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Abstract

This dissertation contains three theoretical essays on the functioning and the organiza-
tion of over the counter markets.

The first paper, “Is Time Enough to Alleviate Adverse Selection?,” considers a
dynamic adverse selection model in which sellers pay a search cost to find a new buyer.
I uncover a relationship between adverse selection and the magnitude of search costs.
Interestingly, small search costs may increase the severity of the adverse selection
problem, ultimately leading to a lemons market. A market design intervention may
mitigate adverse selection and promote full market participation. Conditional upon an
adequate level of information disclosure, a per period market participation tax, coupled
with a final rebate once a seller trades, introduces a credible signalling device.

The second paper, “Peer Monitoring Incentives via Central Clearing Counterpar-
ties,” studies how the novel introduction of mandatory clearing for over the counter
financial assets may affect dealers’ incentives to monitor each other’s. The design of
the loss allocation rules is crucial. To maximize peer monitoring incentives, a higher
share of losses should be payed by surviving members with a greater trade exposure to
the defaulting dealer. In practice, this mechanism can be implemented through varia-
tion margin haircutting. If all members should contribute, equilibrium outcomes may
be inferior to what can be achieved without clearing.

The third paper, “Learning and Price Dynamics in Durable Goods Markets,” is
joint work with Min Zhang. We set up a dynamic model with two key features: first,
agents enjoy heterogeneous use values, and later resell the good; second, prices do
not incorporate all available information. Informational frictions slow down learning,
and affect price movements asymmetrically in high and low aggregate demand states.
Learning and the resale motive are the predominant force for durable goods with short
resale horizons, slow time-varying aggregate demand, and similar use values among
buyers.
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Chapter 1

Is Time Enough to Alleviate Adverse
Selection?

In the dynamic adverse selection literature, postponing trade is a signal of quality: low
types trade early, high types demand higher prices and trade afterwards. I reconsider
this result in a model in which market outcomes depend on the interaction among (i)
the magnitude of sellers’ search costs, (ii) the precision of buyers’ signals on product
quality, and (iii) buyers’ ability to observe how long a seller has been on the market.
The lemons problem is more severe, ceteris paribus, when search costs are small. A
low type sets a high price because it is cheap to wait until a buyer wrongly perceives
his product as good. However, the market breaks down if high quality products are
not numerous enough. More precise signals and time on market observability mitigate
the likelihood of a lemons market. A well designed mechanism may induce all sellers
to trade: sellers should pay a per period market participation tax, and receive a rebate
after trading.
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1.1 Introduction

Information asymmetry is a pervasive feature of real-world markets. Financial securi-
ties, real estate, electronics and secondhand vehicles are just a few examples. One side
of the market—usually buyers—lacks information or experience to ascertain the true
quality of a specific good. Since Akerlof’s (1970) seminal paper, it is well known that
in a static model ‘lemons’ may force high quality products out of the market.

A growing literature has been reconsidering the adverse selection problem in a
dynamic environment.1 A key feature of these models is the use of time as a signalling
device so that every type of seller eventually trades. In equilibrium, low quality sellers
trade early while high quality sellers demand higher prices and trade afterwards. I
refer to this economic mechanism as inter-temporal separation (henceforth, ITS).2

Postponing trade signals good quality, and opens up the opportunity to sell at a higher
price. Although this inefficient delay among high quality sellers causes some welfare
loss, eventually every seller trades.

Despite ITS theoretical importance, empirical findings seem at odds with its mech-
anism. Tucker et al. (2013) point out that real estate sellers who have been on the
market longer trade at lower prices, when buyers can credibly observe how long a
seller has been on the market. Trading late does not seem to strengthen reputation, but
instead it is perceived to signal lower quality. Furthermore, ITS fails to address Jin
and Kato’s (2007) evidence on the relationship between adverse selection and market
segmentation. They show that the lemons problem may induce different product qual-
ities to separate between online and offline markets rather than over time. Specifically,
products offered online are more likely to be of low quality, unless certified by a pro-
fessional third party, while higher quality products are usually sold through the retail
channel.3 Lastly, Lewis (2011) points out that greater information disclosure on eBay
motors increases sellers’ chances of trading as well as final prices; nevertheless, inter-
temporal separation does not explain this piece of evidence, as its mechanism works
irrespective of the existence of informative signals for buyers. Together, the empirical
findings of these studies suggest to reconsider—at least for some markets—how time
may mitigate adverse selection in real-world markets.

This paper proposes a model to explain why these empirical patterns emerge, and
how a market designer may induce high quality sellers to participate in an otherwise

1A non-exhaustive list includes Janssen and Roy (2002), Blouin (2003), Camargo and Lester (2014), Fuchs and
Skrzypacz (2013, 2014), and Kaya and Kim (2014).

2A key assumption underlying the inter-temporal separating mechanism is the ability of buyers to infer how long
a seller has been waiting on the market. They can either observe hard evidence of time on market or there is common
knowledge on the initial date of the game.

3Analogously, Dewan and Hsu (2004) find that identical stamps trade at a 10–15 percent discount on eBay
compared to a specialty stamps auction with lower quality uncertainty.
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lemons market. In my setup, market outcomes depend on the interaction among three
main features of the dynamic sale problem. First, every seller incurs a search cost
to find a new buyer and make a price offer; second, once matched with a seller, the
buyer receives a binary informative signal on the specific good offered on sale; lastly,
buyers may or may not have credible information on sellers’ time on market. I use
the acronyms TMO and TMN to denote when time on market is observable or not. I
characterize equilibria for TMO and TMN separately to understand whether revealing
this information improves final allocations.

My main result is that markets with low search costs suffer from a more severe
adverse selection problem. Intuitively, a low quality seller pools on the same price
offered by high quality sellers because it is cheap to wait until a buyer will wrongly
perceive his product as good. Due to this imitating strategy, high quality sellers may
decide to stay out of such markets or, at best, to participate for a limited time only. This
result is in contrast with the ITS logic, which maintains that sellers separate over time
for each discount factor—a measure of search frictions—even if trading may require
them to spend, on average, a long time on the market.

My main departure from models featuring ITS is an alternative assumption about
the delay cost that sellers incur to find a new trade opportunity. This difference is
not just a technical issue about preference specifications, as it captures two alternative
economic ideas on the nature of these costs. In models with ITS, postponing trade
imposes a delay cost via time discounting, reducing the present value of a positive
expected payoff. Trading late is costly, but market participation always provides a
non-negative payoff. In contrast, in my model postponing trade imposes a per period
cost in the form of an additive utility loss and, for simplicity, there is no discounting.4,5

Sellers may stay out of the market if they expect to incur a considerable cumulative cost
before trading.6 This per period cost could take many plausible forms: for example,
search costs, market participation fees, maintenance costs, or in a financial market
it could capture the cost of carrying an open position. For simplicity, I refer to this
utility loss as a ‘search cost’ but alternative interpretations are possible depending on
the market under consideration. The main point is to have an environment in which
postponing trade for a sufficiently long time dissipates all gains from trade.

4I take a neutral stance and consider an equal cost for each type of seller. To the best of my knowledge, there
is no particular economic reason to assume different costs for different seller’ types. However, the main economic
mechanism presented in this paper would still be valid if high quality sellers did not enjoy a significant cost advantage.

5To emphasize the different economic mechanism at work, I assume no payoff discounting. Atakan (2006)
and Lauermann and Wolinsky (2013) assume the same preference specification. Analogous results would hold if
discounting has an order of magnitude sufficiently small relative to search costs; see Example 1.8.1.

6From a technical standpoint, ITS relies on discounting of an instantenous payoff. This preference specification
guarantees two essential properties: first, a strict single crossing condition with respect to time, and, second, perpetual
market participation as waiting costs cannot lead to a negative expected payoff. In contrast, in my setup, finding a
new trade opportunity imposes an additive and symmetric (w.r.t to sellers’ types) cost. As a result, cumulative delay
costs may be larger than total gains from trade.
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In my model, separation is possible when a low quality good trades at a low price
that buyers always accept, whereas a high quality one trades at a higher price to the
first buyer who receives a high signal on its quality. In other words, separation is based
on the difference in the expected search costs of pursuing a high price strategy by the
two types of sellers. More precise signals for buyers or higher search costs for sellers
increase this difference. For a given search cost, higher signal precision decreases the
expected cost for high quality sellers but increases the cost for low quality types. For a
given signal precision, a higher search cost increases the expected cost for both types
of sellers but low quality ones suffer a larger loss. Separation is possible only if high
quality sellers enjoy a sufficient advantage in terms of expected search costs, i.e. if
signal precision and search costs are sufficiently high.7 This separating equilibrium
does not depend on whether the market exhibits TMO or TMN.

When buyers’ signals are not very informative and/or search costs are too small,8

the difference in expected search costs of a high price strategy does not prevent low
quality sellers from pooling on a high price whenever possible. In turn, only two out-
comes exist: either the market includes only lemons, or all sellers participate and post
the same ‘high’ price, accepted only after a positive signal. A market breakdown is
inevitable when the share of high quality products among the entrant sellers is below
a certain threshold value, which depends on signal precision and time on market ob-
servability. Specifically, a lemons market is more likely to emerge when buyers do not
have sufficiently informative signals, in line with Lewis’s (2011) findings. However,
my model points out a complementarity between signal precision and search costs. In
this respect, the potential for a market breakdown when search costs are small may
provide a rationale for Jin and Kato’s (2007) evidence on the likely exclusion of un-
certified high quality sport cards from eBay.9 Online markets have almost eliminated
search costs and—according to my model predictions—low types pretend to offer a
high quality good, because it is cheap to wait for a buyer who receives a positive signal
and accepts a high price. However, in equilibrium, prices do not convey any informa-
tion on the underlying quality of the good and buyers are skeptical to accept a high
price. In turn, owners of high quality goods may prefer to avoid online platforms.
For example, they could either sell through an a certified intermediary, or offer a costly
contractual device (for instance warranty) to alleviate adverse selection. I do not model
these alternatives, but they are implicitly captured by the type-dependent reservation

7Obviously, search costs should not be too high; otherwise no seller would participate in the market.
8A literature on e-commerce focuses on competition and price dispersion (Clay et al. (2001) and Baye et al.

(2004)) or on market structure (Goldmanis et al. (2010)). However, to the best of my knowledge, no existing paper
specifically discusses how low search costs interact with the adverse selection problem.

9However, as argued by Dellarocas (2005), eBay has been successful in solving asymmetric information problems
with adequate mechanism design and feedback. I consider my model more closely related to other less sophisticated
online platforms such as Craigslist.com, Gumtree.com or Pianomart.com, where anonymous sellers place simple ads
and buyers can individually contact the seller.
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value that every seller enjoys. My focus is the relationship between delay costs and
adverse selection; hence, I exclude other potential signalling devices.

In a pooling equilibrium—when search costs are low—information on sellers’ time
on the market is crucial. It determines buyers’ prior beliefs about the likelihood of
matching with a high quality seller. If time on market is observable, buyers’ prior
probability of receiving a high quality good from a seller κ periods old, say, is equal to
the share of high quality sellers in cohort κ . If time on market is not observable, buyers
hold a single prior equal to the overall share of high quality sellers in the market. The
two alternative assumptions lead to different price dynamics. Because posted prices
are accepted only after a high signal, under TMO the longer a seller has been on the
market the lower his price offers will be: high quality goods sell more rapidly—as they
are more likely to receive a high signal—and buyers realize that older sellers are more
likely to offer a low quality good.10 If a seller has been on the market too long, buyers
would only accept prices below the reservation value of high quality sellers who, in
turn, prefer to exit the market. The model predictions of a decreasing price path and an
eventual market drop out are consistent with the empirical patterns reported in Tucker
et al. (2013) and Hendel et al. (2009).11

When time on market is not observable, everyone offers the same price and no
seller drops out once he initially decides to participate in the market. However, high
quality sellers are less likely to participate compared to the TMO case. Interestingly,
under TMN neither the dynamic dimension, nor the existence of private informative
signals for buyers, improves market allocations relative to a static model with unin-
formed buyers. In markets with more precise signals, low quality sellers wait longer
until a buyer receives a positive signal, and the pool of sellers on the market includes a
larger share of low quality goods relative to the cohort of entrant sellers. This negative
effect on the prior probability to receive a high quality good perfectly cancels out the
positive effect of a more precise signal. In other words, under TMN, increasing signal
precision is self-defeating as it worsens the average market quality which, in turn, de-
termines buyers’ prior expectations of receive a high quality good. Thus, the ability to
observe time on market may improve welfare when the number of high quality goods
is low.

In light of these negative results, I perform in section 1.6 a market design exercise
for the limit case of zero search costs. I analyze whether a system of transfers condi-
tional on market participation and trade may alleviate adverse selection and promote

10Taylor (1999) is the first paper to exploit this social learning mechanism in the context of a two-period adverse
selection model (see section 2.2).

11Hendel et al. (2009) document that some real estate sellers in Madison, WI decide to switch to a realtor after
some time spent on a for-sale-by-owner website, an online platform with a publicly observable posting day. Although
they do not discuss how their results relate to the adverse selection problem, my model predictions under TMO match
sellers’ decision to abandon the online platform after some time.
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full market participation. I focus on mechanisms that satisfy a series of properties:
budget balance, informational efficiency of prices, and interim individual rationality.
The efficient market design intervention achieves separation through a constant market
participation tax, and it relaxes sellers’ individual rationality constraint through a final
rebate conditional on trade. A low quality seller does not find it profitable to post a
high price because, on average, he is less likely to find a buyer who receives a high
signal; if he pursued a high price strategy, he would pay, on average, a cumulative
amount of market participation taxes that would make imitation unprofitable. In terms
of incentive compatibility constraints, the market participation tax is analogous to a
per period search cost. Nevertheless, the former is not a waste of economic resources,
and it can be partially recouped through a rebate, relaxing sellers’ market participation
constraints. Although time on market observability plays a relevant role in all pooling
equilibria, it does not affect the efficient mechanism. Taxes and rebates are inversely
proportional to buyers’ signal precision, but they do not depend on sellers’ time on
market, although in principle they could. This efficient market design intervention
achieves full market participation in a large set of economies, but it is not successful
when buyers’ signals are close to being uninformative.

From a technical standpoint, the model is a dynamic signalling game since in every
period the informed party—sellers—decides to post the price at which they are willing
to trade. In previous non-stationary models, the bargaining protocol either assumes
exogenous prices12 or buyers make take-it-or-leave-it offers.13 As in the Diamond’s
(1971) paradox, the latter protocol implicitly fixes the price at which high quality sell-
ers trade—equal to their exogenous reservation value—and only the price accepted by
low quality sellers is determined endogenously. In my setup, this bargaining solution
leads to a hold-up problem: high quality sellers would not pay a search cost to trade at
their reservation value. I assign all bargaining power to sellers to improve their chances
of participating in the market. Equilibrium characterization is challenging because I
have to take into account—for every cohort of sellers—an endogenous behavioural
strategy (possibly mixed) for each type of seller.

In the next section I discuss the related literature. Section 3 presents the model
setup. Section 4 characterizes the equilibria when search costs are close to zero. Sec-
tion 5 discusses the welfare properties of equilibria. Section 6 derives the efficient
intervention. Section 7 concludes. All proofs are in Appendices A and B.

12See Wolinsky (1990), Blouin (2003) and Camargo and Lester (2014).
13See Moreno and Wooders (2010, 2014), Kim (2014) and Kaya and Kim (2014).
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1.2 Related literature

This paper is mainly related to the theoretical literature on dynamic adverse selection
in decentralized markets.14 Two different types of goods coexist in the same market,
but product quality is sellers’ private information. The literature mainly considers
non-stationary equilibria, as the market starts at an initial date and strategies depend on
time.15 Analogously, the TMO case in this paper leads to a non-stationary equilibrium,
since sellers’ strategies generally depend on previous time on market. In my setup, time
on market coincides with the number of previous matches with buyers.16,17

Blouin (2003), Camargo and Lester (2014), and Moreno and Wooders (2014) char-
acterize non-stationary equilibria in infinite horizon games.18 Inter-temporal separa-
tion allows all sellers to trade over time. The main differences among these papers have
to do with the division of trade surplus and are partly driven by alternative bargaining
protocols. The former two papers adopt the exogenous price bargaining of Wolinsky
(1990), while the latter assume buyers make take-it-or-leave-it offers. Kaya and Kim
(2014) construct a model in which buyers receive private informative signals and make
offers to sellers. In their setup, prices and beliefs converge to a steady state, and the
transition depends on the initial probability of trading with a high quality seller: if it is
high, prices and beliefs move downward as in Taylor (1999); if it is low, ITS kicks in
and allows sellers to separate. As discussed in section 2.3, I assume sellers make take-
it-or-leave-it offers. In contrast to what happens in Moreno and Wooders (2010, 2014)
or Kaya and Kim (2014), a hold-up problem would arise in my setup if H-sellers could
only trade at their reservation value vH . This is not a concern in models that use dis-
counting of an instantaneous payoff: in equilibrium high quality sellers discount a zero
payoff as they trade at their reservation value. My TMO setup is a non-stationary dy-
namic signalling game with endogenous prices, and the main challenges arise because
H-sellers’ posted prices are generally non-constant over time.

14The latter term defines a class of models that depart from the classic Walrasian price formation paradigm to
explicitly model the bilateral interaction between buyers and sellers. A non-exhaustive list of previous papers on
decentralized markets with complete product information includes Diamond (1971), Rubinstein and Wolinsky (1985),
Gale (1986a,b), Duffie et al. (2005, 2007), Vayanos and Weill (2008), and Lagos and Rocheteau (2009). Wolinsky
(1990) considers a decentralized market with asymmetric information on the common quality of all units. Serrano
and Yosha (1993), Blouin and Serrano (2001), and Duffie et al. (2009, 2014) provide other contributions to this
literature.

15Daley and Green (2012) analyze a dynamic setting in which buyers receive public information on the asset value
at random arrival times. Buyers may enter a waiting period: if good news arrives confidence is restored and the
market reopens; otherwise, there is a partial sell off of low value assets.

16I prefer to use the expression ‘time on market’ for lexical convenience.
17Kim (2014) shows that when market frictions are small (small discount rate), observing only time on market

is welfare-improving relative to public information of previous matches. This result stems from the fact that staying
on the market strengthens reputation; in this respect, information on previous matches conveys a more precise signal
than time on market. As a consequence, sellers tend to delay trade as they reject price offers more often. However,
my paper points out why this ITS mechanism might not work, and it shows that—when search frictions are small—
a longer stay on the market is interpreted as a negative indicator of quality. Therefore, in my setup the welfare
comparison between the two regimes could be reversed.

18Janssen and Roy (2002) present the ITS mechanism in a model of dynamic centralized competitive markets.
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My paper is also related to a new strand of literature on optimal market intervention
for lemons markets. Fuchs and Skrzypacz (2013) study how to minimize delay costs
through the optimal design of market openings. Fuchs and Skrzypacz (2014) consider
government interventions through taxes and subsidies.19 Their Pareto improving bud-
get balanced policy suggests a short tax exempt trading window followed by a short
lived period of positive taxes; sellers trade immediately and after the tax goes back to
zero. My efficient intervention also points out the need to subsidize initial trade, but
it prescribes a constant market participation tax thereafter (see section 1.6). Fuchs and
Skrzypacz’s (2014) short-lived taxation policy would not be effective in my setup by
the same logic that excludes ITS.

My results are also related to the literature on sequential trading between a long-
lived seller and a sequence of short-lived buyers. Taylor (1999) considers a two-period
model in which a single informed seller posts prices under different price observability
assumptions.20 His paper was the first to point out the negative informational exter-
nality that affects older cohorts of sellers when buyers observe private informative sig-
nals. Lastly, Lauermann and Wolinsky (2013) consider a sequential search model with
TMN, informative private signals for buyers, and additive search costs. They show the
existence of a search friction that reduces price informativeness compared to a com-
mon auction environment. They consider buyers who receive signals sampled from a
continuous distribution—possibly of unbounded precision—while I use a simple sym-
metric binary signal of bounded precision. My choice is motivated by tractability
concerns, especially for the non-stationary equilibria under TMO. Moreover, I focus
on allocative efficiency and market exclusion, while they analyze informational effi-
ciency.

1.3 Model

This section presents the model setup and discusses how the main assumptions relate
to the research questions.

1.3.1 Model setup

Consider a decentralized market where trade is possible only in bilateral transactions
between one buyer and one seller.21 Each seller is endowed with a single indivisible

19Their paper differs from Philippon and Skreta (2012) and Tirole (2012) because the latter consider a governe-
ment intervention in the presence of a static competitive private market.

20Hörner and Vieille (2009) and Fuchs et al. (2014) also study the effect of price history observability in models
in which buyers have no informative signals.

21As a convention, throughout the paper I refer to the seller as “he” and to the buyer as “she”.
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good of high (H) or low (L) quality. A seller knows the quality of his product but
nobody else can observe it. Let θλ and vλ be buyers and sellers’ valuation, respectively,
for a product of quality λ ∈ {H,L}, and assume θH > vH > θL > vL. I use the terms
H-sellers and L-sellers to refer to sellers with goods of high and low quality.

Time t ∈ {..,−1,0,1, ..} is discrete and in each period a set of sellers µt of unit
mass is born. Only a fraction q0 ∈ (0,1), independent of t, of newly born sellers owns
a high quality good. Sellers are long lived and they can participate in the market until
they trade or exit. Buyers live for a single period and they always outnumber sellers.

I denote the set of sellers participating in the market at time t as St , while Sκ
t ⊂ St

is the set of sellers who have been participating in the market for κ ∈ N0 previous
periods; similarly, Sκ

λ ,t ⊂ Sκ
t is the subset of sellers of type λ in Sκ

t .22 Sellers pay
a search cost c to participate in the market and match with a buyer. Buyers match
uniformly at random with sellers and have no search cost. For simplicity, they have no
opportunity to buy a good and re-sell it on the market. All players are risk-neutral and
have quasi-linear utilities with respect to monetary transfers. Sellers do not discount
future payoffs.

Buyers and sellers trade according to a simple mechanism. Each seller i∈ St−1∪µt

who has not traded at time t − 1 takes an action aS,i ∈ AS = {{D},R+}, where D

denotes the decision to irreversibly drop out of the market, and p ∈ R+ is the posted
price at which he commits to sell the good in period t. If aS,i = D, seller i is not
matched with a buyer and does not pay the cost c; however, he has no future possibility
of participating in the market. If aS,i = p, seller i pays c and gets matched with a buyer.
A particular history for seller i ∈ Sκ is indicated with hκ

i = (hκ−1
i ,aκ

S,i× aκ
B,i) (with

h−1
i =∅) and Hκ is the set of all possible histories.

Let Zκ
i ⊂Hκ

i denote the set of terminal histories for seller i after κ previous periods
(with Zi =

⋃
κ∈N0

Zκ
i ). If hκ

i ∈ Zκ
i seller i exits the market after κ previous periods in

the market and he cannot choose any further action, i.e. A j
S,i = ∅, j ≥ κ + 1. Let

Zκ
i (D) ⊂ Zκ

i include all terminal histories in which seller i drops out of the market
after κ periods; similarly, Zκ

i (p) ⊂ Zκ
i denotes the set of histories in which seller i

trades at price p after κ previous periods in the market. The final payoff to seller
i ∈ Sκ

λ ,t in z ∈ Zκ
i is

ũλ (z) =

{
−κc if z ∈ Zκ

i (D)

p− vλ − (κ +1)c if z ∈ Zκ
i (p)

Once matched with seller i, a buyer receives a private signal ξ ∈ {H,L} on his

22To simplify exposition, I slightly abuse notation using S, Sκ , Sκ

λ
to denote both the set or the measure of sellers

in these sets.
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product quality, but she cannot observe his previous price history.23 Buyers’ sig-
nals have precision γ ∈ (1

2 ,1), i.e. PH(ξ = H) = PL(ξ = L) = γ . For a given vector
(θH ,vH ,θL,vL), I parametrize a specific economy E (γ,q0) by signal precision γ and
newly born measure q0 of H-sellers.

I consider two different setups for publicly available information. If time on market
is observable (TMO), a buyer observes how long a seller has been participating in the
market; i.e. it is common knowledge whether i ∈ Sκ

t for some κ ∈ N0. In contrast, if
time on market is not observable (TMN) no buyer can observe this information.

When time on market is observable, a buyer’s information set IB(p,κ,ξ ) includes
the seller’s offer p, his previous κ periods in the market, and the buyer’s signal ξ . If
time on market is not observable, it only includes p and ξ (i.e. IB(p,ξ )). Given her
information set, a matched buyer takes an action aB,i ∈ AB = {A,R}, where A denotes
acceptance and R rejection of the seller i price offer. If she accepts offer p, trade occurs
and they leave the market; if she rejects, no exchange takes place and seller i moves to
period t +1.

In this paper, I only consider stationary and symmetric equilibria of the game.
Players’ equilibrium strategies do not depend on time t, but only on seller’s type λ ,
cohort κ and history hκ−1

i . In this class of equilibria, the mass of sellers St , Sκ
t and

Sκ

λ ,t is constant over time—i.e. St = S, Sκ
t = Sκ and Sκ

λ ,t = Sκ

λ
for every κ ∈ N0 and

t ∈ Z—and I omit the subscript t in the remainder of this paper. I denote with σ a
strategy profile and with π a belief system. A strategy profile σ and a belief system π

form an assessment (σ ,π). I use σ−i and π−i to indicate the strategy profile and the
belief system of any agent other than i.

Let qκ = P(θH |Sκ) be the prior probability under uniform random matching that a
seller in Sκ offers a high quality good. On the equilibrium path, a buyer incorporates
her private signal into the publicly available information according to Bayes’ rule.

Definition 1.3.1 A assessment (σ ,π) is an equilibrium of the game if it is a weak

Perfect Bayesian Equilibrium (PBE) with the following restrictions:

1. Stationarity: buyers and sellers in Sκ

λ ,t and Sκ

λ ,t ′ play identical strategies ∀t 6= t ′.

2. Symmetry: if sellers i, j ∈ Sκ

λ
have hκ−1

i = hκ−1
j , they play the same strategy.

3. Pure strategies: buyers only play pure behavioural strategies.

I impose a few restrictions on the notion of weak PBE.24 First, strategies do not
depend on time t for otherwise identical sellers. Second, sellers’ strategies can differ

23This assumption significantly simplifies the set of possible equilibria. See Taylor (1999), Hörner and Vieille
(2009) and Fuchs et al. (2014) for models that consider equilibria with price history observability.

24See Definition 3.3.1 in Appendix A for a formal definition.
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only with respect to seller’ types λ ∈ {H,L}, cohorts Sκ

λ
and previous history hκ−1

i .
The third condition restricts buyers—conditional on an information set—to play pure
strategies,25 but sellers can use mixed strategies.

In Propositions 1.4.3 and 1.4.4, I use the undefeated equilibrium refinement intro-
duced by Mailath et al. (1993).26 I adopt this refinement for two simple purposes: (i)
to rule out the self-fulfilling PBE in which only L-sellers trade because buyers believe
only L-sellers participate, whenever there exists another PBE in which H-sellers par-
ticipate in the market; and (ii) to select among the set of pooling PBE the one with
the highest possible prices, i.e. pκ = EπB [θ |IB(pκ , ·,H)]. Therefore, it is not used to
rule out separating or semi-separating strategy profiles, differently from what happens
in the Spence (1973) model.27 Indeed, Lemma 1.4.1—the main characterization result
for small c—does not rely on the undefeated refinement to show that the only admissi-
ble behavioural strategies have both types of sellers in Sκ pool on the same price. De
facto the undefeated refinement is not restrictive, but instead is a conservative choice to
illustrate that a market breakdown is still possible under a dynamic setup. Indeed, this
refinement selects the equilibrium in which H-sellers’ market participation constraint
is satisfied for the lowest possible q0.28

For simplicity, I do not specify out-of-equilibrium beliefs in the proposition state-
ments. The main result on the admissible equilibrium strategies—Lemma 1.4.1—rules
out other strategies without relying on any specific out-of-equilibrium belief. The re-
sulting admissible equilibria only require buyers to hold sufficiently pessimistic beliefs
out of the equilibrium path.

1.3.2 Discussion of the assumptions

I briefly discuss the main model assumptions and how they relate to the literature.

Additive search cost c. My main departure from the previous literature—with the
notable exception of Lauermann and Wolinsky (2013)—is the introduction of a search
cost. It can be alternatively interpreted as an additive and symmetric specification of
delay costs. This preference specification has two main properties: (i) sellers stay out
of the market if they expect to trade after a long time, since the cumulative amount of
search costs would be larger than their total gains from trade; and (ii) all sellers suffer
the same utility loss if they postpone trade.29 Additive delay costs are not the only

25Buyers’ strategies depend on the information set, and this restriction does not prevent strategies to depend on
signal ξ despite the latter may not change the belief πB. To understand the logic of this restriction see footnote 35.

26See Definition 1.8.2 in the Appendix for a formal definition.
27See Mailath et al. (1993) for a discussion.
28Roughly speaking, H-sellers in Sκ participate only if EπB [θ |IB(pκ , ·,H)]≥ pκ ≥ vH , and, in a pooling equilibrium,

this expectation is strictly increasing in πB, which, in turn, is weakly increasing in q0.
29Atakan (2006) highlights the role of asymmetric delay costs in a model of assortative matching.
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preference specification with these properties,30 but I prefer an additive cost because it
can be easily interpreted as a search cost. Moreover, it provides a natural starting point
for my market design exercise in which transfers enter utility additively.

Bargaining protocol. All previous papers in the literature adopt a specific bar-
gaining protocol to make the model tractable. Blouin (2003) and Camargo and Lester
(2014) adopt the exogenous price bargaining protocol first introduced by Wolinsky
(1990). Moreno and Wooders (2010) and Kaya and Kim (2014) assume that buyers
make take-it or leave-it offers; Lauermann and Wolinsky (2013) use a random propos-
als bargaining model to avoid dealing with out of equilibrium beliefs. In this paper,
sellers—the fully informed party—make take-it-or-leave-it offers to buyers. In addi-
tion to being a realistic assumption in many real-world markets, this trade protocol
gives full bargaining power to sellers. Since high quality sellers may stay out of the
market, this assumption seems a conservative benchmark for assessing when their mar-
ket exclusion is more likely.

Short-lived buyers. Buyers are exposed only to the idiosyncratic risk of buying a
lemon. There is no aggregate uncertainty as in Wolinsky (1990) or Blouin and Serrano
(2001), in which all units of the good have the same quality and the main trade-off for
buyers is between delaying trade to acquire more information or trading early at a po-
tentially larger loss. In my setup, short-lived buyers are not essential to the main model
insights and they simplify exposition. Moreover, a long-lived buyer may extract some
trade surplus as his bargaining position is likely to strengthen. As for the bargaining
protocol, I assume short-lived buyers because it seems a conservative choice to study
when high quality sellers are more likely to stay out of the market.

1.4 Equilibrium analysis

Before presenting the main results in sections 1.4.1 and 1.4.2, I restrict attention to
economies in which the temporal dimension may help to alleviate the adverse se-
lection problem. Formally, I do not consider economies where all sellers can trade
immediately, because no allocative efficiency problem arises. It is straightforward to
realize that this equilibrium outcome exists only if all sellers post a price p and buy-
ers always accept. In this pooling equilibrium, (i) buyers accept p even when ξ = L,
and (ii) high quality sellers find it profitable to participate in the market. This equi-
librium requires p ≤ EπB[θ |IB(p,0,L)] and p ≥ vH + c. These two conditions imply

30For example, it is also the case for δ κ p−vλ , a utility specification that can be easily interpreted as a seller who
discounts future prices but incurs the production cost vλ before entering the market.
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EπB [θ |IB(p,0,L)]≥ vH + c, or:

q0 ≥ γ(vH + c−θL)

(1− γ)(θH− vH− c)+ γ(vH + c−θL)
:= qIP

c
31

The highest possible pooling price, p = EπB[θ |IB(p,0,L)], is decreasing in γ;
hence qIP

c is increasing in γ . The intuition is straightforward: immediate trade requires
buyers to accept when ξ = L, and a more informative signal has a stronger negative
impact on the posterior expectation. Buyers pay at least vH + c when they receive
ξ = L only if they hold a sufficiently high prior probability q0 of matching with a high
quality seller.

I also refer to another relevant quantity: the minimum value of q0 above which all
sellers trade in a static version of the model with no informative signals. As this is sim-
ply Akerlof (1970) model with an initial search cost c, it is easy to conclude all sellers
trade only if q0 ≥ vH−θL+c

θH−θL
:= qS

c . This quantity is a benchmark for understanding how
the temporal dimension may improve market outcomes relative to a static model. In
the remainder of this paper, unless specified, I assume q0 < qS

c .

1.4.1 Separating equilibria

A first natural question concerns the existence of a separating equilibrium. The litera-
ture shows that it is possible for sellers to separate overtime. In this respect, waiting is
a signalling device analogous to education in the classic Spence (1973) model. Buyers
find this separating mechanism credible, and they are willing to pay higher prices for
sellers who have been on the market longer. Importantly, inter-temporal separation
works even when buyers do not have any informative signal (γ = 1

2 ).
A few common assumptions make ITS possible: (i) sellers’ delay costs enter utility

through discounting (at rate δ < 1); (ii) there exist strictly positive gains from trade
for all types of goods; and (iii) sellers discount an instantaneous payoff as sale and
production occur contemporaneously, or goods are durable.32

Assumption (i), (ii) and (iii) lead to a preference specification δ κ(p−vλ ) whenever
a seller trades after κ previous periods in the market. For a utility function u(λ ,κ, p),
the strict single-crossing condition is satisfied if up(λ ,κ,p)

|uκ (λ ,κ,p)| is strictly increasing in λ

and it has the same sign for all (λ ,κ, p) (see Milgrom and Shannon (1994)). Pay-
off discounting has u(λ ,κ, p) = δ κ(p− vλ ), and the ratio of partial derivatives is

δ κ

|(p−vλ )δ
κ lnδ | , is always positive and is strictly increasing in λ as vH > vL. In con-

31The subscript c indexes threshold values for q0 to the search cost c. Later I use qIP
0 to denote the value of the

threshold for c = 0.
32A durable good provides a per period flow utility y to its owner, so it is worth y

1−δ
to the seller. Alternatively,

sale and production occur contemporaneously when a seller can produce, at the time of trade, a good at cost vλ .

20



trast, in my model u(λ ,κ, p) = p−vλ −(κ +1)c and this ratio is equal to 1
c . Similarly,

if u(λ ,κ, p) = δ κ p− vλ , then δ κ

|pδ κ lnδ | is constant for all λ . The last specification de-
scribes an economy where sellers pay the production cost before market participation.

