
The London School of Economics and Political Science

Twin-Constrained Hamiltonian Paths
on Threshold Graphs

- an Approach to the Minimum Score Separation Problem

Kai Helge Becker

A thesis submitted to the Department of Management

of the London School of Economics and Political Science

for the degree of Doctor of Philosophy, London, July 2010.

Declaration

I certify that the thesis I have presented for examination for the PhD degree of the London

School of Economics and Political Science is solely my own work other than where I have clearly

indicated that it is the work of others (in which case the extent of any work carried out jointly

by me and any other person is clearly identi�ed in it).

The copyright of this thesis rests with the author and no quotation from it or information

derived from it may be published without the author�s written consent. This thesis may not be

reproduced without the prior written consent of the author.

I warrant that this authorization does not, to the best of my belief, infringe the rights of

any third party.

3

Abstract

The Minimum Score Separation Problem (MSSP) is a combinatorial problem that has been

introduced in JORS 55 as an open problem in the paper industry arising in conjunction with

the cutting-stock problem. During the process of producing boxes, �at papers are prepared

for folding by being scored with knives. The problem is to determine if and how a given

production pattern of boxes can be arranged such that a certain minimum distance between

the knives can be kept. While it was originally suggested to analyse the MSSP as a speci�c

variant of a Generalized Travelling Salesman Problem, the thesis introduces the concept of

twin-constrained Hamiltonian cycles and models the MSSP as the problem of �nding a twin-

constrained Hamiltonian path on a threshold graph (threshold graphs are a speci�c type of

interval graphs).

For a given undirected graph G(N,E) with an even node set N and edge set E, and a bijective

function b on N that assigns to every node i in N a "twin node" b(i) 6=i, we de�ne a new graph
G�(N,E�) by adding the edges {i,b(i)} to E. The graph G is said to have a twin-constrained

Hamiltonian path with respect to b if there exists a Hamiltonian path on G�in which every

node has its twin node as its predecessor (or successor).

We start with presenting some general �ndings for the construction of matchings, alter-

nating paths, Hamiltonian paths and alternating cycles on threshold graphs. On this basis it

is possible to develop criteria that allow for the construction of twin-constrained Hamiltonian

paths on threshold graphs and lead to a heuristic that can quickly solve a large percentage of in-

stances of the MSSP. The insights gained in this way can be generalized and lead to an (exact)

polynomial time algorithm for the MSSP. Computational experiments for both the heuristic

and the polynomial-time algorithm demonstrate the e¢ ciency of our approach to the MSSP.

Finally, possible extensions of the approach are presented.

4

Acknowledgements

First of all, I am very much indebted to my supervisor Professor Gautam Appa, who has greatly

inspired my research, and my life beyond - in fact, to far greater an extent than he is probably

aware of. Also, I am very grateful for his permanent support and his understanding of what

drives me academically.

Also, I would like to thank the sta¤ members (and later colleagues) at the Operational

Research Group at LSE, who all contribute to making the group (and LSE in general) an

inclusive and stimulating environment for research that brings to life the spirit that characterises

a true university. In particular I am thankful to Dr Barbara Fasolo, Dr Gilberto Montibeller, Dr

Alec Morton, Dr Katerina Papadaki, Professor Larry Phillips, Dr Alan Pryor and Professor Paul

Williams for interesting insights and both helpful comments and advice on various academic

matters in the past years. Moreover, the working environment of the Operational Research

Group would have been much less productive and pleasant a place, if the group were not run as

excellently on the administrative side as it actually is. I am very grateful to Brenda Mowlam,

Jenny Robinson, Richard Szadura and Lucy Underhill for their great support, helpful advice

and amazing kindness over all the years, from my �rst steps at LSE to my time as a member

of sta¤.

I would also like to thank all my fellow PhD students at LSE, especially Dr Nikos Argyris,

Florian Gebreiter, Nayat Horozoglu, Attila Marton and Dr Kostas Papalamprou, who all have,

in one way or the other, contributed to making LSE my home, on both the academic and the

personal level. I am particularly thankful to Dr Nikos Argyris, with whom I undertook the very

�rst steps in analysing the problem that would later become the topic of this thesis; unfortu-

nately, he had to focus his attention on his own thesis after a short time. Also, I am thankful

to Dr Kostas Papalamprou for a great introduction into the topic of total unimodularity, and I

would like to thank my fellow PhD students for their friendship and great sense of community.

Moreover, I am grateful to Frits Spieksma from the Univeristy of Leuven for his interest in

the theoretical aspects of this thesis and several insightful discussions.

Many thanks are also due to British Petroleum who generously funded most of the research

undertaken in this thesis.

Finally, I would like to thank Professor Gautam Appa, Dr Katerina Papadaki and Edson

Franco de Morais for ensuring that I would not lose my thesis out of sight given my commitments

as a member of sta¤ at LSE.

5

Contents

Declaration 3

Abstract 4

Acknowledgements 5

Contents 6

List of Figures 9

List of Tables 9

Overview of main Propositions, Theorems and Corollaries 10

1 The Minimum Score Separation Problem (MSSP) 11

2 Two ways of modelling the MSSP 14
2.1 Starting point: the Hamiltonian Path Problem as a TSP 14

2.2 First approach: the MSSP as a Travelling Politician Problem 15

2.3 Second approach: the MSSP as a Twin-Constrained Hamiltonian Path Problem . 19

3 The MSSP, Hamiltonian paths, variants of the TSP and complexity theory 23

3.1 Notation . 23

3.2 Hamiltonian paths and alternating Hamiltonian paths 25

3.3 The Travelling Salesman Problem and generalisations 28

3.4 Relevant results of complexity theory . 32

4 Threshold graphs: de�nition and basic characteristics 38

4.1 De�nition and examples . 38

4.2 Basic characteristics of threshold graphs . 40

5 Maximum cardinality matchings, alternating paths and Hamiltonian paths
on threshold graphs 46

5.1 Alternating paths and maximum cardinality matchings 46

5.2 Hamiltonian paths and maximum cardinality matchings 52

5.3 Summary and a remark on the complexity of the MSSP 56

6

6 Alternating cycles and maximum cardinality matchings on threshold graphs 58

6.1 De�nition and relevance of alternating T -cycles 58

6.2 Criteria for the existence of alternating T -cycles 61

6.3 Alternating T -cycles and the case of greedy matchings 64

6.4 Summary of our results about maximum cardinality matchings on threshold graphs 70

7 Constructing twin-constrained Hamiltonian paths on threshold graphs 72

7.1 General considerations, modi�ed matchings . 72

7.2 Twin-induced structure and the case jM j 6= n� 1 77

7.3 The case jM j = n� 1 . 80

7.4 Structure-preserving solutions for matchings with jM j = n� 1 84

7.5 Classi�cation of non-structure-preserving solutions for matchings with jM j = n�1 88

7.6 Existence of non-structure-preserving solutions for matchings with jM j = n� 1 . 97

7.7 Existence of non-structure-preserving solutions for a greedy matching with jM j =
n� 1 . 107

7.8 A heuristic for the MSSP (MSSPH) . 117

8 Recognising twin-constrained Hamiltonian threshold graphs 120

8.1 Motivation . 120

8.2 Patching graph and a necessary criterion for twin-constrained Hamiltonicity . . . 123

8.3 Su¢ cient criterion for twin-constrained Hamiltonicity of threshold graphs 126

8.4 Constructing suitable families of alternating Tq-cycles 132

8.5 An algorithm for recognising twin-constrained Hamiltonian threshold graphs

(TGHRA) . 138

9 Computational results 142

9.1 General remarks about the implementation . 142

9.2 Evaluation of MSSPH . 144

9.3 Evaluation of TGHRA . 150

10 Conclusion 154

7

References 158

A MSSPH 3.6: C++ source code 166

B TGHRA 3.6: C++ source code 194

C MSSP 3.4: C++ source code 209

8

List of Figures

1 Feasible alignment of boxes I . 11

2 Feasible alignment of boxes II . 12

3 The MSSP as a Traveling Politician Problem . 16

4 The MSSP as a twin-constrained Hamiltonian path problem 21

5 Examples of threshold graphs . 39

6 Examples of non-threshold graphs . 40

7 Degree partition of a threshold graph . 42

8 Structures of G and G�. 54

9 The twin-induced structure of a matching . 77

10 The case jMj=n . 80
11 The case jMj=n-1 . 81
12 Matching, twin-node function and (in)feasibility 82

13 Constructing a feasible solution to the MSSP . 83

14 Types of structure-preserving solutions . 84

15 Irreducible path-splitting solutions . 89

16 Solutions with a cycle-split . 96

17 A-matrix of the modi�ed �ow problem . 114

18 Constructing a solution by means of alternating T -cycles 122

List of Tables

1 MSSPH, uniform distribution I . 146

2 MSSPH, uniform distribution II . 147

3 MSSPH, uniform distribution III . 148

4 MSSPH, triangular distribution I . 149

5 MSSPH, triangular distribution II . 150

6 TGHRA, uniform distribution I . 151

7 TGHRA, uniform distribution II . 151

8 TGHRA, uniform distribution III . 152

9 TGHRA, triangular distribution I . 152

10 TGHRA, triangular distribution II . 152

9

10

Chapter 8: Recognizing Twin-Constrained Hamiltonian TGs

T103: Patching graph for twin-constrained Hamiltonian TGs

C104: Necessary condition for twin-constrained Hamiltonian TGs

T108: Sufficient condition for twin-constrained Hamiltonian TGs

T111: Necessity of solution by FCA

T110: Sufficiency of solution by FCA

T114: Complete recognition of twin-constrained Hamiltonian TGs

P116: Complexity of complete recognition

C117: Complexity of the MSSP

Chapter 4: Threshold Graphs (TGs)
– Definitions and Basic Characteristics

T33: Characterisation of TG by value function
1

P34: MSSP – final approach

L38: Dominating and isolated nodes on TG
1

T36: Characterisation of TG
by degree partition

1

T40: Characterisation of TG
by vicinal preorder and as a split graph

1

Chapter 5: Maximum Cardinality Matchings,
Alternating Paths and Hamiltonian Paths on TGs

T44: Existence of alternating T-paths

C50: TGMA yields maximum cardinality matching

T53: Split graph criterion for Hamiltonian TGs

C55: Degree partition criterion
for Hamiltonian TGs

2

C56: Complexity of the MSSP

P51: Degree property of TGMAmax

Chapter 6: Alternating Cycles and Maximum Cardinality

Matchings on TGs

T62: Matching criterion for alternating T-cycles

T63: Path criterion for alternating T-cycles

T65: Strong path criterion for alternating T-cycles

C68: Existence of sorted alternating T-cycles

C70: Existence of sorted canonical alternating

 T-cycles on subsets
Chapter 7: Constructing Twin-Constrained Hamiltonian Paths on TGs

P80: MSSP for |M|≠n-1 P75: MTGMA yields maximum

 cardinality modified matching

P82: Existence of structure-preserving solutions P79: Degree property
 of MTGMAmax

P87: Classification of path-splitting solutions

P91: Classification of cycle-splitting solutions

P93: Edge criterion for the existence

 of path- and cycle-splitting solutions

P94: Necessary polyhedral criterion for the exist-

 ence of path- and cycle-splitting solutions

T96: Polyhedral criterion for the existence

 of path- and cycle-splitting solutions

C97: Complexity of polyhedral criterion

A98: Heuristic for the MSSP (MSSPH)

P99: Complexity of MSSPH

 Overview of the main Propositions, Theorems and Corollaries

-

GENERA-

LIZATION

1
 Chvátal and Hammer (1973, 1977)

2
 Mahadev and Peled (1994)

1 The Minimum Score Separation Problem (MSSP)

The Minimum Score Separation Problem (MSSP) has recently been introduced in the OR

literature by Goulimis (2004) in JORS 55 as an open combinatorial problem associated with the

cutting stock problem. Goulimis encountered this problem during consultancy projects in the

paper and related industries where it arises in the process of producing boxes. Manufacturing

boxes involves two steps: �rst cutting out �at sheets from the raw material and second folding

these sheets. The �rst step of this procedure, which consists of �nding a feasible pattern of

sheets that minimizes waste, has been well known and investigated for quite some time as the

"cutting-stock problem", and is classically solved by delayed column-generation (Gilmore and

Gomory 1961, 1963). In contrast to this, the second stage, which, for mechanical reasons,

involves an additional constraint, has not received due attention and had not been addressed

before the article mentioned.

In particular, as a part of the process of folding, the �at sheets must be prepared by "scoring"

them along the fold lines, which is achieved by knives mounted on a bar. Due to technical lim-

itations, the knives cannot be placed at an arbitrary distance to each other, but their distances

have to exceed a certain minimum � 2 R�+ (typically, � could be about 70mm in practice).

This implies that a given pattern of �at boxes as a possible outcome of the �rst stage of the

production process is feasible for the second stage only if the boxes can be aligned in a way

such that the scores of adjacent boxes are separated by the minimum distance required. The

following diagram (Figure 1) illustrates this setting for a possible production pattern that is

made up by four (not necessarily di¤erent) boxes A, B, C and D:

A BC Da2a1 c1 c2 b1 b2 d1 d2

>= α>= α>= α

Figure 1: Feasible alignment of boxes I

A possible alignment of boxes in this example consists of arranging the boxes in the order

A, C, B and D as shown in Figure 1. Despite the fact that a box may have several scores, only

the outer ones matter for the MSSP. Moreover, we can assume that the overall widths of the

boxes are large enough that we do not have to take into account the internal distance between

the two outer scores of a certain box. Accordingly, the arrangement above is feasible if and

only if a2 + c1; c2 + b1; and b2 + d1 � �. (If a box has no score on its left or right side, we will
set the corresponding value of the left or right width as �.)

11

Further combinatorial options arise from the fact that the boxes, when being aligned, can

also be rotated by 180o, as illustrated in Figure 2 where due to rotating box B, the minimum

score separation constraint is satis�ed if a2 + c1; c2 + b2; and b1 + d1 � �:

Figure 2: Feasible alignment of boxes II

Given such a setting, the MSSP consists in determining whether or not a certain set of

n boxes can be aligned in an order (possibly also by rotating some of the boxes) such that

between each pair of boxes the minimum distance requirement is met. As the number of

possible arrangements of the boxes including rotations is O(n!2 2
n) - the factor 1

2 arises due to

symmetry - complete enumeration can easily lead to a practically unmanageable combinatorial

explosion. (Even in the case of only 10 boxes, a typical value in practice, this would amount to

calculating about 1:858� 109 possible combinations for each candidate production pattern, of
which there can be several thousands in the context of generating columns for solving the cutting

stock problem.) Though in practical applications, a pattern that turns out to be infeasible in

terms of the MSSP is not entirely useless and can still be employed for manufacturing boxes by

running the scoring machine at a slower pace, such a situation would cause considerable costs.

Therefore, infeasible patterns must be singled out at an early stage before the cutting stock

problem is addressed, and be penalised.

In view of this, it must be considered a practically relevant open combinatorial problem to

develop an algorithm that, at least as a heuristic for a large percentage of possible production

patterns, can quickly determine if a certain arrangement of boxes is (in)feasible in terms of the

MSSP, and explicitly generate such an arrangement if this exists at all.

The remainder of this thesis addresses and solves this problem as follows. In chapter 2, we

give a precise account of the problem by modelling it in two di¤erent ways: �rst, by describing it

on the basis of the concept of a "Travelling Politician Problem" as proposed by Goulimis (2004)

in his original description of the MSSP, and second, as an alternative approach, by representing

it as a speci�cally constrained variant of a Hamiltonian Path Problem on a modi�ed version of

a so-called "threshold graph". Chapter 3 discusses in detail the relationship of the Minimum

Score Separation Problem with the literature on related problems, namely the Hamiltonian

Path Problem, the Travelling Salesman Problem, the Clustered Travelling Salesman Problem,

and the Generalised Travelling Salesman Problem, and addresses the question of the complexity

12

of the MSSP. Chapter 4 lays the graph theoretical foundation for our approach to the MSSP. In

particular, it introduces the concept of threshold graphs and presents some of their basic char-

acterisations. Proceeding from the perspective provided in the two previous chapters, chapter

5 analyses the relation of paths and maximum cardinality matchings on threshold graphs. In

this context, it provides a matching algorithm for threshold graphs that will later form the

basis of our algorithm for the MSSP and presents a new polynomial-time algorithm for the

Hamiltonian Path Problem on this particular type of graphs. Building on these results, chapter

6 provides several criteria that allow for the construction of alternating cycles on threshold

graphs, which will be helpful prerequisites for tackling the MSSP. In chapter 7, we turn our

attention to the MSSP itself and analyse the relation of maximum cardinality matchings on

threshold graphs and solutions to the MSSP. On this basis, we arrive at criteria that enable

us to develop a polynomial-time heuristic for quickly solving a large percentage of instances of

the MSSP. Chapter 8 capitalises on the insights gained in the previous chapters and presents

an exact polynomial-time algorithm that solves the MSSP. In chapter 9, we demonstrate the

e¢ ciency of our approach by giving computational results for a large number of randomly gen-

erated instances. The �nal chapter 10 presents some concluding remarks and an outlook on

open questions for further research. Three appendices provide the C++ source codes of the

algorithms developed.

13

2 Two ways of modelling the MSSP

The aim of this section is to provide a precise de�nition of the Minimum Score Separation

Problem by de�ning it in two di¤erent ways: �rst, by describing it as a variant of the so-called

"Travelling Politician Problem" as proposed by Goulimis (2004), and second, alternatively, by

representing it as a speci�cally constrained Hamiltonian Path Problem on what we will later call

a "threshold graph". The di¤erent notions underlying these two de�nitions will be illustrated

by giving two di¤erent MIP representations of the problem. As a point of departure, we will

start with a de�nition of the Hamiltonian Path Problem on an undirected graph and its general

MIP representation as a Travelling Salesman Problem (TSP).

2.1 Starting point: the Hamiltonian Path Problem as a TSP

In the following, let G (N;E) be a (�nite) undirected graph without loops and multi-edges. We

will denote its set of nodes by NG = f1; 2; :::; ng � N� and its set of edges by EG � NG �NG.
It will be assumed that EG 6= ? throughout the text.

De�nition 1 (Hamiltonian Path Problem)
Let G (N;E) be an undirected graph with a node set NG = f1; 2; :::; ng � N� and a set of

edges EG � NG �NG. Then the Hamiltonian Path Problem consists in �nding a path

i1 � i2 � i3 � :::� in�1 � in
with i1; i2; i3; :::; in�1; in 2 NG and (ik; ik+1) 2 EG for all k = 1; 2; :::; n � 1, where every

node ik 2 NG occurs in the path once.

By introducing a dummy node i = 0, a Hamiltonian Path Problem can routinely be modeled

as a TSP. The resulting TSP has constant cost coe¢ cients c := (0; 0; :::; 0) and is de�ned on

the extended graph G0 (N;E), with the new node set being given by NG0 := NG [f0g and the
new edge set by EG0 := EG [f0g �NG [NG � f0g.
One among several possible MIP representations of the TSP consists in the single commodity

�ow formulation by Gavish and Graves (1974), which we will employ in the following for the

illustrative purpose of this section because it allows for a very transparent description of the

subtour elimination constraints. (See Orman and Williams (2004) for a survey of di¤erent MIP

formulations of the TSP.) Given for all nodes i; j 2 NG0 ; i 6= j; the binary variables xij with

xij = 1 i¤ the edge (i; j) = (j; i) is part of the TSP tour, the continuous variables yij to denote

possible �ows on the edges, and binary constants �ij = 1 :, (i; j) 2 EG0 representing the edges

of the graph, the single commodity �ow formulation of the TSP for the general Hamiltonian

Path Problem reads as follows:

14

minimize 0 (1)

subject to
X
j;j 6=i

xij = 1 for all i 2 NG0 (2)

X
i;i 6=j

xij = 1 for all j 2 NG0 (3)

yij � nxij for all j 2 NG0 ; i 6= j (4)X
j>0

y0j = n (5)

X
i;i 6=j

yij �
X
k;k 6=j

yjk = 1 for all j 2 NG0 � f0g (6)

xij � �ij for all i; j 2 NG0 ; i 6= j (7)

xij 2 f0; 1g; yij � 0 for all i; j 2 NG0 ; i 6= j (8)

In this formulation, constraints (2) and (3) represent the assignment relaxation of the TSP.

The "�ow" yij imposed by constraints (4); (5) and (6) ensures the elimination of subtours.

This is achieved by requiring the tour to start at the dummy node with an initial �ow of n

units on the �rst edge, from which one unit is consecutively "dropped" at each node along the

tour until the �ow �nally becomes zero. (In the case of several subtours instead of one "full"

tour, the subtours without the dummy node would have no initial �ow according to (5) so that

consecutively dropping a �ow at each node along the subtour would lead to a violation of (6)

at the node where the subtour is completed.) Constraints (7) �nally impose the structure of

the graph on the model.

2.2 First approach: the MSSP as a Travelling Politician Problem

Given this context of the Hamiltonian Path Problem and the TSP, Goulimis (2004), in his

problem presentation, suggested to approach the MSSP as a certain type of generalized TSP,

namely as what he calls a "Travelling Politician Problem" (TPP). A TPP is a path in a graph

consisting of pairs of nodes, where the path must pass each node pair exactly once, which can

be imagined as a travelling politician who - during her election campaign - has to visit exactly

one out of two available cities in each constituency (or state), and return �nally to where she

started. (Note that Goulimis does not include the idea of returning to the point of departure in

his description of the TPP, however consistency demands so in order to maintain a conceptual

parallel to the TSP.)

15

Figure 3 illustrates this problem for n = 5 constituencies, with the single node in the ellipse

being a dummy node that models the way back to the point of departure. Of course, the general

TPP could also be depicted, analogously to the general TSP, without a dummy node, but with

a direct way back to the starting point instead. However, as our description here is ultimately

intended as a means to represent the MSSP, a dummy node has been included in the diagram.

In terms of the MSSP, the di¤erent constituencies represent n = 5 di¤erent boxes that have

to be arranged in a certain order, namely as a path that covers all boxes (all constituencies).

The two cities in each constituency denote the two possible ways of including a box ("regular",

and after a 180o rotation) in the alignment. A feasible arrangement of boxes then consists of a

path that passes through all constituencies exactly once. (The dummy node in the ellipse has no

representational value in the MSSP as such and just ensures that the path is extended to a tour

such that we can illustrate this setting down below by building upon the MIP representation

of a TSP.)

Figure 3: The MSSP as a Traveling Politician Problem

Let us now formalise Goulimis�approach. We can denote the n boxes by two nodes each

(for both ways of placing the box into the alignment) such that we obtain a node set NG =

f1; 2; 3; 4; :::; 2n � 1; 2ng where the odd numbers represent the "regular" way of placing the
boxes, and the even ones the boxes after rotation. Further, let v1(i) and v2(i) be the widths of

the ("regular") left and the right hand sides of the "regularly" placed boxes, respectively, i.e.

for all odd nodes i = 1; 3; :::; 2n�1. Conversely, let v1(i) and v2(i) be the right and the left hand
sides of the rotated boxes, respectively, i.e. for all even nodes i = 2; 4; :::; 2n. Consequently,

we have v1(2k � 1) = v2(2k) and v2(2k � 1) = v1(2k) for all k = 1; 2; :::; n. Then, given a

minimum knife distance � 2 R�+, the minimum score separation constraint is satis�ed for two

nodes i; j 2 NG that do not belong to the same box i¤ v1(i) + v2(j) � � or v2(i) + v1(j) � �.

16

This yields the following formal de�nition of the MSSP on a directed graph:

De�nition 2 (Minimum Score Separation Problem - Approach 1)

Let G(N;A) be a directed graph with the even node set NG = f1; 2; :::; 2n� 1; 2ng, � 2 R�+
a positive number (a "minimal value") and vp : NG ! R�+ with p 2 f1; 2g a symmetric pair of
"value functions" that assigns two positive numbers v1(i) and v2(i) to every node i 2 NG such
that the symmetry condition

v1(2k � 1) = v2(2k) and v2(2k � 1) = v1(2k) for all k = 1; 2; :::; n
holds. Moreover, let the edge set of the graph be de�ned by the adjacency condition

AG := f(i; j) with v2(i) + v1(j) � � j
i = 2k ^ j 6= 2k � 1 or i = 2k � 1 ^ j 6= 2k for some k = 1; 2; :::; ng:

Then the MSSP consists in deciding whether there exists on G a subpath that contains exactly

one node out of each of the node subsets f2k � 1; kg for all k = 1; 2; :::; n.

To state this de�nition di¤erently: The perspective involved in this approach implies (due

to the symmetry between the odd and the even nodes) that the MSSP is feasible if the graph

just de�ned can be partitioned into two subsets S and
_
S of nodes of equal cardinality such that

(a) for each k = 1; 2; :::; n either (2k � 1) 2 S and (2k) 2 S or (2k) 2 S and (2k � 1) 2 S and
that (b) there exists a Hamiltonian path in one subset (and, due to symmetry, consequently

also in the other subset). Conversely, if such a partition does not exist, the MSSP is infeasible.

In the diagram above, when leaving aside the dummy node and the dotted edges, this partition

is represented by the set of the connected nodes on one side and the set of the unconnected

nodes on the other side. Because of the symmetry between "regular" boxes and their rotated

counterparts, the path drawn in the diagram ensures that there exists also a path covering the

unconnected nodes, and this in the same order of constituencies.

We can illustrate this de�nition of the MSSP by a MIP formulation gained from the TSP

representation based on the Hamiltonian path property of the subsets. This means the following

TSP is feasible if and only if there exists a subtour in the graph that covers all and only all

of the nodes of a subset S of which for each k = 1; 2; :::; n either the node (2k) or the node

(2k � 1) is an element. Again, corresponding to the general TSP model for Hamiltonian paths
above, we have to introduce a dummy node 0 (the one already depicted in �gure 2 above) and

de�ne the extended graph G0 (N;A), with the new node set given by NG0 := NG [f0g and the
new edge set by AG0 := AG [f0g�NG [NG�f0g. Also analogously, introducing for all nodes
i; j 2 NG0 ; i 6= j; the binary variables xij , the continuous �ow variables yij , and the binary

constants �ij = 1 :, (i; j) 2 EG0 yields the following MIP approach to the MSSP.

17

minimize 0 (1)

subject to
X

j;j 6=2i�1;j 6=2i
(x2i�1;j + x2i;j) = 1 for all i 2 NG0 � f0g (2a�)

X
j>0

xj0 = 1 (2b�)

X
i;i 6=2j�1;i 6=2j

(xi;2j�1 + xi;2j) = 1 for all j 2 NG0 � f0g (3a�)

X
j>0

x0j = 1 (3b�)

X
j;j 6=i

xij �
X
j;j 6=i

xji = 0 for all i 2 NG0 � f0g (9)

yij � nxij for all i; j 2 NG0 ; i 6= j (4�)X
j>0

y0j = n (5�)

X
i;i 6=j

yij �
X
k;k 6=j

yjk =
X
i;i 6=j

xij for all j 2 NG0 � f0g (6�)

xij � �ij for all i; j 2 NG0 ; i 6= j (7)

xij 2 f0; 1g; yij � 0 for all i; j 2 NG0 ; i 6= j (8)

In this formulation, constraints (2a0); (2b0); (3a0) and (3b0) are the equivalents of the assignment

relaxation constraints of the TSP above. Constraints (2a0) and (3a0) refer to all nodes repre-

senting a box. Corresponding to the set S � NG0 that, for each k = 1; 2; :::; n, contains either

the node (2k) or the node (2k � 1) as an element, only half of the nodes (namely one for each
box) must be assigned to one successor and one predecessor. Constraints (2b0) and (3b0) make

sure that the dummy node de�nitely is included in the tour with one successor and one prede-

cessor. However, in contrast to the general MIP formulation of the Hamiltonian Path Problem,

these assignment relaxation constraints must be complemented by constraints (9). Without

(9), constraints (2a0) and (3a0) would allow some nodes to have either only predecessors or only

successors. This is avoided by forcing both sums in (9) to either the value 1 or the value 0

for all i 2 NG0 � f0g. Doing so ensures that all nodes representing boxes have either (a) both
a predecessor and a successor, or (b) neither a predecessor nor a successor, i.e. the nodes are

either fully included in or entirely excluded from the tour.

The �ow constraints for the elimination of inappropriate subtours (40); (50) and (60) have

been only slightly modi�ed compared to the TSP above. Note however that, despite jNG0 j =
2n+1 here, constraints (40) and (50) still have the constant n on their right-hand sides because

we are only interested in a path that covers half of the nodes (and the dummy). The change

18

regarding the constraints (60) takes into account that a node may be used for the subtour or

not at all. If and only if a node is part of the tour to be found, the right-hand side of (60) equals

1 and a unit of the �ow is "dropped" at the node. Otherwise, the right hand side equals 0 and

the corresponding node j is neutral with respect to the �ow that enforces the elimination of

subtours. Finally, constraints (7) again impose the structure of the graph on the model.

2.3 Second approach: the MSSP as a Twin-Constrained Hamiltonian
Path Problem

We will now introduce an alternative approach to the MSSP, which is more intuitive in so far

that (as the reader will also observe in terms of notational e¤ort) it goes down more "naturally"

on the basis of the concept of Hamiltonian Paths. Still, we model each box by two nodes and

look for a certain path connecting the nodes. However, while in the �rst approach the two

nodes for each box represent the two possible positions of a box in the alignment ("regular",

or rotated), here the two nodes correspond to the left and the right sides of the boxes. This

means that if a "regular" box is described by a pair (i; j) 2 NG�NG, its rotated counterpart is
denoted as (j; i). We will call the two nodes that make up a box "twin nodes" in the following.

Analogously to the preceding subsection, we could imagine the left hand sides of the boxes

being represented by the odd node numbers in the node set, and the right hand sides by the

even numbers, but we will not require this in the following because the algorithm for the MSSP

to be developed later will permute the order of nodes anyway. This is why we will remain more

�exible and introduce a "twin node function" as a bijective function b : NG ! NG from the

set of nodes NG onto itself that associates each node i 2 NG with its twin node t := b(i) 2 NG
(consequently we have b(b(i)) = b(t) = i). Then, if a node i represents one side of a certain

box, the node b(i) represents the other side of this box, and it does not matter, if i is the right

or the left side of the box, or if the box is included in the alignment in a "regular" or a rotated

fashion. Note that the notion of "twin nodes" here does not imply that two twin nodes are

adjacent to the same set of other nodes because the two sides of a box could di¤er with respect

to the other boxes they can be placed next to. In this model, "twins" are closely attached to

each other, but not perceived to be necessarily identical, so to speak.

Similarly to the previous subsection, we will denote the minimum knife distance by a certain

positive � 2 R�+ and introduce a "value function" v to model the widths of the left and right
sides of the boxes. However, since we model each side of a box separately from the other side in

this alternative approach, one value function v : NG ! R�+ su¢ ces here, and we can do without
a "symmetry condition" of the kind imposed on the pair of value functions in the previous

subsection. On this simpler basis, two nodes i; j 2 NG ful�l the minimum score separation

constraint, i.e. are adjacent in the graph G, if and only if v(i)+ v(j) � � � provided that they
do not belong to the same box, i.e. j 6= b(i).
As both sides of a box must be part of the �nal arrangement of boxes (we cannot cut the

19

boxes into halves), both nodes modeling a box must �nally be part of the path that represents

the alignment of boxes. In other words: this way of describing the MSSP, in contrast to

Goulimis�approach, does not require a certain subpath in a partition of nodes for a feasible

solution, but instead a (complete) Hamiltonian Path, which (by de�nition) covers all nodes of

the graph. In this perspective, the MSSP �nally turns out to be a "normal" Hamiltonian Path

Problem on a graph given by the speci�c adjacency condition v(i) + v(j) � � for all nodes

j 6= b(i), with the only additional requirement being that each node has its twin node either as
its successor or its predecessor ("twin node condition").

This gives rise to the following de�nition.

De�nition 3 (Twin-Constrained Hamiltonian Path Problem)
Let G (N;E) be an undirected graph with node set NG = f1; 2; :::; ng � N�, a set of edges

EG � NG �NG, and b : NG ! NG a bijective function that associates every node i 2 NG with
a "twin node" t := b(i) 2 NG, t 6= i. Moreover, let G0 be a graph derived from G by

NG0 := NG and EG0 := EG [f(i; j) : i = b(j)g.
Then the Twin-Constrained Hamiltonian Path Problem on G with respect to b consists in

deciding whether there exists on G0 a Hamiltonian path of the form

i1 � b(i1)� i2 � b(i2)� :::� in � b(in),
i.e. a Hamiltonian path in which every node is either predecessor or successor of its twin

node ("twin node condition"). G is called the underlying graph and b the twin-node function of

the Twin-Constrained Hamiltonian Path Problem.

Note that, due to the bijectivity of the twin function b, the twin node condition actually

describes all possible types of paths in which every node is either predecessor or successor of

its twin node. Obviously, equivalent formulations of this condition would be, for example, also

b(i1)� i1 � b(i2)� i2 � :::� b(in)� in, and
i1 � b(i1)� b(i2)� i2 � i3 � b(i3)� :::� b(in)� in.

The setting of a twin-constrained Hamiltonian path is illustrated for an MSSP with n = 5

boxes in Figure 4, in which the two nodes that share a circle (the triangle and the rectangle)

correspond to the same box (imagine the rectangles as their right sides and the triangles as

their left ones, "normal" position given). The inseparability of the twin nodes in the model is

re�ected by the bold lines (edges) connecting triangles and rectangles such that any Hamiltonian

Path must either enter a circle at the side of the triangle and proceed to the rectangle, or vice

versa. Again, the ellipse represents a dummy node to turn the Hamiltonian Path Problem into

a TSP.

The mathematical intuition guiding this "twin node" approach can be described as follows:

Goulimis�model, as presented in the previous section, requires doubling all nodes in order to

account for the fact that boxes can be rotated. Parallel to this, his approach requires a pair of

value functions that, due to their symmetry property, also double the number of mathematical

20

Figure 4: The MSSP as a twin-constrained Hamiltonian path problem

entities for representing rotated boxes. Despite this e¤ort of doubling the mathematical struc-

ture, any solution to the MSSP (if there exists one at all for a certain instance) will use only

half of the nodes in the model. Such a structural redundancy is theoretically unsatisfying and

suggests looking for a more straight forward approach (also in view of the classical method-

ological principle of "Occam�s razor"). This is why our alternative approach models each side

of a box separately from the corresponding other side and additionally imposes the "twin node

condition". In proceeding in this way, we can describe every solution to the MSSP readily as

a Hamiltonian Path in terms of all boxes. Moreover, apart from a certain elegance involved

in this description, this perspective of looking at the MSSP opens up a �exible way to exploit

the adjacency conditions of the graph for each node separately because we do not have to care

about both sides of a box at the same time - at least not in the �rst instance. In particular,

modeling the sides of the boxes separately leads to a "threshold graph", the properties of which

can fruitfully be exploited for �nding a solution to the MSSP. Finally, the algorithm gained in

this way shows a surprisingly e¤ective behaviour, which ultimately justi�es this perspective on

the MSSP.

Having presented the ideas underlying our alternative approach, we summarize the second

model of the MSSP in the following formal de�nition:

De�nition 4 (Minimum Score Separation Problem - Approach 2)

Let G(N;E) be an undirected graph with an even set of nodes NG = f1; 2; :::; 2n� 1; 2ng �
N�, and b : NG ! NG a twin node function. Moreover, let � 2 R�+ a positive constant (a

"minimal value") and v : NG ! R�+ be a "value function" that assigns a positive number to

each node. The edge set of the graph EG � NG �NG.be de�ned by the adjacency condition
(i; j) 2 EG :, v(i) + v(j) � � for all i; j 2 NG; j 6= i.

Then the Minimum Score Separation Problem (MSSP) consists in deciding if there exists a

twin-constrained Hamiltonian path on G with respect to b.

21

Finally, we will illustrate also this de�nition of the MSSP by a MIP formulation gained

from the TSP presentation of the Hamiltonian Path property of a feasible solution to the

MSSP. The reader will observe that this approach comes much closer to modeling the general

Hamiltonian Path Problem than Goulimis�approach does. Again, corresponding to the general

TSP model for Hamiltonian Paths above, we have to introduce a dummy node 0 (the one

already depicted in �gure 3), and de�ne the extended graph G0 (N;E), with the new node set

given by NG0 := NG [f0g and the new edge set by EG0 := EG [f0g �NG [NG � f0g. Also
analogously, introducing for all nodes i; j 2 NG0 ; i 6= j; the binary variables xij , the continuous
�ow variables yij , and the binary constants �ij = 1 :, (i; j) 2 EG0 yields the following MIP

approach to the MSSP.

minimize 0 (1)

subject to
X
j;j 6=i

xij = 1 for all i 2 NG0 (2)

X
i;i 6=j

xij = 1 for all j 2 NG0 (3)

xi;b(i) + xb(i);i = 1 for all i 2 NG0 � f0g (10)

yij � 2nxij for all i; j 2 NG0 ; i 6= j (4�)X
j>0

y0j = 2n (5�)

X
i;i 6=j

yij �
X
k;j 6=k

yjk = 1 for all j 2 NG0 � f0g (6)

xij � �ij for all i; j 2 NG0 ; i 6= j (7)

xij 2 f0; 1g; yij � 0 for all i; j 2 NG0 ; i 6= j (8)

In contrast to the �rst approach formalised above on the basis of Goulimis�suggestions, our

formulation requires only minor changes of the original MIP for the Hamiltonian Path Problem.

The assignment relaxation constraints (2), (3) and the subtour elimination constraint (6) remain

the same as in the original problem. The only signi�cant di¤erence here is the introduction of the

additional "twin node constraints" (10): Complementing the assignment relaxation constraints,

they ensure that each node has its twin node either as its predecessor or its successor. The

subtour elimination constraints (400) and (500) can be kept almost unchanged, with the only

change to the general Hamiltonian Path Problem being that they have to account for the fact

that the node set of the graph here has cardinality jNG0 j = 2n+ 1. Constraints (7) impose the
structure of the graph on the model again.

22

3 The MSSP, Hamiltonian paths, variants of the TSP and

complexity theory

We have seen in the previous chapter that our approach of modelling the Minimum Score Sep-

aration Problem leads to a speci�c type of Hamiltonian path problem and a speci�c variant of

the Travelling Salesman Problem. This chapter explores in more detail of how the Mininum

Score Separation Problem is related to existing research about these problems, namely to re-

search about the Hamiltonian Path Problem, the Travelling Salesman Problem, the Clustered

Travelling Salesman Problem, and the Generalised Travelling Salesman Problem. Moreover, it

addresses the question of the complexity of the MSSP. In doing so, we will proceed from the

most speci�c case, which is the Hamiltonian path problem, to the most general case, namely

the Generalised Travelling Salesman Problem. We begin with some preliminary remarks on the

notation used in this thesis.

3.1 Notation

In the remainder of this paper, we will mostly follow Schrijver�s notation (Schrijver 2003).

Whenever speci�c aspects of threshold graphs are concerned, we apply Mahadev�s and Peled�s

notation, who have written the major source on this topic (Mahadev and Peled 1995).

Let G (N;E) be a (�nite and simple) undirected graph with node set NG = f1; 2; :::; ng � N�

and edge set EG � NG � NG It will be assumed that EG 6= ? throughout the text. As, in

most cases, we prefer to denote edges by pairs of nodes (instead of using the set notation fi; jg,
which can often be found in the case of undirected graphs), we will always take for granted that

(i; j) 2 EG , (j; i) 2 EG when using this notation. A graph G(N;E) is called complete i¤ we
have EG = NG �NG. Given two graphs G(N;E) and G0(N;E) with

NG0 � NG and EG0 � EG,
the graph G0 is called a subgraph of G and G is said to contain G0. For

NG0 := P $ NG and EG0 := EG \ P � P ,
the graph G

0
(P;E) is called the subgraph of G induced by P .

A path in an undirected graph G(N;E) is a sequence

(i0; e1; i1; :::; en; in)

where i0; i1; :::; in 2 NG are distinct nodes and e1; e2; :::; en 2 EG edges such that ek is an
edge that connects the nodes ik�1 and ik. We will call i0 and in the end nodes of the path and

say that the path connects the nodes i0; i1; :::; in 2 NG. A sequence
(i0; e1; i1; :::en�1; in�1; en; in)

is called a cycle if i0; i1; :::; in�1 2 NG are distinct nodes, i0 = in, and e1; e2; :::; en 2 EG
edges such that ek is an edge that connects the nodes ik�1 and ik If the context prevents

misunderstanding, we refer to a path or a cycle by just providing the corresponding set of edges

23

fe1; e2; :::; eng � E
or the corresponding order of nodes

i0 � i1 � :::� in�1 � in.

A graph G is said to be connected if for any two of nodes i0; in 2 NG there exists a path
the end nodes of which are i0 and in, and it is called Hamiltonian if there exists a cycle that

connects all nodes in NG. Such a cycle is called a Hamiltonian cycle. By removing one edge

from a Hamiltonian cycle, we obtain a Hamiltonian path.

For any node i 2 NG, the subset of nodes N(v) � NG is called a neighbourhood of the node
i if N(i) contains all nodes that are adjacent to i, i.e.

N(i) := fj 2 NG : (i; j) 2 EGg:
The closed neighbourhood N [i] � NG of a node i 2 NG is the union of i and the neighbour-

hood of i, i. e.

N [i] := N(i) [fig.
A node is called isolated if its neighbourhood is empty, and dominating if its closed neigh-

bourhood is the entire set of nodes.

A subset of nodes S � NG is a stable set when i =2 N(j) for all nodes i; j 2 S, and a subset
K � NG is called a clique when i 2 N(j) for all nodes i; j 2 K.

A preorder is the pair (P;%) of a set P and a binary relation % on P when the two following
properties hold:

(i) p % p for all p 2 P , (re�exivity)

(ii) (p1 % p2) ^ (p2 % p3)) (p1 % p3)

for all p1; p2; p3 2 P . (transitivity)

We will say the preorder is total i¤ all nodes can be compared with respect to the preorder,

i. e.

p1 % p2 or p2 % p1 for all p1; p2 2 P .
De�ning a binary relation % on the set of nodes NG by

i % j :, N [i] � N(j) for all i; j 2 NG,
clearly yields a preorder, which will be called the vicinal preorder of G (and is not total in

the general case). If i % j, we will call the node i greater than j, and j smaller than i. (Note
that it is possible to have both i % j and j % i, which is equivalent to N(i)nfjg = N(j)nfig.)

The cardinality of the neighbourhood of a node i is called its degree, denoted by

dg(i) := jN(i)j.
Given the family �1 < �2 < ::: < �m�1 < �m of distinct positive degrees of a graph G, and

�0 := 0 (even if there are no isolated nodes in the graph), we de�ne the family of sets

Dk := fi 2 NG : dg(i) = �kg for all k = 0; 1; :::;m
and call

NG = D0 +D1 +D2 + :::+Dm

24

the degree partition of G.

For a graph G(N;E) the relationM � EG � NG�NG is called a matching i¤ the relation is
(i) symmetric, i.e. (i; j) 2M implies (j; i) 2M for all i; j 2 NG, (ii) functional, i.e. (i; j) 2M
implies (i; k) =2 M for all i; j; k 2 NG, k 6= j, and (iii) (i; i) =2 M for all i 2 NG. A matching

M� is said to be a maximum cardinality matching if jM j � jM�j for all matchings M � E. If a
matching is a left-total relation, i.e. for all i 2 NG there exists a j 2 NG such that (i; j) 2 M ,
the matching is called perfect.

3.2 Hamiltonian paths and alternating Hamiltonian paths

In this section we will address the relationship of the MSSP to research on the Hamiltonian

Path Problem and some of its generalisations. As mentioned in the �rst chapter, for a given

undirected graph G(N;E) a Hamiltonian path is a path

i1 � i2 � i3 � :::� in�1 � in
with i1; i2; i3; :::; in�1; in 2 NG and
(ik; ik+1) 2 EG for all k = 1; 2; :::; n� 1,
such that every node ik 2 NG occurs in the path exactly once.

We will speak of a Hamiltonian cycle i¤ the �rst and the last node of the path are identical,

and a graph with at least one Hamiltonian cycle is said to be Hamiltonian.

The problem of �nding a Hamiltonian path or cycle, while being named after Hamilton

(1858), was already described in an earlier paper by Kirkman (1856), who discussed a planar

graph that is not Hamiltonian (see Biggs, Lloyd and Wilson (1976) for details on the history

of this problem). Since these early publications, more than one thousand papers have been

published, providing theoretical insights, algorithms or applications of the problem. Among

the theoretical insights there are criteria for Hamiltonicity and non-Hamiltonicity based on

certain characteristics of a graph (such as connectedness, toughness or the number of edges),

for example, stochastic analyses on the frequency of Hamiltonian graphs, theorems on the

Hamiltonicity of graphs that do not contain speci�c subgraphs, and results on the number of

di¤erent Hamiltonian cycles that might exists for a particular graph. An overview of the vast

amount of literature on these and related topics can be found in Bermond (1978), Gould (1991)

and Gould (2003).

Regarding the computational question of how to �nd a Hamiltonian cycle for a given instance

of a graph, various types of general-purpose algorithms have been developed for random graphs

(see Posa (1976), Angluin and Valiant (1979), Bollobas, Fenner and Frieze (1987), Frieze (1988),

Brunacci (1988), Kocay (1992), Broder, Frieze and Shamir (1994), Shufelt and Berliner (1994),

Vandegriend and Culberson (1998), and Wagner and Bruckstein (1999), for example). Some

of these algorithms are heuristics for �nding a Hamiltonian path or cycle (such as Wagner and

25

Bruckstein (1999), for example), while others are exact algorithms that give a de�nite answer

to the question of whether a given graph is Hamiltonian (such as Shufelt and Berliner (1994),

for example). While the latter come with the disadvantage of a long computational time in

the worst case, the former might not �nd a de�nite answer on the Hamiltonicity of an input

instance (cf. Shields, 2004, for more details on some of the algorithms).

Additionally, research has led to algorithms for speci�c classes of graphs that can decide on

the Hamiltonicity of a graph in a comparably short amount of computational time ("polynomial

time", to be precise, see section 4 of this chapter). Among the speci�c classes of graphs for which

such an e¢ cient algorithm exists there are, for example, proper interval graphs (Bertossi, 1983),

interval graphs (Keil, 1985), circular-arc graphs (Shih, Chern and Hsu, 1992), threshold graphs

(Mahadev and Peled, 1994, see also chapters 4 and 5 of this thesis for more details), graphs

without "claws" and "nets" as subgraph (Brandstaedt, Dragan and Koehler, 2000), distance-

hereditary graphs (Hung and Chang, 2005), strongly chordal graphs that do not contain the

subgraphs

G1(N;E1) and G2(N;E2)

with the (common) node set N := fa; b; c; d; eg and the edge sets
E1 := f(a; b); (a; c); (b; c); (c; d); (c; e)g, E2 := E1 + f(d; e)g

and have an order of at least 5 (Abueida and Sritharan, 2006), and quasi-adjoint graphs

(Blazewicz, Kasprzaka, Leroy-Beaulieuc and de Werra, 2008). Note that the references given

for e¢ cient algorithms here, refer to the �rst published paper to tackle algorithmically the

question of the Hamiltonicity of a particular class of graphs. For many of these graph classes,

later research led to the development of improved algorithms that solve the Hamiltonian cycle

(or path) problem with less computational e¤ort.

Apart from the result on recognizing Hamiltonian threshold graphs, to which we will come

back in chapter 5 of this thesis, going more into the details of these streams of research on the

Hamiltonicity of graphs is not necessary for discussing our problem, the MSSP. As mentioned

in the previous chapter, the MSSP is a Hamiltonian path problem with one additional type

of constraint, namely the constraints that each node must have its twin-node as a successor

(or predecessor) in the Hamiltonian path. If we would like to arrive at an algorithm that

exploits the speci�c structure of the MSSP, we can not expect the results of the research on

the (ordinary) Hamiltonian path or cycle problem to be particularly helpful for us. For this

reason, let us turn to a variant of the problem of recognizing Hamiltonian graphs that has a

more speci�c structure: the problem of �nding alternating (Hamiltonian) paths and cycles.

De�nition 5 (Alternating Hamiltonian cycles and paths on 2-edge-coloured graphs)
For a given graph G(N;E), we colour some edges "red" and some edges "blue". The graph

G is said to have an alternating Hamiltonian cycle (path) if there exists a Hamiltonian cycle

(path) on G such that successive edges di¤er in colour. G is said to be alternating Hamiltonian

i¤ there exists an alternating Hamiltonian cycle on G.

26

Remark 6 We note that the twin-constrained Hamiltonian path problem, and hence the MSSP,
is obviously a special case of the problem of �nding an alternating Hamiltonian path, as we can

imagine the edges of our underlying graph G as "blue" edges and the edges (i; b(i)) that connect

a pair of twin nodes as "red" edges.

The following proposition attributed to Häggkvist (1979) states that, in a certain sense,

the problem of �nding an alternating Hamiltonian cycle (path) on a 2-edge-coloured graph

generalizes the problem of �nding an ordinary Hamiltonian cycle (path).

Proposition 7 (Reducibility of Hamiltonicity to alternating Hamiltonicity)
An algorithm that can decide on the alternating Hamiltonicity of graphs is able to decide on

the Hamiltonicity of graphs.

Proof. For a given (uncoloured) graph G(N;E) we de�ne a new graph G0 by (i) introducing
for each edge (i; j) 2 E two new nodes k and l, (ii) replacing (i; j) by the four edges (i; k),

(k; j), (i; l) and (l; j), and (iii) colouring the edges (i; k) and (l; j) "red", while colouring the

edges (k:j) and (i; l) "blue". If we can �nd an alternating Hamiltonian path (cycle) on G0, we

just have to replace the four edges (i; k), (k; j), (i; l) and (l; j) by the original edge (i; j) and

remove the nodes k and l in order to construct a Hamiltonian path (cycle) on G. Conversely,

any Hamiltonian path (cycle) on G obviously corresponds to an alternating Hamiltonian path

(cycle) on G0.

The concept of alternating paths goes back, as do an astonishing number of graph theoretical

problems, to Petersen (1891). (See also Mulder (1992) for a discussion of Petersen�s results in

the light of contemporary graph theory.) The problem of alternating Hamiltonicity is likely to

have �rst been introduced by Bankfalvi and Bankfalvi (1968), going back to a problem stated

by Erdös (cf. Bang-Jensen and Gutin, 1997). In their paper, Bankfalvi and Bankfalvi gave a

criterion according to which the Hamiltonicity of a 2-edge coloured complete(!) graph with an

even node set depends on the sum of the degrees of the nodes in certain pairs of disjunct subsets

of the node set. Apart from this theorem, three other early results on alternating cycles (paths)

were presented in Daykin (1976), Bollobás and Erdös (1976) and Chen and Daykin (1976), who

gave criteria for the existence of alternating cycles of certain lengths for a complete graph no

node of which is incident to more than k edges of the same colour, provided that the number

of nodes exceeds a certain threshold depending on k.

Up to now, these early results have fostered a stream of research of some hundred papers

(see Bang-Jensen and Gutin, 1997 for a survey). While most contributions to this topic ad-

dress the case of 2-edge coloured alternating paths (cycles) and alternating Hamiltonian paths

(cycles), the scope of research has, more recently, been extended to explore also, among other

cases, the case of alternating cycles on r-edge coloured graphs with r > 2 (see Yao (1996) and

Abouelaoualim et al (2009), for example) and the question of whether there exist, on an edge

27

coloured graph, subgraphs other than paths and cycles (such as trees, or node partitions with

speci�c properties) such that all edges have the same colour or di¤er in colour (see Kano and

Li, 2008, for a survey).

The majority of this stream of research on alternating subgraphs focusses almost exclusively

on graphs that are complete and/or bipartite, in particular those papers that deal with Hamil-

tonian paths (cycles). As will become clearer in section 4 of this chapter and in section 3 of

chapter 5, we are well advised to exploit the speci�c structure of the graph G underlying our

MSSP according to De�nition 3. Therefore we cannot expect to bene�t from more details of

the literature on alternating paths (cycles) and we will stop our survey on this body of research

here.

3.3 The Travelling Salesman Problem and generalisations

The Hamiltonian path problem of the previous chapter can be generalized to the Travelling

Salesman Problem (TSP).

De�nition 8 (Travelling Salesman Problem - TSP)

For an undirected graph G(N;E) and a ("cost") function c : E ! R the Travelling Salesman
Problem consists in �nding a Hamiltonian cycle

i1 � i2 � i3 � :::� ijNGj � i1, with ik 2 NG for 1 � k � jNGj
on G such that P

1�k�jNGj
c[(ik�1; ik)] + c[(ijNGj; i1)]

is minimal.

Remark 9 (1) In the literature the TSP is often de�ned only for complete graphs. This is

not a restriction as we can transform a TSP on an arbitrary graph G(N;E) into a TSP on a

complete graph by de�ning

c(f) :=
P
e2E

c(e) + 1 for all f 2 (NG �NG)� E.

Then the TSP on the graph G has a solution if and only if we haveP
1�k�jNGj

c[(ik�1; ik)] + c[(ijNGj; i1)] �
P
e2E

c(e)

for an optimal solution of the TSP on the complete graph.

(2) Obviously, the problem of deciding on the Hamiltonicity of a graph is a special case of

the TSP as a graph is Hamiltonian if and only if the TSP on this graph has a feasible solution.

28

The TSP was probably �rst stated in a German handbook for traveling salesmen (Voigt,

1831; cf. Müller-Merbach 1983) and found its way into the mathematical literature in the

1930s (see Ho¤man and Wolfe (1985) and Schrijver (2003) for more details on the history of

the problem). Since then, it has become one of the most thoroughly investigated combinatorial

problems. Detailed surveys on the development of research on the topic, with respect to the

mathematical structure of the TSP, its applications as well as algorithms for solving it, can be

found in Bellmore and Nemhauser (1968), Lawler, Lenstra, Rinnooy Kan and Shmoys (1985),

Jünger, Reinelt and Rinaldi (1995), Burkhard, Deineko, van Dal, van der Veen and Woeginger

(1998), and Gutin and Punnen (2002). Additionally, Gutin (2009) provides an excellent intro-

ductory overview, and Orman and Williams (2004) compare various di¤erent ways of modelling

the TSP as an Integer Programming problem.

Obviously, our MSSP is not immediately a TSP because the MSSP requires us to �nd a

Hamiltonian path that satis�es the additional constraint that the successor (or predecessor) of

each node is its twin-node. There are several generalisations of the TSP in the literature that

originate from adding a speci�c type of constraint to the TSP. Among these there are the TSP

with time-windows, in which some nodes have to be visited during a certain period of time

(see Dumas, Desrosier, Gelinas and Solomon (1995), for example), the TSP with precedence

constraints, in which certain nodes can only be visited after certain other nodes have been

visited (see Balas, Fischetti and Pulleyblank (1995), for example), and the TSP with pickup

and delivery, in which each node is associated with a "pickup quantity" and a "delivery quantity"

and a feasible Hamiltonian cycle satis�es the additional condition that the quantity transported

along the cycle does not exceed a certain capacity (see Gendreau, Laporte, Vigo (1999), for

example). A large variety of further generalisations can be found in the book chapters by Balas

(2002), Barvinok, Gimadi and Serdyukov (2002), Fischetti, Salazar-Gonzáles and Toth (2002),

and Kabadi and Punnen (2002).

A particular one among these generalisations of the TSP is of interest for us as the MSSP

can be considered a direct subcase of it: the Clustered Traveling Salesman Problem (CTSP).

The CTSP was introduced into the literature by Chisman (1975). A short overview of the

literature and of several applications can be found in Laporte and Palekar (2002).

De�nition 10 (Clustered Traveling Salesman Problem - CTSP)

For an undirected graph G, a partition of the node set into sets ("clusters") Ni, 1 � i � n,
with N1 + N2 + ::: + Nn = NG and a function c : NG � NG ! R, the Clustered Traveling
Salesman Problem consists in �nding an optimal solution of the TSP on G under the additional

constraint that the nodes of each cluster appear in the Hamiltonian cycle in a consecutive order.

29

Remark 11 (1) Also the CTSP is typically de�ned on a complete graph in the literature.

Remark 9(1) applies analogously.

(2) The twin-constrained Hamiltonian path problem on a graph G with respect to the twin

node function b (and hence the MSSP) can directly be stated as an CTSP on a graph G0 that

results from adding to the underlying graph G a twin-node pair of dominating nodes and parti-

tioning the node set of G0 into clusters of cardinality 2 such that each cluster contains one of

the nodes i 2 NG0 of the graph and its twin-node b(i). Then the twin-constrained Hamiltonian

path problem on G with respect to b is feasible if and only if the CTSP on G0 has a feasible

solution.

Despite its speci�c structure of the node set and the additional constraint that all nodes

within a cluster must be visited consecutively, the CTSP is eventually equivalent to the TSP

in the sense that any instance of a TSP can be transformed into an instance of the CTSP, and

vice versa.

Proposition 12 (Reducibility of CTSP to TSP and vice versa)
Let G(N;E) be an undirected graph, a cost function c : E ! R, and a partition N1 +N2 +

::: +Nn = NG for the CTSP. An algorithm that is able to solve the TSP to optimality is also

able to solve the CTSP to optimality, and vice versa.

Proof. An instance of the TSP can trivially be transformed into an instance of the CTSP
by partitioning the node set into clusters Ni with jNij = 1 for 1 � i � jNGj. Conversely, an
instance of the CTSP can be transformed into an instance of the TSP in the following way. We

add to the cost of all edges between clusters the constant

M :=
P
e2E

c(e) + 1.

As the CTSP has n clusters, a feasible solution of the CTSP must contain n inter-cluster

edges. Therefore, if and only if the TSP on G with the rede�ned cost function has a solution

with P
1�k�jNGj

c[(ik�1; ik)] + c[(ijNGj; i1)] � (n+ 1)M � 1,

the CTSP with the original cost function has a feasible solution and the Hamiltonian cycle

found by the TSP algorithm is also the optimal solution of the CTSP.

Remark 13 Note that a case parallel to the preceding proposition would be a transformation
of the alternating Hamiltonian path problem into a Hamiltonian path problem. However, such

a transformation is not possible because we were able to transform the CTSP into the TSP only

by virtue of a rede�ned cost function.

Despite the fact that the CTSP is equivalent to the TSP in the sense of the preceding

proposition, solving a CTSP as a TSP cannot necessarily be considered the method of choice

30

as doing so would (at least partly) disregard the particular cluster structure of the CTSP.

Therefore speci�c algorithms and heuristics for tackling the CTSP have been developed, which

can be found in Jongens and Volgenant (1985), Arkin, Hassin and Klein (1994), Laporte, Potvin

and Quilleret (1997), Renaud and Boctor (1998), Anily, Bramel, and Hertz (1999), Guttmann-

Beck, Hassin, Khuller and Raghavachari (2000), and Dinga, Cheng and He (2007). We will

not go further into the details of these algorithms here as we have reasons (see the following

section) to focus on exploiting both the speci�c structure of the graph underlying the MSSP

and the speci�c structure given by the twin-node function � two aspects that, to the best of
our knowledge, have not been addressed in the literature.

Another variant of the TSP is worth being addressed here due to its close relation with our

MSSP: the Generalized Traveling Salesman Problem (GTSP). More details on this problem can

be found in Laporte, Asef-Vaziri and Sriskandarajah (1996).

De�nition 14 (Generalized Traveling Salesman Problem � GTSP)
For an undirected graph G, a partition of the node set into sets ("clusters") Ni, 1 � i � n,

with N1 + N2 + ::: + Nn = NG and a function c : NG � NG ! R, the Generalized Traveling
Salesman Problem consists in �nding a minimum cost cycle on G that passes through each

cluster Ni, 1 � i � n, exactly once.

Remark 15 (1) In a di¤erent version of the GTSP, the minimum cost cycle must pass through
each cluster at least once (see Laporte, Asef-Vaziri and Sriskandarajah ,1996).

(2) The GTSP can be reduced to a CTSP by doubling all nodes and rede�ning the cost

function c in an appropriate manner (see Laporte and Semet (1999) for details). Consequently,

the GTSP can also be reduced into a TSP. Conversely, each TSP can trivially be transformed

into a GTSP by partitioning the node set into clusters Ni with jNij = 1 for 1 � i � jNGj.
(3) The original model for the MSSP by Goulimis (see chapter 2:2) can be seen as a GTSP

with clusters of cardinality 2.

(4) More generally, any alternating Hamiltonian cycle problem can be reduced to a GTSP.

For doing so, we replace each node of the alternating Hamiltonian cycle problem by a cluster

of nodes. Each node in such a cluster represents a way of visiting the original node such that

we arrive at that node via taking a blue edge and depart from that node via a red edge (or vice

versa).

Finally, for the sake of comprehensiveness, we mention two more related problems, Network

Design Problem and Generalized Network Design Problem (Feremans, Labbé and Laporte, 2003;

Feremans, Labbé, Letchford and Salazar, 2009). Network Design Problems consist of �nding a

minimum cost subgraph of a given graph, while an optimal solution of a Generalized Network

Design Problem is a minimum cost subgraph of a given graph such that, for a given partition

of the node set, the subgraph consists of exactly one node (or at least one node, or at most

31

one node, depending on the variant of the problem) from each cluster of the node set partition.

Clearly, Network Design Problems are a relaxation of the TSP, while Generalized Network

Design Problems are a relaxation of the GTSP. The theoretical relevance of the concepts of

the Network Design Problem and the Generalized Network Design Problem lies in the fact that

theoretical results (such as polyhedral, algorithmic, and complexity-related results) about these

problems can be applied to a variety of subgraph problems, such as the (Generalized) Minimum

Spanning Tree Problem (Feremans, C., M. Labbé and G. Laporte, 2002), of which the Network

Design Problem and the Generalized Network Design Problem are relaxations.

3.4 Relevant results of complexity theory

In this section we �rst review some de�nitions and results from complexity theory and, in a

second step, apply these results to the problems presented in the preceding two sections. Doing

so will give us an insight into the computational "di¢ culty" of the twin-constrained Hamiltonian

path problem. Our review of de�nitions and results from complexity theory mainly follows the

presentation in Johnson and Papdimitrou (1985, pp. 42-58) - albeit not always in the order of

their presentation and apart from some references to other sources when we go slightly more

into detail. A rigorous formal treatment based on the concept of the Turing machine can be

found in Jongen, Meer and Triesch (2004, chapters 18-22), for example.

We begin by distinguishing between two types of problems in the computational complexity

of which we are interested.

De�nition 16 (Decision and optimization problems)
(1) A problem that can be solved by an algorithm that produces only a "yes" or "no" answer

is called a decision problem.

(2) A problem is referred to as an optimization problem if solving it means �nding an optimal

feasible solution to the problem with respect to some objective function. For a given optimization

problem that is a minimization problem and a given number b, we call the decision problem of

whether there exists a feasible solution to the optimization problem with an objective function

value less than or equal to b the decision problem version of the optimization problem.

The branch of complexity theory we deal with here is concerned with analysing the worst case

behaviour of an algorithm with respect to running time. The following de�nition introduces a

way of describing the running time of an algorithm and introduces the class of decision problems

that is the most relevant for the present thesis. It goes back to a suggestion by Edmonds (1965a)

and, independently, Cobham (1965), according to which an algorithm should be considered

"good" (or "e¢ cient") for practical purposes if the number of computer operations needed to

solve it depends polynomially on the input data.

32

De�nition 17 (O(f(n)-notation and the class of polynomial-time decision problems � P)
(1) For a function f : N ! R, we say that the running time of an algorithm is O(f(n)) i¤

there exists a constant c > 0 such that the number of steps that an algorithm needs to solve a

problem for all instances of size n has an upper bound of cf(n) if n is su¢ ciently large.

(2) An algorithm for which such a polynomial function f exists is said to be e¢ cient or a

polynomial-time algorithm. The class of all decision problems that can be solved by polynomial-

time algorithms is denoted by P.

Remark 18 In this and all following chapters we will equate the input size n with the cardi-
nality of the node set of the graph that our problem is based on, and we will count as one, single

(unit time) step all summations, multiplications, and all operations that compare the size of

two given numbers (such operations are called elementary arithmetic operations). This simpli-

�cation is justi�ed because the number of steps needed for multiplications and comparisons is

polynomially bounded by the number of steps needed for summations and we are only concerned

with the question of whether there exists, or is likely to exist, an e¢ cient, i.e. polynomial time

algorithm for a problem. This simpli�cation also implies that we will disregard the details of

how the actual number of steps needed for an elementary arithmetic operation depends on the

numerical size of the input data. In line with most of the literature on combinatorial optimiza-

tion (cf. Papadimitrou and Steiglitz,1998, chapter 8), it su¢ ces for us to know that this actual

number of steps, and the memory space needed for carrying them out, are bounded by a polyno-

mial in the numerical size of the input data. More precisely speaking, an algorithm that requires

only polynomial time with respect to elementary arithmetic operations and in which the space

needed for carrying out each of these operations is bounded by a polynomial in the numerical

size of the input data is called strongly polynomial (cf. Schrijver, 2003).

The subsequent de�nition presents two concepts that are important tools for comparing the

complexity of two algorithms.

De�nition 19 (Polynomial-time reducibility and polynomial-time transformability)
(1) A problem A is called polynomial-time reducible to a problem B if there exists an al-

gorithm for A that uses an algorithm for B as a subroutine and the algorithm for A runs in

polynomial time if we count each call of the subroutine as a unit time step.

(2) A decision problem A is called polynomial-time transformable to a problem B if A is

polynomial-time reducible to B and the algorithm for A calls only once the subroutine that solves

B.

33

Remark 20 (1) It immediately follows from the de�nition that, if there exists a polynomial-

time algorithm for problem B and problem A is polynomial-time reducible to problem B, there

exists a polynomial-time algorithm for problem A.

(2) It follows also by means of the concept of polynomial-time reducibility that if the value of

the objective function of the optimization problem can be calculated in polynomial time and the

numerical size of the optimal solution is bounded by a polynomial in the numerical size of the

input data, the decision problem version of an optimization problem can be solved in polynomial

time if and only if the optimization problem can be solved in polynomial time.

(3) We note that the property of polynomial-time transformability is transitive.

We now introduce two more classes of problems. The �rst class of problems was introduced

by Cook (1971) and Karp (1972), while the second class was �rst described by Edmonds (1965b)

who referred to problems in this class as problems with "good characterisations".

De�nition 21 (Polynomial-time nondeterministic decision problems � NP)
An algorithm that is able to carry out an instruction of the type

goto both label 1, label 2,
i.e. that can carry out arithmetic operations in an exponential number of branches of a search

tree in parallel at the same time, is called a nondeterministic algorithm. A nondeterministic

algorithm is said to solve a decision problem with input size n in polynomial time i¤ there exists

a polynomial function f such that the number of steps taken in each branch of the search tree is

O(f(n)). The class of decision problems that can be solved by polynomial-time nondeterministic

algorithms is denoted by NP.

The following second class of decision problems consists, loosely speaking, of those decision

problems A for which all mathematical objects S that are solutions of A are su¢ ciently small

(i.e. bounded by a polynomial in the size of the instance of A) and there exists a (certi�cate-

checking) algorithm C that can verify in polynomial time for every S that this S is indeed a

"yes" instance of the decision problem A.

De�nition 22 (Decision problems with the succinct certi�cate property)
A decision problem A is said to have the succinct certi�cate property i¤ there exists a

polynomial-time algorithm for another decision problem C whose instances are given by an

instance of A and object S whose size is bounded by a polynomial in the size of the instance of

A, such that any instance of A is a "yes" instance for problem A if and only if there exists an

S such that the instance of C (given by S and the instance of A) is a "yes" instance of C.

34

A famous theorem by Cook (1971) states that the two classes of decision problems previously

introduced are, in fact, equivalent.

Theorem 23 For a decision problem A the following three statements are equivalent:

(1) The problem A has the succinct certi�cate property.

(2) The problem A is an element of NP.

(3) The problem A is polynomial-time transformable to the decision problem version of a

Binary Integer Programming problem.

Proof. See Cook (1971), or Papadimitrou and Steiglitz (1998), pp. 353-358.

Two more complexity classes are worth considering here. They consist of problems that,

regarding their complexity, must be considered particularly "di¢ cult".

De�nition 24 (NP-complete and NP-hard problems)
(1) A decision problem is called NP-complete if it is an element of NP and if every problem

in NP is polynomial-time transformable to it.

(2) A problem is referred to as NP-hard if it is not an element of NP, and all problems in

NP are polynomial-time reducible to it.

Remark 25 (1) It follows directly from this de�nition that P = NP if and only if there exists

a polynomial-time algorithm for an NP-complete problem. Up to now neither has such an

algorithm been found, nor could it be proved that such an algorithm does not exist.

(2) The previous theorem implies that Binary Integer Programming is an NP-complete prob-

lem.

We now apply these concepts and results from complexity theory to the problems presented

in the previous two sections. Obviously, the Hamiltonian path (cycle) problem, the alternating

Hamiltonian path (cycle) problem and the twin-constrained Hamiltonian path problem (hence

also the MSSP) are decision problems, while the TSP, the CTSP and the GTSP are optimiza-

tion problems. The following statements address the complexity of these problems. The �rst

theorem, which was a milestone in the theory of complexity for combinatorial optimization

problems, is due to Karp (1972).

Theorem 26 (Complexity of the Hamiltonian path (cycle) problem)
For a given undirected graph G(N;E), the Hamiltonian path (cycle) problem isNP-complete.

Proof. We have seen in chapter 2:1 that the Hamiltonian path (cycle) problem can be modeled
as a Binary Integer Programming problem, hence we know from Theorem 23 that the Hamil-

tonian path (cycle) problem is in NP. A proof that every problem in NP can be transformed

to the Hamiltonian path (cycle) problem can be found in Karp (1972) or Papdimitrou and

Steiglitz (1998, chapter 15).

