-al

-16720"

by
~ N

X e %
M PRLITISAL i

2])
:?t Sésth &

ENHANCING DISCRETE EVENT MODELLING BY INTERFACING

EXPERT SYSTEMS AND SIMULATION MODELS

By

Daniel Goodman

B.Sc. (LSE)

Thesis submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy at
the London School of Economics and Political Science,

University of London.

May 1992.

UMI Number: U616004

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

Dissertation Publishing

UMI U616004
Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346

ABSTRACT

This thesis investigates the representation of operational decision makers

within simulation modelling.

Artificial Intelligence concepts, such as expert systems focus on the
problem of representing, in high-level code, complex real-world decision making

problems.

The author therefore proposes that the use of expert system technology
may provide an improved means of representing operational decision tasks and
that as a consequence, apriori possibilities may exist in the context of model

experimentation based on alternative operational policies.

The thesis further investigates the nature of operational decision making
and the potential need to represent within a model, inter-dependencies between

decision makers.

A prototype system called ESSIM is developed which comprises of two
interlinked components, a discrete event simulation module and expert system
module. The benefits of the proposed approach are then assessed by comparing
the functionally of ESSIM with conventional modelling techniques. The
comparison is carried out by developing three alternative models of an
automated container port, one of these using ESSIM. Experiments were then

devised and executed which seek to draw conclusions on the thesis proposal.

ACKNOWLEDGEMENTS

Many thanks to David Balmer, my supervisor, for his invaluable guidance in

producing thls thesis.

I would also like to thank my wife, parents, in laws, and friends for their moral

support.

CONTENTS

CHAPTER ONE: INTRODUCTION

1.1
1.2
1.3

1.4

The thesis proposition.
The research strategy.
Research background.

Structure of the thesis.

CHAPTER TWO: RESEARCH CONTEXT

2.1
2.2

2.3

Introduction.
Simulation modelling.
2.2.1 What is Simulation Modelling?
2.2.2 What is the purpose of simulation modelling?
2.2.3 Simulation model development and experimentation.
2.2.4 Limitations of the simulation modelling approach.
2.2.5 The relationship between simulation and
Decision Support Systems.
Artificial intelligence.
2.3.1 What are Expert systems and how do they work?
Knowledge representation:
Inference & control strategies:
2.3.2 What is the purpose of an expert system?

2.3.3 Limitations of expert systems.

o N

10
11
13
15

19

21
23
24
27
31
32

2.4 Al and simulation modelling - mutual support. 34
2.4.1 Expert systems and simulation - Is there a difference? 34

2.4.2 Simulation and expert systems - Complementary techniques. 37

2.5 Wider aspects of Al support of simulation modelling. 40
2.5.1 Simulation program generators. 41

2.5.2 Model verification and validation. 43

2.5.3 Intelligent front-ends. 45

2.5.4 Al languages & tools in simulation. 47
Using ES shells in developing simulation models: 50

LISP based system and Object Oriented Programming: 52

PROLOG based systems: 56
2.5.5 Interfacing expert systems and simulation models. 59
2.6 Conclusion. 63

CHAPTER THREE: REQUIREMENTS OF A DECISION ORIENTED SIMULATION

ENVIRONMENT.
3.1 Introduction. 65
3.2 Decision making. 67
3.3 Decision making within simulation. 69
3.4 Representing decision making using expert systems. 71
3.5 Linking simulation and expert systems - A suggested approach. 73
3.5.1 Integrating expert system and simulation methodologies. 77
3.5.2 Facilities that should be provided by the expert system. 85

3.5.3 Facilities that should be provided by the simulation component89

3.6 Conclusion. 90

CHAPTER FOUR: ESSIM - AN ENVIRONMENT FOR SIMULATION

4.1 Introduction. 94
4.2 Research stages. 96
4.2.1 Simulation of a Job-Shop. 96
4.2.2 The development of ESSIM. 101
4.3 Overall system design. 103
4.4 Design of the expert system component. 106
4.4.1 The knowledge-base. 106
4.4.2 Modelling "Cooperative Decision Making" 113
4.4.3 The knowledge-base part-compiler. 115
4.4.4 The inference engine. 123
4.5 Design of the simulation component. 128
4.6 Design of the communications interface. 134
4.6.1. The CI-generator. 137
4.7 The man-machine interface. 140
4.7.1 ESSIM library of low-level routines. 142
4.7.2 The graphics display module. 142
4.7.3 The man-machine front-end module. 144
4.7.4 Designer. 144
4.8 The code linker. 148

4.9 Conclusion. 148

CHAPTER FIVE: VALIDATION OF ESSIM USING A CONTAINER PORT MODEL

5.1 Introduction. 152
5.2 Design of the container port. 157
5.3 Structure of the simulation model. 163
5.4 Structure of the expert system knowledge base. 172
5.5 Design of the man-machine interface. 182
5.6 Model validation. 187
5.7 Model experimentation. 189
5.7.1 Experimenting with rule parameters. 190
5.7.2 Experimenting with variable values within rules. 192
5.7.3 Experimenting with rule structures. 193
5.8 The alternative Port models. 201
5.8.1 Experimenting with the models. 204
5.9 Concluding thoughts on the ESSIM modules. 212
5.9.1 Observations on ESSIM's simulation module. 212
5.9.2 Observations on ESSIM's expert system. 215
5.9.3 Benefits and limitations of the user interface. 219

5.10 Conclusion. 222

CHAPTER SIX: CONCLUSION

6.1
6.2
6.3
6.4

6.5

6.6

Review of the thesis proposition.

The research rationale.

Review of the research strategy.

Conclusions from the model experimentation.

Summary of the research achievements.

6.5.1 Principal achievements.

6.5.2 Subsidiary achievements.
6.5.2.1 New approaches to expert system design.
6.5.2.2 Improvements to the three-phase routines.
6.5.2.3 Additional software developments.
6.5.2.4 Peripheral benefits of the ESSIM approach.

Future work.

227
227
228
231
235
235
237
237
238
238
239
240

APPENDICES:

m o 0 o

Job-Shop production scheduling using ESSIM.

A.l1 Introduction.

A.2 Overall system design.

A.3 The simulation model.

A.4 The user interface.

A.5 The expert system and interfaces to the simulation model.

The port model knowledge-base under ESSIM.

Addition of a rule-set to the knowledge-base.

Coding the port model knowledge-base in Pascal.

Designer - An interactive approach to man/machine interface
Development.

E.1 Introduction.

E.2 Using Designer.

E.3 Modifying Designer files.

Object-oriented simulation.

F.1 Introduction.

F.2 What is object oriented programming.

243
243
244
246
247
249
252
266
272
290

290
290
295
298
298
299

F.3 Examples of languages based on the object oriented approach.300

F.4 Applying the object oriented approach to model development. 325

ESSIM output displays for the Port model.
References.

Bibliography.

330
334
349

CHAPTER ONE

INTRODUCTION

1.1 THE THESIS PROPOSITION

This thesis will investigate possible approaches in using Artificial
Intelligence techniques in improving the representation of operational decision

makers within simu.lat_ion models.

The thesis proposition is that expert systems techniques may provide an
improved means of representing within the model, operational policies which in
the real-world dictate the course of events. Such operational policies may
require the involvement of multiple decision makers and may potentially involve

the representation of some form of hierarchical management structure.

The belief that expert system technology may have a role to play within
conventional simulation modelling is a consequence of the fact that much of
Artificial Intelligence research is focused on providing tools for the resolution

of complex real-world decision making tasks.

There are a number of potential benefits which could be derived from
using Artificial Intelligence techniques in the detailed representation of
operational decision makers and their inter-relationships. The main advantage
is likely to result from the ease with which model experiments could be carried

out based on alternative operational policies. (In the context of this thesis, the

term "Model Adaptability" will be used to describe this benefit). A second
derivative | benefit is that adding model detail in the context of operational
decision making, may ultimately result in a model which is a better
representation of the real-world problem. The term, "Model Accuracy" will be

used in this thesis to describe this benefit.

Observations sum.lar to the above have already been made by a number
of authors including Fishman[1973]. They assert that conventional simulation
languages are not well suited to the representation of decision tasks. Several
authors have identified the potential of Artificial Intelligence (AI) approaches
to overcoming these difficulties. The possibility of integrating a model of
operational decision-making in the form of an expert system and a conventional
simulation model has been envisaged by O'Keefe and Roach[1987]. Flitman and
Hurrion [1987] then provide the first practical insight into the potential of
linking an Artificial Intelligence tool with a simulation model by building a
system based on two inter-communicating micro-computers. The research
presented in this thesis follows on and builds upon Flitman's [1986] pioneering
work by concentrating on two key problems: (1) The representation of
operational policies which are reflected by the real-world operational staff and
their cooperative actions. (2) The need to create a "practical® modelling
environment in which the link between simulation model and expert system is

almost seamless.

1.2 THE RESEARCH STRATEGY

The first stage of the research involves a detailed literature study

covering both simulation modelling and artificial intelligence. The emphasis of
the literature study is in identifying appropriate state-of-the-art technology
which could be applied in creating a simulation environment incorporating
artificial intelligence techniques. Of particular interest are the various Artificial
Intelligence approaches to the representation of "Knowledge" and the inference
of conclusions from this knowledge. These can broadly be divided into AI
languages (e.g. Lisp & Pfolog) and AI Tools (e.g. Expert Systems and Object
Oriented environments). Another important aspect of the literature study, is
to learn what other researchers have achieved or proposed in the context of
combining artificial intelligence and simulation modelling techniques. Finally,
much of this thesis is concerned with the representation of decision making
activities and the inter-relationship between decision makers during the process
of enacting operational policies. Consequently, background research was
necessary into the nature of decision making and the implications of hierarchical

management structures.

The approach adopted in this thesis, was to build upon earlier work
undertaken by Flitman[1986] and to investigate through the development of a
number of prototype systems, the implications of integrating an expert system

model of operational decision making and a conventional simulation model.

The development of the prototype environment involves the identification
and resolution of the many practical difficulties in bringing together expert
system and conventional simulation modelling techniques. The first
implementation of a prototype environment principally served the purpose of
identifying these practical difficulties and defining the specification of a second

implementation. This second implementation seeks to overcome the problems

identified in the first version and forms the basis of a generic simulation
modelling environment within which the practical modelling experience could be

obtained.

A research strategy based on the development of prototypes is only
effective if one is able to define a means of comparing the value of the new
simulation technique with é more conventional modelling approach. The research
therefore includes the development of three simulation models of a container
port. One using the proposed approach, another using conventional simulation
techniques, and a third using Pascal functions to replicate some of the
characteristics of an expert system. A number of experiments are then devised
which seek to assess the functionality of the three models against the identified

potential benefits of the proposed modelling environment.

1.3 RESEARCH BACKGROUND

The motivation for the proposed research originally arose from the
author's involvement in the Computer Aided Simulation Modelling (C.A.S.M)
group at the London School of Economics which brought together a number of

research studies in simulation techniques.

One such project which was subsequently to provide a practical modelling
context for this thesis was a joint project between the London School of
Economics (L.S.E.) and the Instituto Nacional de Tecnologia (I.N.T.), a
Brazilian research Centre. The intention was to produce computer simulation

models for production planning and control which were to be used in assessing

the consequences of different jobbing and batch production structures in a
typical job-shop environment. I.N.T. were to provide the necessary expertise
in production engineering whilst in the final stage of the research, two
manufacturing concerns, NATEC LTDA and DANCOR S.A., were to provide the
practical context. The computer systems used at the proposed sites were to be
integrated with the models in providing a decision support system which was to

aid management to schedule and control production.

The rationale in providing such a decision support tool was based on the
fact that in a typical batch manufacturing environment, more than 90% of time
is spent idle in queues awaiting processing. Consequently, it was felt that
there was considerable room for improvements in productivity by rationalising

the material flows.

Regrettably, geographical barriers led to difficulties in maintaining close
contact with our Brazilian counterparts. The first prototype system
encompassing an expert system and conventional simulation model was developed
with the job-shop modelling requirements specifically in mind. However, the
subsequent difficulty in gaining access to real-world experts meant that a
different model had _to be developed for the evaluation of the second prototype
system. The new model was that of an automated and partially un-manned
container port which was to be built by Highland Participants PLC on the Isle
of Grain. The real-world container port was to be controlled by a software
application, the core of which would consist of decision rules formalised within

a 'knowledge-base’.

1.4 STRUCTURE OF THE THESIS

Chapter two consists of a review of the two areas of research appropriate
to this thesis, simulation modelling and Artificial Intelligence. The chapter
begins with an analysis of simulation modelling covering its purpose, limitations
and applicability within decision support systems. A similar approach is taken
in investigating fhe area of Artificial Intelligence though particular emphasis is
placed on knowledge representation, a topic particularly pertinent to this
thesis. A study of recent papers follows, outlining what are currently
considered to be "advanced" systems in the area of co-operative systems

involving both simulation and AI.

Chapter three focuses on the characteristics of decision making and seeks
to identify the possible ways of representing these within simulation modelling
and Artificial Intelligence. The possible ways of combining simulation and
Artificial Intelligence knowledge representations are identified and the benefits
and limitations critically compared. A choice is ultimately made as to the

approach to be selected for the purpose of building a prototype system.

Chapter four describes the process applied in developing the prototype
system referred to as ESSIM (Expert System SIMulation). The first prototype
system which consisted of a model of a Job-shop is described and the
conclusions drawn from this initial investigation outlined. The general design
of the second prototype system is then explained followed by an in-depth

definition of the function of the various modules of the system.

Chapter five outlines the development of the un-manned container port
model already referred to in section 1.3. The implementation of this model forms
the basis of the validation of the proposed methodology based on the link
between simulation system and expert system. The structure of the simulation
system component of the port model is explained followed by the expert system
knowledge-base component. The process of experimenting with the port model
is assessed with respect to the introduction of modifications to knowledge base
and simulation system code. Particular emphasis is placed during this
assessment process on the impact of the expert system approach on modelling
aspects including model "Accuracy" and "Adaptability". The value of the new
modelling process as encompassed in ESSIM is then compared with more
conventional approaches through the implementation of the same port model code
using existing modelling tools. The benefits and limitations of the ESSIM

approach to modelling are then summarised.

Chapter six concludes the thesis by summarising the work undertaken
and conclusions presented. The achievements of the research are formalised and
suggestions made as to future work which could be undertaken in order to build
upon the experiences that resulted from the research encompassed in this

thesis.

CHAPTER TWO

RESEARCH CONTEXT

2.1 INTRODUCTION

The research presented in this thesis covers two distinct areas of
knowledge, simulation and artificial intelligence. The background literature
study presented and discussed in this chapter therefore commences with a

review of the nature, goals and limitations of each of these technologies.

The literature study revealed that there existed some degree of overlap
between simulation modelling and expert systems approaches. A number of
published papers were also found which argued this case. Chapter two
therefore continues to investigate the similarities between simulation modelling
and expert systems and explores the work of other researchers who have
attempted to carry out simulation modelling using artificial intelligence

languages and tools.

Researchers have for some time been investigating the potential of using
simulation and AI to mutual benefit. From the simulation perspective, AI
provides the necessary tools for creating advisory systems to assist the user
in all stages of the process of developing and experimenting with simulation
models. From the AI perspective, simulation provides the required framework
for handling problems involving temporal reasoning (time handling) and gives
advisory systems the capability of investigating the future. Such research,

may provide valuable experience and insight into knowledge representation

techniques and methods used in bringing together simulation and AI. The
chapter therefore concludes with a review of research studies which have

investigated the interfacing of simulation models and AI languages and tools.

2.2 SIMULATION MODELLING

Computer simulation modelling dates back to the early days of computers.
Nance[1981] and Shannon[1986] broadly divide the development of simulation
into five stages. Up until the 1960's, simulation models were mostly coded
directly in FORTRAN. In the early 60's, the concept of simulation hoddhng
attracted much interest which spurred on the development of simulation specific
languages (themselves using FORTRAN as the base language) including GPSS,
CSL, SIMSCRIPT (Markowitz et al., [1963]) and SIMULA. In the late 60's,
revised versions of these languages appeared including GPSS II/I11, SIMULA
67 and ECSL (Clementson, 1982). The 1970's was a period of slow development
for simulation in which new languages were introduced that permitted the
combination of discrete and continuous components in one model. During the
fifth stage which spans from the late 1970's to the present day, attention
shifted from adding more powerful functions to existing languages to one of
providing a more formalised modelling approach which could be used as a basis
from improved product'ivity in code creation. The CASM (Computer Aided
Simulation Modelling) project at the LSE as described by Balmer and Paul[1986]
is one such example. The CASM concept centered around the use of an
Interactive Simulation Program Generator (ISPG) and a suite of PASCAL
simulation routines based on systems developed at Lancaster university. The

formalism of an Activity Cycle Diagram (ACD) is used as a basis for input into

the gene;ator. Also under the umbrella of the CASM project, was work
undertaken by Doukidis (See Paul and Doukidis[1986]) on automating the
process of model formulation using a Natural Language Understanding System
(NLUS). The Pascal simulation routines used in the CASM projects are well
documented and tested and are consequently of potential benefit to the research
in this thesis. These routines form part of the Extended Lancaster Simulation

Environment (eLSE) and are well described by Chew[1986].

The terms 'simulation' and 'modelling' have a widespread and varied
usage. Consequently, their meaning in the context of the thesis requires some

clarification.

2.2.1 What is Simulation Modelling?

In general terms, 'Modelling' refers to the process of constructing a
scaled down version of an existing or proposed real world system. The intention
in building a model is to create either a physical replica such as a three
dimensional object or to generate an alternative system which does not have the
same physical connotations but can nevertheless be used in investigating the
properties of the system being modelled. In this second category one can
include computer programs used in implementing various types of simulation and
mathematical models consisting of series of equations or logical propositions. A
prime example is mathematical programming in which a set of linear equations
and inequalities are used in creating a model which has no direct equivalence

in the real world system being modelled.

10

Each form of modelling has its strengths and weaknesses. Mathematical
or analytic models are powerful with respect to the level of generality of their
associated solution techniques. However, such an advantage leads to the
converse disadvantage of making it difficult to make model behaviour match
that of the real world. In the case of simulation models, where the analogy
between the model representation and the real world are that much greater,
there is a singular lack o;f generality, power and elegance as compared to the
compact mathematical solution technique. On the other hand, considerable
benefit is to be gained by greater faithfulness to detail in that investigation by
experimentation is made possible by allowing analogical relationships with the

real world to be maintained.

2.2.2 What is the purpose of simulation modelling?

A simulation model is simply a statement of the way in which the various
components of a real world system interact to produce a behavioural pattern.
The implementation of the model on a computer permits time scales to be reduced
to a manageable level and hence permits the program code to be used as a basis
for experimentation. Pidd[1992] and McArthur et al[1986] identify a number

of reasons for justifying the cost in time and effort of developing a model:

Repeatability: In the case of direct experimentation on a real world
system, replication using differing parameters is often either impossible
or undesirable. Take a manufacturing plant as an example. Managers and
customers alike would be rather unhappy if 'live' experimentation led to

a sharp deterioration in delivery lead times.

11

Danger: Direct experimentation on a real world process can be
dangerous. Experimenting, for example, with the operating

characteristics of a nuclear power station or aircraft may be unwise.

Time: Specifying the logic of a model and implementing it as program code
can take an inordinate amount of time. On the other hand, once
implemented, the model can be used to run innumerable experiments on
a time scale drastically reduced from that of real time. (e.g., economic
systems could not possibly be experimented on directly because of the

time factor.)

Inevitability: Some real world systems, such as the solar system cannot

be manipulated directly.

Cost: Simulation models are typically expensive to develop given that
skilled analysts and programmers are required over a significant period
of time. Nevertheless a rash decision implemented as an operating policy

on the real world system can turn out to be more costly.

In deciding whether or not to develop a simulation model, the eventual

goal(s) have to be identified. As pointed out by Shannon et al.[1985],

experimenting with alternative operating policies or procedures is not the only

potential use of a model. A simulation model permits the acceptability of the

corresponding real world system to be evaluated, either in terms of robustness

or performance, and in accordance with a given set of criteria. Sensitivity

analysis can be used in identifying the factors which are most significant in

12

affecting system performance. Optimising procedures can be used to fine-tune
system performance. An investigation can be made into establishing the
functional relationships that exist between one or more parameters in the
system. Finally, a model enables transient behaviour such as queue buildups,

bottlenecks, and utilisation levels to be identified.

2.2.3 Simulation model development and experimentation.

1. Definition of the problem based on an analysis of the actual or proposed
real-world system.

\

2. Assessment of the feasibility of the simulation, drawing on relevant experience
in solution techniques.

3. Identification of objectives and critical system components.

4, Formulation of a conceptual model followed by its representation as a
communicative model.

5. Creation of a programmed model.

1

6. Design of experiments leading to the validation of the model and the
presentation of model results. Return to previous stages in developing modified
versions of the model.

7. Transfer of the model conclusions to the real world application.

F/GURE 1 STAGES OF THE SIMULATION LIFE CYCLE

13

In broad terms, the development of a simulation model involves the
implementation of the model of the real world system using either a general
purpose high level language or simulation specific programming language,

followed by an investigation of the model through experimentation.

PROBLEM COMMUNICATED
DEFHlxlsTEI(S)N PROBLEM

PROBLEM FORMULATION
DECISION SUPPORT

PHASES FORMULATED
PROBLEM
DECISION MAKERS INVESTIGATION OF
: . SOLUTION ~ TECHNIQUES, r
INTEGRATED PROPOSED SOLUTION
DECISION TECHNIQUE
SUPPORT (REQUIRING ~ MODELLING)

SYSTEM INVESTIGATION

SYSTEM AND OBJECTIVE

DEFINITION
PRESENTATION OF
MODEL RESULTS CONGEPTUAL
REDEFINITION MODEL
MODEL 1
REPRESENTATION
MODEL RESULTS
COMMUNICATIVE
MODEL(S)
3
MODEL EXPERIMENTATION PROGRAMMING Z
DEVELOPMENT
PHASES PROGRAMMED
MODEL
FIGURE 2 EXPERIMENTAL
MODEL EXPERIMENTAL
MODEL LIFE CYCLE DESIGN

14

A proposed simulation model life cycle is defined by Nance[198l1] &
Balci[1986] and is illustrated in figure 2. The basic stages are listed in figure

1.

As with conventional program development life cycles, the process must
be treated as iterative, particularly in the model wvalidation stage, where
through display of output, errors or omissions in the llogic of the model
typically become apparent. Furthermore, experimentation requires a re-analysis
of the logic of the model and implementation of such changes through

modification of the program code.

2.2.4 Limitations of the simulation modelling approach.

Simulation model formulation and implementation forms part of a
challenging and complex process that demands of the modeller considerable
analytic skills. The experimentation stage that follows the construction of the
model also exacts specialised skills in statistical design and analysis of
experiments. Another point noted by Moser[1986] is that the experts needed
in interpreting simulation results do not all come from a simulation background
and include specialists from the field being investigated. The potential scarcity
and cost of such expert advice for output interpretation can nullify the
advantages of simulation as a management planning tool. Such limitations linked
with the fact that the process of simulation modelling requires long and complex
computer programs have lead to the reputation of simulation as a costly and
time-consuming process. Pidd[1986] claims that such factors are serious

limitations and consequently that 'computer simulation should be regarded as a

15

last resort - to be used if all else fails'. Indeed, many see the primary
contribution of simulation to decision support as being limited to areas of high
risk strategic decision making in which physical danger or capital investments

are major factors.

Simulation modellers face a number of other limitations that cannot easily
be overcome and these are typically acknowledged as shbrtcémings which are
offset by the benefits that the model occasions (See Koskossidis & Davies[1987]
and Fishman[1973]). Some such limitations can be classified as follows: (The

first two have also been discussed in chapter one)

Accuracy: Accurate representation of the real world tends to be a
difficult goal to reach, particularly in cases where extensive use is made
of simple approximations based on prior observation and sampling rather
than modelling actual behaviour. Many systems include the presence of
one or more decision makers who typically have considerable influence
over the activities that take place. The complexity of decision making
tasks sometimes mean that simplification or omission are necessary in
creating the model. As O'Keefe and Roach[1987] explain, the difficulties
in using present modelling structures for the representation of decision
making leads to an inclination on the part of the modeller to limit the level
of detail. This‘limitation in the the level of detail with which decision
tasks are represented may have the effect of restricting the scope for
experimentation. Another problem sited by the authors is that much
critical knowledge can also get lost or misinterpreted during the

translation to computer code. It should however be noted that the reverse

16

situation can be just as much of a problem. The gains achieved by an
overly detailed model may be totally outweighed by the development
overheads incurred and the difficulties that ensue in modifying the model
logic. Consequently, a careful balance is required between the level of
detail and the investment necessary in achieving the degree of

representational accuracy.

Adaptability: As we have seen, the scope for the application of simulation
is limited. Other modelling techniques may be more appropriate or there
may exist inherent problems in creating a faithful representation of the
real world. Given that the simulation model has been created, the modeller
may, (at the experimentation stage, and sometimes earlier if systems
analysis and design methodologies are not adhered to,) be faced with the
need to alter the logic of the model. Meadows[1988] highlights this
problem in terms of incomplete or incorrect problem specification which
results in a need to make multiple alterations to the code simply to
incorporate one modification. McArthur et al.[1986] state that these
limitations result from difficulties in structuring knowledge. They also
maintain that any structure achieved in the initial model typically becomes
lost as more complexity is added or modifications made, with embedded
assumptions being 'hidden, scattered, and fragmented throughout the
program.'. Such problems are exasperated by the complex interaction of
model entities and the difficulties in maintaining consistency in the data
that reflects current system status. Such a problem is highlighted in the

port application described in chapter five.

17

Maintainability: Simulation modelling is partially a cyclical process
requiring the modeller to switch between experimenting with the model
and modifying the code in testing alternatives. The need to repeatedly
alter the model imposes intolerable burdens on the structure and

maintainability of the code.

Ease of use: As pointed out earlier, experimentation necessitates
modification which means that the analyst and programmer have to be

involved throughout the duration of the model life-cycle.

Speed: Even at the best of times, long simulation runs are time
consuming. Consequently, repeat runs necessary in investigating a range
of alternative parameter settings can be a problem. In some cases,
simulations run slower than real time potentially eradicating any gain in

developing and using the model. (See McArthur et al.[1986])

Validation: According to McArthur et al.[1986], '...there is no assurance
that the simulation embeds an accurate or complete model of the dynamic
system.'. Consequently, the modeller cannot have total faith in any
results obtained from the model and can only attempt to gain an
acceptable level of confidence through 'verification' of the computer
program and by demonstrating an acceptable correspondence between the
output of the model and any actual or historic data. (See Greig[1979],
Kheir & Holmes[1978], Mihran[1972], Naylor & Finger[1967],
Schlesinger[1974], Schruben[1980], Van Horn[1971] and Koskossidis &

Davies{[1987]).

18

Interpretation: Simulation models typically produce a mass of data. If the
modelling exercise is to be of any value, the data has to be correctly
interpreted which is an error prone and time consuming process.
McArthur et al.[1986] give military simulations as an example,
emphasising the difficulties in isolating the critical behavioural properties

from 'hundreds of pages of numerical output'.

2.2.5 The relationship between simulation and Decision Support Systems.

Decision Support Systems (DSS) are flexible computer based systems that
help the decision maker utilise available resources in reaching a specific
decision in an unstructured environment such as management and operational
control or strategic planning. As stressed by Gray and Borovits[1986], the
role of a DSS should not be misunderstood. The intention is to provide support
rather than generate specific solutions which the user accepts as a final

decision.

Simulation modelling, by providing an insight into the functionality of the
real world system, is itself fundamentally a tool for the support of
decision-making. Where simulation modelling differs from the concept of a
decision support system, is in the level of support provided to the user.
According to Nathan and Sokol[1986], simulation neither relates the simulation
results to a manager's multiple and conflicting objectives, nor does it directly
assist the manager in identifying the best solution. Simulation models have a
number of other limitations in the context of decision support; Large amounts
of output are produced with no direct means for comparing the effects of

changes to the model parameters in different runs. Furthermore, an individual,

19

when experimenting with the model, needs to be guided rather than left to the
slow process of 'trial and error'. This problem is further compounded by the
fact that the analysis of the output of a stochastic simulation requires a deal of
statistical expertise and cannot sensibly be left to a busy manager faced with
an urgent decision. Even if such statistical analysis could be reduced to a
simple routine and the whole embedded within an optimising algorithm, the
execution of the multiple replications of each of the élternative decision
scenarios required by such a process may pose intolerable computational

burdens for an on-line decision support system.

Taking an alternative viewpoint, simulation modelling can be seen to make
significant contributions to decision support systems. For example, The actual
process of developing a simulation model may occasion within the user an
enhanced appreciation of the operation of the system modelled. This may, in
itself prove useful in supporting decision making or may contribute indirectly
to the process of creating a DSS. Another possibility is that the model produced
could be used in a formal series of experiments which potentially culminate in
a rule or set of rules that are then used as part of the DSS. For instance, a
regression model could be fitted to the simulation output which then adequately
summarises the effects of changes in certain input parameters. The changes to
the input parameters could represent alternative decisions on the operation and
management of the real world system and consequently, the regression equation
could be incorporated in the DSS which then requires no further reference back

to the simulation model. (See Nathan and Sokol{1986])

Another common approach has been to embed the model within the DSS

thus allowing the simulation to play a direct role in decision support. A system

20

developed by Basset and Kochhar[1985], provides data analysis and report
generation routines but does not provide the user with any degree of flexibility
and the problems of using simulation for decision support highlighted in the
previous paragraphs remain unresolved. Other writers such as Moser[1986] take
a similar approach but rely on a rule-based expert system for the interpretation
of the simulation output. This expert system is developed in parallel with the
simulation and embodies the knowledge of both simulation ‘analyst and domain
experts used in the interpretation of output. Another system formerly known
as KBS and now named Simulation Craft takes a far more ambitious approach
(McRoberts et al.[1986], Reddy et al.[1986], Reddy[1987], and Sathi et
al.[1986]). It is proposed that Simulation Craft be capable of identifying
appropriate sets of scenarios, automatically generating a number of experiments
such that the stated 'goal' be attained and producing a report explaining the
scenario selected. Such a system offers a functionality which, if fully realised,

reserves for simulation a place within the realm of on-line DSS.

The next section will provide an overview to the area of AI and in
particular, expert systems, prior to investigating the research that has been

undertaken in combining characteristics of simulation and AI.

2.3 ARTIFICIAL INTELLIGENCE.

The roots of Artificial Intelligence are widely accepted as dating back to
1950 when Turing[1950] wrote his speculative paper on computer machinery
and intelligence. (In comparison, the first commercial computer, the IBM 705,

appeared in 1954 and the first programming language, FORTRAN, in 1957). In

21

1956, a conference at Dartmouth college on symbolic computation paved the way
for the development of practical applications. However, it was not until the
1970's that the concept of AI was to find acceptance outside research
environments. Unfortunately, interest dwindled because the AI applications
were too slow coupled with high development costs and small practical returns
(Harmon and King[1985]). It was not until the 1980's that Al was finally to gain
acceptance, and not so much because of any significant theoretical advances,
but because developments in chip technology led to the introduction of a new

generation of substantially more powerful computers at relatively lower costs.

Al is concerned with how humans 'acquire, organize, and use knowledge'
(Shannon et al.[1985]). The constituent areas of AI are not clearly defined
but broadly fall into three classes. Natural language processing, robotics, and

knowledge based systems.

Natural Language Processing (NLP) is primarily concerned with the
development of computer applications that can read documents, speak,
and recognise spoken words (speech recognition). The interest in NLP
is spearheaded by a need to provide a more powerful means of
communication between man and computer, coupled with the commercial
availability in recent years of, text scanners, speech synthesisers and
speech recognition equipment. (See Winograd[1972] for a more detailed

coverage of NLP).

Robotics is concerned with how robots can be given tactile and visual

senses. Dramatic advances have been made in recent years, resulting in

22

wide usage of such technologies in industry, primarily in the context of
Automated Guided Vehicles (AGVs), image recognition (e.g fingerprint
identification), and machine guidance (e.g. welding and cutting in the
car manufacturing industry). The scope for the use of robotics is
substantial as businesses cut overheads in striving to remain competitive.
(See Pratt[1978] and Brooks et al.[1979] for a more detailed discussion

of the topic).

Knowledge based systems include Expert Systems and Neural Networks,
a new area of research mainly dedicated to machine learning. Expert
Systems (ESs) are concerned with the automation of mental tasks that are
normally undertaken by an expert in a specific application area. Expert
systems differ significantly from other AI applications, namely NLP and
robotics, in that the underlying goal is not that of gaining an insight into
how human experts reach a given conclusion, but rather, that of devising
methods by which such conclusions may effectively be duplicated
(Shannon et al.[1985]). The research presented in this thesis is primarily
concerned with the contributions that expert systems can make to
simulation, and consequently, the following sections will focus exclusively

on ES theories.
2.3.1 What are Expert systems and how do they work?

According to Feigenbaum[1982], expert systems are intelligent computer
programs that use '...knowledge and inference procedures to solve problems
that are difficult enough to require significant human expertise for their

solution.' Expert systems differ from conventional problem solving techniques

23

both in terms of the development process and architecture of the implemented
end product. The procedural approach used in conventional high level
languages is abandoned in favour of an architecture which is typically based
on the use of three distinct modules that represent the knowledge of the

system. The three components are:

A database (or equivalent) for the storage of data corresponding to the
'declarative knowledge' to be used by the ES, and run-time data
representing the current status of the system. (declarative knowledge is

data, specified before the start of the inference process).

A knowledge-base which encapsulates the facts and rules that embody the

expert's domain knowledge.

An inference engine that consists of deductive strategies that define the
problem solving approach to be used. The inference engine analyses
available facts and rules and attempts to draw conclusions which get
added to the database or are used to modify current database entries.
The inference engine is further responsible for instigating order in the

pattern of inquiry.

1.Knowledge representation: Expert system shells which are high level tools
for the creation of expert systems typically provide a language construct, data
structures, a generalised inference engine, and a user-friendly interface.
There exists several forms of representation for the facts and knowledge stored
in the database and knowledge-base. The most common of these are: Semantic

networks, frames, object~attribute-~value triplets, and predicate calculus. Other

24

forms of representation including program code, rules, conditional probabilities,
and first-order logic which are used almost exclusively in representing domain

specific knowledge in the knowledge-base.

Semantic networks are one of the oldest and most general representation
schemes for declarative knowledge (Harmon and King[1985]). Objects to
be represented are symbolised by nodes and relaﬁonsﬁps denoted by
arcs that link the objects together. The advantage of such a
representation is the clear image that can be obtained as to relationships
between objects through graphical representation compared to lines of
code in a classical program. Semantic networks are flexible inasmuch as
new nodes and arcs can be added as needed and have the benefit of
permitting objects to inherit the attribute values of other objects through

the creation of additional arcs.

Frames are a form of representation for objects which contains slots for
the storage of facts about the object. The slots may contain values or
pointers. A pointer may point to another frame or alternatively to a
procedure or set of rules that return a value. Consequently, frames are
capable of both procedural and declarative representational forms. As
with semantic networks, frames can inherit the attribute values of other

objects. (See Alty and Coombs[1984])

Object-attribute-value triplets are similar in concept to semantic
networks. The arcs used in semantic networks to symbolise relationships
are simplified by only allowing two kinds of relationships. Namely, "is-a"

and "has-a" arcs. O-A-V triplets were used in the MYCIN medical

25

diagnosis expert system (see Buchanan and Shortliffe[1984]).

Predicate calculus is a simple language for the definition of objects and
facts (predicates) relating to these objects. The format of statements in
predicate calculus consist of a fact followed by one or more object names
between parentheses. For example, "Is-AssemblyMachine(Mach_A)" is
equivalent to the statement that "machine A is a machine for the assembly
process". Such an assertion can either be TRUE or FALSE. Predicate
calculus has the advantage of being fairly English like and yet has a

simple and limited syntax. (See Alty and Coombs[1984])

Program code is often used in conjunction with other knowledge
representation structures in defining the domain specific knowledge. A
procedure may be called when a given set of conditions are satisfied. A
number of expert system shells provide facilities for interfacing to
conventional high level languages though data sharing is often impossible

or awkward to use.

Rules (production rules) typically have an IF-THEN type structure
consisting of a premise and conclusion which can be grouped together
using logical operators. The premise is used to check the current state
and if satisfied, results in a modification of the current state through
activation of the statements declared in the conclusion. Some production
rule languages provide facilities for conditional probabilities which permit
rules to conclude results that only have a certain probability of being
correct given that the premise has been satisfied. (see Buchanan and

Shortliffe[1984] for a description of reasoning about uncertainty in

26

MYCIN).

