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Abstract

This thesis consists of three chapters that explore the estimation and identification of networks
from observable outcomes and covariates only. This problem is equivalent to estimating the spatial
neighbouring matrix from a spatial econometric model. Under three settings, I show how the

networks can be recovered entirely from observable non-network data.

In the first chapter, networks are treated as a source of unobserved heterogeneity and dealt with
data collected from observing many groups in one period of time. The proposed method estimates
the probability that pairs of individuals form connections, which may depend on exogenous factors
such as common gender. I derive a maximum likelihood estimator for network effects that is not
conditional on network observation, accomplished with recourse to a spatial econometric model
with unobserved and stochastic networks. I apply the model to estimate network effects in the

context of a program evaluation.

The second chapter assumes the observation of one group over many periods of time and
estimates the networks as a collection of pairwise links. We estimate the spatial neighbouring
matrix with recourse to the Adaptive Lasso. Non-asymptotic Oracle inequalities, together with

the asymptotic sign consistency of the estimators, are presented and proved.

The third chapter shows how the procedure developed in the preceding paper can be used
to classify individuals into groups based on similarity of observed behavior. We propose a Lasso
estimator that captures the block structure of the spatial neighboring matrix. The main results
show that off-diagonal block elements are estimated as zeros with high probability. We correctly

identified US Senate’s blocks based on party affiliation using only voting data.

Empirical research on social and economic networks has been constrained by the limited avail-
ability of data regarding such networks. This collection of papers may therefore provide an useful

tool for applied research.
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Chapter 1

Estimating Network Effects without
Network Data

Abstract. Empirical research on social and economic networks has been con-

strained by the limited availability of data regarding such networks. This paper de-

velops a method that does not rely on network data to estimate network effects. The

proposed method also estimates the probability that pairs of individuals form connec-

tions, which may depend on exogenous factors such as common gender. The method

may incorporate imperfect network data, such as with self-reported data, with the

dual purpose of refining the estimates and testing whether the reported connections

positively affect the probability that a link is formed. To achieve those goals, I derive

a maximum likelihood estimator for network effects that is not conditional on network

observation. Networks are treated as a source of unobserved heterogeneity and dealt

with data collected from observing many groups. This is accomplished with recourse

to a spatial econometric model with unobserved and stochastic networks. I then ap-

ply the model to estimate network effects in the context of a program evaluation. I

demonstrate theoretically and empirically that including network effects has important

implications for policy assessmentsE]

Keywords: social networks, spillovers, spatial econometrics.

JEL Codes: C21, C49, 012, D85.
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1.1 Introduction

Personal interconnectedness is an important and pervasive feature of human life. Social and
economic networks enhance learning in classrooms (Angrist and Lang, 2004; Ammermuller and
Pischke, 2009), influence decisions regarding technology adoption (Foster and Rosenzweig, 1995;
Conley and Udry, 2010) and serve as mechanisms for informal contractual enforcement (Ambrus
et al., 2014)). In recent years, the many ways in which social networks affect choices and behavior
have been the subject of extensive research (Jackson, 2010). However, incorporating these mecha-
nisms in applied research remains challenging because of the limited availability of network data.
Even when networks are able to be observed, these observations are often imperfect, such as when

data are self-reported or subject to measurement errors.

This paper develops a method for estimating network effects when network data are either
unobserved or imperfectly observed. The method does not rely on network data and derives
network effects using only individuals’ dependent and explanatory variables data. I specifically
propose an estimator that accomplishes three objectives. First, I estimate network spillovers
— the difference between expected outcomes when networks are and are not relevant — without
network dataﬂ Spillovers also capture the extent to which social networks amplify the effect of
explanatory variables on outcomes (Miguel and Kremer, 2004). Second, I illuminate structural
mechanisms that give rise to network spillovers. I separately identify and estimate Manski’s (1993)
endogenous effects (the dependence of one’s own choices on the choices of others) from exogenous
effects (the dependence of one’s own choices on the exogenous variables of others), controlling for
correlated effects (the similarity of peers in terms of unobservable characteristics)ﬁ The method
also estimates and predicts the probability that pairs of individuals form a connection, which is
allowed to depend on exogenous factors such as common gender. Third, I incorporate imperfect
network data, such as self-reported network data, with the dual purpose of refining the estimates
and providing a test for whether reported connections positively affect the probability that a

connection is formed. Rejection of the null demonstrates self-reported network data validity.

To achieve these goals, I propose a spatial econometric model with unobserved and stochastic
networks that is coupled with a model for random network formation. I derive a likelihood for the
model which is not conditional on network. This likelihood is equivalent to integrating the likeli-

hood conditional on observing the true network with respect to the probability density function

2This is also important because OLS estimates are often inconsistent for individual reaction parameters when
networks are irrelevant if network spillovers are not included in the regression, and the size of inconsistency depends
on the unobserved network.

3Endogenous effects are the autoregressive component of a spatial model. Exogenous effects is exogenous compo-
nent of a spatial model. Correlated effects are captured by fixed effects at the individual level. These are precisely
defined with recourse to the model in Section The reflection problem is solved if there are asymmetries in the
expected network (Kelejian and Pruchal (1998)), Bramoullé et al.| (2009) and De Giorgi et al.| (2010) explore similar
assumptions when networks are observed) or observation of groups with distinct sizes is available (see also |Lee,
2007)).
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of the stochastic networkﬁ Observation of data on individuals’ outcomes and explanatory vari-
ables in many self-contained groups, such as classrooms in a school, then provides the identifying
condition to estimate the model that serves as a substitute for network observation. In essence,
networks are treated as a source of unobserved heterogeneity. I allow for time and fixed effects at
the individual or group level when panel data are available and when networks are invariant over

time.

The estimator for network spillovers is consistent and asymptotically normally distributed
under weak identification assumptions because in this case it is not necessary to separately identify
endogenous and exogenous effects. In other words, the parameters of the model are identified up to
a set and, as I will show, the network spillovers are constant if evaluated at a parameter that belongs
to the identified set. Consistency and confidence regions for the structural parameters are provided
making use of the set identification frameworkﬁ To provide point identification for structural
parameters of the model, I explore the difference between observed second moments of the data
and those implied by the model. I utilize the fact that the presence of social interactions creates
dispersion in average outcomes across groups that cannot be explained by independent variables or
peer group heterogeneity alone. Such "excess" variance is explored to build an additional moment
restriction and to solve a Generalized Method of Moments (GMM) problem which also includes
the score conditions implied by the maximizing the likelihood. This completes the requirements

for point identification and consistent estimation of the structural parameters of the modelﬁ

To illustrate how this method can be applied in practice, I employ the estimator developed
herein to investigate treatment effects both on treated and their peers in a setting potentially
conducive to spillovers. The randomized intervention of Bandiera et al. (2013)|Z| studies the effect
on the treated of the provision of livestock and training to low-income households in Bangladesh
and finds that the lack of capital and skills is a strong determinant of the occupational choices of
the poor. Targeted households begin new livestock-rearing businesses, increase self-employment
hours and reduce wage hours. Due to village-level randomization, a large portion of the individuals
in the selected villages are treated, which raises the possibility that network effects are important

in determining these outcomes, particularly for peers of those who are treated.

Without using network data, I first demonstrate that network spillovers are economically and
statistically significant in determining certain outcomes, especially food expenditure and food
security. In these cases, spillovers amount to half of the original treatment for both treated house-
holds and their peers. Spillovers of occupational choice and livestock are either insignificant or

of a small magnitude. To analyze the structural mechanisms that lead to these results, I then

4Due to computational reasons, I will focus on an alternative to integrating the likelihood, based on substituting
the unknown networks by expected networks

% |Chernozhukov et al|(2007)), [Bugnil (2010) and [Romano and Shaikh| (2010)).

9Graham| (2008) uses a similar idea in the context where networks are observed, within the linear-in-means
model.

I thank the authors for sharing data.
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decompose spillovers into exogenous and endogenous effects. I demonstrate that, regarding occu-
pational choice and assets, a marginal connection to a treated household has an effect in opposite
direction to the effect on the treated: an additional connection decreases self-employment hours,
increases wage hours and decreases livestock Valueﬂ On the other hand, a marginal connection to
the treated increases food per capita expenditure and food security to a significant extent. These
results are consistent with the phenomenon in which peers of treated households partially fill the
vacancies left by those who begin new livestock-rearing businesses and suggests a specialization
at the village level, where treated households gain comparative advantage in livestock rearing.
Estimating the network structure also demonstrates that network densities are fairly low in the
majority of cases, suggesting local interactions via personal contacts as opposed to changes in
prices in village-level markets. Finally, inclusion of self-reported network data indicates that fam-
ily links convey meaningful interactions between households, whereas economic (i.e., non-family)
links are much less capable of explaining these social dynamics. This result thus reinforces the

idea that families are natural loci for sharing information and conducting business.

The methods developed in this paper contribute to the spatial econometrics literature, which
has to date considered estimation only when networks are observed, non-stochastic and measured
without error. The role of randomness in network formation has also received scant attention
in spatial models, despite its importance in social networks (Diestel, 2010). The dependence of
existing methods on acquiring knowledge of true networks has been stressed as a limitation of the
previous literature (Anselin, 2010; Pliimper and Neumayer, 2010)E| Representative papers in the
spatial econometrics literature include those by Anselin (1988) and Kelejian and Prucha (1998,
1999, 2001, 2010). Lee (2004, 2007) and Lee et al. (2010) also consider a maximum likelihood
estimator. The case in which networks are not observed is explored in Chapters 2 and 3 of the
current thesiﬂ and Manresa (2013), who consider the estimation of networks when one group is
observed for many periods of time and, as a consequence, clearly suit different applications. It
is useful to highlight that the latter papers estimate networks as a collection of pairwise links.
In contrast, the current paper is concerned with the probability that a link is formed and the
role of exogenous factors therein. The identification results reported by Manski (1993), Graham
(2008), Bramoullé et al. (2009) and De Giorgi et al. (2010) are also derived under the assumption
that networks are observed. In another strand of the literature, stochastic network formation
models, such as those described by Holland and Leinhardt (1981), Frank and Strauss (1986) and

8The magnitudes of the estimates imply that peers of treated households compensate around 25-30% of the
reduction in treated households’ wage hours due to exogenous effects. Endogenous effects move in opposite direction
reducing the size of the overall spillover effects. Additional details can be found in Section

9Pliimper and Neumayer| (2010) show that misspecification of the networks causes serious bias in parameters of
the model, which should be a particular concern for the study of social interactions, where these issues frequently
appear. Another facet of the same problem emerges in estimation techniques that proposes using peers of peers’
exogenous variables as instruments for one’s own endogenous variable, such as Kelejian and Pruchal (1998 1999),
Bramoullé et al.| (2009) and |De Giorgi et al. (2010). To the extent that network data suffers from measurement
errors, one risks violating relevance or validity assumptions without awareness.

19Gee also Lam and Souza (2013, 2014)
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Strauss and Ikeda (1990), also consider the estimation of network structure only when network

observations are available.

Beyond its contribution to the spatial econometric literature, this paper provides a method
for systematically investigating network effects, with potential applications in many fields, such
as peer effects in education (Sacerdote, 2001; Angrist and Lang, 2004; Ammermuller and Pischke,
2009; Bramoullé et al., 2009; De Giorgi et al., 2010), information diffusion and technology adop-
tion (Foster and Rosenzweig, 1995; Bandiera and Rasul, 2006; Conley and Udry, 2010), social
networks and labor outcomes (Rees, 1966; Granovetter, 1973; Montgomery (1991); Conley and
Topa, 2002; Munshi, 2003; Pellizzari, 2004; Calvé-Armengol and Jackson, 2004) and crime and
delinquent behavior (Glaeser et al., 1996; Dell, 2012). In the macroeconomic and trade literature,
these methods can be used to study networks as sources of aggregate fluctuations (Acemoglu et
al., 2012) and to estimate parameters of gravity equations (Anderson and van Wincoop, 2003).
These approaches are particularly relevant when obtaining data on networks is difficult, time-
consuming or expensive, which frequently occurs with social network data because reported links

are frequently subjective and prone to behavioral biases.

The remainder of the paper is structured as follows. In Section 2, I introduce the model, define
network spillovers and illustrate the inconsistencies that arise when networks are not accounted
for. In Section 3, I present the estimator for network effects in the absence of network data and
explore its asymptotic properties. Section 4 provides a simulation to validate the performance
of the estimator in small samples. Section 5 compares the methods in this paper with existing
alternatives for estimating spillovers. It also provides an application to treatment spillovers based

on the study of Bandiera et al. (2013). Section 6 concludes.

1.2 Model

The model consists of two parts: a model for stochastic network formation and, given a network,
a spatial econometric model that connects explanatory variables to outcomes. The former is suf-
ficiently flexible to allow the probability link formation to depend on exogenous characteristics,
such as sharing race or gender or the distance between householdsFE] This model may also incor-
porate individual-level characteristics that attract links or, conversely, that make an individual
more inclined to form links with others. In this Section, I assume a simple Bernoulli model for
network formation; a full account is provided in Appendix Given a network, the spatial
econometric model has been extensively considered in the literature, such as by |Anselin| (1988),
Lee (2004), Bramoullé et al.| (2009), Lee et al| (2010) and |De Giorgi et al.| (2010); however, in

"The model also falls into the Exponential Random Markovian Graphs category. See [Holland and Leinhardt
(1981)), [Frank and Strauss| (1986)) and Strauss and Ikeda (1990).
*“See also Wasserman and Faust| (1994) and |Jackson| (2010).
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contrast to previous papers, I consider the estimation of network effects in the absence of network

data.

I assume that data are available for groups j = 1,...,v and individuals i = 1,...,n;. Individ-
uals interact within groups with observed boundaries, but data with respect to networks within
groups are not available. For example, information is available on classes that students belong
to but information regarding intra-classroom networks is not available; households are known
to be located in villages, but the researcher does not have information regarding the pattern of

interaction between households.

For each group j, a network is described with a directed graph G, an unordered collection of
ordered pairs of individuals among n; individuals. This set lists links along with their associated
directions: {i,k} € G; implies individual ¢ affects individual k in group j. For example, if
individual 1 affects 2, 2 affects 3 and 3 affects 2, then G; = {{1,2},{2,3},{3,2}}. As noted by
Wasserman and Faust| (1994, Ch. 4), Diestel| (2010, Ch. 1), Jackson/ (2010, Ch. 2), Ballobas| (2013,
Ch. 1) and others, this representation is quite general. For example, Figure portrays estimated
links between United States senators, as described by [Lam and Souza| (2014]), based on their 2013
voting records. It is also convenient to express the graph with a so-called neighboring or spatial
matriz Wj, of nj x n; dimensions, a representation of G; with {W;}, = 1if {i,k} € G; and
{W;},, = 0 otherwise. It is assumed that no individual affects him or herself; thus {W;},. = 0,
for all i € {1,... ,nj}m

Network formation is random with a probability law, indexed by parameters of interest 6,. I use
a simple model for clarity of explanation only. Suppose a link between individuals is formed with
probability §; when the pair shares a characteristic and dp otherwise. To write the probability
distribution function, allow n; x n; matrix @); to register the commonality of this individual
characteristic. If ¢ and k have the same gender, for example, let the elements of the matrix
{Q;}, = {Qj}1; = 1 and zero otherwise. Matrix @; could also capture if i self-reported a
connection with k. In these cases, P{{W;},, = 1{Q;},;x,} = 60(1 —{Q;};x) + 61{Qj};,- The
vector of parameters of interest, carried to estimation, is 6y = (d1, o). Under the assumptions
that link formation is homogenous and independent across pairs of individuals, the probability

distribution function isIE

P{ Wj = wj] Q]} = H (6%Q7}zk537{Qa}zk){w]}m X
i,k<TLj
(1= 61){Qj}ik (1-— 50)1—{Qj}ik)1—{wj}ik‘ (1.1)

Model (|1.1)) is a simple but arguably truthful representation of situations where differential patterns

3@, and W; are arrays which depend on the group sizes n;. In order to keep notation concise, I adopt G; = Gn;,j
and W]' = an e
4This assumption is maintained here only simplicity. In general, link formation may not be independent.
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Figure 1.1: Graph example from |Lam and Souza| 42014D.

Note: Red nodes are Senators that belong to the Republican party, blue are Democrats and white are independents.

of associations dominates coalition or strategic behavior, cases in which independence of link
formation is violated. A classroom divided along gender or racial lines is possibly an example that

satisfies assumption above.

Given a network, it remains to describe a model linking explanatory variables to outcomes.
Denote VV]Q and M ]Q as two random and unobserved realizations of a network-generating process,
such as the one introduced above. This network is embedded is a spatial econometric model, which
incorporates dependence of one’s own outcome variable on others’ outcome variables and others’
exogenous variables. For a particular group j = 1,...,v composed of n; individuals, the model is

given by
Yy = )\OW]Qyj +xjB10 + W]ijBQO tvj (1.2)

where y; is a column vector of dimension n; x 1, x; is n; x k, and v; is the n; x 1 disturbance
vector. Disturbance term v; is assumed to follow a structure that allows for spatial dependence,
v; = poM. ]ij + €, where ¢; is nj x 1, independent and normally distributed with variance O'g. As
a particular example, this includes group-level clustering and heteroskedasticity that arises from

heterogeneous exposure to disturbances of others.

In Manski’s (1993) taxonomy, the term W]Qyj corresponds to the endogenous effects, or the
dependence of one’s own behavior on the behavior of others through link strength scalar parameter

Ao. Parameter §1, of dimension k x 1, captures the direct effect of one’s own exogenous variables



CHAPTER 1. ESTIMATING NETWORK EFFECTS WITHOUT NETWORK DATA 16

on one’s own dependent variables. Parameter 5, of the same dimension, describes the effects of
others’ exogenous variables on one’s own dependent variable. Thus, Wj%j is denoted as contexrtual
or erogenous effects. Correlated effects are represented by the error v; = poM]ij + ¢; and fixed
effects, which I describe in Section This model is similar to the model in |[Bramoullé et al.
(2009) and |Lee et al.| (2010), among other studies, and is known as the "mixed regressive-spatial
autoregressive model" in the spatial econometrics literature (Anselin, [1988). I am then interested
in the estimation of usual spatial parameters 5 = (Ao, 810, B59» p0, 03) and 6, = (5o, d1). Hence,

the complete set of structural parameters of interest is 6 = (6., 9;)'.

Dependence of one’s own outcomes on other’s outcomes and exogenous variables often means
that the overall response to exogenous variation exceeds B19. As a consequence, to the extent that
individual network spillovers depend on one’s own exogenous variation, estimators for 1o that
do not account for network spillovers are frequently inconsistent, as I demonstrate immediately

below.

Using the series decompositio (In; — )\OW]Q)A =3 )\E(W]Q)s to obtain the reduced-form
model, the expected outcomes are separated into two components: the individual reaction or

elasticity with respect to x; and its effect through the network,

oo
Ey; = ;8104 W)z;Ba0 + Z (AoWP)® (25810 + Wiz Ba0) - (1.3)

s=1
The term x ;819 is understood as the individual-level elasticity with respect to x; if networks were
irrelevant, whereas the second and third terms jointly denote network spillovers, the additional

effect on the mean exclusively due to individual interconnectedness:

o (xj,00) = W]Q$j520 + Z (AOWJQ)S (zjB10 + WJQHTjﬁQo)

s=1

= > AT (W) @5 (AoBio + Ba0) - (1.4)
s=1

Clearly, if A\g = 0 and f29 = Opx1, or 01 = dp = 0, then ¢ (z;,6p) = 0. Spillover ¢(z;,6)) is a

n; X 1 vector because each individual accrues his or her own spillover.

Separate identification of the individual reaction and network spillovers is relevant in at least
two scenarios. Provided that the ultimate goal is to consistently estimate 519, ¢ (2;,60) is a con-
founding factor. As shown in Subsection [1.2.1] when networks are unaccounted for, consistent
estimating [1p requires an underlying network structure such that one’s own network spillovers
are independent of one’s own exogenous variation, a condition that breaks down in simple coun-

terexamples.

15Conditions for existence of this decomposition are derived in Section
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Moreover, network spillovers are of interest in their own right, as shown by the plethora of ex-
amples in the literature. |Glaeser et al. (1996) argue that social interactions explain petty criminal
behavior very well, but are also of moderate importance in explaining more serious offenses. Hence,
crime prevention policies have indirects effects by reducing of others’ proclivity toward criminal
activity, and the effect’s magnitude then shapes and informs the public policy debate. In another
example, Foster and Rosenzweig (1995) reason that farmers’ decision to adopt high-yielding seed
varieties depends on other farmers’ decisions regarding adoption and their accrued profit; con-
sequently, a single farmer’s adoption decision multiplies itself by inducing others to adopt also.
Finally, note that parameter ¢ (z;,0) can be explored to optimize treatment effects under a given
budget of resources. To the extent that network spillovers are prevalent and positive, often average

treatment effects can frequently be maximized by concentrating treatment in fewer groups.

Remark 1. Panel or spatiotemporal models can be naturally introduced from equation (|1.2)). Index

explanatory variables and outcomes at time ¢t = 1,...,T and the complete model reads
yit = MoWyje + B0 + WiajBa0 + aj + i + vt (1.5)

where «; is a vector of n; x 1 time-invariant coefficients (but allowed to vary at the group or
individual levels), which are also denoted, following Manski (1993), as correlated effects. The
vector 4 represents time effects. Under the invariance of networks with respect to time, I propose
a data transformation that eliminates these nuisance parameters in Subsection When
is a treatment indicator, model can be described as a differences-in-differences estimator
supplemented with a network component. In the absence of network effects (Ag = 0 and Sy =
Ogx1), the model is reduced to a standard differences-in-differences. In this context, the terms

)\OW]O and W]ijtﬁgo measure the treatment spillovers through the network. O

1.2.1 Inconsistency when Networks are Unaccounted for

Equations (|1.3]) and (1.4) immediately imply that the aggregate group response to a shock is the

sum of one’s own variation in the absence of networks (f10) and network spillovers (¢),

yi = xjBio+e(z;,00) + €. (1.6)

On the one hand, disentangling the two components provides insights into the mechanisms that
determine the responses to the shock. In particular, the role of networks is separated from the
response in its absence; this construct is useful for example to provide external validity to ran-
domized controlled trials prior to reimplementation in settings in which networks might differ. On
the other hand, the omission of ¢(z;,6p) biases OLS estimates when one’s own spillover is not

orthogonal to one’s own shock.
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Consistency for 19 requires that E(yp(x;,00)|z;) = 0 for all i = 1,...,n;, the case in which
the researcher would be oblivious to network spillovers. At the other extreme, only under perfect
correlation between x; and ¢(z;,6p) the OLS estimates are consistent for the sum of 519 and full
spillovers. In general, however, independence is not generally attained, failing in particular under
reciprocated networks or correlation between x;; and xy; for i # kﬂ In this case, the biasing
term (m;-xj)_lz;-E(gp(mj,Go)|xj) depends on the network structure, which is unknown; thus, the

size and presence of bias are also unknown. I now provide some examples.

Example 1. (Classrooms and the linear-in-means model). Manski (1993) proposes the linear-in-

means network model in which individuals interact with all others in a given classroom and

1 1
e R
1 1
0 n—1 0 e 1 ! 1
W] = = LnLn— n
: : .. : n—1 n—1
1 1
L n—1 n—1 0 h

where I, is the n x n identity matrix and ¢, is the n x 1 vector of ones. Suppose x; is a treatment
dummy and « is the proportion of the individuals in the group that were treated. The expectation

of response conditional on treatment is obtained via the reduced-form model

v = (S9) " i+ (S9) 7 WiaiBan + (S9) 7 (B9) e

0_ 0 poO _ 0 (e0\—1 _ _n—1 A 0\—111/0 _
where S} = I, — AW}, R} = I,—po M, (S’j) = g Int (n_1+/\00)(1_>\0)LnL;l and (Sj) W) =
1+Xo

_n_11+Ao I, + = +/\0)(17>\0)Ln%. The expectation of the outcome of individual ¢ in group j,

conditional on not receiving a treatment, is

" Aof10 + (14 o) Bao
(n—l—l—/\o)(l—)\o)

E[yij| zij = 0] =

and describes the network spillovers to untreated individuals. Conditioned on receiving a treat-

ment,

o (n=1) B0~ Ba XoB1o + (1 + o) B2o
E[yl]|xlj_1] = n—1+ X\ +Oén(n_1+/\0)(1_)\0) (17)

thus, in general, the population difference Ely;;| z;; = 1] — E[y;;| 255 = 0] is approximately Si¢ for
a typical classroom size, such as n = 25. This result implies that OLS estimates are consistent for

(1o even if oblivious to network spillovers. O

Example 2. (Households and local interaction). Households typically interact with few others,

8This type of violation would occur in the case in which individuals who are eligible for a treatment are also
more likely to have other eligible individuals in their social networks. Snowballing a treatment is another clear
example of violation of the no self-spillover condition E(p(x;,00)|z;) = 0.
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and relations are generally reciprocated. For the sake of example, suppose a network consists of
isolated subgroups of five households, in which interaction across subgroups is negligible in com-
parison with interactions within. In this setting, W]Q is a block-diagonal matrix with ¥ blocks{ﬂ, or
VV]Q =1 2Q® (%L5L/5 — 515). Suppose a proportion « receive a treatment. In contrast to the previous
example, the difference E[y;;| z;; = 1] — E[y;;| x;; = 0] is no longer approximately /319, which can
be shown by replacing n = 5 in equation . As a consequence, OLS estimates are biased for 19

and capture the portion of one’s own spillovers that correlate with one’s own treatment status. [

Generally, OLS is only consistent for 1y in particular network structures. When networks
remain unbserved, the implementation of such a strategy depends on hypotheses that rule out
feedback mechanisms. In Section I provide a method for consistently estimating ¢(z;,6)
under few identifying assumptions that address both motivating elements. The method is based
on a maximum likelihood integrated with respect to unobserved networks, resulting in a likelihood
that is independent of network observation. In essence, I deal with the networks as unobserved
heterogeneity. As will be shown, although the point identification of 6 is not obtained without
additional assumptions, spillover ¢ (z,6) is constant within the identified set and thus point-
identified. Section uses additional identifying information to sort through the identified set

and reestablish point identification for the structural parameters.

1.3 Estimation of Network Effects

Spatial econometric models dealt with the case of known Wy and My. Under certain conditions,
including network observation, [Lee| (2004)) and Lee et al.| (2010 show consistency and asymptotic
normality of a quasi-maximum likelihood estimator for 6. In this scenario, accounting for network
effects would not pose a challenge. However, these results are of no use if Wy and My are unobserved
or imperfectly observed, such as when there are measurement errorﬁ or data are self-reported.
Recently, other papers suggested similar approaches to this problem. [Hsieh and Lee (2015)@ are
concerned with a social interactions model in which an observed network is formed endogenously
and, for this purpose, propose a bias corrections using a network formation model. In contrast,

the current paper does not assume the observation of the network.

In contrast, I deal with networks as a form of unobserved heterogeneity. Networks are ran-
domly formed with certain probability law, homogenous across groups, and observation of many
groups is available. More formally, I propose an integrated likelihood approach. The likelihood

unconditional on network observation is the integral of the likelihood given a network (from a

"For simplicity, assume n is a multiple of 5.

18Observation of networks with measurement errors constitute a challenge for methods that are, directly or
indirectly, based on network-generated instruments, as validity assumptions are often violated. This is the case of
Kelejian and Pruchal (1998, 1999)), Bramoullé et al.| (2009) and others. Also see |[Pliimper and Neumayer| (2010).

Ysee also [Goldsmith-Pinkham and Imbens| (2013)
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spatial model soon introduced) with respect to the probability density function for a stochastic

network model:
L (6] g, 30, On) = /ln£(9|yn,xn,Wn,Mn)dP(Wn,Mn|Qn,xn,ﬁ) (1.8)

where v, = (1,...,,9,), ©, = (2},...,2))", W, and M, are a random block matrix with
Wy,...,W, and M,..., M, along the main diagonal. Therefore W, and M,, have dimension

nxn,no=3.,

nj. Likelihood In L (0| yn,xn, Wy, My) is derived from a spatial model and
for simplicity it is assumed independent of Qnﬂ The probability density function of networks,
P(W,, My| Qn, zy,0), depends on exogenous variables @, and x,, and parameters . In this way,
the probability that peers form a link is affected by individual characteristics (,, which do not
directly affect the mean and exogenous variables x,,. For example, connections may depend on a
treatment status dummy@

n;(n;—1)
7

Since there is a finite number of possible graphs, labelled s = 1,.. ., gny, With gn, = 92 5=1
the full likelihood can be exactly approximated by

gnv
L (0] Y, @n, Qn) = > L (O] Y, T, W) P (W3] Quy s 6) . (1.9)

s=1

Even for relatively small numbers of n; and v, g, is an enormous number. Taking v = 5 and
n; = 10 for j = 1,...,v, the total of number of graphs g, exceeds 1035, Therefore, evaluation

of this integral is computationally costly and burdensome.

I propose a modification that implements a computationally efficient estimator. I substitute
Wy and My for their expected Valueﬂ WE(Qn,0) = [ WypdP (Wy| Qn, 2y, 0) and ME(Qy,0) =
[ MypdP (M,| Qn,zn,0). Estimation of network spillovers and structural parameters is based on
the likelihood of the model

yi = AW7(Q4,0)y; + a1 + Wi (Qj,0) x 2 + v (1.10)

with v]e-(Qj,Q) = pr(Qj,O)vj + €j. The term "pseudo-likelihood" is used to distinguish the

likelihood of this model from the likelihood of the model with known networks.

Model (|1.10)) is equivalent to the model if networks were observed in addition to mispecification

20This assumption means that characteristics that underpin the network formation do not affect the spatial model
directly, but only via the networks.

21T rule out endogeneity with respect to outcomes ¥,. This is the topic of a future extension to the current paper.

22For simplicity of explanation, momentarily assuming WJQ and M jo are independent, which does not hold for the
rest of the paper.
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terms that are clos@ to zero when 6 = 6,

yi = AWPy;+xiB10 + WiwjBag + AW (Qy,0) — W)}y,
= +{W;(Q;,0) — W)} z; B0 + 05 (1.11)

Intuitively, the misspecification terms containing {W7(Q;,0) — WJO} are of small relevance when
a large number of groups is observed. This point is best exemplified if group sizes are constant,
condition that is not carried for the remainder of the paper. Under certain conditions, a Law of
Large Numbers ensures that v~—! Z;’:l VV]Q NN Wje(Qj,H). Averaging the model across groups

then implies that misspecification terms are small when v — oo.

The substitution of true networks for expected networks has two consequences. First, the fact
that model is inherently misspecified implies that the equality between information matrix and
expected hessian does not hold, which will have implications for the expression of the asymptotic
variance. Second, the introduction of expected networks implies that pointwise identification of
parameters 6 is generally not achieved. There are multiple combinations of A, 8 and 5 such that
the model is observationally equivalent.

Subsections [I.3.1] to [[.3.3] discuss identification in three scenarios. In Subsection [I.3.1] I show
that knowledge of one parameter (I arbitrarily focus the discussion on \g) restores identification
under the mild additional assumption that there are at least three distinct group sizes. I will show
that variation in group sizes allows me to separately identify endogenous and exogenous eﬂ:"ects@
Knowledge of A\g separately identifies the case of a weak connections with high probability (low A,
high &y and 1) from the case of strong connections with low probability (high A, low dy and d7).
This is then sufficient to fully identify the model.

Subsection considers the estimation of § when A\g is unknown and no additional informa-
tion is provided. In this case, the true parameter 6, is identified up to a set ©g. Importantly, I
demonstrate that parameters in the identified set yield network spillovers equal to the spillovers
evaluated at the true parameter. That is, for all § € ©q, p(x;,0) = p(xj,6y). Hence, network
spillovers are point-identified. I provide the set estimator and confidence regions for the parame-
ters. In the interest of generality, the test for network data validity is also proposed in this context.
I adapt the ideas of |Chernozhukov et al.| (2007, |Romano and Shaikh! (2010) and Bugni (2010) to

provide confidence regions for the structural parameter 6.

The problem with unknown A¢ can be analogously interpreted as an under-identified General-

ized Method of Moments (GMM) problem in which moment conditions are given by the score of

23Comparison between likelihood computed with expected network and true networks can be found in Tables

@ and @ in the Appendix.
A

s also shown by Lee (2007) for the case in which networks are known. Asymmetries in the network, such as
those considered by Kelejian and Prucha (1998,1999), Bramoullé et al| (2009) and |De Giorgi et al.| (2010) could
also be used to provide identification. These would in turn require asymmetries in Q.
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the likelihood. The previous non-identification result manifests itself as the absence of one moment
condition relative to the number of parameters. In Subsection I then make full use of the

model to obtain one additional moment condition which restores point identification of 6.

Earlier work on identification of social interactions observed that the presence of social interac-
tions generates dispersion of average group outcomes beyond what can be explained by variance of
explanatory variables of peer group heterogeneity alone (Glaeser et al., [1996; |Graham), 2008)). I im-
plement this idea in the case where networks are unknown. This introduces an additional moment
condition: the difference between observed and model-implied across-group outcome variance.
As I will show, this restores identification. Consistency and asymptotic normality of the GMM

estimator follows. Before proceeding, I formally derive the likelihood.

Define S¢ (Q;,0) = I—AW{ (Q},0), SY (A) = I-AW), 89 = 59 (\), RS (0) = I—pM (Q;,0),
R? (p) = 1— pM]Q, Rg-) = RJQ (po)s Z5(Qj,0.) = (xj, W5 (Qj,0.) ;) and the block matrices
W2 (Qn,0:) = diag(WP (Q1,0c),..., W) (Qu,0c)), Wy (Qn,0) = diag(Wf (Q1,6c),. ..,
W5 (Qu, 0c)), Mg (Qn,0c) = diag(M{ (Q1,0c),..., M7(Qu,0:), S5 (Qn,b) =
diag (S§ (Q1.0) .-, 55 (Q1,0)), and Z (Qn.0e) = (2§ (Q1,0c) - Z5 (Qu, ). Model
can be denoted y, = ANW2yn + 2nB10 + W2z, B20 + vn, Where v, = (vf,...,v])". The pseudo-
likelihood is

InLS (0)ly,z,Qn) = —gln(27ra2)—l—ln\SfL(Qn,H)]+ln|Ri(Qn,¢9)|

L (Qu0) € (@) (1.12)

202 “n

with €€ (Qn,0) = RS (Qn,0) (S (Qny0) yn — ZE (Qn,0) B) for B = (B, 3,)'. Parameters 3 and

o2 are concentrated out of the likelihood, simplifying derivations and implementation. Denote

0. =6\ { 5,02} the non-concentrated parameters. At each 6., the closed-form solutions for the

concentrated parameters are

A~

B (Qna 60) - (Zrc;/ (Qm 90) RZ/ (Qn; HC) Rfl (Qm ec) ZTEL (Qm 90))_1 :
'ZEI (Qm ‘90) RZ/ (Qna 96) RZ (Qm 90) Src; (Qna 96) Yn
6 (Qn.0e) = %(Sz (Qns0e) yn = Z5, (Qns 0) B () By, (Qns Oc) By, (@, 0c) (S5 (Qns B)

—Zﬁ (Qna Hc) ﬂ (90))
= S (Qui) B (Qu00) P (Qus00) B Q) S5 (@)1

where Py is the projection matrix

P (Qn,0c) = In— RS (Qn,0c) Z (Qny0e) (ZE (Qn.0e) RS (Qu, 0c) RS (Qny 0c) ZE (Qu, 0c)) -
‘ZZI (Qm 90) Rrezl (Qn; 00)
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and P = P° (Qn, 02). The final form for the concentrated pseudo-likelihood brought to maxi-

mization is

I L5, (el 0, Q) = =5 (0(2m) +1) = 5 6% (Qu. ) + 1S5 (Qu, 60)]
+ R (Qn, )] - (1.13)

The final estimator is 0 = (6, 5(6..)’,6%(0.))’, where 0, = arg maxgee, In LS (0] yn, Zn, Qn). I n0OW

lay formal hypothesis to guarantee asymptotic properties of the estimator.

1.3.1 Pointwise identification of § when )\, is known

In this subsection, I present the basic assumptions for consistent estimation and pointwise iden-
tification of the parameters in the model. Identification Assumption [6] required for pointwise
identification of 8, holds only if Ay is known to the researcheﬂ Assumptions are maintained

throughout the remaining subsections.

The first assumption defines the true model, properties of the networks and homogeneity of the
probability law (P) that generates (unobserved) networks across groups. The zero main diagonal
is essentially an identification condition and implies that no individual affects him or herself.
The independence of P with respect to 3 and o2 allows me to concentrate these parameters, as

described previously, and is taken for simplicity only as results do not depend crucially on it.

Assumption 1. For each group j =1,...,v, data are generated according to the model
yi = MW}y + z;B10 + Wiz;80 + v

with vj = poMijj +¢ and ¢ ~ N (0,021). The elements of x,, and Q, are uniformly bounded
constants. Let maty, ({0,1}) denote the space of nj-by-n;-by-2 matrices with entries in {0,1} and
zero main diagonal, let (Q, F, P) be a a probability space with F as o-algebra of subsets of Q and P
as probability measure. {WJQ, M ]Q } is particular realization from a random matri@ a measurable
map from (S, F) to maty; ({0,1}), with probability distribution function P (Wj, M;|0,x;) with

common functional form across groups. P does not depend on B or 0.

In some applications, it is customary to conduct a row-sum normalization of W}, the operation
consisting of replacing W; by a W} with {W}}, = (Wit /S 02 {W;},, (Anselin, 1988, Kelejian
and Pruchay, [1998] 1999, 2001} [2010, Lee, 2004} 2007, Lee et al.; 2010). This implies that all

individuals in the group are affected by and affect others to the same extent: row sums of W} add

25In fact, Assumption |§| holds in the case where one parameter among Ao, B20 and 92 is known. For simplicity, I
arbitrarily focus the argument on .

25In fact, {WJ-O, MJO} are arrays and full notation should include respective dimensions, {Wnoj > ng,j}. This is
suppressed for simplicity.
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to one. This assumption is avoided here on the basis of anecdotal observation that individuals are
generally not homogenous in terms of their connection to others in the group. In classrooms, for
example, some students may be more affected by peers than others. I leave networks to be, more

simply, a collection of binary numbers.

It is well-known that under row-sum normalization condition, |[\g| < 1 suffices for uniform
boundedness of VV]Q and (Sg-))*l, with S’? = In, — )\OW]Q (Anselin, 1988)). In the current setting,
I propose the following notion of boundedness: let max; |Ag Ezzl{W]Q}ik\ < 1, and so no row
multiplied by Ag in absolute value exceeds one. This includes row-sum normalization as a special
case; for constant row sums WJQ across rows, Ag Zzzl{WJQ}ik = A} Zzzl{Wj*O}ik with \j =
Ao S0 {W;},,- In this case, it is clear that letting VVJQ as a collection of binary numbers and |\g|

closer to zero is only a normalization option. Formally,

Assumption 2. The sequence of n-by-n realized matrices \oW,) and (Sg)_l and expected matrices
AWE (Qn,0) and (SE(Qn,0))~" are uniformly bounded. WE(Q,,0) exists for all 6 € ©.

The next assumption guarantees y; has an equilibrium and its mean and variance are well

defined.

Assumption 3. S? is nonsingular, j =1,...,n.

Asymptotics on v and n;, without any specific order of divergence, is necessary to guarantee
that the misspecification term goes to zero asymptotically and variance terms are consistently

estimated in the limit.

Assumption 4. n — 0o where n =35 n;.

As a minor technical point, it is only necessary that non-concentrated parameters belong to a

compact parameter set O..

Assumption 5. The parameter set O, is compact and the true parameter 62 € 09,

Next, I lay out the identifications conditions required for point identification of parameters.

The Assumption resembles similar conditions of Bramoullé et al.| (2009) and |Lee et al.| (2010)).

Assumption 6. (Identification). Ao is known, network effects do not cancel out (Bag # AoSo),
and z,, WS (Qn, 98) Ty and (Wﬁ (Qn, 08))2 Ty, are linearly independent.

It is useful to note that variation in group sizes is often sufficient to assure independence
between z,, WS (Qn,ﬁg) xyn and (W,f (Qn,ﬁg))an. This is also seen in the subgroup model
of [Lee (2007) where individuals are sorted in many groups. In particular, let the probabilistic

model for network formation be the pure Bernoulli, where links are formed with probability g,
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independent of exogenous characteristic. Then W(Q;, 02) = 60(tn, tn, — In;) and (W7 (Qj, 09))? =
68 (n; — 2)(tn; L%j + In;). With at least three distinct values of nj, independence condition in the

previous Proposition is guaranteedm

Under the conditions introduced above, I present the basic Theorem. Proofs are found in the
Appendix [[.D]

Theorem 1. Under assumptions 0 is a consistent estimator for 6y, i.e., 6-256,.

Asymptotic distribution can be obtained from a Taylor expansion around the point

dln L€ é nsTn,&n . ~ N
nLe( J;; 2n,Qn) = 0. For a point 6 between 6 and 6,

-1

\f(é_g ) B 582 ln£€(9 yn,ZEan) Lalnﬁe(%lyn,wn,Qn) (1 14)
" °) T |n 2000' NG 90 ' '

€ e
The variance matrix of the score vector is ¥, (A\g) = E[% Oln £ (e‘ggn’I”’Q") : ﬁ OIn £ (egg,”’m”’Q")].

In the limit, 6-250,, which implies 6-250y and so the Hessian matrix converges to ,(N\g) =

1 9In L (folyn,xn,Qn)
E[n 06006’ ]

expected outer product of the gradient. The asymptotic variance-covariance matrix converges

. As the model is inherently misspecified, the Hessian is not equal to the

instead to the usual sandwich estimator. That is,

Theorem 2. Under assumptions 1-5, /n(0 —0) =2+ N (0, 271 (X)Q2(Ao)E (o)), where B(Ng) =
limy, 00 Xn(Ao) and Q(Ag) = limy, 00 Qn(No)-

1.3.2 Set identification of # when )\, is unknown

There is one simple way asymptotic independence of the matrices is violated. Any path {\;, B2+, 607}
such  that  WE (Qn,0)) xn P2+ = WE(Qn,02) xpfa0  and A WE(Qn,0) =
AWE (Qn, 93) results in a similar reduced-form, constituting a breakdown of Assumption @ Pa-
rameters are not individually identified, which is compatible with the difficulty in separately iden-
tifying a large number of weak connections from a small number of strong connections. I now turn

to the problem of estimation and inference on the identified set.