35

Proposition 27 (Complexity of the alternating Hamiltonian path (cycle) problem)
For a given undirected graph G(N;E) and an edge colouring with 2 colours, the alternating

Hamiltonian path (cycle) problem is an NP-complete problem.

Proof. Based on our model in chapter 2:1 it is easy to see that the alternating Hamiltonian
path (cycle) problem can be modeled as a Binary Integer Programme, hence (Theorem 23) the

problem is in NP. The proof of Proposition 7 presents a polynomial-time transformation to

the Hamiltonian path (cycle) problem. Taking into account the preceding theorem �nishes the

proof.

Proposition 28 (Complexity of TSP, CTSP and GTSP)
For a given undirected graph G(N;E), a function c : E ! R, and, if applicable, a partition

N1 +N2 + :::+Nn = NG,

the TSP, the CTSP and the GTSP are NP-hard.

Proof. Being optimization problems, TSP, CTSP and GTSP are not in NP. As noted in
Remark 9(2), the Hamiltonian cycle problem can be reduced to TSP in polynomial time. Then

Theorem 26 implies that TSP is NP-hard. Consequently, because of Proposition 12, CTSP is

NP-hard: With Remark 15(2), or, alternatively, Remark 15(4) we can conclude that GTSP is

NP-hard.

Theorem 29 (Complexity of the twin-constrained Hamiltonian path problem)
For a given undirected graph G(N;E) with N = f1; 2; :::; 2ng and a twin-node function b,

the twin-constrained Hamiltonian path problem on G with respect to b is NP-complete in the

general case.

Proof. The twin-constrained Hamiltonian path problem on G with respect to b can be modeled
as a Binary Integer Programme (chapter 2:3). Hence we can conclude from Theorem 23 that it

is in NP. For a given graph G0(N 0; E0) with N 0 = f1; 2; :::; ng and an (arbitrary) edge set E0,
we de�ne the graph G(N;E) with N = f1; 2; :::; 2ng and

E := E0 + f(i; j) 2 N �N : (i� n; j � n) 2 E0g
and de�ne the twin-node function b : N ! N by virtue of

b(i) := i+ n for all i 2 N 0

and

b(i) := i� n for all i 2 N �N 0.
Then the twin-constrained Hamiltonian path problem on G with respect to b is feasible if and

only if the Hamiltonian path problem on G0 is feasible. (The feasibility of the Hamiltonian path

problem on G0 follows from the feasibility of the twin-constrained Hamiltonian path problem

on G by contracting the edges given by the twin-node function; the converse is trivial.) The

fact that our construction of G from G0 can be carried out in polynomial time implies that

36

there exists a polynomial-time transformation from the Hamiltonian path problem on G0 to a

twin-constrained Hamiltonian path problem (on G, with respect to the twin-node function b we

have de�ned). Given this situation, the NP-completeness of the twin-constrained Hamiltonian

path problem follows from Theorem 26.

Remark 30 For an undirected graph G0, the graph G we have just de�ned is, when we include
in E the edges (i; b(i)) given by our twin-node function, the Cartesian product of G0 with the

complete graph K2 and is called the prism over G0. The Hamiltonicity of the prism over a

graph is a necessary condition for the Hamiltonicity of a graph and plays a signi�cant role in

the theory of Hamiltonicity (Kaiser, Ryjáµcek, Král, Rosenfeld and Voss, 2007). We have just

shown that the twin-constrained Hamiltonicity of the prism over a graph (with the twin-node

function given by the edges that have been "generated" by K2) is a su¢ cient condition for the

existence of a Hamiltonian path on a graph.

We conclude from the preceding theorem that the twin-constrained Hamiltonian path prob-

lem on threshold graphs, i.e. our MSSP, might well be an NP-complete problem. Therefore it

makes sense for us, instead of further following the path of the literature on problems related

to our MSSP (such as the alternating Hamiltonian path problem, the TSP, the CTSP and the

GTSP), to proceed our analysis by exploring more in detail the particularities of the graph

underlying our MSSP.

37

4 Threshold graphs: de�nition and basic characteristics

In the past chapter, the twin-constrained Hamiltonian path problem (and hence the MSSP)

was looked at in the context of existing research and we clari�ed the respect in which it is a

speci�c type of Hamiltonian path problem, a speci�c variant of the TSP and how it can be

reduced to these problems. One speci�c aspect of the MSSP that we have not considered yet,

but should consider in view of the �nal section of the previous chapter, consists in the fact that

the underlying graph has a very speci�c structure: it is a so-called "threshold graph". This

chapter introduces the concept of threshold graphs, presents some basic properties of threshold

graphs that will be useful for our analysis in the following chapters and, in doing so, provides

the theoretical background on which we will build our approach for solving the problem of

recognising twin-constrained Hamiltonian threshold graphs in later chapters.

4.1 De�nition and examples

The term "threshold graph" was coined by Chvátal and Hammer (1973), who were interested

in the type of graphs whose stable sets can be distinguished from unstable sets by a single

hyperplane in the space of the characteristic vectors for all subsets of nodes of a graph. Inde-

pendently from Chvátal and Hammer, Ecker and Zaks (1977) described the same mathematical

structure in their studies of graph labeling for open shop scheduling, while Henderson and Zalc-

stein (1977) called the same type of graphs "PVc-de�nable graphs" when analysing the �ow

of information in parallel processing. Another early use of threshold graphs is Koren�s (1973)

work, who came across the concept in his studies of certain degree sequences of graphs. Also

the author of the present thesis, not knowing about the existing literature on threshold graphs

at that point of time, "re-invented" the concept and �rst studied threshold graphs under the

notion of "graphs with monotonic neighbourhoods".

The standard monograph on the subject is Mahadev and Peled (1995), which lists more than

100 papers related to threshold graphs, most of which were published during a comparably short

period of 10 years. This monograph includes also further applications of threshold graphs, to

problems such as cyclic scheduling and Guttman scales. Apart from practical applications,

research on threshold graphs has primarily been motivated by the fact that threshold graphs

have a beautiful structure due to which they are closely connected to other important types

of (sub-)graphs and therefore a helpful tool for studying their structure. The mathematical

relevance of threshold graphs is illustrated by the fact that the survey of graph classes by

Brandstädt, Le and Spinrad (1999) devotes an entire chapter (one out of altogether 14 chapters)

to "Threshold Graphs and Related Concepts".

The de�nition of a threshold graph provided here is the original one given by Chvátal and

Hammer (1973).

38

De�nition 31 (Threshold Graph)
An undirected graph G(N;E) is called a threshold graph i¤ there exist positive "node weights"

wi 2 R�+ for all i 2 NG and a threshold t 2 R�+ such that for all subsets S � NG

w(S) :=
X
i2S

wi � t if and only if S is a stable set. (11)

Figure 5 provides three examples of threshold graphs with the appropriate node weights and

thresholds (example (c) is given in Golumbic, 1980).

Figure 5: Examples of threshold graphs

There are also some rather trivial graphs that do not qualify as threshold graphs, among

which are all paths Pn for n � 4, all chordless cycles Cn for n � 4, and the matching 2K2. Four

examples of non-threshold graphs can be found in Figure 6. That the depicted graphs violate

the threshold property (11) can easily be seen on the basis of the nodes i; j; k and l. As fi; kg
and fj; lg are stable sets, any assignment of node weights and a threshold would imply

wi + wk � t and wj + wl � t,
while the cliques fi; lg and fj; kg required the inequalities

wi + wl > t and wj + wk > t,

which would lead to a contradiction when summing up the weights of these four nodes.

39

(a) C4 (b) P4 (c) 2K2 (d)

l k l k l k l k

i j i j i j i j

Figure 6: Examples of non-threshold graphs

Some complementary remarks may further clarify the de�nition of the threshold graph given

above:

Remark 32 (a) The threshold property (11) can be interpreted on the basis of the following
question. If, for a graph with node set NG = f1; 2; :::; ng, every subset of nodes P � NG is

described by its characteristic vector x = (x1; x2; :::; xn) with

xi = 1 if i 2 P , and 0 otherwise, for all i = 1; 2; :::; n,
does there exist a single hyperplane (a "separator")X

i2NG

wixi � t

that separates the characteristic vectors of all stable sets from those of all non-stable sets?

If and only if the answer is a¢ rmative, the graph is threshold.

(b) Orlin (1977) has shown that for every threshold graph, the family of node weights wi for

which the threshold t is minimal is unique and integer.

(c) It follows directly from the de�nition that every induced subgraph of a threshold graph is

also threshold. Consequently, threshold graphs do not contain the path P4, the chordless cycle

C4 and the matching 2K2. Moreover, Chvátal and Hammer (1973) have demonstrated that this

property entirely characterizes threshold graphs: any graph without the aforementioned induced

subgraphs is a threshold graph.

4.2 Basic characteristics of threshold graphs

The following theorem characterizes threshold graphs on the basis of a value function on the

set of nodes, and establishes a very convenient approach to analysing threshold graphs. This

theorem (with a slight modi�cation) has �rst been provided by Chvátal and Hammer (1973)

and, independently, by Henderson and Zalcstein (1977).

40

Theorem 33 (Characterisation of threshold graphs by a value function)
For a graph G(N;E) the following statements are equivalent:

(i) G is a threshold graph.

(ii) There exists a minimum value � 2 R�+ and a value function v : NG ! R�+ that assigns
a positive v(i) 2 R�+ to every node i 2 NG such that for all nodes i; j 2 NG with i 6= j

(i; j) 2 EG if and only if v(i) + v(j) � � . (12)

Proof. See Chvátal and Hammer (1977), Golumbic (1980), or Mahadev and Peled (1995).

This directly allows us to reformulate the MSSP. We will stick to this way of looking at the

MSSP for the reminder of this thesis.

Proposition 34 (Minimum Score Separation Problem - Final Approach)

Let G(N;E) be a threshold graph and b : NG ! NG a twin node function. Then the

Mimimum Score Separation Problem consists in solving the Twin-Constrained Hamiltonian Path

Problem on G with respect to b.

Proof. Obviously, condition (12) is the one imposed on the graph in our second model of the
MSSP (see de�nition 4).

Note, however, that the graph on which we look for a Hamiltonian path in order to solve

the MSSP a¢ rmatively is not a threshold graph in the general case. Instead, in the MSSP

the twin node property partly destroys the threshold structure because we have not made any

further assumptions about the twin node function b. In the general case, the twin node function

will not induce edges between twin nodes in a way that the threshold property is respected.

So despite the fact that the underlying graph G of the Twin-Constrained Hamiltonian-Path

Problem in question is a threshold graph, we will have to look for a Hamiltonian path on a

non-threshold graph However, we will leave this out of account for the moment, concentrate on

the threshold condition, and come back to the twin node condition in a later chapter, namely

chapter 7.

Remark 35 The preceding theorem directly implies that the complement of a threshold graph

is also threshold. After transforming the values v(i) and � into integers, the complement of G

can be obtained by introducing new values
^
v(i) := t � v(i) for all nodes i 2 NG, and a new

minimal value
^
� := �� 1. As a consequence, the approach suggested in this paper would work

also for a "Maximum Score Separation Problem".

Another characterization of threshold graphs that we will use in the following also goes back

to early work of Chvátal and Hammer (1973).

41

Theorem 36 (Characterisation of threshold graphs by their degree partition)
For a graph G(N;E) the following statements are equivalent:

(i) G is a threshold graph.

(ii) The indices of the degree partition NG = D0 + D1 + ::: + Dm of G provide the full

information about adjacency for all nodes i 2 Dk and j 2 Dl by virtue of

(i; j) 2 EG if and only if k + l > m . (13)

Proof. See Chvátal and Hammer (1977), Golumbic (1980), or Mahadev and Peled (1995).

Figure 7, taken from Golumbic (1980), illustrates the general structure of a threshold graph

according to Theorem 36. Lines between the node sets D0, D1, D2, ..., Dm indicate adjacency.

The dotted set of isolated nodes D0 may be empty, and the dotted set Ddm2 e does not exist if

m is even.

D0 D1 D2 D3 … D|_m/2_| Stable Set

Dm Dm­1 Dm­2 … D|
_
m/2

_
|+1 D|

_
m/2

_
| Clique

Figure 7: Degree partition of a threshold graph

Remark 37 If m is even, the sets Dm; Dm�1; :::; Ddm2 e+1 contain all nodes i 2 NG with v(i) �
�
2 , while the nodes j 2 NG with v(j) < �

2 are in the sets D0; D1; :::; Dbm2 c. If m is odd, the

sets Dm; Dm�1; :::; Ddm2 e+1; Ddm2 e contain all nodes i 2 NG with v(i) � �
2 , and, additionally,

the set Ddm2 e contains also exactly one node j 2 NG with v(j) <
�
2 that is adjacent to all nodes

i 2 NG with v(i) � �
2 (provided there exists any).

We �nally provide two more characterisations of threshold graphs (�rst given in Chvátal

and Hammer, 1977), on which we will build our approach to the Minimum Score Separation

Problem in the following. Further fundamental properties of threshold graphs can be found in

the literature by Chvátal and Hammer (1973, 1977), Ecker and Zaks (1977), Henderson and

42

Zalcstein (1977), Golumbic (1980), Hammer, Ibaraki and Simeone (1981), and Mahadev and

Peled (1995).

In order to give the reader an idea of how some basic structural elements of threshold graphs

are related to each other, we will present here a proof for the subsequent two characterisations

of threshold graphs. (These two characterisations are also those that the author of this thesis

found before becoming aware of the literature on threshold graphs.) For our proof, we need the

following lemma that was �rst stated by Chvátal and Hammer (1977).

Lemma 38 Let G(N;E) be a threshold graph with node set NG = f1; 2; :::; ng, a certain family
of weights (wi) and a threshold t, from which we build a new graph G0 by adding a node n+ 1.

If the node n + 1 is (i) dominating or (ii) isolated, the new graph with the node set NG0 =

f1; 2; :::; n; n+ 1g remains a threshold graph.

Proof. (i) We will assign the weight wn+1 := t to the new node n + 1 and consider the new
subsets P � NG + fn + 1g with n + 1 2 P . Among these, the stable subset fn + 1g certainly
ful�ls condition (11). Any other subset P � NG with n + 1 2 P is not stable because n + 1

is a dominating node. As, by de�nition, all weights of a threshold graphs are required to be

positive, also in this case property (11) still holds.

(ii) We will double all weights (wi)1�i�n of the "old" nodes and increase the threshold to

2t + 1. The new node n + 1 will be given the weight wn+1 := 1. This leads to the following

setting: formerly stable subsets obviously remain stable. Previously unstable sets U � NG had
at least a sum of weights of w(U) = t+1 > t, which has become 2t+2 in the new setting, such

that the weight of these sets still exceeds the new threshold 2t+ 1. In the case of the new sets

U + fn+1g for formerly unstable sets U , instability is maintained, and the new sum of weights

is at least

w(U + fn+ 1g) = 2w(U) + wn+1 = 2(t+ 1) + 1 > 2t+ 1.
Clearly, also the stable subset fn + 1g ful�ls property (11). Finally, for all formerly stable

set S � NG, the new sets S + fn + 1g remain stable with the isolated node n + 1, and the
threshold is not violated because of

w(S + fn+ 1g) = 2w(S) + wn+1 � 2t+ 1.

Remark 39 The preceding lemma can be used to construct threshold graphs by successively
adding (one or more) isolated or dominating nodes. Such a procedure gives rise to the adja-

cency structure that Theorem 36 describes. Consequently, Lemma 38 can be used as the main

ingredient of a proof of Theorem 36.

43

Theorem 40 (Further characterisations of threshold graphs)
For a graph G(N;E) the following statements are equivalent:

(i) G is a threshold graph.

(ii) The vicinal preorder of G is total, i.e. for every pair of nodes i; j 2 NG we have i - j
or j - i.
(iii) The graph G is a split graph (i.e. the node set NG can be partitioned into a clique K

and a stable set S), and the neighbourhoods of the stable nodes are nested, i.e. there exists a

permutation of the stable nodes i1; i2; :::; ijSj such that N(i1) � N(i2) � ::: � N(ijSj).

Proof. (i)) (ii): Let us assume that the vicinal preorder is not total, i. e. there exists a pair

of nodes i; j 2 NG with neighbourhoods N(i) and N(j) and another pair of nodes k; l 2 NG
such that k 2 N(i), k =2 N(j) and l 2 N(j), l =2 N(i). Because G is a threshold graph, it

follows from Theorem 6 that v(i)+ v(k) � � and v(j)+ v(l) � �, but that v(j)+ v(k) < � and
v(i) + v(l) < �, which is a contradiction.

(ii)) (iii): Let i; j 2 S be a pair of nodes from the stable set, hence j =2 N(i). Then
N [j] � N(i) yields N(j) � N(i), i. e. the neighbourhoods of the stable nodes are nested. In
order to show that G is a split graph, it is su¢ cient to show that the graph G0 that we obtain

from G by removing all isolated nodes is a split graph. Now, let all nodes i1; i2; :::; in 2 NG0

be numbered in any order that corresponds to the vicinal preorder, i.e. ij % ik for j � k. Let
l 2 NG0 be a node adjacent to the second highest node in the order, i.e. in�1 2 N(l). Clearly,
in % l. Hence the vicinal preorder property implies that in�1 2 N(in), i.e. there exists a pair
of immediately subsequent nodes ik; ik+1 2 NG0 that are adjacent to each other.

Let j be the smallest number so that ij is adjacent to its immediate successor. We observe

that ij is adjacent also to all nodes ik % ij+1 because ij 2 N(ij+1) leads to ij 2 N(ik) due to
the vicinal preorder. Furthermore, all ik; il % ij are adjacent to each other because ik 2 N(ij)
implies ik 2 N(il). Hence, the set K := fi 2 NG0 : i % ijg is a clique.
If we can show that the set NG0 �K is stable, we have �nished. Let us assume the opposite

would be the case, i. e. that there were two adjacent nodes ik; il 2 NG0 with ik; il � ij and

il 2 N(ik). We may assume without loss of generality that il % ik. Then, due to the vicinal

preorder, il 2 N(ik) implies il 2 N(il+1) as we obviously have il+1 % ik. However, this result
contradicts the fact that ij is the smallest node that is adjacent to its immediate successor.

Consequently, S := NG0 �K is a stable set.

(iii)) (i): If G has an isolated node, we can remove it and will still get a split graph

with nested neighbourhoods for the stable nodes. If G has no isolated node, we will choose a

node j 2 NG that is a neighbour of the stable node with the smallest neighbourhood, namely
i1 2 NG. Clearly j 2 K. Because the neighbourhoods of the stable nodes are nested, j 2 N(i1)
yields j 2 N(s) for all stable nodes s 2 S. Moreover, as j 2 K, it follows that j is adjacent
to all nodes in NG, hence j is a dominating node. If we remove j from the node set of G,

we will still have a split graph with nested neighbourhoods for all stable nodes. In sum: we

can deconstruct the whole graph by repeatedly removing isolated or dominating nodes. If we

44

rebuild the graph by reversing this procedure, we can apply Lemma 38 such that G is shown

to be threshold.

Remark 41 (1) The partition of the node set of G into a clique K and a stable set S is not

necessarily unique. In fact, there can be a subset F � NG the nodes in which are adjacent to
all k 2 KnF , to no s 2 SnF , and not to any other f 2 F either. At most one of these nodes

can be placed in the clique, while all others must go into the stable set. So the maximal clique

Kmax and the maximal stable set Smax are unique except for the placement of one node from F .

(2) The way in which we have constructed the clique K in the preceding proof ensures at

least that K is maximal, i.e. exactly one f 2 F has been placed in the clique i¤ F 6= ?.

(3) With respect to the characterization of threshold graphs by the degree partition NG =

D0 +D1 + :::+Dm we have the following setting: if and only if m is odd, the maximal clique

is given by

Kmax =
m[

i=dm2 e

Di,

and the sets
bm2 c[
i=0

Di [ffg with f 2 F := Ddm2 e

are all maximal stable sets of the graph. Conversely, if and only if m is even, the maximal

stable set is given by

Smax =

m
2[
i=0

Di,

and all maximal cliques are given by
m[

i=m
2 +1

Di [ffg with f 2 F := Dm
2
.

(4) With respect to the characterization of threshold graphs by a value function we have: if

Kmax is a maximal clique in G, all nodes i 2 NG with v(i) � �
2 are an element of Kmax, and i¤

there exist nodes j0 2 NG with v(j0) < �
2 that are adjacent to all nodes i 2 NG with v(i) �

�
2 ,

also one of these nodes is in Kmax. All other nodes j 2 NG with v(j) < �
2 constitute a stable

set.

(5) Note that we have k % s and k � s for all k 2 K and s 2 S.

(6) If (i; j) 2 EG, then (i 2 Kmax _ j 2 Kmax), and also (i 2 K _ j 2 K) for any
K := NG � Smax with Smax being a maximal stable set.

45

5 Maximum cardinality matchings, alternating paths and

Hamiltonian paths on threshold graphs

Having explored some fundamentals of the general structure of threshold graphs, we are now

prepared to address the topic of matchings on threshold graphs and the way in which these are

related to di¤erent types of paths. In particular, the following two subsections will analyse the

relation of matchings with alternating paths and Hamiltonian paths. First of all, this topic is

interesting as such because we will lead to some new insights into the structure of threshold

graphs. The main reason for proceeding in this way, however, consists in the structure of the

MSSP.

Let us recall our (alternative) model of the MSSP. According to our �nal de�nition, a

solution to the MSSP consists in a twin-constrained Hamiltonian path on a threshold graph

with the adjacency between two twin nodes being given by a twin node function b : NG ! NG.

This means that the Hamiltonian path must have the structure

i1 � b(i1)� i2 � b(i2)� i3 � b(i3)� :::� in�1 � b(in�1)� in � b(in) . (14)

Unfortunately, we must do without any further information about the twin node function.

However, as also the underlying threshold graph structure induces adjacency (or non-adjacency)

between any two nodes, we can be sure nevertheless that the pairs b(i1)� i2, b(i2)� i3, :::, and
b(in�1) � in constitute a matching on a threshold graph. (While all the other edges of the
Hamiltonian path (14) are given by the twin node property.) In other words: every solution to

the MSSP contains a matching on a threshold graph, the pairs of which are "glued" together

by the twin node function. Hence, if we were able to obtain a proper overview of all possible

perfect matchings on a threshold graph, we would know immediately whether or not a particular

instance of the MSSP can be solved.

This is the reason why it seems to be promising to try to approach the MSSP on the basis

of a matching �rst, and then take up from there the question of how to construct certain paths

on the graph that might be fruitful for tackling the MSSP.

We will �nish this chapter by drawing some conclusions regarding the complexity of the

MSSP.

5.1 Alternating paths and maximum cardinality matchings

For threshold graphs, there exists a very e¢ cient and straight-forward maximum cardinality

matching algorithm (also mentioned in Mahadev and Peled, 1995, without a proof). This

subsection addresses the maximum cardinality property of this algorithm on the basis of the

augmenting path theorem. Moreover, we will show that the matching gained by the algorithm

reveals so much information about the structure of the threshold graph in question that we can

obtain rather strong results about the existence of alternating paths in general.

46

The matching algorithm proceeds as follows:

Algorithm 42 (TGMA - Threshold Graph Matching Algorithm)

Let G (N;E) be an undirected graph with the set of nodes

NG = f1; 2; :::; ng and neighbourhoods N(i) for all i 2 NG.

[01] Sort all nodes in an order of non-decreasing degrees.

Set node i := 0, the matching list M := ?, and
the set of matched nodes I := ?.

[02] Increase i by 1. If i = n then STOP.

[03] If i 2 I or N(i)nI = ? then go to step [02].

[04] Pick a node j 2 N(i)nI, add (i; j) to matching list M ,
add i, j to set of matched nodes I, go to [02].

For further results, we will distinguish between di¤erent types of alternating paths. In

contrast to the usual de�nition of alternating paths, our concept explicitly accounts for the

subset of the matching that the alternative path in question is derived from.

De�nition 43 (Alternating T -paths)
Let G(N;E) be a graph, M a matching on G, and T � M . An alternating T -path relative

to M is a path

i0 � i1 � i2 � i3 � :::� in�1 � in
such that every consecutive pair of edges in the path contains one edge from T and one edge

that is not an element of the matching, and all elements of T are edges of the path.

a) If n is even and the node i0 is not incident to any edge in the matching, the path is called

an even T -path. The node i0 is called the exposed node of the path.

b) If n is odd and the number of edges that are element of the matching is greater than the

number of those edges that are not in the matching, we will call the path a matching-dominated

T -path.

c) If n is odd and both the nodes i0 and in are not incident to any edges in the matching,

the path is called an augmenting T -path. The nodes i0 and in are called the exposed nodes of

the path.

The succeeding Theorem 44 provides criteria for the existence of alternating (T -)paths on

threshold graphs.

One way of looking at the concept of alternating paths consists in seeing the existence of

alternating T -paths as an a¢ rmative answer to the question of whether a set T of some edges

that match a certain subset of nodes can be complemented by other edges such that there exists

a path that connects all nodes of the subset (as in the case of a matching-dominated T -path)),

47

or such that there exists a path that connects all nodes of the subset and one or two additional

nodes (as in the cases of an even T -path or an augmenting T -path, respectively).

This is why the following theorem will later be the backbone of our e¤ort of constructing

paths that are solutions to the MSSP. Moreover, it must be considered interesting as such that

for threshold graphs, as Theorem 44 shows, the information about the existence of alternating

paths can be gained almost solely on the basis of the aforementioned matching algorithm. Fi-

nally, our theorem directly implies a proof for the fact that TGMA terminates with a maximum

cardinality matching.

Theorem 44 (Alternating T -paths on threshold graphs)
Let G (N;E) be a threshold graph and M a matching on G that has been obtained from

TGMA. Then for all T �M the following statements hold:

(i) There exists a matching-dominated T -path relative to M .

(ii) There exists an even T -path relative to M if and only if its exposed node

is adjacent to some node from each edge in T .

(iii) There exists no augmenting T -path relative to M .

Proof. (i) Let the elements of T be given by (ik; jk) 2 T for 1 � k � jT j. Since the vicinal
preorder of G is total, we can renumber the edges such that

i1 - i2 - ::: � ijT j�1 - ijT j,
which yields jk 2 N(ik) � N [ik+1] for 1 � k � jT j � 1. Hence

i1 � j1 � i2 � j2 � :::� ijT j�1 � jjT j�1 � ijT j � jjT j
is a matching-dominated T -path relative to M .

(ii) Let i0 2 NG be the exposed node of the path.
a) (: Let the elements of T be given by (ik; jk) 2 T for 1 � k � jT j in a way such that

i1 - i2 - ::: � ijT j�1 - ijT j, and
ik - jk for all 1 � k � jT j.

The latter condition yields i0 2 N(jk) for all 1 � k � jT j because i0 is adjacent to at least
one node of each pair in T . Hence

i1 � j1 � i2 � j2 � :::� ijT j�1 � jjT j�1 � ijT j � jjT j � i0
is an even T -path relative to M .

b)): Let the even T -path be given as

i0 � i1 � j1 � :::� ijT j�1 � jjT j�1 � ijT j � jjT j , (15)

and Kmax denote a maximal clique in in NG.

Case (1) : i0 2 Kmax. Then we have �nished because in a threshold graph, at least one

among the two nodes incident to a given edge is an element of Kmax, cf. Remark 41(6).

Case (2) : i0 =2 Kmax. We assume that i0 2 N(ik) for some k with 1 � k � jT j � 1, which is
certainly the case for k = 1. From i0 2 N(ik) and i0 =2 Kmax follows i0 - ik, and i0 � ik, due

48

to Remarks 41(5) and 41(6). Further, condition (15) implies that ik has been matched with

jk. As TGMA proceeds in a non-decreasing order of nodes and i0, though being adjacent to

ik, has remained unmatched, while jk has been matched with ik, we must have jk - i0. This
yields ik+1 2 N(jk) � N [i0]. By induction, we obtain i0 2 N [ik] for all k with 1 � k � jT j.

(iii) First let us note that when TGMA terminates there cannot be left two unmatched

nodes that are adjacent to each other. We now assume the opposite of the statement to be

shown, i.e. that there exists an augmenting T -path

i0 � i1 � j1 � :::� ijT j�1 � jjT j�1 � ijT j � jjT j � ijT j+1.
Furthermore letKmax be a maximal stable set inNG. Then the nodes i0 and ijT j+1 cannot be

both elements of Kmax because there were two adjacent unmatched nodes otherwise. Therefore,

let us assume without loss of generality that i0 =2 Kmax: The path i0 � i1 � j1 � :::� ijT j � jjT j
is an even T -path relative to M . Hence (and because of i0 =2 Kmax) we can apply the same

line of reasoning as in part (ii) b) Case (2) of the proof, which yields by induction i0 2 N [ijT j],
and even i0 2 N [ijT j+1]. This contradicts our observation that TGMA does not leave two

adjacent nodes unmatched when terminating. Consequently, the assumption that there exists

an augmenting T -path is wrong.

Remark 45 Note that statement (i) and the su¢ ciency of condition (ii) have been derived
without referring to the way in which TGMA operates.

For what follows in the succeeding sections, it is helpful to distinguish between two di¤erent

variants of the algorithm TGMA. The two algorithms mainly di¤er with respect to the node

they choose in step [04]. The �rst variant, TGMAmin always picks a node with the lowest

degree that is still available, provided this node is adjacent to the node to be matched.

Algorithm 46 (TGMAmin)
[01] Sort all nodes in an order of non-decreasing degrees.

Set node i := 0, the matching list M := ?, and
the set of matched nodes I := ?.

[02] Increase i by 1. If i = n then STOP.

[03] If i 2 I or N(i)nI = ? then go to step [02].

[04] Set j := i+ 1. Increase j by 1 until j 2 N(i)nI.
Add (i; j) to matching list M ,

add i, j to set of matched nodes I, go to step [02].

The second version of the algorithm, TGMAmax, always chooses in step [04], if possible, the

node with the highest degree.

49

Algorithm 47 (TGMAmax)
[01] Sort all nodes in an order of non-decreasing degrees.

Set node i := 0, node j := n,

and matching list M := ?.
[02] Increase i by 1. If i � j then STOP.
[03] If i =2 N(j) then go to step [02].
[04] Add (i; j) to matching list M ,

decrease j by 1, and go to step [02].

De�nition 48 (Modest and greedy matchings on threshold graphs)
Let G (N;E) be a threshold graph with neighbourhoods N(i) for all i 2 NG. A matching

that has been obtained by the algorithm TGMAmin is called modest, and a matching that results

from running TGMAmax greedy.

Remark 49 The distinction between modest and greedy matchings on threshold graphs should
not be confused with the well-known concept of the greedy algorithm in matroid theory (cf. e.g.

Nemhauser and Wolsey 1999, chapter III.3). In fact, from the latter perspective, all variants of

TGMA can be considered greedy in a basic sense as they simply work along the list of nodes (in

an order of non-decreasing degrees) and pick some suitable available node without "worrying"

about the consequences for the choices to follow at later stages.

Corollary 50 If G is a threshold graph, TGMA terminates with a maximum cardinality match-
ing, and there exists a maximum cardinality matching algorithm that terminates after O(n log2 n)

steps.

Proof. The maximum cardinality property is directly implied in Theorem 44(iii) on the basis

of the well-known augmenting path theorem going back to Petersen (1891). With regard to

computational complexity, we observe that TGMAmax is the best version of TGMA with

regard to computational complexity as, when using TGMAmax, we do not have to keep track

of the nodes that have already been matched. Further, we note that steps [02], [03], and [04] of

TGMAmax occur at most n times. Thus, the most expensive operation is the sorting of nodes

according to their degrees, which can be accomplished easily in O(n log2 n) time.

The algorithm TGMAmax is not only favourable in terms of computational complexity; it

also provides us with matchings that have a useful property that will turn out to be useful when

we later will analyse alternating cycles on threshold graphs.

Proposition 51 (Degree property of TGMAmax)
Let G (N;E) be a threshold graph and M a matching on G that has been obtained from

TGMAmax. Then for all (i1; j1) 2 M there exists no edge (i2; j2) 2 M with dg(i1) > dg(i2)

and dg(j1) > dg(j2).

50

Proof. The property follows directly from the fact that TGMAmax proceeds along the list

of nodes in a non-decreasing order and always chooses a mate for the matching that has the

highest degree among all remaining nodes that have not been matched yet.

Remark 52 (1) The fastest available algorithm for the general non-bipartite cardinality match-
ing problem with n nodes and m edges, which has been developed by Micali and Vazirani (1980),

requires O(m
p
n) time. As the vicinal neighbourhood property means "carrying forward" ad-

jacency from one node to the next stronger one, threshold graphs typically tend to have many

edges, i. e. m > n, especially when there are many non-isolated nodes in the maximal stable

set, or when the amount of nodes in the corresponding clique is rather large. (Note, for exam-

ple, that we already have at least n (undirected) edges if the smallest node is not isolated, and

that k nodes in the clique imply at least k(k�1)2 edges representing only the mutual adjacencies

among these nodes.). Therefore, and since
p
n > log2 n for n > 16, the algorithm presented

here provides a signi�cant computational advantage in the case of threshold graphs. Also, the

obviously simple structure of the TGMA makes it particularly easy to implement.

(2) If we always pick the smallest node j 2 N(i)nI in step [04], we will arrive at a matching
algorithm for interval graphs, which has been proven to yield maximum cardinality matchings

by Moitra and Johnson (1989). In fact, every threshold graph is also an interval graph, as can

be seen easily on the basis of the a characterization of interval graphs given by Ramaligam and

Rangan (1988). According to this criterion, a graph G(N;E) is an interval graph if and only if

its nodes can be numbered such that

(i; k) 2 EG) (j; k) 2 EG for all i; j; k 2 NG and i < j < k.
Clearly, numbering the nodes of a threshold graph in a non-decreasing order with respect to

the vicinal preorder ful�ls this condition.

(3) The general, not modi�ed version of TGMA, leaves open the question of how to pick

the node j 2 N(i)nI in step [04]. In the general case, di¤erent rules of how to choose j

will lead to di¤erent maximum cardinality matchings on G. If we would like to generate all
possible maximum cardinality matchings on a given threshold graph, we have to take into account

two aspects: (a) Given a certain maximum cardinality matching on a threshold graph, every

unmatched node could be matched at the expense of any smaller node that has been matched,

due to the vicinal preorder of threshold graphs. The smaller node would then become unmatched

by "handing over" its mate to the larger one such that the overall cardinality of the matching

would not be a¤ected. (b) If we always choose in step [04] a node j 2 N(i)nI that is among
the smallest nodes available, we clearly get a matching in which the unmatched nodes are as

large as possible because TGMA matches in a non-decreasing order of nodes. Because of these

two aspects (a) and (b), all maximum cardinality matchings on a certain threshold graph can

be generated in the following way: �rst compute a matching on the basis of TGMA by always

choosing in step [04] one node j from the smallest nodes available in N(i)nI. In a second step,
all other matchings can be derived from this initial matching by picking a subset of unmatched

51

nodes and matching these nodes at the expense of some subset that consists of matched nodes

of a lower or equal degree.

5.2 Hamiltonian paths and maximum cardinality matchings

We have noted at the beginning of this section that every Hamiltonian Path that is a solution

to the MSSP contains a matching on a threshold graph. This property suggests to ask the

question of how matchings and Hamiltonian Paths are related in the general case of threshold

graphs. Though this implies stepping back from the MSSP because it means leaving aside the

issue of twin nodes, analysing the relation of matchings and Hamiltonian paths on threshold

graphs will be helpful for a better understanding of the MSSP and, in fact, lay the foundation

of our approach to solving it.

In the general case of an arbitrary graph, the existence of Hamiltonian paths is closely related

to the question of the Hamiltonicity of a graph, i.e. to the question of whether there exists

a Hamiltonian cycle on that graph. In particular, any both necessary and su¢ cient condition

for the Hamiltonicity of a graph directly implies both a necessary and a su¢ cient criterion for

the existence of Hamiltonian paths. In order to determine if a graph has a Hamiltonian path,

one simply has to add a dominating node to the graph in question and then check whether the

resulting graph is Hamiltonian.

In the case of threshold graphs, also the opposite of the above statement is true, i.e. every

necessary and su¢ cient criterion for the existence of a Hamiltoninan path directly leads to

a condition for the Hamiltonianicity of the graph. In order to see this, one has to consider

that threshold graphs are among those graphs that either have an isolated or a dominating

node, which is an immediate implication of the fact that the vicinal preorder of threshold

graphs is total (cf. also Lemma 38). As a consequence, the Hamiltonicity of a threshold graph

without an isolated node can be determined by dropping one node among those with the largest

neighbourhood and checking if there exists a Hamiltonian path on the subgraph induced by

the remaining nodes. Concludingly, all necessary and su¢ cient criteria for the existence of

Hamiltonician paths on threshold graphs are equivalent to characterisations of Hamiltonian

threshold graphs in the sense that each of these criteria yields a characterization, and vice

versa.

The issue of the Hamiltonicity of threshold graphs has already been addressed in the lit-

erature. Four di¤erent characterisations of the Hamiltonianicity of threshold paths have been

given, namely in Chvátal and Hammer (1977), Golumbic (1980), Harary and Peled (1987), and

Mahadev and Peled (1994), which all directly lead to a polynomial-time algorithm for recog-

nising Hamiltonian threshold graphs. Among these characterisations, the criterion provided by

Mahadev and Peled (1994) is the only one related to matchings. It is derived from their study

of the longest cycles on threshold graphs and uses the characterization of threshold graphs on

the basis of their degree partitions.

52

In the following, we will provide an alternative polynomial-time criterion by drawing on

our alternating path theorem for threshold graphs and the structure of TGMA. In contrast to

Mahadev and Peled�s criterion, the one presented here is not based on the degree partition of

threshold graphs, but instead it can be seen as the split graph counterpart to their theorem.

It will be shown at the end of this subsection that our split graph criterion indeed provides

a rather immediate proof of Mahadev and Peled�s degree partition-based characterization of

Hamiltonian threshold graphs.

Theorem 53 (Split graph criterion for Hamiltonian paths on threshold graphs)
If G is a threshold graph with n nodes, then there exists a Hamiltonian path on G if and

only if

(i) for n even, there exists a matching M on G with cardinality jM j = n
2 ,

(ii) for n odd, there exists a matching M on G with cardinality jM j = n�1
2 and the un-

matched node is an element of a maximal clique of G.

Proof. (i) : The existence of a matching with cardinality n
2 obviously is a relaxation of the

Hamiltonian Path Problem and thus a necessary condition. Regarding su¢ ciency, the existence

of a matching of cardinality jM j = n
2 implies according to Theorem 44(i) that there exists a

matching-dominated M -path on G that covers all nodes of G.

(ii) : a) Concerning the su¢ ciency of the condition, let us recall that at least one node

incident to any edge in a threshold graph is an element of K := NG � Smax, with Smax � NG
being a maximal stable set. Therefore, the unmatched node is adjacent to some node from each

edge of the matching, and because of Theorem 44(ii) there exists an even M -path on G that

covers all nodes.

b) Regarding the necessity of the condition, every Hamiltonian Path on G (N;E) with an

odd number of nodes obviously presupposes the existence of a matching of cardinality n�1
2 .

With respect to the second part of the condition, let us assume that there exists a matching of

cardinality n�1
2 with in 2 NG being the unmatched node after TGMA has terminated, and that

there exists a subset of the maximal clique K0 � Kmax to which the node in is not adjacent,

i.e. in =2 N(k) for all k 2 K0. We will demonstrate that this implies the infeasibility of the

Hamiltonian Path Problem on G. (Note that the fact that our line of argument will refer to

TGMA is not a restriction. As we have argued in Remark 53(3), there exists a special case

of TGMA that returns the largest unmatched node possible. In the end, our line of argument

will imply that the Hamiltonian Path Problem turns out to be infeasible in any case if it is

proven to be infeasible with such a large unmatched node.) For N(in) = ?, there is nothing
to show, therefore N(in) 6= ? in the following. The remainder of the proof will introduce node
set partitions, an illustration of which can be found in Figure 8 for a better overview.

(1) In a �rst step, we will analyse the particular structure of the set of nodes NG in this

case. Clearly, in 2 S := NG �Kmax and (by de�nition of in) N(in) $ Kmax. Hence the node

in induces a partition of the clique Kmax such that

53

a) Node partition of G b) Node partition of G’

S0 {in} S1 K0 K1 S0 {in} K0’ K1

matching by TGMA matching by TGMA

not adjacent
adjacent

not adj.
adjacent

Figure 8: Structures of G and G�

Kmax = K0 +K1

with K1 = N(in) and k =2 N(in) for all k 2 K0.

Due to N(in) 6= ?, and because of the order of nodes in which the algorithm tries to �nd a

matching for nodes, there must be a (non-empty) stable set S0 � S whose elements are smaller
than the node in, i.e. s - in for all s 2 S0. The vicinal preorder implies that

S
s2S0

N(s) � K1.

Since the node in has not been matched by TGMA, we have j
S
s2S0

N(s)j = jK1j and thereforeS
s2S0

N(s) = K1, i.e. all nodes in S0 can only be and actually have been matched with a node

in K1, and all nodes in K1 have been matched with a node in S0. Hence we have jS0j = jK1j.
Moreover, there might be a stable set S1 � S with nodes that are greater than the node in,

i.e. s % in for all s 2 S0. Since all nodes k 2 K1 have been matched with nodes s 2 S0, all
nodes k 2 K1 must have been matched with some nodes k 2 K0. Finally, we note that those

nodes k 2 K0 that have not been matched with nodes s 2 S1 must have been matched with
other nodes k 2 K0.

In sum, the set of nodes NG is partitioned as follows (the sum being written according to

the preorder):

NG = S0 + fing+ S1 +K0 +K1

with S0;K0;K1 6= ?,
S
s2S0

N(s) = K1 = N(in),

and all nodes s 2 S1 matched with nodes k 2 K0.

(2) Let k0 2 K0 be one among the largest nodes in K0, i.e. k - ko for all k 2 K0, and thus

s - k0 for all s 2 S1. By adding edges (if necessary at all), we construct a new graph G0 with
NG0 := NG such that N(i) := N(k0) for all i 2 S1 [K0 =: K

0
0 (i.e. K

0
0 induces a complete

subgraph), with all other edges remaining unchanged.

54

Hence the set of nodes of the new graph can be written in the following way:

NG0 = S0 + fing+K 00 +K1

with S0;K 00;K1 6= ?, and
N(k1) = N(k2) $ N(k3) for all k1; k2 2 K 00 and k3 2 K1.

Obviously, in would be an unmatched node also on G0 after TGMA has terminated, and,

since EG � EG0 , a Hamiltonian Path Problem on G is infeasible if it is infeasible on G0. As the

nodes k0 2 K 00 are adjacent only to all nodes k 2 K 00 [K1, every Hamiltonian Path on G0 will

contain (one or more) subpaths

:::� ki � ki+1 � :::� ki+m � ki+m+1 � :::

with ki; ki+m+1 2 K1; ki+1; :::; ki+m 2 K 00 and m � 1 , (16)

and, i¤ the Hamiltonian Path ends with a node k0 2 K 00, also a subpath

:::� ki � ki+1 � :::� ki+m

with ki 2 K1; ki+1; :::; ki+m 2 K 00 and m � 1 . (17)

(3) Consider the subgraph G00 of G0 that is induced by

NG00 = S0 + fing+ fk�0g+K1 with some k�0 2 K 00.
We can directly transform a Hamiltonian Path on G0 into a Hamiltonian Path on G00 by

contracting all subpaths in (16) and (17) to the subpaths ::: � ki � ki+m+1 � ::: and ::: � ki,
respectively, and adding the single node k�0 to any among the contracted subpaths such that we

get :::� ki� k�0 � ki+m+1� ::: and :::� ki� k�0 for the former subpaths, respectively. Therefore,
the Hamiltonian Path Problem on G0 is infeasible if it is infeasible on G00.

As jS0j = jK1j, we have jNG00 j = 2jK1j+2. Because it holds that N(i) = K1 for all jK1j+2
nodes i 2 S0 + fing + fk�0g, a maximum cardinality matching on G00 will have cardinality

jK1j < jNG00 j
2 . Therefore, the Hamiltonian Path Problem is infeasible on G00, hence on G0, and

so on G.

Remark 54 We have seen that the alternating path theorem for threshold graphs introduced in

this section is a rather strong result that is closely related to the existence of Hamiltonian paths.

It would be an interesting question for further research to explore whether this theorem can lead

to an alternative characterization of threshold graphs.

As mentioned above, we will now give a proof of the degree partition-based criterion that

Mahadev and Peled (1994, Theorem 3:1) have derived from determining the longest cycle in

threshold graphs.

55

Corollary 55 (Degree partition criterion for Hamiltonian threshold graphs)
If G(N;E) is a threshold graph with degree partition

NG = D0 +D1 +D2 + :::+Dm,

then G is Hamiltonian if and only if there exists a (bipartite) matching

from S :=

bm2 c[
i=1

D0 into K := NG � S

that has cardinality jSj, and
(i) for m even, M matches some node j 2 Dm

2
with some node k 2 Dm,

(ii) for m odd, M leaves some node k 2 Dm unmatched.

Proof. We de�ne n := jNGj and assume that G has no isolated nodes (otherwise there is

nothing to show).

a) As the corollary is about Hamiltonian cycles, let us prove the su¢ ciency of the conditions

by adding a dominating node in+1 to the graph �rst, which will not a¤ect the size m of the

degree partition. The bipartite matching from S into K covers all nodes in the maximal stable

set if m is even, and in the complement of the maximal clique if m is odd, cf. Remark 41(3).

Consequently, the nodes in NG [fin+1g that are unmatched up to now are adjacent to each
other and can be matched into pairs. If n + 1 is even, condition (i) of Theorem 53 applies, if

n+ 1 is odd, one unmatched node remains, which certainly is an element of a maximal clique,

so that condition (ii) applies.

b) Regarding the necessity of the conditions in the corollary, let us assume that the conditions

of Theorem 53 hold after we have removed a dominating node k 2 Dm. Then, in the original
graph, all nodes in G are matched except the node k and, if n� 1 is odd, except an additional

node j 2
m[

i=dm2 e

Di. If m is odd, we have j =2 S or n � 1 is odd. In either case, our matching

already contains a bipartite matching from S into K that has cardinality jSj and leaves k 2 Dm
unmatched. For even m, we have either j 2 Dm

2
or j =2 S, or n � 1 is odd. If j 2 Dm

2
, we

can add the edge (j; k) to the matching and our matching will contain a bipartite matching

in accordance with the corollary. If j =2 S or n � 1 is odd, we can easily ful�l the conditions
of the corollary by matching the dominating node k with some arbitrary node from Dm

2
and

discarding the latter node�s mate.

5.3 Summary and a remark on the complexity of the MSSP

Our aim in this chapter was to take a �rst step towards analysing the MSSP by �nding out more

about matchings on threshold graphs. We presented a class of maximum cardinality matching

algorithms on threshold graphs, introduced and discussed the concepts of even, matching-

dominated and augmenting T -paths relative to a matching on a threshold graph, and found a

new criterion for the existence of a Hamiltonian path on a threshold graph. In this section we

56

will brie�y look at the meaning of the latter result in the light of the last section of chapter 3

on complexity theory

Corollary 56 (Preliminary statement about the complexity of the MSSP)
(1) The twin-constrained Hamiltonian path problem on a threshold graph (i.e. the MSSP)

is in NP.

(2) A special case of this problem, the Hamiltonian path problem on a threshold graph, is in

P.

(3) A generalization of this problem, the twin-constrained Hamiltonian path problem, is

NP-complete.

Proof. Statements (1) and (3) follow from Theorem 29; statement (2) is a consequence of

Remark 30 in conjunction with Theorem 53.

We can conclude from this corollary that, for threshold graphs, the twin-constrained Hamil-

tonian path problem is at the frontier between two complexity classes, namely problems in P

and NP-complete problems. At the moment, the question of whether or not the MSSP is solv-

able in polynomial time is open, and the answer to this question must be considered nontrivial.

This means that as a reasonable strategy in the following we should continue to exploit the

structure of the underlying threshold graph as much as possible, in the hope that we might �nd

a polynomial-time approach to the MSSP. And yet, we should be open to the fact that we might

have to conclude the endeavor of this thesis not with an exact algorithm, but instead with a

polynomial-time heuristic. For the moment we can neither expect nor exclude the possibility of

an exact polynomial-time algorithm for the MSSP. Therefore, it seems to be advisable to keep

all options open and pursue a two-track policy.

57

6 Alternating cycles and maximum cardinality matchings

on threshold graphs

There is a �nal type of path that we have to discuss here in relation to maximum cardinality

matchings in order to be prepared for our analysis of the MSSP, namely what we call alternating

T -cycles. These can be seen as a natural extension of our concept of alternating T -paths in so

far as they feature, in contrast to augmenting T -paths, two end nodes that have been matched

as one pair in the matching given, or, alternatively, as they can be considered as a special case

of even T -paths (where the two end nodes coincide), or as a matching-dominated T -path where

the end nodes are adjacent. Therefore, when discussing alternating T -cycles we will bene�t a

great deal from the results of the previous chapter.

We begin with a section that introduces the concept of alternating T -cycles and explains

why they are an important tool for analysing all perfect matchings on threshold graphs. The

succeeding section provides two (both necessary and su¢ cient) criteria for the existence of

alternating T -cycles. Based on this, the third section sharpens one of the criteria by using the

properties of the matching algorithm TGMAmax and, on this basis, presents a criterion for

merging two alternating T -cycles. In the �nal section of this chapter, i.e. before we turn our

attention to the MSSP from the next chapter on, we give a summary of what has been achieved

by our discussion of threshold graphs in the preceding and the present chapter.

6.1 De�nition and relevance of alternating T -cycles

We start with a de�nition of alternating T -cycles. Again, as it was the case with alternating

T -paths, our de�nition directly refers to the subset of the matching that the cycle is build upon.

De�nition 57 (Alternating T -cycle)
Let G(N;E) be a graph, M a matching on G, and T �M . An alternating T -cycle relative

to M is a cycle on G with an even number of edges such that every consecutive pair of edges

in the cycle contains one edge from T and one edge that is not an element of the matching M ,

and all elements of T are edges of the cycle.

The following de�nition leads to a way of looking at the problem of analysing all perfect

matchings on a threshold graph that will allow us to draw on the results of the preceding

subsection.

58

De�nition 58 (Matching generator)
Let G(N;E) be a simple undirected graph and M 6= ? the set of all perfect matchings on G.
(1) For a given matching M 2M, a pair (gM ;SM) of a set SM and a function

gM : SM !M

is called a matching generator relative to M , and M is called the basis of the matching

generator.

(2) For a given matching generator (gM ;SM) relative toM and a particular subsetM� 2M,
an element S 2 SM is called an M�-generator relative to M i¤

gM (S) =M
�,

i.e. i¤ i "produces" the matching M� under gM .

(3) A matching generator is said to be complete i¤ gM is surjective, i.e. i¤ there exists an

M�-generator relative to M for all M� 2M.

A matching generator relative to a certain perfect matching M allows us to begin with a

speci�c matching and construct from there all possible perfect matchings on a given graph.

We proceed with a simple example of a matching generator.

Example 59 Let us consider a complete graph G(N;E) with NG = f1; 2; 3; 4g, for which the
set of all possible perfect matchings is

M = ff(1; 2); (3; 4)g; f(1; 3); (2; 4)g; f(1; 4); (2; 3)gg.
We choose the basis M := f(1; 2); (3; 4)g and de�ne a set SM as follows:

SM := f ?; f(1; 2); (2; 3); (3; 4); (1; 4)g;
f(1; 2); (2; 4); (3; 4); (1; 3)g g.

Furthermore, a function gM : SM !M be de�ned by

gM (S) := SnM +Mn(S \M) for all S 2 SM .
Then we have

gM (?) = ?+M ,
gM (f(1; 2); (2; 3); (3; 4); (1; 4)g) = f(2; 3); (1; 4)g+?,
gM (f(1; 2); (2; 4); (3; 4); (1; 3)g) = f(2; 4); (1; 3)g+?,

which implies that gM is surjective and hence (gM ;SM) a complete matching generator

relative to M .

The following proposition generalizes the preceding example by using the concept of alter-

nating T -cycles and establishes the relevance for alternating T -cycles for analysing all perfect

matchings on a graph.

59

Proposition 60 (Alternating T -cycles as matching generators)
Let G(N;E) be a simple undirected graph, M 2 M 6= ? a basis from the set of all perfect

matchings on G. Further, let CM be the set of families that contains the family (C�) := (?),
i.e. the family the only member of which is the empty set, and all disjunct families (Ci)i2I of

cycles on G for which there exists a disjunct family (Ti)i2I of subsets Ti � M such that Ci is

an alternating Ti-cycle relative to M for all i 2 I. Then (gM ;CM), by virtue of
T� := ? and

gM : CM !M

with (Ci)i2I 7! gM ((Ci)i2I) :=
P
i2I
(CinTi) +Mn(

P
i2I
Ti)

for all (Ci)i2I 2 CM ,
is a complete matching generator relative to M .

Proof. We have to show that a) for all families (Ci)i2I 2 CM the image

gM ((Ti)i2I) =
X
i2I
(CinTi) +Mn(

X
i2I

Ti)

is a perfect matching on G and b) there exists anM 0-generator relative toM for allM 0 2M .
a) Trivially, the image of (C�) = (?) with T� = ? is a perfect matching.
For all other families (Ci)i2I we consider the two disjunct sets that the image gM ((Ci)i2I)

consists of separately. The second term

Mn(
X
i2I

Ti) =Mn(
X
i2I

Ci)

is the set of all edges in the matching M that are not incident to nodes connected via the

alternating cycles Ci and is certainly a perfect matching on the set of these nodes.

The subgraph given by the �rst termX
i2I
(CinTi) = (

X
i2I

Ci)nM

consists of alternating cycles from which every consecutive edge is removed, i.e. the term

describes a subgraph that is a perfect matching on the set of nodes to which the edges from the

alternating cycles are incident. As the image gM ((Ci)i2I) contains edges such that all nodes

are incident to some edges, it is a perfect matching on G.

b) Trivially, (C�) = (?) is an M -generator relative to M .
For all other M 0 2 M , M 0 6= M , we consider the set (M [M 0)n(M \M 0), which consists

of edges incident to nodes each of which is an endpoint of one edge from M and one edge from

M 0. Hence, the set (M [M 0)n(M \M 0) consists of disjunct cycles Ci such thatX
i2I

Ci = (M [M 0)n(M \M 0) . (18)

If we de�ne a family (Ti)i2I of sets

Ti := CinM 0 for all i 2 I , (19)

60

the family (Ci)i2I consists of alternating Ti-cycles relative to M . Hence (Ci)i2I 2 CM , and
due to (18) and (19) we have

gM ((Ci)i2I) =
P
i2I
(CinTi) +Mn(

P
i2I
Ti)

=
P
i2I
(Cin(CinM 0)) +Mn(

P
i2I
(CinM 0)

= (
X
i2I

Ci)n((
X
i2I

Ci)nM 0) +Mn((
X
i2I

Ci)nM 0)

= ((M [M 0)n(M \M 0))n(((M [M 0)n(M \M 0))nM 0)
+Mn(((M [M 0)n(M \M 0))nM 0)

= ((M [M 0)n(M \M 0))n(MnM 0) +Mn(MnM 0)
=M 0nM + (M \M 0) =M 0,

i.e. the family (Ci)i2I is an M 0-generator relative to M .

The consequence of the preceding proposition is that, when studying perfect matchings on

graphs, we can start with one single matching M and then operate on the set of alternating T -

cycles for analysing all other matchings on our graph. In the case of threshold graphs this means

in particular that we can start with a convenient implementation of TGMA (with TGMAmax,

for example) and develop our theory by analysing alternating T -cycles relative to the matching

M we obtained from our implementation of TGMA. This is exactly the path we will follow in

the next two sections.

6.2 Criteria for the existence of alternating T -cycles

Having introduced the concept of alternating T -cycles and demonstrated its relevance in the pre-

vious section, we will now develop criteria for the existence of alternating T -cycles on threshold

graphs. The criteria for the existence of certain paths on threshold graphs, namely Hamiltonian

paths and di¤erent types of alternating paths that we have presented in the preceding chapter,

all refer to the characteristics of a certain given matchingM . This begs the question of whether

it is possible to have also such a criterion of the existence of alternating T -cycles. On the basis

of our Theorem 53 for Hamiltonian paths, we can establish such a criterion indeed

We will proceed in three steps. As a preparation for what follows, we will start with a

basic general observation on the relation of two perfect matchings on the same graph, which is

expressed in the succeeding lemma. On this basis and by means of Theorem 53, we will show in

a second step that in the case of threshold graphs, alternating T -cycles and Hamiltonian cycles

on the corresponding subgraph are subject to similar conditions. Finally, we derive from there

a statement that characterizes the matching M relative to which we would like to construct an

alternating T -cycle.

Lemma 61 Let G(N;E) be a simple undirected graph, T; T 0 � EG perfect matchings, and

(i0; j0) 2 EG an edge such that (i0; j0) 2 T 0, but (i0; j0) =2 T . Then there exists an alternating
(CnT 0)-cycle C � T [T 0 relative to T with (i0; j0) 2 C.

61

Proof. We consider all nodes in NG that have di¤erent mates with respect to the matchings
T �M and T 0, i.e. the set

NT�T 0 := fi 2 NG : (i; j) 2 T and (i; j) =2 T 0 for some j 2 NGg.
As every node of the subgraph G0(N;E) given by

NG0 := NT�T 0 and EG0 := T � T 0

(where T � T 0 denotes the symmetric di¤erence of T and T 0) has exactly two neighbours,
namely its mate under the matching T and its mate under T 0, the components of G0 are cycles,

i.e. G0 can be fully described by a family of (alternating) cycles (Cl)l2L with El � EG0 for all

l 2 L such thatX
l2L

Cl = T � T 0

and P
fi 2 NG : (i; j) 2 Cl for some l 2 L and j 2 NGg = NT�T 0 .

Because of (i0; j0) =2 T , but (i0; j0) 2 T 0, the edge (i0; j0) 2 EG0 is an element of one of

these cycles.

We can now make a �rst statement about the relation between matchings and alternating

T -paths on a threshold graphs. Basically, the following theorem means that we will �nd an

alternating T -cycle if and only if the subgraph induced by T is so "rich" in edges that we can

"a¤ord" to construct a perfect matching on the subgraph in which two nodes with a rather high

degree have been singled out to be each others�mates.

Theorem 62 (Matching criterion for alternating T -cycles on threshold graphs)
Let G (N;E) be a threshold graph, M a matching on G, and T �M . Let

U := fi 2 NG : (i; j) 2 T for some j 2 NGg
denote the set of all nodes incident to edges in T . Then there exists an alternating T -cycle

relative to M if and only if there exists a perfect matching T 0 on the subgraph induced by U

such that a dominating node in U is matched with an element of a maximal clique in U .

Proof.): Obviously, the existence of a perfect matching on the subgraph induced by U is a

necessary condition for the existence of an alternating T -cycle. As for the necessity of the second

part of the condition, let i0 2 U be a dominating node in U . The existence of an alternating

T -cycle trivially implies that there is a Hamiltonian path on the odd set U � fi0g. Hence the
node remaining from a matching T 0 according to Theorem 53 is a member of a maximal clique

in U and can be matched with i0.

(: Let i0 2 U be a dominating node in U with a mate j0 2 U that is a member of a maximal
clique in U , and T 0 a perfect matching on U with (i0; j0) 2 T 0.
Case(1) : (i0; j0) 2 T . We consider all other pairs (ik; jk) 2 T with 1 � k � jT j � 1, assume

without loss of generality that

jk - ik for 1 � k � jT j � 1 , (20)

62

and renumber the nodes such that

jjT j�1 - jjT j�2 - ::: � j2 - j1,
which yields ik 2 N(jk) � N [jk�1] for 2 � k � jT j � 1. Hence

i1 � j1 � i2 � j2 � :::� ijT j�2 � jjT j�2 � ijT j�1 � jjT j�1
is a matching-dominated (T � f(i0; j0)g)-path relative to M with the node i1 being in a

maximal clique in U because of (20). Thus we have (j0; i1) 2 EG and, since i0 is a dominating
node in U , also (jjT j�1;i0) 2 EG, i.e.

i0 � j0 � i1 � j1 � i2 � j2 � :::� ijT j�2 � jjT j�2 � ijT j�1 � jjT j�1 � i0
is an alternating T -cycle relative to M .

Case(2) : (i0; j0) =2 T . Applying Lemma 61 to the subgraph induced by U , leads to a cycle
C � T � T 0 with (i0; j0) 2 C. By deleting the edge (i0; j0) from C, we obtain a matching

dominated (CnT 0)-path relative to M � CnT 0 with the endnodes i0 and j0.
Now we consider all nodes in U that are not incident to this path, namely the node set

U � fi 2 U : (i; j) 2 TnC for some j 2 NGg,
for which the edge set

TnC = T � CnT 0 �M
is a perfect matching. On this basis we can construct a matching dominated (TnC)-path in

the same fashion as in Case(1) above, which has a member of a maximal clique in

fi 2 NG : (i; j) 2 TnC for some j 2 NGg
(and, again because of (20), also in U) as one of its endpoints. By connecting this endpoint

to j0 and connecting the other endpoint to the dominating node i0, we obtain an alternating

(TnC + CnT 0)-cycle relative to M .

For the construction of an alternating T -cycle, the preceding theorem required that we �nd

a certain new matching T 0 on the subgraph induced by the set T � M . We will now provide
a statement that gives a characterization of alternating T -paths by directly drawing on some

property of the subset T .

Theorem 63 (Path criterion for alternating T -cycles on threshold graphs)
Let G (N;E) be a threshold graph, M a matching on G, and T �M . Let

U := fi 2 NG : (i; j) 2 T for some j 2 NGg
denote the set of all nodes incident to edges in T . Then there exists an alternating T -cycle

relative to M if and only if there exists a subset P � T and a matching-dominated P -path

relative to M the endnodes of which are a dominating node in U and a node in a maximal

clique of U .

Proof. We will show that the claim of this theorem is equivalent to the preceding theorem. In

the following, i0 is a dominating node in U and j0 a member of a maximal clique in U .

): Let T 0 be a perfect matching on U with (i0; j0) 2 T 0. If (i0; j0) 2 T , we can set

P := f(i0; j0)g and are done. If (i0; j0) =2 T , we know from Lemma 34 that there exists an

63

alternating (CnT 0)-cycle relative to T for some set C � T [T 0 with (i0; j0) 2 C, and de�ne
P := C � f(i0; j0)g.
(: Let i0 and j0 be the two endpoints of the matching dominated P -path relative to M . If

we denote this path by Q,

T 0 := (Q� P) + f(i0; j0)g+ (T � P)
is a perfect matching on the subgraph induced by U , which ful�ls the condition of Theorem

35.

Remark 64 Note that the theorem refers to a dominating node and a member of the maximal

clique in U . Of course, if this node set contains a dominating node and a member of the maximal

clique in NG, these nodes maintain the same properties also in U . The converse, however, is

not necessarily the case.

6.3 Alternating T -cycles and the case of greedy matchings

The path criterion provided above gives a characterization of alternating T -cycles on the basis

of some property of a certain subset P � T . From a combinatorial point of view, such a result

is rather unsatisfying because it requires us to check all possible subsets P to �nd out if there

exists one with the desired property. This suggests the idea to tighten this theorem, possibly in

a way that allows us to impose the same conditions that are relevant for the subset P on the set

T as a whole. For reaching this aim, it is inevitable that the matchingM from which we proceed

is richer in structure. This can be achieved if we assume that the matching is greedy, i.e. has

been obtained from the version TGMAmax of our Threshold Graph Matching Algorithm.

Theorem 65 (Strong path criterion for alternating T -cycles on threshold graphs)
Let G (N;E) be a threshold graph,M a matching on G that has been obtained from TGMAmax

and T �M . Let
U := fi 2 NG : (i; j) 2 T for some j 2 NGg

the set of all nodes incident to edges in T . Then there exists an alternating T -cycle relative

to M if and only if there exists a matching-dominated T -path relative to M the endnodes of

which are a dominating node of U and a node in a maximal clique of U .

Proof. The su¢ ciency of the condition is trivial as we can simply connect the endnodes

of the matching-dominated T -path. Regarding the necessity of the condition let there be a

matching-dominated P -path relative to M with endnodes i0 and j0 according to Theorem 63.

We will construct, by inserting the edges in T � P into the matching-dominated P -path, a

matching-dominated T -path that ful�ls the conditions of our theorem. The proof proceeds in

three steps.

64

STEP 1: Assume that it is possible to rearrange all edges (ik; jk) 2 P such that we arrive
at a matching-dominated P -path relative to M that has the properties of Theorem 63 and is

represented by

i0 � j0 � i1 � j1 � i2 � j2 � :::� ijP j�2 � jjP j�2 � ijP j�1 � jjP j�1 (21)

such that

ik & jk for 0 � k �
jP j
2
� 1 (22)

and

i0 & i1 & ::: & i jP j
2 �2

& i jP j
2 �1

. (23)

Now take any edge (i; j) 2 T � P . We assume i % j. Consider all edges in P and choose, if
possible, a k� such that ik� � i % ik�+1. Because of i % ik�+1, we have jk� 2 N(ik�+1) � N(i),
i.e. (jk�; i) 2 EG. Moreover, we have j % jk� due to ik� � i and the degree property of

TGMAmax (Proposition 51), which leads to (j; ik�+1) 2 EG. Hence, we can insert (i; j) into
the matching-dominated P -path between the edges (ik�; jk�) and (ik�+1; jk�+1). If it is not

possible to �nd such a k�, the node i is a dominating node in U or we have ijP j�1 � i. In

the former case we add the edge (i; j) at the beginning of the path (21), which is possible

because the path starts with a dominating node. In the latter case, we add (i; j) at the end

of the path (21), which is possible as jjP j�1 is a member of a maximal clique in U and i % j.
Proposition 51 of TGMAmax implies that j � jjP j�1, i.e. also the new endnode j is a member
of a maximal clique in U . It all three cases considered, we obtain at a matching-dominated

(P + f(i; j)g)-path that preserves the properties of the matching-dominated P -path regarding
the order of nodes and the particular end nodes. By induction over P � T , we �nally arrive at
a matching-dominated T -path with the properties required.

STEP 2: It remains to show that it is indeed possible to construct the path (21), which

we will do in the following two steps. In this step, we will prove that for all edges (i; j) 2 P
(assume in the following i & j) to which no dominating node in U is incident, there exists an

edge (k; l) 2 P (assume in the following k % l) such that k � i and l is adjacent to i.
We proceed from assuming that the opposite is true, i.e. that there exists an edge (i�; j�),

with i� not being a dominating node in U , such that (l; i�) =2 EG for all edges (k; l) 2 P with

k � i�. Because of the vicinal preorder, this implies
(l; i) =2 EG for all (i; j); (k; l) 2 P with k � i� and i� % i,

which yields

j � l for all (i; j); (k; l) 2 P with k � i� and i� % i.
Therefore, the edge (i; j) 2 P induces a partition P = P1 + P2 of the set of edges P such

that

(i�; j�) 2 P1 ,

65

k � i % j � l for all (i; j) 2 P1; (k; l) 2 P2

with i % j and k % l , (24)

and

(l; i) =2 EG and (l; j) =2 EG for all (i; j) 2 P1; (k; l) 2 P2

with i % j and k % l . (25)

(24) implies that P2 contains all edges from P to which the dominated nodes in U are

incident. Hence, the matching-dominated P -path, which has to begin with a dominated node

in U , starts with an edge from P2. Because of (25), all following edges from P in the matching

dominated P -path must be from P2. This contradicts the fact that the matching dominated

P -path must also contain all elements of P1, in particular (i�; j�) 2 P1. Consequently, our
initial assumption that that there exists an edge (i�; j�) 2 P , with i� not being a dominating
node in U , such that (l; i�) =2 EG for all edges (k; l) 2 P with k � i� has been proven wrong.

STEP 3: We can now construct the path (21) in a straight forward manner. Arrange all

edges (ik; jk) 2 P such that (22) and (23) hold. Furthermore, due to the degree property of

TGMAmax (Proposition 51), it is possible to sort the nodes jk for 0 � k � jP j2 � 1 in the order

j jP j
2 �1

% j jP j
2 �2

% ::: % j1 % j0 (26)

such that this remains consistent with (22) and (23). As a consequence,

i jP j
2 �1

� j jP j
2 �1

is a path on G that ends with a node in a maximal clique of U .

Assume now we have constructed a path

ik� � jk� � ik�+1 � jk�+1 � :::� i jP j
2 �2

� j jP j
2 �2

� i jP j
2 �1

� j jP j
2 �1

on G for some k� 2 f1; :::; jP j2 � 2;
jP j
2 � 1g. If the node ik� is a dominating node in U , all

other nodes in fi0; i1; :::; ik��2; ik��1g are also dominating nodes because of (23), which implies
that (21) is a feasible path on G. If ik� is not a dominating node in U , there exists an edge

(ik; jk) 2 P with k < k� such that (jk; ik�) 2 EG according to STEP 2 of this proof and (23).
Property (26) yields (jk��1; ik�) 2 EG, i.e.

ik��1 � jk��1 � ik� � jk� � ik�+1 � jk�+1 � :::� i jP j
2 �1

� j jP j
2 �1

is a path on G. Induction over f jP j2 � 1;
jP j
2 � 2; :::; 1; 0g leads to (21), which starts with a

dominating node by virtue of (22) and (23).

The preceding proof made use of the assumption that M is a greedy matching in two of its

three steps. The following example illustrates on the basis of the most simple case possible that

this condition is necessary indeed.