First-order logic, or more specifically, Horn clauses can be used in
defining knowledge in either a declarative or procedural sense (See
Futo[1985], Bullers & Schultz[1986], Cleary et al.[1985] and
Adelsberger[1984]). For example, B :- Al,..,An. can be interpreted as
a logical statement that says that B is true if Al to An are true.
Alternatively, in the procedural sense, the statement can be interpreted
as being that the problem of evaluating B is reduced to the sub-problem
of evaluating Al to An. A more detailed evaluation of first-order
predicate logic is reserved for a later section in a discussion of the

facilities provided by Prolog.

2.Inference & control strategies: The inference engine is the part of the
expert system that embodies the strategies that are used to draw inferences
from the facts and rules declared in the database and knowledge-base, and
that controls the reasoning process. The inference engine also acts as an
interface between the end-user and the stored knowledge, effectively

conducting a consultation whilst drawing on the knowledge to provide solutions.

At the simplest level, the inference strategies used by expert systems
simply consists of statements that say that if the premise of a rule is true,
that the conclusions can then be accepted. Modification of this principle also
exist such that a basic statement of the type IF A THEN B can also be taken
as meaning that if A is NOT true then that B cannot also be true. Another
possibility is that if the value of B can be evaluated (but not that of A), that

we can then derive the value of A without the need to explicitly code this fact

27

using another rule. As mentioned in the section on rules, probabilities can also
be associated with statements that reflect the uncertainty of the validity of

given information.

At the control level, the inference engine must organise the steps taken

in solving a problem. The inference engine is also responsible for the following

tasks:
1. Selecting a position from which the reasoning process can begin.
2. Resolving conflicts in logic between rules.
3. Choosing, a rule from a set of rules that can all be evaluated.
4. Interrupting the inference process in order to obtain missing

information from the operator.

The two most common control strategies are forward chaining and
backward chaining, the use of which will depend on the problem domain.
Furthermore, forward and backward chaining can either be carried out using

a depth-first or breadth-first searching strategy.

A forward chaining or data-driven strategy is usually employed when
the desired goal is not initially known. This is typically the case in monitoring
systems in which there is no goal to commence the inference from. In forward
chaining, the start conditions consist of the current entries in the database and
the inference proceeds by identifying those rules that have premises that can
be satisfied. The action part of the statements are executed resulting in further

facts being added to the database. The process is then repeated until either a

28

desired state is reached or until no remaining premises can be satisfied. The
difficulty with the forward chaining strategy is that at each step in the cycle,
a choice has to be made between a number of rules that have premises that are
satisfied. As the number of such rules increases, a noticeable deterioration in
performance is felt consequent to the increased complexity of the selection

process.

A backward chaining or goal-directed strategy is used in circumstances
where the desired end goal is known. The goal is evaluated by searching for
a rule (or rules) tha_t has an action that satisfies the premise of the goal. This
rule is then defined as a sub-goal and the process repeated until the premise
of the original goal is satisfied or until no more sub-goals can be identified. If
the search strategy is ‘'irrevocable' and the goal is unresolved, the inference
engine can proceed no further (see Shannon et al.[1985]). Alternative paths
through the solution space can only be attempted by re-commencing the
inference process. If the search strategy is 'tentative', the inference engine
can backtrack to an earlier sub~goal, select a new rule, and again endeavour

to find a solution.

In Depth-first searching, priority is given to producing sub-goals.
Hence, alternative paths through the solution space are only considered once
a particular path reaches a dead-end. If the expert system interrogates the
operator for input, the feeling given is one of a search which results in

questions of ever-greater detail.

In breadth-first searching using a backward chaining inference strategy,

consideration is given first to alternative sub-goals. In other words, all paths

29

that could lead to the solution are investigated simultaneously. The efficiency
of breadth-first searching is dependent on how quickly a rule premise can be
found that satisfies the goal. Breadth-first searching tends to be unpopular in
systems that require substantial user interaction consequent to the operator

feeling uneasy about having to answer questions that seem to be ordered at

random .
DEPTH-FRST BREADTH-+/RST
DEPTH.A BACKWARD CHAINING pedvytndt
GOALS O - >
GOALS
DEP7H-FRST BREADTH-F/RST
DEPTHE FORWARD CHAINING SEARCH

FIGURE3 INFERENCEENGINE SEARCHSTRATEGES

30

2.3.2 What is the purpose of an expert system?

The principle underlining the expert system approach, is to enable the
representation of the knowledge of one or more experts within a specific
domain. For example, in Fox and Smith[1984] the pertinent expert knowledge
is concerned with the scheduling of jobs within a machine shop. This
knowledge-base is searched to provide answers to quesﬁons such as which
jobs should be given priority if a goal of ensuring that contractual agreements

on delivery dates has to be met.

In many cases, the knowledge represented in the developed system
relates to some complicated decision-making process but cannot be described
as an expert's knowledge. Consequently, expert systems can be used in a
method akin to conventional programming in situations where the inference
strategy and incremental development process of a knowledge-base are deemed

advantageous.

Expert system shells often attempt to provide facilities that in some ways
resemble the approach taken by human experts. For example, experts often
need to consult others in solving problems and consequently the expert system
may incorporate facilities for interrogating the operator. The user can typically
skip questions or associate an uncertainty factor with an answer. The expert
system can usually explain a line of reasoning and justify conclusions, though
the facility is limited in that the output obtained is typically a trace of the

inference through the knowledge-base.

31

The most common use of expert systems is as advisory systems in which
some form of interactive consultation takes place. Two of the best known
examples are MYCIN (Shortliffe[1976] and Buchanan & Shortliffe[1984]) for
medical diagnosis and PROSPECTOR (Duda et al.[1979]) for the analysis of
geological data. Another common use for expert systems is for training and
educational purposes, either through modification of an existing ES (Buchanan
& Shortliffe[1984]), or by using an approach that 'cusfomises‘ the teaching
session according to past attainment. Research is also being carried out into the
use of expert systems as integral modules in software for on-line decision
making for manufacturing process control (Brown et al.[1985]) and as

intelligent front-ends (Muetzelfeldt et al.[1985]).
2.3.3 Limitations of expert systems.

Many researchers (and particularly those not working in AI) have cast
doubt on the effectiveness of the expert system approach whereas others have
stopped just short of heralding its discovery as the dawn to a new era. The
main argument put forward by the sceptics is that the ES approach is to
produce a system which externally manifests the behaviour of the relevant
expert but that internally, uses an unnatural format for the representation of
the experts knowledge and uses an inference strategy that is a crude
simplification of the way the expert thinks. The knowledge of an expert in a
diagnostic domain is believed to consist of both a mental model of the problem
and rules of thumb which are used to guide the diagnostics process. This
mental model is flexible in that it is adaptable to similar problem domains by
permitting analogical reasoning. Alty[1985] points to the deficiency of using

IF-THEN type rules (production rules) by exemplifying the difficulties in

32

transferring knowledge represented in this format to other applications.
Production rules are an ideal representation for the rules of thumb used by the
expert, but otherwise necessitate a considerable amount of domain knowledge
to be discarded at the expense of the addition of extraneous computational

knowledge. .

The use of production rules leads to a tendeﬁcy to expand the
knowledge-base incrementally as rules are elicited from the expert. This can
lead to an scattering of rules which inevitably results in a system which is
either incomplete, ambiguous or inconsistent. Poor performance of the ES
results from difficulties in maintaining order in the knowledge-base which would
otherwise benefit the relatively simplistic search and pattern matching

procedures of the inference engine (Muller[1986]).

Maintenance of a knowledge-base is fraught with difficulties resulting
from an inability to manually trace through the logic of the system consequent
to the scattering of the production rules and the lack of an explicit definition
of the expert systems inference strategy. Most expert systems consequently
incorporate an 'explanation' facility that lists the rules that are activated at

each step in the inference process.

Most expert systems are poor at incorporating algorithmic approaches to
supplement the rule-based reasoning and many have no facilities for executing

procedural code.

Expert systems handle decision making as an instantaneous process,

whereas time may be a critical factor. An ES controlling a production line using

33

on-line data may for example have to carry out forward projections in reaching
a decision. The incorporation of time into the inference mechanism blurs the

distinction between expert systems and simulation models. (Miller[1986])

2.4 A1 AND SIMULATION MODELLING - MUTUAL SUPPORT.

Previous sections have identified the general characteristics of both
simulation and expert systems, as well as the shortcomings and benefits of
each approach. The similarities between simulation and expert systems are now
considered with emphasis being placed on the possibility of adapting an expert
system to carry out the role of a simulation model (and vice-versa). The

possible ways of integrating simulation and Al techniques are then considered.
2.4.1 Expert systems and simulation - Is there a difference?

Operational similarities between simulation and expert systems, have been
noted by several writers. As pointed out by Shaw and Gaines [1986], an expert
system can be considered as the simulation of the external manifestations of the
knowledge processes of a person. A more subtle relationship also exists in that
simulation and expert systems are both aids to individuals in coping with the
real world. Simulation does not provide direct advice but, through the use of
a model, permits experiments to be carried out giving the user a greater
understanding of the system being modelled and permitting the investigation of
ideas before implementation in the real world. Similarly, expert systems can be
seen, through advice giving and explanation facilities, as providing a means of

gaining an increased appreciation of the criteria applied in reaching a decision.

34

Advice provided by the ES may then be applied in the real world.

Similarities between simulation and expert systems have also been
identified at a methodological level. For instance, Doukidis[1987] argues that
a "...three-phase simulation system can be seen as a production system", his
reasoning being that the three essential components are present: Data memory,
production model, and inference engine. In discrete eveﬁt simulation, model
execution is effected through a three-phase executive which performs a
time-advance in the A phase, executes all current time-dependent events in the
B phase and examines and executes where appropriate all state-dependent
events in the C phase (Tocher[1962]). The executive can be compared to a
forward chaining inference engine, which, at each time-advance, scans the
state-dependent C events (the production rules) in search of routines that can
be activated. The definition of the model logic, separate from the executive
controlling model execution, gives three-phase simulation some of the
characteristics of a declarative language. A diagrammatic representation of the

three-phase approach is shown in figure 4.

Though the general structure of a discrete event simulation model and an
expert system are quite clearly similar, the strategies applied during the
inference processes are significantly different. Discrete event simulation is
primarily concerned with time handling and the representation of the activities
that constitute the model. Little consideration is given to the representation of
decision making. Conversely, expert systems rely on a detailed description of
decision rules with no consideration being given to the effects of time. The
expert system inference strategy is a general one that permits the application

of expert systems to a variety of problems. Hence, a simulation model can be

35

specified using a declarative expert system approach in which the time handling
capability is defined in terms of production rules. Although feasible, expert
system production rules are not an ideal medium for the representation of
simulation entities and activities and the approach is consequently of no
significant benefit. An alternative approach is to adapt the strategy used by
the inference engine to represent discrete advances in time by maintaining a
diary of scheduled events. The necessary alterations are significant and
prevent thereafter the use of the inference engine in its traditional role. The
approach has been investigated by Robertson[1986] and is described in more

detail in section 2.5.4.

INITIALISATION

A PHASE

B PHASE

C PHASE

NO
FINISHED

YES

FINALISATION

FIGURE 4: THREE PHASE SIMULATION

36

2.4.2 Simulation and expert systems - Complementary techniques.

Many applications have been developed that in some way make use of both
a simulation model and an expert system. Such applications have evolved from
a realisation that the strengths of simulation complement the weaknesses of
expert systems and vice-versa. The potential for interaction between both
technologies has been noted by many writers (O'Keefe et -al. [1986], Helman &
Bahuguna[1986], Flitman & Hurrion[1987], Hill & Roberts[1987], and Shannon
et al.[1985]).

Researchers including Fox & Smith[1984] and Brown et al.[1985] are
investigating the use of expert systems as core elements in decision support
systems. In such systems, simulation can be used to the benefit of AI, by
using a model for the generation of test data which would normally be accessible
to the DSS. Thus simulation is being used to reduce the effect of one of the
shortcomings of ES methodologies, namely validation of the knowledge-base.
Brown et al. use the ES for the detection of tool wear and fixture faults in a
hypothetical drilling process. The viability of the approach is being
investigated using simulation modelling in re-creating the operational
environment. Stewart and Surgenor[1987] follow a similar principle by using
a simulation model for the validation of a prototype ES for fault diagnosis in a
production plant. The simulation model and expert system are implemented on
separate microcomputers with simulation output being transmitted for diagnosis
to the expert system. Consequently, the ES can be validated using a wide
range of realistic data reflecting potentially rare occurrences such as multiple

simultaneous faults.

37

Expert systems can also be of benefit to simulation modellers. One of the
shortcomings of simulation mentioned in section 2.2.4 is the necessity for
considerable expertise in producing the model and analysing the generated
output. Advisory expert systems that provide support to the user by
embodying the knowledge of experienced simulation modellers are currently
being considered by several researchers. Doukidis and Paul [1991] describe
SIPDES, a system which helps users to discover the loéation of compilation
errors occurring within their simulation program and proposes possible
solutions. Similarly, the experimentation and analysis phases of simulation
modelling are being supported by automatic systems such as that embodied in
the 'model execution' and 'model analysis' modules of Simulation Craft (Sathi
et al.[1986]). The model execution expert is primarily responsible for
determining the necessary experiments and the corresponding number of runs
that are required. The model analysis expert is claimed to evaluate experiments,
generate alternatives, and provide explanation facilities using statistical

routines.

Such mutual support activities are clearly beneficial and do not
necessitate any direct interaction between expert system and simulation model
other than for the sharing of data. Another area for mutual co-operation is in
the marriage of ES and simulation techniques in providing a simulation
environment that permits the modelling of intelligent behaviour, the handling
of events over time, and the representation of algorithmic components of the

model.

For instance, in the modelling of a manufacturing facility, the

decision-making activities of employees, whether machine operators or top-level

38

management, can be considered as a particular form of expertise. This expertise
may be represented in the form of rules which may be clearly-stated
instructions, rules of plausible reasoning, or rules of thumb (heuristics). The
knowledge of employees is further supplemented by "facts" which may have

been acquired through job experience and data which may be publicly available.

The basic functions and performance of machines induding durations of
operations and the basic processing sequences of product are well described by
the conventional data structures and are well handled in conventional
procedural languages usually used in simulation. Any material requirements
planning functions depending on orders outstanding and current cost data can

also be well accommodated within a procedural framework.

In contrast, decision tasks of any significant complexity may be difficult
to integrate with the discrete event model. This is because decision tasks are
often broken down into a significant number of related rules which are difficult
to define in the sequential order required by a procedural language. In forcing
a procedural context, rules have to be repeated within the code and the
associated between such rules formalised through the use of logical operators.
In contrast, the declarative programming approach as used in expert systems,
permits the formalisation of decision tasks through the definition of component
rules but without any requirement for order and without the need to link the
rules through logical operators. Instead, the expert system inference engine
embodies an inference strategy which is used to scan the defined rules in an

attempt to satisfy the conditional statements.

39

Various methods have been considered in combining the functionality of
ESs and simulation. Some researchers, and often those with a strong
background in artificial intelligence have opted for using AI languages, usually
LISP or PROLOG. In the United States, LISP is the main language used in Al
and so there is a natural inclination towards its use in this context. Most LISP
based simulation environments operate according to the object oriented
programming paradigm. In Europe and Japan, governmenf sponsored research
has given the PROLOG approach the leading edge. In some cases, modified
versions of standard PROLOG have been used that are tailored to simulation.
Another approach, though usually discussed rather than attempted, is to
interface a simulation model with an expert system. The difficulties with this
approach consist of implementing an adequate form of communication between
functionally incompatible software. An approach which has been used in
overcoming this problem is to implement the simulation model and expert system
on separate computers and achieve data sharing through a generalised

communication protocol (see section 2.5.5).

2.5 WIDER ASPECTS OF Al SUPPORT OF SIMULATION MODELLING.

In recent years, much research has been carried out on improving the
performance of simulation models by confronting the problems highlighted in
section 2.2.4. Such research, coupled with improvements in hardware and
falling prices in the area of personal computers and workstations has resulted
in the possibility of applying simulation modelling techniques to a far wider

range of applications.

40

The level of capital investment necessary in undertaking a simulation
study is now less of an issue, particularly in the context of microcomputer
based systems where the presence of easily accessible, colour graphics has
promoted the growth of windowing environments and iconic displays. The
overall effect has been that researchers have focused their interest on
developing tools that enable the relatively inexperienced simulation modeller to
define and develop models, devise experiments and theﬁ analyse simulation
output without the need to call on the resources of more experienced

practitioners.
2.5.1 Simulation program generators.

Researchers have invested considerable time and effort in the
development of simulation program generators with a view to reducing the
necessary time span in the model creation stage of the simulation modelling
life-cycle (see Clementson[1982]). A second consideration has been to attempt
to devise flexible and user-friendly systems that guide the inexperienced user

through a model specification process.

Sathi et al.[1986] place most emphasis on the second consideration and
use an expert system that encapsulates the knowledge of simulation experts
for an interactive model specification session based on the use of graphics for
the description of model components. The ES is also responsible for consistency
and completeness checks. Shannon[1986] describes a hypothetical system which
is similarly based on the use of icons for model specification and templates for

the definition of the actions relating to components.

41

The use of graphical depictions as a means of formalising the behaviour
of a system is a long standing approach to modelling (See Clementson[1978],
Matthewson[1975], Gordon[1981], and Zeigler[1976]). Such an approach has
the benefit of providing a simple vehicle for discussion between client and
analyst and. permits the detection of potential logic errors. The main limitation
associated with graphical depictions is the difficulty in representing complex
real-world systems in which the paths between queueé and activities are
numerous and often ambiguous. Furthermore, graphical representations omit
all references to decision making including conditional branching and batch
processing of queue entities. Such problems restrict the value of using
graphical model representations as input to program generators as only the

simplest of modelling tasks can be dealt with.

A few researchers including Doukidis[1987] take a different approach and
rely on a tentative method based on techniques derived from Natural Language
Understanding Systems (NLUS). The client and analyst are expected to go
through the consultation session together, the end product being a logic model

which can in turn be used as input to a program generator.

In Overstreet & Nance[1985] and Balci & Nance[1987], the prototype of
a discrete-event Simulation Model Development Environment (SMDE) is
described. SMDE includes a model specification and documentation generator
as well as a model analyser. The model generator is used in creating a formal
model specification which is domain independent and can later be converted into
executable code. The advantage with such an approach is that errors detected
in the model specification are far easier to correct that errors in source code

because of a lack of any stringent syntactic and semantic elements.

42

Furthermore, the model specification is defined in terms of a simple language
referred to as the Conditional Specification (CS). According to Nance and
Overstreet, CS strikes a balance between 'descriptive generality and an
instructive formalism' which permits the analyst to further develop and test

the model before generating the source code.

2.5.2 Model verification and validation.

The current trend in creating development environments has naturally led
to research into ways of automating the process of model verification and

validation.

Verification is the process of debugging the simulation code and checking
that the model operates as intended (See Koskossidis & Davies[1987]). The
Simulation Model Development Environment (SMDE) as described in the previous
section includes a model analyzer that diagnoses the model specification created
by the model generator. The intention is to help identify mistakes, in particular
conceptual and descriptive errors, to suggest alternative model configurations
that may prove to be more efficient, and to provide general guidance during the
modelling effort. The approach taken in SIMULATION CRAFT (Sathi et
al.[1986]) is similar though this time, the embedded model! building ES is
responsible for consistency and completeness checks during the graphical model
input process. Other research projects have also used the expert system
approach to model verification. SIPDES (Doukidis[1987]) and TIM (Hill &
Roberts[1987]) rely on an interactive session with the user in identifying the

potential source of compilation and run-time errors.

43

The generation of execution errors during the model building and
experimentation processes are a considerable help to model verification and
tend to form the basis for the diagnosis processes in simulation support
software. In contrast, the validation of a model is a complex process,
necessitating from the analyst considerable skill and experience. The
formalisation of such knowledge in the development of an expert system is
rendered impracticable by the problem-dependent natufe of the validation

process (Van Horn[1971]).

Validation consists of ensuring that a model is a realistic representation
of the real world and that results obtained and conclusions drawn from
experiments can safely be applied to the real world. According to Van
Horn[1971], wvalidation is "the process of building an acceptable level of
confidence that an inference about a simulated process is a correct or valid
inference for the actual process.". Van Horn also claims that a simulation model
can seldom, if ever, be proved to be a "true" representation of the real
process. The problem of validating a model is compounded by concealed and
questionable assumptions that are embedded in the code and result in a
tendency to treat the model as a 'black box' that transforms inputs into

outputs.

Consequent to n_lodel complexities, the validation process only partially
relies on an in-depth perusal of the internal model representations. Reliance
is instead placed on the use of historical data in comparing model output with
observations from the real world. Some researchers have taken the view that
involvement of the client in the modelling and testing stages of the simulation

life cycle is of considerable help to the validation process. Talavage[1978]

44

describes the development of one such model for which only a small amount of
historical data was available. Confidence in the validity of the model was
nevertheless attained by involving the client in the analysis of the models

behaviour compared to that observed in the real world.

Improvements in graphics and the increased used of iconic displays has
led to the growth of Visual Interactive Simulation (VIS)- modelling in which
changes in the state of the model through time are represented in pictorial form
during the simulation runs (Crookes & ‘Valentine[1982], Hurrion[1978],
Vujosevic[1990]). The use of animated displays eases the problem of client
involvement in the model validation process and improves management confidence

in the modelling analogy.

Simulation models do not embody the true complexities of human decision
making with the consequent need for simplifications that complicate the
validation process. VIS can be seen to represent some response to this problem
by permitting the user to intervene in response to observed model behaviour,
alter characteristics of the model, and then continue the run with the modified
model. By appropriate interventions, decision mechanisms of arbitrary
complexity may be achieved. However, this achievement is at the cost of not
being able to secure the benefits of replication and statistical analysis of

performance.
2.5.3 Intelligent front-ends.

The complexity of certain software solutions, which includes simulation

environments, has led to research into ways of using expert systems for ease

45

of communication and information presentation. A technically complex system
is wasted unless the user can have confidence in its operations. Such
confidence can only be attained if the operator finds the system comprehensible

and usable.

An Intelligent Front-End (IFE) is an interface that sits between the
software package and the operator and shields the user from complex application
specific operational tasks. Through consultation with the user, the IFE

generates the necessary instructions to operate the program.

In the context of comprehensive and unavoidably complex simulation
environments, Intelligent front-ends provide the potential of maximising on the
productive use of the model. The flexible nature of expert systems permits the
customisation of the environment, and in particular the dialogue management,

to suit the requirements and level of expertise of individual users.

Some researchers have extended the role of the intelligent front-end to
encapsulate both the generation of simulation code and the analysis of simulation
results. Such facilities go beyond the idea of an IFE as an interface for dialogue
handling and make of the front-end an integrated part of the simulation
package. Simulation Craft (Sathi et al.[1986]) is probably the most advanced
system so far produced and is primarily intended for use in manufacturing
domains. Simulation Craft attempts somewhat ambitiously to automate all stages
of the modelling process and consequently has three embedded expert systems
for model building, model execution, and model analysis respectively. KIPS
(Knowledge based Interface to Process Simulation) is a conceptually similar

system, implemented on a LISP workstation that acts as a front-end to a

46

mainframe simulation program used in petrochemical process plants. The KIPS
prototype is principally a program generator based on the use of a graphical
flowsheet editor for input and a so far partially completed knowledge-base for

user interaction and guidance (Fjellheim[1985]).

Other researchers have concentrated their efforts on two aspects of
intelligent front-end design: (1) The provision of featufes such as natural
language dialogue handling. (2) The formalisation and integration of some of
the features of the simulation package into a knowledge-base such that some of
the decision making tasks can be taken by the IFE rather than by the user.
ECO is an example of such a system and is essentially an intelligent front-end
designed to help ecologists construct and experiment with simulation models of
ecological systems. The ECO dialogue handler is designed to accept both
prompted input and unprompted natural language input though problems with
the latter are identified by Muetzelfeldt et al.[1985]. The author also highlights
the difficulties in generating models of relatively simple systems that require
list or tree-like data structures. The generated code, in this case FORTRAN,

needs to be able to iterate over n-dimensional arrays and handle pointer types.
2.5.4 AI languages & tools in simulation.

The similarities between techniques used in simulation modelling and
expert systems have been highlighted by several authors including
O'Keefe[1986] and Doukidis[1987]. The commonalties are sufficiently great to
have led to attempts, using a variety of techniques, to develop simulation
models entirely within an AI environment and doing away with the classical

simulation methods. Such systems, typically referred to by those working in

47

Al as 'Knowledge Based Simulation' (KBS) models, are implemented without the
direct use of sequential processing techniques. Models developed using the KBS
approach differ significantly from models developed using conventional methods.
The principal difference lies in the use of rules in representing knowledge.
Such knowledge can be classified into two broad categories: heuristics that
govern decision making and knowledge that acts as a representation of physical
processes and their interplay. KBS models typically prévide no facility for
separately defining these forms of knowledge. Nevertheless, the
control/inference component of the model is represented as a separate and
distinct entity from the data component permitting either to be altered

independently from the other (Lavery[1986]).

Other peculiarities of Knowledge Based Systems are specific to given
modelling approaches. For instance, some researchers have chosen to represent
the time-flow mechanism through alteration of the languages inference strategy
whilst others have added rules to the knowledge-base to achieve the same ends.
Another approach adopted by some researchers, known as goal directed
simulation, is based on taking a different view of model representation (Prakash
and Shannon[1989]). Use is made of the goal directed inference strategy
common in most expert systems in guiding the simulation process. Model process
cycles are then represented as goals, the achievement of which necessitate the
achievement of sub-goals. For example, in the case of the port model (Chapter
five), one could represent a ship crane as having a top level goal of depositing
a container on the ship deck. A loaded ship crane and the presence of a ship
with spare capacity in the berth are necessary sub-goals. In turn, a loaded
ship crane will have necessitated an idle crane, a driver, and an export

container. Thus, each object in the system can be specified in terms of series

48

of goals and related sub-goals rather than say, events and activities as in

discrete event simulation.

TOP

LEVEL CRANE DEPOSITS CONTAINER ON SHIP

GOAL
SUB-GOAL CRANE LIFTS SHIP ARRIVES
LEVEL 1 CONTAINER AT BERTH

\
N

SUB-GOAL RANE BECOMES : IMV ARRIVES WITH
LEVEL 2 IDLE EXPORT CONTAINER
SUB-GOAL
LEVEL 3

FIGURE 5 SH/P CPANE GOAL

The example in figure 5 shows that in goal driven simulation, the top
level goal is never resolved. The inference process consists of a circular
reference which drives the simulation until a time or status activated rule

finally interrupts model execution.

49

There are three common approaches to using AI in developing and
implementing simulation models: Expert Systems shells which provide a high
level, preprogrammed infrastructure consisting of an inference engine and
language construct for the definition of the knowledge-base. The second method
consists of using AI knowledge engineering tools such as Knowledge Craft
(Sathi et a1.[1986]), ART (McFall & Klahr[19861), and KEE (Langen[1985] , Jain
and Osterfeld[1989]) which provide the necessary code for the representation
of knowledge and the implementation of an inference and control process. Al
tools provide a greater degree of flexibility as compared to ES shells but at the
expense of greater complexity. The third technique makes use of Al languages
the most common of which are LISP and PROLOG. Al languages are designed to
handle symbolic processing and have built-in features that lend themselves to
the development of knowledge-based systems. AI languages are only suitable
for use by programmers and in this respect are, in terms of complexity, on a

par with conventional high-level languages such as PASCAL and FORTRAN.

1.Using ES shells in developing simulation models: Some attempts have been
made at using or adapting expert systems shells in developing simulation
models. The limitations of such an approach are numerous and are centered
around the generality of the inference processes coupled with very simplistic
and non adaptable knowledge representation techniques. ES Shells are designed
solely for the implementation of expert systems and do not lend themselves

easily to any other type of application.

Moser[1986] describes the use of EXSYS, an expert system shell, in the

development of 'business simulation' models. EXSYS was specifically developed

50

with a view to simulation which it is claimed, permitted many of the inherent
limitations of the approach to be overcome. Moser's approach does however have
a number of shortcomings. The core simulation model consists of a simple
FORTRAN program used to solve series of simultaneous equations and is in fact
an integral part of the expert system which is itself coded in FORTRAN. The
role of the knowledge-base is not one of model representation but rather that
of describing rules that establish the value of the model resﬁlts. Hence, the use
of the ES is of no direct consequence to the accuracy and completeness of the

model.

Robertson[1986] also adopts a rule-based approach in developing an
expert simulation environment. As with Moser, the expert system was
specifically developed with a view to simulation. Consequently, the inference
engine has a time-keeping facility which, at each time step, scans the rules
using a forward chaining strategy. The time advances are achieved by keeping
a record of scheduled events and advancing the system clock to the next
chronological entry. Model representation is achieved through the use of
'intelligent agents'. Intelligent agents are associated with sets of rules that
define their behaviour and an 'agenda' that stipulates the desired goal. Once
the goal is achieved, the intelligent agent is 'destroyed'. A goal specified in
the agenda can be defined in terms of sub-goals, thus permitting the
representation of a sequence of events. Such a sequence is essentially identical
to the definition of a cycle of activities in three-phase discrete event
simulation. If one further considers the intelligent agents as model entities, the
distinction between Roberton's approach and that of Tocher's (Tocher[1962])
three-phase approach becomes blurred, justifying the argument put forward in

section 2.4.1 that forward chaining production rule systems are functionally

51

very similar to the executive in three-phase models.

2.LISP based system and Object Oriented Programming: The majority of
simulation environments developed in LISP utilise the Object Oriented modelling
approach and are implemented on workstations which provide the benefit of
powerful graphics facilities for the use of iconics and animated displays. Few
environments are coded directly in LISP but rather make‘ use of frame-based
knowledge engineering tools which lend themselves particularly well to the
object oriented paradigm and provide powerful tools for data input and
'on-screen' model specification. Indeed, some knowledge engineering tools are
so appropriate to Object Oriented Programming (OOP) approach that simulation
environment have been developed in a fraction of the time that would normally
be required. For instance, ART-ROSS (McFall and Klahr{1986]), a clone of the
ROSS environment, (McArthur et al.[1986]) was developed using a commercial
tool known as ART in under two days and, it is claimed, is an improvement on

the original.

Object-Oriented programming is a loose term used to describe a method
of knowledge representation based on the description of objects and their
interrelationships. The technique originates from the AI field where it is used
in developing expert systems, though a similar construct was used in designing
the simulation language, SIMULA, in the 1960's (Birtwistle et al.[1979]). Being
based on the Expert System(ES) paradigm, object-oriented simulation provides

an effective environment for the specification of domain knowledge.

In constructing an object-oriented simulation, the user first creates a set

of objects that broadly correspond to real-world objects. The characteristics of

52

these objects are then defined; the inputs they respond to, and the actions
they carry out in response. The interplay between objects is represented by
the passing of messages. In other words, the action carried out by one object
may lead to a message being transmitted to another object specifying that an

action should be carried out.

Another important aspect of object-oriented simulatibn is the concept of
'inheritance' which is derived from the semantic networks knowledge
representation scheme used in many expert systems. Inheritance is useful in
creating hierarchies of objects, each of which can inherit characteristics from

a higher ranking set (Figure 6).

The applicability of the object-oriented paradigm very much depends on
the target problem for which a model is to be developed. The OOP approach to
modelling is dependent on the entities in the model having a sufficiently close
relationship as to be able to establish a hierarchy in which inheritance of
characteristics can play a part. The use of inheritance is a key factor in
reducing the complexity of the model by limiting the duplication of facts and
rules about objects. It is also desirable for the problem domain to be of a type
that can be naturally broken down into constituent 'objects' or 'actors' and in
which communication plays a significant role. These characteristics are not vital
to the model development process, but simplify the overall task by allowing a
more natural visualisation of the real world system, that the model is meant to
represent. Such considerations are behind the suitability of the object-oriented
approach to the simulation of tactical warfare problems to which the ROSS
(Klahr[1985]), BLOBS (Middleton and Zanconato[1985]) and SLICE (Gosling and

Okseniuk({1986]) languages specifically address themselves.

53

CRANES

GANTRY CRANES HOIST CRANES
STACK GANTRY
CRANES SHIP CRANES
SINGLE CONTAINER DOUBLE CONTAINER
GANTRY CRANES GANTRY CRANES_

FIGURE 6 INHERITANCE TREE FOR CRANES

In military applications, aircrafts, tanks etc. are effectively described
using inheritance. Furthermore, the use of message passing as a form of
communication between objects in a tactical warfare problem is a natural means
of representing the real-world interplay. An aircraft wishing to land at an
airfield can for example be described as sending a message to the control tower
requesting permission. The landing activity will then commence, conditional on

the airstrip object being available.

54

Even in the case of applications that would seem suitable targets for an
object oriented approach there can be problems such as those identified by
McArthur et al.[1986]. Of particular concern is the dependence on message
passing for communication and activation of events. Consider the example of two
enemy aircraft which are about to go into battle. For one aircraft to recognise
and attack the other aircraft, messages need to be transmifted between the two
which obviously contradicts the real-world rules of engagement. Another
common problem results from the need to represent messages in terms of a
limited number of variable values. In most cases, and particularly in military
applications, real-world messages are far more complex than can effectively be

modelled.

As with expert systems, models developed using the OOP approach are
based on a relatively unstructured search algorithm. Furthermore, the desire
to allow the user to develop the model incrementally by defining the
characteristics of objects as and when they are identified also leads to problems
in maintaining a structure. Consequent difficulties also arise because of the
problem of ensuring that the defined model is complete and is not ambiguous or
inconsistent. Lack of a formal structure also tends to mean that execution is
slow for large models which is a problem aggravated by the interpretive nature
of the Lisp environment which, as mentioned, tends to be the language used in
developing and implementing object-oriented models. This problem was
highlighted during the development of I-NET (Reddy et al.[1983]), a corporate
distribution and inventory system, using Simulation Craft (Sathi et al.[1986]).
The loss in speed is nevertheless partially offset by the advantages of being

able to test the effect of changes in the code without having to compile and

55

being able to trace and debug the model interactively.

The use of inheritance can be advantageous in terms of code size by
reducing the repetition of characteristics of objects. However, problems can
arise when values are inherited unexpectedly. Hence, the characteristics of
each member of the object hierarchy has to be carefully defined with particular
attention to the possible values that may be inherited ffom parent classes.
Similar care is needed in OOP languages in which rules can be inherited. A set
of rules may be spread across a number of object classes making it difficult to
trace potential actions and increasing the risk of rules being mistakenly
inherited in satisfying a goal. Such problems aggravate the difficulties in
specifying the characteristics of the components of the model and particularly
in cases where the concept of objects and messages do not seem to be a natural
structure for the formalisation process. An investigation of Object Oriented
tools and techniques was made as part of the research and is reported in

appendix F.

3.PROLOG based systems: PROLOG (Clocksin and Mellish[1984]) is a high-level
declarative programming language based on symbolic logic (See section 2.3.1).
Facts about objects involved in a problem and rules affecting these objects, are
declared and then used in finding a solution without the need to explicitly

define a list of instructions.

Prolog's ability at handling rules and representing logical relationships
between entities makes it a potential candidate for the implementation of
simulation programs. In developing a three-phase discrete event model, rules

and facts have to be defined that describe events, entities, and their

56

relationships. Additional rules are then required to handle time advances and
storing future scheduled events. Researchers have shown that Prolog can
successfully be used in developing simulation models, though the generality of
the inference process (and in fact the language as a whole) imposes limitations

that remove much of the value of the approach.

Futo, recognising the benefits of using the Prblog approach, has
attempted to develop a bespoke version of the language which incorporates
within the inference strategy a capacity for combined discrete and continuous
time handling. Thfe product of Futo's research, TS-Prolog, uses message
passing techniques rather than shared variables for communication between
processes. Furthermore, Prolog's backward chaining inference strategy is put
to full use by permitting backtracking through time in order to investigate
alternative paths through the solution space. Such a goal directed search,
which in the case of TS-Prolog, relies on constant activity durations has been
criticised by researchers such as O'Keefe and Roach[1987] who argue that the

goal of experimentations tends to be unknown or too complex to capture.