Using assumptions only, I employ methods of estimation and inference on set-identified
models of |Chernozhukov et al.| (2007), Romano and Shaikh| (2010) and Bugni (2010) to establish
desired results. The point of departure from classic asymptotic analysis is the observation that
the identified set ©g = {f € O : F,,(f) = F,(6p)}, for F,, () = Eln £¢ (0), and the estimated set
O =1{0cO:1nLs(h) = infyeo In LS (0)} are not singletons.

2"That is, if there are three distinct values of mn;, the only conformable vectors ci1, c2 and c3 such that zc; +
do(diag(eny tnys -+ s tnjtn;) — In)wea + (diag((n1 — 2)iny tnys - -5 (15 — 2)in ;00 ) + I)?zes =0 are ¢ = co = ¢3 = 0.
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In the current case, the identified set is of considerable importance because for any 6 € O,
network spillovers are constant and equal to network spillovers evaluated at the true parameter
vector, ¢ (zn,00). In order to establish this result, define the subset ® (0|y,,z,) C O as the

parameters such that spillovers are equal to p(x,,0), that is,

D (0 yn,tn) = {07 €0 : AL WE(Qn,0F) = AWE (Qu, be)
Wy (@n, ej)JUn/B; =Wy (@n,0,) $n,62} . (1.15)

The next Proposition states that 6y belongs to the identified set ©¢ and that it is fully characterized
by the subset of © such that spillovers are equal to ¢(x,, o).

Proposition 1. For any 0 € (ID(GO‘ Yny Tn), the network spillovers evaluated at 0 are equal to net-
work spillovers evaluated at 0y, ¢ (xn,0) = @ (zn,00). Also, this is the identified set, @(00‘ Yny Tn) =
Oo.

The objective then is to produce a sequence of sets such that: (i) in the limit, they are
consistent estimates of ©g, in a sense that the Hausdorff set distance metric@ dp, converges to
zero in probability, and (i7) select a set O, such that the coverage probability is asymptotically
controlled, that is, lim, o P{60 C O4}) =1 —a for a € [0,1].

These objectives can be fulfilled with the definition of contour sets of the rescaled likelihood
Ly (0] Yn, 20y Qu) = —n " I LE (0] Yy T, Q) —infpe In LS (8] yn, 20, Q)] and O (c,) = {0 € O :
Ly (0] yn, T, Qn) < ¢u}. The next Theorem proves that the estimator © = © (0) is consistent for
Oy, i.e, dh(@, @o)iﬂ). In fact, this result can be obtained if any sequence ¢,, such that n~te, 250
is used to produce an alternative estimator @(cn) For the construction of a set that covers O
with probability a, it is necessary to select ¢, = &, () such that © (&, (a)) possesses the desired
property.

Notice the event {©y C © (¢,)} is equivalent to the event {supgco, Ln (0| yn, Tn, Qn) < cn},
and hence, in order to build coverage regions for the identified set ©g with predetermined proba-
bility «, it suffices to input a ¢, = é, («) such that ¢, consistently estimates the a-quantile of the

test statistic suppeg, Ln (0| Yn, Tn, Qn). That is, for any set K C O, use

n(0) = inf{e : P{sup Loy (0] Yo 00, Q) < e} 1o a}.

PeK

Given the probability is not known, I will use a bootstrap algorithm to produce usable estimates of

¢én (). For the moment, assume ¢, («) is known. The next Theorem shows asymptotic properties

28The Hausdorff set distance metric is defined

dn(A,B) = max {sup d(a,B),supd (b, A)}
acA beB

with d (b, A) = infacal||b — a|| and dj (4, B) = oo if A or B are empty.
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of the estimated contour sets © (¢p,) for the various choices of ¢,,.

Theorem 3. Let ¢, be such that n=tc,—=0. (1) Under Assumptions if ©g # O and © com-
pact, ©g C O (¢,)) with probability approaching one, dy(O (c,),00) = o0, (1) and di,(O (¢,) , Op) =
Op(n_%). (2) For ¢ = ¢, (a) consistent estimator of the a-quantile of supgeg, Ln (0] Yn, Tn, Qn),
lim,, 0o P{O0 C O (¢, ())}) = 1 —a. (8) Given Proposition |1, the network spillover is point-
identified. (4) Point-identification for Bio and of is obtained and (31,62)i>(610,08).

Obtaining confidence regions for known functions of the identified set is important at least in
two circumstances. First, it provides confidence regions for the network spillovers, i.e., confidence
regions for ®¢, the image of ©g under the known function ¢ (z,0) for given 6 € ©g. Second, I will
show it provides a framework for validation of network data, when it is available. I now develop

these points.

Following Romano and Shaikh (2010), in general terms, let f be a known function with
f:0 — T, with Tg being the image of ©p under f, and also let f~1 (v) = {v € T: f(0) = v}.
This suggests a modification of the inferential test statistic in the following way: note v € Tg
if, and only if, there exists some 6 € f~!(v) subject to @, (8) = 0, which in turn implies
that infgcr-1(,) Qn (0) = 0. As before, the objective is to construct a set T, such that cover-
age probability is 1 — a, i.e., lim, oo P{YTo C Ta} = 1 — « and, in analogy to the previous

case, this set can be defined by selecting ) () such that the event {Tg - Ya} is equivalent to

{supveT(,; infoe p-1(0) Ln (0) < cl ()}

Again, if the a-quantiles of the test statistic SUP,, ey infger-1(0) Ln (0) were available, coverage
region with asymptotically controlled error probability o would be obtained directly. Appendix[L.E]
details a bootstrap algorithm for obtaining consistent estimates &, (a) of c (). For the moment,
I now describe the two important applications of this procedure for the context of inference on the

network spillovers and network effects.

Remark 2. (Confidence region for network spillovers). The procedure above can be applied directly
replacing function f with known function ¢ (z;6). In this case, because ¢ (z,,;0) is a function from
© to R!, and given Proposition [I| states the network spillovers are constant in the identified set,
the image Y} is a scalar in R and the confidence region is actually a confidence interval, a subset
of R, O

Remark 3. (Testing for reported network connections). Introduce reporting of network data with
recourse to matrix Q)j, making {Q;},, = 1 if individual 7 in group j reports a link with individual &
in the same group, through which it is believed that ¢ affects k. In this case, a reasonable network
model is given by a collection of Bernoulli trials with probability link formation depending on
link observed reports, that is, model with @, as described above. In this setting, structural

parameter &1 is the the estimated probability given observation of link reports, and g otherwise.
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The null hypothesis of interest is Hg : 61 — g = 0, with alternative H4 : 01 — dg # 0. In the
setting above, suffices to take f : © — R! as f (0) = 61 — do and build appropriate confidence

intervals. O

1.3.3 Pointwise identification when )\, is unknown using outcome dispersion

In the previous subsection, I showed that parameters of interest are identified up to a set and
network spillovers are constant within the identified set. A theoretically feasible restriction to
fully identify the model is to assume A is known: under certain conditions, Theorem [I| proves
consistency. Nevertheless, this assumption is unlikely to be satisfied in practice, as Ao is rarely
observed. In this Section, I increment the problem with one additional restriction which restores

point identification, selecting a parameter in the identified set.

This restriction is derived from matching the observed to the model-implied variance of the
group-average outcome. The intuition is straightforward. When social interactions are not present,
sufficiently large group sizes implies that group averages should be relatively close to population
averages conditional on observables. Introduction of social interactions affects dispersion in the fol-
lowing way. Since individuals mirror the choices of the others, outcomes within a group positively
correlate. In other words, a positive shock to the group affects individuals not only through indi-
vidual decision, but also through peer composition. As a consequence, average of group outcome
increases to greater extent than in the counterfactual in which social interactions are irrelevant. A
similar reasoning applies to a bad shock. It follows that average outcome across groups are more

disperse relative to the case in which social interactions are irrelevant.

It has been observed elsewherdﬂ that group outcomes are substantially dispersed across groups
even when similar along observable characteristics. This anecdotal observation has been denoted
as "excess variance" and used to provide identification when networks are known (Graham) |2008).
Other papers have contributed to identification using covariance restrictions in the context of social

interactions, such as in the survey paper by Blume et al.| (2011}, p. 872) and references therein.

Since network formation depends on a model described in Section [I.2] the dispersion across
groups provides a restriction that includes link strength, probability of link formation and depen-
dence on exogenous characteristics of the others. The relation is usually non-linear and I will show
it is sufficient to provide identification. The main idea is that, accounting for variance originating
from explanatory variables and the individual or group heterogeneity, the remaining variance can
only be explained by social interactions and pattern of association therein. Define, from the outset,

the within and between group variance,

nj
Vivi(n) = ny' D (i —9)* 5 Veilu) = (5 - 9)°
=1

29Hanushek! (1971), Rivkin et al.| (2005), |Glaeser et al.| (1996).
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where ; = n;l Z?il yij and § = vt 2;3:1 y;j. It is useful to derive the expectation of these
quantities in terms of the variance of outcomes as predicted by the model. Then, EViy ;(y) =
n}l S [V(y))l,; and EVpj (y) = n;QL,,LjV(yj)Lnj. From the reduced-form of model l) the
covariance matrix of outcomes for group j is given byﬂ

I ! ! !
V(y;) = E(sjmjﬁloﬁloxg-s; + 25;xj510ﬁ20x;~s;- + s;xjﬁgoﬁmx;-s; )

HE((S) 'eiei (SN 7Y) (1.16)

for s; = (S]Q)_l - E((S?)_l) and s} = (SJ(»))_ll/V]Q - E((Sg)_leo). In absence of networks, s; =
Iy, and sj = On;xn, and, therefore, outcome variance is increased when social interactions are
considered. As pointed out above, in applications it is usually the case that the latter is larger
than the former in the positive semi-definite sense although the reverse relation is theoretically
possible for certain parameters. The distance between variances Vp ; and Viy,; and their theoretical
expected counterparts as implied by the model, EVp ;(y,) and EViy;(yn), is used to distinguish
between competing parameters that belong to the identified set. Given Vg ; and Viy; are observed
from data, we only need to generate predictions from the model . Naturally, this strategy
depends on the theoretical calculation of V(y;), which are often difficult to evaluate analytically
but straightforward to compute. I now introduce one particular example where identification is

throughoutly proven only with between-variance of outcomes.

Example 3. (Bernoulli network model). In a simple setting where link formation is independent
and equal to d1, I conduct a Series Expansion and take a first-order approximation. That is,
(S’;-))_l - E(S?)_l = )\O(VVJQ - IEVV]Q) + --- which is approximately )\O(W]Q - IEW]Q) as remaining
terms decay in exponential rates. Using independence of the Bernoulli trials that generate links,

equation simplifies to
V{y;} = diag(V{W;} (N diag (:c}l) + 2)diag (le2) + diag (x?) + N0%1y,)) + 0 In(1.17)

where V{W7?} is the variance of W7, zj" = diag(x;8106,07), #j* = diag(z;B106902) and z7? =
diag(a:jﬂggﬁma:;) extracts the main diagonal of a matrix into a column vector or vice-versa, as
appropriate. Off-diagonal terms are zero. In the Bernoulli model without dependence on exogenous

characteristics, V{W;} = d1(1 — 61)tp,¢,. and, in this case,

n;
V{y;} = diag ((51(1 — 01)tn, [,/nj (/\Qdiag (:1:]11) + 2\diag (x;Q) + diag (x?Q) + )\20'2Lnj)>
+O—ZITL]'
= 01(1 —41) ()\QL;Zjdiag (:L']H) + ZAL;jdiag (ZL']H) + diag (ZL']QZ) + nj/\202> I, + chInj

39For the panel data with fixed effects, proceed as described in Subsection In this Section, for simplicity I
assume po = 0. This is not substantial as all results are maintained in the more general case.
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and the between-group variance is
VB = nj_lél (1—01) ()\QL;Ljdiag (:c;I) + 2)\L;Ljdiag (56;2) + L'njdiag (%22) + nj)\202> + nj_laZ.

This provides the additional restriction required for the identification of #. Formally, the Jacobian
of the matrix formed by stacking restrictions, including those originating from reduced-form esti-
mation, has full rank, and then Theorem 6 of Rothenbergl (1971, p. 585) is applied. Proofs can
be found in Appendix [[.D-8| O

The approach suggests a Genaralized Method of Moments estimator with moment conditions
given by qui(yj,z;,0) = EVp;(y;z;,0) — Vp;ly,2;,0) and g2;(y;,25,0) =
EVw,;(yj, x,0) — Viw;(y;, x;,0) minimized on the estimated set 0,

/

v v
6 = argl;niél > ai(yjr5,0) | QD as(ys,25,0)
(S . X
J=1 J=1

where q;(y;,7;,0) = [q1.;(y;, 24,0), 42,5 (y;, 24,0)] and 2 x 2 weight matrix Q. It is equally possible
to estimate the same GMM problem on the unrestricted parameter set © and introduce score
conditions given by the solution of the pseudo-likelihood and assigning arbitrarily large weights
to them. Unfortunately, the expected variances are generally difficult to compute. Even in simple
examples, one has to rely on very crude approximations of to obtain the expectation of (S?)_l.
Next, I outline a general procedure for simulating the moment conditions (Gouriéroux and Monfort,
1997) and prove the desired asymptotic properties, including consistency for 6. The final estimator

is the solution to

7

v S

v S
¢ = argmin ZSflzqsyj(yj,xj,ﬁ) Q ZSflqu’j(yj,xj,H) (1.18)
j=1 s=1

€0 \j=1 s=1

where g5 (y;,7,0) = [V, (Y5, %5,0) = VB,j(Fj.s, 75, 0); Vi (05, 25, 0) — VB j (0., 75, 0)] with g5 =
(Sj)fl(xjﬁl +Wiz;Bates), S7 = (In, f)\W]‘?)fl, W? sampled from the distribution of the network-
generating model with parameters 6 and €; is sampled from a normal distribution with variance
o2, If the simulator is unbiased, one can expect that S~! 255:1 quj(yj)LQj(yj) as S — oo
and asymptotic properties follow. In addition, given O is v/n-consistent for Oy on the Hausdorff
metric, one might expect minimizing on the set O is asymptotically equivalent to minimizing on

the identified set ©y.

Theorem 4. If parameters are identified, (i) estimator , minimized on the estimated set
é), as defined in Section is consistent for 6, éiﬁo, and (i1) if S — oo sufficiently
fast, \/ﬁ(é — 00)i>N(O,E*), where ¥* = (G’ (Q*)_1 G)_l, G = EVaqn(Yn, Tn,0p) and Q* =
(Eqn(yn,xn,Oo)qn(yn,xn,é’g)/)fl with optimal choice of weight matriz Q* and g (yn, Tn,00) =
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> i=1 (5,25, 00).

1.3.4 Fixed and Time Effects

In this subsection, I propose a data transformation to eliminate fixed effects, along with corre-
sponding treatment of the variance-covariance matrix induced by this transformation. This is
of considerable importance given that explanatory variables x; may correlate with unobserved
components that vary at the group or individual-level, for example an unobserved "good teacher"

shock in a classroom or unobserved peer characteristic that may affect learning.

Bramoullé et al. (2009) and Lee (2007)) propose eliminating fixed effects subtracting average
of connected peers (local differencing) or average of all individuals in a group in a given time
period, regardless of connection status (global differencing). Neither approach is available in the
current setting: by definition of the problem in the current paper, networks are unobserved, and
hence local differencing is not defined. Yet, global differencing cannot be applied in the absence
of row-sum normalization. Group fixed effects with the row-sum normalization condition implies
that all individuals are affected to the same degree by network spillovers originating for them.
When the row-sum normalization condition is removed, heterogeneity of individual responses to
fixed effects through networks implies that no data manipulation possibly removes them in the

absence of network observation.

For this purpose, I introduce time dimension and time-difference data in order to remove fixed
effects. This approach also has the advantage of allowing for individual fixed effects. Let the

spatio-temporal model be, for t =1,...,T,
Yir = AWy + x5e61 + Wiz + o + v + vje (1.19)

where vj; = pMjvj; + €j;. Here, o represents a n; x 1 vector of individual or group fixed effects,
or both. In the classical fixed effects case, «; is allowed to vary over individuals; the group effect
case is when a; = iy, with constant scalar ¢; throughout individuals in group j and does not
vary over time. Notation is left sufficiently general to incorporate both cases. Group effects, in
Manski’s (1993) terminology, are denominated correlated effects.

Define g0 = yje — Gjo» 5 = T iy st » @50 = 250 — Ty Tjo = Ty jes %o = % — %
and 7. = T~1 ZtT:1 ~¢. The transformed model is

Vie = AWy + 2561 + Wik Bo + Y + Vgt (1.20)

which is a consequence of ([1.19)) because the time-differenced W;y;; is equal to Wy, and similarly
for the W;x;;3, under the hypothesis of invariance of the network over time. Explicitly, the k-th
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line of the time-differenced W;y;; is

nj T 7y nj
Z {Wj}m {yjt}i —7! Z Z {Wj}m {yjt}i = Z {WJ}]% ({yjt}i - {gj}z) (1-21)
i=1 t=1 i=1 i=1

Letting Unr = (U115 Uiy - -2 Uots - - » Vo) and @ = (&4, -0, &gy @hy, oo, @), and sim-
ilarly for © and 4, the full model can be rewritten 4,7 = AWy,rUn1 +Znr 81+ WarTnr B + Y17+ OnT,
where W, = diag {Ir ® W1,...,Ir ® W, }. Remaining matrices are defined in a similar way
and carry the subscript nT for clarity. The variance-covariance matrix of 0,7 is E (i)nT@;zT) =
ag(RgT)_IZnT(RgT)_I, where ¥, = o3l — odT 1 - diag(vrty @ Iy, ... vty & I, ). This
more complicated form recognizes the dependence in ¥, introduced by time-average subtraction.
Finally, likelihood is adjusted to

nT

In LS (0| ynr, Tor, Qur) = — In (2%02) +1In|S; 7+ (Qnr,0)| + In| RS (Qnr, 0)|

1 .
—556nr (Qur, 0) Snreir (Qur, 0) (1.22)

where €7 (Qnr,0) = Ry (Qnr,0) (Inr — AWir (Qur, 0) Ynr — EnrB1 — Wir (Qnr, 0) ZnrB —
3) = RS (Qur, 0) (Sor (Qnr, 0) ?JnT—Zf;T (Qnr,0) B) and ZflT (Qnr, 0) now also incorporate time
effects: 2§, (Q5,0) = (20, WH(Qy, 0)aje, 1{t =1} 1y, ..., 1{t = T}up;) and B = (8, 71,...,71)"
In fact, any variable not subject to exogenous effects can be incorporated by adding columns to

Z;t(QnT, ). The concentrators are now

/é (QTLT, 0) = (Z'reth (QnTa 9) ETLTZT(?,T (QTLTv 9))_1 7ELfT (QnTa 0) iTLT‘S’TC;,T (QTLTa 9) YnT
5 (Qur8) = (S50 (Qur 0~ Ziz Qur.0) B)ur(Si (Qur.0) vur — Zi (Qur.0) )

where 3,7 = RZ/T (Qnr,0) 2nTRZT (Qnr,0). Concentrated likelihood 1' remains unchanged
with 62(Q,r,0) substituted for 52(Qnr, ). Preceding theorems are applied with obvious modifi-

cations.

1.4 Simulations and Implementation

In this Section, I conduct a simulation exercise to demonstrate the small-sample empirical proper-
ties of the estimator. MATLAB codes are available upon reques@. The algorithms are presented
in Appendix

Four simulations sets are performed: purely cross-sectional model (|1.2)), under 7" = 1 and
absence of fixed effects; the panel (1.5) with T = 5 and fixed effects but no time effects; with

time effects but no fixed effects; and, finally, with both time and fixed effects. Sample sizes are

3ISTATA codes will soon be available.
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(n = 25,v = 250), (n = 100,v = 250), (n = 25,v = 1000) and (n = 100,v = 1000). Simulations
with smaller n and v can be found in Appendix In every case, I allow for heterogeneity in
group sizes, by sampling n; from a standard normal distribution with mean n and standard error

5, rounded to the nearest integer.

True parameters are 65 = (0.0125,1,1,0.04,0.04, 1) and 6, = (0.75,0.30)" . In a row-normalized
model and with this combination of parameters, A\ = 0.0125 would roughly correspond to an au-
toregressive parameter of 0.16 for n = 25, 0.32 for n = 50 and 0.65 for n = 75. The probability
of common exogenous characteristic is 50%. That is, P {{Q;},, = 1} = 0.5 and zero otherwise.
Finally,  and € are drawn from a normal distribution with mean 0 and variance 1. The simu-
lation is composed of 500 repetitions@ The average of the estimated standard errors, following
the procedure outlined in is shown in parentheses, while standard deviations of the point
estimates computed across replications is shown in square brackets. Simulations are conducted in

the absence of information on Ag.

Simulated results are largely satisfactory in all cases. Convergence to spatial parameters and
those that underpin the randomness in networks, is observed, even with small n = 25 and v = 25.
Moreover, the network spillover is correctly estimated. In Table [[.F.3] of Appendix I show
that OLS estimates would be inconsistent at averages BOLS = 1.0670 for n = 25 and BOLS =1.1127
for n = 50. This bias is eliminated with the proposed method. Introduction of time dimension and
fixed effects do not change the results, despite the fact that estimates of o now take into account
that cross-section and time variation has been eliminated as the consequence of data transformation
(Subsection . For the case without time and fixed effects, estimates of disturbance variance
is, in most cases, larger than the true value, but this is expected as it captures the misspecification
component due to the fact that the observed model is considered under expected networks —
naturally different from the true networks. It is also noteworthy that estimated standard errors
are very close in most cases to standard errors of point estimates across iterations, demonstrating

good performance of the hypothesis testing procedure.

I also show results on three additional cases in Appendix [[.F.1] Tables [[.F.4] and [I.F.5] shows

the performance of the estimator with very low sample sizes. It shows that even with small samples

up ton = 25 and v = 50, estimates are acceptably close to true parameters and confidence intervals
are correctly estimated. Then, I introduce across-group connections by randomly assigning value
1 to off-block elements of matrix T/VjQ with probability d4. Although not explicitly incorporated
in theory, it is shown that a small amount of violation from the isolated-group assumption does
not deteriorate empirical performance of the estimator. Performance was good up to 64 = 0.05 or
04 = 0.075. Finally I conduct estimation and hypothesis testing when A\ is known but misspecified,
shown in Table of Appendix I assume incorrectly A = 0.0250, twice the true value.

32Using a MacBook Pro 13”, Core i7, Early 2013 specification, the average computing time was <1 minute for
(n = 25,v = 250) and around 5 minutes for (n = 100, v = 1000).
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As expected, I observe halved 61 and &g and Bg estimated twice the true parameter. Associated

standard errors followed the same expected pattern.

I also implement the multivariate network model described in example [ of Subsection

where probability of link formation is described by

P{W;}; =1Q;} = Qjid1 + Qido

where le-ik is the distance between individuals ¢ and k£ who belong to group j, and respectively
for Q?zk Distances are sampled independently from a uniform distribution between —2.5 and 2.5,
and probabilities are cut such they do not exceed 1 or fall below 0. True values are §; = 0.25 and
0o = 0.50, and remaining parameters remain unchanged from previous setting. Results are shown
in Table of Appendix and are also satisfactory with convergence to true parameters
and standard errors also being observed at small values of n and v. Estimation of A\ using second

moments is also satisfactory.
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1.5 Application

Empirical research has led to substantial interest in evaluating the effects of randomized policies
on targeted individuals. Much less progress has been made on evaluating the spillovers related to
those policies, possibly because of problems associated with observing and defining interactions
among people. The method developed in the present paper provides a comprehensive evaluation of
programs when networks are unknown or unreliable, and information on a large number of groups

is available and network effects are suspected.

The importance of assessing spillovers is further highlighted when a large proportion of in-
dividuals are subject to a shock. This effect raises the possibility that spillovers or externalities
play a key role in overall program results (Angelucci et al., 2010). As an example of this setting,
I analyze the effect of a randomized intervention in which a large proportion of individuals was
simultaneously targeted. This example also illustrates that randomization in treatment variables
can be used to estimate network effects, as opposed to randomization in the group formation

(Sacerdote, 2001).

I employ data for a large-scale randomized intervention, which provided compelling evidence
that occupational choice of the world’s poor is determined by a lack of capital and skills (Bandiera
et al., 2013). The intervention consisted of the assignment of livestock and skills training, both
relevant in terms of the outlay (at approximately USD $140) and duration (training lasted for
two years). The authors found significant changes in the occupational choices of the poor, who
moved from wage jobs toward self-employment associated with livestock rearing. The program
was instituted in 1409 communities, which consisted of clusters of 84 households on average. In
each community, households belonging to the bottom quintile of the wealth distribution were
identified, and all were eligible for treatment, with certain exceptions. In total, 7953 beneficiaries

were surveyed, and all eligible households in the randomly selected communities were treated.

The baseline results comparing the treatment group in selected villages against the treatment
group in non-selected villages indicate a dramatic change in the occupational status of targeted
households. Four years after treatment, poor women dedicated 92% additional hours to self-
employment running their livestock-rearing businesses and moved away from wage hours that were
frequently insecure and temporary. This lasting change in occupational status was also associated
with higher earnings, higher per capita expenditure, better general wellbeing and higher measures
of life satisfaction. After treatment, poor households were classified between near-poor and middle

class according to a host of economic indicators.

With recourse to the estimation method developed in this paper, and without network data,
I supplement these results with several network-dependent findings. I show that specific program
effects are not contained to targeted individuals. Network spillovers affect food expenditure and

food security at magnitude around half of the original treatment, but are either insignificant or
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small determinants of occupational choice and livestock assets. I also shed light on the underly-
ing network structural mechanisms that give rise to these externalities. By separately identifying
endogenous and exogenous effects, I am able to estimate the marginal effects of a connection to
treated households. I find that the occupational choice of peers of the treated households move
in an opposite direction to the treated households: a marginal connection to treated households
reduces self-working hours, increases wage hours and decreases livestock value. The magnitudes
of the effects are such that exogenous effects counteract 25-30% of the reduction in treated house-
holds’ wage hours@ However, connections to the treated households strongly increase food ex-
penditure and food security. These results are consistent with the interpretation that the treated
households gained comparative advantage in livestock rearing, which partially changed the occu-
pational choices of their peers. Overall, network effects are shown to form an integral component

of the program evaluation.

There is wide consensus that capital, opportunities, income, information and choices affect the
outcomes of peers (Jackson| [2010). In fact, the opportunities of others have been regarded as a
form of social capital (Glaeser et al., 2002). In this way, a shock to one’s peers can be interpreted
in the same fashion as a shock to one’s self, and the example described here provides evidence
of this mechanism. Now, I turn to a description of the program, followed by the identification

strategy and the results.

1.5.1 Program Description

Selection of targeted individuals proceeded in stages. In collaboration with BRAC, a local non-
profit organization, the most vulnerable districts were selected based on food-security measures,
as described by the World Food Program. Second, BRAC employees selected the poorest com-
munities within each district. Finally, within each community, a combination of a participatory
rural appraisal exercise and survey data were used to allocate households to one of five wealth
bins. Households belonging to the poorest wealth bins were selected as a potential beneficiary if
other eligibility criteria were met, such as not participating as microfinance borrowers and owning
no productive assets. Randomization was conducted at the local BRAC branch level, among its
40 offices in Bangladesh, and stratified at the subdistrict level to ensure balance between treated
and control groups. Within each subdistrict, one branch was randomly allocated to treatment and
another to the control group, and asset transfer was conducted for all selected individuals within
the communities covered by the treated BRAC branches. Consequently, a substantial fraction

of the community population was treated, raising the possibility that aggregate community-level

33This is the ratio between the increase of wage hours due to exogenous effects and the direct effect of reduction
of wage hours. These are numbers are averages across all individuals in treated villages, considering the number of
treated households in each village and the network parameters which affect the number of expected connections. In
this case, endogenous effects counteract exogenous effects which combined produce spillovers of smaller magnitudes.

See also Subsection @
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effects are substantially larger than the sum of isolated individual treatment effects, including, for
example, as a consequence of learning, insurance and informal skills reinforcement from neighbors,
who in turn may or may not be in the treatment group themselves. If eligible and selected through
the randomization process, households received a transfer of live animals (valued at approximately
USD $140) and subsequent skills training for two years that were specifically designed for the cho-
sen asset. Program beneficiaries could select among cows, goats or chickens that added up to the
same face value; the large majority chose cows. Participants were required to keep possession of
the asset for a minimum of two years, but in practice there were no sanctions in case of noncom-
pliance. All potential beneficiaries of the program and a sample of households across the village
wealth distribution were surveyed just before the intervention in 2007 and in two additional waves
in 2009 and 2011. The comprehensive survey consisted of household members’ sociodemographic
characteristics, business assets and activities, land holdings and transfers, financial assets and
liabilities, non-business assets, homestead ownership status and improvements, women’s empow-
erment and vulnerability (such as earnings seasonality and food security), and a health module.
Network self-reported links were registered when applicable, and data included family outside the
household, their business activities, land transfers (through inheritance, mortgage, rent, share,
received as dowry or gift, bought or sold), business asset transfers (same possibilities as above),
finance links (loans, outstanding lending or transfers) and letting of house ownerships. The ques-
tionnaire was applied to all selected and a sample of non-selected households in both treatment

and control groups.

1.5.2 Evaluation and Identification Strategies

Treatment effects on the treated could be evaluated comparing the change before and after treat-
ment in the outcomes of selected households who live in a treated village against similar changes
in the outcomes of selected households who live in non-treated villages. However, this approach

would be unsuitable for estimating the network effects due to two reasons.

First, exclusion of non-treated households in treated and control villages prevents wider eval-
uation of policy for those groups. Second, as I showed in Subsection [[.2.1] the outcome of the
differences-in-differences estimator is unclear when network effects are present because it may or
may not capture network spillovers (). The extent to which the spillovers are estimated depends
on the degree of reciprocation in the network, which is unobserved. When reciprocation is not
present or interaction groups are large enough, Example [1| shows that the estimator is consistent
for the individual elasticity in the counterfactual in which households are unconnected (f19). On
the other hand, separately estimating network-independent 819 from network-dependent ¢ is also
important when the researcher desires to evaluate the policy impact in a setting where networks

might considerably differ.

To tackle these issues, I consider a triple differences-in-differences with all households in treated
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and non-treated villages regardless of selection status. Momentarily ignoring network effects, one
could specify a double differences-in-differences which would compare changes in outcomes of the
selected households before and after treatment against similar changes in outcomes of the non-
selected households. However, this strategy would not be sufficient because randomization was
conducted at the village level: selection of potential beneficiaries within the villages was determined
according to wealth at the baseline. I take two remedial actions. I introduce household fixed effects
and I use the control villages to account for different trends in absence of treatment. The third
difference eliminates the change before and after treatment in the outcomes of selected households
who live in a non-treated village against similar changes in outcomes of non-selected households

who also live in non-treated villages.

The final model is then a triple differences-in-differences with household fixed effects. The
identification assumption is that trends as observed in the non-treated villages are a good counter-
factuals for trends in treated villages. I denote S;; = 1 if individual ¢ of village j was selected as a
potential beneficiary of the program and 7;; = 1 if village j was randomly selected for treatment.

The model without networks is

3 3
vij = > BisSiTyl{s =t} + Y msSi1{s =t}
s=2 s=2

3
+ Z MasTij1{s =t} + v + auj + €ij (1.23)
5=2
where y;;; represents the outcome for individual ¢ in village j at time ¢, s = 2 and 3 are the
second and third survey wave (two and four years after treatment, respectively), a;; is a fixed
effect at the individual level, v; is a full set of time effects, 1 {-} is an indicator function, and €
is the disturbance term, clustered at the village level. The program impact on the treated in the

counterfactual in which households are unconnected are 815 and (3.

I next introduce network spillovers, which take the form of two additional network-dependent
terms attached to equation . Identification in the network setting follows after identification
of the treatment effects on the treated, as introduced above, with added assumptions on variability
of group sizes and moment condition based on outcome dispersion, as explained in Section [I.3]

The full model in vector notation is

3 3
g = AWy + Y BSTi{s =t} + Y W)STj1{s = t}Bas +
s=2 s=2
3 3

+_msSit{s =t} + > miTj1{s =t} + % + o5 + €y (1.24)
5=2 5=2

where VV]Q is the unobserved household-level network and ST} is a column vector with the ith

line indicating whether individual 7 was selected and lives in treated village j. Vector a; =
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[, - - - Q5] are household-level fixed effects. The term )\Wjoyjt represents the endogenous effects
— the fact that one’s own choice depends on others’ choices — and WJQSﬂyl{s = t}[2s represents
exogenous effects, i.e., the dependence of one’s own choices on others’ treatment status. As
explained in Subsection[I.3.4] the correlated effects are captured by the fixed effects and eliminated
via the subtraction of time averages. Coefficients S22 and o3 are interpreted as the marginal effect
of treating a peer. Finally, I average network spillovers ¢(x, é) for treated individuals after two
and four years (denoted @72 and @74, respectively) and similarly for non-treated individuals
(denoted as ¢n72 and @n74, respectively). It is notable that the overall treatment effect for
the treated individuals is the sum of the program effect and spillovers. The construction of the

confidence intervals and standard errors is described in Subsection [1.3.2

Alternative Methods for Estimating Network Effects

There are a variety of methods in the literature to estimate network effects. For example, a
possibility in the current setting is to compare non-selected households in treated villages against
non-selected households in control villages. Other alternatives explored in the literature introduce
variation in the fraction of the population assigned to treatment across groups (Crépon et al.,

2012). There are two reasons why the current method improves on these approaches.

The first reason is related to precision of the estimates. Consider two polar cases: general
equilibrium effects in which social interactions are intermediated solely by the markets (decrease
in the supply of wage hours increases wage in the market) and local interactions (wage jobs left
by treated households are occupied through network acquaintances). General equilibrium effects
means that all individuals are affected to a small extent by the decisions of others. Networks are
dense with weak links. In contrast, local interactions imply strong network spillovers only for those
connected to treated households and null for unconnected individuals. The latter case generates

large variation in individual outcome which then affects the precision of the estimates.

Second, comparison of non-selected households estimates network spillovers only, which can
originate from a combination of endogenous and exogenous effects. In the current setting, for
instance, the marginal effect of a connection requires separately identifying endogenous and ex-
ogenous effects, which is not possible by comparing non-selected households in treated villages

against non-selected households in non-treated villages.

1.5.3 Empirical Results

I consider four sets of outcomes: occupational choice indicators (self-working hours, wage employ-
ment hours and specialization in self-employment in Table , earnings and seasonality (house-

hold earnings, in thousands of Bangladeshi Takas, share of income originating from seasonal and
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regular activities in Table , livestock assets (number of cows, poultry and livestock value in
thousands of Takas in Table and per capita expenditures (nonfood and food items and food
security in Table . As an indicator of differential patterns of association, I allow the proba-
bility of link formation to depend on the proximity of household identifiers, registered as @Q;; = 1
and zero otherwise. It has been anecdotally observed that identifiers were allocated while field
surveyors followed local streets and roads, and therefore serve as a proxy for geographical distance.
This pattern is only a generalization from the purely naive network in which the probability of

link formation is constant and independent of any variable@

For each outcome, I show the triple differences-in-differences estimates of the program effects
for the treated households ignoring networks, as in equation . These are shown in odd
numbered columns in Tables [I.31.6] For example, column 1 of Table indicates that treated
increased self-working hours in 468.9 and 465.1 hours per year, two and four years after treatment
respectively, and these results are significant at the 1% confidence level. Even columns display the
results of the triple differences-in-differences augmented with the network module, as in equation
(1.24). For example, column 2 of Table also indicates treated increased self-working hours in
469.8 and 460.0 hours per year, two and four years after treatment respectively. These numbers are
not significantly different from the cases in which networks were ignored in column 1. Therefore,

in this particular case, inconsistency due to omission of networks was not a relevant problem.

The following four rows display the results for the network spillovers. Results in this case
are not significant at 10% level two years after treatment for treated and nontreated, and point
estimates are -6.3 and -3.2 hours per year. However, spillovers are positive and significant four
years after treatment at 28.8 and 14.7 self-working hours per year for treated and nontreated
respectively, indicating a slight increase in the supply of self-working hours due to spillovers for
both types of households. The estimates for the program effect on treated and spillovers, as
discussed above, does not depend on separately identifying endogenous and exogenous effects and,
hence, do not rely on the presence of group size asymmetries and the moment condition based on

outcome dispersion.

Breaking down spillovers in endogenous and exogenous effects then allows me to estimate the
marginal effect of the connection to a treated household. These rows are labelled "Link to T".
A marginal connection reduces working hours in 24.6 and 17.9 hours per year two and four years
after treatment respectively, and are significant at the 1% confidence level. The probabilities of
link formation are very high, at 98.3% if individuals live in close vicinity, and 39.6% otherwise
indicating that, in this case, network effects operate via general equilibrium. The hypothesis that

these numbers are equal is rejected at the 1% level.

31Estimation with naive model for probability of link formation is conducted as a robustness in Table [L.F.13|in
Appendix In addition, estimation without fixed effects, time effects and both are also shown to highlight
that in their absence network estimates are highly biased.
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I present the remaining results in three stages. First, I describe the results for network spillovers
for all outcomes. These are followed by the estimates of the network structure and the marginal
effect of a connection to a treated household. Finally, I incorporate network data directly into the
procedure and demonstrate that the main conclusions remain unchanged. I also show that family
self-reported links convey meaningful interaction and mixed results for economic (non-family)
links.

Network Spillovers.

As shown in Subsection [[.3.2] it is not necessary to identify the parameters that underpin network
formation or those that link explanatory variables to outcomes in a given network, and it is also
not necessary to separate endogenous and exogenous effects. It is sufficient that Proposition

ensures that spillovers are constant within the identified set.

The current application shows that spillovers on treated and non-treated individuals deter-
mined outcomes to a relevant degree. The effect of spillovers was particularly salient in explaining
food per capita expenditures. For example, spillovers amounted to 207.0 Takas per year for non-
treated individuals after two years, compared with an estimated program effect of 423.9 Takas
for treated individuals over the same period. This difference corresponds to a 6.9% increase on
top of baseline levels of consumption, or 48.8% of the treatment effect on the treated individuals.
The spillover effect is even larger for the treated subpopulation. After two years, spillovers from
the treated households to themselves were responsible for an expenditure increase of 380.0 Takas,
or 89.6% of the treatment effects. Notably, column 3 of Table shows that estimates of treat-
ment effects when networks are not included in the analysis are approximately 40% higher. This
difference is attributed to the fact that OLS estimates, as presented in Subsection may be

inconsistent when networks effects are not accounted for.

This result is further confirmed by estimates of food security that are measured by respondents
that reported having at least two meals on most days, indicating a positive effect for both the
treated and the non-treated groups, across two and four years, ranging from 2.7 percentage points
for the non-treated group two years after treatment to 7.1 percentage points for the treated group
at the same time. The direct program effect is estimated at 16.9 and 7.6 percentage points (after
two years and four years, respectively). Nonfood expenditures are either constant or exhibit a slight
increase for the treated group, whereas the non-treated group reduced nonfood consumption after
four years. As discussed below, this result can be explained by the reduction in productive assets

following the specialization of the peers of the treated group in terms of wage labor.

Spillovers were significant to a small extent in determining self-employment and wage hours,
specialization in self-employment, the share of seasonal and regular activities and asset holdings.

As discussed above, network spillovers are reduced-form estimates that consist of endogenous
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effects, or the fact that one’s own choice depends on others’ choices, and exogenous effects, the
fact that one’s own choices depend on the treatment of others. Disentangling these structural
mechanisms is useful in shedding light on the causes of these results, and this is undertaken in the

next Subsection.

Endogenous and Exogenous Effects (or Marginal Value of Connections to the Treated)

I now provide point estimates of structural parameters. Given a network, its full set consists of link
strength (), one’s own response to one’s own treatment after two and four years (811 and 12) and
exogenous effects (or, in the current setting, the effect of one additional connection to a treated
individual, 821 and [322). The parameters that capture the network link are the probability of link
formation if households are located in close proximity (d1), such that Q;; = 1 if the difference in
household identifiers is less than twolﬁ, and if households are not in close proximity (dg). These
parameters discriminate between the polar cases in which interactions occur on a localized scale,
through personal interconnections and without intermediation of the markets (equivalent to low-
density networks, or low §y and 1) or through general equilibrium effects in which one’s own choices
affect all others to a small degree and result in dense networks (high dp and d1). As demonstrated
in Theorem [ identification is achieved using the comparison between observed and theoretical
across-group dispersion of outcomes as implied by the model. In a social setting, the across-group
variation of outcomes cannot be explained by outcome dispersion, peer group heterogeneity or
disturbance variance alone. This indicates a moment condition and suggests the use of a GMM

criterion that is capable of sorting among structural parameters within the identified set.

In the current application, the estimates show that, whereas treated individuals reduced wage
hours (113.5 and 141.9 hours per year, two and four years after treatment, respectively) and in-
creased self-employment hours (469.8 and 460.0 hours per year) associated with livestock rearing,
a marginal connection to a treated household had the opposite effect, increasing wage hours (24.6
and 17.9 hours per year for each treated peer) and decreasing self-working hours (13.9 and 13.0
hours per year for each treated peer). Treated individuals specialize in self-employment, and con-
nected peers modestly decrease specialization. Individuals who received treatment left vacancies
on wage jobs that were partially filled by individuals located in close geographic proximitym The
density of estimated networks is high only for self-employment and wage hours; above 90% for
households that live in close proximity and approximately 40% otherwise. The interaction patterns
of all other outcomes are much more localized, with densities of approximately 20% or lower in

most cases.

