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List of Symbols

The following notation and conventions are used through this thesis. The symbol "≡" stands for

"by definition". All limits are taken for either n→∞ or T →∞ , unless specified otherwise.

R ≡ the field of real numbers.

Rs ≡ the Euclidean p-space.

Π ∈ [−π, π).

Z ≡ the ring of integers.

a.s ≡ almost sure.

a.e ≡ almost everywhere.

|a| ≡ absolute value of a if referred to a number.

det A ≡ determinant of a matrix A.

‖A‖ ≡ euclidean norm.

‖g‖∞ ≡ the supremum norm over the domain of a function g.

diag (a, b, c) ≡ diagonal matrix with elements a, b, c.

→p≡ convergence in probability.

→d≡ convergence in distribution.

→a.s≡ convergence almost surely.

(n, T →∞)seq ≡ sequential limit of T first, followed by n.

CLT ≡ central limit theorem.

FCLT ≡ functional central limit theorem.

LLN ≡ law of large numbers.

Cr inq ≡ the c-r inequality.

1 (A) ≡ indicator of set A.

It ≡ identity matrix of dimension n× n.
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iid ≡ independent identically distributed.

ind s ≡ independent random sequence.

l.h.s ≡ left hand side.

r.h.s ≡ right hand side.

Op (1) ≡ random sequence bounded in probability.

op (1) ≡ random sequence converging to zero in probability.

sgn ≡ sign function.

[x] ≡ largest integer not greater than x.

wrt ≡ with respect to.

rv ≡ random variable.

BM (Ω) ≡ Brownian motion with covariance matrix Ω.

BM (I) ≡ standardized Brownian motion.

Kabcd ≡ fourth order cumulant of random variables a, b, c, d.

> ≡ positive definiteness if applied to a matrix.

≥ ≡ positive semi definiteness if applied to matrix.

i ≡ (−1)1/2
.

K ≡ finite constant not always the same.∫
WdW ≡

∫ 1

0
W (r)dW (r).
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Abstract

The aim of this thesis is to offer some insights into two topics of some interest for time-series

econometric research.

The first chapter derives the rates of convergence and the asymptotic normality of the pooled

OLS estimators for linear regression panel models with mixed stationary and non-stationary regres-

sors. This work is prompted by the consideration that many economic models of interest present a

mixture of I(1) and I(0) regressors, for example models for analysis of demand system or for as-

sessment of the relationship between growth and inequality. We present results for a model where

the regressors and the regressand are cointegrated. We find that the OLS estimator is asymptot-

ically normal with convergence rates T
√
n and

√
nT for respectively the non-stationary and the

stationary regressors. Phillips and Moon (1990) show that in a cointegrated regression model with

non-stationary regressors, the OLS estimator converges at a rate of T
√
n. We find that the pres-

ence of one stationary regressor in the model does not increases the rate of convergence. All the

results are derived for sequential limits, with T going to infinity followed by n, and under quite

restrictive regularity conditions.

Chapters 3-5 focus on parametric multivariate exponential volatility models. It has long been

recognized that the volatility of stock returns responds differently to good news and bad news. In

particular, while negative shocks tend to increase future volatility, positive ones of the same size

will increase it by less or even decrease it. This was in fact one of the chief motivations that led

Nelson (1991) to introduce the univariate EGARCH model. More recently empirical studies have

found that the asymmetry is a robust feature of multivariate stock returns series as well, and sev-

eral multivariate volatility models have been developed to capture it. Another important property

that characterizes the dynamic evolution of volatilities is that squared returns have significant au-
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tocorrelations that decay to zero at a slow rate, consistent with the notion of long memory, where

the autocovariances are not absolutely summable. Univariate long-memory volatility models have

received a great deal of attention. However, the generalization to a multivariate long-memory

volatility model has not been attempted in the literature. Chapter 3 offers a detailed literature re-

view on multivariate volatility models. Chapter 4 and 5 introduce a new multivariate exponential

volatility (MEV) model which captures long-range dependence in the volatilities, while retain-

ing the martingale difference assumption and short-memory dependence in mean. Moreover the

model captures cross-assets spillover effects, leverage and asymmetry. The strong consistency and

the asymptotic normality of the Whittle estimator of the parameters in the Multivariate Exponen-

tial Volatility model is established under a variety of parameterization. The results cover both the

case of exponentially and hyperbolically decaying coefficients, allowing for different degrees of

persistence of shocks to the conditional variances. It is shown that the rate of convergence and the

asymptotic normality of the Whittle estimates do not depend on the degree of persistence implied

by the parameterization as the Whittle function automatically compensates for the possible lack of

square integrability of the model spectral density.
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Chapter 1 Introduction

This thesis is the outcome of my Ph.D. studies at the London School of Economics and it re-

flects the evolution of my research interests during the past few years. The second chapter was

written during my first year as a research student and it focuses on large panel data models. The

research question was prompted by the lack of an existing asymptotic theory for the pooled OLS

estimator in large panel regression models with stationary and non-stationary regressors. At the

time I started my research, only one paper in the literature addressed the asymptotics of the esti-

mator in large, possibly non-stationary, panels. The paper, by Baltagi, Kao and Liu (Econometrics

Journal, 2008), considers a simple one regressor error-correction model where the error and the re-

gressor are both generated by possibly non-stationary ARMA processes. These results left room

to explore models where the mixture of stationarity and non-stationarity arises from a combination

of stationary and non-stationary regressors. In applied research such setting appears quite rele-

vant. Many panel data models, for example for the assessment of the relationship between growth

and inequality, have a mixture of integrated and stationary regressors. Chapter two derives the

rates of convergence and the asymptotic normality of the pooled Ordinary Least Square estimator

in a simple scalar model with mixed regressors. The error term is assumed stationary, indicating

the existence of a cointegrating relation between the regressors and the regressand. The results

are obtained under quite strong conditions, some of which are too restrictive. The estimators turn

out to be asymptotically normal with convergence rates T
√
n and

√
nT for respectively the non-

stationary and the stationary regressors. This is not unexpected. As already shown by Phillips

and Moon (1999) in a linear panel regression model with non-stationary regressors under a vari-

ety of cointegrating relationship, the OLS estimator is T
√
n consistent and asymptotically normal.

We find that the presence of an additional stationary regressor does not alter the convergence rates
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of the non-stationary regressors. The results provided are for sequential limits, with T going to

infinity followed by n.

During the second year of my studies I developed a strong interest in modelling multivariate

volatilities. The importance of modelling comovements of financial returns is well established in

the literature. The knowledge of correlation structures is vital in many financial applications, in-

cluding asset pricing, optimal portfolio allocation and risk management. Moreover, as the volatili-

ties of different assets and markets move together, modelling volatility in a multivariate framework

can lead to greater statistical efficiency. Starting from the Vector Autoregression model of Boller-

slev, Engle and Wooldridge (1988), several multivariate conditional volatility models have been

proposed in the literature and used extensively in applied work. Over the last few years, the lit-

erature on multivariate stochastic volatility models has also developed significantly, thanks to the

availability of many new numerical estimation methods. Recently empirical studies found robust

evidences of asymmetric response of volatilities to positive and negative returns in multivariate

asset models. A number of conditional and stochastic volatility models have been proposed to

capture this inherent characteristic of volatility in a multivariate context, such as the QARCH la-

tent factor model of Sentana (1995), the MSV-Leverage model of Asai and McAleer (2005), the

asymmetric dynamic covariance (ADC) model of Kroner and Ng (1998), the Matrix Exponential

GARCH model of Kawakatsu (2006), and others.

Another important property that characterizes the dynamic evolution of volatilities is that power

transformations of absolute returns have significant autocorrelations that decay to zero at a slow

rate. Many authors have argued that the slow decay of the autocorrelations of squared returns

is consistent with the notion of long-memory, where the autocovariances are not absolutely sum-

mable. Univariate long-memory volatility models, such as the FIEGARCH model of Bollerslev

and Mikklesen (1996), the nonlinear moving average model of Robinson and Zaffaroni (1996,
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1997) and the long-memory stochastic volatility (LMSV) model of Ruiz and Veiga (2006), have

received a great deal of attention. However, to my knowledge, no generalization to a multivariate

long-memory volatility model has been attempted in the literature. The aim of this thesis is to fill

in this gap. Chapter 4 introduces a new multivariate Exponential Volatility (MEV) model, which

captures long-range dependence in certain nonlinear functions of the data, such as squares, while

retaining the martingale difference assumption and short-memory dependence in the level. The

multivariate Exponential Volatility model is an extension of the univariate exponential volatility

model of Zaffaroni (2009). It nests “one-shock” conditional variance specifications and “two-

shocks” stochastic volatility specifications. It captures cross-assets spillover effects, leverage and

asymmetry. The choice of an exponential specification offers several advantages, the most relevant

of which is that no further restriction is required to grant positive definiteness of the covariance

matrix. Estimation of the MEV model by maximum likelihood methods is possible, however

we advocate the use of the frequency domain Gaussian estimator in the sense of Whittle (1962).

MLE estimation of nonlinear exponential models is computationally costly, and possibly unstable.

Moreover its asymptotic properties depend on the invertibility of the model, which is not easy to

establish in exponential models (see Straumann and Mikosh, 2006). These difficulties do not apply

to the Whittle estimator, partly due to its frequency domain specification. We follow Harvey et al.

(1994) and estimate a logarithmic transformation of the squared returns of the observations. The

estimated model turns out to be a vector signal plus noise model, where the signal evolves accord-

ing to an infinite order moving average process and the noise is an i.i.d shock. The dependence

structure of the MEV model implies that the signal and the noise might be correlated. Statistical

literature on Whittle estimation of signal plus noise models requires at least incoherent signal and

noise. In fact all the available results deal with linearly regular signal plus noise processes with

parameters that can be estimated directly on the factored representation of the process spectral den-
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sity (see Dunsmuir, 1979, and Hosoya and Taniguchi, 1982). Such results do not readily apply to

correlated signal plus noise processes, even when the processes are linearly regular. In chapter 4,

we establish the strong consistency and asymptotic normality of the Whittle estimator when the

signal coefficients have an exponential decay rate, following Robinson (1978). In chapter 5, we

establish the properties of the estimator when the signal coefficients have an hyperbolic decay rate

that imparts long-range dependence in the squares of the MEV model, relying the on the central

limit theorem for the integrated weighted periodogram of Giraitis and Taqqu (1999). As expected,

the asymptotic properties of the estimator do not depend on the degree of persistence of shocks

to the conditional variances, thanks to a convenient feature of the Whittle function that allows to

compensate for the possible lack of square integrability of the spectral density. The results are es-

tablished under the conditions of strict stationarity, ergodicity and finite fourth moments and either

absolute summability of the autocovariance function or standard smoothness assumptions for the

spectral density and its higher order derivatives.

The remainder of this thesis is organized as follows. Chapter 2 presents asymptotics results on

the pooled OLS estimator in panel models with mixed stationary and non-stationary regressors.

Chapter 3 offers a detailed literature review of multivariate volatility models, with some discussion

on the most relevant multivariate exponential model, i.e. the matrix exponential GARCH model of

Kawakatsu. Chapter 4 introduces the multivariate Exponential Volatility model, discusses its esti-

mation and establishes the asymptotic properties of the estimator under fairly general conditions

suitable for both “one-shock” and “two-shocks” specification of the model. Chapter 5 extends

these results to the long memory MEV model.
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Chapter 2 Large-panel models with stationary and non-stationary regressors

2.1 Introduction

The advantages of panel data over cross section and time series data have long been established

in econometric research. Panel data sets usually give the researcher a larger number of data points

than conventional cross section and time series data, thus increasing the degrees of freedom and

reducing multicollinearity among explanatory variables. This results in more reliable parameter es-

timates and most importantly enables the researcher to specify and test more sophisticated models

with less restrictive assumptions.

A panel data set contains observations on a given number of individuals (n) across time (T ).

As such, it is a double indexed process and any treatment of the asymptotics must take this into

account. The initial focus of research has been on identifying and estimating effects from panel

models with a large number of cross section and few time series observations. The asymptotics

for the standard panel estimators in this setting are well established since the work of Hsiao (1986)

and Chamberlain (1984). However, starting from the Nineties, empirical work has used panel data

sets with a large number of time series and cross section observations. Examples of this literature

range from testing growth convergence theories in macroeconomics to estimating long run relations

between international financial series. These works have been enhanced and facilitated by the

availability of a number of important data sets covering different individuals, regions and countries

over a relatively long period of time, such as the Penn World Table. In a context of few time-

series observations, the non-stationarity of the series cannot be addressed properly but with larger

data sets it must be explored properly. When the time-series component of the model is assumed

non-stationary, traditional limit theory is no longer valid. Phillips and Moon (1999) investigated

regressions with panel data where the time series component is an integrated process of order
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one. Under a variety of cointegrating relations between the regressors and the regressand, they

derive the consistency and asymptotic normality of the pooled OLS estimator. Their framework

does not allow for the presence of stationary and non-stationary regressors in the same model.

In practise however this framework is very relevant since many empirical models have a mixture

of stationary and non-stationary regressors. For example demand systems models, where budget

shares are regressed on relative prices and real income for different countries over time. Typically

some prices are stationary and some other are trending. Money demand equations offer a similar

mixture of stationary and non-stationary variables, with real income trending over time for most

countries but stationary interest rates. A comprehensive limit theory for the pooled OLS estimator

in this framework has not been established in the literature. Baltagi Kao and Liu (2008) derive the

asymptotic properties of the most common panel estimators in a simple error-correction model,

where the regressor and the remainder disturbance term are possibly non-stationary. Their results

allow for a mixture of stationary and non-stationary terms in the same model, however they do not

allow for the simultaneous presence of stationary and a non-stationary regressors. In this chapter

we discuss the asymptotic properties of the OLS estimator in a linear panel regression model with

mixed stationary and non-stationary regressors, as T and n increase to infinity sequentially. The

chapter is organized as follows. Section 2.2 presents some literature review. Section 2.3 introduces

the model and the assumptions, with discussion. Section 2.4 discusses the main results, namely the

asymptotic normality and the convergence rates of the estimator in a cointegrated model. All proofs

are contained in appendix A. Notation is fairly standard. The symbol "→a.s" signifies convergence

almost surely, "⇒" denotes weak convergence. The inequality ” > ” signifies positive definiteness

when applied to matrices, ||Ω|| is the Euclidean norm of the matrix Ω and |K| is the absolute

value of the scalar K, the symbol "[.]" denotes the largest integer part. ”(n, T → ∞)seq” denotes

sequential limits where T goes to infinity followed by n. Brownian motions on [0, 1] are usually
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written as BM and stochastic integrals
∫ 1

0
W (r)dW (r) are denoted as

∫
WdW.

2.2 Literature review

Since the beginning of the Nineties there has been much research on non-stationary panel data.

Quah (1994), Levin and Lin (1993) considered unit root time-series regressions with non-stationary

panel data and proposed a test statistic for unit roots. Pedroni (1995) studied some properties of

cointegration statistics in pooled time-series panel models, Baltagi and Kramer (1997) and Kao

and Emerson (2004) investigated the case of a panel time trend model. Pesaran and Smith (1995)

examined the impact of non-stationary variables on cross-section regression estimates with a large

number of groups and of time periods. Phillips and Moon (1999) generalized the results of Pesaran

and Smith providing a fundamental framework for asymptotics of the OLS estimator in large non-

stationary panels. Phillips and Moon investigate the behavior of the estimator in non-stationary

panel models in the cases of no time series cointegration, heterogeneous cointegration, homoge-

neous cointegration and near-homogeneous cointegration. Extending Phillips (1986), they define

the different degrees of cointegration on the base of the rank condition of the conditional long-run

variance matrix of the regressors and the regressand. The case of no cointegrating relation is cov-

ered by the assumption of almost sure positive definiteness of the long-run conditional variance

matrix, whereas a cointegrating relation of various degree exists when such matrix has deficient

rank.

In absence of cointegration, Phillips and Moon find that, if panel observations with large cross-

section and time-series observations are available, the noise can be characterized as independent

across individuals. By pooling the cross-section and the time-series observations, the OLS esti-

mator attenuates the strong effect of the residuals in the regression while retaining the strength of

the signal and provides
√
n-consistent estimates of some long-run regression coefficient. This im-

plies that in contrast to non-stationary time-series regression, large-panel regressions can identify
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a long-run average relation between the regressors and the regressand even in absence of coin-

tegration. Large-panel non-stationary regressions are in fact no longer spurious. The degree of

cointegration across individuals depends on the degree of randomness of the cointegrating vec-

tor in the model. Phillips and Moon show that the assumption of deficient rank of the long-run

variance matrix implies the existence of a panel cointegration model,

Yi,t = βiXi,t + Ei,t, (2.1)

with probability one, where the cointegrating coefficient βi is random. If no further assumption

is imposed, βi differs randomly across individuals and the cointegrating relation between the re-

gressors and the regressand is heterogeneous. When βi is constant across different individuals,

the same long-run relation between Yi,t and Xi,t applies for all i and the cointegrating relation is

homogeneous. If βi has form

βi = β +
θi

T
√
n
, (2.2)

where the θi are a sequence of i.i.d vectors with mean θ, the model allows for a near-homogeneous

cointegrating relation. For all three cointegrating relations, they find that the OLS estimator is

n
√
T -consistent and asymptotically normal. Their results are based on a panel Beveridge Nelson

decomposition that generalizes Phillips and Solo (1992), and a panel functional central limit theo-

rem for random-coefficients non-stationary models that provide a fundamental framework for any

development of asymptotics in large panel models.

The development of asymptotic theory for panel data with large n and T requires assumptions

on the treatment of the two indexes. Different approaches are possible. One approach is to fix one

index and allow the other to pass to infinity giving an intermediate limit. By letting the other index

to pass infinity subsequently a sequential limit is obtained. A second approach, known as diagonal

path limit theory, lets the two indexes pass to infinity along a specific diagonal path determined

by a functional relation of the type T = T (n). A third approach allows both indexes to infinity
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simultaneously without any restriction. Joint limits require stronger conditions than sequential

limits but, on the other hand, sequential limits can give misleading results. Phillips and Moon

discuss a set of sufficient conditions for sequential convergence to imply joint convergence and

derive the asymptotic properties of the OLS estimator for sequential and joint limits, imposing the

additional rate condition of n/T → 0 in the second case.

Baltagi, Kao and Liu (2008) study the asymptotic properties of the most common panel estima-

tors in a simple error component disturbance model, with random effect assumption,

yit = α + βxit + uit, (2.3)

uit = µi + νit, (2.4)

E(µi|xit) = 0, (2.5)

with i = 1, ..., n and t = 1, ..., T. The regressors and the remainder term are autoregressive and

possibly non-stationary,

xit = λxit−1 + εit, |λ| ≤ 1, (2.6)

νit = ρνit−1 + εit, |ρ| ≤ 1, (2.7)

and the disturbances wi0 ≡ (νi0, εi0, εi0) are independent across individuals and satisfy a multi-

variate panel functional central limit theorem,

1√
T

[Tr]∑
t=1

wi,t =⇒ BMi (Ωi) , as T →∞ for each i,

where BMi (Ωi) denotes a Brownian motion with covariance matrix Ωi. Baltagi, Kao and Liu find

that the properties of the OLS estimator depend crucially on the non-stationarity of the regressor

and the remainder disturbance. When the error component of the disturbance term and the regres-

sor are both stationary (|ρ| < 1 and |λ| < 1) the estimator is
√
nT consistent and asymptotically

normal. If the disturbance is I(1) and the regressor is stationary (ρ = 1 and |λ| < 1) the estimator

is
√
n consistent and asymptotically normal. When the disturbance is stationary and the regres-

sor is I(1) (|ρ| < 1 and λ = 1) the model is cointegrated and the estimator is
√
nT consistent and
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asymptotically normal.

2.3 The model

We consider the following scalar panel regression model:

yit = α + βxit + γzit + ηit, (2.8)

for t = 1, ..., T and i = 1, ..., n. The regressors and the regression error have common initialization

at t = 0 and are generated recursively by

xit = xit−1 + εit, (2.9)

zit = ρzi,t−1 + uit with | ρ |< 1, (2.10)

ηit = ληit−1 + vit with | λ |< 1. (2.11)

The regression errors in (2.11) follow a stationary process (|λ| < 1) implying that the model is

cointegrated. We assume that the vector of innovations

w′it ≡ (εit, uit, vit)
′

is generated by the non-random coefficient linear process

wit =
∞∑
j=0

Ψi,jξi,t−j with Ψi,0 ≡ I,
∞∑
j=0

||Ψi,j||2 <∞, (2.12)

where I denotes the identity matrix, and that it satisfies the following:

Assumption 1 For each i, ξi,t is an i.i.d zero mean vector with finite variance-covariance matrix

Ξ and finite fourth order cumulants, Kξ
abcd (t1,t2, t3), such that

∞∑
t1,t2,t3=1

∣∣∣Kξ
abcd (t1,t2, t3)

∣∣∣ <∞.
Assumption 2 For each i,

∞∑
j=0

ja||Ψi,j||a <∞, for some integer a > 1,

where "‖.‖" denotes the Euclidian norm of the coefficient matrix Ψi,j .

(2.12) implies that the innovation process wi,t admits for every fixed i the panel Beveridge
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Nelson decomposition (see Phillips and Moon 1999, Lemma 2) :

wi,t = Ψi (1) ξi,t + w̃i,t−1 − w̃i,t, (2.13)

where Ψi (1) ≡
∞∑
j=0

Ψi,j and

w̃i,t =
∞∑
j=0

Ψ̃i,jξi,t−j, Ψ̃i,j =
∞∑

t=j+1

Ψi,t.

Assumption 1 and Assumption 2 ensure that the panel data innovations wit display a degree of

homogeneity across time strong enough for the partial sum process T−1/2
∑[Tr]

t=1 wi,t to satisfy a

Multivariate Invariance Principle for each i. In what follows we directly assume that the partial

sum process constructed from the innovation sequence, denoted by S[Tr], satisfies the following

multivariate large T result

1√
T

[Tr]∑
t=1

wi,t =⇒ BMi (Ωi) T →∞ for each i, (2.14)

where r ∈ [0, 1], the symbol "[.]" denotes the largest integer part, the symbol "⇒" denotes weak

convergence, and BMi (Ωi) is a (3× 1) vector Brownian motion

BMi =

 BMεi

BMui

BMvi

 , (2.15)

with covariance matrix

Ωi = Ψi (1) ΞΨi (1)′ .

The matrix Ωi is known as the "long-run covariance matrix" of the innovations wi,t, and it is defined

as

Ωi ≡ lim
T→∞

E (STS′T ) =

 ω2
εi

ωεiui ωεivi
ωεiui ω2

ui
ωuivi

ωεivi ωuivi ω2
uvi

 .
It can be decomposed as

Ωi = Σi + Γi + Γ′i,

where Σi = limT→∞ T
−1/2

∑T
t=1E

(
wi,0w

′
i,0

)
and Γi = limT→∞

∑T
t=2

∑t−1
j=1 E

(
wi,jw

′
i,t

)
. When

11



the innovations are stationary, as implied by Assumption 1, Σi and Γi reduce to

Σi = E
(
wi,0w

′
i,0

)
, (2.16)

Γi =

∞∑
j=1

E
(
wi,0w

′
i,j

)
.

In order to rule out endogeneity, we make the following assumption,

Assumption 3 For every i, the sequences {εi,t}, {ui,t}, {vi,t} are statistically independent.

Assumption 3 implies that the innovations have zero covariances in the short and in the long

run, thus for every i,

Σi =

 σ2
εi

0 0
0 σ2

ui
0

0 0 σ2
vi

 and Γi =

 γ2
εi

0 0
0 γ2

ui
0

0 0 γ2
vi

 .

To simplify the notation we assume constant variances across i, that is to say we set for all i,

Σi = Σ and Γi = Γ.

The long run variance matrix of the innovations is for every i

Ω =

 ω2
ε 0 0

0 ω2
u 0

0 0 ω2
v

 .

Assumption 3 implies that the vector Brownian motion in (2.15) has independent components,

BMεi (ω2
ε), BMui (ω2

u) and BMvi (ω2
v) and can be rewritten as

BMi (Ω) = Ω−1/2

 Wεi

Wui

Wvi

 ,
where  Wεi

Wui

Wvi


is a standardized vector Brownian motion.

We make the further assumption of cross sectional independence in our model.

Assumption 4 For each i and j such that i 6= j, ξi,t and ξj,t are independent.

We rely on Assumption 4 to apply the strong law of large numbers for independent sequences to

intermediate limits of the statistics of interest, suitably averaged over i. This condition is however

very restrictive and it is an important limitation of our results.
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Invariance principles such as (2.14) have been established for time series processes satisfying

assumptions 1-2 by Phillips and Solow (1992) and for panel data by Phillips and Moon (1999) as

an alternative to asymptotics for time series satisfying certain mixing conditions. In addition to the

multivariate invariance principle (2.14), our asymptotic results rely upon the weak convergence

of certain sample covariance matrix to matrix stochastic integrals of the form
∫
WidVi which has

been shown by Phillips (1997).

We now introduce some notation. In what follows y denotes the nT × 1 vector that contains all

the observations on the dependent variable across individuals and time,

y′ ≡ (y′1, y
′
2, y
′
3, ..., y

′
n) ,

where the vector y′i contains all the observations for individual i from t = 1, ..., T

y′i = (yi1, yi2, ..., yiT ) .

We denote by W the nT × 3 matrix that contains all the panel observations on the regressors,

W ≡


W1

W2

W3

.

.
Wn

 ,
where Wi is the T × 3 matrix that contains observations on individual i on the regressors for

t = 1, ..., T ,

Wi =


1 xi1 zi1
1 xi2 zi2
1 xi3 zi3
. . .
. . .
1 xiT ziT

 .

Finally we denote by η the nT × 1 vector that contains the disturbances for each individual across

time

η = (η′1, η
′
2, η
′
3, ..., η

′
n) ,

where η′i = (ηi1, ηi2, ..., ηiT ). Model (2.8)-(2.11) is written in conventional matrix form as y = Wϑ+ η.

The statistical problem is the estimation of the (3× 1) vector of parameters ϑ′0 = (α0, β0, γ0)′ on

13



the base of panel observations {xit, zit, yit} with i = 1, ..., n and t = 1, ..., T. The pooled OLS

estimator of ϑ is defined as

ϑ̂ ≡ (W′W)
−1

W′y

= ϑ0+ (W′W)
−1

W′η, (2.17)

where

(W′W)
−1

=



nT

n∑
i=1

T∑
t=1

xit

n∑
i=1

T∑
t=1

zit

n∑
i=1

T∑
t=1

xit

n∑
i=1

T∑
t=1

x2
it

n∑
i=1

T∑
t=1

zitxit

n∑
i=1

T∑
t=1

zit

n∑
i=1

T∑
t=1

xitzit

n∑
i=1

T∑
t=1

z2
it



−1

, (2.18)

and

W′η =



n∑
i=1

T∑
t=1

ηit

n∑
i=1

T∑
t=1

xitηit

n∑
i=1

T∑
t=1

zitηit


. (2.19)

The following section discusses our main results, namely the asymptotic normality and rates of

convergence of the pooled OLS estimator of ϑ in a cointegrated model. All the results are for

sequential limits. We find the time series limit behavior of the double index statistics of interest,

say Yi,T , either in probability or in distribution and then, by the independence across i for all T, we

establish the limit behavior of its cross sectional average. Assumptions 1-4 are not strong enough

to ensure that our results readily extends to joint convergence.

2.4 Main results

The following theorem establishes the asymptotic normality of the pooled OLS estimator of ϑ

in model (2.8)-(2.11) .

Theorem 1. Under assumptions 1-4, as (n, T →∞)seq

D1/2
(
ϑ̂− ϑ0

)
→d N

(
0,ΦVΦ

′
)
,
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where

D1/2 = diag
(√

nT, T
√
n,
√
nT
)
,

V is a positive definite matrix and

Φ ≡ diag

(
1,

ω2
ε

2
,
ω2
u

2

)
.

The proof of Theorem 1 follows from a simple application of Cramèrs’s convergence Theorem.

Writing (2.17) as

D1/2
(
ϑ̂− ϑ0

)
=
(
D−1/2W′WD−1/2

)−1

D−1/2W′η,

the result follows once we establish the convergence in probability of D−1/2W′WD−1/2 to a

positive definite matrix and the convergence in distribution of the vector D−1/2W′η to a normal

random variable with finite variance. Lemma 1 derives the pointwise convergence in probability

of D−1/2W′WD−1/2.

Lemma 1 Under assumptions 1-4, as (n, T →∞)seq the matrix

D−1/2W′WD−1/2 =



1 1
nT 3/2

n∑
i=1

T∑
t=1

xit
1
nT

n∑
i=1

T∑
t=1

zit

1

nT3/2

n∑
i=1

T∑
t=1

xit
1

T 2n

n∑
i=1

T∑
t=1

x2
it

1
nT 3/2

n∑
i=1

T∑
t=1

zitxit

1
nT

n∑
i=1

T∑
t=1

zit
1

nT 3/2

n∑
i=1

T∑
t=1

xitzit
1
nT

n∑
i=1

T∑
t=1

z2
it


converges in probability to Φ.

The proof of Lemma 1 relies on sequential limit theory in an essential way. Following Phillips

and Moon the first intermediate limit is found by standard functional central limit theorems for

stationary and non-stationary sequences (see Park and Phillips, 1998). Then the uniform square

integrability of this intermediate limit is verified to justify the use of a strong law of large numbers

as n → ∞. The first intermediate limit follows by well-established asymptotic results for lin-

ear processes provided by Phillips and Durlauf (1986) and Phillips and Solo (1992). When these

convergence result are not readily available we exploit the martingale difference sequence approx-
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imation of the innovation sequence implied by the Beveridge Nelson decomposition to obtain an

intermediate limit as shown in Phillips and Moon (1999).

Lemma 2 derives the asymptotic normality of any linear combination of the vector D−1/2W′η.

Lemma 2 Under assumptions1-4 as (n, T →∞)seq

D−1/2W′η →dN (0,V) ,

where

D−1/2W′η =



1√
nT

n∑
i=1

t∑
t=1

ηit

1
T
√
n

n∑
i=1

t∑
t=1

xitηit

1√
nT

n∑
i=1

t∑
t=1

zitηit


. (2.20)

The proof of Lemma 2 verifies that uniformly in T the linear combinations of the vector (2.20)

satisfy a Liapunov condition. This is achieved via the martingale difference approximation of the

innovation sequences which allows to make repeated use of Burkholder’s inequality (see Appendix

A).

2.5 Conclusion

The main result of this chapter (Theorem 1) is coherent with the results of Phillips and Moon

(1999), who find that in a homogeneous cointegrated model with I(1) regressors, the rate of con-

vergence of the estimators is T
√
n. This is not surprising since in presence of a cointegrating

relation adding one more stationary regressor does not modify crucially any derivation. The coeffi-

cients of the stationary regressors converge at rate
√
nT , which is the standard convergence rate in

large stationary panels. The presence of one non-stationary regressor does not slow down the con-

vergence rate of the stationary regressors since the model is cointegrated. The stronger limitation

of this result is the assumption of cross-section independence, which is indeed quite restrictive. In

fact it rules out all instances of global shocks or interdependencies among the variables, which are

a common feature of many economic models. Theorem 1 can be extended in many directions. As-
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suming higher order moment conditions on the ξit and convergence of the ratio
√
n/T to zero, we

could derive joint asymptotics. Since the ability of identifying individual heterogeneity is one of

the most important advantages in the use of panel data, the introduction of an individual effect in

model (2.8)-(2.11) seems highly desirable. It would be of particular interest to work out the as-

ymptotics of the estimator under fixed effect assumptions as most economic models imply some

correlation between the individual effect and one or more controls. A further step could be to in-

clude I(2) regressors in the model. The simultaneous presence of I(0), I(1), I(2) regressors is quite

common in empirical literature, for example in growth models that study the effect of inequality

on growth rates employing the Gini’s coefficient as a measure of inequality. In such models it is

frequently found that the Gini’s coefficient is I(2), whereas income or purchasing power parity are

first order stationary and other explanatory variables such as prices or interest rates are station-

ary. Park and Phillips (1988) developed a multivariate regression theory for time-series integrated

processes accommodating integrated processes of different orders, however their results have not

been extended to large panel models.
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2.6 Appendix A: Technical lemmas

Proof of Lemma 1 The convergence in probability of D−1/2W′WD−1/2 is derived element by

element. Consider the term

1

nT 3/2

n∑
i=1

T∑
t=1

xit =
1

n

n∑
i=1

1

T 3/2

T∑
t=1

xit ≡
1

n

n∑
i=1

Y
(1)
i,T , (2.21)

for every i. Assumptions 1-4 imply that

Y
(1)
i,T ⇒ ωε

∫ 1

0

Wεi(r)dr T →∞,

by the Functional Central Limit Theorem (see Park and Phillips, 1988, Lemma 2.1 (a)). By the

Continuous Mapping Theorem(
Y

(1)
i,T

)2

⇒
(
ωε

∫ 1

0

Wεi(r)dr

)2

as T →∞ .

Standard calculations yield

E
(
Y

(1)
i,T

)2

→ E

(
ωε

∫ 1

0

Wεi(r)dr

)2

,

and we may conclude that the sequence Y
(1)
i,T is uniformly square integrable in T . Then by inde-

pendence across i we can apply a strong law of large numbers

1

n

n∑
i=1

Y
(1)
i,T →a.s ωεE

(∫ 1

0

Wεi(r)dr

)
= 0, n→∞.

Consider the term

1

nT

n∑
i=1

T∑
t=1

zit =
1

n

n∑
i=1

1

T

T∑
t=1

zit ≡
1

n

n∑
i=1

Y
(2)
i,T . (2.22)

for every i. Recall that by definition

zit = ρzi,t−1 + uit with | ρ |< 1, (2.23)

where

uit =
∞∑
s=0

ψisξit−s

∞∑
s=0

ψ2
is <∞ and ψi0 = 1,

with ξit independent and identically distributed across i and t. Moreover by Assumptions 1 and 2,

uit admits the following panel Beveridge-Nelson decomposition:

uit = ψi (1) ξit + ξ̃it−1 − ξ̃it, (2.24)
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where

ψi (1) ≡
∞∑
j=0

ψij and ξ̃it ≡
∞∑
s=0

ψ̃isξit−s with ψ̃is =
∞∑

t=s+1

ψit

(see Phillips and Solo, 1992, Lemma 2). Then

1

T

T∑
t=1

uit = ψi (1)
1

T

T∑
t=1

ξit +
1

T
ξ̃i0 −

1

T
ξ̃iT . (2.25)

By recursive substitution (2.23) can be expressed as

zit = ρtzi0 +
t∑

s=1

ρ|t−s|uis,

then substituting (2.25) we express it as

zit = ρtzi0 +

t∑
s=1

ρ|t−s|ψi (1) ξis +
t∑

s=1

ρ|t−s|ξ̃is−1 −
t∑

s=1

ρ|t−s|ξ̃is

= ρtzi0 + ψi (1)
t∑

s=1

ρ|t−s|ξis + ρ|t−1|ξ̃i0 − ξ̃it.