Cleary (Cleary et al.[1985]) takes a different approach to Futo in
developing T-CP, a modified version of Concurrent Prolog. T-CP attempts to
use concurrency in solving multiple goals (asynchronous processes)
simultaneously. Each 'process' has its own current state with the T-CP
interpreter maintaining a global simulation time. T-CP rules incorporate a
'‘delay’ clause in the form of an arithmetic expression that prevent the rules
from reactivating until a point 'delay' units after the last activation of the rule.
Cleary has developed, and gives examples of simple models developed using

T-CP. These can serve to highlight the drawbacks of using Prolog for

57

simulation modelling.

Prolog does not lend itself particularly well to the development of
substantial simulation programs. Clocksin and Mellish[1984], (amongst others)
argue that Prolog programs are easily understood by the novice. "...Novice
programmers find that Prolog programs seem to be more comprehensive than
equivalent programs in conventional languages.”. The stafed argument is that
Prolog code consists uniquely of logical statements describing a problem without
the addition of complex and confusing algorithms that specify how the problem
is to be solved. Other researchers, notably Muller[1986], argue against this by
claiming that declarative programs have to be executed in one way or another
giving Prolog a procedural context. "Knowledge of the procedural semantics of
Prolog is absolutely necessary for writing correct and efficient programs".
Indeed, it is this lack of any explicit definition of what Prolog is going to do
with the defined knowledge that makes the creation of substantive simulation

model a complex and error prone process.

Prolog, was designed for automatic translation but later used for other
natural language applications. Prolog's syntax is based on the notation of
predicate logic and uses computational techniques geared towards query
handling. Prolog commands are not in an ideal form for the specification of a
model, particularly in_ cases where mathematical operations form a substantial
computational overhead. Prolog is being used in an increasing number of AI
applications but its design is still geared to closed systems in which inferences
are made from defined knowledge with little communication with either the user
or the underlying computer system. The consequent support for input/output

operations, graphics and external code invocation are limited. Such restrictions

58

reduce Prolog's suitability for simulation modelling given the increasing use of
Visual Interactive Simulation, iconic displays, customised device drivers (e.g

for mouse control), and mixed language programming.

Another limitation of the Prolog paradigm that applies to the declarative
programming approach in general, is speed of execution. Prolog replaces the
customised algorithms used in conventional programmiﬁg languages by a
generalised backward chaining inference strategy that seeks to draw inferences
and confirm queries using stored information. Prolog therefore spends much
time searching for solutions in what may be a substantial unstructured search
space. The theoretical simplicity of the declarative programming style is
consequently offset by slow execution and lack of control over the inference

process. (Shannon et al.[1985])
2.5.5 Interfacing expert systems and simulation models.

Figure 7, identifies the various ways of unifying expert systems and

simulation.

Much of the current research in program generators (section 2.5.1),
model verification and validation (section 2.5.2), and intelligent front-ends
(section 2.5.3) involves some form of cooperative existence between simulation

model and expert system.

Another form of expert system/simulation collaboration, in which a
conventional model and ES communicate during model execution, necessitates

a far greater level of synergy. The remainder of this section is dedicated to

59

a discussion on such systems.

EXPERT SYSTEM EMBEDDED EXPERT
OR SYSTEM FUNCTIONS |
EMBEDDED SIMULATION
COMBINED FUNCTIONS SIMULATION
r ~

USER INTERFACE USER INTERFACE

EXPERT SYSTEM SIMULATION
PARALLEL *
PROCESSING

USER INTERFACE

EXPERT SYSTEM SIMULATION
COOPERATIVE

USER INTERFACE

r SIMULATION EXPERT SYSTEM
FRONT END EXPERT SYSTEM OR SIMULATION
L
1
USER INTERFACE USER INTERFACE
FIGURE 7 COMBINING EXPERT SYSTEMS AND SIMULATION

Researchers including Shaw and Gaines[1986] have highlighted the
relationships between simulation and expert systems. "...An ES can be
considered as the simulation of the mind of a person whereas most simulation is

that of the physical world". One of the advantages in linking a simulation model

60

with an expert system ensues from the ES's ability at providing a model of the
experts that communicate and interact with the processes that comprise the
physical world. The conventional procedural approach to simulation, based on
the use of customised algorithms for the control of the model cannot effectively
handle intricate representations of knowledge and decision making. Conversely,
expert systems for which knowledge is defined declaratively, and which make
use of the generalised deductive capabilities of an inferénce engine, are not
ideal for the representation and definition of physical processes and their
interaction. Consequently, simulation and expert systems can be considered as
complementary technologies, which, if developed and implemented in parallel,
could provide future systems with power "..much greater than the sum of each

used separately." (Shaw and Gaines[19861]).

Simulating complex systems such as the port described in chapter five
highlights the difficulties in reproducing management decision making tasks that
have to be embedded in a model. In some real world situations, expert systems
are already in use, assisting management in making operational decisions.
Permitting the simulation model to submit queries to the relevant ES, thus
bypassing the need to encode the knowledge directly, is of obvious benefit
(O'Keefe[1986]). Even in cases where the ES did not formerly exist, benefit
would still be derived from developing an appropriate ES in parallel with the
development of the simulation model. Once the simulation study completed, the

ES could be used separately in assisting in decision making tasks.

Validation of an expert system using simulation forms another class of
application for which separate development of expert system and simulation

model proves necessary. Stewart and Surgenor[1987] describe the use of a

61

process simulator as a test-bed in the development and validation of an 'on-line'
ES for fault diagnosis and crisis management in a production plant. Such an
approach to ES validation is conceptually simple requiring an alteration to the
ES, changing the source of input from that of sensors to that of simulation
output. Stewart and Surgenor implement the simulation and expert system on
separate computers, linked via a communications cable. Such a pragmatic
approach removes the need for even the most minor mo-dification to the ES
since, in any case, input wvia data cable is the medium used for signal
transmission by the sensors. Simulator validation of an ES is more complex in
situations where the ES is responsible for managing the safe shutdown of
production plant processes in crisis situations by sending appropriate signals
to control instruments. In such cases, the simulation model has to be able to
respond to input from the expert system, thus necessitating two-way

communication.

Flitman and Hurrion[1987] take the same purposeful approach as Stewart
and Surgenor and use two computer systems in creating a physical barrier
between a Fortran based simulation model and an advisory expert system written
in Prolog. The resulting system is used to investigate the possibility of
developing an expert system using the method of parameter adjustment. The
first stage consists of running the model under user control, allowing the
operator to assume the role of a real-world expert. The response actions of
the user, triggered by changes in queue lengths, are recorded, formalised as
rules, and then stored in the knowledge-base as facts. In subsequent simulation
runs, the expert system monitors the simulation output and responds according

to the past user interventions.

62

Reliance on unmanned operations based on the use of robotics and
Automatic Guided Vehicles (AGVs) for process automation will inevitably lead
to increased interest in expert systems as key components of the
Numerical-Control systems (NC). This leads to another potential application for
the joint use of expert systems and simulation which, as yet, has not received
the level of. attention it merits. The ES could benefit from forward projections
through time in making a choice between multiple conflicting strategies. Using
a simulation model to investigate potential side-effects of a given policy could
be of great benefit to expert systems, permitting a higher level of faithfulness
with human decision making through the introduction of the added dimension of

temporal reasoning.

2.6 CONCLUSION

Simulation is a process that assists a modeller in experimenting with real
world situations. Existing simulation structures are well adapted for the
purpose of representing the physical structures and associated activities that
take place in the real-world. Much of simulation model experimentation is
therefore based on assessing the impact of alterations in physical aspects of the
system being represented. Existing simulation languages can and are used for
the purpose of experimenting with operational decision policies but the
difficulties in introducing complex rules and subsequently modifying these rules

is a drawback.

The work undertaken by other researchers and reported in this chapter

lends credence to the assertion that Al techniques could play an important role

63

in simulation modelling in the context of model experimentation based on changes
to complex operational decision policies;. It has already been shown by Flitman
and Hurrion [1987] that a link between simulation model and an Al language is

possible and that such a configuration has a number of practical advantages.

In particular, the expert system "declarative approach" to knowledge
definition would seem to have potential in the context of fhe representation of
operational decision making problems in simulation modelling. The apparent
advantages relate to the fact that operational policies could be defined in terms
of rules without any explicit need to pre-define all program execution paths.
A second potential advantage would result from the use of a high-level language
which would remove from the modeller the need to delve into complex program

code.

The following chapter will focus on examining the nature of decision
making and will attempt to analyze what is entailed in the representation of
operational staff and production management. Aspects of decision making such
as "joint" problem solving will be examined and it's impact on the requirements

of a simulation modelling environment considered.

64

CHAPTER THREE

REQUIREMENTS OF A DECISION ORIENTED SIMULATION ENVIRONMENT

3.1 INTRODUCTION

The design of the proposed simulation environment is dependent on how
decision related knowledge can best be integrated with a corresponding
simulation model depicting physical activities. A first step in establishing the
most appropriate design is to investigate the difficulties in representing
decision tasks. Section one therefore consists of an analysis of decision making
with emphasis placed on the classification of decision types according to position
in an employee/management hierarchy. Although such a hierarchy is not typical
of all problem areas investigated using simulation, the environment is one of the
most complex types to represent. The section concludes with a study of the
data analysis tools used by decision-makers. For accuracy, some of these tools

may have to be represented as part of a model.

Simulation models presently depict decision processes by either
simplifying decision rules or by replacing the logical steps involved by
probability distributions based on prior sampling. In cases where the actions
taken by decision-makers are highly predictable, and where experimentation
using alternative decision rules is not deemed necessary, existing simulation
environments operate satisfactorily. In other cases, such approximations are
considered to affect the accuracy of the simulation and limit the potential of
the model as a tool for experimenting with alternative decision criteria. Present

simulation environments do not have the capacity to represent aspects of

65

decision making to the level of detail described in section one. Section two
consequently considers the limitations of simulation in representing
decision-makers and investigates Visual Interactive Simulation (VIS) as a means

of overcoming such problems.

An expert system is used as a supportive tool in reproducing an expert's
solutions to a range of problems. In contrast to simulafion modelling, little
emphasis is given to the accuracy of the internal representation. Many expert
systems use production rules which do not necessarily reflect the kind of
deductive reasoning that the expert applies. Secondly, such rules are often
randomly ordered making the knowledge-base harder to maintain and reducing
the efficiency of the search process. Such problems, coupled with an inability
to define the knowledge of several decision makers in the form of an employee
hierarchy, limit the value of expert systems both generally and in the context
of simulation applications. Section three considers the impact of such limitations
in more detail. Isolating the potential problems in using existing expert system
methodologies is necessary in determining the most appropriate approach to

developing the proposed simulation environment.

Whereas greater detail is necessary in the representation of
decision-makers, a careful balance must still be maintained between accuracy
and development overheads. For instance, inclusion of representations of high
level management may be unnecessary given that decisions taken at this level
tend to apply to overall company policy or strategies and tend to only take
effect in the long-run. Section four is devoted to an analysis of such
considerations in isolating the requirements of the proposed simulation

environment. Potential system designs are then discussed relating to the

66

simulation language, the expert system, and their possible amalgamation.

3.2 DECISION MAKING.

Decision making generally involved making a choice from a range of
alternatives based on a specific selection criteria (Nestman and Windsor[1985]).
The selection process typically involves the comparison and analysis of

operational data and may necessitate substantive skill and experience.

Decision making activities take place at all levels within an organisation,
from the chairman of a company down to shop floor employees. In general, the
decision making activities and goals pursued by senior management are hard to
identify and can be defined as being unstructured whereas decisions and goals
made by low ranking employees tend to involve operational activities that are
easier to describe, are well structured, and most often well documented.
Furthermore, the range and diversity of data used by senior management tends
to be far greater than at the production line level where, for instance, an
operator bases his decisions on machine data and instructions obtained from the
line manager. The passing of data to a more senior colleague and the response
obtained is a critical aspect of decision-making that occurs at all levels in an
organisation. The communicative aspect of decision-making is represented

diagrammatically in figure 8.

Decision domains have been classified by Nestman and Windsor[1985] as
belonging to one of four categories: Correlative, strategic, tactical, or

operational. Correlative and strategic decision domains are investigated solely

67

by high ranking management in the processes of planning and goal setting.
Analytical tools used are of a 'qualitative' nature and are either heuristic or
deductive in nature. Heuristic tools include fuzzy set theory, intelligent delphi
and catastrophe theory. Deductive tools consist amongst others of, simulation,
contingency planning, and markov processes. Qualitative tools are imprecise in
nature but are the only effective techniques available to the manager. In
contrast, tactical and operational decisions tend to be taken by middle
management and operations staff using 'quantitative' tools. Quantitative tools
are either statistical or algorithmic in nature and are sufficiently precise to be

of considerable use in decision making activities.

CORPORATE MANAGEMENT

PRODUCTION MANAGEMENT

SHOP FLOOR MANAGEMENT

F/GURE8 RULERASEMANAGEMENTHIERARCHY

68

Decisions can further be categorised as either being of a pre-emptive or
corrective type. Pre-emptive decisions are applied in ensuring that undesirable
situations do not occur. They act as physical constraints. e.g. machines
overheating, dangerous power consumption levels etc.. In contrast, corrective
decisions are only applied after an undesirable event has occurred. Both
Pre-emptive and corrective decisions tend to be applied by operations staff and

consequently tend to make use of the quantitative tools described.

3.3 DECISION MAKING WITHIN SIMULATION

In section 2.2.5 and 2.5, the impact of simulation on decision making in
terms of decision support systems was considered. A different viewpoint will
now be taken by investigating what decision making activities need be
represented as part of the model and how these can effectively be incorporated

into the logic framework.

According to Rozenblit and Zeigler[1985], 'conventional simulation
languages are limited by the necessity to settle on fixed, simplistic resolutions
to a number of complex tradeoff decisions'. This observations is also reflected
in a discussion of the comparative merits of simulation and gaming in decision
support systems by Gray and Borovitz[1986] where simulation is characterised
as appropriate in cases where the systems involved only limited or highly

predictable human behaviour.

A common approach in simulation is to model behaviour using probabilities

based on prior observation and sampling. Alternatively, simplification is

69

achieved by using crude and simple decision rules that scarce do justice to the
complex and adaptive behaviour being applied in the real world system. In
contrast, physical components of such systems are typically represented to
high levels of accuracy. O'Keefe and Roach[1987] believe that this inability to
effectively .model intelligent behaviour is one of the major drawbacks of
traditional simulation modelling. The argument is that if the representation of
potential decision processes is crude and inadequate, thén any comparison of
decision alternatives will inevitably be restricted to a range much narrower than
that available to the decision-maker in practice. Such a drawback is particularly
restrictive in tactical simulations (e.g warfare) in which the main purpose of

the simulation is to make such comparisons.

Researchers who have considered the need to improve the methods used
in defining simulation models have tended to investigate the possibility of
developing alternative model building techniques. The primary concern has
been to simplify the model building process rather than add to its complexity
by increasing the detail with which decision-tasks are represented. One
approach that has attempted to compromise model detail with modelling
complexity and that seems to have had some degree of success is Visual
Interactive Simulation (VIS). VIS represents changes in the state of the model
in pictorial form during the simulation runs (see O'Keefe and Roach[1987]). The
user is able to interrupt the simulation, alter a restricted range of model
characteristics, and then continue the run using the modified model. By
appropriate interventions in response to observed model behaviour, decision
mechanisms of arbitrary complexity may be achieved. However, this achievement
is at the cost of not being able to secure the benefits of replication and

statistical analysis of performance. VIS modelling is essentially a hybrid of

70

simulation and gaming, sharing a measure of the advantages and disadvantages

of each.

The approach adopted in this thesis is a more direct and obvious
response than VIS to the challenge that simulation models do not adequately
represent intelligent behaviour. The area of artificial intelligence has been a
natural focal point in the search for an appropriate represéntation of intelligent
behaviour for incorporation in models. This investigation of the field of AI, and
in particular expert systems, has led to a number of possible designs for the
implementation of thg proposed simulation environment. These will be discussed

in some detail in section 3.5.

3.4 REPRESENTING DECISION MAKING USING EXPERT SYSTEMS.

Clearly, the principle demand on the nature and structure of an expert
system in representing human decision-makers is that it should be capable of
an adequate representation of the individual decision-making processes
exploiting such information as would normally be available to the individual.
This information is both current and historical and for instance, may be based
on an investigation into the future using a stochastic tool such as simulation as
was described in section 3.2. Consequently, if a decision-maker has access to
a simulation model, then an expert system that is to adequately represent the
decision-maker must have access to the same source of information. An expert
system may have to be able to represent time for other reasons. For example,
decisions taken in a dynamic system must take into account delays both in the

information flows on which decisions are based and in the actions taken under

71

those decisions. The use of temporal reasoning in expert systems has been
discussed by Miller[1986] and researched in a more practical context by Fox
and Smith[1984] during the development of ISIS. ISIS is an expert system for
scheduling in job-shops and makes use of heuristics in generating alternative
schedules. ISIS, it is claimed, has a performance level superior to that of its

human counterpart.

A number of other characteristics of decision making limit the
effectiveness of existing expert systems. For instance, the satisfactory
representation of individual decision-makers cannot be easily separated from the
need to represent their interaction. One cannot sensibly represent the decision
making activities of an employee without reference to the contributions made by
others which may influence the outcome of the decision. Even senior management
decision making may indirectly influence the outcome of decisions taken by
low-ranking employees through the modification of global goals or through
alteration of the methodological aspects of the decision making process. Balmer
et al.[1988] recognise this problem and suggest a methodology based on the
definition of 'Epi-rules' that reflect the influence that management rules have
on other decision making processes (see section 3.5). Current expert systems
ignore the impact of senior management and take a simplified view of even the
most basic decision making processes. A modified expert system paradigm that
takes into account the existence of a hierarchical management structure would
in some sense complicate the representation of management expertise, though

the resultant expert system should benefit from it.

Expert systems take a simplistic view of decision making which can

partially be attributed to a number of factors associated with the design of ES

72

development tools. Most expert systems are poor at handling arithmetic and
algorithmic computations which complicates the representation of the
'quantitative' tools used in making tactical and operational decisions. As
mentioned in section 3.2, middle management and operations staff make use of
such statistical and algorithmic tools in decision-making, and any difficulties

in representing these clouds the effectiveness of the expert system paradigm.

Expert systems also lack the necessary structural formalism that would
permit the representation of individual decision-makers and their interaction.
The development of expert systems for medical diagnosis such as Mycin and
Internist owe much of their success to the restricted, 'one man' view they take
of the real world. An expert system to aid decision making in a manufacturing
environment may necessitate a far greater level of complexity given that
employees ranging from machine operators to line managers contribute to the
decision making process. Existing expert systems encourage an incremental
process of knowledge-base development with elicited rules added in a random
fashion. There is a lack of any formal methodology facilitating the physical
separation of logically distinct rules attributable to individual decision-makers.
The maintenance and validation of large rule-bases is consequently made more
difficult, with the addition or deletion of rules potentially leading to unexpected

results.

3.5 LINKING SIMULATION AND EXPERT SYSTEMS - A SUGGESTED APPROACH

In section 3.3, the drawbacks of traditional simulation were highlighted

in terms of the inevitably simplistic nature of modelling resulting from

73

difficulties associated with representing the process of decision-making. In
section 3.4, expert systems were shown to lack the structural formalism and
algorithm handling capabilities necessary in representing decision-makers and
their interactions. In this section, suggestions are made as to ways of
overcoming. these problems. The proposed methodology is based on the
integration of expert systems and simulation to form the backbone of a system
devoted to decision support. The suggested approach is intended to help
integrate management decision rules in the simulation by facilitating the
representation of the dynamic aspect of decision-making, and the modelling of
the interplay between individuals during decision taking activities. The
resulting methodology should provide a composite technical base for a decision
support environment in which experiments can be carried out based on the

analysis of the effects of differing responses to decision making tasks.

Adequately representing decision-makers and employee hierarchies is an
intractable problem for those currently working in the area of simulation
(sections 2.2.4 and 3.4). Increased faithfulness to the real world is required
permitting the individual specification of employee decision rules and the
sharing of such defined knowledge. The management hierarchy in a
manufacturing environment will include many persons whose role in
decision-making is crucial but who are not normally represented in a simulation
model which will usually concern itself only with those actively engaged with
machine operations. The modelling of decision-making must extend to this
hierarchy and will sensibly reflect its structure. The immediate effects of
higher level management decisions may be seen in terms of modifying either the
goals or the decision making processes used by those at lower levels rather

than acting directly on the system.

74

The representation of corporate management decision making, for the most
part, is not crucial to the simulation. Decisions taken at this level mostly apply
to the long-run and do not tend to have a direct influence on the day-to-day
operation of the system. Production line management are most likely to be the
hardest to model as communication with lower ranking employees is likely to play
a major role. Decisions, though not instantaneous, are fypically carried out

within the duration of a simulation run and consequently effect the outcome.

Decision making in the real-world is a dynamic process and not
instantaneously as represented in expert systems. The delays are particularly
critical when methods of communication are limited. The representation of time
delays in the expert system may therefore be of importance. The ES should be

able to represent time in two way:

Decisions that are made now but only take effect at some time in the
future. Hence, the decision-maker is using information currently available
to him. But as the actions only take place at some point in the future, the

data available will have changed when these take place.

Decisions that are made now, to make decisions at some point in the
future. Hence, when the action(s) finally take place, the decisions are
based on currently valid da_ta. For instance, a manager may say to an
employee that he should apply certain rules at a given point in the

future.

75

In section 3.4, it was noted that from the expert system perspective, that
the representation of decision-makers relied in part on an adequate description
of the decision making processes coupled with access to such information as
would normally be available to the individual. As we have seen, the process of
decision making may involve the use of statistical and algorithmic tools which
are not easily defined using the declarative style of knowledge representation.
Ideally, the expert system should have access to code wn‘ften in a conventional
high-level language in achieving a greater faithfulness to real world decision
taking tasks and giving the expert system a combined declarative/procedural
context. The other aspect of accurately representing decision-makers, namely,
providing the expert system with information normally accessible to the
decision-maker is achievable by treating the simulation model of the environment
in which the individual operates as a form of data generator. In turn, the
expert system may effect an appropriate series of actions by returning any
decision reached to the simulation model. The information available to the expert
system could derive from the current and historic data of the simulation model
and be made accessible by some sharing of data structures. However, access
to data by the decision-makers represented in the expert system must be
restricted according to the range of data accessible in the real world. Modelling
must include the definition of the data which should be made accessible to the
expert system components and that which must remain privy to the simulation.
For instance, the simulation structures will typically include some future event
list. Clearly whilst access to information concerning model futures could be most
useful, decision rules depending on such 'clairvoyance' could not be regarded

as legitimate and should be formally excluded.

76

Increasing the level of detail in a simulation model may complicate its use
as a basis for experimentation and limit its applicability in the context of
decision support. Consequentily, the deveioped environment must provide the
necessary tools and be structured 1n such a way as to simplify the development
of a model. 'I'ne process of vaiidating and using a model, and interpreting
results obtéined must aiso be aided through the use of appropriate tools. 'I'he
expert system component of the model may be used to improve the
user-iriendiiness of the environment by controlling the user interface or by
encapsulating the necessary logic for the analysis of the simulation resuits.
‘I'he expert system shouid also improve the maintainability of the model by
simphfying alterations to the model {ogic. For instance, the environment should
support modification of rules applied by decision-makers without a
corresponding need to adapt model activity cycCle representations. Model

maintainabiiity 1S further discussed 1n the next section.
3.5.1 Integrating expert system and simuiation methodologies.

Several techniques have been adopted by researchers in attempting to use
simulation and Al to mutual benefit during the modelling process. ‘I'hese
approaches were described in chapter two. ''he merits and disadvantages of
each will now be re-considered with the aim of identifying the most appropriate
design for the intended decsion support environment. ‘I'he desired
characteristics of the simulation language outiined in the last section are taken

as major factors influencing the design of the eventual system.

l.Using expert system shells: in section 2.5.4, the use of an expert system

shell as a form of simulation model development environment was considered.

~I
~l

‘I'ne main argument put forward i1n suggesting that an expert system shell may
be suitable for sumulation 1S based on the simlarities between simulation and
expert systems 1dentifled by Shaw and Ganes[iY%86] and bDoukidis|1987},
amongst others. 'I'ne likeness between the three-phase simulation ‘executive’
and the expert system forward-chaining inference engine are considerabile.
Indeed, Robertson[1986] and Moser{1986] have shown that an expert system
can be adapted for simulation. The fact that the expert s&stem and simulation
paradigms are similar is not however sufficient to argue that an ES shell
provides an improved environment for simulation. Using a shell would only be
of benefit if the inference engine could be made to handle both the simulation
and the conventional expert system task of representing decision-making. The
inference engine is not capable of this dual role and the language syntax used
in shells is not sufficiently flexible to permit the separate specification of
knowledge relating to decision-making and knowledge specific to the definition

of activities and their relationships. Other limitations of the approach are listed

in figure 9.

ADVANTAGES DISADVANTAGES
Simple, declarative structure. Limited/non-existant algorithm handling capability.
Intelligible language syntax. Limited arithmetic and data handling facilities.
Traceable inference. Unstructured language syntax.

Facilitates incremental development. Slow code execution.

FIGURE 9 ADVANTAGES/DISADVANTAGES OF EXPERT SYSTEM SHELLS

78

2.Creating a new simulation language: Concepts borrowed from expert
systems and simulation can be brought together using a common language
syntax, representing another possible methodology for interfacing a model with
a representation of decision-makers and their hierarchy. The main advantage
with this approach is in the flexibility afforded by the creation of a bespoke
language. Commands can be structured to match a given purpose, data
structures are compatible, and facilities can be provided for .manipulating stored
information in a way consistent with the task in hand. Examples include
modelling environments based on Object Oriented Programming (OOP) and
modified versions of Prolog (section 2.5.4). In OOP, a different view of
simulation is adopted in which knowledge of the real world is defined in terms
of objects and their interrelationships. No distinction is drawn between
knowledge concerning the physical objects that make up the real world
environment and knowledge specific to the process of decision making. In Prolog
based environments, the forward chaining inference process can be modified so
as to represent discrete advances in time. The basic Prolog syntax however
remains unchanged with the advantages of a common language syntax

consequently being lost.

One of the drawback with using a single bespoke language in specifying
the expert system and simulation model results from difficulties in merging
knowledge concerning model activities with knowledge specific to
decision-makers. The physical actions or processes thét constitute a major part
of existing models are best defined using sequentially executed code. On the
other hand, decision related knowledge is ideally specified using a declarative
language. The two language types cannot effectively be merged without

compromising on the effectiveness of either the simulation or expert system. A

79

The creation of a single bespoke language is also undesirable from the
perspective of code maintainability. For instance, the simulation model of the
port described in chapter five is of a size that limits the practicality of making
changes to the model logic. The individual cycles of the model are defined in
separate modules to ease the interpretation and handling of the code. Had it
been possible to add complex management decision rules to the same program,
the maintainability and legibility of the code would have beén lost. Indeed, the
difference in nature between the two types of knowledge would have provided
the incentive to place the decision rules in a separately identifiable module. The
benefits and limitations of creating a bespoke simulation language are

summarised in figure 10.

ADVANTAGES DISADVANTAGES
Code may execute faster. ES not separable.
Code modification limited to one file. Logical separation is lost.
May be easier to debug. Risk of inconsistencies.

Bespoke language syntax.

Frqure 10 Advantages/disadvantages of a bespoke simulation langquage

80

3.Interfacing an expert system and simulation model: In section 2.5.5, an
analysis was made of systems developed by Stewart & Surgenor[1987] and
Flitman & Hurrion[1987] in which it was seen that limited interaction was
possible between a separately implemented simulation model and expert system.
Both environments were designed using the pragmatic approach of separating
the simulation model and expert system using two microcomputers. Data transfer
was achieved using a general communications protocol. The éame principle could
be applied in separately specifying knowledge pertaining to model activities and
decision-making. Not only would the code be easier to interpret but the logical
separation would enable the physical model to be modified independently from
any changes made to the decision making activities. The barrier between the
software modules would encourage parallel development and testing using tools
that differ in characteristics and would help in retaining some logical structure
to the implemented model. In many respects, separation of the knowledge from
the physical implementation follows the expert system paradigm and corresponds

to the concept of keeping the inference engine separate from the rule-base.

Stewart and Surgenor's approach is limiting in the sense of having to use
two microcomputers. Apart from the physical restrictions imposed, the need to
transmit relevant data over a communications cable removes much of the
potential value of interfacing a simulation model and expert system. For
instance, the expert system module must transmit a request to the simulation
model in order to examine an item of data. The data returned is limited in terms
of volume and must be preceded by a message identifying the request. An
alternative method of communication is based on the simulation model
transmitting of its own accord data deemed to be of interest to the expert

system. The 'broadcast' approach is limiting in terms of the volume of data that

81

need to be transmitted. Further requests for data may also be necessary if
information is found to be lacking. Extreme care is also necessary in ensuring
that data held by the simulation model is identical to that being used by the
expert system. Any inconsistencies that may occur would invalidate model
output. The problems would obviously be compounded if two-way data

transmission were to be introduced.

The benefit of using communicating microcomputers is in the flexibility
afforded by being able to use existing software with relatively minor
adaptations. In practice, incompatibilities in data types and variable storage
structures impose considerable restrictions on the practicality of the approach.
Alterations to data formats are necessary for every item of information sent
from one computer to the other. More critically, computations based on values
stored in data structures such as arrays or series of records are rendered
impracticable by the necessity to transfer all relevant data items. The process
is further complicated if the data structures used on each computer differ. For
instance, Prolog's use of Lists which can contain mixed data types does not
have a direct equivalent in procedural languages such as Pascal, Fortran, and

C.

A more satisfactory approach than using two microcomputers is to create
an environment entirely based on a single machine. Two potential methodologies

have been considered and will now be discussed in turn.

A simulation language could be interfaced to an expert system by keeping
both modules memory resident and using pre-defined routines for transfer of

control. The simulation would then call the expert system when particular

82

decisions needed to be made. The expert system could either be based on a
shell such as Xi, an AI tool (e.g. OPS5), or an Al language such as Lisp or
Prolog. The principle benefit of the approach would be that existing software
could be used that has already been extensively developed and tested, thus
limiting implementation overheads. Using a single computer has clear functional
advantages over Stewart and Surgenor's approach. Nevertheless,
incompatibilities in data types and storage structures couid not be overcome,
and some form of communications strategy would still have to be established. At
the outset of the research, the approach was considered a possibility as it was
found that the language specification of Borland's Turbo-Prolog appeared to
allow linking to Pascal and C. Turbo-Prolog produces object code which should
be linkable to other object code modules produced using other language
compilers. Thus mixed model programming should have been achievable bringing
together elements of Al and simulation code written in a conventional procedural
languages. Borland's claims to produce Microsoft compatible object code could

not however be born out in practice and the idea had to be abandoned.

The second potential methodology, is to write an expert system shell in
a high-level procedural language. The creation of a bespoke expert system
would mean that the software could directly be developed for use with a
simulation model. The main drawback of the approach would be the time
overhead necessary in developing the expert system. Nevertheless, the benefits
to be derived are clearly substantial with problems such as the incompatibility
of data structures potentially being solvable. Compatibility in data types and
variable storage structures could be achieved by using a common language in
the development of the expert system and simulation environment. Extensive

research has already been carried out at the LSE in the creation of Pascal

83

routines for discrete-event simulation. Hence, if these routines were to be

used, the expert system shell would also have to be written in Pascal.

The development of a simulation environment and separate expert system
written in .the same language would help relieve the problem of data
compatibility. Nevertheless, the greatest obstacle to the creation of an effective
system would remain. Namely, the need to multitask Athe programs and
physically transfer data between the systems as and when required during the
execution of the programs. The only apparent way of overcoming such
limitations would be to create a single executable program combining aspects
of the simulation environment and expert system. The simulation and ES could
then share variables and other relevant data via the stack, heap, or any
commonly agreed memory locations. The independence of the units would
nevertheless need to be retained to permit separate development of the model
and knowledge-base. This requirement linked with the fact that the eventual
system is potentially considerable in size, points to the need to adopt a modular
approach. A programming language that permits the creation of independent
object code modules would satisfy these requirements, allowing a single

executable program to be created by linking the individual modules together.

Figure 7 and 11 summarise the alternative ways in which an expert system

and simulation model can be interfaced.

84

COMMS LINK
SIMULATION SYSTEM

MULTI PROCESSOR APPROACH

COMMS ; EXPERT
SIMULATION 4 LINK * SISTEM

MULTI-TASKING APPROACH

MODULAR APPROACH (SINGLE PROGRAM)

F/GURE 11 AL TERNA TWEAPPROACHES TO SIMULA T/ON/ ES INTEGRA T/ONV

3.5.2 Facilities that should be provided by the expert system.

In section 2.3.3, the limitations of expert systems were considered. These
are necessarily relevant to the problem of interfacing a simulation model and
expert system, and are currently major issues in artificial intelligence research.
The scope of the thesis cannot include the improvement of the expert system
paradigm. Nevertheless, some progress may be achieved indirectly through the
integration of simulation and Al techniques, and the need to represent multiple

decision-makers within the knowledge-base.

85

The use of an off-the-shelf expert system shell would be limiting in a

number of respects:

.Many of the facilities provided would be redundant.

The shell could not be customised.

Interfacing the expert system to other code Would be a complex
process and would inevitably effect the usability of the
end-product.

Commercial shells produce screen output. This would interfere with
the output produced by the simulation model. (Another reason
justifying the use two computers)

Expert system shells provide poor support for arithmetic
computations and most often do not support execution of procedural

code.

The proposed development of a bespoke expert system would help in

overcoming these problems.

Only those facilities considered necessary would be implemented as part

of the expert system. The compactness of the resulting code would help improve

the efficiency of the inference strategy and reduce the problem of limited

Random Access Memory (RAM). Code size is particularly critical if the system

is to implemented on an microcomputer.

A bespoke expert system can of course be customised. The format used

for the specification of rules can be adapted to the specific needs of the

86

simulation environment. Most critically, the ES could be made to share variables

and data structures with the simulation model.

The use of Pascal as the base-language for the expert system is helpful
in respect of taking full advantage of the facilities provided by the underlying
computer hardware. Transfer of control between the ES and simulation model
should be greatly simplified as should be the necessarir task of accessing

memory locations.

The bespoke expert system permits full control of the screen display.
Hence, output produced by the simulation model could be windowed with output
generated by the expert system. Alternatively, each system could be prevented

from sending information to the monitor simultaneous to the other.

The arithmetic support could be customised as necessary. Furthermore,
the expert system should be capable of calling Pascal procedures and functions.
This would give the ES the added benefit of being able to execute procedural
code. Any complex algorithms used in decision-making problems could be

defined using functions.

The development of a bespoke expert system would also permit the
customisation of the language syntax. Using the ES in a simulation context
imposes requirements on the system that differ from those that would be
encountered in developing a conventional ES. For instance, the knowledge-base
has to be capable of representing several decision-makers whilst keeping some
form of logical separation between the sets of rules. Ways of overcoming the

problem include using individual files to represent each decision-maker, or

87

creating blocks of rules within one file. In section 3.4, the issue was taken a
step further by pointing out that decisions are not always taken by lone
individuals but often by two or more people in consultation with each other. A
potential way of limiting such representational problems would be to permit each
block of rules to 'inherit' rules from other blocks. Hence, if the rules used by
one expert were not sufficient to solve a given problem, another expert's block

of rules could also be used.

Finally, the adequacy of the expert system relies in great-part on the
design of the inference strategy. Expert systems either use a methods based
on forward-chaining, backward-chaining, or a combination of the two. These
were described in section 2.3.1. Forward-chaining inference strategies are
data-driven. In other words, the application of values to the premises of rules
is what triggers their execution. Consequently, if forward-chaining was to be
used in the proposed system, the ES would have to assume the role of a
'data-analyser'. Whenever a change in state occurred in the simulation, the ES
module would be activated and all rules verified to see if their premise could
be satisfied. In a sense, the use of forward-chaining would help in creating a
realistic representation of methods used in the real-world. For instance,
managers at the control of a manufacturing plant are continuously monitoring
the production line, taking appropriate action when undesirable events occur.
The main disadvantage with the approach is the computational overheads
incurred in having to scan all rules stored in the knowledge-base at every time
advance. The process is time consuming and inefficient as the majority of rules
will not apply. The alternative backward chaining strategy is goal-directed.
The expert system is presented with a goal which it then attempts to prove or

disprove. The simulation model has to initiate the inference process and specify

88

the goal to be resolved. For instance, during the C-phase of the three-phase
approach, a search is made for activities that can commence. The conditions
that dictate whether the activities can start could include references to the
expert system. In the manufacturing plant example, the closest analogy would
be a machine operator checking whether he could start a particular process.
The strategy is more efficient in that the search is directed with irrelevant
rules being ignored. The division of rules into blocks .should also help by

further reducing the search space.

