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Abstract

IT innovation is allowing enterprises to find new ways to harness the power of information assets
for decision making. This thesis presents three econometric method applications to marketing
and management decisions.

The first chapter empirically studies retail network product assortment decisions under
uncertain underlying demand parameters using structural estimation. I use detailed data from
a beverage vending machine network in Tokyo and find that agents increase the expected total
revenue of the network by 19.6% than the baseline, where 12.3% is attributable to learning
from the sales data, and 7.3% is attributable to agents’ informative initial belief. However,
it is below the revenue when the demand parameters are known, which is 45.5% higher than
the baseline. Furthermore, if the principal company could precisely process the sales data, the
expected total revenue could be 39.6% higher even if the initial beliefs are no more informative
than the rational expectation. The last observation indicates that there are some costs for the
principal associated with the development and utilisation of sales data processing capabilities.

The second chapter studies the causal effects of product recommendation by conducting a
field experiment using many vending machines in railway stations that programmatically offer
recommendations for consumers after recognising their characteristics via a built-in camera. We
study the effects of recommending popular products and unpopular products, and ask how the
effects differ across times of day and consumer characteristics. We find that both popular and
unpopular product recommendations increase vending machine sales and choice probability of
recommended products. But unpopular product recommendations cause opposite effects in the
morning. The negative effects are mainly from male customers in crowded vending machines.
We attribute the decrease in morning vending machine sales to the congestion created by
recommendations. We conjecture that the negative effect on choice probabilities in the morning

is because of social pressure from the surrounding consumers.



In the third chapter, I derive a necessary condition for stochastic rationalisability by a set of
utility functions with a unique maximiser, which I name the strong axiom of revealed stochastic
preference (SARSP). I propose a test of rationality based on the SARSP that allows for any
type of heterogeneity. The test can be implemented at low computational cost. Monte Carlo
simulation shows that the test has an empirical size below the nominal level and relatively

strong power.
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Introduction

IT innovation is allowing enterprises to find new ways to harness the power of information
assets for decision making. The empirical frameworks developed in industrial economics are
particularly useful for this purpose. The frameworks allow managers to elicit information for
counterfactual analysis from observational data possibly with the help of field experiments.
The counterfactual analysis then allows managers to evaluate new policies for effective decision
making.

This thesis describes three such attempts. Each attempt uses different empirical frame-
works. Chapter 1 uses structural estimation to quantify how quickly agents in a retail network
can learn and adapt to local demand and to detect the sources of friction preventing imme-
diate adjustment. Chapter 2 uses a field experiment to study the causal effects of product
recommendations in various situations. Chapter 3 suggests a rationalisability test that does
not restrict preference heterogeneity across decision makers. Once data passes the test, the ra-
tionality assumption is used to obtain non-parametric bounds of the decision makers’ response

in a counterfactual situation.

Decentralised Learning in a Retail Network

The first chapter empirically studies retail network product assortment decisions in an uncertain
underlying demand parameters environment. Specifically, I quantify how quickly beverage
vending machine network agents can adapt to local demand. I also study the source of friction
preventing immediate adjustment. I develop and estimate an empirical model of decentralised
learning in a retail network in which agents assigned to local markets learn demand and decide

part of product assortments. The modelling strategy follows the empirical structural analysis of

11



learning literature,! but is extended to address the combinatorial nature of product assortment
decisions by borrowing a boundedly rational solution concept from engineering literature. Using
the estimated model, I find that agents increase expected total network revenue by 19.6% than
the baseline, where 12.3% is attributable to learning from the sales data, and 7.3% to agents’
informative initial belief. However, it is far below the expected total revenue when the demand
parameters are known, which is 45.5% higher than the baseline. Moreover, if the principal
company could process the sales data precisely, the expected total revenue could be 39.6%
higher than the baseline even if the initial beliefs are no more informative than the rational
expectation. The last observation indicates that there are some costs associated with the
development and utilisation of sales data processing capabilities that do not rely on agents.

Although vast literature solves and characterises similar decision problems for firms that
are actively learning demand,? actual firm behaviors are not extensively examined empirically.
Among retailers’ key managerial decisions, product assortment decisions receive less attention
than price adjustments. However, product assortment decisions are is equally important because
product selection and replacement is prevailing because of limited shelf space for product display
and various motivations for product proliferation.? Ignoring this factor can cause significant
bias in the calculation of price indexes (Nakamura and Steinsson, 2012). This chapter address
the gap in the literature.

The retail network in this study partly delegates the task of learning and adjusting product
assortments to the local demand to agents assigned to local markets. Organizational economics
literature studies the implications of managers’ bounded capacities on the advantages of decen-
tralisation.* One strand of this literature considers managers that are bounded by the amount
of information they possess (Groves and Radner, 1972; Arrow and Radner, 1979; Groves, 1983;
Geanakoplos and Milgrom, 1988). In this case, decentralisation benefits the organisation by
providing more information for solving managerial problems. The second strand of such liter-

ature distinguishes between the raw data and the processed data and assumes that managers

IFor example, Jovanovich (1979); Miller (1984); Erdem and Keane (1996); Ackerberg (2003); Crawford and

Shum (2005); Dickstein (2014).
2Early theoretical literature includes Prescott (1972); Grossman, Kihlstrom, and Mirman (1977); Trefler

(1993); Mirman, Samuelson, and Urbano (1993); Harrington (1995); Keller and Rady (1999). The literature
in management science and operations research include Caro and Gallien (2007); Rusmevichientong, Shen, and

Shmoys (2010); Honhon, Gaur, and Seshadri (2010); Talebian, Boland, and Savelsbergh (2013).
3Bayus and Putsis (1999) empirically study the determinants of product proliferation, and provide an exten-

sive survey of related literature.
4The survey is found in Garicano and Van Zandt (2013).
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are bounded by what they can achieve in a certain amount of time (Malone and Smith, 1988;
Mount and Reiter, 1990, 1996; Radner, 1993; Bolton and Dewatripont, 1994; Friedman and
Oren, 1995; Reiter, 1996; Meagher and Van Zandt, 1998; Van Zandt, 1998; Beggs, 2001; Orbay,
2002). In this case, decentralisation allows the organisation to solve subproblems concurrently.
My finding provides an evidence that decentralisation allowing the simultaneous solving of
subproblems is important for the decision structure of the retail network.

This chapter contributes to several other strands of literature. First, this chapter contributes
to the empirical structural analysis of learning literature (Jovanovich, 1979; Miller, 1984; Erdem
and Keane, 1996; Ackerberg, 2003; Crawford and Shum, 2005; Dickstein, 2014; Covert, 2013)
by developing empirical learning models to analyse complicated situations for which existing
models do not work. Second, boundedly rational solution are increasingly used in the field of in-
dustrial organisation to solve complicated empirical models (Weintraub, Benkard, and Van Roy,
2008; Fershtman and Pakes, 2012). My modelling strategy is consistent with this trend. Third,
introducing agents who are learning the environment under uncertainty but with limited infor-
mation acquisition and processing capability is becoming common in macroeconomics (Mankiw
and Reis, 2002; Sims, 2003; Woodford, 2009; Angeletos and La’O, 2009). This paper provides a
motivating example for this assumption and an estimate for the appropriate degree of informa-
tional friction in a firm. Finally, establishing an empirical framework quantifying these issues
based on managerial information has direct implications for organisational learning literature
in management and marketing science (Easterby-Smith and Lyles, 2011).

Structural estimation is central to this analysis. First, I am interested in counterfactual
analyses that change model parameters. A counterfactual analysis can only be conducted if
a structural model is set up for which the parameter of interest has a unique economic inter-
pretation. Second, I incorporate institutional restrictions imposed by the principal company
on agents. These restrictions can be explicitly incorporated if the model is constructed at the
raw level of the agent decision problem. The estimated model helps managers to identify the
strengths and weaknesses of each agent and each aspect of the organisation and recommends

appropriate measure for building an adaptive and responsive organisation.
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Recommending (Un)popular Products: A Field Experi-
ment using Vending Machines

Product recommendation is a major online and offline marketing tool used by retailers to influ-
ence customer choices. To measure the causal effects of product recommendation, we conduct a
field experiment using many vending machines in railway stations that programmatically offer
recommendations for consumers after recognising their characteristics via a built-in camera. We
study the effects of recommending popular products and unpopular products, and ask how the
effects differ across times of day and consumer characteristics. We find that both popular and
unpopular product recommendations increase vending machine sales and choice probability of
recommended products. But unpopular product recommendations cause opposite effects in the
morning. The negative effects are mainly from male customers in crowded vending machines.
We attribute the decrease in morning vending machine sales to the congestion created by rec-
ommendations. We conjecture that the negative effect on choice probabilities in the morning
is because of social pressure from the surrounding consumers.

Our research contributes mainly to the small but growing literature on product recommen-
dations and consumer choices.® An early work by Senecal and Nantel (2004) conducts a series of
online experiments and finds that recommendations significantly affect demand. In behavioral
work, Huang and Chen (2006) also find that other consumers’ responses influence the choices
of subjects. Using aggregate-level data, a recent paper by Kim, Albuquerque, and Bronnenberg
(2010) estimate a sequential consumer search model for Amazon.com and simulate the effects of
Amazon.com’s recommendation system on consumer search behaviour. The authors find that
the consumers benefit from recommendations because of the lower search cost. De, Hu, and
Rahman (2010) use a server log file of an online company to uncover the relationship between

consumers’ recommendation system usage and online sales. The authors find that recommen-

5Increasing literature examines online advertisements. Sahni (2015) explores the effect of advertisement
exposure frequencies on consumer purchase decisions using online randomized control field experiments. The
author finds that purchase likelihood increases if advertisements are spread apart rather than bunched together.
Lewis, Rao, and Reiley (2014) conduct a large field experiment, where they randomise display advertising. The
authors’ findings indicate that the effect of online display advertisements on offline sales is small. Goldfarb and
Tucker (2011) use the data from an online field experiment and find that matching an advertisements to website
content and increasing an advertisement’s obtrusiveness increase a consumer’s purchase intent. Blake, Nosko,
and Tadelis (2015) implement a series of online field experiments for eBay and show heterogeneous effects of

paid search advertisements on consumer behavior.
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dations have positive impact on sales. Similarly, Tucker and Zhang (2011) investigate the effect
of popularity information using a field experiment and find that ranking information affects
consumer choice. Finally, Bodapati (2008) proposes that recommendations based on a higher
sensitivity to recommendations are more effective than recommendations based on a higher
probability of purchase. This is because consumers will purchase the products with a higher
predicted purchase probability regardless of recommendations.

This study is also related to the consumer demand literature for the vending machine in-
dustry. Anupindi, Dada, and Gupta (1998) use data from multiple beverage vending machines
in a US city to examine substitution patterns of beverage demand when a stock-out occurs.
The authors find significance in the use of stock-out information to infer consumer demand. In
a related paper, Conlon and Mortimer (2008) conduct a field experiment using snack vending
machines and show that demand estimation is biased if product availability is not taken into
account. We add to the literature by showing evidence of market intervention effectiveness in
the vending machine industry because the existing research does not study the effects of the
marketing mix.

The combination of field experiments and a large dataset about consumer behaviour analysis
is central to this study. The field experiment creates exogenous variations in the status of
product recommendations and allows us to understand otherwise unidentified causal effects
of recommendations. The large dataset allows us to obtain accurate estimates on the causal
effects and to further investigate the heterogeneity in the effects. Therefore, managers can tailor

marketing instruments to the business environment of their organisations.

Testing Rationality Without Restricting Heterogeneity

The rationality assumption forms the core of economics. Testing the assumption is necessary
to validate the empirical analysis. The classical axioms of revealed preference (Samuelson,
1938; Houthakker, 1950; Richter, 1966; Varian, 1982) provide the basic framework to test this
assumption but do not address the inevitable heterogeneity in empirical studies. This chapter
proposes a non-parametric test for rationality allowing for any type of preference heterogeneity
across decision makers. I derive a necessary condition for stochastic rationalisability by a set of
utility functions with a unique maximiser, which I name the strong axiom of revealed stochastic
preference (SARSP). The test I propose is based on this condition. The test can be implemented

at low computational cost. Monte Carlo simulation shows that the test has an empirical size
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below the nominal size and relatively strong power. I apply this method to the British Family
Expenditure Survey (FES). The SARSP is not rejected at the 1% level of significance in this
dataset.

Existing empirical studies conventionally introduce heterogeneity as an additive error in
the choice function, and apply the axiom of revealed preference to the mean of the observed
choice functions (Varian, 1985; Blundell, Browning, and Crawford, 2003, 2008). Lewbel (2001),
however, shows that rationalisability at the individual level does not imply the rationalisability
of the mean or vice versa, unless the heterogeneity in the population is strictly restricted.

McFadden (2005) introduces a notion of stochastic rationalisability. Given a set of util-
ity functions U, a sequence of observed choice probabilities is said to be stochastically U-
rationalisable if some probability law over U exists that can induce the observed choice proba-
bilities as a result of utility maximization with random utilities following that law. The author
also derives necessary and sufficient condition for the stochastic rationalisability. This notion
allows us to test rationality without restricting heterogeneity. The concept is sufficiently gen-
eral that it can be applied to any class of utility functions; however, checking all the conditions
is often computationally demanding. Kitamura and Stoye (2013) circumvent this problem by
restricting attention to a case with a finite number of linear budgets. I resolve this issue by
focusing on a necessary condition for rationalisability.

Once data passes the test of rationalisability, I can use this restriction to obtain non-
parametric bounds of decision makers’ response in a counterfactual situation. For example,
Manski (2014) uses the weak version of the axiom of stochastic revealed preference to obtain
bounds on labour supply under hypothetical income tax policies. The advantage of this ap-
proach compared to structural estimation is that I can directly predict counterfactual responses
from reduced-form parameters — choice probabilities — bypassing structural parameter esti-

mation.
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Chapter 1

Decentralised Learning in a

Retail Network

1.1 Introduction

It is crucial for retail networks such as supermarkets and convenience stores to adjust prices and
product assortments to adapt to changing demand. If uncertainty exists concerning underlying
demand parameters, the adjustment process requires firms to actively learn demand. Such
uncertainty obviously exists in a new market, but is is also significant in established markets
where new products frequently enter or there is a non-trivial time-varying component in the
demand parameters.

Although vast literature attempts to solve and characterize such decision problems for firms
that are actively learning demand,® actual firm behaviors have not been extensively examined
empirically. Among retailer’s managerial decisions, much less attention is paid to product
assortment decisions than price adjustments, but product assortment decisions are equally
important because product selection and replacement prevails because of shelf space limitations

for product display and various motivations for product proliferation.? Ignoring this managerial

IEarly theoretical literature includes Prescott (1972); Grossman et al. (1977); Trefler (1993); Mirman et al.
(1993); Harrington (1995); Keller and Rady (1999). The literature in management science and operations
research include Caro and Gallien (2007); Rusmevichientong et al. (2010); Honhon et al. (2010); Talebian et al.

(2013).
2Bayus and Putsis (1999) empirically study the determinants of product proliferation and provide an extensive

survey of related literature.
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behavior can cause a significant bias in the calculation of price indexes (Nakamura and Steinsson,
2012).

Understanding how good estimates are that firms use for underlying demand parameters
and how quickly firms can learn and adapt to demand is a prerequisite in any investigation
of the implications of changes in market institutions and the demand environment using high-
frequency data. Detecting the sources of possible friction in this adjustment process is necessary
for long-run prediction in which the technological environment can change the degree of friction.
In the case of a retail network, for example, the network may struggle to collect, process, and
analyze demand to derive optimal plans or implement the resulting assortment plans. All the
tasks are carried out by a different set of workers and technologies with the organization and
will be affected differently by technological progress.

This paper focuses on product assortment decisions of a beverage vending machine network
in Tokyo. In the network, agents assigned to different local markets partially decide product
assortments. I develop and estimate an empirical model of decentralised learning in a retail
network. The modelling strategy follows the literature on the empirical structural analysis of
learning,® but is extended to manage a problem caused by the combinatorial nature of product
assortment decisions. Using the estimated model, I quantify how quickly agents in the network
can adapt to local demand. I also study the source of friction preventing immediate adjustment.

The beverage vending machine business provides an ideal setting for the analysis of product
assortment decisions because a vending machine has a physically well-defined set of slots in
which products are assorted. Moreover, in this industry, prices are conventionally the same
over time and across locations. Therefore product assortment is particularly important for
raising profits. New products are introduced every season and learning demand on a seasonal
basis is crucial. All of the network vending machines are installed in Japan Railway East
(JRE) stations that have substantial daily passenger traffic and approximately ten times more
sales per machine than other vending machine companies. This encouraged the network to
introduce a point-of-sales system to monitor sales at the micro level in 2009 for the first time
in this industry and significantly boosted the capability of the network to observe the demand
data.* Additionally, the network provided me extensive administrative information that allows

me to observe who makes which decisions. This administrative information facilitates the

3For example, Jovanovich (1979); Miller (1984); Erdem and Keane (1996); Ackerberg (2003); Crawford and

Shum (2005); Dickstein (2014).
4By this time at most, weekly data collected by hand from operators represented the best sales information

in this industry.

18



identification of parameters governing the decision of each agent instead of the joint decision of
the principal and agents.

The empirical model treats each local market and agent separately. All the parameters are
market- and agent-specific. Therefore, cross-sectional heterogeneity is completely recovered.
Consumer’s indirect utility from a product in a market is a product- and market- specific
intercept plus product- and market-specific slope term multiplied by a log of temperature.
These are the demand parameters of a market, and sales are assumed to be generated from a
multinomial logistic model based on the demand parameters.

An agent assigned to a particular market does not know the exact value of the demand
parameters of the market, but the agent does has an initial belief about them. The initial
belief can be arbitrarily informative about the demand parameters. Before a season starts, the
agent decides the precision level of his information processing technology, but it is costly to
raise the precision. When a season starts, the agent decides the assortment of products for each
vending machine in the market based on the agent’s belief. Then, the sales are realised and
his beliefs are updated according to the prespecified information processing technology. In the
next period, the agent again decides the assortment of products.

I use a structural approach for two reasons. First, I am interested in counterfactual analyses
that change model parameters. This can be done only if a structural model is set up in which the
parameter of interest has a unique economic interpretation. Second, I would like to incorporate
institutional restrictions imposed by the principal company on agents. These restrictions can
be explicitly incorporated if the model is constructed at the raw level of the agent’s decision
problem.

Intuitively, I identify the key parameters as follows. The history of assortments reveals
the belief process of an agent including his initial belief. From the history of sales under the
assortment, I can compute the belief process of a Bayesian that processes the history of sales
without cost. By comparing these belief processes, I can identify the precision of an agent’s
information processing. When I attempt to distinguish the contributions of private information
and information processing by agents, I additionally assume that the initial belief of an agent
reflects all the relevant private information of the agent.

This analysis is technically challenging. Any serious product assortment problem involves
tens or hundreds of products, which renders the state space of the dynamic model — the space
of beliefs over demand parameters of each product at each location — extremely high dimen-

sionally. In the current application, the dimensionality exceeds one thousand. Additionally, a
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product assortment decision is a combinatorial optimisation problem. This first implies that the
action space of the model is extremely large. Second, and more importantly, the multi-armed
bandit problem becomes a so-called restless problem (Whittle, 1988) in which the belief state
of an arm can change even when the other arm is taken because updating the belief about
a product changes the belief of all the assortments including that product. This implies that
efficient algorithms such as the dynamic allocation index (DAI)-based algorithm (Gittins, 1979)
can no longer be used to find a fully rational solution that has been used in empirical analyses
of the multi-armed bandit problem in economics.’