Therefore

1

T

T∑
t=1

zit =
1

T

T∑
t=1

ψi (1)

(
t∑

s=1

ρ|t−s|ξis

)
+

1

T

T∑
t=1

ρ|t−1|ξ̃i0 −
1

T

T∑
t=1

ξ̃it +
1

T

T∑
t=1

ρtzi0.

Following Phillips and Moon, Lemma 13, page 1100, let us denote

Qi,T ≡
1

T

T∑
t=1

ψi (1)

(
t∑

s=1

ρ|t−s|ξis

)
, (2.26)

and

Ri,T ≡
1

T

T∑
t=1

ρ|t−1|ξ̃i0 −
1

T

T∑
t=1

ξ̃it +
1

T

T∑
t=1

ρtzi0. (2.27)

By Lemma 13 of Phillips and Moon (1999), (2.27) converges almost surely to zero as (n, T →

∞)seq (see page 1101, Phillips and Moon, 1999), implying that the sequential limit of (2.22) is

found by establishing the sequential limit of (2.26). Consider that for fixed i

Qi,T →a.s Qi = 0, as T →∞,

then by the strong law of large numbers for iid sequences

1

n

n∑
i=1

Qi →a.s 0, as n→∞,
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which implies that

1

n

n∑
i=1

Y
(2)
i,T → 0, as (n, T →∞)seq.

Consider the term

1

T 2n

n∑
i=1

T∑
t=1

x2
it =

1

n

n∑
i=1

1

T 2

T∑
t=1

x2
it ≡

1

n

n∑
i=1

Y
(3)
i,T . (2.28)

For every i, as T →∞

Y
(3)
i,T =

(
1

T 2

T∑
t=1

x2
it

)
⇒ ω2

ε

1∫
0

W 2
εi

(r)dr,

by Functional Central Limit Theorem (see Lemma 2.1(c), Park and Phillips, 1988). By the Con-

tinuos Mapping Theorem (
Y

(3)
i,T

)2

⇒

ω2
ε

1∫
0

W 2
εi

(r)dr

2

.

Standard calculations (see Phillips and Moon, 1999, page 1100) yield

E
(
Y

(3)
i,T

)2

→ E

ω2
ε

1∫
0

W 2
εi

(r)dr

2

,

which implies that Y
(3)
i,T is a uniformly square integrable sequence in T, then the strong law of large

numbers applies and as n→∞

1

n

n∑
i=1

Y
(3)
i,T →a.s E

ω2
ε

1∫
0

W 2
εi

(r)dr

 =
ω2
ε

2
.

Consider the mixed term

1

nT
3
2

n∑
i=1

T∑
t=1

xitzit =
1

n

n∑
i=1

1

T
3
2

T∑
t=1

xitzit ≡
1

n

n∑
i=1

(
1√
T
Y

(4)
i,T

)
. (2.29)

For every fixed i, as T →∞

Y
(4)
i,T =

1

T

T∑
t=1

xitzit ⇒ ωεωu

1∫
0

W ui
i dW

εi
i + Σ21 + Γ21

by the Functional Central Limit Theorem (see Lemma 2.1 (e), Park and Phillips, 1988), where Σ21

and Γ21 are the 2nd row, 1st column elements of the matrices Σ and Γ defined in (2.16). Moreover

by Assumption 3, Σ21 = Γ21 = 0. By the Continuous Mapping theorem(
Y

(4)
i,T

)2

⇒

ωεωu 1∫
0

W ui
i dW

εi
i

2

,
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standard calculation shows

E
(
Y

(4)
i,T

)2

→ E

ωεωu 1∫
0

W ui
i dW

εi
i

2

(see Baltagi, Kao, Liu, Appendix A) and we may conclude that Y
(4)
i,T is uniformly square integrable

in T. Then the strong law of large numbers for independent sequences implies

1

n

n∑
i=1

Y
(4)
i,t →a.s E

ωεωu 1∫
0

W ui
i dW

εi
i

 = 0.

Consider the last term

1

nT

n∑
i=1

T∑
t=1

z2
it ≡

1

n

n∑
i=1

Y
(5)
i,t . (2.30)

As for (2.22) , the existence of the panel Beveridge- Nelson decomposition of the sequence of

disturbances ξit for every fixed i, allows us to apply Lemma 13 of Phillips and Moon and to

conclude that for fixed i

Y
(5)
i,t ⇒

ω2
u

2
, T →∞,

which is constant across i by assumption. Then we may conclude that by the strong law of large

numbers

1

n

n∑
i=1

Y
(5)
i,t →a.s

ω2
u

2
,

which concludes the proof of Lemma 1.

Proof of Lemma 2 Observe that c′D−1/2W′η can be written as

= c′
1√
n

n∑
i=1



1√
T

T∑
t=1

ηit

1
T

T∑
t=1

xitηit

1√
T

T∑
t=1

zitηit


=

1√
n

n∑
i=1

(c′Zi,T ) , (2.31)

where

c′Zi,T =
c1√
T

T∑
t=1

ηit +
c2

T

T∑
t=1

xitηit +
c3√
T

T∑
t=1

zitηit.

The independence across i of the c′Zi,T implies that to establish a Central Limit Theorem for
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(2.31), we must show that E (c′Zi,T ) = 0 and that for some δ > 0,

E |c′Zi,T |2+δ
<∞.

By Assumptions 1-4, E (c′Zi,T ) = 0. Notice that by the Cr-inequality

E

∣∣∣∣∣ c1√
T

T∑
t=1

ηit +
c2

T

T∑
t=1

xitηit +
c3√
T

T∑
t=1

zitηit

∣∣∣∣∣
2+δ

≤

Cr

E ∣∣∣∣∣ c1√
T

T∑
t=1

ηit

∣∣∣∣∣
2+δ

+ E

∣∣∣∣∣c2

T

T∑
t=1

xitηit

∣∣∣∣∣
2+δ

+ E

∣∣∣∣∣ c3√
T

T∑
t=1

zitηit

∣∣∣∣∣
2+δ
 , (2.32)

with cr = 2r−1. We show that each term of (2.32) is bounded. Consider the term

E

∣∣∣∣∣ c1√
T

T∑
t=1

ηit

∣∣∣∣∣
2+δ

. (2.33)

Since by Assumptions 1-4, ηit admits a Beveridge-Nelson decomposition, Burkholder’s inequality

yields

T−
2+δ
2 E

∣∣∣∣∣
T∑
t=1

ηit

∣∣∣∣∣
2+δ

≤ T−
2+δ
2 E

∣∣∣∣∣
T∑
t=1

η2
it

∣∣∣∣∣
2+δ
2

,

then Holder’s inequality yields

T−
2+δ
2 E

∣∣∣∣∣
T∑
t=1

η2
it

∣∣∣∣∣
2+δ
2

≤ T−
2+δ
2 E

∣∣∣∣∣∣
(

T∑
t=1

η2+δ
it

) 2
2+δ

∣∣∣∣∣∣
2+δ
2

,

and by Jensen’s inequality

T−
2+δ
2 E

∣∣∣∣∣∣
(

T∑
t=1

η2+δ
it

) 2
2+δ

∣∣∣∣∣∣
2+δ
2

= T−
2+δ
2 E

∣∣∣∣∣
T∑
t=1

η2+δ
it

∣∣∣∣∣
≤ T−

2+δ
2

T∑
t=1

E |ηit|
2+δ = O

(
T−

δ
2

)
,

because we have assumed E |ηit|
2+δ <∞, which implies

E

∣∣∣∣∣ 1√
T

T∑
t=1

ηit

∣∣∣∣∣
2+δ

<∞.

Consider the last term

E

∣∣∣∣∣ c3√
T

T∑
t=1

zitηit

∣∣∣∣∣
2+δ

.

By Assumptions 1-4, zit and ηit are independent, therefore the sequence {zitηit} is a martingale
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difference sequence. Indeed

E
[
zitηit|zit−1ηit−1

]
= E

[
zit|zit−1ηit−1

]
E
[
ηit|zit−1ηit−1

]
= E [zit|zit−1]E

[
ηit|ηit−1

]
= 0.

But then as above Burkholder’s inequality for martingale difference sequences yields

T−
2+δ
2 E

∣∣∣∣∣
T∑
t=1

zitηit

∣∣∣∣∣
2+δ

≤ T−
2+δ
2 E

∣∣∣∣∣
T∑
t=1

z2
itη

2
it

∣∣∣∣∣
2+δ
2

,

then Holder’s inequality yields

T−
2+δ
2 E

∣∣∣∣∣
T∑
t=1

z2
itη

2
it

∣∣∣∣∣
2+δ
2

≤ T−
2+δ
2 E

∣∣∣∣∣∣
(

T∑
t=1

(zitηit)
2+δ

) 2
2+δ

∣∣∣∣∣∣
2+δ
2

,

and by Jensen’s inequality

T−
2+δ
2 E

∣∣∣∣∣∣
(

T∑
t=1

(zitηit)
2+δ

) 2
2+δ

∣∣∣∣∣∣
2+δ
2

≤ T−
2+δ
2 E

∣∣∣∣∣∣
(

T∑
t=1

(zitηit)
2+δ

) 2
2+δ

∣∣∣∣∣∣
2+δ
2

= T−
2+δ
2 E

∣∣∣∣∣
T∑
t=1

z2+δ
it η2+δ

it

∣∣∣∣∣
≤ T−

2+δ
2

T∑
t=1

E |ηitzit|
2+δ = O

(
T−

δ
2

)
,

because we have assumed that E |ηit|
2+δ < ∞ and E |zit|2+δ

and independence between zit and

ηit. Analogously it can be shown that

E

∣∣∣∣∣ c2√
T

T∑
t=1

xitηit

∣∣∣∣∣
2+δ

<∞,

which concludes the proof of Lemma 2.
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Chapter 3 Multivariate Volatility Models

3.1 Introduction

Recently a large body of research in financial econometrics has emerged on modeling the co-

movements of financial returns. Understanding the comovements of financial returns is of great

importance in many applied situations. The knowledge of correlation structures is vital in asset

pricing, optimal portfolio risk management and asset allocation. Moreover, as the volatilities of

different assets and markets move together, modelling volatility in a multivariate framework can

lead to greater statistical efficiency. Univariate modelling of random volatility has developed along

two main lines of research: conditional volatility models, where the volatility is a deterministic

function of the past realizations of the asset, and stochastic volatility models, where it is a latent

process. Generalizations to multivariate settings have been implemented in both classes and, as a

result, a wide range of multivariate GARCH and Stochastic Volatility models has been developed

and applied extensively in recent years.

In both classes, multivariate generalizations have to combine different needs. Parsimony of the

chosen specification is essential for relatively easy estimation of the model. However, as the dimen-

sion of the vector of returns increases, the number of parameters to estimate increases at a much

faster rate, making parameter estimation computationally very intensive. Estimation of multivari-

ate GARCH models requires numerical optimization of the likelihood function which requires to

invert the conditional covariance matrix at every iteration. The conditional covariance matrix often

depends on time t and has to be inverted for all t in every iteration of the numerical optimization.

If the dimension of the model is large, this is computationally time consuming and numerically

unstable. In contrast to multivariate GARCH models, in multivariate Stochastic Volatility models,

the conditional covariance is latent and has to be integrated out from the likelihood function. As a
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result, the likelihood function does not have a closed form expression and its evaluation requires

evaluation via numerical methods of high-dimensional integrals. As the dimension of the model

increases, this brings a high computational burden. Parsimony is in general ensured by imposing

directly on the model some simplifying restrictions. However if too many restrictions are imposed,

parameters interpretation may become difficult and moreover the model may fail to capture impor-

tant dynamics of the data. Indeed there is a trade off between flexibility of the model specification

and the so called curse of dimensionality.

Another important feature that needs to be taken into account in the specification of a multivari-

ate volatility model is the positive definiteness of the conditional covariance matrix. By definition

covariance matrices must be positive semidefinite, however in order to ensure that all the possi-

ble portfolios (i.e. linear combinations of a vector of returns) have correlations between −1 and

1, positive definiteness of the covariance matrix must be ensured in the model. Imposing on the

model conditions that guarantee positive definiteness of the covariance matrix across time is in

practice numerically infeasible, especially in large systems. Most of the multivariate models in the

literature are formulated in such a way that positive definiteness is implied directly by the model

structure.

Combining these issues has been the main difficulty of the multivariate GARCH and Stochastic

Volatility literature. Various approaches to address positive definiteness of the conditional co-

variance matrix, the curse of dimensionality, and practical implementation issues have generated

different types of models in both classes. Extensive literature reviews on MGARCH models are

provided in Bauwens, Laurent and Rombouts (2006) and in Silvennoinen and Terasvirta (2008).

Asai, McAleer and Yu (2006) survey the main developments of multivariate Stochastic Volatility

models.
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3.2 Multivariate Conditional Volatility Models

Consider a n× 1 random vector yt. Denote the sigma algebra generated by the past information

until time t − 1 as Ft−1. The general parametric formulation of a multivariate GARCH model is

given as:

yt = µt (θ) + εt, (3.1)

εt = H1/2 (θ) zt, (3.2)

where zt is an i.i.d zero mean random vector with unit variance, In, the identity matrix of order

n, and H
1/2
t is a n × n positive definite matrix. The vector µt (θ) is the conditional mean of the

process, and the matrix Ht (θ) is its conditional variance. To see this consider that the assumptions

on the first two moments of zt imply

V ar (yt|Ft−1) = V ar (εt|Ft−1) = H
1/2
t V ar (zt|Ft−1)

(
H

1/2
t

)′
= Ht. (3.3)

H
1/2
t is the n× n positive definite matrix such that Ht =

(
H

1/2

t

)2

is the conditional variance ma-

trix and it is obtained by Cholesky decomposition of Ht. The conditional mean and the and the

conditional variance of the process depend on the unknown vector of parameters θ. In most cases

the parameterization is disjoint, i.e. the conditional mean and variance depend on two disjoint sub-

vectors of the vector θ. However in GARCH-in mean models µt is functionally dependent on Ht.

The literature on multivariate GARCH models typically reviews the models according to the dif-

ferent specification of Ht, taking no account of the conditional mean vector. We follow the same

approach. According to the specification of the conditional variance matrix Ht, we distinguish

three main classes in the literature. The first class comprises models which are a direct extension

of the univariate GARCH and model directly the variance covariance matrix. The second class is

that of the factor GARCH models, which are motivated both by parsimony and easiness of their

economic interpretation. The models in the third class specify the conditional covariances and vari-

ances directly, including the CCC model and its dynamic extensions. They offer a straightforward
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interpretation of the estimated parameters.

3.2.1 VEC and BEKK models

One of the first multivariate GARCH models proposed in the literature was the VEC model of

Bollerslev, Engle and Wooldridge (1988). The model is a straightforward generalization of the

univariate GARCH of Bollerslev (1986). Every conditional variance and covariance is a function

of lagged conditional variances and covariances as well as lagged squared returns,

vech (Ht) = vech (C) +

q∑
i=1

Aivech
(
εt−iε

′
t−i
)

+

p∑
j=1

Bjvech (Ht−j) , (3.4)

where the vech (Ht) operator stacks the columns of the lower triangular part of Ht into a long

vector, and Ai and Bj are matrices of parameters with dimension (n (n+ 1) /2)× (n (n+ 1) /2) .

The generality of this model allows for a great flexibility, however it comes at the price of an

excessive number of parameters to estimate. For example in a simple bivariate VEC(1, 1):

vech (Ht) =

 h11t

h21t

h22t

 (3.5)

=

 c1

c2

c3

+

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 ε2
1t−1

ε1t−1ε2t−1

ε2
2t−1

+

 b11 b12 b13

b21 b22 b23

b31 b32 b33

 h1t−1

h21t−1

h2t−1

 ,
there are 18 free parameters in the A and B matrices and 3 free parameters in the constant

vector. A general n dimensional VEC(p, q) has n (n+ 1) /2 free parameters in the constant

c = vech (C), [n (n+ 1) /2]2 parameters in each of the Ai and Bj matrices, and so in the overall

it has n (n+ 1) /2+ [n (n+ 1) /2]2 (p+ q) free parameters to estimate. The model also requires

relevant restrictive conditions to ensure the positive definiteness of the conditional variance ma-

trix. Engle and Kroner (1995) provide a sufficient condition for almost sure positive definiteness of

the covariance matrix using the BEKK representation of the VEC models, see below. Gourieroux

(1997) provides another sufficient condition for positive definiteness of Ht, rewriting the condi-

tional matrix as a recursive equation yielding a symmetric solution

Ht = C +

q∑
i=1

(
In ⊗ ε′t−i

) ....
A i (In ⊗ εt−i) +

p∑
j=1

E
[(
In ⊗ ε′t−i

) ....
B j (In ⊗ εt−i) |Ft−i−1

]
, (3.6)
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where the symbol “⊗” denotes the Kronecker product. Positive definiteness is achieved assuming

that C is positive definite and that the
....
A i and

....
B j are positive semidefinite matrices.

For empirical application Bollerslev, Engle and Wooldridge implement a simplified version of

the general VEC model, setting p = q = 1 and imposing diagonality on the matrices A1 andB1. In

the diagonal VEC, each element hijt depends only on its own lag and the previous value of εitεjt,

so the number of parameters reduces to 3 × [n(n+ 1)/2]. For example a bivariate diagonal VEC

model is

ht =

 h11t

h21t

h22t


=

 c1

c2

c3

+

 a11 0 0
0 a22 0
0 0 a33

 ε2
1t−1

ε2t−1ε1t−1

ε2
2t−1

+

 b11 0 0
0 b22 0
0 0 b33

 h1t−1

h21t−1

h2t−1

 .
Bollerslev, Engle and Wooldridge argue that this restriction of the general VEC model is plausible

because information about variances is usually revealed in squared residuals, if the variances are

evolving slowly then past squares residuals should be able to forecast future variances. The diago-

nal restriction keeps under control the proliferation of parameters. However it might still not yield

a positive definite covariance matrix.

Necessary and sufficient conditions for covariance stationarity of the VEC model are derived in

Engle and Kroner (1995). Consider a VEC(p, q) model :

vech (Ht) = c+

q∑
i=1

Aivech
(
εt−iε

′
t−i
)

+

p∑
j=1

Bjvech (Ht−j) . (3.7)

Defining the lag operator L such that Lεt = εt−1, and defining the polynomial A (L) = A1L +

A2L
2 + ...+ AqL

q and B (L) = B1L+B2L
2 + ...+BpL

p, (3.7) can be written as:

vech (Ht) = c+ A (L) vech (εtε
′
t) +B (L) vech (Ht)

= c+ A (L) vech (εtε
′
t) +B (L)

∞∑
i=1

B (L)i−1 [c+ A (L) vech (εtε
′
t)]

= c+ A (L) vech (εtε
′
t) +

∞∑
i=2

B (L)i−1 [c+ A (L) vech (εtε
′
t)] .

Assuming that εt is a doubly infinite sequence, Engle and Kroner show that the process is covari-
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ance stationary if and only if the eigenvalues of A (1) + B (1) are less than one in modulus (see

Engle and Kroner, 1995, page 132).

To overcome these relevant limitations Engle and Kroner (1995) introduce the Baba-Engle-

Kraft-Kroner model, know as the BEKK model. The new parameterization guarantees positive

definiteness of the covariance matrix under very weak conditions, easy to impose during estima-

tion. Moreover it is general enough to include all the positive definite diagonal VEC representa-

tions and almost all the positive definite general VEC representations. The BEKK(p, q,K) model

specifies the conditional variance matrix as

Ht = C∗
′

0 C
∗
0 +

K∑
k=1

q∑
i=1

A∗
′

ikεt−iε
′
t−iA

∗
ik +

K∑
k=1

p∑
j=1

G∗
′

ikHt−iG
∗
ik, (3.8)

where C∗0 , A∗ik and G∗ik are n × n parameter matrices with C∗0 upper triangular. The summation

limit K, 1 ≤ K ≤ n2 determines the generality of the process. In contrast with the VEC model,

the parameters of the BEKK do not represent directly the impact of the different lagged terms on

the element of Ht. The BEKK model can be seen as a special case of the general VEC, obtained

by imposing restrictions on its parameters. Consider for example a simple BEKK (1, 1, 1)

Ht = C∗
′

0 C
∗
0 + A∗

′

11εt−1ε
′
t−1A

∗
11 +G∗

′

11Ht−1G
∗
11, (3.9)

to simplify matters, consider a bivariate BEKK(1, 1, 1)

Ht = C∗
′

0 C
∗
0 +

[
a∗11 a∗12

a∗21 a∗22

]′ [
ε2

1,t−1 ε1,t−1ε2,t−1

ε1,t−1ε2,t−1 ε2
2,t−1

] [
a∗11 a∗12

a∗21 a∗22

]
(3.10)

+

[
g∗11 g∗12

g∗21 g∗22

]′ [
h1t−1 h12,t−1

h21,t−1 h2t−1

] [
g∗11 g∗12

g∗21 g∗22

]
.

(3.10) specifies the individual conditional variances as
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h11t = c11 + a∗211ε
2
1,t−1 + 2a∗11a

∗
21ε1,t−1ε2,t−1 + a∗221ε

2
2,t−1 + g2∗

11ht−1 + 2g∗11g
∗
21h1,t−1h2,t−1 + g∗221h

2
2,t−1,

h12t = c12 + a∗11a
∗
12ε

2
1,t−1 + (a∗21a

∗
12 + a∗11a

∗
22)ε1,t−1ε2,t−2 + a∗21a

∗
22ε

2
2,t−1 + g∗11g

∗
12h

2
1,t−1 + g∗11g

∗
12h

2
1,t−1

+(g∗21g
∗
12 + g∗11g

∗
22)h1,t−1h2,t−2 + g∗21g

∗
22h

2
2,t−1,

h22t = c22 + a∗212ε
2
1,t−1 + 2a∗12a

∗
22ε1,t−1ε2,t−1 + a∗222ε

2
2,t−1 + g2∗

12h1,t−1 + 2g∗12g
∗
22h1,t−1h2,t−1 + g∗222h

2
2,t−1.

Comparison of (3.10) with (3.5) shows that the BEKK parameterization reduces the number of

parameters, imposing restrictions both across and within equations, but without necessarily re-

stricting the dynamics to a diagonal model. A general bivariate VEC(1, 1) model has 18 free

parameters excluding the constants, the bivariate BEKK(1, 1, 1) model has 8 free parameters ex-

cluding the constants. A BEKK(1, 1, 1) model has 2n2 + n(n + 1)/2 free parameters, a general

VEC(1, 1) has n(n+ 1)/2 + 2 [n(n+ 1)/2]2 free parameters. Positive definiteness and identifica-

tion of the BEKK(1, 1, 1) are achieved under simple and straightforward conditions, which can be

imposed during estimation relatively easily. Engle and Kroner show that a sufficient condition for

identification is that the diagonal elements of C∗0 and a∗11 and g∗11 are also restricted to be positive.

This is by no means the only possible condition that guarantees identification of the model. In fact

looking at the model, it is clear that the only observationally equivalent structures are obtained re-

placing A∗11 with −A∗11 or G∗11 with −G∗11, so any condition that eliminates − A∗11 and −G∗11 from

the set of admissible structures will suffice to guarantee identification. For example one could im-

pose that a∗ij and g∗kl are positive for some given i,j and k, l. Non negativity restrictions can be

imposed in estimation by estimating the square root of the restricted parameters, making identifi-

cation relatively easy for estimation. Positive definiteness of the variance matrix is ensured by the

decomposition of the constant matrix, C, into C∗
′

0 C
∗
0 where C∗0 is a triangular matrix. This is an

identifiable factorization of the constant matrix C that ensures positive definiteness by construction

simply by assuming that the diagonal elements of C∗0 are non null.
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In empirical applications, when the number of assets can be quite large, estimation of 2n2 +

n(n + 1)/2 parameters might become computationally heavy. Most empirical applications over-

come this difficulty by restricting the BEKK(1, 1, 1) model to a diagonal BEKK(1, 1, 1), i.e. im-

posing that A∗1k and G∗1k are diagonal matrices. This of course reduces further the generality of

the model. A diagonal BEKK(1, 1, 1) is a restricted, less general DVEC model, positive defi-

nite by construction; the parameters of the covariance equation are products of the corresponding

parameters of the two variance equations and the number of free parameters reduces further to

2n+ n (n+ 1) /2.

Full generality of the BEKK representation can be achieved adding more positive semidefi-

nite terms to the variance equation, assuming K > 1. A full BEKK(p, q,K) has (p+ q)Kn2 +

n (n+ 1) /2 free parameters to estimate. Engle and Kroner define full generality of the BEKK

representation as its ability to be equivalent to as many VEC models as possible and show that the

fully general BEKK representation spans the full set of symmetric positive definite VEC represen-

tations. In order to achieve full generality, a BEKK(1, 1, K) model should satisfy two necessary

conditions. First, K, the generality parameter, should be such that the numbers of distinct parame-

ters in each of the A∗1k and G∗1k is not less than (n (n+ 1) /2)2
; this ensures that no unnecessary

restrictions are being imposed. Moreover it is required that there exists a A∗1k matrix that contains

either the pair of nonzero elements (ail,k, amj,k) or the pair of non zero elements (ajl,k, aim,k) for all

i, j, k,m from 1 to n; this guarantees that no implicit extra restrictions are imposed in the model.

For the case of n = 2 , if none of the A1k matrices contains the pair (a12,a21), the second necessary

condition is violated and this violation implies the restriction that the term ε2
2,t−1 does not appear

in the covariance equation. These conditions are necessary but not sufficient to achieve full gener-

ality in a BEKK(1, 1, K) model. Many different set of sufficient conditions are possible, however

most of them generate an identification problem. In general whenever K > 1, some extra restric-
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tions need to be imposed on the model to eliminate observationally equivalent structures. Engle

and Kroner provide a condition that rules out all the observationally equivalent structures, while

retaining the full generality of the BEKK representation (see Engle and Kroner, 1995, Proposition

2.3).

The mathematical relationship between the parameters of a general BEKK(p, q,K) and a VEC(p, q)

model can be found by vectorizing both sides of a general BEKK(p, q,K) model

Ht = C∗
′

0 C
∗
0 +

K∑
k=1

q∑
i=1

A∗
′

ikεt−iε
′
t−iA

∗
ik +

K∑
k=1

p∑
j=1

G∗
′

ikHt−iG
∗
ik, (3.11)

obtaining

vech(Ht) = (C∗0 ⊗ C∗0)′ vech(In) +

q∑
i=1

[
K∑
k=1

(A∗ik ⊗ A∗ik)
′ vech

(
εt−iε

′

t−i

)]

+

p∑
j=1

[
K∑
k=1

(
G∗jk ⊗G∗jk

)′
vech (Ht−j)

]
.

Representations (3.11) and (3.4)and are equivalent if and only if there exists matrices C∗0 , A∗ik and

G∗ik such that

C0 = (C∗0 ⊗ C∗0)′ vech(In),

Ai =
K∑
k=1

(A∗ik ⊗ A∗ik)
′ ,

Gi =
K∑
k=1

(G∗ik ⊗G∗ik)
′ .

This is a necessary and sufficient condition for the equivalence of the BEKK and VEC represen-

tation. The VEC models for which there exists no such C∗0 , A∗ik and G∗ik do not have a BEKK

representation. Engle and Kroner (1995) show that this class includes all the non positive defi-

nite VEC parameterizations. However all positive definite symmetric VEC representations and all

positive definite diagonal VEC representations admit C∗0 , A∗ik and G∗ik satisfying the above. The

general diagonal BEKK representation,where each of the A∗ik and G∗ik matrices is diagonal, in-

cludes all the possible positive definite linear VEC model and if it satisfies the sufficient condition

for generality, it is always identified.
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Necessary and sufficient conditions for covariance stationarity of the general BEKK are found

rewriting the general model:

vech(Ht) = (C∗0 ⊗ C∗0)′ vech(In) +

q∑
i=1

[
K∑
k=1

(A∗ik ⊗ A∗ik)
′ vech

(
εt−iε

′

t−i

)]

+

p∑
j=1

[
K∑
k=1

(
G∗jk ⊗G∗jk

)′
vech (Ht−j)

]
,

in vector ARMA form

vech(Ht) = C0 + A(L)vech
(
εtε
′

t

)
+G(L)vech(Ht),

where L denotes the lag operator, and the polynomial A(L) and G(L) are defined by

A(L) =
K∑
k=1

(A∗1k ⊗ A∗1k)
′ L+ ...+

K∑
k=1

(
A∗qk ⊗ A∗qk

)′
Lq,

G(L) =
K∑
k=1

(A∗1k ⊗ A∗1k)
′ L+ ...+

K∑
k=1

(
A∗pk ⊗ A∗pk

)′
Lp.

Then εt is covariance stationary if and only if all the eigenvalues of
∑q

i=1

∑K
k=1 (A∗ik ⊗ A∗ik) +∑p

j=1

∑K
k=1

(
G∗jk ⊗G∗jk

)
are less than one in modulus. In the diagonal BEKK model the covari-

ance stationarity of the process is determined only by the diagonal elements of the A∗ik and G∗ik

matrices, since the model is covariance stationary if and only if
∑

k=1

(
a∗2ii,k + g∗2ii,k

)
< 1 for all i.

Estimation of BEKK models is typically done with maximum likelihood methods. Assuming

that the errors εt are i.i.d, the problem is to maximize the sample log likelihood function LT (θ)

for the T observations, conditional on some starting value for H0 with respect to the vector of

parameter θ. The general conditional log likelihood is:

LT (θ) =

T∑
t=1

log f (yt|θ, Ft−1) , (3.12)

where f (yt|θ, Ft−1) is the conditional density of yt,

f (yt|θ, Ft−1) = |Ht|−1|2 g
(
H
−1/2
t yt|εt

)
,

assuming correct specification of the model. The most commonly employed distribution for the

errors is the multivariate normal distribution. Empirically there is a great amount of evidence

that the standardized residuals of estimated volatility models are fat tailed, so the assumption of
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Gaussianity of the innovations is not innocuous and reduces efficiency. Fiorentini et al. (2004) pro-

vided a general framework for ML estimation using the t distribution. Bauwen and Laurent (2002)

extend their work to a multivariate skewed student distribution, Barndorff-Nielsen and Sheppard

(2001) use a generalized hyperbolic distribution. The drawback of those approaches is that if the

initial assumption on the distribution is wrong, in general ML estimates are not even consistent.

On the other hand, using a Gaussian likelihood retains consistency also under misspecification of

the conditional density, as long as the conditional mean and the conditional variance are correctly

specified. Under the assumption of normality, the conditional log likelihood is

LT (θ) = c− 1

2

T∑
t=1

ln |HT | −
1

2

T∑
t=1

y′tH
−1
t yt.

Maximization of this likelihood brings two types of problems. First of all, as stated by Engle

and Kroner (1995), the calculation of the derivatives of the model log likelihood with respect to

the vector of parameters is quite cumbersome. Engle and Kroner suggest the use of numerical

derivatives to approximate the score vector. However, subsequent work by Lucchetti (2002) and

Hafner and Herwartz (2003) has shown that using analytical scores in the estimation procedure

improves the accuracy of the estimates and speeds up convergence. When the dimension of the

vector yt is not small, the use of numerical derivatives makes estimation of the BEKK model

slow and prone to numerical errors. The second issue is that, once the score vector is obtained,

the parameter vector θ can be estimated only via non linear maximization, i.e. via numerical

optimization through iterative methods. Among the several possible optimization algorithms, for

sake of computational simplicity, Engle and Kroner (1995) advocate the use of the Bernd, Hall,

Hall and Hausman (1976) algorithm. The BHHH algorithm is an iterative optimization method

that calculates the updating term by a regression of a vector of ones on the scores. So the i + 1

iteration is obtained as:

θi+1 = θi + λi

[
(S ′S)

−1
]
θ=θi

[S ′]θ=θi ι,
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where ι indicates a vector of ones, S ≡ ∂Lt (θ) /∂θ, i is the iteration number and λi is the step

length, calculated at each iteration by a line search. The algorithm has the advantage that, under the

assumption of normality, the (S ′S)−1
from the final iteration can be used as a consistent estimate

of the variance covariance matrix of the parameters. Other popular iteration methods include the

BFGS and the OPS algorithm. All these methods require to invert the conditional covariance

matrix for all t at every iteration of the optimization and, when the dimension of yt increases, this

is time consuming and numerically unstable. For example a diagonal general BEKK model has

(p+ q)Kn2 + n(n + 1)/2 free parameters, and its estimation involves heavy computations due

to several matrix inversions. Empirical applications overcome computational difficulties setting

p = q = K = 1 and assume that H1 is the unconditional covariance matrix. Under ergodicity

of the process this has no consequence for the asymptotic properties of the estimator. Asymptotic

properties of the QMLE estimator in multivariate GARCH models are not yet firmly established,

and are difficult to derive from low level assumptions. Gourieraux (1997) establishes the weak

consistency of the Quasi MLE for BEKK models, relying on the martingale difference properties

of the sequence of score vectors evaluated at the true parameter value. Comte and Lieberman

(2003) establish its strong consistency and asymptotic normality, verifying the conditions given

by Jeantheau (1998) which do not impose any restriction on the derivative of the log likelihood of

the process. Avarucci et al. (2013) derive the asymptotic properties of the estimator under weaker

moments conditions in a simple BEKK(1, 1) model.

3.2.2 Factor models

Another very popular class of multivariate GARCH models in the literature is that of multi-

variate factor-GARCH models. As for the BEKK-type of models this class was motivated by the

need to overcome the difficulties of the VEC specification. However, in contrast to the BEKK-type

of models, the factor-GARCH models are not a restricted specification of the VEC model but are

35



based on the idea that the dynamics of the conditional variance matrix are driven by the dynamics

of small number of common underlying variables, called factors. All the models in this class ex-

press the observed series of returns yt as a linear and invertible transformation of a small number

of unobserved factors ft which follow a GARCH process.

The first multivariate factor-GARCH model in the literature was introduced by Engle, Ng and

Rothschild (1990). They assume that the series of returns can be expressed as

yt =

K∑
k=1

wkfkt + et, (3.13)

where wk, k = 1, ..., K, are linearly independent n× 1 vectors of factor weights, known as factor

loadings, the fkt are K not necessarily uncorrelated factors and et is a vector of idiosyncratic

shocks with constant variance matrix and uncorrelated with the factors. It is assumed that the

factors have a first-order GARCH structure, so their individual conditional variances, denoted as

λ2
kt evolve according to:

λ2
k,t = ωk + αk (w′kyt−1)

2
+ βkλ

2
k,t−1, (3.14)

where ωk, αk and βk are scalar parameters, and their unconditional variances are normalized to one.