3.5.3 Facilities that should be provided by the simulation component.

As with the expert system, modifications need to be made to the
simulation language in providing a capacity to communicate with other software.
Access to source code is therefore indispensable. Research at Lancaster
university and subsequently at the LSE lead to the creation of the Extended
Lancaster Simulation Environment (eLSE), a set of library routines for the
development of discrete event three-phase simulation models (Chew[1986]). The
routines are written in Pascal, are well tested, and fully documented. The eLSE
libraries could be modified, thereby by-passing the need to create a new

environment.

One of the most basic requirements of the simulation module will be to
support models that are substantial in size. The addition of an expert system
will place substantial burdens on the simulation environment. The eLlL.SE libraries
are currently implemented in Turbo-Pascal which imposes a limit of 64K on code

size and is consequently inadequate. The libraries therefore have to be

89

transferred to another version of Pascal. Other necessary changes include the
addition of routines to transfer control to the expert system module. These
library routines have to be capable of passing information over to the ES and
receiving instructions in return. In the case of a backward-chaining system,
such information would include a definition of the goal to be solved. The
instructions which are subsequently received from the ES, such as an indication
as to whether an activity should commence, have to be intefpreted and carried

out.

3.6 CONCLUSION.

The problems that would be encountered in creating a formal
representation of decision related knowledge were highlighted by considering
the nature of decision making. The employee hierarchy in an organisation was
taken as an example. The knowledge applied and goals pursued by senior
management were shown to be difficult to isolate given the unstructured nature
of the decision activities. In contrast, decisions made by machine operators
were identified as being well structured and consequently far easier to formalise
as program code. Decision types classified by Nestman and Windsor[1985] were
then discussed. The tools used in decision-making were also examined and
categorised according to their precision. In conclusion, it could be seen that
part of the difficulty in representing the decision-making activities of
management was the underlying need to reproduce the characteristics of the
heuristic or deductive tools being used. In contrast, formalising the tactical and
operational decisions taken by operations staff would be facilitated by the well

defined statistical or algorithmic tools being applied.

90

The limitations of simulation techniques in formalising decision-making
processes were then considered. Simulation was characterised as supporting a
detailed representation of the physical components of real-world systems but
could not effectively be used to model intelligent behaviour. Techniques that
are applied in representing decision tasks include simple rules that only
partially reflect the underlying logic and sampling- from probability
distributions. Such approximations, if reasonably accurate, need not invalidate
results concluded from simulation experiments. However, if the decision-making
process is complex and difficult to approximate, the output obtained may be
inaccurate and bring into doubt the value of the model. Simplifying the model
logic also effects the flexibility of the simulation. The potential range of
experiments that could be carried out in comparing decision alternatives is
inevitably restricted to a range much narrower than would be possible if the
model depicted decision-making in detail. Visual Interactive Simulation (VIS) is
a technique that helps overcome the drawbacks of limited model detail in the
representation of decision alternatives. VIS allows the user to interrupt and
modify a model during a simulation run, thus reflecting the decision-makers
action. Such a benefit is however secured at the expense of not being able to

replicate experiments or carry out statistical analysis of performance.

Section 3.4 then considered the appropriateness of the expert system
paradigm in representing decision-makers. Expert systems were identified as
being insufficiently powerful to represent the intricacies of the decision-related
knowledge of high-level management. This was seen as being largely due to the
difficulties in representing the heuristic and deductive tools used by

management as part of the knowledge-base. Expert systems were also seen as

91

imposing a limit on the representation of multiple decision-makers. In the
real-world, decisions are frequently taken by groups of people rather than by
individual in isolation. Sharing knowledge consequently forms an important part
of the process of taking an action. Expert system shells tend to be developed
with a view. to representing a single expert and do not have the necessary
structure to represent several experts each contributing in some way to a given
decision task. Finally, expert systems were seen to imposé some limitations in
situations where mathematical computations were involved. In the context of
decision making, operations staff may use statistical or algorithmic tools as aids
in deciding on an appropriate course of action. These tools may be difficult to

represent as part of the knowledge-base.

Alternative designs were then considered in bringing together aspects
of simulation modelling and expert systems. The main concern was to identify
the most appropriate approach to adding decision related knowledge to the
model. The first step consisted of reviewing the implications of having to
represent the employee hierarchy and the consequent sharing of information.
Formalising the techniques applied by senior management in solving decision
related problems had been identified in section 3.2 as a major problem. After
careful consideration, it was concluded that this inability to effectively
represent corporate management would not adversely effect the validity of the
simulation model. Decisions taken by corporate management tend to consist of
long-term strategy related problems which would not typically take place within
the time span of a simulation run and could not consequently effect the
outcome. The techniques used in developing the state-of-the-art modelling
environments described in section 2.5 were then discussed. It was concluded

that the approach that presented most promise, consisted in being able to

92

specify decision rules in a knowledge-base, separate from the rest of the model.
Having focused on this approach, alternative designs were considered for
interfacing the simulation and expert system. Stewart and Surgenor's[1987]
research in validating expert systems was then examined in evaluating the
potential of their approach of using two interacting microcomputers for
implementing each of the software modules. The need for a complex
communications protocol and the consequent difficulties in sﬁaring common data
were found to be critical limiting factors. The ensuing conclusion was that the
simulation and expert system components had to be implemented on a single
computer and that the modules had to effectively be combined. The last section
of the chapter highlighted the desirable features of the expert system and
simulation model components, finalising the broad definition of requirements for

the proposed environment.

93

CHAPTER FOUR

ESSIM - AN ENVIRONMENT FOR SIMULATION

4.1 INTRODUCTION

Previous chapters have served to define the requireménts of an advanced
modelling environment encompassing aspects of simulation and AI. This chapter
will describe the development of a number of prototype designs that culminated
in the development of the final system named ESSIM (Expert System

SIMulation).

The first system, developed in co-operation with the 'Instituto Nacional
de Tecnologia', Brazil was intended to be used in assessing the effect of
variances in jobbing and batch production structures in a typical job-shop
environment. This first system is described in appendix A. The experience
gained in implementing the job-shop model was used as a basis for the
development of ESSIM. Though the main design decisions had been taken prior
to the start of the coding process, practical experience led to many revisions

of the original plan. These are discussed in section 4.2.2.

ESSIM, in the form in which it presently stands, is designed on a modular
basis. In section 4.3, the role of the individual modules and their interaction

is explained.

The expert system module was specifically developed for the purpose of

simulation modelling. The module can nevertheless be used on a stand-alone

94

basis and has a number of novel design features that should be of interest to
researchers working in AI. Section 4.4 describes the language syntax of the
ES and explains how the facilities were implemented. Particular emphasis is
placed on how the module accesses external variables and Pascal procedures and

functions.

The discrete event simulation module of ESSIM- is based on the
three-phase world view. A library of Pascal routines used for teaching
simulation at the LSE has been modified and extended to permit calls to the
expert systems and sharing of data structures. Section 4.5 describes the
development of the library and explains how the module interacts with the

expert system.

The expert system and simulation modules must share data values using
common variables and data structures. Replicating data would be inefficient in
terms of speed and memory capacity, and would lead to the risk of
inconsistencies in stored information. The communications interface linking the
expert system and simulation module is consequently of critical importance.
Section 4.6 explains the role of the expert system 'Communications Interface

generator' (CI-generator) and describes how the variables are shared.

Simulation modelling and expert systems rely on effective communication
of information. An individual creating a model must expend significant effort
in the creation of a user-friendly interface and output displays for relaying
critical data in an effective form. Microsoft Pascal in which ESSIM is
implemented has no facilities for output control or graphics. A library of

routines was consequently developed, based on state-of-the-art techniques

95

including multi-level windowing, iconics, and mouse control. Though useful,
the routines were found to be time consuming to use and the process of
designing a screen display laborious. An additional module called DESIGNER
was therefore created that permits screen designs to be created interactively
and the corresponding code generated automatically. Section 4.7 describes the
development of the man-machine interface routines and the role of DESIGNER

in the development of a simulation model.

4.2 RESEARCH STAGES

Prior to the development of ESSIM, an experimental system was developed
which was designed solely for job-shop scheduling problems (See Goodman et
al.[1987]). The experience gained in developing this specific application was
essential in helping to specify the required features of a generalised simulation
environment encompassing characteristics of both simulation and AI. This

conceptual design led to the creation of ESSIM.
4.2.1 Simulation of a job-shop.

The job-shop application was developed as a generalised model which
could be adapted to different manufacturing environments. The recursive
nature of product manufacturing in job-shops permitted the specification of a
generalised assembly process based on a number of work centres and products.
Each product is made up of a number of components which are in turn
constructed from a number of sub-components. Components can either be

assembled at work centres or brought in as raw material stock from external

96

suppliers. Raw materials have to be re-ordered at intervals to ensure that
bottlenecks are not created by the lack of a component. Each assembly process
can only take place at specific work centres were the appropriate machinery is
available. When an order is received for a quantity 'x' of a product, the
manufacturing of the appropriate quantity of each of the sub-components is
scheduled. Items assembled at work-centres are either placed in stock ready for
delivery to a customer or transferred to another work-céntre, ready for the

next phase in an assembly process.

The specification of the products being manufactured, the characteristics
of the jobs being performed, re-ordering procedures for raw materials, and
details of orders received are specified interactively and stored in a database.
The provision of a robust and flexible user interface was seen as being critical
given the intended role of the system as a tool for decision support. The
interface enables the modeller to alter entries in the database and modify
features of the production process. Hence, the modeller can define the
characteristics of the environment to be modelled and can carry out experiments

without the need to modify the physical code.

One of the problems in experimenting with the job-shop model was the
modellers ability at interpreting the generated model output. A graphics based
interface was seen as the most appropriate means of permitting the depiction of
the dynamic behaviour of the simulated job-shop. Queue build-ups and
stock-levels can be scrutinised though high resolution graphs of a selected set
of work centres. Other display formats include a diagrammatic representation
of the job-shop depicting the flow of jobs between work centres. (see figures

12 and 13). Data can also be displayed in a textual format. For instance, details

97

X

of orders completed and those still outstanding can be viewed on request either
during or following the execution of the simulation program. Such facilities,
give the modeller a view of the real-world and permit simple analysis of the
relative performance of alternative model designs without recourse to an

experienced modeller.

Speed 94%/,
uc 1

uc 2

uc 3

uc 4

STOCK
298

FICURE 12 HULTI-GRAPH AY OF QUEUE FIGURE 13 ACD TYPE DISPLAY FOR JOB SHOPS

One of the limitations of the job-shop modelling environment was the
restrictions imposed on the range of experiments that could be carried out.
Whereas it was possible to experiment with the addition of work-centres, or
the manufacturing of new products and sub-components, no investigation was
possible into the effect of alternative production strategies without recourse to
a programmer. The concept of creating a separate knowledge-base allowing the
modeller to alter and experiment with production related decision rules was

therefore felt to be justified.

98

The addition of a rule based expert system to the existing job-shop
application could not be achieved within the constrained development
environment provided by the Turbo-Pascal compiler. The decision to use
Turbo-Pascal for the first stage of the research was made on the basis that the
language supported rapid prototyping. A comprehensive graphics library is
provided, easing the development of the man-machine interface. Secondly, code
compilation is completed in seconds rather than minutes. Turbo-Pascal was not
appropriate for the later stages of the research because of the limit of 64K on
code size. A language that would allow the separate compilation of modules into
object code was required. The simulation model, expert system, and interface
could then be developed independently and linked together to produce the final
program. Microsoft Pascal fulfilled these requirements and had the benefit of
permitting mixed language programming. Hence, library routines from the
Microsoft C and Fortran compilers could be used. However, two major limitations
had to be accepted. Compiling a single module and then linking the code could
take up to 10 minutes. Secondly, no cursor control and graphics drawing
facilities were provided. Translating the existing code from Turbo-Pascal was
consequently a complex process necessitating both code modification and the
creation of a library of graphics routines. Turbo-Pascal command names were
retained enabling research students to upgrade their simulation programs to the

Microsoft compiler.

Having implemented the job~shop model in Microsoft Pascal, the next stage
of developing the expert system began. The first version of the inference
engine was based on a simple forward chaining inference strategy. This enabled

rapid development of the expert system and required only limited modification

99

of the simulation model's three-phase executive. At each time advance, control
would be passed to the expert system module and the current variable values
used as input for the inference process (see figure 14). This first prototype
was used as a basis for the development of the rule-base editor and the
necessary routines that would enable the sharing of variables and data
structures between the simulation and ES. Simple rules were used in testing the

functionality of the system.

SIMULATION
INITIALISATION EXPERT SYSTEM
A PHASE
INFERENCE
ENGINE
B PHASE
C PHASE
KNOWLEDGE
BASE
FINISHED ?
FINALISATION

F/GURE 14 A F/RST PROTOTYPE SYSTEM

100

4.2.2 The development of ESSIM

Having established that a simulation model and expert system could be
made to interact, the development of the ESSIM environment began. The
functionality of the job-shop environment was to be retained whilst allowing
the modeller to develop his own simulation application. One apparent problem
was the considerable work that the programmer would héve to undertake in
implementing an effective man-machine interface. The relevant routines for
menu selection, windowing and mouse control would be available in a library
of routines but considerable expertise would be needed in making use of them.
The problem was resolved by developing a separate program called DESIGNER
which allows the modeller to develop the interface interactively and then
automatically generate the corresponding program code. The mouse is used to
position and scale the necessary windows and menus. DESIGNER can also be
used for accessing pre-declared software modules such as the knowledge-base
editor, and listing the content of output files in specified windows. (See

- appendix E.)

During the development of ESSIM, the expert system was re-written using
a more complex backward chaining inference strategy. The syntax used in the
knowledge-base was altered and extended. Facilities were then created for
accessing Pascal procedures and functions. Though developing the expert
system (ES) was by no means a simple problem, creating the interface between
the simulation model and ES proved to be the most challenging and complex
problem to solve. The difficulties mainly arose because of the difference in
nature between the simulation and expert system. The simulation model is

written using the Pascal language syntax and compiled. In contrast, the expert

101

system is a development language, itself written in Pascal. The knowledge-base
is interpreted and consequently cannot directly access compiled variables
declared in the simulation model. The problem was overcome by developing a
'Communications Interface' (CI) between simulation model and expert system
knowledge base. Requests for variable values are passed to the CI which
returns the address at which the appropriate value is stored. Calls to

procedures and functions from the knowledge-base are also handled by the CI.

When new variables are defined which are to be sharedl between expert
system and simulation model, modifications have to be made to the CI. Such
changes are handled automatically by the 'Communications Interface generator’
(CI-generator) which scans the knowledge-base, and generates Pascal code
which forms the link between the simulation model and ES data structures. The

functionality of the CI and Cl-generator is described in section 4.6.

The development of ESSIM also led to changes having to be made to the
simulation module. The use of DESIGNER in creating the interface meant that
output could no longer be written directly to the screen but had to be directed
to specified windows. Altering the expert systems inference engine to a
backward-chaining goal directed strategy also led to modifications of the
simulation module. Routines had to be developed, enabling the ES to be
activated by a call from the simulation module. Such calls, detail the goal to
be solved and the location of the relevant rules. The simulation routines that
establish the calls are also designed to return any result obtained from the
inference process. The characteristics of the simulation module are discussed

in detail in section 4.5.

102

4.3 OVERALL SYSTEM DESIGN

PASCAL
LANGUAGE
COMPILER
GRAPHICS DISPLAY MODULE NOWLEDGE.BASE
PART COMPILER
GENERATOR
SIMULATION MODEL CODE KNOWLEDGE-BASE UNKER
LIBRARY
SIMULATION comms EXPERTSYSTEM
MODULE Nenner MODULE
EXECUTIVE INFERENCE ENGINE
SCREEN
HANDLING
LIBRARY

MAN / MACHINE FRONT-END MODULE

DESIGNER

F/GURE15 DES/GN OVERV/IEW

Figure 15 is a diagrammatic representation of the ESSIM model
development environment. As we have seen, the simulation module and expert
system module interact via an intermediary communications interface module.

The communications module is dependent on code generated by the

'CI-generator'. The simulation and expert system modules are both divided
into two components. The simulation module consists of an 'executive' and a
set of user-defined files which contains the formal definition of the model
events. The executive maintains a diary of pre-scheduled events and controls
the execution of the simulation. The user-defined model is written in Pascal and
is compiled to object code. The expert system module consists of an inference
engine and a user defined knowledge-base containing the déc.ision rules that are
used in the real-world. The content of the knowledge-base is translated into
more compact and usable code by the 'knowledge-base part-compiler'.
Part-compilation is necessary each time a change is made to the knowledge-base
and immediately precedes invocation of the expert system. (The difference
between a part-compiler and traditional compiler will be explained in section

4.4.3)

The 'graphic display module' (figure 15) consists of the necessary
routines for the dynamic display of run-time output and for the creation and
manipulation of windows. The module is controlled by calls from the simulation
model and/or the expert system knowledge-base. Relevant data may be passed
as parameters to the graphic display routines or accessed directly from the
database of the communications interface module. The database contains

references to all shared variables and data structures.

The 'man-machine front-end module' (figure 15) has a dual role. Initiating
the simulation run and controlling the exchange of data between the end-user
and relevant software. Requests for user input are displayed in windows and
so there is a close association between the man-machine front-end and the

graphics display module. Extensive use is made of mouse controlled multi-level

104

menus for the selection of run-time options and for the activation of pre-defined
routines. These routines control such aspects as the input of data into the
knowledge-base editor and the invocation of DOS facilities such as directory

listings.

All the modules described were designed so as to be usable on a
stand-alone basis. A simulation model can be developed. without an expert
system or vice-versa. The graphics display and man-machine interface routines
can also be used with other Pascal programs. Giving the software engineer such
flexibility may nevertheless give rise to problems. Difficulties could for instance
be encountered in making use of the library routines or linking the relevant
modules together. Two programs were consequently developed to help simplify
the development process. A program generator called 'Designer' (appendix E)
is used interactively in creating pull-down menus and windows for the display
of text and graphs. The code produced corresponds to the required graphics
display and man-machine front-end modules. The other program, named 'Linker’
takes the modeller through the necessary steps in compiling and linking the
relevant modules. 'Linker identifies the Pascal libraries that are needed in
generating the final program from the object code modules and is also
responsible for activating the CIl-generator. The CI-generator scans the
knowledge-base and generates code for the communications interface module

which is then compiled.

105

4.4 DESIGN OF THE EXPERT SYSTEM COMPONENT

The characteristics of the expert system module will now be discussed by

considering in turn the design of the knowledge-base and inference engine.

4.4.1 The knowledge-base

The expert system knowledge-base is an ASCII text file consisting of a
declarations part and separately identifiable sets of production rules.
The knowledge-base can share variables with the simulation model or make use
of local variables. The structure of the declarations is intentionally similar to

the Pascal syntax. (See figure 16).

IDENTIFIER LIST | ==p : «==p | TYPE | ==>-

. _ |

EXTERNAL ExportsLeftForShip, NumbFreeBerths, Duration: INTEGER,;
_LoadShip: BOOLEAN;
Count, Speed: REAL,;

| VARIABLE DECLARATION
| S

LOCAL StartDockAtberth, StartShipLeave: BOOLEAN;
ShipCode: CHAR;
ContainerCode: LSTRING(20)

FIGURE 16 VARIABLE DECLARATIONS

106

The variable declaration 'EXTERNAL' is used to identify variables that
are to be accessible by all modules. The corresponding identifier list must
consist of variable names that have been, or will be declared as shared
'PUBLIC' variables in either the simulation module or any of the other modules
being used.. The declaration 'LOCAL', denotes variable that can only be used
by the expert system. The types that can be associated with the variables are
identical to those available in Microsoft Pascal but exclude double precision and

user defined types.

Local and external variables referenced in expressions and statements are
fully compatible. However, the inference engine handles the values differently.
External variables have an associated value, whether defined in the expert
system or in another module. The only exception are external variables
preceded by the symbol ' '. These are reset to being 'undefined' at the end of
each call to the expert system. In contrast, local variables are initiated as
being undefined and are set to given values by the execution of statements.
Furthermore, local variables have their value reset to being 'unknown' at the

end of each call to the expert system.

Pascal Procedures and Functions declared in an object code library or program

module can be called from the expert system. (figure 17)

The file name must be that of a Microsoft Pascal module. The procedures
and functions defined in the file can then be accessed from the expert system
knowledge-base. The only restriction is that parameter passing cannot be used.
The equivalent effect can nevertheless be achieved using shared variables.

Parameter passing was omitted from the expert system specification because of

107

the development overheads that would have been incurred.

; INSTRUCTION IDENTIFIER FILE NAME

PASCAL FILE 'Rules.pas’ ;

F/GURE 17 DEFINING PASCAL PROCEDURES & FUNCTIONS

Verification of the rules defined in the knowledge-base is a complex
problem because of difficulties in knowing exactly what the inference engine is
going to do. The expert systems consequently has a trace facility that lists the

individual steps taken during the inference process. (See figure 18).

.TRACE INSTRUCTION OUTPUT DESTINATION

Example 1 TRACE TO FILE 'Trace.txt’;

Example 2 TRACE TO HIRES 5,7,50,20;
Example 3 TRACE TO TEXT WINDOW 2,3,70,15;
Example 4 TRACE TO DESIGNER 9;

FIGURE 18 INFERENCE ENGINE TRACE FAC/L/TY

The output produced by the trace can be directed to a number of
destinations. If the screen display is already cluttered, output can be sent to
a text file (example 1, figure 18). The text file can then be inspected by

temporarily interrupting the simulation or by waiting until the end of the run.

108

The trace can alternatively be directed to a window of defined size in either
graphics or text modes (Examples 1 and 2, figure 18). The content of the
window scrolls as the information gets generated. Finally, compatibility with
the DESIGNER interface generator is maintained by allowing output to be

directed to any pre-defined window (example 4, figure 18).

The remainder of the knowledge-base consists of a number of 'rule-sets’.

(see figure 19)

RULESET DECLARATION RULESET NAME

C INHERIT COMMAND RULESET NAME

RULESET CraneManager (INHERIT ImvManager, ShipManager);
rulel
rule2
rule3

RULESET ShipManager;
rulel
rule2
rule3

FIGURE 19 RULESET DECLARATIONS

109

The rule-sets each consist of a number of production rules. Rule-sets
typically identify part or all of the decision rules applied by individuals
represented in the simulation model. The end of a rule-set is identified as being
the start of the next rule-set thus eliminating the need for file markers. A
rule-set can 'inherit' rules from another rule-set, thus alleviating the problem
of rule replication. When a rule in arule-set cannot be resolved, the inference
engine checks for the presence of an 'INHERIT' statement. The rule-sets

specified are then scanned in turn in attempting to satisfy the rule.

The syntax of the production rules is as follows: (Figure 20)

RULE [RULE NUMBER STATEMENT

STATEMENT r EXPRESSION

— > WH

[*1 NumberOfBerths = 2 ; {Maximum Number of Berths is 2}

[1] ShipNumber = ShipCode ;

[2] ShipJobsLeft = True WHEN (ShiplmportJobs > 0) OR (ShipExportJobs > 0);

[3] BerthedShip = True WHEN (ShipinBerthOne = True) OR (ShipinBerthTwo = True);

[4] ShipFullOfExports = True WHEN ExportsLeftShip = 0 ;

[5] MovegantryToLandSide = True IF
((NumbMoveToShipJob * NumbMoveToExitJob > 0) AND (PriorityToShipJobs = False));

[6] (STARTSHIPARRIVE = True) AND (_Time = 1200) ~ (STARTSHIPARRIVE = False) IF
(NumberOfShipsAtSea > 0) AND (ShipArrivalDue = True);

FIGURE 20 ESS/M KNOWLEDGE-BASE RULES

110

The expressions must yield a result of the standard type 'boolean'. If an
expression produces the value 'True', then the statement defined as the first
part of the rule is executed. The following rules of precedence identify the

order in which operations are performed, (figure 21)

OPERATOR PRECEDENCE
* | AND 1
+ - OR) 2
(3
= < >< < = > >= 4

FIGURE 21 OPERATOR PRECEDENCE

The basic rules of precedence are applied as in standard Pascal. An
operand which is located between two operators of different precedence is
always bound to the operator of higher precedence. Secondly, if the operand
is located between two operators of the same precedence, then the operand is
bound to the operator situated to its left. Thirdly, expressions within

parentheses are always evaluated first.

By using combinations of the boolean operators in the 'expression’, rules
of considerable complexity can be defined. Boolean operators other than 'OR'
can also be used in the 'statement' part of the rule. There is no limit to the

length of a rule.

Both local and external variables can have their values set by association

with Pascal functions. Pascal functions can be used in either the expressions

111

or statement part of rules. The Pascal functions can be used as a way of
circumventing the problem of setting variables to values computed from, or
stored in, files, arrays, and records. Procedure calls can be made by
specifying the procedure name in the statement part of rules. Procedures can
be used in specifying algorithms or as a means of executing low-level commands

(e.g. writing to files, manipulating the display etc..).

As shown in rule 1 of figure 20, the condition section of a rule can be
omitted. The statement is then executed unconditionally if the wvalue of
'ShipNumber' is required during the inference process. As shown in the first
rule of figure 20, the rule number can be replaced by an asterisk. The effect
is two-fold. Firstly, the statement is executed on activation of the expert
system. Secondly, the variable 'NumberOfBerths' defined in the statement

retains its value until the end of the simulation run.

In rule 3 of figure 20, the reserved word 'WHEN' is used to separate the
conditional statement from the 'action' part of the rule. If the conditional part
of the rule is satisfied, the variable 'BerthedShip' is set to the value True.
Conversely, if the condition statement cannot be satisfied the value of
'BerthedShip' is set to False. The reserved word 'WHEN' can only be used

where a single boolean statement is used in the action part of a rule.

In rule 5 of figure 20, the reserved word 'IF' is used. If the conditional
part of the rule is satisfied, the variable ' _MoveGantryToLandSide' is set to
True. However, if the conditional statement cannot be satisfied the action part

of the rule does not execute.

112

In rule 6 of figure 20, the reserved word 'IF' is again used. The syntax
is however slightly different from that of rule 5 in that the symbol '™' is used
in the action statement. If the conditional part of the rule is satisfied, the
statements preceding the '™' symbol are executed. If the conditional part of the
rule cannot be satisfied, the variable 'StartShipArrive' that follows the '™'

symbol is set to the value False.

4.4.2 Modelling "Cooperative Decision Making".

As we have seen in section 4.4.1, the concept of rule-sets was introduced into
the ESSIM expert system in order to segregate the rules applied by each
decision maker. The use of rule-sets permits decision rules to be grouped

according to the name of the decision maker or by job function.

When resolving a goal, the expert system inference engine is limited to
searching through the rules contained within a given rule-set. The rule-set to
be used in resolving a goal is passed from the simulation model to the expert
system as a parameter along with the details of the goal to be resolved. In many
cases, the rules applied by a given decision maker are insufficient for the
purpose of resolving the defined goal. In the real-world situation, operational
policies are often enacted by more than one individual. (A concept that will be
referred to in this thesis as "Cooperative decision making"). For instance, one
individual may consult another or several individuals may work together in
resolving a problem. In other cases, a line manager may always have a final
veto over a decision taken by a more junior member of staff. In order to reflect
the involvement of multiple decision makers in resolving an operational "Goal",

the concept of inheritance was introduced. In the event that a goal cannot be

113

resolved using the rules applied by a given decision maker, the expert system

inference engine may consult one or more further rule-sets.

An interesting point about "Cooperative decision making" is that the
grouping of rules is by decision maker and not by activity. In attempting to
resolve a given goal, the search space may be extended to those rules used
by decision makers involved in operations described by otﬁer activities in any

of the activity cycles.

The use of rule-sets introduces a concept of rule modularity. This
modularity can potentially be used to reflect simple hierarchical management
structures. Consider the simple case where there are two rule-sets, one
relating to a shop-floor operator and the other to a line manager. There are two
ways in which the influences of management can be represented within the
model. Firstly, the rule-set associated with the operator may reflect the
operators inability to resolve certain problems. By using inheritance to link the
two rule-sets, the manager's expertise or authority can be brought into play
in resolving the goal. In this example, the rules associated with the operator
are given a higher priority. The manager's rule-set is only used in the event
that the goal cannot be resolved. The second way in which the influences of
management can be reflected in the model is by defining a sub-goal within the
operator's rule-set. C(_msider the case in which the operator is able to resolve
a given problem but is unable to proceed with an action until authorisation has
been sought. By introducing a sub-goal into the operator's rule-set, control
can be transferred into the manager's rule-set. In this example, the rules
applied by the manager have a higher priority than the rules associated with

the operator. Although the top level goal may have been resolved by the

114

operator, the manager's rules may be applied in overriding the operator's

planned actions.
4.4.3 The knowledge-base part-compiler

The part-compiler is activated prior to the start of the simulation run.
The responsibilities of the part-compiler include memory .management for the
defined variables, the handling of calls to function and procedures, the
optimisation of the knowledge-base code, and the detection of syntax errors.
Whereas these are the traditional functions of a language compiler, the rules

remain interpreted and hence the term 'Part-compiler’.

1.Memory management: The first step taken by the part-compiler is to extract
references in the knowledge-base to local and external variables. The variable
names, associated type and memory location, are then added to a tree using the

following record structure. (Figure 22)

PointerToVarNode = ~VarNode ;

VarNode = RECORD
Lower_Branch, Upper_Branch : PointerToVarNode ;
VarName : String ;
VarType : CodeNum ;
VarAddr : ADS OF Byte;
Local : Boolean ;
Undefined : Boolean ;
Perm : Boolean ;
END;

FIGURE 22 RECORD DECIARATION FOR THE VARIABLE TREE

115

The boolean variable 'Liocal' specifies whether the 'VarName' variable is
specific to the expert system or whether its wvalue is defined as a public

variable in Pascal and consequently shareable with the simulation module.

All variables defined as being local in the declaration part of the
knowledge-base have no associated value at the start of the inference process.
Variables defined as 'External' in the knowledge-base may Have had their values
set in the simulation module and consequently the 'Undefined’' field is set to
False. The only exception are 'External' variables which start with the
underscore character ' '. Such variables are initially set to the 'Undefined'
status. If the conditional part of a rule contains an 'Undefined' variable, the

rule cannot be executed until a value has been associated with the variable.

At the end of an inference process, local variables have their status reset
to 'Undefined'. The 'Perm' field is used to identify those local variables which
should retain their value throughout the duration of the simulation run. In
figure 20, the first rule has neither a conditional clause nor an associated rule
number but the asterisk character instead. This indicates that the declared
variables should have their values set by the part_compiler and that the 'Perm'

field should be set to True.

'VarAddr' is the address of the memory location containing the first byte
of the variable value. In the case of local variables, a memory request is made
for RAM space corresponding to the number of bytes needed in storing the
variable. The address of the allocated memory is then placed in the tree. If the
variable is external to the expert system module, the memory space needed in

storing the value is allocated by the module in which the variable is declared.

116

The memory space is only allocated at run-time and the location of this memory
space will differ each time the module is executed. The problem of finding the
variable address is further aggravated by the fact that the modules are
compiled whereas the knowledge-base is interpreted. Identifying the relevant
addresses can only be achieved from within a compiled routine linked to the
relevant module. This routine is located within the 'Communications Interface'
(CI). The creation of the CI is undertaken by theA Cl-generator, the
functionality of which is described in section 4.6.1. The CI returns the
run-time address of the external variables which are then added to the
knowledge-base variable tree. During the execution of the expert system,
references to a given variable value is achieved by scanning the tree for the
relevant variable name and directly accessing the content of the corresponding
memory address. Knowing the address of the variable is not however sufficient
to extract the associated value. The Type of the variable is also required. The
'VarType' field is a one byte code identifying the type of the variable. The
variable type determines the format used for the storage of the wvalue at the

specified address.

2.Function and Procedure calls: One of the difficulties in developing the
inference engine was the implementation of the facility allowing calls to compiled
Pascal or C functions from within the knowledge-base. The ability to
incorporate compiled 3GL code into the otherwise interpreted expert system

rule-set, permits the creation and use of complex algorithms.

Pascal, in which the expert system is written, does not support calls to
procedures or functions using identifier names stored as text strings. The

problem was overcome by treating the compiled functions in a similar way to

117

the expert system variables. Prior to the execution of the expert system, the
memory addresses of all procedures and functions contained in the file defined
by the 'Pascal File' instruction (figure 22) are added to the variable tree. The
type code (VarType) used in the variable tree record structure (figure 22)

identifies the addresses as being related to compiled code.

At run time, the procedure or function addresses ére used to transfer
control from the expert system to the compiled routine. Pascal does not support
function calls using addresses, though this facility is available is C. The
problem was overcome by taking advantage of the mixed-language programming
facility available with Microsoft compilers. At run-time, the inference engine
passes the address of the relevant code to a C function contained in a compiled
module. In turn, the C function passes control to the code stored at the
specified address. When this segment finishes executing, control returns to the

inference engine via the C function.

3.Code optimisation: The part-compiler converts the rules contained in the
rule-sets into a structure optimised for code interpretation. The first step is
to check for INHERIT commands. The list of rule-sets names defined as
parameters to INHERIT instructions are then placed in record lists. These lists
are attached to the nodes of a tree indexed according to the names of all

rule-sets. The records structures are: (Figure 23)

The functionality of the INHERIT command is further discussed in section

4.4.4.

118

PointerToVarNode = ~ InheritTreeNode ;
PointerToList = ~ InheritListNode ;

InheritTreeNode= RECORD
Lower_Branch, Upper_Branch : PointerToNode ;
SideBranch : PointerTolList;
RuleSetNum : Integer;

END;
InheritListNode = RECORD
Side_Branch : PointerTolList;

RuleSetNum : Integer;
END;

RuleSet Code

RuleSet Code RuleSet Code

RuleSet Code j RuleSet Code

INHERIT LISTS

F/GURE 23 RECORD DECLARATION FOR THE RULESET TREE

The part-compiler then scans the content of each rule-set and creates a
corresponding number of 'compiled' files. These temporary files reside on the
disk and contain the optimised code used during the inferences. The fact that
the files reside on a permanent storage medium, thus limiting the need for

RAM, means that the potential size of the knowledge-base is only limited by

119

the capacity of the disk. If execution speed is found to be unsatisfactory, and
RAM space is available above the 640K DOS limit, a virtual drive can be used

to remove the need for physical 'reads and writes' to and from disk.

The part-compiler creates the 'compiled' files by scanning and optimising
the rules contained in the rule-set. The rules are in-turn read from disk and

copied into a linked list. (Figure 24)

PntrToBuffer = ~ RuleBuffer ;

RuleBuffer = RECORD

RuleTxt : LineOfCode ;

! AddrNextLine : PntrToBuffer ;
: END;

FIGURE 24 [INKED L[IST STRUCTURE FOR MEMORY RESIDENT RULES

If a rule is unconditional, a check is made to see whether an asterisk
precedes the statement. The asterisk indicates that the statement should not
be added to the rule file but should be executed immediately and that the status

of any variables used should be set to 'permanent'. (See figure 20).

The rules which are in turn added to the linked list are optimised by
replacing the IF or WHEN condition, Boolean operators, and dual character
operators (<= , >= , <) by single byte instructions. Statements and
expressions defined in infix notation are then translated into 'Reverse Polish'

ready for execution. Variables are replaced by two-byte codes. (See figure 25).

120

INFIX NOTATION: JobDuration = ((10 + 5) / Total + WorkTime) * 17 1IF
(JobLeft >= 10 + SpareJobs) AND (CraneAvail = True);

REVERSE POLISH: JobDuration 10 5 + Total / WorkTime + 17 * = IF
JobsLeft >=10 Sparedobs + AND CraneAvail = True ;

OPTIMISED ESS/M CODE: AA10 5+AB/AC+17*=AD#10AE+AF=1!

Result variable 'IF" Code End of line marker

FIGURE 25 THE PART-COMP/ALATION OF ESS/M RULES

The knowledge-base part-compiler applies Dijkstra's method for
translating from infix notation to reverse polish. An example is given in figure
26, based on the rule described in figure 25. A string and Last-In-First-Out
(LIFO) stack are used, and the operator precedence defined in figure 21 is

applied.

