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Abstract

This thesis contains two theoretical essays built upon the canonical models of social

learning, and one that applies social learning theory to durable goods markets.

The first chapter, “Non-Monotone Observational Learning”, revisits the canonical

social-learning model that rationalizes herding in the long run, to investigate the pos-

sibility of non-imitative behavior in the short run generated by non-monotone learning:

ceteris paribus, when some predecessor(s) switch to actions revealing greater confidence

in one state of the world, agents become less confident in that state. I characterize con-

ditions on the underlying information structures that lead to non-monotone learning.

In particular, in a general setting with continuous private signals, I provide a necessary

condition for non-monotone learning with an argument for its plausibility, as well as two

non-restrictive suffi cient conditions that do not rely on parametrization.

The second chapter, “Does Public Information Disclosure Help Social Learning?”,

studies the effect of releasing exogenous public information in the canonical social-learning

model that predicts incomplete learning. To improve social learning, I show that it is

weakly better to postpone the disclosure of a public signal irrespective of its precision.

However, such weak monotonicity no longer holds if the objective is to maximize the

discounted sum of people’s expected payoffs or if the model goes beyond the canonical

binary setting. On the other hand, it is suboptimal to ever release a public signal less

precise than people’s private signals even if sophisticated releasing strategies are allowed.

The last chapter, “Learning and Price Dynamics in Durable Goods Markets”, is joint

work with Francesco Palazzo. We study how markets for durable goods with unobservable

and time-varying aggregate market conditions determine price dynamics with market

participants constantly learning from public observations. We set up a dynamic auction

model with two key features: first, agents enjoy heterogeneous private use values and

later resell the asset; second, prices do not incorporate all available information dispersed

in the economy. Informational frictions slow down learning and affect price movements

asymmetrically across high and low aggregate demand states. Learning and the resale

motive are the predominant force for durable goods with short resale horizons, slow time-

varying aggregate demand, and similar use values across agents.
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1 Non-Monotone Observational Learning

Whereas rational observational learning generates herds in the long run, it can lead

to behavior quite different from herding or imitation in the short run. This work revisits

the canonical binary-state model of observational learning, in which agents sequentially

choose a binary action and the history of actions is publicly observable, to investigate

the possibility of non-imitative behavior generated by non-monotone learning: ceteris

paribus, when some predecessor(s) switch to actions revealing greater confidence in one

state of the world, agents become less confident in that state. In a special case with binary

signal space, we show that most agents always form such non-monotone posterior beliefs

with respect to the first agent’s action. In a general setting with continuous signals, we

provide a necessary condition for non-monotone learning, and show that it fails only for

information structures that never generate public beliefs between 1
3
and 2

3
throughout

the learning process. We also provide two non-restrictive suffi cient conditions for non-

monotone learning on information structures that are not explicitly parameterized.
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1.1 Introduction

The theoretical literature on observational learning has demonstrated that, when rational

agents with common preferences act sequentially, they tend to imitate their predecessors

and eventually exhibit herd behavior. In the canonical example of restaurant choice due

to Banerjee (1992), agents sequentially choose to eat at one of the two restaurants, A and

B, which are equally likely to be the better one a priori, and each agent obtains a binary

private signal indicating the better restaurant before making her choice. Assuming all

signals have the same precision and agents follow their private signals when indifferent,

when one restaurant has been chosen twice more than other, all future agents will ignore

their private signals and choose that restaurant.

Rationalizing herd behavior and imitation is considered as one key contribution of the

literature.1 Yet we are keen to know what else rational observational learning may predict.

Do rational agents always tend to imitate their predecessors throughout the learning

process? When they imitate, do they imitate each and every predecessor? Answers to

questions like these rely on a thorough understanding of rational learning models beyond

the well-established long-run predictions. In addition, more studies into the short-run

behavioral implications of rational observational learning serve to distinguish rationality

from other potential explanations of social learning, both theoretically and empirically.

Let us start by looking into the learning dynamics in the canonical example above.

We can see that agents’incentives to imitate their predecessors result from a “monotone”

evolution of posterior beliefs. More specifically, each agent forms posterior beliefs that are

monotone with respect to her observation, in the sense that she believes one restaurant,

say A, is (weakly) more likely to be better than the other when more of her predecessors

have switched to choose A. When she observes that A has been chosen at least twice

more than B, her posterior belief after such history dominates her private information

and she then chooses A regardless of her private signal.

Is such monotonicity a general feature of observational learning? It seems plausible

at first glance. By choosing a restaurant, each agent reveals more confidence in that

1Quoting the preface of Chamley (2004) which provides a comprehensive overview of the literature,
“Learning by individuals from the behavior of others and imitation pervade the social life. . . herds, fads,
bubbles, crashes, and booms are cited as proofs of the irrationality of individuals. However, most of
these colorful events will appear in the models of rational agents. . . ”.
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restaurant than the other, so it seems natural that, if more agents have chosen A instead

of B in the past, the history becomes stronger evidence supporting A. However, this is

not necessarily the case as the interpretation of each action in the history closely depends

on other actions, e.g., how much confidence in A agent t expresses by choosing A may

change dramatically if the action of agent t − 1 changes. And these interpretations are

particularly affected by the underlying information structure of the model. In a variety of

settings, rational agents could indeed form non-monotone posterior beliefs with respect

to their observations, which we refer as “non-monotone learning”: ceteris paribus, when

some predecessor(s) switch to actions revealing greater confidence in one state of the

world, agents become less confident in that state. As a consequence, agents have less

incentive to imitate their predecessors, a feature that is absent in the canonical example

and also overlooked in models extended from it.

For instance, in the restaurant-choice problem, certain signal structures could lead

agent 3 to believe B is more likely to be the better restaurant when she observes a

history (A,B) than when she observes a history (B,B). Fixing agent 2’s action, the

more agent 1’s action reveals confidence in A, the less confident agent 3 becomes in

A. We refer this particular case of non-monotone learning, where agent 3’s beliefs shift

against the action of agent 1, as agent 3 forming posterior beliefs that are anti-imitative

of agent 1.2 It is worth mentioning that fixing agent 2’s action makes the comparison

more interesting, because agent 3’s posterior belief is always consistent with agent 2’s

action, i.e., the Overturning Principle in Smith and Sørensen (2000).3

To further elaborate such an example, we adopt a setting close to that of Callander

and Hörner (2009) in which agents are heterogeneously informed. Some agents are experts

who have private signals about whether A or B is better with precision q > 0.5. Others

are just amateurs who know nothing at all. In Callander and Hörner (2009), agents can

only observe the total number of agents having chosen each option, and they show that

uninformed agents (amateurs) should follow theminority of their predecessors rather than

the majority, when informed agents (experts) are rare.4 Such behavior is clearly different

2The formal definition of anti-imitative beliefs is provided in Section 1.2.
3See the proof of Theorem 3 in Smith and Sørensen (2000) or Lemma 1.3.2 in this paper.
4Callander and Hörner (2009) assume that informed agents have perfect private information, i.e.,

q = 1, hence they only focus on the rational behavior of uninformed agents.
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from what might be expected based on the canonical example, and more fundamentally,

the posterior beliefs of uninformed agents are clearly not monotone with respect to the

summary statistic they observe. Here we show that similar but less extreme information

structures can indeed lead to non-monotone learning even if we maintain the assumption

that each agent observes the order of all predecessors’moves as in the canonical example.

In particular, when the fraction of experts in the population, r, is suffi ciently large or the

precision q is suffi ciently high, agent 3 will form beliefs that are anti-imitative of agent

1 as described in the last paragraph. To get the intuition, think about the comparison

between history (A,B) and history (B,B). (A,B) reveals one weak piece of evidence

against B from the first action A, as it could just be a random choice by an amateur.

Meanwhile (A,B) reveals one strong piece of evidence supporting B from the second

action B, as it must be an informative choice by an expert since an amateur, lacking

private information, would have followed the first action A. On the other hand, (B,B)

reveals two weak pieces of evidence supporting B as each action B could come from an

amateur. When r (q) is very high which implies the weak (strong) evidence is fairly

insignificant (significant), (A,B) may turn out to be an overall stronger piece of evidence

supportingB than (B,B). Furthermore, we also provide conditions on q and r for massive

instances of anti-imitative beliefs: each agent from agent 3 on will form posterior beliefs

that are anti-imitative of agent 1 after any possible equilibrium history, even though they

all share the same preference as agent 1 and there are no strategic effects at all.5

Knowing that different information structures can dramatically affect a rational agent’s

inference from her observations and possibly lead to non-monotone learning, we then turn

to a general model with continuous private signals due to Smith and Sørensen (2000). A

nice feature of this model is that it guarantees behavioral differences whenever learning

is non-monotone. In particular, if one agent forms beliefs that are anti-imitative of a

predecessor and private signals are continuous, she would indeed choose B with higher

probability had that predecessor switched from B to A, i.e., she anti-imitates that prede-

cessor.6 On the other hand, we want to emphasize that such anti-imitative behavior does

not contradict but rather sit side by side with the long-run herd behavior that has been

5Agent 2’s posterior belief cannot be anti-imitative according to the overturning principle.
6We show in Section 1.2 that, with binary private signals, anti-imitative beliefs do not necessarily

induce such behavioral difference.
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demonstrated in this model.7 Hopefully our investigation could draw further attention to

comprehensive and thorough studies of many existing learning models in which rational

behavior during the learning process may be quite different from the long-run predictions

already established.

We first characterize the learning dynamics along any equilibrium path by introducing

two transition functions that describe the movement of public beliefs from one period to

the next, one for each possible realization of the most recent action. In other words,

these transition functions govern the learning process in term of beliefs along all possible

histories. A necessary condition for non-monotone learning is that the transition functions

are non-monotone in public beliefs. To see why non-monotone transition functions are

necessary, let us consider a change of action fromA toB by a number of agents. According

to the overturning principle, the public belief right after the last agent who changes his

action now supports B instead of A. If the transition functions are always monotone,

then all the public beliefs generated thereafter will always shift toward B and hence

learning cannot be non-monotone. It is probably too abstract to think about the shape

of transition functions, but we make an interesting observation: if transition functions

are monotone, then public beliefs cannot enter the interval (1
3
, 2

3
) after any history. This

observation casts doubt on the plausibility of monotone transition functions, as it is very

hard to believe that we live in a world which never allows us to have moderate public

beliefs about the unknown.8 Therefore we must at least worry about non-monotone

learning and anti-imitation most of the times.

We then provide a suffi cient condition for non-monotone learning and anti-imitation

based on our findings in the binary-signal setting. There we have shown that agent 3’s

posterior belief is anti-imitative of agent 1 when the fraction of amateurs is suffi ciently

large. It suggests that learning is probably non-monotone as well in the continuous model,

which then leads to anti-imitation, when private signals are most likely uninformative.

Hence we consider distributions of private beliefs that have high density around 1
2
, i.e.,

most agents are almost uninformed, and provide a suffi cient condition for each agent

7See for example Theorem 3(b) about action convergence in Smith and Sørensen (2000).
8For example, in medical research physicians are allowed to offer patients randomization to different

treatments only if clinical equipoise exists, i.e., there is genuine uncertainty in the expert medical com-
munity over whether a treatment will be beneficial. In other words, the community of physicians should
regard the treatments as (roughly) equally preferable. See Freedman (1987).
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t + 2 to anti-imitate agent t.9 Loosely speaking, it requires the distributions to have

“thick”tails, in the sense that the conditional expectation of private beliefs larger than
1
2
is suffi ciently far away from 1

2
. The intuition behind this condition is analogous to

what we have in the binary-signal setting: high density around 1
2
corresponds to a large

r and thick tails correspond to a large q.10 If learning is conducted in a society where

most people barely have any private knowledge but those who do have some knowledge

are suffi ciently knowledgeable on average, it is bound to exhibit anti-imitative behavior.

Such information structures are reasonable in many contexts of social learning such as

technology adoption or development of medical treatments, where most of us really know

little but those technicians or physicians are usually well recognized for their expertise.11

Another interesting result is a boundary condition on the distributions of private

beliefs that guarantees non-monotone learning. We show that the transition functions

of public beliefs are decreasing around the boundaries when the distribution of private

beliefs are sharply diminishing around the boundaries. As learning completes eventually,

public beliefs are bound to be close to the boundaries after suffi ciently long histories and

then decreasing transition functions lead to non-monotone learning.12 This condition can

be satisfied by a variety of common distributions; being a boundary condition, it can

also be “approximately”satisfied by essentially every distribution.13 On the other hand,

in the absence of explicit parametrization of the information structure, we find it hard

and most likely intractable to get a necessary and suffi cient condition for non-monotone

learning in general.

9For technical convenience we focus on the distributions of private beliefs rather than private signals
as in Smith and Sørensen (2000).
10In the binary-signal model, the conditional expectation of private beliefs larger than 1

2 is exactly q.
11Learning and information aggregation are indeed more desirable when individuals have limited pri-

vate knowledge. For example, Conley and Udry (2010) investigate the diffusion of a new agricultural
technology in Ghana, and find evidence that farmers adjust their inputs to align with those who were
surprisingly successful in previous periods, which indicates the presence of social learning. However the
input choices for another crop of known technology indicate an absence of social learning effects.
12We assume unbounded private beliefs in the model to ensure complete learning. See Theorem 1(b)

in Smith and Sørensen (2000).
13See further discussion in Section 1.3 and Appendix.
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1.1.1 Related Literature

The theoretical literature on observational learning has conventionally focused on asymp-

totic properties and few papers have deliberately studied the dynamics of learning and its

behavioral implications short of the limit. This work is closest to Callander and Hörner

(2009) as both highlight the impact of information structures on the learning process,

which leads to behavior quite different from the canonical predictions. We differ from

Callander and Hörner (2009) by maintaining the full observation assumption and con-

sidering more general information structures, but as mentioned before, the information

structure in their paper shares the intuition of non-monotone learning in our work. On

the other hand, Eyster and Rabin (2014) study the impact of observation structures in-

stead and question the rationality of imitative behavior.14 They provide a necessary and

suffi cient condition on observation structures for rational anti-imitation, and the logic

lies in the fact that rational agents need to take into account the redundancy of previous

actions under those structures.15

Other work in the literature mainly studies the effi ciency of information aggrega-

tion and the long-run herd behavior but has substantially extended the first models by

Banerjee (1992), Bikhchandani et al. (1992), and Smith and Sørensen (2000) in different

respects. The assumption of full observation has been relaxed by, for example, Çelen

and Kariv (2004) where each agent is only allowed to observe her immediate predecessor.

They show that beliefs and actions end up cycling and learning is never complete.16 Per-

haps the most comprehensive generalization in this respect is by Acemoglu et al. (2011),

which allows the observation structure to be a network topology.17 They show that as-

ymptotic learning is achieved with unbounded private beliefs when the network topology

has expanding observations: agents should not be confined to receive information from

a bounded subset of other agents. Few recent papers such as Guarino et al. (2011) and

14An observation structure is a directed network and they consider general networks other than the
canonical single-file setting. See also Jackson (2008) for comprehensive discussion on social networks.
15Note that their condition on observation structures is necessary and suffi cient when the action space

is continuous, hence it is still possible to have anti-imitation in the canonical model with binary actions
even though their condition is violated.
16Incomplete learning and non-converging actions are not due to their observational assumption

though. In fact, according to Acemoglu et al. (2011), learning is complete (with unbounded private
beliefs) in the canonical model even if one can only observe her immediate predecessor.
17The network topology in Acemoglu et al. (2011) is similar to Eyster and Rabin (2014) but also allows

stochastic sampling like in Banerjee and Fudenberg (2004) or Smith and Sørensen (2008).

13



Herrera and Hörner (2013) alter the observational assumptions in another way by assum-

ing that only certain realization of actions is observable. Yet none of these papers talks

about (non-)monotone properties of learning process or anti-imitation.

There is also a growing number of papers that relax the assumption of myopic pref-

erences and introduce payoff interdependence among agents. It is less surprising to see

anti-imitation or even contrarian behavior when there are negative externalities such as

congestion costs in Eyster et al. (2014). But observational learning models with payoffex-

ternalities are generally hard to solve due to the existence of forward-looking incentives.18

Dasgupta (2000) studies social learning in coordination problems and demonstrates that

agents exhibit herd behavior as complete imitation under certain information structures.

In the context of sequential elections, Ali and Kartik (2012) manage to characterize con-

ditions on the payoff interdependence that will guarantee sincere behavior by agents and

eventually a herd.

Most empirical and experimental work on observational learning follows the main fo-

cus in the theoretical literature and justifies imitative behavior and herding. For example,

Moretti (2011) uses box-offi ce data and finds that the sales of movies with positive and

negative opening-weekend surprises in demand diverge over time: a movie that experi-

ences larger sales in Week 1 will experience further increasing sales in subsequent weeks.

He considers such imitative behavior by consumers as a result of social learning and fur-

ther quantifies the effect of social learning on movie sales. Cai et al. (2009) conduct a field

experiment to distinguish imitative observational learning from salience in which they tell

diners either the recently popular dishes or the “feature dishes”. They find that diners

react more strongly to popularity than to salience, which convincingly suggests that din-

ers imitate. Our work, on the other hand, will potentially raise the question whether the

imitative behavior detected by these papers comes from rational observational learning.19

Herd behavior has also been extensively studied in the sequential trading model of

financial market introduced by Glosten and Milgrom (1985), and Park and Sabourian

(2011) further investigate the possibility of contrarianism: traders buy (sell) assets after

18Besides Eyster et al. (2014), a lot of work assumes only backward incentives such as queuing models
by Debo et al. (2012) and Cripps and Thomas (2014).
19In Cai et al. (2009), the popularity of dishes is sorted by the actual number of plates sold in the

previous week. So roughly speaking, they are really only looking at how agent 2 reacts to agent 1, and
we know that there is no anti-imitation due to the overturning principle.
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observing histories that reveal bad (good) information about the asset value. Their work

builds on the seminal paper by Avery and Zemsky (1998) which shows that there are no

informational cascades in such model with informationally effi cient prices and it is unlikely

to have herding behavior unless signals are “non-monotonic”. Park and Sabourian (2011)

instead argue that the monotonicity of signals defined by Avery and Zemsky (1998)

is disputable and describe conditions on the underlying information structure that are

necessary and suffi cient for herding or contrarianism. Dasgupta and Prat (2008) bring

the sequential trading model together with the reputational herding model established

by Scharfstein and Stein (1990) and demonstrate herd behavior when agents have career

concerns. However, due to the existence of a competitive market maker who consistently

adjusts the bid (ask) prices based on the public histories, all these papers implicitly

impose heterogeneous payoff functions of traders.

The remainder of the paper is structured as follows. We begin with the simple model

with binary private signals in Section 1.2. Section 1.3 develops some general results for

the model with continuous private signals. Section 1.4 concludes.

1.2 A Simple Setting with Binary Private Signals

1.2.1 Setup

We consider a simple variant of the setting by Callander and Hörner (2009). There is an

underlying state of the world, θ ∈ {A,B}, whose realization is unknown to the population,

a countable set of agents. Agents hold a common prior of θ, Pr(θ = A) = Pr(θ = B) =

0.5. There is an infinite time horizon, t ∈ {1, 2, 3, . . .}, and at each period t an agent is

chosen to make a once-in-a-life-time binary decision, at ∈ {A,B}.20 Unlike Callander and

Hörner (2009), the history of past actions, ht ≡ (a1, a2, . . . , at), is publicly observable for

all the future agents. Agents have common payoff functions u(at, θ) = 1{at=θ}.

There are two informational types of agent. An agent can be an expert, who receives

a private signal σt ∈ {A,B}, which matches the true state with probability q ∈ (1
2
, 1),

before making her decision. Or she can be an amateur, who does not receive any private

signals. Each agent’s type is her private information but the probability of being an

20We simply refer the agent acting at period t as agent t throughout the paper.
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amateur, r ∈ (0, 1), is the same across all agents and commonly known.

Let lt+1 ≡ l(ht) ≡ ln Pr(θ=B|ht)
Pr(θ=A|ht) = ln Pr(ht|θ=B)

Pr(ht|θ=A)
be the posterior log-likelihood ratio of

agent t+1 after observing history ht but before acquiring her private signal. We also call

lt+1 the public belief as history ht is publicly observed by all future agents, with l1 = 0

as the prior.21 Let us first solve the Bayesian decision problem of each agent.22

Lemma 1.2.1 Agent 1 follows her private signal if she is an expert, and (by assumption)

randomly chooses between A and B if she is an amateur. Agent t ≥ 2 follows her

immediate predecessor if she is an amateur or |lt| > ln q
1−q , and follows her private signal

otherwise.

Proof. See Appendix.

An amateur, absent of private signals, will just follow her immediate predecessor, as

she knows no more than her immediate predecessor, who has the same preference and

acted rationally. On the other hand, an expert will stick to her private signal as long as its

precision outweighs the public belief, i.e., ln q
1−q ≥ |lt|, but follows what the public belief

suggests otherwise. With individual decision problems solved, we can then characterize

the dynamics of {lt}∞t=1 along every equilibrium history.23

Lemma 1.2.2 Let M ≡ ln
r· 1
2

+(1−r)·q
r· 1
2

+(1−r)·(1−q) , L ≡ ln r+(1−r)·q
r+(1−r)·(1−q) , and H ≡ ln q

1−q . Along

every equilibrium path h∞ ≡ (a1, a2, . . . , at, . . .), the public beliefs evolve in the following

21The term public belief has been broadly used in the literature, which is the posterior likelihood of a
certain state after a history. We use log-likelihood ratio here for technical convenience.
22It is not hard to see that in this binary decision problem, each agent’s decision rule is unique up to

a tie-breaking rule. Here we simply assume an expert follows her private signal when indifferent and the
first agent randomly chooses between A and B if she is an amateur. Tie-breaking assumptions are no
longer important for the continuous-signal model in Section 1.3.
23As all agents are myopic here, we do not emphasize a particular notion of equilibrium, and an

equilibrium history is simple a history that is consistent with the individual decision rule described in
Lemma 1.2.1. Readers can nevertheless assume what we have in mind is the standard Bayesian Nash
Equilibrium throughout the paper.
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way:

l1 = 0; l2 =

 M if a1 = B

−M if a1 = A
;

∀t ≥ 2, lt+1 =



lt +H if at = B and at−1 = A

lt −H if at = A and at−1 = B

lt + L if at = at−1 = B and lt ≤ H

lt − L if at = at−1 = A and lt ≥ −H

lt otherwise

.

Proof. See Appendix.

Except for the first action a1, each action later in the history reveals a strong piece of

evidence, a weak piece of evidence, or no evidence at all.24 If at+1 is different from at, it

must come from an expert hence it is a strong piece of evidence, which shifts the public

belief by ±H. If at+1 is the same as at and |lt| ≤ H, it is only meaningful if it comes from

an expert, which happens with probability 1− r, hence it is a weak piece of evidence and

only shifts the public belief by ±L. If at+1 is the same as at but |lt| > H, it reveals no

more information as both types will follow the immediate predecessor at anyway, hence

the public belief remains unchanged thereafter, i.e., Informational Cascade.25

1.2.2 Non-Monotone Learning

To introduce the (non-)monotone property we are interested in this paper, let us set a

simple linear order - on {A,B} such that A - B (and of course B - B). Then we can

induce a partial order on each Cartesian product {A,B}t, ∀t ∈ N+:

∀ht,h′t ∈ {A,B}t, ht - h′t if and only if aτ - a′τ for any τ ≤ t.

24The first action a1 comes from either an informative choice by an expert or a random choice by an
amateur, and by Bayes rule it turns out to be a “mediocre”piece of evidence compared to later actions.
25See Bikhchandani et al. (1992).
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Definition 1.1 Learning is monotone if

∀t ∈ N+, ∀ two equilibrium histories ht and h
′
t s.t. ht - h′t, lt+1 ≡ l(ht) ≤ l(h′t) ≡ l′t+1.

Learning is non-monotone otherwise, or equivalently,

∃ two equilibrium histories ht and h
′
t s.t. ht - h′t, ht 6= h′t and lt+1 > l′t+1.

The non-monotonicity given by Definition 1.1 is straightforward. Suppose some ac-

tions A(s) in an equilibrium history ht are switched to B(s) while the other actions

remain unchanged, and let us compare the posterior belief of agent t+ 1 after observing

this new history h′t with the original posterior belief after observing ht.
26 If the new

posterior belief is smaller, i.e., agent t + 1 is less confident in state B although more of

her predecessors showed confidence in state A, we say learning is non-monotone.

Clearly the canonical restaurant-choice example discussed in the introduction does not

exhibit such non-monotonicity, however we will show that learning can be non-monotone

under the setting introduced in Section 1.2. In fact, we focus on some particular cases

where only one agent’s action is altered in the history.

Definition 1.2 Consider two equilibrium histories (ht,h
′
t) that differ only in one action:

∃τ ≤ t s.t. aτ = A, a′τ = B; ∀τ ′ ≤ t and τ ′ 6= τ , aτ ′ = a′τ ′ .