These factors make it impossible to compute a fully rational solution for the model. A fully
rational solution is not only intractable but also unrealistic because it demands agents have
infinite computational capability (Papadimitriou and Tsitsiklis, 1999). To resolve this problem,
the computer science and engineering literature has sought workable and reliable boundedly
rational decision rules (Vermorel and Mohri, 2005; Kuleshov and Precup, 2014). T follow this
literature and employ a boundedly rational decision rules known as the Bayesian control rule
(Ortega, 2011). A decision maker following the Bayesian control rule draws a sample from
the decision maker’s belief at the time and chooses the best alternative assuming that the
sample represents the true state of the world. The decision maker mixes state-contingent
optimal strategies with his belief about the state of the world. This decision rule is particularly
intuitive in the context of product assortment decisions and has sound theoretical and empirical
properties.

Once the decision rule and hence the choice probability have been specified, it is straightfor-
ward to write down the likelihood function. The agent’s belief enters the model as a latent state
variable and must be integrated out to evaluate the likelihood. This is achieved by applying
a particle filter. Sampling from the posterior distribution uses a robust adaptive Metropolis-
Hastings sampler (Vihola, 2011), and the point estimates of parameters are obtained by a
maximum a posterior (MAP) estimator. The prior for the static parameters is non-informative,

that is, the prior density is constant. So the inference is fully likelihood-based. Demand pa-

50ne exception is the study of physician’s drug choice by Dickstein (2014). The author classifies 19 drugs
into six categories and assumes that a physician first chooses a category assuming homogeneity across drugs in
the category and then chooses a drug in the category. He solves each step using Gittin’s index. This approach,
however, does not work in the current case. First, there are still tens of products after dividing products into
categories, and there are no further obvious subcategories. Second, the author’s approach allows belief updates
to be dependent at the category level but does not allow complicated dependence in combinatorial multi-armed

bandit problems.
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rameters are estimated outside the dynamic model by non-linear least squares.

By simulating a series of sales and assortments from the estimated model, I first find that
the expected total revenue under the actual parameter estimates is 19.6% higher than the
revenue baseline, where no information processing is exerted, and the initial belief is no more
informative than the rational expectation. Assuming that the principal’s initial knowledge of
the local demand parameters are no worse than the rational expectation, this implies that the
upper bound of the agents’ contributions to the network’s expected total revenue is 19.6% of
the revenue baseline. I also find that agents’ informative initial beliefs and learning from the
sales data explain 7.3% and 12.3% of the contribution, respectively.

However, agents are not perfect. By simulating sales series and assortments from a model
with a hypothetical parameter setting, I find that the expected total revenue could be 45.5%
higher than the revenue baseline if the demand parameters are known from the beginning. This
implies that it is not appropriate to assume that retail companies know the demand parameters,
for example, when we recover the marginal costs from their pricing decisions combined with
demand models estimated using sales data. This concern is particularly serious when we analyse
the short-run response of retailers to changes in the demand environment such as aggregate
demand shocks caused by monetary policy or sudden change in taste caused by a product
safety accident.

Finally, I compute expected total revenue under a hypothetical centralised assortment pol-
icy in which the principal company only uses the sales and temperature data without relying
on agents’ informative initial beliefs. In theory, the principal company could employ this policy
with the current data collection system. If the revenue under this policy exceeds the actual
revenue, the indication is that there is a cost associated with the development and utilisation
of capabilities to process and analyse the sales data precisely. I find that the centralised policy
could increase the expected total revenue by 39.5%. This exceeds the actual expected total
revenue. Therefore, I cannot rationalise the delegation without considering the costs for de-
veloping and utilising information processing capabilities for the principal company. The costs
exist and have to be at least as large as 39.5 - 19.6 = 19.9% of the baseline of gross profits® to
rationalise the delegation. This means that by targeting the costs of processing information,
we can significantly boost the productivity of the organisation although it will remove the task

from agents and change the reward distribution.

6This is because the gross profits are approximately proportional to the revenue according to a company

representative.
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1.1.1 Related Literature

This paper is related to the organizational economics literature that studies the implications
of managers’ bounded capacities on the advantages of decentralization.” One strand of such
literature considers managers that are bounded in the amount of information they may have
(Groves and Radner, 1972; Arrow and Radner, 1979; Groves, 1983; Geanakoplos and Milgrom,
1988). In this case, decentralization benefits the organization by bringing more information
for solving managerial problems. Second strand of such literature distinguishes raw data and
information processing capability of mangers, and assumes that managers are bounded in what
they can do in any amount of time (Malone and Smith, 1988; Mount and Reiter, 1990, 1996;
Radner, 1993; Bolton and Dewatripont, 1994; Friedman and Oren, 1995; Reiter, 1996; Meagher
and Van Zandt, 1998; Van Zandt, 1998; Beggs, 2001; Orbay, 2002). In this case, the benefit
of decentralization mainly comes from the fact it allows the organization to solve subproblems
concurrently.

This paper contributes to several other strands of literature. First, it contributes to the
literature of empirical structural analysis of learning (Jovanovich, 1979; Miller, 1984; Erdem
and Keane, 1996; Ackerberg, 2003; Crawford and Shum, 2005; Dickstein, 2014; Covert, 2013)
by developing empirical models of learning to analyze a complicated situation in which exist-
ing models do not work. Second, it is increasingly popular in industrial organization to employ
boudedly-rational solution concepts for solving complicated empirical models (Weintraub et al.,
2008; Fershtman and Pakes, 2012). My modeling strategy is in line with this trend. Third,
introducing agents who are learning the environment under uncertainty but with limited infor-
mation acquisition and processing capability is becoming common in macroeconomics (Mankiw
and Reis, 2002; Sims, 2003; Woodford, 2009; Angeletos and La’O, 2009). This paper provides
a motivating example for this assumption and an estimate for the appropriate degree of in-
formational friction in a firm. Finally, establishing an empirical framework quantifying these
issues based on managerial information has a direct implication for the literature of organi-
zational learning in management and marketing science (Easterby-Smith and Lyles, 2011). It
helps managers to identify the strengths and weaknesses of each agent and each aspect of the
organization, and guides to the appropriate measure for building an adaptive and responsive

organization.

"The survey is found in Garicano and Van Zandt (2013).
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1.2 Background and Data

1.2.1 Industry Background

Vending machines are important retail channels in Japan particularly for the beverage business.
According to the Japan Vending Machine Association,® there were 2.6 million installed beverage
vending machines at the end of 2013. In 2013, vending machine beverage sales were 2.3 trillion
yen. This is approximately one third of the total annual sales of beverages in Japan and is
equivalent to supermarket sales.

A unique feature of the industry is that retail prices are constant over time and locations
except for unusual locations such as cinemas or mountain tops and only differ across product
packages. The nominal price changed only when the consumption tax was raised from 3% to
5% in 1997 and from 5% to 8% in 2014. Between 1997 and 2014, the price of a 350 ml can was
120 yen, and the price of a 500 ml bottle was 150 yen across the industry. Because I use data
from 2013, there was no nominal price change during the data period.’

This feature makes product assortment decisions — the choice of products to put in a
limited number of slots in a vending machine — the only way to increase revenue in this
industry. Therefore, beverage producers introduce many new products every season to attract

consumers. Learning demand on a seasonal basis is important for retailers.

1.2.2 Institutional Background

JRE is the largest railway company in Japan. Originally part of the national railway, it was
privatised in 1987. The company operates in the eastern part of mainland Japan including the
Tokyo metropolitan area. In addition to the transportation business, the company operates a
retail business inside stations to exploit the substantial number of passengers who regularly use
the transportation service.!® The beverage vending machine business is a branch of that retail
business unit.

There are a few types of vending machines installed in JRE stations with between 30 and

Shttp://www.jvma.or.jp/index.html
9The reason for this price rigidity and homogeneity across locations and products is outside the scope of the

paper. Possible explanations for time-invariance include the low inflation in the 2000s in Japan and menu costs.
Homogeneity across locations may be attributed to retail price maintenance motivated by fire-sale fears among

competitive retailers (Deneckere, Marvel, and Peck, 1996, 1997).
10The average number of daily passengers in a station in Tokyo ranges from tens to hundreds of thousands:

http://www. jreast.co.jp/passenger/
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Figure 1.1: A Vending Machine and An Agent

(a) A Vending Machine (b) An Agent Refilling Products

42 slots. The most common type of machine has 36 slots. Figure 1.1 (a) shows a picture of
a typical vending machine. A package of available products is displayed on the upper half
of the front panel. Consumers choose the item they want to buy by pushing a button under
the mock package. The consumer then inserts cash or touches the sensor with a JRE electric
commuter card called SUICA in the middle of the panel. Then, the item drops into the box at
the bottom of the machine. Because almost all passengers in Tokyo have this commuter card,
a large percentage of transactions are made with the card. The machine and the system are
almost identical to the vending machines of other companies outside stations.

JRE has a subsidiary firm managing the company’s beverage business. This is the principal
company in our analysis. The firm owns vending machines in a number of JRE stations. The
principal company outsources maintenance to third-party operating companies.!'! In addition
to maintenance, the principal company delegates part of the formal authority related to product
assortment decisions for vending machines. Product selection for 70% of slots in the vending
machines are directly determined by the principal company, but assortment for the remaining
slots is the responsibility of the operating companies. The principal company expects and
encourages the operating companies to use these slots for exploring and adapting to local
demand. The product assortment decision by the principal company does not target this

aspect. The principal company classifies vending machines into 31 types based on machine

LA typical vending machine and agent refilling products are shown in Figure 1.1.
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type and market volume and sets the products they want to sell such as private-brand products
or popular, well-known products such as Coke.

The operations of operating companies are divided into several local markets. A local
market, on average, consists of three stations closely located, mostly along the same line with
similar demographic characteristics. A local market has, on average, 30 vending machines. A
local market is, in principle, operated by a single staff member or a small fixed number of staff
during a season. This is the basic unit of decision in the business. Therefore, I call these units
agents and focus on their decisions. Figure 1.1 (b) shows a picture of an agent refilling products
at a vending machine at one of the stations.

The fees paid to the operating companies are proportional to the sales revenue from the
allocated vending machines. Therefore, agents are concerned with top-line sales rather than
profits. A representative of the principal company explains that this is because there is little
variation in margins except for private brands, whose assortment is completely determined by
the principal.

The business plan is determined by the principal company each season. April to September
is the spring/summer season, and remaining months are fall/winter. By the beginning of each
season, the principal company selects a list of products that consists of approximately 200
brands. Products to be inserted into the vending machines are chosen from this list. In the
case of spring/summer 2013 on which I focus, there were 205 listed products, 38% of which were
completely new, 9% of which had renewed packages, and the reminder were old items. The
plan of the principal company for the spring/summer season is to find the best-selling products
on the list at least by the end of June and before the true summer starts.'?

Products are classified into categories such as green tea, black tea, other tea, coffee, mineral
water, tea, sports drinks, and fruit juices. The number of slots allocated to each category at
each vending machine is fixed during a season. This is verified as true both from the data and
by a company representative. Therefore, the product assortment decision of focus is the choice
of products for the fixed slots for each category in each vending machine.

Agents can collect sales data from vending machines when they visit the vending machines
and check the record. This is the primary source of information for agents. The principal
company has a point-of-sales system and monitors all the purchase records of the entire business

area. Each week, the principal company sends a product-level normalised sales score, which is

12 June is a rainy season in Japan when cold and warm air masses combine over Japan. As the rainy season

passes, the true Japanese summer begins with temperatures of more than 35°C and humidity of almost 100%.
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defined as the sample mean of the weekly unit sales of a product in a vending machine divided
by the average weekly sales volume of the vending machine. This is the secondary source
of information. I am not aware of the method for sharing information within an operating
company. In the analysis, I allow information to be shared between the operating company and
the agent in the same format as between the principal company and the agent.

Agents regularly visit the vending machines from a few times a day to a few times a week
to refill stock depending on the market size of the vending machines. Thus, an out of stock
vending machine is rare.!® Because they regularly visit vending machines regardless of product
changes, marginal costs of changing products on top of driving, visiting and refilling are not

high.

1.2.3 Data

The dataset consists of the sales and product assortment history at the micro-level and admin-
istrative information. I focus on the product assortment decisions of 80 agents (assigned to 80
local markets) belonging to four operating companies about 22 products in the tea category
across 2,483 vending machines in the Tokyo metropolitan area between March and September
(the spring/summer season) 2013 with 2,162,812 purchase records.

The administrative information allows me to determine for each week and each vending
machine slot which of the principal company and the agent chose that assortment for that week
for that particular vending machine slot. This information is critically important to assess the
ability of an agent. Otherwise, I could only identify the ability of the organization as a whole.

The auxiliary data provide the product characteristics such as price, package type, and the
product release date. The data also contain the list of products for the season in question. I cite
temperature data from the website of the Japan Meteorological Agency including the 10-year
daily average temperatures. The principal company and the operating companies regularly
check the same temperature data when finalising decisions.

The original sales and assortments data are recorded on a second basis. In the structural
estimation, I aggregate them into weekly data because it is sufficient to capture the product
assortment decisions variations over time, and it is convenient to compute and estimate the
model. A week is defined to start on Monday. The assortment at the end of Thursday of a

week is used as the assortment for the week. There are two reasons for this choice: i) the

13The principal company has a system to monitor the time of stock-out for each machine. According to this

database, the time of stock-out is less than 2% per day even at the worst one percentile of vending machines.
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Figure 1.2: Distribution of Average Daily Sales Volume Across Vending Machines
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The bandwidth of the histogram is set at 10. For each vending machine, I compute the daily
sales volume and then take the average across days between March and September 2013. The

sales of a vending machine include all the categories.

principal company sends the previous week’s aggregate sales data on Wednesdays. Therefore,
ii) the frequency of product changes is highest on Thursdays. To adjust the difference in days
on weekly sales across products, the weekly sales of a vending machine product are defined as
the daily product sales times seven. The size of potential consumers of a vending machine is
defined as the average weekly sales of the vending machine times one hundred.'* The choice
probability of a product in a vending machine in a week is defined as the weekly sales of the

product in the vending machine in the week as defined above per the size of consumers.

1.2.4 Descriptive Analysis

First, I illustrate the demand for the products in the tea category during the spring/summer
season in 2013.

Figure 1.2 shows the distribution of the average daily sales volume across vending machines.
The median is 78. The sales volume of the vending machines for this retail network is signifi-
cantly larger than the vending machines outside their railway station network. This allows the
network to learn local demand more accurately than other vending machine networks. Figure
1.3a shows the distribution of the total sales volume of each product. The best product sold 580
thousand bottles, whereas the median product sold only 36 thousand bottles. However, this

classification does not adjust the days, the number, and the size of vending machine consumers

14The definition of the measure of the size of consumers of a vending machine is essentially the same as the

measure used by the principal company, although they do not multiply it by one hundred.
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Figure 1.3: Sales Volume and Average Choice Probabilities of Products

(a) Total Sales Volume of Products
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* I compute the total sales of each product between March and September 2013 in the Tokyo

metropolitan area.

(b) Average Choice Probabilities of Products
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First, I compute the daily sales volume of a product in a vending machine. Then, I divide the
sales volume by the size of vending machine consumers as defined in the main text. Finally, I
take the average across days between March and September 2013 and across vending machines
in the Tokyo metropolitan area. The product identifications in this figure is different from those

in Figure 1.3a.

for which each product was available. Figure 1.3b shows the average choice probabilities of prod-
ucts, which are adjusted for the days, the number, and the size of vending machine consumers
for which each product was available. The difference decreases, but substantial heterogeneity
in the popularity across products remains. The average choice probabilities of the most and
the median popular products are 0.0045% and 0.0029%. Figure 1.4 shows that the popularity
of a product can differ to a large extent across local markets. It is this heterogeneity in demand
across products and local markets that motivates the retail network to learn local demand to

optimise the product assortment of each location.
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Figure 1.4: The Percentiles of Average Choice Probabilities of Products Across Local Markets
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I compute the average choice probability of a product as in Figure 1.3b but for each local market.
Then, I compute the 90, 50, and 10th percentiles of the average choice probabilities of products
across local markets. The product identifications in this figure is different from those in Figures

1.3a and 1.3b.

Second, I check the frequency of product changes in the tea category during the spring/summer
seasons in 2013.

Figure 1.5a shows the distribution for the number of product changes in the tea category
across vending machines. On average, products are changed 9.5 times per vending machine in
the tea category during the season. Figure 1.5b shows the number of product changes in the tea
category for each week during the season. Three peaks approximately correspond to the shift
from winter assortments to spring, spring to summer, and spring to fall. On average, products
are changed 856 times per week, and the peak and the bottom are 2,297 and 99 times per week,
respectively.

Table 1.1a demonstrates that the timing of product changes are asynchronous across loca-
tions. The table implements logistic regressions of indicators of products’ changed in a vending
machine on a given day on various sets of dummy variables to study the source of the total
variation. The table shows that the date dummies can explain only 6.8% of the total variation
according to McFadden’s R?. Even the date x station dummies can explain only 31.0% of
the total variation. Table 1.1b demonstrates that there is a spatial heterogeneity in product
availability. The table implements logistic regressions of indicators of products available in a
vending machine on a given day on various sets of dummy variables. The table shows that the
date x good dummies can explain 31.2% of the total variation. Thus, aggregate seasonality
matters as for product availability. Adding date x station dummies explains the additional

16.6% of the total variation in product availability. The reminder of the total variation in
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Figure 1.5: The Number of Product Changes

(a) The Number of Product Changes across Vending Machines
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I first construct the weekly history of product assortments for each vending machine as described
in the main text. Then, I determine how many products are changed in a week in a vending

machine. Finally, I counted the total number of product changes for each vending machine.

(b) The Number of Product Changes across Weeks
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*
I first construct the weekly history of product assortments for each vending machine as described
in the main text. Then, I determine how many products are changed in a week in a vending

machine. Finally, I counted the total number of product changes for each week.

product availability is from the variation across vending machines in a station.

over the number of vending machines in the market.

Finally, I check that there is a positive correlation between the current product assortment
decisions and past sales. To see this, I construct three variables: First, ‘VM Share’ of a product

in a local market in a week is the number of vending machines in the market with the product

product in a local market in a week is the number of vending machines in the market in which
the principal company requires to put the product over the number of vending machines in the

market. Third, ‘Past Choice Probability’ of a product in a local market in a week is the average
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Table 1.1: Determinants of Product Changes and Product Availabilities

(a) Timing of Product Changes

Dummies McFadden’s R?
Date 0.0679
Datex Operator 0.0820
DatexMarket 0.2016
DatexStation 0.3103

*
I first construct a variable that takes one if

tea products are changed in the vending ma-
chine on the day and takes zero otherwise.
Then, I run logistic regressions on various
sets of dummy variables. Finally, I compute

McFaddden’s R2 as a measure of fit.

(b) Product Availability

Dummies McFadden’s R?
DatexGood 0.3118
Datex Good x Operator 0.3589
Datex Good x Market 0.4364
Datex Good x Station 0.4774

"I first construct a variable that takes one if the tea
product exists in the vending machine on the day and
takes zero otherwise. Then, I run logistic regressions
on various sets of dummy variables. Finally, I compute

McFaddden’s R2 as a measure of fit.

choice probability of the product in the market in the last month. Then, I regress the log of
‘VM Share’ on the log of ‘Exogenous VM Share’ and ‘Past Choice Probability’ with and without
fixed effects. Table 1.2 reports the regression results. First, the elasticities of ‘VM Share’ to
‘Exogenous VM Share’ are 0.86 and 0.85 in the left and right columns, indicating that agents
are loyal to the order by the principal company. Second, the elasticity of ‘“VM Share’ to ‘Past
Choice Probability’ is 0.07 if only market x good-fixed effects are controlled, and 0.09 if both
market X good- and week- fixed effects are controlled. They are statistically significant, but
the magnitude is small. This suggests that agents are learning from past sales data to optimise
product assortments, but there is large friction in the learning and adjustment process.

