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List of Symbols

The following notation and conventions are used through this thesis. The symbol "=" stands for
"by definition". All limits are taken for either n — oo or T' — oo , unless specified otherwise.

R = the field of real numbers.

R* = the Euclidean p-space.

II € [—m, ).

7 = the ring of integers.

a.s = almost sure.

a.e = almost everywhere.

la| = absolute value of « if referred to a number.

det A = determinant of a matrix A.

|A|| = euclidean norm.

9]l = the supremum norm over the domain of a function g.

diag (a, b, ¢) = diagonal matrix with elements a, b, c.

—P= convergence in probability.

—d9= convergence in distribution.

—®*= convergence almost surely.

(n, T — 00),,, = sequential limit of 7" first, followed by n.

C' LT = central limit theorem.

FCLT = functional central limit theorem.

LLN = law of large numbers.

C ing = the c-r inequality.

1 (A) = indicator of set A.

I; = identity matrix of dimension n x n.



iid = independent identically distributed.

ind s = independent random sequence.

l.h.s = left hand side.

r.h.s = right hand side.

O, (1) = random sequence bounded in probability.

o, (1) = random sequence converging to zero in probability.
sgn = sign function.

[z] = largest integer not greater than .

wrt = with respect to.

rv = random variable.

BM (£2) = Brownian motion with covariance matrix §2.
BM (I) = standardized Brownian motion.

K aeq = fourth order cumulant of random variables a, b, ¢, d.
> = positive definiteness if applied to a matrix.

> = positive semi definiteness if applied to matrix.
i=(-1)"2

K = finite constant not always the same.
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Abstract

The aim of this thesis is to offer some insights into two topics of some interest for time-series
econometric research.

The first chapter derives the rates of convergence and the asymptotic normality of the pooled
OLS estimators for linear regression panel models with mixed stationary and non-stationary regres-
sors. This work is prompted by the consideration that many economic models of interest present a
mixture of I(1) and 1(0) regressors, for example models for analysis of demand system or for as-
sessment of the relationship between growth and inequality. We present results for a model where
the regressors and the regressand are cointegrated. We find that the OLS estimator is asymptot-
ically normal with convergence rates 7'/n and +/nT for respectively the non-stationary and the
stationary regressors. Phillips and Moon (1990) show that in a cointegrated regression model with
non-stationary regressors, the OLS estimator converges at a rate of 7'y/n. We find that the pres-
ence of one stationary regressor in the model does not increases the rate of convergence. All the
results are derived for sequential limits, with 7" going to infinity followed by n, and under quite
restrictive regularity conditions.

Chapters 3-5 focus on parametric multivariate exponential volatility models. It has long been
recognized that the volatility of stock returns responds differently to good news and bad news. In
particular, while negative shocks tend to increase future volatility, positive ones of the same size
will increase it by less or even decrease it. This was in fact one of the chief motivations that led
Nelson (1991) to introduce the univariate EGARCH model. More recently empirical studies have
found that the asymmetry is a robust feature of multivariate stock returns series as well, and sev-
eral multivariate volatility models have been developed to capture it. Another important property

that characterizes the dynamic evolution of volatilities is that squared returns have significant au-
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tocorrelations that decay to zero at a slow rate, consistent with the notion of long memory, where
the autocovariances are not absolutely summable. Univariate long-memory volatility models have
received a great deal of attention. However, the generalization to a multivariate long-memory
volatility model has not been attempted in the literature. Chapter 3 offers a detailed literature re-
view on multivariate volatility models. Chapter 4 and 5 introduce a new multivariate exponential
volatility (MEV) model which captures long-range dependence in the volatilities, while retain-
ing the martingale difference assumption and short-memory dependence in mean. Moreover the
model captures cross-assets spillover effects, leverage and asymmetry. The strong consistency and
the asymptotic normality of the Whittle estimator of the parameters in the Multivariate Exponen-
tial Volatility model is established under a variety of parameterization. The results cover both the
case of exponentially and hyperbolically decaying coefficients, allowing for different degrees of
persistence of shocks to the conditional variances. It is shown that the rate of convergence and the
asymptotic normality of the Whittle estimates do not depend on the degree of persistence implied
by the parameterization as the Whittle function automatically compensates for the possible lack of

square integrability of the model spectral density.
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Chapter 1 Introduction

This thesis is the outcome of my Ph.D. studies at the London School of Economics and it re-
flects the evolution of my research interests during the past few years. The second chapter was
written during my first year as a research student and it focuses on large panel data models. The
research question was prompted by the lack of an existing asymptotic theory for the pooled OLS
estimator in large panel regression models with stationary and non-stationary regressors. At the
time | started my research, only one paper in the literature addressed the asymptotics of the esti-
mator in large, possibly non-stationary, panels. The paper, by Baltagi, Kao and Liu (Econometrics
Journal, 2008), considers a simple one regressor error-correction model where the error and the re-
gressor are both generated by possibly non-stationary ARMA processes. These results left room
to explore models where the mixture of stationarity and non-stationarity arises from a combination
of stationary and non-stationary regressors. In applied research such setting appears quite rele-
vant. Many panel data models, for example for the assessment of the relationship between growth
and inequality, have a mixture of integrated and stationary regressors. Chapter two derives the
rates of convergence and the asymptotic normality of the pooled Ordinary Least Square estimator
in a simple scalar model with mixed regressors. The error term is assumed stationary, indicating
the existence of a cointegrating relation between the regressors and the regressand. The results
are obtained under quite strong conditions, some of which are too restrictive. The estimators turn
out to be asymptotically normal with convergence rates 7'v/n and +/nT for respectively the non-
stationary and the stationary regressors. This is not unexpected. As already shown by Phillips
and Moon (1999) in a linear panel regression model with non-stationary regressors under a vari-
ety of cointegrating relationship, the OLS estimator is 7'\/n consistent and asymptotically normal.

We find that the presence of an additional stationary regressor does not alter the convergence rates



of the non-stationary regressors. The results provided are for sequential limits, with 7" going to
infinity followed by n.

During the second year of my studies | developed a strong interest in modelling multivariate
volatilities. The importance of modelling comovements of financial returns is well established in
the literature. The knowledge of correlation structures is vital in many financial applications, in-
cluding asset pricing, optimal portfolio allocation and risk management. Moreover, as the volatili-
ties of different assets and markets move together, modelling volatility in a multivariate framework
can lead to greater statistical efficiency. Starting from the Vector Autoregression model of Boller-
slev, Engle and Wooldridge (1988), several multivariate conditional volatility models have been
proposed in the literature and used extensively in applied work. Over the last few years, the lit-
erature on multivariate stochastic volatility models has also developed significantly, thanks to the
availability of many new numerical estimation methods. Recently empirical studies found robust
evidences of asymmetric response of volatilities to positive and negative returns in multivariate
asset models. A number of conditional and stochastic volatility models have been proposed to
capture this inherent characteristic of volatility in a multivariate context, such as the QARCH la-
tent factor model of Sentana (1995), the MSV-Leverage model of Asai and McAleer (2005), the
asymmetric dynamic covariance (ADC) model of Kroner and Ng (1998), the Matrix Exponential
GARCH model of Kawakatsu (2006), and others.

Another important property that characterizes the dynamic evolution of volatilities is that power
transformations of absolute returns have significant autocorrelations that decay to zero at a slow
rate. Many authors have argued that the slow decay of the autocorrelations of squared returns
is consistent with the notion of long-memory, where the autocovariances are not absolutely sum-
mable. Univariate long-memory volatility models, such as the FIEGARCH model of Bollerslev

and Mikklesen (1996), the nonlinear moving average model of Robinson and Zaffaroni (1996,



1997) and the long-memory stochastic volatility (LMSV) model of Ruiz and Veiga (2006), have
received a great deal of attention. However, to my knowledge, no generalization to a multivariate
long-memory volatility model has been attempted in the literature. The aim of this thesis is to fill
in this gap. Chapter 4 introduces a new multivariate Exponential Volatility (MEV) model, which
captures long-range dependence in certain nonlinear functions of the data, such as squares, while
retaining the martingale difference assumption and short-memory dependence in the level. The
multivariate Exponential Volatility model is an extension of the univariate exponential volatility
model of Zaffaroni (2009). It nests “one-shock™ conditional variance specifications and “two-
shocks” stochastic volatility specifications. It captures cross-assets spillover effects, leverage and
asymmetry. The choice of an exponential specification offers several advantages, the most relevant
of which is that no further restriction is required to grant positive definiteness of the covariance
matrix. Estimation of the MEV model by maximum likelihood methods is possible, however
we advocate the use of the frequency domain Gaussian estimator in the sense of Whittle (1962).
MLE estimation of nonlinear exponential models is computationally costly, and possibly unstable.
Moreover its asymptotic properties depend on the invertibility of the model, which is not easy to
establish in exponential models (see Straumann and Mikosh, 2006). These difficulties do not apply
to the Whittle estimator, partly due to its frequency domain specification. We follow Harvey et al.
(1994) and estimate a logarithmic transformation of the squared returns of the observations. The
estimated model turns out to be a vector signal plus noise model, where the signal evolves accord-
ing to an infinite order moving average process and the noise is an i.i.d shock. The dependence
structure of the MEV model implies that the signal and the noise might be correlated. Statistical
literature on Whittle estimation of signal plus noise models requires at least incoherent signal and
noise. In fact all the available results deal with linearly regular signal plus noise processes with

parameters that can be estimated directly on the factored representation of the process spectral den-



sity (see Dunsmuir, 1979, and Hosoya and Taniguchi, 1982). Such results do not readily apply to
correlated signal plus noise processes, even when the processes are linearly regular. In chapter 4,
we establish the strong consistency and asymptotic normality of the Whittle estimator when the
signal coefficients have an exponential decay rate, following Robinson (1978). In chapter 5, we
establish the properties of the estimator when the signal coefficients have an hyperbolic decay rate
that imparts long-range dependence in the squares of the MEV model, relying the on the central
limit theorem for the integrated weighted periodogram of Giraitis and Taqqu (1999). As expected,
the asymptotic properties of the estimator do not depend on the degree of persistence of shocks
to the conditional variances, thanks to a convenient feature of the Whittle function that allows to
compensate for the possible lack of square integrability of the spectral density. The results are es-
tablished under the conditions of strict stationarity, ergodicity and finite fourth moments and either
absolute summability of the autocovariance function or standard smoothness assumptions for the
spectral density and its higher order derivatives.

The remainder of this thesis is organized as follows. Chapter 2 presents asymptotics results on
the pooled OLS estimator in panel models with mixed stationary and non-stationary regressors.
Chapter 3 offers a detailed literature review of multivariate volatility models, with some discussion
on the most relevant multivariate exponential model, i.e. the matrix exponential GARCH model of
Kawakatsu. Chapter 4 introduces the multivariate Exponential Volatility model, discusses its esti-
mation and establishes the asymptotic properties of the estimator under fairly general conditions
suitable for both “one-shock” and “two-shocks” specification of the model. Chapter 5 extends

these results to the long memory MEV model.



Chapter 2 Large-panel models with stationary and non-stationary regressors

2.1  Introduction

The advantages of panel data over cross section and time series data have long been established
in econometric research. Panel data sets usually give the researcher a larger number of data points
than conventional cross section and time series data, thus increasing the degrees of freedom and
reducing multicollinearity among explanatory variables. This results in more reliable parameter es-
timates and most importantly enables the researcher to specify and test more sophisticated models
with less restrictive assumptions.

A panel data set contains observations on a given number of individuals (n) across time (7).
As such, it is a double indexed process and any treatment of the asymptotics must take this into
account. The initial focus of research has been on identifying and estimating effects from panel
models with a large number of cross section and few time series observations. The asymptotics
for the standard panel estimators in this setting are well established since the work of Hsiao (1986)
and Chamberlain (1984). However, starting from the Nineties, empirical work has used panel data
sets with a large number of time series and cross section observations. Examples of this literature
range from testing growth convergence theories in macroeconomics to estimating long run relations
between international financial series. These works have been enhanced and facilitated by the
availability of a number of important data sets covering different individuals, regions and countries
over a relatively long period of time, such as the Penn World Table. In a context of few time-
series observations, the non-stationarity of the series cannot be addressed properly but with larger
data sets it must be explored properly. When the time-series component of the model is assumed
non-stationary, traditional limit theory is no longer valid. Phillips and Moon (1999) investigated

regressions with panel data where the time series component is an integrated process of order



one. Under a variety of cointegrating relations between the regressors and the regressand, they
derive the consistency and asymptotic normality of the pooled OLS estimator. Their framework
does not allow for the presence of stationary and non-stationary regressors in the same model.
In practise however this framework is very relevant since many empirical models have a mixture
of stationary and non-stationary regressors. For example demand systems models, where budget
shares are regressed on relative prices and real income for different countries over time. Typically
some prices are stationary and some other are trending. Money demand equations offer a similar
mixture of stationary and non-stationary variables, with real income trending over time for most
countries but stationary interest rates. A comprehensive limit theory for the pooled OLS estimator
in this framework has not been established in the literature. Baltagi Kao and Liu (2008) derive the
asymptotic properties of the most common panel estimators in a simple error-correction model,
where the regressor and the remainder disturbance term are possibly non-stationary. Their results
allow for a mixture of stationary and non-stationary terms in the same model, however they do not
allow for the simultaneous presence of stationary and a non-stationary regressors. In this chapter
we discuss the asymptotic properties of the OLS estimator in a linear panel regression model with
mixed stationary and non-stationary regressors, as 7' and n increase to infinity sequentially. The
chapter is organized as follows. Section 2.2 presents some literature review. Section 2.3 introduces
the model and the assumptions, with discussion. Section 2.4 discusses the main results, namely the
asymptotic normality and the convergence rates of the estimator in a cointegrated model. All proofs
are contained in appendix A. Notation is fairly standard. The symbol "—, ;" signifies convergence
almost surely, "=-" denotes weak convergence. The inequality ” > ” signifies positive definiteness
when applied to matrices, ||€2|| is the Euclidean norm of the matrix 2 and | K| is the absolute
value of the scalar I, the symbol "[.]" denotes the largest integer part. ” (n,7" — 00)sq” denotes

sequential limits where 7" goes to infinity followed by n. Brownian motions on [0, 1] are usually



written as B and stochastic integrals fol W (r)dW (r) are denoted as [ WdW.

2.2  Literature review

Since the beginning of the Nineties there has been much research on non-stationary panel data.
Quah (1994), Levin and Lin (1993) considered unit root time-series regressions with non-stationary
panel data and proposed a test statistic for unit roots. Pedroni (1995) studied some properties of
cointegration statistics in pooled time-series panel models, Baltagi and Kramer (1997) and Kao
and Emerson (2004) investigated the case of a panel time trend model. Pesaran and Smith (1995)
examined the impact of non-stationary variables on cross-section regression estimates with a large
number of groups and of time periods. Phillips and Moon (1999) generalized the results of Pesaran
and Smith providing a fundamental framework for asymptotics of the OLS estimator in large non-
stationary panels. Phillips and Moon investigate the behavior of the estimator in non-stationary
panel models in the cases of no time series cointegration, heterogeneous cointegration, homoge-
neous cointegration and near-homogeneous cointegration. Extending Phillips (1986), they define
the different degrees of cointegration on the base of the rank condition of the conditional long-run
variance matrix of the regressors and the regressand. The case of no cointegrating relation is cov-
ered by the assumption of almost sure positive definiteness of the long-run conditional variance
matrix, whereas a cointegrating relation of various degree exists when such matrix has deficient
rank.

In absence of cointegration, Phillips and Moon find that, if panel observations with large cross-
section and time-series observations are available, the noise can be characterized as independent
across individuals. By pooling the cross-section and the time-series observations, the OLS esti-
mator attenuates the strong effect of the residuals in the regression while retaining the strength of
the signal and provides +/n-consistent estimates of some long-run regression coefficient. This im-

plies that in contrast to non-stationary time-series regression, large-panel regressions can identify

7



a long-run average relation between the regressors and the regressand even in absence of coin-
tegration. Large-panel non-stationary regressions are in fact no longer spurious. The degree of
cointegration across individuals depends on the degree of randomness of the cointegrating vec-
tor in the model. Phillips and Moon show that the assumption of deficient rank of the long-run
variance matrix implies the existence of a panel cointegration model,

Yii = 8;Xi¢ + Eiy, (2.1)
with probability one, where the cointegrating coefficient 3, is random. If no further assumption
is imposed, 3, differs randomly across individuals and the cointegrating relation between the re-
gressors and the regressand is heterogeneous. When [, is constant across different individuals,
the same long-run relation between Y; , and X, , applies for all 7 and the cointegrating relation is
homogeneous. If 5, has form

Bi= B+, 22)

i Tvn

where the 6, are a sequence of i.i.d vectors with mean 6, the model allows for a near-homogeneous
cointegrating relation. For all three cointegrating relations, they find that the OLS estimator is
nv/T-consistent and asymptotically normal. Their results are based on a panel Beveridge Nelson
decomposition that generalizes Phillips and Solo (1992), and a panel functional central limit theo-
rem for random-coefficients non-stationary models that provide a fundamental framework for any
development of asymptotics in large panel models.

The development of asymptotic theory for panel data with large n and 7" requires assumptions
on the treatment of the two indexes. Different approaches are possible. One approach is to fix one
index and allow the other to pass to infinity giving an intermediate limit. By letting the other index
to pass infinity subsequently a sequential limit is obtained. A second approach, known as diagonal
path limit theory, lets the two indexes pass to infinity along a specific diagonal path determined

by a functional relation of the type 7" = T'(n). A third approach allows both indexes to infinity



simultaneously without any restriction. Joint limits require stronger conditions than sequential
limits but, on the other hand, sequential limits can give misleading results. Phillips and Moon
discuss a set of sufficient conditions for sequential convergence to imply joint convergence and
derive the asymptotic properties of the OLS estimator for sequential and joint limits, imposing the
additional rate condition of n/T" — 0 in the second case.

Baltagi, Kao and Liu (2008) study the asymptotic properties of the most common panel estima-

tors in a simple error component disturbance model, with random effect assumption,

Yir = o+ Bxy + Wi, (2.3)
Ui = My + Vig, (2.4)
E(p|zie) = 0, (2.5)

withi = 1,...,nand ¢t = 1,...,T. The regressors and the remainder term are autoregressive and
possibly non-stationary,
Ty = A1 +ew, |A L, (2.6)
Vi = prvip—1+eq, |p| <1, (2.7)
and the disturbances w;y = (vi0, €i0, €i0) are independent across individuals and satisfy a multi-
variate panel functional central limit theorem,
— ZW“ — BM; (%), asT — oo foreachs,
where BM; (€2;) denotes aérownian motion with covariance matrix §2;. Baltagi, Kao and Liu find
that the properties of the OLS estimator depend crucially on the non-stationarity of the regressor
and the remainder disturbance. When the error component of the disturbance term and the regres-
sor are both stationary (|p| < 1 and |\| < 1) the estimator is v/nT consistent and asymptotically
normal. If the disturbance is 1(1) and the regressor is stationary (p = 1 and |\| < 1) the estimator
is \/n consistent and asymptotically normal. When the disturbance is stationary and the regres-

soris I(1) (|p| < 1and A = 1) the model is cointegrated and the estimator is v/n7" consistent and



asymptotically normal.

2.3 The model
We consider the following scalar panel regression model:
Yie = a+ By + V2Zir + Ny (2.8)
fort =1,....,Tandi = 1,...,n. The regressors and the regression error have common initialization

at t = 0 and are generated recursively by

Tig = Tg-1 T Eit, (2.9)
Zig = prig—1 +uy With | p|< 1, (2.10)

The regression errors in (2.11) follow a stationary process (|A\| < 1) implying that the model is

cointegrated. We assume that the vector of innovations

W;t = (gita Ust, Uit)l

is generated by the non-random coefficient linear process

wi =Y W&, with Uio=1, > [|¥;]* < oo, (2.12)
j=0 j=0
where I denotes the identity matrix, and that it satisfies the following:

Assumption 1 For each ¢, &, , is an i.i.d zero mean vector with finite variance-covariance matrix

= and finite fourth order cumulants, K%, (1 t, t3), such that

oo
Z )Kgbcd (tLtQ, tg) < 0.
t1,t2,t3=1
Assumption 2 For each i,
o0
Z]’GH\D@J»H“ < oo, forsome integera > 1,
j=0

where "

(2.12) implies that the innovation process w;, admits for every fixed i the panel Beveridge

" denotes the Euclidian norm of the coefficient matrix ¥, ;.
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Nelson decomposition (see Phillips and Moon 1999, Lemma 2) :

Wip =W (1) &+ Wii1 — Wiy, (2.13)

where ¥; (1) = > ¥, ; and
=0

Vvi,t = Z \Tji,js@tfja \T/Lj = Z \Iji,t-
j=0 t=j+1
Assumption 1 and Assumption 2 ensure that the panel data innovations w;; display a degree of
homogeneity across time strong enough for the partial sum process 7—1/2 Zgﬂ w;; to satisfy a
Multivariate Invariance Principle for each 4. In what follows we directly assume that the partial

sum process constructed from the innovation sequence, denoted by S;r,, satisfies the following

multivariate large T result

[Tr]
1
— Zwi’t — BM;(Q;) T — oo foreachi, (2.14)
VT 5
where r € [0, 1], the symbol "[.]" denotes the largest integer part, the symbol “=-" denotes weak

convergence, and BM; (€2;) isa (3 x 1) vector Brownian motion
BM.,
BM,; = | BM,, |, (2.15)
BM,,
with covariance matrix

The matrix €2, is known as the "long-run covariance matrix" of the innovations w; ;, and it is defined

as
w2 ow w
, € 5§uz €405
Q= lim E(S7rS7) = | Wepy, Wi,  Wuw
T—o00
Wev, Wy, Ui

It can be decomposed as
Q=% +1;+T,

where &; = limp_o T2 31| B (wiowho) and T; = limy_.oo 3y, 321 E (W, jw),). When

=

11



the innovations are stationary, as implied by Assumption 1, >; and I'; reduce to

Y = E(Wi,OW;,O)7 (2.16)

Fi = Z E (Wi70W;l,j) .
j=1

In order to rule out endogeneity, we make the following assumption,
Assumption 3 For every i, the sequences {e;; }, {u;.}, {vi+} are statistically independent.

Assumption 3 implies that the innovations have zero covariances in the short and in the long

run, thus for every i,

o2 0 0 2 0 0
Si=| 0 62 0 [andDl;=| 0 2 0
0 0 o 0 0 A2

To simplify the notation we assume constant variances across i, that is to say we set for all 7,
;=X and I;=T.

The long run variance matrix of the innovations is for every ¢

w2 0 0
Q=10 w? 0
0 0 w?

Assumption 3 implies that the vector Brownian motion in (2.15) has independent components,

BM., (w?), BM,, (w?)and BM,, (w?) and can be rewritten as

W,
BM; (Q)=Q7 Y2 | W, |,
W,
where
W,
W,
W,

is a standardized vector Brownian motion.

We make the further assumption of cross sectional independence in our model.
Assumption 4 For each ¢ and j such that i # j, £, , and &, are independent.

We rely on Assumption 4 to apply the strong law of large numbers for independent sequences to
intermediate limits of the statistics of interest, suitably averaged over 7. This condition is however
very restrictive and it is an important limitation of our results.

12



Invariance principles such as (2.14) have been established for time series processes satisfying
assumptions 1-2 by Phillips and Solow (1992) and for panel data by Phillips and Moon (1999) as
an alternative to asymptotics for time series satisfying certain mixing conditions. In addition to the
multivariate invariance principle (2.14), our asymptotic results rely upon the weak convergence
of certain sample covariance matrix to matrix stochastic integrals of the form f W;dV; which has
been shown by Phillips (1997).

We now introduce some notation. In what follows y denotes the 7" x 1 vector that contains all

the observations on the dependent variable across individuals and time,

Y = (Y1, U, Yss s Un) 5

where the vector y; contains all the observations for individual : from¢ =1, ..., T

y; = (yilayz?a ~--7yiT) .

We denote by W the nT" x 3 matrix that contains all the panel observations on the regressors,
- W
Wa
Wi

=
I

L W, |
where W; is the T' x 3 matrix that contains observations on individual 7 on the regressors for
t=1,..,T,

I xa za

1 Iiz 22

]_ ZL‘Z'3 ZZ‘3

W; =
i l’;T Z;T
Finally we denote by 7 the nT" x 1 vector that contains the disturbances for each individual across
time
= (111, 12, M35 - M) »
where 1} = (9,1, N9, ---» N;7)- Model (2.8)-(2.11) is written in conventional matrix formasy = W4 + n.

The statistical problem is the estimation of the (3 x 1) vector of parameters 9) = (v, By,7,) On

13



the base of panel observations {z;;, z,y:} withi = 1,...nand ¢t = 1,...,T. The pooled OLS

estimator of 19 is defined as

<
[l

(WW) ' Wy
= Jo+ (WW) ' W'n, (2.17)

where

(W,W)_l = Z Z Tit Z Z T3 Z Z Zit Tt , (2.18)

and

W'n = Z > wauny |- (2.19)
Z Z ZitTlit

=1 t=1
The following section discusses our main results, namely the asymptotic normality and rates of

convergence of the pooled OLS estimator of ¢ in a cointegrated model. All the results are for
sequential limits. We find the time series limit behavior of the double index statistics of interest,
say Y; r, either in probability or in distribution and then, by the independence across i for all 7', we
establish the limit behavior of its cross sectional average. Assumptions 1-4 are not strong enough

to ensure that our results readily extends to joint convergence.

2.4 Main results
The following theorem establishes the asymptotic normality of the pooled OLS estimator of

in model (2.8)-(2.11) .

Theorem 1. Under assumptions 1-4, as (n, 7" — 00)seq
D2 ({9 — 190> N (o, q>v<1>’) ,
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where
D'? = diag <\/nT, Ty/n, \/nT> ,

V' is a positive definite matrix and

w? w?
D =di 1, =, 2.
w05 )

The proof of Theorem 1 follows from a simple application of Cramers’s convergence Theorem.
Writing (2.17) as
N -1
D/2 (19 _ 0(}) _ <D*1/2W’WD_1/2> DV2W'y,
the result follows once we establish the convergence in probability of D~Y/2W'WD~'/2 to a
positive definite matrix and the convergence in distribution of the vector D~/2W’s to a normal
random variable with finite variance. Lemma 1 derives the pointwise convergence in probability

of D-1/2W/'WD /2,

Lemma 1 Under assumptions 1-4, as (n, 7" — 00)seq the matrix

n T n T ]
1 1
! T D DD DL D D) DL
i=1 t=1 =1 t=1
n T n T n T
—1/2 ! -1/2 __ 1 2 1
D W'WD = nT13/2 E E Tit T2n E E Tt W32 E E ZitLit
i=1 t=1 i=1 t=1 i=1 t=1
n T n T n T
1 1 1 2
T E E Zit LT3z E § Titzit T § E Zit
L i=1 t=1 i=1 t=1 i=1 t=1 _

converges in probability to .

The proof of Lemma 1 relies on sequential limit theory in an essential way. Following Phillips
and Moon the first intermediate limit is found by standard functional central limit theorems for
stationary and non-stationary sequences (see Park and Phillips, 1998). Then the uniform square
integrability of this intermediate limit is verified to justify the use of a strong law of large numbers
as n — oo. The first intermediate limit follows by well-established asymptotic results for lin-
ear processes provided by Phillips and Durlauf (1986) and Phillips and Solo (1992). When these

convergence result are not readily available we exploit the martingale difference sequence approx-
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imation of the innovation sequence implied by the Beveridge Nelson decomposition to obtain an
intermediate limit as shown in Phillips and Moon (1999).
Lemma 2 derives the asymptotic normality of any linear combination of the vector D~%/?W'n.

Lemma 2 Under assumptionsl1-4 as (n, 7" — 00)seq
D 2W'n —IN (0, V),

where

n t
ﬁ;;mt

n t
DPWn = | 2230w, |- (2.20)

=1 t=1

n t

T IPIELY
i=1 t=1

The proof of Lemma 2 verifies that uniformly in 7" the linear combinations of the vector (2.20)

satisfy a Liapunov condition. This is achieved via the martingale difference approximation of the
innovation sequences which allows to make repeated use of Burkholder’s inequality (see Appendix

A).