We say the posterior belief of agent t+ 1 is anti-imitative of agent τ under the pair

(ht,h
′
t) if lt+1 > l′t+1.

We say the posterior belief of agent t + 1 is always anti-imitative of agent τ if

lt+1 > l′t+1 for every such pair (ht,h
′
t).

Anti-imitative posterior belief refers to a special case of non-monotone learning: fixing

the actions of all the predecessors of agent t+ 1 other than agent τ , agent t+ 1 becomes

less confident in state B though agent τ’s action reveals more confidence in state B. In

other words, it is as if the posterior belief of agent t+ 1 “anti-imitates”agent τ’s action.

26Definition 1 requires the new history h′t to be an equilibrium history as well, otherwise posterior
beliefs are not well-defined after off-equilibrium histories and the comparison becomes meaningless.
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Now let us go back to the model and investigate the possibility of non-monotone

learning, particularly anti-imitative posterior belief. We consider the case with τ = 1,

i.e., only agent 1’s action is altered between two histories27. Obviously by Lemma 1.2.2

agent 2’s posterior belief cannot be anti-imitative of agent 1, hence we start the analysis

from agent 3 onwards. For convenience we present most results here using H, M , and L

defined in Lemma 1.2.2.

Proposition 1.2.1 1. The posterior belief of agent 3 is always anti-imitative of agent 1

if and only if

H > 2M + L, or equivalently,
r3

(1− r)2(1 + r)
> 4q(1− q).

2. The posterior belief of each agent t ≥ 3 is always anti-imitative of agent 1 if and

only if

H > 2M + L and H > 2M + (k∗ − 2)L where k∗ ≡ min{k ∈ N+|M + kL > H}.

Proof. See Appendix.

The logic behind the first result in Proposition 1.2.1 is as follows. According to

Definition 1.2, agent 3 needs to compare two histories, h2 = (A,B) and h′2 = (B,B).28

History (A,B) reveals one mediocre evidence against state B from the first action A but

one strong evidence in favor of state B from the second action B, and by Lemma 1.2.2

the posterior belief after (A,B) can be precisely calculated as l3 = −M + H. On the

other hand, history (B,B) reveals one mediocre and one weak evidence in favor of B from

the first and second action B respectively, and by Lemma 1.2.2 the posterior belief after

(B,B) is l′3 = M + L. To make the posterior belief of agent 3 anti-imitative, we need

l3 > l′3 or simply H > 2M+L. It is not hard to see that this inequality can be satisfied by

some pair (r, q) such that r or q is suffi ciently high, i.e., either the weak/mediocre piece

27With two informational types (expert and amateur), anti-imitative beliefs can only appear with
respect to the first agent’s action. Other formats of anti-imitative beliefs and non-monotone learning
can appear in either binary-signal settings with more informational types or the continuous-signal set-
ting in Section 1.3. Nevertheless, the simple setting here suffi ces to capture the intuition about how
heterogeneous informational types can lead to anti-imitative beliefs.
28The other comparison between (A,A) and (B,A) is symmetric.
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of evidence is fairly insignificant or the strong piece of evidence is suffi ciently dominant.29

The second result in Proposition 1.2.1 builds on the first one. Suppose the posterior

belief of agent 3 is already anti-imitative, i.e., l((A,B)) > l((B,B)). By Lemma 1.2.2,

extending the two histories by one same action will shift the posterior belief toward the

same direction and by the same amount, ±H or ±L, therefore the inequality still holds.

This logic works for further extensions as well, until the posterior belief after one history,

say lt, grows beyond the precision of private signals, i.e., |lt| > ln q
1−q . Since then lt no

longer changes and l′t will catch up until |l′t| > ln q
1−q as well. The extra condition in the

second result precisely takes account of this subtle difference and assures that l′t will not

exceed lt in the end.

We have shown that, contrast to the canonical model and what people might have

learned from the existing literature, learning is indeed non-monotone in this simple setting

with heterogeneous informed agents. More surprisingly, all the successors of agent 1

except agent 2 will form beliefs that are anti-imitative of agent 1, even though they all

have the same preference as agent 1. Nevertheless, we do want to point out that the

second result of Proposition 1.2.1 does not contradict with the existing results on the

long-run behavior of agents, e.g., an informational cascade occurs eventually or a herd

arises eventually.30 In fact, anti-imitative belief does not necessarily lead to anti-imitative

behavior, especially when the private signals are discrete.

Definition 1.3 Consider two equilibrium histories (ht,h
′
t) that differ only in one action:

∃τ ≤ t s.t. aτ = A, a′τ = B; ∀τ ′ ≤ t and τ ′ 6= τ , aτ ′ = a′τ ′ .

We say agent t+ 1 anti-imitates agent τ under the pair (ht,h
′
t) if

Pr(at+1 = B|ht) > Pr(at+1 = B|h′t).
29In Appendix, we indeed show that agent 3’s posterior belief is anti-imitative of agent 1 when r ≥√
5−1
2 , for any q ∈ ( 12 , 1).
30See Proposition 1 in Bikhchandani et al. (1992) or Theorem 3(a) in Smith and Sørensen (2000).
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We say agent t+ 1 always anti-imitates agent τ if

Pr(at+1 = B|ht) > Pr(at+1 = B|h′t) for every such pair (ht,h
′
t).

This definition of anti-imitative behavior is in the same spirit of anti-imitation defined

in Eyster and Rabin (2014), except that we use probabilistic criterion here on account of

the binary action space.31 To see the difference between anti-imitative belief and anti-

imitative behavior, let us reconsider agent 3 after history (A,B) or (B,B). Suppose

the posterior belief of agent 3 is already anti-imitative, i.e., l((A,B)) > l((B,B)) or

H > 2M+L. If agent 3 is an amateur, she will choose B after both histories according to

Lemma 1.2.1. If agent 3 is an expert, she will follow his private signal after both histories

according to Lemma 1.2.1, since l((A,B)) = H −M < H and l((B,B)) = M + L < H.

Therefore, although agent 3’s posterior belief is anti-imitative, there is no probabilistic

difference in her behavior and she does not anti-imitate agent 1.

Corollary 1.2.1 Under any pair of equilibrium histories (ht,h
′
t) that differ only in the

first action, at most (k∗ − 3) agents anti-imitate agent 1, where k∗ has been defined in

Proposition 1.2.1.

Proof. See Appendix.

Since amateurs always follow their immediate predecessors, only the behavior of ex-

perts could be different after two histories that differ in the first action. And according

to Lemma 1.2.2, that happens only when the posterior belief after one history, say lt, has

exceeded the precision of private signals while the posterior belief after the other, say l′t,

has not. In that situation an expert will follow her immediate predecessor after lt but

follow her private signal after l′t. However, as we discussed earlier, l
′
t will catch up along

the history and eventually exceeds the threshold as well. Hence such behavioral difference

can only exist for a finite number of future agents, and the upper bound of that number

is precisely (k∗ − 3). It is worth noting that Corollary 1.2.1 is indeed consistent with the

long-run behavior predicted by the existing literature.

31See Definition 5 in Eyster and Rabin (2014) for a comparison. They assume continuous action space
as in Lee (1993) and hence define anti-imitation as one agent’s action being decreasing in some action(s)
she observes.
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In the next section we will turn to a model with continuous private signals, in order

to better understand the impact of underlying information structures on the learning

process. Besides, as we will see, the continuous model gets rid of the subtle difference

between anti-imitative belief and anti-imitative behavior and thus allows a clear focus.

1.3 A Model with Continuous Private Signals

1.3.1 Setup

We consider the observational learning model with continuous private signals due to

Smith and Sørensen (2000). There is an underlying state of the world, θ ∈ {A,B},

whose realization is unknown. Agents hold a common prior of θ, Pr(θ = A) = Pr(θ =

B) = 0.5. Agents move sequentially over an infinite time horizon, t ∈ {1, 2, 3, . . .},

and each agent t makes a once-in-a-life-time binary decision, at ∈ {A,B}, with payoff

u(at, θ) = 1{at=θ}.The history of past actions, ht ≡ (a1, a2, . . . , at), is publicly observable

for all the future agents. Besides, each agent at period t will receive a private signal

σt ∈ [c, c] before making her choice. Conditional on θ, {σt}∞t=1 are independently and

identically distributed across t.

Following Smith and Sørensen (2000), we work directly with qt ≡ Pr(θ = B|σt) ∈

[0, 1], the private belief of agent t after observing her private signal σt. The reason

for such normalization is that what matters for each agent is the information generated

by her private signal rather than the realization of private signal itself. Let Gθ(x) be

the cumulative distribution function of qt conditional on θ. GA(x) and GB(x) capture

the information structure, and if both are differentiable with density function gA(x) and

gB(x) respectively, the unconditional density function of qt, g(x) ≡ gA(x)+gB(x)
2

is already

suffi cient. In particular, Bayesian updating implies gA(x)
gB(x)

= x
1−x and thus gA(x) = 2xg(x)

and gB(x) = 2(1− x)g(x).32 We will use g(x) in most results when convenient.

We impose the following assumptions on g(x):

1. Full support : g(x) is strictly positive on [0, 1].

32The private belief structure is commonly used in the literature. Curious readers can look at Appendix
A in Smith and Sørensen (2000) and Section 3.A in Smith et al. (2012) for the justification of it.
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2. Differentiability: g(x) is continuously twice differentiable on (0, 1); both limx→0+ g
′′(x)

and limx→1− g
′′(x) exist.

3. Symmetry: g(x) = g(1− x), ∀x ∈ [0, 1].

The assumption of full support implies that private beliefs are unbounded, which

guarantees that no history of actions is off equilibrium, as each agent has strictly positive

probability to follow her private signal no matter what the history was. Hence we are

free to compare any pair of histories when investigating whether learning is monotone or

not. The assumption of twice differentiability allows us to conduct certain mathematical

analysis later.33 The assumption of symmetry, like the binary-signal model in Section

1.2, reduce the number of comparisons (by half) we need to make as we can focus on the

pattern of histories rather than every particular realization.

1.3.2 A Necessary Condition for Non-Monotone Learning

We start by solving the Bayesian decision problem of each agent as well as characterizing

the dynamics of public beliefs, {lt}∞t=1. Recall again that public belief after a history ht

is exactly the posterior belief of agent t + 1 before her getting her private belief. For

convenience, here we use posterior probability that state B is the true state rather than

posterior log-likelihood ratio used in Section 1.2, i.e., lt+1 ≡ Pr(θ = B|ht) with l1 = 1
2
.

Lemma 1.3.1 Agent t who forms public belief lt from history and private belief qt from

her signal will choose at = B if and only if qt ≥ 1− lt.

Therefore the stochastic process {lt}∞t=1 in equilibrium is characterized by the following

transition functions:

lt+1 =

 m(lt) ≡ ltGB(1−lt)
ltGB(1−lt)+(1−lt)GA(1−lt) if at = A

n(lt) ≡ lt[1−GB(1−lt)]
lt[1−GB(1−lt)]+(1−lt)[1−GA(1−lt)] if at = B

.

Moreover, m(lt) = 1− n(1− lt).

Proof. See Appendix.
33In fact k(x) being continuous differentiable is suffi cient for most of the analysis. We only need

twice differentiability in the proof of Proposition 1.3.3 that needs higher order Taylor expansion, but the
proposition itself does not explicitly involve k′′(x).
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Similar to the binary-signal model in Section 1.2, what rational agents are really doing

here is comparing the public belief generated from the observed history with the private

belief generated from their private signals. For instance, agent t will choose B under one

of the following three circumstances:

both the public belief and her private belief supports B, i.e., qt >
1

2
and lt >

1

2
;

her private belief supports B and is stronger than the public belief which supports A,

i.e., qt >
1

2
, lt <

1

2
but qt ≥ 1− lt;

the public belief supports B and is stronger than her private belief which supports A,

i.e., qt <
1

2
, lt >

1

2
but lt ≥ 1− qt.

Clearly these can be summarized as just qt ≥ 1 − lt. The dynamics of public beliefs

then simply comes from the individual decision rule and Bayes rule. In particular, the

transition function, m(·) or n(·), captures how the public beliefs evolve from one period

to the next, when the most recent action is A or B.

We may well start to answer the main question: Can learning be non-monotone? Let

us stick to Definition 1.1, 1.2, and 1.3, respectively, for (non-)monotone learning, anti-

imitative belief and anti-imitative behavior.34 Recall that there are no off-equilibrium

histories with unbounded private beliefs, which can be easily seen from Lemma 1.3.1,

hence these definitions apply to every possible pair of histories. We first provide a neces-

sary condition for non-monotone learning.

Lemma 1.3.2 (Overturning Principle) lt+1 >
1
2
if at = B and lt+1 <

1
2
if at = A.

Proof. See Appendix or the proof of Theorem 3 in Smith and Sørensen (2000).

Proposition 1.3.1 Learning is non-monotone only if the transition function m(·) or

n(·) is non-monotone. Or equivalently,

∃x ∈ (0, 1) s.t.
gB(1− x)

GB(1− x)
− gA(1− x)

GA(1− x)
>

1

(1− x)x
or

gB(x)

GB(x)
− gA(x)

GA(x)
>

1

x(1− x)
.

34As posterior log-likelihood ratio is a strictly monotone transformation of posterior probability, there
is no need to provide redundant definitions here.
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Proof. See Appendix.

Quite intuitively, non-monotone learning requires non-monotone transitions of poste-

rior beliefs. To see it clearly, let us think about two different histories ht and h
′
t such

that ht - h′t. If ht and h′t differ on the last action, i.e., at = A and a′t = B, then clearly

lt+1 < l′t+1 by the overturning principle. If ht and h
′
t only differ up to some earlier period

τ < t, then lτ+1 < l′τ+1, again by the overturning principle. Since after period τ actions

are identical between the two histories, agents should update their beliefs using the same

transition function from period τ + 1 on along the two histories. If both m(·) and n(·)

are monotone, then the inequality “l ≤ l′”will be preserved from period τ + 1 on as well,

and hence non-monotone learning, i.e., lt+1 > l′t+1, is not possible.

We automatically have the following corollary that gives the necessary condition in

terms of g(x).

Corollary 1.3.1 Learning is non-monotone only if g(x), the unconditional density func-

tion of private beliefs, is such that

∃x ∈ (0, 1) s.t. g(x)[
(1− x)∫ 1

x
(1− s)g(s)ds

− x∫ 1

x
sg(s)ds

] >
1

x(1− x)

or g(x)[
x∫ x

0
sg(s)ds

− 1− x∫ x
0

(1− s)g(s)ds
] >

1

x(1− x)
.

Proof. Simply apply gA(x) = 2xg(x) and gB(x) = 2(1− x)g(x).

Numerical calculations can easily provide some simple symmetric distributions on

[0, 1] that satisfy this necessary condition.

1. Linear Density: g(x) = (4− 8α)
∣∣x− 1

2

∣∣+ 2α, ∀α ∈ (5
7
, 1);

2. Quadratic Density: g(x) = α(x− 1
2
)2 + (1− α

12
), ∀α ∈ (−6,−2);

3. Beta Distribution: g(x) = xα−1(1−x)α−1

B(α,α)
with B(α, α) ≡

∫ 1

0
sα−1(1 − s)α−1ds, for

suffi ciently large α.35

35We get α > 28 roughly, using Kumaraswamy’s distribution as in Jones (2009) to approximate Beta
distribution.
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With the complicated expression in Corollary 1.3.1, it is probably hard to see whether

the necessary condition is likely to be satisfied or not. Nevertheless we make the following

observation that the necessary condition is violated only by information structures that

always generate suffi ciently strong public beliefs along the learning process.

Claim 1.3.1 If transition functions n(·) and m(·) are monotone, then in equilibrium

lt /∈ (
1

3
,
2

3
), ∀t ≥ 2.

Proof. See Appendix.

When transition functions are monotone, we have a “stronger”overturning principle

(compared to Lemma 1.3.2): lt+1 ≥ 2
3
if at = B and lt+1 ≤ 1

3
if at = A.36 However it

seems extraordinary that public beliefs cannot enter the interval (1
3
, 2

3
) after any history.

Imagine that agents later in the sequence observe a very long history of alternating A’s

and B’s, (A,B,A,B, . . . , A,B). If the public belief is very close to 1
2
, which is what we

would naturally expect after observing a large but equal number of A’s and B’s, then

the transition functions must be non-monotone. In fact it is very hard to believe that

the underlying information structure never allow agents to have moderate public beliefs

throughout the learning process. Hence the plausibility of monotone transition functions

is questionable in general, which suggests that we must at least worry about learning

being non-monotone most of the times.

Yet the necessary condition does not guarantee non-monotone learning or anti-imitation.

The distribution of private beliefs determines not only transition functions m(·) and n(·),

but at the mean time also the possible posterior beliefs that can be generated by dif-

ferent histories. Hence, the selection of distributions is in general hard because we have

to make sure not only that transition functions are non-monotone, but also that such

non-monotonicity is relevant in equilibrium. If transition functions are decreasing only

over a subset of [0, 1] that is, roughly speaking, never “entered”or “passed through”by

posterior beliefs generated by any history, learning is still monotone and agents do not

36These bounds depend on the technical assumptions on the information structure. For example, if
k(0) = 0 and k′(0) > 0, the interval becomes ( 25 ,

3
5 ). However what matters here is that the public beliefs

are always suffi ciently bounded away from 1
2 when the transition functions are monotone.
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anti-imitate. With this concern in mind, we make further observations and provide a few

interesting suffi cient conditions.

1.3.3 Two Suffi cient Conditions for Non-Monotone Learning

We begin with a suffi cient condition that is somewhat analogous to what we have seen

in Section 1.2. Recall that in the simple model with binary private signals, the posterior

belief of agent 3 is always anti-imitative of agent 1 when the fraction of uninformed

agents is suffi ciently large, but agent 3 never anti-imitates agent 1. Back to the current

model with continuous private signals/beliefs, we first claim the equivalence between anti-

imitative beliefs and anti-imitative behavior and then provide a similar condition on the

continuous distribution of private beliefs that guarantees anti-imitation by agent 3.

Claim 1.3.2 Let (ht,h
′
t) be a pair of histories such that

∃τ ≤ t s.t. aτ = A, a′τ = B; ∀τ ′ ≤ t and τ ′ 6= τ , aτ ′ = a′τ ′.

Agent t + 1 anti-imitates agent τ ≤ t under (ht,h
′
t) if and only if the posterior belief of

agent t+ 1 is anti-imitative of agent τ under (ht,h
′
t)̇. In other words, Definition 1.2 and

1.3 are equivalent.

Proof. See Appendix.

Anti-imitative beliefs implies that, according to Lemma 1.3.1, the threshold in the

decision rule of agent t+ 1 is lower after ht than after h
′
t, i.e., lt+1 > l′t+1 =⇒ 1− lt+1 <

1 − l′t+1. When private belief qt+1 is unbounded and continuously distributed, lower

threshold always leads to higher probability of choosing B, hence agent t+1 also exhibits

anti-imitative behavior.

Proposition 1.3.2 Consider a sequence of continuously twice differentiable and sym-

metric density functions on [0, 1], {gs(·)}∞s=1. Let Zs be a random variable on [0, 1] that

is distributed according to gs and let εs ≡ E[Zs|Zs ≥ 1
2
]− 1

2
.37

37εs is essentially the first absolute central moment of the distribution gs.
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Let X 1
2
be an almost surely constant random variable with sole realization 1

2
. Suppose

the sequence {gs(·)}∞s=1 and {Zs}∞s=1 are such at

1. Zs
d→ X 1

2
as s→∞;

2. ∃S ∈ N+ s.t. ∀s > S, gs(
1

2
) · εs ≥

1

2
.

Then ∀t ≥ 1, ∃St ∈ N+ s.t. ∀s > St, agent t+2 always anti-imitates agent t in equilibrium

when the unconditional density function of private beliefs is gs(·).

Proof. See Appendix.

The conditions in Proposition 1.2.1 for the binary-signal model, particularly that r is

suffi ciently large, suggest that we might also have anti-imitation in the continuous model

when the distribution of private beliefs is heavily centered around 1
2
, i.e., most agents

are more or less uninformed. Indeed, Proposition 1.3.2 says that agent t + 2 always

anti-imitates agent t under some heavily centered distributions that satisfies an extra

condition. Roughly speaking, this extra condition requires “thick”tails of the probability

density functions that converge to δ 1
2
(·), in the sense that the conditional expectation of

private beliefs on the left(right) of 1
2
should move to 1

2
somehow “slower”than the increase

of the density at 1
2
. In fact, to make an analogy, the binary-signal model does satisfy this

condition in a particular way: the conditional expectation of private beliefs on the left or

right of 1
2
is 1− q or q, which is always bounded away from 1

2
.

Mathematically, what this condition really does is to make sure that the transition

functions are decreasing around 1
2
. Think about the comparison between history h2 =

(A,B) and h′2 = (B,B). After the first action, l2 < 1
2
< l′2 but both l2 and l

′
2 are close

to 1
2
when most agents are almost uninformed. If transition function n(·) is decreasing

around 1
2
while l2 and l′2 are so close to

1
2
that both are within the decreasing region of

n(·), we have l3 = n(l2) > n(l′2) = l′3. Hence agent 3 anti-imitates agent 1.

Let us give an example in order to better illustrate this condition. Transition func-

tion n(·) is not decreasing around 1
2
with the following sequence of (truncated) Normal

distributions,

gsN(x) ≡ s

2
∫ s/2

0
e−t2dt

· exp[−s2(x− 1

2
)2];
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Figure 1: Examples of Proposition 1.3.2.

but it is with the following sequence of (truncated) Cauchy distributions

gsC(x) ≡ s

2 arctan( s
2
)
· 1

1 + s2(x− 1
2
)2
,

which are known as heavy-tailed distributions.38

We like to point out that Proposition 1.3.2 does not require an explicit functional

form of gs(·), but it does not tell how close to δ 1
2
(·) the thick-tailed distribution needs to

be either. If we are looking at a particular class of distributions with explicit parameters,

we can always have a precise condition by using Lemma 1.3.1:

agent 3 always anti-imitates agent 1 if and only if n(m(
1

2
)) > n(n(

1

2
)).

Take the sequence of (modified) Cauchy distributions {gsC(·)}∞s=1 for example. Numerical

calculation yields that agent 3 always anti-imitate agent 1 when s > 22.1.

Careful readers probably have noticed in the figure above that, although the transition

function n(·) associated with (truncated) Normal distributions is not decreasing around
1
2
, it is decreasing around 0. The fact that some distributions of private beliefs generate

transitions functions that are decreasing around 0 or 1 is what drives the next suffi cient

38See Johnson and Kotz (1982). Note that the distributions here are not exactly Normal and Cauchy
distributions. Since the support is [0, 1] rather than R, we have to use truncated distribution.
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condition. We first recall the famous result by Smith and Sørensen (2000) that learning

is complete eventually with unbounded private beliefs.

Lemma 1.3.3 (Complete Learning) With unbounded private beliefs, lt −→ 1{θ=B}

almost surely as t −→ +∞.

Proof. See Theorem 1(b) in Smith and Sørensen (2000).

Complete learning implies that public beliefs will be suffi ciently close to either 0 or 1

after a suffi ciently long history. If the transition functions are decreasing around 0 and 1,

we can be certain that eventually public beliefs will reach those decreasing regions, which

then erases the “gap” between non-monotone learning and non-monotone transitions

discussed earlier. Therefore we have the following suffi cient condition for non-monotone

learning.

Proposition 1.3.3 Learning is non-monotone if
lim
x→0+

g′(x)

g(0)
> 3.

Proof. See Appendix.

When the density function g(·) is diminishing suffi ciently fast at the boundaries of

[0, 1], the transition functions are decreasing around 0 or 1. In particular, m(·) is decreas-

ing around 1 and n(·) is decreasing around 0, i.e., n(·) is decreasing over (0, ε) for some

small ε and symmetrically m(·) is decreasing over (1− ε, 1).

Let us compare the posterior beliefs after any two histories, ht and h
′
t, such that

ht - h′t and ht 6= h′t. Generically the beliefs are different as well, lt+1 6= l′t+1.
39 Complete

learning implies that both lt+1 and l′t+1 are within either (0, ε) or (1 − ε, 1) when t is

suffi ciently large. Suppose the true state is A and hence the former is the case. If

lt+1 > l′t+1, learning is non-monotone by definition. If lt+1 < l′t+1, we can simply extend

ht and h
′
t by an action B, i.e., ht+1 = (ht, B) and h′t+1 = (h′t, B). But now lt+2 =

n(lt+1) > n(l′t+1) = l′t+2, so learning is non-monotone. Notice that when ht and h
′
t only

differ in one action, we effectively get anti-imitation by either agent t+ 1 or agent t+ 2.