This specification implies that the dynamics of conditional covariance matrix of yt are expressed

as:

Ht = Ω +
K∑
k=1

wkw
′
kλ

2
k,t, (3.15)

where Ω is the n × n positive definite constant covariance matrix of et. Parsimony of parameter-

ization is achieved by choosing the number of factors K to be much smaller than the number of

assets n. Model (3.13)-(3.15) implies that the time varying part of Ht has reduced rank K, but Ht

remains of full rank because Ω is assumed positive definite. Engle et al. propose a consistent but

not efficient two-steps estimation method using maximum likelihood.

The assumption of correlation between the factors in model (3.13)-(3.15) turns out to be unde-

sirable since it allows several of the factors to capture similar characteristic of the data, possibly
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increasing the number of factors in the model. Motivated by this consideration, most of the mod-

els in this class assume uncorrelated factors. Uncorrelated factors have a straightforward economic

interpretation since they can be directly interpreted as different common components that drive the

returns; moreover their use can potentially reduce the dimensionality problem. In all the uncorre-

lated GARCH-factor models the original series of returns is expressed as

yt = Wf t,

where W is a n×n non-singular matrix of factor loadings and ft is a vector of n×1 heteroskedas-

tic factors which are standardized to have unit unconditional variances, i.e. E (ftf
′
t) = I. The

unconditional variance matrix of the returns is expressed as

Ht = WHf
tW

′,

where Hf
t is the unconditional covariance matrix of the factors.

Differences between the factor models are due to the specification of the linear transformation

W and to whether the number of factors is less than the number of assets or not. Alexander and

Chibumba (1997) propose an Orthogonal (O-) GARCH-factor model where the linear transforma-

tion W is assumed orthogonal and invertible; Van der Weide (2002) extends the O-GARCH model

to a Generalized Orthogonal (GO-) GARCH factor model specifying the linear transformation by

using the singular value decomposition of E (yty
′
t) = WW′, that is by assuming

W = UQ1/2V,

where the columns of U hold the eigenvectors of E (yty
′
t) , the diagonal matrix Q holds its eigen-

values and V is an orthogonal matrix of parameters. The conditional covariance matrix of the

factors is defined as

Hf
t = (I−A−B) + A�

(
ft−1f

′
t−1

)
+ BHf

t−1,

where A and B are diagonal n × n parameter matrices and � denotes the Hadamard, i.e. the

element by element, product. Vrontos, Dellaportas, Politis (2003) introduce a Full Factor (FF-
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) GARCH model, restricting the mapping W to a n × n invertible triangular parameter matrix

with ones on the main diagonal and propose an estimation method for W that only exploits the

conditional information. Lanne and Sakkonen (2007) propose a generalized orthogonal factor

(GOF-) GARCH model where the mapping is decomposed using the polar decomposition

W = CV,

where C is a symmetric n × n matrix and V is an orthogonal n × n matrix. Since E (yty
′
t) =

WW′ = CC′, the matrix C can be estimated making use of the spectral decomposition C = UQ1/2U
′
,

where the columns of U are the eigenvectors of E (yty
′
t) and the diagonal matrix Q contains its

eigenvalues.

3.2.3 CCC models

Another popular class of multivariate GARCH models is the class of conditional variances and

correlation models. These models are based on the decomposition of the conditional covariance

matrix into conditional standard deviations and conditional correlations matrices. The form of the

conditional variance matrix is specified as:

Ht= DtRtDt

where Dt = diag
(
h

1/2
1t , ..., h

1/2
nt

)
is a diagonal matrix that contains on the main diagonal the

individual conditional standard deviations of each element of the vector yt. Rt =
[
ρij
]
t

is a

symmetric, positive definite matrix such that ρii = 1 for every i and every t. The off-diagonal

elements of Ht are defined by

[Ht]ij = h
1/2
it h

1/2
jt ρijt i 6= j, (3.16)

the diagonal elements by

[Ht]ii = hit.

The choice of Ht in these models entails first of all the specification of the individual conditional

variance models, which need not to be the same across different assets, and are in general members
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of the class of univariate GARCH models, and then the choice of a conditional correlation matrix,

Rt, positive definite at every t. The first model of this class is the constant conditional correlation

CCC-GARCH model of Bollerslev (1990). In the CCC model the conditional correlation matrix

R is assumed to be time invariant and (3.16) simplifies to :

[Ht]ij = h
1/2
it h

1/2
jt ρij i 6= j.

Often the individual conditional variances are modelled as individual GARCH(p, q) processes and

the vector of conditional variances is written as

diag (Ht) = ω+

q∑
i=1

Ai (εt−i � εt−i) +

p∑
j=1

Bjht−j (3.17)

where ω is a n-dimensional vector of constants, Ai and Bj are n×n diagonal matrices of parame-

ters, the symbol “�” denotes the Hadamard product, and the term (εt � εt) is the n×1 vector with

elements ε2
it. Bollerslev (1990) assumes a GARCH(1, 1) structure for the individual variances and

ensures positive definiteness of Ht assuming positive definiteness of R and that all the elements

of ω, Ai and Bj are positive. When the individual variances follow a GARCH(p, q) model with

either p > 1 or q > 1, or both, the condition that the elements of Ai and Bj must be positive

can be replaced by any condition ensuring the positive definiteness of the individual variances. In

general Ht is positive definite if and only if the matrix R is positive definite and all the n con-

ditional variances are positive. A CCC model with GARCH(p, q) conditional variances contains

n + n (p+ q) + n (n− 1) /2 parameters and does not allow individual volatilities to depend on

each other. Jeantheau (1998) generalizes the CCC-GARCH model to the Extended Constant Con-

ditional Correlation (ECCC-GARCH) model assuming non zero off-diagonal elements in Ai and

Bj . This allows past squared returns and variances of all the series to enter the individual condi-

tional variance equation. For example in the first order ECCC-GARCH model, the ith variance

equation is specified as

hit = ωi + a11ε
2
1,t−1 + ...+ a1nε

2
n,t−1 + b11h1,t−1 + ....+ b1nhn,t−1, (3.18)
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and generates a much richer dependence structure than in a first order CCC model. An ex-

tended constant conditional correlation model with GARCH(p, q) conditional variances contains

n (1 + 1 + np+ nq + (n− 1) /2) parameters.

Jeantheau (1998) shows that the necessary and sufficient condition for weak stationarity of a

multivariate GARCH model established by Engle and Kroner (1995) implies strict stationarity and

ergodicity of the ECCC model. In the CCC model where the matrices Ai and Bj are diagonal,

this condition reduces to assuming that each diagonal element of the matrices is less than one in

absolute value and it is easily imposed during estimation. Francq and Zakoian (2010) generalize

the result of Bourgerol and Picard (1992) on strict stationarity of a univariate GARCH (p, q) to the

ECCC model. As Bourgerol and Picard, they express the condition using the Lyapunov exponent

of a matrix associated with the vector of parameter θ. To obtain the Markov-chain representation

of the process they write it in vector representation

z̄t = b̄t + Atz̄t−1,

with

b̄t =



Υtω
0
.
.
ω
.
.
0


∈ Rn(p+q), z̄t =



ε
(2)
t

.

.

ε
(2)
t−q+1.
ht
.
.

ht−p+1


∈ Rn(p+q),

and

At =



ΥtA1 . . . ΥtAq ΥtB1 . . . ΥtBp

In 0 . . 0 0 . . . 0
0 In . . 0 0 . . . 0
. . . . . . .
0 . . In 0 0 0 0 0 0
A1 . . . Aq B1 . . . Bp

0 . . . 0 In
0 . . . 0 In
. . . . . .
0 . . . 0 0 0 . In 0


,
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where

Υt ≡


(
R1/2z1t

)2
0 ... 0

0
(
R1/2z2t

)2
... 0

. .

0 . .
(
R1/2zmt

)2


and ε

(2)
t denotes the vector (ε2

1t, ..., ε
2
Nt)
′
. The ergodicity and strict stationarity of ht and εt are

derived from the ergodicity and strict stationarity of the Markov chain z̄t. Using results of Meyn

and Tweedie (2009), Franq and Zakoian show that a necessary and sufficient condition for the

existence of a strictly stationary and ergodic solution is that the top Lyapunov exponent of the

sequence {At, t ∈ Z} is strictly negative.

Conditions for identification of the ECCC model are derived by Jeantheau (1998), under the

assumption that the ECCC-GARCH representation is "minimal". Using the back-shift operator L,

(3.17) may be written as

B (L)

 h1t

·
hNt

 = ω + A (L)

 ε2
1t−i
·

ε2
Nt−i

 ,

with invertible B (L) = I−
∑p

j=1 BjL
j and A (L) =

∑q
i=1 AiL

i. In order to ensure identification

it is necessary to ensure that there exists no other pair (Aθ (L) , Bθ (L)) of polynomial matrices with

the same degree (p, q) such that B−1
θ (L)Aθ (L) = B−1

θ0
(L)Aθ0 (L) . Jeantheau (1998) provides a

set of necessary and sufficient conditions on the polynomial matrices A (L) and B (L) that rule out

any observationally equivalent structure of the model, defining the ECCC-GARCH representation

that satisfies those conditions "minimal".

A great advantage of the CCC model and its extensions is the straightforward interpretation of

the parameters. For example this model is extremely popular in risk premium analysis because the

estimated correlations between securities are readily available in the estimation results. Moreover

the use of a CCC model facilitates the comparison of correlation patterns between different periods.

One can estimate independently different CCC models in sub-periods of the available sample pe-

riod and then examine if the correlation patterns vary substantially from one sub-period to another.

41



However in some empirical applications the assumption of constant conditional correlation might

seem restrictive. For this reason, the CCC model has been generalized to a Dynamic Conditional

Correlation (DCC) model, that retains the decomposition of the conditional covariance matrix but

allows for a time varying conditional correlation matrix. Tse and Tsui (2002) proposed a Varying

Correlation (VC-) GARCH model assuming that the conditional correlations are functions of their

lagged values. The time varying correlation matrix is generated by the recursion:

Rt = (1− θ1 − θ2)R + θ1Ψt−1 + θ2Rt−1, (3.19)

where the n × n matrix R is symmetric, and positive definite with elements on the main diagonal

equal to one, θ1 and θ2 are non negative scalar parameters satisfying θ1 + θ2 ≤ 1, and the matrix

Ψt−1 is the sample correlation matrix of the M -lagged standardized residuals, with elements

ψij,t−1 =

∑M
k=1

(
εi,t−k/

√
ĥi,t−k

)(
εj,t−k/

√
ĥj,t−k

)
√(∑M

k=1 εi,t−k/
√
ĥi,t−k

)2(∑M
k=1 εj,t−k/

√
ĥj,t−k

)2
.

The conditional correlation is formulated as the weighted sum of past correlations. A different

specification is that of Engle and Sheppard (2001) and Engle (2002), where the time varying con-

ditional correlation matrix is given by

Rt = diag
(
q
−1/2
11,t , ..., q

−1/2
NN,t

)
Qtdiag

(
q
−1/2
11,t , ..., q

−1/2
NN,t

)
, (3.20)

where the n× n symmetric positive definite matrix Qt is set equal to

(1− α− β)Q+ α
(
D
−1/2
t−1 εt−1

)(
D
−1/2
t−1 εt−1

)′
+ βQt−1, (3.21)

where Q is the unconditional variance matrix of the standardized residuals, and α and β are non

negative scalar parameters satisfying α + β < 1. The elements of Q can be estimated or set

directly to their empirical counterparts to simplify estimation. The drawback of this specification

of the correlation matrix is that all the conditional correlations obey to the same dynamics. Engle

(2002) suggests modifying (3.21) as

Qt = Q� (ιι′ − A−B) + A�
(
D
− 1
2

t−1εt−1

)(
D
− 1
2

t−1εt−1

)′
+B �Qt−1, (3.22)
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where ι is a vector of ones,the symbol “�” denotes the Hadamard product, and A and B are n× n

matrices of parameters, which can be defined to functionally depend on a small fixed number of

parameters. Billo et al. (2003) propose a Quadratic Flexible Dynamic Conditional Correlation

model, where the correlation matrix has a block diagonal structure and the dynamics of the cor-

relations are identical only within each block. The drawback of this approach is that the block

members need to be defined a priori. Kwan et al. (2009) propose a threshold extension of the VC-

GARCH model of Tse and Tsai, where the transition between regimes is governed by an indicator

variable which belongs to the extended information set at time t − 1, and the number of regimes

is know a priori. Silvennoionnen and Terasvirta (2005) propose a Smooth Transition Conditional

Correlation model, where the conditional correlation matrix varies between two states according

to a transition variable.

Estimation of the CCC and ECC models via Quasi Maximum Likelihood methods is compu-

tationally quite attractive thanks to the decomposition of the conditional variance into conditional

standard deviations and constant conditional correlations matrices. The log likelihood of the T

observations of the process, conditional on some starting value H0, has the simple form

LT (θ) = c− 1

2

T∑
t=1

ln |Dt (θ1)| − 1

2

T∑
t=1

log |R (θ2)| − 1

2

T∑
t=1

y′t
(
D−1
t (θ1)R−1 (θ2)D−1

t (θ1)
)′
yt.

In sharp contrast with VEC and BEKK models, the T inversions of the matrix Ht reduce to only

one inversion of the matrix R. Moreover the separate parameterization allows to write the like-

lihood as the sum of a volatility part, depending on the vector of unknown parameters θ1, and a

correlation part, depending on the vector of unknown parameter θ2. As a consequence, the model

can be consistently estimated using a two steps approach. Engle and Sheppard (2001) show that

a consistent estimator of the parameters in θ1 can be found by replacing the matrix R with the

identity matrix in the likelihood,

LT (θ1) = c− 1

2

T∑
t=1

ln |Dt (θ1)| − 1

2

T∑
t=1

y′tD
−1
t (θ1)D−1

t (θ1) yt,
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which can be expressed as the sum of n individual log likelihood functions,

LT (θ1) = c− 1

2

T∑
t=1

N∑
i=1

(
lnhit +

y2
it

hii

)
.

Then a consistent estimator of θ2 is obtained maximizing:

LT

(
θ2|θ̂1

)
= −1

2

T∑
t=1

(
log |R|+

(
D−1
t yt

)′
R
(
D−1
t yt

))
.

The estimators θ̂1 and θ̂2 are not fully efficient, since they are limited information methods. Engle

and Sheppard suggest the use of θ̂1 and θ̂2 as starting values of a Netwon-Rapson iteration algo-

rithm to maximize the full likelihood, and obtain an asymptotically efficient estimator after one

iteration.

3.3 Multivariate Stochastic Volatility Models

A different approach to modelling conditional covariances is represented by multivariate Sto-

chastic Volatility models, which have developed significantly over the past few years. In this class

of models the conditional volatility process is no longer a measurable function of the sigma alge-

bra of the information available at time t−1, but it is modelled as an unobservable, latent variable.

GARCH-type and Stochastic Volatility models have similar statistical properties, however they are

different with respect to the observability of the conditional variance at time t − 1. The first mul-

tivariate stochastic volatility model was proposed by Harvey et al. (1994). The model contains

an unobserved vector variance component, the logarithm of which is modelled directly as a vector

linear process. The n× 1 random vector

yt = µt (θ) + εt (θ) ,

has variance described by

εt (θ) = H
1/2
t zt, (3.23)

H
1/2
t = diag (exp {h1t/2} , ..., exp {hnt/2}) = diag {exp (ht/2)} , (3.24)
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ht = µ+ φ� ht−1 + ηt, (3.25)

(
zt
ηt

)
|ht ∼ i.i.d N

[
0
0
,
Pz 0
0 Ση

]
, (3.26)

where the “exp” operator denotes the element by element exponentiation of a vector, the vector

ht = (h1t, ..., hnt)
′
is a n×1 vector of unobserved log volatilities, and µ and φ are n×1 parameter

vectors. The n×n positive definite matrix Ση is the variance covariance matrix of the disturbances

of the volatility equation, and Pz is the covariance matrix of the disturbances of the level equations,

with diagonal elements ρii = 1 and off diagonal elements
∣∣ρij∣∣ < 1 for any i 6= j, with i, j =

1, ..., n. The model has 2n+n2 free parameters. Harvey et al. assume a vector AR(1) specification

for ht which has been extended by Asai et al. (2006) to a VARMA(p, q),

Φ (L)ht = µ+ Θ (L) ηt,

with

Φ (L) = I −
p∑
i=1

ΦiL
i,

Θ (L) = I −
q∑
j=1

ΘjL
j.

In model (3.23) to (3.26), the individual log volatilities are not independent as long as the off diag-

onal elements of Ση are non zero. The model however does not allow the covariances to evolve over

time independently from the variances. As CCC-GARCH models, this MSV model constraints the

conditional correlation to be constant across time, but has the advantage of representing a better

discrete time approximation of the continuous time Orstain-Uhlenbeck process used in finance the-

ory. In sharp contrast with multivariate GARCH models where the conditional covariance matrix is

measurable with respect to the sigma-algebra available at time t−1, Ht in (3.25) is not. This latent

feature of Ht makes its positive definiteness more difficult to achieve than in MGARCH models.

This is mostly the reason for which the MSV literature models directly the dynamics of the log-

45



arithmic transformation of Ht, rather than of Ht itself. As for the MGARCH literature, the main

concerns of the MSV literature have been to introduce parsimony of the parametric specification to

simplify estimation and positive definiteness of the covariance matrix. Different variants of mul-

tivariate stochastic volatility models have been proposed to address these issues: factor models,

time-varying correlation models and models based on the Chowlesky decomposition of the covari-

ance matrix. Harvey (1994), Jacquier et al. (1999), Shephard (1996), Pitt and Shephard (1999),

Aguilar and West (2000) proposed different specifications of MSV-factor models which decom-

pose the returns into two additive components. The first has a smaller number of factors than the

second and captures the information relevant for pricing of all the assets, while the second com-

ponent is an idiosyncratic noise, which captures the asset specific information. The additive K

factors MSV model is written as

yt = Df t + et,

where ft is a K × 1 vector of factors, K denotes the number of factors which is constrained to

be smaller than the number of assets n, D is a n × K dimensional matrix of factor loadings and

et ∼ N (0, diag {σ2
1, ..., σ

2
n}). The individual factors evolve according to

fit = exp (hit/2) εit, i = 1, ..., K

hit+1 = µi + φthit + ηit,

where εit and ηit are mutually independent shocks such that εit ∼ N (0, 1) and ηit ∼ N
(
0, σ2

η

)
. In

order to guarantee identification of the model, in general it is assumed that Dij = 0 and Dii = 1

for i = 1, ..., n . The variance of yt is by construction positive definite with form

DΣfD
′+diag

{
σ2

1, ..., σ
2
n

}
,

where Σf is the covariance matrix of the factors. It can be shown (see Yu and Meyer, 2006) that ad-

ditive MSV-factor models allow for both time-varying volatilities and correlations. However since

the shock et is homoskedastic and the number of assets in the portfolio is greater than the number
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of factors, it can be shown that there must exist portfolios whose volatilities are homoskedastic.

This feature does not seem to be consistent with empirical findings on portfolio volatilities and it

is the main drawback of this type of models.

MSV time-varying correlation models are based on the idea that the dynamics of covariances

and variances can be modelled separately. Asai and McAleer (2004) propose a MSV time-varying

correlation model extending the DCC model of Engle (2002) to a stochastic volatility setting spec-

ifying the volatility matrix of yt as

DtΓtDt,

where the diagonal matrix Dt is defined as

Dt = diag {(exp {h1t/2} , ..., exp {hnt/2}) = diag {exp (ht/2)}} ,

and the time-varying correlation matrix Γt is specified as

Γt = Q∗−1
t QtQ

∗−1
t ,

where Q∗t = (diag {vecd (Qt)})1/2
and vecd creates a vector from the diagonal element of a matrix

and

Qt+1 = (1− ψ) Q̄+ ψQ1 + Ξ1,

Ξ1 ∼ Wn (v,Λ) ,

where Q̄ is the unconditional variance matrix of the standardized residuals and Wn (v,Λ) denotes

a Wishart distribution. If Q̄ is positive definite and the scalar parameter ψ is such that |ψ| < 1

then time-varying correlation matrix is positive definite and stationary. In the special case in which

v = 1, Ξt can be expressed as the cross product of a multivariate normal distribution with zero

mean and covariance given by Λ.

Gourieroux (2006) and Philipov and Glickman (2004) developed a different type of dynamic

MSV models based on the Wishart autoregressive (WAR) multivariate process. The time varying
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covariance matrix of yt is defined as a WAR(p) process

Ht =

K∑
k=1

xktx
′
kt,

where K > n− 1 and each vector xkt follows a VAR(p) model given by

xkt =

p∑
i=1

Aixkt−i + εkt, εkt ∼ N (0,Σ) .

This type of MSV models has been widely used in empirical applications since it offers closed-

form derivative prices which are employed in a number of financial problems, such as term struc-

ture of T-bonds and corporate bonds and structural models for credit risk.

Estimation of MSV models is not straightforward because of the difficulties involved in eval-

uating their likelihood. Feasible estimation strategies for MSV are method of moment estimation

or estimation via quasi maximum likelihood of a linear state-space representation of the model via

the Kalaman filter. These procedures are computationally very simple and have been extensively

used in empirical applications, however they have poor finite sample properties and suboptimal

efficiency with respect to direct maximum likelihood estimation of the model. Over the last few

years, these approaches have been replaced by simulation-based methods (see Shephard and Pitt

(1997), Durbin and Koopman (1997), Kim et al. (1998), Sandmann and Koopman (1998), and

Chib et al. (2002)) that have successfully dealt with numerical evaluation of the high dimensional

integrals.

3.4 Asymmetric Multivariate Volatility Models

It has long be recognized that the volatility of stock returns responds differently to good news

and bad news. In particular, while bad news tends to increase the future volatility, good news of the

same size will increase the future volatility by a smaller amount or might even decrease it. The dif-

ferent impact of past price decreases and past price increases of the same magnitude on the current

volatility is know as asymmetry. The negative correlation between past returns and current volatil-

ity is know as leverage effect. Therefore leverage denotes asymmetry but not all the asymmetric

48



effects display leverage. In the class of univariate ARCH specifications the most popular mod-

els that capture asymmetric effects are the EGARCH model, the threshold GARCH model, and its

most popular variant GJR-GARCH, and the class of asymmetric power GARCH models. Many

empirical studies have found robust evidences of asymmetries in multivariate stock returns series.

As a consequence in the last decade there have been quite a few attempts to introduce asymmetry

and leverage in multivariate random variance model. The analysis of asymmetric effects in con-

ditional volatility models is a relatively new topic. Sentana (1995) proposed a multivariate latent

factor model with QARCH-type effects on the underlying factors that capture leverage through the

common latent factor. Kroner and Ng (1998) introduced a General Dynamic Covariance model

to capture the covariance asymmetry in the volatility dynamics of portfolios of small and large

firms. More recently Shepard (2002) and Cappiello, Engle and Sheppard (2006) proposed mod-

els which allow for asymmetric dynamics in the conditional variances as well as in the condi-

tional correlations, based on a generalization of the multivariate Dynamic Conditional Correlation

GARCH model of Engle (2002). Audrino and Barone-Adesi (2006) introduced a semiparamet-

ric multivariate GARCH model to allow for asymmetric conditional covariances and time varying

conditional correlations. Dellaportas and Vrontos (2007) introduced a new class of multivariate

threshold GARCH models based on a binary tree approach, where every terminal node parame-

trizes a local multivariate GARCH model for a specific partition of the data. Haas, Mittnik and

Paolella (2008) proposed an asymmetric multivariate generalization of the class of normal mixture

GARCH models. Finally Kawakatsu (2006) introduced the matrix exponential GARCH model,

the only multivariate conditional volatility model with exponential specification.

The asymmetric property of stochastic volatility models is based on the direct correlation be-

tween the innovations of the mean and volatility equations. Danielsson (1998) introduced leverage

effect in MSV model based on the specification considered by Harvey et al (1994) including a neg-
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ative correlation between the returns and volatility innovations. Asai and McAleer (2005) proposed

a multivariate dynamic asymmetric leverage (DAL) model that accommodates threshold effects.

The model allows volatility to undergo discrete shifts depending on whether the return for the pre-

vious period is above or below some threshold value. Asai and McAleer (2006) used the numerical

Monte Carlo Likelihood method proposed by Durbin and Koopman (1997) to estimate the basic

MSV model with leverage of Danielsson (1998). Moreover they extended the model of Daniels-

son to incorporate the effect of the size and magnitude of the previous return into the volatility

equation by using the absolute value function. Their estimation results of the MSV with leverage

and size effect (SV-LSE) model show that the models fits the bivariate and multivariate returns of

the S&P500, Nikkei 225 and Hang Seng indexes more accurately than any other MSV asymmetric

model available.

In chapters 4 and 5 of this thesis we introduce a new multivariate volatility model, the multi-

variate Exponential Volatility (MEV) model, which is based on an exponential specification that

allows to nest stochastic and heteroskedastic volatility specifications in the same framework. As

explained in greater details in Chapter 1, the model was partly motivated by the need to capture

asymmetries and leverage effect in a multivariate exponential specification that easily grants posi-

tive definiteness of the covariance matrix. It is therefore relevant to our purposes to discuss in some

details the matrix exponential GARCH model of Kawawatsu (2006), which is the only MGARCH

model with exponential specification, asymmetries and leverage effects. The next section briefly

introduces Kawakatsu’s model and discusses the main difficulties arising from its estimation via

maximum likelihood methods which partly motivate estimation of the MEV model parameters in

chapters 4 and 5 via Whittle methods.

3.4.1 Matrix Exponential GARCH.

The matrix exponential GARCH model of Kawakatsu (2006) specifies the dynamics in the log-
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arithm of the conditional covariance matrix. The model is an extension of Nelson (1991) univariate

EGARCH model to a multivariate model of the VEC class. The exponentiation is not the element

by element exponentiation of the conditional covariance matrix, but a non linear matrix exponential

transformation of the conditional covariance matrix. This specification ensures positive definite-

ness of the covariance matrix through the exponential transformation, and allows for a term that

captures multivariate asymmetries. In the general formulation of the matrix exponential GARCH,

the logarithm of the covariance matrix depends on its own past and on lagged innovations, accord-

ing to

(logHt − C) =

p∑
j=1

Ãj� log H̄t−j +

q∑
j=1

k∑
i=1

B̃ijεi,t−j +

q∑
j=1

k∑
i=1

F̃ij (|εi,t−j| − E |εi,t−j|) , (3.27)

where C is a symmetric k × k matrix of constants, and Aj , Bij and Fij are k × k symmetric

parameter matrices. This specification excludes cross products terms such as εi,t−1εj,t−1 and has a

total of k (k + 1) /2 × (1 + p+ 2kq) free parameters. The term Fij captures the asymmetries of

the volatility process. A different specification of (3.27) is written using the vech operator,

h̄t = vech (logHt − C) =

p∑
i=1

Aih̄t−1 +

q∑
j=1

Bjεt−j +

q∑
j=1

Fj (|εt−j| − E |εt−j|) , (3.28)

where Ai, Bj and Fj are parameter matrices of dimension respectively k∗ × k∗, k∗ × k, k∗ × k,

with k∗ = k (k + 1) /2. The number of free parameters in this model is k∗ + k∗
2
p + 2kk∗q. The

vech specification does not require any symmetry constraints, however it increases the number of

parameters to estimate because it allows for a richer dependence structure of the volatilities. In

(3.28) the volatilities don’t depend on their own past values and the past values of the covariances,

but also on the past values of all the other individual variances. Parameters restrictions to ensure

positive definiteness are not required in (3.27) nor (3.28) since logHt does not need to be a positive

definite matrix. However neither (3.27) nor (3.28) are feasible when k > 3, due to the very large

number of parameters to estimate. To deal with the curse of dimensionality, Kawakatsu proposes

a restricted diagonal matrix exponential GARCH, where each element of (logHt − C) evolves
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according to

h̄rc,t =

p∑
i=1

ai,rch̄rc,t−i +

q∑
j=1

(bjr,rcεr,t−j + bjc,rcεc,t−j) (3.29)

+

q∑
j=1

(fjr,rc (|εr,t−j| − E [|εr,t−j|]) + fjc,rc (|εc,t−j| − E [|εc,t−j|])) .

The (r, c) element of (logHt − C) depends only on its own lagged values and lagged rth and cth in-

novations. In this diagonal specification the number of parameters reduces to k∗× (1 + p+ 2k2q).

Estimation of the matrix exponential GARCH model has some serious drawbacks. Kawakatsu pro-

poses estimation of the parameters via Maximum Likelihood methods. However MLE estimation

of an exponential matrix model is computationally very costly. Moreover evaluation of the deriva-

tive of the exponential of a non symmetric matrix is a computationally unstable (see Moler and Van

Loan, 2003). The asymptotic properties of the MLE estimator for exponential models are not es-

tablished in the literature as they require the invertibility of the model, which is extremely difficult

to establish in exponential specifications (see Straumann and Mikosh, 2006).
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Chapter 4 Whittle estimation of multivariate exponential volatility models

4.1 Introduction

In the previous chapter, we discussed the two main approaches to modelling multivariate volatil-

ity, i.e. the conditional volatility and the stochastic volatility approaches. In stochastic volatility

models the mean equation and the volatility equation are driven by two separate shocks. In earlier

specifications the two shocks are set independent, in the more recent literature the independence is

relented to allow for asymmetries and leverage effects. However the two shocks are distinct and un-

observable. Multivariate GARCH models, on the other hand, regardless of the specification of the

conditional volatility matrix, are "one-shock" models. The aim of this chapter is to propose a class

of multivariate volatility models that encompasses both "one-shock" and "two-shocks" specifica-

tions. The idea of a parameterization that nests conditional and stochastic volatility specifications

can be traced back to the work of Robinson and Zaffaroni (1997, 1998). In the context of univariate

volatility, Robinson and Zaffaroni introduced the nonlinear moving average class as an alternative

to the ARCH(∞) class. In the univariate non-linear moving average model, the volatility evolves

according to

ht = ρ+
∞∑
i=1

αiεt−i

∞∑
i=1

α2
i <∞, (4.1)

and the mean equation is either

xt = ηtht, (4.2)

or

xt = εtht, (4.3)

where {εt} and {ηt} are sequences of zero mean i.i.d random variables, independent from each

other. When the level equation and the volatility equation are driven by the same shock as in (4.3)

and (4.1) , the model is a "one-shock" model, when instead the shocks are distinct as in (4.2) and
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(4.1) , the model is a "two-shocks" model. The nonlinear moving average model was originally

introduced to allow for long memory dependence in the squares of a weak dependent process.

It was prompted by the consideration that financial data can have small sample autocovariances,

whereas certain nonlinear functions such as squares have sample correlations that die away very

slowly. Under (4.2) or (4.3) and (4.1) xt is white noise, but if the αi decay suitably slowly the

volatility has long memory and the squares x2
t may also have long memory. Robinson and Zaf-

faroni consider a number of properties of this class of models and consider statistical inference

for parameterizations allowing for long memory autocorrelated squares. They stress frequency

domain Gaussian estimates in the sense of Whittle (1962) as maximum likelihood estimates are

computationally very cumbersome and their asymptotic properties are extremely difficult to derive.

Zaffaroni (2009) extended the nonlinear moving average model to an exponential specification, in-

troducing a parametrization encompassing both the univariate EGARCH model of Nelson (1991)

and the Stochastic Volatility model of Taylor (1986). He considers an observable satisfying

xt = zte
0.5ht , t ∈ Z, (4.4)

and

ht = ω0 +
∞∑
k=0

ψ0kεt−k−1 a.s,

∞∑
j=0

ψ2
0j <∞ (4.5)

where the {zt, εt} form a sequence of i.i.d unobservable random variables which, for some t = s,

might be correlated. Model (4.4) and (4.5) nests a "two-shocks" specification, where the shocks

need not to be independent, and a "one-shock" specification, when εt = ε (zt) for some instanta-

neous transformation ε (.). It includes a large number of different exponential volatility specifi-

cations, such as the "one-shock" EGARCH and FIEGARCH models and the "two-shocks" short

and long memory asymmetric volatility models of Harvey and Shephard (1996), Ruiz and Veiga

(2006). Zaffaroni establishes the strong consistency and the asymptotic normality of the Whittle

estimator under a set of regularity conditions general enough to allow for long memory dependence
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in the squares of the process and designed to apply to both classes of models. The exponential spec-

ification of volatility has several well-known advantages. For example non-negativity constraints

on the parameters need not to be imposed thus permitting a wide range of cyclical behavior in the

conditional variance. Moreover asymmetric effects, leading to different response of volatility to

good and bad news, are easily parametrized. As noted in Asai (2006), exponential volatility models

offer the best discrete approximation to continuous time asset pricing models. These advantages

advocate for an extension of the exponential volatility specification to multivariate dimensions. In

stochastic volatility models such generalization is quite straightforward and very well established,

on the other hand, in multivariate conditional volatility models, the exponential specification is

not very popular. The matrix exponential GARCH model of Kawakatsu (2006) is currently the

only "one-shock" multivariate exponential volatility model in the literature. The conditional vari-

ance dynamics are specified in the matrix logarithm of the conditional covariance, and the model

maintains positive definiteness of the conditional covariance matrix with no need of parameters

constraints. However it is not clear if the parameterization could be generalized to include long

memory dependence in the volatility. Estimation of the matrix exponential GARCH model has

several drawbacks as numerically stable evaluation of the exponential of a matrix is a very delicate

issue. Moreover there is a complete lack of asymptotic distribution theory for the PMLE or any

other estimator of this model.

In the next chapter we introduce a class of multivariate exponential volatility models that en-

compasses both "one-shock" and "two-shock" specifications and allows for a wide range of degree

of persistence of shocks to the conditional variance. The exponentiation is the element by ele-

ment exponentiation of the diagonal variance matrix, along the line of Harvey et al. (1994). This

specification permits greater flexibility than the matrix exponential one and offers the considerable

advantage to encompass multivariate asymmetric Stochastic Volatility models. In the literature
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there are few examples of parameterizations that nest different type of multivariate models. The

more comprehensive one is perhaps the Asymmetric Dynamic Covariance matrix (ADC) model

of Kroner and Ng (1998), which reduces to different multivariate GARCH models under differ-

ent combinations of the initial set of conditions. To our knowledge however, nesting multivariate

stochastic and conditional volatility models has not been attempted yet. In the next chapter we

impose exponential decay in the autocovariances of the squares of the observables and address

weakly dependent parameterizations of the model. The next section introduces the model with

some discussion. Section 4.3 considers statistical inference in case of finite parameterization and

advocates the use of the Whittle estimator. Section 4.4 lists a first set of regularity conditions and

derives the strong consistency of the estimator. The last section reinforces the assumptions and es-

tablishes the asymptotic normality of the Whittle estimates in both "one-shock" and "two-shock"

specifications.