2.5 Conclusion

The main result of this chapter (Theorem 1) is coherent with the results of Phillips and Moon
(1999), who find that in a homogeneous cointegrated model with 1(1) regressors, the rate of con-
vergence of the estimators is 7y/n. This is not surprising since in presence of a cointegrating
relation adding one more stationary regressor does not modify crucially any derivation. The coeffi-
cients of the stationary regressors converge at rate v/n7', which is the standard convergence rate in
large stationary panels. The presence of one non-stationary regressor does not slow down the con-
vergence rate of the stationary regressors since the model is cointegrated. The stronger limitation
of this result is the assumption of cross-section independence, which is indeed quite restrictive. In
fact it rules out all instances of global shocks or interdependencies among the variables, which are

a common feature of many economic models. Theorem 1 can be extended in many directions. As-
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suming higher order moment conditions on the &,, and convergence of the ratio v/n/T to zero, we
could derive joint asymptotics. Since the ability of identifying individual heterogeneity is one of
the most important advantages in the use of panel data, the introduction of an individual effect in
model (2.8)-(2.11) seems highly desirable. It would be of particular interest to work out the as-
ymptotics of the estimator under fixed effect assumptions as most economic models imply some
correlation between the individual effect and one or more controls. A further step could be to in-
clude 1(2) regressors in the model. The simultaneous presence of 1(0), 1(1), 1(2) regressors is quite
common in empirical literature, for example in growth models that study the effect of inequality
on growth rates employing the Gini’s coefficient as a measure of inequality. In such models it is
frequently found that the Gini’s coefficient is I(2), whereas income or purchasing power parity are
first order stationary and other explanatory variables such as prices or interest rates are station-
ary. Park and Phillips (1988) developed a multivariate regression theory for time-series integrated
processes accommodating integrated processes of different orders, however their results have not

been extended to large panel models.
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2.6 Appendix A: Technical lemmas

1/2

Proof of Lemma 1 The convergence in probability of D=?W'WD~ /2 is derived element by

element. Consider the term

1y I~ 1~ g~
nT3/2 Z int 0 21 T3/2 ;xit = Zlyi’T’ (2.21)

i=1 t=1
for every ¢. Assumptions 1-4 imply that

1
Y;(%) = we/ W,,(r)dr T — oo,
0
by the Functional Central Limit Theorem (see Park and Phillips, 1988, Lemma 2.1 (a)). By the

Continuous Mapping Theorem

2 1 2
(Yf?) = (wg/ Wai(r)dr) asT — oo.
0

Standard calculations yield

2 1 2
£ (v) HE(% / wgi<r>dr) ,

(1)

)

and we may conclude that the sequence Y7 is uniformly square integrable in 7". Then by inde-

pendence across 7 we can apply a strong law of large numbers

1 Z” 1
—_ }/;(;_') —a.s QJEE (/ [/[/El(’]")dr> = O7 n — 0.
n < ) 0

=1

Consider the term

n

1 n T 1 n 1 T _1 @
W2 2T L 2 = g 222)

=1 t=1 =1
for every i. Recall that by definition

Zit = PZit—1 T Uit with | p |< 1, (223)
where

Uy = Z Vis&it—s ZQ/%QS < ocoand ¥, =1,
s=0 s=0
with ¢,, independent and identically distributed across 7 and ¢. Moreover by Assumptions 1 and 2,

u;; admits the following panel Beveridge-Nelson decomposition:

Uit = wi (1> 5z‘t + Eit—l - 5z‘t> (2-24)
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where

Y (1) = Z@% and ¢, = Zqz}isgitfs with ¢, = Z Uy
j=0 5=0

t=s+1
(see Phillips and Solo, 1992, Lemma 2). Then
T T
1 1 1+ 1+
T Z uir = 1; (1) T Zfit + Tfio - T&'T‘ (2.25)
t=1 t=1
By recursive substitution (2.23) can be expressed as

t
_ it t—s
Zit = P Zi0 + E P‘ |Uz‘s,
s=1

then substituting (2.25) we express it as

t t t
zie = plaio+ Z Plt_sll/}i (1) & + Z plt_s‘fisfl - Z p|t_8|€is
s=1 s=1 s=1
t
= pzio+¢; (1) Z P oE s+ e — &
s=1

Therefore

1 T 1 T t 1 T _ 1 T ~ 1 T

= Z Zit = = Z ¥ (1) Z Pl |+ = Z P E — = Zfz‘t + = Z p'Zio.

T T T T T

t=1 t=1 s=1 t=1 t=1 t=1
Following Phillips and Moon, Lemma 13, page 1100, let us denote
T t
1
. = . |t_sl .
Qir = 7 §¢ (1) (gp 5,5) : (2.26)

and

Rir

1T|t71‘~ 1T~ 1Tt
f;p fio—T;@t—i—T;pzio. (2.27)
By Lemma 13 of Phillips and Moon (1999), (2.27) converges almost surely to zero as (n, T —
00)seq (S€€ page 1101, Phillips and Moon, 1999), implying that the sequential limit of (2.22) is
found by establishing the sequential limit of (2.26). Consider that for fixed i

Qir —as Qi =0, asT — oo,

then by the strong law of large numbers for iid sequences

1 n
EZQZ —a.s 07 aSn—>oo,
i=1
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which implies that

1 ~_
EZYZ'ET)_)O’ as (n, T — 00)seq-
i=1

Consider the term

n

n T T n
CPDET I DIEEINE 229
1=1 1=1 = =1

=1 t=1

- (1 52) = [z

by Functional Central Limit Theorem (see Lemma 2. 1((:) Park and Phillips, 1988). By the Con-

1
2
(vp) = (w2 w2

0
Standard calculations (see Phillips and Moon, 1999, page 1100) yield

2

1
) 2 [11r2
E }/;,T — E We Wai(r)dr )

which implies that v e T is a uniformly square mtegrable sequence in 7', then the strong law of large

Foreveryi,asT — oo

tinuos Mapping Theorem

numbers applies and as n — oo

Z D) s E w/W2 =5

(3
m N

Consider the mixed term

n T n
nT2 szztzzt - % ;g sztzzt 7112 (%szg")) : (229)

=1 t=1 =1
For every fixed 7, as T" — oo

T
1 . .
Yz'%r) =7 Z TitZit = wewu/muldm& + o1 + 'y
t=1 0
by the Functional Central Limit Theorem (see Lemma 2.1 (e), Park and Phillips, 1988), where X5,
and I'y; are the 2nd row, 1st column elements of the matrices 3 and I" defined in (2.16). Moreover

by Assumption 3, 35, = I'y; = 0. By the Continuous Mapping theorem
1 2

2
() = [ween / Wrdws |

0
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standard calculation shows
1 2

@) U €
E (Yw) — B | wew, [ WrdWE
0
(see Baltagi, Kao, Liu, Appendix A) and we may conclude that Yifgﬁ) is uniformly square integrable

in T'. Then the strong law of large numbers for independent sequences implies
1

1 N
NV sl B | wew, / W dwe | = o.
- ,

=1

0
Consider the last term

Z Z 2== Z v (2.30)

=1 t=1 =1
As for (2.22), the existence of the panel Beveridge- Nelson decomposition of the sequence of

disturbances &,, for every fixed ¢, allows us to apply Lemma 13 of Phillips and Moon and to
conclude that for fixed ¢

IR N
which is constant across ¢ by assumption. Then we may conclude that by the strong law of large

numbers

ﬁl\)

_Zy;t —a.s T4 s

which concludes the proof of Lemma 1.

Proof of Lemma 2 Observe that c'D~'/2W’ can be written as

T
1
77 2
o = .
- /% :lF Z TitTit = % Z (dZir), (2.31)
=1 t=1 i=1
T
\/LT Z ZitTit

t=1
where

T T T
<Zir= —L Z Nt + 2 Z Tt + = Z it
VT t=1 = VT t=1

The independence across 7 of the ¢’Z; r implies that to establish a Central Limit Theorem for
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(2.31), we must show that E (¢’Z; r) = 0 and that for some ¢ > 0,
E|dZ["" < o0

By Assumptions 1-4, E (¢’ Z; r) = 0. Notice that by the C,.-inequality

T T T 2+6
C1 Co C3
El—= Z Nt + 7 Z Tity + 7= Z ZitTit
\/T t=1 T t=1 \/T t=1
T 246 T 2496 T 246
C1 C2 C3
C. | E|l— ; +E(=) xum, +E|— ) zun, , 2.32
\/T ; Nit T ; 1t \/T ; Tt ( )
with ¢, = 271, We show that each term of (2.32) is bounded. Consider the term
T 246
C1
El—)» n (2.33)
Since by Assumptions 1-4, n,, admits a Beveridge-Nelson decomposition, Burkholder’s inequality
yields
T 246 T 248
248 _248
T_QEZUit <T 2E2773t )
t=1 t=1
then Holder’s inequality yields
215 248
T 2 T 2+3
2445 2495
TTEEY A <TTEE (Z 77?5) :
t=1 t=1
and by Jensen’s inequality
2446
T 55| 2 T
TE (Z Uzzt+6> = I"FE 277?5
t=1 t=1

T
< TN BT =0(T7%),
t=1

because we have assumed E |n,,|*" < oo, which implies
L 245
Consider the last term
T 245
C3
El—= > zun;

By Assumptions 1-4, z;; and 7,, are independent, therefore the sequence {z;n;,} is a martingale
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difference sequence. Indeed
E [Zitmtlzit—lmtq] = L [Zit\zit—lmtq] E [nit‘zitflmtfl]
= Elzi|zi] B [mtlmH] = 0.

But then as above Burkholder’s inequality for martingale difference sequences yields

T 240 T =
T-%E Z ZitNis < T-%E Z 2203 ,
t=1 t=1
then Holder’s inequality yields
245 2 (H2
T 2 T 2+3
246 2446
T5E Z 2 <T"=E (Z (Zitnit)%é) )
t=1 t=1
and by Jensen’s inequality
, 248 , 248
T 515 | 2 75| 2
2446 2446
T+ F (Z (Zitmt)m) < T3 E (Z (Zz't77it>2+6)
t=1 t=1
T
= TRy
t=1
) r )
2
< T Z E |nitzit|2+5 =0 <T_§> )
t=1
244§ 2+6

because we have assumed that E |n,,|”° < oo and E'|z;|”"° and independence between z;; and

;.- Analogously it can be shown that
245

E < 00,

T
Co
—— E Ty,
vT t=1 t

which concludes the proof of Lemma 2.
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Chapter 3 Multivariate Volatility Models

3.1 Introduction

Recently a large body of research in financial econometrics has emerged on modeling the co-
movements of financial returns. Understanding the comovements of financial returns is of great
importance in many applied situations. The knowledge of correlation structures is vital in asset
pricing, optimal portfolio risk management and asset allocation. Moreover, as the volatilities of
different assets and markets move together, modelling volatility in a multivariate framework can
lead to greater statistical efficiency. Univariate modelling of random volatility has developed along
two main lines of research: conditional volatility models, where the volatility is a deterministic
function of the past realizations of the asset, and stochastic volatility models, where it is a latent
process. Generalizations to multivariate settings have been implemented in both classes and, as a
result, a wide range of multivariate GARCH and Stochastic Volatility models has been developed
and applied extensively in recent years.

In both classes, multivariate generalizations have to combine different needs. Parsimony of the
chosen specification is essential for relatively easy estimation of the model. However, as the dimen-
sion of the vector of returns increases, the number of parameters to estimate increases at a much
faster rate, making parameter estimation computationally very intensive. Estimation of multivari-
ate GARCH models requires numerical optimization of the likelihood function which requires to
invert the conditional covariance matrix at every iteration. The conditional covariance matrix often
depends on time ¢ and has to be inverted for all ¢ in every iteration of the numerical optimization.
If the dimension of the model is large, this is computationally time consuming and numerically
unstable. In contrast to multivariate GARCH models, in multivariate Stochastic Volatility models,

the conditional covariance is latent and has to be integrated out from the likelihood function. As a
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result, the likelihood function does not have a closed form expression and its evaluation requires
evaluation via numerical methods of high-dimensional integrals. As the dimension of the model
increases, this brings a high computational burden. Parsimony is in general ensured by imposing
directly on the model some simplifying restrictions. However if too many restrictions are imposed,
parameters interpretation may become difficult and moreover the model may fail to capture impor-
tant dynamics of the data. Indeed there is a trade off between flexibility of the model specification
and the so called curse of dimensionality.

Another important feature that needs to be taken into account in the specification of a multivari-
ate volatility model is the positive definiteness of the conditional covariance matrix. By definition
covariance matrices must be positive semidefinite, however in order to ensure that all the possi-
ble portfolios (i.e. linear combinations of a vector of returns) have correlations between —1 and
1, positive definiteness of the covariance matrix must be ensured in the model. Imposing on the
model conditions that guarantee positive definiteness of the covariance matrix across time is in
practice numerically infeasible, especially in large systems. Most of the multivariate models in the
literature are formulated in such a way that positive definiteness is implied directly by the model
structure.

Combining these issues has been the main difficulty of the multivariate GARCH and Stochastic
\olatility literature. Various approaches to address positive definiteness of the conditional co-
variance matrix, the curse of dimensionality, and practical implementation issues have generated
different types of models in both classes. Extensive literature reviews on MGARCH models are
provided in Bauwens, Laurent and Rombouts (2006) and in Silvennoinen and Terasvirta (2008).
Asai, McAleer and Yu (2006) survey the main developments of multivariate Stochastic Volatility

models.
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3.2  Multivariate Conditional Volatility Models
Consider an x 1 random vector y;. Denote the sigma algebra generated by the past information
until time ¢t — 1 as F;_;. The general parametric formulation of a multivariate GARCH model is

given as:

ye = 1 (0) + e, 3.1)

g = HY*(0) 2z, (3.2)
where z; is an i.i.d zero mean random vector with unit variance, I,,, the identity matrix of order
n, and Htl/2 is a n x n positive definite matrix. The vector p, (9) is the conditional mean of the
process, and the matrix H, (6) is its conditional variance. To see this consider that the assumptions
on the first two moments of z; imply

!/

Var (y|Fi—1) = Var (e Fi—1) = Htl/QVar (z¢| Fi-1) (Ht1/2> = H,. (3.3)

1/2

H;"? is the n x n positive definite matrix such that H, = (Ht )2 is the conditional variance ma-
trix and it is obtained by Cholesky decomposition of H;. The conditional mean and the and the
conditional variance of the process depend on the unknown vector of parameters 6. In most cases
the parameterization is disjoint, i.e. the conditional mean and variance depend on two disjoint sub-
vectors of the vector 4. However in GARCH-in mean models 1, is functionally dependent on H..
The literature on multivariate GARCH models typically reviews the models according to the dif-
ferent specification of H,, taking no account of the conditional mean vector. We follow the same
approach. According to the specification of the conditional variance matrix H;, we distinguish
three main classes in the literature. The first class comprises models which are a direct extension
of the univariate GARCH and model directly the variance covariance matrix. The second class is
that of the factor GARCH models, which are motivated both by parsimony and easiness of their

economic interpretation. The models in the third class specify the conditional covariances and vari-

ances directly, including the CCC model and its dynamic extensions. They offer a straightforward
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interpretation of the estimated parameters.

3.21 VEC and BEKK models

One of the first multivariate GARCH models proposed in the literature was the VEC model of
Bollerslev, Engle and Wooldridge (1988). The model is a straightforward generalization of the
univariate GARCH of Bollerslev (1986). Every conditional variance and covariance is a function

of lagged conditional variances and covariances as well as lagged squared returns,

q p
vech (H;) = vech (C) + Z Agech (g-e,_;) + Z Bjvech (H,_;), (3.4)
i=1 j=1
where the vech (H,) operator stacks the columns of the lower triangular part of H; into a long
vector, and A; and B; are matrices of parameters with dimension (n (n+ 1) /2) x (n(n+1) /2).

The generality of this model allows for a great flexibility, however it comes at the price of an

excessive number of parameters to estimate. For example in a simple bivariate VEC(1, 1):

hite
vech (H;) = hots (3.5)
L haat
r 2
C1 11 Qa2 Q13 E1t—1 b1 bz i3 hit—1
= Co + | Qo1 a2 Qg3 €1t—1€2t—1 + | bar baa bos hao1t—1 )
2
C3 a31 32 a3s3 €91 bs1 b3z bss hat—1

there are 18 free_parameters in the A and B matrices and 3 free parameters in the constant
vector. A general n dimensional VEC(p, q) has n(n+ 1) /2 free parameters in the constant
¢ = vech (C), [n(n + 1) /2]° parameters in each of the A; and B, matrices, and so in the overall
ithas n (n + 1) /2+ [n (n + 1) /2]? (p + q) free parameters to estimate. The model also requires
relevant restrictive conditions to ensure the positive definiteness of the conditional variance ma-
trix. Engle and Kroner (1995) provide a sufficient condition for almost sure positive definiteness of
the covariance matrix using the BEKK representation of the VEC models, see below. Gourieroux
(1997) provides another sufficient condition for positive definiteness of H,, rewriting the condi-

tional matrix as a recursive equation yielding a symmetric solution

q P
H=C+) (IL,eg.,)Ail, @)+ E[(l.®c,) B;(L®e)|Fi1], (36)

i=1 Jj=1
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where the symbol “®” denotes the Kronecker product. Positive definiteness is achieved assuming
that C' is positive definite and that the 'A; and B ; are positive semidefinite matrices.

For empirical application Bollerslev, Engle and Wooldridge implement a simplified version of
the general VEC model, setting p = ¢ = 1 and imposing diagonality on the matrices A; and B;. In
the diagonal VEC, each element h;;, depends only on its own lag and the previous value of ;¢

so the number of parameters reduces to 3 x [n(n + 1)/2]. For example a bivariate diagonal VEC

model is
Pyt
hy = haoye
i haat
i C1 ail 0 0 5%571 b11 0 0 hlt—l
= co |+ 0 ap 0 €o—1€14—1 |+ | O Db O ho1i—1
C3 0 0 ass €%t_1 0 0 b33 hgt_l

Bollerslev, Enéle and Wooldridge argue that this restriction of the general VEC model is plausible
because information about variances is usually revealed in squared residuals, if the variances are
evolving slowly then past squares residuals should be able to forecast future variances. The diago-
nal restriction keeps under control the proliferation of parameters. However it might still not yield
a positive definite covariance matrix.

Necessary and sufficient conditions for covariance stationarity of the VEC model are derived in

Engle and Kroner (1995). Consider a VEC(p, ¢) model :
q p
vech (Hy) = ¢+ Z Avech (5t_i5;_i) + Z Bjvech (Hy—j) . (3.7)

i=1 Jj=1

Defining the lag operator L such that Le; = ¢, 1, and defining the polynomial A (L) = AL +
AsL* + ...+ A,L%and B (L) = B1L + ByL? + ... + B,LP, (3.7) can be written as:
vech (H;) = c+ A(L)vech (ge,) + B (L)vech (Hy)

= c+ A(L)vech (g}) + B (L ZB e+ A(L)vech (6))]

= ¢+ A(L)vech (g6)) + Z B (L) ' [c+ A(L)vech (g,£))] .
=2
Assuming that &, is a doubly infinite sequence, Engle and Kroner show that the process is covari-
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ance stationary if and only if the eigenvalues of A (1) 4+ B (1) are less than one in modulus (see
Engle and Kroner, 1995, page 132).

To overcome these relevant limitations Engle and Kroner (1995) introduce the Baba-Engle-
Kraft-Kroner model, know as the BEKK model. The new parameterization guarantees positive
definiteness of the covariance matrix under very weak conditions, easy to impose during estima-
tion. Moreover it is general enough to include all the positive definite diagonal VEC representa-
tions and almost all the positive definite general VEC representations. The BEKK(p, ¢, K') model

specifies the conditional variance matrix as

K q K p
Hy=CyCi+) ) Aeiei A + ) ) GG, (38)

k=1 i=1 k=1 j=1
where Cj, A% and G, are n x n parameter matrices with Cj upper triangular. The summation
limit K,1 < K < n? determines the generality of the process. In contrast with the VEC model,
the parameters of the BEKK do not represent directly the impact of the different lagged terms on

the element of H;. The BEKK model can be seen as a special case of the general VEC, obtained

by imposing restrictions on its parameters. Consider for example a simple BEKK (1,1, 1)
H, = Cy G5 + Afjgiag, A} + G Hia Gy, (3.9)
to simplify matters, consider a bivariate BEKK(1,1,1)

* * / * *
H = cic:+ { a1y au} [ el 51,t—1527t—1} {an a12} (3.10)

* * 2 * *
Qo1 Qoo €1t—182t-1 €9¢-1 Qg1 Qoo

n { 911 Yiz ] { hi—1 hizi— } { 911 Y1z ] .

* * * *
921 Yoo hore-1 haia 921 Go2o

(3.10) specifies the individual conditional variances as
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hie = en+ajie 4207058101821 + asies g+ gi i1 + 205195 ha1hes 1 + gtha o,
higr = ci2+ a’ila’bgit—l + (ay a7y + ay,a59)e14- 16242 + a§1a§253,t—1 + grlgItht—l + 9I19T2h%,t—1
+(951972 + 911932)P1e—1hos—2 + 951952@,1‘/717

hoot = Cop 4 aj56] 4y + 203905081 160,41 + G35E5, 1 + Glahii1 + 210050 R1 1 1ha 1+ g33h5 .
Comparison of (3.10) with (3.5) shows that the BEKK parameterization reduces the number of
parameters, imposing restrictions both across and within equations, but without necessarily re-
stricting the dynamics to a diagonal model. A general bivariate VEC(1,1) model has 18 free
parameters excluding the constants, the bivariate BEKK(1, 1, 1) model has 8 free parameters ex-
cluding the constants. A BEKK(1,1,1) model has 2n* + n(n + 1)/2 free parameters, a general
VEC(1,1) has n(n +1)/2 + 2[n(n + 1)/2]” free parameters. Positive definiteness and identifica-

tion of the BEKK(1, 1, 1) are achieved under simple and straightforward conditions, which can be
imposed during estimation relatively easily. Engle and Kroner show that a sufficient condition for
identification is that the diagonal elements of Cj; and a7, and gj, are also restricted to be positive.
This is by no means the only possible condition that guarantees identification of the model. In fact
looking at the model, it is clear that the only observationally equivalent structures are obtained re-
placing A7, with —A7, or G7, with —G7,, so any condition that eliminates — A7, and —G7, from

the set of admissible structures will suffice to guarantee identification. For example one could im-
pose that a;; and gy, are positive for some given 7,5 and k, . Non negativity restrictions can be
imposed in estimation by estimating the square root of the restricted parameters, making identifi-
cation relatively easy for estimation. Positive definiteness of the variance matrix is ensured by the
decomposition of the constant matrix, C, into C' C where C; is a triangular matrix. This is an
identifiable factorization of the constant matrix C' that ensures positive definiteness by construction

simply by assuming that the diagonal elements of C; are non null.
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In empirical applications, when the number of assets can be quite large, estimation of 2n? +
n(n + 1)/2 parameters might become computationally heavy. Most empirical applications over-
come this difficulty by restricting the BEKK(1, 1, 1) model to a diagonal BEKK(1,1,1), i.e. im-
posing that Aj, and G7, are diagonal matrices. This of course reduces further the generality of
the model. A diagonal BEKK(1,1,1) is a restricted, less general DVEC model, positive defi-
nite by construction; the parameters of the covariance equation are products of the corresponding
parameters of the two variance equations and the number of free parameters reduces further to
2n+n(n+1)/2.

Full generality of the BEKK representation can be achieved adding more positive semidefi-
nite terms to the variance equation, assuming K > 1. A full BEKK(p, ¢, K') has (p + ¢) Kn? +
n(n+ 1) /2 free parameters to estimate. Engle and Kroner define full generality of the BEKK
representation as its ability to be equivalent to as many VEC models as possible and show that the
fully general BEKK representation spans the full set of symmetric positive definite VEC represen-
tations. In order to achieve full generality, a BEKK(1, 1, K') model should satisfy two necessary
conditions. First, K, the generality parameter, should be such that the numbers of distinct parame-
ters in each of the A%, and G%, is not less than (n (n + 1) /2)?; this ensures that no unnecessary
restrictions are being imposed. Moreover it is required that there exists a A}, matrix that contains
either the pair of nonzero elements (a;; x, anj ) Or the pair of non zero elements (a;; j, @ ) for all
1,7, k,m from 1 to n; this guarantees that no implicit extra restrictions are imposed in the model.
For the case of n = 2, if none of the A;,, matrices contains the pair (a5 as; ), the second necessary
condition is violated and this violation implies the restriction that the term <3, , does not appear
in the covariance equation. These conditions are necessary but not sufficient to achieve full gener-
ality in a BEKK(1, 1, K') model. Many different set of sufficient conditions are possible, however

most of them generate an identification problem. In general whenever K > 1, some extra restric-
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tions need to be imposed on the model to eliminate observationally equivalent structures. Engle
and Kroner provide a condition that rules out all the observationally equivalent structures, while
retaining the full generality of the BEKK representation (see Engle and Kroner, 1995, Proposition
2.3).

The mathematical relationship between the parameters of a general BEKK(p, ¢, K') and a VEC(p, q)

model can be found by vectorizing both sides of a general BEKK(p, q, K') model

K q
=CyCr+YY  Anerie Zk+ZZG H, G, (3.11)

k=1 i=1 k=1 j=1
obtaining

q
vech(H;) = (Cp® Cg) vech(I, +Z
i=1

Z (Az, @ A%) vech <€t i€ l)]
K

Z TGy vech (He—;)

=1

p
2
7j=1

Representations (3.11) and (3.4)and are equivalent if and only if there exists matrices Cf, A%, and

¥, such that

Co = (C;®Cq) vech(I,),
K

A = Z (A5, ® A},

k=1
K
G = Z (Gh oGy

k=1
This is a necessary and sufficient condition for the equivalence of the BEKK and VEC represen-
tation. The VEC models for which there exists no such Cjj, Aj, and G, do not have a BEKK
representation. Engle and Kroner (1995) show that this class includes all the non positive defi-
nite VEC parameterizations. However all positive definite symmetric VEC representations and all
positive definite diagonal VEC representations admit Cj, A}, and G}, satisfying the above. The
general diagonal BEKK representation,where each of the Aj, and G}, matrices is diagonal, in-
cludes all the possible positive definite linear VEC model and if it satisfies the sufficient condition

for generality, it is always identified.
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Necessary and sufficient conditions for covariance stationarity of the general BEKK are found

rewriting the general model:

vech(H,) = (Cf @ C) vech(1,) + Z

Z (A3, ® A%) vech <8ti5;i)]

K
(G*k ®ij) vech (Hy_ J)] ,

k=1

p

2

=1

in vector ARMA form
vech(H;) = Cy + A(L)vech (&82) + G(L)vech(Hy),

where L denotes the lag operator, and the polynomial A(L) and G(L) are defined by
K

K
AL) = D (A @A) L+..+> (A, @ Ay)' L,

k=1 k=1
K K
G(L) = Z (A @A) L+ ..+ > (A, @A) 1P
k=1 k=1
Then ¢, is covariance stationary if and only if all the eigenvalues of 3%, S7% | (A% ® A%) +
DS (G2, ® G, are less than one in modulus. In the diagonal BEKK model the covari-
ance stationarity of the process is determined only by the diagonal elements of the A7, and G,
matrices, since the model is covariance stationary if and only if Y, (a;?, + ¢;7,) < 1 foralli.
Estimation of BEKK models is typically done with maximum likelihood methods. Assuming
that the errors ¢, are i.i.d, the problem is to maximize the sample log likelihood function L (6)
for the T observations, conditional on some starting value for H, with respect to the vector of

parameter 0. The general conditional log likelihood is:

T
= log f (wl0, Fi1), (3.12)
t=1
where f (y;|0, F;_1) is the conditional density of y;,
£ (l6. i) = [ Hl g (i)
assuming correct specification of the model. The most commonly employed distribution for the
errors is the multivariate normal distribution. Empirically there is a great amount of evidence

that the standardized residuals of estimated volatility models are fat tailed, so the assumption of
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Gaussianity of the innovations is not innocuous and reduces efficiency. Fiorentini et al. (2004) pro-
vided a general framework for ML estimation using the t distribution. Bauwen and Laurent (2002)
extend their work to a multivariate skewed student distribution, Barndorff-Nielsen and Sheppard
(2001) use a generalized hyperbolic distribution. The drawback of those approaches is that if the
initial assumption on the distribution is wrong, in general ML estimates are not even consistent.
On the other hand, using a Gaussian likelihood retains consistency also under misspecification of
the conditional density, as long as the conditional mean and the conditional variance are correctly
specified. Under the assumption of normality, the conditional log likelihood is
e I~ .,
Ly (0) =c— §;1H|HT| - 5;%&]_—11& Y-

Maximization of this likelihood brings two types of problems. First of all, as stated by Engle
and Kroner (1995), the calculation of the derivatives of the model log likelihood with respect to
the vector of parameters is quite cumbersome. Engle and Kroner suggest the use of numerical
derivatives to approximate the score vector. However, subsequent work by Lucchetti (2002) and
Hafner and Herwartz (2003) has shown that using analytical scores in the estimation procedure
improves the accuracy of the estimates and speeds up convergence. When the dimension of the
vector y; is not small, the use of numerical derivatives makes estimation of the BEKK model
slow and prone to numerical errors. The second issue is that, once the score vector is obtained,
the parameter vector ¢ can be estimated only via non linear maximization, i.e. via numerical
optimization through iterative methods. Among the several possible optimization algorithms, for
sake of computational simplicity, Engle and Kroner (1995) advocate the use of the Bernd, Hall,
Hall and Hausman (1976) algorithm. The BHHH algorithm is an iterative optimization method
that calculates the updating term by a regression of a vector of ones on the scores. So the ¢ + 1
iteration is obtained as:

[S ,]ezei L

0=06"

gt = g 1 ), [(S’S)*l}
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where ¢ indicates a vector of ones, S = 0L, (0) /00, i is the iteration number and ); is the step
length, calculated at each iteration by a line search. The algorithm has the advantage that, under the
assumption of normality, the (5'S) " from the final iteration can be used as a consistent estimate
of the variance covariance matrix of the parameters. Other popular iteration methods include the
BFGS and the OPS algorithm. All these methods require to invert the conditional covariance
matrix for all ¢ at every iteration of the optimization and, when the dimension of 3, increases, this
is time consuming and numerically unstable. For example a diagonal general BEKK model has
(p+q) Kn?® + n(n + 1)/2 free parameters, and its estimation involves heavy computations due
to several matrix inversions. Empirical applications overcome computational difficulties setting
p = g = K = 1 and assume that H; is the unconditional covariance matrix. Under ergodicity
of the process this has no consequence for the asymptotic properties of the estimator. Asymptotic
properties of the QMLE estimator in multivariate GARCH models are not yet firmly established,
and are difficult to derive from low level assumptions. Gourieraux (1997) establishes the weak
consistency of the Quasi MLE for BEKK models, relying on the martingale difference properties
of the sequence of score vectors evaluated at the true parameter value. Comte and Lieberman
(2003) establish its strong consistency and asymptotic normality, verifying the conditions given
by Jeantheau (1998) which do not impose any restriction on the derivative of the log likelihood of
the process. Avarucci et al. (2013) derive the asymptotic properties of the estimator under weaker

moments conditions in a simple BEKK(1, 1) model.