35Robusteness checks are conducted in Table [1.F.13|of Appendix

36The null hypothesis of no differential association is rejected at the 5% level for all specifications, as shown in
Tables -. Given the estimated parameters and the number of treated households in each households, a
simple simulation exercise shows that exogenous effects counterbalanced 25-30% of the reduction in wage hours of
treated households.
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The results demonstrate that treated individuals increased their livestock assets by more than
the original treatment. Meanwhile, non-treated individuals reduced their stock of assets. This
outcome was not observed for poultry, which is consistent with the low takeover rate of this type
of asset. Livestock value followed the same pattern for both groups. Since the treatment also
consisted of skills training — specifically targeted for the type of assets provided — and was of long
duration (2 years), treated individuals were endowed with a stronger comparative advantage in

livestock rearing, whereas connected peers tended to specialize in wage jobs instead.

The final component of the analysis involves the food staples. A marginal connection to a
treated peer significantly increases food consumption per capita and food security. In fact, one
connection may be responsible for an effect on food expenditures that is equivalent to the direct
effect of treatment on the treated individual (443.6 versus 423.9 Takas) and a 9.6 percentage point
increase in food security. This finding shows that comovements of occupational choices of the

treated and their peers were largely beneficial to all.

Including Network Data

Finally, I make use of network data collected in the survey to reassess the conclusions obtained in
their absence. Inclusion of network data serves two primary purposes. First, I show that the main
conclusions summarized above remain unchanged (Tables to of Appendix . Sec-
ond, allowing link formation to depend on link reporting enables me to test whether the associated

coefficient is significant, which constitutes as a test of



CHAPTER 1. ESTIMATING NETWORK EFFECTS WITHOUT NETWORK DATA

Table 1.3: Occupational Choice.

(1) (2)

(3)

(4)

(5)

(6)

Outcome Self hours. Wage hours. Self emp. only.
Method OLS. Network. OLS. Network. OLS. Network.
Program effect 468.928***  469.774**  —110.799*** —113.531"**  0.107*** 0.114***
after 2 years (B11). (28.62) (23.20) (31.07) (10.61) (0.02) (0.01)
o Program effect 465.075***  460.039***  —137.255"** —141.918***  0.112*** 0.120***
% after 4 years (Bi2). (31.32) (23.21) (34.10) (8.63) (0.02) (0.01)
g Spillover on T — —6.347 — 26.855*** — —0.032***
£ after 2 years (@r,2). (10.55) (8.45) (0.01)
g Spillover on T — 28.847*** — 19.369** — —0.025***
T after 4 years ({r,4). (9.68) (8.54) (0.00)
Zo Spillover on NT — —3.229 — 14.491*** — —0.018***
after 2 years (Pnr,2). (5.37) (4.55) (0.00)
Spillover on NT — 14.676*** — 10.452*** — —0.013***
after 4 years (Pnr,4)- (1.09) (0.75) (0.00)
Link to T — —24.604** — 13.904*** — —0.050***
after 2 years (Ba1). (2.76) (2.52) (0.01)
< Link to T — —17.932*** — 13.030*** — —0.043***
k) after 4 years (f22). (2.76) (1.59) (0.01)
5 Link probability 0.983*** 0.639*** 0.192***
'§ if Qi =1 (51). (0.03) (0.03) (0.01)
E Link probability — 0.396*** — 0.331*** — 0.106***
if Qij = 0 (o). (0.01) (0.01) (0.00)
Link strength — 0.05*** — 0.05*** — 0.15%**
). (0.01) (0.00) (0.01)
p-value Hyvy . — < 0.001 — < 0.001 — < 0.001
Avg treated outcome. 421.8 421.8 646.7 646.7 0.303 0.303
Individuals (n). 23029 23029 23029 23029 23029 23029
Villages (v). 1409 1409 1409 1409 1409 1409
Survey waves (T). 3 3 3 3 3 3

Notes: *, ** and *** indicates significance at 10%, 5% and 1% levels. All regressions have household fixed effects. Standard errors clustered at

the village level. "Spillover on T" refers to the average @(w¢, 6) on the treated only. "Spillovers on NT" refers to equivalent calculation on the

non-treated only. "Link to T" refers to the marginal effect of a connection to a treated individual. "Avg treated outcome" refers to the mean

outcome of treated at the baseline. "p-value H " is the p-value of testing the null hypothesis that household proximity does not affect the

probability of link formation. Estimates dependent on the identification strategy for A are denoted under the tab "Function of A". "Self hours"

refers to self-working hours per year. "Wage hours" refers to wage working hours per year. "Self emp. only" is a dummy variable if individual

is specialized in self-employment.

46
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Table 1.4: Earnings and Seasonality.

@ @ @) ) @) G
Outcome Earnings. Share Seas. Share Reg.
Method OLS. Network. OLS. Network. OLS. Network.
Program effect 0.475 0.506*** 0.012 —0.028*** 0.201** 0.181***
after 2 years (B11). (0.46) (0.12) (0.02) (0.01) (0.02) (0.01)
o< Program effect 2.598*** 2.729*** —0.089***  —0.074*** 0.191*** 0.165***
“ after 4 years (B12). (0.54) (0.31) (0.02) (0.01) (0.02) (0.01)
g Spillover on T — —0.045 — —0.051*** — 0.023**
£ after 2 years (¢1,2)- (0.10) (0.02) (0.01)
g Spillover on T — 0.008 — —0.005 — 0.029**
T after 4 years (¢r.4). (0.11) (0.02) (0.01)
2 Spillover on NT — —0.025 — —0.023*** — 0.012**
after 2 years ($nr,2)- (0.06) (0.01) (0.00)
Spillover on NT 0.004 —0.002 0.015%**
after 4 years (Pnr,4)- (0.09) (0.01) (0.00)
Link to T — —0.447 — —0.010"** — —0.022%**
after 2 years (B21). (0.46) (0.01) (0.01)
< Link to T — —0.326 — —0.016*** — —0.015**
k) after 4 years (f22). (0.29) (0.01) (0.00)
5 Link probability — 0.075%** — 0.272%** — 0.238***
§ if Qi =1 (61). (0.00) (0.01) (0.00)
2 Link probability — 0.023*** — 0.136*** — 0.106***
if Qi; = 0 (do). (0.00) (0.00) (0.00)
Link strength — 0.50*** — 0.20*** — 0.20%**
A). (0.17) (0.08) (0.05)
p-value Hyy . — < 0.001 — < 0.001 — < 0.001
Avg treated outcome. 4.607 4.607 0.674 0.674 0.478 0.478
Individuals (n). 23029 23029 23029 23029 23029 23029
Villages (v). 1409 1409 1409 1409 1409 1409
Survey waves (7). 3 3 3 3 3 3

Notes: Earnings in thousand of Takas per year. "Share Seas." refers to the share of seasonal earnings relative to total earnings. "Share Reg."

refers to share of regular earnings, as reported by the respondent, relative to total earnings. See also Table

network data validity. I combine network reports into two categories: family and economic (non-
family) links. Non-family links include an ensemble of many categories of self-reported links, such
as business and labor relationships, financial assets and liabilities and household ownership. The
null hypothesis of no network validity was rejected at the 1% level for all specifications regarding
occupational choice, earnings and seasonality. The results for livestock holding and expenditures
are more nuanced. Whereas for most specifications, the null of no validity was rejected for family
links, economic links are much less capable of conveying interactions that influence the outcomes of
others. This result suggests that families are natural loci that favor asset transactions, particularly

when those transactions involve cows, and through which food consumption and expenditures flow.
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Table 1.5: Livestock.

(1) (2) (3) #) (5) (6)
Outcome Cows. Poultry. Livestock Value.
Method OLS. Network. OLS. Network. OLS. Network.
Program effect 1.119*** 1.131%* 2.147 2.120** 10.326*** 10.417**
after 2 years (f11). (0.04) (0.03) (0.42) (0.50) (0.56) (0.39)
< Program effect 1.078*** 1.102%** 1.294** 1.326*** 10.984** 11.175%*
% after 4 years (B12). (0.03) (0.03) (0.62) (0.50) (0.64) (0.40)
g Spillover on T — —0.033*** 0.099 — —0.221***
E  after 2 years (¢1,2)- (0.01) (0.17) (0.07)
=t Spillover on T — —0.057*** —0.087 — —0.459***
T after 4 years ({r,4). (0.00) (0.20) (0.07)
2 Spillover on NT — —0.020*** 0.059 — —0.132***
after 2 years (¢nr,2). (0.01) (0.10) (0.04)
Spillover on NT — —0.033*** —0.052 — —0.274***
after 4 years (Pnr,4). (0.01) (0.08) (0.04)
Link to T — —0.996*** 1.277 — —10.456***
after 2 years (B21). (0.16) (4.12) (1.90)
< Link to T — —1.285%** —2.725 — —16.464***
3 after 4 years (Ba2). (0.17) (4.11) (2.33)
E Link probability — 0.024*** 0.007** — 0.013***
S if Qi =1 (61). (0.00) (0.00) (0.00)
= Link probability — 0.012*** 0.009*** — 0.007***
if Qi = 0 (o). (0.00) (0.00) (0.00)
Link strength — 0.50%** 0.50 — 0.50%**
A). (0.03) (0.38) (0.16)
p-value Hyvy . — < 0.001 < 0.001 — < 0.001
Avg treated outcome. 0.083 0.083 1.79 1.79 0.940 0.940
Individuals (n). 23029 23029 23029 23029 23029 23029
Villages (v). 1409 1409 1409 1409 1409 1409
Survey waves (7). 3 3 3 3 3 3

Notes: "Cows" refers to the number of cows held by the household, and similarly for poultry. Livestock value evaluates in thousands of Takas at

market value. See also Tab]e
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Table 1.6: Expenditures.

(1) (2) (3) ) (5) (6)

Outcome Nonfood PCE. Food PCE. Food Security.
Method OLS. Network. OLS. Network. OLS. Network.
Program effect —242.239 —220.509 585.304**  423.929*** 0.189*** 0.169***
after 2 years (B11). (293.34) (164.53) (247.19) (134.22) (0.03) (0.01)
< Program effect 175.022 278.277 585.415***  445.063*** 0.010*** 0.076***
% after 4 years (B1a). (375.16) (174.72) (227.38) (134.27) (0.03) (0.01)
g Spillover on T — —8.526 — 380.002*** — 0.017***
Ee after 2 years (¢7,2)- (68.25) (55.82) (0.00)
g Spillover on T — —171.985** — 243.172%** — 0.071***
b after 4 years ($r,4). (68.15) (56.88) (0.02)
2 Spillover on NT —5.039 206.992*** 0.027***
after 2 years ($nr,2)- (40.34) (30.14) (0.00)
Spillover on NT —101.655* 132.459*** 0.032***
after 4 years (Pnr,4)- (52.65) (40.73) (0.01)
Link to T — —14.185 — 443.619% — 0.096***
after 2 years (f21). (988.46) (85.36) (0.01)
< Link to T — —2649.43*** — 249.126*** — 0.087***
3 after 4 years (Ba2). (980.96) (84.79) (0.01)
5 Link probability — 0.032*** — 0.132%** — 0.128***
kS if Qi; =1 (61). (0.00) (0.01) (0.00)
E Link probability — 0.009*** — 0.080*** — 0.052***
if Qi; = 0 (o). (0.00) (0.00) (0.00)
Link strength 0.50*** 0.20** 0.50**
). (0.14) (0.11) (0.21)
p-value Hyvy . — < 0.001 — < 0.001 — < 0.001
Avg treated outcome. 1054.5 1054.5 2953.7 2953.7 0.457 0.457
Individuals (n). 23029 23029 23029 23029 23029 23029
Villages (v). 1409 1409 1409 1409 1409 1409
Survey waves (T'). 3 3 3 3 3 3

Notes: "Nonfood PCE" refers to non-food per capita expenditure in thousands of Takas per year, and similarly for food per capita expenditures.
Food security is a dummy equal to one if households have at least two meals in most days. Estimates of the program impact on nonfood per capita

expenditure on the treated using the triple differences model (column 1) was the only case which does not match well the estimates obtained from

the double differences which compares the selected individuals in treated villages against selected in nontreated villages. See (2013
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1.6 Conclusion

Social and economic networks are useful for understanding many aspects of individual choice,
decisions and behavior. Although there has recently been substantial progress on the theoreti-
cal underpinnings of network formation, empirical research frequently remains constrained by the
availability of network data. The contribution of this paper is then to provide a method for esti-
mating network effects in the absence of network data. The method also estimates the probability
that pairs of individuals form a connection based on individual characteristics such as common
gender. I also incorporate imperfect network data with the dual purpose of refining the estimates

and providing a test for its validity.

The key contribution of the paper was to derive a maximum likelihood estimator that is not
conditional on network data. It is obtained by integrating a likelihood conditional on networks
which originates from a spatial econometric model with respect to the probability density func-
tion of the stochastic network. In this setting, I showed how the observation of outcomes and
explanatory variables for many groups such as classrooms serves as a substitute for the network
observation. This approach then offers a procedure for estimating network effects using datasets

that were previously not suited for this purpose.

Empirical research has led to substantial interest in evaluating the effects of randomized policies
on targeted individuals. Much less progress has been made on evaluating the spillovers related to
those policies. To illustrate how the method can be applied in practice, I employed the estimator
to investigate the impact of a large-scale randomized intervention on the peers of those who were
treated. This is the intervention of Bandiera et al. (2013), which consisted of the provision of

livestock and skill training to low-income households in Bangladesh.

The proposed estimator met three objectives and yielded useful insights on the wider effects of
the policy. The first objective was to provide — in the absence of network data — a consistent and
asymptotically normal estimator of network spillovers. In the application, I found that network
spillovers were economically and statistically significant in determining some outcomes, especially
food per capita expenditure and food security. Network spillovers were responsible for an increase
of 206.9 Takas in yearly food per capita expenditure compared with a treatment effect of 423.9
Takas on the treated B7]

The second objective of the paper was to elucidate the structural mechanisms that gave rise
to these spillovers. I derived a method to separately identify endogenous and exogenous effects,
controlling for correlated effects, in the absence of network data by using the variability in group
sizes. I further solved the problem of separately identifying a few strong links from a large number

of weak links by using the "excess" outcome variance that cannot be explained by independent

3TRespectively an 14% and 7% increase relative to food consumption levels at the baseline.
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variables or peer group heterogeneity alonem For this purpose, I reinterpreted the estimator
as the solution of a Generalized Method of Moments problem in which moment conditions were
given by the score of the likelihood. In this case, the earlier identification difficulty originated from
the absence of one moment condition relative to the number of parameters. I then explored the
difference between observed second moments of the outcomes and those implied by the model to
provide an additional restriction which completes the identification requirements. I am then able
to show that the solution of this problem is a consistent and asymptotically normal estimator to

the structural parameters of the model.

In the application studied herein, I found that a marginal connection to the treated led to
effects in opposite direction to the treatment effect on the treated. Regarding occupational choice
and livestock value, one additional connection to a treated household decreased self-employment
by 24.6 hours per year, added 13.9 wage hours per year and decreased livestock value by 10.4
thousand Takas. Treated households increased their self-employment hours, decreased their wage
hours and increased the value of their livestock. In contrast, regarding food per capita expenditure
and food security, a marginal connection to the treated was in the same direction to the treatment
effect on the treated, and often of strong magnitudes. A marginal connection to the treated
increased food per capita expenditure by 443.6 Takas per year and increased food security by 9.6
percentage points, compared with direct treatment effects of, respectively, 424.0 Takas per year
and 16.9 percentage points. With the exception of self-employment and wage hours, I also found
that network densities were fairly low, which suggested local interactions through personal contacts
rather than through prices and markets. These results are consistent with the interpretation that
treated individuals gained comparative advantage in livestock rearing. The randomized policy then
generated a village-level occupational specialization in which treated households were employed in
rearing the livestock, partially changing the occupational choice and well-being of their peers as

measured by food consumption.

The third objective of this paper was to incorporate imperfect network data, such as when data
are self-reported, with the dual purpose of refining the estimates and proposing a test for whether
reported connections positively affect the estimated connection probability. In the application, I
found that reported family links have a greater effect than the reported economic (non-family)
links in determining the outcomes of others. The test rejected the null hypothesis that family links
do not influence the number of cows but failed to reject the similar influence of economic links.

The same holds true for livestock value, indicating that family ties facilitated asset transactions.

The method developed in the present paper contributes to the spatial econometrics literature
that has to date considered only models for which networks are accurately known (Anselin (2010)

and references therein). Similarly, the literature on the identification of network models addressed

38These are similar in essence to the identification ideas in [Lee| (2007) and |Graham| (2008), which explore the
case in which networks are observed.
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a number of techniques only when networks could be observed (Manski (1993), Bramoullé et al.
(2009), De Giorgi et al. (2010) and others). This novel method can be applied in many fields,
from peer effects (Ammermuller and Pischke, 2009), crime and delinquent behavior (Glaeser et al.,

1996) to the estimation of parameters of gravity equations (Anderson and van Wincoop, 2003).

The interest in networks to this date has not been matched with availability of network data,
possibly because of problems associated with observing and defining interactions among people.
The method developed in the present paper provided a systematic procedure for estimating network
effects when networks are unknown or unreliable and information on a large number of groups
is available. This ability has shown to be particularly relevant in estimating effects of exogenous
variation policy through randomized controlled trials both on treated and their peers. In this way,
the paper demonstrated both theoretically and empirically that including network effects may have
important implications for policy assessments. FEstimating network spillovers and distinguishing
among endogenous, exogenous and correlated effects in the absence of network data is certainly a

useful empirical tool for future applied research.



Appendix

1.A  Summary of Notation.

5: (61765)7 00:9\{6702}7 ”:Z;:Nlj-

I, an identity matrix of dimensions n X n, ¢y is a n X 1 vector of ones.

Yn = (y’l,“.,yg,...,yq’)y, Yj = Yn;.j (ylj,...,yij,“.,ynjj)/, j=1,...v,i=1,...,n;j.

Ty = (x/l,...,:p;-,...,m;)l, Tj =T, = (xllj,~-~7$§j7-~~,$n_7-j>/,j= 1,...0,i=1,...,n;j.
€n = (e’l,...,e;-,.,.,e;>/, €nj,j = (elj,...,qj,...,enjj>/,j: 1,...0,i=1,...,n;.

y; = MW, +ajB10 + W)z B20 + vj, vj = poMPvj + €.

29=25 ;= (mj,W]Qa;j), 70 = (Z‘f’,...,Zf}’)'.

y; = AW5(Q,0c) + ;81 + W5 (Q, 0c) x5 82 + 05
75 (Q4,00) = 75, ; (Q.00) = (w5, Wi (@002 ), 25 (Q,00) = (25 (1,00, 2 (Qu,00))
W2 = diag (WP,...,W2), Wg (Qn,b.) = diag (W (Q1,0c) ..., WE (Qu,0c)).

S0 (A) = S0

: 0 )= Loy =AW, 89 = 57 (%), 5 = diag (7, .., 59).

(S9) ™" = MG + In, G5 = WI (S9) 7"

55(Q,60) = In; — AW (Q;,9), 55, (@5, 0c) = diag (S (Q1,6c) .-, S5 (Q1,0e)).

(S5(@,00)) ™! = In + AGS, (@n, bc), G5, (Qn,0c) = WS (Qn,6e) (S5 (Qn, )~

RO (p) = In; — pM)), R9 = RY (po), R, = diag (RY, ..., R)).

RS (0) = In; — pMs (Q5,0), RS, (Qn,0c) = diag (RS (Q1,6c) ;- .-, RS (Qu,0c)).

MO = diag (M?,..., M9), MS (Qn,0c) = diag (M (Q1,0e) ..., Mg (Qu, be)).

PE(Qns00) = T = R (@ns00) 25 (Qn,0) [ 25 (Qus00) B, (Qns00) B (@ns00) 25 (Qns00)] 25 (@, 00) R (@ 00)
Bp (Qn,0c) = X (W — WE(Q,0:)) (In + X0GY).

1 [A] and X [A] denote the expectation and variance-covariance matrix of vector A.

1.B Alternative network models.

I previously described the probability of link formation as dependent on a dummy for sharing exogenous characteristic with

independence link formation. I now expand the classes of models in two different directions: I first allow the probability of
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link formation to depend on a continuous measure, such as distance between households location. Because many modes of
social interactions can occur in parallel, it is also important to allow for a multivariate network formation model. In second

place, I drop link independence assumption with recourse to the Exponential Random Markovian Graphs (ERMG) family of

models, as introduced by [Frank and Strauss| (1986)) and expanded by [Wasserman and Pattison| (1996). These are presented

in form of examples.

Example 4. (Multivariate network model). Several forms of relations coexist; arguably, a truthful representation of the
probability of link formation will then depend on a number of factors. Allow then QJIZ as 1 x k! to be a matrix of individual’s 4
characteristics that underpin probability of link formation and depend exclusively on individual, non-relational, characteristics.
For example, this may encompass testing whether males may tend to form more connections than the rest of the population,
or personal income may have a relation to social interactions. Let ka be characteristics of the potential recipient of the link
that may generate attraction, of dimension 1 x k' and, finally, Qﬁk common, shared characteristics, such as belonging to the
same gender, or continuous geographic distance between households, with dimension 1 x kZ. Coefficients are captured with

recourse to 9;, 9!1; and 9!]]3 of compatible dimensions.
P{{W; i =1Q;} = QLoJ+QRTF+QF,07. (1.25)

Because probabilities should stay in the range [0, 1], it is plausible to use, instead, P{{Wj i = I\Qj} = logit(Q?ﬂé +

kaef + jSkef) or the equivalent probit version. It is important to note that, even without using the second moments to
provide identification, it is still possible to conduct hypothesis testing in the partial identification framework, as long as there

I
Ji’
commonality affects the probability of link formation. The researcher can then test Ho : 05 = 0, with the procedure outlined

is no collinearity among Q Qﬁ and Qﬁ i for all i, k and j. More specifically, suppose one is interested in whether race

in Subsection m although it will not be possible to identify the magnitude of the effect unless as a solution to equation

(1.18) is provided. O

Example 5. (ERMG family). Models of statistic network formation have a long tradition in the literature of estimation

of network structure given observations from random graphs generators (Holland and Leinhardt| (1981), [Frank and Strauss|

(1986)), [Strauss and Ikedal (1990) and [Snijders| (2011)) and are of considerable generality, including the case where link

formation are not independent. In particular, Frank and Strauss| (1986|) proved that, if the graph is such that edges without

common nodes are independent conditional on all remaining edges (that is, the graph is Markoviar@ and homogeneouﬂ

and all isomorphic graphs have same probability,

-1
1 0 K s
P{W; =w;} = o O {99T(wj) + ; 05Ss (w;) (1.26)
where T'(w;) = 32, ;. ; {w; };, {w; }y; {w;};; is the number of triangles, and Ss(w;) is the number of s-stars in w;. k(fg) is a
normalization constant that depends on parameters 6, = (92, 9;, R 9;71)'. The Markovian assumption is a relatively mild

hypothesis and states that, although dependence between the existence of edges may happen, this cannot be so for edges

which do not possess a common node. This formulation is particularly appealing as it provides a probability law for network

formation under minimal hypothesis, along with its sufficient statistics. [Wasserman and Pattison| (1996)) expand the class of

models to incorporate any set of sufficient statistics Z(w;), such that

P{W; =wj;} - exp {Q'gZ(wj)}. (1.27)

1
(0g)
39Let D be a graph whose nodes are all possible edges of G, that is, all pairs of nodes of G, containing therefore
n!(n —1)! nodes. If the existence of an edge between {a,b} in G depends on the existence of an edge between
{¢,d}, conditional on all rest of the graph, then {a,b} and {c,d} are neighbors in D. The Markovian assumption
means, therefore, that all {s,¢} and {u,v} are nonneighbors for different s, ¢, u and v.
49That is, nodes are a priori indistinguishable.
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Note that, as a consequence of homogeneity, edges have equal probability of being formed with expected network Wje (09) =

Ping L{,Lj —plnj. This is the same expectation as the one obtained in the simple Bernoulli model. O

1.C Score Vector and Hessian Matrix.

The likelihood is In £ (8] y, , Qn) = — 2 In (2762 ) +1In |SE (Qn, 0)|+1n | RS (Qn, 0)|— 57 ef: (@n,0) €S (Qn,0) where €5 (Qn,0) =
RE (Qn,0) (SE (Qn,0) yn — znB1 — WE (Qn,0) znB2). First-order derivatives are

PO =t (85 (Qn, 0) T W (Qn,0)] + S WS (Q.0) R (Qns0) € (Qns0)
L0 = Lol R (Qn,0) € (Qn,6)
: v , ,
GLO = Lol Wi (Qn0) RS (Qn,0) €5, (Qn,0)
L@ =t b (@Qn0) € (Qn,0)
GO =t (R (Qn,0) 7N M (Qn,0)] + 22 (S5 (Qny0) yn — 2B — WE (Qn,0) wnf) -
M (Qn,0) € (Qn,0)
B0 = —xer [(S5 (@ns0)) 7! Vo, Wi (Qn,0)] = ptr [(BS (Qn,0)) ™" Vi, My (Qn.0)]

#Pveqi My, (Qn: )l (S:Z (Qn: 9) Yn — Tnf1 — WS (QTL7 0) anQ)/ (24 (Qn7 ‘9)
527 R (Qn,0)' Vo, , Wi (Qns0) Oy + 20 B2) € (Qn,0)
Tt = -t [(S; (Qn,0) " W (Qn,0) (S5 (Qn, 0)) " W (Qn,0)]

— Ly, W (Qn, )Re (Qn,0) R (Qn, 0) WE (Qn,0) yn
52 In £°(0) _ 1 We/ (Q )R (Q )
BA@@i O.Zyn n ny (3]
2 nL° e’ e’ e
Toem = oUW (Qn.0) B (Qn,60) Wi (Qn.0) 7
2 nL¢ e’ e
%&T‘Cﬁz@ = _o.%y'izwn (Q"v ) (Q’nve) €n (Q’Vlve)
ERLO = Ly W (Qn,0) M (Qn,0) €5, (Q.0) -
Ly We (Qn,0) RS (Qn, 0) ME (Qn,0) (S5 (Qn, 0) yn — 21 — W (Qn,0) znB2)
8% 1n L°(6)

g = At (85 (Qn.0) ! ve,,iws (Qns0) (S5 (Qns0)) ™ W (Qn,0)]
—tr [ (S5 (Qn, )7 Vo, Wi (@n. 0)
+59, Vo, W (Qn, 0) Ry (Qn,0) €, (Qu,0) — pL5y, We (Qn,0) Vo, Mg (Qn,0) €5, (Qn,0)
YW (Qnr0) RS (Qny0) M (Qn,0) (S5 (Qn,0) yn — 2nf1 — WS (Qn.0) 2 2)
— Ly, W (Qn,0) RS (Qn,0) RS (Qn.,0) Vo, WE (Qn.0) (\yn + 20 52)

CIL = Lul Ry (@n,0) RS (Qn,0) 2
PLi0) Lot R (Qn0) RS (Qn,6) WS (Qn,0) 2
2

The® = Ll R (Qn,0) € (Qn.0)

FIMLAO) = L0l ME (Qn0) 5 (Qn0) — SRS (Qn,0) MS (Qn,0) (S5 (Qns0) yn — 2nB1 — W (Qn.0) wnB2)

Tl = p Ll Vo, My (Q.0)€5 (@,0)
+p%ane’ (@n,0) Vo, M (Qn,0) (S5 (Qn,0) yn — 2nf1 — W (Qn,0) 2 Ba)
+J2mn (Qm 0) R, (Qm@)vegiwﬁ (@Qn,0) Ayn +xnB2) .

P = L2 W (@n,0) R (Qny0) WE (Qu,6) 2n

PML D) = L WE (Qn,0) B (Qn,0) & (Qn,0)

FMEAO) = L al WE (Qn,0) ME (Qn.0) € (Qn.0) +

Ll W' (Qn.,0) RS (Qn,0) M (Qn, 0) (S5 (Qn.0) yn — 2nBi — WS (Qn.0) 2nf2)
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CmE O = Ll W (Qn,0) B (Qn,0) €, (@n, 0) + p Lt WE (@n,0) Vo, My (Qn,0) €5 (Qn,0)
P2z, W' (Qn, 0) RS, (Qn, 0) M (Qn,0) (S5 (Qns0) yn — 20t — WS (Qn, 0) 20 52)
L2, W (Qn, 0) By, (Qn,0) RS, (Qn,0) Vo, Wi (Qn,0) (Ayn + znB2)

2 e ’
f’gl,‘z‘;gé") = 5= e (Qn,0) €5 (Qn,0)
Dom D = = (S5 (Qny0) yn — 2nB1 — W (Qn,0) 2 B2) ME (Qn,0) €5 (Qn, 0)

2 e ’
Coortr = e (Qn.0) R (Qn,0) Vo, Wi (Qn.0) (yn +znf2)

—p2res (Qn,0) Vo, Mg (Qn,0) (S5 (Qn,0) yn — 01 — WS (Qn,0) 20 f2)

FILO = ir [(R (Qn,0) ™ M Q. 0) (RS, (@n,0) ™" M (@n,0)]

2 e
DO = ptr [(RS (Qn.0) " Vo, M (Qn, 0) (RS (Qn,0) ™ M (Qn,0)]

POU g4 g

—tr [(R5 (@ns0)) ™! Vo, M5 (Qn,0)]
— 2 O\ + 2nB2)’ Vo, Wi (Qn,0)' M (Qn,0) €5, (Qn, 0)
+ 2 (S8 (Qn.0) yn — nBr — WE (Qn,0) nf2)’ Vo, Mg (Qn,0) ¢S (Qn,0)
—p 2 (S5 (Qnr0) yn — &nf1 — W (Qn,0) 2nB2)' MS (Qn.0) Vo, M (Qn.0) -
~(SE (Qn, 0) yn — znf1 — W (Qn,0) xnS2)
A5 (S5 (Qn, 0) yn — znB1 — W (Qn,0) 2nf2) MS (Qn,0) RS (Qn,0)
Vo, Wg (Qn.0) yn + 20 f2)
Tl = Nt (S5 (Qns0)) 7 Vo, Wi (Qn,0) (S5 (Qns0) ™ Vi, W (@n,0)]
Xt [ (S5 (@ny0) ™ Va0, W (Qns 0)]
+2tr (RS, (Qn,0)) ™" Vi, My (@, 0) (B5, (Qn,0) ™" Vi, My (Qn,0)]
—ptr [(R5, (Qn:0) ™" Vo0, M (Qn,0)]
P37V 0,00, ME (Qns0) (5% (Qny0) yn — 201 — WE (Qn,0) 2nB2) €& (Qn, 0)
P52z Vo, M5 (Qn.0) Vo, WS (Qn.0) \yn + 2nf2)' € (Qn,0)
0% 555 Vo, ME (Qn.60) (S5 (Qn.0) yn — 2nB1 — WE (Qn,0) znf2)' -
Vg ME (Qn,0) (S5 (Qn,0) yn — T0 1 — W (Qn,0) 2nB2)
—p3ez Vo, Mg (Qn,0)' (S5 (Qu,0) yn — TnBi — WE (Qn, 0) 20 B2)’ RE (Qn,0)-
Vo Wi (Qn, 0) (Ayn + zn.62)
P52z V0, M5 (Qn.0) Vo, WS (Qn.0) \yn + 2nf2)' € (Qn,0)
+ 523 RS (Qn0) Vo0, Wi (Qnr0) Ay + 20 82)’ €5 (Qn.0)
~p5iz RS (Qn.0) Vo, WE (Qn,6) (\yn +zn2) Vo, M (Qn.0) -
(S5 (Qns 0) yn — 0B — WE (Qn, 6) 1 B2)
— 523 RS, (Qn,0) Vo, W5 (Qn,0) (Ayn + znB2) R, (Qn,0) Vo, We (Qn,0) (Ayn + 1.52)

ows(Q;.0)

PwWe(Q;,0
Derivatives Vo, W¢ (Q;,0) = —5o Vo,.0 (25-9)

Wi(Qj,0) = W and similarly for derivatives of M¢ (Q;,6) and

g

model-dependent and so are omitted here.
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1.D Proofs.

1.D.1 Useful Lemmas.

Lemmas without proofs can be found in [Kelejian and Pruchal (2001)), (2004) or [Lee et al| (2010).

Lemma 1. For any n Xn matriz An, with uniformly bounded column sums in absolute value, uniformly bounded n X k matriz

Zn, and if un ~ N (0,021) of dimension n x 1, then L Z! Apun = Op (1).

N

Lemma 2. E (u,Anun) = 02tr(An) and Var(ul,Anun) = (pa — 30%) vecl, (An) vecp (An) + o [tr(AnAL) + tr (AZ)].

Lemma 3. Define Ay’ = (S9)7'Az" (S9) 7", (Ag) ™! = (S5 (@n,09)) " Ant (S8 (@n,09)) " and A = (S (Qn,0c)
Rf; (Qn,0c) PE(Qn,0c) RE (Qn, 0c) SE (Qn,0:)) " . Then, for any randomly distributed vector e, of dimension n x 1 such

that Ee;e; = 0 for i # j with Ee2 < oo and if link formation is independent, %E(e%/\fllen) = %E(e;(/\%)flen) +o0p (1).

Proof. For simplicity, consider RS, (Qn,ag) = RY = I, Proof generalizes immediately otherwise. Then

1g —([BAn) M en | =2E{ €A [EAn — Ap] (BAR) M enp = 2B S eiej [An' (BAn — An)EALY| b=
©J

le n ]E{EQ}]E[ (EAn — An)EA,, LZ as €; is independent of €; for i # j. Because E [A;l (EAn — Ap) (]EAn)fl]ij
2 0 and E{e?} < oo, then ]E{ [A,_L - n)fl] en} = 0p (1). Remains to show EA,, = A%. By definition, A, =
(In = AoWE) An(In —AoW') = Kn = AoWEAn — AoAn WO + A2WOA, WY . Tt follows that EAn, = Ay — AW (Qn, 62) Ay —
NoAnWE (Qn,09)  +  AEW2A, WY = A = AWE(Qm D) An  — XA WE (Qn,62)
+)\(2)W;§ (Qn,eg) ]\nWﬁ/ (Qn,eg) = A. where the second equality holds only if link formation is independent, i.e., if

E{W iAWY i = E{W?}, E{WP},/p/ if either i # i’ or k # K. |
Lemma 4. Let en, be a n X 1 stationary, ergodic process with Ee, = 0. Then E( P AR en) = %]E(e’n (A2) T en) +o0p (1).

Proof. Lemma 3 applies with the following modification. Given Y 7' , Z?:l €i€; [A,_Ll (EAn — Ap) EA;l] is a weighted
ij

U-statistic, with summable weights, Theorem 3 of [Hsing and Wu| (2004) is applied to obtain convergence in probability to

zero.

Lemma 5. 1E{3)Z2 (SY) 7155 (Qn,69) RS (Qn.02) PE (Qn,62) RS (Qn,62) S (Qn,62) (59) ™" Z8B0} = op (1).

Proof. Apply Lemma with minor modifications twice. First, note that L1E{8;29(5Y)7'S¢ (Qn,62)
R (Qn,09) Pg (Qn,09) RS (Qn,02) S5 (Qn,09) (S9) ™" 29680} = 2E{By 29 RE (Qn.02) P (Qn,02) RS, (Qn,09) 2980} +
0p (1), Secondly, LE{8)2Y Ry (Qn,02) Ps (Qn,00) R (Qn,02) 2980} = LE{B4Z5 (Qn,00) R (Qn,62) Py (Qn,62)
RS (Qn,09) Z2 (Qn,02) Bo} + op (1). Properties of projection matrix ensures Pg (Qn,02) RS (Qn,02) Z& (Qn,62) = 0.

O
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Lemma 6. LE{c/,(RY )™ (SY) 7S5 (Qn,62) R (Qn,02) P (Qn,02) RS, (Qn,02) S5 (Qn,02) (S9) ™" (RY) ' en} =0 +

op (1).

Proof. Direct consequence of Lemma taken with 6., = 92. O

1.D.2 Derivation of pdf of networks.

For the p1-reciprocity model, the probability that random matrix W takes a particular value w is

PW=w) = J[6m"" ] (;Zij(l_wji)+(1_wij)“’ji I1 6§V1_wij)(1_wji)

i<J i<j i<j

i<j i<j i<j

= exp {ln&FZwijwji +1Inda Zwij (1 —wj;) + (1 — wsz) wys +1n6NZ(1 —w;j;) (1 wji)}

lexp 9 Zw”—l-l? Zw”'w]Z

i#] i<j

—1
where 01 In 5*‘ 02 = 61;# and kK = (Hi<j 51\7) . Introducing dependence on sharing exogenous characteristics, the pdf
A

is

P(W =wlQ=q)

I (535 aé;qu)wijwﬂ 11 (6;1263;%)(l—wu)wﬁwu(l—ww) 11 (6%63]}(1”)(1_1””)(1_1%)

i<j i<j i<j
Wi Wi 1—w; i Ywiif+w; i (1—wi;
= e T (stgase™) ™ T (stgaga ) ot
i<j i<j
.H<§qu(51 q”)(l wij)(1—w;;)
i<j

= exp Zwijwji (gijInd1p + (1 —qi5)Indor) + Z (I —w;ij) wj; (qijIndra + (1 —qi5)Indga)
i<y i<y
+> wij (1= wji) (g5 614 + (1= qij) Indoa)

i<j

+> (1= wij) (1 —wji) (qij b1 + (1 — i) Indon)

i<j
1
= 7exp 0L Zw” + 62 waqw + 63 sz]wjz + 6 Zw”wﬂqu

i#] 2] i<J i<j

where 01 In g(’A 62 In gONglA 93 @7 93 M and
0a 5z, N 5002 00N
—1
K = exp In 51]\750]\7 Zqij H (SON-

i<j 1<j
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1.D.3 Lemma.

Lemma 7. (i) Under Assumption @, Z8 (Qn,02) and G& (Qn,02) Zg (Qn,62) Bo are asymptotically independent. (ii)

Define
V@) = TE(BHZY (SY) VP (Qu.00) (51712280}

with P (Qn,0c) = S (Qn,0c) RE (Qn,0c) P (Qn, 0c) RE (Qn, 0c) SE (Qn,0:). For every point 6, € O, the condition

v (Qn,0c) > 0 holds.

Proof. (i) Under the assumption, full column rank means that the only solutions for the constants ci, c2 and c3 in the

equation wncy + WE (Qn,02) zne + GS (Qn,02) znBrocs + G5 (Qn, 00) WE (Qn,02) Tnf2ocs = 0 are c1 = c2 = c3 =
0. Under the assumption that G% (Qn,02) = WE (Qn,02) (SE (Qn,02)) " = (SE (Qn,02)) " Wg (Q,02), ie., assum-
ing symmetry of W¢ (Qn,602), expression is equal to znci + WE (Qn,02) znca + (S (Qn, 62 )_1 We (Qn,02) znBiocs +

(Sﬁ (Qn, 92))71 (Wf; (Qn7 6’2))2 TnB20c3, then equivalent to assessing

S5 (Qn, 02) xner + S5, (Qn, 02) WS (Qn, 02) Znea + Wy (Qn, 02) znBrocs + (Wi (Qn,@g))2 znBoc3
= (I +2AWE (Qn, 00)) ner + (In + AW (Qn, 00)) Wi (Qn, 02) ez + Wi (Qn, 02) 2nBrocs
+ Wy (@n, 92))2 xnB20C3
= @ner + AW (@n00) wner + Wi (Qno02) mnca + A (W (@n.02))” wnca + W (Qnr02) mnBrocs
+ Wy (Qn, 92))2 xnB20C3

= znc1 + W (Qn, 92) Zn (A1 + c2 + Brocz) + (W (Qn, 93))2 Zn (Acz2 + B20c3)

As xn, WS (Qn, 02) zn and (WE (Qn, GC))2 Ty, are linearly independent, ¢; = 0, then implying ca+S10c3 = 0 and Aca+SB20c3 =
0. Together, (—AB10 + B20) cs = 0. Given Bag # AB10, c3 = c2 = 0. If WE(Qn,0?) is not symmetric, premultiply the initial
expression by WE(Qn, 02)SE(Qn, 09)(WE(Qn,02) ™ = Iy + AoWE(Qn,02) and same result follows.

