increase i by 1. If i =n then STOP.

[03] Ifi € I or N(i)\I = @ then go to step [02].

[04] Pick a node j € N(i)\I, add (i,7) to matching list M,
add i, j to set of matched nodes I, go to [02].

For further results, we will distinguish between different types of alternating paths. In
contrast to the usual definition of alternating paths, our concept explicitly accounts for the

subset of the matching that the alternative path in question is derived from.

Definition 43 (Alternating T-paths)

Let G(N, E) be a graph, M a matching on G, and T C M. An alternating T-path relative

to M 1is a path
10— 41 — 92 — 13 — . —lip_1 —ip

such that every consecutive pair of edges in the path contains one edge from T and one edge
that is not an element of the matching, and all elements of T are edges of the path.

a) If n is even and the node ig is not incident to any edge in the matching, the path is called
an even T-path. The node iy is called the exposed node of the path.

b) If n is odd and the number of edges that are element of the matching is greater than the
number of those edges that are not in the matching, we will call the path a matching-dominated
T-path.

¢) If n is odd and both the nodes ig and i, are not incident to any edges in the matching,
the path is called an augmenting T-path. The nodes ig and i, are called the exposed nodes of
the path.

The succeeding Theorem 44 provides criteria for the existence of alternating (7-)paths on
threshold graphs.

One way of looking at the concept of alternating paths consists in seeing the existence of
alternating T-paths as an affirmative answer to the question of whether a set T" of some edges
that match a certain subset of nodes can be complemented by other edges such that there exists

a path that connects all nodes of the subset (as in the case of a matching-dominated T-path)),

47

or such that there exists a path that connects all nodes of the subset and one or two additional
nodes (as in the cases of an even T-path or an augmenting T-path, respectively).

This is why the following theorem will later be the backbone of our effort of constructing
paths that are solutions to the MSSP. Moreover, it must be considered interesting as such that
for threshold graphs, as Theorem 44 shows, the information about the existence of alternating
paths can be gained almost solely on the basis of the aforementioned matching algorithm. Fi-
nally, our theorem directly implies a proof for the fact that TGMA terminates with a maximum

cardinality matching.

Theorem 44 (Alternating T-paths on threshold graphs)
Let G(N,E) be a threshold graph and M a matching on G that has been obtained from
TGMA. Then for all T C M the following statements hold:
(i) There exists a matching-dominated T-path relative to M.
(ii) There exists an even T-path relative to M if and only if its exposed node
is adjacent to some node from each edge in T'.

(#31) There exists no augmenting T-path relative to M.

Proof. (i) Let the elements of T be given by (ix,jx) € T for 1 < k < |T|. Since the vicinal
preorder of GG is total, we can renumber the edges such that
i1 iz 3 e D1 247
which yields ji € N(ix) C Nligs1] for 1 < k < |T| — 1. Hence
i1 —J1— 2 —J2 — . — 1|1 — J|T|-1 — Y7 — JIT)
is a matching-dominated T-path relative to M.
(i7) Let 49 € Ng be the exposed node of the path.
a) <=: Let the elements of T be given by (ig,jx) € T for 1 < k < |T| in a way such that
i1 Ji2 3 - D Ap)—1 3 iyr), and
i S gk forall 1 <k <|T|.
The latter condition yields ig € N(ji) for all 1 < k < |T| because iy is adjacent to at least
one node of each pair in T. Hence
11— J1— 2 —J2— . — 1|1 — J|T|-1 — Y1 — J|IT| — %o
is an even T-path relative to M.

b) =: Let the even T-path be given as

10— 41— J1— o — Y71 — J|T|-1 — Y1 — J|IT| > (15)
and K.« denote a maximal clique in in Ng.
Case (1) : ig € Kpax. Then we have finished because in a threshold graph, at least one
among the two nodes incident to a given edge is an element of K.y, cf. Remark 41(6).
Case (2) : ig ¢ Kmax. We assume that ig € N(iy) for some k with 1 < k < |T| — 1, which is

certainly the case for k = 1. From ig € N(ix) and ip ¢ Kmax follows ig 3 i, and ig # iy, due

48

to Remarks 41(5) and 41(6). Further, condition (15) implies that i; has been matched with
Jjk. As TGMA proceeds in a non-decreasing order of nodes and iy, though being adjacent to
ik, has remained unmatched, while j; has been matched with iy, we must have j; = ip. This
yields ix+1 € N(jr) C Nlig]. By induction, we obtain iy € N[ix] for all k£ with 1 <k < |T|.

(#41) First let us note that when TGMA terminates there cannot be left two unmatched
nodes that are adjacent to each other. We now assume the opposite of the statement to be
shown, i.e. that there exists an augmenting T-path

to— 91— J1— o —41|=1 — J)T)—1 — Y1) — || — YT)+1-

Furthermore let Kyax be a maximal stable set in Ng. Then the nodes ig and ¢|7|4+; cannot be
both elements of K ,.x because there were two adjacent unmatched nodes otherwise. Therefore,
let us assume without loss of generality that ig ¢ Kpax. The path ¢ — iy — j1 — ... — i) — J|T)|
is an even T-path relative to M. Hence (and because of ig ¢ Kpnax) we can apply the same
line of reasoning as in part (i) b) Case (2) of the proof, which yields by induction ig € N[i|7(],
and even ig € N[ij7|41]. This contradicts our observation that TGMA does not leave two
adjacent nodes unmatched when terminating. Consequently, the assumption that there exists

an augmenting T-path is wrong. m

Remark 45 Note that statement (i) and the sufficiency of condition (ii) have been derived
without referring to the way in which TGMA operates.

For what follows in the succeeding sections, it is helpful to distinguish between two different
variants of the algorithm TGM A. The two algorithms mainly differ with respect to the node
they choose in step [04]. The first variant, TGM A, always picks a node with the lowest
degree that is still available, provided this node is adjacent to the node to be matched.

Algorithm 46 (TGMAin)

[01] Sort all nodes in an order of non-decreasing degrees.
Set node i := 0, the matching list M := &, and
the set of matched nodes I .= @.

[02] Increase i by 1. If i = n then STOP.

[03] Ifi € I or N(i)\I = @ then go to step [02].

[04] Set j :=i+ 1. Increase j by 1 until j € N(i)\I.
Add (i,7) to matching list M,
add i, j to set of matched nodes I, go to step [02].

The second version of the algorithm, TG M Ap,.x, always chooses in step [04], if possible, the
node with the highest degree.

49

Algorithm 47 (TGM Apax)

[01] Sort all nodes in an order of non-decreasing degrees.
Set node i := 0, node j :=mn,
and matching list M := &.

[02] Increase i by 1. Ifi > j then STOP.

[03] If i ¢ N(j) then go to step [02].

[04] Add (3,7) to matching list M,
decrease j by 1, and go to step [02].

Definition 48 (Modest and greedy matchings on threshold graphs)

Let G(N,E) be a threshold graph with neighbourhoods N (i) for all i € Ng. A matching
that has been obtained by the algorithm TGM A, is called modest, and a matching that results
from running TGM Apax greedy.

Remark 49 The distinction between modest and greedy matchings on threshold graphs should
not be confused with the well-known concept of the greedy algorithm in matroid theory (cf. e.g.
Nemhauser and Wolsey 1999, chapter II1.3). In fact, from the latter perspective, all variants of
TGM A can be considered greedy in a basic sense as they simply work along the list of nodes (in
an order of non-decreasing degrees) and pick some suitable available node without "worrying”

about the consequences for the choices to follow at later stages.

Corollary 50 IfG is a threshold graph, TGMA terminates with a maximum cardinality match-
ing, and there exists a maximum cardinality matching algorithm that terminates after O(nlogs n)

steps.

Proof. The maximum cardinality property is directly implied in Theorem 44(iii) on the basis
of the well-known augmenting path theorem going back to Petersen (1891). With regard to
computational complexity, we observe that TGM Ap.x is the best version of TGM A with
regard to computational complexity as, when using TG M A, we do not have to keep track
of the nodes that have already been matched. Further, we note that steps [02], [03], and [04] of

TGM Apax occur at most n times. Thus, the most expensive operation is the sorting of nodes

according to their degrees, which can be accomplished easily in O(nlog, n) time. m

The algorithm T'GM Amax is not only favourable in terms of computational complexity; it
also provides us with matchings that have a useful property that will turn out to be useful when

we later will analyse alternating cycles on threshold graphs.

Proposition 51 (Degree property of TGM Apax)

Let G(N,E) be a threshold graph and M a matching on G that has been obtained from
TGM Apmax. Then for all (i1,751) € M there exists no edge (ia,j2) € M with dg(iy) > dg(iz)
and dg(j1) > dg(jz).

50

Proof. The property follows directly from the fact that TGM Ay .x proceeds along the list
of nodes in a non-decreasing order and always chooses a mate for the matching that has the

highest degree among all remaining nodes that have not been matched yet. m

Remark 52 (1) The fastest available algorithm for the general non-bipartite cardinality match-
ing problem with n nodes and m edges, which has been developed by Micali and Vazirani (1980),
requires O(m+/n) time. As the vicinal neighbourhood property means "carrying forward" ad-
jacency from one node to the next stronger one, threshold graphs typically tend to have many
edges, i. e. m > n, especially when there are many non-isolated nodes in the mazimal stable
set, or when the amount of nodes in the corresponding clique is rather large. (Note, for exam-

ple, that we already have at least n (undirected) edges if the smallest node is not isolated, and

k(k—1)
2

among these nodes.). Therefore, and since v/n > logyn for n > 16, the algorithm presented

that k nodes in the clique imply at least edges representing only the mutual adjacencies
here provides a significant computational advantage in the case of threshold graphs. Also, the

obviously simple structure of the TGMA makes it particularly easy to implement.

(2) If we always pick the smallest node j € N(i)\I in step [04], we will arrive at a matching
algorithm for interval graphs, which has been proven to yield maximum cardinality matchings
by Moitra and Johnson (1989). In fact, every threshold graph is also an interval graph, as can
be seen easily on the basis of the a characterization of interval graphs given by Ramaligam and
Rangan (1988). According to this criterion, a graph G(N, E) is an interval graph if and only if
its nodes can be numbered such that

(i,k) € Eqg = (4,k) € Eg for alli,j,k € Ng and i < j < k.
Clearly, numbering the nodes of a threshold graph in a non-decreasing order with respect to

the vicinal preorder fulfils this condition.

(3) The general, not modified version of TGMA, leaves open the question of how to pick
the node j € N(i)\I in step [04]. In the general case, different rules of how to choose j
will lead to different mazimum cardinality matchings on G. If we would like to generate all
possible mazimum cardinality matchings on a given threshold graph, we have to take into account
two aspects: (a) Given a certain mazimum cardinality matching on a threshold graph, every
unmatched node could be matched at the expense of any smaller node that has been matched,
due to the vicinal preorder of threshold graphs. The smaller node would then become unmatched
by "handing over" its mate to the larger one such that the overall cardinality of the matching
would not be affected. (b) If we always choose in step [04] a node j € N(i)\I that is among
the smallest nodes available, we clearly get a matching in which the unmatched nodes are as
large as possible because TGMA matches in a non-decreasing order of nodes. Because of these
two aspects (a) and (b), all maximum cardinality matchings on a certain threshold graph can
be generated in the following way: first compute a matching on the basis of TGMA by always
choosing in step [04] one node j from the smallest nodes available in N(i)\I. In a second step,

all other matchings can be derived from this initial matching by picking a subset of unmatched

51

nodes and matching these nodes at the expense of some subset that consists of matched nodes

of a lower or equal degree.

5.2 Hamiltonian paths and maximum cardinality matchings

We have noted at the beginning of this section that every Hamiltonian Path that is a solution
to the MSSP contains a matching on a threshold graph. This property suggests to ask the
question of how matchings and Hamiltonian Paths are related in the general case of threshold
graphs. Though this implies stepping back from the MSSP because it means leaving aside the
issue of twin nodes, analysing the relation of matchings and Hamiltonian paths on threshold
graphs will be helpful for a better understanding of the MSSP and, in fact, lay the foundation

of our approach to solving it.

In the general case of an arbitrary graph, the existence of Hamiltonian paths is closely related
to the question of the Hamiltonicity of a graph, i.e. to the question of whether there exists
a Hamiltonian cycle on that graph. In particular, any both necessary and sufficient condition
for the Hamiltonicity of a graph directly implies both a necessary and a sufficient criterion for
the existence of Hamiltonian paths. In order to determine if a graph has a Hamiltonian path,
one simply has to add a dominating node to the graph in question and then check whether the
resulting graph is Hamiltonian.

In the case of threshold graphs, also the opposite of the above statement is true, i.e. every
necessary and sufficient criterion for the existence of a Hamiltoninan path directly leads to
a condition for the Hamiltonianicity of the graph. In order to see this, one has to consider
that threshold graphs are among those graphs that either have an isolated or a dominating
node, which is an immediate implication of the fact that the vicinal preorder of threshold
graphs is total (cf. also Lemma 38). As a consequence, the Hamiltonicity of a threshold graph
without an isolated node can be determined by dropping one node among those with the largest
neighbourhood and checking if there exists a Hamiltonian path on the subgraph induced by
the remaining nodes. Concludingly, all necessary and sufficient criteria for the existence of
Hamiltonician paths on threshold graphs are equivalent to characterisations of Hamiltonian
threshold graphs in the sense that each of these criteria yields a characterization, and vice

versa.

The issue of the Hamiltonicity of threshold graphs has already been addressed in the lit-
erature. Four different characterisations of the Hamiltonianicity of threshold paths have been
given, namely in Chvétal and Hammer (1977), Golumbic (1980), Harary and Peled (1987), and
Mahadev and Peled (1994), which all directly lead to a polynomial-time algorithm for recog-
nising Hamiltonian threshold graphs. Among these characterisations, the criterion provided by
Mahadev and Peled (1994) is the only one related to matchings. It is derived from their study
of the longest cycles on threshold graphs and uses the characterization of threshold graphs on

the basis of their degree partitions.

52

In the following, we will provide an alternative polynomial-time criterion by drawing on
our alternating path theorem for threshold graphs and the structure of TGMA. In contrast to
Mahadev and Peled’s criterion, the one presented here is not based on the degree partition of
threshold graphs, but instead it can be seen as the split graph counterpart to their theorem.
It will be shown at the end of this subsection that our split graph criterion indeed provides
a rather immediate proof of Mahadev and Peled’s degree partition-based characterization of

Hamiltonian threshold graphs.

Theorem 53 (Split graph criterion for Hamiltonian paths on threshold graphs)
If G is a threshold graph with n nodes, then there exists a Hamiltonian path on G if and
only if
(i) for n even, there exists a matching M on G with cardinality |M| = %,
(i1) for n odd, there exists a matching M on G with cardinality |M| = “F% and the un-

matched node is an element of a mazimal clique of G.

Proof. (i) : The existence of a matching with cardinality % obviously is a relaxation of the
Hamiltonian Path Problem and thus a necessary condition. Regarding sufficiency, the existence
of a matching of cardinality |M| = % implies according to Theorem 44(i) that there exists a
matching-dominated M-path on G that covers all nodes of G.

(#4) : a) Concerning the sufficiency of the condition, let us recall that at least one node
incident to any edge in a threshold graph is an element of K := Ng — Smax, With Spax € Ng
being a maximal stable set. Therefore, the unmatched node is adjacent to some node from each
edge of the matching, and because of Theorem 44(ii) there exists an even M-path on G that
covers all nodes.

b) Regarding the necessity of the condition, every Hamiltonian Path on G (N, E) with an
odd number of nodes obviously presupposes the existence of a matching of cardinality ”Tfl
With respect to the second part of the condition, let us assume that there exists a matching of
cardinality "gl with ,, € Ng being the unmatched node after TGMA has terminated, and that
there exists a subset of the maximal clique Ky C K.« to which the node i,, is not adjacent,
ie. i, ¢ N(k) for all Kk € Ky. We will demonstrate that this implies the infeasibility of the

Hamiltonian Path Problem on G. (Note that the fact that our line of argument will refer to

TGMA is not a restriction. As we have argued in Remark 53(3), there exists a special case
of TGMA that returns the largest unmatched node possible. In the end, our line of argument
will imply that the Hamiltonian Path Problem turns out to be infeasible in any case if it is
proven to be infeasible with such a large unmatched node.) For N(i,) = @, there is nothing
to show, therefore N (i,,) # @ in the following. The remainder of the proof will introduce node
set partitions, an illustration of which can be found in Figure 8 for a better overview.

(1) In a first step, we will analyse the particular structure of the set of nodes Ng in this
case. Clearly, i, € S := Ng — Knax and (by definition of i,,) N(in) & Kmax. Hence the node

in induces a partition of the clique K.« such that

53

a) Node partition of G b) Node partition of G’

adjacent adjacent
not adjacent

LY e

matching by TGMA matching by TGMA

Figure 8: Structures of G and G’

Kiax = Ko + K1
with K7 = N(i,,) and k ¢ N(i,,) for all k € K.
Due to N(iy,) # &, and because of the order of nodes in which the algorithm tries to find a
matching for nodes, there must be a (non-empty) stable set So C S whose elements are smaller

than the node i, i.e. s 3 i, for all s € Sy. The vicinal preorder implies that |J N(s) C Kj.
Since the node i, has not been matched by TGMA, we have | |J N(s)| = ‘KiTZOIld therefore

U N(s) = K, i.e. all nodes in Sy can only be and actually }:zf\i; been matched with a node
iSES;(l, and all nodes in K; have been matched with a node in Sy. Hence we have |Sy| = | K]

Moreover, there might be a stable set S; C S with nodes that are greater than the node 4,
ie. s i, for all s € Sy. Since all nodes k € K; have been matched with nodes s € Sy, all
nodes k € K7 must have been matched with some nodes k € K. Finally, we note that those
nodes k € Ky that have not been matched with nodes s € S; must have been matched with
other nodes k € K.

In sum, the set of nodes N¢ is partitioned as follows (the sum being written according to
the preorder):

Ng = So 4 {in} + 51 + Ko + K

with SQ,Ko,Kl 7é @, U N(S) = Kl = N(i"),
s€Soy
and all nodes s € S; matched with nodes k € K.

(2) Let ko € Ky be one among the largest nodes in Ky, i.e. k 2k, for all kK € Ky, and thus
s 3 ko for all s € S7. By adding edges (if necessary at all), we construct a new graph G’ with
N¢g := Ng such that N(i) := N(ko) for all i € S; U Ky =: K|, (i.e. K| induces a complete

subgraph), with all other edges remaining unchanged.

54

Hence the set of nodes of the new graph can be written in the following way:
Ngr = So +{in} + Ky + K1
with Sy, K, K1 # &, and
N (k1) = N(ka) & N(ks) for all ki, ks € Ky and k3 € K.
Obviously, i, would be an unmatched node also on G’ after TGMA has terminated, and,
since Eq C Eg/, a Hamiltonian Path Problem on G is infeasible if it is infeasible on G’. As the
nodes kg € K|, are adjacent only to all nodes k € K, U K1, every Hamiltonian Path on G’ will

contain (one or more) subpaths

e — ki — ki+1 — . ki-l—’rn — ki+’m+1 — ...
with kiaki+m+1 € K17ki+1, ...,kier c K(I) and m >1 s (16)

and, iff the Hamiltonian Path ends with a node kg € KJ), also a subpath
o= kz — ki+1 — e — ki-‘rm

with k; € K1, ki1, ., kiym € Kj and m > 1. (17)

(3) Consider the subgraph G” of G’ that is induced by
Negn = 8o + {in} + {k§} + K1 with some k§ € K.

We can directly transform a Hamiltonian Path on G’ into a Hamiltonian Path on G” by
contracting all subpaths in (16) and (17) to the subpaths ... — k; — kiyms1 — ... and ... — k;,
respectively, and adding the single node k§ to any among the contracted subpaths such that we
get ... — ki —k§ —kizm+y1 — ... and ... — k; — kg for the former subpaths, respectively. Therefore,
the Hamiltonian Path Problem on G’ is infeasible if it is infeasible on G”'.

As |Sp| = | K1, we have |[Ng| = 2| K|+ 2. Because it holds that N (i) = K; for all |Ky|+2
nodes i € So + {in} + {k{}, a maximum cardinality matching on G’ will have cardinality
| K| < ‘N%/l Therefore, the Hamiltonian Path Problem is infeasible on G”, hence on G, and

soonG.m

Remark 54 We have seen that the alternating path theorem for threshold graphs introduced in
this section is a rather strong result that is closely related to the existence of Hamiltonian paths.
It would be an interesting question for further research to explore whether this theorem can lead

to an alternative characterization of threshold graphs.
As mentioned above, we will now give a proof of the degree partition-based criterion that

Mahadev and Peled (1994, Theorem 3.1) have derived from determining the longest cycle in
threshold graphs.

55

Corollary 55 (Degree partition criterion for Hamiltonian threshold graphs)
If G(N, E) is a threshold graph with degree partition
Ng =Dyg+ D1+ Ds+ ...+ Dy,
then G is Hamiltonian if and only if there exists a (bipartite) matching
%]
from S = U Dg into K := Ng — S
i=1
that has cardinality |S|, and
(1) for m even, M matches some node j € D with some node k € Dy,

(i) for m odd, M leaves some node k € D,, unmatched.

Proof. We define n := |Ng| and assume that G has no isolated nodes (otherwise there is
nothing to show).

a) As the corollary is about Hamiltonian cycles, let us prove the sufficiency of the conditions
by adding a dominating node i,,+1 to the graph first, which will not affect the size m of the
degree partition. The bipartite matching from S into K covers all nodes in the maximal stable
set if m is even, and in the complement of the maximal clique if m is odd, cf. Remark 41(3).
Consequently, the nodes in Ng U {i,+1} that are unmatched up to now are adjacent to each
other and can be matched into pairs. If n 4 1 is even, condition (i) of Theorem 53 applies, if
n + 1 is odd, one unmatched node remains, which certainly is an element of a maximal clique,
so that condition (4¢) applies.

b) Regarding the necessity of the conditions in the corollary, let us assume that the conditions
of Theorem 53 hold after we have removed a dominating node k € D,,,. Then, in the original

graph, all nodes in G are matched except the node k and, if n — 1 is odd, except an additional

m
node j € U D;. If m is odd, we have j ¢ S or n — 1 is odd. In either case, our matching
i=[m
already contrair]s a bipartite matching from S into K that has cardinality |S| and leaves k € Dy,
unmatched. For even m, we have either j € Dm or j ¢ S, orn —1is odd. If j € Dm, we
can add the edge (j, k) to the matching and our matching will contain a bipartite matching
in accordance with the corollary. If j ¢ S or n — 1 is odd, we can easily fulfil the conditions
of the corollary by matching the dominating node k with some arbitrary node from D= and

discarding the latter node’s mate. m

5.3 Summary and a remark on the complexity of the MSSP

Our aim in this chapter was to take a first step towards analysing the MSSP by finding out more
about matchings on threshold graphs. We presented a class of maximum cardinality matching
algorithms on threshold graphs, introduced and discussed the concepts of even, matching-
dominated and augmenting T-paths relative to a matching on a threshold graph, and found a

new criterion for the existence of a Hamiltonian path on a threshold graph. In this section we

56

will briefly look at the meaning of the latter result in the light of the last section of chapter 3

on complexity theory

Corollary 56 (Preliminary statement about the complezity of the MSSP)

(1) The twin-constrained Hamiltonian path problem on a threshold graph (i.e. the MSSP)
1s in NP.

(2) A special case of this problem, the Hamiltonian path problem on a threshold graph, is in
P.

(3) A generalization of this problem, the twin-constrained Hamiltonian path problem, is

NP-complete.

Proof. Statements (1) and (3) follow from Theorem 29; statement (2) is a consequence of

Remark 30 in conjunction with Theorem 53. m

We can conclude from this corollary that, for threshold graphs, the twin-constrained Hamil-
tonian path problem is at the frontier between two complexity classes, namely problems in P
and NP-complete problems. At the moment, the question of whether or not the MSSP is solv-
able in polynomial time is open, and the answer to this question must be considered nontrivial.
This means that as a reasonable strategy in the following we should continue to exploit the
structure of the underlying threshold graph as much as possible, in the hope that we might find
a polynomial-time approach to the MSSP. And yet, we should be open to the fact that we might
have to conclude the endeavor of this thesis not with an exact algorithm, but instead with a
polynomial-time heuristic. For the moment we can neither expect nor exclude the possibility of
an exact polynomial-time algorithm for the MSSP. Therefore, it seems to be advisable to keep

all options open and pursue a two-track policy.

57

6 Alternating cycles and maximum cardinality matchings

on threshold graphs

There is a final type of path that we have to discuss here in relation to maximum cardinality
matchings in order to be prepared for our analysis of the MSSP, namely what we call alternating
T-cycles. These can be seen as a natural extension of our concept of alternating T-paths in so
far as they feature, in contrast to augmenting T-paths, two end nodes that have been matched
as one pair in the matching given, or, alternatively, as they can be considered as a special case
of even T-paths (where the two end nodes coincide), or as a matching-dominated T-path where
the end nodes are adjacent. Therefore, when discussing alternating T-cycles we will benefit a
great deal from the results of the previous chapter.

We begin with a section that introduces the concept of alternating T-cycles and explains
why they are an important tool for analysing all perfect matchings on threshold graphs. The
succeeding section provides two (both necessary and sufficient) criteria for the existence of
alternating T-cycles. Based on this, the third section sharpens one of the criteria by using the
properties of the matching algorithm T'GM Ap,.x and, on this basis, presents a criterion for
merging two alternating T-cycles. In the final section of this chapter, i.e. before we turn our
attention to the MSSP from the next chapter on, we give a summary of what has been achieved

by our discussion of threshold graphs in the preceding and the present chapter.

6.1 Definition and relevance of alternating 7-cycles

We start with a definition of alternating T-cycles. Again, as it was the case with alternating

T-paths, our definition directly refers to the subset of the matching that the cycle is build upon.

Definition 57 (Alternating T-cycle)

Let G(N, E) be a graph, M a matching on G, and T C M. An alternating T-cycle relative
to M is a cycle on G with an even number of edges such that every consecutive pair of edges
in the cycle contains one edge from T and one edge that is not an element of the matching M,

and all elements of T are edges of the cycle.
The following definition leads to a way of looking at the problem of analysing all perfect

matchings on a threshold graph that will allow us to draw on the results of the preceding

subsection.

58

Definition 58 (Matching generator)
Let G(N, E) be a simple undirected graph and M # & the set of all perfect matchings on G.
(1) For a given matching M € M, a pair (gar,Sa) of a set Sy and a function
gm Sy — M
is called a matching generator relative to M, and M is called the basis of the matching
generator.
(2) For a given matching generator (gar, Sar) relative to M and a particular subset M* € M,
an element S € Sy is called an M*-generator relative to M iff
gm(S) = M~,
i.e. iff i "produces” the matching M™* under gas.
(3) A matching generator is said to be complete iff gy is surjective, i.e. iff there exists an
M*-generator relative to M for all M* € M.

A matching generator relative to a certain perfect matching M allows us to begin with a

specific matching and construct from there all possible perfect matchings on a given graph.

We proceed with a simple example of a matching generator.

Example 59 Let us consider a complete graph G(N, E) with Ng = {1,2,3,4}, for which the
set of all possible perfect matchings is
M = {1(1,2), (3,4}, {(1,3), (2,)}, {(1,4), 2,3)}}.
We choose the basis M = {(1,2),(3,4)} and define a set Sp; as follows:
Swi={ @, {(1,2),(2,3),(3,4),(1,4)},
{(1,2),(2,4),(3,4), (1,3)}).
Furthermore, a function gps : Syr — M be defined by
gm(S) = S\M + M\(SN M) for all S € Sy.
Then we have
gm(9) =2+ M,
gm({(1,2),(2,3),(3,4),(1,4)}) ={(2,3),(1,4)} + 2,
gm({(1,2),(2,4),(3,4), (1,3)}) ={(2,4),(1,3)} + 2,
which implies that gy is surjective and hence (gar,Sa) a complete matching generator
relative to M.

The following proposition generalizes the preceding example by using the concept of alter-
nating T-cycles and establishes the relevance for alternating T-cycles for analysing all perfect

matchings on a graph.

59

Proposition 60 (Alternating T-cycles as matching generators)

Let G(N, E) be a simple undirected graph, M € M # & a basis from the set of all perfect
matchings on G. Further, let Cyr be the set of families that contains the family (C.) = (@),
i.e. the family the only member of which is the empty set, and all disjunct families (C;)icr of
cycles on G for which there exists a disjunct family (T;)ier of subsets T; € M such that C; is
an alternating T;-cycle relative to M for alli € I. Then (g, Car), by virtue of

T, : =@ and
g :Cy — M
with (Ci)ier — gu((Ci)ier) = >_(C\Ti) + M\(>_ T3)

iel i€l
for all (C;)icr € Cur,

is a complete matching generator relative to M.

Proof. We have to show that a) for all families (C;);er € Cps the image

gu((T)ier) = Y_(CA\T) + M\(Y_To)
il i€l
is a perfect matching on G and b) there exists an M’-generator relative to M for all M' € M.
a) Trivially, the image of (C,) = (&) with T, = & is a perfect matching.
For all other families (C;);c; we consider the two disjunct sets that the image ga ((C;)ier)
consists of separately. The second term
M\ Ty = M\(Y_Cy)
il iel
is the set of all edges in the matching M that are not incident to nodes connected via the
alternating cycles C; and is certainly a perfect matching on the set of these nodes.
The subgraph given by the first term
Z(Ci\Ti) = (Z Ci)\M
i€l iel
consists of alternating cycles from which every consecutive edge is removed, i.e. the term

describes a subgraph that is a perfect matching on the set of nodes to which the edges from the
alternating cycles are incident. As the image gas((C;)icr) contains edges such that all nodes
are incident to some edges, it is a perfect matching on G.

b) Trivially, (C,) = (@) is an M-generator relative to M.

For all other M’ € M, M’ # M, we consider the set (M U M")\(M N M’), which consists
of edges incident to nodes each of which is an endpoint of one edge from M and one edge from
M’'. Hence, the set (M U M’)\(M N M’) consists of disjunct cycles C; such that

Y Ci=(MuM)\(MnM). (18)
i€l

If we define a family (T;);ecs of sets

T, :=C;\M' foralli eI, (19)

60

the family (C;);cr consists of alternating T;-cycles relative to M. Hence (C;);er € Cu, and
due to (18) and (19) we have

g ((Ci)ier) = %(CZ\TJ + M\(ETJ
= > (C\(CA\M")) + M\ (X (C:\M')

el el
= (OGN CNM) + M\((Y_ Ca)\M)
i€l iel el
= (M UMM 0 MN\(((MUM)NMNM)\M')
FM\(((M UM\ (M O M)\M')
= ((M UM)N\M M)NM\M') + M\(M\M')
= M\M+ (MM =M,

i.e. the family (C;);cr is an M'-generator relative to M. m

The consequence of the preceding proposition is that, when studying perfect matchings on
graphs, we can start with one single matching M and then operate on the set of alternating T-
cycles for analysing all other matchings on our graph. In the case of threshold graphs this means
in particular that we can start with a convenient implementation of TGM A (with TGM Apax,
for example) and develop our theory by analysing alternating T-cycles relative to the matching
M we obtained from our implementation of TGM A. This is exactly the path we will follow in

the next two sections.

6.2 Criteria for the existence of alternating 7T-cycles

Having introduced the concept of alternating T-cycles and demonstrated its relevance in the pre-
vious section, we will now develop criteria for the existence of alternating T-cycles on threshold
graphs. The criteria for the existence of certain paths on threshold graphs, namely Hamiltonian
paths and different types of alternating paths that we have presented in the preceding chapter,
all refer to the characteristics of a certain given matching M. This begs the question of whether
it is possible to have also such a criterion of the existence of alternating T-cycles. On the basis

of our Theorem 53 for Hamiltonian paths, we can establish such a criterion indeed

We will proceed in three steps. As a preparation for what follows, we will start with a
basic general observation on the relation of two perfect matchings on the same graph, which is
expressed in the succeeding lemma. On this basis and by means of Theorem 53, we will show in
a second step that in the case of threshold graphs, alternating T-cycles and Hamiltonian cycles
on the corresponding subgraph are subject to similar conditions. Finally, we derive from there
a statement that characterizes the matching M relative to which we would like to construct an

alternating T-cycle.

Lemma 61 Let G(N, E) be a simple undirected graph, T,T' C Eg perfect matchings, and
(0, J0) € Eg an edge such that (io,jo) € T', but (ig,j0) ¢ T. Then there exists an alternating
(C\T")-cycle C C T UT’ relative to T with (i, jo) € C.

61

Proof. We consider all nodes in Ng that have different mates with respect to the matchings
T C M and T7, i.e. the set
Nrgr :={i € Ng: (i,5) € T and (3,j) ¢ T" for some j € Ng}.
As every node of the subgraph G'(N, E) given by
Ngi := Npgp and Egr =T ®T'

(where T @ T" denotes the symmetric difference of T and T”) has exactly two neighbours,
namely its mate under the matching T and its mate under T”, the components of G’ are cycles,
i.e. G’ can be fully described by a family of (alternating) cycles (C));er, with E; C Eg for all
[€ L such that

Y G=ToT

leL
and

>{ie Ng:(i,j) € C) for some l € L and j € Ng} = Nrgr.
Because of (ip,jo) ¢ T, but (ig,j0) € 1", the edge (ig,jo) € E¢s is an element of one of
these cycles. m

We can now make a first statement about the relation between matchings and alternating
T-paths on a threshold graphs. Basically, the following theorem means that we will find an
alternating T-cycle if and only if the subgraph induced by T is so "rich" in edges that we can
"afford" to construct a perfect matching on the subgraph in which two nodes with a rather high

degree have been singled out to be each others’ mates.

Theorem 62 (Matching criterion for alternating T-cycles on threshold graphs)
Let G (N, E) be a threshold graph, M a matching on G, and T C M. Let
U:={ie€ Ng:(i,j) €T for some j € Ng}
denote the set of all nodes incident to edges in T'. Then there exists an alternating T-cycle
relative to M if and only if there exists a perfect matching T’ on the subgraph induced by U

such that a dominating node in U is matched with an element of a mazximal clique in U.

Proof. =: Obviously, the existence of a perfect matching on the subgraph induced by U is a
necessary condition for the existence of an alternating T-cycle. As for the necessity of the second
part of the condition, let ig € U be a dominating node in U. The existence of an alternating
T-cycle trivially implies that there is a Hamiltonian path on the odd set U — {ip}. Hence the
node remaining from a matching 7" according to Theorem 53 is a member of a maximal clique
in U and can be matched with 7.

<: Let ig € U be a dominating node in U with a mate jyo € U that is a member of a maximal
clique in U, and T” a perfect matching on U with (ig, jo) € T".

Case(1) : (ig,jo) € T. We consider all other pairs (ix, ji) € T with 1 < k < |T| — 1, assume
without loss of generality that

jr Sigfor 1<k <|T|—1, (20)

62

and renumber the nodes such that
Jr-1 Z -2 3 - 2 J2 I
which yields iy, € N(j) C N[jr—1] for 2 < k < |T'| — 1. Hence
i1 —J1—d2 —J2 — . — 1|2 — J|T|-2 — 7|1 — J|T|-1
is a matching-dominated (T" — {(ig, jo)})-path relative to M with the node i; being in a
maximal clique in U because of (20). Thus we have (jo,%1) € Fg and, since ig is a dominating
node in U, also (jj7|-1,i0) € Eg, i.e.
io—Jo— i1 —J1— %2 —J2— - —ir|—2 — J|T|-2 — YT|—-1 — J|T|-1 — %0
is an alternating T-cycle relative to M.
Case(2) : (ig,j0) ¢ T. Applying Lemma 61 to the subgraph induced by U, leads to a cycle
C CTaT with (ig,jo) € C. By deleting the edge (ig,jo) from C, we obtain a matching
dominated (C\T")-path relative to M D C\T" with the endnodes iy and jo.
Now we consider all nodes in U that are not incident to this path, namely the node set
U—-{ieU:(i,j) € T\C for some j € Ng},
for which the edge set
NC=T-C\T'CM
is a perfect matching. On this basis we can construct a matching dominated (7T\C')-path in
the same fashion as in Case(1) above, which has a member of a maximal clique in
{i € Ng : (i,j) € T\C for some j € Ng}
(and, again because of (20), also in U) as one of its endpoints. By connecting this endpoint
to jo and connecting the other endpoint to the dominating node iy, we obtain an alternating
(T\C + C\T")-cycle relative to M. m

For the construction of an alternating T-cycle, the preceding theorem required that we find
a certain new matching 7" on the subgraph induced by the set T C M. We will now provide
a statement that gives a characterization of alternating T-paths by directly drawing on some

property of the subset T'.

Theorem 63 (Path criterion for alternating T-cycles on threshold graphs)
Let G (N, E) be a threshold graph, M a matching on G, and T C M. Let
U:={ie Ng:(i,j) €T for some j € Ng}
denote the set of all nodes incident to edges in T. Then there exists an alternating T-cycle
relative to M if and only if there exists a subset P C T and a matching-dominated P-path
relative to M the endnodes of which are a dominating node in U and a node in a maximal

clique of U.

Proof. We will show that the claim of this theorem is equivalent to the preceding theorem. In
the following, iy is a dominating node in U and j; a member of a maximal clique in U.

=: Let T’ be a perfect matching on U with (ig,jo) € T'. If (ip,jo) € T, we can set
P := {(io,jo)} and are done. If (ig,jo) ¢ T, we know from Lemma 34 that there exists an

63

alternating (C\T")-cycle relative to T' for some set C C T'U T’ with (ig,j0) € C, and define
P:=C —{(i0,jo)}-
<: Let iy and jy be the two endpoints of the matching dominated P-path relative to M. If
we denote this path by @,
T":=(Q — P) +{(i0 jo)} + (T' = P)
is a perfect matching on the subgraph induced by U, which fulfils the condition of Theorem
35. m

Remark 64 Note that the theorem refers to a dominating node and a member of the mazximal
cliqgue in U. Of course, if this node set contains a dominating node and a member of the mazximal
clique in Ng, these nodes maintain the same properties also in U. The converse, however, s

not necessarily the case.

6.3 Alternating T-cycles and the case of greedy matchings

The path criterion provided above gives a characterization of alternating T-cycles on the basis
of some property of a certain subset P C T. From a combinatorial point of view, such a result
is rather unsatisfying because it requires us to check all possible subsets P to find out if there
exists one with the desired property. This suggests the idea to tighten this theorem, possibly in
a way that allows us to impose the same conditions that are relevant for the subset P on the set
T as a whole. For reaching this aim, it is inevitable that the matching M from which we proceed
is richer in structure. This can be achieved if we assume that the matching is greedy, i.e. has
been obtained from the version TG M Ay, of our Threshold Graph Matching Algorithm.

Theorem 65 (Strong path criterion for alternating T-cycles on threshold graphs)
Let G (N, E) be a threshold graph, M a matching on G that has been obtained from TGM A ax
and T C M. Let
U:={ie Ng:(i,j) €T for some j € Ng}
the set of all nodes incident to edges in T'. Then there exists an alternating T-cycle relative
to M if and only if there exists a matching-dominated T-path relative to M the endnodes of

which are a dominating node of U and a node in a maximal cliqgue of U.

Proof. The sufficiency of the condition is trivial as we can simply connect the endnodes
of the matching-dominated T-path. Regarding the necessity of the condition let there be a
matching-dominated P-path relative to M with endnodes iy and jy according to Theorem 63.
We will construct, by inserting the edges in 7' — P into the matching-dominated P-path, a
matching-dominated T-path that fulfils the conditions of our theorem. The proof proceeds in

three steps.

64

STEP 1: Assume that it is possible to rearrange all edges (i, jr) € P such that we arrive
at a matching-dominated P-path relative to M that has the properties of Theorem 63 and is
represented by

iog—Jo — 41— J1 —%2 —J2 — - —ip|—2 — J|P|—2 — {|P|-1 — J|P|-1 (21)
such that P
ikzjkfor()gkg%—l (22)
and
iozilz...Ziu_QZiu_l. (23)

2 2

Now take any edge (i,j) € T — P. We assume i 7 j. Consider all edges in P and choose, if
possible, a k* such that ix. 7 7 2 ir«q1. Because of i 27 igsq1, we have jr. € N(igsy1) € N(i),
ie. (jrx,i) € Eg. Moreover, we have j 2 jr« due to ir. 7 i and the degree property of
TGM Apmax (Proposition 51), which leads to (j,ig«t1) € Fg. Hence, we can insert (i,j) into
the matching-dominated P-path between the edges (ig«, jg«) and (iget1, jrsr1). I it is not
possible to find such a k*, the node 7 is a dominating node in U or we have i|p|_; 7 7. In
the former case we add the edge (7,7) at the beginning of the path (21), which is possible
because the path starts with a dominating node. In the latter case, we add (i,7) at the end
of the path (21), which is possible as jjp|_; is @ member of a maximal clique in U and i 7 j.
Proposition 51 of TGM Ayayx implies that j 7 jjp|_1, i.e. also the new endnode j is a member
of a maximal clique in U. It all three cases considered, we obtain at a matching-dominated
(P + {(i,7)})-path that preserves the properties of the matching-dominated P-path regarding
the order of nodes and the particular end nodes. By induction over P — T, we finally arrive at
a matching-dominated T-path with the properties required.

STEP 2: Tt remains to show that it is indeed possible to construct the path (21), which
we will do in the following two steps. In this step, we will prove that for all edges (i,5) € P
(assume in the following 7 2 j) to which no dominating node in U is incident, there exists an
edge (k,1) € P (assume in the following k 77 [) such that k& 7 i and [is adjacent to 1.

We proceed from assuming that the opposite is true, i.e. that there exists an edge (i*,j*),
with ¢* not being a dominating node in U, such that (I,i*) ¢ E¢ for all edges (k,l) € P with
k 7 i*. Because of the vicinal preorder, this implies

(1,i) ¢ Eg for all (i,7), (k,1) € P with k 77 i* and 7* 77 4,
which yields
J z Uforall (4,7), (k1) € P with k 7 i* and * 2 i.

Therefore, the edge (i,7) € P induces a partition P = P; + P, of the set of edges P such

that

(Z*vj*) S|)

65

k iz g lforall (i,5) € Pr, (k1) € Py
withi >z jand k71, (24)

and

(1,i) ¢ Eg and (1,j) ¢ Eg for all (4,5) € Py, (k,l) € Py
withi - jand k22 1. (25)

(24) implies that P, contains all edges from P to which the dominated nodes in U are
incident. Hence, the matching-dominated P-path, which has to begin with a dominated node
in U, starts with an edge from P,. Because of (25), all following edges from P in the matching
dominated P-path must be from P,. This contradicts the fact that the matching dominated
P-path must also contain all elements of P, in particular (:*,j*) € P;. Consequently, our
initial assumption that that there exists an edge (i*,7*) € P, with ¢* not being a dominating

node in U, such that ([,i*) ¢ Eg for all edges (k,1) € P with k 77 i* has been proven wrong.
STEP 3: We can now construct the path (21) in a straight forward manner. Arrange all

edges (ig,jr) € P such that (22) and (23) hold. Furthermore, due to the degree property of

TGM Apmax (Proposition 51), it is possible to sort the nodes jj for 0 < k < @ — 1 in the order

Jipl_ T Jel_o e T 01 5 Jo (26)

2 2

such that this remains consistent with (22) and (23). As a consequence,
gLy~
is a path on G that ends with a node in a maximal clique of U.
Assume now we have constructed a path
U = Jhoe = Toxt 1 = Jhat1 = o T EPL_y —JIPL_ 5 —UPL g IR
on G for some k* € {1,..., |2ﬂ -2, @ — 1}. If the node iy, is a dominating node in U, all
other nodes in {ig, 41, ..., ikx—2, igx—1} are also dominating nodes because of (23), which implies
that (21) is a feasible path on G. If i, is not a dominating node in U, there exists an edge
(ik,jr) € P with k < k* such that (jg,ik«) € Fg according to STEP 2 of this proof and (23).
Property (26) yields (jxs—1,%k+) € Eq, i.e.
Ths—1 — Jhw—1 — Uhx — Jhx — Uhut1 — Jhodl — v — i%% — j%q

is a path on G. Induction over {|2ﬂ —1, B9, 0} leads to (21), which starts with a

5 s
dominating node by virtue of (22) and (23). =

The preceding proof made use of the assumption that M is a greedy matching in two of its
three steps. The following example illustrates on the basis of the most simple case possible that

this condition is necessary indeed.

66

Example 66 Consider the threshold graph G(N,E) given by
Ng :=11,2,3,4,5,6,7,8}

and
Eg = {{17 7}7 {17 8}7 {27 6}7 {27 7}7 {2= 8},
{3,4},{3,5},{3,6}.{3,7}.{3,8}.{4,5},{4,6},{4, 7}, {4, 8},
{5,6},{5,7},{5,8},{6,7},{6,8},{7,8}},
for which

1,2,3,4,5,6,7,8
clearly is an ordering of nodes with non-decreasing degrees,
Kpax = {3,4,5,6,7,8}
is the (only) mazimal clique on G, and
D ={7,8}
is the set of dominating nodes. Running TGM Apax on G yields
Mgreedy = {{1, 8}’ {2’ 7}’ {3’ 6}’ {47 5}}:
while TGM Ay, constructs the matching
Mmodest = {{1, 7}, {2, 6}, {3’ 4}7 {5a 8}}
We focus on the cases Tgreedy := Mgreedy and Tmodest = Mmodest and examine all alter-
nating Tyreedy-cycles and Tmod est-cycles, respectively.
(a) In the case of a greedy matching, the only alternating Tgreedy-cycles are
8§—-1-7—-2-6-3—-4—-5—-8 and
8§—-1-7—-2-6—-3-5—-4-238,
which contain the matching-dominated Ty, eceqy-paths
8§—-1-7—2-6-3—-4—-5 and
8§—-1-7—-2—-6-3—-5—-4,
respectively. In line with the preceding theorem, both paths start with dominating nodes
and end with members of Kuyax. (Note that there exist other matching-dominated Tyreedy-paths
relative to Mgreedy. These however do not fulfil the properties required by the preceding theorem.)
(b) In contrast to this, the modest matching allows for the alternating Tiod est-cycles
7—1-8-5-3—-4—-6—-2—-7 and
7—1-8-5—-4—-3-6-—-2-171.
One can see immediately that on G there exist only the following four matching-dominated
Tinod est-paths relative to Miyyod est that start with a dominating node in Ng:
7—1-8-5-3—-4—-6-2, 8—5-3—-4-6—-2-7-1
7—1-8-5—-4—-3-6-2, 8—5-3—-4-6—-2—-7-1,
none of which ends with a member of K.x. Hence, the strong path criterion for the existence

of an alternating T-cycle given by the preceding theorem cannot be applied for a matching
obtained from TGM Ay -

67

However, note that, in line with the general path criterion for the existence of alternating
T-cycles (Theorem 63), there exists a subset
P:={{7,1},{8,5},{3,4}} C Tmodests
and a matching-dominated alternating P-path
7T—1-8-5-3-4
relative to Muodest that starts with a dominating node and ends with member of Kpax,
which ensures the existence of an alternating Tmod est-cycle relative to Myodest according to
Theorem 63.

The proof of the preceding theorem justifies the following definition.

Definition 67 (Sorted alternating T-cycles)

Let G (N, E) be a threshold graph, M a matching on G and T C M. An alternating T-cycle
relative to M is called sorted iff deleting one of its edges yields a matching-dominated T -path
for which properties (21), (22), (23), and (26) hold.

We will now derive three direct corollaries about sorted alternating T-cycles from the pre-
ceding theorem, which will turn out to be useful in the following chapters. The assumption that
the underlying matching M has been generated by TGM Ap,ax must be considered necessary

here again.

Corollary 68 (Existence of sorted alternating T-cycles)
Let G (N, E) be a threshold graph, M a matching on G that has been obtained from TGM A ax
andT C M. There exists an alternating T-cycle relative to M if and only if there exists a sorted

alternating T-cycle relative to M .

Proof. If there exists an alternating T-cycle relative to M, there exists a matching-dominated
T-path relative to M the endnodes of which are a dominating node of U and a node in a
maximal clique of U according to Theorem 65. We sort the path P := T in the fashion of
STEP 2 and 3 of the preceding theorem and connect its end nodes. ®m

The following concept is intended only to simplify our manner of expression later.

Definition 69 (Canonical alternating T-cycle)

Let G(N, E) be a simple undirected graph and M C E a matching. If, for a given set of
edges T C M written in the form T = {(i1, 1), (i2,J2), .-, (%K, Jr)}, there exists an alternating
T-cycle relative to M of the form

i1—jJ1— %2 — Jo — . — ik — Jk — 11,
we will call this cycle the canonical alternating T-cycle.

68

Our second corollary enables us to construct alternating cycles from certain subsets of a
given set T' C M.

Corollary 70 (Ezistence of sorted canonical alternating cycles on subsets)

Let G (N, E) be a threshold graph, M a matching on G that has been obtained from TGM Apax,
and T C M such that there exists an alternating T-cycle relative to M. Then there ezists a
sorted canonical alternating T-cycle according to (21),(22),(23),(26) and for all sets

Tt := {(iks Gk), (it 1s Jot1)s o (G—1,J1-1), (G, 51)} €T
with 0 <k<l<I|T| -1

there exists the sorted canonical alternating Ty;-cycle relative to M.

Proof. We know from the proof of the preceding corollary that any ordering of the nodes and
edges from T according to (21), (22), (23), (26) leads to a sorted canonical alternating T-cycle
of the form
to—Jo =91 —J1— - —4r|—2 — JjT|—2 — UT|-1 — J|T|-1 — %0
with
T = {(io, o), (31, J1), -+ (G| —15 Sy =1) }-
Hence
Uk = Jk — U1l — Jh1 — - —U—1 — Ji-1 — U — i
is a matching dominated Tj;-path relative to M the end nodes of which can be connected
because of the vicinal preorder of G and due to (26), which yield
ir € N(jx) S N(ji). m

Finally, we note a corollary of the preceding theorem that makes a statement about the

condition under which we can "merge" two alternating T-cycles relative to the same matching.

Corollary 71 (Sorted alternating (11 U T»)-cycles on threshold graphs)

Let G (N, E) be a threshold graph, M a matching on G that has been obtained from TG M Apax,
and Ty, Th C M two subsets of edges such that there exists an alternating Ty-cycle and an al-
ternating T -cycle relative to M. Then there exists an alternating (To UTh)-cycle relative to M
if and only if for k=0,1 and

Up:={i € Ng: (i,j) € Ty for some j € Ng}

the dominating nodes in Uy, are adjacent to the members of a mazximal clique in Uy_j.

69

Remark 72 Note that we trivially have at least for k =0 OR k = 1 the case that the dominat-
ing nodes in Uy are adjacent to the members of a mazximal clique in Uy_j because the vicinal
preorder ensures that at least one of the sets Uy contains a dominating node in Uy UU;y. The

condition of the corollary states that we need this property for both k =0 and k = 1.

Proof. «<: Let us assume without loss of generality that the dominating nodes in Uy have
at least the same degree as the dominating nodes in U;. We construct the sorted canonical
alternating Tj-cycles of the sorted sets Ty and insert the edges from 77\Tj in the fashion of
STEP 1 in the proof of Theorem 65, however such that we proceed in the sorted order of edges
given in T7\Tp. If necessary, we will always be able to add an edge at the beginning of the path
(21) because the dominating nodes in Uy are dominating also in U;. Moreover, if necessary, we
will always be able to add an edge at the end of the path (21) because the dominating nodes in
U, are adjacent to the members of a maximal clique in Uy. If the path (21) finally ends with
a node in Uy, we can connect the end nodes because the canonical alternating Ty-cycle exists.
Otherwise, we know that the end nodes of (21) are adjacent because the dominating nodes in
Uy are dominating also in Uj.

=-: For demonstrating the necessity of the condition, we assume that it is not fulfilled.
Without loss of generality, this is equivalent to assuming that (a) the dominating nodes in Uy
have at least the same degree as the dominating nodes in U; and (b) the dominating nodes in
U, are not adjacent to the members of a maximal clique in Uy. We will sort the set Ty U T}
according to (21), (22), (23), (26), which is possible because the matching M is greedy. Because
of (a), we can assume the sorted set Ty U7 to start with an edge from Tp. Due to (b), the first
edge from T} that appears in the set Ty U 77 will follow after the last edge from T7. Moreover,
assumption (b) implies that we cannot connect the larger node incident to the first edge from
T1 to the smaller node incident to the last edge from Tj. Consequently, there exists no sorted

canonical alternating (T U Ty)-cycle, and thus no alternating (Tp U T)-cycle relative to M. m

6.4 Summary of our results about maximum cardinality matchings

on threshold graphs

We have started the preceding chapter with a simple matching algorithm for threshold graphs,
which, in its different implementations, can provide all possible matchings on a given threshold
graph. Using this algorithm, we analyzed the way in which we can construct alternating paths
on the basis of a certain matching and could show that the matching algorithm always leads
to maximum cardinality matchings. Building on this, we were able to present a direct proof
for a new criterion for Hamiltonian paths on threshold graphs, which led to a new proof of a
well-known theorem by Mahadev and Peled. Based on our new criterion, we derived several
necessary and sufficient conditions for the existence of alternating cycles relative to a given

matching, and finally arrived at a rather tight characterization in the case of alternating cycles

70

relative to a matching generated by TGM Ap,.x. In particular, it has been shown that the
existence of alternating T-cycles relative to a given matching M is equivalent to the existence
of a matching-dominated T-path with certain properties on the subset of nodes incident to
edges in T'. In view of the concept of matching generators as introduced at the beginning of
the present chapter, we can say that studying alternating cycles has led our analysis on the
relation of matchings and different types of paths back to the question that was our initial point
of departure — in the sense that the concept of alternating cycles provides an answer to the

question of all possible (perfect) matchings on a threshold graph.

By proceeding in this way, we have developed a useful method for analysing perfect match-
ings on threshold graphs. At the beginning of the previous chapter we had to derive their
properties from possible outcomes of the matching algorithm. Instead, we can now proceed
from a single matching M generated by the computationally most efficient matching algorithm,
i.e. TGM Apax. The concept of the matching generator then enables us to derive statements
about all possible other matchings by examining the set of all generators relative to M, and,
in doing so, we are able to draw on the convenient properties of the matchings generated by
TGM Apax- As we will see in a later chapter, this can, depending on the circumstances, even
imply that we can restrict our attention to the subset of Cj,; that consists only of disjunct
families of sorted alternating T;-cycles relative to a greedy matching gained by TGM Ay, i-€.

those types of cycles for which we have developed the sharpest characterization.

71

7 Constructing twin-constrained Hamiltonian paths on

threshold graphs

Having analyzed in detail the properties of matchings and various type of paths on threshold
graphs, we now have all necessary prerequisites and will turn our attention to the Minimum
Score Separation Problem, i.e. the problem of finding a twin-constrained Hamiltonian path on
a threshold graph. The aim of this chapter is threefold: first, to gain a basic understanding of
the general structure of the twin-constrained Hamiltonian path problem on threshold graphs
and of how it is related to matchings; second, to solve the MSSP for a number of specific cases;
and third, by doing so, to prepare ourselves for finding a general solution of the MSSP. We will
begin by making some general considerations on twin-constrained Hamiltonian paths in the
first section. The succeeding section introduces the concept of the "twin-induced structure" of
a matching and analyses both the case in which we have a perfect matching on the threshold
graph and the case in which we have at least 4 unmatched nodes. The third section addresses
the case of 2 unmatched nodes, three sub-cases of which we will analyse more in detail in
further sections: "structure-preserving solutions" and two types of "non structure-preserving
solutions", namely "path-split solutions" and "cycle-split solutions". The final section sums up
the results of this chapter by presenting a heuristic that solves the MSSP for a large percentage

of instances.

Unfortunately, the convenient structure of a simple Hamiltonian Path Problem on a thresh-
old graph does not translate directly into a solution to the MSSP. This is due to the twin
node condition of the MSSP, which partly destroys the structure that has been discussed in the
preceding section. In the following, we will proceed from our results for threshold graphs and
analyse the relation of matchings and paths with respect to the structure given by the MSSP.
The aspects to be discussed will establish the general approach for developing a heuristic algo-
rithm for the MSSP afterwards.

7.1 General considerations, modified matchings

We will start with some general considerations on the MSSP, i.e. on recognizing twin-constrained

Hamiltonian threshold graphs.