3.2.2  Factor models

Another very popular class of multivariate GARCH models in the literature is that of multi-
variate factor-GARCH models. As for the BEKK-type of models this class was motivated by the
need to overcome the difficulties of the VEC specification. However, in contrast to the BEKK-type

of models, the factor-GARCH models are not a restricted specification of the VEC model but are
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based on the idea that the dynamics of the conditional variance matrix are driven by the dynamics
of small number of common underlying variables, called factors. All the models in this class ex-
press the observed series of returns y; as a linear and invertible transformation of a small number
of unobserved factors f; which follow a GARCH process.

The first multivariate factor-GARCH model in the literature was introduced by Engle, Ng and

Rothschild (1990). They assume that the series of returns can be expressed as

K
Yo=Y Wifu + e, (3.13)
k=1
where wy, k = 1, ..., K, are linearly independent n x 1 vectors of factor weights, known as factor
loadings, the f,; are K not necessarily uncorrelated factors and e; is a vector of idiosyncratic
shocks with constant variance matrix and uncorrelated with the factors. It is assumed that the
factors have a first-order GARCH structure, so their individual conditional variances, denoted as
A2, evolve according to:

e = Wi+ an (Whye1)” + 8%, (3.14)
where wy, ay and 3, are scalar parameters, and their unconditional variances are normalized to one.
This specification implies that the dynamics of conditional covariance matrix of y, are expressed
as:

K
Hy=Q+> wiwihi, (3.15)
where Q is the n x n positive definite constantkc:civariance matrix of e,. Parsimony of parameter-
ization is achieved by choosing the number of factors K to be much smaller than the number of
assets n. Model (3.13)-(3.15) implies that the time varying part of H; has reduced rank K, but H;
remains of full rank because €2 is assumed positive definite. Engle et al. propose a consistent but
not efficient two-steps estimation method using maximum likelihood.

The assumption of correlation between the factors in model (3.13)-(3.15) turns out to be unde-

sirable since it allows several of the factors to capture similar characteristic of the data, possibly
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increasing the number of factors in the model. Motivated by this consideration, most of the mod-
els in this class assume uncorrelated factors. Uncorrelated factors have a straightforward economic
interpretation since they can be directly interpreted as different common components that drive the
returns; moreover their use can potentially reduce the dimensionality problem. In all the uncorre-
lated GARCH-factor models the original series of returns is expressed as
y: = Wi,

where W is a n x n_non-singular matrix of factor loadings and f; is a vector of n x 1 heteroskedas-
tic factors which are standardized to have unit unconditional variances, i.e. E (f;f/) = I. The
unconditional variance matrix of the returns is expressed as

H, = WHIW’,
where HY is the unconditional covariance matrix of the factors.

Differences between the factor models are due to the specification of the linear transformation
W and to whether the number of factors is less than the number of assets or not. Alexander and
Chibumba (1997) propose an Orthogonal (O-) GARCH-factor model where the linear transforma-
tion W is assumed orthogonal and invertible; Van der Weide (2002) extends the O-GARCH model
to a Generalized Orthogonal (GO-) GARCH factor model specifying the linear transformation by
using the singular value decomposition of E (y;y,) = WW/, that is by assuming

W =UQ"*V,
where the columns of U hold the eigenvectors of E (y,y}) , the diagonal matrix Q holds its eigen-
values and V is an orthogonal matrix of parameters. The conditional covariance matrix of the
factors is defined as
Hf = (I- A-B)+ Ao (f.f/_ ;) + BH] |,
where A and B are diagonal n x n parameter matrices and ® denotes the Hadamard, i.e. the

element by element, product. Vrontos, Dellaportas, Politis (2003) introduce a Full Factor (FF-
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) GARCH model, restricting the mapping W to a n x n invertible triangular parameter matrix
with ones on the main diagonal and propose an estimation method for W that only exploits the
conditional information. Lanne and Sakkonen (2007) propose a generalized orthogonal factor
(GOF-) GARCH model where the mapping is decomposed using the polar decomposition
W =CV,

where C is a symmetric n x n matrix and V is an orthogonal n x n matrix. Since E (y;y;) =
WW' = CC/, the matrix C can be estimated making use of the spectral decomposition C = UQ'/*U’,
where the columns of U are the eigenvectors of E (y;y;) and the diagonal matrix Q contains its

eigenvalues.

3.2.3 CCC models

Another popular class of multivariate GARCH models is the class of conditional variances and
correlation models. These models are based on the decomposition of the conditional covariance
matrix into conditional standard deviations and conditional correlations matrices. The form of the

conditional variance matrix is specified as:
H;,= D;R;D;
where D, = diag (h}f, . h}f) is a diagonal matrix that contains on the main diagonal the
individual conditional standard deviations of each element of the vector y;. R; = [pij]t is a
symmetric, positive definite matrix such that p,, = 1 for every ¢ and every t. The off-diagonal
elements of H; are defined by
L, = Wl "1l oy i # ), (3.16)
the diagonal elements by
[Ht]n‘ = Dt
The choice of H; in these models entails first of all the specification of the individual conditional

variance models, which need not to be the same across different assets, and are in general members
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of the class of univariate GARCH models, and then the choice of a conditional correlation matrix,
R, positive definite at every . The first model of this class is the constant conditional correlation
CCC-GARCH model of Bollerslev (1990). In the CCC model the conditional correlation matrix
R is assumed to be time invariant and (3.16) simplifies to :

[Ht]ij = h;t/thl't/zpij L7 ]
Often the individual conditional variances are modelled as individual GARCH(p, ¢) processes and

the vector of conditional variances is written as

diag (H;) = w+ i Ai(ei i Oey)+ i B,h,_; (3.17)
=1 =1

where w is a n-dimensional vector of constants, A; and B; are nj x n diagonal matrices of parame-
ters, the symbol “®” denotes the Hadamard product, and the term (e, ® €;) is the n x 1 vector with
elements 2. Bollerslev (1990) assumes a GARCH(1, 1) structure for the individual variances and
ensures positive definiteness of H; assuming positive definiteness of R and that all the elements
of w, A, and B; are positive. When the individual variances follow a GARCH(p, ¢) model with
either p > 1 or ¢ > 1, or both, the condition that the elements of A; and B; must be positive
can be replaced by any condition ensuring the positive definiteness of the individual variances. In
general H, is positive definite if and only if the matrix R is positive definite and all the » con-
ditional variances are positive. A CCC model with GARCH(p, ¢) conditional variances contains
n+n(p+q)+n(n—1)/2 parameters and does not allow individual volatilities to depend on
each other. Jeantheau (1998) generalizes the CCC-GARCH model to the Extended Constant Con-
ditional Correlation (ECCC-GARCH) model assuming non zero off-diagonal elements in A; and
B;. This allows past squared returns and variances of all the series to enter the individual condi-

tional variance equation. For example in the first order ECCC-GARCH model, the ith variance

equation is specified as

hig = w; + a11€%,t4 + ...+ aln@i,gq +biihig—1 + o+ binhng—a, (3.18)
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and generates a much richer dependence structure than in a first order CCC model. An ex-
tended constant conditional correlation model with GARCH(p, ¢) conditional variances contains
n(l+1+np+ng+ (n—1)/2) parameters.

Jeantheau (1998) shows that the necessary and sufficient condition for weak stationarity of a
multivariate GARCH model established by Engle and Kroner (1995) implies strict stationarity and
ergodicity of the ECCC model. In the CCC model where the matrices A; and B; are diagonal,
this condition reduces to assuming that each diagonal element of the matrices is less than one in
absolute value and it is easily imposed during estimation. Francq and Zakoian (2010) generalize
the result of Bourgerol and Picard (1992) on strict stationarity of a univariate GARCH (p, q) to the
ECCC model. As Bourgerol and Picard, they express the condition using the Lyapunov exponent
of a matrix associated with the vector of parameter 6. To obtain the Markov-chain representation

of the process they write it in vector representation

Z = by + Az,

with
Ttw €§2)
0
7 ) @)
b = € Rrta), Z = | St-et1r | € RMPFD,
w h,
’ hi
and
TtAl TtAq TtBl Tth
I, 0 0 0 0
A — 0 L, 0 0O 000 O
- Ay A, B B, ;
0 0 I,
0 0 I,
0 0 0 0 I, 0
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where

(RY2zy,)? 0 0
Tt = 0 (Rl/z,ZQt)Z 0
0 . . Rl/Qth 2
(

and sﬁz)denotes the vector (2,,...,¢%,)". The ergodicity and strict stationarity of h, and ¢, are
derived from the ergodicity and strict stationarity of the Markov chain z;. Using results of Meyn
and Tweedie (2009), Frang and Zakoian show that a necessary and sufficient condition for the
existence of a strictly stationary and ergodic solution is that the top Lyapunov exponent of the
sequence {A;, t € Z} is strictly negative.

Conditions for identification of the ECCC model are derived by Jeantheau (1998), under the
assumption that the ECCC-GARCH representation is "minimal”. Using the back-shift operator L,
(3.17) may be written as

Bt i

B (L) : =w+A(L) : ;

h Xt
with invertible B (L) = I —>"_ B;L/ and A (L) = > !, A;L’. In order to ensure identification
it is necessary to ensure that there exists no other pair (Ay (L) , By (L)) of polynomial matrices with
the same degree (p, q) such that B, ' (L) Ay (L) = By (L) Ay, (L) . Jeantheau (1998) provides a
set of necessary and sufficient conditions on the polynomial matrices A (L) and B (L) that rule out
any observationally equivalent structure of the model, defining the ECCC-GARCH representation
that satisfies those conditions "minimal”.

A great advantage of the CCC model and its extensions is the straightforward interpretation of
the parameters. For example this model is extremely popular in risk premium analysis because the
estimated correlations between securities are readily available in the estimation results. Moreover
the use of a CCC model facilitates the comparison of correlation patterns between different periods.

One can estimate independently different CCC models in sub-periods of the available sample pe-

riod and then examine if the correlation patterns vary substantially from one sub-period to another.
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However in some empirical applications the assumption of constant conditional correlation might
seem restrictive. For this reason, the CCC model has been generalized to a Dynamic Conditional
Correlation (DCC) model, that retains the decomposition of the conditional covariance matrix but
allows for a time varying conditional correlation matrix. Tse and Tsui (2002) proposed a Varying
Correlation (VC-) GARCH model assuming that the conditional correlations are functions of their

lagged values. The time varying correlation matrix is generated by the recursion:
Ri=(1—-60,—0)R+60,9, 1+ 0s:R; 1, (3.19)

where the n x n matrix R is symmetric, and positive definite with elements on the main diagonal

equal to one, 6, and 5 are non negative scalar parameters satisfying 6, + 6, < 1, and the matrix

U, is the sample correlation matrix of the M-lagged standardized residuals, with elements

Z,ﬁil (@‘,t—k/ iLi,t—k) (5j,t—k/ ilj,t—k)
A 2 - 2
\/(2241 it/ tht—k:) <Z£41 Eji—k/\/ hj,t—k>

The conditional correlation is formulated as the weighted sum of past correlations. A different

%‘j,t—l -

specification is that of Engle and Sheppard (2001) and Engle (2002), where the time varying con-
ditional correlation matrix is given by

By = diag (0%, ani3) Qudiag (anf?, - anil3) (3.20)
where the n x n symmetric positive definite matrix @, is set equal to

(1 - Q= 5) Q+a (Dt_—11/25t—1> (D;—11/25t—1)/ + BQi—1, (3.21)
where @ is the unconditional variance matrix of the standardized residuals, and « and 5 are non
negative scalar parameters satisfying o + 5 < 1. The elements of ) can be estimated or set
directly to their empirical counterparts to simplify estimation. The drawback of this specification
of the correlation matrix is that all the conditional correlations obey to the same dynamics. Engle

(2002) suggests modifying (3.21) as

Q=QoW —A—B)+A® (D;}lgt_l) (D;}lgt_l) +BOOQ, 4, (3.22)
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where ¢ is a vector of ones,the symbol “®” denotes the Hadamard product, and A and B are n x n
matrices of parameters, which can be defined to functionally depend on a small fixed number of
parameters. Billo et al. (2003) propose a Quadratic Flexible Dynamic Conditional Correlation
model, where the correlation matrix has a block diagonal structure and the dynamics of the cor-
relations are identical only within each block. The drawback of this approach is that the block
members need to be defined a priori. Kwan et al. (2009) propose a threshold extension of the VC-
GARCH model of Tse and Tsai, where the transition between regimes is governed by an indicator
variable which belongs to the extended information set at time ¢t — 1, and the number of regimes
is know a priori. Silvennoionnen and Terasvirta (2005) propose a Smooth Transition Conditional
Correlation model, where the conditional correlation matrix varies between two states according
to a transition variable.

Estimation of the CCC and ECC models via Quasi Maximum Likelihood methods is compu-
tationally quite attractive thanks to the decomposition of the conditional variance into conditional
standard deviations and constant conditional correlations matrices. The log likelihood of the T

observations of the process, conditional on some starting value H,, has the simple form

—c——Zln\Dt ely—-ngyR 02|——Zyt “1(02) D1 (61)) i
In sharp contrast W|th VEC and BEKK models, the 7" inversions of the matrix H; reduce to only
one inversion of the matrix R. Moreover the separate parameterization allows to write the like-
lihood as the sum of a volatility part, depending on the vector of unknown parameters 6,, and a
correlation part, depending on the vector of unknown parameter 6,. As a consequence, the model
can be consistently estimated using a two steps approach. Engle and Sheppard (2001) show that
a consistent estimator of the parameters in ¢; can be found by replacing the matrix R with the

identity matrix in the likelihood,

T
1
LT(91)=C—§;1D|D7§ |__Zyt (Ql)yta
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which can be expressed as the sum of n individual log likelihood functions,

1 T N y2
— it
LT(el) —C—§ZZ (lnhzt—kh—“) .

t=1 i=1
Then a consistent estimator of 0, is obtained maximizing:

Lr (02101 = —% i (10g 1Rl + (D "w) R (D;'wi)) -

The estimators 6 and 6, are not fully efficient, since they are limited information methods. Engle
and Sheppard suggest the use of #; and 6, as starting values of a Netwon-Rapson iteration algo-
rithm to maximize the full likelihood, and obtain an asymptotically efficient estimator after one

iteration.

3.3  Multivariate Stochastic Volatility Models

A different approach to modelling conditional covariances is represented by multivariate Sto-
chastic Volatility models, which have developed significantly over the past few years. In this class
of models the conditional volatility process is no longer a measurable function of the sigma alge-
bra of the information available at time ¢ — 1, but it is modelled as an unobservable, latent variable.
GARCH-type and Stochastic Volatility models have similar statistical properties, however they are
different with respect to the observability of the conditional variance at time ¢ — 1. The first mul-
tivariate stochastic volatility model was proposed by Harvey et al. (1994). The model contains
an unobserved vector variance component, the logarithm of which is modelled directly as a vector

linear process. The n x 1 random vector
ye = (0) + & (0),
has variance described by

e (0) = H;?2, (3.23)

H,/? = diag (exp {h1¢/2} . ... exp {hn/2}) = diag {exp (h;/2)}, (3.24)
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hy=p+¢Ohy+m, (3.25)

2t .. 0 Pz 0
(nt ) |ht~z.z.dN{O 0 s, }, (3.26)

where the “exp” operator denotes the element by element exponentiation of a vector, the vector
h; = (hy, ..., ha) isan x 1 vector of unobserved log volatilities, and 1 and ¢ are n x 1 parameter
vectors. The n x n positive definite matrix X, is the variance covariance matrix of the disturbances
of the volatility equation, and P, is the covariance matrix of the disturbances of the level equations,
with diagonal elements p;; = 1 and off diagonal elements |p,;| < 1 forany i # j, with i,j =
1,...,n. The model has 2n +n? free parameters. Harvey et al. assume a vector AR(1) specification
for h; which has been extended by Asai et al. (2006) to a VARMA(p, q),
(L) hy =+ 0O (L),
with

p
(L) = 1-) &L,
=1

O(L) = I- i@jLﬂ'.
=1
In model (3.23) to (3.26), the individual log volatilitijes are not independent as long as the off diag-
onal elements of X, are non zero. The model however does not allow the covariances to evolve over
time independently from the variances. As CCC-GARCH models, this MSV model constraints the
conditional correlation to be constant across time, but has the advantage of representing a better
discrete time approximation of the continuous time Orstain-Uhlenbeck process used in finance the-
ory. In sharp contrast with multivariate GARCH models where the conditional covariance matrix is
measurable with respect to the sigma-algebra available at time ¢ — 1, H, in (3.25) is not. This latent
feature of H; makes its positive definiteness more difficult to achieve than in MGARCH models.

This is mostly the reason for which the MSV literature models directly the dynamics of the log-
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arithmic transformation of H,, rather than of H, itself. As for the MGARCH literature, the main
concerns of the MSV literature have been to introduce parsimony of the parametric specification to
simplify estimation and positive definiteness of the covariance matrix. Different variants of mul-
tivariate stochastic volatility models have been proposed to address these issues: factor models,
time-varying correlation models and models based on the Chowlesky decomposition of the covari-
ance matrix. Harvey (1994), Jacquier et al. (1999), Shephard (1996), Pitt and Shephard (1999),
Aguilar and West (2000) proposed different specifications of MSV-factor models which decom-
pose the returns into two additive components. The first has a smaller number of factors than the
second and captures the information relevant for pricing of all the assets, while the second com-
ponent is an idiosyncratic noise, which captures the asset specific information. The additive K
factors MSV model is written as
y: = Df; + e,
where f, is a K x 1 vector of factors, K denotes the number of factors which is constrained to
be smaller than the number of assets n, D is a n x K dimensional matrix of factor loadings and
e; ~ N (0,diag{0?,...,02}). The individual factors evolve according to
fio = exp(hy/2)ey, i=1,.., K

hiter = p; + Qphie + 1,
where e;; and n;, are mutually independent shocks such that £;; ~ N (0, 1) and n,;, ~ N (0, 0727). In
order to guarantee identification of the model, in general it is assumed that D;; = 0 and D;; = 1

fori =1, ...,n . The variance of y, is by construction positive definite with form

DX D'+diag {a?, e 0721} ,
where X ; is the covariance matrix of the factors. It can be shown (see Yu and Meyer, 2006) that ad-
ditive MSV-factor models allow for both time-varying volatilities and correlations. However since

the shock e; is homoskedastic and the number of assets in the portfolio is greater than the number
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of factors, it can be shown that there must exist portfolios whose volatilities are homoskedastic.
This feature does not seem to be consistent with empirical findings on portfolio volatilities and it
is the main drawback of this type of models.

MSV time-varying correlation models are based on the idea that the dynamics of covariances
and variances can be modelled separately. Asai and McAleer (2004) propose a MSV time-varying
correlation model extending the DCC model of Engle (2002) to a stochastic volatility setting spec-
ifying the volatility matrix of y; as

D,I',D,,
where the diagonal matrix D, is defined as
D, = diag {(exp {h1/2}, ..., exp {hn/2}) = diag {exp (h;/2)}},
and the time-varying correlation matrix I'; is specified as
Ty =Q; 'QQ;
where Q7 = (diag {vecd (Q;)})**and vecd creates a vector from the diagonal element of a matrix

and

Qi1 = (1-9)Q+vQ1+E,
= o~ Wu(v,A),

where @ is the unconditional variance matrix of the standardized residuals and W, (v, A) denotes
a Wishart distribution. If Q is positive definite and the scalar parameter + is such that || < 1
then time-varying correlation matrix is positive definite and stationary. In the special case in which
v = 1, Z; can be expressed as the cross product of a multivariate normal distribution with zero
mean and covariance given by A.

Gourieroux (2006) and Philipov and Glickman (2004) developed a different type of dynamic

MSV models based on the Wishart autoregressive (WAR) multivariate process. The time varying

47



covariance matrix of y; is defined as a WAR(p) process

K
!
H, = E Xkt Xt
k=1

where K > n — 1 and each vector x,, follows a VAR(p) model given by

p
Xt = ZAithfi + ek, Ere~ N (0,%).
=1
This type of MSV models has been widely used in empirical applications since it offers closed-
form derivative prices which are employed in a number of financial problems, such as term struc-
ture of T-bonds and corporate bonds and structural models for credit risk.

Estimation of MSV models is not straightforward because of the difficulties involved in eval-
uating their likelihood. Feasible estimation strategies for MSV are method of moment estimation
or estimation via quasi maximum likelihood of a linear state-space representation of the model via
the Kalaman filter. These procedures are computationally very simple and have been extensively
used in empirical applications, however they have poor finite sample properties and suboptimal
efficiency with respect to direct maximum likelihood estimation of the model. Over the last few
years, these approaches have been replaced by simulation-based methods (see Shephard and Pitt
(1997), Durbin and Koopman (1997), Kim et al. (1998), Sandmann and Koopman (1998), and

Chib et al. (2002)) that have successfully dealt with numerical evaluation of the high dimensional

integrals.

3.4  Asymmetric Multivariate Volatility Models

It has long be recognized that the volatility of stock returns responds differently to good news
and bad news. In particular, while bad news tends to increase the future volatility, good news of the
same size will increase the future volatility by a smaller amount or might even decrease it. The dif-
ferent impact of past price decreases and past price increases of the same magnitude on the current
volatility is know as asymmetry. The negative correlation between past returns and current volatil-

ity is know as leverage effect. Therefore leverage denotes asymmetry but not all the asymmetric
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effects display leverage. In the class of univariate ARCH specifications the most popular mod-
els that capture asymmetric effects are the EGARCH model, the threshold GARCH model, and its
most popular variant GJR-GARCH, and the class of asymmetric power GARCH models. Many
empirical studies have found robust evidences of asymmetries in multivariate stock returns series.
As a consequence in the last decade there have been quite a few attempts to introduce asymmetry
and leverage in multivariate random variance model. The analysis of asymmetric effects in con-
ditional volatility models is a relatively new topic. Sentana (1995) proposed a multivariate latent
factor model with QARCH-type effects on the underlying factors that capture leverage through the
common latent factor. Kroner and Ng (1998) introduced a General Dynamic Covariance model
to capture the covariance asymmetry in the volatility dynamics of portfolios of small and large
firms. More recently Shepard (2002) and Cappiello, Engle and Sheppard (2006) proposed mod-
els which allow for asymmetric dynamics in the conditional variances as well as in the condi-
tional correlations, based on a generalization of the multivariate Dynamic Conditional Correlation
GARCH model of Engle (2002). Audrino and Barone-Adesi (2006) introduced a semiparamet-
ric multivariate GARCH model to allow for asymmetric conditional covariances and time varying
conditional correlations. Dellaportas and Vrontos (2007) introduced a new class of multivariate
threshold GARCH models based on a binary tree approach, where every terminal node parame-
trizes a local multivariate GARCH model for a specific partition of the data. Haas, Mittnik and
Paolella (2008) proposed an asymmetric multivariate generalization of the class of normal mixture
GARCH models. Finally Kawakatsu (2006) introduced the matrix exponential GARCH model,
the only multivariate conditional volatility model with exponential specification.

The asymmetric property of stochastic volatility models is based on the direct correlation be-
tween the innovations of the mean and volatility equations. Danielsson (1998) introduced leverage

effect in MSV model based on the specification considered by Harvey et al (1994) including a neg-
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ative correlation between the returns and volatility innovations. Asai and McAleer (2005) proposed
a multivariate dynamic asymmetric leverage (DAL) model that accommodates threshold effects.
The model allows volatility to undergo discrete shifts depending on whether the return for the pre-
vious period is above or below some threshold value. Asai and McAleer (2006) used the numerical
Monte Carlo Likelihood method proposed by Durbin and Koopman (1997) to estimate the basic
MSV model with leverage of Danielsson (1998). Moreover they extended the model of Daniels-
son to incorporate the effect of the size and magnitude of the previous return into the volatility
equation by using the absolute value function. Their estimation results of the MSV with leverage
and size effect (SV-LSE) model show that the models fits the bivariate and multivariate returns of
the S&P500, Nikkei 225 and Hang Seng indexes more accurately than any other MSV asymmetric
model available.

In chapters 4 and 5 of this thesis we introduce a new multivariate volatility model, the multi-
variate Exponential Volatility (MEV) model, which is based on an exponential specification that
allows to nest stochastic and heteroskedastic volatility specifications in the same framework. As
explained in greater details in Chapter 1, the model was partly motivated by the need to capture
asymmetries and leverage effect in a multivariate exponential specification that easily grants posi-
tive definiteness of the covariance matrix. It is therefore relevant to our purposes to discuss in some
details the matrix exponential GARCH model of Kawawatsu (2006), which is the only MGARCH
model with exponential specification, asymmetries and leverage effects. The next section briefly
introduces Kawakatsu’s model and discusses the main difficulties arising from its estimation via
maximum likelihood methods which partly motivate estimation of the MEV model parameters in

chapters 4 and 5 via Whittle methods.