Payoff discounting of an instantaneous payoff—as used in models with ITS—
makes sellers’ individual rationality constraint redundant. As long as they can trade
at a price greater or equal to their reservation value vλ , they can wait indefinitely since
δ κ(p− vλ )≥ 0. Indeed, previous models share the feature that H-sellers only trade at
p = vH , de facto eliminating their temporal preferences. This property is crucial for
ITS; in fact, high quality sellers accommodate any period of delay deemed necessary
to prevent low quality sellers from deviating.33 Final allocations are inefficient because
some sellers delay their trades, but all sellers eventually trade.

In my setup the ITS mechanism is not possible without informative signals.

Proposition 1.4.1 Assume time on market is observable and buyers have no signals.

For every c > 0 an inter-temporal separating equilibrium does not exist.

Intuitively, time could credibly signal higher quality only if H-sellers incur a cumu-
lative utility loss larger than all gains from trade for high quality goods. Therefore,
market participation is no longer profitable, and they prefer to stay out of the market.
Formally, the incentive compatible delay period leads to a utility loss, which violates
the individual rationality constraint of H-sellers.34

Nonetheless, separation is possible thanks to the combined effect of buyers’ infor-
mative signals and search costs. I first introduce a notion of separating equilibrium.

Definition 1.4.1 An equilibrium assessment is separating if H- and L-sellers post dif-

ferent prices after every history hκ
i ∈ Hκ and buyers accept with positive probability.

Proposition 1.4.2 characterizes the unique separating equilibrium of the game.

Proposition 1.4.2 Irrespective of time on market observability, a separating equilib-

rium exists if and only if

c ∈
[

1− γ

γ
(θH−θL),γ(θH− vH)

]
In equilibrium, high quality sellers post θH and low quality sellers post θL. Buyers

accept θH only after a high signal, but they always accept θL.

33A hybrid model with search costs c and payoff discounting δ < 1 may or may not admit the existence of an ITS
equilibrium. For every c, it is possible to find a δ sufficiently close to 1 such that ITS is not possible; see Example
1.8.1 in Appendix A. I focus on the δ = 1 case because it provides a neat characterization of the results and a sharp
intuition of the underlying economic mechanism.

34The impossibility of this result depends on the additive specification of delay costs, and it is unchanged even if
I consider the set of equilibria in which buyers may play fully mixed strategies (see the proof of Propositon 1.4.1).
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A separating equilibrium exists when both search costs and signal precision are
sufficiently high. If signal precision is too low, the interval in Proposition 1.4.2 does
not exist. A low quality seller does not post θH , and wait until a buyer receives a high
signal, because he expects to pay too high a search cost compared to the immediate
payoff of revealing his type and trading at a lower price θL. On average, H-sellers
receive a high signal after 1

γ
periods, while L-sellers do so after 1

1−γ
periods; as a

result, informative private signals create an asymmetric cost of delay between seller’
types. Importantly, no separating equilibrium exists when signals are uninformative
(γ = 1

2 ). In other words, differences in the probability of receiving a high signal restore
a single-crossing condition and allow separation. The temporal dimension is a neces-
sary condition, but it contributes to the creation of a credible signalling device only
with sufficiently informative signals and an adequate level of search costs.35

1.4.2 Pooling equilibria

This section provides a complete characterization of equilibria when the search cost is
close to zero. I separately analyze each public information setup—TMO and TMN—
although the underlying economic intuition is similar.

When c is small, low quality sellers have strong mimicking incentives. Lemma
1.4.1 states the admissible behavioural strategies on the equilibrium path.

Lemma 1.4.1 There exists c∗ > 0 such that for every c ≤ c∗ every equilibrium path

only admits the following behavioural strategies for sellers in Sκ :

• TMO and q0 < qS
c:

– H- and L-sellers post a price pκ that buyers accept only after a high signal.

– H- and L-sellers only post prices rejected with probability one.36

– H-sellers stay out of the market and L-sellers trade at price θL.

• TMN and q0 < qIP
c :

35Proposition 1.4.2 is a pure strategy PBE. Definition 1.3.1 allows mixed strategies for sellers, but it excludes
them for buyers. If buyers could play mixed strategies, it is easy to show that a separating equilibrium in mixed
strategies would exist for all c > 0 if and only if γ ≥ θH−θL+c

2θH−vH−θL+c > 1
2 . After receiving a high signal, buyers should play

a specific randomization between accepting or rejecting θH . A lower search cost requires a higher rejection probability.
However, this mixed strategy equilibrium does not have a very realistic flavour. It suggests that in real-world markets
buyers play sophisticated randomizations with the sole purpose of helping to separate sellers. Keeping in mind this
theoretical possibility, I prefer to focus on equilibria in which buyers play pure strategies and separation is mainly
determined by sellers’ behaviour, search costs, and the information structure. Lastly, even with mixed strategies,
separation is not possible in the limit case of c = 0, while the equilibria in section 1.4.2 continue to exist.

36This case is not interesting, and it is a pathological result of signalling games. The PBE notion allows for
these ‘sudden stops’ in trade when buyers hold pessimistic beliefs on sellers in cohort Sκ and accept only if p≤ θL; in
equilibrium, both types of seller prefer not to trade and move to period κ +1. These behavioural strategies are ruled
out by the undefeated refinement. I do not use the refinement at this stage to stress that the pooling result does not
rely on the refinement or other specific restrictions on out-of-equilibrium beliefs.
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Figure 1.1: Equilibrium interactions with TMO.

– H- and L-sellers post a price p̄ that buyers accept only after a high signal.

– H-sellers stay out of the market and L-sellers trade at price θL.

Irrespective of time on market observability, if H-sellers participate in the market—
posting a price accepted with positive probability—equilibria are possible only in pool-
ing strategies.37 Both types of seller offer the same price and buyers accept only if
they receive a high signal. When time on market is observable, prices may be different
among different cohorts of sellers, but they post a unique price when this information
is not available.38 Even if a low quality seller is unlikely to receive a high signal, this
event has a strictly positive probability 1− γ > 0. Low search costs reduce the cost of
finding a new buyer, and low quality sellers find it profitable to demand a high price,
looking for a buyer who receives a wrong signal. If they happen not to sell at a high
price, they can always reveal their type and trade at θL. The absence of a credible
signalling device precludes separation, and different types of sellers pool on the same
action.

Lemma 1.4.1 helps to characterize the set of equilibria of this dynamic signalling
game; in the TMO case, the model is non-stationary because equilibrium strategies
may depend on κ . Indeed, this dynamic game cannot be solved recursively, as cur-
rent strategies depend on future continuation values and, viceversa, the latter generally
depend on the former because they endogenously determine the share of high quality
sellers in each cohort. Figure 1.1 represents this equilibrium interaction between cur-
rent strategies and future continuation values. To further illustrate this point, consider
how buyers form expectations. First, they have a prior probability of being randomly

37The if clause is crucial. Propositions 1.4.3 and 1.4.4 show that H-sellers may not participate in the market.
38Lemma 1.4.1 has different thresholds for q0; see the proof of Lemma 1.4.1 for further details.
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matched with a high quality seller in Sκ . In equilibrium, this prior is determined en-
dogenously and is equal to the share of H-sellers in cohort Sκ because of uniform ran-
dom matching (i.e. qκ =

Sκ
H

Sκ ). Once matched with seller, a buyer observes his age and
posted price, and she updates her beliefs according to signal ξ . The value qκ plays a
substantial role in forming expectations, and it contributes to determine the maximum
price that buyers accept from a seller belonging to cohort Sκ . In turn, equilibrium
prices determine whether H-sellers want to participate in the market, while equilib-
rium strategies determine the type-dependent trade probabilities and the evolution of
qκ across different cohorts Sκ .

Due to Lemma 1.4.1, the set of admissible behavioural strategy is tractable—either
a pooling price accepted after a high signal or only L-sellers trade—and the equilib-
rium characterization is straightforward. The next two subsections illustrate how final
market outcomes depend on time on market observability.

Time on market observability

Time on market observability (TMO) refers to buyers’ ability to observe how long each
seller has been participating in the market. Although this information is specific to each
individual seller, it plays a crucial role in shaping overall market dynamics. The model
provides a tractable framework to analyze how the bilateral asymmetric information
problem affects aggregate market dynamics and—reciprocally—how market dynamics
influence the possible terms of trade in bilateral transactions.

Proposition 1.4.3 characterizes the unique undefeated equilibrium of the game for
c sufficiently small.

Proposition 1.4.3 Let q0 < qS
c . There exists c∗ > 0 such that ∀c≤ c∗ there is a unique

undefeated equilibrium.

1. If q0 ≥ qO
c :=

(1− γ)(vH + c
γ
−θL)

γ(θH + c
γ
− vH)+(1− γ)(vH−θL− c

γ
)

• For κ ≤ κ∗(q0) < ∞, κ∗(q0)=max
{

κ ∈ N0 : qκ ≥ qO
c
}

, H- and L-sellers

in Sκ post

pκ = EπB [θ |IB(pκ ,κ,H)]

and buyers accept if and only if ξ = H.

• After κ∗(q0)+ 1 periods H-sellers exit the market while L-sellers post θL

and trade.
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Figure 1.2: Number of periods on the market for H-sellers κ∗(q0) and signal precision γ .

• For κ < κ∗(q0) the share of H-sellers across different cohorts is decreasing

in κ:

qκ+1 =
(1− γ)qκ

(1− γ)+(2γ−1)(1−qκ)

2. If q0 < qO
c only L-sellers participate in the market and trade at price θL.

Proposition 1.4.3 proves the existence of a unique undefeated equilibrium for suf-
ficiently small c. All sellers from cohort Sκ post the same price pκ , and buyers accept
only if they receive a high signal ξ = H. H-sellers are more likely to trade and, on
average, they exit the market more rapidly than L-sellers. Thanks to the law of large
numbers, qκ can be expressed as the solution of a first order difference equation. The
share of H-sellers is decreasing in κ: the longer a seller has been on the market, the
lower buyers’ prior belief to match with a high quality seller. Once this belief falls
below the minimum threshold qO

c , no buyer would be willing to pay a price above
H-sellers’ reservation utility, and the latter prefer to drop out of the market.

Taylor (1999) is the first to point out a negative price externality on older cohorts of
sellers. Recently, Kaya and Kim (2014) obtain a similar dynamic when the initial prior
belief in meeting a high quality seller is sufficiently high. Proposition 1.4.3 suggests a
declining price path and a decision to exit the market after a finite number of periods.
No market dropout occurs in Taylor (1999) or Kaya and Kim (2014). My result differs
from Kaya and Kim’s when the prior probability is low (q0 < qO

c ): they predict a
dynamic closely related to the ITS mechanism, while Proposition 1.4.3 suggests that
H-sellers stay out of the market.

Greater signal precision γ leads to a more rapid decrease in qκ (see Figure 1.2).
However, γ’s effect on the measure of H-sellers that exit the market without trading is
ambiguous: an increase in γ may reduce κ∗(q0) but it also increases the share γqκ of
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H-sellers who trade in every period κ ≤ κ∗(q0).

Time on market not observable

Even when time on market is not observable, for small c Lemma 1.4.1 guarantees that
all sellers post the same price and buyers accept only if they receive a high signal.
Buyers do not distinguish sellers’ cohorts, so their prior belief in matching with a high
quality seller does not depend on κ and is equal to the share of H-sellers in the overall
market. In a stationary equilibrium, this share does not change over time because the
mass of each type of seller is constant, i.e. q̄t = q̄ and Sκ

λ ,t = Sκ

λ
for every t and λ . This

is possible if and only if the entry and exit flows are equal for each type. The entry
and exit conditions impose a pair of equations that jointly determine q and the overall
measure of sellers, say S.

H-sellers: q0 = Sγq

L-sellers: (1−q0) = S(1− γ)(1−q)

The following proposition describes the equilibrium.

Proposition 1.4.4 Let q0 < qIP
c . There exists c∗ > 0 such that ∀c≤ c∗ there is a unique

undefeated equilibrium.

1. If q0 ≥ qN
c :=

vH−θL +
c
γ

θH−θL
> qS

c

• Both types of sellers post price

pk = p = EπB[θ |IB(p,H)] = q0
θH +(1−q0)θL

for all κ ∈ N0 and buyers accept if and only if ξ = H.

• In every period

S̄ =
γ−q0(2γ−1)

γ(1− γ)
q =

q0(1− γ)

γ−q0(2γ−1)
< q0

2. If q0 < qN
c only L-sellers participate in the market and they trade at price θL.

Similar to Proposition 1.4.3, H-sellers do not participate in the market when their
initial share is too small (q0 < qN

c ). In comparison to the TMO case, they participate
in the market for a smaller set of economies as the threshold qN

c is strictly higher than
qO

c .39 If the initial share of high quality sellers is sufficiently high, all sellers post

39Precisely, this holds when c
γ
< θH − vH . This is a necessary condition to have qN

c < 1.
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a unique price p irrespective of their previous periods in the market. Sellers are not
penalized if they trade late, because buyers do not observe previous time on market,
and they hold a single prior probability q̄. If a high quality seller participates in the
market, he will continue to do so until he trades. This result follows directly from
the forward-looking maximization problem and the fact that previous search costs are
sunk.

The equilibrium share of H-sellers q̄ is strictly lower than q0. The underlying eco-
nomic intuition is simple: on average, H-sellers trade before L-sellers (1

γ
versus 1

1−γ

periods, respectively); the latter stay longer on the market and decrease H-sellers’ mar-
ket share below q0. The value of q̄ is negatively related to signal precision γ because
it decreases the average time on market for H-sellers and increases it for L-sellers.
The negative impact of γ on q̄ perfectly outweighs the positive effect that a higher
signal precision has on buyers’ posterior beliefs after ξ = H. This feedback effect
makes signal precision irrelevant for equilibrium prices; in fact, the pooling price
p = q0θH + (1− q0)θL does not depend on γ . In particular, it is equal to buyers’
expected value for a good offered by newly born sellers (S0) before receiving a signal.

When γ > 1
2 all sellers trade immediately only if q0 ≥ qIP

c > qS
c . Proposition 1.4.4

implies that H-sellers participate only if q0 ≥ qN
c > qS

c . Therefore, for small c neither
the temporal dimension nor buyers’ informative signals mitigate the adverse selec-
tion problem. Actually, because qN

c > qS
c , all sellers trade for a strictly smaller set of

economies compared to the classic static adverse selection model (although qN
0 = qS

0).
Janssen and Roy (2004) point out that the infinite repetition of the static equilibrium is
the only stationary equilibrium of a dynamic adverse selection model with uninformed
buyers. Proposition 1.4.4 suggests that this result also applies when buyers have infor-
mative signals. Even though this conclusion seems extreme, the mechanism in place is
suggestive and it might be worth assessing its empirical validity.

1.5 Welfare analysis

In this section, I first study how different information structures compare in terms of
welfare. Then, I discuss how a small c may actually reduce H-sellers’ market partici-
pation compared to a situation with higher costs.

Definition 1.5.1 introduces a simple notion of allocative efficiency that does not

take into account how many periods elapse before sellers trade.

Definition 1.5.1 An equilibrium is allocative efficient if all sellers trade in finite time

almost surely.
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In my model setup with transferable utility, it is natural to adopt a utilitarian wel-
fare criterion. Clearly, if an equilibrium is not allocative efficient then it does not
maximize total welfare. As there is no time discounting, if c↘ 0 an allocative efficient
equilibrium is arbitrarily close to maximize utilitarian welfare. Moreover, since the
transfer scheme is budget balanced—prices paid by buyers are equal to prices received
by sellers—a utilitarian allocation is also Pareto efficient.

Proposition 1.5.1 summarizes the welfare properties of equilibria in the relevant set
of economies with q0 < qS

c .

Proposition 1.5.1 Let q0 < qS
c . The following statements hold when c↘ 0:

1. No equilibrium allocation maximizes total welfare.

2. If q0 ∈
[
qO

0 ,q
S
0
)

TMO improves welfare compared to TMN.

3. Under TMN welfare is identical to the static Akerlof (1970) model.

When time on market is not observable and q0 < qN
0 = qS

0, only L-sellers trade
and final allocations are identical to the ones in Akerlof (1970) model. Obviously,
the equilibrium allocation does not maximize total welfare. When time on market
is observable and q0 ∈ [qO

0 ,q
S
0), all H-sellers initially participate in the market, but a

strictly positive measure does not trade their goods because they drop out after a finite
number of periods (see Proposition 1.4.3). Not all mutually beneficial exchanges take
place, resulting in allocative inefficiency. Nevertheless, H-sellers participate and trade
with positive probability at least for one period, but they always stay out of the market
if time on market is not observable. To sum up, for small c, a dynamic model with
private informative signals achieves a welfare improvement compared to a static model
with uninformed buyers only when time on market is observable and q0 ∈ [qO

0 ,q
S
0).

Figure 1.3 illustrates the results of Proposition 1.5.1. Each economy is parametrized
by a (γ,q0) coordinate. Depending on time on market observability, different equilib-
ria exist: immediate pooling (white; q0 ≥ qIP

0 ), pooling with TMN (white and blue;
q0 ≥ qS

0), pooling with TMO40 (white, blue and green; q0 ≥ qO
0 ), and exclusive market

participation by L-sellers irrespective of time on market observability (red; q0 < qO
0 ).

Predicting whether H-sellers are more likely to participate in the market when c

is “small” or “large” is not clear cut. Naively, lower search costs increase final pay-
offs and relax their individual rationality constraint. However, this intuition does not
account for how equilibria might change.

On the one hand, if only pooling equilibria existed, a smaller c would enlarge the set
of economies in which H-sellers participate in the market; in fact, both qO

c and qN
c are

40For c < c∗ the equilibria in Proposition 1.4.3 and 1.4.4 exist for every q0 ≥ qO
0 and q0 ≥ qN

0 , respectively. However,
they may not be unique when q0 ≥ qS

0 or q0 ≥ qIP
0 , respectively.
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Figure 1.3: Equilibria in different economies E (γ,q0) for c≤ c∗.

decreasing in c. On the other hand, a small c encourages L-sellers to post high prices
and take advantage of buyers’ imperfect signals. If q0 is below qO

c or qN
c H-sellers stay

out of the market. Furthermore, pooling prices convey no additional information on
the underlying assets, so they rank at the bottom in terms of informational efficiency.

Proposition 1.4.2 characterizes the separating equilibrium and it suggests that a
small c may reduce trade opportunities when signal precision is sufficiently high. In-
deed, for every q0 a separating equilibrium exists only if:

c ∈
[

1− γ

γ
(θH−θL),γ(θH− vH)

]
In a separating equilibrium all sellers participate in the market and trade. Final alloca-
tions do not maximize welfare because sellers pay strictly positive search costs, but all
sellers eventually trade.

The beneficial signalling effect of search costs may extend to “intermediate” values
of c, i.e. when search costs are too small to create a separating equilibrium but too large
to support a pooling equilibrium. Unfortunately, providing a complete equilibrium
characterization for all values of c is a complex endeavor, especially in the TMO case.
As a result, I justify this claim through a specific semi-separating equilibrium.

Proposition 1.5.2 Irrespective of time on market observability, there exists a region of

parameters (θH ,vH ,θL,vL,q0,γ) where

• Only L-sellers trade for sufficiently small c.

• For

c ∈
[

γ(1− γ)

γ2 + γ−1
(vH−θL),

1− γ

γ
(θH−θL)

)
there exists at least one semi-separating equilibrium in which all sellers trade.
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In this semi-separating equilibrium all H-sellers participate in the market and trade.
However, γ and c should be sufficiently high to exclude complete pooling on the same
action. In equilibrium, H-sellers only post a high price and L-sellers mix between the
high price and θL. Posted prices do not depend on κ and all sellers trade over time.41

To sum up, search costs can be beneficial by discouraging low quality sellers
from pretending to have a high quality good. Although a small c makes participa-
tion cheaper, it may worsen adverse selection, and leave high quality goods out of the
market when their initial share is low. In the next section, I consider whether it is pos-
sible to enjoy the welfare benefits of low search costs without exacerbating the adverse
selection problem.

1.6 Market design

As previously explained, when the cost c is small H-sellers may have less incentive to
participate in the market. Even when all sellers participate, equilibria are in pooling
strategies and prices do not provide any information on product quality. If informa-
tional efficiency is considered relevant, this is another loss to take into account.

From a policy perspective, understanding how a benevolent market designer can in-
tervene to promote full market participation for the largest possible set of economies is
crucial. I adopt a stringent benchmark for the objectives of the market design interven-
tion: the resulting equilibrium has to achieve both allocative (see Definition 1.5.1) and
informational efficiency (i.e. prices reveal sellers’ types). In my setup, an allocative
efficient equilibrium maximizes utilitarian welfare when c = 0.

The market designer is subject to a series of reasonable limitations. First, the mech-
anism has to be budget balanced on the equilibrium path. This restriction seems nat-
ural as the market should not depend on any external amount of resources to induce
participation and trade. Second, transfers cannot be conditional on any posted price.
Differently from buyers, the market designer cannot observe currently posted prices.
This restriction is consistent with the idea that bilateral transactions involve elements
of private negotiation that are difficult to verify externally.42 Therefore, transfers can
only be conditional on market participation (τ), trade (r) and, possibly, time on mar-
ket (κ). If time on market is observable, transfers (τκ ,rκ) can vary across different
sellers’ cohorts. If instead time on market is not observable, transfers are constant,
i.e. (τκ ,rκ) = (τ,r). I consider a budget balanced mechanism that satisfies these

41See the proof of Proposition 1.5.2 for a complete characterization of the equilibrium.
42For example, parties may exchange side payments in order to misreport posted prices. Setting up a market

mechanism with price contingent transfers and robust to side payments goes beyond the scope of this paper. Moreover,
if a designer could observe currently posted prices, he could reconstruct the price history for each seller and would
have more information than buyers.
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properties to be feasible. For every cohort of sellers, a feasible mechanism has to be
ex interim individually rational as a seller knows his type when he participates in the
market. I consider a feasible mechanism to be efficient if it leads to an allocative and
informationally efficient equilibrium.

Proposition 1.6.1 Let c = 0. When time on market is observable an efficient mecha-

nism exists only in economies with

q0 ≥ q∗ := max

{
0,1−

(
γ

1− γ

)2
θH− vH

θH−θL

}

The efficient market mechanism implements a separating equilibrium with:

• a constant market participation tax τ∗ = 1−γ

γ
(θH−θL).

• a fixed tax rebate r∗ = τ∗
(

1+ 1−γ

γ
q∗
)

once the seller trades.

For q0 < q∗ no feasible mechanism improves market outcomes and only L-sellers trade.

In equilibrium, a low quality seller posts θL and buyers accept this price for every
signal realization, while a high quality seller posts θH and trades once he matches with
a buyer who receives a high signal. Prices reveal sellers’ types and the equilibrium is
informationally efficient.43 The efficient market intervention is invariant with respect
to κ because transfers do not depend on cohort Sκ . This is related to the fact that prices
reveal types, and information on the specific cohort becomes irrelevant for inferring
product quality. As (τ∗,r∗) is κ-invariant, the same mechanism is efficient when time
on market is not observable.

The green and yellow areas in Figure 1.4 illustrate the improvement due to (τ∗,r∗).
Without a market intervention, an equilibrium is allocative efficient only if q0 ≥ qS

0

(blue and white areas). When time on market is observable, H-sellers could also par-
ticipate in the market in economies in the green area q0 ∈ [qO

0 ,q
S
0), but they would not

trade for sure. No high quality seller participates in economies in the yellow and red
areas.

Proposition 1.6.1 points out that the mechanism (τ∗,r∗) may support an allocative
and informational efficient allocation for everyq0 ∈ (0,1) only if:

γ ≥
√

θH−θL√
θH−θL +

√
θH− vH

:= γ
∗

43In supplementary work, I relax the requirement of informationally efficient prices and explore whether it is possible
to implement an allocative efficient equilibrium for an even larger set of economies. I find that no improvement is
possible when time on market is not observable. However, I could not prove an analogous general result when time
on market is observable; nonetheless, I could not find any counterexample.
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Figure 1.4: Efficient market intervention (τ∗,r∗).

Despite the improvement, it is still not possible to implement a first best allocation in
every economy. If γ < γ∗ an efficient allocation is possible only if q0 ≥ q∗ > 0 (see the
red area in Figure 1.4).44 Otherwise, it is not possible to mitigate adverse selection with
a feasible market intervention. In these economies, the mechanism (τ∗,r∗) violates the
individual rationality constraint of H-sellers because of the budget balance restriction.
High and low quality sellers have different expected time on market (1

γ
and 1 periods

respectively), and budget balance leads to an implicit transfer from high to low quality
sellers, reducing the former’s expected payoff. A high quality seller prefers to stay out
of the market when this expected transfer outweighs his gains from trade.

1.7 Conclusion

Several theoretical papers point out the existence of an ITS equilibrium in markets
with asymmetric information on asset quality. All sellers participate in the market:
low quality sellers trade early, and high quality sellers trade later at higher prices.
Since most markets offer multiple opportunities to sell, these results seem favorable
compared to Akerlof’s conclusions. However, a few recent empirical contributions
document price patterns that conflict with the implications of ITS.

I study a dynamic adverse selection model with search costs: sellers incur sym-
metric and additive costs when searching for a new trade opportunity, and the market
participation decision is non-trivial. The resulting analysis provides two main benefits.
First, it highlights the role of search costs in the provision of a credible signalling de-
vice; second, it suggests market design policies to enhance participation in markets—
such as online trading platforms—that currently look for ways to attract high quality

44Notice that γ∗ < θH−θL
2θH−vH−θL

; see footnote 35 for a definition. As a consequence, the mechanism also improves
on a hypotetical separating equilibrium in which buyers are allowed to use mixed strategies.
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products.
I present a framework with only two types of goods and binary signals. Despite its

simplicity, the model allows me to uncover the main economic mechanisms at work.
Future extensions may broaden the setup to multiple goods and more general signal
distributions. I expect that the main economic intuition would continue to hold. An-
other extension would be to introduce heterogenous buyers who search for different
product qualities in a directed search environment.45

1.8 Appendix A

1.8.1 Extended notation

A behavioural strategy for seller i ∈ Sκ

λ
is a function σκ

λ ,i : Hκ−1→ ∆(AS). Let Σκ

λ ,i be

the set of all strategies σκ

λ ,i (let Σλ ,i =
∞

∪
κ=0

Σκ

λ ,i and σλ ,i ∈ Σλ ,i). A behavioural strategy

for a buyer matched with seller i is a function σB,i : IB→ ∆(AB), where IB denotes
her information set. It is IB(p,κ,ξ ) if time-on market is observable and IB(p,ξ ) if
it is not. When it is not relevant to specify whether TMO or TMN applies I denote an
information set with IB(p, ·,ξ ).

Let πλ ,i(ξ |hκ−1
i ) be seller’s i ∈ Sκ

λ
belief that his matched buyer receives signal ξ

after history hκ−1
i . I denote with Pσ∗π∗(z|hκ−1

i ) the probability to reach terminal his-
tory z ∈ Zi from hκ−1

i ∈ Hκ−1 under the assessment (σ∗,π∗). I use V κ

λ ,i(σ
∗,π∗|hκ−1

i )

for the continuation value to a seller i ∈ Sκ

λ
with previous history hκ−1

i . It uses the
utility function uκ

λ
(z) := ũλ (z)+κc, which ignores the previous κc sunk costs.

Each seller maximizes his inter-temporal expected utility after every history hκ−1
i ,

κ ∈ N0.

V κ

λ ,i(σ
∗
i ,σ

∗
−i,π

∗
i ,π

∗
−i|hκ−1

i ) = max
σi∈Σλ ,i

∑
z∈{∪Z j

i }∞
j=κ

Pσiσ
∗
−iπ
∗
i π∗−i(z|hκ−1

i )uκ

λ
(z)

In equilibrium, if a seller i ∈ Sκ

λ
posts price p, it is possible to write the value function

as:46

V κ

λ ,i(σ
∗,π∗|hκ−1

i )= ∑
ξ∈{H,L}

π
∗
λ ,i(ξ |h

κ−1
i )

[
σ
∗
B(A|IB(p, ·,ξ ))(p− vλ )+σ

∗
B(R|IB(p, ·,ξ ))V κ+1

λ
(σ∗,π∗|hκ

i )
]
−c

45Guerrieri and Shimer (2014) characterize a competitive search equilibrium where high quality sellers separate
because they are more willing to accept a lower probability to trade. Jullien and Mariotti (2006) present a similar
mechanism for auctions and separation results from setting different type-dependent reservation prices.

46Lemma 1.8.1 adapts the results in Hendon et al. (1996) to ensure that the one-shot deviation property holds
in this model setup.
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A buyer can accept or reject an offer. Her expected payoff is simply:{
EπB [θ ]− p i f aB = A

0 i f aB = R

where EπB [θ ] = πBθH +(1−πB)θL is the expectation under her posterior belief πB.
Definition 3.3.1 is a formal statement of the equilibrium concept in Definition 1.3.1.

Definition 1.8.1 An equilibrium of the game with TMO is a stationary and symmetric

assessment (σ∗,π∗) such that for every i ∈ Sκ

λ
, λ ∈ {H,L}, and κ ∈ N0:

1. σ∗
κ

λ
(aS,i|hκ−1

i ) ∈ arg max
σi∈Σλ ,i

V κ

λ
(σi,σ

∗
−i,π

∗|hκ−1
i ) ∀hκ−1

i ∈ Hκ−1.

2. σ∗B(aB,i|IB(pκ ,κ,ξ )) is a pure-strategy best response.

3. πB(p,κ,ξ ) is updated according to Bayes’ rule whenever possible.

4. πλ (ξ |hκ−1
i ) = Pλ (ξ ) for every hi ∈ Hκ−1, κ ∈ N0 and λ ∈ {H,L}.

The definition slightly restricts the weak Perfect Bayesian Equilibrium concept.
Condition 1 allows best response strategies to depend on λ , κ and hκ−1

i . Condition 2
only considers pure strategy best responses for buyers. Condition 3 requires buyers to
update beliefs according to Bayes’ rule on the equilibrium path. Since buyers are short-
lived, it is not necessary to impose any additional restriction on their out-of-equilibrium
beliefs in order to have a reasonable assessment (see Definition 3 of Fudenberg and
Tirole (1991)). Finally, condition 4 restricts sellers not to change their beliefs on the
likelihood that future matched buyers receive signal ξ ∈ {H,L}. This restriction seems
natural as buyers’ signal realizations are independent from H-sellers’ previous history.
As a result, it is equivalent to a “no signalling what you don’t know” condition on
sellers’ posterior beliefs. Adapting this definition to the TMN setup is straightforward
and I omit it in the interest of space. The only difference relates to buyers’ impossibility
to condition on κ , so they form beliefs using a single prior probability q. I always keep
the possibility that behavioural strategy profiles may differ among sellers’ cohorts and
histories.

Definition 1.8.2 states in the context of my framework the concept of undefeated
equilibrium originally presented in Mailath et al. (1993).

Definition 1.8.2 An equilibrium assessment (σ∗,π∗) defeats (σ̃ , π̃) if ∃{pκ}∞
κ=0 such

that:

1. ∃κ ∈ N0 with σ̃κ

λ
(pκ |hκ−1

i ) = 0 for every λ ∈ {H,L} and hκ−1
i ∈ Hκ−1 while

Λ(pκ) := {λ : ∃hκ−1
i ∈ Hκ−1 s.t σ∗

κ

λ
(pκ |hκ−1

i )> 0} 6=∅.
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2. ∀λ ∈ Λ(pκ) it holds V j
λ
(σ∗,π∗|h j−1

i ) ≥ V j
λ
(σ̃ , π̃|h j−1

i ) ∀h j−1
i ∈ H j−1and j ∈

N0.

Moreover, ∃λ ∈ Λ(pκ) s.t. V κ

λ
(σ∗,π∗|hκ−1

i )>V κ

λ
(σ̃ , π̃|hκ−1

i ) for some hκ−1
i ∈

Hκ−1.

3. π̃(pκ ,qκ ,ξ ) 6= PH(ξ )qκ σκ
H(pκ )

PH(ξ )qκ σκ
H(pκ )+PL(ξ )(1−qκ )σκ

L (pκ )
with σκ

λ
(pκ) satisfying:

• λ ∈ Λ(pκ) and V κ

λ
(σ∗,π∗|hκ−1

i )>V κ

λ
(σ̃ , π̃|hκ−1

i )⇒ σκ

λ
(pκ) = 1.

• λ /∈ Λ(pκ)⇒ σκ

λ
(pκ) = 0.

An equilibrium assessment (σ∗,π∗) is undefeated if there is no other equilibrium
that defeats (σ∗,π∗) according to Definition 1.8.2.

For notational simplicity I omit to explicitly specify π∗ when it is obvious from the
context. For instance, I use sometimes V κ

λ
(σ∗) to denote V κ

λ
(σ∗,π∗).

1.8.2 Preliminary results

Example 1.8.1 Inter-temporal separating equilibrium.

The example explains how ITS works. It is extremely simple and its goal is to make as
transparent as possible the main backbone mechanism.

Suppose sellers discount future payoffs at rate δ and they pay a per period search
cost c. In equilibrium low quality sellers trade immediately while high quality sellers
wait until a future period t > 0 to trade at a higher price.47 This equilibrium exists only
if:

IRH : δ t(θH− vH)− 1−δ t+1

1−δ
c≥ 0 → t ≤ f (δ ,c)

ICL : θL− vL− c≥ δ t(θH− vL)− 1−δ t+1

1−δ
c → t ≥ h(δ ,c)

The functions f (δ ,c) and h(δ ,c) are continuous in both arguments with limits:

lim
c↘0

f (δ ,c) = +∞ lim
δ↗1

f (δ ,c) = θH−vH−c
c

lim
c↘0

h(δ ,c) = 1
lnδ

ln θL−vL
θH−vL

lim
δ↗1

h(δ ,c) = θH−vH
c

The ITS equilibrium exists only if f (δ ,c)≥ h(δ ,c). This is always the case if c= 0
and δ < 1 while it is never so if c > 0 and δ = 1 as vH > θL.

47To simplify derivation, I assume sellers have full bargaining power but notice that the argument generalizes to
other bargaining protocols.
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Lemma 1.8.1 A strategy profile σ∗i is a sequential best reply to (σ∗−i,π
∗) for seller

i ∈ S if and only if σ∗
κ

i (aS,i|hκ−1
i ) is a local best reply to (σ∗−i,π

∗) for all κ ∈ N0 and

hκ−1
i ∈ Hκ−1.