4.2 The Multivariate Exponential Volatility model

Consider an observable vector stochastic process xt of dimension n×1. Let zt be a sequence of

unobservable real-valued independent identically distributed (i.i.d) random vectors of dimension

n × 1. We assume that zt has zero mean and positive definite variance matrix
∑

z with elements

on the main diagonal normalized to one. Let εt be a sequence of n × 1 independent identically

distributed unobservable real-valued random vectors with zero mean and positive definite variance

matrix
∑

εwith elements on the main diagonal normalized to one. The innovations u′t = (z′t, ε
′
t)

form a sequence of unobservable i.i.d. random vectors of dimension 2n × 1. We allow zt and εs

to be correlated for some t = s and denote with
∑

εz their covariance matrix at time t = s, we

do not require this matrix to be diagonal. For every t 6= s, zt and εs are assumed uncorrelated. In

what follows we indicate by Ft the sigma field generated by the past information until time t and

by I (A) the indicator of the set A. We define exp (x) as the element by element exponentiation
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operator and ln (x) as element by element logarithmic operator. We denote the ath element of any

vector xt by x
(a)
t and the (a, b) element of any matrix A by A(α,b) and the (a, a) element of any

diagonal matrix Ψ by Ψ(a). Our interest lies in the zero mean Multivariate Exponential Volatility

(MEV) process, defined by the following equations:

xt = D
1
2
t (θ) zt, (4.6)

D
1
2
t = diag

{
exp(h

(a)
t /2)

}
, t = 1, ..., T, a = 1, ..n, (4.7)

ht = ω0 +
∞∑
j=0

Ψ0jεt−j−1

∞∑
j=0

‖Ψ0j‖2 <∞, a.s., (4.8)

E (z′tεt) =

( ∑
0z

∑
0zε∑

0zε

∑
0ε

)
. (4.9)

The vector ω is a n × 1 vector of constants and the sequence {Ψ0j}∞j=0 is a sequence of diagonal

and square summable n×n parameter matrices, i.e. Ψk ≡ diag {ψ1k, ψ2k, ..., ψnk}. The individual

log volatilities h
(a)
t evolve according to

h
(a)
t = ω

(a)
0 +

∞∑
j=0

Ψ
(a)
0j ε

(a)
t−1−j a.s. (4.10)

Equations (4.6) to (4.10) represent a class of multivariate exponential volatility processes that

encompasses both "one-shock" and "two-shocks" specifications. When εt ≡ ε (zt) for some in-

stantaneous transformation ε (.), class (4.6)-(4.10) yields a Multivariate GARCH model. In this

case the level equation shocks, {zt}∞t=1 , drive also the evolution of the log volatilities, according

to

ht = ω +

∞∑
j=0

Ψj ε (zt−j−1) , a.s.,

∞∑
j=0

‖Ψj‖2 <∞, (4.11)

and the conditional variance matrix of xt, var (xt|Ft−1), is easily obtained as

Ht = D
1
2
t ΣzD

1
2
t .

As in the Constant Conditional Correlation model of Bollerslev (1990) the conditional variance
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matrix is expressed as the product of a time varying conditional standard deviation matrix D
1
2
t and

a constant conditional correlation matrix Σz with diagonal elements normalized to one. However,

the individual conditional variances evolve according to an exponential specification rather then the

standard GARCH(p, q) specification of CCC models. As a consequence, positive definiteness of

Ht follows from positive definiteness of Σz with no need of constraints on the conditional standard

deviation matrix. The off diagonal elements of the conditional covariance matrix are specified as

[Ht](a,b) = σ(z) exp
(
h

(a)
t /2

)
exp

(
h

(b)
t /2

)
,

where σ(z) is the (a, b) element of the matrix Σz. The specification of the function ε (.) is general

enough to yield different evolution patterns of the individual conditional volatilities in the same

model. For example, if one specifies some transformations ε (.) as

ε
(a)
t = ε

(
z

(a)
t

)
= θ

(a)
0 z

(a)
t + δ(a)

(∣∣∣z(a)
t

∣∣∣− µ|z(a)|) ,
the corresponding volatilities follow EGARCH specifications

h
(a)
t = ω+

∞∑
j=0

Ψ
(a)
j

(
θ

(a)
0 z

(a)
t−j−1 + δ(a)

(∣∣∣z(a)
t−j−1

∣∣∣− µ|z(a)|)) ,

which, in practical applications, can be parametrized as ARMA processes of different (p, q) orders,

h
(a)
t = ω+

(
1 + β1L+ ...+ βpL

p
)

(1−∆1L+ ...+ ∆qLq)
ε
(
z

(a)
t−1

)
,

and exhibit different degrees of leverage. In the same model, one might specify other transforma-

tions ε (.) as

ε
(b)
t = ε

(
z

(b)
t

)
= θ(b)z

(b)
t + δ(b)

(
z

(b)
t I

(
z
(b)
t >0

) − µ
z(b)
I(
z
(b)
t−j>0

)) ,

allowing the corresponding volatilities to evolve according to the GJR-GARCH (Glosten, Jagan-

nathan, Runkle) specification

h
(b)
t = ω+

∞∑
j=0

Ψ
(b)
j

(
θ(b)z

(b)
t−j + δ(b)

(
z

(b)
t−jI

(
z
(b)
t−j

>0
) − µz(b)I(z(b)t−j>0

)))
and displaying a different kind of asymmetric behavior. Indirect spillover effects between different

assets are introduced through the simultaneous correlation of different mean shocks which implies
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that shocks to the return of asset b at time t are correlated with variation of volatility of asset

a, h
(a)
t − h

(a)
t−1. On the other end, in its "two-shocks" formulation the model is a multivariate

Stochastic Volatility model with leverage. The volatility shocks are no longer specified as known

functions of the mean shocks, implying that the volatility is latent. Asymmetries and leverage

effects in individual volatilities are introduced by assuming non zero simultaneous correlation

between the level and the volatility shocks of the same asset. This induces correlation between the

return x
(a)
t at time t and the volatility variation of the same asset, h

(a)
t − h

(a)
t−1. The model includes

indirect spillover effects between different assets by allowing for non zero simultaneous correlation

between the level and the volatility shocks of different assets. Asymmetric multivariate Stochastic

Volatility models in the literature, such as the MSV-L of Asai and McAleer (2005), specify the

volatility equation rather than an MA(∞) process as an autoregressive process of order one,

ht = ω + φ ◦ ht−1 + ηt,

where φ is a n × 1 vector of parameters all satisfying

∣∣∣φ(a)
∣∣∣ < 1 and the operator ◦ denotes the

Hadamard product. Furthermore they assume conditional joint Gaussianity of the innovations u′t

= (z′t, ε
′
t), (

zt
εt

)
|ht ∼ N2n

[(
0
0

)
,

( ∑
z

∑
zε∑

zε

∑
ε

)]
,

and restrict the matrix
∑

zε to diagonal. We do not assume the normality anywhere in our results.

However it is to be noted that we do not allow shocks at time t to affect the log volatility at

time t, thus while in the two-shocks formulation of the model the volatility is latent, the levels of

observable {xt} follow a martingale difference process.

Estimation of multivariate volatility models is generally based on quasi maximum likelihood

methods. However asymptotic properties of the MLE estimator for exponential volatility models

have not been established in the literature. A necessary condition for the observed likelihood to be-

have well asymptotically is invertibility of the model, which guarantees that the likelihood will not
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explode nor converge to zero for any value of the parameters in the parameter space. Invertibility

is achieved when the mean value shocks zt can be expressed as as a convergent function of the ob-

servations xs for s ≤ t; however in the exponential specification the standardized mean shocks can

only be computed as ẑt (θ) = xt/ exp
{
ĥt (θ) /2

}
where ĥt (θ) is a function of the xs as well. This

recursiveness makes extremely difficult to establish the uniform convergence of the Hessian matrix

in a neighborhood of the true parameter. Some specific results on the asymptotics of MLE for uni-

variate exponential volatility models are available under highly specific assumptions that cannot

readily be verified. Straumann and Mikosch (2005) provided a sufficient condition for invertibility

of a low order univariate EGARCH. However they suggest that this condition is practically infeasi-

ble except when ht is correlated with ht−1 but not with ht−s for any s ≥ 2. For an EGARCH (1,1),

Demos and Kyriakopoulou (2014) present sufficient conditions for the supremum norm of the sec-

ond order derivative of the likelihood to be finite, however these conditions restrict the admissible

parameter space and are extremely difficult to verify. Kawakatsu (2006) proposes maximum like-

lihood estimation of the Matrix Exponential GARCH, but he does not establish its asymptotic

properties. Estimation of multivariate Stochastic Volatility models has the added difficulty of the

likelihood function evaluation arising from the latency of the volatility process. Because volatility

is latent, in order to derive the likelihood, the vector of unobserved volatilities has to be integrated

out of the joint probability distribution. This implies the evaluation of a T dimensional integral,

which requires numerical methods. In recent years, the empirical literature on stochastic volatility

has developed different ways of dealing with this issue, for example introducing MCMC and SML

methods for numerical evaluation of the likelihood, or implementing estimation of the parameters

via auxiliary models. The asymptotic properties of these methods are not firmly established in the

literature.

We propose an estimation method suitable for both specifications of the MEV model and es-
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tablish its asymptotic properties. We follow Harvey et al. (1994) and estimate a logarithmic

transformation of the model,

log x2
t = ω0+

∞∑
j=0

Ψ0jεt−j−1 + log z2
t . (4.12)

In what follows we set without loss of generality µlog x2 = ω0 + µlog z2 = 0 and estimate

yt =
∞∑
j=0

Ψ0jεt−j−1 + ξt. (4.13)

where yt ≡ log x2
t and ξt ≡ log z2

t . The transformed model takes the form of a vector signal plus

noise model, where the zero mean signal ht has the one sided MA(∞) representation in (4.8) , and

the noise is an i.i.d process which can be correlated with the signal. We denote the variance matrix

of the noise by Σ0ξ, and the covariance matrix of the signal and the noise by Σ0εξ. Without any

loss of generality we set the vector of mean parameters ω0 equal to zero.

Parametric estimation of model (4.12) requires to finitely parametrize the signal coefficients

Ψ0j . We assume that we know a set of functions Ψj (.) of the p × 1 vector ζ with p < ∞, such

that, for some unknown ζ0,

Ψj (ζ0) = Ψ0j j ≥ 1.

Analogously we parametrize the covariance matrices assuming that we know functions Σε(.),

Σξ(.), Σεξ(.) of the q × 1 vector τ with q < ∞, such that, for some unknown τ 0, Σε(τ 0) = Σ0ε,

Σξ(τ 0) = Σ0ξ and Σεξ(τ 0) = Σ0εξ. We don’t make any assumption on the joint density of the in-

novations {ξ′t, ε′t}, so τ 0 contains the n + n (n− 1) /2 unknown parameters of vech(Σ0εξ), and

the n (n− 1) /2 unknown parameters of respectively Σ0ε and Σ0ξ, yielding q = n+3n (n− 1) /2.

This specification of τ 0 however can be straightforward extended to models where the joint den-

sity of the innovations is specified up to some unknown parameters. We wish to estimate the

s (≡ p+ q) dimensional vector θ′0 = (ζ ′0, τ
′
0)′ on the basis of a sample {y1, ...,yT} of observa-

tions. The following section introduces the estimation method.
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4.3 The Whittle likelihood

The problem is the statistical estimation of the parameter θ in a vector linear signal plus noise

model, yt = ξt + ht, based on finite observations {y1, ...,yT}. For this purpose, the frequency

domain approach rather than the time domain seems particularly effective. The Whittle estimator

of θ is the frequency domain approximation of the Gaussian log likelihood, used as a measure of

distance between the periodogram of squared observations and the model spectral density f (λ, θ).

The spectral density matrix of yt has functional form

f(λ,θ) =
Σξ(τ )

2π
+

k(eiλ, ζ)Σε(τ )k(eiλ, ζ)∗

2π
+Σεξ(τ )e−iλk(eiλ, ζ)∗+eiλk(eiλ, ζ)Σ′εξ(τ ), (4.14)

where k(eiλ, ζ) =
∑∞

j=0 Ψj (ζ) eiλj and λ ∈ [−π, π]. We denote by Γ̃ (u, θ) the autocovariance

matrix of the process,

Γ̃(θ, u) = I(u=0)Σξ (τ ) + Σε (τ )
∞∑
j=0

Ψj (ζ) Ψ
′

j+u (ζ) + I(m6=0)Ψ|u|−1 (ζ) Σξε (τ ) , (4.15)

for u ≥ 0, and we denote by C̃ (m) and IT (λ) respectively, the serial covariance and the peri-

odogram matrices, that are constructed from a partial realization of {y1, ...,yT}, namely,

C̃ (m) =
1

T

T−|m|∑
t=1

yty
′
t+|m|,

for 0 ≤ m ≤ T − 1, and C̃ (m) = C̃ (−m) for −T + 1 ≤ m < 0; and

IT (λ) = WT (λ)Wt(λ)∗,

where WT (λ) is the discrete Fourier transform of the data

WT (λ) =
1√
2πT

T∑
t=1

yte
iλt,

and the symbol "*" denotes conjugate transposition. We avoid mean correction of the periodogram

because of its translation invariance property at the Fourier frequencies [−π, π]. The Whittle esti-

mator of θ is defined as

θ̂ ≡ arg min
θ∈Θ

QT (θ) ,
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where the function QT (θ), called the Whittle or pseudo log-likelihood function, is given as

QT (θ) =
1

2π

∫ π

−π
log det f(λ,θ)dλ+

1

2π

∫ π

−π
tr
{
f−1(λ,θ)IT (λ)

}
dλ. (4.16)

Although we are not making Gaussianity assumptions on the yt, this estimator is suggested by the

Gaussian pseudo maximum likelihood estimator obtained minimizing−2LT (θ) /T , where LT (θ)

is the log-likelihood function:

LT (θ) = −T
2

log (det Γ (θ, u))− T

2
ytΓ

−1 (θ, u) y′t.

Minimization of this function is computationally very cumbersome. The pseudo maximum likeli-

hood estimator is the solution of the system of equations:

∂

∂θ
LT
(
θ̄
)

= 0,

whose numerical evaluation requires many trials. If the covariances of the process have a slow

rate of decay to zero, the covariance matrix might become almost singular. Moreover the evalua-

tion of the inverse of the covariance matrix may be numerically unstable. The frequency domain

approach to estimation seems instead particularly effective, since an approximate likelihood func-

tion in the frequency domain has a manageable expression for estimation and testing purposes.

The Whittle spectral approximation to the likelihood function was originally proposed by Whittle

(1952). Under the assumption of Gaussianity, the discrete Fourier transforms of the data WT (λt),

at frequencies λt, t = 1, ..., T , equispaced in [−π, π], have a complex-valued multivariate nor-

mal distribution. For large T they are approximately independent, each with probability density

function :

π−2 {det (f (λt,θ))}−1/2 exp

[
−1

2
tr
{
f−1 (λt,θ)WT (λt)W

∗
T (λt)

}]
.

Because the discrete Fourier transforms constitute a sufficient statistic for θ (Hannan, 1970, pp.

224-225), an approximate log-likelihood function of θ based on {y1,...,yT} is given, up to constant

63



multiplication, by:

−
T∑
t=1

log det f(λt,θ)−
T∑
t=1

tr
{
f−1(λt,θ)IT (λt)

}
.

In integral form, this has the expression

−T
[

1

π

∫ π

−π
log det f(λ,θ)dλ+

1

π

∫ π

−π
tr
{
f−1(λ,θ)IT (λ)

}
dλ

]
.

Therefore we may either approximate −2LT (θ) by (4.16) or by its discretized version

Q̃T (θ) =
1

T

T∑
t=1

log det f(λt,θ) +
1

T

T∑
t=1

tr
{
f−1(λt,θ)IT (λt)

}
, (4.17)

where λt = 2πt/T,−T/2 < t ≤ T/2. In practice Q̃T (θ) will tend to be preferred to QT (θ)

because for Q̃T (θ) the WT (λt) may be computed efficiently using the fast Fourier transform. In

this chapter we present result for the Whittle estimator based onQT (θ), however similar arguments

and results hold when its discrete version is used.

A slightly different spectral approximation to the likelihood function was introduced by Dun-

smuir and Hannan (1976). In the context of vector linear processes

yt =
∞∑
l=0

Al (ϑ) et−l,
∞∑
l=0

‖Al (ϑ)‖2 <∞ (4.18)

they suggested minimization of the quantity

L̃T (ϑ) = log det Ke (ϑ) +
1

2π

∫ π

−π
tr
{
f−1(λ,ϑ)IT (λ)

}
dλ, (4.19)

where Ke (ϑ) denotes the variance covariance matrix of the linear innovations of the process.

However this objective function is by far less tractable than QT (θ) for parameters estimation

in signal plus noise processes. Indeed signal plus noise processes offer an example of possibly

linearly regular processes whose spectral density function is not easily factored. Even if a signal

plus noise process admits decomposition (4.18) and has spectral density with representation

f (λ,ϑ) =
1

2π
ϕ
(
eiλ,ϑ

)
Ke (ϑ)ϕ

(
eiλ,ϑ

)∗
, (4.20)

where ϕ
(
eiλ,ϑ

)
=
∑∞

l=0Al (ϑ) eilλ, it might not be possible to express parameters ϑ in (4.20)

as closed form functions of the parameters of the signal and the noise separately. In this case we

say that the spectrum f (λ,ϑ) is not easily factored. This is not always the case for signal plus
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noise process, however when the signal and the noise are correlated, an estimation procedure that

does not require factorization but only knowledge of the functional form of the spectral density is

preferred.

Statistical literature on Whittle estimation has established the asymptotic properties of the esti-

mator under a variety of conditions when the true underlying model is the vector linear process in

(4.18) , with white noise innovations et. For such processes there is no factorization issue, since

the functional form of the spectral density and its factored representation coincide. In this context,

Dunsmuir and Hannan (1976) establish the consistency and asymptotic normality of the estimator

minimizing L̃T (ϑ), assuming separate parameterization of the coefficients and the covariance ma-

trix of the process. They partition the true parameter ϑ0 as (µ0, φ0) ∈ Θµ × Θφ, so that K (ϑ) ≡

K (µ) andAl (ϑ) ≡ Al (φ) and obtain the asymptotic normality and independence of
√
T
(
φ̂− φ

)
and
√
T (µ̂− µ). Dunsmuir (1979) extends these results to the case of non-separable parameter

space noting that, while the asymptotic covariance matrix of the estimates does not depend on the

fourth cumulants of the innovations in a model with separate parameterization, it does if the para-

meter space is no longer separable. Hosoya and Taniguchi (1982) derive the asymptotic normality

of the estimator minimizing QT (ϑ) when the underlying model is a vector linear process with

non-separate parameterization and innovations satisfying milder mixing conditions.

Extensions of these results to signal plus noise processes are limited to the case of autoregressive

signal and at least incoherent signal and noise. This simplified setting allows for factorization of

the spectral density function and a straightforward application of the previous results. Hosoya and

Taniguchi (1982) apply their asymptotic theory to a univariate signal observed superimposed with

white noise ξt. The signal ht is generated by a finite autoregressive process
∑q

j=1 bjht−j = ηt,

where the ηt have zero mean, finite variance and are independent from ξs for every t and s. The
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parameter of interest is θ′ =
(
b1, ..., bq, σ

2
η, σ

2
ξ

)′
. The spectral density function of the process

fθ (λ) =
1

2π

σ2
η∣∣∣∑q

j=1 bje
iλj

∣∣∣ +
σ2
ξ

2π
,

is represented, applying Fejer-Riesz theorem ( see, e.g., Archiezer, 1956, page 152), as

fϑ (λ) =
σ2

2π

∣∣∣∣∣
∑q

j=1 ψje
iλj∑q

j=1 bje
iλj

∣∣∣∣∣
2

, (4.21)

where the parameter ϑ is a closed form function of θ, since σ2 and the ψj can be expressed as

closed form functions of θ, and the bjs are unchanged. Relying on representation (4.21), Hosoya

and Taniguchi derive the asymptotic normality of
√
T
(
θ̂ − θ0

)
. An analogous result is provided

by Dunsmuir (1979), who applies his asymptotic theory to a scalar autoregressive signal plus noise

process, with uncorrelated signal and noise. Dunsmuir suggests a further extension of his results

to incoherent vector signal plus noise processes. He considers an uncorrelated vector signal plus

noise model yt = ht + ξt, where the signal and the noise have one sided representation

ht =
∞∑
j=0

C
(h)
j (θh) εt−j,

ξt =
∞∑
l=0

C
(x)
l (θξ)ηt−l,

with uncorrelated shocks εt and ηs for every t and s. Using the purely linear representation of the

process,

yt =
∞∑
k=0

Dk (ϑ) et−k, tr
∞∑
k=0

Dk (ϑ)Ke (ϑ)Dk (ϑ)∗ <∞, (4.22)

where theDk (ϑ) are rectangular coefficients,Dk (ϑ)≡
[
C

(h)
k (θh)

...C
(x)
k (θξ)

]
and the innovations

are e′t ≡ (ε′t,η
′
t), he factors the spectral density

fy (λ,θ) = fh (λ,θh) + fξ (λ,θξ)

as

f (λ,ϑ) = ky (ϑ)Ke (ϑ) k∗y (ϑ) ,

and discusses in details a set of conditions on the disturbances of the linear representation that allow

to establish the asymptotic properties of ϑ̂ along the line of his previous findings. He suggests for

66



example that the assumption of martingale difference of the innovations et with respect to their past

might not be appropriate because, rather than the prediction of yt based on its past, the prediction

of the signal based on the past of the process might be of more interest. However he does not

suggest how the asymptotic normality of θ̂
′ ≡

(
θ̂
′
h, θ̂

′
ξ

)
could be derived from the asymptotic

normality of ϑ̂ using representation (4.22) or otherwise.

This chapter extends the current literature to vector signal plus noise models where the signal,

ht =
∑∞

j=0 Ψj (θ) εt−j, and the i.i.d noise can be simultaneously correlated. We establish the

consistency and the asymptotic normality of the estimates under fairly general regularity condi-

tions, easily verifiable for both "one-shock" and "two-shocks" specifications, without relying on

the factorization of the spectral density but only on the knowledge of its functional form.

4.4 Consistency

This section discusses the strong consistency of the Whittle estimator of θ in model (4.13). We

first list the assumptions with some discussion, then present the main result. All the proofs of the

technical lemmas are in appendix A.1 and A.2. In what follows we denote by K a generic finite

constant, not always the same. The symbol " ∼" denotes asymptotic equivalence: a(x) ∼ b(x)

as x → x0 when a(x)/b(x) → 1. The (a, b) component of any matrix Γ is denoted as Γ(a,b), the

(a, a) component of a diagonal matrix Ψ0j is denoted by Ψ
(a)
0j . We denote by ε

(a)
t the ath element

of the vector ε at time t. We assume that all the elements of ξt, εt, Ψj (ζ) are real. We define

Π ≡ [−π, π] and denote by Lp (Π) the class of p-integrable functions defined on Π. The symbol

"‖A‖ ” denotes the Euclidean norm of a matrix A, the symbol "|a| ” denotes the absolute value of

a scalar a. The symbol "> 0” denotes strict positive definiteness when applied to a matrix.
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ASSUMPTION 4.1

[A] {ε′t, ξ′t} are i.i.d unobservable random vectors, and, for every a, b = 1, ..., n,

(i) Eε
(a)
0 = 0 and E(ε0ε

′
0) = Σε (τ ) , Σε (τ ) <∞.

(ii) E
∣∣∣ξ(a)

0

∣∣∣ <∞ and E(ξ0ξ
′
0) = Σξ (τ ) , Σξ (τ ) <∞.

(iii) E (ξ0ε
′
0) = Σξε (τ ) , Σξε (τ ) <∞.

[B] θ0 is an interior point of the compact parameter space Θ ∈ Rs.

[C] For any θ ∈ Θ, and for all a = 1, ..., n,

(i) The matrices Σε (τ ), Σξ (τ ) and Σξε (τ ) are continuous.

(ii) The Ψk(ζ) are continuous for all k and

|Ψ(a)
k (ζ)| ≤ K1|Ψ(a)

j (ζ)|, for 1 ≤ j ≤ k, k ≥ 1.

(iii) For a boundedly differentiable function e(ζ) ∈ (−1, 1),

Ψ
(a)
j (ζ) ∼ K2e

j(ζ), as j →∞.

[D] For any θ ∈ Θ, and for all a = 1, ..., n,

(i) Σε (τ ), Σξ (τ ) and Σξε (τ ) have continuous first derivatives.

(ii) For all k, the Ψk(ζ) have continuous first derivatives.

(iii) For a boundedly differentiable function e(ζ) ∈ (−1, 1)

∂

∂ζ ih
Ψ

(a)
j (ζ) ∼ E1 (j; ζ) ej(ζ) as j →∞,

for all ih = 1, ..., p, where |E1 (j; ζ)| ≤ Kjr.

[E] For every θ ∈ Θ whenever θ 6= θ0, Γ̃ (u,θ) 6= Γ̃ (u,θ0), for all u ≥ 0.

[F] For any τ ∈ Θ, Σε (τ ) is a strictly positive definite matrix.

[G] (i) f−1 (λ,θ) has elements in L2 (Π) , bounded and continuous at all (λ, θ) ∈ Π×Θ.

(ii) For every η > 0, the function

φη (λ, θ) ≡ f (λ, θ)

det f (λ,θ) + η
,

has elements in L2 (Π) , bounded and continuous at all (λ, θ) ∈ Π×Θ.
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Time domain assumptions are not common in the statistical literature on Whittle estimation,

that typically defines regularity conditions in term of a certain degree of smoothness of the model

spectral density and its higher order derivatives. Whereas in a non parametric framework those

assumptions represent a natural choice, they might not be motivated in a parametric setting. In

this chapter we impose most regularity conditions directly on the model. Appendix A.1. formally

establishes a number of properties of its spectral density, implied by Assumption 4.1. Under as-

sumption 4.1.[A] and square summability of the coefficients assumed in (4.8) , the yt are strictly

stationarity and ergodic. Strict stationarity and ergodicity of the underlying process are common

assumptions in the statistical literature on Whittle estimation. Robinson (1978) replaces the as-

sumption of strict stationarity by the weaker assumption of fourth order stationarity as is also

done in Hosoya and Taniguchi (1982). Hosoya and Taniguchi moreover dispense with the explicit

assumption of ergodicity and impose a Lindeberg condition. Assumption 4.1[B] is a standard as-

sumption to ensures that θ0 is an interior point of the compact closure of an open s-dimensional

manifold (see for example Hannah (1973) and Robinson (1978)). It implies boundedness of any

function of θ ∈ Θ. Identification of the parameters is granted by Assumption 4.1.[E] , which rules

out the possibility of two equivalent structures giving rise to the same spectral density (4.14).

Assumption 4.1[F] ensures strict positivity of the spectral density at all frequencies. We follow

Hannan (1973), Dunsmuir and Hannan (1976), and Hosoya and Taniguchi (1982) who, in the con-

text of Whittle estimation of linear processes, restrict the parameter space to a subset Θ0 where the

spectrum is positive. Assumption 4.1.[C](iii) imparts the exponential decay of the parameters of

the signal process. The imposition of this exact rate together with Assumption 4.1.[C](ii) implies

the absolute summability of the signal process which in turn implies the absolute summability of

the autocovariance function of yt. This latter condition is sufficient to guarantee the existence and

the square integrability of the spectral density. Moreover it ensures its uniform continuity at all
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(λ, θ) ∈ Π×Ω. In contrast to Hannan (1973) and Dunsmuir and Hannan (1976), we follow Robin-

son (1978) and dispense with the assumption of Lipschitz continuity of degree α > 1/2 in the

proof the consistency of the estimator. However we directly impose smoothness conditions on the

inverse of the spectral density matrix and in Assumption 4.1 [G] to ensure the uniform convergence

of the objective function.

Consistency of the Whittle estimator is generally assumed in the literature. The only available

result is due to Hannan and Dunsmuir (1976), who provide an extension of Hannan (1973) original

univariate result to the vector linear process with representation (4.18) for the estimator minimizing

(4.19). They establish the result assuming strict stationarity and ergodicity of the process, Lipschitz

continuity of degree α > 1/2 of the spectral density, and martingale difference linear innovations

that satisfy E (ete
′
s) = µts and E

(
ete
′
s | Ft−1

)
= Ke (τ). Moreover they assume

inf
ϑ∈Θ

L̃T (ϑ) = L̃T (ϑ0) = log det Ke (τ 0) + s, (4.23)

where s is the dimension of vector yt. We provide an extension to their results for an estimator

minimizing (4.16) in model (4.13) with the following theorem.

Theorem 4.1 Under Assumption 4.1, as T →∞

θ̂T →a.s θ0.

For the purpose of establishing Theorem 4.1, we define Q (θ) as

Q (θ) ≡ 1

2π

∫ π

−π
log det f(λ,θ)dλ+

1

2π

∫ π

−π
tr
{
f−1(λ,θ)f(λ,θ0)

}
dλ.

Additionally recall that in Assumption 4.1[G] we introduced for any η > 0, the function,φη (λ, θ) ≡

f (λ, θ) / (d (λ, θ) + η) , where d (λ, θ) ≡ det f (λ, θ) and f (λ, θ) /d (λ, θ) is by definition the ad-

joint matrix of f−1 (λ, θ). In what follows, whenever we replace f−1 (λ, θ) by φη (λ, θ) we refer to

QT (θ) as QT,η (θ) and to Q (θ) as Qη (θ), denoting respectively

QT,η (θ) ≡ 1

2π

∫ π

−π
log det f(λ,θ)dλ+

1

2π

∫ π

−π
tr
{
φη(λ,θ)IT (λ)

}
dλ,
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and

Qη (θ) ≡ 1

2π

∫ π

−π
log det f(λ,θ)dλ+

1

2π

∫ π

−π
tr
{
φη(λ,θ)f(λ, θ0)

}
dλ.

The consistency of the estimator follows from the usual steps for consistency of M-estimators. The

following lemma establishes the uniform continuity of the objective function in (λ, θ) ∈ Π× Ω.

Lemma 4. 1 If Assumption 4.1 holds, then

(a) limT→∞QT (θ) = Q (θ) almost surely uniformly in θ ∈ Θ,

(b) for any η > 0, uniformly in θ ∈ Θ, limT→∞QT,η (θ) = Qη (θ) almost surely.

Dunsmuir and Hannan (1976, Lemma 1) establish a similar result for an objective function

without the term
∫ π
−π log det f(λ,θ)dλ under stronger conditions that Assumption 4.1. Moreover

they assume that the minimum of the objective function is achieved at θ0, whereas we establish it

with the following lemma.

Lemma 4.2 If Assumption 4.1 holds, then for all θ ∈ Θ,

inf
θ∈Θ

Q (θ) = Q (θ0) =

∫ π

−π
log det f (λ,θ0) dλ+

1

2π

∫ π

−π
tr
{
f−1(λ,θ0)f(λ,θ0)

}
dλ

=

∫ π

−π
log det f (λ, θ0) dλ+ T.

We follow Giraitis et al. (2012, Chapter 8, Theorem 8.2.1) and prove Theorem 4.1 by contra-

diction. Suppose that θ̂T is not consistent for θ0. Then by the compactness of the parameter space

Θ, there is a subsequence θ̃T (M) of θ̂T converging to some ϑ ∈ Θ such that ϑ 6= θ0. Then

lim inf
M→∞

QT (M)

(
θ̃T (M)

)
≥ sup

η>0

{
lim inf

M→∞

{
1

2π

∫ π

−π
log det f

(
λ, θ̃T (M)

)
dλ+

1

2π

∫ π

−π
tr
[
φη(λ, θ̃T (M))IM(λ)

]
dλ

}}
=

1

2π

∫ π

−π
log det f (λ,ϑ) dλ+ sup

η>0

{
1

2π

∫ π

−π
tr
[
f (λ,θ0)φη (λ,ϑ)

]
dλ

}
,

where the first inequality follows from the definition of φη, and the last equality follows from

Lemma 4.1, part (b). As η → 0

1

2π

∫ π

−π
log det f (λ,ϑ) dλ+ sup

η>0

{
1

2π

∫ π

−π
tr
[
f (λ,θ0)φη (λ,ϑ)

]
dλ

}
71



→ 1

2π

∫ π

−π
log det f (λ,ϑ) dλ+

1

2π

∫ π

−π
tr
[
f (λ,θ0) f−1 (λ,ϑ)

]
dλ a.s.

Assumption 4.1[E] and Lemma 4.2 imply that for every ϑ 6= θ0

1

2π

∫ π

−π
log det f (λ,ϑ) dλ+

1

2π

∫ π

−π
tr
[
f (λ,θ0) f−1 (λ,ϑ)

]
dλ

>
1

2π

∫ π

−π
log det f (λ,θ0) dλ+ T .

So we may conclude that

lim inf
M→∞

QT (M)

(
θ̃T (M)

)
>

1

2π

∫ π

−π
log det f (λ,θ0) dλ+ T . (4.24)

However in view of the definition of the estimator θ̂T , QT (M)

(
θ̃T (M)

)
≤ QT (M) (θ) for all θ ∈ Θ.

Therefore

lim sup
M→∞

QT (M)

(
θ̃T (M)

)
≤ inf

θ∈Θ
lim sup

M→∞
QT (M) (θ) (4.25)

= inf
θ∈Θ

Q (θ) =
1

2π

∫ π

−π
log det f (λ,θ0) dλ+ T , (4.26)

where the first equality uses Lemma 4.1, part(a) and the last equality uses Lemma 4.2. Hence the

contradiction:

lim sup
M→∞

QT (M)

(
θ̃T (M)

)
≤ 1

2π

∫ π

−π
log det f (λ,θ0) dλ+ T < lim inf

M→∞
QT (M)

(
θ̃T (M)

)
,

almost surely, which completes the proof.

The vector of mean parametersω0 cannot be identified by the Whittle function since its elements

enter linearly in log x2
it and are lost when computing the empirical autocovariances of the process.

However it can be estimated using the sample mean of the vector yt = (log x2
1t, log x2

2t, ..., log x2
nt)
′.

Since ŷT = 1/T
∑T

t=1 yt is a
√
T -consistent estimate of Eyt = ω0 + Eξt under Assumption 4.1,

we can obtain a
√
T -consistent estimate of ω0 subtracting the Whittle estimate of Eξt from ŷT .

4.5 Asymptotic Normality

This section derives the asymptotic normality of the estimator. We introduce a set of stronger

conditions and reinforce the assumptions on the moments of the unobservable shocks driving the

process assuming finite fourth moments. We strengthen the degree of smoothness of the spectral

density and extend the regularity conditions of Assumption 4.1 to the higher order derivatives of
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the spectral density matrix up to the third order.