3.4.1 Matrix Exponential GARCH.

The matrix exponential GARCH model of Kawakatsu (2006) specifies the dynamics in the log-
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arithm of the conditional covariance matrix. The model is an extension of Nelson (1991) univariate
EGARCH model to a multivariate model of the VEC class. The exponentiation is not the element
by element exponentiation of the conditional covariance matrix, but a non linear matrix exponential
transformation of the conditional covariance matrix. This specification ensures positive definite-
ness of the covariance matrix through the exponential transformation, and allows for a term that
captures multivariate asymmetries. In the general formulation of the matrix exponential GARCH,
the logarithm of the covariance matrix depends on its own past and on lagged innovations, accord-

ing to

p q k q k
(log Hy —C) =Y A;@logHy;+Y > Byeivj+ Y. > Fij(leia—jl — Eleie—sl), (3.27)
i1 =1 i=1 j=1 i=1
where C'is a synjmetric kxk matri>J< of constants, andj A;, B;j and Fj; are k x k symmetric
parameter matrices. This specification excludes cross products terms such as €;;—1¢;,—; and has a
total of £ (K + 1) /2 x (1 + p + 2kq) free parameters. The term F;; captures the asymmetries of
the volatility process. A different specification of (3.27) is written using the vech operator,
p q q
he =vech(logHy— C) =Y Aihy1+ Y _ Biewj+ > Filewj| — Eleiyl),  (3.28)
=1 =1 =1
where A;, B; and F; are parameter matrices ojf dimension rjespectively k* x k*, k* x k, k* x k,
with k* = k (k + 1) /2. The number of free parameters in this model is k* + k*’p + 2kk*q. The
vech specification does not require any symmetry constraints, however it increases the number of
parameters to estimate because it allows for a richer dependence structure of the volatilities. In
(3.28) the volatilities don’t depend on their own past values and the past values of the covariances,
but also on the past values of all the other individual variances. Parameters restrictions to ensure
positive definiteness are not required in (3.27) nor (3.28) since log H; does not need to be a positive
definite matrix. However neither (3.27) nor (3.28) are feasible when £ > 3, due to the very large

number of parameters to estimate. To deal with the curse of dimensionality, Kawakatsu proposes

a restricted diagonal matrix exponential GARCH, where each element of (log H; — C') evolves
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according to

p q
hrc,t = Z ai,rchrc,t—i + Z (bjr,rcgr,t—j + bjc,rcgc,t—j) (329)
i=1

q ' o
+ 3 e (enemsl = Ellene=sl) + Frare (ees—s] = B lleca—sI))
The (r, ¢) elementjgfl(log H, — C) depends only on its own lagged values and lagged rth and cth in-
novations. In this diagonal specification the number of parameters reduces to k* x (1 + p + 2k?q).
Estimation of the matrix exponential GARCH model has some serious drawbacks. Kawakatsu pro-
poses estimation of the parameters via Maximum Likelihood methods. However MLE estimation
of an exponential matrix model is computationally very costly. Moreover evaluation of the deriva-
tive of the exponential of a non symmetric matrix is a computationally unstable (see Moler and Van
Loan, 2003). The asymptotic properties of the MLE estimator for exponential models are not es-
tablished in the literature as they require the invertibility of the model, which is extremely difficult

to establish in exponential specifications (see Straumann and Mikosh, 2006).
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Chapter 4 Whittle estimation of multivariate exponential volatility models

4.1 Introduction

In the previous chapter, we discussed the two main approaches to modelling multivariate volatil-
ity, i.e. the conditional volatility and the stochastic volatility approaches. In stochastic volatility
models the mean equation and the volatility equation are driven by two separate shocks. In earlier
specifications the two shocks are set independent, in the more recent literature the independence is
relented to allow for asymmetries and leverage effects. However the two shocks are distinct and un-
observable. Multivariate GARCH models, on the other hand, regardless of the specification of the
conditional volatility matrix, are "one-shock™ models. The aim of this chapter is to propose a class
of multivariate volatility models that encompasses both "one-shock™ and "two-shocks" specifica-
tions. The idea of a parameterization that nests conditional and stochastic volatility specifications
can be traced back to the work of Robinson and Zaffaroni (1997, 1998). In the context of univariate
volatility, Robinson and Zaffaroni introduced the nonlinear moving average class as an alternative
to the ARCH(o0) class. In the univariate non-linear moving average model, the volatility evolves

according to

hy = p+ i Qi€ i a2 < oo, @
and the mean equation is either = i=1
e (42)
or
el 4.3)

where {e;} and {,} are sequences of zero mean i.i.d random variables, independent from each
other. When the level equation and the volatility equation are driven by the same shock as in (4.3)

and (4.1) , the model is a "one-shock" model, when instead the shocks are distinct as in (4.2) and
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(4.1) , the model is a "two-shocks" model. The nonlinear moving average model was originally
introduced to allow for long memory dependence in the squares of a weak dependent process.
It was prompted by the consideration that financial data can have small sample autocovariances,
whereas certain nonlinear functions such as squares have sample correlations that die away very
slowly. Under (4.2) or (4.3) and (4.1) x; is white noise, but if the «; decay suitably slowly the
volatility has long memory and the squares z? may also have long memory. Robinson and Zaf-
faroni consider a number of properties of this class of models and consider statistical inference
for parameterizations allowing for long memory autocorrelated squares. They stress frequency
domain Gaussian estimates in the sense of Whittle (1962) as maximum likelihood estimates are
computationally very cumbersome and their asymptotic properties are extremely difficult to derive.
Zaffaroni (2009) extended the nonlinear moving average model to an exponential specification, in-
troducing a parametrization encompassing both the univariate EGARCH model of Nelson (1991)

and the Stochastic Volatility model of Taylor (1986). He considers an observable satisfying

= 2" tez, (4.4)
and
hi=wo+ > Woperoro1 aS, Y _1f; < o0 (4.5)
k=0 7=0

where the {z;, ¢;} form a sequence of :.i.d unobservable ranaom variables which, for some t = s,
might be correlated. Model (4.4) and (4.5) nests a "two-shocks™ specification, where the shocks
need not to be independent, and a "one-shock™ specification, when ¢, = € (z;) for some instanta-
neous transformation e (.). It includes a large number of different exponential volatility specifi-
cations, such as the "one-shock” EGARCH and FIEGARCH models and the "two-shocks" short
and long memory asymmetric volatility models of Harvey and Shephard (1996), Ruiz and Veiga
(2006). Zaffaroni establishes the strong consistency and the asymptotic normality of the Whittle

estimator under a set of regularity conditions general enough to allow for long memory dependence
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in the squares of the process and designed to apply to both classes of models. The exponential spec-
ification of volatility has several well-known advantages. For example non-negativity constraints
on the parameters need not to be imposed thus permitting a wide range of cyclical behavior in the
conditional variance. Moreover asymmetric effects, leading to different response of volatility to
good and bad news, are easily parametrized. As noted in Asai (2006), exponential volatility models
offer the best discrete approximation to continuous time asset pricing models. These advantages
advocate for an extension of the exponential volatility specification to multivariate dimensions. In
stochastic volatility models such generalization is quite straightforward and very well established,
on the other hand, in multivariate conditional volatility models, the exponential specification is
not very popular. The matrix exponential GARCH model of Kawakatsu (2006) is currently the
only "one-shock™” multivariate exponential volatility model in the literature. The conditional vari-
ance dynamics are specified in the matrix logarithm of the conditional covariance, and the model
maintains positive definiteness of the conditional covariance matrix with no need of parameters
constraints. However it is not clear if the parameterization could be generalized to include long
memory dependence in the volatility. Estimation of the matrix exponential GARCH model has
several drawbacks as numerically stable evaluation of the exponential of a matrix is a very delicate
issue. Moreover there is a complete lack of asymptotic distribution theory for the PMLE or any
other estimator of this model.

In the next chapter we introduce a class of multivariate exponential volatility models that en-
compasses both "one-shock™ and "two-shock™ specifications and allows for a wide range of degree
of persistence of shocks to the conditional variance. The exponentiation is the element by ele-
ment exponentiation of the diagonal variance matrix, along the line of Harvey et al. (1994). This
specification permits greater flexibility than the matrix exponential one and offers the considerable

advantage to encompass multivariate asymmetric Stochastic Volatility models. In the literature
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there are few examples of parameterizations that nest different type of multivariate models. The
more comprehensive one is perhaps the Asymmetric Dynamic Covariance matrix (ADC) model
of Kroner and Ng (1998), which reduces to different multivariate GARCH models under differ-
ent combinations of the initial set of conditions. To our knowledge however, nesting multivariate
stochastic and conditional volatility models has not been attempted yet. In the next chapter we
impose exponential decay in the autocovariances of the squares of the observables and address
weakly dependent parameterizations of the model. The next section introduces the model with
some discussion. Section 4.3 considers statistical inference in case of finite parameterization and
advocates the use of the Whittle estimator. Section 4.4 lists a first set of regularity conditions and
derives the strong consistency of the estimator. The last section reinforces the assumptions and es-
tablishes the asymptotic normality of the Whittle estimates in both "one-shock™ and "two-shock"

specifications.

4.2  The Multivariate Exponential Volatility model

Consider an observable vector stochastic process x; of dimensionn x 1. Let z, be a sequence of
unobservable real-valued independent identically distributed (i.:.d) random vectors of dimension
n x 1. We assume that z, has zero mean and positive definite variance matrix ) with elements
on the main diagonal normalized to one. Let €, be a sequence of n x 1 independent identically
distributed unobservable real-valued random vectors with zero mean and positive definite variance
matrix > °_with elements on the main diagonal normalized to one. The innovations u; = (z;, €;)
form a sequence of unobservable i.i.d. random vectors of dimension 2n x 1. We allow z; and €,
to be correlated for some ¢ = s and denote with ) _ their covariance matrix at time ¢ = s, we
do not require this matrix to be diagonal. For every ¢t # s, z; and €, are assumed uncorrelated. In
what follows we indicate by F; the sigma field generated by the past information until time ¢ and

by I (A) the indicator of the set A. We define exp (x) as the element by element exponentiation
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operator and In (x) as element by element logarithmic operator. We denote the ath element of any
vector x; by x\ and the (a,b) element of any matrix A by A and the (a,a) element of any
diagonal matrix ¥ by W@, Our interest lies in the zero mean Multivariate Exponential Volatility

(MEV) process, defined by the following equations:

Xy = Dt% (0) Zy, (46)
Dt% = diag {exp(hga)/Q)} , t=1,....T, a=1,.n, (4.7)
h, =wy+ Z ‘I’Qjét_j_l Z H‘Il0j||2 <00, as, (48)
pn =0
E(det) — < ZOz ZOze ) . (49)
Oze Oe

The vector w is a n x 1 vector of constants and the sequence {¥; };";0 is a sequence of diagonal
and square summable n x n parameter matrices, i.e. ¥y, = diag {11, Vo, ..., Y1 §- The individual
log volatilities hi“) evolve according to

= w4 Z T as. (4.10)
Equations (4.6) to (4.10) represent a class of multlvariate exponential volatility processes that
encompasses both “one-shock™ and “two-shocks" specifications. When €; = € (z,;) for some in-
stantaneous transformation € (.), class (4.6)-(4.10) yields a Multivariate GARCH model. In this
case the level equation shocks, {z;},-, , drive also the evolution of the log volatilities, according
to

h, = w+Z\If €(z_5-1), Zuw 1> < oo, (4.11)
7=0
and the conditional variance matrix of x;, var (x;|F;_1), IS eaS|Iy obtained as

1 1
H, = D?%.D?.

As in the Constant Conditional Correlation model of Bollerslev (1990) the conditional variance
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matrix is expressed as the product of a time varying conditional standard deviation matrix Dt% and
a constant conditional correlation matrix X, with diagonal elements normalized to one. However,
the individual conditional variances evolve according to an exponential specification rather then the
standard GARCH(p, q) specification of CCC models. As a consequence, positive definiteness of
H; follows from positive definiteness of X, with no need of constraints on the conditional standard
deviation matrix. The off diagonal elements of the conditional covariance matrix are specified as
[H](, ) = 02 exp (hga)/2> exp (hgb)/2> :

where o) is the (a, b) element of the matrix X.. The specification of the function ¢ (.) is general
enough to yield different evolution patterns of the individual conditional volatilities in the same

model. For example, if one specifies some transformations € (.) as

eﬁ“) =€ (zi‘”) = eff”zia) + 6@ (‘zia)) —

).

Z(a)

the corresponding volatilities follow EGARCH specifications

hga) =w+t Z \Ijg'a) <9(()a)zii)j—1 + 6 ( Zw@j—l‘ - M|z(a)\>) '
=0
which, in practical applications, can be parametrized as ARMA processes of different (p, ¢) orders,

(1 + 6L+ ...+ 5pr) . < (a) )
(1= AL+ ...+ ALy 7

hia) = w+

and exhibit different degrees of leverage. In the same model, one might specify other transforma-

tions e (.) as

b b b b

€§ = (ZE )) - H(b)z§ '+ (ZIE )[<z§b)>0) e, I(zt(b_)po)) ,

allowing the corresponding volatilities to evolve according to the GJR-GARCH (Glosten, Jagan-
nathan, Runkle) specification

b b b b
=t S0 (00 00 (A1)~ (100
=0 - ’
and displaying a different kind of asymmetric behavior. Indirect spillover effects between different

assets are introduced through the simultaneous correlation of different mean shocks which implies
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that shocks to the return of asset b at time ¢ are correlated with variation of volatility of asset
a, h§“> - hE“_)l. On the other end, in its "two-shocks" formulation the model is a multivariate
Stochastic Volatility model with leverage. The volatility shocks are no longer specified as known
functions of the mean shocks, implying that the volatility is latent. Asymmetries and leverage
effects in individual volatilities are introduced by assuming non zero simultaneous correlation
between the level and the volatility shocks of the same asset. This induces correlation between the
return xﬁ“) at time ¢ and the volatility variation of the same asset, hﬁ“) - hg‘i)l. The model includes
indirect spillover effects between different assets by allowing for non zero simultaneous correlation
between the level and the volatility shocks of different assets. Asymmetric multivariate Stochastic

\olatility models in the literature, such as the MSV-L of Asai and McAleer (2005), specify the

volatility equation rather than an MA(oo) process as an autoregressive process of order one,
h=w+¢oh, 4 +n,

where ¢ is a n x 1 vector of parameters all satisfying ‘qb(“)

< 1 and the operator o denotes the

Hadamard product. Furthermore they assume conditional joint Gaussianity of the innovations u;

(2 )mena(8) (& 5]

and restrict the matrix > __ to diagonal. We do not assume the normality anywhere in our results.

= (2, €),

However it is to be noted that we do not allow shocks at time ¢ to affect the log volatility at
time ¢, thus while in the two-shocks formulation of the model the volatility is latent, the levels of
observable {x;} follow a martingale difference process.

Estimation of multivariate volatility models is generally based on quasi maximum likelihood
methods. However asymptotic properties of the MLE estimator for exponential volatility models
have not been established in the literature. A necessary condition for the observed likelihood to be-

have well asymptotically is invertibility of the model, which guarantees that the likelihood will not
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explode nor converge to zero for any value of the parameters in the parameter space. Invertibility
is achieved when the mean value shocks z; can be expressed as as a convergent function of the ob-
servations x, for s < ¢; however in the exponential specification the standardized mean shocks can
only be computed as z, (/) = x,/ exp {ilt () /2} where £, (0) is a function of the x, as well. This
recursiveness makes extremely difficult to establish the uniform convergence of the Hessian matrix
in a neighborhood of the true parameter. Some specific results on the asymptotics of MLE for uni-
variate exponential volatility models are available under highly specific assumptions that cannot
readily be verified. Straumann and Mikosch (2005) provided a sufficient condition for invertibility
of a low order univariate EGARCH. However they suggest that this condition is practically infeasi-
ble except when h; is correlated with h;_; but not with h;_, for any s > 2. For an EGARCH (1,1),
Demos and Kyriakopoulou (2014) present sufficient conditions for the supremum norm of the sec-
ond order derivative of the likelihood to be finite, however these conditions restrict the admissible
parameter space and are extremely difficult to verify. Kawakatsu (2006) proposes maximum like-
lihood estimation of the Matrix Exponential GARCH, but he does not establish its asymptotic
properties. Estimation of multivariate Stochastic Volatility models has the added difficulty of the
likelihood function evaluation arising from the latency of the volatility process. Because volatility
is latent, in order to derive the likelihood, the vector of unobserved volatilities has to be integrated
out of the joint probability distribution. This implies the evaluation of a 7" dimensional integral,
which requires numerical methods. In recent years, the empirical literature on stochastic volatility
has developed different ways of dealing with this issue, for example introducing MCMC and SML
methods for numerical evaluation of the likelihood, or implementing estimation of the parameters
via auxiliary models. The asymptotic properties of these methods are not firmly established in the
literature.

We propose an estimation method suitable for both specifications of the MEV model and es-
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tablish its asymptotic properties. We follow Harvey et al. (1994) and estimate a logarithmic

transformation of the model,

oo
log X? = (.()0+ Z \IIOjetfjfl + log Z?. (412)
=0
In what follows we set without loss of generality /1., ,2 = wo + f,, .2 = 0 and estimate

vi=Y ¥ye j1+¢&. (4.13)
=0
where y, = logx? and §, = logz?. The t;ansformed model takes the form of a vector signal plus
noise model, where the zero mean signal h, has the one sided MA(co) representation in (4.8) , and
the noise is an i.i.d process which can be correlated with the signal. We denote the variance matrix
of the noise by ¥, and the covariance matrix of the signal and the noise by ¥,... Without any
loss of generality we set the vector of mean parameters wq equal to zero.

Parametric estimation of model (4.12) requires to finitely parametrize the signal coefficients
W,;. We assume that we know a set of functions ¥; (.) of the p x 1 vector ¢ with p < oo, such
that, for some unknown ¢,

W;(Co) =Wo; Jj=1.
Analogously we parametrize the covariance matrices assuming that we know functions ¥.(.),
Ye(.), Yeg(.) of the ¢ x 1 vector T with ¢ < oo, such that, for some unknown 7, 3.(7¢) = o,
Ye(T0) = Loe and Xeg(79) = Xgee. We don’t make any assumption on the joint density of the in-
novations {&;, €;}, so 7o contains the n + n (n — 1) /2 unknown parameters of vech(Xoe¢), and
the n (n — 1) /2 unknown parameters of respectively 3, and X, yielding ¢ = n+3n(n — 1) /2.
This specification of 74 however can be straightforward extended to models where the joint den-
sity of the innovations is specified up to some unknown parameters. We wish to estimate the
s (= p + ¢) dimensional vector 8, = (¢, 7,)’ on the basis of a sample {y1, ..., yr} of observa-

tions. The following section introduces the estimation method.
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4.3  The Whittle likelihood

The problem is the statistical estimation of the parameter @ in a vector linear signal plus noise
model, y; = &, + hy, based on finite observations {y,...,yr}. For this purpose, the frequency
domain approach rather than the time domain seems particularly effective. The Whittle estimator
of @ is the frequency domain approximation of the Gaussian log likelihood, used as a measure of
distance between the periodogram of squared observations and the model spectral density f (), 6).

The spectral density matrix of y, has functional form

Xe(7) +k(6M,C)Ze(T)k(€“,C)*
2 2

f(A,0) = +8e(T)e k(e €) +e k(e ()i (7), (4.14)
where k(e, () = Y222 ®; (¢)e™ and A € [—m, 7). We denote by I (u,6) the autocovariance

matrix of the process,

L8, 1) = Jum0)Be (7) + B (1) D 05 (€) Wiy (€) + Tinpey Vpuj1 (§) Bee (7). (4.15)
7=0
for u > 0, and we denote by C (m) and I (\) respectively, the serial covariance and the peri-

odogram matrices, that are constructed from a partial realization of {y1, ..., yr}, namely,
T—|m|

3 1 /
C(m)=r ; YeYt+iml>
for0 <m < T —1,and C (m) = C (—m) for =T + 1 < m < 0; and

Lr(A) = Wr(MWi(A)",

where () is the discrete Fourier transform of the data

T
1 .
Wr(A) = > yie™,
TN = o 2
and the symbol "*" denotes conjugate transposition. We avoid mean correction of the periodogram

because of its translation invariance property at the Fourier frequencies [—, 7]. The Whittle esti-

mator of @ is defined as

0 = arg min Qr(0),
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where the function Q1 (8), called the Whittle or pseudo log-likelihood function, is given as

1 [" [

Qr(0) = 2—/ log det f(\, 0)d\ + 2—/ tr {£71 (X, 0)Ip(\)} dA. (4.16)
T™J_x T™J_x

Although we are not making Gaussianity assumptions on the y;, this estimator is suggested by the

Gaussian pseudo maximum likelihood estimator obtained minimizing —2L (0) /T, where L1 (9)

is the log-likelihood function:
T T
Lt (0) = 5 log (detT" (0, u)) — §th_1 (6,u)y!.
Minimization of this function is computationally very cumbersome. The pseudo maximum likeli-

hood estimator is the solution of the system of equations:
0

ST (6) =0,
whose numerical evaluation requires many trials. If the covariances of the process have a slow
rate of decay to zero, the covariance matrix might become almost singular. Moreover the evalua-
tion of the inverse of the covariance matrix may be numerically unstable. The frequency domain
approach to estimation seems instead particularly effective, since an approximate likelihood func-
tion in the frequency domain has a manageable expression for estimation and testing purposes.
The Whittle spectral approximation to the likelihood function was originally proposed by Whittle
(1952). Under the assumption of Gaussianity, the discrete Fourier transforms of the data Wy (\,),
at frequencies \;, t = 1,..., 7, equispaced in [—7, 7], have a complex-valued multivariate nor-

mal distribution. For large 7" they are approximately independent, each with probability density

function :
1
772 {det (£ (A, 0))} % exp —5tr {£7 (0, 0) Wr () W7 (\) }
Because the discrete Fourier transforms constitute a sufficient statistic for ¢ (Hannan, 1970, pp.

224-225), an approximate log-likelihood function of 8 based on {y,..., yr} is given, up to constant
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multiplication, by:
T

B i logdet f(A, 0) = > _tr {71 (A, 0)Iz(A)} .

t=1 t=1
In integral form, this has the expression

-T [% /7r lo,zg;detf()\,a)d)\—i-%/7r tr {£71 (X, 0)Ip(A) } dA| .
Therefore we may either approximate —2L7 (0) by (4. 16) or by its discretized version

Qr(0) Zlogdetf A, 0) Ztr {£71(, 0)Ir(\) ) (4.17)
where \; = 2nt/T,—-T/2 < t < T/2. In practice QT( ) will tend to be preferred to Qr (0)
because for Q(6) the Wy ()\,) may be computed efficiently using the fast Fourier transform. In
this chapter we present result for the Whittle estimator based on @ (@), however similar arguments
and results hold when its discrete version is used.

A slightly different spectral approximation to the likelihood function was introduced by Dun-

smuir and Hannan (1976). In the context of vector linear processes

ye=> A9 e, ZHAZ )|I? < o0 (4.18)
=0

they suggested minimization of the quantity

Ly (9) = log det K (89) + %/_ tr {f7 (N, 9)Ir(N) } d), (4.19)
where K¢ (1) denotes the variance covariance matrix of the linear innovations of the process.
However this objective function is by far less tractable than Q) (@) for parameters estimation
in signal plus noise processes. Indeed signal plus noise processes offer an example of possibly

linearly regular processes whose spectral density function is not easily factored. Even if a signal

plus noise process admits decomposition (4.18) and has spectral density with representation

1

FA9) = -

e (e?,9) K¢ (9) ¢ (e*,9)", (4.20)
where ¢ (¢, 9) = 372, A, (9) ™, it might not be possible to express parameters 1 in (4.20)
as closed form functions of the parameters of the signal and the noise separately. In this case we

say that the spectrum f (A, ) is not easily factored. This is not always the case for signal plus
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noise process, however when the signal and the noise are correlated, an estimation procedure that
does not require factorization but only knowledge of the functional form of the spectral density is
preferred.

Statistical literature on Whittle estimation has established the asymptotic properties of the esti-
mator under a variety of conditions when the true underlying model is the vector linear process in
(4.18) , with white noise innovations e;. For such processes there is no factorization issue, since
the functional form of the spectral density and its factored representation coincide. In this context,
Dunsmuir and Hannan (1976) establish the consistency and asymptotic normality of the estimator
minimizing L (), assuming separate parameterization of the coefficients and the covariance ma-
trix of the process. They partition the true parameter ¥ as (p, ¢y) € ©, X Oy, S0 that K (J) =
K (1) and 4, (9) = A, (¢) and obtain the asymptotic normality and independence of /T <gb — gb)
and /T (i — ). Dunsmuir (1979) extends these results to the case of non-separable parameter
space noting that, while the asymptotic covariance matrix of the estimates does not depend on the
fourth cumulants of the innovations in a model with separate parameterization, it does if the para-
meter space is no longer separable. Hosoya and Taniguchi (1982) derive the asymptotic normality
of the estimator minimizing @1 (9) when the underlying model is a vector linear process with
non-separate parameterization and innovations satisfying milder mixing conditions.

Extensions of these results to signal plus noise processes are limited to the case of autoregressive
signal and at least incoherent signal and noise. This simplified setting allows for factorization of
the spectral density function and a straightforward application of the previous results. Hosoya and
Taniguchi (1982) apply their asymptotic theory to a univariate signal observed superimposed with
white noise &,. The signal h, is generated by a finite autoregressive process 23:1 bihi—j = n,,

where the 7, have zero mean, finite variance and are independent from &, for every ¢t and s. The
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parameter of interest is 8’ = (bl, b )'. The spectral density function of the process

1 o? o2
2_—77 + 2_5’

T ‘Z?:l bje T
is represented, applying Fejer-Riesz theorem (see, e.g., Archiezer, 1956, page 152), as

12
Z] 1 w 6
Zq b ez)\]

where the parameter 19 is a closed form function of 8, since % and the 1, can be expressed as

q» n)

fo(N) =

fo(N) = : (4.21)

27T

closed form functions of 8, and the b;s are unchanged. Relying on representation (4.21), Hosoya
and Taniguchi derive the asymptotic normality of v/7' (9 — 00>. An analogous result is provided
by Dunsmuir (1979), who applies his asymptotic theory to a scalar autoregressive signal plus noise
process, with uncorrelated signal and noise. Dunsmuir suggests a further extension of his results
to incoherent vector signal plus noise processes. He considers an uncorrelated vector signal plus

noise model y, = h; + &,, where the signal and the noise have one sided representation

ht = ZC eh Et -7

& = Z C 96 N1
with uncorrelated shocks €, and n, for every ¢ and s. Using the purely linear representation of the
process,
Vi = Z Dy (9)erg, tr Z Dy, (9 9) Dy, (9)" < oo, (4.22)
k=0

where the D, (1) are rectangular coefficients, Dy, (9) = {Ck (64) EC,E”“") (6¢) | and the innovations
are e, = (€}, m;), he factors the spectral density

£,(\,0) =1f, (X 0,) +fe (), 0)
as

f(A\9) =k, (9) K*(9)k, (9),
and discusses in details a set of conditions on the disturbances of the linear representation that allow

to establish the asymptotic properties of ¥ along the line of his previous findings. He suggests for
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example that the assumption of martingale difference of the innovations e; with respect to their past
might not be appropriate because, rather than the prediction of y; based on its past, the prediction
of the signal based on the past of the process might be of more interest. However he does not
suggest how the asymptotic normality of &' = (9;, é;) could be derived from the asymptotic
normality of ¥ using representation (4.22) or otherwise.

This chapter extends the current literature to vector signal plus noise models where the signal,
h, = 3777, ¥, (0) &, and the i.i.d noise can be simultaneously correlated. We establish the
consistency and the asymptotic normality of the estimates under fairly general regularity condi-
tions, easily verifiable for both "one-shock™ and "two-shocks™ specifications, without relying on
the factorization of the spectral density but only on the knowledge of its functional form.
4.4  Consistency

This section discusses the strong consistency of the Whittle estimator of € in model (4.13). We
first list the assumptions with some discussion, then present the main result. All the proofs of the
technical lemmas are in appendix A.1 and A.2. In what follows we denote by K a generic finite
constant, not always the same. The symbol " ~" denotes asymptotic equivalence: a(x) ~ b(z)
as x — xo when a(z)/b(x) — 1. The (a,b) component of any matrix I' is denoted as I'(**) | the
(a,a) component of a diagonal matrix ¥, is denoted by \Ilé‘j) We denote by ega)the ath element
of the vector € at time ¢t. We assume that all the elements of &,, €, ¥, ({) are real. We define
I = [—, ] and denote by L, (II) the class of p-integrable functions defined on II. The symbol
"||A||” denotes the Euclidean norm of a matrix A, the symbol "|a|” denotes the absolute value of

a scalar a. The symbol "> 0” denotes strict positive definiteness when applied to a matrix.
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ASSUMPTION 4.1
[A] {€,, &} are i.5.d unobservable random vectors, and, for every a,b =1, ..., n,
(i) Eel” = 0 and E(epel)) = 3. (1) , e (1) < oo
(i) £ |¢f"

(ifi) £ (§€p) = ee (7)) , Xee (T) < 00.