(ii) The reduced-form of the model evaluated at the true vector of parameter 6g is

1 e

Y= (S5 (Qnr02) " ZE (Qn,0°) Bo + (SE (Qnr60)) "t (RS (Qn,60)) " et (1.28)

As (Sﬁ (Qn7 92))71 =In+XG§ (Qn, 92), where Gf, (Qn, 08) =Wg (Qn, 6’2) (Sfl (Qn, 08))71, the expression above can also

be written as

Yn = Z5(Qn,02) Bo+ X0GS (Qn,62) ZE (Qn,62) Bo + (S5 (Qn,6°)) " (RS (Qn,62)) " €. (1.29)
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For separate identification of A\g and By = (Bio, Béo)/, it is necessary to guarantee that matrices Z;, (Qn, 98)
G (Qn,02) Z5, (Qn,02) B = Wi (Qn,02) (Sr, (@n,62)) " Z5; (Qn, 62) Bo

are not dependent asymptotically. In turn, asymptotic independence of the concerned matrices is a necessary and sufficient

condition for v (Qn,0c) > 0, as I now show. Following Lemma.[3} v (Qn, ) is well approximated by ¥¢ (Qn, 0c), where
1 ! ! —1 pe e - e
,YE (QTHOC) = 5562’2 (QTHOS) (S'rel (Q’fﬁeg)) 1Pn (Qn795) (Sn (Qn708)) 1Zn (Q’ﬂve(c)) BO'

Given that P (Qn,0c) = S (Qn,0c) R (Qn,0e) P (Qn,0c) RE (Qn, 0c) SE (Qn, 0c) is positive definite, then v (Qn, 0.) = 0
if, and only if, (Sfl (Qn, 92))71 ZE (Qn, 98) Bo = 0, which is equivalent to Z¢, (Qn, 98) Bo+ X GE, (Qn, 92) zZs (Qn,eg) Bo=0
using (SZ (Qn, 92))_1 = In + MGS, (Qn, 68) or, essentially, that Z¢ (Qn, 92) and G¢, (Qn, 92) ZE (Qn, 98) Bo are asymptot-

ically independent. |

1.D.4 Theorem [1l

Proof. (Uniform Convergence). The goal is to show that the concentrated log-likelihood (n) ™! [In £S (6c) — Qn (6c)] converges

uniformly to zero on O, where F, (6.) = maxg ,2 Eln LS (0c), that is,

1 1 . N
sup |—InLy, (0c) — —Fpn (6c)| = sup |ln 52 (6.) —Ins? (Bc)} =o0p(1).
0:.€0, | T n 0:.€0,

In first place, misspecification component in 62 (Qn, 6.) is made explicit. Given S& (Qn,0c) = In—AWE (Qn, 6c) and (S9) e

XoGY + I, where GO = W2 (59) ™", then S& (Qn,0c) (S9) ™" = MG + In — AMoWE (Qn,0c) GO — AWE (Qn,6c). Now
MWE (Qn, 0c) = AW+ Ao (WE(Qn, ) — WD) =  In — 8% + Ao (WE(Qn,0:)—W2) and
5% (Qn,0c) (S9) ™" = (A=A G + I, + Bn(Qn,6:) where the misspecification term is defined By (Qn,f:) =
A(WE = WE(Qn,0c)) + Ao (WL — WE (Qn,0)) G = A(WE — WE(Qn,0c)) (I+X0GY). Therefore, using the reduced-

form equation SE (Qn,0c) Yn = SE (Qn, 0c) (52)71 Z9 B0 + S (Qn, 0c) (52)71 (R2)71 €n,

P:{ (Q’ﬂ706) Ri (Qn,ec) Sﬁ (Qn,ec) Yn = P»s (Qn:oc) Ri (Q’ﬂ796) Z»(/)LBO + (/\0 - /\) Ps (Qnyec) Rfl (Qn:oc) nggﬁo
+P5 (Qn, 0c) Ry, (Qn, 0c) Br (Qn, 6c) Zgﬁo

+PE (Qn,0¢) R (Qn, 0c) S (Qn,0e) (S9) ™" (RY) ™ en.
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Given that 62 (Q’I’L7 gc) = %y%sﬁ/ (Qn: 06) Rfl, (Qn: 06) P;; (Qny 9c) R% (Qn, 90) Sfl (Qn, Oc) Yn &2 (Qn, 96) = 21121 K; (Qn: gg)y

where

Ki(Quib) = o (R (@n60) Z2280])' P (Qu.00) [Rs (Qn62) 2260]

K32 (Qn,0y) = %(Ao—x)[Rz(Qn,ec)ZSﬁo]’PﬂQn,ec)[R;(Qn,ec)GZZSﬁo]

K3(Qn.bg) = % [R5, (Qn,6c) ZBo]" Py, (Quns6c) [R5, (Qn, 6c) Bn (Qn, 0c) Z3 o

Ki(@ni0) = =[RS (Qu,00) 2050 P (@n,60) [R, (@n,00) 55 (Qn,00) (52) ™" (R) ™ e

K5 (Qn,0y) = %(AO—A)Q (RS, (Qn,0c) G5 2 Bo) Pl (Qn,0c) [Rs, (Qn, 0c) G 20 Bo]

K6 (Qn,0g) = %(Mﬂ) [R5, (Qn,0c) G 2 Bo] Py (Qun, 0c) [RS, (Qn, ) Br (Qn, 0c) Zp o]

K7 (Qn,0,) = %(,\0—,\) [RS (Qn,0c) G2Z980]" PG (Qn, 6e) [R (Qny0c) SE (Qn,6c) (S2) ™" (RQ)‘len]
Ks@ufa) =+ [R5 (Qui00) Ba (Qu,00) Z960]' 5 (Qn,00) [RS, (Qn,00) Ba (Qn,00) Z350]

Ko (Qui0y) = 2 [R5 (Qu,00) Ba (Qn,00) Z050)' P (Qn,00) R (Qu,00) S5 (Qn,00) (59) ™ (RY) e
K10 (@n,00) = =[RS (Qn,00) S5 (@n,00) (59) ™ (RD) ™" en] 5 (Qn,00) [Re (Qn.0) S5 (Qn.00) (S2) " (RD) ™" en]

Given Lemma (1} K4 (Q,04), K7(Q,60y) and Ko (Q,0y) are op (1). Remains to show the problem in expectation. The

concentrators are

@0 = (70 (@n.00) B (Qube) R, (@n,00) 75 (@n,00)]
Z5, (Qn.0c) By (Qn,0c) B, (Qn.0¢) S5, (Qn, 0c) Eyn

5% (Qui0c) = %E{[Si((»?m@c)yn*Zi(Qm@c)B(@c)]lRi/(Qm@c)Pﬁ(Qn,@c)-
RS, (Qn,00) [ 85 (Qus 60) yn = 25 (Qns00) B (60)] }.

Noticing Pg (Qn,0c) RE (Qn,0c) ZE (Qn,0c) = 0, the expectation

5 (@nib) = LB{yS] (Qn,00) B (@n00) P (@ny60) B (Qu,00) S5 (Qn,0)un }
- % {[(so (1) ™ en]' 85 (Quab0) S (@0 00) P (Qus0) B (Qus00) S5 (@, 0) (52) ™ (1) e |
E{ ZOﬁO Se (QH:GC)R (Qn 00) (Qn 90) Re (anec)se (Qn»ac ( )71 Z’?L/BO}

= &{| {(SO (F) ™ ] 5 (@0 R, (@ 00) P (@000 R, (Qu00) S5 (@0s00) (5) ™ (1) ™'}

#2528 [(ho = N GS + I + B (@n,00)])' R (Qn,00) P (Qn,00) RS, (Qns 00)

(Mo = X) G + In + Bn (Qn,0c)] Z360}
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and so 62 (Q,0.) = 3o7_; Ki (Q,6.) with

R Qa0 = 2 {d (R)7 (52) 75 (0] R (Qu0) PE (@0, 00) B (Qus00) S5 (Qu) (52) ™ (12) o |
R2(@u00) = ~E{(o =02 502 GY R (Qn,00) Py (@n00) B, (@n0) G200 |

Rs(@ui6) = “E{(o = 2% G Ry (Qn,00) P5 (Qn,00) RS, (Qns00) 7050
Ri(@u6) = ZE{(o N 602Y G R (Qn,00) 5 (Qn,00) R (@ny60) B (Qn,00) 2060}
Rs Q00 = ~E{ 802 B (@n.00) PS (Qn,00) R, (Qn,00) 2060 )

Ro(Qui0) = ~E{807Y B (@n,00) P° (@n,00) 5, (Qn,00) Ba (Qu,00) 7350

K1 (Qui6) = ~E{502Y B (@ny00) B (@ns00) P (@, 00) B, (@ns00) B (Qn,00) 2260}

By Lemma f(1 (Q'flv Hc) = K10 (@n, 06)"’_0]) (1) Also, KQ (Qn, ec) = K5 (Qn, 96)+0p (1)7 f(B (an 60) = K2 (Qn, 90)+0p (1)7
kﬁl (Qny ec) =Ks (Q'l’l} 00) +op (1)) RS (Qny Gc) =K (Qnaec) +op (1)) f(S (QTN ec) = K3 (Qn, 90) + op (1) and f(’? (QTM 00) =
Ks (Qn,0c) + op (1). As a consequence, 62 (Qn,8c) — 52 (Qn,0c) = 0p (1) uniformly on .. Convergence is uniform on the

parameter space as A, p and 0. appear as polynomial factors.

(Identification for X = Xo). Consider the non-stochastic auxiliary model y; = /\OW]-e (Qj,eg) y; + zif1
—i—Wje (Qj,ﬁg) x;B2 + v; where true neighboring matrices are given by expected network at true parameter values, Wj0 =

We(Qj,602) and M) = M (Q;,62). Its likelihood is
* % n € € 1 - e' €
In L3 (0) = =5 In (270%) + 0[S, (Qn, 0)] +In | RS (Qn, )] = 55 > € (Q4,0) €5 (Q5,0)
i=1

where € (Qj,0) = R (Qj5,0) <S’;3 (Qj,0)y; —x;p1 — ws (Qj,0) :L‘j,Bg). As usual, parameters 3 and o2 can be concentrated

out of the likelihood. The concentrators are given by

B (Qn,0c) (25 (@n.00) B, (@n.00) B (@n.00) 25 (Qu00)] 25 (@ 00) B, (@ 00) B (@ 00) S5 (@ 00) v

&2 (Qn, 0c)

L[5 @nrbe) v — 2 (@ns80) B 60)] B (@urb0) B (@, 00) [S5 (@ 00) i — 2° (@nsb) B 60)]

1 ’ ’
= 59;52 (Qn,0c) Ry, (Qn, 0c) Py (Qn, 0c) Ry, (Qn, 0c) Sy, (Qn, 0c) yn

The final form for the concentrated likelihood is In £L5** (0c) = —F (In (27) +1)— 5 In 52 (0:)+1n |SE (Qn, )| +1n | RS (Qn, 0)]-

The problem in expectation F;* (6) = maxg ,2 Eln £3* (0) is Fiy* (0) = — 5 (In (27) + 1) + In[SF, (Qn, 0)| + In| R}, (Qn,0)] —
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5**2(0), where **2 (Qp, 0.) is given by

N3

B {57 (@ 00) B (@ns00) P (@, 00) B, (@ns00) S5 (Qns ) wn |

_ l / e’ 0 -1 e’ 0 -1 e’ e’ e .

= nE{en(Rn (@ns02)) (55 (Qns02)) S5 (Qns0) B (Qns0c) P
(Qns00) B, (Qns00) S5 (Qns00) (S5 (@, 02)) ™ (R (Qns62)) ™ en}
{80 (@0 02) (55 (Qu0D) S5 (Qus0e) R (Qus ) PE (@8-
RS, (Qn, 00) S5 (Qns 00) (S5 (Qn,02)) ™" 25 (Qns62) o }

_ 0-72 e’ 0 -1 e’ 0 -1 e’ e’ e .

= T (R @) (55 (Qu02) 8T (@b B (@0) PE (@ur6)
- R (Qus 0c) 5 (Qns0c) (S5 (@n,02)) ™ (RS (Qn.00)) ™'}

Xo—N? L, e / ,
+ OO 2 (@0 02) G (@0, 02) R (Qns6) P Q) RS, (@ 00) G (@ 02) 7 (Qns ) o

By Jensen’s Inequality, F* (0) < F** (6p). Identification in the original model follows from

1r) - L 09 = LiEr6) - Frr(00)] + % ™" (6.) — In&2 (0e) + &2 (6°) — Ino™*? (69)]
n n n

It is immediate that o**2 (60) = o2. Lemmas and@ imply that 52 (62) = . Notice also

309 = 2E{ ()7 (5) 758 (@00 B (@n.00) P (@00 R (@000 55 (Qus00) (52) ™ (1) e

n

{2 (52) 7 SE (@) B (@) P (Qu00) R (Qu00) 55 (@000 (52) ™" 2250 .

Finally, Lemma and Assumption |§| imply Ino**2 (6.) —In&2 (6:) < 0. This completes the proof.

1.D.5 Theorem 2L

Proof. Jacobian and Hessian matrices are given in Appendixm The asymptotic distribution can be obtained from a Taylor

Oln Lc(é yn,rnan)

expansion around the point 50 = 0. For a point 6 between 0 and 6y,

—1

lalnﬁe(é)yn,xn,Qn) ialnﬁg(Go\yn,xn,Qn)
n 0600’ Vn 00 ’

ﬁ(é—(ao) -

2 e(p 2 e 2 e(n
102 Le(0yn,zn,Qn) P 10210 L(00|yn,®n,Qn) . .. 8% e (0)
= 50507 — = 50507 ). Convergence is shown explicitly for three terms: “oxop]

(Showing
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921n ¢ () and 921n ¢ ()

3552 PV ; other terms can be shown with little or no modifications. For

1 [82InLe(@)  821InLe(fo) 1 1, N .
TL{ a)\aﬁi - a)\aﬁi } - no g (QTHGO)R (ango)zn_ ne2 an (ane) Rn (ang) Tn
- H - } WWe (Qn,00) RS, (Qn,00) 20
vl W (@ns600) R (Qus0) = W (@ D), (@ns)]

The argument follows by noticing W< (Qn,00) and RS (Qn,00) are row and column-sum bounded, so 7ane (Qn,60)

RfL/ (@n,00) xn = Op (1), while by continuity of the inverse, |:0% - 6—12] = 0p (1). The second term converges in probability as
0

’ ’ ’ ~. ’ ~ ’ ’ -1 ’ ’
b Uh W (Qn00) B (Qni00) = W& (@Qu0)RY @QuDen = 58020 (SY) T [Ws (Qu.60) RS (Qnsbo)
7W7'§/ (@n, é)R‘le (Qn, é)] Zn+op (1). Given that Z3 = [zn; Wlzn], Tn is non stochastic, Wy is row and column-sum bounded,
e e! ! N pe’ ~ . 1 8% 1n ﬁe(é)
and [W (Qn,60) R (Qn,00) — WE (Qn,0)RE (Qn, 6’)] = op(l), it has been shown that - ~oxom
_& (lar;\g;(l%) } = 0p (1). The next term is
1 [82InLe(@)  82InLe (Bp) 1 / 1 <
- - = — n79 fz n,@ ’IE’L n,@ ~ nVVE ny R ny n79
L { s < (Qnr00) B (Qns80) € (@Qns80) — —1 0l W (@ D)RS, (@, ) (@, )

- % [% - 74} Yo WE (Qn.00) RS (@n,00) €5, (@Qn. 60)
+ ~4yn [ (Qm@o)Re (Qn,00) €5 (Qn,0p) — We (Qn, )RE (Qn, )€t (Qn,é)]
= H%_ i} YW (Qns00) RS, (Qns00) €5, (Qn, 00)
90

+

— el [ (@0, 00) R (@ 00) = W (@us )RS (@, 0)] €5 (@ns0) + 0p (1)

as €5, (Qn, 0) = R5,(Qn, 0)(S5(Qn, 0)yn —zn f1 =W (Qn, 0)2nf2) — RS, (Qn,00) (S5 (Qn,00) Yn — TnB1o — Wi (Qn,00) Tn20)
+ei (Qnb0) = Re(Qn,0)([S5(Qn,0) — S&(Qn,00)lyn — @nlBr — Bro] — WiE(Qn,0)znfz + W (Qn,00) TnBa0)+
R, (Qn, 0)[S5(Qn, 0) = S5, (Qn, 00)]yn — R, (Qn, 0)xn[B1 — Br0] — RE, (Qn, O)W (Qn, 0) wn[B20 — B2 + Rs, (Qn, )W (Qn, 00) —
W (Qn, 0)]2n 20 +[R(Qns0) — RS, (Qn,00)1S5 (Qn,00) yn —[R%(Qn,0) — RS (Qn, 00)]znBio — [RE(Qn,0) — R, (Qn, 60)]

W (Qn,00) @n 20 +€5, (Qn, 00), [S5(@n, 0) =S5 (@n, 00)], Wy (@n,00) — W (Qn, 0)] and [R5, (Qn, ) — R, (@n, 60)] = 0p (1),

~ 2 (g 2 e
and RS (Qn,0) is row and column-sum bounded, then % {8 ;iggz(g) _9 ;gage()) } =op (1).

By Mean Value Theorem, defining Gj (A 6g) = (S5 (Qj,e))—lee (Qj,0), tr{G% (X\,8y)} = tr{G2 (X0,69)}+

260{G% (M 0g)} (A= 20) + 20 {0, Wit (\,8y) S5 (X 85) 7' G (M) } (Bg —60) + 22t {W (3,05) Vo, Wy (A,0)
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Gn (X, 0g)} (65 — 60) then

1 [82InLe(@) 821InLe (b)) - - - - . o _
n{ T o = 20 {G% (A 0s)} (A = 20) + 260 { Vo, Wi (X,05) S5 (A,05) ™ G (X,05) } (95 — o)

+2xtr { Wy (A,09) Vo, Wi (X,05) G (3,0) } (95 — 60)

2
90

117 / /
= 5| S (@00 R (@100) RS (@400 W (@500,

j=1

- Zyg (W5 (@5, 0)RS (@4, 0)RE(Q5,0) — W' (Q5,00) RS (Q,00) RS (Qs,00)]

jl (Qja G)yj

. 9% 1In (0 21nLe
By similar arguments, as above, % { ?»\2 ©) _o lnaiz(%)} =op (1).

21, fe
(Showing - 19%Ince (ggly"’x“’Q") 2 E ( L 97 In L (g"l%"’x"’Q“ )) Terms that generically fit into the format wy (0) =

%@’A (6) ¢, where ¢ is non-stochastic vector of dimension n and A is a stochastic matrix of conformable dimension can be

shown to V{wz (§)} -2+ 0. For example, 7%%9;90) = %x%Rﬁ (Qn,00) WE (Qn,00)y = %m’nR%(Qn,QO)
1
Wi (Qns00) [(9) 71 2060+ (59) 7" (RD) " en] = LalR(Qni0) W (Qn,00) (S9) @nBio + LalRE (Qn,b0)

W (Qn,00) (S9)~ Woxnﬂgo + op (1). Defining CC( ) as the l-th column of Tn,

wat (0) =~ RS (@ns00) W5 (Qus00) (59) 1l = — szgzxgjg (R (Qus00) W (@uns0) (53) 1)

o2n" "

If elements of A (f) are approximately independent (taking, for example, (52)71 = I, + AW? as the first-order Series

Expansion), then
2 n n
V (wz1) = [%} Z > (xiflwﬁf)JYV { <R§ (Qn,6°) Wy (Qn, 60) (Sg)il)ij}

Noticing V (WJ) is a matrix of constants, RS (Qn,0°) W¢ (Qn,60) is column and row-sum bounded, then V {-} goes to zero

and so does V (;). An equivalent argument goes through if terms in the middle contains matrix of derivatives. Terms that

generically fit into we () = %e%A(G)en, for example, —%% = J%nyn (Qn,O)R (Qn,e)
€& (@Qn,0) = e (SY)TTWS (Qn,0) R (Qn,0) RS (Qn,0) (S5 (Qn,0) Pyn  —Z5(Qn.0)8) = -2, (SY)
WS (Qn,0) RS (Qn,0) RS (Qn,0) (S5 (Qn.0) Pym) + 0p(1) = e (S9)T'WE (Qn,0) RS (Qn,0) RS, (Qn,0)

(S€ (Qn,0)? (S9) e+ op (1) by Lemma [1} and straightforward adaptation of Lemma converges to

{-ZERL O~ L e ((60) W (@ud) R (@) R (Qni) (55 (@)™ (527}

(Asymptotic distribution). Given existence of higher order moments of €, the Central Limit Theorem in |Kelejian and



m can be applied to show that \} 9ln EE(GO) d — N (0,9). Given non-singularity of the Hessian matrix as

guaranteed by global identification condition in Theorem (I} it follows that

ﬁ(é—eo> 4, N(o,zglggzgl).

O
1.D.6 Proposition
Proof. (i). Starting from the definition of the social multiplier,
@ (xn; W (Qn,0F) , B10,8+) = ZAfl (W (Qn,ei))jxn (A+B10+ B24) =
j=1
> AN T (W (@ni00)) w0 A Bro+ B2+) = D AT (W (Qns62)) @ (MoBro + oA s ) =
j=1 j=1
oo ] .
> X (WE (Qnr02)) o (MoBro + B20) = @ (0 W (Qn,02) , Mo, B10, B20) (1.30)
j=1
where the penultimate equality follows by WE(Qn, 9?):{@524_ - Wg (Qn7 08) Tnf20 = )\0)\11Wﬁ (Qn, 92) Tn P2+

—Wg (Qn,02) TnBao = W5 (Qn,09) zn (AoA; ' B2y — B20) = 0. (ii). Define ®* (0] yn,n,Qn) = {0 € © : Qu(f) = Qn (0)}.
Sets & (00| yn,:cn) = o* (00| yn,wn), as I now show. Inclusion ® (090| yn,wn) C o* (00| yn,xn) is immediate from the
first part. The reverse &* (00| yn,xn) (@ (00| yn,zn) follows from a contradiction: suppose there is a 6* such that
0% € ®(0*| yn,zn) and 0* ¢ ®* (6*|yn,zn). By construction and Jensen’s inequality, Qn (6*) < Qn (6°). Observation of the
reduced-form implies € (Qn,0%) = € (Qn,0°), In[SE (Qn,0%)| = In|SE (Qn,0°)| and In|RE (Qn,0%)| =1In|RS (Q,0°)], and
S0 Qn (0*) = Qn (90), a contradiction. Therefore, given that ® (90} yn,azn) = o* (90| yn,mn), for any 0. € ®* (90| yn,xn),

and, by definition, ®* (90| yn,xn) = Oy, the result is proven. O

1.D.7 Theorem [3l

Proof. For parts (1) and (2), see Theorem 3.2 and Lemma 3.1 of |(Chernozhukov et al.| (2007). By construction, and uniform

convergence of Theorem |I| conditions C.1 with a, = n, degeneracy property C.3 and condition C.4 therein are satisfied.
Condition C.2 is guaranteed by uniform convergence and boundness of the objective function on a compact set ©. Parts (3)

and (4) are immediate corollaries. O
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1.D.8 Example [3]

The full model is y; = )\OWJQy]- +z;B10 + WJQJJ]'IBQO + €; with reduced form y; = (S?)ill'jﬂlo + (S?)’legwjﬂm + (S?)fle]u

Then
yi —By; = ()™ =E(S)) a;Bro + (S TWP — E{(S) T "Wz, Ba0 + (S) e,
and Vy; = E((y; — By;)(y; — Ey;)’) is

vy = E{(S) 7 —B(SY) e BoBloz (8D —E(SY) ™}
+2E { (S9! — E{(S) " D) BroBhoa ((S9) T WP — E{(SH) T WP}y’ }

+E {((S)) T WP — E{(S9) 7 W 1w 820800 (S T WY —E{(S)) MWD} + E{ (S eseh(58) 1}

Denote these terms sequentially as Aj;, Bj, C; and D;. A; = ijjl-ls;-, where s; = ((39)71 - ]E{(S;-))fl}) and x}l =

a:jﬁloﬂiow;. Then
YipE{suswtaly - X pE{susan}all
ZlykE{snzslk}zzlé Eth{snzSnk}x,}é

where s;;, denotes the (i, k)th element of s;, and similarly for le-l. Matrix s; can be approximated s = I+)\0WJQ +)\(2)(W]Q)2 +

cee— (I 4 )\OIEWJQ + /\gIE(WJQ)2 +-) = )\O(WJQ — W;(Q?)), Hence s;, is dependent of s,/ if, and only if, : =i’ and k = k'.

Take w; as the (7, k)th element of W]-O. This simplifies term A; to
Y V{wtall - 0

0 S V{wnal}

which then implies A; = diag (AQV{W]-} diag(x}l)) Proceeding in a similar fashion, B; = ijms*' with 1‘]1-2 = xjﬂloﬁéor;-

J 77
and 55 = W + A(W)? + NB(WP)% + - — (WE(6o) + ANE(W?)? + NBE(WP)? +--) & WO — WE(6o)
Zi,k]E{SliSTk}x%IS Zi,kE{sliSZk}lelg ZiV{wu}x%f 0
B; = 2 : : = 2X

Zi,kE{SniSIk}x}E Zi,kE{sniSZk}mig 0 e i V{wni}af?
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and then B; = diag (2)\V {W;} diag(:r]m)). The second equality uses independence between Bernoulli trials. For C},

Y E{siP}al? 0 XiV{wi}af? o 0
c; = : = :
0 e M E{s3) el 0 e 2 Vwnid 2
= diag (V{W;} diag (23?))
Lastly,
Ziij{Slislj}E{eij} Ei’jE{slisnj}E{eij} EiE{S%i}O’Q ZiE{SMSni}O’Q
Dj = . . . = . . .
>i i E{snisitE{ei;} -+ 32, ;E{snisn;}E{es} S iE{snistito? o S E{s?.} o2
SLE{st} 0 > V{w} - 0
= o2 = A2 +O’2Inj
0 o G E{sh ) 0 w20 V{wne}

No?diag (V{W;}in;) + 0°In,;.

The entire expression reads Vy; = diag (V{Wj} ()\Zdiag(le-l) + 2/\diag(x]1-2) + )\20'2Ln]-)> + lenj. Using Theorem 6 of
Rothenberg| (1971, p. 585), suffices that the jacobian of matrix of restrictions has rank equal to the unknown parameters. The
identified set can be translated, in this case, as A = dgAg and Fo A~ ! = ,820)\0_1, where the combination of the parameters in

the right hand side is identified from data; parameters 819 and crg are point-identified. The jacobian then reads

[ 0 1 0 0 0 |
0 0 0 0 1
J(0) = ) 0 0 A 0
—BaA "2 0 A1 0 0

| Jk1(0) Jk2(0) Jk3(0) Jkxa(0) Jks(0) |
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where

JKI (0) = 2n]._151 (1 - (51) A (L/njdiag(:l?]ll) + TZ]'O'Q)
ddiag(z1h) ddiag(x1?)
Jr2:(0) = n;'oi(1—61) (AN, ———25 42N, ————
K2 (6) ny o 1) < EET 2, 0B
ddiag(z1?) ddiag(z2?)
. _ —1 _ / J ’ J
Jr3i(0) = ny 01(1—061) <2)\Lnj 8 Un; 082
Jra () = nj_l (1—261) ()\QL;LJ_ diag(mjl-l) + 2)\ng diag(mjl-g) + L;Lj diag(x?) + ’I’Lj)\20'2)
Jrs(0) = o1 (1—51)—nj/\2+1.

Identification is guarateed with rank (J (9)) = K, where K is the number of parameters in the structural model. Given o3
is identified, the last equation gives a solution for §; and A. Linear independence is guaranteed if the only column vector c
that satisfies J (0) c = 0 is ¢ = 0. For the case of one exogenous covariate, this immediately implies ca2 = ¢5 = 0. We then
have c16 + cad = 0, —c1BA "2 + c3A™! = 0 and ¢1Jk1 (0) + c3Jk3 (0) + caJi4 (§) = 0. Substituting out ¢; and cg in the
third equation, one obtains the condition that c4 [—)\6_1]1(1 (0) =N~ 1BJK3 (0) + Jka (0)] = 0. If X\ # 0, it is equivalent to
AT Tk (0) — A6 BJIK3 (0) + Jia (0) # 0 at 6. This condition is empirically testable for all § € ¢, which is sufficient

as 0y € Ogp.

1.D.9 Theorem [l

Proof. (Consistency). Because © converges to ©g in the Hausdorff metric, © C of for ©f = {# € ©:d(0,00) < ¢} with

e =o0(1) and € > 0. It follows that

’
v S

v S
6 = argmin DTS qai w,0) | QD08 aa (w,0) | +o0p (1)
Jj= s=1 Jj=1 s=1

1

When S and v are going to infinity,

’

v S v S
v 2 ZS—IZqS,j<y,9>> QY8 g w,0) | LS (BYEweqs; (1,0) Q2 (EYEw,eds j (v,6))
Jj=1 s=1 Jj=1 s=1

where Ey. is the conditional expectation taken with respect to the distribution of W and e, given y and z and ]Eg is
the expectation with respect to the true distribution of y, given xz. Given that (ESIEW@qs,j (y,9))/Q (ES]EW,eqs,j (y,e)) =

(quj (y, 0))/ Q (]quj (y, 9)) and qug' (y,60) = 0 only at 09, consistency follows.

(Asymptotic normality). In the cases where S — oo fast enough, results follow from standard asymptotic theory and
Gouriéroux and Monfort| (1997, Ch. 2). v/n(d — 6p) — N (0, 5*), where Sy = (G1, Q2 Gn) " G O0nQn G (G, 2 Gr) ™,

Gn = EVq;(yn,00), On = Eq;(yn,00)q; (yn,00) and & = limp—00 Xpn. Optimal weight matrix is Q = ot and, in this
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case, IF = (G, (Q;‘I)_lGn)_1 and £* = limy, o0 27. When it can be shown that the local maximum is unique, the estimator

can also be seen as the solution to

R v S ' v S
00 = argmin | 3 ST'Y al;(v,0) | 9| 3STI D 4l (v,0)
j=1 s=1 Jj=1 s=1

where q;,]- (y,0) = [VoIn L (0) qs,5 (y, )]’ and Q* is a weight matrix of conformable dimensions with possibly arbitrary
large weights for the first-order conditions, so that the restriction § € © is implemented. In the case where § — oo
fast enough, given identification, v/n(f — 6g) —% N (0,5**), where $% = (G QA GH) L Gx Qf OX Q% Gx(GE QR G L,
G* = ]EngJ’f(y]-,Oo), o* = ]Eq;f(y,Go)q;(y, 6o)" and q]*.(y, 6o) = limg_,00 S~1 Ef:l q;j(y,ﬁo) and ¥* = limy, o0 27. Using

optimal matrix Q5* = (0%) ™1, S5* = (G5 (25*) 71 GE) 7Y, limp oo S5 O

1.E Algorithms.

1.E.1 Bootstrap for ¢, (a) and ¢/ (a)

In the case of i.i.d. data,Bugni| (2010) proposes a bootstrap algorithm correction consistent for ¢, () and adaptable to C‘fl ().
In the current case, spatial dependence or social interactions in groups prevents immediate application of methods described
therein. Instead, I propose bootstrapping at the group-level j, while maintaining within-group observations ¢ = 1,...,n;. In
this way, dependence of observed data is preserved. Apart from the straightforward modification proposed here, proofs can

be found in the aforementioned paper.

Algorithm 1. (Bugnig (2010) bootstrap). In order to produce confidence regions with coverage probability 1 — o, « € (0, 1),
for ©q, denoted @g for a bootstrapped sample of arbitrary size B, follow the steps:

Step 1. Estimate the identified set © = {0 €0 : Ly (0|yn,zn,Qn) =0}.

Step 2. Define the bootstrapped sample b = 1,..., B, sampling v groups with replacement from the data and denote
bootstrapped sample {yl,z%, Qb Y. Compute

& = sup v/n (Ln(ﬁ\yz,xz,QlfL) — Ly, (H\yn,a:n,Qn)> .
0co

Step 8. Let ¢B () be the o quantile of the empirical distribution of {éL,...,¢B}. The (1 — a) confidence set for the
identified set is

6% = {00 VAL (0]yn,wn,Qu) < B (1-a)}

Next, I produce an adaptation of the algorithm to be able to generate confidence regions for the image of the identified

set under known function f, hence completing the statistical toolkit necessary for implementation of remarks Q and @

Algorithm 2. (Adaptation of Bugni (2010) bootstrap for projection under f). The modified algorithm to produce confidence
regions with probability 1 —a, a € (0,1), for the projection of ©g under known function f, T(f), denoted Yf, for a bootstrapped

sample of arbitrary size B is:
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Step 1. Estimate the projection of the identified set T = {v €Y tinfyep-1(4) Ln (0| yn, Tn,Qn) = 0}.

Step 2. Define the bootstrapped sample b = 1,..., B, sampling v groups with replacement from the data and denote
bootstrapped sample {y2,x2 QL}. Compute

é'ffl’b: sup inf \/E(Ln(e‘yszfQO%)_Ln(e‘ymIan))-
UEYGfol(v)

Step 3. Let éﬁ’B (a) be the a quantile of the empirical distribution of {é,’i’l, .. .,éfl’B}. The (1 — «) confidence set for

the projected identified set Yo is

5B = {v €Y: inf nL(0lyn,zn,Qn) <P (1- a)} .
oef=1(v)

1.E.2 Main algorithms

Algorithm 3. If Ao is known and there are at least three distinct group sizes nj, follow the steps:

Step 1. Mazimize the concentrated pseudo-likelihood
L5 (el yn,n, Qn) = =2 (In(2m) +1) = 2106 (Qn,0c) + 1S5 (Qn, )| + R (Qn, b))
with respect to 04, where
PQu0) = ST (QuOIRE (@ 00) P (Qns 0 R (Qns 005 @y 0

and Pg(Qn,0c) = In — R5(Qn, 00) 25 (Qn, 0c) (25 (Qn, 0) RS, (Qu, 0) R, (Qn, 0) 25 (Qn, 0c)) " 25 (Qn, 0c) RS (Qn, 0e). Ob-
tain the full solution § = (0%, B(.),62(0.)), where 0. = argmaxgeco, In LS (0c| yn, Tn, Qn) and

Ble) = (25 (Qnr0c)RE (Qny0c)RE(Qny00) ZE(Qny 0)) "1 ZE (Qny ) RS (Qny ) RS (Qny 0)SE (Qns )y

Calculate and store the expected network Wﬁ = WE(Qn, é)

Step 2. (C.I. of structural parameters). Calculate the asymptotic variance given by Theorem . The full expressions of

the Jacobian and Hessian are given in Appendix or can be numerically approximated.

Step 3. (Network spillovers). Network spillovers are calculated as
W(znvé) = (I - AOWS)_I(fEnBl + anjBQ) - fEnBL

Confidence intervals follow from a simple Delta Method, v/n* (¢ (n, 0)—p(xn, 00)) N N(0,Vo(Tr, 00) "1 (A0)Q2(N0) "1 (Xo) Vp(zn, 00)).

Step 4. (Network data validity). When network data are available, a Delta Method also is employed to provide confidence
intervals for the null hypothesis Ho : 61 — 6o = 0.

Algorithm 4. The following algorithm generalizes for the case in which Ao is unknown. If there are at least three distinct

group sizes nj, follow the steps:

Step 1. Select a candidate \g.
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Step 2. Mazimize the concentrated pseudo-likelihood
L5 (el yn, 2, Qn) = =2 (In(2m) +1) = 2106 (Qn,0c) + 1S5 (Qn,00)| + RS (Qn, 00|

with respect to 04 and obtain the set of solution 6 =(0.,30.),62(0.)) such that 8. = argmaxgee, In LS (0c| yn, Tn, Qn).

Denote this set ©. Full expressions for the concentrated parameters B(éc) and &2(96) are given in Step 1 of Algorithm 3.

Step 3. Check if probability of peers forming link is in the [0,1] range. Otherwise, go back to Step 1 and adjust Ao

accordingly.
Step 4. (C.1. of structural parameters). Obtain confidence regions for 04 following the bootstrap Algorithm 1.

Step 5. (Network spillovers). Take any point 0* in the identified ©. Network spillovers are calculated as
e(@n,0) = (I=XoWg) " (@nBi + WazjBa) — znfr.

Confidence intervals are calculated following Algorithm 2.

Step 6. (Network data validity). When network data are available, Algorithm 2 is reemployed to provide confidence

intervals for the null hypothesis Ho : 61 — dp = 0.

Step 7. (Identifying \). Solve the GMM problem

!

v S v S
0 = argmin ZS_IZq&j(yj,zj,Q) Q ZS_lzqsyj(yj,xj,G)
j=1 s=1

0c® j=1 s=1

where qs,j (yj,¢5,0) = [VB,; (Y5, 25,0) = Vi ; (9,5, 0); Viv,j (uj, 25, 0) = Viw,j (85, 25, 0)) with g5, = (S5) ™ (z;81 + Wiz; B2+

e‘;) and S = (Inj - )\W;)_l. WJ‘? is sampled from the distribution of the network-generating model and e‘; is sampled from

a normal distribution with variance o2. Confidence intervals are given in TheoremIZl
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1.F Additional figures and tables.

1.F.1 Estimator and simulations.

Table 1.F.1: Likelihood as a function of (1.

N =250 N =500

Note: Rescaled additive inverse of likelihood as a function of 81, with all other parameters at the true value.
True B10 = 1. Solid line represents likelihood computed with expected network W¢ = W€ (Q, 6p), and dashed

with real network WO. True networks are realizations from the stochastic generating process.

Table 1.F.2: Likelihood as a function of 4.

N =250 N =500

Note: Rescaled additive inverse of likelihood as a function of §1, with all other parameters at the true value. True
810 = 0.75. Solid line represents likelihood computed with expected network W¢ = W€ (Q, ) and underlying
networks are realization from the stochastic generating process. Dashed line wo = W€(6p) is the likelihood where

true network is equal to expected network.
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CHAPTER 1. ESTIMATING NETWORK EFFECTS WITHOUT NETWORK DATA

1.F.2 Application.

Table 1.F.9: Occupational Choice with Network Data.

(1) (2) (3) (4) (5) (6)
Outcome Self hours. Wage hours. Self emp. only.
Method Network. Network. Network. Network. Network. Network.
Family. Economic. Family. Economic. Family. Economic.
Program effect 473.219***  473.581***  —113.002*** —113.146***  0.113*** 0.114***
after 2 years (B11). (12.99) (13.89) (8.33) (8.33) (0.01) (0.01)
< Program effect 464.069***  463.441***  —142.755"** —143.009***  0.120*** 0.121***
< after 4 years (B12). (13.07) (5.10) (8.53) (8.25) (0.01) (0.01)
g Spillover on T —20.438***  —23.097***  24.394*** 26.933*** —0.029*** —0.034***
E  after 2 years (¢r,2). (7.01) (6.95) (8.50) (9.21) (0.01) (0.01)
=t Spillover on T 17.396*** 14.734** 19.805** 22.105** —0.023*** —0.027**
S after 4 years (Pr.4). (6.41) (7.04) (8.37) (10.30) (0.00) (0.01)
2 Spillover on NT —9.771***  —11.346"**  12.692*** 14.259*** —0.015*** —0.018***
after 2 years (@nr,2). (3.35) (3.42) (4.41) (4.87) (0.00) (0.00)
Spillover on NT 8.317** 7.237%%* 10.304** 11.703 —0.012*** —0.014***
after 4 years (Pnr,4). (3.28) (1.88) (5.21) (13.28) (0.01) (0.00)
Link to T —40.2477F  =27.635"*" 12,794 13.663** —0.045"** —0.051***
< after 2 years (fa1). (1.99) (1.42) (2.48) (2.72) (0.01) (0.01)
3 Link to T —30.758***  —20.648"**  12.938*** 13.721%** —0.040*** —0.045***
g after 4 years (B22). (1.53) (1.77) (1.57) (2.73) (0.01) (0.01)
g Link probability 0.776*** 0.759*** 0.985*** 0.726*** 0.336*** 0.196***
E i Qi =1 (81). (0.05) (0.05) (0.08) (0.05) (0.03) (0.02)
Link probability 0.317%** 0.464*** 0.364*** 0.362*** 0.115%** 0.116™**
it Qi = 0 (8o). (0.00) (0.01) (0.01) (0.01) (0.00) (0.00)
A 0.075 0.05 0.05 0.05 0.15 0.15
p-value Hyy . < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
Avg treated outcome. 421.8 421.8 646.7 646.7 0.303 646.7
Individuals (n). 23029 23029 23029 23029 23029 23029
Villages (v). 1409 1409 1409 1409 1409 1409
Survey waves (7). 3 3 3 3 3 3

Notes as in Tablc
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CHAPTER 1. ESTIMATING NETWORK EFFECTS WITHOUT NETWORK DATA

Table 1.F.10: Earnings and Seasonality with Network Data.

0 e @) @ @) O]
Outcome Earnings. Share Seas. Share Reg.
Method Network. Network. Network. Network. Network. Network.
Family. Economic. Family. Economic. Family. Economic.
Program effect 0.562%** 0.556*** —0.029*** —0.029*** 0.181*** 0.182***
after 2 years (B11). (0.207) (0.148) (0.01) (0.01) (0.01) (0.01)
o Program effect 2.726*** 2.806*** —0.075*** —0.075*** 0.166*** 0.166***
% after 4 years (f12). (0.196) (0.108) (0.01) (0.01) (0.01) (0.01)
g Spillover on T —0.258** —0.187* —0.063*** —0.062*** 0.037*** 0.030***
2 after 2 years (¢1,2). (0.116) (0.113) (0.02) (0.02) (0.01) (0.01)
£ Spillover on T —0.098 —0.188* —0.016* —0.016 0.044*** 0.035***
E after 4 years (Pr.4). (0.117) (0.112) (0.01) (0.02) (0.02) (0.01)
2 Spillover on NT —0.133** —0.102* —0.026*** —0.026** 0.017*** 0.014***
after 2 years (PnT.2). (0.060) (0.062) (0.01) (0.01) (0.01) (0.01)
Spillover on NT —0.051 —0.103 —0.002 —0.007 0.020** 0.017*
after 4 years (Pn7.4). (0.057) (0.78) (0.01) (0.01) (0.01) (0.00)
Link to T —0.236 —0.245 —0.023*** —0.017%* —0.051%** —0.053***
< after 2 years (B21). (0.456) (0.478) (0.02) (0.00) (0.01) (0.01)
3 Link to T —0.740 —0.375 —0.019*** —0.014*** —0.037*** —0.039***
£ after 4 years (f22). (0.541) (0.596) (0.01) (0.00) (0.01) (0.01)
b Link probability 0.155%** 0.064*** 0.234*** 0.236*** 0.100*** 0.077***
é if Qij =1 (51). (0.01) (0.00) (0.02) (0.01) (0.01) (0.00)
Link probability 0.030*** 0.030*** 0.152%** 0.203*** 0.054*** 0.051***
if Qi = 0 (30). (0.00) (0.00) (0.00) (0.00) (0.00) (0.01)
A 0.50 0.50 0.20 0.15 0.50 0.50
p-value Hyvy . < 0.001 < 0.001 < 0.001 0.022 < 0.001 < 0.001
Avg treated outcome. 4.607 4.607 0.674 0.674 0.478 0.478
Individuals (n). 23029 23029 23029 23029 23029 23029
Villages (v). 1409 1409 1409 1409 1409 1409
Survey waves (7). 3 3 3 3 3 3

Notes as in Table
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Table 1.F.11: Livestock with Network Data.

