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Abstract

Longitudinal data are collected for studying changes across time. In social
sciences, interest is often in theoretical constructs, such as attitudes, behaviour
or abilities, which cannot be directly measured. In that case, multiple related
manifest (observed) variables, for example survey questions or items in an ability
test, are used as indicators for the constructs, which are themselves treated as
latent (unobserved) variables. In this thesis, multivariate longitudinal data is
considered where multiple observed variables, measured at each time point, are
used as indicators for theoretical constructs (latent variables) of interest. The
observed items and the latent variables are linked together via statistical latent
variable models.

A common problem in longitudinal studies is missing data, where missingness
can be classified into one of two forms. Dropout occurs when subjects exit the
study prematurely, while intermittent missingness takes place when subjects miss
one or more occasions but show up on a subsequent wave of the study. Ignor-
ing the missingness mechanism can lead to biased estimates, especially when the
missingness is nonrandom.

The approach proposed in this thesis uses latent variable models to capture
the evolution of a latent phenomenon over time, while incorporating a missingness
mechanism to account for possibly nonrandom forms of missingness. Two model
specifications are presented, the first of which incorporates dropout only in the
missingness mechanism, while the other accounts for both dropout and intermit-
tent missingness allowing them to be informative by being modelled as functions
of the latent variables and possibly observed covariates.

Models developed in this thesis consider ordinal and binary observed items,
because such variables are often met in social surveys, while the underlying latent
variables are assumed to be continuous.

The proposed models are illustrated by analysing people’s perceptions on women’s

work using three questions from five waves of the British Household Panel Survey.
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Chapter 1

Introduction

In this thesis, we study latent variable modelling of multivariate longitudinal data
subject to different types of missingness. Dropout and intermittent missingness are
two types of missing data that we incorporate within a latent variable modelling
framework to account for missingness while capturing the evolution of the latent
phenomenon of interest.

In social sciences, such as educational testing and psychometrics, interest is
often in theoretical constructs, such as attitudes, behaviour or abilities, which
cannot be directly measured. In that case, multiple related manifest (observed)
variables, for example survey questions or items in an ability test, are used as
indicators for the constructs, which are themselves treated as latent (unobserved)
variables. The observed items and the latent variables are linked together by
statistical latent variable models (see e.g. Skrondal and Rabe-Hesketh (2004) and
Bartholomew et al. (2011) for overviews). Both manifest and latent variables can
be either categorical or continuous resulting in different versions of latent variable

models. In our research, we consider models with ordinal or binary observed
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items, because such variables are often met in social surveys, while we assume
latent variables to be continuous.

Longitudinal data are collected for studying changes across time. Most of the
existing research on longitudinal data focuses on repeated measures for one vari-
able over time. Good starting points to the extensive literature on such univariate
longitudinal data analysis are Diggle et al. (2013), who give a thorough overview
of different methods, and Verbeke and Molenberghs (2000), who provide a compre-
hensive treatment of linear mixed models for continuous longitudinal data. How-
ever, when interest lies in how latent constructs change across time, the same
multiple items are measured repeatedly at different time points, thus resulting in
multivariate longitudinal data. Models for such data have been proposed by, for
example, Fieuws and Verbeke (2004, 2006), Dunson (2003), and Cagnone et al.
(2009), who model the associations of the latent and observed variables across
time using random effects and/or latent variables.

Missing data is an unavoidable problem in almost every dataset, especially with
longitudinal data. The most common type of missingness in longitudinal studies
is dropout, where subjects exit the study prematurely. A crucial question for the
analysis is whether or not those who drop out are systematically different from
the ones who remain till the end of the study. Intermittent missingness where an
individual misses an occasion and shows up on a subsequent wave, is also possible.
In our research, these two types of missingness are incorporated within a latent
variable model framework for multivariate longitudinal data.

The thesis is outlined as follows: Chapter 2 provides a literature review of
latent variable models outlining the two main approaches for modelling categori-

cal manifest variables; the underlying variable approach (UVA) and item response
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theory (IRT) approach. Chapter 3 gives a review on missing data in general with
a focus on existing methods for modelling univariate longitudinal data subject to
dropout. A latent variable model for analysing multivariate ordinal longitudinal
data subject to dropout is developed in Chapter 4 under the underlying variable
approach, with two possible model specifications. Chapter 5 provides an illustra-
tion for the developed models by applying them to a real dataset about people’s
attitudes towards women’s work from five waves of the British Household Panel
Survey (BHPS), along with a sensitivity analysis for different levels of dropout.
In Chapter 6, one of the two model specifications presented in Chapter 4 is used
to develop a similar model for multivariate binary longitudinal data under IRT.
Chapter 7 extends the model developed for binary observed items within an IRT
framework to accommodate intermittent missingness together with dropout. Two
possible specifications are given for this model too. An application of this model is
also presented using the British Household Panel Survey (BHPS) data. Chapter 8
gives a final conclusion with highlights on the contribution of the research. Future
areas for research are introduced including the incorporation of item non-response

within the same model framework.

1.1 Notation

Observed variables will be denoted by y, where y will denote a (p x 1) vector of
p observed variables. Observed variables will be either ordinal or binary. Latent
variables on the other hand will be denoted by z, where z will denote a (¢x 1) vector
of ¢ latent variables. Latent variables are assumed to be normally distributed

throughout. A vector of covariates will be denoted by x.
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The subscript ¢ will be used to identify an observed variable y , while 7 will
be used to identify a latent variable variable z. Subscript for an individual of the
sample will be denoted by m.

Further notation will be introduced in relevant parts of the thesis.

14



Chapter 2

Literature Review on Latent

Variable Models

In order to develop a latent variable model for multivariate longitudinal data sub-
ject to different forms of missingness, we first need to review the existing literature
on several topics. In this chapter, a literature review of latent variable models for
multivariate complete data is given, first in a cross-sectional context followed by
the longitudinal case.

Latent variable modelling is an important tool in multivariate data analysis.
One of the main reasons behind using such a technique is trying to measure con-
structs or concepts that cannot be directly measured, which are often met in social
sciences (e.g. democracy, satisfaction, attitude,...). These are referred to as latent
(unobserved) factors or variables, and can be measured via a number of manifest
(observed) variables or items. The dimension reduction caused by summarising a
set of related observed variables into one or few latent variables that can be used

in further data analysis without losing much of the structure in the data is itself
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another main reason behind using latent variable models.

A latent variable model consists of two parts: a measurement part that links
the observed variables to the latent variables; and a structural part that speci-
fies relationships among latent variables and possibly covariates. It is assumed
that associations among observed variables are explained by the latent variables.
This is an assumption of conditional independence where the observed items are
independent given the latent variables.

Both manifest and latent variables can be either metric or categorical. Metric
variables can be either discrete or continuous while categorical variables can be or-
dered (ordinal) or unordered (nominal). When both manifest and latent variables
are metric, factor analysis is implemented. On the other hand, latent class analysis
is applied when both manifest and latent variables are categorical. When manifest
variables are categorical while latent variables are metric, latent trait analysis is
the appropriate technique to adopt. Oppositely, when manifest variables are met-
ric and latent variables are categorical the suitable latent variable method is latent
profile analysis. Bartholomew et al. (2011) present a unified approach for latent
variable models for which each of the before-mentioned techniques can be viewed
as a special case within the same general framework.

It is also possible for both manifest and latent variables to be of mixed types.
When latent variables are of mixed type, hybrid models are used. These will not
be discussed within the scope of this thesis. Moustaki and Knott (2000a) propose
a generalised linear model framework which allows simultaneous analysis for dif-
ferent types of manifest variables from the exponential family including metric,
binary and nominal items. Moustaki (1996) develops a method for analysing la-

tent variable models with metric and binary manifest variables within the same
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approach. Moustaki and Steele (2005) discuss a latent variable model with a mix-
ture of categorical and survival items.

When the observed variables are categorical, there are two approaches for esti-
mating parameters of the latent variable model. The underlying variable approach
developed within the structural equation modelling (SEM) framework regards cat-
egorical variables as manifestations of underlying unobserved continuous variables
and thus the problem is converted into one with metric observed variables where
factor analysis can be employed. The second approach is the response function
approach, also known as item response theory (IRT) where distributional assump-
tions are directly made on categorical manifest variables. A function is defined
to give the probability of obtaining a response in each category of the categorical
variable given the respondent’s position on the latent variable scale.

In this thesis, we develop two types of models. The first is for ordinal observed
variables where the underlying variable approach is adopted. The second is for
binary observed items in which the response function approach is employed. La-
tent variables are assumed to be continuous in both cases. We therefore present
the underlying variable approach for ordinal variables, followed by the item re-
sponse theory for binary items. Bartholomew et al. (2011) (pp. 79-81) prove the

equivalence of the two approaches for binary data.

2.1 The Underlying Variable Approach

Structural equation models (SEM) can be viewed as an extension to factor analysis.
Whereas factor analysis only focuses on relationships between observed and latent

variables, structural equation models allow estimation and testing of relationships
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between observed and latent variables on one hand (measurement model), and
relationships among latent variables on the other (structural model).

Structural equation modelling is developed to handle continuous observed vari-
ables. When observed variables are categorical, the underlying variable approach
(UVA) is adopted. The underlying variable approach regards categorical variables
as manifestations of underlying unobserved continuous variables and thus the prob-
lem is converted into one with metric observed variables. Early contributions to
the development of this method can be found in Joreskog (1990, 1994), Muthén
(1984) and Arminger and Kiisters (1988) among others. The underlying variable
approach is supported by software such as LISREL (Joreskog and Sérbom (1996))
and Mplus (Muthén and Muthén (2011)).

Joreskog (1990) defines an ordinal variable as one that takes values out of a
set of ordered categories, such as a five-category Likert scale. The categories are
ordered ascendingly or descendingly but the distances between categories are nei-
ther specified nor equal (example: strongly agree, agree, don’t know, disagree and
strongly disagree). Even when the categories of an ordinal variable are assigned
numeric values, these values should not be treated as values of a continuous vari-
able. Means, variances and covariances should not be calculated for an ordinal
variable, but rather counts of responses in each category. That is why different
techniques are applied when ordinal variables are used within structural equation
models.

The underlying variable approach assumes that each ordinal variable y is a
manifestation of an underlying unobserved continuous variable y* which is used in

fitting the structural equation model. For an ordinal variable y with ¢ categories,
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the relationship between these two variables is given in Joreskog (2005) by
y=5 <= T <Y <7 s=1,2,...,c, (2.1)

where

— 0 =T < T < T < ... < Tee1 < Te = +00,

are parameters known as thresholds. There are c—1 estimable thresholds for an or-
dinal variable y with c categories. It is the continuous unobserved variable y* that
is used in structural equation models not the ordinal observed variable y. Since
only ordinal information is available about the underlying continuous variable y*,
its mean and variance are not identified and it is therefore assumed to have a stan-
dard normal distribution with a density function ¢(u) and a distribution function
®(u). The choice of a standard normal distribution is explained in Joreskog (2005)
by the fact that any continuous distribution can be transformed by a monotonic
transformation into a standard normal. The probability of y falling in category s

can therefore be expressed by

ms=Prly=s|=Prir_1 <y <7 = / | o(u)du = O(15) — P(75-1),
Ts—1
and thus the threshold parameters are
=0 (m +m+... +m), s=1,...,c—1,

where ®~1 is the inverse of the standard normal distribution function. The quantity

19



(m + 7o + ... + 7) is the probability that a response falls in category s or lower.

2.1.1 Measurement Model

The measurement model is the classical linear factor model

q
y;‘:a2~+z}\ijzj+5,~, i=1,...,p, (2.2)
j=1

where «; is the mean of the /" item (here zero as the underlying variables are
assumed to have a standard normal distribution), \;; is the loading of the latent
variable z; on the underlying continuous variable y; and ¢; is a normally distributed
random error; £; ~ N(0,w?) that is uncorrelated with errors of other items. Or in
matrix form

v =a+ Az + €,

where acis a (p x 1) vector of zero means, A is a (p X ¢) matrix of loadings, and €
is a (p x 1) vector of normally distributed random errors € ~ N,(0,2); such that
Q is a (p x p) diagonal matrix of error variances.

Model (2.2) can also be referred to as a cumulative probit model or an ordered
probit model (McElvey and Zavoina (1975)), an extension to the well-known probit
model where the dependent variable is ordinal instead of binary. Alternatively, an
ordered logit model, the counterpart of a logit model for modelling ordinal data,
can be obtained by assuming a logistic distribution for the error term ¢; (McCullagh
(1980)).

The linear model introduced above for modelling the underlying continuous

variable y; is an alternative representation of a generalised linear model for the
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ordinal variable y;. This presentation will be introduced in Section 2.2 under item
response theory, with binary items as a special case.

The latent factors are assumed to account for dependencies among the ob-
served variables (in this case the underlying variables); such that conditional on
the latent factors, the observed variables are independent. If both the underlying
continuous variables and the latent variables are assumed to have standard normal

distributions, the conditional distribution of y* given z is
y* |z ~ Np(Az ),
and the marginal distribution of y* is thus a multivariate normal
v~ Np(07 2)7
where 3 = AA’ + Q is the theoretical covariance matrix of the underlying variables.

2.1.2 Structural Model

The structural part of the model which defines relationships among latent vari-

ables, possibly in addition to a set of observed covariates x is given by

q r
ijz¢jlzl+26jhxh+5ja jzlu"'7Q7
=1 h=1

where ¢;; is a regression coefficient representing the dependence of a factor z; on
another latent factor z;, §j; is a regression coefficient representing the dependence

of a factor z; on an observed covariate x;, and J, is a normally distributed random
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error; d; ~ N(0,v3;) that is uncorrelated with the latent factors z. Or in matrix
notation

z=®z+ (x+ 9,

where ® is a (¢ x ¢) coefficient matrix representing relationships among latent
variables, 3 is a (¢ x r) matrix of coefficients representing dependence of latent
variables on covariates, and § is a (¢ x 1) vector of normally distributed random
errors 0 ~ N, (0, Y); such that Y is a (¢ x ¢) covariance matrix of error terms that

is possibly diagonal if the errors are not allowed to correlate.

2.1.3 Estimation

Estimation methods for the classical linear factor model, such as maximum likeli-
hood (ML) and generalised least squares, provide parameter estimates that in some
sense minimise the distance between the observed S and theoretical ¥ covariance
matrices of the items. However, an observed covariance matrix cannot be obtained
for categorical variables. Therefore, the estimation procedure should start in this
case by obtaining a covariance/correlation matrix that can be employed in the
estimation process.

The following procedure described in Joreskog (1990, 1994) is a three stage
estimation method; also known as PRELIS/LISREL Approach (PLA) for param-
eters estimation of a structural equation model. A similar approach is also given
in Muthén (1984). In the first step, thresholds are estimated from the univari-
ate marginal distributions of the underlying variables. In the second step, poly-
choric correlations are estimated from the bivariate marginal distributions for given

thresholds, thus a matrix of polychoric correlations which can be used in the es-
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timation of the model parameters is obtained. The third step involves estimation
of the measurement /structural model parameters.

STEP 1: The probabilities 7, are unknown population parameters and can
be estimated by their corresponding sample quantities p,, which represent the
percentages of responses in category s. Therefore, the estimates of the thresholds
become

%Sszfl(pl—l—pz—i—...—i—ps), s=1,...,c—1,

where 7, are the maximum likelihood estimators of 7, based on the univariate
marginal data.

STEP 2: Considering the bivariate distribution, suppose there are two ordinal
variables y; and ys with ¢; and ¢y categories, respectively. The bivariate marginal
distribution can be represented by a c¢; X ¢y contingency table that cross tabulates
the two variables, such that the (s;,s2)" cell contains the counts n,,,, of cases
in category s; for the first variable y; and in category s, for the second variable
2. Since the underlying continuous variables y; and y; are both standard normal,
their bivariate distribution is assumed to be standard bivariate normal with a
correlation pip (known as polychoric correlation). However this is an assumption
to be tested as the normality of yi and y3 does not guarantee their joint bivariate
normality.

Let 71(1), 72(1), e ,7'6(11)_1 be thresholds for the underlying variable y; and
7'1(2),7'2(2), . 77}(2211 be the corresponding thresholds for y5. Joreskog (1994, 2005)

outlines the estimation of the polychoric correlation for y; and y; by maximising
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the loglikelihood of the multinomial distribution,

c1 co
InL = Z Z My 5,108 s, 5, (6),
s1=1s2=1
where
D@
Ts1s,(0) = Priys = s1,y2 = so] = /<1> o b2 (u, v)dudv,
7—5171 7—5271
such that
) = L)
/(U= %)

is the standard bivariate normal density with correlation py5. There are ¢; X co

probabilities 7, ,,(0) that are functions of the parameter vector
n 2 (2 (2) ).

— (- (D)
0 —_— (7—1 77—2 PRI 77—61—177—1 ,7—2 g o .. ,7—02_1,p12

Maximising [n L is equivalent to minimising the bivariate fit function

F(6) = Z Zpswz ([N psysy — INTs15,(0)] = Zpswzln [Ps1s2/Ts152(0)],
s1=1s2=1 5182

where pg,s, = ns,s,/IN are the sample proportions.

A full information maximum likelihood estimation approach assumes a multi-
variate normal distribution for all the underlying variables y7,y3,...,y,. Estima-
tion involves minimising the p—dimensional fit function over all response patterns
present in the data. This requires the evaluation of a p—dimensional integral for
each response pattern in the sample, which is done numerically. This approach
becomes computationally infeasible as the number of observed variables increases

(p > 4). That is why the approach based on bivariate normality assumption
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-outlined above- is usually adopted.

STEP 3: Whereas Muthén (1984) uses a generalised least squares method
for estimating parameters of the structural part of the model in the third step,
Joreskog (1990, 1994) uses a weighted least squares method where the weight
matrix is an estimate of the inverse of the asymptotic covariance matrix of the

polychoric correlations to estimate those parameters.

2.2 Item Response Theory Approach

The second approach for estimating parameters of a latent variable model with
categorical manifest variables is the response function/item response theory (IRT)
approach, where distributional assumptions are directly made on categorical man-
ifest variables. A function is defined to give the probability of obtaining a re-
sponse in each category of the categorical variable given the respondent’s position
on the latent variable scale. Within the response function framework, Moustaki
(1996) develops a method for analysing latent variable models with metric and bi-
nary manifest variables. Moustaki and Knott (2000a) propose a generalised linear
model framework which allows simultaneous analysis for different types of manifest
variables from the exponential family including metric, binary and nominal items.

They define a generalised linear model as a model of three components:

1. The random component: each manifest variable y; has a distribution from

the exponential family with a canonical link function 7; taking the form

Ji(Wismi, i) = exp {UT(W)

%

+ di(yiv (701)} ) 1= ]-7 e Py (23)
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where b;(n;) and d;(y;, ;) take different forms depending on the distribution

of the manifest variable y;, and ¢; is a scale parameter.

2. The systematic component: latent variables zi, ..., z, produce a linear pre-

dictor 7; corresponding to each manifest variable y; as follows
q
77i:Oéi—|—Z)\iij, 1= 1,...,p.
j=1

3. The link function: it provides the link between the systematic component 7);

and the conditional mean of the random component E(y; | z) such that

i = vi(pi(2)) = vi(E(y: | 2)),

where the link function v; can take diferent forms for different manifest vari-

ables.

Binary variables are very common in social sciences. Even when responses fall in
more than two categories, in many cases these are collapsed into just two whether
the original categorical variable is ordinal or nominal. In this section, a model
is outlined for binary manifest variables where latent variables are assumed to
be continuous. For latent trait models with polytomous data, see for example;

Bartholomew et al. (2011) and Moustaki and Knott (2000a).

2.2.1 A Measurement Model for Binary Manifest Variables

Let y = (v1,...,¥p) denote a vector of p binary manifest variables and z =

(21, ..., 24)" a vector of ¢ latent variables, where ¢ is practically much smaller than
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p. Possible responses to each binary variable y;, i = 1,...,p are coded as 0 or 1. A
sensible assumption would be that the manifest binary variable y; has a Bernoulli
distribution with expected value m;(z) = Pr(y; = 1 | z), which is a member of
the exponential family thus taking the form of equation (2.3) with d;(y;, p;) = 0
and ¢; = 1. An appropriate link function in the case of binary items is the logit

function

q
n; = logit m;(z) IOZi—FZ)\iij, i=1,...,p, (2.4)
j=1

where o; is a constant term , and );; is the loading of the latent variable z; on the
i" binary item 1;. The intercept a; is known in educational testing, where this
model originates, as the difficulty parameter because increasing its value increases
the probability of a positive response m;(z) = Pr(y; = 1 | z) for all respondents
with different levels on the latent scale. The loading A;; is known as the discrimina-
tion parameter because the larger its value, the easier it becomes to discriminate
between two respondents at a given distance on the latent scale. This can be

viewed as a logistic latent trait model with response function

it =1 Xijz

mi(2z)

et A

An alternative model for binary responses uses the inverse of the normal dis-

tribution function
q
(p_l’ﬂ'i(Z) :OZZ—FZ)\UZ], izl,...,p,
j=1

as a link function instead of the logit given in (2.4). This leads to a model equiva-

lent to the underlying variable approach outlined in Section 2.1. This equivalence
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extends to the case of ordinal items y; , but does not hold for unordered polyto-
mous variables due to the fact that the categories are necessarily ordered in an

underlying variable approach (Bartholomew et al. (2011)).

2.2.2 Structural Model

Latent variables are still assumed to be continuous. The structural part of the

model is the same as that in a structural equation model outlined in Section 2.1.2.

2.2.3 Estimation

For a binary item y;, the conditional distribution of y; given z is taken to be the

Bernoulli distribution,
gi(yi | 2) = {m(2)}V {1 —m(z)}'"%, y=0,1i=1,...,p, (2.5)

= {1 —m(2)} exp {yi(a; + Z Aijzi) }-

j=1
Since only y can be observed, Bartholomew et al. (2011) define the joint distribu-

tion density function of y by

fly) = / 9(y | z)h(z)dz,

z

where h(z) is the prior distribution of z, and g(y | z) is the conditional distribution
of y given z. Our assumption is that of conditional independence, meaning that
if the set of latent variables z is complete, then z is sufficient to explain all depen-
dencies among the 3’s. In other words, conditioning on z, the y’s are independent.

Therefore, their joint distribution g(y | z) can be expressed as the multiplication
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of their marginal distributions, conditioning on z, as follows

g(y | 2) =] gi(vi | 2,

i=1

and thus f(y) can be written as

f(y) =/ [Hgi(yi | Z)] h(z)dz. (2.6)

Parameters of the model (o; and \;;s) are estimated by maximum likelihood based
on the joint distribution of the manifest variables given by equation (2.6). For a

random sample of size n, the loglikelihood is written as

L= log f(ym)
m=1

n

= log/ [Hgi(y,— | z)] h(z)dz.

m=

= Z log/ [H{l — m;(z) fexp{yi(a; + Z )\ijzj)}] h(z)dz. (2.7)

The loglikelihood given in equation (2.7) is differentiated with respect to the model
parameters o, A\;;, where the resulting integral cannot be found analytically and
is approximated numerically using techniques such as Gauss-Hermite quadrature.
Equating the partial derivatives to zero, ML equations are obtained. For non-
normal manifest variables, the ML equations are nonlinear and estimates for pa-
rameters are found by solving the equations using an iterative scheme, such as

Newton-Raphson. The maximisation of the loglikelihood (2.7) can be done by an
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EM algorithm explained in Moustaki and Knott (2000a). Alternatively, Bayesian
estimation using Markov Chain Monte Carlo (MCMC) can be used (see Patz and

Junker (999a, 1999b)).

2.3 Goodness-of-Fit

A latent variable model is accepted as a good fit when the latent variables account
for most of the associations among the observed variables. Testing whether the
model provides a good fit for the data involves comparing observed frequencies
and estimates of expected frequencies under the model being tested. However, a
global goodness-of-fit measure that compares frequencies for full response patterns
cannot be obtained under a limited information likelihood estimation approach
that only estimates pairwise probabilities assuming underlying bivariate normality.
Alternatively, instead of looking at whole response patterns, one may consider two-

way margins. The likelihood ratio test statistic is given by

Xip=2 Z Z Tesy5 01 D153/ Tsisa] = 2N Z Zpswzln [Ps1s3/Ts1ss) = 2NF(é)>

s1=1 s2=1 s1=1s2=1

where 0 is the estimated parameter vector and Tsis9 = Tsys9 (é) If the model holds,
the above statistic has an approximate chi-square distribution with cico — ¢; — ¢
degrees of freedom (Joreskog (2005)). By adding up all univariate and bivariate
X? s, an overall likelihood ratio statistic is obtained. The alternative goodness-

of-fit statistic

1 Cc2 1 &)
XéF - Z Z[(nswz - Nﬁ-8182)2/(N7%8152)] =N Z Z(p5182 - 7%5152)2/7%51527

s1=1s2=1 s1=1s2=1
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has the same asymptotic distribution as X7, when the fit is good.