In the remainder of this chapter, let G(N, E) be a threshold graph with the node set Ng =
{1,2,...,2n} and an edge set Eg. Given a (bijective) twin-node function b : Ng — Ng¢, the
graph G'(N, FE) with Ng» := Ng and

Egr = EqU{(i,j) € No» x Ngr : j = b(i)} (27)

72

then constitutes a MSSP, which is feasible if and only if there exists a Hamiltonian path on G’
that is of the form

i1 —b(i1) — 2 — b(i2) — ... —in — b(in) , (28)
i.e. if and only if there exists on G a twin-constrained Hamiltonian path with respect to b

Let us consider what distinguishes the problem of finding out whether there exists a twin-
constrained Hamiltonian path from the problem of determining whether there exists a Hamil-
tonian path on G (as discussed in chapter 5.2).

As we have made no further assumptions on the twin-node function b, the twin-node con-
dition (28) is in general not compatible with the specific structure of a threshold graph: the
fact that condition (28) requires every second edge of the Hamiltonian path to be an edge con-
necting twin nodes partly destroys the structure that has been helpful in chapter 5.2. We will
briefly recall the proof of Theorem 53 in order to see why condition (28) changes the situation
fundamentally.

The very reason why we could provide a direct matching-based characterization of the
Hamiltonicity on threshold graphs in the preceding section consists in the fact that the vicinal
preorder of threshold graphs is total. Due to this feature, a simple matching is sufficient to
draw far-reaching conclusions about the structure of the graph. In particular, a node i € Ng
can be connected to all nodes that have a higher value v(j) than its mate j in the matching.
In other words: the totalness of the vicinal preorder allows us to gain immediate information
about the neighbourhood of the matching mate of a certain node. This means that, when
trying to construct a Hamiltonian path on a threshold graph, we can look "two steps ahead"
so to speak. Le., when selecting a node as the next one along the Hamiltonian path, we do not
only know the neighbourhood of the node in question but also have some information about
the neighbourhoods of the nodes in that neighbourhood. In the end, it is this very feature of
the vicinal neighbourhood of threshold graphs that turned out to translate the non-polynomial-
time complexity of the general Hamiltonian path problem into a polynomial one for threshold
graphs.

In the proof of Theorem 53, this feature was used to prove both the sufficiency and the
necessity of the condition for Hamiltonicity. For the sufficient part, it allowed us to construct a
complete Hamiltonian path just by ordering the pairs of the matching according to the vicinal
preorder. With regard to the necessity of the condition provided in Theorem 53, we could use
the information given by the vicinal preorder (in conjunction with the matching algorithm) for
arguing that under certain conditions not even a graph with a larger edge set than the graph
in question would permit the construction of a Hamiltonian path.

In contrast to this, the subset of edge set (27) that is induced by the twin node function
does not preserve the convenient structure of the vicinal preorder in the general case as we have
not made any assumptions about the structure of the twin node property. This means that,
when building a Hamiltonian Path that satisfies property (28), every edge between twin nodes

"interrupts" our inference about further possible connections between nodes such that we do

73

not have any immediate information about the node that possibly follows two steps later in the
twin-constrained Hamiltonian path to be constructed. On the basis of this line of reasoning,
we must take into account that the MSSP might be truly combinatorial in nature (i.e. NP-
complete as the general Hamiltonian Path Problem) and cannot rely on finding a polynomial

time algorithm for solving the MSSP.

However, despite these rather discouraging considerations about the MSSP, we can still
benefit from our analysis in the previous chapters and try to exploit the fact that the graph
underlying a MSSP contains a threshold graph as a subgraph. Therefore, though Theorem 53
is not of direct help here, we should not carelessly discard the general idea of approaching the
MSSP on the basis of a matching on a threshold graph. After all, it still is the case that such
a matching is contained in every solution of a MSSP according to (28). In fact, as it will be
demonstrated in the following two chapters, the threshold property, when used in conjunction
with an appropriate matching algorithm, is powerful enough to arrive at substantial results for
the MSSP.

For solving the twin-constrained Hamiltonian Path Problem, we need to consider only those
matchings in which nodes are not matched with their twin-nodes because every edge in the
path (28) is either given by the twin-node function or an edge that matches two nodes that are
not twin-nodes to each other. That is, for a given threshold graph G(N, F) we have to find a

(suitable) maximum cardinality matching on the edge set

E':=E\{(i,) € Ng x Ng : j = b(i)} . (29)

As in the general case the graph G’(N, E’) is not a threshold graph anymore, we have to modify
our matching algorithm TGMA appropriately.

Definition 73 (Modified Matching on a Threshold Graph)
Let G(N, E) be a threshold graph, and b: N — N a twin-node function. A matching on G
that contains only edges from the set E' as defined by (29) is called modified (with respect to b).

Algorithm 74 (MTGMA - Modified Threshold Graph Matching Algorithm,)

Let G (N, E) be an undirected graph with the (even) set of nodes
Ng ={1,2,...,2n}, neighbourhoods N (i) for all i € Ng,
and b: Ng — Ng a twin-node function.

[01].Sort all nodes in an order of non-decreasing degrees.
Set node i := 0,
the matching list m(i) := 0 for all i € {1,2,...,2n},
the set of all matched nodes I := @&, and
the "modified neighbourhoods”

74

N'(i) := N(@)\{b(?)} for alli € Ng.
[02] Increase i by 1. If i = 2n then STOP.
[03] Ifi € I or N(i)\I = @ then go to [02].
[04] [i ¢ I and N()\I # @ |:
If N'(i)\I # @ then
pick a node j € N'(i)\I,
set matching list m(i) := j and m(j) := 1,
add i, j to set of matched nodes I, and go to [02].
[05] [i ¢ I and N(i)\I ={b(i)} J:
Ifi>1andi—1¢€l then
if m(i —1) € N(i) and b(i) € N(i — 1) then
set matching list as follows:
m(i) :=m(i — 1) and m(m(i — 1)) :=1,
m(i— 1) :=b(:) and m(b(i)) :=i—1,
and add i, b() to the set of matched nodes I.
[06] Go to [02].

Proposition 75 Let G(N, E) be a threshold graph and b : N — N. Then MTGMA yields a

mazimum cardinality modified matching on G.

Proof. The basic idea of MTGMA is identical to TGMA (Algorithm 42), which has been
proven in Corollary 50 to yield a maximum cardinality matching: we arrange the nodes in
an order of non-decreasing degrees and, proceeding from the lowest to the highest node, we
match each node that has not yet been matched (i ¢ I) with some other unmatched node in
its neighbourhood, provided N (i)\I # &, i.e. provided such a node exists at all (see steps [01]
to [04] and step [06] in this algorithm). MTGMA differs from TGMA in the following respect:
as we would like to achieve a matching on the set of edges E’ in (29), we do not permit in
step [04] that a node ¢ be matched with its twin-node b(¢) and hence try to find a mate in the
neighbourhood N'(7)\I. Obviously, as long as the set of so far unmatched neighbours N (¢)\I
contains either no node or at least one node that is not the twin node b(i), the algorithm
proceeds in the same way as TGMA and leads to a maximum cardinality matching according
to Corollary 50.

However, whenever an unmatched node ¢ has no unmatched neighbour except its twin-node
b(7) (step [05] in this algorithm: the case i ¢ I and N(¢)\I = {b(¢)}), MTGMA checks whether
i is not the first node (¢ > 1) and whether the preceding node i — 1 has been matched (i —1 € I).
If this is the case and the twin node b(¢) is a neighbour of the preceding node (b(i) € N (i — 1)),
the node i is matched with the original mate of the preceding node and the preceding node is

matched with the twin node b(7) instead. We will refer to this procedure as a "swap of mates"

75

in the following and have to prove that attempting a swap of mates in step [05] is an appropriate
means for arriving at a maximal cardinality matching using the edges in the set E’.

First, note that we do not have to attempt any matching in step [05] if ¢ = 1 and N (i) =
N(i)\I = {b(i)}, as it is, trivially, impossible under these conditions to match the node i = 1
using the edges in E’. Second, note that, for ¢ > 1, a successful swap of mates in step [05]
immediately increases the cardinality of the matching achieved so far and will definitely not
reduce the overall cardinality of the matching at a later stage of running the algorithm because
Corollary 50 for TGMA ensures that it does not matter which of the so far unmatched nodes
N (7)|I we choose for matching a certain node (as long as we proceed in a non-decreasing order
of nodes).

It remains to show that there is no other way of increasing the overall cardinality of the
matching if, in step [05], our attempt at swapping mates with node ¢ — 1 is not successful and
we leave the node ¢ unmatched as a consequence of this. We make the following observations:

(1) For matching a node ¢ subject to the edge set E’, we do not have to attempt more than
a mere swap of mates with one single node (in particular we could not do better by trying out
a permutation of the mates of several nodes) because, according to Corollary 50 about TGMA,
at any stage of constructing a matching, the overall cardinality of a matching on threshold
graphs is not affected by the particular nodes in N(:)\I that we have already chosen as mates
for certain nodes 3.

(2) Attempting a swap of mates with a (so far unmatched) node of a higher degree than the
node ¢ will never be successful because, due to the vicinal preorder of a threshold graph, we
would never be able to match ¢ with any so far unmatched neighbour of such a node (except
with the common neighbour b(7)).

(3) Attempting a swap of mates with a so far unmatched node of the same degree as the node
1 will never be successful because, due to the vicinal preorder, the only unmatched neighbour
of such a node is b(7).

(4) Attempting a swap of mates with a matched node of a lower degree than the node i — 1
will, due to the vicinal preorder, be unsuccessful if attempting a swap of mates with the node
1 — 1 is unsuccessful.

(5) Attempting a swap of mates with a matched node of the same degree as the node i — 1
will, due to the vicinal preorder, be successful if and only if attempting a swap of mates with
the node ¢ — 1 is successful.

(6) If a swap of mates with node ¢ — 1 is not possible due to the fact that node ¢ — 1 has
remained unmatched, ¢ — 1 must be of a lower degree than node ¢ (otherwise ¢ — 1 would have
been matched with b(i)) and no node of the same degree as i — 1, or of a lower degree, would
be a suitable candidate for a swap of mates.

In sum we have shown that node ¢ — 1 is the most suitable candidate for a swap of mates
and that there is no other way of improving the cardinality of the matching if a swap of mates

with node ¢ — 1 turns out to be impossible. m

76

Remark 76 MTGMA is an adapted version of TGMA (Algorithm 42) for computing mod-
ifted matchings, i.e. mazimum cardinality matchings on the edge set E'. Analogously, we
will consider in the following also modified matchings based on the algorithms TGM Ay, and
TGM Apmax (Algorithms 46 and 47). In doing so, we will have to take into account that the de-
gree property of TGM Apax (Proposition 51) does not hold in general anymore. (See Proposition
79, however.).

7.2 Twin-induced structure and the case |M|#n —1

Based on the preceding general considerations, let us make a first step towards a heuristic for the
MSSP. In this section, we will proceed from a maximum cardinality matching on the threshold
graph underlying a MSSP, as provided in chapter 5.1 and the algorithm of the previous section.
In particular we will introduce the concept of the "twin-induced structure" of a matching and
analyse the easy cases in which the cardinality of our maximum cardinality matching is less
than or greater than n — 1 (with n being the number of twin-node pairs, as in the previous

chapters).

Let us observe what happens if we add to a (modified) maximum cardinality matching
M C Eg,on the threshold graph those edges that are generated by the twin node function.
Figure 9 illustrates this setting for n = 13 pairs of twin nodes, with edges from the matching M
being depicted as dashed lines, the edges arising from the twin node property as regular lines,

and unmatched nodes being represented by small circles.

M with IM |= n-2 Swith Ns=C1+Cr+Cs+P+P,

! [JLLLLLY] (o) HIIIIII
: c, / I
‘ [IETTRRT) LLLLL! P]_

Figure 9: The twin-induced structure of a matching

7

Obviously, the subgraph resulting from the combination of the matching and the twin node
connections is split into different components, each of which is a cycle or a path. Other compo-
nents are not possible because every node is incident to either one or two edges: only one edge
(the twin node edge) if the node has not been matched under M, and two edges if the node
has been matched. All cycles consist only of nodes that have been matched in M, while a path
results if and only if two unmatched nodes are connected via some edges from the matching
and some edges due to the twin node property. (Note that the number of unmatched nodes
is always even because so is the node set of the threshold graph underlying the MSSP.) This

observation gives rise to the following definition.

Definition 77 (Twin-induced structure of a matching)

Let G'(N,E) be the graph of an MSSP with twin node function b : No¢ — N¢g, moreover
G(N, E) its threshold subgraph, and M C Ef, a modified mazimum cardinality matching on G
under the constraint (29).

Then the subgraph S(N, E) of G'(N, E) with Ng := Ng and

Es:= M+ {(i,j) € Ng» x N : j =b(i)}

is called the twin-induced structure of the matching M (with respect to b) and will be repre-

sented by the node set partition
Ne=Ci+Co+..+Cq+P +P+ ...+ F,

where the sets C1,...,Cq and Py, ..., Py, respectively, consist of the nodes from the cycles and
paths that are the components of S. Alternatively, the twin-induced structure will be represented
by a partition of the matching, i.e.

M=C+Co+..+Cq+P+Po+..+P,,

where the sets C1,...,Cq and P, ..., Py, respectively, consist of those edges from the cycles

and paths of S that are also elements of the matching.

Remark 78 (1) Note that we have ¢ =n — |M| for |Ng| = 2n.

(2) If the twin-induced structure consists only of one single path, i.e. Ng = Py, or only of
one single cycle, i.e. Ng = C1, then the MSSP obviously is feasible, i.e. there exists a path that
fulfills condition (28).

(3) Observe that every cycle of S has at least length 4.

(4) For achieving a transparent presentation we will represent the twin-induced structure of
a matching by means of the node set partition thoughout the present chapter, while in chapter

8 it will be more convenient to represent the twin-induced structure by subsets of the matching.

Having introduced the concept of the twin-induced structure of a matching, let us note,
before we proceed with the main topic of this chapter, a prerequisite for the last section of

the present chapter and for chapter 8. The following proposition about a modified greedy

78

matching, i.e. a matching computed by MTGM Ay, ax, is the counterpart of the degree property

of TGM Apax (Proposition 51), expressed by means of the twin-induced structure of a matching.

Proposition 79 (Degree property of MTGM Apax)

Let G(N, E) be a threshold graph, b a twin-node function, and M a modified matching on
G that has been obtained from MTGM Apmax. Then for all (i1,71), if there exists an edge
(i2,j2) € M with dg(i1) > dg(iz) and dg(j1) > dg(j2), the edges (i1,71) and (iz, j2) belong to

the same cycle or path of the twin-induced structure of M with respect to b.

Proof. We know from Proposition 51 that the case dg(i1) > dg(i2) and dg(j1) > dg(j2) does
not occur with matchings obtained by TGM Ay, .x. The only difference between TG M Ay, and
MTGM Apax lies in the fact that the latter occasionally performs "swaps of matching mates"
(cf. the proof of Proposition 75), which can disturb the degree property of TGM Ay,ax for the
pairs of nodes involved in the swap. As such a swap of mates implies that a node j; is matched
with the twin node i1 = b(j2) of a node ja, the edges (i1,71) and (i, j2) must belong to the
same cycle or path of the twin-induced structure of M. (Note, however, that a swap of mates

does not automatically lead to a situation in which dg(i1) > dg(i2) and dg(j1) > dg(j2).) ®m

In the remainder of this chapter, we will analyse what the matching M and its twin-induced
structure S tell us about the feasibility or infeasibility of the MSSP. Some conclusions are
immediately at hand when we look at the cardinality of M.

Being a special case of the general Hamiltonian path problem, every solution (28) of the
MSSP presupposes a matching on the threshold subgraph G of a cardinality of at least n — 1.
Hence we can immediately decide on the infeasibility of an MSSP if our maximum cardinality
matching is of cardinality |M| < n — 1.

In contrast to this, let us consider the case of a perfect matching, i.e. a matching with
|M| =n.

Proposition 80 (MSSP in the case of |M|#n—1)

Let G'(N,E) be the graph of an MSSP, G(N, E) its threshold subgraph, and M C E{ a
modified mazimum cardinality matching on G.

(a) If IM| < n —1, the MSSP is infeasible.

(b) If M is a perfect matching, i.e. |M| =mn, the MSSP is feasible.

Proof. It remains to show (b). According to Remark 78(1), the twin-induced structure S of
the matching consists only of cycles C,...,Cq. If d = 1, we directly have a solution of the
MSSP. Otherwise, we exploit the threshold structure of the subgraph. Let us arbitrarily pick
one node from each cycle of the matching structure S, i.e. let us choose nodes iy, 49, ...,iq € Ng
with i, € Cf for 1 < k < d. Because the vicinal preorder of G is total, we can renumber the
node and cycles such that

11 jig ,'5 ;jid.

79

As the matching has cardinality |M| = n, there exist nodes j € Ng with (ix, jx) € M C Eg
forall k = 1, ..., d, which, due to the vicinal preorder yields ji € N (i) C N[igt1], i-e.(Jr, tk+1) €
Eg for 1 <k <d-1, and even (ji,ix+1) € Ef. Therefore, we can define a new matching M’
by

M =M —{(ig, k) : k=1,...,d}
HGrrinpr) tk=1,..,d—1},

which is of cardinality |M’| = n — 1 and the twin-induced structure of which clearly fulfils
condition (28). (See Figure 10 for an illustration of the process for the case d = 3, where the
dotted thin edges are removed from M, and the curved edges are added when constructing
M’.) Hence, every MSSP for which there exists a perfect matching on the underlying threshold
graph is feasible. m

C C, Cs
EIEEEER EEEEEEE H.ll...l
i 3 — - 5_,
= ! ‘.‘- i,** . ! =
‘_.;" B <ia Xk) .""i:._‘
1

Figure 10: The case |M|=n

7.3 The case |[M|=n—-1

While the cases of matchings with cardinality |M| < n — 1 or |M| = n obviously can directly
be solved in polynomial time for all possible instances, the case with cardinality |M| =n — 1
does not allow for an immediate treatment and brings back the combinatorial challenge into
the problem. (Compare this with the setting of a general Hamiltonian path problem where the
case |M| = n is the only interesting one).

According to what has been said above (and this actually is the only information that we
have so far), the instances with |M| = n — 1 are characterized by the fact that they are those
MSSPs for which every maximum cardinality matching has a twin-induced structure of the

form
Ng=C1+Co+ ..+ Cyqy+ P, withd >0 . (30)

80

Let us proceed by examining some examples to get a better insight into the nature of such

a setting.

First of all, as Figure 11 shows, there obviously are both feasible and infeasible cases among
the instances with |M| = n— 1, which depends on the twin node structure as well as the options
for a matching. The infeasibility of the second twin-induced structure in Figure 11 can easily
be seen by looking at the degree partition of the underlying threshold graph and observing that
the matching given in Figure 11 is the only maximum cardinality matching that exists on the
graph. (The numbers in the circles represent the values v (i) of the nodes; adjacency is defined
by the threshold a = 70.)

a) Degreepartition b) Unique matching c) Possible
of threshold graph with max. card. twin-induced structures

(MSSP infeasible)

Figure 11: The case |M|=n-1

Of course, there are also instances in which there exists more than one maximum cardinality
matching on the underlying threshold graph. If the MSSP under investigation is a feasible one,
we can have the good luck to be immediately provided with a feasible solution by the matching
algorithm (or not). Figure 12a) presents an example where there exist exactly two maximum
cardinality matchings on the underlying threshold graph. In the case of the twin-node function
of 12(d), we immediately arrive at a feasible solution of the MSSP by constructing the twin-
induced structure with respect to the twin-node function, no matter which of the two matchings
we choose. In the case of 12(c), we arrive at an feasible solution if we are so lucky as to start
with the second matching (Ng = P;, d = 0), while starting with the first matching, the twin-

induced structure of which is not a feasible solution, leaves open the question of whether or

81

not our MSSP is feasible because we have Ng = Cy + P;. In contrast to this, Figure 12(b) still
shows the same underlying threshold graph, but again with a different time node function. In

this case, neither matching leads to a twin-induced structure that would fulfill condition (28),
so the MSSP is infeasible.

a) Degreepartition b) Infeasible MSSP ¢) MSSP with one d) MSSP with two
and matchings feasible solution feasible solutions

l —

e 4o O >—e

P om i

O @ o [aaar
® de O &9, \.‘—0
L —
0 b o o—=b O——b N

Figure 12: Matching, twin-node function and (in)feasibility

In principle, we could enumerate all possible maximum cardinality matchings on the under-
lying threshold graph and check if any among these has a twin-induced structure with Ng = P,
d = 0. This would not even be a complicated task because section 5 has presented a simple
matching algorithm for threshold graphs, and Remark 52(3) has addressed the question of how
to obtain all possible maximum cardinality matchings on the basis of Algorithm 42. However,
it is clear that this would still be a problem of non-polynomial (namely factorial) complexity.
Therefore, it seems to be reasonable not to rush to other possible matchings, but instead to use
the threshold property to exploit the information contained in the twin-induced structure of a

given maximum cardinality matching.

The case of |M| = n that we have discussed above suggest the idea that we could try to
find also in the case of |[M| = n — 1 some ways of recombining the cycles and the path of the

twin-induced structure (30) in order to arrive at a matching the twin-induced structure of which

82

fulfils condition (28). This time, however, the situation is more difficult. While it was sufficient
in figure 9 to transform a matching of cardinality |M| = n into one of cardinality |[M|=mn —1
(by substituting d edges for d — 1 edges), we are more restricted now and must make sure that
every edge that we cancel from the given matching M is replaced by a new edge to preserve
the cardinality of our matching.

Figure 13 provides two examples for this procedure. In example a), it is sufficient to remove
two edges from the cycles and to add a new edge between the cycles and one edge to one of the
ends of the path. In order to transform example 13(b) into a solution of the MSSP, however,
we have to remove one edge from the path and three others from the cycle and add four new

edges.

a) Replacing 2 arcs b) Replacing 4 arcs

[. LLLLELL]

-l‘---' o

\J <

..
O .
‘0 []

.............. w L EmEEEEnm

n
A »
.

.

*

‘A

]

...lllll-“'

e
EEEEEN

]

*
Yengunt '

..'l--.---l“
Figure 13: Constructing a feasible solution to the MSSP

Unfortunately, in the case of a more complicated twin-induced structure of our matching,
this approach would again lead to a combinatorial explosion because the general approach of
choosing a subset of edges to be replaced by new edges is obviously only a different perspective on
the process of trying out a different matching. And yet, we can expect significant computational
advantages indeed if we change only a few edges instead of calculating an entirely new maximum
cardinality matching from scratch. Therefore, we will continue our approach in the following by
analysing three cases: structure-preserving solutions, path-splitting solutions and cycle-splitting

solutions.

7.4 Structure-preserving solutions for matchings with |[M|=n —1

If we restrict our attention to changing only a few edges, there is one rather general case that
suggests itself quite naturally among all different options of recombining the components of
the twin-induced structure of M. This case occurs when we add and remove only a minimal
number of edges for obtaining a solution. This is the case in which all nodes remain in the same
order in which they are given within the cycles and the paths of the twin-induced structure of
the matching. To achieve this, we remove exactly one edge per cycle and no edge from the path,
i.e. altogether d edges, and try to find exactly d new edges such that we arrive at the situation
in condition (28). There are two subcases that are suitable for this procedure, which have been
illustrated in figure 14 (the dotted thin lines denote the edges that have been removed, while the
arrows represent those that have been added). The procedure of type 1 in Figure 14(a) consists
of adding the path before (or after) all cycles, and type 2 in Figure 14(b) is the situation in
which we include the path somewhere between the cycles. These two subcases are summarized

in the following definition.

a) Typel b) Type 2
SEEERLEE e] JURTY 2 s TERLLEE
H o* - IlA
C Js : &
3 : o —=9 TJOA :‘.r........
: is v,
>—=9 ® P ——
3 I : i2a
._.JZ : @ jZA._.:
6—_.‘ I e Qg 1389_9
l2 7y p : :
H H |3BE E
I....... E . I....... .'._.
Cte & § : - e—a
: Ja . Poapues® JoB J2B .
5 I P L
- S jO H M
11 Wenunae® J18 " eennnnnnan¥ i

Figure 14: Types of structure-preserving solutions

84

Definition 81 (Structure-preserving solution of an MSSP)

Let G'(N, E) be the graph of an MSSP, M a modified mazimum cardinality matching on the
underlying threshold subgraph G(N, E) with cardinality |M| = n — 1, and let the twin-induced
structure of M be given by

Ne=C1+Co+..+Cy+ P withd>1. (31)

A solution of the MSSP is called structure-preserving with respect to M iff there exists a renum-
bering of the cycles and a suitable numbering of nodes such that the Hamiltonian path (28) takes
the form
01,0 — 01,2 — - — 01,|Qy| — 92,1 — 12,2 = oo = G2,|Qq| — -+
e T (d41),1 — H(d41),2 — e — (dHD), | Qupnl s
where
{iv1,i12, .00,) = P for one l with 1 <1< d+1,
{ik1, 00,2, s U@y) = Ok for all k # 1 with 1 <k <d+1,
and the paths
ip1 —ip2 = - —lpQ, foralll <p<d+1
are subgraphs of the twin-induced structure of the matching.
In the case of
{i1,1501,25 0 01,)Qu 1} = P or {i(as1),1,8(ds1),2s 0 U(d41),|Qusa |} = P
we will speak of a structure-preserving solution of type 1, otherwise of a structure-preserving

solution of type 2.

|C|
2

removed per cycle (the other edges are determined by the twin node function), @ different

For a given twin-induced structure represented by (31), there are edges that can be
permutations of the cycles Cj and the path P (the factor 2 arises due to symmetry), and
altogether 291 ways of trying to insert both the path P and each path that remains from
one of the cycles Cy into the structure-preserving solution (namely "forward" and "backward"

each). Hence, there are

d
(d+ 1) [T 1G]
k=1
possible candidates for a structure-preserving solution of the MSSP for any maximum car-
dinality matching on the underlying threshold graph. Obviously, providing a general criterion
for the existence of such a structure-preserving solution of an MSSP would save computational
time considerably. Fortunately, exploiting the properties of the underlying threshold graph

leads to such a criterion indeed.

Let us recall that our point of departure for considering structure-preserving solutions of the
MSSP was the idea to use an approach for threshold graph matchings of cardinality |[M| =n—1
that is similar to the one that was successful for matchings of cardinality |M| = n, where we

combined the cycles of the twin-induced structure of the matching into to a solution of the

85

MSSP. In order to see better what we can do in the case of |M| = n— 1, it is helpful to consider
the case |M| = n from a different, somewhat broader perspective.

In fact, we can interpret the case |M| = n, i.e. Proposition 80, in the light of Theorem
44(i). In doing so, we can observe in figure 9 that combining the cycles C, Cy and C3 actually
means constructing a matching-dominated {(i1, 1), (i2, j2), (i3, j3) }-path relative to the given
matching. In the general case, the main ingredient of Proposition 80 consists in constructing a
matching-dominated path of the form

11— J1— %2 —Jo— .. —id—Jd
from
(i, jr) € M for 1 <k < d, and
(Jkr k1) € EG\M for 1 <k <d-—1,
and we know from Theorem 44 that this is always possible on the basis of our matching M.

It is for this very reason that a perfect matching always leads to a solution of the MSSP.

How does this perspective provide a hint for developing a criterion for structure-preserving
solutions of an MSSP? We have noted above that constructing a structure preserving solution
in the case |[M| = n — 1 is equivalent to removing d edges and adding d new ones, while the
recombination of cycles in the case of |M| = n required only replacing d edges by d—1 new edges.
In the perspective of alternating paths, this means adding d edges to d edges from a matching
such that we arrive at an alternating path with altogether 2d edges (instead of altogether 2d — 1
in the case of a matching-dominated T-path), which precisely is the phenomenon of an even
T-path.

Indeed, as figure 14(a) illustrates for the case of a structure-preserving solution of type 1,
gluing together the cycles and the path means constructing an even path
Jo—t1—J1—%2—J2— .. —ld—Jd
from
(i, jr) € M for 1 <k < d, and
(jk,ik+1) S E&\M for0<k<d-1.
Therefore, we can immediately find a full characterization of structure-preserving solutions
of type 1 on the basis of Theorem 44(i7). Moreover, it turns out that this insight makes it even
possible to address type 2 on the basis of the result for type 1. We directly obtain the following

theorem.

Theorem 82 (Existence of structure-preserving solution of an MSSP)

Let G(N, E) be the underlying threshold subgraph of an MSSP and M a modified matching
on G provided by MTGM A, with the twin-induced structure (31).

Then there exists a structure-preserving solution of the MSSP with respect to M if and only
if one of the two endnodes of the path P is adjacent to some node from each of the cycles Cy,
1<k <d.

86

Proof. (1) Structure-preserving solution of type 1:
<: Assume that we have a structure-preserving solution of type 1 according to Definition
81 with the node sets {ix 1,72, .., ik,|0, |} = Ck for all k with 1 < k < d representing the cycles
and i(g41),1 being the endnode of the path. P. Then (ix,1,i,q,|) € M and (i@, ik+1),1) €
E;\M for all 1 < k < d. Hence
1,1 = 00|Qy| — 12,1~ 12,|Q| — T b1~ Ud,|Qql — U(d+1),1
is an even {(i1,1,71,jQ,|)s (12,1, 92,|Qa|)s -+» (84,1 9d,|Q,|) }-Path and Theorem 44(ii) applies.
= Let jo be the endnode of the path P that is adjacent to the nodes j, € Cj for all
1 < k <d. Further, let (jg, 1) be the corresponding pairs from the matching M such that the
cycles C} and the path P are represented by the node sets
Cr = {Jr, k2, k)0 -1, i} for all k with 1 <k <d
and
P = {Jo,i(a+1),25 - i(d+1),|P| }»
respectively, with the order of nodes in these sets being given according to the original order
of nodes within the cycles C} and the path.P.
Then, given an appropriate renumbering of the pairs (ji, {x) and, correspondingly, the cycles

C}, there exists an even alternating path

Ji—li—jg2—la— ... — ja—lqa — jo

according to theorem 44(ii). Hence,
J1— 012 — o — i1y -1 — i —J2 —d22 — . — g -1 —l2 — .
o = Jd = td2 — - —iq|Cy|—1 — la — Jo — idt+1),2 — - — U(d+1),|P|

is a structure-preserving solution of type 1.

(2) Structure-preserving solution of type 2:

Assume that there exists a structure-preserving solution of type 2, let the nodes ig4 and igp
be the endnodes of the path P. Then, according to the line of argument in part (1), there exists
a partition of the set of cycles Cy +Cp = {C1, Cs, ..., Cq} such that ig4 and igp are adjacent to
some node from each cycle in Cy and Cp, respectively. We can assume iga = igp without loss
of generality since the vicinal preorder on G is total, from which follows that i 4 is adjacent also
to some node from each cycle in Cg. Therefore, whenever there exists a structure-preserving
solution of type 2, there is also a structure-preserving solution of type 1. Consequently, the
criterion proved in part a) is necessary and sufficient for the existence of structure-preserving

solutions in general. m

Remark 83 Pertaining to computational effort, Theorem 82 can be exploited very efficiently.
Because of the vicinal preorder of threshold graphs, we only have to check whether the larger
one of the two endnodes of the path is adjacent to some node from each of the cycles. Moreover,
also due to the vicinal preorder, we do not have to check adjacency for all nodes in all cycles,
but instead it is sufficient to look for adjacency only with the largest node in each cycle. Finally,
again because of the vicinal preorder, we only have to check if the higher of the two end nodes

of the path is adjacent to smallest node among the largest nodes in all cycles.

87

7.5 Classification of non-structure-preserving solutions for matchings
with |M|=n—1

In the previous subsection we have considered those solutions of the MSSP that arise when we
change only a minimal number of edges (namely d edges, with d being the number of cycles
of the twin-induced structure) from a given matching of cardinality |M| = n — 1, which led to
the analysis of structure-preserving solutions. In a next step, we will consider those solutions
that we obtain by changing d + 1 edges from the matching. Moreover, we will observe on this
occasion that structure-preserving solutions are relevant for solving the MSSP also beyond the
case of changing d edges. The additional (d + 1) edge to be removed here can be an edge

either from the cycle or from the path. We will start with the latter case.

Definition 84 (Path-splitting solutions)
Let G'(N, E) be the graph of an MSSP, M a matching on the underlying threshold subgraph
G(N, E) with cardinality |M| =n—1, and let the twin-induced structure of M be given by (31).
A solution of the MSSP is called path-splitting with respect to S iff there exists a suitable
numbering of nodes such that the Hamiltonian path (28) takes the form
i1 — 19 — e — 0110|921 — 62,2 — - — G| Qy| — -
e T (d42),1 T U(d42),2 T e T U(d42),|Qasal
where
{it15 1,25 1101 } A+ Limots m,2s oos im0} = P
for some l and m with 1 <Im<d+2andl <m—1,
{915 Tg(k),25 -+ Lg (), Qg1 |} = O
for all k with 1 < k < d and some bijective function
g:{1,....,d} = {1,....d + 2} — {i,m},
and the paths
ip1 = ip2 = - — ip|Q,| foralll1<p<d+2

are subgraphs of the twin-induced structure of the matching.

Figure 15 illustrates two simple types of path-splitting solutions. In the case of type 1, the
path P has been split such that the nodes of all cycles Cy can be arranged between the two
segments of the path (without changing the order of the nodes within a cycle Cj). In the case
of type 2, the path P has been split such that the nodes of some cycles Cy can be arranged
between the two segments of the path, while the nodes of all other cycles can be attached to
the "outer end" of one of the two segments of P (again without changing the order of nodes

within a cycle).

88

a) Example of an irreducible path-splitting solution of Type 1

d

®
@

=)

Stable

Figure 15: Irreducible path-splitting solutions

For convenience, we introduce the following conventions to refer to the structure of a path-

splitting solution.

Notation 85 (1) We will denote path-splitting solutions by
Xi— Xy — ... — X,
with X;, 1 <1 < g, referring to a subgraph of one of the following types:
a) the subgraph consists of the nodes of a cycle Cy, in which case we will write C for some
Xi;

b) it consists of the nodes {i1 1,112, ...,79,|0, } and we will write P, for some X;; or

89

c) it consists of the nodes {im1,%m,2;, - im,|Q.,|} and we will write Py for some X;.

(2) We write Ea or Eb if i1 or im,1 are one the (unmatched) endnodes of the path P,
respectively, and write Ea or]Sb if these endnodes are iy |q,| OT im,|Q,,|, Tespectively.

(3) If X; = X1 = C for some 1 < i < q, we will simplify our notation by writing C instead
of C —C.

Remark 86 In this notation, the path P of the twin-induced structure according to (31) can
be represented as P = E:(Fb = ?b(ﬁa

Using our notation, we can formally distinguish between the following 20 types of path-

splitting solutions (with some types being equivalent due to symmetry; see below) :

(Z) F;_C—E7E_C_E,E—C_}-i,i_c_?)b,
(“’) C_ﬁ_ﬁuc_z_ﬁbac_fﬁa_ﬁvc_ﬁa—ﬁv
(i) C-Po—C—-P, C—P,—~C—Py, C—P,—C—-P,, C—P,—C—P,
(iv) C-Po-P—-C,C-P—F—C,
e e
C-B-P-C,C-P,—P,—C,and
W) C-Po—C-P—C, C—P—C—B—C,

T

C-P,-C-P—C,C-P~C-P,—C.

Each of these 20 types of path-splitting solutions represent a number of possible maximum
cardinality matchings M the twin-induced structure of which takes the form of one of these
types. Let us illustrate this by calculating the number of potential path-splitting solutions
represented by the first 4 types of path-splitting solutions listed above. All these 4 types are
characterized by the fact that the cycles are set between the two parts into which we have split

the path. With d being the number of cycles of the twin-induced structure according to (31),

d
there are d! permutations of the cycles, H |Ck| ways of arranging the cycles in the middle by
k=1
removing altogether d edges, |2ﬂ — 1 ways of splitting the path by removing 1 edge, and 3 ways

of gluing the two segments of the path to the left or to the right of the cycles (3 ways instead
of 4 because the types E - C - Fb and F.’; -C - Fb are symmetrical to each other), i.e. there

are altogether

d
3+ (51— 1)« J] IC4]
k=1

potential maximum Cardinality_matchings that could lead to a path-splitting solution of the
MSSP and the twin-induced structure of which takes the form of one of the first 4 types of
path-splitting solutions. Without calculating the combinatorial options for the other 16 types
(some of which would lead to an even higher number of potential matchings, due to the fact that
the number of matchings that would lead to the type C' —]7; —-C - E, for example, is clearly
higher than the number of matchings that would lead to the type F,; —-C - (f_’b, for example),

it is obvious that a simple criterion for discovering whether the twin-induced structure of a

90

certain matching M gives rise to a path-splitting solution will greatly reduce the complexity of

deciding whether or not a certain MSSP is feasible.

The following result is a significant step towards such a criterion.

Theorem 87 (Classification of path-splitting solutions)

Let G'(N, E) be the graph of an MSSP, M a modified matching on the underlying threshold
subgraph with cardinality |M| = n — 1 that has been obtained by MGTMA, and let S be the
twin-induced structure of M. If there exists a path-splitting solution with respect to S, then
there also exists a structure-preserving solution with respect to S, or the path-splitting solution
takes one of the two forms

P C’ Pb, or
C-P,—C-h,

This theorem justifies the following definition.

Definition 88 (Irreducible path-splitting solutwns of type 1 and type 2)
A path-splitting solution that takes the form P C - Pb or C' — P C - Pb 1s called an
(irreducible) path-splitting solution of type 1 or type 2, respectively.

Note that the irreducible path-splitting solutions of type 1 and type 2 are precisely the two
types illustrated in Figure 14 above.

Proof. We will address the 20 cases of path-splitting solutions in the order given in the list

above.

— — —
(i) Regarding P, — C — Py, note that we can connect the end of P, that has been matched
—
in the path-splitting solution with the unmatched end of P, such that we get the structure-
preserving solution C' — Fa) - Fb because P = I?; — E.is the (un-split) path in the original
matching M.
. — — . — —
The same applies to P, — C' — P, and to the symmetric case P, — C — P,.
For P, — C — P, there is nothing to show as it this one of the two types mentioned in the

theorem.

(#3) The type C — Fa) — H is the structure-preserving solution of type 1, hence there is
nothing to show.

Regarding C' — E —]3;, there either exists also a structure-preserving solution, or the two
endnodes of Fa and I?b that were not matched under M must be members of a maximal stable
set of G (otherwise we would have a structure preserving solution again according to Theorem
54), in which case a solution of the type C' — (P_a —]3;, cannot not exist.

Regarding C — E —](31,, the endnode of E that is connected to Fb must be a member of

a maximal stable set of G if there is no structure-preserving solution. Hence it must have at

91

least the same degree as the endnode of Fa that is connected to C (otherwise MTGM A would
—
have connected it to P, in the original matching M), which implies the contradiction that the
— =
structure-preserving solution C' — P, — P, exists.
. - =4 g =
Regarding C — P, — Py, this type directly implies the existence of C' — P, — P,.

(#i1) For C' — 13; -C - Fb there is nothing to show as this is one of the two types mentioned
in the theorem.

Regarding C — (I;a - C - F’;, if there is no structure-preserving solution, the endnodes of
E and F)b that are connected to the middle C must be members of a maximal stable set of G.
Hence, both endnodes of the C' in the middle must be members of a maximal clique of G. This
is not possible because otherwise M GT M A would have matched the endnodes of E and f’;
with the endnodes of the middle C' in the first instance.

Regarding C' — }?,; -C- FZN we can connect Fb to F; as in the original matching M, with the
middle C remaining connected to]3; . This yields C' —]?a) — Fb — C, which is structure-preserving
of type 2.

Regarding C — Fa —C - E, we will consider the case C; — Cy — (I?a —C3—Cy— (f_’b without
loss of generality. If there is no structure-preserving solution, the right endnode of E , which
we will call k£ in the following, must be a member of a maximal stable set of G. Hence the left
endnode of C3 is a member of a maximal clique of G, which implies that the right endnode of
C'5 has at most the same degree as k (otherwise MTGM A would have matched k and the left
endnode of Cj in the original matching M). Consequently, due to the vicinal preorder of G, the
node k must be adjacent to the left endnode of C4 and, again due to the way in which MTGM A
works, the right endnode of C4 has at most the same degree as k. As this right endnode of C}
is adjacent to the left endnode of Fb, so is k. Therefore, and again due to MTGM A, the left
endnode of Fa, which was matched with the left endnode of E under the original matching M,
must have at most the same degree as k. Consequently, k is adjacent to the left endnode of
C5. This and the fact that C'; can be connected to Cy implies that we can construct an even
alternating path with the endnodes of C; and C5 and the exposed node k. Hence, according
to Theorem 44(ii), the node k£ must be adjacent to one node from each of the two endnodes of
the cycles C7 and Cs. Additionally, we have already shown in our line of argument that k is
adjacent to one node from each of the two endnodes of the cycles C3 and C;. Due to Theorem
44(11), there exists an even alternating path that consists of the endnodes of all four cycles Ct,
Cs, C3, C4 and the node k. This implies that there exists a permutation 7 of the four cycles
such that F)b — E = Cr1) = Cr2) — Cr3) — Crqa) is a feasible solution of the MSSP, i.e. we

could construct a structure-preserving solution of type 1.

(iv) The case C' —]?; - Fb — C is the structure-preserving solution of type 2.

Regarding C' — Fa) —]7;, — (', we assume that there is no structure-preserving solution. Then
the left endnode of F)b must be a member of a maximal stable set of GG. If this left endnode had
a degree that were lower than the degree of the right endnode of]?1:, our algorithm MTGM A,

in the original matching M, would have connected this left endnode node to the right endnode

92

of]?a> (instead of matching the right endnode of }7@) with the right endnode of }_7;) Hence,
the degree of the right endnode of]3; is at most the degree of the left endnode of]3;, This
implies that we can connect also the left endnode of F’; to the right cycle C'. This, however, is
a contradiction as it allows for the structure-preserving solution of type 2, i.e. C' — Fa) — Fb —-C.
Regarding C' — E — E — C', we observe that this case is symmetric to the previous case.
Regarding C — E — Fb — C, we must have also a structure-preserving solution according to
Theorem 82 here because one of the two endnodes that connect Fa with Fb must be a member

of a maximal clique of G.

(v) In the case of C' — E -C - Fb — C, we can apply the same line of reasoning that we
used for type C' — E —-C - Fb) in part (#4¢), which proves the existence of a structure-preserving
solution.

Regarding C' —]?a) -C - E — C, we show that, if there is no structure-preserving solution,
this solution implies the existence of a solution of the type C' —]?; -C - E, which is one of
the two types mentioned in the theorem. Let us assume that there is no structure-preserving
solution. Then the left endnode of Fa) and the right endnode of](?b must be members of a
maximal stable set due to Theorem 82. By applying the same line of reasoning that we used for
the case C' — E -C— <P_’b in part (i4¢), we can conclude that the left endnode of I?a) is adjacent to
at least one node among the two endnodes of each of those cycles that make up the left C. In
the same fashion we can conclude that the right endnode of Fb is adjacent to at least one node
among the two endnodes of each of those cycles that make up the right C'. Consequently, due
to the vicinal preorder, the higher node among the left endnode of Fa) and the right endnode of
i’:—’b is adjacent to at least one node among the two endnodes of all cycles that make up the left
C and the right C. Again analogously to the case C' — E —C— E in part (¢i¢), we can conclude
on the basis of Theorem 44(i¢) that there exists an alternating path that consists of the higher
of the two endnodes and all cycles that make up the left C' and the right C'. This implies that
there exists a permutation of the left and the right cycles C' such that all left and right cycles
can be glued to the higher of the two endnodes, i.e. we arrive at either C' — Fa) -C - E or its
symmetric counterpart Fa) -C - E - C.

Regarding C — I?a) —C— 171, — C, we can apply a line of reasoning similar to (albeit slightly
more complex than) the previous case. If the left endnode of E: is of a higher degree than the
left endnode of]?b (or both degrees are equal), this procedure leads to the conclusion that a
permutation of the cycle(s) in the middle can be glued to a permutation of the cycle(s) on the
left such that we arrive at a solution of the type C — F; — 1?’1: — (', which was addressed in part
(iv). If, conversely, the left endnode of F)a is of a lower degree than the left endnode of]7;7 this
procedure leads to the conclusion that some permutation of all cycles (i.e. those on the left, in
the middle and on right) can be glued to the left endnode of]31:, which yields C' — 13;), — 1(7&, ie.
the structure-preserving solution of type 1.

«— —
Finally, the case C — P, — C — P, — C' is symmetric to the previous case. m

93

Note that the examples of two irreducible path-splitting solutions presented in Figure 14
above are "irreducible" indeed, namely in the sense that the structure of the underlying thresh-
old graph does not allow for any matching based on edges other than those indicated by arrows.
In particular, this implies that, in the cases of the examples given in Figure 14, it is not possible
to construct a structure-preserving solution on the graph, nor to reduce one of the two types
to the other. Consequently, these two examples prove the existence of genuine path-splitting

solutions.

Having discussed path-splitting solutions, we now turn to the other case of changing d + 1
edges from the original matching M. This case occurs when we remove 2 edges from 1 cycle
and 1 edges from each of the other d — 1 cycles and can be treated in a fashion similar to
path-splitting solutions.

Definition 89 (Cycle-splitting solutions)

Let G'(N, E) be the graph of an MSSP, M a modified matching on the underlying threshold
subgraph G(N, E) with cardinality |M| = n — 1 that has been obtained by MTGM A, and let
S, the twin-induced structure of M be given by (31). A solution of the MSSP is called cycle-
splitting with respect to S iff there exists a renumbering of the cycles and a suitable numbering
of nodes such that the Hamiltonian path (28) takes the form

f10 — 19 — o — i11Qs] — 2,1 — G2,2 — - — G2,|Qq| — -
e (A 42), 1 Y(d42),2 -~ 4(d42),|Qugals
where
{1,002, 0,000 4 {0mu1s Tm,2s oos Ty Qo |} = O
for some k* with 1 < k* <d
and some l,m with 1 <Im<d+2andl<m-—1,
{002,005 0Qs} = P
for some j £ 1,m with 1 <j <d+ 2,
{g(h),1 8g(k),20 -+ Tg(h), | @y |} = O
for all k # k* with 1 < k < d and some bijective function

g:{1l,..,d} —{k*} = {1,...,d+ 2} — {j,I,m},
and the paths
Up1 —ip2 = . ~ipjq,| foralll<p<d+2

are subgraphs of the twin-induced structure of the matching.

Corresponding to the aforementioned conventions, we refer to the structure of a cycle-

splitting solutions as follows.
Notation 90 (1) We will denote cycle-splitting solutions by

X1 —Xo— .. — X,
with X;, 1 <1 < g, referring to a subgraph of one of the following types:

94

a) the subgraph consists of the nodes of a cycle Ck, k # k*, in which case we will write C

for some X;;

b) it consists of the nodes {i;1,%2, ..,
¢) it consists of the nodes {11,912, ...,

d) it consists of the nodes {im.1,im,2, -

ijq,1} and we will write P for some X;;
i, and we will write Cy for some X;;

im,|Qn|} and we will write Cy for some X;.

(2) We write 5,1 and 5’1) if (i1,1Q.1» Tm,1) € M and (iy1,0m,|0,,|) € M, while we write al and
Cy if (i1,1,im,1) € M and (i1Q,)» im,|Q..|) € M.

(3) If X; = Xiy1 =

C for some 1 < i < q, we will simplify C — C by C.

Using our notation, we can classify cycle-splitting solutions into the following 26 types:

(4)

(i)

P-Co—C—Cy P—Co—C—Cy—C,

—

— «— —
r-c-¢,-c-¢,, pP-C-C,-C by — C,
— — — —>
rP-C,—-C—-Cy, P-C,—C—-Cp,—0C,
— —> —
rPp-c-C,-C-C,, P-C-C,—-C— Cb C,
— “— — — — «—
Co—P—-Cp, Co—C—-P—-Cp, Co, —C —P—C—Cy,
— — — «—
C-Cy,—P—-Cy, C—Cy—C—P—-0Ch,
— — — —
Cc-Cy,—C—-P-C—-Cy, C-C,—P—-Cy,—C,
— «— — «—
c-C,—-C-P-C,-C, C-C,—C—-—P-C—-C,—-C,
— — = — = —
Co—P—-Cy, Co—C—-P—-Cp, Coy —C —P—C—Cy,
— — — — —
c-C,—-P-Cy,, C-Co,—C—-P—-Ch, C-C,—C—-P—-C—Cy,
— — — —
c-¢,-rP-C,-C, C-C,—C—-—P—-C,—C,
— —
C-C,—C—-P-C—-0(Cy,—C,

Figure 16(a) presents a cycle-splitting solution of the type P — C’—; - C - <C_'b.

It will not be necessary here to illustrate again the number of potential matchings the

twin-induced structures of which could give rise to a cycle-splitting solution. Instead we imme-

diately turn to the central result, which, similar to the case of path-splitting solutions, reduces

significantly the number of potential matchings that we have to investigate for deciding on the

feasibility of the MSSP on the basis of a potential cycle-splitting solution.

Theorem 91 (Classification of cycle-splitting solutions)
Let G'(N, E) be the graph of an MSSP, M a greedy matching on the underlying threshold
subgraph with cardinality |M| =n — 1, and let S be the twin-induced structure of M. If there

exists a cycle-splitting solution with respect to S, then there also exists a structure-preserving

solution with respect to S, or the cycle-splittmg solution takes one of the four forms

P — C C Cb,orP C C - Cb Cor
PCC’OC’b,orPCC’CC’bC

95

a) Cycle-splitting solution b) Combined path and cycle split

I.ll.lll IIIIIIIHIIIIIII
.‘ llllllllllllll “ — . .ll.ll.w llllllllllllll .“
‘l o : : "’.. 'y
I I P
: : : 3 : :
: : : o, : :
I I 9—"5. ?
.............. '...-“‘. H...........,'. T

Figure 16: Solutions with a cycle-split

Proof. In a fashion similar to the proof Theorem 87, however all cycle-splitting solutions that
do not take one of the forms in the present theorem can be shown to imply structure-preserving
solutions of type 1 or type 2. Following the order of the list above, we sketch the phenomena

that allow for a transformation of these solutions into structure-preserving ones.

(i) These are the four cycle-splitting solutions given in the theorem, so there is nothing to

show.

(#4) The solutions in this group have in common that the edges that they delete from the
original matching M and that they add to it form an even alternating path with the exposed
node being one endnode of the path P. With Theorem 44(i:) and Theorem 82 this implies a

structure-preserving solution.

(7i1) The cycle segment C}, can be removed from the end of the twin-constrained alternating
path and glued to C, as in the original matching M. This directly yields a structure-preserving
solution of type 1 or of type 2.

(7v) If there is no structure-preserving solution, we can conclude (from the fact that the path
P is in the middle of the cycle-split solution, and in a fashion similar to the case C'— E —-C- E
in Theorem 87) that the two nodes of the split cycle between which the path P has been glued
(under the new matching of the solution) must both be members of a maximal clique of G.

As a consequence, we leave one of the endnodes of the path unmatched and we attach, to one

96

of the members of a maximal clique, all cycles that are not between the split cycle and the
other endnode of the path (on the basis of Theorem 44(i3)). This yields a structure-preserving

solution, which contradicts the assumption that there is no structure-preserving solution.

-
(v) Here we have the same situation as in (4i7), but this time we glue the cycle segment C'

to C, and attain a structure-preserving solution of type 1 or of type 2.

(vi) In these cases, we can cut the twin-constrained path after the cycle segment C, and
attach segment E’)b to C, (as in the original matching) such that all cycle or path segments

that are currently placed between C'_; and 6');, will follow after 6);,.

(vid) Similar to (4v), but in this case we can attach some cycles to the (now) unmatched end

of the path P (instead of attaching them to the second member of the maximal clique of G). m

Analogous to the case of irreducible path-splitting solutions, it can be shown that the four
types of cycle-splitting solutions in the preceding theorem are "genuine" in the sense that there
exist matchings on threshold graphs such that their twin-induced structures are of one of these
four types and it is not possible to construct, on the basis of a different matching, a solution of

a different type. This insight and the preceding theorem justify the following definition.

Definition 92 (Irreducible cycle-splitting solutions)
A cycle-splitting solution that takes one of the forms P—C,—C—Cy, P—C,—C—Cy—C,
P-C-C,—C—-Cy,orP—C—-C,—C—Cy—C is called irreducible.

7.6 Existence of non-structure-preserving solutions for matchings with
M| =n—-1

Having classified path-splitting and cycle-splitting solutions, we will now develop an algorithm
for finding path-splitting and cycle-splitting solutions of a given MSSP, provided there exists
such a solution for an MSSP that does not have a structure-preserving solution.

According to Theorems 87 and 91 we can focus on six irreducible solutions, which all involve
subpaths of the form
P,—-C—-—PorC,—C—-Cy (32)

(1) First we observe, that each of these subpaths corresponds to an alternating cycle that
contains exactly one edge from each cycle represented by the symbol C and exactly one edge
from the split path P (=];; — ng) or the split cycle Cy+ (= Cz — 51;) Conversely, whenever
there exists an alternating cycle that consists of such a selection of edges, we can construct
subpaths that have the structure given in (32).

(2) Second, considering the two types of irreducible path-splitting solutions

P,—C—Pyand C— P, —C — P,

97

we observe that those cycles of a path-splitting solution that are not part of the subpath
in (32) must be attached to one endnode of the path in the same way as this is the case
with structure-preserving solutions, namely by forming an even alternating path that contains
one edge from each of the cycles concerned, with the node of Ea that was unmatched under
the original matching M being the exposed node of the even alternating path. This implies
according to Theorem 44(i7) that a cycle is suitable for being attached to a segment of the path
P in this way if and only if it contains a node that is adjacent to the larger node among the
two endnodes of the path P.

(3) Third, we observe that a similar setting exists in the case of irreducible cycle-splitting
solutions. In particular, all cycles that are not part of the subpath 5(1 -C- a,, "contribute" to
an even alternating path that has an endnode of the path P as the exposed node and contains
exactly one edge from each of these cycles and one edge from the cycle Cg-. Again, Theorem
44(i7) states that this is possible if and only if one node from each of these cycles (including
the cycle Cy+) is adjacent to the larger one of the endnodes of the path P.

In sum: each of the irreducible solutions contains one alternating cycle by virtue of one of
the subpaths in (32), and one even alternating path due to the other components (the path or
other cycles) of the twin-induced structure S, with one unmatched node of P being the exposed

node of the even alternating path.

These considerations lead to the following proposition.

Proposition 93 (Edge criterion for the existence of irreducible solutions)
Let G(N, E) be the underlying threshold subgraph of an MSSP, and M a mazimum cardi-
nality modified matching on G with the twin-induced structure S of M given by (31).
If there exists mo structure-preserving solution of the MSSP with respect to S, there exists
a path-splitting or a cycle-splitting solution of the MSSP with respect to S if and only if there
exists an alternating T-cycle with respect to M such that T consists of
(a) at most one edge from the path P and and at most one from each of the cycles Cy,
1<k<d,
(b) at least one edge from each of those cycles Cy whose largest node is not adjacent to the
largest endnode of P, and
(¢) at least one edge
(1) from the path P, or
(2) from one of those cycles whose two largest nodes are adjacent to the
largest endnode of P, or
(3) from one of those cycles only one node of which is adjacent to the

largest endnode of P, but not the edge that matches this one node.

Proof. «<=: We show how to construct a path- or cycle-splitting solution if we have an
alternating T-cycle that fulfills conditions (a) to (c¢). Because of (a), the segments of the twin-

induced structure (i.e. path P and the cycles C) can be split into two groups depending on

98

whether or not one of their edges is an element of the alternating T-cycle. Because of (b), all
cycles whose largest node is not adjacent to the largest endnode of P belong to the group of

segments with an edge in the T-cycle. With respect to (¢), we distinguish two cases.

case (i): the T-cycle contains an edge from P. On the basis of all edges in T' we can
construct a path-splitting solution of the type P:, -C - Pb with C representing all cycles that
have an edge in T' (because of either (b) or (c¢)). Because of (b), all remaining cycles (if there
are any) must have a node (which is their largest node) that is adjacent to the unmatched
endnodes of P or Pb, depending on which unmatched endnode is the larger one. Hence, we can
construct an even alternating path (according to Theorem 44(i7)) that contains one edge from
each of these remalnlng cycles and the exposed node of which is the larger one of the unmatched
endnodes of P and Pb This implies that we can glue these remalnmg cycles to the end of P
or Pb and obtain a path-splitting solution of the form P C - Pb CorC— P C - Pb

case (i1): the T-cycle does not contain an edge from P.

