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Abstract

The focus of this thesis are the equilibrium problem under derivative market imbalance, the
sequential analysis problems for some time-inhomogeneous diffusions and multidimensional
Wiener processes, and the first passage times of certain non-affine jump-diffusions.

First, we investigate the impact of imbalanced derivative markets - markets in which not all
agents hedge - on the underlying stock market. The availability of a closed-form representation
for the equilibrium stock price in the context of a complete (imbalanced) market with terminal
consumption allows us to study how this equilibrium outcome is affected by the risk aversion
of agents and the degree of imbalance. In particular, it is shown that the derivative imbalance
leads to significant changes in the equilibrium stock price process: volatility changes from
constant to local, while risk premia increase or decrease depending on the replicated contingent
claim, and become stochastic processes. Moreover, the model produces implied volatility smiles
consistent with empirical observations.

Secondly, we study the sequential hypothesis testing and quickest change-point (disorder)
detection problem with linear delay penalty costs for certain observable time-inhomogeneous
Gaussian diffusions and fractional Brownian motions. The method of proof consists of the
reduction of the initial problems into the associated optimal stopping problems for one-
dimensional time-inhomogeneous diffusion processes and the analysis of the associated free
boundary problems. We derive explicit estimates for the Bayesian risk functions and optimal
stopping boundaries for the associated weighted likelihood ratios and obtain their exact rates
of convergence under large time values.

Thirdly, we study the quickest change-point detection problems for the correlated compo-
nents of a multidimensional Wiener process changing their drift rates at certain random times.
These problems seek to determine the times of alarm which are as close as possible to the
unknown change-point (disorder) times at which some of the components have changed their

drift rates. The optimal times of alarm are shown to be the first times at which the appropri-



ate posterior probability processes exit certain regions restricted by the stopping boundaries.
We characterize the value functions and optimal boundaries as unique solutions of the associ-
ated free boundary problems for partial differential equations. We provide estimates for the
value functions and boundaries which are solutions to the appropriately constructed ordinary
differential free boundary problems.

Fourthly, we compute the Laplace transforms of the first times at which certain non-affine
one-dimensional jump-diffusion processes exit connected regions restricted by two constant
boundaries. The method of proof is based on the solution of the associated integro-differential
boundary problems for the corresponding value functions. We derive analytic expressions for the
Laplace transforms of the first exit times of the jump-diffusion processes driven by compound
Poisson processes with multi-exponential jumps. The results are illustrated on the constructed
non-affine pure jump analogues of the diffusion processes which represent closed-form solutions
of the appropriate stochastic differential equations.

Finally, we obtain closed-form expressions for the values of generalised Laplace transforms
of the first times at which two-dimensional jump-diffusion processes exit from regions formed by
constant boundaries. It is assumed that the processes form the models of stochastic volatility
with independent driving Brownian motions and independent compound Poisson processes
with exponentially distributed jumps. The proof is based on the solution to the equivalent
boundary-value problems for partial integro-differential operators. We illustrate our results
in the examples of Stein and Stein, Heston, and other jump analogues of stochastic volatility

models.
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Introduction

I. Description of the subject

The main themes of this thesis are the equilibrium problem in mathematical finance under
derivative market imbalance, the sequential analysis problems of mathematical statistics and
the first passage times of non-affine jump-diffusions driven by solvable equations.

The question of how the market of financial derivatives impacts the underlying asset prices
in equilibrium plays an important role in financial economics and mathematical finance. With
the current market of over-the-counter derivatives having outstanding notional amount of more
than ten times that of the world stock market, it is crucial to understand the potential impact
trading in such contracts can have on the stock prices. In standard frictionless (complete)
models of financial markets the introduction of structured financial products does not have an
influence on asset prices in equilibrium - this is due to the fact that derivatives are assumed
to be in zero net supply and long positions can be offset by taking the corresponding short
ones. In reality, however, a lot of the counterparties in such contracts do not hedge them or do
so only infrequently. Effectively, the market in the underlying asset becomes imbalanced - an
extra supply or demand is created which could potentially impact the dynamics of asset prices.

Apart from the intuitive considerations, there has been number of studies supporting the
idea that hedging has an effect on market risk premia and volatility (see e.g. Basak [6] and
Grossman and Zhou [49]). The event that triggered investigations into the impact of dynamic
hedging strategies was the market crash of 1987. The rise of the so-called portfolio insurance
strategies, which guarantee a minimum level of wealth at some horizon, together with auto-
mated trading in the years surrounding the crash, led researchers to study them as a possible
cause for the high volatility during the crash. Moreover, after the crash the implied volatility
started exhibiting the now characteristic smile, suggesting that the Black-Scholes model may

not describe the dynamics of the stock prices accurately. There is still no consensus, however,



I. Description of the subject 7

on the magnitude and direction of the market impact and our main motivation here is to pro-
vide a general setting which can account for both increasing/decreasing risk premia and market
volatilities.

In practice, in order to be able to find the equilibrium stock prices in the above problem, we
need to have some externally given quantities (e.g. the dividend growth rate of the underlying
asset) that we have estimated through statistical methods. However, no agent has perfect
information - the dividends contain noise and the growth rate can change without the agent
realizing it. Nevertheless we have to rely on observable data, as it arrives, in order to infer the
true value - this is a problem of statistical sequential analysis.

Sequential analysis problems are concerned with the analysis of data that doesn’t have a
fixed sample size. These problems were initially used in improving industrial quality control
but later numerous applications were found in many real-world systems in which the amount
of observation data is increasing over time (see, e.g. Carlstein et al. [20] for an overview). Two
of the classical problems of this type are the sequential hypothesis testing and quickest change-
point (disorder) detection. In the sequential hypothesis testing problem the aim is to determine
the true value, among two alternatives, for the parameter of some observable quantity. The
problem was first studied for sequences of independent and identically distributed observations
by Wald and Wolfowitz [115, 116]. The problem of quickest change-point detection seeks to
determine a stopping time which is as close as possible to the time of change-point at which the
observable quantity changes its probabilistic properties. Originating from the control charts
introduced by Shewhart [100], different variants of the problem were subsequently developed
(see Page [84]).

In both of the sequential analysis problems described above one faces a tradeoff between min-
imizing the observation time and the error due to noise in the observations. The usual method
of solving these problems, as developed in Mikhalevich [79] and Shiryaev [101, 102, 103, 104],
is to reduce them to optimal stopping problems for Markov processes called sufficient statis-
tics, and then prove verification theorems that characterize the value functions and optimal
stopping boundaries as unique solutions to free boundary problems for ordinary or partial
(integro-)differential operators. In order to carry out the verification arguments additional
conditions are imposed, which guarantee the uniqueness of the solution of the free boundary
problem. The smooth-fit condition was seen to hold for the value functions when the underly-
ing sufficient statistics can leave the continuation region determined by the optimal stopping

boundaries continuously. An extensive treatment of sequential analysis problems and the as-
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sociated optimal stopping theory can be found in the books of Shiryaev [105] and Peskir and
Shiryaev [90].

The link between optimal stopping and free boundary problems led to the availability of
analytic expressions for the solutions of the sequential analysis problems. Nevertheless, even for
simple model specifications (e.g. when the observable is one-dimensional Brownian motion with
changing/unknown constant drift), finding explicit solutions to the associated free boundary
problems is nontrivial and additional relations between the model parameters are often assumed.
Thus, one is often lead to search for estimates of the original value functions and optimal
stopping times, which are easier to compute. Our aim here is to provide verification theorems
and estimates in new and more general models for the observable processes.

Stochastic processes representing solutions to stochastic differential equations are used in
modelling phenomena that exhibit random behaviour. Therefore, in the theory of stochastic
differential equations, it is important to have analytical tractability of the resulting models. A
lot of problems in these models become computationally feasible if probabilistic properties of
the related stochastic processes, such as the probability densities or characteristic functions of
their marginal distributions, have closed-form expressions. Well-known examples can be found,
beginning with the seminal work of Bachélier [5], where he constructed a discrete pre-image
of Brownian motion for the description of the stock prices on a financial market, in Ornstein
and Uhlenbeck [112], where the authors used a mean-reverting process to study velocity of a
massive particle in a fluid under the bombardment by molecules, and in the geometric Brownian
motion proposed by Samuelson [97] for modelling the behavior of financial assets. A recently
popularized general class of tractable models, for which the form of the characteristic function
is known, are the affine processes (see Duffie et al. [33]). An alternative class of continuous
processes that can be used in modelling, and which can be non-affine, are those that satisfy
solvable stochastic differential equations. These equations can be solved explicitly as shown
in Gard [45; Chapter IV] or can be reduced to first-order ordinary differential equations as in
(Oksendal [83; Chapter V], and thus provide tractability of the resulting models. Another form
of model tractability comes from the ability to compute the Laplace transforms of the first
passage times of a stochastic process - these are the times at which the process crosses given
values. Knowledge of the Laplace transform of the first passage times gives rise to numerous
applications in engineering (e.g. see Blake and Lindsey [17]) and mathematical finance (see Kou
and Wang [68]). Our objective in the final part of the thesis is to obtain analytic expressions

and, in certain cases, closed-form solutions for these Laplace transforms for non-affine processes
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solving stochastic differential equations, which contain jumps and are extensions of the solvable

class, as well as for certain jump analogues of stochastic volatility models.

II. Historical notes and references

We present here historical notes and references to the relevant literature on the problems solved
in this thesis, by also pointing out the position of our results.

The problem of finding equilibrium on the market is central in economic theory and has
received a lot of attention in mathematical finance recently. The essence of equilibrium is to
regard the asset prices as results of the aggregate trading decisions of rational agents on the
market, that bring the supply and demand in balance. Starting from microeconomic principles
one usually works with agents which have concave preferences, maximize expected consumption
and possess exogenously given income streams (i.e. endowments).

The concept of an economy in equilibrium, by looking at prices as a result of supply and
demand forces, was introduced in Walras [117]. For the first time existence of equilibrium was
proved in a static mathematical framework containing several agents and commodities by Ar-
row and Debreu [4]. The earlier equilibrium models were in discrete-time and extending them
to continuous-time introduced an infinite dimensional problem. This difficulty was overcome
in Karatzas et al. [61, 62, 59] in a continuous-time complete market setting. There the au-
thors present the now standard method of finding equilibrium, by using results from portfolio
optimization (see Karatzas et al. [60]) together with a finite-dimensional fixed point argument
first introduced in Negishi [81]. Numerous extensions to the above classical setting has been
considered - see Karatzas and Shreve [64; Chapter 4] for an overview.

The study of equilibrium with agents that are not pure utility maximizers was motivated
by the emergence of the volatility smile effect after the market crash of 1987 and the possible
influence that dynamic hedging strategies had on the stock price volatility (see Grossman
[47], Grossman and Villa [48] ). In Brennan and Schwarz [18] the effect of portfolio insuring
on the equilibrium stock prices was investigated. The final wealth of a portfolio insurer was
given by a fixed terminal payoff containing an implicit put option on a proportion of the
total market wealth. This lead to increase in market risk premium and (implied) volatilities.
Portfolio insurers were modelled as final wealth utility maximizers having lower bound on wealth
in Grossman and Zhou [49]. Existence of equilibrium prices was proved for logarithmic and

power utility with risk aversion coefficient 1/2. While the main focus of the authors was the
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magnitude of change in market quantities like volatilities and risk premia in different market
states, they provided evidence that market volatility increases. In a related setting Basak [6]
proved existence of equilibrium where the portfolio insurers maximized CRRA utility from
consumption, and had insurance horizon which ended before the terminal market date. The
conclusion was that the market price of risk level stays the same, while the volatility decreases
due to the presence of portfolio insurers, which hinted at the importance of the specification
of agent’s utilities and the market investment horizon (see also Basak [7] for an alternative
modelling of the agents’ utilities).

In equilibrium literature the completeness of the market is often assumed to hold apriori.
However it is more desirable to obtain a complete market as an outcome of equilibrium, which
gives rise to the notion endogenous completeness. Recently a series of papers concentrated in
proving endogenous completeness of equilibrium - see Anderson and Raimondo [2], Hugonnier
et al. [52], Riedel and Hirzberg [94] and Kramkov and Predoiu [70]. The key assumptions in
the above articles are the Markov property of the model primitives (e.g. dividends or market
factors) as well as the real analyticity of the exogenous volatility. In Chapter 1 we prove the
existence of equilibrium and its endogenous completeness in a setting where not all agents
hedge - i.e. some contingent claims are not in zero net supply and the market for them is
imbalanced. We achieve this effect by including a hedging agent in the market that acts as
a risk minimizer and wants to perfectly replicate a contingent claim underwritten to another
agent that is outside of the market and does not hedge. This is more in line with the definition
used in [18] and we have a clear separation of the risk-minimizing and the utility-maximizing
effects on the market prices.

The problems of statistical sequential analysis that we are interested in seek to determine
the distributional properties of continuously observable stochastic processes with minimal costs.
The problem of sequential testing for two simple hypotheses about the drift rate of an observable
Gaussian process is to detect the form of its drift rate from one of the two given alternatives.
In the Bayesian formulation of this problem, it is assumed that these alternatives have an a
priori given distribution. The problem of quickest change-point (disorder) detection for an ob-
servable Gaussian process is to find a stopping time of alarm 7 which is as close as possible
to the unknown time of change-point # at which the local drift rate of the process changes
from one form to another. In the classical Bayesian formulation, it is assumed that the random
time 6@ takes the value 0 with probability © and is exponentially distributed given that 6 > 0.

These problems were originally formulated and solved for sequences of observable independent



II. Historical notes and references 11

identically distributed random variables (see, e.g. Shiryaev [105; Chapter IV, Sections 1,3]).
The first solutions of the problems in the continuous-time setting were obtained in the case
of observable Wiener processes with constant drift rates (see Shiryaev [105; Chapter IV, Sec-
tions 2 and 4]). The standard disorder problem for observable Poisson processes with unknown
intensities was introduced and solved in Davis [25], under certain restrictions on the model
parameters. Peskir and Shiryaev [88, 89] solved both sequential analysis problems for Poisson
processes in full generality (see also [90; Chapter VI, Sections 23 and 24]). The case of observ-
able compound Poisson processes, in which the unknown characteristics were the intensity and
distribution of jumps, was investigated in Dayanik and Sezer [27, 28]. Other formulations based
on the exponential delay penalty setting were studied in Beibel [12] for a Wiener process and
in Bayraktar and Dayanik [8] for a Poisson process. These problem settings are suitable when
modelling situations in which the costs of delay in disorder detection are not necessarily linear
and another measure of the error due to false alarms is preferable (e.g. continuous compound-
ing of interest rate in financial applications). The classical change-point detection problem for
Poisson processes for various types of probabilities of false alarm and delay penalty costs was
studied in Bayraktar et al. [9]. More general versions of the standard Poisson disorder problem
were solved by Bayraktar et al. [10], where the intensities of the observable processes changed
to unknown values. These problems for observable jump processes were solved by successive
approximations of the value functions of the corresponding optimal stopping problems. This
method was also applied in the solution of the disorder problem for observable Wiener process
in Sezer [99], in which disorder happens at one of the arrival times of an observable Poisson
process. Further extensions of both sequential analysis problems for observable Wiener pro-
cesses were studied in Gapeev and Peskir [41, 42] in the finite horizon setting, and for certain
time-homogeneous diffusions in Gapeev and Shiryaev [43, 44] on infinite time intervals.

In the classical infinite horizon setting for the observable Wiener processes explicit solutions
can be obtained, since the corresponding differential operator is an ordinary one. This fails
to hold in the finite horizon setting, because the corresponding partial differential operator
contains a time derivative. However, in the studies of more realistic models with non-stationary
increments, the equivalent free boundary problem becomes parabolic and no explicit solutions
exist in general, even in the infinite horizon case (see Chapter 2).

Multidimensional versions of the quickest disorder detection problems naturally arise when
one models real-world systems described by several stochastic processes which may have de-

pendent components. Bayraktar and Poor [11] solved the disorder problem for two observable
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independent Poisson processes, in which stopping times were sought as close as possible to the
minimum of the two disorder times. Dayanik et al. [26] solved the disorder problem for ob-
servable multidimensional Wiener and Poisson processes with independent components, which
change their local characteristics simultaneously. The quickest change-point detection problem
for observable multidimensional Wiener process with correlated components that change their
local drift rates at different disorder times is studied in Chapter 3. Possible applications of
the solutions of these quickest detection problems include: assembly line breakdown in plant
production of an item when we aim to detect the minimum of all disorder times (see [11]);
abnormal returns in one of many stocks when we aim to detect just one of the disorder times;
total system breakdown when we aim to detect the maximum of all disorder times.

The method of reducing stochastic differential equations to solvable ones was studied in
Gard [45; Chapter IV], where closed-form strong solutions to a class of stochastic differential
equations with linear coefficients were obtained, by introducing an integrating factor process.
The idea is further developed in ksendal [83; Chapter V], for equations with general drift
coefficients, which are reduced to the ordinary differential form. Certain reducibility criteria
were provided in Gapeev [38] for diffusions driven by a Wiener process and a Poisson random
measure of a finite intensity. Jump analogues of continuous diffusions satisfying solvable equa-
tions were constructed and shown to have the same support of marginal distributions as the
original processes, making them a suitable modelling alternative. The latter fact was justified
by lyigunler et al. [54], where simulations studies were provided for this model.

An introduction to the topic of financial modelling with jump-diffusions is provided in
Runggaldier [96], where asset price and term structure models are studied in the context of
pricing and hedging. An extensive overview of Lévy process models with multiple numerical
and empirical examples is given in the book of Cont and Tankov [21]. The general class of affine
processes, which includes Lévy processes, was introduced in Duffie et al. [33]. The logarithm
of the characteristic function of these processes is affine in their initial value and is known in
an analytic form through a solution of a family of ordinary differential equations. This leads
to tractability of the resulting models and makes them suitable for applications to the term-
structure of interest rates (see [33; Chapter 13] and references therein), credit risk (see Duffie
[32]), stochastic volatility (see Kallsen [57]) and option pricing by Fourier methods (see e.g.
Kallsen et al. [58]). Despite the recent focus on affine processes, there are still models that fall
outside this general framework. Some well-known examples are the CEV and SABR models

introduced in Cox [23] and Hagan et al. [50], respectively, and for which model-dependent
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calibration methods are known (see [50]). An overview of both affine and non-affine models for
interest rates can be found in Shiryaev [106; Chapter 111, Section 4].

The Laplace transform of the first time to a given drawdown of a Brownian motion with
linear drift and the running maximum stopped at that time was computed by Taylor [110], and
the joint law of those variables was obtained by Lehoczky [74]. Some explicit expressions for
other related characteristics such as the expectation and the density of the maximum drawdown
of the Brownian motion with linear drift were derived by Douady, Shiryaev and Yor [31] and
Magdon-Ismail et al. [76], respectively. More recently, Sepp [98] derived closed-form expressions
for the Laplace transforms of the first hitting time of constant boundaries for double-exponential
jump-diffusion process. Mijatovi¢ and Pistorius [78] obtained the laws of the first-passage times
of spectrally positive and negative Lévy processes over constant levels as well as analytically

explicit identities for a number of characteristics of drawdowns and drawups in those models.

III. Contribution of the thesis

Let us now describe the contribution of the thesis to the problems of equilibrium, sequential
analysis and stochastic modelling described above.

We prove the existence of endogenous equilibrium in an imbalanced derivative market
(Chapter 1). We begin by specifying the financial market, which consists of a (representa-
tive) agent that maximizes utility from final wealth and a hedging agent that wants to exactly
replicate the payoff of a given contingent claim. There is a bond and a risky stock that rep-
resents a claim to a dividend at the final trading date. The dividend is the final value of an
exogenously given Markov process. We prove existence of an equilibrium stock price process
that makes the market complete, and provide its local volatility form for utilities having index
of relative risk aversion less than 1. This is in contrast with the constant volatility resulting
from classical equilibrium setting containing only power utility maximizers. By varying the
replicated contingent claim we can obtain any volatility smile shape. Thus we can explain
the presence of volatility smile by the presence of hedgers on the market, confirming one of
the explanations for the Black Monday market crash of 1987. In particular, in comparison to
the usual setting with only a representative agent, hedging strategies corresponding to long
positions in European options lead to higher implied volatility levels at their associated strike

prices, while risk premia increase.
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In order to find the equilibrium stock price process we use results from portfolio optimiza-
tion in complete markets (see [60]), to obtain a guess for the state-price density. Indeed, if
equilibrium exists and the resulting market is complete, the hedger can replicate exactly the
contingent claim and, assuming zero initial wealth, his final wealth will be equal to the con-
tingent claim minus its arbitrage-free price. By market clearance we obtain the final wealth
of the utility-optimizing agent and we use duality results from Kramkov and Schachermayer
[71] to find the state-price density process as conditional expectation of the marginal utility
at the agent’s final wealth. Knowing the state-price density we can obtain the stock price
process again as conditional expectation of the terminal dividend. We find the arbitrage-free
price of the contingent claim as a solution to a fixed point problem. Finally, we prove that the
obtained guess for the stock price process results in complete market by using the recent result
on endogenous completeness in [70].

We consider the two classical problems of sequential analysis in their Bayesian formula-
tions for certain Gaussian processes with non-stationary increments (Chapter 2). We begin
by providing a unifying optimal stopping problem for the likelihood ratio processes, which are
time-inhomogeneous diffusions. This allows us to work with both original problems in a con-
sistent way. We prove a verification theorem and show that the optimal stopping times are the
first times at which the associated likelihood ratios exit from certain regions. Such regions are
restricted by the curved stopping boundaries, which are solutions to the equivalent parabolic
free boundary problems. Since we intend to provide an explicit analysis for the asymptotic rates
of the solutions, we introduce an auxiliary ordinary differential free boundary problem in which
the time variable is a parameter, by removing the time derivative from the initial parabolic
operator. The resulting ordinary differential equation admits an explicit solution, and we can
obtain closed-form estimates for the solutions of the original parabolic problem. We derive
analytic expressions for the optimal boundaries in the auxiliary problem, and specify their ex-
act asymptotic behaviour under large time values. Combining these results with the estimates
of the solutions of the original optimal stopping problem, we can check that the assumption
of the main verification theorem, that the optimal stopping time has finite expectation, is in-
deed satisfied. We demonstrate this in a setting in which the observable process is a fractional
Brownian motion with a constant drift rate. In that case we can reduce the sequential analysis
problems to the original unifying optimal stopping problem for time-inhomogeneous diffusion
processes.

We study the quickest change-point (disorder) detection problem for observable multidi-
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mensional Wiener process (Chapter 3). This problem seeks to determine the times of alarm at
which some of the components of the process change their local drift rates as soon as possible
and with minimal error probabilities. The classical Bayesian formulation of these problems con-
sists of minimization of linear combinations of the probabilities of false alarm and the expected
linear penalty costs in detecting the change-points correctly. It is customary assumed that the
change-point (disorder) times are independent exponentially distributed random variables. Our
setting is closer to the one of [11], since the component disorder times are different, but is more
general in the sense that we observe multiple correlated components.

We begin by reducing the original disorder problem to an optimal stopping problem for a
multidimensional Markov diffusion. The components of the diffusion form a family of posterior
probability processes, corresponding to every subset of disorder times, and play the role of
sufficient statistics for the original disorder problem. When doing the reduction, we use the
ideas from [40], where the filtering equations for the posterior probabilities are derived for two
observable correlated Wiener processes. It is shown that the optimal stopping times are the
first times at which one of the posterior probability processes exits from a region restricted by a
stochastic boundary surface, determined by the current values of the other sufficient statistics.
We formulate the equivalent free boundary problem and prove a verification theorem that
identifies its unique solution with the value function of the optimal stopping problem. The
main complication in our setting arises from the higher dimensions of the sufficient statistics
needed to formulate the optimal stopping problem for a Markov process, due to the presence
of several disorder times. Moreover, the correlation structure of the observable processes has
to be taken into account when deriving the filtering equations. The proof of the verification
theorem uses the change-of-variable formula with local time on surfaces from Peskir [87]. As
we do not have explicit solutions to the free boundary problem, we provide lower estimates for
the value functions, which inherently construct the upper estimates for the stochastic boundary
surfaces, in the case in which we aim to detect the infimum of component disorder times. These
estimates are solutions to free boundary problems for ordinary differential equations.

We introduce an analytically tractable framework in which the Laplace transforms of cer-
tain exit times for non-affine jump analogues of continuous diffusion models can be computed
(Chapter 4). We begin by extending the method of [45; Chapter IV] for finding solvable
stochastic differential equations to a general class of jump-diffusions. By applying a smooth
invertible transformation, the original equation is reduced to a simpler one with linear diffusion

and jump coefficients, and we can choose an appropriate integrating factor process to obtain
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closed-form solutions. Moreover, we construct jump analogues of certain continuous diffusion
models driven by solvable equations, by following the method described in [38]. We provide
examples of reducing solvable equations and constructing their non-affine jump-diffusion ana-
logues for several popular models. Finally, we consider the first times at which non-affine jump
analogues of continuous diffusion models, with compensator measures correspond to compound
Poisson processes, exit from an open interval on the real line. We characterize the integrals of
the Laplace transforms of these exit times as solutions to ordinary differential boundary value
problems, by reducing the integro-differential equation corresponding to the original jump ana-
logue generator. Explicit solutions are provided for the pure jump analogues of the CIR, CEV
and the nonlinear filter models with compensator measures corresponding to a compound Pois-
son process with one-sided exponentially distributed jumps.

We derive closed-form expressions for the generalised Laplace transforms of the first exit
times of the two-dimensional jump-diffusion processes from certain connected regions formed by
constant boundaries (Chapter 5). We consider two-dimensional jump-diffusion processes driven
by independent standard Brownian motions and independent compound Poisson processes
with exponential jumps. We provide closed-form solutions of the partial integro-differential
boundary-value problems associated with the values of the generalised Laplace transforms as
iterated stopping problems for the two-dimensional jump-diffusion processes forming the mod-
els of stochastic volatility. In particular, we derive closed-form expressions for the generalised
Laplace transforms in jump analogues of Stein and Stein and Heston as well as in other stochas-

tic volatility models.

IV. Structure of the thesis

In Section 1.1 we specify our financial market and remark on some useful properties of the
exogenous Markov process that models the dividends. In Section 1.2 we prove the existence of
endogenously complete equilibrium and provide analytic expressions for the equilibrium stock
price drift and diffusion coefficients as well as the optimal portfolio of the representative agent.
Moreover we prove the local volatility form of the stock price process for certain utility functions.
Finally, in Section 1.3, we illustrate our results when the exogenous Markov process modelling
the dividends is of Black-Scholes type, and the representative agent maximizes power utility.
In this simple setting, we show the effect of the replicated contingent claim on the implied

volatility and the market price of risk of the stock.
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In Section 2.1 we formulate a unifying optimal stopping problem for the time-inhomogeneous
diffusion likelihood ratio process and show how this problem arises from the Bayesian sequential
testing and quickest change-point detection settings. We formulate an equivalent free boundary
problem and derive explicit solutions of the auxiliary ordinary free boundary problems which
have the time variable as a parameter. In Section 2.2 we study the asymptotic behavior of
the resulting stopping boundaries under large time values, by means of deriving their Taylor
expansions with respect to the local drift rate of the observable process. In Section 2.3 we
apply these results to models with observable fractional Brownian motions by proving that the
optimal stopping times have finite expectations and, hence, the verification theorem can be
applied to characterize the solutions of the sequential analysis problems.

In Section 3.1 we introduce the setting of the model for the quickest change-point detection
problem for observable multidimensional Wiener processes. We derive stochastic differential
equations for a family of posterior probability processes corresponding to subsets of the disorder
times, by means of generalized Bayes’ formula (see [75; Theorem 7.23]). In Section 3.2 we
construct the associated optimal stopping problem for the posterior probability processes and
formulate the equivalent high-dimensional free boundary problem. The verification theorem
is proved providing characterization of the optimal stopping boundary surface as the unique
solution to the free boundary problem. Finally, in Section 3.3, we provide estimates for the
original solution to the problem of detection of the infimum of all disorder times.

In Section 4.1, we apply the method of [45; Chapter IV] to obtain explicit solutions to
jump-diffusion stochastic differential equations with linear coefficients. Then we follow [83;
Chapter V, Example 5.16] to reduce the equations with general drift and linear diffusion and
jump coefficients to ordinary differential equations that are satisfied pathwise (see also [38]). In
Section 4.2, we extend the class of solvable stochastic differential equations via smooth invertible
transformations, and provide sufficient conditions for their reducibility. We also construct jump
analogues of continuous diffusions and give some examples. In Section 4.3, we show that the
Laplace transforms of the first exit times from a region restricted by two constant boundaries for
certain finite activity pure jump analogues of continuous diffusions can be obtained by solving
ordinary differential equations, and provide explicit solutions for some popular models.

In Section 5.1, we first introduce the setting and notation of the model with a two-
dimensional jump-diffusion Markov process which has the price of the risky asset and the
volatility rate as the state space components. We define the generalised Laplace transforms of

the first times at which the process exits certain regions restricted by constant boundaries. In
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Section 5.2, we obtain a closed-form solution to the partial integro-differential boundary-value
problem under several additional conditions on the parameters of the model. In Section 5.3,
we verify that the resulting solution to the boundary-value problem provides the joint Laplace

transform. The main results of the paper are stated in Theorem 5.3.1.
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Chapter 1

Equilibrium with imbalance of the

derivative market

This chapter is based on joint work with Dr. Albina Danilova.

1.1. Financial market and model primitives

Let (€2, F,P) be a probability space rich enough to support a Brownian motion (W):cjo,r) and
let (F)tepo,r be its filtration satisfying the usual conditions, where 7" > 0 is a terminal time.

Consider a financial market consisting of two assets:
e A riskless zero yield bond with maturity 7" and in total supply of K € R units.

o A risky asset, i.e. a stock with an adapted price process S = (S¢):ej0,77, Which is in total

supply of 1 unit and represents a time 7' claim to an exogenously given random dividend.

Both assets are continuously traded on the time interval [0,7] and we assume that the market
terminates after this time. Let the exogenously given log-dividend process Z = (Z;)cjo,r) be

the unique strong solution of the stochastic differential equation (SDE)
dZt :Mz(t, Zt) dt+UZ(t, Zt) th for te [O,T], (111)

with initial condition Zy = zy € R and some functions pz(t,z) : [0,7] x R — R and oz(t, 2) :
[0,7] x R — R. Denote by C,(R) the space of bounded and continuous real-valued functions
on R.
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Assumption 1.1.1. The functions puz(t,z) and oz(t,z) satisfy the following conditions:

C1) Uniform ellipticity: o%(t,2) is uniformly bounded away from zero, i.e. there exists o > 0
z

such that o%(t,z) > o on [0,T] x R.

(C2) Boundedness and analyticity: uz(t,z) and 0%(t,z) are bounded on [0,T] x R. The maps
t — pz(t,) and t — oz(t,-) from [0,T] to Cy(R) are analytic on (0,T), i.e. for all
€ (0,T) there is a constant £(t) > 0 and sequences (An(t))n>0, (Bn(t))n>o in Cp(R)

such that

ZA J(s—=t)" and oz(s ZB )(s—t)"
for any s € (0,T) with |s —t| < e(t).

(C3) Continuity: puz(t,z) and oz(t,z) are uniformly Hélder-continuous in t for all z € R,
and o%(t,z) is uniformly Holder-continuous in z for all t € [0,T]. Moreover, puz(t,z)

and oz(t,z) are locally Lipschitz-continuous in z for all t € [0,T].

Remark 1.1.1. From Theorems 5.3.11 and 5.3.7 in [35] we can see that (C2) and (C3) guar-
antee the existence of a weak solution to (1.1.1) that is pathwise unique up to an explosion time.
From the boundedness in (C2) we get that the explosion time is a.s. infinite (see Chapter IX,
Ezxercise 2.10 in [93]) and therefore the solution is pathwise unique for all t € [0,T]. From
Theorem I1V.1.1 in [53] it follows that there exists a unique strong solution to (1.1.1) with initial
condition Zy = zg € R. Moreover, for any (t,z) € [0,T] x R, the SDE in (1.1.1) has unique
strong solution Z®2) on [t,T] satisfying }P)[Zt(t’z) =z]=1.

We use conditions (C1)-(C3) to prove some properties of the marginal distributions of Z
(see Lemma 1.A.1 in the Appendiz) and to obtain unique solutions to certain terminal value
(Cauchy) problems with respect to the infinitesimal generator Lz of (t, Z;)icpo,r)- Moreover, we
can apply Theorem 9.2 in [37] to obtain a fundamental solution (see Definition 5.7.9 in [63])
of the partial differential equation (PDE)

%82(;@

2 022
for (t,z) € [0,T) x R. We denote this fundamental solution by p(ti, z;ts,v) where 0 < t; <
to <T and z,v € R.

oG oG
L,G(t,z) = E(t,z) + uz(t,z)g(t,z) + z) =0, (1.1.2)

The analyticity condition in (C2) allows us to use results from [70] on the analiticity of

solutions to Cauchy problems and prove that the wvolatility of the stock price in our market is
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nonzero a.e. a.s., which will lead to the endogenous completeness of the equilibrium market (see

[69]).
Let us now specify the properties of the stock price processes on the market.

Definition 1.1.1. The stock price process S is admissible if the following conditions are sat-
isfied:

e S is a continuous, strictly positive semimartingale with absolutely continuous finite vari-

ation part, meaning that it satisfies
dSt = St(,utdt + O-tth) fOT t - [0, TL (113)

for some F;-progressively measurable processes (fi¢)icor) and (0¢)iejor) such that

T T
/ |t |dt < o0, / oldt < 0o, a.s..
0 0

e The equality St = exp(Zr) holds.

e The market is complete, i.e. we have that
T 2
/ 'u—gdt <00, a.s.,
0o O

the process

t 2 t 2
1 L[ g
exp ( - A O_—gdWS - 5/0 g_gd8>’
s a martingale and oy # 0 a.e. a.s..

Remark 1.1.2. It is known from Theorem 7.2 in [29] (see [65, 13] for more recent results) that
the No Free Lunch with Vanishing Risk (NFLVR) property together with the local boundedness
of the stock price process implies its semimartingality. This fact is used in [3] to show that
the boundedness of an agent’s expected utility implies the NFLVR property, and therefore that
the stock price is a semimartingale (see also [15, 73, 65]). The continuity of the stock price
process is a consequence of its local martingality under some equivalent measure change and the

fact that we work in a Brownian filtration. Therefore, the assumption that S is a continuous

'For a discussion as to why the conditions on the stock price process imply this representation, see [64;
Appendix B]
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semimartingale 1s not too restrictive. Furthermore, the intuitive requirement that the stock price
should be equal to the random dividend at time T, i.e. Sy = exp(Zr), can be justified by the
fact that, otherwise, an obvious arbitrage opportunity exists and NFLVR is not satisfied.

It is reasonable to expect that an admissible stock price process S leads to a complete financial
market, since there is a single source of risk and an asset that allows agents to trade this risk.
Our definition of a complete market follows the one of a standard market in Definition 1.5.1

in [64] together with the characterization of a complete market in Theorem 1.6.6 in [64].

There are two agents trading in the bond and the stock on the financial market — the hedger
and the optimizer. The agents differ in their endowments and portfolio optimization problems.
The hedger wants to replicate a nontraded contingent claim h(S7), where h(z) : [0,00) — R
is a payoff function. The optimizer has utility from final wealth u(z) : (0,00) — R and wants
to maximize its expectation. In the following definition we specify the admissible portfolios on

the market.

Definition 1.1.2. Let S be an admissible stock price process. An JF;-progressively measurable

process m™ = (¢ )icjo,r) 15 called a self-financing portfolio process if we have

T T
/ |Tepe]dt < oo and / miotdt < oo a.s., (1.1.4)
0 0
and the corresponding wealth process X™ = (X[ )icpr satisfies
t
X7 =XJ +/ mudSy  for te0,T], (1.1.5)
0

for some initial wealth XT € R. We define the set A® of all (self-financing) portfolios with
0

wealth processes that are bounded from below by a constant b € R as
Ab = {7r 15 a self-financing portfolio process: X[ > b a.s. for t € [O,T]},
and denote AP := Uper A®. The portfolio process © will be called admissible if T € AP.

We set the initial endowments (i.e. wealth) of the agents are zero for the hedger and Sy+ K

for the optimizer, respectively. The following conditions on the payoff h will be needed:
Assumption 1.1.2.
e h(2) is a continuous function and there exist k,k > 0 such that
h(z) = a1z +b for z€[0,k] and h(z)=ayz+by for z>k, (1.1.6)

for some ay,as,b1,by € R.
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e h(z) is bounded from below, h # 0, and the condition
hz) <z4+hy for z>0, (1.1.7)

holds for some constant hy > 0.

e We have that hy < K — hy where

hy := max (O, - rg1>1(r)1 h(z)) (1.1.8)
Remark 1.1.3. The assumption that h(z) is linear for small and large z allows us to prove
integrability of certain expressions of the marginal utility (see Lemma 1.A.1 in the Appendizx).
The boundedness from below of h(z) guarantees that the hedger will be able to replicate the
claim with an admissible portfolio.

We require that the upper bounds on h(z) and hy hold, because they guarantee that the
optimizer has a strictly positive final wealth (see Theorem 1.2.1 below). One can easily see this
in the case when the payoff h(z) is nonnegative, since then we have from (1.1.8) that K > hy
and, hence, condition (1.1.7) leads to Sp+ K > h(St), i.e., the total endowment on the market,
which 1s initially held by the optimizer, is larger than the replicated claim by the hedger.

Let us precisely define the solutions to both agents’ problems.
Definition 1.1.3. Let S be an admissible stock price process.

1. The process m s a solution to the hedger’s problem if ™ is an admissible portfolio and
the corresponding wealth process X™, with XF = 0, satisfies X7 = h(Sp) — 2", where
a2 € R is the arbitrage-free price of the contingent claim h(St) given by

T 2 1 T 2
ot = ]E{h(ST) exp ( - / 'u—gth — —/ M—gdtﬂ . (1.1.9)
0 0

(o 2 o

2. The process 7 is a solution to the optimizer’s problem if m is an admissible portfolio that

solves the final wealth utility maximization problem

sup Efu(X7)],
TeA

where A := {r € A°: E[min(0,u(X7))] > —oco} and the corresponding wealth process
satisfies X§ = Sy + K.
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Since we want the above utility maximization problem to be well-posed we introduce the

following set of assumptions:
Assumption 1.1.3.
e u(z) is a strictly increasing, strictly concave, C?((0,00)) function satisfying

lim «'(2) =00, limu'(2)=0 (Inada conditions). (1.1.10)

z—0+ Z—00

e The asymptotic elasticity of u(z) is less than 1, meaning that

2u/(2) <1

lim su 1.1.11
i u(z) ( )
e The index of relative risk aversion of u(z) is bounded, i.e.
—zu"(2)
W <R fOT z > O, (1112)

for some constant R > 0.

Remark 1.1.4. We need the standard assumptions (1.1.10)-(1.1.11) on the utility function
w(z) in order to guarantee the existence of a unique solution to the optimizer’s problem. The
condition (1.1.12) was used in [69] to prove the completeness of the financial market in equi-
librium. In particular, from (1.1.12) we can see that the decreasing function logu'(e*) has

derivative bounded from below by —R and, hence, there exists a constant N > 0 such that

Inu'(e*) < N(1+ |z]). It follows that (see also Lemma 6.1 in [69])

u'(e*) < eNOFIED g (e%) < ReNTWNHVEEL g 2 > 0., (1.1.13)

Example 1.1.5. Some payoff functions h(z) that satisfy the above conditions are bounded from
below linear combinations of European call and put options, such that the sum of the coefficients
in front of the call payoffs is at most 1, i.e.

n

h(z) = Z ai(z — K)" + Bi(K; — 2)*,

i=1
where o;, B; € R and Y, a; € [0,1] for n € N. For the utility function u(z) we can take
u(z) = log(z) or u(z) = 2'"?/(1 —p) for pe (0,1)U(1,00).

Let us define what is equilibrium in our finite-horizon financial market.
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Definition 1.1.4. Equilibrium in the finite-horizon financial market is a process triple (S, 7", 7)
such that the stock price process S is admissible, the processes ™ and T solve the hedger’s and

optimizer’s problems in Definition 1.1.3, respectively, and the following condition holds:

e Clearing of the stock market:

4T =1 M0, T)) @ P a.e. a.s., (1.1.14)

where A([0,T]) denotes the Lebesgue measure on the interval [0, 7.