ORIGINAL STRING: JobDuration = ((10 + 5) / Total + WorkTime) * 17

STRING STACK

10

10

10 5

105 +

105 +

10 5 + Total

10 5 + Total/

10 5 + Total / WorkTime

10 5 + Total / WorkTime +

10 5 + Total / WorkTime +

10 5 + Total / WorkTime + 17
10 5 + Total / WorkTime + 17 *

—

¥~ o~~~ o~~~ o~ o~
~ ~ —_~
+ +
+ +

*

FIGURE 26 D/JKSTRAS METHOD FOR TRANSLATING TO REVERSE POLISH

4 Error detection & recovery: The knowledge-base part-com piler is responsible
for the detection of syntax errors and inconsistencies in the variable
declarations. The part-compiler produces a screen-based trace, as shown in
figure 27. The upper-most window scrolls during the compilation process,
displaying the content of the knowledge-base. If an error occurs, the modeller
is aware that the problem manifested itself during the compilation of the last
line of code shown in the window. The centre window is used to display the
variables that have been extracted from the knowledge-base and added to the
variable tree. The lower window is used for the display of user messages
including explanation of errors. More complete diagnostics can be obtained by
specifying the 'Trace To File' command in the knowledge-base (See section

4.4.1).

UHBMLA1IUH IM S B §3*I Mil

NOUEEHPWOSTACK HOUEEHPM6STACKFR(MATE MOUEEXPORTTOSTACK,
LOADIMPORTFROMIVU cJNLOADEXPORTTOIVU: BOOLEAN |

PASCAL FILE 'RULESPAS' |
LOCAL STARHAPDSWGTARTSHGQESEVWSTAHTEV\Q%STARFNDUEFRG—BSIDE

STARTMOUEFROMLSIDE.HOUETOBAX. BAVFREEJRUCKWAITING JRUCKOUTSIDE
WAITINGFORTRUCK,SHIPOOBSLEFT, LET TRUCKINPORT,BERTHEDSHIP .CRANEOOBS,

WAIIIHGFORTRUCK.SHIPOOBSLEFT, LETTRUCKINPORT.BERTHEDSHIP,CRANEOOBS,

Messages

Declaring EXTERNAL uarial>les
Declaring LOCAL uarialles

FIGURE 27 PART-COMPILER SCREEN BASED TRACE

122

Verifying the validity of the variables defined in the knowledge-base is
achieved by checking for duplicate entries in the tree of variable names and
corresponding memory addresses (see figure 22). The use of reserve words is
also detected. Other errors involving variable names are harder to isolate. For
instance, variables declared as 'external' in the knowledge-base must also be
defined as being 'public' in one of the Pascal modules. Incorrect spelling leads
to an inconsistency that cannot be detected by the part-cémpﬂer. The error is
instead detected by the 'Linker' (see section 4.8) which checks for

discrepancies between modules.

Syntax errors such as the omission of rule numbers and end of line
markers are detected and reported by the part-compiler. The invalid use of
variables is also easily identified. Some other errors may not be reported by the
part-compiler but may nevertheless be identified visually from a trace produced
during the variable declaration and rule optimisation processes. The
part-compiler is also responsible for establishing the run-time trace by creating

the necessary output file or window calls.
4.4.4 The inference engine

Calls to the expert system are initiated by the invocation of a function
from any Pascal module. The goal to be resolved and the rule-set to be used

are passed as parameters to the function. (Figure 28)

The GOAL function is part of the expert system inference engine. In
figure 28, the rules declared in the 'CraneManager' rule-set will be used in

trying to solve the goal 'CraneJobs'. The goal is to identify whether there are

123

jobs for the crane to carry out and which of these should take priority. The
GOAL function returns the address of the result. Consequently, the
programmer must be aware of the data format used for the storage of the
result. The benefit of using an address is that the function can return any
data type. The address returned by the GOAL function is not the only way of
returning a result. Any number of shared variables can be used for the same

purpose.

RESULT ADDRES#—': GOAL(=—> IRULESET NAME|==p '’ ==>|GOAL NAME|=—> '

ResAddr := GOAL('CRANEMANAGER' , 'CRANEJOBS’),

FIGURE 28 SYNTAX OF CALLS TO THE EXPERT SYSTEM

Having received the relevant instructions, the inference engine opens the
'‘compiled' file corresponding to the rule-set. External variables commencing
with the underscore character and all local variables are then initialised to the
'undefined' status (figure 22). The backward chaining strategy used by the
expert system makes use of a stack in directing the inference process. The
first record of the stack contains a reference to the goal to be solved.
Subsequent records list the sub-goals that need to be considered before a
solution can be found for the main goal. The record structure is shown in

figure 29.

124

RecPointer = ~GoalSearch ;

GoalSearch = RECORD
NextRec: RecPointer;
LastRec: RecPointer;
Goal: SymbolSting ;
FileNumber: Integer;
Line: Integer;
END;

File Line

SUB-GOAL 3 Number Number

File Line
SUB-GOAL 2 Number Number
SUB-GOAL 1 File Line

Number Number

GOAL FROM SIMULATION MODEL

F/GURE 29 THE INFERENCE ENG/NE GOAL CALL STACK

Let us now consider the example in figure 28. At the start of the
inference process, the goal 'CraneJobs' is entered as the first record of the
LIFO stack. The 'compiled' file corresponding to the 'CraneManager' rule-set

is then scanned for an occurrence of the goal in the action part of one of the

125

rules. If a rule is located that could potentially resolve the goal, the reverse
polish condition expression is evaluated. Consider the following rule as an

example: (Figure 30)

INFIX NOTATION:
[1] CranedJobs = True IF (Crane = 'idle’) AND

(JobDuration + 0.5 <= (DayEnd - TimeNow) * 1.1 + 1) ;
REVERSE POLISH NOTATION:

[1] Cranedobs True = IF Crane 'ldle’ = AND
JobDuration 0.5 + <= DayEnd TimeNow - 1.1 * 1 + ;

FIGURE 30 REVERSE POLISH RULE NOTATION

When searching through the knowledge-base, rules are loaded in turn
into a 'linked list' data structure. The linked list permits the expert system
to handle rules of an indefinite length. The linked list is also used as a
temporary storage area for intermediate results. For instance, when evaluating
a rules conditional expression, the constituent statements are evaluated and
replaced by the corresponding boolean results (see figure 31). The conditional
expression, now consisting uniquely of boolean values and operators can be

resolved.

If the rule condition is satisfied, the goal has been resolved and control
returns to the calling module. If the rule condition returns a boolean 'False',
the rule-set file is searched for another occurrence of a rule statement that
could be used to resolve the goal. If no rules can be found that will satisfy a

goal or sub-goal, the files identified in the INHERIT list are searched in the

126

order in which they are listed. If the GOAL cannot be resolved, a warning
message is displayed on the bottom line of the display. The modeller then has
the option of interrupting the simulation and updating the knowledge-base or

ignoring the warning.

Example : (JobDuration = 1, DayEnd = 8, TimeNow = 4)

Crane

‘Idle’ — TRUE (1) TRUE (1) TRUE (1)

AND AND AND AND

JobDuration

0.5 — 15 15 1.5 TRUE (1)

+

<= < = < = < =

Dayend

TimeNow — 4 ‘TRUE (1)
- _ 4.4

1.1 1.1

- —* 55

1 1 1

+ + +

FIGURE 31 EVALUATING REVERSE POL/SH RULES

If one of the local variables used in the conditional expression does not
have a value, then the location of the rule is appended to the last record in
the stack. A new record is then added to the stack with the variable set as a
sub-goal. If a solution is found to the sub-goal, the last record in the stack
is removed. A second attempt is then made at solving the previous goal,
starting with the rule found at the location specified in the record. A solution

has been found to the main goal when there are no longer any records left in

127

the stack. The solution is then returned to the calling module as an address.

The logic applied by the inference engine can be scrutinised at the end
of the simulation run by listing the content of a text file declared in the
knowledge-base using the TRACE command (see figure 18). Alternatively, the
same information can be displayed interactively in a scrolling window during the
simulation run (figure 32). The trace is also invaluable in isolating logical

errors in the rules.

Shipcrane 4 is nowidle H Mn
Shlpcrane Iis now idle Dag g i
3 is nowidle
crane 1 is now idle
nevmg II-U Fram pool of idle invs
ipcrane 5 is loading Imy 1 MRS 1~>
rlevmg IMU from pool of idle imvs BARIS 1-> 0
4 is loading inu z IMNICRIS Z~> 3
thrlevmg IMJ from_pool of idle inmvs BARRS I ~> 0
Shipcrane zis loading MU 3
search through subsequent files QA CraneJobs
God Foud StartLoadlmv
Calling function backchaining with parameter ND Wnt
Ualue of parameter so Foud to Le missing in expression WEnt
Goal D missing & placed on stack GOAL CraneJobs

FIGURE 32 REAL-TIME EXPERT SYSTEM TRACE DISPLAYED IN A WINDOW

4.5 DESIGN OF THE SIMULATION COMPONENT

The simulation model is written in Pascal using procedures and functions

128

provided in a library of routines. The form of modelling used is based on the
discrete event three phase approach due to Tocher[1962]. Changes in state in
discrete event models take place at time intervals referred to as events. The
three phase world view provides a framework for defining model dynamics in
terms of events which may be categorised as being either time or state
dependent. Model execution is controlled through a three phase executive which
performs a time-advance in the A phase, executes all cufrent time-dependent
events in the B phase and examines and executes where appropriate all
state-dependent events in the C phase (See figure 4). These three phases are
well represented using the Pascal programming language because of the reliance

on modularity in specifying model dynamics.

The suite of Pascal routines used in the simulation module are a
modification of routines which were used for teaching simulation at the LSE.
The routines, known as eLLSE (Extended Lancaster Simulation Environment) are

themselves a modification of Pascal routines developed at Lancaster University.

The first stage in the development of the simulation module was to
transfer the eLSE routines to run under Microsoft Pascal. Students at the LSE
were using the eLSE routines under Turbo-Pascal V.3, which imposes an
unacceptable barrier of 64K on code size. Some modifications were necessary
since Turbo-Pascal does not fully abide to the ANSI/IEEE standard (IEEE
[1984]). Conversely, Microsoft Pascal does not support the use of graphics.
Consequently, the necessary low-level routines had to be written to duplicate
the functionality of Turbo-Pascal. The size of the eLSE routines was then

reduced by removing unnecessary display related code.

129

The eLSE routines have been used in creating relatively small
experimental models based on imagined real-world environments. Experience
gained in developing the job-shop model showed that the use of an expert
system would be of little practical benefit unless the simulation was sufficiently
detailed as to warrant the creation of a separate knowledge-base. The use of
a compiler supporting the creation of substantive programs was seen as a
prerequisite to the development of simulation models under ESSIM. The creation
of large models also requires the use of modular development techniques in

keeping the code manageable and maintainable.

The existing eLSE routines impose structure on the modelling process by
providing a model executive (the A phase) which controls the calls to the B
and C phase procedures. The model framework assumes a single logical file
containing all B and C routines, with the eLSE specific code stored separately
within an 'include' file. In order to use the eLSE routines in a modular
programming environment, the B and C phase procedures have to be
appropriately grouped in modules. Interfaces then have to be created, allowing
procedure and function calls between the separately compiled files and

permitting the sharing of common data.

The eLSE routines make use of the CAUSE procedure to schedule the
execution of a B phase event. The syntax of the procedure call is shown in
figure 33. The integer parameter ‘nb' identifies the B event procedure to be
executed after a delay of 't' time units. During the execution of the A phase,
(time advance) the scheduled B-events are activated through a call to the
'Call_For_ Next B_Event' procedure. A CASE statement is used to map between

the procedure code and the event name (See figure 33).

130

SYNTAX OF B-EVENT CALLS USING ELSE

CAUSE(ND: Integer; Ent: EName; T: Integer);

PROCEDURE Call_For_Next_B_Event;
Begin
CASE No_NextB OF
1: B1;
2: B2;
3: B3;
4. B4;

...........

End;

SYNTAX OF B-EVENT CALLS USING ESSIM

SCHEDULE(B_EventName: Address; Ent: EName; T: Integer);

FIGURE 33 SIMULATION MODEL B-EVENT CALLS

The eLSE routines required the definition of a procedure called
'Call_For Next B _Event' which contained the names of all B-events. This
procedure had to be updated each time new B-events were added to the model.
A simple modification was made to ESSIM which elimitated the need for the
'Call_For_Next B_Event' routine. In ESSIM, descriptive names can be given to
B-event routines. Instead of using the 'Nb' parameter to the CAUSE procedure,
ESSIM expects to be passed the start address of the B-event procedure. During
the execution of the A phase, the physical address of the B event is used to

activate the procedure.

131

The eLSE environment makes use of the 'Go_Thru_C_Events' routine in
activating the models C-event procedures (See figure 34). In ESSIM, a calling
procedure for C-events is located in each code module (see figure 35). If a C-
event is added to a module, then the modeller simply alters the calling
procedure located in that module. Such a structure eliminates the need to

re-compile multiple segments of code.

PROCEDURE Module1_Cs; PROCEDURE Module2_Cs; PROCEDURE Module3_Cs;

Begin Begin Begin
1: C11; 1: C21; 1, C31;
2: C12 2. C22; 2. C32
3: C13; 3: C23; 3: C35;
3: C13; 3. C23; 3: C33;
End; End; End;

PROCEDURE Module_C_Calls;
Begin

1. Module1_Cs;
2: Module2_Cs;
3: Module3 Cs;

End;

F/GURE 35 C -EVENT CALLS /N ESS/M

132

PROCEDURE Go_Thru_C_Events;

Begin
C1;
C2;
C3;
Ca4;
End;
FIGURE 34 C-FVENT CALLS USING ELSE

The use of modules in writing simulation code necessitates some caution
in the management of variables. The program design should reflect the natural
modularity of a simulation model, depicted by its constituent activity cycles
(Hills [1971]). Variables and associated data structures should then, as far
as possible, be declared locally to each module. This minimised the size of the

resulting program and improves the maintainability of the code.

The sharing of data between modules and the expert system should
preferably be effected through intermediary interfaces (see figure 36). A
programmer may for instance modify the data structures used in one module
and neglect to reflect these modifications in other modules. The use of
interfaces also forces the programmers developing the system to formally define

the data accessible to individuals in the real-world. Consequently, the

133

programmer(s) coding each of the modules only have access to data specified
in the corresponding interface. An activity common to two activity cycles must

be placed in just one of the corresponding code modules.

MODULE 1 MODULE 2

If changes are made to variables in module 1, corresponding
alternations are required in module 2.

VARIABLE &
MODULE 1 CODE. EXECUTION MODULE 2

INTERFACE

If changes are made to variables in module 1, changes are
required to the interface, but not necessarily module 2.

F/GURE 36 /NTERFAC/NG MODULES

The need to develop the expert system knowledge-base in parallel with
the simulation code significantly alters the development process usually
associated with modelling. The disciplines required are described in chapter

five specifically in the context of the development of the port model.

4.6 DESIGN OF THE COMMUNICATIONS INTERFACE

The responsibilities of the communications interface include the

management of procedure and function calls from the expert system, and the

134

sharing of data between the expert system and other modules.

The communications interface provides the necessary links between the
compiled simulation code and the interpreted expert system. The incompatibility
between compiled and interpreted code arises from the string oriented nature
of the interpreter. For instance, the expert system scans the knowledge-base
and finds that in order to solve the desired goal, a call has to be made to a
function called 'JobDuration'. The function name has been extracted from the
knowledge-base as a string and is consequently not recognisable by the Pascal
compiler as a function name. The problem could be overcome by finding the
start address of the function and then transferring control using the C routines
which have been written (see section 4.4.3). Unfortunately, the address of a
function cannot be identified unless the function name is 'hard-coded' in a
compiled file. Using a Microsoft Pascal routine for determining the address of
'‘JobDuration' results in a return value corresponding to the address of the
string and not the function. The same problem applies in making procedure

calls and in determining the address of variables declared in a compiled module.

A second problem in linking the interpreted expert system with other
compiled modules results from the syntax requirements of the Microsoft Pascal
compiler. For instance, a procedure defined in one module can be called from
another module provided that the procedure name is declared in the calling
module as being 'external'. The same requirement exists for function calls and
for sharing a variable between modules. Consequently, finding the start
address of a procedure is not in itself sufficient for transferring control to that
procedure. The procedure name must also be defined at the top of the module

as being 'external’.

135

SIMULATION MODULE COMMUNICATIONS EXPERT SYSTEM

INTERFACE
INFERENCE
EXECUTIVE ENGINE
RULES
PASS ADDRESSES
GOAL CALL BETWEEN ES USING
PASSING AND SIMULATION
LOCAL VARABLES
PARAMETERS
SHARED VARIABLES
AND RETURNING
SCAN TREE PROCEDURES
AN ADDRESS AND RETURN
AN ADDRESS FUNCTIONS
TREE OF VARIABLE,
PROCEDUREAND
FUNCTION ADDRESSES

GENERATED INTERFACE CODE

F/GURE37 INTERFACEBETWEEN SIMULATION MODEL AND EXPERTSYSTEM

Short of writing ones own Pascal compiler, the problem of creating the
interface could not easily be overcome. A possibility that eventually proved to
be the most satisfactory was to develop a program generator that would create
the communications interface module. The communications interface module
contains all the necessary 'inter-module' declarations and returns the addresses
of procedures, functions, or variables when passed to the interface as text

strings (see figure 37).

136

4.6.1 The Cl-generator

The CI-generator was developed as a means of creating the
communications interface module. The CI-generator is activated by the 'Linker'
program (see section 4.8) and need only be executed when additional
procedures, functions, or external variables are added to the declarations part

of a given knowledge-base.

When the CI-generator is activated, a template file is created using the
same file name as the knowledge-base but with a different file name extension.
The generator then adds code to the template file by directing output to

'Include’ files. The generated code can be classified as follows:

1.Variable declarations: External variables declared in the knowledge-base are

extracted and added to the template file. (figure 38)

Cl-Generator

ANOWLEDGE BASE > COMMUNICATIONS INTERFACE
EXTERNAL Time : Integer ; _ VAR Time[Extern] : integer ;
Dur :Real; " Dur [Extern] : Real;

FIGURE 38 MAPPING BETWEEN SIMULATION AND ES VARIABLES

137

2 .Routine declarations: Procedures and functions called from within the
knowledge-base must be declared as 'external' to the communications interface
module. The Cl-generator extracts the procedure and function names by
scanning the module in which they are declared. The name of the module is
itself extracted from the knowledge-base by searching for the 'Pascal File'

command (see section 4.4.1).

USER DEFINED PASCAL COMMUNICATIONS INTERFACE
MODULE TEMPLATE
MODULE Name ; MODULE Comminterface;
Procedure ... ; Procedure ... ; Extern;
Begin Procedure ... ; Extern;
Function ; Extern;
End;
Function VarAddress(Strng):Address;
Procedure ... ; Begin
Begin ClIl Generator {Generated ’include’ file}
End;
End;
Function ProcCall(Strng);Result;
Function ... : ... ; Begin
Begin {Generated ’include’ file}
End;
End;
Function FuncCall(Strng):Address;
END; Begin
{Generated ’include’ file}
End;
END;

F/GURE 39 THE COMMUNICATIONS INTERFACE CODE GENERATOR

138

3.Code for returning variable addresses: The Cl-generator creates the code for
the 'VarAddress' function using the variable names and types identified from
the declaration section of the knowledge-base (figure 39). A variable name is
passed to the function as a text string parameter. The function then returns
the memory address at which the value of the variable is stored. When the
ESSIM expert system is first activated, the 'external' variable names are in turn
passed to the 'VarAddress' function and the variable addresses returned, added
to the address tree (section 4.4.1). The inference engine can then gain access
to variable values by searching the tree for the relevant memory address. The

content of the memory address can subsequently be either read or overwritten.

4 .Code for procedure calls: The Cl-generator creates the code for the
'Proc_Call' function that enables procedures to be activated from rules defined
in the knowledge-base (see figure 40). The 'Proc_Call' function receives the
procedure name as a parameter and passes control to the procedure. The
'Proc_Call’ function then returns a boolean value to the expert system indicating
whether the procedure was found to exist. The 'Proc_CalU' code is based on the
procedure declarations extracted from the Pascal file declared in the

knowledge-base.

'ProcCal’
Function
EXECUTE TRANSLATE TO PROCEDURE
PROCEDURE PROCEDURE ADDRESS NAME EXPERT
PASCAL SYSTEM
CODE INFERENCE
ENGINE
RETURN
CONTROL

FIGURE 40 CALLING PASCAL PROCEDURES FROMESS/Ms EXPERTSYSTEM

139

5.Code for function calls: The 'FuncAddress' routine receives a function name
as a parameter from the expert system, calls the function, and then returns the
address at which the function result is stored (see figure 41). If the parameter
to the routine is invalid, a 'null' address is returned. The use of addresses
permits the function result to be of any type. The value returned by the
function is typically used in a calculation in the condition section of a rule.
Ensuring that all variable types used are compatible is the responsibility of the

modeller.

'FuncCair
Function
EXECUTE TRANSLATE TO FUNCTION
FUNCTION FUNCTION ADDRESS NAME EXPERT
PASCAL SYSTEM
CODE INFERENCE
RETURN MAP TO RETURN ENGINE
RESULT AN ADDRESS ADDRESS

F/GURE 41 CALL/NG PASCAL FUNCT/ONS FROMESS/M5 EXPERTSYSTEM

4.7 THE MAN-MACHINE INTERFACE

The provision of powerful graphic handling facilities on current
microcomputers has lead to a significant proportion of software development
resources being placed on the creation of effective man-machine interfaces. A
large number of software products now make use of windows as a means of
structuring menu displays or as a tool for displaying logically distinct output
simultaneously on the same screen. The development of windowing environments

stems from advances in parallel computing and multitasking operating systems

140

which often require the simultaneous display of unrelated data.

The job-shop modelling environment, the predecessor to ESSIM (appendix
A), made significant use of a window based display, the lay-out of which was
based on the Turbo-Prolog interface. The interface was designed to enable the
modeller to adapt the job-shop model to different manufacturing environments
by altering the speciﬁcaﬁon of the products being manufactured and other
characteristics of the production plant. Windows were also used for the
graphical display of simulation output and for the summarisation of model
performance in terms of orders outstanding and orders completed. The job-shop
modelling environment was seen to gain significantly from the provision of an
effective window based man-machine interface. These gains mostly arose
because of the intended role of the system as a tool for decision-support and

the consequent need for a means of effectively communicating information.

ESSIM was designed as an tool for the creation of complex modelling
environments such as the job-shop in which the modeller has the added benefit
of being able to represent and experiment with alternative decision rules. The
analyst/programmer using ESSIM consequently needs to develop a man-machine
interface that permits the modeller to implement model changes and analysis
model output with minimum difficulty. The development of a user friendly
interface based on the use of windows is time consuming and necessitates of the
programmer significant skill in low-level hardware control. The problem is
compounded by the need to use Microsoft Pascal in creating the simulation code.
MS-Pascal is a straightforward implementation of ANSI Pascal with no facilities

provided for cursor control, colour selection, or graphics.

141

4.7.1 ESSIM library of low-level routines

The first step in developing the man-machine interface was to write the
necessary low-level routines for the manipulation of textual output and for the
creation of high-resolution graphs. These routines are available to the ESSIM
user in a library and are linked to the developed code after compilation. The
names used for the rouﬁﬁes, wherever possible, are identical to Turbo-Pascal
commands thus improving language compatibility and easing the translation of

program code.
4.7.2 The graphics display module

ESSIM's Graphics Display Module (GDM) is accessible from the simulation
model, expert system, or any other linkable program module. The GDM provides
the necessary code for the development of the man-machine interface and makes
use of the library of low-level video display routines. The routines can be

characterised as followed:

1.Windowing routines: The GDM supports the creation of multiple overlapping
windows in either text or graphics mode. A window is created by specifying
screen coordinates and an associated name. The window routine then calculates
the number of eight bit memory locations needed in storing the content of the
display area immediately beneath the window. A request is made for the
necessary amount of memory space, and the content of the screen area affected
by the window, copied to the reserved RAM. When removing the window from
the display, the reverse process is carried out, and the allocated memory space

finally released. The GDM also provides routines for moving windows around the

142

screen, scrolling the content of windows, and re-directing input and output

operations to specified window locations.

2.Iconics: The popularity of the operating system used in the Apple Macintosh
range of microcomputers has rested on the power and simplicity of it's mouse
and icon driven interface. The GDM consequently provides facilities for the
creation and display of 'user defined shapes, symbols, and character sets.
Iconics can easily be combined with mouse handling routines in creating a
powerful man-machine interface. For instance, a mouse routine can be used in
detecting the position of the mouse 'pointer'. If the pointer is located
immediately above a specified icon, the display attribute of the screen area in
which the icon is displayed is reversed, and the routine associated with the

icon is activated.

3.Graphics: The GDM supports graph drawing facilities which are designed to
be used in combination with high-resolution window displays. The lowest level
routines are designed for drawing individual pixels, lines, and circles. These
drawing routines can be used in either of two modes. The first mode ensures
compatibility with the underlying operating system by using the low-level BIOS
routines that reside on a ROM chip. A program developed using ESSIM will
consequently run on any future versions of the DOS operating system released
by IBM or Microsoft. The BIOS mode also ensures ESSIM's compatibility with
0S/2 and enables ESSIM to be used concurrently with other software. The
second mode is designed to maximise the speed at which lines are drawn by
by-passing the BIOS routines and writing directly to the video display. This
prevents the use of ESSIM as a concurrent process because the screen output

cannot be controlled by the underlying operating system. High-level routines

143

are also provided for creating graph axes, drawing line graphs and bar charts,
extending existing graphs, and re-scaling or shifting images. Graph lines that
exceed the limits of the axes are clipped using an algorithm based on Cohen's

method. (An example screen display is given on page 59)
4.7.3 The man-machine front-end module

The front-end module controls the activation of the ESSIM modules. The
design and coding of the front-end is carried out by the analyst/programmer
using routines from the graphics display module and ESSIM library of low-level
routines. The front-end is typically window based and may provide facilities for
selecting files from directories, initialising files, and setting parameters to the

simulation run. A typical screen display is shown in figures 57, 58 and 59.

The creation of the man-machine front-end is nevertheless a complex
process requiring repeated compilation of the module in achieving the desired
screen lay-out. The process is further complicated when pull-down menus are
used in combination with the mouse or when windows are designed to overlap.
A program generator for creating the front-end menus and defining the
location, size and content of the windows was consequently thought to be a

desirable and necessary feature of ESSIM.
4.7 .4 Designer

Though useful, the library routines were found to be time consuming to
use and the process of designing a screen display laborious. A program

generator, 'Designer', was therefore developed which permits screen designs

144

to be created and the corresponding code generated automatically. The concept
behind 'Designer' was not just to provide a conventional interface definition
language, but to let the modeller create an interface interactively. 'Designer'
is a form of 4GL in which 'interactive programming' is used to generate PASCAL
program code. Once created, the interface lay-out can be 'edited' and new code
produced. Furthermore, the eventual user of the program can be directly
involved with the settin§ out of the interface and the presentation of the

output.

The standard 'Designer’ interface is based on the use of high-resolution
graphics. Characters shapes are user defined and options are selected using
a mouse. All input and output, whether in graphic or character format, is
displayed in 'pull-down' or 'pop-up' windows. The top two lines of the screen
are reserved for default menu options. The bottom line is used for the display

of instructions.

The default menu options are specified by simply typing the appropriate
text. Two or more spaces indicates the start of a new option. The position of
the menu options is automatically adjusted such that an even lay-out is always
obtained. Pointing the mouse icon at an options results in its display

characteristics being reversed.

Windows can be created using the mouse. Once created, windows can be
re-positioned and adjusted in size. Pull-down menus are simply created by
typing text into existing windows. The pull-down menus are immediately
functional permitting the screen design to be evaluated prior to generating the

interface code. Pull-down windows can be also be stacked. Hence selecting an

145

entry in one window results in another pull-down menu being displayed.

msmm M mmimim

OPTION 1

CPTICN Z

CPTICN 3

CPTICN 4
SUBCPTICN 1
SUBCPTION 3
SUBSUB-OPTION 1

-OPTION 3

a prograw
FIGURE 42 GENERATING APPLICATION INTERFACES USING 'DESIGNER:

'Designer' supports the creation of Pop-up windows. Pop-up windows
are not used for the display of menus but rather for the display of free-form
text, requests for user input, and the creation of graphical forms. Each window
is identified by a unique code such that these can later be manipulated by the

programmer(s) developing the simulation or expert system modules.

E xternal programs can be activated by associating a file name with a menu
option. Several types of program calls are possible. The modeller can 'chain' or
'spawn' a program, with, or without the use of parameters. Alternatively DOS

commands can be activated, again with the possibility of parameters passing.

146

Output generated by external programs can either be displayed on a clear
screen(in text-mode) or re-directed to a specified pop-up window. 'Designer’
permits the program calls can be tested straight away without having to
generate and compile the code. Designer's ability at executing DOS commands
is particularly useful in the context of providing the modeller with facilities
such as directory listings (possibly to a window), file copying/backup,

changing default directories, and so on.

Having designed the interface, the corresponding program can be
generated. The user is prompted for a file name. 'Designer' then generates the
PASCAL code and c.ompi.les it to 'EXE' format. A 'screen design' file is also
generated which can be used to re-load a previously designed interface. There
are two ways of modifying 'Designer' files. Re-loading the screen design file
or altering the Pascal code. The Pascal code can be customised by modifying the
'Designer' interface module. The module consists of a single procedure
containing a CASE statement. The CASE statement entries relate to window and
menu options. By inserting library commands and/or procedure and function

calls, particular menu options can be made to activate given tasks.

Having designed an interface, the modeller has to place the necessary
calls in the simulation code and/or expert system knowledge base to activate
the appropriate windows. The read and write statements used in the model also
have to be altered so as to redirect the I/0 to the appropriate windows. Graphs

can also be produced within windows using the appropriate library functions.

147

4.8 THE CODE LINKER

The use of modules complicates the process of generating the executable
program. The expert system module has to be linked to the simulation code,
'Designer' interface, and appropriate libraries. To simplify the process and
permit the inexperienced programmer to implement changes to the model, a

separate code linking program was written.

The user is first prompted to specify the simulation model file name, the
expert system knowledge base name, and the 'Designer' interface file name.
The interface file name can be omitted if 'Designer' is not being used. The
user has the option of specifying additional library names which may have been
created for use with the model. The files can also be compiled during the
execution of the program if this has not already been done. The code linker
generates the appropriate commands for the Microsoft compiler, generates the
executable program and then offers the modeller the option of immediately

running the model.

4.9 CONCLUSION

The development of the job-shop application in co-operation with the
'Instituto Nacional de Tecnologia' provided essential practical experience in the
difficulties associated with the alteration of model logic. The system also
highlighted the necessity for a wuser friendly interface permitting the
inexperienced modeller to use the model unaided and interpret output through

summary reports and dynamic graphical displays. The job-shop model was

148

implemented as an adaptable system that could be tailored for used in a range

of job-shop based manufacturing concerns.

Though designed as a re-usable system, the job-shop model did not
achieve the desired level of generality. To be of use in a wider context, the

simulation environment had to be applicable to any real-world situation.

Such requirement spurred the development of ESSIM, in which an expert
system is used for the specification of the logic applied by key individuals
involved in the control of the real-world environment. ESSIM is a development
environment for use by experienced modellers. ESSIM permits the creation of
models similar to that of the Job-Shop, with added flexibility given to the
modeller by permitting model changes through alteration of the expert system

knowledge-base.

The use of a commercial off-the-shelf expert system did not satisfy the
requirements of ESSIM because of the lack of adequate interfaces to 3rd
generation languages and the inability to customise the structure of the
knowledge-base. ESSIM's expert system module operates on the principle of a
purely backward chaining inference strategy in which the goal to be resolved
is defined using a Pascal function. The structure of the knowledge-base differs
radically from that of existing expert systems in that 'rule-sets' are used to
'localise' knowledge. Rule-sets typically define the knowledge pertaining to a
specified individual and improve the interpretability of the knowledge-base by
imposing limited structuring. The use of Rule-sets also improves the
performance of the expert system by limiting the search space during the

inference process. ESSIM's expert system provides other features essential to

149

the simulation task. Namely the sharing of variables with compiled Pascal code,

the ability to incorporate procedural code, and the output of inference traces.

ESSIM's simulation component makes use of the discrete event three-phase
approach to model development and is derived from the eLSE routines used for
teaching simulation at the LSE. To warrant the use of an expert system, ESSIM
models are necessarily éubstanﬁal in size. The model 'template' used in
conjunction with the eLSE routines was consequently modified so as to permit
model development on a modular basis (see section 4.5). Additional functions
were also devised permitting calls to the expert system. The development of
substantive models requires the use of different model building techniques,
particularly in the management of variables. The necessary disciplines in
interfacing the constituent code modules were consequently identified. The
changes made to the eLSE routines and the ability to construct models on a
modular basis represent a significant improvement on the existing model

development techniques.

The creation of an interface between compiled simulation code and an
interpreted expert system Kknowledge-base represented a considerable
challenge. The interface had to permit the sharing of common variables and
the transfer of control between procedural and declarative code. The necessary
generality of the interface resulted in the need for a code generator (the
CI-Generator) which would scan the declarations section of the knowledge-base,
identify the procedures and functions called from the expert system, and
thereby construct the necessary interface module in Pascal. The interfacing of
expert system and simulation model represents a significant improvement in the

power and flexibility of traditional simulation modelling. The development of the

150

interface should also be of interest to those working in AI. For instance, an
expert system could be tested using realistic input data generated by a
simulation model. More generally, the development of applications based on a
combination of declarative and procedural code could be of benefit to a range

of disciplines in which 3rd generation languages have traditionally been used.

The development of- the Job-Shop application highlighted the need for an
effective means of communication between application and modeller. The
development of the man-machine interface was found to be a complex process
requiring considerable expertise in low-level programming. State-of-the-art
techniques such as windowing, icon handling, and mouse control were complex
to re-produce and difficult to make use of during the development of models.
One of the aims in developing the ESSIM environment was to go further than
simply providing necessary libraries of routines but to actually help in the
almost equally complex process of using the code. The 'Designer' interface code
generator was consequently developed which allows the screen design to be
produced interactively. 'Designer' reduces the time normally associated with
creating complex user interfaces and permits the programmer to create a

graphical front-end to a simulation model with relatively little difficulty.

The development of ESSIM would have been difficult to achieve without
a practical context to which the developed theories could be applied. This
practical context was first provided by the job-shop application and later by

the container port model described in some detail in the following chapter.

151

CHAPTER FIVE

VALIDATION OF ESSIM USING A CONTAINER PORT MODEL

5.1 INTRODUCTION

Chapter four sought to describe the research steps undertaken in the

development of ESSIM and provided a detailed explanation of the physical design

of the eventual system. Chapter five will describe the process applied in

validating the ESSIM approach to modelling. These are broadly outlined in

figure 45(a).

(1)

(2

3)

(5)

(6)

Development of a model of a computer controlled container port using
conventional discrete event modelling tools.

Implementation of the container port model using ESSIM with decision rules
segregated within the expert system knowledge-base.

Validation of the ESSIM port model output by means of comparison with the
model output from the conventionai model developed as part of step one.

implementation and execution of a range of experiments to be used in
evaluating the ESSIM system.

Development of a further version of the container port model using conventional
programming techniques to replicate the functionality of the expert system.

The experiments identified and carried out in step four are repeated using the
different versions of the port model developed in steps one and six.

Formalisation of the conclusions drawn from the research stages and
experiments carried out in steps four and six.

£ £ 45 (3, rages /n the validation of the /M desii

The sections of this chapter broadly follow the research and validation

stages identified in diagram 45(a).

152

In section 5.2., the design and operational characteristics of the
container port to be modelled using ESSIM is described. The container port was
used in preference to the Job-Shop environment in assessing the ESSIM design
as there was a lack of operational knowledge on jobbing techniques. The Job-
Shop had been used in building the prototype system described in section 4.2
which used a forward cﬁaining expert system in representing jobbing rules.
Appendix A provides a fuller explanation of the functionality of the Job-Shop

system.

The details relating to the design and operational characteristics of the
container port were provided by a company called Highland Participants PLC.
Highland Participants wished to develop a model of a computer controlled, and
in parts un-manned container port which was to be constructed on the Isle of
Grain. The aim of the simulation study was to simulate the expected
performance of the port using alternative designs, equipment of varying
specification, and alternative control procedures. Once formalised, control
procedures could be extracted and later be integrated within the port's
computer control system. The container port project provided a factual real-
world modelling problem which could be used to realistically assess the ESSIM

approach.