CHAPTER 1. ESTIMATING NETWORK EFFECTS WITHOUT NETWORK DATA

(1) (2) (3) (4) (5) (6)
Outcome Cows. Poultry. Livestock Value.
Method Network. Network. Network. Network. Network. Network.
Family. Economic. Family. Economic. Family. Economic.
Program effect 1.132% 1.132%* 2.116™** 2.117% 10.412%** 10.420***
after 2 years (f11). (0.03) (0.03) (0.50) (0.50) (365.41) (0.45)
o Program effect 1.103*** 1.101*** 1.296*** 1.330*** 11.175%** 11.173***
“ after 4 years (B12). (0.03) (0.03) (0.50) (0.50) (459.21) (0.44)
g Spillover on T —0.032*** —0.033*** 0.039 0.107 —0.184*** —0.230"**
£ after 2 years (¢1,2)- (0.01) (0.01) (0.11) (0.18) (0.07) (0.06)
g Spillover on T —0.055*** —0.055"** 0.029 —0.095 —0.407*** —0.456***
T after 4 years (¢r.4). (0.02) (0.02) (0.12) (0.21) (0.11) (0.06)
2 Spillover on NT —0.018*** —0.020*** 0.014 0.064 —0.106*** —0.137**
after 2 years (Pnr,2)- (0.01) (0.01) (0.06) (0.11) (0.04) (0.04)
Spillover on NT —0.031*** —0.032*** 0.011 —0.056 —0.234*** —0.272%*
after 4 years (Pn7.4). (0.01) (0.01) (0.10) (0.08) (0.08) (0.03)
Link to T —0.965*"* —0.996*** 9.169 1.495 —9.251""*  —10.634***
< after 2 years (Ba1). (0.15) (0.15) (19.65) (4.22) (2.64) (1.22)
ks Link to T —1.227*%* —1.256*** 6.975 —2.914 —14.504***  —16.332***
g after 4 years (f22). (0.16) (0.16) (21.05) (4.21) (2.30) (2.07)
"5 Link probability 0.039*** 0.019*** 0.020** 0.008 0.029*** 0.010**
£ i Qij =1 (5'1): (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Link probability 0.014*** 0.014*** 0.011 0.008*** 0.008*** 0.008***
if Qij = 0 (Jo). (0.00) (0.00) (0.01) (0.00) (0.00) (0.00)
A 0.50 0.50 0.50 0.50 0.50 0.50
p-value Hyy . 0.003 0.300 0.045 1.000 0.024 0.764
Avg treated outcome. 0.083 0.083 1.79 1.79 0.940 0.940
Individuals (n). 23029 23029 23029 23029 23029 23029
Villages (v). 1409 1409 1409 1409 1409 1409
Survey waves (7). 3 3 3 3 3 3

Notes as in Tablc

82



CHAPTER 1. ESTIMATING NETWORK EFFECTS WITHOUT NETWORK DATA

Table 1.F.12: Expenditures with Network Data.

(1) (2) (3) (4) (5) (6)
Outcome Nonfood PCE. Food PCE. Food Security.
Method Network. Network. Network. Network. Network. Network.
Family. Economic. Family. Economic. Family. Economic.
Program effect —208.803 —208.049  421.741"**  424.602*** 0.169*** 0.169***
after 2 years (B11). (160.98) (160.05) (133.67) (133.61) (0.01) (0.01)
o< Program effect 280.309* 279.158 444.980***  447.736*** 0.075*** 0.076***
= after 4 years (B12). (145.11) (178.65) (133.66) (133.61) (0.01) (0.01)
g Spillover on T —29.966 —32.452 401.713***  387.106*** 0.028*** 0.083***
g after 2 years (¢r,2). (70.13) (69.80) (56.88) (56.47) (0.01) (0.03)
g Spillover on T —161.955** —161.161"*  253.726"**  242.561*** 0.080** 0.163***
b after 4 years (¢r,4). (71.28) (69.72) (59.58) (55.82) (0.03) (0.05)
2 Spillover on NT —17.507 —19.103 215.298***  208.075*** 0.012*** 0.033***
after 2 years (Pnr.2). (40.98) (41.09) (30.18) (30.97) (0.00) (0.01)
Spillover on NT —94.620***  —94.869**  135.984***  130.380*** 0.033*** 0.065***
after 4 years (Pn1.4). (26.64) (39.08) (51.07) (29.85) (0.00) (0.02)
Link to T —311.329 —349.080  343.343"**  438.309*** 0.102%** 0.123***
< after 2 years (Ba1). (966.77) (968.78) (62.93) (83.73) (0.01) (0.01)
3 Link to T —2386.991** —2389.737** 190.068***  238.308*** 0.088*** 0.113***
g after 4 years (f22). (959.21) (962.22) (62.48) (83.19) (0.01) (0.01)
'*g Link probability 0.020** 0.014** 0.158*** 0.132%** 0.184*** 0.092***
B if Qi =1 (81). (0.01) (0.01) (0.03) (0.01) (0.00) (0.00)
Link probability 0.013*** 0.013*** 0.118*** 0.087*** 0.059*** 0.065***
if Qi = 0 (d0). (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
A 0.50 0.50 0.15 0.20 0.50 0.50
p-value Hyy . 0.389 0.835 0.002 0.159 < 0.001 < 0.001
Avg treated outcome. 1054.5 1054.5 2953.7 2953.7 0.457 0.457
Individuals (n). 23029 23029 23029 23029 23029 23029
Villages (v). 1409 1409 1409 1409 1409 1409
Survey waves (7). 3 3 3 3 3 3

Notes as in Tablc
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Table 1.F.13: Occupational Choice, Bernoulli model.

@] 7 7
Outcome Self hours. 1Wag0 Self emp.
hours. only.
Method Network. Network. Network.
Program effect 474.153***  —112.859***  0.114***
after 2 years (B11). (14.55) (8.34) (0.01)
o< Program effect 464.304***  —143.481***  0.121***
% after 4 years (B12). (9.50) (8.47) (0.01)
g Spillover on T —26.577**  25.865*** —0.033***
£ after 2 years (¢r,2). (7.92) (6.55) (0.01)
=t Spillover on T 13.148 22.082*** —0.027***
T after 4 years (¢r.4)- (9.59) (7.06) (0.01)
2 Spillover on NT —12.862** 13.714*** —0.018"**
after 2 years (Pnr,2). (6.56) (3.77) (0.00)
Spillover on NT 6.363 11.708*** —0.015***
after 4 years (Pnr1,4). (4.58) (1.97) (0.00)
=< Link to T —27.891"**  13.355%** —0.050***
5 after 2 years (Ba1). (1.38) (2.50) (0.01)
g Link to T —12.862***  13.758*** —0.045***
€ after 4 years (f22). (1.63) (1.59) (0.01)
E Link prpbability 0.492*** 0.380*** 0.120***
(61). (0.03) (0.03) (0.00)
A 0.05 0.05 0.15
Avg treated outcome. 421.8 646.7 646.7
Individuals (n). 23029 23029 23029
Villages (v). 1409 1409 1409
Survey waves (T). 3 3 3

Notes as in Table



Chapter 2

Regularization for Spatial Panel Time

Series using the Adaptive Lasso

Abstract. This paper proposes a model for estimating the underlying cross-
sectional dependence structure of a large panel of time series. We propose to esti-
mate this by penalizing the elements in the spatial weight matrices using the adaptive
LASSO proposed by |Zou| (2006). Non-asymptotic oracle inequalities and the asymp-
totic sign consistency of the estimators are proved when the cross-sectional dimension
(N) can be larger than the time dimension (7"). A block coordinate descent algorithm

is introduced, with simulations and a real data analysis carried out[l]

Keywords: Spatial econometrics; adaptive Lasso; sign consistency; non-asymptotic oracle inequal-

ities; spatial weight matrices.

JEL classification: C31, C33.
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2.1 Introduction

The study of spatial panel data is of increasing importance in econometrics and many other
disciplines. As obtaining large panel of time series data becomes easier, more researchers look
into these data as they provide valuable information on spatial-temporal dependence structure.
Various models are proposed to study the cross-sectional dependence of variables, including fixed or
random effects spatial lag (or spatial autoregressive) and spatial error models (see Elhorst), |2003).
Spatial autoregressive models (SAR) can be seen as another formulation of a spatial error model
(e.g. [LeSage and Pace, 2009)).

One important feature of these models is the need for the specification of the spatial weight
matrix, which is the key in quantifying the spatial lag structure in the panel time series data.
Method of specification ranges from using prior expert knowledge (e.g. [Lesage and Polasek] [2008)),
to imposing special structures. For example, the contiguity structure has contagious regions having
corresponding elements in the spatial weight matrix set to one and zero otherwise (e.g. LeSage
and Pacel 2009). The more general “distance metric” has elements corresponding to further away
regions smaller than those that are closer together. Exact “distance” specification, however, is not
universal. Bavaud| (1998) suggested various specifications, including a distance decay model, and
their implications and interpretations with theoretical supports. |Anselin| (2002) has also addressed

the issue of spatial weight matrix specification and interpretation.

In this paper, we study a more general form of spatial autoregressive model as detailed in
section In the terminology of |/Anselin| (2002)), we include both global and local spillover effects,
through the terms W7y; and W35X;8" respectively in model . Few researchers attempted
to estimate the spatial weight matrices, including a well known paper by |[Pinkse et al. (2002).
They estimate a nonparametric smooth function g(-) assuming normality of data, and the (4, j)-th
element of the matrix W7 is estimated as g(d;;), where d;; is a distance measure specified by the
user. Beenstock and Felsenstein| (2012)) suggested using a moment estimator for the spatial weight
matrix. Bhattacharjee and Jensen-Butler| (2013) proposes to estimate the spatial weight matrix by
first estimating the error covariance matrix. However, estimating a large error covariance matrix
can be inaccurate as the dimension N of the panel is large and can be close to the sample size T -
one of the major characteristics of a large time series panel. Recently, |Ahrens and Bhattacharjee
(2014) proposes to estimate the spatial weight matrix in a spatial autoregressive model with
exogenous instruments by using a two-step LASSO estimation but deal with a restricted version

of our model.

In our paper, we focus on estimating the spatial weight matrices themselves, which are assumed
to be sparse: having a lot of zero entries. There is no need to specify a distance measure for our
method as long as the true spatial weight matrices are sparse. We provided non-asymptotic bounds

on various estimated quantities on a set with probability approaching 1 asymptotically (see Lemma
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for example). We demonstrate that sparsity is a common endeavor with a structural equation

model in Example 1 in section [2.3.1

The aims in estimating the spatial weight matrices are twofold. First, it is not always clear
what exactly the spatial dependence structure is for the panel data. Even with expert knowledge
of what the spatial matrices should look like, estimating them from data may reveal dependence
structures that our assumptions can miss out. Presenting the estimated spatial weight matrix as
a network connecting the components of the panel time series provides a visual tool for deeper
understanding of cross-sectional dependence structure. Second, as presented previously, there
are no universal rules in specifying a spatial weight matrix. We quote a part of the criticism
summarized in |Arbia and Fingleton (2008), “... arbitrary nature of weight matrix... are not the
results obtained conditional on somewhat arbitrary decisions taken about its structure?” Although
debate is still on about the sensitivity of results towards the specification of spatial weight matrices,
this paper provides a partial solution to the criticism and potential sensitivity towards “arbitrary”
specification of these matrices if they themselves can be estimated from data as well. In fact in
Lemma |2, we have specified how the error upper bound for the estimation of 8* in model
is related to the error of the estimated/assumed spatial weight matrices. This result sheds some

lights on the potential seriousness of wrongly specifying the spatial weight matrices.

The rest of the paper is organized as follows. In section [2.2] we introduce the spatial autore-
gressive model considered, with examples. Section [2.3] presents the model in a compact form and
introduces the minimization problems for obtaining the estimators of the sparse spatial weight
matrices. These estimators are analyzed in section [2.4] using a relatively new concept of time
dependence in time series data, with non-asymptotic oracle inequalities and rates of convergence
spelt out, as well as asymptotic sign consistency presented. Section [2.5 discusses the computa-
tional issue of our estimators, and present a block coordinate descent algorithm as a solution.
Section presents our extensive simulation results and real data analysis. The paper concludes
with section 2.7} outlining our main contributions and some future research directions. Finally all

technical proofs of the theorems in section are presented in section

2.2 The Model

A commonly used model for describing spatial interaction in a panel of time series is the spatial
lag model,
Yt:PWYt+Xt,3+5t7 t= ]-7"'7T' (21>

See equation (19.5) of |Anselin et al. (2006) for instance, which is a stacked version of the above.
Here, y; is an N x 1 vector of response variables, and X; is an N x K matrix of exogenous

covariates. The spatial weight matrix W has elements that express the strength of interaction
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between location i (row) and j (column). Therefore, W can be interpreted as the presence and
strength of a link between nodes (the observations) in a network representation that matches the
spatial weights structure (Anselin et al) 2006)). In this paper, such a structure is assumed to
be constant across time points ¢t = 1,...,7T, hence W remains constant for ¢t = 1,...,T. The

parameter p is called the spatial autoregressive coefficient.

However, to utilize model , the spatial weight matrix W has to be specified. As briefly
stated in the Introduction, estimation accuracy of model parameters can crucially depend on the
correct specification of W. Moreover, Plimper and Neumayer| (2010) points out that a common
practice of row-standardization in the specification of W in model is in fact problematic,
since it alters not only the metric or unit of the spatial lag, but also the relative weight given to

the observations.

With all these considerations, we consider a more general form of the spatial lag model,
Yyt = WTYt + WSXt/B* + €, t= 17 v 7T1 (22)

where y; is an N x 1 vector of dependent time series variables, W7 for j = 1,2 are the N x N
spatial weight matrices to be estimated, X; is an N x K matrix of centered exogenous variables
at time ¢, 3* is a vector of K regression parameters for the exogenous variables, and finally {e;} is
an innovation process with mean 0 and variance 3, and is independent of {X;}. Both {X;} and
{€:} are assumed second order stationary. The matrix 3. is assumed to have uniformly bounded

entries as N, T — oo. Detailed assumptions Al- A8 can be found in section

The spatial weight matrix W7 has 0 on the main diagonal, and we assume that there exists

a constant n < 1 such that |[W7i||, <7 < 1, ie. maxi<i<n Z;y:1|wiij|< n < 1 uniformly as

N, T — oo, where wy ;; is the (i,7)-th element of W7. This regularity condition ensures y; has a
reduced form

yi = ITW3X, 8" + Ilje;, M = (Iy — Wi) ™1, (2.3)

with innovations in I17€; having finite variances, where Iy is the identity matrix of size V. See also
Corrado and Fingleton| (2011)) or Kapoor et al.| (2007) for a similar row sum regularity condition
for the spatial weight matrices in a slightly different spatial model specification. Hence each
component y;; is a weighted linear combination of the other components in y;. If wy # 0, it
means that y;; depends on y;; explicitly. An analysis of the links among financial markets is given

in section [2.6] to illustrate the use of such a model.

The spatial weight matrix W3 has 1 on the main diagonal, with the same row sum condition
as W7 excluding the diagonal entries. Hence while each component y;; has the same regression
coefficients B* for their respective exogenous variables xtTJ- (the j-th row of X;), model
gives flexibility through W3 by allowing each y;; to depend on a linear combination of exogenous

variables for other components as well. This is also related to the local spatial spillover effects.
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For more details please refer to|Anselin (2002)). See section for an illustrative example with

covariates.

Remark 1. The spatial error model with spatial autoregressive-moving average (ARMA) error
can be defined by (see also Yao and Brockwell, [2006))

ye =XyB+uy, . .
{ implying yt = pWy; + Xy8 — pWX,8 + €,

u = lelt + (IN + )\W/)Vt,

where €, = (Iy + AW')v;. Model entails this spatial ARMA error model, by setting 3* = 3,
Wi =pW, W; =In — pW, and X, = (Iy + AW/ )var(v,)(Iy + A(W')"). From assumption A4
in section as long as the spatial autocovariance between x; j, and x; i, for j # j' decays fast
enough as |j — j'| gets larger, the correlation matrix for €; can have a general structure, including

that of a spatial moving-average structure as above.

2.3 Sparse Estimation of the Spatial Weight Matrices

The spatial weight matrices W7 and W3 are assumed to be sparse. We give an example with

covariates to illustrate that sparseness of spatial weight matrices is a common endeavor.

2.3.1 Example 1

[rwin and Geoghegan| (2001) considered an example of modeling jointly the population and prop-
erty tax rate in different counties, assuming that households migration pattern is determined by
local tax rate. They gave an example of a very much simplified structural equation model for

jointly modeling the two:

POP;; = w1 TAX;; + [1EMPy; + BoPUBS;; + €14t
TAX;: = waPOP;; + v PUBS;; + 12INCyt + €244,

where POP = total population, TAX = property tax rate, EMP = employment level, PUBS =
measure of the quantity and quality of public services, and INC = per capita income of households.
The index 7 represents measurements at county ¢, while the index ¢ represents period t. If we write

vt = (POPyy,...,POPyy, TAX 4, ..., TAX yy)T where N=number of counties, the model can be
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written as y; = Wiy + W35X,8" + €, where

EMP;; PUBS;; INCyy 0 0 0 By
: : : : : : B2
X, — EMPy; PUBSyn: INChy 0 0 0 . 0 ’
0 0 0 EMP;; PUBS;; INCyy
. . . . . . -
0 0 0 EMPpy: PUBSyn: INCpy V2

0 wlIN

WT = ) W; :IQN7 € = (611t7'")61Nt7621t7"‘762Nt)T'
woln 0

Thus both matrices W7 and W3 are very sparse in this model. Rather than fixing the spatial

weight matrices, their sparse estimation gives flexibility on the network structure between the

TAX and POP variables.

For a low dimensional model like this example, a reduced form model can be calculated like
that in and we can consistently estimate the parameters from the reduced form model.
We can then try to recover the parameters wi, ws, 51, 82,71 and s from the reduced form model
parameters. This is also done in Irwin and Geoghegan| (2001) for this particular example. However,
for higher dimensional model where the spatial weight matrices are our target, the problem can
become intractable, and we in general need the decay assumption A2 in section[2.4.1]for asymptotic

sign consistency for all the estimated entries in the spatial weight matrix. See example 2 in section

B49] as well.

Penalization has become a well-known tool for estimating a sparse vector/matrix over the past
two decades. In this paper, we employ the adaptive LASSO developed in |Zou (2006) for penalizing
the elements in the matrices W1 and Wy, resulting in the minimization problem (with || - || being

the usual Lo-norm)

T
min D llye = Wiye = WaXeB|12 + 71 Y (v145]wn 5| +v2,15[w2,i5]),
t=1

Wi, Wy, i

subj. to Y |wiil, Y lwa;

J# J#

<1,

where 7 is a tuning parameter with rate given in Theorem [2|in section and v, ;; =1/ \?Dr’ij\k
for r = 1,2 and some integer k > 1, with w,;; being the solutions of the above minimization
problem with all v, ;; set to 1. The w,;;’s thus represent the LASSO solutions (e.g. [Zhao and
Yul, 2006) with constraints. The v, ;; becomes the weight of penalization. The larger the magnitude

of W, ;5 e smaller v, ;; becomes, and vice versa. 1s is a sensible weighting scheme since a larger
f mj,th 11 rij b , and Th bl ht h 1
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*

Wy,jj Means wy. ;. is less likely to be zero, and hence should be penalized less to reduce estimation

bias, and vice versa.

The above penalization problem is cumbersome to write and makes presentation and proofs of

theorems difficult. Hence we rewrite model (2.2) as a more familiar regression type model:

y =Z& +Xp:€5+ €

(2.4)
= M,B*f* + €,

where y = vec{(y1,....,yr)"}, Z=1In @ (y1,...,y7)", Xg =In @ {(Ir @ B"") (X1, ..., X1)"},
& = Vec(W;-‘T) for j = 1,2, and € = vec{(e1,...,er)"}. Here ® represents the Kronecker
product, and the vec operator stacks the columns of a matrix into a single vector, starting from
the first column. Defining Mg- = (Z,Xg-) as the “design matrix” and £* = (£77,£5")" as the
true “regression parameter”, model looks like a typical linear model, except that the design

matrix Mg« is dependent on y as well.

With model (2.4), we can find the LASSO solutions by solving

-~ 1 9
= in—|ly - M
(€.8) = argmin 5 lly — Ma€ | + 1€l

subj. to Z|w1,ij|;2‘w2,ij‘< L,

JF JF

(2.5)

where || - [|; represents the Li-norm, and the definitions of Mg and & are parallel to those in model
(2.4). The adaptive LASSO solutions are then

. 1 )
— in— ||y — M T
(&,8) arg Imin 2Tlly s&ll° + v €],

. (2.6)
subj. to Z|w17ij|,2|w27ij|< 1,
J# J#i
where [€]= (|&1], - .., |Sn2))T and v = (J&1]7%, ..., [&nz2|7F)T. A general block coordinate descent

algorithm is introduced in section [2.5] to carry out the minimization.

2.4 Properties of LASSO and adaptive LASSO Estimators

An ideal estimator for a spatial weight matrix is one that recovers the correct locations of zeros
and non-zeros in a sparse matrix, along with their correct magnitudes. Corollary [l and Theorem
tell us that under certain conditions, such estimators for W7 and W3 are possible with high

probability (as stated in Theorem , with explicit rates of convergence given.

In this paper we assume that the processes for the covariates {x;} = {vec(X;)} and for the
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noise {€;} are defined by
x; =f(F), e =g(G), (2.7)

where £(F) = (fi(Fe),..., fvx(F)" and g(G:) = (91(Ge),-..,9n(Ge))" are both vectors of
measurable functions defined on the real line. The shift processes F; = (...,ez¢-1,€5) and
Gt = (...,€ct—1,€c) are defined by independent and identically distributed (i.i.d.) processes
{e;+} and {ec;}, and they are independent of each other. Hence {x;} and {e:} are assumed
independent. The representation is used in|Wul (2011)) and provides a very general framework

for stationary ergodic processes. See |Wu (2011)) for some examples as well.

For measuring dependence, instead of using traditional measures, like mixing conditions for
time series, we use the functional dependence measure introduced in \Wu| (2005). This measure
lays the framework for applying a Nagaev-type inequality for obtaining the results of our theorems

to be presented later. For the time series {x;} and {€;} in (2.7)), define for a > 0,

f,a,j = ||z4; — Jfftha = (Bl — xftj‘a)l/aa

e (2.8)

€ / ! |a
et,a,f = lewe — Etéua = (Elew — €4|")
- / ! ! / :
where j =1,...,NK, £ =1,...,N, and xy; = fi(F), Fi=(..,ex—1,€,p,€r1,...,€:), with
eQC,O independent of all other e, ;’s. Hence :ng is a coupled version of z;; with e, replaced by

an i.i.d. copy e . Finally, we have similar definitions for €,. Such a definition of “physical” or

functional dependence of time series on past “inputs” is used in various papers, for example in
Shao| (2010) and |Zhou| (2010).

There are no direct relationships between the usual mixing conditions and this “physical”
functional dependence measure. But this measure is easier to handle mathematically and leads
to simpler and stronger proofs in our paper, through the Nagaev-type inequality in Lemma [T}
Moreover, many well-known processes are not strong mixing, yet can be handled by using the

dependence measure (2.8)), like the Bernoulli shift process in |Andrews| (1984]).

2.4.1 Main assumptions and notations

With these definitions in place, we state the main assumptions in the paper. Note that ||A|l =

max; ) ~q|4qj| for a matrix A.

A1l. The entries in the matrices W} and W3 are constants as N,T" — 0o, on top of the row sum
conditions introduced after model (2.2)) in section

A2. There exists a constant o such that var(e;;) = GeQ,j <drodforallj=1,...,N, with 67 — 0

as T — oo.
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A3. Both {X;} and {€} are mean O second-order stationary, and €; is independent of X for
each s <'t.

Ad. Let Xy, be the k-th column of Xy, k = 1,..., K. Define ¢ = €;/8;/*. Write X, = S1°X;,

and (; = 22/ QC;" , where 3, and 3. are covariance matrices for X;; and ¢; respectively.

2

We assume the elements in 3, 3 are all less than o < 0o uniformly as N,T — oc.

max
Also, either HZ]Z;HOO < S < oo uniformly as N,T" — oo, with {X}; }1<j<n being
a martingale difference with respect to the filtration generated by (X[,..., X} jk); or,

HZé/QHOO <S¢ < oo uniformly as N, T — oo, with {¢;;}1<j<n being a martingale difference

with respect to the filtration generated by ((;1, e Czj).

A5. The tail condition P(|Z[> v) < Dy exp(—Dyv?) is satisfied for Xy ji, X7 1, Grj and ¢f; by

the same positive constants D;, Do and q.

_y

o0 o0
A6. Define ©F, , = >°/7, maxi<j<nk 0, ; and @Sn,a = Do MAXI << N etc,a,j? where 67 t,a,j

t7a7j

z ¢
Then we assume Oy, ,,,,0,, 9,

< Cm~? for some w > 2, with > 0 and C' > 0 being con-
stants that can depend on w. These dependence measure assumptions also hold for ¢; and

X for each k£ < K in assumption A4.

AT7. Let Apin (M) be the minimum eigenvalue of a square matrix M. Then Apin (E(x:x7)) > u > 0

uniformly for some constant u as N, T — oc.

Assumption Al can be relaxed, so that the weights in W7 can be decaying at a certain rate, at
the expense of lengthier proofs. Assumption A2 is needed as demonstrated numerically in section
For moderate value of T, if the spatial weight matrices are sparse enough, then a slow decay
rate is sufficient, which in practice means that the noise level is required to be not too large.
Intuitively, low noise limits the correlation between spatial lags of y; and the disturbance term,
hence limiting a potential source of inconsistency that arises due to the simultaneous nature of the
model. See also example 2 in section for a simple illustration, and a remark therein about
estimating the reduced form model instead.

Assumption A3 requires only that €; to be independent of X, allowing the covariates to
be potentially the past values of y;. If Xy = (y¢-1,...,¥Yt+—d,2:) where z; contains exogenous
covariates, the term Wi3X,3* = Z;-lzl BiW3yi—j + W3z¢35, where 8% = Bys---, 85, ST,
Hence there is a vector autoregressive part with coefficient matrices 8;W3. The reduced form

model for y; is then

d
-1
ye=(In =T Y BW3B) T (W3z:85 + €0), (2.9)
7j=1
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where IIj is defined in (2.3), and B is the backward shift operator. For the inverse operator above

to be defined (i.e. the system is stationary), we need

d
det (IN ~ I Zﬁ;wng) £0 for |2|< 1,
j=1

which impose constraints on 3* as well. Allowing past values as covariates extends the applicability
of the model, since example 2 in section demonstrates that covariates have to be included

for sign consistent estimation.

The uniform boundedness assumption in A4 for elements of X, and X is a direct consequence
of the tail assumption in A5. We assume this for notational convenience only. The other half of
assumption A4 says that either the cross-correlations between more “distant” components for the
k-th covariate Xy j are getting smaller quick enough, or this happens for the components in the
noise €. The settings in and allows us to assume either { X}, }; or {(};}; is a martingale

difference, which is weaker than assuming that as an independent sequence.

Assumption A5 is a relaxation to normality, allowing sub-gaussian or sub-exponential tails for
the concerned random variables. Together with A6, they allow for an application of the Nagaev-
type inequality in Lemma [I] for our results. There are many examples of time series where A6 is
satisfied. See (Chen et al.| (2013) for examples in stationary Markov Chains and stationary linear
processes. Hence in particular we are allowing the noise series to have weak serial correlation.
Finally, assumption A7 is needed for the convergence of ,5 or ,@ to B*. This is a mild condition
and is satisfied in particular if all 3, have their smallest eigenvalues uniformly bounded away from

0, and the cross covariance between the cov(X¢ ,, Xt i, ) is not too strong for all 1 < k; # ko < K.

2.4.2 Example 2

We demonstrate that the decay assumption A2 is needed in general for estimating the spatial
weight matrices. In fact this condition is closely related to the conditions of the proximity theorem
in Wold, (1953), where the variance of the disturbance is small for negligible bias.

Consider N = 3, and the model y; = Wy + X5 + €, where X; is a vector of covariates with

2
67j

0 and 8 =1, so that essentially the model becomes

Yyt 0 w2 Yt X €t1
' = ! + ! + , Y3 = X3+ €3.
Y2 wor 0 Yi2 X2 €12

With wio,we < 1, a simple inversion results in

mean 0, and denote o ; = var(e j), Ug{j = var(X; ;). Suppose we know wig = wo3 = w31 = w3y =

~war(en + Xp1) + €2 + Xio

wiz(e + Xe2) + €1 + X

Yt1 =
1 — wi2wa 1 — wi2wo
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The least square estimator for wqs is

T T T T
wyp = Z Y2 (yn — th)/z Y = wiz + Z yt2€t1/z Yio-
=1 =1 =1 =1

Assume proper convergence of all relevant quantities, and that cov(Xi, X42) = cov(en, €12) = 0,

the bias can be calculated to be converging in probability to

2 2 (2 2 2 2 2
wanos; Wy (0Z, +0%q) 0+ 0%, B w2107 1 (1 — wizwa)

~ P
Wiz — Wiz — 2 =52 2 2 2

1 — wigway (1 — wiawa1) wy (021 + 0% 1) + 02+ 0%
which is not going to 0 unless either ws; or 0521 goes to 0 as T' — oo, since assumption A7 ensures

that Ug{J > u > 0 uniformly.

By symmetry of the formulae for the asymptotic biases of w12 and w91, we can easily see that
if 0371 and 06272 are not decaying, these biases can have larger magnitudes then the corresponding
weight wio or wei, so that the corresponding estimator cannot be sign consistent even if wqs or

way are going to 0 as T' — oco. This demonstrates the necessity of decaying variances for the noise.

If a_%m = 03(’2 = 0 (assumption A7 fails), and 0371 = 06272, we see that the asymptotic bias
becomes independent of 0627 o and w9 and we; cannot be both sign consistent. Hence it is important
that covariates are included in our model. Luckily, assumption A3 allows for past values of y; to
be our covariates Xy, although other exogenous covariates are still needed. See in section
2.4.7] for more details.

One final remark is that, for this simple toy example, we may consistently estimate the pa-
rameters of the reduced form model like that in , and recover wio and wo; from the estimated
reduced form model without assumption A2. But, as explained in example 1, when N is large and
a general spatial weight matrix is our target, the problem can become intractable and consistent
estimation is then not achievable unless assumption A2 is satisfied. See also section [2.7] where
an instrumental variable approach is mentioned and is still under research to overcome major

technical difficulties when used together with LASSO.

We introduce more notations and definitions before presenting our results. Define
J =1{j:& #0,and does not correspond to wj ., s =1,..., N}. (2.10)

Hence J is the index set for all truly non-zero weights in W] and W3 excluding the diagonal
entries of W3, which are known to be 1. Define n = [J|, s1 = > ;& 5, s = >, & and
s9 = s — s1. Denote vg a vector v restricted to those components with index j € S. Let

Ay = T~ 1/? logl/ 2(T' v N) where ¢ is a large enough constant (see Theorem [1|for the exact value
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of ¢), and define the sets

Ay = Xeoe| < A
! {1<r§1?§Nlr<r}va%XK TZQ’] wen <At}

Ag = { max ZZ@,]Xt,m < ApNYER/2wY,

1<k<K T] <
1 T
As =, 17 D JGies = PGuidug)ll < A, (2.11)

B {1<U<N 1<, m<K T ZXt Xt jm — E( XXt jm)| < A7},

3log(T v N)\ 4
M:{max max max | X ix|< (og()) },

1<t<T 1<j<N 1<k<K Do

where w is as defined in assumption A6.

2.4.3 Main results

We first present a Nagaev-type inequality for a general time series {x;} under similar settings in
(2.7) and (2.8), which is a combination of Theorems 2(ii) and 2(iii) of Liu et al.| (2013)).

Lemma 1. For a zero mean time series process x; = £(F;) as defined in with dependence
measure Ofaj as defined in , assume Oy, , < Cm™ for some w > 2 and constants C,a > 0.
Then there exists constants C1, Co and C3 independent of v, T and the index j such that

13| > 1) = L+ Cospl—csr)

where & = a A (1/2 — 1/w), and B = (3 + 2aw)/(1 + w).

Furthermore, assume another zero mean time series process {z;} (can be the same process
{x+}) with both ©F o7

[ such that max; ||z 9, Max; || 2tj]l5, < 1 < 00, the above Nagaev-type inequality holds for the

< COm™%, as in assumption A6. Then provided there is a constant

m, 2w’ ~m,2w

product process {xijzee — E(xij20)}-

Remark 2. Note if & > 1/2 — 1/w, then w(1/2 — &) = § = 1, simplifying the form of the
inequality. Hereafter we assume o > 1/2 — 1/w where w is in assumption A6, and is large enough
as specified in Remark 3. We assume this purely for the simplification of all results. For instance,
if « < 1/2—1/w, then we can define A\p = TP/ log"/?(T'v N) and (more complicated) rates of

convergence in different theorems can be derived.
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Proof of Lemma |1} The first part is a direct consequence of Theorems 2(ii) and 2(iii) of [Liu
et al.[(2013). The second part follows from E(2¢j210) = E(x};21,), and using the generalized Holder

inequality,
9%,jz = ||ztj200 — x:&jzél”w < wjze — xtjzzleeHw + ”xtjsz - xijszHw
< max(||4 |y (126l 2w) (OF 20,5 + OF20.0)
< M(ef,Zw,j + 91?,210,6)7
so that

(0.9}
O < D max (0] + 07w ) < p(Cm”* 4+ Cm™®) = 2uCm ™"

t=m

The result follows by applying the first part of Lemma [} O

With Lemmal[I] we can use the union sum inequality to find an explicit probability lower bound

for the event Ay N...N Ay. The proof of the theorem is relegated to the Appendix.

Theorem 1. Let assumptions A3 - A6 be satisfied. Suppose o > 1/2 — 1/w, and suppose for the
applications of the Nagaev-type inequality in Lemmal[]] for the processes in Ay to Ay, the constants
Cy,Cy and Cs3 are the same. Then with ¢ > \/3/Cs where c is the constant defined in Ap, we have

Tw/2=110g%/2(T v N) T3 Vv N3

w/2 2 2 \T2
P(Alm...mA4mM)21—4ClK2<C;)3> N ACLKTN” + DINTE

It approaches 1 if we assume further that N = o(T™/4~Y/210g"/*(T)).

Remark 3. With tail assumptions A5, we can easily show that |[(tjly,,, [|Zj]l9, < oo for
any w > 0 (see the proof of Theorem [l| in the Appendix), and there are many examples with
O 0, 5

2w On.owy < Cm™ where only the constant C'is dependent on w (see for example the station-

ary linear process example 2.2 in (Chen et al.| (2013]). Therefore we can set w to be large enough

so that N = o(T%/4=1/210g"/4(T)) from the beginning, ensuring P(A; N...N A3 N M) — 1.

Lemma 2. Let assumptions A1 to A7 be satisfied. Denote Wl and Wg any estimators for W7 and
W3 respectively (not necessarily the LASSO estimators). Define a generic notation A® = Iy ® A
for a matriz A, and denote y* = (y1,...,yp)", X =(XT,...,XT)".

Then on A1N...NAy, the least square estimator 8 = (XTWETWEX) 1XTWET (Ipy—WE)y?
is well-defined, and

ay(s2 + N%+ﬁ))\T571/2
N

18- 81, < + €= €,
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where the constants a1 and as are defined in Theorem @

The proof is relegated to the Appendix. If we treat Wl and Wg as some assumed spatial
weight matrices, for example distance matrices with a particular distance metric, this lemma
together with Theorem [l tells us that with high probability, the error upper bound for estimating
3* is related to the error for estimating the spatial weight matrices through ||§ —&*||;. Aslong as
1€ — £*||; is much less than N, estimation error is related to how sparse the matrix W3 (i.e., s2)
is. Otherwise, the error can be large. We provide some simulation results for the estimation of 3*

in section

We now present an oracle inequality for the error bounds of the LASSO and adaptive LASSO
estimators € and é\ respectively. The proof is presented in the Appendix.
Theorem 2. Let assumptions A1-A7 be satisfied. Suppose a > 1/2—1/w, and suppose Ay = 0(5;/2),
Ap N = 0(5;/2) and sg = O(N1/25;/4/)\1T/2). Then there is a tuning parameter yp with yp < ép
such that on Ay N ...N Ay, the LASSO estimator E satisfies

1€ = &7 [ly < 4l1€s = &5 ll1s so that [[€5e = &Gelly < 3]1€7 = &5 -
For €, denote £3,min/max = Min/max;es §; and J the LASSO estimator for J in . Then

~ 47 anl® ~
€€l < 26 = €5l so that 0= €5l =
J,min

41€5 maxl®

’gJ,min|k

1) 1€ - &l

For the exact value of the constant B where vy = Bdp, see the proof of the theorem which is
relegated to the Appendix. The rate Ay = 0(5%/ 2) implies that the rate of decay for the standard

deviation of the noise is slower than Ap.

The results in Theorem [2] are consistent with the properties of the LASSO estimators under
the usual linear regression settings (see (3.2) of Bickel et al., 2009)). With these oracle inequalities,
we need to introduce a restricted eigenvalue condition which is similar to condition (3.1) of Bickel
et al| (2009). We however define this condition on a population covariance matrix instead, since

our raw design matrix Mg- in (2.4) is always random:

A8. Restricted eigenvalue condition: Let $* = T_IME,*Mﬁ*, and ¥ = E(=*). Define

. »1/2q »1/2q 2
w(r) = min { 20l B0l o ROV (0}, el < collaall, b,
larl " lowl

= — 1. Then we assume x(n) > 0 uniformly as N, T — oc.

where ¢y = =
|£J,min|

This condition is automatically satisfied if 33 has the smallest eigenvalue bounded uniformly away

from 0. Similar population restricted eigenvalue condition is also introduced in Zhou et al.| (2009)
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for the analysis of LASSO and adaptive LASSO estimators when the design matrix is formed by

i.i.d. rows which are multivariate normally distributed.

Theorem 3. Let assumption A8 and the assumptions in Theorem [] be satisfied. Suppose also
A, yrnt/? = o(1), (NV20 45N~V \pyp 2 1og 1TV N) = o(n/?), n = o(N log™/9(T' v N)),
where yp is the same as in Theorem[d. Then on A1 N...NAyNM, for large enough N, T,

5,yTn1/2
K2 (n)1€5 min*

5,yTn1/2

Wy 1§&7 = &5l <

1€; — €51l <

Furthermore, for N, T large enough and suitable constants a1 and as, on A1 N...N A, N M,

= * 89 11 12 20a2yrn
18-8 ”1§a1<N+N2w 2>>\T5T +ma
25a2|€},max’k7Tn

NE2(n)[€] minl™

~ s 1
18 =B, < a1<NQ+N2w é>/\T(5r_1p/2—i-

The proof is relegated to the Appendix. Theorems [2] and [3] together implies the following.

Corollary 4. Under the assumptions of Theorems|[d and[3, for large enough N, T,

25 | éT?,Inax | k’YTn

K2 ()1 mmin

= 20 ~
€=l < 505 €€ <

Corollary [4] says that, in addition to the assumptions in Theorem [3| if ypn = o(1) also, then
all the LASSO and adaptive LASSO estimators from and converge to their respective
true quantities in L; norm on the set Ay N...N A4 N M, which has probability approaching 1
with explicit probability lower bound shown in Theorem [I} The need for large enough N, T are
merely for the simplification of the different error bounds, and can be removed at the expense of

more complicated expressions. The proof is omitted.

We conclude this section with the sign consistency theorem for the spatial weight matrices.
In the following and hereafter we denote M 4p a matrix M with rows restricted to the set A and

columns to the set B. The proof of the Theorem can be found in the Appendix.

Theorem 5. Let the assumptions in Theorem@ and@ be satisfied. Assume further that Apmin(X7.7)
2

is uniformly bounded away from 0, and n = o(v;m). Then on A1 N--- Ay N M and for large
enough N, T,

~

sign(€) = sign(&").

This theorem says that with a suitable rate of decay for the noise variances and the true spatial
weight matrices sparse enough, we can correctly estimate the sign (i.e. 0, positive or negative) of

every element in the spatial weight matrices W} and W3 on A4, N --- A4 N M. Hence asymptotic
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sign consistency is achieved by Theorem [I| This is very important in recovering the correct sparse

pattern for understanding the underlying cross-sectional dependence structure of the panel data.
_ 2k
The rate n = o(y;*"") suggests that the number of non-zero elements allowed in the spa-

tial weight matrices W7 and W3 without violating sign consistency depends on the rate of
decay for the variance of the noise. For instance if v < Ap logl/Q(T V' N) and k = 1, then
n = o(T"?log (T V N)).

2.5 Practical Implementation

In this section, we provide details of the block coordinate descent (BCD) algorithm for carrying out
the minimizations for (2.5) and (2.6). We need the BCD algorithm since the objective functions

in these problems are not convex in (€, 3), although given 3, they are convex in £ and vice versa.

The BCD algorithm is closely related to the Iterative Coordinate Descent of [Fan and Lv| (2011)),
and is also discussed in |Friedman et al. (2010 and Dicker et al.| (2010). While it is difficult to
establish global convergence of the BCD algorithm without convexity, it is easy to see that for
(2.5) and , each iteration delivers an improvement of the objective functions since given one
parameter, the objective functions are convex in the other. From our experience, starting from an
appropriate initial value, a minimum will be achieved with good performance in practice. Indeed
in the simulation experiments in section (not shown), it is found that the algorithm is robust

to a variety of initial values chosen.

We choose blocks to take advantage of intra-block convexity. The parameter 3 forms one
block, and for j = 1,...,N, nj = (771Tja"72Tj) = the j-th row of (W1, Wy) form N other blocks.
Given the values of 8 and n—; = (n{,....m;_1:Mj1,--- ,Mx)", m; is solved by the Least Angle
Regression algorithm (LARS) of Bradley Efron and Tibshirani (2004)). Given &, 3 is solved by the

ordinary least square (OLS) estimator.