Since the wealth processes of both agents are of the form (1.1.5) and their initial wealth is

given, from the clearing of stock market condition it follows:

e (learing of the bond market:

XM—ghS+ X —75=K A[0,T) ®P a.e.as., (1.1.15)

where we have denoted the hedger’s and optimizer’s wealth processes by X" = (X[")iep,r) and

X = (Xt)te[O,T} respectively.

Remark 1.1.6. Let us comment on the form of condition (1.1.15). The quantities X" — 7S
and X — 7S on its left hand side correspond to the wealth of each agent that is invested in
bonds. Howewver, since the bonds have zero yield, these quantities also represent the number of
bonds held by each agent. Since on the right hand side we have the total number of bonds on
the market, the condition (1.1.15) indeed means that the bond market clears, i.e. the supply
and demand of bonds are equal. In combination with (1.1.14) this also leads to the clearing of

the whole market wealth, i.e. X" + X=S+K ae. as.

Remark 1.1.7. We have assumed, without loss of generality, that the interest rate on the
market is 0. This is due to the fact that the optimizer derives utility only from final wealth at
time T and, therefore, does not have a time preference for money. This means that the price
processes of the bond and the money market account will be constant, and the total amount
invested by the equilibrium economy in the money market account will be equal to K . Actually,
by discounting, we could obtain an equilibrium for any integrable interest rate (see e.q. Chapter

1, Definition 1.3 in [64]).
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While our notion of equilibrium is the classical one, our model is nonstandard, as the market
contains an agent that does not maximize utility — the hedger. The introduction of a hedging
agent in the market allows us to study how equilibrium prices are affected when there are

derivatives which are not in zero net supply, as is the case with the contingent claim h(Sr).

1.2. Main results

In order to find the equilibrium stock price process S we use ideas from portfolio optimization
in complete markets. We describe below the heuristic argument through which we obtain a
guess for the state-price density and, subsequently, the stock price process.

Suppose that equilibrium exists and the resulting market is complete. The hedger can
replicate exactly the contingent claim with final wealth given by X% = h(S7) — 2", where the
constant x” is the arbitrage-free price of h(Sr). Since the market clears at time T, the final
wealth of the optimizer will be X7 = Sy + K — h(S7) + 2. Now we can use duality results
(e.g. see Theorems 2.0 and 2.2 in [71]) to get that the state-price density process L at time T’
is given by

Ly — u' (St + K — h(St) + 2) .
E[w' (St + K — h(St) + xM)]
If, moreover, L is a martingale, we obtain L at any ¢t € [0,7) as L, = E[Ly|F;]. Thus we have

obtained a guess for the state-price density. Finally, if the process LS is a martingale (and
not only a local martingale), we can obtain a guess for the stock price process S; by taking
conditional expectation, i.e. L;S; = E[LySy|F;] for any ¢t € [0,7).

After obtaining the guess for the stock price process S, what is left is to check that the
resulting market is indeed complete and in equilibrium. However, for this line of reasoning
to work, we need to apriori specify the arbitrage-free price 2" of the contingent claim h(Sr),

which, by looking at the form of Lz, should satisfy

h(St)u' (Sy + K — h(St) + z")]

E[w' (St + K — h(St) + x")]

Let us first prove a lemma that gives the existence and uniqueness of a solution to the

equation for z".

Lemma 1.2.1. Let Assumptions 1.1.1, 1.1.2 and 1.1.3 be satisfied. There exists a constant
x> —hy satisfying

E[(z" — h(exp(Z7)))/ (exp(Zr) + K — h(exp(Z7)) + 2™)] = 0, (1.2.1)
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where " > —hy if h(2) is not a negative constant, and z" = —h; otherwise. Moreover, if u(z)
satisfies

—zu"(z)

7 (2) <1 for z>0, (1.2.2)

then the equation (1.2.1) has a unique solution.

Proof. We begin by proving the existence of a solution in the interval [—hq,00) via an appli-
cation of the intermediate value theorem.
Denote £(2) = (2 — h(2)u'(Z + K + z — h(Z)) for z > —hy, where Z := exp(Zr). Since
K > ho+hy and (1.1.7)-(1.1.8) hold, we have that Z+K+2z—h(Z) > 0 and £(z) is well-defined.
We will first prove that E[£(z)] is a continuous function for z > —h;. Choose z > —h; and
d >0 and let 2’ € [—hy,z +0). Since u/(z) is decreasing and the conditions in (1.1.7)-(1.1.8)

are satisfied, we obtain

€< [ = WD) W(Z + K +4 = h(Z))
< (24 6 + max(hy, hg + 7))1/(7 + ho — h(?)).

From Lemma 1.A.1 in the Appendix we conclude that (z+d-+max(hy, ho+2))w' (Z+ho—h(Z))

is an integrable random variable and we have by the dominated convergence theorem

lim E[¢(7)] = Ellim £(2)] = E[(2)].

Z—z Z—z

Hence E[£(z)] is a continuous function for z > —h;.
Let us now find Z > —h; such that E[{(Z)] > 0. Since h(z) satisfies (1.1.6)-(1.1.7) and is

bounded from below, we have that
h(z) = apz +byhy for z >k,

where ag, b € R are such that a; € [0,1] and ayk + bpho < k + ho. In particular, h(z) and
h(z) := z + K — h(z) are nondecreasing for z > k. Denoting p, = P [Z € [k, k + 1]], from
Lemma 1.A.1 we have p, > 0. Since h(z) satisfies (1.1.7) we also have E[max(h(Z),0)] < oc.

Therefore we can choose Z > —h; such that

— E h(Z
max | sup h(z), h(k+1)+ [max(h(Z), 0)] <Z < 00,
2€[0,k] Pk




1.2. Main results 28

and we obtain

EE@)>E[@E)|Z ek k+1]]p+E[ER)Z>k+1]P[Z >k +1]
> (z—h(k+ 1) (Z+h(k+1))pr — ' (Z+ h(k + ))E[max(h(?), 0)]
=u/'(Z+ h(k +1)) ((z — h(k + 1))px — E[max(h(Z),0)]) >

On the other hand, by using (1.1.8) we have
E[§(~h)] =E[(~h — M(Z))W/(Z + K — hy = h(Z))] < 0.

Therefore, by the intermediate value theorem, a solution z* > —h; to (1.2.1) exists. Notice
that if A is not a negative constant function then there exists an open set A C R such that

h(z) > —hy for z € A and from Lemma 1.A.1 it follows that

—h2Z)W(Z + K — hy — h(Z))]
—h(Z2)VW(Z+ K —hy — h(Z))|Z € AIP[Z € A] < 0.

E[£(—h1)] = E[(

—h
E[(—h

IN

Hence, when h is not a negative constant the solution z" to (1.2.1) satisfies 2" > —hy. If h is
a negative constant then h = —h; and the solution to (1.2.1) is trivially seen to be z" = —h;.
We will now show the uniqueness of 2" under the condition (1.2.2). To establish this result,
we need to show that £'(z) is integrable for z > —h; and then prove, by differentiating, that
E[¢(2)] is strictly increasing for z > —h;.
Differentiating £(z) gives

) =u(Z+K+z—h(2)+ (z=h2W'(Z+ K+ 2—hZ)).

For the first term, by the strict concavity of v and z > —hy, we have u/(Z + K + z — h(Z)) <
u'(Z + ho — h(Z)). Therefore, from Lemma 1.A.1, we obtain that v/ (Z + K + 2z — h(Z)) is
bounded by an integrable random variable, and, hence, it is integrable. For the second term,
from the negativity of «” and (1.2.2) we have

u'(Z+ K +2—h(2))
Z+K+z—hZ)

0>u"(Z+K+z—-hZ))> -

and therefore

|(z = h(

N
N
+
>
+
[\
|
=
N
IN
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Since z+hy > 0 and £(z) is integrable for z > —h;, we see that |(z—h(Z2))W"(Z+K+2—h(2))]

is bounded by an integrable random variable and is therefore integrable. It follows that the

random variable £'(z) is integrable for any z > —h;.

Next, we show that E[¢(2)] is differentiable and its derivative is strictly positive. Let us fix

z+ hy > § > 0 and notice that

E <E| sup U (Z+K+7z-h(2))

zZ€(2—06,2+9)
N (Z = h(Z2)) | (Z+ K +7% - h(Z))
Z+K+z—h(Z)

sup  [¢€'(2)]
zZ€(2—6,2+9)

SE|:u/<2+h1—5)+u/(2+h1—5)%+h(5z):| 0.
=

By the mean value theorem for any h € (—4,d) we get for some 6 € (0, 1)

§(z+h) —£(2)
h

=[§'(z+0n) < sup  ['(Z)],
zZ€(2—6,2+9)

and applying the dominated convergence theorem we get

Additionally, by using (1.2.2) and the strict negativity of u” we get

§(2)=v(Z+K+2-hZ)+(z = WZ)u"(Z+ K +z—h(Z))
=u(Z+K+z2—h(2Z))x

T+ K+2—hZ) -7 KWZ+ K+ 72— hZ)
X(” WZ+ K+ 72— h(2) )>O’

and therefore for any z > —h; we obtain

It follows that E[£(z)] is strictly increasing in z for z > —h; and since E[¢(z)] is continuous

for z > —h; the solution z" to (1.2.1) is unique in [—hy,00) under condition (1.2.2).

We are now ready to prove the following theorem, which is the main result of this paper.

Theorem 1.2.1. Let Assumptions 1.1.1, 1.1.2 and 1.1.3 be satisfied. The stock price process

given by

E[LT exp(ZT)\]:t]

Sy =
t I,

for te€10,T],



1.2. Main results 30

is an admissible price process. In the above, the (state-price density) process L is defined as

1= B es0(Zr) £ K~ WesolZa) 4 L (o 1)

with the constant A > 0 given by
X :=E [ (exp(Zr) + K + 2" — h(exp(Z7)))] (1.2.5)

and z" being a solution to (1.2.1). Moreover, there exist processes ™" and 7 such that (S, 7", 7)
is an equilibrium (in the sense of Definition 1.1.4). Finally, if u(z) satisfies (1.2.2) then for

any other equilibrium (S, 71, 73 we have that (S, 7", 7) = (S, 7MW, 7)) a.e. a.s..

Remark 1.2.2. The condition in (1.2.2), which is satisfied for u(z) = log(z) or u(z) =
217P /(1 — p) for 0 < p < 1, is also used in Chapter 4 in [64] to prove the uniqueness of
equilibrium in a standard setting. Moreover, it will be proved in Theorem 1.2.4 below that the
stock price S from (1.2.3) follows a local volatility model if we assume that (1.2.2) holds. In
particular, from (1.2.3)-(1.2.4) and the fact that Z is a Markov process, we will obtain that Sy
is a deterministic function of t and Z; for any t € [0,T]. The invertibility of that function
would follow if u satisfies (1.2.2) and h(St) is a linear combination of European call and put

option payoffs with nonnegative coefficients.

Remark 1.2.3. In the case of no hedger on the market (i.e. h =0 and hy = hy ), we have
that " = 0 and the state-price density process from (1.2.4) is given by

;, - El(50)|7]

or te 0,7,
Ew(sy 7 LT
which is just the expectation of the marginal utility evaluated at the total market endowment

(we have set K =0 ), and in agreement with the known complete market case (see e.g. Chapter

4.5 in [64]).

Proof of Theorem 1.2.1. Let us outline the steps of the proof. First we will show that the stock
price process is admissible. In particular, we will check that the state-price density process L,
given by (1.2.4), is a martingale and the stock price process S given by (1.2.3) satisfies an SDE

of the form

dSt = St (Mtdt + Utth) s (126)



1.2. Main results 31

for t € [0, 7], where 1 and o are JF;-progressively measurable processes satisfying o; # 0 a.e.
a.s. and

T T T2
/0 | dt < o0, /0 oldt < oo, /0 “Ldt < oo, as. (1.2.7)

0%

Then, after obtaining the solutions 7" and 7 to the hedger and the optimizer problems given
in Definition 1.1.3, we will check the clearing of the stock market condition from Definition
1.1.4. Finally, we will prove the uniqueness of the equilibrium financial market when (1.2.2) is
satisfied.

First notice that by the definition in (1.2.3) we obtain S; = exp(Zr). To check that (1.2.6)
and (1.2.7) are satisfied, we will obtain martingale representations for the process L and the

process f defined by
ft == E[LypSy|F;] fort e [0,T],

and subsequently apply Ito’s formula to f/L. First, observe that for the constant A defined
in (1.2.5) we have A € (0,00). Indeed, by the strict concavity of u(z) on (0,00) and Lemma
1.A.1 in the Appendix, we have that

]E |:U,<ST + K —+ ZEh — h(ST))] S ]E [U,<ST + ho — h(ST>>] < oo,
E [« (Sr+ K + 2" — h(Sr))] > E [W(Sr+ K + 2" + hy)|Sp < 1] P[Sy < 1],
>/ (1+ K +a" + h)P[Sr < 1] > 0.

Moreover, if h(z) is not a negative constant we have that " > —h; and therefore v/(z + K +

zh — h(z)) < /(2" + hy) < oo, while if h is a negative constant we have that z" = —h; = —K

and hy > 0, leading to v/(z + K + 2" — h(z)) < u/(hy) < oo for z > 0. Therefore
u(z+ K 42" —hz)) <u< oo, forz>0,
where we have denoted the constant u as

_ u' (2 + hy),  if 2t > -y
u =

U,I(hl), if l’h = —hl.

The process L is obviously a nonnegative local martingale that is bounded from above by /A

and therefore it is a martingale. Since the constant A defined in (1.2.5) is positive and w is
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strictly concave on (0,00), by using Lemma 1.A.1 in the Appendix, we see that

E[L?] = E[E[Lr|F]?*] < E[L37] = E[(v' (ST + K—;xh — h(Sr)))?] § z_z o
E[(w/(Sr + K + 2" — h(Sr))Sr)’] _ wE[S}]

A A2

E(f?] = E[E[fr|F]’] < E[f7] =

< 00,

for any ¢ € [0,T]. Therefore, L and [ are square-integrable martingales which we assume,
without loss of generality, to be right-continuous (see Theorem 1.3.13 in [63]). Now we can
apply Theorem 3.4.15 in [63] to L and f to conclude that they are continuous processes and

there exist F;-progressively measurable processes (of )07 and (atf )icpo,r] such that

E UOT(atL)th} <oo, E VOT(atf)?dt

AL, = oFdW,, df, = ol dW, for te[0,T). (1.2.9)

< o0, (1.2.8)

and

Moreover, this representation is unique in the following sense — for any other JF;-progressively

L— gL and 3/ = o/ a.e.

measurable processes o= and &/ satisfying (1.2.8)-(1.2.9) we have &
a.s. on [0,7] x €.

Noting that «' is strictly positive and decreasing, the Inada conditions (1.1.10) are satisfied
and the process Z does not have a point mass at co (see Lemma 1.A.1), it follows that L, f
and, consequently, S = f/L are strictly positive processes. We conclude that S is a continuous
process, and, by applying Ito’s formula, we obtain that it is of the form (1.2.6) where u, and

0, are given by

(0F)?  —oto] —Uf of
= + , O = +— for te]0,T]
M=t Ly 7 0,71

Using the fact that both L and f are continuous and strictly positive processes, the Holder’s
inequality and (1.2.8), we obtain

1
T T (L T ( _L\2 T (_f\2 2 T ( _f\2
02dt§/ (Ut)dt+2 / (Ut)dt/ (Ut)dt +/ <0)dt<oo a.s.,
/0 ! o L7 o L7 o [f? o [P
T T T IN2 N\ 3
/ mt!dt:/ |at‘7t|dt< (/ th/ <"t2> dt) <00 as.,
0 0 o Li

T (L
/ Mtdt / (Ut)dt<oo a.s..
0 Ut 0 Lt
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Let us now prove that o, is a.e. a.s. nonzero by providing a Markovian form for the processes
L and f. Since pz and oz satisfy conditions (C1)-(C3), and «/(e* + K + 2" — h(e*)) < u < oo
for z € R, we can apply Theorem 9.3 in [37] to obtain that there exists a solution L(t,z) €
C12([0,T) x R)NC ([0, T] x R) to the PDE in (1.1.2) with the terminal condition

1
L(T, z) = Xu'(ez + K + 2" — h(e?)) for z€R. (1.2.10)

Moreover, from Theorem 2.10 in [37], this solution is unique in the class of functions satisfying
the growth condition |L(t,z)| < ¢ exp(cp2?) for some positive constants ¢; and c¢,. Further-
more, the solution has the form

1

—+o00
L(t,z) = X/ p(t,z; T, o)/ (¥ + K + 2" — h(e¥))dv for (t,2) € [0,T) xR, (1.2.11)

where p is the fundamental solution defined in Remark 1.1.1.

[e.o]

We want to find a Feynman-Kac representation for L(¢, z) and, therefore, we need to obtain
some bounds on it. From (1.2.11) we obtain the uniform bound L(¢,z) < u/\ for (t,z2) €
[0,7) x R. Moreover, from (C1)-(C3) the martingale problem for uz and o% is well-posed
and the corresponding family of measures on the canonical space {P"* : (t,z) € [0,T] x R} is
strongly Markov (see Theorem 7.2.1 in [109]). In particular, from Corollary 5.4.8 in [63] we

have that P = P(Z®*)~! and, therefore, for any nonnegative function g : R — [0, 00) we get
E“[g(X(T))] = Elg(2;"")], (1.2.12)

where X is the coordinate process on the canonical space. Hence, by (C2)-(C3) and the fact
that L(T,z) > 0, we can apply (1.2.12) and the Feynman-Kac representation of Theorem 5.7.6
in [63], to obtain that L(¢,z) has the form

b0 ol o4 52— (25

= %Et’z [u (exp(X7) + K + 2" — h(exp(X7)))] for (t,2) €[0,T) x R,

where X is the coordinate process on the canonical space. Since the family of measures on the
canonical space {P“* : (t,2) € [0,T] x R} is Markov, by using Lemma 1.A.2 in the Appendix
and (1.2.12), we get

102 - Yol (2 14— )]

1
= XE[u’(ST + K + 2" — h(Sp)|F] =L, for t€]0,7T).

2Strictly speaking, the solution exists on a strip [0,7"] with 7' = min{T,c/as}, where ¢ is a positive
constant depending only on pz and oz, and aj,as are positive constants such that L(T,z) < a1 exp(agz?).
Since L(T, z) is bounded we can choose ay arbitrarily small so that T =T
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By using (C1)-(C3) we can apply Theorem 2.11 in [37] to obtain that p(t1, z;t2,v) > 0 and,
since u/(e¥ + K + a2 — h(e¥)) > 0 for all v € R, from (1.2.10) and (1.2.11) we also get that
L(t,z) > 0 for (¢,2) € [0,T] x R.

Now we can apply the Ito’s formula to the function L(¢,z) to obtain
st = dL(t, Zt) = UL(t, Zt)th for te [O, T), (1213)
where o (t, z) is given by

oL(t, )—Uz(t,Z) ( z) (1.2.14)

+oo
- UZ()\7Z) / gp(t T (e + K +a" = h(e"))dv for (t,2) €[0,T) xR,
_ z

[e.9]

The interchange of differentiation and integration in (1.2.14) is justified by using the bounds on
the first derivative of the fundamental solution p from Theorem 9.2 in [37] and the dominated
convergence theorem.

By using similar arguments as above, since eu'(e* + K + 2" — h(e?)) < e*u < ay exp(az2?)
with ay,as positive constants and a, arbitrarily small, we obtain that there exists a unique
solution f(t,z) € CY?([0,T) x R) N C'([0,7] x R) to the PDE in (1.1.2) with the terminal
condition

f(T,2) = %u’(ez + K + 2" — h(e?)) for z€R, (1.2.15)
satisfying the growth condition |f(t,z)| < ¢ exp(cez?) for some constants ¢;,¢; > 0, and
having the form

f(t, z) = ;/Jroop(t, 2 T,v)etu/ (e’ + K + 2" — h(e¥))dv for (t,2) € [0,T) x R. (1.2.16)

o0

By using (C1)-(C3) we can apply Theorem 9.2 in [37] to obtain the bound

plt.5T0) < e (—c(“T‘_? ) |

for some constants C, ¢ > 0. Therefore from (1.2.16), by using change of variables and the fact

that for any (¢,v) € [0,7) x R and any constant ¢ > 0

EvQ—v\/T——+4£>cv—v\/T—+—:(v\/E \/7> > (),
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it follows that

f(t,2) <

By choosing the constant ¢ such that ¢ < ¢ holds we get that f(t,z) < conste* <
const exp(¢z? + 1/(4¢)) for any constant ¢ > 0. Hence again, by (C2)-(C3) and the fact
that f(T,z) > 0, we can apply a Feynman-Kac representation (see Theorem 5.7.6 in [63])
together with Problem 5.7.7 in [63], to obtain that f(¢,z) has the form

f(t,z) = %E[exp(Zg’Z))u’(exp(er,f’z)) + K + 2" — h(exp(Zg’z)))ﬂ
= %]Et’z [exp(X7)u' (exp(X7) + K + 2" — h(exp(X7)))] for (t,2)€[0,T) x R.

and, by analogy to the case for L(t,z), we get
1
ft, z,) = XJE:[STu’(ST + K +2" —h(Sp)|F]=f for te[0,T).

From (1.2.15) and (1.2.16), as in the case for L(t, z), we also get f(¢,z) > 0 for (¢,2) € [0,T]|xR
since e’u/(e" + K + 2" — h(e”)) > 0 for all v € R.
Applying Ito’s formula to the function f(t,z) we get

df,=df(t,Z) =0t Z)dW, for te]0,T), (1.2.17)

where o(t,2) is given by

oy(t, z) = oz(t, 2) ( z) (1.2.18)
B UZ(A’ : /:O g]:(t 2 T,v)e’d/ (e¥ + K + 2" — h(e¥))dv for (t,2) €[0,T) x R,

and the interchange of differentiation and integration is justified as in (1.2.14).

The equations (1.2.13)-(1.2.14) and (1.2.17)-(1.2.18), apart from providing analytic expres-
sions for the SDE coefficients, give us martingale representations for the processes L; and f;
for t € [0,T). Comparing (1.2.9) with (1.2.13) and (1.2.17), by using the uniqueness of o and
o, we get that of = o(t, Z;) and of = o4(t,Z;) ae. as. on [0,T) x Q. In particular, we
have uy = p(t, Z;) and oy = o(t, Z;) a.e. a.s. on [0,7) x Q, and
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for t € [0,T), where u(t,z) and o(t, z) are given by

:0%(t,z) —op(t,2)o(t, 2) ot 2) = —op(t,z)  op(t, 2)
L2(t, 2) L(t,2)f(t,z) ’ L(t, 2) f(t,z)’

u(t, 2) (1.2.20)

for (t,2) € [0,7) x R.

Note that to prove that oy is a.e. a.s. nonzero it is enough to show that o(t, Z;) is a.e. a.s.
nonzero because o, = o(t, Z;) a.e. a.s. on [0,T) x Q. For this purpose, we will check that our
setting satisfies the conditions (A1)-(A3) from Section 2 in [70].

From (C3) we have that o4(t, z) is continuous and from (C1) it follows that (¢, z) doesn’t

change sign. Therefore from (C1) we have for 21,29 € R and t € [0, 7]
|07 (t, 21) = 07(t, z2)| = loz(t, 21) = o5(t, 22)|loz(t, 21) + 02(t, 22)| = 20 |o2(t, 21) — 02(t, 22)],

and from (C3) it follows that oz(t, 2) is also uniformly Holder-continuous in z. From this and
the conditions (C1)-(C3) we see that condition (A1) in [70] is satisfied. Moreover, by using
(1.1.13), the functions e* and u/(e* + K + 2" — h(e*)) satisfy condition (A2). In our case
condition (A3) is trivially satisfied because all functions in its statement are identically zero
in our setting. We also note that the filtration considered in [70] is the (augmented) filtration
generated by the exogenously given process Z, but from Lemma 1.A.2 in the Appendix this
filtration coincides with (F;)icp,r7. Now we can apply Lemma 4.3 in [70] to obtain that the
functions L(t, z) and f(t, z) coincide with the functions that are solutions to the two Cauchy

problems from Lemma 4.1 in [70]. Rewriting (1.2.20) as

 —op(t,z) | op(t,z)  og(t2) of oL
o(t, 2) = e ff(t,z) = Tt s (L(t,z)a(t,z)—f(t,z)&(t,z)),

and using Lemma 4.2 in [70], the continuity of L(t,z) and f(¢,z) and the fact that oz(¢, 2)

is bounded away from 0, we get that o(t, z) is a.e. a.s. nonzero with respect to the Lebesgue
measure on [0,7) x R. Since the law of Z; is equivalent to the Lebesgue measure on R for
t € 10,7T], it follows that o(t,Z;) is a.e. a.s. nonzero. Therefore we conclude that S is an
admissible stock price process.

Since the stock price process S is admissible and wu(z) satisfies the asymptotic elasticity
condition (1.1.11), we can use the results on portfolio optimization from [71] in order to find
the wealth process of the optimizer X. Indeed, comparing Definition 1.1.2 with the definitions
of complete market in [51], by using that S is a martingale under the equivalent measure Q

with Radon-Nikodym derivative ‘2% = Ly, we obtain from the theorem of [51] that the set of
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equivalent martingale measures is a singleton. Therefore, denoting the inverse of u'(2) as I(z),

we can apply Theorems 2.0 and 2.2 (i) in [71] to get

Xr=1(ALy), (1.2.21)
LiX, = E[Ly X7|F] for tel0,T), (1.2.22)

where X\ is the unique solution for z to the equation Xo = E[L+I(zL)]. By using the definition
of L and X in (1.2.4) and (1.2.5), and the fact that 2" solves (1.2.1) we get

E[LyI(ALy)] :%E[u'(sT +K 42— h(Se) I (S + K + 2" — h(Sp)))]

%EW(ST + K + 2" — h(Sp)) (S + K + 2" — h(Sy))]

:%E[u'(ST + K+ 2" — h(Sp)(Sp + K)] = E[Lr(Sy + K)] = So + K = X7,

and this means that A\ = X. Therefore, by evaluating (1.2.4) at time 7 and substituting in
(1.2.21), we get

X =87+ K + 2" — h(Sr), (1.2.23)

and from (1.2.22) we can obtain X for all ¢ € [0,7). From the fact that L is bounded we can
see that Assumption 3.2.2 in [64] holds. Moreover, since the utility function u satisfies (1.1.10)
and (1.1.11) we can apply Theorems 2.0 (iii) and 2.2 (i) in [71] to obtain that E[LyI(yLr)] is
continuous for y > 0 and, therefore, Assumption 3.7.2 in [64] also holds. Hence, we can apply
Theorem 3.7.6 (iii) in [64] to obtain the unique a.e. a.s. solution 7 to the optimizer’s problem
in Definition 1.1.3 through a martingale representation of the process LX.

Consider the portfolio process 7" := 1 — 7 and let us check that 7" solves the hedger’s

problem as specified in Definition 1.1.3. From (1.1.5) we obtain
X = /t(l —R)dS, = S —So— Xi + So+ K =S, — X[ + K, (1.2.24)
0
for ¢ € [0, 7] and by using (1.2.23) it follows that
Xt = h(Sp) — 2" (1.2.25)

Now, since S and X are martingales under the measure Q, from (1.2.24) we have that X" is

also a Q-martingale. Therefore, by using (1.2.25) we get

XM =EYXAF] = EQR(Sy) — 2"|F] > —ah —hy for t€]0,T),
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so that 7" € A=""~" and, hence, " € AB. Therefore, since z" satisfies (1.1.9) by definition,
we have that 7 solves the hedger’s problem.
Now we will prove the uniqueness of the hedger’s portfolio 7" for the admissible stock price

h

process S. Assume there is another process 7 € AP such that the corresponding wealth

process X" satisfies X;E = h(Sy) — 2" with Xg1 = 0. Since E[XJELT] =0= Xg it follows that

LX" is a martingale. Therefore
X =EQXM =EQ(Sr + K — X7)Ly] =S, — XF+ K for te€[0,T],
and from (1.2.24) we have X" = X", In particular we have
/t whdS, = Xt = XP = /t #ds, for te0,7). (1.2.26)
0 0
Notice that X" is a square-integrable Q-martingale because for any t € [0,T] we have

E%[(X})’] = EREC[XEF)*] < E%[(X})?] = E[Lr(X7)?]
E[u/(Sp + K +a" — h(Sr))(h(Sp) = 2)?] _ TE[(max(hy, Sr + ho) + [a" )]
) X\

< 00.

Hence from the fact that 7" and 7" satisfy (1.2.26), applying Lemma 1.A.3 in the Appendix,

we have that
T
/ (7h —7M2dt =0 a.s.,
0

and the optimal hedger’s portfolio 7" is unique a.e. a.s.. By the definition of 7" we conclude
that the stock market clears and, therefore, the triple (S, 7", 7) is an equilibrium.

Let us now prove the uniqueness of the equilibrium market under condition (1.2.2). Assume
that there exists an equilibrium (S, a), 77(2)) and denote the corresponding wealth processes of
the hedger and the optimizer by XM and X respectively. Denote the corresponding unique
equivalent local martingale measure by Q and its density process with respect to P by L. By
the definition of admissibility we know that the process L is a martingale with Ly = 1, and we
have St = exp(Zr) = Sr.

At time T we know that Xél) = h(Sr) — ", where " is given by 7" = E[h(Sr)Ly]. By
market clearance at time 7" we have Xg) = Sr+ K —h(Sr) +7". Applying the duality results
from [71], as in (1.2.21), we get that Xj(?) = I(ALy) for a constant A > 0, and we also obtain
that LX® is a martingale. This leads to

ET = U,/ (ST -+ K — h(ST) + Eh) s (1227)
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where, by using that L is a martingale and taking expectations, we have that the constant

A > 0 is given by
A=E [u(Sr+ K — h(S7) +T")] . (1.2.28)

Since X is the wealth process corresponding to the hedger’s portfolio 7", from (1.1.5),
we know that XV is a local martingale under Q, and, since it is bounded from below, it is in
fact a Q-supermartingale. Therefore, by using that ]E@[X}I)] = EQn(Sy) =7 =0 = Xél), it
follows that LX) is in fact a martingale.

Market clearance implies S; = Xt(l) + Xt(2) — K for all t € [0,T], and, therefore, LS is a

martingale. Hence, taking into account that X(SQ) = Sy + K and Sy = Sp we obtain

E[(St + K)u'(Sp + K — h(S7) +7")] = E[(St + K)ALr] = A(So + K) = AX?  (1.2.29)
= B[XYNL;] = E[XS/ (S + K — h(Sr) + 7).

From (1.2.29) it follows that T satisfies (1.2.1). Moreover it is clear that T > —h; since
otherwise E[{(Z)] < 0. Now since (1.2.1) has a unique solution in [—h;, 00) under condition

(1.2.2) it follows that T = 2. Using (1.2.5) and (1.2.28) we get
A=E[(Sr + K + 2" — h(Sr))] = \. (1.2.30)

Finally, taking expectations in (1.2.27) and using (1.2.30) we obtain
—  E[u/(Sr+ K + 2" — h(Sr))|F]

= =1L
" E[/(Sr+ K + 2" — h(S7))] v
and
= E[L E[L
S, = LrSrlF] _ ElLrSrlF] S;, (1.2.31)
Lt Lt
for t € [0,7] and uniqueness follows. O

In the following corollary, which directly follows from the proof above, we give the Markovian
form of the SDE satisfied by the stock price process S. The analytic expressions will be used

later, when we discuss specific examples.

Corollary 1.2.1. Under the assumptions of Theorem 1.2.1 the equilibrium stock price process
S satisfies the SDE

dS, = S, (u(t, Z,)dt + o (t, Z,)dW,) , (1.2.32)
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where the functions u(t,z) and o(t,z) are given by

_oi(t,z) | —op(t,2)og(t, 2) —or(t,z) o4t 2)

e TS B TS TS B AU Ay FTR R TTRS S (1.2:33)
with

1 [t

Lt,?) = 1 / p(t, 2 Ty o) (€ + K + 2 — h(e”))dv, (1.2.34)
L

f(t,2) = X / p(t, z; T, v)e'u' (e + K + a" — h(e"))dv, (1.2.35)

400
orp(t,z) = UZ(t,z)g—lg(t, z) = @ /Oo %(t, Ty (e + K 4 2" — h(e¥))dv, (1.2.36)

+0o0
or(t,z) = JZ(t,z)g—i(t,z) = UZ(;\’ 2) / %(t, 2, Tv)e’u (e + K + " — h(e"))dv, (1.2.37)

o0

for (t,z) € [0,T) x R. Moreover Ly = L(t, Z;) and LSy = f(t,Z;) for t € [0,T).

We can also obtain analytic expressions for the portfolios of both agents and the corre-

sponding wealth processes.

Corollary 1.2.2. Under the assumptions of Theorem 1.2.1 the wealth process of the optimizer
X satisfies X; = X(t, Z)/L(t, Z;) where

1 [t
X(t,z) = X/ p(t,z; Tyv)(e’ + K + 2" — h(e")u' (e’ + K + 2" — h(e"))dv, (1.2.38)

for (t,z) € [0,T) x R. The portfolio of the optimizer T satisfies my = 7(t, Z;) and the function

7(t, z) is given by

ot 2)X(t, 2
7(t,z) o) f(2) (1.2.39)
where
5(t, 2) —_Z(Lt(t;)z ) U)z,(((tt’;), (1.2.40)
ox(t,2) :@x (1.2.41)
o 9p v h VY, /(U h v
X / a(t,z;T,v)(e + K+ 2" — h(e")u'(e" + K + 2" — h(e))dv,

for (t,z) € [0,T) x R.
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Proof. By using that the process X := LX is a martingale and following the same reasoning
as for the process LS in the proof of Theorem 1.2.1, we get that X; = X (¢, ;) for t € [0, T
where the function X (¢,z) € C*?([0,7) x R)NC ([0, T] x R) is solution to the PDE in (1.1.2)
with terminal condition

e* + K + 2" — h(e?)

X(T,z) = )

(€ + K + 2" — h(e?)),

and has the form

1 [t
X(t,z) = X/ p(t, 2 T,v)(e" + K + 2" — h(e"))u/ (e + K + 2" — h(e"))dv,

o0

for (¢,2z) € [0,7) x R. Applying Ito’s formula to the function X(¢,z) we get
dXt = dX(t, Zt) = O'X(t, Zt)th for te [0, T), (1242)
where ox(t,2) is given by

ox(t, z) = az(t,z)%—f(t,z) (1.2.43)

“+oo
- UZ()t\’ - / %(t, 5T v)(e + K +a" — h(e")u'(e” + K + 2" — h(e"))dv,
z

— 00

for (t,2z) € [0,T) x R. Since X = X/L by applying Ito’s formula we obtain
dX, = X, (i(t, Z,)dt + 5(t, Z,)dW;) for t€[0,T), (1.2.44)

where [i(t,z) and (¢, z) are given by

. _oi(t,z)  —on(t2)ox(t,z) _ —op(t,z)  ox(t,2)
2= e T Teaxt . AT Ta T X))

for (¢,z) € [0,T) x R. Comparing (1.2.44) and (1.1.5), by using (1.2.32) and the fact that X is

(1.2.45)

a square-integrable martingale (with a right-continuous modification), we can apply Theorem
3.4.15 in [63] to get that 7, = 7(t, Z;) a.e. a.s. on [0,7T) x ©Q where the function 7(¢, z) is given
by

]

Now we will prove the local volatility form of the equilibrium stock price process under
the condition (1.2.2). For this purpose we will assume that pz(t,z) and oz(t, z) satisfy the

following additional conditions:
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Assumption 1.2.1.

(D1) Differentiability: puz(t,z) is once differentiable and 0%(t,z2) is twice differentiable in z
n [0,7] x R.

(D2) Boundedness: QL(t,z), 88—(15 z) and 2 (t z) are bounded on [0,T] x R.

(D3) Continuity: agz (t,2), aoZ Z(t,z) and 8;702%@, z) are continuous in t for t € [0,T] and

locally Hé'lder—contmuous in z on [0,T] x R.

Theorem 1.2.4. Let the Assumptions 1.1.1, 1.1.2, 1.1.8 and 1.2.1 hold. Suppose that the
optimizer’s utility u(z) satisfies (1.2.2) and h(z) is of the form

Zozl z— K)t + Bi(K; — 2)t  (long puts and calls),

where oy, B; > 0 and max(cy, 5;) > 0 for 1 <i <n for somen € N, and 0 < K; < Ky <
- < K,, < 00. Then the function f(t,z)/L(t,z) has an inverse g(t,s) w.r.t. z and the SDE

satisfied by the stock price process Sy is in the local volatility form
dS; = Sy (u(t, g(t, Sy))dt + o(t, g(t, S;))dWy)  for te€[0,T).

Proof. We will prove that for any ¢ € [0,T) the stock price S; is strictly increasing function of
Z; and the result will follow from (1.2.32).
Recall from Theorem 1.2.1 and Corollary 1.2.1 that

E[LrSr|F]  f(t, Z)
L, CL(t, Zy)

Sy = for te[0,T], (1.2.46)

where L(t,z) and f(t,z) are the unique solutions of the PDE

o2 (t, z) *°G
2 022

a—f@,z>+uz(t,z)g—f(t,z)+ TG4 =0 for (t,2)c[0,T) xR,  (1.2.47)

in the class of functions satisfying the growth condition |G(t, z)| < ¢; exp(cez?) for some con-
stants c¢1, co > 0, with the final conditions

z

L(T,z2) = %u’(ez + K +2" —h(e?), f(T,2)= %u’(ez + K + 2" — h(e?)), (1.2.48)

for z € R, where the constant A\ > 0 is given by (1.2.5). In what follows we will prove that

L(t, z) is decreasing function in z and f(¢, z) is strictly increasing function in z for ¢ € [0, T7.
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Consider K = {log K1, ...,log K,} and notice that L(T,z) and f(7T',z) belong to the class
C(R)NCYR\ K). Using that h(z) is nonnegative we obtain from (1.1.8) that h; = 0 and
therefore K := K — hg > h; = 0 and 2" > 0. Notice that since h(z) < z + hg for z > 0 (from
condition (1.1.7)) we have > "  a; < 1. Hence, denoting

J n J
Vi = (1 - Z%‘ + Z ﬁi) ;05 = Z(Oéi + Bi) Ki,
i=1 i=j+1 i=1
for 0 < j <n, we have that 79 > 1, o =0, v; > 0 and §; > 0 for 1 < j < n. Differentiating

the final conditions in (1.2.48) we get
oL ;€

%(T, z) = 3 u' (e + K + " 4+ 6;), (1.2.49)
9] z — —
a—JZC(T, z) = % (vie*u" (v;e* + K + 2" +6;) + o/ (y;e* + K + 2" +6;)) (1.2.50)

for z € (log Kj,log K;11) and 0 < j <n, with the convention Ky =0 and K, ; = +0o. Since
u is strictly concave and v; > 0 for 0 < j < n, from (1.2.49) we have that L(T, z) is decreasing
for z € R, and since 79 > 1 we have that L(T),z) is strictly decreasing for z € (—oo,loghy).
From (1.2.2), the strict concavity of u and the fact that K + 2" +§; > 0 and ~; > 0, we have
that

vietu" (ve* + K 4+ 2" 4+ 6;) + /' (ye* + K + 2 + 6;)

> (yie* + K +a" +6;)e*u" (ve* + K + a" + 6;) + v/ (yje* + K + 2" +§;) > 0.
Therefore from (1.2.50) we get that f(7T, z) is strictly increasing for z € R. Moreover, by using
(1.1.13), we have that there exist constants Ny, No, N3, Ny > 0 such that

IL(t, 2)| < eMOHED (2, 2)] < eM2OFED - for 2 e R,

oL

8_(T’ 2) < eMUHED for 2 e R\ K.
P

of
< Na(4l) |9
<e : ‘az (T, 2)

Therefore, since Assumption 1.2.1 holds, we can apply Lemma 1.A.4 in the Appendix to obtain
that L(t,z) is strictly decreasing and f(¢, z) is strictly increasing in z for ¢ € [0,7). So there
exists a function ¢(¢,s) which is the inverse of f(¢,2)/L(t, 2), i.e.
St g(t,s))
L(t, g(t,s))
From (1.2.46) we see that Z; = ¢(t,S;). Hence, by substituting in (1.2.32), the stock price

=s for (t,s)€[0,T)xR.

process SDE can be written in the local volatility form

dS, = S, (u(t, g(t, S,))dt + o (t, g(t, $,))dW,) for t € [0,T).
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Remark 1.2.5. Under the assumptions of Theorem (1.2.4) we can deduce that the stock volatil-
ity coefficient o(t, Z;) is a.e. a.s. monzero without referring to the endogenous completeness
results in [70]. Indeed, let us assume without loss of generality that oz (t,z) is strictly positive
on [0,T)xR. Then, by using that L(t, z) is strictly decreasing and f(t,z) is strictly increasing
in z, from (1.2.36)-(1.2.37) we can see that o (t,z) is strictly negative and of(t,z) is strictly
positive on [0,T) x R. Hence, from (1.2.33) we can conclude that o(t,z) is strictly positive on

[0,7) x R and therefore o(t, Z;) is a.e. a.s. nonzero.