Conventional modelling techniques were used in the development of the
first version of the container port model. Decision rules were later stripped out
and embedded within ESSIM's expert system knowledge base. By using constant
activity durations, the conventional model was then used as a means of

validating the output from the ESSIM version of the port model. Errors in the

153

ESSIM program code which would otherwise have been difficult to detect were

identified in this way.

The development of the second version of the port model under ESSIM
is described in section 5.3. In this section, particular emphasis is placed on the
describing the modular code construct which had to be adopted in implementing
the container port model -which is particularly substantive in size. Section 5.4
describes the knowledge-base component of the port model. Also described, are
the alterations made to the expert system which resulted from difficulties in
implementing certain management rules. The structure of the expert system
inference engine. itself and the syntax of the associated rules were explained in

chapter four.

The third major component of the ESSIM port model, the graphical user
interface, is described in section 5.5. The process applied in generating the
interface using the 'Designer' program is explained and the resulting modeller's
tools which include graphs, textual displays and pull-down menus are
described. In the context of the ESSIM container port model, the graphical user
interface is used in controlling the execution of the model, displaying simulation
results during model execution and in allowing the modeller to edit the expert

system rule-base.

Once the ESSIM version of the port model was complete, rigorous testing
was required to ensure that, for instance, the expert system inference process
was being executed correctly. Model validation was achieved by comparing the
output from the ESSIM model with that of the original port model which had

been entirely coded in Pascal. Constant activity durations were used to ensure

154

that at every time step, the behaviour of both models could be expected to be

identical. The validation of the ESSIM port model is explained in section 5.6.

Having completed and validated the ESSIM version of the container port
model, work commenced on formally evaluating the cooperative simulation and
expert system approach to modelling as encompassed in the ESSIM design. The
first step undertaken was'to devise a range of experiments which could be used
in assessing the impact of introducing changes to the expert system knowledge
base and simulation modules. These experiments can broadly be classed as

follows:

(1) Experiments involving changes to knowledge-~base rule parameters.

(2) Experiments based on changes to variable values within knowledge-
base rules.

(3) Introducing model changes which require the re-organisation of
existing decision rules or the introduction of new decision rules.

(4) Experiments requiring major model changes with specific reference

to the introduction of new entity cycles.

Section 5.7 is sub-divided to cover each of these class of experiments. Each
individual experiment is explained in detail and initial findings are reported

relating to the ease or difficulty with which model changes were implemented.

Defining and carrying out experiments using the ESSIM version of the
container port model is insufficient for the purpose of fully assessing the value
of the ESSIM approach to modelling. Further evidence was therefore sought by

comparing the results of the experiments with those obtained by repeating the

155

experiments using alternative modelling techniques. A further version of the
container port model was therefore developed in which the rules associated
with each port manager were hard-coded within individual Pascal functions.
These pascal functions were isolated from the main body of the simulation
program in order to replicate the concept of a knowledge-base representing
decision makers, independent from the simulation component depicting physical
entities, activities and fhe.ir inter-relationships. This new version of the

container port model is fully described in section 5.8.

The experiments described in section 5.7 which had been applied to the
ESSIM port model were repeated using the new version of the container port
models. The experiments were also applied to the first port model which had
been developed entirely using conventional three-phase discrete event routines.
The conclusions from these further experiments are reported in section 5.8.1.
The conclusions are based on a comparison of the accuracy, adaptability and

maintainability of the model representations.

From the comparison of the characteristics of each individual version of
the port model, conclusions are drawn as to the merits and limitations of each
of ESSIM's components. The Pascal simulation routines themselves are first
examined. Some unusual concepts had been introduced such as the use of
individual modules in representing each entity cycle. The value and limitation
of these new modelling concepts are discussed and reported in section 5.9.1.
A similar approach is taken in evaluating the benefits and limitations of the
expert system. The development of the expert system knowledge-base and
inference engine were based on existing theories in terms of the core principles

such as backward chaining. With respect to functionality, a number of fairly

156

radical design features were implemented, particularly in terms of the interface
to the Pascal language and the use of rule-sets. The benefits and limitations of
the expert system are discussed in section 5.9.2. The impact of the
user-interface and the benefit conveyed by the 'Designer' code generator are

similarly debated in section 5.9.3.

The conclusions to this chapter are presented in section 5.10.

5.2 DESIGN OF THE CONTAINER PORT

Several alternative port designs were considered by Highland Participants
for the Isle of Grain site. One of these designs was eventually used in creating

the ESSIM model and will now be described.

The following numerical data are averages used in the model. These

constants were used to simplify the validation of the model output.

A ship reaches each of the port's berths every 24 hours. The impending
arrival of a ship is notified to the port authorities 4 hours in advance. Each
ship takes 2 hours to dock and two hours to leave the port. There are two

berths.

Cranes are used to unload containers from the ships onto waiting Internal
Movement Vehicles (IMVs). One of the ship berths is served by two cranes, and
the other by three cranes. A crane takes 40 seconds to load a container from

a ship onto an IMV or from an IMV onto a ship.

157

OUTSIDE WORLD

GATE
GV GV GV

GVI GV IGV GV GV GV GV GV

n
n m1
<
- oM © 0 © © e E
5 . % % 5 ¢ 3 g
& 5 5%, . & & u 5 5 i
CENTRAL IMV DEPOT

MV MV IMv MV

BERTH 1 BERTH 2

SEA

FIGURE 43 LAYOUTOF THE CONTAINER PORT

Each ship is expected to carry the maximum load of 500 containers. 500

import containers are unloaded from each ship, these being replaced by 500
export containers. In some cases, ships may arrive empty to collect a
consignment. On arrival of a ship, all cranes are set to 'import', and the
process of unloading containers begins. Once all import containers have been
unloaded, the cranes switch to 'export' mode and the loading of export
containers onto the berthed ship starts. In the case of the berth which has
three ship cranes, only fwo of the cranes can work at any one time in 'export'
mode. There are other loading/unloading scenarios which provide management
with options in the optimisation of the ports operations. The scenario which is
investigated in this thesis is one in which import and export operations occur
in parallel. As space is cleared in the ship's hold, it becomes possible to load
export containers before all import containers have been unloaded. This is
represented in the expert system knowledge-base by rules which set the
number of ship cranes operating on imports/exports to being proportional to the
remaining workload. Hence, in the case of two ship cranes, the start condition
is that both cranes work on imports only. If the number of remaining import
containers falls below half the total import workload, one of the cranes is
shifted over to working on exports. When no import containers remain, both

cranes work uniquely on exports.

There are 100 IMVs that can transport import containers from a berth
to the storage area, and export containers from the storage area to a berth.
IMVs that are not currently in the system wait in a central depot. Once an IMV
leaves the depot, it becomes allocated to servicing one of the berths. An IMV
that has just delivered a container to a ship will either return empty to the
storage area or will wait its turn to collect an import container. If the cranes

are all working on exports, the IMV returns empty to the stack. In some

159

circumstances the relative number of IMVs servicing the berths may vary. For
instance, if no empty IMVs are available at one of the berths, an idle IMV may
be transferred from the other berth. If neither berth has any empty IMVs, an
allocation is made from the central depot. In both cases, the transfer of an IMV
takes 40 seconds. IMVs return to the central depot when both berths are

unoccupied.

A loaded IMV takes 60 seconds to travel from a berth to the storage area.
When empty, the same journey takes 30 seconds. An IMV takes 60 seconds to
travel empty from the storage area to a berth. When loaded, the IMV takes 120

seconds.

The storage area is divided into 10 sub-areas, each referred to as a
stack. An empty IMV returning to the storage area must collect containers for
the ship to which it has been allocated. Export containers are typically
scattered across all of the storage area. Consequently the IMV moves to the
stack at which the most export containers remain. If the ship is fully loaded or
no export containers can be found in the storage area, the IMV returns to the
central depot. Full IMVs moving towards the storage area are allocated

uniformly between the stacks.

An IMV which arrives empty at a stack may be re-allocated to service
another berth. This could happen in a situation where the export workload
for the ship currently being serviced is lower than the export workload of the
ship in the other berth. In such a situation, the empty IMV may be transferred
to another stack in order to maintain a balance in the number of export

containers per stack. Occasionally, empty IMVs waiting in the storage area may

160

return to a berth without collecting an export container. This may happen if
the total number of ship cranes working on imports exceeds the number of ship
cranes working on exports. Furthermore, the IMV may return to a different
ship if there happens to be an imbalance in the import workload at the two

berths.

A loaded IMV whic'h arrives at a stack, waits in a queue to unload. Once
free, the IMV will either return to the berth to which it has previously been
allocated, or wait its turn at the stack to collect an export container. The latter
tends to be the case, if the number of cranes working on exports exceeds the

total number of.cranes working on imports.

Gate Vehicles (GVs) are trucks which enter the port to either deposit
export containers or collect import containers. GVs move from the entrance to
the port to either one of ten bays associated with each of the stacks. GVs
begin arriving with export containers 4 hours prior to the arrival of a ship.
(Simultaneous to the arrival advance warning given by the ship). The arrival
process continues at approximately 12 minute intervals until the allocation of 500
export containers per ship is received. Only once all export containers have
been received do the empty GVs start arriving. Each arriving GV is associated

with a specific ship and is allocated to either an import or export task.

GVs carrying export containers travel to bays allocated randomly. An
empty GV moves to the bay of a stack where a container is known to be located.
When there are several bays to chose from, a selection is made which ensures
that the distribution of import containers remains balanced. A GV takes one

minute to move to a bay.

161

Each stack is serviced by a single Rail Mounted Gantry crane (RMG).
The RMG unloads import containers from IMVs and transfers these to free
positions in the stack area. At some later time, the RMG collects the same
container and deposits it on a waiting gate vehicle. The GV then leaves the
port. Exports are handled in a similar way. The containers are removed from
incoming GVs and transferred to free positions in the stack. When the ship is
ready to accept export containers, the RMG collects the appropriate containers

and deposits these one at a time on waiting IMVs.

IMVs and GVs compete for the allocation of RMGs. If import and export
jobs are both pending, then priority is given to the IMV. When idle, an RMG
waits in a position mid-way along the rail track. If a loaded IMV arrives at the
stack, the RMG moves from the idle position to the 'shore side' of the stack in
40 seconds. The container is then loaded onto the RMG in 60 seconds. The RMG
subsequently deposits the container in an available position in the stack, the
average time taken being 60 seconds (this includes the time taken to return to
the idle position). If an empty IMV arrives at the stack, the RMG collects the
allocated export container and moves to the 'shore side' of the stack in a mean
time of 60 seconds. The RMG then off-loads the container onto the waiting IMV
in 60 seconds and subsequently returns to the idle position in 40 seconds. The
converse situation is al_most identical. If a loaded GV arrives at a bay, the RMG
moves from the idle position in a mean time of 40 seconds. The container is then
loaded onto the RMG in 60 seconds. The RMG subsequently deposits the
container in an available position in the stack, the average time taken being 60
seconds. If an empty GV arrives at the stack, the RMG collects the allocated

export container and moves to the 'shore side' of the stack in a mean time of 60

162

seconds. The RMG then off-loads the container onto the waiting GV in 60

seconds and subsequently returns to the idle position in 40 seconds.

5.3 STRUCTURE OF THE SIMULATION MODEL

SIMULATION EXECUTIVE TOP-LEVEL’
MODULE

SHIP GATE VEHICLE MV STACK
MODULE MODULE MODULE MODULE

FIGURE 44 REPRESENTA T/ON OF MODEL CYCLES US/NG MODULES

The ESSIM model of the port is structured on a modular basis which
eases the process of writing the simulation by enabling the logical separation
of code segments. Each module can be compiled separately and tested using
data embedded in a 'dummy' module. Furthermore, in a PC environment, the
use of a modular construct permits programs to be created which exceed the

64K limit imposed by the MS-DOS operating system.

The characteristics of the port in terms of sequences of events and

estimated durations, were identified through repeated interviews with senior

163

management. Some of the collected information was subsequently formalised
using an Activity Cycle Diagram (ACD) (Hills[1971] and Clementson[1982]).
The components of the ACD, in terms of interrelated life cycles, represented
an ideal structure for the modularisation of the model. Consequently the ESSIM
port model consists of modules corresponding to the life cycle of the main entity
types. Namely, the ship, Internal Movement Vehicle(IMV), Rail Mounted

Gantry(RMG), and Gate Vehicle(GV) cycles.

PROCEDURE C Phase ;
Begin
Ship_Module_Cs;
Gate Module Cs ;
IMV_Module_Cs;
Stack_Module_Cs ;
End;

PROCEDURE Initialise_Model ;
Begin
Init_Ship_Module ;
Init_Gate_Module ;
Init_IMV_Module;
Init_Stack_Module ;
End;

FIGURE 45 SIMULAT/ON EXECUT/VE MODULE CALLS

The port model is controlled through a 'top-level' module which initialises
system variables and subsequently manages the calls to C-events. Unless major
changes are made to the logic of the model through the addition or removal of

entity life cycles, there should be no need to alter the code contained in the

164

top-level module. The content of the main routines are shown in figure 45. Calls
to the C-Phase procedures are managed by the simulation executive contained

in a separate library of code.

The ship cycle being one of the simplest modules will now be discussed
in greater detail. The general structure of the module is defined in figure 50.
The use of the eLSE routines for discrete event three-phase modelling are well

documented in Chew [1986]. These will consequently not be described.

Each module has a declaration of constants which define the upper bounds
of arrays used for the storage of simulation data (figure 46). These constants
typically refer to the maximum permissible number of various entity types. In
practice, the actual entity countis defined by the modeller in the expert system
knowledge base (see section 5.4). The use of dynamic data structures such as
linked lists would have eliminated the need for the definition of upper limits and
would in many cases have reduces the amount of memory used. Conversely, the
use of array structures simplifies retrieval of data, and improves model

performance.

CONST
Max_Berths = 4 ;
Max_Ships = 9 ;

FIGURE 46 CONSTANT DECLARATIONS

165

TYPE
Ship_Details = ARRAY[1..Max_Ships] OF RECORD ;
ImportLoad : Integer;

ExportLoad : Integer;
Berthed_At : Entity ;
End;

VAR [EXTERN]

Time : Integer4 ;

VAR [PUBLIC]
Address_For_Ship_Details : ADS OF Ship_Details ;

Ship_Cycle_Intertace : RECORD
Q Berths Occupied : Queue ;

Q Berths Completed: Queue ;
End;

VAR {Local variables}
Q_Ship_At_Sea, Q_Ship_At_Berth, Q_Free_Berth : Queue ;

FIGURE 47 MODULE DECLARATIONS

The introduction of a modular structure to the simulation model resulted
in a need to alter the way in which the programs would normally be written.
The individual modules that make-up the simulation model are physically
independent from each other. In other words, simulation data is local to a
module unless steps are taken to make certain data values shareable. This
imposes on the modeller a far greater level of discipline in structuring code and
data than would normally be required in a conventional discrete event simulation

environment. For instance, in figure 47, arrays in the ship cycle module which

166

need to be accessed by other modules need to be referenced using memory
addresses. In figure 47, the variable 'Address_For_Ship_Details' is an address
pointing to the start of an array defined as the 'Ship_Details' data type. This
address can then be used from within any of the simulation modules to access

the content.of the array.

The external variable command in figure 47 is uséd in specifying the
name of variables accessed within the module but declared in another module.
Finally, queues are defined as data structures which are local to individual
modules. This helps to minimise the amount of memory space used and prevents
accidental changes to queue structures from within other modules. The only
exception to this rule are queues which are defined within an interface. For
instance, in figure 47, two queues are defined within a record referenced by
the 'Ship_Cycle_Interface' variable. These queues are required by the IMV
cycle module. The use of an interface in defining the link between major
activity cycles clarifies the relationship between modules and serves to highlight

the queues which are modifiable from within multiple code segments.

At the start of the simulation run, data structures relating to the ship
cycle are initialised through a call to the 'Init_Ship Module' procedure (figure
48). THEREARE and MAKEQ are standard eLSE routines whereas FILLQUEUE
is specific to ESSIM. FILLQUEUE is used to add entities to a specified queue.
Interface definitions are also initialised at this stage. In the example of figure
48, the queues defined in the interface record are set equal to two equivalent
queues which are local to the ship module. The 'Queue' type is in fact the start
address of a linked list. Consequently, changes made to one of the 'queues’ is

automatically reflected in the other 'queue'.

167

PROCEDURE Init_Ship_Module ;

Begin
Initialise_Ships ; {Initialisation of arrays}
Initialise_Berths ; {Initialisation of arrays}

Thereare(N_Berths, Berths, 'Berths’) ;
MakeQ(QFreeBerth, 'QFreeBerth’, Berth) ;
MakeQ(QBusyBerth, 'QBusyBerth’, Berth) ;
FillQueue(Berth, N_Berths, QFreeBerth) ;
WITH Ship_Cycle_Interface DO
Begin
Q_Berths_Occupied := QBusyBerth ;
Q Berths Completed := QBerthDone ;
End;

End;

FIGURE 48 MODULE /WT/AL/SAT/ON

The syntax of B-Events and C-Events that comprise the body of each
module are intrinsically the same as those used in developing conventional
three-phase models using the eLSE routines. The principal differences are the
use of addresses in initiating B-Events using the ’'Schedule' command, (see
section 4.5) and the use of calls to the expert system. Figure 49 consists of a
listing of the code that comprises a typical C-event in the ship cycle module.
The body of the procedure consists of a single 'Schedule' instruction which is
executed as long as the WHILE condition is satisfied. In a conventional eLSE
model, the conditional statement would have consisted of a combination of
expressions which would be used in determining whether the event should
occur. In the case of the ESSIM example, 'StartShipArrive' is a function which
returns a boolean value. The GOAL command within the function is used in

transferring control to the expert system (see section 4.4.3). The parameters

168

to the function identify the goal to be resolved as 'StartshipArrive' and the
individual responsible for the decision as being the 'ShipManager'. The result
returned is located at a memory address identified by the variable 'Res'. The
use of an address for the function enables the expert system to return any

standard Pascal or user defined data type as the goal result.

PROCEDURE START Ship_Arrive At Sea :

FUNCTION StartShipArrive : Boolean ;
VAR Res: ADS OF Boolean ;
VARJ[Public] NumberOfShipsAtSea : Integer ;
ShipArrivalDue : Boolean ;
Begin
NumberOfShipsAtSea := QSIZE(QatSea) ;
IF QSIZE(QSeaOpen) > 0 THEN ShipArrivalDue := True ;
ELSE ShipArrivalDue := False ;
Res := GOAL('ShipManager\ StartShipArrive) ;
StartShipArrive := Res~ ;
End;

Begin
WHILE StartShipArrive DO

SCHEDULE(ADS END_Ship_Arrive_at_Sea, BEHEAD(QatSea), _Time);
End;

FIGURE 49 EXAMPLE C-EVENT

Although the expert system knowledge-base is interpreted and the
simulation module is compiled, variable values can still be shared as if the
complete model was coded in one language. Consequently, the two variables

which are defined as "Public" in figure 49 can be accessed from the expert

169

system knowledge-base as if these had been locally defined.

PROCEDURE START_Ship_Arrive_At_Sea ; {C-Event}
Check with the expert system if a ship arrival is due.
Add to queue 'AdvanceWarning’.

PROCEDURE START_Move_To_Port; {C-Event}
Give advance warning of arrival of ship.
Move towards the port.

PROCEDURE START_Dock_At_Berth ; {C-Event}
Check with expert system if a berth is free.
Start docking process by allocating the ship to a berth.

PROCEDURE START _Leave Berth ; {C-Event}
Check with expert system that work has been completed.
Ship starts to leave for the open sea.

PROCEDURE END_Ship_Arrive_At_Sea ; {B-Event}
PROCEDURE END_Move_To_Port ; {B-Event}

PROCEDURE END_Dock_At_Berth_For_Ship ; {B-Event}
PROCEDURE END_Dock_At_Berth_For_Berth ; {B-Event}
PROCEDURE END_Leave Berth_For_Ship ; {B-Event}

PROCEDURE END_Leave_Berth_For_Berth ; {B-Event}
PROCEDURE Display_Ship_Module_Output {Update screen display}
PROCEDURE Ship_Module_Cs {C-Event calls}

FIGURE 50 C & B EVENTS IN THE SHIP CYCLE MODULE

Figure 50 lists the procedures that constitute the ship cycle module.
Procedure names beginning with the 'Start' key-word are C-Events that
represent the start of an activity. Procedure names which begin with the word

'End' are time dependent B-Events which correspond to the end of activities.

170

WRITE TO WINDOW _ (— WINDOW NUMBER — * X COORDINATE

Y COORDINATE TEXT
TEXT STRING
EXAMPLES: WRITE_WINDOW_POS(3, 10, 4, 'IMPORTS') ;

WRITE_WINDOW_POS(3, 18, 4, ImportNumber) ;

FIGURE 51 PROCEDURE FOR OUTPUT D/SPLAY TO WINDOWS

Each of the entity life cycle modules also has a procedure responsible
for the display of output (e.g. Display_Ship_Module_Outputin figure 50). Each
of these procedures is executed once during the C phase. The screen display
is updated using commands from the Designer library which permit the
redirection of text to windows and the creation of graphical output. A typical

command is shown in figure 51.

PROCEDURE Ship_Module_Cs ;
Begin
Write_Window(2, 'SHIP_MODULE_Cs') ;
START_Ship_arrive_at_Sea ;
START_Move To Port ;
START_Dock At _Berth ;
START Leave Berth ;
IF ShipTrace THEN Display_Ship_Module_Output ;
End;

F/GURE 52 MODULE C-EVENT CALLING PROCEDURE

17

Each entity life cycle module has a procedure which calls the C-Event
routines in sequence, (e.g. Ship_Module_Cs in figure 52). The content of a

C-Phase procedure of the ship life cycle module is shown in figure 49.

5.4 STRUCTURE OF THE EXPERT SYSTEM KNOWLEDGE BASE

H ADDITION OF A 'GOAL’ COMMAND AND OTHER RELATED CODE TO THE
SIMULATION MODEL

H DEFINITION OF 'PUBLIC’ VARIABLES IN THE SIMULATION CODE.

HU DEFINITION OF 'EXTERNAL' VARIABLES IN THE KNOWLEDGE BASE.

E | DEFINITION OF °'LOCAL VARIABLES IN THE KNOWLEDGE BASE.

13 DEFINITION OF PROCEDURES AND FUNCTIONS CALLED FROM WITHIN THE
KNOWLEDGE BASE.

EU DEFINITION OF KNOWLEDGE BASE RULES.

I?i ALLOCATION OF RULES TO APPROPRIATE 'RULE SETS'.

EU TESTING OF RULE LOGIC.

FIGURE 53 DEFINITION OF NEW GOALS.

As described in section 4.4.1 of chapter four, the expert system
knowledge-base is divided into "rule-sets". In the context of the container port
model, these rule-sets are used to group together management rules relating to

a particular activity. The end result is a number of rule-sets which

172

conceptually mirror the modular structure of the simulation model. There are

consequently rule-sets for the 'Crane manager', 'IMV manager', etc..

The expert system knowledge base was developed on an incremental
basis. Sets of rules were created and the effect of these tested against the
original model. The additional of further sets of rules required the actions
identified in figure 53 to be carried out. These steps will now be described in

greater detail.

Write_Window(2, 'GOAL CraneJobs’) ;
ResultAddr := GOAL('CraneManager’, 'CraneJobs’) ;
CraneWork := ResultAddr ~ ;

The syntax of the GOAL command which is used to transfer control from
the simulation module to the expert system was described in section 4.3. An
example in the context of the port model is given in figure 54. Let us now
consider the GOAL instruction in figure 54 which forms part of the IMV cycle
module, and its corresponding expert system rules. The expert system goal,
'CraneJobs', identifies whether there is any outstanding work for a specific
crane. If the crane is idle, the expert system selects the next job to be carried
out and returns to the simulation model the necessary instruction and any
relevant data such as the duration of the activity. The expert system also

reports whether the crane should be re-allocated from working on import

173

containers to loading the ship with export containers.

There is no work to be carried out by the crane when the crane is non-operational.

There is work to be carried out by the crane when there is an IMV which can be
loaded or unloaded or a ship which can be loaded or unloaded and when the
crane is operational and in the correct mode.

The crane is in the correct mode when there is an IMV which can be loaded or a
ship which can be unloaded and the crane is currently allocated to working on
import containers.

The crane is in the correct mode when there is an IMV which can be unloaded or
a ship which can be loaded and the crane is currently allocated to working on
export containers.

There is an IMV which can be loaded by the crane when the crane has finished
picking-up an import containers and there is an empty IMV waiting.

There is an IMV which can be unloaded by the crane when the crane is not
carrying a load and is waiting idle and there is a loaded IMV waiting.

There is a ship which can be loaded by the crane when the crane has finished
picking-up an export container and there is a ship waiting.

There is a ship which can be unloaded by the crane when the crane is not carrying
a load and is waiting idle, but only on the condition that loading export containers
onto the ship is not a more urgent task.

The crane should give priority to loading export containers onto the ship when
there are no further containers to unload from the ship or when there were no
containers to unload in the first place. In the case of ship berth No.2, one crane
must always remain allocated to working on import containers.

Authorisation should always be sought prior to changing a crane’s mode of
operation from ’Imports’ to 'Exports’.

There is always a five minute delay in obtaining authorisation unless the current
time is between 1pm and 2pm in which case there is a 60 minute delay in
gaining authorisation.

FIGURE 55 (a) Samp/e operationalru/es.

operational rules in figure 55(a). The rules are generic to all ship berth

174

cranes.

The rules in figure 55(a) are insufficiently detailed for the purpose of
resolving the top level goal which is whether or not a given crane can commence
work on a particular activity. The rules listed are only those associated with
the 'Crane manager'. However, the activation of the crane requires a degree of
interaction with the IMV and SHIP cycles. Consequently, -in practice, some of
the rules contained within the 'Crane Manager' rule-set are linked to other
rules in the 'IMV Manager' and 'Ship Manager' rule-sets. For instance, the
process of loading an IMV with a container from a crane may require a level of
decision making by the 'IMV manager'. In certain situations, a decision may be
taken by the IMV manager to transfer an IMV from another queue or to retrieve
an IMV from a depot of idle IMVs. The full ESSIM knowledge-base is listed in

appendix B.

In some cases it may be best to place certain rules within the Pascal code
rather than the expert system knowledge-base. Certain rules which are
associated with physical constraints are one such example. With respect to the
rules listed in figure 55(a), it is best to check whether a crane is idle within
the Pascal code rather than determining this within the expert system. For
instance, a crane must always be idle before it can be allocated a new task and
so this basic fact may as well be hard coded as a condition to the execution of
the 'C' event in the Pascal model. Embodying this simple rule as part of the 'C'
event procedure eliminates the need to call the expert system when the crane

is busy, thereby improving the performance of the model.

175

[*] NumberOfShipCranes = 5 ; {Total number of ship cranes}

[
|
| RULESET CraneManager (INHERIT ImvManager, ShipManager) ;
!
4 [*] TimeToLoadShip = 40 ;

[*] TimeToUnloadShip = TimeToUnloadCalc ; {Call to Pascal functiion}
, [1] CRANEJOBS = False IF CraneOperational = False ;
' [2] CRANEJOBS = True WHEN ((_Loadlmv = True) OR (_Unloadimv = True)

“ OR (_LoadShip = True) or (_UnloadShip = True})
AND (CranelnCorrectMode = True) ;

! [3] CraneinCorrectMode = True WHEN (CraneOperational = True)

‘ AND ((CraneOnimports = True)
AND ((_Loadimv = True) OR (_UnloadShip = True)))
OR ((CraneOnimports = False)
AND ((_Unloadimv = True) OR (_LoadShip = True)));

[4] _Loadlimv = True WHEN (CranelLoaded = True) AND (EmptylmvToLoad = True) ;
. [5] _Unloadimv = True WHEN (CraneLoaded = False) AND (_FullimvToUnload = True) ;
[6] _LoadShip = True WHEN (Cranel.oaded = True) AND (ShiptoLoad = true) ;

: [7] _UnloadShip = True WHEN (_ChangeACraneToExports = False)
AND (CranelLoaded = False) AND (ShipToUnload = True) ;

[8] (_ChangeACraneToExports = True) AND (GetAuthorisation = True)
AND (TimeToGetAuthorisation = CalcFromCurrentTime) {Pascal}
AND (CraneOperational = False)
~ (_ChangeACraneToExports = False)
AND (GetAuthorisation = False)
IF (CurrentShipberth = 1) AND (NumCranesOnimports > 0))
OR ((CurrentShipberth = 2) AND (NumCranesOnimports > 1))
AND (NumimportsRemaining = 0) AND (NumTotallmportJobs > 0)

" [9] (AUTHORISECRANETOEXPORT = True) AND (CraneOperational = True)

, AND (CraneOnimports = False)

! . ~ (AuthoriseCraneToExport = False)

i IF ((CurrentShipBerth = 1) AND (NumCranesOnimports > 0))

; OR ((CurrentShipBerth = 2) AND (NumCranesOnimports > 1))
AND (NumimportsRemaining = 0) AND (NumTotallmportJobs > 0)

FIGURE 55 THE CraneManager’ RULESET

176

Figure 55 is a listing of the expert system rules which are used in
determining the next job to which a Berth crane is to be allocated. The rules
are equivalent to those listed in figure 55(a). The goal to be resolved is defined
within the 'CraneManager' Ruleset as the boolean variable 'CraneJobs'. The first
three statements in the CraneManager Rule-set, which have no associated rule
number, could have been defined within the Pascal code. The Advantage in
declaring certain variables within the knowledge-base is tﬁat the values can be
changed during repeated executions of the model without having to edit and re-
compile the Pascal simulation code. The same benefits can be achieved using a
Pascal data file, though in practice maintaining the values within the
knowledge-base is somewhat neater. (e.g. No additional coding is required in
declaring values in the knowledge-base and the expert system also validates the
syntax of any entries). The second statement in figure 55 defines the time
taken by a crane to load a container onto a berthed ship in seconds. The time
value can be changed manually prior to each new execution of the model or the
modeller can define rules which will have the effect of modifying the time value

based on the outcome of specific decisions.

The first step in defining the rules associated with the goal ‘cranejobs'
in figure 55, was to identify the variables that the expert system would require
in carrying out the inference. These variables, if not already accessible across
multiple code modules had to be defined as shared variable using the Microsoft
Pascal 'Public' identifier. Correspondingly, the same variables had to be defined
as external to the expert system using ESSIM's 'External' variable identifier
(see figure 38 in chapter 4). All other variables required during the inference
process were declared as 'Local' to the expert system. Algorithms that could not

be defined using ESSIM's restricted syntax were written using Pascal

177

procedures and/or algorithms and declared to the expert system using the
'Pascal rule' command (see figure 56). Other rules are necessary in resolving

the goal but are defined in the ImvManager and ShipManager rule-sets.

i
f
| EXTERNAL
[NumberQfShipCranes, TimeTolLoadShip, TimeToUnloadShip, CurretnShipBerth,
E NumCranesOnlmports,.......... 1 INTEGER ;

CraneOperational, Imvsldie, _LoadShip, _UnloadShip, _Loadimv, _Unloadimv,
! CraneOnimports,.......... : BOOLEAN ;

LOCAL
CranedJobs,........... : BOOLEAN ;

PASCAL FILE 'Rules.pas’ ;

| FIGURE EXPERT SYSTEM D. ARATION,

In figure 55, rule 1 specifies that there are no 'CraneJobs’' if the crane
is non-operational. The IF rather than the THEN condition is used. This is
because one could not deduce from the fact that a crane was operational that
there was consequently work for the crane to do. The inference engine attempts
to execute rule 2 if the goal cannot be resolved. Rule 2 specified that there is
work for the crane if an IMV or ship can be loaded or unloaded. A crane is
either allocated to import containers or export containers and so it is also
necessary to determine whether the crane is in the correct mode of operation
to permit it to carry out the next specified job. Rule 3 verifies if the crane is

in the correct mode of operation. The use of a WHEN type rule results in the

178

'CraneJobs' goal returning the value FALSE if the conditional statement cannot
be satisfied. The variables used in the conditional statement are declared as
'External' permitting the simulation model to determine their value. The use of
an underscore as the first character of the variable names indicates that the
variables should initially be set to have an undefined value. Consequently, in
attempting to satisfy rule 2, the inference engine in turn sets '_LoadImv’,
' UnloadImv', '_LoadShip', '_UnloadShip' and 'CranéInCorrectMode' as

sub-goals.

Rule 4 attempts to determine whether an IMV can or cannot be loaded.
The crane has to be working on imports and loaded with a container. Naturally,
an empty IMV must also be available. The 'EmptyImvtoLoad' variable is defined
as being local to the expert system. The inference engine cannot resolve the
rule until a value has been associated with the variable. Consequently, the
inference engine sets 'EmptylmvToLoad' as the third level sub-goal. IMVs are
the responsibility of the IMV manager and not the crane manager.
Consequently, the rules necessary in resolving the sub-goal are located in
another rule-set. To summarise these, an empty IMV can be loaded if an empty
IMV is idle in the queue at the berth, if an empty IMV can be transferred from

the other ship berth, or if an idle IMV is available in the central depot.

Having resolved the third level sub-goal 'EmptyImvToLoad', the inference
engine returns to the second level sub-goal which was '_LoadImv'. This sub-
goal can now also be resolved. Nevertheless the top level goal still cannot be
satisfied as a value is required for the '_UnloadImv' boolean variable. The
inference engine identifies rule 5 as a potential means of satisfying the new

sub-goal. Once again, the rules concerned are the responsibility of the IMV

179

manager and are located in another rule-set.

The remaining sub-goals of rule 2, namely '_LoadShip', ' _UnloadShip' and
'CraneInCorrectMode' are resolved by rules 6, 7 and 3 respectively. Rule 6
specifies that a ship can be loaded if the crane has already lifted a container
from an IMV and the ship is waiting in the berth. The duration for the loading
process is set in the second statement of the ruleset by associating a value with
a public variable. Rule 7 specifies that a ship can be unloaded if the crane is
waiting idle and is not carrying a load, the ship is at the berth and the crane
is not about to be re-allocated to exports. The last of these conditions is
resolved by rules 8. Rule 8 specifies that a crane working on imports should
change to working on exports once all import containers have been unloaded
from the holds of the ship. In the case of berth 2, only two of the three cranes

can work at any one time on export containers.

Rule 8 is an example implementation of a delayed decision. A crane can only be
re-allocated to export work once authorization has been obtained from a
manager. The crane operator establishes in principle that the crane should be
re-allocated. The shared boolean variable ' GetAuthorization' is then set to
true. The crane operator has to leave the crane booth to obtain authorization
from the manager and during this time the crane becomes non-operational. This
is achieved by setting the shared boolean variable 'CraneOperational' to False.
The time taken to obtain authorization is defined by the shared integer variable
'TimeToGetAuthorization' and is determined by the time of day. Hence, the
variable 'TimeToGetAuthorization' is set by calling the Pascal function
'CalcFromCurrentTime' which returns the appropriate duration by checking the

current simulation time. When control is returned to the simulation model from

180

the expert system, if the '_GetAuthorization' boolean variable was set to 'True’,
a 'B' event is scheduled to occur after a time period equal to
'TimeToGetAuthorization'. Until this time is reached, the fact that the boolean
variable 'CraneOperational' was set to 'False' ensures that the crane remains
idle and prevents the process of authorization from re-occurring. On execution
of the 'B' event, control is returned to the expert system and an attempt made
to satisfy the goal 'AuthorizeCraneToExport' which is fepresented by rule
number nine in figure 55. In rule nine, the manager simply verifies the same
model data as the crane operator and therefore always gives authorization. A
simple alternative is to introduce a random element to the crane operators
decision rules, thereby ensuring that a mistake is occasionally made in seeking
authorization from the manager. The manager would then overrule the initial

decision taken by the crane operator.

Rules are classified into rule-sets to increase the 'legibility' of the
knowledge-base and to improve expert system performance by limiting the
search space. In the case of the 'CraneManager’' rule-set, the 'Inherit' command
has been used to define two other rule-sets which can be used if the inference
engine cannot resolve the goal. The rule-sets correspond to each of the entity
life cycles to which a manager has been allocated. As the number of rules
increases and performance of the model degrades, the existing rule-sets can be

sub-divided into smaller units.