Likelihood ratio and goodness-of-fit tests can be greatly distorted in cases of
sparseness in contingency tables leading to unreliable estimates, especially for bi-
nary variables (Joreskog (2005)). The test statistics are sensitive to sample sizes
too. Large sample sizes lead to large values thus rejecting models even if the dif-
ference between the sample and fitted covariance matrices is small. On the other
hand, small sample sizes lead to small values thus failing to reject the model due
to lack of evidence.

The Root Mean Squared Error of Approximation (RMSEA) is a more robust
measure, first introduced by Steiger (1990), that is based on the non-central chi-
square distribution and tests whether the model holds “approximately”. Values of
thr RMSEA greater than 0.1 are indications of poor fit. One advantage of the
RMSEA is that it is usually reported with a confidence interval. The Comparative
Fit Index (CFI) is another fit index, proposed by Bentler (1990), that compares
the sample covariance matrix to a null model that assumes all latent variables are
uncorrelated. Values of the CFI range between 0.0 and 1.0, with values closer to
1.0 indicating good fit. Hooper et al. (2008) provide a list of available fit indices
for structural equation modelling in the literature, along with guidelines on their
use.

An alternative way that does not provide a test statistic but rather focuses
on measurement of fit is proposed by Joreskog and Moustaki (2001). It measures
the fit to the univariate and bivariate marginal distributions and allows pointing
out the source of lack of fit by defining a LR-fit and a GF-fit for each category of
the univariate and bivariate contingency tables. These represent the individual cell

contributions to the LR and GF-fits and they do not have a chi-square distribution.
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For category s of variable i , the LR and GF-fits are defined as

LR — fit® = 2np{n (p¥ /7D),

GF — fit) = () ~ 7930,

Summing these over s gives the univariate LR~ and GF-Fits for variable . Simi-
larly, the bivariate LR and GF-fits for category s; of variable ¢ and category sy of

variable ¢’ are defined as

LR thngZsz - anslsz (ps?sl/ﬂslsz)

GF thslsg - n(pglsg AvgiZSQ) / '2717'52

Summing over s; and s, gives the bivariate LR and GF-fits for variables ¢ and
i'. Since each of these fit measures is based on a different contingency table with
a different number of cells, they are divided by the number of cells to allow for
comparison across variables and pairs of variables. The overall fit measure is the
average of all pairwise fit measures. Joreskog and Moustaki (2001) suggest consid-
ering a value larger than 4 to indicate a poor fit. Cells with large contributions to
the LR or GF-statistics will be nominated as the source of bad fit. Bartholomew
and Tzamourani (1999) propose alternative ways for assessing the goodness-of-fit
of this model based on Monte Carlo methods and residual analysis.

Criterion for selecting among a set of nested models could be used instead of
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goodness-of-fit tests. Akaike Information Criterion (AIC) takes into account both
the value of the likelihood at the maximum likelihood solution and the number of
estimated parameters

AIC = —2[maxL] + 2m,

where m is the number of estimated parameters. AIC can be used to compare
models with different numbers of latent factors, where the model with the smallest

AIC is taken to be the best.

2.4 Latent Variable Models for Multivariate Lon-
gitudinal Data

When a single variable is measured repeatedly over time, the data is said to be
longitudinal. Modelling univariate longitudinal data will be discussed briefly in
Chapter 3. However, when interest lies in capturing the evolution of a latent
construct over time, latent variable models are used. The latent variables are
measured via a number of observed items at each time point. When dealing with
such models, there are two types of relationships to account for; those between
different items within the same time point and those between the same items
at different time points. At a given time, one or more latent variables can be
used to account for dependencies among items, as outlined earlier in this chapter
for cross-sectional data. The structural part of the model in this case addresses
the question: how should the latent variables be linked in order to capture the
longitudinal nature of the data?

Within a SEM framework, Joreskog (2005) discusses a confirmatory SEM for
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multivariate ordinal longitudinal data where measurement invariance is assumed
by setting thresholds and loadings of the same items to be equal over time. De-
pendence among latent constructs over time is captured by regressing a latent
variable on the same latent variable measured at a preceding time point. Mea-
surement errors for the same items are correlated over time to account for their
repitition.

Within an IRT approach, Dunson (2003) proposes a generalised latent trait
model that accommodates different types of observed items and accounts for de-
pendencies within time using time-specific factors and across time using item-
specific random effects. A linear transition model is used to link the latent vari-
ables. Inference is carried out using a Bayesian approach. Cagnone et al. (2009)
use a similar framework for modelling multivariate longitudinal ordinal responses
where a first order autoregressive structure is used to link latent variables over time
whereas item-specific random effects or a single common factor are used to account

for associations of items across time. An EM algorithm is used for estimation.
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Chapter 3

Missing Data: Review of Literature

Standard statistical techniques are designed to analyse complete datasets. They
are developed under the assumption that the values for all variables recorded for
all observations in the dataset are present. In practice, this is not usually the
case. It is very often when dealing with a real dataset that some of the values are
missing.

There are different types of missing data. Unit non-response is a severe type
of missingness where data for an observation is completely missing, and thus no
information can be inferred about this observation. Item non-response is another
type of missing data where data for a respondent is collected for some variables
but is missing for others. Intermittent missingness and dropout are two types of
missingness specific to longitudinal data. Intermittent missingness occurs when
a subject misses one or more occasions of a longitudinal study, but shows up on
subsequent waves. Dropout is a more common type of missingness in longitudinal
studies where subjects exit the study prematurely.

In this chapter, we present existing literature on missing data in general, fol-
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lowed by a review of how dropout is treated in longitudinal studies.

3.1 Missingness in Cross-sectional Data

Rubin (1976) and Little and Rubin (2002) classify missing data into:

1. Data Missing Completely At Random (MCAR) where missingness is inde-

pendent of both observed and unobserved data.

2. Data Missing At Random (MAR) such that missingness depends on the

observed data, but is independent of the unobserved.

3. Data Missing Not At Random (MNAR) where missingness depends on the

unobserved data, and possibly the observed data as well.

When data is missing completely at random (MCAR), it is reasonable to think
of the observed data as a random subset of the complete data. If data is missing
at random (MAR), it can still be viewed as a random subset defined for different
values of the observed data. In these cases, the missingness mechanism is said to
be ignorable. For the case when data is missing not at random (MNAR), the miss-
ingness depends on the missing value itself and possibly on observed outcomes too,
hence it is said that the missingness mechanism is non-ignorable or informative.
It is possible to test whether the MCAR assumption is met. For example, one
could compare men and women to test whether they differ in the proportion of
cases with missing data on income. Any such difference would be a violation of
MCAR. However, it is impossible to test whether the data are MAR or MNAR. For

obvious reasons, after controlling for observed variables, one cannot tell whether
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respondents with higher income are more likely than those with lower income to
have missing data on income (Allison (2012)).

There are various ways in the literature for dealing with missing values, the
simplest of which is complete-case analysis; also known as listwise deletion in which
incompletely recorded units are discarded and a case is included in the analysis
only if it is fully observed on all variables. Simplicity is the main advantage of
this method. However, it can involve a great loss of information since values of
a certain variable are discarded when they belong to cases that are missing for
other variables. It can thus lead to serious biases and is not efficient except when
the data is MCAR. Available-case analysis is a possible alternative for complete-
case analysis that includes all cases where the variable of interest is recorded, thus
making use of all available information when making inference on a single variable.
The main limitation of this method is that the sample base is not the same from
one variable to another. This variability can cause practical problems and does
not allow for comparability across variables if the missingness mechanism is not
MCAR. A natural extension to accommodate meausures of covariation is pairwise
deletion, in which a case remains in the analysis if the pair of variables being
referenced have complete data for that case.

Weighting procedures for missing data use weights for observed units in an
attempt to adjust for bias. This is a relatively simple device for reducing bias
from complete-case analysis by yielding the same weight for all variables measured
for each case. On the other hand, this simplicity entails a cost, in that weighting
generally involves an increase in variance and is thus inefficient (Little and Rubin
(2002)).

Imputation is a widely used method in which the missing values are filled in
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with one of several options and analysis is carried out with the imputed data as if
the dataset was completely observed (Little and Rubin (2002)). Single imputation
can be applied to impute one value for each missing item. Options for imputation
include unconditional or conditional mean imputation, where means from observed
values of a variable or conditional means given data observed on other variables are
substituted respectively; imputation by regression, where the missing variables for
a unit are estimated by predicted values from the regression on the known variables
for that unit; and hot deck imputation, where recorded units in the sample are
used to substitute missing values. An important drawback of single imputation
methods is that they do not account for imputation uncertainty and thus standard
variance formulas applied to the imputed data systematically underestimate the

variance of estimates, even if the model used to generate the imputations is correct.

Multiple Imputation (MI) has the added bonus of largely correcting this dis-
advantage by imputing each missing value by more than one value, allowing for
appropriate assessment of imputation uncertainty and increasing the efficiency of
estimates compared to those obtained from single imputation. MI was first intro-
duced by Rubin (1978) and keynote references include Rubin (1987) and Rubin
(1996). When MI is implemented, each missing value is replaced by a vector of D
imputed values. Replacing each missing value by the first component in its vector
of imputations creates the first completed data set, replacing each missing value
by the second component in its vector creates the second completed data set, and
so on. Standard complete-data methods are then used to analyse each of the D
imputed data sets. The D sets of imputations can be viewed as repeated random

draws from the predictive distribution of the missing values under a particular
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model for non-response. In that case, the D complete-data inferences can be com-
bined to form one inference that properly reflects uncertainty due to missingness
under that model, where the standard error adjusted for imputation accounts both
for variation within and between imputed sets. When imputations are from two or
more models for non-response, the combined inferences under the models can be
contrasted across models to display the sensitivity of inference to models for non-
response. MI provides statistically valid estimates, unilke simple ad hoc methods
for handling missing data such as complete-case analysis, available-case analysis
or mean imputation which only return valid estimates under the assumption that
data is MCAR (Rubin (1996)).

A different approach for handling missing data is to rely on model-based pro-
cedures in which a model is defined for missingness. Inference is then made on the
likelihood defined under that model. A brief review of likelihood-based estimation

for data with missingness is given below.

3.1.1 Likelihood-Based Estimation for Data With Missing

Values

Little and Rubin (2002) present a likelihood-based estimation method for data
with missing values. Let y denote the complete data with no missing values such
that y can be written as ¥y = (Yobs, Ymis) Where y,ps denotes the observed values
and y,,;s denotes the missing values. The probability density function of y with
a scalar or vector parameter 6; f(y | #), can be written as a joint distribution of
Yobs AN Ypnis 88 f(Yobs, Ymis | €).- The marginal distribution of y,s is obtained by

integrating out y,,;s from the joint probability density function

39



f(yobs ’ ‘9) = /f(yob37ymis | G)dymzs (31)

The missingness mechanism can be incorporated in the model by introducing
an indicator random variable for missingness. For the i** variable of the m!"

observation, an indicator random variable r,,; is defined as

1, Ymi observed,

T'mi =

0, Ymi MISSING.

The joint distribution of y and 7, a (p x 1) vector of missingness indicators, can

be written as

fly,r | 0,9) = fly | O)f(r ]y, ),

where f(r | y,7) is the distribution of the missingness mechanism and ¢ is an
unknown parameter related to the missingness process. What is actually observed
is values for yos and r. To obtain the distribution of (yes,7), we integrate out

Ymis from the joint distribution of ¥y = (Yops, Ymis) and :

f(yobsﬂn | 97¢) = /f(yobsaymis ’ e)f(T | yobs7ymis>w)dymis- (32)

When the missingness mechanism does not depend on the missing values 9,,;s;
that is to say data is MAR, f(7 | Yobs, Ymis, V) = f(7 | Yovs, ?), and equation (3.2)

can be written as

f(yobsa r ‘ 07 1/}) = f(’f’ | Yobs, ¢> / f(yobs7ymis | Q)dymis
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= f(?" ‘ Yobs w)f(yobs | 9)

In some cases, the parameters 6 and v are said to be “distinct” in the sense that
their joint parameter space is the product of the parameter space of # and that of
¥. In this case, the likelihood-based inferences for # from the likelihood L(6, |
YobssT) = f(Yobs, T | 0,7) is the same as that from the simpler L(6 | yobs) = f(Yobs |
0). That is, if the data is MAR (missingness does not depend on the missing
values), and the parameters 6 and 1 are distinct, the missingness mechanism is
ignorable when inferences are made about 6. Inferences can then be based on
equation (3.1) rather than (3.2). However, it is not always easy to justify the
assumption of random missingness. See Little and Rubin (2002) and Verbeke and
Molenberghs (2000) for details.

The procedure for maximum likelihood estimation of parameters of an incom-
plete dataset will be the same as that of a complete dataset with the difference
that it is based on the observed part of the data. The likelihood function is de-
rived, and the ML estimates are obtained by solving the likelihood equations. The

following are three available approaches to ML estimation with missing data.

3.1.1.1 Factoring the Likelihood

Assuming the missing-data mechanism is ignorable, the loglikelihood (0 | yeps) =

log f(yops | @) based on the incomplete data may be rewritten as

l(¢ ’ yobs) == l1(¢1 ’ yobs) + 12(¢2 ‘ yobs) + ...+ ZJ(¢J ‘ yobs>7
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where ¢ is a one-to-one monotone function of 6 and ¢, ¢o, ..., ¢, are distinct pa-
rameters (Little and Rubin (2002)). If this decomposition can be found, (¢ | Yops)
can be maximised by maximising ;(¢; | yobs) separately. This is done by factoring
the likelihood into functions that depend on distinct ¢;’s. However, this factori-
sation does not always exist. Moreover, it can even exist but with non-distinct

parameters ¢;’s; and thus maximising the factors separately does not maximise

the likelihood.

3.1.1.2 Direct ML

Assuming the data is MAR (missingness mechanism is ignorable), ML estimates

can be found by solving the score function

8[(0 | yobs)

2 =0.

5(9 | yobS) =

If a closed-form solution can be found for the above equation, ML estimates
are obtained directly. If no closed-form solution can be attained, iterative methods
are used to obtain the ML estimates. Some of these iterative methods, such as the
Newton-Raphson algorithm, require calculating second derivatives of ¢ which can

become rather complicated.

3.1.1.3 The EM Algorithm

The Expectation-Maximisation (EM) algorithm, first introduced by (Dempster
et al. (1977)), is an iterative algorithm for ML estimation. It consists of two steps:
the E-step which finds the conditional expectation of the loglikelihood [(6 | y) - or

functions of y,,;s appearing in the complete data loglikelihood, given the observed
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data and the current estimate of the parameter 6, say 6(*)

E (l(e | y) | yobsae = 9<t)> = /l(9 ‘ y)f(ymis | yob579 = e(t))dymisa

and the M-step which maximises this expected loglikelihood thus determining the
new parameter #*Y . The new estimated parameter is substituted back in the
E-step and the above steps are repeated until convergence is attained. The expec-
tations calculated in each step involve estimating functions of the missing data y,,;s
which are then used to re-estimate the parameters. The new parameters are used
to re-estimate functions of the missing values, and so on. Here data are assumed
to be MAR, but in case the missingness is not at random, a factor representing
the missing-data mechanism has to be included in the model. See examples for

clarification in Little and Rubin (2002).

Bayesian Estimation

The likelihood function also plays a central role in Bayesian inference. In the
Bayesian approach, parameters 6 are treated as random variables rather than
fixed quantities, and uncertainty about them is quantified using probability distri-
butions. A parameter 6 is assigned a prior distribution h(f), and inference about
0 after observing the data y is based on its posterior distribution h(6 | y), which

is given by Bayes’ theorem as:

Wb ly) =

Point estimates of 6 can be obtained as measures of the center of the posterior

distribution. Little and Rubin (2002) outline the strong parallels between Bayesian
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and likelihood inference in case of large samples, and point out that Bayesian
estimates correspond to ML estimates of § when the prior distribution is uniform.
Furthermore, they highlight that in principle there is no difference between ML or
Bayes inference for incomplete data and ML or Bayes inference for complete data.
The likelihood for the parameters based on the incomplete data is derived, ML
estimates are found by solving the likelihood equation,while in case of Bayesian
inference the posterior distribution is obtained by incorporating a prior distribution
and performing the necessary integrations. More on Bayesian estimation is given
in Chapter 6.

To sum up, there are two main competing approaches with very similar statisti-
cal properties for handling missing data, namely MI and ML. Under the assumption
that data are MAR, both approaches return valid estimates that are consistent and
asymptotically efficient. One main advantage of M1 is to provide ultimate users of
the data, with varying models and degrees of statistical and computing capabili-
ties, with data sets that can be analysed with standard complete-data techniques
without the need for special knowledge and techniques for handling missing data.
This is particularly useful when database constructors and ultimate users are dis-
tinct entities, so that database constructors may focus on handling the missing
data problem while ultimate users focus on their substantive scientific analysis for
which missing data are merely a nuisance factor (Rubin (1996)). On the other
hand, Allison (2012) highlights the strength points for ML-based procedures over
MI, the most important of which being that there is always a potential conflict
between the imputation model and the analysis model when MI is implemented
while no such conflict exists in ML because everything is done under one model.

Possible sources of incompatability that can cause serious bias in estimates when
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MI is used include cases such as: when the analysis model contains variables that
were not included in the imputation model, and when the analysis model contains
interactions and non-linearities, but the imputation model is strictly linear, and
so on... Another point is that ML is more efficient than MI, where in case of
MT full efficiency requires an infinite number of data sets to be analysed, which
is not possible. Moreover, for a given set of data, ML always produces the same
result, while MI gives a different result every time it is implemented. This partic-
ular drawback of MI can be overcome by increasing the number of imputed data
sets. On comparing five methods (mean imputation, regression imputation, MI,
EM and ML) for dealing with missing data in SEM with respect to the percent of
bias in estimating parameters, Olinsky et al. (2003) find ML to be superior in the
estimation of most different types of parameters, followed by MI which is found
superior in estimating standard errors but suffers with increasing percentage of

missing data.

3.1.2 Models for Data Missing Not At Random (MNAR)

So far, data has been assumed to be MAR. However, when the missingness is non-
ignorable, the missingness mechanism should be incorporated in the model as in

equation (3.2). There are two cases when missing data is non-ignorable:

1. The mussing data mechanism is non-ignorable but known. The conditional
distribution of r given y = (Yops, Ymis) depends on y,;s, but does not depend

on unknown parameters ).

An example with a known non-ignorable mechanism is given in Little and

Rubin (2002) for incomplete data that are created by censoring at some
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known censoring point ¢, so that only values less than ¢ are recorded. The

missingness mechanism is given by

Fo Ly ) =TT FOm | ym ),
m=1

where only n’ respondents are observed; r,, = 1, m = 1,....n" and r,, =

0, m=n'+1,...,n. Hence,

1, rm =landy,, <c, orr, =0andy, > c,
f(’rm | Z/mﬂP) =

0, otherwise,

This leads to a likelihood function involving an exponential distribution that
depends on the known censoring point ¢, but not on unknown parameters 1

defining the missingness process:

f(yobsaT | 0) = Hf(ymarmle) H f(rm|‘9)

m=n’+1

nym|9 Pr (ym < ¢ | Ym) H Pr(y, > c | 0)
m=1

m=n’+1

— 0~ exp (— nz %”) exp <—%> ,

m=1
since Pr(ym < ¢ | ym) = 1 for respondents and Pr (y,, > ¢ | 0) = exp (—%)

for non-respondents, using properties of the exponential distribution.

. The missing data mechanism is non-ignorable and unknown. The condi-

tional distribution of y depends both on y,,;s and unknown parameters . In
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practice, most non-ignorable missing data mechanisms will also be unknown
as non-reponse will usually be related in some unknown way to the missing
values even after adjusting for covariates known for both respondents and

non-respondents.

Although the more general MNAR, assumption explicitly incorporates the missing-
ness mechanism, inferences produced are based on untestable assumptions about
the distribution of the unobserved data given the observed. Methods involving
non-ignorable missing data should always be viewed as part of a sensitivity anal-
ysis in which the consequences of different modelling assumptions are explored

(Little and Rubin (2002)).

3.2 Missingness in Longitudinal Data

In this section, we first look at how longitudinal data is modelled, has the data
been fully observed. Then, we review models for longitudinal data subject to

dropout, the most common form of missing data in longitudinal studies.

3.2.1 Modelling Complete Univariate Longitudinal Data

When a variable is measured repeatedly for each subject in a study to monitor
its evolution over time, the data is said to be longitudinal. Analysing such type
of data, correlations among measurements of the same subject over time should
be accounted for. Each individual in the study is affected by average trends that
affect the whole population. These are called population-specific or fized effects.
One is also affected by subject-specific or random effects that are unique or specific

to this subject in particular.
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For an individual m, longitudinal data is modelled using general linear mixed-
effects models (see for example Verbeke and Molenberghs (2000), Diggle et al.
(2013) and Molenberghs and Verbeke (2001)) of the form

Ym=X,8+W,b, +&,, m=1,...,n; (3.3)

where Y, = (Ym1, Ym2, ---» Ymr,,)" 18 a vector of all repeated measurements for the
mth subject at T,,, occasions, X,, is a (7},, X r1) matrix of known covariates, 3 is
an (r; X 1) vector of corresponding regression parameters (fixed effects), W,, is a
(T, X r2) matrix of subject-specific covariates that usually includes time as a covari-
ate modelling how vy, evolves over time, b,, is an (ry X 1) vector of subject-specific
parameters (random effects) describing how the evolution of the mth subject de-
viates from the average evolution in the population, and &,, is a (7, x 1) vector
of residuals for the mth subject. This model assumes that the vector of repeated
measurements for each subject follows a linear regression with some population-
specific parameters B and some subject-specific parameters b,,.

It is also assumed that b,, ~ N(0,B), €,, ~ N(0,0%I1,), and that b,, and
€., are independent. Conditioning on the random effect b,,, y,, follows a normal
distribution with mean X,,3 + W,,b,, and covariance matrix %,, = %Iy, . The

marginal density function of y,,, which is given by

9(Ym | Xn) = /9<Ym | X, byn) h(brn ) dby,

will have a normal distribution with mean vector X,,3 and covariance matrix
V,, =W, BW! + 3%, where ¥,, = 021, (Verbeke and Molenberghs (2000)).

Molenberghs et al. (2004) consider adding a term u,, to account for serial
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correlation in equation (3.3):

Ym = XmIB + mem + Wy, + Em,

where u,, is assumed a normal distribution; N(0,02H,,). The serial covariance
matrix H,, only depends on m through the number of observations T}, and the
time points at which measurements are taken. The structure of the matrix H,,
is determined through the autocorrelation function p(t,, — t/,). This function
decreases such that p(0) = 1 and p(t) — oo as t — oco. In this case the covariance
matrix of the marginal distribution of y,, becomes V,, = W,,BW/ + %, where
Y = 0?1z, +02H,, combines the measurement errors and the serial components.

Longitudinal data can be viewed as two-level data, where occasions are nested
within subjects. Rabe-Hesketh and Skrondal (2012) present a comprehensive re-
view of models for univariate longitudinal data within this context, including fixed-
effects models where unobserved between-subject heterogeneity is represented by
fixed subject-specific effects, random-effects models where unobserved between-
subject heterogeneity is represented by subject-specific effects that vary randomly,
and dynamic models where the response at a given occasion depends on previous
or lagged responses. In practice, different disciplines adopt different modelling
strategies for longitudinal data. A summary of some of the main modelling tech-
niques for longitudinal data presented by Rabe-Hesketh and Skrondal (2012) is
given below.

A fixed-effects model may include a subject-specific fixed intercept or fixed

coefficient for some of the covariates, or both. An example of a fixed-effects model

49



would be

Ymt = 50 + a1 + /lelm + 62x2m + (53 + a?m)xi’)m + Emts

where oy, and «s,, are fixed subject-specific intercept and slope parameters, re-
spectively, x; and x5 are covariates having the same effect for all subjects, and
x3 is a covariate having a subject-specific effect. Fixed-effects models are used to
estimate average within-subject relationships between time-varying covariates and
the response variable, where every subject acts as its own control..