< ooand E(&x¢;) = Z¢ (1), Xe (1) < 0.

[B] 6 is an interior point of the compact parameter space © € R*.
[C]Forany @ € ®,and foralla =1, ...,n,
(i) The matrices X, (7), 3¢ (7) and X, (7) are continuous.

(i) The W (¢) are continuous for all k& and
Q) < KO, for 1<j <k k>1.
(iii) For a boundedly differentiable function e(¢) € (—1,1),

() ~ ol (C), as j— oo

[D] Forany § € ©,and foralla =1, ..., n,
(i) 2. (1), X¢ (1) and 2. (7) have continuous first derivatives.
(if) For all %, the W, (¢) have continuous first derivatives.

(iii) For a boundedly differentiable function e(¢) € (—1,1)

0
9Gi),
forall i, = 1,..., p, where | E; (j; Q)| < Kj".

() ~ By (j;Q) e (C) as j— oo,

[E] For every # € © whenever 6 # 6, T (u, 0) # T (u, 6,), for all u > 0.
[F] Forany T € ©, X, (7) is a strictly positive definite matrix.
[G] (i) £~ (), @) has elements in L, (IT) , bounded and continuous at all (), 6) € 1T x ©.

(ii) For every n > 0, the function

_f(n0)
¢y (A 0) = detf (X, 0) + 7’

has elements in L, (II) , bounded and continuous at all (A, #) € II x ©.
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Time domain assumptions are not common in the statistical literature on Whittle estimation,
that typically defines regularity conditions in term of a certain degree of smoothness of the model
spectral density and its higher order derivatives. Whereas in a non parametric framework those
assumptions represent a natural choice, they might not be motivated in a parametric setting. In
this chapter we impose most regularity conditions directly on the model. Appendix A.1. formally
establishes a number of properties of its spectral density, implied by Assumption 4.1. Under as-
sumption 4.1.[A] and square summability of the coefficients assumed in (4.8), the y; are strictly
stationarity and ergodic. Strict stationarity and ergodicity of the underlying process are common
assumptions in the statistical literature on Whittle estimation. Robinson (1978) replaces the as-
sumption of strict stationarity by the weaker assumption of fourth order stationarity as is also
done in Hosoya and Taniguchi (1982). Hosoya and Taniguchi moreover dispense with the explicit
assumption of ergodicity and impose a Lindeberg condition. Assumption 4.1[B] is a standard as-
sumption to ensures that 6, is an interior point of the compact closure of an open s-dimensional
manifold (see for example Hannah (1973) and Robinson (1978)). It implies boundedness of any
function of @ € ©. Identification of the parameters is granted by Assumption 4.1.[E], which rules
out the possibility of two equivalent structures giving rise to the same spectral density (4.14).
Assumption 4.1[F] ensures strict positivity of the spectral density at all frequencies. We follow
Hannan (1973), Dunsmuir and Hannan (1976), and Hosoya and Taniguchi (1982) who, in the con-
text of Whittle estimation of linear processes, restrict the parameter space to a subset ©, where the
spectrum is positive. Assumption 4.1.[C|(iii) imparts the exponential decay of the parameters of
the signal process. The imposition of this exact rate together with Assumption 4.1.[C](ii) implies
the absolute summability of the signal process which in turn implies the absolute summability of
the autocovariance function of y,. This latter condition is sufficient to guarantee the existence and

the square integrability of the spectral density. Moreover it ensures its uniform continuity at all
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(A, 0) € I x Q. In contrast to Hannan (1973) and Dunsmuir and Hannan (1976), we follow Robin-
son (1978) and dispense with the assumption of Lipschitz continuity of degree o« > 1/2 in the
proof the consistency of the estimator. However we directly impose smoothness conditions on the
inverse of the spectral density matrix and in Assumption 4.1 [G] to ensure the uniform convergence
of the objective function.

Consistency of the Whittle estimator is generally assumed in the literature. The only available
result is due to Hannan and Dunsmuir (1976), who provide an extension of Hannan (1973) original
univariate result to the vector linear process with representation (4.18) for the estimator minimizing
(4.19). They establish the result assuming strict stationarity and ergodicity of the process, Lipschitz
continuity of degree o > 1/2 of the spectral density, and martingale difference linear innovations
that satisfy E (e;e)) = p,, and E (eiel, | F,_,) = K° (7). Moreover they assume

inf Ly (9) = Ly (9¢) = logdet K¢ (1¢) + s, (4.23)

where s is the dimension of vector y;. We provide an extension to their results for an estimator

minimizing (4.16) in model (4.13) with the following theorem.

Theorem 4.1 Under Assumption 4.1, as T' — oo

HT —a.s 00'

For the purpose of establishing Theorem 4.1, we define @ (9) as

Q) = % /W log det £(\, 0)d\ + 21 T {£71(\, 0)F(), 6,)} d).

—r T J -z

Additionally recall that in Assumption 4.1[G] we introduced for any n > 0, the function, ¢, (), ) =
£ (N, 0)/(d(N0)+n),where d(\, 0) = detf (A 0)andf (A 0)/d()0) is by definition the ad-
joint matrix of £~ (X, #). In what follows, whenever we replace £~ (X, 6) by ¢, (X, 6) we refer to

Qr (0) as Qr,, (9) and to @ (6) as @, (), denoting respectively

Q. (6) = — / " log det £(\, 8)dA + % i {0, (0, 0)Ir(N)} dA,

2m —m —m
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and

1 [7 1 [T
Q,0) = o /7r log det f(\, @)d\ + 7 /n tr {gbn()\, 0)f(),00)} dA.
The consistency of the estimator follows from the usual steps for consistency of M-estimators. The

following lemma establishes the uniform continuity of the objective function in (A, ) € II x 2.

Lemma 4. 1 If Assumption 4.1 holds, then
(a) limy_o, Qr (0) = Q (0) almost surely uniformly in 6 € ©,

(b) for any > 0, uniformly in 6 € ©, limy_.., Qr, (0) = @, (0) almost surely.

Dunsmuir and Hannan (1976, Lemma 1) establish a similar result for an objective function
without the term ffﬁ log det (A, @)d\ under stronger conditions that Assumption 4.1. Moreover
they assume that the minimum of the objective function is achieved at ,, whereas we establish it

with the following lemma.

Lemma 4.2 If Assumption 4.1 holds, then for all 6 € ©,

ggg@ 0) = Qb)) = /_7; logdet f (X, 60) d\ + % /_: tr {£71(X, 00)f (X, 60) } dX

= / logdet f (A, 00) d\ + T.
We follow Giraitis et al. (2012, Chapter 8, Theorem 8.2.1) and prove Theorem 4.1 by contra-
diction. Suppose that 8 is not consistent for 8,. Then by the compactness of the parameter space

O, there is a subsequence éT(M) of @, converging to some © € © such that 9 # 6,. Then
i @ (drc)

A . 1 .
sup {luangf;o{%/ log det £ (A, Bz d)\+%/7rtr 16,(\ Bron) T (V)| d/\}}

™

S Wlogdetf()\,'z?)d/\—l—sup{i/wtr [£(), 60) &, (A, 9)] d/\},

2w . n>0 T J_x

v

where the first inequality follows from the definition of ¢,, and the last equality follows from

Lemma 4.1, part (b). Asn — 0

n>0 T™J _n

1 [7 1 .
%/_Wlogdetf(k,ﬁ)d)mtsup{Z—/ tr [£ (A, 80) 6, (A, )] d>\}
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T

1 /" 1
= 2_/ logdet £ (A ®)dA+ o~ [ tr[f(X60)f (A D) dA as,
) . T ) .

Assumption 4.1[E] and Lemma 4.2 imply that for every ¢ # 6,

1 [T 1 [7 _
%/_Wlogdetf()\,ﬂ)d)mL% tr [£(X, 80) £ (A, 9)] dA

—T

1 s
> 5 / logdet f (X, 0p)d\+T.
™ —T

So we may conclude that

- 1 [
lim inf Qran (Bron) > o / log det f (), Bg) dA + T. (4.24)

T™J_n

However in view of the definition of the estimator 9T, Q1) (éT(M)> < Q1) () forall @ € O©.

Therefore
lim sup Q7 (éT(M)> < inf lim sup Qru) (0) (4.25)
M—o0 e M—o00
. I
— ;g(gQ () = oy /_7r logdetf (X, 600)d\+T,  (4.26)

where the first equality uses Lemma 4.1, part(a) and the last equality uses Lemma 4.2. Hence the

contradiction:

lim Elil:o Qr(m) (éT(M)> < % /:T logdet f (A, 0p) d\ + T < lim Mlgfoo Qr(m) (éT(M)> ,
almost surely, which completes the proof.

The vector of mean parameters w, cannot be identified by the Whittle function since its elements
enter linearly in log 2% and are lost when computing the empirical autocovariances of the process.
However it can be estimated using the sample mean of the vector y; = (log 22, log 22, ..., log 22,)’.
Since yr =1/T Zthl y. is a v/T-consistent estimate of Ey, = w, + F&, under Assumption 4.1,
we can obtain a v/T-consistent estimate of wy subtracting the Whittle estimate of £&, from .
45  Asymptotic Normality

This section derives the asymptotic normality of the estimator. We introduce a set of stronger
conditions and reinforce the assumptions on the moments of the unobservable shocks driving the

process assuming finite fourth moments. We strengthen the degree of smoothness of the spectral

density and extend the regularity conditions of Assumption 4.1 to the higher order derivatives of
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the spectral density matrix up to the third order.

ASSUMPTION 4.2
[A] {€}, &} are 4.4.d unobservable random vectors, and for all a,b,¢,d =1, ..., n,

() Bey” =0 and E (e el’el’el) = Koyt (1) [ Ky (7)] < o0.
(i) £ ¢
(i) E (&0 elelel”) = K (7).

[B] 6 is an interior point of the compact parameter space © € R*.

<oo and FE (5(()(1)5((31))5[()0)586!)) = K(fbcd (7)), [K§peq (T)] < 0.

K;fcd (T)’ < Q.

[C]Forany @ € ©,andforalla =1, ..., n,
() The matrices . (), X¢ (7) and X (7) are continuous.
(i) The W (¢) are continuous for all k£ and
Q) < K ®IQ)) for 1<j<k k>1
(iii) For a boundedly differentiable function e(¢) € (—1,1),
V() ~ Kae(C) as j — oo
D] Forany § € ©,and foralla =1, ..., n,
(i) . (1), X¢ (7) and ¢ () have continuous first, second and third derivatives.
(ii) For all &, the ¥ (¢) have continuous first, second and third derivatives.

(iii) For a boundedly differentiable function e(¢) € (—1,1)
(@)
)
9¢;,0¢,,9¢;,
forall i, =1,....,p, h=1,2,3and r = 1,2,3, where |E, (j;¢)| < Kj".

E, (j;:Q)€(€) as j— oo,

[E] For every 8 € © whenever 8 # 0, T (u,0) # T (u, 8,), for all u.
[F] Forany T € ©, . (7) is a strictly positive definite matrix.
[G] (i) £ (A, By) has elements that satisfy a Lipschitz condition of degree o > 1/2.
(ii) £~ (X, @) has elements in L, (IT) , bounded and continuous at all (), 0) € II x ©.

(iii) (0/00) £=1 (), 6) has elements in L, (IT) , bounded and continuous at all (), ) € T x ©.
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Assumption 4.2[A] imparts finiteness of the fourth order cumulants of the process. Together

with Assumption 4.2[C] it implies that the process has square integrable trispectrum

[e.e]

R, (O das Ag) = ﬁt t;mexp (=i Aty + Aol + Nats)} K%, (1o, ty) . (4.27)
The complex form of the spec;};i ?;j_ensity matrix in (4.14) implies that f (X, #) is not separately
parametrized, and so we expect the fourth cumulant spectral density to appear in the asymptotic
covariance matrix of the estimates, as for the cases discussed in Hosoya and Taniguchi (1982).
Assumptions 4.2[G] reinforces the degree of smoothness of the spectral density assuming its Lip-

schitz continuity of degree o > 1/2 at the true parameter value. This guarantees (see Hannan,

1970, page 513) that the spectral density matrix uniformly in A € II satisfies

iLelE [f7 (A, 80) — £(A, 00)]| = O (T_a) )

where fr (A, 8y) denotes the 7'th order Cesaro sum of the Fourier series of f(\, 8,). This condition
allows to approximate the score vector by a simpler quadratic form whose asymptotic distribution
is easily found using results on the converge of sample serial covariances. Assumptions 4.2[G] (iii)
reinforces the smoothness of £=1(\, 8) at all 8 in order to guarantee that log det f(\, 8) is twice
differentiable in @ € © under the integral sign. Assumptions 4.2[D] extends the uniform continuity
at all (A, 0) to the higher order derivatives of the process and it imposes the required degree of
smoothness to the Hessian. Moreover Assumption 4.2 implies (see Lemma B1.6 in Appendix B,
section B.1) that

/7r logdet f (A, 0) d\ > —o0, (4.28)
which ensures (see Giraitis et al., 2(_)12, Chapter 3, Theorem 3.2.1) that y, is purely non determin-
istic with Wold decomposition

ye=3 A0 e, > 4O < oo, (4.29)
=0 =0

where the linear innovations e, are n-dimensional white noise vectors. Statistical literature on

Whittle estimation assumes regularity conditions directly on the linear innovations of the Wold
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decomposition (4.29). We instead represent y, as a vector linear process with innovations &, and

€:. We express (4.13) as

=S w0 SO <. (430)
where we define the innovations létoas -
& = &, 1=0, (4.31)
G = €y 1>1, (4.32)
and the linear coefficients @, () as
®0) = I, =0, (4.33)
®0) = v,4(0), [>1. (4.34)

The linear innovations in (4.30) are a sequence of zero mean, independent, random vectors with
finite fourth moment under Assumption 4.2. However they are not identically distributed at all /;
more precisely, by definition the é;_; are identically distributed for all [ > 1.

For the purpose of showing the asymptotic normality of the estimator we must introduce a

central limit theorem for any linear combination of the quantities

Flapy (m) = VT (Lap (A) — Elgp (V) (4.35)
T—m
_ 1 Q) b)) B(ab)
= VT <f ; vy, — T (4.36)

where T{*" is the (a, b) element of the autocovariance matrix of y, at lag m, for a,b = 1,..,n and
m = 0,£1, £2, .... The joint asymptotic normality of any linear combination of the 7, ;) has been
established in the literature for a zero mean purely non deterministic linear vector process, with
representation (4.29), under a variety of conditions on the process and on its linear innovations.

For an ergodic and strictly stationary process, Hannan (1976) assumes that the innovations satisfy
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almost surely
Z) E{€t|Ft 1} = 0

(
(“)E{et € |Ft 1} d(ab);
(i13) B { el el?| it } = daso

(iv) B (ega)eg )eg ) (d)> = Kpeqs [KGpeal < 00,
and shows that the necessary and sufficient condition for the convergence of the sample serial co-

(4.37)

variances is that the diagonal elements of f (A, #) be square integrable. Hosoya and Taniguchi
(1982, Theorem 2.2) derive a central limit theorem for the 7, ;) (m) under a different set of as-
sumptions. They replace strict stationarity with second order stationarity and ergodicity with a

Lindeberg-type condition. They replace the strongly mixing conditions on the innovations with

(i) Var <E {eﬁ“)e§?u|ﬂ_7} - E{ (“)eﬁﬁu}> = O (77*7°) uniformly in ¢ for some ¢ > 0,

(i) ‘E {etl eelel | Fy T} - E {eﬁf)eﬁs)egg)e;)}’ = O (~'7") for some positive constant 7,

(i) D | Kpeq (tr, 12, 3)] < 00
t1,ta,tz3=1

As Hannan, they find that the necessary and sufficient condition for the result is that the diagonal
elements of f (), #) be square integrable. The relationship between the two sets of conditions
seems not to be straightforward. Hosoya and Taniguchi offer an extensive discussion (see Hosoya
and Taniguchi, 1982, Section 2, Remark 2.1) and provide some examples of strictly stationary
uniformly mixing and absolutely mixing processes that satisfy (i) and (7).

We conjecture that Theorem 1 of Hannan (1976) can be extended to the sample serial covari-
ances of a process with representation (4.30). The process is strictly stationary and ergodic by
Lemma B1.1. The linear innovations ¢; are zero mean independent (martingale difference) vec-
tors with finite fourth moments that satisfy conditions (4.37) at all ¢ — [, with [ > 1. Moreover

the diagonal elements of the spectral density matrix are square integrable by Lemma B1.4. For all

a,b=1,....s,and form = 0, &1, £2, ..., we make the following conjecture
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Conjecture 4.2 If Assumption 4.2 holds, the quantities
T—m
) =T (£ 30w, -5 (@39
have a joint asymptotic normal distribution With_zero mean. The asymptotic covariance between
T(ap) (M) and 7. q) (u) is given as
o / ’ {£a.c) (N 0) Epay (X, 0) e 9% £, 0y (X, 0) By (A, 0) T2} dA
+2r / ' / ' elmAtiude) (¥ (X} Ay, —Ag)dA1d ).
Hannan derives the serial c7(r)var7irances of the limiting distribution of the 7, ;) () as a function

of the trispectrum of the linear innovations

271'/_ {f(a,c) (A, ) f(b,d) (A, ) e m—mA 4 f(0.a) (A, 9) F(b,c) (A, 0) ei(eru))\} d\

+ Z /7r /7r e(imhmh)%,@l (A1) Pos, (=A1) @eps (A2) Pagp, (—A2) ffél ..... B4 (=A1, Az, —A2) dAidAs,
whﬁelz’r'éé%:(?onjecture 4.2 states the result in terms of the trispectrum of the process directly (see
Appendix B, Section B.3).

We can now address the asymptotic normality of the estimator. In what follows Q1 (@) denotes
the s x 1 vector of first partial derivatives of Q)1 () with respect to 6, with j element ng) (9).
Qr () denotes the s x s matrix of second partial derivatives of Q7 (0) with respect to 8 with (i, j)
element Q%7 (B). The n x n matrix of first partial derivatives of £ (), 8) with respect to 6; is
f(;) (A, 8) with (a, b) components £ (X, 8). Finally set £; ;) (\, 8) = [(9%/00,00,) £ (), 0)]. The

j element of the score vector ng) (0o) is

™

{87 (1, 00) gy (0. 00) } % /_ i (87 (0,00 Fy) (0. 00) £ (M. 00) I (1)} dx

% —Tr
= i e u0) (1 )~ £ ) i (439

—T

where we set

gy (A 00) = £72 (X, 00) £y (N, 0o) -
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The (7, j) element of the Hessian matrix Qg’j) (0) is

1 s 2 s

9 1 o?
o | 90,00 log det £(\, O)d)\+— 90,08 ——tr {£7' (X, 0)Ip(\) } dA (4.40)
1 - . ) . i .
= o _wtr{f (A, 6) fii ) (A,G)}dk—%/_ﬂtr f L\, 0) fu (A, 0) £ (), 0) f) (A,H)}d)\

1 /" ?
+o tr{<89i89;f (A,G))IT(A)}d)\.

We can now state our main result.

Theorem 4.2 Under Assumption 4.2, as 7" — oo, the vector \/T(é— 0,) has an asymptotic normal
distribution with zero mean and covariance matrix

M~(80)V (80) M~ (80),
where

1 g . .
M (80) = o / tr {871 (0, 8) iy (A, 80) £ (A, 60) i (X, 86) } A,

—T

and V' (6y) is an s x s matrix with (j,[) element

1 [T d 0
Z / / f(“ " (AL00)EY (e, 00)} KY, (=M1 s, —Aa, Bg)dArds.

a,b,c,d=1

The proof of Theorem 4.2 is classical in nature. The consistency of @ for 8, guaranteed by
Theorem 4.1, implies that, as 7 — oo, 6 eventually enters an arbitrary neighborhood of 6,. By
definition @ solves the equation (9/00) Qr (9) — 0. The mean-value theorem implies that for 8,

such that HéT — 0,

< HéT_OU :

0= T"2Qr (6) = T*Qr (6) + |Or (6)| T2 (8- 6,). (4.4)
. . -1 .
From (4.41) the central limit theorem for 7/2 (0 — 00) reduces to that for [QT (0)} TY2Q1 (0y).
Lemma 4.5 establishes the almost sure uniform convergence of ()1 (8) to the n x n non singular

matrix M ().
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Lemma 4.5 Under Assumption 4.2 as T" — oo, uniformly in 6§ € ©,
Qr (8) — M (6)
almost surely, where M (0) is a positive definite matrix with (i, j) element,

M) (9) = —/ tr L 0) E (O 0)}d)\

- / tr{ 0)fe) (0,0) £ (1,0) ) (1,0) } dx
0? 1
27T _ﬂt {(80i89;f (/\,9)> f (A, 00)d>\} )
Lemma 4.5 and the consistency of 6. for 6, imply
Qr (0) —as M (6). (4.42)
In view of this result, the asymptotic normality of the estimator follows from the asymptotic nor-

mality of Q1 (6y), which is established by the following lemma.

Lemma 4.6 Under Assumption 4.2 as T" — oo,
Part (a):
VT |Qr(80) = EQr(80)| —a N(0V (8)) (4.43)

where V' () is a positive definite matrix with (j, ) element,

Vi (6o) = %/W tr [f()\,eo) (62 £ (/\,60)> f(\,0) <8aé?lf (/\,90))] dA\

—T

—T —T

T
1 T i
2_ Z / / { ()\1 eo)f <)\2 60)} Ka,b,c,d(_AL/\Q, _)\27 eo)d)\ld)\Q
c,d=
Part (b):
VTEQ (6) — 0
The main idea of the proof of Lemma 4.6 is the approximation of each element of the vector
vT [QT(HO) - EQT(BO)] by a known function of the 7,4 (), in particular we establish, by

means of an approximation, that v/7 [QT(OO) — EQr(0y)| is, for a finite integer M, asymptoti-
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cally equivalent to

1 — Ju| -
e { > (15 et (“>} |

u=—M+1
whose asymptotic normality follows from the asymptotic normality of the 7, ) («). The approxi-

mation is established in two steps. First consider that

ﬁQg)(eo) = \2/—7? /” tr {g) (A, 00) [T(X) — £(X, 80)] } dA

—Tr
can be expressed as

\/T ™

or

tr {g(j)()\, 0o) [I(\) —EI ()\)]} dA

—T

vT [T
+37 [ i {0 00) BT () — £\ 00)]} ar
Noting that EI ()\) is the Cesaro sum of f(\, 8y) and that f (A, 6,) is Lipschitz continuous of degree

a > 1/2 by Assumption 4.2[G| , we have that uniformly in A € II
sup [EL(\) — £(),8,)] = O (7).
Aell

(see Hannan, 1970, Theorem 3.15, page 513). Then

VTQ7(80) = \2/—? /W tr {gu) (A, 60) [T(A) — EIN)]} dA 4 O (T'/*7°),

and the last term converges to zero as 7 — oo and we approximate /7 [ '§Z>(90) - EQ&Z)(HO)]

by

g_f /_ﬂ tr {g¢)(A, 00) [T(A) — EI(A)]} dA. (4.44)
We now introduce the quantities

g—f T {ggﬂg (N 60) L) — EI(/\)]} A, (4.45)

—T

where gg\”} (A, 8y) denotes the Cesaro sum of the Fourier series of g(;)(), 8). The asymptotic
distribution of (4.44) can be approximated by that of (4.45). To see this, put 65{2 (A) = g()(A, 00)—

gg\]}()\, o). Then

o/ "o { [ (0. 00) — 85 0000)] 1) — EXO]
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VI {88 () T) - B} an

o ,,r
and we must evaluate
VT ;
Var < o | {55\2 () [L()) — EI(/\)]} d/\> .
Lemma 4.7 Under Assumption 4.2, as M — oo
Var (\2/; 3 {5(;} (0) [L(N) —EI(A)]}dA) —o(1).

By Bernstein’s lemma (e.g., Hannan, 1970, page 242), Lemma 4.7 implies that the asymptotic

normality of

R TN L R Y (4.46)
is equivalent to that of

g i {8 (L 00) 1) ~ BT d, (4.47)
for every M. Finally, B

VT / (N 00) [L(N) — EI()\)]} )

- (27102”{ 3 (-t)vr{ecw- (1- M) fule <u>}, (4.48)

u=—M-+1
where gy (u) = (1/2m) [7_eg(; (A, 0p)d\ denotes the Fourier series of g;)(A, 6). The as-

ymptotic normality of each element of the vector /T [QT(HO) - EQT(OO)} is therefore implied

by the asymptotic normality of (4.48) . However (4.48) is equal to

u=—M+1
whose asymptotic normality follows from the asymptotic normality of the 7, ;) (u) established by

Conjecture 4.2 since M is finite.
All that remains is to evaluate the asymptotic covariance between /7' f tr {g (X, 00)1 ()\)} dA

and VT [™_tr {gu (X, 00)I(\)} dA. Indeed

C’ov{\/_ tr{gum (NI (A)}dA,\/:T/W tr{g(l)(/\)I()\)}d)\}
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=T Cov { / > gy (V) Lagy (V) dA, / > gl (MIea) (V) d)\} . (4.49)

a,b=1 c,d=1
To proceed, we introduce the following lemma.

Lemma 4.8 If Assumption 4.2 holds, for any scalar square integrable functions h; and h, defined
on [—m, 7],
T—oo - -

lim T Cov { / "y (A) Ly (A) @, / "y () La () d)\}

= 2 [ ) B () foy () Fa ) 2

—Tr

+2m /ﬂ hi (A) ha (=) fa,a) (A) Fp.e) (X) dA

—Tr

+2m /ﬂ /ﬂ By (A1) B (—A2) Kaped (A1, Az — o) dAydAs.

By Lemma 4.8, we may conclude that as 7" — oo, (4.49) converges to V(; ;) (8o).
For practical use of the asymptotic results, a consistent estimator of the asymptotic covariance
matrix is required. As suggested in Zaffaroni (2009) for M (@) such estimate can be obtained by
substituting @ into QT(j) (6). For VV () one can conjecture that the estimates provided by Hosoya

and Taniguchi (1982, Section 5) will be consistent.
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4.6  Appendix B: Technical lemmas

4.6.1 B.1Preliminary lemmas

In this section we establish a number of properties of the model mainly in terms of its spectral
density f(\, ) and its derivatives. Recall that ~ denotes asymptotic equivalence, tr is the trace
operator, det is the determinant operator and ||.|| is the Euclidean norm. Constants (not always the
same) are denoted by K. Almost sure convergence and convergence in distribution are denoted
respectively by —¢ and —“ . We denote a positive integer number as r. The class of p-integrable

functions on the set IT is denoted as L, (II).

Lemma B1.1 Under Assumption 4.1[A] and (4.8 ), the y; are ergodic and strictly stationary.
Proof The ergodicity and strict stationarity of the x; follows from Nelson (1991, Theorem 2.1,
page 251) and implies the ergodicity and strict stationarity of the y;. The y; are covariance station-

ary if and only if (4.8) holds.

Lemma B1.2 Under assumption 4.1[F|, f(\,0) # f(\, 6,) for every 6 # 6, and for any \.
Proof Follows from the fact that the autocovariance function of the process uniquely identifies its

power spectrum.

Lemma B1.3 Under Assumptions 4.1, f(\, @) has elements in L, (II) , bounded and continuous at
all (\,0) eIl x ©.

Proof Assumption 4.1[C] implies thatas j — oo

thr{‘If )} < .

However by (4.15)
tr {fu(H)} = o)t {Ze (1) }+1r { Z Wy Q) Wy }“(m;éoﬁ?“ {91 () Bee (1)}

Jj=
then Assumption 4.1[A] implies



which is a sufficient condition for existence of the spectral density of the process. Moreover it
implies its square integrability, and continuity at all (\,0) € II x © (see Giraitis et al., 2012,
Chapter 2, Proposition 2.2.1, page 11). Uniform continuity and compactness of the parameter

space (see Assumption 4.1[B]) imply that the element of f(\, @) are bounded at all (X, 9).