STEP 1: We choose one of the cycles that has an edge in T due to condition (¢2) or
(c3). To be prepared for the the case of (¢2), i.e. that we choose a cycle with an edge in T'
has two largest nodes that are adjacent to the largest endnode of P, we show that one of these
two nodes of the cycle must be incident (under the matching M) to an edge not in T. If this
were not the case, the two nodes that are adjacent to the largest endnode of P would be mates
under M. If there is no structure-preserving solution these two mates must be members of a
maximal clique of G (otherwise they would not be adjacent to the larger endnode of P). This,
however, is not possible due to the way in which MTGM A works because MTGM A would
have matched one of these two mates with the larger endnode of P rather than making these
two nodes of the cycle mates under M. Hence one of these two largest nodes of the chosen
cycle must be incident (under the matching M) to an edge not in T. If we decide to choose a
cycle that fulfills condition (¢3), we immediately know that we have chosen a cycle with a node
incident to an edge not in T

STEP 2: We construct an alternating even path that (1) contains one edge from each
of the cycles that do not have an edge in 7" and (2) contains one edge from the chosen cycle
such that this edge is not in 7" and (3) contains the larger endnode of P as its exposed node.
Constructing this path is possible according to Theorem 44(ii) because we know that (1) all
cycles that do not have an edge in T have a node that is adjacent to the largest endnode of P
(the exposed node) because of condition (b), and that (2) the chosen cycle has a node that is
adjacent to the exposed node and is incident (under the matching M) to an edge not in T (as
shown in STEP 1). This alternating path allows us to glue P and the cycles that contribute an
edge to the alternating path, such that we obtain a twin-constrained path of the form P — C.

STEP 3: We consider all cycles with an edge in 7. These are those cycles that have
not been included in the path P — C' we constructed in STEP 2 and the one cycle that we
chose in STEP 1 and have included in the path P — C in STEP 2. Because all these cycles

have an edge in T, we have an alternating T-cycle and can construct a twin-constrained cycle

99

that contains all nodes from these cycles. Now the cycle that we chose in STEP 1 is part of
both the twin-constrained path P — C' and the twin-constrained cycle such that the edge that
the chosen cycle contributes to the even alternating path that led to P — C' is distinct from the
edge that the chosen cycle contributes to the alternating cycle that led to the twin-constrained
cycle. This yields a cycle-split solution of one of the types on Theorem 91, with the cycle that
has been split into the two segments C and C’b being the cycle chosen in STEP 1 and the
cycles arranged between the segments 5 and Cb being all other cycles with edges in T

=—: The general idea underlying this part of the proof has been explained above as a
motivation for this proposition. Because of this, we focus here on defining, for every type of
irreducible path- and cycle-splitting solution, the appropriate set T' that fulfills conditions (a)
to (c).

P C - Pb The set T is defined to contain the edge from the path that connects the
segments P and Pb in the original matching M (condition (c1)) and one edge from each of the
cycles (condltlons (a) and (b)). The existence of the alternating T-cycle is guaranteed by the
existence of P C - Pb

C - P - C - Pb We deﬁne the set T" such that it contains the edge from the path
that connects the segments Pa and Pb in the orlglnal matching M (condition (c1)) and one
edge from all cycles between the segments P and Pb Obviously, condition (a) is fulfilled. The
existence of the (sub-)path Pa -C- Pb guarantees the existence of an alternating 7T-cycle. The
cycles attached to P; at the beginning of the path-splitting solution must contain, according to
Theorem 44(i7), a node that is adjacent to the endnode of P; As all other cycles have an edge
in T, condition (b) is fulfilled.

P— Cz —-C— &: The set T' is defined to contain one edge from each of the cycles, which
fulfills conditions (a) and (). If there exists a cycle the two largest nodes of which are adjacent
to the largest node of P, condition (¢2) is directly satisfied. If there exists no such cycle, we
make sure that T' contains an edge such that condition (¢3) is satisfied. This is possible because
our irreducible solution contains the sub-path P — al — C. The existence of the alternating
T-cycle is guaranteed by the existence of the sub-path 5 —-C - 5’1,

pP— 5 C - C’b C We deﬁne the set T such that it contains one edge from each
of the cycles of the sub-path C’ - C - Cb, which satisfies condition (a). Regarding condition
(b), we observe that each of the cycles at the end of the irreducible solution (i.e. each of the
cycles that do not have an edge in T) contribute to an even alternating path the exposed node
of which is one endnode of P. Due to Theorem 44(ii) each of these cycles must have node that
is adjacent to this endnode of P. This implies that T" contains edges from all cycles required by
condition (b). The edge of the split cycle CZ — = 5’1, that is in T fulfills either condition (¢2)

or (¢3). The existence of the alternating T-cycle is guaranteed by the existence of the sub-path
C —-C - Cb

P-C - CZ - C - CZ: Analoguous to the previous case, with the cycle between the
segments P and C_’; taking the role of the cycle at the end of the irreducible solution in the

100

previous case.
pP-C- C’ -C - C’b C: Analoguous to the two previous cases, with this time the
cycles in front of C’ and after Cb being those cycles that are not required, by condition (b), to

contribute an edge to the alternating T-cycle. m

In view of the previous theorem, if we would like to find out whether a certain twin-induced
structure of a matching allows for a path- or cycle-splitting solution, we have to solve the
combinatorial problem of finding an alternating T-cycle that fulfils the conditions (a) to (¢) of
our theorem. We will now attempt at solving this combinatorial problem by modelling it on

the basis of a network flow problem with additional constraints.

Instead of directly looking for an alternating T-cycle we will approach this problem by
looking for a flow that is a matching-dominated T-path starting from a node that dominates all
other nodes in the path. This flow will be required to contain all edges from the matching that
Proposition 93 calls for according to conditions (a) to (¢). Once we have found this matching-
dominated T-path we can connect its endnodes (because one of the endnodes is dominating)
and obtain an alternating T-cycle that meets all requirements of Theorem 65. Note that looking
for a matching-dominated T-path instead of an alternating T-cycle is no restriction because all
alternating T-cycles trivially contain a matching-dominated T-path. Also, starting the path
from a dominating node is no restriction because we know from Theorem 63 that our alternating
T-path must contain a dominating node. Therefore, looking for a matching-dominated T-path
that starts with a dominating node and is based on a set T' that fulfills conditions (a) to (c) is

both necessary and sufficient in the light of Proposition 93.

The flow problem is constructed as follows:

(1) Create a source that emits a flow of one unit, which constitutes the starting point of the
flow, i.e. of the matching-dominated T-path.

(2) Connect the source to the larger nodes of all edges of all cycles Cj and the path P. (If
the two nodes have the same degree, connect either of them.)

(3) Add all nodes in N¢ as nodes in the flow problem, and add all edges in the matching M
as a directed arc from the higher node to the lower one. (If both nodes have the same degree
arbitrarily choose one direction.)

(4) Add directed arcs from every lower node incident to the edges in M to any higher node
of any edge in M that this node is adjacent to and that is not part of the same cycle or path.
(In case of a tie, choose arbitrarily.)

(5) Create a sink that receives a flow of one unit.

(6) Connect every lower node incident to edges in M to the sink using a directed arc. (In
case of a tie, choose arbitrarily.)

(7) Require the flow to use those arcs that represent those edges of M that fulfill conditions
(a) to (c) in Proposition 93.

(8a) Require the flow on an arc representing an edge from M to be zero if the head of this

arc is not adjacent to the node that receives the flow from the source.

101

(8b) Require the flow on an arc representing an edge from M to be zero if the tail of this
arc has a higher degree than the node that receives the flow from the source.

(9) Require the flow to be integer.

Note that (8a) and (8b) in the description of this flow problem ensure that the flow, coming
from the source, starts with a dominating node: (8b) stipulates that the flow must not pass any
node that is of a higher degree than the first node passed immediately after the source, and (8a)
determines that the node the flow passes immediately before going into the sink is adjacent to
the first node immediately passed after the source. The following proposition provides a formal
version of this flow problem and states its relation to the problem of deciding whether there
exists a path- or cycle-splitting solution to the MSSP on the basis of the twin-induced structure

of a matching.

Proposition 94 (Necessary polyhedral criterion for irreducible solutions)
Let G(N, E) be the underlying threshold subgraph of an MSSP with node set No = {1,2,...,2n},
M a modified matching on G, the twin-induced structure of the MSSP with respect to M given
by
Ng=C1+Co+ ..+ Cyq+ P withd > 1,
let ig,i1 € P be the unmatched endnodes of the path P with ig being the higher one, i.e.
dg(io) > dg(i1),
and let the function
c: |J Cr—{12,....d} with
1<k<d
i—c(i)=k:=ieCy forallic U Ck
1<k<d
assign to each node the index of the twin-induced cycle it is an element of.

Morever, we define
A* :={(i,j) € Eg :i = argmax dg(l)}
to be a set of arcs that correspond to théee{;f;és of G such that the arcs’ tails are higher than
the heads in terms of the vicinal preorder of G.
Further, let
Ico:={ke{l,..,d}: %acgiv(j) + v(io) < a}
be the set of indices of those cycles whose largest node is not adjacent to an endnode of the
path P,
Ioo :={ke{l,..,d}: 35,leCy:
v(j) +v(io) > a A v(l) +v(io) > a}
the set of indices of those cycles whose largest two nodes are adjacent to an endnode of P,
Icq :={1,....,d} — Ico — o2
the set of indices of those cycles that contain exactly one node that is adjacent to an endnode
of P,
Ay ={(,j) e A NM: i, € Cp} foralll <k <d

102

for each cycle of the twin-induced structure the set of arcs that represent those edges of the

cycle that are given by M,
Ay ={0,j) e A*NM: i,je P}

the set of the arcs that represent the edges of M that are part of the twin-induced path P,

Hy= |J {i} foralll <k<d+1

(i,4) €A},
the set of the higher ones of the two nodes incident to the arcs in Aj,
Ho = U Hk
1<k<d+1

the set of the higher nodes of all matched pairs, and let
Lo := Ng — Ho — {io, jo}

be the set of the lower nodes of all matched pairs.

For Icg # @ there exists a path-splitting or a cycle-splitting solution with respect to S only

if the polyhedron Pr defined by the (in)equalities

Flow out of source:

Flow into sink:

Flow balance for higher nodes of all edges of M :

A
xﬁ)—ym-:()

foralli € Hy and j € Lo with (i,5) € A*NM

Flows balance for lower nodes of all edges of M :

B
Yij — Z Zj,k—$§- =1

(k,j)€A,
k€Ho—H.(;

forall j € Ly and i € Hy with (i,5) € A*N M

Ezactly one edge used from each cycle in Icg:

Z Yij = 1 fO’/‘ all k € Ig
(4,7)EA}

At most one edge used from P and from each cycle in Io1 + Ioa:

Z yij <1 forallk € Ici+Ico + {d+1}
(i) €A},

103

(33)

(34)

(35)

(36)

(38)

At least one edge from P or from a cycle in Ic1 + Ioo
(excluding edges of cycles in Ic1 a node of which is adjacent to ig):

> vij > 1 (39)
(i:5)€(U AMGg)e U Aj:(isio)€Ac}
k€lgi+Ico+{d+1} keloy
Arcs based on M with a head not adjacent to the node that receives

the flow from the source must have a flow of zero:

(4)

Yiy <1—x; 7 forall k € Hy

and (3,7) € A* N M with (k,j) ¢ Ec (40)

Arcs based on M with a tail of a higher degree than the node

that receives the flow from the source must have a flow of zero:

(4)

Yiy <1—x; 7 forall k € Hy

and (3,7) € A* N M with dg(i) > dg(k) (41)

contains a point with coordinates
atl(-A) €{0,1} for alli € Hy ,

Cvg-B) € {0,1} for all j € Ly ,
vij € {0,1} for all (i,j) € M NA™,

2 €{0,1} for all (i,5) € A" with i € Hy — H,(j) - (42)

Remark 95 If argmax dg(l) in the definition of A* above is not well-defined, we choose an
1e{i,j}
arbitrary 1 € {i,7} that mazimizes dg(l).

Proof. For a given MSSP without a structure-preserving solution (i.e. Ico # @) the existence
of a path- or cycle-splitting solution implies according to Proposition 93 the existence of a set
T C M that fulfills the conditions (a) to (¢) such that there exists an alternating T-path. We
have argued above that the existence of an alternating T-path is equivalent to the existence of a
matching-dominated T-path that starts with a dominating node. What remains to be shown is
that the existence of a matching-dominated T-path that starts with a dominating node implies
the existence of a feasible integer point in the polyhedron Py if T fulfills conditions (a) to (c)
of Theorem 93.

104

(4)

Regarding the flows and the variables defining Pr, note that the variables ;" denote flows

from the source to all higher nodes of all arcs that represent edges in M, while the variables
mg-B) refer to flows from all corresponding lower nodes to the sink. The variables y; ; correspond
to flows on the arcs that represent edges in M, and the variables z;; denote all arcs from the
heads of the arcs given by y; ; to the tails of all arcs to which the former head is adjacent with
respect to the underlying graph G. (The fact that we use directed arcs ensures that all flows
represented by the integer points of the polyhedron have the structure of an alternating path
relative to M.) The four types of flows mentioned are represented by constraints (33) to (36),
and any matching-dominated T-path relative to M certainly satisfies these constraints.

A matching-dominated T-path that fulfills conditions (a) to (c) of Proposition 93 also allows
for a flow that satisfies constraints (37) to (39): constraints (37) restrict the flow to exactly one
edge from I, which is equivalent to what conditions (a) and (b) stipulate for the edges of those
cycles whose highest node is not adjacent to the highest endnode of the path P; constraints
(38) express condition (a) for the case of edges that are from the path P or one of the remaining
cycles; and constraints (39) represent the restriction given by condition (c).

Finally, constraints (40) and (41) ensure that the node from G that the flow starts with is
a dominating node among all nodes from G that the flow visits, which is a condition that our

matching-dominated T-path satisfies. m

The way in which we have constructed our flow problem suggests the idea that a solution
of the flow problem could not only be necessary, but also sufficient for the existence of a path-
or cycle-splitting solution. Unfortunately, this is not the case. The (only) reason is that the
constraints defining P; do not exclude a feasible solution within the polyhedron that contains,
apart from a matching-dominated flow from the source to the sink, one or more "subcycles", i.e.
cyclic flows of 1 unit that are not connected with the matching dominated flow from the source
to the sink. In the presence of these subcycles, the requirements of constraints (36) to (38) (i.e.
of conditions (a) to(c) of Theorem 93) are satisfied by the set of all arcs with a non-zero flow,
and not just solely by the arcs that constitute the matching-dominated path. On other words:
our constraints do not imply the existence of a matching-dominated T-path that starts with a
dominating node, but only, for a certain subset P C T, the existence of a matching-dominated
P-path starting with a dominating node and the existence of subcycles that contain the edges
T\P.

In principle there is a direct way of overcoming this problem, the general idea of which we

will briefly sketch here as a side note.

We know from our discussion of alternating T-paths in chapter 6 (Theorem 63) that the
existence of an alternating T-cycle is equivalent to the existence of a matching-dominated P-
path (P C T') that starts with a dominating node and ends with a node in a maximal clique of
the set of the nodes that are incident to edges in 7. One remarkable aspect of this theorem is
that it states that we do not need to have a flow that visits all edges of T' as long as this flow

starts from a dominating node and ends with a member of a maximal clique of nodes in T, i.e.

105

as long as this flow visits the "cornerstones" of the degree partitions that the nodes incident to
edges in T" belong to. On the basis of such a flow on the subset P, Theorem 63 guarantees that
it is possible to complete the alternating T-cycle by adding all other edges in T\ P. For our
setting, this implies that (provided we can make sure that the flow from the source to the sink
does not only start with a dominating node, but also ends with a node in a maximal clique)
we do not have to worry about possible sub-cycles because their edges T\ P could always be

integrated with the edges P from the flow to yield a matching-dominated T-path.

Moreover, it is indeed possible to restrict the polyhedron P; to a polyhedron P; by adding
further constraints such that a feasible point of P; does not only represent a matching-dominated
flow starting with a dominating node, but also requires this flow to end with a member of a

maximal clique. All we have to do is to add the constraints
vij <1-— xch) for k € Lo and (i,5) € A*NM

with dpr < dp; < m+ 1 —dpy, for dpy < %

and m + 1 — dpy, < dp; < dpy, for dpy, > % , and (43)

yi; <1—2P) for k€ Ly and (i,5) € A*n M

with dp; < m+ 1 — dpy, for dpg < %

and dp; < dpy, for dpg > % , (44)

with dp; denoting the number of the degree partition that a node ¢ is an element of, i.e.
dp; =s:<==i€ D, .

These constraints (43) and (44) can be seen as the counterparts of constraints (40) and (41)
in the following sense: the latter constraints ensure that the flow starts with a dominating node.
They achieve this by restricting, depending on where the flow from the source goes, the degree
of those nodes through which the flow may pass. Similarly, the former constraints ensure that
the flow ends with a member of a maximal clique, which is also achieved by restricting the
degree of those nodes through which the flow may pass. This time, however, the restriction

depends on where the flow to the sink comes from.

We will end our side note here and will not go further into the details; instead we will
continue with a slightly different approach. The reason for this is that the (both necessary and
sufficient) criterion for the existence of path-splitting and cycle-splitting solutions that would
result from following the idea as sketched in our side-note does not seem to lead to an efficient
algorithm. In fact, it can be shown (but will not be shown here) that the A-matrix defining the

polyhedron P is, due to constraints (40) and (41), not totally unimodular and that we will not

106

arrive at a totally unimodular A-matrix if we define a polyhedron P; by adding constraints (43)
and (44). Finding a flow problem with a totally unimodular matrix, however, would certainly

be the best possible move towards an efficient algorithm.

7.7 Existence of non-structure-preserving solutions for a greedy match-
ing with |[M|=n—1

The alternative approach we will take in the following is to use a richer structure on the
underlying matching M such that we do not require constraints (40) and (41) and will arrive
at a more convenient polyhedron that allows for an efficient algorithm for deciding whether or

not there exists a path- or a cycle-splitting solution.

The starting point for this approach is one of the main results of chapter 6. We demonstrated
in chapter 6.3 that a greedy matching leads to a particularly tight characterization of alternating
T-cycles. Theorem 65 states that the existence of an alternating T-cycle relative to a greedy
matching is equivalent with the existence of a matching dominating 7T-path that starts with a
node that dominates all nodes incident to edges in 7" and ends with a member of a maximal
clique in the set of the nodes incident to edges in T'. In other words: we have a condition for

the entire set T and not merely for a subset P C T

At first sight, this tighter condition does not seem to be much of help. In our side note above,
on a possible approach to overcoming the subcycles that are permitted under the constraints
(34) to (42), we used Theorem 63, according to which a flow on the subset P is sufficient to
provide us with information about the existence of an alternating T-path. Drawing conclusions
from the existence of a mere subset P allowed for integrating the (unwelcome) subcycles P\T
into the solution. How could it now be fruitful an approach to tackle our problem on the basis

of Theorem 65, which explicitly requires us to find a flow on the full set 77

The decisive aspect here is that greedy matchings do not only yield a condition for the
entire set 7', but also permit us to restrict our search for an alternating T-cycle to a subset of
alternating T-cycles. The structure of greedy matchings is so pronounced that, according to
Corollary 68, there exist an alternating T-cycle if and only if there exist a sorted alternating

T-cycle, i.e. an alternating T-cycle

do—=Jo =i = J1 = —him_y = Jimi_y —im g = iy (45)

with T
ioiili~--i‘im72iimfl7and (47)

2 2
Jim_y mim 7 m 17 o (48)

107

(cf. Definition 67). Apart from allowing us to restrict our search for alternating T-cycles to

those with the structure (46) to (48), these statements automatically imply that the first node

1g is a node that dominates all nodes incident to edges of T" and that the last node j | -1 is a
2

member of a maximal clique in the set of all nodes incident to edges in T

The consequences of this setting can be summed up as follows: for deciding whether or not
there exists a path- or a cycle-splitting solution it is necessary and sufficient to find a matching-
dominated T-path such that the nodes incident to edges in T are sorted according to (46) to
(48) and the edges in T fulfill conditions (a) to (¢) of Proposition 93.

This insight leads to the following theorem.

Theorem 96 (Polyhedral criterion for the existence of irreducible solutions)

Let G(N, E) be the underlying threshold subgraph of an MSSP with node set N = {1,2,...,2n},
the set M be a greedy modified matching on G, the twin-induced structure of the MSSP with
respect to M be given by

and the sets A*, Ico, Ic1, Ica, A}, and Hy, for all1 < k < d+1, Hy, and Ly be defined as in
Proposition 94.

Then there exists an injective "order function”
order[.] : A*NM — {1,2,...,|A" N M|}
with
order[(i1, j1)] > order|(iz, j2)] = (i1 = i2 A j2 = j1)
for all (i1, j1), (i2,j2) € A*N M, (49)
and we define, for all j € Lo, the set of all nodes in Hy for which the edge to which they are

incident under M has a lower value of the order function than the edge to which j is incident
under M, i.e. the set

H(()j) :={i € Hy : order[(i,5*)] < order[(i*, j)]

with ©* € Hy, j* € Lo given by (,5%), (@",5) € M}

If Icg # O there exists a path-splitting or a cycle-splitting solution with respect to S if and
only if the polyhedron P; defined by the (in)equalities

Flow out of source:

S =1 (33)

JE€EHo

108

Flow into sink:

5ol =1

J€Lo

Flow balance for higher nodes of all edges of M :

2 —yiy =0

for alli € Hy,j € Lo with (i,j) € A*NM

Flow balance for lower nodes of all edges of M :

(B)
Yij — E Zjk — L5 0= 1
kEH\H, ;)

for all j € Lg,i € Hy given by (i,j) € A*NM

Ezactly one edge used from each cycle in Icg:

> iy =1 forallk € Ico
(4,7) €A,

At most one edge used from P and from each cycle in Icy + Ios:

" iy <1 forallk € Ioy + Ioo + {d + 1}
(id)€A;

At least one edge from P or from a cycle in Icy + Ios

(excluding edges of cycles in Ic1 a node of which is adjacent to ig):

Z Yij =1

(4,5)€(U ANG)e U Af:(iio)€Ac}
kelgi+Ico+{d+1} kelcy

contains a point with coordinates

xl(-A) €{0,1} for alli € Hy ,

xJ(»B) € {0,1} for all j € Ly ,
vi; € {0,1} for all (i,5) € M N A",

25 €{0,1} for all j € Ly and k € HY\H,;,

109

Proof. We first have to show that we can construct an order function order[.] with the required
properties. We recall that for greedy matchings M, for all (i1,51) € M there exists no edge
(i2,j2) € M with dg(i1) > dg(i2) and dg(j1) > dg(j2) unless (i1,71) and (i2,j2) belong to the
same cycle of path of the twin-induced structure (Proposition 79). In the light of Proposition
93, condition (a) this implies that we can discard the edge (i2,j2) in such a case as it will
not help us with finding an alternating cycle that meets conditions (a) to (¢). Accordingly, all

remaining edges (ix, jx) € M can be arranged such that

M
iktjkfor()gkg%fl, (52)
G0 =41 = Z A, =4, and (53)
2
Jial _y =y = Z 1= o (54)

i.e. the pre-order (A* N M, ») defined by virtue of
(i1,71) = (i2,72) & (i1 = 92 A J2 = J1)
for all (ilajl); (ig,jg) cA*"NM

is total. We construct the order function such that it is monotonically non-decreasing with

respect to this pre-order, which ensures (49). If we assign different values of order[.] when

(i1,71) = (i2,j2) and (i1, j1) = (i2, j2)

for (i1,71), (i2,J2) € A" N M, iy # iz, 51 # J2 »

the function is injective.

=—>: We compare the polyhedron with the one in Proposition 94. In contrast to Proposition
94, this theorem does not include constraints (40) and (41), the variables z; ; have been defined
on a subset of those arcs (j, k) that we used in Proposition 94, and the sum in constraints (36),
the only constraints to include the variables z; 1, has been restricted to the new set of arcs on
which we have defined the variables z;; (now constraints (50)). Leaving out constraints (40)
and (41) obviously does not have an impact on the existence of a suitable point in P; if the
existence of such a point has been established by virtue of Proposition 94.

Regarding constraints (50) and the variables z; 5, we recall Corollary 68, according to which
there exists an alternating T-cycle relative to a certain matching M if and only if there exists
also an alternating T-cycle that satisfies conditions (45) to (48). Hence, if there is a path- or

cycle-splitting solution, Proposition 93 automatically implies the existence of an alternating

110

T-cycle that fulfils (45) to (48). Therefore, the arcs

T
<jm71’im) for i = 1,2, L2| -1

have the property
b = I With 4,1 € Hy given by (imfl,jmfl) cA*NM ,

which implies with (48)
order[(tm—1, jm—1)] > order[(im, jm)] (55)

(apart from possible permutations of pairs of arcs (i1, j1), (i2,j2) € A* N M with

(i1,71) = (i2,72) and (i1, j1) =X (i2,j2) for i1 # i2, j1 # jo,

which do not have an impact on the existence of a solution). The restricted set of arcs on
which the variables z; , have been defined still includes all arcs (jm—1,%m) that satisfy (55) for
a given arc (im—1,Jm-1) € A* N M represented by i, . j.._, (provided %,, does not belong to
the same cycle or path as j,,—1). Also, all arcs (j;m—1, %) with property (55) are still included
in the sum in constraints (50), again provided 4,, does not belong to the same cycle or path as
Jm—1.Consequently, constraints (50) and the set on which we have defined the variables z; 5 do
not restrict unduly the set of points in P;, and the existence of a suitable point in P; follows
from Proposition 94.

<=: We have a feasible point of the polyhedron P; with values for the variables according
to (50). The set

T:={(,5) e MNA":y; ; =1}

fulfills condition (a) of Proposition 93 due to constraints (37) and (38), condition (b) due to
constraints (37), and condition (¢) due to constraints (39). If we can show that there exists
an alternating T-cycle relative to M, Proposition 93 implies the existence of a path- or cycle-
splitting solution.

Being a subset of the matching, T fulfils properties (52) to (54) and therefore (46) to (48).
The point in P} contains only the flow from the source to the sink and no cycles because (49)
makes sure that it is impossible to return, via the arcs represented by the variables y; ; and
zjk, to an arc (4,j) € T that has already been traversed. Therefore, the edges in T and the
edges in

Zi={(Gk) 2 = 1}

provide us with a path as in condition (45). Because of (46) and (47), the node ig must be a
dominating all nodes incident to edges in T, and due to (48) the node jr| -1 must be a member
2

of a maximal clique of all nodes incident to edges in T'. Hence we can connect the endnodes of

111

the path (45), obtain an alternating T-cycle, and can apply Proposition 93 to arrive at a path-

or cycle-splitting solution. m

Solving the integer problem of Theorem 96 could be a difficult task. In contrast to the
polyhedron of a minimum cost flow problem, we have constraints (37) and (38). Fortunately,

the following corollary holds.

Corollary 97 (Complezity of deciding on the existence of irreducible solutions)
If there exists no structure-preserving solution, the existence of irreducible solutions of an

MSSP can be shown in polynomial time.

Proof. We will (a) note that the number of rows and columns of the A-matrix defining the
polyhedron P; of the flow problem in Theorem 96 is polynomial in the number of nodes of the
MSSP and (b) show that the A-matrix is totally unimodular. It is well-known (see Schrijver,
1986, chapter 19, for example) that the latter property implies that all extreme points of P} are
integral as the right-hand sides of the constraints in Theorem 96 are integral, too. Consequently,
the existence of a point in P} satisfying (51) is equivalent to the existence of a basic solution
of a Linear Programming problem. If we take into account that the maximum absolute value
of all numbers in the A-matrix and the b-vector of our polyhedral description is equal to 1 for
all instances of the problem, we can conclude that we can decide on the existence of a basic
point of P; in a time depending polynomially only on the number of rows and columns of the

A-matrix (see Schrijver 1986, chapter 15, for example).

(a) The number of nodes is 2n > 6. (6 is the minimal number of nodes that we need for at
least one cycle and one path.) The number of rows (in the order of constraints (33), (34), (35),
(37), (38), (39), (50)) is

L+ 1+ [Ho|+ |Lo|l + [Ico + Ic1 + Ioo| +1+1
<l4+14Mm-1)4+Mn-1)+222+14+1<3n.

The number of columns (in the order of the variables given in (51)) is

|Ho| + |Lol + [M| + [{(k.5) € A* : j € Lo, k € HY\H,(;)}
<odindin—l4+nn-—1)={n+2)(n-1).

(b) For proving total unimodularity, we use a criterion that goes back to Ghouila-Houri
(1962) [see also Nemhauser, Wolsey (1999), Theorem 2.7, part III]. According to this criterion,
a matrix is totally unimodular if and only if for every subset J C C' = {1,2, ..., ¢} of the columns
of the matrix, there exists a partition J; + Jo = J such that the difference between the sum
of the columns in J; (which we will denote ¥ ;,) and the sum of the columns in Jy (denoted
Y ,) is a column vector with all entries being in the set {—1, 0, 1}. It is well known that the
node-arc incidence matrix of a directed graph is totally unimodular (see Nemhauser/ Wolsey
1999, chapter I11.3, for example).

The submatrix given by the rows representing the constraints (33), (34), (35), and (50) is

a node-arc incidence matrix and, consequently, for every subset J of the columns there exists

112

a partition J; + Jo = J with the property given by the criterion by Ghouila-Houri. However,
we need more precise information for being able to make a conclusion that takes into account
also the rest of the constraints. For facilitating this, we introduce additional arcs in our flow

problem such that we have a larger number of variables z; ;, namely
25 €{0,1} for all j € Lo and k € HY\H,;) ,

and replace constraint (50) by

B
vij— Y Ge—a =1
k€Hy

for all j € Lo,i € Hy given by (i,5) € A*NM . (56)

Due to the fact that a totally unimodular matrix will, as a trivial consequence of Ghouila-
Houri’s theorem, remain totally unimodular when we delete a column, it suffices to prove total
unimodularity for our new flow problem. The resulting A-matrix is illustrated in Figure 17,
with all entries not explicitly given being zero. The symbol I represents the unit matrix, the
symbol e a row vector with 1s in each entry, and the symbol m a row vector with 1s except
one entry being 0. Block A contains all arcs from the source node and to the sink node. The
columns of block B correspond to all arcs (i,J) € A* N M (which are the arcs associated with
the variables y; ;), with the arcs having been sorted such that all arcs representing one cycle
(or the path) of the twin-constrained structure appear in consecutive rows of the matrix. Block
C represents all arcs (j, k) from lower nodes j € Lg to higher nodes k € Hy, which have been
modelled by the variables z; ;. (Note that the block C' entries for constraints (56) are the only
entries of the matrix that differ from the matrix representing the polyhedron P; in Theorem
96.) The variables z;; have been arranged such that arcs emanating from nodes of the same
cycle (or the path) appear in consecutive rows of the matrix. The number of the constraints
that the columns represent are given in the first row of Figure 17.

For the remainder of the proof, we will denote, for a given set S of indices of columns of the
A-matrix, by Xg the column that is the sum of the columns whose indices are in .S. Moreover,
a column (or a specified set of rows of a column) with all entries being in {—1,0,1} and with
the sum of these entries also being in {—1,0,1} is said to have property (Q).

For a given subset J of columns, we partition the (indices of the) columns into the sets
K, L, M, depending on whether the columns belong to block A, B, or C' of the A-matrix,
respectively, i.e. we have

J=K+L+M.

113

B L OC K A B L (0] C K B Yij Block C Zjk

Variables Arcs from source Arcs to sink Arcs fr. lco Arcs fr. Iz Arcs fr. lc1 Arcs Arcs cycles path

XA ij C: Ciicol C Ciicz G Ciica) P C Gy P

Source (33) e.e | . |-e.-e -e

Sink (34) e.e | .. e.e | e

Flow balance

for higher

nodes (35)

Flow balance ’ | ’ |

: : E I I O | Al
for lower . S

-l |
nodes (56) ‘-I : |
-1 |

Exactly one e
arc per cycle in
leo (37)

At most one e
arc per cycle in
Iz (38)

At most one e
arc per cycle in
lc1 (38)

... fr. path (38) e

At least ... (39) e ... | e m vee m e

114 Figure 17: A-matrix of the modified flow problem

We start by dealing with the columns of block B. We partition the set L into sets L; and
Ly such that for every row of the constraints (37) and (38) an equal number of columns with
entry 1 goes into both sets — provided that the number of columns with a 1 in constraints (37)
and (38) is even for a given row. If this number is odd, we allow one of the sets Ly and Ly to
be assigned one more column beyond an even distribution such that, after having assigned all
columns in L to either Ly or Lo, we have

TAEIAIES

(If the columns represent arcs from I¢y, the number of columns with a 1 in constraints (37)
and (38) is odd for a given row and a column with a 0 in the row of constraint (39) is among
the columns, we will assign such a column with a 0 after all other columns have been assigned
to either Ly or Ly.) We observe that our assignment ensures that the column X, — ¥ has an
entry in {—1,0, 1} in the row of constraint (39). Moreover, the column X1 — 35 has property
(Q) for all rows of constraints (35), (56), (37) and (38).

A similar assignment can be made for block C. We partition the set M into sets M; and
M> such that for each row of the constraints (35) an equal number of columns with entry 1
goes into both sets — provided that the number of columns with a 1 in constraints (35) is even
for a given row. If this number is odd, we allow one of the sets M; and Ms to be assigned one
more column beyond an even distribution, however such that we have

| [My] = [Ma] | <1

after having assigned to M; and My all columns in M. We observe that the column
Y a1 — Yo has property (@) in all rows related to constraints (35).

We now turn our attention to the lower half of the rows of block C, i.e. to those rows that
are given by constraints (50). For all columns in M that have the same entries in the rows given
by constraints (35) we calculate the difference between columns in M; and columns in Ms. The
resulting column differences all have property (Q). We now exchange pairs of columns from
My and M, (a pair consists of one column from M; and one column from Ms) that have the
additional property that the columns that form a pair have the same entries in the rows given
by constraints (35). Such an exchange step allows us to change one of the column differences
just calculated, such that one entry changes from +1 to —1 and another entry changes from —1
to +1. By carrying out a sufficient number of these exchange steps, it is possible to arrive at a
new partition M = M; + My such that ;3 — 30 has property (@) in all entries related to
constraints (56). We observe that our exchange steps are neutral with respect to property (Q)
of ¥p1 — Xare in all rows related to constraints (35). This means that we have constructed a
partition M = Mj + M> such that property (Q) of X1 — X a2 applies to the column X1 — 30
for both the rows related to constraints (35) and the rows related to constraints (56).

We turn to block A and partition the set K into sets K7 and K5 such that Y1 — X g9 has
property (Q) for the rows related to constraints (33), (34), (35) and (56).

We define J; := K; + L; + M; for i = 1,2 and have a partition J = J; 4+ J5. Since

YXn—Xp =YXk —Xx2+ X1 — X2 +Xu1 — X,

115

the column ¥ j; —¥ jo has entries in {—3,—2, —1, ..., 3}. Due to the existence of property (Q)
for the columns X1 — X ko, X1 — 212, and X1 — Yo for all rows but the row of constraint
(39), we can, by moving columns from J; to Js or vice versa and/or by means of exchange steps
as defined above, change the entries in ¥ j; — X jo such that the criterion by Ghoulia-Houri is

satisfied. m

In this chapter, we started from a modified matching M on the threshold graph underlying
the MSSP. On the basis of the cardinality of such a matching, we could already make a
decision on whether or not certain instances of the MSSP are feasible, with the case |M| =n—1
remaining open.

Proceding with our analysis, we introduced the concept of the twin-induced structure of a
matching M for the case |M| =mn—1 and had a look at how we could change the matching |M|
if its twin-induced structure does not directly provide us with a feasible solution of the MSSP.
We addressed the most basic case, in which we change only d edges from the original matching
| M|, with d being the number of cycles of the twin-induced structure of |M|. It turned out that,
due to the specific structure of threshold graphs, a straight forward (polynomial-time) criterion
exists that allows us to find out if changing d edges could lead to a feasible solution, namely a
structure-preserving solution.

Going further, we analyzed also the case of changing d + 1 edges from the matching M,
which results in what we call path-splitting and cycle-splitting solutions. We distinguished, in
the previous section, 20 path-splitting solutions and 26 cycle-splitting solutions, and it turned
out that there exist 2 genuine types of path-splitting solutions and that cycle-splitting solutions
can be classified by reducing them to 4 genuine types. We provided a unifying perspective
on these 6 irreducible solutions and developed, in this section, a Linear Programming problem
that can tell us in polynomial time whether one of these 6 irreducible solutions exists. Apart
from the practical relevance of Theorem 96 and Corollary 97 for solving the MSSP, these two
statements are also of theoretical relevance because they enable us to find a polynomial-time

algorithm for a more complex class of solutions.

In principle, we could proceed our analysis in the same fashion in which we have conducted
it so far. If we did so, the next natural step would consist in discussing the cases of feasible
solutions of the MSSP that arise from changing d + 2 edges from the original matching M.
Figure 16(b) above illustrates a case in which d+ 2 edges from the original matching have been
changed to construct a solution that involves both a path- and a cycle-split. We can expect,
however, that changing d + 2 edges would lead to even more subtypes of solutions than the 46
(genuine and non-genuine) subtypes we examined when changing d + 1 edges. As this does not
look very promising under the aspects of both practical relevance and theoretical elegance, it
seems to be wise to stop our discussion here. - The more so as changing edges is equivalent
to calculating a new matching, and the more edges we change and the more cases we have to
examine the smaller will be the computational advantage that can be gained by changing only

a few edges from a given matching instead of calculating a new matching from scratch.

116

For these reasons, we will finish the present chapter here and will present, as a summary of
the results of this chapter, a simple heuristic for deciding on the feasibility or infeasibility of a
MSSP. It will turn out in chapter 9 by means of computational experiments that this heuristic

is surprisingly efficient for deciding on the feasibility of a large percentage of instances.

7.8 A heuristic for the MSSP (MSSPH)

We start with a threshold graph G with node set Ng = {1,2,...,2n}, n > 2, and an edge set
FE¢ defined by virtue of weights given by v : N¢ — Ng and a threshold « > 0, and a twin-
node function b : Ng¢ — Ng. The output of our heuristic is either a certificate of feasibility,
a certificate of infeasibility, or no certificate. The general principle underlying this heuristic
consists in the idea of moving from the most general and computationally least expensive
procedures to more specific procedures that take more computational time. Our heuristic will

proceed in 10 steps.

In step [01] of our algorithm, we use three direct tests to identify infeasible instances.
First, an instance can be recognised as infeasible if more than half of the nodes + 1 are

members of a maximal stable set, i.e.
lm/2]
| U Di|>n+1.
i=0

Second, we can Zaiscard an instance as infeasible if there exists a node such that both the
node and its twin node have no neighbours, i.e.
3i € Ng : {i,b(i)} C Do.
Third, an instance is certainly infeasible if more than 2 nodes have no neighbours, i.e.
[Dol > 2,
with Dy being the set in the degree partition that contains all nodes of degree 0.

We have seen in this chapter that different matchings provide us with different opportunities
of finding a feasible solution on the basis of the twin-induced structure of a matching. Therefore,
our heuristic calculates two different matchings. As we will need at a later stage of the heuristic
a greedy modified matching for finding irreducible path- and cycle-split solutions, provided that
more basic approaches were not sufficient for finding a feasible solution, we calculate in step [02]
the type of matching that differs the most from a greedy modified matching, namely a modest
modified matching M according to MTGM Apin-

In step [03] we evaluate this matching. If |M| < n— 1, our instance is infeasible; if |M| = n,
our instance is feasible (Proposition 80). If |M| = n — 1, we check whether one of the two
unmatched nodes is an element of a maximal clique of GG. If this is the case, our instance must

be feasible as this directly implies a structure-preserving solution on the basis of Theorem 82.

As structure-preserving solutions can also arise without the previous condition being fulfilled,

we calculate in step [04] the twin-induced structure S of M for further evaluation.

117

In step [05] we analyse the twin-induced structure S(N, E). If it consists only of a path P,
i.e. Ng = P, our instance must trivially be feasible. Otherwise, we check according to Theorem
82 if there exists a structure-preserving solution, i.e. we calculate the unmatched node iy with
the largest neighbourhood and check for all cycles Ck, 1 < k < d whether iy is adjacent to
one node from each cycle. Due to the vicinal preorder of our underlying threshold graph our
instance is feasible with a structure preserving solution if and only if

1I§nkhg1d max v(ig) +v(J) > o

see also Remark 83.

We have come now with our matching M as far as possible and calculate a greedy modified
matching M’ on the basis of MTGM Apax in step [06].

In principle, we could now compare our new matching with the old one. If M = M /,
we can conclude that the graph G allows only for one single matching and that our instance
must be infeasible. (Otherwise we would have found a feasible solution in step [05].) However,
as a threshold graph that has only one single perfect matching is not a very likely type of
instance, we will, for saving computational time when dealing with all other types of instances,
not compare our two matchings. (If, however, in a particular practical setting there is some
additional information available that suggests that the number of threshold graphs with only
one single perfect matching is rather large, it would be advisable to include in the heuristic a

step that compares the two matchings.)
Step [07] of our algorithm calculates the twin-induced structure S’'(N, E) of M.
Step [08] is identical with step 5 for the twin-induced structure S’(N, E).

In step [09], if we still have not found a feasible solution, we use Theorem 96 in conjunction
with Corrollary 97 to find out, by trying to calculate a basic solution of the LP problem, if the
polyhedron Pj is empty or if our matching M’ allows the construction of an irreducible path-

or cycle-splitting solution.

In sum our algorithm looks as follows:

Algorithm 98 (MSSPH - MSSP Heuristic)

Let G (N, E) be an undirected graph with the (even) set of nodes
Ng ={1,2,...,2n}, neighbourhoods N (i) for all i € Ng,
and b: Ng — Ng a twin-node function.

Lm/2]
01] If| U Ds|>n+1 then INFEASIBLE, STOP.

=0
If |Dy| > 2 then INFEASIBLE, STOP.
If3i € Ng : {i,b(i)} C Dy then INFEASIBLE, STOP.
[02] Run MTGM A, output: M.

118

[04]
[05]

=3
Nz}

=)
=

=}
)

[09]

If M| < n—1 then INFEASIBLE, STOP.
If |M| = n then FEASIBLE, STOP.
[IM]=n—1]:

ig == argmax dg(k)
ke{ieNg:3jeNg:(i,j)eM}
Ifio € Kuax then FEASIBLE, STOP.

Compute S(N, E).
If Ng = P then FEASIBLE, STOP.
If min maxw(ig) +v(j) > « then FEASIBLE, STOP.
1<k<djeCy,
Run MTGM Aoy, output: M’
Compute S'(N, E).
If Ng: = P then FEASIBLE, STOP.
If min maxv(ig) + v(j) > « then FEASIBLE, STOP.
1<k<djeC’,

If Pf # @ then FEASIBLE.
STOP.

Computational results of MSSPH will be presented in chapter 9. It will turn out that even

without implementing Step [09] our algorithm show a surprisingly efficient behaviour. For the

worst-case situation, including Step [09], the following proposition holds.

Proposition 99 (Complezity of MSSPH)
MSSPH runs in polynomial time.

Proof. Directly from Corrollary 97 as trying to find a basic solution for the polyhedron P is

the computationally most expensive operation. m

119

8 Recognising twin-constrained Hamiltonian threshold graphs

In the previous chapter we developed a heuristic that looks for specific properties of a given
instance of the MSSP and, if possible, draws a conclusion on whether or not this instance is
feasible. In this context, three of the final sections of that chapter examined in detail the case of
non structure-preserving solutions. The present chapter builds on the insights that we gained
by analysing non structure-preserving solutions and sets out to generalize them. In doing so,
we will develop an efficient algorithm that can decide on the feasibility of a given instance of
the MSSP in all possible cases.

We will begin with a section that motivates and explains our approach by looking at the

lessons we can learn from our analysis in the previous chapter.

8.1 Motivation

We have seen in the previous chapter that the threshold graph structure of an MSSP is so
strong that a small number of criteria is sufficient to decide whether there exists, among a large
number of possible matchings, one matching that is a feasible solution of the MSSP. We could
show, for example, that the criterion we found for structure-preserving solutions of type 1 also
implies testing for possible structure-preserving solutions of type 2, that looking at possible
structure-preserving and path-splitting solutions of type 1 and type 2 is sufficient for deciding
whether there exists a path-splitting solution at all, and that the existence of a cycle-splitting
solution can be decided solely on the basis of the existence of a structure-preserving solution
or one of four specific types of cycle-splitting solutions. In other words: the threshold graph
property of an MSSP seems to be so strong that, for deciding on the feasibility of an MSSP, it
is not necessary to analyse all possible matchings that could lead to a solution of the MSSP,
but that it seems to be sufficient to look only at some possible ways of constructing a solution.
Moreover, it turned out that, for all types of solutions we discussed, a decision on the existence
of such a solution can be made in polynomial time. All in all, this gives hope that the MSSP

might be a problem that can be solved in polynomial time.

Additionally, we have seen that a polynomial-time algorithm for the specific types of non
structure-preserving solutions we discussed was possible mainly due to the particular structure
of greedy matchings. Given this structure, we could capitalise on our strong result for the
existence of alternating T-cycles relative to a greedy matching by gluing together parts of the
twin-induced structure to construct a solution to the MSSP. This suggests that we should seek
an approach that might benefit further from the specific structure of greedy matchings and
their implications for the existence of alternating T-cycles. The more so as we observed in
Proposition 60 that alternating T-cycles can be used to generate all other matchings on the

basis of a given matching.

120

For making use of this property, however, we need a perfect matching. A setting based on
perfect matchings can be achieved by adding to the nodes of our MSSP 2 dominating nodes
that are twin-nodes to each other. We know from chapter 4 (Lemma 38) that a threshold
graph remains a threshold graph if we add a dominating node. Looking for a twin-constrained
Hamiltonian path for solving our original MSSP will then be equivalent to searching for a twin-
constrained Hamiltonian cycle on the new graph. In other words: instead of directly trying to
solve an MSSP, we might benefit from focussing our attention on the problem of recognising
twin-constrained Hamiltonian threshold graphs. (Note that, while a matching of a cardinality
of at least |M| = n — 1 is a necessary condition for a twin-constrained Hamiltonian path (with
a perfect matching being a sufficient condition, see Proposition 80), a perfect matching is only

a necessary condition for a twin-constrained Hamiltonian cycle.)

Let us illustrate what happens when we transform our MSSP into the problem of recognising
twin-constrained Hamiltonian threshold graphs by reconsidering the case of a path-splitting
solution of type 1 (Figure 15). Introducing a pair of dominating twin-nodes u, v would lead to
a situation in which the two unmatched nodes e and p (the endnodes of the path) could have
been matched (with the dominating nodes, for example). As a result, the twin-induced structure
of the matching would consist of 3 cycles (one of which is the former path). A twin-constrained
Hamiltonian cycle (i. e the counterpart of a solution to the MSSP in this case with the new
nodes) could be constructed by splitting the cycle based on the former path twice and gluing
the two remaining cycles to it. Provided that the dominating nodes have been matched with
the two formerly unmatched nodes (whether this is the case depends on the implementation
of MGTM A that we use), the cycle i — j — k — [could again be glued between the nodes m
and p, and the cycle a — b — ¢ — d could now be glued between e and one of the two additional
dominating nodes, say u. As a consequence, this solution could be constructed by means of two
alternating T-cycles, namely the cycles with

Ty = {(e,b), (a,u)} and Ty = {(k,1), (h,m)}.

Removing the pair of dominating nodes will finally lead us to our solution of the MSSP

In the general case, the setting is more complex. The number of alternating T-cycles that
we might need for constructing a solution might be higher. Also, the cycles of the twin-induced
structure might have to be split into several more parts and glued together such that several
former cycles might be nested into each other. Figure 18 shows a more complex setting for a
twin-induced structure consisting of 3 cycles C1, Cy and Cj, represented by the thinner solid,
dashed and dotted lines, with the solid lines being edges between twin-nodes, and the dashed
and dotted lines being edges from the matching. For constructing a solution, the 3 cycles have
been split into parts such that

C1 =C1a+Cip, Cy = Coa+ Cop + Cac
and C5 = Cs4 + Csp.
These parts of the cycle have then been glued together by means of the thick dashed edges

to form the twin-constrained Hamiltonian cycle

121

Cia+Coy +C34 +Cig+ Cog + Csp + Coc
Proceeding from the original matching, this twin-constrained Hamiltonian cycle can be seen
as having been generated by alternating cycles that consist of the thicker dashed edges and those
edges from the original matching that do not take part in the twin-constrained Hamiltonian
cycle (i.e. the edges e1, ea, ..., e7). This means that the solution of the twin-constrained
Hamiltonian cycle problem has been generated by three alternating T-cycles with
Ty ={e1,ea}, To = {es,eq,e5}, and T3 = {eg, er}.
Again, we can arrive at a twin-constrained Hamiltonian path, i.e. a solution of the MSSP,
by removing our additional pair of dominating nodes (which have not been specified in this

example) from the twin-constrained Hamiltonian cycle obtained.

€2
. . G L a—)
’ o S i -,
R IC2A ICBA iCie -
II Y rememem-- : -— 7
S A \, - |
Cin &3 ! :
66 567 e4 2B
., essss Y S— h 4 ~,
x Iczc ICBBI I l
------ [- —o
€s

Figure 18: Constructing a solution by means of alternating T-cycles

Following the approach just outlined, the remainder of this chapter will address (solely) the
problem of recognising twin-constrained Hamiltonian threshold graphs and in doing so, we will
capitalise on our results on alternating T-cycles and the insights on non-structure-preserving
solutions from the previous chapter.

The following section introduces the concept of "patching graphs" and provides a necessary
criterion for the existence of twin-constrained Hamiltonian threshold graphs, and the subsequent
third section demonstrates that we can find a similar sufficient criterion. As the criterion
presented in these two sections is based on the existence of a certain family of alternating
T-cycles, we can consider it as the generalized version of Proposition 93.

In the previous chapter, we proceed from Proposition 93 by looking for an algorithm to
determine whether the type of alternating T-cycle required by Proposition 93 actually exists,
which led to Theorem 96. In an analogous fashion, our necessary and sufficient criterion from
the second and third sections of this chapter will require us to develop an algorithm that finds a

certain family of alternating T-cycles if such a family exists. This task of generalizing Theorem

122

96 will be achieved in the fourth section. Finally, the fifth section presents, as a summary of
the results of this chapter, a complete polynomial-time algorithm for deciding on the question

of whether a given instance of an MSSP is feasible.

8.2 Patching graph and a necessary criterion for twin-constrained

Hamiltonicity

For formulating our necessary criterion, we introduce the concept of the "patching graph". A
patching graph can be seen to contain information that indicates whether there is room for

gluing together certain alternating T-cycles to form a twin-constrained Hamiltonian cycle.

Definition 100 (Patching graph of a twin-induced structure)

Let G(N, E) be a threshold graph with a twin-node function b, the family (Cq)aep the twin-
induced structure of a perfect modified matching M on G, and (T, C M)4eq o disjunct family
such that there exist alternating Ty-cycles relative to M for all ¢ € Q. The graph P(N,E)
defined by Np := D and

Ep:={(i,j) € D x D: (k1,lh), (k2,1l2) € T,
for some (k1,11) € Cy, (ka2,12) € Cj and g € Q}
is called the patching graph of (Cyq) relative to (Ty).

Example 101 In the case of Figure 18, the patching graph is a complete graph defined on the
node set D = {1,2,3}.

Remark 102 (1) There exists a concept called "subtour patching” in the literature on the
Travelling Salesman Problem that has some similarity with our concept of a patching graph. This
concept, however, is based on a hypergraph over the node set of the graph under investigation,
while we have defined a patching graph with respect to the cycles of the twin-constrained structure
(Gilmore, Lawler, Shmoys 1986). Accordingly, these two concepts should not be confused.

(2) Note that the patching graph of (Cq) relative to (Ty) is certainly invariant under sorting
the edges of an alternating T-cycle (cf. Definition 67). We will use this property in the following

sections when trying to construct certain patching graphs.

On the basis of the concept of the patching graph, establishing a necessary criterion for the

existence of a twin-constrained Hamiltonian cycle is straight-forward.

123

Theorem 103 (Patching graph for twin-constrained Hamiltonian threshold graphs)

Let G(N, E) be a threshold graph with twin function b and My a perfect modified matching
such that its twin-induced structure is a twin-constrained Hamiltonian cycle Cy on G. Fur-
thermore, let (Cq)aep be the twin-induced structure of an (arbitrary) perfect modified matching
M # My on G. Then there exists a (well defined) family (Kq)qeq of alternating cycles by virtue
of

U K,=Mya M (57)
q€Q
and a disjunct family (T, C M)4ecq defined by

T, :=K,NM forallge @ (58)

such that K, is an alternating T,-cycle relative to M for all ¢ € Q and the patching graph of

(Cq) relative to (Ty) is connected.

Proof. Because of M # M, we have My® M # @&. Due to the fact that My and M are perfect
matchings, every node that is adjacent to any edge in My @ M has exactly two different mates,
namely one with respect to My and one with respect to M. Hence My @& M consists only of
(disjunct) cycles, and (K)q4eq is well defined. As every consecutive pair of edges consists of one
edge from My and one edge from M, definition (57) indeed ensures that K, is an alternating
Ty-cycle relative to M for all ¢ € Q

It remains to be shown that the patching graph is connected. We proceed from assuming the
contrary. If the patching graph P of (Cy) relative to (T}) is not connected, there exist disjunct
sets Dy, Do ; D such that for all dy € Dy and ds € Do, the graph P does not contain a path
from d; to da, i.e. there exists no set T, that contains edges from both Cy4, and Cy4,. Moreover,
as T, C M, none of the sets T, has an element that connects two nodes one of which is incident
to an edge in Cy,, and the other one of which is incident to an edge in Cy,. Consequently, for
all dy € Dy and dy € D there is no alternating cycle K, that contains an edge between a node
incident to an edge in Cy4, and one incident to an edge in Cy,.

We widen our perspective to all edges of the twin-constrained Hamiltonian cycle Cy. As My
is a modified matching, these are given by the partition

Co = My +{(:,b(3)) : i € Ng}
= Mo\M + MoNM +{(,b(3)) : i € Ng}.
By the definition of the twin-induced structure (Cy)4ep, the set
{(#,b(4)) : i € Ng}

does not contain any edge that connects a node incident to an edge in C4, with a node
incident to an edge in Cy,. As M is the matching that (Cy)4ep is based on, the set My N M
does not contain any such edge either. Finally, the same statement can be made for the set
Mo\ M because it contains only edges from the cycles (K,)4eq, which we have already analyzed
above. Therefore, the graph induced by Cy has at least two components, namely the subgraphs

124

induced by the nodes incident to edges in

Z Cd1 and Z C’dQ,

d1€Dy d2€D>
respectively, i.e. Cp cannot be a twin-constrained Hamiltonian cycle. Accordingly, our

assumption that the patching graph of (Cy) relative to (T}) is not connected does not hold. m

We slightly reformulate this theorem with the following corollary.

Corollary 104 (Twin-constrained Hamiltonian threshold graph - necessary condition)

Let G(N, E) be a threshold graph with twin-node function b, and (Cq)aep the twin-induced
structure of a perfect modified matching M on G. There exists a twin-constrained Hamiltonian
cycle on G only if either (Cq)aep 18 a twin-constrained Hamiltonian cycle or there exists a
disjunct family (T, C M)qeq with alternating T,-cycles relative to M for all ¢ € Q such that
the patching graph of (Cq) relative to (Ty) is connected.

Proof. Assume there exists a twin-constrained Hamiltoninan cycle on G that is not (Cy)acp-
Hence there exists a perfect modified matching My # M such that its twin-induced structure
is a twin-constrained Hamiltonian cycle. Then, according to the preceding theorem, the family
(Ty € M)4eq defined by (57) and (58) has the properties that the corollary calls for. m

Note that we could obtain our necessary criterion in a rather simple, straight-forward way.
We did not even have to refer to any specific properties of threshold graphs or the underlying
matching M to establish our theorem. In fact, Theorem 103 and Corollary 104 hold for twin-
constrained Hamiltonian cycles on all types of graphs. (The only reason why we explicitly
mentioned threshold graphs in these statements is that we defined, in earlier chapters, some of
the technical terms we made use of — such as "modified matching" and "twin-induced structure"

— only for the case of threshold graphs.)

The intuitive, straight-forward character of the statements above, however, should not mis-
lead us into thinking that twin-constrained Hamiltonicity can be recognised easily. The follow-
ing simple example demonstrates that our theorem, in its present formulation, is certainly not

suitable as a sufficient criterion.