Similarly, a random-effects model may include a subject-specific random in-
tercept resulting in a random-intercept model, or random coefficient for some of
the covariates resulting in a random-coefficient model, or both. An example of a

random-effects model would be

Ymt = BO + Clm + /lelm + 52$2m + (53 + C2m>x3m + Emt,

where (y,, and (5, are random subject-specific intercept and slope parameters, re-
spectively, x1 and x5 covariates having the same effect for all subjects, and z3 is a
covariate having a subject-specific effect. Random-effects models explain individ-
ual differences by allowing subject-specific relationships to vary randomly around
average trends of the population. A special case of random effects-models are
growth curve models, in which time is always given a random coefficient to model
individual growth trajectories. Random-effects models are widely used in areas of
psychology and education, where both the nature and reasons for variability are

of interest.
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Dynamic models, also known as lagged-response models, autoregressive-response
models and Markov models, model the response variable as a function of the same
variable at previous occasions. One of the most widely used dynamic models is
the first-order autoregressive model [AR(1)], where the response y,,: is regressed

on the preceding response ¥y, ;1. An example of an [AR(1)] model is

Ymt = Bo + OYmi—1 + B1Zim + Boom + B3Zzm + Eme- (3.4)

Conditional on covariates, residuals ¢,,; are assumed to be uncorrelated. This
model assumes that all the within-subject dependence is due to the lagged re-
sponse. It is noted that a fixed autoregressive parameter ¢ is used here. It is
appropriate to use such a model when occasions are equally spaced in time. Oth-
erwise, it would seem unrealistic or unjustifiable to assume that the lagged response
has the same effect on the current response regardless of the time interval between
them. The above model can be extended to have a time-dependent autoregressive
parameter ¢; instead of ¢, to accommodate unequal spacing in time. Another
extension can combine a lagged-response model with a random (or fixed) intercept

as follows

Ymt = 50 + Clm + gbym,t—l + 61x1m + 52x2m + ﬁ3x3m + Emts (35)

in order to distinguish between two explanations of within-subject dependence
over time; namely unobserved heterogeneity where individual differences affect
both past and future responses (represented by the random intercepts), and state

dependence where previous responses somehow determine /affect future responses
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(represented by the lagged responses). Dynamic models are very popular among

economists.

3.2.2 Longitudinal Data Subject to Dropout

The problem of missing data is very common in longitudinal studies. A distinction
should be made here between intermittent missing values where a subject has
missing data at some of the waves of the study, and dropout or attrition where
missing values are only followed by missing values (i.e. subjects exit the study
prematurely and never come back).

Most of the literature on longitudinal data is restricted to dropout as it is the
most common type of missingness to appear in longitudinal studies. Again the
simplest way to deal with dropout is to discard incomplete cases. However, this
can be very misleading especially in cases when there is a systematic difference
between subjects who stay in the study and those who dropout, that is to say
dropout is not at random. Another way to overcome the problem of dropout
is using imputation. Methods for imputing longitudinal data include: replacing a
missing observation by the mean of non-missing subjects with the same covariates,
carrying the last available measurement of the subject onwards, and regressing the
missing value on available past data. However, as before-mentioned in Section 3.1,
these naive approaches are only valid under the assumption that data are MCAR,
and are thus not recommended as they systemetically lead to underestimation of
the variance (between-individual variance in case of mean imputation and within-
individual variance in case of last observation carried forward). Neither complete-

case analysis nor imputation is completely natural here. The most natural thing
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is to use all available data for each subject for as long as they last, without further
adjustment, thus justifying our choice of likelihood-based approaches to handling
dropout. This approach is fully efficient when dropout is at random.

When modelling longitudinal data subject to dropout, the joint density func-
tion of both the measurement and dropout processes is considered. Suppose
dropout occurs at occasion t of a longitudinal study. If dropout neither depends on
observed history data nor on the currently unobserved value, then missingness is
considered to be completely at random. However, if the probability of dropout de-
pends on previously observed values, but not on the currently missing value, then
dropout is considered to be at random. If dropout is at random (or completely
at random), and the parameters of the dropout process are distinct from those
of the measurement process (an assumption we make throughout), the dropout is
said to be ignorable and a valid analysis can be based on a likelihood that ignores
the dropout mechanism. However, it is not always easy to justify the assumption
of random dropout. If dropping out depends on the unobserved value at time of
dropout, data is MNAR as in that case the missingness depends on the missing
value itself which implies a systematic difference between respondents who remain
in the study and those who drop out. For example, in a medical study, those drop-
ping out may be those with a deteriorating health condition. Hence the dropout
mechanism is non-ignorable and should be incorporated in the analysis of the data,
as ignoring it may lead to biased estimates of the parameters of interest.

There are three general model-based approaches for modelling univariate longi-
tudinal data subject to dropout, that are outlined below. As a start, let us define
a time of dropout variable k,, that denotes the occasion at which subject m drops

out - in case of an incomplete sequence - and that is equal 7}, + 1 in case of a
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complete sequence. Since in case of dropout, r,, is of the form (1,...,1,0,...,0), k,

is then given by

TVVL

k?m: 1+Z’f’mt.

t=1

3.2.2.1 Selection Models

Selection models factorise the joint density of the full data f(y.., km | X, Wi, 6, 1)
into the product of the marginal density of the measurement process and the con-

ditional density of the missingness mechanism given the measurement as follows

f(yma Fm | Xons W, 9a¢) = f(Ym | Xm7Wm79)f(km ’ YWaxma¢)-

It is possible to have additional covariates in the missingness model but this is
suppressed from notation (Molenberghs and Verbeke (2001)). In their key paper
on selection models for non-ignorable dropout, Diggle and Kenward (1994) combine
a multivariate Gaussian linear model for the measurement process with a logistic
dropout model. A general model for informative dropout in longitudinal data for
which completely random and random dropouts are special cases is proposed, and
an associated methodology for likelihood-based inference is developed. A linear
mixed model of the form (3.3) is assumed to model the measurement process.
Assuming that the first measurement y,,; is obtained for every subject in the
study, the model for the dropout process is based on a logistic regression for the
probability of dropout at occasion ¢, given the subject was still in the study up to
occasion t. Let g(h,, ym:) denote this probability, where the history vector h,,;

contains all responses and covariates observed up to but not including occasion ¢.
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The dropout process is thus modelled by a logistic linear model of the form

loglt [gt(hmt7 ymt)} = 10glt [PI‘ (km =t ’ km Z t7 ym)] - hmtlIl + djlymt

t
= Yo + Y1Ymt + Z ViYm,t+1-1, (3.6)
1=2

where h,,; is a suitable subset of h,,. If 1 = 0, the dropout process is random,
since the dropout will depend only on history and not on y,,,. In this case, the
measurement, and dropout models can be fitted separately. If ¢; # 0, the dropout
is nonrandom, since the dropout will depend on ¥,,;, and the measurement and
dropout models cannot be fitted separately.

Suppressing the index m for a subject, let y* = (y},¥3,...,y>)" denote the
complete vector of measurements at 7' time points. Let y = (1,92, ..., yr)T denote
the vector of observed measurements with missing values recorded as 0. Therefore,

it can be said that

where 2 < k < T identifies the dropout time. Let f*(y;3, ¢) denote the joint
probability density function (pdf) of y* which follows a multivariate normal distri-
bution: y ~ MV N{X3,V(t, )}, where V(t, @) is a block diagonal matrix with
non-zero (T,, x T,,) blocks depending on some parameters ¢. We will combine 3

and ¢ in one parameter vector 8 = (3, ¢) that defines the measurement process.
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Also, let hy = (y1, ..., y;—1) denote an observed sequence of measurements observed
up to time ¢ — 1, and y; the value that would be observed at time ¢ if the unit did
not drop out.

Let f(y; | h};0) denote the conditional univariate normal pdf of y; given
(Y1, -, ye—1) = b and fi(y; | hy; @) the conditional pdf of y; given (y1, ..., y1—1) = hy.

It follows that

Pr(y; =0[hyy1=0) =1, (3.7)
Pr(y, =0 |hy,y1 #0) = /pt(htayt;w)ft*(yt | hy; 0)dy; (3-8)

and, for y; # 0,
ft(yt ’ ht;eﬂ/)) = {1 _pt<ht§yt§¢>}ft*<yt ‘ ht;O). (3-9)

The above equations determine the joint distribution of y. For a complete

sequence y = (y1, ..., yr), and supressing the dependence on the parameters 6 and

Y,

T

F) = fiw) [ fiwe | )

t=2

= f(y) H{l — pe(he, ye) b, (3.10)

while for an incomplete sequence y = (y1, ..., Yx_1,0, ..., 0) with dropout at time k
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k—1

fy) = fi(n) { fe(ve | ht)} Pr(y, =0 | hy)

t

||
N

= flj—l(ykil) {1:[ 1 _pt<ht>?/t)]} Pr(y, = 0| hy), (3.11)

where f; ,(y"1) denotes the joint pdf of the first & — 1 non-missing elements.

The loglikelihood function for @ and 1 based on the observed data {y,, : m =1, ...,

is given by Diggle and Kenward (1994) as

1(0,1) = 11(0) + ly(2h) + 15(0, ), (3.12)
where
= log fr,(Ym),
m=1
n —1
log {1 - Pt h,., ymt)} )
m=1 t=2
and

I5(0,9) = Y logPr(k =k | ym).

Mk <T

In case of random dropout, [3 reduces to depend only on %, and therefore
likelihoods for @ and 1) can be maximised separately. It is recommended anyways
to maximise [y and (ly + l3) separately assuming random dropout as a means of
obtaining initial values for the full maximisation of {(6,). If random dropout

holds, only [y is required to make valid inference about the marginal measure-
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ment process. However, the full likelihood is still needed for inferences about the
conditional process Y | non — dropout.

The model outlined above, introduced by Diggle and Kenward (1994), for non-
random dropout is used as basis for many articles to follow. Molenberghs et al.
(1997) use the same framework to model dropout probabilities when the variable
of interest is ordinal. This requires a different approach to modelling the response
and to the resulting likelihood calculations. Jansen et al. (2006) also study non-
Gaussian outcomes such as binary, categorical or count data. They consider both
generalised linear mixed models, for which the parameters can be estimated using
maximum likelihood, and marginal models estimated through generalised estimat-
ing equations, which is a non-likelihood method and hence requires modification to
be valid under MAR. Molenberghs and Verbeke (2001) provide a review on linear
mixed models for continuous longitudinal data focusing on the problem of missing

data within both selection models and pattern-mizture models.

Sensitivity Analysis Within Selection Models

When fitting a nonrandom dropout model, both the impact of the assumed dis-
tributional form and the impact one or a few influential subjects may have on the
model parameters, should be considered.

In their work, Verbeke et al. (2001) adopt the same model proposed by Diggle

and Kenward (1994) with the following perturbed version of the dropout model

10glt [gt(hmta ymt)] = 1Og1t [PI’ (km =1 | km Z t, Ym)} - hmtlI’ + wlmymt-
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The difference in this model is that the vy,,s are not viewed as parameters but
rather as local, individual-specific perturbations around a null model. The null
model is taken to be the MAR model corresponding to setting ¢y = 0. Verbeke
et al. (2001) state that “ When small perturbations in a specific ¢y, lead to rela-
tively large differences in the model parameters, it suggests that the subject is likely
to drive the conclusions...Such an observation is important also for our approach
because then the impact (e.g., from influential subjects) on dropout model param-
eters extends to all functions that include these dropout parameters... Therefore,
influence on measurement model parameters can arise not only from incomplete
observations but also from complete ones”. A similar model is studied in Steen

et al. (2001) for incomplete longitudinal multivariate ordinal data.

3.2.2.2 Pattern-Mixture Models

Pattern-mizture models, introduced by Little (1993), represent an alternative to
selection models. They factorise the joint density in the opposite way, that is as
product of the marginal density of the dropout mechanism, and the conditional
density of the measurement process given the dropout. In other words, the mea-
surement process is defined over different dropout patterns. The density of the full

data (¥, k) in the pattern-mixture model context can be written in the form

f(Yn"wkm ‘ Xm,Wmﬁ,@D) = f(Ym ’ km>vaWma‘9)f(km | Xm,w)»

where the first factor is the density of the measurement process conditional on
dropout, and the second factor is the marginal density of the missingness mech-

anism. For example, assuming that the response will have a multivariate normal
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distribution, with the possibility of dropout at any time point after the first one, it
follows that the response will have a different distribution at each time of dropout

ko

Ym ‘ ke ~ N(,U(km)v V(km))a

where k = 2,...,T. Let m = f(k,, | ¥) denote the marginal density of the miss-
ingness mechanism. The marginal distribution of the response is then a mixture

of normals with mean

p=> mpu(k).

In general, pattern-mixture models depend on restrictions defined in terms of

conditional distributions of the response given the dropout y,, | k..

3.2.2.3 Shared-parameter Models

The third general approach for modelling dropout are shared-parameter models,
in which both the measurement process and dropout are influenced by a latent
variable or random effect (e.g. Wu and Carroll (1988); Wu and Bailey (1989);
Henderson et al. (2000)). A shared parameter model is thus a selection model
which is also conditional on a latent variable. This specification allows the dropout
to be non-ignorable given the observed data only, but ignorable given also the
latent variables. Wu and Carroll (1988) proposed a model where a random effect
is shared between a mixed effects linear model for a normal repeated measure,
and a discrete-time survival model for the missingness mechanism, thus allowing

for informative dropout. Their model is extended by Wu and Bailey (1989) who
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proposed conditioning on the time to censoring and using censoring time as a
covariate in the random effects model. Ten Have et al. (1998) also proposed a
shared-parameter model with a logistic link for a longitudinal binary outcome
subject to informative dropout. Roy (2003) introduced a shared-parameter model
in which the dependence between the measurement process y,, and time of dropout
k., is due to a shared latent variable n that is assumed to be discrete, so that the
marginal distribution of the measurement is a mixture over the dropout classes of

the latent variable

f(Ym> km) = Z f(ym | 77)f(77 ’ km)f(km)> (3'13)

rather than the dropout times themselves. This latent dropout class model is used
for univariate longitudinal data, and is estimated by maximum likelihood.

Dantan et al. (2008) compare pattern-mixture models and latent class models
in dealing with informative dropout.

The nature of the problem studied in this thesis makes shared-parameter mod-
els an appealing option to adopt, where instead of a shared parameter, a latent
variable is employed to affect both the observed variables and the missingness
mechanism. The use of a latent variable is unavoidable in our case since inter-
est lies in unobserved phenomena which are measured by observed items through
latent variable models. Allowing the missingness mechanism to be affected by
the latent variables, makes the setup of the model fall within a shared-parameter
model. However, a selection model which is also conditional on a latent variable
is explored in Chapter 7 where latent variables at time ¢ are allowed to affect non-

response at the same time ¢. More on shared-parameter models will be introduced
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later, in relevant sections of the thesis.
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Chapter 4

A SEM for Multivariate Ordinal
Longitudinal Data Subject to

Dropout1

The models developed in this chapter are latent variable models in which a contin-
uous latent variable is used at each time point to explain the associations among
multiple ordinal observed response items. The models are fitted in a SEM frame-
work where the underlying variable approach is adopted. Item-specific random
effects are included to account for repetition of items over time. For modelling
dropout, we introduce dropout indicators which are modelled with a hazard func-
tion. Different structures among the latent variables and the dropout mechanism

are explored in two different model specifications which allow attitudes and co-

LA paper based on parts of Chapters 4 and 5 has been published in Structural Equation
Modeling journal under the title : Hafez, M. S., Moustaki, I. and Kuha, J. (2015). Analysis of
Multivariate Longitudinal Data Subject to Nonrandom Dropout. Structural Equation Modeling:
A Multidisciplinary Journal, 22(2), 193-201.
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variates to affect both the latent variables and dropout indicators.

A latent variable model is first specified for the complete case multivariate
data, disregarding dropout. This model is formed of two parts: the measurement
part in which the observed variables are explained by a latent variable at each
time point, and the structural part which defines relationships among the latent
variables over time. Having specified this model for the complete data, we then
define models for the dropout mechanism with a hazard function. Finally, the link

between attitudes and dropout is specified.

4.1 Modelling The Observed Indicators: The Mea-
surement Model

We will consider ordinal items as they are among the most common type of items
used for measuring attitudes in social surveys. Suppressing the index m for a
subject (e.g. survey respondent) for convenience, let y: = (yit, Yot ..., Ypt) be (px 1)
vectors of observed ordinal variables for a single subject at times t = 1,2,....T.
Within a SEM framework, it is assumed that each y;; is a manifestation of an
underlying unobserved continuous variable y}, as outlined in Section 2.1.1. Let ¢
denote the number of categories for y;;, the ith variable (i = 1,2, ..., p), at time ¢.
For an ordinal variable y;; with ¢;; categories, its relationship with v, is as defined
in equation (2.1)

yl-t:5<:>7's(i_)1 < Y5 STS@, s=1,--,cu, (4.1)
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(@) _ (4) (4)

where 7" = —c0, 7" < Ty @

< ... < Tg,, and T(Sft) = oo are thresholds, to be
estimated.

The items y; = (Yut, Yat, ..., Ypr) at each time ¢ are regarded as measures of
one or more continuous attitudinal time-dependent latent variables z,,, that are
assumed to be normally distributed as presented by equation (2.2). For simplicity,
the model below is presented assuming that the items are unidimensional (i.e.
one latent variable is sufficient to explain dependencies among items at a given
time point), but it can be extended to accommodate more latent variables. To
account for repitition of the same items at each time point, two possible options
are available. The first option is to allow for correlated errors in the measurement

model for z,,:

Yir = NiZa, T Eit; 1=1,.,p;t=1,...,T,

where )\; is the loading of the latent variable z,, on v, and e; is a normally
distributed random error that is correlated with errors ;- of the same item across
time.

Equivalently, we introduce an item-specific random effect u; instead of corre-

lating errors
Yiy = NiZa, + Ui + €it; i1=1,...,p;t=1,..,T, (4.2)

where ); is the loading of the latent variable z,, on ¥}, and ¢; is a normally
distributed random error that is uncorrelated with other errors. In this model,
associations among different items at the same time (y},, v, for i # i’) are explained
by the dependence on the common latent variable z,,, while associations between

the values of the same item measured at different time points (yj,, v, for ¢ # t')

65



are explained both by the covariance between corresponding attitudinal latent
variables (zq,,2q,) and the item-specific random effect u;. It is assumed that
the random effects u; are independently normally distributed as u; ~ N(0, o7 ) for
i =1,...,p, and that ;; are independent and normally distributed as £;; ~ N (0, w?)
fori=1,...,pand t =1,..,T, where wj, = 1 — (A} var(z,,) + 0..) since each y, is
assumed to have a standard normal distribution. The error terms ¢;; and random
effects u; are assumed to be uncorrelated.

The aim of a longitudinal study is to monitor changes that occur between
occasions, and to attribute these changes to background characteristics. Joreskog
(2005) explain that in order to estimate changes in means and variances of latent
variables, they should be on the same scale over time. In case of continuous items,
this is simply done by choosing the same reference variable at different occasions
and assuming the mean of the latent variable is zero at the first occasion, thus
monitoring how it changes on subsequent waves. However, this is not sufficient in
case of ordinal items as they do not have metric scales. The underlying variables
are used instead. These can be put on the same scale by assuming equal thresholds
for the underlying variables of the same items over time.

We have imposed the assumption of invariance of measurement across time for
eachitem ¢ = 1,...,p, by constraining the thresholds 7 in equation (4.1) (for each
s =1,...,¢y) and the loading \; in equation (4.2) for each i = 1,...,p to be the
same at all time pointst = 1,...,7T. In order to set the scale for the time-dependent
attitude latent variables, the loading A; on the first underlying variable yj, is set
to 1 at all occasions. The advantages of these constraints are both technical
and conceptual. On the technical side, it yields a more parsimonious model and

avoids some possible identification problems that may arise with increasing the
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number of time points (Bijleveld et al. (1998)). The conceptual advantage is
clearer interpretation of the model results. If the loadings and thresholds are not
constrained to be time-invariant, we cannot guarantee that the latent variable has

the same scale or interpretation at each time point.

4.2 Modelling The Latent Variables: The Struc-

tural Model

The structural part of the model addresses the question: how should the attitudinal
latent variables be linked in order to capture the longitudinal nature of the data?
Throughout, we will assume that the possible measurement occasions ¢t = 1,...,T
are the same for every subject, and evenly spaced in time. We then specify that
the (T' x 1) vector of attitude latent variables z, = (z,,,...,24,)" follows a mul-
tivariate normal distribution z, ~ MV Ny (p,T') where p is a vector of means
and T' a covariance matrix with diagonal elements o? representing the variances
of the latent variables, and off-diagonal elements oy their covariances such that
oy 1s the covariance between z,, and z,,. The values of these parameters may be
unconstrained, or depend further on the model specification, as defined below. For
example, it is logical to expect that attitudes are more strongly correlated when
they are measured at closer time points, in which case oy should be higher when
t and t’ are close to each other. For identification, the mean of z,, is set to 0.

A specification for the structural part which takes the time ordering explicitly
into account is the first-order autoregressive [AR(1)] structure, presented in equa-

tion (3.4) for modelling univariate longitudinal data. A subject-specific random
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effect analogous to that included in equation (3.5) is not considered here as it
would act as yet another latent variable, resulting in a more complex model with
multiple levels of latent variables. The model thus assumes that all the within-
subject dependence is due to the lagged attitude. This specification has been used
by Dunson (2003) and Cagnone et al. (2009) to model the dependence of latent

variables over time within a similar context, where z,, ~ N(0,c}) and

Zay =Gt + Q2q, , + 6, t=2,..T, (4.3)

where a; is an intercept, ¢ a time-constant regression coefficient representing the
dependence of the attitude at time ¢ on that at the previous occasion ¢ —1 justified
by the equally spaced time intervals, and §; ~ N(0,v?) is a random error which
is uncorrelated with z,,,...,2,,_,. This formulation explicitly captures the time
ordering in the data, by presenting the model as a sequence of conditional distri-
butions rather than a joint distribution with an unstructured correlation matrix
I'. It expresses the dynamic nature of the latent attitude variable and accounts
for the serial correlation in it in a form where the latent variable at time point
3, say, is only related to that measured at time 1 via the latent variable at time
2. Another alternative specification would be a random effects model in which
a random intercept and possibly a random slope, where time is a covariate, af-
fect the time-dependent latent variables as in a standard growth mixture model
for observed repeated measures; for example, see Muthén and Masyn (2005) and
Muthén et al. (2011). However, this type of models is not considered here.

More generally, we may also be interested in studying the associations between

the attitudinal latent variables and observed covariates (explanatory variables),
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such as demographic and socioeconomic characteristics of survey respondents. Let
x; denote a vector of such covariates, noting that some components of x; (e.g. sex
and race) may be constant over time while others (e.g. marital status and health
condition) may be time-varying. In this case, the AR(1) structure in equation

(4.3) can be extended to include covariates, as
Zay = Qg+ Pza,, + Bxy + 0y, t=2,....T, (4.4)

where 3, is a vector of regression coefficients for x;.

4.3 Modelling The Dropout

Dropout is a form of missing data in which a respondent in a longitudinal study
fails to respond at a given occasion and never comes back to the study. Dropout
is typically the most common form of missingness in longitudinal studies. In this
chapter, we will focus solely on dropout, and assume that there is no intermittent
missingness in the data. We also assume that, at each time point, variables for a
respondent are either fully observed or totally missing, i.e. that there is no item
non-response.

Our approach to handling dropout in multivariate longitudinal data draws on
ideas of shared-parameter models for univariate longitudinal data as in the model
presented by Roy (2003) where both the measurement process and dropout mech-
anism are modelled conditional on a discrete latent variable (see equation (3.13)),
and on previous work on modelling non-ignorable item non-response in multivari-

ate cross-sectional data. Early examples of the latter are Knott et al. (1990) and
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O’Muircheartaigh and Moustaki (1999), who present a latent variable approach
that allows missing values to be included in the analysis and information about
latent attitudes to be inferred from non-response. They propose two latent di-
mensions, one to summarise the attitude and the other to summarise response
propensity. For each observed variable, an indicator variable for responding is
created, taking the value 1 if the individual responds and 0 if he or she does not
respond. The probability of responding depends both on an individual’s position
on the attitudinal latent variable and the response propensity latent variable. The
attitude items are explained only by an individual’s position on the attitudinal la-
tent variable given that this individual has responded. Holman and Glas (2005) use
reformulations of the models of O’Muircheartaigh and Moustaki (1999) to assess
the extent to which the missing data can be ignored. Within the same framework,
Moustaki and Knott (2000b) present a latent variable model for binary and nom-
inal observed items which includes covariate effects on attitudinal and response
propensity items. In our study, we extend this approach to the longitudinal case
taking dropout into account.