Proof Lemma 1.8.1.
Necessity. It follows directly from the definition of sequential best reply.
Sufficiency. Suppose on the contrary that σ∗i is a local best reply for every hκ−1

i ∈
Hκ−1 and κ ∈ N0, but there exists a strategy σ ′i that strictly improves on σ∗i after
history hκ−1

i . Let this increment be equal to ε > 0. Seller’s i expected payoff at hκ−1
i

is:

V κ

λ ,i(σ
′
i ,σ

∗
−i,π

∗|hκ−1
i ) = ∑

z∈{∪Z j
i }∞

j=κ

Pσ ′i σ∗−iπ
∗
(z|hκ−1

i )uκ

λ
(z) = ∑

z∈Zκ
i

Pσ ′i σ∗−iπ
∗
(z|hκ−1

i )uκ

λ
(z)

+ ∑
hκ∈Hκ/Zκ

i

Pσ ′i σ∗−iπ
∗
(hκ

i |hκ−1
i ) ∑

z∈{∪Z j
i }∞

j=κ+1

Pσ ′i σ∗−iπ
∗
(z|hκ

i )u
κ

λ
(z)

Let c(z|hκ−1
i ) be the search costs from hκ−1

i ∈Hκ−1 to terminal history z ∈ Z j
i , i.e.

c(z|hκ−1
i ) = ( j−κ +1)c.

An upper bound on ∑

z∈{∪Z j
i }∞

j=κ+1

Pσ ′i σ∗−iπ
∗
(z|hκ

i )u
κ

λ
(z) is:

∑
z∈{∪Z j

i (p)} j≥κ+1

Pσ ′i σ∗−iπ
∗
(z|hκ

i )[θH − vλ − c(z|hκ
i )]+ ∑

z∈{∪Z j
i (D)} j≥κ+1

Pσ ′i σ∗−iπ
∗
(z|hκ

i )[−c(z|hκ
i )] (1.1)

Observe that σ∗i is a local best reply at hκ−1
i , and a seller can always get a zero

continuation value if he drops out of the market. Therefore, for some hκ
i ∈ Hκ/Zκ

i it
must be Pσ ′i σ∗−iπ

∗
(hκ

i |h
κ−1
i )> 0 and σ ′i is a profitable deviation only if:

∑
z∈{∪Z j

i } j≥κ+1

Pσ ′i σ∗−iπ
∗
(z|hκ

i )u
κ

λ
(z)> ∑

z∈{∪Z j
i } j≥κ+1

Pσ∗i σ∗−i(z|hκ
i π
∗)uκ

λ
(z)≥−c (1.2)

As a result, ∑

z∈{∪Z j
i (p)} j≥κ+1

Pσ
′
i σ∗−i(z|hκ

i ) > 0 otherwise sellers would have the same ex-

pected payoff at hκ−1
i because σ∗i is a local best reply. Hence, equations (1.1) and (1.2)

imply:

(θH− vλ )>

∑

z∈{∪Z j
i } j≥κ+1

Pσ ′i σ∗−i(z|hκ
i )c(z|hκ

i )− c

∑

z∈{∪Z j
i (p)} j≥κ+1

Pσ ′i σ∗−i(z|hκ
i )

≥ Pσ ′i σ∗−i(z|hκ
i )c(z|hκ

i )− c

∑

z∈{∪Z j
i (p)} j≥κ+1

Pσ ′i σ∗−i(z|hκ
i )

for all z ∈ Z j
i and j ≥ κ +1.
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Since c(z ∈ Z j
i |hκ

i )→+∞ as j→+∞ the inequality holds only if lim
j→+∞

Pσ ′i σ∗−i(z ∈

Z j
i |hκ

i ) = 0. Therefore, there exists a finite t̂ and history hκ+t̂
i such that the strategy:

σ̂i =

{
σ ′i ∀ j < κ + t̂ and ∀h j

i ∈ H j

σ∗i ∀ j ≥ κ + t̂ and ∀h j
i ∈ H j

improves of at least ε

2 on σ∗i with a finite number of deviations; i.e:

V κ

λ ,i(σ̂i,σ
∗
−i|hκ−1

i )−V κ

λ ,i(σ
∗
i ,σ

∗
−i|hκ−1

i )≥ ε

2

However, the main result in Hendon, Jacobsen and Sloth (1996) ensures that no finite
sequence of deviations can improve on σ∗i , contradiction.

Proof Proposition 1.4.1.
Suppose per contra there exists an ITS equilibrium (σ∗,π∗). Denote by Pσ∗π∗

λ
(z j(p)|hκ−1

i )

the probability that seller i ∈ Sκ

λ
reaches the terminal history z ∈ Z j

i (p) under this sep-
arating equilibrium (σ∗,π∗). For a L-seller i ∈ Sκ

L a deviation strategy σ ′
j

i (p|h j−1
i ) =

σ∗
j

H (p|h j−1
i ), j ≥ κ , for all h j−1

i ∈ H j−1 implies:

Pσ∗π∗
H (z j(p)|hκ−1

i ) = Pσ ′i σ∗−iπ
∗

L (z j(p)|hκ−1
i ) (1.3)

∀z j(p) ∈ Z j(p), j ≥ 0, since signals are not informative (γ = 1
2 ) and both sellers have

identical chances to trade if they play the same strategy profile.
In equilibrium L-sellers do not find strictly profitable to play σ ′i only if:

θL− vL− c≥
∞

∑
j=κ

∞∫
0

Pσ ′i σ∗−iπ
∗

L (z j(p)|hκ−1
i ) [p− vL− ( j−κ +1)c] dp (1.4)

All H-sellers eventually trade, hence:

∞

∑
j=κ

∞∫
0

Pσ∗π∗
H (z j(p)|hκ−1

i )dp =
∞

∑
j=κ

∞∫
0

Pσ ′i σ∗−iπ
∗

L (z j(p)|hκ−1
i )dp = 1 (1.5)

where the first equality follows by equation (1.3). Therefore, L-sellers no deviation
condition can be rewritten as:

θL− c≥
∞

∑
j=κ

∞∫
0

Pσ∗π∗
H (z j(p)|hκ−1

i ) [p− ( j−κ +1)c] dp (1.6)
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H-sellers’ market participation constraint is satisfied only if:

∞

∑
j=κ

∞∫
0

Pσ∗π∗
H (z j(p)|hκ−1

i ) [p− vH− ( j−κ +1)c] dp≥ 0

However, by equations (1.5) and (1.6) an upper bound on H-sellers’ equilibrium ex-
pected payoff is θL− vH − c < 0, a violation of H-sellers’ individual rationality con-
straint.

Lemma 1.8.2 In every equilibrium assessment (σ∗,π∗) it holds:

V κ

λ
(σ∗,π∗|hκ−1

i ) =V κ

λ
(σ∗,π∗|h̃κ−1

i ) :=V κ

λ
(σ∗,π∗)

for every hκ−1
i , h̃κ−1

i ∈ Hκ−1.

Proof Lemma 1.8.2.
Previous histories hκ−1

i ∈ Hκ−1 are not observable to buyers so their best responses
with respect to any price offer p from sellers in Sκ are identical for sellers with different
histories. Moreover, final payoffs depend only on how many periods κ were previously
spent on the market and—in case of trade—on the last price offer p. Therefore, in
equilibrium all sellers in Sκ

λ
must have the same expected payoff irrespective of hκ−1

otherwise a profitable and unobservable deviation would exist for a subset of sellers.

Proof Proposition 1.4.2.
Consider sellers in Sκ , κ ≥ 0. Definition 1.4.1 requires separating strategies for every
seller i ∈ Sκ—after all possible histories hκ−1

i ∈ Hκ−1—on and off the equilibrium
path.

Step 1. Let Sκ
H ,S

κ
L 6= /0. In equilibrium, separating strategies are:

σ∗
κ

H (θH |hκ−1
i ) = 1 σ∗

κ

L (θL|hκ−1
i ) = 1

σ∗B(A|IB(θH , ·,H)) = 1 σ∗B(A|IB(θH , ·,L)) = 0

σ∗B(A|IB(θL, ·,L)) = 1 σ∗B(A|IB(p, ·,ξ )) = 0 for p ∈ (θL,θH)

for every hκ−1
i ∈ Hκ−1.

Let pκ
H > pκ

L be separating prices for H- and L-sellers in Sκ . As Sκ 6= /0, on the
equilibrium path sellers may stay on the market at least κ previous periods. In equi-
librium, separation implies EπB[θ |I (pκ

H , ·,ξ )] = θH and EπB[θ |I (pκ
L , ·,ξ )] = θL for

every ξ ∈ {H,L}.
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If σB(A|IB(pκ
H , ·,ξ ))=σB(A|IB(pκ

L , ·,ξ )) for every ξ ∈{H,L}, buyers accept pκ
H

and pκ
L with equal probability. In turn L-sellers would deviate as pκ

H > pκ
L . Therefore,

separation can occur only if buyers accept (pκ
H , pκ

L) with different probabilities. By
point 2. in Definition 3.3.1 the only plausible equilibrium strategy is: buyers accept pκ

L

for every ξ ∈ {H,L} and pκ
H only if ξ = H. This is possible only if pκ

H = θH otherwise
buyers would always accept. Sequential rationality requires L-sellers to ask the highest
price accepted by buyers, i.e. pκ

L = θL.
Suppose per contra that separating behavioural strategies are not in pure strategies.

From the argument in Step 1. of the proof of Lemma 1.4.1 sellers in Sκ

λ
can mix: (i)

between two prices pκ

λ
and pκ

λ ,2 both accepted with positive probability; (ii) between
pκ

λ
and a price rejected with probability one.
If H-sellers play strategy (i), L-sellers would not post pκ

L = θL as pκ
H,2 ≥ vH is

accepted with the same probability. Similarly, if L-sellers play strategy (i) and mix
between θL and pκ

L,2 they prefer not to post pκ
L,2 but θH > pκ

L,2 as both prices are
accepted only if ξ = H, contradicting the hypothesis that H-sellers play a separating
strategy.

If sellers in Sκ

λ
play strategy (ii) then at least one of these two indifference condi-

tions hold:

γ(θH− vH)+(1− γ)V κ+1
H (σ∗,π∗|hκ−1

i )− c =V κ+1
H (σ∗,π∗|hκ−1

i )− c

θL− vL− c =V κ+1
L (σ∗,π∗|hκ−1

i )− c

The first equation implies V κ+1
H (σ∗,π∗|hκ−1

i ) = θH − vH but in all possible equilibria
it must be V κ+1

H (σ ,π)≤ θH− vH− c otherwise buyers have to pay a price higher than
θH , violating their individual rationality. The second equation cannot hold as well
because a L-seller would get a higher payoff deviating to θH since:

(1− γ)(θH − vL)+ γV κ+1
L (σ∗,π∗|hκ−1

i )− c = (1− γ)(θH − vL)+ γ(θL− vL)− c > θL− vL− c

Therefore, in equilibrium all L-sellers trade immediately while a share 1− γ of H-
sellers in Sκ

H moves to period κ +1, i.e. Sκ+1
H 6= /0 if H-sellers continue to participate in

the market. Definition 1.4.1 requires separating behavioural strategies for every cohort
Sκ , κ ∈N0. Hence, the same separating behavioural strategy is played for every κ ≥ 0.
To support separation, out of equilibrium beliefs should be sufficiently negatively, say
πB(p, ·,ξ ) = 0, for every price above θL but below θH .

Step 2. A separating behavioural strategy profile exists if and only if:

c ∈
[

1− γ

γ
(θH−θL),γ(θH− vH)

]
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By Step 1 and Lemma 1.8.2 it follows that V κ

λ
(σ∗,π∗|hκ−1

i ) = Vλ (σ
∗,π∗). Using

Lemma 1.8.1 L-sellers in Sκ
L post θL and trade if and only if for every hκ−1

i ∈ Hκ−1:

VL(σ
∗,π∗) = θL− vL− c≥ (1− γ)(θH− vL)+ γ(θL− vL− c)− c

i.e. c≥ 1−γ

γ
(θH−θL).

H-sellers’ participate in the market until they trade if and only if:

VH(σ
∗,π∗) = γ(θH− vH)+(1− γ)VH(σ

∗,π∗)− c≥ 0

i.e. VH(σ
∗,π∗) = θH− vH− c

γ
≥ 0 or c≤ γ(θH− vH).

1.8.3 Pooling equilibria

Proof Lemma 1.4.1.
See Appendix B.

Lemma 1.8.3 For c sufficiently small, under TMO there is no undefeated equilibrium

(σ∗,π∗) in which Sκ
H 6= /0, Sκ

L 6= /0 and H- and L-sellers in Sκ only post prices rejected

with probability one.

Proof. By Lemma 1.4.1 if all sellers participate in the market the only admissible
equilibrium strategies are: (i) H- and L-sellers post the same price and buyers accept
only if ξ = H; or (ii) under TMO, H- and L-sellers only post prices rejected with
probability one.

Let KN(κ) :=
{

j ≥ κ : sellers in S j play strategy (ii)
}

. Obviously sellers in Sκ

λ
,

λ ∈ {H,L}, would not play strategy profile (ii) if they drop in the subsequent pe-
riod κ + 1. Therefore, there exists at least one future period in which they trade with
positive probability, i.e. there exists at least one l ≥ κ such that sellers in Sl play be-
havioural strategy (i). Without loss of generality, consider j such that j ∈ KN(κ) and
j + 1 /∈ KN(κ). Since no seller in S j trades then q j = q j+1. Consider an alternative
equilibrium (σ̃ , π̃) in which each seller i ∈ S j plays: σ̃ l(p|hl−1

i ) = σ∗
l
(p|hl−1

i ) for ev-
ery l < j and ∀hl−1

i ∈H l−1; and σ̃ l(p|hl−1
i ) = σ∗

l+1
(p|hl

i) for every l ≥ j and ∀hl−1
i ∈

H l−1.48. Let π̃(p, l,ξ ) = π∗(p, l,ξ ) for every l < j, and π̃(p, l,ξ ) = π∗(p, l + 1,ξ )
for every l ≥ j. It is easy to observe that, if (σ∗,π∗) is an equilibrium assessment,
(σ̃ , π̃) is also an equilibrium as it satisfies analogous no deviation conditions. How-
ever, V l

λ
(σ̃ , π̃) > V l

λ
(σ∗,π∗) for every l ≤ j as they do not incur an extra cost c in

period j. As a result, (σ∗,π∗) would be defeated by (σ̃ , π̃).

48The s-th element in hl−1
i is equal to the s-th element in hl for s < j and equal to the s+1-th for s≥ j.
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Proof Proposition 1.4.3.
1. By Lemma 1.4.1 and 1.8.3 the only admissible equilibrium strategy for c≤ c∗

is:

σ
∗κ

H (pκ) = σ
∗κ

L (pκ) = 1 σ
∗
B(A|IB(pκ ,κ,H)) = 1 σB(A|IB(pκ ,κ,L)) = 0

Playing this strategy profile implies:

Sκ+1
H = (1− γ)Sκ

H

Sκ+1
L = γSκ

L

}
Sκ+1

Sκ = (1− γ)
Sκ

H
Sκ + γ

Sκ
L

Sκ = (1− γ)+(2γ−1)(1−qκ)

Therefore:

qκ+1 =
Sκ+1

H
Sκ+1 = (1− γ)

Sκ
H

Sκ

Sκ

Sκ+1 =
(1− γ)qκ

(1− γ)+(2γ−1)(1−qκ)
:= g(qκ) := gκ(q0)

As qκ+1 does not depend on pκ and buyers cannot observe previously posted
prices, future continuation values V j

λ
(σ∗,π∗), j > κ , do not depend on pκ . As a re-

sult, pκ =EπB[θ |I (pκ ,κ,H)] supports the unique undefeated equilibrium (σ∗,π∗) as
both types of seller get the highest possible payoff in the class of admissible equilibria
(see Lemma 1.4.1). The undefeated equilibrium is unique because prices {pκ}

κ∈N0

are unique.
Let V κ

λ
(q) := V κ

λ
(σ∗,π∗) be the continuation value in (σ∗,π∗) for a seller i ∈ Sκ

λ

when qκ = q. Let κ∗(q0)+ 1 be the maximum number of periods on the market for
a H-seller. If κ∗(q0) = 0 he participates just for one period, while if κ∗(q0) = +∞

he participates until he trades. For every seller i ∈ Sκ , κ ≤ κ∗(q0), the maximization
problem can be rewritten as follows:

V κ

λ
(qκ) = Pλ (H)(pκ − vλ )+ [1−Pλ (H)]V κ+1

λ
(qκ+1)− c

As qκ is decreasing in κ then pκ is also decreasing in κ as EπB[θ |IB(pκ ,κ,H)] is
monotonically increasing in qκ . Hence, V κ

λ
(qκ) is decreasing in qκ and V κ+1

λ
(qκ+1)<

V κ

λ
(qκ) as qκ+1 < qκ . As a result, H-sellers do not find profitable to postpone trade to

a future period.
Market participation requires V κ

λ
(qκ)≥ 0. Let’s consider the following bounds on

V κ
H (qκ):

Upper bound: Uκ
H(q

κ) = γ(pκ − vH)+(1− γ)Uκ
H(q

κ)− c⇒Uκ
H(q

κ) = pκ − vH− c
γ

Lower bound: Lκ
H(q

κ) = γ(pκ − vH)− c
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Uκ
H(q

κ), V κ
H (qκ) and Lκ

H(q
κ) are monotonically increasing in qκ and Uκ

H(q
κ)≥V κ

H (qκ)≥
Lκ

H(q
κ). Notice that Uκ

H(q
κ) =

Lκ
H(q

κ )
γ

so H-sellers exit the market whenever Lκ
H(q

κ)≤
0.

Let qO
c := arg

q∈(0,1)
Lκ

H(q) = 0. Then:

Lκ
H(q

O
c ) = γ(EπB [θ |IB(pκ ,κ,H)]− vH)− c = γ

(
qO

c γθH +(1−qO
c )(1− γ)θL

qO
c γ +(1− γ)(1−qO

c )
− vH

)
− c = 0

Solving for qO
c

qO
c =

(1− γ)(vH + c
γ
−θL)

γ(θH − vH − c
γ
)+(1− γ)(vH + c

γ
−θL)

H-sellers participate only for a finite number of periods:

κ
∗(q0) = max

{
κ ∈ N0 : gκ(q0)≥ qO

c

}
since qκ+1 = gκ(q0) is strictly decreasing in κ .

2. H-sellers do not participate in economies E (γ,q0) such that q0 < qO
c . L-

sellers always trade because there are gains from trade (θL > vL), and the only possible
sequential best response is to post θL which buyers accept with probability one.49

Proof Proposition 1.4.4.
1. By Lemma 1.4.1, for c≤ c∗ sellers’ equilibrium strategy are σλ (p)=σκ

λ
(p)=

1 for every λ ∈ {H,L} and κ ∈ N0. Price p is accepted only if ξ = H.
In equilibrium, strategies do not depend on time and, by Lemma 1.4.1, the price p

is posted by all cohorts of sellers. Thus, this outcome is possible only if the economy is
in a stationary state, i.e. if the measure of sellers S, say S̄, and the fraction of H-sellers,
say q̄ = S̄H

S̄ , are constant over time. In turn, in every period an equal measure of each
type of seller must enter and exit the market:

{
q0 = S̄γ q̄

(1−q0) = S̄(1− γ)(1− q̄)
⇒

 S̄ = γ−q0(2γ−1)
γ(1−γ)

q̄ = q0(1−γ)
γ−q0(2γ−1)

Notice that S̄ and q̄ do not depend on c or p. A similar argument to the one pre-
sented in the proof of Proposition 1.4.3 ensures that the undefeated equilibrium is
unique and sellers post a price p̄ equal to buyers’ posterior valuation when ξ = H.

p̄ = EπB [θ |IB(p̄,H)] =
γ q̄θH +(1− γ)(1− q̄)θL

γ q̄+(1− γ)(1− q̄)
=

θH + (1−γ)
γ

(1−q̄)
q̄ θL

1+ (1−γ)
γ

(1−q̄)
q̄

49The price θL must be always accepted with probability one; otherwise, L-sellers would deviate and post θL− ε,
for ε arbitrary small, which buyers would always accept. Indeed, under any belief, their minimum valuation for the
good is θL.
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Observe that (1−γ)
γ

(1−q̄)
q̄ = 1−q0

q0 , so p̄ = EπB[θ |IB(p̄,H)] = q0θH +(1−q0)θL.
Every cohort of sellers Sκ posts price p̄ and previous search costs are sunk, hence

continuation values are constant ∀κ , i.e. V κ

λ
(σ∗,π∗) = Vλ (σ

∗,π∗). H-sellers partici-
pate in the market until they trade because their forward looking decision problem is
unchanged. The individual rationality constraint for H-sellers is:

VH(σ
∗,π∗) = γ(p̄− vH)+(1− γ)VH(σ

∗,π∗)− c≥ 0

i.e.
VH(σ

∗,π∗) = p̄− vH−
c
γ
= q0

θH +(1−q0)θL− vH−
c
γ
≥ 0.

This is satisfied only if q0 ≥ qN
c =

vH−θL+
c
γ

θH−θL
.

2. See point 2. in the proof of Proposition 1.4.3.

1.8.4 Welfare analysis

Proof Proposition 1.5.1.
It follows directly from Definition 1.5.1 and Propositions 1.4.3 - 1.4.4.

Proof Proposition 1.5.2.
I construct an equilibrium assessment (σ ,π) such that:

1. For every κ ∈ N0 H-sellers always post the price pκ
H = pH = θL +

γ

1−γ
c while

L-sellers post pH with probability 1−γ

γ
and θL with probability 2γ−1

γ
.

2. Buyers always accept θL while they accept pH only if ξ = H.

Step 1. Equilibrium characterization
In a semi-separating equilibrium sellers evolve across cohorts Sκ according to:

Sκ+1
H = (1− γ)Sκ

H

Sκ+1
L = σκ

L (pH)γSκ
L

}
Sκ+1

Sκ = (1− γ)
Sκ

H
Sκ +σκ

L (pH)γ
Sκ

L
Sκ = (1− γ)+ [γ(1+σκ

L (pH)]−1](1−qκ)

Hence:

qκ+1 =
Sκ+1

H
Sκ+1 = (1− γ)

Sκ
H

Sκ

Sκ

Sκ+1 =
(1− γ)

(1− γ)+ [γ(1+σκ
L (pH))−1](1−qκ)

qκ

If qκ+1 = qκ ∀κ ∈ N0 L-sellers’ strategy satisfies [γ(1+ σκ
L (pH)]− 1] = 0, i.e.

σ k
L(pH) =

1−γ

γ
. To play a mixed behavioural strategy L-sellers are indifferent between

posting pH or θL. Since qκ = q0 for every κ ∈ N0, time on market observability is
irrelevant because buyers’ prior probability to match with a H-seller is constant across
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cohorts. Buyers’ optimal strategy does not change across cohorts Sκ and—in turn—
sellers’ continuation values do not depend on κ , i.e. V κ

λ
(qκ) =Vλ (q0)50 ∀κ ∈N0. The

indifference condition for L-sellers is:

VL(q0) = (1− γ)(pH− vL)+ γVL(q0)− c = θL− vL− c

or
VL(q0) = (1− γ)(pH− vL)+ γ[θL− vL− c]− c = θL− vL− c

The last expression implies pH = θL +
γ

1−γ
c. Substituting this price into:

VH(q0) = γ(pH− vH)+(1− γ)VH(q0)− c

I get:

VH(q0) = pH− vH−
c
γ
= θL− vH +

γ2 + γ−1
γ(1− γ)

c

H-sellers individual rationality constraint is satisfied only if c≥ γ(1−γ)
γ2+γ−1(vH−θL).

Buyers follow their equilibrium strategy if and only if:

EπB[θ |IB(pH ,κ,H)]≥ pH ≥ EπB [θ |IB(pH ,κ,L)]

i.e.
q0γθH +(1−q0) (1−γ)2

γ
θL

q0γ +(1−q0) (1−γ)2

γ

≥ θL +
γ

1− γ
c≥ q0

θH +(1−q0)θL

This set of inequalities can be rewritten as:

qSSU :=
γ

1−γ
c

θH−θL
≥ q0 ≥ 1− γ

γ

[
θH−θL

c

]
− 2γ−1

1−γ

:= qSS

Notice that γ

[
θH−θL

c

]
− 2γ−1

1−γ
> 0 since θH−θL

c ≥ γ

1−γ
> 2γ−1

γ(1−γ) .

Step 2. There exist a set of economies E (γ,q0) that support the equilibrium in Step

1. but not the pooling equilibria in Propositions 1.4.3 and 1.4.4.

It is sufficient to find a set of parameters (θH ,θL,vH ,vL,γ,c) such that qSS < qO
0 ,

i.e.:
1− γ

γ

[
θH−θL

c

]
− 2γ−1

1−γ

<
(1− γ)(vH−θL)

γ(θH− vH)+(1− γ)(vH−θL)

and c is such that the semi-separating equilibrium exists, i.e. c≥ γ(1−γ)
γ2+γ−1(vH−θL).

50I adopt the notation already used in the proof of Proposition 1.4.3.
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As vH−θL > 0, the signal precision γ must be sufficiently high to have γ2+γ−1
γ(1−γ) > 0,

i.e. γ >
√

5−1
2 . For a given set of parameters (θH ,θL,vH ,vL,γ), the lower bound qSS

is increasing in c so its value is minimum for c = γ(1−γ)
γ2+γ−1(vH − θL). Then, qSS < qO

0
requires:

1− γ

γ

[
θH−θL

c

]
− 2γ−1

1−γ

=
(1− γ)2(vH −θL)

(γ2 + γ−1)θH + γ(1− γ)θL− (2γ−1)vH
<

(1− γ)(vH −θL)

γ(θH − vH)+(1− γ)(vH −θL)

After some tedious calculations, the above inequality is equivalent to:

2
θH− vH

vH−θL
γ

2 + γ− θH−θL

vH−θL
> 0

Using the standard quadratic formula:

γ > γ̂ =
−1+

√
1−8 (θH−vH)(θH−θL)

(vH−θL)2

4θH−vH
vH−θL

The discriminant ∆≡ 1−8 (θH−vH)(θH−θL)
(vH−θL)2 is strictly positive if (θH−vH)(θH−θL)

(vH−θL)2 < 1
8 (for

example: θH = 1, vH = 0.98 and θL = 0.8). If the latter inequality holds, then ∆ < 1
and γ̂ < 1 because:

−1+
√

∆

4θH−vH
vH−θL

< 1⇔
√

∆−4
θH− vH

vH−θL
< 1

Therefore, if (θH−vH)(θH−θL)
(vH−θL)2 < 1

8 for every γ > max(γ̂,
√

5−1
2 ) there exists an econ-

omy such that qSS < qO
0 .

1.8.5 Market design

Proof Proposition 1.6.1.
Under TMO the set of feasible transfers (τκ ,rκ)+∞

κ=0 can vary across sellers belonging
to different cohorts Sκ . I denote with τκ a transfer from a participating seller in Sκ to
the designer and with rκ a transfer from the designer to a seller, if he trades after κ pre-
vious periods in the market.51 For a constellation (θH ,vH ,θL,vL,γ), let (τ∗

κ

,r∗
κ

)+∞

κ=0

be the efficient mechanism existing for the lowest possible q0. Denote this minimum
value with q∗.

To implement an equilibrium with informationally efficient prices, the mechanism

51For example τκ > 0 is the amount that a seller in Sκ has to pay to the designer in order to participate in the
market. On the contrary rκ > 0 is the positive transfer that a seller receives if he trades after κ previous periods in the
market. In this vein, I often call τκ a market participation tax and rκ a tax rebate that a seller receives upon trade.
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has to implement a separating equilibrium. By Step 1 and 2 of the proof of Proposi-
tion 1.4.2, in equilibrium, L-sellers trade immediately while H-sellers trade once they
match with a buyer who receives a high signal. By the appropriate law of large num-
bers, a system of transfers is budget balanced (henceforth BB) on the equilibrium path
if and only if:

(1−q0)(r0− τ
0)≤ q0

+∞

∑
κ=0

(1− γ)κ(τκ − γrκ)

Since utility is quasi-linear in transfers and agents are risk neutral, if the BB constraint
holds with equality a feasible mechanism does not change the total trade surplus be-
tween buyers and sellers, i.e. q0(θH − vH)+ (1− q0)(θL− vL). Moreover, for c = 0
delaying trade does not reduce total surplus. In a separating equilibrium assessment,
say (σ∗,π∗), sellers of type λ trade at price θλ and buyers’ expected payoff is zero.
Therefore, if BB holds with equality a mechanism implementing a separating equilib-
rium (σ∗,π∗) satisfies:

q0V 0
H(σ

∗,π∗)+(1−q0)V 0
L (σ

∗
π
∗) = q0(θH− vH)+(1−q0)(θL− vL)

where the LHS is sellers’ equilibrium payoffs while the RHS is total trade surplus.
If BB is slack it is possible to have an efficient mechanism for every q0, i.e. q∗ = 0.

If q∗ > 0, BB holds with equality, otherwise the market designer may use his profit to
relax sellers’ individual rationality constraints. In the remainder of the proof I consider
a binding BB.

Step 1. If V 0
H(σ

∗,π∗) = 0 then V κ
H (σ∗,π∗) = 0 for every κ ∈ N0.

If V 0
H(σ

∗,π∗) = 0 then (1−q0)V 0
L (σ

∗,π∗) = q0(θH− vH)+(1−q0)(θL− vL), i.e.
L-sellers get all trade surplus available in the economy. If V κ

H (σ∗,π∗) < 0 for some
κ then H-sellers in Sκ

H would exit the market, and the resulting allocation would not
be efficient. If V κ

H (σ∗,π∗) > 0 for some κ ≥ 1, then H-sellers in cohort Sκ enjoy a
strictly positive payoff only if their matched buyers get a negative expected payoff,
contradicting the optimality of buyers’ strategy.

Step 2. If q∗ > 0 then V 0
H(σ

∗,π∗) = 0.

As (τ∗
κ

,r∗
κ

)+∞

κ=0 supports a separating equilibrium H-sellers’ equilibrium payoff
is:52

V 0
H(q

0) = θH− vH−
∞

∑
κ=0

(1− γ)κ(τ∗
κ

− γr∗
κ

) = θH− vH−
1−q0

q0 (r∗
0
− τ
∗0
)

where the last equality follows from the BB constraint. Observe that τ∗
0

only affects

52Similarly to the proof of Proposition 1.4.3 I stress the importance of q0 and I expand the notation using V κ

λ
(q0)

rather than V κ

λ
(σ∗,π∗).
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the initial market participation decision for sellers in cohorts κ = 0, but it does not
change the future incentive compatibility constraints. Rearranging the BB constraint:

τ
∗0
= (1−q0)r∗

0
−q0[γr∗

0
+

∞

∑
κ=1

(1− γ)κ(τ∗
κ

− γr∗
κ

)]

For different values of q0 we can leave unchanged r∗
0

and (τ∗
κ

,r∗
κ

)∞
κ=1 and achieve

BB through τ0. Substituting τ∗
0

in sellers’ expected payoff:53

V 0
H(q

0) = θH− vH− 1−q0

q0 (r∗
0− τ∗

0
)

= θH− vH− (1−q0)[(1+ γ)r∗
0
+

∞

∑
κ=1

(1− γ)κ(τ∗
κ − γr∗

κ

)]

V 0
L (q

0) = θL− vL +
q0

1−q0 [θH− vH−V 0
H(σ

∗)]

= θL− vL +q0[(1+ γ)r∗
0
+

∞

∑
κ=1

(1− γ)κ(τ∗
κ − γr∗

κ

)]

Suppose on the contrary that V 0
H(q

∗) > 0 with q∗ > 0. If [(1+ γ)r∗
0
+

∞

∑
κ=1

(1−

γ)κ(τ∗
κ−γr∗

κ

)]> 0 then it is easy to observe that there exists a sufficiently small ε > 0
such that for every q0 ≥ q∗− ε a market intervention that only adjusts τ0 to preserve
budget balance achieves V κ

H (q0) ≥ 0 and V κ
L (q0) ≥ 0 for every κ ∈ N0, contradicting

the definition of q∗. If instead [(1 + γ)r∗
0
+

∞

∑
κ=1

(1− γ)κ(τ∗
κ − γr∗

κ

)] < 0 then for

every q0 < q∗ we can adjust τ0 such that V 0
H(q

0)>V 0
H(q

∗) and V 0
L (q

0)>V 0
L (q
∗)≥ 0,

contradicting again the definition of q∗.

Step 3. For every (θH ,vH ,θL,vL) there exists γ∗ such that for γ ∈ (1
2 ,γ
∗) it is q∗> 0.

Let (τ∗
κ

γ ,r∗
κ

γ )∞
κ=0 be a mechanism that implements a separating equilibrium in an

economy with signal precision γ . Sellers in S0
L post θL only if:

θL− vL + r0∗
γ − τ

0∗
γ ≥ θH− vL−

∞

∑
κ=0

γ
κ [τκ∗

γ − (1− γ)rκ∗
γ ] (1.7)

From the BB constraint I can substitute r0∗
γ −τ0∗

γ with q0

1−q0

∞

∑
κ=0

(1− γ)κ(τ∗
κ

γ − γr∗
κ

γ )] to

get the no-deviation condition:

∞

∑
κ=0

γ
κ [τκ∗

γ − (1− γ)rκ∗
γ ]+

q0

1−q0

∞

∑
κ=0

(1− γ)κ(τκ∗
γ − γrκ∗

γ )]≥ θH−θL

53Notice that I use the trade surplus equation to rewrite L-sellers expected payoff.
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Notice that for every ε > 0 it is possible to find γ∗ε such that for every γ ∈ (1
2 ,γ
∗
ε ):

|∆γ | :=

∣∣∣∣∣ ∞

∑
κ=0

γ
κ [τκ∗

γ − (1− γ)rκ∗
γ ]−

∞

∑
κ=0

(1− γ)κ(τ∗
κ

γ − γr∗
κ

γ )]

∣∣∣∣∣< ε

where ∆γ → 0 for γ → 1
2 .

Adding
∞

∑
κ=0

(1− γ)κ(τ∗
κ

γ − γr∗
κ

γ )] to both sides of equation (1.7) and simplifying:

∞

∑
κ=0

(1− γ)κ(τ∗
κ

γ − γr∗
κ

γ )]≥ (1−q0)(θH−θL−∆γ)

Now observe that the individual rationality constraint for H-sellers requires:

V 0
H(σ

∗,π∗) = θH− vH−
∞

∑
κ=0

(1− γ)κ(τ∗
κ

γ − γr∗
κ

γ )]≥ 0

However for γ sufficiently close to 1
2 (i.e. ∆γ → 0) and q0 small enough we have:

θH− vH−
∞

∑
κ=0

(1− γ)κ(τ∗
κ

γ − γr∗
κ

γ )]≤ θH− vH− (1−q0)(θH−θL−∆γ)< 0

as vH > θL. Therefore, no feasible system of transfers can implement an efficient
allocation for values of q0 and γ sufficiently close to zero and 1

2 , respectively.