Lemma B1.4 Under Assumption 4.1, (0/00) f (), @) has elements in L, (IT) which are bounded
and continuous at all (A, 8) € II x ©.

Proof Forany j =1, ..., s,

st = o (0] 2 [k@”»c) zemk(eiac)]

00; 00; | 2m 00; 27
L0 [Be(m)e k() + Pk (2.0) B (7)
80j 2T '
Assumption 4.1|D] implies that forany j =1, ..., s,
o0 a 5
tr —FU(Q)} < 00,
>l ia

which is sufficient condition for the existence of the first derivative of f (A, @). Moreover it implies
that (0/00) f (), 8) has elements in L, (IT) which are continuous at all (A, @) € II x © (see Giraitis
et al, 2012, Proposition 2.2.1., page 11). By compactness of the parameter space (see Assumption
4.2[B]), the uniform continuity implies that the elements of (0/00)f (), 0) are bounded at all

(A, 0) eIl x 0.

Lemma B1.5 Under Assumption 4.1[F], f(\, ) is a strictly positive definite matrix for all 6 € ©,
A el

Proof The autocovariance function of the process defined in (4.15) is

I‘(O u) = lu=0) ¢ (T Z W5 ( j+u (€) + Limz0)¥luj—1 (€) Bee () -
Under Assumption[F], 3. (7) is posmve deflnlte for every value of 7 in the parameter space.
Since by definition 3 (7) and X, (7) are positive semidefinite covariance matrices, T'(8, u) is
expressed as the sum of two positive semidefinite matrices and one positive definite matrix. There-
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fore it is positive definite. By definition the spectrum is the unique Fourier transform of the auto-

covariance matrix and its positive definiteness is implied by the positive definiteness of f(e, u).

Lemma B1.6 Under Assumption 4.1, y, is purely non deterministic with Wold decomposition
yi=Y A0 e, D NAWG) < oo,
=0 =0
where the e; are n dimensional white noise vectors.

Proof Since y; is a stationary zero mean process, the result follows once we establish that

/ﬂ logdet f (A, 0) > —o0,
(see Giraitis et al, 2012, Theorem 3.2.1, page 38). By the logarithm inequality

|1 —detf' (X, 0)] < |logdetf (X, 0)] < |det (), 6) — 1]
and the result follows from the continuity of £~ (), #) at all (\,0) by Assumption 4.1[G] and

Lemma B1.5.

Lemma B1.7 Under Assumption 4.1, log det f (A, @) is differentiable in # € © under the integral
sign.

Proof Denoting the jth unit vector in k* by ¢;, we have

11 [ 1 ["
{—/ logdet f (X, 0 + i) d\ — 2—/ log det f (A, 0) d>\:|
™ —T

clor —r
11 (7 :
= 5 | logdetf (A0 +ije) —logdetf (X, 0)dA.
T J_x

By the mean value theorem the integrand is bounded by

0 * -1 * 9 *
'yo;logdetf()\,@) tr{f (A,@)ae;f()\ﬁ)}',

where |0 (\) — 6] < |¢| . By Assumption 4.1 [G], Lemma B1.4 and compactness of the parameter

Y 99; Y

where K is a positive constant that does not depend on #. Then

/ tr {f-l (A, 67 ai*m,e*)}‘ d\ < oo,

J

<K,
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and the dominated convergence theorem implies that ffﬂ log det f (A, 0) can be differentiated under

the integral sign.

Lemma B1.8 Under assumption 4.2, for » = 1,2,3,(9"/90;,...6;,) f (X, #) has elements in L (II)
which are bounded and continuous at all (A, 6) € II x O.

Proof Forany j, =1,....,s,withh=1,...,randr = 1,2, 3,

T ey - T [BD], o [k B )k ()
80j1---80jr ’ - 80j1...80jr 27'(' 80j1...80jr 27'('
o e (1) ek (e, ()* + ek (e, () 2;5 ()
" %6,,..00, on |
Assumption 4.2[D] implies that forany j, = 1,...,s,withh =1,...,randr = 1,2,3
o0 a,r
i —w)} < o0,

which is sufficient condition for the existence of the rth derivative of f (), §). Moreover it implies
that (0"/00;,...0;,) f (X, 0) has elements in L, (II) which are continuous at all (\,0) € II x ©
(see Giraitis et al, 2012, Proposition 2.2.1, page 11). By compactness of the parameter space (see
Assumption 4.2[B]), the uniform continuity implies that the elements of (0" /00;,...6;.) f (), 0) are

bounded at all (A, 0) € T x ©.

Lemma B1.9 Under Assumption 4.2, g(\,0) = £ (X 0)f (\,0) is uniformly continuous in
(A, 0).
Proof The uniform continuity of g (), #) follows once we establish

9
sup ||==g (A, 0"
2, | age® )

where |0* (X\) — 6| < ||, (see Davidson, 1994, Theorem 21.10, page 339). However

< 00,

0 . 0 .
g 0.0 = 1 EO0) + (e .0 E00)
which by Assumption 4.2[G] (ii) and (iii), Lemma B1.8 and compactness of the parameter space

is bounded by a positive constant K for all 6* € ©.

LLemma B1.10 Under Assumption 4.2, [" logdet f (X, 6) dX can be differentiated twice under the
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integral sign.
Proof By the same argument used in Lemma B1.7, the result follows from Assumption 4.2[G] (ii)

and (iii) and Lemma B1.9.

Lemma B1.11 Under Assumption 4.2, for 1 < a,b,c,d < n.

o)

Z | K eq (t1, 12, t3, t4)| < 00.

t1,t2,t3,t4=—00

Proof Denote as Ku.q (Xt,yt, 2t, uy) the fourth order cumulant of elements a, b, ¢, d of random

vectors x;, v, z;, u;. Set K¢

&0 = cumulant(ed? e € \Dyand set K¢, , = cumulant (€™, ¢, ¢l (D).

Then K7, (t1,t2, 13, t4) is made by the sum of the following terms:

Z (Kgbcdl (th =ty =t3= 754)) (4.51)
a,b,c,d=1

Z ( Z Kabcd €0a£07£07€0) t4 t1— 11 (tl :t2:t3))
r=a,b,c,d \a,b,c,d=1

Z < Z Kapea (€0, o5 €0, €0) Eg t)2 1‘118) n-11 (tl_t2)>
u,v=a,b,c,d \a,b,c,d=1

Z ( Z Kapea (507 €0, €0, 60) ‘Ifﬁf)_tl_l‘l’g)_tl_l‘l’if)_m_l)
u,v,z=a,b,c,d \a,b,c,d=1

(b) (c) (d)

a,b,c,d=1

The absolute summability of the cumulants follows from the absolute summability of the last term

n (4.51), which is implied by Assumption 4.2 [C].

Lemma B1.12 Under Assumption 4.2, the trispectrum of y,,

o0

. 1 .
Kgbcd (/\1, /\2, /\3) = (271-)3 Z exp {—Z (/\1t1 + )\2t2 + /\3t3)} Kgbcd (th tg, t3)

t1,t2,t3=—00

IS square integrable.
Proof Follows from the square summability of the Fourier coefficients of K7, ,, implied by Lemma

B1.11 (see Giraitis et al., 2012, (2.1.4), page 8).

4.6.2 B.2 Consistency lemmas

This section contains the proof of Lemma 4.1, part (b), and Lemma 4.2. To prove Lemma
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4.1 we follow Giraitis et al.(Chapter 8, Section 8.2) and establish two preliminary results. First,
in Lemma 4.3, we establish an approximation for matrix functions and then in Lemma 4.4, we
establish uniform almost sure convergence of some discrete functions of the periodogram under
minimal condition on the underlying model, generalizing Lemma 1 of Hannan (1973) to matrix

functions. In what follows, for any matrix function h (), ), we denote by

h, (9):/ e h (N, 0)d\, u=0,+1,+2,..

—Tr

its Fourier coefficients, and we denote by
M

a0 = 3 (1- 1) n@)e

the Cesaro sum of its Fourier coefficientzzu_p]\io M terms.
Lemma B2.1 Let h (A, 0) be a n x n matrix function, continuous in A € II and such that
h(—7,0) =h(x,0)in[—m,x|. Then h (), §) may be approximated uniformly in A by q,; (A, 6),
sup |h (X, 0) —qu(N,0)]| -0 as M — oc.
Aell
If in addition h (A, #) is continuous in A uniformly in 6, the approximation may be made uniformly
in 6 also,
S}\Ilep |lh (X, 0) —aqu(N0)]| —0 as M — occ.
Proof A detailed proof of ,this lemma for matrix functions can be found in Hannan (1970, Mathe-

matical Appendix, Section 3).

Lemma B2.2 Let y,; be a stationary, ergodic and purely non deterministic vector process, with
n X n spectral density matrix f (), 6y). Let h(\,#0) be a n x n matrix function, continuous in

(A, 0) € II x © and such that h (A, ) = h (—A, ). Then, uniformly in § € ©® and A € II,

% /_:: tr {h(X\,0)Ir(\)}d\ — % /: tr {h(), 0) £(\,00)} d\ as.

Proof By Lemma B2.1, for every > 0 we may find M large enough such that:

Sup (X, 0) = ay (A )| < .
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Let » > 0. For sufficiently large M, uniformly in 6 :

% ‘ /_ i {h(, O)Tr(\)} d\ — /

—T

™

tr{am (A, 0)Ir(N)} d)\‘

_ % /W tr {(h(\, ) — qM(A,H))IT()\)}dA‘
< %/W tr{Ir(\)} dA = 5= tr {%Z 2_: C (u) e‘““} — -t {C )}

Because the process is ergodic, by the Ergodic Theorem (see Giraitis et al., Chapter 2, Section 2.5)
C (0) converges almost surely to its population analogue I" (0) as 7' — oc. Thus for all sufficiently

large ¢, uniformly in 6 € ©:

’/_: tr{h(X, 0)I(A)} dA — /

—T

™

tr {aa (), O)Ir(\)} dA‘ <ntr {f (0)} as.

Moreover,

/7r tr {qar (N, O)Ir(A\)} dA = /w tr [ Yf ( - %) h, () eiuAIT(A)] A

- -7 - M

i [ > (- Mmoo

u=—M
By the Ergodic Theorem for each |u| < M, as T' — oo, C' (u) converges almost surely to T' (u) =

J7_£ (X, 0) e*d\. Therefore the above expression tends almost surely to:

tr [ i ( —%) hu(H)f(u)]

u=—M

e 3 (- (2 [ s )|

=—M -7

= % / i [anr (A, O)E(A, Oo)] dA — L[ [h(X, 0)f (X, 05)] dX

27

—T

on letting n — 0, which completes the proof.

Lemma 4.1 Part (a) If Assumption 4.1 holds,

limTﬂooQT (0) = Q (9) a.s.,
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and the convergence is uniformin 6 € ©.

Proof The almost sure uniform convergence of
1 ™
2m ) .

tr (£ (A, 0)Ir(\,))

to

™

% . tr (fﬁl()\, 0>f()\, 00)) d

follows from Lemma B2.2, taking h (\,0) = f~1(),0). By Assumption 4.1[G], =1 (\,0) is
uniformly continuous at all (), ) € II x Q , moreover it satisfies f ! (—, 0) = £~ (7, ) and the
conditions of Lemma B2.2 are satisfied.

Consider the first term of Q1 (),
1 ™
Dy /7r log det (X, @)dA.
This term is non stochastic so its uniform convergence follows once with establish the equiconti-

nuity property

lim sup

=0%: |60 <c

(4.52) is implied by

s _ 1 v
/ log det (A,H) A= o= / log det £ (), ) dA‘ _0. (4.52)
7T -7

—Tr

1 T
2—/ logdet f (A, 0%) d)\‘ < 00,
where |6* (\) — 6| < |¢|, (see Davidson, 1994, Theorem 21.10, page 339). By Lemma B1.7,

0 1 / log det f (A, 6%) dA

02 |,
1 [0 .
i _W%logdetf()\,ﬁ)dk

- %/:tr{f_l (A,Q*)%f()\,e*)},
and the integrand is bounded by some positive constant by Assumption 4.1[G](i), Lemma B1.4
and compactness of the parameter space. The use of the dominated convergence theorem allows to
conclude that
sup

0* €O
which concludes the proof.

1 " -1 * (9 *
—/ tr{f (A,e)%f()\,e)}‘<l{,

2 ) .
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Lemma 4.1 (b) If Assumption 4.1 holds, then for any > 0, uniformly in § € ©,

Tim Qr, (6)=Q,(6) as.

Proof The almost sure uniform convergence of

% /_ : tr (e, (. O)Tr(\,)

to
1 s
2 ),

follows from Lemma 4.4, taking h (A,0) = ¢, (A, 0). By Assumption 4.1[G], ¢, (A, ) is uni-

tr (¢,(A, 0)E(N, 65)) dA

formly continuous in (), 0) € II x Q, and it satisfies ¢, (\,0) = ¢, (—A,0) forall A € I, and
the conditions of Lemma 4.4 are satisfied. The uniform almost sure convergence of the first term
of Qr., (0),

% /_: log det f(\, 8)dA,

follows from Lemma 4.2 part (a).

Lemma 4.2 If Assumption 4.1 holds, for any 6 € ©

: I
9125@(9) =Q(0) = %/ log det f(\, 8g)d\ + T.

Proof

Q) = - / " log det £(\, 0)d\ + % / : tr [£71(\, 0) £(X, 6] dA, (4.53)

—T

adding and subtracting 1 /27 ffﬂ logdet f (X, 00) dA, (4.53) is equal to

1 [T 1 [7 _ 1 (™. detf()\ 6y)
— logdet f(\, Bg)d\ + — tr [£75(\,0) £(X, 8p] d\ — — log ———~—~
27 ) og det £(X, 8o)dA + 27 /ﬂ r[ (A, 6) £, 0} 2r ). ©8 det f(A, 0)

because for any non-singular matrix A, det ™" (A) = det (A~') (Luktepohl, 1996, Section 3.4.4,

),

Result ()), (4.53) is equal to

Q00— T+~ [ 4 [£7(\,0) £(), 6] dA — % /7r log (det (£71(), 8)) det (F(X, 85))) d,

2 J .

because for any non singular matrix A and B, det (A) x det (B) = det (AB) (Luktepohl, 1996,
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Section 4.2.1, Result (4)), (4.53) is equal to

Q<eo>+{2i / b [£1(\.0) £\, 8] dA _T}_Qi / log (det (£1(\, O)£(\, 85))) d\ > Q (6o)
T J_ T J_x

where the strict inequality follows, in view of Lemma B1.5, because logdet (4) < tr(A) — T
for any positive definite matrix A with equality holding if and only if A = I,, (Luktepohl, 1996,

Section 4.1.2, Result (10)).

4.6.3 B.3 Asymptotic Normality lemmas
This section contains the proof of the lemmas used to establish the asymptotic normality of the

estimator.

LLemma B3.1 The asymptotic covariance between 7, (m) and 7. q) (u) is given as
2 / ’ {£0.0) (A, 0) Fpay (N, 0) e 2 £, 0y (A, 0) By (N, 0) M T9X L g\
+27 / ’ / ’ elimAitiude) [ (N1 Ao, —Ag)dA1d)s.

Proof The covariance between 7, ;) (m) and 7 4y (n) is

T-1
1 U ~ ~ ~ ~
T ZT <1 - %) {Fm,c) () Cpay (u+n = m) + Lga) (u+n) Lipe) (u— m)}

u=

+ Z ( |“|>Kgbcd(muu+n) (4.54)
u=1-T
(see Hannan, 1979, page 209-211 ). The term
1 T-1 |u| ~ 3
T Z 1-— ? F(,Lc) (TL) F(b,d) (u +n — TTL) s (455)
u=1-T

is the Cesaro sum, evaluated at the origin, of (47)” the uth Fourier coefficient of the convolution of
£y (A) With £, 9 (A) e7("=™* By Lemma B1.3, f (\) has elements in Lo, so their convolution

is continuous. Then (4.55) converges to

o / £l (N, 0) Fpay (N, 0) e ™A,

—T

The same argument applies to



which converges to

27T/ f(a,d) ()\, Q) F(b@ ()\7 9) Gl g

(4.54) is the Cesaro sum, evaluated at the zero frequency, of the Fourier coefficients of the func-
tion K%, (A1, Ag, Ag) e~(PMtmA2) - By | emma B1.13, the trispectrum of the process is square

integrable, implying the convergence of (4.54) to

o / / elmhtimda) (¥ (N1 Ny, —Ag) dAid)s.
Proof of Lemma 4.5 We establish the uniform convergence of Q)1 (8) to M (8) pointwise. The

(i, j) element of (1(8), O () is

™

ol {f—l (O Fis (M 9)} X (4.56)

5 ) (£ 00 fo) L) £ (0,0) ) (1, 0) } (4.57)
T 62

+% L { (aeiae;. 0, ‘9>) ITW} dA. (4.58)

The last term converges almost surely uniformly in (A, 0) € II x © to
1 0?
— —f! f
o tr { (89189; (A, 0)) (A, 90)} dA
by Lemma 4.4, taking h (A, 0) = (9?/96;00}) £~'(X, @), which is continuos at all (X,0) € II x ©
by Assumption 4.2[G] and symmetric around zero in [—, 7] .
The first two terms of (4.56) are non stochastic. Their uniform convergence in ¢ follows once

with establish their equicontinuity property. Consider the first term. We want to show that

9'!!???5%6 % /: [tr {f—1 ()\, Z)) £ </\, 9)} —tr {f—l (0 £y (A, Q)H d)\‘ 0 as.
R (4.59)
(4.59) is implied by
o [T B .
sup |55 /Tr tr {f (A 0) £y (M, 9)} d)\‘ < 0, (4.60)

(see Davidson, 1994, Theorem 21.10, page 339). We must establish that ™ _¢r {f‘l (N, 0) £y (A, 9)} d\
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is differentiable under the integral sign. Denote the jth unit vector in R* by 4;, and consider

1 (™1 . .
A {71000+ i5) Fagy (V0 +52) = £ (A 0) Fay) (A, 0) } .
m

By the mean value theorem the integrand is dominated for each A by

(4.61)

Y

’a—g,tr L8 ) Fay (67 O0) }

where |0* (\) — 0| < |¢|. Taking derivatives (4.61) is equal to

tr {f1 (A, 07 (M) (889 £ (A, 0 (A))) <a€;lf (A, 07 ()\))) £ (N0 (A))H . (4.62)

By Assumption 4.2[G](ii) and (iii), Lemma B1.8 and compactness of the parameter space, (4.62)

is at most K, where K denotes a generic positive constant. The use of the dominated convergence

theorem allows to conclude that

a " — e
%/ﬂtr{f 1(/\,9)f(¢,j) (A,Q)}d/\ < 00

which completes the proof of (4.59).

The equicontinuity property of the second term of (4.56) is implied by

o1 [~ . . . .
sup 8—91%/ {f (A, 0) Fo (1, 0) ()\,H)f(j)(/\,e)}d)\'<oo, (4.63)

(see Davidson, 1994, Theorem 21.10, page 339). The left hand side of (4.63) is differentiable

under the integral sign because for |0* (\) — 0| < |¢|

st {0 ) £ L) iy (000}

= Jer {810 Fiy (0 £ (00 i (0,0

+tr {f—l (N, 07) £y (A, 07) (a(zlf 1(A,9*)> f) (A,H*)}

r {87 0,07 Foy (0,0 71 (A, 09 By (.0 |
+r { ( (;; £ (), 9*)) flo) (A, 07) 71 (A, 0%) £ (A, 9*)} I
l

which by Assumption 4.2[G](ii) and (iii), Lemma B1.8, and compactness of the parameter space

is bonded at all # € ©. Then the use of the dominated convergence theorem completes the proof.
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Proof of Lemma 4.8 Set

Then

TCov { / iy (A) Loy (A) d, / " o (A) La () d)\} (4.64)

™ -

T
= 7 Z il (Ul - Uz) ;lz (US - U4) f(a,c) (U3 - Ul) f(b,d) (U4 - U2) (4.65)

T
1 ~ ~ -
t= ) ha (uy — ug) ha (uz — ug) Tag) (ug — ur) Doy (us —ug)  (4.66)

T
u1,u2,u3,us=1
T
1 7 7 y
+T Z hl (Ul — UQ> hg (Ug — U4) Kabcd (UQ —Up,U3 — U, Uqs — Ul) . (467)

uiuguzugs=1

The convergence of (4.65) and (4.66) follows from Hannan (1976, Theorem 1, page 398). For

example (4.65)

(% < |17£!)h1 (h) ) (U4—U2)> X ( Tijl ( u;‘)hz(lg)fac (u 3—u1)>,

1=1-T k=1-T
which is the product of the Cesaro sums, evaluated at the origin, of the Fourier coefficients of

the convolution of A, () with £ 4) (A) and of the convolution of £, (A) with £, (). Because
f (A) and & () are square integrable their convolution is continuous in A € [—m, 7]. Then (4.65)

converges to

o / i ) ) Fagy () Fia () Fray A

An analogous result holds for (4.66). Set Iy = wuq, lo = us — uq, ls = uz — uq, ly = ug — uq, (4.67)
can be expressed as
1

T+1
Y O SUadad) r (~ho) s (ly — 1) K (D, 1) (4.68)
l4=1-T

l2,l3,l4=1—
where

S (la,l3,1ly) = max (|la], |I3], |l4]) I (sign ly = sign l3 = sign l4)

+max (|l;],l;|) + [lg| I (sign l; = sign l; = —sign ).
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As T — oo, (4.68) converges to

—+o0
> ha(=ly) by (Is — 1a) K3 (12, 13, 1) (4.69)
l27l3,l4:700
N+1
1 . - v
- jlg.lo T Z S (l2> l37 l4) hl (_ZQ) h? (Z3 - l4) Kabcd (l27 l37 l4) . (470)
lo,l3,la=1—N

However, since the functions h; and h, are square integrable in [—m, 7], for a certain positive

constant K,
1 T+1 ~ ~
7 D Sals ) b () By (Is = 1) Ky (I2, s, 1a)
l2,l3,la=1-T
K2 T+1 _
SN > max (|la] + [ls] + [la]) by (—l2) K3y (I, 13, 1)
lo,l3,l4=1-T

and the terms
T+1

4]
Y K (I, 15, 1)
l2,l3,l4=1-T T
for j = 1,2,3 converge to 0 as 7' — oo using Lemma B1.11. Then as 7' — oo, (4.67) converges

to (4.69). Then, by repeated application of the Parseval equality, (4.68) converges to

/Tr /Tr ha (A1) ha (=X2) Koy (A, A2, = Xa)
Proof of Lemma 4.7 By Lemma B1.9 gt (), ) is continuous at all A, moreover it is symmetric
in [—m, 7]. Thus, by Lemma B2.1, for any n > 0, and all a,b = 1, ...n, we can always choose M
large enough such that

< 1.

max sup ‘g}ﬂ)w(k, to) — géf’b)()\, 0o)

Consider that

VT [T j
Var (g tr {55@@, 0o) [Ir()) — EI()\)]} d)\>

—T

= Var <2—\/7TT Z /_7T [I(a,b)()\) — EI(a,b)()\)] 5M(b,a)()\)d)\) )
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As T — oo, by Lemma 4.8 this is dominated by

9 (" ) _
—n? / 10016, (M| Fraia) (A) Fiopy (X) dA

™ -

2 T - =
+;n2 5M(b,a)(A)éM(a,b)(_)\)f(a,b) ()\) f(b,a) ()\) dA

—T

2 ™ ™ _ ~
+;n2/ 001 (b,a) (A1) O a1 (d,0) (—A2) Kaped (A1, A2, —A2) dArdAs.

By compactness of the parameter space, d/(q,5 () is square integrable in A\, which tends to zero
as M — oo, because the elements of the spectral density matrix and the trispectrum are integrable

by Lemma B1.3 and Lemma B1.12.
Proof of Lemma 4.6 part (b) The jth element of \/TEng) (), can be written as
2_\/7? /_:: tr {g» (X, bo) [EI(A) — £(X, 00)]} dA.
Note that EI (\) is the Cesaro sum of the Fourier coefficients of f (), 8y). Assumption 4.2[G](i)

implies

sup 2": )EIEI?’b) (A) — £ (A, 90)‘ =0(T7)

A€ll a,b=1

uniformly in @ (see Hannan, 1970, page 513). Then

VTEQr;) (0) = @ / " tr (g9 (A, 00) [EI (A) — £(\, 60)]} dA
o | maxsup g (0.00) 3 {VT [BLus) )  fun (.80) } A

a,b)
x (ab) xell ahe1

IN

_ T1/2 a) ,

which converges to zero as 7" — oo, since by Assumption 4.2[G](i), a > 1/2.
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Chapter 5 Multivariate exponential volatility models with long memory

5.1 Long-range dependence in conditional volatility models

A large body of research suggests that the conditional volatility of asset prices displays long-
range persistence. Evidence of some type of persistence in financial data can be traced back to
the unit root findings in estimated GARCH and EGARCH models, whose applications to high fre-
quency data have indicated the presence of an approximate unit root in the volatility. Long-term
dependencies have been found in the returns of a variety of assets classes. Helms, Kaen, and
Rosenman (1984), Kao and Ma (1992), Eldridge, Bernhardt, and Mulvey (1993), Fang, Lai, and
Lai (1994), Corazza, Malliaris, and Nardelli (1997) found long-term dependence in index and com-
modity futures returns. Greene and Fielitz (1977), Lo (1991), and Nawrocki (1995) examined long
memory regularities in U.S. equity market returns. Jacobsen (1996), Cheung, Lai, and Lain (1993)
found evidences of long-term dependence in European and Asian equity markets. These findings
suggests that financial data display persistent features that can’t be captured by standard GARCH
or Stochastic Volatility models which impart short memory autocorrelation in the squares. Stan-
dard volatility models may capture such persistence only via approximation of a unit root. Out of
the necessity to develop statistical methods to reproduce these presidencies in financial data, a num-
ber of authors have introduced long memory univariate volatility models. With respect to ARCH
type models, various alternative have been suggested. Robinson (1991) introduced the ARCH (o)
model, a possibly long memory generalized ARCH model. Baillie et al. (1996) considered a par-
ticular case of the ARCH(co) denominated fractionally integrated GARCH (FIGARCH) model.
Arguing that the knife-edge distinction between I1(0) and 1(1) processes can be far too restrictive
in describing persistence in conditional volatilities, Baillie et al. model the volatility as a discrete

time fractionally integrated process 1(d) introduced by Adenstedt (1974), Granger (1980, 1981),
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and Grangerand and Joyeux (1980). The propagation of shocks to the variance occurs at a slow
hyperbolic decay rate when d € (0, 1), as opposed to the extremes of exponential decay associ-
ated with the stationary GARCH process or the infinite persistence resulting from an IGARCH
model. The FIGARCH model combines many of the features of the fractionally integrated process
for the mean together with the regular GARCH process for the conditional variance. In particu-
lar, it implies a slow hyperbolic rate of decay for the lagged squared innovations in the conditional
variance function, although the cumulative impulse response weights associated with the influence
of a volatility shock on the optimal forecasts of the future conditional variance eventually tend to
zero, a property that the model shares with weakly stationary GARCH processes. Baillie et al.
present estimation results for a regular GARCH process when the true data generating process is
FIGARCH. It turns out that the estimated autoregressive parameters in the misspecified GARCH
models are very close to unity, indicative of IGARCH type behavior. These findings support the
view that the apparent widespread IGARCH property, so frequently reported with high-frequency
asset pricing data, might as well be spurious, and that the IGARCH process offers a poor diagnostic
to assess the presence of long memory in conditional volatility. Recently a number of authors have
pointed out some drawbacks of the FIGARCH model. For example, Davidson (2004) has shown
that the in the model the persistence of shocks to volatility decreases as the long memory parameter
increases. Zaffaroni (2004) has shown that the FIGARCH model cannot generate autocorrelations
of squares with long memory. Consequently the Fractionally Integrated EGARCH (FIEGARCH)
model of Bollerslev and Mikklsen (1996), which extends the asymmetric EGARCH model of Nel-
son to long memory, has been by far more popular. Robinson and Zaffaroni (1997, 1998) and
Zaffaroni (2003) introduced an alternative way of modelling strong dependence in volatility by
means of a family of nonlinear moving average models, that we discussed in the previous chapter.