The dropout model outlined below has the form of a discrete-time hazard
model, a widely used representation of event histories in social sciences. See for
example Allison (1982) and Muthén and Masyn (2005). Let us define the prob-
ability that a respondent drops out at time ¢, given that they have remained in
the study up to and including time ¢ — 1, by the hazard function h; = Pr(k =1 |
k>t),t=2,..T, where k is a discrete random variable that indicates the time
of dropout. We also define a set of dropout indicators d;, t = 1,...,T, such that
d; = 0 when y, is observed and d; = 1 if a respondent drops out at time ¢ (Muthén

and Masyn (2005)). After the time of dropout, d; itself is regarded as missing
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and can be set to an arbitrary value such as -1. We treat the observations at
the first occasion as complete data, so that d; = 0 for all respondents, and define
d = (dy, ..., dr). For an example with three waves (7" = 3), an individual will have
d = (0,0) if they show up on all three occasions, d = (0, 1) if they drop out on the
third occasion, and d = (1, —1) if they drop out on the second occasion. The data
structure presented here is of “wide” form, which is necessary for estimating the
model within a SEM framework. In “long” form, when a person experiences the
event, they are removed from the risk of experiencing it at future waves thus no
missing values are recorded after a dropout, and subjects will have dropout vectors
d of different lengths according to their time of dropout. For example, a subject
who drops out at the second occasion would have d = (1). With this notation,

the hazard function can also be expressed as

ht:Pr(/{::ﬂk}t):Pr(dt:l), t:2,,T

In the more general case of intermittent missingness we could define binary
missingness indicators such that the indicator d; at time t has the value 0 if y,
is observed and 1 if it is missing. In that case, the missingness indicators may
be assumed to measure a single latent variable z; which summarises an individ-
ual’s response propensity. Such a propensity may also be thought to exist in our
case, where only dropout is considered. However, since the dropout indicators are
created from a single variable (time of dropout), this latent propensity cannot be
separately identified. Nevertheless, we will still employ such z; as a convenient
computational and presentational device, but with a formulation where they have

a conditional variance of 0, given the attitude latent variables z,, and (possibly)
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covariates x; (Muthén and Masyn (2005)). This means that z; will be deter-
ministic functions of z,, and x;, which will then affect the dropout indicators via
Zd, -

In the same way as for the observed items y, in equation (4.1), we assume a set
of continuous variables d* = (d3, ..., d}) to underlie the set of dropout indicators

d = (ds,...,dr). Each of the d} is assumed to have a standard normal distribution

and to be modelled as

d: = )\dizdt + Edy» t= 2, ...,T, (45)

where Ay, is the loading of z4, on the dropout variable at time ¢, and 4, ~ N(0,w},)
is a random error, with wj = 1 — Aj var(zq,). Since the missingness indicators are
all binary, only one threshold 7, is estimated for each variable d;.

We will consider two special cases of this model. In the first, we take z4, = z,, ,

fort =2,...,T. Model (4.5) then becomes

Cl;k = )\dtZat_1 + Edy s t= 2, ,T (46)

In this formulation, the probability of dropping out at a given time point depends
only on the value of the latent attitude variable at the immediately preceding time
point. The dropout indicators are thus in effect treated just like further “measures”
of the attitude. Because the loadings Ay, can vary with ¢, the effect of attitude on
dropout may depend on time.

In our second dropout model we define z;, = z4 instead as a time-constant

quantity which depends on the attitude only through its value z,, at the first
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time point. In this formulation we also allow for the possibility that the response
propensity depends also on covariates x; measured at the first time point. We
thus define z4 = 72,1 + B3,%1, where v is a regression coefficient representing the
dependence of the dropout “latent variable” z; on the attitude latent variable z,,
at the first time point, and 3, is a vector of the regression coeflicients of covariates

x; similarly. Furthermore, in equation (4.5) we take A4, = 1 for all ¢, to obtain

di = vza1 + Bx1 + €4, t=2,..,T. (4.7)

Here the time-constant dropout variable z; is regressed solely on z,, in order to
avoid a multicollinearity problem that is very likely to occur if z; was regressed
on other attitude latent variables as well, due to the high correlation expected
between the latent variable across different time points. Attitude at the first
time is particularly chosen because it is the only occasion with complete data, and
because it avoids a specification where dropout at time ¢ would depend on attitude
at future time points. Following the same argument, dropout is also regressed only
on covariates measured at the first time.

When dropout is non-ignorable, a model for it needs to be incorporated in the
estimation in order to obtain valid estimates for the parameters of interest in the
structural and measurement models. For multivariate longitudinal data, unlike
in many other situations, this can in fact be done without further unverifiable
assumptions. In other words, combining the elements described above it is possible
to fit models which combine multivariate longitudinal models for the latent attitude
variables of interest with models for possibly non-ignorable dropout. In the next

section, we discuss such joint models in more detail.
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4.4 Joint Models for Attitudes, Measurements and
Dropout

Having set the general layout of the model, we now look into two particular spec-
ifications of it. In both of them, the measurement model of the observed items y;,
is defined by equations (4.1) and (4.2), and the corresponding assumptions. Dif-
ferences lie in the definitions of the structural and dropout parts of the model, and
the relationship between them. In both specifications, a latent variable is shared
in the modelling of both the measurement process and the dropout mechanism,
similar to the idea of the shared-parameter model presented in Roy (2003). A
pattern-mixture model would assume that subjects with the same dropout time
share a common response distribution, thus a response distribution is a mixture
over response patterns. This assumption is considered too strong and may be unre-
alistic especially for studies with a large number of follow-up times where subjects
drop out for a variety of reasons (Roy (2003)). A pattern-mixture model is thus not
considered here. However, a shared-parameter that also classifies under selection
models is considered later on in Chapter 7, where both dropout and intermittent
missingness are incorporated. A special case of that model would only consider
dropout, with dropout at time ¢ depending on unobserved attitudes measured at
time ¢, similar to selection models for the univariate longitudinal case presented
in equation (3.6), with latent variables used instead of actual observed items.
The first model specification allows for the simple choice of a free mean struc-
ture and correlation matrix for the attitudinal latent variables z, = (24, ,-..,247)
at different time points. In other words, we assume a multivariate normal dis-

tribution z, ~ MV N(p)(p,T') with p and T’ unconstrained. For incorporating
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dropout, we assume model (4.6) where the attitudinal latent variable z,, , at each
previous time point is allowed to directly affect the dropout at the next one. The
employment of such a lagged effect can be useful for example when latent variables
are measuring health condition and time points are not too far apart, so that a
deteriorating health condition at time ¢t — 1 may affect the probability of dropping
out at the next occasion t due to bad health. Non-zero dropout loadings A4 for
t=2,...,T, will reflect dependence of dropout on unobserved attitudes. Figure
4.1 gives an illustration of this model by a path diagram for an example with three

time points.

Figure 4.1: Path diagram for the first model specification (Model 1).

The second model specification assumes a first-order autoregressive structure
among the latent variables z,, as presented in equation (4.3), instead of freely
correlating them. With the attitude at the first time point also assumed to be

normally distributed as z,, ~ N(0,0%), this model too implies that z, follows a
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multivariate normal distribution, but now with the covariance matrix I' being a
constrained function of the parameters ¢, o7, and error variances v3,...,v%, and
the mean vector p unconstrained and depending on the parameters ao, ..., ar and
¢. For this model specification we also examine the extension of the structural
model by including in it covariates x; with coefficients 3;, as shown in equation
(4.4).

For the dropout model in the second model specification, we assume a model
where the underlying dropout variables are modelled as a function of the dropout
“latent variable” z; which in turn is determined by the attitude latent variable z,,
and covariates x; at the first time point, thus resulting in the dropout model (4.7).
Such a model would be reasonable to adopt in a case where the latent variable
(attitude) being measured does not change much over time (example: political
attitudes). In that case attitude measured at first occasion is used as it is based
on complete data. Figure 4.2 gives an illustration of the joint model for the second
model specification, for an example with three time points.

In the second specification, parameters of the dropout model include regression
coefficients v and 3,4, with non-zero v indicating the dependence of dropout on
attitude measured at first wave. These parameters are to be estimated, along with
the parameters of the measurement model (including variances of the random

effects u;) and the structural model.
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Figure 4.2: Path diagram for the second model specification (Model 2), with co-
variates.

4.5 Estimation

Within a SEM framework, parameter estimation is done in three steps as outlined
in Section 2.1.3, where thresholds are estimated in the first step from the univariate

marginal distributions. Since measurement invariance is assumed for each item

across time, the thresholds 7 (for each s = 1,...,¢;) are estimated from the
univariate marginal data of the same item at all time points y;1, ..., y;7. Thus the
estimated thresholds for an item y;;, t =1,...,T are

PO =o' 4 pY L pD), s =1, -,

where p, represents the percentage of responses in category s for items y;1, ..., yir.

Thresholds 74 for dropout indicators are obtained similarly.
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The polychoric correlations are estimated in the second step from the bivariate
distributions for given thresholds, by maximising the loglikelihood for each pair of
items. These include correlations between items at the same time point, and across
time points. Once the estimated polychoric correlation matrix is obtained, it is
treated as an observed correlation /covariance matrix S. The theoretical covariance
matrix is given by ¥ = AT'A’4+€2,,, where T is the covariance matrix of attitudinal
latent variables and €2, is a diagonal covariance matrix of item-specific random
effects. Elements of 3 include covariances between different items within the same

time point

Cov(ysy, i) = Ny Var(z,,),

covariances between the same items at different time points

COV(y;, y:t’) = )\?COV<ZCH7 Zat/) + 02

Uq?

and covariances between different items at different time points

COV(y;tv y;‘k’t’) = /\i)‘i’COV(Zau Zay )

Variances and covariances of attitudinal latent variables will have different forms
according to which model specification is being fitted. The covariance matrix X

also includes covariances between dropout indicators, which are given by

Cov(df, d;)) = AatAar Cov(2a,_,, Za,_, ),

in case the first dropout model is used, while they are of the form
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Cov(d;,d;,) = v*Var(z,, ),

for the second specification. For the first model specification, covariance between

an item y;; and a dropout indicator d; at the same time point ¢ is

COV(y;kt, d:) = )\i)\dtcov(za)” Zat_l)u

while covariance between an item y;; and a dropout indicator at a different time
point dy is

Cov(yj, dir) = Nidar Cov(za,, Za, )

For the second model specification, covariance between an item y;; and a dropout
indicator d; at the same time point ¢ or at a different time point dy is the same,

and is given by

COV(Z/’;? d:/) = )\i’yCOV<ZCLt7 Za1)-

The latent variable model can then be fitted to the estimated polychoric cor-
relation matrix using unweighted least squares (ULS), diagonally weighted least
squares (DWLS), or weighted least squares (WLS) by minimising some function
of the difference S —X. In WLS, the weight matrix is an estimate of the inverse of
the asymptotic covariance matrix of polychoric correlations, while DWLS involves
only the diagonal elements of that weight matrix. Recent studies confirm (Forero
et al. (2009); Yang-Wallentin et al. (2010)) that the WLS estimator converges very
slowly to its asymptotic properties and therefore does not perform well in small

sample sizes. DWLS and ULS are preferable to WLS and they seem to perform
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similarly well in finite samples. However, in order to compute correct standard er-
rors and goodness-of-fit tests, the full weight matrix is needed. In our application,
DWLS is used for estimation and WLS for obtaining the standard errors and test
statistics.

A full information maximum likelihood estimation approach would assume a
multivariate normal distribution for all the underlying variables yj,, y3,, ..., y;, at
different time points ¢ = 1,...,T. Estimation involves maximising the (p x T')-
dimensional loglikelihood over all response patterns present in the data. This
requires the evaluation of a (pxT')-dimensional integral for each response pattern in
the sample, which is computationally infeasible as the number of observed variables
increases (Joreskog and Moustaki (2001)). That is why the above approach, based

on bivariate normality assumption, is adopted.
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Chapter 5

Application and Sensitivity Analysis

5.1 Attitudes Towards Women’s Work: BHPS

In this chapter, we apply the models proposed in Chapter 4 to study the evolution
of people’s attitudes towards women’s work, using data from the British Household
Panel Survey (BHPS). The BHPS (Taylor et al. (2010)) is a multi-purpose study
that started in 1991 aiming to further understand the social and economic change
at the individual and household level in Britain and the UK. It followed the same
sample of individuals, drawn from different parts of the United Kingdom, over a
period of 18 years, thus providing a rich research resource for a wide range of social
science disciplines. A section of the BHPS includes questions on opinions about
women’s work and family life. On carrying out an exploratory factor analysis over

six items, the following three were found to measure a single factor:
e A woman and her family would all be happier if she goes out to work [Family|

e Both the husband and wife should contribute to the household income [Con-
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tribution|

e Having a full-time job is the best way for a woman to be an independent

person [Independent]

We treat these three items as measures of a respondent’s attitude towards women’s
work. Previous studies have used similar items to measure such an attitude (See for
example Donnelly et al. (2015)). For each item, the response options are Strongly
agree, Agree, Neither agree nor disagree, Disagree, and Strongly disagree. The
wording of the items implies that the attitudinal latent variable will be defined such
that the higher an individual scores on the latent variable, the more conservative
are his or her views towards women’s work. Five waves of the survey (1993, 95,
97, 99, 2001) are considered here. Dropout occurs in all waves but the first one. A
frequency distribution of the three items measured at the first wave (1993) is given
in Table 5.1. It is noted that most responses are concentrated in the three middle
categories (Agree, Neither agree nor disagree, and Disagree), with fewer responses
in the two extreme categories (Strongly agree and Strongly disagree).

Table 5.1: Frequency distribution for items (Family, Contribution and Indepen-
dent) measured at first wave

Strongly Agree Neither Disagree Strongly

agree Disgaree
Family 98 929 3059 1560 173
Contribution 833 2225 1979 727 55
Independent 437 1998 1920 1321 143

The sample size of individuals who gave complete answers in the first wave
considered here (year 1993) is 5819. In the second wave, with 10% dropout the

sample size decreases to 5227, and in the third wave, a further 6% dropout reduces
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it to 4901. Dropout continues at each wave until the sample size becomes 4296
at the last wave considered here (year 2001), constituting approximately 74% of
the original sample size. The analysis aims to explore how much each of the three
items contributes to measuring this attitude and how the attitude evolves over the
nine-year period, accounting for dropout by incorporating the dropout mechanism
in the model.

In the next section, results from the two different model specifications outlined
in Chapter 4 are compared. Covariates are introduced and their effects studied

under the second model specification.

5.2 Data Analysis

5.2.1 Fitting Two Model Specifications

The models being studied are the ones introduced in Chapter 4, with items v,
1 =1,2,3, and the dropout indicators d; used to give information on one attitudi-
nal latent variable z,, at waves t = 1,...,5 (with d; = 0 for all, as the observations
are regarded as complete at the first wave). The latent variable captures attitudes
towards women’s work, with higher values of it indicating more conservative at-
titudes. Data analysis is implemented in Mplus (Muthén and Muthén (2011)).
Mplus codes for the two model specifications are given in Appendix A and B,
respectively.

We first carried out two preliminary analyses, which allowed us to conclude
that two assumptions introduced in Chapter 4 are satisfied in these data. First, we

considered the assumption of measurement invariance, which states that thresholds
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79 of an underlying variable yr given in (4.1), and loadings A; of the measurement
model (4.2) are the same at all time points ¢. For the model to be identified, Millsap
and Yun-Tein (2004) prove that at least one threshold 7" for each underlying
variable y7; and two thresholds for each reference underlying variable are required
to be the same at all time points ¢. However, Joreskog (2005) explain that in order
to estimate changes in means and variances of latent variables over time, they
should be put on the same scale by assuming all thresholds for the underlying
variables of the same items to be equal over time. A chi-square difference test!
was thus carried out testing whether loadings too could be set equal over time, and
this constraint was not rejected (p-value = 0.05) against a model which allowed for
equal thresholds but free loadings across time. The reported p-value is just on the
border of rejection of the restricted model at 5% level of significance, but we choose
to continue with a measurement invariant model that provides both parsimony
and clearer interpretation of results. Next, for the second model specification we
examined the assumption that the dropout latent variable z,; in equation (4.5) has
its loadings Ay, set to 1 at all of t = 2,..., 5, which for this model specification also
implies that the attitudinal latent variable measured at first wave z,,, will have
the same effect v in equation (4.7) on dropout indicators at all time points. The
model with this constraint was also not rejected (p-value = 0.5941) against the
unrestricted model where those loadings were allowed to vary freely across time
points.

Table 5.2 gives parameter estimates for the two model specifications when

! To obtain a correct chi-square difference test for two nested models using WLS, a null model
is compared to a less restrictive alternative model in which the null model is nested. The less
restrictive model is first estimated followed by the restricted model, and the chi-square difference
test is computed using derivatives from the analyses of both models (Muthén and Muthén (2011)).
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covariates are not yet considered. The attitude towards women’s work loads very

similarly on all three items, suggesting that the items contribute almost equally

to measuring the attitude. The estimated thresholds for the dropout model are

given in the second part of Table 5.2.

Table 5.2: Parameter estimates for Models 1 and 2, for modelling attitudes towards
women’s work from five waves of the British Household Panel Survey

Model 1 Model 2
Measurement model
Est. Sig. S.E. Est.  Sig.  S.E.
Family A1 1 1
Contribution Ao 1115 *%%  (0.023) 1.115 *¥* (0.023)
Independent As  LI51  *%% (0.025) 1.149 *¥* (0.025)
Dropout model
d T, 1272 FF%(0022) 1.272 *FF (0.022)
dj Tas  1.534 Rk (0.027)  1.535  *FE - (0.027)
d; Tq, 1.533 Rk (0.028) 1.536  **F*F(0.028)
d: Ta;  1.506 Rk (0.029) 1.512  ***(0.029)
Zq, ON d Aa, -0.014 * (0.008)
Zay ON d Ai;  -0.019 * (0.011)
Zas O d A, -0.044 ¥k (0.018)
Zq, ON d Ad;  -0.056 * (0.029)
Dropout parameter ~ -0.036  ***  (0.009)
Random effects
Variances
Uy o, 0.195 *EE - (0.007) 0.187  FFE(0.007)
Us on 0229  ¥*¥* . (0.008) 0.220 *** (0.008)
U3 o, 0192  *¥*¥*  (0.008) 0.183 *** (0.008)
Structural model
Variance of z,, o? 0.318 ¥ (0.011) 0.301 *** (0.010)
Autoregressive parameter ¢ 0.874  *** (0.007)

Note 1: *** indicates significance at 1% ,

** indicates significance at 5%

, while * indicates significance at 10%.

Note 2: Significance of variances is not useful, as it is reported by Mplus based on a t-test, which is not suitable

for variances.

In the first model specification, the variance of the attitudinal latent variable
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at wave 1 is estimated by 0.32. The variance does not change much across waves,
indicating that the variability of attitudes remains almost the same over time. The

estimated covariance matrix of z, for the first model specification is given by

-0.32 0.25 0.22 0.21 0.19
0.34 0.26 0.24 0.22

=
I

0.34 0.26 0.24
0.34 0.26
0.33

The estimated covariances among the attitudinal latent variables are positive and
significant, indicating a strong positive correlation of a person’s attitude towards
women’s work across waves. As one would expect, the further apart the waves,
the weaker is the covariance between the attitudes. Furthermore, a loading is
estimated for each time-dependent attitudinal latent variable on the corresponding
dropout indicator at the next wave. From Table 5.2, these loadings are negative
and significant at 10% level of significance, indicating that the more conservative
an individual’s attitude is towards women’s work, the less likely they are to drop
out of the study at the next wave, given the model specification and assumptions.

The last part of Table 5.2 gives results for the structural part of the second
model specification. The estimated autoregressive parameter (]B = 0.874, with esti-
mated standard error of 0.007, again shows a highly significant and strong positive
correlation of a person’s attitude towards women’s work over time. In other words,
liberal/conservative views at a given wave are associated with liberal /conservative

views at the preceding wave. The estimated dropout parameter 4 = —0.036, with
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estimated standard error of 0.009, shows a significant dependence of dropout on
attitude at the first wave. The negative coefficient shows that the more conserva-
tive an individual’s initial attitude is towards women’s work, the less likely they
are to drop out of the study. This conclusion too agrees with the one obtained from
the first model specification. However, the BHPS is not a study of just women’s
work but it also includes many other items (not analysed here). We would not
conclude that attitudes towards women’s work are driving the dropout, but they
are somehow associated, according to the given model specifications and assump-
tions, which makes the incorporation of a dropout mechanism essential to better
model the data. Other factors or traits, such as demographic characteristics, socio-
economic status,...etc are likely to affect both attitudes and dropout. Hence, we
include covariates in Section 5.2.3, in an attempt to give better explanation of
both attitudes and dropout.

The estimated means of the time-dependent attitudinal latent variable are,
in order, 0.0, 0.057, 0.085, 0.101, and 0.103. This gradual increase in the mean
indicates that as time goes by and people get older their views about women’s work
become more conservative. Another explanation is that since the more conservative
people are less likely to drop out, the ones who remain in the study as time passes

will tend to hold more conservative views.

5.2.2 Goodness-of-Fit

The sample size considered here is large. In this situation, the X? goodness of fit
statistic is not very helpful, as it will tend to suggest significant lack of fit even

given very small discrepancies between the fitted and observed covariance matrices
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(Bijleveld et al. (1998)). We therefore evaluate the two models by their Root
Mean Square Error of Approximation (RMSEA) and Comparative Fit Index (CFI).
The first model specification has an RMSEA of 0.017 (probability RMSEA< 0.05
is 1.00) and CFI 0.994, while the second has an RMSEA of 0.021 (probability
RMSEA<K 0.05 is 1.00) and CFI 0.991. The two model specifications seem to
fit the data almost equally well, giving us the choice of which one to adopt. In
this case, the second specification seems to be the more attractive option since it is
more parsimonious and involves directed relationships rather than free correlations

among the latent variables.

5.2.3 Second Model Specification, with Covariates

Next, three time-invariant covariates (sex as a dummy variable for women, age
at first wave and initial educational attainment) and one time-varying covariate
(occupational status) are introduced to the second model specification and allowed
to affect both the attitude towards women’s work at each wave and the dropout
mechanism. The sample is classified into 2660 (46%) male respondents, and 3159
(54%) females. The average age of respondents at the first wave is 45 years. Edu-
cation is included as a binary variable that takes the value 1 if an individual has
acquired at least a certificate of secondary education and 0 if no academic qualifi-
cation is acquired. This is measured at the first wave and treated as time-invariant,
as it tends to vary only slighty over time and is thus highly correlated across dif-
ferent waves. There are 2201 (38%) respondents with no academic qualification,
while 3618 (62%) have acquired at least a certificate of secondary education, at

the first wave. Occupational status is defined as a binary time-varying covariate
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which takes the value 1 if an individual is employed or out of the labour market
including those who are retired, students or looking after family /home, and 0 if the
individual is unemployed. At the first wave, 4724 (81%) respondents are employed
while 1095 (19%) are classified as unemployed. The effect of covariates on the
corresponding attitudes is constrained to be the same from wave 2 onwards. For
the first wave, the effect of covariates on the attitude is allowed to be different, as
this latent value is modelled solely as a function of covariates but not of previous
attitudes.

Table 5.3 shows estimated regression coefficients of covariates on attitudes along
with their significance. Sex, initial age and education seem to have a significant ef-
fect on attitudes towards women’s work at the first wave. The negative coefficient
of sex indicates that, as expected, women seem to have more liberal attitudes to-
wards women’s work. Both age and education have significant positive coefficients
on attitude at the first wave. This indicates that older people and people with
at least medium or high education at the beginning of the study have more con-
servative views about women’s work. This is in addition to the before-mentioned
conclusion that as people get older (i.e. in the subsequent waves) their views tend
to get still more conservative. Although occupational status does not seem to
have a significant effect on attitude at the first wave, it does have a significant
effect from wave 2 onwards, indicating that those who are employed, retired or
students have more liberal attitudes towards women’s work than the unemployed.
Sex ceases to have a significant effect from wave 2 onwards. This is probably due
to the fact that its effect is already carried through the attitude from previous
waves.

Table 5.4 shows estimated regression coefficients of covariates measured at first
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Table 5.3: Parameter estimates for regression of attitudinal latent variables on
covariates (sex, age, education and occupational status) for Model 2

Effect on z,, Effect on z,,, ..., 24

Est.  Sig.  Est. Sig.

Sex (woman) -0.049  **  -0.001
Age at first wave  0.001  *  -0.001 Hk
Education 0.197  ***  0.026 Hkk
Occupational status -0.004 -0.104 HAE

Note: *** indicates significance at 1% , ** indicates significance at 5% , while * indicates significance at 10%.

wave on the dropout “latent variable” z,, along with their significance. All the
time-invariant covariates are significant. Sex has a negative coefficient, indicating
that women are less likely to drop out. Age has a positive effect, meaning that
older people are more likely to drop out, while the negative coefficient of education
indicates that those with medium or high education are less likely to drop out
of the study. In summary, older, less educated and male respondents have a
higher propensity to drop out. It is worth mentioning that having accounted for
those covariates, the dropout coefficient v of the attitude at the first wave is still
significant, indicating nonrandom dropout. However, it is now positive (0.027),
opposite to the coefficient in the model without covariates. Thus it now indicates
that controlling for these covariates, the more conservative an individual is at the
first wave, the more likely he or she is to drop out. The likeliest explanation of
this reversal is controlling for education, for which higher education is associated

with more conservative attitudes but also with lower probability of dropout.
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Table 5.4: Parameter estimates for regression of the dropout latent variable on
covariates (sex, age, education and occupational status) for Model 2

Effect on zy4

Est. S.E.

Sex (woman) -0.110  ***
Age at first wave  0.011  ***
Education -0.080  **

Occupational status 0.033

Note: *** indicates significance at 1% , ** indicates significance at 5% , while * indicates significance at 10%.