I explicitly incorporate the institutional restriction and the covariates such as temperatures
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Table 1.2: Current Vending Machine Share and Past Choice Probabilities of Products

log(VM Share) log(VM Share)

log(Exogenous VM Share) 0.8663 0.8554
(0.0040) (0.0042)
log(Past Choice Probability) 0.0744 0.0930
(0.0069) (0.0072)
R-squared 0.8337 0.8364
Adj. R-squared 0.7635 0.7641
Market x Good-Fixed Effects Yes Yes
Week-Fixed Effects No Yes
Balanced No No
n 1081 1081
nT 12867 12867

‘VM Share’ of a product in a local market in a week is the number of vending machines
in the market with the product over the number of vending machines in the market.
‘Exogenous VM Share’ of a product in a local market in a week is the number of
vending machines in the market in which the principal company requires to put the
product over the number of vending machines in the market. ‘Past Choice Probability’
of a product in a local market in a week is the average choice probability of the product
in the market in the last month.

* n is the number of unique cross-sectional units, and nT is the total sample size.

*** 1 drop observations if either of ‘VM Share’, ‘Exogenous VM Share’, and ‘Past Choice

Probability’ are zero or N.A.

Hokok .
Standard errors are in parentheses.

in the structural estimation, and quantify how effectively agents are learning from the sales

data, and how much they contribute to the revenue of the retail network.

1.3 Model

1.3.1 A Model for Illustration

In this section, I illustrate the intuition of the model using a simple model. I also introduce
the Bayesian control rule and provide rationales for employing this rule as a solution concept

of the empirical model.
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Demand

Consider an agent assigned in a local market. The agent has one vending machine with two
slots. There are three distinct products in the list. The price of the products are one. The
agent selects the assortments for the vending machines for a season. A season consists of two
periods.

In a market, there are consumers with measure M. The indirect utilities of a consumer 7 are
vij = vj+vy; for 7 =0,1,2,3, where j = 1,2, 3 are products 1, 2, 3, and 0 represents the outside
option of not buying anything. The preference shocks v;; are drawn from independent and
identical type-I extreme-value distributions. The mean indirect utility of the outside option,
Vg, is normalised at zero. When the consumer chooses an alternative that maximises his utility.
The vector of mean indirect utilities v = (v, v2,v3) characterises the demand of the local

market. I call this a local market demand parameter.

The Agent’s Initial Belief and Information Processing Technology

The agent does not know the exact value of the demand parameter of his market. However,
the agent has some initial belief about the demand parameters at the beginning of the season.
Let N(u,3) denote the agent’s initial belief about the demand parameter v.

Before the season starts, the agent chooses the precision of his information processing tech-
nology by paying costs. Thus, the precision can be regarded as a reduced form parameter of the
agent’s costs of processing information. As a season starts, the agent decides the assortment
for the vending machine. Then, the sales are realised and his information processing technology
updates his belief. Particularly, letting d = (dy, ds,d3)" be the vector of indicators of product

availability on the vending machine, the agent receives a signal as follows:

exp(v;)d;
yj =In 3 Ji .
.\,./ 1+ Zj’:l eXp(Uj’)dj’ f
signal novse
choice probability= L (Jzyv)

where the noise 7; is drawn from the independent and identical normal distribution with a
mean of zero and precision x and updates the belief to N (', ') based on y = (y1,y2,y3)

according to the Bayes rule.'® The precision of the agent’s information processing technology

15Because the mean term of the measurement equation is non-linear in the demand parameters, the model
has no obvious conjugate prior, thus the posterior is not analytically tractable even if a normal prior is used. I
track the belief process using a first-order extended Kalman filter, and approximate the posterior belief with a

normal belief.
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k determines the speed of learning. The noise terms capture all cognitive errors between sales
data and the agent’s action.'6
The agent’s initial belief N(u,X) and the precision of information processing technology x

constitute the main parameters of interest in the model.

Agent’s Decision Problem

Assume that the agent is risk-neutral.!” A fully rational agent chooses a decision rule d(yu, X))

and d'(y/,Y’) that maximises the expected revenue:
3 3
Eo | > ri(d(p, ), v)d; (18, 2) |18, 2| + Egur s | Eo Z’"J‘(d’(u’,g’)av)‘u’,g’ ‘M,z . (1.2)
j=1 j=1

This is a standard Markov decision process where the state variables are belief states (i, X)
and (¢/,%’). In the decision problem, the agent faces a trade-off between exploitation and
exploration: the agent wants to choose an assortment with a higher expected payoff (exploita-
tion) but at the same time the agent wants to choose an assortment with a higher uncertainty
(exploration).

The fully rational solution is, however, computationally infeasible. First, the dimensionality
of the state space is extremely large. This simple model already has 3 + 32 = 12 dimensions.
The dimensionality exceeds one thousand in the application. Second, product assortment deci-
sions are by nature combinatorial optimisation problems. This first means that the action space
is also extremely large and, second, that the belief updating over payoffs of each assortment is
highly dependent. The belief over the payoff of an assortment can change even if other assort-
ments are chosen if they share a same product. If the belief updating is so complicated, then
efficient algorithms based on Gittin’s index, which have been used in the literature of empirical

analysis of learning, no longer work.

16When I fit the demand model to the data, I include additional measurement errors. These errors in the sales
data are distinguished from the agent’s cognitive errors both conceptually and empirically. These measurement

errors cannot be removed even if a perfect information processing technology (k = c0) is utilised.
17The fee is proportional to the sales, which suggests that the agent can be risk averse. However, I assume

risk-neutrality. Because risk averseness and larger initial uncertainty have similar implications for the agent’s
assortment decisions, I normalise either the initial uncertainty at the level of rational expectation or the degree
of risk-averseness at the risk-neutral level. My counterfactual analysis does not require distinguishing these two

reasons for the agent’s actions.

34



Bayesian Control Rule

Because of this computational problem, I borrow a decision rule called the Bayesian control
rule (Ortega, 2011) from the engineering literature.

The algorithm works as follows: given a belief at period N(u,X), i) the agent samples a
state v* from his belief N(u,X), ii) chooses an action that maximises the objective assuming
that sample v* is the true state of the world, and iii) updates his belief based on the realised
signals. The decision rule coincides with the ex-post optimal decision rule when there is no
uncertainty. It converges to the ex-post optimal decision rule over trials.

The decision rule intuitively resolves the exploitation-exploration trade-off. Under the
Bayesian control rule, assortments either with higher expected payoff or with higher uncer-
tainty over the payoff are likely to be chosen. As the uncertainty is cleared, then the expected
payoff dominates.

One drawback of the decision rule is that it is not forward-looking. Therefore, if there is
an expectation that increases the value of exploration, then the decision rule fails to capture
the effects of the expectation. For example, a fully rational agent will intensify exploration
if he knows that more vending machines are allocated to his market in the next period. An
agent following the Bayesian control rule fails to adjust the balance of exploitation-exploration
trade-off in such a case. However, this problem should be negligible because the current setting
does not include such occasions.

The decision rule works well under various settings (Vermorel and Mohri, 2005; Kuleshov
and Precup, 2014). We later see that it also works well in the current application. Additionally,
there is ample experimental evidence in psychology and experimental economics that this type
of decision rule better describes human behaviors than the expected utility maximisation rule
rule (Shanks, Tunney, and McCarthy, 2002).

The choice probabilities under the Bayesian control rule are:
3
p(dolp, X) = / 1{do = argmax, ij(d,v)dj}dN(vlm ¥,

=1

3
pldolp’, 2" = /1{(16 = argmax, Zrj(d',v/)d;}dN(v'm',Z').

j=1

(1.3)

Thus, state of the world optimal policies are mixed with belief at this point. This completes

the description of the model.
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1.3.2 Full Model

Now I modify the model to fit the reality. There are many agents in the retail network, and they
are assigned to each local market. The demand parameters can be arbitrarily dependent across
local markets. Every period, the principal company and operating companies send aggregate
product-level sales data to each agent. However, I assume that agents’ decisions are separated
conditional on the demand parameters and the aggregate product-level sales data. Therefore,
I suppress the index of agents in the followings. All variables and parameters are indexed by
agents and markets.

The empirical model differs from the model for illustration in several aspects: i) There
are K vending machines in a market, and J products are listed.!® There are T" weeks in a
season. Agents discount the future by §. The prices can differ across products (but are time-
invariant). ii) Temperatures are entered as a covariate in the indirect utilities. iii) Every period,
the principal and operating companies send aggregate product-level sales data to agents. iv)
A hierarchical structure is imposed on the agent’s initial belief to reduce the dimensionality
of the parameter space. ii) Agents can change products in a vending machine only with the

probability A € [0,1] because of the cost of implementing plans.

Demand

Consumers with measure M}, pass by vending machine k every week. The mean indirect utilities
in a market are vjs, = & 4+ 7' In(z) for j = 0,1,---,.J, where z is a temperature of week ¢.
I assume that the principal and agents have perfect foresight for temperatures.'® The demand
parameters of the outside option of not buying anything are normalized at zero: & = 0 and

L= (s 71, where

BE = 0. The vector of parameters in the mean indirect utilities 7
TjL = ( jL, 5J-L ), characterise the demand of the local market, and are the demand parameters
of the local market in the empirical model.

A consumer chooses an alternative that maximises utility. Then, the choice probabilities in

vending machine k =1,--- | K in week t =1,--- ,T are:
7jee(d, ) exp(&f + B In(z))d; ,
= 5 2 =01, J (1.4)
M, 1+ Zj'eJ exp(fj/ + 53'/ In(zt))d;:

18The number of vending machines in a market and the set of products in the list change over time. This is

reflected at the estimation stage. I abstract away from it in the description of the model.
9This is a safe assumption because the principal company and the agents regularly check 10-year average

daily temperatures and short- and long-run weather forecasts released by the Japan Meteorological Agency.
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Agent’s Information Processing Technology

The agent has three sources of sales data. The first data come from the local market. The
remaining data come from the principal and operating companies. At the beginning of the

season, the agent chooses how precisely he processes each piece of information. Particularly, in

week t = 1,--- T, the agent receives signals such that:
L Tjtk(d’TL) L -
(Local) yjtkzlnTk+77jtk’]:17"'aJak':L"'aK7
1
1 <, 7jm(d,7F)
. . P _ Jtk\W, P . _
(Principal Company) Yjr = N—ﬁ, ;ln ML + g =1, (1.5)
©
, 1 ryld, T ,
(Operating Company) yﬁ = N—g Zln %}c) + 77]'0“] =1,---,J,
Jt k=1

where NV, ﬁ and N, ﬁ are the numbers of vending machines that have product j in all the mar-
kets and in the markets belonging to the operating company, and nj;,,7/;, and 7§, are drawn

from independent normal distributions with a mean of zero and precisions k%, k¥

, and KO,
respectively.

These signals are related to the underlying demand parameters through measurement equa-
tions. The mean terms of the signals from the local market, ijtk, are related to the local demand

parameter 77 through equation (1.4). The mean terms of the signals from the principal and

operating companies are assumed approximately related to the aggregate demand parameters

as:
rtde _
NIZZI e N£f+ﬁf1n(zt)7-]:17"'7Jat:17"'7T7
e (1.6)
T de .
NoZ1 L) €04 Oz = Lot =1 T,
Jt k=1
The vectors 77 = (rf’,--- | 7F") with TJP = (f,ﬂf)’ and 79 = (70, ,79") with

TjP = ( ]O, ﬁjo)’ characterise the aggregate states of demand. I call them aggregate demand

Lr 7P 701 demand parameters. The agent updates the belief

parameters and call 7 = (7
about 7 based on the signals from the information processing technology defined as above

according to the Bayes rule.
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Agent’s Initial Belief

At the beginning of the season, the agent has an initial belief N(p1,%1) over 7. I impose a
hierarchical structure on the initial belief to reduce the dimensionality of the parameter space.
The benchmark of the initial belief is that of the rational expectation. The belief under the
rational expectation is the distribution of the vector of local demand parameters {T]-L }jes across
local markets. I assume that the principal company’s belief is no worse than the belief under
the rational expectation while agents may have better knowledge of their own local markets.

I assume that the mean terms of an agent’s initial belief about their local demand parameters
are distributed normally around the true local demand parameters. I allow for the dispersion to
depend on the weeks after the release of relevant products at the beginning of the season because,
at that point, the agent will already have some information.The mean terms of an agent’s initial

belief about a local demand parameter §jL, m(g}), for j =1,---,J, are distributed as:

p(&f) ~ N(&fm(€5)?),

In 7r(§jL) = g0 — 7,1 In(WeeksAfter Release);,

(1.7)

and the mean terms with respect to BJL for j =1,---,J are given in the same way. The hyper
parameters m¢ o and 7g o determine the average biases of the agent’s initial belief, and ¢ ; and
m¢ 1 are the sensitivity of the biases to the weeks after the release of the relevant product at
the beginning of the season. If 7r(§jL) and ﬂ'(,BjL) are zero for j = 1,--- ,J, then the agent has
an unbiased belief about the local demand parameters.

I assume that the standard deviations of an agent’s initial belief about local demand pa-
rameters are proportional to the standard deviations of the belief under rational expectation.
I allow for the proportion to depend on the weeks after the release of relevant products at the
beginning of the season. Particularly, the standard deviation terms of an agent’s initial belief

about a local demand parameter §]L, 01(§J-L), for j=1,---,J, are:

o1(&7) = pio P (ED),

(1.8)

In(p;) = po — p1 In(WeeksAfterRelease);,
where o?*F (§jL ) for j = 1,---,J are the standard deviations of the belief under rational ex-
pectation, and the standard deviations with respect to ﬂ]L for j = 1,---,J are given in the

same way. The hyper parameter pg determines the average accuracy of the agent’s initial belief,

and p; determines the sensitivity of the biases to the weeks after the release of the relevant
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product at the beginning of the season. If the agent has an unbiased belief and p; are zero for
j=1,---,J, then the agent has complete knowledge about the local demand parameter.

The mean terms for the aggregate demand parameters Ml(ff), ,ul(ﬁf), ul(fjo), and ,ul(ﬂjo)
for j = 1,---,J are set at the actual average of {gjL}jeJ and {5f}jeJ across entire local
markets and across markets belonging to the operating company. The standard deviations
01(&F),01(07), pa(0f), and 01(8) are set at the same values as the standard deviations for
the local parameters,o (ij),al (O'JL) forj=1,---,J.

The correlation in the initial belief between 5]’; and & JP or fjo are set at the actual correlation
between {§JL }jes and the actual average of {§JL }jes across entire markets or across markets
belonging to the operating company. The correlation for BJ-L terms are set in the same way. The
correlation between terms with respect to different products or different types are set at zero.

This completes the description of an agent’s initial belief and the information processing
technology. I track the belief updating by the first-order extended Kalman filter, and approxi-

mate the belief using a normal belief.

Bayesian Control Rule

In week t = 1,---,T, if the local demand parameters are {TjL}jeJ = {( jL,BjL)’}jEJ, and the
agent chose assortment dy; for vending machine k = 1,--- | K, then the vending machine yields
revenue:

Ry (die, 7"

Z " exp( §L +ﬁL In(zt))dge; (1.9)

jed > crexp(&f + B n(z))
I assume that an agent can change vending machine products in a week only with probability
A € [0, 1] because of the cost of implementing plans. I assume that the arrivals of the chance of a
move are independent across vending machines based on the evidence in the descriptive analysis.
Therefore, in week t = 1,--- , T, if the local demand parameters are {TjL}jeJ ={( ]L, Bf)’}jej,
and the agent chose assortment dy; for vending machine £ = 1,--- , K, the expected revenue

from the vending machine is:

T—s s
Vie(dre, 7) = DAL =N 6" Ry gy (die, 7) + Co(7)

s=0 u=0
T—t T—t

=Y Ripsuldir, 7)Y AL = A)* + Cy(7) (1.10)
u=0 s=u
T—t

= A== (=N Ry (dre, T) 4 Ci(7),
u=0
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where Cy(7) is a constant term that does not depend on the assortment dy; that represents the
sum of value functions at the point where the chance of a move arrives.

Given the deterministic choice-specific value functions { Vi (dge, 7) bre ik rer and the initial
belief N(u1,%1), the Bayesian control rule works as follows: for each t = 1,---,T, for each
vending machine k = 1,--- , K, if the chance of a move arrives, i) the agent samples a vec-
tor of local demand parameters 75* from N (¢, Y;), ii) chooses an assortment dy; such that
dr = argmax, Vi (d, 75*), and after deciding assortments for all the vending machines, given
realized signals y;, iil) updates his belief to N(u¢11,%¢41) by the belief updating function

B(pt41, Ze1|pt, Xt3Yt, de).  Then, the choice probabilities of an assortment di; for vending

machine k =1,--- , K in week t =1,--- ,T are:
pkt(dkt‘,ut, Zt) = /1{th(dkt,TL) = mgXth(d, TL)}dN(TL“Lt, Zt) (111)
Identification

The demand parameters are identified outside the dynamic model from the history of sales and
assortments. This gives the revenue functions. Intuitively, I identify the main parameter of
interests as follows. First, the history of assortment decisions reveals the agent’s belief process
including his initial belief. Second, from the history of sales associated with the history of
assortments, I compute the belief process of an agent without processing costs. Comparing
these belief processes, I can identify the precision of agent’s information processing technology.
The identification strategy presumes that there are many vending machines in a local market.
In reality, I borrow some identification powers of functional form restrictions to pin down the

estimates.

1.4 Estimation

This section describes how to estimate the full empirical model.

All the parameters are agent- and market-specific, and estimation is done agent by agent and
market by market. Hence, all the spatial heterogeneity is, in principle, recovered. However,
the effective sample size to estimate dynamic parameters of an agent can be small because
product change is infrequent. Therefore, the estimates of dynamic parameters of an agent can
be inaccurate. However, errors in the estimates of the dynamic parameters at the agent level are

washed out when I evaluate the expected total revenue of the network, my ultimate parameter
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of interest, because the expected total revenue is a sum of expected revenues across markets,
and the expected revenue of a market is a statistic that is continuous in the dynamic parameters
of an agent in the market.

I continue to suppress index of agent and market in this section.

1.4.1 Estimating Demand Parameters

I first estimate the demand parameters outside the dynamic model. I consider the following

regressions:

e (deg, TF
In %Z) = {ij + B In(z) — In ( Z exp(£)7 + B ln(Zt))dj’tk> }djtk: + i

j'eJ
j:()’]-v"‘,J,tzl,"‘,T,kzl,"',K,

i dtk L) (1.12)
le e al _€f+ﬁf1n(zt)+€ﬁa.7:1a7J7t:1a7Ta
th 1

(d
Ozl r]tk tk7 )_g?—"_ﬁjoln(zt)—i_eﬁ?.j:l?aJat:17’T’
th 1

where eJLtk, > and €9, are drawn from independent normal distributions with a mean of zero

gt
and standard deviations 0 O’P /+/N ﬁ, and ao / N O The standard deviations for the aggre-
gate sales data decrease at the rate of jt and jt because the aggregate errors are the
averages of the errors across N/, and Nf] vending machines.

I run NLLS regressions to estimate the demand parameters 7 and the standard deviations

in the sales data o = (oL, 0 09") with oF = (of,--- oL}, oF = (¢F, - ,0F), and
09 = (00, ,09). These errors are fundamental in the sales data and are distinguished from

the cognitive errors in the information processing technologies of agents.

The critical assumption for this estimation is that assortment decisions in week ¢ are uncor-
related with the errors in the week. Because the assortment is correlated with past sales and
so with past errors, the errors must be serially uncorrelated. Another critical assumption is
the homogeneity of the demand parameters within a local market and a season. As long as the
homogeneity assumption holds and a product is put in a vending machine for some periods in
a local market, the local demand parameters regarding the product are, in principle, identified.
In reality, few products are never tried in a local market. In such a case, I use the average of
the estimates as the corresponding local demand parameter in the next step of the estimation

and counterfactual analysis.