The suffi cient condition in Proposition 1.3.3 can be satisfied by a variety of (truncated)

common distributions on [0, 1]:

39For a generic density function k(·), we can always construct two different histories that generate
different posterior beliefs.
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1. Linear Density: g(x) = (4− 8α)
∣∣x− 1

2

∣∣+ 2α, ∀α ∈ (5
7
, 1);

2. Quadratic Density: g(x) = α(x− 1
2
)2 + (1− α

12
), ∀α ∈ (−6,−2);

3. (Truncated) Double Exponential Distribution: g(x) =
exp(− |x−

1
2 |

α
)

2α(1−exp(− 1
2α

))
, ∀α ∈ (0, 1

3
);

4. (Truncated) Normal Distribution: g(x) = α

2
∫ α/2
0 e−t2dt

· exp[−α2(x− 1
2
)2], ∀α > 2

√
3;

5. (Truncated) Cauchy Distribution: g(x) = α
2 arctan(α

2
)
· 1

1+α2(x− 1
2

)2
, ∀α > 2

√
3.40

In fact, as a boundary condition, it can be "approximately" satisfied by essentially

every symmetric and twice differentiable density function with full support [0, 1], and we

provide a claim about this in Appendix.

We have characterized two circumstances where non-monotone transition functions

become suffi cient for non-monotone learning: transitions function are decreasing around
1
2
or around 0(1). Unfortunately it is not very clear to us what will happen if the transition

functions are decreasing somewhere else in general. We do want to emphasize though,

that Lemma 1.3.1 gives an explicit algorithm to calculate public beliefs and hence a precise

condition for non-monotone learning is always achievable, at least numerically, once we

restrict attention on certain classes of distributions with parameters. Nevertheless, it is

hard to establish a precise condition that, like Proposition 1.3.2 and 1.3.3, applies to a

general distribution without any parametrization.

1.4 Conclusion

In this paper we reconsider the standard observational learning models where agents

act myopically and share common preferences. We study how underlying information

structures affect the evolution of posterior beliefs as well as the behavior of rational agents.

We show that learning is not always monotone in these models: rational agents often

form posterior beliefs that are non-monotone with respect to the actions they observe.

As a result, alongside the long-run herd behavior that has been well established by the

40For (truncated) Cauchy distribution with α > 14.3, we could indeed have very large decreasing
regions, i.e., n(·) is decreasing over (0, 12 ) and m(·) is decreasing over ( 12 , 1), which have also been
captured by the earlier graph. In that case learning is non-monotone even under a pair of very short
histories.
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existing literature, it is rational for agents to anti-imitate some of the predecessors during

the learning process.

We first look into a simple model with binary private signals and two informational

types of agents, i.e., agents are either uninformed or informed by a private signal with

certain precision. We find that learning is non-monotone when the probability of being

uninformed is suffi ciently large or the private signals are suffi ciently precise. In particular,

under such information structures, the third agent as well as each agent after her always

form posterior beliefs that are non-monotone with respect to the action of the first agent.

Consequently, some of them anti-imitate the first agent: ceteris paribus, they are more

likely to choose one action when the first agent has switched to the opposite, even in the

absence of any strategic concern or preference heterogeneity.

Next we investigate the observational-learning model with continuous private signals

that has been extensively studied in the literature since Smith and Sørensen (2000). We

provide an intuitive necessary condition for non-monotone learning and anti-imitation:

transitions of public beliefs need to be non-monotone. And we argue that the necessary

condition is likely to be satisfied as any information structure violating it never generates

moderate public beliefs during learning. Then we make further observations on when

this necessary condition could become suffi cient and obtain two suffi cient conditions. We

find that when the transition functions are non-monotone over certain subsets of the unit

interval, such as around the middle or near the two boundaries, learning is non-monotone

and hence some agents anti-imitate their predecessor(s). Though we are still in search for

a general necessary and suffi cient condition, we do have a complete characterization of

the learning process so it is possible to get a precise condition on parameter values if we

restrict attention to information structures captured by certain classes of distributions.

However non-parametric results other than what we have presented are in general quite

hard to get and further work out of this paper is most welcome.

We treat this paper as an interesting contribution to the literature of observational

learning, where most work has been done on the effi ciency of information aggregation and

the long-run behavior of agents. Our work shows that, in the short run, rational agents

may indeed act quite differently from what we might expect based on the asymptotic

outcomes we already know. It is clearly important as well to understand the behavioral
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implications of rational learning short of the limit, a lot of which we are still not clear

about or at least cannot simply induce from the existing results.

1.5 Appendix

1.5.1 Omitted Proofs

Proof of Lemma 1.2.1. Agent 1’s decision rule is trivial. Now without loss of generality

let us assume at = A and consider agent t + 1. If agent t + 1 is an amateur, she will

find A optimal as well since she holds no more information than agent t, who has the

same preference and rationally chose A. In other words, agent t + 1’s posterior, before

receiving her private signal if she is an expert, should be (weakly) in favor of A:

lt+1 = ln
Pr(ht = (a1, a2, . . . , at = A)|θ = B)

Pr(ht = (a1, a2, . . . , at = A)|θ = A)
≤ 0.

If agent t+ 1 is an expert with private signal σt+1, she will update her posterior by:

l′t+1 = ln
Pr(ht = (a1, a2, . . . , at = A), σt+1|θ = B)

Pr(ht = (a1, a2, . . . , at = A), σt+1|θ = A)

=

 lt+1 + ln 1−q
q

if σt+1 = A

lt+1 + ln q
1−q if σt+1 = B

=


lt+1 − ln q

1−q < 0 if σt+1 = A

ln q
1−q − |lt+1| ≥ 0 if σt+1 = B and |lt+1| ≤ ln q

1−q

ln q
1−q − |lt+1| < 0 if σt+1 = B and |lt+1| > ln q

1−q

.

Assuming agent t+ 1 will follow her private signal when indifferent, i.e., l′t+1 = 0, we can

see that her decision rule is exactly what Lemma 1.2.1 describes.

Proof of Lemma 1.2.2. By Lemma 1.2.1, the first action a1 is either a random choice

if agent 1 is an amateur or the same as σ1 if agent 1 is an expert. Hence by Bayes rule,

l2 = ln
Pr(a1|θ = B)

Pr(a1|θ = A)
=

 ln
r· 1
2

+(1−r)·q
r· 1
2

+(1−r)·(1−q) = M if a1 = B

ln
r· 1
2

+(1−r)·(1−q)
r· 1
2

+(1−r)·q = −M if a1 = A
.

For all t ≥ 2, if at+1 6= at then by Lemma 1.2.1 agent t + 1 must be an expert with
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σt+1 = at+1.41 Hence by Bayes rule,

lt+1 = ln
Pr(ht = (a1, a2, . . . , at, at+1 6= at)|θ = B)

Pr(ht = (a1, a2, . . . , at, at+1 6= at)|θ = A)

= lt + ln
Pr(at+1|θ = B)

Pr(at+1|θ = A)
=

 lt + ln q
1−q = lt +H if at+1 = B

lt + ln 1−q
q

= lt −H if at+1 = A
.

If at+1 = at and |lt| ≤ ln q
1−q = H, by Lemma 1.2.1 we know that agent t+ 1 is either an

amateur or an expert with σt+1 = at+1. Hence by Bayes rule,

lt+1 = ln
Pr(ht = (a1, a2, . . . , at, at+1 = at)|θ = B)

Pr(ht = (a1, a2, . . . , at, at+1 = at)|θ = A)

= lt + ln
Pr(at+1 = at|θ = B, |lt| ≤ H)

Pr(at+1 = at|θ = A, |lt| ≤ H)
=

 lt + ln r+(1−r)q
r+(1−r)(1−q) = lt + L if at+1 = B

lt + ln r+(1−r)(1−q)
r+(1−r)q = lt − L if at+1 = A

.

If at+1 = at but |lt| > ln q
1−q = H, by Lemma 1.2.1 agent t + 1 always follows agent t

regardless of her type and private signal, hence the public belief remains unchanged.

Proof of Proposition 1.2.1. For the first result, let us consider agent 3’s posterior

belief after observing h2 = (A,B) or h′2 = (B,B). According to Lemma 1.2.2,

l3 = −M +H, l′3 = M + L

=⇒ l3 > l′3 iffH > 2M + L.

Due to the symmetric structure of this model, the other comparison between h̃2 = (A,A)

and h̃
′
2 = (B,A) will yield the same inequality.42

l̃3 = −M − L, l̃′3 = M −H

=⇒ l̃3 > l̃′3 iffH > 2M + L.

Hence the posterior belief of agent 3 is always anti-imitative of agent 1 if and only if

H > 2M + L. Plug in the definitions of H, M , and L in Lemma 1.2.2, we can rewrite
41Note that at+1 6= at implies |lt| ≤ ln q

1−q = H according to Lemma 2.1. Hence a history such that
at+1 6= at and |lt| > H for some t is off equilibrium and not considered by Lemma 2.2.
42We will use the symmetric structure of private signals and equilibrium dynamics to simplify future

proofs as well.
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this inequality in terms of r and q:

H > 2M + L

⇐⇒ ln
q

1− q > 2 ln
r · 1

2
+ (1− r) · q

r · 1
2

+ (1− r) · (1− q)
+ ln

r + (1− r) · q
r + (1− r) · (1− q)

⇐⇒ q

1− q > [
r · 1

2
+ (1− r) · q

r · 1
2

+ (1− r) · (1− q)
]2 · r + (1− r) · q

r + (1− r) · (1− q)

⇐⇒ r3

(1− r)2(1 + r)
> 4q(1− q).

Note that 4q(1− q) < 1 for q ∈ (1
2
, 1), so clearly we can find some pair (r, q) that satisfies

this inequality. For example,

∀r ∈ [

√
5− 1

2
, 1), ∀q ∈ (

1

2
, 1),

r3

(1− r)2(1 + r)
≥ 1 > 4q(1− q).

For the second result, let us start with agent 4. By symmetry, we only focus on two

comparisons: h3 = (A,B,B) with h′3 = (B,B,B), h̃3 = (A,B,A) with h̃
′
3 = (B,B,A).

l4 = l3 + L, l′4 = l′3 + L

=⇒ l4 > l′4 iff l3 > l′3 iffH > 2M + L;

l̃4 = l3 −H, l̃′4 = l′3 −H

=⇒ l̃4 > l̃′4 iff l3 > l′3 iffH > 2M + L.

HenceH > 2M+L guarantees that agent 4’s posterior belief is also anti-imitative. In fact

we can see that, as long as each new action added to the histories updates the posterior

beliefs in exactly the same way, we do not need extra conditions for anti-imitative beliefs of

future agents. However, according to Lemma 1.2.2, the update differs when one posterior

belief has absolute value bigger than H but not the other, and we need extra conditions

to take that into account.

Consider the earliest such instance: h4 = (A,B,B,B) with h′4 = (B,B,B,B). The

posterior belief after h4 is

l5 = −M +H + 2L = H + (2L−M) > H,
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since it is easy to verify that L < M < 2L. Therefore the only equilibrium history

extended from h4 is ht = (A,B,B,B, . . . , B) for t ≥ 4 and the only valid equilibrium

history extended from h′4 to compare is h
′
t = (B,B,B,B, . . . , B) for t ≥ 4. By Lemma

1.2.2 it is not diffi cult to calculate the corresponding lt+1 and l′t+1:

lt+1 = l5 = H + (2L−M), ∀t ≥ 4;

l′t+1 =

 M + (t− 1)L if 4 ≤ t ≤ k∗ + 1

M + k∗L if t > k∗ + 1
,

where k∗ ≡ min{k ∈ N+|M + kL > H}.43 Clearly, lt+1 > l′t+1 for every t ≥ 4 iff

H + (2L−M) > M + k∗L⇐⇒ H > 2M + (k∗ − 2)L.

Note that H > 2M + L and M > L implies that k∗ ≥ 3, so this extra condition is not

redundant in general.

Moreover, the same extra condition will be yielded if we compare two histories where

the actions herd on A rather than B eventually. For example, let us consider h̃4 =

(A,A,A,A) and h̃
′
4 = (B,A,A,A). By symmetry l̃′5 = −l5 < −H, hence the only

equilibrium history extend from h̃
′
4 is h̃

′
t = (B,A,A,A, . . . , A) for t ≥ 4 and the only

valid equilibrium history extended from h̃4 to compare is h̃t = (A,A,A,A, . . . , A) for

t ≥ 4. By symmetry again,

l̃′t+1 = −lt+1 = −H − (2L−M), ∀t ≥ 4;

l̃t+1 = −l′t+1 =

 −M − (t− 1)L if 4 ≤ t ≤ k∗ + 1

−M − k∗L if t > k∗ + 1
,

where k∗ is the same as before. Clearly, l̃t+1 > l̃′t+1 for every t ≥ 4 iff

−M − k∗L > −H − (2L−M)⇐⇒ H > 2M + (k∗ − 2)L.

For a general pair of equilibrium histories that differ only in the first action, agents

43It takes (k∗ − 3) periods for l′t+1 to grow until beyond H.
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might flip between A and B multiple times before a herd starts eventually. However,

we do not need other extra conditions to take care of them because, as argued earlier,

all those actions before the eventual herd update the posterior beliefs in exactly the

same way. Therefore, the only condition required here, in addition to H > 2M + L, is

H > 2M + (k∗ − 2)L.

Lastly, to see the existence of (r, q) that satisfies H > 2M + (k∗− 2)L, we can rewrite

this extra condition as

2L−M > M + k∗L−H ⇐⇒ 2− M

L
> k∗ − (

H −M
L

).

As M
L
∈ (1, 2) and H−M

L
∈ [k∗ − 1, k∗),

2− M

L
> k∗ − (

H −M
L

)⇐⇒ ψ(
M

L
) < ψ(

H −M
L

),

where ψ(x) ≡ x−max{n ∈ N|n ≤ x}, ∀x > 0. It is easy to verify that M
L
→ 2 as r → 1,

thus ψ(M
L

) > 0.5 for suffi ciently large r and

if ψ(
M

L
) > 0.5, ψ(

M

L
) < ψ(

H −M
L

)⇐⇒ ψ(
H

L
) ∈ (2ψ(

M

L
)− 1, ψ(

M

L
)) ⊂ [0, 1).

Obviously H
L
→ +∞ as r → 1, hence for suffi ciently large r, ψ(H

L
) will go through the

whole interval [0, 1) infinitely many times. Therefore the extra condition can be satisfied

for some (but not every) suffi ciently large r.

Proof of Corollary 1.2.1. Clearly agent 2 will not anti-imitate agent 1 so let us

consider two equilibrium histories with length at least 2 that differ only in the first

action. Without loss of generality let us also assume the last action of both histories is

B, i.e., ht = (A, . . . , B),h′t = (B, . . . , B), t ≥ 2.

If agent t+1 is an amateur, she always follows her immediate predecessor and chooses

B, so an amateur cannot anti-imitate agent 1. Now suppose agent t + 1 is an expert.

According to Lemma 1.2.1, the only way to induce anti-imitative behavior of her is that

lt+1 > H and l′t+1 ≤ H,
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in which case agent t + 1 always chooses B after ht but still follows her private signal

σt+1 after l′t+1. Then unconditional on her informational type, the probability of agent

t+ 1 choosing B is,

Pr(at+1 = B|ht) = r · 1 + (1− r) · 1;

Pr(at+1 = B|h′t) = r · 1 + (1− r) · Pr(σt+1 = B|h′t) =
1 + r

2
< 1.

However, lt+1 never changes after period t + 1 while l′t+1 will gradually increase until it

exceeds H according to Lemma 1.2.2, and there is no more behavioral difference for either

type from then on. The number of periods it takes for l′t+1 to increase until beyond H

has been calculated in the proof of Proposition 1.2.1, which is at most k∗ − 3.

Proof of Lemma 1.3.1. Agent t choose at = B if and only if Pr(θ = B|lt, σt) ≥ 0.5.44

By Bayes rule,

Pr(θ = B|lt, σt) =
ltfB(σt)

ltfB(σt) + (1− lt)fA(σt)
and qt ≡ Pr(θ = B|σt) =

1
2
fB(σt)

1
2
fB(σt) + 1

2
fA(σt)

,

therefore

Pr(θ = B|lt, σt) ≥ 0.5 ⇐⇒ fB(σt)

fA(σt)
≥ 1− lt

lt
⇐⇒ qt

1− qt
≥ 1− lt ⇐⇒ qt ≥ 1− lt.

By symmetry, we only show the transition function is lt+1 = m(lt) when at = A.

lt+1 ≡ Pr(θ = B|ht) = Pr(θ = B|ht−1, at = A)

=
Pr(at = A|θ = B,ht−1) Pr(θ = B|ht−1)

Pr(at = A|θ = B,ht−1) Pr(θ = B|ht−1) + Pr(at = A|θ = A,ht−1) Pr(θ = A|ht−1)

=
ltGB(1− lt)

ltGB(1− lt) + (1− lt)GA(1− lt)
according to agent t’s decision rule.

The fact that m(lt) = 1− n(1− lt) comes directly from symmetry.

Proof of Lemma 1.3.2. By symmetry, we only show lt+1 <
1
2
if at = A. By Lemma

1.3.1,

lt+1 =
ltGB(1− lt)

ltGB(1− lt) + (1− lt)GA(1− lt)
if at = A.

44Tie-breaking rule is not important given continuous distributions of private beliefs.
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Note that

∀x ∈ (0, 1),
gB(x)

gA(x)
=

x

1− x =⇒ GB(x)

GA(x)
<

x

1− x

=⇒ lt+1 =
ltGB(1− lt)

ltGB(1− lt) + (1− lt)GA(1− lt)
<

lt−1(1− lt−1)

2lt−1(1− lt−1)
=

1

2
.

Proof of Proposition 1.3.1. Suppose that both m(·) and n(·) are monotone, i.e.,

∀0 < x < x′ < 1, m(x′) ≥ m(x) and n(x′) ≥ n(x).

Let F be the set of all finite-order compositions of m(·) and n(·), i.e.,

F = ∪i∈N+Fi, with F1 = {m,n} and Fi+1 = {m ◦ f, n ◦ f |∀f ∈ Fi} for i ≥ 1.

Obviously all functions in F are monotone: ∀f ∈ F , ∀0 < x < x′ < 1, f(x′) ≥ f(x).

Now take any two histories ht and h
′
t such that ht - h′t and ht 6= h′t. Let τ ≡

max{τ ≤ t|aτ = A and a′τ = B}. If τ = t, lt+1 <
1
2
< l′t+1 according to Lemma 1.3.2,

which violates Definition 1.1. If τ < t,

lτ+1 <
1

2
< l′τ+1 by Lemma 1.3.2;

aτ = a′τ , ∀τ < τ ≤ t =⇒ by Lemma 1.3.1, ∃f ∈ F s.t. lt+1 = f(lτ+1), l′t+1 = f(l′τ+1).

But f is monotone, so lt+1 = f(lτ+1) ≤ f(l′τ+1) = l′t+1, which again violates Definition

1.1. Therefore learning cannot be non-monotone.

To get the explicit conditions on gθ(·) for non-monotone transition functions, let us

first look at m(·).45 m(·) is continuously differentiable by Lemma 1.3.1 and

sgn(
dm(x)

dx
) = sgn (

d( m(x)
1−m(x)

)

dx
) = sgn(

d( xGB(1−x)
(1−x)GA(1−x)

)

dx
) by Lemma 1.3.1.

45Herrera and Hörner (2012) derived a necessary and suffi cient condition for monotone transition
functions, which is the increasing hazard ratio property of private signals. It can be verified that the
explicit conditions in Proposition 1.3.1 indeed violate that property, and hence transition functions are
non-monotone.
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The explicit derivative is

d( xGB(1−x)
(1−x)GA(1−x)

)

dx
=

xGB(1− x)

(1− x)GA(1− x)
{ 1

x(1− x)
− [

gB(1− x)

GB(1− x)
− gA(1− x)

GA(1− x)
]}.

Hence

sgn(
dm(x)

dx
) = sgn(

1

x(1− x)
− [

gB(1− x)

GB(1− x)
− gA(1− x)

GA(1− x)
])

=⇒ m(·) is non-monotone iff ∃x ∈ (0, 1) s.t.
gB(1− x)

GB(1− x)
− gA(1− x)

GA(1− x)
>

1

(1− x)x
.

Note that m(x) = 1−n(1−x) (from Lemma 1.3.1) implies that dm(x)
dx

< 0 if and only

if dn(1−x)
d(1−x)

< 0. So clearly,

n(·) is non-monotone iff ∃x ∈ (0, 1) s.t.
gB(x)

GB(x)
− gA(x)

GA(x)
>

1

x(1− x)
.

Proof of Claim 1.3.1. We first show that limx→0+ n(x) = 2
3
and limx→0+ n(x) = 2

3
.

Note that

lim
x→0+

n(x)

1− n(x)
= lim

x→0+

x[1−GB(1− x)]

(1− x)[1−GA(1− x)]

= lim
x→0+

xGA(x)

(1− x)GB(x)
by symmetry.

Both GA and GB are continuously twice differentiable as g(x) is continuously differen-

tiable, so Taylor expansion yields

GA(x) = 0 + gA(0)x+O(x2) = 2g(0)x+O(x2),

GB(x) = 0 + gB(0)x+
lim
x→0+

g′B(x)

2
x2 +O(x3) = g(0)x2 +O(x3).

Hence

lim
x→0+

n(x)

1− n(x)
= lim

x→0+

2g(0)x2 +O(x3)

g(0)x2 +O(x3)
= 2.

Therefore limx→0+ n(x) = 2
3
and by symmetry limx→1−m(x) = 1

3
.
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By definition of n(·) and m(·) in Lemma 1.3.1, limx→0+ m(x) = 0 and limx→1− n(x) =

1. If n(·) and m(·) are monotone,

∀x ∈ [0, 1], n(x) ∈ [
2

3
, 1] and m(x) ∈ [0,

1

3
].

By Lemma 1.3.1, lt (t ≥ 2) must be within the image of n(·) or m(·), hence lt /∈ (1
3
, 2

3
).

Proof of Claim 1.3.2. By Lemma 1.3.1,

Pr(at+1 = B|ht)− Pr(at+1 = B|h′t) > 0

⇐⇒ Pr(qt+1 ≥ 1− lt+1)− Pr(qt+1 ≥ 1− l′t+1) > 0

⇐⇒ Pr(qt+1 ∈ [1− lt+1, 1− l′t+1)) > 0

⇐⇒ lt+1 > l′t+1,

where the first equivalence comes from the fact that qt+1 is independent of ht and h
′
t.

Clearly Definition 1.2 and 1.3 are now equivalent.

Proof of Proposition 1.3.2. We start by showing if gs(·) is the unconditional pdf

of private beliefs and gs(1
2
) · εs ≥ 1

2
, then the transition functions satisfy that m′(1

2
) =

n′(1
2
) < 0.

m′(1
2
) = n′(1

2
) comes directly from symmetry. Note that

GB(
1

2
) =

∫ 1
2

0

2xgs(x)dx =

∫ 1
2

0
xgs(x)dx∫ 1
2

0
gs(x)dx

= E[Zs|Zs ≤
1

2
] =

1

2
− εs;

GA(
1

2
) = 1−GB(

1

2
) =

1

2
+ εs.

On the other hand, gs(1
2
) · εs ≥ 1

2
=⇒ gs(1

2
) ≥ 1

2εs
> 1

2εs
− 2εs = 1−4ε2s

2εs
. Hence

gB(1
2
)

GB(1
2
)
−
gA(1

2
)

GA(1
2
)

=
gs(1

2
)

1
2
− εs

−
gs(1

2
)

1
2

+ εs

= gs(
1

2
) · 8εs

1− 4ε2
s

>
1− 4ε2

s

2εs
· 8εs

1− 4ε2
s

= 4.
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In the proof of Proposition 1.3.1 we have verified that

n′(
1

2
) < 0 iff

gB(1
2
)

GB(1
2
)
−
gA(1

2
)

GA(1
2
)
>

1
1
2
(1− 1

2
)

= 4,

so clearly m′(1
2
) = n′(1

2
) < 0.

Take t = 1 and we want to show that agent 3 always anti-imitate agent 1. By

symmetry we only compare history h3 = (A,B) with h′3 = (B,B). By Lemma 1.3.1,

l3 = n(m(
1

2
)) = n(GB(

1

2
)) and l′3 = n(n(

1

2
)) = n(GA(

1

2
)).

Hence

l3 − l′3 = n(
1

2
− εs)− n(

1

2
+ εs).

Clearly εs → 0 as s→∞ since Zs
d→ X 1

2
as s→∞. Both n(·) and m(·) are continuously

differentiable, so by first-order Taylor expansion,

∃S̃1 s.t. ∀s > S̃1, l3 − l′3 = −2εs · n′(
1

2
) +O(ε2

s).

We know from above that n′(1
2
) < 0 when s > S, therefore ∀s > S1 ≡ max{S, S̃1},

l3 − l′3 > 0 and agent 3 always anti-imitates agent 1.