ASSUMPTION 4.2

[A] {ε′t, ξ′t} are i.i.d unobservable random vectors, and for all a, b, c, d = 1, ..., n,

(i) Eε
(a)
0 = 0 and E

(
ε

(a)
0 ε

(b)
0 ε

(c)
0 ε

(d)
0

)
= Kε

abcd (τ ) , |Kε
abcd (τ )| <∞.

(ii) E
∣∣∣ξ(a)

0

∣∣∣ <∞ and E
(
ξ

(a)
0 ξ

(b)
0 ξ

(c)
0 ξ

(d)
0

)
= Kξ

abcd (τ ) , |Kε
abcd (τ )| <∞.

(iii) E
(
ξ

(a)
0 ε

(b)
0 ξ

(c)
0 ε

(d)
0

)
= Kεξ

abcd (τ ) ,
∣∣∣Kεξ

abcd (τ )
∣∣∣ <∞.

[B] θ0 is an interior point of the compact parameter space Θ ∈ Rs.

[C] For any θ ∈ Θ, and for all a = 1, ..., n,

(i) The matrices Σε (τ ), Σξ (τ ) and Σξε (τ ) are continuous.

(ii) The Ψk(ζ) are continuous for all k and

|Ψ(a)
k (ζ)| ≤ K1|Ψ(a)

j (ζ)| for 1 ≤ j ≤ k, k ≥ 1.

(iii) For a boundedly differentiable function e(ζ) ∈ (−1, 1),

Ψ
(a)
j (ζ) ∼ K2e

j(ζ) as j →∞.

[D] For any θ ∈ Θ, and for all a = 1, ..., n,

(i) Σε (τ ), Σξ (τ ) and Σξε (τ ) have continuous first, second and third derivatives.

(ii) For all k, the Ψk(ζ) have continuous first, second and third derivatives.

(iii) For a boundedly differentiable function e(ζ) ∈ (−1, 1)

∂rΨ
(a)
j (ζ)

∂ζ ih∂ζ ih∂ζ ih
∼ Er (j; ζ) ej(ζ) as j →∞,

for all ih = 1, ..., p, h = 1, 2, 3 and r = 1, 2, 3, where |Er (j; ζ)| ≤ Kjr.

[E] For every θ ∈ Θ whenever θ 6= θ0, Γ̃ (u,θ) 6= Γ̃ (u,θ0), for all u.

[F] For any τ ∈ Θ, Σε (τ ) is a strictly positive definite matrix.

[G] (i) f (λ,θ0) has elements that satisfy a Lipschitz condition of degree α > 1/2.

(ii) f−1 (λ,θ) has elements in L2 (Π) , bounded and continuous at all (λ, θ) ∈ Π×Θ.

(iii) (∂/∂θ) f−1 (λ,θ) has elements in L2 (Π) , bounded and continuous at all (λ, θ) ∈ Π×Θ.
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Assumption 4.2[A] imparts finiteness of the fourth order cumulants of the process. Together

with Assumption 4.2[C] it implies that the process has square integrable trispectrum

K̃y
abcd (λ1, λ2, λ3) =

1

(2π)3

∞∑
t1,t2,t3=−∞

exp {−i (λ1t1 + λ2t2 + λ3t3)}Ky
abcd (t1, t2, t3) . (4.27)

The complex form of the spectral density matrix in (4.14) implies that f (λ, θ) is not separately

parametrized, and so we expect the fourth cumulant spectral density to appear in the asymptotic

covariance matrix of the estimates, as for the cases discussed in Hosoya and Taniguchi (1982).

Assumptions 4.2[G] reinforces the degree of smoothness of the spectral density assuming its Lip-

schitz continuity of degree α > 1/2 at the true parameter value. This guarantees (see Hannan,

1970, page 513) that the spectral density matrix uniformly in λ ∈ Π satisfies

sup
λ∈Π
‖fT (λ,θ0)− f(λ,θ0)‖ = O

(
T−α

)
,

where fT (λ,θ0) denotes the T th order Cesaro sum of the Fourier series of f(λ,θ0). This condition

allows to approximate the score vector by a simpler quadratic form whose asymptotic distribution

is easily found using results on the converge of sample serial covariances. Assumptions 4.2[G] (iii)

reinforces the smoothness of f−1(λ,θ) at all θ in order to guarantee that log det f(λ,θ) is twice

differentiable in θ ∈ Θ under the integral sign. Assumptions 4.2[D] extends the uniform continuity

at all (λ, θ) to the higher order derivatives of the process and it imposes the required degree of

smoothness to the Hessian. Moreover Assumption 4.2 implies (see Lemma B1.6 in Appendix B,

section B.1) that ∫ π

−π
log det f (λ, θ) dλ > −∞, (4.28)

which ensures (see Giraitis et al., 2012, Chapter 3, Theorem 3.2.1) that yt is purely non determin-

istic with Wold decomposition

yt =
∞∑
l=0

Al (θ) et−l,
∞∑
l=0

‖Al (θ)‖2 <∞, (4.29)

where the linear innovations et are n-dimensional white noise vectors. Statistical literature on

Whittle estimation assumes regularity conditions directly on the linear innovations of the Wold
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decomposition (4.29). We instead represent yt as a vector linear process with innovations ξt and

εt. We express (4.13) as

yt =

∞∑
l=0

Φl (θ) ẽt−l,
∞∑
l=0

‖Φl (θ)‖2 <∞, (4.30)

where we define the innovations ẽt as

ẽt ≡ ξt, l = 0, (4.31)

ẽt−l ≡ εt−l, l ≥ 1, (4.32)

and the linear coefficients Φl (θ) as

Φl (θ) ≡ In, l = 0, (4.33)

Φl (θ) ≡ Ψl−1 (θ) , l ≥ 1. (4.34)

The linear innovations in (4.30) are a sequence of zero mean, independent, random vectors with

finite fourth moment under Assumption 4.2. However they are not identically distributed at all l;

more precisely, by definition the ẽt−l are identically distributed for all l ≥ 1.

For the purpose of showing the asymptotic normality of the estimator we must introduce a

central limit theorem for any linear combination of the quantities

τ̃ (a,b) (m) ≡
√
T
(
I(a,b) (λ)− EI(a,b) (λ)

)
(4.35)

=
√
T

(
1

T

T−m∑
t=1

y
(a)
t y

(b)
t+m − Γ̃(a,b)

m

)
(4.36)

where Γ̃
(a,b)
m is the (a, b) element of the autocovariance matrix of yt at lag m, for a, b = 1, .., n and

m = 0,±1,±2, .... The joint asymptotic normality of any linear combination of the τ̃ (a,b) has been

established in the literature for a zero mean purely non deterministic linear vector process, with

representation (4.29), under a variety of conditions on the process and on its linear innovations.

For an ergodic and strictly stationary process, Hannan (1976) assumes that the innovations satisfy
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almost surely
(i)E {et|Ft−1} = 0,

(ii)E
{
e

(a)
t e

(b)
t |Ft−1

}
= δ(a,b),

(iii)E
{
e

(a)
t e

(b)
t e

(c)
t |Ft−1

}
= δ(a,b,c),

(iv)E
(
e

(a)
t e

(b)
t e

(c)
t e

(d)
t

)
= Ke

abcd, |Ke
abcd| <∞,

(4.37)

and shows that the necessary and sufficient condition for the convergence of the sample serial co-

variances is that the diagonal elements of f (λ, θ) be square integrable. Hosoya and Taniguchi

(1982, Theorem 2.2) derive a central limit theorem for the τ̃ (a,b) (m) under a different set of as-

sumptions. They replace strict stationarity with second order stationarity and ergodicity with a

Lindeberg-type condition. They replace the strongly mixing conditions on the innovations with

(i)V ar
(
E
{
e

(a)
t e

(b)
t+u|Ft−τ

}
− E

{
e

(a)
t e

(b)
t+u

})
= O

(
τ−2−ε) uniformly in t for some ε > 0,

(ii)E
∣∣∣E {e(a)

t1 e
(b)
t2 e

(c)
t3 e

(d)
t4 |Ft−τ

}
− E

{
e

(a)
t1 e

(b)
t2 e

(c)
t3 e

(d)
t4

}∣∣∣ = O
(
τ−1−η) for some positive constant η,

(iii)
∞∑

t1,t2,t3=1

|Ke
abcd (t1, t2, t3)| <∞.

As Hannan, they find that the necessary and sufficient condition for the result is that the diagonal

elements of f (λ, θ) be square integrable. The relationship between the two sets of conditions

seems not to be straightforward. Hosoya and Taniguchi offer an extensive discussion (see Hosoya

and Taniguchi, 1982, Section 2, Remark 2.1) and provide some examples of strictly stationary

uniformly mixing and absolutely mixing processes that satisfy (i) and (ii).

We conjecture that Theorem 1 of Hannan (1976) can be extended to the sample serial covari-

ances of a process with representation (4.30). The process is strictly stationary and ergodic by

Lemma B1.1. The linear innovations ẽt are zero mean independent (martingale difference) vec-

tors with finite fourth moments that satisfy conditions (4.37) at all t − l, with l ≥ 1. Moreover

the diagonal elements of the spectral density matrix are square integrable by Lemma B1.4. For all

a, b = 1, ....s, and for m = 0,±1,±2, ..., we make the following conjecture
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Conjecture 4.2 If Assumption 4.2 holds, the quantities

τ̃ (a,b) (m) =
√
T

(
1

T

T−m∑
t=1

y
(a)
t y

(b)
t+m − Γ̃(a,b)

m

)
, (4.38)

have a joint asymptotic normal distribution with zero mean. The asymptotic covariance between

τ̃ (a,b) (m) and τ̃ (c,d) (u) is given as

2π

∫ π

−π

{
f(a,c) (λ, θ) f̄(b,d) (λ, θ) e−i(m−u)λ + f(a,d) (λ, θ) f̄(b,c) (λ, θ) ei(m+u)λ

}
dλ

+2π

∫ π

−π

∫ π

−π
e(imλ1+iuλ2)K̃y

abcd(−λ1,λ2,−λ2)dλ1dλ2.

Hannan derives the serial covariances of the limiting distribution of the τ̃ (a,b) (m) as a function

of the trispectrum of the linear innovations

2π

∫ π

−π

{
f(a,c) (λ, ϑ) f̄(b,d) (λ, ϑ) e−i(m−u)λ + f(a,d) (λ, ϑ) f̄(b,c) (λ, ϑ) ei(m+u)λ

}
dλ

+
s∑

β1,...,β4=0

∫ π

−π

∫ π

−π
e(imλ1+iuλ2)ϕaβ1 (λ1)ϕbβ2 (−λ1)ϕcβ3 (λ2)ϕdβ4 (−λ2) K̃e

β1,...,β4
(−λ1, λ2,−λ2) dλ1dλ2,

whereas Conjecture 4.2 states the result in terms of the trispectrum of the process directly (see

Appendix B, Section B.3).

We can now address the asymptotic normality of the estimator. In what follows Q̇T (θ) denotes

the s × 1 vector of first partial derivatives of QT (θ) with respect to θ, with j element Q̇
(j)
T (θ).

Q̈T (θ) denotes the s×s matrix of second partial derivatives of QT (θ) with respect to θ with (i, j)

element Q̈
(i,j)
T (θ). The n × n matrix of first partial derivatives of f (λ,θ) with respect to θj is

ḟ(j) (λ,θ) with (a, b) components ḟ
(a,b)
(j) (λ,θ). Finally set f̈(i,j) (λ,θ) = [(∂2/∂θi∂θj) f (λ,θ)]. The

j element of the score vector Q̇
(j)
T (θ0) is

1

2π

∫ π

−π
tr
{

f−1 (λ,θ0) ḟ(j) (λ,θ0)
}
dλ− 1

2π

∫ π

−π
tr
{

f−1 (λ, θ0) ḟ(j) (λ, θ0) f−1 (λ, θ0) IT (λ)
}
dλ

=
1

2π

∫ π

−π
tr
{
g(j) (λ, θ0) (IT (λ)− f (λ, θ0))

}
dλ, (4.39)

where we set

g(j) (λ, θ0) ≡ f−2 (λ, θ0) ḟ(j) (λ, θ0) .
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The (i, j) element of the Hessian matrix Q̈
(i,j)
T (θ) is

1

2π

∫ π

−π

∂2

∂θi∂θ
′
j

log det f(λ,θ)dλ+
1

2π

∫ π

−π

∂2

∂θi∂θ
′
j

tr
{
f−1(λ,θ)IT (λ)

}
dλ (4.40)

=
1

2π

∫ π

−π
tr
{

f−1 (λ,θ) f̈(i,j) (λ,θ)
}
dλ− 1

2π

∫ π

−π
tr
{

f−1 (λ,θ) ḟ(i) (λ,θ) f−1 (λ,θ) ḟ(j) (λ,θ)
}
dλ

+
1

2π

∫ π

−π
tr

{(
∂2

∂θi∂θ
′
j

f−1(λ,θ)

)
IT (λ)

}
dλ.

We can now state our main result.

Theorem 4.2 Under Assumption 4.2, as T →∞, the vector
√
T (θ̂−θ0) has an asymptotic normal

distribution with zero mean and covariance matrix

M−1(θ0)V (θ0)M−1(θ0),

where

M (θ0) =
1

2π

∫ π

−π
tr
{

f−1 (λ,θ0) ḟ(i) (λ,θ0) f−1 (λ,θ0) ḟ(j) (λ,θ0)
}
dλ,

and V (θ0) is an s× s matrix with (j, l) element

V(j,l) =
1

π

∫ π

−π
tr

[
f(λ,θ0)

(
∂

∂θj
f−1(λ,θ0)

)
f(λ,θ)

(
∂

∂θl
f−1(λ,θ0)

)]
dλ

+
1

2π

s∑
a,b,c,d=1

∫ π

−π

∫ π

−π

{
ḟ

(a,b)
(j) (λ1,θ0)ḟ

(c,d)
(l) (λ2,θ0)

}
K̃y
abcd(−λ1,λ2,−λ2,θ0)dλ1dλ2.

The proof of Theorem 4.2 is classical in nature. The consistency of θ̂ for θ0, guaranteed by

Theorem 4.1, implies that, as T → ∞, θ̂ eventually enters an arbitrary neighborhood of θ0. By

definition θ̂ solves the equation (∂/∂θ)QT

(
θ̂
)

= 0. The mean-value theorem implies that for θ̊,

such that

∥∥∥̊θT − θ0

∥∥∥ ≤ ∥∥∥θ̂T − θ0

∥∥∥,

0 = T 1/2Q̇T (θ) = T 1/2Q̇T (θ) +
[
Q̈T (θ)

]
T 1/2

(
θ̂ − θ0

)
. (4.41)

From (4.41) the central limit theorem for T 1/2
(
θ̂ − θ0

)
reduces to that for

[
Q̈T (θ)

]−1

T 1/2Q̇T (θ0).

Lemma 4.5 establishes the almost sure uniform convergence of Q̈T (θ) to the n × n non singular

matrix M (θ).
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Lemma 4.5 Under Assumption 4.2 as T →∞, uniformly in θ ∈ Θ,

Q̈T (θ)→M (θ)

almost surely, where M (θ) is a positive definite matrix with (i, j) element,

M (i,j) (θ) =
1

2π

∫ π

−π
tr
{

f−1 (λ,θ) f̈(i,j) (λ,θ)
}
dλ

− 1

2π

∫ π

−π
tr
{

f−1 (λ,θ) ḟ(i) (λ,θ) f−1 (λ,θ) ḟ(j) (λ,θ)
}
dλ

− 1

2π

∫ π

−π
tr

{(
∂2

∂θi∂θ
′
j

f−1 (λ,θ)

)
f (λ,θ0) dλ

}
.

Lemma 4.5 and the consistency of θ̂T for θ0 imply

Q̈T (θ)→a.s M (θ0) . (4.42)

In view of this result, the asymptotic normality of the estimator follows from the asymptotic nor-

mality of Q̇T (θ0), which is established by the following lemma.

Lemma 4.6 Under Assumption 4.2 as T →∞,

Part (a):

√
T
[
Q̇T (θ0)− EQ̇T (θ0)

]
→d N(0, V (θ0)), (4.43)

where V (θ) is a positive definite matrix with (j, l) element,

V(j,l) (θ0) =
1

π

∫ π

−π
tr

[
f(λ, θ0)

(
∂

∂θj
f−1(λ, θ0)

)
f(λ, θ)

(
∂

∂θl
f−1(λ, θ0)

)]
dλ

+
1

2π

T∑
a,b,c,d=1

∫ π

−π

∫ π

−π

{
ḟ

(a,b)
(j) (λ1,θ0)ḟ

(c,d)
(l) (λ2,θ0)

}
K̃a,b,c,d(−λ1,λ2,−λ2, θ0)dλ1dλ2.

Part (b):

√
TEQ̇T (θ)→ 0.

The main idea of the proof of Lemma 4.6 is the approximation of each element of the vector

√
T
[
Q̇T (θ0)− EQ̇T (θ0)

]
by a known function of the τ̃ (a,b) (m), in particular we establish, by

means of an approximation, that
√
T
[
Q̇T (θ0)− EQ̇T (θ0)

]
is, for a finite integer M , asymptoti-
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cally equivalent to

1

(2π)2 tr

{
M−1∑

u=−M+1

(
1− |u|

M

)
g(j) (u) τ̃ (a,b) (u)

}
,

whose asymptotic normality follows from the asymptotic normality of the τ̃ (a,b) (u). The approxi-

mation is established in two steps. First consider that

√
TQ̇

(j)
T (θ0) =

√
T

2π

∫ π

−π
tr
{
g(j)(λ,θ0) [I (λ)− f(λ,θ0)]

}
dλ

can be expressed as
√
T

2π

∫ π

−π
tr
{
g(j)(λ,θ0) [I (λ)− EI (λ)]

}
dλ

+

√
T

2π

∫ π

−π
tr
{
g(j)(λ,θ0) [EI (λ)− f(λ,θ0)]

}
dλ.

Noting that EI (λ) is the Cesaro sum of f(λ,θ0) and that f (λ,θ0) is Lipschitz continuous of degree

α > 1/2 by Assumption 4.2[G] , we have that uniformly in λ ∈ Π

sup
λ∈Π
‖EI (λ)− f(λ,θ0)‖ = O

(
T−α

)
,

(see Hannan, 1970, Theorem 3.15, page 513). Then

√
TQ̇

(j)
T (θ0) =

√
T

2π

∫ π

−π
tr
{
g(j)(λ,θ0) [I (λ)− EI(λ)]

}
dλ+O

(
T 1/2−α) ,

and the last term converges to zero as T → ∞ and we approximate
√
T
[
Q̇

(j)
T (θ0)− EQ̇(j)

T (θ0)
]

by
√
T

2π

∫ π

−π
tr
{
g(j)(λ,θ0) [I (λ)− EI(λ)]

}
dλ. (4.44)

We now introduce the quantities
√
T

2π

∫ π

−π
tr
{

g
(j)
M (λ, θ0) [I (λ)− EI(λ)]

}
dλ, (4.45)

where g
(j)
M (λ,θ0) denotes the Cesaro sum of the Fourier series of g(j)(λ,θ0). The asymptotic

distribution of (4.44) can be approximated by that of (4.45). To see this, put δ
(j)
M (λ) = g(j)(λ, θ0)−

g
(j)
M (λ, θ0). Then

√
T

2π

∫ π

−π
tr
{[

g(j)(λ, θ0)− g
(j)
M (λ, θ0)

]
[I (λ)− EI(λ)]

}
dλ
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=

√
T

2π

∫ π

−π
tr
{
δ

(j)
M (λ) [I (λ)− EI(λ)]

}
dλ,

and we must evaluate

V ar

(√
T

2π

∫ π

−π
tr
{
δ

(j)
M (θ) [I (λ)− EI(λ)]

}
dλ

)
.

Lemma 4.7 Under Assumption 4.2, as M →∞

V ar

(√
T

2π

∫ π

−π
tr
{
δ

(j)
M (θ) [I (λ)− EI(λ)]

}
dλ

)
= o (1) .

By Bernstein’s lemma (e.g., Hannan, 1970, page 242), Lemma 4.7 implies that the asymptotic

normality of
√
T

2π

∫ π

−π
tr
{
g(j)(λ, θ0) [I (λ)− EI(λ)]

}
dλ (4.46)

is equivalent to that of
√
T

2π

∫ π

−π
tr
{

g
(j)
M (λ, θ0) [I (λ)− EI(λ)]

}
dλ, (4.47)

for every M . Finally,
√
T

2π

∫ π

−π
tr
{

g
(j)
M (λ, θ0) [I (λ)− EI(λ)]

}
dλ

=
1

(2π)2 tr

{
M−1∑

u=−M+1

(
1− |u|

M

)√
T

{
C̃ (−u)−

(
1− |u|

T

)
Γ̃ (−u)

}
g(j) (u)

}
, (4.48)

where g(j) (u) ≡ (1/2π)
∫ π
−π e

iλug(j)(λ, θ0)dλ denotes the Fourier series of g(j)(λ, θ0). The as-

ymptotic normality of each element of the vector
√
T
[
Q̇T (θ0)− EQ̇T (θ0)

]
is therefore implied

by the asymptotic normality of (4.48) . However (4.48) is equal to

1

(2π)2 tr

{
M−1∑

u=−M+1

(
1− |u|

M

)
g(j) (u) τ̃ (a,b) (u)

}
+ op (1) ,

whose asymptotic normality follows from the asymptotic normality of the τ̃ (a,b) (u) established by

Conjecture 4.2 since M is finite.

All that remains is to evaluate the asymptotic covariance between
√
T
∫ π
−π tr

{
g(j)(λ,θ0)I (λ)

}
dλ

and
√
T
∫ π
−π tr

{
g(l)(λ,θ0)I (λ)

}
dλ. Indeed

Cov

{√
T

∫ π

−π
tr {g(j)(λ)I (λ)} dλ,

√
T

∫ π

−π
tr
{
g(l)(λ)I (λ)

}
dλ

}
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= T Cov

{∫ π

−π

n∑
a,b=1

g
(j)
(a,b) (λ) I(a,b) (λ) dλ,

∫ π

−π

n∑
c,d=1

g
(l)
(c,d)(λ)I(c,d) (λ) dλ

}
. (4.49)

To proceed, we introduce the following lemma.

Lemma 4.8 If Assumption 4.2 holds, for any scalar square integrable functions h1 and h2 defined

on [−π, π],

lim
T→∞

T Cov

{∫ π

−π
h1 (λ) Iab (λ) dλ,

∫ π

−π
h2 (λ) Icd (λ) dλ

}
= 2π

∫ π

−π
h1 (λ) h̄2 (λ) f(a,c) (λ) f̄(b,d) (λ) dλ

+2π

∫ π

−π
h1 (λ) h̄2 (−λ) f(a,d) (λ) f̄(b,c) (λ) dλ

+2π

∫ π

−π

∫ π

−π
h1 (λ1) h̄2 (−λ2) K̃abcd (λ1, λ2,−λ2) dλ1dλ2.

By Lemma 4.8, we may conclude that as T →∞, (4.49) converges to V(j,l) (θ0).

For practical use of the asymptotic results, a consistent estimator of the asymptotic covariance

matrix is required. As suggested in Zaffaroni (2009) for M (θ) such estimate can be obtained by

substituting θ̂ into Q̈T (j) (θ). For V (θ) one can conjecture that the estimates provided by Hosoya

and Taniguchi (1982, Section 5) will be consistent.
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4.6 Appendix B: Technical lemmas

4.6.1 B.1 Preliminary lemmas

In this section we establish a number of properties of the model mainly in terms of its spectral

density f(λ, θ) and its derivatives. Recall that ∼ denotes asymptotic equivalence, tr is the trace

operator, det is the determinant operator and ‖.‖ is the Euclidean norm. Constants (not always the

same) are denoted by K. Almost sure convergence and convergence in distribution are denoted

respectively by→a.s. and→d . We denote a positive integer number as r. The class of p-integrable

functions on the set Π is denoted as Lp (Π).

Lemma B1.1 Under Assumption 4.1[A] and (4.8 ), the yt are ergodic and strictly stationary.

Proof The ergodicity and strict stationarity of the xt follows from Nelson (1991, Theorem 2.1,

page 251) and implies the ergodicity and strict stationarity of the yt. The yt are covariance station-

ary if and only if (4.8) holds.

Lemma B1.2 Under assumption 4.1[F], f(λ, θ) 6= f(λ, θ0) for every θ 6= θ0 and for any λ.

Proof Follows from the fact that the autocovariance function of the process uniquely identifies its

power spectrum.

Lemma B1.3 Under Assumptions 4.1, f(λ,θ) has elements in L2 (Π) , bounded and continuous at

all (λ,θ) ∈ Π×Θ.

Proof Assumption 4.1[C] implies that as j →∞
∞∑
j=0

|tr {Ψj (ζ)}| <∞.

However by (4.15)

tr
{

Γ̃u(θ)
}

= I(u=0)tr {Σξ (τ)}+tr
{

Σε (τ)
∞∑
j=0

Ψj (ζ) Ψ
′

j+u (ζ)

}
+I(m 6=0)tr

{
Ψ|u|−1 (ζ) Σξε (τ)

}
,

then Assumption 4.1[A] implies
∞∑
u=0

∣∣∣tr{Γ̃u(θ)
}∣∣∣ <∞,
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which is a sufficient condition for existence of the spectral density of the process. Moreover it

implies its square integrability, and continuity at all (λ, θ) ∈ Π × Θ (see Giraitis et al., 2012,

Chapter 2, Proposition 2.2.1, page 11). Uniform continuity and compactness of the parameter

space (see Assumption 4.1[B]) imply that the element of f(λ,θ) are bounded at all (λ, θ).

Lemma B1.4 Under Assumption 4.1, (∂/∂θ) f (λ,θ) has elements in L2 (Π) which are bounded

and continuous at all (λ,θ) ∈ Π×Θ.

Proof For any j = 1, ..., s,

∂

∂θj
f (λ,θ) =

∂

∂θj

[
Σξ (τ )

2π

]
+

∂

∂θj

[
k
(
eiλ, ζ

)
Σε (τ ) k

(
eiλ, ζ

)∗
2π

]

+
∂

∂θj

[
Σεξ (τ ) e−iλk

(
eiλ, ζ

)∗
+ eiλk

(
eiλ, ζ

)
Σ
′
εξ (τ )

2π

]
.

Assumption 4.1[D] implies that for any j = 1, ..., s,
∞∑
u=0

∣∣∣∣tr{ ∂

∂θj
Γ̃u(θ)

}∣∣∣∣ <∞,

which is sufficient condition for the existence of the first derivative of f (λ,θ). Moreover it implies

that (∂/∂θ) f (λ,θ) has elements in L2 (Π) which are continuous at all (λ,θ) ∈ Π×Θ (see Giraitis

et al, 2012, Proposition 2.2.1., page 11). By compactness of the parameter space (see Assumption

4.2[B]), the uniform continuity implies that the elements of (∂/∂θ) f (λ,θ) are bounded at all

(λ,θ) ∈ Π×Θ.

Lemma B1.5 Under Assumption 4.1[F], f(λ, θ) is a strictly positive definite matrix for all θ ∈ Θ,

λ ∈ Π.

Proof The autocovariance function of the process defined in (4.15) is

Γ̃(θ, u) = I(u=0)Σξ (τ ) + Σε (τ )
∞∑
j=0

Ψj (ζ) Ψ
′

j+u (ζ) + I(m6=0)Ψ|u|−1 (ζ) Σξε (τ ) .

Under Assumption[F], Σε (τ ) is positive definite for every value of τ in the parameter space.

Since by definition Σξ (τ ) and Σξε (τ ) are positive semidefinite covariance matrices, Γ̃(θ, u) is

expressed as the sum of two positive semidefinite matrices and one positive definite matrix. There-
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fore it is positive definite. By definition the spectrum is the unique Fourier transform of the auto-

covariance matrix and its positive definiteness is implied by the positive definiteness of Γ̃(θ, u).

Lemma B1.6 Under Assumption 4.1, yt is purely non deterministic with Wold decomposition

yt =
∞∑
l=0

Al (θ) et−l,
∞∑
l=0

‖Al (θ)‖2 <∞,

where the et are n dimensional white noise vectors.

Proof Since yt is a stationary zero mean process, the result follows once we establish that∫ π

−π
log det f (λ, θ) > −∞,

(see Giraitis et al, 2012, Theorem 3.2.1, page 38). By the logarithm inequality∣∣1− det f−1 (λ,θ)
∣∣ ≤ |log det f (λ,θ)| ≤ |det f (λ,θ)− 1|

and the result follows from the continuity of f−1 (λ, θ) at all (λ, θ) by Assumption 4.1[G] and

Lemma B1.5.

Lemma B1.7 Under Assumption 4.1, log det f (λ,θ) is differentiable in θ ∈ Θ under the integral

sign.

Proof Denoting the jth unit vector in Rs by ij , we have

1

ε

[
1

2π

∫ π

−π
log det f (λ, θ + ijε) dλ−

1

2π

∫ π

−π
log det f (λ, θ) dλ

]
=

1

ε

1

2π

∫ π

−π
log det f (λ, θ + ijε)− log det f (λ, θ) dλ.

By the mean value theorem the integrand is bounded by∣∣∣∣ ∂∂θ∗j log det f (λ, θ∗)

∣∣∣∣ =

∣∣∣∣tr{f−1 (λ, θ∗)
∂

∂θ∗j
f (λ, θ∗)

}∣∣∣∣ ,
where |θ∗ (λ)− θ| < |ε| . By Assumption 4.1 [G], Lemma B1.4 and compactness of the parameter

space ∣∣∣∣tr{f−1 (λ, θ∗)
∂

∂θ∗j
f (λ, θ∗)

}∣∣∣∣ < K,

where K is a positive constant that does not depend on θ. Then∫ π

−π

∣∣∣∣tr{f−1 (λ, θ∗)
∂

∂θ∗j
f (λ, θ∗)

}∣∣∣∣ dλ <∞,
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and the dominated convergence theorem implies that
∫ π
−π log det f (λ, θ) can be differentiated under

the integral sign.

Lemma B1.8 Under assumption 4.2, for r = 1, 2, 3, (∂r/∂θj1 ...θjr) f (λ, θ) has elements in L2 (Π)

which are bounded and continuous at all (λ, θ) ∈ Π×Θ.

Proof For any jh = 1, ..., s, with h = 1, ..., r and r = 1, 2, 3,

∂r

∂θj1 ...∂θjr
f (λ,θ) =

∂r

∂θj1 ...∂θjr

[
Σξ (τ )

2π

]
+

∂r

∂θj1 ...∂θjr

[
k
(
eiλ, ζ

)
Σε (τ ) k

(
eiλ, ζ

)∗
2π

]

+
∂r

∂θj1 ...∂θjr

[
Σεξ (τ ) e−iλk

(
eiλ, ζ

)∗
+ eiλk

(
eiλ, ζ

)
Σ
′
εξ (τ )

2π

]
.

Assumption 4.2[D] implies that for any jh = 1, ..., s, with h = 1, ..., r and r = 1, 2, 3
∞∑
u=0

∣∣∣∣tr{ ∂r

∂θj1 ...θjr
Γu(θ)

}∣∣∣∣ <∞,

which is sufficient condition for the existence of the rth derivative of f (λ, θ). Moreover it implies

that (∂r/∂θj1 ...θjr) f (λ, θ) has elements in L2 (Π) which are continuous at all (λ, θ) ∈ Π × Θ

(see Giraitis et al, 2012, Proposition 2.2.1, page 11). By compactness of the parameter space (see

Assumption 4.2[B]), the uniform continuity implies that the elements of (∂r/∂θj1 ...θjr) f (λ, θ) are

bounded at all (λ, θ) ∈ Π×Θ.

Lemma B1.9 Under Assumption 4.2, g (λ, θ) ≡ f−1 (λ, θ) ḟ (λ, θ) is uniformly continuous in

(λ, θ) .

Proof The uniform continuity of g (λ, θ) follows once we establish

sup
θ∗∈Θ

∥∥∥∥ ∂

∂θ∗
g (λ, θ∗)

∥∥∥∥ <∞,
where |θ∗ (λ)− θ| < |ε|, (see Davidson, 1994, Theorem 21.10, page 339). However

∂

∂θ∗
g (λ, θ∗) = f−1 (λ, θ∗) f̈ (λ, θ) +

(
∂

∂θ∗
f−1 (λ, θ∗)

)
ḟ (λ, θ) ,

which by Assumption 4.2[G] (ii) and (iii), Lemma B1.8 and compactness of the parameter space

is bounded by a positive constant K for all θ∗ ∈ Θ.

Lemma B1.10 Under Assumption 4.2,
∫ π
−π log det f (λ, θ) dλ can be differentiated twice under the
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integral sign.

Proof By the same argument used in Lemma B1.7, the result follows from Assumption 4.2[G] (ii)

and (iii) and Lemma B1.9.

Lemma B1.11 Under Assumption 4.2, for 1 ≤ a, b, c, d ≤ n.

∞∑
t1,t2,t3,t4=−∞

|Ky
abcd (t1, t2, t3, t4)| <∞.

Proof Denote as Kabcd (xt,yt, zt,ut) the fourth order cumulant of elements a, b, c, d of random

vectors xt,yt, zt,ut. SetKε
abcd = cumulant(ε

(a)
0 , ε

(b)
0 , ε

(c)
0 , ε

(d)
0 ) and setKξ

abcd = cumulant(ξ
(a)
0 , ξ

(b)
0 , ξ

(c)
0 , ξ

(d)
0 ).

Then Ky
abcd (t1, t2, t3, t4) is made by the sum of the following terms:

n∑
a,b,c,d=1

(
Kξ
abcd1 (t1 = t2 = t3 = t4)

)
(4.51)

∑
r=a,b,c,d

(
n∑

a,b,c,d=1

Kabcd (ξ0, ξ0, ξ0, ε0) Ψ
(r)
t4−t1−11 (t1 = t2 = t3)

)
∑

u,v=a,b,c,d

(
n∑

a,b,c,d=1

Kabcd (ξ0, ξ0, ε0, ε0) Ψ
(u,u)
t3−t2−1Ψ

(v)
t4−t1−11 (t1 = t2)

)
∑

u,v,z=a,b,c,d

(
n∑

a,b,c,d=1

Kabcd (ξ0, ε0, ε0, ε0) Ψ
(u)
t2−t1−1Ψ

(v)
t3−t1−1Ψ

(z)
t4−t2−1

)
n∑

a,b,c,d=1

(
Kε
abcd

∞∑
j=0

Ψ
(a)
j Ψ

(b)
j+t2−t1Ψ

(c)
j+t3−t1Ψ

(d)
j+t4−t1

)
.