41



Figure 1.6: The Percentiles of Estimates of Products’ Demand Parameters across Local Markets

(a) &: intercepts
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For each product, I compute the 10, 50, and 90th percentiles of the estimates of

the intercepts across local markets and sort by the value of the 50th percentile.

(b) B: coefficients on temperatures
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For each product, I compute the 10, 50, and 90th percentiles of the estimates of

the coefficients of temperatures across local markets and sort by the value of the

50th percentile.

Figure 1.6 displays the percentiles of estimates across local markets. Because these are tea
products, most of the products react positively to temperatures. To test serial correlations, I
apply the Breush-Godfrey test for the residuals of each cross-sectional unit (vending machine
good), and to control the false discovery rate I adjust these p-values by the method of Benjamini
and Hochberg (1995). Then, Figure 1.7 illustrates sorted adjusted p-values. The figure shows
that only a few of the units reject the null hypothesis of no serial correlation. As a simple
measure of fit of the demand models, Table 1.3 describes the summary statistics of the R-

squared values of the NLLS regressions across local markets. On average, the value is 0.33.
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Figure 1.7: Adjusted p-values of the Breush-Godfrey Tests

Cross—Sectional Units

* I first apply the Breush-Godfrey test for the residuals of each cross-sectional unit
(vending machine good) of the local demand models and then adjust the series
of p-values by the method of Benjamini and Hochberg (1995). Then, I sort the

p-values according to the size and plot them from the smallest to the largest.

Table 1.3: R2 of Local Demand Models across Markets

R2
mean 0.3282
sd 0.0888
p25 0.2686
p50 0.3167
p75 0.3770
min 0.1280
max 0.5970

* For each local market, I first compute the R-squared values of the local demand models and then take their summary statistics

across local markets.

1.4.2 Estimating Dynamic Parameters

A vector of dynamic parameters of interest, 8, consists of precisions of agent’s information tech-
nologies (k~, kT, K9)’, hyper parameters in the agent’s initial belief (po, p1) and (¢ 0, Te,1, 75,0, 74,1 )
the probability of a move A, and the discount factor . A vector of observations consists of the
history of sales r, assortments d, and temperatures z.

I let B(pbt41, Zep1|pe, X457, dp) be the transition probability of belief states conditional on
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assortments d; defined in the previous section. Then, the likelihood function is:

L(0]d, z)
T
= /HB(,ut+1,2t+1|,ut;2t§rt7dt) (1.13)
t=1 '
K
X H (1= N)1{dre = dii—1} + Dt (die | e, X)) | dpre41d3 41
k=1

Because belief states are hidden Markov state variables, I integrate them out by applying a
particle filter where the proposal distribution of particles is given by B(s41, Se11]| e, 2t; 74, di)-
Resampling is according to the normalised importance weight when the effective number of
samples is below N,;/10, where N, is the number of particles. The number of particles N,
is set at 100, and the number of samples to evaluate each choice probability prs, Ngim, is set
at 200.

The parameters are estimated by a maximum a posterior (MAP) estimator. The prior
on the static parameters is non-informative, that is, the prior density is constant, and the
inference is fully likelihood-based. I sample from the posterior distribution using a robust
adaptive Metropolis-Hastings sampler (Vihola, 2011) to facilitate the convergence that targets
mean acceptance probability 0.5 with the step-size tuning parameter v set at 0.75. In total,
1000 samples are generated, and the first 500 samples are burned in.

To impose upper and lower bound restrictions, some parameters are reparameterised using
monotonic mappings. First, because A\, € (0,1), some parameters are reparameterised by a
one to one mapping A = exp(A\*)/(1+exp(A\*)) and § = exp(6*)/(1+ exp(d*)), and the sampler
is run on the space of \* and §*. kg, k1, Ko are reparameterised by a one to one mapping
Kk = exp(K*).

Table 1.4 summarises the estimation results. Because I obtain estimates for each local
market, the table only shows the summary statistics of the estimates across local markets. I
discuss the implications in the next section. To assess the fit of the model, I compute a pseudo
R? as follows: let s; be the number of slots allocated to a product in a local market in a week
over the number of slots for which agents are responsible in the local market in the week. Then,
let §; be the expected share derived from the estimated model and 5 be the average of {s;}.
Then, the pseudo R? is defined as 1 — ", (s; — 8;)?/ >_,(s;i —5)%. The pseudo R? of the current

model is 0.136. Some variations cannot be explained by the current model.
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Table 1.4: Estimation Results: Summary Statistics Across Local markets

Across Markets. mean sd P25 p50 p75 min max
Signal Precision
k 40.2342 235.7781  3.1682 11.6261 22.9763  0.6521 2220.0666
wF 6.0493 12.8717  0.6902 1.6671 5.0235  0.0015 85.2308
9 4.2772 10.3657  0.4695 1.3078 3.9344  0.0002 75.3124
Initial Belief
Po -0.7215 1.2124 -0.9998 -0.5199 -0.0590 -8.3698 0.8102
p1 0.0058 0.0221  0.0002 0.0009 0.0022  0.0000 0.1814
Te,0 -0.3146 1.2897 -1.0829  -0.4189 0.5670 -4.0100 2.7819
Te 0.0194 0.1053  0.0004  0.0012 0.0036  0.0000 0.9419
8,0 -0.8103 1.4291 -1.6066  -0.4265 0.1314 -4.9390 1.5277
38,1 0.0226 0.1751  0.0004  0.0010 0.0032  0.0000 1.6447
Others
A 0.0468 0.0291  0.0259 0.0415 0.0641  0.0004 0.1685
) 0.9568 0.1201  0.9737  0.9910 0.9965  0.0493 1.0000

*
I estimate the parameters market by market (agent by agent). Then, I take summary statistics of the estimates across local

markets.

1.5 Analysis

1.5.1 Quantifying the Agent Contributions

I first study the agent contributions to the retail network. I define baseline revenue as the
revenue when no information processing is exerted and no private information is exploited. No
information processing is exerted means that the agents do not learn from past sales, that is,

the signal precisions kK, k¥

, and k€ are all zero. No private information is exploited means that
the initial beliefs are those of the rational expectation.?® The assumption behind this setting is
that the principal’s belief about local demand parameters is no worse than those of the rational
expectation. Therefore, contributions of agents’ effort compared to the revenue baseline should

be interpreted as the upper bound of the agent contributions.

20The mean and the standard deviation of a parameter coincide with the mean and the standard deviation of

the ex-post distribution of the parameter across local markets.
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Figure 1.8: Simulated Distribution of the Total Revenue Relative to the Baseline
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I simulate 1000 paths for each local market under different parameter settings, compute the total revenue of

the network, and divide the total revenues by the revenue baseline for each path.

Table 1.5: Expected Total Revenue Relative to the Baseline

Learning, Init. Belief Estimate, None Estimate, Estimate Perfect, Perfect

Residual 1.2633 1.4190 1.9699
Entire 1.1226 1.1956 1.4545

* I simulate 1000 paths for each local market, compute the total revenue of the network for each path, and

take the average of the total revenues to estimate the expected total revenue of the network under different
degrees of informational friction. The expected revenues are divided by the revenue baseline. The revenue
baseline is the revenue when no information processing is exerted and the initial beliefs are those of the
rational expectation. The columns correspond to the different settings of the parameter: the middle column
is the revenue under the actual estimates, the left column is the revenue when the contribution of the agent’s

initial belief is dropped, and the right column is the revenue when the agents knew the demand parameters

from the beginning. The upper row is for the revenues from the slots for which the agents can decide

assortments, and the lower row is the revenue from the entire slots.

To compute the expected total revenue of the retail network under different degrees of
informational friction, I first simulate 1000 paths of sales and assortments under i) the baseline
and ii) the actual parameter estimates. The distribution in the middle of Figure 1.8 is the
distribution of total revenues under the actual parameter estimates relative to the revenue
baseline. The middle column of Table 1.6 is the expected total revenue under the actual

estimates relative to the revenue baseline. The upper row is the number for the slots for which
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agents are responsible, and the bottom row is the number for the entire slots. Table 1.6 shows
that the agents’ information processing and private information increases expected total revenue
by 41.9% for the slots for which the agents are responsible and 19.6% for all slots. Thus, agents
non-trivially contribute to the network by learning demand and adjusting the assortments.

However, this is far from perfect. I simulated 1000 paths of sales and assortments under the
assumption that the local demand parameters are know from the beginning. The right distri-
bution of Figure 1.8 is the distribution of the total revenues under the assumption relative to
the revenue baseline. The distribution is far above the distribution under the actual parameter
estimates. The right column of Table 1.6 is the expected total revenue under the assumption
relative to the revenue baseline. The upper row shows that the network could increase the total
revenue by 97.0% for the slots for which agents are responsible, and by 45.5% for all slots, if
the local demand parameters are known from the beginning. This is the maximum attainable
level of revenue in the current environment.

Next, to study the contributions of agents’ information processing and initial belief, I sim-
ulate 1000 paths of sales and assortments under the assumption that the initial beliefs are at
the baseline but the signal precisions are at the actual parameter estimates. The left distri-
bution of Figure 1.8 is the distribution of the total revenues under the assumption relative to
the revenue baseline. The left column of Table 1.6 gives the expected total revenue under the
assumption relative to the revenue baseline. The upper row shows that the agents’ information
processing only increases the expected total revenue by 26.3% for the slots for which agents
are responsible and by 12.3% for the entire slots. This implies that the agents’ information
processing and initial belief contributed to expected total revenue by 12.3% and 7.3% for all

slots, respectively.?!

1.5.2 Quantifying Informational Friction Favouring Delegation of Prod-

uct Assortment Decisions

In this section, I study the implications of the estimation results for the principal’s choice of

the decentralised decision structure.

21'We should carefully interpret this result. If T additionally assume that the agents’ initial belief captures
all the relevant private information of the agent, then the contribution of the initial belief is equal to the
contribution of the agent’s private information. If not, the contribution of the information processing quantified
above captures the contribution of the learning from the sales data and some other potential private signals that

is informative concerning the local demand and correlated with the sales data.
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Figure 1.9: Simulated Distribution of the Total Revenue Relative to the Baseline
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I simulate 1000 paths for each local market under different settings of the parameter, compute the total

revenue of the network and divide the total revenues by the revenue baseline for each path.

Table 1.6: Expected Total Revenue Relative to the Baseline

Learning, Init. Belief Estimate, Estimate Perfect, None

Residual 1.4190 1.8435
Entire 1.1956 1.3951

* I simulate 1000 paths for each local market, compute the total revenue of the
network for each path, and take the average of the total revenues to estimate the
expected total revenue of the network under different degrees of informational
friction. The expected revenues are divided by the revenue baseline. The revenue
baseline is the revenue when no information processing is exerted and the initial
beliefs are those of the rational expectation. The columns correspond to the
different parameter settings: the left column is the revenue under the actual
estimates, and the right column is the revenue when the initial beliefs are those
of the rational expectation, but the sales data are processed precisely. The upper
row is the revenue from the slots for which the agents decide assortments, and

the lower row is the revenue from all slots.

In theory, the principal company can process the sales data and decide all the product
assortments without delegating the decisions to agents. However, as observed, the principal
company delegates part of the product assortment decisions to agents based in local markets.
There can be two reasons for this choice. First, there may be some information about the

demand other than the sales data, and the information is dispersed across locations. Moreover,
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this information may be ‘soft’, that is, hard to communicate. Then, the principal may want to
delegate decisions to exploit this private information at agents’ hand. Second, it may be costly
to develop and utilise information processing capability for the principal. Then, for a given
allocation of information processing capabilities, it may be better for the principal to divide
the big problem into small tasks, distribute the tasks across multiple agents, and solve them
concurrently. This configuration may be better than increasing the principal’s capability to
process all the sales data and optimise product assortments.

I first ask whether I can rationalise the delegation without considering the second factor,
the principal’s costs for developing and utilising information processing capability. If not, I
discern how large the costs must be to rationalise delegation. I can answer these questions
by comparing expected total revenues under the actual policy and the hypothetical centralised
assortment policy that only uses sales and covariates (temperatures) data but not the agents’
initial beliefs. If the hypothetical centralised assortment revenue exceeds the actual revenue, I
cannot rationalise the delegation. Because gross profits are roughly proportional to the revenue
in their business, the costs for developing and processing information processing capability
relative to the baseline of gross profits must be as large as the difference in the expected total
revenues relative to the baseline of revenue between two policies.

Figure 1.9 displays the distributions of total revenues relative to the baseline of revenue under
the actual and hypothetical assortment policies. Figure 1.9 shows that the distribution under
the hypothetical assortment policy is above the distribution under the actual assortment policy.
Table 1.8 shows the expected total revenues relative to the revenue baseline under the actual
and hypothetical assortment policies. The upper row of the right column of the table shows
that the hypothetical centralised assortment policy could increase the expected total revenue
by 84.4% for the slots for which agents are responsible. From the bottom row, I can see that
it could increase the expected total revenue by 39.5% for the entire slots. These increases are
greater than the contributions of agents under the actual policy, 41.9% and 19.6%. Therefore, I
cannot rationalise the delegation without considering costs that prevent the principal company
from employing the hypothetical assortment policy. The costs must be as large as 39.5 - 19.6
= 19.9% of the baseline gross profit.
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1.6 Concluding Remarks

This paper studied product assortment decisions of agents working for a beverage vending ma-
chine network in Tokyo. An uncertain environment concerning underlying demand parameters
exists because of the release of new products. I found that agents have some informative initial
belief about the demand parameters and are learning the demand parameters from the sales
data. This informative initial belief and learning together increase the expected total revenue
by 19.6% than the revenue baseline where no informative belief exists and no information pro-
cessing of the sales data is exerted. Agent’s informative beliefs and information processing
contribute 7.3% and 12.3%, respectively. However, I also showed that this is far from the
perfect: the expected total revenue could be 45.5% higher than the baseline if the demand
parameters are known from the beginning. This raises concerns with the assumption that firms
know the demand parameters when we recover marginal costs from the observed prices and
the estimated demand functions. Finally, I found that the principal could increase expected
total revenue by 39.5% if sales data are precisely analysed even if their initial belief is no more
informative than the rational expectation. This indicates that there are costs for the principal
company in developing and utilising information processing capabilities to centralise decisions
and that the costs should be at least as large as the 19.9% of the baseline of gross profits.
This paper studies only one season of decisions of the beverage vending machine network.
It is worth investigating how the speed of learning evolves over time and how growth is related
to past experience. For example, an agent who worked in a large market or in a market that
requires more effort for signal extraction may develop faster. Another limitation of the current
paper is that it relies on a specific modelling assumptions of the agent decision process. I intend
to conduct field experiments that change the assortment policy to an algorithmic policy to assess
the validity of the last analysis in a future study. Although my analysis is specific to a beverage
vending machine in Tokyo, the same argument can be applied to other retail formats such as
supermarkets. Including pricing decisions in addition to product assortment decisions are con-
ceptually straightforward and computationally not difficult, because pricing decisions typically

can be solved easier than product assortment decisions requiring combinatorial optimization.
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Chapter 2

Recommending (Un)popular
Products: A Field Experiment

using Vending Machines

2.1 Introduction

Product recommendations have become a major marketing strategy that companies use to in-
duce consumer attention and increase purchase probability. Online retailers such as Amazon
and Netflix use sophisticated machine-learning algorithms to recommend products. Product
recommendations are also effective offline communication channels. In many purchasing oc-
casions, such as choosing electronic appliances, financial products, and medical/health-related
products, product recommendations affect the consumer’s choice.

Although product recommendations attract substantial managerial and academic attention,
measuring the effects of recommendations is not straightforward because online recommenda-
tion systems typically suggest already popular products. That is, recommendations based on
popularity may simply reinforce the position of already popular products and the effect of
recommendation is difficult to accurately estimate.

To overcome this endogeneity problem, we execute a field experiment designed to measure
the causal impact of product recommendations. We use two treatments in our field experiment:

recommending popular products (PP) and unpopular products (UP). We conduct the experi-
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ment using 459 vending machines selling beverages that are located in train stations across the
Tokyo metropolitan area. The vending machines are typically placed on platforms and busy
station corridors, and consumers are often in a hurry to make a purchase during rush hour.
These circumstances may potentially influence the recommendation effectiveness. Thus, we
design the experiment to measure the effects of treatment at different times of the day.

The vending machine we use has a particular feature that offers recommendations and is
equipped with an a electronic touch-screen panel in front with a built-in camera on top. As
a customer approaches, the machine is programmed to make recommendations according to
age and sex based on the image captured by the camera. The machine recommends different
products to customers with different characteristics at different times of the day. A business
man in the morning, for example, may receive a recommendation to buy an energy drink or
coffee, whereas a female teenager may receive a recommendation to purchase a bottle of mineral
water in the afternoon.

Using this feature, we study the effect of PP and UP at different times of the day. Recom-
mendations can strengthen consumer recognition or brand loyalty of already popular products,
but recommendations can also be used to increase consumer attention to products with a small
market share. Our design provides insights on the effects of time pressure or social impact,
which are mostly examined in a lab in existing psychology literature. For instance, individuals
tend to purchase according to routine in the morning when they are busy (under time pressure)
and there are many other people around, whereas individuals are more likely to try something
new after receiving a recommendation in the daytime when they have more time to consider the
product. Thus, product recommendations of small-share products may become more effective
during the day rather than the morning rush-hour.

Our field experiment uses 460 vending machines located across the Tokyo metropolitan
area for a two-week period. We conduct a field experiment with two product recommendation
treatments and a control of no recommendation. The two treatments are “Recommending
Popular Products (PP)” and “Recommending Unpopular Products (UP)” together with the
control group of “No Recommendation (NR).” We split a day into three periods (morning,
afternoon, and evening), and we assign a different set of product recommendations for each
period so that we can compare consumer demand and consumer choice behaviour in different
situations. For example, NR is used in the morning of Day 1, and PP is assigned in the morning
of Day 2. Then, comparing the consumer choice behaviour in the first case and in the second

case, we infer the effects of popular product recommendations.
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We begin our analysis by examining the impact of recommendation display on total bev-
erage sales for each vending machine. The standard consumer model with limited attention
assumes that recommendation increases attention and has no other effects on choice behaviour.
Then, recommendations should increase the total sales. However, whether displaying recom-
mendations can convince customers to buy or have any potential side-effects that reduce sales
is an empirical question.

Our results show that the recommendations increase sales by 10.2% for UP and 3.7% for
PP during the day. Both product recommendation treatments induce customers to buy during
the day when stations are less crowded. Moreover, the effect is much stronger for UP than
PP. The recommendation only appears after a customer stands in front of a machine; therefore
a recommendation does not function as an advertisement to attract more customers to the
vending machine. Hence, the result implies that the recommendation convinces customers to
buy who otherwise would not purchase and the effect is stronger for UP.

In contrast to the daytime result, total sales decrease by approximately 3% for both PP
and UP treatments during the morning rush hour. A potential explanation for the negative
effects of the recommendations is a crowding-out effect because of congestion. Recommendation
displays may increase the time that each consumer spends before making a decision, preventing
potential consumers from purchasing a beverage before a train arrives. This interpretation is
consistent with the stronger negative recommendation effects for machines with higher sales.

Next, to understand the effect of product level recommendations, we estimate a simple
discrete-choice demand model where consumer preferences depend on product recommenda-
tions. We find that product recommendations, on average, increase the choice probability of
recommended products among inside goods by 28.9% for popular products and 4.4% for un-
popular products.

Interestingly, the effects are heterogeneous at different times of the day. We find that
both PP and UP increase choice probability of recommended products by 16.2% and 18.1%,
respectively, during the day. The result is similar in the evening, and the choice probability of
recommended products increases by 33.3% and 17.3%.