5.3 Sensitivity Analysis

Methods involving non-ignorable missing data should always be viewed as part of
a sensitivity analysis in which the consequences of different modelling assumptions
are explored (Little and Rubin (2002)). This section is dedicated to studying how
sensitive the results of the models presented in Chapter 4 are to different levels of
dropout under a model that includes the dropout mechanism, another that ignores
it, and a third that uses listwise deletion and estimates parameters from the fully
observed subjects only.

The same three items about attitudes towards women’s work from the BHPS
introduced in Section 5.1 are used here. Out of the 4296 cases that were fully ob-
served on all five waves (1993, 95, 97, 99, 2001), a random sample of 1000 cases is
selected for the purpose of this sensitivity analysis. The same covariates that were
previously used in the analysis (sex, age at first wave and initial educational at-
tainment as time-invariant covariates), and (occupational status) as a time-varying
covariate are used here.

The model fitted to the data is the second model specification outlined in Sec-

tion 4.4 and illustrated by Figure 4.2, where the measurement model is presented
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by equations (4.1)—(4.2) along with the corresponding assumptions and the struc-
tural model is (4.4) allowing for covariates to affect attitudes.

The model is fitted at four levels of dropout: all 1000 cases fully observed at
all waves, 10% , 25% and 50% dropout. Dropout is artificially created on waves
97, 99 or 2001 such that, in general, the more conservative individuals are more
likely to dropout, and the more they are conservative the earlier they drop out.
This is done by running a factor analysis on the three items observed at the first
wave considered here (wave 1993), and a factor score is computed accordingly. The
higher an individual’s score, the more conservative are his or her views towards
women’s work. Estimated factor scores from the sample give a mean of 0.03 and
standard deviation 1.03, with a minimum of -2.8 and a maximum of 3.3. Dropout
is created for a random sample -depending on the selected percentage of dropout-
of those having a positive score. If the predicted factor score for a respondent is
between 0 and 0.5, he/she may drop out on the last wave (2001). If his/her score is
between 0.5 and 1.5, he/she may drop out in 1999; and if the score is 1.5 or higher
the respondent may drop out on the third wave (1997). In case of 50% dropout,
all those who have a positive score drop out at some point. The choice of these
cutoff points is quite subjective. Covariates are fully observed in all cases for all

scenarios.

5.3.1 Listwise Deletion

Table 5.5 summarises results for a model that uses a dataset with listwise deletion
for all cases that drop out at some point of the study, and carries out the analysis

on complete cases only. The first column shows results from analysis of the fully
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observed data, without any dropouts. The sample size is different at each level
of dropout, according to the number of deleted cases. In case of 50% dropout,
all respondents with a positive score at first wave are deleted as they drop out
at some point of the study, leaving 521 cases for analysis. The model is a good
fit even with 50% dropout, as it only considers the complete data. Results of
the measurement model and variances of random effects are robust to a great
extent. The autoregressive parameter ¢, also changes only slightly as the level of
dropout increases, still capturing the dependence of attitudes on previous waves.
A natural result of this model is underestimation of the variance of the attitudinal
latent variable at first wave, especially at the extreme case of 50% dropout. As
the more conservative respondents are eliminated from the dataset, attitudes of
the remaining respondents exhibit less variability.

Problems with detecting the same significant covariates effects as for the com-
plete cases arise even with 10% dropout, where Employment 93 is declared signif-
icant and Sex is not, opposite to the complete cases results. It gets even worse as
the level of dropout increases. At 50% dropout, only one of the initially signifi-
cant covariates (Employment ¢) is detected as a significant covariate on attitude

at waves 2 onwards.
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Table 5.5: A sensitivity analysis for parameter estimates at four levels of dropout
(0%, 10%, 25% and 50%) when dropouts are treated by listwise deletion

Complete cases 10% dropout 25% dropout 50% dropout

Sample size 1000 900 750 921

Est. Sig. Est.  Sig. Est. Sig. Est. Sig.

Goodness of fit

RMSEA 0.021 okok 0.021 == (0.021  ***  (0.030  ***
CFI 0.990 - 0.990 - 0.991 - 0.971 -
Measurement model
Loadings
Family A\ 1 1 1 1
Contribution Ao 1.052 ook 1.060  *x*  1.078  *xx 1,081  x*x*
Independent A3 1.135 ok 1.143  #+x 1,141  *%k 1081  kx*
Random effects
Variances
031 0.188 kR 0.191 =% (.184  **x*  (.226  ***
oz, 0.231  ** (0.247 ek (0234 ek (248 R
o, 0.154  ** (148 ek (161 ek (229 R
Structural model
Variance of z,1; 0% 0.320 koK 0.313  *xx (0307  ***  (.110  ***

Autoregressive parameter; ¢  0.883 ok 0.878 ¥k (.862  kx*  (.788  H**

Covariates effects

Covariates effects on attitude at first wave z,,

Education 93 0.236 *oKK 0.229 *xx  (0.203 *xx  (.113

Employment 93 0.090 0.138 * 0.161 * 0.168
Covariates effects on attitude at subsequent waves z,,, ..., Zq;

Sex -0.020 * -0.017 -0.017 -0.017

Education 93 0.026 * 0.029 * 0.026 0.030
Employment ¢ -0.125 ok -0.132  #xk _0.165  *** -(0.164  *w*

Note 1: *** indicates significance at 1% , ** indicates significance at 5% , while * indicates significance at 10%.
Note 2: Significance of variances is not useful, as it is reported by Mplus based on a t-test, which is not suitable
for variances.

Table 5.6 shows means of time-dependent attitudinal latent variables calculated
from the estimated parameters obtained from analysing the data where dropouts

are deleted. As the level of dropout increases, the calculated means fail to capture

the same trend of decreasing over time as does the complete case. This may be
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due to the fact that attitudes of those who remain in the study (the more liberal)

behave differently.

Table 5.6: Estimated means for attitudinal latent variables under four levels of
dropout (0%, 10%, 25% and 50%) when dropouts are treated by listwise deletion

Means of attitudinal latent variables

Complete cases 10% dropout 25% dropout 50% dropout

Za, 0.260 0.314 0.328 0.212
Zay 0.321 0.322 0.489 0.447
Zasg 0.184 0.178 0.214 0.402
Zay, 0.172 0.216 0.299 0.601
Zas 0.099 0.109 0.155 0.458

5.3.2 Ignoring The Dropout Mechanism

When cases with missing data are not deleted, WLS in MPlus uses pairwise infor-
mation for estimation. That is, first and second stage WLS estimates are obtained
by univariate and bivariate listwise deletion, respectively, using ML thus making
use of all available pairwise data. Weighted least squares is then used to estimate
the weight matrix and to fit the model. This means that different sample sizes
will be used for different pairs of items depending on data available for each pair
of items.

Table 5.7 summarises parameter estimates and their significance if none of the
observations is deleted, yet no dropout model is specified at different levels of
dropout (0%, 10%, 25% and 50%). Both measurement and structural parts of
the model are quite robust, even with 50% dropout, with an exception of the au-
toregressive parameter ¢, which drops to 0.699 in case of 50% dropout indicating
weaker dependence of attitude on the previous wave. Two of the significant covari-

ates effects (Sex and Education) on attitudes measured at second wave onwards
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are not detected at 25% or 50% dropout levels.

Table 5.7: A sensitivity analysis for parameter estimates at four levels of dropout
(0%, 10%, 25% and 50%) when the dropout mechanism is ignored

Complete cases 10% dropout 25% dropout 50% dropout

Est. Sig. Est. Sig. Est. Sig. Est. Sig.

Goodness of fit

RMSEA 0.021 Hxx 0.021  *** (0,018 *¥** (. 017 k**
CFI 0.990 - 0.990 - 0.991 - 0.991 -
Measurement model
Loadings
Family \; 1 1 1 1
Contribution Ay 1.052 *kk 1.053  **¥* 1050 k*¥* 1,033 kk*
Independent A3 1.135 *okok 1.136  **¥* 1119 k** 1 (92 k**
Random effects
Variances
031 0.188 Hxk 0.189  *** (185 *¥** (.203  K**
032 0.231 Hkk 0.245  *¥**  (0.236  *¥** (.252  K**
033 0.154 *kk 0.155  *** (0,163  *¥** (187  k**
Structural model
Variance of z,1; 0% 0.320 Hokok 0.321 *** (330 k*¥* (0.375 Kk*

Autoregressive parameter; ¢  0.883 *okok 0.871 *** (844 k*¥* (699 K*¥*

Covariates effects

Covariates effects on attitude at first wave z,,

Education 93 0.236 *kk 0.235  *¥** (237 k¥*x () 267  Kkx*
Employment 93 0.090 0.110 0.113 0.114
Covariates effects on attitude at subsequent waves z,,, ..., Zq
Sex -0.020 * -0.016 -0.016 -0.027
Education 93 0.026 * 0.029 * 0.030 0.027
Employment ¢ -0.125  ¥** 0125 ¥**k (115 Kk*x (163  K**

Note 1: *** indicates significance at 1% , ** indicates significance at 5% , while * indicates significance at 10%.
Note 2: Significance of variances is not useful, as it is reported by Mplus based on a t-test, which is not suitable

for variances.

Table 5.8 gives means of time-dependent attitudinal latent variables calculated
from the estimated model, which reflects a closer trend at 50% dropout to the

complete case than the one captured in case of listwise deletion.
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Table 5.8: Estimated means for attitudinal latent variables under four levels of
dropout (0%, 10%, 25% and 50%) when the dropout mechanism is ignored

Means of attitudinal latent variables

Complete cases 10% dropout 25% dropout 50% dropout

Za, 0.260 0.272 0.271 0.303
Za, 0.321 0.338 0.313 0.278
Zas 0.184 0.173 0.129 0.005
Za, 0.172 0.162 0.146 0.058
Zas 0.099 0.043 0.051 -0.200

5.3.3 Incorporating The Dropout Mechanism

Table 5.9 summarises parameter estimates and their significance for the 4 scenarios:
all 1000 cases fully observed, 10% , 25% and 50% dropout; for a model that
accounts for dropout using the dropout function (4.7). It is noted from the RMSEA
and CFT that the fit of the model gets worse as the percentage of dropout increases,
indicating lack of fit at 50% and 25% dropout. However, the estimated parameters
of the measurement and structural models are quite robust up to 25% level of
dropout. Parameters of the structural model break down at 50% dropout. The
estimated autoregressive parameter ¢ decreases as the level of dropout increases.
It drops from 0.88 in a complete case analysis to 0.45 in case of 50% dropout. The
dropout indicators are, in an indirect way, measures of the attitude at first wave.
This may explain why dependence among attitudes becomes weaker, and also why
the estimated variance o? of the first attitudinal latent variable gets bigger, as
the level of dropout increases. The dropout parameter v varies at different levels
of dropout, but remains highly significant in all cases capturing the artificially

created nonrandom dropout.
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Table 5.9: A sensitivity analysis for parameter estimates at four levels of dropout
(0%, 10%, 25% and 50%) when the dropout mechanism is incorporated

Complete cases 10% dropout 25% dropout 50% dropout
Est. Sig. Est. Sig. Est. Sig. Est. Sig.

Goodness of fit

RMSEA 0.021 *Hk 0.036  **x  0.060 0.110
CFI 0.990 - 0.966 - 0.898 - 0.677 -
Measurement model
Loadings
Family A\; 1 1 1 1
Contribution A\ 1.052 Hkok 1.051  *¥* 1052 kk* 1108  Kk¥*
Independent Ag 1.135 xRk 1.132 #1116 *** 1161  F**
Random effects
Variances
051 0.188 *kok 0.191 *** (188  *¥* (284  k*x*
oz, 0.231 *kk 0.248 *** (238 kk* (319 kk*
033 0.154 Hkok 0.160 *** (168 *¥¥* (265 k**
Structural model
Variance of z,1; U% 0.320 Hkok 0.332 **¥* (338 kkk (500 kk*
Autoregressive parameter; ¢ 0.883 *okk 0.854  *¥*¥*  ()R30) Kkk (450 kk*
Dropout parameter zg on zq1; v 0.207 *¥** (0.052 ¥¥* (355 K*¥*

Note 1: *** indicates significance at 1% , ** indicates significance at 5% , while * indicates significance at 10%.
Note 2: Significance of variances is not useful, as it is reported by Mplus based on a t-test, which is not suitable

for variances.

Table 5.10 gives estimated parameters for covariates effects at the four levels
of dropout studied here. Even at the severe case of 50% dropout, the significant
covariates affecting attitude at first wave and at subsequent waves are still detected
by the model, with only one exception (Sex) which is never detected under any
treatment for dropout (listwise deletion, ignoring dropout or incorporating dropout
mechanism) even at 10%. Education is the only significant covariate on the dropout

mechanism at 25% and 50% levels of dropout.
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Table 5.10: A sensitivity analysis for covariates effects at four levels of dropout
(0%, 10%, 25% and 50%) when the dropout mechanism is incorporated

Complete cases 10% dropout 25% dropout 50% dropout
Est. Sig. Est. Sig. Est. Sig. Est. Sig.
Covariates effects on attitude at first wave 2z,
Education 93 0.236 Aok 0.236  *¥**  (.238 k*k* (269 (K*¥*

Employment 93  0.090 0.112 0.114 0.117
Covariates effects on attitude at subsequent waves z,,, ..., Zq;
Sex -0.020 * -0.017 -0.017 -0.040

Education 93 0.026 * 0.032 **  0.034 * 0.075  **

Employment ¢  -0.125 *rk (128 KFER (157  k¥* (178  K**
Covariates effects on dropout latent variable z4

Education 93 0.123 0.162  *** (191  ¥*¥*

Note: *** indicates significance at 1% , ** indicates significance at 5% , while * indicates significance at 10%.

The calculated means of time-dependent attitudinal latent variables are given
in Table 5.11 under the four scenarios of dropout. There is a gradual decrease
in means over time captured at all levels of dropout, despite the difference in
estimated values. The estimated means remain close to the complete case when the
dropout is at 10% and 25%. However, the values estimated in case of 50% dropout
are somehow further. This can be again due to dropout indicators being measures
of the attitude at first wave thus affecting its mean, and that as conservatives

disappear from the study the dependence on previous attitudes becomes weaker.
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Table 5.11: Estimated means for attitudinal latent variables under four levels of
dropout (0%, 10%, 25% and 50%) when the dropout mechanism is incorporated

Means of attitudinal latent variables

Complete cases 10% dropout 25% dropout 50% dropout

Zas 0.260 0.274 0.273 0.308
Zay 0.321 0.337 0.311 0.211
Zag 0.184 0.171 0.126 -0.027
Zay, 0.172 0.160 0.144 0.073
Zas 0.099 0.043 0.052 -0.120

In summary, it is noted that estimation of the measurement model parameters
is quite robust under different treatments for dropouts. Whereas listwise deletion
and ignoring dropout may give closer estimates to the complete cases analysis in
case of 50% dropout, especially on the structural part of the model, incorporating
the dropout mechanism has an advantage on the fixed part of the model. While
both a model that uses listwise deletion and another that ignores the dropout fail
to identify some of the significant covariates effects on attitudes at 25% and 50%
dropout level, incorporating the dropout mechanism still captures their significance
even at this high level of dropout despite its poor fit. Up to 25% dropout, which is
the same percent of dropout that we had in the real data analysis, incorporating
the dropout mechanism does equally well in terms of estimating model parameters
as listwise deletion or ignoring dropout, yet it outperforms those two in detecting

significant covariates.
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Chapter 6

An IRT Model for Multivariate
Binary Longitudinal Data Subject

to Dropout

This chapter presents a latent variable model for multivariate binary longitudinal
data subject to dropout. The model is similar in its setup to the second model
specification presented in Chapter 4. However, the items considered here are all
binary, and the model is fitted within an IRT approach where distributional as-
sumptions are directly made on the items intead of assuming underlying continuous
variables as in a SEM framework. We choose to fit this model for binary items to
start with, as they are the simplest to model. Once established, the model can be
extended to accommodate ordinal items as in Samejima (1969)’s Graded Response
model or a Partial Credit model (Masters (1982, 1988)). Further extensions may
include nominal, count, metric or mixed items.

The measurement model is first outlined, in which the observed binary vari-
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ables are explained by a continuous latent variable at each time point, followed
by the structural part which defines relationships among the latent variables over
time, allowing for covariates effects. The dropout mechanism is then introduced
and linked to the latent attitudes, and covariates, allowing the dropout to be

nonrandom.

6.1 Modelling The Observed Indicators: The Mea-
surement Model

The model developed here is for binary observed variables. Suppressing the index
m for a subject for convenience, let y; = (yiz, Yor, .., Ypt) be (p x 1) vectors of
observed binary variables for a single subject at times ¢t = 1,2,...,T. The items
vt = (Yat,Y2t, .-, Ypt) at each time t are regarded as measures of a continuous
attitudinal time-dependent latent variable z,,, which is assumed to be normally
distributed. For simplicity, the model below is presented assuming that the items
are unidimensional, but it can be extended to accommodate more latent variables.
It is assumed that item-specific random effects u;, introduced to account for repi-
tition of items over time, are independently normally distributed; u; ~ N (0, aii)
fort=1,...,p.

Each manifest binary variable y;; is assumed to have a Bernoulli distribution
with a conditional probability of positive response denoted by m; = Pr(y; = 1 |
Za,, 4i). This probability is modelled via a logit link as a function of the underlying

time-dependent latent variable z,, and the item-specific random effect u;,

logit 7t (24, wi) = @ + Niza, +ui, i=1,....p, t =1,..T, (6.1)
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where «; is a constant term, and ); is the loading of the latent variable z,, on the
i'" binary item 7;;. The probability of a positive response can thus be expressed
as

eQitAiza, tu

(6.2)

71-it<ZCLt7 ul) = 1+ eai-&-)\izat-i-ui'

As in the model defined in Chapter 4, we have imposed the assumption of

invariance of measurement across time for each item ¢ = 1, ..., p, by constraining
the constant term «a; and the loading \; for each ¢ = 1,...,p to be the same
at all time points ¢t = 1,...,7; in order to guarantee that the latent variable

has the same interpretation at each time point. In order to set the scale for the

time-dependent attitude latent variables, and for their variances o%,...,0% to be

estimable, the loading A\, on the first observed variable y; is set to 1, at all time

points t.

6.2 Modelling The Latent Variables: The Struc-

tural Model

The attitudinal latent variables are assumed to be linked via a first-order autore-

gressive [AR(1)] structure as outlined in Chapter 4, allowing for covariates effects

Zay = Qg+ Pza, , + Bixy + 0y, t=2,...T, (6.3)
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with the same set of assumptions and constraints, while the attitudinal latent

variable at the first wave z,, is modelled solely as a function of covariates

Za, = B1X1 + 01. (6.4)

6.3 The Dropout Mechanism

As in Chapter 4, dropout is the only form of missingness considered here, assuming
there is no intermittent missingness or item non-response. Dropout indicators d;,
t=1,...,T, are as defined previously such that d; = 0 when y; is observed and
d; = 1 if a respondent drops out at time ¢. After the time of dropout, d; itself is
regarded as missing and can be set to an arbitrary value such as -1. Observations
at the first occasion are assumed to be complete, so that d; = 0 for all respondents,
hence the dropout vector is given by d = (ds, ..., dr).

Adopting the second model specification presented in Chapter 4, dropout indi-
cators are modelled as functions of attitude measured at first wave z,,, in addition
to covariates xi; also measured at first wave. However, a dropout latent variable
is not considered here and dropout indicators are modelled directly as functions
of attitude and covariates. Each binary dropout indicator d; is assumed to follow
a Bernoulli distribution, with a conditional probability (hazard) of dropping out
at time ¢ denoted by hy = Pr(d; = 1 | z,,,%1). This probability is modelled via
a logit link as a function of the first attitudinal latent variable z,,, and covariates
X1

logit hi(za,, X1) = ags + V21 + Bix1, t=2,...,T, (6.5)

where oy is a constant, v is a regression coefficient representing the dependence of
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the dropout indicator d; on the attitude latent variable z,, at the first time point,
and 3, is a vector of regression coefficients of covariates x;. The effect v of attitude
at first wave on dropping out is constrained to be the same at all waves, and is thus
made responsible for determining whether or not the dropout is random. If the
coefficient v turns out to be significant, this reflects the dependence of probability
of dropout at any wave on attitude at first wave, which means that the dropout is
nonrandom.

Probability of a dropout indicator being missing (d; = —1) is fully determined
by the value of the preceding indicator d;_;. A dropout indicator d; is recorded
as missing if dropout has occured at any previous wave, Pr(d; = —1 | dy_1 =
lor —1) = 1. On the other hand, if a respondent has been observed at the
directly preceding wave t — 1, the dropout indicator d; cannot be missing; Pr (d, =
—1|di—1 =0) =0. It can either be observed d; = 0 or a dropout at time ¢, d; = 1.

The latent variable model outlined above by equations (6.1, 6.3, 6.4 and 6.5) is

illustrated by a path diagram for an example with four time points in Figure 6.1.
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ypa

Figure 6.1: Path diagram for a model where attitude at first wave affects missing-
ness on all waves, an example with four time points

6.4 Estimation

There are two main approaches for obtaining maximum likelihood estimates for
latent variable models, the first of which depends on iterative techniques such as
the Expectation-Maximisation (EM) algorithm, first introduced by Dempster et al.
(1977), where the expectation of the complete likelihood is obtained with respect to
the posterior distribution of the latent variables given the observed data. In many
cases, the expectation can not be obtained in closed form and is thus approximated
numerically. The maximisation step is then implemented using algorithms such
as Newton-Raphson, and improved estimates for parameters are obtained. The
above steps are repeated until convergence is attained and maximum likelihood
estimates are obtained. Bartholomew et al. (2011) outline the use of EM to fit

latent variable models, while Cagnone et al. (2009) use it to fit a latent variable
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model for multivariate longitudinal ordinal data. As models get more complex, so
does the implementation of EM.

An alternative methodology for estimating parameters of a latent variable
model is to adopt a Bayesian approach based on MCMC. Unlike the EM algo-
rithm, MCMC does not require exact numerical calculation for the E-step, or pre-
calculation of derivatives for the M-step, thus providing easier implementation.
Patz and Junker (999a) develop an MCMC estimation technique for complex IRT
models. They extend their technique to address issues such as non-response and
missingness in their follow up paper (Patz and Junker (999b)). Moustaki and
Knott (2005) compare the EM and MCMC estimation methods for latent vari-
able models, where they use real examples with categorical data to illustrate this
comparison.

The model specification presented here has been introduced by Dunson (2003)
in a generalised linear latent variable model framework for different response types
where Markov Chain Monte Carlo (MCMC) methods were used for estimation.
Cagnone et al. (2009) propose a full-information maximum likelihood estimation
method for the same model specification with ordinal variables. Cai (2010) devel-
ops an EM algorithm for full-information maximum marginal likelihood estimation
that is computationally efficient due to the use of a dimension reduction technique
of the latent variable space for the two-tier item factor analysis model, which fits
into this model specification. Composite likelihood approaches have also been pro-
posed to reduce estimation complexity for this type of models (see Vasdekis et al.
(2012)). None of these papers consider dropout, though. We choose to depend
on MCMC for estimation of our developed model, as it presents a flexible tool for

fitting complex latent variable models.
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Let @ denote a vector of all parameters defining the model outlined by equations
(6.1, 6.3, 6.4 and 6.5), including «; and A; defining the measurement process; ay,

¢, B and B, defining the structural model; and g, v and 87 defining the dropout

2

(77

mechanism, in addition to variances of errors v? and random effects o2. For a

random sample of size n, the marginal likelihood of the observed data is given by

n P
L<0> - H / / H H Wmit(za“ ui)ymit(l - Wmit(»za“ ui))l_ym“
m=1Y%a U

=1 teny,

X { H Pt (Zay, X1 )4t (1 — hmt(zal,xl))l_dmt} X (2, 0)dz,du, (6.6)

teHm

where HY is the set of time points prior to dropout for an individual m where y,,;
is observed, and H,, is the set of time points prior to and including time of dropout
for an individual m. Moreover, m,,;; is the probability that an individual m gives a
positive response to item ¢ at time ¢, conditional on the attitudinal latent variable
24, and random effect u; given by equation (6.2), h,, is the probability of dropping
out at time ¢, conditional on the first attitudinal latent variable z,, and covariates
measured at first wave x; as expressed by equation (6.5), and h(z,, u) is the joint
distribution of attitude latent variables and random effects. A respondent’s contri-
bution to the likelihood is thus weighted by his/her probability of being observed.
At time of dropout, the contribution is merely the probability of dropping out at
this time point. After dropout, data about a respondent is completely missing,

and therefore there is no contribution to the likelihood.
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The loglikelihood is thus

log L(6 / /{Z Z Ymit 108 Tomit (Zag, i) + (1 — Ymit) 10g (1 — Tonit (2a,, i)

=1 teHY

+ Z (dmt lOg hmt(zaUXl) + (1 - dmt) lOg (1 - hmt(zamxl)))

t€Hm

+log h(z4, u) }dzadu] : (6.7)

The above expression requires a (7 + p)—dimensional integration, which makes its
evaluation complicated especially as the number of waves T  increases, thus making

estimation using MCMC an appealing option.