Now take t = 2. First we compare h3 = (A,A,A) with h′3 = (A,B,A). Again by
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first-order Taylor expansion,

l4 = m(m(m(
1

2
))) = m(m(

1

2
− εs))

= m(m(
1

2
)−m′(1

2
)εs +O(ε2

s))

= m(
1

2
− εs −m′(

1

2
)εs +O(ε2

s))

= m(
1

2
)− [m′(

1

2
) + (m′(

1

2
))2]εs +O(ε2

s);

l′4 = m(n(m(
1

2
))) = m(n(

1

2
− εs))

= m(n(
1

2
)− n′(1

2
)εs +O(ε2

s))

= m(
1

2
+ εs − n′(

1

2
)εs +O(ε2

s))

= m(
1

2
) + [m′(

1

2
)−m′(1

2
)n′(

1

2
)]εs +O(ε2

s).

Note that m′(1
2
) = n′(1

2
) and thus

∃S̃2 s.t. ∀s > S̃2, l3 − l′3 = −2εs ·m′(
1

2
) +O(ε2

s).

Then we compare h3 = (A,A,B) with h′3 = (A,B,B). Similarly we have

l4 = n(m(m(
1

2
))) = n(m(

1

2
− εs))

= n(m(
1

2
)−m′(1

2
)εs +O(ε2

s))

= n(
1

2
− εs −m′(

1

2
)εs +O(ε2

s))

= n(
1

2
)− [n′(

1

2
) + n′(

1

2
)m′(

1

2
)]εs +O(ε2

s);

l′4 = n(n(m(
1

2
))) = n(n(

1

2
− εs))

= n(n(
1

2
)− n′(1

2
)εs +O(ε2

s))

= n(
1

2
+ εs − n′(

1

2
)εs +O(ε2

s))

= n(
1

2
) + [n′(

1

2
)− (n′(

1

2
))2]εs +O(ε2

s).
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Note that m′(1
2
) = n′(1

2
) and thus

∃Ŝ2 s.t. ∀s > Ŝ2, l3 − l′3 = −2εs · n′(
1

2
) +O(ε2

s).

Therefore, ∀s > S2 ≡ max{S, S̃2, Ŝ2}, l4−l′4 > 0. By symmetry we don’t need to compare

other pairs so agent 4 always anti-imitates agent 2.

For t ≥ 3, we want to compare ht+1 and h
′
t+1 that differ only in the t-th action (at = A

and a′t = B). Using first-order Taylor expansion recursively like we did, it is easy to get

that when s is suffi ciently large,

lt+2 − l′t+2 =

 −2εs ·m′(1
2
) +O(ε2

s) if at+1 is A

−2εs · n′(1
2
) +O(ε2

s) if at+1 is B
.

Hence ∃St ≥ S s.t. ∀s > St, lt+2 − l′t+2 > 0 and agent t+ 2 always anti-imitates agent t.

Proof of Proposition 1.3.3. We first show that,

if lim
x→0+

g′(x)

g(0)
> 3, lim

x→0+

dm(x)

dx
< 0.

Recall that sgn[dm(x)
dx

] = sgn [
d(

m(x)
1−m(x) )

dx
] and we have already calculated the

d(
m(x)

1−m(x) )

dx

in the proof of Proposition 1.3.1:

lim
x→1−

d( m(x)
1−m(x)

)

dx

= lim
x→1−

xGB(1− x)

(1− x)GA(1− x)
[

1

x(1− x)
− gB(1− x)

GB(1− x)
+
gA(1− x)

GA(1− x)
]

= lim
z→0+

GA(z)GB(z) + z(1− z)[gA(z)GB(z)−GA(z)gB(z)]

z2G2
A(z)

(z ≡ 1− x)

= lim
z→0+

GA(z)GB(z) + 2z(1− z)g(z)[(1− z)GB(z)− zGA(z)]

z2G2
A(z)

.

To simplify the expressions later, let R ≡ g(0) > 0 and W ≡ lim
x→0+

g′(x). Both GA and

GB are continuously three times differentiable as g(·) is continuously twice differentiable,
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so Taylor expansion yields that

g(z) = g(0) + lim
z→0+

g′(z)z +O(z2) = R +Wz +O(z2);

GA(z) = 0 + gA(0)z +
lim
z→0+

g′A(z)

2
z2 +O(z3) = 2Rz + (W −R)z2 +O(z3);

GB(z) = 0 + gB(0)z +
lim
z→0+

g′B(z)

2
z2 +

lim
z→0+

g′′B(z)

6
z3 +O(z4) = Rz2 +

2

3
Wz3 +O(z4).

Plug these back to the expression above,

lim
x→1−

d( m(x)
1−m(x)

)

dx

= lim
z→0+

GA(z)GB(z) + 2z(1− z)g(z)[(1− z)GB(z)− zGA(z)]

z2G2
A(z)

= lim
z→0+

(R2 − 1
3
RW )z4 +O(z5)

4R2z4 +O(z5)

=
3R−W

12R
< 0 since

W

R
> 3 and R > 0.

Therefore limx→1−
dm(x)
dx

< 0 and by symmetry limx→0+
dn(x)
dx

< 0. By continuous differ-

entiability of m(·) and n(·),

∃ε > 0 s.t. ∀x ∈ (0, ε),
dn(x)

dx
< 0; ∀x ∈ (1− ε, 1),

dm(x)

dx
< 0.

Without loss of generality, let us assume θ = A. Consider two histories, ht and h
′
t,

such that

1. ht - h′t and ht 6= h′t;

2. lt+1 6= l′t+1 and {lt+1, l
′
t+1} ⊂ (0, ε).

Such histories exist when t is suffi cient large, because of Lemma 1.3.4 and the fact that,

for a generic density function g(·), we can always construct two different histories that

generate different posterior beliefs.46 If lt+1 > l′t+1, learning is monotone by definition. If

46Since we are allowed to increase the length of the two histories arbitrarily, a density function k(·)
that always leads to lt+1 = l′t+1 is non-generic.
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lt+1 < l′t+1, we can simply extend ht and h
′
t by an action B, i.e.,

ht+1 = (ht, B) and h′t+1 = (h′t, B).

According to Lemma 1.3.1, lt+2 = n(lt+1) > n(l′t+1) = l′t+2. So learning is again non-

monotone.

1.5.2 Additional Claim

Here we present a claim related to Proposition 1.3.3, and show that any information

structure satisfying the primary assumptions imposed in Subsection 1.3.1 can be well

approximated by another information structure that leads to non-monotone learning. It

is not hard to understand this claim, given that Proposition 1.3.3 only imposes a boundary

condition on the information structure.

Claim 1.5.1 Take any density function g(·) on [0, 1] that satisfies the assumptions of full

support, differentiability, and symmetry. There exists a density function on [0, 1], g(·; γ),

such that

g(·; γ)→ g(·) as γ → 0, and lim
x→0+

dg(x; γ)

dx
> 3 · g(0; γ) for any γ > 0.

Learning is then non-monotone with g(0; γ) being the unconditional density function of

private beliefs.

Proof. Construct g(x; γ) ≡ g(x)− γ+ γb(x; θγ), where 0 < γ < min
x∈[0,1]

g(x) and b(x; θγ) ≡
[x(1−x)]θγ

B(1+θγ ,1+θγ)
is the pdf of Beta distribution.

Note that

lim
x→0+
θ→0+

db(x; θ)

dx
→ +∞

=⇒ ∃θγ > 0 s.t. lim
x→0+

db(x; θγ)

dx
>

[3 · g(0)− lim
x→0+

g′(x)]

γ
− 3.
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Clearly g(·; γ)→ g(·) as γ → 0, and

lim
x→0+

dg(x; γ)

dx

= lim
x→0+

g′(x) + γ lim
x→0+

db(x; θγ)

dx

> lim
x→0+

g′(x) + 3 · g(0)− lim
x→0+

g′(x)− 3γ

= 3 · g(0)− 3γ = 3 · g(0; γ).
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2 Does Public Information Disclosure Help Social

Learning?

This work studies the effect of releasing exogenous public information in the canonical

social-learning model that predicts informational cascades and incomplete learning. In

particular, we consider the simple setting with binary states, binary actions, and binary

private signals. For the purpose of increasing the average expected payoff of the pop-

ulation, we show that it is weakly better to postpone the disclosure of a public signal

irrespective of its precision. However, such weak monotonicity no longer holds if the

objective is to maximize the discounted sum of people’s expected payoffs or if the model

goes beyond the binary setting. On the other hand, it is suboptimal to ever release a

public signal that is less precise than people’s private signals even if sophisticated releas-

ing strategies are allowed as noisy public information crowds out private information and

harms information aggregation.
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2.1 Introduction

As important as the rationalization of herd behavior, one contribution of the theoret-

ical literature on rational social learning is the prediction of incomplete learning, i.e.,

ineffi cient information aggregation among the population, when people have boundedly

accurate private information. In the canonical binary model due to Bikhchandani et

al. (1992), agents make binary choices between A and B sequentially over an infinite

time horizon, and before taking her action, each agent receives a private binary signal

indicating which option is better with uniform precision and observes all the past ac-

tions. Eventually rational agents herd without fully learning the truth and informational

cascade arises.47

Like every other economic model that predicts ineffi cient outcomes, we naturally

ask ourselves of potential ways to improve effi ciency in such environments. In fact, as

Bikhchandani et al. (1992) pointed out, informational cascades are fragile: since infor-

mation stops to aggregate, the cascades and hence the herds are vulnerable to new pieces

of information. Therefore it is worthwhile to investigate whether and how disclosure of

exogenous public information can improve social learning.

We introduce a social planner to the canonical binary model, who receives an extra

signal about the truth with certain precision and decides whether and when to release it

to the public to maximize the average expected payoff of the population.48 In particular,

the social planner is looking for the optimal timing (if any) of releasing that public signal,

given its precision, that essentially maximizes the expected payoff of limiting agents.

We first provide an anti-transparency result: the social planner should never release

a noisy public signal that is less precise than people’s private signals. An informational

cascade arises when one action, say A, has been chosen at least twice more than B, and

agents start to herd on A.49 Releasing a noisy public signal then cannot break down the

informational cascade as agents will continue to herd on A even when the public signal

47Strictly speaking, incomplete learning does not necessarily imply informational cascades when private
signals are continuous rather than discrete. See Herrera and Hörner (2012) for a discussion about a
necessary and suffi cient condition on the distribution of private signals for informational cascades.
48Due to the presence of herd behavior, the average expected payoff of the population is equivalent to

the expected payoff of limiting agents. This is a common objective of interest in the literature of social
learning, and we use it as a measure of social welfare for the social planner. In Section 2.3 we will discuss
an alternative objective function of the social planner.
49We assume each agent follows her private signal when indifferent.
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suggests B: combining the history and the public signal, future agents still find action A

suffi ciently attractive. Hence a noisy public signal has no effect on the limiting expected

payoff if it is released after an informational cascade has arisen. On the other hand, when

an informational cascade has not yet formed, releasing a noisy public signal may induce a

wrong cascade in the future more likely than people’s own private signals due to the lower

precision, hence lowers the limiting expected payoff. Therefore overall to release a noisy

public signal is a bad idea for the social planner. Moreover, this result is robust when

sophisticated releasing strategies are allowed, i.e., a noisy public signal should never be

released even if the social planner can make the timing of disclosure contingent on the

history of past actions.50

The other result, perhaps more interesting, is a monotonicity result: the expected

payoff of limiting agents is weakly increasing in the period at which the public signal

is released, regardless of its precision. In other words, the social planner should always

postpone the disclosure of any public information.51 The intuition behind this result is

that the benefit of releasing a public signal is greater when an informational cascade

has arisen than when it has not. Before a cascade starts the information aggregation of

private signals is still going on, so a public signal released then may crowd out the next

private signal(s) in terms of updating people’s belief. Hence the “net”informational con-

tribution of the public signal is lower than when it is released after a cascade has started.

Meanwhile, the probability of entering an informational cascade is weakly increasing over

time, thus implies that the benefit of releasing a public signal is also weakly increasing

over time.

Nevertheless the monotonicity result seems not compelling especially for extremely

precise public signals: suppose the social planner holds a public signal that perfectly

reveals the truth, then she should naturally release it as early as possible so that everyone

can learn the truth from it and choose the right action. This thought experiments casts

doubt on whether the limiting expected payoff or the average expected payoff is a proper

objective for the social planner, and we reconsider the whole problem assuming that

50In general numerous Bayesian Nash equilibria exist with contingent releasing strategies, so we focus
on a selection of equilibria to make meaningful prediction. See Subsection 2.2.3 for details.
51Note that the monotonicity result is true even for noisy public signals, but does not contradict with

the anti-transparency result: releasing a noisy public signal is bad, but if the social planner were to
release one, she should postpone as much as possible.
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the social planner wants to maximize the discounted sum of people’s expected payoffs

instead. Although the optimal timing of disclosure is not yet clear to us, we show that

the monotonicity result is no longer true. If the social planner is indifferent between two

periods to release the public signal before, now she strictly prefers the earlier period of

the two due to the discount factor.

We also present an alternative setting with ternary states, actions and signals, and

show that the monotonicity result does not hold either. In this setting, at some point

in the history an action could be excluded by all the agents afterwards: e.g., an agent

observing history (A,B,A,B,A,B) would not choose C regardless of her private signal

and neither would all her successors. We call this situation a trap away from action C,

and unlike a herd, the informational “depth”of a trap can increase over time; hence a

public signal could fail to break down a wrong trap if it is released too late, which is not

what the social planner wants.

Related literature. This paper is related to a stream of papers on anti-transparency.

Morris and Shin (2002) presented a model where every agent wants to minimize a loss

function made up of two components: loss in the distance between her action and the

underlying state, and loss in the distance between her action and the average action in

the population, i.e., a “beauty-contest”term.52 With later comments by Svensson (2006)

and Morris et al. (2006), it can be shown that in such a model the welfare with noisy

public information could indeed be worse than the welfare without.53 Demertzis and

Hoeberichts (2007) further explored this anti-transparency result by introducing costly

information acquisition to the model, where people might free-ride on public information

and abandon private information acquisitions. In this paper we get an anti-transparency

result as well in the canonical social-learning model, but without beauty-contest-like

preference or costly information acquisition.54

This work is clearly related to the social learning literature initiated by Banerjee

(1992), Bikhchandani et al. (1992), and Smith and Sørensen (2000). Nevertheless few pa-

pers talked about disclosure of public information in social-learning models. Bikhchan-

52See Keynes (1936).
53In that model, public information serves as a coordination device for the second loss term, and people

could overlook their private signals when they put a suffi ciently high weight on the second loss term.
54Compared to Morris and Shin (2002), noisy public information distorts social welfare in this model

through informational externality rather than payoff interdependence.
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dani et al. (1992) pointed out the fragility of informational cascades and only briefly

discussed the effect of releasing extra information, while this work further looks into this

issue and investigates the optimal timing of release. Gill and Sgroi (2008) also augmented

the standard model to allow a principal to provide public information to the agents by

subjecting herself to a test of certain toughness at the beginning.55 On the other hand,

as discussed before, the monotonicity result in this paper might question the plausibility

of limiting effi ciency, which is the common objective of interest in most of the literature,

as a good measure of social welfare in social-learning models.

The remainder of the paper is structured as follows. Section 2.2 sets up the canonical

binary model and provides the main result. Section 2.3 discusses settings with impatient

social planner and with ternary states/actions. Section 2.4 concludes.

2.2 A Simple Setting with Binary Choice

2.2.1 Setup and Preliminaries

There is a population of countably infinite agents who are exogenously ordered to make

a binary choice sequentially. Each agent is labelled by the period of her turn, t ∈ T =

{1, 2, 3, ...}.

The state of the world θ is realized out of a binary state space Θ ≡ {1,−1} before

anyone makes the choice, with Pr{θ = 1} = 1/2. After the realization of θ, every agent t

receives a private signal st ∈ {1,−1} and the private signals are conditionally i.i.d. with

Pr{st = 1|θ = 1} = Pr{st = −1|θ = −1} = q ∈ (
1

2
, 1),

where the precision q is common knowledge to the whole population.

Before exerting her action at ∈ A = {1,−1}, agent t is allowed to observe the history

of all her predecessors’choices, ht ∈ Ht ≡ {∅} ∪ At−1, where h1 ≡ ∅ denotes the empty

history at period 1. Agents have identical utility function

u(at; θ) = 1{θ=at}

55Essentially the outcome of the test is like a public signal with certain precision (based on the tough-
ness) that is released at the beginning. Note that the principal in Gill and Sgroi (2008) does not have
the same objective of the social planner in this paper though.
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and are assumed to follow their own signal when indifferent.

Similar to Chapter 1, we call wt ≡ logq/(1−q)[
Pr(ht|θ=1)

Pr(ht|θ=−1)
] the public belief after history

ht.56

This is essentially the canonical model in Bikhchandani et al. (1992) and it is well

known that the Bayesian Nash equilibrium exhibits herd behavior eventually. For the

purpose of future analysis though, let us restate the existing results as lemmata.

Lemma 2.2.1 The Bayesian Nash equilibrium strategy of each agent t is given by

a∗t (ht, st) = a∗(wt, st) ≡

 st if |wt| ≤ 1

sgn(wt) otherwise
,

where sgn(x) ≡

 x/ |x| if x 6= 0

0 otherwise
.

Hence, along the equilibrium path h∗t = (a∗1, a
∗
2, ..., a

∗
t−1) with h∗1 ≡ ∅, the dynamic of

public beliefs is given by

w∗1 = 0; w∗t+1 =

 w∗t + a∗t if |w∗t | ≤ 1

w∗t otherwise
.

Proof. See Appendix.

Lemma 2.2.1 shows that public belief wt serves as a suffi cient statistic for agent t’s

decision problem and in equilibrium w∗t stops to update once it leaves interval [−1, 1],

which is exactly when an informational cascade, or a herd, starts.

Definition 2.1 We say a herd on action 1(−1) starts at period T if

∀t ≥ T , at(ht, st) = at(ht, ·) = 1(−1).

Lemma 2.2.2 Along the equilibrium path described by Lemma 2.2.1, a herd starts even-

56Compared to the definition of public belief lt on page 15 of Chapter 1, we only change the base of
the logarithm from e to q

1−q here, i.e., a linear transformation. It is convenient to use wt here as it only
takes integer values in equilibrium (prior to the disclosure of public information) and in fact represents
the net number of private signals revealed by the history.
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tually with probability 1.

Proof. See Appendix.

Note that the eventual herd could be incorrect, as Smith and Sørensen (2000) argued,

if agents have bounded private beliefs, which is exactly the case here. The probability of a

correct herd eventually is nevertheless important for our analysis later on social welfare,

as it determines expected payoffs for future agents in the long run. Hence we would like

to calculate this probability here.

For convenience, let us assume the realization of θ is 1 without loss of generality for

the remainder of this section.57 Define

p(x) ≡ Pr(plimt→∞ a
∗
t (h

∗
t , st) = 1|w1 = x, θ = 1), ∀x ∈ R,

the probability of a correct herd eventually conditional on some initial public belief w1 =

x, which can be explicitly calculated according to the following useful lemma.

Lemma 2.2.3 p(x) can only take the following 7 discrete values:

p(x) = 0 ≡ α1, ∀x < −1;

p(−1) =
q3

1− 2q(1− q) ≡ α2;

p(x) =
q2

1− q(1− q) ≡ α3, ∀x ∈ (−1, 0);

p(0) =
q2

1− 2q(1− q) ≡ α4;

p(x) =
q

1− q(1− q) ≡ α5, ∀x ∈ (0, 1);

p(1) = q +
(1− q)q2

1− 2q(1− q) ≡ α6;

p(x) = 1 ≡ α7, ∀x > 1.

57It is without loss of generality from an ex-ante perspective due to the symmetric setting.
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In fact, α ≡ (α1, α2, α3, α4, α5, α6, α7)> satisfies Qα = α where

Q ≡



1 0 0 0 0 0 0

1− q 0 0 q 0 0 0

1− q 0 0 0 q 0 0

0 1− q 0 0 0 q 0

0 0 1− q 0 0 0 q

0 0 0 1− q 0 0 q

0 0 0 0 0 0 1


.

Proof. See Appendix.

Note that the subgame starting from a period T is identical to the original game (and

the equilibrium strategy is stationary according to Lemma 2.2.1), hence Lemma 2.2.3

actually tells us how to calculate the probability of a correct herd eventually if the public

belief at period T is wT . On the other hand, the matrix Q introduced in Lemma 2.2.3

also helps us to characterize the equilibrium public beliefs as a monotone Markov chain.

Definition 2.2 A transition matrix C = (cij)n×n is monotone if

∀1 ≤ i < j ≤ n,∀k ≤ n,
∑k

m=1
cmi ≥

∑k

m=1
cmj.

A Markov chain is monotone if it has a monotone transition matrix.58

Lemma 2.2.4 Let P = {P1, P2, P3, P4, P5, P6, P7} be a finite partition of R with:

P1 = (−∞,−1), P2 = {−1}, P3 = (−1, 0), P4 = {0},

P5 = (0, 1), P6 = {1}, P7 = (1,+∞)}.

Define πti ≡ Pr(w∗t ∈ Pi) and πt = (πt1, π
t
2, π

t
3, π

t
4, π

t
5, π

t
6, π

t
7) is hence the probability vector

of w∗t over partition P. We have

πt+1 = πtQ with π1 = (0, 0, 0, 1, 0, 0, 0),
58These definitions come from Keilson and Kester (1977).
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where the transition matrix Q is given in Lemma 2.2.3 and it is monotone.

Proof. See Appendix.

2.2.2 Exogenous Release of Public Information

As we have seen in the previous subsection, a herd starts eventually but it is possibly on

the wrong action. Bikhchandani et al. (1992) referred to the eventual herd as an infor-

mational cascade and pointed out that it is vulnerable to public information disclosure.

Here we look into this issue more specifically by introducing public information release

into the model.

In addition to the population of agents as before, there is a social planner who also

receives a signal s̃ ∈ {1,−1} after the realization of θ and

Pr{s̃ = 1|θ = 1} = Pr{s̃ = −1|θ = −1} = q̃ ∈ (
1

2
, 1).

The precision q̃ is common knowledge to the whole population and s̃ is conditionally

independent of any st.

The social planner can decide whether and when to release the signal s̃ to the public.

Once s̃ is released at period τ ≥ 1 it becomes public information and every agent after-

wards, t ≥ τ , can take it into account before she makes her decision. The social planner

wants to maximize the expected average payoff of the whole population,

lim
T→∞

1

T

T∑
t=1

Eu(a∗t ; θ).

Note that due to the existence of herd behavior, the social planner’s objective is essentially

to maximize the probability of a correct herd eventually, or say, the probability of learning

the truth eventually.

In this subsection we particularly consider the situation where the releasing strategy

is exogenous, namely she has to decide a period τ ∈ {1, 2, 3...} to release or not to release

at all before anything happens and commits to that. Keep in mind that we still assume

the realization of θ is 1 without loss of generality.

Note that private signals are equally precise, hence the public belief wt can also be
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interpreted as the net number of correct private signals revealed by history ht. We would

like to first have a similar interpretation of the public signal by measuring its precision

with respect to private signals:

Definition 2.3 The public signal s̃ has relative precision λ ∈ R+ if

logq/(1−q)[
q̃

1− q̃ ] = λ, or equivalently, q̃ =
qλ

qλ + (1− q)λ .

When the public signal has relative precision λ, we have

Pr{s̃|θ = 1}
Pr{s̃|θ = −1} = (

q̃

1− q̃ )s̃ = [(
q

1− q )λ]s̃

= [(
q

1− q )st ]λ = [
Pr(st|θ = 1)

Pr(st|θ = −1)
]λ whenever st = s̃.

That is, learning a public signal in favor of one state with relative precision λ is equivalent

to learning λ net private signals in favor of that state.

Now suppose the social planner releases the public signal at period τ . Then the

subgame after the release is equivalent to the original game without public information,

which we discussed in the previous subsection, but with an initial public belief inferred

from bother the history before period τ and the public signal. Hence, a herd still starts

eventually and the expected average payoff of the population is just the probability of

a correct herd eventually, which depends only on the initial public belief according to

Lemma 2.2.3. Meanwhile, using the relative precision, we can linearly describe the effect

of the public signal on the public belief. These observations are summarized in the

following lemma.

Lemma 2.2.5 Suppose the social planner releases s̃ with relative precision λ at period

τ ≥ 1 and the history before that has generated a public belief wτ . Then the new public

belief after release will be

w̃τ = wτ + λs̃,

and (under the assumption that the realization of θ is 1) the expected average payoff of
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the population conditional on w̃τ is simply given by

plimT→∞
1

T

T∑
t=1

u(a∗t ; θ = 1|w̃τ ) = p(w̃τ ) = p(wτ + λs̃).