66

Example 66 Consider the threshold graph G(N;E) given by
NG := f1; 2; 3; 4; 5; 6; 7; 8g

and

EG := ff1; 7g; f1; 8g; f2; 6g; f2; 7g; f2; 8g;
f3; 4g; f3; 5g; f3; 6g; f3; 7g; f3; 8g; f4; 5g; f4; 6g; f4; 7g; f4; 8g;
f5; 6g; f5; 7g; f5; 8g; f6; 7g; f6; 8g; f7; 8gg,

for which

1; 2; 3; 4; 5; 6; 7; 8

clearly is an ordering of nodes with non-decreasing degrees,

Kmax = f3; 4; 5; 6; 7; 8g
is the (only) maximal clique on G, and

D = f7; 8g
is the set of dominating nodes. Running TGMAmax on G yields

Mgreedy = ff1; 8g; f2; 7g; f3; 6g; f4; 5gg,
while TGMAmin constructs the matching

Mmod est = ff1; 7g; f2; 6g; f3; 4g; f5; 8gg.
We focus on the cases Tgreedy := Mgreedy and Tmod est := Mmod est and examine all alter-

nating Tgreedy-cycles and Tmod est-cycles, respectively.

(a) In the case of a greedy matching, the only alternating Tgreedy-cycles are

8� 1� 7� 2� 6� 3� 4� 5� 8 and

8� 1� 7� 2� 6� 3� 5� 4� 8,
which contain the matching-dominated Tgreedy-paths

8� 1� 7� 2� 6� 3� 4� 5 and

8� 1� 7� 2� 6� 3� 5� 4,
respectively. In line with the preceding theorem, both paths start with dominating nodes

and end with members of Kmax. (Note that there exist other matching-dominated Tgreedy-paths

relative toMgreedy. These however do not ful�l the properties required by the preceding theorem.)

(b) In contrast to this, the modest matching allows for the alternating Tmod est-cycles

7� 1� 8� 5� 3� 4� 6� 2� 7 and

7� 1� 8� 5� 4� 3� 6� 2� 7.
One can see immediately that on G there exist only the following four matching-dominated

Tmod est-paths relative to Mmod est that start with a dominating node in NG:

7� 1� 8� 5� 3� 4� 6� 2, 8� 5� 3� 4� 6� 2� 7� 1
7� 1� 8� 5� 4� 3� 6� 2, 8� 5� 3� 4� 6� 2� 7� 1,

none of which ends with a member of Kmax. Hence, the strong path criterion for the existence

of an alternating T -cycle given by the preceding theorem cannot be applied for a matching

obtained from TGMAmin.

67

However, note that, in line with the general path criterion for the existence of alternating

T -cycles (Theorem 63), there exists a subset

P := ff7; 1g; f8; 5g; f3; 4gg � Tmod est,
and a matching-dominated alternating P -path

7� 1� 8� 5� 3� 4
relative to Mmod est that starts with a dominating node and ends with member of Kmax,

which ensures the existence of an alternating Tmod est-cycle relative to Mmod est according to

Theorem 63.

The proof of the preceding theorem justi�es the following de�nition.

De�nition 67 (Sorted alternating T -cycles)
Let G (N;E) be a threshold graph, M a matching on G and T �M . An alternating T -cycle

relative to M is called sorted i¤ deleting one of its edges yields a matching-dominated T -path

for which properties (21), (22), (23), and (26) hold.

We will now derive three direct corollaries about sorted alternating T -cycles from the pre-

ceding theorem, which will turn out to be useful in the following chapters. The assumption that

the underlying matching M has been generated by TGMAmax must be considered necessary

here again.

Corollary 68 (Existence of sorted alternating T-cycles)
Let G (N;E) be a threshold graph,M a matching on G that has been obtained from TGMAmax

and T �M . There exists an alternating T -cycle relative toM if and only if there exists a sorted

alternating T -cycle relative to M .

Proof. If there exists an alternating T -cycle relative to M , there exists a matching-dominated
T -path relative to M the endnodes of which are a dominating node of U and a node in a

maximal clique of U according to Theorem 65. We sort the path P := T in the fashion of

STEP 2 and 3 of the preceding theorem and connect its end nodes.

The following concept is intended only to simplify our manner of expression later.

De�nition 69 (Canonical alternating T -cycle)
Let G(N;E) be a simple undirected graph and M � E a matching. If, for a given set of

edges T � M written in the form T = f(i1; j1); (i2; j2); :::; (ik; jk)g, there exists an alternating
T -cycle relative to M of the form

i1 � j1 � i2 � j2 � :::� ik � jk � i1,
we will call this cycle the canonical alternating T -cycle.

68

Our second corollary enables us to construct alternating cycles from certain subsets of a

given set T �M .

Corollary 70 (Existence of sorted canonical alternating cycles on subsets)
Let G (N;E) be a threshold graph,M a matching on G that has been obtained from TGMAmax,

and T � M such that there exists an alternating T -cycle relative to M . Then there exists a

sorted canonical alternating T -cycle according to (21); (22); (23); (26) and for all sets

Tkl := f(ik; jk); (ik+1; jk+1); :::; (il�1; jl�1); (il; jl)g � T
with 0 � k < l � jT j � 1

there exists the sorted canonical alternating Tkl-cycle relative to M .

Proof. We know from the proof of the preceding corollary that any ordering of the nodes and

edges from T according to (21); (22); (23); (26) leads to a sorted canonical alternating T -cycle

of the form

i0 � j0 � i1 � j1 � :::� ijT j�2 � jjT j�2 � ijT j�1 � jjT j�1 � i0
with

T = f(i0; j0); (i1; j1); :::; (ijT j�1; jjT j�1)g.
Hence

ik � jk � ik+1 � jk+1 � :::� il�1 � jl�1 � il � jl
is a matching dominated Tkl-path relative to M the end nodes of which can be connected

because of the vicinal preorder of G and due to (26), which yield

ik 2 N(jk) � N(jl).

Finally, we note a corollary of the preceding theorem that makes a statement about the

condition under which we can "merge" two alternating T -cycles relative to the same matching.

Corollary 71 (Sorted alternating (T1 [T2)-cycles on threshold graphs)
Let G (N;E) be a threshold graph,M a matching on G that has been obtained from TGMAmax,

and T0; T1 � M two subsets of edges such that there exists an alternating T0-cycle and an al-

ternating T1-cycle relative to M . Then there exists an alternating (T0 [T1)-cycle relative to M
if and only if for k = 0; 1 and

Uk := fi 2 NG : (i; j) 2 Tk for some j 2 NGg
the dominating nodes in Uk are adjacent to the members of a maximal clique in U1�k.

69

Remark 72 Note that we trivially have at least for k = 0 OR k = 1 the case that the dominat-
ing nodes in Uk are adjacent to the members of a maximal clique in U1�k because the vicinal

preorder ensures that at least one of the sets Uk contains a dominating node in U0 [U1. The
condition of the corollary states that we need this property for both k = 0 and k = 1.

Proof. (: Let us assume without loss of generality that the dominating nodes in U0 have
at least the same degree as the dominating nodes in U1. We construct the sorted canonical

alternating Tk-cycles of the sorted sets Tk and insert the edges from T1nT0 in the fashion of
STEP 1 in the proof of Theorem 65, however such that we proceed in the sorted order of edges

given in T1nT0. If necessary, we will always be able to add an edge at the beginning of the path
(21) because the dominating nodes in U0 are dominating also in U1. Moreover, if necessary, we

will always be able to add an edge at the end of the path (21) because the dominating nodes in

U1 are adjacent to the members of a maximal clique in U0. If the path (21) �nally ends with

a node in U0, we can connect the end nodes because the canonical alternating T0-cycle exists.

Otherwise, we know that the end nodes of (21) are adjacent because the dominating nodes in

U0 are dominating also in U1.

): For demonstrating the necessity of the condition, we assume that it is not ful�lled.
Without loss of generality, this is equivalent to assuming that (a) the dominating nodes in U0
have at least the same degree as the dominating nodes in U1 and (b) the dominating nodes in

U1 are not adjacent to the members of a maximal clique in U0. We will sort the set T0 [T1
according to (21); (22); (23); (26), which is possible because the matching M is greedy. Because

of (a), we can assume the sorted set T0 [T1 to start with an edge from T0. Due to (b), the �rst

edge from T0 that appears in the set T0 [T1 will follow after the last edge from T1. Moreover,

assumption (b) implies that we cannot connect the larger node incident to the �rst edge from

T1 to the smaller node incident to the last edge from T0. Consequently, there exists no sorted

canonical alternating (T0 [T1)-cycle, and thus no alternating (T0 [T1)-cycle relative to M .

6.4 Summary of our results about maximum cardinality matchings
on threshold graphs

We have started the preceding chapter with a simple matching algorithm for threshold graphs,

which, in its di¤erent implementations, can provide all possible matchings on a given threshold

graph. Using this algorithm, we analyzed the way in which we can construct alternating paths

on the basis of a certain matching and could show that the matching algorithm always leads

to maximum cardinality matchings. Building on this, we were able to present a direct proof

for a new criterion for Hamiltonian paths on threshold graphs, which led to a new proof of a

well-known theorem by Mahadev and Peled. Based on our new criterion, we derived several

necessary and su¢ cient conditions for the existence of alternating cycles relative to a given

matching, and �nally arrived at a rather tight characterization in the case of alternating cycles

70

relative to a matching generated by TGMAmax. In particular, it has been shown that the

existence of alternating T -cycles relative to a given matching M is equivalent to the existence

of a matching-dominated T -path with certain properties on the subset of nodes incident to

edges in T . In view of the concept of matching generators as introduced at the beginning of

the present chapter, we can say that studying alternating cycles has led our analysis on the

relation of matchings and di¤erent types of paths back to the question that was our initial point

of departure � in the sense that the concept of alternating cycles provides an answer to the
question of all possible (perfect) matchings on a threshold graph.

By proceeding in this way, we have developed a useful method for analysing perfect match-

ings on threshold graphs. At the beginning of the previous chapter we had to derive their

properties from possible outcomes of the matching algorithm. Instead, we can now proceed

from a single matchingM generated by the computationally most e¢ cient matching algorithm,

i.e. TGMAmax. The concept of the matching generator then enables us to derive statements

about all possible other matchings by examining the set of all generators relative to M , and,

in doing so, we are able to draw on the convenient properties of the matchings generated by

TGMAmax. As we will see in a later chapter, this can, depending on the circumstances, even

imply that we can restrict our attention to the subset of CM that consists only of disjunct

families of sorted alternating Ti-cycles relative to a greedy matching gained by TGMAmax, i.e.

those types of cycles for which we have developed the sharpest characterization.

71

7 Constructing twin-constrained Hamiltonian paths on

threshold graphs

Having analyzed in detail the properties of matchings and various type of paths on threshold

graphs, we now have all necessary prerequisites and will turn our attention to the Minimum

Score Separation Problem, i.e. the problem of �nding a twin-constrained Hamiltonian path on

a threshold graph. The aim of this chapter is threefold: �rst, to gain a basic understanding of

the general structure of the twin-constrained Hamiltonian path problem on threshold graphs

and of how it is related to matchings; second, to solve the MSSP for a number of speci�c cases;

and third, by doing so, to prepare ourselves for �nding a general solution of the MSSP. We will

begin by making some general considerations on twin-constrained Hamiltonian paths in the

�rst section. The succeeding section introduces the concept of the "twin-induced structure" of

a matching and analyses both the case in which we have a perfect matching on the threshold

graph and the case in which we have at least 4 unmatched nodes. The third section addresses

the case of 2 unmatched nodes, three sub-cases of which we will analyse more in detail in

further sections: "structure-preserving solutions" and two types of "non structure-preserving

solutions", namely "path-split solutions" and "cycle-split solutions". The �nal section sums up

the results of this chapter by presenting a heuristic that solves the MSSP for a large percentage

of instances.

Unfortunately, the convenient structure of a simple Hamiltonian Path Problem on a thresh-

old graph does not translate directly into a solution to the MSSP. This is due to the twin

node condition of the MSSP, which partly destroys the structure that has been discussed in the

preceding section. In the following, we will proceed from our results for threshold graphs and

analyse the relation of matchings and paths with respect to the structure given by the MSSP.

The aspects to be discussed will establish the general approach for developing a heuristic algo-

rithm for the MSSP afterwards.

7.1 General considerations, modi�ed matchings

We will start with some general considerations on the MSSP, i.e. on recognizing twin-constrained

Hamiltonian threshold graphs.

In the remainder of this chapter, let G(N;E) be a threshold graph with the node set NG =

f1; 2; :::; 2ng and an edge set EG. Given a (bijective) twin-node function b : NG ! NG, the

graph G0(N;E) with NG0 := NG and

EG0 := EG [f(i; j) 2 NG0 �NG0 : j = b(i)g (27)

72

then constitutes a MSSP, which is feasible if and only if there exists a Hamiltonian path on G0

that is of the form

i1 � b(i1)� i2 � b(i2)� :::� in � b(in) , (28)

i.e. if and only if there exists on G a twin-constrained Hamiltonian path with respect to b

Let us consider what distinguishes the problem of �nding out whether there exists a twin-

constrained Hamiltonian path from the problem of determining whether there exists a Hamil-

tonian path on G (as discussed in chapter 5:2).

As we have made no further assumptions on the twin-node function b, the twin-node con-

dition (28) is in general not compatible with the speci�c structure of a threshold graph: the

fact that condition (28) requires every second edge of the Hamiltonian path to be an edge con-

necting twin nodes partly destroys the structure that has been helpful in chapter 5:2. We will

brie�y recall the proof of Theorem 53 in order to see why condition (28) changes the situation

fundamentally.

The very reason why we could provide a direct matching-based characterization of the

Hamiltonicity on threshold graphs in the preceding section consists in the fact that the vicinal

preorder of threshold graphs is total. Due to this feature, a simple matching is su¢ cient to

draw far-reaching conclusions about the structure of the graph. In particular, a node i 2 NG
can be connected to all nodes that have a higher value v(j) than its mate j in the matching.

In other words: the totalness of the vicinal preorder allows us to gain immediate information

about the neighbourhood of the matching mate of a certain node. This means that, when

trying to construct a Hamiltonian path on a threshold graph, we can look "two steps ahead"

so to speak. I.e., when selecting a node as the next one along the Hamiltonian path, we do not

only know the neighbourhood of the node in question but also have some information about

the neighbourhoods of the nodes in that neighbourhood. In the end, it is this very feature of

the vicinal neighbourhood of threshold graphs that turned out to translate the non-polynomial-

time complexity of the general Hamiltonian path problem into a polynomial one for threshold

graphs.

In the proof of Theorem 53, this feature was used to prove both the su¢ ciency and the

necessity of the condition for Hamiltonicity. For the su¢ cient part, it allowed us to construct a

complete Hamiltonian path just by ordering the pairs of the matching according to the vicinal

preorder. With regard to the necessity of the condition provided in Theorem 53, we could use

the information given by the vicinal preorder (in conjunction with the matching algorithm) for

arguing that under certain conditions not even a graph with a larger edge set than the graph

in question would permit the construction of a Hamiltonian path.

In contrast to this, the subset of edge set (27) that is induced by the twin node function

does not preserve the convenient structure of the vicinal preorder in the general case as we have

not made any assumptions about the structure of the twin node property. This means that,

when building a Hamiltonian Path that satis�es property (28), every edge between twin nodes

"interrupts" our inference about further possible connections between nodes such that we do

73

not have any immediate information about the node that possibly follows two steps later in the

twin-constrained Hamiltonian path to be constructed. On the basis of this line of reasoning,

we must take into account that the MSSP might be truly combinatorial in nature (i.e. NP-

complete as the general Hamiltonian Path Problem) and cannot rely on �nding a polynomial

time algorithm for solving the MSSP.

However, despite these rather discouraging considerations about the MSSP, we can still

bene�t from our analysis in the previous chapters and try to exploit the fact that the graph

underlying a MSSP contains a threshold graph as a subgraph. Therefore, though Theorem 53

is not of direct help here, we should not carelessly discard the general idea of approaching the

MSSP on the basis of a matching on a threshold graph. After all, it still is the case that such

a matching is contained in every solution of a MSSP according to (28). In fact, as it will be

demonstrated in the following two chapters, the threshold property, when used in conjunction

with an appropriate matching algorithm, is powerful enough to arrive at substantial results for

the MSSP.

For solving the twin-constrained Hamiltonian Path Problem, we need to consider only those

matchings in which nodes are not matched with their twin-nodes because every edge in the

path (28) is either given by the twin-node function or an edge that matches two nodes that are

not twin-nodes to each other. That is, for a given threshold graph G(N;E) we have to �nd a

(suitable) maximum cardinality matching on the edge set

E0 := Enf(i; j) 2 NG0 �NG0 : j = b(i)g . (29)

As in the general case the graph G0(N;E0) is not a threshold graph anymore, we have to modify

our matching algorithm TGMA appropriately.

De�nition 73 (Modi�ed Matching on a Threshold Graph)
Let G(N;E) be a threshold graph, and b : N ! N a twin-node function. A matching on G

that contains only edges from the set E0 as de�ned by (29) is called modi�ed (with respect to b).

Algorithm 74 (MTGMA - Modi�ed Threshold Graph Matching Algorithm)

Let G (N;E) be an undirected graph with the (even) set of nodes

NG = f1; 2; :::; 2ng, neighbourhoods N(i) for all i 2 NG,
and b : NG ! NG a twin-node function.

[01].Sort all nodes in an order of non-decreasing degrees.

Set node i := 0,

the matching list m(i) := 0 for all i 2 f1; 2; :::; 2ng,
the set of all matched nodes I := ?, and
the "modi�ed neighbourhoods"

74

N 0(i) := N(i)nfb(i)g for all i 2 NG.
[02] Increase i by 1. If i = 2n then STOP.

[03] If i 2 I or N(i)nI = ? then go to [02].

[04] [i =2 I and N(i)nI 6= ?]:

If N 0(i)nI 6= ? then

pick a node j 2 N 0(i)nI,
set matching list m(i) := j and m(j) := i,

add i, j to set of matched nodes I, and go to [02].

[05] [i =2 I and N(i)nI = fb(i)g]:
If i > 1 and i� 1 2 I then

if m(i� 1) 2 N(i) and b(i) 2 N(i� 1) then
set matching list as follows:

m(i) := m(i� 1) and m(m(i� 1)) := i,
m(i� 1) := b(i) and m(b(i)) := i� 1,

and add i, b(i) to the set of matched nodes I.

[06] Go to [02].

Proposition 75 Let G(N;E) be a threshold graph and b : N ! N . Then MTGMA yields a

maximum cardinality modi�ed matching on G.

Proof. The basic idea of MTGMA is identical to TGMA (Algorithm 42), which has been

proven in Corollary 50 to yield a maximum cardinality matching: we arrange the nodes in

an order of non-decreasing degrees and, proceeding from the lowest to the highest node, we

match each node that has not yet been matched (i =2 I) with some other unmatched node in
its neighbourhood, provided N(i)nI 6= ?, i.e. provided such a node exists at all (see steps [01]
to [04] and step [06] in this algorithm). MTGMA di¤ers from TGMA in the following respect:

as we would like to achieve a matching on the set of edges E0 in (29), we do not permit in

step [04] that a node i be matched with its twin-node b(i) and hence try to �nd a mate in the

neighbourhood N 0(i)nI. Obviously, as long as the set of so far unmatched neighbours N(i)nI
contains either no node or at least one node that is not the twin node b(i), the algorithm

proceeds in the same way as TGMA and leads to a maximum cardinality matching according

to Corollary 50.

However, whenever an unmatched node i has no unmatched neighbour except its twin-node

b(i) (step [05] in this algorithm: the case i =2 I and N(i)nI = fb(i)g), MTGMA checks whether
i is not the �rst node (i > 1) and whether the preceding node i�1 has been matched (i�1 2 I).
If this is the case and the twin node b(i) is a neighbour of the preceding node (b(i) 2 N(i� 1)),
the node i is matched with the original mate of the preceding node and the preceding node is

matched with the twin node b(i) instead. We will refer to this procedure as a "swap of mates"

75

in the following and have to prove that attempting a swap of mates in step [05] is an appropriate

means for arriving at a maximal cardinality matching using the edges in the set E0.

First, note that we do not have to attempt any matching in step [05] if i = 1 and N(i) =

N(i)nI = fb(i)g, as it is, trivially, impossible under these conditions to match the node i = 1
using the edges in E0. Second, note that, for i > 1, a successful swap of mates in step [05]

immediately increases the cardinality of the matching achieved so far and will de�nitely not

reduce the overall cardinality of the matching at a later stage of running the algorithm because

Corollary 50 for TGMA ensures that it does not matter which of the so far unmatched nodes

N(i)jI we choose for matching a certain node (as long as we proceed in a non-decreasing order
of nodes).

It remains to show that there is no other way of increasing the overall cardinality of the

matching if, in step [05], our attempt at swapping mates with node i� 1 is not successful and
we leave the node i unmatched as a consequence of this. We make the following observations:

(1) For matching a node i subject to the edge set E0, we do not have to attempt more than

a mere swap of mates with one single node (in particular we could not do better by trying out

a permutation of the mates of several nodes) because, according to Corollary 50 about TGMA,

at any stage of constructing a matching, the overall cardinality of a matching on threshold

graphs is not a¤ected by the particular nodes in N(i)nI that we have already chosen as mates
for certain nodes i.

(2) Attempting a swap of mates with a (so far unmatched) node of a higher degree than the

node i will never be successful because, due to the vicinal preorder of a threshold graph, we

would never be able to match i with any so far unmatched neighbour of such a node (except

with the common neighbour b(i)).

(3) Attempting a swap of mates with a so far unmatched node of the same degree as the node

i will never be successful because, due to the vicinal preorder, the only unmatched neighbour

of such a node is b(i).

(4) Attempting a swap of mates with a matched node of a lower degree than the node i� 1
will, due to the vicinal preorder, be unsuccessful if attempting a swap of mates with the node

i� 1 is unsuccessful.
(5) Attempting a swap of mates with a matched node of the same degree as the node i� 1

will, due to the vicinal preorder, be successful if and only if attempting a swap of mates with

the node i� 1 is successful.
(6) If a swap of mates with node i � 1 is not possible due to the fact that node i � 1 has

remained unmatched, i� 1 must be of a lower degree than node i (otherwise i� 1 would have
been matched with b(i)) and no node of the same degree as i � 1, or of a lower degree, would
be a suitable candidate for a swap of mates.

In sum we have shown that node i � 1 is the most suitable candidate for a swap of mates
and that there is no other way of improving the cardinality of the matching if a swap of mates

with node i� 1 turns out to be impossible.

76

Remark 76 MTGMA is an adapted version of TGMA (Algorithm 42) for computing mod-

i�ed matchings, i.e. maximum cardinality matchings on the edge set E0. Analogously, we

will consider in the following also modi�ed matchings based on the algorithms TGMAmin and

TGMAmax (Algorithms 46 and 47). In doing so, we will have to take into account that the de-

gree property of TGMAmax (Proposition 51) does not hold in general anymore. (See Proposition

79, however.).

7.2 Twin-induced structure and the case jM j 6= n� 1

Based on the preceding general considerations, let us make a �rst step towards a heuristic for the

MSSP. In this section, we will proceed from a maximum cardinality matching on the threshold

graph underlying a MSSP, as provided in chapter 5:1 and the algorithm of the previous section.

In particular we will introduce the concept of the "twin-induced structure" of a matching and

analyse the easy cases in which the cardinality of our maximum cardinality matching is less

than or greater than n � 1 (with n being the number of twin-node pairs, as in the previous
chapters).

Let us observe what happens if we add to a (modi�ed) maximum cardinality matching

M � E0G0on the threshold graph those edges that are generated by the twin node function.

Figure 9 illustrates this setting for n = 13 pairs of twin nodes, with edges from the matchingM

being depicted as dashed lines, the edges arising from the twin node property as regular lines,

and unmatched nodes being represented by small circles.

M with |M |= n­2 S with NS = C1+C2+C3+P1+P2

C1

P2

C3

P1

C2

Figure 9: The twin-induced structure of a matching

77

Obviously, the subgraph resulting from the combination of the matching and the twin node

connections is split into di¤erent components, each of which is a cycle or a path. Other compo-

nents are not possible because every node is incident to either one or two edges: only one edge

(the twin node edge) if the node has not been matched under M , and two edges if the node

has been matched. All cycles consist only of nodes that have been matched in M , while a path

results if and only if two unmatched nodes are connected via some edges from the matching

and some edges due to the twin node property. (Note that the number of unmatched nodes

is always even because so is the node set of the threshold graph underlying the MSSP.) This

observation gives rise to the following de�nition.

De�nition 77 (Twin-induced structure of a matching)
Let G0(N;E) be the graph of an MSSP with twin node function b : NG ! NG, moreover

G(N;E) its threshold subgraph, and M � E0G a modi�ed maximum cardinality matching on G

under the constraint (29).

Then the subgraph S(N;E) of G0(N;E) with NS := NG0 and

ES :=M + f(i; j) 2 NG0 �NG0 : j = b(i)g
is called the twin-induced structure of the matching M (with respect to b) and will be repre-

sented by the node set partition

NS = C1 + C2 + :::+ Cd + P1 + P2 + :::+ Pq,

where the sets C1; :::; Cd and P1; :::; Pq, respectively, consist of the nodes from the cycles and

paths that are the components of S. Alternatively, the twin-induced structure will be represented

by a partition of the matching, i.e.

M = C1 + C2 + :::+ Cd + P1 + P2 + :::+ Pq,

where the sets C1; :::; Cd and P1; :::; Pq, respectively, consist of those edges from the cycles

and paths of S that are also elements of the matching.

Remark 78 (1) Note that we have q = n� jM j for jNGj = 2n.
(2) If the twin-induced structure consists only of one single path, i.e. NS = P1, or only of

one single cycle, i.e. NS = C1, then the MSSP obviously is feasible, i.e. there exists a path that

ful�lls condition (28).

(3) Observe that every cycle of S has at least length 4.

(4) For achieving a transparent presentation we will represent the twin-induced structure of

a matching by means of the node set partition thoughout the present chapter, while in chapter

8 it will be more convenient to represent the twin-induced structure by subsets of the matching.

Having introduced the concept of the twin-induced structure of a matching, let us note,

before we proceed with the main topic of this chapter, a prerequisite for the last section of

the present chapter and for chapter 8. The following proposition about a modi�ed greedy

78

matching, i.e. a matching computed byMTGMAmax, is the counterpart of the degree property

of TGMAmax (Proposition 51), expressed by means of the twin-induced structure of a matching.

Proposition 79 (Degree property of MTGMAmax)
Let G(N;E) be a threshold graph, b a twin-node function, and M a modi�ed matching on

G that has been obtained from MTGMAmax. Then for all (i1; j1), if there exists an edge

(i2; j2) 2 M with dg(i1) > dg(i2) and dg(j1) > dg(j2), the edges (i1; j1) and (i2; j2) belong to

the same cycle or path of the twin-induced structure of M with respect to b.

Proof. We know from Proposition 51 that the case dg(i1) > dg(i2) and dg(j1) > dg(j2) does

not occur with matchings obtained by TGMAmax. The only di¤erence between TGMAmax and

MTGMAmax lies in the fact that the latter occasionally performs "swaps of matching mates"

(cf. the proof of Proposition 75), which can disturb the degree property of TGMAmax for the

pairs of nodes involved in the swap. As such a swap of mates implies that a node j1 is matched

with the twin node i1 = b(j2) of a node j2, the edges (i1; j1) and (i2; j2) must belong to the

same cycle or path of the twin-induced structure of M . (Note, however, that a swap of mates

does not automatically lead to a situation in which dg(i1) > dg(i2) and dg(j1) > dg(j2).)

In the remainder of this chapter, we will analyse what the matchingM and its twin-induced

structure S tell us about the feasibility or infeasibility of the MSSP. Some conclusions are

immediately at hand when we look at the cardinality of M .

Being a special case of the general Hamiltonian path problem, every solution (28) of the

MSSP presupposes a matching on the threshold subgraph G of a cardinality of at least n� 1.
Hence we can immediately decide on the infeasibility of an MSSP if our maximum cardinality

matching is of cardinality jM j < n� 1.
In contrast to this, let us consider the case of a perfect matching, i.e. a matching with

jM j = n.

Proposition 80 (MSSP in the case of jM j 6= n� 1)
Let G0(N;E) be the graph of an MSSP, G(N;E) its threshold subgraph, and M � E0G a

modi�ed maximum cardinality matching on G.

(a) If jM j < n� 1, the MSSP is infeasible.
(b) If M is a perfect matching, i.e. jM j = n, the MSSP is feasible.

Proof. It remains to show (b). According to Remark 78(1), the twin-induced structure S of
the matching consists only of cycles C1; :::; Cd. If d = 1, we directly have a solution of the

MSSP. Otherwise, we exploit the threshold structure of the subgraph. Let us arbitrarily pick

one node from each cycle of the matching structure S, i.e. let us choose nodes i1; i2; :::; id 2 NS
with ik 2 Ck for 1 � k � d. Because the vicinal preorder of G is total, we can renumber the

node and cycles such that

i1 - i2 - ::: - id.

79

As the matching has cardinality jM j = n, there exist nodes jk 2 NS with (ik; jk) 2M � ES
for all k = 1; :::; d, which, due to the vicinal preorder yields jk 2 N(ik) � N [ik+1], i.e.(jk; ik+1) 2
EG for 1 � k � d� 1, and even (jk; ik+1) 2 E0G. Therefore, we can de�ne a new matching M 0

by

M 0 :=M � f(ik; jk) : k = 1; :::; dg
+f(jk; ik+1) : k = 1; :::; d� 1g,

which is of cardinality jM 0j = n � 1 and the twin-induced structure of which clearly ful�ls
condition (28). (See Figure 10 for an illustration of the process for the case d = 3, where the

dotted thin edges are removed from M , and the curved edges are added when constructing

M 0.) Hence, every MSSP for which there exists a perfect matching on the underlying threshold

graph is feasible.

Figure 10: The case jMj=n

7.3 The case jM j = n� 1

While the cases of matchings with cardinality jM j < n � 1 or jM j = n obviously can directly
be solved in polynomial time for all possible instances, the case with cardinality jM j = n � 1
does not allow for an immediate treatment and brings back the combinatorial challenge into

the problem. (Compare this with the setting of a general Hamiltonian path problem where the

case jM j = n is the only interesting one).
According to what has been said above (and this actually is the only information that we

have so far), the instances with jM j = n � 1 are characterized by the fact that they are those
MSSPs for which every maximum cardinality matching has a twin-induced structure of the

form

NS = C1 + C2 + :::+ Cd + P1 with d � 0 . (30)

80

Let us proceed by examining some examples to get a better insight into the nature of such

a setting.

First of all, as Figure 11 shows, there obviously are both feasible and infeasible cases among

the instances with jM j = n�1, which depends on the twin node structure as well as the options
for a matching. The infeasibility of the second twin-induced structure in Figure 11 can easily

be seen by looking at the degree partition of the underlying threshold graph and observing that

the matching given in Figure 11 is the only maximum cardinality matching that exists on the

graph. (The numbers in the circles represent the values v (i) of the nodes; adjacency is de�ned

by the threshold � = 70.)

5
8

10

20

 30

60

50

40

a) Degree partition b) Unique matching c) Possible
of threshold graph with max. card. twin­induced structures

50 20 5

60 10 30

8 40

 50 20 5

 60 10 30

8 40

 (MSSP feasible)

 50 20 5

 60 10 30

8 40

 (MSSP infeasible)

Figure 11: The case jMj=n-1

Of course, there are also instances in which there exists more than one maximum cardinality

matching on the underlying threshold graph. If the MSSP under investigation is a feasible one,

we can have the good luck to be immediately provided with a feasible solution by the matching

algorithm (or not). Figure 12a) presents an example where there exist exactly two maximum

cardinality matchings on the underlying threshold graph. In the case of the twin-node function

of 12(d), we immediately arrive at a feasible solution of the MSSP by constructing the twin-

induced structure with respect to the twin-node function, no matter which of the two matchings

we choose. In the case of 12(c), we arrive at an feasible solution if we are so lucky as to start

with the second matching (NS = P1, d = 0), while starting with the �rst matching, the twin-

induced structure of which is not a feasible solution, leaves open the question of whether or

81

not our MSSP is feasible because we have NS = C1 + P1. In contrast to this, Figure 12(b) still

shows the same underlying threshold graph, but again with a di¤erent time node function. In

this case, neither matching leads to a twin-induced structure that would ful�ll condition (28),

so the MSSP is infeasible.

a
b

c

d

h

f
g

e

d

f

 e g

d

f

e g

a) Degree partition b) Infeasible MSSP c) MSSP with one d) MSSP with two
 and matchings feasible solution feasible solutions

Figure 12: Matching, twin-node function and (in)feasibility

In principle, we could enumerate all possible maximum cardinality matchings on the under-

lying threshold graph and check if any among these has a twin-induced structure with NS = P1,

d = 0. This would not even be a complicated task because section 5 has presented a simple

matching algorithm for threshold graphs, and Remark 52(3) has addressed the question of how

to obtain all possible maximum cardinality matchings on the basis of Algorithm 42. However,

it is clear that this would still be a problem of non-polynomial (namely factorial) complexity.

Therefore, it seems to be reasonable not to rush to other possible matchings, but instead to use

the threshold property to exploit the information contained in the twin-induced structure of a

given maximum cardinality matching.

The case of jM j = n that we have discussed above suggest the idea that we could try to

�nd also in the case of jM j = n � 1 some ways of recombining the cycles and the path of the
twin-induced structure (30) in order to arrive at a matching the twin-induced structure of which

82

ful�ls condition (28). This time, however, the situation is more di¢ cult. While it was su¢ cient

in �gure 9 to transform a matching of cardinality jM j = n into one of cardinality jM j = n� 1
(by substituting d edges for d� 1 edges), we are more restricted now and must make sure that
every edge that we cancel from the given matching M is replaced by a new edge to preserve

the cardinality of our matching.

Figure 13 provides two examples for this procedure. In example a), it is su¢ cient to remove

two edges from the cycles and to add a new edge between the cycles and one edge to one of the

ends of the path. In order to transform example 13(b) into a solution of the MSSP, however,

we have to remove one edge from the path and three others from the cycle and add four new

edges.

a) Replacing 2 arcs b) Replacing 4 arcs

Figure 13: Constructing a feasible solution to the MSSP

Unfortunately, in the case of a more complicated twin-induced structure of our matching,

this approach would again lead to a combinatorial explosion because the general approach of

choosing a subset of edges to be replaced by new edges is obviously only a di¤erent perspective on

the process of trying out a di¤erent matching. And yet, we can expect signi�cant computational

advantages indeed if we change only a few edges instead of calculating an entirely new maximum

cardinality matching from scratch. Therefore, we will continue our approach in the following by

analysing three cases: structure-preserving solutions, path-splitting solutions and cycle-splitting

solutions.

83

7.4 Structure-preserving solutions for matchings with jM j = n� 1

If we restrict our attention to changing only a few edges, there is one rather general case that

suggests itself quite naturally among all di¤erent options of recombining the components of

the twin-induced structure of M . This case occurs when we add and remove only a minimal

number of edges for obtaining a solution. This is the case in which all nodes remain in the same

order in which they are given within the cycles and the paths of the twin-induced structure of

the matching. To achieve this, we remove exactly one edge per cycle and no edge from the path,

i.e. altogether d edges, and try to �nd exactly d new edges such that we arrive at the situation

in condition (28). There are two subcases that are suitable for this procedure, which have been

illustrated in �gure 14 (the dotted thin lines denote the edges that have been removed, while the

arrows represent those that have been added). The procedure of type 1 in Figure 14(a) consists

of adding the path before (or after) all cycles, and type 2 in Figure 14(b) is the situation in

which we include the path somewhere between the cycles. These two subcases are summarized

in the following de�nition.

C3

C2

C1

i1

j2

i3

j1

i2

j3

j0

j2B

i2B

i1B

j3B

 j1B

i2A

a) Type 1 b) Type 2

j2A

 j1A

i1A

j0A

j0B

i3B
P

Figure 14: Types of structure-preserving solutions

84

De�nition 81 (Structure-preserving solution of an MSSP)
Let G0(N;E) be the graph of an MSSP, M a modi�ed maximum cardinality matching on the

underlying threshold subgraph G(N;E) with cardinality jM j = n � 1, and let the twin-induced
structure of M be given by

NS = C1 + C2 + :::+ Cd + P with d � 1 . (31)

A solution of the MSSP is called structure-preserving with respect to M i¤ there exists a renum-

bering of the cycles and a suitable numbering of nodes such that the Hamiltonian path (28) takes

the form

i1;1 � i1;2 � :::� i1;jQ1j � i2;1 � i2;2 � :::� i2;jQ2j � :::
:::� i(d+1);1 � i(d+1);2 � :::� i(d+1);jQd+1j,

where

fil;1; il;2; :::; il;jQljg = P for one l with 1 � l � d+ 1,
fik;1; ik;2; :::; ik;jQkjg = Ck for all k 6= l with 1 � k � d+ 1,

and the paths

ip;1 � ip;2 � :::� ip;jQpj for all 1 � p � d+ 1
are subgraphs of the twin-induced structure of the matching.

In the case of

fi1;1; i1;2; :::; i1;jQ1jg = P or fi(d+1);1; i(d+1);2; :::; i(d+1);jQd+1jg = P
we will speak of a structure-preserving solution of type 1, otherwise of a structure-preserving

solution of type 2.

For a given twin-induced structure represented by (31), there are jCkj2 edges that can be

removed per cycle (the other edges are determined by the twin node function), (d+1)!2 di¤erent

permutations of the cycles Ck and the path P (the factor 2 arises due to symmetry), and

altogether 2d+1 ways of trying to insert both the path P and each path that remains from

one of the cycles Ck into the structure-preserving solution (namely "forward" and "backward"

each). Hence, there are

(d+ 1)! �
dY
k=1

jCkj

possible candidates for a structure-preserving solution of the MSSP for any maximum car-

dinality matching on the underlying threshold graph. Obviously, providing a general criterion

for the existence of such a structure-preserving solution of an MSSP would save computational

time considerably. Fortunately, exploiting the properties of the underlying threshold graph

leads to such a criterion indeed.

Let us recall that our point of departure for considering structure-preserving solutions of the

MSSP was the idea to use an approach for threshold graph matchings of cardinality jM j = n�1
that is similar to the one that was successful for matchings of cardinality jM j = n, where we
combined the cycles of the twin-induced structure of the matching into to a solution of the

85

MSSP. In order to see better what we can do in the case of jM j = n�1, it is helpful to consider
the case jM j = n from a di¤erent, somewhat broader perspective.

In fact, we can interpret the case jM j = n, i.e. Proposition 80, in the light of Theorem

44(i). In doing so, we can observe in �gure 9 that combining the cycles C1, C2 and C3 actually

means constructing a matching-dominated f(i1; j1); (i2; j2); (i3; j3)g-path relative to the given
matching. In the general case, the main ingredient of Proposition 80 consists in constructing a

matching-dominated path of the form

i1 � j1 � i2 � j2 � :::� id � jd
from

(ik; jk) 2M for 1 � k � d, and
(jk; ik+1) 2 E0GnM for 1 � k � d� 1,

and we know from Theorem 44 that this is always possible on the basis of our matching M .

It is for this very reason that a perfect matching always leads to a solution of the MSSP.

How does this perspective provide a hint for developing a criterion for structure-preserving

solutions of an MSSP? We have noted above that constructing a structure preserving solution

in the case jM j = n � 1 is equivalent to removing d edges and adding d new ones, while the
recombination of cycles in the case of jM j = n required only replacing d edges by d�1 new edges.
In the perspective of alternating paths, this means adding d edges to d edges from a matching

such that we arrive at an alternating path with altogether 2d edges (instead of altogether 2d�1
in the case of a matching-dominated T -path), which precisely is the phenomenon of an even

T -path.

Indeed, as �gure 14(a) illustrates for the case of a structure-preserving solution of type 1,

gluing together the cycles and the path means constructing an even path

j0 � i1 � j1 � i2 � j2 � :::� id � jd
from

(ik; jk) 2M for 1 � k � d, and
(jk; ik+1) 2 E0GnM for 0 � k � d� 1.

Therefore, we can immediately �nd a full characterization of structure-preserving solutions

of type 1 on the basis of Theorem 44(ii). Moreover, it turns out that this insight makes it even

possible to address type 2 on the basis of the result for type 1. We directly obtain the following

theorem.

Theorem 82 (Existence of structure-preserving solution of an MSSP)
Let G(N;E) be the underlying threshold subgraph of an MSSP and M a modi�ed matching

on G provided by MTGMA, with the twin-induced structure (31).

Then there exists a structure-preserving solution of the MSSP with respect to M if and only

if one of the two endnodes of the path P is adjacent to some node from each of the cycles Ck,

1 � k � d.

86

Proof. (1) Structure-preserving solution of type 1:
(: Assume that we have a structure-preserving solution of type 1 according to De�nition

81 with the node sets fik;1; ik;2; :::; ik;jQkjg = Ck for all k with 1 � k � d representing the cycles
and i(d+1);1 being the endnode of the path. P . Then (ik;1; ik;jQkj) 2M and (ik;jQkj; i(k+1);1) 2
E0GnM for all 1 � k � d. Hence

i1;1 � i1;jQ1j � i2;1 � i2;jQ2j � :::� id;1 � id;jQdj � i(d+1);1
is an even f(i1;1; i1;jQ1j); (i2;1; i2;jQ2j); :::; (id;1; id;jQdj)g-path and Theorem 44(ii) applies.

): Let j0 be the endnode of the path P that is adjacent to the nodes jk 2 Ck for all
1 � k � d. Further, let (jk; lk) be the corresponding pairs from the matching M such that the

cycles Ck and the path P are represented by the node sets

Ck = fjk; ik;2; :::; ik;jCkj�1; lkg for all k with 1 � k � d
and

P = fj0; i(d+1);2; :::; i(d+1);jP jg,
respectively, with the order of nodes in these sets being given according to the original order

of nodes within the cycles Ck and the path.P .

Then, given an appropriate renumbering of the pairs (jk; lk) and, correspondingly, the cycles

Ck, there exists an even alternating path

j1 � l1 � j2 � l2 � :::� jd � ld � j0
according to theorem 44(ii). Hence,

j1 � i1;2 � :::� i1;jC1j�1 � l1 � j2 � i2;2 � :::� i2;jC2j�1 � l2 � :::
:::� jd � id;2 � :::� id;jCdj�1 � ld � j0 � i(d+1);2 � :::� i(d+1);jP j

is a structure-preserving solution of type 1.

(2) Structure-preserving solution of type 2:

Assume that there exists a structure-preserving solution of type 2, let the nodes i0A and i0B
be the endnodes of the path P . Then, according to the line of argument in part (1), there exists

a partition of the set of cycles CA+CB = fC1; C2; :::; Cdg such that i0A and i0B are adjacent to
some node from each cycle in CA and CB , respectively. We can assume i0A % i0B without loss
of generality since the vicinal preorder on G is total, from which follows that i0A is adjacent also

to some node from each cycle in CB . Therefore, whenever there exists a structure-preserving

solution of type 2, there is also a structure-preserving solution of type 1. Consequently, the

criterion proved in part a) is necessary and su¢ cient for the existence of structure-preserving

solutions in general.

Remark 83 Pertaining to computational e¤ort, Theorem 82 can be exploited very e¢ ciently.

Because of the vicinal preorder of threshold graphs, we only have to check whether the larger

one of the two endnodes of the path is adjacent to some node from each of the cycles. Moreover,

also due to the vicinal preorder, we do not have to check adjacency for all nodes in all cycles,

but instead it is su¢ cient to look for adjacency only with the largest node in each cycle. Finally,

again because of the vicinal preorder, we only have to check if the higher of the two end nodes

of the path is adjacent to smallest node among the largest nodes in all cycles.

87

7.5 Classi�cation of non-structure-preserving solutions for matchings
with jM j = n� 1

In the previous subsection we have considered those solutions of the MSSP that arise when we

change only a minimal number of edges (namely d edges, with d being the number of cycles

of the twin-induced structure) from a given matching of cardinality jM j = n� 1, which led to
the analysis of structure-preserving solutions. In a next step, we will consider those solutions

that we obtain by changing d+ 1 edges from the matching. Moreover, we will observe on this

occasion that structure-preserving solutions are relevant for solving the MSSP also beyond the

case of changing d edges. The additional (d + 1)th edge to be removed here can be an edge

either from the cycle or from the path. We will start with the latter case.

De�nition 84 (Path-splitting solutions)
Let G0(N;E) be the graph of an MSSP, M a matching on the underlying threshold subgraph

G(N;E) with cardinality jM j = n�1, and let the twin-induced structure of M be given by (31).

A solution of the MSSP is called path-splitting with respect to S i¤ there exists a suitable

numbering of nodes such that the Hamiltonian path (28) takes the form

i1;1 � i1;2 � :::� i1;jQ1j � i2;1 � i2;2 � :::� i2;jQ2j � :::
:::� i(d+2);1 � i(d+2);2 � :::� i(d+2);jQd+2j,

where

fil;1; il;2; :::; il;jQljg+ fim;1; im;2; :::; im;jQmjg = P
for some l and m with 1 � l;m � d+ 2 and l < m� 1,

fig(k);1; ig(k);2; :::; ig(k);jQg(k)jg = Ck
for all k with 1 � k � d and some bijective function

g : f1; :::; dg ! f1; :::; d+ 2g � fl;mg,
and the paths

ip;1 � ip;2 � :::� ip;jQpj for all 1 � p � d+ 2
are subgraphs of the twin-induced structure of the matching.

Figure 15 illustrates two simple types of path-splitting solutions. In the case of type 1, the

path P has been split such that the nodes of all cycles Ck can be arranged between the two

segments of the path (without changing the order of the nodes within a cycle Ck). In the case

of type 2, the path P has been split such that the nodes of some cycles Ck can be arranged

between the two segments of the path, while the nodes of all other cycles can be attached to

the "outer end" of one of the two segments of P (again without changing the order of nodes

within a cycle).

88

a) Example of an irreducible path­splitting solution of Type 1

b) Example of an irreducible path­splitting solution of Type 2

 g h

e

a b f

 c d g h

i j

 k l

 m n o p

Clique p

c d

f g

n o

b a e

h i j Stable
k l m Set

a b

 e c d f

Figure 15: Irreducible path-splitting solutions

For convenience, we introduce the following conventions to refer to the structure of a path-

splitting solution.

Notation 85 (1) We will denote path-splitting solutions by
X1 �X2 � :::�Xq,

with Xi, 1 � i � q, referring to a subgraph of one of the following types:
a) the subgraph consists of the nodes of a cycle Ck, in which case we will write C for some

Xi;

b) it consists of the nodes fil;1; il;2; :::; il;jQljg and we will write Pa for some Xi; or

89

c) it consists of the nodes fim;1; im;2; :::; im;jQmjg and we will write Pb for some Xi.
(2) We write

!
Pa or

!
Pb if il;1 or im;1 are one the (unmatched) endnodes of the path P ,

respectively, and write

Pa or

Pb if these endnodes are il;jQlj or im;jQmj, respectively.

(3) If Xi = Xi+1 = C for some 1 � i � q, we will simplify our notation by writing C instead
of C � C.

Remark 86 In this notation, the path P of the twin-induced structure according to (31) can

be represented as P =
�!
Pa
 �
Pb =

�!
Pb
 �
Pa.

Using our notation, we can formally distinguish between the following 20 types of path-

splitting solutions (with some types being equivalent due to symmetry; see below) :

(i)
�!
Pa � C �

 �
Pb ,

 �
Pa � C �

 �
Pb ,

 �
Pa � C �

�!
Pb ,

�!
Pa � C �

�!
Pb ,

(ii) C ��!Pa �
 �
Pb , C �

 �
Pa �

 �
Pb , C �

 �
Pa �

�!
Pb , C �

�!
Pa �

�!
Pb ,

(iii) C ��!Pa � C �
 �
Pb , C �

 �
Pa � C �

 �
Pb , C �

 �
Pa � C �

�!
Pb , C �

�!
Pa � C �

�!
Pb ,

(iv) C ��!Pa �
 �
Pb � C , C �

 �
Pa �

 �
Pb � C ,

C � �Pa �
�!
Pb � C , C �

�!
Pa �

�!
Pb � C , and

(v) C ��!Pa � C �
 �
Pb � C , C �

 �
Pa � C �

 �
Pb � C ,

C � �Pa � C �
�!
Pb � C , C �

�!
Pa � C �

�!
Pb � C .

Each of these 20 types of path-splitting solutions represent a number of possible maximum

cardinality matchings M the twin-induced structure of which takes the form of one of these

types. Let us illustrate this by calculating the number of potential path-splitting solutions

represented by the �rst 4 types of path-splitting solutions listed above. All these 4 types are

characterized by the fact that the cycles are set between the two parts into which we have split

the path. With d being the number of cycles of the twin-induced structure according to (31),

there are d! permutations of the cycles,
dY
k=1

jCkj ways of arranging the cycles in the middle by

removing altogether d edges, jP j2 � 1 ways of splitting the path by removing 1 edge, and 3 ways
of gluing the two segments of the path to the left or to the right of the cycles (3 ways instead

of 4 because the types
 �
Pa �C �

 �
Pb and

�!
Pa �C �

�!
Pb are symmetrical to each other), i.e. there

are altogether

3d! � (jP j2 � 1) �
dY
k=1

jCkj

potential maximum cardinality matchings that could lead to a path-splitting solution of the

MSSP and the twin-induced structure of which takes the form of one of the �rst 4 types of

path-splitting solutions. Without calculating the combinatorial options for the other 16 types

(some of which would lead to an even higher number of potential matchings, due to the fact that

the number of matchings that would lead to the type C ��!Pa � C �
 �
Pb, for example, is clearly

higher than the number of matchings that would lead to the type
�!
Pa � C �

 �
Pb, for example),

it is obvious that a simple criterion for discovering whether the twin-induced structure of a

90

certain matching M gives rise to a path-splitting solution will greatly reduce the complexity of

deciding whether or not a certain MSSP is feasible.

The following result is a signi�cant step towards such a criterion.

Theorem 87 (Classi�cation of path-splitting solutions)
Let G0(N;E) be the graph of an MSSP, M a modi�ed matching on the underlying threshold

subgraph with cardinality jM j = n � 1 that has been obtained by MGTMA, and let S be the
twin-induced structure of M . If there exists a path-splitting solution with respect to S, then

there also exists a structure-preserving solution with respect to S, or the path-splitting solution

takes one of the two forms
!
Pa � C �

Pb, or

C �
!
Pa � C �

Pb.

This theorem justi�es the following de�nition.

De�nition 88 (Irreducible path-splitting solutions of type 1 and type 2)

A path-splitting solution that takes the form
!
Pa � C �

Pb or C �

!
Pa � C �

Pb is called an

(irreducible) path-splitting solution of type 1 or type 2, respectively.

Note that the irreducible path-splitting solutions of type 1 and type 2 are precisely the two

types illustrated in Figure 14 above.

Proof. We will address the 20 cases of path-splitting solutions in the order given in the list
above.

(i) Regarding
 �
Pa �C �

�!
Pb, note that we can connect the end of

 �
Pa that has been matched

in the path-splitting solution with the unmatched end of
�!
Pb such that we get the structure-

preserving solution C � �!Pa �
 �
Pb because P =

�!
Pa �

 �
Pb.is the (un-split) path in the original

matching M .

The same applies to
�!
Pa � C �

�!
Pb and to the symmetric case

 �
Pa � C �

 �
Pb.

For
!
Pa � C �

Pb there is nothing to show as it this one of the two types mentioned in the

theorem.

(ii) The type C � �!Pa �
 �
Pb is the structure-preserving solution of type 1, hence there is

nothing to show.

Regarding C � �Pa �
�!
Pb, there either exists also a structure-preserving solution, or the two

endnodes of
 �
Pa and

�!
Pb that were not matched under M must be members of a maximal stable

set of G (otherwise we would have a structure preserving solution again according to Theorem

54), in which case a solution of the type C � �Pa �
�!
Pb cannot not exist.

Regarding C � �Pa �
 �
Pb, the endnode of

 �
Pa that is connected to

 �
Pb must be a member of

a maximal stable set of G if there is no structure-preserving solution. Hence it must have at

91

least the same degree as the endnode of
 �
Pa that is connected to C (otherwise MTGMA would

have connected it to
 �
Pb in the original matching M), which implies the contradiction that the

structure-preserving solution C ��!Pa �
 �
Pb exists.

Regarding C ��!Pa �
�!
Pb, this type directly implies the existence of C �

�!
Pa �

 �
Pb.

(iii) For C �
!
Pa�C �

Pb there is nothing to show as this is one of the two types mentioned

in the theorem.

Regarding C � �Pa � C �
�!
Pb, if there is no structure-preserving solution, the endnodes of �

Pa and
�!
Pb that are connected to the middle C must be members of a maximal stable set of G.

Hence, both endnodes of the C in the middle must be members of a maximal clique of G. This

is not possible because otherwise MGTMA would have matched the endnodes of
 �
Pa and

�!
Pb

with the endnodes of the middle C in the �rst instance.

Regarding C��!Pa�C�
�!
Pb, we can connect

�!
Pb to

�!
Pa as in the original matchingM , with the

middle C remaining connected to
�!
Pb. This yields C�

�!
Pa�

 �
Pb�C, which is structure-preserving

of type 2.

Regarding C � �Pa�C �
 �
Pb, we will consider the case C1�C2�

 �
Pa�C3�C4�

 �
Pb without

loss of generality. If there is no structure-preserving solution, the right endnode of
 �
Pa , which

we will call k in the following, must be a member of a maximal stable set of G. Hence the left

endnode of C3 is a member of a maximal clique of G, which implies that the right endnode of

C3 has at most the same degree as k (otherwise MTGMA would have matched k and the left

endnode of C3 in the original matchingM). Consequently, due to the vicinal preorder of G, the

node k must be adjacent to the left endnode of C4 and, again due to the way in whichMTGMA

works, the right endnode of C4 has at most the same degree as k. As this right endnode of C4
is adjacent to the left endnode of

 �
Pb, so is k. Therefore, and again due to MTGMA, the left

endnode of
 �
Pa, which was matched with the left endnode of

 �
Pb under the original matching M ,

must have at most the same degree as k. Consequently, k is adjacent to the left endnode of

C2. This and the fact that C1 can be connected to C2 implies that we can construct an even

alternating path with the endnodes of C1 and C2 and the exposed node k. Hence, according

to Theorem 44(ii), the node k must be adjacent to one node from each of the two endnodes of

the cycles C1 and C2. Additionally, we have already shown in our line of argument that k is

adjacent to one node from each of the two endnodes of the cycles C3 and C4. Due to Theorem

44(ii), there exists an even alternating path that consists of the endnodes of all four cycles C1,

C2, C3, C4 and the node k. This implies that there exists a permutation � of the four cycles

such that
�!
Pb �

 �
Pa � C�(1) � C�(2) � C�(3) � C�(4) is a feasible solution of the MSSP, i.e. we

could construct a structure-preserving solution of type 1.

(iv) The case C ��!Pa �
 �
Pb � C is the structure-preserving solution of type 2.

Regarding C��!Pa�
�!
Pb�C, we assume that there is no structure-preserving solution. Then

the left endnode of
�!
Pb must be a member of a maximal stable set of G. If this left endnode had

a degree that were lower than the degree of the right endnode of
�!
Pb, our algorithm MTGMA,

in the original matching M , would have connected this left endnode node to the right endnode

92

of
�!
Pa (instead of matching the right endnode of

�!
Pa with the right endnode of

�!
Pb). Hence,

the degree of the right endnode of
�!
Pb is at most the degree of the left endnode of

�!
Pb This

implies that we can connect also the left endnode of
�!
Pb to the right cycle C. This, however, is

a contradiction as it allows for the structure-preserving solution of type 2, i.e. C��!Pa�
 �
Pb�C.

Regarding C � �Pa �
 �
Pb � C, we observe that this case is symmetric to the previous case.

Regarding C � �Pa�
�!
Pb �C, we must have also a structure-preserving solution according to

Theorem 82 here because one of the two endnodes that connect
 �
Pa with

�!
Pb must be a member

of a maximal clique of G.

(v) In the case of C � �Pa � C �
�!
Pb � C, we can apply the same line of reasoning that we

used for type C� �Pa�C�
�!
Pb in part (iii), which proves the existence of a structure-preserving

solution.

Regarding C ��!Pa �C �
 �
Pb �C, we show that, if there is no structure-preserving solution,

this solution implies the existence of a solution of the type C � �!Pa � C �
 �
Pb, which is one of

the two types mentioned in the theorem. Let us assume that there is no structure-preserving

solution. Then the left endnode of
�!
Pa and the right endnode of

 �
Pb must be members of a

maximal stable set due to Theorem 82. By applying the same line of reasoning that we used for

the case C� �Pa�C�
 �
Pb in part (iii), we can conclude that the left endnode of

�!
Pa is adjacent to

at least one node among the two endnodes of each of those cycles that make up the left C. In

the same fashion we can conclude that the right endnode of
 �
Pb is adjacent to at least one node

among the two endnodes of each of those cycles that make up the right C. Consequently, due

to the vicinal preorder, the higher node among the left endnode of
�!
Pa and the right endnode of �

Pb is adjacent to at least one node among the two endnodes of all cycles that make up the left

C and the right C. Again analogously to the case C� �Pa�C�
 �
Pb in part (iii), we can conclude

on the basis of Theorem 44(ii) that there exists an alternating path that consists of the higher

of the two endnodes and all cycles that make up the left C and the right C. This implies that

there exists a permutation of the left and the right cycles C such that all left and right cycles

can be glued to the higher of the two endnodes, i.e. we arrive at either C ��!Pa �C �
 �
Pb or its

symmetric counterpart
�!
Pa � C �

 �
Pb � C.

Regarding C ��!Pa �C �
�!
Pb �C, we can apply a line of reasoning similar to (albeit slightly

more complex than) the previous case. If the left endnode of
�!
Pa is of a higher degree than the

left endnode of
�!
Pb (or both degrees are equal), this procedure leads to the conclusion that a

permutation of the cycle(s) in the middle can be glued to a permutation of the cycle(s) on the

left such that we arrive at a solution of the type C ��!Pa�
�!
Pb�C, which was addressed in part

(iv). If, conversely, the left endnode of
�!
Pa is of a lower degree than the left endnode of

�!
Pb, this

procedure leads to the conclusion that some permutation of all cycles (i.e. those on the left, in

the middle and on right) can be glued to the left endnode of
�!
Pb, which yields C �

�!
Pb �

 �
Pa, i.e.

the structure-preserving solution of type 1.

Finally, the case C � �Pa � C �
 �
Pb � C is symmetric to the previous case.

93

Note that the examples of two irreducible path-splitting solutions presented in Figure 14

above are "irreducible" indeed, namely in the sense that the structure of the underlying thresh-

old graph does not allow for any matching based on edges other than those indicated by arrows.

In particular, this implies that, in the cases of the examples given in Figure 14, it is not possible

to construct a structure-preserving solution on the graph, nor to reduce one of the two types

to the other. Consequently, these two examples prove the existence of genuine path-splitting

solutions.

Having discussed path-splitting solutions, we now turn to the other case of changing d+ 1

edges from the original matching M . This case occurs when we remove 2 edges from 1 cycle

and 1 edges from each of the other d � 1 cycles and can be treated in a fashion similar to
path-splitting solutions.

De�nition 89 (Cycle-splitting solutions)
Let G0(N;E) be the graph of an MSSP, M a modi�ed matching on the underlying threshold

subgraph G(N;E) with cardinality jM j = n � 1 that has been obtained by MTGMA, and let
S, the twin-induced structure of M be given by (31). A solution of the MSSP is called cycle-

splitting with respect to S i¤ there exists a renumbering of the cycles and a suitable numbering

of nodes such that the Hamiltonian path (28) takes the form

i1;1 � i1;2 � :::� i1;jQ1j � i2;1 � i2;2 � :::� i2;jQ2j � :::
:::� i(d+2);1 � i(d+2);2 � :::� i(d+2);jQd+2j,

where

fil;1; il;2; :::; il;jQljg+ fim;1; im;2; :::; im;jQmjg = Ck�
for some k� with 1 � k� � d
and some l;m with 1 � l;m � d+ 2 and l < m� 1,

fij;1; ij;2; :::; ij;jQj jg = P
for some j 6= l;m with 1 � j � d+ 2,

fig(k);1; ig(k);2; :::; ig(k);jQg(k)jg = Ck
for all k 6= k� with 1 � k � d and some bijective function

g : f1; :::; dg � fk�g ! f1; :::; d+ 2g � fj; l;mg,
and the paths

ip;1 � ip;2 � :::� ip;jQpj for all 1 � p � d+ 2
are subgraphs of the twin-induced structure of the matching.

Corresponding to the aforementioned conventions, we refer to the structure of a cycle-

splitting solutions as follows.

Notation 90 (1) We will denote cycle-splitting solutions by
X1 �X2 � :::�Xq,

with Xi, 1 � i � q, referring to a subgraph of one of the following types:

94

a) the subgraph consists of the nodes of a cycle Ck, k 6= k�, in which case we will write C
for some Xi;

b) it consists of the nodes fij;1; ij;2; :::; ij;jQj jg and we will write P for some Xi;

c) it consists of the nodes fil;1; il;2; :::; il;jQljg and we will write Ca for some Xi;
d) it consists of the nodes fim;1; im;2; :::; im;jQmjg and we will write Cb for some Xi.
(2) We write

!
Ca and

Cb if (il;jQlj; im;1) 2M and (il;1; im;jQmj) 2M , while we write

!
Ca and

!
Cb if (il;1; im;1) 2M and (il;jQlj; im;jQmj) 2M .
(3) If Xi = Xi+1 = C for some 1 � i � q, we will simplify C � C by C.

Using our notation, we can classify cycle-splitting solutions into the following 26 types:

(i) P ��!Ca � C �
 �
Cb, P �

�!
Ca � C �

 �
Cb � C,

P � C ��!Ca � C �
 �
Cb; P � C �

�!
Ca � C �

 �
Cb � C,

(ii) P ��!Ca � C �
�!
Cb, P �

�!
Ca � C �

�!
Cb � C,

P � C ��!Ca � C �
�!
Cb; P � C �

�!
Ca � C �

�!
Cb � C,

(iii)
�!
Ca � P �

 �
Cb,

�!
Ca � C � P �

 �
Cb,

�!
Ca � C � P � C �

 �
Cb,

(iv) C ��!Ca � P �
 �
Cb, C �

�!
Ca � C � P �

 �
Cb,

C ��!Ca � C � P � C �
 �
Cb, C �

�!
Ca � P �

 �
Cb � C,

C ��!Ca � C � P �
 �
Cb � C, C �

�!
Ca � C � P � C �

 �
Cb � C,

(v)
�!
Ca � P �

�!
Cb,

�!
Ca � C � P �

�!
Cb,

�!
Ca � C � P � C �

�!
Cb,

(vi) C ��!Ca � P �
�!
Cb, C �

�!
Ca � C � P �

�!
Cb, C �

�!
Ca � C � P � C �

�!
Cb,

(vii) C ��!Ca � P �
�!
Cb � C, C �

�!
Ca � C � P �

�!
Cb � C,

C ��!Ca � C � P � C �
�!
Cb � C,

Figure 16(a) presents a cycle-splitting solution of the type P ��!Ca � C �
 �
Cb.

It will not be necessary here to illustrate again the number of potential matchings the

twin-induced structures of which could give rise to a cycle-splitting solution. Instead we imme-

diately turn to the central result, which, similar to the case of path-splitting solutions, reduces

signi�cantly the number of potential matchings that we have to investigate for deciding on the

feasibility of the MSSP on the basis of a potential cycle-splitting solution.

Theorem 91 (Classi�cation of cycle-splitting solutions)
Let G0(N;E) be the graph of an MSSP, M a greedy matching on the underlying threshold

subgraph with cardinality jM j = n � 1, and let S be the twin-induced structure of M . If there
exists a cycle-splitting solution with respect to S, then there also exists a structure-preserving

solution with respect to S, or the cycle-splitting solution takes one of the four forms

P �
!
Ca � C �

Cb, or P �

!
Ca � C �

Cb � C, or

P � C �
!
Ca � C �

Cb, or P � C �

!
Ca � C �

Cb � C.

95

a) Cycle­splitting solution b) Combined path and cycle split

Figure 16: Solutions with a cycle-split

Proof. In a fashion similar to the proof Theorem 87, however all cycle-splitting solutions that

do not take one of the forms in the present theorem can be shown to imply structure-preserving

solutions of type 1 or type 2. Following the order of the list above, we sketch the phenomena

that allow for a transformation of these solutions into structure-preserving ones.

(i) These are the four cycle-splitting solutions given in the theorem, so there is nothing to

show.

(ii) The solutions in this group have in common that the edges that they delete from the

original matching M and that they add to it form an even alternating path with the exposed

node being one endnode of the path P . With Theorem 44(ii) and Theorem 82 this implies a

structure-preserving solution.

(iii) The cycle segment

Cb can be removed from the end of the twin-constrained alternating

path and glued to
!
Ca as in the original matchingM . This directly yields a structure-preserving

solution of type 1 or of type 2.

(iv) If there is no structure-preserving solution, we can conclude (from the fact that the path

P is in the middle of the cycle-split solution, and in a fashion similar to the case C� �Pa�C�
 �
Pb

in Theorem 87) that the two nodes of the split cycle between which the path P has been glued

(under the new matching of the solution) must both be members of a maximal clique of G.

As a consequence, we leave one of the endnodes of the path unmatched and we attach, to one

96

of the members of a maximal clique, all cycles that are not between the split cycle and the

other endnode of the path (on the basis of Theorem 44(ii)). This yields a structure-preserving

solution, which contradicts the assumption that there is no structure-preserving solution.

(v) Here we have the same situation as in (iii), but this time we glue the cycle segment
�!
C b

to
!
Ca and attain a structure-preserving solution of type 1 or of type 2.

(vi) In these cases, we can cut the twin-constrained path after the cycle segment
!
Ca and

attach segment
�!
C b to

!
Ca (as in the original matching) such that all cycle or path segments

that are currently placed between
!
Ca and

�!
C b will follow after

�!
C b.

(vii) Similar to (iv), but in this case we can attach some cycles to the (now) unmatched end

of the path P (instead of attaching them to the second member of the maximal clique of G).

Analogous to the case of irreducible path-splitting solutions, it can be shown that the four

types of cycle-splitting solutions in the preceding theorem are "genuine" in the sense that there

exist matchings on threshold graphs such that their twin-induced structures are of one of these

four types and it is not possible to construct, on the basis of a di¤erent matching, a solution of

a di¤erent type. This insight and the preceding theorem justify the following de�nition.

De�nition 92 (Irreducible cycle-splitting solutions)

A cycle-splitting solution that takes one of the forms P �
!
Ca�C�

Cb, P �

!
Ca�C�

Cb�C,

P � C �
!
Ca � C �

Cb, or P � C �

!
Ca � C �

Cb � C is called irreducible.

7.6 Existence of non-structure-preserving solutions for matchings with
jM j = n� 1

Having classi�ed path-splitting and cycle-splitting solutions, we will now develop an algorithm

for �nding path-splitting and cycle-splitting solutions of a given MSSP, provided there exists

such a solution for an MSSP that does not have a structure-preserving solution.

According to Theorems 87 and 91 we can focus on six irreducible solutions, which all involve

subpaths of the form
!
Pa � C �

Pb or

!
Ca � C �

Cb (32)

(1) First we observe, that each of these subpaths corresponds to an alternating cycle that

contains exactly one edge from each cycle represented by the symbol C and exactly one edge

from the split path P (=
!
Pa �

Pb) or the split cycle Ck� (=

!
Ca �

Cb). Conversely, whenever

there exists an alternating cycle that consists of such a selection of edges, we can construct

subpaths that have the structure given in (32).

(2) Second, considering the two types of irreducible path-splitting solutions
!
Pa � C �

Pb and C �

!
Pa � C �

Pb,

97

we observe that those cycles of a path-splitting solution that are not part of the subpath

in (32) must be attached to one endnode of the path in the same way as this is the case

with structure-preserving solutions, namely by forming an even alternating path that contains

one edge from each of the cycles concerned, with the node of
!
Pa that was unmatched under

the original matching M being the exposed node of the even alternating path. This implies

according to Theorem 44(ii) that a cycle is suitable for being attached to a segment of the path

P in this way if and only if it contains a node that is adjacent to the larger node among the

two endnodes of the path P .

(3) Third, we observe that a similar setting exists in the case of irreducible cycle-splitting

solutions. In particular, all cycles that are not part of the subpath
!
Ca�C�

Cb, "contribute" to

an even alternating path that has an endnode of the path P as the exposed node and contains

exactly one edge from each of these cycles and one edge from the cycle Ck� . Again, Theorem

44(ii) states that this is possible if and only if one node from each of these cycles (including

the cycle Ck�) is adjacent to the larger one of the endnodes of the path P .

In sum: each of the irreducible solutions contains one alternating cycle by virtue of one of

the subpaths in (32), and one even alternating path due to the other components (the path or

other cycles) of the twin-induced structure S, with one unmatched node of P being the exposed

node of the even alternating path.

These considerations lead to the following proposition.

Proposition 93 (Edge criterion for the existence of irreducible solutions)
Let G(N;E) be the underlying threshold subgraph of an MSSP, and M a maximum cardi-

nality modi�ed matching on G with the twin-induced structure S of M given by (31).