1.3. An example with power utility

In this section we illustrate our results by studying how the imbalance of the derivative market,
modelled by the presence of the hedger, impacts the equilibrium stock price S in a simple
example. In particular, we will show the changes that occur in the market price of risk, stock
volatility and implied volatility as we vary the degree of imbalance and the risk aversion of the
optimizer.

Let us specify the primitives of the model. We assume that the hedger’s payoff function
h(z) is given by the European call payoff

h(z) =alz — K)* for 2>0, (1.3.1)

for some weight o € (0,1] and strike price K > 0. The European call payoff weight « is
the parameter controlling the degree of imbalance on the market. The optimizer has a power
utility function u(z) = 2'7?/(1 — p) with the risk aversion parameter p € (0,1) U (1,00). Let
the process Z be given by

Zy=put+oW, for tel0,T],

where we have taken uz(t,z) = p € R and o4(t,2) = 0 € R for (¢t,2) € [0,T] x R. The
functions h(z) and u(z), and the process Z clearly satisfy the assumptions from Section 1.1.
From (1.1.7)-(1.1.8) we have that h; = 0 and letting hy = 0 it follows that the total supply of
bonds on the market K can be set to 0.

In order to compute the stock price SDE coefficients p(t, z) and o(¢, z) we will use Corollary
1.2.1. Let us obtain analytic expressions for the functions L(t,2), f(t,2), or(t,2) and o4(¢, 2).
Denote

log(K /e*) — u(T —t
d(t’ Z) — Og( /Cf )T _lui )7 €(t,T, Z) — €<7Z\/T7t+,u,(T7t)7
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for (¢,z) € [0,T) xR. By straightforward computation of the conditional expectations in (1.2.3)
and (1.2.4), and using that from Corollary 1.2.1 we have L; = L(t, Z;) and L;S; = f(t, Z;) for
t €[0,7), we obtain

1 d(t7z) W2
L(t, 2) :)\\/ﬂ</ e~z (e*e(t, T,v) + 2")dv (1.3.2)

o 02 J—
+ / e zu' ((1 — a)e’e(t, T,v) + aK + :ch)dv),
d(t,z)

1 d(tvz) 2
t,z) = e*e(t,T,v)e” = u (e®e(t, T, v) + z)dv 1.3.3
F) =g ([ et T Tt ) + o) 133

0o 2 o
+ / ete(t, T,v)e” zu (1 — a)e’e(t, T,v) + aK + ach)dv>,
d(t,z)

for (t,z) € [0,T) x R, where X is defined in (1.2.5). Direct calculations from (1.2.36)-(1.2.37),
by differentiating (1.3.2)-(1.3.3), lead to

z d(t,Z) 2
or(t,z) = )f—&(/ e(t,T,v)e” zu"(e*e(t,T,v) + z")dv (1.3.4)

oo 2 o
+/ (1—a)e(t,T,v)e"=u" (1 —a)ee(t,T,v) + aK + a:h)dv),
d(t,z)

o5(t,2) = 1= (1.3.5)

U2
X e*e*(t, T,v)u"(ee(t, T,v) + 2") + e(t, T, v)u/(ee(t, T,v) + 2"))e™ = dv

V2T
d(t,z)
R

VR

+ / (1 = a)ee®(t, T,v)u"((1 — a)ee(t, T, v) + ok + 2"
d(t,z)

_ W2
+e(t, T,v)u' (1 — a)ee(t, T,v) + aK + xh))e_2dv),

for (t,z) € [0,T7) x R. Now, substituting (1.3.2)-(1.3.5) into (1.2.33), we can compute u(t, z)
and o(t,z). Similarly, we can also obtain an analytic expression for the optimizer’s portfolio
7(t, z) from (1.2.39).

Our reference case will be a market without a hedger , i.e. h =0 and 2" = 0. In this case

we set K = 0 and for the equilibrium stock price we have

_ E[LTST’Ft] _ E[Sil’_p|ft] _ ezte(T—t)(/H‘%)

L E[S,"|F]

St

This means that pu(t,2) = po? and o(t,2) = o for (t,2) € [0,T) x R. In particular, we have a

simple Black-Scholes model for the stock price process and the implied volatility is equal to o.
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We are interested in the dependence of the stock volatility o(t,z) and the market price
of risk u(t,2)/o(t,z) on a and p. Comparison will be made with the case when there is no
imbalance (i.e. no hedger) on the market. Below we work with the parameters T =1, K = 0.5,

@ =0.02 and 0 =0.2.

1.3.1. Optimal portfolio and market price of risk Figure 1.1 shows the optimal port-
folio function 7(t, z) of the optimizer for different levels of the market imbalance «, where we
have taken ¢ = 0.1 and p = 6. It can be seen that the hedger holds more of the stock for
larger values of the “dividend process” exp(Z;), with most of the hedging activity happening
near the strike price. We interpret this as the process exp(Z) serving as a proxy for the stock
price S, and the hedging activity being similar to a delta hedging strategy but with respect to
exp(Z).

Derivative weight o

0
0.2
TTT 04
0.8
0.8
1

045

021

Figure 1.1: Optimizer’s portfolio 7(¢, z) for different values of «

Figure 1.2 shows the market price of risk u(t, z)/o(t,z) for different levels of the market
imbalance «, where we have taken ¢ = 0.1 and p = 6. We notice that as « increases, the
market price of risk decreases. This is explained by the need of the hedger to hold more of the

underlying when « is larger. Since the market price of risk is a measure of the attractiveness
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of the stock to the risk averse agents, it should decrease as the optimizer should be willing to

hold less of the stock.

Derivative weight ot

—]
0.2
T4
T 0.6

- - 08

P ~ 1

Figure 1.2: Market price of risk u(t,z)/o(t, z) for different values of «

Figure 1.3 shows the market price of risk u(t, z)/o(t, z) for different levels of the optimizer
risk aversion parameter p, where we have taken t = 0.1 and o = 0.5. We notice that as p
increases, the market price of risk increases. This is due to the fact that when the optimizer is

more risk averse, more compensation is required for holding the same amount of risk.
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Risk aversion parameter p
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Figure 1.3: Market price of risk u(t, z)/o(t, z) for different values of p

1.3.2. Stock volatility Figure 1.4 shows the stock volatility o(t,z) for different levels of
the market imbalance a, where we have taken ¢ = 0.1 and p = 6. The volatility function is
exhibiting a spike at the strike price K of the European payoff. We notice that as o increases,
the volatility spike around the strike price increases. This is explained by the increase in trading
volume when the amount of the replicated European call option is higher. Since most of the
hedging activity occurs near the strike price, as can be seen from Figure 1.1, this will lead to
higher volatility levels.

Figure 1.5 shows the stock volatility o(t, z) for different levels of the optimizer risk aversion
parameter p, where we have taken ¢ = 0.1 and o = 0.5. We notice that as p increases, the
volatility spike around the strike price increases. The intuition behind this effect is that, as risk
aversion of the optimizer increases, it takes larger moves in the stock price to make the trades

with the hedger possible.
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Figure 1.4: Stock volatility o(t, z) for different values of «
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Figure 1.5: Stock volatility o (¢, z) for different values of p

1.3.3.

Implied volatility smile We illustrate how the implied volatility smile is affected by

the imbalance on the derivative market for various payoff functions, i.e. we drop the assumption

that h(z) is given by (1.3.1). In each of the Figures 1.6, 1.7 and 1.8 we show the replicated

payoff h(z) on the left side together with the implied volatility at the initial time 0 for different
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strikes at the right side.

The hedger’s contingent claims that we illustrate are butterfly spreads, strangles, condors
and straddles. Long butterfly and long condor positions correspond to betting on low volatility,
while short butterfly and long strangle/straddle positions correspond to betting on high volatil-
ity. Keeping in mind that the stock volatility with no imbalance on the market is 0 = 0.2, we
can see that the presence of a hedger on the market increases the chance of the hedged payoff
h(z) to expire in the money. This is due to the fact that for bets on high/low volatility the
whole implied volatility curve shifts above/below the base volatility level of 0.2.

Assume for a moment that the hedged contingent claim was originally underwritten by the
hedger to a speculating agent which is not trading on the market. We can conclude that this
betting on volatility by the speculator becomes a self-fulfilling prophecy as the hedging activity
of the counterparty (i.e. the hedger) affects the equilibrium stock price such that the price of
the hedged payoff increases.

In general, the high/low points in the implied volatility coincide with long/short positions
in the European options constituting the payoff h(z), and this allows us to obtain any possible
shape of the volatility smile, where strikes that correspond to higher/lower implied volatilities

are evidence of hedging of long/short positions in European call and put options.
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Figure 1.6: Butterfly spread implied volatility
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Figure 1.7: Strangle implied volatility
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Figure 1.8: Straddle implied volatility
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1.4. Appendix

Lemma 1.A.1. Let Assumptions 1.1.1, 1.1.2 and 1.1.3 be satisfied. Then we have that P[Z; =
al =0 and P[Zr < a] > 0 for any a € R. Moreover, E[exp(nZr)] < oo and Elexp(n|Zr|)] < oo

for all n € N, and we also have
Elexp(nZr)u'(exp(Zr) + ho — h(exp(Zr)))] < oo for n e NU{0}.

Proof. Since (C1)-(C3) are satisfied, we can apply Theorem 9.1.9 in [109] to obtain that the
law of Z; admits density under the Lebesgue measure on R and therefore does not have a point
mass, i.e. P[Z; =a] =0 for any a € R and ¢t € [0,7]. Again, from (C1)-(C3), by applying
Theorem 3.1 in [108], we have that the measure PZ~! has full support on the set of real-valued
continuous functions f(t) on [0, 7] such that f(0) = z¢. In particular exp(Z7) has full support
on (0,00). Indeed, for any a € R and € > 0, consider f(t) € C([0,7]) such that f(0) = z
and f(T) = a — ¢, and observe that

PZr <a] >P||Zy —a+¢| <e] >P| sup |Z; — f(t)| <e| >0,
te[0,7]

where the last inequality follows from the full support of the measure PZ~!. Note also that
due to the boundedness of coefficients in (C2) we can apply Problem 3.4.12 in [63] to the
process Z to obtain that it has all exponential moments and, therefore, E[exp(nZ7)] < oo and
Elexp(n|Zr|)] < oo for all n € N.
Note that, from the fact that h(z) is continuous and the condition (1.1.7), we have hy >

h(0). Hence, since h(z) also satisfies (1.1.6), we get that

m>igl(z + ho — h(z)) >0, if h(0) <0 or hy > h(0),

m>in(z + ho — h(z)) >0, if h(0) > 0 and hy = h(0),
for all € > 0. Moreover, if h(0) > 0 and hy = h(0), from (1.1.6) we also have that

h(z) =a1z+ hy for z €0,k

where a; < 1. This means that, if A(0) > 0 and hg = h(0), we obtain

z2+hy—Nh(z) > 1pcpn(l —a)z 4+ 1ok Ip>ikn(2+ ho —h(z)) for z>0.
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Therefore, from the fact that v is strictly decreasing, if A(0) < 0 or hg > h(0) we get that

Elexp(nZr)u/ (exp(Zr) + ho — hlexp(Zr)))] < ' (min(z + ho - h(2)) ) Elexp(nZr))] < oo,

2>0

and if h(0) > 0 and hg = h(0), by using the bounds in (1.1.13), we obtain

Elexp(nZy)u'(exp(Zr) + ho — h(exp(Zr)))]
< Plexp(Zr) < K|E[exp(nZr)u (1 - a1) exp(Zr))| exp(Zr) < &]
+ Plexp(Zr) > KJu' ( min (= + hy - h(z)))E[eXp(nZT)]
< Elexp(nZn))u' (1 = ar) exp(Z7))] + v (min(z + ho — h(2)) ) Elexp(nZy))]
< Elexp(N +n)(1+ |log(1 = ar)| + Zr])] + o (min(= + ho = h(=)) ) Efexp(nZz)] < oo,
for any n € NU {0}. O

Lemma 1.A.2. Under Assumption 1.1.1 the filtration generated by the process Z defined in
(1.1.1) coincides with the filtration (Fi)ico,r) generated by the Brownian motion W .

Proof. Denote by (-th)te[QT] the filtration generated by Z. Since Z is a strong solution to
(1.1.1) it is F;-adapted and therefore FZ C F;. On the other hand from (C1)-(C2), letting
N1 > 0 be a lower bound for |oz| and Ny > 0 be an upper bound for |uz| and |oz|, we notice

that

MZ(t7 Zl) . :uZ(ta 22) _ ’/‘LZ(ta ZI)O-Z(ta 22) — NZ(t) 22)0-Z(t’ Zl)|

oz(t,z1) ozt 29) loz(t, z1)07(t, 29)]

< |02(t, 22) ||z (t, 21) — pz(t, 22)| + |pz(t, 22)||oz(t, 22) — 02(t, 21)]
< N2

< N2t 2) = pa(t 2)| + |o(t 22) — 0z(t 2]

= 2 ng )

and it follows from (C3) that pz/oz is locally Lipschitz. By similar arguments the same
holds for 1/cz. Moreover, from (C1)-(C2) it follows that uz/oz and 1/0% are also bounded.
Therefore the SDE

i /LZ(t, Zt> 1
dW; = — dt dz, f te |0, T 1.A.1
! O-Z(t7 Zt) + O-Z<t7 Zt) ! o < [ ’ ], ( )

has a unique strong solution W which is F7-adapted. But from (1.1.1), by substituting the
expression for Z in (1.A.1), we get that W =W a.e.as. and therefore W is also F7-adapted,
which means that F; C FZ. This leads to F;, = F7. O
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Lemma 1.A.3. In the setting of Theorem 1.2.1 let (My)icpo,m) be a square-integrable martingale

under the equivalent martingale measure Q with Radon-Nikodym derivative ‘fl% = Ly. Then

there exists an JFy-progressively measurable process ¢ = (¢i)icor) such that

T
E [/ (p§d8:| < 00, (1.A.2)
0
t —~
M, = M, +/ psdW, a.e.a.s., (1.A.3)
0

where W is a Brownian motion under Q. Moreover for any other JF;-progressively measurable

process O = (Pi)iejor) satisfying (1.A.2)-(1.A.3) we have

T
/ (pr = @)?dt =0 as. (1.A4)
0

Proof. From Lemma 1.6.7 in [64] we know that there exists an J;-progressively measurable

process ¢ = (¢¢)ejo,r) satisfying condition (1.A.3) such that

T
/ @2ds < 00 a.s..
0

However, since M is square-integrable we can use Ito isometry together with (1.A.3) to get
T T
[ ][ ] o)
0 0

and therefore ¢ satisfies (1.A.2).
Assume that there exists another J;-progressively measurable process ¢ = (@y)iejo,r] satis-

fying conditions (1.A.2)-(1.A.3). Then we have that the process M defined as

= E[(Mr — My)?] < oo,

— t —
M, ::/(gos—g)fs)dT/VS for te 0,7,
0

is a square-integrable martingale that is identically zero, and therefore its quadratic variation

is also zero. By the Ito isometry we conclude that (1.A.4) holds. O

Lemma 1.A.4. Let Assumptions 1.1.1 and 1.2.1 hold, and the function g(z) : R — R belongs
to the class C(R)NCY(R \ A), where A = {ai,...,an} C R is the set of points for which
g(z) is not differentiable and a; < ay < -+ < an, for some m € N. Assume also that
g(2) is decreasing for = € R and strictly decreasing for z < a1, and that |g(z)| < eMO+ED)
for z € R and |g'(z)|] < MU+ for 2 € R\ A, for some constants Ny, Ny > 0. Let
G(t,z) € C*2([0,T) x R)NC ([0,T] x R) be the unique solution of the PDE

LzG(t,z) =0 for (t,2)€[0,T) X R, (1.A.5)
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with the terminal condition
G(T,z)=g(z) for z€eR, (1.A.6)

in the class of functions satisfying the growth condition |G(t,2)| < ¢y exp(ca2?) for some con-

stants c1,co > 0. Then we have that G(t, z) is strictly decreasing function in z for allt € [0,T).

Proof. That the solution G(t,z) to the PDE in (1.A.5) exists and is unique follows from the
fact that (C1)-(C3) are satisfied by Theorems 9.3 and 2.10 in [37].

Since G(T',z) = g(z) is not differentiable only for z € A, we introduce a class of functions
which approximate G(T,z) and smoothen the m discontinuities of 9¢(T,z). First let m € N
be defined as

1
ﬁ: |: I } + 1’
MiNg, £aea [a; — a4
and denote M = {1,...,m} C N. For any [ € M and n € N, such that n > @, denote

kijn=a;—1/n and kg, = a; + 1/n, and introduce the constants

Q(G(T7 k2,l,n) - G(T7 kl,l,n))
%(TJ kl,l,n) + %(T, k2,l,n) ’

(1.A.7)

Iin —

1 (0G oG
5l,n = n(G(T, ]{igyl,n) — G(T, kl,l,n)) — 5 (E(T, kl,l,n) -+ E(T, ]{72’[’”)) . (1A8)

Notice that, since G(T), z) is decreasing and not differentiable at a;, we have that G(T', ko) —
G(T,k1,) < 0. Moreover G(T,z) is differentiable at z = ky;, and z = kg, since n > 7.
Therefore ¢, is well-defined and ¢;,, € {—00} U (0,00). Denote B = U1§l§m(k51,lm ko) and
define the function G,(z) as

Gn(z):=G(T,z) for ze€R\B,

a@yzé on(0)dv+ G(T, ki) for = € (Kram ko),
1,l,n

where the piecewise linear function ¢;,(z) defined for z € [ky ., kay,] is given by

o kl,l,n + €ln — % oG

Spl,n(z) — glﬂl E(T, kLl’n)1{Ze[kLl’n,k’l,l,n"‘El,n]}
4 2= (ko — e, )—(T, koun)Lzelho neinkonaly 1 €1n € (0,1/n],
€l7n aZ
oG
Pin(2) =n | (a0 = 2) 5= (T krgn) + (2 = krin)Oun | Leelpy o)

oG :
+n <(Z — al)E(T, /{3271,,1) + (1{3271,11 — Z)(Sl’n> 1{26[111,/62,1,71}} if Elin € {—OO} U (1/n, —|—OO)
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Since G(T), z) is decreasing, and noticing from (1.A.7)-(1.A.8) that J;,, < 0 when ¢;,, € {—o0}U

(1/n,400), we get that ¢;,(2) is nonpositive and continuous, and moreover it satisfies

k2,l,n
/ Qin(v)dv = G(T, koypn) — G(T, k1), (1.A.9)
k11n
oG oG
(ki) = g(T; kiin), in(koin) = %(T, koyn)- (1.A.10)

By the fact that G(T,2) € C*(R\ A) and the continuity of ¢;,(z) for [ € M, we have that
G, € CYR\ B)NCY(B). By using the continuity of ¢;,(z) and (1.A.9)-(1.A.10) we obtain

z

lim G,(z) = lim Oin(V)dv + G(T, k1) = G(T, k1) = Um Gp(z),
Z\Lkl,l,n Z\Lkl,l,n kl,l,n z klln
Aim G(2) = lim - Pra(V)dv + G(T ki) = G(T ko) = lim Gn(z),

oG

li G’ = i n = T k)= 1 G’

Aim Gu(z) = fm oun(z) = 52 (Tohia) = fim G(2),
’ oG /
lim G)(2) = lim ¢ ,(2) = =—(T,kayn) = lim G, (2),

h2,in #k2,1,n 0z 2bk2,in
and it follows that G,(z) € C*(R). Since G(T, z) is nonincreasing and ¢;,, is nonpositive for

[ € M it follows that G,(z) is nonincreasing. Therefore we have
|Gn(2) —G(T, 2)| < G(T, k1yn) — G(T, kayyn) for ze€ (kiin.koin),

and from the fact that G,(z) = G(T,z) for z € R\ B and the continuity of G(T,z) for
z € A, it follows that G, (z) converge uniformly to G(T,z) as n — oco. In particular, since
|G(T, 2)| < eMUHED and sup, 5 G (2) = Gu(2*) < 0o for some z* € B, where B denotes the
closure of the set B, it follows that |G, (z)] < e9"(*1?) for some constant g, > 0. Moreover

we have

|G’<>|—' (T2 = 1/(2)] < MOHD for 2 e RN B

|G;J(z)| = |S01n(2’)| for 2 € (kl,l,nakQ,l,n)7

and, similarly, since ¢;,,(z) achieves its maximum in the closed interval [ky ., k2], Wwe obtain
that |G’ (2)] < 92 (1+12) for some constant g, > 0 and for all z € R.

By using conditions (C1)-(C3) and the fact that |G, (z)| < e+ from Theorem 9.3 in
[37] we have that there exists a solution G, (¢,z) € CY2([0,T) x R)NC ([0, T] x R) to the PDE
n (1.A.5) with the final condition G, (7T, z) = G,(2). The solution is of the form

Gn(t, z) = /Jroop(t,z;T, V)G (v)dv for (t,z) €]0,T) x R, (1.A.11)

—0o0
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where we recall that p(ty, z;te,v) is the fundamental solution of (1.A.5). Moreover, from

Theorem 9.2 in [37] we have the bound

‘@u,z;n )

<
0z -

¢ - exp (—c(” — 2)2) , (1.A.12)

T—t

for some positive constants C' and c. Therefore, by differentiating (1.A.11) and using a change-
of-variable formula and the fact that exp(g,vv/T —t) < exp(cv? + Tg2/(4¢)) for any (t,v) €
[0,7) x R and any constant ¢ > 0, it follows that

oG e ¢ (v—2)? et G oo 2
n ¢ < e9n n _ dv < gn VT —t|v|—cv d
‘82(’2)‘_6 /_ T_texp(g [v] cT—t) v m— _Ooe v

edntlzl(r oo egn-HzH-%C +00
VT =1 o VT =t )

for (¢,2) € [0,T) x R. Hence, if we choose ¢ such that ¢ < ¢ we get

[e.e]

egn\/T—tv—cv2 dv < 6(6—0)1)2 dv.

b2+ T
Ko,y < & oy,
0z (c—2e)(T —1)

for (¢t,z) € [0,T) x R. Hence for any ¢ > 0 we obtain
et ONTr [+

/OT /:o '%”’ ) N

From condition (D1) we can differentiate (1.A.5) once with respect to z to get that 25=(t, 2)
solves the PDE

0K Opz 190% 0K o3 (t,z) K
S+ LK) + (st 2) + 552 (4 2)) G- (b )+ LT

e dzdt < 1 4z < 0. (1.A.13)

(t,z) =0
(1.A.14)
for (t,2) € [0,T) x R,

with the final condition

oG,
0z

Moreover, since (C1)-(C3) and (D1)-(D3) are satisfied, and since we know that |G} (z)| <
eIn(HD and 282 (¢, 2) satisfies (1.A.13), we can apply Theorems 9.3 and 9.6 in [37] to get that
9% (¢, z) is the unique solution to (1.A.14)-(1.A.15) and has the form

(T, 2) = G..(2). (1.A.15)

+o0o
aaGn (t,2) :/ p(t, 2, T,v)G (v)dv for (t,2) €[0,T) x R, (1.A.16)
z _

o0
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where p(t1, z;t2, v) is the fundamental solution of (1.A.14). From Theorem 2.11 in [37] we have
that p(t, z;T,v) > 0, and using that G’ (z) < 0 together with the fact that G(T, z) is strictly

decreasing for z < a1, we have that for any n > 7n

oG +00 k117
8—”(1?,2) :/ pt, 2, T,v)G! (v)dv §/ p(t, 2, T,v)G! (v)dv
z —00 —00
k11,7 _ oG
:/ p(t,z;T,v)a—(T,v)dv<0 for (t,2) €[0,7) x R.
e z

This means that G,(t,z) is strictly decreasing in z for (¢,2) € [0,7) x R. Moreover, by
the mean value theorem, for any z;,zs € R such that z; < 29 and for any n > 7, there is

2 € [21, 2] such that

oG,

Gn(t; 21) - Gn(t7 22) = (21 - 22) 92

k11,7
(t,°) > (21— 2) / B, ze;T,v)g—f(T,v)dv(l.Al?)

o0

ki1,m oG
> (21 — z2) sup / p(t, z; T, U)%(T,’U)dv >0 for tel0,T).
]

z€[z1,22] J —0

Notice that from (1.A.11) we get

|Gnlt,2) = G(t,2)] < / Oop(t,Z;T,v)lGn(v) = G(T,v)l|dv,

and, since G,(z) converge uniformly to G(T',z), we get that G,(t,z) converge uniformly to
G(t, z) with respect to z for (t,2z) € [0,7) x R as n — oo. Now taking zj, 22 € R such that
21 < zo we have from (1.A.17)

G(t,z1) — G(t, 20) = lim (G, (t, 21) — Gp(t, 22))

n—oo

k11,7
> (21 — 2z3) sup / ﬁ(t,z;T,v)a—G(T, v)dv >0 for te[0,T),

z€[z1,22] 00 0z

and it follows that G(t, z) is strictly decreasing in z for t € [0,7). ]
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Chapter 2

On the sequential testing and quickest
change-point detection problems for

Gaussian processes

This chapter is based on joint work with Dr. Pavel V. Gapeev.

2.1. Preliminaries

In this section, we give a formulation of the unifying optimal stopping problem for a one-
dimensional time-inhomogeneous regular diffusion process and consider the associated partial

and ordinary differential free-boundary problems.

2.1.1. For a precise formulation of the problem, let us consider a probability space (2, G, P)
with a standard Brownian motion B = (B;)i>o. Let ® = (®;);>0 be a one-dimensional time-
inhomogeneous diffusion process with the state space [0,00), which is a pathwise (strong)

solution of the stochastic differential equation

where 7(t,¢) and ((t,¢) > 0 are some continuously differentiable functions of at most linear

growth in ¢ on [0,00). Let us consider an optimal stopping problem with the value function

Vi(t, ¢) = inf By {G((I)HT) + /0 P, ds} , (2.1.2)
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where E; s denotes the expectation under the assumption that ®; = ¢, for some ¢ € [0, 00).
Here, the gain function G(¢) and the cost function F(¢) are assumed to be non-negative,
continuous and bounded, G(¢) is concave and continuously differentiable on ((0,¢") U (¢, 00))
for some ¢ € [0, 00], and the infimum in (2.1.2) is taken over all stopping times 7 such that the
integral above has a finite expectation, so that E;,7 < oo holds. Such time-inhomogeneous
optimal stopping problems for diffusion processes within a finite horizon setting have been
considered in McKean [77], van Moerbeke [113], Jacka [55], Broadie and Detemple [19], Myneni
[80], Peskir [87, 86], and [41, 42] among others (see also Peskir and Shiryaev [90; Chapter VII]
and Detemple [30] for an overview and further references). Other time-inhomogeneous optimal

stopping problems with infinite time horizon were recently considered in [39].

Example 2.1.1 (Sequential testing problem.). Suppose that we observe a continuous
process X = (Xi)i>o of the form X; = Ou(t) + B;, where p(t) > 0 is increasing and two
times continuously differentiable function for ¢t > 0, u(0) = 0, and B = (B;):>o is a standard
Brownian motion which is independent of the random variable 6. We assume that P( = 1) =«
and P(# = 0) = 1 — 7 holds for some 7 € (0,1) fixed. The problem of sequential testing of
two simple hypotheses about the values of the parameter # can be embedded into the optimal
stopping problem of (2.1.2) with G(¢) = ((a¢) Ab)/(1 + ¢) and F(¢) =1, where a,b > 0 are
some given constants (see, e.g. [105; Chapter IV, Section 2] and [90; Chapter VI, Section 21]).

In this case, the likelihood ratio process ® takes the form

®t: T

L, with Ly — exp </Ot;/(s) dx, — %/Ot(,/(s))?ds), (2.1.3)

1—m
and thus solves the stochastic differential equation of (2.1.1) with the coefficients n(t, o) =
(1 (1)$)?/(1 + ¢) and ((t, ¢) = p/(t)é, where the process B = (By);>o defined by

t
- 1 (s) s
B, =X, — ——d 2.1.4
t t /0 1+ @, S ( )
is the innovation standard Brownian motion generating the same filtration (F;)i>o as the

process X .

Example 2.1.2 (Quickest change-point detection problem.). Suppose that we observe
a continuous process X = (X;);>o of the form X, = (u(t) — pu(6))™ + B;, where pu(t) > 0
is increasing and two times continuously differentiable function for ¢ > 0, u(0) = 0, and
B = (Bi)>0 is a standard Brownian motion which is independent of the random variable 6.

We assume that P(0 = 0) = 7 and P(0 > t|0 > 0) = e holds for all ¢+ > 0, and some
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m € (0,1) and A > 0 fixed. The problem of quickest detection of the change-point parameter
0 can be embedded into the optimal stopping problem of (2.1.2) with G(¢) = 1/(1 + ¢) and
F(¢) = cp/(1+4 ¢), where ¢ > 0 is a given constant (see, e.g. [105; Chapter IV, Section 4] and
[90; Chapter VI, Section 22]). In this case, the likelihood ratio process ® takes the form

Lt ™ t )\€_>\S
d, = 1.
. e—At(l—n+/0 T ds> (2.1.5)

with L = (L¢)i>0 given by (2.1.3), and thus solves the stochastic differential equation (2.1.1)
with the coefficients n(t,¢) = M1 + ¢) + (1/(t)9)?/(1 + ¢) and ((t,¢) = u'(t)¢, where the

innovation standard Brownian motion B = (B;);> is given by (2.1.4).

2.1.2. It follows from the general theory of optimal stopping for Markov processes (see, e.g.
[90; Chapter I, Section 2.2]) that the optimal stopping time in the problem of (2.1.2) is given
by

T =1nf{s > 0| Vi(t + s, Pris) = G(Prys)} (2.1.6)

whenever it exists. We further search for an optimal stopping time of the form
T = 1nf{s > 0| Dyps & (gu(t + ), hu(t +5))} (2.1.7)

for some functions 0 < g.(f) < h.(t) < oo to be determined (see, e.g. [90; Chapter IV,

Section 14] for a time-inhomogeneous finite-horizon setting).

2.1.3. By means of standard arguments (see, e.g. [63; Chapter V, Section 5.1]), it can be
shown that the infinitesimal generator L of the process (t,®) = (¢,®;);>0 is given by the
expression

¢(t, ¢)

9, (2.1.8)

for all (¢,¢) € (0,00)?. In order to find analytic expressions for the unknown value function
Vi(t,¢) from (2.1.2) and the unknown boundaries g¢.(t) and h,(t) from (2.1.7), we use the
results of general theory of optimal stopping problems for continuous time Markov processes

(see, e.g. [105; Chapter III, Section 8] and [90; Chapter IV, Section 8]). We formulate the
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associated free boundary problem

(LV)(t,6) = —F(¢) for g(t) < 6 < h() (2.1.9)
V(t, g(t)+) = G(g(t)) and V(t,h(t)=) = G(h(t)) (instantaneous stopping)  (2.1.10)
V(t,¢) = G(¢) for é<g(t) and > h(t) (2.1.11)
V(t,¢) < G(¢) for g(t) < ¢ < h(t) (2.1.12)

( )

(LG)(¢p) > —F(¢) for ¢ <g(t) and ¢ > h(t)

for some 0 < ¢(t) < ¢ < h(t) < oo and all ¢ > 0. Note that the superharmonic characterization
of the value function (see, e.g. [105; Chapter III, Section 8] and [90; Chapter IV, Section 9])
implies that Vi(t,¢) from (2.1.2) is the largest function satisfying (2.1.9)-(2.1.13) with the
boundaries g.(t) and h.(t). Moreover, since the system in (2.1.9)-(2.1.13) may admit multiple
solutions, we need to use some additional conditions which would uniquely determine the value
function and the optimal stopping boundaries for the initial problem of (2.1.2). For this reason,

we will need to assume that the smooth-fit conditions
0V (t,g(t)+) = 0,G(g(t)) and 0,V (¢, h(t)—) = 0sG(h(t)) (smooth fit) (2.1.14)

hold for all £ > 0.

We further provide an analysis of the parabolic free boundary problem of (2.1.9)-(2.1.13),
satisfying the conditions of (2.1.14), and such that the resulting boundaries are continuous and
of bounded variation. Since such free-boundary problems cannot normally be solved explic-
itly, the existence and uniqueness of classical as well as viscosity solutions of the variational
inequalities, arising in the context of optimal stopping problems, have been extensively studied
in the literature (see, e.g. Friedman [36], Bensoussan and Lions [14], Krylov [72], or Oksendal
[83]). Although the necessary conditions for existence and uniqueness of such solutions in [36;
Chapter XVI, Theorem 11.1], [72; Chapter V, Section 3, Theorem 14| with [72; Chapter VI,
Section 4, Theorem 12], and [83; Chapter X, Theorem 10.4.1] can be verified by virtue of the
regularity of the coefficients of the diffusion process in (2.1.1), the application of these classical
results would still have rather inexplicit character. We therefore continue with the following
verification assertion related to the free boundary problem formulated above, which is proved

in the Appendix.

Theorem 2.1.3. Let the process ® be a pathwise unique solution of the stochastic differential

equation in (2.1.1). Suppose that the functions G(¢) and F(¢) are bounded and continuous,
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and G is concave and continuously differentiable on ((0,c) U (¢/,00)) for some ¢ € [0,00].
Assume that the couple g.(t) and h.(t), such that 0 < g.(t) < ¢ < hy(t) < 00, together with
V(t, ¢; g«(t), hi(t)) form a solution of the free boundary problem of (2.1.9)-(2.1.14), while the
boundaries g.(t) and h.(t) are continuous and of bounded variation. Define the stopping time
T. as the first exit time of the process ® from the interval (g.(t), h.(t)) as in (2.1.7), and
assume that E; 47, < 0o holds. Then, the value function V.(t,$) takes the form

G(9), if ¢ <gu(t) or ¢ = h.(t)
with .
V(t, ¢; 9:(t), he(t)) = Epp {G(@HT*) + /0 F(®45) ds}, (2.1.16)

and the boundaries g.(t) and h.(t) are uniquely determined by the smooth-fit conditions of
(2.1.1).

2.1.4. Note that the solution of the free boundary problem in (2.1.9)-(2.1.14) cannot be found
in an explicit form for the sequential testing and quickest change-point detection problems
formulated in Examples 2.1 and 2.2 above. In this respect, let us introduce the function XA/(t, o)

and the boundaries g(t) and /f;(t) satisfy the second-order ordinary differential equation
(LV)(t,6) = —F(9) + BV (1, 6) for 4(t) < 6 < h(t), (2.1.17)

and the conditions of (2.1.10)-(2.1.14), where the variable ¢ plays the role of a parameter. We
further provide a connection of the original and the auxiliary free boundary problems associated
with the differential equations in (2.1.9) and (2.1.17), respectively. In particular, we will show
that, under certain conditions, the lower and upper optimal stopping boundaries g(¢) and ﬁ(t)
of the auxiliary problem provide lower and upper estimates of the optimal stopping boundaries

g«(t) and h,(t) of the original problem.

Let us first state the corresponding verification assertion for the modified free boundary

problem which directly follows from Theorem 2.1.3.

Corollary 2.1.1. Let the process ® be a pathwise unique solution of the stochastic differential
equation in (2.1.1). Suppose that the functions G(¢) and F(¢) are bounded and continuous,
and G is concave and continuously differentiable on ((0,c) U (¢/,00)) for some ¢ € [0,00].

Assume that the couple g(t) and E(t), such that 0 < g(t) < ¢ < /fZ(t) < o0, together with
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~

V(t,¢;9(t), h(t)) form a unique solution of the ordinary differential free boundary problem of
(2.1.17)+(2.1.10)-(2.1.14), the derivative 0,V (t, ¢; §(t),ﬁ(t)) exists and is continuous, and the
boundaries g(t) and ﬁ(t) are continuous and of bounded variation. Then, the function V(t,¢)

defined by

D(t.6) = V(t, ¢;:9(t), h(t), if g(t) < & < h(t) (2.1.18)

G(9), if & <3(t) or ¢>h(t)

18 the value function for the optimal stopping problem
V(t,¢) = inf B4 [G(Q)HT) (2.1.19)
+ /0 ' <F(<I>t+5) — OV (t+ 5, i) I(Drps € (Gt +5), h(t+ s)))) ds}
where I(-) denotes the indicator function and the stopping time T of the form
F=inf{s > 0|, & (Gt +5),h(t +5))} (2.1.20)
is optimal in (2.1.19), whenever the integral above is of finite expectation, and T = 0 otherwise.

Remark 2.1.4. Let us fix some ¢t > 0 and assume that 8ﬂ7(t+s, ¢) > 0 holds for all s >0 and
¢ € (§(t+ s), h(t+s)). Then, the value function V(¢ + s, ) of the auxiliary optimal stopping
problem in (2.1.19) represents a lower estimate for the value function V.(t + s,¢) of (2.1.2),
ie. XA/(t +5,¢0) < Vi(t+s,¢) for all s >0 and ¢ > 0. Indeed, it follows from the fact that
OV (t+s,¢) >0 forall s >0 and ¢ € (§(t+s), h(t+s)) that the stopping times 7 over which
the infimum is taken in (2.1.19) include those for which E; 47 < oo holds. Hence, comparing
the right-hand sides of (2.1.2) and (2.1.19), and using again the property OtIA/(t +s,¢) >0, we
obtain 17(75 +5,0) < Vi(t+s,¢) for all s >0 and ¢ > 0. It thus follows from the structure of
the optimal stopping times 7, and 7 in (2.1.7) and (2.1.20) that the inequality 7. <7 should
hold (P, 4-a.s.). In this case, the optimal stopping boundaries g(t + s) and h(t + s) from
(2.1.20) are lower and upper estimates for the original optimal stopping boundaries g, (t + s)

and h,(t+s) in (2.1.7), that is g(t +s) < g.(t +s) and h.(t+s) < ﬁ(t%—s) for all s > 0.