Step 4. No separating equilibrium exists for

q0 < max

{
0,1−

(
γ

1− γ

)2
θH− vH

θH−θL

}
= q∗

A first best-allocation is implemented with a market participation tax τκ = τ∗= 1−γ

γ
(θH−

θL) and, once a seller trades, a tax rebate rκ = r∗ = τ∗
(

1+ 1−γ

γ
q∗
)

.

By Step 1 and 2 if q∗ > 0 we must have V κ
H (q∗) = 0 for every κ ∈ N0, hence:

V κ
H (q∗) = γ(θH− vH + r∗

κ

)− τ
∗κ

= 0 ⇒ τ
∗κ

− γr∗
κ

= γ(θH− vH)

Substituting this expression into the BB constraint:

(1−q0)(r∗
0
−τ
∗0
)= q0

+∞

∑
κ=0

(1−γ)κ(τ∗
κ

−γr∗
κ

)= q0
+∞

∑
κ=0

(1−γ)κ
γ(θH−vH)= q0(θH−vH)
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Hence r∗
0− τ∗

0
= q0

1−q0 (θH− vH). Combining with τ∗
0− γr∗

0
= γ(θH− vH) I get:

r∗
0
=

θH− vH

1− γ

γ +q0(1− γ)

1−q0 τ∗
0
=

γ

1− γ

θH− vH

1−q0
(1.8)

Using the one-shot deviation property, L-sellers no deviation condition has to satisfy:

θL− vL + r∗
κ

− τ
∗κ

≥ (1− γ)(θH− vL + r∗
κ

)+ γ(θL− vL + r∗
κ+1
− τ
∗κ+1

)− τ
∗κ

r∗
κ

+ τ
∗κ+1
− r∗

κ+1
≥ 1− γ

γ
(θH−θL) (1.9)

As τ∗
κ+1

= γ(θH − vH + r∗
κ+1

) for every κ ∈ N0, substituting this value in equation
(1.9):

r∗
κ+1
≤ r∗

κ

1− γ
+

γ

1− γ
(θH− vH)−

θH−θL

γ

Observe that sellers in Sκ
H prefer not to postpone trade to period κ +1 only if:

γ(θH− vH + r∗
κ

)− τ
∗κ

≥V κ+1
H (σ∗,q∗)− τ

∗κ

=−τ
∗κ

⇒ r∗
κ

≥−(θH− vH)

where V κ+1
H (σ∗,q∗) = 0 follows from Step 1. Therefore, for every κ ≥ 1, r∗

κ

satisfies:

− (θH− vH)≤ r∗
κ

≤ r∗
κ−1

1− γ
+

γ

1− γ
(θH− vH)−

θH−θL

γ
(1.10)

In order to satisfy the LHS of equation (1.10) consider the RHS inequality binding. In
this case, r∗

κ

satisfies a first-order difference equation with solution:

r∗
κ

=

(
1

1− γ

)κ [
r∗

0
+(θH − vH)−

(
1− γ

γ2

)
(θH −θL)

]
−
[
(θH − vH)−

(
1− γ

γ2

)
(θH −θL)

]

Substituting r∗
0

from equation (1.8) and rearranging:

r∗
κ

=

(
1

1− γ

)κ [
θH − vH

(1− γ)(1−q0)
−
(

1− γ

γ2

)
(θH −θL)

]
−
[
(θH − vH)−

(
1− γ

γ2

)
(θH −θL)

]

As 1
1−γ

> 1, the solution is not explosive towards −∞—violating equation (1.10)—
only if the first term in squared brackets is non-negative. Simplifying the expression:

q0 ≥ 1−
(

γ

1− γ

)2
θH− vH

θH−θL

Let q∗ := max
{

0,1−
(

γ

1−γ

)2
θH−vH
θH−θL

}
. All the previous inequalities constraints are
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binding when q0 = q∗ > 0. Then:

τ
κ = τ

∗ =
1− γ

γ
(θH−θL) rκ = r∗ = τ

∗
(

1+
1− γ

γ
q∗
)

1.9 Appendix B

Outline of the proof for Lemma 1.4.1.
I show that no other behavioural strategy is admissible except for the ones in Lemma
1.4.1. To prove this result, I first obtain a bound on the difference between continuation
values, i.e. V κ

L −V κ
H . This preliminary result is obtained in three Lemmata. First, I

show that, for c sufficiently small, there is a common price path played by H- and L-
sellers (Lemma 1.9.1 and 1.9.2); then, I derive an expression for V κ

λ
and a bound on

their difference (Lemma 1.9.3).

Lemma 1.9.1 For c sufficiently small, no equilibrium path has L-sellers in Sκ
L 6= /0

trade with positive probability, and H-sellers in Sκ
H 6= /0 only post prices rejected with

probability one.

Proof Lemma 1.9.1.
Consider an equilibrium (σ∗,π∗) and sellers i ∈ Sκ

H and l ∈ Sκ
L with histories hκ−1

i

and hκ−1
l . Let κ̄ := arg max

m∈N0

{
∃{p j}m

j=κ
: σ∗

j

H (p j|h j−1
i )> 0,h j−1

i = {hκ−1
i , pκ , ..., p j−1}

}
.54

Let h̃κ̄−1
i be the history resulting from hκ−1

i and the sequence of prices {p j}κ̄−1
j=κ

up to
period κ̄ . Denote with h̃ j−1

i , j ≤ κ̄ , a sub-history of h̃κ̄−1
i . If κ̄ <+∞ the seller drops

out after κ̄ +1 periods.
Suppose, per contra, that sellers in Sκ , κ ≤ κ̄ < ∞, play the behavioural strategy

described in the Lemma statement. First, sequential rationality implies κ < κ̄: posting
a price rejected with probability one in period κ̄ before dropping out in period κ̄ + 1
is not optimal, since dropping out after κ̄ previous periods saves one search cost c. As
a consequence, price pκ̄ is accepted with positive probability. Similarly, if κ̄ = +∞,
there is at least a κ ′> κ such that H-sellers in Sκ ′ post a price pκ ′ accepted with positive
probability.

By assumption, L-sellers trade with positive probability. Sequential rationality im-
plies they post θL. In turn, seller i ∈ Sκ

L finds profitable to trade at θL rather than
postponing trade only if:

θL− vL− c≥V κ+1
L (σ∗,π∗|(hκ−1

l , pκ ×R))− c (1.11)

54If κ̄ =+∞ there is at least one history in which a high quality seller participates in the market forever.
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A possible deviation for a L-seller l ∈ Sκ+1
L is to imitate H-sellers’ strategy until κ̄ ,

posting {p j}κ̄
j=κ+1, and θL in period κ̄ +1. Denote with σ ′l this imitating strategy. In

equilibrium σ ′l cannot provide a strictly higher expected payoff than σ∗L , i.e. for every
hκ

l ∈ Hκ :

V κ+1
L (σ∗,π∗|hκ

l )≥
κ̄

∑
j=κ+1

Pσ ′l σ∗−lπ
∗

L

(
z(p j)|

(
hκ

l ,{ps×R} j
s=κ+1

))[
p j− vL− ( j−κ +1)c

]
+

[
1−

κ̄

∑
j=κ+1

Pσ ′l σ∗−lπ
∗

L

(
z(p j)|

(
hκ

l ,{ps×R} j
s=κ+1

))]
[θL− vL− (κ̄−κ +1)c]− c

≥
κ̄

∑
j=κ+1

Pσ ′l σ∗−lπ
∗

L

(
z(p j)|

(
hκ

l ,{ps×R} j
s=κ+1

))
[vH − vL− ( j−κ +1)c]

+

[
1−

κ̄

∑
j=κ+1

Pσ ′l σ∗−lπ
∗

L

(
z(p j)|

(
hκ

l ,{ps×R} j
s=κ+1

))]
[θL− vL− (κ̄−κ +1)c]− c

(1.12)

Equations (1.11) and (1.12) imply:

(κ̄−κ +1)c≥
κ̄

∑
j=κ+1

Pσ ′l σ∗−lπ
∗

L

(
z(p j)|

(
hκ

i ,{ps×R} j
s=κ+1

))
[vH −θL +(κ̄− j)c] (1.13)

As κ < κ̄ , starting from history h̃κ
i ∈Hκ it holds

κ̄

∑
j=κ+1

Pσ∗π∗
H

(
z(p j)|

(
h̃κ

i ,{ps×R} j
s=κ+1

))
>

0. Hence, for every L-seller i ∈ Sκ
L it must also hold:

κ̄−1

∑
j=κ+1

Pσ ′l σ∗−lπ
∗

L

(
z(p j)|

(
hκ

l ,{ps×R} j
s=κ+1

))
[vH−θL]> 0

because previous price history hκ−1
l is not observable to buyers and, once matched with

a L-seller, they receive every signal ξ ∈ {H,L} with positive probability. Therefore,
inequality (1.13) cannot hold for c sufficiently small.

Lemma 1.9.2 For c be sufficiently small, if there exists an equilibrium path in which

H-sellers in Sκ
H 6= /0 post a set of prices P⊂R+, all accepted with positive probability,

then L-sellers in Sκ
L 6= /0 post at least one price in P, unless they move to cohort Sκ+1

with probability one.

Proof Lemma 1.9.2.
Consider sellers i ∈ Sκ

H and l ∈ Sκ
L with histories hκ−1

i and hκ−1
l . Suppose on the con-

trary that L-sellers in Sκ
L do not post any price in P. Then, they can only trade at price

θL. A seller l ∈ Sκ
L prefers to post θL rather than the deviation strategy σ ′

κ

l (p|hκ−1
l ) = 1

for some p ∈ P only if:
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θL− vL− c≥ Pσ ′l σ∗−lπ
∗

L (z(p)|hκ−1
l ) [p− vL]+

(
1−Pσ ′l σ∗−lπ

∗

L (z(p)|hκ−1
l )

)
V κ+1

L (σ∗,π∗|hκ
l )− c

≥ Pσ ′l σ∗−lπ
∗

L (z(p)|hκ−1
l ) [vH − vL]+

(
1−Pσ ′l σ∗−lπ

∗

L (z(p)|hκ−1
l )

)
[θL− vL− c]− c

The second inequality holds because L-sellers can always trade at θL in period κ +1,
and p≥ vH because H-sellers only trade at prices greater or equal to vH . The inequality
can be rewritten as:

c
(

1−Pσ ′l σ∗−lπ
∗

L (z(p)|hκ−1
l )

)
≥ Pσ ′l σ∗−lπ

∗

L (z(p)|hκ−1
l )(vH−θL) (1.14)

If p is accepted with positive probability, Pσ ′l σ∗−lπ
∗

L (z(p)|hκ−1
l ) > 0 as L-sellers may

receive every signal ξ ∈ {H,L}, and buyers do not observe previous histories hκ−1
i

and hκ−1
l . By hypothesis, Pσ∗π∗

H (z(p)|hκ−1
i )> 0 and inequality (1.14) cannot hold for

c sufficiently small.

Lemma 1.9.3 For c sufficiently small, an equilibrium assessment (σ∗,π∗) satisfies:

V κ
L (σ∗,π∗|hκ−1

l )−V κ
H (σ∗,π∗|hκ−1

i )≤ vH−vL ∀κ ∈N0 and ∀hκ−1
i ∈Hκ−1,∀hκ−1

l ∈Hκ−1

The condition holds with equality only if: (i) H- and L-sellers post a common price

and trade with probability one; or (ii) H- and L-sellers are both indifferent between

postponing trade and posting a price p accepted only after a high signal.

Proof Lemma 1.9.3.
Consider an equilibrium (σ∗,π∗) and sellers i ∈ Sκ

H and l ∈ Sκ
L . If seller i ∈ Sκ

H prefers
to stay out of the market it trivially holds:

V κ
H (σ∗,π∗|hκ−1

i ) = 0 V κ
L (σ∗,π∗|hκ−1

l ) = θL− vL− c

By Lemma 1.8.2 it holds for every seller in Sκ
H and Sκ

L , irrespective of previous histo-
ries.

Let:

KN
H (κ) :=

{
j ≥ κ : ∀h j−1

i ∈ H j−1 and ∀p with σ∗
j

H (p|h j−1
i )> 0 it holds σ∗B(A|I (p, ·,ξ )) = 0

}
KN

L (κ) :=
{

j ≥ κ : ∀h j−1
l ∈ H j−1 and ∀p with σ∗

j

L (p|h j−1
l )> 0 it holds σ∗B(A|I (p, ·,ξ )) = 0

}
include all j ≥ κ such that all sellers in S j

λ
only post prices rejected with probability

one. For simplicity, I denote with n the action to post a price rejected with probability
one.
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By definition, if j ∈KN
λ
(κ) for every z∈ Z j(p) it is Pσ∗π∗

λ
(z|hκ−1) = 0. By Lemma

1.9.1, it is KN
H (κ)⊆KN

L (κ). By Lemma 1.9.2, if j /∈KN
H (κ) then either L-sellers do not

trade with probability one, i.e. j∈KN
L (κ), or there exist h j−1

l ∈H j−1, h j−1
i ∈H j−1, and

p j such that σ∗
j

L (p j|h j−1
l ) > 0, σ∗

j

H (p j|h j−1
i ) > 0 and buyers accept p j with positive

probability. Consider such a sequence {p j} j≥κ , j /∈ KN
H (κ).

For {p j} j≥κ , j /∈ KN
H (κ), let κ̄ = argmax

j∈N0
σ∗

j

H (p j|h j−1
i ) > 0, be the latest period

of market participation for H-sellers along this price path. Denote with h̃ j−1
i (h̃ j−1

l ),
j≥ κ , the history for seller i∈ Sκ

H (l ∈ Sκ
L ) in which buyers reject price p j if j /∈KN

H (κ)

( j /∈ KN
L (κ)), or sellers play n if j ∈ KN

H (κ) (KN
L (κ)). For κ > κ̄ , L-sellers’ optimal

best response is to post price θL and trade, so h̃κ̄+1
L = (h̃κ̄

L ,θL×A).
By Lemma 1.8.2, expected payoffs V κ

λ
(σ∗,π∗) are independent from previous his-

tories. Therefore, in equilibrium, sellers in S j
λ

are indifferent among all actions played
with positive probability by any seller in S j

λ
. As a result, the price path along histo-

ries h̃κ̄
i and h̃κ̄+1

l provides an expected payoff equal to V κ
H (σ∗,π∗) and V κ

L (σ∗,π∗),
respectively. Hence, it is possible to express sellers’ expected payoff as:

V κ
H (σ∗,π∗|hκ−1

i ) =
κ̄

∑
j=κ

Pσ∗π∗
H (z j(p j)|hκ−1

i )uκ
H(z

j(p j)) =
κ̄

∑
j/∈KN

H (κ)

Pσ∗π∗
H (z j(p j)|hκ−1

i )uκ
H(z

j(p j))

V κ
L (σ∗,π∗|hκ−1

l ) =
κ̄

∑
j/∈KN

L (κ)

Pσ∗π∗
L (z j(p j)|hκ−1

l )uκ
L(z

j(p j))+Pσ∗π∗
L (zκ̄+1(θL)|hκ−1

l )uκ
L(z

κ̄+1(θL))

To prove the statement I briefly state two preliminary observations:

a. Pσ∗π∗
L (zκ̄+1(θL)|hκ−1

l )≤

[
1−

κ̄

∑

j/∈KN
L (κ)

Pσ∗π∗
L (z j(p j)|hκ−1

l )

]

Conditional on a history hκ−1 the probability that a L-seller trades at price θL is
at least equal to the complementary probability to trade in period j, κ ≤ j ≤ κ̄ ,
at price p j along the equilibrium price path {p j}κ̄

j=κ
.

b. It holds:

κ̄

∑
j/∈KN

L (κ)

Pσ∗π∗
L (z j(p j)|hκ−1

l )uκ
H(z

j(p j))−
κ̄

∑
j/∈KN

H (κ)

Pσ∗π∗
H (z j(p j)|hκ−1

i )uκ
H(z

j(p j))≤ 0 (1.15)

In equilibrium, a buyer accepts a posted price p j either with probability one (for
every ξ ) or only if she receives a high signal ξ = H. Therefore, it is not possible
to have:

κ̄

∑
j/∈KN

L (κ)

Pσ∗π∗
L (z j(p j)|hκ−1

l )uκ
H(z

j(p j))>
κ̄

∑
j/∈KN

H (κ)

Pσ∗π∗
H (z j(p j)|hκ−1

i )uκ
H(z

j(p j)) =V κ
H (σ∗,π∗|hκ−1

i )

If it were the case, a H-seller could profitably deviate by decreasing the proba-
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bility of trading at earlier times in favour of later periods.55

Thanks to a. and b. it is possible to conclude that:

V κ
L (σ∗,π∗|hκ−1

l ) − V κ
H (σ∗,π∗|hκ−1

i ) =
κ̄

∑
j/∈KN

L (κ)

Pσ∗π∗
L (z j(p j)|hκ−1

l )uκ
L(z

j(p j))

+ Pσ∗π∗
L (zκ̄+1(θL)|hκ−1

l )uκ
L(z

κ̄+1(θL))−
κ̄

∑
j/∈KN

H (κ)

Pσ∗π∗
H (z j(p j)|hκ−1

i )uκ
H(z

j(p j))

≤
κ̄

∑
j/∈KN

L (κ)

Pσ∗π∗
L (z j(p j)|hκ−1

l )(vH − vL)+

[
1−

κ̄

∑
j/∈KN

L (κ)

Pσ∗π∗
L (z j(p j)|hκ−1

l )

]
(θL− vL)

+
κ̄

∑
j/∈KN

L (κ)

Pσ∗π∗
L (z j(p j)|hκ−1

l )uκ
H(z

j(p j))−
κ̄

∑
j/∈KN

H (κ)

Pσ∗π∗
H (z j(p j)|hκ−1

i )uκ
H(z

j(p j))

≤ vH − vL

The first inequality holds because: (i) θL− vL ≥ uκ
L(z

κ̄+1(θL));

(ii) Pσ∗π∗
L (zκ̄+1(θL)|hκ−1

l )≤

[
1−

κ̄

∑
j/∈KN

L (κ)

Pσ∗π∗
L (z j(p j)|hκ−1

l )

]
; and (iii) for every z j(p)∈ Z j

it holds uκ
L(z

j(p)) = uκ
H(z

j(p))+vH−vL. The second inequality follows from θL < vH

and equation (1.15).
Lastly, I show when it is V κ

L (σ∗,π∗|hκ−1
i )−V κ

H (σ∗,π∗|hκ−1
i ) = vH − vL. For sim-

plicity, I write V κ

λ
rather than V κ

λ
(σ∗,π∗|hκ−1

i ). Case (i) in the Lemma statement is
immediate because V κ

λ
= p− vλ − c. To prove case (ii) consider that, if a price pκ is

not accepted with probability one, then in equilibrium it is accepted only if ξ = H. The
indifference condition requires:

V κ
L −V κ

H = (1− γ)(pκ − vL)+ γV κ+1
L − γ(pκ − vH)− (1− γ)V κ+1

H = vH− vL

Hence pκ = 1
2γ−1

[
γ
(
V κ+1

L + vL
)
− (1− γ)(V κ

H + vH)
]
.

Suppose, per contra, a type λ is not indifferent and strictly prefers to post pκ . Then,

Pλ (H)(pκ − vλ )+(1−Pλ (H))V κ+1
λ
− c >V κ+1

λ
− c

i.e. pκ − vλ >V κ+1
λ

. Substituting pκ into this expression and solving:

Pλ (H)

2γ−1
[
V κ+1

L −V κ+1
H − (vH− vL)

]
> 0

which cannot hold as V κ+1
L −V κ+1

H ≤ vH− vL.

Proof Lemma 1.4.1.
To prove the statement I show that there exists a c∗ > 0 such that ∀c≤ c∗ no other be-

55For example, he could play an out-of-equilibrium strategy that includes prices rejected with probability one.
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havioural strategy is admissible as an equilibrium of the game. By Proposition 1.4.2,
no separating equilibrium exists for c < 1−γ

γ
(θH −θL), otherwise L-sellers would de-

viate. By Lemma 1.8.2 I simplify notation and just write V κ

λ
(σ∗,π∗) throughout the

proof.

Step 1. If qκ < 1 there is no equilibrium path in which H- and L-sellers in Sκ both

use a mixed behavioural strategy.

Buyers play best responses in pure strategies and, for any posted price, they can
either (i) accept with probability one; (ii) accept only if ξ = j, j ∈ {H,L}; or (iii) reject
with probability one. Their best responses cannot depend on sellers’ histories because
they are not observable. Sequential rationality implies that—in equilibrium—no seller
mixes between two different prices accepted with identical, positive, probability as he
would strictly prefer the highest price. If seller i ∈ Sκ

λ
mixes among prices p1, p2, p3,

and buyers play σκ
B (A|I (p1, ·,ξ )) = 1 for every ξ , σB(A|I (p2, ·, j)) = 1 only for

signal ξ = j and reject otherwise, and σκ
B (A|I (p3, ·,ξ ) = 0 for every ξ , then the

following indifference conditions must hold:

p1− vλ − c = Pλ ( j)(p2− vλ )+(1−Pλ ( j))V κ+1
λ

(σ∗,π∗)− c

p1− vλ − c = V κ+1
λ

(σ∗,π∗)− c

However, this system of equations implies p1 = p2, but an identical price cannot be
accepted with different probabilities. Therefore, in equilibrium, H- and L-sellers can
only mix between: (i) two prices accepted with positive probability; (ii) one price
accepted with positive probability and one (or more) rejected with probability one.

(i) Assume H-sellers mix between two prices (p1, p2). Buyers always accept p2,
but they accept p1 only after signal ξ = j, j ∈ {H,L}. Mixing requires to be
indifferent:

PH( j)(p1− vH)+(1−PH( j))V κ+1
H (σ∗,π∗)− c = p2− vH− c (1.16)

Moreover, H-sellers should prefer to trade rather than to move to period κ + 1,
hence:

p2− vH ≥V κ+1
H (σ∗,π∗) p1− vH ≥V κ+1

H (σ∗,π∗) (1.17)

In turn, inequalities (1.16) and (1.17) imply p1 ≥ p2 ≥ vH . The inequality
p1 ≥ p2 holds strictly because buyers cannot accept the same price with dif-
ferent probabilities. Buyers accept only after signal j and reject otherwise only
if j = H. Indeed, when H- and L-sellers mix on the same prices and qκ < 1 buy-
ers’ beliefs satisfy πB(p1, ·,H) > πB(p1, ·,L); as a result, EπB[θ |I (p1, ·,H)] >

EπB[θ |I (p1, ·,L)]. If j = L they would always accept p1.
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By hypothesis also L-sellers mix. Let’s consider each possible mixed strategy.

a. L-sellers mix between two prices both accepted with positive probability.
It is easy to realize that L-sellers pool on H-sellers’ prices (p1, p2). Other-
wise, in equilibrium, they can trade only at price θL; however, it would be
a profitable deviation to trade with probability one posting p2 ≥ vH > θL.
As H- and L-sellers mix on (p1, p2), the following indifference conditions
hold:

V κ
H (σ∗,π∗) = γ(p1− vH)+(1− γ)V κ+1

H (σ∗,π∗)− c = p2− vH− c

V κ
L (σ∗,π∗) = (1− γ)(p1− vL)+ γV κ+1

L (σ∗,π∗)− c = p2− vL− c

As p1 > p2 each equation implies V κ+1
λ

(σ∗,π∗)< p2−vλ for λ ∈ {H,L}.
Using the first equation, I get p1 =

1
γ
[p2− (1− γ)(vH +V κ

H (σ ,π)]. Substi-
tuting this expression into the second equation and simplifying:

p2 = vH +V κ+1
H (σ ,π)− γ2

2γ−1
[
(vH− vL)−

(
V κ+1

L (σ ,π)−V κ+1
H (σ ,π)

)]
By Lemma 1.9.3 V κ+1

L (σ ,π)−V κ+1
H (σ ,π)≤ vH−vL. Hence V κ+1

H (σ ,π)≥
p2− vH contradicting the previous implication V κ+1

H (σ ,π)< p2− vH .

b. L-sellers mix between a price accepted with positive probability and a price
rejected with probability one. As in point a. it is straightforward to realize
L-sellers play either p1 or p2. Two cases are possible:

1. L-sellers mix between p2 and no trade. The indifference condition
requires:

p2− c =V κ+1
L − c

Moreover, posting p1 is not a profitable deviation, hence:

(1− γ)(p1− vL)+ γV κ+1
L (σ∗,π∗)− c≤V κ+1

L (σ∗,π∗)− c

i.e. p1− vL ≤V κ+1
L (σ∗,π∗), contradicting p1 > p2.

2. L-sellers mix between p1 and no trade. In turn, it must hold:

(1− γ)(p1− vL)+ γV κ+1
L (σ∗,π∗)− c =V κ+1

L (σ∗,π∗)− c

i.e. p1− vL = V κ+1
L (σ∗,π∗). In turn, using equation (1.17) and p1 >

vH :
V κ+1

L (σ∗,π∗)−V κ+1
H (σ∗,π∗)> vH− vL
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contradicting Lemma 1.9.3.

(ii) H-sellers mix between a price accepted with positive probability and no trade.
Therefore one of the two following indifference conditions holds:

γ(p1− vH)+(1− γ)V κ+1
H (σ∗,π∗)− c =V κ+1

H (σ∗,π∗)− c

p2− vH− c =V κ+1
H (σ∗,π∗)− c

Rearranging, I get p1− vH = V κ+1
H (σ∗,π∗) and p2− vH = V κ+1

H (σ∗,π∗), re-
spectively. L-sellers’ mixed strategy may either (a) offer two prices accepted
with positive probability; or (b) offer a price accepted with positive probability
or postpone trade.

a. Assume L-sellers mix between (p1,L, p2,L). Without loss of generality as-
sume p1,L is accepted only after a signal j ∈ {H,L} and p2,L is always
accepted. Clearly, it is not optimal to post both prices different from H-
sellers’ one. Indeed, L-sellers would prefer to deviate and pool on H-
sellers’ price because it is accepted with the same probability of one be-
tween p1,L and p2,L, but it provides a higher payoff as min{p1, p2} ≥ vH .
Therefore, L-sellers strategy can only mix between θL and the price posted
by H-sellers. If H-sellers post p2, it is never a best response to mix be-
tween θL and p2 ≥ vH > θL as the latter is accepted with probability one.
If H-sellers post p1, L-sellers’ indifference condition is:

PL( j)(p1− vL)+(1−PL( j))V κ+1
L (σ∗,π∗)− c = θL− vL− c (1.18)

Since p1≥ vH , equation (1.18) implies V κ+1
L (σ∗,π∗)≤ θL−vL− PL( j)

1−PL( j)(vH−
θL). L-sellers’ continuation value always satisfies V κ+1

L (σ∗,π∗) ≥ θL−
vL− c, because they can always trade at price θL. Therefore, for c suffi-
ciently small both inequalities cannot contemporaneously hold.

b. Assume L-sellers mix between a price accepted with positive probability
and no trade. As in point a., L-sellers pool on H-sellers’ posted price.
Hence, one of these two equations holds:

V κ
L (σ∗,π∗) = (1− γ)(p1− vL)+ γV κ+1

L (σ∗,π∗)− c =V κ+1
L (σ∗,π∗)− c

V κ
L (σ∗,π∗) = p2− vL− c =V κ+1

L (σ∗,π∗)− c
(1.19)

i.e. p1− vL =V κ+1
L (σ∗,π∗) or p2− vL =V κ+1

L (σ∗,π∗), respectively.
H-sellers indifference conditions imply p1− vH = V κ+1

H (σ∗,π∗) or p2−
vH =V κ+1

H (σ∗,π∗). Hence, V κ+1
L (σ∗,π∗)−V κ+1

H (σ∗,π∗) = vH − vL, and
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V κ
L (σ∗,π∗)−V κ

H (σ∗,π∗) = vH−vL. By Lemma 1.9.3, the only admissible
strategies for sellers in S j, j > κ , which satisfy this condition on continua-
tion values are: (i) H- and L-sellers mix between a commonly posted price
p j and no trade; or (ii) H- and L-sellers in S j post the same price p j which is
accepted with probability one. If sellers play strategy (i), V j

λ
(σ∗,π∗) and p j

have to increase by c from j to j+1; see equation (1.19). Under TMN this
strategy profile is not an equilibrium because sellers from different cohorts
must have the same continuation value. Let’s restrict attention to the TMO
case. Observe that strategy (i) cannot be played for every j≥ κ , as it would
eventually require to go above the upper bound V j

λ
(σ∗,π∗) = θH − vλ − c.

Therefore, eventually sellers have to play strategy (ii); let j∗ ≥ κ denote
this future period. In turn, this requires to have q j∗ > qIP

c . Clearly, the price
posted under strategy (i) for j < j∗ has to be accepted only if ξ = H.

By assumption, q0 < qS
c < qIP

c . In order to increase H-sellers’ share from
q0 to q j∗ ≥ qIP

c , sellers should play a behavioural strategy of type (i) for
j∗−1 initial periods in order to increase q j from q0 to at least qIP

c ; then all
sellers in S j∗ should trade with probability one at p j∗ . Let α j and β j denote
the probability that H- and L-sellers, respectively, play p j for j < j∗; the
complementary probability denotes the probability to post a price rejected
with probability one. In equilibrium, for j < j∗ buyers accept p j after
ξ = H, i.e.:

q jα jγθH +(1−q j)β j(1− γ)θL

q jα jγ +(1−q j)β j(1− γ)
≥ p j → β j

α j ≤
q j

1−q j
γ

1− γ

θH − p j

p j−θL
(1.20)

The share q j increases only if:

q j+1

1−q j+1 =
q j[(1−α j)+α j(1− γ)]

(1−q j)[(1−β j)+β jγ]
>

q j

1−q j → β j

α j >
γ

1− γ
(1.21)

Equations (1.21) and (1.20) together imply:

q j
θH +(1−q j)θL > p j ≥ vH

This is possible only if q0 > vH−θL
θH−θL

. However, by assumption q0 < qS
c =

vH−θL+c
θH−θL

and for c small enough the two inequalities cannot both hold.

Step 2. There is no equilibrium path in which L-sellers in Sκ
L 6= /0 only post prices

rejected with probability one, and H-sellers in Sκ
H 6= /0 trade with positive probability.56

56Notice that it is a more restrictive statement than Lemma 1.9.2.
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H-sellers in Sκ
H post a price p accepted with positive probability, so

p ≤ EπB [θ |I (p, ·,ξ )] = θH for all ξ ∈ {H,L}, because, by hypothesis, L-sellers do
not pool on this price. If p < θH all buyers accept with probability one. H-sellers’
possible behavioural strategies are:

a. H-sellers post p≤ θH with probability one and buyers always accept. Therefore,
it must hold p−vL−c≤V κ+1

L −c and p−vH−c≥V κ+1
H −c. Both inequalities

imply V κ+1
L −V κ+1

H ≥ vH − vL. By Lemma 1.9.3 the inequality cannot hold
strictly; moreover, the argument in Step 1(ii) b. excludes the equality case under
TMO (when q0 < qN

c ) and under TMN (always).

b. H-sellers post θH with probability one and buyers accept only for ξ = j, j ∈
{H,L}. L-sellers prefer to postpone trade only if:

V κ+1
L (σ∗,π∗)≥ PL( j)(θH− vL)+(1−PL( j))V κ+1

L (σ∗,π∗)

i.e. V κ+1
L (σ∗,π∗) ≥ θH − vL. However, in every equilibrium an upper bound

on the expected payoff is V κ+1
L ≤ θH − vL− c. A similar argument applies if

L-sellers mix between two prices both accepted with positive probability.

c. H-sellers mix between a price p accepted with positive probability and no trade.
If p is always accepted then H-sellers’ indifference requires

p− vH =V κ+1
H (σ∗,π∗)

L-sellers do not trade at p if V κ+1
L (σ∗,π∗)≥ p− vL. Then,

V κ+1
L (σ∗,π∗)−V κ+1

H (σ∗,π∗)≥ vH− vL

If the inequality is strict then it is inconsistent with Lemma 1.9.3. If it holds with
equality, see Step 1(ii) b.

If H-sellers mix between θH and no trade then:

PH( j)(θH− vH)+(1−PH( j))V κ+1
H (σ∗,π∗) =V κ+1

H (σ∗,π∗)

i.e. V κ+1
H (σ∗,π∗) = θH − vH . But in every equilibrium an upper bound on ex-

pected payoffs is V κ+1
H (σ∗,π∗)≤ θH− vH− c.

Step 3. There is no equilibrium path in which sellers in Sκ
H 6= /0 and Sκ

L 6= /0 play

semi-separating behavioural strategies, and all posted prices are accepted with posi-

tive probability.
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Suppose, on the contrary, that such a behavioural strategy is played in equilibrium.
Let’s consider the two different cases:

(i) L-sellers mix and H-sellers play a pure strategy. The only relevant case to con-
sider is when L-sellers mix between θL (accepted with probability one) and p

(accepted only if ξ = H), and H-sellers only post p. L-sellers mix between the
two prices only if:

V κ
L (σ∗,π∗) = (1− γ)(p− vL)+ γV κ+1

L (σ∗,π∗)− c = θL− vL− c

L-sellers can always trade at θL so V κ+1
L (σ∗,π∗)≥ θL− vL− c. Hence,

θL− vL− c≥ (1− γ)(p− vL)+ γ(θL− vL− c)

i.e. θL ≥ p− c
1−γ

. For c small enough p < vH as vH > θL. H-sellers would not
post this price in equilibrium as lower than their reservation value.

(ii) H-sellers mix and L-sellers play a pure strategy. Sellers in Sκ play this be-
havioural strategy only if H-sellers mix between θH (played with probability
α and accepted only if ξ = H) and a price pκ (always accepted). L-sellers post
pκ with probability one.