The absolute summability of the cumulants follows from the absolute summability of the last term

in (4.51), which is implied by Assumption 4.2 [C].

Lemma B1.12 Under Assumption 4.2, the trispectrum of yt,

K̃y
abcd (λ1, λ2, λ3) =

1

(2π)3

∞∑
t1,t2,t3=−∞

exp {−i (λ1t1 + λ2t2 + λ3t3)}Ky
abcd (t1, t2, t3)

is square integrable.

Proof Follows from the square summability of the Fourier coefficients of K̃y
abcd, implied by Lemma

B1.11 (see Giraitis et al., 2012, (2.1.4), page 8).

4.6.2 B.2 Consistency lemmas

This section contains the proof of Lemma 4.1, part (b), and Lemma 4.2. To prove Lemma
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4.1 we follow Giraitis et al.(Chapter 8, Section 8.2) and establish two preliminary results. First,

in Lemma 4.3, we establish an approximation for matrix functions and then in Lemma 4.4, we

establish uniform almost sure convergence of some discrete functions of the periodogram under

minimal condition on the underlying model, generalizing Lemma 1 of Hannan (1973) to matrix

functions. In what follows, for any matrix function h (λ, θ), we denote by

hu (θ) =

∫ π

−π
eiuλh (λ, θ) dλ, u = 0,±1,±2, ...

its Fourier coefficients, and we denote by

qM(λ,θ) =

M∑
u=−M

(
1− |u|

M

)
hu (θ) e−iuλ,

the Cesaro sum of its Fourier coefficients up to M terms.

Lemma B2.1 Let h (λ, θ) be a n × n matrix function, continuous in λ ∈ Π and such that

h (−π, θ) = h (π, θ) in [−π, π]. Then h (λ, θ) may be approximated uniformly in λ by qM(λ,θ),

sup
λ∈Π
‖h (λ, θ)− qM(λ,θ)‖ → 0 as M →∞.

If in addition h (λ, θ) is continuous in λ uniformly in θ, the approximation may be made uniformly

in θ also,

sup
λ,θ
‖h (λ, θ)− qM(λ,θ)‖ → 0 as M →∞.

Proof A detailed proof of this lemma for matrix functions can be found in Hannan (1970, Mathe-

matical Appendix, Section 3).

Lemma B2.2 Let yt be a stationary, ergodic and purely non deterministic vector process, with

n × n spectral density matrix f (λ, θ0). Let h (λ, θ) be a n × n matrix function, continuous in

(λ, θ) ∈ Π×Θ and such that h (λ, θ) = h (−λ, θ). Then, uniformly in θ ∈ Θ and λ ∈ Π,

1

2π

∫ π

−π
tr {h(λ,θ)IT (λ)} dλ → 1

2π

∫ π

−π
tr {h(λ,θ) f(λ,θ0)} dλ a.s.

Proof By Lemma B2.1, for every η > 0 we may find M large enough such that:

sup
λ,θ
‖h(λ, θ)− qM(λ, θ)‖ ≤ η.
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Let η > 0. For sufficiently large M , uniformly in θ :

1

2π

∣∣∣∣∫ π

−π
tr {h(λ,θ)IT (λ)} dλ−

∫ π

−π
tr {qM(λt,θ)IT (λ)} dλ

∣∣∣∣
=

1

2π

∣∣∣∣∫ π

−π
tr {(h(λ,θ)− qM(λ,θ)) IT (λ)} dλ

∣∣∣∣
≤ η

2π

∫ π

−π
tr {IT (λ)} dλ =

η

2π
tr

{
1

T

T∑
t=1

T−1∑
u=−T+1

C̃ (u) e−iuλ

}
=

η

2π
tr
{
C̃ (0)

}
.

Because the process is ergodic, by the Ergodic Theorem (see Giraitis et al., Chapter 2, Section 2.5)

C̃ (0) converges almost surely to its population analogue Γ̃ (0) as T →∞. Thus for all sufficiently

large t, uniformly in θ ∈ Θ:∣∣∣∣∫ π

−π
tr {h(λ,θ)IT (λ)} dλ−

∫ π

−π
tr {qM(λ,θ)IT (λ)} dλ

∣∣∣∣ ≤ η tr
{

Γ̃ (0)
}

a.s.

Moreover,∫ π

−π
tr {qM(λ,θ)IT (λ)} dλ =

∫ π

−π
tr

[
M∑

u=−M

(
1− |u|

M

)
hu (θ) e−iuλIT (λ)

]
dλ

= tr

[
M∑

u=−M

(
1− |u|

M

)
hu (θ) C̃ (u)

]
.

By the Ergodic Theorem for each |u| ≤ M , as T →∞, C̃ (u) converges almost surely to Γ̃ (u) =∫ π
−π f (λ, θ) e−iλudλ. Therefore the above expression tends almost surely to:

tr

[
M∑

u=−M

(
1− |u|

M

)
hu (θ) Γ̃ (u)

]

= tr

[
M∑

u=−M

(
1− |u|

M

)
hu (θ)

(
1

2π

∫ π

−π
f(λ, θ0)e−iuλdλ

)]

=
1

2π

∫ π

−π
tr [qM(λ, θ)f(λ, θ0)] dλ→ 1

2π

∫ π

−π
tr [h(λ, θ)f(λ, θ0)] dλ

on letting η → 0, which completes the proof.

Lemma 4.1 Part (a) If Assumption 4.1 holds,

limT→∞QT (θ) = Q (θ) a.s.,
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and the convergence is uniform in θ ∈ Θ.

Proof The almost sure uniform convergence of

1

2π

∫ π

−π
tr
(
f−1(λt,θ)IT (λt)

)
to

1

2π

∫ π

−π
tr
(
f−1(λ,θ)f(λ,θ0)

)
dλ

follows from Lemma B2.2, taking h (λ, θ) ≡ f−1 (λ, θ). By Assumption 4.1[G], f−1 (λ, θ) is

uniformly continuous at all (λ, θ) ∈ Π×Ω , moreover it satisfies f−1 (−π, θ) = f−1 (π, θ) and the

conditions of Lemma B2.2 are satisfied.

Consider the first term of QT (θ),

1

2π

∫ π

−π
log det f(λ,θ)dλ.

This term is non stochastic so its uniform convergence follows once with establish the equiconti-

nuity property

lim
ε→0

sup
θ̃:‖θ̃−θ‖≤ε

∣∣∣∣∫ π

−π
log det f

(
λ, θ̃
)
dλ− 1

2π

∫ π

−π
log det f (λ, θ) dλ

∣∣∣∣→ 0. (4.52)

(4.52) is implied by

sup
θ∗∈Θ

∣∣∣∣ ∂∂θ 1

2π

∫ π

−π
log det f (λ, θ∗) dλ

∣∣∣∣ <∞,
where |θ∗ (λ)− θ| < |ε| , (see Davidson, 1994, Theorem 21.10, page 339). By Lemma B1.7,

∂

∂θ

1

2π

∫ π

−π
log det f (λ, θ∗) dλ

=
1

2π

∫ π

−π

∂

∂θ
log det f (λ, θ∗) dλ

=
1

2π

∫ π

−π
tr

{
f−1 (λ, θ∗)

∂

∂θ
f (λ, θ∗)

}
,

and the integrand is bounded by some positive constant by Assumption 4.1[G](i), Lemma B1.4

and compactness of the parameter space. The use of the dominated convergence theorem allows to

conclude that

sup
θ∗∈Θ

∣∣∣∣ 1

2π

∫ π

−π
tr

{
f−1 (λ, θ∗)

∂

∂θ
f (λ, θ∗)

}∣∣∣∣ < K,

which concludes the proof.
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Lemma 4.1 (b) If Assumption 4.1 holds, then for any η > 0, uniformly in θ ∈ Θ,

lim
T→∞

QT,η (θ) = Qη (θ) a.s.

Proof The almost sure uniform convergence of

1

2π

∫ π

−π
tr
(
φη(λt,θ)IT (λt)

)
to

1

2π

∫ π

−π
tr
(
φη(λ,θ)f(λ,θ0)

)
dλ

follows from Lemma 4.4, taking h (λ, θ) ≡ φη (λ, θ). By Assumption 4.1[G], φη (λ, θ) is uni-

formly continuous in (λ, θ) ∈ Π × Ω , and it satisfies φη (λ, θ) = φη (−λ, θ) for all λ ∈ Π, and

the conditions of Lemma 4.4 are satisfied. The uniform almost sure convergence of the first term

of QT,η (θ),

1

2π

∫ π

−π
log det f(λ,θ)dλ,

follows from Lemma 4.2 part (a).

Lemma 4.2 If Assumption 4.1 holds, for any θ ∈ Θ

inf
θ∈Θ

Q(θ) = Q(θ0) =
1

2π

∫ π

−π
log det f(λ,θ0)dλ+ T.

Proof

Q(θ) =
1

2π

∫ π

−π
log det f(λ,θ)dλ+

1

2π

∫ π

−π
tr
[
f−1(λ, θ) f(λ,θ0

]
dλ, (4.53)

adding and subtracting 1/2π
∫ π
−π log det f (λ, θ0) dλ, (4.53) is equal to

1

2π

∫ π

−π
log det f(λ,θ0)dλ+

1

2π

∫ π

−π
tr
[
f−1(λ, θ) f(λ,θ0

]
dλ− 1

2π

∫ π

−π
log

det f(λ,θ0)

det f(λ,θ)
dλ,

because for any non-singular matrix A, det−1 (A) = det (A−1) (Luktepohl, 1996, Section 3.4.4,

Result (f)), (4.53) is equal to

Q(θ0)− T +
1

2π

∫ π

−π
tr
[
f−1(λ, θ) f(λ,θ0

]
dλ− 1

2π

∫ π

−π
log
(
det
(
f−1(λ,θ)

)
det (f(λ,θ0))

)
dλ,

because for any non singular matrix A and B, det (A) × det (B) = det (AB) (Luktepohl, 1996,
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Section 4.2.1, Result (4)), (4.53) is equal to

Q(θ0)+

{
1

2π

∫ π

−π
tr
[
f−1(λ, θ) f(λ,θ0

]
dλ− T

}
− 1

2π

∫ π

−π
log
(
det
(
f−1(λ,θ)f(λ,θ0)

))
dλ > Q (θ0) ,

where the strict inequality follows, in view of Lemma B1.5, because log det (A) ≤ tr (A) − T

for any positive definite matrix A with equality holding if and only if A = In (Luktepohl, 1996,

Section 4.1.2, Result (10)).

4.6.3 B.3 Asymptotic Normality lemmas

This section contains the proof of the lemmas used to establish the asymptotic normality of the

estimator.

Lemma B3.1 The asymptotic covariance between τ̃ (a,b) (m) and τ̃ (c,d) (u) is given as

2π

∫ π

−π

{
f(a,c) (λ, θ) f̄(b,d) (λ, θ) e−i(m−u)λ + f(a,d) (λ, θ) f̄(b,c) (λ, θ) ei(m+u)λ

}
dλ

+2π

∫ π

−π

∫ π

−π
e(imλ1+iuλ2)K̃y

abcd(−λ1,λ2,−λ2)dλ1dλ2.

Proof The covariance between τ̃ (a,b) (m) and τ̃ (c,d) (n) is

1

T

T−1∑
u=1−T

(
1− |u|

T

){
Γ̃(a,c) (n) Γ̃(b,d) (u+ n−m) + Γ̃(a,d) (u+ n) Γ̃(b,c) (u−m)

}
+

T−1∑
u=1−T

(
1− |u|

T

)
Ky
a,b,c,d (m,u, u+ n) , (4.54)

(see Hannan, 1979, page 209-211 ). The term

1

T

T−1∑
u=1−T

(
1− |u|

T

)
Γ̃(a,c) (n) Γ̃(b,d) (u+ n−m) , (4.55)

is the Cesaro sum, evaluated at the origin, of (4π)2
the uth Fourier coefficient of the convolution of

f(a,c) (λ) with f(b,d) (λ) e−i(m−n)λ. By Lemma B1.3, f (λ) has elements in L2, so their convolution

is continuous. Then (4.55) converges to

2π

∫ π

−π
f(a,c) (λ, θ) f̄(b,d) (λ, θ) e−i(n−m)λdλ.

The same argument applies to

1

T

T−1∑
u=1−T

(
1− |u|

T

)
Γ̃(a,d) (u+ n) Γ̃(b,c) (u−m) ,
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which converges to

2π

∫ π

−π
f(a,d) (λ, θ) f̄(b,c) (λ, θ) ei(m+u)λdλ.

(4.54) is the Cesaro sum, evaluated at the zero frequency, of the Fourier coefficients of the func-

tion K̃y
abcd (λ1, λ2, λ3) e−i(nλ1+mλ2). By Lemma B1.13, the trispectrum of the process is square

integrable, implying the convergence of (4.54) to

2π

∫ π

−π

∫ π

−π
e(inλ1+imλ2)K̃y

abcd (−λ1, λ2,−λ2) dλ1dλ2.

Proof of Lemma 4.5 We establish the uniform convergence of Q̈T (θ) to M(θ) pointwise. The

(i, j) element of Q̈T (θ), Q̈
(i,j)
T (θ) is

1

2π

∫ π

−π
tr
{

f−1 (λ, θ) f̈(i,j) (λ, θ)
}
dλ (4.56)

− 1

2π

∫ π

−π
tr
{

f−1 (λ, θ) ḟ(i) (λ, θ) f−1 (λ, θ) ḟ(j) (λ, θ)
}
dλ (4.57)

+
1

2π

∫ π

−π
tr

{(
∂2

∂θi∂θ
′
j

f−1(λ,θ)

)
IT (λ)

}
dλ. (4.58)

The last term converges almost surely uniformly in (λ, θ) ∈ Π×Θ to

1

2π

∫
tr

{(
∂2

∂θi∂θ
′
j

f−1(λ,θ)

)
f(λ, θ0)

}
dλ

by Lemma 4.4, taking h (λ, θ) ≡
(
∂2/∂θi∂θ

′
j

)
f−1(λ,θ), which is continuos at all (λ, θ) ∈ Π×Θ

by Assumption 4.2[G] and symmetric around zero in [−π, π] .

The first two terms of (4.56) are non stochastic. Their uniform convergence in θ follows once

with establish their equicontinuity property. Consider the first term. We want to show that

sup
θ̃:‖θ̃−θ‖≤ε

∣∣∣∣ 1

2π

∫ π

−π

[
tr
{

f−1
(
λ, θ̃
)

f̈(i,j)

(
λ, θ̃
)}
− tr

{
f−1 (λ, θ) f̈(i,j) (λ, θ)

}]
dλ

∣∣∣∣→ 0 a.s..

(4.59)

(4.59) is implied by

sup
θ∈Θ

∣∣∣∣ ∂∂θ
∫ π

−π
tr
{

f−1 (λ, θ) f̈(i,j) (λ, θ)
}
dλ

∣∣∣∣ <∞, (4.60)

(see Davidson, 1994, Theorem 21.10, page 339). We must establish that
∫ π
−π tr

{
f−1 (λ, θ) f̈(i,j) (λ, θ)

}
dλ
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is differentiable under the integral sign. Denote the jth unit vector in Rs by ij , and consider

1

2π

∫ π

−π

1

ε
tr
{

f−1 (λ, θ + ijε) f̈(i,j) (λ, θ + ijε)− f−1 (λ, θ) f̈(i,j) (λ, θ)
}
dλ.

By the mean value theorem the integrand is dominated for each λ by∣∣∣∣ ∂∂θl tr
{

f−1 (λ, θ∗ (λ)) f̈(i,j) (λ, θ∗ (λ))
}∣∣∣∣ , (4.61)

where |θ∗ (λ)− θ| < |ε|. Taking derivatives (4.61) is equal to∣∣∣∣tr{f−1 (λ, θ∗ (λ))

(
∂

∂θl
f̈(i,j) (λ, θ∗ (λ))

)
+

(
∂

∂θl
f−1 (λ, θ∗ (λ))

)
f̈(i,j) (λ, θ∗ (λ))

}∣∣∣∣ . (4.62)

By Assumption 4.2[G](ii) and (iii), Lemma B1.8 and compactness of the parameter space, (4.62)

is at most K, where K denotes a generic positive constant. The use of the dominated convergence

theorem allows to conclude that∣∣∣∣ ∂∂θ
∫ π

−π
tr
{

f−1 (λ, θ) f̈(i,j) (λ, θ)
}
dλ

∣∣∣∣ <∞,
which completes the proof of (4.59).

The equicontinuity property of the second term of (4.56) is implied by

sup
θ∈Θ

∣∣∣∣ ∂∂θl 1

2π

∫ π

−π
tr
{

f−1 (λ, θ) ḟ(i) (λ, θ) f−1 (λ, θ) ḟ(j) (λ, θ)
}
dλ

∣∣∣∣ <∞, (4.63)

(see Davidson, 1994, Theorem 21.10, page 339). The left hand side of (4.63) is differentiable

under the integral sign because for |θ∗ (λ)− θ| < |ε|∣∣∣∣ ∂∂θl tr
{

f−1 (λ, θ∗) ḟ(i) (λ, θ∗) f−1 (λ, θ∗) ḟ(j) (λ, θ∗)
}∣∣∣∣

= |tr
{

f−1 (λ, θ∗) ḟ(i) (λ, θ∗) f−1 (λ, θ∗) f̈(j,l) (λ, θ∗)
}

+tr

{
f−1 (λ, θ∗) ḟ(i) (λ, θ∗)

(
∂

∂θl
f−1 (λ, θ∗)

)
ḟ(j) (λ, θ∗)

}
+tr

{
f−1 (λ, θ∗) f̈(i,l) (λ, θ∗) f−1 (λ, θ∗) ḟ(j) (λ, θ∗)

}
+tr

{(
∂

∂θl
f−1 (λ, θ∗)

)
ḟ(i) (λ, θ∗) f−1 (λ, θ∗) ḟ(j) (λ, θ∗)

}
|,

which by Assumption 4.2[G](ii) and (iii), Lemma B1.8, and compactness of the parameter space

is bonded at all θ ∈ Θ. Then the use of the dominated convergence theorem completes the proof.
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Proof of Lemma 4.8 Set

h̃1 (u) =
1

2π

∫ π

−π
h1 (λ) eiuλdλ,

h̃2 (u) =
1

2π

∫ π

−π
h2 (λ) eiuλdλ.

Then

TCov

{∫ π

−π
h1 (λ) Iab (λ) dλ,

∫ π

−π
h2 (λ) Icd (λ) dλ

}
(4.64)

=
1

T

T∑
u1,u2,u3,u4=1

h̃1 (u1 − u2) h̃2 (u3 − u4) Γ̃(a,c) (u3 − u1) Γ̃(b,d) (u4 − u2) (4.65)

+
1

T

T∑
u1,u2,u3,u4=1

h̃1 (u1 − u2) h̃2 (u3 − u4) Γ̃(a,d) (u4 − u1) Γ̃(b,c) (u3 − u2) (4.66)

+
1

T

T∑
u1u2u3u4=1

h̃1 (u1 − u2) h̃2 (u3 − u4) Ky
abcd (u2 − u1, u3 − u1, u4 − u1) . (4.67)

The convergence of (4.65) and (4.66) follows from Hannan (1976, Theorem 1, page 398). For

example (4.65)(
T+1∑
l=1−T

(
1− |l1|

T

)
h̃1 (l1) Γ̃(b,d) (u4 − u2)

)
×
(

T+1∑
k=1−T

(
1− |l2|

T

)
h̃2 (l2) Γ̃(a,c) (u3 − u1)

)
,

which is the product of the Cesaro sums, evaluated at the origin, of the Fourier coefficients of

the convolution of h1 (λ) with f(b,d) (λ) and of the convolution of h2 (λ) with f(a,c) (λ). Because

f (λ) and h (λ) are square integrable their convolution is continuous in λ ∈ [−π, π]. Then (4.65)

converges to

2π

∫ π

−π
h1 (λ) (λ) f̄(b,d) (λ) h̄2 (λ) f(a,c)dλ.

An analogous result holds for (4.66). Set l1 = u1, l2 = u2− u1, l3 = u3− u1, l4 = u4− u1, (4.67)

can be expressed as

1

T

T+1∑
l2,l3,l4=1−T

(T − S (l2, l3, l4)) h̃1 (−l2) h̃2 (l3 − l4)Ky
abcd (l2, l3, l4) , (4.68)

where

S (l2, l3, l4) = max (|l2| , |l3| , |l4|) I (sign l2 = sign l3 = sign l4)

+ max (|li| , |lj|) + |lk| I (sign li = sign lj = −sign lk) .
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As T →∞, (4.68) converges to

+∞∑
l2,l3,l4=−∞

h̃1 (−l2) h̃2 (l3 − l4)Ky
abcd (l2, l3, l4) (4.69)

− lim
T→∞

1

T

N+1∑
l2,l3,l4=1−N

S (l2, l3, l4) h̃1 (−l2) h̃2 (l3 − l4)Ky
abcd (l2, l3, l4) . (4.70)

However, since the functions h1 and h2 are square integrable in [−π, π], for a certain positive

constant K,

1

T

T+1∑
l2,l3,l4=1−T

S (l2, l3, l4) h̃1 (−l2) h̃2 (l3 − l4)Ky
abcd (l2, l3, l4)

≤ K2

N

∣∣∣∣∣
T+1∑

l2,l3,l4=1−T

max (|l2|+ |l3|+ |l4|) h̃1 (−l2)Ky
abcd (l2, l3, l4)

∣∣∣∣∣ ,
and the terms

T+1∑
l2,l3,l4=1−T

|lj|
T
|Ky

abcd (l2, l3, l4)|

for j = 1, 2, 3 converge to 0 as T → ∞ using Lemma B1.11. Then as T → ∞, (4.67) converges

to (4.69). Then, by repeated application of the Parseval equality, (4.68) converges to∫ π

−π

∫ π

π

h1 (λ1)h2 (−λ2) K̃y
abcd (λ1, λ2,−λ2) .

Proof of Lemma 4.7 By Lemma B1.9 g(j)(λ,θ0) is continuous at all λ, moreover it is symmetric

in [−π, π]. Thus, by Lemma B2.1, for any η > 0, and all a, b = 1, ...n, we can always choose M

large enough such that

max
a,b=1,....,n

sup
λ∈Π

∣∣∣g(j)
M(a,b)

(λ, θ0)− g(j)

(a,b)(λ,θ0)
∣∣∣ ≤ η.

Consider that

V ar

(√
T

2π

∫ π

−π
tr
{
δ

(j)
M (λ, θ0) [IT(λ)− EI(λ)]

}
dλ

)

= V ar

(√
T

2π

n∑
a,b=1

∫ π

−π

[
I(a,b)(λ)− EI(a,b)(λ)

]
δM(b,a)(λ)dλ

)
.

96



As T →∞, by Lemma 4.8 this is dominated by

2

π
n2

∫ π

−π

∣∣δM(b,a)(λ)
∣∣2 f(a,a) (λ) f̄(b,b) (λ) dλ

+
2

π
n2

∫ π

−π
δM(b,a)(λ)δ̄M(a,b)(−λ)f(a,b) (λ) f̄(b,a) (λ) dλ

+
2

π
n2

∫ π

−π

∫ π

−π
δM(b,a)(λ1)δ̄M(d,c)(−λ2)K̃abcd (λ1, λ2,−λ2) dλ1dλ2.

By compactness of the parameter space, δM(a,b)(λ) is square integrable in λ,which tends to zero

as M →∞, because the elements of the spectral density matrix and the trispectrum are integrable

by Lemma B1.3 and Lemma B1.12.

Proof of Lemma 4.6 part (b) The jth element of
√
TEQ̇

(j)
T (θ0), can be written as

√
T

2π

∫ π

−π
tr {g(j)(λ, θ0) [EI(λ)− f(λ, θ0)]} dλ.

Note that EI (λ) is the Cesaro sum of the Fourier coefficients of f (λ,θ0). Assumption 4.2[G](i)

implies

sup
λ∈Π

n∑
a,b=1

∣∣∣EI
(a,b)
T (λ)− f (a,b) (λ,θ0)

∣∣∣ = O
(
T−α

)
uniformly in θ (see Hannan, 1970, page 513). Then

√
TEQ̇T (j) (θ) =

√
T

2π

∫ π

−π
tr {g(j)(λ, θ0) [EI (λ)− f(λ, θ0)]} dλ

≤ 1

2π

∫ π

−π
max
(a,b)

sup
λ∈Π

∣∣∣g(a,b)
(j) (λ,θ0)

∣∣∣ n∑
a,b=1

{√
T
∣∣EI(a,b) (λ)− f(a,b) (λ,θ0)

∣∣} dλ
= O

(
T 1/2−α) ,

which converges to zero as T →∞, since by Assumption 4.2[G](i), α > 1/2.
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Chapter 5 Multivariate exponential volatility models with long memory

5.1 Long-range dependence in conditional volatility models

A large body of research suggests that the conditional volatility of asset prices displays long-

range persistence. Evidence of some type of persistence in financial data can be traced back to

the unit root findings in estimated GARCH and EGARCH models, whose applications to high fre-

quency data have indicated the presence of an approximate unit root in the volatility. Long-term

dependencies have been found in the returns of a variety of assets classes. Helms, Kaen, and

Rosenman (1984), Kao and Ma (1992), Eldridge, Bernhardt, and Mulvey (1993), Fang, Lai, and

Lai (1994), Corazza, Malliaris, and Nardelli (1997) found long-term dependence in index and com-

modity futures returns. Greene and Fielitz (1977), Lo (1991), and Nawrocki (1995) examined long

memory regularities in U.S. equity market returns. Jacobsen (1996), Cheung, Lai, and Lain (1993)

found evidences of long-term dependence in European and Asian equity markets. These findings

suggests that financial data display persistent features that can’t be captured by standard GARCH

or Stochastic Volatility models which impart short memory autocorrelation in the squares. Stan-

dard volatility models may capture such persistence only via approximation of a unit root. Out of

the necessity to develop statistical methods to reproduce these presidencies in financial data, a num-

ber of authors have introduced long memory univariate volatility models. With respect to ARCH

type models, various alternative have been suggested. Robinson (1991) introduced the ARCH(∞)

model, a possibly long memory generalized ARCH model. Baillie et al. (1996) considered a par-

ticular case of the ARCH(∞) denominated fractionally integrated GARCH (FIGARCH) model.

Arguing that the knife-edge distinction between I(0) and I(1) processes can be far too restrictive

in describing persistence in conditional volatilities, Baillie et al. model the volatility as a discrete

time fractionally integrated process I(d) introduced by Adenstedt (1974), Granger (1980, 1981),
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and Grangerand and Joyeux (1980). The propagation of shocks to the variance occurs at a slow

hyperbolic decay rate when d ∈ (0, 1), as opposed to the extremes of exponential decay associ-

ated with the stationary GARCH process or the infinite persistence resulting from an IGARCH

model. The FIGARCH model combines many of the features of the fractionally integrated process

for the mean together with the regular GARCH process for the conditional variance. In particu-

lar, it implies a slow hyperbolic rate of decay for the lagged squared innovations in the conditional

variance function, although the cumulative impulse response weights associated with the influence

of a volatility shock on the optimal forecasts of the future conditional variance eventually tend to

zero, a property that the model shares with weakly stationary GARCH processes. Baillie et al.

present estimation results for a regular GARCH process when the true data generating process is

FIGARCH. It turns out that the estimated autoregressive parameters in the misspecified GARCH

models are very close to unity, indicative of IGARCH type behavior. These findings support the

view that the apparent widespread IGARCH property, so frequently reported with high-frequency

asset pricing data, might as well be spurious, and that the IGARCH process offers a poor diagnostic

to assess the presence of long memory in conditional volatility. Recently a number of authors have

pointed out some drawbacks of the FIGARCH model. For example, Davidson (2004) has shown

that the in the model the persistence of shocks to volatility decreases as the long memory parameter

increases. Zaffaroni (2004) has shown that the FIGARCH model cannot generate autocorrelations

of squares with long memory. Consequently the Fractionally Integrated EGARCH (FIEGARCH)

model of Bollerslev and Mikklsen (1996), which extends the asymmetric EGARCH model of Nel-

son to long memory, has been by far more popular. Robinson and Zaffaroni (1997, 1998) and

Zaffaroni (2003) introduced an alternative way of modelling strong dependence in volatility by

means of a family of nonlinear moving average models, that we discussed in the previous chapter.

Zaffaroni (2003) established the asymptotic properties of the Gaussian estimator of the nonlinear
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moving average model and provided a formal framework to asses whether long memory volatility

models represent a valid alternative to short memory ones.

With respect to Stochastic Volatility models, Harvey (1998) and Breidt et al. (1998) indepen-

dently proposed a Long Memory Stochastic Volatility (LMSV) model in which the underlying log

volatility evolves as an ARFIMA (p, d, q) process,

(1−B)d φ (B) vt = θ (B) ηt, ηt ∼ i.i.d
(
0, σ2

η

)
,

with d ∈ (−0.5, 0.5). In the overall the LMSV model is very tractable and easily fit to data. Breitd

et al. carried several non parametric and semiparametric tests for long memory over various market

indexes of daily returns finding highly significant results. Ruiz and Vega (2006) extended the Long

Memory Stochastic Volatility model to include asymmetries, allowing for correlation between the

shocks of the level and volatility equation.

In the past decade the research on multivariate volatility models has produced a wide variety of

specifications, however these do not yet include long range dependence in the conditional covari-

ance matrix. Such generalization are not easily implemented in ARCH(∞) type of models. As

shown for the univariate case by Giraitis at al. (2000) and Zaffaroni (2004), such models might

not be adequate to capture long memory in the squares of the process. In ARCH(∞) models the

necessary and sufficient condition for covariance stationarity of the levels rules out long memory

in the squares of the process when the model contains a positive intercept. This implies for exam-

ple that the introduction of long-memory dependence in VEC-BEKK type of models might not be

straightforward. The Multivariate Exponential Volatility model defined in (4.6)-(4.10) allows for

long-range dependence in the conditional covariance matrix. Since it is nested in the class of vec-

tor nonlinear moving average models, it allows for strong dependence in the squares of the process

while retaining the strict stationarity and martingale difference assumption in the levels. In this

chapter we investigate the asymptotic properties of the Gaussian estimator of the parameters when
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the sample autocorrelations of the squared returns decline very slowly. In contrast to the fast ex-

ponential decay imposed on the signal parameters in the last chapter, we allow for an hyperbolic

decay rate consistent with non-summability of the autocovariances and with an unbounded spectral

density at the zero frequency.

5.2 Long-range dependence in the MEV model

The vector signal plus noise representation of the Multivariate Exponential Volatility Model

may display long-range persistence in the signal when its coefficients exhibit a sufficiently slow

rate of decay. Indeed in the transformation

yt =
∞∑
j=0

Ψ0jεt−j−1 + ξt,
∞∑
j=0

‖Ψ0j‖2 <∞, (5.1)

the assumption of square summability allows to impart on the coefficients an hyperbolic decay rate

of D (j; θ) jd(θ)−1 as j → ∞, where D (j; θ) is a measurable Zygmund slowly varying function

at infinity and d (θ) ∈ (−∞, 1/2) is the memory parameter. When d(θ) ∈ (0, 1/2) the series has

long memory, when d(θ) ∈ (−1/2, 0) the series has negative memory and when d(θ) = 0 the se-

ries has short memory. In this chapter we focus on signal plus noise processes with long-range

dependence, setting d(θ) ∈ (0, 1/2) . We assume that the memory parameter is constant across the

different series in yt, however do not consider fractional cointegration among them. The depen-

dence structure implied by this assumption entails that the spectral density of the process might

not be square integrable and might not be bounded at the zero frequency. Indeed as λ→ 0+ the el-

ements of the spectral density matrix behave as KD
(
λ−1; θ

)
λ−2d(θ). To establish the asymptotic

properties of the frequency domain Gaussian estimates we can no longer rely on the uniform con-

tinuity of the spectrum and its higher order derivatives at all frequencies. However since d (θ) is

positive, the inverse of the spectral density matrix is continuous at all frequencies (see Giraitis et

al., 2012, page 212), hence the strong consistency of the estimator still holds. The most relevant

technical difference from Chapter 4 pertains to the asymptotic normality of the score vector. In
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this chapter we cannot rely on the asymptotic normality of the sample serial covariances and we

introduce a different approximation that has the effect of annulling the singularity of the spectral

density at the zero frequency. It must be pointed out that our results are limited to the case where

the spectral density matrix has a singularity at the zero frequency and cannot be readily extended

to long-memory multiple time-series possessing a variety of singularities in their spectrum. This

last case is dealt with in Hosoya (1997) by means of the bracketing function approach, however

Hosoya’s results do not extend to the case of correlated signal and noise. The next section discusses

the Whittle estimator for linear long-memory processes. Section 5.4 introduces spectral domain

regularity conditions and discusses the consistency of the estimator. Section 5.5 reinforces the as-

sumptions and derives the asymptotic normality of the estimates. All the proofs of the technical

lemmas are in Appendix C.

5.3 The Whittle estimator

In the previous chapter, we discussed some advantages in the use of the Whittle estimator due

to his frequency domain specification. In this chapter, as we consider a richer dependence struc-

ture in the conditional variance, a few more advantages emerge. Indeed the Gaussian frequency

domain estimator has been widely used in estimation of long-range dependent models thanks to

its technical properties. The Whittle function naturally takes into account the asymptotic behav-

ior of the autocovariances as the sample size goes to infinity, so it is very sensitive to the degree

of dependence of the process in second-order sense. Moreover, by construction, it automatically

compensates for the possible lack of square integrability of the model spectral density that occurs

when the memory parameter is between 1/2 and 1/4. This implies that the estimator has a rate of

convergence and an asymptotic distribution that do not depend on whether long-memory holds or

not. The Whittle function does not require truncation of the process for estimation, as is typically

the case with MLE and PMLE where one needs to distinguish between the observable likelihood
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and the unobservable one. As shown in Robinson and Zaffaroni (2006), such truncation might not

turn out asymptotically negligible in long-memory models since it could induce asymptotic bias.