Furthermore, let us denote v(τ ;λ) as the (unconditional) expected average payoff of the

population when the social planner is to release the public signal with relative precision λ

at period τ , then

v(τ ;λ) = Ewτ ,s̃[p(wτ + λs̃)].

Proof. See Appendix.

Keep in mind that without no release at all, the expected average payoff of the pop-

ulation, which is just the probability of a correct herd eventually, is equal to α4 given in

Lemma 2.2.3. Now we are in a position to provide the main result of this section.

Proposition 2.2.1 1. It is never optimal to release a public signal less precise than the

private signals. That is,

∀λ ∈ (0, 1), ∀τ ≥ 1, v(τ ;λ) < α4.

2. It is strictly better to release a public signal no less precise than the private signals

than not to release at all. That is,

∀λ ∈ [1,+∞), ∃τ <∞ such that v(τ ;λ) > α4.

3. It is always (weakly) better to release a public signal later than sooner regardless

of its precision. That is,

∀λ ∈ R+, ∀τ ≥ 1, v(τ + 1;λ) ≥ v(τ ;λ).

Proof. See Appendix.

Here we would like to talk about the third statement of Proposition 2.2.1 in partic-
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ular. The weak monotonicity of v(τ ;λ) in τ mathematically comes from the fact that

equilibrium public beliefs evolve according to a monotone transition matrix until the

public signal is released, regardless of the value of λ. However, the intuition for this weak

monotonicity is not as universal as the property itself. For illustrative purposes, let us

focus on two cases, λ = 1 and λ < 1.

We can think of releasing a public signal as an "additional" agent joining in the

sequence who always follows his own private signal s̃. When λ = 1, the release has no

ex-ante effect if a herd has not started yet because every agent t just follows her own

private signal st, which has the same precision as s̃, before a herd starts. In this case the

ex-ante benefit of releasing s̃ arises after a herd starts, where s̃ is more likely to break

down a wrong herd than to break down a correct herd as q̃ > 1/2. So the benefit of

releasing s̃ is increasing in the probability of herding at the time of release. It is easy to

verify that the probability of herding is weakly increasing in t, which explains the weak

monotonicity of v(τ ;λ) in τ .

When λ < 1, however, releasing s̃ has no effect once a herd starts: |w̃τ | = |w∗τ+λs̃| > 1

and sgn(w̃τ ) = sgn(w∗τ ) when w
∗
τ = ±2 and λ < 1.59 But it brings ex-ante disadvantage

before a herd starts since it is more likely to induce a wrong herd than what a normal

agent does, due to the lower precision q̃ < q. Therefore the harm of release is decreasing

in the probability of herding, which in turn is weakly decreasing over time and hence

explains the weak monotonicity of v(τ ;λ) in τ .

It is worth pointing out that when λ > 3, the weak monotonicity is actually uniformity.

In that case, the public signal is so strong that people start to herd on the action same

as the realization of s̃ immediately after it is released, so releasing at different periods

makes no difference.

2.2.3 Contingent Release of Noisy Public Information

In addition to the monotonicity result, Proposition 2.2.1 also makes another observation:

it is better not to release the public signal at all when it is less precise than private

signals. This can be interpreted as an anti-transparency result: more (but noisy) pub-

59Bikhchandani et al. (1992) argued that releasing a public signal less informative than the private
signal can still be beneficial when there is an information cascade. This is true under their assumption
that agents play mixed strategies when indifferent, but not under the tie-breaking rule here.
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lic information can be bad for social welfare.60 However, the social planner has so far

been restricted to use exogenous releasing strategies, hence a natural question would be

whether this suboptimality of release when λ < 1 still holds if contingent releasing strate-

gies are allowed, namely the social planner can decide whether to release or not at period

t based on the realization of s̃ and wt.

Let g(s̃, wt) ∈ {0, 1} be the strategy of the social planner: g(s̃, wt) = 1 means the

social planner releases the public signal at period t after seeing s̃ and wt; g(s̃, wt) = 0

means not. And gt ∈ {0, 1} denotes the corresponding action. We restriction attention

on pure strategies by the social planner.

Note that gt is now relevant information for agents τ ≥ t, because, given a releasing

strategy by the social planner, agents can possibly infer the realization of s̃ from gt and wt.

A natural issue arises here, like in lots of games with incomplete information, that there

could potentially exist undesired equilibria due to lack of restriction on off-equilibrium

beliefs. So we want to impose the following refinement on certain off-equilibrium path.

Definition 2.4 Given a releasing strategy g(s̃, wt) by the social planner, let µ(wt, gt)

denote agents’belief at period t about the realization of s̃ after observing wt and gt. That

is,

µ(wt, gt) ≡ Pr(s̃ = 1|wt, gt, g(·, ·)).

We say µ(wt, gt) is non-excessive if

µ(wt, 0) =
1

2
, ∀wt s.t. g(s̃, wt) = 1 for any s̃ ∈ {−1, 1}.

Non-excessive belief requires that, on an off-equilibrium path where the social planner

does not release s̃ while she should have released it regardless of its realization, agents

should not make excessive inference about the realization of s̃ in this symmetric world.

We think this is a reasonable refinement and it indeed helps us get rid of meaningless

equilibria which do not serve for the purpose of our analysis here.61

60The seminal paper on anti-transparency, Morris and Shin (2002), also used the average payoff of the
population to refer to social welfare.
61Without restriction on non-excessive beliefs, one can show that to release the public signal after any

history could be an equilibrium. But these equilibria do not help improve the social welfare.
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Note that the agents’behavior still follows what has been described in Lemma 2.2.1

but under a public belief generated from both the previous actions and their inference

about s̃. Hence we will give the main result here that focuses on the social planner’s

releasing strategy.

Proposition 2.2.2 When λ < 1 and agents’ belief about s̃ is non-excessive, there are

3 Bayesian Nash equilibria where the social planner’s contingent releasing strategies are

respectively:

g1(s̃, wt) = 0;

g2(s̃, wt) = 1{wt=−s̃};

g3(s̃, wt) = 1{wt=±2s̃}.

Proof. See Appendix.

The interesting addition compared to the case with exogenous releasing strategy is g2.

With g2, the social planner will release the public signal once he saw an history that is not

a herd yet but against the realization of s̃, which is reasonable because he wants to prevent

the agents from starting an herd against the public signal too early. Unfortunately,

from an ex-ante perspective, social welfare is not improved under contingent releasing

strategies.

Corollary 2.2.1 g1 generates the same ex-ante average payoff of the population in equi-

librium as g3 does, which is better than what g2 does. And none of them can improve

social welfare compared to exogenous releasing strategies.

Proof. g1 means no release at all, which is also the best the social planner can do under

exogenous releasing strategies. g3 means to disclose the public signal when a herd has

already started but in that case disclosure makes no difference as the noisy public signal

can never break down a herd, hence social welfare is the same as with no release at all.

On the other hand, the "separating" strategy g2 implies that the agents can perfectly

infer the realization of s̃ after period 1, hence social welfare is the same as with exogenous
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release at period 2, which is worse than with no release at all when λ < 1 as we saw in

Proposition 2.2.1.

2.3 Postponing Disclosure Is Not Always Better

Recall that the benefit of public information disclosure is weakly increasing over time in

the binary-choice model. In this section, however, we are about to introduce two alterna-

tive settings under which postponing disclosure of public information is not necessarily a

good decision for the social planner.

2.3.1 Impatient Social Planner

So far we have assumed that the social planner cares about the expected average payoff

of the population without discounting, hence she essentially cares only about whether

people eventually herd on the correct action or not, i.e., limiting effi ciency. Although

limiting effi ciency is the common objective of interest in the literature of social learning,

it might not be a plausible measure of social welfare for a social planner.

For example, Proposition 2.2.1 says that the social planner is indifferent among all

periods to release a public signal that is suffi ciently precise. Imagine that the social

planner has a public signal with perfect precision. Then naturally she should release

the public signal as early as possible, because any delay would hurt some earlier agents.

However this natural observation is not captured by the non-discounted average payoff

as the social planner only cares about people in the limit. Hence in this subsection we

introduce a discount factor δ in the social planner’s objective and reconsider the timing

of information disclosure. In particular, we show that it is not always better to postpone

the release of a public signal.

Formally, with all the other configurations identical to the benchmark model, we

assume the social planner now wants to maximize the discounted sum of people’s expected

payoff,

(1− δ)
∞∑
t=1

δt−1Eu(a∗t ; θ).

For simplicity we restrict attention on exogenous releasing strategies and assume the

public signal has the same precision q as the private signals.
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Claim 2.3.1 Let V (τ) be the discounted sum of people’s expected payoff when the public

signal is released at period τ . Then ∀q ∈ (1
2
, 1), V (3) > V (4).

Proof. See Appendix.

In the benchmark without discounting, the social planner is indifferent between re-

leasing at period 3 and at period 4.62 Hence with discounting it is not surprising to see

that the social planner now strictly prefers to release the public signal at periods 3 than

period 4. The optimal timing of disclosure with discounting is yet to be explicitly char-

acterized, nevertheless we present this example mainly to bring up the concern for the

plausibility of treating limiting effi ciency as the main objective in social-learning models.

2.3.2 Ternary Setting

In this subsection we expand the binary setting in the benchmark model and allow the

state/action/signal space to have three elements.63 Under this new setting, even for a

patient social planner who only cares about limiting effi ciency as in the benchmark model,

it is not always better to postpone the disclosure of public information.

Formally, the state of the world ψ is realized out of {L,M,R} with

Pr(ψ = L) = Pr(ψ = M) = Pr(ψ = R) = 1/3.

After the realization of ψ, every agent t receives a private signal st ∈ {L,M,R} and the

private signals are conditionally i.i.d. with

Pr{st = L|ψ = L} = Pr{st = M |ψ = M} = Pr{st = R|ψ = R} = q ∈ (
1

3
, 1);

Pr{st = L|ψ = M} = Pr{st = R|ψ = M} = Pr{st = M |ψ = R} =

Pr{st = L|ψ = R} = Pr{st = R|ψ = L} = Pr{st = M |ψ = L} =
1− q

2
.

Each agent chooses at from {L,M,R} and observes the history of past actions ht ≡

(a1, a2, . . . , at−1). They have identical utility function u(at;ψ) = 1{ψ=at}, and note that

this degenerate utility function implies that the three states cannot be linearly ordered,

62See the proof of Proposition 2.2.1 for details.
63Ternary spaces are suffi cient to capture the intuition we want to describe, yet not too complicated

for analysis.
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unlike many other economic models with multiple states.64

With ternary spaces, we want to specify a tie-breaking rule:

a∗t (ht, st) = st if st ∈ arg max
a∈{L,M,R}

Eψ[u(a;ψ)|ht, st],

a∗t (ht, st) = at−1 if arg max
a∈{L,M,R}

Eψ[u(a;ψ)|ht, st] = Ψ\{st}.

Namely, agent t follows st if it is one of the maximizers and chooses to follow her immediate

predecessor if the two actions different from st are both maximizers.65

Again there is a social planner who receives a signal s̃ ∈ {L,M,R} and decide

whether/when to release it to the public. Here for simplicity s̃ is assumed to be equally

precise as the private signals. The (patient) social planner’s objective is still to maximize

the ex-ante average payoff of the population and we restriction attention on exogenous

releasing strategies only in this subsection.

Before making further observations, we would like to introduce an idea similar to herd

behavior:

Definition 2.5 ∀a ∈ {L,M,R}, a trap away from action a starts at period T if at(ht, ·) 6=

a for all t ≥ T .

It is easy to see that a trap away from one action is equivalent to a herd on the other

action in the binary model. However, with ternary spaces, a herd on action a′ 6= a is a

trap away from action a, but not vice versa. And the difference between a herd and a

trap is exactly what drives the following result that the benefit of releasing the public

signal is no longer weakly monotone over time.

Claim 2.3.2 Let G be the ex-ante average payoff of the population with no release at all,

and let G(τ) be the ex-ante average payoff of the population if the public signal is released

at period τ ≥ 1. Then ∀q ∈ (1
3
, 1), G(3) > G and G(4) > G(5).

Proof. See Appendix.
64Specifically, the degenerate utility function rules out the scenario where an agent believes one state,

say M , is more likely after observing an action L and an action R. This setting, though complicates the
analysis, is crucial for the result we will present in this subsection.
65The specification itself is not very important; we just want a tie-breaking rule to guarantee deter-

ministic outcomes and hence tractability.
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Figure 2: Non-monotone G(·) under different values of q.

G(3) > G is not a surprising: the public signal is equally precise as a private signal,

so releasing it would not bring any harm but could possibly break down a wrong herd

starting at period 3, if the first two actions are the same but wrong.66 Meanwhile we

lose weak monotonicity as G(4) > G(5) for the following reason: releasing s̃ at period

4 is possible to break down a trap away from true state ψ if s̃ = ψ, no matter what

h3 is; however, if ψ = R but h4 = (L,M,L, L), the trap away from R could not be

broken down even if s̃ = R as long as it is released at period 5. In general, weak

monotonicity fails here because the existence of traps rather than herds: a trap is not

necessarily an informational cascade and information can still aggregate over time for the

two "surviving" actions before a herd finally starts, hence the social planner could face

the danger of not being able to break down a wrong trap if the public signal is released

too late.

On the other hand, the optimal timing of release is unclear to us and in principal it

shall depends on the value of q. See Figure 2 for some examples.

66It is not diffi cult to see that a herd will arise when, in the history, the number of one action is larger
than the number of the other two actions by at least 2.
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2.4 Conclusions

In this paper we look into the effect of public information disclosure on social learning. In

the canonical binary model, if a social planner were to choose a certain period to release

a public signal, she should release it as late as possible regardless of the precision of the

public signal: a monotonicity result. Meanwhile, when the public signal is less precise

than people’s private signals, releasing it would do no good on social welfare even if the

timing of release can be contingent on the history of actions: an anti-transparency result.

We present two alternative settings where the monotonicity result no longer holds.

Postponing the information disclosure could be bad for a social planner, if her objective

is the discounted sum of people’s expected payoffs, or if the state/action spaces are

richer. Solving the optimal timing of disclosure in these two settings is a challenging but

interesting follow-up to this work.

As to the anti-transparency result, a relevant and interesting question is: what is the

lower bound of the (relative) precision of a public signal that could improve social welfare

once released in a more general setting, e.g., agents have private signals of heterogeneous

precision? Some preliminary work suggests that this lower bound is lower and could be

substantially lower than the “average”precision of people’s private signals.

We treat this work as a contribution to the literature on social learning, with a

particular focus on exogenous information intervention. Perhaps more importantly, we

hope this work can also raise attention on welfare control or optimal design of social

learning under different settings.
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2.5 Appendix

Proof of Lemma 2.2.1. By standard Bayesian Nash equilibrium definition and the

tie-breaking rule,

a∗t (ht, st)

= arg max
a∈{1,−1}

Eθ(1{θ=a}|ht, st) = arg max
a∈{1,−1}

Pr(θ = a|ht, st)

=

 st if Pr(θ = 1|ht, st) = Pr(θ = −1|ht, st)

sgn(Pr(θ = 1|ht, st)− Pr(θ = −1|ht, st)) otherwise
.

By Bayes’Rule and uniform prior,

Pr(θ = 1|ht, st) =
Pr(ht, st|θ = 1)

Pr(ht, st|θ = 1) + Pr(ht, st|θ = −1)
= 1− Pr(θ = −1|ht, st)

⇒ sgn(Pr(θ = 1|ht, st)− Pr(θ = −1|ht, st)) = sgn(Pr(ht, st|θ = 1)− Pr(ht, st|θ = −1))

⇒ a∗t (ht, st)

=

 st if Pr(ht, st|θ = 1) = Pr(ht, st|θ = −1)

sgn(Pr(ht, st|θ = 1)− Pr(ht, st|θ = −1)) otherwise
.

By definition of wt and independence between st and ht,

Pr(ht, st|θ = 1)

Pr(ht, st|θ = −1)
=

Pr(ht|θ = 1)

Pr(ht|θ = −1)

Pr(st|θ = 1)

Pr(st|θ = −1)

= (
q

1− q )wt(
q

1− q )st = (
q

1− q )wt+st, where
q

1− q > 1

⇒ sgn(Pr(ht, st|θ = 1)− Pr(ht, st|θ = −1)) = sgn(wt + st) =

 st or 0 if |wt| ≤ 1

sgn(wt) otherwise
,

hence we get a∗t (ht, st) characterized in the Lemma.

On the other hand, apparently w∗1 = 0 and by definition of w∗t ,

(
q

1− q )w
∗
t+1 =

Pr(h∗t+1|θ = 1)

Pr(h∗t+1|θ = −1)
=

Pr(h∗t , at|θ = 1)

Pr(h∗t , at|θ = −1)

=
Pr(h∗t |θ = 1)

Pr(h∗t |θ = −1)

Pr(a∗t |h∗t , θ = 1)

Pr(a∗t |h∗t , θ = −1)

= (
q

1− q )w
∗
t

Pr(a∗t |h∗t , θ = 1)

Pr(a∗t |h∗t , θ = −1)
.
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Meanwhile, if |w∗t | ≤ 1,

a∗t = st ⇒
Pr(a∗t |h∗t , θ = 1)

Pr(a∗t |h∗t , θ = −1)
=

Pr(st|h∗t , θ = 1)

Pr(st|h∗t , θ = −1)
=

Pr(st|θ = 1)

Pr(st|θ = −1)
= (

q

1− q )st

⇒ w∗t+1 = w∗t + st = w∗t + a∗t ;

otherwise,

a∗t = sgn(w∗t ) ⇒
Pr(a∗t |h∗t , θ = 1)

Pr(a∗t |h∗t , θ = −1)
=

Pr(sgn(w∗t )|h∗t , θ = 1)

Pr(sgn(w∗t )|h∗t , θ = −1)
= 1

⇒ w∗t+1 = w∗t .

Proof of Lemma 2.2.2. According to Lemma 2.2.1 and Definition 2.1, a herd on action

sgn(w∗t ) starts at period t if and only if |w∗t | > 1. Note that

∀t ∈ N∗, |w∗t | ≤ 1 ⇒

 ∀k ∈ N∗, a∗2k−1 + a∗2k = 0

∀t ∈ N∗, a∗t = st

⇒ ∀k ∈ N∗, s2k−1 + s2k = 0.

Hence a herd starts eventually unless s2k−1 + s2k = 0, ∀k ∈ N∗. However,

Pr(∀k ∈ N∗, s2k−1 = −s2k) ≤ 1− Pr(∃k′ ∈ N∗ s.t. sk′ = sk′+1 = sk′+2)

= 1− Eθ[Pr(∃k′ ∈ N∗ s.t. sk′ = sk′+1 = sk′+2|θ)] = 1− 1 = 0,

where ∀θ ∈ Θ, Pr(∃k′ ∈ N∗ s.t. sk′ = sk′+1 = sk′+2|θ) = 1 due to {st}∞t=1 being conditional

i.i.d. and Law of Large Numbers.

Proof of Lemma 2.2.3. By Lemma 2.2.1, a herd starts in equilibrium when |w∗t | > 1

and the herd is correct(wrong) if w∗t > 1(< −1). Then we can immediately see that

α1 = 0 and α7 = 1. For the remaining cases, let us look into the transition of wθt . (Recall

that we have assumed that the realization of θ is 1 without loss of generality)
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If w1 = 0,

a∗1 = s1 and w∗2 = s1

⇒ Pr(w∗2 = 1|w1 = 0) = Pr(s1 = 1) = q,

Pr(w∗2 = −1|w1 = 0) = Pr(s1 = −1) = 1− q.

Note that ∀T <∞ (especially T = 2 here),

p(x) ≡ Pr(plimt→∞ a
∗
t (h

∗
t , st) = θ|w1 = x)

= Pr(plimt→∞ a
∗
t (h

∗
t , st) = θ|wT = x)

since the subgame starting from agent T is identical to the original game, thus we have

α4 = (1− q)α2 + qα6. Through similar arguments,

Pr(w∗2 = 2|w1 = 1) = q and Pr(w∗2 = 0|w1 = 1) = 1− q

⇒ α6 = qα7 + (1− q)α4 = q + (1− q)α4;

Pr(w∗2 = 0|w1 = −1) = q and Pr(w∗2 = −2|w1 = −1) = 1− q

⇒ α2 = qα4 + (1− q)α1 = qα4.

Solve the three linear equations together to get α2, α4 and α6 as stated in the Lemma.

If w1 = x ∈ (−1, 0),

a∗1 = s1 and w∗2 = x+ s1

⇒ Pr(w∗2 = x+ 1 ∈ (0, 1)|w1 = x) = q,

Pr(w∗2 = x− 1 < −1|w1 = x) = 1− q

⇒ α3 = qα5 + (1− q)α1 = qα5;
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through similar argument,

Pr(w∗2 = x′ + 1 > 1|w1 = x′ ∈ (0, 1)) = q,

Pr(w∗2 = x′ − 1 ∈ (−1, 0)|w1 = x′ ∈ (0, 1)) = 1− q

⇒ α5 = qα7 + (1− q)α3 = q + (1− q)α3.

Solve the two linear equations together to get α3 and α5 as stated in the Lemma.

Combing all these linear equations together, we have exactlyQα = α. In other words,

α is an eigenvector of P associated with eigenvalue 1, with restriction that α7 = 1 and

α1 = 0.

Proof of Lemma 2.2.4. π1 = (0, 0, 0, 1, 0, 0, 0) simply because w∗1 = 0. As to the tran-

sition between w∗t to w
∗
t+1, it is identical to the transition between w

∗
1 and w

∗
2 illustrated

in the proof of Lemma 2.2.3:

Pr(w∗t+1 > 1|wt > 1) = 1, Pr(w∗t+1 < −1|w∗t < −1) = 1;

Pr(w∗t+1 = 1|w∗t = 0) = q, Pr(w∗t+1 = −1|w∗t = 0) = 1− q;

Pr(w∗t+1 = 2|w∗t = 1) = q, Pr(w∗t+1 = 0|w∗t = 1) = 1− q;

Pr(w∗t+1 = 0|w∗t = −1) = q, Pr(w∗t+1 = −2|w∗t = 0) = 1− q;

Pr(w∗t+1 ∈ (0, 1)|w∗t ∈ (−1, 0)) = q, Pr(w∗t+1 < −1|w∗t ∈ (−1, 0)) = 1− q;

Pr(w∗t+1 > 1|w∗t ∈ (0, 1)) = q, Pr(w∗t+1 ∈ (−1, 0)|w∗t ∈ (0, 1)) = 1− q.

Therefore the transition matrix is exactly matrix Q, which is indeed monotone according

to Definition 2.2.

Note that by Lemma 2.2.1, w∗t can only take values ±2, ±1 and 0, hence πt3 = πt5 = 0

for any t and w∗t > 1(< −1) indicates w∗t = 2(−2).

Proof of Lemma 2.2.5. By definition of public beliefs,

(
q

1− q )wτ =
Pr(hτ |θ = 1)

Pr(hτ |θ = −1)
and (

q

1− q )w̃τ =
Pr(hτ , s̃|θ = 1)

Pr(hτ , s̃|θ = −1)
.

70



Since ht and s̃ are independent,

(
q

1− q )w̃τ =
Pr(hτ , s̃|θ = 1)

Pr(hτ , s̃|θ = −1)

=
Pr(hτ |θ = 1)

Pr(hτ |θ = −1)
· Pr(s̃|θ = 1)

Pr(s̃|θ = −1)

= (
q

1− q )wτ (
q̃

1− q̃ )s̃ = (
q

1− q )wτ (
q

1− q )λs̃.

Hence we have w̃τ = wτ + λs̃.

On the other hand,

plimT→∞
1

T

T∑
t=1

u(a∗t ; θ = 1|w̃τ )

= plimT ′→∞
1

T ′

τ+T ′∑
t=τ

u(a∗t ; θ = 1|w̃τ )

= Pr(plimt→∞ a
∗
t = 1|w1 = w̃τ ) = p(w̃τ ),

where the last equation comes from Lemma 2.2.3. Finally, the (unconditional) expected

average payoff is just

v(τ ;λ) = Ew̃τp(w̃τ ) = Ewτ ,s̃[p(wτ + λs̃)].

Proof of Proposition 2.2.1. For τ ≥ 1, let π̃τ = (π̃τ1, π̃
τ
2, π̃

τ
3, π̃

τ
4, π̃

τ
5, π̃

τ
6, π̃

τ
7) be the

probability vector of w̃τ on the partition P introduced in Lemma 2.2.3. Then by Lemma

2.2.3 we have

Ew̃τ (p(w̃τ )) = π̃τ ·α.