In contrast to the results for daytime and night hours, we find that, in the morning, pop-
ular product recommendations increase the likelihood of purchasing those products by 35.1%,
whereas unpopular product recommendations decrease by 11.9%. One interpretation of this
result considering that choice probabilities decrease with recommendation in the morning is

the following: product recommendation causes consumers to consider product choice longer
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before making a decision, but the recommended products may not necessarily be chosen during
morning rush hour if the products are unpopular.

An interpretation based on consumer psychological motivation arises. The opposite effects
of popular and unpopular product recommendations during morning rush-hour may indicate an
effect of the presence of other passengers. The pattern is consistent with the finding of Nowlis
(1995) that consumers under time pressure are more likely to choose top-of-the-line products.
Additionally, a decrease in sales in the morning is consistent with the result of Dhar and Nowlis
(1999) where time-pressured consumers choose to defer choice. Another possible explanation
is social impact theory (SIT), which implies that a large presence of people in close proximity
affects choice. Our result is consistent with Argo, Dahl, and Manchanda (2005)’s finding that
consumers choose certain products to impress others and do so to a greater extent when more
people are in close proximity.

The reminder of the paper is organised as follows. Section 2 explains the industry back-
ground and our experimental design. Section 3 presents the data obtained from the experiment
and some preliminary analyses on the effects of recommendations on overall sales. We dis-
cuss our econometric model in Section 4, and the results and their managerial implications are

explained in Section 5. Lastly, Section 6 concludes.

2.2 Industry Background and Experimental Design

2.2.1 The Vending Machine Industry

The vending machine is one of the main beverage sales channels in Japan; almost one-third
of total beverage sales in Japan are generated by the vending machine industry.! There is
one vending machine for every 50 people, and there were approximately 2.6 million vending
machines in 2013.

We conduct a field experiment with a large beverage vending machine company (the com-
pany, hereafter), which is a subsidiary company of the largest railroad transportation company
in Japan. The train company operates mainly in the Tokyo metropolitan area with more than
1,700 train stations and an average of 16 million daily passengers across all stations. The com-
pany owns 9,600 vending machines and places them in the train stations. Annual sales in 2013

were $260 million with an average annual growth rate of 30%. Most of the company vending

1Based on Inryo Brand Book 2011 edited by Inryo Souken, 35% of total beverage sales are from vending

machines, 36% from supermarkets, and 20% from convenience stores.
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Figure 2.1: Product Recommendation
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* The product recommendation (red bubble with the word “Recommended” that flashes) appears based on age and sex of the customer.

machines sell only beverages, but a small fraction of the vending machines sell some food such
as snacks and fruits. This study solely focuses on beverage vending machines.

The 460 vending machines we use for the field experiment have several unique features. First,
there is a large electronic touch-panel screen on the front of the machine and consumers purchase
a product by touching their choice of product. Each vending machine offers approximately 40
different products, but some products, particularly popular products, occupy more than one
column. Second, and most importantly, the vending machine is equipped with a camera in its
front panel. When a consumer stands in front of a vending machine to purchase a beverage, the
camera recognizes the consumer and captures consumer characteristics such as gender and age.
Based on the characteristics of the consumer, the vending machine is programmed to make

product recommendations based on the consumer’s characteristics.?

Consumers can easily
identify which products are recommended through colourful flashing pop-ups displayed as the
customer stands in front of the vending machine (see Figure 2.1).

The set of products recommended to consumers is pre-determined by the company and

2Because of privacy concerns, the company cannot collect the information collected by the camera, includ-
ing consumer characteristics. The cameras are used only to detect consumer characteristics to make product

recommendations.

95



depends on the consumer’s age, gender, and the recommendation changes according to the time
of day. Currently, the company does not have the ability to change the product recommendation
list at the individual machine level. The set of available products carried by each vending
machine, however, varies across stations and vending machines because each agent that manages
machine has some discretion over product selection for each vending machine (see the previous
chapter for details). Therefore, the variation in the number of recommendations and the set of
recommended products for each vending machine is substantial.

The recommendation system that uses may function differently from the recommendation
systems that online companies such as Amazon.com and Netflix use on their website. Ama-
zon.com or Netflix have developed a complicated algorithm based on collaborative filtering
and/or machine learning for product recommendation and use consumers’ web-browsing his-
tory and past purchase information to predict their next-product-to-buy. In our context, the
company maintains a large database that contains customers’ past purchase information and
demographic information similar to the databases of Amazon.com and Netflix, but the company
currently does not customise the recommendation system for individual consumers using the
customer information in the database. Thus, the company’s recommendation system is purely
for information provision. This simple system allows us to estimate the effect of recommenda-
tions that are otherwise difficult to tease out. The experimental design explained in the next

section exploits the setting simplicity to infer the effect recommendations.

2.2.2 Experimental Design

To measure the effects of recommendation systems on total sales and consumer choices, we
conduct a large field experiment using 460 vending machines. The experimental design used
for measuring the effects of the recommendations is as follows:

We use two different treatments. Treatment PP is the normal system that recommends
relatively popular products. In treatment UP, the set of recommended products are not popular.
No product is recommended for the control group (denoted NP). In the standard vending
machines without recommendations, products recommended in PP, on average, sell 14.5% more
than products recommended in UP after adjusting the consumer size of vending machines during
the experiment period. We execute these three treatments for three different times over two
weeks. Morning is before 10 o’clock, daytime is between 10 and 18 o’clock, and night is after

18 o’clock. 3

3Since the data is proprietary, it is not possible to disclose which products are included in the set of recom-
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15 16 17 18 19 22 23 24 25 26

Mon Tue Wed Thur Fri Mon Tue Wed Thur Fri

Morning PP UP PP up PP NR PP UP NR PP
Daytime up PP UP NR UP PP Up NR PP UpP
Night PP UP NR PP NR UP NR PP UP NR

*
We conduct the experiment with two different treatments, PP and UP, as well as a control, NR. In Treatment
PP, the same set of products that the company is using is recommended. In treatment UP, unpopular

products are recommended. No product is recommended for control NR.

Table 2.1: Experimental Design

The identification strategy is to compare the outcome from treatment PP (or treatment UP)
and from the control (NP) conditional at the same time of day. By comparing the morning sales
of Day 1 for which treatment PP is implemented with the mornings sales of Day 5 in which
control NP is implemented, we infer the effect of the popular product recommendations on sales.
Hence, the underlying assumption for identification is that consumer demand for beverages is
invariant over a week conditional on the time of day and other observed characteristics, such
as temperature. A limitation of our experimental design is that there is no consumer level
randomisation in showing recommendation pop-ups, although such a randomisation could be
the ideal way to identify the recommendation effects. We do not adapt such a strategy because

of the technical limitations of the program that governs the recommendation system.

2.3 Data

In this subsection, we report the summary statistics of the vending machine data. In Table 2.2,
we report two sets of summary statistics: station-level and vending machine-level characteristics.

The first six rows show the summary station-level characteristics. There are 187 train
stations in our sample, and average daily sales (the number of cans and bottles sold at a
station) are 4,400, but there is a substantial variation across stations. The average number of
products sold at a station is 39.2, and all train stations in the sample have at least 15 products.
The field experiment uses an average of 2.5 vending machines per station, although some large

stations have as many as 30 vending machines.*

mendation products.
4We use only 460 machines out of 9,600 vending machines operated by the company because the reminder

of vending machines do not have the recommendation system. Hence, there is a much larger number of vending
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Obs Mean Std. Dev  Min Max

Station Characteristics

Daily # of Sales 187 4,400.91 6,245.78 105 60,828

# of Products 187 39.22 10.86 15 81

## of Machines 187 2.46 3.03 1 30
Average Temperature 187 25.97 1.56 20 29
Maximum Temperature 187 30.92 2.60 22 36
Minimum Temperature 187 22.55 1.52 18 26

Machine Characteristics

Daily # of Sales 460 1,789.07 806.39 105 5,442
# of Products 460 30.64 2.58 15 39

We report the number of observations, mean, standard errors, minimum and maximum of each

characteristic.

Table 2.2: Summary Statistics of Stations and Vending Machines

From the fourth to sixth rows, we report the summary statistics for average temperature
at the station level, daily maximum temperature, and daily minimum temperature. We obtain
the detailed daily weather information from the Japan Meteorological Agency and match it to
each station. Tokyo is typically hot and humid in July, but there is some temperature variation
within a day and across stations. The average temperature is approximately 26 degree celsius,
and average daily maximum temperature greater than 30 degrees celsius. This variation in
temperature is likely to affect consumer demand for beverage

The last two rows report the summary vending machine characteristics. Average daily sales
per machine are approximately 1,789, which is approximately 200,000 Japanese yen ($2,000
US dollars). The best selling vending machines sell products worth over 10,000,000 Japanese
yen ($1 million US dollars) per year. The average number of available products carried by a
machine is approximately 30.6, which is more than the maximum number of slots per machine
because some products (typically popular products such as mineral water or green tea) occupy

more than one slot.

machines in each station.
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If a consumer purchases beverages with a commuter card, then the customer ID will be
recorded in the vending machine. In our sample, there are 384,762 uniquely identified con-
sumers. The total number of sales from these customers is 798,300 during the experiment
period. Among identified customers, only a fraction agreed to provide their demographic infor-
mation such as age and gender. In total, demographic information for 37, 144 unique consumers
is available. We use only the data of consumers with available demographics for the analysis
in Section 5, while use the entire sample for the analysis in Section 4 because demographic
information is necessary to match the recommended products in treatment PP. This may cause
a selection problem. However, the average age and the gender distribution in our sample are
similar to the population averages. The average age of the consumers 40, and approximately
70% are male, while they are 37.4 and 66% in the population.®

Figure 2.2 shows the available products’ price distribution across the entire vending ma-
chines. The price distribution ranges from 100 Japanese yen to 200 Japanese yen, but approx-
imately 70% of products are priced at either 120 Japanese yen or 150 Japanese yen. Beverages
contained in a small can (350 ml) typically cost 120 Japanese yen, whereas beverages in a large
plastic bottle (500 ml) are sold for 150 Japanese yen. Some seasonal beverages with special
flavor or taste are sold at a higher price than normal products, say 200 Japanese yen. Some
products that cost less than 120 Japanese yen are sold only to the company’s employees at
special locations such as the company’s office. The Figure 2.2 illustrates that limited price
variation across products, indicating that the price of each product is mainly determined by
rule of thumb. This vending machine industry characteristics causes a minor price endogeneity
problem compared to other situations.

Figure 2.3 illustrates market share by category. The company classifies products into eleven
categories. The largest category is soda, which accounts for 20% of products. The mineral water
category is the second largest and accounts for approximately 12% of products. The company
has three categories for different types of tea including green tea, black tea, and other tea (that
is, jasmine tea or oolong tea), and total market share is over 25%. This sample distribution is
similar to that of the entire beverage industry including other channels such as supermarkets

and convenience stores.® Hence, consumer preference in our sample may not differ significantly

5The parent train company conducted a large-scale survey to understand passenger characteristics. See

https://www.jreast.co.jp/development/tech/pdf_16/Tech-16-21-26.pdf
6The market share by category for the beverage industry is as follows: soda

(18%), tea (28%), water (14%), coffee (15%). See the following link for details,
http://www.ccwest.co.jp/pdf/ir/annualreview /ccw/an-2012_06.pdf
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Figure 2.2: Price Distribution
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* The graph shows the probability distribution of the price of a beverage. The unit is Japanese Yen. Approximately $1 = 100 Yen.
from that of the entire beverage market.

2.4 Effects on Sales

We first examine the effects on total sales in order to design the optimal recommendation system.
The standard consumer model with limited attention assumes that recommendation increases
attention and has no other effects on choice behaviour. Then, recommendations should increase
the total sales. However, whether displaying recommendations can convince customers to buy
or have any potential side-effects that reduce sales is an empirical question.

We run regressions separately for three different timings, morning, daytime, and night. We
also run regressions separately for treatment PP and treatment UP. We conduct the following

panel linear regression model with vending machine fixed effects for each subsample to see how
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Figure 2.3: Market Share by Category
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The figure shows market shares in terms of the number of cans/bottles sold for each category. The company categorises more than 200

products into 11 categories.

sales of beverages are influenced by the recommendations:
log(saleskt) = ardis + g X tempys + ag X tempit + g+ Uk, (2.1)

where salesy; is the total number of cans sold at vending machine k at period t, dy; is a
dummy variable indicating whether vending machine & is in one of the treatments, tempy; is
the temperature for vending machine k at period ¢, p is a vending machine fixed effect, and
ug is an idiosyncratic random sales shock. Period ¢ corresponds to the time of day (morning,
daytime, and night) of a particular date, for example, the night of July 21.

The estimation results of Eq (2.1) are shown in Table 2.3. All regression results show that
the model fits the data very well. The R? of all regression results are greater than 0.885.

Table 2.1 shows that, first, the effect of the recommendations on sales varies significantly
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Morning Daytime Night

PP Uup PP Up PP up
Treatment —0.0299***  —0.0290"**  0.0370"** 0.1024***  —0.1007"** —0.0003
(0.0075) (0.0073) (0.0086) (0.0094) (0.0118) (0.0096)
Max Temp 0.0298*** 0.0103***  0.0316***  —0.0163*** —0.0473*** —0.0362"**
(0.0030) (0.0029) (0.0031) (0.0031) (0.0039) (0.0040)
(Max Temp)2 0.0003* —0.0001  0.0005*** 0.0023 0.0031*** 0.0024***
(0.0001) (0.0001) (0.0001) (0.0031) (0.0001) (0.0001)
FE X X X X X X
R? 0.927 0.917 0.908 0.914 0.899 0.885
Obs 2,547 2,522 2,497 2,084 2,046 2,857
* The table show the results from the fixed effect linear regression estimates for Eq (2.1). We estimate the model by time of day

ok ok

(morning, day, and night). The numbers in parenthesis are standard errors of the estimates. indicates that the estimate is

significant at 0.1%, ** 1%, and * 5%.

Table 2.3: Effects of the Recommendations on Sales

depending on when the recommendations are displayed.

During the day, our results show that the recommendations increase sales by 10.2% for UP
and 3.7% for PP. Both product recommendation treatments induce customers to buy during
the day, when stations are less crowded. Moreover, the effect is much stronger for unpopular
products. The recommendation only appears after a customer stands in front of a machine.
Therefore, a recommendation does not function as an advertisement to attract customers to
the vending machine. Hence, the result implies that the recommendation convinces customers
to purchase who would not purchase otherwise and the effect is stronger for UP.

In contrast to the daytime results, total sales decrease by approximately 3% under both PP
and UP treatments during the morning rush hour. There are a number of potential explanations
for this result. One explanation is a crowding-out effect because of congestion. Recommendation
displays may increase the time that each consumer spends before making a decision and prevent
potential consumers from purchasing a beverage before a train arrives. This interpretation is
consistent with the stronger negative effect for machines with higher sales as we see below.

Another explanation is time pressure. Customer behaviour literature (for instance, Dhar
and Nowlis (1999); Suri and Monroe (2003)) finds that consumers may defer choices or choose
not to purchase under time pressure. The consumers we study are likely to be under time

pressure, particularly during rush hour. The vending machines we use for the field experiment
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PP UpP

Small Large Small Large
Morning —0.025"  —0.035"** —0.024*  —0.033"**
(0.012) (0.009) (0.012) (0.009)
Daytime 0.035" 0.039"** 0.102*** 0.104***
(0.015) (0.010) (0.016) (0.011)
Night —0.105""* —0.097*** —0.005 —0.006
(0.019) (0.015) (0.015) (0.0121)

Large indicates the vending machines with the top 50% of sales, while small in-
dicates the machines with the bottom 50% of sales. The table shows the results
from fixed effect linear regression estimates for Eq (2.1) including temperature
and its square as controls. The numbers in parenthesis are standard errors of the

EET]

estimates. indicates the estimate is significant at 0.1%, ** 1%, and * 5%.

Table 2.4: Effects of the Recommendations on Sales by Vending Machine Type

are mainly placed on train stations and, typically, on crowded stations where passengers transfer
from one line to another line. The average number of daily passengers using the Tokyo Station
is at least 400, 000,” and many other stations in the data have at least 50,000 daily passengers.
Hence, the platforms in these stations are extremely crowded during rush hour, and a consumer
could be forced to wait behind a consumer who is making a purchasing decision. Additionally,
trains are arriving and leaving constantly, which creates pressure for consumers. However, an
extensive study of the effects of time pressure is beyond the scope of this paper.

Table 2.4 presents the results by the type of vending machine. We separate the vending
machines into ‘large’ machines that have the top 50% of sales and to ‘small’ machines that
have the bottom 50% of sales. The results show that the negative effect of a recommendation
in the morning rush hour is stronger for ‘large’ machines. This result is consistent with the
two possible explanations we discussed above because ‘large’ machines are typically in more
crowded locations. The coefficients between ‘small’ and ‘large’ machines for daytime and night
are not statistically different from one another.

Lastly, the effect of daily maximum temperature on sales is significantly positive. Since our

experiment was conducted during the warmest times of the year in Tokyo, product assortments

7“The number includes only the passengers who start their journey from the station. There are many other

passengers who change trains at stations who are not included in this number.
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are all cold drinks.

These regression results have some managerial implications. First, the company should con-
sider potential negative effect that the recommendations may create. The recommendations
that are intended to help consumers’ decision making may have unintended consequences, and
sales may decrease because of the congestion effect. The company should adjust its recommen-
dation strategy to reduce such negative effects. In our context, the company should stop using
the recommendation system during rush hour. Second, recommending products with different
degree of popularity has different effect on sales. Our result imply that sales increase more
when the company recommends relatively unpopular products rather than relatively popular

products.

2.5 Effects on Consumer Choice Behaviour

2.5.1 Model

To see the effects of the recommendation on consumer choices, we estimate a discrete-choice
demand model for beverages, for which recommendations can directly affect consumer choice
probability. We start with a model with no consumer heterogeneity to examine the overall
effects of the recommendations on choice probabilities by product popularity. Consumer i
chooses a product from all of the available products in a vending machine. The set of available
products is denoted by J;. The set of available products is different across vending machines
and across time. Product j’s characteristics are denoted by x;; and the price by p;;. Hence,

the indirect utility that consumer ¢ obtains from purchasing product j is
wige = —opj+ &5 B+ 8TV dR" + SV + G+ de+ e, (22)

where de;P is an indicator variable taking the value of 1 if product j is recommended in treatment
PP at time t and d%P is similarly defined. The term &j; is product j’s fixed effect, d. is the
category fixed effect (which is ignored when product dummies are included), and ¢;;; is an
idiosyncratic preference shock following a type-1 extreme value distribution. As in the typical
discrete-choice demand model, &;; and e;;; are unobserved to the econometrician. Lastly, the
set of parameters is 0 = (o, 3,677, 6U 7).

We estimate the model with heterogeneous effects for the time of day. In doing so, we

interact dﬂp and d%P with the timing dummies (morning, daytime, and night) as follows;
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Uijt = —QPjt + 1’;t6 + Z Z (Si (dét X ds) + gjt + dc + Eijts (23)
s=AM,PM,N =PP,UP

where d; are the dummy variables for the different time of day, that is, s € {AM, PM, N (ight)}.
The set of parameters is now denoted by 8 = (a, 8,050 545 §EL §8P §EFP §UP).

We estimate the parameters by the maximum likelihood estimation. Assuming €;;; follows
a type-I extreme value distribution, we get

‘ exp(v;i)
Pr(d;j; = 1;0) = Pr(usjr > uijrg,Vj') = =———22
( gt ) ( gt gt ) Zkejt eXp(Ukt)
where vj; = —apj; + x;tﬁ + (SAdft + (5Bdﬁ + ¢+ for the homogeneous model, and vj; = —ap;: +
3B+ D e AMPMN 2o1=PPUP st (dé—t x dg) +&j¢ + d. for the heterogeneous model. Then, the

likelihood function to be maximized is written as
L) = [T T[] T Pr(dije = 1:6).
it

2.5.2 Results
Base Results

We report our estimates of the homogeneous effect discrete choice model of Eq (2.2) in Table

2.5. The table gives our estimates of the price effect (o), treatment PP’s effect (§77)

UP’s effect (6UF).