Example 105 Consider a graph G(N, E) with
Ng ={a,b,c,d e, f,g,h} and
Ee ={(a,b),(c,d), (e, f), (g,), (a,c), (b,e), (d, f)},
further a twin-node function b: Ng — Ng given by
b(a) =c, b(b) =d, ble) =g, and b(f) = h.
The set
M = {(a,b), (¢ d), (e, /), (9,h)} © Ea
is a (modified) matching on G.
Consequently, for

125

T :={(a,b),(c,d), (e, f)} C M
the path
a—b—e—f—d—c—a
is an alternating T-cycle relative to M. As the twin-induced structure of M consists of two
cycles, namely
Cy ={a,b,c,d} and Cy ={e, f,g,h},
our alternating T-cycle gives rise to the patching graph P(D, E) with
D =1{1,2} and E ={(1,2)},
which is connected. The graph G, however, is obviously not twin-constrained Hamiltonian

with respect to b.

8.3 Sufficient criterion for twin-constrained Hamiltonicity of thresh-

old graphs

We know from the previous section that, for finding out whether, for a given twin-node function
b, a threshold graph is twin-constrained Hamiltonian with respect to b, we only have to look for
disjunct families of alternating T-cycles that give rise to a connected patching graph. We will
now set out to show that the existence of an appropriate disjunct family of alternating T-cycles
with a connected patching graph is also sufficient for the twin-constrained Hamiltonicity of a
threshold graph. However, as Example 105 demonstrated, arriving at a sufficient condition for
twin-constrained Hamiltonicity needs stronger assumptions. It will turn out in this section that
it is sufficient to start from a greedy matching on a threshold graph.

Our proof will be constructive. The general principle underlying our proof is to "glue"
together, successively, all cycles (Cy) of the twin-induced structure of M such that we eventually
arrive at the desired twin-constrained Hamiltonian cycle. In order to achieve this, we will use
the edges from the alternating T}-cycles that we have at our disposal as linking elements between
the cycles of the twin-induced structure. The proof proceeds by successively taking into account

all members of the family (7).

We begin with a Lemma that allows us to construct, on the basis of one alternating T,-cycle,
a twin-constrained alternating cycle on our graph that connects all nodes that are part of all

those cycles of the twin-induced structure of which the alternating T,-cycle contains an edge.

Lemma 106 (Twin-constrained cycles from alternating T,-cycles)

Let G(N, E) be a threshold graph with twin-node function b, the family (Cq)aep the twin-
induced structure of a perfect greedy modified matching M on G and (Ty; € M)qeq a disjunct
family such that there exist alternating Ty-cycles relative to M for all ¢ € Q. Then for every set
T, C M there exists a perfect modified matching M* on G such that its twin-induced structure
(C%)aep~ contains a twin-constrained cycle that connects all nodes incident to edges in those

sets Cq that Ty contains an element of.

126

Proof. Let T, C M be an arbitrary member of the family (T)qeq. As the matching M is
greedy, there exists a sorted alternating Ty-cycle relative to M according to Corollary 68 and
we can assume in the following that the nodes and edges of T}, are given according to (45), (46),
(47) and (48). (In the case of ties, choose an arbitrary order that remains fixed in the following.
Also note that we can disregard in the following, due to Proposition 79, those edges that do
not fulfil the degree property of Proposition 51 that is necessary for Corollary 68.)

STEP 1: Examine the edges (ix, jx) € T, in the order given by (45), starting from k = 0.
If the list of edges in T, begins with several edges from the same cycle Cy, jump to the last one
of these, which we denote by (ix,,jk,) € Ty. We proceed in the list of edges until one of the
following two cases occurs:

Case (1.1): We come to an edge (ig,,Jk,) that is an element of one of the cycles in the
family (Cy4) that any other edge in

{(ikl 7jk1)a (ik1+lajk1+1)7 ceey (ikgflajkgfl)}
is also an element of. Then we define

Ty = {(ikys i) Gty 410 G5 oo (g1, ka1 }-
Case (1.2): We arrive at the end of the list, i.e. at the edge (i|7|—1,j7|—1), Without having
found an edge (i,,jk,) of Case (1.1). Then we define
Ty = {(inys i)s ity 1 Gt 1) oo (=1, 17 —1) -
For both case (1.1) and case (1.2), let
Dy :={de D: (i,j) € Cy for some (i,j) € Ty1}
be the set of the indices of all cycles from the twin-induced structure (Cy) of M that the

edges in Tj; are an element of, and

6%1 = Z Cd

deDgy

the set of all edges from all cycles in (Cy) which are represented (via their indices) in ﬁq’l.

We know because of Corollary 70 that the canonical alternating T, g,1-cycle exists, which we
designate as IA(q,l. On this basis, we define

éq,l = (éq,l - fq,l) + (I?q,l - CZ/;q,l)-

Let us examine this set. The nodes that are incident to edges in the set 6%1 are exactly
those nodes that are incident to edges in 6q71 due to the fact that the nodes incident to edges in
f%l are the same nodes that are incident to edges in I?q,l — fqyl. Moreover, every node incident
to an edge in C, ; has exactly two neighbours in the subgraph induced by C, 1, namely first its
twin node (by virtue of C*q,l) and second either an edge from
Cy1NM =Cy1nCyy —{(i,j) € Na x Ng :i = b(j)}

or an edge from K a1 —fqﬁl. Consequently, C,, 1 consists only of disjunct cycles. Finally, Cy
is connected because of the very construction of K ¢,1 as an alternating fqyl—cycle that contains
one edge from each cycle in éq,l- In sum: C,1 is a twin-constrained cycle that connects all
nodes incident to edges in éq,l .

If Case (1.2) has arisen above, we continue directly with STEP 3. Otherwise we proceed

with further examining the edges in the list Ty, starting from ko 4 1. If the remainder of T,

127

namely the set

{(kat15 ko 41)s (kg 15 ko 41) o5 (47 =15 J)7 =1) }
does not contain any edge (iy,, jks) & Cq1 with k3 > ko + 1, we continue also with STEP

STEP 2: Let k3 > ko + 1 be the smallest number such that (ix,, jks) € C41. We continue
to examine the edges in T, in the order given in (21) and distinguish two cases.
Case (2.1): kg = |T| — 1. We define the set

Ty = {(iks—lvjks—l)v (ik37jk3)}~
Case (2.2): k3 < |T|—1. We further examine the list until, analogously to STEP 1, one of
the following two cases occurs:
Case (2.2a): We come to an edge (ig,,Jk,) that is an element of one of the cycles in the
family (Cy) that any other edge in
{(ik37jk3)7 (ik3+lajk3+1)7 () (ik4flajk4fl)}
is also an element of, or we arrive at an edge (ig,,jk,) € Cq.1. Then we define
Tq,2 = {(ikg—lvjks—l)v (ik37jk3)a sty (ik4—17jk4—1)}
Case (2.2b): We arrive at the end of the list, i.e. at the edge (47|—1, jj7|—1), without having
found an edge (ig,,jx,) that has one of the two properties in case (2.2a). Then we define
Ty,2 7= {(iks—1, Jks—1)s (ks Jig)s s (=15 J)7)—1) }-
For both case (2.1) and case (2.2), again analogously to STEP 1, but without including the
edge that fq,g has in common with fq,l, we define
Dq$2 = {d eD: (Z,]) € Cy for some (’L,]) S [Tq’g — {(iksfl,jkafl)]}
as the set of all cycles of the twin-induced structure of which T, 2\Tj 1 contains an edge,

and

@%2 = Z Cd

deDy,»

as the set of all edges of all cycles of the twin-induced structure of which fqg\fq,l contains
an edge.

Designating the canonical alternating fq,g—cycle as]?q’g, which exists because of Corollary
70, we define

6%2 = 6q,l - {(ik3—1,jk3—1)} + (aq,2 - T\qﬂ) + ([A(q,2 - f11,2)~

Let us examine this set.

(1) The nodes incident to Cy 2 are exactly those nodes that are incident to edges in éq’g
and in Cy ;1 due to the facts that (a) the set Cy1 is a cycle and removing one edge (here:
{(ik5—-1,7ks—1)}) will not remove any nodes incident to edges in this set and (b) the set éq,2
consists of cycles and, by definition, the set fq’g contains exactly one edge from each of these
cycles, and (c) the set (I?q’g - j—\‘qﬁg) does not contain edges between nodes that are not incident
to edges in either 5%1 or 61172.

(2) Every node incident to an edge in C, 2 has exactly two neighbours in the subgraph
induced by C, 2, namely first its twin node (by virtue of CA'q,g and Cy 1) and second either an

edge from

128

Co2NM=[Cyi\Ty2+CyanCya) —{(i,j) € Ng x Ng i = b(j)}

or an edge from [?q,g — fqg. Consequently, C, o consists only of disjunct cycles.

(3) The set C, 2 contains a connected subgraph because of the very construction of [A(qg
as an alternating T o-cycle that contains one edge from each cycle in C 2 and from the cycle
6(1,1. In sum: 6,172 18 a twin-constrained Hamiltonian cycle that connects all nodes incident to
edges in éqg and in 6(171.

If either case (2.1) or case (2.2b) has arisen above, we have reached the end of the list T,
and proceed directly with STEP 3. Otherwise, i.e. iff case (2.2a) had occurred, we proceed
by further examining the remaining edges in the list 7}, starting from ko + 1 with ks being
"redefined" by ks := k4. If the remainder of T, namely the set

{ ka1 Jkat1)s (ko 1s dhat1)s - (G =15)7 —1) }s

does not contain any edge (i, jr,) ¢ Cq,1 with ks > ks + 1, we continue also with STEP
3. Otherwise, we go to the beginning of STEP 2, "redefine" the set C, 1 as C 1 := C, 2, and
repeat the process of STEP 2 as often as it is necessary to reach the end of the list T}, i.e. to
continue with STEP 3.

STEP 3: As a result of the preceding steps, we have successively built a twin-constrained
Hamiltonian cycle that connects all nodes that are incident to any of the cycles Cy that Ty
contains an edge from, i.e. the twin-constrained Hamiltonian cycle C, contains all nodes from

{i € Ng:(i,j) € Cqg and T, N Cy # & for some j € Ng, d € D}.

Then the set

M*:=Cy2+ U Ca—{(i,j) € Na x Ng :i=b(j)},
b

i.e. the set of all edges from the twin-constrained cycle Cg > and from those cycles of the

twin-induced structure of the matching M that did not take part in constructing C, 2, but

without the edges between pairs of twins, is the matching we were looking for. m

The next Lemma shows that we can enlarge a twin-constrained cycle we have constructed
on the basis of one (or more) alternating Tj-cycles such that it includes also all nodes incident
to edges in those cycles of the twin-induced structure of which an additional alternating 7,-
cycle contains an edge — provided that the additional alternating T;-cycle has at least one edge
in common with one of those cycles of the twin-induced structure of which one of the other

T,-cycles contains an edge.

129

Lemma 107 (Enlarging twin-constrained cycles)

Let G(N, E) be a threshold graph with twin-node function b, (Cq)aep the twin-induced struc-
ture of a perfect greedy modified matching M on G and (Ty; C M)4eq a disjunct family such
that there exist alternating Ty,-cycles relative to M for all ¢ € Q. If there exists, for some subset
Q ; Q, a perfect modified matching M* on G such that its twin-induced structure (C})qecp-
contains an alternating twin-constrained cycle 6@ with

{i € N¢g: (i,j) € Uﬁ for some j € Ng}
={ie Ng:(i,j) € U Ca}
deD with
JqeQ:CyNT#2
i.e. a twin-constrained cycle that connects all nodes incident to edges in those sets Cy

that some T, with ¢ € Q contains an element of, then there exists, for all ¢* € Q — Q with
650 Ty # @, also a perfect modified matching M™** on G such that its twin-induced structure

(C3*)aep=+ contains a twin-constrained alternating cycle 6§+{q*} .

Proof. If we have 6@ D T, for a given ¢* € Q — Q with 6@ N Ty # &, the matching
M** := M* trivially has the desired properties due to C@ = C@Hq*} in this case. Hence
we can assume Tq*\C§ # @ in the following. Furthermore, we can assume without loss of
generality that M*\C’@ G M. (If this is not the case, we can generate such a matching M*\Ca
by constructing a greedy modified matching on the subgraph of G induced by M*\C5.) Hence
there exists a sorted alternating T;--cycle relative to M* according to Corollary 68 and we can
assume in the following that the nodes and edges of T' are given according to (45), (46), (47),
and (48). (In the case of ties, choose an arbitrary order that remains fixed in the following.
Again, as in the previous lemma, note that we can disregard in the following, due to Proposition
79, those edges that do not fulfil the degree property of Proposition 51 that is necessary for
Corollary 68.)

STEP 1: We choose a maximal cardinality subset of edges

1}*,1 = {1, Jha) (Bky 1 ka+1)5 oo (ks T)} C T
such that 75« ; contains exactly one edge from 05 (which is possible because of CaﬂT 7 7 9,
but Ty~ \Ca # &) and no two edges from the same member of the family (Cy)aep+. By defining
Dy« 1 :={d € D: (i,j) € Cy for some (i,5) € Ty 1}
as be the set of the indices of all cycles from the twin-induced structure (Cy) of M that the
edges in fq*’l are an element of,
aq*’l = Z Cq+ 6@
deDg« 4
as the set of all edges from the cycle C5 and all cycles in (Cq) which are represented (via
their indices) in Dy« 1, and the set K - 1 as the canonical alternating T« 1-cycle, which exists
because of Corollary 70, we arrive, by "gluing" together the cycles in (C4) and the cycle 6@
in the same fashion as in STEP 1 in the proof of the previous lemma, at a twin-constrained
alternating cycle

~ ~ ~ ~

Cq*’l = (Cq*,l — Tq* 1) + (Kq* 1 — Tq*’l).

) s

130

that connects all nodes incident to edges in dm and 6@

STEP 2: We proceed by examining the list of nodes analogously to STEP 2 in the proof
of the previous lemma, starting from node ko + 1. However, when we have reached the end of
the list, we do not proceed to STEP 3 of the proof of the previous lemma, but examine (unless
k1 = 0) the first part of the list of the edges in T}, starting from (ig, 1, jr,—1) in a backwards(!)
order. Once we have reached the top of the list of nodes, we have constructed, successively, a
twin-constrained Hamiltonian cycle that connects all nodes that are incident to any of those
cycles Cy from which some T} with d € @ contains an edge, and those nodes that are incident
to edges in all cycles Cgq from which T« contains an edge, i.e. our twin-constrained alternating

cycle 65 g} contains all nodes from

{i € Ng : (i,7) € (U cou(U Ca)
deD with deD with
3q€Q:CaNT #2 CyNT,« #2

for some j € Ng}.

Then the set
M** = ain o+ U Cd
erta} _ deD with
q€Q—Q—{q"} and CyNTy=2
—{(i,4) € Na x Ng =i = b(j)}
is the matching that the lemma claims to exist. m

We are now prepared to give a proof of a sufficient condition for the twin-constrained
Hamiltonicity of a threshold graph. The proof proceeds by induction. It starts with constructing
a twin-constrained alternating cycle on the basis of one alternating T),-cycle according to Lemma
106 and successively adds, by means of Lemma 107, edges from those cycles of the twin-induced

structure of which other alternating 7j-cycles contain an edge.

Theorem 108 (Recognizing twin-constrained Hamiltonian threshold graphs - sufficient crite-
rion)

Let G(N, E) be a threshold graph with twin-node function b, the family (Cy)acp the twin-
induced structure of a perfect greedy modified matching M on G and (T, C M)qeq a disjunct
family such that there exist alternating Ty-cycles relative to M for all ¢ € Q. If the patching
graph of (Cyq) relative to (Ty) is connected then there exists a twin-constrained Hamiltonian

cycle on G.

Proof. We choose some set Ty, C M, for which, according to Lemma 106, there exists a
perfect modified matching M* on G such that its twin-induced structure (C})qep+ contains a
twin-constrained alternating cycle that connects all nodes incident to edges in those sets Cy
that T, contains an element of. Assume that, for Q := {g}, we can find a ¢* € Q — @ that
fulfils the condition of Lemma 107. Then Lemma 107 guarantees that there exists a twin-

constrained cycle 6{%7(1*} that connects all nodes incident to edges in those sets Cq that T,

131

or Ty~ contains an element of, and we might be able to apply Lemma 107 again, this time to
the set Q := {qo,q*}. If it is possible to successively apply Lemma 107, i.e. if there always
exists a ¢* € Q — Q with 6@ N T, # @ for any given subset Q g @, we will finally arrive at a
matching M™** the twin-induced structure of which contains a twin-constrained cycle Cg, i.e.
a cycle that connects all nodes that are incident to edges in those sets Cy that some member
of the family (T,)4e¢ contains an element of.

As the patching graph P of (Cy)qep relative to (Ty)qeq is connected, there are no isolated
nodes in Np = D. Therefore, by definition of the patching graph, there exists, for every d € D,
a member of (T,),eq that contains an element of Cy. Consequently, the cycle C connects all
nodes that are incident to some edge in some member of the family (Cy)q4ep, i-e., by definition of
the twin-induced structure of a matching, the twin-constrained cycle C¢ is a twin-constrained
Hamiltonian cycle on G.

It remains to show that there always exists a ¢* € Q — Q with 6@ N1y« # & for any given
subset @) g Q. For a certain) g Q, let D < D be a subset of nodes of the patching graph
such that (Cq)qe Dg 18 the family of those cycles of which some T}, with ¢ €) contains an edge,
ie.

Dg={deD:CanNTy #2 for some q € Q}.

We distinguish between two cases.

Case (1): If Dz = D, we already have "glued together" all cycles of the twin-induced
structure of the matching, i.e. the cycle C@ is twin-constrained Hamiltonian. Hence we have
C@ NT, # @ for all ¢* € Q — Q. (Alternatively, we could stop the process of successively
applying Lemma 107 here.)

Case (2): If D@ ; D, the connectedness of the patching graph ensures that there exists a
node di € D — Dy that is a neighbour of some dy € Dg. Then, according to the definition of
the patching graph, there exists a set Tj~ that contains edges from both Cy, and Cy,. Because
of dy € D — D@ the cycle C4, has not been used yet when constructing 65. Due to the
way in which Lemma 106 and Lemma 107 construct a twin-constrained cycle C@ this implies
q* € @—Q. Moreover, d; € D@ implies that the cycle Cy, has already been used in constructing
Cg- Because the family (Ty € M)4eq is disjunct, Ty« contains an edge from Cy, that has not
been discarded in the process of constructing C@' Consequently, we have C@ NTy~#<. m

8.4 Constructing suitable families of alternating 7)-cycles

We know from Theorem 108 in the previous section that starting from a perfect modified greedy
matching we can find a twin-constrained Hamiltonian cycle if we can find a disjunct family (T7,)
with alternating Tj-cycles that gives rise to a connected patching graph. We also know, from
Corollary 104, section 8.2, that, for concluding that there does not exists a twin-constrained
Hamiltonian cycle, we can start from any perfect modified matching, which could well be a

greedy matching, and "only" have to find out whether there exists no disjunct family (T},) with

132

alternating Ty-cycles that would give rise to a connected patching graph. The question that
remains for solving the recognition problem for twin-constrained Hamiltonian threshold graphs
is: How can we either find a suitable family of alternating 7;-cycles or know that such a family

does not exist?

Regarding the second part of the question, let us recall Remark 102(2), which notes that
the patching graph does not change if we analyse canonical sorted alternating Tj-cycles. This
implies that we can restrict our effort to look for a suitable family (7}) to all families of canonical
sorted alternating Tj-cycles relative to a perfect greedy modified matching. In other words: we
can use the set of all families of canonical sorted alternating T,-cycles relative to a perfect greedy
modified matching as the domain of a matching generator in the sense of Proposition 60. In the
light of Corollary 104 and Theorem 108 this means that the set of canonical sorted alternative
cycles relative to a perfect greedy modified matching already contains all information necessary
for determining whether or not a certain threshold graph with a twin-node function is twin-
constrained Hamiltonian. We will now use this insight for our search for a suitable family of

alternating T)-cycles.

Algorithm 109 (Family construction algorithm - FCA)

INPUT: a sorted list of edges (i, jx) € M with M being a perfect modified
matching on a threshold graph G with nodes Ng = {1,2,...,2n}

and the edges from M being sorted in the sense of (46) and (47),
(provided they fulfill the degree property of Proposition 51),
neighbourhoods N (i) for i € Ng, and a list C|(ik, ji)] that indicates

for each edge (i,7) € M the number d € D of the cycle of the twin-induced

structure of which it is an element.

[01] (number of alternating T,-cycle to be constructed)
q* =0
[02] (set of edges for alternating T,-cycle)
Ty:={} foralll1<q< %
[03] (set of indices of those cycles of the twin-induced structure
that have an edge in Ty)
Sy:={} foralll1<qg< 3%
[04] (edge from matching that is being under consideration)
k=1
(05] REPEAT
[06] (find the first edge of neat set Ty to be constructed)
WHILE (k < n— 1) A [ji & N(ixsn) V Clik,)] = Cllisss, juer)]
DOk:=k+1
07] IF [ji € N(iks1) A Cllin, ji)] # Cllirgr, jira)]] THEN

133

[08] (include first edge into a new set Ty)

¢ = ¢+ 1Ty = (g} S = {ClGk 1))}
[09] (complete the set T,)

WHILE (k <n) A (jx € N(ir41)) A (Cl(ik+1, Je+1)] ¢ Sq)

DO k= k+ 1Ty = Tyr + {(idi)}: Sgr = S + {Cllik i)}
[10] END IF
[11] (go to next edge)

k:=k+1

[12] UNTIL (k > n), STOP.

OUTPUT: q* =0, or sets Ty and Sq for 1 < q < ¢*

We will give a brief overview of how the algorithm proceeds. After preliminarily setting
some variables, the algorithm starts searching from the highest edge until it reaches the second
last edge or until it finds an edge the lower node of which is adjacent to the higher node of
the succeeding edge in the sorted list, with both edges not being from the same cycle of the
twin-induced structure of the matching (line [06]). Once F'C'A has found a pair of succeeding
edges from different cycles (line [07]), it starts a new set T, and adds to it the first edge of the
pair (line [08]). It continues by adding all succeeding edges to the set Tj, as long as we have
not reached the last edge of our sorted list, the lower node of the current edge is adjacent to
the higher node of the succeeding edge and the succeeding edge does not belong to a cycle of
the twin-induced structure that is already represented in T; (line [09]). If composing the set
T, has been completed, the algorithm proceeds to the next edge in our sorted list in order to
check whether this edge is suitable for beginning a new set T,11 (line [11]) — unless we have

already examined the second last or last edge of our sorted list (line [12]).

The following theorem states that F'C'A generates sets that provide us with a disjunct
family of alternating T)-cycles, i.e. the algorithm FC'A provides a link between the result of
our matching algorithm MTGM Apax and the structure that we require to draw conclusions

about twin-constrained Hamiltonicity on the basis of Corollary 104 and Theorem 108.

Theorem 110 (Sufficiency of a solution by FCA)

Let G(N, E) be a threshold graph with twin-node function b, and (Cq)acp the twin-induced
structure of a perfect modified matching M on G. Unless FCA terminates with ¢* = 0, it
terminates with a disjunct family (Ty; C M)geq such that there exist alternating Ty-cycles
relative to M for all g € Q.

Proof. If and only if ¢* # 0 when the algorithm terminates, F'C'A has constructed sets (T)qe0
with @ :={1,2,...,¢*}. According to the way in which the edges of the matching M are sorted
and because of the way in which F'C'A operates, the nodes incident to edges in T, C M can be
represented by the set

134

N1, = {ikys Jhys Gkg 415 Jhgt1s s
Uy Ty |~ 25 kg | Ty | —25 U 1Ty |~ 1> Tk +1T,|—1}+

Due to lines [07] and [09] the algorithm makes sure that, for each ¢ € @, we have jj €
N (ig41) for all nodes ji, € Ny, with ky <k < k; 4 |T,| — 2. Hence there exists a path

kg = Jhg = Vg1 Jhgt1 — -
kg | Ty|—2 — Jhgt|Tyl—2 — Ukgt|Ty|—1 — Jhy+|T,—1 for all g € Q.

Because the edges in T, C M are sorted in the sense of (46) and (47), the node i;, must
be dominating all nodes incident to edges in T,. We choose the node Jkz with the largest
neighbourhood among all nodes ji € Nr, with k, < k < kg + |Ty| — 2, which must be a
member of a maximal clique of all nodes incident to edges in 7,. Hence there exists a matching
dominated P-path

kg = Jky = Ukgt1 = Jhg+1 = oo = Ukr—1 = Jkz—1 — bky = Jkz
with
P = {(ikgs Jg)s (g1 Jg1) s oos (s =15 Gz —1), (ikz Jiz) }

to which we can apply Theorem 63, i. e. there exists, for all ¢ € @, an alternating T,-
cycle relative to M. The family (T})4eq is disjunct because the algorithm uses every edge
(ik,jk) € M, 1 < k <|M|, only once. m

On the basis of the preceding theorem we can build, unless F'C' A terminates with ¢* = 0, the
patching graph of the twin-induced structure of M relative to the family (7}). If the patching
graph is connected, we know there exists and can construct a twin-constrained Hamiltonian cycle
according to Theorem 108. The next theorem states that, if TC' A terminates with ¢* = 0 or
if the family (T;) found by F'C' A does not provide us with a patching graph that is connected,
we do not have to look any further and can conclude that there exists no twin-constrained

Hamiltonian cycle on G .

Theorem 111 (Necessity of a solution by FCA)

Let G(N, E) be a threshold graph with twin-node function b, and (Cq)acp the twin-induced
structure of a perfect greedy modified matching M on G with |D| > 1. If FC A terminates with
g* = 0 or if the patching graph of (Cq)aep relative to the family (Ty; C M)4eq with which FCA
terminates is not connected, there exists no disjunct family (fq C M)qeq relative to which the

patching graph of the twin-induced structure of M is connected.

Proof. We first recall that, due to the degree property of a greedy matching (Proposition 51),
an ordering of the edges of the matching in the sense of (22) and (23) also complies with (26).
(Note that we can disregard here, due to Proposition 79 those edges that do not fulfill the
degree property of Proposition 51.) As a consequence, given the order in the sense of (22), (23)
and (26) and with ko := 0 and k, := |[M| — 1, the (relevant) edges of a greedy matching show

the following structure:
ko — Jko — Uho+1 — Jko+1 — -+ — Ty — Jky »

135

i+l = Jky+1 7 s T Uy T Jko s

ikz-‘rl _jk‘2+1 e T iks _jk‘a P
Uhp—2)+1 T Jhpozy+1 T o T ey T Jk(po1) o
Zk(p,1)+1 7‘7k(p,1)+1 e — ka 7]]% (59)

with
Jr, € N(ig,41) forall 1 <s<p-—1

and, due to the vicinal preorder of the underlying threshold graph, even with
Jk & N(ip,) for all k,m € {0,1,...,|M| -1}

ifksl+1§k)§ksl+1, k52+1§m§k32+1 with 1 <s1<so<p—1. (60)

We know that, for greedy matchings, the existence of an alternating T-cycle for a set T'C M
is equivalent to the existence of a sorted alternating T-cycle (Corollary 68), and that sorting the
edges of a set T' does not have any impact on the connectedness of the patching graph (Remark
102(2)).

In conjunction with (59) and (60), this implies that we have to look only for subsets

Tq g {(ik(5_1)+17jk(5_1)+1)7 (ik(‘;_1)+2ﬂjk(s_1)+2)7 sy (iks7jks)}

when searching for sets Tj, that could lead to a family (T,)4ecq of alternating Tj-cycles relative
to which the patching graph is connected.
Additionally, while searching within each of the sets

{(ik(5_1)+1a jk(s_1)+l)7 (ik(s_1)+2a jk(s_l)+2)7 seey (Zkgjkb)} (61>

given by s with 1 < s < p, we can restrict ourselves to constructing subsets T;, that do not
contain more than one edge from the same cycle of the twin-induced structure (because doing
so will have no impact on the connectedness of the patching graph).

Moreover, due to the vicinal preorder of the underlying threshold graph, if we have
Jk € N(ip,) for some k,m € {0,1,...,|M| — 1} with k <m ,

we also have

ks+1<k<m< kg for some s with1 <s<p-—-1,
Ji € N(ip,) forall k <1 <m—1, and

Je € N(i) forall k+1<i<m.

136

Consequently, we can construct the subsets T, while only considering edges along the order of
(59).
We observe that these are the principles that F'C' A follows in lines [06], [07] and [09].

Case (1): FCA terminates with ¢* = 0. Due to line [07] of the algorithm, this implies
that FCA has not found any pair of edges (ik,jr) and (ig41,Jrk+1) with jip € N(igs1) and
Cl(ik,Jx)] # Cl(ik+1,Jk+1)]- Hence, each of the sets (61) given by 1 < s < p consists only
of edges that are elements of the same cycle of the twin-induced structure of the matching.
From what has been said above (in particular (60)), we can conclude that it is not possible
to construct a set 7 with two edges from different cycles of the twin-induced structure as its
elements such that there exists an alternating T\—cycle relative to M. This implies, by definition
of the patching graph, that there exists no set @ and no family (fq)q o with alternating fq—
cycles relative to which the patching graph would be connected. (This means that relative to

all possible families of alternating Tj-cycles the patching graph consists only of isolated nodes.)

Case (2): FCA terminates with ¢* > 0 and the patching graph P(D, E) relative to the
family (7,) with which FCA terminates is not connected. We distinguish two sub-cases.

Case (2.1): The patching graph has an isolated node i € D. Then, by definition of the
patching graph and due to the fact that FCA does not construct sets T, that contain edges
from the same cycle of the twin-induced structure of the matching (lines [06] and [07]), there
must be sets according to (61) such that all edges (i, jm) € C; are within these sets and none
of these sets contains any edge (ix,jr) ¢ C;. From what has been said above (in particular
(60)), we can conclude that for all (i,,,) € C; and (ig, ji) ¢ C; it is not possible to construct
a set T with (4msJm), (ig, Jr) € T such that there exists an alternating f—cycle relative to M.
Hence, by definition of the patching graph, there exists no set @ and no family (fq)qeé with
alternating Tg-cycles relative to which the patching graph would be connected.

Case (2.2): The patching graph is not connected and has no isolated nodes. Then there
exists, by definition of the patching graph P(D, E), a partition D = Dy + D5 such that among
the family (T}) constructed by FCA there is no set T, with (im,jm), (ik,Jx) € Ty, for some
edges (im,Jm), (i, jrk) € M with C[(im,Jm)] € D1 and C[(ig, jx)] € D2. Due to lines [06] and
[07] of the algorithm, we know that all edges from cycles (Cy)4ep, are elements of some sets
(61), while all edges from cycles (Cyq)4ep, must be elements of some other sets (61). From what
has been said above (in particular (60)), we can conclude that for all (i, jm), (i, jr) € M
with C[(im, jm)] € D1 and C|(i, ji)] € D> it is not possible to construct a set T with (i, jm),
(ig, jr) € T such that there exists an alternating T-cycle relative to M. Hence, by definition

of the patching graph, there exists no set @ and no family (f) with alternating fq—cycles

9€Q
relative to which the patching graph would be connected. m

Remark 112 Note that we needed the degree property of greedy matchings (Proposition 79) for

the proof of Theorem 111, while this was not necessary for Theorem 110. This setting exhibits

an interesting asymmetry. According to Theorem 110, our algorithm FCA constructs a family

137

of alternating Ty-cycles relative to which the patching graph might be connected, but only on the
basis of the degree property of greedy matchings will we be able to construct a twin-constrained
Hamiltonian cycle from it (Theorem 108). Conversely, every twin-constrained Hamiltonian
cycle (unless we have a twin-induced structure with only one cycle) implies a connected patching
graph (Corollary 104), but only on the basis of the degree property are we guaranteed to find a
suitable family of alternating Ty-cycles with FCA (Theorem 111).

8.5 An algorithm for recognising twin-constrained Hamiltonian thresh-
old graphs (TGHRA)

In the previous three chapters we have developed, on the basis of the concepts of sorted alter-
nating T-cycles and the patching graph, both a necessary and a sufficient condition for deciding
on the twin-constrained Hamiltonicity of threshold graphs. In the following, as a summary of
the results of this chapter, we will present a polynomial-time algorithm that recognizes twin-
constrained Hamiltonian threshold graphs and constructs a twin-constrained Hamiltonian cycle,

if such a cycle exists.

Algorithm 113 (Twin-constrained Hamiltonicity Recognition Algorithm - TCHRA)

INPUT: a threshold graph G(N, E) with the (even) set of nodes
N¢g =1{1,2,...,2n}, neighbourhoods N (i) for all i € Ng,
and b: Ng — Ng a twin-node function.

[01] Run MGTM Amax, output: sorted matching M.
[02] If | M| < n then INFEASIBLE, STOP.
[03] Calculate twin-induced structure (Cgq)dep
(04] Ifd = 1 then FEASIBLE, STOP.
[05] Calculate list with C[(ix, jr)] = d :<==> (i, ji) € Cq for all1 < k < n.
[06] Run FCA, output: ¢*, lists Ty, and Sy for 1 < q < ¢*.
[07] If ¢ = 0 then INFEASIBLE, STOP.
[08] (check if patching graph connected)
(first alternating T,-cycle to be considered)
qg:=1,Q:={1}, S:=5y;
[09] (consider all other alternating Ty-cycles)
WHILE (q < ¢* A S # D) DO

[10] REPEAT q:=q+1
[11] UNTIL ((g=q"+1) V (g ¢ Q A SyN S # 2))
[12] Ifg<q* thenS:=5+S5;, Q@:=Q+{¢}, ¢:=1;
[13] END DO;

[14]

14] If S # D then INFEASIBLE else FEASIBLE; STOP.

138

OUTPUT: statement of FEASIBILITY or INFEASIBILITY

Theorem 114 (Complete recognition of twin-constrained Hamiltonicity by TCHRA)
Let G(N, E) be a threshold graph G(N, E) with the (even) set of nodes Ng = {1,2,...,2n},
neighbourhoods N (i) for all i € Ng, and b : N¢ — Ng a twin-node function. Then TCHRA

recognises whether or not G s twin-constrained Hamiltonian with respect to b.

Proof. The algorithm calculates a maximum cardinality modified matching M according to
Proposition 75 (line [01]). Trivially, if M is not perfect, there cannot be any twin-constrained
Hamiltonian cycle on G (line [02]). Having calculated the twin-induced structure of M with
respect to b (line [03]), there obviously exists a twin-constrained Hamiltonian cycle on b if the
twin-induced structure consists of only one cycle (line [04]). If this is not the case, TCHRA
generates a list that indicates for each edge from M the cycle of which the edge is an element
(line [05]) and tries to construct a family (T, C M),eq of alternating T~ cycles such that the
patching graph of the twin-induced structure relative to (T}) is connected (line [06]). Because
of Theorem 111 in conjunction with Theorem 103 there exists no twin-constrained Hamiltonian
cycle on G if FCA terminates with ¢ = 0 (line [07]).

If FCA has not terminated with ¢ = 0, the algorithm has found a family of alternating 7,-
cycles (Theorem 110) and checks if the patching graph of the twin-induced structure relative to
(Ty) is connected. This is achieved in lines [08] to [14]. The algorithm checks the connectedness
by proceeding in the fashion of Theorem 108: it starts with one set T, namely (arbitrarily
chosen) the set T3, and considers the set S, of the indices of all cycles of the twin-induced
structure of which there are elements in T, (line [08]). If the set S, (here: Si) contains the
indices of all cycles of the twin-induced structure (S; = D), the patching graph is connected by
definition and the algorithm jumps to line [14] to state the feasibility of the twin-constrained
Hamiltonian cycle problem on the basis of Theorem 108. If this is not the case, TCHRA
looks for another set S, that shares the index of one cycle with S; (lines [10] and [11], which
corresponds to the criterion 6@ NT, # @ in Theorem 108). If such a set does not exist, the
patching graph is not connected and the algorithm terminates in line [14] with a statement of

infeasibility on the basis of Theorem 111 in conjunction with Theorem 103.

Otherwise, if such a set does exist, TCHRA adds this new set S, to the set S; (line [11])
and checks again if the set S of the indices of all cycles of the twin-induced structure considered
so far is equal to the node set D of the patching graph (line [09]). If yes, the patching graph
is connected and the algorithm jumps to line [14] and states feasibility, again on the basis of
Theorem 108. Otherwise, TCHRA continues by searching for another set S, in lines [10] and
[11]. This procedure is repeated until TC'HRA has found a sufficient number of sets S, and
can declare feasibility on the basis of Theorem 108, or TC HRA has considered all sets S; (line
[10], condition ¢ = ¢* + 1) and has still not been able to link all nodes of the patching graph
(S # D, line [14]), in which case we conclude infeasibility on the basis of Theorems 103 and
111.

139

As TCHRA always ends with a statement about (in)feasibility and this statement, as we
have shown, is correct, TCHRA can decide whether or not a given threshold graph is twin-

constrained Hamiltonian with respect to a certain twin-node function. m

Remark 115 (1) In the form given above, TCH RA solely decides whether the twin-constrained
Hamiltonian cycle problem is feasible. If we would like to construct a twin-constrained Hamil-
tonian cycle if such a cycle exists, we can add the procedure of constructing a cycle as used
in Lemmas 106 and 107 and Theorem 108. (This procedure can even be simplified as FCA
constructs only sets T, that have at most one edge from each of the cycles of the twin-induced

structure — in our proofs of Lemmas 106 and 107 we could not take this for granted.

(2) If we would like to use TCHRA for solving an MSSP, we have to add, before running
TCHRA, a pair of dominating twin-nodes to our threshold graph. A statement of (in)feasibility
by TCHRA is then equivalent to a statement of (in)feasibility regarding the MSSP. If we modify
TCHRA to construct a twin-constrained Hamiltonian cycle, provided such a cycle exists, we

remove our pair of dominating twin-nodes and obtain a solution to the MSSP (cf. section 8.1).

The performance of TCHRA with respect to computational time will be illustrated in
chapter 9. We conclude this chapter by addressing the complexity of the twin-constrained

Hamiltonian cycle problem on threshold graphs.

Proposition 116 (Complezity of recognizing twin-constrained Hamiltonian cycles on threshold
graphs)

Let G(N, E) be a threshold graph G(N, E) with the (even) set of nodes Ng = {1,2,...,2n},
neighbourhoods N (i) for alli € Ng, and b: Ng — Ng a twin-node function. Then it is possible
to decide in at most O(n?) time whether or not G is twin-constrained Hamiltonian with respect

to b. If yes, we can construct a solution in further O(n) time.

Proof. We will address only those parts of TCHRA that might need more than O(1) time.
The matching algorithm (line [01]), also in its modified form, requires O(nlog, n) time because
of the sorting algorithm that is a part of it (Corollary 50). The twin-induced structure of
the matching (line [03]) can be calculated in at most O(";) time as we have n edges from the
matching and at most % cycles of the twin-induced structure. The list of the indices of the cycles
of the twin-induced structure of which an edge is an element (line [05]) can be generated while
calculating the twin-induced structure (which adds only O(1) time to each step of calculating
the twin-induced structure). FCA examines all edges in the matching exactly once (line [06])
and therefore terminates in at most O(n) time. The time for arriving at a decision of whether
the patching graph is connected (lines [08] to [13]) is bound by O(% (5 +1)) time as the number
of alternating Tj-cycles is bound by 4. Hence the complexity of all subroutines of TCHRA

140

leads to O(n?) time as an upper bound on the performance of TCHRA. Constructing a twin-
constrained Hamiltonian cycle can be done on the basis of the subroutine that checks whether
the patching graph is connected as long as we keep track on the order in which we add the sets
S, to the set S. With this information we have to deal with every edge of the matching only

once, which leads to a complexity of O(n). m

At the end of our discussion of twin-constrained paths and cycles in Chapters 7 and 8 we can
finally make a statement on the complexity of the MSSP, which we set out to solve in Chapter 1.
As mentioned in Chapter 5.3, the complexity of the MSSP is between the complexity of deciding
on the Hamiltonicity of a threshold graph (which is in problem class P) and the complexity of
the problem of deciding whether there exists, on a given graph, a twin-constrained Hamiltonian
path (which is an NP-complete problem). We are now prepared to give a definite answer on

the question of whether or not the MSSP can be solved in polynomial time.

Corollary 117 (Complexity of the MSSP)

Let G(N, E) be a threshold graph G(N, E) with the (even) set of nodes Ng = {1,2,...,2n},
neighbourhoods N (i) for alli € Ng, andb: Ng — Ng a twin-node function. Then it is possible
to decide in O(n?) time whether or not the MSSP on G with respect to b is feasible. If yes, we

can construct a solution in further O(n) time.
Proof. In view of the fact that adding a pair of dominating twin-nodes to G can be done in

O(1) time within MGT M A, right after having sorted the nodes, the statement follows directly

from the previous proposition in conjunction with Remark 115(2). m

141

9 Computational results

In this section, we will provide computational results for the two algorithms we developed: the
heuristic M SSPH, which looks for specific feasible and infeasible cases of the MSSP (chap-
ter 7.8), and the polynomial-time algorithm for recognizing all twin-constrained Hamiltonian
threshold graphs (T'C'HRA), which was given in chapter 8.5.

9.1 General remarks about the implementation

Both algorithms were implemented in C++ code using the integrated development environment
Microsoft Visual C++ and executed on a computer equipped with an Intel Core 2 Duo processor
(U7500) with a frequency of 1.06GHz.

While the implementation of TCHRA follows exactly the description in chapter 8.5, our
implementation of M .SSPH does not include the final Step [10] of the algorithm presented in
chapter 7.8 (i.e. the step of trying to find a feasible solution of the M.SSP by looking for an
extreme point of the polyhedron P;). As MSSPH is intended to be a fast heuristic to quickly
decide on the feasibility and infeasibility of a large percentage of given instances and our com-
putational experiments (as we will soon see) have led to convincing results beyond expectation
even without including Step [10], this implementation decision seems to be justified. Addi-
tionally, in view of the computational results, it is questionable whether the time-consuming
process of calling an LP solver in Step [10] would lead to computational results that could
compete with TCHRA, which can decide on the (in)feasibility of 100% of the instances given.
The source codes of our implementations of M SSPH and TCHRA are given in Appendices A
and B, respectively.

For the sake of comprehensiveness, Appendix C provides the source code of a much longer
and more complex heuristic called "M SSP 3.4", which, being an extended version of M SSPH,
also looks for some types of non-structure-preserving (path- and cycle-splitting) solutions and
can hence decide of the (in)feasibility of larger percentage of instances than MSSPH. This
heuristic was used for computational experiments during the process of research on the M SSP
and turned out to be helpful for gaining some of the insights into the structure of the M SSP
that led to chapters 7 and 8 of the present thesis. Moreover, the results of this longer algorithm
gave strong hints that an implementation of Step [10] of M .SSPH would not lead to computa-
tional advantages that go beyond what has been achieved with the two algorithms developed
in chapters 7 and 8. As the computational experiments with M.SSPH have led, as we will see,
to results that show that M SSPH in its implemented version clearly fulfills the purpose for
which it was developed, we will not discuss more in detail the heuristic M SSP 3.4 as presented

in Appendix C.

The computational tests of MSSPH and TCHRA were carried out on the basis of more
than 100 different types of randomly generated data sets, each with 10% to 10° instances of the

142

MSSP. Due to the large number of instances tested (and the choice of the data sets used, see
below), we can assume that the results provide us with a representative picture of the behaviour
of MSSPH and TCHRA in general. The reminder of this chapter addresses the most relevant
aspects of these tests by presenting and discussing the computational results for 31 randomly

generated data sets with 10® instances each.

One instance of the M SSP is characterized by the minimal distance « of the scoring knives,
the number n of boxes, and the widths of the 2n scores. Without loss of generality all instances
generated used the value o = 70mm, which is the value mentioned in the original problem
description by Goulimis (2004). The same article mentioned that the number of boxes is
typically up to n = 10. To give a more reliable upper bound on the computational time, the
majority of the computational results presented here is based on data sets consisting of 20
boxes, but we will also have a look at the behaviour of M SSPH and TCHRA for other data

sets, consisting of 10 to 100 boxes.

The widths of the scores, i.e. the numbers assigned to the nodes of the underlying threshold
graph, were assumed to be independent and identically distributed discrete random variables
that assume integer values. Computational tests were carried out for discrete uniform distri-
butions and discrete versions of symmetric triangular distributions. The choice of the latter
type of distribution is motivated by the idea that a discrete distribution based on triangular
distribution provides us with a simple way of studying the behaviour of our algorithms in cases
in which the width of the boxes is distributed around a peak value (similar to the situation of
a normal distribution). The decision for these two distributions implies that, with respect to
the width of the scores, all data sets are fully defined by the type of distribution (uniform /
triangular) and a single interval [a,b], which indicates the range in which the (integer) widths
of the scores can be found with non-zero probability. For the case of a uniformly distributed

random variable X over S := {a,a + 1, ..., b}, this implies a probability mass function
fx S8 —10,1]

with fx(x) 1 forze S .

“b-a +
The probability mass function of the discrete version of a symmetric triangular distribution
on the same interval (assuming that b —a + 1 is even, which does not seem to be too restrictive

an assumption here) is given by

x+0.5
4(x —a’) b+a
fx(z) = / mdm forz € S,z < 5
z—0.5

143

and

40 — b
fx(z) = / (_alx)ldx for x € S,z > 42—(1
with the parameters a’ and b’ of the symmetric triangular distribution being defined by
a:=a—-05and b :=b+0.5.

This yields

2+ 4(x —a) b+a
fx(x):m forx e S,z <
and 24 4(b—) b
+ - +a
= —-— f . 2
fx(x) b—atl)? orze S, z> (62)

The generation of the uniformly distributed random numbers in C++ was straight forward
as C++ is equipped with a function that returns uniformly distributed discrete pseudo-random
numbers in the interval [0, 32767]. For generating triangularly distributed random numbers, our
implementation derives the cumulative distribution function of the required triangular distribu-
tion from (62) in a first step, transforms the random numbers provided by C++ into uniformly
distributed random numbers in the interval [0,1] in a second step, and finally calculates the
triangularly distributed random numbers by means of the inverse of the cumulative distribu-
tion function (inverse transform sampling, see Devroye (1986), for example). While being not
optimal from the perspective of computational time, this method has been chosen because of
its comparably easy implementation and in view of the fact that the intervals that define our
distributions are rather small such that the loss of computational time due to this method can

be disregarded for our purpose.

9.2 Evaluation of MSSPH

We will proceed by discussing the computational results for our heuristic M.SSPH, which can
be found in Tables 1 to 5. The columns of Table 1 contain the results of 6 instances on the
interval [1, 70] with a uniform distribution that differ only with respect to the number of boxes
(i.e. we have a look at the behaviour of the heuristic for the case that the scores of the boxes are
distributed between 1 and the minimum distance of the knives). Apart from the computational
time needed to analyse 10% instances and the number of feasible and infeasible ones found
among these, the table contains also the number of instances that could be identified as one of
the 9 cases of (in)feasible instances that MSSPH looks for. For the reader’s convenience, we

will give a brief list of these cases here (see chapter 7.8 for details):

e Case (1): too many nodes that are elements of a maximal stable set = INFEASIBLE

144

e Case (2): a pair of twin-nodes consists of two isolated nodes == INFEASIBILE,

e Case (3): the threshold graph has more than two isolated nodes == INFEASIBLE,

e Case (4): there is no matching with at least cardinality |[M| <n—1= INFEASIBLE,
e Case (5): the threshold graph allows for a perfect matching = FEASIBLE,

e Case (6): MTGM Apin has generated a matching the twin-induced structure of which is
a direct solution to the MSSP = FEASIBLE,

e Case (7): there exists a structure-preserving solution w.r.t. the matching generated by
MTGM A, = FEASIBLE,

e Case (8): MTGM Ap.x has generated a matching the twin-induced structure of which is
a direct solution to the M SSP = FEASIBELE,

e Case (9): there exists a structure-preserving solution w.r.t. the matching generated by
MTGM Apax = FEASIBLE.

We observe that in all types of instances given in Table 1 our heuristic is able to decide on
the (in)feasibility of more than 98.7% of the random instances in quite an efficient way (less
than 10 minutes for 10° instances even in the case of 100 boxes, i.e. in the case of an underlying
threshold graph with 200 nodes), which should be sufficient for all practical purposes. The
higher the number of nodes, the higher the percentage of instances that the algorithm can
solve, which mainly seems to be due to the fact that the probability that a matching with
a cardinality of at least n — 1 exists apparently decreases (case (4)). This compensates for
the decline in the number of instances that turn out to be one of the cases (6) to (9), which
can be expected to become less likely when the number of nodes increases. All in all, the
percentage of instances that M SSPH can prove to be (in)feasible in such a short amount of
time is remarkable If we take into account that, for each instance with 10 boxes, there are
about 1.858 x 10° possible permutations of the boxes (see chapter 1), this result can only be
explained by the fact that our heuristic must be looking at exactly those characteristics of an
instance that are truly crucial for the M SSP. Therefore, if comparable results can be achieved
also under different distributions, this would ultimately justify the approach to the M SSP that
we chose in chapter 2: we could assume to have found the very "mathematical essence" of what
the MSSP is structurally about.

145

Boxes (n) 10 20 40 60 80 100

Interval [1,70] [1,70] [1,70] [1,70] [1,70] [1,70]
Time (/sec.) 12 33 111 218 376 575
feas. inst. 536603 | 438780 | 381870 | 365379 | 359936 | 361210

infeas. inst. | 450408 | 547053 | 606593 | 624833 | 632033 | 631739
% solved inst. | 98.7011 | 98.5833 | 98.8463 | 99.0212 | 99.1969 | 99.2949
(1) |Smax| >n+1 | 212827 | 256190 | 277402 | 279735 | 276735 | 270052
(2) {i,b(i)} C Dy | 13715 | 4823 | 1151 335 123 37
(3) | Do| > 2 30936 | 23968 | 11698 | 5408 | 2351 975
(4) |M] <n—1 | 192930 | 262072 | 316342 | 339355 | 352824 | 360675
(5) |M|=n 244255 | 226902 | 230637 | 242158 | 253495 | 266008

(6) TGM Apin: P | 61328 34334 17911 12052 8826 7134
(7) TGM Apin: S | 213213 | 161706 | 121436 | 101149 | 88952 80278
(8) TGM Apax: P | 14013 9844 5390 3695 2683 2198
(9) TGM Apax: S 3794 5994 6496 6325 5980 5592

Table 1: MSSPH, uniform distribution I

In order to see if our results can be confirmed for different types of data sets, computational
tests have been carried out for uniformly distributed score widths on different intervals. Table 2
shows results for intervals with a diameter of about half the size of the minimal distance of the
scoring knives in the case of 20 boxes. We can observe that the percentage of solved instances
is higher the less the interval covers the area around half of the minimal distance of the knives,
i.e. the area around 35mm. This is due to the fact that, if the interval contains only small
numbers, too many nodes have a rather low degree and the heuristic recognises this as cases (1)
to (3), while our heuristic can easily prove feasibility on the basis of a perfect matching if the
interval contains only larger numbers. We notice that for all these distributions, the algorithm
can decide on the (in)feasibility of a higher percentage of instances than for the distribution
in Table 1. Also, we can conclude that the results for intervals with numbers smaller or larger
than in the intervals given in Table 2 would be the same as in the cases of [6,35] and [36, 65],
respectively, i.e. it is not necessary to test M SSPH for score widths above 70mm and negative
numbers. This implies also that we do not have to carry out computational tests for intervals

with a diameter larger than 70.

146

Boxes (n) 20 20 20 20 20 20 20

Interval [6,35] | [11,40] | [16,45] [21,50] [26,55] | [31,60] | [36,65]
Time (/sec.) 4 4 5 36 39 36 34
feas. inst. 0 0 12 551825 | 997180 106 108

infeas. inst. 108 108 999980 | 440718 2816 0 0
% solved inst. 100 100 99.9992 | 99.2570 | 99.9996 100 100
(1) |Smax| >n+1 | 105 | 999918 | 894507 | 185047 872 0 0
(2) i,b(i) € Do 0 81 74531 1650 0 0
(3) | Dol > 2 0 1 30904 8406 0 0
4 |M|<n-1 0 0 38 245615 1944 0 0
(5) | M| =mn 0 0 0 353452 | 992475 106 106
(6) TGM Apin: P 0 0 6 30315 458 0 0
(7) TGM Apin: S 0 0 2 156668 4236 0 0
(8) TGM Apax: P 0 0 4 6043 3 0 0
(9) TGM Apax: S 0 0 0 5374 8 0 0

Table 2: MSSPH, uniform distribution II

Apparently, the worst case for MSSPH is a situation when the widths of the boxes are
centered around half of the minimum knife distance because in such a situation only comparably
few instances are characterized by the existence of a perfect matching or by many nodes with
a low degree. To further evaluate our heuristic in these critical worst case situations, M SSPH
was confronted with distributions with a support around half of the minimum knife distance
that differ only with the respect to the diameter of the interval (Table 3). It turns out that,
with respect to the percentage of instances solved, the distribution over the interval [1, 70] is the
worst case, which suggests that the results given in Table 1 do provide an appropriate overview
of the performance of M SSPH. In contrast to this, the most unfavourable case with respect
to computational time occurs when the interval has a small diameter because less instances can
be recognized as infeasible on the basis of the fast criteria (1) to (3). We observe, however,
that, all in all, the amount of time that our heuristic requires remains in the same order of

magnitude, i.e. with respect to computational time, M SSPH is rather stable.

147

Boxes (n) 20 20 20 20 20 20 20
Interval [1,70] | [6,65] | [11,60] | [16,55] | [21,50] | [26,45] | [31,40]
Time (/sec.) 33 33 34 35 36 37 41
feas. inst. 438780 | 453963 | 474338 | 504835 | 551852 | 634258 | 814170
infeas. inst. 547053 | 532925 | 513897 | 485143 | 440718 | 361080 | 184440
% solved inst. 98.5833 | 98.6888 | 98.8235 | 98.9978 | 99.2570 | 99.5338 | 99.8610
(1) |Smax| >n+1 | 256190 | 246833 | 233413 | 214724 | 185047 | 133915 | 39091
(2) i,b(i) € Dy 4823 4188 3440 2577 1650 672 19
(3) | Dol > 2 23968 20788 17380 13451 8406 3142 61
4) | M]<n-1 262072 | 261116 | 259664 | 254391 | 245615 | 223351 | 145269
(5) M| =mn 226902 | 243273 | 266281 | 299807 | 353452 | 451700 | 686745
(6) TGM Apin: P | 34334 33832 32939 31724 30315 26542 15799
(7) TGM Apin: S | 161706 | 161870 | 161023 | 160429 | 156668 | 147305 | 107664
(8) TGM Apax: P 9844 9108 8259 7258 6043 4151 1497
(9) TGM Apax: S 5994 5880 5836 5617 5374 4560 2465

In order to further test the stability of the performance of our heuristic, we consider cases of

Table 3: MSSPH, uniform distribution III

symmetric triangular distributions centered around half of the minimal knife distance (Tables

4 and 5). In view of the results above, these cases must be considered rather critical. The

distributions used for the computations the results of which are provided in Table 4 combine

the worst cases we have found (i.e. the cases of the first and the last column of the previous

table) into one distribution: a broad interval ([1,70]) with a probability mass function that has

a peak at half of the minimum knife distance. Indeed, as Table 4 shows, the computational

time increases by approximately factor 1.5, while the percentage of instances solved decreases

t0 97.0681% in the case of 100 boxes, i.e. 200 nodes. But again, our results remain in the same

order of magnitude.

148

Boxes (n) 10 20 40 60 80 100

Interval [1,70] [1,70] [1,70] [1,70] [1,70] [1,70]
Time (/sec.) 17 45 135 274 472 740
feas. inst. 556274 | 454867 | 387429 | 364187 | 352965 | 348845

infeas. inst. | 427224 | 522679 | 586227 | 607991 | 618383 | 621836
% solved inst. | 98.3498 | 97.7546 | 97.3656 | 97.2178 | 97.1348 | 97.0681
(1) |Smax| >n+1 | 177983 | 202842 | 200249 | 186220 | 170705 | 155967
(2) {i,b(i)} S Dy | 16960 | 8117 | 3587 | 2243 | 1542 1125
(3) | Do| > 2 38675 | 41620 | 39416 | 35895 | 33015 | 30276
(4) |M| <n—1 | 193606 | 270100 | 342975 | 383633 | 413121 | 434468
(5) |M| =n 235957 | 203659 | 188379 | 188433 | 191230 | 196533

(6) TGM Apin: P | 66344 40028 23533 16978 13348 10954
(7) TGM Apin: S | 233135 | 191083 | 157947 | 142910 | 133533 | 126983
(8) TGM Apax: P | 17054 13832 10131 8122 7039 6398
(9) TGM Apax: S 3784 6265 7439 7744 7815 7977

Table 4: MSSPH, triangular distribution I

For the sake of comprehensiveness, Table 5 shows the results for triangular distributions
on sets that contain only numbers within a range of about half the minimum knife distance.
We can conclude from the first two columns (in comparison with Table 2) that 4 sec. of the
computational time needed in the cases investigated in Tables 4 and 5 is due to the extra
time needed for calculating the random instances under the triangular distribution by means
of inverse transform sampling, which implies that in all non-trivial cases, the computational
times of instances with a triangular distribution are indeed comparable with those of a uniform
distribution. We observe that, apart from the time needed for generating the instances, the

results under a triangular distribution are similar to those for a uniform distribution.