6.4.1 Bayesian Estimation Using MCMC

In this section, we give a sketch of Bayesian estimation using MCMC. In Bayesian
estimation, parameters are treated as random variables rather than fixed quantities
as in a frequentist approach. Inference about unobserved parameters is based on
the posterior distribution of the unobserved quantities (including parameters and
latent variables) conditional on the observed data. MCMC is used to make draws
from this posterior distribution. We use WinBUGS (Bayesian inference Using
Gibbs Sampling) (Lunn et al. (2000)) for estimation.

Let v denote a vector with all the unknown quantities including parameters

and latent variables; such that v/ = (0,z,,u). The loglikelihood given by (6.7)
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can be written as

log L(v | y,x) Zlogfym Zlog// (Ym | v,x)h(V)dv. (6.8)

The joint posterior distribution of the parameter vector v is

h(v|y,x) = 9y !}f(,;c))h(v)

9y [ v, x)h(v). (6.9)

In case of binary items, g(y; | v,x) is of the form (2.5). The main steps of the
Bayesian approach for such a latent variable model are as outlined by Bartholomew

et al. (2011) and Moustaki and Knott (2005):

1. Inference is based on the posterior distribution h(v | y,x), of the unknown
parameters v conditional on the observed data y and covariates x. Depend-

ing on the model fitted, the form of the distribution can be very complex.

2. The mean vector of the posterior distribution h(v | y,x) can be used as an

estimator of v.

3. Standard deviation of the posterior distribution h(v | y,x) can be used to

compute standard errors of parameter estimates.

4. In general, the posterior mean E(1(v) | y,x) can be used as a point estimate

of a function of the parameters ¢(v), where E(¢(v) | y,x) = [+[ ¥(v

y,X)dv.

5. Analytic evaluation of the above expectation is impossible. Alternatives
include numerical evaluation, analytic approximations and Monte Carlo In-

tegration.
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Markov Chain Monte Carlo (MCMC)

To avoid the integration required in the posterior expectation, Monte Carlo inte-
gration is used in which the integrals are approximated by an average of quantities
calculated from sampling. Samples are drawn from the posterior distribution of
all the unknown parameters h(v(") | y,x), and the expectation over the posterior

is approximated by the average over NV samples:

1 N
E(h(v|y,x) _NZ 7]y, x)

The samples drawn from the posterior distribution do not have to be inde-
pendent. Samples are drawn from the posterior distribution through a Markov
chain with h(v | y,x) as its stationary distribution. Algorithms such as the Gibbs
sampler and Metropolis-Hastings are used in WinBUGS to get the unique station-
ary distribution. In particular, Gibbs sampling is an algorithm that produces a

0

sequence of iterations v°, v!, ... v* that form a Markov chain, which eventually

converges to its stationary distribution, taken to be the posterior distribution.

6.4.2 Choosing Prior Distributions

The posterior distribution A(v | y,x) of the unknown parameters given the data, is
obtained by multiplying the likelihood by a prior distribution as shown in equation
(6.9). Thus, a prior distribution needs to be assumed for each parameter of interest
of the vector v. We assume vague or non-informative priors to emphasise the
likelihood of the data rather than the prior. A normal distribution with mean 0

and a large variance taken to be 10000 is assumed for all parameters of interest
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defining the outlined model. Random effects u are assumed to be independently
normally distributed, each with mean 0. Standard deviations of errors v; and
random effects o,, are assumed a Uniform (0.0001, 100) prior. The wide range
of the uniform distribution serves as a non-informative prior. The lower limit is
taken to be 0.0001, rather than 0, to avoid a possible trap in WinBUGS if the
standard deviation happens to be exactly equal to the lower bound in one of the

iterations, thus causing the estimation process to stop.

6.4.3 Assessing Convergence in MCMC

One of the main issues with MCMC estimation, is when to decide that the produced
Markov chain has converged to its stationary distribution, which is the posterior
distribution of the parameters given the data. A number of iterations, known as
the burn-in session, is usually discarded by the user before starting to monitor
parameters. Convergence can be checked graphically by looking at trace plots
showing the full history of estimated values plotted against iteration number for
each parameter. A chain is said to has converged when trace plots for parameters
depict random patterns that move around the parameter space quickly indicating
that the chain is mizing well. If the chain gets stuck in certain areas or shows a
specific trend, this is an indication that it has not converged. It is common practice
to run more than one chain simultaneously. In that case, one can be reasonably
confident about convergence if all the chains are overlapping one another. Figure
6.2 presents two examples of trace plots from the WinBUGS manual. The top
trace plot is an example of two chains for which convergence looks reasonable,

while the bottom exhibits an example of two chains which have clearly not reached
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convergence. Trace plots need to be checked for all parameters of interest.

Figure 6.2: Examples from WinBUGS manual showing: (top) multiple chains
for which convergence looks reasonable, (bottom) multiple chains which have not
reached convergence
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Plots of the autocorrelation function can also be used to assess convergence,
where for a convergent chain, the autocorrelation decreases as the number of iter-
ations increases. One can also check density plots for the posterior distribution to
see whether parameters have reached a distribution that looks reasonably normal.
However, making a decision about convergence via visual inspection can be quite
subjective.

A more formal approach to assess convergence is via convergence diagnostics.
These are statistics that have been developed by researchers to facilitate making
such a tricky decision as convergence. An extensive review of convergence as-
sessment techniques for MCMC is given in Brooks and Roberts (1998). Several
convergence diagnostics including those proposed by Raftery and Lewis (1992),
Geweke (1992), Heidelberger and Welch (1983), Gelman and Rubin (1992) and
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Brooks and Gelman (1998) can be produced by CODA (Plummer et al. (2006));
an R package for analysing output obtained from WinBUGS.

One of the most widely used criteria for convergence is that proposed by Gel-
man and Rubin (1992). Their method relies on monitoring several sequences, with
different starting points sampled from an overdispersed distribution, and detecting
when the chains have forgotten their starting values and converged to the same
stationary distribution. This method is based on analysis of variance by compar-
ing variability between chains to variability within chains, and detects convergence
when there is no much difference between the two. The method is briefly outlined
below.

Suppose we run m > 2 independent simulations of length 2n, each beginning
at different starting points. The first n iterations are discarded, then for each
parameter of interest 6, the between-sequence variance B and the within-sequence

variance W are computed as follows:

W:%ZS?,

=1

where
n

1
n—1

Jj=1

(Qij — 6_1)

2 _
SZ’_

An estimate of the target distribution variance can be obtained by a weighted

average of the two variance components B and W,

n—1 1

Var(0) = W + =B,
n

n
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which overestimates the variance in case the starting points are overdispersed, but
is unbiased under stationarity (i.e. if the starting points were actually drawn from
the target distribution). For any finite n, W underestimates the variance of 6
because the individual sequences have not had time to range over all of the target
distribution. As n — oo, both estimators @(9) and W will approach Var(9).

Gelman and Rubin (1992) suggest monitoring convergence by estimating the
factor by which the scale of the current distribution of # will shrink as n — oc.
They call it the Potential Scale Reduction Factor (PSRF) and estimate it by the
ratio of the current variance estimate @’(9) to the within-sequence variance W
with some correction factor

= [Var(9) _ df
@M -

=2

where df stands for the degrees of freedom of the approximate t—distribution
for 0. If R is large, this is taken to be an indication of non-convergence. Further
simulations may result in either decreasing the overestimated 17(;"(0), or increasing
the underestimated W. When the PSRF is close to 1, the Markov chains are
believed to have converged to a stationary distribution. It is necessary to inspect
the PSRF for every parameter of interest in any model to see whether or not it
has reached convergence.

Brooks and Gelman (1998) have extended Gelman and Rubin’s PSRF to con-
sider more than one parameter simultaneously. They propose a Multivariate Po-
tential Scale Reduction Factor (MPSRF) that summarises all univariate measures
in a single diagnostic. However, for high dimensional problems, they suggest cal-

culating the MPSRF as an overall indicator of convergence while still inspecting
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the PSRF for each parameter.

6.5 Application

The model presented in this chapter, defined by equations (6.1, 6.3, 6.4 and 6.5)
and illustrated by Figure 6.1, is now applied to the data on people’s attitudes
towards women’s work that has been already introduced in Chapter 5. The same
five waves of the British Household Panel Survey (1993, 95, 97, 99, 2001) are
considered, with 5819 respondents who gave complete answers on the first wave
subject to dropping out from the second wave onwards. However, the originally
five-category ordinal variables have been dichotomised for the sake of the analysis
into binary items taking one of two possible values: 0 if an individual Strongly
Agrees or Agrees to an item, and 1 if his/her response is Don’t Know, Disagree or
Strongly Disagree.

Three time-invariant covariates (sex as a dummy variable for women, age at
first wave and initial educational attainment) and one time-varying covariate (oc-
cupational status) are allowed to affect the attitude towards women’s work at each
wave. For more details about these covariates, see Section 5.2.3. The effect of
covariates on the corresponding attitudes is constrained to be the same from the
second wave onwards. For the first wave, the effect of covariates on the attitude
is allowed to be different, as this latent variable is modelled solely as a function
of covariates and not of previous attitudes (see equation (6.4)). The same four
covariates measured at first wave, along with the first attitudinal latent variable,
are also allowed to affect missingness indicators from wave two onwards.

Results are obtained from WinBUGS for Bayesian estimation using MCMC.
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See Appendix C for WinBUGS code and initial values. The first 4000 iterations
have been discarded as a burn-in period, as suggested in WinBUGS. Two chains
have been run for 10000 iterations when convergence has been attained according
to Brooks and Gelman (1998) multivariate diagnostic (MPSRF is estimated by
1.04), and Gelman and Rubin (1992) PSRF for each parameter individually. All
univariate PSRFs are < 1.03, which is taken as an indication of convergence.
Convergence diagnostics were obtained from CODA package in R.

All trace plots are of the form shown in the top graph of Figure 6.2, depicting
convergence for all parameters. Figure 6.3 gives a sample of trace plots for selected
parameters, where some of the plots (left) exhibit very well mixing of chains while
others (right) are not mixing as well but can still be considered as reasonable
evidence of convergence. In general, parameters of the dropout model, including
intercepts ay;, dropout coefficient v and covariates effects 34 on dropout indicators,
are mixing very well. Parameters of measurement and structural models such as
item intercepts «;, loadings \;, autoregressive parameter ¢ and covariates effects
B: on attitudes exhibit reasonable mixing. Some of the standard deviations are
mixing very well too, while others are not as good, but still acceptable as evidence

of convergence. Posterior densities for all parameters look reasonably normal.
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Figure 6.3: Trace plots for a sample of parameters (intercepts, loadings, regression
coefficients and variances): (left) very well mixing of chains, (right) reasonable
mixing of chains, attitudes towards women’s work data subject to dropout
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Table 6.1 shows results of the measurement and structural parts of the model,
in addition to covariates effects. The first column of Table 6.1 gives parameter
estimates, while the second gives their corresponding estimated standard errors.
The last column gives Gelman and Rubin (1992) PSRF for each parameter. The
relatively high positive estimated coefficient for the difficulty parameter oy of the
first item [Family| indicates a high probability of a positive response to this item
for an individual with a median score on the latent variable scale, given that the
item-specific random effect is zero. The autoregressive parameter ¢ is estimated by
0.854 with estimated standard error of 0.010, indicating that people’s perceptions
about women’s work are highly associated with their views on the previous wave.

The unexplained variation of attitude at first wave, given by variance v} of its
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error term, is significantly higher than that of subsequent waves v3,... vZ. This
is an expected result since attitude at first wave is only explained by covariates,
and there is no previous attitude to explain it as in case of subsequent waves.
The estimated regression coefficients of covariates on attitude at first wave
, and their corresponding standard errors, show that education and employment
status have a significant effect on attitude at first wave. The positive coefficient for
education indicates that, people with a medium or high academic qualification tend
to have more conservative views about women’s work than those with no academic
qualification at the beginning of the study, controlling for other covariates. The
negative coefficient for occupational status indicates that those who are employed
tend to score lower on the latent variable scale indicating more liberal views about
women’s work than those who are unemployed, controlling for other covariates.
The effects of sex and age on attitude towards women’s work at the first wave
seem to be insignificant. From the second wave onwards, sex still has no significant
effect on attitudes towards women’s work, while age at the beginning of the study
starts to have a negative significant effect indicating that older people have more
liberal views on women’s work, controlling for other covariates. Education and
occupational status still have the same sort of effect on time-varying attitudes, in
terms of significance and direction, as they do on attitude at the first wave.
Table 6.2 gives estimated parameters, standard errors and PSRF for the dropout
model defined by equation (6.5). Having accounted for covariates, the estimated
coefficient 7(4r0p) for the effect of first attitudinal latent variable z,, on the proba-
bility of dropout on subsequent waves is significant (at 10% level of significance),
indicating that the data is subject to informative dropout, given the model speci-

fication and assumptions. The negative coefficient y(grop) = —0.031 indicates that
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Table 6.1: Parameter estimates, standard errors and PSRF from MCMC after
10000 iterations for a model where attitude and covariates at first wave affect
probability of dropout; attitudes towards women’s work data subject to dropout

MCMC MCMC PSRF

mean s.d.
Measurement model
Family ap  2.861  FFF (0.196)  1.02
Contribution ay  -0.306 (0.196)  1.02
Independent az  0.503  FEF o (0.147)  1.01
Family A1 1 — —
Contribution A2 1.038  ***  (0.049) 1.01
Independent A3 0.776  *** (0.035)  1.02

Structural model

Autoregressive parameter ¢ 0.854 *** (0.010) 1.01
Constants ap  0.612 FEx ) 101

a;  0.393  *F*(0.084)  1.00

a; 0410  *** (0.083)  1.00

as  0.344  ***(0.086)  1.00

Standard deviations Uy 2.297  **F*(0.086) 1.03
(0.078)
(0.073)
(0.075)
(

of errors 01, ..., 05 Vg 1.490  *** 1.02
vy 1.241 Kk 1.01

(I 1.247  *** 1.00

Us 1.230  ***  (0.083) 1.01

Random effects
Standard deviations Tuy 1.347  ***  (0.076)  1.00
of random effects ouw, L1787  F¥E . (0.063) 1.01
ou, 1622 FFX O (0.047)  1.00
Covariates effects on z,,

Sex Beew  -0.103 (0.081)  1.00
Age Bage  -0.0006 (0.003)  1.01
Education Begw  0.966  ***  (0.105)  1.02
Employment Bemp -0.490  *F** (0.111)  1.03
Covariates effects on z,,, ..., 24,

Sex Beex  -0.005 (0.027) 100
Age Bage  -0.003  **%(0.0009)  1.01
Education Begw  0.132 *%%(0.033)  1.00
Employment Bemp -0.206  F** (0.045)  1.00

Note: *** indicates significance at 1% , ** indicates significance at 5% , while * indicates significance at 10%.
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the more conservative an individual is (the higher the score on the latent variable

scale), the less likely he/she is to drop out.

Table 6.2: Parameter estimates, standard errors and PSRF from MCMC after
10000 iterations for missingness mechanism in a model where attitude and covari-
ates at first wave affect probability of dropout, attitudes towards women’s work
data subject to dropout

MCMC MCMC PSRF
mean s.d.
Intercepts for dropout model
(drop) -2.829  F**(0.123)  1.00
(drop) -3.351  ***(0.128)  1.00
Q4 (drop) -3.339  FFx(0.128)  1.00
(drop) -3.270  FF* 0 (0.128)  1.00
Effect of z,, on
probability of dropout
V(drop) -0.031 * (0.016)  1.00
Covariates effects on
probability of dropout

55613 (drop) -0.193 oA (0055) 1.00
ﬁage (drop) 0.021 ok (0002) 1.00
Bedu(dropy  -0.151  ** (0.063)  1.00
Bemp (dropy  -0.234  *** (0.069)  1.00

Note: *** indicates significance at 1% , ** indicates significance at 5% , while * indicates significance at 10%.

Covariates measured at first wave, are assumed to affect the probability of
dropping out at any subsequent wave. The effect is assumed to be the same over
time. All four covariates (sex, initial age, initial educational attainment and initial
occupational status) have a significant effect on the probability of dropping out at
any time point, starting the second wave. Their corresponding coefficients indicate
that younger, more educated and employed females are less likely to drop out.

Although results of the model presented in this chapter are not directly compa-

rable to those of Chapter 5, as ordinal items have been dichotomised and modelling
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is within an IRT approach rather than SEM with the corresponding assumptions.
Bayesian estimation is used here, while WLS was used to fit the models in Chapter
5. It is worth mentioning though that results are not exactly the same when it

comes to which covariates are significant in the structural and dropout models.
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Chapter 7

Non-Monotone Missingness

7.1 Introduction

Missing data in a longitudinal study can be classified into intermittent missingness
and dropout. Dropout occurs when a subject exits the study before it comes to
an end, resulting in a monotone pattern of missingness (Little and Rubin (2002)).
Intermittent missingness occurs when a subject misses one or more waves of the
study but shows up on a subsequent wave. This type of missingness is referred to as
a non-monotone pattern of missingness. Reasons for the two types of missingness
may be different. Thus, one form of missingness may be informative, while the
other is not and vice versa. In this chapter, we extend the latent variable model
introduced in Chapter 6 to accommodate intermittent missingness, along with
dropout, in the study of multivariate longitudinal data. Item non-response is not
considered here. If a respondent is observed at any wave, he/she is assumed to
give full answers to all items.

Compared to the vast amount of literature on dropout in longitudinal studies,
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little has been written on non-monotone missingness. Troxel et al. (1998) extend
selection models proposed by Diggle and Kenward (1994) for the analysis of longi-
tudinal data subject to informative dropout, to accommodate non-monotone pat-
terns of missingness. Their model assumes multivariate normality for continuous
outcomes and allows the probability of missingness to depend on current, possi-
bly unobserved values. A full likelihood method is used and is reported to suffer
from computational difficulties when analysing more than three or four occasions.
The authors attempt to overcome these difficulties in their further research (Troxel
et al. (1998)) by employing a pseudo-likelihood method which reduces the multiple
integration into a single dimension, and using a product of marginal likelihoods at
each time point assuming independence over time.

Lin et al. (2004) propose a latent pattern-mixture model, where instead of
assuming predefined patterns of missing data as in an ordinary pattern-mixture
model, latent classes are used to discover joint patterns of missing data and longi-
tudinal responses from the data itself. Their model is also developed for continuous
outcomes. They assume the missingness process to be conditionally independent of
the longitudinal outcomes given the latent classes. Class membership is modelled
via a multinomial regression with covariates affecting the probability of belonging
to a specific class. Each latent class has its own model for the continuous longitu-
dinal outcome of interest which is represented by a linear mixed model and its own
pattern of visits described by a multiplicative intensity model. A semi-parametric
maximum likelihood method is used for estimation of the model parameters.

Shared parameter models, where random effects are shared both by the mea-
surement process and the missingness mechanism, have also been used in the

literature to model longitudinal data with non-monotone patterns of missingness.

124



Follmann and Wu (1995) provide a conditional approximation to shared random
effects models for binary repeated outcome where the outcome, conditional on the
random effect, follows a generalised linear model. The generalised linear model is
approximated by conditioning on the missingness variables. They consider miss-
ingness variables that allow for non-monotone patterns of missingness. Minini and
Chavance (2004) introduce a sensitivity parameter to represent the relationship
between the measurement process and the missingness mechanism in the analysis
of longitudinal binary outcomes with non-monotone patterns of missingness. Al-
bert et al. (2002) develop a model for longitudinal binary data in which a Gaussian
autoregressive latent process, rather than a random effect, is shared between the
response and missing data mechanism. The binary response is modelled by a logit
link as a function of covariates, conditional on the latent process. A three-state
missingness variable representing whether a subject is observed, intermittent or a
dropout is modelled, conditional on the latent process, via multinomial regression
as a function of covariates. The shared latent process affects the probability of a
positive response, the probability of an intermittent missed value and the proba-
bility of dropout thus relating the response to the missingness mechanism while
allowing intermittent missingness, dropout or both to be informative. A Monte
Carlo EM algorithm is used for maximum likelihood estimation of the proposed
model.

The model developed in this chapter can be classified under shared parameter
models where the shared parameter is a latent variable affecting both the observed
variables and the missingness mechanism. However, unlike all models presented in
the reviewed literature; our model is developed for a number of variables that are

repeatedly measured over time rather than a single longitudinal outcome. It uses
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the same idea of a three-state missingness variable as the one presented in Albert
et al. (2002). Items considered in this chapter are binary items analysed under

item response theory.

7.2 A Latent Variable Model for Multivariate Bi-
nary Longitudinal Data Subject to Intermit-
tent Missingness and Dropout

The model presented in this chapter is similar in structure to that presented in
Chapter 6. However, it allows for intermittent missingness besides dropout in the
analysis of multivariate longitudinal data. Observed items considered here are all
binary, where item response theory is adopted for fitting the model. For simplicity,
it is assumed that at each time point, a single continuous latent variable is sufficient
to explain associations among the multiple observed binary items. Item-specific
random effects are included to account for repetition of items over time. For
incorporating intermittent missingness and dropout in the model, a three-state
missingness variable is defined at each time point indicating whether an individual
is observed, missing intermittently or has dropped out of the study. Covariates
are allowed to affect both attitudes and missingness indicators.

The measurement part, in which the observed variables are explained by a
latent variable at each time point in addition to random effects, and the structural
part which defines relationships among latent variables over time are the same as
outlined in Chapter 6 (see Sections 6.1 and 6.2). In the next section, we introduce

the missingness mechanism and link it to the latent variable model via two possible
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specifications.

7.2.1 Missingness Mechanism

The missingness mechanism builds on the idea of a three-state nominal missingness
indicator introduced by Albert et al. (2002). Let r,, = (71, Tm2, -, 'mr) denote
a (T x 1) vector of missingness indicators for a subject m, where a missingness
indicator r,,; is created at each time point t; ¢t = 1,...,7T, indicating whether a

subject m is observed, missing intermittently or has dropped out:

.
0, observed,
Tmt = 1, intermaittent, (7.1)
2, dropout.
\

It is assumed that all subjects are observed at the first wave ¢t = 1, thus r,,; = 0 for
all subjects m. It is also assumed that r,,;_1 = 2 is an absorbing state, implying
that Pr(rp, =2 | rpe—1 = 2) = 1 (Albert et al. (2002)). For the last time point T,
intermittent missingness is not an option as subjects can not show up on further
occasions. Missingness on the last wave is thus considered as dropout, allowing
for two possible values for r,,7; namely 0 or 2. The way the missingness indicators
rme are constructed implies that they can only be recorded when the study comes
to an end, thus making it possible to distinguish between intermittent missingness

and dropouts.
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Modelling The Missingness Indicators

When considering how to model the three-state nominal missingness indicators,
a natural choice is to use the second model specification presented in Chapter 4
for modelling dropout indicators. The missingness indicators r,,; are assumed to
measure a single continuous latent variable z, which summarises an individual’s
response propensity. This is a real identifiable latent variable with an estimable
variance, unlike the one that was used in case of dropout only, where all dropout
indicators represented basically one variable; time of dropout. Such a specification
would be presented by a path diagram like the one shown in Figure 4.2 with the
main difference that the missingness indicators are as defined by equation (7.1).
The drawback for such a model is that only one parameter v can be estimated in
the regression of the missingness latent variable z,. on the first attitudinal latent
variable z,,, making it impossible to distinguish between the attitude’s effect on
intermittent missingness and dropout. This specification is therefore not consid-
ered.

An alternative specification is to drop the response propensity latent variable,
and to model the missingness indicators directly as a function of attitudes and
covariates. Suppressing the index m for an individual, the missingness indicators
are modelled, conditional on the first attitudinal latent variable z,,, covariates xy,

and that r;_; # 2 for t > 2 via a three-state multinomial regression as,

1 (=0
14+3°7_ 1 exp(agiet+yeza, +6L,x1) o
pft:Pr(thg‘ ZCL17X17Tt—1§£2): "

exp(aree+ye2ay +67,%1)
14+3°7_ 1 explarte+yeza, +B8r,x1)’
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where 3,, is a vector of regression coefficients representing dependence of missing-
ness indicators on covariates x;, and 7, are regression coefficients relating miss-
ingness (intermittent and dropout) to the first attitudinal latent variable z,,, thus
allowing for intermittent missingness, dropout or both to be informative in case
of their significance. The attitude at first wave z,, serves as a shared parameter
in this context by affecting both the response process and the missingness mech-
anism. It is assumed that an individual’s attitude at the beginning of the study
Za,, affects the probability of a positive response to any of the observed items y;;
at time 1, and it also affects attitude on the next wave via an autoregressive pa-
rameter ¢. On the missingness part of the model, attitude at first wave z,, affects
the probability to miss one or more subsequent waves, or to drop out of the study
completely at any time ¢. Figure 6.1 gives an illustration of this model by a path
diagram for an example with four time points, if dropout indicators d; are replaced
by missingness indicators r;.