A number of authors have developed the asymptotic properties of the Whittle estimator in long-

range dependent stationary processes. Yajima (1985), Fox and Taqqu (1987) and Dahlhaus (1989)

investigated univariate Gaussian processes. Giraitis and Surgailis (1990) dealt with univariate non

Gaussian linear processes establishing the asymptotic normality of the Whittle estimates of the pa-

rameters of strongly dependent linear sequences. Heyde and Gay (1993) partially extended the

former result to vector-valued non Gaussian processes. Giraitis and Taqqu (1999) generalized

Giraitis and Surgailis (1990) to a wide class of vector linear processes satisfying minimal assump-

tions. Hosoya (1997) dealt with vector long-memory stationary processes with singularities not

necessarily limited at the zero frequency. The key results in this literature are the central limit

theorems for quadratic forms of the type

√
T

∫ π

−π
tr
{
g(j) (λ,θ) [IT (λ)−EIT (λ)]

}
dλ (5.2)

1√
T
tr

{
T∑
t=1

T∑
s=1

hj (|t− s|)
(
yty

′

s − Γ (|t− s|)
)}

(5.3)

which play a crucial role in the asymptotic behavior of the Whittle estimator. The asymptotic

normality of the integrated weighted periodogram in (5.2) is derived via approximation by an-

other quadratic form which shares the same asymptotic distribution but has shorter memory. The

main idea of the approximation is to impose conditions on the weight function hj (|t− s|) =∫ π
−π g(j) (λ,θ) eiλ|t−s|dλ that have the effect of annihilating the singularities of the spectral den-

sity in the frequency domain. To establish the validity of the approximation Fox and Taqqu (1987)

rely on Gaussianity in an essential way, employing the exact expression for the cumulants of a

quadratic form in Gaussian variates. Giraitis and Surgailis (1990), Giraitis and Taqqu (1999) and

Hosoya (1997) relax the Guassianity assumption, and exploit the factorization of the spectrum.

Hosoya establishes a limit theorem for the integrated weighted periodogram in a framework gen-
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eral enough to deal with a variety of multiple singularities of the spectral density, under a set of

mixing conditions on the innovations which need not to satisfy a martingale difference assumption.

He considers a full-rank vector linear process with spectral density

f (λ) ≡ 1

2π
ϕ
(
eiλ,θ

)
Keϕ

(
eiλ,θ

)∗
factored as

f (λ) = Γ
(
e−iλ

)
Γ
(
e−iλ

)∗
and defines the approximation to (5.2) by

√
T

∫ π

−π
tr
{
g′(j) (λ,θ) [I′T (λ)−EI′T (λ)]

}
dλ, (5.4)

where g′(j) (λ, θ) and I′T (λ, ) are functions of a new process y′t which by definition has spectral

density

f ′ (λ) ≡ Γ
(
e−iλ

)
f (ω) Γ

(
e−iλ

)∗
.

In view of the construction f ′ (ω) is equal almost everywhere to the identity matrix and square

integrable at all frequencies. The CLT for (5.4) follows using standard results. Hosoya derives the

validity of the approximation by means of a general result on the convergence of covariances of

quadratic forms

Tcov

(∫ π

−π
tr
{
g(j) (λ,θ) [IT (λ)−EIT (λ)]

}
dλ,

∫ π

−π
tr
{
g(l) (λ,θ) [IT (λ)−EIT (λ)]

}
dλ

)
.

(5.5)

To establish the convergence of (5.5) he imposes regularity conditions on the functions g(j) and

g(l) and on the transfer function ϕ
(
eiλ,θ

)
, assuming uniform Lipschitz continuity of degree γ > 0

for the former and integrability of order p > 2 for the latter. Moreover he imposes that for some

γ1 > 0, the pair
{
g(j) (λ) , ϕ

(
eiλ,θ

)}
satisfies

sup
|ε|≤ε1

∥∥∥g(j) (λ)
∣∣ϕ (eiλ+ε,θ

)
− ϕ

(
eiλ,θ

)∣∣2∥∥∥
2

= O (|ε1|γ1) , (5.6)

where "‖.‖2" denotes the L2-norm of a complex function in [−π, π]. Using the concept of multiple
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Fejer Kernel he shows that (5.5) converges to

4π

∫ π

−π
tr
{
g(j) (λ) f (λ,θ) g(l) (λ) f (λ,θ)

}
dλ (5.7)

+2π
s∑

a,b,c,d=1

g(j) (λ1) g(l) (λ2)Ky
abcd (−λ1, λ2,−λ2) dλ1dλ2,

and relying on (5.7) he establishes that the variance of the difference between (5.4) and (5.2)

converges to zero as T goes to infinity.

Giraits and Taqqu (1999) extend Giraitis and Surgailis (1990), Giraitis et al. (1996) and Giraitis

and Taqqu (1997). They consider situations where there are k ≥ 1 different scalar quadratic forms

(5.2) , each with its own weight sequence and possibly generated by a different process. For a

linear process with spectral density f (ω) = 2πσ2 |â (ω)|2 , they approximate (5.2) by

ST =
T∑
k=1

Y1,kY2,k,

where the processes Yi,k have by definition weights bi,t (λ) such that

bi,t (λ) =

∫ π

−π
|g (ω)|1/2 |â (ω)| eikλdλ, (5.8)

and square integrable spectral density fi (ω) = 2πf (ω) |g (λ)| , where the zero frequency singu-

larity of f (ω) is compensated for by letting |g (ω)| → 0 as ω → ∞. As in Hosoya (1997), the

approximation depends on the form of the transfer function (5.8) which relies on the factorization

of the spectral density of the original process. Zaffaroni (2003, 2009) establishes a CLT for univari-

ate quadratic forms (5.2) without making use of the factorization of spectral density. The original

process is truncated at some finite t = N and the validity of the approximation is established rely-

ing on certain results on the asymptotic behavior of the trace of Toeplitz matrices (Theorem 1, Fox

and Taqqu, 1987). The CLT for the quadratic forms of the new process follows from standard re-

sults on quadratic forms in N dependent variates. In Section 5 we extend Zaffaroni (2003, 2009)

introducing an approximation for vector signal plus noise processes. We then rely on Giraitis and

Taqqu (1999, Theorem 7.3) to establish the asymptotic normality of the approximation.
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5.4 Consistency

This section establishes the consistency of the Whittle estimator. We first list the assumptions

with some comparison with Assumption 4.1, then state the main result. Even if the signal com-

ponent of yt is a long-memory process, we still obtain a strong consistency result. The notation

is unchanged from Chapter 4. In what follows, D
(
λ−1, θ

)
denotes a Zygmund slowly varying

function at infinity (ZSV), not necessarily the same.

ASSUMPTION 5.1

[A] {ε′t, ξ′t} are i.i.d unobservable random vectors, and, for every a, b = 1, ..., n,

(i) Eε0 = 0 and E(ε0ε
′
0) = Σε (τ ) , 0 < Σε (τ ) <∞.

(ii) E
∣∣∣ξ(a)

0

∣∣∣ <∞ and E(ξ0ξ
′
0) = Σξ (τ ) , 0 < Σξ (τ ) <∞.

(iii) E (ξ0ε
′
0) = Σξε (τ ) , 0 < Σξε (τ ) <∞.

[B] θ0 is an interior point of the compact parameter space Θ ∈ Rs.

[C] (i) f (λ,θ) has elements in L1 (Π), continuous at all (λ,θ) ∈ Π×Θ with λ 6= 0,∣∣f (a,b) (λ,θ)
∣∣ ≤ D

(
λ−1,θ

)
|λ|−2d(θ) λ→ 0+, d (θ) ∈ (0, 1/2) .

(ii) f−1 (λ,θ) has elements in L1 (Π), continuous at all (λ,θ) ∈ Π×Θ,∣∣∣f−1
(a,b) (λ,θ)

∣∣∣ ≤ D
(
λ−1,θ

)
|λ|2d(θ) λ→ 0+, d (θ) ∈ (0, 1/2) .

(iii) The function

ϕη (λ,θ) ≡ f (λ,θ)

(det f (λ,θ) + η)

has elements in L1, continuous at all (λ,θ) ∈ Π×Θ for all η > 0.

[D] For every θ ∈ Θ whenever θ 6= θ0, f (λ,θ) 6= f (λ,θ0).

[E] For any θ ∈ Θ, f (λ,θ) is a strictly positive definite matrix.

[F]
∫ π
−π log det f (λ,θ) dλ is twice differentiable in θ ∈ Θ under the sign of integral.

[G] (∂/∂θj) f (λ,θ) has elements in L1 (Π), continuous at all (λ, θ) ∈ Π×Θ with λ 6= 0,∣∣∣ḟ (a,b)
(j) (λ,θ)

∣∣∣ ≤ D
(
λ−1,θ

)
|λ|−2d(θ) λ→ 0+ d (θ) ∈ (0, 1/2) .
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In contrast with Assumption 4.1, Assumption 5.1 imposes regularity conditions directly on the

spectral density and its first order derivatives, defining unambiguously their behavior near the ori-

gin, as well as a form of uniform continuity away from the zero frequency. Spectral domain reg-

ularity conditions are common in long-memory parametric literature, see for example Giraitis and

Surgailis (1990), Heyde and Gay (1993), and Hosoya (1997). A relevant exception is Zaffaroni

(2009). In a scalar signal plus noise model (5.1) Zaffaroni imposes regularity conditions directly

on the signal coefficients and their derivatives, assuming that they satisfy an exact hyperbolic decay

rate, quasi monotonic convergence towards zero, and a pure-bounded variation condition. These

conditions imply that the spectral density and its derivatives satisfy a form of Lipschitz continu-

ity of degree α ≥ min [1, 1− 2d (ζ)] away from the zero frequency and have an exact decay rate

of L(j, ζ) |λ|−2d(ζ)
as λ → 0+, where L(j, ζ) is a slowly varying function at infinity. We impose

slightly stronger regularity conditions directly on the spectral density matrix and its derivatives

at the zero frequency. The function D(λ) is a Zygmund slowly varying function at infinity, i.e.

a slowly varying function at infinity in Karamata’s sense such that for any a > 0 and for some

λ0 > 0, λaD(λ) is increasing in λ and λ−aD(λ) is decreasing in λ , for all λ ≥ λ0. In this chapter

we use repetitively the result that a Zygmund slowly varying function at infinity (ZSV) is O
(
|λ|δ
)

as λ→ 0 for any δ > 0 (see Feller 1971, page 277).

The main result of this section is the strong consistency of the Whittle estimator.

Theorem 5.1 Under Assumption 5.1, as T →∞

θ̂T →a.s θ0.

The proof of Theorem 5.1 follows by contradiction, exactly as for Theorem 4.1, relying on the

uniform convergence of the objective function to Q (θ) and on Lemma 4.2. Lemma 4.2. holds

under Assumption 5.1 as well because its proof is based on the strict positivity and the identification

property of the spectral density which are directly assumed in this chapter. The uniform converge
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of QT (θ) and QT,η (θ) requires a slightly different proof from Chapter 4 and it is established by

the following lemma.

Lemma 5.1 If Assumption 5.1 holds, then

(a) limT→∞QT (θ) = Q (θ) almost surely uniformly in θ ∈ Θ.

(b) for any η > 0, uniformly in θ ∈ Θ, limT→∞QT,η (θ) = Qη (θ) almost surely.

The almost sure uniform convergence of the first term of QT (θ) ,

1

2π

∫ π

−π
tr
{
f−1(λ,θ)IT (λt)

}
to

1

2π

∫ π

−π
tr
{
f−1(λ,θ)f(λ,θ0)

}
dλ

follows from Lemma 4.4, taking h (λ,θ) ≡ f−1 (λ,θ). By Assumption 5.2[C](ii) f−1 (λ,θ) is

continuous at all (λ,θ), even if f (λ,θ) is unbounded at the zero frequency. Moreover f−1 (λ,θ) =

f−1 (−λ,θ). The uniform continuity of first non stochastic term of QT (θ),

1

2π

∫ π

−π
log det f(λ,θ)dλ,

is shown by establishing its equicontinuity property

lim
ε→0

sup
θ̃:‖θ̃−θ‖≤ε

∣∣∣∣ 1

2π

∫ π

−π
log det f

(
λ, θ̃

)
dλ− 1

2π

∫ π

−π
log det f (λ,θ) dλ

∣∣∣∣→ 0. (5.9)

(5.9) is implied by

sup
θ∗∈Θ

∣∣∣∣ ∂∂θj 1

2π

∫ π

−π
log det f (λ,θ∗) dλ

∣∣∣∣ <∞, (5.10)

where |θ∗ (λ)− θ| < |ε| , (see Davidson, 1994, Theorem 21.10, page 339). By Assumption 5.1[F]

∂

∂θj

1

2π

∫ π

−π
log det f (λ,θ∗) dλ

=
1

2π

∫ π

−π

∂

∂θj
(log det f (λ,θ∗)) dλ

=
1

2π

∫ π

−π
tr
{

f−1 (λ,θ∗) ḟ(j) (λ,θ∗)
}
dλ.

However by Assumption 5.1[C](ii) and [G] the integrand is at most, ignoring constant terms,∫ π

−π
|λ|2(dl−du)−δ dλ <∞,
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where we take dl = infΘ d (θ) and du = supΘ d (θ) and so (dl − du) > −1/2 and δ can be taken

arbitrarily small. Then we choose δ such that∫ π

−π
|λ|2(dl−du)−δ dλ <∞,

and the use of the dominated convergence theorem concludes.

The proof of Lemma 5.1 (b) follows for 1
2π

∫ π
−π tr

(
ϕη(λ,θ)IT (λt)

)
from Lemma 4.4. using

assumption 5.1[G](ii) and for 1
2π

∫ π
−π log det f(λ,θ)dλ from Lemma 5.1 (a).

5.5 Asymptotic Normality

This section reinforces the moments condition of the process innovations and the regularity

conditions on the spectral density matrix, controlling the behavior of its higher order derivatives

around the pole λ = 0. The following conditions are very similar to those in Fox and Taqqu (1986)

and Giraitis and Taqqu (1999). However, following Zaffaroni (2009), we also impose an exact rate

of decay on certain combinations of the signal coefficients that guarantees their quasi monotonic

convergence to zero.

ASSUMPTION 5.2

[A] {ε′t, ξ′t} are i.i.d unobservable random vectors, and, for all a, b, c, d = 1, ..., n,

(i) Eε0 = 0 and E
(
ε

(a)
0 ε

(b)
0 ε

(c)
0 ε

(d)
0

)
= Kε

abcd (τ ), |Kε
abcd (τ )| <∞.

(ii) E
∣∣∣ξ(a)

0

∣∣∣ <∞ and E
(
ξ

(a)
0 ξ

(b)
0 ξ

(c)
0 ξ

(d)
0

)
= Kξ

abcd (τ ) , |Kε
abcd (τ )| <∞.

(iii) E
(
ξ

(a)
0 ε

(b)
0 ξ

(c)
0 ε

(d)
0

)
= Kεξ

abcd (τ ) ,
∣∣∣Kεξ

abcd (τ )
∣∣∣ <∞.

(iv) For any 0 ≤ η < 1, and all u ≥ 0

∆ (u) ≡
{ ∞∑
j=0

∣∣∣Ψ(a)
j

∣∣∣1−η/2 ∣∣∣Ψ(b)
j+|u|

∣∣∣1−η/2} ∼ K |D (u,θ)|u(1−η/2)(2d−1) as u→∞

(v) For any η > 0,
∣∣∣Ψ(a)

N

∣∣∣η is a positive sequence converging to zero as N →∞.

[B] θ0 is an interior point of the compact parameter space Θ ∈ Rs.

[C] (i) f (λ,θ) has elements in L1 (Π), continuous at all (λ,θ) ∈ Π×Θ with λ 6= 0,∣∣f (a,b) (λ, θ)
∣∣ ≤ D

(
λ−1,θ

)
|λ|−2d(θ) λ→ 0+, d (θ) ∈ (0, 1/2) .
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(ii) f−1 (λ,θ) has elements in L1 (Π), continuous at all (λ,θ) ∈ Π×Θ,∣∣∣f−1
(a,b) (λ, θ)

∣∣∣ ≤ D
(
λ−1,θ

)
|λ|2d(θ) λ→ 0+, d (θ) ∈ (0, 1/2) .

[D] For every θ ∈ Θ whenever θ 6= θ0, f (λ,θ) 6= f (λ,θ0).

[E] For any θ ∈ Θ, f (λ,θ) is a strictly positive definite matrix.

[F]
∫ π
−π log det f (λ, θ) dλ is twice differentiable in θ ∈ Θ under the integral sign.

[G] (i) (∂/∂θj) f (λ, θ) has elements in L1 (Π) continuous at all (λ, θ) , λ 6= 0, and∣∣∣ḟ (a,b)
(j) (λ, θ)

∣∣∣ ≤ D
(
λ−1,θ

)
|λ|−2d(θ) λ→ 0+ d (θ) ∈ (0, 1/2) .

(ii)
(
∂2/∂θi∂θ

′
j

)
f (λ, θ) has elements in L1 (Π) continuous at all (λ, θ) , λ 6= 0, and∣∣∣̈f (a,b)

(i,j) (λ, θ)
∣∣∣ ≤ D

(
λ−1,θ

)
|λ|−2d(θ) λ→ 0+ d (θ) ∈ (0, 1/2) .

(iii)
(
∂3/∂θi∂θ

′
j∂θl

)
f (λ, θ) has elements in L1 (Π) continuous at all (λ, θ) , λ 6= 0, and∣∣∣...f (a,b)

(i,j,l) (λ, θ)
∣∣∣ ≤ D

(
λ−1,θ

)
|λ|−2d(θ) λ→ 0+ d (θ) ∈ (0, 1/2) .

(iv) (∂/∂θj) f−1 (λ, θ) has elements in L1 (Π) continuous at all (λ, θ) ∈ Π×Θ, and∣∣∣∣ ∂∂θj f−1
(a,b) (λ, θ)

∣∣∣∣ ≤ D
(
λ−1,θ

)
|λ|2d(θ) λ→ 0+ d (θ) ∈ (0, 1/2) .

(v)
(
∂2/∂θi∂θ

′
j

)
f−1 (λ, θ) has elements in L1 (Π) continuous at all (λ, θ) ∈ Π×Θ and∣∣∣∣ ∂2

∂θi∂θ
′
j

f−1 (λ, θ)

∣∣∣∣ ≤ D
(
λ−1,θ

)
|λ|2d(θ) λ→ 0+ d (θ) ∈ (0, 1/2) .

[H] (i) The function

g(j)(λ,θ0) ≡ f−2 (λ,θ0) ḟ(j) (λ,θ0) for all j = 1, ...s.

has elements in L1 (Π) continuous at all (λ, θ), λ 6= 0, and∣∣∣g(b,a)
(j) (λ,θ0)

∣∣∣ ≤ D
(
λ−1,θ

)
|λ|2d(θ) λ→ 0+ d (θ) ∈ (0, 1/2) for all j = 1, ...s.

(ii) For some 1/2 < γ < 1, for any λ1and λ2 ∈ Π∣∣tr {g(j) (λ1,θ0) f (λ1,θ0)− f (λ1 − λ2,θ0)
}∣∣ ≤ K |λ2|γ for all j = 1, ...s.

Assumption 5.2[C] and [G] are quite standard in long-memory statistical literature. We assume

regularity conditions on the spectral density and its derivatives up to the third order to ensure the
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necessary degree of smoothness on the Hessian matrix. Rather than assuming an exact decay rate

at the zero frequency, we prefer slightly stronger and more general assumptions that impose a

common bound on the elements of the matrices. We assume uniform continuity away from the

zero frequency rather than Lipschitz continuity as Zaffaroni (2009). Assumption 5.2[A](i)-(iii)

imply strict stationarity and ergodicity of the process, and the existence of its fourth order spectral

density. Heyde and Gay (1993) make assumptions which ensure that the fourth-order cumulant

term vanishes in the asymptotic covariance matrix, however in model (5.1) this is not possible.

Hosoya (1997) imposes uniform Lipschitz continuity of degree γ > 0 on the fourth order spectral

density of the innovations to ensure the convergence of the covariances in (5.5). Giraitis and

Surgailis (1990) directly assume the convergence of

1

T

T∑
t1,t2,t3,t4=1

hj (|t1 − t2|)hl (|t3 − t4|) (γ (|t3 − t1|) γ (|t4 − t2|) + γ (|t4 − t1|) γ (|t3 − t2|))

to

(2π)3

∫ π

−π
(f (λ, θ) g (λ, θ))2 dλ <∞.

Assumption 5.2 [A] (iv) and (v) allow us to establish the approximation of the integrated weighted

periodogram via a truncation of the original process, rather than via a factorizations of its spec-

tral density. They imply an exact decay rate of the Fourier coefficients of certain covariances

that arise as a consequence of the truncation and enable us to establish the validity of the trunca-

tion via well-known results on the asymptotic behavior of the trace of Toeplitz matrices (see Fox

and Taqqu, 1987, Theorem 1). Assumption 5.2[H](i) implies that the weights of the integrated

weighted periodogram satisfy the sufficient condition of Theorem 7.3 of Giraitis and Taqqu (1999)

on which we rely to obtain the asymptotic distribution of the approximated score vector. Assump-

tion 5.2[H](ii) gives a condition for the asymptotic unbiasedness of
∫ π
−π tr

{
g(j)(λ,θ0)IT (λ)

}
dλ

which enables us to approximate the score vector by another long-memory quadratic form that can

be easily truncated.
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The following theorem establishes the asymptotic normality of the estimator.

Theorem 5.2 Under assumptions 5.2, as T →∞
√
T (θ − θ0)→d Ns(0,M

−1(θ0)V (θ0)M−1(θ0)),

where

M (θ0) =
1

2π

∫ π

−π
tr
{

f−1 (λ,θ0) ḟ(i) (λ,θ0) f−1 (λ,θ0) ḟ(j) (λ,θ0)
}
dλ,

and the matrix V (θ0) has elements

V(i,j) =
1

π

∫ π

−π
tr

{
f(λ,θ)

∂

∂θj
f−1(λ,θ0)f(λ,θ)

∂

∂θl
f−1(λ,θ0)

}
dλ

+
1

2π

T∑
r,t,u,v=1

∫ π

−π

∫ π

−π

{
∂

∂θj
frq(λ1,θ0)

∂

∂θl
fuv(λ2,θ0)

}
K̃y
rtuv(−λ1,λ2,−λ2)dλ1dλ2.

The proof of Theorem 5.2 has the same structure of that of Theorem 4.2. The consistency of

θ̂ for θ0, guaranteed by Theorem 5.1, implies that, as T → ∞, θ̂ eventually enters an arbitrary

neighborhood of θ0. By definition θ̂ solves the equation (∂/∂θ)QT

(
θ̂
)

= 0. The mean-value

theorem implies that for θ̊, such that

∥∥∥̊θT − θ0

∥∥∥ ≤ ∥∥∥θ̂T − θ0

∥∥∥,

0 = T 1/2Q̇T (θ) = T 1/2Q̇T (θ0) +
[
Q̈T (θ)

]
T 1/2

(
θ̂ − θ0

)
,

thus the asymptotic distribution of T 1/2
(
θ̂ − θ0

)
is obtained from the asymptotic distribution of[

Q̈T (θ)
]
T 1/2Q̇T (θ). To establish the latter we prove the uniform convergence of the Hessian ma-

trix to the positive definite matrixM (θ) in Lemma 5.3 and we conjecture the asymptotic normality

of the score vector in Conjecture 5.4.

Lemma 5.3 Under Assumption 5.2, as T →∞, uniformly in θ ∈ Θ,

Q̈T (θ)→M (θ)

almost surely, where M (θ) is a positive definite matrix with elements

M (i,j) (θ) =
1

2π

∫ π

−π
tr
{

f−1 (λ,θ) f̈(i,j) (λ,θ)
}
dλ− 1

2π

∫ π

−π
tr
{

f−1 (λ,θ) ḟ(i) (λ,θ) f−1 (λ,θ) ḟ(j) (λ,θ)
}
dλ

− 1

2π

∫ π

−π
tr

{(
∂2

∂θi∂θ
′
j

f−1 (λ,θ)

)
f (λ,θ0) dλ

}
dλ.
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Lemma 5.3 and the consistency of θ̂T for θ0 imply

Q̈T (θ)→a.s M (θ0) .

In view of this result, the asymptotic normality of the estimator follows from the asymptotic nor-

mality of Q̇T (θ0).

Conjecture 5.4 Under Assumption 5.2 as T →∞,

Part (a):

√
T
[
Q̇T (θ0)− EQ̇T (θ0)

]
→d N(0, V (θ0)),

where V (θ) is a positive definite matrix with (j, l) element:

V(j,l) =
1

π

∫ π

−π
tr
[
f(λ, θ0)ḟ−1

(j) (λ, θ0)f(λ, θ)ḟ−1
(l) (λ, θ0)

]
dλ

+
1

2π

T∑
a,b,c,d=1

∫ π

−π

∫ π

−π

{
ḟ

(a,b)
(j) (λ1,θ0)ḟ

(c,d)
(l) (λ2,θ0)

}
K̃a,b,c,d(−λ1,λ2,−λ2, θ0)dλ1dλ2.

Part (b):

√
TEQ̇T (θ)→ 0.

The proof of the asymptotic normality of the score vector is based on the idea, introduced by

Giraitis and Surgailis (1990), of approximating the score vector by another quadratic form which

shares the same asymptotic distribution but has a less strong dependence structure. In what follows

we show that each element of the score vector

√
TQ̇T (j)(θ0) =

√
T

2π

∫ π

−π
tr
{
g(j)(λ,θ0) [I (λ)− f(λ,θ0)]

}
dλ (5.11)

shares the same asymptotic distribution of the quantity
√
T

2π

∫ π

−π
tr
{
g(j)(λ,θ0) [I (λ, ỹt)− EI(λ, ỹt)]

}
dλ, (5.12)

where I (λ, ỹ) and EI(λ, ỹ) denote the periodogram and the expected value of the periodogram of

a new process ỹt that we define below, and g(j)(λ,θ0) ≡ f−2 (λ, θ0) ḟ(j) (λ, θ0). As a preliminary

step, the following lemma allows us to approximate the jth element of the score vector

√
T
[
Q̇T (j)(θ0)− EQ̇T (j)(θ0)

]
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by another quadratic form of the original process
√
T

2π

∫ π

−π
tr
{
g(j)(λ,θ0) [IT (λ)− EIT (λ)]

}
dλ.

Lemma 5.5 Under Assumption 5.2, as T →∞

lim
T→∞

√
T

∫ π

−π
tr
{
g(j)(λ,θ0) [EIT (λ)− f(λ,θ0)]

}
dλ = 0 for all j = 1, ..., s.

We now introduce the new process ỹt. We set

ỹt ≡
N∑
j=0

Ψ0jεt−j−1 + ξt 0 < N <∞,

a truncation of of the original process yt at a finite integer N . Consider that ỹt has autocovariance

function Γ̃ (u)

= I(u=0)Σξ (τ) + Σε (τ)

N−|u|∑
j=0

Ψj (ζ) Ψ
′

j+|u| (ζ) + I(m 6=0)Ψ|u|−1 (ζ) Σξε (τ) for 0 ≤ u ≤ N,

= 0 for all u > N.

which satisfies
∞∑
u=0

∣∣∣tr{Γ̃ (u)
}∣∣∣ <∞. (5.13)

By Lemma B1.3, (5.13) implies that f̃ (λ, θ) has elements in L2 (Π) which are bounded and con-

tinuous at all (λ,θ) ∈ Π × Θ. Moreover by definition ỹt is a signal plus noise process where the

signal is a finite order MA(N) process and can be represented as

ỹt =

∞∑
l=0

Φ∗l (θ) e∗l−t,

∞∑
l=0

‖Φ∗l (θ)‖2 <∞, (5.14)

where we define

e∗t ≡ ξt, (5.15)

e∗t−l = εt−l, l ≥ 1
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and

Φ∗l (θ) ≡ In, l = 0, (5.16)

Φ∗l (θ) ≡ Ψl−1 (θ) , 1 ≤ l ≤ N

Φ∗l (θ) ≡ 0n l > N .

We now establish the joint asymptotic normality of the quadratic forms
√
T

2π

∫ π

−π
tr
{
g(j)(λ,θ0) [I (λ, ỹt)− EI(λ, ỹt)]

}
dλ j = 1, ..., s (5.17)

=
1

2π

n∑
a,b=1

√
T

∫ π

−π
g

(b,a)
(j) (λ,θ0)

[
I(a,b) (λ, ỹt)− EI(a,b)(λ, ỹt)

]
dλ j = 1, ...s.

=

n∑
a,b=1

T−1/2

[
T∑
t=1

T∑
s=1

h
(j)
(b,a) (t− s)

(
ỹ

(a)
t ỹ(b)

s − Γ̃
(a,b)
(|t−s|)

)]
j = 1, ..., s,

where h
(j)
(b,a) denotes the Fourier coefficient of g

(b,a)
(j) (λ,θ0),

h
(j)
(b,a) (|t− s|) = (1/2π)

∫ π

−π
g

(b,a)
(j) (λ,θ0)ei(t−s)λdλ.

Even if (5.17) for j = 1, ..., s is a quadratic form of a short-memory, N -dependent process we

cannot derive its asymptotic normality relying on Lemma 4.2 because the function g(j)(λ,θ0) does

not satisfy the necessary regularity conditions of square integrability and uniform continuity at all

(λ, θ) ∈ Π×Θ. Zaffaroni (2009) derives the asymptotic normality of (5.17) for a univariate "trun-

cated" signal plus noise process (5.14) relying on Theorem 18.5.1 of Ibragimov and Linnik (1971,

page 340), who provide a central limit theorem for φ-mixing processes with arbitrarily fast de-

creasing mixing coefficients. It is not clear how such result could be extended to quadratic forms

of multivariate φ-mixing processes with different weight sequences which have Fourier transforms

possibly unbounded at the zero frequency. To establish the asymptotic normality of (5.17) we rely

on Theorem 7.3 of Giraitis and Taqqu (1999, page 29). Giraitis and Taqqu derive the joint asymp-

totic normality of quadratic form of multivariate Appell polynomials for linear sequences with i.i.d

innovations and possibly different weights and linear coefficients. Taking in their notation a multi-

variate Appell polynomial, Pm,n

(
X

(i,1)
t , X

(i,2)
s

)
of degree equal to one, to establish the result we
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must verify that the scalar quantities

T−1/2

(
T∑
t=1

T∑
s=1

h
(j)
(b,a) (t− s)

[
ỹ

(a)
t ỹ(b)

s − Γ̃
(a,b)
(|t−s|)

])
(5.18)

satisfy the regularity conditions of Theorem 6.1 of Giraitis and Taqqu (1999). Consider that each

component of the truncated process has representation

ỹ
(a)
t =

∞∑
l=0

Φ∗a,l (θ) e∗l−t (5.19)

where Φ∗a,l denotes the ath row of the matrix Φ∗l (θ) defined in (5.16), the linear innovations e∗l−t

are defined in (5.15) and satisfy Assumption 5.2[A]. A sufficient condition for Theorem 6.1 of

Giraitis and Taqqu is provided by Theorem 6.3.2 of Giraitis et al. (2012, Section 6.3.1, Chapter 6).

For a stationary scalar linear process with finite fourth moments i.i.d innovations, the asymptotic

normality of (5.18) is implied by

f (λ) ≤ C |λ|−α , and |g (λ)| ≤ C |λ|−β , for every λ ∈ Π (5.20)

for some − 1 < α, β < 1, α + β < 1/2.

Consider that for all a = 1, ..., n, the spectral density function of ỹ
(a)
t trivially satisfies

f̃ (a) (λ, θ) ≤ C |λ|−α for all λ ∈ Π

choosing α = 0. Moreover the function g(j)(λ,θ0) is by definition a real valued even function

with elements in L1 (Π) that satisfy∣∣∣g(a,b)
(j) (λ,θ0)

∣∣∣ ≤ D
(
|λ|−1) |λ|2d(θ) , |λ| ≤ π,

by Assumption 5.2[H] . Choosing −β = 2d (θ) and α = 0,

α + β < 1/2,

and condition (5.20) is satisfied. The linear innovations in (5.19) are a sequence of independent

random variables with finite fourth moments by Assumption 5.2 [A] and identically distributed at

all s = t− l, l ≥ 1. Thus we make the following conjecture.
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Conjecture 5.6 Under Assumption 5.2, for all j = 1, ..., s, as T →∞, the quantities
√
T

2π

∫ π

−π
tr
{
g(j)(λ,θ0) [I (λ, ỹt)− EI(λ, ỹt)]

}
dλ

have a joint normal asymptotic distribution.

To establish the validity of the approximation we must show that the variance of the difference

between
√
T

2π

∫ π

−π
tr
{
g(j)(λ,θ0) [IT (λ)− EIT (λ)]

}
dλ (5.21)

and
√
T

2π

∫ π

−π
tr
{
g(j)(λ,θ0) [IT (λ, ỹt)− EIT (λ, ỹt)]

}
dλ (5.22)

tends to 0 as T →∞ for each j, so that the former quantities have the same asymptotic distribution

of the latter. To that end, we write the difference between (5.21) and (5.22) as

tr

{
T−1/2

T∑
s=1

T∑
t=1

h̃(j) (|t− s|) [ytys − ỹtỹs]

}
(5.23)

= tr

{
T−1/2

T∑
s=1

T∑
t=1

h̃(j) (|t− s|) [yt (ys − ỹs) + ỹs (yt − ỹt)]

}
. (5.24)

In what follows any function of θ is evaluated at θ0, however to avoid an excess of notation we

omit it. (5.24) is given by the sum of the following three terms

V ar

[
tr

{
T−1/2

T∑
s=1

T∑
t=1

h̃(j) (|t− s|) yt (ys − ỹs)

}]
(5.25)

V ar

[
tr

{
T−1/2

T∑
s=1

T∑
t=1

h̃(j) (|t− s|) ỹs (yt − ỹt)

}]
(5.26)

T−1Cov

[
tr

{
T∑
s=1

T∑
t=1

h̃(j) (|t− s|) yt (ys − ỹs)

}
, tr

{
T∑
s=1

T∑
t=1

h̃(j) (|t− s|) ỹs (yt − ỹt)

}]
.

(5.27)

The same bound applies to (5.25) and (5.26) and, by Schwartz inequality, to (5.27) as well. There-

fore we follow closely Zaffaroni (2009, Lemma 7) and consider (5.25). Using the definition of the
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trace, (5.25) is

V ar

[
n∑

a,b=1

{
T−1/2

T∑
t=1

T∑
s=1

h̃
(j)
(b,a) (|t− s|) y

(a)
t

(
y(b)
s − ỹ(b)

s

)}]
.

For a, b, c, d = 1, ..., n, (5.25) is given by the sum of the following three terms

T−1

T∑
t,s=1

T∑
p,q=1

h̃
(j)
(b,a) (|t− s|) h̃

(j)
(d,c) (|p− q|) cov

(
y

(a)
t y(c)

p

)
cov
((

y(b)
s − ỹ(b)

s

)
,
(
y(d)
q − ỹ(d)

q

))
(5.28)

+T−1

T∑
t,s=1

T∑
p,q=1

h̃
(j)
(b,a) (|t− s|) h̃

(j)
(d,c) (|p− q|) cov

(
y

(a)
t ,
(
y(d)
q − ỹ(d)

q

))
cov
(
y(c)
p ,
(
y(b)
s − ỹ(b)

s

))
(5.29)

+T−1

T∑
t,s=1

T∑
p,q=1

h̃
(j)
(b,a) (|t− s|) h̃

(j)
(d,c) (|p− q|) cum

(
y

(a)
t ,y(c)

p ,
(
y(b)
s − ỹ(b)

s

) (
y(d)
q − ỹ(d)

q

))
.