If there exists no structure-preserving solution of the MSSP with respect to S, there exists

a path-splitting or a cycle-splitting solution of the MSSP with respect to S if and only if there

exists an alternating T -cycle with respect to M such that T consists of

(a) at most one edge from the path P and and at most one from each of the cycles Ck,

1 � k � d,
(b) at least one edge from each of those cycles Ck whose largest node is not adjacent to the

largest endnode of P , and

(c) at least one edge

(1) from the path P , or

(2) from one of those cycles whose two largest nodes are adjacent to the

largest endnode of P , or

(3) from one of those cycles only one node of which is adjacent to the

largest endnode of P , but not the edge that matches this one node.

Proof. (=: We show how to construct a path- or cycle-splitting solution if we have an

alternating T -cycle that ful�lls conditions (a) to (c). Because of (a), the segments of the twin-

induced structure (i.e. path P and the cycles Ck) can be split into two groups depending on

98

whether or not one of their edges is an element of the alternating T -cycle. Because of (b), all

cycles whose largest node is not adjacent to the largest endnode of P belong to the group of

segments with an edge in the T -cycle. With respect to (c), we distinguish two cases.

case (i): the T -cycle contains an edge from P . On the basis of all edges in T we can

construct a path-splitting solution of the type
!
Pa � C �

Pb with C representing all cycles that

have an edge in T (because of either (b) or (c)). Because of (b), all remaining cycles (if there

are any) must have a node (which is their largest node) that is adjacent to the unmatched

endnodes of
!
Pa or

Pb, depending on which unmatched endnode is the larger one. Hence, we can

construct an even alternating path (according to Theorem 44(ii)) that contains one edge from

each of these remaining cycles and the exposed node of which is the larger one of the unmatched

endnodes of
!
Pa and

Pb. This implies that we can glue these remaining cycles to the end of

!
Pa

or

Pb and obtain a path-splitting solution of the form

!
Pa � C �

Pb � C or C �

!
Pa � C �

Pb.

case (ii): the T -cycle does not contain an edge from P .

STEP 1: We choose one of the cycles that has an edge in T due to condition (c2) or

(c3). To be prepared for the the case of (c2), i.e. that we choose a cycle with an edge in T

has two largest nodes that are adjacent to the largest endnode of P , we show that one of these

two nodes of the cycle must be incident (under the matching M) to an edge not in T . If this

were not the case, the two nodes that are adjacent to the largest endnode of P would be mates

under M . If there is no structure-preserving solution these two mates must be members of a

maximal clique of G (otherwise they would not be adjacent to the larger endnode of P). This,

however, is not possible due to the way in which MTGMA works because MTGMA would

have matched one of these two mates with the larger endnode of P rather than making these

two nodes of the cycle mates under M . Hence one of these two largest nodes of the chosen

cycle must be incident (under the matching M) to an edge not in T . If we decide to choose a

cycle that ful�lls condition (c3), we immediately know that we have chosen a cycle with a node

incident to an edge not in T .

STEP 2: We construct an alternating even path that (1) contains one edge from each

of the cycles that do not have an edge in T and (2) contains one edge from the chosen cycle

such that this edge is not in T and (3) contains the larger endnode of P as its exposed node.

Constructing this path is possible according to Theorem 44(ii) because we know that (1) all

cycles that do not have an edge in T have a node that is adjacent to the largest endnode of P

(the exposed node) because of condition (b), and that (2) the chosen cycle has a node that is

adjacent to the exposed node and is incident (under the matching M) to an edge not in T (as

shown in STEP 1). This alternating path allows us to glue P and the cycles that contribute an

edge to the alternating path, such that we obtain a twin-constrained path of the form P � C.
STEP 3: We consider all cycles with an edge in T . These are those cycles that have

not been included in the path P � C we constructed in STEP 2 and the one cycle that we

chose in STEP 1 and have included in the path P � C in STEP 2. Because all these cycles

have an edge in T , we have an alternating T -cycle and can construct a twin-constrained cycle

99

that contains all nodes from these cycles. Now the cycle that we chose in STEP 1 is part of

both the twin-constrained path P � C and the twin-constrained cycle such that the edge that

the chosen cycle contributes to the even alternating path that led to P �C is distinct from the

edge that the chosen cycle contributes to the alternating cycle that led to the twin-constrained

cycle. This yields a cycle-split solution of one of the types on Theorem 91, with the cycle that

has been split into the two segments
!
Ca and

Cb being the cycle chosen in STEP 1 and the

cycles arranged between the segments
!
Ca and

Cb being all other cycles with edges in T .

=): The general idea underlying this part of the proof has been explained above as a
motivation for this proposition. Because of this, we focus here on de�ning, for every type of

irreducible path- and cycle-splitting solution, the appropriate set T that ful�lls conditions (a)

to (c).
!
Pa �C �

Pb: The set T is de�ned to contain the edge from the path that connects the

segments
!
Pa and

Pb in the original matching M (condition (c1)) and one edge from each of the

cycles (conditions (a) and (b)). The existence of the alternating T -cycle is guaranteed by the

existence of
!
Pa � C �

Pb.

C �
!
Pa � C �

Pb: We de�ne the set T such that it contains the edge from the path

that connects the segments
!
Pa and

Pb in the original matching M (condition (c1)) and one

edge from all cycles between the segments
!
Pa and

Pb. Obviously, condition (a) is ful�lled. The

existence of the (sub-)path
!
Pa�C�

Pb guarantees the existence of an alternating T -cycle. The

cycles attached to
!
Pa at the beginning of the path-splitting solution must contain, according to

Theorem 44(ii), a node that is adjacent to the endnode of
!
Pa. As all other cycles have an edge

in T , condition (b) is ful�lled.

P �
!
Ca�C�

Cb: The set T is de�ned to contain one edge from each of the cycles, which

ful�lls conditions (a) and (b). If there exists a cycle the two largest nodes of which are adjacent

to the largest node of P , condition (c2) is directly satis�ed. If there exists no such cycle, we

make sure that T contains an edge such that condition (c3) is satis�ed. This is possible because

our irreducible solution contains the sub-path P �
!
Ca � C. The existence of the alternating

T -cycle is guaranteed by the existence of the sub-path
!
Ca � C �

Cb.

P �
!
Ca � C �

Cb � C: We de�ne the set T such that it contains one edge from each

of the cycles of the sub-path
!
Ca � C �

Cb, which satis�es condition (a). Regarding condition

(b), we observe that each of the cycles at the end of the irreducible solution (i.e. each of the

cycles that do not have an edge in T) contribute to an even alternating path the exposed node

of which is one endnode of P . Due to Theorem 44(ii) each of these cycles must have node that

is adjacent to this endnode of P . This implies that T contains edges from all cycles required by

condition (b). The edge of the split cycle
!
Ca � :::�

Cb that is in T ful�lls either condition (c2)

or (c3). The existence of the alternating T -cycle is guaranteed by the existence of the sub-path
!
Ca � C �

Cb.

P � C �
!
Ca � C �

Cb: Analoguous to the previous case, with the cycle between the

segments P and
!
Ca taking the role of the cycle at the end of the irreducible solution in the

100

previous case.

P � C �
!
Ca � C �

Cb � C: Analoguous to the two previous cases, with this time the

cycles in front of
!
Ca and after

Cb being those cycles that are not required, by condition (b), to

contribute an edge to the alternating T -cycle.

In view of the previous theorem, if we would like to �nd out whether a certain twin-induced

structure of a matching allows for a path- or cycle-splitting solution, we have to solve the

combinatorial problem of �nding an alternating T -cycle that ful�ls the conditions (a) to (c) of

our theorem. We will now attempt at solving this combinatorial problem by modelling it on

the basis of a network �ow problem with additional constraints.

Instead of directly looking for an alternating T -cycle we will approach this problem by

looking for a �ow that is a matching-dominated T -path starting from a node that dominates all

other nodes in the path. This �ow will be required to contain all edges from the matching that

Proposition 93 calls for according to conditions (a) to (c). Once we have found this matching-

dominated T -path we can connect its endnodes (because one of the endnodes is dominating)

and obtain an alternating T -cycle that meets all requirements of Theorem 65. Note that looking

for a matching-dominated T -path instead of an alternating T -cycle is no restriction because all

alternating T -cycles trivially contain a matching-dominated T -path. Also, starting the path

from a dominating node is no restriction because we know from Theorem 63 that our alternating

T -path must contain a dominating node. Therefore, looking for a matching-dominated T -path

that starts with a dominating node and is based on a set T that ful�lls conditions (a) to (c) is

both necessary and su¢ cient in the light of Proposition 93.

The �ow problem is constructed as follows:

(1) Create a source that emits a �ow of one unit, which constitutes the starting point of the

�ow, i.e. of the matching-dominated T -path.

(2) Connect the source to the larger nodes of all edges of all cycles Ck and the path P . (If

the two nodes have the same degree, connect either of them.)

(3) Add all nodes in NG as nodes in the �ow problem, and add all edges in the matching M

as a directed arc from the higher node to the lower one. (If both nodes have the same degree

arbitrarily choose one direction.)

(4) Add directed arcs from every lower node incident to the edges in M to any higher node

of any edge in M that this node is adjacent to and that is not part of the same cycle or path.

(In case of a tie, choose arbitrarily.)

(5) Create a sink that receives a �ow of one unit.

(6) Connect every lower node incident to edges in M to the sink using a directed arc. (In

case of a tie, choose arbitrarily.)

(7) Require the �ow to use those arcs that represent those edges of M that ful�ll conditions

(a) to (c) in Proposition 93.

(8a) Require the �ow on an arc representing an edge from M to be zero if the head of this

arc is not adjacent to the node that receives the �ow from the source.

101

(8b) Require the �ow on an arc representing an edge from M to be zero if the tail of this

arc has a higher degree than the node that receives the �ow from the source.

(9) Require the �ow to be integer.

Note that (8a) and (8b) in the description of this �ow problem ensure that the �ow, coming

from the source, starts with a dominating node: (8b) stipulates that the �ow must not pass any

node that is of a higher degree than the �rst node passed immediately after the source, and (8a)

determines that the node the �ow passes immediately before going into the sink is adjacent to

the �rst node immediately passed after the source. The following proposition provides a formal

version of this �ow problem and states its relation to the problem of deciding whether there

exists a path- or cycle-splitting solution to the MSSP on the basis of the twin-induced structure

of a matching.

Proposition 94 (Necessary polyhedral criterion for irreducible solutions)
Let G(N;E) be the underlying threshold subgraph of an MSSP with node set NG = f1; 2; :::; 2ng,

M a modi�ed matching on G, the twin-induced structure of the MSSP with respect to M given

by

NS = C1 + C2 + :::+ Cd + P with d � 1,
let i0; i1 2 P be the unmatched endnodes of the path P with i0 being the higher one, i.e.

dg(i0) � dg(i1),
and let the function

c :
[

1�k�d
Ck ! f1; 2; :::; dg with

i 7! c(i) = k :, i 2 Ck for all i 2
[

1�k�d
Ck

assign to each node the index of the twin-induced cycle it is an element of.

Morever, we de�ne

A� := f(i; j) 2 EG : i = argmax
l2fi;jg

dg(l)g

to be a set of arcs that correspond to the edges of G such that the arcs�tails are higher than

the heads in terms of the vicinal preorder of G:

Further, let

IC0 := fk 2 f1; :::; dg : max
j2Ck

v(j) + v(i0) < �g
be the set of indices of those cycles whose largest node is not adjacent to an endnode of the

path P ,

IC2 := fk 2 f1; :::; dg : 9j; l 2 Ck :
v(j) + v(i0) � � ^ v(l) + v(i0) � �g

the set of indices of those cycles whose largest two nodes are adjacent to an endnode of P ,

IC1 := f1; :::; dg � IC0 � IC2
the set of indices of those cycles that contain exactly one node that is adjacent to an endnode

of P ,

A�k := f(i; j) 2 A� \M : i; j 2 Ckg for all 1 � k � d

102

for each cycle of the twin-induced structure the set of arcs that represent those edges of the

cycle that are given by M ,

A�d+1 := f(i; j) 2 A� \M : i; j 2 Pg
the set of the arcs that represent the edges of M that are part of the twin-induced path P ,

Hk :=
[

(i;j)2A�
k

fig for all 1 � k � d+ 1

the set of the higher ones of the two nodes incident to the arcs in A�k,

H0 :=
S

1�k�d+1
Hk

the set of the higher nodes of all matched pairs, and let

L0 := NG �H0 � fi0; j0g
be the set of the lower nodes of all matched pairs.

For IC0 6= ? there exists a path-splitting or a cycle-splitting solution with respect to S only

if the polyhedron PI de�ned by the (in)equalities

Flow out of source: X
j2H0

x
(A)
j = 1 (33)

Flow into sink: X
j2L0

x
(B)
j = 1 (34)

Flow balance for higher nodes of all edges of M :

x
(A)
i � yi;j = 0

for all i 2 H0 and j 2 L0 with (i; j) 2 A� \M (35)

Flows balance for lower nodes of all edges of M :

yi;j �
X

(k;j)2A�;
k2H0�Hc(j)

zj;k � x(B)j = 1

for all j 2 L0 and i 2 H0 with (i; j) 2 A� \M (36)

Exactly one edge used from each cycle in IC0:X
(i;j)2A�

k

yi;j = 1 for all k 2 IC0 (37)

At most one edge used from P and from each cycle in IC1 + IC2:X
(i;j)2A�

k

yi;j � 1 for all k 2 IC1 + IC2 + fd+ 1g (38)

103

At least one edge from P or from a cycle in IC1 + IC2
(excluding edges of cycles in IC1 a node of which is adjacent to i0):X

(i;j)2(
S

k2IC1+IC2+fd+1g
A�
k)nf(i;j)2

S
k2IC1

A�
k:(i;i0)2AGg

yi;j � 1 (39)

Arcs based on M with a head not adjacent to the node that receives

the �ow from the source must have a �ow of zero:

yi;j � 1� x(A)k for all k 2 H0

and (i; j) 2 A� \M with (k; j) =2 EG (40)

Arcs based on M with a tail of a higher degree than the node

that receives the �ow from the source must have a �ow of zero:

yi;j � 1� x(A)k for all k 2 H0

and (i; j) 2 A� \M with dg(i) > dg(k) (41)

contains a point with coordinates

x
(A)
i 2 f0; 1g for all i 2 H0 ,

x
(B)
j 2 f0; 1g for all j 2 L0 ,

yi;j 2 f0; 1g for all (i; j) 2M \A� ,

zj;i 2 f0; 1g for all (i; j) 2 A� with i 2 H0 �Hc(j) . (42)

Remark 95 If argmax
l2fi;jg

dg(l) in the de�nition of A� above is not well-de�ned, we choose an

arbitrary l 2 fi; jg that maximizes dg(l).

Proof. For a given MSSP without a structure-preserving solution (i.e. IC0 6= ?) the existence
of a path- or cycle-splitting solution implies according to Proposition 93 the existence of a set

T � M that ful�lls the conditions (a) to (c) such that there exists an alternating T -path. We

have argued above that the existence of an alternating T -path is equivalent to the existence of a

matching-dominated T -path that starts with a dominating node. What remains to be shown is

that the existence of a matching-dominated T -path that starts with a dominating node implies

the existence of a feasible integer point in the polyhedron PI if T ful�lls conditions (a) to (c)

of Theorem 93.

104

Regarding the �ows and the variables de�ning PI , note that the variables x
(A)
i denote �ows

from the source to all higher nodes of all arcs that represent edges in M , while the variables

x
(B)
j refer to �ows from all corresponding lower nodes to the sink. The variables yi;j correspond

to �ows on the arcs that represent edges in M , and the variables zj;i denote all arcs from the

heads of the arcs given by yi;j to the tails of all arcs to which the former head is adjacent with

respect to the underlying graph G. (The fact that we use directed arcs ensures that all �ows

represented by the integer points of the polyhedron have the structure of an alternating path

relative to M .) The four types of �ows mentioned are represented by constraints (33) to (36),

and any matching-dominated T -path relative to M certainly satis�es these constraints.

A matching-dominated T -path that ful�lls conditions (a) to (c) of Proposition 93 also allows

for a �ow that satis�es constraints (37) to (39): constraints (37) restrict the �ow to exactly one

edge from IC0, which is equivalent to what conditions (a) and (b) stipulate for the edges of those

cycles whose highest node is not adjacent to the highest endnode of the path P ; constraints

(38) express condition (a) for the case of edges that are from the path P or one of the remaining

cycles; and constraints (39) represent the restriction given by condition (c).

Finally, constraints (40) and (41) ensure that the node from G that the �ow starts with is

a dominating node among all nodes from G that the �ow visits, which is a condition that our

matching-dominated T -path satis�es.

The way in which we have constructed our �ow problem suggests the idea that a solution

of the �ow problem could not only be necessary, but also su¢ cient for the existence of a path-

or cycle-splitting solution. Unfortunately, this is not the case. The (only) reason is that the

constraints de�ning PI do not exclude a feasible solution within the polyhedron that contains,

apart from a matching-dominated �ow from the source to the sink, one or more "subcycles", i.e.

cyclic �ows of 1 unit that are not connected with the matching dominated �ow from the source

to the sink. In the presence of these subcycles, the requirements of constraints (36) to (38) (i.e.

of conditions (a) to(c) of Theorem 93) are satis�ed by the set of all arcs with a non-zero �ow,

and not just solely by the arcs that constitute the matching-dominated path. On other words:

our constraints do not imply the existence of a matching-dominated T -path that starts with a

dominating node, but only, for a certain subset P � T , the existence of a matching-dominated
P -path starting with a dominating node and the existence of subcycles that contain the edges

TnP .

In principle there is a direct way of overcoming this problem, the general idea of which we

will brie�y sketch here as a side note.

We know from our discussion of alternating T -paths in chapter 6 (Theorem 63) that the

existence of an alternating T -cycle is equivalent to the existence of a matching-dominated P -

path (P � T) that starts with a dominating node and ends with a node in a maximal clique of
the set of the nodes that are incident to edges in T . One remarkable aspect of this theorem is

that it states that we do not need to have a �ow that visits all edges of T as long as this �ow

starts from a dominating node and ends with a member of a maximal clique of nodes in T , i.e.

105

as long as this �ow visits the "cornerstones" of the degree partitions that the nodes incident to

edges in T belong to. On the basis of such a �ow on the subset P , Theorem 63 guarantees that

it is possible to complete the alternating T -cycle by adding all other edges in TnP . For our
setting, this implies that (provided we can make sure that the �ow from the source to the sink

does not only start with a dominating node, but also ends with a node in a maximal clique)

we do not have to worry about possible sub-cycles because their edges TnP could always be

integrated with the edges P from the �ow to yield a matching-dominated T -path.

Moreover, it is indeed possible to restrict the polyhedron PI to a polyhedron P 0I by adding

further constraints such that a feasible point of P 0I does not only represent a matching-dominated

�ow starting with a dominating node, but also requires this �ow to end with a member of a

maximal clique. All we have to do is to add the constraints

yi;j � 1� x(B)k for k 2 L0 and (i; j) 2 A� \M

with dpk < dpj < m+ 1� dpk for dpk �
m

2

and m+ 1� dpk < dpj < dpk for dpk >
m

2
, and (43)

yi;j � 1� x(B)k for k 2 L0 and (i; j) 2 A� \M

with dpi < m+ 1� dpk for dpk �
m

2

and dpi < dpk for dpk >
m

2
, (44)

with dpi denoting the number of the degree partition that a node i is an element of, i.e.

dpi = s :() i 2 Ds .

These constraints (43) and (44) can be seen as the counterparts of constraints (40) and (41)

in the following sense: the latter constraints ensure that the �ow starts with a dominating node.

They achieve this by restricting, depending on where the �ow from the source goes, the degree

of those nodes through which the �ow may pass. Similarly, the former constraints ensure that

the �ow ends with a member of a maximal clique, which is also achieved by restricting the

degree of those nodes through which the �ow may pass. This time, however, the restriction

depends on where the �ow to the sink comes from.

We will end our side note here and will not go further into the details; instead we will

continue with a slightly di¤erent approach. The reason for this is that the (both necessary and

su¢ cient) criterion for the existence of path-splitting and cycle-splitting solutions that would

result from following the idea as sketched in our side-note does not seem to lead to an e¢ cient

algorithm. In fact, it can be shown (but will not be shown here) that the A-matrix de�ning the

polyhedron PI is, due to constraints (40) and (41), not totally unimodular and that we will not

106

arrive at a totally unimodular A-matrix if we de�ne a polyhedron P 0I by adding constraints (43)

and (44). Finding a �ow problem with a totally unimodular matrix, however, would certainly

be the best possible move towards an e¢ cient algorithm.

7.7 Existence of non-structure-preserving solutions for a greedy match-
ing with jM j = n� 1

The alternative approach we will take in the following is to use a richer structure on the

underlying matching M such that we do not require constraints (40) and (41) and will arrive

at a more convenient polyhedron that allows for an e¢ cient algorithm for deciding whether or

not there exists a path- or a cycle-splitting solution.

The starting point for this approach is one of the main results of chapter 6. We demonstrated

in chapter 6:3 that a greedy matching leads to a particularly tight characterization of alternating

T -cycles. Theorem 65 states that the existence of an alternating T -cycle relative to a greedy

matching is equivalent with the existence of a matching dominating T -path that starts with a

node that dominates all nodes incident to edges in T and ends with a member of a maximal

clique in the set of the nodes incident to edges in T . In other words: we have a condition for

the entire set T and not merely for a subset P � T .

At �rst sight, this tighter condition does not seem to be much of help. In our side note above,

on a possible approach to overcoming the subcycles that are permitted under the constraints

(34) to (42), we used Theorem 63, according to which a �ow on the subset P is su¢ cient to

provide us with information about the existence of an alternating T -path. Drawing conclusions

from the existence of a mere subset P allowed for integrating the (unwelcome) subcycles PnT
into the solution. How could it now be fruitful an approach to tackle our problem on the basis

of Theorem 65, which explicitly requires us to �nd a �ow on the full set T?

The decisive aspect here is that greedy matchings do not only yield a condition for the

entire set T , but also permit us to restrict our search for an alternating T -cycle to a subset of

alternating T -cycles. The structure of greedy matchings is so pronounced that, according to

Corollary 68, there exist an alternating T -cycle if and only if there exist a sorted alternating

T -cycle, i.e. an alternating T -cycle

i0 � j0 � i1 � j1 � :::� i jT j
2 �2

� j jT j
2 �2

� i jT j
2 �1

� j jT j
2 j�1

(45)

with

ik � jk for 0 � k �
jT j
2
� 1 , (46)

i0 � i1 � ::: � i jT j
2 �2

� i jT j
2 �1

, and (47)

j jT j
2 �1

� j jT j
2 �2

� ::: � j1 � j0 (48)

107

(cf. De�nition 67). Apart from allowing us to restrict our search for alternating T -cycles to

those with the structure (46) to (48), these statements automatically imply that the �rst node

i0 is a node that dominates all nodes incident to edges of T and that the last node j jT j
2 j�1

is a

member of a maximal clique in the set of all nodes incident to edges in T .

The consequences of this setting can be summed up as follows: for deciding whether or not

there exists a path- or a cycle-splitting solution it is necessary and su¢ cient to �nd a matching-

dominated T -path such that the nodes incident to edges in T are sorted according to (46) to

(48) and the edges in T ful�ll conditions (a) to (c) of Proposition 93.

This insight leads to the following theorem.

Theorem 96 (Polyhedral criterion for the existence of irreducible solutions)
Let G(N;E) be the underlying threshold subgraph of an MSSP with node set NG = f1; 2; :::; 2ng,

the set M be a greedy modi�ed matching on G, the twin-induced structure of the MSSP with

respect to M be given by

NS = C1 + C2 + :::+ Cd + P with d � 1 ,

and the sets A�, IC0, IC1, IC2, A�k and Hk for all 1 � k � d+ 1, H0, and L0 be de�ned as in
Proposition 94.

Then there exists an injective "order function"

order[:] : A� \M ! f1; 2; :::; jA� \M jg

with

order[(i1; j1)] > order[(i2; j2)] =) (i1 � i2 ^ j2 � j1)

for all (i1; j1); (i2; j2) 2 A� \M , (49)

and we de�ne, for all j 2 L0, the set of all nodes in H0 for which the edge to which they are

incident under M has a lower value of the order function than the edge to which j is incident

under M , i.e. the set

H
(j)
0 := fi 2 H0 : order[(i; j�)] < order[(i�; j)]

with i� 2 H0; j� 2 L0 given by (i; j�); (i�; j) 2Mg

If IC0 6= ? there exists a path-splitting or a cycle-splitting solution with respect to S if and

only if the polyhedron P �I de�ned by the (in)equalities

Flow out of source: X
j2H0

x
(A)
j = 1 (33)

108

Flow into sink: X
j2L0

x
(B)
j = 1 (34)

Flow balance for higher nodes of all edges of M :

x
(A)
i � yi;j = 0

for all i 2 H0; j 2 L0 with (i; j) 2 A� \M (35)

Flow balance for lower nodes of all edges of M :

yi;j �
X

k2H(j)
0 nHc(j)

zj;k � x(B)j = 1

for all j 2 L0; i 2 H0 given by (i; j) 2 A� \M (50)

Exactly one edge used from each cycle in IC0:X
(i;j)2A�

k

yi;j = 1 for all k 2 IC0 (37)

At most one edge used from P and from each cycle in IC1 + IC2:X
(i;j)2A�

k

yi;j � 1 for all k 2 IC1 + IC2 + fd+ 1g (38)

At least one edge from P or from a cycle in IC1 + IC2
(excluding edges of cycles in IC1 a node of which is adjacent to i0):X

(i;j)2(
S

k2IC1+IC2+fd+1g
A�
k)nf(i;j)2

S
k2IC1

A�
k:(i;i0)2AGg

yi;j � 1 (39)

contains a point with coordinates

x
(A)
i 2 f0; 1g for all i 2 H0 ,

x
(B)
j 2 f0; 1g for all j 2 L0 ,

yi;j 2 f0; 1g for all (i; j) 2M \A� ,

zj;k 2 f0; 1g for all j 2 L0 and k 2 H(j)
0 nHc(j) (51)

109

Proof. We �rst have to show that we can construct an order function order[:] with the required
properties. We recall that for greedy matchings M , for all (i1; j1) 2 M there exists no edge

(i2; j2) 2 M with dg(i1) > dg(i2) and dg(j1) > dg(j2) unless (i1; j1) and (i2; j2) belong to the

same cycle of path of the twin-induced structure (Proposition 79). In the light of Proposition

93, condition (a) this implies that we can discard the edge (i2; j2) in such a case as it will

not help us with �nding an alternating cycle that meets conditions (a) to (c). Accordingly, all

remaining edges (ik; jk) 2M can be arranged such that

ik � jk for 0 � k �
jM j
2
� 1 , (52)

i0 � i1 � ::: � i jMj
2 �2

� i jMj
2 �1

, and (53)

j jMj
2 �1

� j jMj
2 �2

� ::: � j1 � j0 , (54)

i.e. the pre-order (A� \M , �) de�ned by virtue of

(i1; j1) � (i2; j2) :, (i1 � i2 ^ j2 � j1)

for all (i1; j1); (i2; j2) 2 A� \M

is total. We construct the order function such that it is monotonically non-decreasing with

respect to this pre-order, which ensures (49). If we assign di¤erent values of order[:] when

(i1; j1) � (i2; j2) and (i1; j1) � (i2; j2)

for (i1; j1); (i2; j2) 2 A� \M; i1 6= i2; j1 6= j2 ,

the function is injective.

=): We compare the polyhedron with the one in Proposition 94. In contrast to Proposition
94, this theorem does not include constraints (40) and (41), the variables zj;k have been de�ned

on a subset of those arcs (j; k) that we used in Proposition 94, and the sum in constraints (36),

the only constraints to include the variables zj;k, has been restricted to the new set of arcs on

which we have de�ned the variables zj;k (now constraints (50)). Leaving out constraints (40)

and (41) obviously does not have an impact on the existence of a suitable point in P �I if the

existence of such a point has been established by virtue of Proposition 94.

Regarding constraints (50) and the variables zj;k, we recall Corollary 68, according to which

there exists an alternating T -cycle relative to a certain matching M if and only if there exists

also an alternating T -cycle that satis�es conditions (45) to (48). Hence, if there is a path- or

cycle-splitting solution, Proposition 93 automatically implies the existence of an alternating

110

T -cycle that ful�ls (45) to (48). Therefore, the arcs

(jm�1; im) for i = 1; 2; :::;
jT j
2
� 1

have the property

im � im�1 with im�1 2 H0 given by (im�1; jm�1) 2 A� \M ,

which implies with (48)

order[(im�1; jm�1)] > order[(im; jm)] (55)

(apart from possible permutations of pairs of arcs (i1; j1), (i2; j2) 2 A� \M with

(i1; j1) � (i2; j2) and (i1; j1) � (i2; j2) for i1 6= i2; j1 6= j2;

which do not have an impact on the existence of a solution). The restricted set of arcs on

which the variables zj;k have been de�ned still includes all arcs (jm�1; im) that satisfy (55) for

a given arc (im�1; jm�1) 2 A� \M represented by yim�1;jm�1 (provided im does not belong to

the same cycle or path as jm�1). Also, all arcs (jm�1; im) with property (55) are still included

in the sum in constraints (50), again provided im does not belong to the same cycle or path as

jm�1:Consequently, constraints (50) and the set on which we have de�ned the variables zj;k do

not restrict unduly the set of points in P �I , and the existence of a suitable point in P
�
I follows

from Proposition 94.

(=: We have a feasible point of the polyhedron P �I with values for the variables according
to (50). The set

T := f(i; j) 2M \A� : yi;j = 1g

ful�lls condition (a) of Proposition 93 due to constraints (37) and (38), condition (b) due to

constraints (37), and condition (c) due to constraints (39). If we can show that there exists

an alternating T -cycle relative to M , Proposition 93 implies the existence of a path- or cycle-

splitting solution.

Being a subset of the matching, T ful�ls properties (52) to (54) and therefore (46) to (48).

The point in P �I contains only the �ow from the source to the sink and no cycles because (49)

makes sure that it is impossible to return, via the arcs represented by the variables yi;j and

zj;k, to an arc (i; j) 2 T that has already been traversed. Therefore, the edges in T and the
edges in

Z := f(j; k) : zj;k = 1g

provide us with a path as in condition (45). Because of (46) and (47), the node i0 must be a

dominating all nodes incident to edges in T , and due to (48) the node j jT j
2 j�1

must be a member

of a maximal clique of all nodes incident to edges in T . Hence we can connect the endnodes of

111

the path (45), obtain an alternating T -cycle, and can apply Proposition 93 to arrive at a path-

or cycle-splitting solution.

Solving the integer problem of Theorem 96 could be a di¢ cult task. In contrast to the

polyhedron of a minimum cost �ow problem, we have constraints (37) and (38). Fortunately,

the following corollary holds.

Corollary 97 (Complexity of deciding on the existence of irreducible solutions)
If there exists no structure-preserving solution, the existence of irreducible solutions of an

MSSP can be shown in polynomial time.

Proof. We will (a) note that the number of rows and columns of the A-matrix de�ning the
polyhedron P �I of the �ow problem in Theorem 96 is polynomial in the number of nodes of the

MSSP and (b) show that the A-matrix is totally unimodular. It is well-known (see Schrijver,

1986, chapter 19, for example) that the latter property implies that all extreme points of P �I are

integral as the right-hand sides of the constraints in Theorem 96 are integral, too. Consequently,

the existence of a point in P �I satisfying (51) is equivalent to the existence of a basic solution

of a Linear Programming problem. If we take into account that the maximum absolute value

of all numbers in the A-matrix and the b-vector of our polyhedral description is equal to 1 for

all instances of the problem, we can conclude that we can decide on the existence of a basic

point of P �I in a time depending polynomially only on the number of rows and columns of the

A-matrix (see Schrijver 1986, chapter 15, for example).

(a) The number of nodes is 2n � 6. (6 is the minimal number of nodes that we need for at
least one cycle and one path.) The number of rows (in the order of constraints (33), (34), (35),

(37), (38), (39), (50)) is

1 + 1 + jH0j+ jL0j+ jIC0 + IC1 + IC2j+ 1 + 1
� 1 + 1 + (n� 1) + (n� 1) + 2n�2

4 + 1 + 1 � 3n.
The number of columns (in the order of the variables given in (51)) is

jH0j+ jL0j+ jM j+ jf(k; j) 2 A� : j 2 L0, k 2 H(j)
0 nHc(j)g

� n�1
2 + n�1

2 + n� 1 + n(n� 1) = (n+ 2)(n� 1).

(b) For proving total unimodularity, we use a criterion that goes back to Ghouila-Houri

(1962) [see also Nemhauser, Wolsey (1999), Theorem 2.7, part III]. According to this criterion,

a matrix is totally unimodular if and only if for every subset J � C = f1; 2; :::; cg of the columns
of the matrix, there exists a partition J1 + J2 = J such that the di¤erence between the sum

of the columns in J1 (which we will denote �J1) and the sum of the columns in J2 (denoted

�J2) is a column vector with all entries being in the set f�1, 0, 1g. It is well known that the
node-arc incidence matrix of a directed graph is totally unimodular (see Nemhauser/ Wolsey

1999, chapter III.3, for example).

The submatrix given by the rows representing the constraints (33), (34), (35), and (50) is

a node-arc incidence matrix and, consequently, for every subset J of the columns there exists

112

a partition J1 + J2 = J with the property given by the criterion by Ghouila-Houri. However,

we need more precise information for being able to make a conclusion that takes into account

also the rest of the constraints. For facilitating this, we introduce additional arcs in our �ow

problem such that we have a larger number of variables zj;k, namely

zj;k 2 f0; 1g for all j 2 L0 and k 2 H(j)
0 nHc(j) ,

and replace constraint (50) by

yi;j �
X
k2H0

zj;k � x(B)j = 1

for all j 2 L0; i 2 H0 given by (i; j) 2 A� \M . (56)

Due to the fact that a totally unimodular matrix will, as a trivial consequence of Ghouila-

Houri�s theorem, remain totally unimodular when we delete a column, it su¢ ces to prove total

unimodularity for our new �ow problem. The resulting A-matrix is illustrated in Figure 17,

with all entries not explicitly given being zero. The symbol I represents the unit matrix, the

symbol e a row vector with 1s in each entry, and the symbol m a row vector with 1s except

one entry being 0. Block A contains all arcs from the source node and to the sink node. The

columns of block B correspond to all arcs (i; J) 2 A� \M (which are the arcs associated with

the variables yi;j), with the arcs having been sorted such that all arcs representing one cycle

(or the path) of the twin-constrained structure appear in consecutive rows of the matrix. Block

C represents all arcs (j; k) from lower nodes j 2 L0 to higher nodes k 2 H0, which have been
modelled by the variables zj;k. (Note that the block C entries for constraints (56) are the only

entries of the matrix that di¤er from the matrix representing the polyhedron P �I in Theorem

96.) The variables zj;k have been arranged such that arcs emanating from nodes of the same

cycle (or the path) appear in consecutive rows of the matrix. The number of the constraints

that the columns represent are given in the �rst row of Figure 17.

For the remainder of the proof, we will denote, for a given set S of indices of columns of the

A-matrix, by �S the column that is the sum of the columns whose indices are in S. Moreover,

a column (or a speci�ed set of rows of a column) with all entries being in f�1; 0; 1g and with
the sum of these entries also being in f�1; 0; 1g is said to have property (Q).
For a given subset J of columns, we partition the (indices of the) columns into the sets

K, L, M , depending on whether the columns belong to block A, B, or C of the A-matrix,

respectively, i.e. we have

J = K + L+M .

113

114 Figure 17: A-matrix of the modified flow problem

 B L O C K A B L O C K B yi,j Block C zj,k

Variables Arcs from source Arcs to sink Arcs fr. IC0 Arcs fr. IC2 Arcs fr. IC1 Arcs Arcs cycles path

 Xi
(A) Xj

(B) C1 … C|ICo| C1 … C|IC2| C1 … C|IC1| P C1 … Cd P

Source (33) -e . . . -e … -e . . . -e -e

Sink (34) e . . . e … e . . . e e

Flow balance

I

 .
 .
 .

 I

 -I
.
 .
 .

-I

 e

 .
 .
 .

 e

for higher

 .

 .

 .

 -I

 .
 .
 .

-I

 .
 .
 .

nodes (35)

 I

 .
 .
 .

 I

 -I
.
 .
 .

-I

 e

 .
 .
 .

 e

 I

 -I

 e

 .
 .
 .

 e

Flow balance

 -I
 .
 .
 .

 -I

 I
.
 .
 .

I

-I . . . -I

. . .

-I . . . -I

-I . . . -I

for lower

.

 .

 .

 I

 .
 .
 .

I

nodes (56)

 -I
 .
 .
 .

 -I

 I
.
 .
 .

I

 -I
 I

Exactly one
arc per cycle in
IC0 (37)

 e
.
 .
 .

e

At most one
arc per cycle in
IC2 (38)

 e
.
 .
 .

e

At most one
arc per cycle in
IC1 (38)

 e
.
 .
 .

e

… fr. path (38) e

At least … (39) e . . . e m . . . m e

We start by dealing with the columns of block B. We partition the set L into sets L1 and

L2 such that for every row of the constraints (37) and (38) an equal number of columns with

entry 1 goes into both sets � provided that the number of columns with a 1 in constraints (37)
and (38) is even for a given row. If this number is odd, we allow one of the sets L1 and L2 to

be assigned one more column beyond an even distribution such that, after having assigned all

columns in L to either L1 or L2, we have

j jL1j � jL2j j � 1
(If the columns represent arcs from IC1, the number of columns with a 1 in constraints (37)

and (38) is odd for a given row and a column with a 0 in the row of constraint (39) is among

the columns, we will assign such a column with a 0 after all other columns have been assigned

to either L1 or L2.) We observe that our assignment ensures that the column �L1��L2 has an
entry in f�1; 0; 1g in the row of constraint (39). Moreover, the column �L1��L2 has property
(Q) for all rows of constraints (35), (56), (37) and (38).

A similar assignment can be made for block C. We partition the set M into sets M1 and

M2 such that for each row of the constraints (35) an equal number of columns with entry 1

goes into both sets � provided that the number of columns with a 1 in constraints (35) is even
for a given row. If this number is odd, we allow one of the sets M1 and M2 to be assigned one

more column beyond an even distribution, however such that we have

j jM1j � jM2j j � 1
after having assigned to M1 and M2 all columns in M . We observe that the column

�M1 � �M2 has property (Q) in all rows related to constraints (35).

We now turn our attention to the lower half of the rows of block C, i.e. to those rows that

are given by constraints (50). For all columns inM that have the same entries in the rows given

by constraints (35) we calculate the di¤erence between columns inM1 and columns inM2. The

resulting column di¤erences all have property (Q). We now exchange pairs of columns from

M1 and M2 (a pair consists of one column from M1 and one column from M2) that have the

additional property that the columns that form a pair have the same entries in the rows given

by constraints (35). Such an exchange step allows us to change one of the column di¤erences

just calculated, such that one entry changes from +1 to �1 and another entry changes from �1
to +1. By carrying out a su¢ cient number of these exchange steps, it is possible to arrive at a

new partition M = M1 +M2 such that �M1 � �M2 has property (Q) in all entries related to

constraints (56). We observe that our exchange steps are neutral with respect to property (Q)

of �M1 � �M2 in all rows related to constraints (35). This means that we have constructed a

partitionM =M1+M2 such that property (Q) of �M1��M2 applies to the column �M1��M2

for both the rows related to constraints (35) and the rows related to constraints (56).

We turn to block A and partition the set K into sets K1 and K2 such that �K1 ��K2 has
property (Q) for the rows related to constraints (33), (34), (35) and (56).

We de�ne Ji := Ki + Li +Mi for i = 1; 2 and have a partition J = J1 + J2. Since

�J1 � �J2 = �K1 � �K2 +�L1 � �L2 +�M1 � �M2,

115

the column �J1��J2 has entries in f�3;�2;�1; :::; 3g. Due to the existence of property (Q)
for the columns �K1��K2, �L1��L2, and �M1��M2 for all rows but the row of constraint

(39), we can, by moving columns from J1 to J2 or vice versa and/or by means of exchange steps

as de�ned above, change the entries in �J1 � �J2 such that the criterion by Ghoulia-Houri is
satis�ed.

In this chapter, we started from a modi�ed matching M on the threshold graph underlying

the MSSP . On the basis of the cardinality of such a matching, we could already make a

decision on whether or not certain instances of the MSSP are feasible, with the case jM j = n�1
remaining open.

Proceding with our analysis, we introduced the concept of the twin-induced structure of a

matching M for the case jM j = n�1 and had a look at how we could change the matching jM j
if its twin-induced structure does not directly provide us with a feasible solution of the MSSP.

We addressed the most basic case, in which we change only d edges from the original matching

jM j, with d being the number of cycles of the twin-induced structure of jM j. It turned out that,
due to the speci�c structure of threshold graphs, a straight forward (polynomial-time) criterion

exists that allows us to �nd out if changing d edges could lead to a feasible solution, namely a

structure-preserving solution.

Going further, we analyzed also the case of changing d + 1 edges from the matching M ,

which results in what we call path-splitting and cycle-splitting solutions. We distinguished, in

the previous section, 20 path-splitting solutions and 26 cycle-splitting solutions, and it turned

out that there exist 2 genuine types of path-splitting solutions and that cycle-splitting solutions

can be classi�ed by reducing them to 4 genuine types. We provided a unifying perspective

on these 6 irreducible solutions and developed, in this section, a Linear Programming problem

that can tell us in polynomial time whether one of these 6 irreducible solutions exists. Apart

from the practical relevance of Theorem 96 and Corollary 97 for solving the MSSP, these two

statements are also of theoretical relevance because they enable us to �nd a polynomial-time

algorithm for a more complex class of solutions.

In principle, we could proceed our analysis in the same fashion in which we have conducted

it so far. If we did so, the next natural step would consist in discussing the cases of feasible

solutions of the MSSP that arise from changing d + 2 edges from the original matching M .

Figure 16(b) above illustrates a case in which d+2 edges from the original matching have been

changed to construct a solution that involves both a path- and a cycle-split. We can expect,

however, that changing d+ 2 edges would lead to even more subtypes of solutions than the 46

(genuine and non-genuine) subtypes we examined when changing d+1 edges. As this does not

look very promising under the aspects of both practical relevance and theoretical elegance, it

seems to be wise to stop our discussion here. - The more so as changing edges is equivalent

to calculating a new matching, and the more edges we change and the more cases we have to

examine the smaller will be the computational advantage that can be gained by changing only

a few edges from a given matching instead of calculating a new matching from scratch.

116

For these reasons, we will �nish the present chapter here and will present, as a summary of

the results of this chapter, a simple heuristic for deciding on the feasibility or infeasibility of a

MSSP. It will turn out in chapter 9 by means of computational experiments that this heuristic

is surprisingly e¢ cient for deciding on the feasibility of a large percentage of instances.

7.8 A heuristic for the MSSP (MSSPH)

We start with a threshold graph G with node set NG = f1; 2; :::; 2ng, n � 2, and an edge set
EG de�ned by virtue of weights given by v : NG �! NG and a threshold � � 0, and a twin-
node function b : NG �! NG. The output of our heuristic is either a certi�cate of feasibility,

a certi�cate of infeasibility, or no certi�cate. The general principle underlying this heuristic

consists in the idea of moving from the most general and computationally least expensive

procedures to more speci�c procedures that take more computational time. Our heuristic will

proceed in 10 steps.

In step [01] of our algorithm, we use three direct tests to identify infeasible instances.

First, an instance can be recognised as infeasible if more than half of the nodes + 1 are

members of a maximal stable set, i.e.

j
bm=2cS
i=0

Dij > n+ 1.

Second, we can discard an instance as infeasible if there exists a node such that both the

node and its twin node have no neighbours, i.e.

9i 2 NG : fi; b(i)g � D0.
Third, an instance is certainly infeasible if more than 2 nodes have no neighbours, i.e.

jD0j > 2,
with D0 being the set in the degree partition that contains all nodes of degree 0.

We have seen in this chapter that di¤erent matchings provide us with di¤erent opportunities

of �nding a feasible solution on the basis of the twin-induced structure of a matching. Therefore,

our heuristic calculates two di¤erent matchings. As we will need at a later stage of the heuristic

a greedy modi�ed matching for �nding irreducible path- and cycle-split solutions, provided that

more basic approaches were not su¢ cient for �nding a feasible solution, we calculate in step [02]

the type of matching that di¤ers the most from a greedy modi�ed matching, namely a modest

modi�ed matching M according to MTGMAmin.

In step [03] we evaluate this matching. If jM j < n� 1, our instance is infeasible; if jM j = n,
our instance is feasible (Proposition 80). If jM j = n � 1, we check whether one of the two
unmatched nodes is an element of a maximal clique of G. If this is the case, our instance must

be feasible as this directly implies a structure-preserving solution on the basis of Theorem 82.

As structure-preserving solutions can also arise without the previous condition being ful�lled,

we calculate in step [04] the twin-induced structure S of M for further evaluation.

117

In step [05] we analyse the twin-induced structure S(N;E). If it consists only of a path P ,

i.e. NS = P , our instance must trivially be feasible. Otherwise, we check according to Theorem

82 if there exists a structure-preserving solution, i.e. we calculate the unmatched node i0 with

the largest neighbourhood and check for all cycles Ck, 1 � k � d whether i0 is adjacent to

one node from each cycle. Due to the vicinal preorder of our underlying threshold graph our

instance is feasible with a structure preserving solution if and only if

min
1�k�d

max
j2Ck

v(i0) + v(j) � �,
see also Remark 83.

We have come now with our matching M as far as possible and calculate a greedy modi�ed

matching M 0 on the basis of MTGMAmax in step [06]:

In principle, we could now compare our new matching with the old one. If M = M
0
,

we can conclude that the graph G allows only for one single matching and that our instance

must be infeasible. (Otherwise we would have found a feasible solution in step [05].) However,

as a threshold graph that has only one single perfect matching is not a very likely type of

instance, we will, for saving computational time when dealing with all other types of instances,

not compare our two matchings. (If, however, in a particular practical setting there is some

additional information available that suggests that the number of threshold graphs with only

one single perfect matching is rather large, it would be advisable to include in the heuristic a

step that compares the two matchings.)

Step [07] of our algorithm calculates the twin-induced structure S0(N;E) of M 0.

Step [08] is identical with step 5 for the twin-induced structure S0(N;E).

In step [09], if we still have not found a feasible solution, we use Theorem 96 in conjunction

with Corrollary 97 to �nd out, by trying to calculate a basic solution of the LP problem, if the

polyhedron P �I is empty or if our matching M
0 allows the construction of an irreducible path-

or cycle-splitting solution.

In sum our algorithm looks as follows:

Algorithm 98 (MSSPH - MSSP Heuristic)

Let G (N;E) be an undirected graph with the (even) set of nodes

NG = f1; 2; :::; 2ng, neighbourhoods N(i) for all i 2 NG,
and b : NG ! NG a twin-node function.

[01] If j
bm=2cS
i=0

Dij > n+ 1 then INFEASIBLE, STOP.

If jD0j > 2 then INFEASIBLE, STOP.
If 9i 2 NG : fi; b(i)g � D0 then INFEASIBLE, STOP.

[02] Run MTGMAmin, output: M .

118

[03] If jM j < n� 1 then INFEASIBLE, STOP.
If jM j = n then FEASIBLE, STOP.
[jM j = n� 1]:
i0 := argmax dg(k)

k2fi2NG:@j2NG:(i;j)2Mg
If i0 2 Kmax then FEASIBLE, STOP.

[04] Compute S(N;E).

[05] If NS = P then FEASIBLE, STOP.

If min
1�k�d

max
j2Ck

v(i0) + v(j) � � then FEASIBLE, STOP.
[06] Run MTGMAmax, output: M 0

[07] Compute S0(N;E).

[08] If NS0 = P then FEASIBLE, STOP.

If min
1�k�d

max
j2C0

k

v(i0) + v(j) � � then FEASIBLE, STOP.

[09] If P �I 6= ? then FEASIBLE.

STOP.

Computational results ofMSSPH will be presented in chapter 9. It will turn out that even

without implementing Step [09] our algorithm show a surprisingly e¢ cient behaviour. For the

worst-case situation, including Step [09], the following proposition holds.

Proposition 99 (Complexity of MSSPH)
MSSPH runs in polynomial time.

Proof. Directly from Corrollary 97 as trying to �nd a basic solution for the polyhedron PI is

the computationally most expensive operation.

119

8 Recognising twin-constrained Hamiltonian threshold graphs

In the previous chapter we developed a heuristic that looks for speci�c properties of a given

instance of the MSSP and, if possible, draws a conclusion on whether or not this instance is

feasible. In this context, three of the �nal sections of that chapter examined in detail the case of

non structure-preserving solutions. The present chapter builds on the insights that we gained

by analysing non structure-preserving solutions and sets out to generalize them. In doing so,

we will develop an e¢ cient algorithm that can decide on the feasibility of a given instance of

the MSSP in all possible cases.

We will begin with a section that motivates and explains our approach by looking at the

lessons we can learn from our analysis in the previous chapter.

8.1 Motivation

We have seen in the previous chapter that the threshold graph structure of an MSSP is so

strong that a small number of criteria is su¢ cient to decide whether there exists, among a large

number of possible matchings, one matching that is a feasible solution of the MSSP. We could

show, for example, that the criterion we found for structure-preserving solutions of type 1 also

implies testing for possible structure-preserving solutions of type 2, that looking at possible

structure-preserving and path-splitting solutions of type 1 and type 2 is su¢ cient for deciding

whether there exists a path-splitting solution at all, and that the existence of a cycle-splitting

solution can be decided solely on the basis of the existence of a structure-preserving solution

or one of four speci�c types of cycle-splitting solutions. In other words: the threshold graph

property of an MSSP seems to be so strong that, for deciding on the feasibility of an MSSP, it

is not necessary to analyse all possible matchings that could lead to a solution of the MSSP,

but that it seems to be su¢ cient to look only at some possible ways of constructing a solution.

Moreover, it turned out that, for all types of solutions we discussed, a decision on the existence

of such a solution can be made in polynomial time. All in all, this gives hope that the MSSP

might be a problem that can be solved in polynomial time.

Additionally, we have seen that a polynomial-time algorithm for the speci�c types of non

structure-preserving solutions we discussed was possible mainly due to the particular structure

of greedy matchings. Given this structure, we could capitalise on our strong result for the

existence of alternating T -cycles relative to a greedy matching by gluing together parts of the

twin-induced structure to construct a solution to the MSSP. This suggests that we should seek

an approach that might bene�t further from the speci�c structure of greedy matchings and

their implications for the existence of alternating T -cycles. The more so as we observed in

Proposition 60 that alternating T -cycles can be used to generate all other matchings on the

basis of a given matching.

120

For making use of this property, however, we need a perfect matching. A setting based on

perfect matchings can be achieved by adding to the nodes of our MSSP 2 dominating nodes

that are twin-nodes to each other. We know from chapter 4 (Lemma 38) that a threshold

graph remains a threshold graph if we add a dominating node. Looking for a twin-constrained

Hamiltonian path for solving our original MSSP will then be equivalent to searching for a twin-

constrained Hamiltonian cycle on the new graph. In other words: instead of directly trying to

solve an MSSP, we might bene�t from focussing our attention on the problem of recognising

twin-constrained Hamiltonian threshold graphs. (Note that, while a matching of a cardinality

of at least jM j = n� 1 is a necessary condition for a twin-constrained Hamiltonian path (with
a perfect matching being a su¢ cient condition, see Proposition 80), a perfect matching is only

a necessary condition for a twin-constrained Hamiltonian cycle.)

Let us illustrate what happens when we transform our MSSP into the problem of recognising

twin-constrained Hamiltonian threshold graphs by reconsidering the case of a path-splitting

solution of type 1 (Figure 15). Introducing a pair of dominating twin-nodes u, v would lead to

a situation in which the two unmatched nodes e and p (the endnodes of the path) could have

been matched (with the dominating nodes, for example). As a result, the twin-induced structure

of the matching would consist of 3 cycles (one of which is the former path). A twin-constrained

Hamiltonian cycle (i. e the counterpart of a solution to the MSSP in this case with the new

nodes) could be constructed by splitting the cycle based on the former path twice and gluing

the two remaining cycles to it. Provided that the dominating nodes have been matched with

the two formerly unmatched nodes (whether this is the case depends on the implementation

of MGTMA that we use), the cycle i � j � k � l could again be glued between the nodes m
and p, and the cycle a� b� c� d could now be glued between e and one of the two additional
dominating nodes, say u. As a consequence, this solution could be constructed by means of two

alternating T -cycles, namely the cycles with

T1 = f(e; b); (a; u)g and T2 = f(k; l); (h;m)g.
Removing the pair of dominating nodes will �nally lead us to our solution of the MSSP

In the general case, the setting is more complex. The number of alternating T -cycles that

we might need for constructing a solution might be higher. Also, the cycles of the twin-induced

structure might have to be split into several more parts and glued together such that several

former cycles might be nested into each other. Figure 18 shows a more complex setting for a

twin-induced structure consisting of 3 cycles C1, C2 and C3, represented by the thinner solid,

dashed and dotted lines, with the solid lines being edges between twin-nodes, and the dashed

and dotted lines being edges from the matching. For constructing a solution, the 3 cycles have

been split into parts such that

C1 = C1A + C1B , C2 = C2A + C2B + C2C
and C3 = C3A + C3B .

These parts of the cycle have then been glued together by means of the thick dashed edges

to form the twin-constrained Hamiltonian cycle

121

C1A + C2A + C3A + C1B + C2B + C3B + C2C

Proceeding from the original matching, this twin-constrained Hamiltonian cycle can be seen

as having been generated by alternating cycles that consist of the thicker dashed edges and those

edges from the original matching that do not take part in the twin-constrained Hamiltonian

cycle (i.e. the edges e1, e2, ..., e7). This means that the solution of the twin-constrained

Hamiltonian cycle problem has been generated by three alternating T -cycles with

T1 = fe1; e2g, T2 = fe3; e4; e5g, and T3 = fe6; e7g.
Again, we can arrive at a twin-constrained Hamiltonian path, i.e. a solution of the MSSP,

by removing our additional pair of dominating nodes (which have not been speci�ed in this

example) from the twin-constrained Hamiltonian cycle obtained.

Figure 18: Constructing a solution by means of alternating T -cycles

Following the approach just outlined, the remainder of this chapter will address (solely) the

problem of recognising twin-constrained Hamiltonian threshold graphs and in doing so, we will

capitalise on our results on alternating T -cycles and the insights on non-structure-preserving

solutions from the previous chapter.

The following section introduces the concept of "patching graphs" and provides a necessary

criterion for the existence of twin-constrained Hamiltonian threshold graphs, and the subsequent

third section demonstrates that we can �nd a similar su¢ cient criterion. As the criterion

presented in these two sections is based on the existence of a certain family of alternating

T -cycles, we can consider it as the generalized version of Proposition 93.

In the previous chapter, we proceed from Proposition 93 by looking for an algorithm to

determine whether the type of alternating T -cycle required by Proposition 93 actually exists,

which led to Theorem 96. In an analogous fashion, our necessary and su¢ cient criterion from

the second and third sections of this chapter will require us to develop an algorithm that �nds a

certain family of alternating T -cycles if such a family exists. This task of generalizing Theorem

122

96 will be achieved in the fourth section. Finally, the �fth section presents, as a summary of

the results of this chapter, a complete polynomial-time algorithm for deciding on the question

of whether a given instance of an MSSP is feasible.

8.2 Patching graph and a necessary criterion for twin-constrained
Hamiltonicity

For formulating our necessary criterion, we introduce the concept of the "patching graph". A

patching graph can be seen to contain information that indicates whether there is room for

gluing together certain alternating T -cycles to form a twin-constrained Hamiltonian cycle.

De�nition 100 (Patching graph of a twin-induced structure)
Let G(N;E) be a threshold graph with a twin-node function b, the family (Cd)d2D the twin-

induced structure of a perfect modi�ed matching M on G, and (Tq � M)q2Q a disjunct family
such that there exist alternating Tq-cycles relative to M for all q 2 Q. The graph P (N;E)
de�ned by NP := D and

EP := f(i; j) 2 D �D : (k1; l1); (k2; l2) 2 Tq
for some (k1; l1) 2 Ci; (k2; l2) 2 Cj and q 2 Qg

is called the patching graph of (Cd) relative to (Tq).

Example 101 In the case of Figure 18, the patching graph is a complete graph de�ned on the
node set D = f1; 2; 3g.

Remark 102 (1) There exists a concept called "subtour patching" in the literature on the
Travelling Salesman Problem that has some similarity with our concept of a patching graph. This

concept, however, is based on a hypergraph over the node set of the graph under investigation,

while we have de�ned a patching graph with respect to the cycles of the twin-constrained structure

(Gilmore, Lawler, Shmoys 1986). Accordingly, these two concepts should not be confused.

(2) Note that the patching graph of (Cd) relative to (Tq) is certainly invariant under sorting

the edges of an alternating T -cycle (cf. De�nition 67). We will use this property in the following

sections when trying to construct certain patching graphs.

On the basis of the concept of the patching graph, establishing a necessary criterion for the

existence of a twin-constrained Hamiltonian cycle is straight-forward.

123

Theorem 103 (Patching graph for twin-constrained Hamiltonian threshold graphs)
Let G(N;E) be a threshold graph with twin function b and M0 a perfect modi�ed matching

such that its twin-induced structure is a twin-constrained Hamiltonian cycle C0 on G. Fur-

thermore, let (Cd)d2D be the twin-induced structure of an (arbitrary) perfect modi�ed matching

M 6=M0 on G. Then there exists a (well de�ned) family (Kq)q2Q of alternating cycles by virtue

of [
q2Q

Kq =M0 �M (57)

and a disjunct family (Tq �M)q2Q de�ned by

Tq := Kq \M for all q 2 Q (58)

such that Kq is an alternating Tq-cycle relative to M for all q 2 Q and the patching graph of

(Cd) relative to (Tq) is connected.

Proof. Because ofM 6=M0, we haveM0�M 6= ?. Due to the fact thatM0 andM are perfect

matchings, every node that is adjacent to any edge in M0�M has exactly two di¤erent mates,

namely one with respect to M0 and one with respect to M . Hence M0 �M consists only of

(disjunct) cycles, and (Kq)q2Q is well de�ned. As every consecutive pair of edges consists of one

edge from M0 and one edge from M , de�nition (57) indeed ensures that Kq is an alternating

Tq-cycle relative to M for all q 2 Q
It remains to be shown that the patching graph is connected. We proceed from assuming the

contrary. If the patching graph P of (Cd) relative to (Tq) is not connected, there exist disjunct

sets D1; D2 $ D such that for all d1 2 D1 and d2 2 D2, the graph P does not contain a path

from d1 to d2, i.e. there exists no set Tq that contains edges from both Cd1 and Cd2 . Moreover,

as Tq �M , none of the sets Tq has an element that connects two nodes one of which is incident
to an edge in Cd1 , and the other one of which is incident to an edge in Cd2 . Consequently, for

all d1 2 D1 and d2 2 D2 there is no alternating cycle Kq that contains an edge between a node

incident to an edge in Cd1 and one incident to an edge in Cd2 .

We widen our perspective to all edges of the twin-constrained Hamiltonian cycle C0. AsM0

is a modi�ed matching, these are given by the partition

C0 =M0 + f(i; b(i)) : i 2 NGg
=M0nM +M0 \M + f(i; b(i)) : i 2 NGg.

By the de�nition of the twin-induced structure (Cd)d2D, the set

f(i; b(i)) : i 2 NGg
does not contain any edge that connects a node incident to an edge in Cd1 with a node

incident to an edge in Cd2 . As M is the matching that (Cd)d2D is based on, the set M0 \M
does not contain any such edge either. Finally, the same statement can be made for the set

M0nM because it contains only edges from the cycles (Kq)q2Q, which we have already analyzed

above. Therefore, the graph induced by C0 has at least two components, namely the subgraphs

124

induced by the nodes incident to edges inP
d12D1

Cd1 and
P

d22D2

Cd2 ,

respectively, i.e. C0 cannot be a twin-constrained Hamiltonian cycle. Accordingly, our

assumption that the patching graph of (Cd) relative to (Tq) is not connected does not hold.

We slightly reformulate this theorem with the following corollary.

Corollary 104 (Twin-constrained Hamiltonian threshold graph - necessary condition)
Let G(N;E) be a threshold graph with twin-node function b, and (Cd)d2D the twin-induced

structure of a perfect modi�ed matching M on G. There exists a twin-constrained Hamiltonian

cycle on G only if either (Cd)d2D is a twin-constrained Hamiltonian cycle or there exists a

disjunct family (Tq � M)q2Q with alternating Tq-cycles relative to M for all q 2 Q such that

the patching graph of (Cd) relative to (Tq) is connected.

Proof. Assume there exists a twin-constrained Hamiltoninan cycle on G that is not (Cd)d2D.

Hence there exists a perfect modi�ed matching M0 6= M such that its twin-induced structure

is a twin-constrained Hamiltonian cycle. Then, according to the preceding theorem, the family

(Tq �M)q2Q de�ned by (57) and (58) has the properties that the corollary calls for.

Note that we could obtain our necessary criterion in a rather simple, straight-forward way.

We did not even have to refer to any speci�c properties of threshold graphs or the underlying

matching M to establish our theorem. In fact, Theorem 103 and Corollary 104 hold for twin-

constrained Hamiltonian cycles on all types of graphs. (The only reason why we explicitly

mentioned threshold graphs in these statements is that we de�ned, in earlier chapters, some of

the technical terms we made use of � such as "modi�ed matching" and "twin-induced structure"
� only for the case of threshold graphs.)

The intuitive, straight-forward character of the statements above, however, should not mis-

lead us into thinking that twin-constrained Hamiltonicity can be recognised easily. The follow-

ing simple example demonstrates that our theorem, in its present formulation, is certainly not

suitable as a su¢ cient criterion.

Example 105 Consider a graph G(N;E) with
NG = fa; b; c; d; e; f; g; hg and
EG = f(a; b); (c; d); (e; f); (g; h); (a; c); (b; e); (d; f)g,

further a twin-node function b : NG ! NG given by

b(a) = c, b(b) = d, b(e) = g, and b(f) = h.

The set

M := f(a; b); (c; d); (e; f); (g; h)g � EG
is a (modi�ed) matching on G.

Consequently, for

125

T := f(a; b); (c; d); (e; f)g �M
the path

a� b� e� f � d� c� a
is an alternating T -cycle relative to M . As the twin-induced structure of M consists of two

cycles, namely

C1 = fa; b; c; dg and C2 = fe; f; g; hg,
our alternating T -cycle gives rise to the patching graph P (D;E) with

D = f1; 2g and E = f(1; 2)g,
which is connected. The graph G, however, is obviously not twin-constrained Hamiltonian

with respect to b.

8.3 Su¢ cient criterion for twin-constrained Hamiltonicity of thresh-
old graphs

We know from the previous section that, for �nding out whether, for a given twin-node function

b, a threshold graph is twin-constrained Hamiltonian with respect to b, we only have to look for

disjunct families of alternating T -cycles that give rise to a connected patching graph. We will

now set out to show that the existence of an appropriate disjunct family of alternating T -cycles

with a connected patching graph is also su¢ cient for the twin-constrained Hamiltonicity of a

threshold graph. However, as Example 105 demonstrated, arriving at a su¢ cient condition for

twin-constrained Hamiltonicity needs stronger assumptions. It will turn out in this section that

it is su¢ cient to start from a greedy matching on a threshold graph.

Our proof will be constructive. The general principle underlying our proof is to "glue"

together, successively, all cycles (Cd) of the twin-induced structure ofM such that we eventually

arrive at the desired twin-constrained Hamiltonian cycle. In order to achieve this, we will use

the edges from the alternating Tq-cycles that we have at our disposal as linking elements between

the cycles of the twin-induced structure. The proof proceeds by successively taking into account

all members of the family (Tq).

We begin with a Lemma that allows us to construct, on the basis of one alternating Tq-cycle,

a twin-constrained alternating cycle on our graph that connects all nodes that are part of all

those cycles of the twin-induced structure of which the alternating Tq-cycle contains an edge.

Lemma 106 (Twin-constrained cycles from alternating Tq-cycles)

Let G(N;E) be a threshold graph with twin-node function b, the family (Cd)d2D the twin-

induced structure of a perfect greedy modi�ed matching M on G and (Tq � M)q2Q a disjunct
family such that there exist alternating Tq-cycles relative to M for all q 2 Q. Then for every set
Tq �M there exists a perfect modi�ed matching M� on G such that its twin-induced structure

(C�d)d2D� contains a twin-constrained cycle that connects all nodes incident to edges in those

sets Cd that Tq contains an element of.

126

Proof. Let Tq � M be an arbitrary member of the family (Tq)q2Q. As the matching M is

greedy, there exists a sorted alternating Tq-cycle relative to M according to Corollary 68 and

we can assume in the following that the nodes and edges of Tq are given according to (45), (46),

(47) and (48). (In the case of ties, choose an arbitrary order that remains �xed in the following.

Also note that we can disregard in the following, due to Proposition 79, those edges that do

not ful�l the degree property of Proposition 51 that is necessary for Corollary 68.)

STEP 1: Examine the edges (ik; jk) 2 Tq in the order given by (45), starting from k = 0.

If the list of edges in Tq begins with several edges from the same cycle Cd, jump to the last one

of these, which we denote by (ik1 ; jk1) 2 Tq. We proceed in the list of edges until one of the
following two cases occurs:

Case (1:1): We come to an edge (ik2 ; jk2) that is an element of one of the cycles in the

family (Cd) that any other edge in

f(ik1 ; jk1); (ik1+1; jk1+1); :::; (ik2�1; jk2�1)g
is also an element of. Then we de�nebTq;1 := f(ik1 ; jk1); (ik1+1; jk1+1); :::; (ik2�1; jk2�1)g.
Case (1:2): We arrive at the end of the list, i.e. at the edge (ijT j�1; jjT j�1), without having

found an edge (ik2 ; jk2) of Case (1:1). Then we de�nebTq;1 := f(ik1 ; jk1); (ik1+1; jk1+1); :::; (ijT j�1; jjT j�1)g.
For both case (1:1) and case (1:2), letbDq;1 := fd 2 D : (i; j) 2 Cd for some (i; j) 2 bTq;1g
be the set of the indices of all cycles from the twin-induced structure (Cd) of M that the

edges in bTq;1 are an element of, andbCq;1 := P
d2 bDq;1

Cd

the set of all edges from all cycles in (Cd) which are represented (via their indices) in bDq;1.
We know because of Corollary 70 that the canonical alternating bTq;1-cycle exists, which we

designate as bKq;1. On this basis, we de�ne

Cq;1 := (bCq;1 � bTq;1) + (bKq;1 � bTq;1).
Let us examine this set. The nodes that are incident to edges in the set Cq;1 are exactly

those nodes that are incident to edges in bCq;1 due to the fact that the nodes incident to edges inbTq;1 are the same nodes that are incident to edges in bKq;1� bTq;1. Moreover, every node incident
to an edge in Cq;1 has exactly two neighbours in the subgraph induced by Cq;1, namely �rst its

twin node (by virtue of bCq;1) and second either an edge from
Cq;1 \M = Cq;1 \ bCq;1 � f(i; j) 2 NG �NG : i = b(j)g

or an edge from bKq;1� bTq;1. Consequently, Cq;1 consists only of disjunct cycles. Finally, Cq;1
is connected because of the very construction of bKq;1 as an alternating bTq;1-cycle that contains
one edge from each cycle in bCq;1. In sum: Cq;1 is a twin-constrained cycle that connects all
nodes incident to edges in bCq;1 .
If Case (1:2) has arisen above, we continue directly with STEP 3. Otherwise we proceed

with further examining the edges in the list Tq, starting from k2 + 1. If the remainder of Tq,

127

namely the set

f(ik2+1; jk2+1); (ik2+1; jk2+1); :::; (ijT j�1; jjT j�1)g,
does not contain any edge (ik3 ; jk3) =2 Cq;1 with k3 � k2 + 1, we continue also with STEP

3.

STEP 2: Let k3 � k2 + 1 be the smallest number such that (ik3 ; jk3) =2 Cq;1. We continue
to examine the edges in Tq in the order given in (21) and distinguish two cases.

Case (2:1): k3 = jT j � 1. We de�ne the setbTq;2 := f(ik3�1; jk3�1); (ik3 ; jk3)g.
Case (2:2): k3 < jT j � 1. We further examine the list until, analogously to STEP 1, one of

the following two cases occurs:

Case (2:2a): We come to an edge (ik4 ; jk4) that is an element of one of the cycles in the

family (Cd) that any other edge in

f(ik3 ; jk3); (ik3+1; jk3+1); :::; (ik4�1; jk4�1)g
is also an element of, or we arrive at an edge (ik4 ; jk4) 2 Cq;1. Then we de�nebTq;2 := f(ik3�1; jk3�1); (ik3 ; jk3); :::; (ik4�1; jk4�1)g
Case (2:2b): We arrive at the end of the list, i.e. at the edge (ijT j�1; jjT j�1), without having

found an edge (ik4 ; jk4) that has one of the two properties in case (2:2a). Then we de�nebTq;2 := f(ik3�1; jk3�1); (ik3 ; jk3); :::; (ijT j�1; jjT j�1)g.
For both case (2:1) and case (2:2), again analogously to STEP 1, but without including the

edge that bTq;2 has in common with bTq;1, we de�nebDq;2 := fd 2 D : (i; j) 2 Cd for some (i; j) 2 [bTq;2 � f(ik3�1; jk3�1)]g
as the set of all cycles of the twin-induced structure of which bTq;2n bTq;1 contains an edge,

and bCq;2 := P
d2 bDq;2

Cd

as the set of all edges of all cycles of the twin-induced structure of which bTq;2n bTq;1 contains
an edge.