Note that the public information is irrelevant for agents before period τ so in equilibrium

w∗t for t ≤ τ still evolves according to Lemma 2.2.4. Bearing in mind as well that s̃ is
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independent of w∗t and distributed according to

Pr{s̃ = 1|θ = 1} = Pr{s̃ = −1|θ = −1} = q̃,

we can derive π̃τ explicitly and prove the proposition case by case on λ as follows: (we

then omit the argument λ in v(·; ·) in each case)

Case I ( 0 < λ < 1⇔ 1
2
< q̃ < q)

w̃1 = w∗1 + λs̃ and π1 = (0, 0, 0, 1, 0, 0, 0)

⇒ π̃1 = (0, 0, 1− q̃, 0, q̃, 0, 0)

⇒ v(1) = q̃α5 + (1− q̃)α3 =
q̃q + q2(1− q̃)
1− q(1− q) <

2q2 − q3

1− q(1− q) < α4;

w̃2 = w∗2 + λs̃ and π2 = (0, 1− q, 0, 0, 0, 0, q, 0)

⇒ π̃1 = ((1− q)(1− q̃), 0, (1− q)q̃, 0, q(1− q̃), 0, qq̃)

⇒ v(2) = (1− q)q̃α3 + q(1− q̃)α5 + qq̃ =
qq̃ + q2(1− q̃)
1− q(1− q) = v(1) < α4;

w̃τ = w∗τ + λs̃ and πτ = 2q(1− q)πτ−2 + ((1− q)2, 0, 0, 0, 0, 0, q2) for τ ≥ 3

⇒ π̃τ = 2q(1− q)π̃τ−2 + ((1− q)2, 0, 0, 0, 0, 0, q2);

⇒ v(τ) = 2q(1− q)v(τ − 2) + q2

⇒ sgn(v(τ + 1)− v(τ)) = sgn(v(τ − 1)− v(τ − 2)).

If v(τ − 2) < α4 =
q2

1− 2q(1− q)
⇒ v(τ − 2) < 2q(1− q)v(τ − 2) + q2 = v(τ) < 2q(1− q)α4 + q2 = α4

⇒ v(1) = v(2) < v(3) = v(4) < α4.

Recursively we have v(1) = v(2) < v(3) = v(4) < v(5) = v(6) < · · · and v(τ) < α4 for

any τ ≥ 1.
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Case II (λ = 1⇔ q̃ = q)

w̃1 = w∗1 + λs̃ and π1 = (0, 0, 0, 1, 0, 0, 0)

⇒ π̃1 = (0, 1− q̃, 0, 0, 0, q̃, 0)

⇒ v(1) = q̃α6 + (1− q̃)α2 = q(q +
(1− q)q2

1− 2q(1− q)) +
(1− q)q3

1− 2q(1− q) = α4;

w̃2 = w∗2 + λs̃ and π2 = (0, 1− q, 0, 0, 0, 0, q, 0)

⇒ π̃2 = ((1− q)(1− q̃), 0, 0, (1− q)q̃ + q(1− q̃), 0, , 0, qq̃)

⇒ v(2) = [(1− q)q̃ + q(1− q̃)]α4 + qq̃ = 2q(1− q)α4 + q2 = α4;

w̃τ = w∗τ + λs̃ and πτ = 2q(1− q)πτ−2 + ((1− q)2, 0, 0, 0, 0, 0, q2) for τ ≥ 3

⇒ π̃τ = 2q(1− q)π̃τ−2 + ((1− q̃)(1− q)2, q̃(1− q)2, 0, 0, 0, (1− q̃)q2, q̃q2)

⇒ v(τ) = 2q(1− q)v(τ − 2) + q̃(1− q)2α2 + (1− q̃)q2α6 + q̃q2 =

2q(1− q)v(τ − 2) + (1− q)qα4 + q3 > 2q(1− q)v(τ − 2) + q2

⇒ sgn(v(τ + 1)− v(τ)) = sgn(v(τ − 1)− v(τ − 2)).

If v(τ − 2) ≥ α4 ⇒ v(τ) > 2q(1− q)v(τ − 2) + q2 ≥ α4

⇒ v(4) = v(3) > v(2) = v(1) = α4.

Recursively we have α4 = v(1) = v(2) < v(3) = v(4) < v(5) = v(6) < · · · .
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Case III ( 1 < λ < 2⇔ q < q̃ < q2

q2+(1−q)2 = α4)

w̃1 = w∗1 + λs̃ and π1 = (0, 0, 0, 1, 0, 0, 0)

⇒ π̃1 = (1− q̃, 0, 0, 0, 0, 0, q̃)

⇒ v(1) = q̃ < α4;

w̃2 = w∗2 + λs̃ and π2 = (0, 1− q, 0, 0, 0, 0, q, 0)

⇒ π̃2 = ((1− q)(1− q̃), 0, q(1− q̃), 0, (1− q)q̃, 0, qq̃)

⇒ v(2) = (1− q)q̃α5 + q(1− q̃)α3 + qq̃ =
2q(1− q)q̃ + q3

1− q(1− q)

⇒ v(2)− v(1) =
q3(1− q̃)− (1− q)3q̃

1− q(1− q) > 0 as q̃ < α4 <
q3

q3 + (1− q)3
;

w̃τ = w∗τ + λs̃ and πτ = 2q(1− q)πτ−2 + ((1− q)2, 0, 0, 0, 0, 0, q2) for τ ≥ 3

⇒ π̃τ = 2q(1− q)π̃τ−2 + ((1− q̃)(1− q)2, 0, q̃(1− q)2, 0, (1− q̃)q2, 0, q̃q2)

⇒ v(τ) = 2q(1− q)v(τ − 2) + q̃(1− q)2α3 + (1− q̃)q2α5 + q̃q2

⇒ sgn(v(τ + 1)− v(τ)) = sgn(v(τ − 1)− v(τ − 2)).

v(3) = 2q(1− q)v(1) + q̃(1− q)2α3 + (1− q̃)q2α5 + q̃q2 with v(1) = q̃

⇒ v(3)− v(2) = q(1− q)q̃ − q̃(1− q)q = 0⇒ v(3) = v(2) > v(1).

Recursively we have v(1) < v(2) = v(3) < v(4) = v(5) < v(6) < · · · . As the sequence

{v(τ)}∞τ=1 is weakly monotonic and bounded between 0 and 1, limτ→∞ v(τ) exists and it

satisfies

lim
τ→∞

v(τ) = 2q(1− q) lim
τ→∞

v(τ) + q̃(1− q)2α3 + (1− q̃)q2α5 + q̃q2

⇒ lim
τ→∞

v(τ) =
q̃(1− q)2α3 + (1− q̃)q2α5 + q̃q2

1− 2q(1− q) >

q(1− q)2α3 + (1− q)q2α5 + q3

1− 2q(1− q) >
q2

1− 2q(1− q) = α4.

Thus ∃T <∞ s.t. v(T ) > α4.
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Case IV (λ = 2⇔ q̃ = q2

q2+(1−q)2 = α4)

Similar to Case III, we have v(1) = q̃ = α4;

w̃2 = w∗2 + λs̃ and π2 = (0, 1− q, 0, 0, 0, 0, q, 0)

⇒ π̃2 = ((1− q)(1− q̃), q(1− q̃), 0, 0, 0, (1− q)q̃, qq̃)

⇒ v(2) = (1− q)q̃α6 + q(1− q̃)α2 + qq̃ = (1− q)α4α6 + q(1− α4)α2 + qα4 =

α4[α4 + 2q(1− α4)] > α4;

w̃τ = w∗τ + λs̃ and πτ = 2q(1− q)πτ−2 + ((1− q)2, 0, 0, 0, 0, 0, q2) for τ ≥ 3

⇒ π̃τ = 2q(1− q)π̃τ−2 + ((1− q̃)(1− q)2, 0, 0, q̃(1− q)2 + (1− q̃)q2, 0, 0, q̃q2)

⇒ v(τ) = 2q(1− q)v(τ − 2) + [q̃(1− q)2 + (1− q̃)q2]α4 + q̃q2

⇒ sgn(v(τ + 1)− v(τ)) = sgn(v(τ − 1)− v(τ − 2)).

v(3) = 2q(1− q)v(1) + [q̃(1− q)2 + (1− q̃)q2]α4 + q̃q2 with v(1) = q̃ = α4

⇒ v(3) = [2q(1− q) + α4(1− q)2 + (1− α4)q2 + q2]α4 = v(2) > v(1).

Recursively we have α4 = v(1) < v(2) = v(3) < v(4) = v(5) < v(6) = · · · .

Case V ( 2 < λ < 3⇔ α4 = q2

q2+(1−q)2 < q̃ < q3

q3+(1−q)3 )

Similar to Case III, we have v(1) = q̃ > α4;

w̃2 = w∗2 + λs̃ and π2 = (0, 1− q, 0, 0, 0, 0, q, 0)

⇒ π̃2 = ((1− q̃), 0, 0, 0, 0, 0, q̃)

⇒ v(2) = q̃ = v(1);

w̃τ = w∗τ + λs̃ and πτ = 2q(1− q)πτ−2 + ((1− q)2, 0, 0, 0, 0, 0, q2) for τ ≥ 3

⇒ π̃τ = 2q(1− q)π̃τ−2 + ((1− q̃)(1− q)2, 0, (1− q̃)q2, 0, q̃(1− q)2, 0, q̃q2)

⇒ v(τ) = 2q(1− q)U(τ − 2) + q̃(1− q)2α5 + (1− q̃)q2α3 + q̃q2

⇒ sgn(v(τ + 1)− v(τ)) = sgn(v(τ − 1)− v(τ − 2)).

v(3) = 2q(1− q)v(1) + q̃(1− q)2α5 + (1− q̃)q2α3 + q̃q2 with v(1) = q̃

⇒ v(3)− q̃ = −(1− q)2q̃ + α5(1− q)2q̃ + (1− q̃)α3q
2 =

q4(1− q̃)− (1− q)4q̃

1− q(1− q) > 0

⇒ v(3) > q̃ = v(2) = v(1).
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Recursively we have α4 < v(1) = v(2) < v(3) = v(4) < v(5) = v(6) < · · · .

Case VI (λ = 3⇔ q̃ = q3

q3+(1−q)3 )

Similar to Case V, we have v(1) = v(2) = q̃ > α4;

w̃τ = w∗τ + λs̃ and πτ = 2q(1− q)πτ−2 + ((1− q)2, 0, 0, 0, 0, 0, q2) for τ ≥ 3

⇒ π̃τ = 2q(1− q)π̃τ−2 + ((1− q̃)(1− q)2, (1− q̃)q2, 0, 0, 0, q̃(1− q)2, q̃q2)

⇒ v(τ) = 2q(1− q)v(τ − 2) + q̃(1− q)2α6 + (1− q̃)q2α2 + q̃q2

⇒ sgn(v(τ + 1)− v(τ)) = sgn(v(τ − 1)− v(τ − 2)).

v(3) = 2q(1− q)v(1) + q̃(1− q)2α6 + (1− q̃)q2α2 + q̃q2 with v(1) = q̃

⇒ v(3)− q̃ = −(1− q)2q̃ + α6(1− q)2q̃ + (1− q̃)α2q
2 =

q5(1− q̃)− (1− q)5q̃

1− 2q(1− q) > 0

⇒ v(3) > q̃ = v(2) = v(1).

Recursively we have α4 < v(1) = v(2) < v(3) = v(4) < v(5) = v(6) < · · · .

Case VII (λ > 3⇔ q̃ > q3

q3+(1−q)3 )

∀τ ≥ 1, w̃τ = w∗τ + λs̃ with |w∗τ | ≤ 2 by Lemma 2.2.1

⇒ |w̃τ | > 1 and sgn(w̃τ ) = sgn(s̃) as λ > 3

⇒ π̃τ = ((1− q̃), 0, 0, 0, 0, 0, q̃)

⇒ v(τ) = q̃ > α4.

Thus we have α4 < v(1) = v(2) = v(3) = v(4) = · · · .

Proof of Proposition 2.2.2. Firstly, note that before the period when the social planner

would release the signal according to his releasing strategy, the equilibrium public belief

w∗t still evolves according to Lemma 2.2.1 and w∗t ∈ {−2,−1, 0, 1, 2}. Thus for the social

planner, whether to release the public signal or not depends on just five scenarios:

wt = 2s̃, wt = s̃, wt = 0, wt = −s̃, wt = −2s̃.

Note also that once the public signal is released or fully inferred by the agents, the
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subgame after that is just the standard case without public information but with an

initial public belief ŵt = w∗t + λs̃, and social welfare is just p(ŵt) according to Lemma

2.2.3 as a herd starts eventually.

Suppose agents believe g(s̃, wt) = 0 is the releasing strategy of the social planner:

If w∗t = ±2s̃

⇒ releasing s̃ would not break down the herd since 0 < λ < 1

⇒ makes no difference.

If w∗t = 0

⇒ releasing s̃ makes ŵt = λs̃

⇒ g(λs̃) = q̃α5 + (1− q̃)α3 < α4 as q̃ < q;

without release, ŵt = w∗t = 0

⇒ g(0) = α4 ⇒ not a profitable deviation.

If w∗t = s̃

⇒ releasing s̃ makes ŵt = (λ+ 1)s̃

⇒ p(ŵt) =
q̃q

q̃q + (1− q)(1− q̃)α7 +
(1− q̃)(1− q)

q̃q + (1− q)(1− q̃)α1 =
q̃q

q̃q + (1− q)(1− q̃) ;

without release, ŵt = w∗t = s̃

⇒ p(ŵt) =
q̃q

q̃q + (1− q)(1− q̃)α6 +
(1− q̃)(1− q)

q̃q + (1− q)(1− q̃)α2

>
q̃q

q̃q + (1− q)(1− q̃) as q̃ < q

⇒ not a profitable deviation.
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If w∗t = −s̃

⇒ releasing s̃ makes ŵt = (λ− 1)s̃

⇒ p(ŵt) =
q̃(1− q)

q̃(1− q) + q(1− q̃)α3 +
q(1− q̃)

q̃(1− q) + q(1− q̃)α5;

without release, ŵt = w∗t = −s̃

⇒ p(ŵt) =
q̃(1− q)

q̃(1− q) + q(1− q̃)α2 +
q(1− q̃)

q̃(1− q) + q(1− q̃)α6;

q̃(1− q)
q̃(1− q) + q(1− q̃)(α2 − α3)− q(1− q̃)

q̃(1− q) + q(1− q̃)(α5 − α6)

=
q

q̃(1− q) + q(1− q̃)
q

1− q(1− q)
(1− q)2

1− 2q(1− q) [q2(1− q̃)− q̃(1− q)2]

> 0 as q̃ <
q2

q2 + (1− q)2

⇒ not a profitable deviation.

Therefore g1(s̃, wt) = 0 is indeed an equilibrium strategy of the social planner.

Suppose agents believe g(s̃, wt) = 1{wt=±2s̃} is the releasing strategy of the social

planner:

If releasing, ŵt = w∗t + λs̃ and |ŵt| > 1

⇒ p(ŵt) = sgn(ŵt) = sgn(w∗t );

if no release

⇒ by Bayes Rule, ŵt = w∗t − λs̃ and |ŵt| > 1

⇒ p(ŵt) = sgn(ŵt) = sgn(w∗t )

⇒ makes no difference;

if not to release when w∗t = ±2s̃ but releasing later at t′ > t

⇒ by Bayes Rule, ŵk = w∗t − λs̃ and |ŵk| > 1 for k = t, t+ 1, . . . , t′ − 1,

ŵt′ = ŵt′−1 + 2λs̃ = w∗t + λs̃ and |ŵt′| > 1

⇒ p(ŵt′) = sgn(ŵt′) = sgn(w∗t )

⇒ makes no difference.

Note that to release earlier at t′′ < t when |wt′′ | ≤ 1 is also not profitable because the

original strategy at t′′ is not to release until wt = ±2s̃ later, which is equivalent to not to
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release at all since λ < 1 and has been shown above to give better outcome. Therefore

g3(s̃, wt) = 1{wt=±2s̃} is indeed an equilibrium strategy of the social planner.

Suppose agents believe g(s̃, wt) ≡ 1{wt=0} is the releasing strategy of the social planner:

If releasing, ŵt = λs̃

⇒ p(ŵt) = q̃α5 + (1− q̃)α3 < α4;

if no release at all

⇒ by non-excessive belief, ŵt = 0 and p(0) = α4;

⇒ it is a profitable deviation.

Therefore g(s̃, wt) ≡ 1{wt=0} is not an equilibrium strategy of the social planner.

Suppose agents believe g(s̃, wt) = 1{wt=s̃} is the releasing strategy of the social planner:

If releasing, ŵt = (1 + λ)s̃

⇒ p(ŵt) =
q̃q

q̃q + (1− q)(1− q̃) ;

if no release

⇒ by Bayes Rule, ŵt = (1− λ)s̃

⇒ p(ŵt) =
q̃q

q̃q + (1− q)(1− q̃)α5 +
(1− q̃)(1− q)

q̃q + (1− q)(1− q̃)α3

>
q̃q

q̃q + (1− q)(1− q̃) as q̃ < q

⇒ it is a profitable deviation.

Therefore g(s̃, wt) = 1{wt=s̃} is not an equilibrium strategy of the social planner.

Suppose agents believe g(s̃, wt) = 1{wt=−s̃} is the releasing strategy of the social plan-
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ner:

If releasing, ŵt = (λ− 1)s̃

⇒ p(ŵt) =
q̃(1− q)

q̃(1− q) + q(1− q̃)α3 +
q(1− q̃)

q̃(1− q) + q(1− q̃)α5;

if no release

⇒ by Bayes Rule, ŵt = −(1 + λ)s̃

⇒ p(ŵt) =
q̃(1− q)

q̃(1− q) + q(1− q̃)α1 +
q(1− q̃)

q̃(1− q) + q(1− q̃)α7

=
q(1− q̃)

q̃(1− q) + q(1− q̃) <
q̃(1− q)

q̃(1− q) + q(1− q̃)α3 +
q(1− q̃)

q̃(1− q) + q(1− q̃)α5 as q̃ < q

⇒ not a profitable deviation;

if not to release when wt = −s̃ but releasing later at t′ > t

⇒ by Bayes Rule, ŵk = −(1 + λ)s̃ for k = t, t+ 1, . . . , t′ − 1 and

ŵt′ = ŵt′−1 + 2λs̃ = (λ− 1)s̃

⇒ p(ŵt′) =
q̃(1− q)

q̃(1− q) + q(1− q̃)α3 +
q(1− q̃)

q̃(1− q) + q(1− q̃)α5 ⇒ makes no difference;

if instead releasing earlier at t′′ < t when wt′′ = 0

⇒ ŵt′′ = λs̃ and p(ŵt′′) = q̃α5 + (1− q̃)α3;

at t′′ the original strategy is not to release until wt = −s̃ later

⇒ agents can perfectly infer s̃ at t′′ + 1 since wt′′+1 = ±1

⇒ ŵt′′+1 = wt′′+1 + λs̃ and

p(ŵt′′+1) = q̃[qα7 + (1− q)α3] + (1− q̃)[qα5 + (1− q)α1] = q̃α5 + (1− q̃)α3

⇒ makes no difference;

if instead releasing earlier at t′′′ < t when wt′′′ = s̃

⇒ ŵt′′′ = (1 + λ)s̃ and p(ŵt′′′) =
q̃q

q̃q + (1− q)(1− q̃) ;

at t′′′ the original strategy is not to release but agents can infer s̃ = wt′′′

⇒ makes no difference.

Therefore g(s̃, wt) = 1{wt=−s̃} is indeed an equilibrium strategy of the social planner.
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Proof of Claim 2.3.1. We start by calculating the discounted sum of people’s expected

payoffs without any public information, V . Without loss of generality, we assume θ = 1

and use EUt ≡ Eu(a∗t ; θ = 1) to simplify the notation. Then V = (1− δ)
∑∞

t=1 δ
t−1EUt.

Recursive calculation similar to the proof of Proposition 2.2.1 yields

EU1 = EU2 = q,

EU3 = EU4 = q2 + 2q(1− q)EU1,

· · ·

EU2k+1 = EU2k+2 = q2 + 2q(1− q)EU2k−1.

Hence

EU2k+1 = [2q(1− q)]k[q − q2

(1− q)2 + q2
] +

q2

(1− q)2 + q2
;

V = (1− δ)
∞∑
k=0

(δ2k + δ2k+1)EU2k+1 =
δ2q2 + (1− δ2)q

1− δ22q(1− q)
> q.

If the public signal is released at period 1,

EU1 = q,

EU2 = EU3 = q2 + 2q(1− q)EU1,

· · ·

EU2k = EU2k+1 = q2 + 2q(1− q)EU2k−1.

Compared to the case without public information, we have

V (1) =
V − (1− δ)q

δ
> V as V > q.

Clearly there is no difference between releasing at period 1 and at period 2, so V (2) =

V (1) > V .
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If the public signal is released at period 3,

EU1 = EU2 = q;

with probability q3, a correct herd starts after the release;

with probability (1− q)3, a wrong herd starts after the release;

with probability 3q(1− q), it is as if only the public signal is released for agents t ≥ 3.

Hence

V (3) = (1− δ)(q + δq) + (1− δ)q3 δ2

1− δ + 3q(1− q)δ2V (1)

= (1− δ2)q + q3δ2 + 3q(1− q)δ2V (1).

If the public signal is released at period 4,

EU1 = EU2 = q; EU3 = q2 + 2q(1− q)EU1;

with prob. q3, a correct herd starts after the release;

with prob. (1− q)3, a wrong herd starts after the release;

with prob. q(1− q), it is as if only the public signal is released for agents t ≥ 4.

with prob. 2q(1− q), the public signal is as if released after one action for agents t ≥ 4.

Hence

V (4) = (1− δ)(q + δq + δ2q2) + (1− δ)q3 δ3

1− δ + q(1− q)δ3V (1) + 2q(1− q)δ2V (2)

= (1− δ2)q + (1− δ)δ2q2 + q3δ3 + 2q(1− q)(δ2 +
δ3

2
)V (1).

Therefore,

V (3)− V (4) = q3δ2(1− δ)− (1− δ)δ2q2 + q(1− q)δ2(1− δ)V (1)

= q(1− q)δ2(1− δ)[V (1)− q] > 0 as V (1) > V > q.
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Proof of Claim 2.3.2. Note that there would still be a herd eventually due to bounded

private beliefs, so the ex-ante average payoff of the population is again the probability of

a correct herd eventually.

Let us first calculate G, the probability of a correct herd eventually without any public

information. Using similar recursive arguments as in the proof of Proposition 2.2.1 but

with more tedious algebra, we have

G = 6q(
1− q

2
)2G+ q2 + 4q

1− q
2

q
1 + q

2
+ 4q2(

1− q
2

)2(A+B),

where A and B are given by A = q 1+q
2

+ q 1−q
2
A+ (1− q)qB

B = (1+q
2

)2 + 1+q
2

1−q
2
A+ 1−q

2
qB

.

A and B are in fact the probabilities of a correct herd conditional on the event that a

trap has started corresponding to two different tie-breaking situations.

It is easy to see that G(1) = G(2) = G, because without the public signal the first

two agents always follow their own private signals and releasing s̃ is just "adding" an

agent who always follow her signal, which does not affect social welfare from an ex-ante

perspective. By exploring all possible situations of the first two actions, the value of G(3)

can be calculated as follows:

G(3) = q2[q + 2
1− q

2
(
1 + q

2
+

1− q
2

A)] + 2(
1− q

2
)2q2B

+2(
1− q

2
)2qG+ 4q

1− q
2

[q(
1 + q

2
+

1− q
2

A) +
1− q

2
G+

1− q
2

qB]

⇒ G(3)−G = q2(1− q)[1 + q

2
+

1− q
2

(A+B)− 1] > 0 as A+B > 1.

For G(4) and G(5), if the first three actions cancel each other then it is as if the public

signal were released three periods earlier; otherwise either a trap or a herd starts and
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calculations similar to those above can be applied. Indeed we have

G(4) = 6q(
1− q

2
)2G(1) + 2q2(

1− q
2

)2B + q2[q + 2
1− q

2
(
1 + q

2
+

1− q
2

A)]

+4q3 1− q
2

+ 4q2(
1− q

2
)2A

+4q2(
1− q

2
)2[q + 2

1− q
2

(
1− q

2
G+

1− q
2

qB + q
1 + q

2
+ q

1− q
2

A)]

+4(
1− q

2
)3q[

1− q
2

qG+ q(
1− q

2
G+

1− q
2

qB + q
1 + q

2
+ q

1− q
2

A)]

+4(
1− q

2
)2q{qB +

1− q
2

[
1− q

2
qG+ q(

1− q
2

G+
1− q

2
qB + q

1 + q

2
+ q

1− q
2

A)]};

G(5) = 6q(
1− q

2
)2G(2) + 2q2(

1− q
2

)2B + q2[q + 2
1− q

2
(
1 + q

2
+

1− q
2

A)]

+4(
1− q

2
)3 1− q

2
q2G

+4(
1− q

2
)q2 1− q

2
(q

1 + q

2
+ q

1− q
2

A+ q
1− q

2
B +

1− q
2

C)

+4(
1− q

2
)q2 1 + q

2
[q +

1− q
2

+
1− q

2
(
1− q

2
A+

1− q
2

)]

+4(
1− q

2
)2q[q(q

1 + q

2
+ q

1− q
2

A+
1− q

2
qB +

1− q
2

C) + (1− q)q2B],

where C ≡ 1−q
2
G+ q 1+q

2
+ q 1−q

2
A+ 1−q

2
qB.