I provide a separate proof for each assumption on time on market observability.

a. Under TMO, buyers accept pκ irrespective of signal ξ only if
EπB[θ |(pκ ,κ,L)] ≥ pκ . In turn, a necessary condition is qκ > qIP

c (for
α = 0, it is higher for α > 0).57 As q0 < qIP

0 < qIP
c it is sufficient to prove

that qκ < q0 for every κ ≥ 1. Consider j∈N0 such that q j < qIP
0 . Therefore,

in period j the proposed behavioural strategy cannot be played. By steps 1,
2 , 3 (i) and Proposition 1.4.2: (i) either both H- and L-sellers do not trade
with probability one; or (ii) σ

j
H(p) = σ

j
L(p) = 1, σB(A|IB(p,κ,H)) = 1

and σB(A|IB(p,κ,L)) = 0. In case (i) q j+1 = q j. In case (ii) buyers accept
only if ξ = H, so H- and L-sellers trade with probability γ and 1− γ , re-
spectively. By the law of large numbers, a higher share of H-sellers trades
and exits the market, so q j+1 < q j. Let j = 0 concludes the argument.

b. Under TMN, buyers do not distinguish sellers in different cohorts Sκ . In
equilibrium, two cohorts of sellers Sκ ′

λ
and Sκ ′′

λ
, κ ′ 6= κ ′′ cannot play strategy

profiles leading to different expected payoffs. If this were the case, there
would be a profitable deviation for one cohort of sellers as buyers cannot

57See section 1.4 for a characterization of qIP
c . The subscript c refers to the associated search cost c.
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observed previous prices. For every κ ∈ N0 such that Sκ

λ
6= /0, it must hold

V κ

λ
(σ∗,π∗) =Vλ (σ

∗,π∗), and H-sellers’ indifference condition requires:

VH(σ
∗,π∗) = γ(θH− vH)+(1− γ)VH(σ

∗,π∗)− c = pκ − vH− c

hence pκ = p̄ = θH− 1−γ

γ
c.

Let q̄ = ∑
κ∈N0

Sκ

S qκ . Buyers accept p̄ only if:

q̄(1−α)(1− γ)θH +(1− q̄)γθL

q̄(1−α)(1− γ)+(1− q̄)γ
≥ θH−

1− γ

γ
c

hence,
q̄

1− q̄
≥ γ

(1− γ)(1−α)

θH−θL− c
c

(1.22)

By Step 1, 2, 3(i), the only admissible behavioural strategy for sellers in
cohorts S j, j 6= κ , are: (i) both H- and L-sellers do not trade with prob-
ability one; (ii) H- and L-sellers post the same price pH , say, and buyers
accept only if ξ = H; (iii) H- and L-sellers post the same price pL, say, and
buyers accept with probability one; (iv) H-sellers mix between two prices
and L-sellers post one price with probability one. Since all cohorts receive
the same expected payoff, it must be pH = θH and pL = p̄ = θH − 1−γ

γ
c.

Importantly, the behavioural strategies (i), (ii) and (iii) imply that H-sellers
in S j

H trade at least with the same probability as L-sellers in S j
L. As a result,

q̄ cannot be higher than q0 if sellers only play strategies (i), (ii) and (iii).
Therefore, if it is not possible to satisfy equation (1.22) in an equilibrium
in which, for every κ ∈ N0, H-sellers in Sκ

H mix between θH and p̄, and
L-sellers in Sκ

L play p̄ with probability one, then it is never possible. In the
proposed equilibrium, stationarity requires exit and entry flows for each
type of sellers to be equal. Denote with S̄ the equilibrium mass of sellers:

{
q0 = S̄q̄[αγ +(1−α)]

(1−q0) = S̄(1− q̄)
⇒

 S̄ = 1−q0

(1−q̄)
q̄

1−q̄ = 1
αγ−(1−α)

q0

1−q0

Therefore, this equilibrium exists only if equation (1.22) is satisfied, i.e.

1
αγ +(1−α)

q0

1−q0 ≥
γ

(1− γ)(1−α)

θH−θL− c
c

This expression is more likely to hold for α close to zero. Therefore, a
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necessary condition is:

q0

1−q0 ≥
γ2

1− γ

θH−θL− c
c

(1.23)

For q0 = qIP
c = γ

1−γ

vH+c−θL
θH−vH−c

58 equation (1.23) becomes:

vH + c−θL

θH− vH− c
≥ γ

θH−θL− c
c

However, for c sufficiently small this inequality cannot hold.

Step 4. There is no equilibrium path in which H- and L-sellers in Sκ
H 6= /0 and Sκ

L 6= /0
post a price accepted with probability one.

I provide a separate proof for each assumption on time on market observability.

a. Under TMO the argument is analogous to the one in Step 3 part (ii) point a.

b. Under TMN, an analogous argument to the one in Step 3 part (ii) point b estab-
lishes that all cohorts get the same continuation value. By Step 1, 2, 3 the only
admissible behavioural strategy profiles for sellers in cohorts S j, j 6= κ , are: (i)
both H- and L-sellers do not trade with probability one; or (ii) H- and L-sellers
post the same price pH and buyers accept only if ξ = H; or (iii) H- and L-sellers
post the same price pL and buyers accept with probability one.

By definition of qIP
c , the behavioural strategy (iii) is possible only if q̄= ∑

κ∈N0

Sκ

S qκ ≥

qIP
c , i.e. there must be at least one cohort Sκ̃ , κ̃ 6= κ , such that L-sellers trade

with a higher probability than H-sellers. However, all admissible behavioural
strategies (i), (ii) and (iii) imply that H-sellers’ probability to trade is at least
equal to L-sellers’ one.

Step 5. If Sκ
H 6= /0 then all sellers in Sκ post the same price. If time on market is not

observable all sellers post the same price.

By steps 1, 2, 3, 4 and Lemma 1.9.2 the only admissible behavioural strategy pro-
files are: (i) H- and L-sellers only post prices rejected with probability one; (ii) H- and
L-sellers in Sκ post the same price pκ and buyers accept only if ξ = H. Under TMN,
buyers do not observe sellers’ cohort, and sellers cannot post different prices accepted
with the same probability; hence, pκ = p̄, for all κ ∈ N0. Postponing trade does not
change the future trade price but it increases search costs. As a result, they find strictly
convenient to post p̄ until they trade.

58See section 1.4 for a defnition.
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Chapter 2

Peer Monitoring Incentives via
Central Clearing Counterparties

Central Clearing Counterparties (CCPs) envisage that, upon a member’s default, sur-
viving members have to partially cover losses. I study how the way to distribute losses
among CCP members change their incentives to peer monitor each other’s. The op-
timal design exploits dealers’ superior information on the credit risk of other CCP
members. My results suggest that a higher share of losses should be paid by surviv-
ing members with a greater trade exposure to the defaulting dealer. In practice, this
mechanism can be implemented through variation margin haircutting, or higher rights
of assessment. If a CCP distributes losses without reference to previous trade, equilib-
rium outcomes may be inferior to what can be achieved with no clearing.
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2.1 Introduction

The recent financial crisis brought to public attention the importance of over-the-
counter (OTC) markets, and it spurred a global debate on the existing financial ar-
chitecture. After Lehman Brothers’ bankruptcy, OTC markets were often considered a
source of systemic risk because of their lack of transparency, the inextricable network
relationships, and the complexity of financial products exchanged. To enhance finan-
cial stability, the Dodd-Frank Act (2010) in the US, and the EMIR regulation (2013)
in the EU, introduced several new legislative provisions on trade transparency and risk
mitigation.

Central Clearing Counterparties (CCPs) are going to play an important role in the
new financial architecture. Several OTC products will be subject to mandatory clear-
ing through a CCP. Although CCPs were first introduced over a century ago, their role
has been confined to the ordered execution and clearing of securities traded on reg-
ulated exchanges. Their novel use in a new range of financial instruments, such as
interest rate swaps, credit derivatives, and repos, raises a novel set of questions on their
effectiveness as an instrument to build a more resilient financial system.

A CCP performs several functions: multi-lateral netting, post-trade transparency,
setting initial and variation margins, and loss mutualization in case of a member’s
default. Despite their relevance for financial stability, netting and trade transparency
may be independently achieved through trade compression services and central trade
repositories, respectively. In this paper, I am going to focus exclusively on one dis-

tinctive feature of CCPs: the design of the loss mutualization scheme. Indeed, a CCP
can—upon the default of a member—distribute the resulting losses among its surviving
members. In the current debate, this possibility has been considered relevant only to
the extent it provides an additional safeguard for third-parties and other CCP members.

This paper looks at the loss allocation rules from a different perspective. Specif-
ically, I consider how the design of the default waterfall1 affects peer monitoring in-
centives among financial dealers. Similarly to Stiglitz (1990) and Varian (1990), I use
the term ‘peer monitoring’ as the possibility of alleviating borrowers’ moral hazard
problem through peers’ interaction. Peers usually have superior information relative
to outsiders, and the goal is to design mechanisms that exploit this information to the
benefit of outsiders.2 In the context of my model, the default waterfall change dealers’
incentives to trade with a risky counter-party, and, in turn, this affects dealers’ agency

1Initial margins and default funds contributions are the most important tools of a broader system of safeguards
named default waterfall (see Elliott (2013) for a discussion). This is a set of rules determining the hierarchy of funds
used to cover losses from a member default, and the extent to which each surviving member is responsible for these
losses.

2I assume dealers do not pay any cost to acquire superior information on their peers. Endogenous information
acquisition is a valuable extension of the model and I plan to pursue it in the future.
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problem with outside investors. I abstract from the risk insurance role of the default
waterfall, and I focus exclusively on the interaction between its design and dealers’
incentives to choose a risky business conduct. To stress this perspective, I sometimes
refer to default fund contributions with the term penalties, to highlight their punish-
ment role for surviving CCP members. My narrow interpretation of a CCP—a finan-
cial institution that sets collateral margins and imposes penalties contingent on default
events—is functional to the specific research questions. Throughout the paper, I con-
sider an inter-dealer market in which dealers know the identity of their counter-parties.
This is often the case for OTC markets, while in trade platforms with anonymous
clearing—such as the stock market—peer monitoring is not an option.

I address the following questions: Why do CCPs affect peer monitoring? Does their
current design improve or discourage risky behaviour? What is the optimal default
waterfall to maximize peer monitoring inventives? Does it depend on the correlation
among dealers’ shocks?

My analysis builds on two main considerations. First, a dealer finds essential to
trade in the inter-dealer market, either to hedge his exposure with end users, or to
implement his own proprietary investments.3 The importance of inter-dealer markets
is hardly disputable, as mirrored by their volume of transactions. Second, financial
institutions—such as dealers—may have superior skills to assess the credit risk of a
similar institution. They have a comprehensive understanding of the industry, real
time information on market conditions, and possibly superior information on the risk
exposure of other dealers, as they are often on the other side of a financial transaction.
Although it is difficult to assess whether financial institutions have superior informa-
tion on their peers, it is a widely shared view among policymakers, and it has been
recently corroborated by some papers.4

I argue that the design of the default waterfall may significantly change peer mon-
itoring incentives. To maximize their effectiveness—and decrease initial margins—a
CCP should impose penalties only on the surviving dealers who had previously traded
with a defaulting member. For OTC interest rate or foreign exchange swaps, this could
be implemented with a variation margin haircut; by definition, a CCP runs a matched
book: if a member loses, another member gains. For repos or credit derivatives, it
could be implemented as a haircut on the principal to be reimbursed. However, only a
few CCPs have recently introduced this loss allocation rule. All CCPs envisage to first

3Dealers aim to have a ‘neutral’ stance by systematically hedging their exposure on the inter-dealer market.
They hold extremely large notional positions, even if their net exposure is much smaller. Despite a recent trend
towards more open participation, this market is still very concentrated: a few dealers intermediate the vast majority
of derivative contracts and repos. The OCC reports that in Q2 2013 the top four dealers ( JP Morgan Chase, Bank
of America, Citigroup and Goldman Sachs) held 93% of all derivative contracts in the US. Corporate end-users, retail
banks, mutual and pension funds participate in the market mainly to take a directional position with respect to a
specific risk.

4See Affinito (2012) and Bräuning et al. (2014).
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exhaust the resources of a pre-funded default fund (or guarantee fund), and later to
call members to contribute with additional funds (rights of assessment). These contri-
butions are normally computed in approximate relation to the amount of risk that each
dealer brings to the CCP. In general, the allocation of losses does not depend directly
on dealers’ previous trade intensity with the defaulting member. I show why this com-
mon default waterfall structure may reduce peer monitoring incentives, and increase
other forms of costly disciplining devices such as initial margins.

I set up a simple risk-shifting model, and I extend it with an inter-dealer market.
Dealers have perfect information on the default probabilities of other dealers. I char-
acterize the equilibrium contract, and I evaluate how the introduction of a CCP affects
market outcomes relative to an unregulated market. In my model, dealers face a stan-
dard risk-shifting problem: after signing an initial contract with lenders, they may
prefer to undertake risky activities. A safe business conduct requires to pay an effort
cost; it can be interpreted as the cost of implementing good risk management tech-
niques, or to select good proprietary investments. Dealers may ‘commit’ to exert effort
by posting initial collateral to investors, or, importantly, incentives may result from the
interaction on the inter-dealer market. After the effort choice, a dealer’s credit risk
realizes but it is not verifiable. Outside investors and dealers differ in their ability to
observe credit risk: investors have no information, while dealers observe their own and
other dealers’ default probabilities. Once credit risk information is observed, dealers
look for a hedge. If two dealers agree to hedge, they both avoid to pay a cost borne
when holding an unhedged position; however, they are also exposed to an exogenous
risk of contagion when the hedging partner happens to default. For tractability reasons,
I restrict attention to bilateral hedging, and I do not allow collateral posting in the inter-
dealer market. Both extensions are interesting future research directions. I first solve
the model with only two dealers, and I later extend my results to the multiple dealers
case to highlight the new economic forces at work.

In my model, the inter-dealer market provides disciplining incentives through two
economic channels. First, a risky dealer may not hedge—suffering a loss—if all other
dealers prefer not to be exposed to a high risk of contagion.5 The possibility not to be
able to hedge provides an ex ante incentive to avoid risky investment activities. How-
ever, if it is too costly not to hedge, this threat is less credible. Even if the other dealer
is perceived as risky, it may not be easy to find another hedge and, despite contagion
risk, it may still be convenient to accept. In section 2.5, I point out a second disci-
plining mechanism, based on the endogenous peer selection. For two safe dealers, it is

5The default of a dealer poses a serious threat to his counter-parties, as a large exposure to a defaulter may
trigger a contagion spiral. For some empirical evidence on contagion risk see Liedorp et al. (2010) and Craig et at.
(2014).
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mutually beneficial to hedge and avoid contagion risk. Therefore, risky dealers either
match with a safe counter-party, risking not to hedge, or they hedge with another risky
counter-party. However, matching with a risky dealer is costly because of the higher
risk of contagion. For this reason, it is convenient to exercise effort—maximizing
the chances of being safe—and increase the probability to match with another safe
counter-party.

I also analyze when each peer monitoring mechanism is more effective. The threat
of being excluded from the inter-dealer market is more relevant when there is a small
number of dealers, and credit risk shocks among dealers are strongly correlated (for
example, due to a macroeconomic deterioration). In contrast, the incentive to be safe,
and hedge with another safe dealer, is more relevant when the inter-dealer market has
a large number of participants, and there is a low correlation among dealers’ credit risk
shocks. In this case, it is likely that some dealers in the market are risky, and each
dealer assigns a low probability to the event of matching with a dealer of different
credit risk.

Both disciplining mechanisms work because hedging with a risky dealer leads to
a higher risk of contagion, i.e. a dealer may lose his profits if the other counter-party
defaults. A CCP can strengthen both disciplining mechanisms through the same design
of the loss allocation rules. Upon the default of a clearing member, surviving dealers
are called to cover losses. Transfers to the CCP increase the cost of matching with a
risky dealer, as they impose losses even when no contagion takes place. Importantly,
my results stress that penalties should be paid only if a dealer has previously traded
with the defaulting member.6 If a pair of dealers does not hedge, and one dealer de-
faults, no CCP member should be responsible to cover his losses. Indeed, if penalties
were always paid—irrespective of the hedging decision—the threat of being excluded
from the market would be less credible; as a result, the risk-shifting problem worsens,
increasing the need to restore incentives through initial collateral.

As in other risk-shifting models, higher collateral requirements increase dealers’
skin in the game, and alleviate the risk-shifting problem. However, this ex ante risk
mitigation device is expensive,7 and ex post penalties provide a less costly alternative.
In my model the relationship between initial margins and peer monitoring incentives
is not of pure substitution, but also of mutual complementarity. The threat of refusing
to hedge with a risky dealer is more credible when contagion leads to lose a high
final payoff. When a dealer posts collateral in advance, his final payoff in case of
success is higher than under a first-best contract. In turn, it is more costly to suffer

6A possible extension of the model should consider the possibility to have multiple hedging relationships. In this
case, my conjecture is that optimal default fund contributions should be divided among hedging partners in a way
proportional to their relative weight in the defaulting member portfolio.

7Miglietta et al. (2015) quantifies the cost imposed by initial margins in repo markets.
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contagion, and a safe dealer is less willing to trade with a risky counter-party. This
behaviour favours other dealers, because it allows an effective implementation of peer
monitoring, reducing initial collateral requirements. In other words, peer monitoring
is a substitute for collateral, but, at the same time, a dealer benefits from other dealers’
collateral, because they are more likely to cross-monitor, relaxing ex ante his own

collateral requirements.
Despite the advantages in terms of peer monitoring, the optimal default waterfall

has some drawbacks in terms of systemic risk. In particular, promoting the incentives
to isolate a financial dealer may accelerate its insolvency. However, these concerns
could be better managed within an effective resolution mechanism, or through emer-
gency lending, rather than favouring its possibility to trade through a CCP. Moreover,
exploiting early warning signals from other dealers may allow to cope with a risky
dealer at an early stage, mitigating the loss from a later intervention. This concern is
particularly important when the financial institution is vastly interconnected with the
rest of the financial system.8

In the next section I discuss the related literature. Section 3 presents the model
setup. Section 4 characterizes the equilibria of the baseline model. Section 5 extends
the model to multiple dealers. Section 6 further discusses the results. Section 7 con-
cludes. All proofs are presented in Appendix.

2.2 Related literature

My paper is closest to a recent literature that studies how the insurers’ agency problem
change with the introduction of a CCP. Several papers stress the possibility to pool and
diversify idiosyncratic default risk through a CCP. In this respect, a CCP provides a
missing insurance market, and improves the allocation of risk among traders. In Cara-
pella and Mills (2012), clearing services facilitate the possibility to undertake socially
valuable transactions; both counter-parties have less incentives to acquire information
on the asset value, and, in turn, this common incentive to remain ignorant reduces the
negative effects of adverse selection. Antinolfi et al. (2014) also point out that a CCP
reduces traders’ incentive to acquire information on counter-party risk.9 However, this
lack of screening incentives results in higher collateral requirements, as an instrument
to mitigate limited commitment. When the insurance motive is not too strong, buyers
may acquire information on counter-party risk, and use clearing services only with the

8Incidentally, CCPs may play an important role also for the ordered liquidation of the open positions held by a
defaulting member. In particular, fire sales episodes could be greatly reduced thanks to better coordination, and the
possibility to auction off the portfolio to other surviving members. However, there is still a lot of scope for improving
resolution procedures and the post default auction process. The debate is still underway in the financial community;
see “CCPs confront the difficult maths of default management", Risk 28/01/15.

9A similar point is informally discussed in Koeppl and Monnet (2012).
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most risky traders. Biais et al. (2012b) consider a model in which insurance buyers
may exert effort to screen less risky counter-parties, and they compare bilateral versus
centralized clearing in the presence of idiosyncratic or aggregate risk. They conclude
that central clearing is strictly welfare improving as it allows to diversify idiosyncratic
risk. Without aggregate shocks, the allocation provides full insurance, no collateral
is posted, and insurance buyers avoids screening costs because, de facto, they cross-
insure through the CCP. In the presence of aggregate shocks, insurance sellers are again
valuable, and screening may be necessary. For this purpose, the optimal clearing con-
tract only offers partial insurance to maintain buyers’ incentives to screen only good
counter-parties. Lastly, Koeppl (2013) proposes a new disciplining device, which takes
the form of an endogenous ‘liquidity’ cost. If it is easy to find a new counter-party, in-
surance buyers can credible threaten not to contract with a risky counter-party. A CCP
can lead to a negative feedback effect: an increase in collateral requirements, then a
reduction in the amount of profitable transactions, and, lastly, a decrease in market ‘liq-
uidity’. In my model, I abstract from the advantages of risk pooling—all players are
risk-neutral—and I consider exclusively the incentive role of collateral. In particular,
I focus on how to exploit the interactions in the inter-dealer market to economize on
collateral. In this respect, a CCP should be designed to maximize the effectiveness of
these mechanisms. My modelling of a CCP stresses the incentive role of ex post loss
mutualization mechanisms—such as additional default fund contributions or variation
margin haircutting—rather than ex ante collateral posting.

My results are also related to several papers on peer monitoring. Rochet and Ti-
role (1996) argue that the existence of a decentralized inter-bank market can be only
motivated by peer monitoring. In turn, to be effective, the incentive to monitor other
banks requires to be responsible for losses on inter-bank loans, and not to be protected
by a lending of last resource policy. Similarly, in my model peer monitoring requires
surviving dealers to be exposed to contagion risk, and to pay additional penalties when
they previously hedged with a defaulting member. Stiglitz (1990) discusses the role of
penalties as an incentive device for peer monitoring. Focusing on microfinance, Varian
(1990) and Ghatak (2000) show how joint liability contracts lead to an endogenous peer
selection among borrowers of similar credit risk. In my model, there is an analogous
assortative matching outcome. Differently, I study how to design the default water-
fall to exploit dealers’ information, and I consider to which extent the effectiveness of
endogenous matching depends on the correlation among dealers’ credit shocks.

Two influential papers discuss other features of CCPs. Duffie and Zhu (2011) point
out that CCPs increase netting benefits only if multilateral netting for a single asset
class dominates the bilateral netting achievable across different underlying assets. In
this respect, they stress the importance not to fragment trade across too many CCPs.

73



Acharya and Bisin (2014) argue that the lack of transparency in OTC market imposes
a ‘counter-party risk’ externality, leading to excessive leverage and increased default
risk. A CCP improves market outcomes because—by concentrating all trade through
novation—it provides complete information of trade positions. I abstract from netting
and trade transparency, and I focus exclusively on the interaction between the design
of the default waterfall and the risk-shifting incentives.

2.3 Baseline model

There are four periods t = 0,1,2,3 and two financial dealers FA,FB who face a popula-
tion of competitive, deep pockets, and risk-neutral investors. I use Fi and F−i, i = A,B,
to denote dealer i and his counter-party, respectively. Each dealer has an identical
project which requires an initial outlay of I > 0 dollars and pays either a return R > 0
(deterministic) or zero. The probability that Fi’s investment returns zero at t = 3 is a
random variable di which realizes at t = 2. The probability distribution of di depends
on the effort choice ei ∈ {0,1} which Fi chooses at t = 1. If ei = 1 he incurs a cost
c > 0 and he receives R at t = 3 for sure; if Fi shirks (ei = 0), then di is randomly drawn
from a distribution on [0,1], with cumulative density function G(·) differentiable a.e.,
and expected value m. The investment is profitable only if Fi exerts effort, i.e c < Rm

and (1−m)R < I.
At t = 2 the tuple d = (dA,dB) is realized. It is not observable to investors or a

judicial court but only to dealers. After observing d each Fi decides whether he is will-
ing to ‘hedge’ or not with F−i.10 If both agree they avoid a cost L > 0, otherwise each
dealer incurs this cost. For example, L can be interpreted as the extra effort required
to manage an unhedged position. Hedging avoids the cost L, but it increases the risk
of contagion: if at t = 3 dealer F−i defaults, Fi may default as well with probability
γ ∈ (0,1]. The γ parameter captures how risky is the inter-dealer market in transmit-
ting default shocks to other counter-parties. The hedging decision at t = 2 is a reduced
form to capture any financial relationship aimed at reducing operating costs, but deter-
mining a financial exposure towards F−i credit risk. If both dealers agree to hedge and
d = (di,d−i), Fi defaults at t = 3 with probability di +(1−di)d−iγ .

At t = 0 each dealer Fi simultaneously offers a contract wi = (pi,ki) to outside
investors. Contracts w := (wA,wB) are publicly observed. Each Fi receives I from
investors, and promises a transfer pi, to be paid at t = 3, and a quantity ki ≥ 0 of
collateral posted at t = 0. Dealers can produce the collateral asset at t = 0 at a per unit

10I refer to this action between two dealers as ‘hedging’, but the modelling is extremely stylized. I use this
terminology only because derivative dealers mostly use inter-dealer markets for this purpose. For the model results,
what is necessary is that inter-dealer markets reduce the costs of running the project initially financed by investors.
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cost µ > 1, and at t = 3 one unit of collateral is worth one dollar (normalized). The
discount rate of all market participants is normalized to one. If Fi defaults, collateral
ki is transferred to investors, while if he honours his obligations Fi gets back the asset.
After observing the contract offers w, investors decide whether to accept or reject
the offer. I consider t = 0 to be divided in two sub-periods: in the first one dealers
simultaneously offer contracts, and in the second one investors accept or reject.

Clearly, without a moral hazard problem no collateral asset would be produced
since investors are risk neutral. As implicit in the restriction of the contractual space
(pi,ki), dealers cannot offer contracts contingent on the hedging outcome at t = 2.
However, the hedging outcome can be ex-post verified—for example during a bankruptcy
procedure—after a dealer defaults.11 The timing of the game is illustrated in Figure
2.1.

0
Fi OFFERS wi = (pi,ki).

INVESTORS ACCEPT

OR REJECT

1

Fi EXERTS

UNOBSERVABLE

EFFORT ei

2
d = (dA,dB) REALIZED.

DEALERS HEDGE OR

BOTH INCUR LOSS L

3

CONTRACTS ENFORCED

UNLESS DEFAULT

t

Figure 2.1: Timing of the game.

I consider the subgame perfect equilibria of the game. A strategy profile is subgame
perfect if its restriction is a Nash equilibrium in every proper subgame. The proper
subgames coincide with each period t and sub-period (for t = 0): at t = 2 both dealers
know (w,d) and decide whether to hedge or not; at t = 1 dealers decide the effort
decision, knowing contracts w and investors’ acceptance decision; in the second sub-
period of t = 0, investors accept contract wi after observing w = (wA,wB); in the first
sub-period of t = 0, each Fi simultaneously offers a contract wi.

2.4 Equilibrium with two dealers

To highlight the effects of peer monitoring, I first analyze the equilibrium contract for
a single dealer, i.e. at t = 2 the game has no hedging, and dealers do not incur the loss

11The possibility to write investors’ contracts contingent on the hedging outcome could enlarge the possibilities
to implement a first-best contract, because it mitigates the risk-shifting problem. Financial contracts contingent
on other contracts are often difficult to implement in practice as they may require real-time information on dealers’
overall portfolio position. However, the Lehman’s bankruptcy case in 2008 has shown how difficult, lenghty, and open
to court litigation it is to evaluate a dealer’s portfolio position. Although a trade repository or a CCP may greatly
improve these possibilities, a real time monitoring seems a too ambitious goal for the time being.

75



L. In section 2.4.2 I present the equilibrium with two dealers. Lastly, Section 2.4.3
discusses how the optimal design of penalties changes the equilibrium outcomes.

2.4.1 Autarchic equilibrium

In a first-best allocation Fi invests in the project and exerts effort. Collateral ki is not
used because effort is contractible and no incentive compatibility constraint arises. As
one unit of collateral costs µ > 1, it is optimal to only pay in the last period, i.e.
pi = I and ki = 0. The maximum investment level which can be profitably financed is
I∗ := R− c.

For simplicity, I denote the final payoff at t = 3 for Fi with πi := R− pi + ki. If
effort is not observable and verifiable, a dealer exerts effort at t = 1 only if the contract
is incentive compatible

πi− c≥ (1−m)πi → πi ≥
c
m

(2.1)

The first-best contract—pi = I and ki = 0—is incentive compatible only if

I ≤ R− c
m

= I∗− 1−m
m

c := I∗a
12

If I > I∗a the first-best contract is not implementable and collateral ki must be used
to satisfy equation (2.1). An incentive compatible contract requires to post collateral:

ki ≥
c
m
− (R− pi) (2.2)

If this is the case, investors accept to finance the project only if pi ≥ I. In equilibrium,
investors break-even and equation (2.2) is binding. Investing is profitable if and only
if:

R− I− (µ−1)
( c

m
− (R− I)

)
≥ 0 → I ≤ I∗− µ−1

µ

1−m
m

c := Ik
a (2.3)

Compared to the first-best contract, the equilibrium outcome is suboptimal when: (i)
I ∈ (I∗a , I

k
a ] because costly collateral must be used; or (ii) I ∈ (Ik

a , I
∗] because it is not

possible to finance the investment.

12The subscript a stands for ‘autarchy’.
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2.4.2 Peer monitoring equilibrium

I now extend the autarchic model by considering the effect of the ‘hedging game’ at
t = 2. In the sub-game starting at t = 2, each dealer Fi knows contracts w and default
probabilities d, and he decides whether he is willing to hedge or not with F−i. If F−i is
willing to hedge, it is weakly optimal for Fi to accept if and only if:

(1−di)πi− (1−di)d−iπiγ ≥ (1−di)πi−L → d−i ≤
L

(1−di)γπi

In words, Fi wants to hedge only if the default probability of the other dealer is
sufficiently low. The threshold value negatively depends on the expected loss from
contagion—(1− di)γπi—and positively on L. In particular, Fi is less willing to be fi-
nancially exposed to F−i when the loss L from refusing to hedge is small, contagion
probability γ is significant, its own credit risk di is low, and its future payoff πi is high.

Dealers hedge for sure when they both exert effort, and no loss L is borne. Indeed,
F−i is always willing to hedge if Fi is safe (di = 0) because there is no contagion
risk. However, if Fi did not exert effort but F−i did, the probability of hedging is only
G
(

L
γπ−i

)
as F−i may refuse to trade when di is too large.

In a first-best contract both dealers exert effort, hedge with probability one, and
the equilibrium contract is pi = I and ki = 0. If effort were contractible the hedging
decision would not be useful to provide incentives.

Since effort is not contractible, its provision requires to have an incentive compati-
ble contract. The important novelty in the two dealers model—relative to the autarchic
one—is the possibility to use the inter-dealer transaction as an incentive device. If a
dealer is too risky, the other dealer may reject to hedge, as the loss from a potential
contagion is too high. This potential exclusion from the inter-dealer market at t = 2—
which I name threat of ostracism—may provide additional incentives ex ante, at t = 1,
to exercise costly effort and avoid the possibility to incur the loss L.

I proceed to characterize the equilibrium. Consider a path in which F−i exercises
effort and has a final payoff π−i at t = 3. Hence, Fi is always willing to hedge with
F−i as the latter is safe. If both dealers undertake the investment, the optimal contract
solves:

max
pi,ki

R− pi− (µ−1)ki− c

s.t. πi = R− pi + ki ≥
c−
(

1−G
(

L
γπ−i

))
L

m
(IC)

pi ≥ I (IR)

Without setting up a Lagrangian, it is easy to realize that the optimal contract al-
ways features pi = I. The first-best contract with ki = 0 is still implementable when
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the IC constraint is slack, i.e.:

I ≤ R−
c−
(

1−G
(

L
γπ−i

))
m L = I∗− 1−m

m c+

[
1−G

(
L

γπ−i

)]
m L

= I∗a +

(
1−G

(
L

γπ−i

))
m L := Ic(π−i)

If L < γπ−i the threat not to hedge relaxes the incentive compatibility constraint
compared to an autarchic situation as

[
1−G

(
L

γπ−i

)]
L > 0. This is the case when L

is not too large, otherwise F−i would always accept to avoid the loss L, even if this
could lead to very high contagion risk. In other words, the impact of a greater L is non-
monotone. On the one hand, a higher L provides more incentives to exercise effort
because it is more costly not to find a counter-party willing to hedge. On the other
hand, a higher L reduces the effectiveness of peer monitoring, as a safe dealer may still
prefer to avoid the loss L at the cost of a higher contagion risk. This countervailing
force is stronger when contagion risk γ is low, as the expression G

(
L

γπ−i

)
points out.

Importantly, the peer monitoring incentives are stronger when the other dealer has a
larger stake π−i at t = 3.

Tenuous peer monitoring incentives worsen the agency problem, and collateral may
be necessary to increase the skin in the game. This is the case for I > Ic(π−i). Being
costly, the amount ki of collateral posted at t = 0 is set just enough to satisfy the IC
constraint, i.e.:

ki =
c−
[
1−G

(
L

γπ−i

)]
L

m
− (R− I) = I− Ic(π−i)

Substituting this quantity into Fi’s profit function, I get the maximum investment
cost which can be financed through an incentive compatible contract:

R− I− (µ−1)

c−
[
1−G

(
L

γπ−i

)]
L

m
− (R− I)

≥ 0

i.e.
I ≤ I∗− µ−1

µm

[
(1−m)c+

[
1−G

(
L

γπ−i

)]
L
]

= Ic(π−i)+
1

µm

[
(1−m)c−

[
1−G

(
L

γπ−i

)]
L
]

:= Ik
c (π−i)

(2.4)

Proposition 2.4.1 characterizes the unique subgame perfect equilibrium of the game.
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For this purpose, it is useful to introduce two quantities:

ξc(π) :=
c−
[
1−G

(
L

γπ

)]
L

m

C (π) :=
c[

1−G
(

L
γπ

)]
L

(2.5)

The first quantity ξc(π) is the minimum final payoff that dealer Fi has to receive in
order to satisfy his incentive compatibility constraint, given that the other dealer F−i

has final payoff π . The second expression C (π) is the ratio between effort cost, and
the expected loss incurred when a shirking dealer does not find a counter-party willing
to hedge.

Proposition 2.4.1 The game has a unique perfect subgame equilibrium. Dealers offer

identical contracts: pi = p and ki = k for i = A,B.

• The first-best contract p = I,k = 0 is implementable for I ≤ min{I∗, I∗c } where

I∗c is the unique solution to

R− I = ξc(R− I) (2.6)

Moreover, I∗c ≥ I∗ if and only if C (R− I)≤ 1
m .

• If C (R− I)> 1
m and the investment is undertaken, dealers final payoff π∗c is the

solution to π = ξc(π). The second-best contract p = I,k = π∗c − (R− I) > 0 is

profitable only if I ∈
(
I∗c , I

k
c
]
, where

Ik
c = I∗− µ−1

µm

[
(1−m)c−

[
1−G

(
L

γπ∗c

)]
L
]
= I∗− µ−1

µ
(π∗c − c) (2.7)

• No investment is undertaken for
(
Ik
c , I
∗].

Compared to an autarchic equilibrium, the hedging game introduces the possibil-
ity to exploit dealers’ superior information on credit risk. Hedging reduces operating
costs, but it also creates an incentive not to trade with risky counter-parties because
of contagion. Ex ante, this acts as a commitment device to exert effort, and it reduces
the need to use collateral as a way to implement proper incentives. Peer monitor-
ing is helpful to implement the first-best contract for a larger set of investment costs
only if

[
1−G

(
L

γπ∗c

)]
L > 0, i.e L < γπ∗c . Since π∗c ≥ R− I, a sufficient condition is

L < γ(R− I). Even when collateral is used to restore incentives, for I ∈
(
I∗c , I

k
c
]
, peer

monitoring incentives further alleviate the risk-shifting problem. Substituting π∗c in

79



equation (2.7) and comparing it with equation (2.3), it is straightforward to notice that
Ik
c > Ik

a since G
(

L
γπ∗c

)
< G

(
L

γ(R−I)

)
< 1 as π∗c > R− I. The last observation points

out an additional role played by collateral: by increasing the final payoff at t = 3, it
enhances peer monitoring incentives. Indeed, a dealer is more likely to reject a hedge
when the potential counter-party is risky, as he risks a larger loss in case of contagion.
In comparison to a first-best contract, a safe dealer is more likely to reject a hedge from
a risky dealer.