Designating the canonical alternating bTq;2-cycle as bKq;2, which exists because of Corollary

70, we de�ne

Cq;2 := Cq;1 � f(ik3�1; jk3�1)g+ (bCq;2 � bTq;2) + (bKq;2 � bTq;2).
Let us examine this set.

(1) The nodes incident to Cq;2 are exactly those nodes that are incident to edges in bCq;2
and in Cq;1 due to the facts that (a) the set Cq;1 is a cycle and removing one edge (here:

f(ik3�1; jk3�1)g) will not remove any nodes incident to edges in this set and (b) the set bCq;2
consists of cycles and, by de�nition, the set bTq;2 contains exactly one edge from each of these

cycles, and (c) the set (bKq;2� bTq;2) does not contain edges between nodes that are not incident
to edges in either Cq;1 or bCq;2.
(2) Every node incident to an edge in Cq;2 has exactly two neighbours in the subgraph

induced by Cq;2, namely �rst its twin node (by virtue of bCq;2 and Cq;1) and second either an
edge from

128

Cq;2 \M = [Cq;1n bTq;2 + Cq;2 \ bCq;2]� f(i; j) 2 NG �NG : i = b(j)g
or an edge from bKq;2 � bTq;2. Consequently, Cq;2 consists only of disjunct cycles.
(3) The set Cq;2 contains a connected subgraph because of the very construction of bKq;2

as an alternating bTq;2-cycle that contains one edge from each cycle in bCq;2 and from the cycle

Cq;1. In sum: Cq;2 is a twin-constrained Hamiltonian cycle that connects all nodes incident to

edges in bCq;2 and in Cq;1.
If either case (2:1) or case (2:2b) has arisen above, we have reached the end of the list Tq

and proceed directly with STEP 3. Otherwise, i.e. i¤ case (2:2a) had occurred, we proceed

by further examining the remaining edges in the list Tq, starting from k2 + 1 with k2 being

"rede�ned" by k2 := k4. If the remainder of Tq, namely the set

f(ik2+1; jk2+1); (ik2+1; jk2+1); :::; (ijT j�1; jjT j�1)g;
does not contain any edge (ik3 ; jk3) =2 Cq;1 with k3 � k2 + 1, we continue also with STEP

3. Otherwise, we go to the beginning of STEP 2, "rede�ne" the set Cq;1 as Cq;1 := Cq;2, and

repeat the process of STEP 2 as often as it is necessary to reach the end of the list Tq, i.e. to

continue with STEP 3.

STEP 3: As a result of the preceding steps, we have successively built a twin-constrained

Hamiltonian cycle that connects all nodes that are incident to any of the cycles Cd that Td
contains an edge from, i.e. the twin-constrained Hamiltonian cycle Cq;2 contains all nodes from

fi 2 NG : (i; j) 2 Cd and Tq \ Cd 6= ? for some j 2 NG; d 2 Dg.
Then the set

M� := Cq;2 +
S

d2D with
Cd\Tq=?

Cd � f(i; j) 2 NG �NG : i = b(j)g,

i.e. the set of all edges from the twin-constrained cycle Cq;2 and from those cycles of the

twin-induced structure of the matching M that did not take part in constructing Cq;2, but

without the edges between pairs of twins, is the matching we were looking for.

The next Lemma shows that we can enlarge a twin-constrained cycle we have constructed

on the basis of one (or more) alternating Tq-cycles such that it includes also all nodes incident

to edges in those cycles of the twin-induced structure of which an additional alternating Tq-

cycle contains an edge � provided that the additional alternating Tq-cycle has at least one edge
in common with one of those cycles of the twin-induced structure of which one of the other

Tq-cycles contains an edge.

129

Lemma 107 (Enlarging twin-constrained cycles)
Let G(N;E) be a threshold graph with twin-node function b, (Cd)d2D the twin-induced struc-

ture of a perfect greedy modi�ed matching M on G and (Tq � M)q2Q a disjunct family such

that there exist alternating Tq-cycles relative to M for all q 2 Q. If there exists, for some subset
Q $ Q, a perfect modi�ed matching M� on G such that its twin-induced structure (C�d)d2D�

contains an alternating twin-constrained cycle CQ with

fi 2 NG : (i; j) 2 CQ for some j 2 NGg
= fi 2 NG : (i; j) 2

S
d2D with

9q2Q:Cd\Tq 6=?

Cdg

i.e. a twin-constrained cycle that connects all nodes incident to edges in those sets Cd
that some Tq with q 2 Q contains an element of, then there exists, for all q� 2 Q � Q with

CQ \ Tq� 6= ?, also a perfect modi�ed matching M�� on G such that its twin-induced structure

(C��d)d2D�� contains a twin-constrained alternating cycle CQ+fq�g .

Proof. If we have CQ � Tq� for a given q� 2 Q � Q with CQ \ Tq� 6= ?, the matching
M�� := M� trivially has the desired properties due to CQ = CQ+fq�g in this case. Hence

we can assume Tq�nCQ 6= ? in the following. Furthermore, we can assume without loss of

generality thatM�nCQ $M . (If this is not the case, we can generate such a matchingM�nCQ
by constructing a greedy modi�ed matching on the subgraph of G induced by M�nCQ.) Hence
there exists a sorted alternating Tq� -cycle relative to M� according to Corollary 68 and we can

assume in the following that the nodes and edges of T are given according to (45); (46); (47);

and (48). (In the case of ties, choose an arbitrary order that remains �xed in the following.

Again, as in the previous lemma, note that we can disregard in the following, due to Proposition

79, those edges that do not ful�l the degree property of Proposition 51 that is necessary for

Corollary 68.)

STEP 1: We choose a maximal cardinality subset of edgesbTq�;1 := f(ik1 ; jk1); (ik1+1; jk1+1); :::; (ik2 ; jk2)g � Tq�
such that bTq�;1 contains exactly one edge from CQ (which is possible because of CQ\Tq� 6= ?,

but Tq�nCQ 6= ?) and no two edges from the same member of the family (Cd)d2D� . By de�ningbDq�;1 := fd 2 D : (i; j) 2 Cd for some (i; j) 2 bTq�;1g
as be the set of the indices of all cycles from the twin-induced structure (Cd) of M that the

edges in bTq�;1 are an element of,bCq�;1 := P
d2 bDq�;1

Cd + CQ

as the set of all edges from the cycle CQ and all cycles in (Cd) which are represented (via

their indices) in bDq�;1, and the set bKq�;1 as the canonical alternating bTq�;1-cycle, which exists
because of Corollary 70, we arrive, by "gluing" together the cycles in (Cd) and the cycle CQ
in the same fashion as in STEP 1 in the proof of the previous lemma, at a twin-constrained

alternating cycle

Cq�;1 := (bCq�;1 � bTq�;1) + (bKq�;1 � bTq�;1).
130

that connects all nodes incident to edges in bCq�;1 and CQ.
STEP 2: We proceed by examining the list of nodes analogously to STEP 2 in the proof

of the previous lemma, starting from node k2 + 1. However, when we have reached the end of

the list, we do not proceed to STEP 3 of the proof of the previous lemma, but examine (unless

k1 = 0) the �rst part of the list of the edges in Tq, starting from (ik1�1; jk1�1) in a backwards(!)

order. Once we have reached the top of the list of nodes, we have constructed, successively, a

twin-constrained Hamiltonian cycle that connects all nodes that are incident to any of those

cycles Cd from which some Td with d 2 Q contains an edge, and those nodes that are incident

to edges in all cycles Cd from which Tq� contains an edge, i.e. our twin-constrained alternating

cycle CQ+fq�g contains all nodes from

fi 2 NG : (i; j) 2 (
S

d2D with
9q2Q:Cd\Tq 6=?

Cd) [(
S

d2D with
Cd\Tq� 6=?

Cd)

for some j 2 NGg.

Then the set

M�� := CQ+fq�g +
S

d2D with
q2Q�Q�fq�g and Cd\Tq=?

Cd

�f(i; j) 2 NG �NG : i = b(j)g

is the matching that the lemma claims to exist.

We are now prepared to give a proof of a su¢ cient condition for the twin-constrained

Hamiltonicity of a threshold graph. The proof proceeds by induction. It starts with constructing

a twin-constrained alternating cycle on the basis of one alternating Tq-cycle according to Lemma

106 and successively adds, by means of Lemma 107, edges from those cycles of the twin-induced

structure of which other alternating Tq-cycles contain an edge.

Theorem 108 (Recognizing twin-constrained Hamiltonian threshold graphs - su¢ cient crite-
rion)

Let G(N;E) be a threshold graph with twin-node function b, the family (Cd)d2D the twin-

induced structure of a perfect greedy modi�ed matching M on G and (Tq � M)q2Q a disjunct
family such that there exist alternating Tq-cycles relative to M for all q 2 Q. If the patching
graph of (Cd) relative to (Tq) is connected then there exists a twin-constrained Hamiltonian

cycle on G.

Proof. We choose some set Tq0 � M , for which, according to Lemma 106, there exists a

perfect modi�ed matching M� on G such that its twin-induced structure (C�d)d2D� contains a

twin-constrained alternating cycle that connects all nodes incident to edges in those sets Cd
that Tq0 contains an element of. Assume that, for Q := fq0g, we can �nd a q� 2 Q � Q that

ful�ls the condition of Lemma 107. Then Lemma 107 guarantees that there exists a twin-

constrained cycle Cfq0;q�g that connects all nodes incident to edges in those sets Cd that Tq0

131

or Tq� contains an element of, and we might be able to apply Lemma 107 again, this time to

the set Q := fq0; q�g. If it is possible to successively apply Lemma 107, i.e. if there always
exists a q� 2 Q�Q with CQ \ Tq� 6= ? for any given subset Q $ Q, we will �nally arrive at a
matching M�� the twin-induced structure of which contains a twin-constrained cycle CQ, i.e.

a cycle that connects all nodes that are incident to edges in those sets Cd that some member

of the family (Tq)q2Q contains an element of.

As the patching graph P of (Cd)d2D relative to (Tq)q2Q is connected, there are no isolated

nodes in NP = D. Therefore, by de�nition of the patching graph, there exists, for every d 2 D,
a member of (Tq)q2Q that contains an element of Cd. Consequently, the cycle CQ connects all

nodes that are incident to some edge in some member of the family (Cd)d2D, i.e., by de�nition of

the twin-induced structure of a matching, the twin-constrained cycle CQ is a twin-constrained

Hamiltonian cycle on G.

It remains to show that there always exists a q� 2 Q�Q with CQ \ Tq� 6= ? for any given
subset Q $ Q. For a certain Q $ Q, let DQ � D be a subset of nodes of the patching graph

such that (Cd)d2DQ
is the family of those cycles of which some Tq with q 2 Q contains an edge,

i.e.

DQ = fd 2 D : Cd \ Tq 6= ? for some q 2 Qg.
We distinguish between two cases.

Case (1): If DQ = D, we already have "glued together" all cycles of the twin-induced

structure of the matching, i.e. the cycle CQ is twin-constrained Hamiltonian. Hence we have

CQ \ Tq� 6= ? for all q� 2 Q � Q. (Alternatively, we could stop the process of successively
applying Lemma 107 here.)

Case (2): If DQ $ D, the connectedness of the patching graph ensures that there exists a
node d1 2 D �DQ that is a neighbour of some d2 2 DQ. Then, according to the de�nition of
the patching graph, there exists a set Tq� that contains edges from both Cd1 and Cd2 . Because

of d1 2 D � DQ, the cycle Cd1 has not been used yet when constructing CQ. Due to the
way in which Lemma 106 and Lemma 107 construct a twin-constrained cycle CQ, this implies

q� 2 Q�Q. Moreover, d2 2 DQ implies that the cycle Cd2 has already been used in constructing
CQ. Because the family (Tq � M)q2Q is disjunct, Tq� contains an edge from Cd2 that has not

been discarded in the process of constructing CQ. Consequently, we have CQ \ Tq� 6= ?.

8.4 Constructing suitable families of alternating Tq-cycles

We know from Theorem 108 in the previous section that starting from a perfect modi�ed greedy

matching we can �nd a twin-constrained Hamiltonian cycle if we can �nd a disjunct family (Tq)

with alternating Tq-cycles that gives rise to a connected patching graph. We also know, from

Corollary 104, section 8:2, that, for concluding that there does not exists a twin-constrained

Hamiltonian cycle, we can start from any perfect modi�ed matching, which could well be a

greedy matching, and "only" have to �nd out whether there exists no disjunct family (Tq) with

132

alternating Tq-cycles that would give rise to a connected patching graph. The question that

remains for solving the recognition problem for twin-constrained Hamiltonian threshold graphs

is: How can we either �nd a suitable family of alternating Tq-cycles or know that such a family

does not exist?

Regarding the second part of the question, let us recall Remark 102(2), which notes that

the patching graph does not change if we analyse canonical sorted alternating Tq-cycles. This

implies that we can restrict our e¤ort to look for a suitable family (Tq) to all families of canonical

sorted alternating Tq-cycles relative to a perfect greedy modi�ed matching. In other words: we

can use the set of all families of canonical sorted alternating Tq-cycles relative to a perfect greedy

modi�ed matching as the domain of a matching generator in the sense of Proposition 60. In the

light of Corollary 104 and Theorem 108 this means that the set of canonical sorted alternative

cycles relative to a perfect greedy modi�ed matching already contains all information necessary

for determining whether or not a certain threshold graph with a twin-node function is twin-

constrained Hamiltonian. We will now use this insight for our search for a suitable family of

alternating Tq-cycles.

Algorithm 109 (Family construction algorithm - FCA)

INPUT: a sorted list of edges (ik; jk) 2M with M being a perfect modi�ed

matching on a threshold graph G with nodes NG = f1; 2; :::; 2ng
and the edges from M being sorted in the sense of (46) and (47),

(provided they ful�ll the degree property of Proposition 51),

neighbourhoods N(i) for i 2 NG, and a list C[(ik; jk)] that indicates
for each edge (i; j) 2M the number d 2 D of the cycle of the twin-induced

structure of which it is an element.

[01] (number of alternating Tq-cycle to be constructed)

q� := 0

[02] (set of edges for alternating Tq-cycle)

Tq := fg for all 1 � q � n
2

[03] (set of indices of those cycles of the twin-induced structure

that have an edge in Tq)

Sq := fg for all 1 � q � n
2

[04] (edge from matching that is being under consideration)

k := 1

[05] REPEAT

[06] (�nd the �rst edge of next set Tq to be constructed)

WHILE (k < n� 1) ^ [jk =2 N(ik+1) _ C[(ik; jk)] = C[(ik+1; jk+1)]]
DO k := k + 1

[07] IF [jk 2 N(ik+1) ^ C[(ik; jk)] 6= C[(ik+1; jk+1)]] THEN

133

[08] (include �rst edge into a new set Tq)

q� := q� + 1;Tq� := f(ik; jk)g;Sq� := fC[(ik; jk)]g
[09] (complete the set Tq)

WHILE (k < n) ^ (jk 2 N(ik+1)) ^ (C[(ik+1; jk+1)] =2 Sq)
DO k := k + 1;Tq� := Tq� + f(ik; jk)g;Sq� := Sq� + fC[(ik; jk)]g

[10] END IF

[11] (go to next edge)

k := k + 1

[12] UNTIL (k � n), STOP.

OUTPUT: q� = 0, or sets Tq and Sq for 1 � q � q�

We will give a brief overview of how the algorithm proceeds. After preliminarily setting

some variables, the algorithm starts searching from the highest edge until it reaches the second

last edge or until it �nds an edge the lower node of which is adjacent to the higher node of

the succeeding edge in the sorted list, with both edges not being from the same cycle of the

twin-induced structure of the matching (line [06]). Once FCA has found a pair of succeeding

edges from di¤erent cycles (line [07]), it starts a new set Tq and adds to it the �rst edge of the

pair (line [08]). It continues by adding all succeeding edges to the set Tq as long as we have

not reached the last edge of our sorted list, the lower node of the current edge is adjacent to

the higher node of the succeeding edge and the succeeding edge does not belong to a cycle of

the twin-induced structure that is already represented in Tq (line [09]). If composing the set

Tq has been completed, the algorithm proceeds to the next edge in our sorted list in order to

check whether this edge is suitable for beginning a new set Tq+1 (line [11]) � unless we have
already examined the second last or last edge of our sorted list (line [12]).

The following theorem states that FCA generates sets that provide us with a disjunct

family of alternating Tq-cycles, i.e. the algorithm FCA provides a link between the result of

our matching algorithm MTGMAmax and the structure that we require to draw conclusions

about twin-constrained Hamiltonicity on the basis of Corollary 104 and Theorem 108.

Theorem 110 (Su¢ ciency of a solution by FCA)
Let G(N;E) be a threshold graph with twin-node function b, and (Cd)d2D the twin-induced

structure of a perfect modi�ed matching M on G. Unless FCA terminates with q� = 0, it

terminates with a disjunct family (Tq � M)q2Q such that there exist alternating Tq-cycles

relative to M for all q 2 Q.

Proof. If and only if q� 6= 0 when the algorithm terminates, FCA has constructed sets (Tq)q2Q
with Q := f1; 2; :::; q�g. According to the way in which the edges of the matching M are sorted

and because of the way in which FCA operates, the nodes incident to edges in Tq �M can be

represented by the set

134

NTq := fikq ; jkq ; ikq+1; jkq+1; :::;
ikq+jTqj�2; jkq+jTqj�2; ikq+jTqj�1; jkq+jTqj�1g.

Due to lines [07] and [09] the algorithm makes sure that, for each q 2 Q, we have jk 2
N(ik+1) for all nodes jk 2 NTq with kq � k � kq + jTqj � 2. Hence there exists a path

ikq � jkq � ikq+1�; jkq+1 � :::
�ikq+jTqj�2 � jkq+jTqj�2 � ikq+jTqj�1 � jkq+jTqj�1 for all q 2 Q.

Because the edges in Tq � M are sorted in the sense of (46) and (47), the node ikq must

be dominating all nodes incident to edges in Tq. We choose the node jk�q with the largest

neighbourhood among all nodes jk 2 NTq with kq � k � kq + jTqj � 2, which must be a
member of a maximal clique of all nodes incident to edges in Tq. Hence there exists a matching

dominated P -path

ikq � jkq � ikq+1 � jkq+1 � :::� ik�q�1 � jk�q�1 � ik�q � jk�q
with

P := f(ikq ; jkq); (ikq+1; jkq+1); :::; (ik�q�1; jk�q�1); (ik�q ; jk�q)g
to which we can apply Theorem 63, i. e. there exists, for all q 2 Q, an alternating Tq-

cycle relative to M . The family (Tq)q2Q is disjunct because the algorithm uses every edge

(ik; jk) 2M , 1 � k � jM j, only once.

On the basis of the preceding theorem we can build, unless FCA terminates with q� = 0, the

patching graph of the twin-induced structure of M relative to the family (Tq). If the patching

graph is connected, we know there exists and can construct a twin-constrained Hamiltonian cycle

according to Theorem 108. The next theorem states that, if TCA terminates with q� = 0 or

if the family (Tq) found by FCA does not provide us with a patching graph that is connected,

we do not have to look any further and can conclude that there exists no twin-constrained

Hamiltonian cycle on G .

Theorem 111 (Necessity of a solution by FCA)
Let G(N;E) be a threshold graph with twin-node function b, and (Cd)d2D the twin-induced

structure of a perfect greedy modi�ed matching M on G with jDj > 1. If FCA terminates with
q� = 0 or if the patching graph of (Cd)d2D relative to the family (Tq �M)q2Q with which FCA
terminates is not connected, there exists no disjunct family (bTq � M)q2Q relative to which the
patching graph of the twin-induced structure of M is connected.

Proof. We �rst recall that, due to the degree property of a greedy matching (Proposition 51),
an ordering of the edges of the matching in the sense of (22) and (23) also complies with (26).

(Note that we can disregard here, due to Proposition 79 those edges that do not ful�ll the

degree property of Proposition 51.) As a consequence, given the order in the sense of (22), (23)

and (26) and with k0 := 0 and kp := jM j � 1, the (relevant) edges of a greedy matching show
the following structure:

ik0 � jk0 � ik0+1 � jk0+1 � :::� ik1 � jk1 ,

135

ik1+1 � jk1+1 � :::� ik2 � jk2 ,

ik2+1 � jk2+1 � :::� ik3 � jk3 , ::: ,

ik(p�2)+1 � jk(p�2)+1 � :::� ik(p�1) � jk(p�1) ,

ik(p�1)+1 � jk(p�1)+1 � :::� ikp � jkp (59)

with

jks =2 N(iks+1) for all 1 � s � p� 1

and, due to the vicinal preorder of the underlying threshold graph, even with

jk =2 N(im) for all k;m 2 f0; 1; :::; jM j � 1g

if ks1 + 1 � k � ks1+1 , ks2 + 1 � m � ks2+1 with 1 � s1 < s2 � p� 1 . (60)

We know that, for greedy matchings, the existence of an alternating T -cycle for a set T �M
is equivalent to the existence of a sorted alternating T -cycle (Corollary 68), and that sorting the

edges of a set T does not have any impact on the connectedness of the patching graph (Remark

102(2)).

In conjunction with (59) and (60), this implies that we have to look only for subsets

Tq � f(ik(s�1)+1; jk(s�1)+1); (ik(s�1)+2; jk(s�1)+2); :::; (iks ; jks)g

when searching for sets Tq that could lead to a family (Tq)q2Q of alternating Tq-cycles relative

to which the patching graph is connected.

Additionally, while searching within each of the sets

f(ik(s�1)+1; jk(s�1)+1); (ik(s�1)+2; jk(s�1)+2); :::; (iks ; jks)g (61)

given by s with 1 � s � p, we can restrict ourselves to constructing subsets Tq that do not
contain more than one edge from the same cycle of the twin-induced structure (because doing

so will have no impact on the connectedness of the patching graph).

Moreover, due to the vicinal preorder of the underlying threshold graph, if we have

jk 2 N(im) for some k;m 2 f0; 1; :::; jM j � 1g with k < m ,

we also have

ks + 1 � k < m � ks+1 for some s with 1 � s � p� 1 ,

jl 2 N(im) for all k � l � m� 1 , and

jk 2 N(il) for all k + 1 � l � m .

136

Consequently, we can construct the subsets Tq while only considering edges along the order of

(59).

We observe that these are the principles that FCA follows in lines [06], [07] and [09].

Case (1): FCA terminates with q� = 0. Due to line [07] of the algorithm, this implies

that FCA has not found any pair of edges (ik; jk) and (ik+1; jk+1) with jk 2 N(ik+1) and
C[(ik; jk)] 6= C[(ik+1; jk+1)]. Hence, each of the sets (61) given by 1 � s � p consists only

of edges that are elements of the same cycle of the twin-induced structure of the matching.

From what has been said above (in particular (60)), we can conclude that it is not possible

to construct a set bT with two edges from di¤erent cycles of the twin-induced structure as its

elements such that there exists an alternating bT -cycle relative toM . This implies, by de�nition
of the patching graph, that there exists no set bQ and no family (bTq)q2 bQ with alternating bTq-
cycles relative to which the patching graph would be connected. (This means that relative to

all possible families of alternating Tq-cycles the patching graph consists only of isolated nodes.)

Case (2): FCA terminates with q� > 0 and the patching graph P (D;E) relative to the

family (Tq) with which FCA terminates is not connected. We distinguish two sub-cases.

Case (2:1): The patching graph has an isolated node i 2 D. Then, by de�nition of the
patching graph and due to the fact that FCA does not construct sets Tq that contain edges

from the same cycle of the twin-induced structure of the matching (lines [06] and [07]), there

must be sets according to (61) such that all edges (im; jm) 2 Ci are within these sets and none
of these sets contains any edge (ik; jk) =2 Ci. From what has been said above (in particular

(60)), we can conclude that for all (im; jm) 2 Ci and (ik; jk) =2 Ci it is not possible to construct
a set bT with (im; jm), (ik; jk) 2 bT such that there exists an alternating bT -cycle relative to M .
Hence, by de�nition of the patching graph, there exists no set bQ and no family (bTq)q2 bQ with
alternating bTq-cycles relative to which the patching graph would be connected.
Case (2:2): The patching graph is not connected and has no isolated nodes. Then there

exists, by de�nition of the patching graph P (D;E), a partition D = D1 +D2 such that among

the family (Tq) constructed by FCA there is no set Tq with (im; jm), (ik; jk) 2 Tq for some
edges (im; jm), (ik; jk) 2 M with C[(im; jm)] 2 D1 and C[(ik; jk)] 2 D2. Due to lines [06] and
[07] of the algorithm, we know that all edges from cycles (Cd)d2D1 are elements of some sets

(61), while all edges from cycles (Cd)d2D2 must be elements of some other sets (61). From what

has been said above (in particular (60)), we can conclude that for all (im; jm), (ik; jk) 2 M
with C[(im; jm)] 2 D1 and C[(ik; jk)] 2 D2 it is not possible to construct a set bT with (im; jm),
(ik; jk) 2 bT such that there exists an alternating bT -cycle relative to M . Hence, by de�nition
of the patching graph, there exists no set bQ and no family (bTq)q2 bQ with alternating bTq-cycles
relative to which the patching graph would be connected.

Remark 112 Note that we needed the degree property of greedy matchings (Proposition 79) for
the proof of Theorem 111, while this was not necessary for Theorem 110. This setting exhibits

an interesting asymmetry. According to Theorem 110, our algorithm FCA constructs a family

137

of alternating Tq-cycles relative to which the patching graph might be connected, but only on the

basis of the degree property of greedy matchings will we be able to construct a twin-constrained

Hamiltonian cycle from it (Theorem 108). Conversely, every twin-constrained Hamiltonian

cycle (unless we have a twin-induced structure with only one cycle) implies a connected patching

graph (Corollary 104), but only on the basis of the degree property are we guaranteed to �nd a

suitable family of alternating Tq-cycles with FCA (Theorem 111).

8.5 An algorithm for recognising twin-constrained Hamiltonian thresh-
old graphs (TGHRA)

In the previous three chapters we have developed, on the basis of the concepts of sorted alter-

nating T -cycles and the patching graph, both a necessary and a su¢ cient condition for deciding

on the twin-constrained Hamiltonicity of threshold graphs. In the following, as a summary of

the results of this chapter, we will present a polynomial-time algorithm that recognizes twin-

constrained Hamiltonian threshold graphs and constructs a twin-constrained Hamiltonian cycle,

if such a cycle exists.

Algorithm 113 (Twin-constrained Hamiltonicity Recognition Algorithm - TCHRA)

INPUT: a threshold graph G(N;E) with the (even) set of nodes

NG = f1; 2; :::; 2ng, neighbourhoods N(i) for all i 2 NG,
and b : NG ! NG a twin-node function.

[01] Run MGTMAmax, output: sorted matching M .

[02] If jM j < n then INFEASIBLE, STOP.
[03] Calculate twin-induced structure (Cd)d2D
[04] If d = 1 then FEASIBLE, STOP.

[05] Calculate list with C[(ik; jk)] = d :() (ik; jk) 2 Cd for all 1 � k � n.
[06] Run FCA, output: q�, lists Tq and Sq for 1 � q � q�.
[07] If q = 0 then INFEASIBLE, STOP.

[08] (check if patching graph connected)

(�rst alternating Tq-cycle to be considered)

q := 1, Q := f1g, S := S1;
[09] (consider all other alternating Tq-cycles)

WHILE (q � q� ^ S 6= D) DO
[10] REPEAT q := q + 1

[11] UNTIL ((q = q� + 1) _ (q =2 Q ^ Sq \ S 6= ?))
[12] If q � q� then S := S + Sq, Q := Q+ fqg, q := 1;
[13] END DO;

[14] If S 6= D then INFEASIBLE else FEASIBLE; STOP.

138

OUTPUT: statement of FEASIBILITY or INFEASIBILITY

Theorem 114 (Complete recognition of twin-constrained Hamiltonicity by TCHRA)
Let G(N;E) be a threshold graph G(N;E) with the (even) set of nodes NG = f1; 2; :::; 2ng,

neighbourhoods N(i) for all i 2 NG, and b : NG ! NG a twin-node function. Then TCHRA

recognises whether or not G is twin-constrained Hamiltonian with respect to b.

Proof. The algorithm calculates a maximum cardinality modi�ed matching M according to

Proposition 75 (line [01]). Trivially, if M is not perfect, there cannot be any twin-constrained

Hamiltonian cycle on G (line [02]). Having calculated the twin-induced structure of M with

respect to b (line [03]), there obviously exists a twin-constrained Hamiltonian cycle on b if the

twin-induced structure consists of only one cycle (line [04]). If this is not the case, TCHRA

generates a list that indicates for each edge from M the cycle of which the edge is an element

(line [05]) and tries to construct a family (Tq � M)q2Q of alternating Tq- cycles such that the
patching graph of the twin-induced structure relative to (Tq) is connected (line [06]). Because

of Theorem 111 in conjunction with Theorem 103 there exists no twin-constrained Hamiltonian

cycle on G if FCA terminates with q = 0 (line [07]).

If FCA has not terminated with q = 0, the algorithm has found a family of alternating Tq-

cycles (Theorem 110) and checks if the patching graph of the twin-induced structure relative to

(Tq) is connected. This is achieved in lines [08] to [14]. The algorithm checks the connectedness

by proceeding in the fashion of Theorem 108: it starts with one set Tq, namely (arbitrarily

chosen) the set T1, and considers the set Sq of the indices of all cycles of the twin-induced

structure of which there are elements in Tq (line [08]). If the set Sq (here: S1) contains the

indices of all cycles of the twin-induced structure (S1 = D), the patching graph is connected by

de�nition and the algorithm jumps to line [14] to state the feasibility of the twin-constrained

Hamiltonian cycle problem on the basis of Theorem 108. If this is not the case, TCHRA

looks for another set Sq that shares the index of one cycle with S1 (lines [10] and [11], which

corresponds to the criterion CQ \ Tq� 6= ? in Theorem 108). If such a set does not exist, the

patching graph is not connected and the algorithm terminates in line [14] with a statement of

infeasibility on the basis of Theorem 111 in conjunction with Theorem 103.

Otherwise, if such a set does exist, TCHRA adds this new set Sq to the set S1 (line [11])

and checks again if the set S of the indices of all cycles of the twin-induced structure considered

so far is equal to the node set D of the patching graph (line [09]). If yes, the patching graph

is connected and the algorithm jumps to line [14] and states feasibility, again on the basis of

Theorem 108. Otherwise, TCHRA continues by searching for another set Sq in lines [10] and

[11]. This procedure is repeated until TCHRA has found a su¢ cient number of sets Sq and

can declare feasibility on the basis of Theorem 108, or TCHRA has considered all sets Sq (line

[10], condition q = q� + 1) and has still not been able to link all nodes of the patching graph

(S 6= D, line [14]), in which case we conclude infeasibility on the basis of Theorems 103 and

111.

139

As TCHRA always ends with a statement about (in)feasibility and this statement, as we

have shown, is correct, TCHRA can decide whether or not a given threshold graph is twin-

constrained Hamiltonian with respect to a certain twin-node function.

Remark 115 (1) In the form given above, TCHRA solely decides whether the twin-constrained
Hamiltonian cycle problem is feasible. If we would like to construct a twin-constrained Hamil-

tonian cycle if such a cycle exists, we can add the procedure of constructing a cycle as used

in Lemmas 106 and 107 and Theorem 108. (This procedure can even be simpli�ed as FCA

constructs only sets Tq that have at most one edge from each of the cycles of the twin-induced

structure � in our proofs of Lemmas 106 and 107 we could not take this for granted.

(2) If we would like to use TCHRA for solving an MSSP , we have to add, before running

TCHRA, a pair of dominating twin-nodes to our threshold graph. A statement of (in)feasibility

by TCHRA is then equivalent to a statement of (in)feasibility regarding the MSSP. If we modify

TCHRA to construct a twin-constrained Hamiltonian cycle, provided such a cycle exists, we

remove our pair of dominating twin-nodes and obtain a solution to the MSSP (cf. section 8:1).

The performance of TCHRA with respect to computational time will be illustrated in

chapter 9. We conclude this chapter by addressing the complexity of the twin-constrained

Hamiltonian cycle problem on threshold graphs.

Proposition 116 (Complexity of recognizing twin-constrained Hamiltonian cycles on threshold
graphs)

Let G(N;E) be a threshold graph G(N;E) with the (even) set of nodes NG = f1; 2; :::; 2ng,
neighbourhoods N(i) for all i 2 NG, and b : NG ! NG a twin-node function. Then it is possible

to decide in at most O(n2) time whether or not G is twin-constrained Hamiltonian with respect

to b. If yes, we can construct a solution in further O(n) time.

Proof. We will address only those parts of TCHRA that might need more than O(1) time.

The matching algorithm (line [01]), also in its modi�ed form, requires O(n log2 n) time because

of the sorting algorithm that is a part of it (Corollary 50). The twin-induced structure of

the matching (line [03]) can be calculated in at most O(n
2

2) time as we have n edges from the

matching and at most n2 cycles of the twin-induced structure. The list of the indices of the cycles

of the twin-induced structure of which an edge is an element (line [05]) can be generated while

calculating the twin-induced structure (which adds only O(1) time to each step of calculating

the twin-induced structure). FCA examines all edges in the matching exactly once (line [06])

and therefore terminates in at most O(n) time. The time for arriving at a decision of whether

the patching graph is connected (lines [08] to [13]) is bound by O(n4 (
n
2 +1)) time as the number

of alternating Tq-cycles is bound by n
2 . Hence the complexity of all subroutines of TCHRA

140

leads to O(n2) time as an upper bound on the performance of TCHRA. Constructing a twin-

constrained Hamiltonian cycle can be done on the basis of the subroutine that checks whether

the patching graph is connected as long as we keep track on the order in which we add the sets

Sq to the set S. With this information we have to deal with every edge of the matching only

once, which leads to a complexity of O(n).

At the end of our discussion of twin-constrained paths and cycles in Chapters 7 and 8 we can

�nally make a statement on the complexity of the MSSP, which we set out to solve in Chapter 1.

As mentioned in Chapter 5:3, the complexity of the MSSP is between the complexity of deciding

on the Hamiltonicity of a threshold graph (which is in problem class P) and the complexity of

the problem of deciding whether there exists, on a given graph, a twin-constrained Hamiltonian

path (which is an NP-complete problem). We are now prepared to give a de�nite answer on

the question of whether or not the MSSP can be solved in polynomial time.

Corollary 117 (Complexity of the MSSP)
Let G(N;E) be a threshold graph G(N;E) with the (even) set of nodes NG = f1; 2; :::; 2ng,

neighbourhoods N(i) for all i 2 NG, and b : NG ! NG a twin-node function. Then it is possible

to decide in O(n2) time whether or not the MSSP on G with respect to b is feasible. If yes, we

can construct a solution in further O(n) time.

Proof. In view of the fact that adding a pair of dominating twin-nodes to G can be done in

O(1) time within MGTMA, right after having sorted the nodes, the statement follows directly

from the previous proposition in conjunction with Remark 115(2).

141

9 Computational results

In this section, we will provide computational results for the two algorithms we developed: the

heuristic MSSPH, which looks for speci�c feasible and infeasible cases of the MSSP (chap-

ter 7:8), and the polynomial-time algorithm for recognizing all twin-constrained Hamiltonian

threshold graphs (TCHRA), which was given in chapter 8:5.

9.1 General remarks about the implementation

Both algorithms were implemented in C++ code using the integrated development environment

Microsoft Visual C++ and executed on a computer equipped with an Intel Core 2 Duo processor

(U7500) with a frequency of 1.06GHz.

While the implementation of TCHRA follows exactly the description in chapter 8:5, our

implementation of MSSPH does not include the �nal Step [10] of the algorithm presented in

chapter 7:8 (i.e. the step of trying to �nd a feasible solution of the MSSP by looking for an

extreme point of the polyhedron P �I). As MSSPH is intended to be a fast heuristic to quickly

decide on the feasibility and infeasibility of a large percentage of given instances and our com-

putational experiments (as we will soon see) have led to convincing results beyond expectation

even without including Step [10], this implementation decision seems to be justi�ed. Addi-

tionally, in view of the computational results, it is questionable whether the time-consuming

process of calling an LP solver in Step [10] would lead to computational results that could

compete with TCHRA, which can decide on the (in)feasibility of 100% of the instances given.

The source codes of our implementations of MSSPH and TCHRA are given in Appendices A

and B, respectively.

For the sake of comprehensiveness, Appendix C provides the source code of a much longer

and more complex heuristic called "MSSP 3:4", which, being an extended version ofMSSPH,

also looks for some types of non-structure-preserving (path- and cycle-splitting) solutions and

can hence decide of the (in)feasibility of larger percentage of instances than MSSPH. This

heuristic was used for computational experiments during the process of research on the MSSP

and turned out to be helpful for gaining some of the insights into the structure of the MSSP

that led to chapters 7 and 8 of the present thesis. Moreover, the results of this longer algorithm

gave strong hints that an implementation of Step [10] of MSSPH would not lead to computa-

tional advantages that go beyond what has been achieved with the two algorithms developed

in chapters 7 and 8. As the computational experiments with MSSPH have led, as we will see,

to results that show that MSSPH in its implemented version clearly ful�lls the purpose for

which it was developed, we will not discuss more in detail the heuristicMSSP 3:4 as presented

in Appendix C.

The computational tests of MSSPH and TCHRA were carried out on the basis of more

than 100 di¤erent types of randomly generated data sets, each with 106 to 109 instances of the

142

MSSP . Due to the large number of instances tested (and the choice of the data sets used, see

below), we can assume that the results provide us with a representative picture of the behaviour

of MSSPH and TCHRA in general. The reminder of this chapter addresses the most relevant

aspects of these tests by presenting and discussing the computational results for 31 randomly

generated data sets with 106 instances each.

One instance of theMSSP is characterized by the minimal distance � of the scoring knives,

the number n of boxes, and the widths of the 2n scores. Without loss of generality all instances

generated used the value � = 70mm, which is the value mentioned in the original problem

description by Goulimis (2004). The same article mentioned that the number of boxes is

typically up to n = 10. To give a more reliable upper bound on the computational time, the

majority of the computational results presented here is based on data sets consisting of 20

boxes, but we will also have a look at the behaviour of MSSPH and TCHRA for other data

sets, consisting of 10 to 100 boxes.

The widths of the scores, i.e. the numbers assigned to the nodes of the underlying threshold

graph, were assumed to be independent and identically distributed discrete random variables

that assume integer values. Computational tests were carried out for discrete uniform distri-

butions and discrete versions of symmetric triangular distributions. The choice of the latter

type of distribution is motivated by the idea that a discrete distribution based on triangular

distribution provides us with a simple way of studying the behaviour of our algorithms in cases

in which the width of the boxes is distributed around a peak value (similar to the situation of

a normal distribution). The decision for these two distributions implies that, with respect to

the width of the scores, all data sets are fully de�ned by the type of distribution (uniform /

triangular) and a single interval [a; b], which indicates the range in which the (integer) widths

of the scores can be found with non-zero probability. For the case of a uniformly distributed

random variable X over S := fa; a+ 1; :::; bg, this implies a probability mass function

fX : S ! [0; 1]

with fX(x) =
1

b� a+ 1 for x 2 S .

The probability mass function of the discrete version of a symmetric triangular distribution

on the same interval (assuming that b� a+1 is even, which does not seem to be too restrictive

an assumption here) is given by

fX(x) =

x+0:5Z
x�0:5

4(x� a0)
(b0 � a0)2 dx for x 2 S; x <

b+ a

2

143

and

fX(x) =

x+0:5Z
x�0:5

4(b0 � x)
(b0 � a0)2 dx for x 2 S; x >

b+ a

2

with the parameters a0 and b0 of the symmetric triangular distribution being de�ned by

a0 := a� 0:5 and b0 := b+ 0:5 .

This yields

fX(x) =
2 + 4(x� a)
(b� a+ 1)2 for x 2 S; x <

b+ a

2

and

fX(x) =
2 + 4(b� x)
(b� a+ 1)2 for x 2 S; x >

b+ a

2
. (62)

The generation of the uniformly distributed random numbers in C++ was straight forward

as C++ is equipped with a function that returns uniformly distributed discrete pseudo-random

numbers in the interval [0; 32767]. For generating triangularly distributed random numbers, our

implementation derives the cumulative distribution function of the required triangular distribu-

tion from (62) in a �rst step, transforms the random numbers provided by C++ into uniformly

distributed random numbers in the interval [0; 1] in a second step, and �nally calculates the

triangularly distributed random numbers by means of the inverse of the cumulative distribu-

tion function (inverse transform sampling, see Devroye (1986), for example). While being not

optimal from the perspective of computational time, this method has been chosen because of

its comparably easy implementation and in view of the fact that the intervals that de�ne our

distributions are rather small such that the loss of computational time due to this method can

be disregarded for our purpose.

9.2 Evaluation of MSSPH

We will proceed by discussing the computational results for our heuristic MSSPH, which can

be found in Tables 1 to 5. The columns of Table 1 contain the results of 6 instances on the

interval [1; 70] with a uniform distribution that di¤er only with respect to the number of boxes

(i.e. we have a look at the behaviour of the heuristic for the case that the scores of the boxes are

distributed between 1 and the minimum distance of the knives). Apart from the computational

time needed to analyse 106 instances and the number of feasible and infeasible ones found

among these, the table contains also the number of instances that could be identi�ed as one of

the 9 cases of (in)feasible instances that MSSPH looks for. For the reader�s convenience, we

will give a brief list of these cases here (see chapter 7:8 for details):

� Case (1): too many nodes that are elements of a maximal stable set) INFEASIBLE

144

� Case (2): a pair of twin-nodes consists of two isolated nodes) INFEASIBILE,

� Case (3): the threshold graph has more than two isolated nodes) INFEASIBLE,

� Case (4): there is no matching with at least cardinality jM j < n� 1) INFEASIBLE,

� Case (5): the threshold graph allows for a perfect matching) FEASIBLE,

� Case (6): MTGMAmin has generated a matching the twin-induced structure of which is
a direct solution to the MSSP) FEASIBLE,

� Case (7): there exists a structure-preserving solution w.r.t. the matching generated by
MTGMAmin) FEASIBLE,

� Case (8): MTGMAmax has generated a matching the twin-induced structure of which is
a direct solution to the MSSP) FEASIBELE,

� Case (9): there exists a structure-preserving solution w.r.t. the matching generated by
MTGMAmax) FEASIBLE.

We observe that in all types of instances given in Table 1 our heuristic is able to decide on

the (in)feasibility of more than 98:7% of the random instances in quite an e¢ cient way (less

than 10 minutes for 106 instances even in the case of 100 boxes, i.e. in the case of an underlying

threshold graph with 200 nodes), which should be su¢ cient for all practical purposes. The

higher the number of nodes, the higher the percentage of instances that the algorithm can

solve, which mainly seems to be due to the fact that the probability that a matching with

a cardinality of at least n � 1 exists apparently decreases (case (4)). This compensates for
the decline in the number of instances that turn out to be one of the cases (6) to (9), which

can be expected to become less likely when the number of nodes increases. All in all, the

percentage of instances that MSSPH can prove to be (in)feasible in such a short amount of

time is remarkable If we take into account that, for each instance with 10 boxes, there are

about 1:858 � 109 possible permutations of the boxes (see chapter 1), this result can only be
explained by the fact that our heuristic must be looking at exactly those characteristics of an

instance that are truly crucial for the MSSP . Therefore, if comparable results can be achieved

also under di¤erent distributions, this would ultimately justify the approach to theMSSP that

we chose in chapter 2: we could assume to have found the very "mathematical essence" of what

the MSSP is structurally about.

145

Boxes (n) 10 20 40 60 80 100

Interval [1,70] [1,70] [1,70] [1,70] [1,70] [1,70]

Time (/sec.) 12 33 111 218 376 575

feas. inst. 536603 438780 381870 365379 359936 361210

infeas. inst. 450408 547053 606593 624833 632033 631739

% solved inst. 98.7011 98.5833 98.8463 99.0212 99.1969 99.2949

(1) jSmaxj > n+ 1 212827 256190 277402 279735 276735 270052

(2) fi; b(i)g � D0 13715 4823 1151 335 123 37

(3) jD0j > 2 30936 23968 11698 5408 2351 975

(4) jM j < n� 1 192930 262072 316342 339355 352824 360675

(5) jM j = n 244255 226902 230637 242158 253495 266008

(6) TGMAmin: P 61328 34334 17911 12052 8826 7134

(7) TGMAmin: S 213213 161706 121436 101149 88952 80278

(8) TGMAmax: P 14013 9844 5390 3695 2683 2198

(9) TGMAmax: S 3794 5994 6496 6325 5980 5592

Table 1: MSSPH, uniform distribution I

In order to see if our results can be con�rmed for di¤erent types of data sets, computational

tests have been carried out for uniformly distributed score widths on di¤erent intervals. Table 2

shows results for intervals with a diameter of about half the size of the minimal distance of the

scoring knives in the case of 20 boxes. We can observe that the percentage of solved instances

is higher the less the interval covers the area around half of the minimal distance of the knives,

i.e. the area around 35mm. This is due to the fact that, if the interval contains only small

numbers, too many nodes have a rather low degree and the heuristic recognises this as cases (1)

to (3), while our heuristic can easily prove feasibility on the basis of a perfect matching if the

interval contains only larger numbers. We notice that for all these distributions, the algorithm

can decide on the (in)feasibility of a higher percentage of instances than for the distribution

in Table 1. Also, we can conclude that the results for intervals with numbers smaller or larger

than in the intervals given in Table 2 would be the same as in the cases of [6; 35] and [36; 65],

respectively, i.e. it is not necessary to testMSSPH for score widths above 70mm and negative

numbers. This implies also that we do not have to carry out computational tests for intervals

with a diameter larger than 70.

146

Boxes (n) 20 20 20 20 20 20 20

Interval [6,35] [11,40] [16,45] [21,50] [26,55] [31,60] [36,65]

Time (/sec.) 4 4 5 36 39 36 34

feas. inst. 0 0 12 551825 997180 106 106

infeas. inst. 106 106 999980 440718 2816 0 0

% solved inst. 100 100 99.9992 99.2570 99.9996 100 100

(1) jSmaxj > n+ 1 106 999918 894507 185047 872 0 0

(2) i; b(i) 2 D0 0 81 74531 1650 0 0 0

(3) jD0j > 2 0 1 30904 8406 0 0 0

(4) jM j < n� 1 0 0 38 245615 1944 0 0

(5) jM j = n 0 0 0 353452 992475 106 106

(6) TGMAmin: P 0 0 6 30315 458 0 0

(7) TGMAmin: S 0 0 2 156668 4236 0 0

(8) TGMAmax: P 0 0 4 6043 3 0 0

(9) TGMAmax: S 0 0 0 5374 8 0 0

Table 2: MSSPH, uniform distribution II

Apparently, the worst case for MSSPH is a situation when the widths of the boxes are

centered around half of the minimum knife distance because in such a situation only comparably

few instances are characterized by the existence of a perfect matching or by many nodes with

a low degree. To further evaluate our heuristic in these critical worst case situations, MSSPH

was confronted with distributions with a support around half of the minimum knife distance

that di¤er only with the respect to the diameter of the interval (Table 3). It turns out that,

with respect to the percentage of instances solved, the distribution over the interval [1; 70] is the

worst case, which suggests that the results given in Table 1 do provide an appropriate overview

of the performance of MSSPH. In contrast to this, the most unfavourable case with respect

to computational time occurs when the interval has a small diameter because less instances can

be recognized as infeasible on the basis of the fast criteria (1) to (3). We observe, however,

that, all in all, the amount of time that our heuristic requires remains in the same order of

magnitude, i.e. with respect to computational time, MSSPH is rather stable.

147

Boxes (n) 20 20 20 20 20 20 20

Interval [1,70] [6,65] [11,60] [16,55] [21,50] [26,45] [31,40]

Time (/sec.) 33 33 34 35 36 37 41

feas. inst. 438780 453963 474338 504835 551852 634258 814170

infeas. inst. 547053 532925 513897 485143 440718 361080 184440

% solved inst. 98.5833 98.6888 98.8235 98.9978 99.2570 99.5338 99.8610

(1) jSmaxj > n+ 1 256190 246833 233413 214724 185047 133915 39091

(2) i; b(i) 2 D0 4823 4188 3440 2577 1650 672 19

(3) jD0j > 2 23968 20788 17380 13451 8406 3142 61

(4) jM j < n� 1 262072 261116 259664 254391 245615 223351 145269

(5) jM j = n 226902 243273 266281 299807 353452 451700 686745

(6) TGMAmin: P 34334 33832 32939 31724 30315 26542 15799

(7) TGMAmin: S 161706 161870 161023 160429 156668 147305 107664

(8) TGMAmax: P 9844 9108 8259 7258 6043 4151 1497

(9) TGMAmax: S 5994 5880 5836 5617 5374 4560 2465

Table 3: MSSPH, uniform distribution III

In order to further test the stability of the performance of our heuristic, we consider cases of

symmetric triangular distributions centered around half of the minimal knife distance (Tables

4 and 5). In view of the results above, these cases must be considered rather critical. The

distributions used for the computations the results of which are provided in Table 4 combine

the worst cases we have found (i.e. the cases of the �rst and the last column of the previous

table) into one distribution: a broad interval ([1; 70]) with a probability mass function that has

a peak at half of the minimum knife distance. Indeed, as Table 4 shows, the computational

time increases by approximately factor 1:5, while the percentage of instances solved decreases

to 97:0681% in the case of 100 boxes, i.e. 200 nodes. But again, our results remain in the same

order of magnitude.

148

Boxes (n) 10 20 40 60 80 100

Interval [1,70] [1,70] [1,70] [1,70] [1,70] [1,70]

Time (/sec.) 17 45 135 274 472 740

feas. inst. 556274 454867 387429 364187 352965 348845

infeas. inst. 427224 522679 586227 607991 618383 621836

% solved inst. 98.3498 97.7546 97.3656 97.2178 97.1348 97.0681

(1) jSmaxj > n+ 1 177983 202842 200249 186220 170705 155967

(2) fi; b(i)g � D0 16960 8117 3587 2243 1542 1125

(3) jD0j > 2 38675 41620 39416 35895 33015 30276

(4) jM j < n� 1 193606 270100 342975 383633 413121 434468

(5) jM j = n 235957 203659 188379 188433 191230 196533

(6) TGMAmin: P 66344 40028 23533 16978 13348 10954

(7) TGMAmin: S 233135 191083 157947 142910 133533 126983

(8) TGMAmax: P 17054 13832 10131 8122 7039 6398

(9) TGMAmax: S 3784 6265 7439 7744 7815 7977

Table 4: MSSPH, triangular distribution I

For the sake of comprehensiveness, Table 5 shows the results for triangular distributions

on sets that contain only numbers within a range of about half the minimum knife distance.

We can conclude from the �rst two columns (in comparison with Table 2) that 4 sec. of the

computational time needed in the cases investigated in Tables 4 and 5 is due to the extra

time needed for calculating the random instances under the triangular distribution by means

of inverse transform sampling, which implies that in all non-trivial cases, the computational

times of instances with a triangular distribution are indeed comparable with those of a uniform

distribution. We observe that, apart from the time needed for generating the instances, the

results under a triangular distribution are similar to those for a uniform distribution.

In sum we can state that our heuristic is remarkably e¢ cient and stable with respect to

both the percentage of instances that it can solve and the computational time required. While

in principle there can be "pathological" distributions that might lead to a much longer com-

putational time and/or a signi�cantly lower percentage of instances solved, our analysis on the

basis of di¤erent types of distributions did not provide any hint that these distributions are

likely to occur. (Note that we can reasonably assume, for example, that a distribution with

two peaks would not have a signi�cant impact on the performance of our heuristic. If these

two peaks were close to each other, we could expect a result similar to those of the triangular

distributions tested, and if the peaks were rather distant from each other, we could expect a

situation that is even more favourable than that of a uniform distribution.) Therefore, we will

end our evaluation of MSSPH here.

149

Boxes (n) 20 20 20 20 20 20 20
Interval [6,35] [11,40] [16,45] [21,50] [26,55] [31,60] [36,65]

Time (/sec.) 8 8 9 44 42 39 38
feas. inst. 0 0 1 603705 106 106 106

infeas. inst. 106 106 999997 377089 0 0 0
% solved inst. 100 100 99.9998 98.0794 100 100 100

(1) jSmaxj > n+ 1 106 106 995781 97303 0 0 0
(2) i; b(i) 2 D0 0 0 2000 4920 0 0 0
(3) jD0j > 2 0 0 2102 24959 0 0 0

(4) jM j < n� 1 0 0 114 249907 0 0 0
(5) jM j = n 0 0 0 340037 999996 106 106

(6) TGMAmin: P 0 0 0 37694 0 0 0
(7) TGMAmin: S 0 0 1 207067 4 0 0
(8) TGMAmax: P 0 0 0 12377 0 0 0
(9) TGMAmax: S 0 0 0 6530 0 0 0

Table 5: MSSPH, triangular distribution II

As in practical cases, the number of instances is (only) "in the many hundreds (if not

thousands)" (Goulimis, 2004, pp. 1368) we can conclude on the basis of both the computational

time needed for 106 instances under various distributions and the percentage of instances solved

that MSSPH is an e¢ cient, stable and reliable method for quickly solving a large percentage

of instances in a typical practical situation.

9.3 Evaluation of TGHRA

We now turn to the computational test carried out with TGHRA. Tables 6 to 10 contain

the results for the same type of randomly generated data sets that were used for evaluating

the behaviour of MSSPH as presented in Tables 1 to 5. Again, the computational tests

were executed on the basis of data sets with 106 instances each and a scoring knife distance

� = 70mm. As TGHRA looks for a twin-constrained Hamiltonian cycle and we are interested

in �nding a twin-constrained Hamiltonian path, our implementation adds a pair of twin-nodes

nodes (i.e. one box) with score widths v(i0) = v(i1) = 70 before starting TGHRA (see chapter

8:1 and Remark 115(2)). The following tables list for each data set the time the algorithm

took to consider all instances and the number instances that turned out to be feasible and

infeasible. Moreover, the tables include the number of instances that were found to be among

the 5 possible cases that lead to a decision about the question of (in)feasibility. For the reader�s

convenience we will give a brief list of these cases here (see chapter 8:5 for details):

� Case (1): the underlying threshold graph has no perfect matching) INFEASIBLE,

� Case (2): MTGMAmax has generated a matching the twin-induced structure of which is
a direct solution to the MSSP) FEASIBELE,

150

� Case (3): all nodes of the patching graph are isolated) INFEASIBLE,

� Case (4): the patching graph is unconnected) INFEASIBLE,

� Case (5): the patching graph is connected) FEASIBLE.

Analogous to tables 1 to 5, Tables 6 to 10 show the results for a uniform distribution on

the interval [1; 70] and di¤erent numbers of boxes; for a uniform distribution on intervals that

have a diameter of about half of the minimum knife distance; for a uniform distribution on

intervals centered around half of the minimum knife distance; for a triangular distribution on

the interval [1; 70] and di¤erent numbers of boxes; and for a triangular distribution on intervals

that have a diameter of about half of the minimum knife distance, respectively.

Boxes (n) 10 20 40 60 80 100

Interval [1,70] [1,70] [1,70] [1,70] [1,70] [1,70]

Time (/sec.) 20 57 180 376 665 971

feas. inst. 533664 446774 391555 374177 369457 368791

infeas. inst. 466336 553226 608445 625823 630543 631209

(1) jM j < n 464202 552802 608395 625810 630539 631207

(2) full P 232854 141637 89311 69354 59990 53319

(3) q� = 0 1003 171 12 3 0 0

(4) PG uncon. 1127 253 38 10 4 2

(5) PG con. 300810 305137 302244 304823 309467 315472

Table 6: TGHRA, uniform distribution I

Boxes (n) 20 20 20 20 20 20 20

Interval [6,35] [11,40] [16,45] [21,50] [26,55] [31,60] [36,65]

Time (/sec.) 58 57 55 57 59 57 58

feas. inst. 0 0 11 556625 997684 106 106

infeas. inst. 106 106 999989 443375 2316 0 0

(1) jM j < n 106 106 999989 443234 2316 0 0

(2) full P 0 0 4 175694 314333 316055 315776

(3) q� = 0 0 0 0 50 0 0 0

(4) PG uncon. 0 0 0 91 0 0 0

(5) PG con. 0 0 7 380931 683351 683945 684224

Table 7: TGHRA, uniform distribution II

151

Boxes (n) 20 20 20 20 20 20 20

Interval [1,70] [6,65] [11,60] [16,55] [21,50] [26,45] [31,40]

Time (/sec.) 57 57 57 57 57 58 59

feas. inst. 446774 462638 481983 510161 556625 638300 817855

infeas. inst. 553226 537362 518017 489839 443375 361700 182145

(1) jM j < n 552802 537034 517699 489623 443234 361653 182121

(2) full P 141637 146619 152328 161392 175694 200205 244121

(3) q� = 0 171 90 101 72 50 17 6

(4) PG uncon. 253 238 217 144 91 30 18

(5) PG con. 305137 316019 329655 348769 380931 438095 573734

Table 8: TGHRA, uniform distribution III

Boxes (n) 10 20 40 60 80 100

Interval [1,70] [1,70] [1,70] [1,70] [1,70] [1,70]

Time (/sec.) 26 68 203 411 699 1070

feas. inst. 557217 471557 412036 390448 381160 379362

infeas. inst. 442783 528443 587964 609552 618840 620638

(1) jM j < n 440082 527614 587668 609397 618724 620579

(2) full P 243679 149626 92866 73103 61494 54759

(3) q� = 0 1344 276 63 25 25 9

(4) PG uncon. 1357 553 233 130 91 50

(5) PG con. 313538 321931 318170 317345 319666 324603

Table 9: TGHRA, triangular distribution I

Boxes (n) 20 20 20 20 20 20 20

Interval [6,35] [11,40] [16,45] [21,50] [26,55] [31,60] [36,65]

Time (/sec.) 63 63 62 63 64 62 62

feas. inst. 0 0 0 620480 106 106 106

infeas. inst. 106 106 106 379520 0 0 0

(1) jM j < n 106 106 106 378913 0 0 0

(2) full P 0 0 0 196235 315411 315477 315890

(3) q� = 0 0 0 0 188 0 0 0

(4) PG uncon. 0 0 0 419 0 0 0

(5) PG con. 0 0 0 424245 684589 684523 684110

Table 10: TGHRA, triangular distribution II

152

We observe that the computational time required for solving all instances of the problem

is, except in those cases that are trivial for MSSPH, about twice the time that our heuristic

MSSPH needed, i.e. our algorithm TGHRA takes an amount of time that can be considered

reasonable for practical purposes. Again, it is the case that instances with a triangular distribu-

tion require a longer computational time. However, if we take into account that generating the

triangularly distributed data sets takes, as concluded above, about 4 sec. for all 106 instances,

the di¤erence in computational time is only marginal. We note that in general the computa-

tional time is, for the case of 20 boxes, remarkably independent of the distributions chosen.

In fact, our computational experiments show no indication that our algorithm could behave

entirely di¤erently if other distributions were chosen. This suggests that we have developed

an algorithm that should be suitable and reliable for all cases that might arise in a practical

setting.

If we compare the results gained for TGHRA with those for MSSPH, we can observe that

most infeasible cases can be recognised by TGHRA on the basis of the fact that there is no

perfect matching on the underlying threshold graph (case (1) for TGHRA). This case corre-

sponds to cases (1) to (4) for MSSPH, which implies that the simple criteria that MSSPH

applies to prove infeasibility are obviously su¢ cient to discover almost all infeasible instances

of the MSSP. This explains in part the high percentage of instances that MSSPH can solve.

On a side-note we remark that the percentage of infeasible cases that cannot be recognised

by the fact that there is no perfect matching on the underlying threshold graph (cases (3) and

(4)) decreases as the number of nodes increases (see Tables 6 and 9). This is probably due

to the fact that a higher number of nodes on the same interval leads to degree partitions of a

higher cardinality, which increases the probability that a degree partition contains nodes that

belong to di¤erent cycles of the twin-induced structure of the matching. As a consequence, the

probability increases that there exist alternating T -cycles that allow for a connected patching

graph and hence for a solution of the MSSP . Proving this, however, would be a question for

further research.

Finally we can conclude that a combination ofMSSPH and TGHRA would, in view of our

computational experiments, lead to faster algorithm for solving all instances. Such an algorithm

could start with MSSPH and look for instances that fall into the categories of cases (1) to

(7) of MSSPH and then continue with TGHRA to solve the small number of instances that

remain unsolved. Due to the small percentage of instances that we would need TGHRA for (2%

to 3% of all instances according to our computational results), we can expect the computational

time required by such a combined algorithm to be close to the time that MSSPH takes. In a

very time-sensitive practical setting, this combined algorithm should be the algorithm of choice.

153

10 Conclusion

The Minimum Score Separation Problem (MSSP) is a combinatorial problem that was intro-

duced as an open problem in the OR literature in JORS 55. The present thesis set out to solve

it.

In chapter 1, we introduced the MSSP and set the task to develop an algorithm that, at

least as a heuristic for a large percentage of instances, can quickly determine whether or not

a certain instance of the MSSP is feasible. We proceeded by presenting two ways of modelling

this problem in chapter 2, namely the originally proposed way of modelling the MSSP and

a new approach. It was argued that modelling the MSSP as a twin-constrained Hamiltonian

path problem (instead of a Travelling Politician Problem) is more elegant (also in view of the

principle of Occam�s razor) as it does not require us to double certain mathematical entities

and that it gives us the opportunity to capitalise on the adjacency conditions for each score

of a box separately, which might allow for a more direct way of exploiting the structure of the

problem.

The succeeding two chapters laid the foundations for this approach. In chapter 3, we related

our problem to the literature on Hamiltonian paths, alternating Hamiltonian paths, the TSP,

the CTSP and the GTSP and discussed the complexity of these problems and of our twin-

constrained Hamiltonian path problem, and in chapter 4 we introduced the concept of the

threshold graph and had a look at the basic characteristics of this type of graph.

Building on these preliminaries, most of which had already been addressed in the relevant

literature, the following two chapters 5 and 6 studied the existence and structure of paths

and cycles on threshold graphs more in detail. As every twin-constrained Hamiltonian path

contains a matching on a threshold graph, we decided to examine �rst the existence of paths

and cycles and their properties from the perspective of maximum cardinality matchings on

threshold graphs and analyzed the circumstances under which a subset T of a matching can

be extended to an (even, matching-dominated, or augmented) T -path. In chapter 5, this led

to a maximum cardinality proof of a type of matching algorithms on threshold graphs, to a

new criterion for the existence of Hamiltonian paths on threshold graphs (and, as a corollary,

to a new proof of a criterion in the literature), and to the insight that the twin-constrained

Hamiltonian path problem on threshold graphs is located at the border of NP -complete and

polynomial-time problems. Because of this it seemed to be advisable to pursue a two-track

policy and be open to developing both a polynomial time algorithm for the MSSP and a fast

heuristic. In chapter 6, we introduced the concept of alternating T -cycles relative to a given

matching and, building on our criterion for the existence of Hamiltonian paths from chapter

5, we derived several criteria for the existence of alternating T -cycles on threshold graphs in

general and for the existence of alternating T -cycles relative to a matching gained from a speci�c

algorithm (TGMAmax) in particular.

154

Having laid the theoretical foundations about constructing paths and cycles on threshold

graphs, we turned to the MSSP, following our two-track policy in chapters 7 and 8. Chapter

7 focussed on developing a heuristic for quickly solving a large percentage of instances of the

MSSP, while chapter 8, generalizing the insights from chapter 7, led to a polynomial-time

algorithm that solves all instances.

In chapter 7, we introduced the concept of a modi�ed matching and of the twin-induced

structure of a matching. Analysing the structural setting given by these concepts and making

use of the results of chapters 5 and 6, we addressed the question of the feasibility of the MSSP

with respect to matchings with cardinalities of jM j < n � 1, jM j = n, and jM j = n � 1. In
the latter case, we developed criteria for the existence of structure-preserving solutions and two

types of non-structure-preserving, namely path- and cycle-splitting solutions. Finally, we could

show that a graph that allows for any of the types of solutions examined can be recognized in

polynomial time.

In chapter 8, we generalized these results to all possible cases of instances of the MSSP. For

studying twin-constrained Hamiltonian cycles, we introduced the concept of the patching graph

of the twin-induced structure of a matching relative to a family of alternating T -cycles. On this

basis, heavily drawing on the results of chapter 6, we could show that in the particular case of

greedy matchings, the twin-constrained Hamiltonicity of a threshold graph is equivalent with

the existence of a family of alternating T -cycles relative to which the patching graph of the

twin-induced structure of a greedy matching is connected. By means of an algorithm that, as

we could prove on the basis of chapter 6 again, allows us to decide on the question of whether

or not there exists such a family of alternating T -cycles relative to a given greedy matching, we

eventually arrived at a polynomial-time algorithm for the MSSP.

Finally, in the previous chapter 9, we carried out computational tests for the two algorithms

we developed. It was demonstrated that the two algorithms provide excellent results with re-

spect to computational time and, in the case of the heuristic, also with respect to the percentage

of the instances solved. Moreover, the results of our computational tests suggested that the

algorithms show a stable behaviour under various distributions of the input data and how our

two algorithms can be combined to create an even more e¢ cient algorithm. In sum, our results

demonstrate that we have indeed solved the MSSP and developed an algorithm that can be

expected to work e¢ ciently for practical purposes. This ultimately justi�es the approach to the

MSSP that we chose in chapter 2, which now can arguably be said to capture the very essence

of what the mathematical structure of the MSSP is about.

Concluding this thesis, we will address six questions for further research, the �rst three of

which are directly related to the results of this thesis, while the latter three can be considered

generalisations of the work undertaken here.

1. We saw in chapter 3 that the distinct structure of threshold graphs has led to several

di¤erent characterisations of this class of graphs. Even more characterisations can be found in

the literature (see Mahadev and Peled, 1995). In chapter 4, we proved a very strong statement

155

about alternating T -paths on threshold graphs (Theorem 44), and in chapter 5, based on the

alternating path theorem, presented a new, surprisingly simple criterion for the existence of

Hamiltonian paths on threshold graphs (Theorem 53). One would expect such strong statements

as Theorems 44 and 53 to hold only for a very small class of graphs. Therefore, it would be an

interesting topic of research pertaining to the structure of threshold graphs to see whether these

theorems can be exploited as a starting point for deriving a new, alternative characterization

of this class of graphs.

2. We concluded at the end of chapter 5 that in the case of threshold graphs the twin-

constrained Hamiltonian path problem could either be solvable in polynomial time (as the

"ordinary" Hamiltonian path problem on threshold graphs) or be NP-complete (as the twin-
constrained Hamiltonian path problem in the general case). In chapter 8, drawing on the

results of the preceding chapters, we could eventually show that for threshold graphs also the

twin-constrained Hamiltonian path problem is in P and shifted the frontier of what is known

to be in P. For doing so, some theoretical e¤ort was necessary and we had to rely heavily
on the speci�c structure of threshold graphs. In view of the fact that the twin-constrained

Hamiltonian path problem generalizes the "ordinary" Hamiltonian path problem, this might

not be too surprising, but it raises the question of whether there exists a class of graphs, for

which the "ordinary" Hamiltonian path problem is in P, but for which the twin-constrained
Hamiltonian path problem is NP-complete. There might be a limit such that the speci�c

structure of a graph is not rich enough to allow for a polynomial-time algorithm for the twin-

constrained case. We know, for example, that the "ordinary" Hamiltonian cycle problem on 2-

regular graphs is (trivially) in P, while the "ordinary" Hamiltonian cycle problem on a 3-regular
graph (i.e. a 2-regular graph plus the edges of a "twin-node function") is NP-complete (Garey,
Johnson and Tarjan, 1976). Therefore, as Frits Spieksma (University of Leuven) remarked (oral

communication), recognising twin-constrained Hamiltonian 2-regular graphs might well be an

NP-complete problem. So far, despite some e¤orts by Frits Spieksma and the author of the
present thesis in addressing this topic, this question has remained open. If, however, such a

class of graphs could eventually be found, this might well lead to a better understanding of

the boundary that separates problems in P from those that are NP-complete (provided that
P6=NP, of course).

3. Now that the twin-constrained Hamiltonian cycle problem on threshold graphs turned

out to be solvable in polynomial time, it might be helpful for practical applications to have

a polyhedral description of it, in particular because the problem occurs in conjunction with

the cutting-stock problem, which is typically addressed by means of Integer Programming. In

chapter 7, we presented a polyhedral description of path- and cycle-splitting solutions, i.e. for

a case in which one alternating T -cycle is su¢ cient to construct a connected patching graph.

It would be an interesting to see if this approach can be extended to the case of an arbitrary

number of alternating T -cycles that we have addressed without polyhedral means in chapter 8.

156

4. A natural generalization of the twin-constrained Hamiltonian path problem on threshold

graphs would be the "twin-constrained TSP" on threshold graphs. One way of addressing this

question would be to examine how well-known general-purpose heuristics for the TSP behave

in the twin-constrained case. However, it might be more fruitful to draw on our results of

the previous chapters to develop an approach tailored to the case of threshold graphs. After

all, chapters 5, 6, 7 and 8 provide many structural insights into constructing, combining and

extending ("ordinary" and twin-constrained) Hamiltonian paths on threshold graphs that a

heuristic looking for an optimal twin-constrained Hamiltonian cycle could exploit.

5. Another natural generalization of the topic of this thesis is the class of directed graphs

that can be seen as the counterpart of threshold graphs: Ferrers digraphs. Introduced by

Riguet (1951), Ferrers digraphs can be characterized as those directed graphs that lead to

threshold graphs when every arc is replaced by an edge (Mahadev and Peled, 1995). While

the directedness of the arcs implies that not all characterisations of threshold graphs can be

translated into characterisations of Ferrers digraphs without appropriate amendments, it would

be interesting to explore if and how the various structural aspects of Hamiltonian threshold

graphs and (twin-constrained) Hamiltonian threshold graphs that we studied in chapters 3 to

8 can be reconstructed for the directed case.