(5.30)

Consider (5.28) . We show that this term is O (δNT ) , for a positive sequence satisfying δN → 0

as N → ∞. As Zaffaroni (2009, Lemma 7), we rely on Theorem 1 of Fox and Taqqu (1987). To

that end, we must establish that (5.28) can be expressed as

1/T (2π)4

∫ π

−π

∫ π

−π

∫ π

−π

∫ π

−π
f (λ1) g (λ2) f (λ3) g (λ4)

×
T−1∑
j1=0

...
T−1∑
j4=0

ei(j1−j2)λ1ei(j2−j3)λ2ei(j3−j4)λ3ei(j4−j3)λ4dλ1dλ2dλ3dλ4,

for functions f (.) and g (.) bounded on the interval [δ, π] for δ > 0, and such that

|f (ω)| = O
(
|ω|−a−δ

)
as ω → 0,

and

|g (ω)| = O
(
|ω|−b−δ

)
as ω → 0,

with

2 (α + β) < 1/2.
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Setting

cov
[
y

(a)
t y(c)

p

]
= (1/2π)

∫ π

−π
f (a,c) (λ4) ei(p−t)λ4 , (5.31)

where f (λ) denotes the spectral density of yt, and setting

cov
[(

y(b)
s − ỹ(b)

s

)
,
(
y(d)
q − ỹ(d)

q

)]
= (1/2π)

∫ π

−π
f̆ (b,d) (λ2) ei(q−s)λ2 , (5.32)

where f̆ (λ) denotes the spectral density of (yt − ỹt) , (5.28) may be written as

(1/2π)4

∫ π

−π

∫ π

−π

∫ π

−π

∫ π

−π
f (b,d) (λ2) g

(b,a)
(j) (λ1)̆f (a,c) (λ4) g

(d,c)
(j) (λ3) (5.33)

×
T−1∑
t=0

T−1∑
s=0

T−1∑
q=0

T−1∑
p=0

ei(t−s)λ1ei(q−s)λ2ei(p−t)λ4ei(p−q)λ3dλ1dλ2dλ3dλ4. (5.34)

Theorem 1 of Fox and Taqqu (1987) cannot be directly applied to (5.33). We follow Lemma 7 of

Zaffaroni (2009) and find an upper bound to (5.33) that satisfies the regularity conditions of Fox

and Taqqu.

By Lemma C.1 (see Appendix C), for any η ∈ (0, 1) , (5.31)and (5.32) are bounded by

K
∣∣∣Ψ(a)

N

∣∣∣η{ ∞∑
j=0

∣∣∣Ψ(a)
j Ψ

(c)
j+|p−t|

∣∣∣1−η/2} ,
where Ψ

(a)
j is the ath element of the matrix of coefficients Ψj defined in (5.1). Set u = |p− t|. By

Assumption 5.2[A] as u→∞{ ∞∑
j=0

∣∣∣Ψ(a)
j

∣∣∣1−η/2 ∣∣∣Ψ(c)
j+u

∣∣∣1−η/2} ∼ K |D (u)|u(1−η/2)(2d−1), (5.35)

where D (u) is a measurable Zygmund slowly varying function at infinity. Denote the Fourier

transform of the left hand side of (5.35) by b (λ) . (5.33) is bounded by

(1/2π)4 |ψ0N |
η

∫ π

−π

∫ π

−π

∫ π

−π

∫ π

−π
b(b,d) (λ2) g

(b,a)
(j) (λ1)b(a,c) (λ4) g

(d,c)
(j) (λ3) (5.36)

×
T−1∑
t=0

T−1∑
s=0

T−1∑
q=0

T−1∑
p=0

ei(t−s)λ1ei(q−s)λ2ei(p−t)λ4ei(p−q)λ3dλ1dλ2dλ3dλ4.

By (2.3.8) of Giraitis et al. (2012, page 19), b (λ) is

O
(
|λ|−(1+(1−η/2)(2d−1))−δ

)
, as λ→ 0+, for any δ > 0,

taking in their notation −β = (1− η/2) (2d− 1) , and using the fact that any ZSV function satis-

fies |D (u)| = O
(
|u|δ
)

as u→ 0.
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Moreover Assumption 5.2 [H] implies that the function g(j)(λ,θ0) has elements of orderO
(
|λ|2d(ζ)−δ

)
.

Set −a = − (1 + (1− η/2) (2d− 1)) and −b = 2d (θ0), then choose η < 1/ (1− 2d (θ0)). Since

η < 1/ (1− 2d (θ0)) implies 2 (α + β) = 2 (−2d (θ0) + 1 + (1− η/2) (2d− 1)) < 1, Theorem 1

of Fox and Taqqu holds and (5.36) isO (|ψ0N |
η T ), where |ψ0N |

η
is a positive sequence converging

to zero as N →∞ by Assumption 5.2[A].

Then we conclude that (5.28) is O (|ψ0N |
η T ). The same bound applies to (5.29).

Consider (5.30) . By Lemma C.2,∣∣∣cum(y
(a)
t ,y(c)

p ,
(
y(d)
q − ỹ(d)

q

)
,
(
y(b)
s − ỹ(b)

s

))∣∣∣ ≤ K |ψ0N |
η/2

∞∑
j=0

∣∣ψjψj+|s−q|∣∣1−η/2 ∞∑
j=0

∣∣ψjψj+|p−t|∣∣1−η/2 .
Setting u1 = |s− q|, and u2 = |p− t| , as u1 →∞ and u2 →∞, by Assumption 5.2[A]{ ∞∑

j=0

∣∣ψjψj+u1∣∣1−η/2
}
∼ K |D (u1)|u(1−η/2)(2d−1)

1 , (5.37)

{ ∞∑
j=0

∣∣ψjψj+u2∣∣1−η/2
}
∼ K |D (u2)|2−η u(1−η/2)(2d−1)

2 . (5.38)

The Fourier transform of (5.37) and (5.38), b (λ) , is

O
(
λ−(1+(1−η/2)(2d−1))−δ

)
, λ→ 0

+

, for any δ > 0,

by (2.3.8) of Giraitis et al.(2012, page 19), taking in their notation −β = (1− η/2) (2d− 1) .

Then (5.30) is bounded by

(1/2π)4 |ψ0N |
η/2

∫ π

−π

∫ π

−π

∫ π

−π

∫ π

−π
g

(b,a)
(j) (λ1)b (λ2) g

(d,c)
(j) (λ3)b (λ4)

T−1∑
t=0

T−1∑
s=0

T−1∑
q=0

T−1∑
p=0

ei(t−s)λ1ei(q−s)λ2ei(p−q)λ3dλ1dλ2dλ3dλ4

where the functions g(j)(λ) and b (λ) satisfy all the regularity conditions of Theorem 1 of Fox and

Taqqu and we may conclude that(5.30) is O
(
|ψ0N |

η/2 T
)

.

Then we conclude that (5.23) is O
(
T |ψ0N |

η/2
)
, where |ψ0N |

η/2
is a positive sequence con-

verging to zero as N →∞ by Assumption 5.2[A] , and the quantities

√
T
[
Q̇

(j)
T (θ0)− EQ̇(j)

T (θ0)
]

(5.39)
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share the same asymptotic distribution of (5.22) for all j = 1, .., s.

To complete the discussion of Conjecture 5.4 we must evaluate

lim
T→∞

Cov

(√
T

2π

∫ π

−π
tr
{
g(j)(λ,θ0) [IT (λ)− EIT (λ)]

}
dλ,

√
T

2π

∫ π

−π
tr
{
g(l)(λ,θ0) [IT (λ)− EIT (λ)]

}
dλ

)

= lim
T→∞

T

4π2
Cov

(∫ π

−π
tr
{
g(j)(λ,θ0)IT (λ)

}
dλ,

∫ π

−π
tr
{
g(l)(λ,θ0)IT (λ)

}
dλ

)
(5.40)

= lim
T→∞

T

4π2
Cov

(
n∑

a,b,c,d=1

{∫ π

−π
g

(b,a)
(j) Iab (λ) dλ,

∫ π

−π
g

(c,d)
(l) Icd (λ) dλ

})
.

To that end we introduce the following lemma.

Lemma 5.6 Under Assumption 5.2, for all a, b, c, d = 1, ..., n

lim
T→∞

TCov

(∫ π

−π
g

(b,a)
(j) (λ,θ0) Iab (λ) dλ,

∫ π

−π
g

(d,c)
(l) (λ,θ0) Icd (λ) dλ

)
= 2π

∫ π

−π
g

(b,a)
(j) (λ,θ0) ḡ

(d,c)
(l) (λ,θ0) f (a,b) (λ,θ0) f̄ (c,d) (λ,θ0) dλ

+2π

∫ π

−π
g

(b,a)
(j) (λ,θ0) ḡ

(d,c)
(l) (−λ,θ0) f (a,d) (λ,θ0) f̄ (b,c) (λ,θ0) dλ

+2π

∫ π

−π

∫ π

−π
g(j) (λ1,θ0) g(l) (λ2,θ0) K̃y

abcd (λ1, λ2,−λ2) dλ1dλ2.

By Lemma 5.6, we may conclude that as T →∞, (5.40) converges to V(j,l) (θ0).

5.6 Conclusion

In Chapters 4 and 5 we introduced a new multivariate exponential volatility (MEV-) model that

includes as special cases both the Constant Conditional Correlation (CCC) model with EGARCH

individual volatilities and the multivariate Stochastic Volatility model with Leverage (MSV-L).

Under our general model the logarithm of the vector of squared returns is decomposed into the

sum of a signal vector-linear process and a vector white noise. We allow for correlation between

the signal and the noise since it arises in the MSV-L model as a consequence of the leverage as-

sumption and in the CCC model by definition. We discuss parametric estimation of the model

by means of the Whittle frequency domain estimator and derive its asymptotic properties under

short and long-memory parameterization, extending the statistical literature on Whittle estimation

121



to cover correlated signal plus noise vector processes. Theorems 4.1 and 4.2 establish respectively

the strong consistency and asymptotic normality of the estimator under the assumption of weak

dependence in the signal process providing an extension of Hosoya and Taniguchi (1982) to vector

signal plus noise processes whose spectral density cannot be readily factored. Theorems 5.1 and

5.2 derive analogous results under the assumption of long memory parameterization of the signal

extending Hosoya (1997) to long-memory correlated signal plus noise processes whose spectral

density has singularities only at the zero frequency. As argued in Zaffaroni (2009) for the case of

a univariate signal plus noise process, it turns out that the Whittle estimator has a rate of conver-

gence and an asymptotic distribution that do not depend on weather long memory holds or not.

The proof of the strong consistency of the estimator is based on the well known result on consis-

tency of M-estimators (see for example Van der Vaart, 1998, Section 5.2) and does not significantly

differ under short and long-memory parameterization. Indeed positive definiteness of the autoco-

variance matrix, easily imposed on the model by its decomposition into a standard deviation and

a correlation matrix, guarantees strict positivity of the spectrum. This implies the uniform con-

vergence of the inverse of the spectrum at all frequencies even when the spectrum is unbounded

at the zero frequency and thus ensures the uniform convergence of the second component of the

objective function,

1

2π

∫ π

−π
tr
{
f−1 (λ,θ) IT (λ)

}
dλ, (5.41)

in both the short and the long-memory case. The uniform convergence of the first non random term

of the objective function,

1

2π

∫ π

−π
log det f (λ,θ) dλ, (5.42)

is straightforward in the short-memory case when the spectrum is continuous at all frequencies;

in the long-memory case it is obtained by imposing a degree of smoothness on the inverse of

the spectrum and on its first derivatives that implies the strong equicontinuity of (5.42) ; this is a
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standard condition in the statistical literature on long-memory Whittle estimation (see for example

Fox and Taqqu, 1986, 1987, Giraitis and Taqqu, 1997).

The joint asymptotic normality of the integrated weighted periodograms

√
T

∫ π

−π
tr
{
g(j) (λ,θ0) [IT (λ,yt)−EIT (λ,yt)]

}
dλ j = 1, ..., s (5.43)

is the key result in order to establish the asymptotic normality of the score vector which, together

with the uniform convergence of the Hessian matrix, implies the asymptotic normality of the esti-

mator. In Chapter 4 the asymptotic normality of (5.43) follows from the asymptotic normality of

the serial covariances of short-memory vector linear processes as in Dunsmuir (1979) and Hosoya

and Taniguchi (1982). Since the MEV model cannot be represented as a vector linear process with

identically distributed innovations, as requested both by Theorem 2.1 of Dunsmuir (1979) and by

Theorem 2.2 of Hosoya and Taniguchi (1982), we follow Robinson (1979) and conjecture that the

rate of convergence and the asymptotic normality of the serial covariances are unchanged under

mild violations of the identity of distribution. The Lipschitz continuity of degree α > 1/2 of the

spectral density implied by the short memory parameterization of Chapter 4 ensures that (5.43)

can be approximated by its Cesaro sum approximation

√
T

∫ π

−π
tr
{

g
(j)
M (λ,θ0) [IT (λ,yt)−EIT (λ,yt)]

}
dλ j = 1, ..., s, (5.44)

and the joint asymptotic normality of (5.44) readily follows from the asymptotic normality of the

serial covariances of the process and the square integrability of the spectrum. In Chapter 5 the

assumption of long-range dependence implies that the model spectrum might not be Lipschitz

continuous of the requested degree nor square integrable. Therefore in order to establish the joint

asymptotic normality of the score vector we must rely on a different approximation of (5.43). Fol-

lowing Giraitis and Surgailis (1990) and Zaffaroni (2003, 2009) we approximate the integrated

weighted periodogram by another quadratic form that shares the same asymptotic distribution but

has a less persistent degree of memory. The approximation is based on the idea of imposing con-
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ditions on the weight function in (5.43) that effectively annihilate the singularities of the spectral

density. Its validity is established extending Zaffaroni (2009, Lemma 7) to long-memory vector

linear processes whose spectral density cannot be easily factored. The main limitation of Chap-

ter 5 and of this thesis is that we are conjecturing the joint asymptotic normality and the rate of

convergence of the approximated weighted periodogram
√
T

2π

∫ π

−π
tr
{
g(j)(λ,θ0) [I (λ, ỹt)− EI(λ, ỹt)]

}
dλ, j = 1, ..., s, (5.45)

defined at the short-memory truncation of yt, ỹt. The truncated process is a N-dependent process

by definition, and (5.45) is a quadratic form in N-depended variates with weight function g(j)(λ,θ0)

whose elements are O
(
|λ|2d(θ)−1+δ

)
as λ → ∞ for any δ > 0. For the univariate case, Zaffaroni

states that (5.45) is φ-mixing with arbitrarily fast decreasing mixing coefficients, therefore its as-

ymptotic normality follows from Theorem 18.5.1 of Ibragimov and Linnik (1971), however it is

not clear how this result extend to the multivariate case. For the multivariate case, Giraitis and

Taqqu (2012) provide sufficient conditions for the joint asymptotic normality of (5.43) when the

underlying possibly long-memory process can be represented as a vector linear process with in-

dependent and identically distributed innovations. However identity of distribution is not allowed

for in the vector linear representation of the MEV- model and thus we cannot directly rely on their

results. A central limit theorem for quadratic forms of type (5.45) arising from non-identically

distributed vector linear processes needs to be investigated further. Alternatively it could be of

great relevance to extend Giraitis and Taqqu limit theorems for bivariate Appell polynomials to

stationary, possibly long-range dependent, linear processes whose innovations are not identically

distributed.

The finite sample properties of the Whittle estimator in the MEV-model must be further ex-

plored by means of Monte-Carlo exercises in both the short and long-memory case and efficiency

comparsion with maximum likelihood estimate of the parameters seems desirable. We expect max-
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imum likelihood estimates to be more efficient, however it is of interest to explore in which cases

Whittle estimates perform comparably (see Perez and Zaffaroni, 2008).

A relevant direction of further investigation is to consider parametric estimation of the MEV-

model allowing the memory parameter not only to be unknown but also to lie in the nonstationary

region. Hualde and Robinson (2011) investigate fractionally integrated, possibly non stationary,

linear processes and establish the asymptotic normality of a one-step estimator based on an ini-

tial
√
T consistent estimate of the parameters. Extensions of their results to signal plus noise

processes would allow to test for non stationarity in the fractionally integrated multivariate expo-

nential volatility model, thus providing a very general framework for testing for non stationarity in

multivariate stochastic and conditional volatility models.
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5.7 Appendix C: Technical Lemmas

This section proves the technical lemmas used to establish asymptotic normality of the estima-

tor.

Proof of Lemma 5.3 We establish uniform convergence of Q̈T (θ) to M(θ) pointwise. The (i, j)

element of Q̈T (θ), Q̈
(i,j)
T (θ) is

1

2π

∫ π

−π
tr
{

f−1 (λ, θ) f̈(i,j) (λ, θ)
}
dλ− 1

2π

∫ π

−π
tr
{

f−1 (λ, θ) ḟ(i) (λ, θ) f−1 (λ, θ) ḟ(j) (λ, θ)
}
dλ

(5.46)

+
1

2π

∫ π

−π
tr

{(
∂2

∂θi∂θ
′
j

f−1(λ,θ)

)
IT (λ)

}
dλ. (5.47)

(5.47) converges in almost surely, uniformly in (λ, θ) ∈ Π×Θ to

1

2π

∫ π

−π
tr

{(
∂2

∂θi∂θ
′
j

f−1(λ,θ)

)
f(λ, θ0)

}
dλ,

by Lemma 5.4, taking h (λ, θ) ≡
(
∂2/∂θi∂θ

′
j

)
f−1(λ,θ), which by Assumption 5.2[G](v) is a

continuous matrix function at all (λ, θ) ∈ Π × Ω and has symmetric elements in the interval

[−π, π] .

The two terms of (5.46) are non stochastic. Their uniform convergence in θ ∈ Θ follows from

establishing their equicontinuity property. For the first term, we wish to prove that

lim
ε→0

sup
θ̃:‖θ̃−θ‖≤ε

∣∣∣∣ 1

2π

∫ π

−π
tr
{

f−1
(
λ, θ̃
)

f̈(i,j)

(
λ, θ̃
)
− f−1 (λ, θ) f̈(i,j) (λ, θ)

}
dλ

∣∣∣∣ = 0. (5.48)

The equicontinuity property of A (θ) ≡ 1
2π

∫ π
−π tr

{
f−1 (λ, θ) f̈(i,j) (λ, θ)

}
is implied by

sup
θ∈Θ

∣∣∣∣ ∂∂θl 1

2π

∫ π

−π
tr
{

f−1 (λ, θ) f̈(i,j) (λ, θ)
}
dλ

∣∣∣∣ <∞, (5.49)

(see Davidson, 1994, Theorem 21.10, page 339). We must establish that A (θ) is differentiable

under the integral sign. We follow Fox and Taqqu (1986, Lemma 6). Denote the jth unit vector in

Rs by ij , and consider

1

2π

∫ π

−π

1

ε
tr
{

f−1 (λ, θ + ijε) f̈(i,j) (λ, θ + ijε)− f−1 (λ, θ) f̈(i,j) (λ, θ)
}
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By the mean value theorem the integrand is dominated for each λ 6= 0 by∣∣∣∣ ∂∂θl tr
{

f−1 (λ, θ∗ (λ)) f̈(i,j) (λ, θ∗ (λ))
}∣∣∣∣ , (5.50)

where |θ∗ (λ)− θ| < ε. Taking derivatives (5.50) is equal to∣∣∣∣tr{f−1 (λ, θ∗ (λ))

[
∂

∂θl
f̈(i,j) (λ, θ∗ (λ))

]
+

[
∂

∂θl
f−1 (λ, θ∗ (λ))

]
f̈(i,j) (λ, θ∗ (λ))

}∣∣∣∣ (5.51)

By Assumption 5.2[C] and [G] (5.51) is at most, ignoring constant terms,

|λ|2(dl−du)−δ ,

where we take dl = infΘ d (θ) and du = supΘ d (θ) . Since (dl − du) > −1/2 and δ can be taken

arbitrarily small, we choose δ such that∫ π

−π
|λ|2(dl−du)−δ dλ <∞. (5.52)

Hence the dominated convergence theorem implies that A (θ) is differentiable under the integral

sign. Moreover (5.52) implies (5.49) .

The equicontinuity property of the second term in (5.46) is implied by

sup
θ∈Θ

∣∣∣∣ ∂∂θl 1

2π

∫ π

−π
tr
{

f−1 (λ, θ) ḟ(i) (λ, θ) f−1 (λ, θ) ḟ(j) (λ, θ)
}
dλ

∣∣∣∣ <∞, (5.53)

(see Davidson, 1994, Theorem 21.10, page 339). The left hand side of (5.53) is differentiable

under the integral sign because for |θ∗ (λ)− θ| < ε∣∣∣∣ ∂∂θl tr
{

f−1 (λ, θ∗) ḟ(i) (λ, θ∗) f−1 (λ, θ∗) ḟ(j) (λ, θ∗)
}∣∣∣∣

= |tr
{

f−1 (λ, θ∗) ḟ(i) (λ, θ∗) f−1 (λ, θ∗) f̈(j,l) (λ, θ∗)
}

+tr

{
f−1 (λ, θ∗) ḟ(i) (λ, θ∗)

(
∂

∂θl
f−1 (λ, θ∗)

)
ḟ(j) (λ, θ∗)

}
+tr

{
f−1 (λ, θ∗) f̈(i,l) (λ, θ∗) f−1 (λ, θ∗) ḟ(j) (λ, θ∗)

}
+tr

{(
∂

∂θl
f−1 (λ, θ∗)

)
ḟ(i) (λ, θ∗) f−1 (λ, θ∗) ḟ(j) (λ, θ∗)

}
|,

which is at most is at most, ignoring constant terms

|λ|2(dl−du)−δ ,

where we take dl = infΘ d (θ) and du = supΘ d (θ) . Since infΘ d (θ) and supΘ d (θ) are bounded
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by Assumption 5.2[B] and (dl − du) > −1/4 and δ can be taken arbitrarily small, we choose δ

such that ∫ π

−π
|λ|2(dl−du)−δ dλ <∞.

and the use of the dominated convergence theorem concludes the proof.

Proof of Lemma 5.5 Denote by DT (λ) the Fejer Kernel,

DT (λ) =
sin2 (Tλ/2)

sin2 (λ/2)
=

∣∣∣∣∣
T−1∑
s=1

eiλs

∣∣∣∣∣
2

λ ∈ Π, T ≥ 1.

and recall that (see Giraitis et al.2012, Chapter 2, page 8)

|DT (λ)| ≤ 2πT (1 + T |λ|)−1 , for every λ ∈ Π. (5.54)

Using the definition of Fejer Kernel,

EI (λ) =
1

2π

∫ π

−π
f (ω)D2

T (ω + λ) dω.

To simplify notation we set g(j) (λ,θ0) ≡ g (λ) , f (λ,θ0) ≡ f (λ) , then∫ π

−π
tr {g (λ) [EIT (λ)− f (λ)]} dλ

=

∫ π

−π
tr

{
g (λ)

[
1

2π

∫ π

−π
f (ω)DT (ω + λ) dω − f (λ)

]}
dλ

=
1

2π

∫ π

−π

∫ π

−π
tr
{
g (λ)

[
f (ω)D2

T (ω + λ)− f (λ)
]}
dλdω

=
1

2π

∫ π

−π
D2
T (λ) tr

{∫ π

−π
g (ω) [f (ω)− f (ω − λ)] dω

}
dλ.

By Assumption 5.2[H]∣∣∣∣tr{∫ π

−π
g (ω) [f (ω)− f (ω − λ)] dω

}∣∣∣∣ ≤ K |λ|γ , λ ∈ Π (5.55)

for some 1/2 < γ < 1 and some finite positive constant K. This together with (5.54) implies that

T−1/2 1

2π

∫ π

−π
D2
T (λ) tr

{∫ π

−π
g (ω) [f (ω)− f (ω − λ)] dω

}
dλ

≤ CT−1/2

∫ π

−π

T 2

1 + (Tλ)2 |λ|
γ dλ

≤ CT 1/2−γ
∫ ∞
−∞

(
1 + λ2

)−1 |λ|γ dλ

≤ CT 1/2−γ

which goes to zero as T →∞ and completes the proof.
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Lemma C.1 Under assumption 5.2, the following holds

Part (a)

(1) Cov
[
y

(a)
t y

(c)
p

]
= I(t=p)Σ

(a,c)
ξ (τ)+Σ

(a,c)
ε (τ)

∑∞
j=0 Ψ

(a)
j (ζ) Ψ

′(c)
j+|t−p| (ζ)+I(t6=p)Ψ

(a)
|t−p|−1 (ζ) Σ

(a,c)
ξε (τ) .

(2) Cov
[(

y
(b)
s − ỹ

(b)
s

)
,
(
y

(d)
q − ỹ

(d)
q

)]
= Σ

(b,d)
ε (τ)

∑∞
j=N+1 Ψ

(b,b)
j (ζ) Ψ

′(d,d)
j+|q−s| (ζ) .

(3) Cov
[
y

(a)
t ,
(
y

(d)
q − ỹ

(d)
q

)]
= Σ

(a,d)
ε (τ)

∑∞
j=N+1 Ψ

(a,a)
j (ζ) Ψ

(d,d)′

j+|q−t| (ζ)+I(q−t>N+2)Ψ
(a)
q−t−1 (ζ) Σ

(a,d)
ξε (τ) .

Part (b) Setting u1 = |t− p| and u2 = |s− q|, and choosing some η ∈ (0, 1)∣∣∣Cov [y(a)
t y(c)

p

]∣∣∣ ≤ K
∣∣∣Ψ(a)

N (ζ)
∣∣∣η{ ∞∑

j=0

∣∣∣Ψ(a)
j (ζ)

∣∣∣1−η/2 ∣∣∣Ψ′(c)j+u1
(ζ)
∣∣∣1−η/2} ,

and∣∣cov [(y(b)
s − ỹ(b)

s

)
,
(
y(d)
q − ỹ(d)

q

)]∣∣ ≤ K
∣∣∣Ψ(b)

N (ζ)
∣∣∣η{ ∞∑

j=0

∣∣∣Ψ(b)
j (ζ)

∣∣∣1−η/2 ∣∣∣Ψ′(d)
j+u2

(ζ)
∣∣∣1−η/2} .

Proof Part (a) follows simply from the definition of the processes. For part (b) it is trivial to see

that ∣∣∣Cov (y
(a)
t y(c)

p

)∣∣∣ ≤ K

{ ∞∑
j=0

∣∣∣Ψ(b)
j (ζ)

∣∣∣1−η/2 ∣∣∣Ψ′(d)
j+u2

(ζ)
∣∣∣1−η/2} ,

which implies the result. Moreover∣∣cov [(y(b)
s − ỹ(b)

s

)
,
(
y(d)
q − ỹ(d)

q

)]∣∣ ≤ Σ(b,d)
ε

∣∣∣∣∣
∞∑

j=N+1

Ψ
(b)
j (ζ) Ψ

′(d)
j+u2

(ζ)

∣∣∣∣∣
≤ Σ(b,d)

ε

∞∑
j=N+1

∣∣∣Ψ(b)
j (ζ)

∣∣∣η/2 ∣∣∣Ψ(b)
j (ζ)

∣∣∣1−η/2 ∣∣∣Ψ′(d)
j+u2

(ζ)
∣∣∣η/2 ∣∣∣Ψ′(d)

j+u2
(ζ)
∣∣∣1−η/2

≤ K
∣∣∣Ψ(b)

N

∣∣∣η{ ∞∑
j=0

∣∣∣Ψ(b)
j (ζ)

∣∣∣1−η/2 ∣∣∣Ψ′(d)
j+u2

(ζ)
∣∣∣1−η/2} .

Lemma C.2 Set Kε
abcd ≡ cumulant(ε

(a)
0 , ε

(b)
0 , ε

(c)
0 , ε

(d)
0 ), Kξ

abcd ≡ cumulant(ξ
(a)
0 , ξ

(b)
0 , ξ

(c)
0 , ξ

(d)
0 )

and let Kabcd (xt,yt, zt,ut) denotes the fourth order cumulant of the a, b, c, d elements of random

vectors xt,yt, zt,ut. Set t = t1, p = t2, q = t3 and s = t4. Under Assumption 5.2

cum
[
y

(a)
t ,y(c)

p ,
(
y(d)
q − ỹ(d)

q

)
,
(
y(b)
s − ỹ(b)

s

)]
≤ K |ψ0N |

η/2
∞∑
j=0

∣∣ψjψj+|s−q|∣∣1−η/2 ∞∑
j=0

∣∣ψjψj+|p−t|∣∣1−η/2 .
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Proof Cum
[
y

(a)
t ,y

(c)
p ,
(
y

(d)
q − ỹ

(d)
q

)
,
(
y

(b)
s − ỹ

(b)
s

)]
is given by the sum of the following terms

Kabcd (ξ0, ξ0, ε0, ε0) Ψ
(d,d)
t3−t2−1Ψ

(b,b)
t4−t1−11 (t1 = t2) 1 (t3 − t2 ≥ N + 1) 1 (t4 − t1 ≥ N + 1) (5.56)

Kabcd (ξ0, ε0, ε0, ε0) Ψ
(c,c)
t2−t1−1Ψ

(d,d)
t3−t1−1Ψ

(b,b)
t4−t2−11 (t3 − t1 ≥ N + 1) 1 (t4 − t1 ≥ N + 1) (5.57)

Kabcd (ξ0, ε0, ε0, ε0) Ψ
(a,a)
t2−t1−1Ψ

(d,d)
t3−t2−1Ψ

(b,b)
t4−t2−11 (t3 − t2 ≥ N + 1) 1 (t4 − t1 ≥ N + 1)

Kabcd (ε0, ε0, ε0, ε0)

∞∑
j=0

1 (j ≥ max {0, N + 1− t3 + t1, N + 1− t4 + t1}) Ψ
(a)
j Ψ

(c)
j+t2−t1Ψ

(b)
j+t3−t1Ψ

(d)
j+t4−t1 .

The result follows by Lemma 7 of Zaffaroni ( 2009, page 198).

Proof of Lemma 5.6 Set

h̃(j) (u) =
1

2π

∫ π

−π
g

(a,b)
(j) (λ) eiuλdλ,

h̃(l) (u) =
1

2π

∫ π

−π
g

(c,d)
(l) (λ) eiuλdλ.

Then

TCov

{∫ π

−π
g

(a,b)
(j) (λ) Iab (λ) dλ,

∫ π

−π
g

(c,d)
(l) (λ) Icd (λ) dλ

}

=
1

T

T∑
u1u2u3u4=1

h̃(j) (u1 − u2) h̃(l) (u3 − u4) Γ(a,c) (u3 − u1) Γ(b,d) (u4 − u2) (5.58)

+
1

T

T∑
u1u2u3u4=1

h̃(j) (u1 − u2) h̃(l) (u3 − u4) Γ(a,d) (u4 − u1) Γ(b,c) (u3 − u2) (5.59)

+
1

T

T∑
u1u2u3u4=1

h̃(j) (u1 − u2) h̃(l) (u3 − u4) Ky
abcd (u2 − u1, u3 − u1, u4 − u1) . (5.60)

Consider (5.58) . This term can be written as

(1/2π)4

∫ π

−π

∫ π

−π

∫ π

−π

∫ π

−π
f (a,c) (λ2) g

(a,b)
(j) (λ1)f (b,d) (λ4) g

(c,d)
(l) (λ3) (5.61)

×
T−1∑
u1=0

T−1∑
u2=0

T−1∑
u3=0

.
T−1∑
u4=0

.ei(t−s)λ1ei(q−s)λ2ei(p−t)λ4ei(p−q)λ3dλ1dλ2dλ3dλ4, (5.62)

where by Assumption 5.2[C]∣∣f (a,c) (λ, θ)
∣∣ ≤ D

(
λ−1,θ

)
|λ|−2d(θ) λ→ 0+, d (θ) ∈ (0, 1/2) ,
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and ∣∣∣g(b,a)
(j) (λ,θ0)

∣∣∣ ≤ D
(
λ−1,θ

)
|λ|2d(θ) λ→ 0+ d (θ) ∈ (0, 1/2) for all j = 1, ..., s,

which imply (see Fox and Taqqu, 1986, Section 4) that∣∣f (a,c) (λ, θ)
∣∣ = O

(
|λ|−2d(θ)−δ

)
λ→ 0+,∣∣∣g(b,a)

(j) (λ,θ0)
∣∣∣ = O

(
|λ|2d(θ)−δ

)
λ→ 0+.

Set a = 2d (θ) and −b = 2d (θ), then since d (θ) ∈ (0, 1/2) and 2 (a+ b) < 1, (5.61) satisfies the

regularity conditions of Theorem 1 of Fox and Taqqu. Hence we may conclude that as T → ∞,

(5.61) converges to

2π

∫ π

−π
g

(b,a)
(j) (λ,θ0) ḡ

(d,c)
(l) (λ,θ0) f (a,b) (λ,θ0) f̄ (c,d) (λ,θ0) dλ.

The same result is used to show the convergence of (5.59) . Consider (5.60) . By Lemma 7 of

Zaffaroni (2009), for all a, b.c, d = 1, ..., n,

|Ky
abcd (u2 − u1, u3 − u1, u4 − u1)| ≤ K

∞∑
j=0

∣∣∣Ψ(a)
j

∣∣∣ ∣∣∣Ψ(b)
j+|u4−u3|

∣∣∣ ∞∑
j=0

∣∣∣Ψ(c)
j

∣∣∣ ∣∣∣Ψ(d)
j+|u2−u1|

∣∣∣ . (5.63)

By Assumption 5.2[A] , choosing η = 0,

∆ (u) ≡
{ ∞∑
j=0

∣∣∣Ψ(a)
j

∣∣∣ ∣∣∣Ψ(b)
j+|u|

∣∣∣} ∼ K |D (u,θ)|u(2d(θ)−1) as u→∞. (5.64)

By (2.3.8) of Giraitis et al. (2012, page 19), the Fourier transform of (5.64) is

O
(
|λ|−(1+(2d−1))−δ

)
, as λ→ 0+, for any δ > 0,

where in their notation −β = (2d− 1) , using the fact that any ZSV function satisfies |D (u)| =

O
(
|u|δ
)

as u→ 0. Then the Fourier transform of the right hand side of (5.63) isO
(
|λ|−2(1+(2d−1))−δ

)
.

Then the regularity conditions of Theorem 1 of Fox and Taqqu are satisfied and we conclude that

(5.60) as T →∞, converges to

2π

∫ π

−π

∫ π

−π
g(j) (λ1,θ0) g(l) (λ2,θ0) K̃y

abcd (λ1, λ2,−λ2) dλ1dλ2.

This completes the proof of Lemma 5.6.
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