Example 2.1.5 (Sequential testing problem.). Let us first solve the free-boundary problem
in (2.1.17)4(2.1.10)—(2.1.14) with G(¢) = (ap A b)/(1 + ¢) and F(¢) =1 as in Example 2.1.1
above. For this, we follow the arguments of [105; Chapter IV, Section 2] and [90; Chapter VI,

Section 21] and integrate the second-order ordinary differential equation in (2.1.17) twice with
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respect to the variable ¢/(1 + ¢) as well as use the conditions of (2.1.10) and (2.1.14) at the
upper boundary ﬁ(t) to obtain

Vie0:30.50) = 15~ G (T~ Tg) T00) — ¥G0) + 9(). 2121
where we denote
V(o) = 1+j; Ing and Y(¢)=¢— % +2Iln g, (2.1.22)

for all ¢ > 0. Then, applying the conditions of (2.1.10) and (2.1.14) at the lower boundary
g(t), we obtain that the functions g(¢) and E(t) solve the system of arithmetic equations

a(i'(t))?g(t) _ b(u'(t))? h(t) o)
21+g0) 21+gm) (1 AT+ g@)) WD)~ (g(t), (21.23)
(b+ a) (i (1))

5 = T(h(t)) — T(g(1)), (2.1.24)

which is equivalent to the system

b= WO _ oy L - L (2.1.25)

2 g(t)’
b/ (1))? )
2

=h(t)+Inh(t) —g(t) —Ing(t (2.1.26)

for all ¢ > 0. It is shown in [105; Chapter IV, Section 2| and [90; Chapter VI, Section 21] that
the system in (2.1.25)-(2.1.26) admits the unique solution 0 < §(¢) < b/a < h(t) < oo, for any
p'(t) and t > 0 fixed. Moreover, by using the implicit function theorem, we can differentiate

(2.1.25)-(2.1.26) to get

(b= @O0 = 6) ~ s — (0 + 2 (2.1.27)
b () = (0 + ) ') = 2, (2.25)

from which we deduce that

/ _Nl() "(t)(b — ah(t))g*(t) / _Nl(t)ﬂll(t)(b—ag(t))h?(t)
O = om0y ™ PO= 500+ Do) = o) (2.1.29)

holds for all £ > 0. In particular, we also obtain that the partial derivative (9t‘7(t, ¢) exists and

1S continuous.
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Example 2.1.6 (Quickest change-point detection problem.). Let us now solve the free-
boundary problem in (2.1.17)4(2.1.10)-(2.1.14) with G(¢) = 1/(1+¢) and F(¢) = c¢/(1+ ¢)
as in Example 2.1.2 above, where we set g(t) = 0 for all ¢ > 0. For this, we follow the arguments
of [105; Chapter IV, Section 4] or [90; Chapter VI, Section 22] and integrate the second-order
ordinary differential equation in (2.1.17) twice with respect to the variable ¢/(1 4 ¢) as well
as use the conditions of (2.1.10) and (2.1.14) at the upper boundary iAz(t) to obtain

G- Wocw v B 142
V(t,¢,h(t))—1+ﬁ(t)+/¢ (1+y)2/0 exp( A(t)(H(y) H(:z:))) —“dady, (2.1.30)

where we denote

Ct) = 2 A(t):w?(j))Q, and H(x)zlnm—l—;x,

for all t > 0 and ¢ > 0. It thus follows from the condition of (2.1.14) that the boundary E(t)

(2.1.31)

solves the arithmetic equation

1+«
T

h(t)
o) /0 exp ( —A(t) (H(h(t)) — H@))) dr =1, (2.1.32)

for all ¢ > 0. It is shown in [105; Chapter IV, Section 4] and [90; Chapter VI, Section 22] that
the equation in (2.1.32) admits the unique solution \/c < E(t), for any 4/(t) and t > 0 fixed.
Moreover, by using the implicit function theorem, we can also obtain that ﬁ(t) is continuosly

~

differentiable, as well as the partial derivative 0,V (t, ¢) exists and is continuous.

2.2. Asymptotic behaviour of the stopping boundaries

In this section, we are interested in how the optimal stopping boundaries g(t) and E(t) in the
modified problem behave asymptotically with respect to the derivative p'(¢) of the drift function
p(t) in Example 2.1.1 and Example 2.1.2, as t — oo. More precisely, we will obtain the limits
and the asymptotic expansions of g(¢) and /ﬁ(t) with respect to p/(¢) in some particular cases,

when either p/(t) — 0 or p/(t) — oo holds as t — co.

Example 2.2.1 (Sequential testing problem.). Let us introduce the function W(x) which

is the inverse of e”x, and thus, solves the equation

MNOW(z) =2 for 2>0 (2.2.1)
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(see, e.g. [22; Formula (1.5)]). Note that W (x) is strictly increasing and satisfy the properties

W(0) =0, and W(z) — 0o as x — oo, and it has the asymptotic series expansion
W(zx) ~1In(x) —In(In(x)) as z — oo (2.2.2)

(see, e.g. [22; Formula (4.19)]). Then, by solving the quadratic equation in (2.1.25) for h(t),
we obtain that g(t) and /f;(t) satisfy

o / 2 o / 2\ 2
2 " 24(1) 4 2 " 29(1) 4

where ﬁ(t) =N (t) or /ﬁ(t) = /f;+(t), for all ¢ > 0. Hence, by substituting the expression of
(2.2.3) into the formula of (2.1.26) and taking exponentials on both sides, we have that g(t)

satisfies the following equation

SERETON 1

=W (eg(t)+b(u’(t))2/2g(t)) :

o) 1 b-a®)? | \/(g(t) 1 +<b—a><w<t>>2)2_1 224

which contains both the positive and negative branch of the function on the left-hand side,
depending on the root which we have chosen for /ﬁ(t) in (2.2.3). If we rearrange the terms and

square both sides of the expression in (2.2.4), we get that g(¢) should satisfy

14+ W2 (eg(t)+b(u/(t))2/2g<t>) — (g(t) + + (b— G)Z(N/(t»Q) W(eg(t)+b(,u’(t))2/2g<t>)7 (2.2.5)

9(t)
for all ¢ > 0.

Let us first consider the case in which b > a and p/(t) — oo holds as ¢t — oo. If we assume
that lAz(t) = ﬁ,(t), by using the assumption that b > a and 0 < g(t) < b/a, we obtain that
h_(t) — 0, which contradicts the fact that b/a < ﬁ(t) < o0 holds for all ¢t > 0. It follows
that h(t) = hy(t) and §(t) should solve the equation in (2.2.4) with the positive branch of
the function taken on the left-hand side. Hence, the left-hand side of the expression in (2.2.4)

~

converges to oo as t — 00, so that e9®HW ©)*/2G(4) — 5o holds by virtue of the properties
of the function W (z) defined in (2.2.1). In particular, the functions on both sides of (2.2.5)
converge to oo with the same speed, and thus, the following expression holds

W(eg(t)+b(“,(t))2/2/g\(t)) - (b— CL)Q(M/(t))2 + g0t + @% as t— o0. (2.2.6)
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Furthermore, taking into account the asymptotic series expansion of (2.2.2), we see that

W(eﬁ(t)er(u/(t))Q/Z/g\(t)) ~ %@))2 + /g\(t) 4 ln(fq\(t)) as t — oo. (2.2.7)

Since g(t) is bounded from above by b/a for all ¢t > 0 and using the equation of (2.2.3) for
ﬁ(t), we therefore conclude that

and ﬁ(t) ~ M%W as t— oo. (2.2.8)

Let us now consider the case in which b < a and p/(t) — oo holds as ¢ — oo. Since the
function on the left-hand side of (2.1.25) converges to —oco as t — oo, taking into account the
fact that g(t) < b/a < /ﬁ(t) holds for ¢t > 0, we obtain that g(t) — 0 as t — co. Assuming
that W (ed(0)+0('(1)*/ Zg(t)) does not converge to oo implies that there exists a sequence (,)nen,
such that ¢, — oo and §(t,) = O(e ?W))*/2) a5 n — oo. Now if ﬁ(t) = ﬁJr(t), we obtain
that A(t,) — oo as n — oo, while the assumption that the right-hand side of (2.2.4) does
not converge to oo leads to contradiction. On the other hand, if ﬁ(t) =h_ (), we obtain that
ﬁ(t) — 0, which contradicts the assumption that b/a < ﬁ(t) < o0 holds for all ¢ > 0. We
therefore obtain that W (e9®+0W (1)*/2G(4)) — 0o, and by the same considerations as in the
case b > a above, regarding the asymptotic behaviour of the both sides of (2.2.5), we obtain
(2.2.8).

Let us finally consider the case in which p/(¢) — 0 holds as ¢t — co. Since the left-hand side
of (2.1.26) converges to 0 in this case, by using the fact that the function = + In(x) is strictly
increasing for x > 0, and 0 < g(t) < b/a < /ﬁ(t) < o0 holds for all ¢ > 0, we may conclude
that g(t) — b/a and /f;(t) — b/a holds as t — oo.

Example 2.2.2 (Quickest change-point detection problem.). Integrating by parts and

using the notations of (2.1.31), we obtain

o(t) /Oy @ exp ( —A() (H(y) — H(a:))) dr =Y (1 - Q(_A(/?@;i’i\(t)/y)) . (2.2.9)

where we denote
Q(z,y) = —zy *e’T'(z,y) with T'(z,y) :/ e “u* ! du, (2.2.10)
v

for all 2 <0 and y > 0. In this case, the expression in (2.1.32) takes the form

h(t) (1 - Q(_A(tixé)lfl(t)/h(t))> _A (2.2.11)

Cc
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for all ¢ > 0. We also recall the properties of the function @Q(z,y) in [111; Section 9] (see also
[46; Section 2.5]) and note that 0 < Q(z,y) < 1 as well as @(z,0) =1 holds for all z <0.

Let us first consider the case in which p/(t) — oo, and thus A(t) — 0 as t — oo. Since
Ac < h(t) holds, we have A(t)/h(t) — 0, so that Q(—A(t) — 1, A(t)/h(t)) — 1 as t — oco.
Therefore, by using the fact that ﬁ(t) satisfies the equation in (2.2.11), we get that ﬁ(t) — 00
holds as t — o0.

Suppose that p/(t) — 0, so that A(t) — oo holds as t — oo. Then, using the property
0 < Q(z,y) <1, it follows from (2.2.11) that

~

A
h(t) ~ — as t— oc. (2.2.12)
c

Let us now determine the exact rate of increase for /f;(t) in the case in which p/(t) — oo as

t > 0o. In this case, the expression in (2.1.32) can be written as

h(t)
A(t) / exp (A(t) H(x))
0
for ¢ > 0. Then, using the definition of the function H(z) in (2.1.31), we obtain the expansion
on the right-hand side of (2.2.13) in the form

LT = % exp (A(t) H(h(t))), (2.2.13)

X

~

A ~ A h(t)AO
= exp <A(t) H(h(t))) ~ I (2.2.14)
under 4/(t) — co. Note that the assumption of
limsup h(t)*® = 0o (2.2.15)

t—o0
implies that there exists a sequence (t,)nen, such that ¢, — oo and exp(A(t,)H (ﬁ(tn))) — 00
as n — 0o. Since we have ﬁ(t) — 00, there exists ' > 0 such that 2\/c < h(t) holds for all
t > t'. Moreover, since the function H(z) is strictly increasing for = > 0, by evaluating the
left-hand side of (2.2.13) at h(t), we obtain that

1+
X

[ awess (s rw) - | " desp (0 1) 2210

> / h(t)xdexp (A(t) H@)) > %(exp (A(t) H(ﬁ(t))) —exp (A(t)H(%)))

22
c

holds for all ¢ > #. This fact means that the leading term of the left-hand side of (2.2.13)
is larger than the leading term on the right-hand side of (2.2.13) along the sequence t,, as
n — oo, and thus, the assumption of (2.2.15) cannot be satisfied. Since /f\z(t) — oo and
A(t) — 0, we have ﬁ(t)A(t) 21 as t — oo. The latter fact implies that ﬁ(t)A(t) is bounded, so
that Inh(t) = O((1/(t))?) as t — cc.



2.3. The fractional Brownian motion setting 71

2.3. The fractional Brownian motion setting

In this section, we apply the asymptotic results obtained above to demonstrate the existence of
solutions in the problems of sequential analysis for an observable fractional Brownian motion
with linear drift. In particular, we will prove that the optimal stopping time 7, has a finite

expectation.

Example 2.3.1 (Sequential testing problem.). Suppose that in the setting of Example
2.1.1 the observable continuous process X = Y# = (Y1), is given by Y, = 0pt + BF | where

B = (Bl);> is a fractional Brownian motion with parameter H € (1/2,1) independent of

0, and p > 0 is a constant. Introduce the process M= (MtH)tZO by

—H ¢ S
M, :ZtH—cl/p
0

1-2H g c t2-2H
14 @,

ds with <MH>t:<ZH>t:2_2H,

where the process Z = (Z/),5 is defined by

" t 81/27H(t . 8)1/241 " B F(3/2 _ H)
Z —/0 SHT(3/2— BT (H +1/9) dY;" and = SHT(H + 1202 — 20" (2.3.2)

with @ being the likelihood ratio process as in (2.1.3).

It follows from the result of [82; Theorem 3.1] that the process M is a fundamental
martingale with respect to the filtration (F;);>0 and thus admits the following representation
with respect to the innovation standard Brownian motion

_ ¢ _ _ 1 ¢ _
M, = /e / sY2°H B, sothat B,=—— | s® V24N, (2.3.3)
0 ¢1 Jo

for all t > 0 (see, e.g. [82; Section 5.2]). In this case, the process L from (2.1.3) is given by

2
Li = exp (pZtH - %(ZH>t), (2.3.4)

so that the process ® satisfies the stochastic differential equation in (2.1.1) with n and ¢ as in
Example 2.1.1 with p/(¢) = p\/c_ltl/ 2=H for all t > 0. Hence, the analysis from the previous
section can be applied for the drift rate p/(t) — 0 when 1/2 < H <1 as t — 0.

Let us fix a starting time ¢ > 0 and introduce the deterministic time change S(t,s) with

the rate (4/(s))? defined as

B(t,s):/t )2 du = &2 ((”23)__2H_t_ ) (2.3.5)
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and its inverse v(t,s) shifted by ¢, such that B(¢,~v(t,s) —t) = s for all s > 0. Since the
process P satisfies the stochastic differential equation of (2.1.1), by applying the time-change
formula for 1to integrals in [83; Theorems 8.5.1 and 8.5.7], we obtain

~ S s (I)y(t u) ~ v(¢,s) _
D) = Prexp | By — - + / ———du | with B, = / W (u) dB,, (2.3.6)
2 0 1+ q)ﬂ/(t’u) ‘

where B = (Es)szo is a standard Brownian motion with respect to the filtration (Fy,s))s>0-
Therefore, by using the definition of 7 in (2.1.20) and taking into consideration the time change
B(t,s) from (2.3.5), we conclude that the stopping time [(¢,7) with respect to the filtration
(Fyt,s))s>0 can be represented as
p(t,7) = inf {s >0 ' B, — S i /S Mdu +In®, ¢ (Ing(y(t, s)),ln/ﬁ(v(t, s))) },(2.3.7)
2 o 1+ q)'y(t,u)
for all t > 0.
Assume that b # a in Example 2.1.1. In this case, noticing from (2.3.5) that v(¢,s) — oo
and using the fact that g(¢) — b/a and /f;(t) — b/a as t — oo, it follows that for any ¢ > 0

there exists ¢, > 0 large enough such that the inequalities

Y <) < L <Rl s)) < e (235)

hold for all ¢ > ¢, and s > 0. Let us now fix an arbitrary ¢ > 0 such that ¢ < b/a, and assume
from now on that ¢t > t,. Then, introducing the sets of sample paths Ay = {w € Q]g(t) <
®, < h(t)},

Ay ={we A |G(1(t, 5)) < Pors) < ﬁ(’y(t, $)}, Cs={weQ||Pyus —bla] <c}, (2.3.9)

and using the inequalities in (2.3.8), we get the inclusion A, C Cy for any s > 0. Therefore,
by the definition of the event Cj, for the upper bounds ¢ (¢) and cy(e) defined below, we have

b—ae D 1,9) b+ ae

- = = , € A,, 2.3.10
atb—as 1+Pypus atbtae c2(e), for w ( )

C1 (8)

for any € > 0. It follows from the notations in (2.3.6) and the structure of the event Ay that

A, C D, holds, where we define

_ ~ s 0t s)y h(3(t.9)y _
D, = {w € ‘ B, 5 € (111 ( }Al(t) > ca(e) s,1n ( ) c1(e) s) . (2.3.11)
for all s > 0. Define the stopping time 7 as

7 = inf {3 >0 ' B, — g ¢ (ln (%) —c3(e) s,In (M) — () s) }, (2.3.12)
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and notice that the stopping times 5(¢,7) = f(¢,7(w)) and 7 = T(w) admit the representations

we () Du}, (2.3.13)

0<u<s

B(t,?(w)):sup{szO'wE N Au} and ?(w):sup{SZO

0<u<s

for any w € Q. Then, it follows from the inclusion Ay, C Dy for s > 0 that (¢,7) < 7T
holds. Because of the assumption b # a, we can choose € < b/a such that either 1 —e¢ > b/a
holds when b < a or 1 +¢ < b/a holds when b > a. Hence, assuming that b < a, we have
1/2 —cy(e) > 0. Thus, it follows from the expressions in (2.3.8) and (2.3.12) that 7 < 7’ holds,

where we set
7 =inf{s > 0] B, <In(b— ag) — ln(a/ﬁ(t)) +(1/2 = ea(e))s}, (2.3.14)

which is a stopping time with polynomial moments of all orders (see, e.g. [107; Chapter IV]).
Therefore, it follows from the fact that 5(¢,7) < 7 < 7’ holds and the structure of the time
change in (2.3.5) that E; ,7 < E; ,y(t,7") —t < oo is satisfied, and we get the same inequalities
in the case of b > a, similarly.

Let us now prove that 9,V (¢, ¢; §(t), h(t)) > 0 holds for all ¢ € (§(t), h(t)) and ¢ > 0 large
enough. For this purpose, by differentiating the expression in (2.1.21) and using the expressions

in (2.1.22) and (2.1.29), we get

OV (1, 65(1), (1)) = 2(2H = 1)(W(R(t) — W(9))/ (¢ (1))*)

(
2 (ﬁ@) _ ¢ )((2}1—1)5@@))+ﬁ'<t><ﬁ<t>+1>2) 2(2H — DE(t,¢)
WP \1+nt) 1+9 t h(t)?

where we denote

(h(t) = #)(b — ag(t))
2(h() = 9(1)(1 + )
for all t > 0 and ¢ > 0. It is clear that Z(¢,2(t)) = 0 holds and, thus, we obtain from the
expressions in (2.1.24) and (2.1.26) that
N2 /5 = = 1(4))2

-2 () S S ),
holds for ¢ > 0. Since b/a > §(t) > 0 is satisfied, and there exists ¢ > 0 such that u'(t) < v/2
holds for all ¢ > #', we have Z(¢,g(t)) > 0 for t > ¢’. Then, by differentiating the expression in
(2.3.16), we get

2(t,6) = ¢+ 1Ing— h(t) — Inh(t) + % (T(R(t)) — Y(4)) + (2.3.16)

(2.3.18)

220,0) = gy (100 ~ 1) -
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for all t > 0 and ¢ > 0. Observe that, since YT(¢) is an increasing function, it follows
that 0,Z(t,¢) changes its sign at most once in the region ¢ € (ﬁ(t),ﬁ(t)) for all ¢t > t.
It is easily seen that the inequality (9¢E(t,ﬁ(t)) < 0 holds, which means that either =(t, ¢)

~
~ ~

is decreasing for ¢ € (g(t),h(t)) or there exists some ¢, € (g(t),ﬁ(t)) such that Z(¢,¢) is
increasing for ¢ € (g(t), ¢.] and decreasing for ¢ € (qﬁ*,ﬁ(t)). Hence, since Z(t,g(t)) > 0
and E(t,ﬁ(t)) = 0 holds, we get that =(t,¢) > 0 is satisfied in both cases for ¢ € @(t),ﬁ(t))
and ¢t > t'. For 1/2 < H < 1, it follows from the expressions in (2.3.15) that the inequality
oV (t, qu;/g\(t),ﬁ(t)) > 0 holds for all ¢ € (/g\(t),?z(t)) and ¢t > t'. We can therefore apply the
assertions of Remark 2.1.4 and use the fact that £, ,7 < oo to obtain that E, 7, < Ej 47 < 00

holds when the starting time ¢ satisfies ¢t > t' V t,.

Example 2.3.2 (Quickest disorder detection problem.). Suppose that in the setting of
Example 2.1.2 the observable continuous process X = Y# = (Y,/1),5, is given by V¥ = (t —
0)Tp+ BE  where BY = (B);5 is a fractional Brownian motion with parameter H € (1/2,1)
independent of 6, and p > 0 is a constant. Let the likelihood ratio process ® be defined as
in (2.1.5), where the process L is given by (2.3.4). Therefore, by using the same reasoning as
in Example 2.3.1, we obtain that the process ® satisfies the stochastic differential equation in
(2.1.1) with n(t,¢) and ((¢,¢) as in Example 2.1.2, where p/(t) = p\/atl/z_H for all ¢ > 0.
Hence, the analysis from the previous section can be applied for the drift rate p/(t) — 0 when
1/2<H<1ast— oo.

Let us fix a starting time ¢ > 0 and define the deterministic time change (5(t,s) and its
inverse 7(t,s) as in (2.3.5) for all s > 0. By using the expression in (2.1.5) we get that
®, > Ppe** L, holds for all s > 0. Therefore, if we define the stopping time 7 as

F=inf{s > 0| Py Ly, > Nh(t+s)}, (2.3.19)

we have that 7 < 7 holds, where 7 is defined in (2.1.20). In order to simplify further notations,
we define the process P = (&)s)szo by P, = <I>Oe>‘7(t’8)L7(t,S) for s > 0. Since L has the form of
(2.3.4), by applying the time-change formula for It6 integrals in [83; Theorems 8.5.1 and 8.5.7],

we obtain

~ - s P,
b, = Oy exp (Bs iy A(y(t,s) —t) + / = du), (2.3.20)
2 o 1+ &,

where the process B = (§s>520 defined in (2.3.6) is a standard Brownian motion. Therefore, by

using the definition of 7 in (2.3.19) and taking into consideration the time change, the stopping
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time ((t,7) can be represented as

- s P ~ ~
p(t,7) = inf {S >0 ‘ B, — g + A(y(t,s) —t) + / " % du +In ®y > Inh(~(t, s))} (2.3.21)
o 1+&,

Since v(t,s) — oo as t — oo, it follows from (2.2.12) that for any € > 0 there exists t* > 0

large enough such that the inequalities

A~ A
E < h(’}/(t, S)) < E +¢€ (2322)

hold for all ¢ > ¢* and s > 0.
Let us now fix an arbitrary € > 0 and assume from now on that ¢ > t*. By using the fact

that ® is a nonnegative process, we obtain from (2.3.5) that the inequalities

9, s(2 — 2H)\ 1/ (2-2H)
A((t, s —t+/ du > A(y(t,s) — t 2)\(—) 2.3.23
() =0+ [z 260 -1 2 (B (2:523)
hold for all s > 0. Define the random variable A, as
A 2 —2H)\1/(2-2H)
Ay = sup <s +In < +~C€> - A (3(—2)> + f)v (2.3.24)
520 c®q c1p 2
and notice that it follows from the inequalities in (2.3.22) and (2.3.23) that
h(y(t,5)) / P, s
1n<~—’)—)\ t,8) —1t) — dut S < A —s 2.3.25
) et -0 - [ <, (2:525)

holds for all s > 0. Subsequently, we obtain from (2.3.21) that 5(¢,7) < 7", where we set
7 = inf{s > 0| B, < A, — s}, (2.3.26)

for any ¢ > t*. Moreover, by introducing the event A = {w € Q| Dy < ﬁ(t)}, we also obtain
that 8(¢,7) =0 on Q\ A, and hence, we conclude that §(¢,7) < 7”I(A) holds. Since we have
that A; > 0 on the event A and A; < oo (P 4-a.s.), for 1/2 < H < 1, we get that 7"I(A)
has polynomial moments of all orders (see, e.g. [107; Chapter IV]). Therefore, it follows from
the fact that (¢,7) < S(t,7) < 7"I(A) holds and the structure of the time change in (2.3.5)
that E; 47 < E; 4y(t,7") —t < 0o is satisfied.

Let us finally show that &,V (¢,: h(t)) > 0 holds for all ¢ € (0,A(t)) and ¢ > 0. For this
purpose, differentiating the expression in (2.1.30) and using the expressions in (2.1.32) and

(2.2.9), we get

.0 - | " (2 [N D e (- a0i() — s )iy (2320

T Q(—A(t) — 1,A(t)/y)
—/¢ E(l_ A(t) +1 )dy
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for all ¢ < h(t) and ¢ > 0. Note that we also have
z %"T(a,x) = x_“ex/ e "u tdu = / e ™ (u+ 1) 'du, (2.3.28)
x 0

for a < 0 and > 0. It is shown by differentiation of the expressions in (2.3.28) that the
function x~%e*I'(a,x) is decreasing in = and increasing in a (see, e.g. [46; Section 2.5] for
similar results). Hence, the function

—z—1,—-)=yl- e —x—1,— 2.3.29

is decreasing in z for x,y > 0, where the functions Q(z,y) and I'(z,y) are defined in (2.2.10).
Recall that, for 1/2 < H < 1, the function p/(t) is decreasing, so that A(¢) is increasing in
t. Hence, by using the formulas from (2.3.29), we obtain from the expressions in (2.3.27) that
V (t, ¢, h(t)) is increasing in ¢, which leads to 8,V (¢,¢: h(t)) > 0 for all ¢ € (0, h(t)) and t > 0.
We can therefore apply the assertions of Remark 2.1.4 and use the fact that E;,7 < oo to

conclude that E; 47, < E, ,7 < oo, when the starting time ¢ satisfies ¢ > ¢*.

2.4. Appendix

Let us now prove the verification assertion stated in Theorem 2.1.3 above.

Proof. In order to verify the assertions stated above, let us denote by V (¢, ¢) the right-hand
side of the expression in (2.1.15). Then, using the fact that the function V(¢,¢) satisfies the
conditions of (2.1.11)-(2.1.13) by construction, we can apply the local time-space formula from
Peskir [85] (see also [90; Chapter 11, Section 3.5] for a summary of the related results and further

references) to obtain
V(t+u, ®ppy) + /Ou F(®45)ds =V (t,¢) + M, + K, (2.4.1)
+ /Ou(ILV + F)(t4 5, Prys) I(Prys # gult 4 5), Pops # hult 4 5)) ds

for all ¢ > 0, where the process M = (M,),>o defined by

Mu = / V¢(t+3,q)t+5) g(t_‘_saq)t-l—s)I(@t-i-s 7£ g*(t+s)a¢t+s 7£ h*(t+8)) dES (242)
0
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is a continuous local martingale with respect to the probability measure P, 4. Here, the process
K = (K,)u>0 is given by

1 u
Ku=3 / AV (t+ 5, 94(t +5)) 1 (Dirs = gu(t + 5)) b2 (2.4.3)
0

1 u
+3 / AgV(t+ 5, ha(t + ) T(®ps = hu(t + 5)) de
0

where AV (t+s, g.(t+5)) = Vy(t+s, g (t+5)+) = Vst +5, g (t+5)—), AV (t+s, hi(t+5)) =
Vis(t+ s, ho(t+5)+) — Vy(t +, hi(t +5)—), and the processes £9* = (£9*),¢ and (" = ((0+),5
defined by

1 u
(9 =P, 4 — 1551%/0 I(g(t+5) —e <Py < gut+5)+2) Ct+5,Ppys)ds (2.4.4)

and

1 u
" =Py — lig)l 2_5/ I(hi(t+s)—e <Py < ho(t+5)+¢)C(t+ s, Pys)ds  (2.4.5)
€ 0

are the local times of ® at the curves g,(t) and h.(t), at which V,(¢, ) may not exist. It follows
from the concavity and continuous differentiability of the gain function G(¢) in (2.1.2), and
the stopping time 7, in (2.1.7), that the inequalities AyV (¢, g.(¢)) < 0 and A,V (¢, hi(t)) <0
should hold for all £ > 0, so that the continuous process K defined in (2.4.3) is non-increasing.
We may therefore conclude that K, = 0 can hold for all w > 0 if and only if the smooth-fit
conditions of (2.1.14) are satisfied.

Using the assumption that the inequality in (2.1.13) holds for the function G(¢) with the
boundaries g¢.(f) and h.(t), we conclude that (LV + F)(t,$) > 0 holds for any ¢ # g.(t) and
¢ # h(t). Moreover from the conditions in (2.1.10)-(2.1.12) the inequality V(¢,¢) < G(¢)
holds for all (¢,¢) € [0,00)?. Thus, for any stopping time 7 such that E, 47 < oo, the

expression in (2.4.1) yields the inequalities

G(@rr) + / F(@y,)ds — Ko > V(E+7,0000) + / F(®y,.)ds — K. (2.4.6)
0 0
> V(t, ¢) + M.
Let (7,,)nen be alocalizing sequence of stopping times for the process M such that 7, = inf{s >

0| [M;] > n}. Taking the expectations with respect to the probability measure P, in (2.4.6),
by means of the optional sampling theorem (see, e.g. [75; Chapter III, Theorem 3.6] or [63;
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Chapter I, Theorem 3.22]), we get the inequalities

mﬁh@ﬁww+lwmﬂ@ﬂmegw] (2.4.7)
> By, [wt T AT Brsrne) + [ " (@) ds - K] > V(t,0) + Eug Myns, = V(t,0).
Hence, letting n go to infinity and using Fatou’s lemma, we obtain
E, [G(CDHT) + /OT F(®y5)ds — K}} (2.4.8)
> By [V(t +7, D)+ /OT F(®1s)ds — KT] > V(t, ¢)

for any stopping time 7 such that E;,7 < oo and E, 4K, > —oco, and all (t,¢) € [0,00)?,
where K, = 0 holds whenever the conditions of (2.1.14) are satisfied. By virtue of the structure
of the stopping time in (2.1.7) and the conditions of (2.1.11), it is readily seen that the equalities
in (2.4.6) hold with 7. instead of 7 when either ¢ < g.(t) or ¢ > h.(t), respectively.

Let us now show that the equalities are attained in (2.4.8) when 7. replaces 7 and the
smooth-fit conditions of (2.1.14) hold for g.(t) < ¢ < h.(t). By virtue of the fact that the
function V(¢,¢) and the boundaries g¢.(t) and h.(t) solve the partial differential equation in
(2.1.9) and satisfy the conditions in (2.1.10) and (2.1.14), it follows from the expression in
(2.4.1) and the structure of the stopping time in (2.1.7) that

T+« N\Tn
G(¢t+7-*/\7-n) + / F(q)t+5) dS (249)
0
T /\Tn,
Z V<t + T A Tn, (I)t+T*ATn) + / F(CDH-S) ds = V(tv ¢) + MT*/\Tn
0

holds for g.(t) < ¢ < h.(t). Hence, taking expectations and letting n go to infinity in (2.4.9),
using the assumptions that G(¢) is bounded and the integral in (2.1.16) is of finite expectation,

we apply the Lebesgue dominated convergence theorem to obtain the equality

gﬂk@mg+énﬂ@ﬁm%:vm@ (2.4.10)

for all (¢,¢) € [0,00)?. We may therefore conclude that the function V (¢, ¢) coincides with
the value function V. (¢, ¢) of the optimal stopping problem in (2.1.2) whenever the smooth-fit
conditions of (2.1.14) hold.

In order to prove the uniqueness of the value function V,(t,¢) and the boundaries g.(t)

and h.(t) as solutions to the free-boundary problem in (2.1.9)-(2.1.13) with the smooth-fit
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conditions of (2.1.14), let us assume that there exist other continuous boundaries of bounded
variation §(t) and h(t) such that 0 < §(t) < ¢ < h(t) < oo holds. Then, define the function
V(t,¢) as in (2.1.15) with V (¢, ¢; (t), h(t)) satisfying (2.1.9)-(2.1.14) and the stopping time 7
as in (2.1.7) with §(t) and h(t) instead of g,(t) and h,(t), respectively, such that E, T < 00.
Following the arguments from the previous part of the proof and using the fact that the function
V(t,¢) solves the partial differential equation in (2.1.9) and satisfies the conditions of (2.1.10)
and (2.1.14) with §(¢) and h(t) instead of g(t) and h(t) by construction, we apply the change-

of-variable formula from [85] to get

~ ~ —

V(t+u, @) + /u F(®y,)ds =V(t,¢) + M, (2.4.11)
+ /Ou(]u'? + F)(t+ 5, Pers) [ (Prys & (9t + s), h(t + s))) ds

where the process M = (Mu)UZO defined as in (2.4.2) with Y7¢(t, ¢) instead of Vy(t,¢) is a
continuous local martingale with respect to the probability measure F,,. Thus, taking into

account the structure of the stopping time 7, from (2.4.11) we obtain that

TATn
G(Pi3nz,) + / F(®yy4)ds (2.4.12)
0
~ TATn N N
> V(t +TA ,7:”’ (I)t+?/\?n) + / F((Dt+s) ds = V(t’ ¢) + M?/\?n
0

holds for g(t) < ¢ < 71(15) and any localizing sequence (7, )nen of M. Hence, taking expectations
and letting n go to infinity in (2.4.12), using the assumptions that G(¢) and F(¢) are bounded
and the integral in (2.1.16) taken up to 7 is of finite expectation, by means of the Lebesgue

dominated convergence theorem, we have that the equality

Epy [G(@H;) + /0 ;F@Hs)ds] =V(t,¢) (2.4.13)

is satisfied. Therefore, recalling the fact that 7, is the optimal stopping time in (2.1.2) and
comparing the expressions in (2.4.10) and (2.4.13), we see that the inequality \7(15, o) > V(t, o)
should hold for all (¢, ¢) € [0, 00)?.

We finally show that §(¢) and h(t) should coincide with g,(¢) and h.(t). By using the
fact that V(t,¢) and V(t,¢) satisfy (2.1.10)-(2.1.12), and V(t,¢) > V(t,¢) holds for all

(t,¢) € [0,00)2 we get that g.(t) < §(t) and h(t) < h.(t). Inserting 7, A 7, into (2.4.11) in

place of u and using the assumptions that G(¢) is bounded and the appropriate integrals are
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of finite expectation, by means of the arguments similar to the ones above, we obtain
Epg {V(t 7, B ) + / F(®.) ds} =V(t, ¢) (2.4.14)
0

+ E, /0 ) (LV + F)(t+ 8, ps) I (Drys & (Gt + 5), h(t + 5))) ds.

for all (t,¢) € [0,00)2. Thus, since we have V(t,¢) = V(t,¢) = G(¢) for ¢ = ¢.(t) and
¢ = hy(t), and V(t,¢) > V(t,$), we see from the expressions in (2.4.10) and (2.4.14) that the

inequality
Et,¢/ (JL‘7 + F)(t+ s, Prys) I(@HS ¢ (gt + s),%(t + s))) ds <0, (2.4.15)
0

should hold. Due to the assumption of continuity of §(t) and h(t) we may therefore conclude
that g,(t) = §(t) and h,(t) = h(t), so that V (¢, ¢) coincides with V (¢, ¢) for all (¢, ) € [0, 00)2.
[
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Chapter 3

Quickest change-point detection
problems for multidimensional Wiener

processes

This chapter is based on joint work with Dr. Pavel V. Gapeev.

3.1. The problem formulation

Let (Q,G, Pz) be a probability space, B = (B!,..., B") is an n-dimensional Wiener process
with constantly correlated components, where 7 is an n-dimensional vector such that 7 =
(m1,...,m) € [0,1]" and n € N. Denote N := {1,...,n} and let, for any i € N, the
nonnegative random variable ; be such that Pz(; = 0) = m; and Pz(0; > t|0; > 0) = et
with \; > 0, for all £ > 0. Let also #; be independent of B’ for all i, € N, and 0; be
independent of 6; for all i # j € N. Assume that we observe the processes X' = (X});>o

satisfying the stochastic differential equation

dX! = p; 1(0; < t)dt + v;dB! (X} =0), (3.1.1)
where p;,v; > 0 for i € N. Let the functions f; : [0,00)" — [0,00) be given for i =1,...,m,
m € N, and denote g = (01,...,60,). Our aim is to find a stopping time of alarm 7, with

respect to the (observable) filtration (F;);>o generated by all X' for ¢ € N, that is F; =
o(X!,i€ N|0 < s <t), which is as close as possible to every function fj(g) for j=1,...,m.

Specifically, the quickest change-point detection problem for a multidimensional Wiener process
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is to compute the Bayesian risk function

Vi(7) = inf (Z (bi Px(7 < £(0)) + ci Bz [(7 - fz(@)ﬂ))v (3.1.2)
i=1
and find the optimal stopping time 7, at which the infimum is attained in (3.1.2), where
bi,c; > 0 are given constants for ¢ = 1,...,m. Here Pz(7 < fl(g)) represents the probability
of false alarm and Ez[(t — fi(A))"] represents the average delay of detecting the function f;(f)
fori=1,...,m.
By using standard arguments (see [105; pages 195-197]) we get that

—

P:(7 < £:(0)) = Ex[I( < £:(0))] = Ez[E=[I(r < fi(0)) | F+]] (3.1.3)
= Eﬁ [Pﬁ(T < fz<§) ’.FT)],

and
Ex[(t — fi(0)*] = Ex /OT I(fi(0) < t)dt = Bz OOOI(fi(*) <tt<rT)dt (3.1.4)
—Bx [ B[ < e <) | Rldt = Br | Pe(n8) < 4| )
holds for i = 1,...,m, where I(-) denotes the indicator function.

3.1.1. Sufficient statistics and filtering equations Let us now reduce the original prob-
lem of (3.1.2) to an optimal stopping problem for a multidimensional (strong) Markov process.
We define the posterior probability processes (II}*);¢ as I} = Px(f;(6) < t|F,) for t >0 and
i=1,...,m, and observe that it follows from (3.1.3)-(3.1.4) that the Bayesian risk function in

(3.1.2) can be represented as

V. (7) :infE;r{Zbi(l—Hj’i)+ci / H:’idt}. (3.1.5)
T i=1 0

For each J C N, we define the posterior probability process (I} );>o as I := Pz((;,c,{0: < t}|F).
In order to simplify the notation, we will order the processes II7 by choosing an arbitrary
integer-valued bijection O : {1,...,2"} — 2V from the set of integers {1,...,2"} to the power
set (i.c. the set of all subsets) of N and denoting by I = (II',...,TI2") the 2"-dimensional
process with components given by IIY = 19U for j = 1,...,2". Let us now assume that the

functions f; are such that II*? is of the form
271

P=(f(0) <t|F) = ay1H, (3.1.6)

=1

*,7
]:[t7
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for some constants a;;, for all ¢ > 0 and every ¢ = 1,...,m and j = 1,...,2" (examples of
such functions f; will be provided in Section 3.3). In what follows, we prove that the process
II has the strong Markov property.

We introduce the probability measure P7(-) := Pz(- | ;{6 = 0} Njems10; = oo})
and the (weighted) density process (Z;);>o as

(P|F,)
_exp( Z)\) i(P2\7) (3.1.7)

for J C N, where P’ | i denotes the restriction of the measure P’ to F;. Let the correlation

matrix X = (0;);jen of the n-dimensional process X = (X',..., X™) be given by
Xt X7
055 = M, (318)
Viyj
for i,j € N, and denote the entries of the inverse correlation matrix as X' = (v;;)ijen,

which exists because Y is a symmetric and positive definite matrix. We can express the
density process from (3.1.7) in terms of processes adapted to the observable filtration, and
these processes will be linear combinations of the observed processes X* for ¢ € N, as the
following lemma shows. The arguments are essentialy based on the application of the Girsanov

theorem for a multidimensional Wiener process.