6. Finally, it would be interesting to see if it is possible to generalize our results to a class

of graphs that includes the class of threshold graphs and has a more general structure. A

promising candidate for such a task would be the class of interval graphs (cf. Remark 52(2)).

Interval graphs, which have many applications in scheduling, are graphs in which each node

is assigned an interval on the real line (instead of a single number as in the case of threshold

graphs), with two nodes being adjacent if and only if their assigned intervals overlap. They

are a particularly interesting generalization of threshold graphs in our case because (a) our

matching algorithm TGMAmin leads to a maximum cardinality matching also in the case of

interval graphs (Moitra and Johnson, 1989) and (b) the Hamiltonian cycle problem on interval

graphs can also be solved in polynomial time (Keil, 1985). This implies that some of our results

can be expected to be (more or less directly) transferable to the case of interval graphs, and

that it is also possible that the twin-constrained Hamiltonian path problem on interval graphs

is in P. As the present thesis did not only develop a polynomial-time algorithm for the twin-

constrained Hamiltonian path problem on threshold graphs, but also examined in chapters 5 to

8 in detail the structural circumstances that allow for such an algorithm in the �rst instance,

we are prepared to understand clearly when and, if so, why particular aspects of the structure

of threshold graphs can or cannot be transferred to the case of interval graphs. These insights

might well be of help for undertaking such a generalization of our results to the case of interval

graphs � a generalization that would move further the frontier of what is known to be solvable
in polynomial time.

157

References

[1] Abouelaoualim, A., K.Ch. Das, W. Fernandez de la Wega, M. Karpinski, Y. Manoussakis,

C.A. Martinhon, and R. Saad (2009): Cycles and paths in edge-coloured graphs with given

degrees, Journal of Graph Theory, pre-published online.

[2] Abueida, A. and R. Sritharan (2006): Cycle extendability and Hamiltonian cycles in

chrodal graph classes, SIAM Journal on Discrete Mathematics 20(3), pp. 669 - 681.

[3] Angluin, D. and L.G. Valiant (1979): Fast probabilistic algorithms for Hamiltonian cir-

cuits and matchings. Journal of Computer and System Sciences 18(2), pp. 155-193.

[4] Anily, S., J. Bramel, A. Hertz (1999): A 5
3�approximation algorithm for the clustered

traveling salesman tour and path problems, Operations Research Letters 24, pp. 29-35.

[5] Arkin, E.M., R. Hassin, L. Klein (1994): Restricted delivery problems on a network,

Networks ,29 pp. 205-216.

[6] Balas, E. (2002): The Price Collecting Traveling Salesman Problem and Its Applica-

tions. In: G. Gutin and A.P. Punnen (eds.): The Traveling Salesman Problem and Its

Variations. Kluwer Academic Publisher: Dordrecht, pp. 663-696.

[7] Balas, E., M. Fischetti and W.R. Pulleyblank (1995): The precedence-constrained asym-

metric traveling salesman polytope, Mathematical Programming 68, pp. 241-265.

[8] Bang-Jensen, J. and G. Gutin (1997): Discrete Mathematics 165/166, pp. 39-60.

[9] Bankfalvi, M and Z. Bankfalvi (1968): Alternating Hamiltonian Circuits in two-coloured

complete graphs. In: Theory of Graphs (Proc. Colloq. Tihany), Academic Press: New

York, pp. 11-18.

[10] Barvinok, A., E.K. Gimadi and A.I. Serdyukov (2002): The Maximum TSP. In: G. Gutin

and A.P. Punnen (eds.): The Traveling Salesman Problem and Its Variations. Kluwer

Academic Publisher: Dordrecht, pp. 585-608.

[11] Bellmore, M. and G.L. Nemhauser (1968): The Traveling Salesman Problem: A Survey,

Operations Research 16(3), pp. 538-558.

[12] Bermond, J.C. (1978): Hamiltonian Graphs. In: Beineke and Wilson (eds): Selected

Topics in Graph Theory. Academic Press: London, 1978.

[13] Bertossi, A.A. (1983): Finding Hamiltonian circuits in proper interval graphs, Information

Processing Letters 17, pp. 97-101.

[14] Biggs, N.L., E.K. Lloyd and R.J. Wilson (1976): Graph Theory 1736-1936. Clarendon

Press: Oxford.

158

[15] Blazewicz, J., M. Kasprzaka, B. Leroy-Beaulieuc and D. de Werra (2008): Finding Hamil-

tonian circuits in quasi-adjoint graphs, Discrete Applied Mathematics 156(13), pp. 2573-

2580

[16] Bollobás, B. and P. Erdös (1976): Alternating Hamiltonian cycles, Israel Journal of

Mathematics 23, pp. 126-131.

[17] Bollobás, B., T.I. Fenner and A.M. Frieze (1987): An algorithm for �nding Hamiltonian

paths and cycles in random graphs. Combinatorica 7(4), pp. 327-341.

[18] Brandstädt, A., F.F. Dragan and E. Köhler (2000): Linear time algorithms for hamil-

tonian problems on (claw, net)-free graphs. SIAM Journal on Computing 30(5), 1662-

1677.

[19] Brandstädt, A., V.B. Le and J.B. Spinrad (1999): Graph Classes - A Survey. SIAM

monographs on discrete mathematics and applications. SIAM: Philadelphia.

[20] Broder, A.Z., A.M. Frieze and E. Shamir (1994): Finding hidden Hamiltonian cycles.

Random Structures and Algorithms 5(3), pp.395-410.

[21] Brunacci, F. (1988): Two useful tools for constructing hamiltonian circuits, European

Journal of Operational Research 34, pp. 231-236.

[22] Burkhard, R.E., V.G. Deineko, R. van Dal, J.A.A. van der Veen and G.J. Woeginger

(1998): Well-Solvable Cases of the Travelling Salesman Problem: A Survey, SIAM Review

40(3), pp. 496-546.

[23] Chen, C.C. and D.E. Daykin (1976): Graphs with Hamiltonian Cycles Having Adjacent

Lines Di¤erent Colors, Journal of Combinatorial Theory B 21, pp. 135-139.

[24] Chisman, J.A. (1975): The clustered traveling salesman problem, Computers & Opera-

tions Research 2(2), pp. 115-119

[25] Chvátal, V (1985): Hamiltonian Cycles. In: E.L. Lawler, J,K, Lenstra, A.H.G. Rinnooy

Kan, and D.B. Shmoys (eds.): The Traveling Salesman Problem. John Wiley & Sons:

New York, pp. 403-430.

[26] Chvátal, V. and P.L. Hammer (1973): Set packing problems and threshold graphs. CORR

73-21. University of Waterloo, Canada, August 1973.

[27] Chvátal, V. and P.L. Hammer (1977): Aggregation of inequalities in integer program-

ming. In: P.L. Hammer, E.L. Johnson, B.H. Korte, and G.L. Nemhauser (eds.): Studies

in Integer Programming. Annals of Discrete Mathematics 1. North-Holland Publishing

Company: Amsterdam, pp. 145-162.

159

[28] Cobham, A. (1965): The Intrinsic Computational Di¢ culty of Functions. In: Y. Bar-

Hille (ed.): Proceedings of the 1964 International Congress for Logic, Methodology, and

Philosophy of Science. North-Holland Publishing Company: Amsterdam, pp. 24-30.

[29] Cook, S.A. (1971): The Complexity of Theorem Proving Precedures, Proceedings of the

3rd ACM Symposium on the Theory of Computing. ACM, pp. 151-158.

[30] Daykin, D.E. (1976): Graphs with Cycles Having Adjacent Lines Di¤erent Colors, Journal

of Combinatorial Theory B 20, pp. 149-152.

[31] Devroye, L. (1986): Non-Uniform Random Variate Generation. Springer: Berlin.

[32] Dinga, C., Y. Cheng and M. He (2007): Two-Level Genetic Algorithm for Clustered

Traveling Salesman Problem with Application in Large-Scale TSPs, Tsinghua Science &

Technology 12(4), pp. 459-465.

[33] Dumas, Y., J. Desrosier, E. Gelinas and M.M. Solomon (1995): An Optimal Algorithm

for the Traveling Salesman Problem with Time Windows, Operations Research 43 (2),

pp. 367-371.

[34] Ecker, K. and S. Zaks (1977): On a graph labelling problem. Bericht 99, Gesellschaft für

Mathematik und Datenverarbeitung mbH: Bonn.

[35] Edmonds, J. (1965a): Paths, trees and �owers, Canadian Journal of Mathematics 17, pp.

449-467.

[36] Edmonds, J. (1965b): Minimum partition of a matroid into independent subsets, Journal

of Research of the National Bureau of Standards 69B, pp. 67-72.

[37] Feremans, C., M. Labbé and G. Laporte (2002): A Comparative Analysis of Several

Formulations for the Generalized Minimum Spanning Tree Problem, Networks 39(1), pp.

29-34.

[38] Feremans, C., M. Labbé and G. Laporte (2003): Generalized network design problems,

European Journal of Operational Research 148(1), pp. 1-13

[39] Feremans, C., M. Labbé, A.N. Letchford and J.J. Salazar (2009): On generalized

network design polyhedra. Submitted to Networks January 2009. (Retrieved from

http://www.lancs.ac.uk/sta¤/letchfoa/publications.htm, 10/08/2009.)

[40] Fischetti, M., J.J. Salazar-Gonzáles and P. Toth (2002): The Generalized Traveling Sales-

man Problem and Orienteering Problems. In: G. Gutin and A.P. Punnen (eds.): The

Traveling Salesman Problem and Its Variations. Kluwer Academic Publisher: Dordrecht,

pp.609-662.

160

[41] Frieze, A.M. (1988): Finding Hamilton cycles in sparse random graphs. Journal of Com-

binatorial Theory B 44, pp. 230-250.

[42] Garey, M.R., D.S. Johnson and E. Tarjan: The planar hamiltonian circuit problem is

NP-complete, SIAM Journal on Computing 5, pp. 704-714.

[43] Gavish, B. and S.C. Graves (1978): The travelling salesman problem and related problems.

Working Paper OR-078-78, Operations Research Center, MIT: Cambridge, MA.

[44] Gendreau, M., G. Laporte and D. Vigo (1999): Heuristics for the traveling salesman

problem with pickup and delivery. Computers and Operations Research 26(7), pp. 699-

714.

[45] Ghouila-Houri, A. (1962): Characterisation des matrices totalement unimodulaires. In:

Comptes Rendus Hebdomadaires des Seances de L�Academie des Sciences 254, pp. 1192-

1194.

[46] Gilmore, P.C. and R.E. Gomory (1961): A linear programming approach to the Cutting

Stock Problem, Operations Research 9, pp. 849-859.

[47] Gilmore, P.C. and R.E. Gomory (1963): A linear programming approach to the Cutting

Stock Problem: Part II, Operations Research 11, pp. 863-888.

[48] Gilmore, P.C., Lawler,E.L., and D.B. Shmoys(1986): Well-solved special cases. In: E.L.

Lawler, J,K, Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys (eds.): The Traveling

Salesman Problem. John Wiley & Sons: New York, pp. 87-144.

[49] Golumbic, M.C. (1980): Algorithmic Graph Theory and Perfect Graphs. Academic Press:

New York.

[50] Gould, R.J. (1991): Updating the Hamiltonian problem - a survey, Journal of Graph

Theory 15(2), pp. 121-157.

[51] Gould, R.J. (2003): Advances on the Hamiltonian Problem - A Survey. Graphs and

Combinatorics 19(1), pp. 7-52.

[52] Goulimis, C. (2004): Minimum score separation - an open combinatorial problem associ-

ated with the cutting stock problem. Journal of the Operational Research Society, 55, pp.

1367-1368.

[53] Gutin, G. (2009): Traveling Salesman Problem. In: C.A. Floudas, P.M. Pardalos (eds.):

Encyclopedia of Optimization, 2nd ed., Springer: Berlin, pp. 3935-3944.

[54] Gutin, G. and A.P. Punnen (eds.) (2002): The Traveling Salesman Problem and Its

Variations. Kluwer Academic Publisher: Dordrecht.

161

[55] Guttmann-Beck, N., R. Hassin, S. Khuller and B. Raghavachari (2000): Approximation

Algorithms with Bounded Performance Guarantees for the Clustered Traveling Salesman

Problem, Algorithmica 28(4), pp. 422-437.

[56] Häggkvist, R. (1979): On F-Hamiltonian Graphs. In: J. A. Bondy and U. S. R. Murty

(eds): Graph Theory and Related Topics, Academic Press: New York, pp. 219-231.

[57] Hamilton, W. R. (1858): Account of the Icosian Calculus. Proceedings of the Royal Irish

Academy 6, 1858.

[58] Hammer, P.L., T. Iberaki and B. Simeone (1981): Threshold Sequences, SIAM Journal

of Algebraic Discrete Methods 2, pp. 39-39.

[59] Harary, F. and U.N. Peled (1987): Hamiltonian Threshold Graphs.Discrete Applied Math-

ematics 16, pp. 11-15.

[60] Henderson, P.B. and Y. Zalcstein (1977): A graph-theoretic characterization of the

PVchunk class of synchronizing primitives. SIAM Journal of Computing 6, pp. 88-108.

[61] Ho¤man, A.J. and P. Wolfe (1985): History. In: E.L. Lawler, J.K. Lenstra, A.H.G.

Rinnooy Kan and D.B. Shmoys (eds.): The Traveling Salesman Problem. A Guided Tour

of Combinatorial Optimization. Wiley: Chichester, pp. 1-16.

[62] Hung, R.W. and M.S.Chang (2005): Linear-time algorithms for the Hamiltonian problems

on distance-hereditary graphs, Theoretical Computer Science 341(1), pp. 411-440.

[63] Johnson, D.S, and C.H. Papadimitrou (1985): Computational Complexity. In: Lawler,

E.L., J.K. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys (eds.): The Traveling Salesman

Problem. A Guided Tour of Combinatorial Optimization. Wiley: Chichester, pp. 37-86.

[64] Jongen, H.T., K. Meer and E. Triesch (2004): Optimization Theory. Kluwer Academic

Publishers: Dordrecht.

[65] Jongens, K. and T. Volgenant (1985): The symmetric clustered traveling salesman prob-

lem, European Journal of Operational Research 19(1), pp. 68-75.

[66] Jünger, M., G. Reinelt and G. Rinaldi (1995): The Traveling Salesman Problem. In: M.O.

Ball, T.L. Magnanti, C.L. Monma, G.L. Nemhauser (eds.): Network Models. Handbook

of Operations Research and Management Science. Vol. 7, pp. 225-330.

[67] Kaiser, T., Z. Ryjáµcek, D. Král, M. Rosenfeld, and H.-J. Voss (2007): Hamilton Cycles

in Prisms, Journal of Graph Theory 56(4), pp. 249-269.

[68] Kabadi, S.N. and A.P. Punnen (2002): The Bottleneck TSP. In: G. Gutin and A.P.

Punnen (eds.): The Traveling Salesman Problem and Its Variations. Kluwer Academic

Publisher: Dordrecht, pp. 697-736.

162

[69] Kano, M. and X. Li (2008): Monochromatic and Heterochromatic Subgraphs in Edge-

Colored Graphs - A Survey, Graphs and Combinatorics 24(4), pp. 237-263.

[70] Karp, R.M. (1972): Reducibility among Combinatorial Problems. In: R.E. Miller and

J.W. Thatcher (eds.): Complexity of Computer Computations. Plenum Press: New York,

pp. 85-103.

[71] Keil, J.M. (1985): Finding Hamiltonian circuits in interval graphs, Information Processing

Letters 20, pp. 201-206.

[72] Kirkman, T.P (1856): On the representation of polyhedra. Philosophical Transactions of

the Royal Society London A 146, 413-418.

[73] Kocay, W. (1992): An extension of the multi-path algorithm for �nding Hamilton cycles,

Discrete Mathematics 101, pp. 171-188.

[74] Koren,M. (1973): Extreme degree sequences of simple graphs. Journal of Combinatorial

Theory B, 15, pp. 213-224.

[75] Lawler, E.L., J.K. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys (eds.) (1985): The

Traveling Salesman Problem. A Guided Tour of Combinatorial Optimization. Wiley:

Chichester.

[76] Laporte, G., A. Asef-Vaziri, C. Sriskandarajah (1996): Some Applications of the Gen-

eralized Travelling Salesman Problem. Journal of the Operational Research Society 47,

1461-1467.

[77] Laporte, G. and U. Palekar (2002): Some applications of the clustered travelling salesman

problem, Journal of the Operational Research Society 53, pp. 972-976.

[78] Laporte, G., J.-Y. Potvin and F. Quilleret (1997): A tabu search heuristic using genetic

diversi�cation for the clustered traveling salesman problem, Journal of Heuristics 2(3),

pp. 187-200.

[79] Laporte, G. and F. Semet (1999): Computational evaluation of a transformation proce-

dure for the symmetric travelling salesman problem. INFOR 37, pp. 114-120.

[80] Mahadev, N.V.R. and U.N. Peled (1994): Longest cycles in threshold graphs. Discrete

Mathematics 135, pp.169-176.

[81] Mahadev, N.V.R. and U.N. Peled (1995): Threshold Graphs and Related Topics. Annals

of Discrete Mathematics 56. Elsevier: Amsterdam.

[82] Micali, S., and V. V. Vazirani (1980): An O(
p
jV j � jEj) algorithm for �nding maximum

matching in general graphs. Proceedings of the 21st Annual Symposium on the Foundations

of Computer Science, pp. 17-27.

163

[83] Moitra, A, and R.C. Johnson (1989): A parallel algorithm for maximum matching on

interval graphs. Proceedings of the 1989 International Conference on Parallel Processing.

Pennsylvania State University Press: University Park, PA, pp. III/114 - III/120.

[84] Mulder, H.M. (1992): Julius Petersen�s theory of regular graphs, Discrete Mathematics

100, pp. 157-175

[85] Müller-Merbach, H. (1983): Zweimal Travelling Salesman. DGOR-Bulletin 25, pp. 12-13.

[86] Nemhauser, G. and L. Wolsey (1999): Integer and Combinatorial Optimization. John

Wiley: New York.

[87] Orlin, J. (1977): The minimal integer separator of a threshold graph. In: P.L. Hammer,

E.L. Johnson, B.H. Korte, and G.L. Nemhauser (eds.): Studies in Integer Programming.

Annals of Discrete Mathematics 1. North-Holland Publishing Company: Amsterdam, pp.

415-419.

[88] Orman, A.J. and H.P. Williams (2004): A Survey of Di¤erent Integer Programming For-

mulations of the Travelling Salesman Problem. LSEOR 04.67: London.

[89] Papadimitrou, C.H. and K. Steiglitz (1998): Combinatorial Optimization. Algorithms and

Complexity. Dover Publications: Mineola, New York.

[90] Petersen, J. (1891): Die Theorie der regulären Graphs. Acta Mathematica 15, pp. 193-220.

[91] Picouleau, C. (1994): Complexity of the hamiltonian cycle in regular graph problem.

Theoretical Computer Science 131, pp. 463-473.

[92] Posa, L. (1976): Hamiltonian circuits in random graphs, Discrete Mathematics 14, pp.

359-364.

[93] Ramalingam, G. and C.P. Rangan (1988): A uni�ed approach to domination problems

on interval graphs. Information Processing Letters 27, pp. 271-274.

[94] Renaud, J. and F.F. Boctor (1998): An e¢ cient composite heuristic for the symmetric

generalized traveling salesman problem, European Journal of Operational Research 108(3),

pp. 571-584

[95] Riguet, J. (1951): Les relations de ferres. Comptes Rendus de l�Academie de Sciences,

Paris, Serie I, Mathematique 232, pp. 1729-1730.

[96] Schrijver, A. (1986): Theory of Linear and Integer Programming. Wiley: Chichester.

[97] Schrijver, A. (2003): Combinatorial Optimization. Polyhedra and E¢ ciency. 3 volumes.

Springer: Berlin.

164

[98] Shields, I.B. (2004): Hamilton Cycle Heuristics in Hard Graphs, PhD thesis, North Car-

olina State University.

[99] Shih, W.K., T.C. Chern and W.L. Hsu (1992): An O(n2 log n) time algorithm for the

Hamiltonian cycle problem on circular-arc graphs, SIAM Journal on Computing 21, pp.

1026�1046.

[100] Shufelt, J.A. and H.J. Berliner (1994): Generating Hamiltonian Circuits without back-

tracking from errors. Theoretical Computer Science 132, pp. 347-375.

[101] Truemper, K (1977): Unimodular Matrices of Flow Problems with Additional Constraints,

Networks 7: pp. 343-358.

[102] Vandegriend, B. and J. Culberson (1998): The Gn;m Phase Transition is Not Hard for the

Hamiltonian Cycle Problem, Journal of Arti�cial Intelligence Research 9, pp. 219-245.

[103] Voigt, B.F. (1831): Der Handlungsreisende, wie er sein soll und was er zu thun hat, um

Aufträge zu erhalten und eines glücklichen Erfolgs in seinen Geschäften gewiss zu sein.

Von einem alten Commis-Voyageur, Ilmenau. (Republished 1981, Verlag Bernd Schramm:

Kiel.)

[104] Wagner, I.A. and A.M. Bruckstein (1999): Hamiltonian(t) - An Ant-Inspired Heuristic

for Recognizing Hamiltonian Graphs, Proceedings of the 1999 Congress on Evolutionary

Computation. IEEE Press.

[105] Yao, A. (1996): A Note on Alternating Cycles in Edge-Coloured Graphs, Journal of

Combinatorial Theory B 68, pp. 222-225.

165

A MSSPH 3.6: C++ source code

166

167

// ***
// ---
// ************************ MSSP-Heuristic 3.6 ***************************
// ---
// ***

// 04 April 2010, Kai Helge Becker

// ***
// Header files, constants, global variables
// ***

#include <iostream>
#include <ctime>
#include <cstdlib>
using namespace std;

// Global variables and constants
// Constants
 int const numinst = 1000000; // number of instances
 int const numbox = 20; // number of boxes
 int const numsc = 2 * numbox; // number of scores
 int const minwidth = 41; // minimal width of each score
 int const maxwidth = 70; // maximal width of each score
 int const thradj = 70; // threshold for adjacency
 int const thrstrong = thradj / 2; // threshold for strong node (= thradj/2)
 int const empty = 999; // flag for empty variable entry
 // (used w/ matlist, unconnode, lastmatch)
 int const nocomp
 = (numbox+(numbox%2))/2; // no of components (chain + no of cycles)
 int const b
 = maxwidth - minwidth + 1; // no of different score sizes
 double const b2 = b;

// Variables

 double probability[b]; // pdf of triangular distribution
 double endofpartition[b]; // cdf of triangular distribution
 int sto0; // random integer number
 double stochastic; // random number in [0,1[derived from sto0
 int wbox[numsc]; // width of all scores
 int i, j, k; // loops
 int stack; // stack
 int stackinv;
 int ordsc[numsc]; // array index of ith smallest score
 int invordsc[numsc]; // inverse function of the above
 int instance; // counters for instances and cases
 int feacounter;
 int infcounter;
 int toomanyweak;
 int noncontwin;
 int uncon;
 int perfmat;
 int poormat;
 int suffmat;
 int yeahcounter;
 int completechain;
 int wscyclesandchain;
 int completechaininv;
 int wscyclesandchaininv;

 int twinno1b; // place of an unconnectable box (case 1b)
 double runtime1; // running time
 //double runtime2; // running time without generating instances
 //long time4rand; // time for generating one instance
 int adjlist[numsc] [numsc]; // adjacency list (based on sorted indices)

168

 int matlist[numsc]; // matching list (based on sorted indices)
 int matlistinv[numsc]; // matching list for inverse matching
 int matcard; // cardinality of matching
 int matcardinv; // cardinality of inverse matching
 int unconpointer; // number of unconnected nodes
 int unconpointerinv; // same for inverse matching
 int twinnomat; // place of twinnode for matching (sorted ind)
 int twinnomatinv; // same 4 inverse matching
 int lastmatch; // place of last matched node (sorted ind)
 int lastmatchinv; // same 4 inverse matching
 int weakeststrong; // place of weakest strong node (sorted ind)
 int unconnode[numsc]; // place of unconected nodes (sorted ind)
 int unconnodeinv[numsc]; // place of unconectd node in inverse matching
 int smallestuncon; // smallest unconnected node (sorted ind)
 int smallestunconinv; // for INV case
 int twin[numsc]; // place of twin node (sorted ind)
 int analysed[numsc]; // flag if node already inclded in chain/cycle
 int analysedinv[numsc]; // for INV case
 int component[nocomp] [numsc];// nodes in chain [0] and cycles [1..nocomp-1]
 int componentinv[nocomp] [numsc]; // for INV case
 int lengthofcomponent[nocomp];// length of component (chain is component 0)
 int lengthofcomponentinv[nocomp]; // for INV case
 int lengthchain[(numsc+1)]; // distribution of chain length
 int lengthchaininv[(numsc+1)];

 int currentcomponent; // no of cycle being analysed
 int smallestconnotana; // smallest connected node not analysed yet
 int smallestconnotanainv; // for INV case
 int nocycles; // number of cycles
 int nocyclesinv; // number of cycles in INV case
 int strongestnode[nocomp]; // characteristic of each cycle, used from
1..nocycles
 int strongestnodeinv[nocomp];
 int weakeststrongest; // characteristics of all cycles
 int weakeststrongestinv;
 int pss[nocomp];
 int pwss;
 int pssinv[nocomp];
 int pwssinv;

 int ordcyc[nocomp]; // order of cycles according to weakness of
 // strongest node, for checkresult(8)
 int ordcycinv[nocomp]; // chckresult 11
 int placeofstrongestnode[nocomp]; // pl of s node in original order of cycles
 // input for component[nocomp] [XXX]
 // used for checkresult(8)
 int placeofstrongestnodeinv[nocomp]; // chckresult (11)
 int currentplace; // next place in array "result" to be filled
 int currentplaceinv;
 int numberofelsecases; // more than one cycle
 int numberofelsecasesinv;

 int distofcyclesstart[nocomp];// distribution of cycles b4 cycle analysis
 int distofcyclesleft[nocomp]; // distribution of cycles after cycle analysis
 int distofcyclesstartinv[nocomp]; // same for INV case
 int distofcyclesleftinv[nocomp];
 int prob; // counter for some problematic cases
 int probinv; // smallest for INV

 int result[numsc]; // RESULT
 int resultcounter;
 int checkcasecounter[130];
 int problemcounter;
 int status; // result of result check

// ***

169

// Function for checking results
// ***
 int checkresult (int subcase)
 {
 // Test
 // result[17] = 0;

 // Count check
 ++resultcounter;
 ++checkcasecounter[subcase];

 // Local variable
 int problem; // flag for problem
 problem = 0;

 // Checking if there is a "999" node
 for(i=0; i<numsc; ++i)
 {
 if (result[i] == 999)
 {
 problem = 1;
 cout << endl << "999 case" << endl;
 }
 }

 // Checking twin node and matching characteristic except for last pair
 for(i=0; i<=(numsc-4); i=i+2)
 {
 // Checking twin node chacteristic
 if ((((ordsc[result[i]]) % 2) == 0) // ordsc[i] even
 && (ordsc[result[i]] != ((ordsc[result[(i+1)]])-1)))
 {
 problem = 1;
 break;
 }
 if ((((ordsc[result[i]]) % 2) == 1) // ordsc[i] odd
 && (ordsc[result[i]] != ((ordsc[result[(i+1)]])+1)))
 {
 problem = 1;
 break;
 }

 // Checking matching characeristic
 if (wbox[ordsc[result[(i+1)]]] + wbox[ordsc[result[(i+2)]]] < thradj)
 {
 problem = 1;
 break;
 }
 }

 // Checking twin node characteristic for last pair
 if (((ordsc[result[(numsc-2)]] % 2) == 0) // ordsc[i] even
 && (ordsc[result[(numsc-2)]] != ((ordsc[result[(numsc-1)]])-1)))
 problem = 1;
 if (((ordsc[result[(numsc-2)]] % 2) == 1) // ordsc[i] odd
 && (ordsc[result[(numsc-2)]] != ((ordsc[result[(numsc-1)]])+1)))
 problem = 1;

 // For test if no problem
 // if ((problem == 0) && (subcase == 122)) cout << "***" << endl;

 // Consequences if problem
 if (problem == 1)
 {
 cout << "***** problem with subcase " << subcase << " *****" << endl;

170

 // chainanalysisok = 1;

 // Checking analysis of cycles and chain
 for(i=0; i<=nocyclesinv; ++i)
 {
 for(j=1; j<lengthofcomponentinv[i]; j=j+2)
 {
 if ((ordsc[componentinv[i] [j]] != (ordsc[componentinv[i] [j-1]]+1))
 && (ordsc[componentinv[i] [j]] != (ordsc[componentinv[i] [j-1]]-1)))
 cout << "twin wrong " << endl;
 }
 for(j=1; j<lengthofcomponentinv[i]-2; j=j+2)
 {
 if (wbox[ordsc[componentinv[i] [j]]]
 + wbox[ordsc[componentinv[i] [j+1]]]
 < thradj)
 cout << "mate wrong " << endl;
 }
 }
 // Printing variables for building result
 cout << "ordcycinv " << ordcycinv[1] << " " << ordcycinv[2] << endl;
 cout << endl << endl;

 cout << "wbox[i]: ";
 for(i=0; i<numsc; ++i)
 cout << wbox[i] << " ";
 cout << endl;
 cout << "wbox[ordsc[i]]: ";
 for(i=0; i<numsc; ++i)
 cout << wbox[ordsc[i]] << " ";
 cout << endl;
 cout << "result: ";
 for(i=0; i<numsc; i=i+2)
 cout << wbox[ordsc[result[i]]] << "(" << ordsc[result[i]] << ")--("
 << ordsc[result[(i+1)]] << ")" << wbox[ordsc[result[(i+1)]]]
 << " ";
 cout << endl << "number of cycles: " << nocycles << endl; // non-INV only
 cout << endl;
 ++problemcounter;
 // Note: The following printout is correct only in INV case
 for(i=0; i<=nocyclesinv; ++i)
 {
 for(j=0; j<lengthofcomponentinv[i]; ++j)
 cout << wbox[ordsc[componentinv[i] [j]]] << "-";
 cout << endl;
 }
 cout << endl << endl;
 }

 // Return problem status
 return problem;
 }

171

// ***
// Function main starts & initialisation
// ***
int main()
{

// Welcome
 cout << "Welcome to MSSP-Heuristic 3.6." << endl;

// Initialisation
 feacounter = 0; // initialising feasible instances counter
 infcounter = 0; // initialising infeasible instances counter
 toomanyweak = 0; // initialising case counters
 noncontwin = 0;
 uncon = 0;
 perfmat = 0;
 poormat = 0;
 suffmat = 0;
 yeahcounter = 0;

 completechain = 0;
 wscyclesandchain = 0;

 completechaininv = 0;
 wscyclesandchaininv = 0;

 prob = 0;
 probinv = 0;

 resultcounter = 0;
 for(i=0; i<130; ++i)
 checkcasecounter[i] = 0;

 problemcounter = 0;
 numberofelsecases = 0;

 for(i=0; i<(numsc+1); ++i)
 lengthchain[i] = 0;
 for(i=0; i<nocomp; ++i)
 {
 distofcyclesstart[i] = 0;
 distofcyclesleft[i] = 0;
 }

 for(i=0; i<(numsc+1); ++i)
 lengthchaininv[i] = 0;
 for(i=0; i<nocomp; ++i)
 {
 distofcyclesstartinv[i] = 0;
 distofcyclesleftinv[i] = 0;
 }

// Calculate probabilities for triangular distribution
probability[0] = 2/(b2*b2);
probability[(b-1)] = probability[0];
for (i = 1; i < b/2; ++i)
{
 probability [i] = probability [(i-1)] + 4/(b2*b2);
 probability [(b-1-i)] = probability [i];
}

172

// Calculate partition of [0,1] interval for triangular distribution
endofpartition[0] = probability[0];
for (i=1; i < b; ++i)
{
 endofpartition [i] = endofpartition [(i-1)] + probability [i];
}

/*
for (i=0; i<b; ++i)
{
 cout << i << " " << probability[i] << " " << endofpartition[i] << "
";
}
*/

// Initialising random mumbers
srand((unsigned) time(NULL));

// ***
// Start of instances loop
// ***

for (instance = 0; instance < numinst; ++instance)
{

// cout << RAND_MAX << "HHHH ";

 // Producing triangularly distributed random numbers for scores
 for (i=0; i < numsc; ++i)
 {
 // Generate random number between 0 and 1
 sto0 = rand();
 stochastic = static_cast<double> (sto0) / 32767;
 // cout << stochastic << " ";
 // Check the probability interval of which the number is a member
 j = 0;
 while (stochastic > endofpartition[j]) {++j;};
 // Calculate the triangularly distributed number
 wbox[i] = minwidth + j;
 }

/*
// Producing uniformly distributed random numbers for scores
 //time4rand = clock();
 for(i = 0; i < numsc; ++i)
 {
 wbox[i] = minwidth + (rand() % (maxwidth - minwidth + 1));
 }
*/

// Test data
/*
 wbox[19] = 1; wbox[9] = 30; //wbox[10] = 35; wbox[11] = 36;

 for(i = 10; i < 19; ++i)
 {
 wbox[i] = 20 + (rand() % 6);
 }
 for(i = 12; i < 20; ++i)
 {
 wbox[i] = 10 + (rand() % 11);
 }
*/

/*AAA

173

// Output instance
 cout << endl;
 for(i = 0; i < numsc; ++i)
 {
 cout << wbox[i] << " ";
 }
 cout << endl;
*/
 // Running time without generating instances
 // time4rand = clock() - time4rand;
 // cout << time4rand << endl;

// ***
// CASE (01): Less than numbox - 1 strong nodes
// ***
 j = 0;
 for(i = 0; i < numsc; ++i)
 {
 if (wbox[i] >= thrstrong)
 ++j;
 }
 if (j < numbox - 1)
 {
 ++infcounter;
 ++toomanyweak;
 //AAAcout << "inf: too many weak nodes, namely: " << numsc-j << endl;
 continue;
 }

// ***
// Sorting scores from smallest to largest
// ***
 // Initialising order
 for(i = 0; i < numsc; ++i)
 {
 ordsc[i] = i;
 }
 // Starting sorting procedure
 for(i = 1; i < numsc; ++i)
 {
 for(j = i-1; j >= 0; --j)
 {
 //cout << i << " " << ordsc[i] << " "
 // << j << " " << ordsc[j] << endl;
 if (wbox[i] < wbox[ordsc[j]])
 {
 ordsc[j+1] = ordsc[j];
 ordsc[j] = i;
 //cout << "after change " << i << " " << ordsc[i] << " "
 // << j << " " << ordsc[j] << endl;
 }
 //else { cout << "no change, next i" << endl; break; }
 }
 }

/*

174

// Output sorted instance

 cout << "order: ";
 for(i = 0; i < numsc; ++i)
 {
 cout << wbox[ordsc[i]] << " ";
 }
 cout << endl;
*/

// ***
// CASE (02): Two non-connectable twin nodes
// ***
 j = 0;
 for(i = 0; i < numbox; ++i)
 {
 if (wbox[2*i] + wbox[ordsc[(numsc-1)]] < thradj)
 {
 if (wbox[2*i + 1] + wbox[ordsc[(numsc-1)]] < thradj)
 {
 ++j;
 //AAAtwinno = i;
 }
 }
 }
 if (j >= 1)
 {
 ++infcounter;
 ++noncontwin;
 /*
 // Output instance
 for(k = 1; k <= numsc; ++k)
 {
 cout << wbox[k] << " ";
 }
 cout << endl;
 // Output sorted instance
 cout << "order: ";
 for(k = 1; k <= numsc; ++k)
 {
 cout << wbox[ordsc[k]] << " ";
 }
 cout << endl;
 */
 //AAAcout << "inf: two non-connectable twin nodes at pair "
 // << twinno << endl;
 continue;
 }

// ***
// CASE (03): Three non-connectable nodes
// ***
 j = 0;
 for(i = 0; i < numsc; ++i)
 {
 if (wbox[i] + wbox[ordsc[(numsc-1)]] < thradj)
 ++j;
 }
 if (j >= 3)
 {
 ++infcounter;
 ++uncon;
 //AAAcout << "inf: too many unconnectable nodes,"
 // << "largest number has order " << ordsc[numsc] << endl;
 continue;
 }

175

// ***
// Matching algorithm (TGMAmin)
// ***

// Step 1: List with adjacent nodes disregarding twin nodes
 for(i = 0; i < numsc; ++i) // general adjacency list
 {
 for(j = 0; j < numsc; ++j)
 {
 if (wbox[ordsc[i]] + wbox[ordsc[j]] >= thradj)
 {
 adjlist[i] [j] = 1;
 }
 else
 {
 adjlist[i] [j] = 0;
 }
 }
 }

 for (i=0; i<numsc; ++i) // generating inverse function of ordsc[]
 {
 invordsc[ordsc[i]] = i;
 }

 for (i = 0; i < numbox; ++i)// twin nodes cannot be connected to eachother
 {
 adjlist[invordsc[(2*i)]] [invordsc[(2*i+1)]] = 0;
 adjlist[invordsc[(2*i+1)]] [invordsc[(2*i)]] = 0;
 }

// Step 2: Initialise matching list and counters
 for (i = 0; i < numsc; ++i)
 {
 matlist[i] = empty;
 }
 matcard = 0;
 unconpointer = 0;
 for (i = 0; i < numsc; ++i)
 {
 unconnode[i] = empty;
 }
 lastmatch = empty;

// Step 3: Matching algorithm
 for(i=0; i<numsc; ++i)// check all nodes
 {
 if (matlist[i] == empty)// does node need a mate?
 {
 for (j=(i+1); j<numsc; ++j)// look for a mate for node i
 {
 if ((adjlist[i] [j] == 1)
 && (matlist[j] == empty))// if mate found
 {
 matlist[i] = j;
 matlist[j] = i;
 lastmatch = i;
 ++matcard;
 break;
 }
 }
 if (matlist[i] == empty) // if there still is no mate:
 { // do twin node swap or finally acquiesce
 if (ordsc[i] % 2 == 0) // find out twin node number
 {

176

 twinnomat = invordsc[(ordsc[i]+1)];
 }
 else
 {
 twinnomat = invordsc[(ordsc[i]-1)];
 }
 if // twin node swap possible?
 ((wbox[ordsc[i]]+wbox[ordsc[twinnomat]]>=thradj)// match with twin?
 && (matlist[twinnomat] == empty) // twin unmatched?
 && (lastmatch != empty) // exchange possble?
 && (twinnomat > i) // twin larger?
 && (wbox[ordsc[lastmatch]]+wbox[ordsc[twinnomat]]>=thradj))// lastmtch
 { // with twin?
 matlist[i] = matlist[lastmatch];
 matlist[lastmatch] = twinnomat;
 matlist[twinnomat] = lastmatch;
 matlist[matlist[i]] = i;
 lastmatch = i;
 ++matcard;
 }
 else // otherwise: one more unconnected node
 {
 ++unconpointer;
 unconnode[(unconpointer-1)] = i;
 }
 }
 }
 }

/*
// Output matching list and unconnected nodes
 for(i=0; i<numsc; ++i)
 {
 cout << matlist[i] << " ";
 }
 cout << endl;

 for(i=0; i<numsc; ++i)
 {
 cout << unconnode[i] << " ";
 }
 cout << endl;
 cout << "matcard: " << matcard;
 cout << " no of unconnodes: " << unconpointer << endl;
*/

// ***
// CASE (04): Perfect matching (#M = n)
// ***
 if (matcard == numbox)
 {
 ++perfmat;
 ++feacounter;

/*AAA
 cout << "fea: perfmatch with card: " << matcard << " ";
 for (i=0; i<numsc; ++i)
 {
 cout << " w1= " << wbox[ordsc[i]] << " w2= "
 << wbox[ordsc[matlist[i]]] << " -- ";
 }
 cout << endl;
*/

 continue;
 }

177

// ***
// CASE (05): Poor matching (#M < n-1)
// ***
 if (matcard < (numbox-1))
 {
 ++poormat;
 ++infcounter;

/*AAA
 cout << "inf: poor matching with card: " << matcard
 << " and uncon nodes: ";
 for (i=0; i<numsc; ++i)
 {
 if (unconnode[i] != empty)
 cout << unconnode[i] << " w= " << wbox[ordsc[unconnode[i]]]
 << " " << endl;
 }
 cout << endl;
*/
 continue;
 }

// ***
// CASE (06): Sufficient matching (#M = n-1)
// ***

 for (i=0; i<numsc; ++i) // Find weakest strong node
 {
 if (wbox[ordsc[i]] >= thrstrong)
 {
 weakeststrong = i;
 break;
 }
 }

/*AAA
 cout << "card: " << matcard << " no of wkststr " << weakeststrong
 << " w= " << wbox[ordsc[weakeststrong]]
 << " ucn0 " << unconnode[0] << " w= " << wbox[ordsc[unconnode[0]]]
 << " ucn1 " << unconnode[1] << " w= " << wbox[ordsc[unconnode[1]]]
 << endl;
 cout << "matching: ";
 for (i=0; i<numsc; ++i)
 {
 if (matlist[i] != empty)
 cout << " w1= " << wbox[ordsc[i]]
 << " w2= " << wbox[ordsc[matlist[i]]] << " -- ";
 }
*/
/*
 if (matlist[numsc] == empty)
 {
 cout << "unconnode[0] " << unconnode[0]
 << " unconnode[1] " << unconnode[1]
 << " matcard " << matcard << endl;
 }
*/

 if (wbox[ordsc[unconnode[1]]]
 + wbox[ordsc[weakeststrong]] >= thradj) // Check sufficiency
 {
 ++suffmat;
 ++feacounter;
 //AAAcout << " yeah suff" << endl;
 if (unconnode[1] < weakeststrong)

178

 ++yeahcounter; //cout << " YEAH!!!" << endl;
 continue;
 }
 //AAAcout << " not suff" << endl;

// ***
// Building up chain
// ***

// Step 1: Initialise data
 for(i=0; i<numsc; ++i)
 {
 analysed[i] = 0;
 for(j=0; j<nocomp; ++j)
 component[j] [i] = empty;
 if (ordsc[i] % 2 == 0) // find out twin node number
 twin[i] = invordsc[(ordsc[i]+1)];
 else
 twin[i] = invordsc[(ordsc[i]-1)];
 //cout << ordsc[i] << "-" << ordsc[twin[i]] << " ";
 }
 //cout << endl;

// Step 2: Build up chain
 for(i=0; i<numsc; ++i) // find smallest unconnected node
 {
 if (matlist[i] == empty)
 {
 smallestuncon = i;
 break;
 }
 }
 if (smallestuncon != unconnode[0])
 cout << "ALARM!!!" << endl;

 j = -1; // build up chain
 stack = smallestuncon;
 do
 {
 ++j;
 component[0] [j] = stack;
 analysed[stack] = 1;
 ++j;
 component[0] [j] = twin[stack];
 analysed[twin[stack]] = 1;
 stack = matlist[twin[stack]];
 }
 while (stack != empty);

 lengthofcomponent[0] = ++j;

// ***
// Case (07): Chain complete with length = numsc
// ***
 if (lengthofcomponent[0] == numsc)// is chain complete?
 {
 ++completechain;
 ++feacounter;
 nocycles = 0;
 for(i=0; i<numsc; ++i)
 result[i] = component[0] [i];
 i = checkresult(7);
/*
 for(i=0; i<numbox; ++i)
 {
 cout << wbox[ordsc[component[0] [(2*i)]]] << "("

179

 << ordsc[component[0] [(2*i)]] << ")-("
 << ordsc[component[0] [(2*i+1)]] << ")"
 << wbox[ordsc[component[0] [(2*i+1)]]] << " -- ";
 }
 cout << "*" << endl;
*/
 continue;
 }

// ***
// Building up cycles
// ***
 for (i=0; i<numsc; ++i) // Find smallest connected node not analysed yet
 {
 if (analysed[i] == 0)
 {
 smallestconnotana = i;
 break;
 }
 }
 if (matlist[smallestconnotana] == empty)
 cout << "ARLARM2!!!" << endl;

 currentcomponent = 0;
 do
 {
 ++currentcomponent; // Set component
 if (currentcomponent > nocomp-1)
 cout << "ARLARM3!!!" << endl;

 j = -1; // Build up cycle
 stack = smallestconnotana;
 do
 {
 ++j;
 component[currentcomponent] [j] = stack;
 analysed[stack] = 1;
 ++j;
 component[currentcomponent] [j] = twin[stack];
 analysed[twin[stack]] = 1;
 stack = matlist[twin[stack]];
 }
 while (stack != smallestconnotana); // = while not back 2 beginning of cyc

 lengthofcomponent[currentcomponent] = ++j;

 for (i=0; i<numsc; ++i) // Find smallest connected node not analysed yet
 if (analysed[i] == 0)
 {
 smallestconnotana = i;
 break;
 };
 if (matlist[smallestconnotana] == empty)
 cout << "ARLARM2B!!!" << endl;
 }
 while (smallestconnotana != stack); // = while new not analysed node found
 nocycles = currentcomponent; // save number of cycles

// ***
// Analysing cycles and chain
// ***
 for (i=0; i<nocomp; ++i) // Initialising data
 {
 strongestnode[i] = empty;
 pss[i] = empty;
 }

180

 for (i=1; i<=nocycles; ++i) // Check all cycles
 {
 // initialise for this component
 strongestnode[i] = component[i] [0];
 pss[i] = 0;

 // check for all elements of this component
 for (j=0; j<lengthofcomponent[i]; ++j) // Find weakest & strongest in cycle
 {
 // > cases
 if (wbox[ordsc[component[i] [j]]] > wbox[ordsc[strongestnode[i]]])
 {
 strongestnode[i] = component[i] [j];
 pss[i] = j;
 }

 // == cases
 if ((wbox[ordsc[component[i] [j]]] == wbox[ordsc[strongestnode[i]]])
 && (wbox[ordsc[matlist[component[i] [j]]]]
 > wbox[ordsc[matlist[strongestnode[i]]]]))
 {
 strongestnode[i] = component[i] [j];
 pss[i] = j;
 }
 }
 }

 // initialise charcateristics for all cycles
 weakeststrongest = strongestnode[1];
 pwss = pss[1];

 // check for all cycles
 for(i=1; i<=nocycles; ++i)
 {
 // < cases
 if (wbox[ordsc[strongestnode[i]]] < wbox[ordsc[weakeststrongest]])
 {
 weakeststrongest = strongestnode[i];
 pwss = pss[i];
 }

 // == cases
 if ((wbox[ordsc[strongestnode[i]]]
 == wbox[ordsc[weakeststrongest]])
 && (wbox[ordsc[matlist[strongestnode[i]]]]
 < wbox[ordsc[matlist[weakeststrongest]]]))
 {
 weakeststrongest = strongestnode[i];
 pwss = pss[i];
 }

 }

 // Counting number of cycles b4 analysis
 ++distofcyclesstart[nocycles];

// ***
// CASE 08: Connection of cycles with chain via weakest strongest strong node
// ***
// Step 1: Make sure that unconnode[1] really is the higher unconnected node
 if (wbox[ordsc[unconnode[0]]] > wbox[ordsc[unconnode[1]]])
 cout << "ALARM4!!!" << endl;

// Step 2: Check w/ wkst strgst strong
 if (wbox[ordsc[weakeststrongest]]

181

 + wbox[ordsc[unconnode[1]]] >= thradj)
 {
 ++wscyclesandchain;
 ++feacounter;
 // ++
 // ++
 // Step 2ba: Checking result for WSS node case if there is only one cycle
 // ++
 if (nocycles == 1)
 {
 /*
 for(i=0; i<lengthofcomponent[1]; ++i)//check where in cycle strngst node
 {
 if ((component[1][i])==strongestnode[1])
 {
 stack = i;
 break;
 }
 }
 */
 stack = pss[1];

 if (twin[strongestnode[1]]==component[1] [(stack+1)])//twin after str nd
 {
 for(i=0; i<lengthofcomponent[0]; ++i)
 result[i] = component[0] [i];
 for(i=stack; i<lengthofcomponent[1]; ++i)
 result[(i+lengthofcomponent[0]-stack)] = component[1] [i];
 if (stack != 0) // str nd is not first node
 {
 for(i=0; i<stack; ++i)
 result[(i+lengthofcomponent[0]+lengthofcomponent[1]-stack)]
 = component[1] [i];
 }
 }
 else // twin before strongest node
 {
 for(i=0; i<lengthofcomponent[0]; ++i)
 result[i] = component[0] [i];
 for(i=stack; i>=0; --i)
 result[(lengthofcomponent[0]+stack-i)] = component[1] [i];
 if (stack != (lengthofcomponent[1]-1)) // str nd is not last node
 {
 for(i=(lengthofcomponent[1]-1); i>stack; --i)
 result[(lengthofcomponent[0]+stack+(lengthofcomponent[1]-i))]
 = component[1] [i];
 }
 }
 }
 // ++
 // Step 2bb: Checking result for WSS case if there is more than one cycle
 // ++

 else // There is more than one cycle
 {
 // Initialising order
 for(i = 1; i <= nocycles; ++i)
 {
 ordcyc[i] = i;
 }
 // Starting sorting procedure for cycles according to strngest strong nodes
 for(i = 1; i <= nocycles; ++i)
 {
 for(j = i-1; j >= 1; --j)
 {
 //cout << i << " " << ordsc[i] << " "

182

 // << j << " " << ordsc[j] << endl;
 // abbreviation = ;
 if (wbox[ordsc[strongestnode[i]]]
 < wbox[ordsc[strongestnode[ordcyc[j]]]])
 {
 ordcyc[j+1] = ordcyc[j];
 ordcyc[j] = i;
 //cout << "after change " << i << " " << ordsc[i] << " "
 // << j << " " << ordsc[j] << endl;
 }
 //else { cout << "no change, next i" << endl; break; }
 }
 }
 // Looking for the place of strongest node in each cycle
 // because this tells us where to start building the result out of cycles
 /*
 for(i = 1; i <= nocycles; ++i)
 {
 placeofstrongestnode[i] = empty;
 }
 for(i = 1; i <= nocycles; ++i)
 {
 for(j = 0; j < lengthofcomponent[i]; ++j)
 {
 if (strongestnode[i] == component[i][j])
 {
 placeofstrongestnode[i] = j;
 break;
 }
 }
 }
 */
 // Starting result array with chain
 for(i=0; i<lengthofcomponent[0]; ++i)
 result[i] = component[0] [i];
 currentplace = lengthofcomponent[0];
 // Now add the cycles to the result
 for(k = 1; k <= nocycles; ++k)
 {
 // first option: twin comes after strongest node in this cycle
 if (twin[strongestnode[ordcyc[k]]]
 == component[ordcyc[k]] [(pss[ordcyc[k]]+1)])
 {
 for(i = pss[ordcyc[k]];
 i < lengthofcomponent[ordcyc[k]]; ++i)
 result[(i
 + currentplace
 - pss[ordcyc[k]])]
 = component[ordcyc[k]] [i];
 if (pss[ordcyc[k]] != 0) // str nd is not first node
 {
 for(i=0; i<pss[ordcyc[k]]; ++i)
 result[(i
 + currentplace
 + lengthofcomponent[ordcyc[k]]
 - pss[ordcyc[k]])]
 = component[ordcyc[k]] [i];
 }
 }
 // second option: twin comes b4 strongest node in this cycle
 else
 {
 for(i=pss[ordcyc[k]]; i>=0; --i)
 result[(currentplace
 + pss[ordcyc[k]]
 - i)]

183

 = component[ordcyc[k]] [i];
 if (pss[ordcyc[k]]
 != (lengthofcomponent[ordcyc[k]]-1)) // str nd is not last node
 {
 for(i = (lengthofcomponent[ordcyc[k]]-1);
 i > pss[ordcyc[k]]; --i)
 result[(currentplace
 + pss[ordcyc[k]]
 + (lengthofcomponent[ordcyc[k]]-i))]
 = component[ordcyc[k]] [i];
 }
 }
 // store new position in building result array
 currentplace = currentplace + lengthofcomponent[ordcyc[k]];
 } // end of loop through all cycles
 ++numberofelsecases;
 } // end of else for case of more than one cycle

 status = checkresult(8);
 // ++
 continue;
 }

// **
// Statistics and some more checks for remaining cases
// **
 // Counting the length of the chain and no of cycles in remaining cases
 ++distofcyclesleft[nocycles];
 ++lengthchain[lengthofcomponent[0]];

 // Check in the case of one cycle
 if (nocycles == 1)
 {
 stack = 0;
 for(i=0; i<lengthofcomponent[1]; ++i)
 {
 if (wbox[ordsc[component[1] [i]]] > stack)
 stack = wbox[ordsc[component[1] [i]]];
 }
 if (stack + wbox[ordsc[unconnode[1]]] >= thradj)
 ++prob;
 //if (instance < 1000)
 //cout << "T";
 }

// **
// Inverse matching algorithm (TGMAmax)
// **
// Step 1 Inverse: Initialise matching list and counters
 for (i = 0; i < numsc; ++i)
 {
 matlistinv[i] = empty;
 }
 matcardinv = 0;
 unconpointerinv = 0;
 for (i = 0; i < numsc; ++i)
 {
 unconnodeinv[i] = empty;
 }
 lastmatchinv = empty;

// Step 2 Inverse: Matching algorithm
 for(i=0; i<numsc; ++i)// check all nodes
 {
 if (matlistinv[i] == empty)// does node need a mate?

184

 {
 for (j=(numsc-1); j>i; --j)// look for a mate for node i
 {
 if ((adjlist[i] [j] == 1)
 && (matlistinv[j] == empty))// if mate found
 {
 matlistinv[i] = j;
 matlistinv[j] = i;
 lastmatchinv = i;
 ++matcardinv;
 break;
 }
 }
 if (matlistinv[i] == empty) // if there still is no mate:
 { // do twin node swap or finally acquiesce
 if (ordsc[i] % 2 == 0) // find out twin node number
 {
 twinnomatinv = invordsc[(ordsc[i]+1)];
 }
 else
 {
 twinnomatinv = invordsc[(ordsc[i]-1)];
 }
 if // twin node swap possible?
 ((wbox[ordsc[i]]+wbox[ordsc[twinnomatinv]]>=thradj)// match w/ twin?
 && (matlistinv[twinnomatinv] == empty) // twin unmatchd?
 && (lastmatchinv != empty) // exchnge pssble?
 && (twinnomatinv > i) // twin larger?
 && (wbox[ordsc[lastmatchinv]] // lastmatch with twin?
 + wbox[ordsc[twinnomatinv]] >= thradj))
 { // then swap mates
 matlistinv[i] = matlistinv[lastmatchinv];
 matlistinv[lastmatchinv] = twinnomatinv;
 matlistinv[twinnomatinv] = lastmatchinv;
 matlistinv[matlistinv[i]] = i;
 lastmatchinv = i;
 ++matcardinv;
 }
 else // otherwise: one more unconnected node
 {
 ++unconpointerinv;
 unconnodeinv[(unconpointerinv-1)] = i;
 }
 }
 }
 }

// **
// Double check inverse matching with other matching algorithm
// **
 if (matcard != matcardinv)
 {
 cout << "ALARM5!!!" << endl;
 cout << matcard << " " << matcardinv << endl;
 for (i=0; i<numsc; ++i)
 cout << " " << wbox[i];
 cout << endl;
 for (i=0; i<numsc; ++i)
 cout << " " << wbox[ordsc[i]];
 cout << endl;
 for (i=0; i<numsc; ++i)
 cout << " " << matlist[i];
 cout << endl;
 for (i=0; i<numsc; ++i)
 cout << " " << matlistinv[i];
 cout << endl;

185

 cout << adjlist[2] [matlist[2]] << endl;
 cout << wbox[ordsc[2]] << " " << wbox[ordsc[matlist[2]]] << endl;
 cout << unconpointer << " " << unconpointerinv << endl;

 //First matching algorithm once again (for checking mistakes
 // Step 2 once again: Initialise matching list and counters
 for (i = 0; i < numsc; ++i)
 {
 matlist[i] = empty;
 }
 matcard = 0;
 unconpointer = 0;
 for (i = 0; i < numsc; ++i)
 {
 unconnode[i] = empty;
 }
 lastmatch = empty;

 // Step 3 once again: Matching algorithm
 for(i=0; i<numsc; ++i)// check all nodes
 {
 if (matlist[i] == empty)// does node need a mate?
 {
 for (j=(i+1); j<numsc; ++j)// look for a mate for node i
 {
 if ((adjlist[i] [j] == 1)
 && (matlist[j] == empty))// if mate found
 {
 matlist[i] = j;
 matlist[j] = i;
 lastmatch = i;
 ++matcard;
 break;
 }
 }
 if (matlist[i] == empty) // if there still is no mate:
 { // do twin node swap or finally acquiesce
 if (ordsc[i] % 2 == 0) // find out twin node number
 {
 twinnomat = invordsc[(ordsc[i]+1)];
 }
 else
 {
 twinnomat = invordsc[(ordsc[i]-1)];
 }
 if // twin node swap possible?
 ((wbox[ordsc[i]]+wbox[ordsc[twinnomat]]>=thradj)// match with twin?
 && (matlist[twinnomat] == empty) // twin unmatched?
 && (lastmatch != empty) // exchange possble?
 && (twinnomat > i)) // twin larger?
 { // then swap mates
 matlist[i] = matlist[lastmatch];
 matlist[lastmatch] = twinnomat;
 matlist[twinnomat] = lastmatch;
 matlist[matlist[i]] = i;
 lastmatch = i;
 ++matcard;

 cout << "a twin node swap" << endl;
 cout << " i " << i << " twinnomat " << twinnomat
 << " ordsc[i] " << ordsc[i] << " ordsc[twinnomat] "
 << ordsc[twinnomat]
 << " wboxSumme " << wbox[ordsc[i]]+wbox[ordsc[twinnomat]]
 << " matlist[twinnomat] " << matlist[twinnomat]
 << " lastmatch " << lastmatch
 << " matlist[lastmatch] " << matlist[lastmatch] << endl;

186

 //matlist[i] = matlist[lastmatch];
 //matlist[lastmatch] = twinnomat;
 //matlist[twinnomat] = lastmatch;
 //matlist[matlist[i]] = i;
 //lastmatch = i;
 //++matcard;

 }
 else // otherwise: one more unconnected node
 {
 ++unconpointer;
 unconnode[(unconpointer-1)] = i;
 cout << " an unconnode " << i << endl;
 }
 }
 }
 }
 cout << "new results" << endl;
 cout << adjlist[2] [matlist[2]] << endl;
 cout << wbox[ordsc[2]] << " " << wbox[ordsc[matlist[2]]] << endl;
 cout << unconpointer << " " << unconpointerinv << endl;

// End if matcard != matcardinv
 }

// **
// Building up chain from inverse matching
// **

// Step 1INV: Initialise data
 for(i=0; i<numsc; ++i)
 {
 analysedinv[i] = 0;
 for(j=0; j<nocomp; ++j)
 componentinv[j] [i] = empty;
 if (ordsc[i] % 2 == 0) // find out twin node number
 twin[i] = invordsc[(ordsc[i]+1)];
 else
 twin[i] = invordsc[(ordsc[i]-1)];
 //cout << ordsc[i] << "-" << ordsc[twin[i]] << " ";
 }
 //cout << endl;

// Step 2INV: Build up chain
 for(i=0; i<numsc; ++i) // find smallest unconnected node
 {
 if (matlistinv[i] == empty)
 {
 smallestunconinv = i;
 break;
 }
 }
 if (smallestunconinv != unconnodeinv[0])
 cout << "ALARMinv!!!" << endl;

 j = -1; // build up chain
 stack = smallestunconinv;
 do
 {
 ++j;
 componentinv[0] [j] = stack;
 analysedinv[stack] = 1;
 ++j;
 componentinv[0] [j] = twin[stack];
 analysedinv[twin[stack]] = 1;

187

 stack = matlistinv[twin[stack]];
 }
 while (stack != empty);

 lengthofcomponentinv[0] = ++j;

// **
// CASE (10): Chain from inverse matching complete with length = numsc
// **
 if (lengthofcomponentinv[0] == numsc)// is chain complete?
 {
 ++completechaininv;
 ++feacounter;
 for(i=0; i<numsc; ++i)
 result[i] = componentinv[0] [i];
 i = checkresult(10);

/*
 for(i=0; i<numbox; ++i)
 {
 cout << wbox[ordsc[component[0] [(2*i)]]] << "("
 << ordsc[component[0] [(2*i)]] << ")-("
 << ordsc[component[0] [(2*i+1)]] << ")"
 << wbox[ordsc[component[0] [(2*i+1)]]] << " -- ";
 }
 cout << "*" << endl;
*/

 continue;
 }

// **
// Building up cycles from inverse matching
// **
 for (i=0; i<numsc; ++i) // Find smallest connected node not analysed yet
 {
 if (analysedinv[i] == 0)
 {
 smallestconnotanainv = i;
 break;
 }
 }
 if (matlistinv[smallestconnotanainv] == empty)
 cout << "ARLARM2inv!!!" << endl;

 currentcomponent = 0;
 do
 {
 ++currentcomponent; // Set component
 if (currentcomponent > nocomp-1)
 cout << "ARLARM3inv!!!" << endl;

 j = -1; // Build up cycle
 stack = smallestconnotanainv;
 do
 {
 ++j;
 componentinv[currentcomponent] [j] = stack;
 analysedinv[stack] = 1;
 ++j;
 componentinv[currentcomponent] [j] = twin[stack];
 analysedinv[twin[stack]] = 1;
 stack = matlistinv[twin[stack]];
 }
 while (stack != smallestconnotanainv); //= while not back 2 bgnning of cyc

188

 lengthofcomponentinv[currentcomponent] = ++j;

 for (i=0; i<numsc; ++i) // Find smallest connected node not analysed yet
 if (analysedinv[i] == 0)
 {
 smallestconnotanainv = i;
 break;
 };
 if (matlistinv[smallestconnotanainv] == empty)
 cout << "ARLARM2Binv!!!" << endl;
 }
 while (smallestconnotanainv != stack); // = while new not analysed node found
 nocyclesinv = currentcomponent; // save number of cycles

// ***
// Analysing cycles and chain from inverse matching
// ***
 for (i=0; i<nocomp; ++i) // Initialising data
 {
 strongestnodeinv[i] = empty;
 pssinv[i] = empty;
 }

 for (i=1; i<=nocyclesinv; ++i) // Check all cycles
 {

 // INV: Initialise for all cycles
 strongestnodeinv[i] = componentinv[i] [0];
 pssinv[i] = 0;

 // INV: Check for all elements of this component
 for (j=1; j<lengthofcomponentinv[i]; ++j) // Find weakst&strongst in cycle
 {

 // > cases
 if (wbox[ordsc[componentinv[i] [j]]]
 >= wbox[ordsc[strongestnodeinv[i]]])
 {
 strongestnodeinv[i] = componentinv[i] [j];
 pssinv[i] = j;
 }

 // == cases
 if ((wbox[ordsc[componentinv[i] [j]]]
 == wbox[ordsc[strongestnodeinv[i]]])
 && (wbox[ordsc[matlistinv[componentinv[i] [j]]]]
 > wbox[ordsc[matlistinv[strongestnodeinv[i]]]]))
 {
 strongestnodeinv[i] = componentinv[i] [j];
 pssinv[i] = j;
 }
 }
 }

 // INV :Initialise charcteristics for all cycles
 weakeststrongestinv = strongestnodeinv[1];
 pwssinv = pssinv[1];

 // INV: Check for all cycles
 for(i=1; i<=nocyclesinv; ++i)
 {
 // < cases
 if (wbox[ordsc[strongestnodeinv[i]]] < wbox[ordsc[weakeststrongestinv]])
 {
 weakeststrongestinv = strongestnodeinv[i];
 pwssinv = pssinv[i];

189

 }

 // == cases
 if ((wbox[ordsc[strongestnodeinv[i]]]
 == wbox[ordsc[weakeststrongestinv]])
 && (wbox[ordsc[matlistinv[strongestnodeinv[i]]]]
 < wbox[ordsc[matlistinv[weakeststrongestinv]]]))
 {
 weakeststrongestinv = strongestnodeinv[i];
 pwssinv = pssinv[i];
 }
 }

 // Counting number of cycles b4 analysis
 ++distofcyclesstartinv[nocyclesinv];

// ***
// CASE (11): Structure-preserving solution in INV/TGMAmaax case
// ***

// Step 1INV: Make sure that unconnodeinv[1] is the higher unconnected node
 if (wbox[ordsc[unconnodeinv[0]]] > wbox[ordsc[unconnodeinv[1]]])
 cout << "ALARM4inv!!!" << endl;

// Step 2INV: Check w/ wss
 if (wbox[ordsc[weakeststrongestinv]]
 + wbox[ordsc[unconnodeinv[1]]] >= thradj)
 {
 ++wscyclesandchaininv;
 ++feacounter;

 // ++
 // ++
 // Step 2baINV: Checking result for WSS node case if there is only one cycle
 // ++
 if (nocyclesinv == 1)
 {
 /*
 for(i=0; i<lengthofcomponentinv[1]; ++i)//check where in cycle strngst node
 {
 if ((componentinv[1][i])==strongestnodeinv[1])
 {
 stackinv = i;
 break;
 }
 }
 */
 stackinv = pssinv[1];

 if (twin[strongestnodeinv[1]]==componentinv[1] [(stackinv+1)])
 //twin after str nd
 {
 for(i=0; i<lengthofcomponentinv[0]; ++i)
 result[i] = componentinv[0] [i];
 for(i=stackinv; i<lengthofcomponentinv[1]; ++i)
 result[(i+lengthofcomponentinv[0]-stackinv)] = componentinv[1] [i];
 if (stackinv != 0) // str nd is not first node
 {
 for(i=0; i<stackinv; ++i)
 result[(i+lengthofcomponentinv[0]+lengthofcomponentinv[1]-stackinv)]
 = componentinv[1] [i];
 }
 }
 else // twin before strongest node
 {
 for(i=0; i<lengthofcomponentinv[0]; ++i)

190

 result[i] = componentinv[0] [i];
 for(i=stackinv; i>=0; --i)
 result[(lengthofcomponentinv[0]+stackinv-i)] = componentinv[1] [i];
 if (stackinv != (lengthofcomponentinv[1]-1)) // str nd is not last node
 {
 for(i=(lengthofcomponentinv[1]-1); i>stackinv; --i)
 result[(lengthofcomponentinv[0]
 + stackinv
 + (lengthofcomponentinv[1]-i))]
 = componentinv[1] [i];
 }
 }
 }
 // ++
 // Step 2bbINV: Checking result for WSS case if there is more than one cycle
 // ++

 else // There is more than one cycle
 {
 // Initialising order
 for(i = 1; i <= nocyclesinv; ++i)
 {
 ordcycinv[i] = i;
 }
 // Starting sorting procedure for cycles according to stronges strong nodes
 for(i = 1; i <= nocyclesinv; ++i)
 {
 for(j = i-1; j >= 1; --j)
 {
 //cout << i << " " << ordsc[i] << " "
 // << j << " " << ordsc[j] << endl;
 // abbreviation = ;
 if (wbox[ordsc[strongestnodeinv[i]]]
 < wbox[ordsc[strongestnodeinv[ordcycinv[j]]]])
 {
 ordcycinv[j+1] = ordcycinv[j];
 ordcycinv[j] = i;
 //cout << "after change " << i << " " << ordsc[i] << " "
 // << j << " " << ordsc[j] << endl;
 }
 //else { cout << "no change, next i" << endl; break; }
 }
 }
 // Looking for the place of strongest node in each cycle
 // because this tells us where to start building the result out of cycles
 /*
 for(i = 1; i <= nocyclesinv; ++i)
 {
 placeofstrongestnodeinv[i] = empty;
 }
 for(i = 1; i <= nocyclesinv; ++i)
 {
 for(j = 0; j < lengthofcomponentinv[i]; ++j)
 {
 if (strongestnodeinv[i] == componentinv[i][j])
 {
 placeofstrongestnodeinv[i] = j;
 break;
 }
 }
 }
 */

 // Starting result array with chain
 for(i=0; i<lengthofcomponentinv[0]; ++i)
 result[i] = componentinv[0] [i];

191

 currentplaceinv = lengthofcomponentinv[0];
 // Now add the cycles to the result
 for(k = 1; k <= nocyclesinv; ++k)
 {
 // first option: twin comes after strongest node in this cycle
 if (twin[strongestnodeinv[ordcycinv[k]]]
 == componentinv[ordcycinv[k]]
 [(pssinv[ordcycinv[k]]+1)])
 {
 for(i = pssinv[ordcycinv[k]];
 i < lengthofcomponentinv[ordcycinv[k]]; ++i)
 result[(i
 + currentplaceinv
 - pssinv[ordcycinv[k]])]
 = componentinv[ordcycinv[k]] [i];
 if (pssinv[ordcycinv[k]] != 0)
 // str nd is not first node
 {
 for(i=0; i<pssinv[ordcycinv[k]]; ++i)
 result[(i
 + currentplaceinv
 + lengthofcomponentinv[ordcycinv[k]]
 - pssinv[ordcycinv[k]])]
 = componentinv[ordcycinv[k]] [i];
 }
 }
 // second option: twin comes b4 strongest node in this cycle
 else
 {
 for(i=pssinv[ordcycinv[k]]; i>=0; --i)
 result[(currentplaceinv
 + pssinv[ordcycinv[k]]
 - i)]
 = componentinv[ordcycinv[k]] [i];
 if (pssinv[ordcycinv[k]]
 != (lengthofcomponentinv[ordcycinv[k]]-1))
 // str nd is not last node
 {
 for(i = (lengthofcomponentinv[ordcycinv[k]]-1);
 i > pssinv[ordcycinv[k]]; --i)
 result[(currentplaceinv
 + pssinv[ordcycinv[k]]
 + (lengthofcomponentinv[ordcycinv[k]]-i))]
 = componentinv[ordcycinv[k]] [i];
 }
 }
 // store new position in building result array
 currentplaceinv = currentplaceinv + lengthofcomponentinv[ordcycinv[k]];
 } // end of loop through all cycles
 ++numberofelsecasesinv;
 } // end of else for case of more than one cycle

 status = checkresult(11);
 // ++

 continue;
 }

// **
// Statistics and some more checks for remaining cases after inverse match
// **
 // Counting the number of cycles and the length of the chain
 ++distofcyclesleftinv[nocyclesinv];
 ++lengthchaininv[lengthofcomponentinv[0]];