In sum we can state that our heuristic is remarkably efficient and stable with respect to
both the percentage of instances that it can solve and the computational time required. While
in principle there can be "pathological" distributions that might lead to a much longer com-
putational time and/or a significantly lower percentage of instances solved, our analysis on the
basis of different types of distributions did not provide any hint that these distributions are
likely to occur. (Note that we can reasonably assume, for example, that a distribution with
two peaks would not have a significant impact on the performance of our heuristic. If these
two peaks were close to each other, we could expect a result similar to those of the triangular
distributions tested, and if the peaks were rather distant from each other, we could expect a
situation that is even more favourable than that of a uniform distribution.) Therefore, we will
end our evaluation of MSSPH here.

149

Boxes (n) 20 20 20 20 20 20 20
Interval [6,35] | [11,40] | [16,45] | [21,50] | [26,55] | [31,60] | [36,65]
Time (/sec.) 8 8 9 44 42 39 38
feas. inst. 0 0 1 603705 10° 10° 109
infeas. inst. 10° 10° 999997 | 377089 0 0 0
% solved inst. 100 100 | 99.9998 | 98.0794 100 100 100
(1) |Smax| >n+1 | 10° 10° 995781 | 97303 0 0 0
(2) i,b(i) € Do 0 0 2000 4920 0 0 0
(3) [Do| > 2 0 0 2102 | 24959 0 0 0
(4) M| <n-1 0 0 114 249907 0 0 0
(5) [M] =n 0 0 0 340037 | 999996 | 10° 10°
(6) TGM Apin: P 0 0 0 37694 0 0 0
(7) TGMApin: S | 0 0 1 207067 | 4 0 0
(8) TGM Appax: P 0 0 0 12377 0 0 0
(9) TGMApax: S | 0 0 0 6530 0 0 0

Table 5: MSSPH, triangular distribution II

As in practical cases, the number of instances is (only) "in the many hundreds (if not
thousands)" (Goulimis, 2004, pp. 1368) we can conclude on the basis of both the computational
time needed for 10% instances under various distributions and the percentage of instances solved
that M SSPH is an efficient, stable and reliable method for quickly solving a large percentage

of instances in a typical practical situation.

9.3 Evaluation of TGHRA

We now turn to the computational test carried out with TGHRA. Tables 6 to 10 contain
the results for the same type of randomly generated data sets that were used for evaluating
the behaviour of MSSPH as presented in Tables 1 to 5. Again, the computational tests
were executed on the basis of data sets with 10% instances each and a scoring knife distance
a =T70mm. As TGHRA looks for a twin-constrained Hamiltonian cycle and we are interested
in finding a twin-constrained Hamiltonian path, our implementation adds a pair of twin-nodes
nodes (i.e. one box) with score widths v(ig) = v(i1) = 70 before starting TGHRA (see chapter
8.1 and Remark 115(2)). The following tables list for each data set the time the algorithm
took to consider all instances and the number instances that turned out to be feasible and
infeasible. Moreover, the tables include the number of instances that were found to be among
the 5 possible cases that lead to a decision about the question of (in)feasibility. For the reader’s

convenience we will give a brief list of these cases here (see chapter 8.5 for details):

e Case (1): the underlying threshold graph has no perfect matching = INFEASIBLE,

e Case (2): MTGM Apax has generated a matching the twin-induced structure of which is
a direct solution to the MSSP = FEASIBELE,

150

e Case (3): all nodes of the patching graph are isolated = INFEASIBLE,
e Case (4): the patching graph is unconnected = INFEASIBLE,

e Case (5): the patching graph is connected == FEASIBLE.

Analogous to tables 1 to 5, Tables 6 to 10 show the results for a uniform distribution on
the interval [1,70] and different numbers of boxes; for a uniform distribution on intervals that
have a diameter of about half of the minimum knife distance; for a uniform distribution on
intervals centered around half of the minimum knife distance; for a triangular distribution on
the interval [1, 70] and different numbers of boxes; and for a triangular distribution on intervals

that have a diameter of about half of the minimum knife distance, respectively.

Boxes (n) 10 20 40 60 80 100
Interval [1,70] [1,70] [1,70] [1,70] [1,70] [1,70]
Time (/sec.) 20 57 180 376 665 971

feas. inst. | 533664 | 446774 | 391555 | 374177 | 369457 | 368791
infeas. inst. | 466336 | 553226 | 608445 | 625823 | 630543 | 631209
(1) |IM] <n | 464202 | 552802 | 608395 | 625810 | 630539 | 631207
(2) full P 232854 | 141637 | 89311 | 69354 | 59990 | 53319
(3) ¢ =0 1003 171 12 3 0 0
(4) PG uncon. 1127 253 38 10 4 2
(5) PG con. 300810 | 305137 | 302244 | 304823 | 309467 | 315472

Table 6: TGHRA, uniform distribution I

Boxes (n) 20 20 20 20 20 20 20
Interval (6,35] | [11,40] | [16,45] | [21,50] | [26,55] | [31,60] | [36,65]
Time (/sec.) 58 57 55 57 59 57 58
feas. inst. 0 0 11 556625 | 997684 10° 109
infeas. inst. | 106 10% | 999989 | 443375 | 2316 0 0
(1) IM|<n 108 10% | 999989 | 443234 | 2316 0 0
(2) full P 0 0 4 175694 | 314333 | 316055 | 315776
(3)q* =0 0 0 0 50 0 0 0
(4) PG uncon. 0 0 0 91 0 0 0
(5) PG con. 0 0 7 380931 | 683351 | 683945 | 684224

Table 7: TGHRA, uniform distribution II

151

Boxes (n) 20 20 20 20 20 20 20
Interval (1,70] | [6,65] | [11,60] | [16,55] | [21,50] | [26,45] | [31,40]
Time (/sec.) 57 57 57 57 57 58 59
feas. inst. 446774 | 462638 | 481983 | 510161 | 556625 | 638300 | 817855
infeas. inst. | 553226 | 537362 | 518017 | 489839 | 443375 | 361700 | 182145
(1) |M] <n | 552802 | 537034 | 517699 | 489623 | 443234 | 361653 | 182121
(2) full P 141637 | 146619 | 152328 | 161392 | 175694 | 200205 | 244121
3)¢*=0 171 90 101 72 50 17 6
(4) PG uncon. 253 238 217 144 91 30 18
(5) PG con. | 305137 | 316019 | 329655 | 348769 | 380931 | 438095 | 573734
Table 8: TGHRA, uniform distribution III
Boxes (n) 20 40 60 80 100
Interval [1,70] [1,70] [1,70] [1,70] [1,70] [1,70]
Time (/sec.) 68 203 411 699 1070
feas. inst. 557217 | 471557 | 412036 | 390448 | 381160 | 379362
infeas. inst. | 442783 | 528443 | 587964 | 609552 | 618840 | 620638
(1) [M|<n | 440082 | 527614 | 587668 | 609397 | 618724 | 620579
(2) full P 243679 | 149626 | 92866 73103 61494 54759
3) ¢ =0 1344 276 63 25 25 9
(4) PG uncon. | 1357 553 233 130 91 50
(5) PG con. | 313538 | 321931 | 318170 | 317345 | 319666 | 324603
Table 9: TGHRA, triangular distribution I
Boxes (n) 20 20 20 20 20 20 20
Interval [6,35] | [11,40] | [16,45] | [21,50] | [26,55] | [31,60] | [36,65]
Time (/sec.) 63 63 62 63 64 62 62
feas. inst. 0 0 0 620480 106 106 106
infeas. inst. | 109 106 106 379520 0 0 0
(1) |M]<n 106 106 106 378913 0 0 0
(2) full P 0 0 0 196235 | 315411 | 315477 | 315890
(3)q* =0 0 0 0 188 0 0 0
(4) PG uncon. 0 0 0 419 0 0 0
(5) PG con. 0 0 0 424245 | 684589 | 684523 | 684110

Table 10: TGHRA, triangular distribution II

152

We observe that the computational time required for solving all instances of the problem
is, except in those cases that are trivial for MSSPH, about twice the time that our heuristic
MSSPH needed, i.e. our algorithm TGH RA takes an amount of time that can be considered
reasonable for practical purposes. Again, it is the case that instances with a triangular distribu-
tion require a longer computational time. However, if we take into account that generating the
triangularly distributed data sets takes, as concluded above, about 4 sec. for all 10° instances,
the difference in computational time is only marginal. We note that in general the computa-
tional time is, for the case of 20 boxes, remarkably independent of the distributions chosen.
In fact, our computational experiments show no indication that our algorithm could behave
entirely differently if other distributions were chosen. This suggests that we have developed
an algorithm that should be suitable and reliable for all cases that might arise in a practical

setting.

If we compare the results gained for TGH RA with those for M SSPH, we can observe that
most infeasible cases can be recognised by TGH RA on the basis of the fact that there is no
perfect matching on the underlying threshold graph (case (1) for TGHRA). This case corre-
sponds to cases (1) to (4) for MSSPH, which implies that the simple criteria that M SSPH
applies to prove infeasibility are obviously sufficient to discover almost all infeasible instances
of the MSSP. This explains in part the high percentage of instances that MSSPH can solve.

On a side-note we remark that the percentage of infeasible cases that cannot be recognised
by the fact that there is no perfect matching on the underlying threshold graph (cases (3) and
(4)) decreases as the number of nodes increases (see Tables 6 and 9). This is probably due
to the fact that a higher number of nodes on the same interval leads to degree partitions of a
higher cardinality, which increases the probability that a degree partition contains nodes that
belong to different cycles of the twin-induced structure of the matching. As a consequence, the
probability increases that there exist alternating T-cycles that allow for a connected patching
graph and hence for a solution of the M SSP. Proving this, however, would be a question for

further research.

Finally we can conclude that a combination of M SSPH and TGH RA would, in view of our
computational experiments, lead to faster algorithm for solving all instances. Such an algorithm
could start with MSSPH and look for instances that fall into the categories of cases (1) to
(7) of MSSPH and then continue with TGH RA to solve the small number of instances that
remain unsolved. Due to the small percentage of instances that we would need TGH RA for (2%
to 3% of all instances according to our computational results), we can expect the computational
time required by such a combined algorithm to be close to the time that M SSPH takes. In a

very time-sensitive practical setting, this combined algorithm should be the algorithm of choice.

153

10 Conclusion

The Minimum Score Separation Problem (MSSP) is a combinatorial problem that was intro-
duced as an open problem in the OR literature in JORS 55. The present thesis set out to solve
it.

In chapter 1, we introduced the MSSP and set the task to develop an algorithm that, at
least as a heuristic for a large percentage of instances, can quickly determine whether or not
a certain instance of the MSSP is feasible. We proceeded by presenting two ways of modelling
this problem in chapter 2, namely the originally proposed way of modelling the MSSP and
a new approach. It was argued that modelling the MSSP as a twin-constrained Hamiltonian
path problem (instead of a Travelling Politician Problem) is more elegant (also in view of the
principle of Occam’s razor) as it does not require us to double certain mathematical entities
and that it gives us the opportunity to capitalise on the adjacency conditions for each score
of a box separately, which might allow for a more direct way of exploiting the structure of the

problem.

The succeeding two chapters laid the foundations for this approach. In chapter 3, we related
our problem to the literature on Hamiltonian paths, alternating Hamiltonian paths, the TSP,
the CTSP and the GTSP and discussed the complexity of these problems and of our twin-
constrained Hamiltonian path problem, and in chapter 4 we introduced the concept of the

threshold graph and had a look at the basic characteristics of this type of graph.

Building on these preliminaries, most of which had already been addressed in the relevant
literature, the following two chapters 5 and 6 studied the existence and structure of paths
and cycles on threshold graphs more in detail. As every twin-constrained Hamiltonian path
contains a matching on a threshold graph, we decided to examine first the existence of paths
and cycles and their properties from the perspective of maximum cardinality matchings on
threshold graphs and analyzed the circumstances under which a subset T' of a matching can
be extended to an (even, matching-dominated, or augmented) T-path. In chapter 5, this led
to a maximum cardinality proof of a type of matching algorithms on threshold graphs, to a
new criterion for the existence of Hamiltonian paths on threshold graphs (and, as a corollary,
to a new proof of a criterion in the literature), and to the insight that the twin-constrained
Hamiltonian path problem on threshold graphs is located at the border of N P-complete and
polynomial-time problems. Because of this it seemed to be advisable to pursue a two-track
policy and be open to developing both a polynomial time algorithm for the MSSP and a fast
heuristic. In chapter 6, we introduced the concept of alternating T-cycles relative to a given
matching and, building on our criterion for the existence of Hamiltonian paths from chapter
5, we derived several criteria for the existence of alternating T-cycles on threshold graphs in
general and for the existence of alternating T-cycles relative to a matching gained from a specific
algorithm (TGM A,,ax) in particular.

154

Having laid the theoretical foundations about constructing paths and cycles on threshold
graphs, we turned to the MSSP, following our two-track policy in chapters 7 and 8. Chapter
7 focussed on developing a heuristic for quickly solving a large percentage of instances of the
MSSP, while chapter 8, generalizing the insights from chapter 7, led to a polynomial-time
algorithm that solves all instances.

In chapter 7, we introduced the concept of a modified matching and of the twin-induced
structure of a matching. Analysing the structural setting given by these concepts and making
use of the results of chapters 5 and 6, we addressed the question of the feasibility of the MSSP
with respect to matchings with cardinalities of |M| < n —1, |[M| =n, and |M| =n —1. In
the latter case, we developed criteria for the existence of structure-preserving solutions and two
types of non-structure-preserving, namely path- and cycle-splitting solutions. Finally, we could
show that a graph that allows for any of the types of solutions examined can be recognized in
polynomial time.

In chapter 8, we generalized these results to all possible cases of instances of the MSSP. For
studying twin-constrained Hamiltonian cycles, we introduced the concept of the patching graph
of the twin-induced structure of a matching relative to a family of alternating T-cycles. On this
basis, heavily drawing on the results of chapter 6, we could show that in the particular case of
greedy matchings, the twin-constrained Hamiltonicity of a threshold graph is equivalent with
the existence of a family of alternating T-cycles relative to which the patching graph of the
twin-induced structure of a greedy matching is connected. By means of an algorithm that, as
we could prove on the basis of chapter 6 again, allows us to decide on the question of whether
or not there exists such a family of alternating T-cycles relative to a given greedy matching, we

eventually arrived at a polynomial-time algorithm for the MSSP.

Finally, in the previous chapter 9, we carried out computational tests for the two algorithms
we developed. It was demonstrated that the two algorithms provide excellent results with re-
spect to computational time and, in the case of the heuristic, also with respect to the percentage
of the instances solved. Moreover, the results of our computational tests suggested that the
algorithms show a stable behaviour under various distributions of the input data and how our
two algorithms can be combined to create an even more efficient algorithm. In sum, our results
demonstrate that we have indeed solved the MSSP and developed an algorithm that can be
expected to work efficiently for practical purposes. This ultimately justifies the approach to the
MSSP that we chose in chapter 2, which now can arguably be said to capture the very essence
of what the mathematical structure of the MSSP is about.

Concluding this thesis, we will address six questions for further research, the first three of
which are directly related to the results of this thesis, while the latter three can be considered

generalisations of the work undertaken here.

1. We saw in chapter 3 that the distinct structure of threshold graphs has led to several
different characterisations of this class of graphs. Even more characterisations can be found in

the literature (see Mahadev and Peled, 1995). In chapter 4, we proved a very strong statement

155

about alternating T-paths on threshold graphs (Theorem 44), and in chapter 5, based on the
alternating path theorem, presented a new, surprisingly simple criterion for the existence of
Hamiltonian paths on threshold graphs (Theorem 53). One would expect such strong statements
as Theorems 44 and 53 to hold only for a very small class of graphs. Therefore, it would be an
interesting topic of research pertaining to the structure of threshold graphs to see whether these
theorems can be exploited as a starting point for deriving a new, alternative characterization
of this class of graphs.

2. We concluded at the end of chapter 5 that in the case of threshold graphs the twin-
constrained Hamiltonian path problem could either be solvable in polynomial time (as the
"ordinary" Hamiltonian path problem on threshold graphs) or be NP-complete (as the twin-
constrained Hamiltonian path problem in the general case). In chapter 8, drawing on the
results of the preceding chapters, we could eventually show that for threshold graphs also the
twin-constrained Hamiltonian path problem is in P and shifted the frontier of what is known
to be in P. For doing so, some theoretical effort was necessary and we had to rely heavily
on the specific structure of threshold graphs. In view of the fact that the twin-constrained
Hamiltonian path problem generalizes the "ordinary" Hamiltonian path problem, this might
not be too surprising, but it raises the question of whether there exists a class of graphs, for
which the "ordinary" Hamiltonian path problem is in P, but for which the twin-constrained
Hamiltonian path problem is NP-complete. There might be a limit such that the specific
structure of a graph is not rich enough to allow for a polynomial-time algorithm for the twin-
constrained case. We know, for example, that the "ordinary" Hamiltonian cycle problem on 2-
regular graphs is (trivially) in P, while the "ordinary" Hamiltonian cycle problem on a 3-regular
graph (i.e. a 2-regular graph plus the edges of a "twin-node function") is NP-complete (Garey,
Johnson and Tarjan, 1976). Therefore, as Frits Spieksma (University of Leuven) remarked (oral
communication), recognising twin-constrained Hamiltonian 2-regular graphs might well be an
NP-complete problem. So far, despite some efforts by Frits Spieksma and the author of the
present thesis in addressing this topic, this question has remained open. If, however, such a
class of graphs could eventually be found, this might well lead to a better understanding of
the boundary that separates problems in P from those that are NP-complete (provided that
P#NP, of course).

3. Now that the twin-constrained Hamiltonian cycle problem on threshold graphs turned
out to be solvable in polynomial time, it might be helpful for practical applications to have
a polyhedral description of it, in particular because the problem occurs in conjunction with
the cutting-stock problem, which is typically addressed by means of Integer Programming. In
chapter 7, we presented a polyhedral description of path- and cycle-splitting solutions, i.e. for
a case in which one alternating T-cycle is sufficient to construct a connected patching graph.
It would be an interesting to see if this approach can be extended to the case of an arbitrary

number of alternating T-cycles that we have addressed without polyhedral means in chapter 8.

156

4. A natural generalization of the twin-constrained Hamiltonian path problem on threshold
graphs would be the "twin-constrained TSP" on threshold graphs. One way of addressing this
question would be to examine how well-known general-purpose heuristics for the TSP behave
in the twin-constrained case. However, it might be more fruitful to draw on our results of
the previous chapters to develop an approach tailored to the case of threshold graphs. After
all, chapters 5, 6, 7 and 8 provide many structural insights into constructing, combining and
extending ("ordinary" and twin-constrained) Hamiltonian paths on threshold graphs that a

heuristic looking for an optimal twin-constrained Hamiltonian cycle could exploit.

5. Another natural generalization of the topic of this thesis is the class of directed graphs
that can be seen as the counterpart of threshold graphs: Ferrers digraphs. Introduced by
Riguet (1951), Ferrers digraphs can be characterized as those directed graphs that lead to
threshold graphs when every arc is replaced by an edge (Mahadev and Peled, 1995). While
the directedness of the arcs implies that not all characterisations of threshold graphs can be
translated into characterisations of Ferrers digraphs without appropriate amendments, it would
be interesting to explore if and how the various structural aspects of Hamiltonian threshold
graphs and (twin-constrained) Hamiltonian threshold graphs that we studied in chapters 3 to

8 can be reconstructed for the directed case.

6. Finally, it would be interesting to see if it is possible to generalize our results to a class
of graphs that includes the class of threshold graphs and has a more general structure. A
promising candidate for such a task would be the class of interval graphs (cf. Remark 52(2)).
Interval graphs, which have many applications in scheduling, are graphs in which each node
is assigned an interval on the real line (instead of a single number as in the case of threshold
graphs), with two nodes being adjacent if and only if their assigned intervals overlap. They
are a particularly interesting generalization of threshold graphs in our case because (a) our
matching algorithm TGM A, leads to a maximum cardinality matching also in the case of
interval graphs (Moitra and Johnson, 1989) and (b) the Hamiltonian cycle problem on interval
graphs can also be solved in polynomial time (Keil, 1985). This implies that some of our results
can be expected to be (more or less directly) transferable to the case of interval graphs, and
that it is also possible that the twin-constrained Hamiltonian path problem on interval graphs
is in P. As the present thesis did not only develop a polynomial-time algorithm for the twin-
constrained Hamiltonian path problem on threshold graphs, but also examined in chapters 5 to
8 in detail the structural circumstances that allow for such an algorithm in the first instance,
we are prepared to understand clearly when and, if so, why particular aspects of the structure
of threshold graphs can or cannot be transferred to the case of interval graphs. These insights
might well be of help for undertaking such a generalization of our results to the case of interval
graphs — a generalization that would move further the frontier of what is known to be solvable

in polynomial time.

157

References

1]

[10]

[11]

[12]

Abouelaoualim, A., K.Ch. Das, W. Fernandez de la Wega, M. Karpinski, Y. Manoussakis,
C.A. Martinhon, and R. Saad (2009): Cycles and paths in edge-coloured graphs with given
degrees, Journal of Graph Theory, pre-published online.

Abueida, A. and R. Sritharan (2006): Cycle extendability and Hamiltonian cycles in
chrodal graph classes, STAM Journal on Discrete Mathematics 20(3), pp. 669 - 681.

Angluin, D. and L.G. Valiant (1979): Fast probabilistic algorithms for Hamiltonian cir-
cuits and matchings. Journal of Computer and System Sciences 18(2), pp. 155-193.

Anily, S.; J. Bramel, A. Hertz (1999): A g—approximation algorithm for the clustered
traveling salesman tour and path problems, Operations Research Letters 24, pp. 29-35.

Arkin, E.M., R. Hassin, L. Klein (1994): Restricted delivery problems on a network,
Networks ,29 pp. 205-216.

Balas, E. (2002): The Price Collecting Traveling Salesman Problem and Its Applica-
tions. In: G. Gutin and A.P. Punnen (eds.): The Traveling Salesman Problem and Its
Variations. Kluwer Academic Publisher: Dordrecht, pp. 663-696.

Balas, E., M. Fischetti and W.R. Pulleyblank (1995): The precedence-constrained asym-
metric traveling salesman polytope, Mathematical Programming 68, pp. 241-265.

Bang-Jensen, J. and G. Gutin (1997): Discrete Mathematics 165/166, pp. 39-60.

Bankfalvi, M and Z. Bankfalvi (1968): Alternating Hamiltonian Circuits in two-coloured
complete graphs. In: Theory of Graphs (Proc. Collog. Tihany), Academic Press: New
York, pp. 11-18.

Barvinok, A., E.K. Gimadi and A.I. Serdyukov (2002): The Maximum TSP. In: G. Gutin
and A.P. Punnen (eds.): The Traveling Salesman Problem and Its Variations. Kluwer
Academic Publisher: Dordrecht, pp. 585-608.

Bellmore, M. and G.L. Nemhauser (1968): The Traveling Salesman Problem: A Survey,
Operations Research 16(3), pp. 538-558.

Bermond, J.C. (1978): Hamiltonian Graphs. In: Beineke and Wilson (eds): Selected
Topics in Graph Theory. Academic Press: London, 1978.

Bertossi, A.A. (1983): Finding Hamiltonian circuits in proper interval graphs, Information
Processing Letters 17, pp. 97-101.

Biggs, N.L., E.K. Lloyd and R.J. Wilson (1976): Graph Theory 1736-1936. Clarendon
Press: Oxford.

158

[15]

Blazewicz, J., M. Kasprzaka, B. Leroy-Beaulieuc and D. de Werra (2008): Finding Hamil-
tonian circuits in quasi-adjoint graphs, Discrete Applied Mathematics 156(13), pp. 2573-
2580

Bollobds, B. and P. Erdos (1976): Alternating Hamiltonian cycles, Israel Journal of
Mathematics 23, pp. 126-131.

Bollobds, B., T.I. Fenner and A.M. Frieze (1987): An algorithm for finding Hamiltonian
paths and cycles in random graphs. Combinatorica 7(4), pp. 327-341.

Brandstddt, A., F.F. Dragan and E. Kohler (2000): Linear time algorithms for hamil-
tonian problems on (claw, net)-free graphs. STAM Journal on Computing 30(5), 1662-
1677.

Brandstiddt, A., V.B. Le and J.B. Spinrad (1999): Graph Classes - A Survey. SIAM

monographs on discrete mathematics and applications. STAM: Philadelphia.

Broder, A.Z., A.M. Frieze and E. Shamir (1994): Finding hidden Hamiltonian cycles.
Random Structures and Algorithms 5(3), pp.395-410.

Brunacci, F. (1988): Two useful tools for constructing hamiltonian circuits, Furopean
Journal of Operational Research 34, pp. 231-236.

Burkhard, R.E., V.G. Deineko, R. van Dal, J.A.A. van der Veen and G.J. Woeginger
(1998): Well-Solvable Cases of the Travelling Salesman Problem: A Survey, SIAM Review
40(3), pp. 496-546.

Chen, C.C. and D.E. Daykin (1976): Graphs with Hamiltonian Cycles Having Adjacent
Lines Different Colors, Journal of Combinatorial Theory B 21, pp. 135-139.

Chisman, J.A. (1975): The clustered traveling salesman problem, Computers & Opera-
tions Research 2(2), pp. 115-119

Chvétal, V (1985): Hamiltonian Cycles. In: E.L. Lawler, J,K, Lenstra, A.H.G. Rinnooy
Kan, and D.B. Shmoys (eds.): The Traveling Salesman Problem. John Wiley & Sons:
New York, pp. 403-430.

Chvétal, V. and P.L. Hammer (1973): Set packing problems and threshold graphs. CORR
73-21. University of Waterloo, Canada, August 1973.

Chvétal, V. and P.L. Hammer (1977): Aggregation of inequalities in integer program-
ming. In: P.L.. Hammer, E.L. Johnson, B.H. Korte, and G.L. Nemhauser (eds.): Studies
in Integer Programming. Annals of Discrete Mathematics 1. North-Holland Publishing
Company: Amsterdam, pp. 145-162.

159

(28]

[33]

[34]

[35]

[40]

Cobham, A. (1965): The Intrinsic Computational Difficulty of Functions. In: Y. Bar-
Hille (ed.): Proceedings of the 1964 International Congress for Logic, Methodology, and
Philosophy of Science. North-Holland Publishing Company: Amsterdam, pp. 24-30.

Cook, S.A. (1971): The Complexity of Theorem Proving Precedures, Proceedings of the
3rd ACM Symposium on the Theory of Computing. ACM, pp. 151-158.

Daykin, D.E. (1976): Graphs with Cycles Having Adjacent Lines Different Colors, Journal
of Combinatorial Theory B 20, pp. 149-152.

Devroye, L. (1986): Non-Uniform Random Variate Generation. Springer: Berlin.

Dinga, C., Y. Cheng and M. He (2007): Two-Level Genetic Algorithm for Clustered
Traveling Salesman Problem with Application in Large-Scale TSPs, Tsinghua Science &
Technology 12(4), pp. 459-465.

Dumas, Y., J. Desrosier, E. Gelinas and M.M. Solomon (1995): An Optimal Algorithm
for the Traveling Salesman Problem with Time Windows, Operations Research 43 (2),
pp. 367-371.

Ecker, K. and S. Zaks (1977): On a graph labelling problem. Bericht 99, Gesellschaft fiir

Mathematik und Datenverarbeitung mbH: Bonn.

Edmonds, J. (1965a): Paths, trees and flowers, Canadian Journal of Mathematics 17, pp.
449-467.

Edmonds, J. (1965b): Minimum partition of a matroid into independent subsets, Journal
of Research of the National Bureau of Standards 69B, pp. 67-72.

Feremans, C., M. Labbé and G. Laporte (2002): A Comparative Analysis of Several
Formulations for the Generalized Minimum Spanning Tree Problem, Networks 39(1), pp.
29-34.

Feremans, C., M. Labbé and G. Laporte (2003): Generalized network design problems,
European Journal of Operational Research 148(1), pp. 1-13

Feremans, C., M. Labbé, A.N. Letchford and J.J. Salazar (2009): On generalized
network design polyhedra. Submitted to Networks January 2009. (Retrieved from
http:/ /www.lancs.ac.uk/staff/letchfoa/publications.htm, 10/08/2009.)

Fischetti, M., J.J. Salazar-Gonzdles and P. Toth (2002): The Generalized Traveling Sales-
man Problem and Orienteering Problems. In: G. Gutin and A.P. Punnen (eds.): The
Traveling Salesman Problem and Its Variations. Kluwer Academic Publisher: Dordrecht,
pp.609-662.

160

[41]

[42]

[43]

[45]

[46]

[47]

[51]

[52]

Frieze, A.M. (1988): Finding Hamilton cycles in sparse random graphs. Journal of Com-
binatorial Theory B 44, pp. 230-250.

Garey, M.R., D.S. Johnson and E. Tarjan: The planar hamiltonian circuit problem is
NP-complete, SIAM Journal on Computing 5, pp. 704-714.

Gavish, B. and S.C. Graves (1978): The travelling salesman problem and related problems.
Working Paper OR-078-78, Operations Research Center, MIT: Cambridge, MA.

Gendreau, M., G. Laporte and D. Vigo (1999): Heuristics for the traveling salesman
problem with pickup and delivery. Computers and Operations Research 26(7), pp. 699-
714.

Ghouila-Houri, A. (1962): Characterisation des matrices totalement unimodulaires. In:
Comptes Rendus Hebdomadaires des Seances de L’Academie des Sciences 254, pp. 1192-
1194.

Gilmore, P.C. and R.E. Gomory (1961): A linear programming approach to the Cutting
Stock Problem, Operations Research 9, pp. 849-859.

Gilmore, P.C. and R.E. Gomory (1963): A linear programming approach to the Cutting
Stock Problem: Part II, Operations Research 11, pp. 863-888.

Gilmore, P.C., Lawler,E.L., and D.B. Shmoys(1986): Well-solved special cases. In: E.L.
Lawler, J,K, Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys (eds.): The Traveling
Salesman Problem. John Wiley & Sons: New York, pp. 87-144.

Golumbic, M.C. (1980): Algorithmic Graph Theory and Perfect Graphs. Academic Press:
New York.

Gould, R.J. (1991): Updating the Hamiltonian problem - a survey, Journal of Graph
Theory 15(2), pp. 121-157.

Gould, R.J. (2003): Advances on the Hamiltonian Problem - A Survey. Graphs and
Combinatorics 19(1), pp. 7-52.

Goulimis, C. (2004): Minimum score separation - an open combinatorial problem associ-
ated with the cutting stock problem. Journal of the Operational Research Society, 55, pp.
1367-1368.

Gutin, G. (2009): Traveling Salesman Problem. In: C.A. Floudas, P.M. Pardalos (eds.):
Encyclopedia of Optimization, 2nd ed., Springer: Berlin, pp. 3935-3944.

Gutin, G. and A.P. Punnen (eds.) (2002): The Traveling Salesman Problem and Its

Variations. Kluwer Academic Publisher: Dordrecht.

161

[55]

[59]

[60]

[61]

Guttmann-Beck, N., R. Hassin, S. Khuller and B. Raghavachari (2000): Approximation
Algorithms with Bounded Performance Guarantees for the Clustered Traveling Salesman
Problem, Algorithmica 28(4), pp. 422-437.

Haggkvist, R. (1979): On F-Hamiltonian Graphs. In: J. A. Bondy and U. S. R. Murty
(eds): Graph Theory and Related Topics, Academic Press: New York, pp. 219-231.

Hamilton, W. R. (1858): Account of the Icosian Calculus. Proceedings of the Royal Irish
Academy 6, 1858.

Hammer, P.L., T. Iberaki and B. Simeone (1981): Threshold Sequences, SIAM Journal
of Algebraic Discrete Methods 2, pp. 39-39.

Harary, F. and U.N. Peled (1987): Hamiltonian Threshold Graphs. Discrete Applied Math-
ematics 16, pp. 11-15.

Henderson, P.B. and Y. Zalcstein (1977): A graph-theoretic characterization of the
PV hunk class of synchronizing primitives. SIAM Journal of Computing 6, pp. 88-108.

Hoffman, A.J. and P. Wolfe (1985): History. In: E.L. Lawler, J.K. Lenstra, A.H.G.
Rinnooy Kan and D.B. Shmoys (eds.): The Traveling Salesman Problem. A Guided Tour
of Combinatorial Optimization. Wiley: Chichester, pp. 1-16.

Hung, R.W. and M.S.Chang (2005): Linear-time algorithms for the Hamiltonian problems
on distance-hereditary graphs, Theoretical Computer Science 341(1), pp. 411-440.

Johnson, D.S, and C.H. Papadimitrou (1985): Computational Complexity. In: Lawler,
E.L., J.K. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys (eds.): The Traveling Salesman
Problem. A Guided Tour of Combinatorial Optimization. Wiley: Chichester, pp. 37-86.

Jongen, H.T., K. Meer and E. Triesch (2004): Optimization Theory. Kluwer Academic
Publishers: Dordrecht.

Jongens, K. and T. Volgenant (1985): The symmetric clustered traveling salesman prob-
lem, European Journal of Operational Research 19(1), pp. 68-75.

Jiinger, M., G. Reinelt and G. Rinaldi (1995): The Traveling Salesman Problem. In: M.O.
Ball, T.L. Magnanti, C.L. Monma, G.L. Nemhauser (eds.): Network Models. Handbook
of Operations Research and Management Science. Vol. 7, pp. 225-330.

Kaiser, T., Z. Ryjacek, D. Krédl, M. Rosenfeld, and H.-J. Voss (2007): Hamilton Cycles
in Prisms, Journal of Graph Theory 56(4), pp. 249-269.

Kabadi, S.N. and A.P. Punnen (2002): The Bottleneck TSP. In: G. Gutin and A.P.
Punnen (eds.): The Traveling Salesman Problem and Its Variations. Kluwer Academic
Publisher: Dordrecht, pp. 697-736.

162

[69]

[70]

[81]

[82]

Kano, M. and X. Li (2008): Monochromatic and Heterochromatic Subgraphs in Edge-
Colored Graphs - A Survey, Graphs and Combinatorics 24(4), pp. 237-263.

Karp, R.M. (1972): Reducibility among Combinatorial Problems. In: R.E. Miller and
J.W. Thatcher (eds.): Complezity of Computer Computations. Plenum Press: New York,
pp- 85-103.

Keil, J.M. (1985): Finding Hamiltonian circuits in interval graphs, Information Processing
Letters 20, pp. 201-206.

Kirkman, T.P (1856): On the representation of polyhedra. Philosophical Transactions of
the Royal Society London A 146, 413-418.

Kocay, W. (1992): An extension of the multi-path algorithm for finding Hamilton cycles,
Discrete Mathematics 101, pp. 171-188.

Koren,M. (1973): Extreme degree sequences of simple graphs. Journal of Combinatorial
Theory B, 15, pp. 213-224.

Lawler, E.L., J.JK. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys (eds.) (1985): The
Traveling Salesman Problem. A Guided Tour of Combinatorial Optimization. Wiley:
Chichester.

Laporte, G., A. Asef-Vaziri, C. Sriskandarajah (1996): Some Applications of the Gen-
eralized Travelling Salesman Problem. Journal of the Operational Research Society 47,
1461-1467.

Laporte, G. and U. Palekar (2002): Some applications of the clustered travelling salesman
problem, Journal of the Operational Research Society 53, pp. 972-976.

Laporte, G., J.-Y. Potvin and F. Quilleret (1997): A tabu search heuristic using genetic
diversification for the clustered traveling salesman problem, Journal of Heuristics 2(3),
pp- 187-200.

Laporte, G. and F. Semet (1999): Computational evaluation of a transformation proce-

dure for the symmetric travelling salesman problem. INFOR 37, pp. 114-120.

Mahadev, N.V.R. and U.N. Peled (1994): Longest cycles in threshold graphs. Discrete
Mathematics 135, pp.169-176.

Mahadev, N.V.R. and U.N. Peled (1995): Threshold Graphs and Related Topics. Annals

of Discrete Mathematics 56. Elsevier: Amsterdam.

Micali, S., and V. V. Vazirani (1980): An O(y/|V] - |E|) algorithm for finding maximum
matching in general graphs. Proceedings of the 21st Annual Symposium on the Foundations

of Computer Science, pp. 17-27.

163

[83]

[93]

[94]

Moitra, A, and R.C. Johnson (1989): A parallel algorithm for maximum matching on
interval graphs. Proceedings of the 1989 International Conference on Parallel Processing.
Pennsylvania State University Press: University Park, PA, pp. I11/114 - TIT/120.

Mulder, H.M. (1992): Julius Petersen’s theory of regular graphs, Discrete Mathematics
100, pp. 157-175

Miiller-Merbach, H. (1983): Zweimal Travelling Salesman. DGOR-Bulletin 25, pp. 12-13.

Nembhauser, G. and L. Wolsey (1999): Integer and Combinatorial Optimization. John
Wiley: New York.

Orlin, J. (1977): The minimal integer separator of a threshold graph. In: P.L. Hammer,
E.L. Johnson, B.H. Korte, and G.L. Nemhauser (eds.): Studies in Integer Programming.
Annals of Discrete Mathematics 1. North-Holland Publishing Company: Amsterdam, pp.
415-419.

Orman, A.J. and H.P. Williams (2004): A Survey of Different Integer Programming For-
mulations of the Travelling Salesman Problem. LSEOR 04.67: London.

Papadimitrou, C.H. and K. Steiglitz (1998): Combinatorial Optimization. Algorithms and
Complezity. Dover Publications: Mineola, New York.

Petersen, J. (1891): Die Theorie der reguléiren Graphs. Acta Mathematica 15, pp. 193-220.

Picouleau, C. (1994): Complexity of the hamiltonian cycle in regular graph problem.
Theoretical Computer Science 131, pp. 463-473.

Posa, L. (1976): Hamiltonian circuits in random graphs, Discrete Mathematics 14, pp.
359-364.

Ramalingam, G. and C.P. Rangan (1988): A unified approach to domination problems
on interval graphs. Information Processing Letters 27, pp. 271-274.

Renaud, J. and F.F. Boctor (1998): An efficient composite heuristic for the symmetric
generalized traveling salesman problem, European Journal of Operational Research 108(3),
pp- 571-584

Riguet, J. (1951): Les relations de ferres. Comptes Rendus de I’Academie de Sciences,
Paris, Serie I, Mathematique 232, pp. 1729-1730.

Schrijver, A. (1986): Theory of Linear and Integer Programming. Wiley: Chichester.

Schrijver, A. (2003): Combinatorial Optimization. Polyhedra and Efficiency. 3 volumes.

Springer: Berlin.

164

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

Shields, I.B. (2004): Hamilton Cycle Heuristics in Hard Graphs, PhD thesis, North Car-

olina State University.

Shih, W.K., T.C. Chern and W.L. Hsu (1992): An O(n2 log n) time algorithm for the
Hamiltonian cycle problem on circular-arc graphs, SIAM Journal on Computing 21, pp.
1026-1046.

Shufelt, J.A. and H.J. Berliner (1994): Generating Hamiltonian Circuits without back-
tracking from errors. Theoretical Computer Science 132, pp. 347-375.

Truemper, K (1977): Unimodular Matrices of Flow Problems with Additional Constraints,
Networks 7: pp. 343-358.

Vandegriend, B. and J. Culberson (1998): The G,, ,,, Phase Transition is Not Hard for the
Hamiltonian Cycle Problem, Journal of Artificial Intelligence Research 9, pp. 219-245.

Voigt, B.F. (1831): Der Handlungsreisende, wie er sein soll und was er zu thun hat, um
Auftrige zu erhalten und eines gliicklichen Erfolgs in seinen Geschdften gewiss zu sein.
Von einem alten Commis-Voyageur, Ilmenau. (Republished 1981, Verlag Bernd Schramm:
Kiel.)

Wagner, I.A. and A.M. Bruckstein (1999): Hamiltonian(t) - An Ant-Inspired Heuristic
for Recognizing Hamiltonian Graphs, Proceedings of the 1999 Congress on Evolutionary
Computation. IEEE Press.

Yao, A. (1996): A Note on Alternating Cycles in Edge-Coloured Graphs, Journal of
Combinatorial Theory B 68, pp. 222-225.

165

A MSSPH 3.6: C+-+ source code

166

/¥

/ 04 April 2010,

J Rk e de dededededede de
/

Kai Helge Becker

Header f11es constants

/.n..n..n..n..n.\.).‘

NN~

#include <iostream>
#include <ctime>
#include <cstdTib>
using namespace std;

// Global variables and constants
// Constants

int const numinst = 1000000; //
int const numbox = 20; //
int const numsc = 2 * numbox; //
int const minwidth = 41;
int const maxwidth = 70; //
int const thradj = 70; //
int const thrstrong = thradj / 2; //
int const empty = 999; ?;
int const nocomp

= (numbox+(numbox%2))/2; //
int const b

= maxwidth - minwidth + 1;

double const b2 = b;
// Variables

double probability[b];
double endofpartition[b];
int sto0;

double stochastic;

int wbox[numsc];

int i, j, k;

int stack;

int stackinv;

int ordsc[numsc];

int invordsc[numsc];
int instance;

int feacounter;

int infcounter;

int toomanyweak;

int noncontwin;

int uncon;

int perfmat;

int poormat;

int suffmat;

int yeahcounter;

int completechain;

int wscyclesandchain;
int completechaininv;
int wscyclesandchaininv;

NN NN\
NN NN

int twinnolb;
double runtimel;
//double runtime2;
//long timedrand;

int adjlist[numsc] [numsc];

RO RORORCORORORCORRCRORCRCRORCNCN SRCRORCN I A R R ORI RORUCAORON RN ORCNOSORONONORORONOROROL
R R Rk S i ik e e S L R e L e R R R R i ik o e e e S e i R o o Rk e e o e

g1oba1 var1ab1es

R A R R A R RS e o ole le ol ol sl ot ol ot ot ol ol o ol
. TSR fdehde e fdeddhdd VAl Nl Rd Nl

number of instances
number of boxes
number of scores

// minimal width of each score

maximal width of each score

threshold for adjacency

threshold for strong node (= thradj/2)
flag for empty variable entry
(used w/ matTlist, unconnode, Tastmatch)
no of components (chain + no of cycles)

// no of different score sizes

pdf of triangular distribution

cdf of triangular distribution

random integer number

random number in [0,1[derived from stoO
width of all scores

Tloops

stack

array index of ith smallest score
inverse function of the above
counters for instances and cases

place of an unconnectable box (case 1b)
running time

running time without generating instances
time for generating one instance
adjacency 1list (based on sorted indices)

167

int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int

int
int
int
int
int
int

mat1ist[numsc]; // matching list (based on sorted indices)
matTistinv[numsc]; // matching Tist for inverse matching

matcard; // cardinality of matching

matcardinv; // cardinality of inverse matching
unconpointer; // number of unconnected nodes
unconpointerinv; // same for 1inverse matching

twinnomat; // place of twinnode for matching (sorted ind)
twinnomatinv; // same 4 inverse matching

Tastmatch; // place of last matched node (sorted ind)
lastmatchinv; // same 4 inverse matching

weakeststrong; // place of weakest strong node (sorted ind)
unconnode[numsc]; // place of unconected nodes (sorted ind)
unconnodeinv[numsc]; // place of unconectd node in inverse matching
smallestuncon; // smallest unconnected node (sorted ind)
smallestunconinv; // for INV case

twin[numsc]; // place of twin node (sorted ind)
analysed[numsc]; // flag if node already inclded in chain/cycle
analysedinv[numsc]; // for INV case

component[nocomp] [numsc];// nodes in chain [0] and cycles [1..nocomp-1]
componentinv[nocomp] [numsc]; // for INV case
Tengthofcomponent[nocomp];// Tength of component (chain is component 0)
Tengthofcomponentinv[nocomp]; // for INV case

Tengthchain[(numsc+1)]; // distribution of chain Tength

lengthchaininv[(numsc+1)];
currentcomponent; // no of cycle being analysed
smallestconnotana; // smallest connected node not analysed yet
smallestconnotanainv; // for INV case

nocycles; // number of cycles

nocyclesinv; // number of cycles in INV case
strongestnode[nocomp]; // characteristic of each cycle, used from

1..nocycles

int
int
int
int
int
int
int

int

int
1nt

int
int
int
int
int

int
int
int
int
int
int

int
int
int
int
int

// X T

strongestnodeinv[nocomp];

weakeststrongest; // characteristics of all cycles
weakeststrongestinv;

pss[nocomp] ;

pwss;

pssinv[nocomp];

pwssinv;

ordcyc[nocomp] ; // order of cycles according to weakness of
// strongest node, for checkresult(8)

ordcycinv[nocomp]; // chckresult 11

placeofstrongestnode[nocomp]; // pl of s node in original order of cycles
/ input for component%nocomp] [xxx]
// used for checkresult(8)
placeofstrongestnodeinv[nocomp]; // chckresult (11)

currentplace; // next place in array "result" to be filled
currentplaceinv;
numberofelsecases; // more than one cycle

numberofelsecasesinv;

distofcyclesstart[nocomp];// distribution of cycles b4 cycle analysis
distofcyclesleft[nocomp]; // distribution of cycles after cycle analysis
distofcyclesstartinv[nocomp]; // same for INV case
distofcyclesleftinv[nocomp];

prob; // counter for some problematic cases
probinv; // smallest for INV
result[numsc]; // RESULT
resultcounter;

checkcasecounter[130];
problemcounter;
status; // result of result check

TededeNdehddhNdhddhd

R R R R o R o R R R R kR o S e R R LR R R T o L 1

168

// Runction for checking resuUlts @ @ s s
int checkresult (int subcase)

// Test
// result[17] = 0;

// Count check
++resultcounter;
++checkcasecounter[subcase];

// Local variable

int problem; // flag for problem
problem = 0;

// Checking if there is a "999" node
for(i=0; i<numsc; ++1i)

{
}f (result[i] == 999)

problem = 1;
) cout << endl << "999 case" << endl;
}

// Checking twin node and matching characteristic except for last pair
for(i=0; i<=(numsc-4); i=1+2)

// Checking twin node chacteristic
if (((Cordsc[result[i]]) % 2) == 0) // ordsc[i] even
&& (ordsc[result[i]] != ((ordsc[result[Gi+1)]11)-1)))

problem = 1;
break;

%f (((Cordsc[result[il]l) % 2) == 1) // ordsc[i] odd
&& (ordsc[result[i]] != ((ordsc[result[Gi+1)]11)+1D)))

problem = 1;

break;

// Checking matching characeristic
if (wbox[ordsc[result[(i+1)]]] + wbox[ordsc[result[(i+2)]]] < thradj)

problem = 1;
break;
}
// Checking twin node characteristic for Tlast pair
if (((ordsc[result[(numsc-2)]1] % 2) == 0) // ordsc[i] even
&& ggrdsc[iesu1t[(numsc—Z)]] I= ((ordsc[result[(numsc-1)]]1)-1)))
roblem = 1;
if % ((ordsc[result[(numsc-2)]] % 2) == 1) // ordsc[i] odd
&& g?rdsc[iesu1t[(numsc—Z)]] I= ((ordsc[result[(numsc-1)]11)+1)))
problem = 1;

// For test if no problem
// if ((problem == 0) && (subcase == 122)) cout << "***" << endl;

// Consequences if problem
}f (problem ==

cout << "#**** problem with subcase << subcase << " FFFEE" <o end];

169

// chainanalysisok = 1;

// Checking analysis of cycles and chain
for(i=0; i<=nocyclesinv; ++i)

for(j=1; j<lengthofcomponentinv[i]; j=j+2)

if (Cordsc[componentinv[i] [j]] '= (ordsc[componentinv[i] [j-1]1]1+1))
&& (ordsc[componentinv[i] [j]] != (ordsc[componentinv[i] [j-1]11-1)))
cout << "twin wrong " << endl;

1
for(j=1; j<lengthofcomponentinv[i]-2; j=j+2)

if (wbox[ordsc[componentinv[i] [j11]
+ wbox[ordsc[componentinv[i] [j+1]1]]
< thradj)
cout << "mate wrong

<< endl;

// Printing variables for building result
cout << "ordcycinv " << ordcycinv[l] << " "
cout << endl << endl;

<< ordcycinv[2] << endl;

cout << "wbox[i]: ;
for(i=0; i<numsc; ++1)
cout << wbox[i] << " ";
cout << endl;
cout << "wbox[ordsc[i]]l: “;
for(i=0; i<numsc; ++1i)
cout << wbox[ordsc[i]] << " ";
cout << endl;
cout << "result: ";
for(i=0; di<numsc; i=i+2)
cout << wbox[ordsc[result[i]]] << "(" << ordsc[result[i]] << ")--("
<< grdﬁc[resu1t[(i+1)]] << ")" << wbox[ordsc[result[(i+1)]1]1]
<< ;
cout << endl << "number of cycles: " << nocycles << endl; // non-INV only
cout << endl;
++probTlemcounter;
// Note: The following printout is correct only in INV case
for(i=0; i<=nocyclesinv; ++i)

for(j=0; j<lengthofcomponentinv[i]; ++j)
cout << wbox[ordsc[componentinv[i] [j]]] << "-";
cout << endl;

cout << endl << endl;

}

// Return problem status
return problem;

170

D R R S A R S R A R)
% TN Tededehfdehdedhddeddhdd VAl Rl Rd Nl

// Funct1on ma1n starts & 1n1t1a11sat1on

R R R R R R R RURORORORORR R S A S R R R R R R R R O RROR
* EOR RS TSR Nl ddhfdeddhdd VAl Nl d Nl

int ma1n()

// Welcome L
cout << "welcome to MSSP-Heuristic 3.6." << endl;

// Initialisation
feacounter = 0; // initialising feasible instances counter
infcounter = 0; // initialising infeasible instances counter
toomanyweak 0; // initialising case counters
noncontwin 0;
uncon =
perfmat
poormat
suffmat
yeahcounter

nmimnino

0;
0;
0;

0;

completechain = 0;
wscyclesandchain = 0;

completechaininv = 0;
wscyclesandchaininv = 0;

prob = 0;
probinv = 0;

resultcounter = 0;
for(i=0; i<130; ++1)
checkcasecounter[i] = 0;

problemcounter = 0;
numberofelsecases = 0;

for(i=0; i<(numsc+1); ++1)
lengthchain[i] =
for(i=0; i<nocomp; ++1)

distofcyclesstart[i] =
distofcyclesleft[i] =

for(i=0; i<(numsc+1); ++1)
lengthchaininv[i] = 0;
for(i=0; i<nocomp; ++i)

distofcyclesstartinv[i] = O;
distofcyclesleftinv[i] =

// Calculate probab111ties for triangular distribution
probability[0] = 2/(b2*b2);

probab111ty[(b 1)] = probability[0];

for (i =1; 1 < b/2, ++1)

probability [i] = probability [(i-1)] + 4/(b2%b2);
probability [(b-1-)] probability [i];

171

// Calculate partition of [0,1] interval for triangular distribution
endofpartition[0] = probability[0];
for (i=1; i < b; ++1)

endofpartition [i] = endofpartition [(i-1)] + probability [i];

/:':
Eor (i=0; 1i<b; ++1)

cout << i << << probability[i] <<

}
=/

// Initialising random mumbers
srand((unsigned) time(NULL));

R R R o R R R e R R R R e R R R R R kL e A R R L T R A R o R R LR T

// Start of 1nstances 1oop

/ T T e v de el NN NN NN NN NS fedededededededededededeNNN NN NN VA A dededededededededede

for (instance = 0; instance < numinst; ++instance)

// cout << RAND_MAX << "HHHH ;

// Producing triangularly distributed random numbers for scores
for (i=0; i < numsc; ++1i)

// Generate random number between 0 and 1
sto0 = rand(Q);

stochastic = static_ cast<doub1e> (stoO) / 32767;
// cout << stochastic << "

// check the probability interval of which the number is a member
wh11e (stochastic > endofpartition[j]) {++j;};

// Calculate the triangularly distributed number
wbox[i] = minwidth + j;

/} Producing uniformly distributed random numbers for scores
//timedrand = clock();
for(i = 0; i1 < numsc; ++1)
wbox[i] = minwidth + (rand() % (maxwidth - minwidth + 1));
*/
/{ Test data
) wbox[19] = 1; wbox[9] = 30; //wbox[10] = 35; wbox[11l] =
for(i = 10; i < 19; ++1)
wbox[i] = 20 + (rand() % 6);
%or(i = 12; i < 20; ++1)
wbox[i] = 10 + (rand() % 11);

/*AAA

172

<< endofpartition[i] <<

// Output instance
cout << endl;
for(i = 0; i < numsc; ++i)

cout << wbox[i] << ;
cout << endl;
// Running time without generating instances

// timedrand = clock() - timedrand;
// cout << timed4rand << endl;

R R R R A R R R A RN
% % % e R R o e e e R kSR e o 3

e e dede e e v e e e e e e e e e RO B A R A R R N
kxS % el R A R R T S o S R R U e S

VA
;; CASE (01) Less than numbox - 1 strong nodes

= !
for(1 = 0; 1 < numsc; ++1i)

if (wbox[i] >= thrstrong)
++3;

}f (j < numbox - 1)

++infcounter;
++toomanyweak;

JOROROROROORORORORONON
R R R R SR R T S

JOROROROROORORORORONON
R R R R SR R T S

//AAACOout << "inf: too many weak nodes, namely: " << numsc-j << endl;
continue;
// Sort1ng scores from sma11est to 1argest

/7%

// In1t1a11s1ng order
for(i = 0; i1 < numsc; ++1)

ordsc[i] = 1;

// Starting sorting procedure
for(i = 1; i < numsc; ++i)

Eor(j =1i-1; j >= 0; --3)

//cout << i << << ordsc[i] <<
// << % << " " << ordsc[j] << endl;

}f (wbox[i] < wbox[ordsc[j]11)

ordsc[J+1] = ordsc[j];
ordsc[3j] = i;
//cout << "after change " << i << " " << ordsc[i] <<

// << j << " << ordsc[j] << endl;

//else { cout << "no change, next i" << endl; break; }

173

// Ooutput sorted instance

cout << "order: ";)
for(i = 0; i < numsc; ++i)
m m

cout << wbox[ordsc[i]] << ;

cout << endl;

]I

CASE (02) : TWO MO COMNeC Al e U MOdeS & @tk dode st e s

j=0;
for(i = 0; i < numbox; ++1i)

NN\

if (wbox[2*i] + wbox[ordsc[(numsc-1)]] < thradj)
if Ewbox[z*i + 1] + wbox[ordsc[(numsc-1)]] < thradj)

++3;])
//AAAtwinno = 1i;

}
Yoo,
if (3 >= 1)
{

++infcounter;

++noncontwin;

/7‘:

// Ooutput instance

for(k = 1; k <= numsc; ++k)

cout << wbox[k] << ;

cout << endl;

// output sorted instance
cout << "order: ";

for(k = 1; k <= numsc; ++k)

cout << wbox[ordsc[k]] << ;

cout << endl;

//AAAcCOUt << "1nf: two non-connectable twin nodes at pair "
<< twinno << endl;

continue;

j=0;
for(i = 0; i < numsc; ++i)

if (wbox[i] + wbox[ordsc[(numsc-1)]] < thradj)
++3;

ool
if (3 >= 3)
{

++infcounter;
++uncon;
//AAAcout << "inf: too many unconnectable nodes,"
<< "largest number has order " << ordsc[numsc] << endl;
continue;

174

// TR hhhhfdhdhdddddddddedededededhd RN NN NN ddeddedededededdededededdhdh NN hhhdds
// Matching algorithm (TGMAmin)

/ / R hh R NN NN R fddeddddeddedededededdde RN R fdefddddddedededededdeddededhdhh e nhn
// Step 1l: List with adjacent nodes disregarding twin nodes
for(i = 0; i < numsc; ++i) // general adjacency 1list

for(j = 0; j < numsc; ++3j)

if (wbox[ordsc[i]] + wbox[ordsc[j]] >= thradj)

¢ adjlist[i] [j] = 1;
z1se
¢ adjlist[i] [j] = O;
} ! }
for (i=0; 1i<numsc; ++i) // generating inverse function of ordsc[]

invordsclordsc[i]] = 1i;

for (i = 0; i < numbox; ++i)// twin nodes cannot be connected to eachother

adjlist[invordsc[(2*i)]] [invordsc[(2*i+1)]] = O;
adjlist[invordsc[(2*i+1)1] [invordsc[(2*i)]] = O;

// Step 2: Initialise matching Tist and counters
for (i = 0; i1 < numsc; ++1)

matlist[i] = empty;
matcard = 0;
unconpointer = 0;
for (i = 0; i < numsc; ++1)
y unconnode[i] = empty;
Tastmatch = empty;

// Step 3: Matching algorithm
for(i=0; i<numsc; ++i)// check all nodes

if (matlist[i] == empty)// does node need a mate?
for (j=(i+1); j<numsc; ++j)// Took for a mate for node i

if ((adjlist[i] [j] == 1)
&& (matlist[j] == empty))// if mate found

matlist[i]
matlist[j]
Jastmatch = 1;
++matcard;
break;

}

}
if (matlist[i] == empty) // if there still is no mate:
// do twin node swap or finally acquiesce
}f (ordsc[i] % 2 == 0) // find out twin node number

175

twinnomat = invordsc[(ordsc[i]+1)];

%1se

twinnomat = invordsc[(ordsc[i]-1)];
if // twin node swap possible?
((wbox[ordsc[i]]+wbox[ordsc[twinnomat]]>=thradj)// match with twin?
&& (matTist[twinnomat] == empty) // twin unmatched?
&& (lastmatch != empty) // exchange possble?
&& (twinnomat > 1) // twin Tlarger?