Nonetheless, when the cost L of refusing to hedge is too high, the incentives to peer
monitor are less credible. A safe dealer has less incentive to ostracize a risky one if
no other hedge is possible; the immediate loss L may be larger than the expected loss
from contagion risk. In this situation, peer monitoring does not alleviate the agency
problem and the optimal contract is identical to the one under autarchy. Similarly, if
the financial assets exchanged in the inter-dealer market have low contagion risk (low
γ), dealers find optimal to hedge also with a risky counter-party as the risk to incur a
loss is low. For example, collateralized loans such as repos may reduce contagion risk,
but they may inhibit peer monitoring incentives. Rochet and Tirole (1996) highlight
the importance to have sufficient losses on the inter-bank market in order to create
sufficient peer monitoring incentives. In my setup, when peer monitoring incentives are
low—i.e. C (π) high—there is an increase in collateral requirements, and a higher cost
of capital. In section 2.4.3, I explain how a CCP loss mutualization mechanism may
help to solve this difficult trade off between peer monitoring incentives and contagion
risk.

2.4.3 Optimal CCP loss mutualization design

In this section I introduce a market infrastructure, such as a CCP, with the possibility
to: (i) impose an initial margin requirement k in the form of collateral; (ii) upon the
default of a dealer, require additional payments from the other dealer (if still solvent)
in order to cover losses suffered by outside investors. In a broader sense, I interpret a
CCP as an overarching contract at t = 0 between FA and FB which introduces a system
of penalties for the default of the other dealer. These transfers have no insurance role—
investors are risk-neutral—but they may be used to incentivize the threat of ostracism.
As I am going to explain, this mechanism is successful only if these penalties depend
on the hedging decision at t = 2.

In real world practice, a CCP default waterfall includes the possibility to call for
additional contributions to the default fund. These transfers from dealers to the CCP
are usually limited in value, and they do not depend on previous trading patterns among
CCP members. I consider a slightly more general situation, in which additional default
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funds may depend on whether dealers hedge at t = 2. If F−i defaults, dealer Fi has to
pay non-negative transfers τ1 or τ0 to the CCP, depending on whether they hedged or
not, respectively.

I analyze the impact of introducing τ0 and τ1 on the equilibrium outcomes, and
I assume the CCP sets contracts w and penalties τ j, j = 0,1. Leaving the contract
decision wi up to dealers, and letting the CCP only set τ j, would only complicate the
analysis without changing final outcomes. I derive the optimal (τ0,τ1) in two steps.
First, I characterize the equilibrium for every feasible (τ0,τ1) and final payoff π−i for
the other dealer. Second, I show that it is optimal to increase τ1 as much as possible
and to set τ0 equal to zero.

At t = 2 a dealer Fi is willing to hedge only if:

(1−di)πi− (1−di)d−i[γhi +(1− γ)τ1]≥ (1−di)πi−L− (1−di)d−iτ0

Simplifying and rearranging:

L≥ (1−di)d−i[γπi +(1− γ)τ1− τ0]

If γπi + (1− γ)τ1− τ0 < 0 the dealer would always want to hedge. If the opposite
inequality holds, the acceptance rule becomes:

d−i ≤
L

(1−di)(γπi +(1− γ)τ1− τ0)
=

L
(1−di)hi

(2.8)

As before, if F−i exerts effort but Fi does not, both dealers hedge at t = 2 with prob-
ability G

(
L

h−i

)
. Assuming Fi expects F−i to pay the effort cost, the optimal contract

solves:

max
pi,ki

R− pi− (µ−1)ki− c

s.t. R− pi + ki ≥
c−
[
1−G

(
L

h−i

)]
L

m
:= ξτ(π−i,τ0,τ1) (IC)

pi ≥ I (IR)

If h−i ≤ 0, Fi always accepts to hedge, peer monitoring is never effective, and the
incentive compatible contract is identical to the autarchic one; see section 2.4.1. If
h−i > 0 peer monitoring mitigate the agency problem when L

h−i
< 1. In this case, the

optimization problem is analogous to the one in section 2.4.2, and the second-best
contract has pi = I and:

ki = max{0, ξτ(π−i,τ0,τ1)− (R− I)}
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The first-best contract is implementable if and only if ki ≤ 0, i.e.

I ≤ R−ξτ(π−i,τ0,τ1) = R− c− 1
m

[
(1−m)c−

[
1−G

(
L

h−i

)]
L
]

:= I∗(π−i,τ0,τ1)

If the first-best is not attainable, the second-best contract must use collateral to satisfy
the incentive compatibility constraint. The contract is profitable only if the investment
I satisfies:

I≤R−ξτ(π−i,τ0,τ1)=R−c− µ−1
µm

[
(1−m)c−

[
1−G

(
L

h−i

)]
L
]

:= Ik(π−i,τ0,τ1) (2.9)

The equilibrium is symmetric and it differs from the one in Proposition 2.4.1 by the
presence of τ0 and τ1 in h−i. In turn, this quantity changes G(·) and it can positively
or negatively affect peer monitoring incentives.

If the incentive compatibility constraint is binding, the equilibrium payoff πi =

π(τ0,τ1), i = A,B, is the unique solution to the equation:

π = ξτ(π,τ0,τ1)

The maximum investment level I∗(τ0,τ1) implementable with a first-best contract
solves the equation R− I = ξτ(R− I,τ0,τ1). By implicit differentiation, it is:

∂ I∗(τ0,τ1)

∂τ0
< 0

∂ I∗(τ0,τ1)

∂τ1
> 0

if the derivative is evaluated at a point such that G
(

L
γ(R−I)+(1−γ)τ1−τ0

)
< 1. It is opti-

mal to increase τ1 as much as possible and to set τ0 = 0. In order to be feasible, the
penalties imposed on Fi cannot be larger than the final payoff at t = 3, i.e. τ j ≤ π ,
j = 0,1. As a result, peer monitoring incentive are exploited as much as possible by
the penalties τ0 = 0 and τ1 = R− I.

The highest investment cost implementable with collateral—Ik(τ0,τ1)—is increas-
ing in h = γπ +(1− γ)τ1− τ0; see equation (2.9). An increase in τ1 (τ0) directly in-
creases (decreases) h but, indirectly, it has the opposite effect through π , which solves
π = ξτ(π,τ0,τ1). Computing the total derivative with respect to h, it is immediate to
show that the direct effect dominates on the indirect one:

∂h
∂τ0

= γ
∂π

∂τ0
−1 = γ

γ+ mh2
Lg(h)

−1 < 0

∂h
∂τ1

= γ
∂π

∂τ1
+(1− γ) = (1− γ)

(
1− γ

γ+ mh2
Lg(h)

)
> 0

Therefore, the optimal CCP design leads to a payoff π∗τ which solves π = ξτ(π,0,π),
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and to a maximum investment level Ik(0,π∗τ ). It can be alternatively expressed as:

Ik(0,π∗τ ) = R− c− µ−1
µ

[π∗τ − c]

As ξc(π)> ξτ(π,0,π) for every π > 0, it follows that π∗τ < π∗c . By equation (2.7), it is
immediate to conclude that Ik(0,π∗τ )> Ik

c . In words, the optimal CCP design increases
the ‘pledgeable income’ compared to a bilateral peer monitoring equilibrium.

The previous results suggest how a well designed loss mutualization scheme may
promote peer monitoring and alleviate the moral hazard problem. The CCP has to
punish as much as possible (τ1 = π∗) a dealer who traded with a later defaulting party,
while it should not punish a dealer who refused to trade (τ0 = 0). This system of
penalties: (i) reduces contagion risk at t = 2 as it discourages to trade with a risky
counter-party; and (ii) at t = 1 it provides additional incentives to exert effort and be
able to hedge at t = 2. In this model with only two dealers, the inter-dealer market
provides incentives to avoid being risky by a threat of ostracism from a safe counter-
party. After a deviation from the equilibrium path, a dealer faces a safe counter-party
and the CCP structure enhances his incentives to refuse a hedge. In a market without
CCP, the cost of hedging with a risky dealer is the possibility to lose future profits
in case of contagion; a CCP imposes additional penalties as it expropriates profits
(τ1 = π∗τ ) even when there is no contagion.

The penalties enhance the effectiveness of peer monitoring. In a market without
CCP peer monitoring is effective only if L < γ(R− I), while the optimal CCP design
(τ0 = 0,τ1 = π∗τ ) makes it relevant if L < R− I. It is no longer important to have
a higher contagion probability γ , because τ1 achieves the same incentive effects—
expropriating Fi’s payoff at t = 3—without relying on the extreme punishment of a
default due to contagion. This is a clear advantage because Fi’s contagion also harms
his investors. As a consequence, an optimal market architecture should impose a well
designed CCP and reduce γ as much as possible. However, the model abstracts from
the determinants of γ and the possible costs related to a decrease in contagion risk
throurgh higher collateralization. In this case, a standard cost-benefit analysis should
apply to determine the optimal trade-off.

The previous results point out the importance to condition penalties on a measure
of previous trade with the defaulting dealer. If penalties are always imposed on a
surviving member—independently from the hedging decision—then τ0 = τ1 = τ . In
this case π(τ,τ) solves:

π =
c−
[
1−G

(
L

γ(π−τ)

)]
L

m
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The maximum investment levels are I∗(τ,τ) < I∗c and Ik(τ,τ) < Ik
c for every τ > 0,

and the negative impact on the investment opportunities is larger the higher is τ . The
intuition is very simple: if Fi has to always cover F−i losses (even partially), it is more
convenient to trade and avoid the extra hedging cost L. Moreover, the risk of contagion
is less damaging as it avoids to pay for F−i losses.

2.5 Equilibrium with multiple dealers

I extend the baseline model to include multiple dealers. The main goal is to understand
how the number of participants in the inter-dealer market may change the incentive to
exercise effort, and whether the optimal CCP design should change relative to the
model with two dealers. In real world markets, dealers hold multiple positions with
other dealers. However, I abstract from the issue of credit risk diversification among
multiple dealers, and I continue to assume dealers hedge in bilateral relationships.13

This assumption streamlines the exposition of the economic forces at work when deal-
ers sort based on credit risk.

In the baseline model, dealers do not choose their hedging counter-party because
the inter-dealer market has only two members. After observing the default probability,
they only decide whether to accept a hedge or not. Moreover, in the model in section
2.4, exerting effort leads to a zero default probability and, under the optimal contract,
all dealers survive at t = 3. As a result, if a dealer shirks at t = 1, he expects to face a
safe dealer at t = 2. Extending this framework to multiple dealers would not change the
interactions of the hedging game, and the final outcome would be identical to the one
in section 2.4.2. In other words, the number of dealers is irrelevant if exerting effort
leads all dealers to be always safe. In this case, peer monitoring is effective through
the threat of being ostracized when too risky.

If exerting effort does not guarantee to be safe, but it may lead, occasionally, to
be risky, a new economic mechanism arises. It provides additional incentives to avoid
risk-shifting, especially when the number of dealers in the market is sufficiently large.
In this extension, exerting effort continues to reduce the threat of ostracism, but it also
increases the chances to hedge with a safe counter-party. In the next subsections, I am
going to explain this endogenous peer selection mechanism, and how it changes the
incentives to exercise effort and, in turn, final outcomes.

13Although I do not model multiple hedging relationships, it seems reasonable to conjecture that losses should be
distributed among counter-parties proportionally to their relative share of trade with the defaulting dealer. Modelling
multiple trade relationships among dealers, and developing appropriate measures of dealers’ interconnectedness—in
relation to the peer monitoring problem—are interesting future research venues.
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2.5.1 Model

I extend the baseline model in the simplest possible manner to preserve analytical
tractability. Assume there are N (even number) identical dealers at t = 0. At t = 2
dealers can either be safe or risky. If safe, a dealer survives for sure at t = 3 unless
he defaults by contagion. If risky, at t = 3 he defaults with probability d, and survives
with probability 1−d (unless contagion). The random variable d comes from a differ-
entiable cumulative distribution G(·), and it is identical for all risky dealers at t = 2. At
t = 1, exerting effort leads with probability 1−α to be safe, and with probability α to
be risky; if a dealer shirks, he is risky with probability one. Conditional on N dealers
exerting effort, the probability to have l ≤ N safe dealers comes from a correlated bi-
nomial distribution with probability distribution function PN(l). I assume the random
variable d to be independent from the realization l of safe dealers.

As in the baseline model, dealers are the only ones to observe the default proba-
bility of other dealers. Once they observe that l dealers are safe and N− l are risky,
they simultaneously choose to match with another dealer. I do not model explicitly this
matching process, and I directly consider the following outcome:

• If l is even, every dealer matches with a dealer of identical credit risk: safe with
safe, and risky with risky.

• If l is odd, each safe (risky) dealer matches with probability l−1
l (N−l−1

N−l ) to a
safe (risky) dealer, and with probability 1

l ( 1
N−l ) with a risky (safe) dealer.14

I consider this matching outcome reasonable, on the grounds that there is a mutual
benefit for safe types to hedge with each other, and avoid contagion risk. The final
outcome leads to assortative matching, unless there are not enough pairs of the same
type and, for each group, one dealer at random has to trade with a dealer of different
credit risk. From an individual point of view, this probability of ‘mismatch’ is lower
the higher is the number N of dealers in the market.

Let j ∈ {gg,gb,bg,bb} denote the possible matching pairs for a dealer, where the
first letter indicates his credit risk (g for safe, b for risky), and the second letter the one
of his trading partner. If all N dealers exert effort, the probability p j at t = 1 is:

pgg =
N
∑

l=0
PN(l)

l
N

[
I{l even}+

(
1− 1

l

)
I{l odd}

]
= 1−α− 1

N

N
∑

l=0
PN(l)I{l odd}

pbb =
N
∑

l=0
PN(l)

N− l
N

[
I{l even}+

N− l−1
N− l

I{l odd}

]
= α− 1

N

N
∑

l=0
PN(l)I{l odd}

pbg = pgb =
1
N

N
∑

l=0
PN(l)I{l odd}

14These are the probabilities, for a single dealer, to match with a safe or risky counter-party. Overall, all dealers’
pairs include dealers of the same credit risk when l is even, and there is only one ‘mismatched’ pair if l is odd.
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For the incentive compatibility constraint, another relevant quantity is the probability
qbg that, after shirking, a risky dealer matches with a safe dealer, assuming the other
N−1 dealers exerted effort. It is equal to:

qbg =
N−1
∑

l=0
PN−1(l)

1
N− l

I{l odd}

For example, consider two extreme cases: statistical independence and perfect cor-
relation. In the former, becoming risky is an idiosyncratic shock. In the latter, credit
statuses are perfectly correlated, and the shock has an aggregate nature; for example,
they may be the result of a deterioration in some macroeconomic variable. For N large,
different correlation assumptions do not affect much p j, while they may continue to
matter for qbg. For N→ +∞, the probability qbg is equal to zero in the case of statis-
tical independence, and to 1−α if shocks are perfectly correlated. This difference is
going to play a relevant role in the incentive compatibility constraint.

2.5.2 Incentive compatibility for N dealers

As in section 2.4.3, a CCP can impose penalties τ1 and τ0 on a dealer after the default
of his trading partner, and these transfers may depend on the hedging decision at t = 2.
The situation without a CCP is a particular case (τ0 = τ1 = 0). I exclude the possibility
to impose penalties on a dealer, based on the default of a dealer other than his hedging
partner.15 In this respect, I model a situation of bilateral rather than centralized clear-
ing. I make the assumption that a hedging partner can be identified even if no hedging
takes place. This is not an issue when N = 2, but with more than one pair it is less
realistic to impose penalties on dealers who refused to trade. I keep this assumption,
although it will be later clear how the optimal CCP design does not rely on it.

To streamline exposition, I restrict attention to equilibria in which dealers of the
same credit risk always decide to hedge. This restriction is irrelevant when both dealers
are safe, while for risky dealers it requires d(1−d)≤ 1

4 ≤
L
hi

, for every d ∈ [0,1], where
hi = γπi +(1− γ)τ1− τ0. Thanks to this assumption, dealers always hedge, unless a
matched pair includes a safe and a risky dealer. In this case, a safe dealer F−i accepts
to hedge only if the default probability d is below L

h−i
(see equation (2.8)).

For a given π = (πi,π−i) and τ = (τ0,τ1)—which jointly determine hi and h−i—
the expected payoff from exerting effort at t = 1, conditional on all other N−1 dealers

15It is easy to realize that this possibility does not relax the incentive compatibility constraint, but quite the
opposite as it would reduce the final expected payoff πi without any connection to Fi’s actions.
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exerting effort and having payoff h−i, is:16

Eei=1 [ui|π,τ] = pggπi + pbb(1−m) [(m(1− γ)(πi− τ1)+(1−m)πi]

+ pbg

{
G
(

L
h−i

)
E
[
1−di|di ≤ L

h−i

]
πi +

[
1−G

(
L

h−i

)](
E
[
1−di|di ≥ L

h−i

]
πi−L

)}
+ pgb

{
G
(

L
hi

)[
E
[
1−d−i|d−i ≤ L

hi

]
πi +E

[
d−i|d−i ≤ L

hi

]
(1− γ)(πi− τ1)

]
+
[
1−G

(
L
hi

)](
πi−L−E

[
d−i|d−i ≥ L

hi

]
τ0

)}
− c

The expected payoff at t = 1 includes all the possible future equilibrium outcomes
of the game. With probability pgg dealer Fi is safe, and matches with another safe
dealer. They hedge, avoiding the extra cost L, and enjoy for sure their final profit πi

at t = 3. If instead Fi is safe, and matches with a risky dealer—an outcome whose
probability is pgb—he accepts to hedge only if d ≤ L

hi
. If they hedge, he enjoys his

final profit πi if F−i does not default (with expected prob. E
[
d−i|d−i ≤ L

hi

]
), or if F−i

defaults and Fi does not suffer from contagion (with prob. E
[
d−i|d−i ≤ L

hi

]
(1− γ)).

In the last case, Fi has to pay the penalty τ1 to the CCP. If Fi refuses to hedge, he
incurs an immediate loss L but he is not exposed to contagion risk, and enjoys πi for
sure; however, if F−i defaults he might still have to pay a penalty τ0. If Fi turns out
to be risky, he can either match with another risky dealer (with prob. pbb), and avoid
the cost L for sure; then, if Fi survives at t = 3, he enjoys πi either when F−i does
not default (with prob. 1−m), or when it is not affected by contagion (with prob.
m(1− γ)); nonetheless, in the last case he has to pay τ1. Finally, if Fi turns to be risky,
and matches with a safe dealer (with prob. pbg), he enjoys πi if he survives at t = 3,
but he incurs an extra cost L at t = 2 if F−i refuses to hedge (with prob. 1−G

(
L

h−i

)
).

Simplifying the expression, it is:

Eei=1 [ui|π,τ] = πi(1−mα)−

pgb

L
hi∫
0

xg(x)dx+m(1−m)pbb

(γπi +(1− γ)τ1)

+
[

pgb

(
1−G

(
L
hi

))
+ pbg

(
1−G

(
L

h−i

))]
L− τ0 pgb

1∫
L

h−i

xg(x)dx− c

(2.10)
If Fi decides to shirk (ei = 0), he is risky for sure at t = 2 and his expected payoff at
t = 1 is:

Eei=1[ui|π,τ] = qbg

[
(1−m)πi−

(
1−G

(
L

h−i

))
L
]
+(1−qbg)(1−m) [(1−mγ)πi−m(1− γ)τ1]

(2.11)

If Fi matches with a safe dealer, he is not exposed to contagion risk, but he may not
hedge if d > L

h−i
. If both dealers are risky, they hedge for sure but Fi may end up paying

a penalty τ1 if F−i defaults, and he survives.

16The expectation operator is computed with respect to the probability measure induced by G(·).
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The contract at t = 0 is incentive compatible if Eei=1 [ui|π,τ] ≥ Eei=0 [ui|π,τ].
Rearranging the expression conveniently, it is equivalent to:

πi ≥
c−κLL− (1− γ)κτ1τ1 +κτ0τ0

m(1−α)+ γκτ1

(2.12)

κL = (qbg− pbg)
[
1−G

(
L

h−i

)]
− pgb

[
1−G

(
L
hi

)]
κτ1 = m(1−m)(1−qbg− pbb)− pbg

L
hi∫
0

xg(x)dx

κτ0 = pgb

1∫
L

h−i

xg(x)dx

In the remainder of the paper, I am going to focus on the limit case N→+∞. The
asymptotic case better highlights the economic mechanisms at work, and the role of
correlation among dealers’ shocks.

2.5.3 Equilibrium for N→+∞

The incentive compatibility constraint in equation (2.12) is complicated by the pres-
ence of pbg and pgb, and the terms they multiply. However, the probability of a mis-
match is rapidly decreasing in N, and it is not a meaningful economic force at work.
Indeed, it arises as an unlikely circumstance because of the restriction to bilateral hedg-

ing. As
N
∑

l=0
PN(l) = 1, it is immediate to realize that:

1
N

N

∑
l=0

PN(l)I{l odd} ≤
1
N

As a consequence, for N→+∞ it holds pgg→ 1−α , pbb→ α and pbg = pgb→ 0.
Intuitively, in equilibrium it is extremely likely to match with a dealer of identical credit
risk, irrespective of the correlation among dealers’ ‘involuntary’ credit risk shocks. To
understand why correlation does not matter, let’s consider two extreme assumptions:
(i) statistical independence; (ii) perfect correlation. First, in both cases the probability
to get mismatched with a dealer of different credit risk is proportional to 1

N , hence it
is very small for N large. In case (i), at t = 2 approximately (1−α)N dealers are
safe and αN dealers risky; the small probability of mismatch leads all dealers to hedge
with a dealer of equal credit risk. In case (ii), if all dealers exercise effort, they all have
identical credit risk at t = 2, and they hedge with probability one.

In a first-best, all dealers exert effort, and find almost surely a counter-party of
equal credit risk with whom they hedge. As a result, exerting effort leads to a survival
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probability at t = 3 equal to:

s := 1−α +α(1−m)(1−mγ) = 1−αm[1+ γ(1−m)]

i.e. the sum of the probabilities to be safe and match with another safe dealer (1−α),
and to be risky (α), hedge almost surely with a risky dealer, and avoid to default either
individually (1−m), or through contagion in case of default of the other counter-party
(1−mγ). Therefore, at t = 0 the first-best contract solves:

max
p

s(R− p)− c

s.t. sp≥ I
(2.13)

The optimal contract has p = I/s and the project is always financed if it has positive
net present value (NPV), i.e. only if I ≤ sR− c. Analogously to section 2.4, I denote
with I∗ = sR− c the maximum investment level. I assume shirking leads to a negative
NPV.

I turn to consider the case in which effort is not observable, nor contractible. For
N→+∞, the incentive compatibility constraint in equation (2.12) becomes:

πi ≥
c−qbg

[
1−G

(
L

h−i

)]
L−m(1−m)(1−α−qbg)(1− γ)τ1

m(1−α)+ γm(1−m)(1−α−qbg)
:= ξm(qbg,π−i,τ0,τ1) (2.14)

The expression in (2.14) points out two separate economic forces—related to the
functioning of the inter-dealer market—that decrease the convenience of shirking, re-
laxing the incentive compatibility constraint relative to the autarchic equilibrium.

1. Threat of ostracism. The quantity qbg

[
1−G

(
L

h−i

)]
L captures the expect loss

from shirking due to the possibility of not being able to hedge. It depends on:
(i) the probability qbg to match with a safe dealer after shirking; (ii) the proba-
bility that a safe dealer rejects to trade as d > L

h−i
; and (iii) the loss L from not

hedging. In particular, the higher is the probability to match with a safe dealer,
the more relevant is this economic mechanism. The baseline model of section
2.4 highlights very clearly this threat of ostracism because, in equilibrium, the
probability to match with a safe dealer after a deviation is one. As previously
discussed, the effect of a larger L is ambiguous: it increases the loss L, but, at
the same time, it decreases the chances that a safe dealer refuses to trade, since
he is also going to suffer a high loss without a hedge.

2. Higher costs of a risky hedge. With infinitely many dealers, matches are not
exogenous as in the two dealers’ case. In equilibrium, a dealer matches almost
surely with another dealer of identical credit quality. Risky dealers are more
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likely to default, so their trading partners are more exposed to contagion risk
and, possibly, to additional penalties τ1. Without a CCP, it is convenient not
to match with a risky counter-party to avoid contagion risk. This element is
captured by the term γm(1−m)qbg in the denominator. A CCP may further
increase these incentives to avoid risky counter-parties. To reduce the chances
to pay τ1, it is more convenient to exercise effort, as it is more likely at t = 2
to be safe and trade with a safe counter-party. The importance of this channel
depends on the quantity m(1−m)(1−α−qbg)(1− γ)τ1, which is the expected
cost from a ‘risky match’ after shirking. It depends on: (i) the difference between
the probability of matching with a risky dealer when Fi shirks (1− qbg) or not
(α); (ii) the expected probability that Fi survives, but the hedging partner defaults
m(1−m)(1−γ); and (iii) the penalty τ1 that a dealer has to pay in case of default
of his counter-party.

The relative importance of these two forces depends—among other parameters—
on the probability qbg to match, after a deviation, with a safe dealer. A higher value of
qbg increases the weight assigned to the event that a safe dealer refuses to hedge, and
it reduces the probability to match with a risky dealer, and possibly pay τ1 at t = 3.
The correlation among dealers’ shocks influences qbg. Suppose a dealer deviates from
an equilibrium in which every dealer exerts effort. At t = 2 he is for sure risky, and it
is going to match with another dealer. If dealers’ ‘involuntary’ credit risk shocks are
independent, then qbg→ 0 as N increases; in fact, there are always going to be risky
dealers, and the probability of a ‘mismatch’ is low even after a deviation. In contrast,
if there is perfect correlation, it is qbg = 1−α , as all the other N−1 dealers have the
same credit risk at t = 2, and their marginal probability to be safe is 1−α . Intermediate
correlation stands between these two extremes.

In section 2.4, the penalties τ1 or τ0 do not enter neither the objective function, nor
the investors’ individual rationality constraint, since in equilibrium all dealers exert
effort and no default occurs. However, in this slightly more general setup, default is
possible even when dealers exert effort. As a result, τ1 appears as an additional cost in
Fi objective function—to be paid to F−i’s clients conditional on the latter default—and
it also shows up as an additional payment that Fi’ clients receive from F−i, if the former
defaults but the latter does not. Both events have probability z := αm(1−m)(1− γ).

In equilibrium, all dealers always hedge irrespective of their credit risk, and the
penalty τ0 does not appear in the profit function or in the budget constraint, although it
may still affect the incentive compatibility constraint through h−i (see equation (2.14)).
I implicitly assume that τ1 and τ0 satisfy the feasibility constraints τ j ≤ πi =R− pi+ki,
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j = 1,2 for all dealers i∈ {1, ...,N}. The optimal incentive compatible contract solves:

max
pi,ki

s(R− pi + ki)−µki− zτ1− c

s.t. R− pi + ki ≥ ξm(qbg,π−i,τ0,τ1) (IC)

spi +(1− s)ki + zτ1 ≥ I (IR)

The IR constraint binds in the optimum, and it is easy to substitute the expression for
pi into the profit function and the IC constraint. The problem becomes:

max
pi,ki

sR− I− (µ−1)ki− c

s.t. sR− I + ki + zτ1 ≥ sξm(qbg,π−i,τ0,τ1) (IC)

The optimal solution minimizes the amount of collateral ki to be posted in order to
satisfy the IC constraint. The first-best solution has ki = 0, and it is implementable if
and only if:

I ≤ s[R−ξ (qbg,τ0,τ1)]+zτ1 = I∗−sξm(qbg,π−i,τ0,τ1)+c+zτ1 := Ic(qbg,π−i,τ0,τ1) (2.15)

If I > Ic(qbg,π−i,τ0,τ1), collateral has to be used to satisfy the IC constraint. As ki

decreases utility at a rate µ−1, the optimal choice is to set it as low as possible, i.e. to
satisfy the IC constraint with equality:

ki = max
{

0,sξm(qbg,π−i,τ0,τ1)− zτ1− (sR− I)
}

Substituting this quantity into the profit function, the investment is undertaken only if:

I ≤ I∗− µ−1
µ

(
sξm(qbg,π−i,τ0,τ1)− c− zτ1

)
:= Ik(qbg,π−i,τ0,τ1) (2.16)

Using equations (2.15) and (2.16), Proposition 2.5.1 characterizes the symmetric
subgame perfect equilibrium of the game. The proof is analogous to the one of Propo-
sition 2.4.1, and I omit it in the interest of space.

Proposition 2.5.1 Let N→+∞. The only symmetric subgame perfect equilibrium is:

• The first-best contract p = I−zτ1
s , k = 0 for I ≤ min{I∗, I∗c (qbg,τ0,τ1)}, where

I∗c (qbg,τ0,τ1) is the unique solution to

R− I− zτ1

s
= ξm

(
qbg,R−

I− zτ1

s
,τ0,τ1

)
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• If I∗c (qbg,τ0,τ1) < I∗, and the investment is undertaken, dealers’ final payoff

πm(τ0,τ1) is the solution to π = ξm(qbg,π,τ0,τ1). The second-best contract is:

p =
I− (1− s)k− zτ1

s
k = sπm(τ0,τ1)− zτ1− (sR− I)

It is profitable only if I ∈
(
I∗c (qbg,τ0,τ1), Ik(qbg,πm(τ0,τ1),τ0,τ1)

]
.

• No investment is undertaken for I ∈
(
Ik(qbg,πm(τ0,τ1),τ0,τ1), I∗

]
.

The equilibrium shares similar features with the one in the baseline model. The dif-
ferences concern the determinants of the incentive compatibility constraint ξm(qbg,π,τ0,τ1),
relative to the one with two dealers (i.e. ξτ(π,τ0,τ1)). As explained before, in this
model the inter-dealer market provides incentive through two channels: the threat of
ostracism, and the higher incentives to avoid a match with a risky dealer. The relative
importance depends on qbg, and, in the remainder of this section, I analyze how the
maximum investment levels change with correlation, as captured by qbg. I consider
separately the cases with and without CCP to better point out the effects of τ0 and τ1.

Equilibrium without CCP

Without a CCP, both I∗c (qbg,π−i,0,0) and Ik(qbg,π−i,0,0) only depend on:

ξ (qbg,π−i,0,0) =
c−qbg

[
1−G

(
L

γπ−i

)]
L

m(1−α)+ γm(1−m)(1−α−qbg)

The correlation among dealers’ shocks—which affects qbg—affects the incentive com-
patibility constraint. Its effect depends on which mechanism makes shirking more
costly: (i) matching with a safe dealer who refuses to hedge; or (ii) matching with
a risky counter-party, and be exposed to greater contagion risk. An increase in qbg

strengthens the first channel, and weakens the second. The overall effect depends on
which economic mechanism imposes the higher loss, and this trade-off is captured by
the magnitude of C (π) = c[

1−G
(

L
γπ

)]
L

. The ratio C (π) measures the relative cost of ex-

ercising effort—and hedging for sure—against the expected cost for a shirking dealer
of being matched with a safe counter-party who refuses to trade. Intuitively, a higher
C (π) measures a lower expected cost from being ostracized.17

17The denominator of C (π) is
[
1−G

(
L

γπ

)]
L, and a lower expected cost from the threat of ostracism may come

from a lower L, or from a lower probability that a safe dealer refuses to hedge.
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Proposition 2.5.2 Let π be dealers’ equilibrium payoff. The incentive compatible in-

vestment levels are:

• Equal to I∗ if

C

(
R− I

s

)
≤
{1−αm[1+ γ(1−m)]}qbg

(1−m)[1− γm(1−qbg)]
:= η(qbg)

with η(qbg) increasing and η(0) = 0.

• Lower than I∗ if C (π)>η(qbg). The thresholds I∗c (qbg,π,0,0) and Ik(qbg,π,0,0):

– increase in qbg if C (π) ∈
(

η(qbg),
(1−α)[1+ γ(1−m)]

γ(1−m)

]
.

– decrease in qbg if C (π)>
(1−α)[1+ γ(1−m)]

γ(1−m)
.

An increase in qbg increases the chances to match with a safe dealer after a devi-
ation.18 If the expected cost of ostracism is high—i.e. C (π) < (1−α)[1+γ(1−m)]

γ(1−m) —an
increase in qbg relaxes the incentive compatibility constraint: it is more likely not to
hedge after a deviation. In contrast, if being exposed to the contagion risk of a risky
counter-party is more costly—i.e. C (π) > (1−α)[1+γ(1−m)]

γ(1−m) —a higher qbg worsens the
agency problem; after a deviation, the chances of matching with a risky dealer are
lower.

These results can be alternatively stated as follows. If the costs of exclusion from
the inter-dealer market are high, the incentives to undertake a safe business conduct
are stronger—hence less collateral is necessary—in economic environments in which
dealers’ credit shocks depend on common macroeconomic variables. In contrast, if
dealers fear more the risk of contagion, they have better incentives to be safe, and
match with other safe dealers, when dealers’ credit shocks are less correlated, and
more dependent on idiosyncratic factors.

Equilibrium with optimal CCP design

I now turn to consider what is the potential effect of a CCP. First, I establish what is
the optimal (τ0,τ1).

Proposition 2.5.3 The optimal CCP penalties are τ0 = 0, τ1 = πmτ , where πmτ is the

solution to π = ξm(qbg,π,0,π).

The optimal loss mutualization scheme for a CCP is to impose the highest possible
penalty only if a dealer has previously hedged with a defaulting member. As in the

18To better grasp this intuition, consider the extreme case of perfect correlation: if Fi deviates, there is 1−α

probability that all other N−1 dealers are safe at t = 2.

93



baseline model, the penalty τ1 enhances the incentives, for a safe dealer, to refuse a
hedge from a risky counter-party. If Fi accepts a hedge, he receives a zero payoff
not only when there is contagion (with prob. γ), but also when he survives, since
the penalty τ1 reduces to zero his final payoff π . However, with multiple dealers, the
penalty τ1 also increases the endogenous peer selection channel. Risky dealers are
more likely to hedge with other risky dealers, and, unless they default, they are more
likely to pay the penalty τ1, as a risky hedging partner is more likely to default. Dealers
want to minimize the chances of trading with a risky dealer; exercising effort increases
the probability to be safe, and to trade with safe counter-parties.