A slight modification to the above setting results in a specification that classifies
this model under selection models. The probability of an intermittent missed value
or a dropout at time ¢, is made to depend on the unobserved attitude z,,, measured
at the same wave. This means that, the probability of an intermittent missed
observation or dropout will depend on the missing values themselves through the
latent variable. Attitudinal latent variables z,, are shared normal latent variables
that affect the probability of a positive response to each of the binary observed
items, the probability of an intermittently missed observation and the probability
of a dropout; at time t, and are themselves linked via a first-order autoregressive
structure. The multinomial regression modelling the probability of being observed,

missing intermittently or dropping out becomes
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L ¢ =0,

1+Z§:1 exp(artZ +e Zay +ﬂ;[ Xt) )

Pee =Pr(ry =] 2o, X, me1 # 2) =

exp(aree+ve2a, +57,%t)
1+E?:1 exp(areet+yeza, +067, x¢)’

0=1,2,
(7.3)

where 3,, is a vector of regression coefficients representing dependence of missing-
ness indicators on covariates x;, and 7, are regression coefficients representing the
dependence of missingness (intermittent and dropout) on unobserved correspond-
ing attitudes z,,, thus allowing for intermittent missingness, dropout or both to be
informative in case of their significance. In this formulation, the probability of in-
termittent missingness or dropping out at a given time point depends on the value
of the latent attitude variable at the corresponding time point, and covariates.
The effect of attitudes and covariates on each type of missingness is assumed to
be the same over time. Figure 7.1 gives an illustration for this model specification
by a path diagram for an example with four time points.

A special case of this specification is obtained by employing a binary variable
for dropout instead of a three-state missingness indicator resulting in a selection
model, where time-dependent unobserved attitudes are shared between the mea-
surement and dropout processes. This model specification, whether considering
dropout only or both dropout and intermittent missingness, provides a richer,
more dynamic structure than the specifications considered in Chapter 4 where
only attitude at first wave or a lagged effect of the attitude is allowed to affect the
missingness mechanism. It is particularly useful in cases when the nature of the
attitude of interest is prone to much change over time or when the time difference

between waves is big allowing various factors to change between time points. A
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good example would be in psychiatric studies, when the latent variable of interest
is measuring a mood or mental state for subjects. In this case, the state of the
subject/patient at a certain occasion may affect whether or not they are ready
to participate in that particular wave of the study or in any subsequent waves
thus creating informative intermittent missingness or dropout that depends on the

unobserved attitude of interest at the same time point.

ypl

Figure 7.1: Path diagram for a model where the time-dependent attitude affects
missingness on the same wave, an example with four time points

7.3 Estimation

Let @ denote a vector of all parameters defining the model outlined by equations

(6.1, 6.3, 6.4 and 7.2/7.3), including «; and \; defining the measurement process;

a, ¢, By and B defining the structural model; and ., v, and B;, defining the
2

missingness mechanism, in addition to variances of errors v; and random effects

agi. For a random sample of size n, the marginal likelihood of the observed data
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is given by

H / / H H Tmit Zat’ul m2t<1 - szt(zataul))l Ymit

=1 teHY

X { H plmt<zata Xt)I(rmt:Dmet(Zata Xt)I(TMtZZ) (1 - plmt<zata Xt) - p2mt(zat ) Xt))l(rthO)}
tEHm

X (24, 01)dz,du, (7.4)

where HY is the set of time points prior to dropout for an individual m where
Ymt 18 observed, and H,, is the set of time points prior to and including time of
dropout for an individual m. Moreover, 7,,; is the probability that an individual
m gives a positive response to item ¢ at time ¢ conditional on the attitudinal
latent variable z,, and random effect u; given by equation (6.2), pime, Pome are
the respective probabilities of intermittent missingness and dropout conditional
on the attitudinal latent variable z,, and covariates x; as expressed by equation
(7.3), I(rye = ¢) is an indicator function that takes the value 1 if r,;, = ¢ and
0 otherwise, and h(z,,u) is the joint distribution of attitude latent variables and
random effects.

The loglikelihood is thus

log L(8 / / {ZZ Yo 108 T 1)+ (1= i) 08 (1 = (20, 10))

=1 teHY

+ Z ( Tmt - ]- 1nglmt(zataxt) + I(rmt - 2) 10gp2mf<zazuxt)
teHm

(i = 0)108 (1 = Pron(za0, X1) = Pami(za0 X1)))
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+log h(z4, u) }dzadu] . (7.5)

The above expression requires a (7 + p)—dimensional integration, which makes its
evaluation complicated especially as the number of waves T  increases, thus making
estimation using MCMC an appealing option. The same main steps for Bayesian
estimation using MCMC, choosing prior distributions and assessing convergence,

outlined in Section 6.4, are employed here.

7.4 Application

The model presented in this chapter is now applied to the data on people’s attitudes
towards women’s work, introduced in Chapter 5. The same five waves of the
British Household Panel Survey (1993, 95, 97, 99, 2001) are considered. However,
it is not exactly the same dataset used in Chapter 5 in more than one aspect.
Although we still employ the same three items that have been used as measures of
attitude towards women’s work, the originally five-category ordinal variables have
been dichotomised for the sake of the analysis into binary items -as in Chapter 6-
taking one of two possible values: 0 if an individual Strongly Agrees or Agrees to
an item, and 1 if his/her response is Don’t Know, Disagree or Strongly Disagree.
The sample size is different too, as we now include cases that experienced
intermittent missingness. Those were previously discarded from the analysis when
only dropout was considered. There are 7622 complete cases, who gave full answers
to the three items of interest on the first wave considered in the analysis. A subject
may miss one or more waves intermittently, or drop out of the study starting the

second wave. If a subject misses the last wave, this is considered to be a dropout,
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since then the study has come to an end. Having observed the five waves, there
are 2145 cases who have dropped out by the end of the study and 451 cases who
have occasianally missed a wave (intermittent missingness).

Three time-invariant covariates (sex as a dummy variable for women, age at
first wave and initial educational attainment) and one time-varying covariate (oc-
cupational status) are allowed to affect the attitude towards women’s work at each
wave. Details about these covariates can be found in Chapter 5. The effect of
covariates on the corresponding attitudes is constrained to be the same from the
second wave onwards. The same four covariates are also allowed to affect missing-
ness indicators.

Next, we present results for a model where attitude and covariates measured
at the first wave are allowed to affect the missingness mechanism, followed by
results for a model where missingness is affected by time-dependent attitudes and
covariates. The interpretation of the results depends on the data set and the

distributional assumptions of each model, and hence cannot be generalised.

7.4.1 A Specification where Attitude Measured at First Wave

Is Allowed to Affect The Missingness Mechanism

In this section, we fit a model where the first attitudinal latent variable, and
covariates measured at first wave, are allowed to affect the missingness indicators
from wave two onwards. This model is defined by equations (6.1, 6.3, 6.4 and 7.2),
and is illustrated in Figure 6.1. Results are obtained from WinBUGS for Bayesian
estimation using MCMC. See Appendix D for WinBUGS code and initial values.

The first 4000 iterations have been discarded as a burn-in period, as suggested
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in WinBUGS. Two chains have been run for 10000 iterations when convergence
has been attained according to Brooks and Gelman (1998) multivariate diagnos-
tic estimated by 1.08, and Gelman and Rubin (1992) PSRF for each parameter
individually (each< 1.05). All trace plots are of the form shown in the top graph
of Figure 6.2, depicting convergence for all parameters. Figure 7.2 gives a sam-
ple of trace plots for selected parameters, where some of the plots (left) exhibit
very well mixing of chains while others (right) are not mixing as well but can still
be considered as reasonable evidence of convergence. Posterior densities for all
parameters look reasonably normal. Convergence diagnostics were obtained from

CODA package in R.

Figure 7.2: Trace plots for a sample of parameters (intercepts, regression coeffi-
cients and variances): (left) very well mixing of chains, (right) reasonable mixing of
chains, attitudes towards women’s work data subject to intermittent missingness
and dropout
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Table 7.1: Parameter estimates, standard errors and PSRF from MCMC after
10000 iterations for a model where attitude at first wave affects missingness; atti-
tudes towards women’s work data subject to intermittent missingness and dropout

MCMC mean MCMC s.d. PSRF
Measurement model

ap | 2.608%FF (0.142) 1.04
% -0.548*** (0.154) 1.05
as  0.321%%* (0.112) 1.04
/\1 1 — —
Ay 1.084%% (0.045) 1.01
A3 0.790%*** (0.030) 1.01
Structural model

b 0.851%%%*
as 0.617%%*
as 0.410%%*
ay 0.426%%* 1.02
as 0.376%%%* 1.02

(0.009) 1.0
(0.077)
(0.075)
(0.075)
(0.077)
v 2.237FE* (0.073)  1.01
(0.067)
(0.062)
(0.063)
(0.073)

1.01
1.02

Vs 1.437%%* 1.01
U3 1.235%%* 1.01

vy 1.232%%* 0.063 1.02
s 1.236%** 0.073 1.00
Random effects
Oy 1.288%%* (0.058) 1.01
Ty 1.784%%* (0.054) 1.00
Ous 1.573%%%* (0.042) 1.01
Covariates effects on z,,
Bsex -0.050 (0.070) 1.00
Bage 0.001 (0.002) 1.01
Beaw ~— 0.993%** (0.084) 1.00
Bemp ~ -0.380%%* (0.088) 1.03
Covariates effects on z,,, ..., 24
Bsea -0.023 (0.024) 1.00
Bage  -0.003%%* (0.0009) 1.01
Bedu — 0.135%** (0.031) 1.00
Bemp ~ -0.191%%* (0.041) 1.00

Note: *** indicates significance at 1% , ** indicates significance at 5% , while * indicates significance at 10%.
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Results of the measurement and structural parts of the model, given in Table
7.1, are similar to those obtained for the model with dropout only in Chapter 6.
The same comments given on Table 6.1 can be given here, too (see Section 6.5).
Table 7.2: Parameter estimates, standard errors and PSRF from MCMC after
10000 iterations for missingness mechanism in a model where attitude at first wave

affects missingness, attitudes towards women’s work data subject to intermittent
missingness and dropout

MCMC MCMC PSRF MCMC MCMC PSRF
mean s.d. mean s.d.
Intercepts for Intercepts for
intermittent dropout
Qogingy  -2.369%** (0.202)  1.00 Qa(drop)  -2.750%** (0.108)  1.00
Qginy  -2.693%%* (0.207)  1.00 Q3(drop)  -3.296*** (0.113)  1.00
Quinyy  -2.788%** (0.210)  1.00 Qu(dropy  -3.106%** (0.112)  1.00
Q5(int) — — — Os(drop)  -2.74T*** (0.108)  1.00
Effect of z,, on Effect of z,, on
probability of intermittent probability of dropout
V(int) -0.023 (0.029)  1.00 V(drop) -0.024%* (0.014)  1.00
Covariates effects on Covariates effects on
probability of intermittent probability of dropout
Bsex(inty  -0.207%*% (0.091)  1.00 Bsex (drop)  -0.190%** (0.046)  1.00

(int)
Buge ) -0.013%¥%%  (0.003) 100 Bage(arop) 0.018%%* (0.002)  1.00
Beau(inty  -0.396%¥**  (0.111)  1.00  Beauqarop -0-173%*¥*  (0.055)  1.00
Beompiinty 0133 (0.112)  1.00  Bemp(arop) -0-160%** (0.059)  1.00

Note: *** indicates significance at 1% , ** indicates significance at 5% , while * indicates significance at 10%.

Table 7.2 gives estimated parameters, standard errors and PSRF for the multi-
nomial missingness model defined by equation (7.2). The table is divided into
two parts; the left part gives estimates for the intermittent missingness branch of
the model while the right part gives the corresponding estimates for the dropout
branch. Although the estimated coefficients for the effect of the first attitudi-
nal latent variable z,, on the probability of intermittent missingness 7, and

dropout v(4r0p) on subsequent waves is almost equal, however it is only significant
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for dropout (at 10% level of significance). This indicates that dropout is informa-
tive, while intermittent missingness is not according to this model specification.
This is a logical result in such a study. As one might expect, missing one wave
in such a longitudinal study is likely to be due to random causes such as illness
or travelling, while dropout is more likely to be related to a specific attitude or
behaviour. The negative coefficient v(gr0p) = —0.024 indicates that the more con-
servative an individual is (the higher the score on the latent variable scale), the
less likely he/she is to drop out.

Covariates measured at first wave, are assumed to affect the probability of miss-
ing intermittently and the probability of dropping out at any subsequent wave. The
effect on each probability is assumed to be the same over time. Sex, initial age and
initial educational attainment have a significant negative effect on the probability
of having an intermittent missingness on waves two, three and four. Older, more
educated females tend to have a lower probability of missing intermittently. Thus,
intermittent missingness can be considered MAR, as it depends on covariates but
not on unobserved attitudes, given the model specification and data.

All four covariates (sex, initial age, initial educational attainment and initial
occupational status) have a significant effect on the probability of dropping out at
any time point, starting the second wave. Their corresponding coefficients indicate
that younger, more educated and employed females are less likely to drop out. It is
noted that the effect of age is now reversed. While younger respondents are more
likely to miss an occasion intermittently, older ones are more likely to drop out of

the study completely.
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7.4.2 A Specification where Time-Dependent Attitudes Af-

fect The Missingness Mechanism

This section presents results for the second model specification defined by equa-
tions (6.1, 6.3, 6.4 and 7.3) and illustrated in Figure 7.1, where time-dependent
attitudinal latent variables and covariates, are allowed to affect the probability
of missingness (intermittent or dropout) at the same wave. Again, the first 4000
iterations have been discarded as a burn-in period, as suggested by WinBUGS.
The richer structure implied by this model required more than twice the compu-
tational time, taken by the first model specification, for each iteration. However,
convergence was diagnosed earlier. Two chains have been run for another 4000
iterations after the burn-in period, when convergence has been attained according
to Brooks and Gelman (1998) multivariate diagnostic (MPSRF=1.08), and Gel-
man and Rubin (1992) PSRF for each parameter individually (all PSRFs < 1.05).
All trace plots (not shown here) are of the form shown in the top graph of Figure
6.2, depicting convergence for all parameters. Posterior densities for all parameters
look reasonably normal. See Appendix E for WinBUGS code and initial values.

Table 7.3 shows results of the measurement and structural parts of the model,
in addition to covariates effects. The estimated parameters and corresponding
standard errors, for the measurement and structural models, seem to be almost
unchanged from those obtained in the first model specification. The effects of
covariates on attitudes are the same as before, too.

Table 7.4 gives estimated parameters, standard errors and PSRF for the multi-
nomial missingness model defined by equation (7.3). Three time-invariant covari-

ates measured at first wave (sex, age at first wave and initial educational attain-
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Table 7.3: Parameter estimates, standard errors and PSRF from MCMC after 4000
iterations for a model where time-dependent attitudes affect missingness; attitudes
towards women’s work data subject to intermittent missingness and dropout

MCMC mean MCMC s.d. PSRF
Measurement model

ay | 2.632%FF (0.156) 1.01
ay  -0.520%%* (0.161) 1.02
as  0.337kF* (0.118) 1.01
/\1 1 — —
Ao 1.080*** (0.042) 1.00
A3 0.786%** (0.029) 1.00
Structural model

¢ 0.840%%*
as 0.608%%*
as 0.405%%%*
ay 0.423 %%k 1.02
as 0.370% %% 1.02

(0.009) 1.01
(0.073)
(0.073)
(0.074)
(0.075)
vy 2.248% % (0.067) 1.00
(0.060)
(0.058)
(0.061)
(0.066)

1.02
1.02

Vo 1.449%%* 1.02
s 1.241%%%* 1.01

vy 1.246%** 0.061 1.00
s 1.244%%x* 0.066 1.04
Random effects
O, 1.297%%* (0.057) 1.00
Ty 1.786%** (0.056) 1.01
Oy 1.575%** (0.042) 1.00
Covariates effects on z,,
Bsex -0.055 (0.071) 1.01
Bage 0.0008 (0.002) 1.01
Beaw ~— 0.988%** (0.082) 1.00
Bemp ~ -0.383%%* (0.090) 1.00
Covariates effects on z,,, ..., 24
Bsea -0.023 (0.025) 1.00
Bage  -0.003%%* (0.0008) 1.02
Bedw — 0.137%%* (0.028) 1.02
Bemp ~ -0.190%%* (0.039) 1.01

Note: *** indicates significance at 1% , ** indicates significance at 5% , while * indicates significance at 10%.
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ment), in addition to employment status which is a time-varying covariate, are
assumed to affect the probability of missing intermittently and the probability of
dropping out at each wave. The effects of those covariates are almost unchanged
in terms of direction, magnitude and significance, from those estimated under the

first model specification.

Table 7.4: Parameter estimates, standard errors and PSRF from MCMC after 4000
iterations for missingness mechanism in a model where time-dependent attitudes
affect missingness, attitudes towards women’s work data subject to intermittent
missingness and dropout

MCMC MCMC PSRF MCMC MCMC PSRF
mean s.d. mean s.d.
Intercepts for Intercepts for
intermittent dropout
Qoimty  -2.315%%%  (0.198)  1.00 Qaarop)  -2.624%F% (0.108)  1.00
Q3(iny)  -2.630%*F* (0.205)  1.00 X3(drop)  -3.157*** (0.113)  1.00
Qe -2.718%** (0.209)  1.00 Qu(dropy  -2.960%** (0.111)  1.00
A5 (int) - - - Q'5(drop) -2.592%** (0.110) 1.00
Effect of z,, on Effect of z,, on
probability of intermittent probability of dropout
V(int) -0.051*  (0.029) 1.00 Yiarop) ~ -0.040%** (0.016)  1.00
Coavariates effects on Coavariates effects on
probability of intermittent probability of dropout
Bsexingy  -0.213%*  (0.089)  1.00 Bsex (drop)  -0.206%** (0.046)  1.00
Bage nty  -0.013*** (0.003)  1.00 Bage (@ropy ~ 0.018%** (0.001)  1.00
Bedu (ingy  -0.371*** (0.109)  1.00 Bedu (dropy  -0.146*** (0.054)  1.00

Bemp(iny <0175 (0.119) 100 Bopmp(arop) -0-331%**  (0.063)  1.00

Note: *** indicates significance at 1% , ** indicates significance at 5% , while * indicates significance at 10%.

The only difference noted in the results of this model compared to those ob-
tained previously from the first specification is the effect of the time-dependent
attitudinal latent variables z,, on the corresponding probability of intermittent
missingness and dropout. Both coefficients representing these effects, 7y, for

intermittent missingness and 7y(grop) for dropout, are now significant. This is an
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indication that both intermittent missingness and dropout are informative due to
this model specification. The negative coefficients for (grop) and v(ne) indicate that
the more conservative an individual is (the higher the score on the latent variable
scale), the less likely he/she is to drop out and to miss a wave intermittently.
Again, this does not conclude that attitudes towards women’s work are causing
dropouts or intermittent missingness. However, it reflects some sort of associa-
tion between them, which makes the incorporation of a missingness mechanism
essential. The latter model specification where time-varying attitudes affect the
missingness seems more plausible, as it is more realistic to assume that attitudes
affect missingness at the same wave, in a study where there is a two-year difference
between consecutive waves resulting in various possible changes over time making

the effect of an attitude at time ¢ different from that at the beginning of the study.
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Chapter 8

Contribution, Limitations and

Future Research

8.1 Summary and Contribution

Chapter 1 provides an introduction to three main topics that constitute the mod-
els developed in this thesis for analysing multivariate longitudinal data subject to
different forms of missingness. These are: latent variable models, analysis of lon-
gitudinal data and missing data. The three topics have been studied thoroughly
in the literature, but this is the first work to integrate them together in a unified
model.

A review of literature on latent variable models is given in Chapter 2, outlin-
ing the two main approaches for estimating latent variable models with categor-
ical data. These are the underlying variable approach which regards categorical
variables as manifestations of underlying continuous variables, and the item re-

sponse theory (IRT) approach where distributional assumptions are directly made
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on categorical manifest variables. Section 2.4 discusses latent variable models for
multivariate longitudinal data.

Chapter 3 first gives a literature review for missing data in cross-sectional
studies followed by missing data, particularly dropout, in longitudinal studies.
Selection models, pattern-mixture models and shared-parameter models are three
different approaches, presented in Chapter 3, that deal with the problem of dropout
in univariate longitudinal data.

In Chapter 4, two model specifications that incorporate dropout within a la-
tent variable modelling framework to model multivariate longitudinal data, are
proposed. Both model specifications allow for testing whether dropout depends
on the variables of interest by modelling the probability of dropping out at a given
wave as a function of the latent variables (in which case the dropout is nonrandom),
and possibly covariates. The models presented are for ordinal observed variables
and binary indicators for the dropout. Within a SEM framework, ordinal observed
variables are modelled using underlying continuous variables and the classical fac-
tor analysis model, employing the three-step estimation procedure (thresholds,
polychoric correlations, weighted least squares) as described in Joreskog (1994,
2005). The dropout mechanism is modelled with a hazard function that may
depend on the attitudinal latent variables and covariates. Two different ways of
modelling relationships among the latent variables and the dropout mechanism are
proposed and their advantages and disadvantages discussed. The proposed models
remain within the standard framework of a general latent variable model for lon-
gitudinal data, and therefore estimation of model parameters and goodness-of-fit
testing use conventional methods.

The developed models are applied in Chapter 5 to a real dataset about people’s
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attitudes towards women’s work from five waves of the British Household Panel
Survey (BHPS). A sensitivity analysis is included to compare how a model that
uses listwise deletion, another that ignores the dropout mechanism and a third
that accounts for dropout, behave at four different levels of dropout. A model that
incorporates the dropout mechanism is found to be better at detecting significant
covariates, even at high levels of dropout.

In Chapter 6, a model for multivariate binary longitudinal data subject to
possibly nonrandom dropout, is developed within an IRT approach. Bayesian
estimation using MCMC is used to fit this model. Again, the dataset about peo-
ple’s attitudes towards women’s work from five waves of the BHPS is analysed to
illustrate this model, after the items have been dichotomised.

Chapter 7 extends the model developed for binary observed items within an
IRT framework to accommodate intermittent missingness together with dropout.
Two possible specifications are given for this model. An application of this model
is also presented using the BHPS data.

In summary, we have developed a latent variable model to analyse multivari-
ate longitudinal data subject to possibly nonrandom dropout and/or intermittent
missingness. Latent variable models for multivariate longitudinal data, and miss-
ingness in univariate longitudinal data are present in the literature separately. Our
proposed model incorporates the missingness mechanism within a latent variable
model framework to account for missing data in the analysis of multivariate longi-
tudinal data, under both SEM and IRT approaches. Different model specifications
introduced in various parts of the thesis provide several modelling options. The
choice of which model specification to adopt will usually depend on the application

and the nature of the problem being studied. Interpretation of results will always
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depend on the model specification and the accompanying assumptions.

8.2 Limitations

Developing the models involved many decisions to be made about the modelling
procedure: how to model the items, how to relate the latent variables, how to model
dropout and why. Several model specifications were thus discussed with their
possible applicability in different situations. The model specifications presented
in this thesis are by no means exhaustive. Other specifications can be explored.
The choice of fitting the first two model specifications within a SEM framework
for ordinal items while fitting the other two specifications within an IRT approach
for binary items does not restrict them to those frameworks in particular. For
instance, a model with a lagged effect of attitudes on dropout can be fitted within
an IRT approach for ordinal items.

Maximum likelihood for models with categorical items and continuous latent
variables within a SEM framework can be implemented in MPlus with a maximum
of four latent dimensions due to the increased computational capacity required for
numerical integration. In our case, the number of time-dependent latent variables
and item-specific random effects that required numerical integration was much
higher, and thus ML was not feasible in MPlus, hence estimation using WLS.

As in most cases, some restrictions were due to the type of available data. The
BHPS data set on attitudes towards women’s work was used in all applications
mainly for convenience. Finding suitable data sets was not a very easy task. That
is why ordinal items were dichotomised for the sake of developing a model for

binary items, as no suitable data set with binary items was found. The fact that
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the items were originally measured on a five point scale implied that the middle
category had to be merged with either the agree or disagree sides. In our case,
we chose to include the don’t know with those who disagree or strongly disagree.
This is quite a subjective decision, and it could be argued to include the middle
category with those who agree instead.

Data was available for more waves, but measurement invariance did not hold
beyond the waves considered here. Therefore, a decision was made to restrict the
analysis to five waves.

Other covariates could be included in further analyses of this data set (e.g.
socio-economic status). The employment covariate was included as a binary vari-
able with students, retired and those out of labour market combined with those
who are employed in one category against a category for the unemployed. Having
a third category at least for those who are out of the labour force could be useful
especially that it includes women who are looking after family/children, and who

might as well have distinct views about women’s work.