&& (wbox[ordsc[lastmatch]]+wbox[ordsc[twinnomat]]>=thradj))// Tastmtch
/ with twin?
matlist[i] = matlist[lastmatch];
matlist[Tastmatch] twinnomat;
matlist[twinnomat] lastmatch;
mat11st[mat11st[1]] =1;
Tastmatch =
y ++matcard;
?1se // otherwise: one more unconnected node
++unconpointer;
unconnode[Cunconpointer-1)] = 1i;

// output matching Tist and unconnected nodes

for(i

=0; i<numsc; ++i)

cout << matlist[i] << ;

cout << endl;

for(i
{

=0; i<numsc; ++1)

cout << unconnode[i] << ;

cout << endl;

cout << "matcard:
cout <<

-.':/
// Yo dedededed
/!

77 case. (Q4)

" << matcard;

no of unconnodes: << unconpointer << endl;

Perfect match1ng (#M

te e e de v de v e de e e

if (matcard == numbox)

++perfmat;
++feacounter;

/*AAA

cout << "fea: perfmatch with card:

<< matcard << ;

for (i=0; i<numsc; ++i)

cout <<

n n n

wl= " << wbox[ordsc[i]] << 2

<< wbox[ordsc[matlist[i]]] << -

cout << endl;

continue;

176

/] fdedededede ekt R d kA dedede dedede S e e ek
;; CASE (OS)L Poor match1ng (#M < n 1)

%f (matcard < (numbox 1))

++poormat;
++infcounter;

/*AAA
cout << "inf: poor matching with card:

<< and uncon nodes: ";
for (i=0; i<numsc; ++1i)

<< matcard

if (unconnode[i] != empty)
cout << Hngonnode[i] << " w= " << wbox[ordsc[unconnode[i]]]

<< << endl;
cout << endl;

*/)
continue;

}

Sedkededddddh

Suff1c1ent match1ng (#M

T e e * edede SN dedeNdednddhNdehNdddddNdehddhddNnddNddNdd Nt

Ted S hddNnddnk B R R o o R R i e R R R T R LR LR AR

/7
// CASE (06)
/7

for (i=0; i<numsc; ++i) // Find weakest strong node

if (wbox[ordsc[i]] >= thrstrong)

weakeststrong =
break;
}
}
/*AAA
cout << "card: " << matcard << " no of wkststr " << weakeststrong
<< " w=" << wbox[ordsc[weakeststrong]]
<< " ucn0 " << unconnode[0] << " w= " << wbox[ordsc[unconnode[0]]]
<< " ucnl " << unconnode[1l] << " w= " << wbox[ordsc[unconnode[1]]]
<< endl;

cout << "matching: ";
for (i=0; i<numsc; ++i)

if (matlist[i] !'= empty)
cout << " wl= " << wbox[ordsc[i]]
; << " w2= " << wbox[ordsc[matlist[i]]] << " -- ";
*{
if (matlist[numsc] == empty)
cout << "unconnode[0] " << unconnode[0]
<< " unconnode[l] " << unconnode[1]
y << " matcard " << matcard << endl;
*/

if (wbox[ordsc[unconnode[1]]]
+ wbox[ordsc[weakeststrong]] >= thradj) // Check sufficiency

++suffmat;

++feacounter;

//AAAcout << " yeah suff" << endl;
if (unconnode[l] < weakeststrong)

177

++yeahcounter; //cout << " YEAH!!!" << endl;
continue;

//AAAcout << " not suff" << endl;

// **f**f*********?********wxxxxxxx***
// Building up chain
// TR hh b RN NN hfddddddeddedededededdde RN ddfddddddedededededdeddedehhh e nhn

// Step 1l: Initialise data
Eor(i:O; i<numsc; ++i)

analysed[i] =

for(j=0; j<nocomp; ++3j)
component[j] [i] = empty;

if (ordsc[i] % 2 == 0) // find out twin node number
twin[i] = invordsc[(ordsc[i]+1)];

else
twin[i] = invordsc[(ordsc[i]-1)];

//cout << ordsc[i] << "-" << ordsc[twin[i]] << " ";

//cout << endl;

// Step 2: Build up chain
for(i=0; i<numsc; ++1i) // find smallest unconnected node

if (matlist[i] == empty)

smallestuncon = 1i;
break;

}

}
if (smallestuncon != unconnode[0])
cout << "ALARM!!!" << endl;

j = -1; // build up chain
stack = smallestuncon;
do
.
++];
component[0] [j] = stack;
analysed[stack] = 1;
++3;
component[0] [j] = twin[stack];
analysed[twin[stack]] = 1;
stack = matlist[twin[stack]];

}
while (stack != empty);

Tengthofcomponent[0] = ++j;

R T e R R R R o S e R R R L L kR R R o R e R R R R kLR kR T Tk LR T

/
// Case (07) Cha1n comp]ete w1th 1ength = numsc

Tede e Nl R R R R R L o R R o R Rk AR T o L o R R LR T

}f (1engthofcomponent[0] == numsc)// is chain complete?

++completechain;

++feacounter;

nocycles = 0;

for(i=0; i<numsc; ++i)
result[i] = component[0] [i];

i = checkresult(7);

for(i=0; i<numbox; ++i)

cout << wbox[ordsc[component[0] [(2*i)]]1] << "("

178

<< ordsc[component[0] [(2*i)]] << ")-("
<< ordsc[component[0] [(2*%i+1)]] << ")"

) << wbox[ordsc[component[0] [(2*i+1)]]] << " --";
y cout << "*" << endl;
continue;

for (i=0; di<numsc; ++i) // Find smallest connected node not analysed yet

{
if{(ana1ysed[i] == 0)

smallestconnotana = 1i;
break;

}
if (matlist[smallestconnotana] == empty)
cout << "ARLARM2!!!" << endl;

currentcomponent = 0;
do
{
++currentcomponent; // Set component
if (currentcomponent > nocomp-1)
cout << "ARLARM3!!!" << endl;

j = -1; // Build up cycle

stack = smallestconnotana;

do

{
++3;
component[currentcomponent] [7]
analysed[stack] =
++3;
component[currentcomponent] [3]
analysed[twin[stack]] =
stack = mat11st[tw1n[stack]],

stack;

twin[stack];

}
while (stack != smallestconnotana); // = while not back 2 beginning of cyc
Tengthofcomponent[currentcomponent] = ++j;

for (i=0; i<numsc; ++i) // Find smallest connected node not analysed yet

if (analysed[i] == 0)
smallestconnotana = 1i;
) break;
if Emat]ist[sma11estconnotana] == empty)
cout << "ARLARMZ2B!!!" << endl;
while (smallestconnotana != stack); // = while new not analysed node found
nocycles = currentcomponent; // save number of cycles

Fededededededefe el dde R ddde Al Nl ddddedehddedehddede Rl de N hdded Nl de R hdedefdddefddedefddeddddddd

// Ana1ys1ng cyc1es and cha1n

Fededededededede Feddeddedede e dede Nl de Nl ddddedhdedefhdde Nl dedefddde Nl deddddedddt

for (i=0; i<nocomp; ++1) // Initialising data

strongestnode[i] = empty;
|055[1'€il = empty;

179

for (i=1; i<=nocycles; ++i) // Check all cycles

// initialise for this component
strongestnode[i] = component[i] [0];
pssl[i] = 0;

// check for all elements of this component
Eor (j=0; j<lengthofcomponent[i]; ++j) // Find weakest & strongest in cycle

// > cases
if (wbox[ordsc[component[i] [j]1]] > wbox[ordsc[strongestnode[i]]])

strongestnode[i] = component[i] [j];
pss[il] = J;

// == cases
if ((wbox[ordsc[component[i] [j]]1] == wbox[ordsc[strongestnode[i]]l])
&& (wbox[ordsc[matlist[component[i] [j1]11]
> wbox[ordsc[matTlist[strongestnode[i]]]1]))

strongestnode[i] = component[i] [j];
psslil = 3;

// initialise charcateristics for all cycles
weakeststrongest = strongestnode[1l];
pwss = pss[1];

// check for all cycles
for(i=1; i<=nocycles; ++i)

// < cases
if (wbox[ordsc[strongestnode[i]]] < wbox[ordsc[weakeststrongest]])

weakeststrongest = strongestnode[i];
pwss = pss[i];

// == cases
if ((wbox[ordsc[strongestnode[i]]]
== wbox[ordsc[weakeststrongest]])
&& (wbox[ordsc[matlist[strongestnode[i]]]]
< wbox[ordsc[matlist[weakeststrongest]]]))

weakeststrongest = strongestnode[i];
pwss = pss[i];

}

// Counting number of cycles b4 analysis
++distofcyclesstart[nocycles];

// Step 1: Make sure that unconnode[1l] really is the higher unconnected node
if (wbox[ordsc[unconnode[0]]] > wbox[ordsc[unconnode[1]]])
cout << "ALARM4!!!" << endl;

// Step 2: Check w/ wkst strgst strong
if (wbox[ordsc[weakeststrongest]]

180

+ wbox[ordsc[unconnode[1]]] >= thradj)

++wscyclesandchain;
++feacounter;

A S s e L L L L L R A 2 T B S B e R S
[/
// Step 2ba: Checking result for WSS node case if there is only one cycle

F I o s e L
if (nocycles == 1)

*

for(i=0; i<lengthofcomponent[1]; ++i)//check where in cycle strngst node
}f ((component[1][i])==strongestnode[1])

stack = 1;
break;
}
¥

4:/
stack = pss[1];

}f (twin[strongestnode[1]]==component[1] [(stack+1)])//twin after str nd

for(i=0; i<lengthofcomponent[0]; ++i)
result[i] = component[0] [i];

for(i=stack; i<lengthofcomponent[1l]; ++i)
result[(i+lengthofcomponent[0]-stack)] = component[1] [i];

}f (stack !'= 0) / str nd is not first node

for(i=0; i<stack; ++i)

result[(i+lengthofcomponent[0]+1engthofcomponent[1]-stack)]
= component[1l] [i];

else // twin before strongest node

for(i=0; i<lengthofcomponent[0]; ++1)
result[i] = component[0] [i];
for(i=stack; i>=0; --1)

result[(lengthofcomponent[0]+stack-i)] = component[1] [i];
if (stack != (lengthofcomponent[1]-1)) // str nd is not Tast node

for(i=(1en%thofcomponent[1]—1); i>stack; --1)

result[(Tengthofcomponent[0]+stack+(1engthofcomponent[1]-1))]
= component[1] [i];

A B

// Step 2bb: Checking result for WSS case if there is more than one cycle
A e e e R N T T o o o B B T o o o I = N S S A S SRS S

?1se // There 1is more than one cycle

// Initialising order
for(i = 1; i <= nocycles; ++i)

ordcyc[i] = 1;

// starting sorting procedure for cycles according to strngest strong nodes
for(i = 1; i <= nocycles; ++i)

for(j = 1i-1; j >=1; --7)

//cout << i << " " << ordsc[i] << " "

181

// << j <<
// abbreviation = ;
if (wbox[ordsc[strongestnode[i]]]

< wbox[ordsc[strongestnode[ordcyc[j]1]111)

<< ordsc[j] << endl;

ordcyc[j+1] = ordcyc[j];

ordcyc[3j] = 1i;
//cout << "after change " << i << " " << ordsc[i] << " "
// << j << " " << ordsc[j] << endl;

//else { cout << "no change, next i" << endl; break; }

// Looking for the place of strongest node in each cycle
// because this tells us where to start building the result out of cycles

for(i = 1; i <= nocycles; ++i)
placeofstrongestnode[i] = empty;
for(i = 1; i <= nocycles; ++1i)
for(j = 0; j < lengthofcomponent[i]; ++3j)
if (strongestnode[i] == component[i][j])

placeofstrongestnode[i] = j;
break;
}
}
¥

// Starting result array with chain
for(i=0; i<lengthofcomponent[0]; ++1i)
result[i] = component[0] [i];
currentplace = lengthofcomponent[0];
// Now add the cycles to the result

for(k = 1; k <= nocycles; ++k)

// first option: twin comes after strongest node in this cycle
if (twin[strongestnode[ordcyc[k]]1]
== component[ordcyc[k]] [(pss[ordcyc[k]]+1)]1)

for(i = pss[ordcyc[k]];
i < lengthofcomponent[ordcyc[k]]; ++i)
result[(i
+ currentplace
- psslordcyc[k]I1)]
= component[ordcyc[k]] [i];
}f (pss[ordcyc[k]] !'= 0) // str nd is not first node

for(i=0; i<pss[ordcyc[k]]; ++i)
result[(i
+ currentplace
+ lengthofcomponent[ordcyc[k]]
- psslordcyc[k]1)]
= component[ordcyc[k]] [i];

/{ second option: twin comes b4 strongest node in this cycle
else
for(i=pss[ordcyc[k]]; i>=0; --1)

result[(currentplace
+ pii[ordcyc[k]]
-

182

= component[ordcyc[k]] [i];
if (pss[ordcyc[k]]
= (lengthofcomponent[ordcyc[k]]-1)) // str nd is not last node

for(i = (lengthofcomponent[ordcyc[k]]-1);
i > pss[ordcyc[k]]; --1)
result[(currentplace
+ pss[ordcyc[k]]
+ (lengthofcomponent[ordcyc[k]]-i))]
} = component[ordcyc[k]] [i];

// store new position in building result array
currentplace = currentplace + lengthofcomponent[ordcyc[k]];
} // end of loop through all cycles
++numberofelsecases;
} // end of else for case of more than one cycle

status = checkresult(8);
//
continue;

/ Yededededede N dedede NN e dede Nl NNl Nde NNl Nded Nl NN el N eV deNde Nl NNV dededeNdededdeeddhdt
/; Stat1st1cs and some more checks for rema1n1ng cases . o
// Count1ng the 1ength of the cha1n and no of cyc1es in remaining cases
++distofcyclesleft[nocycles];
++lengthchain[lengthofcomponent[0]];

// Check in the case of one cycle
}f (nocycles == 1)

stack = 0;
for(i=0; i<lengthofcomponent[1]; ++i)

if (wbox[ordsc[component[1] [i]]] > stack)
stack = wbox[ordsc[component[1] [i]]1];

}

if (stack + wbox[ordsc[unconnode[1]]] >= thradj)
++prob;

//if (instance < 1000)
//cout << "T";

Fedede Nl hdedefddde Nl dde Al hddededhddefehdde N ddeRdhddefhddhhddehddede N de A ANl hddefhddin

// Inverse match1ng a1gor1thm (TGMAmax)

Fedede Sl dede el oAl e e dedede RS dede Nl de el de Rl dede Nl A SNl dhddefhddhn

// Step 1 Inverse: Initialise match1ng Tist and counters
for (i = 0; i < numsc; ++i)

matlistinv[i] = empty;
matcardinv = 0;
unconpointerinv = 0;)
for (i = 0; i < numsc; ++1i)
{
unconnodeinv[i] = empty;
Tastmatchinv = empty;

// Step 2 Inverse: Matching algorithm
for(i=0; i<numsc; ++i)// check all nodes

if (matlistinv[i] == empty)// does node need a mate?

183

for (j=(numsc-1); j>i; --j)// Took for a mate for node i

if (. (adjlist[i] [j] == D
&& (matlistinv[j] == empty))// if mate found

matlistinv[i] j;
matlistinv[j] 1;
lastmatchinv = i;
++matcardinv;

break;
3
if (matlistinv[i] == empty) // if there still is no mate:
/ do twin node swap or finally acquiesce
}f (ordsc[i] % 2 == 0) // find out twin node number

twinnomatinv = invordsc[(ordsc[i]+1)];
else

twinnomatinv = invordsc[(ordsc[i]-1)];

if // twin node swap possible?

((wbox[ordsc[i]]+wbox[ordsc[twinnomatinv]]>=thradj)// match w/ twin?

&& (matTistinv[twinnomatinv] == empty) // twin unmatchd?

&& (Tastmatchinv != empty) // exchnge pssble?
&& (twinnomatinv > 1) // twin Tlarger?

&& (wbox[ordsc[Tastmatchinv]] // Tastmatch with twin?

+ wbox[ordsc[twinnomatinv]] >= thradj))

/ then swap mates
matlistinv[i] = matlistinv[lastmatchinv];
matlistinv[lastmatchinv] = twinnomatinv;
matlistinv[twinnomatinv] = 1astmatch1nv,
matlistinvimatlistinv[i]]l = i;
lastmatchinv = 1i;
++matcardinv;

}
else // otherwise: one more unconnected node
{
++unconpointerinv;)))
unconnodeinv[(unconpointerinv-1)] = 1i;
}
}

}
}

B e R R R R R R R R R R R R R A R R o R e R R R S R R R R Tk LR T o S L e R kR R Sk LR T R Rk kR

/
// Doub1e check 1nverse match1ng w1th other match1ng a1gor1thm

e TSNS NddNdhn R R R R R R R L

1f (matcard !_ matcard1nv)

cout << "ALARMS!!!" << endl;
cout << matcard << " " << matcardinv << endl;
for (i=0; i<numsc; ++i)

cout << " " << wbox[i];
cout << endl;
for (i=0; i<numsc; ++1i)

cout << " " << wbox[ordsc[i]];
cout << endl;
for (i=0; i<numsc; ++i)

cout << " " << matlist[i];
cout << endl;
for (i=0; i<numsc; ++1i)

cout << " " << matlistinv[i];
cout << endl;

184

cout << adjlist[2] [matlist[2]] << endl;
cout << wbox[ordsc[2]] << " " << wbox[ordsc[matlist[2]]] << endl;
cout << unconpointer << " " << unconpointerinv << endl;

//First matching algorithm once again (for checking mistakes
// Step 2 once again: Initialise matching 1list and counters
for (i = 0; i < numsc; ++1i)
matlist[i] = empty;
matcard = 0;
unconpointer = 0;
for (i = 0; i < numsc; ++1i)
y unconnode[i] = empty;
Tastmatch = empty;

// Step 3 once again: Matching algorithm
for(i=0; i<numsc; ++i)// check all nodes

if (matlist[i] == empty)// does node need a mate?
for (j=(i+1); j<numsc; ++j)// Took for a mate for node i

if ((adjlist[i] [j] == D
&& (matlist[j] == empty))// if mate found
matlist[i] = j;
matlist[j] = 1;
lastmatch = 1i;
++matcard;
break;

}
}
if (matlist[i] == empty) // if there still is no mate:
// do twin node swap or finally acquiesce
}f (ordsc[i] % 2 == 0) // find out twin node number
twinnomat = invordsc[(ordsc[i]+1)];
else

twinnomat = invordsc[(ordsc[i]-1)];

if // twin node swap possible?

((wbox[ordsc[i]]l+wbox[ordsc[twinnomat]]>=thradj)// match with twin?
&& (matTist[twinnomat] == empty) // twin unmatched?
&& (lastmatch != empty) // exchange possble?
&& (twinnomat > 1)) // twin Tlarger?

// then swap mates
matlist[i] = matlist[Tlastmatch];
matlist[lastmatch] = twinnomat;
matlist[twinnomat] = Tastmatch;
matlist[matlist[i]] = 1;

Tastmatch = 1;
++matcard;

cout << "a twin node swap" << endl;
cout << " i " << i << " twinnomat " << twinnomat
<< ordsc[i] " << ordsc[i] << " ordsc[twinnomat] "
<< ordsc[twinnomat]
<< " wboxSumme << wbox[ordsc[i]]+wbox[ordsc[twinnomat]]
<< matlist[twinnomat] " << matlist[twinnomat]
<< Tastmatch " << lastmatch

<< matlist[Tastmatch] " << matlist[lastmatch] << endl;

185

//matlist[i] = matlist[lastmatch];
//matlist[lastmatch] = twinnomat;
//matlist[twinnomat] = lastmatch;
//matlist[matlist[i]] = 1i;
//Tlastmatch = 1;

//++matcard;

?1se // otherwise: one more unconnected node
++unconpointer;
unconnode[Cunconpointer-1)] = 1i;
) cout << " an unconnode " << i << endl;
3
}
}
cout << "new results" << endl;
cout << adjTist[2] [matTlist[2]] << endl;
cout << wbox[ordsc[2]] << " " << wbox[ordsc[matlist[2]]] << endl;
cout << unconpointer << " " << unconpointerinv << endl;

// End if matcard != matcardinv

// R R e o e e R R R R R R R Ak Sk L o o o o o o o o o o o ok ok ok o o e R Ak Ak L R R ok ok Tk

// Building up chain from inverse matching
// TS fh N RN d R dfdddddeddddedddeddh RN RN dedededededededdddededddddh NN NN NN dddddd

/ Step 1INV: Initialise data
for(i=0; i<numsc; ++i)

analysedinv[i] = 0;

for(j=0; j<nocomp; ++3j)
componentinv[j] [i] = empty;

if (ordsc[i] % 2 == 0) // find out twin node number
twin[i] = invordsc[(ordsc[il+1)];

else
twin[i] = invordsc[(ordsc[i]-1)];
//cout << ordsc[i] << "-" << ordsc[twin[i]] << " ";

}
//cout << endl;

// Step 2INV: Build up chain

for(i=0; i<numsc; ++i) // find smallest unconnected node
if (matlistinv[i] == empty)
smallestunconinv = 1i;
break;
}
if (smallestunconinv != unconnodeinv[0])
cout << "ALARMinv!!!" << endl;
i=-1 // build up chain
stack = smallestunconinv;
do
.
++3;

componentinv[0] [j] = stack;
anq1ysed1nv[stackﬂ =1;

++];

componentinv[0] [j] = twin[stack];
analysedinv[twin[stack]] = 1;

186

) stack = matlistinv[twin[stack]];
while (stack != empty);

Tengthofcomponentinv[0] = ++3;

VA
// CASE (10) Cha1n from inverse matgh1ng comp]ete w1th 1ength

R R RS R UTOR, e e e e Yo e e e e e e ek

1f (1engthofcomponent1nv[0] == numsc)// is chain comp]ete?

numsc

T R R R R R R R
Tddehdehfdh%

++completechaininv;
++feacounter;
for(i=0; i<numsc; ++1i)
result[i] = componentinv[0] [i];
i = checkresult(10);

/:':
for(i=0; 1i<numbox; ++i)
cout << wbox[ordsc[component[O] [(2*%1)]1]1] << "
<< ordsc[component[0] [(2*i)]] << ")-('
<< ordsc[component[0] [(2*i+1)]1] << ")"
) << wbox[ordsc[component[0] [(2*i+1)]]] << " --";
cout << "*" << endl;
*/
continue;
}

foE (i=0; di<numsc; ++i) // Find smallest connected node not analysed yet
if (analysedinv[i] == 0)

smallestconnotanainv = 1i;
break;

}
if (matlistinv[smallestconnotanainv] == empty)
cout << "ARLARM2inv!!!" << endl;

currentcomponent = 0;
do
{
++currentcomponent; // Set component
if (currentcomponent > nocomp-1)
cout << "ARLARM3inv!!!" << endl;

j = -1; // Build up cycle
stack = smallestconnotanainv;
do
{
++3;
component1nv[currentcomponent] [j1 = stack;
analysedinv[stack] = 1;
++3;
component1nv[currentcomponent] []
analysedinv[twin[stack]] =
stack = mat11st1nv[tw1n[stack]],

twin[stack];

while (stack != smallestconnotanainv); //= while not back 2 bgnning of cyc

187

Tengthofcomponentinv[currentcomponent] = ++j;

for (i=0; 1i<numsc; ++i) // Find smallest connected node not analysed yet
if (analysedinv[i] == 0

smallestconnotanainv = i;

break;
1
if (matlistinv[smallestconnotanainv] == empty)
cout << "ARLARM2Binv!!!" << endl;
while_(smallestconnotanainv != stack); // = while new not analysed node found
nocyclesinv = currentcomponent; // save number of cycles

R Y L T T Y T

// Ana1ys1ng cyc1es and cha1n from 1nverse match1ng

e e e e Yo Yo v e o ol e te st ol sl o ol sl ot ol ofa ot ol ol ol ol sl o ol h o ol ot
L R i L e R kA Rk R S

for (i=0; i<nocomp; ++1) // In1t1a11s1ng data

strongestnodeinv[i] = empty;
pssinv[i] = empty;

for (i=1; i<=nocyclesinv; ++i) // Check all cycles

// INV: Initialise for all cycles
strongestnode1nv[1] = componentinv[i] [0];
pssinv[i] = 0;

// INV: Check for all elements of this component
for (j=1; j<lengthofcomponentinv[i]; ++j) // Find weakst&strongst in cycle

// > cases
if (wbox[ordsc[componentinv[i] [j]11]
>= wbox[ordsc[strongestnodeinv[i]]])

strongestnode1nv[1] = componentinv[i] [j];
pssinv[i] = j;

// == cases
if ((wbox[ordsc[componentinv[i] [j]1]1]

== wbox[ordsc[strongestnodeinv[i]]])
&& (wbox[ordsc[matlistinv[componentinv[i] [j1]11]

> wbox[ordsc[matlistinv[strongestnodeinv[i]l]l]l]))
strongestnode1nv[1] = componentinv[i] [j];
pssinv[i] = j;

// INV :Initialise charcteristics for all cycles
weakeststrongestinv = strongestnodeinv[1];
pwssinv = pssinv[1];

// INV: check for all cycles
for(i=1; i<=nocyclesinv; ++1)

// < cases
if (wbox[ordsc[strongestnodeinv[i]]] < wbox[ordsc[weakeststrongestinv]])

weakeststrongestinv = strongestnodeinv[i];
pwssinv = pssinv[i];

188

}

// == cases
if ((wbox[ordsc[strongestnodeinv[i]]]
== wbox[ordsc[weakeststrongestinv]])
&& (wbox[ordsc[matTlistinv[strongestnodeinv[i]]]]
< wbox[ordsc[matTlistinv[weakeststrongestinv]]]))

weakeststrongestinv = strongestnodeinv[i];
pwssinv = pssinv[i];

}

// Counting number of cycles b4 analysis
++distofcyclesstartinv[nocyclesinv];

B R A A R R A R A A R
R R Rk S i ik i e S o R e e R R R R L R o e R e e o i i S R ok e e S R A

/ St i St A C 2
// CASE (11): Structure-preserving solution in INV/TGMAmaax case

/ / FTedddhfhfh R R R fhfddddddeddedddh TR N RN R d R ddedededededededdededededededdddh NN NN ddhdt

// Step 1INV: Make sure that unconnodeinv[1l] is the higher unconnected node
if (wbox[ordsc[unconnodeinv[0]]] > wbox[ordsc[unconnodeinv[1]]])
cout << "ALARM4inv!!!" << endl;

// Step 2INV: Check w/ wss
if (wbox[ordsc[weakeststrongestinv]]
+ wbox[ordsc[unconnodeinv[1]]] >= thradj)

++wscyclesandchaininv;
++feacounter;

e
Y e S s o o S L L L o B B B
// Step 2baINV: Checking result for WSS node case if there is only one cycle
Y e o B B o o = SN S SIS SRS SRS
if (nocyclesinv == 1)

o

for(i=0; i<lengthofcomponentinv[1l]; ++i)//check where in cycle strngst node
}f ((componentinv[1] [i])==strongestnodeinv[1])

stackinv = i;
break;
}
}

stackinv = pssinv[1];

if (twin[strongestnodeinv[1l]]==componentinv[1l] [(stackinv+1)])
‘ //twin after str nd

for(i=0; i<lengthofcomponentinv[0]; ++i)
result[i] = componentinv[0] [i];
for(i=stackinv; i<lengthofcomponentinv[1l]; ++i)
result[(i+lengthofcomponentinv[0]-stackinv)] = componentinv[1l] [i];
if (stackinv != 0) // str nd is not first node

for(i=0; i<stackinv; ++1i)
result[(i+lengthofcomponentinv[0]+1engthofcomponentinv[1l]-stackinv)]
= componentinv[1l] [i];
else // twin before strongest node

for(i=0; 1i<lengthofcomponentinv[0]; ++i)

189

result[i] = componentinv[0] [i];

for(i=stackinv; i>=0; --1)
result[(lengthofcomponentinv[0]+stackinv-i)] = componentinv[1l] [i];
if (stackinv 1= (lengthofcomponentinv[1]-1)) ~// str nd is not last node

for(i=(lengthofcomponentinv[1]-1); 1i>stackinv; --1)
result[(lengthofcomponentinv[0]

stackinv

(lengthofcomponentinv[1]-i))]

componentinv[1l] [i];

I+ +

}
}

[/
// Step 2bbINV: Checking result for WSS case if there is more than one cycle
e e e o T o o o o B B T o o o I S A S A S ST S

?1se // There 1is more than one cycle
// Initialising order
for(i = 1; 1 <= nocyclesinv; ++1)

ordcycinv[i] = 1;

// Starting sorting procedure for cycles according to stronges strong nodes
for(i = 1; i <= nocyclesinv; ++i)

for(j = i-1; j >= 1; --3)

//cout << i <<
// << j <<
// abbreviation = ;
if (wbox[ordsc[strongestnodeinv[i]]]
< wbox[ordsc[strongestnodeinv[ordcycinv[j1]1]1]1)

<< ordsc[i] <<
<< ordsc[j] << endl;

ordcycinv[j+1] = ordcycinv[j];

ordcycinv[j] = i;
//cout << "after change " << i << " " << ordsc[i] << " "
// << j << " " << ordsc[j] << endl;
//else { cout << "no change, next i" << endl; break; }
// Looking for the place of strongest node in each cycle
// because this tells us where to start building the result out of cycles
for(i = 1; i <= nocyclesinv; ++i)
placeofstrongestnodeinv[i] = empty;
for(i = 1; i <= nocyclesinv; ++i)

for(j = 0; j < lengthofcomponentinv[i]; ++j)

if (strongestnodeinv[i] == componentinv[i][j])
placeofstrongestnodeinv[i] = j;
break;
}
}
¥
7:/

// Starting result array with chain
for(i=0; i<lengthofcomponentinv[0]; ++1i)
result[i] = componentinv[0] [i];

190

currentplaceinv = lengthofcomponentinv[0];
// Now add the cycles to the result
for(k = 1; k <= nocyclesinv; ++k)

// first option: twin comes after strongest node in this cycle
if (twin[strongestnodeinv[ordcycinv[k]]]
== componentinv[ordcycinv[k]]
[(pssinv[ordcycinv[k]]1+1) 1)

for(i = pssinv[ordcycinv[k]];
i < lengthofcomponentinv[ordcycinv[k]]; ++i)
result[(1

+ currentplaceinv
- pssinv[ordcycinv[k]])]
= componentinv[ordcycinv[k]] [i]
if (pssinv[ordcycinv[k]] != 0)

// str nd is not first node

for(i=0; i<pssinv[ordcycinv[k]]; ++i)
resu1t[(i
+ currentplaceinv
+ lengthofcomponentinv[o
- pssinv[ordcycinv[k]])]
= componentinv[ordcycinv[k]] [i];

rdcycinv[k]]

/{ second option: twin comes b4 strongest node in this cycle
else

for(i=pssinv[ordcycinv[k]]; i>=0; --1)

resu1t[(currentplaceinv

p§§1nv[ordcyc1nv[k]]
-

= componentinv[ordcycinv[k]] [i];

if (pssinv[ordcycinv[k]]
= (lengthofcomponentinv[ordcycinv[k]]-1))
/ str nd is not last node

for(i = (lengthofcomponentinv[ordcycinv[k]]-1);
i > pssinv[ordcycinv[k]]; --1i)
result[(currentplaceinv
+ pssinv[ordcycinv[k]]
+ (lengthofcomponentinv[ordcycinv[k]]-i))]
= componentinv[ordcycinv[k]] [i];

}

// store new position in building result array
currentplaceinv = currentplaceinv + Tengthofcomponentinv[ordcycinv[k]];
} // end of loop through all cycles
++numberofelsecasesinv;
} // end of else for case of more than one cycle

status = checkresult(11l);
[/

continue;

/; Stat1st1cs and some more checks for rema1n1ng cases after 1nverse match .
// Count1ng the number of cyc]es and the Tength of the cha1n
++distofcyclesleftinv[nocyclesinv];
++lengthchaininv[Tengthofcomponentinv[0]];

/ B R A A A A A R R RN TR

191

// Check in the case of one cycle
if (nocyclesinv == 1)

stack = 0;
for(i=0; i<lengthofcomponentinv[1l]; ++1i)

if (wbox[ordsc[componentinv[1l] [i]]] > stack)
stack = wbox[ordsc[componentinv[1l] [i]]];

if (stack + wbox[ordsc[unconnodeinv[1]]] >= thradj)
++probinv;

//if (instance < 1000)
//cout << "T";

/ / TR hh RN RN RN ddddddeddedededdk
A I S T

// output scores, ordered scores and order numbers
for(i = 1; i <= numsc; ++1)

cout << wbox[i] << H

cout << endl;)
for(i = 1; i <= numsc; ++1)

cout << wbox[ordsc[i]] << ;

cout << endl;]
for(i = 1; i <= numsc; ++1)

cout << ordsc[i] << ;

cout << endl;
cin.get(Q);

*

// End of instances Toop

// Running time
runtimel = (double) (clock() / CLOCKS_PER_SEC);
// runtime2 = (double) (clock() - (numinst*timed4rand)) / CLOCKS_PER_SEC;

Feddehdedhdd Nl A Ndd Nl Nk R R R o R R Rk e ok S S e e R ok L S R R AR T kR T AR T R

/ Yedededededededede e
// output of final statisctis
// R e e R R R R R S R R R R L o R R T S L o R R kLR T L S AR
// Main statistics
cout << "Instances:

<< numinst << Fea: << feacounter
<< " 1Inf: " << infcounter << endl;
cout << "Instances" << endl
<< "- (01) with too many weak nodes: << toomanyweak << endl
<< "- (02) with non-con twins: " << noncontwin << endl
<< "- (03) with too many unconnectable nodes: " << uncon << end]
<< "- (04) with poor matching: " << poormat << end]
<< "- (05) with perfect matching: " << perfmat
<< ", CHECK: " << checkcasecounter[5] << endl
/ << "- (06) with sufficient matching: " << suffmat
/ << ", CHECK: " << checkcasecounter[6]

~

<< "- (07) with TGMAmin complete chain built: << completechain

// << ", CHECK: " << checkcasecounter[7]

<< "- (08) with TGMAmin structure-preserving solution: "
<< (wscyclesandchain + suffmat)

192

:‘:/

//
//
/

// << ", CHECK: " << checkcasecounter[8]

<< endl;

cout << "- (10) with TGMAmax complete chain built: " << completechaininv
// << ", CHECK : " << checkcasecounter[10]

<< endl

<< "- (11) with TGMAmax structure-preserving solution: "

<< wscyclesandchaininv

// << ", CHECK: " << checkcasecounter[11]

<< endl;

cout << "Percentage of instances solved:
<< (double) (feacounter+infcounter)/numinst << endl;

cout << "Running time: " << runtimel << " seconds" << endl;

cout << "Number of instances checked: " << resultcounter
<< " Failed checks among these: << problemcounter;

cout << end]l << endl << endl;

// Other statistics

cout << " Number of elsecases:
cout << Number of elsecasesINV:
cout << endl << endl;

<< numberofelsecases; .
" << numberofelsecasesinv;

for(i=0; i<=numsc; ++i)

cout << Tengthchain[i] << " times " << i << " scores" << endl;
for(i=0; i<=numsc; ++1)
cout << lengthchaininv[i] << " times "

<< i << " scores in INV case" << endl;

// cout << "Running time without generation of instances:
) << runtime2 << " seconds" << endl;
for(i=1; i<nocomp; ++i)

cout << distofcyclesstart[i] << " times " << i

<< cycles originally, afterwards
<< distofcyclesleft[i] << " times.'

<< endl;

for(i=1; i<nocomp; ++i)

times << i

cout << distofcyclesstartinv[i] <<

<< " cycles originally, afterwards "
<< distofcyclesleftinv[i] << " times in INV case." << endl;

}
cout << prob << " problematic cases" << endl;

cout << probinv << " problematic cases in INV case" << endl;

Fedededded NNk

End of function main

LR

cin.get();
return 0;

PROR)

EN

e e %

OF PROGRAMME

DRORONORIOIONONORONONONN

D

e dede

193

B TGHRA 3.6: C++ source code

194

April 2010,

Gedevede e e e e e N

Kai Helge Becker

constants

ROROROR e o v o %

/] ek
// Header f11es g1oba1 var1

// Cedevee e et e S ek

#include <iostream>
#include <ctime>
#include <cstdTib>
using namespace std;

// Global variables and constants

// Constants
int const numinst = 1000000;
numbox 22;
27‘:

numbox;

int const
numsc
41;

int const
int const minwidth
int const maxwidth 70;
thradj 70;
thradj / 2;

int const
thrstrong =
empty =

const
const

int
int

AR R R R R R RN
NN

int const nocomp
= (numbox+(numbox%2))/2;

const b

/7

int

= maxwidth - minwidth + 1;

double const b2 = b;

// Variables
int stoO0;

double stochastic; ?;

double probability[b]; //

double endofpartition[b]; //

int wbox[numsc]; //

int i, j, k, g, gstar; //

int stack; //

int stackinv;

int ordsc[numsc]; //

int invordsc[numsc]; //

int instance; //

int feacounter;

int infcounter;

int poormat;

int completecycle;

int nofamily;

int patgraphcon;

int patgraphuncon;

int twinnolb; // pla

double runtimel; // run

//double runtime2; // run

//long timedrand; // tim

int adjlist[numsc] [numsc]; // adj

int emptyflag; // fla
// hav
// due
// wil

int cyclenode[numsc]; // dur
// (ba

e sl ol ole e sl sl ta o ol ota ol ol ot ol ol sl ol ol ho ot ol ol ol ol ol ol ol st ot ot ofa ofu ol ol sl ol ol ot ol ol ot ot ol sl ol ol ol ot ol ot ot ol ol o ol
LR e i e R R O R LR R T U A R R R T o T

Sedeve e e e vy

e e e e Yo

ab1es

o e ste e Yo e de Yo Yo e Yo Yo e Yo
R R kR U SR e T S R

number of instances

number of boxes + 1

number of scores + 2

minimal width of each score

maximal width of each score

threshold for adjacency

threshold for strong node (= thradj/2)
flag for empty variable entry
(used w/ matTlist, unconnode, Tastmatch)
no of components (no of cycles)

// no of possible score widths

random number between 0 and 1

(for score width)

triangular probability

for calculating triangular distribution
width of all scores

Tloops

stack

array index of ith smallest score
inverse function of the above

counters for instances and cases

ce of an unconnectable box (case 1b)

ning time

ning time without generating instances

e for generating one instance

acency list (based on sorted indices)

g used in matching algorithm to mark edges
e not been matched with highest node pssble
to twin node conflict. these edges

1 not be used for FCA.

ing TGMAmax: flag for valid edge (=1) 4 FCA
sed on sorted indices)

195

int
int
int
int
int
int
int
int
int
int
int
int

int
int
int

int
int
int

int
int
int
int
int
int

int
int

int

"empty" if edge is due to mate_swap
conta1ns Tater: number of the cycle
that node belongs to
matching Tist for inverse matching
cardinality of inverse matching

/i
;
matlistinv[numsc]; ;
; number of unconnected nodes
/
/
/
/
/

matcardinv;
unconpointerinv;
twinnomatinv;
lastmatchinv;
unconnodeinv[numsc];
smallestunconinv;
twin[numsc];
analysedinv[numsc];

place of twinnode for matching (sorted -ind)
place of last matched node (sorted ind)
place of unconected nodes (sorted ind)
smallest unconnected node (sorted ind)
place of twin node (sorted 1ind)

flag if node already inclded in_chain/cycle

NN

componentinv[nocomp] [numsc];// nodes in cycles [0..nocomp-1]
1engthofcomponent1nv[nocomp];// Tength of component
lengthfirstcycleinv[(numsc+1)]; // distribution of chain Tength
currentcomponent; // no of cycle being analysed
smallestconnotanainv; // smallest connected node not analysed yet
nocyclesinv; // number of cycles in INV case

currentedge; // counter used for list of edges

noedges; // number of (non-empty) edges

edge[numbox] ; // number of lower node of each (non-empty) edge
T [nocomp] [numbox]; // Tg-cycles

S [nocomp] [nocomp]; // TIS-edges in Tqg-cycle

SqIntersections; // ==0 iff (Sq intersection S) == empty set

SSet [nocomp]; // TiS-cycles already glued together

ssum; // Number of TIS-cycles already glued together
QSet [nocomp]; // Tq-cycles already used for glueing
distofcyclesstartinv[nocomp];// distribution of cycles b4 cycle analysis
distofcyclesleftinv[nocomp]; // distribution of cycles after cycle analysis
probinv; // counter for some problematic cases

// R e o R R R R R R R R R R R R R R R R R R R o L o o R Rk R ok kS S L T o S o R L

// Funct1on ma1n starts & 1n1t1a11sat1on

// Yede

int main()

// Welcome
cout << "Welcome to TGHRA 3.6." << endl;

// Initialisation
feacounter = 0; // initialising feasible instances counter
infcounter = 0; // initialising infeasible instances counter
poormat = O; // initialising case counters
completecycle = 0;
nofamily = 0;

patgraphcon =
patgraphuncon

o

0;

probinv = 0;

for(i=0; i<(numsc+1l); ++i)
lengthfirstcycleinv[i] =
for(i=0; i<nocomp; ++1)

distofcyclesstartinv[i] = 0;
distofcyclesleftinv[i] =

196

// Calculate probabi]ities for triangular distribution
probability[0] = 2/(b2*%b2);

probab111ty[(b D] = probab111ty[0],

Eor (i=1; i <b/2; ++1)

probability [i] = probability [(i-1)] + 4/(b2%b2);
probability [(b-1-i1)] = probability [i];

// Calculate partition of [0,1] interval for triangular distribution
endofpartition[0] = probability[0];
for (i=1; i < b; ++1)

endofpartition [i] = endofpartition [(i-1)] + probability [i];

/:':
Eor (i=0; i<b; ++1)

cout << i << << probability[i] <<

3
*/

// Initialising random mumbers
srand((unsigned) time(NULL));

LR R R o S R R R R o e R R R o R R R R R R R S o R AR Rk R T o R L o R T T LR

// Start of 1nstances 1oop

/ T T Yo v de veded NN NN NN NN NS fedededededededededededeN NN NN VA A dededededededededde

for (instance = 0; instance < numinst; ++instance)

// Producing uniformly distributed random numbers for scores
//timedrand = clock(Q);
for(i = 0; i < (numsc - 2); ++1)

wbox[i] = minwidth + (rand() % (maxwidth - minwidth + 1));

*

// cout << RAND_MAX << "HHHH ;

// Producing triangularly distributed random numbers for scores
for (i=0; i < (numsc - 2); ++1)

// Generate random number between 0 and 1
sto0 = rand(Q);

stochastic = static_ cast<doub1e> (stoO) / 32767;
// cout << stochastic << "

// Check the probability interval of which the number is a member

wh11e (stochastic > endofpartition[j]) {++j;};
// Calculate the triangularly distributed number
wbox[i] = minwidth + j;

/ ¥

// Test
wbox[0]
wbox [1]
wbox[2]
wbox[3]
wbox[4]
wbox[5]

[+]

OO\I—‘WI\H—‘S

Ouwrwsus

mnnnnine

Q-

197

<< endofpartition[i] <<

wbox[6] = 62;
wbox[7] = 70;
wbox[8] = 20;
wbox[9] = 21;
wbox[10] = 61;
wbox[11] = 51;
wbox[12] = 25;
wbox[13] = 26;
wbox[14] = 27;
wbox[15] = 46;
wbox[16] = 45;
w90x217] = 47;

// Add two dominating nodes
wbox [(humsc - 2)] thradj + 1;
wbox [(humsc - 1)] thradj + 1;

/{ Test data
) wbox[19] = 1; wbox[9] = 30; //wbox[10] = 35; wbox[11l] =
for(i = 10; i < 19; ++1i)
¢ wbox[i] = 20 + (rand() % 6);
%or(i =12; i < 20; ++1)
wbox[i] = 10 + (rand() % 11);
*/

// Output instance
cout << endl;)
for(i = 0; i1 < numsc; ++1)

cout << wbox[i] << ;

cout << endl;

// Running time without generating instances
// timedrand = clock() - time4rand;
// cout << timed4rand << endl;

// Sort1ng scores from sma11est to 1argest

Fedede eSS Sl et el dedeededede RSl hded Nl dehddedehdde N hd AN ddeRdddNhddn

// Initialising order)
for(i = 0; i1 < numsc; ++1)

ordsc[i] = 1;

// Starting sorting procedure
for(i = 1; i < numsc; ++i)

gor(j =1i-1; j >= 0; --3)
//cout << 1 << " " << ordsc[i] <<
// << " " << ordsc[j] << endl;
if (wbox[1] < wbox[ordsc[j]11)

ordsc[j+1] = ordsc[j];

198

ordsc[j] = 1i;
//cout << "after change << i << << ordsc[i] <<
// << j << " " << ordsc[j] << endl;

3
//else { cout << "no change, next i" << endl; break; }

}
}

/*
// Output sorted instance

cout << "order: ";]
for(i = 0; i < numsc; ++i)

cout << wbox[ordsc[i]] << ;

cout << endl;

#/

// Feddedhhfhhh R R R f R fddddeddeddedededededededdeh RN RN ddfdddfddededededededededededhhh RNt

// Matching algorithm (TGMAmax)

// FTedhdhdhhfh R R RN f R fddeddeddeddedededededededdhhh RN RN ddfdddddddededededdeddededhhh NN fh Rt

// Step 1: List with adjacent nodes disregarding twin nodes
for(i = 0; i < numsc; ++i) // general adjacency list

for(j = 0; j < numsc; ++j)
if (wbox[ordsc[i]] + wbox[ordsc[j]] >= thradj)
adjlist[i] [j] = 1;

) adjTlist[j] [i] = 1;
?1se
adjlist[i] [j] = O;
) adjlist[j] [i] = O;
}
}
for (i=0; i<numsc; ++i) // generating inverse function of ordsc[]

invordsc[ordsc[i]] = 1;

// we mark twin nodes qua adjacency list
for (i = 0; i < numbox; ++i)

{
adjlist[invordsc[(2*1)]] [invordsc[(2*i+1)]] = 2;
adjlist[invordsc[(2*i+1)]] [invordsc[(2*1)]] = 2;

// Step 2: Initialise matching Tist and counters
for (i = 0; i < numsc; ++1)

matlistinv[i] = empty;
cyclenode[i] = 1; // will be set to "empty" if resulting from mate swap

matcardinv = 0;

unconpointerinv = 0;)

for (i = 0; i < numsc; ++1i)
unconnodeinv[i] = empty;

Tastmatchinv = empty;

199

// Step 3: Matching algorithm
for(i=0; i<numsc; ++i)// check all nodes

emptyflag = 0;
if (matlistinv[i] == empty)// does node need a mate?

for (j=(numsc-1); j>i; --j)// Took for a mate for node i

if (. (adjlist[i] [j] >= D
&& (matTlistinv[j] == empty))// if potential mate found

if (adjlist [i] [j] != 2) // if potential mate != twin

matlistinv[i] = j;
matlistinv[j] = 1i;
lastmatchinv = i;
++matcardinv;
if (emptyflag == 1) // delete edge for FCA if matching
// was not with highest node
// due to this node

being twin node

empty;
empty;

cyclenode[i]
cyclenode[j]

brgak;
}% (adjlist [i] [j] == 2) // if potential mate == twin

emptyflag = 1; // mark this case to make sure that the
// matching edge will be Teft out in FCA

3
) }
if (matlistinv[i] == empty) // if there still is no mate:
/ do twin node swap or finally acquiesce
}f (ordsc[i] % 2 == 0) // find out twin node number

twinnomatinv = invordsc[(ordsc[i]+1)];
else

twinnomatinv = invordsc[(ordsc[i]-1)];

if // twin node swap possible?

((wbox[ordsc[i]]+wbox[ordsc[twinnomatinv]]>=thradj)// match w/ twin?

&& (matTistinv[twinnomatinv] == empty) // twin unmatchd?

&& (lastmatchinv != empty) // exchnge pssble?
&& (twinnomatinv > 1) // twin Tlarger?

&& (wbox[ordsc[lastmatchinv]] // lastmatch with twin?

+ wbox[ordsc[twinnomatinv]] >= thradj))
// then swap mates
matlistinv[i] = matlistinv[Tastmatchinv];
matlistinv[lastmatchinv] = twinnomatinv;
matlistinv[twinnomatinv] = lastmatchinv;
matlistinv[matlistinv[i]] = 1i;
cyclenode[lastmatchinv] = empty; // edge from mate swap will not
count for FCA
cyclenode[twinnomatinv] = empty;
Jastmatchinv = i;
++matcardinv;

else // otherwise: one more unconnected node

{

++unconpointerinv;

200

1]
-

unconnodeinv[(unconpointerinv-1)]

}
}
}

o sl ole e ol ol sl ot ol ol ot ol ol ol ol ol ot ole b st o ol ota ol ol ot o ol st ot ol fo ot ol sl o ol sl ot ol f ot o ol ol ol ol ot ol ol ot ol fe ofa ot ol sl ol ol st o ol ot ot ol ol o ol sl o ol b o ol ot
B R R o o R R R A R A R i A Rk Ak e i i S o i S R e T e e T L e

// Poor matching (#M <

if (matcardinv < numbox)

++poormat;
++infcounter;

/*AAA
cout << "inf: poor matching with card:

<< and uncon nodes: ";
for (i=0; i<numsc; ++i)

<< matcard

if (unconnode[i] != empty)
cout << unconnode[i] << " w= " << wbox[ordsc[unconnode[i]]]

<< << endl;
cout << endl;

continue;

}

B A R ROROSOR NN

twin-induced structure of matchin

;/ Building u
// * ¥k % %

R R R R R R R L o R R o L R R AR A R

from TGMAmax

// Initialise data
Eor (i=0; i<numsc; ++i)
analysedinv[i] = 0;
for (j=0; j<nocomp; ++3j)
componentinv [j] [i] = empty;
if (ordsc[i] % 2 == 0) // find out twin-node number
: twin[i] = invordsc[(ordsc[i]+1)];
else
twin[i] = invordsc[(ordsc[i]-1)];
// cout << ordsc[i] << "-" << ordsc[twin[i]] << " "

// cout << endl;

// Find smallest connected node not analysed yet = first node
for (i=0; i<numsc; ++i)

{
1f{(ana1ysed1nv[i] = 0)
smallestconnotanainv = 1i;
break;
. . .
if (matlistinv[smallestconnotanainv] == empty)
cout << "ARLARM2inv!!!" << endl;
currentcomponent = -1; // Implies that first cycle is component 0
// Build up all components = cycles
o
{

++currentcomponent; // Set component
if (currentcomponent > nocomp-1)

201

cout << "ARLARM3inv!!!" << endl;

j = -1; // Build up cycle
stack = smallestconnotanainv;
do
{
++3;
component1nv[currentcomponent] [j] = stack;
analysedinv[stack] = 1;
++3;

component1nv[currentcomponent] [i]
analysedinv[twin[stack]] =
stack = mat11st1nv[tw1n[stack]],

twin[stack];

}
while (stack != smallestconnotanainv); //= while not back 2 bgnning of cyc

Tengthofcomponentinv[currentcomponent] = ++j;

for (i=0; di<numsc; ++i) // Find smallest connected node not analysed yet

if (analysedinv[i] ==

smallestconnotanainv = i;

break;
1
if (matlistinv[smallestconnotanainv] == empty)
cout << "ARLARM2Binv!!!" << endl;
while_(smallestconnotanainv != stack); // = while new not analysed node found
nocyclesinv = ++currentcomponent; // save number of cycles

R R e o e e R R Rk o R R e R Ak Ak Sk L L o o o o o o o o o ok ik ok o ko o R Ak Ak S S R R Sk R

// Does tw1n—induced structure consist of only one cyc1e7

// Tedhdedhk el e el dede N defddede e hdede e N dedehdefehdedehddeNddeddeNhdeNddefhdeNhddehdedededehdededdhdd
if (lengthofcomponentinv[0] == numsc)// is first cycle complete?
++completecycle;
++feacounter;
/* . . .
for(i=0; 1i<numbox; ++i)
cout << wbox[ordsc[component[O] [(2*%1)]1]1] << "
<< ordsc[component[0] [(2*i)]] << ")-
<< ordsc[component[0] [(2*i+1)]1] << ")"
) << wbox[ordsc[component[0] [(2*i+1)]]] << " --";
cout << "*" << endl;
*/
continue;
}

// Counting number of cycles b4 analysis
++distofcyclesstartinv[nocyclesinv];

Fededededededefehdede Nl de R dddefddefNdde NN Al hdde NNl defhddefdddeRdde NN dhdeddddeddddedddd

// %
// Create for FCA the 11st cyc1en0de[1]

// This 11st conta1ns for each node the cyc]e that 1ts edge be]ongs to N

[R e e e
for (i=0; i < nocyclesinv; ++i)
for (j=0; j < Tengthofcomponentinv[i]; ++3j)

// if edge is not deleted for FCA

202

TehdhNnn

}f (cyclenode[(componentinv[i] [j]1)] != empty)

cyclenode[(componentinv[i] [j])] =

// TR hh b RN hfhfddeddddeddedededededdde NN fdfddddddedededededdeddedehhh R n
7 O L T g sttt sttt S S 0

// Problem: For FCA we need an - array edge[matcardinv]

// (contains (sorted) number of lower node)
// - Tist that gives cycle for each edge
// - higher and Tower node of each edge

// The 1ist of the edges 1is given by the 1ist of nodes up to matcardinv
// (we just have to remove empty edges)

// We already have for each node the cycle (cyclenode)

// The lower node of an edge 1is equivalent to the number of the edge

// The higher node of an edge 1is equivalent to its matching mate

// Create 1list of edges without empty edges (those generated by mate swap)
// Initialisation
currentedge = 0;
for (i=0; i<matcardinv; ++i)

edge[i] = empty;

// Create list))
for (i=0; i<matcardinv; ++i)

while (cyc1enode[1] == empty) {++i;}
edge[currentedge] = 1i;
++currentedge;

}

noedges = currentedge;

// Fam11y construct1on a1gor1thm

/ Fededefdede e Sl et ded R R O o ok U o R R k]

Fehhfhfhh R h R h R dddedededededededededededededededhdhh

// Initialisation
gstar = -1;
gor (g=0; g < nocomp; ++q)
for (i=0; i < matcardinv; ++i)
T[ql [i] = empty; // set of edges in alternating T-cycle q
for (i=0; i < nocyclesinv; ++i)
S[q] [i] = 0; // set of indices of cycles that have edge in T[q]
// == 1 iff T-cycle q has an edge
// from twin-induced-structure cycle i

1

k = 0; // edge from matching under consideration

// Start (Take into account: edges k with cyclenode[k]==empty should not be in Tqg-

cycle)
do
// look for beginning of new Tg-cycle
while
((k < noedges - 2)

203

&& ((adjlist[edge[k]] [matlistinv[edgel[k+1]]] !'= 1)
c || C(cyclenode[edge[k]] == cyclenode[edge[k+1]1]1)))

}
// start new Tq-cycle and add edges to it as long as it is reasonable

if ((adjlist[edge[k]] [matlistinv[edge[k+1]]] == 1)
(&& (cyclenode[edge[k]] != cyc1enode[edge[k+1]]))

++k;

: // Assign new number (gstar) to Tg-cycle and add first edge to Tg-
cycle
++gqstar;
i=0;
T[qstar] [i] =
S[gstar] [cyc1enode[edge[k]]]
// add more edges to Tqg-cycle
while ((k < noedges - 1)
&& (adjlist[edge[k]] [matlistinv[edge[k+1]]] == 1)
&& (S[gstar] [cyclenode[edge[k+1]]] == 0))

{ .
++1;
++k;
T[qstar] [i] =
} S[gstar] [cyc1enode[edge[k]]]
}
++k;

}
while (k < noedges - 1);

// :':7'::':7’::‘::'::‘::‘:.:-.'.::':7'::':7'::':7':.:7':.:7'::':7': 4: TededededeNk ,: FTeddeh NS nddNdhnk :':-7‘ R e R R R R AR Tk L T A R kL
// No
// B R e R e R e b b e b T L b T S L L

}f (gstar == -1)

++nofamily;
++infcounter;
continue;

}

Fedede Sl dedefddede Nl dde Al hddefhddefhddefddde R ddefhded Al fhddedhdde R hdde N h Al Rl dfdhddn

/
;/ Check 1f patch1ng graph connected

Fededededede e dededd el dedeededede S dede N de el Rl dedhdde N hd AN ddRddd Nl

// Initialisation
Eor (g=1; g<=gstar; ++q)
Qset [q] = 0; // ==1 iff Tg-cycle number q has already been considered

=0; // start with first Tg-cycle
QSet [0] =

for (i=0; i<nocyclesinv; ++i)

sset [i] = s [q] [i]; // ==1 iff TIS-cycle i has been included
ssum = 0; // == number of TIS-cycles that have been included
for (i=0; i<nocyclesinv; ++i)

Ssum = SSum + SSet [i];

204

}

// Start connectivity check
while ((q <= gstar) && (SSum < nocyclesinv))

do // Look for a Tg-cycle that Teads to enlargement

++q; // Consider next Tq-cycle
SqIntersectionS = empty;
if (q <= gstar)

for (j=0; j<nocyclesinv; ++j) // Is there a [j] for which
S[gq][j]=1 and sset[j]=17

}f ((s [q] [3]1 == 1) && (sset [j] == 1))

SgIntersections = 1;

}
Whi%e ((q < gstar + 1) && ((qQset[q] == 1) || (SgIntersectionS == empty)));
if (q <= gstar) // if Tg-cycle for enlargement has been found
for (i=0; i<nocyclesinv; ++i)
}f ((sset [i] == 0) && (s [q] [i] == 1))

Ssset [i] = 1;
++SSum;

}
Qset [q] = 1;
q=0;

// output for testing
for (i=0;i<numsc;++1i)

cout << "ordsci" << i << << ordsc[i] << endl;

}

for (i=0;i<numsc;++i)

cout << "matlistinvi" << i << << matlistinv[i] << endl;

}
gor (g=0;qg<nocomp;++q)

for (i=0;i<numsc;++1i)

cout << "componentq" << g << "i" << i <<

<< componentinv[q][i]
<< endl;

}

for (i=0;i<numsc;++i)

cout << "cycledgei" << i << << cyclenode[i] << endl;

}

for (i=0;i<matcardinv;++i)

205

cout << "edgei" << i << << edge[i] << endl;
iout << "noedges" << " " << noedges << endl;
for (g=0;qg<nocomp;++q)

for (i=0;i<matcardinv;++i)

cout << "Tq" << q << "i" << i << " " << T[q][i] << endT;

}
1
for (g=0;qg<nocomp;++q)
for (i=0;i<nocomp;++i)

cout << "sq" << q << "i" << i << " " << S[q][i] << endl;

A

}
1
gor (g=0;qg<nocomp;++q)

cout << "QSet" << q << " " << Qset[q] << endl;
for (i=0;i<nocomp;++i)

y cout << "sSet" << i << " " << SSet[i] << endl;
cout << "gstar" << gstar << endl;

cout << "SSum " << SSum << endl;

cout << "nocycles " << nocyclesinv << endl;

cout << "numbox " << numbox << endl;

cout << "nocomp " << nocomp << endl;

cout << "matcardinv " << matcardinv << endl;

*/
// TeddehhdefhdedehdedehdedeNdde N hdeNddehdefhdedehdefehdedeNddehdeddedhde R dedehdefhdef Nl dedde Nl dhddnk
// If patch1ng graph connected _FEASIBLE, e1se: INFEASIBLE
// Teddehhk e e e dedehdede NN dededede Nl de TNl dededdd v‘* e e dehdede N de NN de e de e hdededde Nl dehddnk
if (SSum == nocyclesinv)
{
++patgraphcon;
++feacounter;
continue;
}
if (SSsum < nocyclesinv)
{
++patgraphuncon;
++infcounter;
continue;
}
if (SSum > nocyclesinv)
{
++probinv;
continue;
}

remainin
// Counting the number of cycles and the length of the chain

++distofcyclesleftinv[nocyclesinv];
++lengthfirstcycleinv[Tengthofcomponentinv[0]];

206

//
/7
/

/:':
//

[/
}

//

ORI A RORORORORORCRORRORORORCRORCNCN
E R R e R R S

End of instances loop

e o ole e s sl st ot ol ol ot ot
LR R R

Output scores, ordered scores and order numbers
for(i = 1; i <= numsc; ++i)

cout << wbox[i] << ;

cout << endl;)
for(i = 1; i <= numsc; ++i)

cout << wbox[ordsc[i]] << ;

cout << endl;)
for(i = 1; i <= numsc; ++1)

cout << ordsc[i] << ;

cout << endl;
cin.get(Q);

End of instances loop

Running time
runtimel = (double) (clock() / CLOCKS_PER_SEC);
// runtime2 = (double) (clock() - (numinst*timedrand)) / CLOCKS_PER_SEC;

FTedhddhhfh R h R R hf R fddddeddeddedededededededdeh RN ddfddddddedededededdeddedehhh NNt

output of final statisctis

FTedhdhdhhfh R h R f R f R fddeddeddedededededededededdeh RN RN fdfdddfddedededededdedededehhh NNt

// Main statistics
cout << "Instances:

<< huminst << Fea: << feacounter
<< " Inf: << infcounter << endl;
cout << "Number of boxes: << (numbox-2) << endl;
cout << "Distribution uniform in: " << minwidth <<
cout << "Threshold: " << thradj << endl;
cout << "Instances" << endl

to " << maxwidth << endl;

<< "- (01) with poor matchin%: << poormat << end]

<< "- (02) with TGMAmax complete cycle built: " << completecycle << endl
<< "- (03) with no Tg-family: " << nofamily << end]

<< "- (04) with patching graph unconnected: " << patgraphuncon << end]l

<< "- (05) with patching graph connected: " << patgraphcon << endl;

cout << "Percentage of instances solved:

<< (doubTle) 100*(feacounter+infcounter)/numinst << endl;
cout << "Running time: " << runtimel << " seconds" << endl;
cout << end]l << endl << endl;

// Other statistics
for(i=0; i<=numsc; ++i)

cout << lengthfirstcycleinv[i] << times

<< i << " scores" << endl;
// cout << "Running time without generation of instances: "
) << runtime2 << " seconds" << endl;
for(i=1; i<nocomp; ++i)

n n

times << i

cout << distofcyclesstartinv[i] <<
<< " cycles or1?1na]1y,_afterwaFQS
<< distofcyclesleftinv[i] << " times.'