Proposition 2.5.4 describes how the correlation in dealers’ shocks influnces the
incentive compatibility constraint and, in turn, the maximum investment level.

Proposition 2.5.4 Let π be the equilibrium payoff with τ0 = 0 and τ1 = π . The maxi-

mum incentive compatible investment level is:

• Equal to I∗ if

C

(
π

γ

)
≤ η(qbg)+

m[1−α−qbg(1−αm)]

[1− γm(1−qbg)]
[
1−G

( L
π

)]
L
(1− γ)π := η

CCP(qbg,π)

• Lower than I∗ if C
(

π

γ

)
> ηCCP(qbg,π). The thresholds I∗c (qbg,π,0,π) and

Ik(qbg,π,0,π):

– increase in qbg if C
(

π

γ

)
∈
(

ηCCP(qbg,π),
(1−α)[1+γ(1−m)]

γ(1−m) − m(1−γ)
γ

(1−α)π

[1−G( L
π )]L

]
,

when this interval exists.

– decrease in qbg if C
(

π

γ

)
>max

{
ηCCP(qbg,π),

(1−α)[1+γ(1−m)]
γ(1−m) − m(1−γ)

γ

(1−α)π

[1−G( L
π )]L

}
.

The optimal CCP design improves cross-monitoring incentives. First, for a safe
dealer, it is more costly to hedge with a risky counter-party; second, it is more conve-
nient to be safe, because hedging with a risky counter-party raises the chances to pay
τ1. The first effect implies C

(
π

γ

)
> C (π), for a given equilibrium payoff π .19 The

second effect results in a lower threshold for C (·), above which a higher qbg wors-
ens the agency problem. Unless a first-best contract is implementable—i.e. C

(
π

γ

)
≤

ηCCP(qbg,π)—the threshold is reduced by the positive term m(1−γ)
γ

(1−α)π

[1−G( L
π )]L

. If qbg

increases, there is no unambiguous comparison between the equilibrium with and with-
out CCP. Both cross-monitoring channels get reinforced, and the relative improvement—
which determines the effect of qbg—depends on the parameters of the game.

19In general the final payoff π is different between an equilibrium with or without CCP. Therefore, this comparison
is not between the two equilibria.
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2.6 Discussion

The results in sections 2.4 and 2.5 provide a simple framework to discuss how the
organization of the inter-dealer market may, or may not, provide incentives to exploit
the superior information on credit risk held by dealers. More effective peer monitoring
helps to reduce the use of collateral as an incentive device.

My model points out two distinct economic mechanisms that make the inter-dealer
market act as a disciplining device. First, it makes more difficult to hedge for a risky
dealer, especially if he faces safe counter-parties. Second, there is endogenous peer
selection, and a risky dealer is more likely to hedge with another risky dealer. In
turn, a risky trading partner imposes a higher contagion risk, further reducing expected
payoffs. Which mechanism is more effective depends on several variables: the number
of dealers, the probability of an involuntary credit risk shock (α), and the correlation
among dealers’ negative shocks (qbg).

Hedging ostracism is more effective when: (i) there is a small number of dealers;
(ii) after exerting effort, the probability of a negative shock is small; and (iii) involun-
tary credit risk shocks among dealers are strongly correlated. In contrast, the incentives
to be safe, and select another safe dealer, are stronger when the inter-dealer market has
a large number of participants, and there is a low correlation of dealers’ credit risk
shocks. Under these circumstances, it is more likely that some dealers in the market
are risky, and it is unlikely to have a match between a safe and a risky dealer.

Both incentive mechanisms are reinforced by the presence of a well-designed CCP.
In this paper, I narrowly interpret a CCP as a financial institution20 that impose penal-
ties on surviving dealers upon the default of a trading partner. The optimal design is
to impose a penalty on the surviving dealer only if he has previously hedged with a
defaulting dealer, while it should not impose penalties if no hedge occurred. The in-
tuition is that this penalty structure increases the cost of a risky hedge beyond the risk
of contagion. Without a CCP, peer monitoring is more effective when contagion risk
γ is large, but this quantity becomes irrelevant—in terms of incentive compatibility—
with a CCP, since, upon the default of a dealer, it is always possible to expropriate the
hedging partner payoff through a sufficiently large penalty. It is crucial that the penalty
must be paid only if there was a previous hedge, otherwise it has an opposite effect on
incentives, and the equilibrium would be worse than without a CCP in place.

My results have implications for the design of a CCP default waterfall. Distributing
losses without any relation to previous trading patterns harms peer monitoring incen-
tives. To preserve good incentives, higher initial collateral margins may be necessary.

20Alternatively, a CCP may be interpreted as an ex ante contract among all dealer to make them to mutually
responsible of members’ defaults.
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According to my model predictions, most CCP default waterfalls discourage peer mon-
itoring incentives, because—after an initial contribution out of the CCP capital—losses
are distributed among members with no reference to the previous trading relationships
of the defaulter. My model suggests that losses should be first payed by the trading
partners of a defaulting member. This can be done either with additional cash contri-
butions, or with a variation margin haircut. As a result, if peer monitoring could be
a relevant tool for financial stability, a CCP default waterfall should, at least partially,
reverse the hierarchical order of the default waterfall. Moreover, a partial haircut may
reduce the risks of a CCP insolvency, as it does not require to call for additional mar-
gins, which may be difficult to raise during a market turmoil episode.

My analysis provides some sharp results on the optimal default waterfall, but it is
important not to forget its caveats. First, my modelling of the inter-dealer market is
extremely stylized. I exclude multiple hedging relationships, and I abstract from an
endogenous determination of contagion risk in inter-dealer transactions. A more re-
alistic modelling of inter-dealer trade would introduce a collateral decision also with
respect to other dealers. This would be a first step to endogenize γ . Second, I fo-
cus on the role of peer monitoring as an incentive device, excluding any risk sharing
consideration. The latter is obviously a very important concern, as CCPs have been
mainly introduced for this purpose.21 Introducing an insurance motive in the model
may lead to have some default contributions from every CCP member, and not just by
the defaulter’s trading partners. If haircutting were a too expensive option to pursue,
all CCP members would be collectively more capable of covering losses. Nonetheless,
my results warn about the potential weaknesses of default waterfalls. Loss mutual-
ization schemes that completely disregard the endogenous trade patterns among CCP
members—and the valuable information they might convey—could result in higher
initial margins.

2.7 Conclusion

In this paper I study peer monitoring incentives in the context of CCPs. An optimal
design should take into account dealers’ superior information, and reduce the use of
costly commitment devices such as initial margins. Inter-dealer markets introduce two
main disciplining mechanisms. First, becoming risky may lead to be excluded by other
(safe) dealers, imposing additional cost from holding an unhedged position. Second,
there is endogenous peer selection, and a hedge with a safe dealer reduces contagion
risk. I analyze when each of these two mechanisms dominates. The threat of ostracism

21Although it is not clear why CCPs provide a better credit risk insurance compared to the CDS market.
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is more effective when dealers’ credit shocks are highly correlated, for instance as a
result of a macroeconomic shock, while avoiding a hedge with a risky dealer is more
important when shocks are predominantly idiosyncratic.

Both disciplining mechanisms are more effective in the presence of a CCP. Impor-
tantly, to maximize peer monitoring incentives, a CCP should impose a high enough
penalty only to the hedging partners of a defaulting dealer. If all CCP members pay a
similar share of losses, peer monitoring incentives would be reduced, and higher initial
margins would be necessary to prevent risk-shifting. In this respect, the most com-
mon design for CCP default waterfalls seem to harm peer monitoring incentives. As
a result, it could be convenient to partially reverse the order of the default waterfall.
A partial haircut of contracts ‘in the money’ should precede additional default fund
contributions by CCP members.

In future research, the model could be extended in several directions. First, dealers
may endogenously choose to acquire information on other dealers’ credit risk. Second,
a more realistic modelling of the interactions in the inter-dealer market should lead to
an endogenous determination of contagion risk.

2.8 Appendix

Proof of Proposition 2.4.1.
Step 1. Fi optimal contract is pi = I,ki = 0 if and only if p−i = I,k−i = 0.

Notice that equation (2.6) has a unique solution for I ≥ 0. The RHS is strictly decreas-
ing in I while the LHS is weakly increasing in I. For I = 0 the RHS is larger than
the LHS as R > cm; for I = R the RHS is smaller than the LHS as c > 0. The unique
solution I∗c falls in the relevant interval (0,R−c] only if the RHS at I = R−c is smaller
than the LHS, i.e. if the condition stated in point 1. holds.

It easy to realize a symmetric equilibrium exist for the first-best contract (p =

I,k = 0) when I ≤ Ic(R− I). If Ic(R− I)> I∗ then both dealers always implement the
first-best contract. If Ic(R− I) < I∗ then this symmetric first-best equilibrium is not
implementable in (Ic(R− I), I∗].

I next show there is no asymmetric equilibrium in which Fi offers the first-best con-
tract while F−i use collateral. Suppose per contra such an equilibrium exist. Then πi =

R−I while F−i payoff satisfies the IC constraint with equality, i.e. π−i =
c−
(

1−G
(

L
γ(R−I)

))
L

m .
In turn, I has to simultaneously satisfy:

I ≤ Ic(π−i) I ∈
(

Ic(R− I), Ik
c (R− I)

]

97



Therefore, it must be Ic(R− I)< Ic(π−i), or equivalently:

L
γ(R− I)

>
mL

γ

[
c−
[
1−G

(
L

γ(R−I)

)]
L
]

Rearranging:

c >
[

1−G
(

L
γ(R− I)

)]
L+m(R− I)

However, substituting the expression for the lower bound Ic(R− I) this inequality leads
to a contradiction:

c >
[

1−G
(

L
γ(R− I)

)]
L+m

R−R+
c
m
−

1−G
(

L
γ(R−I)

)
m

L

= c

Step 2. If Fi and F−i offer second best contracts with ki,k−i > 0, they offer the same

contract.

If both Fi and F−i offer contracts with collateral their incentive constraints are bind-
ing and we have:

πi =
c−
(

1−G
(

L
γπ−i

))
L

m
π−i =

c−
(

1−G
(

L
γπi

))
L

m

Substituting π−i in πi, or vice versa, I get:

πi =

c−

[
1−G

(
mL

γ

[
c−
(

1−G
(

L
γπi

))
L
]
)]

m
(2.17)

The LHS of equation (2.17) is increasing in πi while the RHS is decreasing. Therefore,
there exists a unique solution and it coincides for both Fi and F−i. An easier implicit
expression for πi = π−i = πc is:

π
∗
c =

c−
[
1−G

(
L

γπ∗c

)]
L

m

Substituting the solution π∗c for π−i in Ik
c (π−i) leads to the Proposition statement. No-

tice that equation (2.17) coincides with (2.6) for π∗c = R− I.

Proof of Proposition 2.5.2.
By equations (2.15) and (2.16) the incentive compatibility constraint is not binding
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in a first-best solution—i.e. I∗c (qbg,π,0,0)> I∗—if and only if:

c− sξ (qbg,π,0,0)≥ 0

Substituting the expression for ξ (qbg,π,0,0), it is immediate to get:

C (π) =
c[

1−G
(

L
γπ

)] ≤ 1−αm[1+ γ(1−m)]

(1−m)[1− γm(1−qbg)]
qbg = η(qbg)

with η(qbg) increasing in qbg.
If C (π) > η(qbg) the investment level are increasing (decreasing) in qbg if and

only if ξ (qbg,π,0,0) is decreasing (increasing). The derivative of ξ (qbg,π,0,0) with
respect to qbg is:

dξ

dqbg
=

∂ξ

∂qbg
+

∂ξ

∂π

∂π

∂qbg

As π is the solution of π = ξ (qbg,π,0,0), by implicit differentiation it is ∂π

∂qbg
=

∂ξ/∂qbg
1−∂ξ/∂π

. Substituting, the expression becomes:

dξ

dqbg
=

∂ξ

∂qbg

1

1− ∂ξ

∂π

and the partial derivatives are:

∂ξ

∂qbg
=

mγ(1−m)c−m(1−α)[1+ γ(1−m)]
[
1−G

(
L

γπ

)]
L

[m(1−α)+ γm(1−m)(1−α−qbg)]2

∂ξ

∂π
=

−qbgg
(

L
γπ

)
L2

γπ2

m(1−α)+ γm(1−m)(1−α−qbg)
≤ 0

Therefore, the sign of the total derivative dξ

dqbg
depends only on the sign of the partial

∂ξ

∂qbg
. It is positive when C (π)≥ (1−α)[1+γ(1−m)]

γ(1−m) , and negative if the opposite inequal-
ity holds.

To complete the proof, it is sufficient to show that:

η(1−α) =
1−α[1+ γ(1−m)]

(1−m)(1− γαm)
(1−α)<

(1−α)[1+ γ(1−m)]

γ(1−m)

since η(qbg) is increasing in qbg. Rearranging this expression, it is leads to 1− γ +

γ(1−m)> 0, which always holds.
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Proof of Proposition 2.5.3.
By equations (2.15) and (2.16), the maximum investment level depends on (τ0,τ1)

through the quantity:

J = zτ1 + c− sξ
(
qbg,π(τ0,τ1),τ0τ1

)
Suppose I∗c

(
qbg,π,τ0,τ1

)
< I∗. The total derivative of J with respect to τ1 is:

dJ

dτ1
= z− s

[
∂ξ

∂π

∂π

∂τ1
+

∂ξ

∂τ1

]
By Proposition 2.5.1, π is the solution to π− ξ

(
qbg,π(τ0,τ1),τ0τ1

)
= 0. By implicit

differentiation of this equation I get:

∂π

∂τ1
=

∂ξ

∂τ1

1− ∂ξ

∂π

Substituting in the expression for the total derivative and simplifying:

dJ

dτ1
= z− s

∂ξ

∂τ1

1− ∂ξ

∂π

This expression is positive as:

∂ξ

τ1
=−

qbgg
(L

h

) L2

h2 (1− γ)+m(1−m)(1−α−qbg)(1− γ)

m(1−α)+ γm(1−m)(1−α−qbg)
≤ 0

∂ξ

∂π
=−

qbgg
(L

h

) L2

h2 γ

m(1−α)+ γm(1−m)(1−α−qbg)
≤ 0

Therefore, it is optimal to set τ1 as high as possible, i.e. τ1 = π .
An analogous calculation for the total differential with respect to τ0 leads to:

dJ

dτ0
=−s

[
∂ξ

∂π

∂π

∂τ0
+

∂ξ

∂τ0

]
=−s

∂ξ

∂τ0

1− ∂ξ

∂π

≤ 0

since ∂ξ

∂τ0
=

qbgg( L
h )

L2

h2
m(1−α)+γm(1−m)(1−α−qbg)

≥ 0 and ∂ξ

∂π
< 0. Therefore, τ0 = 0 is optimal.

Proof of Proposition 2.5.4.
The first-best investment level is always attainable if:

J = zπ + c− sξ
(
qbg,π,0,π

)
≥ 0
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Inserting the expression in equation (2.14), the threshold can be expressed as:

C

(
π

γ

)
=

c[
1−G

( L
π

)
]L
] ≤ η(qbg)+

m[1−α−qbg(1−αm)]

[1− γm(1−qbg)]
[
1−G

( L
π

)]
L
(1−γ)π = η

CCP(qbg,π)

When the opposite inequality holds the effect of qbg can be computed through the total
derivative with respect to qbg, i.e.:

dJ

dqbg
=−s

[
∂ξ

∂qbg
+

∂ξ

∂π

∂π

∂qbg

]
+ z

∂π

∂qbg

By implicitly differentiating equation π−ξ (qbg,π,0,π) = 0 with respect to qbg I get:

∂π

∂qbg
=

∂ξ

∂qbg

1− ∂ξ

∂π

Substituting in the total derivative:

dJ

dqbg
=−(s− z)

∂ξ

∂qbg

1− ∂ξ

∂π

Since:

s− z = α(1−m)2 +(1−α)> 0

∂ξ

∂π
=−

qbgg
( L

π

) L2

π2 +m(1−m)(1−α−qbg)(1− γ)[
m(1−α)+ γm(1−m)(1−α−qbg)

]2 < 0

∂ξ

∂qbg
=

mγ(1−m)c− (1−α)[1+ γ(1−m)][1−G
( L

π

)
]L+m2(1−m)(1−α)(1− γ)π

m2[1+ γ(1−qbg)(1−m−α)]2

Hence, the sign of dJ
dqbg

is determined by ∂ξ

∂qbg
. It is positive when:

C

(
π

γ

)
=

c
[1−G

( L
π

)
]L
≥ (1−α)[1+ γ(1−m)]

γ(1−m)
− m(1− γ)

γ

(1−α)π

[1−G
( L

π

)
]L

and negative otherwise.
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Chapter 3

Learning and Price Dynamics in
Durable Goods Markets

A durable good provides a private use value to its user, and it is eventually resold in
a secondary market. This paper analyzes what determines different learning and price
dynamics in durable goods markets. Our model includes three main features: (i) buy-
ers have heterogenous private use values and a common expected resale horizon; (ii)
an unobservable and time-varying aggregate state determines the distribution of use
values in the population; and (iii) trade takes place in markets with a limited num-
ber of buyers. Informational frictions slow down learning and affect price movements
asymmetrically in high and low aggregate states. We disentangle two sources of price
variability. Idiosyncratic volatility is prevalent in markets with very heterogenous use
values, a long resale horizon and a small number of buyers. Aggregate volatility mir-
rors the sensitivity of prices to new price information, and it weights more when the
resale motive dominates, i.e. for goods with short resale horizons, significant persis-
tence of the aggregate state, and similar use values.
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3.1 Introduction

Since the initial contribution of Hayek (1945), a vast literature in economic theory has
been studying how the price system aggregates dispersed private information. No so-
cial planner has access to all available information, and in a market based economy
prices have the fundamental of influencing decisions by consumers, firms and gov-
ernments. How information is incorporated into asset prices is the main focus of the
Rational Expectation literature, and one of the most debated topics in Finance.

Although there is a vast asset pricing literature on financial securities, less attention
has been devoted to price patterns in durable goods markets. Notable example are real-
estate, machineries, automotive, but also artwork, collectibles and musical instruments.
These goods provide a private use value to users, but they are often resold on the market
after some time. Durable goods represent a sizeable portion of household and corporate
balance sheets, and as such they play a central role in the economy as consumption
goods, production inputs or pledgeable collateral. Many papers focus on a specific
market—especially real-estate and vehicles—and try to match a few empirical facts,
either with a rather specific model, or with a slight adaptation of a workhorse asset
pricing model. In the former case, the model results cannot be applied sic et simpliciter

to other markets which share a few similarities; in the second case, models overlook
some specific—but potentially relevant—market features.1

In this paper we broadly focus on durable goods—a sufficiently large class of
assets—and we study how a few common characteristics affect learning and infor-
mation aggregation. Our model does not pretend to match precise price patterns for a
specific market,2 but it rather aims to highlight a few economic mechanisms potentially
relevant to all durable goods markets.

We develop a dynamic trading model with time-varying and unobservable aggre-
gate demand conditions. Our framework explicitly considers two peculiar characteris-
tics of durable goods. First, they trade in decentralized markets where sellers enter into
private negotiations with a limited number of potential buyers. Second, they provide
utility as consumption goods until re-sold to a different user at a future point in time.3

There exist great variation within each characteristic. On the one hand, trade decentral-
ization admits a large variety of trade protocols. On the other hand, the consumption
vs. resale trade-off depends on several intrinsic characteristics of the market.

1An example of this dihcotomic approach is the real estate literature. Some authors use Lucas-types models
and derive estimates for risk and liquidity premia, other papers set up search and matching models including a rental
sector, geographic dispersion, and private use values.

2We do not deal with any specific price puzzle, and we actually exclude a priori the existence of risk-premia by
assuming agents’ risk neutrality. Our main focus is on information.

3Other products may share the same two features. We explcitly refer to durable goods just to focus our attention
on a relevant set of markets which possess these broad characteristics.
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Learning patterns depend on prices if the latter provide useful information on the
underlying aggregate demand. Heterogeneity in trading protocols leads to different
ways in which agents update their beliefs. These informational frictions may have
different origins: the absence of an organized trading platform, legal restrictions on
information disclosure, or bidders’ incentives to manipulate prices. We abstract from
any single source of friction, and we focus directly on the relationship between dis-
closed information and learning dynamics. We present two main results. First, trading
games revealing coarser information sets leat to a slower learning process. Second,
different trading protocols may affect beliefs asymmetrically between high and low
aggregate demand states. In particular, when only winning bids are disclosed, beliefs
tend to adjust more rapidly when the aggregate state is low.

If the trading protocol determines which information is revealed to agents, other in-
trinsic characteristics of the durable good influence its price sensitivity to new informa-
tion. We consider three main dimensions: the expected resale horizon, the persistence
of aggregate demand states, and the degree of heterogeneity in private use values. To
explicitly solve the model, we assume sellers trade via second-price auctions. Thanks
to an analytic solution for the bidding strategy, we obtain several comparative statics
results. First, prices respond more to new information when buyers have more similar
private use values. Second, a longer expected resale horizon increases the relative im-
portance of private use values vis-á-vis future resale prices. Similarly, price sensitivity
is larger when aggregate states are more persistent. Lastly, price volatility can be de-
composed into two factors: idiosyncratic and aggregate. The former depends on the
heterogeneity in buyers’ use values, and it is driven by the consumption motive. The
latter captures price sensitiveness to current information, and it depends on the interest
in forecasting future prices.

Despite theoretical in nature, we believe our paper points out a few general ideas
with a broad range of potential applications. For example, suppose a credit officer has
to decide on the loan terms applied to two otherwise identical customers with different
collateral goods: one has an classic car, and the other one a modern corporate car.
Which car is the less risky collateral? To answer this question, it might be a good
idea to understand who participates in these markets, and for which purpose. Classic
cars are mostly bought for their subjective use value, and usually resold after a long
time. On the contrary, buyers of corporate cars have similar use values, a fast car
turnover, and they significantly care about the future resale price. Our model provides
a framework to explain how these different characteristics may affect price volatility.

Overview of the model and results. We briefly sketch our model setup to discuss
our results in more detail. Trade takes place through a sequence of trading rounds
with N bidders. Aggregate market conditions in period t depend on the distribution
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of private values from which individual bidders are sampled. In particular, their per-
period use value in period t come from one of two possible distribution functions Fθt ,
θt ∈ {H,L}. The state of the world θt is never publicly revealed, and it varies overtime
according to a Markov process with state persistence ρ j, j = H,L. Unless θt realiza-
tions are independent overtime, the observable public history provides information on
the likelihood of future states of the world. Private use values have a double role: (i)
they measure individual benefits from enjoying the good; and (ii) they provide infor-
mation on the underlying state of the world. A winning bidder resells his good at a
future random time: he faces a α ≤ 1 probability to sell his good in the next period.
Higher values of α denote shorter resale horizons.4 An owner enjoys his individual
use value until resale. For simplicity, losing bidders and sellers go out of the market
with no future possibility to re-enter.

The aggregate state θt may be considered as a reduced form to capture all those
elements such as fashion, business and credit cycles that affect, at a given point in time,
the willingness, or possibility, to purchase the good among agents in the population.
It is often difficult to directly observe this state and we assume buyers only observe
previous transaction prices. For example, a real-estate buyer may collect information
on past prices in a local market but he may not have (or be able to process) information
on unsuccessful bids, or on the real-estate market at large.

Our setup captures a few characteristics of market demand that widely vary across
durable goods. The parameter α is a reduced form to capture the expected resale
horizon for the good. The state persistence parameter ρ measures how likely an ag-
gregate state will persist in future periods; lower values of ρH and ρL denote a more
volatile aggregate environment. The distributions Fθ describe a more or less dispersed
distribution of private use values among agents in the economy. Finally, the number
of bidders N provides a measure of market competition, but also, to a certain extent,
market liquidity. Thanks to an explicit characterization of the bidding function it is
possible to derive analytically some general comparative statics results, and it would
be straightforward to simulate other statistical properties for specific functions Fθ .

In section 3.2 we discuss how differences in the information revealed through
prices affect learning dynamics. The more information is disclosed by a trade protocol,
the faster beliefs converge to the true state. In this respect, durable goods markets may
exhibit a more sluggish price adjustment process relative to a centralized market.5 The
second result is less intuitive. In general, the speed of learning differs between high
and low aggregate states. This asymmetry depends on the information revealed by the

4Alpha may be considered a measure of the likelihood to be hit by a liquidity shock that forces to sell the object.
5For example, in a modern stock exchange dealers’ price quotes and traders’ limit orders can be freely observed

in real time by all market participants. Without strategic price manipulation markets disclose all private information.
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trade protocol. For example, a first-price auction reveals the highest valuation among
the N bidders. In this case, learning is faster in the low state because low prices are
more informative in revealing the underlying aggregate demand state.6

In section 3.3 we assume—for reasons of analytical tractability—that the object is
sold in a sequence of second-price auctions.7 Prices are more sensitive to new infor-
mation in markets in which: (i) the resale horizon is shorter (α ↑); (ii) the expected
demand between high and low aggregate states is larger; (iii) the current state of mar-
ket demand is more likely to last longer (ρ j ↑). Under these circumstances, sellers
weight more the informational content of recent prices, as the latter are more effective
in predicting future resale values. Price variability can be decomposed in two different
components. The first one reflects the heterogeneity in private use values, and it has
a purely idiosyncratic nature. The second type of uncertainty is over future market
conditions. A decrease in the resale horizon (α ↑) increases the aggregate variability
component, decreasing the idiosyncratic one; thus, the overall effect is ambiguous. A
increase in state persistence (ρ j ↑) does not affect the idiosyncratic variance, and it
increases the variability due to the future resale component.

Related literature. This paper is closely related to the literature on learning in
asset pricing models; see Timmermann (1993) for an early reference. This strand of
literature argues that learning may explain some classic asset pricing puzzles (equity
premium, risk-free rate and excess-volatility). Weitzman (2007) considers a Bayesian
framework with risk-averse preferences, while Ju and Miao (2012) introduce ambigu-
ity aversion as an additional explanatory factor. Compared to this literature, we focus
more on the different microeconomic determinants of price dynamics, and we abstract
from any discussion on risk-premia by assuming risk neutral preferences.

This paper is also related to the literature on auctions with resale. A small number
of papers study this topic in a two periods setting. Gupta and Lebrun (1999) consider a
setup in which private values are publicly revealed in the second period. Haile (2001,
2003) study the revenue performance of different auction formats in a symmetric envi-
ronment. In his model, bidders’ initial types come from the same initial distribution but
they are not publicly announced in the second period. Within a similar symmetric en-
vironment, Zheng (2002) and Lebrun (2012) provide conditions to obtain the optimal
auction outcomes first derived in Myerson (1981).8 Differently from this literature, we
do not assume that the same set of bidders re-trades in future periods. The latter case

6An analogous, but opposite, logic would hold if the lowest valuation among N bidders were revealed.
7In a second-price auction, players do not engage in strategic price manipulation: the optimal bidding strategy

truthfully reveals private signals. In other auction formats—such as the first-price auction—manipulative incentives
may arise, and the equilibrium analysis becomes analytically intractable.

8Lebrun (2012) extend the results in Zheng (2002) for the symmetric environment, and it provides results for a
specific class of asymmetric environments. Garratt and Troger (2006), Halafir and Krishna (2008) and Virag (2013)
provide additional results for asymmetric environments.
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is important for industries in which market players rarely change overtime,9 and ma-
nipulative incentives may arise when the same good is re-traded among the same set
of bidders. However, in many durable goods markets this type of strategic interaction
seems less relevant. For example, in the real-estate market, buyers and sellers often do
not have any previous information on the identity of their counterpart.10

The next section discusses some general results on public learning. Section 3
presents the dynamic auction model, and it provides comparative statics. Section 4
concludes. All proofs are in the Appendix.

3.2 Information revelation and learning

3.2.1 Model setup

We consider a sequential market for a durable object. Time is discrete t ∈ {0,1,2, . . .}.
In each period t, there is an underlying state θt ∈ {H,L}. The stochastic process
{θt}∞

t=0 is a homogenous Markov process with transition matrix:

P =

[
ρH 1−ρH

1−ρL ρL

]

with 0≤ ρH ,ρL ≤ 1. The prior on θt is denoted by πt = (πt ,1−πt) with πt ≡ P(θt =

H).
There is a population of infinitely many agents interested in the object. When an

object is offered on sale, N ≥ 2 agents are randomly drawn from the population to enter
the market. Each buyer attaches a private use value to the object. The private values
generated in each period t, {vit}N

i=1, are i.i.d. distributed according to a cumulative
density function (cdf) Fθt across the N agents. The realizations of {θt}∞

t=0 are not
known to the agents, but both P and π0 are common knowledge.

Both FH and FL are continuously differentiable on the common support [0,1].
Moreover, the corresponding probability density function (pdf) fH and fL are strictly
positive everywhere on [0,1], and satisfy the monotone likelihood ratio (MLR) prop-
erty: fH(·)

fL(·) is strictly monotone on [0,1].

9For example, government concessions in telecommunications, oil, electricity.
10Similar to our model, in some Australian cities a significant portion of home sales take place via auctions; see

www.bloomberg.com/news/2013-04-23/australia-turns-to-auctions-as-housing-revives-mortgages.html

109



3.2.2 Public beliefs dynamics

The information revealed in a trading round depends on the trade protocol. For exam-
ple, there is a substantial difference between auctions and centralized exchanges, but
there are also significant differences among auction formats. In this section, we ab-
stract from a specific trade protocol, and we directly consider the information revealed
after a trading round.11

Consider a vector Xk = {v1,k, ...,vN,k} of private signals dispersed among N traders.
We assume the trade protocol leads to publicly observe a statistic T (Xk). T (·) is as-
sumed not to depend on the previous history of the game, hence it is invariant in all
periods k. In other words, the statistic T captures which information in the vector of
private valuations Xk possessed by the N bidders in period k is publicly revealed af-
ter trade.12 It is an equilibrium object because it depends on the trade protocol and
players’ strategies. It implicitly incorporates both informational constraints, due to the
market organization, and informational frictions, due to players’ strategic behaviour.

We explore two different issues related to learning. First, we provide a sufficient
condition that ranks which statistic leads to a faster public belief convergence towards
the true state. Second, we analyze whether a particular T leads to a more rapid price
adjustment in one of the two states of the world. For these purposes, we restrict atten-
tion to the full persistence case ρH = ρL = 1.

Consider a probability space 〈RN ,B,µ〉 endowed with the standard Borel σ -algebra
and Lebesgue probability measure. Let a measurable function Ti : RN → RM, M ≤ N

be an observable statistic of the underlying Xk = {v1,k, ...vN,k} and let σ(Ti) be the
σ -algebra generated by Ti. I denote with SX the support of X .

Definition 3.2.1 Tj is coarser than Ti if σ(Tj)⊂σ(Ti) and ∃A∈σ(Ti) s.t. A /∈σ(Tj)

and µ(A)> 0.

For a statistic T let ST denote its support and CT (A) ≡
⋃

y∈A

{
X ∈ RN : T (X) = y

}
the set of counter images of A⊆ ST .

We use this general notation to express public belief dynamics under different trade
protocols. Let f T

θ
(y) be the probability density function of statistic T under state θ ∈

{H,L}. Formally,

f T
θ (y) =

∫
CT (y)

f X
θ (x)dµ(x)

It is easier to describe the evolution of public beliefs with the log-likelihood ratio:
11In section 3.3, we solve a specific model where agents participate in second-price auctions. In this section, we

adopt a more general approach to point out a few general properties of learning dynamics.
12For example, in section 3.3.2 the second-highest price is publicly revealed and in equilibrium buyers infer the

corresponding private value, hence T (Xk) = v(2,N)
k .
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lk+1(lk,y) = ln
πκ+1

1−πκ+1
= ln

πκ

1−πκ

f T
H (yk)

f T
L (yk)

= lk + ln
f T
H (yk)

f T
L (yk)

(3.1)

where yk = T (xk) is the value of statistic T when the vector of private use values for
the N bidders in period k is xk ∈ RN . To stress that the log-likelihood lk depends on T ,
we add a superscript T . Let ∆lT

k+1(yk) = lT
k+1(l

T
k ,yk)− lT

k = ln f T
H (yk)

f T
L (yk)

denote the change
in the log-likelihood ratio from period k to k+1 under statistic T . Assume there exists
M > 0 such that |∆lT (x)|< M for every x ∈ SX .

For q≥ 1 equation (3.1) generalizes into:

lT
k+q = lT

k +
q

∑
m=1

∆lT
k+m(yk+m−1)

Taking the expected value:

EX
k,θ [l

T
k+q] = lT

k +
q

∑
m=1

EX
k,θ
[
∆lT

k+m(T (xk+m−1))
]
= lT

k +qEX
θ

[
∆lT (T (x))

]
The last equation exploits the fact that—conditional on θ—samples are i.i.d. in all peri-
ods. In the remainder of the paper, we simply use Eθ

[
∆lT ] rather than EX

θ

[
∆lT (T (x))

]
.

Beliefs converge to the true state as EH
[
∆lT ] > 0 > EL

[
∆lT ].13 Moreover, for

two different statistics T1 and T2, public beliefs are expected to converge more rapidly
to the true state θ under statistic T1 if:

∣∣Eθ

[
∆lT1

]∣∣> ∣∣Eθ

[
∆lT2

]∣∣ (3.2)

The next lemma provides an intuitive but still insightful result. If two statistics can
be ranked according to Definition 3.2.1, it is possible to conclude that convergence is
slower for the coarser one.

Lemma 3.2.1 If T2 is coarser than T1 then equation (3.2) holds.

Although the result in Lemma 3.2.1 is not surprising, it highlights an important
property of markets in which information is only partially revealed. More severe infor-
mational frictions lead to more sluggish trade dynamics, and, possibly, a slower price
adjustment.

A less intuitive result is that trade protocols may create differences—between high
and low states—in the speed of convergence of public beliefs. In turn, more rapid
learning is likely to be positively correlated with a more rapid price adjustment.

13It follows from a simple application of Gibbs’ inequality.
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Lemma 3.2.2 Consider a statistic T (·), and let π0 = 1/2. Define:

τH := inf{k ≥ 0 : πk ≥ 1− ε} τL := inf{k ≥ 0 : πk ≤ ε}

Then:
lim
ε→0

EH [τH ]
EL[τL]

≥
∣∣∣ EL[∆lT ]
EH [∆lT ]

∣∣∣> 1 if EH [∆lT ]+EL[∆lT ]< 0

lim
ε→0

EL[τL]
EH [τH ]

≥
∣∣∣EH [∆lT ]
EL[∆lT ]

∣∣∣> 1 if EH [∆lT ]+EL[∆lT ]> 0

Lemma 3.2.2 points out a learning story based on the nature of the information
revealed in previous trading rounds. Compared to the ‘rockets and feathers’ story, our
mechanism is likely to run the opposite way. If a trade protocol only reveals winning
bids, a more rapid adjustment should be observed downward. We discuss the intuition
in the context of an example.