192

 // Check in the case of one cycle
 if (nocyclesinv == 1)
 {
 stack = 0;
 for(i=0; i<lengthofcomponentinv[1]; ++i)
 {
 if (wbox[ordsc[componentinv[1] [i]]] > stack)
 stack = wbox[ordsc[componentinv[1] [i]]];
 }
 if (stack + wbox[ordsc[unconnodeinv[1]]] >= thradj)
 ++probinv;
 //if (instance < 1000)
 //cout << "T";
 }

// ***
// End of instances loop
// ***
/*
// Output scores, ordered scores and order numbers
 for(i = 1; i <= numsc; ++i)
 {
 cout << wbox[i] << " ";
 }
 cout << endl;
 for(i = 1; i <= numsc; ++i)
 {
 cout << wbox[ordsc[i]] << " ";
 }
 cout << endl;
 for(i = 1; i <= numsc; ++i)
 {
 cout << ordsc[i] << " ";
 }
 cout << endl;
 cin.get();
*/

// End of instances loop
}

// Running time
 runtime1 = (double) (clock() / CLOCKS_PER_SEC);
 // runtime2 = (double) (clock() - (numinst*time4rand)) / CLOCKS_PER_SEC;

// ***
// Output of final statisctis
// ***
 // Main statistics
 cout << "Instances: " << numinst << " Fea: " << feacounter
 << " Inf: " << infcounter << endl;
 cout << "Instances" << endl
 << "- (01) with too many weak nodes: " << toomanyweak << endl
 << "- (02) with non-con twins: " << noncontwin << endl
 << "- (03) with too many unconnectable nodes: " << uncon << endl
 << "- (04) with poor matching: " << poormat << endl
 << "- (05) with perfect matching: " << perfmat
 << ", CHECK: " << checkcasecounter[5] << endl
 // << "- (06) with sufficient matching: " << suffmat
 // << ", CHECK: " << checkcasecounter[6]
 << endl
 << "- (07) with TGMAmin complete chain built: " << completechain
 // << ", CHECK: " << checkcasecounter[7]
 << endl
 << "- (08) with TGMAmin structure-preserving solution: "
 << (wscyclesandchain + suffmat)

193

 // << ", CHECK: " << checkcasecounter[8]
 << endl;

 cout << "- (10) with TGMAmax complete chain built: " << completechaininv
 // << ", CHECK : " << checkcasecounter[10]
 << endl
 << "- (11) with TGMAmax structure-preserving solution: "
 << wscyclesandchaininv
 // << ", CHECK: " << checkcasecounter[11]
 << endl;

 cout << "Percentage of instances solved: "
 << (double) (feacounter+infcounter)/numinst << endl;
 cout << "Running time: " << runtime1 << " seconds" << endl;
 cout << "Number of instances checked: " << resultcounter
 << " Failed checks among these: " << problemcounter;
 cout << endl << endl << endl;
/*
 // Other statistics
 cout << " Number of elsecases: " << numberofelsecases;
 cout << " Number of elsecasesINV: " << numberofelsecasesinv;
 cout << endl << endl;

 for(i=0; i<=numsc; ++i)
 cout << lengthchain[i] << " times " << i << " scores" << endl;
 for(i=0; i<=numsc; ++i)
 {
 cout << lengthchaininv[i] << " times "
 << i << " scores in INV case" << endl;
 }
 // cout << "Running time without generation of instances: "
 // << runtime2 << " seconds" << endl;
 for(i=1; i<nocomp; ++i)
 {
 cout << distofcyclesstart[i] << " times " << i
 << " cycles originally, afterwards "
 << distofcyclesleft[i] << " times." << endl;

 }
 for(i=1; i<nocomp; ++i)
 {
 cout << distofcyclesstartinv[i] << " times " << i
 << " cycles originally, afterwards "
 << distofcyclesleftinv[i] << " times in INV case." << endl;

 }

 cout << prob << " problematic cases" << endl;
 cout << probinv << " problematic cases in INV case" << endl;
*/

// ***
// End of function main
// ***
 cin.get();
 return 0;
}

// ***
// ************************* END OF PROGRAMME *******************************
// ***

B TGHRA 3.6: C++ source code

194

195

// ***
// ---
// ************************ TGHRA 3.6 ************************************
// ---
// ***

// 07 April 2010, Kai Helge Becker

// ***
// Header files, constants, global variables
// ***

#include <iostream>
#include <ctime>
#include <cstdlib>
using namespace std;

// Global variables and constants
// Constants
 int const numinst = 1000000; // number of instances
 int const numbox = 22; // number of boxes + 1
 int const numsc = 2 * numbox; // number of scores + 2
 int const minwidth = 41; // minimal width of each score
 int const maxwidth = 70; // maximal width of each score
 int const thradj = 70; // threshold for adjacency
 int const thrstrong = thradj / 2; // threshold for strong node (= thradj/2)
 int const empty = 999; // flag for empty variable entry
 // (used w/ matlist, unconnode, lastmatch)
 int const nocomp
 = (numbox+(numbox%2))/2; // no of components (no of cycles)
 int const b
 = maxwidth - minwidth + 1; // no of possible score widths
 double const b2 = b;

// Variables
 int sto0;
 double stochastic; // random number between 0 and 1
 // (for score width)
 double probability[b]; // triangular probability
 double endofpartition[b]; // for calculating triangular distribution
 int wbox[numsc]; // width of all scores
 int i, j, k, q, qstar; // loops
 int stack; // stack
 int stackinv;
 int ordsc[numsc]; // array index of ith smallest score
 int invordsc[numsc]; // inverse function of the above
 int instance; // counters for instances and cases
 int feacounter;
 int infcounter;
 int poormat;
 int completecycle;
 int nofamily;
 int patgraphcon;
 int patgraphuncon;

 int twinno1b; // place of an unconnectable box (case 1b)
 double runtime1; // running time
 //double runtime2; // running time without generating instances
 //long time4rand; // time for generating one instance
 int adjlist[numsc] [numsc]; // adjacency list (based on sorted indices)
 int emptyflag; // flag used in matching algorithm to mark edges
 // have not been matched with highest node pssble
 // due to twin node conflict. these edges
 // will not be used for FCA.
 int cyclenode[numsc]; // during TGMAmax: flag for valid edge (=1) 4 FCA
 // (based on sorted indices)

196

 // is "empty" if edge is due to mate swap
 // contains later: number of the cycle
 // that node belongs to
 int matlistinv[numsc]; // matching list for inverse matching
 int matcardinv; // cardinality of inverse matching
 int unconpointerinv; // number of unconnected nodes
 int twinnomatinv; // place of twinnode for matching (sorted ind)
 int lastmatchinv; // place of last matched node (sorted ind)
 int unconnodeinv[numsc]; // place of unconected nodes (sorted ind)
 int smallestunconinv; // smallest unconnected node (sorted ind)
 int twin[numsc]; // place of twin node (sorted ind)
 int analysedinv[numsc]; // flag if node already inclded in chain/cycle
 int componentinv[nocomp] [numsc];// nodes in cycles [0..nocomp-1]
 int lengthofcomponentinv[nocomp];// length of component
 int lengthfirstcycleinv[(numsc+1)]; // distribution of chain length

 int currentcomponent; // no of cycle being analysed
 int smallestconnotanainv; // smallest connected node not analysed yet
 int nocyclesinv; // number of cycles in INV case

 int currentedge; // counter used for list of edges
 int noedges; // number of (non-empty) edges
 int edge[numbox]; // number of lower node of each (non-empty) edge

 int T [nocomp] [numbox]; // Tq-cycles
 int S [nocomp] [nocomp]; // TIS-edges in Tq-cycle
 int SqIntersectionS; // ==0 iff (Sq intersection S) == empty set
 int SSet [nocomp]; // TIS-cycles already glued together
 int SSum; // Number of TIS-cycles already glued together
 int QSet [nocomp]; // Tq-cycles already used for glueing

 int distofcyclesstartinv[nocomp];// distribution of cycles b4 cycle analysis
 int distofcyclesleftinv[nocomp]; // distribution of cycles after cycle analysis

 int probinv; // counter for some problematic cases

// ***
// Function main starts & initialisation
// ***

int main()
{

// Welcome
 cout << "Welcome to TGHRA 3.6." << endl;

// Initialisation
 feacounter = 0; // initialising feasible instances counter
 infcounter = 0; // initialising infeasible instances counter
 poormat = 0; // initialising case counters
 completecycle = 0;
 nofamily = 0;
 patgraphcon = 0;
 patgraphuncon = 0;

 probinv = 0;

 for(i=0; i<(numsc+1); ++i)
 lengthfirstcycleinv[i] = 0;
 for(i=0; i<nocomp; ++i)
 {
 distofcyclesstartinv[i] = 0;
 distofcyclesleftinv[i] = 0;
 }

197

// Calculate probabilities for triangular distribution
probability[0] = 2/(b2*b2);
probability[(b-1)] = probability[0];
for (i = 1; i < b/2; ++i)
{
 probability [i] = probability [(i-1)] + 4/(b2*b2);
 probability [(b-1-i)] = probability [i];
}
// Calculate partition of [0,1] interval for triangular distribution
endofpartition[0] = probability[0];
for (i=1; i < b; ++i)
{
 endofpartition [i] = endofpartition [(i-1)] + probability [i];
}

/*
for (i=0; i<b; ++i)
{
 cout << i << " " << probability[i] << " " << endofpartition[i] << "
";
}
*/

// Initialising random mumbers
srand((unsigned) time(NULL));

// ***
// Start of instances loop
// ***

for (instance = 0; instance < numinst; ++instance)
{

/*
// Producing uniformly distributed random numbers for scores
 //time4rand = clock();
 for(i = 0; i < (numsc - 2); ++i)
 {
 wbox[i] = minwidth + (rand() % (maxwidth - minwidth + 1));
 }
*/
// cout << RAND_MAX << "HHHH ";

 // Producing triangularly distributed random numbers for scores
 for (i=0; i < (numsc - 2); ++i)
 {
 // Generate random number between 0 and 1
 sto0 = rand();
 stochastic = static_cast<double> (sto0) / 32767;
 // cout << stochastic << " ";
 // Check the probability interval of which the number is a member
 j = 0;
 while (stochastic > endofpartition[j]) {++j;};
 // Calculate the triangularly distributed number
 wbox[i] = minwidth + j;
 }

/*
// Test data
wbox[0] = 1;
wbox[1] = 2;
wbox[2] = 5;
wbox[3] = 10;
wbox[4] = 6;
wbox[5] = 66;

198

wbox[6] = 62;
wbox[7] = 70;
wbox[8] = 20;
wbox[9] = 21;
wbox[10] = 61;
wbox[11] = 51;
wbox[12] = 25;
wbox[13] = 26;
wbox[14] = 27;
wbox[15] = 46;
wbox[16] = 45;
wbox[17] = 47;
*/

// Add two dominating nodes
 wbox[(numsc - 2)] = thradj + 1;
 wbox[(numsc - 1)] = thradj + 1;

// Test data
/*
 wbox[19] = 1; wbox[9] = 30; //wbox[10] = 35; wbox[11] = 36;

 for(i = 10; i < 19; ++i)
 {
 wbox[i] = 20 + (rand() % 6);
 }
 for(i = 12; i < 20; ++i)
 {
 wbox[i] = 10 + (rand() % 11);
 }
*/

/*
// Output instance
 cout << endl;
 for(i = 0; i < numsc; ++i)
 {
 cout << wbox[i] << " ";
 }
 cout << endl;
*/

 // Running time without generating instances
 // time4rand = clock() - time4rand;
 // cout << time4rand << endl;

// ***
// Sorting scores from smallest to largest
// ***

 // Initialising order
 for(i = 0; i < numsc; ++i)
 {
 ordsc[i] = i;
 }

 // Starting sorting procedure
 for(i = 1; i < numsc; ++i)
 {
 for(j = i-1; j >= 0; --j)
 {
 //cout << i << " " << ordsc[i] << " "
 // << j << " " << ordsc[j] << endl;
 if (wbox[i] < wbox[ordsc[j]])
 {
 ordsc[j+1] = ordsc[j];

199

 ordsc[j] = i;
 //cout << "after change " << i << " " << ordsc[i] << " "
 // << j << " " << ordsc[j] << endl;
 }
 //else { cout << "no change, next i" << endl; break; }
 }
 }

/*
// Output sorted instance
 cout << "order: ";
 for(i = 0; i < numsc; ++i)
 {
 cout << wbox[ordsc[i]] << " ";
 }
 cout << endl;
*/

// ***
// Matching algorithm (TGMAmax)
// ***

// Step 1: List with adjacent nodes disregarding twin nodes
 for(i = 0; i < numsc; ++i) // general adjacency list
 {
 for(j = 0; j < numsc; ++j)
 {
 if (wbox[ordsc[i]] + wbox[ordsc[j]] >= thradj)
 {
 adjlist[i] [j] = 1;
 adjlist[j] [i] = 1;
 }
 else
 {
 adjlist[i] [j] = 0;
 adjlist[j] [i] = 0;
 }
 }
 }

 for (i=0; i<numsc; ++i) // generating inverse function of ordsc[]
 {
 invordsc[ordsc[i]] = i;
 }

 // we mark twin nodes qua adjacency list
 for (i = 0; i < numbox; ++i)
 {
 adjlist[invordsc[(2*i)]] [invordsc[(2*i+1)]] = 2;
 adjlist[invordsc[(2*i+1)]] [invordsc[(2*i)]] = 2;
 }

// Step 2: Initialise matching list and counters
 for (i = 0; i < numsc; ++i)
 {
 matlistinv[i] = empty;
 cyclenode[i] = 1; // will be set to "empty" if resulting from mate swap
 }
 matcardinv = 0;
 unconpointerinv = 0;
 for (i = 0; i < numsc; ++i)
 {
 unconnodeinv[i] = empty;
 }
 lastmatchinv = empty;

200

// Step 3: Matching algorithm
 for(i=0; i<numsc; ++i)// check all nodes
 {
 emptyflag = 0;
 if (matlistinv[i] == empty)// does node need a mate?
 {
 for (j=(numsc-1); j>i; --j)// look for a mate for node i
 {
 if ((adjlist[i] [j] >= 1)
 && (matlistinv[j] == empty))// if potential mate found
 {
 if (adjlist [i] [j] != 2) // if potential mate != twin
 {
 matlistinv[i] = j;
 matlistinv[j] = i;
 lastmatchinv = i;
 ++matcardinv;
 if (emptyflag == 1) // delete edge for FCA if matching
 // was not with highest node
 // due to this node
being twin node
 {
 cyclenode[i] = empty;
 cyclenode[j] = empty;
 }
 break;
 };
 if (adjlist [i] [j] == 2) // if potential mate == twin
 {
 emptyflag = 1; // mark this case to make sure that the
 // matching edge will be left out in FCA
 }
 }
 }
 if (matlistinv[i] == empty) // if there still is no mate:
 { // do twin node swap or finally acquiesce
 if (ordsc[i] % 2 == 0) // find out twin node number
 {
 twinnomatinv = invordsc[(ordsc[i]+1)];
 }
 else
 {
 twinnomatinv = invordsc[(ordsc[i]-1)];
 }
 if // twin node swap possible?
 ((wbox[ordsc[i]]+wbox[ordsc[twinnomatinv]]>=thradj)// match w/ twin?
 && (matlistinv[twinnomatinv] == empty) // twin unmatchd?
 && (lastmatchinv != empty) // exchnge pssble?
 && (twinnomatinv > i) // twin larger?
 && (wbox[ordsc[lastmatchinv]] // lastmatch with twin?
 + wbox[ordsc[twinnomatinv]] >= thradj))
 { // then swap mates
 matlistinv[i] = matlistinv[lastmatchinv];
 matlistinv[lastmatchinv] = twinnomatinv;
 matlistinv[twinnomatinv] = lastmatchinv;
 matlistinv[matlistinv[i]] = i;
 cyclenode[lastmatchinv] = empty; // edge from mate swap will not
count for FCA
 cyclenode[twinnomatinv] = empty;
 lastmatchinv = i;
 ++matcardinv;
 }
 else // otherwise: one more unconnected node
 {
 ++unconpointerinv;

201

 unconnodeinv[(unconpointerinv-1)] = i;
 }
 }
 }
 }

// ***
// Poor matching (#M <= n-1)
// ***

 if (matcardinv < numbox)
 {
 ++poormat;
 ++infcounter;

/*AAA
 cout << "inf: poor matching with card: " << matcard
 << " and uncon nodes: ";
 for (i=0; i<numsc; ++i)
 {
 if (unconnode[i] != empty)
 cout << unconnode[i] << " w= " << wbox[ordsc[unconnode[i]]]
 << " " << endl;
 }
 cout << endl;
*/
 continue;
 }

// **
// Building up twin-induced structure of matching from TGMAmax
// **

 // Initialise data
 for (i=0; i<numsc; ++i)
 {
 analysedinv[i] = 0;
 for (j=0; j<nocomp; ++j)
 componentinv [j] [i] = empty;
 if (ordsc[i] % 2 == 0) // find out twin-node number
 twin[i] = invordsc[(ordsc[i]+1)];
 else
 twin[i] = invordsc[(ordsc[i]-1)];
 // cout << ordsc[i] << "-" << ordsc[twin[i]] << " ";
 }
 // cout << endl;

 // Find smallest connected node not analysed yet = first node
 for (i=0; i<numsc; ++i)
 {
 if (analysedinv[i] == 0)
 {
 smallestconnotanainv = i;
 break;
 }
 }
 if (matlistinv[smallestconnotanainv] == empty)
 cout << "ARLARM2inv!!!" << endl;

 currentcomponent = -1; // Implies that first cycle is component 0

 // Build up all components = cycles
 do
 {
 ++currentcomponent; // Set component
 if (currentcomponent > nocomp-1)

202

 cout << "ARLARM3inv!!!" << endl;

 j = -1; // Build up cycle
 stack = smallestconnotanainv;
 do
 {
 ++j;
 componentinv[currentcomponent] [j] = stack;
 analysedinv[stack] = 1;
 ++j;
 componentinv[currentcomponent] [j] = twin[stack];
 analysedinv[twin[stack]] = 1;
 stack = matlistinv[twin[stack]];
 }
 while (stack != smallestconnotanainv); //= while not back 2 bgnning of cyc

 lengthofcomponentinv[currentcomponent] = ++j;

 for (i=0; i<numsc; ++i) // Find smallest connected node not analysed yet
 if (analysedinv[i] == 0)
 {
 smallestconnotanainv = i;
 break;
 };
 if (matlistinv[smallestconnotanainv] == empty)
 cout << "ARLARM2Binv!!!" << endl;
 }
 while (smallestconnotanainv != stack); // = while new not analysed node found
 nocyclesinv = ++currentcomponent; // save number of cycles

// **
// Does twin-induced structure consist of only one cycle?
// **

 if (lengthofcomponentinv[0] == numsc)// is first cycle complete?
 {
 ++completecycle;
 ++feacounter;

/*
 for(i=0; i<numbox; ++i)
 {
 cout << wbox[ordsc[component[0] [(2*i)]]] << "("
 << ordsc[component[0] [(2*i)]] << ")-("
 << ordsc[component[0] [(2*i+1)]] << ")"
 << wbox[ordsc[component[0] [(2*i+1)]]] << " -- ";
 }
 cout << "*" << endl;
*/

 continue;
 }

// Counting number of cycles b4 analysis
 ++distofcyclesstartinv[nocyclesinv];

// ***
// Create for FCA the list cyclenode[i]
// This list contains for each node the cycle that its edge belongs to
// ***

 for (i=0; i < nocyclesinv; ++i)
 {
 for (j=0; j < lengthofcomponentinv[i]; ++j)
 {
 // if edge is not deleted for FCA

203

 if (cyclenode[(componentinv[i] [j])] != empty)
 {
 cyclenode[(componentinv[i] [j])] = i;
 }
 }
 }

// ***
// Create sorted list of edges
// ***

// Problem: For FCA we need an - array edge[matcardinv]
// (contains (sorted) number of lower node)
// - list that gives cycle for each edge
// - higher and lower node of each edge

// The list of the edges is given by the list of nodes up to matcardinv
// (we just have to remove empty edges)
// We already have for each node the cycle (cyclenode)
// The lower node of an edge is equivalent to the number of the edge
// The higher node of an edge is equivalent to its matching mate

// Create list of edges without empty edges (those generated by mate swap)
 // Initialisation
 currentedge = 0;
 for (i=0; i<matcardinv; ++i)
 {
 edge[i] = empty;
 }
 // Create list
 for (i=0; i<matcardinv; ++i)
 {
 while (cyclenode[i] == empty) {++i;}
 edge[currentedge] = i;
 ++currentedge;
 }
 noedges = currentedge;

// ***
// Family construction algorithm
// ***

 // Initialisation
 qstar = -1;
 for (q=0; q < nocomp; ++q)
 {
 for (i=0; i < matcardinv; ++i)
 {
 T[q] [i] = empty; // set of edges in alternating T-cycle q
 }
 for (i=0; i < nocyclesinv; ++i)
 {
 S[q] [i] = 0; // set of indices of cycles that have edge in T[q]
 // == 1 iff T-cycle q has an edge
 // from twin-induced-structure cycle i
 };
 }
 k = 0; // edge from matching under consideration

 // Start (Take into account: edges k with cyclenode[k]==empty should not be in Tq-
cycle)
 do
 {
 // look for beginning of new Tq-cycle
 while
 ((k < noedges - 2)

204

 && ((adjlist[edge[k]] [matlistinv[edge[k+1]]] != 1)
 || (cyclenode[edge[k]] == cyclenode[edge[k+1]])))
 {
 ++k;
 }

 // start new Tq-cycle and add edges to it as long as it is reasonable
 if ((adjlist[edge[k]] [matlistinv[edge[k+1]]] == 1)
 && (cyclenode[edge[k]] != cyclenode[edge[k+1]]))
 {
 // Assign new number (qstar) to Tq-cycle and add first edge to Tq-
cycle
 ++qstar;
 i = 0;
 T[qstar] [i] = k;
 S[qstar] [cyclenode[edge[k]]] = 1;
 // add more edges to Tq-cycle
 while ((k < noedges - 1)
 && (adjlist[edge[k]] [matlistinv[edge[k+1]]] == 1)
 && (S[qstar] [cyclenode[edge[k+1]]] == 0))
 {
 ++i;
 ++k;
 T[qstar] [i] = k;
 S[qstar] [cyclenode[edge[k]]] = 1;
 }
 }

 ++k;
 }
 while (k < noedges - 1);

// ***
// No potentially appropriate family of alternating T-cycles found
// ***

 if (qstar == -1)
 {
 ++nofamily;
 ++infcounter;
 continue;
 }

// ***
// Check if patching graph connected
// ***

 // Initialisation

 for (q=1; q<=qstar; ++q)
 {
 QSet [q] = 0; // ==1 iff Tq-cycle number q has already been considered
 }
 q = 0; // start with first Tq-cycle
 QSet [0] = 1;

 for (i=0; i<nocyclesinv; ++i)
 {
 SSet [i] = S [q] [i]; // ==1 iff TIS-cycle i has been included
 }

 SSum = 0; // == number of TIS-cycles that have been included
 for (i=0; i<nocyclesinv; ++i)
 {
 SSum = SSum + SSet [i];

205

 }

 // Start connectivity check
 while ((q <= qstar) && (SSum < nocyclesinv))
 {
 do // Look for a Tq-cycle that leads to enlargement
 {
 ++q; // Consider next Tq-cycle
 SqIntersectionS = empty;
 if (q <= qstar)
 {
 for (j=0; j<nocyclesinv; ++j) // Is there a [j] for which
S[q][j]=1 and SSet[j]=1?
 {
 if ((S [q] [j] == 1) && (SSet [j] == 1))
 {
 SqIntersectionS = 1;
 }
 }
 }
 }
 while ((q < qstar + 1) && ((QSet[q] == 1) || (SqIntersectionS == empty)));

 if (q <= qstar) // if Tq-cycle for enlargement has been found
 {
 for (i=0; i<nocyclesinv; ++i)
 {
 if ((SSet [i] == 0) && (S [q] [i] == 1))
 {
 SSet [i] = 1;
 ++SSum;
 }
 }
 QSet [q] = 1;
 q = 0;
 }
 }

 /*
 // Output for testing
 for (i=0;i<numsc;++i)
 {
 cout << "ordsci" << i << " " << ordsc[i] << endl;
 }

 for (i=0;i<numsc;++i)
 {
 cout << "matlistinvi" << i << " " << matlistinv[i] << endl;
 }

 for (q=0;q<nocomp;++q)
 {
 for (i=0;i<numsc;++i)
 {
 cout << "componentq" << q << "i" << i << " " << componentinv[q][i]
<< endl;
 }
 }

 for (i=0;i<numsc;++i)
 {
 cout << "cycledgei" << i << " " << cyclenode[i] << endl;
 }

 for (i=0;i<matcardinv;++i)
 {

206

 cout << "edgei" << i << " " << edge[i] << endl;
 }
 cout << "noedges" << " " << noedges << endl;

 for (q=0;q<nocomp;++q)
 {
 for (i=0;i<matcardinv;++i)
 {
 cout << "Tq" << q << "i" << i << " " << T[q][i] << endl;
 }
 }
 for (q=0;q<nocomp;++q)
 {
 for (i=0;i<nocomp;++i)
 {
 cout << "Sq" << q << "i" << i << " " << S[q][i] << endl;
 }
 }
 for (q=0;q<nocomp;++q)
 {
 cout << "QSet" << q << " " << QSet[q] << endl;
 }
 for (i=0;i<nocomp;++i)
 {
 cout << "SSet" << i << " " << SSet[i] << endl;
 }
 cout << "qstar" << qstar << endl;
 cout << "SSum " << SSum << endl;
 cout << "nocycles " << nocyclesinv << endl;
 cout << "numbox " << numbox << endl;
 cout << "nocomp " << nocomp << endl;
 cout << "matcardinv " << matcardinv << endl;
*/

// **
// If patching graph connected: FEASIBLE, else: INFEASIBLE
// **

 if (SSum == nocyclesinv)
 {
 ++patgraphcon;
 ++feacounter;
 continue;
 }

 if (SSum < nocyclesinv)
 {
 ++patgraphuncon;
 ++infcounter;
 continue;
 }

 if (SSum > nocyclesinv)
 {
 ++probinv;
 continue;
 }

// **
// Statistics and some more checks for remaining cases after inverse match
// **

 // Counting the number of cycles and the length of the chain
 ++distofcyclesleftinv[nocyclesinv];
 ++lengthfirstcycleinv[lengthofcomponentinv[0]];

207

// ***
// End of instances loop
// ***
/*
// Output scores, ordered scores and order numbers
 for(i = 1; i <= numsc; ++i)
 {
 cout << wbox[i] << " ";
 }
 cout << endl;
 for(i = 1; i <= numsc; ++i)
 {
 cout << wbox[ordsc[i]] << " ";
 }
 cout << endl;
 for(i = 1; i <= numsc; ++i)
 {
 cout << ordsc[i] << " ";
 }
 cout << endl;
 cin.get();
*/

// End of instances loop
}

// Running time
 runtime1 = (double) (clock() / CLOCKS_PER_SEC);
 // runtime2 = (double) (clock() - (numinst*time4rand)) / CLOCKS_PER_SEC;

// ***
// Output of final statisctis
// ***

 // Main statistics
 cout << "Instances: " << numinst << " Fea: " << feacounter
 << " Inf: " << infcounter << endl;
 cout << "Number of boxes: " << (numbox-2) << endl;
 cout << "Distribution uniform in: " << minwidth << " to " << maxwidth << endl;
 cout << "Threshold: " << thradj << endl;
 cout << "Instances" << endl
 << "- (01) with poor matching: " << poormat << endl
 << "- (02) with TGMAmax complete cycle built: " << completecycle << endl
 << "- (03) with no Tq-family: " << nofamily << endl
 << "- (04) with patching graph unconnected: " << patgraphuncon << endl
 << "- (05) with patching graph connected: " << patgraphcon << endl;

 cout << "Percentage of instances solved: "
 << (double) 100*(feacounter+infcounter)/numinst << endl;
 cout << "Running time: " << runtime1 << " seconds" << endl;
 cout << endl << endl << endl;

 // Other statistics
 for(i=0; i<=numsc; ++i)
 {
 cout << lengthfirstcycleinv[i] << " times "
 << i << " scores" << endl;
 }
 // cout << "Running time without generation of instances: "
 // << runtime2 << " seconds" << endl;
 for(i=1; i<nocomp; ++i)
 {
 cout << distofcyclesstartinv[i] << " times " << i
 << " cycles originally, afterwards "
 << distofcyclesleftinv[i] << " times." << endl;

208

 }
 cout << probinv << " problematic cases in INV case" << endl;

// ***
// End of function main
// ***
 cin.get();
 return 0;
}

// ***
// ************************* END OF PROGRAMME *******************************
// ***

C MSSP 3.4: C++ source code

209

210

// ***
// ---
// ************************ MSSP 3.4 *************************************
// ---
// ***

// 15 April 2010, Kai Helge Becker

// ***
// Header files, constants, global variables
// ***

#include <iostream>
#include <ctime>
#include <cstdlib>
using namespace std;

// Global variables and constants
// Constants
 int const numinst = 10000000; // number of instances
 int const numbox = 10; // number of boxes
 int const numsc = 2 * numbox; // number of scores
 int const minwidth = 1; // minimal width of each score
 int const maxwidth = 69; // maximal width of each score
 int const thradj = 70; // threshold for adjacency
 int const thrstrong = thradj / 2; // threshold for strong node (= thradj/2)
 int const empty = 999; // flag for empty variable entry
 // (used w/ matlist, unconnode, lastmatch)
 int const nocomp
 = (numbox+(numbox%2))/2; // no of components (chain + no of cycles)

// Variables
 int wbox[numsc]; // width of all scores
 int i, j, k; // loops
 int stack; // stack
 int stackinv;
 int ordsc[numsc]; // array index of ith smallest score
 int invordsc[numsc]; // inverse function of the above
 int instance; // counters for instances and cases
 int feacounter;
 int infcounter;
 int toomanyweak;
 int noncontwin;
 int uncon;
 int perfmat;
 int poormat;
 int suffmat;
 int yeahcounter;
 int completechain;
 int wscyclesandchain;
 int msscyclesandchain;
 int wwcyclesandchain;
 int mswcyclesandchain;
 int wwscyclesandchain;
 int mswscyclesandchain;
 int wswcyclesandchain;
 int msswcyclesandchain;
 int cyc1chainsplit;
 int cyc2chainsplit;
 int numberof09bcases;
 int ws1chainsplit;
 int ws2chainsplit;
 int ww1chainsplit;
 int ww2chainsplit;
 int wws1chainsplit;
 int wws2chainsplit;

211

 int wsw1chainsplit;
 int wsw2chainsplit;
 int completechaininv;
 int wscyclesandchaininv;
 int msscyclesandchaininv;
 int wwcyclesandchaininv;
 int mswcyclesandchaininv;
 int wwscyclesandchaininv;
 int mswscyclesandchaininv;
 int wswcyclesandchaininv;
 int msswcyclesandchaininv;
 int cyc1chainsplitinv;
 int cyc2chainsplitinv;
 int numberof12bcases;
 int ws1chainsplitinv;
 int ws2chainsplitinv;
 int ww1chainsplitinv;
 int ww2chainsplitinv;
 int wws1chainsplitinv;
 int wws2chainsplitinv;
 int wsw1chainsplitinv;
 int wsw2chainsplitinv;

 int twinno1b; // place of an unconnectable box (case 1b)
 double runtime1; // running time
 //double runtime2; // running time without generating instances
 //long time4rand; // time for generating one instance
 int adjlist[numsc] [numsc]; // adjacency list (based on sorted indices)
 int matlist[numsc]; // matching list (based on sorted indices)
 int matlistinv[numsc]; // matching list for inverse matching
 int matcard; // cardinality of matching
 int matcardinv; // cardinality of inverse matching
 int unconpointer; // number of unconnected nodes
 int unconpointerinv; // same for inverse matching
 int twinnomat; // place of twinnode for matching (sorted ind)
 int twinnomatinv; // same 4 inverse matching
 int lastmatch; // place of last matched node (sorted ind)
 int lastmatchinv; // same 4 inverse matching
 int weakeststrong; // place of weakest strong node (sorted ind)
 int unconnode[numsc]; // place of unconected nodes (sorted ind)
 int unconnodeinv[numsc]; // place of unconectd node in inverse matching
 int smallestuncon; // smallest unconnected node (sorted ind)
 int smallestunconinv; // for INV case
 int twin[numsc]; // place of twin node (sorted ind)
 int analysed[numsc]; // flag if node already inclded in chain/cycle
 int analysedinv[numsc]; // for INV case
 int component[nocomp] [numsc];// nodes in chain [0] and cycles [1..nocomp-1]
 int componentinv[nocomp] [numsc]; // for INV case
 int lengthofcomponent[nocomp];// length of component (chain is component 0)
 int lengthofcomponentinv[nocomp]; // for INV case
 int lengthchain[(numsc+1)]; // distribution of chain length
 int lengthchaininv[(numsc+1)];

 int currentcomponent; // no of cycle being analysed
 int smallestconnotana; // smallest connected node not analysed yet
 int smallestconnotanainv; // for INV case
 int nocycles; // number of cycles
 int nocyclesinv; // number of cycles in INV case
 int strongestnode[nocomp]; // characteristic of each cycle
 int strongestweaknode[nocomp];
 int strongestnodeinv[nocomp];
 int strongestweaknodeinv[nocomp];
 int weakestnode[nocomp]; // both used from 1..nocycles
 int weakeststrongnode[nocomp];
 int weakestnodeinv[nocomp];

212

 int weakeststrongnodeinv[nocomp];
 int strongeststrongest; // characteristics of all cycles
 int strongeststrongestinv;
 int weakeststrongest;
 int weakeststrongestinv;
 int weakestweakest;
 int weakestweakestinv;
 int strongestweakest;
 int strongestweakestinv;
 int strongeststrongestweak;
 int strongeststrongestweakinv;
 int weakeststrongestweak;
 int weakeststrongestweakinv;
 int strongestweakeststrong;
 int strongestweakeststronginv;
 int weakestweakeststrong;
 int weakestweakeststronginv;
 int pss[nocomp];
 int psw[nocomp];
 int pws[nocomp];
 int pww[nocomp];
 int psss;
 int pwss;
 int psws;
 int pwws;
 int pssw;
 int pwsw;
 int psww;
 int pwww;
 int pssinv[nocomp];
 int pswinv[nocomp];
 int pwsinv[nocomp];
 int pwwinv[nocomp];
 int psssinv;
 int pwssinv;
 int pswsinv;
 int pwwsinv;
 int psswinv;
 int pwswinv;
 int pswwinv;
 int pwwwinv;

 int ordcyc[nocomp]; // order of cycles according to weakness of
 // strongest node, for checkresult(8)
 int ordcycinv[nocomp]; // chckresult 11
 int placeofstrongestnode[nocomp]; // pl of s node in original order of cycles
 // input for component[nocomp] [XXX]
 // used for checkresult(8)
 int placeofstrongestnodeinv[nocomp]; // chckresult (11)
 int currentplace; // next place in array "result" to be filled
 int currentplaceinv;
 int numberofelsecases; // more than one cycle
 int numberofelsecasesinv;

 int stackcyc; // for result check (09a)
 int stackcycinv; // for result check (12a)
 int stackchain; // for result check (09a)
 int stackchaininv; // for result check (12a)
 int splitplace; // for result check (09b)
 int splitplaceinv; // for result check (12b)
 int connector[nocomp]; // for result check (09b)
 int connectorinv[nocomp]; // for result check (12b)
 int placeofconnector[nocomp]; // for result check (09b)
 int placeofconnectorinv[nocomp]; // for result check (12b)
 int caseno; // for result check (09ab) and (12ab)
 int casetype;

213

 int distofcyclesstart[nocomp];// distribution of cycles b4 cycle analysis
 int distofcyclesleft[nocomp]; // distribution of cycles after cycle analysis
 int distofcyclesstartinv[nocomp]; // same for INV case
 int distofcyclesleftinv[nocomp];
 int prob; // counter for some problematic cases
 int probinv; // smallest for INV

 int result[numsc]; // RESULT
 int resultcounter;
 int checkcasecounter[130];
 int problemcounter;
 int status; // result of result check

// ***
// Function for checking results
// ***
 int checkresult (int subcase)
 {
 // Test
 // result[17] = 0;

 // Count check
 ++resultcounter;
 ++checkcasecounter[subcase];

 // Local variable
 int problem; // flag for problem
 problem = 0;

 // Checking if there is a "999" node
 for(i=0; i<numsc; ++i)
 {
 if (result[i] == 999)
 {
 problem = 1;
 cout << endl << "999 case" << endl;
 }
 }

 // Checking twin node and matching characteristic except for last pair
 for(i=0; i<=(numsc-4); i=i+2)
 {
 // Checking twin node chacteristic
 if ((((ordsc[result[i]]) % 2) == 0) // ordsc[i] even
 && (ordsc[result[i]] != ((ordsc[result[(i+1)]])-1)))
 {
 problem = 1;
 break;
 }
 if ((((ordsc[result[i]]) % 2) == 1) // ordsc[i] odd
 && (ordsc[result[i]] != ((ordsc[result[(i+1)]])+1)))
 {
 problem = 1;
 break;
 }

 // Checking matching characeristic
 if (wbox[ordsc[result[(i+1)]]] + wbox[ordsc[result[(i+2)]]] < thradj)
 {
 problem = 1;
 break;
 }
 }

 // Checking twin node characteristic for last pair

214

 if (((ordsc[result[(numsc-2)]] % 2) == 0) // ordsc[i] even
 && (ordsc[result[(numsc-2)]] != ((ordsc[result[(numsc-1)]])-1)))
 problem = 1;
 if (((ordsc[result[(numsc-2)]] % 2) == 1) // ordsc[i] odd
 && (ordsc[result[(numsc-2)]] != ((ordsc[result[(numsc-1)]])+1)))
 problem = 1;

 // For test if no problem
 // if ((problem == 0) && (subcase == 122)) cout << "***" << endl;

 // Consequences if problem
 if (problem == 1)
 {
 cout << "***** problem with subcase " << subcase << " *****" << endl;
 if (subcase == 92) cout << casetype << " / " << caseno << endl;
 if (subcase == 122) cout << casetype << " / " << caseno << endl;
 // chainanalysisok = 1;

 // Checking analysis of cycles and chain
 for(i=0; i<=nocyclesinv; ++i)
 {
 for(j=1; j<lengthofcomponentinv[i]; j=j+2)
 {
 if ((ordsc[componentinv[i] [j]] != (ordsc[componentinv[i] [j-1]]+1))
 && (ordsc[componentinv[i] [j]] != (ordsc[componentinv[i] [j-1]]-1)))
 cout << "twin wrong " << endl;
 }
 for(j=1; j<lengthofcomponentinv[i]-2; j=j+2)
 {
 if (wbox[ordsc[componentinv[i] [j]]]
 + wbox[ordsc[componentinv[i] [j+1]]]
 < thradj)
 cout << "mate wrong " << endl;
 }
 }
 // Printing variables for building result
 cout << "ordcycinv " << ordcycinv[1] << " " << ordcycinv[2] << endl;
 cout << "splitplace " << splitplaceinv << endl;
 cout << "connectorinv ";
 for (i=1; i<=nocyclesinv; ++i)
 cout << connectorinv[i] << " ";
 cout << endl << "placeofconnectorinv ";
 for(i=1; i<=nocyclesinv; ++i)
 cout << placeofconnectorinv[i] << " ";
 cout << endl << endl;

 cout << "wbox[i]: ";
 for(i=0; i<numsc; ++i)
 cout << wbox[i] << " ";
 cout << endl;
 cout << "wbox[ordsc[i]]: ";
 for(i=0; i<numsc; ++i)
 cout << wbox[ordsc[i]] << " ";
 cout << endl;
 cout << "result: ";
 for(i=0; i<numsc; i=i+2)
 cout << wbox[ordsc[result[i]]] << "(" << ordsc[result[i]] << ")--("
 << ordsc[result[(i+1)]] << ")" << wbox[ordsc[result[(i+1)]]]
 << " ";
 cout << endl << "number of cycles: " << nocycles << endl; // non-INV only
 cout << endl;
 ++problemcounter;
 // Note: The following printout is correct only in INV case
 for(i=0; i<=nocyclesinv; ++i)
 {
 for(j=0; j<lengthofcomponentinv[i]; ++j)

215

 cout << wbox[ordsc[componentinv[i] [j]]] << "-";
 cout << endl;
 }
 cout << endl << endl;
 }

 // Return problem status
 return problem;
 }

// ***
// Function main starts & initialisation
// ***
int main()
{

// Welcome
 cout << "Welcome to MSSP 3.4." << endl;

// Initialisation
 feacounter = 0; // initialising feasible instances counter
 infcounter = 0; // initialising infeasible instances counter
 toomanyweak = 0; // initialising case counters
 noncontwin = 0;
 uncon = 0;
 perfmat = 0;
 poormat = 0;
 suffmat = 0;
 yeahcounter = 0;

 completechain = 0;
 wscyclesandchain = 0;
 msscyclesandchain = 0;
 wwcyclesandchain = 0;
 mswcyclesandchain = 0;
 wwscyclesandchain = 0;
 mswscyclesandchain = 0;
 wswcyclesandchain = 0;
 msswcyclesandchain = 0;
 cyc1chainsplit = 0;
 cyc2chainsplit = 0;
 numberof09bcases = 0;
 ws1chainsplit = 0;
 ws2chainsplit = 0;
 ww1chainsplit = 0;
 ww2chainsplit = 0;
 wws1chainsplit = 0;
 wws2chainsplit = 0;
 wsw1chainsplit = 0;
 wsw2chainsplit = 0;

 completechaininv = 0;
 wscyclesandchaininv = 0;
 msscyclesandchaininv = 0;
 wwcyclesandchaininv = 0;
 mswcyclesandchaininv = 0;
 wwscyclesandchaininv = 0;
 mswscyclesandchaininv = 0;
 wswcyclesandchaininv = 0;
 msswcyclesandchaininv = 0;
 cyc1chainsplitinv = 0;
 cyc2chainsplitinv = 0;
 numberof12bcases = 0;
 ws1chainsplitinv = 0;
 ws2chainsplitinv = 0;

216

 ww1chainsplitinv = 0;
 ww2chainsplitinv = 0;
 wws1chainsplitinv = 0;
 wws2chainsplitinv = 0;
 wsw1chainsplitinv = 0;
 wsw2chainsplitinv = 0;

 prob = 0;
 probinv = 0;

 resultcounter = 0;
 for(i=0; i<130; ++i)
 checkcasecounter[i] = 0;

 problemcounter = 0;
 numberofelsecases = 0;

 for(i=0; i<(numsc+1); ++i)
 lengthchain[i] = 0;
 for(i=0; i<nocomp; ++i)
 {
 distofcyclesstart[i] = 0;
 distofcyclesleft[i] = 0;
 }

 for(i=0; i<(numsc+1); ++i)
 lengthchaininv[i] = 0;
 for(i=0; i<nocomp; ++i)
 {
 distofcyclesstartinv[i] = 0;
 distofcyclesleftinv[i] = 0;
 }

// Initialising random mumbers
srand((unsigned) time(NULL));

// ***
// Start of instances loop
// ***
for (instance = 0; instance < numinst; ++instance)
{

// Producing uniformly distributed random numbers for scores
 //time4rand = clock();
 for(i = 0; i < numsc; ++i)
 {
 wbox[i] = minwidth + (rand() % (maxwidth - minwidth + 1));
 }

// Test data
/*
 wbox[19] = 1; wbox[9] = 30; //wbox[10] = 35; wbox[11] = 36;

 for(i = 10; i < 19; ++i)
 {
 wbox[i] = 20 + (rand() % 6);
 }
 for(i = 12; i < 20; ++i)
 {
 wbox[i] = 10 + (rand() % 11);
 }
*/

/*AAA

217

// Output instance
 cout << endl;
 for(i = 0; i < numsc; ++i)
 {
 cout << wbox[i] << " ";
 }
 cout << endl;
*/

 // Running time without generating instances
 // time4rand = clock() - time4rand;
 // cout << time4rand << endl;

// ***
// CASE (01): Less than numbox - 1 strong nodes
// ***
 j = 0;
 for(i = 0; i < numsc; ++i)
 {
 if (wbox[i] >= thrstrong)
 ++j;
 }
 if (j < numbox - 1)
 {
 ++infcounter;
 ++toomanyweak;
 //AAAcout << "inf: too many weak nodes, namely: " << numsc-j << endl;
 continue;
 }

// ***
// Sorting scores from smallest to largest
// ***
 // Initialising order
 for(i = 0; i < numsc; ++i)
 {
 ordsc[i] = i;
 }
 // Starting sorting procedure
 for(i = 1; i < numsc; ++i)
 {
 for(j = i-1; j >= 0; --j)
 {
 //cout << i << " " << ordsc[i] << " "
 // << j << " " << ordsc[j] << endl;
 if (wbox[i] < wbox[ordsc[j]])
 {
 ordsc[j+1] = ordsc[j];
 ordsc[j] = i;
 //cout << "after change " << i << " " << ordsc[i] << " "
 // << j << " " << ordsc[j] << endl;
 }
 //else { cout << "no change, next i" << endl; break; }
 }
 }

/*
// Insertion sort
 for(i = 2; i <= numsc; ++i)
 {
 j = 1;
 while ((j < i) & (wbox[ordsc[j]] <= wbox[i]))
 {
 ++j;
 }
 if (j < i) // this implies that wbox[ordsc[j]] > wbox[i]

218

 {
 stack = i;
 for(k = i-1; k >= j; --k)
 {
 ordsc[k+1] = ordsc[k]
 }
 ordsc[j] = i
 }
 }
*/
/*
// Output sorted instance
 cout << "order: ";
 for(i = 0; i < numsc; ++i)
 {
 cout << wbox[ordsc[i]] << " ";
 }
 cout << endl;
*/

// ***
// CASE (02): Two non-connectable twin nodes
// ***
 j = 0;
 for(i = 0; i < numbox; ++i)
 {
 if (wbox[2*i] + wbox[ordsc[(numsc-1)]] < thradj)
 {
 if (wbox[2*i + 1] + wbox[ordsc[(numsc-1)]] < thradj)
 {
 ++j;
 //AAAtwinno = i;
 }
 }
 }
 if (j >= 1)
 {
 ++infcounter;
 ++noncontwin;
 /*
 // Output instance
 for(k = 1; k <= numsc; ++k)
 {
 cout << wbox[k] << " ";
 }
 cout << endl;
 // Output sorted instance
 cout << "order: ";
 for(k = 1; k <= numsc; ++k)
 {
 cout << wbox[ordsc[k]] << " ";
 }
 cout << endl;
 */
 //AAAcout << "inf: two non-connectable twin nodes at pair "
 // << twinno << endl;
 continue;
 }

// ***
// CASE (03): Three non-connectable nodes
// ***
 j = 0;
 for(i = 0; i < numsc; ++i)
 {
 if (wbox[i] + wbox[ordsc[(numsc-1)]] < thradj)

219

 ++j;
 }
 if (j >= 3)
 {
 ++infcounter;
 ++uncon;
 //AAAcout << "inf: too many unconnectable nodes,"
 // << "largest number has order " << ordsc[numsc] << endl;
 continue;
 }

// ***
// Matching algorithm
// ***

// Step 1: List with adjacent nodes disregarding twin nodes
 for(i = 0; i < numsc; ++i) // general adjacency list
 {
 for(j = 0; j < numsc; ++j)
 {
 if (wbox[ordsc[i]] + wbox[ordsc[j]] >= thradj)
 {
 adjlist[i] [j] = 1;
 }
 else
 {
 adjlist[i] [j] = 0;
 }
 }
 }

 for (i=0; i<numsc; ++i) // generating inverse function of ordsc[]
 {
 invordsc[ordsc[i]] = i;
 }

 for (i = 0; i < numbox; ++i)// twin nodes cannot be connected to eachother
 {
 adjlist[invordsc[(2*i)]] [invordsc[(2*i+1)]] = 0;
 adjlist[invordsc[(2*i+1)]] [invordsc[(2*i)]] = 0;
 }

// Step 2: Initialise matching list and counters
 for (i = 0; i < numsc; ++i)
 {
 matlist[i] = empty;
 }
 matcard = 0;
 unconpointer = 0;
 for (i = 0; i < numsc; ++i)
 {
 unconnode[i] = empty;
 }
 lastmatch = empty;

// Step 3: Matching algorithm
 for(i=0; i<numsc; ++i)// check all nodes
 {
 if (matlist[i] == empty)// does node need a mate?
 {
 for (j=(i+1); j<numsc; ++j)// look for a mate for node i
 {
 if ((adjlist[i] [j] == 1)
 && (matlist[j] == empty))// if mate found
 {
 matlist[i] = j;

220

 matlist[j] = i;
 lastmatch = i;
 ++matcard;
 break;
 }
 }
 if (matlist[i] == empty) // if there still is no mate:
 { // do twin node swap or finally acquiesce
 if (ordsc[i] % 2 == 0) // find out twin node number
 {
 twinnomat = invordsc[(ordsc[i]+1)];
 }
 else
 {
 twinnomat = invordsc[(ordsc[i]-1)];
 }
 if // twin node swap possible?
 ((wbox[ordsc[i]]+wbox[ordsc[twinnomat]]>=thradj)// match with twin?
 && (matlist[twinnomat] == empty) // twin unmatched?
 && (lastmatch != empty) // exchange possble?
 && (twinnomat > i) // twin larger?
 && (wbox[ordsc[lastmatch]]+wbox[ordsc[twinnomat]]>=thradj))// lastmtch
 { // with twin?
 matlist[i] = matlist[lastmatch];
 matlist[lastmatch] = twinnomat;
 matlist[twinnomat] = lastmatch;
 matlist[matlist[i]] = i;
 lastmatch = i;
 ++matcard;
 }
 else // otherwise: one more unconnected node
 {
 ++unconpointer;
 unconnode[(unconpointer-1)] = i;
 }
 }
 }
 }

/*
// Output matching list and unconnected nodes
 for(i=0; i<numsc; ++i)
 {
 cout << matlist[i] << " ";
 }
 cout << endl;

 for(i=0; i<numsc; ++i)
 {
 cout << unconnode[i] << " ";
 }
 cout << endl;
 cout << "matcard: " << matcard;
 cout << " no of unconnodes: " << unconpointer << endl;
*/

// ***
// CASE (05): Perfect matching
// ***
 if (matcard == numbox)
 {
 ++perfmat;
 ++feacounter;

/*AAA
 cout << "fea: perfmatch with card: " << matcard << " ";

221

 for (i=0; i<numsc; ++i)
 {
 cout << " w1= " << wbox[ordsc[i]] << " w2= "
 << wbox[ordsc[matlist[i]]] << " -- ";
 }
 cout << endl;
*/

 continue;
 }

// ***
// CASE (04): Poor matching
// ***
 if (matcard < (numbox-1))
 {
 ++poormat;
 ++infcounter;

/*AAA
 cout << "inf: poor matching with card: " << matcard
 << " and uncon nodes: ";
 for (i=0; i<numsc; ++i)
 {
 if (unconnode[i] != empty)
 cout << unconnode[i] << " w= " << wbox[ordsc[unconnode[i]]]
 << " " << endl;
 }
 cout << endl;
*/
 continue;
 }

// ***
// CASE (06): Sufficient matching
// ***

 for (i=0; i<numsc; ++i) // Find weakest strong node
 {
 if (wbox[ordsc[i]] >= thrstrong)
 {
 weakeststrong = i;
 break;
 }
 }

/*AAA
 cout << "card: " << matcard << " no of wkststr " << weakeststrong
 << " w= " << wbox[ordsc[weakeststrong]]
 << " ucn0 " << unconnode[0] << " w= " << wbox[ordsc[unconnode[0]]]
 << " ucn1 " << unconnode[1] << " w= " << wbox[ordsc[unconnode[1]]]
 << endl;
 cout << "matching: ";
 for (i=0; i<numsc; ++i)
 {
 if (matlist[i] != empty)
 cout << " w1= " << wbox[ordsc[i]]
 << " w2= " << wbox[ordsc[matlist[i]]] << " -- ";
 }
*/
/*
 if (matlist[numsc] == empty)
 {
 cout << "unconnode[0] " << unconnode[0]
 << " unconnode[1] " << unconnode[1]
 << " matcard " << matcard << endl;

222

 }
*/

 if (wbox[ordsc[unconnode[1]]]
 + wbox[ordsc[weakeststrong]] >= thradj) // Check sufficiency
 {
 ++suffmat;
 ++feacounter;
 //AAAcout << " yeah suff" << endl;
 if (unconnode[1] < weakeststrong)
 ++yeahcounter; //cout << " YEAH!!!" << endl;
 continue;
 }
 //AAAcout << " not suff" << endl;

// ***
// Building up chain
// ***

// Step 1: Initialise data
 for(i=0; i<numsc; ++i)
 {
 analysed[i] = 0;
 for(j=0; j<nocomp; ++j)
 component[j] [i] = empty;
 if (ordsc[i] % 2 == 0) // find out twin node number
 twin[i] = invordsc[(ordsc[i]+1)];
 else
 twin[i] = invordsc[(ordsc[i]-1)];
 //cout << ordsc[i] << "-" << ordsc[twin[i]] << " ";
 }
 //cout << endl;

// Step 2: Build up chain
 for(i=0; i<numsc; ++i) // find smallest unconnected node
 {
 if (matlist[i] == empty)
 {
 smallestuncon = i;
 break;
 }
 }
 if (smallestuncon != unconnode[0])
 cout << "ALARM!!!" << endl;

 j = -1; // build up chain
 stack = smallestuncon;
 do
 {
 ++j;
 component[0] [j] = stack;
 analysed[stack] = 1;
 ++j;
 component[0] [j] = twin[stack];
 analysed[twin[stack]] = 1;
 stack = matlist[twin[stack]];
 }
 while (stack != empty);

 lengthofcomponent[0] = ++j;

// ***
// Case (07): Chain complete with length = numsc
// ***
 if (lengthofcomponent[0] == numsc)// is chain complete?
 {

223

 ++completechain;
 ++feacounter;
 nocycles = 0;
 for(i=0; i<numsc; ++i)
 result[i] = component[0] [i];
 i = checkresult(7);
/*
 for(i=0; i<numbox; ++i)
 {
 cout << wbox[ordsc[component[0] [(2*i)]]] << "("
 << ordsc[component[0] [(2*i)]] << ")-("
 << ordsc[component[0] [(2*i+1)]] << ")"
 << wbox[ordsc[component[0] [(2*i+1)]]] << " -- ";
 }
 cout << "*" << endl;
*/
 continue;
 }

// ***
// Building up cycles
// ***
 for (i=0; i<numsc; ++i) // Find smallest connected node not analysed yet
 {
 if (analysed[i] == 0)
 {
 smallestconnotana = i;
 break;
 }
 }
 if (matlist[smallestconnotana] == empty)
 cout << "ARLARM2!!!" << endl;

 currentcomponent = 0;
 do
 {
 ++currentcomponent; // Set component
 if (currentcomponent > nocomp-1)
 cout << "ARLARM3!!!" << endl;

 j = -1; // Build up cycle
 stack = smallestconnotana;
 do
 {
 ++j;
 component[currentcomponent] [j] = stack;
 analysed[stack] = 1;
 ++j;
 component[currentcomponent] [j] = twin[stack];
 analysed[twin[stack]] = 1;
 stack = matlist[twin[stack]];
 }
 while (stack != smallestconnotana); // = while not back 2 beginning of cyc

 lengthofcomponent[currentcomponent] = ++j;

 for (i=0; i<numsc; ++i) // Find smallest connected node not analysed yet
 if (analysed[i] == 0)
 {
 smallestconnotana = i;
 break;
 };
 if (matlist[smallestconnotana] == empty)
 cout << "ARLARM2B!!!" << endl;
 }
 while (smallestconnotana != stack); // = while new not analysed node found

224

 nocycles = currentcomponent; // save number of cycles

// ***
// Analysing cycles and chain
// ***
 for (i=0; i<nocomp; ++i) // Initialising data
 {
 strongestnode[i] = empty;
 pss[i] = empty;
 strongestweaknode[i] = empty;
 psw[i] = empty;
 weakestnode[i] = empty;
 pww[i] = empty;
 weakeststrongnode[i] = empty;
 pws[i] = empty;
 }

 for (i=1; i<=nocycles; ++i) // Check all cycles
 {
 // initialise for this component
 strongestnode[i] = component[i] [0];
 pss[i] = 0;
 weakestnode[i] = component[i] [0];
 pww[i] = 0;
 if (wbox[ordsc[component[i] [1]]] >= thrstrong)
 {
 weakeststrongnode[i] = component[i] [1];
 pws[i] = 1;
 strongestweaknode[i] = component[i] [2];
 psw[i] = 2;
 // ATTN: not clear if weak node!!!
 // (will be repaired down below if any cycle has a 'real' (= truly weak)
 // strongestweaknode)
 }
 else
 {
 weakeststrongnode[i] = component[i] [2];
 pws[i] = 2;
 strongestweaknode[i] = component[i] [1];
 psw[i] = 1;
 }
 // try to repair if current strongestweaknode[i] is not weak
 if (wbox[ordsc[strongestweaknode[i]]] >= thrstrong)
 {
 for (j=0; j<lengthofcomponent[i]; ++j)
 {
 if (wbox[ordsc[component[i] [j]]] < thrstrong)
 {
 strongestweaknode[i] = component[i] [j];
 psw[i] = j;
 }
 }
 }
 // note1: if there is no weak node in this cycle at all, we will later,
 // at (**), set strongestweaknode[i] := weakeststrongnode[i]
 // note2: if there is no weak node in this cycle at all, the algorithm
 // will automatically set weakest(weak)node[i] := weakeststrongnode[i],
 // so this case is repaired automatically

 // check for all elements of this component
 for (j=0; j<lengthofcomponent[i]; ++j) // Find weakest & strongest in cycle
 { // > cases

 if (wbox[ordsc[component[i] [j]]] > wbox[ordsc[strongestnode[i]]])
 {
 strongestnode[i] = component[i] [j];

225

 pss[i] = j;
 }
 if (wbox[ordsc[component[i] [j]]] < wbox[ordsc[weakestnode[i]]])
 {
 weakestnode[i] = component[i] [j];
 pww[i] = j;
 }
 if ((wbox[ordsc[component[i] [j]]] > wbox[ordsc[strongestweaknode[i]]])
 && (wbox[ordsc[component[i] [j]]] < thrstrong))
 {
 strongestweaknode[i] = component[i] [j];
 psw[i] = j;
 }
 if ((wbox[ordsc[component[i] [j]]] < wbox[ordsc[weakeststrongnode[i]]])
 && (wbox[ordsc[component[i] [j]]] >= thrstrong))
 {
 weakeststrongnode[i] = component[i] [j];
 pws[i] = j;
 }
 // == cases
 if ((wbox[ordsc[component[i] [j]]] == wbox[ordsc[strongestnode[i]]])
 && (wbox[ordsc[matlist[component[i] [j]]]]
 > wbox[ordsc[matlist[strongestnode[i]]]]))
 {
 strongestnode[i] = component[i] [j];
 pss[i] = j;
 }
 if ((wbox[ordsc[component[i] [j]]] == wbox[ordsc[weakestnode[i]]])
 && (wbox[ordsc[matlist[component[i] [j]]]]
 < wbox[ordsc[matlist[weakestnode[i]]]]))
 {
 weakestnode[i] = component[i] [j];
 pww[i] = j;
 }
 if ((wbox[ordsc[component[i] [j]]] == wbox[ordsc[strongestweaknode[i]]])
 && (wbox[ordsc[matlist[component[i] [j]]]]
 > wbox[ordsc[matlist[strongestweaknode[i]]]]))
 {
 strongestweaknode[i] = component[i] [j];
 psw[i] = j;
 }
 if ((wbox[ordsc[component[i] [j]]] == wbox[ordsc[weakeststrongnode[i]]])
 && (wbox[ordsc[matlist[component[i] [j]]]]
 < wbox[ordsc[matlist[weakeststrongnode[i]]]]))
 {
 weakeststrongnode[i] = component[i] [j];
 pws[i] = j;
 }
 }

 // (**) if cycle has no weak node (see note1 above): repair
 if (wbox[ordsc[strongestweaknode[i]]] >= thrstrong)
 {
 strongestweaknode[i] = weakeststrongnode[i];
 psw[i] = pws[i];
 }
 }

 // initialise charcateristics for all cycles
 weakeststrongest = strongestnode[1];
 pwss = pss[1];
 strongeststrongest = strongestnode[1];
 psss = pss[1];
 weakestweakest = weakestnode[1]; // could be strong
 pwww = pww[1];
 strongestweakest = weakestnode[1]; // could be strong

226

 psww = pww[1];
 weakeststrongestweak = strongestweaknode[1]; // could be strong
 pwsw = psw[1];
 strongeststrongestweak = strongestweaknode[1]; // could be strong
 // forall 4 cases: iff there is no weak node in cycle
 pssw = psw[1];
 weakestweakeststrong = weakeststrongnode[1];
 pwws = pws[1];
 strongestweakeststrong = weakeststrongnode[1];
 psws = pws[1];

 // check for all cycles
 for(i=1; i<=nocycles; ++i)
 {
 // < cases
 if (wbox[ordsc[strongestnode[i]]] < wbox[ordsc[weakeststrongest]])
 {
 weakeststrongest = strongestnode[i];
 pwss = pss[i];
 }
 if (wbox[ordsc[strongestnode[i]]] > wbox[ordsc[strongeststrongest]])
 {
 strongeststrongest = strongestnode[i];
 psss = pss[i];
 }

 if (wbox[ordsc[weakestnode[i]]] < wbox[ordsc[weakestweakest]])
 {
 weakestweakest = weakestnode[i]; // only strong if there were no wk node
 pwww = pww[i];
 }
 if (wbox[ordsc[weakestnode[i]]] > wbox[ordsc[strongestweakest]])
 {
 strongestweakest = weakestnode[i]; // mayb str, but ok 4 buildin solutn
 psww = pww[i];
 }
 if (wbox[ordsc[strongestweaknode[i]]] < wbox[ordsc[weakeststrongestweak]])
 {
 weakeststrongestweak = strongestweaknode[i]; // only str s'ilyavai no wk
 pwsw = psw[i];
 }
 if (wbox[ordsc[strongestweaknode[i]]] > wbox[ordsc[strongeststrongestweak]])
 {
 strongeststrongestweak = strongestweaknode[i]; // mayb strong, but ok
 pssw = psw[i];
 }
 if (wbox[ordsc[weakeststrongnode[i]]] < wbox[ordsc[weakestweakeststrong]])
 {
 weakestweakeststrong = weakeststrongnode[i];
 pwws = pws[i];
 }
 if (wbox[ordsc[weakeststrongnode[i]]] > wbox[ordsc[strongestweakeststrong]])
 {
 strongestweakeststrong = weakeststrongnode[i];
 psws = pws[i];
 }
 // == cases
 if ((wbox[ordsc[strongestnode[i]]]
 == wbox[ordsc[weakeststrongest]])
 && (wbox[ordsc[matlist[strongestnode[i]]]]
 < wbox[ordsc[matlist[weakeststrongest]]]))
 {
 weakeststrongest = strongestnode[i];
 pwss = pss[i];
 }
 if ((wbox[ordsc[strongestnode[i]]]

227

 == wbox[ordsc[strongeststrongest]])
 && (wbox[ordsc[matlist[strongestnode[i]]]]
 > wbox[ordsc[matlist[strongeststrongest]]]))
 {
 strongeststrongest = strongestnode[i];
 psss = pss[i];
 }

 if ((wbox[ordsc[weakestnode[i]]]
 == wbox[ordsc[weakestweakest]])
 && (wbox[ordsc[matlist[weakestnode[i]]]]
 < wbox[ordsc[matlist[weakestweakest]]]))
 {
 weakestweakest = weakestnode[i]; // only strong if there were no wk node
 pwww = pww[i];
 }
 if ((wbox[ordsc[weakestnode[i]]]
 == wbox[ordsc[strongestweakest]])
 && (wbox[ordsc[matlist[weakestnode[i]]]]
 > wbox[ordsc[matlist[strongestweakest]]]))
 {
 strongestweakest = weakestnode[i]; // mayb str, but ok 4 buildin solutn
 psww = pww[i];
 }
 if ((wbox[ordsc[strongestweaknode[i]]]
 == wbox[ordsc[weakeststrongestweak]])
 && (wbox[ordsc[matlist[strongestweaknode[i]]]]
 < wbox[ordsc[matlist[weakeststrongestweak]]]))
 {
 weakeststrongestweak = strongestweaknode[i]; // only str s'ilyavai no wk
 pwsw = psw[i];
 }
 if ((wbox[ordsc[strongestweaknode[i]]]
 == wbox[ordsc[strongeststrongestweak]])
 && (wbox[ordsc[matlist[strongestweaknode[i]]]]
 > wbox[ordsc[matlist[strongeststrongestweak]]]))
 {
 strongeststrongestweak = strongestweaknode[i]; // mayb strong, but ok
 pssw = psw[i];
 }
 if ((wbox[ordsc[weakeststrongnode[i]]]
 == wbox[ordsc[weakestweakeststrong]])
 && (wbox[ordsc[matlist[weakeststrongnode[i]]]]
 < wbox[ordsc[matlist[weakestweakeststrong]]]))
 {
 weakestweakeststrong = weakeststrongnode[i];
 pwws = pws[i];
 }
 if ((wbox[ordsc[weakeststrongnode[i]]]
 == wbox[ordsc[strongestweakeststrong]])
 && (wbox[ordsc[matlist[weakeststrongnode[i]]]]
 > wbox[ordsc[matlist[strongestweakeststrong]]]))
 {
 strongestweakeststrong = weakeststrongnode[i];
 psws = pws[i];
 }

 }

 // Counting number of cycles b4 analysis
 ++distofcyclesstart[nocycles];

// ***
// CASE 08: Connection of cycles with chain via weakest strongest strong node
// ***
// Step 1: Make sure that unconnode[1] really is the higher unconnected node

228

 if (wbox[ordsc[unconnode[0]]] > wbox[ordsc[unconnode[1]]])
 cout << "ALARM4!!!" << endl;

// Step 2: Check w/ wkst strgst strong
 if (wbox[ordsc[weakeststrongest]]
 + wbox[ordsc[unconnode[1]]] >= thradj)
 {
 ++wscyclesandchain;
 ++feacounter;
 // ++
 // ++
 // Step 2ba: Checking result for WSS node case if there is only one cycle
 // ++
 if (nocycles == 1)
 {
 /*
 for(i=0; i<lengthofcomponent[1]; ++i)//check where in cycle strngst node
 {
 if ((component[1][i])==strongestnode[1])
 {
 stack = i;
 break;
 }
 }
 */
 stack = pss[1];

 if (twin[strongestnode[1]]==component[1] [(stack+1)])//twin after str nd
 {
 for(i=0; i<lengthofcomponent[0]; ++i)
 result[i] = component[0] [i];
 for(i=stack; i<lengthofcomponent[1]; ++i)
 result[(i+lengthofcomponent[0]-stack)] = component[1] [i];
 if (stack != 0) // str nd is not first node
 {
 for(i=0; i<stack; ++i)
 result[(i+lengthofcomponent[0]+lengthofcomponent[1]-stack)]
 = component[1] [i];
 }
 }
 else // twin before strongest node
 {
 for(i=0; i<lengthofcomponent[0]; ++i)
 result[i] = component[0] [i];
 for(i=stack; i>=0; --i)
 result[(lengthofcomponent[0]+stack-i)] = component[1] [i];
 if (stack != (lengthofcomponent[1]-1)) // str nd is not last node
 {
 for(i=(lengthofcomponent[1]-1); i>stack; --i)
 result[(lengthofcomponent[0]+stack+(lengthofcomponent[1]-i))]
 = component[1] [i];
 }
 }
 }
 // ++
 // Step 2bb: Checking result for WSS case if there is more than one cycle
 // ++

 else // There is more than one cycle
 {
 // Initialising order
 for(i = 1; i <= nocycles; ++i)
 {
 ordcyc[i] = i;
 }
 // Starting sorting procedure for cycles according to strngest strong nodes