Lemma 3.1.1. We have

i Hi Hy
2 =ew (Snt+ v - 5( __) ') (3.1.9)
i,j€J

e i€J

for J C N, where we have defined
y =05 g, (3.1.10)

forie N and t > 0.
Proof. See Appendix. m

L .
Let us now define the process (®"),;~y recursively as
t t>0
KUL

t
Z
ol = )\ak/ plovenalbb 2ty @2l = gzl 997 =1, (3.1.11)
0

KUL
Zu

for K, L C N such that K # @, KNL = &, and any permutation « := [ay, ..., ax] € Perm(K),

where Perm(K) denotes the set of all permutations of K, and ©% := [],.; m. The process ¢**
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can be regarded as a (weighted) likelihood ratio process corresponding to the event (., {6; = 0}

(WO <o, <+ <oy <N Nien (xupy{t < 6:} since it can be written in the form

k+r

u,L
ol _ L |‘Ft Ui A k+r—»
(I)t =T exp( Z)\) / PT’J__,H)\%e id (3112)
1EN
where r is the number of elements of the set N \ (K U L) and
{aps1, s b =N\ (KUL), (3.1.13)
Ai={zeR"|0<o < <oy <tandt <z, fori=1,... 1}, (3.1.14)

PUE() = Pr( | Mierd0s = 0 N Njor, e 100, = w5, (3.1.15)

.....

for @ = (uq,...,uppr) € R¥7 and t > 0. Therefore, the processes (¥;");s0 and ()0
defined as
gt = Z Z d*" and U = Z e (3.1.16)
JCKCN\L acPerm(K) L1CN\J,LyCJ

for JJL C N such that J N L = &, can be regarded as a (weighted) likelihood ratio pro-
cesses corresponding to the events {(6; = 0)icr} ({(0 < 0; < t)ics} (0 < 6i)ien\(sury} and
{(0; < t)ics}, respectively. Hence, by using the generalized Bayes formula from [75; Theorem
7.23], we obtain that the posterior probability process (II/);>q takes the form
vy

I = —L.
t \Ijt@

(3.1.17)

for JC N.
It follows from the expression in (3.1.9) that Z7 satisfies the following stochastic differential
equation
Zt":Zg’(Z)\idtJerYti), (3.1.18)
icJ icJ

for J C N. By using It6’s formula, from (3.1.18) and (3.1.11) we get

deet = (A%cp‘“ """ RN maL) dt+ Y ertayy, (3.1.19)
1€EKUL 1€EKUL
APt = " NePtdt+ > eftayy, (3.1.20)

1€L 1€l
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for K, L C N such that K # @, KNL =@ and any « := |ay,...,q,] € Perm(K). Therefore,
by using (3.1.16), we further obtain
vt = <Z N P \IIJL> dt+ Y wrtay; + 3 w0 ayy o (3.1.21)
ieJ i¢J i€ JUL i¢ JUL
and, by aggregating, we get
40 = (Z A )\i\If{) dt+y wdy; +3 " u/Mayy, (3.1.22)
ieJ i¢J ieJ igJ
for J, L C N such that J N L = @. Hence, by applying 1t6’s formula to (3.1.17), we conclude
that
any = 3" (H{\“} - H{) dt+3° (H;’U{i} - H;{Hj”) (dY; =St ay, Yj)t>, (3.1.23)
ieJ ieN j=1
for JC N.
Furthermore, we get from (3.1.10) that
i v il Hify
yi vy, = Mty Z i 3.1.24
(Y,Y7), = v, klZleVglUkl v, Y ( )

and, therefore, we can write the equation in (3.1.23) as

diy =37 ( /\oh H{)dt+§ j( /Y% }) § :“’ Vii (dXJ uJH{]}dt> (3.1.25)
vV, V;
icJ ieN vt

Defining the innovation processes B = (Ei)tZOa 1 € N, by

B = % - ’;—/Ot I ds, (3.1.26)
and using the Lévy’s characterization theorem (see, e.g. [75; Chapter IV, Theorem 4.1]), we
see that B is a standard Brownian motion with respect to the filtration (F;);>o under the
probability measure Pz. Moreover, we have (Ei,Ej}t = o;;t for all t > 0 and every ¢, € N,

and we can rewrite (3.1.25) as
J _ /M J /v Jrii} Hi
dIT; —Z)\Z( H)dt+z< I )Z vy dB.. (3.1.27)
i€J iEN 7j=1
Alternatively, by defining the processes Bi = (LA?Z),:ZO, 1€ N, as

i n t i} i v
Biow Y= Zim I A7), ( Z / ) it ) Y (31.28)
<Yi,Yi>t ViV i/ Vii
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and using the Lévy’s characterization theorem we see that B' is a Brownian motion with respect

to the filtration (F;)¢>o under the probability measure Pz. Moreover, by (3.1.24), we have

iy, (3.1.29)

for all 7,7 € N and t > 0, and we can rewrite (3.1.23) as

<§i7 §j>t =

J M g U} it PV o
Il ;A ( Ht) dt + ; (Ht 1711} ) ’ dB. (3.1.30)
Therefore, by using either (3.1.27) or (3.1.30), we obtain that the process II satisfies the condi-
tions of [83; Chapter V, Theorem 5.2.1]) about the existence and uniqueness of strong solutions
of stochastic differential equations, and thus, by virtue of [83; Chapter VII, Theorem 7.2.4],
it has the strong Markov property with respect to its natural filtration which coincides with

(Fi)i>0. Moreover, since we have the representations

W = PO < H1F) = 3 POl < 00 A Memclt < 6317, (3.131)
JCKCN
Pelcretfh < 1} N\ Phelt < 0 1) =116 — 37 1890 4 S° il (3139)
JEN\K i#£IEN\K
...+(_1)”—k—1 Z HiNU{i}—f—(—l)"—kHiV,
iEN\K

for J, K C N, where k is the number of elements of K and

D Pr{(0: < iexc} N{(E < O)iemx }IF) = 1, (3.1.33)

KCN

holds, it follows that the state space of the process 1 is given by

D= {ﬁe [0,1)*" | for some ¢ € [0, 1]*" with qu =1 (3.1.34)
we have that p; = Z q; forizl,...,Z"}.
O(i)CO()EN

Finally, by using (3.1.5)-(3.1.6) and the strong Markov property of the process f[, we can
reduce the problem of (3.1.2) to the Markovian optimal stopping problem

:ingﬁ[ij( Zaw >+c]/ Zaijﬂidt}, (3.1.35)
Jj=1 1
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where the infimum is taken over all stopping times 7 with respect to (F;);>0 such that the
integrals above have finite expectation, so that Ez7T < oo (see, e.g. [105; Chapter IV, Section 4]
and [90; Chapter VI, Section 22]). Here, the process Il starts at some 7 € D under the
probability measure Py. Notice that from the linearity of the representations in (3.1.31)-(3.1.32)

it follows that the value function V,(p) is concave.

3.2. Main results

The main results of the paper are presented in this section. We obtain certain properties of the
optimal stopping time and the optimal boundaries in the problem of (3.1.35). We also provide
characterization of the optimal stopping boundary surface and value function V, as the unique
solution to a multidimensional free boundary problem.

Let us first introduce some further notations. For any j = 1,...,2", we denote by J the
subset of N corresponding to the index j, that is J := O(j) € N. For any set K C N, we
denote the number of its elements by |K|, and A(K) := >, x A&

3.2.1. The structure of the optimal stopping time Define the linear function F7(p) as

Fi(p) = Zfﬁpi, (3.2.1)

where the constants fj;; are given by

1 :
fii = NT) if J # &, (3.2.2)
Hk NOG) M 7o) 1 . )
fii = —i(((}—(;)))) 3 I1 SoTsT o TeA0i . (323)
a€Perm(J\O(z)) ¢=1
fji =0, otherwise, (3.2.4)

for any p€ D and j = 1,...,2". Applying Itd’s formula to F7 (l:[T) and the optional sampling
theorem (see, e.g. [75; Chapter III, Theorem 3.6 or [63; Chapter I, Theorem 3.22]), by using
(3.1.30), we can see that

Ey[Fi(11,)] = FI(p) + Ep[/o 11 dt — r}, (3.2.5)
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for any p€ D and j =1,...,2", and for any stopping time 7 such that Ez;r < co. Therefore,
the optimal stopping problem (3.1.35) can be rewritten as

V@) =Va@) + ) (chaikF"(ﬁ)) — by = inf E;[G(Ti,) + er], (3.2.6)

where we have defined

m AL m 2"
G(p) = Z (chaikFi(z?)) — brap; and ¢ := chkaik’ (3.2.7)

k=1 i=1 k=1 i=1
for p'e D. Note that we can conclude from (3.1.6) that the constants aj; satisfy

on

0<) ajup; <1, (3.2.8)

i=1

for i=1,...,m and p € D, and we obtain that ¢ > 0, so that the optimal stopping problem

in (3.2.6) is well-posed. Moreover, by using (3.2.1), we can rewrite G as

2m m 2™
G(p) = Zgip,- with ¢; = Z (chajkfji> — braig, (3.2.9)
=1

k=1 N j=1

and from the concavity of V,(p) and the linearity of F7(p), j =1,...,2" we also get that the
value function V,(p) is concave.

From the general optimal stopping theory for Markov processes (see, e.g. [90; Chapter I,
Section 2.2]) and the form of the value function in (3.2.6), we know that the optimal stopping
time in (3.1.35) is given by

. =inf {s > 0| V.(II,) = G(II,) }, (3.2.10)

whenever it exists.

Let us choose an integer [ such that 1 <[ < 2" and denote by I the process I without
its [-th component, and by p; the vector p' € D without its [-th component p;. Assume that
g1 < 0 (the case g; > 0 can be considered similarly) and G(p) achieves its minimum for all
p € D such that p; = 1. We see from (3.2.9) that the linear function G(p) is decreasing in p,
and by the concavity of V,(p) and the fact that V,(p) = G(p) for all p € D such that p; =1,
we get that the optimal stopping time from (3.2.10) is of the form

7. =inf {5 > 0| I, > b.(TI;")}, (3.2.11)
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for some function 0 < b,(p;) < 1 and all p € D. Finally, we may conclude from the fact that
G(p) is linear and V,(p) is concave that the boundary b,(p;) is continuous and of bounded
variation.

Summarising the facts proved above, we are now in a position to state the following result.

Lemma 3.2.1. Let the posterior probability processes II** be such that the expression in (3.1.6)
holds. Assume there exists an integer | such that g, < 0 and G(p) achieves its minimum for
all pr € D with pp = 1, for some | = 1,...,2". Then, the optimal stopping time 7, in
the problems (3.1.35) and (3.2.6) is of the form (3.2.11), whenever it exists, and the optimal

stopping boundary b,(p;) is continuous and of bounded variation for p € D.

In what follows, we work under the assumptions of Lemma 3.2.1.

3.2.2. The free-boundary problem By means of standard arguments (see, e.g. [63; Chap-
ter V, Section 5.1]), it can be seen from (3.1.30) that the infinitesimal operator L of the process

I is given by the expression

277,
L=> > X(porniy —p) o, (3.2.12)
Jj=1 ieJ
2n 2n

1 kil
5200 e (PO-100tk) — PiPo-1 ) (Po-10wun) — PiPo-1(@) .
j=1 i=1 kleN

for all p € D. In order to find analytic expressions for the unknown value function V., (p)
from (3.2.6) and the unknown boundary b.(p;) from (3.2.11), we will use results from the
general theory of optimal stopping problems for continuous time Markov processes (see, e.g.
[105; Chapter III, Section 8] and [90; Chapter IV, Section 8]). Specifically, we formulate the

associated free boundary problem

(LV)(p) = —¢ for p < b(pi), ( )
Vipr, - oi-1,0(00) = prsas - - p2n) = G(ps - i1, WD) Prsas - - -5 p2n), ( )
V(p) =G(p) for p > b(p), (3.2.15)
V(p) <G(p) for p <b(pi), (3.2.16)
(LV)(p) > —¢ for pi > b(pi), ( )
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for some 0 < b(p;) < 1, where the instantaneous stopping condition of (3.2.14) is satisfied
at b(p;) for all p; € [0,1)*"7! such that 7 € D. Since the problem in (3.2.13)-(3.2.17) may
admit multiple solutions, we need to use some additional conditions which would specify the
appropriate solution, and thus provide the value function and the optimal stopping boundary

for the initial problem of (3.2.6) (and (3.1.35)). Therefore, we will assume that

Op,V(P1s -y D1, 0(D1) =, Dig1s - - -, pan) = g1 (smooth fit), (3.2.18)

holds for all 5 € D. Note that the smooth-fit conditions of (3.2.18) are naturally used for the
value function at the optimal stopping boundary, whenever the general payoff function G(p) is
continuously differentiable in p; at the boundary b(j;) (see [90; Chapter IV, Section 9] for an
extensive overview).

We further search for analytic solutions of the elliptic-type free boundary problem in
(3.2.13)-(3.2.16) satisfying the conditions of (3.2.17)-(3.2.18) and such that the resulting bound-
ary is continuous and of bounded variation. Since such free boundary problems cannot normally
be solved explicitly, the existence and uniqueness of classical as well as viscosity solutions of
the variational inequalities arising in the context of optimal stopping problems have been ex-
tensively studied in the literature (see, e.g. Friedman [36], Bensoussan and Lions [14], Krylov
[72], or Oksendal [83]). Although the necessary conditions for existence and uniqueness of such
solutions in [36; Chapter XVI, Theorem 11.1], [72; Chapter V, Section 3, Theorem 14] with
[72; Chapter VI, Section 4, Theorem 12], and [83; Chapter X, Theorem 10.4.1] can be verified
by virtue of the properties of the coefficients of the process ﬁ, the application of these classical
results would still have a rather inexplicit character.

We therefore continue with the following verification assertion related to the free boundary

problem formulated above.

Theorem 3.2.1. Assume that V(p;b.(p;)) together with 0 < b.(p;) < 1 form a solution of
the free boundary problem of (3.2.13)-(3.2.17), and the boundary b.(p;) is continuous and of
bounded variation. Define the stopping time T, as the first exit time of the process II' from the
interval [0,b,(I17Y)) as in (3.2.11), and assume that Ezr, < co holds for € D. Then, the
value function V() takes the form

V) = V(i 0.(P1), if pe < bi(p1) (3.2.19)
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with
V(5 b.(51) = E5[G(T,,) + er], (3.2.20)

and the boundary b.(p;) is uniquely determined by the smooth-fit condition of (3.2.18).

Proof. In order to verify the assertions stated above, let us denote by V(p) the right-hand side
of the expression in (3.2.19). Then, using the fact that the function V() satisfies the conditions
of (3.2.15)-(3.2.16) by construction, we can apply the local time-space formula from [87] (see
also [90; Chapter II, Section 3.5] for a summary of the related results and further references)

to obtain
t
V(L) +ct=V(p)+ M, + L; + / (LV)(I) + ¢) I(IT) > b.(11;")) ds, (3.2.21)
0

where the process M = (M,);>o defined by

2" t
M, = Z Z/ Vpi(Hs)Mk\/ka <H§*1(O(i)u{k}) _ Hiﬂsofl({k})) T(IT # b.(Ti;Y))dBY, (3.2.22)
i=1 keN V0 Vi
is a continuous local martingale under the probability measure Py with respect to the filtration

(Fi)e>0- Here, the process L = (L);>o is given by

I - = :
L= / AV (I0,) I(IT = b, (I1]1)) at, (3.2.23)
0

where the function A,V (p) is given by

APZV(@ = ‘/;’l(plv e 7pl—1,pl+7pl+17 o e 7p2") - ‘/pl(pla ce ey DI—1,Pt— Pl+1, - - - 7p2")7 (3224)

and the process (' = ({});>q defined by

1t . . .
(= Py — hﬁ? —8/ I <b*(H;l) —e < IIL < b (171 + e) d(I1" — b, (TI7H)s, (3.2.25)
€ 0

is the local time of TI' at the surface b,(7;), at which the partial derivative V,,(p) may not
exist. It follows from the fact that the gain function G(p) in (3.2.6) is decreasing in p; and the
conditions (3.2.15)-(3.2.16) that the inequality A,V (p) < 0 should hold for all p’€ D, so that
the continuous process L defined in (3.2.23) is non-increasing. We may therefore conclude that
L; =0 can hold for all ¢ > 0 if and only if the smooth-fit condition of (3.2.18) is satisfied.
Using the assumption that the inequality in (3.2.17) holds with the boundary b.(p;), we
conclude from the condition in (3.2.15) that (LV)(p) + ¢ > 0 holds for any p'€ D such that
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m 7 bi(p1). Moreover, it follows from the conditions of (3.2.14)-(3.2.16) that the inequality
V(p) < G(p) holds for all € D. Thus, the expression in (3.2.21) yields that the inequalities

GU,)+cr— L. > V(L) +cr— L, > V(p) + M-, (3.2.26)

hold for any finite stopping time 7. Let (7,)n,en be a localizing sequence of stopping times for
the process M such that 7, = inf{t > 0| |M;| > n}. Taking the expectations with respect to
the probability measure Py in (3.2.26), by means of the optional sampling theorem, we get the
inequalities

— —

Es|G(Ipr,) + ¢ (T ATy) = Loar,| > Ez[V(Hrar,) 4+ ¢ (T ATw) = Lras, | (3.2.27)

Hence, letting n go to infinity and using Fatou’s lemma, we obtain
Ey|GL,) + e — L] > Ex[V(IL,) +cm — L] > V(p), (3.2.28)

for any stopping time 7 such that Eyr < oo and EzL, > —oo, and all p € D, where L, =0
holds whenever the condition of (3.2.18) is satisfied. By virtue of the structure of the stopping
time in (3.2.11) and the condition (3.2.15), it is readily seen that the equalities in (3.2.26) hold
with 7, instead of 7 when p; > b, (7).

Let us now show that the equalities are attained in (3.2.28) for p; < b.(p;), when 7, replaces
7 and the smooth-fit condition of (3.2.18) hold. By virtue of the fact that the function V(p)
and the continuous boundary of bounded variation b, (j;) solve the partial differential equation
in (3.2.13) and satisfy the conditions in (3.2.14) and (3.2.18), it follows from the expression in
(3.2.21) and the structure of the stopping time in (3.2.11) that

— —

G(llrpr,) + (e A7) = V(Urag,) + (T A o) = V(D) + Mrag,, (3.2.29)

holds for p; < b.(p;). Hence, taking expectations and letting n go to infinity in (3.2.29), using
the facts that G(p) is bounded and Ej;7, < oo, we apply the Lebesgue dominated convergence

theorem to obtain the equality
Ep[G(L,) + e =V (), (3.2.30)

for all 7 € D. We may therefore conclude that the function V(p) coincides with the value
function V,(p) of the optimal stopping problem in (3.2.6) whenever the smooth-fit condition
of (3.2.18) holds.
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In order to prove the uniqueness of the value function V,(p) and the boundary b, (7)
as solutions of the free-boundary problem in (3.2.13)-(3.2.17) with the smooth-fit condition of
(3.2.18), let us assume that there exists another continuous boundary of bounded variation o' (pj)
such that 0 < ¥/(p;) < 1 holds. Then, define the function V'(p) as in (3.2.19) with V'(p;'(p}))
satisfying (3.2.13)-(3.2.17) and the stopping time 7’ as in (3.2.11) with b'(p;) instead of b.(p;),
such that E;7’" < co. Following the arguments from the previous part of the proof and using
the fact that the function V’(p) solves the partial differential equation in (3.2.13) and satisfies
the conditions of (3.2.14) and (3.2.18) with 0'(p;) instead of b.(p;) by construction, we apply

the change-of-variable formula from [87] to get
t
V() + et = V'(§) + M| + / (LV")(TL,) + ¢) I(TT, > ¥/(T1;1)) ds, (3.2.31)
0

where the process M’ = (M{)i>o defined as in (3.2.22) with VJ (p) instead of V,,(p) is a
continuous local martingale with respect to the probability measure Py. Thus, taking into

account the structure of the stopping time 7/, we obtain from (3.2.31) that

— —

G(HT’/\T,’L) +c (7—/ A T’Ill) Z V/(HT’/\T,’L) +c (7-/ A 7—7/1) = V/(ﬁ) + Mﬂl"/\ﬁlv (3232)

holds for p; < U/(p;) and any localising sequence (7),)nen of M’. Hence, taking expectations
and letting n go to infinity in (3.2.32), using the fact that G(p) is bounded and E;7" < oo,

by means of the Lebesgue dominated convergence theorem, we have that the equality
Ep[G(IL) + 7] = V'(p), (3.2.33)

is satisfied. Therefore, recalling the fact that 7, is the optimal stopping time in (3.2.6) and
comparing the expressions in (3.2.30) and (3.2.33), we see that the inequality V'(p) > V(p)
should hold for all p'e D.

Finally, we show that ¢/(p;) should coincide with b, (). By using the fact that V'(p) and
V(p) satisfy (3.2.14)-(3.2.16), and V'(p) > V(p) holds for all p'e D we get that b'(p;) < b. ().
Inserting 7, A7), into (3.2.31) in place of ¢ and using arguments similar to the ones above, we

obtain
Es[V'(TL,.,) + cr.] = V(D) + By / ; (LV')(I1,) + ) I(TT) > ¥/ (T0")) ds, (3.2.34)

for all p’e€ D. Thus, since we have V'(p) = V(p) = G(p) for p, = b.(p), and V'(p) > V(p),
we see from the expressions in (3.2.30) and (3.2.34) that the inequality

Ep/ (LV')(I0,) + ) I(TT, > ¥/(Ti;")) ds < 0 (3.2.35)
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should hold. Due to the assumption of continuity of '(p;) we may therefore conclude that

b.(py) =V (py), so that V'(p) coincides with V(p) for all p'e D. O

3.2.3. The location and structure of the optimal stopping boundary Let us define
the linear function H’(p) as

ﬁ) Z )‘ pO (J\{7}) Z hjzpza (3236)

ied

where the constants hj; are given by

hjj = —)\(J), for J 7& I, (3237)
hji = Xg, HO@)=J\{k} with k € J, (3.2.38)
h;i =0, otherwise. (3.2.39)

for any p€ D and j =1,...,2". By using (3.1.30) and the optional sampling theorem, we get
/ HI(ILy) dt + p; = E51L, (3.2.40)

for any p€ D and j =1,...,2", and for any stopping time 7 such that Ez7 < co. Therefore,
the optimal stopping problem of (3.1.35) is equivalent to

m 2" r
V@) = Vi@ + > <Zbkaik> by, = inf E; / H(TI,) dt, (3.2.41)
k=1  i=1 T 0
where we denote
m A .
= Z (Z ckaikpi> - bkaikHZ(ﬁ), (3242)
k=1  i=1
for p'e D. By using (3.2.36), we can rewrite H as
2n m 2n
i=1 k=1 j=1

It is seen from (3.2.41) that, whenever H (ﬁt) < 0, it is not optimal to stop, or equivalently
H({p)>0 for pes, (3.2.44)
where the stopping region S is defined as (compare with (3.2.11))

S:={peD|p>b(p)} (3.2.45)
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By using (3.2.43), this means that the set

21’1,
> hipi < 0} (3.2.46)

i=1

{ﬁeD

belongs to the continuation region C' defined by
C:={peD|p <b(i)} (3.2.47)

If we assume h; > 0, the above leads to

hupr — 212;1 hip;

b.(51) = .(5) e,

(3.2.48)

so that b.(p;) < b.(p) holds for all p; € [0,1]>"~! such that p’ € D. Therefore we call admissible
the parameters of the model that satisfy (3.2.48), because otherwise the optimal stopping time
is not of the form (3.2.11), whenever it exists.

Let us take p) ¢ € D such that p; < b.(p1), @& < px, and Gx = Pk, for some k # [, and
assume hp > 0. Using the fact that Il is a time-homogeneous strong Markov process and
taking into account the comparison resuts for solutions of stochastic differential equations in
[114] we get
P)

—

o _ T ( ., T« (P)
V(@) — G() = V() < E; /0 H(i,) dt < E; /0 H(M,) dt (3.2.49)

=V.(p) = V.(5) — G(p) < 0,

which leads to p; = ¢; < b.(q;). Since we can choose p; arbitrarily close to b.(p;), it follows that
b.(p1) < b.(q) and therefore the boundary b.(p;) is decreasing in p,. The case when hy < 0
leads by analogy to the fact that b,(p;) is increasing in py.

Let us summarise the results proved above in the following assertion.

Proposition 3.2.1. Under the assumption that h; > 0 the inequality (3.2.48) holds and the
parameters of the model are admissible. Moreover, if for some k # | we have that h; > 0

(hi < 0), the boundary b.(p;) is decreasing (increasing) in py for p€ D.

3.3. Examples and estimates

In the previos sections we characterized the Bayesian risk function of (3.1.2) as the solution

to the Markovian optimal stopping problem in (3.1.35) and, under certain assumptions, to the
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free boundary problem in (3.2.13)-(3.2.18). However, explicit solutions to this multidimensional
free boundary problem are not available in general. Therefore, in what follows, we first study
specific examples that satisfy the assumptions in Lemma 3.2.1 and Proposition 3.2.1, and then
provide estimates for the value function and optimal boundaries in (3.1.35) which are easier to
compute. We assume for notational convenience that the bijection O satisfies O(1) = &, so

that we have II' =T11¢ = 1.

3.3.1. The case of infimum and supremum Let us now present an example, in which we
can can indeed find [ = 1,...,2" such that g < 0 and h; > 0, and G(p) achieves its minimum
for all 7€ D with p, = 1. Let m = 2 and the functions f1(6) and f5(6) in (3.1.2) be given

by f1(0) = Nien i and fo(0) = ;o 0; for some @ # K C N. This means that the posterior
probability processes IT*! and IT*? from (3.1.5) are of the form (3.1.6) with

a1 =0, a; = (=D for j =23 ... 2" (3.3.1)
agg =1, ajp=0 forj=1,...;k—1,k+1,...,27, (3.3.2)

where we have taken 1 < k < 2" to be such that O(k) = K. Notice that from (3.2.2)-(3.2.4)

we have
S (100Kl g, — ﬁ (3.3.3)
KCO(j)CN
and by using (3.2.9), (3.2.43) and (3.3.1)-(3.3.2) we get
9j = _ajl(bl + )\(cjlv)) —baaja + c2fi; 1 O()) C K, (3.3.4)
gj = —aj <b1 + )\(0]1\[)) otherwise, (3.3.5)
and
hie = ap (DIA(N) 4 ¢1) + b A(K) + o, (3.3.6)
hy = ajp(AN) +¢1) — by if @ £ O(j) = K\ {i} with i € K, (3.3.7)
hy = —bIA(N) — ba)i it K = {3}, (3.3.8)
h; = aj(btA(N) + 1) if @ # 0(j) # K\ {i} with i € K, (3.3.9)
hy = —bA(N) it K 2 {i). (3.3.10)

If |K| is odd number we can choose | = k and from (3.3.4)-(3.3.10) and the fact that a; =
ag; = 1, it follows that ¢, < 0 and h; > 0. If |K| is even number and K # N we can choose [
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such that O(l) = K U{k} with ¥ € N\ K, and from (3.3.4)-(3.3.10) and the fact that a; =1,
it follows that ¢; < 0 and h; > 0. If K = N and |K| is even number we additionally assume
that

C1 — C2

by — by + V)

<0. (3.3.11)

Therefore we can again choose | = k and from (3.3.4)-(3.3.10) with (3.3.11) and the fact that
an = ap; = —1 it follows that ¢; < 0 and h; > 0.
By using the definition of D in (3.1.34), we obtain that

p;=1 1i0O(j) € O(), (3.3.12)
p; =p; HO@)=00G)U{r} withr e O(l), (3.3.13)

holds for all p’e D with p, = 1. Therefore, by using that aj; = —a;; for O(i) = O(j) \ {r}
with » € O(j), we get that 2]2; aj1p; = 1. If we choose j such that O(j) C K, it follows
that fi; is negative and K C O(l) implies p; = 1. Hence, we conclude from (3.2.8), (3.2.9)
and (3.3.4)-(3.3.5) that G(p) achieves its minimum for all € D with p, = 1.

Let us finally note that, in the case when m = 1 and the function f;(6) is defined as above,
we can choose [ = 2,3...,2" such that |O(l)] = 1, and we will have that g, < 0 and h; > 0,

and G(p) achieves its minimum for all g € D with p, = 1.

3.3.2. Estimates in the infimum case In order to find estimates for the value function
Vi(p) from (3.1.35) and the boundary b.(p;) from (3.2.11) we will use the solution to the
ordinary free boundary problem from [105; pages 203-204] (see also [90; Chapter VI, Section
22.1]). We assume that m = 1, the function f,(f) is given as in Section 3.3.1. and by = 1 in
(3.1.2). Therefore, the problem in (3.1.2) reduces to finding a stopping time of alarm 7., with
respect to the observable filtration (F;);>0, which is as close as possible to the infimum of all

disorder times.

Denote k; = /vy /v; for i € N and define the ordinary differential operator L, as

d

dm,’

w1 —m)? d
L, := 5 > |/fikj|d—7rz+/\(N)(1—7T*) (3.3.14)

i,jEN
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Let us formulate the ordinary free boundary problem

(L) (i) = —aymie for  m. €0, h), (3.3.15)
Vi(h—) =1—"h (continuous fit), (3.3.16)

V/(h—) =—1 (smooth fit), (3.3.17)
Vi(m) <1—m, for m, €][0,h), (3.3.18)
Vi(m) =1—m, for m, € (h,1], (3.3.19)

for some 0 < h < 1. It is shown in [105; pages 203-204] that there exist a unique concave
solution Vi(m.) to the problem in (3.3.15)-(3.3.19) with the property that V/(0+) = 0. In

particular, the solution is given by

h .
Vi(m) = (L=h) = [ (x)de if m €0,h), (3:3.20)
1—m, if W*E[h,l],

and the constant h is the unique root of the equation
¥(h) = -1, (3.3.21)

and satisfies h > A(N)/(A(N) + ¢1), where

w( ) €1 \(N)§(ma) /v /ﬂ-* e d (3 3 22)
Ty) i= ——¢€ * —dax, 0.
v o a(l—xz)?
™ 1 i jen |Fiki|
§(m) =1 = = e - 3.3.23
() := log 1—m m 2 7 ( )

for m, € (0,1). By using the fact that V;(m,) satisfies (3.3.19), we obtain
(L V)) () > —eym, (3.3.24)

for m, € (A(N)/(MN) + ¢1),1] and, hence, for all w, € [0,h) U (h,1] since Vi(m,) satisfies
(3.3.15) and h > A(N)/(A(N) + ¢1).
Denoting IT* = IT*! | we obtain from (3.1.6) and (3.3.1) that

;= Pe(y Ao A0, < t|FX) = 17 = S mf @+ Y o - (3.3.25)

1EN i#jEN i#j#kEN
+ (=02 I ()t

€N
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and applying It6’s formula, by using (3.1.30) and (3.3.1)-(3.3.2), we can see that the process

IT* satisfies
dit; =Y N1 -I)dt+ > kI (1 - 1I7) d B, (3.3.26)
ieN iEN
for all ¢ > 0. Therefore, using the fact that the function Vi (r,) satisfies the smooth-fit condition
(3.3.17) and (3.3.19), we can apply the local time-space formula from [85] to obtain

V) = viamg) + [ i A - myds + Y [ v ko - aB; 6320

0 iEN

1 /f kikivji oo
+ = [ Var) (Mngz}ngﬁ) (1 —TI2)? I(IT; # h)ds.
2 0 ! ’L% \/ViiVijj t

From (3.3.18)-(3.3.19), by means of the optional sampling theorem, we get that

0 0
= VAIG) + By [ (VAN (1= 1) + et ) e
0

1 T kikjvji iy 2
+ - F- V' (ITF E —— TV 1 —1IL)° I(II; # h) dt
2 p/o 1 ( t) S ( Viiij t t ( t) ( t ) I

for any stopping time 7 such that Ez7 < oo for p'e D. Since Vj(m,) is two times differentiable
and concave we have that V/"(m,) <0 for m, € [0,h) U (h,1]. From (3.3.28) and the fact that
—1 <vj;/\/7iv;; < 1, we therefore have

35{1 it cl/ I dt} > Vi (II5) + Eﬁ/ (V{(H;) AN)(1 = II}) + clnj) dt (3.3.29)
0 0

1 ! * i j * *
3B [ v S (ki) (- s £ ) d
0

iJEN

By using that
Hfi} = Pz (0; <t|F) < Pe(L Aby--- NG, < t|F) =11} (3.3.30)
holds for any i € N and t > 0, and (3.3.24) is satisfied, we obtain

Eﬁ{1 — I+ cl/ I dt] > V4 (IT%) + Eﬁ/ (LVA)(IT) + eI I(IT # B)dt (3.3.31)
0 0

> Vi(IT),
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for any stopping time 7 such that Ez7 < oo for p'€ D. Since IIf = Zjll a;1p; under the

measure Py, by using (3.1.35), we have

7 2"
V,(p) = inf Eﬁ{1 — I+ ¢ / I dt} > vl(zaﬂpj), (3.3.32)
T 0

j=1
for peD.

Using the results from Section 3.3.1. in the case m = 1, we can choose [ = 1,...,2" where
O(l) = {r} for some r € N, and apply Lemma 3.2.1 to obtain that the optimal stopping time
T, is of the form (3.2.11). Therefore, by using the fact that IT* is of the form (3.3.25), we have

that a;; = 1 and, hence, 7, is of the form

7, = inf {t > 0| I} > ¢} (IL,)}, (3.3.33)
with ¢7(p) given by
27’L
gi(P) = bu() + Y anp; — pu, (3.3.34)
j=1

for '€ D. Moreover from (3.2.48) and (3.3.6)-(3.3.10) we obtain that

on

bu(B) > bu(P) =1 — > anp; +
j=1

AN)

V) o (3.3.35)

and it follows that 0 < A(N)/(A(N) + ¢1) < ¢5(p) for p€ D.

We can deduce from Theorem 3.2.1 that the function V,(p) defined in (3.2.6) satisfies
(3.2.15)-(3.2.16) and therefore, by using (3.3.34), we have that V.(p) < 1 — 2311 aj1p; holds
for all € D such that 0 < 37" ajp; < gi(p). Since Vi(m,) satisfies (3.3.18)-(3.3.19), it
follows from (3.3.32) that g7 (p) < h and we also get from (3.3.34) that

-

be(p1) < h+pr — Z a;1pj, (3.3.36)

j=1
for peD.

Summarising the facts proved above, we are now ready to state the main result of this

section.

Theorem 3.3.1. Suppose that the function Vi(m,) is concave and, together with the constant
h € [0,1], solves the ordinary free boundary problem in (3.3.15)-(3.3.19). Then we have that the
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lower bound in (3.3.32) holds for the value function V.(p) from (3.1.35) and the upper bound
in (3.3.36) holds for the boundary b.(p;) from (3.2.11). Moreover, the optimal stopping time in
(3.1.35) can be written in the form of (3.3.33), where the optimal boundary gi(p) is such that
0<AN)/(AMN)+c1) <gi(p) <h <1 for peD.

3.4. Appendix

3.A.1. Proof of Lemma 3.1.1 Define the n-dimensional row vector u’ = (uf,...,pu’) and
the row process X = (71, o ,Yn) as
J_ Hi f . J _ XZ :
p, =— for ieJ p; =0 for ieN\J, X for i€ N, (3.A.1)
Vi Vi

for ¢ > 0. From the definition of X in (3.1.1), under the measure P? we have

XZ

= B! for i€ N, (3.A.2)
I/’L
and under the measure P’ we have
X! y X ‘
St BB for ied, St=DB for i€ N\J (3.A.3)
V; V; v;

for t > 0. Therefore, by the Girsanov theorem for an n-dimensional Brownian motion (see, e.g.

75: Chapter VI, Theorem 6.4]), we conclude that the weighted density process Z” satisfies
[75; Chap : : g y P

= exp ( Z A ) i) — exp (Z Nt + p/ 2N (X - %,ﬂz-l(,ﬂ)%) (3.A.4)

o
(P21F) oy
7 Vij 1 % ]
_exp(ZAHZN Yaxi %gw)
ieJ ieJ Vi j=1 ijeJ v Y
_exp(ZAHZw__ %gy@,
ieJ ieJ 1,j€J v

for t > 0, where the processes Y are defined as in (3.1.10) for i € N and (-)” denotes the

vector transpose. 0

3.A.2. Sufficient statistics in the case of an exponential delay penalty costs We
describe here the sufficient statistics and their corresponding stochastic differential (filtering)
equations in the case of exponential delay penalty costs. We are interested in detecting the

so-called k'*-to-default event, which is a generalization of the infimum and the supremum of
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all disorder times. Specifically, keeping the notation from Section 3.1, let m = 1 and let the

Bayesian risk function from (3.1.2) be of the form
V.(7) = inf (bl P (7 < £1(0)) + ¢ Bz [P0 0O _ 1}), (3.A.5)

where S > 0 and the function fl(g) is equal to the k-th element 6;, in the ordering 0;, < 6;, <
- < 0;, of the elements of ] , that is, it is given by
Aoy = N Vo, (3.A.6)
JCN,|J|=k j€J

for some k € N. The term Eﬁ[eﬁ(T*fl(‘gﬂ))+ — 1] represents the average exponential delay of
detecting the function f1(6). We also notice that

Ex [P RO _q] = B, / I(f1(0) < t,t < 7)BeP=N) gy (3.A.7)
0

0

In order to reduce the problem in (3.A.5) to an optimal stopping problem for a multidimen—
sional Markov process we define the process (II'");sq as I = Ez[I(f,(6) < t)e?t=H@) | F]
for ¢ > 0. Hence, from (3.1.3) and (3.A.7), it follows that the Bayesian risk function in (3.A.5)

can be written as

Vi(7) = inf Bz by (1 — II"Y) + ¢ / BII dt}. (3.A.8)
T 0

Define the posterior probability process (I );so as I := Ez[I (Nies {0 < thefl= h@ " F,
for J C N, and denote by II = (IT', ... TI?") the 2"-dimensional process with components
given by II = I1°U) for j € {1,...,2"}. Notice that, by the inclusion-exclusion principle, we
have that

100 <0 =0 S S 10 <), (3..9)

i—k = DX " JCN,|J|=i

and, therefore, the representation in (3.1.6) is satisfied and II*! is of the form

o
' = Eﬁ[f(fl(g) < t)eft=nl " | 7] = Z“ﬂ Iy, (3.A.10)

7j=1
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where

e G=1) ) o |
=(-1) =116 =R for k=1,...,]0()| =1 aj1 =0 otherwise, (3.A.11)

for j =1,...,2". Moreover, by using the fact that

Cle

(mzeJ{e <t} N{A0) <t}) (3.A.12)
e 2 (et <o)

(k " LCN,|L|=i
(N0 < t}>eﬂ(t_ﬁ@)+ = I((";e 10 <t} N {fa( ) t})e’ Blt=11(9) (3.A.13)
+ (L= I(f1(8) < 1) I(N;e A0 < 1),

i=k

we get that

=10/ + Z i 1) > (I -1, (3.A.14)

— DI — k)! LCN,|L|=i

for J C N and ¢t > 0. It follows that, for any J C N such that |J| < k, the process 17 can
be written as a linear combination of the processes 117, I17YF and 1YL where L € N and
|JUL| > k. Therefore, we only need to obtain the stochastic differential equations satisfied by
the processes 17 for all J C N such that |[J]| > k.

For any R,L C N such that R # @, RN L = @ and any permutation « := [ay,...,q,] €

Perm(R) we define the process (9%F);= recursively as

~ t ZRUL ,ft

Gl o A%/ Blo,-- ocr—l]lzZtRU—Lﬁdu for |RUL|>k, (3.A.15)
0 u ert

d*F = oL for |RUL| <k, ®7F:=nxle?ZF for |L| >k, (3.A.16)

where Z% and ®*L are given by (3.1.7) and (3.1.11). By analogy to Section 2, from the
generalized Bayes formula in [75; Theorem 7.23], we obtain that the posterior probability

process (II/);so takes the form

(3.A.17)

where

o= Y > >yttt (3.A.18)

LiCN\J RDJ\Lz a€Perm(R)
L2CJ RQN\(L1UL2)
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for J C N and U7 as in (3.1.16). By using It6’s formula, from (3.1.18) and (3.A.15) we get

Pyt = <>\aﬁ>£a1 """ (B Y /\><I>"‘L> dt+ Y &ptayy, (3.A.19)

1€RUL 1€RUL

for R,L C N such that R # @, RN L =@ and |[RUL| > k, and any « := [ag,...,q,] €
Perm(R). We also obtain from (3.A.16) that

A7 = <B+Z)\)<I>®Ldt+CI>‘Z’LZdYZ (3.A.20)

i€l i€L

holds for L C N such that |L| > k. Therefore, by using (3.A.18) and aggregating, we further

obtain

Al = (Z AT (ﬁ +y AZ-) \TJ;’) e+ 3 0 ay; + 3" ayi 3421

icJ i¢J ieJ i¢J
Hence, by applying It6’s formula to (3.A.17) and using the same reasoning as in Section 3.1,
we conclude that

dity = ( SONIM (5= ST )1 ) ar+ > ( /-t ﬁJn{”) BivPi api, (3.A.22)

t 15 t -t v t
i€J i€J 1EN

for J C N such that |J| > k. It follows that (II,II) is a (time-homogeneous strong) Markov
process, even after removing all components 117, where J C N and || < k.

Finally, by using (3.A.8), (3.1.6) and (3.A.10), we can reduce the problem of (3.A.5) to the
optimal stopping problem

271 ’VL
(]7) lﬂf E |})1 (]_ — Z CLZ1H +c / Z ailﬁi dt:| . (3A23)
=1

=1

Here, the processes I1 and II start at the same p € D under the probability measure Fj.

3.A.3. Filtering equations in the case of a two-dimensional Poisson process Our
aim in this section is to describe the sufficient statistics in a setting with dependent observable
Poisson processes and for that purpose we will obtain the corresponding filtering equations.
Let in the setting of Section 3.1 we have that n = 2 and m; = 0 for ¢ = 1,2 and for ease of
notation let P = Pz. Let N* = (N/);>o for i = 0,1,2, be pure jump processes, and assume

that they are independent of the disorder times 6;, and also independent of one another. In
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particular, we assume that N/ ,i = 0,1,2, are Poisson processes with intensities

mor, (L —sm0)A0, (1 —300)A20, for 0<t <0 Absy, (3.A.24)
siadia,  (L—sa1) 1, (1 —3m1)h, for 6 <t <6, (3.A.25)
maho,  (1—sa3)Ao, (1 —3m3)A01, for 6 <t <6, (3.A.26)
saodia, (L—sm2) 1, (1 —3m9)Aa1, for 6,Voy <t, (3.A.27)

respectively, for some constants 0 < »;,;, <1 ,¢=1,2, 5 =0,1,2,3, and \;; >0, ¢ = 1,2,
j = 0,1, which satisfy

21 0A1,0 = 2o 0N20, H11AI1 = Ha1Ae0,  H13A10 = HosAe1,  HioA11 = eoha1. (3.A.28)

Let the pure jump (observable) processes X' and X? be given as X} = N/ + N for i = 1,2.
Specifically, from (3.A.24)-(3.A.27)+(3.A.28), we conclude that X* has the form

dX!=1(t <60,)dX° +I(t > 6,)dX}", (3.A.29)

where Xti’j is Poisson process with intensity A;; for ¢ = 1,2, j = 0,1 and ¢ > 0. Note that
the dependence between the observable processes X! and X? is realised through the common
pure jump process NU.