Example Lemma 3.2.2. Consider pdfs fH(x) = 2x and fL(x) = 2(1− x). Suppose
the trade protocol reveals, in equilibrium, the j-th order statistic out of N bidders. The
next table summarizes the numerical values of the condition in Lemma 3.2.2:14

N| j 1 2 3 4 5 6 7 8 9 10

1 0

2 −0.09 0.09

3 −0.22 0 0.22

4 −0.37 −0.13 0.13 0.37

5 −0.52 −0.28 0 0.28 0.52

6 −0.68 −0.44 −0.14 0.14 0.44 0.68

7 −0.83 −0.60 −0.30 0 0.30 0.60 0.83

8 −0.99 −0.77 −0.46 −0.15 0.15 0.46 0.77 0.99

9 −1.14 −0.94 −0.63 −0.31 0 0.31 0.63 0.94 1.14

10 −1.29 −1.12 −0.80 −0.48 −0.16 0.16 0.48 0.80 1.12 1.29

The value is negative (positive) when beliefs move more rapidly toward state L

(H), as the expecting hitting time under state L (H) is shorter. The table shows that:

1. If j < N+1
2 convergence is faster towards state L.

2. If j > N+1
2 convergence is faster towards state H.

3. If j = N+1
2 , (N odd), there is no difference.

The table captures an intuitive result. If the trade protocol reveals a sequence of
higher order statistic ( j < N+1

2 ), low-value observations are more informative than

14As explicit integrals cannot be obtained we compute integrals numerically.
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high-value ones, and learning in more rapid in state L.15 Fixing j and increasing the
sample size N, there is more and more asymmetry toward state L.16 Increasing the
sample size N, the j-th order statistic is relatively ‘higher’, low-value observations be-
come more informative, and there is a greater asymmetry towards state L. For example,
if only the winning bid is revealed, low demand states are learnt more rapidly in a large
market.

In conclusion, prices are not equally informative on both aggregate states. This
phenomenon depends on the original distribution functions Fθ , but also on the trading
protocol and the number of market participants.

3.3 Dynamic auction model

3.3.1 Trading protocol

Consider the model setup in section 3.2.1. Now assume agents trade in second-price
auctions according to the following protocol.

1. Consider a stochastic sequence {tk}∞
k=0, with t0 normalized to 0. At each tk,

N new agents enter the market, and participate in a sealed-bid second- price
auction. The winner of the auction at tk is the seller in the next available auction
at tk+1.

2. The waiting time between tk+1 and tk is a random variable, which is i.i.d dis-
tributed across k according to a geometric distribution with parameter α ∈ (0,1].
That is,

P(4k ≡ tk+1− tk = x) = α(1−α)x−1, ∀x ∈ N+, ∀k ∈ N.

Due to the i.i.d. feature of the waiting time, we simply call the auction at tk
as “auction k”. We also label each bidder in auction k by ik, i ∈ {1,2, . . . ,N}.
Denote his private value and bid as wik ≡ vi,tk and bik, respectively.

3. The winner of auction k resells the object at the next available auction k+1. The
revenues from resale are discounted at rate δ per period. Meanwhile, he enjoys
his private value of the object, wik, in every period before auction k+1, and he
discounts his utility at rate δ per period.

15On the contrary, if a sequence of lower order statistic ( j > N+1
2 ) is revealed, high-value observations are more

informative than low-value ones, and learning is more rapid in state H.
16Alternatively, there is less asymmetry towards H as values get smaller downwards in each column.
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4. The trading price pk ≡ b(2)k , the second highest bid in auction k, is publicly ob-
served by the whole population before the next auction starts. There is no in-
formation generated between two adjacent auctions, other than the realization of
the waiting time in between. Hence, the information set for each bidder ik is
Iik = {wik,{pτ}τ<k,{∆τ}τ<k}.

3.3.2 Equilibrium characterization

Let b ≡ {bik}i≤N,k∈N denote the action profile of all market entrants and every bidder
ik’s payoff is given by:

uik(b;wik) = 1{bik=b(1)k }
· {−b(2)k +

4k−1

∑
s=0

δ
swik +δ

∆kb(2)k+1}

Denote the public belief about the underlying state θ before auction k by πk =

(πk,1−πk) with πk ≡ P(θtk = H|{pτ}τ<k).
We consider a Perfect Bayesian Equilibrium with symmetric, time-invariant and

monotone strategies. In turn, every bidder ik can restrict his attention to the information
set {vik, πk}.

Definition 3.3.1 A pure strategy profile b∗ ≡ {b∗ik(Iik)}i≤N,k∈N is a perfect Bayesian

equilibrium with symmetric, time-invariant and monotone strategies if:

1. b∗ik(Iik) = b∗(wik;πk), ∀i, t;

2. ∂b∗(wik;πk)
∂wik

> 0, ∀wik ∈ [0,1];

3. b∗(wik;πk) = argmax
b

E[uik(b,b∗−ik;wik)|wik,πk], ∀i,k;

4. πk+1 =
(

πkgH(b∗−1(pk;πk))
πkgH(b∗−1(pk;πk))+(1−πk)gL(b∗−1(pk;πk))

, (1−πk)gL(b∗−1(pk;πk))
πkgH(b∗−1(pk;πk))+(1−πk)gL(b∗−1(pk;πk))

)
P∆k

where gθ (·) is the pdf of the 2nd order statistic among N i.i.d random variables

distributed according to Fθ , ∀θ ∈ {H,L}.

The next Proposition provides an explicit characterization of the bidding strategy.

Proposition 3.3.1 Let ρH + ρL ≥ 1. There is a unique perfect Bayesian equilibrium

with symmetric, time-invariant and monotone strategies:

b∗(wik;πk) = 1
1−δ+αδ

{
wik +

αδ

1−δ

[
cL +

1−ρL
1−δ (ρH+ρL−1)∆c

]
+ γik

αδ (ρH+ρL−1)
1−δ (ρH+ρL−1)∆c

}
with
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1.

γik ≡
πk fH(wik)hH(wik)

πk fH(wik)hH(wik)+(1−πk) fL(wik)hL(wik)

where hθ (·) is the pdf of the 1st order statistic among N− 1 i.i.d random vari-

ables distributed according to Fθ , ∀θ ∈ {H,L};

2. ∆c = cH− cL with cθ ≡
∫ 1

0 xgθ (x)dx.

The equilibrium bidding function b∗(wik,πk) can be decomposed in a private value
(PV) and a resale value (RV) component.

PV = wik
1−δ+αδ

RV = α

1−δ+αδ

[
δ

1−δ

(
cL +

1−ρL
1−δ (ρH+ρL−1)∆c

)
+ γik

δ (ρH+ρL−1)
1−δ (ρH+ρL−1)∆c

]
The private value component is the expected discounted use value of the good

until resale takes place. An increase in the expected resale horizon (α ↓) increases the
private value component, and it decreases the resale value one. Bidders expect to enjoy
the good for a longer time, so their use value gains importance relative to the expected
future resale price. The resale value component includes a constant term, and another
term which depends on belief γik. The latter depends on the public belief πk, and on the
private use value wik. The random variable wik enters in two distinct updating. First,
wik is a signal on the current state of the world because it comes from the common
distribution Fθ . Second, in equilibrium a winning bidder realizes that all other N− 1
bidders had lower private use values. This last updating is analogous to the inference
carried out by a winning bidder in a static common value auction. In this respect, our
model may offer a dynamic micro-foundation of a static common value auction. The
future resale price is at the root of the interdependence among bidders’ valuations.

3.3.3 Comparative statics

In this section we carry out a few comparative statics exercises to highlight the main
determinants of different price dynamics.

The sensitiveness of b∗(wik,πk) with respect to γ can be measured through a simple
elasticity measure:

η
b
γ :=

γ

b
∂b
∂γ

=
γ

αδ (ρH+ρL−1)
1−δ (ρH+ρL−1)∆c

wik +
αδ

1−δ

[
cL +

1−ρL
1−δ (ρH+ρL−1)∆c

]
+ γ

αδ (ρH+ρL−1)
1−δ (ρH+ρL−1)∆c

A higher value of ηb
γ denotes a greater sensitivity of bidders’ strategies to their

present beliefs about the state of the world. It is easy to show that ηb
γ is increasing
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Figure 3.1: Difference in state persistence.

Simulation with N = 4, δ = 0.9, α = 0.6, π0 = 0.5. The persistent line refers to ρH = ρL = 0.9 while the volatile one to

ρH = ρL = 0.55. Private values wik are randomly sampled from lognormal distributions with mean µH = 8, µL = 4 and variance

σ = 2.

in α , ∆c and ρ j, j = H,L. In words, the bidding strategy is more sensitive to new
information if: (i) the resale horizon is shorter (α ↑); (ii) the expected difference be-
tween aggregates states is larger17 (∆c ↑); or (iii) each state is more persistent (ρ j ↑).
The intuition for each variable is pretty straightforward. When the resale horizon is
shorter, present information is more accurate to predict the state of the world at the
future time of resale. Similarly, when states of the world are more persistent, current
beliefs are more precise in predicting future states. As a result, prices respond more to
new information (Figure 3.1). Finally, a greater difference ∆c increases the variability
in the possible resale values between the two aggregate states, and agents adjust their
bids more sharply.

Lastly, we derive a statistical measure of dispersion for realized prices. Our vari-
ance measure is derived assuming a deterministic resale horizon q, say, periods long,
and a future state of the world θk+1.18 Public beliefs move between any two trading
periods according to the law of motion in Definition 3.3.1, and—for a given πk and a
fixed resale horizon q— it is immediate to get the value of πk+1.19

17Specifically it is the difference in the expected second highest use value out of N bidders between the high and
low state of the world.

18Notice the difference with the variance computed according to the subjective belief of a bidders in auction k.
In this case, bidders do not know neither the present nor the future state.

19If we did not condition on a fixed resale horizon, we could have alternatively computed a measure of expected
variance using as weights the probability to resale in a given future period.
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Three different factors contribute to price variability:

Varθ

(
b∗
(

w(2)
k+1,πk+1

)∣∣∣πk+1

)
=
(

1
1−δ+αδ

)2
[

Varθ

(
w(2)

)
+
(

αδ (ρH+ρL−1)
1−δ (ρH+ρL−1)

)2
Varθ

(
γ

(
w(2)

k+1,πk+1

)∣∣∣πk+1

)
+ 2 αδ (ρH+ρL−1)

1−δ (ρH+ρL−1) covθ

(
w(2)

k+1,γ
(

w(2)
k+1,πk+1

)∣∣∣πk+1

)]
(3.3)

The first term Varθ

(
w(2)

)
captures the heterogeneity in private use values. This

idiosyncratic component depends on the initial distribution Fθ , and on the number of
bidders N. A higher dispersion in subjective use values increases this quantity. The
effect of an increase in N is not obvious, and it depends on the specific Fθ (·) (see
Papadatos (1995)). The second term in equation (3.3) reflects the uncertainty over the
future beliefs held by the second highest bidder in auction k+1. It is a product of two
quantities: a multiplicative constant, and the variance of γk+1 conditional on πk+1. The
former is increasing in α and ρ j; the latter is a complex quantity to analyze without
additional assumptions on the functional forms for the pdfs. Lastly, the third term
captures bidders’ updating of γik with the private use value wi,k+1. The latter is used as
an informative signal on the underlying aggregate state. The covariance term is always
positive and it further increases price variability. The last two terms in equation (3.3)
represent the volatility due to the uncertainty over future market conditions.

A decrease in the resale horizon (α ↑) increases aggregate variability, decreasing
the idiosyncratic one. The overall effect is ambiguous. A increase in the state per-
sistence (ρ j ↑) does not affect idiosyncratic variance, but it increases the aggregate
one. Unfortunately, it is difficult to derive additional comparative statics results with-
out assuming a specific distribution. Nonetheless, thanks to Proposition 3.3.1, it is
straightforward to simulate any quantity of interest once we assume a specific Fθ .

3.4 Conclusion

This paper proposes a model for durable goods markets. We explicitly consider the
possibility to re-sell an object, and we discuss what are the potential implications for
learning and price dynamics.

We first present two results on the dynamics of public beliefs. First, the finer is the
information publicly revealed in equilibrium, the faster is the convergence of public
beliefs to the true state of the world. Second, trade protocols may lead public beliefs
to move upward or downward at different rates. In particular, if only winning bids are
disclosed, beliefs tend to adjust more rapidly when aggregate demand is low.

In the second part of the paper, we consider a dynamic auction model. Thanks
to an analytic characterization of the bidding strategy, we provide some comparative
statics results. A longer expected resale horizon increases the importance of private use
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values, and prices are less sensitive to current information. In this case, price volatility
is mainly driven by the idiosyncratic tastes of users. If states of the world tend to last
longer, prices respond more to current information. This is also the case when the
difference in market conditions between high and low states is large.

This paper assumes an exogenous resale decision which is independent from previ-
ous price dynamics. This is clearly a strong assumption. Endogenous resale decisions
play a decisive role in shaping market dynamics. For example, there is strong empirical
evidence on the positive correlation between volume and prices in the real-estate mar-
ket. Solving a dynamic auction model with endogenous entry is a challenging future
research direction, and we hope to address it in the future.

3.5 Appendix

Proof Lemma 3.2.1. We prove the statement only for θ = H as an analogous argu-
ments holds for θ = L.20 Equation (3.2) can be easily rewritten as:

EX
H

[
ln

f T1
L f T2

H

f T1
H f T2

L

]
≤ 0

Jensen’s inequality implies:

EX
H

[
ln

f T1
L f T2

H

f T1
H f T2

L

]
≤ lnEX

H

[
f T1
L f T2

H

f T1
H f T2

L

]

Notice that:

EX
H

[
f T1
L f T2

H

f T1
H f T2

L

]
=
∫
SX

f T1
L (T1(x)) f T2

H (T2(x))

f T1
H (T1(x)) f T2

L (T2(x))
f X
H (x)dµ(x) =

∫
ST1

∫
CT1(y)

f T1
L (T1(x)) f T2

H (T2(x))

f T1
H (T1(x)) f T2

L (T2(x))
f X
H (x)dµ(x)dµ(y)

For every y ∈ ST1 the function f T1
L (T1(x)) f T2

H (T2(x))

f T1
H (T1(x)) f T2

L (T2(x))
is constant for every element in

CT1(y). For f T1
L

f T1
H

this is true by definition of CT1 , while it follows from coarseness for

f T2
H

f T2
L

. Then,

∫
ST1

∫
CT1 (y)

f T1
L (T1(x)) f T2

H (T2(x))

f T1
H (T1(x)) f T2

L (T2(x))
f X
H (x)dµ(x)dµ(y)=

∫
ST1

f T1
L (y) f T2

H (y)

f T1
H (y) f T2

L (y)
f T1
H (y)dµ(y)=

∫
ST1

f T2
H (y)

f T2
L (y)

f T1
L (y)dµ(y)

20This proof uses coarseness in order to reduce the expression to a standard Gibbs’ inequality.
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As σ(T2)⊂ σ(T1) we can rewrite f T2
θ
(z) =

∫
y∈ST1 :T2(y)=z

f T1
θ
(y)dµ(y). Therefore:

∫
ST1

f T2
H (y)

f T2
L (y)

f T1
L (y)dµ(y) =

∫
ST2

f T2
H (z)

f T2
L (z)

∫
y∈ST1 :T2(y)=z

f T1
L (y)dµ(y)dµ(z) =

∫
ST2

f T2
H (z)

f T2
L (z)

f T2
L (z)dµ(z) = 1

As a result lnEX
H

[
f T1
L f T2

H

f T1
H f T2

L

]
= ln1 = 0.

Lastly, observe that Jensen’s inequality holds strictly. In fact, ln is a strictly concave

function, and f T1
L f T2

H

f T1
H f T2

L

is not constant almost everywhere because coarseness implies the

existence at least two sets A,B s.t. A ⊂ B, A /∈ σ(T2) and µ(A) > 0 where T2(x) is
constant ∀x ∈ B while T1(x) 6= T1(x′) for x ∈ A and x′ ∈ B\A.

Proof Lemma 3.2.2. As π0 =
1
2 we have lT

k = ∑
k−1
i=0 ∆lT

i+1 where ∆lT
i+1 = lT

i+1− lT
i =

ln f T
H (yi)

f T
L (yi)

i = 0,1, ...,k is a sequence of i.i.d. random variables.
Hitting times τH and τL can be equivalently stated in terms lk:

τ
l
H := inf

{
k > 0 : lT

k ≥ ln
1− ε

ε

}
τ

l
L := inf

{
k > 0 : lT

k ≤ ln
ε

1− ε

}
Applying Wald (1944) lemma to the sequence of i.i.d random variables ∆li:

Eθ [lT
τ l

θ

] = Eθ [τ
l
θ ]Eθ [∆lT ] ∀θ ∈ {H,L} (3.4)

By Gibbs’ inequality EH [∆lT ]> 0 and EL[∆lT ]< 0. If EH [∆lT ]+EL[∆lT ]< 0 then:

EL[∆lT ] =−
(
EH [∆lT ]+ c

)
where c ≡ −

∫
ST

ln f T
H (y)

f T
L (y)

(
f T
H (y)+ f T

L (y)
)

dµ(y) > 0. Note that c only depends on the
primitives and it is independent of ε .

Substituting in equation (3.4):

EH [τ
l
H ]EH [∆lT ] = EH [lT

τ l
H
]

EL[τ
l
L](EH [∆lT ]+ c) = −EL[lT

τ l
L
]

Hence:
EH [∆lT ](EH [τ

l
H ]−EL[τ

l
L]) = EH [lT

τ l
H
]+EL[lT

τ l
L
]+EL[τ

l
L]c

=⇒ EH [∆lT ]
(
EH [τ

l
H ]

EL[τ
l
L]
−1
)
=

EH [lT
τl
H
]+EL[lT

τl
L
]

EL[τ
l
L]

+ c

Note that |∆lT | < M implies EL[lT
τ l

L
] ≥ ln ε

1−ε
−M and by definition EH [lT

τ l
H
] ≥ ln 1−ε

ε
,

hence:
EH [∆lT ](

EH [τ
l
H ]

EL[τ
l
L]
−1)≥ −M

EL[τ
l
L]
+ c
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On the other hand, by Wald lemma:

EL[τ
l
L] =

EL[lT
τ l

L
]

EL[∆lT ]
≥

ln 1−ε

ε

M
> 0

so
EH [∆lT ](

EH [τ
l
H ]

EL[τ
l
L]
−1)≥− M2

ln 1−ε

ε

+ c

Since 0 < EH [∆lT ]< M:

EH [τ
l
H ]

EL[τ
l
L]
−1 > − M

ln 1−ε

ε

+ c
EH [∆lT ]

= − M
ln 1−ε

ε

+ −EH [∆lT ]−EL[∆lT ]
EH [∆lT ]

= − M
ln 1−ε

ε

−1+
∣∣∣ EL[∆lT ]
EH [∆lT ]

∣∣∣ as EL[∆lT ]< 0

Note that ln 1−ε

ε
→∞ as ε→ 0, hence ∀δ > 0, ∃ε > 0 such that ∀ε < ε , M

ln 1−ε

ε

< δ .
The proof for the other case is symmetric.

Proof Proposition 3.3.1.
Consider the subgame starting from auction k. Notice that ∆k is statistically inde-

pendent of the underlying state and all private values, hence we can integrate it out
when calculating the expected payoff of bidder ik:

E[uik(b,b∗−ik;wik)|wik,πk]

= P(b∗(2)k < b|wik,πk)
{
−E(b∗(2)k |wik,πk)

+
∞

∑
x=1

α(1−α)x−1

[
x−1

∑
s=0

δ
swik +δ

xE(b∗(2)k+1|wik,πk,∆k = x)

]}

= P(b∗(2)k < b|wik,πk)

{
−E(b∗(2)k |wik,πk)+

∞

∑
x=1

α(1−α)x−1 1−δ x

1−δ
wik

+
∞

∑
x=1

[
α

1−α
(δ −αδ )x E(b∗(2)k+1|wik,πk,∆k = x)

]}
= P(θtk = H|wik,πk)P(b

∗(2)
k < b|θtk = H)

{
−E(b∗(2)k |θtk = H)+σwik

+
∞

∑
x=1

[
α

1−α
(δ −αδ )xE(b∗(2)k+1|θtk = H,∆k = x)

]}
+ P(θtk = L|wik,πk)P(b

∗(2)
k < b|θtk = L)

{
−E(b∗(2)k |θtk = L)+σwik

+
∞

∑
x=1

[
α

1−α
(δ −αδ )x E(b∗(2)k+1|θtk = L,∆k = x)

]}

For convenience, let us introduce the following notation:
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zk ≡ w(2)
k ≡ v(2)tk : 2nd highest realization of private values in auction k

ρx
j ≡ ((Px) j1,(Px) j2) the j-th row of matrix Px, j ∈ {1,2}, ∀x ∈ N+

ek+1 ≡ (eH
k+1,e

L
k+1)

ᵀ the expectation of equilibrium resale revenue

eθ
k+1 ≡ E(b∗(2)k+1|θtk+1 = θ) conditional on the state of next auction

γ̃k = (γ̃k,1− γ̃k) the belief used by the 2nd-highest-value bidder

γ̃k ≡ πk fH(zk)hH(zk)
πk fH(zk)hH(zk)+(1−πt) fL(zk)hL(zk)

of auction k in his bidding function.

Using the notations above, we have:

E(b∗(2)k+1|θtk = H,∆k = x) = ρ
x
1ek+1;

E(b∗(2)k+1|θtk = L,∆k = x) = ρ
x
2ek+1.

Assuming monotone and symmetric bidding strategy, we can rewrite bidder ik’s
problem as:

max
b

πik

b∗−1(b;πk)∫
0

[
−b∗(y;πk)+σwik +

∞

∑
x=1

α

1−α
(δ −αδ )x

ρ
x
1ek+1

]
hH(y)dy

+ (1−πik)

b∗−1(b;πk)∫
0

[
−b∗(y;πk)+σwik +

∞

∑
x=1

α

1−α
(δ −αδ )x

ρ
x
2ek+1

]
hL(y)dy

where πik ≡ P(θtk = H|wik,πk) =
πk fH(wik)

πk fH(wik)+(1−πk) fL(wik)
, bidder ik’s posterior about

θtk . Note that ek+1, the expected equilibrium resale revenue, will depend on x, the
realization of ∆k, and y, the realization of zk, through public belief πk+1, therefore it
cannot be taken out of the integral.

FOC yields:

0 = πik

[
−b∗(wik;πk)+σwik +

∞

∑
x=1

α

1−α
(δ −αδ )x

ρ
x
1ek+1

]
hH(wik)

+ (1−πik)

[
−b∗(wik;πk)+σwik +

∞

∑
x=1

α

1−α
(δ −αδ )x

ρ
x
2ek+1

]
hL(wik)

Using γ it and B defined in the proposition we can rewrite the FOC as

b∗(wik;πk) = σwik + γ ik

[
∞

∑
x=1

α

1−α
(δ −αδ )xPxek+1

]

= σwik +

[
∞

∑
x=1

α

1−α
(δ −αδ )x(γ ikPx)ek+1

]

Now we need to solve for the equilibrium object ek+1.
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Since the bidding strategy is time-invariant:

eθ
k+1 ≡ E(b∗(2)k+1

∣∣θtk+1 = θ)

= E
[
b∗(zk+1;πk+1(πk,y = wik,x;P))

∣∣θtk+1 = θ
]

= E

[
σzk+1 +

∞

∑
x′=1

α

1−α
(δ −αδ )x′(γ̃k+1Px′)ek+2

∣∣∣∣∣θtk+1 = θ

]

Put it back into the bidding function above:

b∗(wik;πk)

= σwik +

[
∞

∑
x=1

α

1−α
(δ −αδ )x(γ ikPx)ek+1

]

= σwik +
∞

∑
x=1

α

1−α
(δ −αδ )x(γ ikPx)σ

(
E[zk+1|θtk+1 = H]

E[zk+1|θtk+1 = L]

)

+
∞

∑
x=1

α

1−α
(δ −αδ )x(γ ikPx)

 E
[

∞

∑
x′=1

α

1−α
(δ −αδ )x′(γ̃k+1Px′)ek+2

∣∣∣θtk+1 = H
]

E
[

∞

∑
x′=1

α

1−α
(δ −αδ )x′(γ̃k+1Px′)ek+2

∣∣∣θtk+1 = L
]


= σwik +σ

∞

∑
x=1

α

1−α
(δ −αδ )xEik[zk+1]

+
∞

∑
x=1

α

1−α
(δ −αδ )xEik

[
∞

∑
x′=1

α

1−α
(δ −αδ )x′(γ̃k+1Px′)ek+2

]

where Eik[·] denote the expectation of bidder ik conditional on the event that he
wins auction k and the highest value among others is exactly equal to his value, and
his waiting time for resale is x.

Now consider ek+2. Let us label the 2nd highest bidder in auction k as bidder k̃,
∀k ∈ N.

eθ
k+2 ≡ E

[
b∗(2)k+2

∣∣θtk+2 = θ

]
= E

[
b∗(zk+2;πk+2(πk+1,y = zk+1,x;P))|θtk+2 = θ

]
= E

{
σzk+2 +

∞

∑
x′′=1

α

1−α
(δ −αδ )x′′(γ̃k+2Px′′)e+3

∣∣∣∣θtk+2 = θ

}

Hence:

(
γ̃k+1Px′

)
ek+2 = σEk̃+1[zk+2]+Ek̃+1

[
∞

∑
x′′=1

α

1−α
(δ −αδ )x′′

(
γ̃k+2Px′′

)
ek+3

]

where Ek̃+1[·] denote the expectation of bidder k̃+1 conditional on the event that he
wins auction k+ 1 and the highest value among others is exactly equal to his value,
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and his waiting time for resale is x′.
Plugging back this value into the bidding function of bidder ik:

b∗(wik;πk)

= σwik +σ

∞

∑
x=1

α

1−α
(δ −αδ )xEik[zk+1]

+
∞

∑
x=1

α

1−α
(δ −αδ )xEik

[
∞

∑
x′=1

α

1−α
(δ −αδ )x′

σEk̃+1[zk+2]

]
+ rik

= σwik +σ

∞

∑
x=1

α

1−α
(δ −αδ )xEik[zk+1]

+ σ

∞

∑
x=1

α

1−α
(δ −αδ )x

[
∞

∑
x′=1

α

1−α
(δ −αδ )x′Eik[zk+2]

]
+ rik

= σwik +σ

∞

∑
x=1

α

1−α
(δ −αδ )x

γ ikPxc

+ σ

∞

∑
x=1

α

1−α
(δ −αδ )x

[
∞

∑
x′=1

α

1−α
(δ −αδ )x′

γ ikPx+x′c

]
+ rik

= σwik +σγ ik

[
∞

∑
x=1

α

1−α
(δ −αδ )xPx

]
c+σγ ik

[
∞

∑
x=1

α

1−α
(δ −αδ )xPx

]2

c+ rik

= σwik +σγ ikBc+σγ ikB2c+ rik

The second equation comes from law of iterated expectation and the fourth equation
comes from the fact that waiting time is i.i.d. across auctions.

The residual term rik is:

∞

∑
x=1

α

1−α
(δ −αδ )xEik

[
∞

∑
x′=1

α

1−α
(δ −αδ )x′

σEk̃+1

[
∞

∑
x′′=1

α

1−α
(δ −αδ )x′′(γ̃k+2Px′′)ek+3

]]

Note that the expected present value of the resale revenue from auction k+m for
bidder ik goes to 0 as m goes to infinity, due to the existence of discount rate δ . Hence
we can recursively solve for the bidding function following the argument above, and
finally get:

b∗(wik;πk) = σwik +σγ ik

(
∞

∑
s=1

Bs

)
c

= σ [wik + γ ikB(I−B)−1c]

To complete the proof, we need to verify that this is indeed a monotone bidding
function.
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Let D =

[
d11 d12

d21 d22

]
≡ B(I−B)−1 and rewrite b∗(wik;πk) as

b∗(wik;πk) = σ(wik + γ ikDc)

= σ {wik +d21cH +d22cL + γik [(d11−d22 +d12−d21)cL +(d11−d21)∆c]}

where ∆c≡ cH− cL > 0 and di j, i, j = 1,2, to be determined.
The matrix B = αδP[I−δ (1−α)P]−1 is equal to:

B = αδ

[
ρH 1−ρH

1−ρL ρL

][
1−δ (1−α)ρH δ (1−α)(1−ρH)

−δ (1−α)(1−ρL) 1−δ (1−α)ρL

]−1

=
αδ

(1−δ (1−α))(1−δ (1−α)(ρH +ρL−1))
·

 ρH −δ (1−α)(ρH +ρL−1) 1−ρH

1−ρL ρL−δ (1−α)(ρH +ρL−1)

≡ κ

[
b11 b12

b21 b22

]

Therefore:

D = B(I−B)−1 = κ

[
b11 b12

b21 b22

][
1−κb11 −κb12

−κb21 1−κb22

]−1

=
1

(1−κb11)(1−κb22)−κ2b12b21
·

[
κb11(1−κb22)+κ2b12b21 κb12

κb21 κb22(1−κb11)+κ2b12b21

]

Plugging back the value of κ and bi j, i, j = 1,2 we have:

(1−κb11)(1−κb22)−κ2b12b21 = (1−δ )(1−δ (ρH+ρL−1))
(1−δ+αδ )(1−δ (1−α)(ρH+ρL−1)) ;

κb11(1−κb22)+κ2b12b21 = αδ

(1−δ+αδ ))(1−δ (1−α)(ρH+ρL−1))(ρH −δ (ρH +ρL−1));

κb22(1−κb11)+κ2b12b21 = αδ

(1−δ+αδ )(1−δ (1−α)(ρH+ρL−1))(ρL−δ (ρH +ρL−1));

κb12 = αδ

(1−δ+αδ )(1−δ (1−α)(ρH+ρL−1))(1−ρH);

κb21 = αδ

(1−δ+αδ )(1−δ (1−α)(ρH+ρL−1))(1−ρL)

Therefore:

D =
αδ

(1−δ )(1−δ (ρH +ρL−1))

[
ρH −δ (ρH +ρL−1) 1−ρH

1−ρL ρL−δ (ρH +ρL−1)

]

If we plug back the elements of D into the bidding function we get:

b∗(wik;πk) = σ

{
wik +

αδ

1−δ

[
cL +

1−ρL

1−δ (ρH +ρL−1)
∆c
]
+ γik

αδ (ρH +ρL−1)
1−δ (ρH +ρL−1)

∆c
}

Since ρH +ρL ∈ [1,2] and γik is strictly monotone in wik, b∗(wik;πk) is clearly strictly
monotone in wik as well.
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Lastly, notice that the b∗(wik;πk) is indeed the unique solution to the FOC, which
implies that the expected payoff of each bidder would be a single-peaked function of
her bid, hence FOC is sufficient for optimality.

Bibliography

HAILE, P.A. (2000): “Partial Pooling at the Reserve Price in Auctions with Resale
Opportunities,” Games and Economic Behaviour, 33, 231–248.

HAILE, P.A (2001): “Auctions with Resale Markets: An Application to U.S. Forest
Service Timber Sales,” American Economic Review, 91, 399–427.

HAILE, P. A. (2003): “Auctions with private uncertainty and resale opportunities,”
Journal of Economic Theory, 108, 72–110.

HALAFIR, I. E. AND V. KRISHNA (2008): “Asymmetric Auctions with Resale,”
American Economic Review, 98, 87–112.

HAYEK, F. A. (1945): “The Use of Knowledge in Society,” American Economic Re-

view, 35, 519–530.

GARRATT, R. AND T. TROG̈ER (2006): “Speculation in Standard Auctions with
Resale,” Econometrica, 74, 753–770.

GARRATT, R., T. TROG̈ER, AND C. ZHENG (2009): “Collusion via Resale,” Econo-

metrica, 77, 1095–1136.

GUPTA, M. AND B. LEBRUN (1999): “First price auctions with resale,” Economics

Letters, 64, 181–185.

JU, N., AND J. MIAO (2012): “Ambiguity, Learning and Asset Returns,” Economet-

rica, 80, 559–591.

LEBRUN, B. (2012): “Optimality and the English and second-price auctions with
resale,” Games and Economic Behaviour, 75, 731–751.

MILGROM, P. R., AND R. J. WEBER (1982): “A Theory of Auctions and Competi-
tive Bidding,” Econometrica, 50, 1089–1122.

MYERSON, R. B. (1981): “Optimal Auction Design,” Mathematics of Operations

Research, 6, 58–73.

125



PAPADATOS, N. (1995): “Maximum Variance of Order Statistics,” Ann. Inst. Statist.

Math, 47, 185–193.

TIMMERMANN, A. (1993): “How Learning in Financial Markets Generates Excess
Volatility and Predictability in Stock Prices,” Quarterly Journal of Economics, 108,
1135–1145.

VIRAG, G. (2013): “First-price auctions with resale: the case of many bidders,” Eco-

nomic Theory, 52, 129–163.

WALD, A. (1944): “On cumulative sums of random variables, ” The Annals of Math-

ematical Statistics, 15, 283–296.

WEITZMAN, M. L. (2007): “Subjective Expectations and Asset-Return Puzzles,”
American Economic Review, 97, 1102–1130.

ZHENG, C. Z. (2002): “Optimal Auction with Resale,” Econometrica, 70, 2197–2224.

126


	Is Time Enough to Alleviate Adverse Selection?
	Introduction
	Related literature
	Model
	Model setup
	Discussion of the assumptions

	Equilibrium analysis
	Separating equilibria
	Pooling equilibria

	Welfare analysis
	Market design
	Conclusion
	Appendix A
	Extended notation
	Preliminary results
	Pooling equilibria
	Welfare analysis
	Market design

	Appendix B

	Peer Monitoring Incentives via Central Clearing Counterparties
	Introduction
	Related literature
	Baseline model
	Equilibrium with two dealers
	Autarchic equilibrium
	Peer monitoring equilibrium
	Optimal CCP loss mutualization design

	Equilibrium with multiple dealers
	Model
	Incentive compatibility for N dealers
	Equilibrium for N+

	Discussion
	Conclusion
	Appendix

	Learning and Price Dynamics in Durable Goods Markets
	Introduction
	Information revelation and learning
	Model setup
	Public beliefs dynamics

	Dynamic auction model
	Trading protocol
	Equilibrium characterization
	Comparative statics

	Conclusion
	Appendix