<< endl;

207

cout << probinv << problematic cases in INV case" << endl;

//* ek e
// End of function main

% JOYOR

cin.get(Q);
return 0;

TSN SN dhn

Tl

END OF PROGRAMME

sk

208

C MSSP 3.4: C++ source code

209

MSSP 3.4

// 15 April 2010, Kai Helge Becker
// A.A.A.A.A.I. I‘. I. JA.JA.

// Header f11es constants g1oba1 var1ab1es

/ e e dede e e e e e e e e e R R R R A S R R R R R R R R O R ROT
w % * TSR fdehde e fdeddhdd VAl Nl Rd Nl

R S R R A R R A R R R R R
B R R e A R ik i o R Tk L e e o S i e A S R R R Tk e e e

#include <iostream>
#include <ctime>
#include <cstdTib>
using namespace std;

// Global variables and constants
// Constants

int const numinst = 10000000; // number of instances
int const numbox = 10; // number of boxes
int const numsc = 2 * numbox; // number of scores
int const minwidth = 1; // minimal width of each score
int const maxwidth = 69; // maximal width of each score
int const thradj = 70 // threshold for adjacency
int const thrstrong = hradj / 2; // threshold for strong node (= thradj/2)
int const empty = 999; // flag for empty variable entry
// (used w/ matlist, unconnode, lastmatch)

int const nocomp
= (numbox+(numbox%2))/2; // no of components (chain + no of cycles)

// Variables

int wbox[numsc]; // width of all scores

int i, j, k; // Tloops

int stack; // stack

int stackinv;

int ordsc[numsc]; // array index of ith smallest score
int invordsc[numsc]; // inverse function of the above

int instance; // counters for instances and cases

int feacounter;

int infcounter;

int toomanyweak;

int noncontwin;

int uncon;

int perfmat;

int poormat;

int suffmat;

int yeahcounter;

int completechain;

int wscyclesandchain;
int msscyclesandchain;
int wwcyclesandchain;
int mswcyclesandchain;
int wwscyclesandchain;
int mswscyclesandchain;
int wswcyclesandchain;
int msswcyclesandchain;
int cyclchainsplit;
int cyc2chainsplit;
int numberof09bcases;
int wslchainsplit;

int ws2chainsplit;

int wwlchainsplit;

int ww2chainsplit;

int wwslchainsplit;
int wws2chainsplit;

210

int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int

int

wswlchainsplit;
wsw2chainsplit;
completechaininv;
wscyclesandchaininv;
msscyclesandchaininv;
wwcycTlesandchaininv;
mswcyclesandchaininv;
wwscyclesandchaininv;
mswscyclesandchaininv;
wswcyclesandchaininv;
msswcyclesandchaininv;
cyclchainsplitinv;
cyc2chainsplitinv;
numberofl2bcases;
wslchainsplitinv;
ws2chainsplitinv;
wwlchainsplitinv;
ww2chainsplitinv;
wwslchainsplitinv;
wws2chainsplitinv;
wswlchainsplitinv;
wsw2chainsplitinv;

twinnolb;

double runtimel;
//double runtime2;
//long timedrand;

int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int

int
int
int
int
int
int
int
int
int
int
int
int

adjlist[numsc] [numsc];
matlist[numsc];
matlistinv[numsc];
matcard;

matcardinv;
unconpointer;
unconpointerinv;
twinnomat;
twinnomatinv;
Tastmatch;
Jastmatchinv;
weakeststrong;
unconnode[numsc];
unconnodeinv[numsc];
smallestuncon;
smallestunconinv;
twin[numsc];
analysed[numsc];
analysedinv[numsc];

R R R R R R R R R R R R R RNy
N e S NN

component[nocomp] [numsc];//

componentinv[nocomp] [numsc];

Tengthofcomponent[nocomp];//

Tengthofcomponentinv[nocomp];

Tengthchain[(numsc+1)];

Tengthchaininv[(numsc+1)];

currentcomponent;
smallestconnotana;
smallestconnotanainv;
nocycles;

nocyclesinv;
strongestnode[nocomp];

strongestweaknode[nocomp];
strongestnodeinv[nocomp];
strongestweaknodeinv[nocomp];

weakestnode[nocomp];

weakeststrongnode[nocomp] ;

weakestnodeinv[nocomp];

/

/

place of an unconnectable box (case 1b)
running time

running time without generating instances
time for generating one instance

adjacency 1list (based on sorted indices)
matching 1ist (based on sorted indices)
matching 1list for inverse matching
cardinality of matching

cardinality of inverse matching

number of unconnected nodes

same for inverse matching

place of twinnode for matching (sorted ind)
same 4 inverse matching

place of last matched node (sorted ind)
same 4 inverse matching

place of weakest strong node (sorted ind)
place of unconected nodes (sorted ind)
place of unconectd node in inverse matching
smallest unconnected node (sorted ind)

// for INV case

place of twin node (sorted ind)

flag if node already inclded in chain/cycle
// for INV case

nodes in chain [0] and cycles [1..nocomp-1]
// for INV case

Tength of component (chain 1is component 0)
// for INV case

distribution of chain Tength

no of cycle being analysed

smallest connected node not analysed yet
// for INV case

number of cycles

number of cycles in INV case
characteristic of each cycle

// both used from 1..nocycles

211

int weakeststrongnodeinv[nocomp];
int strongeststrongest; // characteristics of all cycles
int strongeststrongestinv;
int weakeststrongest;

int weakeststrongestinv;

int weakestweakest;

int weakestweakestinv;

int strongestweakest;

int strongestweakestinv;

int strongeststrongestweak;
int strongeststrongestweakinv;
int weakeststrongestweak;
int weakeststrongestweakinv;
int strongestweakeststrong;
int strongestweakeststronginv;
int weakestweakeststrong;
int weakestweakeststronginv;
int pss[nocomp];

int psw[nocomp];

int pws[nocomp];

int pww[nocomp];

int psss;

int pwss;

int psws;

int pwws;

int pssw;

int pwsw;

int psww;

int pwww;

int pssinv[nocomp];

int pswinv[nocomp];

int pwsinv[nocomp];

int pwwinv[nocomp];

int psssinv;

int pwssinv;

int pswsinv;

int pwwsinv;

int psswinv;

int pwswinv;

int pswwinv;

int pwwwinv;

int ordcyc[nocomp]; // order of cycles according to weakness of
// strongest node, for checkresult(8)
int ordcycinv[nocomp]; // chckresult 11

int placeofstrongestnode[nocomp]; // p1 of s node in original order of cycles
/ input for component%nocomp] [xxx]
// used for checkresult(8)

int placeofstrongestnodeinv[nocomp]; // chckresult (11)

int currentplace; // next place in array "result" to be filled
int currentplaceiny;
int numberofelsecases; // more than one cycle

int numberofelsecasesinv;

int stackcyc; // for result check (09a)
int stackcycinv; // for result check (12a)
int stackchain; // for result check (09a)
int stackchaininv; // for result check (12a)
int splitplace; // for result check (09b)
int splitplaceinv; // for result check (12b)
int connector[nocomp]; // for result check (09b)
int connectorinv[nocomp]; / for result check (12b)
int placeofconnector[nocomp]; // for result check (09b)
int placeofconnectorinv[nocomp]; // for result check (12b)
int caseno; // for result check (09ab) and (12ab)
int casetype;

212

// Funct1on for check1ng resu1ts

distofcyclesstart[nocomp];// distribution of cycles b4 cycle analysis
distofcyclesleft[nocomp]; // distribution of cycles after cycle analysis

distofcyclesstartinv[nocomp]; // same for INV case
distofcyclesleftinv[nocomp];

prob; // counter for some problematic cases
probinv; // smallest for INV
result[numsc]; // RESULT
resultcounter;

checkcasecounter[130];
problemcounter;
status; // result of result check

R R R R TR R R R R R R R R OROS e o ole le e ol sl ot ol ot ot ol ol o ol
B R e L R i e A Rk S e T e

int checkresu]t (int subcase)

//
/7

//

Test
result[17] =

Count check

++resultcounter;
++checkcasecounter[subcase];

1/

Local variable

int problem; // flag for problem
problem = 0;

1/

Checking if there is a "999" node

for(i=0; i<numsc; ++i)

{ }f (result[i] == 999)

}
//

problem = 1;
cout << endl << "999 case" << endTl;

Checking twin node and matching characteristic except for Tast pair

for(i=0; i<=(numsc-4); i=i+2)

}
//

// Checking twin node chacteristic
if (. (((ordsc[result[i]l]) % 2) == 0) // ordsc[i] even
&& (ordsc[result[i]] !'= ((ordsc[result[Gi+1)]11)-1)))

problem = 1;
) break;
if (. (((ordsc[result[i]l]) % 2) == 1) // ordsc[i] odd
&& (ordsc[result[i]] != ((ordsc[resu1t[(1+1)]])+1)))
problem = 1;
break;

// Checking matchin? characeristic
if (wbox[ordsc[result[(i+1)]]1] + wbox[ordsc[result[(i+2)]]] < thradj)

problem = 1;
break;

}

Checking twin node characteristic for last pair

213

if (. ((ordsc[result[(numsc-2)]1] % 2) == 0) // ordsc[i] even
&& g?rdsc[iesu1t[(numsc—2)]] I= ((ordsc[result[(numsc-1)1]1)-1)))
em = 1;
if ?ro((ordsc[resu1t[(numsc—2)]] % 2) == 1) // ordsc[i] odd
&& (ordsc[result[(numsc-2)]] !'= ((Cordsc[result[(numsc-1)]]1)+1)))

problem = 1;

// For test if no problem
// if ((problem == 0) && (subcase == 122)) cout << "#***" << endl;

// Consequences 1if problem
}f (problem == 1)

cout << "¥**F** problem with subcase << subcase << << endl;
if (subcase == 92) cout << casetype << " / " << caseno << endl;
if (subcase == 122) cout << casetype << " / " << caseno << endl;

// chainanalysisok = 1;

// Checking analysis of cycles and chain
for(i=0; i<=nocyclesinv; ++i)

for(j=1; j<lengthofcomponentinv[i]; j=j+2)

if (Cordsc[componentinv[i] [j]] '= (ordsc[componentinv[i] [j-1]1]1+1))
&& (ordsc[componentinv[i] [j]] !'= (ordsc[componentinv[i] [j-1]11-1)))
cout << "twin wrong " << endl;

3
for(j=1; j<lengthofcomponentinv[i]-2; j=j+2)

if (wbox[ordsc[componentinv[i] [j11]
+ wbox[ordsc[componentinv[i] [j+1]1]]
< thradj)
cout << "mate wrong

<< endl;

// Printing variables for building result
cout << "ordcycinv " << ordcycinv[l] << " " << ordcycinv[2] << endl;
cout << "splitplace " << splitplaceinv << endl;
cout << "connectorinv ";
for (i=1; i<=nocyclesinv; ++1i)

cout << connectorinv[i] << " ";
cout << endl << "placeofconnectorinv ";
for(i=1; i<=nocyclesinv; ++i)

cout << placeofconnectorinv[i] << " ";
cout << endl << endl;
cout << "wbox[i]: ";
for(i=0; i<numsc; ++1)

cout << wbox[i] << " ";
cout << endl;
cout << "wbox[ordsc[il]l: ";
for(i=0; i<numsc; ++i)

cout << wbox[ordsc[i]] << " ";
cout << endl;
cout << "result: ";
for(i=0; i<numsc; i=i+2)

cout << wbox[ordsc[result[i]]] << "(" << ordsc[result[i]] << ")--("

<< grdﬁc[resu1t[(i+1)]] << ")" << wbox[ordsc[result[(i+1)]11]
<< ;

cout << endl << "number of cycles: " << nocycles << endl; // non-INV only
cout << endl;
++problemcounter;
// Note: The following printout is correct only in INV case
for(i=0; i<=nocyclesinv; ++i)

for(j=0; j<lengthofcomponentinv[i]; ++j)

214

/7%
/7

cout << wbox[ordsc[componentinv[i] [j]]] << "-";
cout << endl;

cout << endl << endl;

// Return problem status
return problem;

D R A S R S R R N)
w * R R R o i R Lk e ik S R R S e R R S

Funct1on ma1n starts & 1n1t1a11sat1on

R R R R R R RUROROROROR B R R R S
T B R R A e e e o S S R ok S R Tk L

int ma1n()

// Welcome

//

cout << "Welcome to MSSP 3.4." << endl;

Initialisation

feacounter = 0; // initialising feasible instances counter
infcounter = 0; // initialising infeasible instances counter
toomanyweak 8; // initialising case counters

noncontwin
uncon = 0;
perfmat
poormat
suffmat
yeahcounter = 0;

0;
0;
0;

completechain = 0;
wscyclesandchain = 0;
msscyclesandchain = 0;
wwcyclesandchain = 0;
mswcyclesandchain = 0;
wwscyclesandchain = 0;
mswscyclesandchain = 0;
wswcyclesandchain = 0;
msswcyclesandchain = 0;
cyclchainsplit = 0;
cyc2chainsplit = 0;
numberof09bcases = 0;
wslchainsplit = 0;
ws2chainsplit = 0;
wwlchainsplit = 0;
ww2chainsplit = 0;
wwslchainsplit
wws2chainsplit
wswlchainsplit
wsw2chainsplit

OCOOOw s~

completechaininv = 0;
wscyclesandchaininv = 0;
msscyclesandchaininv = 0;
wwcyclesandchaininv = 0
mswcyclesandchaininv
wwscyclesandchaininv
mswscyclesandchaininv =
wswcyclesandchaininv = 0;
msswcyclesandchaininv = 0;
cyclchainsplitinv = 0;
cyc2chainsplitinv = 0;
numberofl2bcases = 0;
wslchainsplitinv = 0;
ws2chainsplitinv = 0;

215

wwlchainsplitinv = 0
ww2chainsplitinv =

wwslchainsplitinv
wws2chainsplitinv
wswlchainsplitinv
wsw2chainsplitinv

OO O --

prob =
probinv = 0;

resultcounter = 0;
for(i=0; 1i<130; ++1)
checkcasecounter[i] = 0;

problemcounter = 0;
numberofelsecases = 0;

for(i=0; i<(numsc+1l); ++1)
lengthchain[i] =
for(i=0; i<nocomp; ++1)

distofcyclesstart[i] =
distofcyclesleft[i] =

for(i=0; i<(numsc+1); ++1)
lengthchaininv[i] = 0;
for(i=0; i<nocomp; ++i)

distofcyclesstartinv[i] = O;
distofcyclesleftinv[i] =

// Initialising random mumbers
srand((unsigned) time(NULL));

Fededddede RNl de Nl fhhdfhhdde Al hddRdk
// Start of instances 1

B R R R R R S BRSO OFURT

R R R R R

for (instance = 0; instance < numinst; ++1nstance)

// Producing uniformly distributed random numbers for scores
//timedrand = clock();
for(i = 0; i < numsc; ++i)

wbox[i] = minwidth + (rand() % (maxwidth - minwidth + 1));

/{ Test data
) wbox[19] = 1; wbox[9] = 30; //wbox[10] = 35; wbox[11l] =
for(i = 10; i < 19; ++1)
wbox[i] = 20 + (rand() % 6);
%or(i = 12; i < 20; ++1)
wbox[i] = 10 + (rand() % 11);

/*AAA

216

R R R R R

e e dedededededededededededehde NN NN ddedededededededededed

RO R Rk

// Output instance
cout << endl;
for(i = 0; i < numsc; ++i)

cout << wbox[i] << ;
cout << endl;
// Running time without generating instances

// timedrand = clock() - timedrand;
// cout << timedrand << endl;

/ / et
// CASE (01):
/ / Yededededededdd

j=0;
for(i = 0; i < numsc; ++i)

LESS TRAN MUMDOX - L I ONg MOdeS & o sesddede s de s e e

if (wbox[i] >= thrstrong)
++]3
oo
%f (j < numbox - 1)
++infcounter;
++toomanyweak;

//AAAcout << "inf: too many weak nodes, namely:
continue;

<< numsc-j << endl;

FTedhddhhfh R h R R hf R fddddeddeddedededededededdeh RN ddfddddddedededededdeddedehhh NNt

// sorting scores from smallest to largest

FTedhddhhfh R h R R hfhfddddeddeddedededededededdeh RN RN ddfdfddddedededededdeddedehhh Rt

// Initialising order]
for(i = 0; i < numsc; ++1i)

ordsc[i] = 1;

// Starting sorting procedure
for(i = 1; i < numsc; ++1)

Eor(j =i-1; J >= 05 --1)

//cout << i << " " << ordsc[i] << " "
// << j << " " << ordsc[j] << endl;
}f (wbox[i] < wbox[ordsc[j]1])
ordsc[j+1] = ordsc[j];
ordsc[j] = 1i;
//cout << "after change " << i << " " << ordsc[i] << " "

// << j << << ordsc[j] << endl;

1
//else { cout << "no change, next i" << endl; break; }

// Insertion sort)
for(i = 2; i1 <= numsc; ++1)

-1,
%h11e (3 < 1) & (wbox[ordsc[j]] <= wbox[i]))
++];

if (3 < 1) // this implies that wbox[ordsc[j]] > wbox[1i]

217

stack i;
for(k i-1; k >= j; --k)

ordsc[k+1] = ordsc[k]

ordsc[j] =
3
3
w{

// Output sorted instance

cout << "order: ";]
for(i = 0; i < numsc; ++i)

cout << wbox[ordsc[i]] << ;

cout << endl;
*/
// R T e T R S T o e R L L S L R R kA o S o R Ak S R ok S R S T ok S o S R R T
// CASE (02) Two non-connectable twin nodes
// TR N A d SRS hdddddeddddededhdhdhd R R fe R fddedededededededededededdhdeh RN h N ddedededededededededd

for(1 = 0; 1 < numbox; ++1i)

if (wbox[2*i] + wbox[ordsc[(numsc-1)]] < thradj)
if (wbox[2*i + 1] + wbox[ordsc[(numsc-1)]] < thradj)
{

++3;])
//AAAtwinno = i;

}
Yoo
if (G >= 1)
{

++infcounter;
++honcontwin;

// output instance
for(k = 1; k <= numsc; ++k)

cout << wbox[k] << ;

cout << endl;

// output sorted instance
cout << "order: ";

for(k = 1; k <= numsc; ++k)

cout << wbox[ordsc[k]] << ;

cout << endl;

//AAAcout << "inf: two non-connectable twin nodes at pair "
) << twinno << endl;

continue;

// CASE (03) Three non connectab1e nodes
// .n * R R R R o S R R A ok kL S R R AR R ok S Tk R T S S R R
i=0;

’
for(i = 0; i < numsc; ++i)

if (wbox[i1] + wbox[ordsc[(numsc-1)]] < thradj)

218

; ++3;
if (3 >=3)
{

++infcounter;
++uncon;
//AAAcout << "inf: too many unconnectable nodes,"
<< "largest number has order " << ordsc[numsc] << endl;
continue;

// Step 1l: List with adjacent nodes disregarding twin nodes
for(i = 0; i < numsc; ++i) // general adjacency 1list

for(j = 0; j < numsc; ++3j)
if (wbox[ordsc[i]] + wbox[ordsc[j]] >= thradj)
¢ adjTist[i] [j] = 1;
i1se
i adjlist[i] [j] = O;

}
}

for (i=0; 1i<numsc; ++i) // generating inverse function of ordsc[]

invordsclordsc[i]] = 1i;

for (i = 0; i < numbox; ++i)// twin nodes cannot be connected to eachother

{
adjlist[invordsc[(2*i)]] [invordsc[(2*i+1)]] = O;
adjlist[invordsc[(2*i1+1)]] [invordsc[(2*i)]] = 0;

// Step 2: Initialise matching Tist and counters
for (i = 0; i < numsc; ++1)

matlist[i] = empty;
matcard = 0;
unconpointer = 0;
for (i = 0; i < numsc; ++1i)
y unconnode[i] = empty;
Tastmatch = empty;

// Step 3: Matching algorithm
for(i=0; i<numsc; ++i)// check all nodes

if (matlist[i] == empty)// does node need a mate?
for (j=(i+1); j<numsc; ++j)// Took for a mate for node i

if (adjlist[i] [j] == 1)
&& (matlist[j] == empty))// if mate found

matlist[i] = j;

219

matlist[j] = i;
lastmatch = 1;
++matcard;

break;
}}
if (matlist[i] == empty) // if there still is no mate:
{ // do twin node swap or finally acquiesce
}f (ordsc[i] % 2 == 0) // find out twin node number
twinnomat = invordsc[(ordsc[i]+1)];
%1se
twinnomat = invordsc[(ordsc[i]-1)];
if // twin node swap possible?
((wbox[ordsc[i]]+wbox[ordsc[twinnomat]]>=thradj)// match with twin?
&& (matlist[twinnomat] == empty) // twin unmatched?
&& (lastmatch != empty) // exchange possble?
&& (twinnomat > 1) // twin Tlarger?

&& (wbox[ordsc[lastmatch]]+wbox[ordsc[twinnomat]]>=thradj))// Tlastmtch
/ with twin?
matlist[i] = matlist[Tlastmatch];
matlist[Tastmatch] = twinnomat;
matlist[twinnomat] = Tastmatch;
matlist[matlist[i]] = 1;
lastmatch = 1i;
++matcard;

}
else // otherwise: one more unconnected node
{
++unconpointer;])
unconnode[(unconpointer-1)] = 1;
}
}

}
}

// output matching Tist and unconnected nodes
for(i=0; i<numsc; ++i)

cout << matlist[i] << " ";
cout << endl;

for(i=0; i<numsc; ++i)

cout << unconnode[i] << ;

cout << endl;
cout << "matcard:
cout << " no of unconnodes:

*/

" << matcard;

<< unconpointer << endl;

// Fedededededefdedede A dedhddef Al dhddefdddefdddefdded Al d Nl ddddefhddefhdde Rl dede Aol dedddededdd

/7 CASE (05): Perfect matching

// Yededededededdd Fedededehdedefhdde NN dde N Nhdede Al dhhddhddedhddedhddeNdddeNddn

if (matcard == numbox)

++perfmat;
++feacounter;

/*AAA
cout << "fea: perfmatch with card:

<< matcard << ;

220

for (i=0; i<numsc; ++1i)

cout << " wl= << wbox[ordsc[i]] << 2

<< wbox[ordsc[matlist[i]]] << -

cout << endl;

continue;

if (matcard < (humbox-1))

++poormat;
++infcounter;

/*AnA | o
cout << "inf: poor matching with card:

<< and uncon nodes: ";
for (i=0; i<numsc; ++i)

<< matcard

if (unconnode[i] != empty)
cout << Hnﬁonnode[i] << " w= " << wbox[ordsc[unconnode[i]]]

<< << endl;
cout << endl;

continue;

for (i=0; i<numsc; ++i) // Find weakest strong node

if (wbox[ordsc[i]] >= thrstrong)

weakeststrong = 1i;

break;
}
}
/*AAA
cout << "card: " << matcard << " no of wkststr " << weakeststrong
<< " w=" << wbox[ordsc[weakeststrong]]
<< " ucn0 " << unconnode[0] << " w= " << wbox[ordsc[unconnode[0]]]
<< " g%nl " << unconnode[1l] << " w= " << wbox[ordsc[unconnode[1]]]
<< endl;

cout << "matching: ";
for (i=0; i<numsc; ++i)

if (matlist[i] !'= empty)
cout << " wl= " << wbox[ordsc[i]]
y << " w2= " << wbox[ordsc[matlist[i]]] << " -- ";
A
if (matlist[numsc] == empty)

cout << "unconnode[0] << unconnode[0]
<< " unconnode[l] " << unconnode[1]

<< " matcard " << matcard << endl;

221

if (wbox[ordsc[unconnode[1]]]
+ wbox[ordsc[weakeststrong]] >= thradj) // Check sufficiency

++suffmat;

++feacounter;

//AAAcout << " yeah suff" << endl;

if (unconnode[1l] < weakeststrong)
++yeahcounter; //cout << " YEAH!!!" << endl;

continue;

//AAAcout << " not suff" << endl;

/ / ik 7'. e dedededededededededek k TehhdnhNhNhdddddddeddeddeddh NN R fdefdefddddededdedddehhhhhhhhhhn
// Building up chain
/ / TR hh bR NN NN fddeddddeddedededededdde NN dddddddddededededddeddedehhh N n

// Step 1l: Initialise data
for(i=0; i<numsc; ++1i)

analysed[i] =
for(j=0; j<nocomp; ++3j)
component[j] [i] = empty;
if (ordsc[i] % 2 == 0) // find out twin node number
1tw1'n['i] = invordsc[(ordsc[i]+1)];
else
twin[i] = invordsc[(ordsc[i]-1)];

//cout << ordsc[i] << "-" << ordsc[twin[i]] << " ";
//cout << endl;
// Step 2: Build up chain
for(i=0; i<numsc; ++1i) // find smallest unconnected node

if (matlist[i] == empty)

smallestuncon = 1;
break;
}

}
if (smallestuncon != unconnode[0])
cout << "ALARM!!!" << endT;

j=-1; // build up chain
stack = smallestuncon;
do
.
++];
component[0] [j] = stack;
analysed[stack] = 1;
++3;
component[0] [j] = twin[stack];
analysed[twin[stack]] = 1;
stack = matlist[twin[stack]];

}
while (stack != empty);

lengthofcomponent[0] = ++j;

/ . RN o
;/ Case (07)

So v g ¥ e o v o o ¥ % o oo v Yo v o

}f (1engthofcomponent[0] == numsc)// is cha1n comp]ete7

222

++completechain;

++feacounter;

nocycles = 0;

for(i=0; i<numsc; ++1i)
result[i] = component[0] [i];

i = checkresult(7);

/:':
for(i=0; 1i<numbox; ++i)
cout << wbox[ordsc[component[O] [(2%1)1]] << "("
<< ordsc[component[0] [(2*i)]] << ")-("
<< ordsc[component[0] [(2*%i+1)]] << ")"
) << wbox[ordsc[component[0] [(2*i+1)]]] << " --";
y cout << "*" << endl;
continue;
3

LR o R R AR Tk kL R T R R e R R e L o R R A R R R ARk SR T L T L

/
// Bq11d1ng up cyc1es ettt

dededdedededededhdededded Rkl hd kb hhhd

foE (i=0; i<numsc; ++1) // Find smallest connected node not ana]ysed yet
1f{(ana1ysed[i] == 0)

smallestconnotana = 1i;
break;

}
if (matlist[smallestconnotana] == empty)
cout << "ARLARM2!!!" << endl;

currentcomponent = 0;
do
{
++currentcomponent; // Set component
if (currentcomponent > nocomp-1)
cout << "ARLARM3!!!" << endl;

j = -1; // Build up cycle

stack = smallestconnotana;

do

{
++3;
component[currentcomponent] [3]
analysed[stack] =
++];
component[currentcomponent] [3]
analysed[twin[stack]] =
stack = mat11st[tw1n[stack]],

stack;

twin[stack];

}
while (stack != smallestconnotana); // = while not back 2 beginning of cyc
Tengthofcomponent[currentcomponent] = ++j;

for (i=0; i<numsc; ++i) // Find smallest connected node not analysed yet
if (analysed[i] ==

smallestconnotana = i;
break;

1
if (matlist[smallestconnotana] == empty)
cout << "ARLARM2B!!!" << endl;

while (smallestconnotana != stack); // = while new not analysed node found

223

nocycles = currentcomponent; // save number of cycles

// Ana1ys1ng cyc1es and cha1n s

B R R S R A R R R R R RS
% L R R R i e R e Lk S e T e S S R R R T S

for (i=0; i<nocomp; ++1) // In1t1a11s1ng data

strongestnode[i] = empty;
pss[i] = empty;
strongestweaknode[i] = empty;
pswli] = empty;
weakestnode[i] = empty;
pww[i] = empty;
weakeststrongnode[i] = empty;
) pws[i] = empty;

for (i=1; i<=nocycles; ++i) // Check all cycles

// initialise for this component
strongestnode[i] = component[i] [0];

pss[i] = 0;
weakestnode[i] = component[i] [0];
pww[i] = 0;

}f (wbox[ordsc[component[i] [1]]] >= thrstrong)

weakeststrongnode[i] = component[i] [1];

pws[i] =

strongestweaknode[1] = component[i] [2];

pswli] =

// ATTN: not clear if weak node!!!

// (will be repaired down below if any cycle has a 'real' (= truly weak)
// strongestweaknode)

}
?1se
weakeststrongnode[i] = component[i] [2];
pws[i] =
strongestweaknode[1] = component[i] [1];
} pswli] =
// try to repair if current strongestweaknode[i] is not weak
}f (wbox[ordsc[strongestweaknode[1]]] >= thrstrong)

for (j=0; j<lengthofcomponent[i]; ++j)
if{(wbox[ordsc[component[i] [j111 < thrstrong)

strongestweaknode[1] = component[i] [j];
psw[i] = j;

}

// notel: if there 1is no weak node in this cycle at all, we will Tater,
// at (**), set strongestweaknode[i] := weakeststrongnode[i]

// note2: if there is no weak node in this cycle at all, the algorithm
// will automatically set weakest(weak)node[i] := weakeststrongnode[i],
// so this case 1is repaired automatically

// check for all elements of this component
for (j=0; j<lengthofcomponent[i]; ++j) // Find weakest & strongest in cycle
{ // > cases

if{(wbox[ordsc[component[i] [711]1 > wbox[ordsc[strongestnode[i]]])

strongestnode[i] = component[i] [j];

224

pss[il = j;
if (wbox[ordsc[component[i] [j]1]] < wbox[ordsc[weakestnode[i]]])

weakestnode[i] = component[i] [j];
pwwli] = 3;

if ((wbox[ordsc[component[i] [j]]] > wbox[ordsc[strongestweaknode[i]]])
&& (wbox[ordsc[component[i] [j]]] < thrstrong))

strongestweaknode[i] = component[i] [j];
pswli] = j;

if ((wbox[ordsc[component[i] [j]]] < wbox[ordsc[weakeststrongnode[i]]])
{&& (wbox[ordsc[component[i] [j]]] >= thrstrong))

weakeststrongnode[i] = component[i] [j];
pws[i] = j;
// == cases
if ((wbox[ordsc[component[i] [j]]] == wbox[ordsc[strongestnode[i]]l])

&& (wbox[ordsc[matlist[component[i] [j1]11]
> wbox[ordsc[matTlist[strongestnode[i]]]1]))

strongestnode[i] = component[i] [j];
psslil = 3;

ordsc[weakestnode[i]]])

)

if ((wbox[ordsc[component[i] [j1]1] == wbox[
&& (wbox[ordsc[matlist[component[i] [j1]11]
< wbox[ordsc[matTist[weakestnode[1]]]]

weakestnode[i] = component[i] []j];
pww[i] = Jj;

if ((wbox[ordsc[component[i] [j]]1] == wbox[ordsc[strongestweaknode[i]]])
&& (wbox[ordsc[matlist[component[i] [j1]11]
> wbox[ordsc[matlist[strongestweaknode[i]]1]1]1))

strongestweaknode[i] = component[i] []j];
pswli] = j;

if ((wbox[ordsc[component[i] [j]]] == wbox[ordsc[weakeststrongnodel[i]]])
&& (wbox[ordsc[matlist[component[i] [j1]11]
< wbox[ordsc[matlist[weakeststrongnode[i]]]11))

weakeststrongnode[i] = component[i] [j];
pws[i] = j;

// (**%) if cycle has no weak node (see notel above): repair
if (wbox[ordsc[strongestweaknode[i]]] >= thrstrong)

strongestweaknode[i] = weakeststrongnode[i];
psw[i] = pws[i];

// initialise charcateristics for all cycles
weakeststrongest = strongestnode[1l];
pwss = pss[l?;
strongeststrongest = strongestnode[l];
psss = pss[1];
weakestweakest = weakestnode[1l]; // could be strong
pwww = pww[1];
strongestweakest = weakestnode[1l]; // could be strong

225

psww = pww[1];
weakeststrongestweak = strongestweaknode[1l]; // could be strong
pwsw = psw[1];
strongeststrongestweak = strongestweaknode[1l]; // could be strong
// forall 4 cases: iff there is no weak node in cycle
pssw = psw[1];
weakestweakeststrong = weakeststrongnode[1l];
pwws = pws[1];
strongestweakeststrong = weakeststrongnode[1l];
psws = pws[1];

// check for all cycles
for(i=1; i<=nocycles; ++i)

// < cases
if (wbox[ordsc[strongestnode[i]]] < wbox[ordsc[weakeststrongest]])

weakeststrongest = strongestnode[i];
pwss = pss[i];

1f{(wbox[ordsc[strongestnode[i]]] > wbox[ordsc[strongeststrongest]])
strongeststrongest = strongestnode[i];
psss = pss[i];

1f{(wbox[ordsc[weakestnode[i]]] < wbox[ordsc[weakestweakest]])

weakestweakest = weakestnode[i]; // only strong if there were no wk node
pwww = pww[i];

if (wbox[ordsc[weakestnode[i]]] > wbox[ordsc[strongestweakest]])

strongestweakest = weakestnode[i]; // mayb str, but ok 4 buildin solutn
psww = pww[i];

if (wbox[ordsc[strongestweaknode[i]]] < wbox[ordsc[weakeststrongestweak]])

weakeststrongestweak = strongestweaknode[i]; // only str s'ilyavai no wk
pwsw = psw[i];

if (wbox[ordsc[strongestweaknode[i]]] > wbox[ordsc[strongeststrongestweak]])

strongeststrongestweak = strongestweaknode[i]; // mayb strong, but ok
pssw = psw[i];

if (wbox[ordsc[weakeststrongnode[i]]] < wbox[ordsc[weakestweakeststrong]])

weakestweakeststrong = weakeststrongnode[i];
pwws = pws[i];

if (wbox[ordsc[weakeststrongnode[i]]] > wbox[ordsc[strongestweakeststrong]])

strongestweakeststrong = weakeststrongnode[i];
psws = pws[i];

// == cases
if ((wbox[ordsc[strongestnode[i]]]
== wbox[ordsc[weakeststrongest]])
&& (wbox[ordsc[matlist[strongestnode[i]]]]
< wbox[ordsc[matlist[weakeststrongest]]]))

weakeststrongest = strongestnode[i];
pwss = pss[i];

if ((wbox[ordsc[strongestnode[i]]]

226

== wbox[ordsc[strongeststrongest]])
&& (wbox[ordsc[matTlist[strongestnode[i]]]]
> wbox[ordsc[matlist[strongeststrongest]]]))

strongeststrongest = strongestnode[i];
psss = pss[i];

if ((wbox[ordsc[weakestnode[i]]]
== wbox[ordsc[weakestweakest]])
&& (wbox[ordsc[matlist[weakestnode[i]]]]
< wbox[ordsc[matTist[weakestweakest]]]))

weakestweakest = weakestnode[i]; // only strong if there were no wk node
pwww = pww[i];

if ((wbox[ordsc[weakestnode[i]]]
== wbox[ordsc[strongestweakest]])
&& (wbox[ordsc[matlist[weakestnode[i]]]]
> wbox[ordsc[matlist[strongestweakest]]]))

strongestweakest = weakestnode[i]; // mayb str, but ok 4 buildin solutn
psww = pww[i];

if ((wbox[ordsc[strongestweaknode[i]]]
== wbox[ordsc[weakeststrongestweak]])
&& (wbox[ordsc[matlist[strongestweaknode[i]]]]
< wbox[ordsc[matlist[weakeststrongestweak]]]))

weakeststrongestweak = strongestweaknode[i]; // only str s'ilyavai no wk
pwsw = psw[i];

if ((wbox[ordsc[strongestweaknode[i]]]
== wbox[ordsc[strongeststrongestweak]])
&& (wbox[ordsc[matlist[strongestweaknode[i]]]]
> wbox[ordsc[matlist[strongeststrongestweak]]]))

strongeststrongestweak = strongestweaknode[i]; // mayb strong, but ok
pssw = psw[i];

if ((wbox[ordsc[weakeststrongnode[i]]]
== wbox[ordsc[weakestweakeststrong]])
&& (wbox[ordsc[matlist[weakeststrongnode[i]]l]]
< wbox[ordsc[matlist[weakestweakeststrong]]]))

weakestweakeststrong = weakeststrongnode[i];
pwws = pws[i];

if ((wbox[ordsc[weakeststrongnode[i]]]
== wbox[ordsc[strongestweakeststrong]])
&& (wbox[ordsc[matlist[weakeststrongnode[i]]]l]
> wbox[ordsc[matlist[strongestweakeststrong]]l]))

strongestweakeststrong = weakeststrongnode[i];
psws = pws[i];

}

// Counting number of cycles b4 analysis
++distofcyclesstart[nocycles];

// CASE 08 Connect1on of cyc]es w1th cha1n v1a weakest strongest strong node

B R S R R OR R R OB S e e e e e e e Tede ey

// Step 1: Make sure that unconnode[l] rea11y is the h1gher unconnected node

227

if (wbox[ordsc[unconnode[0]]] > wbox[ordsc[unconnode[1]]])
cout << "ALARM4!!!" << endl;

// Step 2: Check w/ wkst strgst strong
if (wbox[ordsc[weakeststrongest]]
+ wbox[ordsc[unconnode[1]]] >= thradj)

++wscyclesandchain;

++feacounter;

e L e o

Y e e L L B S e

// Step 2ba: Checking result for WSS node case if there is only one cycle

A e a2 2 o I T I N S B A
}f (nocycles == 1)

/7':
for(i=0; i<lengthofcomponent[1l]; ++i)//check where in cycle strngst node
}f ((component[1][i])==strongestnode[1])

stack =
break;

}
}

/
stack = pss[1];
if (twin[strongestnode[1]]==component[1] [(stack+1)])//twin after str nd

for(i=0; i<lengthofcomponent[0]; ++1i)
result[i] = component[0] [i];

for(i=stack; i<lengthofcomponent[1]; ++1i)
result[(i+lengthofcomponent[0]-stack)] = component[1l] [i];

if (stack != 0) // str nd is not first node

for(i=0; i<stack; ++1)
result[(i+lengthofcomponent[0]+1engthofcomponent[1]-stack)]
= component[1] [i];

else // twin before strongest node

for(i=0; i<lengthofcomponent[0]; ++i)
result[i] = component[0] [i];
for(i=stack; i>=0; --1i)
resu1t[(1engthofcomponent[0]+stack—i)] = component[1] [i];
if (stack != (lengthofcomponent[1]-1)) // str nd is not last node

for(i=(lengthofcomponent[1]-1); i>stack; --i)
result[(len thofcomponent[0]+stack+(1engthofcomponent[l] -i))]
= component%l] [i]

}

[/ At
// Step 2bb: Checking result for wSS case if there is more than one cycle
A e e e o e 2 o o S B B B B B e = S S

?1se // There is more than one cycle
// Initialising order
for(i = 1; i <= nocycles; ++i)
ordcyc[i] =

// Starting sorting procedure for cycles according to strngest strong nodes

228

for(i = 1; i <= nocycles; ++i)

gor(j =1i-1; j >=1; --3)

//cout << i << << ordsc[i] <<
// << j << " " << ordsc[j] << endl;
// abbreviation = ;

if (wbox[ordsc[strongestnode[i]]]

< wbox[ordsc[strongestnode[ordcyc[j]]1]1])

ordcyc[j+1] = ordcyc[j];

ordcyc[j] = 1
//cout << "after change " << i << " " << ordsc[i] <<
// << j << " " << ordsc[j] << endl;

//else { cout << "no change, next i" << endl; break; }

// Looking for the place of strongest node in each cycle
// because this tells us where to start building the result out of cycles
%*

for(i = 1; i <= nocycles; ++1)
placeofstrongestnode[i] = empty;
for(i = 1; i <= nocycles; ++i)
for(j = 0; j < lengthofcomponent[i]; ++3j)
if (strongestnode[i] == component[i][j])

placeofstrongestnode[i] = j;
break;
}
}
3

// Starting result array with chain
for(i=0; i<lengthofcomponent[0]; ++1i)
result[i] = component[0] [i];
currentplace = lengthofcomponent[0];
// Now add the cycles to the result

for(k = 1; k <= nocycles; ++k)

// first option: twin comes after strongest node in this cycle
if (twin[strongestnode[ordcycl[k]]]
== component[ordcyc[k]] [(psslordcyc[k]]+1)]1)

for(i = pss[ordcyc[k]];
i < lengthofcomponent[ordcyc[k]]; ++1)
result[(i
+ currentplace
- psslordcyc[k]])]
= component[ordcyc[k]] [i];
if (pss[ordcyc[k]] != 0) // str nd is not first node

for(i=0; i<pss[ordcyc[k]]; ++i)
result[(i
+ currentplace
+ lengthofcomponent[ordcyc[k]]
- pss%ordcyc[k]])]
= component[ordcyc[k]] [i];

// second option: twin comes b4 strongest node in this cycle
else

229

for(i=pss[ordcyc[k]]; i>=0; --1)
result[(currentplace
+ psslordcyc[k]]
-
= component[ordcyc[k]] [i];
if (pss[ordcyc[k]]
= (lengthofcomponent[ordcyc[k]]-1)) // str nd is not Tast node

for(i = (lengthofcomponent[ordcycl[k]]-1);
i > pss[ordcyc[k]]; --1)
result[(currentplace
+ pss[ordcyc[k]]
+ (lengthofcomponent[ordcyc[k]]-i))]
y = component[ordcyc[k]] [i];

// store new position in building result array
currentplace = currentplace + lengthofcomponent[ordcyc[k]];
} // end of loop through all cycles
++numberofelsecases;
} // end of else for case of more than one cycle

status = checkresult(8);
A e L L L B e A g N SN T B R S S
continue;

// Step 3: Check for mate of strgst strgst strong,
wkst wkst weak, and mate of strgst wkst weak
if (wbox[ordsc[matlist[strongeststrongest]]]
+ wbox[ordsc[unconnode[1]]] >= thradj)

++msscyclesandchain;
++feacounter;
continue;

if (wbox[ordsc[weakestweakest]]
+ wbox[ordsc[unconnode[1]]] >= thradj)

++wwcyclesandchain;
++feacounter;
continue;

if (wbox[ordsc[matlist[strongestweakest]]]
+ wbox[ordsc[unconnode[1]]] >= thradj)

++mswcyclesandchain;
++feacounter;
continue;

// Step 4: Check w/ wkst wkst strong, mate of strgst wkst strong
wkst strgst weak, mate of strgst strgst weak
if (wbox[ordsc[weakestweakeststrong]]
+ wbox[ordsc[unconnode[1]]] >= thradj)

++wwscyclesandchain;
++fe§counter;
continue;

if (wbox[ordsc[matlist[strongestweakeststrong]]]
+ wbox[ordsc[unconnode[1]]] >= thradj)

++mswscyclesandchain;
++feacounter;

230

continue;

if (wbox[ordsc[weakeststrongestweak]]
+ wbox[ordsc[unconnode[1]]] >= thradj)

++wswcyclesandchain;
++feacounter;
continue;

if (wbox[ordsc[matlist[strongeststrongestweak]]]
+ wbox[ordsc[unconnode[1]]] >= thradj)

++msswcyclesandchain;
++feacounter;
continue;

// TR hh b RN RN R fddddddeddedededededdede RN h N hfdfddedededededededededededed
% CasE (02a): splitting up chain to connect to cyle if nocycles =
if ((nocycles == 1) && (lengthofcomponent[0] >= 4))

k = 0; // counter if a subcase has been detected
for (i=1; i<=(lengthofcomponent[0]-3); i=1+2)

Eor (j=1; j<=(Qlengthofcomponent[1]-1); j=j+2)

if ((adjlist[component[1] [j]] [component[0] [i]] == 1)
%& (adjlist[matlist[component[1l] [j]]] [component[0] [(i+1)]] == 1))

stackcyc =
stackchain
caseno = 1;
++cyclchainsplit;
++feacounter;
++k;

break;

i,
='|;

if %(adj1ist[component[1] [j1]1 [component[0] [i+1]] == 1)
?& (adjlist[matlist[component[1] [j]]1] [component[0] [i]] == 1))

stackcyc = j;
stackchain =
caseno = 2;
++cyc2chainsplit;
++feacounter;
++k;

break;

}
%f (k == 1) break;

if (k == 1)

[/
// Start check for chainsplit with one cycle

A e o O e S B S B B =

i;

// relevant component of cyc in var "stackcyc", "stackchain" similar
// caseno = 1 or 2 signifies the case above

// First: case 1 && stackchain is not last node of cycle

if ((caseno == 1) && (stackcyc != (lengthofcomponent[1l] - 1)))

for (i=0; i<=lengthofcomponent[0]-stackchain-2; ++i)// upper prt chain
result[i] = component[0] [Tengthofcomponent[0]-1-i];

231

for (i=0; i<=lengthofcomponent[1l]-stackcyc-2; ++1)// upper prt of cycle
result[i+1lengthofcomponent[0]-stackchain-1]
= component[1] [stackcyc+1+i];

for (i=0; i<=stackcyc; ++1i) // Tower part of cycle
result[i+Tengthofcomponent[1]-stackcyc-2
+lengthofcomponent[0]-stackchain] = component[1l] [i];

for (i=0; i<=stackchain; ++i) // Tower part of chain
result[i+Tengthofcomponent[1]-1+lengthofcomponent[0]-stackchain]
= component[0] [stackchain-i];

/ Second: case 1 && stackchain is Tast node of cycle
if ((caseno == 1) && (stackcyc == (lengthofcomponent[1l] - 1)))

N

for (i=0; i<=stackchain; ++i)
result[i] = component[0] [i]; // lower part of chain

for (i=0; i<=(lengthofcomponent[1] - 1); ++i) // whole cycle backwards
result[i+stackchain+l] = component[1l] [lengthofcomponent[1l]-1-i];

for (i=0; i<=(lengthofcomponent[0]-2-stackchain); ++i) // upper chain
result[i+stackchain+l+Tengthofcomponent[1]]
= component[0] [i+stackchain+1];

h;
// Third: case 2 && stackchain is not last node of cycle
}f ((caseno == 2) && (stackcyc != (1engthofcomponent[1] - 1))
for (i=0; i<=stackchain; ++i) // lower part of chain

result[i] = component[0] [i];
for (i=0; i <= (lengthofcomponent[1l] - 2 - stackcyc); ++i) // upper cyc
result[i+1l+stackchain] = component[1l] [i+stackcyc+1];
for (i=0; i<=stackcyc; ++i) // lower cyc
result[i+stackchain+lengthofcomponent[1]-stackcyc] = component[1] [i];
for (i=0; i<=(lengthofcomponent[0] - 2 - stackchain); ++i) // upper chn
result[i+l+stackchain+Tengthofcomponent[1]]
= component[0] [i+l+stackchain];

// Fourth: case 2 && stackchain is last node of cycle
if ((caseno == 2) && (stackcyc == (lengthofcomponent[1l] - 1)))

for(i=0; i<=stackchain; ++i) // lower part of chain
result[i] = component[0] [i];

for(i=0; i<= (1engthofcomponent[1] 1); ++i) // cycle forward
result[i+l+stackchain] = component[1] [i];

for(i=0; i<=(lengthofcomponent[0]- stackcha1n 2); ++i) // upper chain
result[i+l+stackchain+lengthofcomponent[1]]
= component[0] [stackchain+1+i];

status = checkresult(91);

//
// End of check chainsplit with one cycle

//
continue;

} // End of case (09a)

}f ((nocyc]es > 1) && (1engthofcomponent[0] >= 4))

j = // counter if a subcase has been detected
Eor (1 ; i<=(lengthofcomponent[0]-3); i=1+2)

232

if ((adjlist[weakeststrongest] [component[0] [i]] == 1)
&& (adjlist[matlist[strongeststrongest]] [component[0] [(i+1)]] == 1))

caseno = 1;
casetype = 22;
for(k=1; k<=nocycles; ++k)

connector[k] = strongestnode[k];
placeofconnector[k] = pss[k];

splitplace = 1i;
++wslchainsplit;

++feacounter;
++J;
?reak;
if ((adjlist[weakeststrongest] [component[0] [(i+1)]] == 1)
&& (adjlist[matlist[strongeststrongest]] [component[0] [i]] == 1))
caseno = 2;

casetype = 22;
for(k=1; k<=nocycles; ++k)

connector[k] = strongestnode[k];
placeofconnector[k] = pss[k];

splitplace = 1;
++ws2chainsplit;

++feacounter;
++J;
break;
}
if ((adjlist[weakestweakeststrong] [component[0] [i]] == 1)
&& £§§j1ist[mat1ist[strongestweakeststrong]] [component[0] [(i+1)1]

caseno = 1;
casetype = 12;
for(k=1; k<=nocycles; ++k)

connector[k] = weakeststrongnode[k];
placeofconnector[k] = pws[k%;

splitplace = 1i;
++wwslchainsplit;
++feacounter;
++J;

break;

}

if ((adjlist[weakestweakeststrong] [component[0] [(i+1)]] ==
&& (§9j11st[mat1ist[strongestweakeststrong]] [component[0] [i]]
= 1

caseno = 2;
casetype = 12;
for(k=1; k<=nocycles; ++k)

connector[k] = weakeststrongnode[k];
placeofconnector[k] = pws[k];

splitplace = i;
++wws2chainsplit;
++feacounter;
++3;

break;

233

}
if ((adjlist[weakeststrongestweak] [component[0] [i]] == 1)
&& £§9j11st[mat1ist[strongeststrongestweak]] [component[0] [(i+1)]]

caseno = 1;
casetype = 21;
for(k=1; k<=nocycles; ++k)

connector[k] = strongestweaknode[k];
placeofconnector[k] = psw[k];

splitplace = 1i;
++wswlchainsplit;
++feacounter;
++J;

break;

}

if ((adjlist[weakeststrongestweak] [component[0] [(i+1)]] ==
&& (§9j11st[mat1ist[strongeststrongestweak]] [component[0] [i]]
==1

{

caseno = 2;

casetype = 21;

foE(k=1; k<=nocycles; ++k)

connector[k] = strongestweaknode[k];
placeofconnector[k] = psw[k];

splitplace = i;
++wsw2chainsplit;
++feacounter;
++J;

break;

}
if ((adjlist[weakestweakest] [component[0] [i]] == 1)
&& (adjlist[matlist[strongestweakest]] [component[0] [(i+1)]] == 1))

caseno = 1;

casetype = 11;

for(k=1; k<=nocycles; ++k)
{

connector[k] = weakestnode[k];
placeofconnector[k] = pww[k];

splitplace = 1i;
++wwlchainsplit;

++feacounter;
++3;
?reak;
if ((adjlist[weakestweakest] [component[0] [(i+1)]] == 1)
&& (adjlist[matlist[strongestweakest]] [component[0] [i]] == 1))
caseno = 2;

casetype = 11;
for(k=1; k<=nocycles; ++k)

connector[k] = weakestnode[k];
placeofconnector[k] = pww[k];

splitplace = 1i;
++ww2chainsplit;
++feacounter;
++3;

break;

234

3
} // End of going through chain for finding a place where to split it

if (j == 1) // case that one of the above subcases has been detected

A s s e e e L L L L L L L L B
// Checking result for (09b) case (Chainsplit with more than one cycle)

e e R S S B B B o S
// Note: this is built on the caseno and connector information from above

// Stepl: Initialising order
for(i = 1; i <= nocycles; ++i)

ordcyc[i] = 1i;

// Step2: sorting procedure for cycles according to strngest connectors
for(i = 1; i <= nocycles; ++i)

Eor(j =1-1; J >=1; --1)

//cout << i <<
// << J <<
// abbreviation = ;
if (wbox[ordsc[connector[i]]]
< wbox[ordsc[connector[ordcyc[j111]1)

<< ordsc[i] <<
<< ordsc[j] << endl;

ordcyc[j+1] = ordcyc[j];
ordcyc[j] = 1i;
//cout << "after change " << i << << ordsc[i] <<
// << j << " " << ordsc[j] << endl;

if ((wbox[ordsc[connector[i]]] // in case of tie ...
== wbox[ordsc[connector[ordcyc[j]1]1]1]) &&
(wbox[ordsc[matlist[connector[i]]]] // decide 4 node w/ higher m8
< wbox[ordsc[matlist[connector[ordcyc[j]1]1111))

ordcyc[j+1] = ordcyc[j];

ordcyc[j] = 1i;
}

// Step3: Looking for the place of connector in each cycle
// because this tells us where to start building the result out of cycles

for(i = 1; i <= nocycles; ++i)
placeofconnector[i] = empty;
for(i = 1; i <= nocycles; ++i)

for(j = 0; j < lengthofcomponent[i]; ++j)

if (connector[i] == component[i][j])
placeofconnector[i] = j;
; break;

}

j

// Note: placeofconnector[i] has already been defined above

// Step4: starting building result array with chain
if (caseno == 1) // starting from beginning of chain

235

for(i=0; i<=splitplace; ++i)
result[i] = component[0] [i];
currentplace = splitplace + 1;

if (caseno == 2)

for(i=0; i<=(lengthofcomponent[0]-splitplace-2); ++i)
result[i] = component[0] [(Tengthofcomponent[0]-1-i)];
currentplace = lengthofcomponent[0]-splitplace-2 + 1;

// Step5: Now add the cycles to the result
for(k = 1; k <= nocycles; ++k)

// first option: twin comes after strongest node in this cycle
if (twin[connector[ordcyc[k]]]
== component[ordcyc[k]] [(placeofconnector[ordcyc[k]]+1)]1)

for(i = placeofconnector[ordcyc[k]];
i < lengthofcomponent[ordcyc[k]]; ++i)
result[(1
+ currentplace
placeofconnector[ordcyc[k]])]
= component[ordcyc[k]] [i];
if (p1aceofconnector[ordcyc[k]] 1= 0) // str nd is not first node

for(i=0; i<placeofconnector[ordcyc[k]]; ++1i)
result[(i
+ currentplace
+ lengthofcomponent[ordcyc[
- placeofconnector[ordcyc[k
= component[ordcyc[k]] [i];

k]]
1D]

// second option: twin comes b4 strongest node in this cycle
else

for(i=placeofconnector[ordcyc[k]]; i>=0; --1)
result[(currentplace
+ placeofconnector[ordcyc[k]]

- 1)1
= component[ordcyc[k]] [i];
if (placeofconnector[ordcyc[k]]
= (lengthofcomponent[ordcyc[k]]-1)) // str nd is not Tast node

for(i = (lengthofcomponent[ordcyc[k]]-1);
i > placeofconnector[ordcyc[k]]; --1)
result[(currentplace
+ placeofconnector[ordcyc[k]]
+ (lengthofcomponent[ordcyc[k]]-1))]
) = component[ordcyc[k]] [i];
// store new position in building result array
currentplace = currentplace + Tengthofcomponent[ordcyc[k]];
} // end of Toop through all cycles

//Step6 Add second part of chain to result array
f (caseno == 1) // running forward from splitplace+l

for(i=0; i<=(lengthofcomponent[0]-splitplace-2); ++i)
resu1t[(currentp1ace+1)] = component[0] [splitplace+l+i];
// currentplace = ...;

if (caseno == 2) // running backwards from splitplace

236

for(i=0; i<=splitplace; ++i)
resu1t[(currentp1ace+1)] = component[0] [(spTlitplace-i)];
// currentplace = ...;

++numberof09bcases;
status = checkresult(92);

// +++++++++ End of building and checking result ++++++++++++++++t+++t+++++

continue;
} // End of: a case (09b) phenomenon has been detected

} // End of case (09b)

// L3 2% 2.3 L-F. LT XL L L. 2T 2. L 3. 5L 2. 351 R i i e T A A R A i e A T T T
// Stat1st1cs and some more checks for rema1n1ng cases
// Tkdekdk Thnhhhrhhih:

// Count1ng the 1ength of the cha1n and no of cyc1es in remaining cases
++distofcyclesleft[nocycles];
++lengthchain[lengthofcomponent[0]];

// Check in the case of one cycle
}f (nocycles == 1)

stack = 0;
for(i=0; i<lengthofcomponent[1]; ++i)

if (wbox[ordsc[component[1] [i]]] > stack)
stack = wbox[ordsc[component[1] [i]]1];

}

if (stack + wbox[ordsc[unconnode[1]]] >= thradj)
++prob;

//if (instance < 1000)
//cout << "T";

Fedededddedehhdedefddde NNl defddefhddedehddefehdde N dde R ddefhded Nl dehddedefdhde A ANl dhddefhddin

// Inverse match1ng a1gor1thm

Fededededededededededededdedede e ded R R R R R

// Step 1 Inverse: Initialise match1ng Tist and counters
for (i = 0; i < numsc; ++i)

matlistinv[i] = empty;
matcardinv = 0;
unconpointerinv = 0;)
for (i = 0; i < numsc; ++i)
{
unconnodeinv[i] = empty;
Tastmatchinv = empty;

// Step 2 Inverse: Matching algorithm
for(i=0; i<numsc; ++i)// check all nodes

if (matlistinv[i] == empty)// does node need a mate?
for (j=(numsc-1); j>i; --j)// Took for a mate for node i

if ((adjlist[i] [ﬂ

D
&& (matlistinv[j] == empty))// if mate found

237

matlistinv[i]
matlistinv[j]
Jastmatchinv =
++matcardinv;
break;

(I]
)
- -l

3
if (matlistinv[i] == empty) // if there still is no mate:
// do twin node swap or finally acquiesce
}f (ordsc[i] % 2 == 0) // find out twin node number
twinnomatinv = invordsc[(ordsc[i]l+1)];
else

twinnomatinv = invordsc[(ordsc[i]-1)];

if // twin node swap possible?