The Block Coordinate Descent Algorithm

0. Start with an initial value & = £€(©). This can be obtained by using B(©) = (X"X)~'XTy"
(for notations see Lemma , and solves 1} given B using LARS. This gives £(©).

1. At step r, set B = (X"W(r — 1)"WS(r — DX) "' X"WS (r — 1)"(Iry — W (r —1))y?,
where W]® (r) =In®@W,(r), with Wy(r), Wa(r) the spatial weight matrices recovered from
1308

2. Using LARS, solve sequentially for j =1,..., N,

7\ = arg minl|y — Mgenll” + Aln;lly, subj. to mlly <1, sy <2,

;5



CHAPTER 2. REGULARIZATION FOR SPATIAL MODEL USING ADA-LASSO 101

(r—1)T (r—=1)T (r—1)7T (r—=1)T

Where 77 = (f’ira ﬁg)T Wlth ,fh = (7721 PR T’i,jfl 777;'5'1 ni’j+1 P 7niN )T' Then
€0 = " iR

3. Tterate steps 1-2 until | — 0=V, is smaller than some pre-set number. The LASSO
solution is then (,@, E) = (B, £M).

4. Take €0 = g Repeat steps 1-3 for the adaptive LASSO solutions, where in step 2 the
penalty function is modified to Av}|n;|, with the components in v; having the form 1/ |g]]k

We propose a BIC criterion to select the tuning parameter yp:

log(T)
T

N
BIC(17) = Y log (T3 — (M&y, )ill®) + 185, 1= log(log(2N — 2)),  (212)
i=1
where y = (y71,...,¥N)" with y; = (i1, ..., vir)". The vector .‘;T is the LASSO solution to ([2.5))
with tuning parameter being yp. Also, (M 557T)Z— is the vector with length T which is the portion of
the vector M BE’YT (see equation ) corresponding to y;. Finally, the set S, = {j : (EZT )j # 0},
so that |S,,| counts the number of non-zeros estimated in &,. This BIC criterion is in fact the
sum of individual BIC criteria for the estimator of the ith row of the two spatial weight matrices
W7 and W3, with response variable y;. We denote ygic the tuning parameter that minimizes the
BIC criterion in (2.12). This ypc will then be used in (2.5) to find the LASSO solution €. We
use the same tuning parameter for the adaptive LASSO estimator in .

2.6 Numerical Examples

We give detailed simulation results in section for our LASSO and adaptive LASSO estima-
tors. A set of stock markets data is analyzed in section to visualize the connection among

international financial markets.

2.6.1 Simulation Results

We generate data from model (2.2)) and investigate the practical performance of the LASSO and
adaptive LASSO estimators.

First, we generate independent Gaussian data from the model as a baseline for studying the
performance of the estimators. To this end, we generate the spatial weight matrices W} and W3
by randomly setting elements in a row of the matrices (except diagonal elements) to be either 0.3
or 0, with an overall sparsity level (i.e. n, the number of non-zero elements) set at a pre-specified

level. If the sum of a row excluding any diagonal elements is larger than 1, then we normalize
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it by 1.1 times the L; norm of the row. We set 8* = (1,0.5)T. The covariate matrix X; has
independent rows ij generated by x;; ~ N (0, (04,;)) where 0,11 = 022 = 2 and 0,12 = 0.5
for each time ¢. Finally the noise €; is a spatially uncorrelated Gaussian white noise with mean 0

and variance o2 = %/%, so that 02 = 1 for the case N = 25, T = 50.

We simulate 2 different pairs of W7 and W3, and generate data 50 times according to the
scheme above for each pair. Hence in total 100 set of data is generated and analyzed for each
particular (N, T) combination. We used N = 25,50, 75 and T = 50, 100, 200 to explore the effects
of dimension on the performance of our estimators when it can be larger than 7. In all cases,

penalization parameter was chosen via BIC criteria.

Table [2.B.1] shows the results of this baseline simulation. From 7" = 50 to 100 the sensitivity
(see the table for definition) improved hugely, while specificity remains at a similar level. It is
intuitive since the non-zero elements are relatively small, and hence when T is too small they
cannot be picked up easily. Bias are mostly negative, meaning that we usually underestimate
the non-zero values of the spatial weight matrices. Also it is clear that the performance of the
adaptive LASSO is much better than LASSO in general. It is of interest to note that while the
L1 error norm can be large, the Ly error norm is usually much smaller. These are consistent with
the results in Theorem [3| where the Ly error norm goes to 0 as long as y7n!/? = o(1), but for the

Ly error norm to go to 0 we need yrn = o(1) in general.

Table 2.B.3] consider two more cases. One is when the covariates include a lagged variable
yt—1 on top of X;. We set 8* = (1,0.5,0.15)" which ensures the model for y; is stationary. While
when N = 25 results are similar to the baseline simulations, for N = 50 and 75 the performance is
getting worse in general. This indicates that while in theory it is fine to include lagged variables,

we may need a larger T or a limited N for good performance in practice.

Another case is when the noise exhibits spatial correlations. To this end, we randomly pick
the off-diagonal elements in the noise covariance matrix to be 0.3, while keeping it sparse with
around 95% elements still 0. The performance is similar to the baseline simulations in general.
This is consistent with our theories. In particular this scenario fits assumption A4 (see section
2.4.1)): when there are weak or no spatial correlations in the covariates, then the spatial correlation

structure in the noise can be general.

Finally, Tables 2.B.4] and [2.B.5] show some results when some assumptions are violated. The

first case is setting the variance of the noise equal to 02 = 1, instead of letting it decay as in the
baseline simulations. Clearly the performance is worse in general even when T" = 200. The results
are consistent with Example 2 in section The performance when there are no covariates is
also shown. The poor performance all round under the absence of covariates is again consistent
with Example 2 in section Lastly, we simulate the noise using the t3 distribution rather than
normal distribution, violating the tail assumption A5 in section While the performance is
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worse in general, it is still better than when there are no covariates or no variance decay. Hence

the method is more robust to fat tails.

2.6.2 Analysis of stock markets data

It is well-known that worldwide stock markets’ performance are dependent on other markets. To
study their dependence structure in more detail, we use model to analyze markets’ returns
over 2013. We estimate the spatial weight matrix W7 using the adaptive LASSO estimator. The
response variable y; is taken as the panel of stock market returns for the 26 biggest world markets.
We use daily data available for the whole of 2013 (7" = 263). See Table for details of the

markets and their respective indices.

For the covariates we use the S&P Global 1200 Index and the Dow Jones World Stock Index.
By definition, firms that belong to the world index are constituents of the indices of some markets.
Hence the exogeneity of the covariates cannot be sustained. Nevertheless, the global variables are
included with the purpose of eliminating a global-wide variance that could prevent the identifica-
tion of W7. Due to the lack of variance in the cross-sectional dimension, W3 is unidentified and
is simply set as the identity matrix. The model is estimated by the adaptive LASSO, with the
tuning parameter A chosen by BIC, as described in section 2.5

This setting is also interesting as there is partial knowledge of the intraday linkages: a stock
market that ended operations cannot be affected by markets which are yet to open in the same day.
Thus the applied example also allow us to explore the robustness of the estimator with respect
to not violating this natural impediment. Given the wide geographic dispersion of stock markets,

this is set to happen for a relevant number of markets in the data.

To capture this intuition, we define a "common opening hours" index

J

) Close Time; — max {Open Time,;, Open Timej}
Common Opening Hours; ; = max ,0

Close Time; — Open Time,

which corresponds to the time of market ¢ exposed within a day to market j. The numerator is
simply the number of hours of market ¢ subject to the influence from the j-th one, even if the
latter has already closed before market ¢ opens. The fraction is therefore the ratio of hours of

market ¢ subject to the influence of market j. It is naturally bounded below by zero.

In Figure the elements of V/\\71 are plotted against the common opening hours. From this
figure, it is clear that for markets with smaller overlap of opening hours, the estimated elements
are zero in Wl. In particular, there is no violation of the afore-mentioned restriction and markets
are only affecting each other if they are commonly open for at least roughly half of their opening

times.
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2.7 Conclusion

In this paper, we developed an adaptive LASSO regularization for the spatial weight matrices in
a spatial lag model when the dimension of the panel N can be larger than the sample size T.
An important feature for our LASSO/adaptive LASSO regularized estimation is that unlike many
others, our method does not need the specification of the spatial weight matrices or a distance
metric for them as in |Pinkse et al.[(2002). All parameters in the model are estimated together with
the spatial weight matrices, with explicit rates of convergence of various errors stated and proved.
In particular, an error upper bound is derived for the regression parameter S* in our spatial lag
model under an arbitrary specification/estimation of the spatial weight matrices, showing that as
long as these matrices are specified /estimated with an L; error much less than the panel size NV,

the estimation for 8* will be accurate.

The asymptotic sign consistency of the estimated spatial weight matrices is proved as well,
showing that we can recover the cross-sectional dependence structure in the spatial weight matrices
asymptotically. Another contribution is the development of a practical block coordinate descent

algorithm for our method, which is used for the simulation results and a real data analysis.

We argued that covariates are important for our results. Yet there are applications without
obvious covariates. Also, the variance of the noise in the panel may not be small enough to satisfy
the variance decay assumption in practice. Indeed if enough instruments are available for each
covariate, the instrumental variable approach can potentially remove the need for variance decay.
There are still major technical hurdles to overcome in this direction. A further study will be
to regularize on the reduced form model directly and we impose sparsity on the spatial weight
matrices by simple thresholding. This way not even instrumental variables are needed. These are

the potential future problems to be tackled.



Appendix

2.A Proofs

Proof of Theorem . We first show that, with the tail condition in A5 for a process {z:}, we
have for any w > 0, max; |29, < How < 00. Hence we can fix a w large enough such that

N = o(T%/4=1/210g"/4(T)); see Remark 3 after Theorem [1| Indeed by the Fubini’s Theorem,

) |2t
Bz = E/o

dwD; [ 2wD
= u11/ ghw/a—1e=Dar® gy — w2 ! ['(2w/q) [define as p3¥] < oo, (2.13)
w/q w
q 0 qD;

|2w

o0 o0
ds = / P(|zj]> /%) ds < / D1 exp(—Das?/?™) ds
0 0

so that max; ||z, < How < oo for any w > 0. Together with assumption A6, Lemmacan then
be applied for the processes {(;;j Xi o}, {CiCej — E(CiCej)} and { Xy 0 Xy jm — E( X0 Xt jm) }-
Since @ > 1/2 —1/w, we have w(1/2 —a) = B =1 in Lemma . The union sum inequality implies

T

Py < S P(IT Y GuXum| 2 a) < N2 ( (TC;TT)H, + Crexp(~C5TNR))
1<j, <N t=1
1<k<K

(2.14)

w/2 2 2
oo (03) N CoKN

3 Tw/2-110g"/2(T v N) Ty NS

Similarly, we have

O3\ W/ N2 CyN?
P(AS) < =
()= G < 3 > Tw/2—110gw/2(T\/ N) * T3V N3’
03>”/ 2 N2 Oy K2N?

P(AS <OWK? (= .
(A1) = G ( 3 Tw/2*110gw/2(T\/N) + T3V N3

(2.15)

The tail assumption A5 and the union sum inequality imply that

_ DINTK

(2.16)

105
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Finally, if we can show that

e IN"2"20 ¢ X, el < 00, (2.17)
o0
Om2w = Z max [[N° 2720 (¢ Xk — X ) gy < am ™, (2.18)

for some a > 0 and all m > 1, then we can apply Lemma [I] for A3 to obtain

T

K
P <Y P ( TS NTEm X | 2 AT>
k=1 t=1
Cs\"? K CoK
< — . 2.1
=0 < 3 > Tw/2=110g"/>(T' v N) * T3V N3 (2.19)

Combining (2.14)), (2.15)), (2.16) and (2.19)), we can then use

4
PAN...0ANM)>1-) P(A;) — P(M)
j=1
to yield the conclusion of the Theorem. It remains to show (2.17) and ({2.18]).

We use assumption A4 and we assume first that HEl/ 2H

< Sy < oo, and { X/ hicj<n is a
martingale difference with respect to the filtration generated by (Xilk, . jk)' Assuming the
other part of A4 for the noise results in very similar proof and we omit it. Write Ejv 16Xtk =

T Xk = tTZl/zX* = Z] (&2 1/2) X7 1, where Xy, X7, are the k-th columns of X; and Xj

respectively. Then by the independence assumption A3,

B Xl (CFS) e X 8 <5 — 1) = E(CFSU1(CS0)s s <G — 1)
E(X{ k| Xigpy s < —1) =0,

since { X/ ;; hi<j<n is a martingale difference. Hence {(CtTEl/Q) X[ ixh<j<n is a martingale dif-
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ference. By Lemma 2.1 of |[Li (2003), assumptions A3, A4 and (2.13]), we then have

N

_1_ 1 - 21/2)
EINTz QWCtTXt,k|2w = E‘N Z(Ct / i) t,jk
7j=1

E|(&FS0), X 2

Mz—?

< N72(36w)* (1 + (2w — 1)~ H)¥

.
Il
—

1/2 w w
B|(¢FS02), 2 BlX

Mz

= N72(36w)**(1 + (2w — 1)~ H)¥

<.
Il
—

w 2w 1/2)2w
< N2 (36wpzu) (14 (20— 1)~ ZE\&%K”H 120 12

=

< N72(36wh20S:) 2 (1 + (2w — 1)~ “’ZN max_ LG, 2
< (36wp3,,S:)* (14 (2w —1)™1)¥ < oo,

so that maxj<g<x HN_%_ﬁCEXt,kJHQw < 0o, which is 1'

To prove ([2.18)), observe that

[e.e]
1 2 1 2 1/2
O < 3 e, N74750 (G2 (OK0 = X3 + NGB =GP0 K ]
m
o0 L N
_1_ 1 1 2 * 1 2 1/2 "%
< Zlg}gax N~z ||Z € / ik = X llow + HZ > / ¢'E, 4 k3%l
t=m —

With similar arguments as before, {(CEEI/Q) (X — t]k)}J and {((_,'tTle/2 - CtTEI/Q) X;,*jk}j

can be shown to be martingale differences with respect to the filtration
1/2 1/2 .
Fj = 0 (X7 o Xy (GFZ00s0 (G0 0)is 5 < )

Hence we can use Lemma 2.1 of |Li (2003]), assumptions A3, A4, A6 and ([2.13]) to show that

11 1 2 * /s _
IN"2 2 Z(Ct 125Xk = X5 e < 36w(1 + (2w — 1)~ Y2
7=1
1/2w

N

-2 2w 1/2 2w 2w

N2 B max [l 1% 128 0 )
]:

< 36wy Sz(1 + (2w — 1)_1)1/2 125?%[ 91& 2w, 5k
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Similarly,

11 1 2 1/2 ! —
IN~3 Z(g 12— BN X e < 36w Sa(1 4+ (2w —1)"H)Y? max 65, .

1<j<N
J=1

Hence combining and using assumption A6, we have

m,2w

Om 2w < 36wy Sy (1 + (2w — 1)71)1/2(91 Lo

which is (2.18). The proof is now completed. [

Proof of Lemma @ Denote U =TIy @ T~ 3°F | x;xT, and

Ik ®@ wop

V= : , where ng is the j-th row of W,.

Ik ® wan

Then XT\W;@T\W?X = VTUYV, and we decompose ,5 - B* = Z?Zl I;, where

I, = (VTE(U)V) T~ 1XTW®T(W W®)X[B ,

Is = (VTE(U)V) 'T 1X"WETe",

Iy = (V'E(U)V) T XTWET(Wi® — WP)(Iry — Wi®) 'W32X 8",
Is = (VIE(U)V) 'T I X"WET (W3 — W) (Ipy — W)~ lev,

where € is defined similar to y¥. Note by assumptions Al and A7,

K1/2 K1/2 K1/2
< < .
oo = )\mm(VTE(U)V) T Amin(E(U)Amin(VTV) = uN

I(VTEU)V)~|

Then on Ay, using ([2.20)),

1L, < KINVTEU)V) oV o U = E(U) |y IV (B = 87l

K3/ ~ 2K3/2/\T
< N-2N-)\T'H5—BH1— ||/6 B,

108

) < 12CWwHwSe(1 + (2w — 1)"HY 2,

(2.20)
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Similarly on Ay, using (2.20) and assumptions A1, A4,

K1/2 _ .
12l < —= - IT™ IXTWET(W3® — WX I8*
K1/2 * _ B T
=V s S S ) 3 (2T Y KX
R k=1 t=1
K287 . 2K (0 FADNB 1 7 o
< S M K0 4 )6~ 5] = LN g - &,

Similarly on A; and Asg, using (2.20) and assumptions A1, A4,

1/251/2 Kl 251/2 K

sl < = IT7IXTWETC | = Z\ Z Wa, 0T~ th skcte)
k=1 s/=1

K3/251/2
 uN 1I<I}€8%XK Z w2 st — w2 Se ZXt skCtE + Z U)2 sz ZXt skCt Z‘

s,0=1
K3/251/2

< ——L (& - &l + ApNzts + AT82).
ulN

Finally, note that the row sum condition in assumption Al implies

Iy = W) e < D IWHlIE <D0 =1 -n)7" (2.21)

k>0 k>0

Hence using this, (2.20) and assumptions A1,A4, on A; and A4, we have (tedious algebra omitted)

AK2(|B% |y (0 + A7)

”I4||1 = ( )UN ||gl_£i<||1>
K3/2)\T51/2 i

”I5||1 = *HEI 51”1-
(I —=nuN

Using the expressions for ||I1||;to ||I5]|,, rearranging and simplifying, we thus have

18— 87, <

KY2 [ (oo N3FA0 418 |y (0 + A7) +2AT51/2\|5 all
u— 2K3/2\p N (1=n)N 1

al (32 + N%—i_ﬁ))\T(S;/Q
- N

as =
FEE g,
which is the inequality for ||3 — B*||; if we set constants

. KO AR O + o) + 200y 2K
———— a5 a .
Tu—2K3" T (1 —n)(u— 2K32A7)

ay
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Proof of Theorem @ For the LASSO estimator £~, 1} implies
oy — MGEIR 2l < olly — M€ + el
oT y 3 T 1= 57 y B* YT 1

which, using model ({2.4]), can be rearranged to

1 . ~ 1 1 ~
—THMB{ —M55H2 feTXB_B*Vec(IN)—l—TETXE_B*(&—VeC(IN))
1 N ~
+ e €"Mg- (€ — &) +yr(I€7], — II€ll,)- (2.22)
On Aj, using € = 5;/2@;‘,
] T N K Y i
1 s+=—11a *
7 Xaaveelt)| = [ 223 e 32 e B = 00| < dadyf N 1B - )
t=1 j:l k=1

On Ay, recalling sp = [|€5 — vec(In)|;,

S

1 -
—eTXgiﬁ* (& — Vec(IN))‘ < max

‘T 1<j#l<N ‘T prt

K
= e KB — B7)| - 1€ — veeTw)l,
k=1

< A8 %|1B — B*|y (s2 + ||1€2 — &511,)-

Finally,
T ~
"M = e |7 D e X 118" — &,
=€ Mg (€~ £°) ‘anKN{‘ e |7 i 18 m}us &l

Writing the /-th row of IT as 7] ,, using lb we have on A; and Ajs,

T
1 1 *T * *T
‘T Z thyte‘ < ‘T Z €tjm1,0 W2 Z €tj7"1,e€t‘
t=1 t=1

2
5TO_0

T
II?KN ‘ ZCtht Ek‘ + —— max Z: CiCi — E(CjCu)]| + e

— 1 1<i<N
1<k<K

261211871,
1—n

< 2/\T(51/2H5*H1 + /\T(ST + 5TUQ
= 1_

where we used assumption A2 that |E((;Gj)|< 03. Combining these bounds, on A; and As,

1 =~ * e *
€ Mg (€ €| < A6y 2ar + cyo7) | € — €,

o2 -

where ¢, =
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Hence utilizing all these bounds, (2.22)) becomes

1 ~ X 1,1 g * > *
57 lIM5E — Mp€°|F < Arop*(V3 25 + 5o + 1|62 — &1,)18 - 81,
+ (Ao 2ar + cobr) 1€ — €11y + (1€ — 11€]1L)-

Using the result of Lemma [2| on the LASSO estimator B, and assuming ||E— &, > )\TcS;,/Q, we

have (tedious algebra omitted)

1 s * L -1 2z *
57 IM5E — Ma-€°1” < anhedy (N2 + 52N 75+ 00?) IE - €71,
+ ooyl (24 N2t 4+ spN 1) € - €]

+ (Arar + ¢,07) 1€ = €[l +r (€], = I€]l)-

Using the rates condition specified in the theorem, the dominant term is cn5T||g — &%, so that

there is a constant D > 3a1 + 4a2 + ¢, + a7 such that
S IMGE — Mp-€7|1> < Dorll€ - €71l +r(I€°ll — €]l
Setting yr = 2Dd7, we then have
DirlE — €1, < 5IME - Mp-&7|1* + DorllE - €°],
< 2D67(||€ - &1, + €711, — 1€]l)

=2Dér(|1€; — &5ll; + 1€3 1 — 1€5111)
< 4Do7||€7 — &5,

Hence ||€ — &*||, < 4||&; — &%]|,, which implies

I€re — &5l < 31€5 — €75
Following exactly the same lines of proof, for the adaptive LASSO estimator § we have
S IMGE — M€ | < Dorl|€ — &1, + v (17| -8,
Again set yr = 2Ddr, then using 2v; — 1 > v; since v; > 1,
S IMGE M-+ 2Di7v™|E — €°|-Dir|€ — €], < 2057w (€ ~ €[ +[€"| 18], so
Dopv|€ - €7 < ADorv5IEs — €5,

It is easy to see that the left hand side is great than —2°T \|§— £*||;, while the right hand side

|£j,max‘k
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4Dér
‘gJ,minlk

two inequalities for E follow immediately. [J

is less than ||§AJ — &7, where Eimax = maxjejgj and Ej,mm = minjecy E] The remaining

Proof of Theorem@ For e such that ||aje||; < col|es||; with n = |J|, define e = ||§* — 3| o
[@"S e - a"Sal < d|af} < 1+ ) ey} < en(l+c)?|ayl?,
so that by assumption AS,
r(n)ay| < [=V2all < 7712 Mg-al| + €/2n"2(1 + co)[|ay]]- (2.23)

Put o = £ — £*, so that Theoremimplies that |lajell; < colles|; as co > 3. Suppose € = O(Ar)

(to be proved later), and using
1 c * (2 e *
S IMGE ~ Moo < 4Dor € — €31

which is an intermediate result from the proof of Theorem [2| we can apply (2.23]) to have, on
Ain---nAgn M,

k()| €7 — &3l < T2 Mg (€ — €] + €/2nY2(1 + co) | €5 — &3
< T2 Mg€ — Mp-£7| + T2 X 5_g. &l + /0" (1 4 o) € — &7l
< 2V2D 1€ — L TR E - e Xl
1<i<N, 1<k<K

+ P21+ o) 1€ — €5
< 2V2DV25 Pt gy — €511V 4 b + haonrll€ — €y + hanll€s — €5
< 27;/2711/4”@ — &5 + (1 + co)nPhont + hsno)|€s — €51+ hin,

where 17y is a vector of ones of size TN, and we used the result in Lemma [2] such that

hin = 2a1(3/Dalog(T Vv N)YINV2Np63/% (55 + N2taa),
honT = 2a9(3/Dalog(T VvV N)WYINTY2 hy np = /2n12(1 4 ¢).

With € = O(Ar) assumed, the explicit rates assumed in Theorem [3| ensure that h n 7, nt/ 2h2’ N,T

and hg y 7 are all going to 0, with hy y 7 = o(anl/ 2). Hence solving the above quadratic inequality
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for ||€; — &'/,

1/2
7:1/2”1/4 + [yrnt? + Kk(n)hi N7 /

S 2 o so that
167 —&5117° < k(n) — (1 + co)n2honr — hant |
1€ — &%) < Aypn'/? + 4k(n)hy N1 < Fyrn'?
U= (k(n) — (14 co)n Phonr — hanr)? — K2(n)

for large enough N,T', which is the inequality for E

To prove the inequality for E, first note that for large enough N, T,

’EJ,min’ > |£:’},min’_’£u7,min - €§,min‘2 |£},min|_HEJ - Ej”

—k —k
> |€§,min’_(1 -2 )|£§,min’: 2 |€},min’7
so that |€, Jomin| > ’€§,min‘k /2. Hence using the result in Theorem [ for £,

| k

N Al€~ N
1E- e, < ormad 2 oy <

T € = &3l = (1 + o)y — €511,
‘EJ,min‘ /2 ‘

‘EJ min

so that ngc —&hell; < cngj — &%||;- Then using an intermediate result

4Ddr

|£Jm1n|

1 e * e *
L IMGE - Mg < 4DorvIEs - €51< 22 - €51,

which is from the proof of Theorem [2| putting a = E— £ in 1) we have on A1 N---NALNM,

1/2 nl/4

k() IEr — €51 < MHEJ &1 (Ut o) ha e + o v | — €5 4 B
J,min

Solving for HE J— £§||1/ % as before and squaring, we obtain

Ay 2| jmin| ~F 4K () by N < 5yrnt/?
(k(n) = (14 co)n'2ha N — hanr)? — K2(R)IE] pinl”

1€; — &) <

for large enough N, T, which is the inequality for E The bounds for ,5 and ,@ are obtained by
using the results in Lemma [2] and Theorem [2] and substituting the error upper bounds we just

proved. It remains to show that e = O(\r).
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We can easily see that, for xtTJ the j-th row of Xy,

)

1<i,j<N

T
; ‘5” (Tfl Z YtiXe,j — E(ytixt,j))
=1

3

The largest upper bound is given by maxlgmgN\T_l Z;le YiYt; — E(yuiyej)| (details omitted),
where using y; = 7 W5Xy 8" + wile: (see (2.3), with w77 the i-th row of II7),

T
€= ¥ = X a0 =  max {)Tfl Zytz’ytj — E(yiyt;)
=1

T
B (1 Y — Blxuixd) )87
t=1

T T
\T*l > iy — E(ytiym\ <7 XBBTXT — E(XiB B XY o - (W31, 17
t=1 t=1
T
+2| T KB el — E(XiB* ) |l may - [W5TmT i1y [0y
t=1

T

_ 2

HIT7Y el — Elere]) | - Im0ll]
t=1

Ar[IB*NT | Al B, M Ar(2]8]|, + 1)
(1 —mn)? (I-=m%  (1-n)0? (I=mn)?% 7

since it is on A3 N -+ A4 N M. Hence e = O(Ap). This completes the proof of the theorem. [J

Proof of Theorem [5 First, similar to (2.23), we can use assumption A8 for |[ae||; < collas]|; to
arrive at s (n)||laye|| < T2 Mgee|| 4+ €/2n'/2(1 + ¢p)||es||. Putting o = £ — & and follow the
same lines as in the proof of Theorem [3| we can use ||€; — &) = O(yrn'/?) on A;N---NANM
(by the result of Theorem |3|) to show that, for j € J¢,

& <€yl = |Ese — E5e]) = O(yrn7?). (2.24)

Define the set D = {j : £ does not corr. to diagonal elements of Wi, W3}. The KKT condition
implies that E is a solution to 1’ if and only if there exists a subgradient

gi =0, 1 € D¢
2 2 o~ o~
g=0(v"l¢)) ={geR?™N :{ g = visign(&;), & #0;
l9:| < vi, otherwise.

such that, differentiating the expression to be minimized in (2.6)) with respect to &p,
Tﬁlﬁ%ﬁpé\p — T’lﬁTy +yrgp + T71MEX3VGC(IN> =0,

where we denote M = M@ and M* = Mg-, and we use Ag to denote the matrix A with columns
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restricted to the index set S. Substituting y = M},£7, + Xg-vec(In) + €,

iDDED — TﬁlM%MEEE + TﬁerlF)XﬁilB*VeC(IN) — TﬁlMEE = —Y18D,

where & = T-'M*™M. For sign consistency of é, we have é\JCQD = 0 and sign(é}) = sign(&Y).

Then it is easy to see that é\is a sign consistent solution if and only if sign(gj) = sign(&%) and

g]]gj — T71M§ 35?} + TﬁlM(zjg,B*VGC(IN) — T71M§€ = —Y18J;

|2 0€s = T IMEM5E) + T M5, X5 g vee(Iy) = T ' MYe| < yrvp,

where J' = J°N D. Recall from assumption A8 that £* = T-'M*TM* and ¥ = E(Z*).
Rearranging, these yield

Sign(gJ) =sign{& + 11 + Io + Is + I + I5} = sign(&7); (2.25)
|Dy + Dy + D3 + Dy + Ds| < ypvy (2.26)

as the necessary and sufficient conditions for E to be a sign consistent solution to |b where

I = =337 (My — M) (My€; — MjES)], I = =557 "M (M; — MJ)Es],

I = —375(55, — 2y) (& — £5), Iy = =25 [T7'M)X 5_g.vee(Ly)],
Iy = 35T 'MYe — vrg), Dy =T ' (M — M%)" (M, — M*)E,,
Dy =T (M — M73)"M5(€s — £5), Dy =T "M (M, — M))E;,

Dy =3 (&5 — &%), D5 = T7'M},(X5_g.vec(Iy) — €).

We first prove that HE}}HOO <ConAN---NAyNM for some constant C. To this end,
denote X* = Xg-, and consider the partition X ;; = (Ajj)1<ij<2. Then

Ay = E(T7'Z%Z)), A= AL = E(T7'Z°X%), Ay = E(T7'X¥XY).

Assumption Al implies that there are finite number of non-zeros in each row of W7 and W3. Let
n, be the maximum number of non-zeros in a row of W7 or W3. Then n, is a constant, and each

block diagonal A;; defined above has at most n, non-zeros in each row. Using the inverse formula
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of partitioned matrix, we thus have

1257l < (A1 — A12A% Ao1) Mo + AT Ara(Ae — Az A Ary)
<N Amax{ (A1l — Ap ARt Ag) )
+ n11n/2)\maX(A1_11> ) HA12Hoo ) ni/QAmax{(AQQ - A21A1_11A12)71}

< 1 P Ainax (257) + 17PN (27 A2 |y

max

"Moo

/2 302
< (R + A)@IB ]y + 1P ) P <

where we use the last part of the proof of Theorem 3| and assumption A4 (details omitted) to
arrive at, on AjN---N A4 NM,

A2 pax < (Trax + A7) (21B% |, + 1)*(1 —n) 2,

and the assumption of uniform boundedness, say Amin(X77) > w > 0 uniformly.

For proving (2.25), it suffices to show that |/;]|,, = o(1) since by assumption Al, £ is a

constant for j € J. Consider

Il < 155 - UIT7X5 o X g e 1ol + IT7X5 0 ML 17— €5 )

. . - Anc 1By~
< CUB = Bl + 30) B = 8711+ U = €500+ 72 I8, - 51}

1/2 1/2
0 (SWVT/ torn (sm%/ torn mw)) 0 (’7%"2 4 g 2) —o1),

N N N2 N

where we used the rates assumed in Theorem [2] the last part of the proof of Theorem [3| for the
-1 -1 . .

rates of || T X%_ﬁ*,‘]xﬁ_,@*,]”oo and ||T X%_B*’JMjHOO (details omitted, but we also used the

fact that these two matrices are of block diagonal structure with at most 2n, non-zero entries in

each row), and the results of Theorem 3] for the rates of |3 — B*|l; and 1€ — £5|. We also used

n < 2n,N, so that ypn/N < 2n,yp = o(1). Similarly, on A3 N--- Ay N M,

1 r#T ~ 2nr32)\T7;/ 24 2nyrn Yrn
2]l S CIT MG X5 5. Jllooll€2,7llmax = O =0 () = o(1);
B-B*, N N

~ ~ 1
sl < CUIES) = £15llocll€r = ) llnax = O@nrdryrn'/?) = o(Ary ) = o(1);

( 7:;1 ZTtTZI Yt&é;— ﬂ*iTi(;FT > _0 <$2AT7;“]/5+'7TTL> _0 <m) — o(1):
T3 XeB(B - B7)"X]

Halloo <€

max

IIs]|., < C (\\T-lﬁ%um + &) — 0> +79) + 1) = O(7r) = o(1),
J,min

Hence we have proved (2.25)) on A} N--- A4 N M when N, T are large enough.
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For proving (2.26) on A; N---N A4 N M when N, T are large enough, it suffices to show by
E29) that

1D;lse < e /maxiés = o (vr/(yrn'/)*).

To show this, consider on A; N---N A4 N M,
_ - 2 (12 “ *
D1l < IT 13%_[,*,J,X5_B*,J||oo\|€2,J||mx < (0hax + A1) |IB = BT (1 + 1€ — &)
~0 (”72“”2) :
N2 )’

2,..3/2
- * 3 * g Y
||D2HOO < ||T 1X%7[3*’J/ J”ooHEJ - €J||max =0 (7 : ’YTnl/2> =0 <T> ;

TN
N N
- e yrn
1Dall < ITMIFX5 g, el €l = O (5)
D4l < 1257 = Zsigllas + 1257l 1€7 = €5l may = O(yrn/?);

1Dsl < 0 (I +7r).

The largest order is ||Dy4||,, = O(yrn'/?), which is of smaller order than yr/(yrn'/2)* by the
2k

assumption n = 0(7;’“7“). This proves ([2.26]), and completes the proof of the theorem. [J
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2.B Simulations
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Table 2.B.1: Baseline Simulations. All values are averages over 100 simulations. Penalization is
chosen via BIC criteria. Specificity is the percentage of zeros estimated as zeros. Sensitivity is
the percentage of non-zeros estimated as non-zeros. LASSO L; is the L; error norm || — &*||, for
the LASSO estimator, and AdalLASSO represents the adaptive LASSO. Bias is the sum of error
for the estimated non-zero values without taking absolute values. Standard errors in parenthesis.

True sparsity level of the both W] and W3 is k = 0.95.

T=50 T =100 T =200
Wi W3 Wi W3 Wi W3
Specificity 97.02%  98.22% | 96.74%  98.20% | 96.64%  98.36%
(0.011) (0.008) (0.010) (0.008) (0.011) (0.008)
Sensitivity 78.09%  55.38% | 95.70%  86.76% | 99.35%  96.19%
(0.083) (0.103) (0.042) (0.065) (0.014) (0.032)
Bias —0.0660  —0.1105 | —0.0391  —0.0738 | —0.0220  —0.0394
(0.024) (0.031) (0.015) (0.017) (0.009) (0.011)
LASSO L, 18.8344  18.2203 | 18.0305  18.8540 | 15.9489  16.8550
(2.178) (2.407) (1.780) (2.066) (1.702) (1.810)
N=25| LASSO L, 5.5494  7.2172 3.4079  4.1905 2.2531 2.3123
(1.011) (1.046) (0.650) (0.759) (0.481) (0.401)
AdaLASSO L; | 2.1840  2.5987 1.7145  2.0779 1.3482 1.5522
(0.368) (0.452) (0.276) (0.357) (0.221) (0.243)
AdaLASSO Ly | 1.0609 1.7634 | 0.4505  0.7627 | 0.2067  0.2858
(0.241) (0.315) (0.140) (0.203) (0.075) (0.096)
Sparsity 0.9349  0.9349 0.9233  0.9233 0.9202  0.9202
(0.014) (0.014) (0.012) (0.012) (0.013) (0.013)
- B 0.0857 0.0173 0.0073
H'B s H1 (0.0327) (0.0121) (0.0056)
Specificity 95.70%  98.38% | 96.20%  98.35% | 96.60%  98.47%
(0.007) (0.005) (0.007) (0.005) (0.006) (0.005)
Sensitivity 74.35%  42.23% | 92.54%  81.18% | 98.32%  96.15%
(0.045) (0.050) (0.029) (0.043) (0.013) (0.018)
Bias —0.0448  —0.0972 | —0.0336 —0.0799 | —0.0215  —0.0412
(0.011) (0.016) (0.006) (0.011) (0.004) (0.006)
LASSO L, 66.7238  61.6638 | 64.5299  66.7991 | 59.4202  63.2523
(3.839) (4.002) (4.564) (5.325) (4.480) (4.785)
N =50 | LASSO L, 25.2673  31.8719 | 15.3925  18.7294 | 9.0062  9.4297
(2.012) (2.073) (1.655) (1.509) (1.159) (1.044)
AdaLASSO L; | 7.8904  10.1448 | 58510  7.4972 4.6307  5.5847
(0.652) (0.803) (0.637) (0.809) (0.496) (0.585)
AdaLASSO L | 4.5845  8.2501 1.9969  3.7515 0.8043 1.1878
(0.478) (0.604) (0.313) (0.479) (0.178) (0.254)
Sparsity 0.9240  0.9240 0.9182  0.9182 0.9201  0.9201
(0.007) (0.007) (0.007) (0.007) (0.007) (0.007)
-8 .02 .02 :
Specificity 95.30%  98.90% | 96.35%  98.88% | 97.16%  98.98%
(0.005) (0.003) (0.004) (0.003) (0.003) (0.003)
Sensitivity 59.54%  26.88% | 85.53%  76.25% | 95.42%  96.04%
(0.034) (0.033) (0.026) (0.033) (0.013) (0.014)
Bias —0.0224  —0.0973 | —0.0277  —0.0911 | —0.0196  —0.0483
(0.009) (0.015) (0.005) (0.007) (0.003) (0.005)
LASSO L, 131.4265 111.8097 | 120.7178 120.3575 | 113.0090  120.1324
(4.475) (5.187) (6.361) (7.167) (6.296) (7.211)
N=175| LASSO L, 65.0015  75.7601 | 35.5961  46.1954 | 19.7648  21.3982
(3.615) (2.881) (2.409) (2.351) (1.537) (1.777)
AdaLASSO L; | 15.7064  21.8860 | 10.1854  13.9803 | 7.8193  9.9623
(0.752) (1.054) (0.777) (1.011) (0.627) (0.832)
AdaLASSO L, | 11.7311  20.8000 | 4.5032  9.9502 1.7424  2.8229
(0.867) (0.836) (0.440) (0.795) (0.241) (0.454)
Sparsity 0.9262  0.9262 0.9239  0.9239 0.9262  0.9262
R (0.005) (0.005) (0.004) (0.004) (0.004) (0.004)
18 -8, 0.0274 0.0343 0.0348
(0.0200) (0.0170) (0.0101)
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Table 2.B.2: Baseline Simulations. All values are averages over 100 simulations. Penalization is
chosen via BIC criteria. Specificity is the percentage of zeros estimated as zeros. Sensitivity is
the percentage of non-zeros estimated as non-zeros. LASSO L; is the L; error norm || — &*||, for
the LASSO estimator, and AdalLASSO represents the adaptive LASSO. Bias is the sum of error
for the estimated non-zero values without taking absolute values. Standard errors in parenthesis.

True sparsity level of the both W] and W3 is k = 0.99.

T =50 T =100 T = 200
Wi W5 Wi W3 Wi W3
Specificity 99.72%  99.86% | 99.54%  99.72% | 99.47%  99.79%
(0.003) (0.002) (0.003) (0.003) (0.003) (0.002)
Sensitivity 63.14%  40.52% | 94.28%  84.98% | 99.56%  97.43%
(0.231) (0.214) (0.094) (0.146) (0.032) (0.065)
Bias —0.1189  —0.1305 | —0.0678 —0.0881 | —0.0328 —0.0424
(0.052) (0.064) (0.030) (0.033) (0.017) (0.022)
LASSO L, 10.7485  8.9524 | 10.9814  10.5877 | 9.3435  9.5100
(1.581) (1.681) (1.475) (1.653) (1.230) (1.252)
N =25 LASSO L 1.2140  1.5384 | 0.7173  0.9196 | 0.3881  0.4341
(0.381) (0.409) (0.245) (0.297) (0.168) (0.186)
AdaLASSO L; | 0.9456  0.9303 | 0.7516  0.8293 | 0.5439  0.6016
(0.192) (0.209) (0.153) (0.197) (0.112) (0.122)
AdaLASSO Ly | 02712  0.4082 | 0.1017  0.1731 | 0.0334  0.0484
(0.107) (0.124) (0.055) (0.086) (0.028) (0.042)
Sparsity 0.9912  0.9912 | 0.9865  0.9865 | 0.9856  0.9856
N (0.004) (0.004) (0.004) (0.004) (0.005) (0.005)
18 -8", 0.0232 0.0100 0.0084
(0.0114) (0.0076) (0.0061)
Specificity 99.75%  99.88% | 99.57%  99.76% | 99.54%  99.82%
(0.002) (0.001) (0.002) (0.001) (0.002) (0.001)
Sensitivity 61.80%  34.74% | 93.04%  84.03% | 99.14%  96.79%
(0.127) (0.125) (0.056) (0.067) (0.021) (0.035)
Bias —0.1128 —0.1375 | —0.0695 —0.0936 | —0.0338 —0.0441
(0.030) (0.036) (0.016) (0.017) (0.008) (0.010)
LASSO L 33.6100  24.9089 | 39.8098  36.4643 | 34.8279  35.1975
(4.133) (3.769) (3.169) (3.391) (2.949) (3.435)
N =50 | LASSO Loy 49503  6.4540 | 2.9538  3.8265 | 1.6247  1.6463
(0.884) (0.983) (0.551) (0.690) (0.299) (0.359)
AdaLASSO L, | 29374 27847 | 26580  2.8045 | 1.9250  2.1301
(0.453) (0.460) (0.301) (0.350) (0.244) (0.305)
AdaLASSO Lo | 1.1193  1.7546 | 0.4390  0.7485 | 0.1423  0.1972
(0.253) (0.316) (0.134) (0.183) (0.058) (0.090)
Sparsity 0.9915  0.9915 L9868 9 0.9854  0.9854
R (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
1B -8, 0.0248 0.0132 0.0087
(0.0164) (0.0097) (0.0062)
Specificity 99.79%  99.91% | 99.54%  99.74% | 99.56%  99.84%
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Sensitivity 52.25%  24.37% | 93.66%  83.38% | 99.17% = 97.46%
(0.140) (0.098) (0.034) (0.056) (0.012) (0.023)
Bias —0.1228 —0.1466 | —0.0669 —0.0935 | —0.0326 —0.0450
(0.023) (0.030) (0.009) (0.013) (0.005) (0.008)
LASSO L, 59.9314  39.7276 | 80.7885  71.3078 | 74.6762  74.8206
(9.852) (7.405) (4.056) (4.727) (4.159) (5.213)
N=75 LASSO L, 12.1496  15.1889 | 6.7000  8.3786 | 3.5099  3.5854
(1.295) (1.247) (0.852) (1.078) (0.480) (0.601)
AdaLASSO L | 54167  5.1533 | 5.3577  5.5670 | 3.9939  4.4054
(0.949) (0.755) (0.391) (0.474) (0.347) (0.441)
AdaLASSO Lo | 2.8895  4.2755 | 0.9576  1.6567 | 0.2951  0.4148
(0.505) (0.446) (0.186) (0.295) (0.092) (0.146)
Sparsity 0.9927  0.9927 | 0.9861  0.9861 | 0.9854  0.9854
R (0.003) (0.003) (0.002) (0.002) (0.001) (0.001)
1B - 8"l 0.0466 0.0183 0.0100
(0.0186) (0.0133) (0.0067)
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Table 2.B.3: Comparisons to the baseline simulations when the covariates include y;—1 (under the
columns “Time Dependence”) and when the noise exhibits spatial correlations (under the columns
“Spatial Dependence”).