, treatment

The homogeneous model of Eq (2.2) is estimated in five different specifications. In model
(1), we include product category dummies and five variables discussed above. In model (2), we
also include dummy variables for each product.

We begin our discussion with the estimates of 677

reported in the first row. The effect is
strongly positive and statistically significant in both specifications, which implies that popular
product recommendations induce consumer to select the recommended products.

The §YF estimate in the right column show that unpopular product recommendations also
positively influence choice probability, but the effect less pronounced than it is for popular
products.

To understand the estimates more quantitatively, Table 2.6 reports the odds ratios of the

main treatment effects (677 and V). Both models show similar results. For popular prod-

uct recommendations, the likelihood of choosing the recommended product increases by more
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() (2)

§PF0.339%%%  (.254%%*
(0.0198) (0.0204)

svF -0.0380 0.0428%*
(0.0231) (0.0254)
N 87,682 87,682

FE Categories  Products

*
The table reports the estimation re-

sults of the homogeneous specification
in equation (2.2). The numbers in
parenthesis are standard errors of the
estimates. *** indicates the parameter
estimate is significant at 0.1%, ** at

1%, and * at 5%.

Table 2.5: Estimation Results of Homogeneous Specification

) (2)

TP 1.404%%%  1.289%**
(0.0278) (0.0263)

sur 0.963 1.044*
(0.0223) (0.0265)
FE Categories  Products

* The table reports the odds ratio of the

treatment effects 6°F and §UF. The
numbers in parenthesis are standard er-
rors of the estimates. *** indicates
the parameter estimate is significant at

0.1%, ** at 1%, and * at 5%.

Table 2.6: Odds Ratios of Homogeneous Specification

than 28.9%. For the unpopular product recommendations, the likelihood of the recommended

products being chosen increases by approximately 4.4%.
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(1) (2)

SMorming 0.552F%F  (.301%**
(0.0278)  (0.0288)

Shoy 0.211%%%  (.150%**
(0.0371) (0.0383)

SNAoht 0.0186 0,288
(0.0459)  (0.0470)

6]L\ZIIZrning '0133*** -0127***

(0.0366)  (0.0383)

5Dy 0.0451 0.167%%*
(0.0411) (0.0433)

SXone 0.00355 0.160%**
(0.0417) (0.0451)

Observations 87,682 87,682

FE Categories  Products

*
The table presents the estimation results for the

main treatment effects of the model (2.3). The num-
bers in parenthesis are standard errors of the esti-
mates. ***

0.1%, ** at 1%, and * at 5%.

indicates the estimate is significant at

Table 2.7: Estimation Results of Heterogeneous Specification

Results by Time of Day

Table 2.7 shows the estimates of Eq (2.3) that considers the heterogeneous effects by different
time of day. We obtain estimates for the price effect («), treatment PP’s effect by time of
day (6FF), treatment UP’s effect by time of day (67F). As in Table 2.5, we have two models:
Model (1) includes product category dummies and variables discussed above. Model (2) includes
dummy variables for each product.

The results show that popular product recommendations have positive effects across all
times of day, and the effect is strongest during the morning rush hour and weakest during the
daytime (67 > 6]1\3,5;“ > 65{; > 0).

Morning
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(1) (2)

choice choice

ONforming  L.T38FFF  1.351%kx

(0.0483)  (0.0389)

Shmy 1.235%%* ] 162%**
(0.0458)  (0.0446)

SNight 1.019 1.333%%*
(0.0468)  (0.0626)

51U\/[}Zrning 0875*** 0881***
(0.0320)  (0.0337)

5Dy 1.046 1.181%*x*
(0.0430) (0.0512)

SNight 1.004 1.173%%*
(0.0419) (0.0528)
FE Categories  Products

*
The table reports the odds ratios of the treat-

ment effects for each of the heterogeneous ef-

fect model (2.3). The numbers in parenthesis

are standard errors of the estimates. *** in-

dicates the estimate is significant at 0.1%, **

at 1%, and * at 5%.

Table 2.8: Odds Ratio of the Heterogeneous Specifications

The pattern is quite different for unpopular product recommendations. Unpopular product
recommendation lowers the choice probability in the morning of the recommended products
(55{/;mng < 0). In the evening, the effect is positive but the magnitude is smaller than PP
(51135]“ > 5%;“ > 0). In contrast, the effect is positive and the magnitude is slightly larger
than PP in the daytime. ((%apy > 5gapy > 0).

Table 2.8 reports the odds ratio of the main treatment effects for both models in Table 2.8.
In Model (2), the choice probability increases 35.1% in the morning for treatment PP, while
it decreases by 11.9% for treatment UP. The magnitudes of the daytime increase are not very

different between treatments PP and UP: an increase of 16.2% for PP and 18.1% for UP for
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PP UP

Small Large Small Large
Morning  0.330"**  0.285™** —0.0975 —0.143**"
(0.0471)  (0.0353) (0.0612) (0.069)

Daytime  0.195***  0.126"* 0128  0.186™*
(0.0623)  (0.0472) (0.0722)  (0.0521)
Night  0.300"**  0.280*** 0.110  0.190***

(0.0754)  (0.0588) (0.0700)  (0.0553)

Crowded indicates the vending machines with top 50% of the sales, while “Not
Crowded” indicates the ones with bottom 50% sales. We estimate the model

(2.3) with product fixed effects. The numbers in parenthesis are standard

ok ok

errors of the estimates. indicates the estimate is significant at 0.1%, **

at 1%, and * at 5%.

Table 2.9: Results by Vending Machine Type

model (2). The increase for the evening is higher under PP than under UP by approximately
33.3% and 17.3% for model (2).

Results by Vending Machine Type

The result that treatment UP significantly lowers the choice probabilities in the morning sug-
gests a natural hypothesis that unpopular product recommendations under time pressure or in
a crowded place could negatively affect choice. Although we cannot directly test this hypoth-
esis, we can study how the results differ based on the types of vending machine. Consumers
at vending machines with greater sales can be considered to experience more pressure, whereas
consumers at vending machines with fewer sales are less likely to be under pressure. Thus, we
estimate the same model as the previous model by dividing the sample into ‘large’ and ‘small’
where ‘large’ vending machines have sales greater than the machine with median sales, and
‘small’” machines have sales below the median.

Table 2.9 presents the results by vending machine type. The results show that the negative
effects of treatment UP in the morning appear only statistically significantly on large vending
machines. But the test of equality between the small vending machine effect and large vending

machine effect is not rejected at 10% level.
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PP Uup

Small Large Small Large
Female Male Female Male Female Male Female Male
Morning  0.298*** 0.342*** 0.174*** 0.333*** 0.237** —0.278"** 0.172** —0.334***
(0.0891) (0.0552) (0.0644) (0.0419) (0.0970) (0.0778) (0.0713) (0.0606)
Daytime 0.093  0.237**" 0.235"** 0.073 0.340"** 0.023  0.359*** 0.090
(0.117) (0.0799) (0.0739) (0.0576) (0.0973) (0.0657) (0.0718) (0.0531)
Night  0.474*** 0.248*** 0.305** 0.273*** 0.384*** 0.015  0.535™** 0.052
(0.151) (0.0865) (0.121) (0.067) (0.127) (0.0817) (0.0938) (0.0660)

*
We estimate the model (3) with both the product fixed effects. The numbers in parenthesis are standard errors of the estimates.

*** indicates the estimate is significant at 0.1%, ** at 1% and * at 5%.

Table 2.10: Results by Customer Gender

Results by Customer Gender

An additional question we can ask is who drives the pattern we found above. This is also an
interesting question in itself because we can study the difference in effects of recommendation
by demographic characteristics. The result can have implications for customer group targeting
of recommendations.

Table 2.10 presents the results by gender. The results show that the negative effects of
treatment UP in the morning is attributed to male customers. The effect of UP in the morning
is positive and statistically significant for both ‘large’ and ‘small’ vending machines for female
customers. The result implies that managers should not recommend unpopular products to
male customers especially when they are in time pressure, whereas they should aggressively

interact with female customers to try unpopular products.

Discussion

Several key managerial implications emerge from the empirical findings. First, product rec-
ommendations, on average, can increase the likelihood of consumers choosing a recommended
product regardless of its popularity. These findings confirm the two competing theories con-
cerning the effect of product recommendations. Recommendations can reinforce the position of
already popular products. However, recommendations also allow consumers to find products
that they would otherwise ignore. Our findings indicate that both theories are the case as even
unpopular product recommendations have a positive impact on consumer choice probabilities.

Second, the effect of recommendations on consumer choices is substantially heterogeneous

70



according to the time of day. Moreover, the combination of which product to recommend and
consumer characteristics plays a significant role. Recommendation of popular and unpopular
products has a significantly different effect across time. Companies can exploit this character-
istics by effectively modifying recommendations for targeted consumers and time.

In addition to these managerial implications, our finding that the effect differs depending on
the time of day may indicate an effect of the time pressure or the pressure from the consumers
around. This provides an interesting insight to the consumer behaviour literature like SIT (see,
e.g., Griffit and Veitch (1971); Langer and Saegert (1977)). SIT theorises that just the presence
of others affects a consumer’s emotions and behaviour when making a purchase decision, even
if another person is not interacting with the customer. A recent paper in the literature by Argo
et al. (2005) finds that consumers choose more expensive products when others are around.
A psychological explanation would be consumer desire to be regarded highly by others. Our
finding that the effect of PP and UP are opposite during the morning rush hour (when there

are many people around) while they are similar for other times of day is consistent with SIT.

2.6 Conclusion

This paper examines the effect of product recommendations on consumer behaviors by conduct-
ing a field experiment using a large number of a new type of vending machine in Tokyo. Our
setting is unique because the new vending machines recommend different beverages for different
consumers based on consumer characteristics, which are recognised by a video camera attached
to the machine. We show that total sales decrease in the morning when consumers receive the
recommendations, while total sales increase during the daytime. This may be caused by a con-
gestion effect that the recommendations unintentionally create, that is, each single consumer
spends more time making a purchase decision, which crowds out other consumers.

We demonstrate how consumer choice probabilities are influenced by recommendations. Our
findings indicate that recommendations induce consumer choice for recommended products, but
the effects are heterogeneous. Particularly, recommending unpopular products in the morning
reduces choice probabilities among males, although unpopular product recommendations always
increase among women.

There are some limitations to the study. First, this study does not allow us to infer potential
mechanisms that lead to the results. The negative effect of unpopular product recommendations

in the morning, for example, may be driven by some cognitive biases. Investigating similar
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problems might suggest useful product recommendation designs. Second, this paper does not
address the long-term effects of product recommendations on consumer behaviors. Whether
recommendations can stimulate consumer learning of new products is not well-known. We

propose these subjects as valuable future research.
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Chapter 3

Testing Rationality Without

Restricting Heterogeneity

3.1 Introduction

The assumption of rationality forms the core of economics. Testing the assumption validates the
empirical analysis. The classical axioms of revealed preference (Samuelson, 1938; Houthakker,
1950; Richter, 1966; Varian, 1982) provide the basic framework to test this assumption but do
not address the heterogeneity inevitable in empirical studies. In this paper, I propose a non-
parametric test for rationality allowing for any type of heterogeneity across decision makers.
The test is easy to compute and functions in any choice situation.

Existing empirical studies introduce heterogeneity as an additive error in the choice func-
tion and apply the axiom of revealed preference to the mean of the observed choice functions
(Varian, 1985; Blundell et al., 2003, 2008). However, Lewbel (2001) shows that rationalisability
at the individual level does not imply rationalisability of the mean or vice versa unless the
heterogeneity in the population is strictly restricted.

McFadden (2005) introduces the notion of stochastic rationalisability. Given a set of util-
ity functions U, a sequence of observed choice probabilities is considered to be stochastically
U-rationalisable if some probability law over U exists that can induce the observed choice prob-
abilities as a result of utility maximisation with random utilities following that law. The author
also derives the necessary and sufficient condition for stochastic rationalisability. This notion

allows us to test the rationality without restricting heterogeneity.
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The concept is sufficiently general that it is effective for any class of utility function but it
is often computationally demanding to check all the conditions. Kitamura and Stoye (2013)
circumvent this problem by restricting attention to the case with a finite number of linear
budgets. I resolve this issue by focusing on a necessary condition for rationalisability.

I derive a necessary condition for stochastic rationalizability by a set of utility functions
with a unique maximizer, which I name SARSP. I obtain the condition by sharpening the weak
Axiom of revealed Stochastic preference (WARSP) proposed by Bandyopadhyay, Dasgupta,
and Pattanaik (1999). The SARSP is a generalisation of the classic strong axiom of revealed
preference (SARP). I propose a non-parametric test of rationalisability based on the SARSP
and derive its asymptotic properties. The test can be implemented at low computational cost.
The testing procedure is based on the bootstrap test for functional inequalities of Kitagawa
(2010).

Monte Carlo simulation shows that the test has an empirical size below the nominal level
and relatively strong power. Finally, I apply this method to the British FES. The SARSP is

not rejected at the 1% level of significance for this dataset.

3.2 Setting

Let X be a universal metric space of the possible objects of choice, and B be the Borel o-algebra
of X. Let I be a set of choice situations and {B%};c1, B® € B be a set of choice sets for each
choice situation ¢ € I.

A leading example is the standard consumer’s problem. In this case, X = Ri is the
consumption set, and a pair of price vector p* and an income w®, (p*,w?) is a choice situation.

Given choice situation 4, I can define the associated budget set B’ by
B'={yeR{:(p',y) <w'}). (3.1)

Unless otherwise stated, general (X, B) and {B};c; are considered below.

For each B%,i € I, let B’ be the Borel o-algebra of the subsets of B*. Let II' be the
probability measure on the measurable set (B?, B). For C' € B, the interpretation of II*(C) is
the probability that the choice in situation i € I belongs to C. Il = {II*};c is called the set of
choice probabilities.

Let (U, A(U)) be a hypothetical set of utility functions and the Borel o-algebra of subsets of

U. For example, U would be a set of utility functions which represent locally non-satiated weak
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orders on the consumption set. For each U € Y and i € I, let d'(U) = argmax{U(y) : y € B’}
denote a demand function associated with the utility function U. Let A(U) be the class of
probability measures on the measurable space (U, A(U)).

I define a special class of utility functions Uy and focus on this class in the following sections.
Given a system of choice situations { B};c, I define Uy as a set of utility functions that achieves
a unique maximum at every choice situation B in {B};c;. The definition of Uy depends on
the system of choice situations.

When discussing testability, it is assumed that {II*};<; is known by econometricians. Stochas-

tic U-rationalisability is defined in terms of choice probabilities as below:

Definition 1 (Stochastic U-Rationalisability). A set of choice probabilities {I1'};c; is stochas-
tically rationalised by a class of utility functions U or is stochastically U-rationalisable if a

probability measure & € A(U) exists such that
I(C) =¢{U eU : d'(U) € C},Vi € I,YC € B'. (3.2)

The rationalisability concept of standard revealed preference theory can be considered as a
restrictive version of stochastic rationalisability if a deterministic choice function is identified

with the following degenerate choice probability:

Definition 2 (Degenerate choice probabilities). A choice probability I1* is degenerate if x € B
exists such that II'(A) = 0 for any A such that y ¢ A € B, and II'(A) = 1 for any A such that
y € AcB.

3.3 Axioms of Revealed Stochastic Preference

This section discusses the axioms of revealed stochastic preference. The first subsection intro-
duces the necessary and sufficient condition for general stochastic U-rationalisability (U-ARSP).
The second subsection derives a necessary condition for the stochastic Uy-rationalizability

(SARSP).

3.3.1 U-Axioms of Revealed Stochastic Preference (/-ARSP)

McFadden (2005) provides the necessary and sufficient condition for stochastic U-rationalisability

of choice probabilities, which is called U-axiom of revealed stochastic preference (U-ARSP).
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Given I, let M(I) and M*(I) be a set of ordered subsets of I allowing repetition and not allow-
ing repetition, respectively. For example, given I = {1, 2, 3,4}, M(I) includes {1, 2},{1,2, 3,3},
{1,3,2,3} and so on. M*(I) does not include the second and third elements in the above ex-

ample. M(I) is infinite but M*(I) is finite if I is finite.

Definition 3 ({/-axiom of revealed stochastic preference (U-ARSP)). A set of choice probabilies
{IT*};er satisfies the awiom of revealed stochastic preference with respect to the hypothetical
utility functions U or U-ARSP if for any M € M(I) and for any C* € B',i € M,

Z I*(C%) < sup Z 1(d'(U) € CY). (3.3)

ieM Vel

We refer to a combination of M € M(I) and {C?};cps as a trial.

Theorem 1 (McFadden (2005), Theorem 5.2). Suppose II* is a finitely additive choice prob-
ability on (B',B%) for each i € I. Then U-ARSP is necessary and sufficient for stochastic

U-rationalizability of a set of choice probabilities {I1*};cr.

The necessity part of this theorem is straightforward and is from the following:
Y ICH =Y &(d'(U) e C) < sup > 1(d'(U) € CY). (3.4)
ieM ieM Vel jem
To show sufficiency, McFadden (2005) first applies the Hahn-Bannach theorem to show that
U-ARSP implies existence of some probability measure n € A(U) such that for all ¢ € I and
C' € B!, IIY(C*) < n(d*(U) € C*) holds. Then, because II'(C¢) < n(d*(U) € C*) also holds,
IIY(C?) = n(d*(U) € C*) implying stochastic U-rationalisability.
This U-ARSP is sufficiently general that it can test any specification of random utility model
provided one can implement optimisation over the hypothetical spaces of U efficiently: U-ARSP
can be written as follows:

sup { Z " (C*) — sup Z 1(d"(U) € C”)} (U-ARSP)

MeM() | jem Vel ;e

This optimisation problem is not solvable in general. If the dimension of the hypothetical
space of utility function I/ is finite, for example, if it is a set of Cobb-Douglas utility functions,
the above optimization problem may be implemented. This will give a useful specification test

and is worth pursuing in future research.
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3.3.2 Strong Axiom of Revealed Stochastic Preference (SARSP)

This section focuses on Up-rationalisability and shows that a condition that is necessary for
stochastic Uy-rationalisability can be explicitly written down. This condition is weaker than
Up-ARSP but offers a test that can be implemented at low computational cost. The condition

is called SARSP because it is a stochastic generalisation of the classic SARP.

“y® is weakly revealed preferred to y?”, and “y’

In the following, let y*Ry’ and y*R*y’ denote
is indirectly revealed preferred to y?”, respectively.

Bandyopadhyay et al. (1999) suggest a condition called WARSP and show that it is necessary
for stochastic Up-rationalisability. I obtain SARSP by reinforcing WARSP. The intuition behind
WARSP and the relation between WARSP and Uy-ARSP are carried over to SARSP. I begin

with a discussion of WARSP.

Definition 4 (WARSP). For all i and j in I and for all A C B*' N BJ, TV (A) — IT(A) <
‘(B \ BY).

Theorem 2 (Bandyopadhyay et al. (1999) , Proposition 3.5). Suppose a set of choice probabil-
ities {I1'};c1 is stochastically Uy-rationalisable then, it satisfies WARSP, but the converse does
not hold.