8.3 Future Work

Future research may extend the developed models to accommodate yet another
form of missing data. That is item non-response, where at a given time point a re-
spondent might give answers to some of the items but not the others. O’Muircheartaigh
and Moustaki (1999) developed a latent variable model for cross-sectional data
with item non-response with two latent dimensions, one to summarise the attitude
and the other to summarise response propensity. For each observed variable, an

indicator variable for responding is created, taking the value 1 if the individual
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responds and 0 if he or she does not respond. The attitude items are explained
by the attitudinal latent variable, and the binary response items depend both on
the attitudinal variable and the response propensity latent variable, thus allowing
for non-ignorable missingness. Moustaki and Knott (2000b) include covariates to
a similar model specification. This kind of models can be combined within our
framework for modelling multivariate longitudinal data, in order to have a more
general specification that accommodates dropout, intermittent missingness and
item non-response.

Models presented within an IRT approach are developed for binary items,
whose conditional distribution is assumed to be Bernoulli. Extensions to this
model may accommodate nominal, ordinal, metric, or mixed types of items, with
other possible conditional distributions of the exponential family.

Possible routines or reparameterisations to speed up the MCMC algorithm and

improve mixing of chains could be investigated.
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Appendix A

Mplus Code for Fitting First Model Specification

(SEM Framework)

TITLE: Fitting first model specification of Chapter 4 to attitudes towards women’s
work data (five waves of the BHPS)

DATA:
File is Woman _fully observed at wave C.dat;

VARTABLE:

Names are C3-CbH E3-E5 G3-G5 I3-15 K3-K5 d2-d5;
usevar = C3-CH E3-E5 G3-G5 13-15 K3-K5 d2-d5;
Categorical are C3-C5 E3-E5 G3-G5 13-15 K3-K5 d2-d5;
Missing are all (-1);

ANALYSIS:

Estimator=WLSMV;

Parameterization = delta;

'DIFFTEST=deriv15.dat; !to obtain chi-square difference test

MODEL:

Isetting all loadings of random effects on items to one
ul by C3@1 E3@1 G3@1 I3@1 K3@1;

u2 by C4@1 E4@1 G4@1 14@1 K4@Q1;

u3d by Cs@l Eb@] GH@1 [h@l KH@l;

'constraining loadings of same items to be equal over time
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z1 by C3-C5 (1-3) d2;
z2 by E3-E5 (1-3) d3;
23 by G3-G5 (1-3) d4;
74 by 1315 (1-3) d5;
z5 by K3-K5 (1-3);

!constraining thresholds of same items to be equal over time
[C3$1 E3$1 G3$1 1351 K3$1 | (4);
[C3%2 E3$2 G3%$2 13$2 K3$2 |
[C3$3 E3$3 G333 13$3 K3$3 |
[C3%$4 E3$4 G334 1354 K3$4 |

(5);
(6);
(7);
[C4$1 E4$1 G4$1 T4$1 K4$1 | (8):
[C4$2 B4$2 G4$2 14$2 K4$2 | (9);
[C4$3 E4$3 G483 14$3 K4$3 | (10
(11
(12
(13
(14
(15

)
)

J

)
?

bl

|C4$4 E4$4 G434 1454 K4$4 |

[C581 E5$1 G531 1581 K5H$1 |
[C532 E5$2 G52 15$2 K5H$2 |
[C5$3 E5$3 G5$3 1533 K5$3 |
[C5$4 E5$4 G5$4 1554 K5H$4 |

[d2$1 d3$1 d4$1 d5$1 |;

lallowing latent variables to correlate
z1 with z2-z5;

72 with z3-z5;

73 with 74-75;

z4 with z5;

Y

3
?

);
);
)7
);
);
);

bl

lestimate means of latent variables
[z2 23 z4 75];

'random effects independent of each other and of latent variables
ul with u2-u3 @o;

u2 with u3 @o;

ul-u3 with z1-z5 @0;

OUTPUT:
tech4;

Savedata:
IDIFFTEST=deriv15.dat; to obtain chi-square difference test
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Appendix B

Mplus Code for Fitting Second Model Specification

(SEM Framework)

TITLE: Fitting second model specification of Chapter 4, with covariates, to atti-
tudes towards women’s work data (five waves of the BHPS)

DATA:
File is Woman _fully observed at wave C_covariates.dat;

VARIABLE:

Names are C3-Ch E3-E5 G3-G5 13-15 K3-K5 d2-d5

sex ageC eduC empC empE empG empl empK;

usevar = C3-C5 E3-Eb5 G3-G5 I3-15 K3-Kb5 d2-d5

sex ageC eduC empC empE empG empl empK;
Categorical are C3-C5 E3-E5 G3-Gb 13-15 K3-K5 d2-d5;
Missing are all (-1);

ANALYSIS:
Estimator=WLSMV;
Parameterization = delta;

MODEL:

Isetting all loadings of random effects on items to one
ul by C3@1 E3@]1 G3@l [3@] K3Ql;

u2 by C4@l E4@] G4@1 [4@] K4Q1;

151



u3 by C5@1 E5@1 G5@1 15Q1 K5@l1;

'constraining loadings of same items to be equal over time
z1 by C3-C5 (1-3);

z2 by E3-E5 (1-3);

z3 by G3-G5 (1-3);

z4 by 13-15 (1-3);

z5 by K3-K5 (1-3);

zd by d2-d5@1;

lconstraining thresholds of same items to be equal over time
[C3$1 E3$1 G331 1381 K3$1 | (4);
[C3%2 E3%2 G3%$2 1352 K3$2 |
[C3$3 E3$3 G3$3 1353 K3$3 |
[C354 E3%4 G3$4 1354 K3$4 |

(5);
(6);
(7);
[C4$1 B4$1 G4$1 14$1 K4$1 | (8):
[C4$2 B4$2 G4$2 14$2 K4$2 | (9);
[C4$3 E4$3 G4$3 14$3 K4$3 | (10);
(11);
(12);
(13);
(14);
(15);

)
?

b

?

Y

[C4$4 E4$4 G434 1454 K4$4 |

[C5$1 E5$1 G5$1 1551 K5H$1 |
[C5$2 E5$2 G5$2 1552 K5H$2 |
[C5$3 E5$3 G5$3 1583 K5H$3 |
|C534 E5$4 G534 1584 K5H$4 |

[261 d3$1 d4$1 d5$1 |;

TAR(1) structure for latent variables
z2 on z1 (16);
z3 on z2 (16);
z4 on 73 (16);
z5 on z4 (16);

Y

?

bl

bl

S S S S

Y

?
zd on zl;
zd@0; !variance of zd set to zero

lcovariates effects
z1 on sex ageC eduC empC;
zd on sex ageC eduC empC;

z2 on sex (17) ageC (18) eduC (19) empE(21);
z3 on sex (17) ageC (18) eduC (19) empG(21);
z4 on sex (17) ageC (18) eduC (19) empl(21);
z5 on sex (17) ageC (18) eduC (19) empK(21);
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lestimate means of latent variables
[z2 23 z4 75];

'random effects independent of each other and of latent variables
ul with u2-u3 @o;

u2 with u3 @o;

ul-u3 with z1-z5 @0;

ul-u3 with zd @Q0;

zd with z2-z5 @0;

lerrors of latent variables are not allowed to correlate
z1 with z2-z5 QO0;

72 with z3-z5 QO0;

z3 with z4-z5 Q0;

z4 with z5 QO0;

OUTPUT:
tech4;
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Appendix C

WinBUGS Code for an IRT Model for Multivariate
Binary Longitudinal Data Subject to Dropout

BUGS language for a latent variable model, with covariates for 5819 cases of the
Woman data (five waves C E G I K, three variables: questions 3,4,5) - dropout,
no intermittent missingness or item non-response

i -> index for individual

j -> index for item, m is used when loop starts from 2
k -> index for wave, | is used when loop starts from 2
r -> index for covariate

N -> number of individuals

p -> number of items at each wave

T -> number of waves

R -> number of covariates

model
{
# Latent Variable Model
for (iin1: N){
# Structural part
2[i,1]<-beta.1[1]*x[i,1,1]+ beta.1[2]*x[i,2, 1]
+beta.1[3]*x[i,3,1]+beta.1[4]*x[i,4,1]+delta.z1]i]
delta.z1[i]~dnorm(0,tau.delta.z1)
for(l in 2:T){
z|i,)|<-a[l-1]+phi*z[i,l-1|+beta.t|1]*x[i,1,1]+beta.t|2]*x[i,2,1]
+beta.t[3]*x[i,3,1]+beta.t|4]*x|i,4,]] +delta[i,]]
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deltali,l|~dnorm(0,tau.deltal-1])
}

for(j in 1:p){
uli,j] ~ dnorm(0,tau.ulj]) 1(-20,20)

# Measurement part
for (kin 1: T) {
logit(probli, 1, k]) <- z[i,k] - alpha[l]+uli,1]
y[i, 1, k] ~ dbern(probli, 1, k|)
for (min 2: p) {
logit(probli, m, k]) <- lambda|m-1| * z[i,k] - alpha[m]+u[i,m]|
y[i, m, k] ~ dbern(probl[i, m, k]|)
1
1

#Dropout

for (1in 2:T) {

logit(p.drop[i,l])<- -alpha.drop|l-1]+gamma*z[i,1| +beta.drop|1|*x[i,1,1]
+beta.drop[2]*x[i,2,1] +beta.drop[3|*x|[i,3,1]+beta.drop[4]*x[i,4,1]

d[i,]] ~ dbern(p.dropli,l])

}
#Priors

alpha[l] ~ dnorm(0,0.0001)

upsilon.zl ~ dunif(0.0001,100)
tau.delta.z1<-1/(upsilon.z1*upsilon.z1)
phi ~ dnorm(0,0.0001)

gamma ~ dnorm(0,0.0001)

for (jin 1:p) {

sigma.ulj] ~ dunif(0.0001,100)
tau.ulj]<-1/(sigma.ulj|*sigma.ulj])

for (min 2: p) {
alpha|m| ~ dnorm(0, 0.0001)
lambda|m-1| ~ dnorm(0,0.0001)

for (1in 1:T-1) {

all] ~ dnorm(0, 0.0001)
alpha.dropll] ~ dnorm(0,0.0001)
upsilon|l] ~ dunif(0.0001,100)
tau.delta[l]<-1/(upsilon|l]*upsilon]l])
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}
for(r in 1:R) {
beta.1|r] ~ dnorm(0,0.0001)
beta.t[r] ~ dnorm(0,0.0001)
beta.drop|r| ~ dnorm(0,0.0001)

}

Initial values 1 = list (alpha = ¢(0,0,0), lambda = ¢(0,0), a = ¢(0,0,0,0),
upsilon.z1 = 0.5, phi = 0.5, upsilon = ¢(0.5,0.5,0.5,0.5), gamma = 0.5,
alpha.drop = ¢(0,0,0,0), sigma.u = ¢(0.5,0.5,0.5), beta.1 = ¢(0,0,0,0),
beta.t = ¢(0,0,0,0), beta.drop = ¢(0,0,0,0))

Initial values 2 = list (alpha = ¢(0.5,0.5,0.5), lambda = ¢(0.5,0.5), a = ¢(0.5,0.5,0.5,0.5),
upsilon.z1 = 1,phi = 1, upsilon = ¢(1,1,1,1), gamma = 1,

alpha.drop = ¢(0.5,0.5,0.5,0.5), sigma.u = ¢(1,1,1), beta.1 = ¢(0,0,0,0),

beta.t = ¢(0,0,0,0), beta.drop = ¢(0,0,0,0))
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Appendix D

WinBUGS Code for an IRT Model for Multivariate
Binary Longitudinal Data Subject to Dropout and
Intermittent Missingness, Attitude at First Wave
Affecting Missingness

BUGS language for a latent variable model, with covariates for 7622 cases of the
Woman data (five waves C E G T K, three variables: questions 3,4,5) - dropout
and intermittent missingness, no item non-response, attitude at first wave affecting
missingness mechanism

i -> index for individual

j -> index for item, m is used when loop starts from 2
k -> index for wave, | is used when loop starts from 2
r -> index for covariate

N -> number of individuals

p -> number of items at each wave

T -> number of waves

R -> number of covariates

Q -> number of states for missingness (0:observed, l:intermittent, 2:dropout)
changed into 1,2,3 for waves 1,2,3.4

For the last wave 0: observed, 1:dropout

model

{
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# Latent Variable Model
for (iin1: N){
# Structural part
2[i,1]<-beta.1[1]*x[i,1,1]+ beta.1[2]*x[i,2, 1]
+beta.1[3]*x[i,3,1]+beta.1[4]*x[i,4,1]+delta.z1]i]
delta.zl1[i]~dnorm(0,tau.delta.z1)
for(l in 2:T){
z[i,]|<-a|l-1]+phi*z|i,]-1]+beta.t|1]*x|i,1,1]+beta.t|2]*x[i,2,1]
+beta.t[3]*x[i,3,1]+beta.t[4]*x|i,4,]] +delta[i,]]
deltali,l|~dnorm(0,tau.deltall-1])
1
for(j in 1:p){
uli,j] ~ dnorm(0,tau.ulj]) 1(-20,20)

# Measurement part

for (kin 1: T) {

logit(probli, 1, k|) <- z[i,k| - alpha[1]-+ul[i,1]

y[i, 1, k] ~ dbern(probli, 1, k]|)
for (min 2: p) {
logit(probli, m, k]) <- lambda|m-1| * z[i,k] - alpha[m]+u[i,m]|
y[i, m, k] ~ dbern(probli, m, k])

}

#Missing data mechanism
for (1in 2:T-1) {
#conditional probabilities, d=3 is an absorbing state
if branch|i,l]<- 1+step(d|[i,l-1] -3) #1 if d[I-1] 1,2 and 2 if d[I-1]=3
prob.miss.branchli,1,1,2]<-0
prob.miss.branch|i,1,2,2]<-0
prob.miss.branchli,l,3,2]<-1
for (q in 1:Q) {
#linear predictor
etafi,l,q]<- -alpha.miss|l-1,q]+gamma|q|*z[i,1] +beta.miss|1,q]*x][i,1,1]
+beta.miss|2,q]*x[i,2,1] +beta.miss|3,q]*x|i,3,1|+beta.miss|4,q|*x|i,4,1]
expetali,l,q|<-exp(etali,l,q])
#probabilities (link function)
prob.miss.branchli,l,q,1]<-expeta|i,l,q] /sum(expetali,],1:Q|)
prob.miss|[i,l,q|<- prob.miss.branchli,l,q, if.branchli,]] |

}

#stochastic part
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d[i,]] ~ dcat (prob.miss|i,1,1:Q))

#Wave T
if.branch|i,T|<- 1+4step(d[i,T-1] -3) #1 if d|T-1] 1,2 and 2 if d|T-1]=3
#prob.miss.branchli,T,1,2]<-0
prob.drop.branchli,T,2]<-1
logit(prob.drop.branchli,T,1])<- -alpha.miss|T-1,Q]+gamma|Q|*z[i,1]
+beta.miss|1,Q|*x|i,1,1]+beta.miss|2,Q|*x|i,2,1]
+beta.miss|3,Q|*x|i,3,1]+beta.miss|[4,Q|*x[i,4,1]
prob.drop[i,T|<- prob.drop.branch[i,T, if.branch[i,T] |
d[i,T| ~ dbern(prob.drop|i,T])
}
#Priors and constraints
alpha[1l] ~ dnorm(0,0.0001)
upsilon.zl ~ dunif(0.0001,100)
tau.delta.z1<-1/(upsilon.z1*upsilon.z1)
phi ~ dnorm(0,0.0001)
for(q in 2:Q) {
gamma|q|~dnorm(0,0.0001)
}
for (j in 1:p) {
sigma.u[j] ~ dunif(0.0001,100)
tau.u[j|]<-1/(sigma.u[j|*sigma.ulj])
1
for (min 2: p) {
alpha|m| ~ dnorm(0, 0.0001)
lambda|m-1| ~ dnorm(0,0.0001)
}
for (1in 1:T-1) {
all] ~ dnorm(0, 0.0001)
upsilon|l] ~ dunif(0.0001,100)
tau.deltall]<-1/(upsilon|l]*upsilon[l])
alpha.miss|l,1]|<-0 #constraint
}
for (1in 1:T-2) {
for(q in 2:Q) { alpha.miss[l,q] “dnorm(0,0.0001)}
}
alpha.miss|T-1,2|<-0 #constraint
alpha.miss|T-1,3] ~ dnorm(0,0.0001)
for(r in 1:R) {
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beta.1[r] ~ dnorm(0,0.0001)

beta.t[r] ~ dnorm(0,0.0001)

beta.miss|r,1|<-0 #constraint

for(q in 2:Q) {beta.miss|r,q| ~ dnorm(0,0.0001)}

Initial values 1 = list (alpha = ¢(0,0,0), lambda = ¢(0,0), a = ¢(0,0,0,0),
upsilon.z1 = 0.5, phi = 0.5, upsilon = ¢(0.5,0.5,0.5,0.5), gamma = ¢(NA,0.5,0.5),
alpha.miss = structure (.Data = ¢(NA,0,0,NA,0,0,NA,0,0,NA,NA,0), .Dim = ¢(4,3)),
sigma.u = ¢(0.5,0.5,0.5), beta.l = ¢(0,0,0,0), beta.t = ¢(0,0,0,0),

beta.miss = structure (.Data = ¢(NA,0,0,NA,0,0,NA,0,0,NA,0,0), .Dim=c¢(4,3)))

Initial values 2 = list (alpha = ¢(0.5,0.5,0.5), lambda = ¢(0.5,0.5), a = ¢(0.5,0.5,0.5,0.5),
upsilon.z1 = 1,phi = 1, upsilon = ¢(1,1,1,1), gamma = ¢ (NA,1,1),

alpha.miss = structure (.Data = ¢(NA,0.5,0.5,NA,0.5,0.5,NA,0.5,0.5,NA NA 0.5),
Dim = ¢(4,3)),

sigma.u = ¢(1,1,1), beta.l = ¢(0,0,0,0), beta.t = ¢(0,0,0,0),

beta.miss = structure (.Data = ¢(NA,0,0,NA,0,0,NA,0,0,NA,0,0), .Dim=c(4,3)))
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Appendix E

WinBUGS Code for an IRT Model for Multivari-
ate Binary Longitudinal Data Subject to Dropout
and Intermittent Missingness, Time-Dependent At-
titudes Affecting Missingness

BUGS language for a latent variable model, with covariates for 7622 cases of the
Woman data (five waves C E G T K, three variables: questions 3,4,5) - dropout and
intermittent missingness, no item non-response, time-dependent attitudes affecting
missingness mechanism

i -> index for individual

j -> index for item, m is used when loop starts from 2
k -> index for wave, | is used when loop starts from 2
r -> index for covariate

N -> number of individuals

p -> number of items at each wave

T -> number of waves

R -> number of covariates

Q -> number of states for missingness (0:observed, l:intermittent, 2:dropout)
changed into 1,2,3 for waves 1,2,3.4

For the last wave 0: observed, 1:dropout

model

{
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# Latent Variable Model
for (iin1: N){
# Structural part
2[i,1]<-beta.1[1]*x[i,1,1]+ beta.1[2]*x[i,2, 1]
+beta.1[3]*x[i,3,1]+beta.1[4]*x[i,4,1]+delta.z1]i]
delta.zl1[i]~dnorm(0,tau.delta.z1)
for(l in 2:T){
z[i,]|<-a|l-1]+phi*z|i,]-1]+beta.t|1]*x|i,1,1]+beta.t|2]*x[i,2,1]
+beta.t[3]*x[i,3,1]+beta.t[4]*x|i,4,]] +delta[i,]]
deltali,l|~dnorm(0,tau.deltall-1])
1
for(j in 1:p){
uli,j] ~ dnorm(0,tau.ulj]) 1(-20,20)

# Measurement part

for (kin 1: T) {

logit(probli, 1, k|) <- z[i,k| - alpha[1]-+ul[i,1]

y[i, 1, k] ~ dbern(probli, 1, k]|)
for (min 2: p) {
logit(probli, m, k]) <- lambda|m-1| * z[i,k] - alpha[m]+u[i,m]|
y[i, m, k] ~ dbern(probli, m, k])

}

#Missing data mechanism
for (1in 2:T-1) {
#conditional probabilities, d=3 is an absorbing state
if branch|i,l]<- 1+step(d|[i,l-1] -3) #1 if d[I-1] 1,2 and 2 if d[I-1]=3
prob.miss.branchli,1,1,2]<-0
prob.miss.branch|i,1,2,2]<-0
prob.miss.branchli,l,3,2]<-1
for (q in 1:Q) {
#linear predictor
etali,l,q]<- -alpha.miss[l-1,q]+gammalq]*z[i,]] +beta.miss[1,q]*x[i,1,1]
+beta.miss|2,q]*x[i,2,1] +beta.miss|3,q]*x|i,3,1|+beta.miss|4,q]*x[i,4,]|
expetali,l,q|<-exp(etali,l,q])
#probabilities (link function)
prob.miss.branchli,l,q,1]<-expeta|i,l,q] /sum(expetali,],1:Q|)
prob.miss|[i,l,q|<- prob.miss.branchli,l,q, if.branchli,]] |

}

#stochastic part
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d[i,]] ~ dcat (prob.miss|i,1,1:Q))

#Wave T
if.branch|i,T|<- 1+4step(d[i,T-1] -3) #1 if d|T-1] 1,2 and 2 if d|T-1]=3
#prob.miss.branchli,T,1,2]<-0
prob.drop.branchli,T,2]<-1
logit(prob.drop.branchli,T,1])<- -alpha.miss|T-1,Q]+gamma|Q]|*z[i,T]
+beta.miss|1,Q|*x|i,1,1]+beta.miss|2,Q|*x|i,2,1]
+beta.miss|3,Q|*x|i,3,1]+beta.miss|[4,Q|*x|i,4,T|
prob.drop[i,T|<- prob.drop.branch[i,T, if.branch[i,T] |
d[i,T| ~ dbern(prob.drop|i,T])
}
#Priors and constraints
alpha[1l] ~ dnorm(0,0.0001)
upsilon.zl ~ dunif(0.0001,100)
tau.delta.z1<-1/(upsilon.z1*upsilon.z1)
phi ~ dnorm(0,0.0001)
for(q in 2:Q) {
gamma|q|~dnorm(0,0.0001)
}
for (j in 1:p) {
sigma.u[j] ~ dunif(0.0001,100)
tau.u[j|]<-1/(sigma.u[j|*sigma.ulj])
1
for (min 2: p) {
alpha|m| ~ dnorm(0, 0.0001)
lambda|m-1| ~ dnorm(0,0.0001)
}
for (1in 1:T-1) {
all] ~ dnorm(0, 0.0001)
upsilon|l] ~ dunif(0.0001,100)
tau.deltall]<-1/(upsilon|l]*upsilon[l])
alpha.miss|l,1]|<-0 #constraint
}
for (1in 1:T-2) {
for(q in 2:Q) { alpha.miss[l,q] “dnorm(0,0.0001)}
}
alpha.miss|T-1,2|<-0 #constraint
alpha.miss|T-1,3] ~ dnorm(0,0.0001)
for(r in 1:R) {
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beta.1[r] ~ dnorm(0,0.0001)

beta.t[r] ~ dnorm(0,0.0001)

beta.miss|r,1|<-0 #constraint

for(q in 2:Q) {beta.miss|r,q| ~ dnorm(0,0.0001)}

Initial values 1 = list (alpha = ¢(0,0,0), lambda = ¢(0,0), a = ¢(0,0,0,0),
upsilon.z1 = 0.5, phi = 0.5, upsilon = ¢(0.5,0.5,0.5,0.5), gamma = ¢(NA,0.5,0.5),
alpha.miss = structure (.Data = ¢(NA,0,0,NA,0,0,NA,0,0,NA,NA,0), .Dim = ¢(4,3)),
sigma.u = ¢(0.5,0.5,0.5), beta.l = ¢(0,0,0,0), beta.t = ¢(0,0,0,0),

beta.miss = structure (.Data = ¢(NA,0,0,NA,0,0,NA,0,0,NA,0,0), .Dim=c¢(4,3)))

Initial values 2 = list (alpha = ¢(0.5,0.5,0.5), lambda = ¢(0.5,0.5), a = ¢(0.5,0.5,0.5,0.5),
upsilon.z1 = 1,phi = 1, upsilon = ¢(1,1,1,1), gamma = ¢ (NA,1,1),

alpha.miss = structure (.Data = ¢(NA,0.5,0.5,NA,0.5,0.5,NA,0.5,0.5,NA NA 0.5),
Dim = ¢(4,3)),

sigma.u = ¢(1,1,1), beta.l = ¢(0,0,0,0), beta.t = ¢(0,0,0,0),

beta.miss = structure (.Data = ¢(NA,0,0,NA,0,0,NA,0,0,NA,0,0), .Dim=c(4,3)))
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