Let us introduce the processes ®° = (®!);>¢ and V' = (VU!),5 defined as

. tZi,O . . ZZOZS ,1
P! = )\i/o # dv and W, =\;_; / P! w0 A du, (3.A.30)
where the (weighted) density process Z* = (Z7);s¢ is given by
: 0; = 0} (03— = oo})|F)
ZZ,O /\ t ( ( | { ’ 3A31
! (P10 =60 = D17 .
; d(P(-|{6; = Os_; =

d(P(- [ {0; = 03—, = 0})|Fy)
for i = 1,2. The process Z% satisfies (see [75; Theorem 19.7])

2
ZZ’j = exp (Z O./i’j’thl — (S@jf), (3A33)
=0

for ¢ > 0, where we have defined the constants

(1 — 56 2i435-2ij-1)Nia
(1 - %i,j(ijQi))Ai,O

%i,2i+3j72ij71)\i,1 (3 A 35)
%i,j(5j72i)>\i,0

0ij = =i+ Aig — i + N3 j (2835 j(5j—2i) — H3—i2i43j—2ij—1) (3.A.36)

1 — 53 5053 91 1) \3_i.i
( M3—4,2i+3§—2i7 1) 3—i,j (3A34)

Qi = In , Qigzi=In
(1 = 534, j(5-2i) ) As—i,j

0 = In
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for i = 1,2 and j = 0,1. Here, the processes ® and W! can be regarded as the (weighted)
likelihood ratio processes corresponding to the events {6; < t < 05_;} and {0; < 05_; < t},
respectively, for all t > 0 and ¢ =1, 2.

By means of standard arguments, resulting from the application of the generalized Bayes
formula from [75; Theorem 7.23], it is shown that the posterior probability processes II =
(I;)¢>0 and II* = (I1%);5q defined by I, = P(6; < t,0, < t|FX) and 1! = P(6; < t|F/Y),
i = 1,2, respectively, take the form

v, , T
IT, = d I = 3.A.37
Tigg M T agE) (3.A.37)
where the processes U = (U;);50, T' = (T!)>0 and = = (Z;);>0 are given by
U, =V + U Yi=0+¥, and =, =)+ &) "+, (3.A.38)

forall t >0 and 7 =1, 2.
Applying It0’s formula, we get that the process Z% from (3.A.33) admits the representation

A7 = Z\, dt+Z”Z/ e%iat® 1) (py(dt, dv) — 900y (dt, dv)),  (3.A.39)

with Zé’j =1 for i =1,2 and j = 0,1. Here the measures v/°(dt,dv) are given by
vp°(dt, dv) = e1(dv) s g1 odt,  v°(dt, dv) = e1(dv)(1 — 50)Niodt, for i=1,2, (3.A.40)

and represent the compensators, conditional on {#; > t,6, > t} and with respect to the
observable filtration F; = o(X!, X2|0 < s < t), of the jump measures p(dt,dv) of N' on
B(R,)® B(R) for [ =0,1,2, where &; is the Dirac measure at the point 1. Then, defining the
process Ul = (U)o by Ul = Z;°Z} ™" we see that the following expression holds

2
AU} = U} (N + Xa—)dt + U Y / (" = 1) (e — ) (dt, dv), (3.A.41)

for all ¢ > 0, where U} =1, k; = Q0+ as—i1; and kg = a0+ as_;10, for i =1,2. Let us

introduce the notation

- dz)° v AUt =, y dZZO
dR, = —, dS;= (i]t = % ZY =e Mz, dRi = =dR; — \idt (3.A.42)
Zt; Utf Utf t,
i~ ~dUf AU ~
Ul =227, dS, = =t = = dS; — (A + \o)dt, i =0+ N (3.A.43)

Ui U
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Hence, using again the Itd’s formula, we obtain that the processes ® and ¥* from (3.A.30)

solve the stochastic differential equations
At = \(1+ ®i_)dt + D'_dR! (3.A.44)
with @) =0, and
AU = (Mg ®! + (A + o)W )dt + Wi_dS, (3.A.45)
with W) =0, for i = 1,2. Thus, the processes defined in (3.A.38) admit the representations
AW, = (Ag_y @i+ \DP T+ (A + \o) W, )dt + W, dS, (3.A.46)
with U§ =0,
AT = (N(1+Z) + Asi T dt + YTi_dR: + W, d(S; — RY) (3.A.47)
with YT) =0, and
2= (M4 M) (L +Z)dt + Y dR 4+ Y3~ dRY ™ + U,_d(S, — Ri — R}™) (3.A.48)

with =g = 0, for ¢ = 1,2. We therefore conclude, due to the Itd’s formula, that the processes

defined in (3.A.37) solve the stochastic differential equations

2
dll; = (11} = T Ao + (I = Th)Ay) dt + ) / Fi(TL T T2 ) (s — i) (dt, dv),  (3.A.49)
=0

with Iy = 0, where

. 12
fi(m, 7', 7% = mgi(m, ™, 7) (3.A.50)

_ekiv - gi(ﬂ-v 7T1a 772)

gi(m, 7t 7?) =(1 — m) (" — 1) + (7 — 77) (e®09 — 1) (3.A.51)

(=) 1)
go(m, 7, 7?) =(1 — m) (e — 1) + (7 — 1) (™00 — 1) + (7 — 72)(e*20” — 1), (3.A.52)

for i =0,1,2 and j = 1,2, and

2
dIly = \(1 = T)dt + ) / £ (e T TIE ) (= vy)(dt, ), (3.A.53)
j=0
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with IT) = 0, where
i 1.2
i 1 2y _ gj(ﬂﬂrvﬂ) .
fi(m,m,7m%) = — g (m, A7)’ for j=0,1,2, (3.A.54)
gj(m,m', mw?) =m(1 — ) (e — 1) + (1 — 7% (7" — 7)(e®09 — 1) (3.A.55)
_|_ 7TZ(7T _ 7_{_3—2')(604373"17{!} _

1), for j=1,2,

— 1)+ (1 = 7)) (7" — ) (e*00Y —

1) (3.A.56)
i — 7 (e — 1),

gé(ﬂ,wl,WQ) =r(1l — Wi)(ekov

for i = 1,2 and (7, 7', 7%) € [0,1]*. In the equations (3.A.49)+(3.A.53) the measures v;(dt, dv)
are given by

vi(dt,dv) = e1(v) (1 + IL_ (" — 1) + (I~ — IT;_)(e*0¥ — 1)

(3.A.57)
+ (ILe — I (e300 — 1)) (1 = s50)Niodt, for i=1,2,

vo(dt, dv) = e1(v) (1 + My (€M — 1) + (Il — II,_)(e™" — 1) (3.A.58)
+ (I- — 7 ) (7200 — 1)) 501 oAy odlt,

and represent the compensators of the jump measures 1 (dt, dv) for | =0, 1,2 with respect to
the observable filtration F; for (t,v) € Ry x R.
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Chapter 4

On the Laplace transforms of the first
exit times in one-dimensional

non-affine jump-diffusion models

This chapter is based on joint work with Dr. Pavel V. Gapeev.

4.1. Solvable stochastic jump differential equations

In this section, we suppose that on a complete probability space (2, F, P) there exists a stan-
dard Wiener process W = (W;);>o and a homogeneous Poisson random measure u(dt,dv) on
(Ry xR, B(R;)®B(R)) with the intensity (compensator) measure v(dt, dv) = dtF(dv) (see [56;
Definition I1.1.20]), where F is a positive o-finite measure on (R, B(R)) such that F({0}) =0
and W is assumed to be independent of p(dt, dv).

4.1.1. Let us consider the stochastic differential equation

[ B X)) (= v)(dtde) + RO X)),
where h(z) = xlj, <1y with I{y as the indicator function, h(z) = = — h(z), and B(t, ),

y(t,x) > 0 and (¢, z,v) are continuous functions on R, x R and R, x R?  respectively.

Assume that, for any n € N, there exist a constant C,, > 0 and a function p,(v) with
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[ p2(v ) < oo such that
6t x) = B, y)| + vt x) =t y)] < Colz—yl, (4.1.2)
|6t x)| + [y(t, 2)| < Cp (14 [z), (4.1.3)
|h(6(t, 2, v)) — h(0(t, y, )| < pu(v) [ = y], (4.1.4)
\h(5(t, z,v))] < pu(v) (1 + |2]), (4.1.5)
Rt 2, 0)) — Rt y,v))| < P2) |2 —yl, (4.1.6)
R3¢, 2,0))| < (P () A pp(v)) (1 + Ja]), (4.1.7)

forall 0 <t <n and z,y,v € R. These conditions guarantee the existence of a unique strong
solution X = (X});>0 to (4.1.1) for a given Xy € R (see [56; Chapter III, Theorem 2.32]). We

additionally assume that
vt 2) =) + )z and  6(t,x,v) = do(t,v) + 61 (¢, v) x, (4.1.8)

where v;(t) and 0;(¢,v) for ¢ = 0,1 are continuous functions such that 0;(t,v) > —1, for all

t >0 and z,v € R. Finally, the equation in (4.1.1) takes the form

dX, = B(t, X;) dt + (o(t) + 71 (t) X,) dW, (4.1.9)

+ /h(50(t, v) + 01(t,v) X)) (1 — v)(dt, dv) + /E(éo(t, v) + 01(t, v) Xy ) p(dt, dv).

4.1.2. Following the arguments in [45; Chapter IV], we see that if we have

Bt,x) = Bo(t) + Bu(t) z, (4.1.10)

for all ¢ > 0 and x € R, then the stochastic differential equation (4.1.9) can be solved explicitly.

For this, we assume that the condition

8, V) I {15(s,2,0)|<1}
/ / ( T4 [o1(s,0)] + [log(1 + 61(s,v)) = 61(5, ) I{is5(s,20)<1}| | F(dv)ds < oo, (4.1.11)

holds for all ¢t > 0 and = € R. Therefore, the integrating factor process Z = (Z;);>o given by

tA2(s) ¢ t
Zy = exp (/ 1T ds — / Y(s)dWs — / /51(s,v)]{|5(s7xs_,v)|<1} (u—v)(ds,dv) (4.1.12)
0 0 0

_ /0 / (log(l + 51(87 U)) — (51(8, U)]{‘5(87XS_7U)‘§1}) u(ds, dl))),



4.1. Solvable stochastic jump differential equations 111

is well-defined according to [106; Chapter VII, §3a, Theorem 2]|. Hence, applying [t6’s formula
to (4.1.12), we get that the process Z satisfies the equation

dZt = Zt_ (7%(@ dt — ’yl(t) th - /(51@, U)I{\é(s,Xs_,vﬂgl} (u - V)(dt, dv) (4‘1.13)
O (t, ) 1505 X v — 82(t, V) 1505 x. v
_/ 16 ) gis(s,x )13 — 01 (6 0) L gjo(s, X, w)I<1} s, dv) ).
1—f— 51(t,1})

It follows from the expressions in (4.1.9) and (4.1.10) that the process F' = (F});>o defined by

t
Ft = R;ltit with Rt = exXp (/ 51(8) dS), (4114)
0
admits the representation
dF, = R;* (Zt, dX; + X dZ, + d(Z°, X) + AZAX, — Zy Xy () dt) (4.1.15)

=R 7, ((50(@ — () (t)) dt + yo(t) dW; + /50(ta 0) {1505, w)<1y (1 — v)(dL, dv)

§O(t7 U)
+ / <m — (So(t, U)I{|5(S,Xs_,v)|§1}> ,U(dt, dv))

Therefore, we may conclude from the expressions in (4.1.14) and (4.1.15) that the process
X = (Xt)i=0 given by

X, =Z 'R, (X0+/ R, Z(Bo(s) — vo(s)7(s)) ds+/ R Zyo(s) dW, (4.1.16)
0 0

t
+/ Rs__lzs—(/50(8711)]{5(5,)(3_,@)<1} (u—v)(ds,dv)
0

50(57U)
+ / (m — 50(3, U)]{é(s,XS_,v)<1}) ,u(ds, dv))),

provides a (unique strong) solution of the equation in (4.1.9) under the condition of (4.1.10)

for a given X, € R.

4.1.3. Following the arguments in [83; Chapter V, Example 5.16], we now show that the
stochastic differential equation in (4.1.9) can be reduced to an ordinary differential equation
if we assume that vo(t) = do(t,v) = 0 in (4.1.8), for all £ > 0 and v € R. By applying the
integration-by-parts formula to the process G = (G);>0 given by G; = Z;X;, and using the
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form of the functions A and h, and the expressions in (4.1.9) and (4.1.13), we obtain
dGy = Z,— dX, + X, dZ + d(Z, X + AZ, AX, (4.1.17)

=7 (5(7@ Xy ) dt + v (t) X dW,

+ /h(él(t,v)Xt_) (u — v)(dt, dv) + /E((ﬁ(t, v) X ) pu(dt, dv))

+ Zi- X (7?@) dt — 7 (t) AWy — / %ﬁ){t_)

B(5: (£, 0) X ) — 61 (£, 0)h(3a (£, ) X, )
- / (L+01(t,0)) X pldt dv))

(1 — v)(dt, dv)

01(t,v)
1+ (51 (t, U)
Therefore, if f(t, x) satisfies the conditions in (4.1.2)-(4.1.3), then the (unique strong) solution
X of (4.1.9) is given by X, = G;Z; !, where for all w € Q the process G(w) = (Gy(w))i>0 is

—Z Xy () dt — Z,_ X, / p(dt, dv).

the unique solution of the ordinary differential equation

dGy(w) = Zi(w) B(t, Z; () Ge(w)) dt. (4.1.18)

4.1.4. Let us finally consider the stochastic differential equation of (4.1.1) with the truncation
function h(x) = z, so that it takes the form

dX, = B(t, Xy) dt +~(t, X¢) AWy + /5(75, X ,v) (u—v)(dt,dv). (4.1.19)
Now the conditions in (4.1.4)-(4.1.7) can be written as
16(£,2,0) = 0(t,y,0)| < pu(v) [z —y[ and [6(t, 2, v)] < pu(v) (1 + |2]), (4.1.20)
forall 0 <t <n, n €N, and z,y,v € R. In this case, the equation of (4.1.9) takes the form
dXy = B(t, Xy) dt + (v(t) + 7 (8) Xe) dW, + / (o(t,v) + 01(t,v) X, ) (n — v)(dt, dv). (4.1.21)
The condition in (4.1.11) can then be simplified to
/ /(1+|51 +‘log 1+ d1(s,v)) — 01(s, v)‘) F(dv)ds < 0. (4.1.22)

Then, the integrating factor process Z from (4.1.12) admits the representation

Zt:exp</71()d /71 ) dW, — //(5151) 1 — v)(ds, dv) (4.1.23)

/ / log(1 + 61(5,0)) — 61(s, 0)) ju(ds, dv))
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Hence, the application of It6’s formula to the expression in (4.1.23) yields

dZ, = Z;_ (’yf(lﬁ)dt — 7 (t)dW, — /51(t, v)(pu — v)(dt, dv) + / %u(dt, dv)). (4.1.24)
In a way similar to the one presented above, by using the expressions from (4.1.21) and (4.1.24),
we apply the [t0’s formula to the processes F' and G defined as in (4.1.14) and Section 4.1.3.,
respectively, and obtain the equations of (4.1.15) and (4.1.17). We again conclude that if 5(t, z)
satisfies conditions (4.1.2)-(4.1.3), then the (unique strong) solution X of equation (4.1.19) is
given by (4.1.16) in the setting of Section 4.1.2. and given by X, = Z; 'G, in the setting of
Section 4.1.3.. Note that in this case, however, the indicator functions appearing in (4.1.15)-

(4.1.16) are equal to one and h(z) = 0 holds in (4.1.17).

4.2. Reducibility to solvable equations

4.2.1. Let us consider the stochastic differential equation
dY; =n(t,Y,) dt + o(t,Y;) dW, (4.2.1)
4 [ B0t Yim ) s o) — vl )+ [ RO Yie ) ol do),

where 7n(t,y), o(t,y) > 0 and (¢, y,v) are continuous functions on Ry x Dy and Ry x Dy xR,
respectively, for some open set Dy C R. Suppose that f(¢,y) is an invertible function from the
class C?(R,,Dy) in the sense that there exists a function g(,z) such that f(¢,g(t,z)) = =
and g(t, f(t,y)) =y forall t > 0, z € Dx and y € Dy, where Dx denotes the range of f(t,y).
Let the functions S(t,x), v(t,z), and (¢, z,v) be given by

(t.) = uf(t g0, 2)) + it ot )0, 0. gt 7)) + LD o2 1 g1.29), (0.2

1(t2) = ot g(t.2)) 0,11, g(1.)). (1.23)

A(B(t.2.0)) = h{B(E, 9(t,2), ) 0, (¢, g(t,2)) (1.2

ROt 2,v)) = f(t.g(t.2) + B(t.9(t,2).v)) — F(t.g(t,2)) (1.25)
~ h(B(t (1. 2). )9, (L. (1.2)).

for t > 0, € Dx, and v € R, and assume that they satisfy the conditions (4.1.2)-(4.1.7),
so that the equation in (4.1.1) has a (unique strong) solution X with a state space Dy and

Xo € Dx. By virtue of the invertibility of the function f(t,y) and an application of It0’s
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formula, we conclude that Y defined as Y; = ¢(¢,X;) is a (unique strong) solution to the
equation (4.2.1) with a state space Dy and Y, = ¢(0, Xy) € Dy. Moreover, if the functions
~v(t,x) and d(t,z,v) satisfy (4.1.8), the equation (4.2.1) is reduced to the equation (4.1.9),
which is solvable in a closed form under one of the conditions (4.1.10) or ~o(t) = do(t,v) = 0.

On the other hand, if the equation in (4.2.1) has a (unique strong) solution Y with a state
space Dy, by means of 1t6’s formula applied to the process X; = f(¢,Y;), we get

(t Y)

A, = (0 (6, Y) + (L, V) D, /(1Y) + 02, 1(t,Yy)) dt (4.2.6)
+o(t,Y})0,f(t,Y,) dW, + /h(@(t, Y, 0)) 0, f(t,Y,") (p(dt, dv) — v(dt, dv))
[ (50 Ye 000, 0) = 5(0Ye0) = WO Yie ), Ye)) o).

Therefore, if f(t,y) solves the equations

0 (t.9) + 0t ) 0,0 (0) + T 22, ) = B, S1t.), (4:27)
(1,9 8,0 (19) = 2(0) + (D)), (429

hO(t,y,v)) Oy f (L, y)
fty+0(ty,0) = [t y) = h(0(t,y,v)) 0, f (¢, y)

h(do(t,v) + 01(t,v) f(t,y)), (4.2.9)
h(o(t,v) +61(t,0) f(t,y)),  (4.2.10)

for some continuous functions 5(¢,x), 7;(t), and 6;(t,v), t =0,1,t >0, z € Dx, y € Dy and
v € R, we obtain that the equation in (4.2.1) is reduced to the one of (4.1.9), which is solvable

in a closed form under one of the conditions of either (4.1.10) or ~o(t) = do(t,v) = 0.

Example 4.2.1. (Black-Karasinski model [16].) Suppose that in (4.2.1) we have n(t,y) =
y(no(t) +m(t)logy), o(t,y) = oo(t)y and O(t,y,v) =0 for all t >0, y > 0 and v € R. Then
the function f(¢,y) =logy, y > 0, with the inverse g(t,z) = e*, x € R, reduces the equation
in (4.2.1) to the equation of (4.1.9) with (4.1.10), where Sy(t) = no(t) — o2(t)/2, Bi(t) = m (1),
Yo(t) = oo(t), 11(t) = 0;(t,v) =0, i=0,1,forall t >0 and v € R .

Example 4.2.2. (Stochastic population model [83; Chapter V, Example 5.15].) Suppose that
in (4.2.1) we have n(t,y) = no(t)y(m(t) — y), no(t) > 0, m(t) > 0, o(t,y) = oo(t)y and
O(t,y,v) =0 forall t >0, y >0 and v € R. Then the function f(¢,y) = 1/y, y > 0, with
the inverse ¢(t,z) = 1/x, x > 0, reduces (4.2.1) to the equation (4.1.9) with (4.1.10), where
Bo(t) =mo(t), Bi(t) = o5 (t) — no(t)m(t), 1(t) = —oo(t), 10(t) = éi(t,v) =0, i = 0,1, for all
t>0 and v € R.
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Remark 4.2.3. Observe that in Examples 4.2.1 and 4.2.2 the function 7(¢,y) does not satisfy
the condition (4.1.3), but we see that the equation in (4.2.1) has a unique solution, since it is

reducible to the linear equation of (4.1.9) with (4.1.10).

4.2.2. Let us now describe the invertible transformations f(t,y) that reduce the equation in
(4.2.1) to the equation in (4.1.9), and thus, to a solvable equation, in the time-homogeneous case.
Suppose that (4.2.1) has a (unique strong) solution Y, where n(t,y) = n(y), o(t,y) = o(y),
O(t,y,v) =0(y,v) and f(t,y) = f(y), g(t,z) = g(x) forall t >0, x € Dx, y € Dy and v € R.
Assume that n(y), o(y), and 6(y,v) are twice continuously differentiable functions, o(y) > 0,

and denote

r(y) = /y %, ply) = ny) %0’(3/), and q(y,v) = exp (r(y +0(y,v)) — r(y)), (4.2.11)

for all y € Dy and v € R. Let us introduce the following set of conditions:

(C1) either the equality

(40yq + 9(9,9)*)(y,v) = (49,09yq — 0(8,q)* + 9;,9)(y,v) = 0, (4.2.12)

or the equality

(qayaayq —o(0,9)* + U@Syq

q0yq + 0 (0yq)* ) (y:v) = e, (4.2.13)

is satisfied for some constant ¢; € R and all y € Dy and v € R;

(C2) either the equality p'(y) = 0 or the condition

<(Up/>/> (y) = ¢, and (ap') _ q0,00,q — (9,q)* + Uaiyq
P ’ P q0yq + 0(0yq)?

with (4.2.13), (4.2.14)

is satisfied for some constant ¢, € R and all y € Dy and v € R;

(C3) the equality

<anyq) (y,v) = c3(v) (4.2.15)

is satisfied for some function c3(v) and all y € Dy and v € R.

We are now ready to state the reducibility criterion for jump-diffusion processes solving the

equation (4.2.1).
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Theorem 4.2.4. (i) Let the condition of (C1) be satisfied and the assumptions

10(y,v)| > 1 if and only if }c(e”lr(yw(y’”)) — e’“"(y))‘ > 1, (4.2.16)
7
0<|0(y,v)| <1 ifand only if W) _enrly) — wl%e”r(y), (4.2.17)
o\y

hold for all y € Dy and v € R and some constants ¢ € R and v, # 0. Then the equation in
(4.2.1) is reducible to the one of (4.1.9), where the appropriate invertible transformation f(y)
s given by

fly) = cer¥) _ E’
g
for all y € Dy and some constant vy € R. Moreover, if the condition of (C2) is also satisfied,

(4.2.18)

we can choose 7y and v, such that the expression in (4.1.16) holds. On the other hand, if the
equality (0,q)(y,v) = 0 holds for all y € Dy and v € R, we can choose vy =0 and reduce the
equation in (4.1.9) to the ordinary differential equation of (4.1.18).

(11) Let (C3) be satisfied and the assumptions

0(y,v)| > 1 if and only if |y0(r(y + 60(y,v)) —r(y))| > 1, (4.2.19)

(y,v)
a(y)

>

0<|0(y,v)| <1 if and only if r(y+0(y,v)) —r(y) = : (4.2.20)

for some v9 # 0, y € Dy and v € R. Then, the equation in (4.2.1) is reducible to the one of
(4.1.9) with ~ = 0, where the appropriate invertible transformation f(y) is given by

fy) =) +c, (4.2.21)

for all y € Dy and some constant ¢ € R. Moreover, if the equality (op’) (y) = 0 also holds for
all y € Dy, we can choose vy such that the expression in (4.1.16) holds.

Proof. In order to prove the reducibility of the equation in (4.2.1) to the one of (4.1.9), we
need to check whether the equalities in (4.2.7)-(4.2.10) are satisfied for some 5(t,z) = f(x),
Yi(t) =i, 6:i(t,v) =6;(v), i =0,1, and f(t,y) = f(y) forall t >0, y € Dy, and v € R.

(i) By using the notations of (4.2.11) and the fact that o(y) > 0 for y € Dy, we obtain
that the function f(y) given by (4.2.18) is invertible. It can be shown by means of direct
calculations that the equality in (4.2.8) is satisfied. Then, by summing up the equations in
(4.2.9) and (4.2.10), instead of checking the equality in (4.2.10), we can verify whether

fly+0(y,v)) — f(y) = do(v) + 61(v) f(y) (4.2.22)
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holds. It follows by substituting the expressions of (4.2.18) with (4.2.11) for f(y) that the

equation in (4.2.22) is equivalent to

(0" (y,0) — (1 +81(v))) '@ = %50(”; N091(v) (4.2.23)

Then, differentiating the expression in (4.2.23), we see that we can verify whether

/Yl 6717'(?;’)

o(y)

(q” (y,v) = (1+61(v)) + %ayq“ (y, v)) = (4.2.24)

holds, while after multiplying both parts of (4.2.24) by e™""®g(y) /v, and differentiating again,

we see that the expression
M0yq" (y,v) + 0,(60,q™)(y,v) = 0 (4.2.25)

needs to be verified. It follows from the direct calculations that the equality of (4.2.25) is

equivalent to
1(a0yq + (9,9)*)(y, v) + (¢0,00,q — 7(dyq)* + 00;,q) (y, v) = 0. (4.2.26)

Hence, the equality in (4.2.25) can be verified by means of either the equality in (4.2.12) or

Y% =0 and v =— (qayaazqa;’ Tiy((g:q; Uazyq)( L), (4.2.27)
combined with the one of (4.2.13). By choosing
u(e) = 0" g0) = 1+ 2oy (3.0, (42.28)
we get that (4.2.24) is also verified. Thus, if we set vy = 0 and
o) = (4 (5,) — (1 + 82(0)) e, (12.20)

we have that (4.2.22) holds.

Let us now check whether (4.2.9) is satisfied. For this, we define the auxiliary sets

O ={(y,v) € Dy xR: |0(y,v)| =0}, O ={(y,v) € Dy x R: |0(y,v)| > 1}, (4.2.30)

Ag = {(y7U) € Dy xR: |5(f(y)vv)’ = 0}’ Ay = {(yvv) € Dy xR: |5(f(y)>v)| > 1}7
(4.2.31)

and note that from the invertibility of f(y) and (4.2.22) we have Oy = Ag. It follows from
(4.2.9) that we should verify that ©; C Ay, but on A\ O; we get f'(y) = 0, which contradicts
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invertibility. Therefore, we need to verify that ©; = A;, but by means of the equality in
(4.2.22), the former is just the condition of (4.2.16). Then, substituting (4.2.22) into (4.2.9),
on (Dy x R)\ (AgUA;) we also need to verify that

fly+0(y,v) = fly) =0(y,v)f (y) (4.2.32)

holds, but the latter equality is equivalent to the condition of (4.2.17). Thus, the conditions of
(4.2.16)-(4.2.17) are equivalent to the one in (4.2.9). Finally, the equality (4.2.7) is satisfied if
we choose f((x) as in (4.2.2) for x € Dx.

Assuming additionally that the condition of (C2) holds, let us now check that the equality
in (4.2.7) is satisfied with f(x) of the form (4.1.10), for some [y, 51 € R. If the expressions in

(4.2.14) are satisfied, we can set

Y% =0 and 7 = —<<Ug),) (1), (4.2.33)

and notice that if the expression in (4.2.13) hold then v, and ~; agree with the ones from
(4.2.27). Substituting the expression (4.2.18) with (4.2.11) for f(y) into (4.2.7) and using
(4.1.10), we need to check whether
2 —
(my) + 72—1 — &) R L (4.2.34)
N
holds. It follows by differentiating the expression in (4.2.34) and using (4.2.11) that
2

('ylp(y) + % — B+ O(y)p’(y))

fyl 671 T(y)

a(y)

-0 (4.2.35)

needs to be verified, and multiplying both parts of (4.2.35) by e =" (y) /7, and differentiating

again, we see that
1P (y) + (op) (y) =0, (4.2.36)

should also hold. Hence, the equality in (4.2.36) is satisfied under the condition of p/(y) = 0 or
(4.2.14) with (4.2.33). It follows that the equality in (4.2.35) holds if we set

2
1

Bi=p(y) + 5 + o) (v). (4.2.37)

Thus, the equality in (4.2.34) is verified if we set 7y = 0 and

2
Bo = <%p(y) + 72—1 - &)ce'*”(y). (4.2.38)
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We may therefore conclude that the equality in (4.2.7) holds with g(x) of the form (4.1.10)
and we can solve the equation in (4.1.9) by the expression of (4.1.16).

On the other hand, if the equality (9,¢)(y,v) = 0 holds for all y € Dy and v € R, it follows
from (4.2.28)-(4.2.29) that dp(v) = 0 holds, so that we can set 79 = 0 and reduce the equation
in (4.1.9) to the ordinary differential equation of (4.1.18).

(ii) By using the notations of (4.2.11) and the fact that o(y) > 0 for y € Dy, we obtain that
the function f(y) given by (4.2.21) is invertible. Direct calculations show that f(y) satisfies
the equality in (4.2.8). It follows by substituting the expression of (4.2.21) with (4.2.11) for
f(y) into (4.2.22) that we can equivalently check whether

(log q(y,v) — 01(v)r(y))v0 = do(v) + 61 (v)e (4.2.39)

holds for some constant ¢ € R. Then, differentiating the equality in (4.2.39) and multiplying

both parts of the resulting expression by o(y), we see that we can verify whether

<"in> (y,v) — 61(v) =0 (4.2.40)
holds. It follows from the expression in (4.2.15) that the equation above is satisfied if we set
51(v) = <Oiyq>(y,v) (4.2.41)
for all y € Dy and v € R. Hence, the equality in (4.2.39) is verified if we choose
do(v) = (log q(y,v) — 01(v)r(y)) 70 — di(v)e (4.2.42)

for some ¢ € R. By means of the arguments similar to the ones used in case (i), the conditions
in (4.2.19)-(4.2.20) are equivalent to the ones of (4.2.9). Again, the equality in (4.2.7) holds if
we choose f(x) as in (4.2.2) for x € Dx.

Finally, assuming additionally that the equality (op’)’(y) = 0 holds for all y € Dy, let
us check whether the equality in (4.2.7) is satisfied with f(z) of the form (4.1.10), for some
Bo, f1 € R. It follows by substituting the expression of (4.2.21) with (4.2.11) for f(y) into the
one of (4.2.7) with (4.1.10) that we can equivalently check whether

(p(y) = Brr(y)) 0 = Bo + chr (4.2.43)

holds for some constant ¢ € R. Then, by differentiating the equality in (4.2.43), applying the
notations of (4.2.11), and multiplying both parts of the resulting expression by o(y), we can

verify whether

o(y)p'(y) — B =0 (4.2.44)
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holds. Hence, by using the equality (op’)'(y) = 0, we get that the equality in (4.2.44) is satisfied

if we set

B =o(y)r'(y) (4.2.45)

for all y € Dy . Thus, the equality in (4.2.43) is verified if we set

Bo = ¢br— (p(y) — Bir(y)) 0. (4.2.46)

We may therefore conclude that the equality in (4.2.7) holds with g(x) of the form (4.1.10)
and any vy # 0, so that we can solve the equation in (4.1.9) by the expression of (4.1.16).
[

Remark 4.2.5. It follows from the proof presented above that if the truncation function h(z)
is non-zero, that is, if the equation in (4.2.9) is not trivially satisfied, the process Y should
have the diffusion coefficient o(y) which satisfies either the condition of (4.2.17) or (4.2.20).
This is relevant only in the case of infinite jump activity, because the condition of (4.2.9) is

always satisfied by putting h(z) = 0 for finite jump activity.

Example 4.2.6. (Coz-Ingersoll-Ross model I [24].) Suppose that in (4.2.1) we have n(y) =
o +my, o(y) = oo\/¥, M > 03/2, m # 0 and O(y,v) =0 for all y > 0 and v € R. Then
the function f(y) = exp(2,/y), y > 0, with the inverse g(z) = (logz/2)?, x > 1, reduces the
equation in (4.2.1) to the one of (4.1.9), where 8(x) = x(2no+n log® z/2+02(log z—1)/2)/log
v = 09, and vy = dp(v) = 61(v) =0 for all z > 1 and v € R.

Example 4.2.7. (Cox-Ingersoll-Ross model 11 [24].) Suppose that in (4.2.1) we have n(y) =
noy(m —v), o(y) = 00y/y? and O(y,v) = 0 for all y > 0 and v € R, where 15, 71 € R and
0o > 0. The function f(y) = exp(—2/,/7), y > 0, with the inverse g(z) = 4/log” z, z € (0,1),
reduces the equation in (4.2.1) to the one of (4.1.9), where B(x) = —nox(m logz —4/logx)/2+
osx(1+3/logz)/2, 1 = 09, and 9 = do(v) = d1(v) =0 for all z € (0,1) and v € R.

Example 4.2.8. (Constant elasticity of variance model [23] and [50].) Suppose that in (4.2.1)
we have n(y) = my, o(y) = ooy® and 6(y,v) = 0 for all y > 0 and v € R, where 7, € R
and og, a > 0. In the case when a = 1, the function f(y) = y, y > 0, with the inverse
g(x) = x, x > 0, reduces the equation in (4.2.1) to the one of (4.1.9), where B(x) = xn,
v = 09 and g = dp(v) = 61 (v) =0 for all x > 0 and v € R. In the case when o € (0,1),
the function f(y) = exp(y'~*/(1 — a)), y > 0, with the inverse g(z) = (log(z)(1 — a))/1=)
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x > 1, reduces the equation in (4.2.1) to the one of (4.1.9), where S(z) = m (1 — a)zlogx +
otx(1 —a/((1 —a)logx))/2, v1 = 09, and vy = d(v) = 6;(v) =0 for all z > 1 and v € R.
The case a > 1 yields the same reduced equation as the case a € (0,1) does, but with 5(z)
defined for x € (0,1).

Example 4.2.9. (Shiryaev filtering model [75; Chapter 1X].) Suppose that in (4.2.1) we have
n(y) = no(l —y), o(y) = ooy(l —y) and O(y,v) =0 for all y € (0,1) and v € R. Then the
function f(y) = y/(1 —y), y € (0,1), with the inverse g(x) = z/(1 + x), z > 0, reduces the
equation in (4.2.1) to the one of (4.1.9), where 8(z) = no(1 + ) + o2z?/(1 + ), 71 = 09, and
Yo = 6o(v) = 61(v) =0 for all x >0 and v € R.

Example 4.2.10. (Jacobi diffusion model [66; p. 335].) Suppose that in (4.2.1) we have
n(y) = o5(mo(l —y) —my)/2, o(y) = oo\/y(1—y), mo = 1, m = 1, and O(y,v) = 0 for all
y € (0,1) and v € R. Then the function f(y) = exp(2arcsin,/y), y € (0,1), with the inverse
g(z) = sin?(log /), = € (1,€"), reduces the equation in (4.2.1) to the one of (4.1.9), where
B(x) = o2x(ng cos?(log /x) — ny sin?(log /z) + (sin(log z) — cos(log ))/2)/sin(log z), 11 = 09,
and 7o = do(v) = 01(v) =0 for all z € (1,€") and v € R.

4.2.3. In the rest of this section we will construct jump analogues of some diffusions. For this,
we will use the Wiener process W = (W,;);>o and the Poisson random measure p(dt,dv) with
the compensator v(dt,dv) = dtF(dv) existing on the probability space (22, F, P).

Let Y = (Yi)i>0 be a continuous process with a state space Dy solving the stochastic
differential equation (4.2.1) with 6(¢t,y,v) = 0 for t > 0, y € Dy and v € R. Suppose that
there exists an invertible transformation f(t,y) € CY*(R,, Dy) satisfying (4.2.7)-(4.2.10) and
such that the process X = (X¢)i>0, X¢ = f(t,Y:), solves the equation (4.1.9) with §;(t,v) =0
for i =0,1, t > 0, v € R. Let us take a continuous function g(t,x,v) = go(t,v) + xgl(t,v)
such that &;(t,v) > —1 holds and the expression in (4.1.11) is satisfied with 8(¢,z,v) replaced

-~

by 0(t,z,v). Assume also that
6i(t,v) £ 0 if and only if 7;(t) # 0, (4.2.47)
for +=0,1 and all £ > 0, v € R. Consider the stochastic differential equation
dX, = B(t, X,) dt + (o(t) + 1 (8)X,) dW, (4.2.48)

_

+ / h(So(t,v) + 61(t,v) Xe_) (u(dt, dv) — v(dt, dv)) + / R(So(t,v) + 61 (t,v) X, ) p(dt, dv),
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where ((t, z) satisfies (4.1.10) or the condition
Yo(t) = do(t,v) =0 (4.2.49)

holds for all ¢ > 0 and v € R, and assume that its (unique strong) solution X = ()A(t)tzo has
the state space Dx. Then, according to the arguments in Section 2, we conclude that equation
(4.2.48) is solvable in a closed form, and applying to the solution X the inverse transformation

g(t,z) for t > 0, x € Dx, we obtain that the process Y, = g(t, )?t) solves the equation

dY, = n(t,Y,) dt + o(t,Y,) dW, (4.2.50)

[ Byt T, o) (uldt, dv) — vldt, dv)) + / 6.1, Vi, v) pldt, do),

with
Bo(t, 9, v) = h(do(t, v) + 81(1, v) (1, 9))eg (1, f(1,y)), (4.2.51)
é\1<t7 Y, U) = g(ta Z5\0(ta U) + (1 + 25\1(257 U))f(t, y)) - g(tv f<t7 y)) - /H\O(tv Y, U)? (4252)

for t >0, y € Dy and v € R. We will call such process Y = (2%20 a jump analogue of the
diffusion process Y = (Y;)i>0 (see [38; Section 4]). Note that when h = 0 the jump analogue

Y also solves equation of the form (4.2.1).

Remark 4.2.11. Let us now introduce the pure jump analogue Y = (17;)720 of the given
Y = (Y;)i>0 by setting o(t,y) =0 in (4.2.50) for all £ > 0 and y € Dy . Such a process Y can

be defined as a (unique strong) solution of the stochastic differential equation
di\}t = 77(t7 i\/;f) dt + /é\ﬂ(tv ?;5—7 U) (/’L(dta dU) - V(dta dU)) + /é\l(t7 i—a U) M(dt7 dU), (4253)

with 8;(t,y,v), i = 0,1, given by (4.2.51)-(4.2.52).

Let us now give some examples of jump analogues of diffusion processes presented in this
section. We assume throughout that the truncation function h(z) satisfies h(z) = 0, and

therefore é\o(t,y, v) = 0.

Example 4.2.12. (Eztended Black-Karasinski model.) Suppose that in (4.2.50) we have the
same 7)(t,y) and o(t,y) as in Example 4.2.1. Then for a jump analogue in (4.2.52) we can take
51(t,'u) =0, and thus gl(t,y,v) = y(exp(go(t,v)) —1) forall t >0, y >0, and v € R.
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Example 4.2.13. (Eztended stochastic population model.) Suppose that in (4.2.50) we have
the same n(t,y) and o(t,y) as in Example 4.2.2. Then for a jump analogue in (4.2.52) we can
take go(t,'l]) = 0, and thus gl(t,y,v) = —y(gl(t,v)/(l —1—31(15,1)))) for all t > 0, y > 0, and
veR.