((wbox[ordsc[i]]+wbox[ordsc[twinnomatinv]]>=thradj)// match w/ twin?
&& (matTistinv[twinnomatinv] == empty) // twin unmatchd?
&& (lastmatchinv != empty) // exchnge pssble?
&& (twinnomatinv > 1) // twin Tlarger?

&& (wbox[ordsc[Tastmatchinv]] // lastmatch with twin?

+ wbox[ordsc[twinnomatinv]] >= thradj))

/ then swap mates
matlistinv[i] = matlistinv[lastmatchinv];
matlistinv[lastmatchinv] = twinnomatinv;
matlistinv[twinnomatinv] = Tastmatchinv;
matlistinv[matlistinv[il]] = 1i;
lastmatchinv = 1i;
++matcardinv;

}
else // otherwise: one more unconnected node
{
++unconpointerinv;)))
unconnodeinv[(unconpointerinv-1)] = 1i;
}
}

}
}

R R R R R R e R R R R R e R R R e R R R R R R R R R Rk kAR T S R R R R

/ %
// Double check inverse ith other matching algorithm

if (matcard != matcardinv)

cout << "ALARMS!!!" << endl;
cout << matcard << " " << matcardinv << endl;
for (i=0; i<numsc; ++i)
cout << " " << wbox[i];
cout << endl;
for (i=0; 1i<numsc; ++i)
cout << " " << wbox[ordsc[i]];
cout << endl;
for (i=0; i<numsc; ++i)
cout << " " << matlist[i];
cout << endl;
for (i=0; i<numsc; ++1i)
cout << " " << matlistinv[i];
cout << endl;
cout << adjlist[2] [matlist[2]] << endl;
cout << wbox[ordsc[2]] << " " << wbox[ordsc[matlist[2]]] << endl;
cout << unconpointer << " " << unconpointerinv << endl;

//First matching algorithm once again (for_checking mistakes
// Step 2 once again: Initialise matching 1list and counters

238

for (i = 0; i < numsc; ++1i)
matlist[i] = empty;

matcard = 0;
unconpointer = 0;)
for (i = 0; i < numsc; ++1i)

; unconnode[i] = empty;
Tastmatch = empty;

// Step 3 once again: Matching algorithm
for(i=0; i<numsc; ++i)// check all nodes

if (matlist[i] == empty)// does node need a mate?
for (j=(i+1); j<numsc; ++j)// Took for a mate for node i

if ((adjlist[i] [j] == D)
&& (matlist[j] == empty))// if mate found

matlist[i] =
matlist[j] = 1;
Jastmatch = 1i;
++matcard;
break;

}

if (matlist[i] == empty) // if there still is no mate:
// do twin node swap or finally acquiesce
}f (ordsc[i] % 2 == 0) // find out twin node number

is

twinnomat = invordsc[(ordsc[i]+1)];
else

twinnomat = invordsc[(ordsc[i]-1)];

if // twin node swap possible?

((wbox[ordsc[i]]l+wbox[ordsc[twinnomat]]>=thradj)// match with twin?
&& (matTist[twinnomat] == empty) // twin unmatched?
&& (lastmatch != empty) // exchange possble?
&& (twinnomat > 1)) // twin Tlarger?

// then swap mates
matlist[i] = matlist[Tastmatch];
matlist[lastmatch] = twinnomat;
matlist[twinnomat] = Tastmatch;
matlist[matlist[i]] = 1;

Tastmatch = 1;
++matcard;

cout << "a twin node swap" << endl;
cout << " i " << i << " twinnomat " << twinnomat

<< ordsc[i] " << ordsc[i] << " ordsc[twinnomat] "

<< ordsc[twinnomat]

<< " wboxSumme << wbox[ordsc[i]]+wbox[ordsc[twinnomat]]

<< matlist[twinnomat] " << matlist[twinnomat]

<< Tastmatch " << lastmatch

<< matlist[Tastmatch] " << matlist[lastmatch] << endl;

//matlist[i] = matlist[lastmatch];
//matlist[lastmatch] = twinnomat;
//matlist[twinnomat] = lastmatch;
//matlist[matlist[i]] = 1i;
//lastmatch = 1i;

239

//++matcard;

?1se // otherwise: one more unconnected node
++unconpointer;
unconnode[Cunconpointer-1)] = 1i;
) cout << " an unconnode " << i << endl;
3
}
}
cout << "new results" << endl;
cout << adjTist[2] [matTlist[2]] << endl;
cout << wbox[ordsc[2]] << " " << wbox[ordsc[matlist[2]]] << endl;
cout << unconpointer << " " << unconpointerinv << endl;

// End if matcard != matcardinv

// TS fhfh R dhdfdddddeddeddeddededdhd RN NN NS dddddddddhd R h RN h N fdedededededededededededed

// Building up chain from inverse matching
// R R e o e e R o e R R R L R R o R kR R R ok R

/ Step 1INV: Initialise data
for(i=0; i<numsc; ++1)

analysedinv[i] = 0;

for(j=0; j<nocomp; ++3j)
componentinv[j] [i] = empty;

if (ordsc[i] % 2 == 0) // find out twin node number
1tw1'n[1'] = jnvordsc[(ordsc[i]+1)];

else
twin[i] = invordsc[(ordsc[i]l-1)];

//cout << ordsc[i] << "-"

) << ordsc[twin[i]] << ;
//cout << endl;

// Step 2INV: Build up chain

for(i=0; i<numsc; ++i) // find smallest unconnected node
if (matlistinv[i] == empty)
smallestunconinv = 1i;
break;
}
if (smallestunconinv != unconnodeinv[0])
cout << "ALARMinv!!!" << endl;
ij=-1 // build up chain
stack = smallestunconinv;
do
.
++3;

componentinv[0] [j] = stack;
anq1ysed1nv[stack% =1;

++];

componentinv[0] [j] = twin[stack];
analysedinv[twin[stack]] = 1;
stack = matTistinv[twin[stack]];

}
while (stack != empty);

Tengthofcomponentinv[0] = ++3;

240

L L L L Y R X X X L L Y Y R £ T T X L L R e E

/
// CASE (10) Cha]n from 1n erse match1ng comp]ete w1th 1ength

IROROROTORROSOR. e e e e dede e e e

1f (1engthofcomponent1nv[0] == numsc)// is chain comp]ete7

umsc

++completechaininv;
++feacounter;
for(i=0; i<numsc; ++1i)
result[i] = componentinv[0] [i];
i = checkresult(10);

/*
for(i=0; 1i<numbox; ++i)
cout << wbox[ordsc[component[O] [(2*%1)]1]1] << "
<< ordsc[component[0] [(2*%i)]] << "
<< ordsc[component[0] [(2*i+1)]] << ")"
) << wbox[ordsc[component[0] [(2*i+1)]]1] << " --";
cout << "*" << endl;
*/
continue;
}

R R R R R R L R A R L L R R e R R R Rk A T S R kR LR

/

// Bu11d1ng up cyc1es from 1nverse match1ng B BB BB 5
foE (i=0; i<numsc; ++1) // F1nd sma11est connected node not analysed yet

1f{(ana1ysed1nv[i] == 0)

smallestconnotanainv = 1i;

break;
}
if (matlistinv[smallestconnotanainv] == empty)
cout << "ARLARM2inv!!!" << endl;

currentcomponent = 0;
do
{
++currentcomponent; // Set component
if (currentcomponent > nocomp-1)
cout << "ARLARM3inv!!!" << endl;

j = -1; // Build up cycle

stack = smallestconnotanainv;

do

{
++3;
component1nv[currentcomponent] []
analysedinv[stack] = 1;
++3;
component1nv[currentcomponent] [7]
analysedinv[twin[stack]] =
stack = mat11st1nv[tw1n[stack]],

stack;

twin[stack];

}
while (stack != smallestconnotanainv); //= while not back 2 bgnning of cyc
Tengthofcomponentinv[currentcomponent] = ++j;

for (i=0; i<numsc; ++i) // Find smallest connected node not analysed yet
if (analysedinv[i] ==

smallestconnotanainv = i;

241

break;

1
if (matlistinv[smallestconnotanainv] == empty)
cout << "ARLARM2Binv!!!" << endl;
while_(smallestconnotanainv != stack); // = while new not analysed node found
nocyclesinv = currentcomponent; // save number of cycles

Y L T T T T

/
// Ana1ys1ng cyc1es and ha' f 1nverse match1ng

Jo e e de Yo v e e o ol e fe st ol sl o ol sl ot ol fa ot ol ol ol ol sl o ol oh o ol ot
TR L A R i L e e R A R kR S

for (i=0; i<nocomp; ++1) // In1t1a11s1ng data

strongestnodeinv[i] = empty;
pssinv[i] = empty;
weakestnodeinv[i] = empty;
pwwinv[i] = empty;
strongestweaknodeinv[i] = empty;
pswinv[i] = empty;
weakeststrongnodeinv[i] = empty;
pwsinv[i] = empty;

}

for (i=1; i<=nocyclesinv; ++i) // Check all cycles

// INV: Initialise for all cycles
strongestnode1nv[1] = componentinv[i] [0];
pssinv[i] =

weakestnode1nv[1] = componentinv[i] [0];
pwwinv[i] = 0;

if (wbox[ordsc[componentinv[i] [1]1]1] >= thrstrong)

weakeststrongnode1nv[1] = componentinv[i] [1];

pwsinv[i] =

strongestweaknode1nv[1] = componentinv[i] [2];

pswinv[i] =

// ATTN: not c1ear if weak node!!!

// (might be repaired Tater if any cycle has a 'real' (= truly weak)
// strongestweaknode)

%1se
weakeststrongnode1nv[1] = componentinv[i] [2];
pwsinv[i] =
strongestweaknode1nv[1] = componentinv[i] [1];
pswinv[i] = 1;

/ try to repair if current strongestweaknode[i] is not weak
if (wbox[ordsc[strongestweaknodeinv[i]]] >= thrstrong)

S N]

for (j=0; j<lengthofcomponentinv[il; ++j)
if{(wbox[ordsc[componentinv[i] [711]1 < thrstrong)

strongestweaknode1nv[1] = componentinv[i] [j];
pswinv[i] = j;

}

// notel: if there is no weak node in this cycle at all, we will Tlater,

// at (**), set strongestweaknodeinv[i] := weakeststrongnodeinv[i]

// note2: if there is no weak node in this cycle at all, the algorithm

// will automatclly set weakest(weak)nodeinv[i] := weakeststrongnodeinv[i],
// so this case is repaired automatically

242

// INV: Check for all elements of this component
Eor (j=1; j<lengthofcomponentinv[i]; ++j) // Find weakst&strongst in cycle

// > cases
if (wbox[ordsc[componentinv[i] [j]11]
>= wbox[ordsc[strongestnodeinv[i]]])

strongestnode1nv[1] = componentinv[i] [j];
pssinv[i] = j;

if (wbox[ordsc[componentinv[i] [j]11]
<= wbox[ordsc[weakestnodeinv[i]]])

weakestnodeinv[i] = componentinv[i] [j];
pwwinv[i] = j;

if ((wbox[ordsc[componentinv[i] [j11]
>= wbox[ordsc[strongestweaknodeinv[i]]])
&& (wbox[ordsc[componentinv[i] [j]]] < thrstrong))

strongestweaknode1nv[1] = componentinv[i] [j];
pswinv[i] = j;

if ((wbox[ordsc[componentinv[i] [j11]
<= wbox[ordsc[weakeststrongnodeinv[i]]])
&& (wbox[ordsc[componentinv[i] [j]]] >= thrstrong))

weakeststrongnode1nv[1] = componentinv[i] [j];
pwsinv[i] = J;

// == cases
if ((wbox[ordsc[componentinv[i] [j1]]
== wbox[ordsc[strongestnodeinv[i]]])
&& (wbox[ordsc[matlistinv[componentinv[i] [j111]
> wbox[ordsc[matTlistinv[strongestnodeinv[i]l]l]l]))
strongestnode1nv[1] = componentinv[i] [j1;
pssinv[i] = j;

if ((wbox[ordsc[componentinv[i] [j]1]]

== wbox[ordsc[weakestnodeinv[i]]])
&& (wbox[ordsc[matlistinv[componentinv[i] [j111]

< wbox[ordsc[matTlistinv[weakestnodeinv[i]]]]))
weakestnodeinv[i] = componentinv[i] [j];
pwwinv[i] = j;

if ((wbox[ordsc[componentinv[i] [j1]]
== wbox[ordsc[strongestweaknodeinv[i]]])
&& (wbox[ordsc[matlistinv[componentinv[i] [j111]
> wbox[ordsc[matlistinv[strongestweaknodeinv[i]]]]))

strongestweaknode1nv[1] = componentinv[i] [j];
pswinv[i] = j;

if ((wbox[ordsc[componentinv[i] [j1]]
== wbox[ordsc[weakeststrongnodeinv[i]]])
&& (wbox[ordsc[matlistinv[componentinv[i] [j111]
< wbox[ordsc[matTlistinv[weakeststrongnodeinv[i]l]l]l]))

weakeststrongnode1nv[1] = componentinv[i] [j];
pwsinv[i] = J;

243

// (**) if cycle has no weak node (see notel above): repair
if (wbox[ordsc[strongestweaknodeinv[i]]] >= thrstrong)

strongestweaknodeinv[i] = weakeststrongnodeinv[i];
pswinv[i] = pwsinv[i];

// INV :Initialise charcteristics for all cycles
weakeststrongestinv = strongestnodeinv[1];
pwssinv = pssinv[1l];
strongeststrongestinv = strongestnodeinv[1l];
psssinv = pssinv[1l];
weakestweakestinv = weakestnodeinv[1];
pwwwinv = pwwinv[1];
strongestweakestinv = weakestnodeinv[1];
pswwinv = pwwinv[1];
weakeststrongestweakinv = strongestweaknodeinv[1];
pwswinv = pswinv[1];
strongeststrongestweakinv = strongestweaknodeinv[1l];// this one could b strng
psswinv = pswinv[1]; // due to the 'mistake' above
weakestweakeststronginv = weakeststrongnodeinv[1];
pwwsinv = pwsinv[1];
strongestweakeststronginv = weakeststrongnodeinv[1];
pswsinv = pwsinv[1];

// INV: check for all cycles
for(i=1; i<=nocyclesinv; ++i)

// < cases
if (wbox[ordsc[strongestnodeinv[i]]] < wbox[ordsc[weakeststrongestinv]])

weakeststrongestinv = strongestnodeinv[i];
pwssinv = pssinv[i];

if (wbox[ordsc[strongestnodeinv[i]]] > wbox[ordsc[strongeststrongestinv]])

strongeststrongestinv = strongestnodeinv[i];
psssinv = pssinv[il;

if (wbox[ordsc[weakestnodeinv[i]]] < wbox[ordsc[weakestweakestinv]])

weakestweakestinv = weakestnodeinv[i];
pwwwinv = pwwinv[i];

if (wbox[ordsc[weakestnodeinv[i]]] > wbox[ordsc[strongestweakestinv]])

strongestweakestinv = weakestnodeinv[i];
pswwinv = pwwinv[i];

}
if (wbox[ordsc[strongestweaknodeinv[i]]]
< wbox[ordsc[weakeststrongestweakinv]])

weakeststrongestweakinv = strongestweaknodeinv[i];
pwswinv = pswinv[i];

}
if (wbox[ordsc[strongestweaknodeinv[i]]]
> wbox[ordsc[strongeststrongestweakinv]])

strongeststrongestweakinv = strongestweaknodeinv[i];
psswinv = pswinv[i];

}
if (wbox[ordsc[weakeststrongnodeinv[i]]]
< wbox[ordsc[weakestweakeststronginv]])

244

weakestweakeststronginv = weakeststrongnodeinv[i];
pwwsinv = pwsinv[i];

3
if (wbox[ordsc[weakeststrongnodeinv[i]]]
> wbox[ordsc[strongestweakeststronginv]])

strongestweakeststronginv = weakeststrongnodeinv[i];
pswsinv = pwsinv[i];

// == cases
if ((wbox[ordsc[strongestnodeinv[i]]]
== wbox[ordsc[weakeststrongestinv]])
&& (wbox[ordsc[matlistinv[strongestnodeinv[i]]]]
< wbox[ordsc[matlistinv[weakeststrongestinv]]]))

weakeststrongestinv = strongestnodeinv[i];
pwssinv = pssinv[i];

}
if ((wbox[ordsc[strongestnodeinv[i]]]
== wbox[ordsc[strongeststrongestinv]])
&& (wbox[ordsc[matlistinv[strongestnodeinv[i]]]]
> wbox[ordsc[matlistinv[strongeststrongestinv]]]))

strongeststrongestinv = strongestnodeinv[i];
psssinv = pssinv[il;

if ((wbox[ordsc[weakestnodeinv[i]]]
== wbox[ordsc[weakestweakestinv]])
&& (wbox[ordsc[matlistinv[weakestnodeinv[i]]l]l]
< wbox[ordsc[matTlistinv[weakestweakestinv]]]))

weakestweakestinv = weakestnodeinv[i];]
))] // only strong if there were no wk node
pwwwinv = pwwinv[i];

}
if ((wbox[ordsc[weakestnodeinv[i]]]
== wbox[ordsc[strongestweakestinv]])
&& (wbox[ordsc[matlistinv[weakestnodeinv[i]l]]]
> wbox[ordsc[matlistinv[strongestweakestinv]]]))

strongestweakestinv = weakestnodeinv[i];
// mayb str, but ok 4 buildin solutn
pswwinv = pwwinv[i];

if ((wbox[ordsc[strongestweaknodeinv[i]]]
== wbox[ordsc[weakeststrongestweakinv]])
&& (wbox[ordsc[matlistinv[strongestweaknodeinv[i]]]]
< wbox[ordsc[matTlistinv[weakeststrongestweakinv]]]))

weakeststrongestweakinv = strongestweaknodeinv[i];])
))] // only str s'ilyavai no wk
pwswinv = pswinv[i];

}
if ((wbox[ordsc[strongestweaknodeinv[i]]]
== wbox[ordsc[strongeststrongestweakinv]])
&& (wbox[ordsc[matlistinv[strongestweaknodeinv[i]]]]
> wbox[ordsc[matTlistinv[strongeststrongestweakinv]]]))

strongeststrongestweakinv = strongestweaknodeinv([i];
. . . // mayb strong, but ok
psswinv = pswinv[i];

if ((wbox[ordsc[weakeststrongnodeinv[i]]]

245

== wbox[ordsc[weakestweakeststronginv]])
&& (wbox[ordsc[matTlistinv[weakeststrongnodeinv[i]]]]
< wbox[ordsc[matTlistinv[weakestweakeststronginv]]]))

weakestweakeststronginv = weakeststrongnodeinv[i];
pwwsinv = pwsinv[i];

if ((wbox[ordsc[weakeststrongnodeinv[i]]]
== wbox[ordsc[strongestweakeststronginv]])
&& (wbox[ordsc[matTlistinv[weakeststrongnodeinv[i]]]]
> wbox[ordsc[matTlistinv[strongestweakeststronginv]]]))

strongestweakeststronginv = weakeststrongnodeinv[i];
pswsinv = pwsinv[i];

}

// Counting number of cycles b4 analysis
++distofcyclesstartinv[nocyclesinv];

Step 1INV: Make sure that unconnodeinv[1l] is the higher unconnected node
if (wbox[ordsc[unconnodeinv[0]]] > wbox[ordsc[unconnodeinv[1]]])
cout << "ALARM4inv!!!" << endl;

// Step 2INV: Check w/ wss
if (wbox[ordsc[weakeststrongestinv]]
+ wbox[ordsc[unconnodeinv[1]]] >= thradj)

++wscyclesandchaininv;
++feacounter;

I e e L L o L L L L A o T B B o S S
o o o S B B L
// Step 2baINVv: Checking result for WSS node case if there is only one cycle
N e e o o S S S

if (nocyclesinv == 1)

*

for(i=0; i<lengthofcomponentinv[l]; ++i)//check where in cycle strngst node
}f ((componentinv[1l] [i])==strongestnodeinv[1])

stackinv = i;
break;
}
¥
::/

stackinv = pssinv[1];

if (twin[strongestnodeinv[1l]]==componentinv[1l] [(stackinv+1)])
(//twin after str nd

for(i=0; i<lengthofcomponentinv[0]; ++1i)
result[i] = componentinv[0] [i];
for(i=stackinv; i<lengthofcomponentinv[1l]; ++i)
result[(i+lengthofcomponentinv[0]-stackinv)] = componentinv[1l] [i];
if (stackinv != 0) // str nd is not first node

for(i=0; i<stackinv; ++1)

result[(i+lengthofcomponentinv[0]+lengthofcomponentinv[1l]-stackinv)]
= componentinv[1l] [i];

246

}

else // twin before strongest node

for(i=0; i<lengthofcomponentinv[0]; ++1i)
result[i] = componentinv[0] [i];
for(i=stackinv; i>=0; --1)
result[(lengthofcomponentinv[0]+stackinv-i)] = componentinv[1l] [i];
if (stackinv != (lengthofcomponentinv[1l]-1)) // str nd is not last node

for(i=(lengthofcomponentinv[1l]-1); i>stackinv; --1)
result[(lengthofcomponentinv[0]

stackinv

(1engthofcomponentinv[1]-i))]

componentinv[1l] [i];

nm+ +

}
}

[/ At
// Step 2bbINV: Checking result for wSS case if there is more than one cycle
A T o s o o o L L L L L B B s o o o S S SIS

?1se // There is more than one cycle
// Initialising order
for(i = 1; i <= nocyclesinv; ++i)

ordcycinv[i] = i;

// starting sorting procedure for cycles according to stronges strong nodes
for(i = 1; i <= nocyclesinv; ++i)

gor(j =1-1; J >=1; --1

<< ordsc[i] <<

//cout << i <<
<< ordsc[j] << endl;

// << j <<
// abbreviation = ;
if (wbox[ordsc[strongestnodeinv[i]]]
< wbox[ordsc[strongestnodeinv[ordcycinv[j]11]1]1)

ordcycinv[j] = i;
//cout << "after change " << i << << ordsc[i] <<
// << j << " " << ordsc[j] << endl;

ordcycinv[j+1] = ordcycinv[j];

//else { cout << "no change, next i" << endl; break; }

}
// Looking for the place of strongest node in each cycle
// because this tells us where to start building the result out of cycles

*

S~

for(i = 1; i <= nocyclesinv; ++i)

~

placeofstrongestnodeinv[i] = empty;

—

for(i = 1; i <= nocyclesinv; ++i)

{
for(j = 0; j < lengthofcomponentinv[i]; ++j)
if (strongestnodeinv[i] == componentinv[i][j])
placeofstrongestnodeinv[i] = j;
break;
}
}

}

247

:':/

// Starting result array with chain

for(i=0; i<lengthofcomponentinv[0]; ++1i)
result[i] = componentinv[0] [i];

currentplaceinv = lengthofcomponentinv[0];

// Now add the cycles to the result

for(k = 1; k <= nocyclesinv; ++k)

// first option: twin comes after strongest node in this cycle
if (twin[strongestnodeinv[ordcycinv[k]]]
== componentinv[ordcycinv[k]]
[(pssinv[ordcycinv[k]]+1) 1)

for(i = pssinv[ordcycinv[k]];
i < lengthofcomponentinv[ordcycinv[k]]; ++i)
result[(i
+ currentplaceinv
- pssinv[ordcycinv[k]])]
= componentinv[ordcycinv[k]] [i];
if (pssinv[ordcycinv[k]] !'= 0)
// str nd is not first node

for(i=0; i<pssinv[ordcycinv[k]]; ++i)
result[(i
+ currentplaceinv

+ lengthofcomponentinv[ordcycinv[k]]
- pssinv[ordcycinv[k]])]
= componentinv[ordcycinv[k]] [i];

// second option: twin comes b4 strongest node in this cycle
else

for(i=pssinv[ordcycinv[k]]; i>=0; --1)
result[(currentplaceinv
+ p;iinv[ordcycinv[k]]
-
= componentinv[ordcycinv[k]] [i];
if (pssinv[ordcycinv[k]]
= (lengthofcomponentinv[ordcycinv[k]]-1))
/ str nd is not Tast node

for(i = (lengthofcomponentinv[ordcycinv[k]]-1);
i > pssinv[ordcycinv[k]]; --1)
result[(currentplaceinv
+ pssinv[ordcycinv[k]]
+ (lengthofcomponentinv[ordcycinv[k]]-i))]
= componentinv[ordcycinv[k]] [i];

// store new position in building result array
currentplaceinv = currentplaceinv + Tengthofcomponentinv[ordcycinv[k]];
} // end of Toop through all cycles
++numberofelsecasesinv;
} // end of else for case of more than one cycle

status = checkresult(1l);

A e e

continue;

// Step3INV: Check w/ mate of sss, www, and mate of sww from invrse match
if (wbox[ordsc[matlistinv[strongeststrongestinv]]]

248

+ wbox[ordsc[unconnodeinv[1]]] >= thradj)

++msscyclesandchaininv;
++feacounter;
continue;

if (wbox[ordsc[weakestweakestinv]]
+ wbox[ordsc[unconnodeinv[1]]] >= thradj)

++wwcyclesandchaininv;
++feacounter;
continue;

if (wbox[ordsc[matlistinv[strongestweakestinv]]]
+ wbox[ordsc[unconnodeinv[1]]] >= thradj)

++mswcyclesandchaininv;
++feacounter;
continue;

// Step 4INV: Check w/ wws, mate of sws, wsw, and mate of ssw from inv match
if (wbox[ordsc[weakestweakeststronginv]]
+ wbox[ordsc[unconnodeinv[1]]] >= thradj)

++wwscyclesandchaininv;
++feacounter;
continue;

if (wbox[ordsc[matlistinv[strongestweakeststronginv]]]
+ wbox[ordsc[unconnodeinv[1]]] >= thradj)

++mswscyclesandchaininv;
++feacounter;
continue;

if (wbox[ordsc[weakeststrongestweakinv]]
+ wbox[ordsc[unconnodeinv[1]]] >= thradj)

++wswcyclesandchaininv;
++feacounter;
continue;

if (wbox[ordsc[matlistinv[strongeststrongestweakinv]]]
+ wbox[ordsc[unconnodeinv[1]]] >= thradj)

++msswcyclesandchaininv;
++feacounter;
continue;

//
// CASE
[R

if ((nocyclesinv == 1) && (lengthofcomponentinv[0] >= 4))

k = 0; // counter if a subcase has been detected
for (i=1; i<=(lengthofcomponentinv[0]-3); i=1+2)

Eor (j=1; j<=(Qlengthofcomponentinv[1]-1); j=j+2)
if ((adjlist[componentinv[1] [j]] [componentinv[0] [i]] == 1)

&& (adjTist[matlistinv[componentinv[1l] [j]]1]
¢ [componentinv[0] [(i+1)]] =1

249

caseno = 1;
stackcycinv = j;
stackchaininv = 1i;
++cyclchainsplitiny;
++feacounter;

++k;

break;

3

if ((adjlist[componentinv[1l] [j]] [componentinv[0] [i+1]] == 1)
&& (adjTlist[matlistinv[componentinv[1l] [j]1]1]
([componentinv[0] [i]] =1

caseno = 2;
stackcycinv = j;
stackchaininv = 1i;
++cyc2chainsplitiny;

++feacounter;
++k;
break;
}
}
) if (k == 1) break;
if (k == 1)

s o o L L L B B o o S S
// start check for chainsplit with one cycle
L B S T

// relevant component of cyc in var "stackcyc", "stackchain" similar
// caseno = 1 or 2 signifies the case above

// First: case 1 && stackchain is not last node of cycle

if ((caseno == 1) && (stackcycinv != (Tengthofcomponentinv[1l] - 1)))

for (i=0; i<=lengthofcomponentinv[0]-stackchaininv-2; ++i)// upper prt chain
result[i] = componentinv[0] [Tengthofcomponentinv[0]-1-1i];

for (i=0; i<=lengthofcomponentinv[1l]-stackcycinv-2; ++i)// upper prt of cycle
result[i+lengthofcomponentinv[0]-stackchaininv-1]
= componentinv[1l] [stackcycinv+1+i];

for (i=0; i<=stackcycinv; ++i) // lower part of cycle
result[i+lengthofcomponentinv[1l]-stackcycinv-2
+lengthofcomponentinv[0]-stackchaininv] = componentinv[1l] [i];

for (i=0; i<=stackchaininv; ++i) // Tower part of chain
result[i+Tengthofcomponentinv[1]-1+Tengthofcomponentinv[0]-stackchaininv]
= componentinv[0] [stackchaininv-i];

/ Second: case 1 && stackchain is last node of cycle
if ((caseno == 1) && (stackcycinv == (lengthofcomponentinv[l] - 1)))

e R S ad

for (i=0; i<=stackchaininv; ++i)
result[i] = componentinv[0] [i]; // lower part of chain
for (i=0; i<=(lengthofcomponentinv[1l] - 1); ++i) // whole cycle backwards
result[i+stackchaininv+1l] = componentinv[1l] [lengthofcomponentinv[1]-1-i];
for (i=0; i<=(lengthofcomponentinv[0]-2-stackchaininv); ++i) // upper chain
result[i+stackchaininv+l+Tengthofcomponentinv[1]]
= componentinv[0] [i+stackchaininv+1];

}

// Third: case 2 && stackchain is not last node of cycle

1f ((caseno == 2) && (stackcycinv != (lengthofcomponentinv[1l] - 1)))
for (i=0; i<=stackchaininv; ++i) // Tower part of chain

result[i] = componentinv[0] [i];
for (i=0; i <= (lengthofcomponentinv[l] - 2 - stackcycinv); ++i) // upper cyc
result[i+1l+stackchaininv] = componentinv[1l] [i+stackcycinv+1];

250

for (i=0; i<=stackcycinv; ++i) // lower cyc
result[i+stackchaininv+lengthofcomponentinv[1]-stackcycinv] =

componentinv[1l] [i];

}

for (i=0; i<=(lengthofcomponentinv[0] - 2 - stackchaininv); ++i) // upper chn
result[i+1l+stackchaininv+lengthofcomponentinv[1]]
= componentinv[0] [i+l+stackchaininv];

/ Fourth: case 2 && stackchain is last node of cycle
if ((caseno == 2) && (stackcycinv == (lengthofcomponentinv[1l] - 1)))

e R S ad

for(i=0; i<=stackchaininv; ++i) // lower part of chain
result[i] = componentinv[0] [i];

for(i=0; i<=(lengthofcomponentinv[1l]-1); ++i) // cycle forward
result[i+l+stackchaininv] = componentinv[1l] [i];

for(i=0; i<=(lengthofcomponentinv[0]-stackchaininv-2); ++i) // upper chain
result[i+1+stackchaininv+lengthofcomponentinv[1]]
= componentinv[0] [stackchaininv+1l+i];

status = checkresult(121);

L S B L
// End of check chainsplit with one cycle

A s o o L B B o o S S RIS
continue;

} // End of case (12a)

Tl ddfdfddddededdddededhdhdhd RN RN R R fddddedddededededededdhdeh RN h N ddedededededededededd

// CASE (12b): splitting up INV chain to connect to ends of cycles, 8 subcases

Tl dd N ffdddeddedededdededddddhd RN f N RN R ddeddedededededededededdeddehhh RN ddfddddddddh

if ((nocyclesinv > 1) & & (lengthofcomponentinv[0] >= 4))

j = 0; // counter if a subcase has been detected
for (i=1; i<=(lengthofcomponentinv[0]-3); i=1+2)

if ((adjlist[weakeststrongestinv] [componentinv[0] [i]] == 1)
&& (§9j1ist[mat1istinv[strongeststrongestinv]] [componentinv[0] [(i+1)]]
= 1

caseno = 1;
casetype = 22;
for(k=1; k<=nocyclesinv; ++k)

connectorinv[k] = strongestnodeinv[k];
placeofconnectorinv[k] = pssinv[k];

splitplaceinv = 1i;

++wslchainsplitinv;

++feacounter;

++3;

?reak;

if ((adjlist[weakeststrongestinv] [componentinv[0] [(i+1)]] ==

&& £§gj1ist[mat1istinv[strongeststrongestinv]] [componentinv[0] [i]]
caseno = 2;

casetype = 22;

for(k=1; k<=nocyclesinv; ++k)

connectorinv[k] = strongestnodeinv[k];
placeofconnectorinv[k] = pssinv[k];

splitplaceinv = 1i;
++ws2chainsplitinv;

251

++feacounter;
++7;
break;

}

if ((adjlist[weakestweakeststronginv] [componentinv[0] [i]] == 1)

&& (adjTist[matlistinv[strongestweakeststronginv]] [componentinv[0] [(i+1)]]

&&

= 1))

caseno = 1;
casetype = 12;
for(k=1; k<=nocyclesinv; ++k)

connectorinv[k] = weakeststrongnodeinv[k];
placeofconnectorinv[k] = pwsinv[k];

splitplaceinv = 1i;
++wwslchainsplitinv;
++feacounter;

++J;

break;

}
if ((adjlist[weakestweakeststronginv] [componentinv[0] [(i+1)]] ==
&& (adjTlist[matlistinv[strongestweakeststronginv]] [componentinv[0] [i]]

‘ ==
caseno = 2;

casetype = 12;

for(k=1; k<=nocyclesinv; ++k)

connectorinv[k] = weakeststrongnodeinv[k];
placeofconnectorinv[k] = pwsinv[k];

splitplaceinv = 1i;
++wws2chainsplitinv;
++feacounter;

++J;

break;

if ((adjlist[weakeststrongestweakinv] [componentinv[0] [i]] == 1)
(adjlist[matlistinv[strongeststrongestweakinv]] [component1nv[0] [G+D)1]

caseno = 1;
casetype = 21;
for(k=1; k<=nocyclesinv; ++k)

connectorinv[k] = strongestweaknodeinv[k];
placeofconnectorinv[k] = pswinv[k];

splitplaceinv = 1;
++wswlchainsplitinv;
++feacounter;

++J;

break;

}
if ((adjlist[weakeststrongestweakinv] [componentinv[0] [(i+1)]] == 1)
&& (adjlist[matlistinv[strongeststrongestweakinv]] [componentinv[0] [i]]

caseno = 2;
casetype = 21;
for(k=1; k<=nocyclesinv; ++k)

connectorinv[k] = strongestweaknodeinv[k];
placeofconnectorinv[k] = pswinv[k];

252

splitplaceinv = 1i;
++wsw2chainsplitinv;

++feacounter;

++3;

break;

if ((adjlist[weakestweakestinv] [componentinv[0] [i]] == 1)

&& £§9j115t[mat1istinv[strongestweakestinv]] [componentinv[0] [(i+1)]]

caseno = 1;
casetype = 11;
for(k=1; k<=nocyclesinv; ++k)

connectorinv[k] = weakestnodeinv[k];
placeofconnectorinv[k] = pwwinv[k];

splitplaceinv = 1i;
++wwlchainsplitinv;
++feacounter;

++J;

break;

}

if ((adjlist[weakestweakestinv] [componentinv[0] [(i+1)]] == 1)

&& (§9j1ist[mat1istinv[strongestweakestinv]] [componentinv[0] [i]]
==1

caseno = 2;
casetype = 11;
for(k=1; k<=nocyclesinv; ++k)

connectorinv[k] = weakestnodeinv[k];
placeofconnectorinv[k] = pwwinv[k];

splitplaceinv = 1i;
++ww2chainsplitinv;

++feacounter;
++33;
break;
}
if (j == 1) // case that one of the above subcases has been detected

o S L L L B A T S B S B
// Checking result for (12b) case (Chainsplit with more than one cycle)

Y e T o L e AU
// Note: this is built on the caseno and connector information from above

// Stepl: Initia1isin% order and other
for(i = 1; i <= nocyclesinv; ++i)

ordcycinv[i] = 1;

// Step2: sorting procedure for cycles according to strngest connectors
for(i = 1; i <= nocyclesinv; ++i)

Eor(j =1i-1; j >=1; --3)

(1] n n n

<< ordsc[i] <<

//cout << i <<
<< ordsc[j] << endl;

// << j <<
// abbreviation = ;
if (wbox[ordsc[connectorinv[i]]]

253

< wbox[ordsc[connectorinv[ordcycinv[j1]1]1]1)

ordcyc1nv[3+1] = ordcycinv[j];

ordcyc1nv[3] =
//cout << after change " << i << " " << ordsc[i] << " "
// << j << " " << ordsc[j] << endl;

if ((wbox[ordsc[connectorinv[i]]] // in case of tie ...
== wbox[ordsc[connectorinv[ordcycinv[j]]]]) &&
(wbox[ordsc[matlistinv[connectorinv[ill]]l // dcde 4 nd w/ higher m8
< wbox[ordsc[matlistinv[connectorinv[ordcycinv[j]1]1111))

ordcycinv[j+1] = ordcycinv[j];
ordcycinv[j] = 1i;

}

// Step3: Looking for the place of connector in each cycle
// because this tells us where to start building the result out of cycles

“for(i = 1; i <= nocyclesinv; ++1i)
placeofconnectorinv[i] = empty;

or(i = 1; i <= nocyclesinv; ++1i)

/¥
{
}
i

for(j = 0; j < lengthofcomponentinv[i]; ++j)

if (connectorinv[i] == componentinv[i][j])

placeofconnectorinv[i] = j;
break;
}
}

}
*/ // already done above

// Step4: starting building result array with chain
if (caseno == 1) // starting from beginning of chain

for(i=0; i<=splitplaceinv; ++i)
result[i] = componentinv[0] [il;
currentplaceinv = splitplaceinv + 1;

if (caseno == 2)

for(i=0; i<=(lengthofcomponentinv[0]-splitplaceinv-2); ++i)
result[i] = componentinv[0] [(Tengthofcomponentinv[0]-1-i)];
currentplaceinv = lengthofcomponentinv[0]-splitplaceinv-2 + 1;

// Step5: Now add the cycles to the result
for(k = 1; k <= nocyclesinv; ++k)

// first option: twin comes after strongest node in this cycle
if (twin[connectorinv[ordcycinv[k]]]
(== componentinv[ordcycinv[k]] [(placeofconnectorinv[ordcycinv[k]]+1)])

// cout << "twin after strong" << endl;
for(i = placeofconnectorinv[ordcycinv[k]];
i < lengthofcomponentinv[ordcycinv[k]]; ++1)
result[(i
+ currentplaceinv
- placeofconnectorinv[ordcycinv[k]])]
= componentinv[ordcycinv[k]] [i];

254

if (placeofconnectorinv[ordcycinv[k]] != 0) // str nd is not first node

for(i=0; i<placeofconnectorinv[ordcycinv[k]]; ++i)
result[(1
+ currentplaceinv
+ lengthofcomponentinv[ordcycinv[k
- placeofconnectorinv[ordcycinv[k]
= componentinv[ordcycinv[k]] [i];

1]
D1

/{ second option: twin comes b4 strongest node in this cycle
else

for(i=placeofconnectorinv[ordcycinv[k]]; i>=0; --1)
result[(currentplaceinv
+ p;?ceofconnectorinv[ordcycinv[k]]
-
= componentinv[ordcycinv[k]] [i];
if (placeofconnectorinv[ordcycinv[k]]
= (lengthofcomponentinv[ordcycinv[k]]-1)) // str nd is not Tast node

for(i = (lengthofcomponentinv[ordcycinv[k]]-1);
i > placeofconnectorinv[ordcycinv[k]]; --1)
result[(currentplaceinv
+ placeofconnectorinv[ordcycinv[k]]
+ (lengthofcomponentinv[ordcycinv[k]]-i))]
= componentinv[ordcycinv[k]] [i];

}

// store new position in building result array
currentplaceinv = currentplaceinv + Tengthofcomponentinv[ordcycinv[k]];
} // end of 1oop through all cycles

//Step6: Add second part of chain to result array
if (caseno == 1) // running forward from splitplace+l

for(i=0; i<=(lengthofcomponentinv[0]-splitplaceinv-2); ++i)
resu1t[(currentp1ace1nv+1)] = componentinv[0] [splitplaceinv+l+i];
// currentplace = ...;

if (caseno == 2) // running backwards from splitplace

for(i=0; i<=splitplaceinv; ++i)
resu1t[(currentp1ace1nv+1)] = componentinv[0] [(splitplaceinv-i)];
// currentplace = ...;

++numberofl2bcases;
status = checkresult(122);

// +++++++++ End of building and checking result +++++++++++++++++ttttt++++
continue;
} // End of: a case (12b) phenomenon has been detected

} // End of case (12b)

B N R R R R R NS

// Stat1st1cs and _some more checks for rema1n1ng cases after 1nverse match
// Count1ng the number of cyc]es and the 1ength of the cha1n
++distofcyclesleftinv[nocyclesinv];
++lengthchaininv[lengthofcomponentinv[0]];

// Check in the case of one cycle
if (nocyclesinv == 1)

255

stack = 0;
for(i=0; i<lengthofcomponentinv[1]; ++1i)

if (wbox[ordsc[componentinv[1l] [i]]] > stack)
stack = wbox[ordsc[componentinv[1] [i]]];

if (stack + wbox[ordsc[unconnodeinv[1]]] >= thradj)
++probinv;

//if (instance < 1000)
//cout << "T";

Gedevede e e e e e N

/ End of 1nstances 1oop

/ / e e Yo Yo e e e e e e e Y O A A A A N RN RO RN CRORCR ORI OROR RORCRCCOROORONORCNORORORCCORONCIONSORONORCRUOSCR RO
% R e R i i A R R R A R R R e e e R ke

e ol ofe ol ol ol fa ole ol ot ola ol otu o ol otu ole ol sl o ol ot o ol fa ol ol ol ol ol sl ot ol ot ot ol ol ot ol
R e R e i e ke e i e S e A R kR Tk

/ Output scores, ordered scores and order numbers
for(i = 1; i <= numsc; ++i)

cout << wbox[i] << ;

cout << endl;]
for(i = 1; i <= numsc; ++i)

cout << wbox[ordsc[i]] << ;

cout << endl;)
for(i = 1; i <= numsc; ++1)

cout << ordsc[i] << ;

cout << endl;
cin.get(Q);

*

// End of instances Toop

// Running time
runtimel = (double) (clock() / CLOCKS_PER_SEC);
// runtime2 = (double) (clock() - (numinst*timed4rand)) / CLOCKS_PER_SEC;

R R R S R R ROR RN

/]
// 0utput of f1na1 stat1sct1s

Fededdhnd R R Rk ko T o e o o ol o o e A A AR Ak Sk Tk Sk T S o T o T o S ok

e dededededeh RN ddddfdfddedededededdeddedehhhh e hhhn

// Main statistics

cout << "Instances: " << numinst << " Fea: " << feacounter
<< " Inf: " << infcounter << endl;
cout << "Instances" << endl
<< "- (01) with too many weak nodes: " << toomanyweak << endl
<< "- (02) with non-con twins: " << noncontwin << endl
<< "- (03) with too many unconnectable nodes: " << uncon << endl
<< "- (04) with poor matching: " << poormat << end]
<< "- (05) with perfect matching: " << perfmat
<< ", CHECK: " << checkcasecounter[5] << endl
<< "- (06) with sufficient matching: " << suffmat
<< ", CHECK: " << checkcasecounter[6] << endl
<< Memmmmm out of which w/ connectable weak node: " << yeahcogqter
<< en
<< "- (07) with complete chain built: " << completechain
<< ", CHECK: " << checkcasecounter[7] << endl
<< "- (08) with attaching wss node in cycles to chain: "
<< wscyclesandchain
<< ", CHECK: " << checkcasecounter[8] << endl;

if ((msscyclesandchain + wwcyclesandchain + mswcyclesandchain

256

C

cout

cout

cout

+ wwscyclesandchain + mswscyclesandchain + wswcyclesandchain
+ msswcyclesandchain) > 0)

out
<<
<<
<<
<<
<<
<<
<<
<<

<<
<<

<<
<<

<<

<<
<<
<<
<<
<<
<<
<<
<<
<<

<<

mate of str str in cycles + chain: << msscyclesandchain << endl

weakest weakest in cycles + chain: " << wwcyclesandchain << end]l
mate of str wk in cycles + chain: " << mswcyclesandchain << endl
wkst wkst strong in cycles + chain: " << wwscyclesandchain << endl
m8 of strst wkst str in cyc+chn: " << mswscyclesandchain << end]

wkst strst wk in cycles + chain: " << wswcyclesandchain << endl
m8 of strst strst wk in cyc+chn: " << msswcyclesandchain << endl;
(09a) with splitting chain to attach to one cycle: "
<< (cyclchainsplit + cyc2chainsplit)
CHECK: " << checkcasecounter[91] << endl;
(09b) with splitting chain and attaching to cycles:
<< numberof09bcases

CHECK: " << checkcasecounter[92] << endl;
————— weakest strongest chainsplit 1: " << wslchainsplit
<< end]
————— weakest strongest chainsplit 2: " << ws2chainsplit
<< end]
————— weakest weakest strong chainsplit 1: " << wwslchg%nsp]it
<< en
————— weakest weakest strong chainsplit 2: " << wws2chainsplit
. . << end] .
————— weakest strongest weak chainsplit 1: " << wswlchg%nsp11t
<< en
————— weakest strongest weak chainsplit 2: " << wsw2chainsplit
<< endl
————— weakest weakest chainsplit 1: " << wwlchainsplit
<< endl
————— weakest weakest chainsplit 2: " << ww2chainsplit
<< endl
(10) with INvV complete chain built: " << completechaininv
CHECK : " << checkcasecounter[10] << endl

(11) with INV attaching wss node in cycles to chain:
<< wscyclesandchaininv
CHECK: " << checkcasecounter[1l] << endl;

if ((msscyclesandchaininv + wwcyclesandchaininv + mswcyclesandchaininv
+ wwscyclesandchaininv + mswscyclesandchaininv + wswcyclesandchaininv
+ msswcyclesandchaininv) > 0)

C

cout

cout

out
<<

<<

<<

<<

<<

<<

<<

<<

<<
<<

<<

INV mate of str str in cycles + chain: << msscyclesandchaininv

INV weakest weakest in cycles + chain: " iﬁ sug;c1esandchaininv

INV mate of str wk in cycles + chain: " <j<mSEg;c1esandchaininv

INV wkst wkst strong in cycles + chain: f<<5n$vacyc1esandchaininv

INV m8 of strst wkst str in cyc+chn: " << ;§w§2311esandchaininv

INV wkst strst wk in cycles + chain: " j: SQSlyc1esandchaininv

INV m8 of strst strst wk in cyc+chn: " 22 ﬁgg%cyc1esandchaininv
<< endl;

(12a) with INV splitting chain to attach to one cycle:
<< (cyclchainsplitinv + cyc2chainsplitinv)
CHECK: " << checkcasecounter[121] << endl;
(12b) with INV splitting chain and attaching to cycles:
<< numberofl2bcases
CHECK: " << checkcasecounter[122] << endl

257

<< Memmmmm- INV wkst strongest chainsplit 1:

<< wslchainsplitinv

<< endl

<< "Moo —- INV wkst strongest chainsplit 2: " << ws2chainsplitinv
<< endl

<< Memmem- INV wkst weakest strong chnsplt 1: "

<< wwslchainspTlitinv

<< endl
<< endl
<< endl
<< endl
<< end]

<< end]

<< Memmem- INV wkst weakest strong chnsplt 2:) o

<< wws2chainsplitinv
<< Memmem- INV wkst strongest weak chnsplt 1: ") o

<< wswlchainsplitinv
<< Memmem- INV wkst strongest weak chnsplt 2: ") o

)] << wsw2chainsplitinv

<< Memmem- INV wkst weakest chainsplit 1: " << wwlchainsplitinv
<< Memmem- INV wkst weakest chainsplit 2: " << ww2chainsplitinv
<< endl;

cout << "Percentage of instances solved:

<< (double) (feacounter+infcounter)/numinst << endl;

cout << "Running time: " << runtimel <<
cout << "Number of instances checked: "

seconds" << endl;
<< resultcounter

<< " Failed checks among these: " << problemcounter;

cout << endl << endl << endl;

// Other statistics

cout << " Number of elsecases:
cout << Number of elsecasesINV:
cout << endl << endl;

for(i=0; i<=numsc; ++i)

<< numberofelsecases;
<< numberofelsecasesinv;

cout << Tengthchain[i] << " times " << i << " scores" << endl;
for(i=0; i<=numsc; ++1)
cout << lengthchaininv[i] << " times "

<< i << scores in INV case" << endl;

// cout << "Running time without generation of instances:

<< runtime2 << seconds" << endl;

for(i=1; i<nocomp; ++i)

cout << distofcyclesstart[i] <<

<< " cycles originally, afterwards
<< distofcyclesleft[i] << "

for(i=1; i<nocomp; ++i)

" times

cout << distofcyclesstartinv[i] <<

<< " cycles ori%ina11y, afterwards
<< distofcyclesleftinv[i] << "

}

cout << prob <<
cout << probinv <<

problematic cases" << endl;
problematic cases in INV case" << endl;

vl e fe TNl

// A %k %
;/ End of fungt]on'mgin"""""" o

ek

Tedededded R

cin.get();
return 0;

258

times <<

.i

<<

times." << endl;

.i

times in INV case.

<< endl;

N
DN

259

JORONOR
TeddNh

TNk