When rules are added to the knowledge-base, errors are typically made.
Syntax errors are trapped and reported by the part-compiler. Logical errors
are often detected when a goal cannot be resolved, through unusual behaviour

of the model, or through error messages generated by the simulation code

181

library. The validation of the model is described further in section 5.6

5.5 DESIGN OF THE MAN/MACHINE INTERFACE

ES knowledge-Base Filename

Run Length : 1000,

FIGURE 57 STARTUP MENU OPTIONS FOR THE PORT MODEL

A user friendly interface for the port model was seen as being essential
in visually validating model output and providing a common front-end for the
simulation and expert system components. The creation of the interface was

greatly eased through the use of the 'Designer' program which enabled the

182

display to be generated from an interactive user session. The basic screen
designs were produced and the associated code generated in under an hour.
Once the screens have been produced, the generated user interface has to be
linked to the simulation model. This is achieved by replacing the Pascal 'Readln'
and 'Writeln' commands with 'Designer' specific commands which re-route output
into specific windows. The process undertaken in producing a model's user

interface using 'Designer' is fully described in appendix E.

The interface is purely graphical with a set of user options displayed
on the top line (see figure 57). The mouse is used to point at one of the
options. Pressing the left mouse button results in either the display of a
pull-down menu or a pop-up window. When the port program is first initiated,
the modeller typically selects the 'Run simulation' option which result in the
successive display of two pop-up windows. The first of these is used in
specifying the desired duration of the simulation run, and the second for the
selection of the expert system knowledge-base. Several knowledge-bases can

be created for a single model, thus easing the process of experimentation.

The initiation of the simulation run activates the knowledge-base part
compiler. Variable declarations are extracted and procedure or function calls
identified. The rules declared in each of the rule-sets are then translated to
reverse polish and optimised as was described in section 4.4.3. At this stage,
any errors in syntax are reported to the modeller and an option displayed
allowing him to load the text editor. The display is divided into three windows
in which the appropriate text scrolls. the upper-most window lists the content
of the knowledge-base with additional text being revealed during the scanning

process. This ensures that errors are quickly identified as any syntax problems

183

will be located in the last line of the window. The centre window lists the
variables extracted from the knowledge-base. Any interruption in this process
indicates an error in memory allocation either resulting from the repeated
declaration of a variable name, or from the alack of RAM. Such errors, and the

status of the part-compiler are listed in the lower window.

mms
IMU 36 roes RULL to store H Mir
IMU 38 to return BWPIY to ship
IMJ 33 to return BWPIY to ship
IMU 33 to return EMPTY to ship
iU 3 RULL to store
Smer? 9Finishing at IVU side IVFCRTS 1 -> 10&
StackR1l 6Finishing at 1Mu side EXPORTS 1 ->
Shipcrane 5is nowidle INFCRIS Z-> 15
Shipcrane | is nowidle BRRIS Z ~>

Shipcrane 4 is now idle

D Wt
[‘] cailForNext&Event
B
WEnt
1z 1Z Display.Options

FIGURE 58 DEFAULT OUTPUT DISPLAY FOR THE PORT MODEL

If the part-compilation process ends without error, the simulation begins
and the screen display changes to that shown in figure 58. The upper-left
window is a general display for the status of the simulation. The two lower

windows are graphical displays of queue lengths for arriving trucks. The

184

current simulation time is shown in the upper right window. Immediately below
this is shown the number of import containers which have been unloaded from
the ships in berths one and two, and the corresponding number of export
containers which have been placed in the holds. The window in the lower right
hand corner is a trace of the C-Event procedures and goals that have been
resolved by the expert system. The trace facility is a useful means of
determining the location of errors which ESSIM does not report. The bottom line

of the screen display is used for displaying user instructions.

mmmumamm
TIME
TRACF
BS 00 OONTANERS
FIS OO0 ABA. TRE
EL 00 SHP ARRUAS
FIL 11
IMUidle
shipcidle STACK DISPLAy Z INFCRTS 1-> %
Grpitohp CPH DSAAS 1 WP 25 141
emptyiiwtoshi ~>
MIiirotostorg GRAPH DISPLAYS Z PARS Z-> 0
emptyinvtostore ES INFERENCE™ TRACE
ES TRACE TO FILE
50 BO callForMextBEuent
w
E.%iliForNextBEuent
1z Display.Options

elect Menu option

FIGURE 59 SELECTING ALTERNATIVE DISPLAYS FOR PORT MODEL OUTPUT

The modeller may chose to analyse the effectiveness of alternative port

designs or management rules through a visual comparison of system behaviour.
Graphical displays which attempt to depict the flow of materials are of general
interest but cannot provide the required level of detail. The approach used in
the port model was to make use of the window based displays to depict the
model in terms of queue lengths, entity status, and knowledge-base traces.
Pointing the mouse and clicking on the 'windows' menu option interrupts the
simulation and results in the display of a pull-down menu (see figure 59). The
status of the various options is displayed on the right hand side of the window.
Menu entries permit the display of further windows for the analysis of output
from the ship, gate vehicle, stack, and IMV cycles. Typical output is shown in
appendix G. Two of the menu options relate to the expert system. The 'ES
inference trace' menu option permits a trace produced by the expert system to

be displayed and updated dynamically during the simulation run.

The 'ES trace to file' options is used in conjunction with the expert
system 'Trace' command (section 4.4.1). A large amount of data is produced
by the expert system trace. The 'ES trace to file' option was therefore provided

to enable the user to switch the trace on and off during the simulation run.

The 'delay' option in figure 59 is used in slowing down the simulation in
situations where output is displayed too rapidly. The 'editor' option permits a
text editor to be used in modifying the expert system knowledge-base. With
experience, minor modifications can be made to rules during the simulation run

in assessing the effects of changes in policy.

186

5.6 MODEL VALIDATION

In creating the model of the automated container port, no real-world
system was available for the purpose of comparison and validation. The model
was consequently developed on an incremental basis such that system behaviour
could be validated by experienced port managers at each stage of the
implementation process. Tables relating to resources levelé and activity status
were displayed during the simulation run such that the port managers were able
to visually identify abnormalities. A simulation output trace was also used in
checking that scheduled events were occurring and that entities were correctly
added to queues. A trace of procedure names enabled the location of fatal
errors to be determined. Constant durations were also used in easing the
process of output validation. Many logic errors were detected through fatal

errors such as attempting to remove entities from empty queues.

Having created the standard three-phase model of the port, a new version
was implemented using ESSIM and its associated expert system. The first stage
consisted of re-creating the original model in terms of its apparent behaviour.
Rules that had been defined in Pascal were extracted and re-created using
ESSIM's knowledge-base syntax. This process highlighted the limitations of the
first version of ESSIM, and so modifications were made to improve the
functionality of the system. This ability to customise the expert system was
naturally of great benefit. The original model was then used in ensuring the

correctness of the ESSIM version.

187

Shipcrane 4 is now idle Da% Hr Min
Sibirane 115 v 1ot
Shlgcra ne _ 1 1s now idl

Rettieving IMU from poo 1dle 1mvs

Shlgcrane s 1s load 1ng IMPORTS 1 ->
Ret leving IMU from gool f idle 1mvs EXPORTS 1 ~>
shi crane 1oad 1ng IMPORTS I ~>
Rettieving IMU from pool Of idle 1mvs EXPORTS Z ->
Shipcrane” I is load1ng M 3

earch through subsequent Piles OAL CraneJobs
E f ouné g v g ar oagf
calllng function backchalnln% with Earameter XD

alue Of parameter SD Found to be missing in expression WrEnt _
Goal SD m1ss1ng & placed on stack GOAL cranejobs

FIGURE 60 REAL-TIME EXPERT SYSTEM TRACE IN A DISPLAY WINDOW

The ESSIM knowledge-base consists of individual rules which are defined
in any order, and which may or may not be, in some way related. The expert
system inference strategy follows a simple recursive backward-chaining pattern
which in practice is difficult to trace given the lack of any visible sequential
coding structure. The simplest means of verifying the logic applied by the
expert system is to scrutinise the traces that are produced and to consequently
confirm that the conclusions reached for each rule are correct, based on the

input data being used. Having validated the ESSIM version of the model,

188

subsequent modification of the knowledge-base through the modification of
existing rules or the addition of further constraints was comparatively simple.
Once again, inference traces were the simplest means of confirming the

correctness of conclusions reached (see figure 60).

The process of model validation was eased following a reduction in the
expected number of errors consequent to the application of strict standards in
the structuring of code. For instance, the use of modular programming
techniques permitted the isolation of blocks of code corresponding to each of
the major entity life-.cycles. The localisation of variables by direct association
with specific modules minimised the risks of misusing data stored in other
modules. The use of interfaces between modules also helped in formalising the
permitted interaction of queues used in different life-cycles. Hence,
modifications made to a life-cycle defined in one module were less likely to have

an undesirable effect on another module (see section 5.3).

The isolation of management rules within a knowledge-base, which were
previously embedded in pascal code, also eased the process of model validation.
Previously, all simulation code had to be read in finding and then checking the
coded logic. In fhe case of the ESSIM model, management rules are
appropriately grouped and can easily be checked against stipulated management

practices.

5.7 MODEL EXPERIMENTATION

One of the purposes in developing a simulation environment based on the

189

use of an expert system was to ease the process of refining management rules
through experimentation. Improved accuracy, maintainability, and adaptability

were seen as some of the eventual goals of the research.

The ESSIM model of the container port was used as a basis for further
experimentation through the enhancement and modification of management rules.
Alterations to rules were also made in changing process durations and assessing

the effect of changes in the number of entities within life cycles.

The complexity in implementing changes to expert system rules is largely
dependent on the impact these have on the Pascal simulation code. Modifications
to decision making rules which only involve the expert system are generally
simple to implement. Conversely, changes which involve major modification to
the life-cycle structure of the Pascal model are necessarily complex. In order
to adequately compare the process of implementing changes in conventional
three-phase simulation models and ESSIM, a number of experiments were staged
which gradually increased in complexity. These are fully reported in the

following sections.
5.7.1 Experimenting with rule parameters.

The easiest expe;iments to carry out consist of altering the parameters
to existing rules. No modification to variables need to be made other than a
possible re-classification of a variable from an integer to a real type. The
simulation experiment can then be initiated without the need to re-compile the
simulation code. The modeller can also repeat the experiment using different

rule parameters without ever leaving the ESSIM program. ESSIM incorporates

190

atext editor which permits the modeller to modify the interpreted expert system
rule-base and then immediately commence a new model execution. It is also
possible with a good knowledge of ESSIM, to interrupt a simulation run, modify
rule parameters and re-commence model execution from the point of

interruption.

OLD RULE

[1] (Imvsldle = True) AND (ReturnimvsToldle = True) ~ (Imvsldle = False)
IF (BerthedShip = False) AND (NumEmptylmvAtShip >= 5) ;

NEW RULE

[1] (Imvsidle = True) AND (ReturnimvsToldle = True) ~ (Imvsldle = False)
IF (BerthedShip = False) AND (NumEmptylmvAtShip > 0);

FIGURE 61 EXPERIMENTATION US/NG RULE PARAMETERS

The example in figure 61 specifies that IMVs should return to the central depot
when five or more empty IMVs are waiting at a berth which is no longer
occupied by a ship. The modified rule stipulates that IMVs should return to the
central depot regardless of the number of idle IMVs waiting at the berth. This
simple experiment is very easily conducted using the ESSIM expert system. In
aconventional three-phase modelling environmentthe modeller would have hard-

coded the rule within the Pascal model. In the case of a model which is

191

substantial in size and spread over several code modules, the modeller would
first have to locate the rule, re-compile the code module, re-link the modules
into an executable and then recommence the simulation run. A conventional
model could of course be designed to read data files which are loaded at run-
time, but unlike ESSIM, the modeller would have to decide in advance the exact
experiments which would be carried out such that the appropriate variables

were defined within the data files.
5.7.2 Experimenting with variable values within rules.

Another class of experiment which was also performed consisted of
altering characteristics of the model such as process durations and number of
entities in a cycle. If the simulation model is appropriately structured, more
major modifications can be made through the alteration of appropriate variable
values. Three examples are given in figure 62. The first of these statements
belongs to the 'ImvManager' rule-set and is used in defining the total number
of IMVs that can be operational in the IMV cycle at any one time. The modeller
can experiment with alternative upper limits on the number of IMVs by
modifying the statement and re-starting the simulation. No compilation of code
is required. Rule seven in the 'StackManager' ruleset defines the condition
under which the gantry crane in a stack should move empty to the ship side of
the storage area. The rule returns to the simulation model the activity
duration. Rule seven stipulates that the gantry crane can move from the idle
position to the ship side of the storage area in 40 seconds. A cheaper gantry
crane can however be purchased which takes 80 seconds to cover the same
distance. The ESSIM user can experiment with alternative durations without

resorting to altering and re-compiling Pascal code. Hence the effect on the

192

model of using the cheaper gantry cranes can easily be assessed. The modeller
can also define the activity duration as being subject to the outcome of a
decision rule. The third example consists of a definition of the number of stacks
in the storage area. All data structures used in the Pascal model are defined
using upper-limits which are set using variables. Such variables can be altered
from within the expert system knowledge-base. Altering the number of stacks
results in a physical change to the model in that appropriéte queues are either
added or removed according to the value associated with the 'NumberOfStores'

variable. Once again, re-compilation is not required.

b [7] (MoveGantryToShipEmpty = True) AND (JobToBeDone = True)

AND (_MoveGantryToLandSide = False) AND (TimeToMoveToShipEmpty = 40) }
| IF (_MoveGantryToShipSide = True) AND (NextShipJoblsAnimport = True) ;
|

5.7.3 Experimenting with rule structures.

The types of experiments which we have so far examined have simply

193

consisted of alterations to variable values or rule parameters which could have
been accomplished, although with relatively less ease and neatness, using a
conventional modelling environment. The benefits of the ESSIM approach to
modelling really emerge when one considers modifications of greater complexity
which involve the replacement of existing decision rules or the introduction of
new rules. In this context, the benefit of the ESSIM approach are centred on
the fact that decision rules are isolated from the resf of the model and
encapsulated within an expert system knowledge-base. Therefore, many
experiments based on decision rules can be conducted without recourse to often
substantive volumes of detailed low-level code relating to the description of the

physical components of the model and their interaction.

The modeller can alter the structure of a rule or group of rules without
having to modify the Pascal code so long as the changes are limited to one of

the following:

1. Simplifying a rule by removing some of the variables.
2. Altering the combination of operators used.
3. Adding additional external variables as conditions to existing rules,

on the condition that these variables are already declared within
the expert system knowledge-base.

4. Adding local variables which are unique to the expert system to
existing decision rules.

5. Creating new decision rules using local or external variables which
have already been defined within the expert system knowledge-

base.

194

f

' OLD RULE:

{[8] (_ChangeACraneToExport = True) AND (GetAuthorization = True) AND
(TimeToGetAuthorization = CalcFromCurrentTime) AND (CraneQOperational = False) ™~
(_ChangeACraneToExport = False) AND (GetAuthorization = False) \

IF ((CurrentShipBerth = 1) AND (NumCranesOnimports > 0)) !
OR ((CurrentShipBerth = 2) AND (NumCranesOnimports > 1))

AND (NumimportsRemaining = 0) AND (NumTotalimportJobs > 0) ;

e e

. NEW RULES: |

-

[8] (ChangeACraneToExports = True) AND (GetAuthorization = True) AND 1
(TimeToGetAutharization = CalcFromCurrentTime) AND (CraneOperational = False) }
IF (CurrentShipBerth = 1) AND ((Numimportsremaining < (NumTotallmportJobs / 2)) |
AND (NumCranesOnimports = 2)) OR ((NumimportsRemaining = 0)
AND (NumCranesOnlmports = 1)) ;

~ [9] (ChangeACraneToExports = True) AND (GetAuthorization = True) AND
(TimeToGetAuthorization = CalcFromCurrentTime) AND (CraneOperational = False) ™~
(_ChangeACraneToExport = False) AND (GetAuthorization = False) ‘
IF (CurrentShipBerth = 2) AND ((NumimportsRemaining < (2 * NumTotallmportJobs / 3)) ;
AND (NumimportsRemaining > (NumTotalimportJobs / 3)) AND (NumimportsRemaining > 0) !
AND (NumCranesOnimports = 2)) OR ((NumimportsRemaining = 0)
AND (NumCranesOnimports = 1)) ;

FIGURFE AL ING R /

The modeller can modify groups of rules without corresponding alteration
of the Pascal code on the condition that the defined goals can still be resolved.
In some cases, the expert system returns additional values such as process
durations that the simulation model requires. The modeller must ensure that
such values are not omitted. On the condition that no new shared variables
are defined, or pascal functions added, re-compilation of code can be avoided

and the modeller need not access the Pascal model code. Certain abnormalities

195

such as syntax errors in the knowledge-base are reported to the modeller
immediately prior to the execution of the model. Other inconsistencies, such as
the inability to resolve a goal are reported during model execution. The
modeller is then able to edit the knowledge-base or re-run the model in 'trace'
mode which reports on the results of each of the expert system's inference

steps.

The example rule given in figure 63 is taken from the 'CraneManager’
ruleset which was described in section 5.4. A complete listing of the rules can
also be found in fig_;ure 55. The rule operates in conjunction with the other
rules in the 'CraneManager' Ruleset and originally stipulated that all import
containers should be unloaded from the holds of the ship prior to loading the
consignment of export containers. In the case of the second berth which has
three cranes, only two of the cranes can operate on export containers at any
one time. An alternative scenario that was investigated was the possibility of
allowing import containers to be unloaded from the ship whilst other cranes
carried out the reverse operation of loading export containers from arriving
IMVs. In this case, all three cranes working at berth 2 were allowed to operate
simultaneously on loading ships with export containers. At the start of the
simulation, all cranes are allocated to imports. The number of cranes
subsequently re-allocated to exports is in proportion to the remaining workload.
In the case of the berth with two cranes, once half the ships consignment of
import containers remains, one of the cranes is re-allocated to exports and the
loading process begins. Once all import containers have been unloaded from the
ship, the remaining crane changes to working on exports. Two additional rules
were introduced into the 'CraneManager’' ruleset in implementing the alternative

scenario and are shown in figure 63. No modification of the simulation code was

196

required and the experiment was consequently carried out without having to

re-compile any of the modules or indeed accessing any of the Pascal model code.

Model changes may be initiated that require both the introduction of
further rules and associated modifications to the simulation code. For instance,
the modeller may wish to add further decision rules to a knowledge-base
ruleset, the conditional statements of which contain simulaﬁon model variables
which have not previously been accessed by the expert system. Such changes
are relatively simple to implement. The modeller must declare the necessary
Pascal variables relating to the required model data as being of type 'Public'.
This permits the data values to be accessed from other Pascal code modules and
the expert system. The Pascal module containing the variable declarations is
then re-compiled. By adding the variable name to the list of variables declared
in the expert system, the modeller may then make use of the new variable

values within rules.

A more complex task is the introduction of new entity cycles within the
simulation model and the corresponding addition of model logic through the use
of further expert system rules. Modifying the structure of a simulation model
is a testing task and was highlighted as a limitation of existing modelling

techniques in section 2.2.4.

A complex experiment was carried out to evaluate the consequence of
having to introduce detailed changes into the ESSIM simulation model of the Port
and corresponding rule-sets. In the original port model the lay-out of which
was depicted diagrammatically in figure 43, Rail Mounted Gantry cranes are

used in transporting containers within the Stacks in the port storage area.

197

RMGs have the limited ability to load and off-load waiting Internal Movement
Vehicles (IMVs) and Gate Vehicles (GVs), moving containers to and from their
storage positions. Export containers allocated to specific ships and import
containers are sent at random to one of the stacks within the storage area.
Whereas the workload at each of the stacks is roughly balanced, the spread of
containers may be inefficient if the majority of containers for one ship end-up
in one stack and those for another ship in another stack .. The RMGs can only
handle one container at a time and so the more evenly spread across the storage
stacks are the containers for a specific ship, the more efficient is the ship
loading process as the movement of containers may then take place in parallel.
The new experiment to which the ESSIM port model was subjected, consisted in
the addition of further entity cycles with the aim of redressing the problem of
optimising the spread of containers between stack storage areas. A new type
of vehicle, known as a lateral Movement Vehicle (LMV) was added to the model.
An LMV operates in each of the storage area stacks and has the ability to shift

containers from one stack to either of the two immediately adjacent stacks.

VAR QStackVehicleldle : ADS OF ARRAY[1..MaxStores] OF QUEUE ;
e2 : Entity ;

QStackVehicleldle := ALLMQQ(Wrd(MaxStores*2)); {Allocate RAM}
e2 := StackVehicle ;
FOR i := 1 TO NumberOfStores DO
BEGIN
MakeQ(QStackVehicleldle™ [i], 'QStackVehicleldle’,e2);
FillQueue(e2,1,QStackVehicleldle ~ [i]);
e2 := e2”.next ;
END;

FIGURE 64 DEFINING QUEUE STRUCTURES FOR [MVs

Lo o ——— e —

198

Queues relating to each of the LMVs were defined within the Stack module
of the Pascal simulation program. A Corresponding C and B event were also
added describing the process of shifting containers between adjacent stacks.
The first step was to define the queue structures and initialise these by

requesting the necessary memory and filling the queues. The relevant code is

show in figure 64.

PROCEDURE START_LMV_MOVE ;
BEGIN
Write_Window(2,'Start_Lmv_Move’);
FOR i := 1 TO NumberOfStores DO
BEGIN
FOR ShipCode := 1 TO NumberOfShips DO
IF BalanceStacks THEN
BEGIN
IF TransfExpToRhtStack THEN TransferExportToRightStack ;
IF TransfExpToLftStack THEN TransferExportToLeftStack ;
IF TransfimpToRhtStack THEN TransferimportToRightStack ;
IF _TransflmpTol_ftStack THEN TransferimportTolLeftStack ;
END;
END;
END;

PROCEDURE END LMV MOVE ;
BEGIN
Write_Window(2,’End_Lmv Move’);
IF GlobTrace THEN
BEGIN
OutTxt := Wrent(Current);
CONCAT(OutTxt,’Stack Vehicle is now idle’);
END Write Window(3,0utTxt);

END Addto(Back,QStackVehicleldle~ [Current ~ .attrl,Current);

FIGURE 65 C & B EVENT ROUTINE FOR THE LMV CYCLE

The C and B type events that were added to the stack module are shown

in figure 65. 'BalanceStacks' is a Pascal function from which the call to the

199

expert system knowledge-base is initiated. Actions that need to be taken are
then passed back to the simulation model by the expert system and are

described in the form of boolean shared variables (e.g._TransfExpToRhtStack).

FUNCTION BalanceStacks : Boolean ;

BEGIN
Write_Window(2,'GOAL BalanceStacks');
ResultAddr := GOAL('StackManager’,'BalanceStacks');
BalanceStacks := ResultAddr™ ;

END;

FIGURE 66 GOAL CALL TO THE EXPERT SYSTEM

The content of the 'BalanceStacks' function is shown in figure 66. The
'Goal' function is used to call the expert system 'StackManager' ruleset and
check whether the appropriate LMV should be activated. The return value is
in the form of an address which is read and associated with the boolean function
return value. The corresponding expert system rules are listed in appendix C.
An addition ruleset known as 'LMVmanager' was created which is linked with
the 'StackManager' ruleset through the use of the 'Inherit' command (see section
4.4.1). The use of a separate ruleset eases the interpretation of the

knowledge-base rules whilst retaining the association between LMVs and Stacks.

As was demonstrated, the actions necessary in modifying the simulation
and expert system code are relatively simple. Having initiated the changes,

the modeller can carry out further experimentation by altering the expert

200

system rules. These further experiments may no longer require of the modeller

to access the Pascal code.

Had the modeller been introducing the LMV cycles into a conventional
three-phase mode, the complexity of the work would have been aggravated as
a consequence of the lack of code modularity. Code modularity is introduced at
two levels within the ESSIM port model. The Pascal code ié itself broken down
into individual modules representing each of the major entity cycles. Secondly,
the expert system knowledge-base is itself a code module into which decision
rules are isolated. Additionally, what proves to be of significant benefit in the
ESSIM model is the fact that the process of introducing changes follows a strict
sequence with the layout of the code strictly controlled through the segregation
of logic between simulation model and expert system knowledge base. This has
a clear impact on the maintainability of the model and the subsequent

adaptability in altering rule conditions during the experimentation phase.

5.8 THE ALTERNATIVE PORT MODELS.

Prior to the implementations of the ESSIM version of the port model, a
simplified model was developed solely using Pascal code. Rules specifying the
conditions under which activities should start were defined using IF-THEN
conditions and boolean statements. These rules were specified as part of each
of the C event procedures. The example in figure 67 shows the structure of one

such typical procedure.

The ESSIM port model was then implemented by first extracting the rules

from the pascal code and replacing these with calls to the expert system. The

201

isolated rules were added to the expert system knowledge-base and later
enhanced through the specification of more detailed conditions. Comparison of
the two models indicated that modifying the expert system knowledge-base was
in many cases simpler than altering Pascal code. These comparisons are

discussed in section 6.3.

FUNCTION Decision: ReturnVal;

Begin
End;
PROCEDURE C1 ; PROCEDURE Cf;
Begin Begin N
IF Condition THEN IF DéCISlon THEN
Begin Begin
End; End;
End; End;

Fiaure 67 Reoresentina decision tasks in Pascal
i

The conventional Pascal based model of the port and the ESSIM version
are based on different principles. The purely Pascal based version permits the
development of significantly sized models but provides the user with limited
scope for the specification of the conditions associated with the start of an
activity. The ESSIM port model rectifies the balance by providing a means of
specifying goals which can be resolved using a bespoke expert system shell.

Some researchers including Alty[1984], have voiced doubt as to the

202

effectiveness of the expert system approach, arguing that a similar level of
functionality could be achieved using a conventional 3rd generation language.
A third version of the port model was consequently developed with the aim of
providing a similar level of functionality as the ESSIM model, but coded entirely
in Pascal. The work involved in developing this further example was felt to be
justified given that a more detailed comparison of the approaches could then be

made.

The principle applied in developing the new model was to replace defined
goals by Pascal functions which would return values to the simulation model in
a similar way to. the expert system. These functions were then placed together
in a single module, thus providing a similar logical separation as was achieved
between the Pascal model and expert system knowledge-base. The content of the
ESSIM knowledge-base can be found in appendix B. The Code for the Pascal
version of the expert system knowledge-base is included in Appendix D. The
variables used in the Pascal implementation are the same as those that were
used in the expert system knowledge-base. This was possible because of the
implementation of Pascal data types as part of the knowledge-base syntax. The
Conversion of rules to Pascal was in itself a relatively simple task given that
ESSIM's production rule syntax was replaced by the Pascal IF-THEN-ELSE
instruction. The sequential nature of code execution in Pascal represented a far
greater problem. The rules were consequently sequenced such that the premises
to each rule could always be resolved. The lack of an equivalent to ESSIM's
'Inherit' command also meant that repetitively used rules had to either be

duplicated across the code or placed individually in functions.

203

5.8.1 EXPERIMENTING WITH THE MODELS.

The port model developed purely in Pascal using the eLSE routines will
be referred to as the 'Original model'. The other two versions will be described

as the ESSIM and 'Function' based models respectively.

The experiments déscribed in section 5.7 were repeated using the other
model versions in order to identify the merits and limitations of each of the
approaches. The experienées in developing each of the models and the results
of the model comparisons were then used in assessing the thesis proposition.
The conclusions drawn from the experiments carried out using each of the three

modelling environments are reported in the following sections.
Comparing the adaptability of the model representations:

It has been proposed that combining simulation and expert system
techniques could provide the modeller with a simulation environment which is
better suited to the task of experimenting with alternative operational policies.
Evidence was sought by carrying out a number of model experiments on each
of the three versions of the port model. These experiments can broadly be
described as follows: 1) Changes to rule parameters. 2) Changes in operational
policies reflected through the introduction of new or modified rules. 3)
Modifications to the model representation of the real-world involving the

introduction of a new activity cycle and related operational policies.

In carrying out the experiments discussed in section 5.7, it was found

that the port model written using ESSIM was generally the easiest to modify for

204

the purpose of evaluating alternative operational policies. There are several
reasons for this, but the single most predominant factor is that in ESSIM, the
decision rules that form part of operational policies are defined in a highly

structured fashion.

In the original Pascal model, operational policies were represented as multi-
level conditional statemeﬁts which preceded each of the "C" events. The rules
which in the real-world would have been applied by different decision makers
were combined and sequenced such that all eventualities could be considered.
Sequencing decision rules in this way made it very difficult for the modeller to

introduce changes which reflected alternative operational policies.

In the ESSIM version of the port model, a statement was inserted prior
to each "C" event which effectively transferred control to the expert system
module. Within the expert system knowledge-base, decision rules were grouped
into rule-sets which were named according to the job function of the decision
maker. Rule-sets were then linked together using "Inheritance", in order to
either reflect hierarchical management structures or situations in which multiple
decision makers would act together. Operational policies of this nature were
termed as "Cooperative decision making" and discussed in section 4.4.2.
Deducing conclusions from the defined rules was achieved using an inference
engine which eliminated the need to pre-sequence and interlink individual rules.
The experiments carried out in section 5.6 showed how straight forward it could
be to alter operational policies. Firstly, the decision rules were isolated from
the rest of the model. Secondly, altering an operational policy could be as
simple as identifying the appropriate rule-sets and adding or replacing rules.

In contrast, implementing the same changes to the conventional Pascal model

205

could require the modeller to alter the sequence of rules in a multi-level
conditional statements which in some cases could extend to over three pages

of code.

The "Function" based version of the port model was built in an attempt to
overcome the limitations of the conventional Pascal model. Pascal functions were
used in an attempt to fe—create the functionality of the rule-sets used in
ESSIM. The "Knowledge-base" written using Pascal functions is listed in
Appendix D. The approach failed in three key respects. 1) The language
syntax was unnecessarily complex. 2) The need for complex multi-level
conditional statements could not be eliminated. 3) Each defined function could
require as many "Begin" and "End" statements as there were actual rules. In
many cases it was simpler to repeat a rule rather than enclose it within a

function statement.

The third class of model experiment to which the three versions of the
port model were subjected, consisted in introducing a new activity cycle and
related operational policies. The complexity of carrying out such drastic model
changes was of interest, as ESSIM was only designed for the purpose of
experimentation with operational policies. It was concluded in section 5.7.3 that
ESSIM simplified in only some small respects the introduction of the additional
"Lateral Movement Vehicle" entity cycle. The main benefit was that the
separation of operational policies from the rest of the model representation acted
as an additional level of code modularity. The introduction of further modularity
forced the modeller to take a more structured approach to the alteration of the
model. The first step was to create the Pascal representation of the activity

cycle. Only once this had been completed would the modeller turn to the

206

definition of the operational policies within the expert system knowledge-base.

Comparing the accuracy of the model representations:

The ESSIM environment is used for the purpose of developing models of
real-world systems in which complex operational policies need to be
represented. The ESSIM‘ approach is meant to support this task by providing
a modelling technique which results in a better representation of the real-

world problem.

The experiments which were reported in section 5.7 highlighted the fact
that the problem of representational accuracy is in fact very closely related to
that of model adaptability. As was reported in the previous section, the
experiments served to demonstrate that ESSIM decision rules were relatively
adaptable because the ESSIM knowledge-base was a better representation of
operational policies than the multi-level conditional statements used in the

equivalent Pascal model.

The ESSIM development environment was designed specifically to address
the issue of representing complex operational policies which could in turn
necessitate the modelling of "Cooperative decision making". The conventional
Pascal modelling approach catered for the representation of operational policies
only by providing a general purpose 3rd generation programming language. The
key differences between ESSIM and the Pascal and Function based models will

now be discussed in turn.

The first fundamental structural difference between the modelling

207

approaches is that ESSIM groups decision rules into rule-sets according to the
job function of the decision maker. In the Pascal model, no distinction is made

between the rules applied by one decision maker from another.

The second major difference is that ESSIM attempts to mimic the way
real-world decision makers can act together in instigating an operational policy.
The term, "Cooperativé decision making" has been used in this thesis to
reference such an approach. The rules defined within a given rule-set may be
a representation of the totality of a decision makers knowledge in the context
of a given job function. In practice, the decision maker's "Knowledge" may
prove insufficient for the purpose of resolving a given problem. In the same
way, the rules contained within a rule-set may prove inadequate during an
attempt to resolve a goal. In the real-world, the decision maker may consult
another decision maker and thus bring into play a further base of operational
expertise. In ESSIM, "Inheritance" is used to bring together otherwise
disassociated rule-sets and thus represent this interaction between decision

makers.

There are other ways in which Inheritance can be used to represent
real-world situations. For instance, a rule-set may contain sufficient information
for a given goal to be resolved. However, in the real-world a manager may
oversee the decisions taken by a decision maker and over-rule or influence the
course of actions. In ESSIM, the rule-set associated with the decision maker can
be linked using Inheritance to the manager's rule~-set. Under the normal course
of events, a given goal would be resolved without the inference engine scanning
the manager's rule-set. In order to represent the manager's influence within the

ESSIM model, a sub-goal can be associated with the main goal. Once the main

208

goal has been resolved, the sub-goal is triggered. The sub-goal also needs to
be resolved before control returns to the simulation model. The sub-goal can
only be resolved by a set of rules defined by the manager, the purpose of
which is to validate and possibly modify the intended actions of the decision

maker.
Comparing the maintainability of the model representations:

The maintainability of a model is related to the ease with which changes
that have occurred in the real-world system can be reflected within existing
code. The maintainability of the model is of particular importance in situations
where changes are expected in the real-world environment during the life of the
model. Such changes may encompass modificationsv to physical aspects of the
real-world such as plant lay-outs, or may simply consist in changes to

operational policies.

The key differences between the ESSIM model and the two alternative
Pascal models in the context of code maintainability, is that ESSIM places

greater emphasis on modularity and the representation of operational policies.

The concept of modularity extends to several of the ESSIM components.
At the broadest level, ESSIM introduces modularity by splitting the
representation of operational policies from the rest of the model. Changes in
operational policy can then be introduced with potentially little or no effect on
the simulation model component. Conversely, some situations permit
modifications to be made to physical aspects of the model without effecting the

expert system knowledge-base.

209

The expert system knowledge-base is also based on a modular structure,
with rule-sets being used to encapsulate the decision rules applied by each
decision maker. Once again, changes may be made to the rules applied by one
decision maker without there being any parallel requirement to modify the rules
applied by another decision maker. In the context of the Pascal model,
operational policies areV stipulated in the form of multi-level conditional
statements and may consist of decision rules applied by several decision makers.
Making model changes that reflect long-term modifications in operational policies

may consequently be more complex to introduce.

The simulation model component of ESSIM was also divided into separate
modules. Rather than create a single block of code, a modular version of the
Pascal programming language was used so that the individual model activity
cycles could be isolated from each other with appropriate interfaces defining
their interaction. The introduction of code modularity to Pascal based three-
phase simulation modelling was found to be of benefit in the context of code

maintenance as the overall structure of the model was improved.

The experiment detailed in section 5.7.3. sought to evaluate the impact
of introducing a new activity cycle and related operational policies to the
existing versions of the port model. This experiment required modifications to
be made to both the ESSIM simulation module and expert system knowledge-
base. As was discussed earlier in this section, the use of a modular construct,
allowed the introduction of a major model change using a highly structured
approach. The first step consisted in the creation of a new simulation module

containing the code representation for the "Lateral Movement Vehicle" (LMV).

210

This new module was then interfaced to the rest of the model. The final step
was to create the appropriate expert system rule-sets which were to represent

the operational policies relating to the LMV.

To summarise, the benefits and Ilimitations of each of the model

representations are given in figure 68.

BENEFITS
Fastest code execution.

Single language syntax.

LIMITATIONS
Operational policies represented as multi-level conditional statements
Difficult to read the code used to represent the operational policy
May be difficult to alter the code relating to an operational policy
Difficult to code rules which span across multiple activity cycles.

BENEFITS

Rule-sets permit operational policies to be defined using a modular construct
Inheritance permits the representation of Cooperative decision making
Incremental development of logic is easier to achieve.

Modelling environment well suited for experimentation with operational policies
The ESSIM expert system provides a better representation of operational policies.
The expert system was relatively easier to use than the Pascal representation

LIMITATIONS
Slowest code execution.
Expert System syntax is limited
For simple groups of rules, the expert system is an overhead

FUNCT/ONBASED MODEL

BENEFITS
Fast code execution
Implemented entirely in Pascal.
Single module used for the specification of decision rules.