Refer to Table for the explanations of different items.

Time Dependence Spatial Dependence
T =100 T = 200 T =100 T = 200
Wi Wi Wi Wi W3 W3 Wi W3
Specificity 96.35%  98.04% | 96.46%  98.34% | 96.73%  98.23% | 96.54%  98.12%
(0.013) (0.007) (0.010) (0.008) (0.009) (0.007) (0.011) (0.009)
Sensitivity 94.04%  84.39% | 99.44%  93.86% | 94.71% = 88.03% | 99.22%  96.00%
(0.046) (0.067) (0.013) (0.070) (0.047) (0.059) (0.018) (0.033)
Bias —0.0361  —0.0686 | —0.0195 —0.0477 | —0.0464 —0.0761 | —0.0235 —0.0395
(0.014) (0.018) (0.011) (0.015) (0.013) (0.019) (0.011) (0.012)
LASSO L, 18.4701  19.6248 | 16.0530  16.9714 | 18.1214  18.7202 | 16.3036  17.4943
(2.025) (1.896) (1.783) (1.900) (1.609) (1.666) (1.686) (1.950)
N =25 LASSO Lo 3.7210 4.5611 2.4119 2.7056 3.5858 4.1266 2.3510 2.4653
(0.737) (0.795) (0.612) (0.749) (0.577) (0.729) (0.509) (0.500)
AdaLASSO L; | 1.7919 2.1952 1.3490 1.5641 1.7328 2.0427 1.4041 1.6380
(0.325) (0.361) (0.211) (0.264) (0.261) (0.294) (0.233) (0.288)
AdaLLASSO L, | 0.5181 0.8554 0.2486 0.3794 0.4805 0.7400 0.2291 0.3144
(0.152) (0.213) (0.126) (0.218) (0.124) (0.188) (0.084) (0.107)
Sparsity 0.9216 0.9216 0.9199 0.9199 0.9225 0.9225 0.9194 0.9194
N (0.012) (0.012) (0.011) (0.011) (0.010) (0.010) (0.011) (0.011)
B -8l 0.0184 0.0101 0.0230 0.0070
(0.0094) (0.0060) (0.0127) (0.0058)
Specificity 95.39%  97.96% | 95.96%  98.37% | 96.15%  98.37% | 96.64%  98.51%
(0.010) (0.006) (0.007) (0.005) (0.007) (0.006) (0.005) (0.005)
Sensitivity 91.07%  67.93% | 98.33%  86.47% | 93.58%  81.74% | 98.65% = 95.69%
(0.029) (0.125) (0.012) (0.065) (0.024) (0.030) (0.012) (0.018)
Bias —0.0380 —0.0964 | —0.0244 —0.0725 | —0.0339 —0.0774 | —0.0206 —0.0421
(0.008) (0.021) (0.005) (0.017) (0.006) (0.009) (0.004) (0.006)
LASSO L, 73.0988  83.6656 | 67.8401  80.4248 | 64.8915  66.4893 | 59.2335  62.9595
(7.870) (11.432) (4.699) (6.820) (4.553) (5.642) (4.163) (4.951)
N =50 LASSO L, 18.1152 232770 | 11.3419  14.5371 | 15.4280  18.3139 9.1422 9.4313
(3.076) (4.087) (2.160) (2.991) (1.492) (1.185) (0.970) (0.972)
AdaLASSO L; | 7.2820 10.6510 5.6221 8.3195 5.8783 7.3947 4.6112 5.6047
(1.261) (2.312) (0.620) (1.241) (0.641) (0.870) (0.471) (0.618)
AdaLASSO L, | 2.4515 5.1805 1.1335 2.5783 1.9934 3.6315 0.8176 1.2385
(0.550) (1.352) (0.313) (0.865) (0.281) (0.351) (0.137) (0.225)
Sparsity 0.9111 0.9111 0.9140 0.9140 0.9171 0.9171 0.9189 0.9189
=N (0.011) (0.011) (0.008) (0.008) (0.007) (0.007) (0.007) (0.007)
1B -8l 0.0351 0.0274 0.0306 0.0349
(0.0211) (0.0126) (0.0180) (0.0096)
Specificity 92.43%  94.97% | 87.74%  90.68% | 96.44%  98.90% | 97.20%  98.99%
(0.006) (0.018) (0.009) (0.024) (0.005) (0.003) (0.003) (0.003)
Sensitivity 70.69%  17.31% | 88.79%  25.72% | 84.79%  75.73% | 95.25% = 96.17%
(0.026) (0.032) (0.023) (0.039) (0.025) (0.034) (0.014) (0.010)
Bias —0.0335 —0.1890 | —0.0299 —0.2028 | —0.0260 —0.0920 | —0.0196  —0.0489
(0.007) (0.019) (0.005) (0.019) (0.004) (0.010) (0.002) (0.005)
LASSO L; 209.5463  258.5049 | 268.4002 308.2939 | 119.7554 118.3699 | 112.5645 118.9015
(5.333) (5.432) (5.614) (6.467) (6.982) (8.395) (6.037) (7.546)
N=15 LASSO Lo 66.6747  102.1036 | 71.6813  114.2675 | 35.6206  45.6831 | 19.8162  21.4568
(5.213) (11.582) (6.040) (15.065) (2.686) (2.580) (1.450) (1.229)
AdaLASSO L; | 27.8593  43.5799 | 32.3066  46.4623 | 10.0237  13.7319 7.7980 9.8648
(1.200) (1.526) (1.089) (1.705) (0.807) (1.111) (0.553) (0.861)
AdaLLASSO L, | 10.4046  26.3588 0.0844  26.7842 45115 9.8667 1.7587 2.8241
(1.195) (2.434) (1.069) (3.080) (0.475) (0.797) (0.204) (0.292)
Sparsity 0.8942 0.8942 0.8409 0.8409 0.9248 0.9248 0.9266 0.9266
N (0.006) (0.006) (0.008) (0.008) (0.005) (0.005) (0.003) (0.003)
18 -8, 0.1006 0.1054 0.0343 0.0340
(0.0300) (0.0250) (0.0207) (0.0097)
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Table 2.B.4: Comparisons to the baseline simulations when assumptions are violated. Refer to
Table for the explanations of different items.

No Variance Decay Fat Tails
T = 100 T = 200 T =100 T = 200
Wi W3 Wi W3 Wi W3 Wi W3
Specificity 96.24%  97.87% | 95.62%  97.42% | 93.44%  95.73% | 91.81%  94.55%
(0.013) (0.010) (0.012) (0.010) (0.021) (0.016) (0.016) (0.014)
Sensitivity 95.06%  84.64% | 99.11%  95.98% | 88.76%  58.61% | 98.10%  84.91%
(0.044) (0.065) (0.016) (0.028) (0.066) (0.099) (0.026) (0.081)
Bias —0.0422  —0.0765 | —0.0255 —0.0459 | —0.0486 —0.1109 | —0.0382 —0.0871
(0.015) (0.020) (0.011) (0.010) (0.021) (0.052) (0.015) (0.019)
LASSO L, 19.6605  20.6833 | 18.4888  20.2737 | 27.5608  30.5705 | 25.5832  30.7968
(2.195) (2.493) (1.549) (1.717) (3.601) (4.472) (1.923) (2.678)
N =25 | LASSO L, 3.9067 4.5202 2.8648 3.0230 7.5948 9.4319 6.6359 6.9125
(0.699) (0.688) (0.483) (0.419) (2.215) (2.066) (1.153) (1.234)
AdaLASSO L; | 1.9409 2.4089 1.6541 2.0208 4.3815 6.0911 3.1113 4.5200
(0.358) (0.442) (0.198) (0.243) (2.534) (2.763) (0.566) (0.798)
AdaLASSO Ly | 0.5298 0.8437 0.2911 0.3834 1.9702 2.8222 1.0896 1.4446
(0.145) (0.195) (0.082) (0.096) (2.338) (2.147) (0.403) (0.468)
Sparsity 0.9176 0.9176 0.9139 0.9139 0.8948 0.8948 0.8707 .
N (0.013) (0.013) (0.012) (0.012) (0.021) (0.021) (0.018) (0.018)
18- 81, 0.0181 0.0103 0.0411 0.0237
(0.0115) (0.0076) (0.0297) (0.0170)
Specificity 95.70%  98.15% | 95.69%  97.92% | 93.57%  96.93% | 92.59%  95.99%
(0.006) (0.005) (0.007) (0.005) (0.009) (0.008) (0.008) (0.007)
Sensitivity 92.41%  77.73% | 98.22%  93.97% | 80.41% = 50.10% | 94.01%  82.04%
(0.022) (0.044) (0.013) (0.025) (0.037) (0.062) (0.026) (0.042)
Bias —0.0367 —0.0844 | —0.0270 —0.0520 | —0.0464 —0.0999 | —0.0432  —0.0849
(0.006) (0.010) (0.005) (0.007) (0.009) (0.018) (0.007) (0.013)
LASSO L, 70.0053  71.3662 | 69.1858  74.9824 | 97.5160 101.2189 | 94.7012  110.6415
(4.594) (4.805) (3.930) (5.178) (6.324) (8.907) (5.161) (7.469)
N =50 | LASSO L, 17.0935  20.1647 | 11.4220  12.6971 | 28.6774  35.0926 | 23.0987  27.3068
(1.748) (1.592) (1.382) (1.173) (3.548) (4.227) (2.806) (3.296)
AdaLASSO L; | 6.6601 8.4296 5.7215 7.3379 | 12.8711  18.6539 | 10.6893  15.9282
(0.633) (0.782) (0.465) (0.723) (2.350) (3.868) (1.644) (2.578)
AdaLASSO Lo | 2.2809 4.1629 1.0718 1.7761 5.3795 9.6082 3.6077 6.0230
(0.327) (0.457) (0.213) (0.298) (1.724) (2.528) (1.219) (1.814)
Sparsity 0.9129 0.9129 0.9126 0.9126 0.8984 0.8984 0.8850 0.8850
N (0.008) (0.008) (0.007) (0.007) (0.009) (0.009) (0.008) (0.008)
18-81, 0.0303 0.0352 0.0482 0.0538
(0.0173) (0.0133) (0.0305) (0.0191)
Specificity 95.99%  98.77% | 96.49%  98.73% | 94.16%  98.04% | 94.03%  97.33%
(0.005) (0.004) (0.004) (0.003) (0.006) (0.004) (0.006) (0.006)
Sensitivity 83.20%  70.74% | 94.63%  93.24% | 7L.87%  38.61% | 88.41%  73.94%
(0.027) (0.033) (0.017) (0.019) (0.030) (0.035) (0.023) (0.039)
Bias —0.0286  —0.0970 | —0.0249 —0.0652 | —0.0326 —0.1019 | —0.0386 —0.1006
(0.005) (0.008) (0.003) (0.006) (0.005) (0.013) (0.004) (0.010)
LASSO I, 129.4730  127.1148 | 129.9715 139.4748 | 182.9601 172.0112 | 184.9879  209.7532
(6.808) (9.643) (6.918) (8.089) (8.852) (11.093) (9.496) (14.129)
N =75 | LASSO L, 30.2023  50.7696 | 24.5651  28.8266 | 60.0113  78.0560 | 45.6243  60.0513
(2.474) (2.523) (1.722) (2.391) (4.521) (5.120) (4.509) (5.580)
AdaLLASSO L; | 11.3512  15.6470 | 9.7166  12.9432 | 21.7642  31.2314 | 18.8524  29.5169
(0.869) (1.436) (0.724) (0.999) (2.443) (3.847) (2.802) (4.897)
AdaLASSO Lo | 5.1309  11.4221 | 2.3472 44590 | 10.2597  21.5966 | 6.5760  13.8220
(0.462) (0.747) (0.241) (0.650) (1.910) (3.088) (1.906) (2.990)
Sparsity 0.9212 0.9212 0.9211 0.9211 0.9093 0.9093 0.9008 0.9008
R (0.004) (0.004) (0.005) (0.005) (0.006) (0.006) (0.006) (0.006)
18 -8, 0.0367 0.0402 0.0655 0.0644
(0.0160) (0.0108) (0.0241) (0.0138)
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Table 2.B.5: Simulations without covariates. Comparisons to the baseline simulations when as-

sumptions are violated. Refer to Table @ for the explanations of different items.

T =100 T =200

W3 W3 Wi W5
Specificity 96.00% - 93.27% -
(0.021) (-) (0.017) (-)
Sensitivity 59.22% — 90.63% =
(0.198) (-) (0.075) (-)
Bias —0.1089 — —0.0928 —
(0.040) (-) (0.024) (-)
LASSO L, 7.6912 — 7.5505 —
(0.751) (-) (0.661) (-)
N =25 LASSO L, 7.6912 — 7.5505 —
(0.751) (=) (0.661) (=)
AdaLLASSO L, 1.5748 — 1.2060 —
(0.228) (-) (0.136) (-)
AdaLLASSO L, 1.5748 — 1.2060 —
(0.228) (-) (0.136) (-)
Sparsity 0.9324 — 0.8907 —
(0.029) (=) (0.018) (=)

B-p - -

18- 81, - -
Specificity 95.76% — 94.40% —
(0.007) (-) (0.008) (-)
Sensitivity 63.47% — 86.84% —
(0.070) (-) (0.039) (-)
Bias —0.0825 — —0.0804 —
(0.015) (-) (0.015) (=)
LASSO L, 27.1855 - 26.3433 -
(1.406) (=) (1.840) (=)
N =50 LASSO L, 27.1855 — 26.3433 —
(1.406) (=) (1.840) (=)
AdalLASSO L, 4.8163 — 3.9884 —
(0.366) (-) (0.346) (—)
AdaLLASSO L, 4.8163 — 3.9884 —
(0.366) (-) (0.346) (-)
Sparsity 0.9279 - 0.9032 -
(0.009) (=) (0.008) (=)

G-p - -

18- 81, - -
Specificity 95.46% — 94.58% —
(0.007) (-) (0.006) (-)
Sensitivity 57.03% — 76.97% —
(0.063) (-) (0.043) (=)
Bias —0.0685 — —0.0684 —
(0.012) (=) (0.012) =)
LASSO L, 55.0692 — 51.4000 -
(3.474) (=) (2.648) (=)
N =175 LASSO L, 55.0692 — 51.4000 —
(3.474) (-) (2.648) (-)
AdalLASSO L, 8.5933 — 6.9086 —
(0.714) (-) (0.544) (-)
AdaLLASSO L, 8.5933 — 6.9086 —
(0.714) (=) (0.544) (=)
Sparsity 0.9283 — 0.9099 —
(0.009) (=) (0.006) (=)

B -8 - -

| Il 5 5
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2.C Application

Table 2.C.1: Markets and their respective indices used. Data source: Global Financial Data.

Country Code | Index Country Code | Index
Argentina ARG | Merval Australia AUL | Dow Jones Australian
Austria AUT | Viena ATX-5 Brazil BRZ | Dow Jones Brazil Stock
Canada CAN | S&P/CDNX Composite | Chile CHL | Santiago SSE Inter-10
China CHN | Shanghai SE Composite | Egypt EGP | SE 100
France FRA | Paris CAC-40 Germany GER | CDAX Total Return
Hong Kong HHK | Hang Seng Composite India IDI NSE-50
Indonesia IDO Jakarta SE Liquid 45 Italy ITA Milan SE MIB-30
Japan JPN | Nikkei 500 Mexico MEX | SE Index (INMX)
New Zealand NZZ | NZSX-15 Russia RUS | Russia MICEX Composite
Spain SPA Madrid SE IBEX-35 Singapore SIN Singapore FTSE All-shares
South Africa STA | FTSE/JSE Top 40 South Korea SKK | Korea SE Stock Price
Tradable Stocks

Switzerland SWZ | Swiss Market Thailand THA | Thailand SET General
United Kingdom | UKK | S&P United Kingdom United States | USA | S&P 500

Figure 2.C.1: Elements of W plotted against Common Opening Hours.
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Chapter 3

Detection and Estimation of Block

Structure in Spatial Weight Matrix

Abstract. In many economic applications, it is often of interest to categorize,
classify or label individuals by groups based on similarity of observed behavior. We
propose a method that captures group affiliation or, equivalently, estimates the block
structure of a neighboring matrix embedded in a Spatial Econometric model. The main
results of the LASSO estimator shows that off-diagonal block elements are estimated as
zeros with high probability, property defined as “zero-block consistency”. Furthermore,
we present and prove zero-block consistency for the estimated spatial weight matrix
even under a thin margin of interaction between groups. The tool developed in this
paper can be used as a verification of block structure by applied researchers, or as an
exploration tool for estimating unknown block structures. We analyzed the US Senate
voting data and correctly identified blocks based on party affiliations. Simulations also

show that the method performs well[l]

Keywords: Spatial weight matrix; LASSO penalization; zero-block consistency; spatial lag/error

model; Nagaev-type inequality.

JEL classification: C31, C33.
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3.1 Introduction

Classification problems are a common endeavor in Economics and Econometrics research. This is
the problem of identifying and assigning individuals to groups based on their observed behavior or
common characteristics. This problem can come in many formats. Examples include estimating
groups of countries such that their income levels are mutually dependent, industrial inter-linkages
and many issues regarding strategic interaction among economic agents. In the nonparametric
case, see the classical examples in [Ferraty and Vieu (2006). Identification of groups can be used

to improve prediction, or can itself be the main purpose of a study.

A spatial weight matrix W can be used to indicate the existence of groups which are represented
as diagonal blocks, producing a block diagonal matrix W. Elements w;; that fall outside blocks are
therefore zero, indicating that there is no connection between individuals ¢ and j. The classification
into groups can describe, for example, de facto political parties operating at a Congress, abstracting
from self-denominated labels. Political history is full of examples where parties operate jointly,
pressing for a single agenda, thus behaving like a single political entity. Another example is
defector policymakers, who effectively operate in a more similar way to political parties other
than the one he or she pledged alliance. In both cases, it is useful to have an empirical tool that

classifies individuals into groups, independently of labeled political affiliation.

The purpose of this paper is to show the properties of a LASSO-based estimator that uncovers
the block structure of an unknown spatial weight matrix when only the outcomes (the response
variables) are observed. Estimating the block structure of a spatial weight matrix is also a useful
addition to the Spatial Econometrics literature, which usually assumes a known spatial weight
matrix using expert knowledge, or more often just rough proxies like the inverse of “distances” or

its arbitrary powers.

As shown in |Arbia and Fingleton| (2008)) and Pinkse and Slade| (2010), estimation accuracy of
other parameters in a spatial lag/error model depends crucially on the correct specification of the
spatial weight matrix. With these concerns in mind, there are other attempts in the literature to
estimate the spatial weight matrix together with other important parameters in a spatial lag/error
model. Pinkse et al.[(2002) suggested to estimate a nonparametric smooth function for the elements
of the spatial weight matrix. Beenstock and Felsenstein| (2012)) suggested using a moment estimator
for the spatial weight matrix. |[Bhattacharjee and Jensen-Butler| (2013) proposes to estimate the
spatial weight matrix by first estimating the error covariance matrix. These methods can suffer
from the need to input an appropriate distance metric, which is still determined by the user, or to
estimate a large error covariance matrix, which can be inaccurate as the dimension of the panel is
large and can be close to the sample size - one of the major characteristics of a large time series
panel. There are other ad hoc approaches as well, many of which unfortunately lack theoretical

analysis of the properties of the resulting estimators.
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Recently, [Lam and Souza (2013) suggested to estimate jointly the spatial weight matrix and
other parameters in a spatial lag/error model through the use of adaptive LASSO penalization,
which was first developed in [Zou (2006) for variable selection problems in standard regression.
They provided theoretical analysis of the properties of the resulting estimators, including the
spatial weight matrix and other important parameters in the model, and the size of the panel is
allowed to be close to or even larger than the sample size. However, in their paper, the authors
assumed the existence of exogenous covariates, which are not necessarily observed in a setting

when the interest lies purely on classifying individuals into groups.

In this paper, our objective is to estimate the block structure of the spatial weight matrix in
a spatial lag/error model in the absence of exogenous covariates (see model and section
for details in how we arrive at such a model for estimation). We then propose a LASSO estimator
that captures with high probability all the zeros that fall outside blocks of interactions, property
defined as “zero-block consistency”. We can also estimate the diagonal blocks to be non-zero with
probability 1. In section we show zero-block consistency of the LASSO estimator of a spatial
weight matrix even when there is a slight overlap between the groups. In other words, there is a

small number of “hybrid” individuals.

Motivated by a set of US Senate voting data, in this paper we use the method to explore if
the Republicans and the Democrats form two major blocks based on their voting records. We
find that along the year of 2013, the method correctly identifies two groups, with Independent
Senators behaving mostly as Democrats. The margin of interaction — defined as the Senators with
cross-partisan links — is as small as seven Senators, a clear indication of strong polarization in the
political chamber. Interestingly, for retrospective years, the degree of interaction was substantially

higher, spiking at the last years of the Bush administration.

An interesting computational aspect of a spatial weight matrix with blocks of zeros in the
off-diagonal is that we can store it in the computer as a banded matrix which reduces the amount
of memory used. This provides another motivation for the development of our estimators in this

paper to detect block structure in the spatial weight matrix.

The rest of the paper is organized as follows. In section we introduce the spatial lag/error
model with blocks in the spatial weight matrix, and proposed a LASSO minimization problem for
finding the estimator of the spatial weight matrix. Section [3.3| presents the concept of zero-block
consistency, with probability lower bound of such consistency for the LASSO estimator explicitly
given, thus showing that block detection is achieved with high probability. Section [3.4] relaxes all
the previous settings and results to overlapping blocks. Section [3.5| presents our simulation results
as well as the complete analysis of the US Senate voting data. Conclusion is in section [3.6] and

all technical proofs are in section
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3.2 The Model and the LASSO Estimator

One of the most commonly-used model for describing spatial interaction in a panel is the spatial
lag model,
yi=pWy: + XyB+e, t=1,....T. (3.1)

See for example equation (19.5) of |Anselin et al.| (2006), which is a stacked version of the above.
Here, y; is an N x 1 vector of response variables, and X; is an N x K matrix of exogenous
covariates. The so-called spatial weight matrix W has elements that express the strength of
interaction between location i (row) and j (column). Therefore, the spatial weight matrix W
can be interpreted as the presence and strength of a link between nodes (the observations) in a
network representation that matches the spatial weights structure (Anselin et al., 2006). Such a
structure is assumed to be constant across time points t = 1,...,T. The parameter p is called
the spatial autoregressive coefficient. The spatial lag model is typically considered as the
specification of the equilibrium outcome of a spatial or social interaction process, in which the value
of the dependent variable for one agent is jointly determined with that of the neighboring agents
(Elhorst, 2010). As an example, in the empirical literature on strategic interaction among local
governments (Brueckner, 2003), the spatial lag model is theoretically consistent with the situation

where taxation and expenditures on public services interact with that in nearby jurisdictions.

To utilize model , the spatial weight matrix W has to be specified. Yet, recent researches
suggest that the estimation accuracy of the model depends crucially on the correct specification of
W. See Arbia and Fingleton| (2008) and |[Pinkse and Slade| (2010) for some empirical experiments
on this. Moreover, Lemma 2 of Lam and Souza, (2013)) also shows that if the estimation of W
is not good enough, estimation accuracy of 3 can potentially suffer. Furthermore, Plumper and
Neumayer| (2010) points out that a common practice of row-standardization in the specification of
W in model is in fact problematic, since it alters not only the metric or unit of the spatial

lag, but also the relative weight given to the observations.

Observing the drawbacks of model (3.1)), Lam and Souza, (2013) proposes to estimate the

spatial weight matrix together with other parameters in the model, using
Yyt = WlYt+W2Xt,B+Et, t= ]-7"'7T' (32)

The term pW in model is replaced by the spatial weight matrix W1, to be estimated from
the data. The addition of matrix Wy is a generalization to model . Model allows the
spatial weight matrix to be estimated from the data, which overcomes the various drawbacks that
are mentioned in the paragraph above when using a spatial lag model. They showed, among
various results, that the elements of the spatial weight matrix can be sign-consistently estimated

using the adaptive LASSO, i.e. the non-zeros in W1 and Wy are estimated with the correct signs,
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and the zeros in them are estimated as zeros, with probability going to 1.

In this paper, we are motivated to estimate the block structure of a spatial weight matrix. As
our primary interest resides is detecting or classifying groups of individuals based on their outcome
variables, it is not always the case that exogenous covariates exist or are relevant to a particular
empirical question. For example, for the US senators’ data, the main objective is to classify them
into different de facto parties, irrespective of other potential variables that could explain observed

behavior. As a consequence, the results in |[Lam and Souzal (2013)) cannot be directly applied.

This motivates us to study the following model:
}’t:W*Yt‘f—Gt, tzl,...,T, (33)

where y; is an N x 1 vector of observations at time t, €; is a zero mean noise vector of the same
size, and W™ is the spatial weight matrix of size N, with 0 on its main diagonal. This model is
in fact model (1.6) in |[LeSage and Pace| (2008), with the term pC' there replaced by the spatial

weight matrix W*, to be estimated from data.

We assume that [W*|| < n <1, where ||A]|,, = max; >_;|A;;| is the Lo norm of a matrix
A. This ensures that (Iy — W*)~! exists, so that y; = (Iy — W*)"le; is stationary. Model
allows us to study the dependence of one dependent variable on the neighboring ones. In the
context of the US senate voting data analysis to be carried out in section [3.5.3] we are studying
the dependence structure of one senator’s voting pattern on the other senators, which is captured
by the spatial weight matrix W*. Note that there were other attempts to estimate connectedness

in the US Congress in the literature. See, for example, Fowler| (2006)).

Since we are interested in studying the block structure of W*, without loss of generality, we
assume the components of y; are sorted so that the spatial weight matrix W* is block diagonal,

with

X (1)

1 €
W* = . , € = : , (3.4)
W¢, egG)

where G is the number of blocks in W*. The blocks will potentially represent the dependence
structure of voting patterns of senators from within the Republican, the Democrats, and other
parties in the US senate voting data. An important assumption for {¢;} is that cov(egi), eij )) =0
for i # j. Otherwise, the block structure in W* is not identifiable. Detailed assumptions can
be found in section [3.3.1] Relaxation to overlapping blocks is treated in section Such a
relaxation is necessary since we expect that even under polarization of political parties, there are
few individual senators from different parties sharing similar political views, thus voting similarly

on certain issues. Then the corresponding elements in the spatial weight matrix are non-zero,
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connecting the blocks representing different parties. Hence the blocks in the spatial weight matrix

will be slightly overlapping in the end.

As presented in earlier paragraphs, for recovering the block structure of the spatial weight
matrix in , if there were exogenous covariates, the adaptive LASSO estimator proposed in
Lam and Souza| (2013)) is more than sufficient, since it has been shown that the adaptive LASSO
estimator is asymptotically sign-consistent for the elements in the spatial weight matrix. In this
paper, we complement their results by showing that, even in the absence of exogenous covariates,
it is still possible to accurately estimate the block structure of the spatial weight matrix. Further-
more, the disturbance decay assumption in |[Lam and Souza (2013) is neither needed nor feasible,
or else y; would have decaying variance as well. The disturbance decay assumption entails that
the maximum variance of the disturbances in €; are decaying as the sample size goes to infinity.
In view of the block structure of W* in 7 the matrix IT* = (Iy — W*)~! also has the same

block structure, say

with H;‘f having the same size as W; in . Hence ygj ) = H;egj ), and is uncorrelated with
ey) for 1 < i # j < G by the assumption that cov(egi),e(j)) = 0 for 7 # j. Without a block
structure in W*, a response variable y;; and a disturbance variable €;; cannot be uncorrelated in
general. This is the reason why the disturbance decay assumption is not needed in our setting,

but is needed in general in |Lam and Souza; (2013)).

Before proposing our estimator, we write (3.3]) as a linear regression model,
y =12§ +e, (3.5)

wherey = vec{(y1,...,y7)"}, € = vec{(€1,...,er)"}, & = vec(W*T) and Z = In®(y1,...,y7)" "
Here, the operator vec denotes the column by column vectorization of a matrix, while ® denotes
the Kronecker product between two matrices. The design matrix Z contains the endogenous vari-
ables y¢, and hence least square estimation will be biased. Furthermore, when N is close to T,
e.g. N =T/2, it has a serious negative effect on the accuracy of the least square estimators since

the inverse (Z*Z)~! will be ill-conditioned.

Since we assume there is a block structure in W*, we know that £* is a sparse vector, that
is, &* should have a lot of zeros corresponding to the zero blocks in W*. This motivates us to

propose the LASSO penalization on the elements of £ = vec(W™) to obtain

N
> 1 )
§= mélnﬁHy — Z&|* + yrl€lly, subj. to Y wi; <1, (3.6)

j=1
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v?)Y/2 represents the

where ||[v||; = >_,|vi| represents the Li-norm of the vector v and ||v|| = (3, v;
L norm, and we denote the elements of W as w;;. Since £ is a vector containing all the elements
of the spatial weight matrix W, the above penalization problem can be viewed as a least square
estimation for the elements of W (represented as the vector €) with constraint on the magnitude
of [|£]|; (the absolute sum of all the elements of W). That is, € is the solution to the following
problem:
1 N
. 2 .
min ﬁ”y — Z&||°, subj. to ||€||; < c¢r and Z;wij <1,
J:
where cp is determined by the tuning parameter yp. The row sum constraint in (3.6 and the

above ensure the stationarity of the estimated model. The rate for the tuning parameter vy will
be discussed after Theorem [§ in section [3.3.3

Theoremin sectionshows that the solution g for the LASSO penalization problem in ([3.6))
is zero-block consistent - that is, the zero off-diagonal blocks in W* in for model , with
corresponding zero patterns in £* = vec(W*T), are estimated as zeros in E with probability going
to 1. The theorem also says that the diagonal blocks are estimated to be non-zero with probability
equal to 1. In the context of the US senate voting data, if the Republican party and the Democrat
party are forming two blocks in the spatial weight matrix W* because of the political polarity in
their voting patterns, the spatial weight matrix W recovered from the LASSO estimator E in
will be able to show such blocks with high probability.

3.3 Zero-Block Consistency of the LASSO Estimator

Before presenting the main results of this paper, we introduce the notation to be used for the rest
of the paper, and the main technical assumptions. The definition of zero-block consistency will

also be given in the subsection below.

3.3.1 Main assumptions and notations

(i) The spatial weight matrix W* is block diagonal as in (3.4]), with at least one W* # 0, and
[W*||, <71 < 1 uniformly as T, N — oo, where 7 is a constant. We also assume, uniformly
as T, N — oo,
Wl < ne,

where ||A||; = max; > ,;|A;;| is the L; norm of a matrix A, and 7. is a constant.

(ii) The vector €; can be partitioned as in 1) with the length of egj ) the same as the size of

W, Furthermore, E(e;) = 0 and cov(egi),e(j)) = 0 for i # j. Also, var(e;) < 02 < 00

2

¢ is a positive constant.

uniformly as T, N — oo, where o
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(i) Define dr = &. Then we assume dr — d € [0,1) as T, N — oo.

(iv) The series {€;} is causal, with
€ = Z ®ini—i, Po=1In,
i>0

where n; = (941, ..., mn)", and the n;’s are independent and identically distributed random
variables with mean 0 and variance ¢2, having finite fourth moments. Furthermore, we

assume that uniformly as N,T — oo,

‘ o(1—+vd)—e—c
;H(I)ZH = a(l—i—\/&)—ke

for some constants e, ¢ > 0.

(v) The tail condition P(|Z|> v) < Djexp(—D2v?) is satisfied for n; and e for all integer ¢

and i =1,..., N, for the same positive constants D1, Do and q.

(vi) There are constants w > 2 and o > % — % such that for all positive integer m,
_1
Y I1®ill < Cm~* (max| Ji) "2,
sz 1,7
where C' > 0 is a constant (can depend on w), and J;; =The index set for the non-zero

elements of the j-th row of ®,.

Assumption (i) requires the absolute row sum of W* to be uniformly less than 1, which is a
regularity condition to ensure that the model is stationary. This row sum condition is in fact less
restrictive than the commonly used row-standardization, which forces the absolute sum of each
row to be equal to 1 in model . For stationarity, we need |p|< 1 in the model, so that in effect
each row is forced to sum to p in the matrix pW. See equation (3.3) in Fischer and Wang| (2011])
and the descriptions therein to learn more details in row-standardization. On the other hand, the
row sum condition in assumption (i) merely needs the absolute sum of each row of W* to be less

than 1, and each of them can be unequal.

We give a hypothetical trade example to illustrate that the row sum condition is reasonable in
practice. It is well known that the income of a country can depend on others, for example through
trade linkages. Suppose the partners of country A experience a positive income shock. In the
situation described above, it is then expected that country A, as demand for its export rises, will
experience some positive spillover from partners’ income shock. The row sum condition implies
that the overall effect perceived from A’s point of view will not be larger than the average shock

accrued by its partners, weighted by the elements of W corresponding to row that represents
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country A. In other words, it is supposed that the income shock in the trade partners is not
amplified through linkages, which is reasonable to assume to the extent that A’s economy is not

overly dependent on the export sector.

Assumption (ii) is an important identifiability condition for the block structure of W*. As-
sumptions (iii) and (iv) facilitate the bounding of the minimum eigenvalue of a sample covariance
matrix of the observations using random matrix theories. They also make bounding various terms
in the proof much easier. Assumption (v) is a relaxation to normality. When ¢ = 2, the random
variables are sub-gaussian, while they are sub-exponential when ¢ = 1. When 0 < ¢ < 1, the
random variables are heavy-tailed. Hence assumption (v) is a significant relaxation to normality.
Together with assumption (v), assumption (vi) allows us to apply the Nagaev-type inequality in
Theorem |§|to determine the tail probability of the mean of the product process {e e, — E(eri€tj)}-
It can actually be relaxed to allow for 0 < a < 1/2 —1/w at the expense of more complicated rate
in the Nagaev-type inequality in Theorem [6] See Remark 1 after Theorem [6] for more details on

this.

There are more notations and definitions before we move to our main results. Define the set
H = {j:& =0 and corresponds to the zero blocks in W™} (3.7)

In other words, the set H excludes those zeros within the diagonal blocks W7 for i = 1,...,G.
Define n =maximum size of W;,7 = 1,...,G. For the rest of the paper, we use the notation vg to
denote a vector v restricted to those components with index j € S. Hence, for instance, we have
& = 0 by definition. Let Ay = cT—1/2 logl/Q(T V' N), where ¢ is a constant (see Corollary (7| for
the plausible values of ¢). Finally, define the set

T
1
Ac ={ max ‘T g lerier; — E(enierj)]| < Ar}. (3.8)
= t=1

For W* being block diagonal as in 1} and an estimator \/7\\/', we define the estimator SA = vec(WT)

to be zero-block consistent for estimating W* if
Pg=0)—1, T,N — . (3.9)

In this paper when we say that T, N — oo together, we mean they approach infinity jointly rather

than N being a function of T or vice versa.

3.3.2 Why LASSO alone is sufficient

Before presenting our main results, readers who are familiar with LASSO for the classical linear

model y = X3* + € may wonder : how can LASSO be zero-block consistent in our setting, when



CHAPTER 3. ESTIMATION OF BLOCK STRUCTURE FOR SPATIAL MODEL 134

for a classical linear model, it is generally selection inconsistent unless the necessary condition

given by Theorem 1 of |Zou| (2006)), ]021C1_115]§ 1, is satisfied?

To answer this question, we first clarify the differences between selection consistency in [Zou
(2006) and zero-block consistency in our paper. The selection consistency in |Zou (2006) concerns
with the correct identification of zeros and non-zeros in the true regression parameter 3* of a
linear regression model y = X3* 4+ €. However, zero-block consistency concerns only on the
correct identification of zeros which are elements of the zero blocks in the block diagonal spatial
weight matrix W* in (3.4). For the elements in the diagonal blocks W*,i=1,...,G in , we
are not concerned with correct identification of zeros and non-zeros. With this in mind, at the

very most we can only draw parallels between the two.

One important parallel is that the necessary and sufficient condition for zero-block consistency
in our setting, depicted in equation in section (see the proof of Theorem [§f therein to
see how we arrive at such necessary and sufficient condition), resembles the necessary condition
|021Cflls]§ 1 in Theorem 1 of Zou (2006)). Using the notation in equation in our paper,
the matrix %ZEZ p depicts the covariance matrix between the columns of the design matrix Z of
model corresponding to the set H defined in , and the columns of Z corresponding to
the set D defined at the beginning of the proof of Theorem[§] This matrix is parallel to the matrix
Cy; of [Zou| (2006). Similarly, the matrix %Z})ZD is parallel to the matrix Cq;. For the necessary
and sufficient condition to be satisfied, a necessary condition can be derived from to be
1

TZ%ZD>‘1gD| <1,

1
|f uZp(
which completely resembles the condition |Cay Cl_lls|§ 1 in Theorem 1 of |Zou| (2006), except that

gp is a vector containing 1, —1 and some values with magnitude smaller than 1, whereas s in |[Zou

(2006)) contains only 1 or —1.
Under model (3.5)), we can use equations (3.8) and (3.12) in section to show that on the

set A, defined in (3.8)),

1 1 . 1 1 .
720 Z0(3Z5%0) "en| < |20 %0l - (Z52Z0) .o - IEbllee = On*/2) = o(1),

so that the necessary condition above is satisfied on the set A, when T, N are large enough, which
has P(A) — 1 by Corollary[7] Both equations and are proved on the basis of the form
of the model and various assumptions in section , including the row sum and column
sum assumption (i) for the spatial weight matrix W* and the causal assumption for the process
{€:} in assumption (iv).

In brief, the special form of our model so that y; = IT*€;, and the assumptions for the

spatial weight matrix and the disturbance process, are all reasons for the LASSO estimator in

(3.6) to be zero-block consistent.
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3.3.3 Main results

We first present a theorem and its corollary concerning the probability lower bound of the set
defined in , which is the lower bound for the tail probability of the mean of the product
process {ey€rj — E(eri€rj)}. We show in Theorem 8] the main result of this paper, that this is
also the probability lower bound for the LASSO solution £~ in being zero-block consistent.

Implications and explanations of our main result will be discussed after presenting the theorem.

Theorem 6. With the causal representation for €, in assumption (iv), together with assumptions
(v) and (vi), there exists constants C1,Cy and Cs independent of T,v and the indices i,j, such
that

1 T

P( T ;[Etiﬁtj — E(etierj)] > v]) <

CiT
(Tw)®

+ Cyexp ( — C3Tv?).

The proof of Theorem [0] is relegated to section [3:A] This theorem utilizes Lemma 1 of [Lam
and Souza| (2013), where a functional dependence measure for a general time series is presented
and discussed. With the causal representation of €; and assumptions (v) and (vi), the conditions
in Lemma 1 of |[Lam and Souza| (2013) are satisfied, and hence the Nagaev-type inequality there

can be invoked.
Remark 1. If 0 < a < 1/2 — 1/w, then the inequality in Theorem [6| becomes

T
1 ClTw(1/2—a)
P( T ;[etiet]‘ — E(eier;)] > v]) < T + Cyexp ( — C3TP0?),

where 8 = (3 + 2aw)/(1 + w). Consequently, we need to redefine Ap = ¢I'~#/21og!/?(T v N) and
any rates of convergence in the paper needed to be modified. For the sake of clarity we do not

present those results in the paper, but just assume o > 1/2 — 1/w, as in assumption (vi).

The following corollary is an immediate consequence of Theorem [6]

Corollary 7. With the same constants C1,Cy and Cs, and the same conditions as in Theorem [6,
we set the constant ¢ in Ap such that ¢ > \/3/Cs. Then we have

Cs w/2 N2 CyN?
P(Ae) Z ]. — Cl(?) T’LU/2—1 ]ng/Q(T\/N) - T3 \/N3

It approaches 1 as T, N — oo if we assume further that N = o(T%/4=1/210g®/*(T')).



CHAPTER 3. ESTIMATION OF BLOCK STRUCTURE FOR SPATIAL MODEL 136
Proof of Corollary[] By the union sum inequality, putting v = Ap in the result of Theorem [6]

T
1
P(A9) < Z P(‘f Z[etiﬁtj — Eegiet;)]| > Ar)
1<6,j<N t=1
C\T
(T)\T)w
B CyN? ) )
- cwTw/2—1 logw/Z(T N N) + N eXp(*C Cs IOg(T V N))
01N2 02N2
cwTw/2—1 logw/Z(T V N) (T V¥ N)C2C3
Cz)w/z N? CyN?