229

 for(i = 1; i <= nocycles; ++i)
 {
 for(j = i-1; j >= 1; --j)
 {
 //cout << i << " " << ordsc[i] << " "
 // << j << " " << ordsc[j] << endl;
 // abbreviation = ;
 if (wbox[ordsc[strongestnode[i]]]
 < wbox[ordsc[strongestnode[ordcyc[j]]]])
 {
 ordcyc[j+1] = ordcyc[j];
 ordcyc[j] = i;
 //cout << "after change " << i << " " << ordsc[i] << " "
 // << j << " " << ordsc[j] << endl;
 }
 //else { cout << "no change, next i" << endl; break; }
 }
 }
 // Looking for the place of strongest node in each cycle
 // because this tells us where to start building the result out of cycles
 /*
 for(i = 1; i <= nocycles; ++i)
 {
 placeofstrongestnode[i] = empty;
 }
 for(i = 1; i <= nocycles; ++i)
 {
 for(j = 0; j < lengthofcomponent[i]; ++j)
 {
 if (strongestnode[i] == component[i][j])
 {
 placeofstrongestnode[i] = j;
 break;
 }
 }
 }
 */
 // Starting result array with chain
 for(i=0; i<lengthofcomponent[0]; ++i)
 result[i] = component[0] [i];
 currentplace = lengthofcomponent[0];
 // Now add the cycles to the result
 for(k = 1; k <= nocycles; ++k)
 {
 // first option: twin comes after strongest node in this cycle
 if (twin[strongestnode[ordcyc[k]]]
 == component[ordcyc[k]] [(pss[ordcyc[k]]+1)])
 {
 for(i = pss[ordcyc[k]];
 i < lengthofcomponent[ordcyc[k]]; ++i)
 result[(i
 + currentplace
 - pss[ordcyc[k]])]
 = component[ordcyc[k]] [i];
 if (pss[ordcyc[k]] != 0) // str nd is not first node
 {
 for(i=0; i<pss[ordcyc[k]]; ++i)
 result[(i
 + currentplace
 + lengthofcomponent[ordcyc[k]]
 - pss[ordcyc[k]])]
 = component[ordcyc[k]] [i];
 }
 }
 // second option: twin comes b4 strongest node in this cycle
 else

230

 {
 for(i=pss[ordcyc[k]]; i>=0; --i)
 result[(currentplace
 + pss[ordcyc[k]]
 - i)]
 = component[ordcyc[k]] [i];
 if (pss[ordcyc[k]]
 != (lengthofcomponent[ordcyc[k]]-1)) // str nd is not last node
 {
 for(i = (lengthofcomponent[ordcyc[k]]-1);
 i > pss[ordcyc[k]]; --i)
 result[(currentplace
 + pss[ordcyc[k]]
 + (lengthofcomponent[ordcyc[k]]-i))]
 = component[ordcyc[k]] [i];
 }
 }
 // store new position in building result array
 currentplace = currentplace + lengthofcomponent[ordcyc[k]];
 } // end of loop through all cycles
 ++numberofelsecases;
 } // end of else for case of more than one cycle

 status = checkresult(8);
 // ++
 continue;
 }

// Step 3: Check for mate of strgst strgst strong,
// wkst wkst weak, and mate of strgst wkst weak
 if (wbox[ordsc[matlist[strongeststrongest]]]
 + wbox[ordsc[unconnode[1]]] >= thradj)
 {
 ++msscyclesandchain;
 ++feacounter;
 continue;
 }
 if (wbox[ordsc[weakestweakest]]
 + wbox[ordsc[unconnode[1]]] >= thradj)
 {
 ++wwcyclesandchain;
 ++feacounter;
 continue;
 }
 if (wbox[ordsc[matlist[strongestweakest]]]
 + wbox[ordsc[unconnode[1]]] >= thradj)
 {
 ++mswcyclesandchain;
 ++feacounter;
 continue;
 }

// Step 4: Check w/ wkst wkst strong, mate of strgst wkst strong
// wkst strgst weak, mate of strgst strgst weak
 if (wbox[ordsc[weakestweakeststrong]]
 + wbox[ordsc[unconnode[1]]] >= thradj)
 {
 ++wwscyclesandchain;
 ++feacounter;
 continue;
 }
 if (wbox[ordsc[matlist[strongestweakeststrong]]]
 + wbox[ordsc[unconnode[1]]] >= thradj)
 {
 ++mswscyclesandchain;
 ++feacounter;

231

 continue;
 }
 if (wbox[ordsc[weakeststrongestweak]]
 + wbox[ordsc[unconnode[1]]] >= thradj)
 {
 ++wswcyclesandchain;
 ++feacounter;
 continue;
 }
 if (wbox[ordsc[matlist[strongeststrongestweak]]]
 + wbox[ordsc[unconnode[1]]] >= thradj)
 {
 ++msswcyclesandchain;
 ++feacounter;
 continue;
 }

// ***
// CASE (09a): Splitting up chain to connect to cyle if nocycles == 1
// ***

 if ((nocycles == 1) && (lengthofcomponent[0] >= 4))
 {
 k = 0; // counter if a subcase has been detected
 for (i=1; i<=(lengthofcomponent[0]-3); i=i+2)
 {
 for (j=1; j<=(lengthofcomponent[1]-1); j=j+2)
 {
 if ((adjlist[component[1] [j]] [component[0] [i]] == 1)
 && (adjlist[matlist[component[1] [j]]] [component[0] [(i+1)]] == 1))
 {
 stackcyc = j;
 stackchain = i;
 caseno = 1;
 ++cyc1chainsplit;
 ++feacounter;
 ++k;
 break;
 }
 if ((adjlist[component[1] [j]] [component[0] [i+1]] == 1)
 && (adjlist[matlist[component[1] [j]]] [component[0] [i]] == 1))
 {
 stackcyc = j;
 stackchain = i;
 caseno = 2;
 ++cyc2chainsplit;
 ++feacounter;
 ++k;
 break;
 }
 }
 if (k == 1) break;
 }
 if (k == 1)
 // ++
 // Start check for chainsplit with one cycle
 // ++
 {
 // relevant component of cyc in var "stackcyc", "stackchain" similar
 // caseno = 1 or 2 signifies the case above
 // First: case 1 && stackchain is not last node of cycle
 if ((caseno == 1) && (stackcyc != (lengthofcomponent[1] - 1)))
 {
 for (i=0; i<=lengthofcomponent[0]-stackchain-2; ++i)// upper prt chain
 result[i] = component[0] [lengthofcomponent[0]-1-i];

232

 for (i=0; i<=lengthofcomponent[1]-stackcyc-2; ++i)// upper prt of cycle
 result[i+lengthofcomponent[0]-stackchain-1]
 = component[1] [stackcyc+1+i];

 for (i=0; i<=stackcyc; ++i) // lower part of cycle
 result[i+lengthofcomponent[1]-stackcyc-2
 +lengthofcomponent[0]-stackchain] = component[1] [i];

 for (i=0; i<=stackchain; ++i) // lower part of chain
 result[i+lengthofcomponent[1]-1+lengthofcomponent[0]-stackchain]
 = component[0] [stackchain-i];
 }
 // Second: case 1 && stackchain is last node of cycle
 if ((caseno == 1) && (stackcyc == (lengthofcomponent[1] - 1)))
 {
 for (i=0; i<=stackchain; ++i)
 result[i] = component[0] [i]; // lower part of chain
 for (i=0; i<=(lengthofcomponent[1] - 1); ++i) // whole cycle backwards
 result[i+stackchain+1] = component[1] [lengthofcomponent[1]-1-i];
 for (i=0; i<=(lengthofcomponent[0]-2-stackchain); ++i) // upper chain
 result[i+stackchain+1+lengthofcomponent[1]]
 = component[0] [i+stackchain+1];
 }
 // Third: case 2 && stackchain is not last node of cycle
 if ((caseno == 2) && (stackcyc != (lengthofcomponent[1] - 1)))
 {
 for (i=0; i<=stackchain; ++i) // lower part of chain
 result[i] = component[0] [i];
 for (i=0; i <= (lengthofcomponent[1] - 2 - stackcyc); ++i) // upper cyc
 result[i+1+stackchain] = component[1] [i+stackcyc+1];
 for (i=0; i<=stackcyc; ++i) // lower cyc
 result[i+stackchain+lengthofcomponent[1]-stackcyc] = component[1] [i];
 for (i=0; i<=(lengthofcomponent[0] - 2 - stackchain); ++i) // upper chn
 result[i+1+stackchain+lengthofcomponent[1]]
 = component[0] [i+1+stackchain];
 }
 // Fourth: case 2 && stackchain is last node of cycle
 if ((caseno == 2) && (stackcyc == (lengthofcomponent[1] - 1)))
 {
 for(i=0; i<=stackchain; ++i) // lower part of chain
 result[i] = component[0] [i];
 for(i=0; i<=(lengthofcomponent[1]-1); ++i) // cycle forward
 result[i+1+stackchain] = component[1] [i];
 for(i=0; i<=(lengthofcomponent[0]-stackchain-2); ++i) // upper chain
 result[i+1+stackchain+lengthofcomponent[1]]
 = component[0] [stackchain+1+i];
 }

 status = checkresult(91);
 // ++
 // End of check Chainsplit with one cycle
 // ++
 continue;
 }

 } // End of case (09a)

// ***
// CASE (09b): Splitting up chain to connect to ends of cycles, 8 subcases
// ***
 if ((nocycles > 1) && (lengthofcomponent[0] >= 4))
 {

 j = 0; // counter if a subcase has been detected
 for (i=1; i<=(lengthofcomponent[0]-3); i=i+2)
 {

233

 if ((adjlist[weakeststrongest] [component[0] [i]] == 1)
 && (adjlist[matlist[strongeststrongest]] [component[0] [(i+1)]] == 1))
 {
 caseno = 1;
 casetype = 22;
 for(k=1; k<=nocycles; ++k)
 {
 connector[k] = strongestnode[k];
 placeofconnector[k] = pss[k];
 }
 splitplace = i;
 ++ws1chainsplit;
 ++feacounter;
 ++j;
 break;
 }
 if ((adjlist[weakeststrongest] [component[0] [(i+1)]] == 1)
 && (adjlist[matlist[strongeststrongest]] [component[0] [i]] == 1))
 {
 caseno = 2;
 casetype = 22;
 for(k=1; k<=nocycles; ++k)
 {
 connector[k] = strongestnode[k];
 placeofconnector[k] = pss[k];
 }
 splitplace = i;
 ++ws2chainsplit;
 ++feacounter;
 ++j;
 break;
 }

 if ((adjlist[weakestweakeststrong] [component[0] [i]] == 1)
 && (adjlist[matlist[strongestweakeststrong]] [component[0] [(i+1)]]
 == 1))
 {
 caseno = 1;
 casetype = 12;
 for(k=1; k<=nocycles; ++k)
 {
 connector[k] = weakeststrongnode[k];
 placeofconnector[k] = pws[k];
 }
 splitplace = i;
 ++wws1chainsplit;
 ++feacounter;
 ++j;
 break;
 }
 if ((adjlist[weakestweakeststrong] [component[0] [(i+1)]] == 1)
 && (adjlist[matlist[strongestweakeststrong]] [component[0] [i]]
 == 1))
 {
 caseno = 2;
 casetype = 12;
 for(k=1; k<=nocycles; ++k)
 {
 connector[k] = weakeststrongnode[k];
 placeofconnector[k] = pws[k];
 }
 splitplace = i;
 ++wws2chainsplit;
 ++feacounter;
 ++j;
 break;

234

 }
 if ((adjlist[weakeststrongestweak] [component[0] [i]] == 1)
 && (adjlist[matlist[strongeststrongestweak]] [component[0] [(i+1)]]
 == 1))
 {
 caseno = 1;
 casetype = 21;
 for(k=1; k<=nocycles; ++k)
 {
 connector[k] = strongestweaknode[k];
 placeofconnector[k] = psw[k];
 }
 splitplace = i;
 ++wsw1chainsplit;
 ++feacounter;
 ++j;
 break;
 }
 if ((adjlist[weakeststrongestweak] [component[0] [(i+1)]] == 1)
 && (adjlist[matlist[strongeststrongestweak]] [component[0] [i]]
 == 1))
 {
 caseno = 2;
 casetype = 21;
 for(k=1; k<=nocycles; ++k)
 {
 connector[k] = strongestweaknode[k];
 placeofconnector[k] = psw[k];
 }
 splitplace = i;
 ++wsw2chainsplit;
 ++feacounter;
 ++j;
 break;
 }
 if ((adjlist[weakestweakest] [component[0] [i]] == 1)
 && (adjlist[matlist[strongestweakest]] [component[0] [(i+1)]] == 1))
 {
 caseno = 1;
 casetype = 11;
 for(k=1; k<=nocycles; ++k)
 {
 connector[k] = weakestnode[k];
 placeofconnector[k] = pww[k];
 }
 splitplace = i;
 ++ww1chainsplit;
 ++feacounter;
 ++j;
 break;
 }
 if ((adjlist[weakestweakest] [component[0] [(i+1)]] == 1)
 && (adjlist[matlist[strongestweakest]] [component[0] [i]] == 1))
 {
 caseno = 2;
 casetype = 11;
 for(k=1; k<=nocycles; ++k)
 {
 connector[k] = weakestnode[k];
 placeofconnector[k] = pww[k];
 }
 splitplace = i;
 ++ww2chainsplit;
 ++feacounter;
 ++j;
 break;

235

 }
 } // End of going through chain for finding a place where to split it

 if (j == 1) // case that one of the above subcases has been detected
 {

 // ++
 // Checking result for (09b) case (Chainsplit with more than one cycle)
 // ++
 // Note: this is built on the caseno and connector information from above

 // Step1: Initialising order
 for(i = 1; i <= nocycles; ++i)
 {
 ordcyc[i] = i;
 }

 // Step2: Sorting procedure for cycles according to strngest connectors
 for(i = 1; i <= nocycles; ++i)
 {
 for(j = i-1; j >= 1; --j)
 {
 //cout << i << " " << ordsc[i] << " "
 // << j << " " << ordsc[j] << endl;
 // abbreviation = ;
 if (wbox[ordsc[connector[i]]]
 < wbox[ordsc[connector[ordcyc[j]]]])
 {
 ordcyc[j+1] = ordcyc[j];
 ordcyc[j] = i;
 //cout << "after change " << i << " " << ordsc[i] << " "
 // << j << " " << ordsc[j] << endl;
 }
 if ((wbox[ordsc[connector[i]]] // in case of tie ...
 == wbox[ordsc[connector[ordcyc[j]]]]) &&
 (wbox[ordsc[matlist[connector[i]]]] // decide 4 node w/ higher m8
 < wbox[ordsc[matlist[connector[ordcyc[j]]]]]))
 {
 ordcyc[j+1] = ordcyc[j];
 ordcyc[j] = i;
 }
 }
 }
 // Step3: Looking for the place of connector in each cycle
 // because this tells us where to start building the result out of cycles
 /*
 for(i = 1; i <= nocycles; ++i)
 {
 placeofconnector[i] = empty;
 }
 for(i = 1; i <= nocycles; ++i)
 {
 for(j = 0; j < lengthofcomponent[i]; ++j)
 {
 if (connector[i] == component[i][j])
 {
 placeofconnector[i] = j;
 break;
 }
 }
 }
 */
 // Note: placeofconnector[i] has already been defined above

 // Step4: Starting building result array with chain
 if (caseno == 1) // starting from beginning of chain

236

 {
 for(i=0; i<=splitplace; ++i)
 result[i] = component[0] [i];
 currentplace = splitplace + 1;
 }
 if (caseno == 2)
 {
 for(i=0; i<=(lengthofcomponent[0]-splitplace-2); ++i)
 result[i] = component[0] [(lengthofcomponent[0]-1-i)];
 currentplace = lengthofcomponent[0]-splitplace-2 + 1;
 }

 // Step5: Now add the cycles to the result
 for(k = 1; k <= nocycles; ++k)
 {
 // first option: twin comes after strongest node in this cycle
 if (twin[connector[ordcyc[k]]]
 == component[ordcyc[k]] [(placeofconnector[ordcyc[k]]+1)])
 {
 for(i = placeofconnector[ordcyc[k]];
 i < lengthofcomponent[ordcyc[k]]; ++i)
 result[(i
 + currentplace
 - placeofconnector[ordcyc[k]])]
 = component[ordcyc[k]] [i];
 if (placeofconnector[ordcyc[k]] != 0) // str nd is not first node
 {
 for(i=0; i<placeofconnector[ordcyc[k]]; ++i)
 result[(i
 + currentplace
 + lengthofcomponent[ordcyc[k]]
 - placeofconnector[ordcyc[k]])]
 = component[ordcyc[k]] [i];
 }
 }
 // second option: twin comes b4 strongest node in this cycle
 else
 {
 for(i=placeofconnector[ordcyc[k]]; i>=0; --i)
 result[(currentplace
 + placeofconnector[ordcyc[k]]
 - i)]
 = component[ordcyc[k]] [i];
 if (placeofconnector[ordcyc[k]]
 != (lengthofcomponent[ordcyc[k]]-1)) // str nd is not last node
 {
 for(i = (lengthofcomponent[ordcyc[k]]-1);
 i > placeofconnector[ordcyc[k]]; --i)
 result[(currentplace
 + placeofconnector[ordcyc[k]]
 + (lengthofcomponent[ordcyc[k]]-i))]
 = component[ordcyc[k]] [i];
 }
 }
 // store new position in building result array
 currentplace = currentplace + lengthofcomponent[ordcyc[k]];
 } // end of loop through all cycles

 //Step6: Add second part of chain to result array
 if (caseno == 1) // running forward from splitplace+1
 {
 for(i=0; i<=(lengthofcomponent[0]-splitplace-2); ++i)
 result[(currentplace+i)] = component[0] [splitplace+1+i];
 // currentplace = ...;
 }
 if (caseno == 2) // running backwards from splitplace

237

 {
 for(i=0; i<=splitplace; ++i)
 result[(currentplace+i)] = component[0] [(splitplace-i)];
 // currentplace = ...;
 }

 ++numberof09bcases;
 status = checkresult(92);

 // +++++++++ End of building and checking result ++++++++++++++++++++++++++

 continue;
 } // End of: a case (09b) phenomenon has been detected

 } // End of case (09b)

// **
// Statistics and some more checks for remaining cases
// **
 // Counting the length of the chain and no of cycles in remaining cases
 ++distofcyclesleft[nocycles];
 ++lengthchain[lengthofcomponent[0]];

 // Check in the case of one cycle
 if (nocycles == 1)
 {
 stack = 0;
 for(i=0; i<lengthofcomponent[1]; ++i)
 {
 if (wbox[ordsc[component[1] [i]]] > stack)
 stack = wbox[ordsc[component[1] [i]]];
 }
 if (stack + wbox[ordsc[unconnode[1]]] >= thradj)
 ++prob;
 //if (instance < 1000)
 //cout << "T";
 }

// **
// Inverse matching algorithm
// **
// Step 1 Inverse: Initialise matching list and counters
 for (i = 0; i < numsc; ++i)
 {
 matlistinv[i] = empty;
 }
 matcardinv = 0;
 unconpointerinv = 0;
 for (i = 0; i < numsc; ++i)
 {
 unconnodeinv[i] = empty;
 }
 lastmatchinv = empty;

// Step 2 Inverse: Matching algorithm
 for(i=0; i<numsc; ++i)// check all nodes
 {
 if (matlistinv[i] == empty)// does node need a mate?
 {
 for (j=(numsc-1); j>i; --j)// look for a mate for node i
 {
 if ((adjlist[i] [j] == 1)
 && (matlistinv[j] == empty))// if mate found
 {

238

 matlistinv[i] = j;
 matlistinv[j] = i;
 lastmatchinv = i;
 ++matcardinv;
 break;
 }
 }
 if (matlistinv[i] == empty) // if there still is no mate:
 { // do twin node swap or finally acquiesce
 if (ordsc[i] % 2 == 0) // find out twin node number
 {
 twinnomatinv = invordsc[(ordsc[i]+1)];
 }
 else
 {
 twinnomatinv = invordsc[(ordsc[i]-1)];
 }
 if // twin node swap possible?
 ((wbox[ordsc[i]]+wbox[ordsc[twinnomatinv]]>=thradj)// match w/ twin?
 && (matlistinv[twinnomatinv] == empty) // twin unmatchd?
 && (lastmatchinv != empty) // exchnge pssble?
 && (twinnomatinv > i) // twin larger?
 && (wbox[ordsc[lastmatchinv]] // lastmatch with twin?
 + wbox[ordsc[twinnomatinv]] >= thradj))
 { // then swap mates
 matlistinv[i] = matlistinv[lastmatchinv];
 matlistinv[lastmatchinv] = twinnomatinv;
 matlistinv[twinnomatinv] = lastmatchinv;
 matlistinv[matlistinv[i]] = i;
 lastmatchinv = i;
 ++matcardinv;
 }
 else // otherwise: one more unconnected node
 {
 ++unconpointerinv;
 unconnodeinv[(unconpointerinv-1)] = i;
 }
 }
 }
 }

// **
// Double check inverse matching with other matching algorithm
// **
 if (matcard != matcardinv)
 {
 cout << "ALARM5!!!" << endl;
 cout << matcard << " " << matcardinv << endl;
 for (i=0; i<numsc; ++i)
 cout << " " << wbox[i];
 cout << endl;
 for (i=0; i<numsc; ++i)
 cout << " " << wbox[ordsc[i]];
 cout << endl;
 for (i=0; i<numsc; ++i)
 cout << " " << matlist[i];
 cout << endl;
 for (i=0; i<numsc; ++i)
 cout << " " << matlistinv[i];
 cout << endl;
 cout << adjlist[2] [matlist[2]] << endl;
 cout << wbox[ordsc[2]] << " " << wbox[ordsc[matlist[2]]] << endl;
 cout << unconpointer << " " << unconpointerinv << endl;

 //First matching algorithm once again (for checking mistakes
 // Step 2 once again: Initialise matching list and counters

239

 for (i = 0; i < numsc; ++i)
 {
 matlist[i] = empty;
 }
 matcard = 0;
 unconpointer = 0;
 for (i = 0; i < numsc; ++i)
 {
 unconnode[i] = empty;
 }
 lastmatch = empty;

 // Step 3 once again: Matching algorithm
 for(i=0; i<numsc; ++i)// check all nodes
 {
 if (matlist[i] == empty)// does node need a mate?
 {
 for (j=(i+1); j<numsc; ++j)// look for a mate for node i
 {
 if ((adjlist[i] [j] == 1)
 && (matlist[j] == empty))// if mate found
 {
 matlist[i] = j;
 matlist[j] = i;
 lastmatch = i;
 ++matcard;
 break;
 }
 }
 if (matlist[i] == empty) // if there still is no mate:
 { // do twin node swap or finally acquiesce
 if (ordsc[i] % 2 == 0) // find out twin node number
 {
 twinnomat = invordsc[(ordsc[i]+1)];
 }
 else
 {
 twinnomat = invordsc[(ordsc[i]-1)];
 }
 if // twin node swap possible?
 ((wbox[ordsc[i]]+wbox[ordsc[twinnomat]]>=thradj)// match with twin?
 && (matlist[twinnomat] == empty) // twin unmatched?
 && (lastmatch != empty) // exchange possble?
 && (twinnomat > i)) // twin larger?
 { // then swap mates
 matlist[i] = matlist[lastmatch];
 matlist[lastmatch] = twinnomat;
 matlist[twinnomat] = lastmatch;
 matlist[matlist[i]] = i;
 lastmatch = i;
 ++matcard;

 cout << "a twin node swap" << endl;
 cout << " i " << i << " twinnomat " << twinnomat
 << " ordsc[i] " << ordsc[i] << " ordsc[twinnomat] "
 << ordsc[twinnomat]
 << " wboxSumme " << wbox[ordsc[i]]+wbox[ordsc[twinnomat]]
 << " matlist[twinnomat] " << matlist[twinnomat]
 << " lastmatch " << lastmatch
 << " matlist[lastmatch] " << matlist[lastmatch] << endl;

 //matlist[i] = matlist[lastmatch];
 //matlist[lastmatch] = twinnomat;
 //matlist[twinnomat] = lastmatch;
 //matlist[matlist[i]] = i;
 //lastmatch = i;

240

 //++matcard;

 }
 else // otherwise: one more unconnected node
 {
 ++unconpointer;
 unconnode[(unconpointer-1)] = i;
 cout << " an unconnode " << i << endl;
 }
 }
 }
 }
 cout << "new results" << endl;
 cout << adjlist[2] [matlist[2]] << endl;
 cout << wbox[ordsc[2]] << " " << wbox[ordsc[matlist[2]]] << endl;
 cout << unconpointer << " " << unconpointerinv << endl;

// End if matcard != matcardinv
 }

// **
// Building up chain from inverse matching
// **

// Step 1INV: Initialise data
 for(i=0; i<numsc; ++i)
 {
 analysedinv[i] = 0;
 for(j=0; j<nocomp; ++j)
 componentinv[j] [i] = empty;
 if (ordsc[i] % 2 == 0) // find out twin node number
 twin[i] = invordsc[(ordsc[i]+1)];
 else
 twin[i] = invordsc[(ordsc[i]-1)];
 //cout << ordsc[i] << "-" << ordsc[twin[i]] << " ";
 }
 //cout << endl;

// Step 2INV: Build up chain
 for(i=0; i<numsc; ++i) // find smallest unconnected node
 {
 if (matlistinv[i] == empty)
 {
 smallestunconinv = i;
 break;
 }
 }
 if (smallestunconinv != unconnodeinv[0])
 cout << "ALARMinv!!!" << endl;

 j = -1; // build up chain
 stack = smallestunconinv;
 do
 {
 ++j;
 componentinv[0] [j] = stack;
 analysedinv[stack] = 1;
 ++j;
 componentinv[0] [j] = twin[stack];
 analysedinv[twin[stack]] = 1;
 stack = matlistinv[twin[stack]];
 }
 while (stack != empty);

 lengthofcomponentinv[0] = ++j;

241

// **
// CASE (10): Chain from inverse matching complete with length = numsc
// **
 if (lengthofcomponentinv[0] == numsc)// is chain complete?
 {
 ++completechaininv;
 ++feacounter;
 for(i=0; i<numsc; ++i)
 result[i] = componentinv[0] [i];
 i = checkresult(10);

/*
 for(i=0; i<numbox; ++i)
 {
 cout << wbox[ordsc[component[0] [(2*i)]]] << "("
 << ordsc[component[0] [(2*i)]] << ")-("
 << ordsc[component[0] [(2*i+1)]] << ")"
 << wbox[ordsc[component[0] [(2*i+1)]]] << " -- ";
 }
 cout << "*" << endl;
*/

 continue;
 }

// **
// Building up cycles from inverse matching
// **
 for (i=0; i<numsc; ++i) // Find smallest connected node not analysed yet
 {
 if (analysedinv[i] == 0)
 {
 smallestconnotanainv = i;
 break;
 }
 }
 if (matlistinv[smallestconnotanainv] == empty)
 cout << "ARLARM2inv!!!" << endl;

 currentcomponent = 0;
 do
 {
 ++currentcomponent; // Set component
 if (currentcomponent > nocomp-1)
 cout << "ARLARM3inv!!!" << endl;

 j = -1; // Build up cycle
 stack = smallestconnotanainv;
 do
 {
 ++j;
 componentinv[currentcomponent] [j] = stack;
 analysedinv[stack] = 1;
 ++j;
 componentinv[currentcomponent] [j] = twin[stack];
 analysedinv[twin[stack]] = 1;
 stack = matlistinv[twin[stack]];
 }
 while (stack != smallestconnotanainv); //= while not back 2 bgnning of cyc

 lengthofcomponentinv[currentcomponent] = ++j;

 for (i=0; i<numsc; ++i) // Find smallest connected node not analysed yet
 if (analysedinv[i] == 0)
 {
 smallestconnotanainv = i;

242

 break;
 };
 if (matlistinv[smallestconnotanainv] == empty)
 cout << "ARLARM2Binv!!!" << endl;
 }
 while (smallestconnotanainv != stack); // = while new not analysed node found
 nocyclesinv = currentcomponent; // save number of cycles

// ***
// Analysing cycles and chain from inverse matching
// ***
 for (i=0; i<nocomp; ++i) // Initialising data
 {
 strongestnodeinv[i] = empty;
 pssinv[i] = empty;
 weakestnodeinv[i] = empty;
 pwwinv[i] = empty;
 strongestweaknodeinv[i] = empty;
 pswinv[i] = empty;
 weakeststrongnodeinv[i] = empty;
 pwsinv[i] = empty;
 }

 for (i=1; i<=nocyclesinv; ++i) // Check all cycles
 {

 // INV: Initialise for all cycles
 strongestnodeinv[i] = componentinv[i] [0];
 pssinv[i] = 0;
 weakestnodeinv[i] = componentinv[i] [0];
 pwwinv[i] = 0;
 if (wbox[ordsc[componentinv[i] [1]]] >= thrstrong)
 {
 weakeststrongnodeinv[i] = componentinv[i] [1];
 pwsinv[i] = 1;
 strongestweaknodeinv[i] = componentinv[i] [2];
 pswinv[i] = 2;
 // ATTN: not clear if weak node!!!
 // (might be repaired later if any cycle has a 'real' (= truly weak)
 // strongestweaknode)
 }
 else
 {
 weakeststrongnodeinv[i] = componentinv[i] [2];
 pwsinv[i] = 2;
 strongestweaknodeinv[i] = componentinv[i] [1];
 pswinv[i] = 1;
 }
 // try to repair if current strongestweaknode[i] is not weak
 if (wbox[ordsc[strongestweaknodeinv[i]]] >= thrstrong)
 {
 for (j=0; j<lengthofcomponentinv[i]; ++j)
 {
 if (wbox[ordsc[componentinv[i] [j]]] < thrstrong)
 {
 strongestweaknodeinv[i] = componentinv[i] [j];
 pswinv[i] = j;
 }
 }
 }
 // note1: if there is no weak node in this cycle at all, we will later,
 // at (**), set strongestweaknodeinv[i] := weakeststrongnodeinv[i]
 // note2: if there is no weak node in this cycle at all, the algorithm
 // will automatclly set weakest(weak)nodeinv[i] := weakeststrongnodeinv[i],
 // so this case is repaired automatically

243

 // INV: Check for all elements of this component
 for (j=1; j<lengthofcomponentinv[i]; ++j) // Find weakst&strongst in cycle
 {
 // > cases
 if (wbox[ordsc[componentinv[i] [j]]]
 >= wbox[ordsc[strongestnodeinv[i]]])
 {
 strongestnodeinv[i] = componentinv[i] [j];
 pssinv[i] = j;
 }
 if (wbox[ordsc[componentinv[i] [j]]]
 <= wbox[ordsc[weakestnodeinv[i]]])
 {
 weakestnodeinv[i] = componentinv[i] [j];
 pwwinv[i] = j;
 }
 if ((wbox[ordsc[componentinv[i] [j]]]
 >= wbox[ordsc[strongestweaknodeinv[i]]])
 && (wbox[ordsc[componentinv[i] [j]]] < thrstrong))
 {
 strongestweaknodeinv[i] = componentinv[i] [j];
 pswinv[i] = j;
 }
 if ((wbox[ordsc[componentinv[i] [j]]]
 <= wbox[ordsc[weakeststrongnodeinv[i]]])
 && (wbox[ordsc[componentinv[i] [j]]] >= thrstrong))
 {
 weakeststrongnodeinv[i] = componentinv[i] [j];
 pwsinv[i] = j;
 }
 // == cases
 if ((wbox[ordsc[componentinv[i] [j]]]
 == wbox[ordsc[strongestnodeinv[i]]])
 && (wbox[ordsc[matlistinv[componentinv[i] [j]]]]
 > wbox[ordsc[matlistinv[strongestnodeinv[i]]]]))
 {
 strongestnodeinv[i] = componentinv[i] [j];
 pssinv[i] = j;
 }
 if ((wbox[ordsc[componentinv[i] [j]]]
 == wbox[ordsc[weakestnodeinv[i]]])
 && (wbox[ordsc[matlistinv[componentinv[i] [j]]]]
 < wbox[ordsc[matlistinv[weakestnodeinv[i]]]]))
 {
 weakestnodeinv[i] = componentinv[i] [j];
 pwwinv[i] = j;
 }
 if ((wbox[ordsc[componentinv[i] [j]]]
 == wbox[ordsc[strongestweaknodeinv[i]]])
 && (wbox[ordsc[matlistinv[componentinv[i] [j]]]]
 > wbox[ordsc[matlistinv[strongestweaknodeinv[i]]]]))
 {
 strongestweaknodeinv[i] = componentinv[i] [j];
 pswinv[i] = j;
 }
 if ((wbox[ordsc[componentinv[i] [j]]]
 == wbox[ordsc[weakeststrongnodeinv[i]]])
 && (wbox[ordsc[matlistinv[componentinv[i] [j]]]]
 < wbox[ordsc[matlistinv[weakeststrongnodeinv[i]]]]))
 {
 weakeststrongnodeinv[i] = componentinv[i] [j];
 pwsinv[i] = j;
 }

 }

244

 // (**) if cycle has no weak node (see note1 above): repair
 if (wbox[ordsc[strongestweaknodeinv[i]]] >= thrstrong)
 {
 strongestweaknodeinv[i] = weakeststrongnodeinv[i];
 pswinv[i] = pwsinv[i];
 }

 }

 // INV :Initialise charcteristics for all cycles
 weakeststrongestinv = strongestnodeinv[1];
 pwssinv = pssinv[1];
 strongeststrongestinv = strongestnodeinv[1];
 psssinv = pssinv[1];
 weakestweakestinv = weakestnodeinv[1];
 pwwwinv = pwwinv[1];
 strongestweakestinv = weakestnodeinv[1];
 pswwinv = pwwinv[1];
 weakeststrongestweakinv = strongestweaknodeinv[1];
 pwswinv = pswinv[1];
 strongeststrongestweakinv = strongestweaknodeinv[1];// this one could b strng
 psswinv = pswinv[1]; // due to the 'mistake' above
 weakestweakeststronginv = weakeststrongnodeinv[1];
 pwwsinv = pwsinv[1];
 strongestweakeststronginv = weakeststrongnodeinv[1];
 pswsinv = pwsinv[1];

 // INV: Check for all cycles
 for(i=1; i<=nocyclesinv; ++i)
 {
 // < cases
 if (wbox[ordsc[strongestnodeinv[i]]] < wbox[ordsc[weakeststrongestinv]])
 {
 weakeststrongestinv = strongestnodeinv[i];
 pwssinv = pssinv[i];
 }
 if (wbox[ordsc[strongestnodeinv[i]]] > wbox[ordsc[strongeststrongestinv]])
 {
 strongeststrongestinv = strongestnodeinv[i];
 psssinv = pssinv[i];
 }
 if (wbox[ordsc[weakestnodeinv[i]]] < wbox[ordsc[weakestweakestinv]])
 {
 weakestweakestinv = weakestnodeinv[i];
 pwwwinv = pwwinv[i];
 }
 if (wbox[ordsc[weakestnodeinv[i]]] > wbox[ordsc[strongestweakestinv]])
 {
 strongestweakestinv = weakestnodeinv[i];
 pswwinv = pwwinv[i];
 }
 if (wbox[ordsc[strongestweaknodeinv[i]]]
 < wbox[ordsc[weakeststrongestweakinv]])
 {
 weakeststrongestweakinv = strongestweaknodeinv[i];
 pwswinv = pswinv[i];
 }
 if (wbox[ordsc[strongestweaknodeinv[i]]]
 > wbox[ordsc[strongeststrongestweakinv]])
 {
 strongeststrongestweakinv = strongestweaknodeinv[i];
 psswinv = pswinv[i];
 }
 if (wbox[ordsc[weakeststrongnodeinv[i]]]
 < wbox[ordsc[weakestweakeststronginv]])

245

 {
 weakestweakeststronginv = weakeststrongnodeinv[i];
 pwwsinv = pwsinv[i];
 }
 if (wbox[ordsc[weakeststrongnodeinv[i]]]
 > wbox[ordsc[strongestweakeststronginv]])
 {
 strongestweakeststronginv = weakeststrongnodeinv[i];
 pswsinv = pwsinv[i];
 }

 // == cases
 if ((wbox[ordsc[strongestnodeinv[i]]]
 == wbox[ordsc[weakeststrongestinv]])
 && (wbox[ordsc[matlistinv[strongestnodeinv[i]]]]
 < wbox[ordsc[matlistinv[weakeststrongestinv]]]))
 {
 weakeststrongestinv = strongestnodeinv[i];
 pwssinv = pssinv[i];
 }
 if ((wbox[ordsc[strongestnodeinv[i]]]
 == wbox[ordsc[strongeststrongestinv]])
 && (wbox[ordsc[matlistinv[strongestnodeinv[i]]]]
 > wbox[ordsc[matlistinv[strongeststrongestinv]]]))
 {
 strongeststrongestinv = strongestnodeinv[i];
 psssinv = pssinv[i];
 }

 if ((wbox[ordsc[weakestnodeinv[i]]]
 == wbox[ordsc[weakestweakestinv]])
 && (wbox[ordsc[matlistinv[weakestnodeinv[i]]]]
 < wbox[ordsc[matlistinv[weakestweakestinv]]]))
 {
 weakestweakestinv = weakestnodeinv[i];
 // only strong if there were no wk node
 pwwwinv = pwwinv[i];
 }
 if ((wbox[ordsc[weakestnodeinv[i]]]
 == wbox[ordsc[strongestweakestinv]])
 && (wbox[ordsc[matlistinv[weakestnodeinv[i]]]]
 > wbox[ordsc[matlistinv[strongestweakestinv]]]))
 {
 strongestweakestinv = weakestnodeinv[i];
 // mayb str, but ok 4 buildin solutn
 pswwinv = pwwinv[i];
 }
 if ((wbox[ordsc[strongestweaknodeinv[i]]]
 == wbox[ordsc[weakeststrongestweakinv]])
 && (wbox[ordsc[matlistinv[strongestweaknodeinv[i]]]]
 < wbox[ordsc[matlistinv[weakeststrongestweakinv]]]))
 {
 weakeststrongestweakinv = strongestweaknodeinv[i];
 // only str s'ilyavai no wk
 pwswinv = pswinv[i];
 }
 if ((wbox[ordsc[strongestweaknodeinv[i]]]
 == wbox[ordsc[strongeststrongestweakinv]])
 && (wbox[ordsc[matlistinv[strongestweaknodeinv[i]]]]
 > wbox[ordsc[matlistinv[strongeststrongestweakinv]]]))
 {
 strongeststrongestweakinv = strongestweaknodeinv[i];
 // mayb strong, but ok
 psswinv = pswinv[i];
 }
 if ((wbox[ordsc[weakeststrongnodeinv[i]]]

246

 == wbox[ordsc[weakestweakeststronginv]])
 && (wbox[ordsc[matlistinv[weakeststrongnodeinv[i]]]]
 < wbox[ordsc[matlistinv[weakestweakeststronginv]]]))
 {
 weakestweakeststronginv = weakeststrongnodeinv[i];
 pwwsinv = pwsinv[i];
 }
 if ((wbox[ordsc[weakeststrongnodeinv[i]]]
 == wbox[ordsc[strongestweakeststronginv]])
 && (wbox[ordsc[matlistinv[weakeststrongnodeinv[i]]]]
 > wbox[ordsc[matlistinv[strongestweakeststronginv]]]))
 {
 strongestweakeststronginv = weakeststrongnodeinv[i];
 pswsinv = pwsinv[i];
 }

 }

 // Counting number of cycles b4 analysis
 ++distofcyclesstartinv[nocyclesinv];

// ***
// CASE (11): Connection of cycles w/ chain via weakest strongest strong node
// ***

// Step 1INV: Make sure that unconnodeinv[1] is the higher unconnected node
 if (wbox[ordsc[unconnodeinv[0]]] > wbox[ordsc[unconnodeinv[1]]])
 cout << "ALARM4inv!!!" << endl;

// Step 2INV: Check w/ wss
 if (wbox[ordsc[weakeststrongestinv]]
 + wbox[ordsc[unconnodeinv[1]]] >= thradj)
 {
 ++wscyclesandchaininv;
 ++feacounter;

 // ++
 // ++
 // Step 2baINV: Checking result for WSS node case if there is only one cycle
 // ++
 if (nocyclesinv == 1)
 {
 /*
 for(i=0; i<lengthofcomponentinv[1]; ++i)//check where in cycle strngst node
 {
 if ((componentinv[1][i])==strongestnodeinv[1])
 {
 stackinv = i;
 break;
 }
 }
 */
 stackinv = pssinv[1];

 if (twin[strongestnodeinv[1]]==componentinv[1] [(stackinv+1)])
 //twin after str nd
 {
 for(i=0; i<lengthofcomponentinv[0]; ++i)
 result[i] = componentinv[0] [i];
 for(i=stackinv; i<lengthofcomponentinv[1]; ++i)
 result[(i+lengthofcomponentinv[0]-stackinv)] = componentinv[1] [i];
 if (stackinv != 0) // str nd is not first node
 {
 for(i=0; i<stackinv; ++i)
 result[(i+lengthofcomponentinv[0]+lengthofcomponentinv[1]-stackinv)]
 = componentinv[1] [i];

247

 }
 }
 else // twin before strongest node
 {
 for(i=0; i<lengthofcomponentinv[0]; ++i)
 result[i] = componentinv[0] [i];
 for(i=stackinv; i>=0; --i)
 result[(lengthofcomponentinv[0]+stackinv-i)] = componentinv[1] [i];
 if (stackinv != (lengthofcomponentinv[1]-1)) // str nd is not last node
 {
 for(i=(lengthofcomponentinv[1]-1); i>stackinv; --i)
 result[(lengthofcomponentinv[0]
 + stackinv
 + (lengthofcomponentinv[1]-i))]
 = componentinv[1] [i];
 }
 }
 }
 // ++
 // Step 2bbINV: Checking result for WSS case if there is more than one cycle
 // ++

 else // There is more than one cycle
 {
 // Initialising order
 for(i = 1; i <= nocyclesinv; ++i)
 {
 ordcycinv[i] = i;
 }
 // Starting sorting procedure for cycles according to stronges strong nodes
 for(i = 1; i <= nocyclesinv; ++i)
 {
 for(j = i-1; j >= 1; --j)
 {
 //cout << i << " " << ordsc[i] << " "
 // << j << " " << ordsc[j] << endl;
 // abbreviation = ;
 if (wbox[ordsc[strongestnodeinv[i]]]
 < wbox[ordsc[strongestnodeinv[ordcycinv[j]]]])
 {
 ordcycinv[j+1] = ordcycinv[j];
 ordcycinv[j] = i;
 //cout << "after change " << i << " " << ordsc[i] << " "
 // << j << " " << ordsc[j] << endl;
 }
 //else { cout << "no change, next i" << endl; break; }
 }
 }
 // Looking for the place of strongest node in each cycle
 // because this tells us where to start building the result out of cycles
 /*
 for(i = 1; i <= nocyclesinv; ++i)
 {
 placeofstrongestnodeinv[i] = empty;
 }
 for(i = 1; i <= nocyclesinv; ++i)
 {
 for(j = 0; j < lengthofcomponentinv[i]; ++j)
 {
 if (strongestnodeinv[i] == componentinv[i][j])
 {
 placeofstrongestnodeinv[i] = j;
 break;
 }
 }
 }

248

 */

 // Starting result array with chain
 for(i=0; i<lengthofcomponentinv[0]; ++i)
 result[i] = componentinv[0] [i];
 currentplaceinv = lengthofcomponentinv[0];
 // Now add the cycles to the result
 for(k = 1; k <= nocyclesinv; ++k)
 {
 // first option: twin comes after strongest node in this cycle
 if (twin[strongestnodeinv[ordcycinv[k]]]
 == componentinv[ordcycinv[k]]
 [(pssinv[ordcycinv[k]]+1)])
 {
 for(i = pssinv[ordcycinv[k]];
 i < lengthofcomponentinv[ordcycinv[k]]; ++i)
 result[(i
 + currentplaceinv
 - pssinv[ordcycinv[k]])]
 = componentinv[ordcycinv[k]] [i];
 if (pssinv[ordcycinv[k]] != 0)
 // str nd is not first node
 {
 for(i=0; i<pssinv[ordcycinv[k]]; ++i)
 result[(i
 + currentplaceinv
 + lengthofcomponentinv[ordcycinv[k]]
 - pssinv[ordcycinv[k]])]
 = componentinv[ordcycinv[k]] [i];
 }
 }
 // second option: twin comes b4 strongest node in this cycle
 else
 {
 for(i=pssinv[ordcycinv[k]]; i>=0; --i)
 result[(currentplaceinv
 + pssinv[ordcycinv[k]]
 - i)]
 = componentinv[ordcycinv[k]] [i];
 if (pssinv[ordcycinv[k]]
 != (lengthofcomponentinv[ordcycinv[k]]-1))
 // str nd is not last node
 {
 for(i = (lengthofcomponentinv[ordcycinv[k]]-1);
 i > pssinv[ordcycinv[k]]; --i)
 result[(currentplaceinv
 + pssinv[ordcycinv[k]]
 + (lengthofcomponentinv[ordcycinv[k]]-i))]
 = componentinv[ordcycinv[k]] [i];
 }
 }
 // store new position in building result array
 currentplaceinv = currentplaceinv + lengthofcomponentinv[ordcycinv[k]];
 } // end of loop through all cycles
 ++numberofelsecasesinv;
 } // end of else for case of more than one cycle

 status = checkresult(11);
 // ++

 continue;
 }

// Step3INV: Check w/ mate of sss, www, and mate of sww from invrse match
 if (wbox[ordsc[matlistinv[strongeststrongestinv]]]

249

 + wbox[ordsc[unconnodeinv[1]]] >= thradj)
 {
 ++msscyclesandchaininv;
 ++feacounter;
 continue;
 }
 if (wbox[ordsc[weakestweakestinv]]
 + wbox[ordsc[unconnodeinv[1]]] >= thradj)
 {
 ++wwcyclesandchaininv;
 ++feacounter;
 continue;
 }
 if (wbox[ordsc[matlistinv[strongestweakestinv]]]
 + wbox[ordsc[unconnodeinv[1]]] >= thradj)
 {
 ++mswcyclesandchaininv;
 ++feacounter;
 continue;
 }

// Step 4INV: Check w/ wws, mate of sws, wsw, and mate of ssw from inv match
 if (wbox[ordsc[weakestweakeststronginv]]
 + wbox[ordsc[unconnodeinv[1]]] >= thradj)
 {
 ++wwscyclesandchaininv;
 ++feacounter;
 continue;
 }
 if (wbox[ordsc[matlistinv[strongestweakeststronginv]]]
 + wbox[ordsc[unconnodeinv[1]]] >= thradj)
 {
 ++mswscyclesandchaininv;
 ++feacounter;
 continue;
 }
 if (wbox[ordsc[weakeststrongestweakinv]]
 + wbox[ordsc[unconnodeinv[1]]] >= thradj)
 {
 ++wswcyclesandchaininv;
 ++feacounter;
 continue;
 }
 if (wbox[ordsc[matlistinv[strongeststrongestweakinv]]]
 + wbox[ordsc[unconnodeinv[1]]] >= thradj)
 {
 ++msswcyclesandchaininv;
 ++feacounter;
 continue;
 }

// ***
// CASE (12a): Splitting up INV chain to connect to cyle if nocycles == 1
// ***

 if ((nocyclesinv == 1) && (lengthofcomponentinv[0] >= 4))
 {
 k = 0; // counter if a subcase has been detected
 for (i=1; i<=(lengthofcomponentinv[0]-3); i=i+2)
 {
 for (j=1; j<=(lengthofcomponentinv[1]-1); j=j+2)
 {
 if ((adjlist[componentinv[1] [j]] [componentinv[0] [i]] == 1)
 && (adjlist[matlistinv[componentinv[1] [j]]]
 [componentinv[0] [(i+1)]] == 1))
 {

250

 caseno = 1;
 stackcycinv = j;
 stackchaininv = i;
 ++cyc1chainsplitinv;
 ++feacounter;
 ++k;
 break;
 }
 if ((adjlist[componentinv[1] [j]] [componentinv[0] [i+1]] == 1)
 && (adjlist[matlistinv[componentinv[1] [j]]]
 [componentinv[0] [i]] ==1))
 {
 caseno = 2;
 stackcycinv = j;
 stackchaininv = i;
 ++cyc2chainsplitinv;
 ++feacounter;
 ++k;
 break;
 }
 }
 if (k == 1) break;
 }
 if (k == 1)
 // ++
 // Start check for chainsplit with one cycle
 // ++
 {
 // relevant component of cyc in var "stackcyc", "stackchain" similar
 // caseno = 1 or 2 signifies the case above
 // First: case 1 && stackchain is not last node of cycle
 if ((caseno == 1) && (stackcycinv != (lengthofcomponentinv[1] - 1)))
 {
 for (i=0; i<=lengthofcomponentinv[0]-stackchaininv-2; ++i)// upper prt chain
 result[i] = componentinv[0] [lengthofcomponentinv[0]-1-i];

 for (i=0; i<=lengthofcomponentinv[1]-stackcycinv-2; ++i)// upper prt of cycle
 result[i+lengthofcomponentinv[0]-stackchaininv-1]
 = componentinv[1] [stackcycinv+1+i];

 for (i=0; i<=stackcycinv; ++i) // lower part of cycle
 result[i+lengthofcomponentinv[1]-stackcycinv-2
 +lengthofcomponentinv[0]-stackchaininv] = componentinv[1] [i];

 for (i=0; i<=stackchaininv; ++i) // lower part of chain
 result[i+lengthofcomponentinv[1]-1+lengthofcomponentinv[0]-stackchaininv]
 = componentinv[0] [stackchaininv-i];
 }
 // Second: case 1 && stackchain is last node of cycle
 if ((caseno == 1) && (stackcycinv == (lengthofcomponentinv[1] - 1)))
 {
 for (i=0; i<=stackchaininv; ++i)
 result[i] = componentinv[0] [i]; // lower part of chain
 for (i=0; i<=(lengthofcomponentinv[1] - 1); ++i) // whole cycle backwards
 result[i+stackchaininv+1] = componentinv[1] [lengthofcomponentinv[1]-1-i];
 for (i=0; i<=(lengthofcomponentinv[0]-2-stackchaininv); ++i) // upper chain
 result[i+stackchaininv+1+lengthofcomponentinv[1]]
 = componentinv[0] [i+stackchaininv+1];
 }
 // Third: case 2 && stackchain is not last node of cycle
 if ((caseno == 2) && (stackcycinv != (lengthofcomponentinv[1] - 1)))
 {
 for (i=0; i<=stackchaininv; ++i) // lower part of chain
 result[i] = componentinv[0] [i];
 for (i=0; i <= (lengthofcomponentinv[1] - 2 - stackcycinv); ++i) // upper cyc
 result[i+1+stackchaininv] = componentinv[1] [i+stackcycinv+1];

251

 for (i=0; i<=stackcycinv; ++i) // lower cyc
 result[i+stackchaininv+lengthofcomponentinv[1]-stackcycinv] =
componentinv[1] [i];
 for (i=0; i<=(lengthofcomponentinv[0] - 2 - stackchaininv); ++i) // upper chn
 result[i+1+stackchaininv+lengthofcomponentinv[1]]
 = componentinv[0] [i+1+stackchaininv];
 }
 // Fourth: case 2 && stackchain is last node of cycle
 if ((caseno == 2) && (stackcycinv == (lengthofcomponentinv[1] - 1)))
 {
 for(i=0; i<=stackchaininv; ++i) // lower part of chain
 result[i] = componentinv[0] [i];
 for(i=0; i<=(lengthofcomponentinv[1]-1); ++i) // cycle forward
 result[i+1+stackchaininv] = componentinv[1] [i];
 for(i=0; i<=(lengthofcomponentinv[0]-stackchaininv-2); ++i) // upper chain
 result[i+1+stackchaininv+lengthofcomponentinv[1]]
 = componentinv[0] [stackchaininv+1+i];
 }

 status = checkresult(121);
 // ++
 // End of check Chainsplit with one cycle
 // ++
 continue;
 }

 } // End of case (12a)

// ***
// CASE (12b): Splitting up INV chain to connect to ends of cycles, 8 subcases
// ***
 if ((nocyclesinv > 1) && (lengthofcomponentinv[0] >= 4))
 {
 j = 0; // counter if a subcase has been detected
 for (i=1; i<=(lengthofcomponentinv[0]-3); i=i+2)
 {
 if ((adjlist[weakeststrongestinv] [componentinv[0] [i]] == 1)
 && (adjlist[matlistinv[strongeststrongestinv]] [componentinv[0] [(i+1)]]
 == 1))
 {
 caseno = 1;
 casetype = 22;
 for(k=1; k<=nocyclesinv; ++k)
 {
 connectorinv[k] = strongestnodeinv[k];
 placeofconnectorinv[k] = pssinv[k];
 }
 splitplaceinv = i;
 ++ws1chainsplitinv;
 ++feacounter;
 ++j;
 break;
 }
 if ((adjlist[weakeststrongestinv] [componentinv[0] [(i+1)]] == 1)
 && (adjlist[matlistinv[strongeststrongestinv]] [componentinv[0] [i]]
 == 1))
 {
 caseno = 2;
 casetype = 22;
 for(k=1; k<=nocyclesinv; ++k)
 {
 connectorinv[k] = strongestnodeinv[k];
 placeofconnectorinv[k] = pssinv[k];
 }
 splitplaceinv = i;
 ++ws2chainsplitinv;

252

 ++feacounter;
 ++j;
 break;
 }

 if ((adjlist[weakestweakeststronginv] [componentinv[0] [i]] == 1)
 && (adjlist[matlistinv[strongestweakeststronginv]] [componentinv[0] [(i+1)]]
 == 1))
 {
 caseno = 1;
 casetype = 12;
 for(k=1; k<=nocyclesinv; ++k)
 {
 connectorinv[k] = weakeststrongnodeinv[k];
 placeofconnectorinv[k] = pwsinv[k];
 }
 splitplaceinv = i;
 ++wws1chainsplitinv;
 ++feacounter;
 ++j;
 break;
 }
 if ((adjlist[weakestweakeststronginv] [componentinv[0] [(i+1)]] == 1)
 && (adjlist[matlistinv[strongestweakeststronginv]] [componentinv[0] [i]]
 == 1))
 {
 caseno = 2;
 casetype = 12;
 for(k=1; k<=nocyclesinv; ++k)
 {
 connectorinv[k] = weakeststrongnodeinv[k];
 placeofconnectorinv[k] = pwsinv[k];
 }
 splitplaceinv = i;
 ++wws2chainsplitinv;
 ++feacounter;
 ++j;
 break;
 }
 if ((adjlist[weakeststrongestweakinv] [componentinv[0] [i]] == 1)
 && (adjlist[matlistinv[strongeststrongestweakinv]] [componentinv[0] [(i+1)]]
 == 1))
 {
 caseno = 1;
 casetype = 21;
 for(k=1; k<=nocyclesinv; ++k)
 {
 connectorinv[k] = strongestweaknodeinv[k];
 placeofconnectorinv[k] = pswinv[k];
 }
 splitplaceinv = i;
 ++wsw1chainsplitinv;
 ++feacounter;
 ++j;
 break;
 }
 if ((adjlist[weakeststrongestweakinv] [componentinv[0] [(i+1)]] == 1)
 && (adjlist[matlistinv[strongeststrongestweakinv]] [componentinv[0] [i]]
 == 1))
 {
 caseno = 2;
 casetype = 21;
 for(k=1; k<=nocyclesinv; ++k)
 {
 connectorinv[k] = strongestweaknodeinv[k];
 placeofconnectorinv[k] = pswinv[k];

253

 }
 splitplaceinv = i;
 ++wsw2chainsplitinv;
 ++feacounter;
 ++j;
 break;
 }
 if ((adjlist[weakestweakestinv] [componentinv[0] [i]] == 1)
 && (adjlist[matlistinv[strongestweakestinv]] [componentinv[0] [(i+1)]]
 == 1))
 {
 caseno = 1;
 casetype = 11;
 for(k=1; k<=nocyclesinv; ++k)
 {
 connectorinv[k] = weakestnodeinv[k];
 placeofconnectorinv[k] = pwwinv[k];
 }
 splitplaceinv = i;
 ++ww1chainsplitinv;
 ++feacounter;
 ++j;
 break;
 }
 if ((adjlist[weakestweakestinv] [componentinv[0] [(i+1)]] == 1)
 && (adjlist[matlistinv[strongestweakestinv]] [componentinv[0] [i]]
 == 1))
 {
 caseno = 2;
 casetype = 11;
 for(k=1; k<=nocyclesinv; ++k)
 {
 connectorinv[k] = weakestnodeinv[k];
 placeofconnectorinv[k] = pwwinv[k];
 }
 splitplaceinv = i;
 ++ww2chainsplitinv;
 ++feacounter;
 ++j;
 break;
 }

 }
 if (j == 1) // case that one of the above subcases has been detected
 {

 // ++
 // Checking result for (12b) case (Chainsplit with more than one cycle)
 // ++
 // Note: this is built on the caseno and connector information from above

 // Step1: Initialising order and other
 for(i = 1; i <= nocyclesinv; ++i)
 {
 ordcycinv[i] = i;
 }

 // Step2: Sorting procedure for cycles according to strngest connectors
 for(i = 1; i <= nocyclesinv; ++i)
 {
 for(j = i-1; j >= 1; --j)
 {
 //cout << i << " " << ordsc[i] << " "
 // << j << " " << ordsc[j] << endl;
 // abbreviation = ;
 if (wbox[ordsc[connectorinv[i]]]

254

 < wbox[ordsc[connectorinv[ordcycinv[j]]]])
 {
 ordcycinv[j+1] = ordcycinv[j];
 ordcycinv[j] = i;
 //cout << "after change " << i << " " << ordsc[i] << " "
 // << j << " " << ordsc[j] << endl;
 }
 if ((wbox[ordsc[connectorinv[i]]] // in case of tie ...
 == wbox[ordsc[connectorinv[ordcycinv[j]]]]) &&
 (wbox[ordsc[matlistinv[connectorinv[i]]]] // dcde 4 nd w/ higher m8
 < wbox[ordsc[matlistinv[connectorinv[ordcycinv[j]]]]]))
 {
 ordcycinv[j+1] = ordcycinv[j];
 ordcycinv[j] = i;
 }
 }
 }
 // Step3: Looking for the place of connector in each cycle
 // because this tells us where to start building the result out of cycles

 /*for(i = 1; i <= nocyclesinv; ++i)
 {
 placeofconnectorinv[i] = empty;
 }
 for(i = 1; i <= nocyclesinv; ++i)
 {
 for(j = 0; j < lengthofcomponentinv[i]; ++j)
 {
 if (connectorinv[i] == componentinv[i][j])
 {
 placeofconnectorinv[i] = j;
 break;
 }
 }
 }
 */ // already done above

 // Step4: Starting building result array with chain
 if (caseno == 1) // starting from beginning of chain
 {
 for(i=0; i<=splitplaceinv; ++i)
 result[i] = componentinv[0] [i];
 currentplaceinv = splitplaceinv + 1;
 }
 if (caseno == 2)
 {
 for(i=0; i<=(lengthofcomponentinv[0]-splitplaceinv-2); ++i)
 result[i] = componentinv[0] [(lengthofcomponentinv[0]-1-i)];
 currentplaceinv = lengthofcomponentinv[0]-splitplaceinv-2 + 1;
 }

 // Step5: Now add the cycles to the result
 for(k = 1; k <= nocyclesinv; ++k)
 {
 // first option: twin comes after strongest node in this cycle
 if (twin[connectorinv[ordcycinv[k]]]
 == componentinv[ordcycinv[k]] [(placeofconnectorinv[ordcycinv[k]]+1)])
 {
 // cout << "twin after strong" << endl;
 for(i = placeofconnectorinv[ordcycinv[k]];
 i < lengthofcomponentinv[ordcycinv[k]]; ++i)
 result[(i
 + currentplaceinv
 - placeofconnectorinv[ordcycinv[k]])]
 = componentinv[ordcycinv[k]] [i];

255

 if (placeofconnectorinv[ordcycinv[k]] != 0) // str nd is not first node
 {
 for(i=0; i<placeofconnectorinv[ordcycinv[k]]; ++i)
 result[(i
 + currentplaceinv
 + lengthofcomponentinv[ordcycinv[k]]
 - placeofconnectorinv[ordcycinv[k]])]
 = componentinv[ordcycinv[k]] [i];
 }
 }
 // second option: twin comes b4 strongest node in this cycle
 else
 {
 for(i=placeofconnectorinv[ordcycinv[k]]; i>=0; --i)
 result[(currentplaceinv
 + placeofconnectorinv[ordcycinv[k]]
 - i)]
 = componentinv[ordcycinv[k]] [i];
 if (placeofconnectorinv[ordcycinv[k]]
 != (lengthofcomponentinv[ordcycinv[k]]-1)) // str nd is not last node
 {
 for(i = (lengthofcomponentinv[ordcycinv[k]]-1);
 i > placeofconnectorinv[ordcycinv[k]]; --i)
 result[(currentplaceinv
 + placeofconnectorinv[ordcycinv[k]]
 + (lengthofcomponentinv[ordcycinv[k]]-i))]
 = componentinv[ordcycinv[k]] [i];
 }
 }
 // store new position in building result array
 currentplaceinv = currentplaceinv + lengthofcomponentinv[ordcycinv[k]];
 } // end of loop through all cycles

 //Step6: Add second part of chain to result array
 if (caseno == 1) // running forward from splitplace+1
 {
 for(i=0; i<=(lengthofcomponentinv[0]-splitplaceinv-2); ++i)
 result[(currentplaceinv+i)] = componentinv[0] [splitplaceinv+1+i];
 // currentplace = ...;
 }
 if (caseno == 2) // running backwards from splitplace
 {
 for(i=0; i<=splitplaceinv; ++i)
 result[(currentplaceinv+i)] = componentinv[0] [(splitplaceinv-i)];
 // currentplace = ...;
 }

 ++numberof12bcases;
 status = checkresult(122);

 // +++++++++ End of building and checking result ++++++++++++++++++++++++++
 continue;
 } // End of: a case (12b) phenomenon has been detected

 } // End of case (12b)

// **
// Statistics and some more checks for remaining cases after inverse match
// **
 // Counting the number of cycles and the length of the chain
 ++distofcyclesleftinv[nocyclesinv];
 ++lengthchaininv[lengthofcomponentinv[0]];

 // Check in the case of one cycle
 if (nocyclesinv == 1)
 {

256

 stack = 0;
 for(i=0; i<lengthofcomponentinv[1]; ++i)
 {
 if (wbox[ordsc[componentinv[1] [i]]] > stack)
 stack = wbox[ordsc[componentinv[1] [i]]];
 }
 if (stack + wbox[ordsc[unconnodeinv[1]]] >= thradj)
 ++probinv;
 //if (instance < 1000)
 //cout << "T";
 }

// ***
// End of instances loop
// ***
/*
// Output scores, ordered scores and order numbers
 for(i = 1; i <= numsc; ++i)
 {
 cout << wbox[i] << " ";
 }
 cout << endl;
 for(i = 1; i <= numsc; ++i)
 {
 cout << wbox[ordsc[i]] << " ";
 }
 cout << endl;
 for(i = 1; i <= numsc; ++i)
 {
 cout << ordsc[i] << " ";
 }
 cout << endl;
 cin.get();
*/

// End of instances loop
}

// Running time
 runtime1 = (double) (clock() / CLOCKS_PER_SEC);
 // runtime2 = (double) (clock() - (numinst*time4rand)) / CLOCKS_PER_SEC;

// ***
// Output of final statisctis
// ***
 // Main statistics
 cout << "Instances: " << numinst << " Fea: " << feacounter
 << " Inf: " << infcounter << endl;
 cout << "Instances" << endl
 << "- (01) with too many weak nodes: " << toomanyweak << endl
 << "- (02) with non-con twins: " << noncontwin << endl
 << "- (03) with too many unconnectable nodes: " << uncon << endl
 << "- (04) with poor matching: " << poormat << endl
 << "- (05) with perfect matching: " << perfmat
 << ", CHECK: " << checkcasecounter[5] << endl
 << "- (06) with sufficient matching: " << suffmat
 << ", CHECK: " << checkcasecounter[6] << endl
 << "------ out of which w/ connectable weak node: " << yeahcounter
 << endl
 << "- (07) with complete chain built: " << completechain
 << ", CHECK: " << checkcasecounter[7] << endl
 << "- (08) with attaching wss node in cycles to chain: "
 << wscyclesandchain
 << ", CHECK: " << checkcasecounter[8] << endl;

 if ((msscyclesandchain + wwcyclesandchain + mswcyclesandchain

257

 + wwscyclesandchain + mswscyclesandchain + wswcyclesandchain
 + msswcyclesandchain) > 0)
 cout
 << "- mate of str str in cycles + chain: " << msscyclesandchain << endl
 << "- weakest weakest in cycles + chain: " << wwcyclesandchain << endl
 << "- mate of str wk in cycles + chain: " << mswcyclesandchain << endl
 << "- wkst wkst strong in cycles + chain: " << wwscyclesandchain << endl
 << "- m8 of strst wkst str in cyc+chn: " << mswscyclesandchain << endl
 << "- wkst strst wk in cycles + chain: " << wswcyclesandchain << endl
 << "- m8 of strst strst wk in cyc+chn: " << msswcyclesandchain << endl;

 cout << "- (09a) with splitting chain to attach to one cycle: "
 << (cyc1chainsplit + cyc2chainsplit)
 << ", CHECK: " << checkcasecounter[91] << endl;
 cout << "- (09b) with splitting chain and attaching to cycles: "
 << numberof09bcases
 << ", CHECK: " << checkcasecounter[92] << endl;
 cout << "------- weakest strongest chainsplit 1: " << ws1chainsplit
 << endl
 << "------- weakest strongest chainsplit 2: " << ws2chainsplit
 << endl

 << "------- weakest weakest strong chainsplit 1: " << wws1chainsplit
 << endl
 << "------- weakest weakest strong chainsplit 2: " << wws2chainsplit
 << endl
 << "------- weakest strongest weak chainsplit 1: " << wsw1chainsplit
 << endl
 << "------- weakest strongest weak chainsplit 2: " << wsw2chainsplit
 << endl
 << "------- weakest weakest chainsplit 1: " << ww1chainsplit
 << endl
 << "------- weakest weakest chainsplit 2: " << ww2chainsplit
 << endl

 << "- (10) with INV complete chain built: " << completechaininv
 << ", CHECK : " << checkcasecounter[10] << endl
 << "- (11) with INV attaching wss node in cycles to chain: "
 << wscyclesandchaininv
 << ", CHECK: " << checkcasecounter[11] << endl;

 if ((msscyclesandchaininv + wwcyclesandchaininv + mswcyclesandchaininv
 + wwscyclesandchaininv + mswscyclesandchaininv + wswcyclesandchaininv
 + msswcyclesandchaininv) > 0)
 cout
 << "- INV mate of str str in cycles + chain: " << msscyclesandchaininv
 << endl
 << "- INV weakest weakest in cycles + chain: " << wwcyclesandchaininv
 << endl
 << "- INV mate of str wk in cycles + chain: " << mswcyclesandchaininv
 << endl
 << "- INV wkst wkst strong in cycles + chain: " << wwscyclesandchaininv
 << endl
 << "- INV m8 of strst wkst str in cyc+chn: " << mswscyclesandchaininv
 << endl
 << "- INV wkst strst wk in cycles + chain: " << wswcyclesandchaininv
 << endl
 << "- INV m8 of strst strst wk in cyc+chn: " << msswcyclesandchaininv
 << endl;

 cout << "- (12a) with INV splitting chain to attach to one cycle: "
 << (cyc1chainsplitinv + cyc2chainsplitinv)
 << ", CHECK: " << checkcasecounter[121] << endl;
 cout << "- (12b) with INV splitting chain and attaching to cycles: "
 << numberof12bcases
 << ", CHECK: " << checkcasecounter[122] << endl

258

 << "------- INV wkst strongest chainsplit 1: " << ws1chainsplitinv
 << endl
 << "------- INV wkst strongest chainsplit 2: " << ws2chainsplitinv
 << endl

 << "------- INV wkst weakest strong chnsplt 1: "
 << wws1chainsplitinv << endl
 << "------- INV wkst weakest strong chnsplt 2: "
 << wws2chainsplitinv << endl
 << "------- INV wkst strongest weak chnsplt 1: "
 << wsw1chainsplitinv << endl
 << "------- INV wkst strongest weak chnsplt 2: "
 << wsw2chainsplitinv << endl
 << "------- INV wkst weakest chainsplit 1: " << ww1chainsplitinv
 << endl
 << "------- INV wkst weakest chainsplit 2: " << ww2chainsplitinv
 << endl

 << endl;

 cout << "Percentage of instances solved: "
 << (double) (feacounter+infcounter)/numinst << endl;
 cout << "Running time: " << runtime1 << " seconds" << endl;
 cout << "Number of instances checked: " << resultcounter
 << " Failed checks among these: " << problemcounter;
 cout << endl << endl << endl;

 // Other statistics
 cout << " Number of elsecases: " << numberofelsecases;
 cout << " Number of elsecasesINV: " << numberofelsecasesinv;
 cout << endl << endl;

 for(i=0; i<=numsc; ++i)
 cout << lengthchain[i] << " times " << i << " scores" << endl;
 for(i=0; i<=numsc; ++i)
 {
 cout << lengthchaininv[i] << " times "
 << i << " scores in INV case" << endl;
 }
 // cout << "Running time without generation of instances: "
 // << runtime2 << " seconds" << endl;
 for(i=1; i<nocomp; ++i)
 {
 cout << distofcyclesstart[i] << " times " << i
 << " cycles originally, afterwards "
 << distofcyclesleft[i] << " times." << endl;

 }
 for(i=1; i<nocomp; ++i)
 {
 cout << distofcyclesstartinv[i] << " times " << i
 << " cycles originally, afterwards "
 << distofcyclesleftinv[i] << " times in INV case." << endl;

 }

 cout << prob << " problematic cases" << endl;
 cout << probinv << " problematic cases in INV case" << endl;

// ***
// End of function main
// ***
 cin.get();
 return 0;
}

259

// ***
// ************************* END OF PROGRAMME ********************************
// ***