Example 4.2.14. (Extended Coz-Ingersoll-Ross model I.) Suppose that in (4.2.50) we have
the same 7(y) and o(y) as in Example 4.2.6. Then for a jump analogue in (4.2.52) we can take
61 (y,v) = \/ylog( 1—1—(51 —i—logZ(l—l—gl(v))/él for all y > 0, and v € R.

Example 4.2.15. (Extended Coz-Ingersoll-Ross model II.) Suppose that in (4.2.50) we have
the same 7(y) and o(y) as in Example 4.2.7. Then for a jump analogue in (4.2.52) we can take

91 (y,v —y\/_log\/l—l—él 2—\/_log\/1+(51 \/_log\/l—i—él (v) —1)% for all y >0,

and v € R.

Example 4.2.16. (Extended constant elasticity of variance model.) Suppose that in (4.2.50)
we have the same 7(y) and o(y) as in Example 4.2.8. In the case when o = 1 for a jump
analogue in (4.2.52) we can take (y,v) = d(v) + 0, (v)y for all y > 0 and v € R. In the
cases when a € (0,1) or a > 1, for a jump analogue in (4.2.52) we can put ;5\0(@) =0 and

Bi(y,v) = (¥ + (1 — ) log (1 + 6, (1))@= — g for all y > 0 and v € R.

Example 4.2.17. (Eztended Shiryaev filtering model.) Suppose that in (4.2.50) we have the
same 7)(y) and o(y) as in Example 4.2.9. Then for a jump analogue in (4.2.52) we can take

gl(y,v) =y(l-— y)gl(v)/(l +ydy(v)) forall y € (0,1) and v € R (see, e.g. [75; Chapter XIX]).

Example 4.2.18. (Extended Jacobi diffusion model.) Suppose that in (4.2.50) we have the
same 7(y) and o(y) as in Example 4.2.10. Then for a jump analogue in (4.2.52) we can take
gl(y,v) = sin(2arcsin y/y + log /1 + 5 (v)) sin(log4/1 + gl(v)) for all y € (0,1) and v € R.

4.3. The Laplace transforms of first passage times

In this section, we derive closed-form expressions for the Laplace transforms of first passage

times on constant boundaries for some of the jump-diffusion processes constructed above.

4.3.1. The setting. Let the continuous process Y = (¥;);>0, with the state space Dy C R,
solve the time-homogeneous stochastic differential equation in (4.2.1) with n(t,y) = n(y),
o(t,y) = o(y), 6(t,y,v) =0 for all t > 0, y € Dy and v € R. Suppose that there exists
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a strictly increasing function f(y) € C?*(Dy) such that the process X = (X;);>¢ given by
X; = f(Y;) has a state space Dx = (di,ds) with 0 < d; < dy < co. Moreover, assume that
f(y) satisfies the equalities (4.2.7)-(4.2.10), and hence, X solves the equation in (4.1.9), with
Bt,x) = B(x), v(t) = v, 6:(t,v) =0, 1=0,1for all t > 0, x € Dx, and v € R. Consider
a jump analogue Y = (}A/t)tzo of the process Y, such that Y, = g()/(\'t), where the process
X = ()?t)tzo solves the equation of the form (4.2.48) and has the state space Dx.

For some a,b € Dx, a < b, fixed, let us define the first passage times 7, and (, as

7. =inf{t > 0]Y, < g(a)} = inf{t > 0| X, < a}, (4.3.1)
G =inf{t > 0|Y, > g(b)} = inf{t > 0| X, > b}, (4.3.2)

so that g(a) < ¢g(b) holds. Our aim is to find analytic expressions for the Laplace transform of

T, A (. For this purpose, we will compute the value function V,(x) given by
Vi(a) = B, [e 7" [ oy] = Bule ™™™ Iirucay]s (4.3.3)

for any z € Dx and some s > 0 fixed. Here E, denotes the expectation with respect to the
probability measure P, under which the one-dimensional time-homogeneous (strong) Markov
process X starts at x € Dx.

We consider the case in which the process X satisfies
dX, = (B(X,) — KX,) dt + 1. X: dW, + X, (exp (Z AZI =Y AZ{") - 1), (4.3.4)
i=1 Jj=1

where Zi+ = (Z")»0 and Z9~ = (Z)'" )1»0 are independent compound Poisson processes with
intensities A; ,Aj— > 0 and exponentially distributed jump sizes with parameters «;, 5; > 0,

a#1, fore=1,....mand j=1,...,n, m,n € N, and

N Y SV
K = vt b= 4.3.5
Z a; — 1 Z 59’ +1 ( )
i=1 7j=1
In this case, the compensator measure v(dt,dv) in the equation of (4.2.48) is given by
v(dt,dv) = dt ([{v>0} Z iy e Y Tocoy Z - B eﬁj”) dv, (4.3.6)

i=1 j=1

~

and 6(x,v) = (" — 1)z and y(x) = vz holds for all x € Dx, v € R, where the truncation

function is h(v) = v, for v € R.
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4.3.2. The boundary value problem. By means of standard arguments based on the
application of It0’s formula for semimartingales, it is shown that the infinitesimal generator L
of the process X acts on a function V(z) € C2(Dy) according to the rule

23;,2

(LV)(z) = %T V"(z) 4+ (B(z) — Kz) V' (z) — <Z Xiy + Z Aj7_) V(z) (4.3.7)

m o0 n 0
+ (Z i 40 / V(xe?) e Y dy + Z B / V(ze¥) efiv dy),
i=1 0 j=1 -0
for all z € Dx. In order to find analytic expressions for the unknown value function V. (z)
in (4.3.3), let us build on the results of the general theory of Markov processes (see, e.g. [34;
Chapter V]). We reduce the problem of computing V. (z) to the problem of finding a solution

V(x) to the boundary value problem

(LV)(z) = 2V (x), for a<uz<b, (4.3.8)
V(z)=1, for z<a, and V(z)=0, for z>b, (4.3.9)
V(iet+) =V(a)=1 and V(b—)=V(b) =0, (4.3.10)

where the continuous fit conditions of (4.3.10) hold in the cases in which the process X can
pass continuously through the boundaries a and b, respectively. On the other hand, if v; =0
holds, the equation of (4.3.4) for X does not contain a diffusion part, so that the function
V.(z) may be discontinuous at the points a or b, depending on the sign of the local drift rate
B(x) — Kz in (4.3.4), since X may pass through either of them only by jumping. Therefore,
in order to determine which of the continuous fit conditions in (4.3.10) should hold for V(x),
we will assume that one of the following four cases is satisfied.

(ia) There exists some constant ¢ € Dx such that
flx) — Kz <0 for z>¢, pz)—Kr>0 for x<c¢, and f(c)— Ke=0 (4.3.11)

holds, so that the process X is reverting continuously to the level ¢. If a < ¢ < b then the
continuous fit condition does not holds at either a or b. On the other hand, if either a > ¢
or b < ¢ holds, the process X can pass continuously through a or b, respectively, and thus,
we assume that V' (z) satisfies the left-hand condition of (4.3.10) if a > ¢, and the right-hand
condition of (4.3.10) if b < c.

(ila) There exists some constant ¢ € Dx such that

flx) — Kz >0 for z>¢, pz)—Kr<0 for x<c¢, and f(c)— Ke=0 (4.3.12)
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holds, so that the process X moves away from the level ¢ continuously. If a < ¢ < b then
the function V' solves the equation in (4.3.8) not on the whole interval (a,b), but on the parts
(a,c) and (c,b), separately. Moreover, the process X can pass through a or b continuously,
and thus, we assume that V' (z) satisfies the conditions of (4.3.10). On the other hand, if either
a > c or b < ¢ holds, the process X can pass continuously through a or b, respectively, and
thus, we assume that V' (z) satisfies the right-hand part of (4.3.10) if a > ¢, and the left-hand
part of (4.3.10) if b < c.
(ilia) If B(z) — K > 0 holds for all 2 € Dy, then the process X can pass through b continu-
ously, and thus, we assume that V' (z) satisfies the right-hand part of (4.3.10).
(iva) If B(z) — Kz < 0 holds for all € Dy, then the process X can pass through a continu-
ously, and thus, we assume that V'(z) satisfies the left-hand part of (4.3.10).

When v; = 0, we will additionally assume that the solution V(z) is bounded. Note that,
in the case when v; # 0, this fact follows directly from the condition of (4.3.10).

We now describe a procedure which reduces the integro-differential boundary value problem
of (4.3.8)-(4.3.10) to an ordinary differential one based on the exponential distribution of the
jump sizes of the compound Poisson processes Z%+ and Z7~. For this purpose, by applying

the conditions in (4.3.9), we obtain that the equation in (4.3.8) with (4.3.7) takes the form
azo(z) V"(x) + a1 0(x) V'(2) + ago(z) V(x) + bo(x) (4.3.13)

m b n x
+ (Z )‘i,—&-azmai/ Vi y @ tdy+> N B / V(y)y" ! dy) =0, for a<ux<b,
i=1 z j=1 a

where we set

2,.2

azo(2) = =, ar(w) = B() - K, (4.3.14)

n

apo(x) = — Z Xig — Z Nj——, and by(z) = Z \j_a a7 (4.3.15)
=1 =1 j=1

The idea is to get rid of the integrals in (4.3.13), by successively making an appropriate Ansatz

and applying integration by parts. Indeed, let us define recursively the functions

Goolz) =V (z), Giolz)= / ’ yi;# dy, and G (z)= / ’ %jﬂ(y) dy, (4.3.16)
forevery i = 1,....m and j = 1,...,n, and all a < x < b, where we have denoted oy = 0
and By = —a,,. Define the differential operators

L, = —g®—@i—1tl i and L, = ghli-1=pitl i (4.3.17)

dx dx
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and introduce the notation Ly = Ly o Lyyq o - -+ o Ly, where Ly 5 is the identity operator if

k > k', and notice that the expressions

Gio(z) = (Lig10Gip)(x), for & =i,....m, (4.3.18)
Grmj(2) = LintjirmeyGmy) (@), for j =j,....n, (4.3.19)
Gio(z) = (Lit1,m+iGm,j) (), (4.3.20)

hold by definition, as well as G;o(b) = 0 and G, (a) = 0, for ¢ = 0,...,m and j =
1,...,n. Therefore, substituting the expressions of (4.3.18)-(4.3.20) into (4.3.13) and using
the integration-by-parts formula, we get that (4.3.13) is equivalent to each of the following

boundary value problems

i+2 b i
Z i (@ )+ bi(z <Z Ap O / Gioly)y™ ™ 'dy [ ] (aw — au) (4.3.21)
k'=1
+ Z N, o / Gio(y) y* " dy ] (o + /31)) =0,
=1 a k'=1
(Lk+1’iGi70)<b) = 0, for k= gov e 7i, (4322)
fori=1,...,m, and
mj+2
Z Qe (2) G (@) 4 By () (4.3.23)
x J
nm Z NGz / m(y) y" ! dyH (ax + B1) H(ﬁz/ —6)=0
=1 a k=1 =1
(Lm+l+17m+ij’j)<a) = O, for [ = 1, e ,j, (4324)
(Li—i-l,m—i-ij,j)(b) = 0, for = 1, o, (4325)
for j=1,...,n and all = € (a,b), where the coefficients are given by
S =i 11 (K k) (K —1)!
g (x Zak’ Lica S e ST (4.3.26)

i—1
ag(z) = (=1)" ' 2 <Z A8 ] (o + B) Z At Clk H ap — > (4.3.27)
=1 k=1

k'=1

n i k—1
_ _1)i Z )\177&51 x*ﬁz (1 + Bz Z ao‘kayo(a) H (Oék/ + 61)) ) (4-3-28)
=1 k=1

k'=1
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fork=1,...,1+2and ¢=1,...,m, and

N sy (=)
Ui (T) = ; Wyt () (@D i (4.3.29)
n m 7j—1
aomyi(x) = (=)%Y N B [ e+ B) [ (B — ), (4.3.30)
=1 k=1 r=1
n m k—1
bintj(z) = by (x) = (=1)" Z A _alig P (1 + B Z a®* G o(a) H (o + BZ)), (4.3.31)
I=1 k=1 k=1

forl=1,....m+j7+2and j=1,...,n.

In particular, the integro-differential equation (4.3.13) is equivalent to

m+n+2
Z Aemen () Gg,’f)n(x) + bpan(z) =0, for a<x<b, (4.3.32)
k=0
(Lm+j+1’m+nGm7n)(a) = O, for ] =1... , 1, (4333)
(Lit1.m4nGmn)(b) =0, for i=1,...,m, (4.3.34)

which is an ordinary differential boundary problem. Moreover, by using that V(z) = Goo(z) =
(L1 m4nGmn)(x) = 0, we can rewrite conditions (4.3.9) and (4.3.10) as

(Ll,ernGm,n)(a) =1, (Ll,ernGm,n)(b) =0, (4-3-35)
(Ll,m+nGm,n)(a+) = (Ll,m+nGm,n)(a), (Ll,m+nGm,n)(b—) == (L17m+nGm7n)<b). (4336)

Therefore we have transformed the integro-differential boundary problem (4.3.8)-(4.3.10) for the
function V(z) to the ordinary differential boundary problem (4.3.32)-(4.3.36) for the function
Gmn(T).

The general solution of the ordinary (nonhomogeneous) differential equation in (4.3.32) has

the form
m+n+2

Gn(t) = Gu(x) + D> CplUi(z), for a<uxz<b, (4.3.37)
k=1

where Cy, k = 1,...,m 4+ n + 2, are some arbitrary constants, Ux(z), k=1,... m+n+2,
constitute the fundamental system of solutions (i.e. nontrivial linearly independent particular
solutions) of the homogeneous version of (4.3.32) and G, ,(z) is a particular solution of (4.3.32)
(see [91; Chapter III, Section 18]). Therefore, we further look for a solution of the equation
(4.3.13) in the form

m-+n—+2
V(2;0,0) = (LignnGmn) (@) + > Cila,b) (Limsnli)(z), for a<az<b, (4338

k=1
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where the constants Ci(a,b), k =1,...,m+n+2, are specified from the appropriate boundary
conditions. It follows from the expressions in (4.3.33)-(4.3.34) that the constants Cj(a,b),

k=1,...,m+n+ 2, solve the equations
. m-+n—+2
(Lontjr1minGmn)(@) + > Ch (LingjrimenUs)(@) =0, for j=1,...n,  (43.39)
k=1
. m-—+n—+2
(H"i+1,m+nGm,n)(b) + Z Ck (Li—l-l,m-l-nUk)(b) = 07 for i= 17 cee, M, (4340)
k=1

If 1 # 0, then from the conditions of (4.3.10), we get that Cy(a,b), k=1,..., m+n+2, also

satisfy
. m-+n+2
(Lt msnGman)(@) + Y Cr (LimsnUs)(a) =1, (4.3.41)
k=1
. m-+n+2
(Lt imsnGonn) D) + Y Cr (LtmsnUi) () = 0. (4.3.42)
k=1
The existence and uniqueness of solutions for Ci(a,b), k =1,...,m +n+ 2, follows from the
linear independence of the fundamental solutions Uy(x), k =1,...,m+n+ 2, of the ordinary

differential equation in (4.3.32).

On the other hand, if 74 = 0 holds, the ordinary differential equation (4.3.32) is of order
m + n + 1 and the general solution of (4.3.13) has the form of (4.3.38) with Cyypnio = 0. In
order to find the constants Cy, k = 1,...,m +n + 1, we will revisit each of cases (ia)-(iva)
above:
(ib) Assume that the conditions in case (ia) are satisfied. If a < ¢ < b neither of the conditions

(4.3.41)-(4.3.42) is satisfied. In this case we assume, without loss of generality, that

’(Ll,m+nUm+n+1)(C_)‘ = ’(Ll,m+nUm+n+1)Um+n+1<c+)| = 00, (4-343)

and, hence, that C, 1,1 = 0 holds. Therefore, we have that V' (z) is of the form (4.3.38) with
Cy, k=1,...,m+ n, solving the equations (4.3.39)-(4.3.40).

If either @ > ¢ or b < ¢ holds we have that V(z) is of the form (4.3.38) with C},
k=1,...,m+n+ 1, solving the equations (4.3.39)-(4.3.40)+(4.3.42) if b < ¢, and (4.3.39)-
(4.3.40)+(4.341) if a > c.
(iib

) Assume that the conditions in case (iia) are satisfied. If a < ¢ < b the function V(z) is
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of the form
m~+n+1
V(z;a) = (L1mtnGmn) Z Ci(a) (L1 minUr)(x), for a<z<e, (4.3.44)
m+n+1
V(z;0) = (L1m+nGmn) Z Ci(b) (L minUk)(x), for c<az<b, (4.3.45)
for some constants C(a) and Ck(b) for k =1,...,m+n+ 1. By similar considerations, these

constants solve the equations (4.3.39)-(4.3.40) together with (4.3.41) or (4.3.42), respectively.
On the other hand, if either @ > ¢ or b < ¢ holds, the function V(z) is of the form (4.3.38)
with Cx, k = 1,...,m + n + 1, solving (4.3.39)-(4.3.40)+(4.3.42) if a > ¢, and (4.3.39)-
(4.3.40)+(4.3.41) if b < c.
(iiib) Assume that the conditions of the case (iiia) are satisfied. Then V(z) is of the form of
(4.3.38) with Cy, k=1,...,m+n+ 1, solving the equations in (4.3.39)-(4.3.40)+(4.3.42).
(ivb) Assume that the conditions of the case (iva) are satisfied. Then V(z) is of the form of
(4.3.38) with Cx, k=1,...,m+n+ 1, solving the equations in (4.3.39)-(4.3.40)+(4.3.41).

Summarising the facts exposed above, we now state and prove the corresponding verification

assertion relating the solution of the boundary-value problem to the original value function.

Theorem 4.3.1. Suppose that the process X provides a (unique strong) solution of the stochas-
tic differential equation in (4.3.4). Then, the Laplace transform V.(z) from (4.53.3) of the
associated with X random variable 7,, gien that 7, < ¢, from (4.8.1)-(4.3.2), admits the
representation

Vi(z) = V(x;a,b), for a <z <b, (4.3.46)

for any fized a,b € Dx with a < b, where the function V(x;a,b) is specified as follows:

(i) if v1 # 0 then the function V(x;a,b) admits the representation of (4.3.38) with the
coefficients Cr(a,b), k = 1,...,m + n+ 2, which provide a unique solution to the system in
(4.3.39)-(4.3.42);

(i1) if 4 = 0 then the function V(x;a,b) is bounded and takes the form of either V(z;a)
in (4.3.44) or V(x;b) in (4.3.45), respectively, with the coefficients Ci(a) or Ci(b), k =
L,...,m+n+ 1, which provide a unique solution to the systems in the case (iia)-(iib), while
if B(x) satisfies one of the conditions from the cases (ia), (iiia), or (iva), then V(x;a,b) is
bounded and of the form (4.3.38) with Cy(a,b), k =1,...,m+n+1, satisfying the corresponding
conditions from the cases (ib), (iiib), or (ivb).
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Proof. In order to verify the assertion formulated above, it remains us to show that the function
defined in (4.3.46) coincides with the value function in (4.3.3). For this, let us denote by V(z)
the right-hand side of the expression in (4.3.46).

(i) Let us first consider the case 73 # 0. Then, applying the change-of-variable formula
for semimartingales with jumps of bounded variation from [87; Theorem 3.1] to the stopped

process e_”(t/\T“/\Cb)V()?MTa rc,) We get that

R tATa A p —~
o~ (EATaAGY) V(Xinrane,) = V(x) + / e (LV — »V)(X,)ds + M, (4.3.47)
0

holds for all a < z < b, where the process M = (M,;);>o defined by
tATa Ay . R
M, — / VIR L5 sa 5y 11 K5 AW, (4.3.48)
0

N /0 e / e (Ve = V(X)) (= v)(ds, dy)

is a local martingale under P, .

By virtue of straightforward calculations and the arguments of the previous section, it is veri-
fied that the function V' (z) solves the ordinary (integro-)differential equation in (4.3.7)+(4.3.8),
so that the expression in (4.3.47) takes the form

o= H(EATaNGs) V()A(t/\m/\cb) = V(z)+ M, (4.3.49)

for a < x < b. Since the function V(x) satisfies the boundary conditions of (4.3.9)-(4.3.10),
it is continuous and bounded for all z € Dx. Thus, it follows from the expression in (4.3.49)
that the process M is a uniformly integrable martingale. Hence, taking the expectation with
respect to P, in both sides of (4.3.49), by means of the optional sampling theorem (see, e.g.
[56; Chapter I, Theorem 1.39]), we get

B, [e A D V(X ne)] = V(@) + By [Miprone,] = V(2) (4.3.50)

for all x € Dx and t > 0. Therefore, letting ¢ go to infinity and using the conditions in

~

(4.3.9)-(4.3.10) as well as the fact that V(X ac,) = Ir.<,} on the set {7, A, < oo}, we can
apply the Lebesgue dominated convergence theorem for (4.3.50) to obtain the equalities

Ex [6—%(Ta/\<b) I{Ta<Cb}i| — E:E [6_%(Ta/\<b) V(XTQ/\Cb) ]{Ta/\gb<00}:| frd V(x) (4351)

for all € Dy, that completes the proof in the case v; # 0.
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(ii) Assume now that 73 = 0 and V/(x) satisfies the right-hand condition in (4.3.10), so
that V(b—) = V(b) = 0 holds, while it does not satisfy the left-hand condition there, that is
V(a+) # V(a) = 1 holds (the other cases can be dealt with similarly). This feature corresponds
to the case in which the process X can pass through the boundary a only by jumping and we
particularly have that P,(X,, = a) = 0 holds for z € Dx \ {a}. Following the idea of the proof
in [67; Theorem 3.1], by using the assumption that V' is bounded, we can introduce a sequence of
bounded functions (Vi)gen from the class C'(Dx) such that Vi.(a) = V(a+), |Vi(z) =V (z)] <
[Vi(a) — V(a)| for all z € Dy, and Vj(z) = V() for z € Dx \ ((a — 1/k,a] U (b,b+ 1/k)).
Clearly, we have Vi(z) — V(z) for all € Dx \ {a} as kK — oo. By applying the change-of-

variable formula for finite variation processes from [92; Chapter II, Theorem 31] to the stopped

process e*"(MTaACb)Vk()?MTa rG ), We get that
N tATaNCp .
e DV (Kinrune,) = Vilx) + / e (LVy — 3Vi)(X,) ds + M (4.3.52)
0

holds for a < z < b, where the process M* = (MF);>o, k € N, defined by

tATaAG R R
M= [ e (AEee) MR - sy, (4359

is a local martingale. It follows from the construction of the functions Vi (x) above that the
inequality |Vi(z) — V(x)| < |Vi(a) — V(a)| holds for all x € Dx, so that, we have
log(b+1/k)—log

LV — 5V ()] < )\(Z o /1 Vi(ze?) — V(weh)|dy (4.3.54)

ogb—logx

n loga—logx
+ Z Bj/l |Vi(ze¥) — V(:vey)‘dy)
j=1

og(a—1/k)—logz

<t = V(@) (1og (“5 ) Yo () o) 0

for a < x < b uniformly in « as k — co. Hence, we obtain from the expression in (4.3.52) and

the fact that Vi(x) is bounded that the inequality

|MF| < C + A |Vi(a) — V(a)| (log <b+b1/k) ia +log (a —a1/1<;> i@)t (4.3.55)

holds for some constant C' > 0 and all ¢ > 0, so that the process M* is a martingale. Thus,

taking the expectation with respect to P, in (4.3.52), we get

N tATaACp ~
E, e*%(t/\Ta/\Cb) Vk(Xt/\ra/\gb) . / 7S (]ka . %Vk)<XS) ds} _— Vk<x), (4.3.56)
0
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~

for all @ < x < b and t > 0. Note that, by virtue of the facts that P,(X,, = a) = 0 and
Vi(z) — V(z) holds for all € Dx \ {a}, we get that Vk()A(t/\TaACb) — V()A(MTG/\Q)) (P,-a.s.).

Therefore, we have by the dominated convergence that

lim B, [e 7 D) Vi (Xprine,)] = Ee[e O V(X prne)]s (4.3.57)

k—oo

and by the uniform convergence in (4.3.54), we obtain

k—o0

tATa N p .
lim F, {/ e (LVy — 2Vi)(Xs)ds| =0, (4.3.58)
0
for a < x < b. Hence, we conclude that
B, [e77 D V(X prang,)] = lim Vi(z) = V(2) (4.3.59)
—00

holds for all « < z < b and t > 0. Therefore, the same dominated convergence arguments

which were used above complete the proof for the case v = 0 as well. O

4.3.3. The case of a single compound Poisson process We now show how to find the
solution V(z) of the boundary value problem (4.3.7)-(4.3.10) in a single compound Poisson
process setting. In particular, we let m =1 and n = 0 in (4.3.4) and notice that from (4.3.6)

the compensator measure v(dt, dv) in (4.2.48) is given by
v(dt,dv) = Adt cne” " Iys0y dv, (4.3.60)

for some A,y > 0, and «o; # 1. For notational convenience, we set G(zr) = Gyo(x) for

a <z <b. Note that the equations in (4.3.32)-(4.3.35) read as

@ G"(x) + (2 B(z) + 2° (i (o + 1) — K)) G"(z) — Aoy G() (4.3.61)
+ ((@1 +1) (B(z) — 2K) + Vil ; Do 4 x) G'(z) =0, for a<uxz<b
G'(a)=—a " G'(b)=0 GOb-)=G((b) =0. (4.3.62)

The general solution of (4.3.61) has the form
G(l’) = Cl Ul(l’) + CQ UQ(ZE) + 03 U3(l’), for a<zxz< b, (4363)

where Uy (x), Us(z), and Us(z) constitute the fundamental system of solutions (i.e. nontrivial

linearly independent particular solutions) of (4.3.61), which we assume to be continuously
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differentiable at * = a and x = b. By the definition of G;( in (4.3.16), we obtain that
V(x) = —2z* TG’ (x) holds, so that V(z) has the form

V(z) = -z (CLUj(z) + Co Us(z) + C5 Us(x)), for a <z <b. (4.3.64)
It follows from (4.3.62) that the constants C, Cy and Cj satisfy the equality
C1LU(b) + Cy Uy (b) + C3 Us(b) = 0. (4.3.65)
Note that when ~; # 0, by using (4.3.36) we get
G'(a+)=G'(a) = —a ™' and G'(b—)=G'(b) =0, (4.3.66)

and we obtain from the expression of (4.3.63) that

CLU(b) + Co Uy(b) + C3 Us(b)
Cl U{(CL) + CQ Ué(&) + Cg Ué(a)

G'(b)
G'(a)

0, (4.3.67)
—a (4.3.68)

while when v; = 0, we again follow the case-by-case analysis as in the previous subsection to

find the constants C;, C5, and C}5.

4.3.4. Some examples In the setting of the latter subsection, let us finally find explicit
solutions for the functions G(z), and thus, for the Laplace transform V,(x) of the first exit
time 7, A (, for the process X , in several examples considered above.

In the examples considered below, we assume that v, = 0. In this case, the first derivative
G'(x) of every solution below has a right-hand limit G'(a+) at © = a and a left-hand limit
G'(b—) at x = b, so that the function V() is bounded and we can apply Theorem 4.3.1. More-
over, in every example, one of the conditions in case (ia)-(iva) is satisfied and we can determine
the constants C; and Cy in the expression of (4.3.64) from the corresponding conditions in

cases (ib)-(ivb), where we put C3 = 0.

Example 4.3.2. (Extended Cox-Ingersoll-Ross model I.) Let the drift coefficient S(z) of the
process X be given as in Example 4.2.6 and note that Dx = (1,00). However, we still do
not have explicit solutions for the equation in (4.3.61) when 7y # 0 and 7, # 0. Therefore,
we assume that 79 = 0, so that we have f(z) = z77log(x) for x € Dx, where 77 = 1;/2. By
making the Ansatz of H(y) = G(e¥), we get from the equation in (4.3.61) that H(y) solves

the second-order ordinary differential equation

(ﬁy - i 1) H"(y) + <my . aa_Al - %) H'(y) — M H(y) =0, (4.3.69)
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for y € (loga,logb). In particular, it follows from [118; Formulas 2.1.2.108 and 2.1.2.70] that
the equation in (4.3.69) admits a general solution H(y) = G(e¥) with G(x) being of the form
of (4.3.63) and C3 = 0, where we have

U(z) = 2" ®(p, q; 2(x)), Us(x) = 2" ¥(p,q; 2(x)), (4.3.70)

when ¢ #0,—1,—2,..., and

Ui(z) = 2" 2(2) " ®(p — ¢ + 1,2 — ; 2(x)), (4.3.71)
Us(x) = 2" 2(x) U (p — ¢ + 1,2 — ¢; 2(x)), (4.3.72)
when ¢ =0,—1,—2,.... Here, we denote
—x/m, if n <0, A —a, if 7 <0,
e P Gh L (43.73)
—\/m, if 7 > 0, ] 0, ify>0,
A
= —sign(f)a( log(z) — ——— 4374
#(x) = ~sign(@)a(log(e) = =" ). (4.3.74)

and the functions ®(z,y;z) and ¥(x,y;z) are the Kummer’s and Tricomi’s confluent hyper-

geometric functions (see, e.g. [1; Chapter XIII]), respectively. In particular, we have

. . F(?J) ! zv , x—1 y—z—1
O(z,y;2) = m/o e’ v (1 —w) dv, (4.3.75)
U(x,y;2) = ﬁ /0 e " (1 +v) " d, (4.3.76)

for y >x >0 and z > 0, where I' is the gamma function.

Example 4.3.3. (Eztended Coz-Ingersoll-Ross model I1.) Let the drift coefficient 5(z) of the
process X be given as in Example 4.2.7 and recall that Dx = (0,1). However, we still do
not have explicit solutions for the equation in (4.3.61) when 7y # 0 and 7, # 0. Therefore,
we assume that 7, = 0 holds, so that we have f(x) = 2nyz/logx for + € Dx. By making
the Ansatz of H(y) = G(eY), it follows from the equation in (4.3.61) that the function H(y)

satisfies the ordinary differential equation

Ckl)\

(2m = 25 w) B + (20 = (5225 4 3k ) ) ') = Ay Hp) =0, (13,77

Oél—l

for loga < y <logb. Therefore, by analogy to Example 4.3.2, we get that G(x) is of the form
of (4.3.63) with C3 = 0 and the functions U;(z) and Us(z) satisfy (4.3.71)-(4.3.72) when ¢ is
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a nonpositive integer, and (4.3.70) otherwise, where we set

D ((al(;llle); A)? N i:)iall’ S (n —1)VD + 041/2\/\‘1‘ (a1 —1)(c+ )‘)7 (4.3.78)
_ 27707“(\/7%— a) - 2l —A12>2(A +x) (4.3.79)
z(z) = % (logx — M). (4.3.80)

Example 4.3.4. (Extended constant elasticity of variance model.) Let the drift coefficient
f(x) of the process X be given as in Example 4.2.8 with the elasticity parameter @, where
Dx = (1,00) if @ € (0,1) and Dx = (0,1) if @ € (1,00). Notice that, by definition, we
have §(z) = frlogx for © € Dy, where 7 = 1m,(1 — @). By making the Ansatz of H(y) =
G(eY), we get from (4.3.61) that H(y) solves the ordinary differential equation in (4.3.69), for
y € (loga,logb). Therefore, we get that G(z) is of the form (4.3.63) with C3 = 0, and the
functions Uy (z) and Us(z) satisfy (4.3.71)-(4.3.72) if ¢ is a nonpositive integer, and (4.3.70)
otherwise, where p,q,r and z(x) are defined as in (4.3.73)-(4.3.74).

Example 4.3.5. (Extended Shiryaev filtering model.) Let the drift coefficient f(x) of the
process X be given as in Example 4.2.9 and note that Dx = (0, 00). Notice that, by definition,
we have B(x) = no(l + x) for x € Dx, where 7 =19 — A/(a —1).

If we assume that 77 # 0 holds, it follows from (4.3.61) that G(z) satisfies the ordinary

differential equation of

(2 4a) e+ ((a+1-2E2) 0 LY i) - 6@ =0 (4381

for a < x < b. It follows from [118; Formulas 2.1.2.172 and 2.1.2.171] that the general solution
of the second-order ordinary differential equation in (4.3.81) is of the form (4.3.64) with C5 =0

and

Ui(z) = 2(2) " 9Fi(p —q+ 1,py — g+ 1,2 — q; 2(2)), (4.3.82)

Uy(z) [* 2L dy, if ¢ is a (negative) integer,
Us(z) = 1(2) [” g ( ) (43,59
oF1 (p1,pe,q; 2(x)), otherwise,

where 2 Fi(p, q,7; 2z) is the Gauss hypergeometric function (see, e.g. [1; Chapter XV]) and we
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denote
Pra = af — (A+ )+ \/(;; % —al)? — Aan g=—a—1, z(z)= —%x, (4.3.84)
o [ [T YUa A1) = A= 5) + (mp(a + 1))
Z(z) = exp < / y(Ty + o) dy) (43.85)

On the other hand, if we assume that 77 = 0 holds, it follows from (4.3.61) that G(x)

satisfies the ordinary differential equation
nox G"(x) + (ol +1) — (A + 50) ) G'(z) — Aa G(x) = 0, (4.3.86)

for a < x < b. Therefore, by analogy to Example 4.3.2, we get that G(x) is of the form of
(4.3.63) with C'3 = 0 and

Urle) = e B(p,q; 2(x)),  Us(x) = ™ U(p, q; 2(x), (4.3.87)
where we denote
ax A+ (A + )
=1+ , =a+1, r= , and z(r)=-———"7-—", 4.3.88

and the functions ®(z,y;z) and V(z,y;z) are defined as in (4.3.75)-(4.3.76).
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Chapter 5

On the generalised Laplace transforms
of the first exit times in jump-diffusion

models of stochastic volatility

This chapter is based on joint work with Dr. Pavel V. Gapeev.

5.1. Preliminaries

In this section, we introduce the setting and notation in the problem of computation of the
Laplace transforms of the first exit times in (two-dimensional) jump-diffusion models of financial

markets with stochastic volatility and formulate the associated boundary value problem.

5.1.1. The model. Let us consider a probability space (€2, F, P) supporting two indepen-
dent standard Brownian motions B = (B})0, j = 1,2. The processes X = (X;)>o and
Y = (Yi)i>0 are defined by X; = Z]kvil J} and Y, = Z,ivjl J?, where N = (N})i>0, @ = 1,2,
are independent Poisson processes of intensity \;, i = 1,2, and (J},)ren are independent expo-
nentially distributed random variables with probability density e = I(z > 0) 4~ = I(z < 0)
where ;" > 0 and n; <0, for i = 1,2, and I(-) denotes the indicator function. Suppose that

there exists a process (5,Q) = (St, @¢)i>0 which is a (pathwise) unique solution of the system



5.1. Preliminaries 139

of stochastic differential equations
dSt :50'2(Qt> St dt+€U(Qt) St dBtl (511)
5 [ (= 1)0(Qu) (" — vt do) (S0 =)

and

dQ, = ¢(Q,) dt +(Q,) dB? (5.1.2)
L Q. / (ey _ 1) (¥ — v¥)(dt,dy) (Qo = q)

for some s,q > 0 fixed, where ¢ and ¢ are some constants, and o(q) > 0 and ¢(q) are contin-
uously differentiable functions of at most linear growth on (0,00) (see, e.g. [75; Chapter IV,
Theorem 4.6] and [56; Chapter 111, Theorem 2.32] for the existence and uniqueness of solu-
tions of stochastic differential equations). Here, u*X(dt,dz) and pY (dt,dy) are the measures
of jumps of the processes X and Y, and v*(dt,dz) and v¥(dt,dy) are their compensators
with respect to the probability measure P, respectively. It follows from the structure of the
processes X and Y that the compensators have the form vX(dt,dz) = dtFy(x; A\, nf,ny )dx
and vY (dt,dy) = dtFs(y; Ay, ny , 15 ) dy with

Fy(x; Ni,nn7) = N (e_”jx I(z>0)+e " I(z <0))dz. (5.1.3)

Without loss of generality and because of the nature of the problems as well as the examples
considered below, we can further assume that the state space of the process S is (0,00).
Observe that the process @ forms a one-dimensional (strong) Markov jump-diffusion process,
while (S,Q) provides a two-dimensional jump-diffusion Markov process. We further assume
that the state space of @ is (0,00), so that the state space of (S,Q) is (0,00)%. Let us also
define the associated with the processes S and @ first hitting (stopping) times

7, =inf{t >0|S; <a} and 7" =inf{t >0[S, > b} (5.1.4)

and

¢ =inf{t>0|Q; <g} and ¢f =inf{t>0[Q,>h} (5.1.5)

for some 0 <a<b<ooand 0 <g<h < oo fixed.

5.1.2. Formulation of the problem. The main aim in the present paper is to derive

closed form expressions for the generalised Laplace transforms and other related functionals of
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+

the random variables 7,7, 7", ¢, and ¢;". In this respect, let us introduce the value functions

a )

V*(s,q;a) and Vi (s,q;b) given by

V2(s.q:0) = Bog|e 5 UNQ,) 17 <G AGH (5.1.6)
e N WS Qi) G < T AG))
and
—2xA
Vis.a:b) = Bugle 0 UNQu) (5 <G AGH) (5.1.7)
+e TG WS, Qi) I(G <7 A c,j)]

where the function U*(q) is defined as

U(q) = Eq|e 9 165 < ¢ (5.18)

the functions W*(s,q;a) and W7 (s,q;b) are given by

WZ(s,q;a) = Es, [eiﬂATa_] and Wi(s,q;b) = E,4 [e_%AT;] (5.1.9)
for > >0 and all (s,q) € (0,00)?. Here, the process A = (A;)i>o is defined by
t
A, = / o?(Q,) du. (5.1.10)
0

5.1.3. The boundary-value problems. By means of standard arguments based on [to’s
formula, it can be shown that the infinitesimal operator L(gq) of the process (S,Q) from
(5.1.1)-(5.1.2) under the probability measure P acts on a function V(s,q) from the class C*?

on (0,00)? according to the rule:

e%0*(q)

(Lis)V)(s,0) = (6 — K1) 0°(q) s 0.V (s,9) +
V*(q)
2

5204V (s,4) (5.1.11)

+ (o(q) — q¢K2) 9,V (s,q) + yqV (8,q) —|—/ (V(sew’ q) — V(s, q))g2(q) Fy(x; M\, 0 ny) da

_|_/ (V(s)qey) — V(s,q)) FQ(?JQ /\2,77;_7772_) dy

for all (s,q) € (0,00)?, while the infinitesimal operator Lg of the process @) under the proba-

bility measure P acts on a function U from the class C? on (0,00) like

(LoU)(q) = (¢(q) — qi2)U'(q) + @U”(q) (5.1.12)

+/<U(qey) —U(q))Fg(y; Ao, g 5113 )y
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for all ¢ > 0, where

1 1 .
Ki:)\i<m+_1—l—m__1) for i=1,2. (5.1.13)

In order to find analytic expressions for the unknown value functions from (5.1.6)-(5.1.7), let
us use the results of general theory of Markov processes (see, e.g. [34; Chapter V]). We reduce
the problems of (5.1.6)-(5.1.7) for the functions V*(s,q;a) and Vi (s,q;b) to the equivalent

boundary value problem

(Lsgq)V —2x0°(q) V)(s,q) =0 for a<s or s<b and g<g<h (5.1.14)
V(s,q) =U(q) for s<a or V(s,q)=U(q) for s>0b (5.1.15)
V(s,q)|,_,, =Ulq) or V(s,q)|_, =Ulq (5.1.16)
V(s,q) =Wi(s,q) for ¢<g and V(s,q)=0 for ¢>nh (5.1.17)
V (s, q)!q_ng =Wxi(s,q) and V(s, q)‘ =0 (5.1.18)

q=h—

where the conditions in (5.1.16) and (5.1.18) are satisfied for each s > 0 and ¢ > 0, respectively.

Here, the functions U(q) solve the boundary-value problem

(LU — 50*(q)U)(q) =0 for g<qg<h (5.1.19)
U@ =1 for ¢q<g and U(q)=0 for ¢g>h (5.1.20)
U(q)‘q:g+ =1 and U(q)|q:h7 =0 (5.1.21)

while the functions W*(s, ¢;a) and W3(s,q;b) solve the problem

(Lisg)W — 30*(q) W)(s,q) =0 for a<s<b (5.1.22)
Wi(s,q)=1 for s<a or W(s,q)=1 for s>b (5.1.23)

W(S’q>|s:a+ =1 or W(S,q)‘ =1 (5.1.24)

s=b—

for all ¢ > 0.