< Ci(= )
I 1( 3 Tw/g,l logw/Z(T\/ N) + T3 \V N3

< N*( + Cy exp(—C5TAY))

for ¢ > /3/C5. The result follows. O

Remark 2. Assumption (vi) is satisfied, for instance, if o > 1/2, |I;;| is finite uniformly for
all 7, 7, and
> il < Cme.

i>m
If assumption (v) is also satisfied, we can actually set w to be any constant larger than 2, so that
the condition N = o(T%/4~1/210g®/4(T)) is satisfied for a large enough constant w. In light of
Remark 1, we can allow for o < 1/2 as well, with more complicated rate for the lower bound of
P(A).

It turns out that the probability lower bound in Corollary [7] is the same as the probability
lower bound for the LASSO estimator £ in l} to be zero-block consistent.

Theorem 8. Under assumptions (i) to (vi), if \r = o(yr) and n = o({yr/Ar}*/?), then for large
enough T, N, the LASSO solution E m (@ is such that

P(¢r = 0) = P(A.),

which approaches 1 as T, N — oo if N = o(T"/4=1/210g"/4(T)). If vy — 0, then for large enough
T,N, P(€ge #0) =1.

The proof of Theorem [§]is relegated to section [3.A] In words, this theorems says that a zero-
block consistent estimator W for the spatial weight matrix exists and is given by the LASSO
estimator E using the relation E = vec(WT), with probability going to 1. The estimator is also a
useful one in detecting block structure of the spatial weight matrix, in the sense that the diagonal
blocks are estimated to be non-zero at the same time with probability 1, as long as the tuning
parameter vy goes to 0. In the context of the US senate voting data analysis in section [3.5.3] it

means that with the number of senators (the dimension V) and the number of voting instances
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(the number of time points T) large enough, if the voting patterns indeed align with political
parties so that the underlying spatial weight matrix is block diagonal as in with each block
representing a political party, then the probability that the LASSO estimator for the spatial weight
matrix has the same block diagonal structure is large. Also, the tuning parameter v — 0 means
that in practice it has to be small, so that the penalization towards the elements of the spatial
weight matrix, through the term ||&||; in , cannot be too large. If this is too large, then the
whole spatial weight matrix can be estimated as 0, which is definitely zero-block consistent, albeit

completely useless for our purpose.

With 47 — 0, the condition for the maximum block size n = o({yr/Ar}*/?) implies that we
need n = o(T"/3log™/3(T v N)). In practice, the method performs well even if the maximum
block size is relatively large compared to T'; see section for simulation results. In theory, vr
should be chosen to be small in order to align with vz — 0. Yet if v is too small, it will not
allow for a block with reasonable size. And of course, yr cannot be set too large also, or the
whole weight matrix is shrunk to zero. See section for the introduction of a BIC criterion for

choosing ~r.

3.4 Relaxation for Overlapping Blocks

The spatial weight matrix in and the theories presented in section do not include the case
where some of the blocks are overlapping. Yet in many practical cases, some or all of the blocks
are slightly overlapping despite the non-overlapping majority. As described in the introduction
and section [3.2] this can happen when there are small number of “hybrid” individuals who are

interacting with more than one group.

Formally, suppose there are G > 2 non-overlapping sets I3,...,Ig C {1,...,N} such that
w;; =0fori €I, and j € I, with a #b. Then I,...,Ig form G groups for the majority of the
components of y;, with G(G — 1) corresponding zero blocks in the spatial weight matrix W* if we
order the components so that those in a set I; are grouped together. Note that if the groups are
overlapping, then necessarily Ulel I; c {1,...,N}. We introduce extra conditions in this section

so that the zero-block consistency in Theorem [8]is valid for the estimator of these zero blocks.

To facilitate understanding of the notation above, we introduce a hypothetical example. For
our US senator voting data, suppose there are three major blocks, representing the Republicans,
the Democrats and the Independent Senators respectively. However, over a certain period of time,
there is one Republican who not only cooperates with some other fellow Republicans, but also
with another Democrat and another Independent Senator. Then over this period of time, the
voting pattern of this Republican can depend not only on some other fellow Republicans, but
also on the Democrat and the Independent Senator with whom he or she is cooperating. Using

the notation introduced above, then G = 3, but these three senators who are cooperating across
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parties will not be registered into the sets I, I or I3, since the corresponding elements in the
spatial weight matrix W* will be non-zero as their voting patterns can depend on each other.
Then I Ul U I3 C {1,...,N}.

Define the set
H' ={j:€& =0 and corr. to one of the G(G — 1) zero blocks in W*}. (3.10)

This set corresponds to H in (3.7)) when the blocks are non-overlapping. Consider two additional

assumptions below:

(i) The spatial weight matrix W* is such that, for ¢ € I, ¢ = 1,..., G, we have uniformly as
TN — oo,

S Il< endr,

J¢1q

where ¢ is a constant, and 7;; denotes the (i, j)-th element of IT* = (Iy — W)L

(Rii) Define the set I' = {1,..., N}/UlG:1 I;. The vector €; can always be partitioned as

T T T \T
€t:(6117"'7€IG7€I’) .
Then we assume cov(ey,, €r;) = 0 for i # j, and cov(ey, ej) < ccAp fori € Iy, ¢q=1,...,G

and j € I’, uniformly as T, N — oo, where ¢, > 0 is a constant. Also, var(ey;) < 02 < oo
2

uniformly as T, N — oo, where o7 is a positive constant.

Assumption (i)’ is an additional assumption on top of (i) in section It says that the matrix
(In — W*)~! should also have approximately the same block structure as W*, where the elements
corresponding to the zero blocks in W* should be close to 0, with order specified. This assumption
is likely to be true when the blocks are only slightly overlapping, which is what we are concerned
with. Assumption (Rii) is to replace (ii) in section It says that the noise series for those
components not in any blocks should have only weak correlation with those noise series in blocks.

Between blocks, the correlation should still be 0 for identifiability of block structure.

We are now ready to present a version of Theorem [8| for overlapping blocks.

Theorem 9. Suppose there are overlapping blocks in W*. Under assumptions (i), (i)’, (Rii) and
(iii) - (vi), if \p = o(y7) and n = o({yr/Ar}?*/?), then for large enough T, N, the LASSO solution

E m (@ is such that

P(€y = 0) > P(A,),

which approaches 1 as T, N — oo if N = o(T%/4~1/2 logw/4(T)). If yvp — 0, then for large enough
T.N, P(§p. #0) = 1.
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This theorem is in parallel with Theorem Zero-block consistency continues to hold even

when there are overlapping blocks in the spatial weight matrix.

3.5 Practical Implementation

We use the Least Angle Regression algorithm (LARS) of Bradley Efron and Tibshirani| (2004)
to implement the minimization in (3.6). A unique solution is guaranteed since the minimization
problem in (3.6) is convex. The LARS is very fast since the order of complexity of the algorithm

is the same as that for ordinary least squares.

For choosing a suitable yp, following \Wang et al.| (2009), we propose a BIC criterion as below:

log(T)
T

N
BIC(yr) = Y log (T3 — (Z&,,)ill*) + S, log(log(N — 1)), (3.11)
i=1

where y = (y71,...,¥n)" withy; = (yi1, ..., vir)". The vector gWT is the LASSO solution to ([3.6))
with tuning parameter being vyp. Also, (Zé,T)i is the vector with length T" which is the portion
of the vector ng:r (see ) corresponding to y;. Finally, the set S,, = {j : (gw) j # 0}, so that
|Syp | counts the number of non-zeros estimated in é,T. This BIC criterion is in fact the sum of
individual BIC criteria for the estimator of the ith row of the spatial weight matrix, with response
variable y;. We denote 7ypic the tuning parameter that minimizes the BIC criterion in .
This ygrc will then be used in to find the LASSO solution E

3.5.1 Simulation results

In this paper, we focus on block detection, and there are no theoretical supports for accurate
estimation of the elements of W* in the non-zero diagonal blocks. We measure the performance of
block detection using the across-block specificity, defined as the proportion of true zeros in the non-
diagonal zero blocks estimated as zeros. For the sake of completeness and independent interest,
we include other measures as well to gauge the overall performance of estimating W*. One is
the within-block sensitivity, defined as the proportion of true non-zeros estimated as non-zeros,
and the within-block specificity, defined as the proportion of true zeros in the diagonal blocks
estimated as zeros. We also use the L; error bound ||€ — £*]|;/(N(N — 1)) and the Ly error
bound HE — &*||/v/N(N — 1) for comparing the overall estimation performance across different

T, N combinations.

We generate the data using the model y, = W*y; + €, for a given triplet (T, N, k), where k
is the sparsity parameter controlling the overall sparsity of W*. We generate W* by randomly
selecting between 2 and 4 diagonal blocks as in (3.4), with uniform probability on their start and
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end points. Models with blocks of fewer than 5 individuals or with within-block sparsity larger

than 90% are rejected. The latter condition restricts blocks from being excessively large.

Within all blocks, we choose [(1 — k)N(N — 1)] elements to be non-zeros with value 0.3. It
means that a larger k represents a sparser W*. Note that a relatively sparse W* may have dense
blocks as the sparsity level is defined for the overall matrix W*. To ensure stationarity, each
element w}; of W* is divided by 1.1 X max (1, Zjvzl w%). In Table , shown in the Appendix,
we relax this condition to move close to the non-stationary case. The covariance matrix for {e;}
is defined in the same way, with the same sparsity x. Hence the within-block pattern of spatial
correlation is very general. In each iteration of the simulation, we generate both W* and the
data in order to ensure that the simulation is carried over a wide range of true models. Thus, the

results are not influenced by a particular choice of W*.

Table[3.1]shows the simulation results with tuning parameter vy chosen by minimizing the BIC
criteria for different values of N and T. The number of replications is 200. It is clear that
on average the estimator is zero-block consistent, since the across-block specificity is always close
to 99% in all cases, and in general gets better as N increases. While within-block accuracy is not
guaranteed, the within-block specificity and sensitivity are quite good, even when T is not large.
The overall sparsity level is close to x in most cases. One notable feature is that with IV fixed,
as T gets larger, the overall sparsity level decreases. This is because as T gets larger, the tuning
parameter v selected by the BIC criterion gets smaller, as is evident from Table B.I} It means
that as T gets larger, BIC does not allow as much penalization to the model. This is because
there are many non-zero within-block elements in the main diagonal blocks which can only be
detected when T is large enough and ~r small enough. As T gets larger, it is more beneficial to
have a smaller v so that the non-zero parameters are estimated as non-zeros within the diagonal
blocks. With a smaller 7, the within-block sensitivity certainly increases while the within-block
specificity certainly decreases, and hence the overall sparsity decreases. These are exactly what
one can observe from Table[3.I] The choice of tuning parameter when there are many explanatory

variables that are highly endogenous like in our case is definitely a future direction for research.

Table introduces slightly overlapping blocks. For any two blocks, their overlapping size is
chosen randomly to be max(q1,q2), where ¢; is 5% of the minimum size of the blocks and ¢, is a
random integer between 1 and 4. This setting contains the case where T" = 200 and N = 75 with 2
main blocks that are slightly overlapping, which is similar to the situation in the real data analysis
in section [3.5.3] where there are T" = 251 voting instances and N = 98 senators, and two main
blocks that are slightly overlapping. Again, the tuning parameter v is chosen such that the BIC
criterion in is minimized. The results are shown in Table The simulation results show
similar pattern as in Table across-block specificity, although shows a slight deterioration, is
still around 97% to 99% in most cases. The tuning parameter 7 selected by the BIC criterion is

again decreasing with 7', and hence the within-block specificity and the overall sparsity decreases
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Table 3.1: Simulations with non-overlapping blocks.

x = 0.90 k= 0.95
T=50 T=100 T =200 | T"=50 T =100 1T =200
Within-Block Specificity | 80.64% 81.66% 80.20% | 96.99% 90.36% 84.31%
(3.310) (2.814) (2.460) (3.992) (4.645) (2.684)
Within-Block Sensitivity | 70.56%  79.44%  89.17% | 18.33% 52.22%  87.78%
(5.832) (5.566) (4.578) | (18.829)  (20.268)  (7.566)
N =25 | Across-Block Specificity | 97.01% 97.60%  97.67% | 99.42% 98.70%  98.13%
(2.035) (1.857) (1.819) (1.139) (1.738) (0.718)
Ly 0.0237  0.0205 0.0215 | 0.0136  0.0132  0.0124
(0.002) (0.001) (0.003) (0.001) (0.001) (0.000)
Ly 0.1206  0.0826  0.0769 | 0.0842  0.0667  0.0511
(0.014) (0.006) (0.011) (0.006) (0.005) (0.005)
Sparsity 85.94% 83.94%  80.26% | 97.75%  93.85%  90.06%
(2.183) (2.297) (3.151) (2.815) (3.184) (1.447)
YBIC 0.3500  0.2401  0.1588 | 0.4979  0.2687  0.1529
(0.051) (0.053) (0.023) (0.158) (0.062) (0.014)
Within-Block Specificity | 77.35%  74.57%  78.75% | 89.15% 89.38%  80.27%
(1.007) (1.781) (1.250) (2.534) (1.389) (1.239)
Within-Block Sensitivity | 55.71%  66.02%  75.00% | 45.80% 61.86%  87.47%
(2.846) (2.374) (2.796) (7.885) (5.029) (3.129)
N =50 | Across-Block Specificity | 98.56% 98.94%  98.78% | 99.47%  99.42%  98.68%
(0.501) (0.347) (0.361) (0.282) (0.325) (0.408)
L, 0.0188 0.0151  0.0139 | 0.0113  0.0106  0.0112
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
L, 0.1508  0.1031  0.0782 | 0.1124  0.0937  0.0875
(0.007) (0.004) (0.002) (0.005) (0.004) (0.004)
Sparsity 87.46% 87.40% 84.48% | 95.03% 93.37%  90.35%
(0.620) (0.619) (0.694) (1.090) (0.724) (0.651)
YBIC 0.4807 0.3670  0.1913 | 0.5048 0.3131  0.1884
(0.037) (0.050) (0.016) (0.078) (0.025) (0.014)
Within-Block Specificity | 82.20% 81.20%  77.47% | 89.33% 87.13%  82.46%
(1.281) (0.573) (0.690) (1.192) (0.627) (0.869)
Within-Block Sensitivity | 40.96% 57.24%  68.51% | 40.65% 56.74%  81.80%
(2.620) (2.863) (1.274) (4.172) (3.329) (2.437)
N =175 | Across-Block Specificity | 99.36%  99.45%  99.67% | 99.51% 99.63%  99.09%
(0.324) (0.316) (0.179) (0.168) (0.248) (0.349)
Ly 0.0145 0.0129  0.0116 | 0.0102  0.0087  0.0091
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Ly 0.1467  0.1123  0.0867 | 0.1352  0.0974  0.0919
(0.007) (0.005) (0.003) (0.005) (0.004) (0.004)
Sparsity 90.75% 88.35%  86.36% | 94.71%  93.59%  90.96%
(0.606) (0.352) (0.305) (0.552) (0.399) (0.431)
YBIC 0.5591  0.4145  0.2978 | 0.5690  0.3479  0.2091
(0.070) (0.033) (0.027) (0.072) (0.033) (0.016)

Notes: Standard errors in parenthesis.

as T increases, but the within-block sensitivity increases, like those in Table

3.5.2 Simulation results for nonstationary models

In order to see how the stationarity of model (3.3]) is important to the practical performance of
our method, we show simulation results with adjusted normalization of elements in W* in order

to move closer to nonstationarity, with results shown in Table We also added results for a
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Table 3.2: Simulations with overlapping blocks.

r=0.90 Kk =0.95

T=50 T=100 T =200 | T"=50 T =100 T =200

Within-Block Specificity | 87.78%  74.42%  77.56% | 96.99% 89.40%  88.46%
(3.983) (2.618) (2.054) (3.448) (4.460) (1.742)

Within-Block Sensitivity | 50.17%  77.04%  93.29% | 18.18% 57.14%  93.12%
(7.457) (4.362) (3.142) | (17.008)  (19.323)  (7.471)

N =25 | Across-Block Specificity | 97.24%  94.92%  91.32% | 99.42% 98.56%  94.86%
(1.476) (1.908) (2.425) (0.848) (1.505) (1.686)

Ly 0.0211  0.0253  0.0218 | 0.0136  0.0131  0.0132

(0.001) (0.001) (0.001) (0.000) (0.001) (0.001)

Ly 0.1032  0.1071  0.0810 | 0.0846  0.0676  0.0528

(0.006) (0.006) (0.006) (0.006) (0.007) (0.004)

Sparsity 90.47% 81.21%  79.29% | 98.03% 93.40%  88.97%

(2.422) (1.594) (1.897) (2.229) (3.010) (1.611)

ABIc 0.3603  0.2116  0.1411 | 0.5289  0.2496  0.1588

(0.057) (0.030) (0.014) (0.153) (0.047) (0.018)

Within-Block Specificity | 87.79% 82.91% 77.02% | 90.561% 90.18%  87.98%
(0.892) (1.494) (0.901) (2.265) (2.380) (0.661)

Within-Block Sensitivity | 44.26%  61.22%  77.42% | 47.17% 53.66%  88.45%
(4.556) (2.819) (1.544) (3.450) (7.396) (2.298)

N =50 | Across-Block Specificity | 97.61%  98.51%  97.20% | 98.88% 99.07%  98.42%
(0.565) (0.818) (0.677) (0.421) (0.318) (0.517)

Ly 0.0199 0.0169  0.0166 | 0.0110 0.0113  0.0110

(0.001) (0.001) (0.000) (0.000) (0.000) (0.000)

Ly 0.1502  0.1064  0.1006 | 0.1072  0.1023  0.0834

(0.008) (0.004) (0.004) (0.004) (0.003) (0.002)

Sparsity 87.36% 84.70%  82.19% | 94.97% 93.64%  90.13%

(0.986) (1.071) (0.522) (0.796) (1.163) (0.323)

ABIC 0.4532  0.2909  0.1854 | 0.4842 0.3131  0.1825

(0.072) (0.044) (0.018) (0.054) (0.044) (0.000)

Within-Block Specificity | 80.78%  78.59%  70.62% | 92.48% 84.60% 84.67%
(1.131) (0.924) (1.067) (1.440) (0.859) (0.897)

Within-Block Sensitivity | 41.47% 52.42%  71.52% | 33.05% 62.47%  78.24%
(1.968) (2.573) (1.759) (5.628) (3.444) (2.481)

N =75 | Across-Block Specificity | 98.62% 98.70%  98.45% | 99.61% 98.83%  99.03%
(0.478) (0.255) (0.291) (0.198) (0.395) (0.361)

Ly 0.0141  0.0127  0.0112 | 0.0105 0.0095  0.0097

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Ly 0.1369  0.1140  0.0859 | 0.1433 0.1118  0.0986

(0.005) (0.004) (0.003) (0.005) (0.004) (0.003)

Sparsity 90.65% 89.31% 87.01% | 95.71% 92.98%  90.60%

(0.581) (0.501) (0.463) (0.837) (0.506) (0.390)

ABIC 0.4904 0.3828  0.2564 | 0.5821  0.3511  0.2150

(0.063) (0.025) (0.024) (0.059) (0.038) (0.010)

Notes: as in Table

142
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nonstationary model in Table They are substantially worse than those in Subsection [3.5.1

which are associated with stationary models.

In more details, for the first case, we adjust the normalization of elements w;"j of W*, which
are now divided by 1.05 X max (0.5, Zjvzl w;}) (compared to 1.1 x max (1, Zjvzl w;}) in baseline
simulations). In this way, we ensure that row sum of W* is higher than 0.90 in over 60% of the
cases for N = 25, 70% for N = 50 and 95% for N = 75. In every case, by design the row-sum
is smaller than 1. Apart from this, the simulation setup remains unchanged. As can be seen, in
comparison to Table [3.] the performance is slightly worse. However, across-block specificity is
higher than 95% in all cases. Within-block specificity and sensitivity remains satisfactory and in

line with baseline simulations.

Next, we implement a nonstationary case by normalizing the elements w;; by
0.75 X max (0.01, Zjvzl w%). Deterioration in performance can be clearly seen through the wors-
ening of all measures. In particular, the L criterion deteriorated by about 40-50 times and Lo
one around 90-100 times of the values in Table

3.5.3 Analysis of US Senate bill voting

How polarized is the United States Congress? Do congressmen vote exclusively along partisan
lines or are there moments when partisanship gives way to consensus? To shed light on these
questions, we use model to analyze the voting records for the bills enacted and proposed by
the United States Senate from 1993 to 2012, period from the first presidency of Bill Clinton to the
first four years under Barack Obama. Polarized voting pattern should give at least two blocks in

the spatial weight matrix, one corresponding to the Republicans, and another to the Democrats.

We use data compiled by GovTrack.us, a web site that freely keeps track of voting record
in both houses. Vote is recorded as 1 for "yes", -1 for "no" and 0 for absent for all bills that
were proposed in the period under study. To evaluate the evolution of polarization, we estimate
the model within windows of each calendar year, representing the first half or second half of a
particular meetings of the biannual legislative branchﬂ The composition of the Senate and the

number of voting instances can be found in Table [3.5]

Estimation is conducted in absolute disregard of party affiliation, and the tuning parameter 7

is chosen such that minimizes BIC criterion in (3.11)). The outcome for year 2012, which involves

2Congresses begin and end at the third day of January in odd-numbered years. Bills voted in the first two days
of January of odd years, if any, are discarded.
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Table 3.3: Simulations close to nonstationarity.

x = 0.90 k= 0.95
T=50 T=100 T =200 | T"=50 T =100 1T =200
Within-Block Specificity | 75.51% 64.58%  73.34% | 78.66% 79.71% 83.91%
(2.815) (2.996) (2.280) (2.792) (1.760) (2.026)
Within-Block Sensitivity | 75.42% 81.25%  81.67% | 84.17% 88.75%  91.25%
(5.327) (4.058) (4.364) (6.107) (2.480) (3.959)
N =25 | Across-Block Specificity | 96.36% 97.40%  99.57% | 96.96% 98.16%  98.82%
(1.492) (1.374) (0.418) (0.873) (0.741) (1.204)
Ly 0.0269  0.0289  0.0249 | 0.0237 0.0211  0.0188
(0.001) (0.001) (0.001) (0.002) (0.001) (0.001)
Lo 0.1546  0.1574  0.1319 | 0.1594 0.1357  0.1151
(0.011) (0.011) (0.005) (0.012) (0.006) (0.005)
Sparsity 84.04% 82.31% 84.54% | 87.17% 88.83%  89.65%
(1.720) (1.401) (0.999) (1.300) (0.947) (1.390)
ABIc 0.3827  0.3004  0.4308 | 0.2949  0.2718  0.2179
(0.056) (0.060) (0.054) (0.031) (0.020) (0.038)
Within-Block Specificity | 73.72% 77.22%  71.80% | 86.18% 71.69%  83.09%
(1.785) (1.424) (0.995) (1.613) (1.672) (0.996)
Within-Block Sensitivity | 66.63% 69.03%  84.13% | 67.68% 81.20%  88.82%
(1.742) (2.404) (0.937) (3.782) (2.797) (4.117)
N =50 | Across-Block Specificity | 98.12% 98.35%  99.17% | 97.95% 98.64%  99.35%
(0.474) (0.635) (0.118) (0.459) (0.376) (0.398)
L, 0.0197  0.0180  0.0161 | 0.0155 0.0153  0.0133
(0.001) (0.001) (0.000) (0.001) (0.000) (0.000)
L, 0.1743 0.1396  0.1144 | 0.1806  0.1725  0.1299
(0.008) (0.005) (0.003) (0.007) (0.006) (0.004)
Sparsity 86.28% 84.65%  84.46% | 90.75%  90.40%  89.94%
(0.380) (0.753) (0.271) (0.750) (0.508) (0.626)
ABIC 0.6407  0.3717  0.3288 | 0.4343  0.3860  0.2579
(0.079) (0.057) (0.023) (0.044) (0.045) (0.052)
Within-Block Specificity | 84.50% 78.48%  70.77% | 85.32% 77.39%  85.06%
(0.569) (1.075) (1.520) (0.972) (0.978) (0.452)
Within-Block Sensitivity | 39.01% 57.57%  73.85% | 58.27% 74.91%  83.54%
(1.115) (1.559) (1.417) (2.507) (1.356) (2.005)
N =175 | Across-Block Specificity | 99.06%  99.15%  99.43% | 99.16% 98.69%  99.12%
(0.337) (0.263) (0.284) (0.417) (0.328) (0.322)
Ly 0.0164 0.0132  0.0112 | 0.0135 0.0108  0.0105
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Ly 0.1745 0.1230  0.0967 | 0.1967  0.1402  0.1274
(0.004) (0.002) (0.003) (0.008) (0.005) (0.005)
Sparsity 88.64% 87.61% 87.19% | 91.34% 91.36%  90.24%
(0.288) (0.443) (0.475) (0.641) (0.332) (0.335)
ABIC 0.5804  0.4050  0.3199 | 0.5706  0.3717  0.2357
(0.084) (0.079) (0.058) (0.094) (0.040) (0.019)

144

Notes: as in Table

T = 251 voting instances and N = 98 senators, is displayed in Figure The estimated non-zero
pairwise links are displayed as a solid line in grey, length of which does not carry any information
on its intensity or direction and are purely determined by ease of visualization. The nodes are
colored according to party affiliations: Democrats are represented by blue, Republicans by red,

and Independents by white.

It is immediately clear from Figure that the Senate behaves as two almost exclusive blocks
or groups, defined exclusively along partisan lines, where the Independents behave most similarly
to the Democrats. It seems that the two blocks slightly overlap each other, and the results in
Theorem |§| can be applied. One Republican forms a block him /herself. Bear in mind that we
are using a cross-validated tuning parameter, and hence we are being conservative already in

concluding a block structure in the spatial weight matrix.
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Table 3.4: Simulations for the nonstationary case.
k= 0.90 k=0.95

T =50 T =100 T =200 T =50 T =100 T =200

Within-Block Specificity | 85.32% 94.26% 88.49% 86.88% 91.02% 91.57%
(0.424) (0.479) (0.424) (3.377) (1.752) (0.632)
Within-Block Sensitivity 1.04% 4.17% 6.67% 12.92% 19.58% 6.67%
(1.240) (1.543) (0.000) (3.753) (1.179) (0.000)

N =25 | Across-Block Specificity 91.85% 91.96% 91.97% 91.76% 92.50% 92.93%
(0.427) (0.108) (0.085) (3.551) (0.403) (0.127)

Ly 0.8141 0.7508 0.7207 0.4677 0.4994 0.5441
(0.001) (0.041) (0.000) (0.029) (0.016) (0.001)

Lo 193.1319 197.9038 163.4174 | 119.2568 182.1524  186.6742
(0.125) (11.178) (0.004) (8.197) (14.187) (0.017)

Sparsity 96.71% 97.40% 96.90% 92.29% 96.25% 96.73%
(0.305) (0.235) (0.124) (3.229) (0.321) (0.251)

ABIc 0.6665 0.6143 0.5727 0.3414 0.6238 0.5727
(0.000) (0.000) (0.000) (0.248) (0.018) (0.000)

Within-Block Specificity | 91.25% 97.35% 91.20% 94.42% 86.49% 99.25%
(2.287) (0.485) (0.509) (0.300) (0.465) (0.072)
Within-Block Sensitivity | 4.54% 1.38% 9.59% 3.96% 15.35% 2.44%
(1.724) (0.304) (0.654) (0.287) (0.678) (0.000)

N =50 | Across-Block Specificity 92.97% 92.99% 92.93% 92.78% 92.01% 92.57%
(0.059) (0.022) (0.051) (0.103) (0.212) (0.000)

Ly 0.4106 0.4016 0.4021 0.3697 0.4951 0.3512
(0.000) (0.000) (0.001) (0.002) (0.011) (0.000)

Ly 96.3161  109.9296 139.6243 | 180.1242 743.8054  190.3584
(7.643) (0.031) (1.246) (1.095) (63.704) (0.000)

Sparsity 98.71% 99.20% 96.93% 98.09% 95.31% 99.66%
(0.213) (0.129) (0.092) (0.078) (0.212) (0.021)

ABIC 0.6665 0.6143 0.5727 0.6665 0.6286 0.5727
(0.000) (0.000) (0.000) (0.000) (0.020) (0.000)

Within-Block Specificity | 93.02% 95.53% 94.70% 94.75% 95.15% 91.49%
(0.610) (0.209) (0.084) (0.241) (0.175) (0.179)
Within-Block Sensitivity 4.68% 5.23% 3.76% 0.40% 3.15% 4.68%
(0.319) (0.409) (0.311) (0.127) (0.167) (0.471)

N =75 | Across-Block Specificity 92.67% 92.80% 92.11% 92.83% 91.97% 92.89%
(0.012) (0.052) (0.067) (0.097) (0.038) (0.180)

Ly 0.2733 0.2775 0.2414 0.2628 0.2612 0.7549
(0.000) (0.001) (0.000) (0.000) (0.000) (0.087)

Ly 65.1182  478.4065 51.7448 | 148.1981 146.0697 14041.1627

(0.050) (14.791) (0.018) (0.235) (0.147) (4394.414)

Sparsity 98.82% 97.96% 96.35% 98.45% 98.46% 96.90%
(0.065) (0.082) (0.059) (0.080) (0.069) (0.131)

ABIC 0.6345 0.6143 0.5727 0.6394 0.6143 0.5949
(0.000) (0.000) (0.000) (0.014) (0.000) (0.018)

Notes: as in Table

It is of interest to visualize the number of political collaborations and its evolution throughout
the years. To achieve this, we build two measures of cross-partisanship association for a given
year. The first is based on the ratio of links with ends on Senators from different parties to the
overall number of links. We name this as "Cross-Party Connections". As seen in Figure [3.2] it
is under 3% for all years under study. The second measure is the number of Senators who are
the starting points of directed links towards colleagues from different parties, who are generically
named "brokers". Both measures represent the number of Senators and links that appear in the
frontier and, therefore, could represent collaborative cross-partisan political connections. Both
measures show very limited collaboration if compared to the overall legislative activity. It is
concluded, therefore, that political affiliations are strong determinants of group identity. It also
appears that frontier between the groups and scope for collaborative legislative work is very limited

throughout the recent Senates history.
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Figure 3.1: Visualization of the estimated spatial weight matrix for voting, 2012.
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Figure 3.2: Cross-party collaboration.
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Table 3.5: Senate Composition.

Year [ Congress [ Rep [ Dem [ Ind [ Votes

ggi 103rd 46 55 0 zgg
1332 104th 53 46 1 2(1)2
133; 105th 54 45 1 ;?i
oo w6th | 55 | 45 | 1 o
388; 107th 49 50 1 ggg
st | s | oas |1 2
o w00t |54 | 45 |1 o0
388; 110th 49 50 2 ;Llllg
;8(1)3 111th 41 61 2 gg;
ggg 112th 47 51 2 ;g?
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3.6 Conclusion

We developed the LASSO penalization for detecting block structure in a spatial weight matrix,
when the size of the panel can be close to the sample size. One distinct feature of our model is
the absence of covariates, which is motivated by the US senate voting data example analyzed in
this paper. Also, there is no need for the decay of variance of the noise series, like [Lam and Souzal
(2013) does. Ome contribution of the paper is the derivation of the probability lower bound for
the LASSO estimator to be zero-block consistent - a concept that an estimator correctly estimates
the non-diagonal zero blocks as zero. We also proved that the diagonal blocks of the estimator
are not all zero with probability 1, so that block structure becomes apparent in the estimator. We
use the LARS algorithm for practical computation, which is well-established for solving LASSO
minimization efficiently, with computational order the same as ordinary least squares iterations.
The estimated spatial weight matrix is visualized by a graph with directional edges between
components. The absence of edges between two groups of components indicates two blocks. We
also allow for the fact that blocks sometimes can overlap slightly, and develop the corresponding
theories to show that zero-block consistency still holds in the case of slightly overlapping blocks.

The US senate voting data example demonstrates clearly such a case.

Our proofs utilize results from random matrix theories for bounding extreme eigenvalues of a
sample covariance matrix, as well as a Nagaev-type inequality for finding the tail probability of a
general time series process. These results can be useful for the theoretical development of other

time series researches.



Appendix

3.A Proofs

Proof of Theorem@ For a random variable z, define the norm [|z||, = [E|2|*]*/¢. We need to show

that there are some constants p, C > 0,w > 2 and o > 1/2 — 1/w such that

) < 1
max el < a (3.1)
o
. < —a 2
tz 12235%\] Hetj 6t]”2w <Cm™, <3 )
=m

where €] has exactly the same causal definition as €; as in assumption (iv) with the same values of
®,’s and n;’s, except for mg, which is replaced by an independent and identically distributed copy
n,. With and , we can use Lemma 1 of |Lam and Souza (2013)) for the product process
{€etietj — E(€ri€rj)} to complete the proof.

To prove (3.1)), by the Fubini’s Theorem and assumption (v),

9 |5tj|2w o0 19 00 )
Eley|™ = E/O ds —/0 P(le;]> s /2v) ds S/o Dy exp(—Das?/?) ds

_ 4wDn /°° pAw/a=1,-Daa® g _ 2wDy L'(2w/q) = p?¥ < oo (3.3)
2w/q ’ .
q 0 qD;

so that maxi<j<n ||€llq,, < 1 < oo for any w > 0. This proves (3.1]).

To prove |D denote ¢1T] the j-th row of ®;. Then using the causal definition in assumption
(iv),

et = €11= 15 (110 — 700)|< [l maxloi — o1,
J

where Jy; is the index set of non-zeros in ¢¢; as defined in assumption (vi). Hence by assumption
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(v) on no; and the calculations in (3.3)),

1
lets — €4jlla0 < bt |l [E{ max|no; — nh;| >}
lGJt]'
1
< el T 20 max [noi — 10, ll2.,
lEJt]‘
1
< ;1| Je5] 2 (ngg;; 1708 | 00 + max [170: 1l 20)
1
< 2u|| @l [ Jej ]2,

so that by assumption (vi), using the same w > 2 in the assumption,

[e.9]

o
1
PR lets = €tjll0 < 2Mt§ max (¢, max ||z
—~ >

(o)
1
< 2umax| Jy |2 pNE:

t=m

< 2pmax|Ji| 2 Cm ™ max| Jy; )"
5] )

=2uCm™%,
which is (3.2)) since u, C' are constants. This completes the proof of the theorem. [

Proof of Theorem[8 Define the set

D ={j:j¢H, & does not correspond to the diagonal of W*},

150

and define J = D U H. Hence J contains indices for & not corresponding to the diagonal of W*.

The KKT condition implies that E is a solution to 1} if and only if there exists a subgradient

=9 Sl R2N2 . . ~ ~ )
g=0lEl= g RN 1 3 g =sign(&), &#£0;
lgil< 1, otherwise.

such that, differentiating the expression to be minimized in (3.6|) with respect to &7,

1 ~ 1
TZ§ZJ£J —

TZ(TJY = —18J;

where the notation A g represents the matrix A restricted to the columns with index 7 € S. Using

y = Z ;&% + €, the equation above can be written as

1 -1
TZ}ZJ(SJ -&7) — TZ‘Tfé =18
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For gto be zero-block consistent, we need EH = 0, implying ZJ(gJ —-&5) = ZD(ED —&7,). Hence,

the KKT condition implies that E is a zero-block consistent solution if and only if

- . 1
ZhZp(Ep — &p) — TZEG = —Y1r8H,

T
- i 1
TZ%ZD(ED —£&p) — TZ%G = —T8D; (3.4)
which can be simplified to
L g (L2t zp) (2 Zhe — _lyre< 3.5

since gy has elements less than or equal to 1.

We now show that, on the set A, as defined in , is true for large enough 7', N, thus
completing the proof of zero-block consistency of § To this end, there are four terms we need to
bound. Define Iy,...,Ig C {1,..., N} to be the index sets for the G groups of components as in
(3.4). Then, consider on the set A,

T
1
j— * PR .
Z Yei€ej| = iEIIzlgéIq Z Tis (T Z 6tset‘])

Iq t=1

1 T
||T H€||max - elngl

< )\T max Z|7rzs|_ (3.6)

1-—
where we used the reduced form y; = IT*e; = (Iy — W*)le; of model |) and yy; = Zjelq €t
for i € I, for some g, with ; being the (i, 7)-th element of IT* = (Iy — W*)~!. The last line
follows from assumption (ii) that cov(es, €;) = 0 if ¢ and j correspond to different groups, so that

on A, |T71 Z?:l ets€45]< Ar. We also used assumption (i) to arrive at

N
max Y |rh|= [T < vl + D IWHh <1 +) 0" =
1

1<i<N
5= E>1 E>1

A potentially larger term is, by similar calculations on A,

1—n

T
1 T _ * 1 0_3 + )\T
I7Zbelac = oo, 13 (g o) < T (3.7
T
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where we used assumption (ii) that var(e;;) < o2. We also have, on A,

T T
1 1 Arn
| =ZEZp] n max |— Zytiytj =n max Z 7r;k$7r]£ Ze s€w)| < -t
T i€lq,jélq Tt:l ’LEquElq/ SEIq,KEIq/ t:l 77)
(3.8)
Finally, let omax(A) = )\Iln/gx(ATA) denotes the maximum singular value of the matrix A, and
Omin(A) the smallest one. Then
1 1 1
-1
1(3Z5Z0) e <m0 (R BB Z0) < 0PN (2272) = n AL (1 yiyd)
t=1
E d 1 o
= !0 (I (5 Y @I <0202 (LD ae).  (3.9)

t=1

-
I

1

To bound ({3.9)), we have

* * * x11/2 *
Ot () = 02 (I = W) < (14 0ax (WH)2 < (14 [[WHLZ W) < (14 9!/ 202)2,
(3.10)
where we used assumption (i) for bounding |[W*||; and [[W*||

Also, the conditions assumed in assumption (iv) for the 7;’s ensure that Theorem 5.11 on the
extreme eigenvalues of a sample covariance matrix in |Bai and Silverstein (2010) can be applied.

Hence, for each integer ¢ > 0, we have
1 X
2 : 2 2
i (5 Zm i) = U= VAP (3 i) = o1+ V)
almost surely, where d is specified in assumption (iii). For each i, let U; be the almost sure set

such that the above limits hold. Then on the almost sure set U = (1,5 U;, the above limits hold

for all integers ¢ > 0. Hence on U, for large enough T, N, we have

T
2L me > o(l—Vd)—e, MN/2(= Zmnnsdwﬂwe
t:l
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where the constant e is as in assumption (iv). Therefore, on U, for large enough T, N, we have

m1n

M:

€r€]) = omn(T7/? Z Q;(M—i,- -, M)

t:l i>0

> Umin(T_1/2(n17 cee 777T)) - Z Jmax(q)iT_l/Q('rllfia ceey ani))
i>1
T 2
1
> Al (= Z ment) = Y 1@ A2 (o Zm_m,?_»
i>1 t:l
2

>{o(l—Vd)—e—(c(1+Vd) +e) > [|®i] p >, (3.11)

i>1

where ¢ > 0 is a constant as in assumption (iv). Combining (3.10) and (3.11)), on U and for large
enough 7', N, (3.9) becomes

1/2(1 + 771/2771/2)

-1
bZp) . < .

o0 —

(7 (312)

Hence combining the bounds (3.6)), (3.7), (3.8) and (3.12), on Ac N U, for large enough T, N, we

have

1 1.1 1
\f EZD(T })ZD) I(TZ%G—VTgD)—TZ?{‘E\

1 1 1

< 7ZuZoll.I(72p%p) oo H D€ = V78D [l + 1752l max
Apn®2(1+ 0" 20e?)? (02 4+ A fr) 4 T

- (1 —n)2c? 1—n 1—n

= O(Arn*?) = o(yr),

by the assumption n = o({yr/Ar}*?). Hence on A, NU, is satisfied for large enough
T,N, so that 5 is zero-block consistent, i.e. S g = 0. It is clear then for large enough T, NV,
A.NU C {&€x = 0}, and hence

P(gHZO) > P(A.NU) = P(A),
since U is an almost sure set. The part where P(A.) — 1 if N = o(T%/4=1/210g™/4(T)) is given
by the results of Corollary [7} This completes the proof of the first half of Theorem [§]

For the second half, suppose 5~D = 0. Then using 1' we have

1 N 11
gp = 7T( ZT ZTDZDED) = %(TZEY)‘
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One of the element of gp is, for some j, with T\, N large enough and on U,

H* 1T 2

11, o ™
7(?2:%]') Z’T Eetﬂ' Amin TZ
t=1 t 1

=1

where 71']T is the j-th row of IT*, with H7T;|| > 1, and we used (3.11). Since yr — 0, we have just
proved that this particular element goes to infinity as T, N — oo, which is a contradiction since
all elements in gp are less than or equal to 1 in magnitude. Hence we must have E p # 0 for large

enough T, N. This completes the proof of the theorem. [J

Proof of Theorem[9 Define the set
D' ={j:j ¢ H' ¢ does not correspond to the diagonal of W*}.

Then the proof of this theorem is almost exactly the same as that for Theorem [§] by replacing D
with D' and H with H'. The only differences are the bounds in (3.6) and (3.8). Consider, on A,

T T T
1 1 1
J— T/ — J— . | = J— J—
|| T H e”max iel}Iql,E}zéIq T ;:1 Yti€tj iEIIIql%éI g 71'7,5 T tE:1 Etsﬁt] + Sé[ Trzs T t:E - Etsetj
1 <& 1 &
< _ ANITT* _
<, |7 2 el e 1 2 el e 2 i
- q
AT + CeA
< 2L 4 (62 4 Ap)exAr = O(Ar), (3.13)

1—n

where we used assumption (Rii) that cov(es, ) < ccAr when s € I, for some ¢ and j & I, for

any /, and assumption (i)’ that }_ . |7};|< cxAr for @ € I5. Also, on A,

T
1
||TZ}{'ZD’H <n max Z Zytzfts +Z7T]S Zynfts)
i€lq,j¢1q t:l

s¢lq

24 1+c 1
<n (C’1+77T> er AT + AT < 1+ +en(0? + )\T)> =y = 00wm), (314

where we used (3.13]) in the last line. The rates in (3.13) and (3.14) are the same as (3.6) and
(3.8) respectively, and hence the results in Theorem [8| follows. [
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