First, WARSP implies the classical WARP. Suppose that choice probabilities are degenerate.
Now identify degenerate choice probabilities as a choice function. Let y' and 32 be degenerate
points of B! and B? such that y' Ry? and y! # y2. Then, y? € B' N B2. Because y! # 32, take
A C B'N B? such that y' ¢ A but y?> € A. Then, for any such A, 1I>(A) = 1. By WARSP,
(BN B2\ A) = 0. Thus, y* € B! N B2, that is ~y?Ry': WARP holds.

The intuition behind WARSP is as follows: suppose the choice probability of A increased
by a shift in situations from i to j. Comparing two choice situations, alternatives in B’ \ B®
are in the choice set, and alternatives in B*\ B’ are not in the choice set in situation j. New
alternatives in the choice set do not raise the choice probability of the existing choices in A.
Therefore, all the increase in the choice probabilities of A must be attributed to the change of
behaviour of those who were choosing alternatives in B\ B’ in situation i, and the increase in
the choice probabilities in A must be no more than the choice probability of B\ B7.

Uy-ARSP actually implies WARSP. This argument clarifies another aspect of WARSP
and helps to generalise it to SARSP which I will define later. Consider M = {i,j} and
{C",C7} = {A,B} with A C BPN B/ and B = [B* N B’] \ A. Then, Uy-ARSP implies
IIY(B)+17(A) < maxpey[1(d'(U) € B)+1(d?(U) € A)]. By rearranging, I get I (A) —II*(A) <
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maxpey[1(d'(U) € B)+1(d?(U) € A)] — [T (A) +11¥(B)] = maxyey[1(d'(U) € B)+1(d(U) €
A)] —TI7(B* N BY). The subsets A and B are disjoint and feasible under both i and j. Hence,
the utility function such that d*(U) € B does not satisfy d/(U) € A, and the utility function
such that d*(U) € A does not satisfy d/(U) € B. Therefore, maxyey[1(d*(U) € B)+1(d¢/(U) €
A)] =1 and so IV (A) — IT'(A) < 1 —TI*(B* N BY) = IIY(B* \ BY).

This argument illustrates the derivation of the axiom for stochastic U-rationalisability. The
inequality in Z~ARSP can bind only if the trial in question, M € M(I) and {C?};cpr, includes
a sequence of choice sets all of which cannot be attained by any utility function in /. In the
case of stochastic Uy-rationalisability, all the preferences are represented by some U € U, that
attains a unique maximum in every B € B and is transitive. WARSP (and the original WARP)
exploits the property of the preferences having a unique maximum in every B € B. SARSP is
obtained by exploiting transitivity consistent with Richter (1966) to obtain SARP from WARP.

The derivation of WARSP from Uy-ARSP relies on the condition maxy ey [1(di(U) C A) +
1(d?(U) Cc B*NBJ\ A)] = 1. This and Uy-ARSP implies IT(A) + 117 (BN B\ A) < 1, WARSP.
This argument can be generalised to reinforce the restriction to be SARSP. Now SARSP is
defined as:

Definition 5 (SARSP). For any M € M*(I) which is relabeled as M = {1,--- ,n}, and for
any A C B" N B!, the following inequality holds:

M*(B'NB*) 4+ (B 'NB"\ A) +I*(4A) <n—1. (3.5)

I check that SARSP generalises WARSP and SARP. The following propositions state this
property of SARSP.

Proposition 1. SARSP implies WARSP.

Proposition 2. Suppose a set of choice probabilities {I1I'};c; are degenerate and identify a

degenerate choice probability as a deterministic choice function. Then, SARSP implies SARP.

That SARSP implies WARSP can be checked by investigating the conditions of SARSP
when |M| = 2. That SARSP implies SARP when choice probabilities are degenerate can be
checked using the same method employed to show that WARSP implies WARP. I state my

main theorem in this section.

Theorem 3. SARSP is necessary for stochastic Uy-rationalisability.
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SARSP exploits transitivity in addition to the unique maximum property of the prefer-
ences. It is straightforward to obtain the necessity of SARSP from Uy-ARSP. To see this,
denote U*(C) = max.ec U(c) given a utility function U. Fix some U € Uy, and consider
the corresponding demand function dy;. Suppose di(U) € B! N B for i = 1,--- ,n. This
implies U*(B!) > --- > U*(B") holds. Moreover, suppose that d"(U) € B"~' N B"\ A for
A C B'Nn B™ This implies that U*(B") > U*(A) because U attains a unique maximum.
Thus, d'(U) € A cannot hold since this implies U*(B™) > U*(A) = U*(B') and contradicts
U*(B') > --- > U*(B"). Thus, the value of the right-hand side of Uy-ARSP must be no greater
than n — 1. This gives the inequality condition in SARSP showing the necessity of SARSP for
stochastic Uy-rationalisability.

When additional restriction on the system of choice situations and observations exist,
WARSP and SARSP can be reduced to simpler conditions. For example, consider the case
where B = {y € R{ : (p’,y) < w'}. Let B = {y € R] : (p,y) = w'} and B! = {y € RY :
(p,y) < w'}. Suppose that IT* (Ei) = 1for alli € I. This holds if the utility functions are locally
non-satiated. Or, if price vectors p and commodity vectors y are observed but income w was not,
w = (p,y). In this case, WARSP reduces to finitely many inequality conditions such that for all
iand j in I and for all A C B'NBJ, Hj(AQEj)in(AOEi) < Hi(Ei\Bj). Then, there are only
two candidates for A: B'NB’ or BINH. Thus, the WARSP reduces to finite inequality condi-
tions that for any (i, j) € Ix I, max{Il/(BinB’)—II{(B'NE’ ), I/ (B'NB’)} < II'(B'\ BY). The
latter term in the max operator gives tighter restriction if and only if IT/ (Eiﬂgj)—ﬂi (Eiﬂﬁj) <
0. If IT* are continuous for all ¢ € I, the max operator disappears because both terms give the
same value.

The same argument holds with SARSP. Consider again the case where B! = {y € RJJF :
(p',y) < w'} and Hi(Ei) =1 for all i € I. As in the case of WARSP, SARSP reduces to the
condition that for any subset A C B™ N B' the following inequality holds:

(B NB)+ -+ B 'NB"\A) + T (ANB) <n—1, iy

SIB'NB)+ - +MANB) —IANB") <n—2+ "B "\ B" ). 30
There are only two candidates for A: B" NB or B" ﬁ?l, and SARSP reduces to finitely many
inequality conditions that for (¢,7) € T x I,

2(B'NB°)+ - +max{II'(B"NB)—-II"(B'NB"), I} (B"NB")} < n—2+I"(B"\B"), (3.7)
and the max operator disappears if II* is continuous for all i € I. The method of Kitamura
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and Stoye (2013) relies on this additional restriction on the system of choice situations and
observations.

Classical revealed preference theory shows that SARP is necessary and sufficient for ratio-
nalisability by utility functions with a unique maximum, and GARP is necessary and sufficient
for locally non-satiated utility functions. Because I have assumed local non-satiation in the
above simplified setting, SARSP implies GARP if I identify deterministic choice with degener-
ate choice probability. SARSP implies

B NB)+ - +IIB"NBY)<n-2+1(B"\ B"Y), .

ST(B'NB) + -+ "B 'nBY)+ I B"NnBY<n-1 55
Suppose that {II'};c;, and let 3 be the degenerate point of B Suppose two degenerate
points exist, for example, y' € B' and y" € B" such that y'R*y™, that is, a sequence of
degenerate points y° € B' with yt € Bl i =2 ... n—1 exists. Because I1?(B' N Ez) =
e =T1I"(B" 1N En) = 1 by the definition of a degenerate point. Then, by SARSP, we have
II'(B™ N B') = 0. Therefore, y' ¢ B". Thus, GARP holds.

3.4 Hypothesis Testing

This section establishes a general testing procedure to test any type of stochastic rationalizabil-
ity provided the corresponding U-ARSP can be computed efficiently. Whether the following test
is feasible in each situation depends on the specification of ¢. The next section demonstrates

that tests based on SARSP and WARSP are computationally feasible.

3.4.1 Estimation of Choice Probabilities

This section establishes an inference method similar to Kitagawa (2010). Let (Y, Q) be i.i.d.
observation, where Y is a choice and @ is a choice situation. For example, Q is a pair of
price vectors P € {p', -+ ,p’} with p’ € R/, and income W € {w',---w!} with w’ € Ry .
Let IT'(C) = Fy|g(y € C|Q = ¢'). The data generating process is II = {II'(:)}s¢s, and
F is the probability distribution characterised by a value of (Y, Q). I divide the full sample
into I subsamples based on the value of Q. Let N? be the size of these subsamples. Let
N = P(Q = ¢') > ¢ for some ¢ > 0 and let A = (A\!,--- ) \T) and A= (5\1,--- ,5\1) where
\i = Ni/N. Note that N — oo implies N — 0o and A* — \i for all i € .
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The stochastic rationalisability conditions put restrictions on the choice probabilities II.
This is estimated by an empirical measure:
. 1 Y ,
I'(C) = Y 1Y, €C,Qn=1d"}. (3.9)

n=1
My application estimates the choice probability by smoothing over total expenditure. The

following argument holds with this estimator also.

3.4.2 Test Statistics

The test statistics for WARSP, SARSP, and U/-ARSP based on the estimates of choice proba-
bilities ﬁ(C’; p,w) are defined as follows:

Tw = max sup (ﬁj ) - ﬁZ(C) - ﬁi(Bi \ Bj)), (WARSP)
(i,j)E]XICeBimBJ’

Ts= max  sup (ﬁQ(BlmB2)+~~~+ﬁ”(B”flmB”\A)+ﬁ1(A)—(n—l)), (SARSP)
MeM*(I) AcBnnB!

Ta= sup { S IH(CH) —sup > 1(dN(U) € ci)} (U-ARSP)

MeM() | St Ueu iy

where the set of events on which supremum is taken should be reduced so that uniform
convergence of empirical measures hold. I discuss this below.

For all the statistics, the null hypothesis is T' < 0. Let X,, ~» X represent weak convergence
of X,, to X. Suppose that \/N(ff T') has an asymptotic distribution \/N(ff T) ~ J( 1 N),
and let ¢1_4 (I, \) be the (1 — «)-th quantile of the limit distribution. Then, a procedure which
rejects the null if T - ¢1-a/ VN > 0 yields a test with pointwise asymptotically correct sizes

because for every II satisfying the null 7" < 0, I have
P(T — é1—o/VN > 0) <P(T —¢,_o/VN > T)
=P(VN(T ~T) > ¢1-a) (3.10)

= 1—=J(c1—a(,A);IA) = a.
N—o00

In the following, I derive the asymptotic distributions of the statistics and illustrate the

estimation of the critical value of the distribution of test statistics.
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3.4.3 Asymptotic Distribution

This section derives asymptotic distribution of fW. A similar argument holds for fg and fg. I
follow his argument to establish asymptotic distribution of the test statistics.
For every ordered pair (i,5) € I and C € B' N B’, define functions:
Tyi/ (C) = TP(C) — I(C) — TI'(B* \ B),
. N N o , (3.11)
W (C)=1P(C) - 1II'(C) — II'(B* \ B).
Let B',--- B! be some subclass of B,---, B!, and let Vi/ = B'NBJ and V7 = B x B7

which satisfy the following condition:

Assumption. 1 (Uniform convergence). For each i = 1,--- 1, the set-indexed empirical
processes Gyi ni(-) = V Nl(ﬁl() —II*(+)) converge uniformly in law to tight mean zero Gaussian

processes in 1> (B?):
where Cov(G:i (C), G (C")) = TIH(C N C") — TIH(CHITHCY).

Assumption. 2 (Optimal event). For every ordered pair (i,7) € I X1, a non-empty maximizer

event class Vi exists such that

max

i,
Viihx

={C eV Ty (C) = Csu‘g)_ {TéVJ(C')}} (3.13)
/e 1,7

Additionally, a non-empty subindex (I X I)max C I X I exists such that for every ordered pair
of (i,§) € (I X I)max, there exists C € V4 such that
Ty (C) = max  sup {Ty/(C)}. (3.14)
(4,5)EIXI creyini
Assumption. 3 (Existence of maximisers). For every ordered pair (i,5) € I x I, events

Vi,j i, Vi,j i,j
C" e V" and C}l, € Vi

exist such that

T/ (€)= s (T(C)),

Cevini
o o (3.15)
Ty (Crilx) = sup {Ty/ ()}
CEVibax
For any ordered pair (i,5) € I x I, define:
Ty = sup {T ()} (3.16)
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Ty = sup {Ty/ ()} (3.17)
cevii

Assumption 1 ensures weak convergence of the empirical processes. Assumption 2 implies
that supereying {T‘fvj (C")} is attained on the class of subsets, Vi*/. Assumption 3 implies that

the same holds for sample analogues. Now define fW and Ty as follows:

~

max  sup {1 (C)}. 3.18
(i,j)elxlcevgj{ w (C)} ( |

Tw = max sup {T(C)}. (3.19)
(i,j)GIX[ CeVisi

The supremum for the population are taken over a Borel algebra V%I, whereas for the sample
are taken over some subset Vi of V%, This is because of Assumption 1

Given these assumptions, I have the following theorem:

Theorem 4. Assume random sampling. Under assumptions 1, 2, and 3,

VN(Tw — T Gorii ()}, 3.20
(Tw w) ~ (Lj)en(f}a;%)mx Ci‘ng { TW( )} ( )

i,
where G i (+) is the mean zero tight Gaussian process in 1°°(V"7) where the covariance function
w

for any C,C" € V&I s,
Cov(Grpii (C), Gi (C) = (W) THIF(C N C) = IV (O)IF (C)]
+ (X)THITH(C N ') — TTH(C)TT(C))] (3.21)
+ (\)TUIYBY\ BY)[1 - II(B \ BY)],

where 1°°(V57) is the space of bounded functions on V&I with the sup norm metric.

3.4.4 Estimation of the Critical Value

The previous theorem shows that if the maximisers set is not a singleton, then the asymptotic
distribution is not Gaussian. This non-pivotal feature of the asymptotic distribution invalidates
the standard bootstrap (Andrews, 2000). A Monte Carlo simulation demonstrates this.

A two-step approach is employed to overcome this problem. In the first step, the maximiser

set (I X I)pmax and V&I

» o are estimated. This is a set of points on which f&/(C) takes a

value close to the maximum of {févj (C)}. A slackness parameter that determines the cutoff
level is chosen to satisfy the appropriate rate. This step corresponds to a moment selection
procedure in the inference based on moment inequalities. In the second step, a bootstrap

analogue of {v/N (f&,j (C)— TéVJ (C))} is constructed and its maximum value over the maximiser
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set estimated in the first step is chosen. Iterating this procedure, I obtain the bootstrap estimate
of the distribution of VN (Ty — T ).
In this paper, I follow the second approach using bootstrap. Let Y? represents the original

sample of Y under choice situation i. I compute the critical value from the following algorithm:
Algorithm 1 (Bootstrap). Input: data {Y, Qn}nen. Output: {Accept, Reject}.

1. Compute féﬂ(%f&,ﬁ,fw

2. Let nn be the slackness sequences that satisfy

N "IN
AN g N, as N — oo 3.22
VN loglog N oo @ > (822)

3. Estimate the maximiser set by

Vil ={C eV VN(Tw — T (C)) < nn},

_— o (3.23)
(I X 1) o = {6 7) € 1 x I - Vi # 0}
4. For each i = 1,---,I, sample N* observations from Y randomly with replacement to

construct ﬁ’(), the empirical measure based on the bootstrapped sample. Using the con-

structed {I1'(-)}ie1, obtain the bootstrap analogue of ZA“;VJ(),

T (C) =T (C) — TI(C) — T (B" \ BY). (3.24)
5. Compute
_max  sup {(VN(T(C) = Ty (O)}. (3.25)

(IXT) a0y CEVRAL

6. Iterate steps 8 and 4 many times and obtain ¢1_, as the sample (1 — «)-th quantile of the

iterated statistics.
7. Reject the null hypothesis Ty < 0 if Ty — Cl-a/VN >0.

Kitagawa (2010) showed the validity of the above bootstrap procedure. Any choice of
slackness parameter 7y satisfying the rate of convergence is asymptotically valid. However, in
the small sample, the choice affects the rejection rate of the test. The larger the ny, the larger
the maximisers set. This implies greater bootstrap standard error and a higher rejection rate.
When ny = 0, the algorithm becomes a naive bootstrap. The adaptive choice of 1y is an open

question.
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Table 3.1: Generated Normalised Price Vectors for Monte Carlo Simulation

Choice Situation (i) Price (p;1) Price (pi2) Price (ps3)

1 1.31 2.34 1.22
2 1.45 1.07 0.86
3 0.67 1.36 2.15
4 0.62 1.45 1.27
5 0.53 0.62 0.60
6 0.40 1.67 1.21
7 1.02 1.61 0.95
8 0.69 1.82 0.67

3.5 Monte Carlo Simulation

This section examines empirical sizes and powers. When budget sets are linear and all the
choices are on the budget surfaces, the conditions to be tested are SARSP with finitely many
inequality conditions. The regularity conditions for Theorem 4 trivially holds.

Consider a situation in which there are J = 3 goods and I = 8 choice situations. This sub-
section uses a normalised price vector throughout as in Table 3.1, which I generated according to
iid. distributions p;; ~ I'(3,0.2), pi2 ~ I'(4,0.3), and p;3 ~ I'(4,0.2) where I'(k, 0) is a gamma
distribution with shape parameter k£ and scale parameter . There is no serious reason for the
choice of these distributions. The number of replications is K = 1,000. In each simulation, I
iterated bootstrap L = 1,000 times. The slackness parameter 1y for estimating the maximisers
set is specified at ny = log(log(N)). T implement the same exercises with ny = 0, 11og(log(N))
and 10log(log(V)).

We examine both testing procedures based on SARSP and WARSP. The testing procedure
based on WARSP has less power than SARSP in theory but is more attractive computationally.
As the number of choice situations, I, increases, the inequality conditions to be checked increase
at a factorial rate. WARSP only requires inequality conditions checking for ordered pairs (4, j)
among I choice situations, and therefore significantly reduces the computational burden when
I is large. SARSP, however, requires that the conditions be checked for ordered k-tuples for all
k=2,---,1. The conditions of SARSP show that the inequality conditions become harder to

violate for higher k. Hence, for a problem with big I, it is logical not to check the conditions
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Table 3.2: Null Specifications

Design P1 q1 p2 q2 p3 q3 k 0
Null 1 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100
Null 2 0.0100 15.0000 0.0100 0.0100 15.0000 41.2500 15.0000 1.3747

Null 3 0.0100 0.0112  0.0100 0.9556 0.0118  15.0000 0.0100  14.9982

Table 3.3: Non-Rationalisable Models

Design (i=1,---,4) (i=5,---,8)

{a} s
Not 1 Null 1 Null 3 Null 3
Not 2 Null 1 Null 3 Null 1
Not 3 Null 1 Null 1 Null 3

for all k = 2,--- I but rather to start by checking k¥ = 2 and move forward only when the null
is not rejected (although, rigorously speaking, sequential testing problem must then be solved).
Monte Carlo simulation will show the decrease in power using the test based on WARSP instead
of the test based on SARSP.

I check empirical sizes under three rationalisable models and powers under three non-
rationalisable models with sample sizes in each choice situation set at N* = 1,000.