It can be verified that

sgn(G(4)−G(5)) = sgn(q2(A+B − 1) + 3
1− q

2
(1−G)− 1 + q

2
).

When q = 1 or 1
3
,

A = B = G = 1 or
1

3

⇒ q2(A+B − 1) + 3
1− q

2
(1−G)− 1 + q

2
= 0;

Meanwhile, q2(A+B − 1) + 31−q
2

(1−G)− 1+q
2
is in fact convex in q on (1

3
, 1), therefore

q2(A+B − 1) + 3
1− q

2
(1−G)− 1 + q

2
> 0 and G(4) > G(5).
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3 Learning and Price Dynamics in Durable Goods

Markets

A durable good provides a private use value to its user, and it is eventually resold in

a secondary market. This paper analyzes what determines different learning and price

dynamics in durable goods markets. Our model includes three main features: (i) buyers

have heterogeneous private use values and a common expected resale horizon; (ii) an

unobservable and time-varying aggregate state determines the distribution of use values

in the population; and (iii) trade takes place in markets with a limited number of buyers.

Informational frictions slow down learning and affect price movements asymmetrically in

high and low aggregate states. We disentangle two sources of price variability. Idiosyn-

cratic volatility is prevalent in markets with very heterogenous use values, a long resale

horizon and a small number of buyers. Aggregate volatility mirrors the sensitivity of

prices to new price information, and it weights more when the resale motive dominates,

i.e., for goods with short resale horizons, significant persistence of the aggregate state,

and similar use values.
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3.1 Introduction

Since the initial contribution of Hayek (1945), a vast literature in economic theory has

been studying how the price system aggregates dispersed private information. No social

planner has access to all available information, and in a market-based economy prices

have the fundamental of influencing decisions by consumers, firms and governments. How

information is incorporated into asset prices is the main focus of the Rational Expectation

literature, and one of the most debated topics in finance.

Although there is a vast asset pricing literature on financial securities, less attention

has been devoted to price patterns in durable goods markets. Notable examples are real-

estate, machineries, automotive, but also artwork, collectibles and musical instruments.

These goods provide a private use value to users, but they are often resold on the market

after some time. Durable goods represent a sizeable portion of household and corporate

balance sheets, and as such they play a central role in the economy as consumption goods,

production inputs or pledgeable collateral. Many papers focus on a specific market–

especially real-estate and vehicles– and try to match a few empirical facts, either with

a rather specific model, or with a slight adaptation of a workhorse asset pricing model.

In the former case, the results cannot be applied sic et simpliciter to other markets that

share few similarities; in the second case, models overlook some specific– but potentially

relevant– market features.67

In this paper we broadly focus on durable goods– a suffi ciently large class of assets–

and we study how a few common characteristics affect learning and information aggrega-

tion. Our model does not pretend to match precise price patterns for a specific market,

but it rather aims to highlight a few economic mechanisms common to all durable goods

markets.68

We develop a dynamic trading model with time-varying and unobservable aggregate

demand conditions. Our framework explicitly considers two peculiar characteristics of

durable goods. First, they trade in decentralized markets where sellers enter into private

67An example of this dihcotomic approach is the real estate literature. Some authors use Lucas-type
models and derive estimates for risk and liquidity premia, other papers set up search and matching
models including a rental sector, geographic dispersion, and private use values.
68We do not deal with any specific price puzzle, and we actually exclude a priori the existence of risk

premia by assuming agents’risk neutrality. Our main focus is on information.
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negotiations with a limited number of potential buyers. Second, they provide utility as

consumption goods until re-sold to a different user at a future point in time.69 There

exist great variation within each characteristic. On the one hand, trade decentralization

admits a large variety of trade protocols. On the other hand, the consumption vs. resale

trade-off depends on several intrinsic characteristics of the market.

Learning patterns depend on prices if the latter provide useful information on the

underlying aggregate demand. Heterogeneity in trading protocols leads to different ways

in which agents update their beliefs. These informational frictions may have different

origins: the absence of an organized trading platform, legal restrictions on information

disclosure, or bidders’ incentives to manipulate prices. We abstract from any single

source of friction and focus directly on the relationship between disclosed information

and learning dynamics. We present two main results. First, trading games revealing

coarser information sets lead to a slower learning process. Second, different trading

protocols may affect beliefs asymmetrically between high and low aggregate demand

states. In particular, when only winning bids are disclosed, beliefs tend to adjust more

rapidly when the aggregate state is low.

If the trading protocol determines which information is revealed to agents, other

intrinsic characteristics of the durable good influence its price sensitivity to new informa-

tion. We consider three main dimensions: the expected resale horizon, the persistence of

aggregate demand states, and the degree of heterogeneity in private use values. To ex-

plicitly solve the model, we assume sellers trade via second-price auctions. Thanks to an

analytic solution for the bidding strategy, we obtain several comparative statics results.

First, prices respond more to new information when buyers have more similar private

use values. Second, a longer expected resale horizon increases the relative importance

of private use values vis-á-vis future resale prices. Similarly, price sensitivity is larger

when aggregate states are more persistent. Lastly, price volatility can be decomposed

into two factors: idiosyncratic and aggregate. The former depends on the heterogeneity

in buyers’use values, and it is driven by the consumption motive. The latter captures

price sensitiveness to current information, and it depends on the interest in forecasting

69Other products may share the same two features. We explicitly refer to durable goods just to focus
our attention on a relevant set of markets which possess these broad characteristics.
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future prices.

Despite theoretical in nature, we believe our paper points out a few general ideas with

a broad range of potential applications. For example, suppose a credit offi cer has to decide

on the loan terms applied to two otherwise identical customers with different collateral

goods: one has an classic car, and the other one a modern corporate car. Which car is the

less risky collateral? To answer this question, it might be a good idea to understand who

participates in these markets, and for what purpose. Classic cars are mostly bought for

their subjective use value, and usually resold after a long time. On the contrary, buyers

of corporate cars have similar use values and a fast car turnover, and they significantly

care about the future resale price. Our model provides a framework to explain how these

different characteristics affect price volatility.

Overview of the model and results. We briefly sketch our model setup to discuss

our results in more detail. Trade takes place through a sequence of trading rounds with

N bidders. Aggregate market conditions in period t depend on the distribution of private

values from which individual bidders are sampled. In particular, their per-period use

value in period t come from one of two possible distribution functions Fθt , θt ∈ {H,L}.

The state of the world θt is never publicly revealed, and it varies overtime according to a

Markov process with state persistence ρj, j = H,L. Unless θt realizations are independent

overtime, the observable public history provides information on the likelihood of future

states of the world. Private use values have a double role: (i) they measure individual

benefits from enjoying the good; and (ii) they provide information on the underlying state

of the world. A winning bidder resells his good at a future random time: he faces an

α ≤ 1 probability to sell his good in the next period. Higher values of α denote shorter

resale horizons.70 An owner enjoys his individual use value until resale. For simplicity,

losing bidders and sellers go out of the market with no future possibility of re-entering.

The aggregate state θt may be considered as a reduced form to capture all those

elements such as fashion, business and credit cycles that affect, at a given point in time,

the willingness to purchase the good among agents in the population. It is often diffi cult

to directly observe this state and we assume buyers only observe previous transaction

70α could be interpreted as the likelihood of being hit by a liquidity shock that forces the owner to sell
the object.
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prices. For example, a real-estate buyer may collect information on past prices in a local

market but he may not have (or be able to process) information on unsuccessful bids, or

on the real-estate market at large.

Our setup captures a few characteristics of market demand that widely vary across

durable goods. The parameter α is a reduced form to capture the expected resale horizon

for the good. The state persistence parameter ρ measures how likely an aggregate state

will persist in future periods; lower values of ρH and ρL denote a more volatile aggregate

environment. The distributions Fθ describe a more or less dispersed distribution of private

use values among agents in the economy. Finally, the number of bidders N provides a

measure of market competition, but also, to a certain extent, market liquidity. Thanks

to an explicit characterization of the bidding function it is possible to derive analytically

some general comparative statics results, and it would be straightforward to simulate

other statistical properties for specific functional forms Fθ.

In Section 3.2 we discuss how differences in the information revealed through prices

affect learning dynamics. The more information is disclosed by a trade protocol, the

faster beliefs converge to the true state. In this respect, durable goods markets may

exhibit a more sluggish price adjustment process relative to a centralized market.71 The

second result is less intuitive. In general, the speed of learning differ between high and

low aggregate states. This asymmetry depends on the information revealed by the trade

protocol. For example, a first-price auction reveals the highest valuation among the N

bidders. In this case, learning is faster in the low state because low prices are more

informative in revealing the underlying aggregate demand state.72

In Section 3.3 we assume– for reasons of analytical tractability– that the object is sold

in a sequence of second-price auctions.73 Prices are more sensitive to new information

in markets in which: (i) the resale horizon is shorter (α ↑); (ii) the expected demand

between high and low aggregate states is larger; (iii) the current state of market demand

is more likely to last longer (ρj ↑). Under these circumstances, sellers weight more the
71For example, in a modern stock exchange dealers’price quotes and traders’limit orders can be freely

observed in real time by all market participants. Without strategic price manipulation markets disclose
all private information.
72An analogous, but opposite, logic would hold if the lowest valuation among N bidders were revealed.
73In a second-price auction, players do not engage in strategic price manipulation: the optimal bidding

strategy truthfully reveals private signals. In other auction formats– such as the first-price auction–
manipulative incentives may arise, and the equilibrium analysis becomes analytically intractable.
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informational content of recent prices, which is more effective in predicting future resale

values. Price variability can be decomposed into two different components. The first one

reflects the heterogeneity in private use values, and it has a purely idiosyncratic nature.

The second type of uncertainty is over future market conditions. A decrease in the resale

horizon (α ↑) increases the aggregate variability component, decreasing the idiosyncratic

one; thus, the overall effect is ambiguous. An increase in state persistence (ρj ↑) does not

affect the idiosyncratic variance, and it increases the variability due to the future resale

component.

Related literature. This work is closely related to the literature on learning in

asset pricing models; see Timmermann (1993) for an early reference. This strand of

literature argues that learning may explain some classic asset pricing puzzles (equity

premium, risk-free rate and excess-volatility). Weitzman (2007) considers a Bayesian

framework with risk-averse preferences, while Ju and Miao (2012) introduce ambiguity

aversion as an additional explanatory factor. Compared to this literature, we focus more

on the different microeconomic determinants of price dynamics, and we abstract from

any discussion on risk premia by assuming risk neutral preferences.

This work is also related to the literature on auctions with resale. A small number of

papers study this topic in a two-period setting. Gupta and Lebrun (1999) consider a setup

in which private values are publicly revealed in the second period. Haile (2001, 2003)

study the revenue performance of different auction formats in a symmetric environment.

In his model, bidders’initial types come from the same initial distribution but they are not

publicly announced in the second period. Within a similar symmetric environment, Zheng

(2002) and Lebrun (2012) provide conditions to obtain the optimal auction outcomes first

derived in Myerson (1981).74 Differently from this literature, we do not assume that the

same set of bidders re-trades in future periods. The latter case is important for industries

in which market players rarely change overtime, and manipulative incentives may arise

when the same goods are re-traded among the same set of bidders.75 However, in many

durable goods markets this type of strategic interaction seems less relevant. For example,

74Lebrun (2012) extend the results in Zheng (2002) for the symmetric environment, and it provides
results for a specific class of asymmetric environments. Garratt and Tröger (2006), Halafir and Krishna
(2008) and Virag (2013) provide additional results for asymmetric environments.
75For example, government concessions in telecommunications, oil, electricity.
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in the real-estate market, buyers and sellers often do not have any previous information

on the identity of their counterpart.76

The next section discusses some general results on public/social learning. Section 3.3

presents and solves the dynamic auction model, and provides some comparative statics

analysis. Section 3.4 concludes. All proofs are in the Appendix.

3.2 Information Revelation and Learning

3.2.1 Model Setup

We consider a sequential market for a durable object. Time is discrete t ∈ {0, 1, 2, . . .}.

In each period t, there is an underlying state θt ∈ {H,L}. The stochastic process {θt}∞t=0

is a homogenous Markov process with transition matrix:

P =

 ρH 1− ρH
1− ρL ρL


with 0 ≤ ρH , ρL ≤ 1. The prior on θt is denoted by πt = (πt, 1−πt) with πt ≡ P(θt = H).

There is a population of infinitely many agents interested in the object. When an

object is offered on sale, N ≥ 2 agents are randomly drawn from the population to

enter the market. Each buyer attaches a private use value to the object. The private

values generated in each period t, {vit}Ni=1, are i.i.d. distributed according to a cumulative

density function (cdf) Fθt across the N agents. The realizations of {θt}∞t=0 are not known

to the agents, but both P and π0 are common knowledge.

Both FH and FL are continuously differentiable on the common support [0, 1]. More-

over, the corresponding probability density function (pdf) fH and fL are strictly positive

everywhere on [0, 1], and satisfy the monotone likelihood ratio (MLR) property: fH(·)
fL(·) is

strictly monotone on [0, 1].

76Similar to our model, in some Australian cities a significant portion of home sales take place via auc-
tions: www.bloomberg.com/news/2013-04-23/australia-turns-to-auctions-as-housing-revives
-mortgages.html
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3.2.2 Public Beliefs Dynamics

The information revealed in a trading round depends on the trade protocol. For example,

there is a substantial difference between auctions and centralized exchanges, but there

are also significant differences among auction formats. In this subsection, we abstract

from a specific trade protocol, and we directly consider the information revealed after a

trading round.77

Consider a vector Xk = {v1,k, ..., vN,k} of private signals dispersed among N traders.

We assume the trade protocol leads to publicly observe a statistic T (Xk). T (·) is assumed

not to depend on the previous history of the game, hence it is invariant in all periods

k. In other words, the statistic T captures which information in the vector of private

valuations Xk possessed by the N bidders in period k is publicly revealed after trade.78

It is an equilibrium object because it depends on the trade protocol and players’strategies.

It implicitly incorporates both informational constraints, due to the market organization,

and informational frictions, due to players’strategic behaviour.

We explore two different issues related to learning. First, we provide a suffi cient

condition that ranks which statistic leads to a faster public belief convergence towards

the true state. Second, we analyze whether a particular T leads to a more rapid price

adjustment in one of the two states of the world. For these purposes, we restrict attention

to the full persistence case ρH = ρL = 1.

Consider a probability space 〈RN ,B, µ〉 endowed with the standard Borel σ-algebra

and Lebesgue probability measure. Let a measurable function Ti : RN → RM ,M ≤ N be

an observable statistic of the underlyingXk = {v1,k, ...vN,k} and let σ(Ti) be the σ-algebra

generated by Ti. We denote with SX the support of X.

Definition 3.1 Tj is coarser than Ti if σ(Tj)⊂σ(Ti) and ∃A∈σ(Ti) s.t. A /∈σ(Tj) and

µ(A)> 0.

For a statistic T let ST denote its support and CT (A) ≡
⋃
y∈A

{
X ∈ RN : T (X) = y

}
the set of counter images of A ⊆ ST .

77In Section 3.3, we solve a specific model where agents participate in second-price auctions. In this
section, we adopt a more general approach to point out a few general properties of learning dynamics.
78For example, in Section 3.3 the second-highest price is publicly revealed and in equilibrium buyers

infer the corresponding private value, hence T (Xk) = v
(2,N)
k .
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We use this general notation to express public belief dynamics under different trade

protocols. Let fTθ (y) be the probability density function of statistic T under state θ ∈

{H,L}. Formally,

fTθ (y) =

∫
CT (y)

fXθ (x) dµ(x)

It is easier to describe the evolution of public beliefs with the log-likelihood ratio:

lk+1(lk, yk) = ln
πκ+1

1− πκ+1

= ln
πκ

1− πκ
fTH(yk)

fTL (yk)
= lk + ln

fTH(yk)

fTL (yk)
(1)

where yk = T (xk) is the value of statistic T when the vector of private use values for the

N bidders in period k is xk ∈ RN . To stress that the log-likelihood lk depends on T ,

we add a superscript T . Let ∆lTk+1(yk) = lTk+1(lTk , yk) − lTk = ln
fTH(yk)

fTL (yk)
denote the change

in the log-likelihood ratio from period k to k + 1 under statistic T . Assume there exists

M > 0 such that |∆lT (x)| < M for every x ∈ SX .

For q ≥ 1 equation (1) generalizes into:

lTk+q = lTk +

q∑
m=1

∆lTk+m(yk+m−1)

Taking the expected value:

EXk,θ[lTk+q] = lTk +

q∑
m=1

EXk,θ
[
∆lTk+m(T (xk+m−1))

]
= lTk + qEXθ

[
∆lT (T (x))

]
The last equation exploits the fact that– conditional on θ– samples are i.i.d. in all peri-

ods. In the remainder of the paper, we simply use Eθ
[
∆lT

]
rather than EXθ

[
∆lT (T (x))

]
.

Beliefs converge to the true state as EH
[
∆lT

]
> 0 > EL

[
∆lT

]
.79 Moreover, for two

different statistics T1 and T2, public beliefs are expected to converge more rapidly to the

true state θ under statistic T1 if

∣∣Eθ [∆lT1]∣∣ > ∣∣Eθ [∆lT2]∣∣ (2)

79These inequalities follow from a simple application of Gibbs’inequality. They are strict inequalities
because of the MLR assumption earlier.
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The following claim provides an intuitive but still insightful result. If two statistics

can be ranked according to Definition 3.1, it is possible to conclude that convergence is

slower for the coarser one.

Claim 3.2.1 If T2 is coarser than T1 then equation (2) holds.

Although the result in Claim 3.2.1 is not surprising, it highlights an important prop-

erty of markets in which information is only partially revealed. More severe informational

frictions lead to more sluggish trade dynamics, and, possibly, a slower price adjustment.

A less intuitive result is that trade protocols may create differences– between high

and low states– in the speed of convergence of public beliefs. In turn, more rapid learning

is likely to be positively correlated with a more rapid price adjustment.

Claim 3.2.2 Consider a statistic T (·), and let π0 = 1/2. Define:

τH ≡ inf {k ≥ 0 : πk ≥ 1− ε} τL ≡ inf {k ≥ 0 : πk ≤ ε}

Then:
lim
ε→0

EH [τH ]
EL[τL]

≥
∣∣∣ EL[∆lT ]
EH [∆lT ]

∣∣∣ > 1 if EH [∆lT ] + EL[∆lT ] < 0;

lim
ε→0

EL[τL]
EH [τH ]

≥
∣∣∣EH [∆lT ]
EL[∆lT ]

∣∣∣ > 1 if EH [∆lT ] + EL[∆lT ] > 0.

Claim 3.2.2 points out a learning story based on the nature of the information revealed

in previous trading rounds. Compared to the ‘rockets and feathers’story, our mechanism

is likely to run the opposite way. If a trade protocol only reveals winning bids, a more

rapid adjustment should be observed downward. We discuss the intuition in the context

of an example.

Example of Claim 3.2.2. Consider pdfs fH(x) = 2x and fL(x) = 2(1−x). Suppose

the trade protocol reveals, in equilibrium, the j-th order statistic out of N bidders. The

next table summarizes the numerical values of the critical expression EH [∆lT ] +EL[∆lT ]

in Claim 3.2.2:80

80We compute it numerically as explicit integrals cannot be obtained.
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N |j 1 2 3 4 5 6 7 8 9 10

1 0

2 −0.09 0.09

3 −0.22 0 0.22

4 −0.37 −0.13 0.13 0.37

5 −0.52 −0.28 0 0.28 0.52

6 −0.68 −0.44 −0.14 0.14 0.44 0.68

7 −0.83 −0.60 −0.30 0 0.30 0.60 0.83

8 −0.99 −0.77 −0.46 −0.15 0.15 0.46 0.77 0.99

9 −1.14 −0.94 −0.63 −0.31 0 0.31 0.63 0.94 1.14

10 −1.29 −1.12 −0.80 −0.48 −0.16 0.16 0.48 0.80 1.12 1.29

The value is negative (positive) when beliefs move more rapidly toward state L (H),

as the expecting hitting time under state L (H) is shorter. The table shows that:

1. If j < N+1
2
convergence is faster towards state L.

2. If j > N+1
2
convergence is faster towards state H.

3. If j = N+1
2
, (N odd), there is no difference.

The table captures an intuitive result. If the trade protocol reveals a sequence of

higher order statistic (j < N+1
2
), low-value observations are more informative than high-

value ones, and learning in more rapid in state L.81 Fixing j and increasing the sample

size N , there is more and more asymmetry toward state L.82 Increasing the sample

size N , the j-th order statistic is relatively ‘higher’, low-value observations become more

informative, and there is a greater asymmetry towards state L. For example, if only the

winning bid is revealed, low demand states are learnt more rapidly in a large market.

In conclusion, prices are not equally informative on both aggregate states. This phe-

nomenon depends on the original distribution functions Fθ, but also on the trading pro-

tocol, and the number of market participants.

81On the contrary, if a sequence of lower order statistic (j > N+1
2 ) is revealed, high-value observations

are more informative than low-value ones, and learning is more rapid in state H.
82Alternatively, there is less asymmetry towards H as values get smaller downwards in each column.
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3.3 Dynamic Auction Model

3.3.1 Trading Protocol

Consider the model setup in Subsection 3.2.1. Now assume agents trade in second-price

auctions according to the following protocol.

1. Consider a stochastic sequence {tk}∞k=0, with t0 normalized to 0. At each tk, N new

agents enter the market, and participate in a sealed-bid second-price auction. The

winner of the auction at tk is the seller in the next available auction at tk+1.

2. The waiting time between tk+1 and tk is a random variable, which is i.i.d distributed

across k according to a geometric distribution with parameter α ∈ (0, 1]. That is,

P(4k ≡ tk+1 − tk = x) = α(1− α)x−1, ∀x ∈ N+, ∀k ∈ N.

Due to the i.i.d. feature of the waiting time, we simply call the auction at tk as

“auction k”. We also label each bidder in auction k by ik, i ∈ {1, 2, . . . , N}. Denote

his private value and bid as wik ≡ vi,tk and bik, respectively.

3. The winner of auction k resells the object at the next available auction k + 1. The

revenues from resale are discounted at rate δ per period. Meanwhile, he enjoys

his private value of the object, wik, in every period before auction k + 1, and he

discounts his utility at rate δ per period.

4. The trading price pk ≡ b
(2)
k , the second highest bid in auction k, is publicly ob-

served by the whole population before the next auction starts. There is no in-

formation generated between two adjacent auctions, other than the realization of

the waiting time in between. Hence, the information set for each bidder ik is

Iik = {wik, {pτ}τ<k, {∆τ}τ<k}.

3.3.2 Equilibrium characterization

Let b ≡ {bik}i≤N,k∈N denote the action profile of all market entrants and every bidder

ik’s payoff is given by
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uik(b;wik) = 1{bik=b
(1)
k }
· {−b(2)

k +

4k−1∑
s=0

δswik + δ∆kb
(2)
k+1}

Denote the public belief about the underlying state θ before auction k by πk =

(πk, 1− πk) with πk ≡ P(θtk = H|{pτ}τ<k).

We consider a Perfect Bayesian Equilibrium with symmetric, time-invariant and

monotone strategies. In turn, every bidder ik can restrict his attention to the infor-

mation set {vik, πk}.

Definition 3.2 A pure strategy profile b∗ ≡ {b∗ik(Iik)}i≤N,k∈N is a perfect Bayesian equi-

librium with symmetric, time-invariant and monotone strategies if

1. b∗ik(Iik) = b∗(wik;πk), ∀i, t;

2. ∂b∗(wik;πk)
∂wik

> 0, ∀wik ∈ [0, 1];

3. b∗(wik;πk) = arg max
b
E[uik(b, b

∗
−ik;wik)|wik,πk], ∀i, k;

4. πk+1 =
(

πkgH(b∗−1(pk;πk))
πkgH(b∗−1(pk;πk))+(1−πk)gL(b∗−1(pk;πk))

, (1−πk)gL(b∗−1(pk;πk))
πkgH(b∗−1(pk;πk))+(1−πk)gL(b∗−1(pk;πk))

)
P∆k

where gθ(·) is the pdf of the 2nd order statistic among N i.i.d random variables

distributed according to Fθ, ∀θ ∈ {H,L}.

The next proposition provides an explicit characterization of the equilibrium.