Zaffaroni (2003) established the asymptotic properties of the Gaussian estimator of the nonlinear
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moving average model and provided a formal framework to asses whether long memory volatility
models represent a valid alternative to short memory ones.

With respect to Stochastic Volatility models, Harvey (1998) and Breidt et al. (1998) indepen-
dently proposed a Long Memory Stochastic Volatility (LMSV) model in which the underlying log
volatility evolves as an ARFIMA (p, d, q) process,

(1-DB)¢(B)v,=0(B)n, mn,~iid (0,07,
with d € (—0.5,0.5). In the overall the LMSV model is very tractable and easily fit to data. Breitd
et al. carried several non parametric and semiparametric tests for long memory over various market
indexes of daily returns finding highly significant results. Ruiz and Vega (2006) extended the Long
Memory Stochastic Volatility model to include asymmetries, allowing for correlation between the
shocks of the level and volatility equation.

In the past decade the research on multivariate volatility models has produced a wide variety of
specifications, however these do not yet include long range dependence in the conditional covari-
ance matrix. Such generalization are not easily implemented in ARCH(co) type of models. As
shown for the univariate case by Giraitis at al. (2000) and Zaffaroni (2004), such models might
not be adequate to capture long memory in the squares of the process. In ARCH(oo) models the
necessary and sufficient condition for covariance stationarity of the levels rules out long memory
in the squares of the process when the model contains a positive intercept. This implies for exam-
ple that the introduction of long-memory dependence in VEC-BEKK type of models might not be
straightforward. The Multivariate Exponential Volatility model defined in (4.6)-(4.10) allows for
long-range dependence in the conditional covariance matrix. Since it is nested in the class of vec-
tor nonlinear moving average models, it allows for strong dependence in the squares of the process
while retaining the strict stationarity and martingale difference assumption in the levels. In this

chapter we investigate the asymptotic properties of the Gaussian estimator of the parameters when
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the sample autocorrelations of the squared returns decline very slowly. In contrast to the fast ex-
ponential decay imposed on the signal parameters in the last chapter, we allow for an hyperbolic
decay rate consistent with non-summability of the autocovariances and with an unbounded spectral

density at the zero frequency.

5.2 Long-range dependence in the MEV model
The vector signal plus noise representation of the Multivariate Exponential Volatility Model
may display long-range persistence in the signal when its coefficients exhibit a sufficiently slow
rate of decay. Indeed in the transformation
vi=> oeja+& Y [Tyl < oo, (5.1)
j=0 =0
the assumption of square summability allows to impart on the coefficients an hyperbolic decay rate
of D (j;0) 49! as j — oo, where D (j; ) is a measurable Zygmund slowly varying function
at infinity and d (6) € (—o0, 1/2) is the memory parameter. When d(0) € (0, 1/2) the series has
long memory, when d(0) € (—1/2,0) the series has negative memory and when d(6) = 0 the se-
ries has short memory. In this chapter we focus on signal plus noise processes with long-range
dependence, setting d(0) € (0, 1/2) . We assume that the memory parameter is constant across the
different series in y,;, however do not consider fractional cointegration among them. The depen-
dence structure implied by this assumption entails that the spectral density of the process might
not be square integrable and might not be bounded at the zero frequency. Indeed as A — 07 the el-
ements of the spectral density matrix behave as K D ()Cl; 0) A~24O) To establish the asymptotic
properties of the frequency domain Gaussian estimates we can no longer rely on the uniform con-
tinuity of the spectrum and its higher order derivatives at all frequencies. However since d (0) is
positive, the inverse of the spectral density matrix is continuous at all frequencies (see Giraitis et
al., 2012, page 212), hence the strong consistency of the estimator still holds. The most relevant

technical difference from Chapter 4 pertains to the asymptotic normality of the score vector. In
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this chapter we cannot rely on the asymptotic normality of the sample serial covariances and we
introduce a different approximation that has the effect of annulling the singularity of the spectral
density at the zero frequency. It must be pointed out that our results are limited to the case where
the spectral density matrix has a singularity at the zero frequency and cannot be readily extended
to long-memory multiple time-series possessing a variety of singularities in their spectrum. This
last case is dealt with in Hosoya (1997) by means of the bracketing function approach, however
Hosoya’s results do not extend to the case of correlated signal and noise. The next section discusses
the Whittle estimator for linear long-memory processes. Section 5.4 introduces spectral domain
regularity conditions and discusses the consistency of the estimator. Section 5.5 reinforces the as-
sumptions and derives the asymptotic normality of the estimates. All the proofs of the technical

lemmas are in Appendix C.

5.3  The Whittle estimator

In the previous chapter, we discussed some advantages in the use of the Whittle estimator due
to his frequency domain specification. In this chapter, as we consider a richer dependence struc-
ture in the conditional variance, a few more advantages emerge. Indeed the Gaussian frequency
domain estimator has been widely used in estimation of long-range dependent models thanks to
its technical properties. The Whittle function naturally takes into account the asymptotic behav-
ior of the autocovariances as the sample size goes to infinity, so it is very sensitive to the degree
of dependence of the process in second-order sense. Moreover, by construction, it automatically
compensates for the possible lack of square integrability of the model spectral density that occurs
when the memory parameter is between 1/2 and 1/4. This implies that the estimator has a rate of
convergence and an asymptotic distribution that do not depend on whether long-memory holds or
not. The Whittle function does not require truncation of the process for estimation, as is typically

the case with MLE and PMLE where one needs to distinguish between the observable likelihood
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and the unobservable one. As shown in Robinson and Zaffaroni (2006), such truncation might not
turn out asymptotically negligible in long-memory models since it could induce asymptotic bias.
A number of authors have developed the asymptotic properties of the Whittle estimator in long-
range dependent stationary processes. Yajima (1985), Fox and Taqqu (1987) and Dahlhaus (1989)
investigated univariate Gaussian processes. Giraitis and Surgailis (1990) dealt with univariate non
Gaussian linear processes establishing the asymptotic normality of the Whittle estimates of the pa-
rameters of strongly dependent linear sequences. Heyde and Gay (1993) partially extended the
former result to vector-valued non Gaussian processes. Giraitis and Taqqu (1999) generalized
Giraitis and Surgailis (1990) to a wide class of vector linear processes satisfying minimal assump-
tions. Hosoya (1997) dealt with vector long-memory stationary processes with singularities not
necessarily limited at the zero frequency. The key results in this literature are the central limit

theorems for quadratic forms of the type

VT tr{g (A, 0) [Ir (\) —EIr (\)]} dA (5.2)
—tr {ZZh (yfys — T (|t - s|>)} (5.3)

which play a crucial role in the asymptotic behavior of the Whittle estimator. The asymptotic
normality of the integrated weighted periodogram in (5.2) is derived via approximation by an-
other quadratic form which shares the same asymptotic distribution but has shorter memory. The
main idea of the approximation is to impose conditions on the weight function h; (|t — s|) =
f gi) (A, 0) eMt=sld\ that have the effect of annihilating the singularities of the spectral den-
sity in the frequency domain. To establish the validity of the approximation Fox and Taqqu (1987)
rely on Gaussianity in an essential way, employing the exact expression for the cumulants of a
quadratic form in Gaussian variates. Giraitis and Surgailis (1990), Giraitis and Tagqu (1999) and
Hosoya (1997) relax the Guassianity assumption, and exploit the factorization of the spectrum.

Hosoya establishes a limit theorem for the integrated weighted periodogram in a framework gen-
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eral enough to deal with a variety of multiple singularities of the spectral density, under a set of
mixing conditions on the innovations which need not to satisfy a martingale difference assumption.

He considers a full-rank vector linear process with spectral density

f(\) = i(p (e™,8) Ko (e, 0)*
2
factored as
f(A)=T(e™T (e’”‘)*
and defines the approximation to (5.2) by
vT / tr{g(;) (\,0) [T (\) —EI}, (\)]} dX, (5.4)

where g{,) (A, ) and I (A, ) are functions of a new process y; which by definition has spectral

density

In view of the construction f’ (w) is equal almost everywhere to the identity matrix and square
integrable at all frequencies. The CLT for (5.4) follows using standard results. Hosoya derives the
validity of the approximation by means of a general result on the convergence of covariances of

quadratic forms

Teou ( / " tr {0 (1.8) [Ir () —EIy (\)]} dX, / " ir g0 (\0) [Ir (\) —EL (1))} d)\> |

(5.5)
To establish the convergence of (5.5) he imposes regularity conditions on the functions g;y and
g and on the transfer function ¢ (ei’\, 0), assuming uniform Lipschitz continuity of degree v > 0

for the former and integrability of order p > 2 for the latter. Moreover he imposes that for some

v, > 0, the pair {g(;, (\), ¢ (e, 0) } satisfies

g5 (V) | (e77,0) — ¢ (e,0)|°

sup
le|<e1

9 =0 (‘51’71) ) (56)

where "||.||," denotes the L2-norm of a complex function in [—, 7r]. Using the concept of multiple
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Fejer Kernel he shows that (5.5) converges to

47 /7r tr {g(j) ()\) f ()\, 0) g0 ()\) f ()\, 0)} d\ (5.7)

+2m > g (M) g (M2) Ky (<A1, A, —Xa) dhrd)y,
and relying on (5.7) he establishes that the variance of the difference between (5.4) and (5.2)
converges to zero as 7" goes to infinity.
Giraits and Tagqu (1999) extend Giraitis and Surgailis (1990), Giraitis et al. (1996) and Giraitis
and Tagqu (1997). They consider situations where there are k£ > 1 different scalar quadratic forms
(5.2) , each with its own weight sequence and possibly generated by a different process. For a

linear process with spectral density f (w) = 2702 |a (w)|?, they approximate (5.2) by

T
Sr=Y YiiYay,

k=1
where the processes Y; ;. have by definition weights b; ; (\) such that

o) = [ s @ ja )] e, 59
and square integrable spectral density f; (w) = 2#f (w) |g (\)|, where the zero frequency singu-
larity of f (w) is compensated for by letting |g (w)] — 0 asw — oco. As in Hosoya (1997), the
approximation depends on the form of the transfer function (5.8) which relies on the factorization
of the spectral density of the original process. Zaffaroni (2003, 2009) establishes a CLT for univari-
ate quadratic forms (5.2) without making use of the factorization of spectral density. The original
process is truncated at some finite ¢ = N and the validity of the approximation is established rely-
ing on certain results on the asymptotic behavior of the trace of Toeplitz matrices (Theorem 1, Fox
and Taqqu, 1987). The CLT for the quadratic forms of the new process follows from standard re-
sults on quadratic forms in IV dependent variates. In Section 5 we extend Zaffaroni (2003, 2009)
introducing an approximation for vector signal plus noise processes. We then rely on Giraitis and

Tagqu (1999, Theorem 7.3) to establish the asymptotic normality of the approximation.
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5.4  Consistency

This section establishes the consistency of the Whittle estimator. We first list the assumptions
with some comparison with Assumption 4.1, then state the main result. Even if the signal com-
ponent of y, is a long-memory process, we still obtain a strong consistency result. The notation
is unchanged from Chapter 4. In what follows, D ()\‘1, 0) denotes a Zygmund slowly varying

function at infinity (ZSV), not necessarily the same.

ASSUMPTION 5.1

[A] {€}, &} are i.i.d unobservable random vectors, and, for every a,b = 1, ..., n,

(i) Feo =0 and E(ee)) =2 (7),0 < X (T) < 0.

(i) E ]gg@‘ <o and E(£,£)) = D (1),0 < D¢ (1) < o0,

(iii) £ (&p€)) = Zee (T), 0 < B (1) < 00.

[B] 6, is an interior point of the compact parameter space © € R”.

[C] (i) £ (), 8) has elements in L, (IT), continuous at all (A, 8) € IT x © with A\ # 0,
£eD (X, 0)] < D (AL 0) AT A —0t, d(9) € (0,1/2).

(i) =1 (X, 0) has elements in L, (II), continuous at all (\,0) € II x ©,

£ ()\,0)’ <D(ALO)AMO X0t d(6) e (0,1/2).

(ii1) The function
f()0)
A\ 0) =
e (A0 = Ger e 1)
has elements in L, continuous at all (X, 8) € II x © forall > 0.

[D] For every 8 € © whenever 8 # 6, f (\,0) # f (A, 0y).
[E] Forany 6 € ©, f (), 0) is a strictly positive definite matrix.
[F] /7 logdet f (X, 0)d\is twice differentiable in & € © under the sign of integral.

[G] (0/00;) £ (A, 0) has elements in L; (II), continuous at all (A, #) € II x © with A # 0,

f57 (L0)| <D(ALO) N A0t d(e) € (0,1/2).
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In contrast with Assumption 4.1, Assumption 5.1 imposes regularity conditions directly on the
spectral density and its first order derivatives, defining unambiguously their behavior near the ori-
gin, as well as a form of uniform continuity away from the zero frequency. Spectral domain reg-
ularity conditions are common in long-memory parametric literature, see for example Giraitis and
Surgailis (1990), Heyde and Gay (1993), and Hosoya (1997). A relevant exception is Zaffaroni
(2009). In a scalar signal plus noise model (5.1) Zaffaroni imposes regularity conditions directly
on the signal coefficients and their derivatives, assuming that they satisfy an exact hyperbolic decay
rate, quasi monotonic convergence towards zero, and a pure-bounded variation condition. These
conditions imply that the spectral density and its derivatives satisfy a form of Lipschitz continu-
ity of degree @ > min [1,1 — 2d (¢)] away from the zero frequency and have an exact decay rate
of L(j,() |)\|*2d(<) as A\ — 07, where L(j, () is a slowly varying function at infinity. \We impose
slightly stronger regularity conditions directly on the spectral density matrix and its derivatives
at the zero frequency. The function D()\) is a Zygmund slowly varying function at infinity, i.e.
a slowly varying function at infinity in Karamata’s sense such that for any a > 0 and for some
Ao > 0, A*D()) isincreasing in A and A™“D(\) is decreasing in A, for all A > \g. In this chapter
we use repetitively the result that a Zygmund slowly varying function at infinity (ZSV) is O (|A\5>
as A — 0 forany § > 0 (see Feller 1971, page 277).

The main result of this section is the strong consistency of the Whittle estimator.

Theorem 5.1 Under Assumption 5.1, as 7' — oo

éT —a.s Oo-
The proof of Theorem 5.1 follows by contradiction, exactly as for Theorem 4.1, relying on the
uniform convergence of the objective function to ¢ () and on Lemma 4.2. Lemma 4.2. holds
under Assumption 5.1 as well because its proof is based on the strict positivity and the identification
property of the spectral density which are directly assumed in this chapter. The uniform converge
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of Q7 (0) and Qr,, (8) requires a slightly different proof from Chapter 4 and it is established by

the following lemma.

Lemma 5.1 If Assumption 5.1 holds, then
(@) limy_o, Q7 (0) = Q (0) almost surely uniformly in 8 € ©.
(b) for any n > 0, uniformly in § € ©, lim;_,o Qr,, (0) = Q,, (8) almost surely.

The almost sure uniform convergence of the first term of Q1 (9) ,

™

L {£77(\, 0)Tr (M)}

2 J .

to
L tr {£71(X, 0)£(X, 00) } dX
2 J_.
follows from Lemma 4.4, taking h (\,0) = £~ (\,0). By Assumption 5.2[C](ii) £~! (), 0) is
continuous at all (A, 8), even if f (), @) is unbounded at the zero frequency. Moreover =1 (), 0) =
f=1 (=), ). The uniform continuity of first non stochastic term of Q7 (6),
1 ™
—/ log det £(\, @)dA,
2 ),
is shown by establishing its equicontinuity property
lim sup

=05: |76/ <e

(5.9) is implied by

T™J %

1 . 1 /"
—/ 1ogdetf<)\,0> d)\—Q—/ log det £ (A, §) d)\‘ ~0. (59
7T —T

o1 [T
— = [ logdetf () 6)d\ 5.10
sup a@j%/ ogdetf (A, 67) ‘<oo, (5.10)

where |6* (\) — 0| < |¢|, (see Davidson, 1994, Theorem 21.10, page 339). By Assumption 5.1[F]

—T

o1 [T
_— logdet f (A, 0%) d\

Lo *
_ %/_ﬂ%(logdetf(A,H))dA

—T

1" .
- — [ w {f—1 (A, 0) i) (A,O*)}d/\.

2 J_,

However by Assumption 5.1[C](ii) and [G] the integrand is at most, ignoring constant terms,

/W IAPA 70 N < o0,
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where we take d; = infg d () and d,, = supg d (@) and so (d; — d,,) > —1/2 and ¢ can be taken
arbitrarily small. Then we choose 4 such that
/7r AP0 ) < oo,
and the use of the dominated convergence theorem concludes.
The proof of Lemma 5.1 (b) follows for 5= [* tr (¢, (X, 0)I7();)) from Lemma 4.4. using

assumption 5.1[G](ii) and for 5~ |™ logdet f(\, 8)dA from Lemma 5.1 (a).

55  Asymptotic Normality

This section reinforces the moments condition of the process innovations and the regularity
conditions on the spectral density matrix, controlling the behavior of its higher order derivatives
around the pole A = 0. The following conditions are very similar to those in Fox and Taqqu (1986)
and Giraitis and Tagqu (1999). However, following Zaffaroni (2009), we also impose an exact rate
of decay on certain combinations of the signal coefficients that guarantees their quasi monotonic

convergence to zero.
ASSUMPTION 5.2
[A] {€}, &} are 4.i.d unobservable random vectors, and, for all a,b,¢,d = 1, ...,n,

() B =0 and B (el ef") = Koy (), 1Ky (7)] < 0
(i) E [¢f" (67€D€57657) = Kb (7) | Ky ()] < o0.
(i) E (&5 €€l ) = Kk (7).
(iv)Forany0 <n < 1l,andallu >0
o= B

(v) Forany n > 0,

ngcd (T)) < 0.

1-n/2 b)
’ Jt|ul

1-n/2
} ~ K|D (u,0)| w3~ a5 4 — o

(@) "

N | s a positive sequence converging to zero as N — oc.

[B] 6 is an interior point of the compact parameter space © € R*.
[C] (i) £ (), 8) has elements in L, (IT), continuous at all (A, 8) € IT x © with A # 0,
£ (X, 0) <D (VL) N A0t d(8)€(0,1/2).
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(ii) =1 (X, 8) has elements in L, (IT), continuous at all (\,0) € II x ©,

fian)

()\,9)‘ <D(LO) O A0t d(6) €(0,1/2).

[D] For every 8 € © whenever 8 # 0, £ (\,0) # f (), 0,).
[E] Forany 6 € ©, f (), 0) is a strictly positive definite matrix.
[F] /7 logdetf (X, 0)d\ is twice differentiable in 0 € © under the integral sign.

[G] (i) (0/06,) £ (), 0) has elements in L, (IT) continuous at all (A, ), A # 0, and

f..((;),b) ()\’ 9)’ S D ()\71, 0) ’)\|—2d(9) A — O+ d(e) e (0’ 1/2) .

(ii) (0%/00;00) £ (X, ) has elements in L, (IT) continuous at all (X, 0) , A # 0, and

£y Mﬁ)‘ <DWLONT A—0t d(6) € (0,1/2).
(iii) (9°/00,00',00,) £ (X, 0) has elements in L, (II) continuous at all (\, ), A # 0, and
F O] < DOTLO) AT A0t d(6) € (0,1/2).

(iv) (9/06;) £~ (X, 0) has elements in L; (II) continuous at all (), §) € II x ©, and
0
00;
(v) (92/06;00}) £~ (X, ) has elements in L, (II) continuous at all (A, 0) € IT x © and
ot

06,00

[H] (i) The function

T (/\,9)' <DL AN =0t d(8) € (0,1/2).
£ ()\,9)‘ <DL N =0t d(8) € (0,1/2).

g;i(\, 00) =72 (), 00) ;) (A, 00) forallj =1,...s.
has elements in L, (IT) continuous at all (A, #), A # 0, and
(g““) (A 90)( <DL MO A0t d(8)e(0,1/2) forallj=1,..s.
(if) For some 1/2 < v < 1, for any A;and A\, € 11
|tr {g(j) (A1, 00) F (A1,00) — £ (A — A2, 00) }| < K [N forall j=1,..s.
Assumption 5.2[C| and [G] are quite standard in long-memory statistical literature. We assume

regularity conditions on the spectral density and its derivatives up to the third order to ensure the
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necessary degree of smoothness on the Hessian matrix. Rather than assuming an exact decay rate
at the zero frequency, we prefer slightly stronger and more general assumptions that impose a
common bound on the elements of the matrices. We assume uniform continuity away from the
zero frequency rather than Lipschitz continuity as Zaffaroni (2009). Assumption 5.2[A](i)-(iii)
imply strict stationarity and ergodicity of the process, and the existence of its fourth order spectral
density. Heyde and Gay (1993) make assumptions which ensure that the fourth-order cumulant
term vanishes in the asymptotic covariance matrix, however in model (5.1) this is not possible.
Hosoya (1997) imposes uniform Lipschitz continuity of degree ~ > 0 on the fourth order spectral
density of the innovations to ensure the convergence of the covariances in (5.5). Giraitis and

Surgailis (1990) directly assume the convergence of

T
1
T Z hj ([tr = ta]) by ([t — ta]) (v (Its — ta]) v (Jta — ta]) + v ([ta — ta]) v ([t3 — 221))
t1,ta,t3,ta=1

to

(27r)3/7r (f (N, 0) g (X, 0)%d\ < .
Assumption 5.2 [A] (iv) and (V) aIIow_us to establish the approximation of the integrated weighted
periodogram via a truncation of the original process, rather than via a factorizations of its spec-
tral density. They imply an exact decay rate of the Fourier coefficients of certain covariances
that arise as a consequence of the truncation and enable us to establish the validity of the trunca-
tion via well-known results on the asymptotic behavior of the trace of Toeplitz matrices (see Fox
and Taqqu, 1987, Theorem 1). Assumption 5.2[H](i) implies that the weights of the integrated
weighted periodogram satisfy the sufficient condition of Theorem 7.3 of Giraitis and Tagqu (1999)
on which we rely to obtain the asymptotic distribution of the approximated score vector. Assump-
tion 5.2[H](ii) gives a condition for the asymptotic unbiasedness of ™ i {g;)(), 00)Ir (A)} dX

which enables us to approximate the score vector by another long-memory quadratic form that can

be easily truncated.
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The following theorem establishes the asymptotic normality of the estimator.

Theorem 5.2 Under assumptions 5.2, as T' — oo
VT (0 — 0y) —4 N,(0, M~1(0,)V(8,)M~1(8y)),
where

1 [7 . .
M (8) = o / tr (£ (0, 00) iy (1. 00) £ (1, 00) gy (A, 00) } .

—T

and the matrix V' (6,) has elements

1 [7 0 0
Vo= [ e {005 £ 000800 0) 6 0.00)

+— Z / /_W{ae fra(\1 Qo)aelfuv()\zeo)} Ko (A1 A2, —Ag)dA1d Ny,

Ttuv 1

The proof of Theorem 5.2 has the same structure of that of Theorem 4.2. The consistency of
0 for 8, guaranteed by Theorem 5.1, implies that, as 7' — oo, 6 eventually enters an arbitrary
neighborhood of 8. By definition § solves the equation (9/96) Qr (9) = 0. The mean-value
theorem implies that for @, such that HéT — OOH < H@T - OOH,

0=T"2Qr (8) = T"*Qr (8y) + [QT (0)} T'? <9 - 90) ;

thus the asymptotic distribution of 7/2 (9 — 00> is obtained from the asymptotic distribution of
[C)T (0)] T2Qr (@). To establish the latter we prove the uniform convergence of the Hessian ma-
trix to the positive definite matrix M (@) in Lemma 5.3 and we conjecture the asymptotic normality

of the score vector in Conjecture 5.4.

Lemma 5.3 Under Assumption 5.2, as " — oo, uniformly in 6 € ©,
Qr (8) — M (6)

almost surely, where M (0) is a positive definite matrix with elements

. 1 & " 1 & . .
MO (0) = o~ / {7 (0, 0) iy (1, 0)f dr— / tr £ (1, 0)d) (1, 0) £ (1,0, (1,6) } ax
T ) . T ) .

1" 2
5| tr{(aeae,f (A,O))f(/\,eo)d)\}d)\.
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Lemma 5.3 and the consistency of 6 for 6, imply
Qr (8) —as M (60).

In view of this result, the asymptotic normality of the estimator follows from the asymptotic nor-
mality of Q7 (6y).
Conjecture 5.4 Under Assumption 5.2 as 7' — oo,

Part (a):

VT |Qr(0) = EQr(80)| —a N(0.V (60).
where V' (0) is a positive definite matrix with (7, 1) element:

1 4 . .
Vi =+ [t [f0 008G O 80)£0 08! (0,80

—T

.S / i (£ 00 00)E5 (00.00) } Kapeal—1. 02, = e, fo)dAd Ao,
Part (b):
VTEQr () — 0.
The proof of the asymptotic normality of the score vector is based on the idea, introduced by
Giraitis and Surgailis (1990), of approximating the score vector by another quadratic form which
shares the same asymptotic distribution but has a less strong dependence structure. In what follows

we show that each element of the score vector

¢MMW:§fﬁmmmmmmwmw (511)

shares the same asymptotic distribution of the quantity

™

% tr {g(3)<)‘> 00) [I ()‘7 S;t) - EI()‘7 S;t)]} d)‘7 (512)
where I (\,y) and EI()\, y) denote the periodogram and the expected value of the periodogram of
a new process y, that we define below, and g;)(\, 89) = £72 (X, 6o) f(j) (A, 6p). As a preliminary

step, the following lemma allows us to approximate the jth element of the score vector

VT |Qr(j)(00) — EQr((6o)
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by another quadratic form of the original process

T [t {0 (3,00 1 ()~ B ()]}

Lemma 5.5 Under Assumption 5.2, as 7" — oo

lim \/T/ tr {g; (A, 00) [ELr(X) — £(),05)]}dA =0 forall j=1,..,s.

T—o00

We now introduce the new process y,. We set
N
yi = Z Woj€—j-1+& 0<N <oo,
j=0
a truncation of of the original process y; at a finite integer N. Consider that y, has autocovariance

function I (u)
N—|ul

= Ju=0)Ze (1) + Zc (1) D U (O W41 () + Tmz) Vpu—1 () Bee (1) foro <u < N,

j=0
= 0 forallu> N.

which satisfies

>

u=

tr {f (@H < 0. (5.13)
By Lemma B1.3, (5.13) implies that f (), #) has elements in L, (IT) which are bounded and con-
tinuous at all (A, @) € I1 x ©. Moreover by definition y, is a signal plus noise process where the

signal is a finite order MA(V) process and can be represented as
Fi= ®O)ei Y97 (0)]° < oo, (5.14)
=0 =0
where we define
e = &, (5.15)

e, = €-, [>1
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and

Q) = I, 1=0, (5.16)
d;(0) = ¥, ,(0), 1<I<N
(@) = 0, |l>N.
We now establish the joint asymptotic normality of the quadratic forms
g i {g(i)H(X\ 00) [T\, 5:) —EINF)]}dN j=1,..s (5.17)

—T

Z \/_/ (ba )\ 00)[ a,b) (AaYt) EIab()\ yt)} d\ j—l

ab 1
a ~(a,b -
-3 S e (50 1) |
a,b=1 t=1 s=1

where h ») denotes the Fourier coefficient of g (ba) ()\ 0,),

™

W2, (1= sl) = (1/27) [ g0 00)cPan
Even if (5.17) for j = 1,...,s is a quadratic form of a short-memory, N-dependent process we
cannot derive its asymptotic normality relying on Lemma 4.2 because the function g;y(A, 8,) does
not satisfy the necessary regularity conditions of square integrability and uniform continuity at all
(A, 0) € 11 x ©. Zaffaroni (2009) derives the asymptotic normality of (5.17) for a univariate "trun-
cated" signal plus noise process (5.14) relying on Theorem 18.5.1 of Ibragimov and Linnik (1971,
page 340), who provide a central limit theorem for ¢-mixing processes with arbitrarily fast de-
creasing mixing coefficients. It is not clear how such result could be extended to quadratic forms
of multivariate ¢-mixing processes with different weight sequences which have Fourier transforms
possibly unbounded at the zero frequency. To establish the asymptotic normality of (5.17) we rely
on Theorem 7.3 of Giraitis and Taqqu (1999, page 29). Giraitis and Tagqu derive the joint asymp-
totic normality of quadratic form of multivariate Appell polynomials for linear sequences with i.i.d

innovations and possibly different weights and linear coefficients. Taking in their notation a multi-

variate Appell polynomial, P, , (Xt(“), Xéi’2)> of degree equal to one, to establish the result we
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must verify that the scalar quantities

T T
7-1/2 (Z Z hg’)a) (t—s) y§a)5,§b) _ Fglat,b)sD]) (5.18)
t=1 s=1

satisfy the regularity conditions of Theorem 6.1 of Giraitis and Tagqu (1999). Consider that each

component of the truncated process has representation

7= "1, 0, (5.19)
where @7 ; denotes the ath row of the matrileCI());“ (0) defined in (5.16), the linear innovations e;_,
are defined in (5.15) and satisfy Assumption 5.2[A]. A sufficient condition for Theorem 6.1 of
Giraitis and Taqqu is provided by Theorem 6.3.2 of Giraitis et al. (2012, Section 6.3.1, Chapter 6).
For a stationary scalar linear process with finite fourth moments i.i.d innovations, the asymptotic

normality of (5.18) is implied by
FO) < CIA™™, and |g(\)| <C|A?, forevery eIl  (5.20)

forsome —1 < o, <1, a+ 8 <1/2.