5.2. Solutions of the boundary value problems

In this section, we derive the solutions of the boundary value problems associated with the

value functions in (5.1.6)-(5.1.7).
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5.2.1. Solutions of the system (5.1.19)-(5.1.21). (i) Let us assume that Ay = 0 holds.
In this case, it is known that the general solution of the second-order differential equation of
(5.1.19) has the form

Ulg) = D+ Us(q) + D-U_(q) (5.2.1)

where D, are some arbitrary constants, and the two functions U, (¢) and U_(q) represent the
two fundamental positive solutions (i.e. nontrivial linearly independent particular solutions) of
the second-order ordinary differential equation in (5.1.12)4(5.1.19) (see [91; Chapter III, Section
18]). Without loss of generality, we may assume that U, (q) and U_(q) are (strictly) increasing
and decreasing (convex) functions satisfying the properties U, (00) = oo and U, (0+) = 40 as
well as U_(0+) = oo and U_(00) = +0, respectively (see, e.g. [95; Chapter V, Section 50] for
further details in the purely continuous case). Then, by applying the instantaneous-stopping

conditions of (5.1.21) to the function in (5.2.1), we obtain that the equalities
DU (9)+D_U-(g9)=1 and D Uy(h)+D_U_(h)=0 (5.2.2)

hold. Solving the system of linear equations in (5.2.2), we obtain the function

U_(h)Uy(q) = U (WU_(q)
Ur(9)U-(h) = U (M)U-(g)
which satisfies the system in (5.1.19)-(5.1.21). Note that, in the cases ¢ = 0 and h = co, we
see that D_ = D_(0,h) =0 and D, = D, (g,00) = 0 should hold in (5.2.3), since otherwise

U(g;g,h) = (5.2.3)

U(q) — +oo as ¢ | 0 and ¢ 1T oo, respectively, which must be excluded, by virtue of the
obvious fact that the function U*(q) in (5.1.8) is bounded. Therefore, using arguments similar

to the ones above, we conclude that the functions U(q;0,h) and U(q; g,00) have the form

U(q;0,h) = gi((Z; and U(q;g,00) = Z—(Zg (5.2.4)

for all ¢ < h and q > g, respectively.
(ii) Let us now assume that Ay > 0, 75 > 0, and 7, = 0 holds. In this case, by using the
boundary conditions in (5.1.20), we can rewrite the equation in (5.1.19) as

¥*(q) U"(q)

5 + (¢(q) — aK2) U'(q) = (320°(a) + A2) U(q) (5.2.5)

h
+ Aot g / Uly)y™ " dy = 0.
q
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We define the function G(q) as

G(q) = / Uly)y™™ " dy, (5.2.6)

for ¢ < g < h, and notice that solving the ordinary integro-differential boundary problem in

(5.2.5)4(5.1.20)-(5.1.21) is equivalent to solving the third-order ordinary differential boundary

problem
M G"(q) + (((9) — ¢Ks)g + (0 + 1)¢*(9)) ¢ G"(q) (5.2.7)
+ (( —20%(q) = Na) ¢ + (55 + 1) (¢(q) — qKa) g+ (03 + 1)775@) G'(q)
=3 qG(q) =0 for g<q<h,
G(q)],_,. = G(h) =0, (5.2.8)
G| _ . =Gl =—g ™" and G(g)|_, =G'(h)=0. (5.2.9)

=9+ q=h—

It is known that the general solution of the third-order differential equation of (5.2.7) has the
form

where D;, i = 1,2, 3, are some arbitrary constants, and the functions G;(¢q) represent the three
fundamental positive solutions (i.e. nontrivial linearly independent particular solutions) of the
third-order ordinary differential equation in (5.2.7) for i = 1,2,3 (see [91; Chapter III, Section
18]). Hence the solution of (5.1.19)-(5.1.21) is of the form

U(g;9,h) = D1 Us(q) + D2 Us(q) + D3 Us(q), (5.2.11)

where we set U;(q) = —q";“G;(q) for g < ¢ < handi=1,2, and the constants D;, i = 1,2, 3,

satisfy the equations

Dy Gy(h) + Dy Go(h) + D3 Gs(h) = 0, (5.2.12)
Dy G (g) + D2 Gy(g) + Ds Giy(g) = —g %, (5.2.13)

Dy G (h) + Dy Gy (h) + D3 G5(h) = 0. (5.2.14)

5.2.2. Solutions of the system (5.1.14)-(5.1.18). (i) Let us assume that A\; = Ay = 0

holds. In this case, let us now look for a solution of the partial differential equation in (5.1.14)
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in the form
V(S, q> = 80+ (Cl7+ Ul(q> -+ OQ,JF UQ(C])) -+ 89_ (CL* Ul(Q) + 027, UQ(Q)) (5215)
where 6, are given by the roots of the equation

2
% 00— 1)+ 60 = s, (5.2.16)

) 1\? 2
+ — — = —. 2.1
\/(52 2> + g2 (5:2.17)

Here, C; 1 are arbitrary constants, and U;(q) are the appropriate fundamental positive solutions

so that 6_ < 0 < 6, holds, and we have

)
Qi: ——2

1
2 €

of the second-order ordinary differential equation in (5.1.12)+(5.1.19) considered above, for
i = 1,2. Note that the equalities C; . = Cy+ = 0 should hold in (5.2.15) if we consider
a solution for V*(s,q¢;a) in (5.1.6), while the equalities C; - = C5_ = 0 should hold there
if we consider a solution for V(s,q¢;b) in (5.1.7). These properties occur since otherwise
V(s,q) — oo as s | 0 or s 1T oo, which must be excluded, by virtue of the obvious fact that
the functions V*(s,¢;a) in (5.1.6) and V}(s,q¢;b) in (5.1.7) are bounded. Then, by applying
the instantaneous-stopping conditions of (5.1.16)-(5.1.18) to the function in (5.2.15), we obtain
that the equalities

a’ (C1,- Ui(q) + Co— Us(q)) = Ulq; g, h) (5.2.18)

and

b (C14 Ur(q) + Coy Ua(q)) = Ulg; g, h) (5.2.19)

hold. Solving the equations in (5.2.18)-(5.2.19), we obtain the functions

$\0- s\ 9+
Vo(sgsaigh) = (2) Ulgig,h) and Vils,gibigh) = () Ulggh)  (5:220)

which satisfy the system in (5.1.14)-(5.1.18), where the functions U(q; g, h) is given by (5.2.3).
(ii) Let us now assume that A\; > 0, Ay = 0, 7 > 0, and n; = 0 holds. In this case, let

us look for a solution of the partial differential equation in (5.1.14) in the form
V(s,q) = s" (C14 Ur(q) + Coy Ua(q)) + s” (Cr—Ui(q) + Ca,— Us(q)) (5.2.21)

where 6, are given by two roots of the equations

(6 — K0 — (0 — K1)+ )0 =53 if A,n >0, ande =0, (5.2.22)
2
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so that 6_ < 0 < 6, holds, and we set

+ +
h A1 h A1 2 ” n
=4+ — 4+ - f =0. .2.24
b = T G- Ry ¢<2+Q®—JQQ 5T A >0 ande =0, (5:224)

Here C; 1 are arbitrary constants and U;(q) are the appropriate fundamental positive solutions
from (5.2.11) of the ordinary integro-differential equation (5.2.5) considered above for i = 1, 2.
Moreover, in order for (5.1.14)4(5.1.15) to be satisfied, we choose nf > 0 such that

n b 4 0. —nf = 0. (5.2.25)

Note that the equalities C; + = 0 should hold in (5.2.21) if we consider a solution for V*(s, ¢; a)
in (5.1.6), while the equalities C; — = 0 should hold there if we consider a solution for V(s,q;b)
in (5.1.7), for ¢ = 1,2. These properties occur since otherwise V (s,q) — oo as s [ 0 or s 1 00,
which must be excluded, by virtue of the obvious fact that the functions V*(s,¢;a) in (5.1.6)
and V}(s,q;b) in (5.1.7) are bounded. Then, by applying the instantaneous-stopping conditions
of (5.1.16)-(5.1.18) to the function in (5.2.21), we obtain that the equalities

a’= (C1-Ui(q) + Co,—Us(q)) = Ulg; g, h) (5.2.26)

and

b (Cl,+ Ui(q) + Ca+ UQ(Q)) =Ul(g; 9, h) (5.2.27)

should hold. Solving the equations in (5.2.26)-(5.2.27), we obtain the functions

s\ - s\ 0+
V_(s,q;a;9,h) = <5> Ulg;g9,h) and Vi(s,q;b;9,h) = (5) Ulg; g, h) (5.2.28)

which satisfy the system in (5.1.14)-(5.1.18), where the function U(q; g, h) is given by (5.2.11).
3.3. Solutions of the system (5.1.22)-(5.1.24). (i) Let us assume that A\; = Ay =0

holds and look for a solution of the partial differential equation in (5.1.22) in the form
Wi(s,q) = Cy s +C_s" (5.2.29)

where C are some arbitrary constants, and 6y are given by (5.2.17). Then, by applying the
instantaneous-stopping conditions of (5.1.24) to the function in (5.2.29), we obtain that the
equalities

Cia®*+C_a’ =1 or C 0" +C_b-=1 (5.2.30)

hold. Note that, in the cases s | 0 or s 1 oo, we see that C_ = 0 or ', = 0 should hold

in (5.2.29), since otherwise W (s,q) — oo as s | 0 and s 1 oo, respectively, which must be
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excluded, by virtue of the obvious fact that the functions W*(s,q;b) in (5.1.9) and W (s, q;a)
in (5.1.10) are bounded. Therefore, using arguments similar to the ones above, we conclude

that the functions W (s,q;b) and W*(s,¢;a) have the form
Wi(s,q;b) = (s/b)’ and WZ*(s,q;a) = (s/a)’ (5.2.31)

for all s <b and s > a, respectively.

(ii) Let us now assume that A\; > 0, Ay = 0, {7 > 0, and 1, = 0 holds. We look for
solution of the form (5.2.29), where 6, are given by (5.2.24) or by a positive and a negative
root of the cubic equation (5.2.23) when € = 0 or ¢ > 0, respectively, and 7, satisfies the
equality in (5.2.25). Then, similarly as in the previous case, by applying the instantaneous-
stopping conditions of (5.1.24) to the function in (5.2.29), we obtain the equalities in (5.2.30)
and conclude that W3 (s,q;b) and W*(s, ¢;a) have the form (5.2.31).

5.2.3. Some examples. Let us now consider several examples in which we can obtain

explicit solutions of the boundary value problems formulated above.

Example 5.2.1. Let us consider the case of the (mean-reverting) exponential Stein-Stein model
of stochastic volatility for (S, Q). In this case, we set o(q) = Inq, ¢(q) = q(a — Blng+~%/2),
and ¥(q) = 7q, for some constants o« > 0, 3, and v > 0, so that @ is an exponential
Ornstein-Uhlenbeck process (Black-Karasinski model) with the state space E = (0, 00).

Let us assume that A\, = 0 and denote U(g) = U(e?) for § € R. Then, the equation in

(5.2.5) can be written as

2

U@+ (a—62) U@ — > Ul@) = 0. (5.2:82)

N | =3

It follows from [118; Formulas 2.1.31 and 2.1.108] that second-order ordinary differential equa-
tion in (5.2.32) admits a general solution U(q) of the form (5.2.1) with

Uy (e7) = T 0(p,1/2,2(7)) and  U_(e7) = 70 (p,1/2, 2(7)), (5.2.33)

where the constant k solves the quadratic equation 4v%k? — 48k — 2scy = 0. Here, we denote

Y2r? 4+ 2ar + 292k . B=27k/_ af 2
i SRS T

where
2ak

= 2.
e 1 (5.2.35)
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and the functions ® and ¥ are the Kummer’s and Tricomi’s confluent hypergeometric functions

(see, e.g. [1; Chapter XIII]), respectively. In particular, we have

_ F(y) ! zv ,x—1 y—x—1
O(z,y,2) = m/o e v (1 —v) dv, (5.2.36)
U(z,y,z) = ﬁ /0 e "1 + )" d, (5.2.37)

for y >x >0 and z > 0, where I' is the gamma function.

Example 5.2.2. Let us consider the case of the (mean-reverting) Heston model of stochastic

volatility for (S, Q). In this case, we set o(q) = \/q, ¢(q) = a —Bq, and ¥(q) = v,/q, for some
constants a > 0, 3, and v > 0 such that a > v%/2, so that @Q is a Feller square root process

(Cox-Ingersoll-Ross model) with the state space £ = (0, 00).
Let us assume that Ay = 0. Then, the equation in (5.2.5) is given by

%q U"(q) + (a = Bg) U'(q) = 2 U(g) = 0. (5.2.38)

It follows from [118; Formula 2.1.108] that second-order ordinary differential equation in (5.2.38)
admits a general solution U(q) of the form (5.2.1) with

Ui(q) = "1 ®(p1,p2,2(q), U-(q) = e"" ¥(p1,p2,2(q)), (5.2.39)

when ps #0,—1,—-2,..., and

Ui(g) =€ 2(q)' ™ @(p1 — p2 + 1,2 — pa, 2(q)), (5.2.40)
U_(q) = e 2(q)" ™ W(p1 — p2+ 1,2 — p2, 2(q)), (5.2.41)
when p, =0,—1,—2,.... Here, we have denoted
ar 2a 2v/D
e —_—, = -, and A = — 5 5242
J4! \/E D2 72 (Q) 72 ( )
where
D
"= —fj N (5.2.43)
fy

and the functions ® and ¥ are defined as in (5.2.36)-(5.2.37).
Let us now assume that Ay > 0, 1y > 0, and 7, = 0 holds. Moreover, let us assume that

¥(q) = 0 holds and denote 3 = 3 + K,. Then, the equation in (5.2.7) takes the form

gl — Bq) G"(q) + (3 + 1) (0 — Bg) — 24" — A2 q) G'(q) — Aoy G(q) = 0. (5.2.44)
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If we additionally assume that o = 0, it follows from [118; Formulas 2.1.139 and 2.1.108] that
the second-order ordinary equation admits the general solution G(q) of the form (5.2.10) with

D3 = 0, where we have

Gi(q) = ¢" " (p1,p2, 2(q)),  Galg) = ¢" € W(py, 2, 2(q)), (5.2.45)

when py #0,—1,-2,..., and

Gi(q) = ¢" € 2(q)" 7 ®(p1 — po + 1,2 — pa, 2(q)), (5.2.46)
Gs(q) = qk el z(q)kp2 U(py —p2+ 1,2 —po, 2(q)), (5.2.47)
when p, =0,—1,—2,.... Here, we denote
—28k — Xy — B(nF + 1))r — »k 28k + Ay + B(my + 1 %
R . = NI BT
»” 5 B
where
L BE 4 (= — B )k — dang =0, (5.2.49)

r=—,
2p
and the functions ® and ¥ are defined as in (5.2.36)-(5.2.37).

Example 5.2.3. Let us consider the case of the Dothan model of stochastic volatility for
(S,Q). In this case, we set o(q) = q, ¢(q) = Bq, and ¥(q) = vq, for some constants 5 and
v > 0, so that @ is a geometric Brownian motion with the state space E = (0,00).

Let us assume that Ay = 0 holds. Then, the equation in (5.2.5) takes the form
7’4
= U'a) +8U(q) = »qU(q) = 0. (5.2.50)

It follows from [118; Formula 2.1.108] that the general solution of the second-order ordinary
equation in (5.2.50) is of the form of (5.2.1) with the functions Uy (q) and U_(q) satisfying
(5.2.40)-(5.2.41) if py is a nonpositive integer, and (5.2.39) otherwise, where we have denoted

b 2D

b1 \/57 b2 = ?7 Z(Q) = - 72 ) (5251)

with

vD

o D = 23¢7°. (5.2.52)

r =
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Let us now assume that Ay > 0, 7y > 0, and 1, = 0 holds Moreover, let us assume that

¥(q) = 0 holds and denote 3 = 3 — K. Then, the equation in (5.2.7) takes the form
Bq* G"(q) + ((nF +1)B = X2 = 2¢°) ¢G'(q) — Xand G(g) = 0. (5.2.53)

If we additionally assume that 3 = 0, the equation in (5.2.53) admits an explicit solution which
is of the form of (5.2.10) with Dy = D3 = 0, and the function G(q) is given by
Ao 4 2q%\ 73 /2

¢ ) '

Gilq) = ( (5.2.54)

Example 5.2.4. Let us finally consider the case of the (two-dimensional) Black-Merton-Scholes

model for (S, Q). In this case, we set 0(q) =1, ¢(q) = Bq, and ¥ (q) = vq, for some constants

f and v > 0, so that @ is a geometric Brownian motion with the state space E = (0, 00).
Let us assume that Ay = 0. Then, the equation in (5.2.5) takes the form

gUﬁ(Q) +8qU'(q) = »U(q) = 0. (5.2.55)

It follows from [118; Formula 2.1.123] that the general solution of the second-order ordinary

differential equation in (5.2.55) is of the form (5.2.1) with

Ui(q) = qm¥2e)2 0 U_(g) = gi-m=22)/2, (5.2.56)
where we denote
2 1
P = 7—57 P2 = 5\/(1 —p1)?+ 4o (5.2.57)

Let us now assume that Ay > 0, 1y > 0, and 7, = 0 holds. Moreover, let us assume that

¥(¢q) = 0 holds and denote 3 = 3 — K. Then, the equation in (5.2.7) takes the form
B*G"(q) + (3 +1— 3= X)) qG'(q) — Aamy G(q) = 0. (5.2.58)

It follows from [118; Formula 2.1.123] that the second-order ordinary differential equation ad-
mits the general solution G(q) of the form (5.2.10) with D3 = 0, and the functions G;(¢q) and
G2(q) satisfying the same equation (5.2.56) as the functions U, (¢q) and U_(q), respectively,
where we set

B 775r +1—2c— )Xo

3 2= =Ty (5.2.59)

Y4
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5.3. Main result and proof

In this section, taking into account the facts proved above, we formulate and prove the main

results of the paper.

Theorem 5.3.1. Suppose that the coefficients o(q) > 0, ¢(q), and ¥(q) > 0 of the jump-
diffusion process (S,Q) defined by (5.1.1)-(5.1.2) are continuously differentiable functions of
at most linear growth. Then, the generalised transforms V*(s,q;0_p;a) and V;(s,q;04p;b) in
(5.1.6)-(5.1.7) of the associated with (S,Q) random times 7, , 7,7, (;, and ¢ from (5.1.4)-
(5.1.5) admit the representations

V¥(s,q;a) = V_(s,q;a;9,h) = W(s,q;a) U(q; g, h) (5.3.1)
and
Vi(s,q;0) = Vi(s,q;b;9,h) = Wi(s,q;0) U(q; g, h) (5.3.2)

foralla<s<band g<q<h,andany 0 <a<b<oo and 0 < g<h < oo fired. Here, the
function U(q; g, h) takes the form of (5.2.3)-(5.2.4) and (5.2.11), and the functions W*(s,q; a)
and Wi(s,q;b) take the form of (5.2.81).

Since the assertions stated above are proved using essentially similar arguments for all the
cases of ¢ > 0 and ¥(q) > 0, ¢ > 0 and 9(¢g) =0, ¢ = 0 and ¥(q) > 0, and ¢ = 0 and
¥(q) = 0, we only give a proof for the case € > 0 and ¥ (¢q) > 0 in which both processes S and
@ have continuous diffusion parts. Note that the corresponding verification assertions for the
value functions U*(q) = U(q; g,h) for ¢ < ¢ < h in (5.1.8) and (5.2.3)-(5.2.4), and W*(s,q; a)
and W7 (s,q;b) for a < s < bin (5.1.9) and (5.2.31) can be proved using the arguments similar

to the ones presented below.

Proof. In order to verify the assertion stated above, it remains to show that the functions defined
in (5.3.1)-(5.3.2) coincides with the value functions in (5.1.6)-(5.1.7). For this purpose, let us
denote by V' (s, q) the right-hand side of the expression in (5.3.1) (the case (5.3.2) is analogical).
Then, taking into account the fact that the function V(s,¢) is continuous on (0, 00)* and C?
on (a,00) X (g,h), by applying the change-of-variable formula for semimartingales with jumps

2xA

of bounded variation from [87; Theorem 3.1] to e TJAC?“}T“V(ST;AQAC}TM, Qo ncraciae)
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we obtain
—2;4A7__ -+
e T AT AGT At V(ST;AQ/\G{M’Qr;/\cg’/\c,f/\t) (5.3.3)

Ta NCq NG
=V(s,q) + / e (Lis,g)V (Su, Qu) — 25¢02(Qu) V (S, Qu)) du + M,
0

for all a < s and g < ¢ < h, where the process M = (M,;);>o defined by

Ta N NGEAL

M, = e A 9V (Sy, Qu) 0(Qy) S, dB}: (5.3.4)

[e=]

Ta Ng NG AL
+/ ¢ M 9,V (S, Q) (Qu) B
0
Ta NCg NG AL
+f [t (Ve Qu) = V(S Qu)) (0¥ = v¥)(du, da)
0

. /OTGACQAC’TM/e_zxAu (V(Su—v Qu_e’) =V (S,_, Qu—)> (" = v")(du, dy)

is a local martingale under F;,.
By virtue of straightforward calculations and the arguments of the previous section,
it is verified that the function V(s,q) solves the partial (integro-)differential equation in

(5.1.11)4(5.1.14), so that the expression in (5.3.3) takes the form

—2xA

Ta A AGEAL
2 Mot V(S T ACq AGEAL QT;/\gg*/\q/\t) =Vi(s,q) + M, (5.3.5)

Ta

for all « < s and g < ¢ < h. Since the function V(s,q) satisfies the boundary conditions in
(5.1.15)-(5.1.18) and is therefore bounded, it follows from the representation of (5.3.5) that the
process M is a uniformly integrable martingale. Then, taking the expectation with respect to
P; , in both sides of the expression in (5.3.5), by means of the optional sampling theorem (see,

e.g. [56; Chapter I, Theorem 1.39]), we get

—2xA

E,, [6 a NSy G V(ST;Acg*Ag;Ata QT{/\C;/\QJ[/\t)} =V(s,q) + Es oM = V(s,q) (5.3.6)

for all @ < s and g < g < h. Therefore, letting ¢ go to infinity and using the boundary condi-
. . _2%A7—7/\ —A +

tions in (5.1.15)-(5.1.18) as well as the fact that e a \g Ny At V(ST,;/\g/\g}j/\ta Qr;/\g;/\g,j/\t) =

0 on {7, A¢, A ¢F = oo} (Ps4-a.s.), we can apply the Lebesgue dominated convergence

theorem for the expression in (5.3.6) to obtain the equalities

—2xA _

% _ _ —2xA _ % _ _
B[ UNQu) I(m <6 MG +e 7 WA (S, Qi) 16, <y A G| (537)
—2xA _
= FEsyq [e G G V(Sr;/\gg*/\q/\tv Q-r;/\g/\gf/\t)} =V (s,q)

or for all @ < s and g < g < h, which directly implies the desired assertion. O



152

Bibliography

M. Abramovitz and 1. A. Stegun. Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables. National Bureau of Standards. Wiley, New York.,
1972.

R. M. Anderson and R. C. Raimondo. Equilibrium in continuous-time financial markets:

endogenously dynamically complete markets. Econometrica, 76(4):841-907, 2008.

S. Ankirchner and P. Imkeller. Finite utility on financial markets with asymmetric in-
formation and structure properties of the price dynamics. Annales de [’Institut Henri

Poincare (B) Probability and Statistics, 41(3):479 — 503, 2005.

K. Arrow and G. Debreu. Existence of an equilibrium for a competitive economy. Econo-

metrica, 22(3):265-290, 1954.

L. Bachélier. Théorie de la spéculation. Annales de [’Ecole Normale Supérieure, 17:21-86,
1900.

S. Basak. A general equilibrium model of portfolio insurance. Review of Financial Studies,

8(4):1059-1090, 1995.

S. Basak. A comparative study of portfolio insurance. Journal of Economic Dynamics

and Control, 26(78):1217-1241, 2002.

E. Bayraktar and S. Dayanik. Poisson disorder problem with exponential penalty for
delay. Mathematics of Operations Research, 31(2):217-233, 2006.

E. Bayraktar, S. Dayanik, and I. Karatzas. The standard Poisson disorder problem
revisited. Stochastic Processes and their Applications, 115(9):1437 — 1450, 2005.



Bibliography 153

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[18]

[19]

[20]

[21]

[22]

E. Bayraktar, S. Dayanik, and 1. Karatzas. Adaptive Poisson disorder problem. Ann.
Appl. Probab., 16(3):1190-1261, 2006.

E. Bayraktar and H. V. Poor. Quickest detection of a minimum of two Poisson disorder

times. SIAM J. Control Optim., 46(1):308-331, 2007.

M. Beibel. A note on sequential detection with exponential penalty for the delay. The
Annals of Statistics, 28(6):1696-1701, 2000.

M. Beiglbck, W. Schachermayer, and B. Veliyev. A direct proof of the Bichteler—
Dellacherie theorem and connections to arbitrage. The Annals of Probability, 39(6):2424—
2440, 2011.

A. Bensoussan and J. L. Lions. Applications of Variational Inequalities in Stochastic

Control. (French Edition 1978). North Holland, Amsterdam., 1982.

F. Biagini and B. Oksendal. A general stochastic calculus approach to insider trading.

Applied Mathematics and Optimization, 52(2):167-181, 2005.

F. Black and M. Karasinski. Bond and option pricing when short rates are lognormal.

Financial Analysts Journal, pages 52-59, 1991.

[. F. Blake and W. C. Lindsey. Level crossing problems for random processes. [FEE
Trans. Information Theory, (19):295-315, 1973.

M. J. Brennan and E. S. Schwartz. Portfolio insurance and financial market equilibrium.

The Journal of Business, 62:455-472, 1989.

M. Broadie and J. Detemple. The valuation of American options on multiple assets.

Mathematical Finance, 7(3):241-286, 1997.

E. Carlstein, H.-G. Miiller, and D. Siegmund. Change-point problems. IMS Lecture Notes
Monogr. Ser. 23, 1994.

R. Cont and P. Tankov. Financial modelling with jump processes. Chapman & Hall/CRC,
2004.

R. Corless, G. Gonnet, D. Hare, D. Jeffrey, and D. Knuth. On the LambertW function.
Advances in Computational Mathematics, 5(1):329-359, 1996.



Bibliography 154

[23]

[24]

[25]

[30]

[31]

[32]

J. C. Cox. Notes on option pricing I: Constant elasticity of diffusions. Unpublished draft,
Stanford University, 1975.

J. C. Cox, J. E. Ingersoll, and S. A. Ross. A theory of the term structure of interest rates.
Econometrica, 53(2):385-407, 1985.

M. Davis. A note on the Poisson disorder problem. Banach Center Publications, 1(1):65—
72, 1976.

S. Dayanik, H. V. Poor, and S. O. Sezer. Multisource Bayesian sequential change detec-
tion. Ann. Appl. Probab., 18(2):552-590, 2008.

S. Dayanik and S. O. Sezer. Compound Poisson disorder problem. Mathematics of
Operations Research, 31(4):649-672, 2006.

S. Dayanik and S. O. Sezer. Sequential testing of simple hypotheses about compound
Poisson processes. Stochastic Processes and their Applications, 116(12):1892 — 1919, 2006.

F. Delbaen and W. Schachermayer. A general version of the fundamental theorem of

asset pricing. Mathematische Annalen, 300(1):463-520, 1994.

J. Detemple. American-Style Derivative: Valuation and Computation. Chapman and

Hall/CRC, Boca Raton, 2006.

R. Douady, A. N. Shiryaev, and M. Yor. On the probability characteristics of downfalls in
a standard brownian motion. Theory of Probability and its Applications, 44:29-38, 2000.

D. Duffie. Credit risk modeling with affine processes. Journal of Banking & Finance,
29(11):2751 — 2802, 2005.

D. Duffie, D. Filipovi¢, and W. Schachermayer. Affine processes and applications in
finance. Annals of Applied Probability, 13(3):984-1053, 2003.

E. B. Dynkin. Markov Processes. Springer, Berlin, 1965.

S. N. Ethier and T. G. Kurtz. Markov processes: characterization and convergence. Wiley,

1986.

A. Friedman. Stochastic Differential Equations and Applications. Volumes I, II. Academic
Press, New York., 1976.



Bibliography 155

A. Friedman. Partial Differential Equations of Parabolic Type. Dover Publications, 2013.

P. V. Gapeev. Solving stochastic differential equations. In Research Report 2002-47 of
Centre for Mathematical Physics and Stochastics. Aarhus, 2002.

P. V. Gapeev. On the efficient pricing of perpetual american options. Submitted, 2014.

P. V. Gapeev and M. Jeanblanc. Pricing and filtering in a two-dimensional dividend
switching model. [International journal of theoretical and applied finance, 13(7):1001—
1017, 2010.

P. V. Gapeev and G. Peskir. The Wiener sequential testing problem with finite horizon.
Stochastics and stochastic reports, 76(1):59-95, 2004.

P. V. Gapeev and G. Peskir. The Wiener disorder problem with finite horizon. Stochastic
processes and their applications, 116(12):1770-1791, 2006.

P. V. Gapeev and A. N. Shiryaev. On the sequential testing problem for some diffusion
processes. Stochastics An International Journal of Probability and Stochastic Processes,

83(4-6):519-535, 2011.

P. V. Gapeev and A. N. Shiryaev. Bayesian quickest detection problems for some diffusion

processes. Adv. in Appl. Probab., 45(1):164-185, 2013.

T. C. Gard. Introduction to stochastic differential equations. In Monographs and textbooks
in pure and applied mathematics 114. Dekker, New York, 1988.

W. Gautschi. The incomplete gamma functions since Tricomi. In Tricomi’s Ideas
and Contemporary Applied Mathematics, Atti dei Convegni Lincei, n. 147, Accademia
Nazionale dei Lincei, pages 203-237, 1998.

S. J. Grossman. An analysis of the implications for stock and futures price volatility of
program trading and dynamic hedging strategies. The Journal of Business, 61(3):275—
298, 1988.

S. J. Grossman and J. Vila. Portfolio insurance in complete markets: A note. The Journal

of Business, 62(4):473-476, 1989.

S. J. Grossman and Z. Zhou. Equilibrium analysis of portfolio insurance. The Journal of

Finance, 51(4):1379-1403, 1996.



Bibliography 156

[58]

[59]

[60]

[61]

P. Hagan, D. Kumar, A. Lesniewski, and D. Woodward. Managing smile risk. Wilmott
Magazine, September:84—108, 2002.

J. M. Harrison and S. R. Pliska. A stochastic calculus model of continuous trading:

Complete markets. Stochastic Processes and their Applications, 15(3):313 — 316, 1983.

J. Hugonnier, S. Malamud, and E. Trubowitz. Endogenous completeness of diffusion

driven equilibrium markets. Econometrica, 80(3):1249-1270, 2012.

N. Ikeda and S. Watanabe. Stochastic Differential Equations and Diffusion Processes.

Elsevier Science, 2014.

I. Iyigunler, M. Caglar, and G. Unal. Exact solvability of stochastic differential equations
driven by finite activity Levy processes. Mathematical and Computational Applications,

17:68-82, 2012.

S. D. Jacka. Optimal stopping and the American put. Mathematical Finance, 1:1-14,
1991.

J. Jacod and A. N. Shiryaev. Limit Theorems for Stochastic Processes. Springer, Berlin,
2003.

J. Kallsen. A didactic note on affine stochastic volatility models. In From Stochastic

Calculus to Mathematical Finance, pages 343-368. Springer Berlin Heidelberg, 2006.

J. Kallsen, J. Muhle-Karbe, and M. Vof3. Pricing options on variance in affine stochastic

volatility models. Mathematical Finance, 21(4):627-641, 2011.

I. Karatzas, P. Lakner, J. P. Lehoczky, and S. E. Shreve. Fquilibrium in a simplified dy-
namic, stochastic economy with heterogeneous agents, pages 245-272. Stochastic Analysis,

Academic Press, Boston, MA, 1991.

. Karatzas, J. P. Lehoczky, and S. E. Shreve. Optimal portfolio and consumption deci-
sions for a “small investor” on a finite horizon. SIAM J. Control Optim., 25(6):1557-1586,
1987.

I. Karatzas, J. P. Lehoczky, and S. E. Shreve. Existence and uniqueness of multi-agent
equilibrium in a stochastic, dynamic consumption/investment model. Mathematics of

Operations Research, 15(1):80-128, 1990.



Bibliography 157

[62]

[63]

[64]

[65]

[66]

I. Karatzas, J. P. Lehoczky, and S. E. Shreve. Equilibrium models with singular asset
prices. Mathematical Finance, 1:11-29, 1991.

[. Karatzas and S. E. Shreve. Brownian Motion and Stochastic Calculus. (Second Edition)

Springer, New York, 1991.
I. Karatzas and S. E. Shreve. Methods of Mathematical Finance. Springer, 1998.

C. Kardaras and E. Platen. On the semimartingale property of discounted asset-price

processes. Stochastic Processes and their Applications, 121(11):2678 — 2691, 2011.

S. Karlin and H. Taylor. A Second Course in Stochastic Processes. Academic Press, New

York, 1981.

S. G. Kou and H. Wang. First passage times of a jump diffusion process. Adv. in Appl.
Probab., 35(2):504-531, 2003.

S. G. Kou and H. Wang. Option pricing under a double exponential jump diffusion model.
Management Science, pages 1178-1192, 2004.

D. Kramkov. Existence of an endogenously complete equilibrium driven by a diffusion.

Finance and Stochastics, 19(1):1-22, 2015.

D. Kramkov and S. Predoiu. Integral representation of martingales motivated by the
problem of endogenous completeness in financial economics. Stochastic Processes and

their Applications, 124(1):81-100, 2014.

D. Kramkov and W. Schachermayer. The asymptotic elasticity of utility functions and
optimal investment in incomplete markets. Ann. Appl. Probab., 9(3):904-950, 1999.

N. V. Krylov. Controlled Diffusion Processes. Springer, New York., 1980.

K. Larsen and G. Zitkovi¢. On the semimartingale property via bounded logarithmic

utility. Annals of Finance, 4(2):255-268, 2008.

J. P. Lehoczky. Formulas for stopped diffusion processes with stopping times based on

the maximum. Annals of Probability, 5(4):601-607, 1977.

R. S. Liptser and A. N. Shiryaev. Statistics of Random Processes I, II. Springer, Berlin,
1977.



Bibliography 158

[76]

[77]

[78]

[83]

[84]

[85]

M. Magdon-Ismail, A. F. Atiya, A. Pratap, and Y. S. Abu-Mostafa. On the maximum
drawdown of a brownian motion. Journal of Applied Probability, 41:147-161, 2004.

H. P. McKean. Appendix: A free boundary problem for the heat equation arising from a

problem of mathematical economics. Industrial Management Review, 6:32-39, 1965.

A. Mijatovic and M. R. Pistorius. On the drawdown of completely asymmetric 1évy

processes. Stochastic Processes and their Applications, 22:3812-3836, 2012.

V. S. Mikhalevich. A bayes test of two hypotheses concerning the mean of a normal

process (in ukrainian). Visnik Kiiv. Univ., 1:101-104, 1958.

R. Myneni. The pricing of the american option. Annals of Applied Probability, 2:1-23,
1992.

T. Negishi. Welfare economics and existence of an equilibrium for a competitive economy.

Metroeconomica, 12(2-3):92-97, 1960.

I. Norros, E. Valkeila, and J. Virtamo. An elementary approach to a Girsanov formula
and other analytical results on fractional Brownian motions. Bernoulli, 5(4):571-587,

1999.

B. Oksendal. Stochastic Differential Equations. An Introduction with Applications.
Springer, Berlin, 1998.

E. S. Page. Continuous inspection schemes. Biometrika, 41:100-115, 1954.

G. Peskir. A change-of-variable formula with local time on curves. Journal of Theoretical

Probability, 18:499-535, 2005.
G. Peskir. The Russian option: Finite horizon. Finance and Stochastics, 9:251-267, 2005.

G. Peskir. A change-of-variable formula with local time on surfaces. Séminaire de Prob-

abilités XL, 1899:70-96, 2007.

G. Peskir and A. N. Shiryaev. Sequential testing problems for Poisson processes. Ann.

Statist., 28(3):837-859, 2000.

G. Peskir and A. N. Shiryaev. Solving the Poisson disorder problem. In Advances in
Finance and Stochastics. Springer, 2002.



Bibliography 159

[90]

[99]

[100]

[101]

[102]

[103]

G. Peskir and A. N. Shiryaev.  Optimal Stopping and Free-Boundary Problems.
Birkhauser, Basel., 2006.

L. S. Pontryagin. Ordinary Differential Equations. Addison-Wesley, 1962.

P. E. Protter. Stochastic Integration and Differential Equations, 2ed. Springer, Berlin,
2005.

D. Revuz and M. Yor. Continuous Martingales and Brownian Motion. Springer, 1999.

F. Riedel and F. Herzberg. Existence of financial equilibria in continuous time with

potentially complete markets. Journal of Mathematical Economics, 49(5):398-404, 2013.

L. C. G. Rogers and D. Williams. Diffusions, Markov Processes and Martingales II. Ito
Calculus. Wiley, New York., 1987.

W. Runggaldier. Jump-diffusion models. In Handbook of Heavy Tailed Distributions in
Finance. (S. T. Rachev, ed.) North Holland Handbooks in Finance, 2001.

P. A. Samuelson. Rational theory of warrant pricing. Industrial Management Review,

6:13-31, 1965.

A. Sepp. Analytical pricing of double-barrier options under a double-exponential jump
diffusion process: Applications of laplace transform. International Journal of Theoretical

and Applied Finance, 7(2):151-175, 2004.
S. O. Sezer. On the Wiener disorder problem. Ann. Appl. Probab., 20(4):1537-1566, 2010.

W. A. Shewhart. Economic control of quality of manufactured product. New York: D.
Van Nostrand Company, 1931.

A. N. Shiryaev. The problem of the most rapid detection of a disturbance in a stationary

process. Soviet Math. Dokl., 2:795-799, 1961.

A. N. Shiryaev. On optimum methods in quickest detection problems. Theory Probab.
Appl., 8:22-46, 1963.

A. N. Shiryaev. Some exact formulas in a disorder problem. Theory Probab. Appl.,
10:348-354, 1965.



Bibliography 160

[104]
105
[106]

107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

A. N. Shiryaev. Two problems of sequential analysis. Cybernetics, 3(2):63-69, 1967.
A. N. Shiryaev. Optimal Stopping Rules. Springer, Berlin., 1978.
A. N. Shiryaev. Essentials of Stochastic Finance. World Scientific, Singapore, 1999.

A. N. Shiryaev. On martingale methods in the boundary crossing problems for Brownian

motion. Sovrem. Probl. Mat., 8:3-78, 2007.

D. W. Stroock and S. R. S. Varadhan. On the support of diffusion processes with applica-
tions to the strong maximum principle. In Proceedings of the Sixth Berkeley Symposium on
Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971),
volume 3, pages 333359, 1972.

D. W. Stroock and S. R. S. Varadhan. Multidimensional Diffusion Processes. Springer
Berlin Heidelberg, 2007.

H. M. Taylor. A stopped brownian motion formula. Annals of Probability, 3:234-246,
1975.

F. G. Tricomi. Sulla funzione gamma incompleta. Ann. Mat. Pura Appl., 31(4):263-279,
1950.

G. E. Uhlenbeck and L. S. Ornstein. On the theory of the Brownian motion. Physical
Review, 36:823-841, 1930.

P. van Moerbeke. On optimal stopping and free-boundary problems. Arch. Rational
Mech. Anal., 60:101-148, 1976.

A. Yu. Veretennikov. On the strong solutions of stochastic differential equations. Theory

of Probability and its Applications, 24:354-366, 1980.

A. Wald and J. Wolfowitz. Optimum character of the sequential probability ratio test.
Annals of Mathematical Statistics, 19:326-329, 1948.

A. Wald and J. Wolfowitz. Bayes solutions of sequential decision problems. Annals of

Mathematical Statistics, 21:82-99, 1950.

L. Walras. Eléments d’économie politique pure. Fourth edition, L. Corbaz, Lausanne,

1874.



Bibliography 161

[118] V.F. Zaitsev and A.D. Polyanin. Handbook of Exact Solutions for Ordinary Differential
Equations. Taylor & Francis, 2002.