Proposition 3.3.1 Let ρH + ρL ≥ 1. There is a unique perfect Bayesian equilibrium

with symmetric, time-invariant and monotone strategies:

b∗(wik; πk) = 1
1−δ+αδ

{
wik + αδ

1−δ

[
cL + 1−ρL

1−δ(ρH+ρL−1)
∆c
]

+ γik
αδ(ρH+ρL−1)

1−δ(ρH+ρL−1)
∆c
}

with

1.

γik ≡
πkfH(wik)hH(wik)

πkfH(wik)hH(wik) + (1− πk)fL(wik)hL(wik)
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where hθ(·) is the pdf of the 1st order statistic among N − 1 i.i.d random variables

distributed according to Fθ, ∀θ ∈ {H,L};

2. cθ ≡
∫ 1

0
xgθ(x) dx, ∀θ ∈ {H,L}, and ∆c ≡ cH − cL.

The equilibrium bidding function b∗(wik, πk) can be decomposed in a private value

(PV) and a resale value (RV) component.

PV = wik
1−δ+αδ

RV = α
1−δ+αδ

[
δ

1−δ

(
cL + 1−ρL

1−δ(ρH+ρL−1)
∆c
)

+ γik
δ(ρH+ρL−1)

1−δ(ρH+ρL−1)
∆c
]

The private value component is the expected discounted use value of the good until

resale takes place. An increase in the expected resale horizon (α ↓) increases the private

value component but decreases the resale value component. Bidders expect to enjoy

the good for a longer time, so their use value gains importance relative to the expected

future resale price. The resale value component includes a constant term, and another

term which depends on belief γik. The latter depends on the public belief πk, and on the

private use value wik. The random variable wik enters in two distinct updating. First,

wik is a signal on the current state of the world because it comes from the common

distribution Fθ. Second, in equilibrium a winning bidder realizes that all other N − 1

bidders had lower private use values. This last updating is analogous to the inference

carried out by a winning bidder in a static common value auction. In this respect, our

model may offer a dynamic micro-foundation of a static common value auction. The

future resale price is at the root of the interdependence among bidders’valuations.

3.3.3 Comparative statics

In this subsection we carry out a few comparative statics exercises to highlight the main

determinants of different price dynamics.

The sensitiveness of b∗(wik, πk) with respect to γ can be measured through a simple
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elasticity measure:

ηbγ :=
γ

b

∂b

∂γ
=

γ αδ(ρH+ρL−1)
1−δ(ρH+ρL−1)

∆c

wik + αδ
1−δ

[
cL + 1−ρL

1−δ(ρH+ρL−1)
∆c
]

+ γ αδ(ρH+ρL−1)
1−δ(ρH+ρL−1)

∆c

A higher value of ηbγ denotes a greater sensitivity of bidders’strategies to their present

beliefs about the state of the world. It is easy to show that ηbγ is increasing in α, ∆c and

ρj, j = H,L. In words, the bidding strategy is more sensitive to new information if: (i)

the resale horizon is shorter (α ↑); (ii) the expected difference between aggregates states is

larger (∆c ↑);83 or (iii) each state is more persistent (ρj ↑). The intuition for each variable

is pretty straightforward. When the resale horizon is shorter, present information is more

accurate to predict the state of the world at the future time of resale. Similarly, when

states of the world are more persistent, current beliefs are more precise in predicting

future states. As a result, prices respond more to new information (Fig. 3). Finally, a

greater difference ∆c increases the variability in the possible resale values between the

two aggregate states, and agents adjust their bids more sharply.

Lastly, we derive a statistical measure of dispersion for realized prices. Our variance

measure is derived assuming a deterministic resale horizon, say, q periods long, and a

future state of the world θk+1.84 Public beliefs move between any two trading periods

according to the law of motion in Definition 3.2, and– for a given πk and a fixed resale

horizon q– it is immediate to get the value of πk+1.85

Three different factors contribute to price variability:

Varθ
(
b∗
(
w

(2)
k+1, πk+1

)∣∣∣πk+1

)
=
(

1
1−δ+αδ

)2
[
Varθ

(
w(2)

)
+
(
αδ(ρH+ρL−1)

1−δ(ρH+ρL−1)

)2
Varθ

(
γ
(
w

(2)
k+1, πk+1

)∣∣∣πk+1

)
+ 2 αδ(ρH+ρL−1)

1−δ(ρH+ρL−1) covθ
(
w

(2)
k+1, γ

(
w

(2)
k+1, πk+1

) ∣∣∣πk+1

)]
(3)

83Specifically it is the difference in the expected second highest use value out of N bidders between
the high and low state of the world.
84Notice the difference with the variance computed according to the subjective belief of a bidders in

auction k. In this case, bidders do not know neither the present nor the future state.
85If we did not condition on a fixed resale horizon, we could have alternatively computed a measure

of expected variance using as weights the probability to resale in a given future period.
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Figure 3: Difference in state persistence.

The first term Varθ
(
w(2)

)
captures the heterogeneity in private use values. This

idiosyncratic component depends on the initial distribution Fθ, and on the number of

bidders N . A higher dispersion in subjective use values increases this quantity. The effect

of an increase in N is not obvious, and it depends on the specific Fθ(·) (see Papadatos

(1995)). The second term in equation (3) reflects the uncertainty over the future beliefs

held by the second highest bidder in auction k + 1. It is a product of two quantities:

a multiplicative constant, and the variance of γk+1 conditional on πk+1. The former is

increasing in α and ρj; the latter is a complex quantity to analyze without additional

assumptions on the functional forms for the pdfs. Lastly, the third term captures bidders’

updating of γik with the private use value wi,k+1. The latter is used as an informative

signal on the underlying aggregate state. The covariance term is always positive and

it further increases price variability. The last two terms in equation (3) represent the

volatility due to the uncertainty over future market conditions.

A decrease in the resale horizon (α ↑) increases aggregate variability, decreasing the

idiosyncratic one. The overall effect is ambiguous. A increase in the state persistence

(ρj ↑) does not affect idiosyncratic variance, but it increases the aggregate one. Unfor-

tunately, it is diffi cult to derive additional comparative statics results without assuming
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a specific distribution. Nonetheless, thanks to Proposition 3.3.1, it is straightforward to

simulate any quantity of interest once we assume a specific form for Fθ.

3.4 Conclusion

This paper proposes a model for durable goods markets. We explicitly consider the

possibility to re-sell an object, and we discuss what the potential implications are for

learning and price dynamics.

We first present two results on the dynamics of public beliefs. First, the finer is the

information publicly revealed in equilibrium, the faster is the convergence of public beliefs

to the true state of the world. Second, trade protocols may lead public beliefs to move

upward or downward at different rates. In particular, if only winning bids are disclosed,

beliefs tend to adjust more rapidly when aggregate demand is low.

In the second part of the paper, we consider a dynamic auction model. Thanks to

an analytic characterization of the bidding strategy, we provide some comparative statics

results. A longer expected resale horizon increases the importance of private use values,

and prices are less sensitive to current information. In this case, price volatility is mainly

driven by the idiosyncratic tastes of users. If states of the world tend to last longer, prices

respond more to current information. This is also the case when the difference in market

conditions between high and low states is large.

This paper assumes an exogenous resale decision which is independent from previous

price dynamics. This is clearly a strong assumption. Endogenous resale decisions play a

decisive role in shaping market dynamics. For example, there is strong empirical evidence

on the positive correlation between volume and prices in the real-estate market. Solving

a dynamic auction model with endogenous entry is a challenging direction of extension,

and we hope to address it in the future.
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3.5 Appendix

Proof of Claim 3.2.1. We prove the statement only for θ = H as an analogous

arguments holds for θ = L.86 Equation (2) can be easily rewritten as

EXH
[
ln
fT1L f

T2
H

fT1H f
T2
L

]
< 0.

Jensen’s inequality implies

EXH
[
ln
fT1L f

T2
H

fT1H f
T2
L

]
≤ lnEXH

[
fT1L f

T2
H

fT1H f
T2
L

]

Notice

EXH
[
fT1L f

T2
H

fT1H f
T2
L

]
=

∫
SX

fT1L (T1(x))fT2H (T2(x))

fT1H (T1(x))fT2L (T2(x))
fXH (x) dµ(x)

=

∫
ST1

∫
CT1(y)

fT1L (T1(x))fT2H (T2(x))

fT1H (T1(x))fT2L (T2(x))
fXH (x) dµ(x)dµ(y)

For every y ∈ ST1 the function
f
T1
L (T1(x))f

T2
H (T2(x))

f
T1
H (T1(x))f

T2
L (T2(x))

is constant for every element in CT1(y).

For f
T1
L

f
T1
H

this is true by definition of CT1 , while it follows from coarseness for f
T2
H

f
T2
L

. Then,

∫
ST1

∫
CT1 (y)

fT1L (T1(x))fT2H (T2(x))

fT1H (T1(x))fT2L (T2(x))
fXH (x) dµ(x)dµ(y)

=

∫
ST1

fT1L (y)fT2H (y)

fT1H (y)fT2L (y)
fT1H (y) dµ(y) =

∫
ST1

fT2H (y)

fT2L (y)
fT1L (y) dµ(y)

86This proof uses coarseness in order to reduce the expression to a standard Gibbs’inequality.
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As σ(T2) ⊂ σ(T1) we can rewrite fT2θ (z) =
∫

y∈ST1 :T2(CT1 (y))=z

fT1θ (y)dµ(y). Therefore:

∫
ST1

fT2H (y)

fT2L (y)
fT1L (y) dµ(y) =

∫
ST2

fT2H (z)

fT2L (z)

∫
y∈ST1 :T2(CT1 (y))=z

fT1L (y)dµ(y)dµ(z)

=

∫
ST2

fT2H (z)

fT2L (z)
fT2L (z)dµ(z) = 1

As a result lnEXH
[
f
T1
L f

T2
H

f
T1
H f

T2
L

]
= ln 1 = 0.

Finally observe that Jensen’s inequality holds strictly. In fact, ln is a strictly concave

function and f
T1
L f

T2
H

f
T1
H f

T2
L

is not constant almost everywhere because coarseness implies the

existence at least two sets A,B s.t. A ⊂ B, A /∈ σ(T2) and µ(A) > 0 where T2(x) is

constant ∀x ∈ B while T1(x) 6= T1(x′) for x ∈ A and x′ ∈ B\A.

Proof of Claim 3.2.2. As π0 = 1
2
we have lTk =

∑k−1
i=0 ∆lTi+1 where ∆lTi+1 = lTi+1 − lTi =

ln
fTH(yi)

fTL (yi)
i = 0, 1, ..., k is a sequence of i.i.d. random variables.

Hitting times τH and τL can be equivalently stated in terms lk:

τ lH := inf

{
k > 0 : lTk ≥ ln

1− ε
ε

}
τ lL := inf

{
k > 0 : lTk ≤ ln

ε

1− ε

}

Applying Wald (1944)’s lemma to the sequence of i.i.d random variables ∆li:

Eθ[lTτ lθ ] = Eθ[τ lθ]Eθ[∆lT ] ∀θ ∈ {H,L} (4)

By Gibbs’inequality EH [∆lT ] > 0 and EL[∆lT ] < 0. If EH [∆lT ] + EL[∆lT ] < 0 then

EL[∆lT ] = −
(
EH [∆lT ] + c

)
where c ≡ −

∫
ST

ln
fTH(y)

fTL (y)

(
fTH(y) + fTL (y)

)
dµ(y) > 0. Note that c only depends on the

primitives and it is independent of ε.
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Substituting in equation (4):

EH [τ lH ]EH [∆lT ] = EH [lT
τ lH

]

EL[τ lL](EH [∆lT ] + c) = −EL[lT
τ lL

]

Hence

EH [∆lT ](EH [τ lH ]− EL[τ lL]) = EH [lT
τ lH

] + EL[lT
τ lL

] + EL[τ lL]c

=⇒ EH [∆lT ]
(
EH [τ lH ]

EL[τ lL]
− 1
)

=
EH [lT

τl
H

]+EL[lT
τl
L

]

EL[τ lL]
+ c

Note that |∆lT | < M implies EL[lT
τ lL

] ≥ ln ε
1−ε −M and by definition EH [lT

τ lH
] ≥ ln 1−ε

ε
,

hence

EH [∆lT ](
EH [τ lH ]

EL[τ lL]
− 1) ≥ −M

EL[τ lL]
+ c

On the other hand, by Wald’s lemma,

EL[τ lL] =
EL[lT

τ lL
]

EL[∆lT ]
≥

ln 1−ε
ε

M
> 0

so

EH [∆lT ](
EH [τ lH ]

EL[τ lL]
− 1) ≥ − M2

ln 1−ε
ε

+ c

Since 0 < EH [∆lT ] < M ,

EH [τ lH ]

EL[τ lL]
− 1 > − M

ln 1−ε
ε

+ c
EH [∆lT ]

= − M
ln 1−ε

ε

+ −EH [∆lT ]−EL[∆lT ]
EH [∆lT ]

= − M
ln 1−ε

ε

− 1 +
∣∣∣ EL[∆lT ]
EH [∆lT ]

∣∣∣ as EL[∆lT ] < 0.

Note that ln 1−ε
ε
→ ∞ as ε → 0, hence ∀δ > 0, ∃ε > 0 such that ∀ε < ε, M

ln 1−ε
ε

< δ.

The proof for the other case is symmetric.

Proof of Proposition 3.3.1. Consider the subgame starting from auction k.

Note that∆k is statistically independent of the underlying state and all private values,

hence we can integrate it out when calculating the expected payoff of bidder ik:
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E[uik(b, b
∗
−ik;wik)|wik,πk]

= P(b
∗(2)
k < b|wik,πk)

{
−E(b

∗(2)
k |wik,πk)

+
∞∑
x=1

α(1− α)x−1

[
x−1∑
s=0

δswik + δxE(b
∗(2)
k+1|wik,πk,∆k = x)

]}

= P(b
∗(2)
k < b|wik,πk)

{
−E(b

∗(2)
k |wik,πk) +

∞∑
x=1

α(1− α)x−1 1− δx

1− δ wik

+
∞∑
x=1

[
α

1− α(δ − αδ)x E(b
∗(2)
k+1|wik,πk,∆k = x)

]}
= P(θtk = H|wik,πk)P(b

∗(2)
k < b|θtk = H)

{
−E(b

∗(2)
k |θtk = H) + σwik

+
∞∑
x=1

[
α

1− α(δ − αδ)xE(b
∗(2)
k+1|θtk = H,∆k = x)

]}
+ P(θtk = L|wik,πk)P(b

∗(2)
k < b|θtk = L)

{
−E(b

∗(2)
k |θtk = L) + σwik

+
∞∑
x=1

[
α

1− α(δ − αδ)x E(b
∗(2)
k+1|θtk = L,∆k = x)

]}

For convenience, let us introduce the following notation:

zk ≡ w
(2)
k ≡ v

(2)
tk
: 2nd highest realization of private values in auc-

tion k

ρxj ≡ ((P x)j1, (P
x)j2) the j-th row of matrix P x, j ∈ {1, 2}, ∀x ∈ N+

ek+1 ≡ (eHk+1, e
L
k+1)ᵀ the expectation of equilibrium resale revenue

eθk+1 ≡ E(b
∗(2)
k+1|θtk+1 = θ) conditional on the state of next auction

γ̃k = (γ̃k, 1− γ̃k) the belief used by the 2nd-highest-value bidder

γ̃k ≡
πkfH(zk)hH(zk)

πkfH(zk)hH(zk)+(1−πt)fL(zk)hL(zk)
of auction k in his bidding function.

Using the notations above, we have

E(b
∗(2)
k+1|θtk = H,∆k = x) = ρx1ek+1;

E(b
∗(2)
k+1|θtk = L,∆k = x) = ρx2ek+1.
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Assuming monotone and symmetric bidding strategy, we can rewrite bidder ik’s problem

as

max
b

πik

b∗−1(b;πk)∫
0

[
−b∗(y;πk) + σwik +

∞∑
x=1

α

1− α(δ − αδ)xρx1ek+1

]
hH(y) dy

+ (1− πik)
b∗−1(b;πk)∫

0

[
−b∗(y;πk) + σwik +

∞∑
x=1

α

1− α(δ − αδ)xρx2ek+1

]
hL(y) dy

where πik ≡ P(θtk = H|wik,πk) = πkfH(wik)
πkfH(wik)+(1−πk)fL(wik)

, bidder ik’s posterior about

θtk . Note that ek+1, the expected equilibrium resale revenue, will depend on x, the

realization of ∆k, and y, the realization of zk, through public belief πk+1, therefore it

cannot be taken out of the integral.

FOC yields

0 = πik

[
−b∗(wik;πk) + σwik +

∞∑
x=1

α

1− α(δ − αδ)xρx1ek+1

]
hH(wik)

+ (1− πik)
[
−b∗(wik;πk) + σwik +

∞∑
x=1

α

1− α(δ − αδ)xρx2ek+1

]
hL(wik)

Using γit and B defined in the proposition we can rewrite the FOC as

b∗(wik;πk) = σwik + γik

[ ∞∑
x=1

α

1− α(δ − αδ)xP xek+1

]

= σwik +

[ ∞∑
x=1

α

1− α(δ − αδ)x(γikP x)ek+1

]

Now we need to solve for the equilibrium object ek+1.
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Since the bidding strategy is time-invariant,

eθk+1 ≡ E(b
∗(2)
k+1

∣∣θtk+1 = θ)

= E
[
b∗(zk+1;πk+1(πk, y = wik, x;P ))

∣∣θtk+1 = θ
]

= E

[
σzk+1 +

∞∑
x′=1

α

1− α(δ − αδ)x′(γ̃k+1P
x′)ek+2

∣∣∣∣∣θtk+1 = θ

]

Put it back into the bidding function above,

b∗(wik;πk)

= σwik +

[ ∞∑
x=1

α

1− α(δ − αδ)x(γikP x)ek+1

]

= σwik +
∞∑
x=1

α

1− α(δ − αδ)x(γikP x)σ

(
E[zk+1|θtk+1 = H]

E[zk+1|θtk+1 = L]

)

+
∞∑
x=1

α

1− α(δ − αδ)x(γikP x)

 E
[ ∞∑
x′=1

α
1−α(δ − αδ)x′(γ̃k+1P

x′)ek+2

∣∣∣θtk+1 = H

]
E
[ ∞∑
x′=1

α
1−α(δ − αδ)x′(γ̃k+1P

x′)ek+2

∣∣∣θtk+1 = L

]


= σwik + σ
∞∑
x=1

α

1− α(δ − αδ)xEik[zk+1]

+
∞∑
x=1

α

1− α(δ − αδ)xEik

[ ∞∑
x′=1

α

1− α(δ − αδ)x′(γ̃k+1P
x′)ek+2

]

where Eik[·] denote the expectation of bidder ik conditional on the event that he wins

auction k and the highest value among others is exactly equal to his value, and his waiting

time for resale is x.

Now consider ek+2. Let us label the 2nd highest bidder in auction k as bidder k̃,

∀k ∈ N.

eθk+2 ≡ E
[
b
∗(2)
k+2

∣∣θtk+2 = θ
]

= E
[
b∗(zk+2;πk+2(πk+1, y = zk+1, x;P ))|θtk+2 = θ

]
= E

{
σzk+2 +

∞∑
x′′=1

α

1− α(δ − αδ)x′′(γ̃k+2P
x′′)e+3

∣∣∣∣θtk+2 = θ

}
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Hence

(
γ̃k+1P

x′
)
ek+2 = σE

k̃+1
[zk+2] + E

k̃+1

[ ∞∑
x′′=1

α

1− α(δ − αδ)x′′
(
γ̃k+2P

x′′
)
ek+3

]

where E
k̃+1

[·] denote the expectation of bidder k̃ + 1 conditional on the event that he

wins auction k + 1 and the highest value among others is exactly equal to his value, and

his waiting time for resale is x′.

Plugging back this value into the bidding function of bidder ik,

b∗(wik;πk)

= σwik + σ

∞∑
x=1

α

1− α(δ − αδ)xEik[zk+1]

+
∞∑
x=1

α

1− α(δ − αδ)xEik

[ ∞∑
x′=1

α

1− α(δ − αδ)x′σE
k̃+1

[zk+2]

]
+ rik

= σwik + σ
∞∑
x=1

α

1− α(δ − αδ)xEik[zk+1]

+ σ
∞∑
x=1

α

1− α(δ − αδ)x
[ ∞∑
x′=1

α

1− α(δ − αδ)x′Eik[zk+2]

]
+ rik

= σwik + σ
∞∑
x=1

α

1− α(δ − αδ)xγikP xc

+ σ

∞∑
x=1

α

1− α(δ − αδ)x
[ ∞∑
x′=1

α

1− α(δ − αδ)x′γikP x+x′c

]
+ rik

= σwik + σγik

[ ∞∑
x=1

α

1− α(δ − αδ)xP x

]
c+ σγik

[ ∞∑
x=1

α

1− α(δ − αδ)xP x

]2

c+ rik

= σwik + σγikBc+ σγikB
2c+ rik

The second equation comes from law of iterated expectation and the fourth equation

comes from the fact that waiting time is i.i.d. across auctions.

The residual term rik is:

∞∑
x=1

α

1− α(δ−αδ)xEik

[ ∞∑
x′=1

α

1− α(δ − αδ)x′σE
k̃+1

[ ∞∑
x′′=1

α

1− α(δ − αδ)x′′(γ̃k+2P
x′′)ek+3

]]
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Note that the expected present value of the resale revenue from auction k + m for

bidder ik goes to 0 as m goes to infinity, due to the existence of discount rate δ. Hence we

can recursively solve for the bidding function following the argument above, and finally

get

b∗(wik;πk) = σwik + σγik

( ∞∑
s=1

Bs

)
c

= σ[wik + γikB(I −B)−1c]

To complete the proof, we need to verify that this is indeed a monotone bidding

function.

Let D =

 d11 d12

d21 d22

 ≡ B(I −B)−1 and rewrite b∗(wik;πk) as

b∗(wik;πk) = σ(wik + γikDc)

= σ {wik + d21cH + d22cL + γik [(d11 − d22 + d12 − d21)cL + (d11 − d21)∆c]}

where ∆c ≡ cH − cL > 0 and dij, i, j = 1, 2, to be determined.

The matrix B = αδP [I − δ(1− α)P ]−1 is equal to:

B = αδ

 ρH 1− ρH
1− ρL ρL

 1− δ(1− α)ρH δ(1− α)(1− ρH)

−δ(1− α)(1− ρL) 1− δ(1− α)ρL

−1

=
αδ

(1− δ(1− α))(1− δ(1− α)(ρH + ρL − 1))
· ρH − δ(1− α)(ρH + ρL − 1) 1− ρH

1− ρL ρL − δ(1− α)(ρH + ρL − 1)

 ≡ κ

 b11 b12

b21 b22


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Therefore

D

= B(I −B)−1 = κ

 b11 b12

b21 b22

 1− κb11 −κb12

−κb21 1− κb22

−1

=
1

(1− κb11)(1− κb22)− κ2b12b21

·

 κb11(1− κb22) + κ2b12b21 κb12

κb21 κb22(1− κb11) + κ2b12b21


Plugging back the value of κ and bij, i, j = 1, 2 we have

(1− κb11)(1− κb22)− κ2b12b21 = (1−δ)(1−δ(ρH+ρL−1))
(1−δ+αδ)(1−δ(1−α)(ρH+ρL−1))

;

κb11(1− κb22) + κ2b12b21 = αδ
(1−δ+αδ))(1−δ(1−α)(ρH+ρL−1))

(ρH − δ(ρH + ρL − 1));

κb22(1− κb11) + κ2b12b21 = αδ
(1−δ+αδ)(1−δ(1−α)(ρH+ρL−1))

(ρL − δ(ρH + ρL − 1));

κb12 = αδ
(1−δ+αδ)(1−δ(1−α)(ρH+ρL−1))

(1− ρH);

κb21 = αδ
(1−δ+αδ)(1−δ(1−α)(ρH+ρL−1))

(1− ρL)

Therefore

D =
αδ

(1− δ)(1− δ(ρH + ρL − 1))

 ρH − δ(ρH + ρL − 1) 1− ρH
1− ρL ρL − δ(ρH + ρL − 1)


If we plug back the elements of D into the bidding function we get

b∗(wik;πk) = σ

{
wik +

αδ

1− δ

[
cL +

1− ρL
1− δ(ρH + ρL − 1)

∆c

]
+ γik

αδ(ρH + ρL − 1)

1− δ(ρH + ρL − 1)
∆c

}

Since ρH + ρL ∈ [1, 2] and γik is strictly monotone in wik, b
∗(wik;πk) is clearly strictly

monotone in wik as well.

Lastly, notice that the b∗(wik;πk) is indeed the unique solution to the FOC, which

implies that the expected payoff of each bidder would be a single-peaked function of her

bid, hence FOC is suffi cient for optimality.
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