Consider that for all « = 1, ..., n, the spectral density function of y§a> trivially satisfies

f@ (X 0) <CN™ forall x eIl
choosing o = 0. Moreover the function g, (), 8,) is by definition a real valued even function
with elements in L; (IT) that satisfy

8570, 60) < D (AT PO, A<

by Assumption 5.2[H] . Choosing —3 = 2d (#) and o = 0,

a+p<1/2,
and condition (5.20) is satisfied. The linear innovations in (5.19) are a sequence of independent
random variables with finite fourth moments by Assumption 5.2 [A] and identically distributed at

all s =t — 1,1 > 1. Thus we make the following conjecture.
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Conjecture 5.6 Under Assumption 5.2, forall j =1, ..., s, as T" — oo, the quantities
VT [
have a joint normal asymptotic distribution.

To establish the validity of the approximation we must show that the variance of the difference

between
2@ /_ tr {g()(\, 80) [Ir (\) — EIp(A)]} dX (5.21)
and
\2/—5 o {86)(A,00) [Ir (A, 5¢) — EIr(A, 7)) } dA (5.22)

—T

tendsto 0 as 7" — oo for each j, so that the former quantities have the same asymptotic distribution

of the latter. To that end, we write the difference between (5.21) and (5.22) as

T T
tr {T‘”Q YD w9 (|t = s|) [yys - m]} (5.23)

s=1 t=1

T T
= tr {T—”? YOS RO (=) [yi (ye — Fo) + T (e — m} : (5.24)
In what follows any function of @ is evaluated at 8,, however to avoid an excess of notation we

omitit. (5.24) is given by the sum of the following three terms

Var |tr {T‘l/ZZZhJ) [t — s])y: (¥s )} (5.25)

s=1 t=1

s=1 t=1

Var |tr {T1/2 Z Zfl(j) (It =s))¥s (ye — S’t)} (5.26)

{ZZ (j (It = s)ye (ys 5’5)}7”{;;B(j)(|t_3|)}~’s(}’t—5’t)}]-
(5.27)

The same bound applies to (5.25) and (5.26) and, by Schwartz inequality, to (5.27) as well. There-

fore we follow closely Zaffaroni (2009, Lemma 7) and consider (5.25). Using the definition of the
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trace, (5.25) is

var | 3 A0S 300, (- 6050}
a,b=1 t=1 s=1
For a,b,c,d =1,...,n, (5.25) is given by the sum of the following three terms
T T
TS SR, (= s B, (p = al) cov (v1¥) cov (v = 30) , (v ~ 7))
t,s=1p,q=1
(5.28)
Y SR (- DR, (b a o (. 587 = 947) ) eov (v (v = 32))
t,s=1p,q=1
(5.29)
P S B, (B () cum (v 0 =39 (047~ 3) ).
t,s=1p,q=1
(5.30)

Consider (5.28) . We show that this term is O (65T") , for a positive sequence satisfying iy — 0
as N — oo. As Zaffaroni (2009, Lemma 7), we rely on Theorem 1 of Fox and Taqqu (1987). To

that end, we must establish that (5.28) can be expressed as

1T (2r) /// _Wf (M) g (2) f (Aa) g (M)

> Z 261(31 —J2)A1 pi(G2=3) A2 (73 —7a) A3 i(Ja ]3)/\4d)\1d)\2d)\3d/\4,
Jj1=0  j4=0
for functions f (.) and ¢ (.) bounded on the interval [0, 7] for 6 > 0, and such that

F@]=0 (™) asw—0,

and
g9 @) =0 (") asw—0,

with
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Setting

™

cov [yi )y( ] = (1/27?)/ £(a0) (A1) el(P=tAe (5.31)

where f (\) denotes the spectral density of y;, and setting

™

cov [(y —50), (y\ — §\D)] = (1/2n) / oD (),) eilas)2, (5.32)

—T

where f () denotes the spectral density of (y, — §,) , (5.28) may be written as

e [ [ [ 800 gl e (a0 800 (533)

T-1T-1T-1T7T-1

XY DTN TN Cetmilam e il im0 g\ ANy dAsd s (5.34)

t=0 s=0 ¢q=0 p=0
Theorem 1 of Fox and Tagqqu (1987) cannot be directly applied to (5.33). We follow Lemma 7 of

Zaffaroni (2009) and find an upper bound to (5.33) that satisfies the regularity conditions of Fox
and Taqqu.

By Lemma C.1 (see Appendix C), forany n € (0,1), (5.31)and (5.32) are bounded by

W{Z“I’ -t B W}v

where \IJ Vi the ath element of the matrix of coefficients W, defined in (5.1). Setu = |p — t|. By

K ‘\115‘;)

Assumption 5.2[A] as u — oo

{j=0
where D (u) is a measurable Zygmund slowly varying function at infinity. Denote the Fourier

o) |1 @

Jtu

v

(
J

1-n/2
! } ~ K |D ()| ut-1/2@d-1), (5.35)

transform of the left hand side of (5.35) by b (\) . (5.33) is bounded by

W ol [ [ [ [ o000 gl 00be0 gl 00 639

T-1T-1T-1T-1

% Z Z Z Z it=8)A1 pi(a=5)A2 Ji(p—t) A4 Li(P—q) A3 A dadN\zd ).

t=0 s=0 ¢=0 p=0

By (2.3.8) of Giraitis et al. (2012, page 19), b ()\) is
0] <|>\|*(”(1*”/2)(2d*1))*5> , as A—0t, foranyd >0,
taking in their notation —5 = (1 — n/2) (2d — 1), and using the fact that any ZSV function satis-

fies |D (u)| = O <|u|5) asu — 0.
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Moreover Assumption 5.2 [H] implies that the function g, (), 8,) has elements of order O <|/\\2d(<)*5) .
Set —a=—(1+(1—n/2)(2d — 1)) and —b = 2d (6y), then choose n < 1/ (1 — 2d (#,)). Since
n<1/(1—2d(6)) implies2 (a+ 3) = 2(—2d (6y) + 1+ (1 —n/2) (2d — 1)) < 1, Theorem 1
of Fox and Taqqu holds and (5.36) is O (|1 |" T'), where |10, y|" is a positive sequence converging
to zero as N — oo by Assumption 5.2[A].

Then we conclude that (5.28) is O (|1ox|" T'). The same bound applies to (5.29).

Consider (5.30) . By Lemma C.2,
cum (.99 (v = 95) (v = 90) )| < K foron "> 3 [0l ™" D il T

=0 =0

Setting u; = |s — ¢q|, and uy = |p — t|, as u; — oo and uy — oo, by Assumption 5.2[A]

{Z R \1"/2} ~ K| D (ug) | uf "2, (5.37)
j=0
o 720 e Uy 2-1,,(1-n/2)(2d-1) 5 38
J Ty tuz 2
J=0

The Fourier transform of (5.37) and (5.38), b ()) , is
O ()\—(1+(1—n/2)(2d—1))—5) D 0+7 forany § > 0,
by (2.3.8) of Giraitis et al.(2012, page 19), taking in their notation —5 = (1 —n/2) (2d — 1).

Then (5.30) is bounded by

e ool [ [ [ sl 0ub e g 0wb ()
T-1T-1T-1T-1

Z Z Z Z eit=8)M1 gilg—s) A2 ei(p‘Q)A3d/\1d)\2d/\3d)\4

t=0 s=0 ¢=0 p=0
where the functions g;)(\) and b (\) satisfy all the regularity conditions of Theorem 1 of Fox and

Tagqu and we may conclude that(5.30) is O (|w0N|’7/2 T).
Then we conclude that (5.23) is O (T |¢0N|"/2> , where [¢,|"? is a positive sequence con-

verging to zero as N — oo by Assumption 5.2[A], and the quantities

VT [0 (80) - BQP(60)] (539)
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share the same asymptotic distribution of (5.22) forall j = 1,..,s.

To complete the discussion of Conjecture 5.4 we must evaluate

—
T—o0 -

= lim iCov (/ tr {g (X, 00)Ir (A }d)\ / tr {g (A, 00)Ir (A }d)\) (5.40)

T—o00 471'2 —

T - " ba) " led
7115}010 4—7T200U ( Z {/ g(]) Iab (/\) d/\7 \/ﬂ_ g(l) cd ()‘) dA

a,b,c,d=1 -
To that end we introduce the following lemma.

Lemma 5.6 Under Assumption 5.2, for all a,b,¢,d =1, ...,n

lim TCou ( / g5 (X, 09) Ly (X) dA, / g (A,eoncd(A)dA)

—T —Tr

= 2 [l (O (180 £ (3,0 T (1. 60)

+2r / g (X 00) &1y (=X 00) £ (1, 80) " (A, o) dX

—|—27T/ / g5 ()\1, 00) g ()\2, 00) Kzlbcd ()\1, )\2, —/\2) d)\1d>\2

By Lemma 5.6, we may conclude that as 7" — oo, (5.40) converges to V{; ) (6o).

5.6 Conclusion

In Chapters 4 and 5 we introduced a new multivariate exponential volatility (MEV-) model that
includes as special cases both the Constant Conditional Correlation (CCC) model with EGARCH
individual volatilities and the multivariate Stochastic Volatility model with Leverage (MSV-L).
Under our general model the logarithm of the vector of squared returns is decomposed into the
sum of a signal vector-linear process and a vector white noise. We allow for correlation between
the signal and the noise since it arises in the MSV-L model as a consequence of the leverage as-
sumption and in the CCC model by definition. We discuss parametric estimation of the model
by means of the Whittle frequency domain estimator and derive its asymptotic properties under

short and long-memory parameterization, extending the statistical literature on Whittle estimation

121

lim Cov <2—\/f/ﬂ tr {0 (M\ 00) [Ir (A) — ELy (\)]} d, —/ tr {g0 (X 0) | IT()\)—EIT()\)]}dA>



to cover correlated signal plus noise vector processes. Theorems 4.1 and 4.2 establish respectively
the strong consistency and asymptotic normality of the estimator under the assumption of weak
dependence in the signal process providing an extension of Hosoya and Taniguchi (1982) to vector
signal plus noise processes whose spectral density cannot be readily factored. Theorems 5.1 and
5.2 derive analogous results under the assumption of long memory parameterization of the signal
extending Hosoya (1997) to long-memory correlated signal plus noise processes whose spectral
density has singularities only at the zero frequency. As argued in Zaffaroni (2009) for the case of
a univariate signal plus noise process, it turns out that the Whittle estimator has a rate of conver-
gence and an asymptotic distribution that do not depend on weather long memory holds or not.
The proof of the strong consistency of the estimator is based on the well known result on consis-
tency of M-estimators (see for example Van der Vaart, 1998, Section 5.2) and does not significantly
differ under short and long-memory parameterization. Indeed positive definiteness of the autoco-
variance matrix, easily imposed on the model by its decomposition into a standard deviation and
a correlation matrix, guarantees strict positivity of the spectrum. This implies the uniform con-
vergence of the inverse of the spectrum at all frequencies even when the spectrum is unbounded
at the zero frequency and thus ensures the uniform convergence of the second component of the
objective function,

LI {£72 (X, 0)Ir (M)} d, (5.41)

2

—T

in both the short and the long-memory case. The uniform convergence of the first non random term
of the objective function,
1 s
— / logdet f (A, ) d\, (5.42)
2m J_,
is straightforward in the short-memory case when the spectrum is continuous at all frequencies;
in the long-memory case it is obtained by imposing a degree of smoothness on the inverse of

the spectrum and on its first derivatives that implies the strong equicontinuity of (5.42); this is a

122



standard condition in the statistical literature on long-memory Whittle estimation (see for example
Fox and Taqqu, 1986, 1987, Giraitis and Taqqu, 1997).

The joint asymptotic normality of the integrated weighted periodograms

VT [t gy 000l Ouy) Bl Oy} dh =1 (649
is the key result in order to establish the asymptotic normality of the score vector which, together
with the uniform convergence of the Hessian matrix, implies the asymptotic normality of the esti-
mator. In Chapter 4 the asymptotic normality of (5.43) follows from the asymptotic normality of
the serial covariances of short-memory vector linear processes as in Dunsmuir (1979) and Hosoya
and Taniguchi (1982). Since the MEV model cannot be represented as a vector linear process with
identically distributed innovations, as requested both by Theorem 2.1 of Dunsmuir (1979) and by
Theorem 2.2 of Hosoya and Taniguchi (1982), we follow Robinson (1979) and conjecture that the
rate of convergence and the asymptotic normality of the serial covariances are unchanged under
mild violations of the identity of distribution. The Lipschitz continuity of degree o« > 1/2 of the
spectral density implied by the short memory parameterization of Chapter 4 ensures that (5.43)

can be approximated by its Cesaro sum approximation

VT / i {8 (0 00) tr (\yo) ~ELr Ayl fax j =1, (5.44)
and the joint asymptotic normality of (5.44) readily follows from the asymptotic normality of the
serial covariances of the process and the square integrability of the spectrum. In Chapter 5 the
assumption of long-range dependence implies that the model spectrum might not be Lipschitz
continuous of the requested degree nor square integrable. Therefore in order to establish the joint
asymptotic normality of the score vector we must rely on a different approximation of (5.43). Fol-
lowing Giraitis and Surgailis (1990) and Zaffaroni (2003, 2009) we approximate the integrated
weighted periodogram by another quadratic form that shares the same asymptotic distribution but

has a less persistent degree of memory. The approximation is based on the idea of imposing con-
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ditions on the weight function in (5.43) that effectively annihilate the singularities of the spectral
density. Its validity is established extending Zaffaroni (2009, Lemma 7) to long-memory vector
linear processes whose spectral density cannot be easily factored. The main limitation of Chap-
ter 5 and of this thesis is that we are conjecturing the joint asymptotic normality and the rate of

convergence of the approximated weighted periodogram

™

e {8 (X, 60) [T\, 3:) —EI\, 7]} dX, j=1,..,5s, (5.45)
defined at the short-memory truncation of y;, y;. The truncated process is a N-dependent process
by definition, and (5.45) is a quadratic form in N-depended variates with weight function g;) (X, 6,)
whose elements are O (|/\\2d(9)*”5> as A — oo forany o > 0. For the univariate case, Zaffaroni
states that (5.45) is ¢-mixing with arbitrarily fast decreasing mixing coefficients, therefore its as-
ymptotic normality follows from Theorem 18.5.1 of Ibragimov and Linnik (1971), however it is
not clear how this result extend to the multivariate case. For the multivariate case, Giraitis and
Taqqu (2012) provide sufficient conditions for the joint asymptotic normality of (5.43) when the
underlying possibly long-memory process can be represented as a vector linear process with in-
dependent and identically distributed innovations. However identity of distribution is not allowed
for in the vector linear representation of the MEV- model and thus we cannot directly rely on their
results. A central limit theorem for quadratic forms of type (5.45) arising from non-identically
distributed vector linear processes needs to be investigated further. Alternatively it could be of
great relevance to extend Giraitis and Taqqu limit theorems for bivariate Appell polynomials to
stationary, possibly long-range dependent, linear processes whose innovations are not identically
distributed.

The finite sample properties of the Whittle estimator in the MEV-model must be further ex-

plored by means of Monte-Carlo exercises in both the short and long-memory case and efficiency

comparsion with maximum likelihood estimate of the parameters seems desirable. We expect max-
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imum likelihood estimates to be more efficient, however it is of interest to explore in which cases
Whittle estimates perform comparably (see Perez and Zaffaroni, 2008).

A relevant direction of further investigation is to consider parametric estimation of the MEV-
model allowing the memory parameter not only to be unknown but also to lie in the nonstationary
region. Hualde and Robinson (2011) investigate fractionally integrated, possibly non stationary,
linear processes and establish the asymptotic normality of a one-step estimator based on an ini-
tial /7' consistent estimate of the parameters. Extensions of their results to signal plus noise
processes would allow to test for non stationarity in the fractionally integrated multivariate expo-
nential volatility model, thus providing a very general framework for testing for non stationarity in

multivariate stochastic and conditional volatility models.
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5.7 Appendix C: Technical Lemmas
This section proves the technical lemmas used to establish asymptotic normality of the estima-

tor.

Proof of Lemma 5.3 We establish uniform convergence of Q1(0) to M (0) pointwise. The (i, j)

element of (), 07 (8) is

4 - . 1 /" - i - .
o {f L0 E (A,@)}d)\— o {f L 0) Fy (A 0) 7 (N 0) i) (O, 6’)}d)\
(5.46)
+i Wt o £\, 0) | I (N) ¢ dA (5.47)
or ). \\awae, )T | '

(5.47) converges in almost surely, uniformly in (X, 0) € II x © to

Ly P t100.0)) £00.05) b
or J_. " \\ov00, A

by Lemma 5.4, taking h (),0) = (8/00;06;) £~(X,8), which by Assumption 5.2[G](v) is a

continuous matrix function at all (\,0) € II x © and has symmetric elements in the interval
[—m, 7).
The two terms of (5.46) are non stochastic. Their uniform convergence in 6 € © follows from

establishing their equicontinuity property. For the first term, we wish to prove that

lim sup

=0%:||6-0[| <<

L /_ﬂ tr {87 (0,0) fagy (M 0) — £ A0 Fopy (0,0} d)\' —0.  (5.48)

™

The equicontinuity property of A (0) = .- [™ r {f‘l (X, 0) £y (A, 9)} is implied by

= or

01 [T (i
sup 8—91%/ tr{f (A0, (A,@)}d)\‘<oo, (5.49)

(see Davidson, 1994, Theorem 21.10, page 339). We must establish that A () is differentiable

—Tr

under the integral sign. We follow Fox and Tagqqu (1986, Lemma 6). Denote the jth unit vector in

R by i;, and consider
1 (™1 v

o {81000+ i5) Fopy (0 +152) = £ (A 0) Fayy (A 0) ]
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By the mean value theorem the integrand is dominated for each A # 0 by

‘3_9,“" POV (A) By (67 </\>)}

: (5.50)

where |6* (\) — 0| < e. Taking derivatives (5.50) is equal to

{67 000 ) B 0o 0]+ [ e o | f e )| 65

By Assumption 5.2[C] and [G] (5.51) is at most, ignoring constant terms,

|)\|2(dl—d )—0

Y

where we take d; = infg d (¢) and d,, = supg d (6) . Since (d; — d,,) > —1/2 and § can be taken
arbitrarily small, we choose ¢ such that
/ ' IAJPE )70 N < oo (5.52)
Hence the dominated convergence theorem implies that A () is differentiable under the integral
sign. Moreover (5.52) implies (5.49) .
The equicontinuity property of the second term in (5.46) is implied by

sup (5.53)

o1 [ B . B .
up 8_01%/ B0 Ey (L0 (0,0 ) (1, 0)} )| < oo

(see Davidson, 1994, Theorem 21.10, page 339). The left hand side of (5.53) is differentiable

under the integral sign because for |0* (\) — 0| < ¢

’—tr L0 iy (0, 07) £ (0, 60°) ) (O, 9*)}‘

a0,
[t {f’ (N, 07) £y (0 09 E71 (N, 07 E ) ()\,0*)}
+tr {f LN 07) £y (N, 07) (aaalf (/\,0*)> ;) (A,H*)}
+t7”{ o A0 ET (N 07) ) (A’Q*)}

{<801 *.6) )f(“ (A0 E (07 ) (Aﬁ*)} I

which is at most is at most, ignoring constant terms
|)\|2(dl—du)—5
where we take d; = infg d (¢) and d,, = supg d (@) . Since infg d (#) and supg d () are bounded
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by Assumption 5.2[B] and (d; — d,,) > —1/4 and ¢ can be taken arbitrarily small, we choose ¢
such that

/ IAPAI70 gy < oo

—T

and the use of the dominated convergence theorem concludes the proof.

Proof of Lemma 5.5 Denote by Dy ()\) the Fejer Kernel,
_sin?(TA/2)

T—-1 2

Dr(\) = —— 12 — Asl NeIl, T >1.
v =G ;e =
and recall that (see Giraitis et al.2012, Chapter 2, page 8)
|Dr (V)| < 27T (1+T|A))™", forevery A e II. (5.54)

Using the definition of Fejer Kernel,

"2

To simplify notation we set g, (A, 60) =g (N\), £ (A, 600) =£f(N), then

EI()\) ! /Wf(w)D%(er)\)dw.

—T

/ "t {g (V)[BT (A) — £ ()]} dA

—Tr

:/jrtr{g()\) [%/_Zf(w)DT(er)\)dw—f()\)]}d)\
:i/:/_itr{gm £ (w) D3 (w+ ) — £(\)] } dAdw

2

_ %/_:D%()\)tr{/;g(w) £ () — £ (w = \)] dw}d)\.
By Assumption 5.2[H]

w{ [ et - -]}

—T

<K\, Xell (5.55)

for some 1/2 < v < 1 and some finite positive constant /. This together with (5.54) implies that
1 ™ s
T1/22—/ D2 (\) tr {/ g () [F () — £ (w — A)] dw} 0\
T J -z -
™ T2
< CT”Q/ ——— |A["dx
14+ (TX)
< CTI/Q—W/ (1 + )\2)_1 |)\|7 d\
< CTY/ 2
which goes to zero as T' — oo and completes the proof.
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Lemma C.1 Under assumption 5.2, the following holds

Part (a)
(1) Cov |y{"y§ )] - >E( )( )30 (1) T U (O 0 (Ol 1 (O BE (7).
@ cov[(y = 5), (v = #4")] = =00 (1) D ¥ O (©).

(3) Cov [Yt ’ (Yé - Yéd))] = Ega @ (7) Z] N+1 qj(a K (€) \I/ﬁﬁ_ﬂ (C)+](Q—t>N+2)\Ijt(1a_)t—1 (€) Eé?d) (7).

Part (b) Setting u; = |t — p| and uy = |s — ¢|, and choosing some 1 € (0, 1)
77 > a 1-n/2
ISl o 3
j=0
and
/(d) )

5 N N 1-n/2
jeon [(v? — 59) . (v — 5] | < K [#9) () {z\w;“ . }
=0

Proof Part (a) follows simply from the definition of the processes. For part (b) it is trivial to see

1-n/2

v ()

‘C’ov [yt yp ” <K‘\If

1-n/2

that

1-n/2 1(d) )

1-n/2
Jjtuz C )

Cov (y1y10) | < K{Z‘\P

which implies the result. Moreover

b ~(b ~(d
oo [/ = 59) . (@ —5®)]| < 50| 3O §0 W@\
j=N+1
77/2 b) 1_77/2 /(d) 77/2 /(d) 1-n/2
< 300 Y v (¢ . v O e, ©
j=N+1
Nk B o |2 i 1=n/2
< K|oy)] { vl el b
J_

Lemma C.2 Set K¢, = cumulant(e(()),eéb),eé),eo)) K&, = cumulant (€} @ éb), éc), (()d))
and let K pcq (x4, Y1, 2¢, uy) denotes the fourth order cumulant of the a, b, ¢, d elements of random

vectors x;, yy, z;, u;. Sett = t1, p = t3, ¢ = t3 and s = t4. Under Assumption 5.2

cum [y, (v~ 30) (0~ 59)] < K o2 S ity omal ™0 sty
Jj=0 j=0
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Proof Cum [y,g ), y,(f), (yéd) - Sféd)> , (ygb) — 5,@)] is given by the sum of the following terms
(d.d) (bsb) _
Kabcd (50, 50, €0, 60) \I’t37t271\11t47t171] (tl = tg) 1 (tg - tg 2 N + 1) 1 (t4 - tl Z N + 1) (556)
K oo gl glh g SN+ DI (-t > N+1 5.57
abed (&0, €0, €0, €0) to—t1—1 * tg—t1—1 F tg—to—1 (3 12N+1)1({ts—t > N+1) (5.57)
Kapea (€0, €0, €0,€0) Wi Wi, (WY 1 (ts =ty > N+ 1)1 (ta—tr > N +1)
K apea (€0, €0, €0, €0 Z 1(j>max{0,N+1—t3+t;, N+1—ts+1t}) \I/(a Sib tlllfg%_tl\lfﬁm_tl.

7=0

The result follows by Lemma 7 of Zaffaroni ( 2009, page 198).

Proof of Lemma 5.6 Set

T 1 " a,b Im
h(J) (u) = %/ gE]) ) (/\) /\d/\
T 1 c, iu
B (u) = 5 / (“D (1) e A
Then
TCov { / " (\) Ly () dA, / g (M La (M) d/\}
1 - - .
=7 Z hjy (ur — u2) hy (uz — wa) Ta,e) (us — u1) Tpay (wa — u2) (5.58)
uiuguszug=1
T
1 ~ -~
t D0 B (n - ua) B (us — ) D (g = w3) Doy (g = u2) (5.59)
ujuguzus=1
1 N I y
+? Z h(j) (u1 — U,Q) h(l) (u3 — U,4) Kabcd (UQ — U1, U3 — UL, Uy — U,l) . (560)

uluguszug=1

Consider (5.58) . This term can be written as

(1/27) /7r /ﬁ /7r /7r £ (1) g0 (00D (0,) g5 () (5.61)

T— T—1
X Z Z > Z. it=s)h gila=s)A2 gilp—t)A1 i (P=D)A3 g\ | I \gd \3d N4, (5.62)

u1=0u2=0u3=0 wu4=0

where by Assumption 5.2|C|

£ (A 0)[ < D (A10) AT A~ 07, d(8) € (0.1/2),
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and

)gg?f)u,eo) <DL N0t d(8) e (0,1/2) forallj=1,...s,

which imply (see Fox and Taqqu, 1986, Section 4) that
€09 (A, 0)] = O <‘)\’—2d(0)—5> A— 0%
80780 = O(AMO7) A0t
Seta = 2d (@) and —b = 2d (@), then since d (#) € (0,1/2) and 2 (e + b) < 1, (5.61) satisfies the
regularity conditions of Theorem 1 of Fox and Taqqu. Hence we may conclude that as 7" — oo,

(5.61) converges to

o / g (1, 60) 849 (1, 60) 9 (1, 86) FC (), 6) dA.

—T

The same result is used to show the convergence of (5.59). Consider (5.60). By Lemma 7 of

Zaffaroni (2009), for all a,b.c,d =1, ..., n,

a b c d
K (2 — w1,y =g — )| < K 0| [0 IST e el L (.69
=0 =0
By Assumption 5.2[A], choosing n = 0,
Au) = {Z U } ~ KD (u,0) O as u—oo.  (564)
§=0

By (2.3.8) of Giraitis et al. (2012, page 19), the Fourier transform of (5.64) is

(|/\| (I+(2d=1) 5) , as A— 0t foranyd >0,
where in their notation —5 = (2d — 1), using the fact that any ZSV function satisfies |D (u)| =
0, (]u| ) asu — 0. Then the Fourier transform of the right hand side of (5.63) is O (|)\| 20+(2d=1))= ) .
Then the regularity conditions of Theorem 1 of Fox and Taqqu are satisfied and we conclude that

(5.60) as T" — oo, converges to

or / / ) (A1, 00) g0y (M2, 00) K2,y (A1, Mgy —Ag) dAid ).

This completes the proof of Lemma 5.6.
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