Rationalisable models: 1 consider three CES-type random utility models as null data
generating processes. Consumer n chooses a consumption bundle which maximises a CES utility

function

J sp—1 Sn—1
un(c) = (Z anjcjs"> . (3.26)

j=1

The parameters (au,1, n2, ns, S,) represent heterogeneity in the utility function across con-
sumers. Each null model is specified by a distribution of these parameters across consumers.
Let anj = Qnj/(Gn1 + Gn2 + an3). I parameterise the distribution of (&1, @n2, Gng, Sn) as
an; ~ B(pj,q;) and s, ~ I'(k,8) where B(p, q) is a beta distribution with a parameter (p, g).
Given a vector of normalised prices in Table 3.1, I compute three specifications of the distribu-

tion that are close to the boundary of the null space in the sense that the population 7" is close
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to zero.! The parameters of each null specification are listed in Table 3.3.
Non-rationalisable models: I consider three non-rationalisable models to examine em-
pirical powers. Each model has the same distribution for situations ¢ = 1,--- ,4 but is set to
have different distributions for ¢ = 5, -+ ,8. In Not 1, the distribution becomes that of Null 3.
In Not 2, only the distributions of a’s change to that of Null 3 while the distribution of s,, is
fixed. In Not 3, however, only the distributions of a’s are fixed, but the distribution s,, changes
to that of Null 3.2
The rejection rates under the nulls are listed in Table 3.4. The empirical sizes under the nulls
are well controlled for the test with slackness parameters ny = log(log(N)) and 101log(log(V)).
For example, the empirical sizes of the test with ny = log(log(N)) for Null 3 are 10.3%,
5.2%, and 1.1% when the nominal sizes are 10%, 5%, and 1%, respectively. The empirical
sizes are not statistically significantly larger than the nominal sizes. The empirical sizes of
the tests with ny = 10log(log(N)) are smaller than those with ny = log(log(N)). This is
obvious by construction. The empirical sizes of the tests with 7y = 0 are significantly upwardly
biased, which demonstrates how inconsistent naive bootstraps are in this situation. Because the
slackness parameter 7y is set close to zero, the result approximates that of the naive bootstrap.
The rejection rates under the alternatives are summarised in Table 3.5. Not 1 and 3 are
rejected 100%, whereas Not 2 are hardly rejected. This shows that the power of the test is
not uniform, and a deviation to some direction is hard to detect. This is because SARSP is a
necessary condition for Uy-rationalisability and can hold under some non-rationalisable models.
Overall, the result shows that the test based on WARSP has similar performance compared
to the test based on SARSP. This shows that the test based on WARSP in large I situations,
in which the test based on SARSP becomes computationally unattractive. In this exercise with
I = 8, the computation of the test based on SARSP took only seconds for each replication.

However, as I increases, it will become harder to implement.

1 implemented the same exercise for other null data generating processes but the rejection rates were entirely
zero for all such DGPs because they are in the interior of the null space in the sense that the true 7" is bounded
below zero. For this reason, I compute parameters as in this section to make the DGPs approximately the least

favorable.
2Similar transitions from Null 1 to Null 2 were 100% rejected for every ny .
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Table 3.4: Simulated Rejection Rate for Rationalisable Models (CES utility, 1,000 resampling,
1,000 MC replications)

Slackness (nn = log(log(N))) Size Null1 (s.e.) Null 2 (s.e.) Null 3 (s.e.)
SARSP 0.100 0.022 (0.0046)  0.000 (0.0000)  0.103 (0.0096)
0.050 0.014 (0.0037) 0.000 (0.0000) 0.052 (0.0070)
0.010 0.003 (0.0017)  0.000 (0.0000)  0.011 (0.0033)
WARSP 0.100 0.064 (0.0077)  0.000 (0.0000)  0.106 (0.0097)
0.050 0.028 (0.0052)  0.000 (0.0000)  0.056 (0.0073)
0.010 0.008 (0.0028)  0.000 (0.0000)  0.013 (0.0036)
Slackness (ny = 10log(log(N))) Size (o) Nulll (s.e.) Null 2 (s.e.) Null 3 (s.e.)
SARSP 0.100 0.022 (0.0046)  0.000 (0.0000)  0.011 (0.0033)
0.050 0.009 (0.0030) 0.000 (0.0000) 0.004 (0.0020)
0.010 0.003 (0.0017)  0.000 (0.0000)  0.000 (0.0000)
WARSP 0.100 0.056 (0.0073)  0.000 (0.0000)  0.076 (0.0084)
0.050 0.024 (0.0048)  0.000 (0.0000)  0.034 (0.0057)
0.010 0.003 (0.0017)  0.000 (0.0000)  0.008 (0.0028)
Slackness (ny = 0) Size (o) Nulll (s.e.) Null 2 (s.e.) Null 3 (s.e.)
SARSP 0.100 0.419 (0.0156)  0.000 (0.0000)  0.603 (0.0155)
0.050 0.190 (0.0124)  0.000 (0.0000)  0.378 (0.0153)
0.010 0.024 (0.0048)  0.000 (0.0000)  0.095 (0.0093)
WARSP 0.100 0.416 (0.0156)  0.000 (0.0000)  0.602 (0.0155)
0.050 0.187 (0.0123)  0.000 (0.0000)  0.378 (0.0153)
0.010 0.024 (0.0048) 0.000 (0.0000) 0.095 (0.0093)

* (s.e.) are MC standard errors.
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Table 3.5: Simulated Rejection Rate for Non-Rationalisable Models (CES utility, 1,000 resam-
pling, 1,000 MC replications)

Slackness ny = log(log(N)) Size (o) Not 1 (s.e.) Not 2 (s.e.) Not 3 (s.e.)
SARSP 0.100  1.000  (0.0000)  0.021  (0.0045)  1.000  (0.0000)
0.050 1.000 (0.0000) 0.010 (0.0031) 1.000 (0.0000)
0.010  1.000  (0.0000)  0.003 (0.0017)  1.000  (0.0000)
WARSP 0.100  1.000 (0.0000)  0.054 (0.0072)  1.000  (0.0000)
0.050  1.000 (0.0000)  0.027 (0.0051)  1.000  (0.0000)
0.010  1.000  (0.0000)  0.006 (0.0024)  1.000  (0.0000)

Slackness ny = 10log(log(N)) Size () Not 1 (s.e.) Not 2 (s.e.) Not 3 (s.e.)
SARSP 0.100  1.000 (0.0000)  0.020 (0.0153)  1.000  (0.0000)
0.050 1.000 (0.0000) 0.008 (0.0137) 0.998 (0.0014)
0.010  1.000 (0.0000)  0.002 (0.0099)  0.935  (0.0078)
WARSP 0.100  1.000 (0.0000)  0.054 (0.0153)  1.000  (0.0000)
0.050 1.000 (0.0000) 0.028 (0.0137) 1.000 (0.0000)
0.010  1.000 (0.0000)  0.014  (0.0099)  0.990  (0.0010)

Slackness ny = 0 Size () Not 1 (s.e.) Not 2 (s.e.) Not 3 (s.e.)
SARSP 0.100  1.000 (0.0000)  0.356 (0.0151)  1.000  (0.0000)
0.050  1.000 (0.0000)  0.151  (0.0113)  1.000  (0.0000)
0.010  1.000 (0.0000)  0.015 (0.0038)  1.000  (0.0000)
WARSP 0.100  1.000  (0.0000)  0.352  (0.0151)  1.000  (0.0000)
0.050  1.000 (0.0000)  0.148  (0.0112)  1.000  (0.0000)
0.010  1.000 (0.0000)  0.015 (0.0038)  1.000  (0.0000)

* (s.e.) are MC standard errors.
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Table 3.6: The Retail Price Index for Foods, Non-durables, and Services

Year Foods Nondurables Services
1988 105.8 105.3 105.8
1989 111.9 110.4 112.8
1990 121.0 117.9 122.0
1991 128.8 128.1 133.7
1992 132.9 134.9 142.8
1993 136.6 139.8 150.6
1994 139.2 142.8 155.6
1995 144.8 147.7 158.7
1996 150.0 152.2 162.0
1997 152.3 155.9 168.4
1998 155.8 160.0 175.2
1999 158.8 162.5 183.0

January 1987=100.

3.6 Application

3.6.1 British Family Expenditure Survey

In this section, I apply my method to household consumption data from the British FES for
the period 1988 to 1999 and test whether it accepts or rejects SARSP. FES is a repeated
cross-sectional survey consisting of approximately 7,000 households each year. To compare
the results with those of Blundell, Browning, and Crawford (2003, 2008), I restrict my sample
to couples with children who own a car. This provides approximately 1,500 observations on
average each year. I use data for the period 1988 to 1999. Expenditures for each good are
summarised into three categories: food, services and other non-durables. The definition is the
same as that of Blundell, Browning, and Crawford (2003, 2008). The relative prices of food,
services, and non-durables are quoted and calculated with the annual retail price index and
associated weights (Table 3.6). I assume the same RPI for every household.

One problem with my FES application is that the choice situation in FES is continuous
because total expenditure is continuous, whereas my method assumes that it is discrete. We

discretise expenditures as a compromise to solve this problem. I focus on the subsample with
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total expenditure near its annual median and recompute the annual expenditures for each
category by multiplying the original expenditure shares to the median annual total expenditure.
The hypothesis testing does not correct for measurement errors associated with this procedure.
I draw subsamples with total expenditure between 40 and 60 percentiles. To check robustness,
I also test with subsamples between 45 and 55 percentiles.

We find that SARSP is not rejected with subsamples between the 40 and 60 percentiles in
the 1% tests. However, SARSP is rejected at 10% with subsamples between the 45 and 55

percentiles.

3.7 Proofs

Proof of Proposition 1. Consider the case {1,2}. Take A C B' N B2 These sets satisfy the
hypothesis part of SARSP. Thus, I have I1*(B* N B2\ A) + IT*(A) < 1. This represents the WARSP.

Proof of Proposition 2. Let 3* be degenerate points of BY, i € I. Suppose y*R*y™ and
y' #y". Then,y' € B'NB,i=2,--- ,n. (i) y" € B 'NB™\ B'. Then, for any A C B*NB", then
y™ € B""'NB™\ A. Because y'’s are degenerate points, II>(B'NB?) +---4+TI"(B" " 'NB"\ A) = n—1.
These sets satisfy the hypothesis part of SARSP, therefore, it must be II'(A) = 0. This holds for any
A€ B"nBY, y* ¢ B*N B Thus, «y"Ry'. (ii) y™ € B" ' N B" N B'. Then, y' Ry™. Since SARSP
implies WARSP by Proposition 1 and WARSP implies WARP, we get —y" Ry'. Thus, SARP holds.

Proof of Theorem 3. Let M = {1,--- ,n} € M*(I) and let A C B"NB'. Assume that U satisfies
d* ¢ B*"'NB" k=2,---,n. This implies U € (,_, .. ,{U€U:U*(B*"")>U"(B )} c{UelU:
U*(B") > U*(B™)}. Moreover, because d"(U) € B *NB™\ A, and A € B", U*(B") > U*(A). Now,
if d*(U) € A, then U*(A) > U*(B"), which implies U*(B™) > U*(A) > U*(B"). This contradicts the
transitivity of U. Thus, maxyey[1(d>(U) C B*NB?*) 4 -+ 1(d"(U) € B 'NnB™\ A)) +1(d*(U) C
A)] < n — 1. This also holds straightforwardly in the case where there are some k = 2,--- ,n — 1 such

that d*(U) ¢ B* "' N B* or d"(U) € B"~' N B™\ A. Thus, SARSP holds by this and by Uo-ARSP.
[

Before presenting the proof of Theorem 4, I equip B, the Borel o-filed of R, with a seminorm
d,(C,C") = p(CAC"), where p denotes a finite non-negative measure on B such that p is absolutely

continuous with respect to some measure g on B and p(B) > max;cr{ITI*(B)} holds for any B € B.
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Note that such p always exists by the definition of IT. In the following, P* and P, refer to outer and

inner measures.

Lemma 1. Suppose Assumptions 1 through 3 hold. Then, for every ordered pair (i,j) € I x I,
a sequence a”,éﬁﬂﬂx exists which represents the maximisers as defined in Assumption 3 such that

d,(C™,CL3.) — 0 as N — 00 a.s.

Proof of Lemma 1. First, show that |T‘3VJ(6”) — Ty/| — 0 as. hold for any sequence of

maximisers C*. By Assumption 2, Viax is non-empty. Fix some C* € Vi . Then, because I have

Trian(€) = Toide () = [IP(C) = IV (O)] + [[1'(C) = I(C)] + [TT'(B"\ B)) = T(B"\ BY)], (3.27)

we get

7 (CH) — [TV (C™) — IV (C")] + [ITN(C™) — T(C™)] + [I*(B*\ BY) — II'(B* \ B)]
< —[ﬁ%c ) — IV (C™)] + [[T(C*) = IT'(C™)] + [IT'(B*\ BY) = TI'(B"\ B)] - 0, as.
(3.28)

as N — oo by Assumption 1 and the Gilivenko-Canteli theorem. Thus | T}/ (@”) —Ty/| — 0 as. The

function Tévj() is continuous on Vi, with respect to the semimetric d,, because for C,C’ € V"I,

T3 (C) = T3 (C')] < |IF (C) — TP (C')| + IT'(C) — IT'(C")|
< IV (CAC) + I (CAC|
(3.29)
< 2p(CAC)|

= 2d,(C,C").

Now suppose to the contrary, for any sequences C* € V" and éfn{ix € Vi, dp(éi’j,éf;;ﬁx) +4 0.
Then, for any sequences ((7”,6,%,]3“), € and & exist such that P(dp(ai’j,aﬁgéx) > €i.0. ) > & Now,
fix a sequence of C* and let {afr;f;x()\)};e,\ be the set of possible sequences of éfngx Then, for
every A € A, €(A) > 0 and &(A) > 0 exist such that P(d,(C"7,Chi (N) > e(A) i.o. ) > £(\). Then
infeevig,
to d,, n > 0 and € > 0 exist such that P(|T};/ — 77/ (C*)| > n) > & This contradicts the previous

dp(éi’j,C) — 0 a.s. cannot hold. However, then by the continuity of 77/ (-) with respect

argument. Hence, a sequence C™ and éfnix exist such that dp(éi’j, éfngx) — 0 a.s.
|

Proof of Theorem 4. The proof is a modification of Proposition 3.1 and 3.2 by Kitagawa (2010).
I first show that for each ordered pair (i,7) € I X I, GLi; () = \/N(fév]() — T3/ () converges
W
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uniformly to some tight Gaussian process G..i;(-) in °°(V*?). Then, by definition,

Grig n(C) = OWH~V2YNITE (C) — W) ~Y2VNTTE(C) — (W) ~Y2VNTTE (B \ BY)
— (W)7V2YNITP (C) — (W) TVAVNIT(C) — (V) TYAVNTT (B BY) (3.30)
= (V) 2Gw na (C) = A7 2Gh i (€) = (V)72 Gy e (BY\ BY)

By Assumption 1, the asymptotic distribution of G (C) for a fixed C is a Gaussian:

Grig x(C) ~ (V)26 (C) = (A)72Gi(C) = (\) /%G (B'\ B). (3.31)

By Theorem 1.5.4 and 1.5.7 of van der Vaart and Wellner (1996), it suffices to show that a semimetric
d on V" exists such that (V"9 d) is totally bounded and G

rig n(-) is asymptotically uniformly d-
w ..

equicontinuous in probability. For such a semimetric, I will use (the restriction of) d, (on V*7) as
defined above.

First, show that G i.; (-) is asymptotically uniformly d,-equicontinuous in probability. Under

W

Assumption 1, Gy ni(-) and Gy i (-) are asymptotically uniformly d,-equicontinuous in probability,
that is, for arbitrary € > 0 and 7 > 0, o > 0 and o? > 0 exists such that for k =1, 7,

lim infP* sup |G yk(C) = Gy (C) S VAR L > 11— (3.32)
N—+oo Mk (CACT)<ak 2

holds. Let o = min{a’, a’}. By the definition of d, and p, whenever d,(C,C") < « for C,C" € V* 1
have IT*(CAC’) < p(CAC") < d,(C,C") < a for k = i,j. From this, T get

sup ‘GT‘;}J'7N(C) -G

dp(C,C")<a

<SSV sup (G ne (€)= G e (C)).

Ik (CACY)

(eh]

TR N
(3.33)
k=i,j

From the above inequality, I obtain

lim infP* 3 — G, i N <

> lim infP* sup |Gy (C) — G i (C1) < (W)V2E k=i, §
N—roo Tk (CAC!)<ak 2

N—roo Ik (CACT)<ak 2

> lim inf H P*{ sup |Gnk’Nk(O) _Gnk,Nk,(C,N < (Xk)1/26} (3.34)

k=i,j

> 1 Jim ianP’*{ sup |Gy i (C) = e i (C7)] < (Xk)me}

k=i,j nk(CcAC’)<ak 2
> (1-n)*

Because 7 is arbitrary, G..i.; 5(-) is asymptotically uniformly d,-equicontinuous in probability.
W
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V%9 equipped with d, is totally bounded, therefore, I can conclude that Gri; y(-) converges uni-
formly to a tight Gaussian Process G ,i.;(-). The covariance function is calculated from the marginal
w

distribution as
Cov(G i, (C), G (C1) =T (C'NC") — I (O)IF (C)
w w
+I(CNC) - ()T (C) (3.35)
FINBY B[ - I (B BY).
Next, I show that the asymptotic distribution of \/N(f;vj — Ty) and SUP ey {\m(f‘;} () —

T/ (C))} are asymptotically equivalent. Because Ty (C') = T/ if C € Vil by Assumption 2, T

have

sup (VNI (0) =T (O)} = sup VN(T(O) = T3i)))

cevidy ceviiy
< swp VN(T(C) - Ti)) (3.36)
Ccevii

= VN(T}i) = Tii).
By Assumption 3, maximisers C* and ézngx of f‘ﬁvj on V¥ and Vi exist, I have
0<VN(TY —Ty)) = sup {VN(T/ (C) = T/)}
CeViihx
= VNI (€)= Ty (Ciia)
= (V)26 (€™) = G s (Coo)] = (W)™ 2[Gis e (€)= G sG] 57
+ (T3 (C™) = T3 (Ciilo)]
< (V) 721G xi (€)= Gy s (Ciiod)] = (W) 72 (G i (C) = Gy i (Ciec)]-

The last inequality follows from T/ (Ciiy) = SUD ey Ty (C) > Ty (C™7) because Cliy € Vid..

Now by Lemma 1, C™ and afnjdx could be chosen so that H’“(é’”Aé’fnﬁx) — 0 as. for k =1,j.
Then, the asymptotic stochastic equicontinuity of Gy yx(-) for k = i, implies that Gpr yx (C’\”) —
Gt i (Cizh) — 0 in outer probability for k = 1,2, and so is VN(Ty! =Tyt )=supg. s {VN (T (C)—
Ty7)} = 0p(1). Thus, the asymptotic distribution of \/N(fév’—T;V]) is identical to supgyij {\/N(f‘;} (c)—
)}y = supC€V;_§x{GTé‘,/j7N(C)}. Because the supremum functional sup,y:; {-} is continuous on
1°°(V*7), the continuous mapping theorem and the uniform convergence of GT&,/ij(-) yields

VNI = T) ~ sup {Gpis(C)}. (3.38)

P i
CeViihx
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Finally, I show \/N(fw — Tw) weakly converges t0 max; j)e(Ix)max SUP G cyind {GT” (C)}. Note
Tihx W
that
VN(Tw — Tw)

= max sup {VN(T}}(C) - T/ (C)) + VN(Ty/ (C) — Tw)}
(4,9)EIXT cevyi,j

= o Jex { sup [VN(T3/(C) = T3/ (©)) + VN(T/ (€) = Ty )] + VN(Ty — TW)} (3.89)

(H,5)EIXT | ceyinj

= max { sup VN(TH (C) = Ti? () + 0,(1) + VN(T3 — Tw)},

(i,4)eIxI cevid,
and sup g yi,g \/N(fév](C) — T3 (0)) is a.s. bounded but VN(Ty/ — Tw) — —oo if (i,5) & (I X I)max

and Ty) — tw = 0 if (4,5) € (I X I)max. Therefore,

N(Tw — Tw) = G.i;(C 1). 3.40
VN =)= 5%, 2up, (Gryp O+ 0p(D) (3.40)

max
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