LIMITATIONS

Difficult to code decision rules.
Hard to alter decision rules.
Need to compile and link code.
Additional variables required.

Figure 68 Comparision ofmodelling techniques.

211

5.9 CONCLUDING THOUGHTS ON THE ESSIM MODULES
5.9.1 OBSERVATIONS ON ESSIM'S SIMULATION MODULE.

The template which is used for developing Pascal models for ESSIM was
specifically designed for use in a modular coding environment. The development
of the port model high]i.ghted the benefits of adopting a structured modular
approach. The port model is a realistic replica of a potential real-world
environment but is by no means an exceptionally complex and detailed
representation. The port model consists of approximately 3000 line of code which
points to the need for a modular coding approach. The use of modules was
found to ease the development of the port model by allowing the implementation
process to be broken down into the creation of a series of sub-models each
representing one of the major entity cycles. The use of interfaces between
modules was seen as a means of formalising the interaction between entity cycles
through common queues. ESSIM's modular construct supports the development
of a model by a team of programmer working simultaneously on the
implementation of each of the entity cycles. Once the model has been coded, the
modular approach is found to simplify the wvalidation and correction of the
models behaviour by easing the process of identifying the location of logic
errors. Experimentation with the model is also simplified because of the greater
ease with which model changes can be implemented. Finally, ESSIM's modular
approach permits the creation of models which exceed the limit of 64K on code
size imposed by the DOS operating system (In ESSIM, each module can be 64K
in size, with FAR addressing being used to extend the addressable memory to

1MDb).

212

The Pascal simulation routines provided with ESSIM are based on those
provided in the eLSE simulation library (Chew[1986]). Modifications were made
to reduce the size of the library and improve the performance of the routines.
In particular, the use of addresses rather than numbered B event routines was
found to both improve the legibility of the code and simplify the structure of

the simulation executive.

The provision of dynamic displays is a particularly useful feature of
ESSIM models, permitting a modeller to gain some insight into the potential
behaviour of the real-world system without having to necessarily resort to
output analysis techniques. These dynamic displays are created using a library
of screen handling functions which are used by the programmer during the
development process. The graphics routines, coupled with the 'Designer’
program were found to reduce the time scale required to complete the model by
limiting the effort required in coding the user interface. In the case of the port
model, the dynamic output displays were found to ease the process of locating
errors in the simulation code and provided a useful focal point in discussing the
behaviour of the model with port management. During the experimentation
process, the output displays provide the modeller and potentially the actual
managers with an easy to understand summary of the status of queues and

processes in each of the ports constituent entity cycles.

The ESSIM approach to modelling has some minor limitations. In
particular, the use of a modular approach results in a processing overhead
during the compiling and linking of the code. For the larger modules, the
process of creating an executable image can take up to 10 minutes. However,

when changes are made to a single module, other modules need not be

213

re—compiled. The error reporting capabilities of the Microsoft compiler are also
fairly crude compared to the Turbo Pascal compiler. The use of a third
generation language also results in some inconvenience given the additional
complexity of the language syntax over a bespoke modelling tool. Conversely,
the use of Pascal does confer some benefit resulting from the additional
flexibility conveyed by a general purpose language. This is particularly

apparent when considering the range of data structures available.

The development overhead in using a third generation language in
specifying model logic could be overcome using a similar approach to current
CASE (Computer Aided Software Engineering) tools for database design. The
programmer specifies the model design by using a graphical drawing tool to
create an Activity Cycle Diagram. The design is validated in real-time by rules
which, for instance, check that queues are always separated by activities.
Queue names and activity durations are specified by using a mouse to select the
appropriate screen icons. The simulation model code is then generated by
following the basic principles that permit the translation of ACDs into Pascal

code.

ESSIM as an environment is a relatively complex system which would
benefit from a more powerful development environment. A mainframe based
system, whilst potentially improving performance, would not provide the degree
of flexibility in terms of windowed and graphical output as is possible with the
current generation of PCs. However, workstations which provide the benefits
of both processing power and enhanced graphical output would resolve many
of the limitations of the current ESSIM system in terms of execution speed and

memory capacity.

214

Finally, an improved means of interfacing to ESSIM's expert system

could

be of benefit. Presently, the expert system returns to the Pascal model values

associated with solution to goals through intermediate Pascal variables.

means currently exists to ensure that all expected values are returned.

No

This

results in additional validation work to ensure that the model behaves as

expected. A potential means of overcoming this problem would be to associate

with each goal, a list of variables names through which goal results are

returned. The simulation model would stop and a warning given if a return

value was found to be missing.

BENEFITS
Model template specifically developed for modular programming.
Use of modules necessary for large simulation models.
Interface between modules formalises the interaction between cycles.
Memory addresses used for the activation of B procedures.
Library of graphics routines for the creation of dynamic displays.

LIMITATIONS
Modularapproach results in a processing overhead.
The use of a3GL reduces productivity during model creation.

Figure 6 9 ESSIM's Simulation modu/e.

The benefits and limitations relating to ESSIM's simulation module are

summarised in figure 69.

5.9.2

given

OBSERVATIONS ON ESSIM'S EXPERT SYSTEM.

The development of the ESSIM expert system was a considerable

the need for close integration with the compiled simulation

215

task

code.

Originally, the use of a commercial off-the-shelf product had been envisaged
which would have considerably simplified the creation of the modelling
environment. If an existing product had been used, the inability to customise
the expert system would have limited the functionality of the environment and
reduced the benefits that ESSIM confers over conventional modelling

techniques.

The ESSIM expert system is customised for simulation modelling. The key

differences are as follows:

1) The ESSIM expert system supports the definition of local and "Public"
variables. Public variables are variables which can be shared with other
programs, in this case a Pascal simulation program. This sharing of data was
an essential pre-requisite to the development of models involving a simulation
model and an expert system. The integration of the ESSIM expert system with
the Pascal language is not limited to the sharing of variables, but also extends
to the ability to activate Pascal procedures and functions. C and Fortran
routines can also be called through the use of intermediate Pascal functions.
During the development of the port model, this feature was found to be
particularly useful as arithmetic computation is more effectively carried out

using a procedural language.

2) Rule-sets are used to group decision rules according to the function
of the decision maker. The use of rule-sets brought about a number of
fundamental changes to the way in which operational policies are represented
within a simulation model. In conventional Pascal models, decision rules applied

by different decision makers are linked together as part of a multi-level

216

conditional statement. In ESSIM, the use of rule-sets permit a far more
structured definition of operational policies and hence, supports the modeller
in building complex representations. Chapter three highlighted the complexities
of representing operational policies. The new term, "Cooperative decision
making" was then introduced as a means of describing operational policies which
are enacted through the participation of two or more decision makers. The
ESSIM expert system useé the concept of "Inheritance" to support the modelling

of cooperative decision making.

3) "Inheritan-ce" is a technique used in the ESSIM expert system
knowledge-base to link together otherwise unrelated sets of rules relating to
each of the decision makers. In section 5.8.1, we saw that Inheritance could be
used as a simple method of representing hierarchical management structures.
There are other interesting benefits to using Inheritance. For instance, an
operational policy may require the involvement of more than one decision maker,
each represented by a different rule-set and each responsible for the
management of activities in different parts of the real-world system. In
conventional three-phase discrete event modelling, the modeller is encouraged
to represent the real-world system as individual but nevertheless interlinked
activity cycles. In ESSIM, the modeller is encouraged to represent operational
policies as individual but nevertheless interlinked rule-sets which together may

span across multiple activity cycles.

There are other peripheral benefits to the ESSIM expert system. For
instance, in the context of ESSIM, the simulation model typically submits goals
to the expert system on an almost continuous basis. Consequently, the expert

system had to be capable of resolving goals within a short time delay if the

217

simulation is to operate within real-time. The implementation of rule-sets
reduced the search space in resolving goals submitted by the simulation model.

This dramatically improved the performance of the expert system.

Much time was devoted to the development of the expert system.
Nevertheless, some weaknesses exist. For instance, Pascal procedures and
functions can be activatea from the knowledge-base but parameters can only be
passed by creating common variables. The integration of Pascal routines into
knowledge-base rules would have been simplified had it been possible to use the
Pascal language syntax for the passing of parameters. More generally,
comprehensive error reporting would have helped in the detection of some

errors which manifested themselves in unusual ways.

Finally, it must be said that the original aim was to produce an expert
system which used a very simple syntax. In the context of the modelling of
operational policies, a simple syntax helps greatly in understanding the effect
of the constituent decision rules. The need to create an effective interface with
the Pascal language and the gradual addition of further functionality to the
expert system resulted in a syntax considerably more complex than had
originally been intended. A revision of the language syntax would partially
alleviate the problem. The use of a Natural Language Programming (NLP)

approach could also be considered.

The benefits and limitations of ESSIM's expert system module are

summarised in figure 70.

218

BENEFITS
Expert system customised for simulation.

Expert system highly modularised using 'Rule-sets’

‘Inheritance’ used to model 'Cooperative Decision Making’

Decision rules may pan across multiple activity cycles.

The use of rule-sets limits the search space during the inference process.

The expert system is highly integrated with the Pascal language.

LIMITATIONS

Fewer functions available than in commercial expert systems.

The expert system syntax is more complex than originally intended.

Figure 70 ESSIM’s expert system moaule.

5.9.3 BENEFITS AND LIMITATIONS OF THE USER INTERFACE.

ESSIM's user interface developnient tools were felt to be of significant
benefit in the implementation of the port model and the subsequent
interpretation of the output produced. Models produced using ESSIM are
intended to produce output which can be scrutinised at run-time by managers,
who, with the assistance of the modeller may evaluate the effectiveness of
alternative operating procedures. Consequently, the displays must provide
an adequate means of visualising the changes in status through time of the

real-world system being modelled.

The creation of a user friendly interface which provides facilities for

219

the graphical representation of model output is a time consuming and complex
process. The 'Designer' interface generator was found to be useful means of
creating an initial lay-out for the menus and windows. The benefit of using
'Designer' was that the interface could be created interactively which permitted
the visualisation of the screen design without the need to re-compile code when

changes were made.

At the programming level, the provision of a library of window and graph
manipulation routines was found to aid the modeller by removing the need to
consider the low-level screen manipulation code normally associated with the
development of applications for PCs. Combined with the use of 'Designer', the

routines help to minimize the overhead of controlling screen output.

As far as the modeller is concerned, the simulation models developed
using ESSIM and exemplified by the port model, are easy to use and effective
as a means of communicating information. In particular, the concurrent updating
of windows enables different parts of a model to be displayed simultaneously.
The use of the mouse was also found to simplify the selection of menu options
and was noted as being particularly useful in the context of ESSIM models in

that the modeller typically continuously switches between alternative displays.

Whereas ESSIM eases the process of developing an effective user
interface, there remains a significant overhead in code writing and the
subsequent validation of output. The use of batch runs in which output is
restricted to printed text remains a cruder but simpler means of producing a

trace of a simulation run.

220

A concept which extended beyond the scope of this thesis and yet would
have been interesting to explore is the possibility of using a process referred
to as 'Interactive Programming1 in specifying the screen design and the
associated simulation code. The principles applied in creating 'Designer' could
have been taken a step further by providing a means of generating simulation
pseudo-code from an ACD design. This code could then have been integrated
into the windowing environment and tested on an interpretive basis. Once
satisfied with the final prototype, the associated Pascal code could then have

been generated.

The benefits and limitations of ESSIM's user interface are summarised in

figure 71.

BENEFITS
Ease of use.
Provision of code generator.
Mouse support.
Multiple windowed output.
Customisable.
Supportforgraphics.
Speeds up development of interface.

LIMITATIONS
Requires programmer for interfacing work.

Additional flexibility would be useful.
Overhead in code size and overhead compared to batch runs.

Figure 71 ESSIM§ userinterface.

221

5.10 CONCLUSION

The container port project provided a suitably complex problem to which
the ESSIM model development environment could be applied. The three-phase
discrete event approach was found to be ideal for the implementation of a model
of a container port given the natural breakdown of operations into constituent
entities, queues, and acﬁvities. The involvement of a company which had an
interest in providing suitably experienced managers, enabled realistic scenarios
to be enacted through the addition and modification of knowledge-base rules.
The details of the port were obtained through a series of informal meetings in
which the design principles and expected management procedures were relayed.
Subsequent documents were provided which listed expected performance
figures. In terms of providing a realistic test-bed for the ESSIM environment,
the involvement of a company with a real problem to resolve proved of major

benefit.

Because of the number of entities, queues, and activities required in
the model, and the overhead resulting from the use of an expert system, a
module based version of Pascal was used which enabled the implementation of
a program 1lMbyte in size. The use of a modular construct led to the need to
modify the three-phase simulation routines and to create a new model template
in which life-cycles are represented in separate modules. The use of a modular
language also led to the need to introduce new disciplines in code writing. For
instance, module interfaces were seen as a necessity in preventing changes
introduced in one module from adversely effecting the logic defined in another
module. The definition of shared variable also had to be handled with care in

preventing illegal use or modification of defined values. The implementation of

222

a simulation environment based on Pascal object modules is considered as being
essential to the creation of effective models of real-world problems using PCs.
It is unlikely that sufficient detail could be built into a model which is limited
by the 64K DOS barrier. In the case of ESSIM in which the Pascal model is
supplemented by a knowledge-base interpreted by an expert system inference
engine, the use of modules is essential given the amount of code that need to
be introduced. Indeed, .further detail could not be added to the port model
without moving to an alternative operating system on PCs, or by shifting

development to a workstation environment.

In section 5.4, the structure and content of the expert system
knowledge-base was described. Examples were also given as to the steps
required in adding new rules to the system. The 'CraneManager' rule-set was
then examined in some detail, tracing the inference process and conclusions
drawn by the expert system. The process of developing the knowledge-base
for the port model highlighted design errors in the original system. These
errors, such as numerical overflows were trapped and corrected by comparing
the ESSIM model with the original model in which rules were integrated within
the Pascal code. The expert system trace facility was also used in isolating

errors by manually scrutinising the logic applied by the inference engine.

Visual inspection of the behaviour of the container port is one of the
means available to the modeller in carrying out his analysis. The display is
window-based, experience in the manipulation of output having been gained
from investigating state-of-the-art techniques in the handling of graphics on
PCs. The use of windows and pull-down menus eases the process of

manipulating the model and permits the switching of screen output to visually

223

inspect the behaviour of components of each of the port's entity life-cycles. In
the past, the benefit of creating windowed user interfaces had to be offset
against the overhead in designing screen lay-outs and writing the necessary
code. The provision of libraries of standard routines went some way towards
simplifying the process, but the need to repeatedly compile and modify a
program to achieve the correct relative positioning of screen output still
represented a major ovefhead. With ESSIM, the use of the 'Designer' program
generator was found to permit the creation of an effective windowed interface

within a time span normally associated with producing simple textual output.

The process of validating the port model was described in section 5.6.
Validation is particularly essential in the context of simulation given that a
model can behave as would have been expected and yet contain invalid
assumptions. The lack of a real-world container port with which model
behaviour could be compared complicated the validation process. Given the size
of the model, many errors had been expected. In practice, the use of a modular
construct combined with the strict rules that had been imposed during the
development process had limited the scope for errors. The source of the errors
that were made and which were detected from unexpected model behaviour were
however often difficult to locate. This is because an error in one module can
manifest itself as unexpected behaviour in another module and the process of
tracing the source can often be quite complex. In this respect, the trace
facilities that were integrated into the port model proved to be of significant
use. Validating the expert system knowledge-base was simpler than had been
expected. Expert systems use hidden inference strategies which make the
normal process of manually tracing through code impossible. Nevertheless, the

fact that the rules were isolated from any other code simplified their individual

224

verification on a one-by-one basis. The conclusions drawn by the inference
engine, and the results returned to the Pascal model were also easily checked
from the output trace which to some extent can be considered as an automation

of the manual trace.

In section 5.7, the process of experimenting with the port model was
described. The types of experiments that could be conducted were broadly
divided into four types: 1) Modification of rule parameter. 2) Altering
characteristics of the model such as the defined number of entities and process
durations. 3) Altering the structure of existing rule(s) and/or adding further
rules associated with existing goals. 4) Adding new goals for which new rules
have to be defined. The examples that were given demonstrated that the types
of changes listed in 1-3 could, in many cases, be carried with ease and without
modification of the Pascal code. The fourth type of change, consisting of adding
new goals was far more complex and required a detailed understanding of the

underlying simulation code.

In section 5.8, the ESSIM model was compared to two alternative versions
of the Port model. The first of these consisted of a straight-forward
three-phase model. The second ;uas a version of ESSIM in which the expert
system knowledge-base was replaced by a 3GL module in which rule-sets were
represented as Pascal functions. The experiments described in section 5.7 were

then repeated which demonstrated that the ESSIM model generally offered

superior functionality over the alternative approaches.

225

Finally, section 5.9 reviewed the benefits and limitations of the individual
constituents of the ESSIM modelling environment, namely, the three-phase

component, the expert system and the graphical user interface.

226

CHAPTER SIX

CONCLUSION

6.1 REVIEW OF THE THESIS PROPOSITION

The proposition put forward in this thesis was that the use of expert system
techniques in the context of simulation, may provide an improved means of
structuring the representation of operational policies as enacted by the real-
world decision makers. Such operational policies may require the involvement
of multiple decision makers, each working at different levels within a

hierarchical management structure.

6.2 THE RESEARCH RATIONALE

Discrete event simulation languages predominantly focus on the model
representation of physical entities and associated activities. O'Keefe, Belton &
Ball[1986] amongst others have noted that there exist limitations in using such
languages in representing and subsequently experimenting with the decision
tasks normally associated with the management and control of a real-world

system.

The use of Artificial Intelligence in the context of simulation modelling

has been investigated from a number of angles by several researchers. For

instance, attempts have been made at using expert systems during the model

227

building process and for the purpose of interpreting model output. (Such work
is of great interest in the context of this thesis and is discussed in chapter
two). Flitman & Hurrion [1987] undertook an ambitious project to create a two
way link between a simulation model and an AI language. This thesis has
followed on from this innovative work by examining the possibility of using an
expert system in the representation of complex operational policies and for the

use of this representation in subsequent experimentation.

6.3 REVIEW OF THE RESEARCH STRATEGY

The methodology applied to the research described in this thesis has

encompassed the following stages:

- A literature review.

- The formalisation of the proposed approach.

- The implementation of a prototype system.

- The development of experimental models using the prototype
environment.

- The evaluation of the thesis proposition using the experimental

models.

In chapter two, a review was conducted of the two areas of research
applicable to this thesis, simulation and artificial intelligence. In the first part
of the chapter, simulation modelling and artificial intelligence were examined
separately. The second half of the chapter examined the relationship between

simulation and AI and subsequently explored the practical work carried out by

228

other researchers.

The literature review was an essential first step in developing an in-
depth understanding of the two fields of study and of the work that had
already been carried out by other researchers in linking simulation and AI.
Having completed the literature study, attention returned to resolving the core
issues relating to the thésis proposal. Chapter three consequently began with
an analysis of the nature of decision making and sought to address such issues
as the representation of hierarchical management structures. Having assessed
the problem of representing operational policies within a simulation model, the
chapter continued by proposing a potential approach to the implementation of
a simulation environment in which the issue of representing operational decision

making is specifically addressed.

Chapter four reported the development of a prototype simulation
environment (ESSIM) which explores and addresses the technical problems of

a linkage between a simulation model and expert system.

The prototype system was used to create a model of an un-manned
container port and a number of experiments then carried out based on
alternative management rules of varying complexity. Two equivalent models
were also developed, one based on a standard simulation framework, and the
other seeking to replicate the functionality of the expert system within a purely
procedural context. The experiments using alternative management rules which
were carried out using the prototype model were repeated using these new
models and evidence sought in respect of the suggested potential benefits of

the prototype system. The suggested potential benefits identified in the early

229

stages of the thesis can be summarised as follows:

Model Adaptability: It has been proposed that the use of an expert
system in the context of simulation modelling, may provide an improved
means of representing operational decision making. Furthermore, it has
been suggested that the expert system approach could provide the
modeller with a sixﬁulation environment which is better suited to the task

of experimenting with alternative operational policies.

Model accuracy: The ESSIM modelling environment was developed for the
purpose of experimenting with operational policies. In doing so, the
modeller is expected to define decision making tasks with greater
attention to detail than would normally have been expected during a
conventional modelling exercise. Consequently one could expect that the
modeller's work will result in a model which is a better representation

of the real-world problem.

Segregating modelling activities between two modules, one representing
the physical system components and the other operational management, was seen
as potentially providing further advantages. Such a division could be achieved
by retaining a separation between the simulation language and Artificial
Intelligence components and implementing a general communications interface
between the two. The possible peripheral benefits of a conceptual division were

identified to be as follows:

230

Ease of use: Expert Systems use a high level language syntax akin to
fourth generation languages. In addition to this, expert systems use a
declarative approach to the definition of rules which removes from the
modeller the need to pre-define an execution path. Instead, the expert
system uses a generalised inference strategy to control execution. Expert

systems have consequently been referred to as being "Easy to use".

Maintainability: The maintainability of a model is related to the ease with
which changes that have occurred in the real-world system can be
reflected within existing code. The maintainability of the model is of
particular importance in situations where changes are expected in the
real-world environment during the life of the model. Splitting the model
representation between a conventional simulation language and an expert
system can be viewed as an extension of the concept of code modularity.
The introduction of a further level of modularity may ease the process
of making model changes, which in turn could have an impact on the

maintainability of the model.

6.4 CONCLUSIONS FROM THE MODEL EXPERIMENTATION

In chapter five, a number of experiments were described which sought

to compare the functionality of a model built using ESSIM with that of a

conventional Pascal model. The experiments were later repeated using another

Pascal model in which an attempt was made at replicating the functionality of the

expert system by encapsulating decision rules within Pascal functions. The

conclusions from these experiments can be summarised as follows:

231

Model adaptability: As was reported in section 5.8, it was found that the
model written using ESSIM was generally the one which was the easiest
to modify for the purpose of evaluating alternative operational policies.
The principal reason for this was that decision rules in ESSIM were
defined in a far more structured fashion. This structuring of operational
decision rules has been referred to in this thesis as "Cooperative decision
making". It is assumed in ESSIM that operational policies may be enacted
by more than one decision maker. Decision rules are consequently
grouped together and identified by the name or function of the decision
maker. For the purpose of instigating an operational policy, the rules
applied by each of the decision makers may then be brought together.
The most senior decision maker may potentially have a veto over any final
decision and so his rules would override those of the other decision
makers. Such a structural formalism for the representation of operational
decision making was difficult to replicate using either of the alternative
Pascal models. An example of the type of code which would result from

such an attempt is shown in Appendix D.

Model accuracy: As was discussed in section 6.3, it was hoped that the
use of ESSIM would result in models which were better representations
of the real-world problem. In fact, the issue of model accuracy turns out
to be closely related to that of model adaptability. In the previous
paragraph, the point was made that the adaptability of the ESSIM model
was a consequence of the fact that in ESSIM, decision rules are defined
in a far more structured fashion. This structuring of decision rules is

what provides an improved representation of the problem being modelled.

232

The key differences between the ESSIM model of the port and the two
equivalent Pascal models are as follows: 1) Decision rules relating to
different decision makers are isolated within separate "Rule-sets". 2)
Associations may be established between "Rule-sets" in order to reflect
the influence of management in the process of decision making. (e.g. A
manager may override or simply contribute to the decision taken by a
lower ranking empioyee) . 3) Decision rules are defined individually with
an inference engine providing the mechanism by which problems are
resolved. In the case of the Pascal models, decision rules had to be

defined as multi-level conditional statements.

Ease of use: The ease of use of a model is principally related to the
language syntax. The expert system used in ESSIM was specifically
written for the purpose of simulation modelling. A fourth generation
language was used and additional concepts introduced such as "Rule-
sets" and "Inheritance" which were aimed at providing a clearer and more
structured code lay-out. With respect to the model experiments detailed
in Chapter five, such factors gave ESSIM a clear advantage over the
equivalent Pascal models in the context of the "Ease of use" of the
modelling environment. This advantage was of course limited to model
experiments carried out using the expert system knowledge-base. There
were a number of other peripheral benefits in using the expert system;
1) The interpreted nature of the system meant that re-compilation could
often be avoided. 2) Unlike the Pascal models, decision rules could be
defined individually and the problem of resolving a goal left to the
inference engine. 3) The isolation of the decision rules into a separate

knowledge-base helped in providing a clearer understanding of the

233

function of the rules.

Maintainability: As was discussed in section 6.2, the maintainability of a
model is related to the ease with which changes that have occurred in the
real-world system can be reflected within existing code. In conventional
3GL programming, the issue of maintainability is in part related to the
structure of the cbde in terms of modularity and syntactic simplicity. It
was concluded in section 5.8 that those same issues have an effect on the
maintainability of a simulation model. ESSIM extends the concept of code
modularity to simulation modelling in a number of respects. 1) In ESSIM,
the conventional Pascal model is separated from the decision rules which
are located in an expert system knowledge-base. 2) The ESSIM expert
system knowledge-base is itself divided into "Rule-sets" which contain
the rules applied by individual decision makers. 3) The Pascal simulation
code used in ESSIM is divided into separate code modules each containing
the code relating to the major entity cycles. The model experiment
described in section 5.7.4 required the introduction of a new entity cycle
and associated decision rules. Implementing the same changes to each of
the three port models highlighted the benefit of a high degree of code
modularity. Introducing the model changes was relatively easier to
achieve using the ESSIM version. The reason for this is that the use of
code modularity in ESSIM introduced a requirement for a higher level of
discipline in carrying out the model changes in a step-by-step fashion.
In the case of the Pascal models, it was far easier to make a mistake in
introducing the model change and subsequently much harder to find

where the error had been made.

234

6.5 SUMMARY OF THE RESEARCH ACHIEVEMENTS
6.5.1 Principal achievements

The research presented in this thesis sought to create a modelling
environment in which thé principle emphasis is on an adequate representation
of operational policies for the purpose of model experimentation. Therefore, the
key issues were as follows: Firstly, to identify which aspects of the decision
making process had to be represented within the model. Secondly, to identify
a modelling approach which was well adapted for the purpose of representing
operational decision making problems and which would be appropriate for the
purpose of model experimentation. These two steps were successfully completed
and as a result, a number of important contributions were made in this field of

study.

The key contribution of the research was the introduction of the concept
of "Cooperative decision making" which was fully described and discussed in
chapters four and five. The expert system knowledge-base is used as a
repository for the decision rules applied by selected operational decision makers
involved in the day to day running of the real-world system. The research
study identified that operational policies often required the cooperation of
several decision makers, each controlling a different real-world activity. In
other cases, the existence of a hierarchical management structure could mean
that a decision taken by one individual could be overridden by another decision
maker. Such issues were addressed through the creation of "Rule-sets" and the

use of "Inheritance". "Rule-sets" were used for the purpose of segregating the

235

rules applied by each decision maker. The use of "Inheritance", permitted the

creation of a logical link between otherwise separate groups of rules.

The introduction of the concept of "Cooperative decision making" brings
about a number of fundamental changes to the way in which the modeller builds
and subsequently uses the simulation model. Firstly, decision rules are no
longer represented as é sequence of conditional statements but require the
modeller to represent each operational policy in terms of a goal and related sub-
goals. Secondly, the modeller is encouraged to view decision making problems
as potentially panning across several activities within a cycle or across multiple
activities within different cycles. For instance, an operational policy may
require the involvement of more than one decision maker, each represented by
a different rule-set and each responsible for the management of entities in

different activity cycles.

The testing of the thesis proposition required a comparison to be carried
out between the proposed approach and a conventional modelling environment.
The research consequently encompassed the development of a prototype
simulation environment. This prototype system called ESSIM was successfully
developed and consisted of two closely interlinked components, a three-phase
discrete event module and expert system. Two code generators were also
provided to ease the process of model building. The first of these was used to
interactively specify the graphical user interface. The second generator scans
the expert system knowledge-base and creates the necessary 3GL code to permit

variable sharing between the simulation and expert system modules.

236

6.5.2 Subsidiary achievements

Other more minor achievements ensued during the course of this thesis. These

can be classified into four categories:
6.5.2.1 New approaches to expert system design

As we have seen, the rule-based expert system developed as part of
ESSIM, incorporates the concepts of "Rule-sets" and "Inheritance". The use of
rule-sets permitted decision rules to be grouped according to the name of the
decision maker or by job function. "Inheritance" permitted the inference engine
search space to be extended across more than one rule-set. Indirectly, these
features helped alleviate two of the classic criticisms of expert systems which
are: (1) that the random ordering of rules significantly reduces the legibility
and consequent interpretation of the content of the knowledge-base. (2) that
expert systems execute slowly. By limiting the backward-chaining search to the
rules contained in a specific rule-set, it was possible to substantially improve

the speed with which the inference process could be carried out.

The level of integration achieved between a 3GL program and interpreted
expert system should be of interest to AI researchers. Again, one of the
criticisms of expert systems is that their lack of ability at operating in a
procedural context and carrying out complex arithmetical operations prevents
their use in a wider context. The ESSIM expert system physically shares the
same variable addresses as are defined in the 3GL code, thereby permitting full

use of the 3GL variable definitions and providing almost seamless integration.

237

By being able to trace the addresses of 3GL procedures and functions, the
ESSIM expert system is also able to call 3GL code thereby providing the

necessary procedural context.
6.5.2.2 Improvements to the three-phase routines

Modifications weré made to the library of Pascal simulation routines for
three-phase discrete event simulation which help to improve the legibility of the
code. For instance, B-event calls are now achieved by placing the start address
of the procedure in the executives' timing tree. Hence, at each time advance,
B-Events can be activated directly by the executive, without having to first
pass control to the 'CallNextBevent' procedure which had to be updated by the

modeller to include references to all new B routines.

The application of simulation to the evaluation of alternative decision
rules will typically entail the creation of a substantive and complex model. In
the case of ESSIM, the development process is further complicated by the use
of a third generation language. In order to ease the process of developing large
models, the simulation routines used at the LSE were adapted for use in a
modular environment based on Object code. Hence, in ESSIM, the modeller is
provided with a means of encapsulating each entity cycle within a separate

module.
6.5.2.3 Additional software developments

'Designer', the program generator used in creating the graphical user

interface was designed using a new approach which again should be of interest

238

to researchers in information technology. The program generator was
implemented in such a way that pop-up windows could be created, menus
specified and links to external programs defined on an interactive basis. The
screen design could then be tested without needing to first generate the
underlying code. Most importantly, a generated model can later be modified and

subsequently re-linked to the existing program.

6.5.2.4 Peripheral benefits of the ESSIM approach

The linkage of the expert system to a simulation model in conjunction with
the implementation of rule-sets has provided a means of 'paralleling' the
management structures. In ESSIM multiple decisions may be taken by different
individuals at a particular point in time. This ideal is loosely linked to the

concept of temporal reasoning and should be of interest to Al researchers.

Another unexpected achievement is the generality of the ESSIM design
which could permit the modeller to derive alternative benefits from the linkage
of the simulation model and expert system. For instance, one could envisage the
simulation model acting under the control of the expert system in order to
explore a simulated future as part of a decision making process. The
investigation of such p_ossibilities was outside the scope of the thesis but could

form the basis of future research work based on ESSIM.

239

6.6 FUTURE WORK

In it's present state, the ESSIM simulation modelling environment is
essentially a prototype system. ESSIM is a complex program which was
necessarily developed by a single individual. Limited time was therefore spent
on developing such facilities as error handling which would have to be further
enhanced if the system Qas to be used by other researchers. Consequently,
it would be desirable as a first step to resolve such problems in order to build

a stable system for future research work.

The research presented in this thesis has highlighted the considerable
potential that simulation modelling offers in the context of the evaluation of
alternative operational policies. It is the author's opinion that there are yet
major advances to be made in this area which could result in a far greater
acceptance of simulation modelling as a management tool. Of all the possible
research projects that could be established based on ESSIM, the greatest
potential possibly lies in developing a system like ESSIM along the lines of a
management decision support system. The work presented in this thesis has
already served to demonstrate that by isolating the model representation of the
physical components of a real-world system from operational decision rules,
model experiments could be carried out by solely altering defined decision
rules. Two essential steps would be required in bringing this kind of modelling
into the realms of direct end-user decision support. Firstly, further advances
would be required in the development of tools for the automated interpretation
of model output. Secondly, the creation and subsequent modification of decision
rules would need to be further simplified, possibly through the introduction of

menuing systems or natural language interfaces.

240

APPENDIX A

241

CONTENTS - APPENDIX A

5 0]
A.l1 Introduction. 243
A.2 Overall system design. 244
A.3 The simulation model. 246
A.4 The user interface. 247
A.5 The expert system and interfaces with the simulation model 249

242

APPENDIX A

JOB-SHOP PRODUCTION SCHEDULING USING ESSIM

A.1 INTRODUCTION

Mathematical modeiling has been used in the context of the job-shop, in
evaluating proposed heuristics and in generating alternatives which may be
shown to be 'optimal' in some sense. Such mathematical modelling has inevitably
been based on rather simple descriptions of the job shop environment.
Consequently, discrete event simulation modelling has often been used for rule
evaluation in more realistic contexts (Arumugam[1985], Barrett & Barman[1986]

and Kiran & Smith[1983]).

Simulation models have been used extensively in job-shop production
environments in evaluating different scheduling rules, in developing scheduling
rules under a given set of parameters, and in analysing the sensitivity of
job-shop models to changes in scheduling rules. Such simulations require access
to relevant databases and must reflect the complex decision-making of the job
shop. If this is to be achieved without demanding extensive intervention from
the production controller then the decision-making capacity must be

accommodated within the simulation model.

A production controller in a typical engineering job shop relies in great
measure on his own personal experience and judgement in scheduling workloads.
These decisions cannot be made without a detailed knowledge of the current

state of material stocks, outstanding orders and work-in-progress. On-line

243

decision support systems for job shop scheduling have been introduced to
provide such necessary information through the implementation or interfacing
of appropriate database systems. More recently, the provision of information
has been supplemented by the addition of rule-based expert systems which
seek to encapsulate explicitly, in a collection of scheduling rules or heuristics,
the experience and knowledge of the production controller (Fox and
Smith[1984]). The rule-i)ase appropriate to a particular job shop context will
typically be complex and requires painstaking development in collaboration with

production management.

Consequently, the potential synergy of simulation and expert system
would seem a logical step forward in the context of the job shop. ESSIM, in
this respect appears to be an appropriate development tool. The remaing
sections describe the development of a job-shop model initially based on
experiences gained from two manufacturing concerns operating from Rio de

Janeiro, Brasil (Costa and Jardim{1986]).

A.2 OVERALL SYSTEM DESIGN

Figure A72 shows the overall structure of the system. The simulation
model progresses the job-shop operations through time. The expert system
manages the scheduling of tasks within the simulated system. User defined
databases are used for the storage of data relating to product descriptions and
outstanding orders. The user interface system is used for the control of output

displays.

244

ORDER &

PRODUCT
DATABASE
INFERENCE
ENGINE
SIMULATION
MODEL
RULE
BASE
EXPERT SYSTEM
G CS
DISPL A HODULE USER INTERFACE

Figure A72 System overview for the Job-shop mode/

The description of the job shop is in terms of a number of 'work centres’.
Each work centre is comprised of a number of collaborative facilities, such as
machines and associated operatives, which regularly work together as a unit
in the performance of individual production operations. A work centre is
characterised by the range of operations of which it is capable and parameters,

such as cost, quality or speed, of its performance of these.

A 'product' may be characterised by its material components and the
possible sequences of operations, such as machining, assembly, painting etc.,

and the associated work centres on which these operations might be performed.

245

The technical analysis of a given physical product into the characterising
sequences of production possibilities is a task left by the present system to
the production engineer. Product descriptions are maintained in the 'Product
Database' of Figure A72 and referenced by the expert system in determining
scheduling possibilities. Supply of materials from inventory is considered as
the function of a particular work centre which must also manage an inventory

control policy.

An 'order' is characterised by the identity of the customer, the product
and quantity requested, the time of placement, due date and priority rating
accorded by sales staff. A file of orders received, in-progress and completed
is maintained as a specification of the work requirement of the shop and a

measure of performance.

A.3 THE SIMULATION MODEL

The job-shop model uses ESSIMs simulation module which is structured
according to the Three Phase system (see section 2.4.1). The A phase searches
a diary of prescheduled events, such as the completion of an operation by a
work centre, for the earliest scheduled event and advances the model clock to
this time. The B phasg manages the execution of all events scheduled to occur
at the current clock time and the C phase explores the resulting model state
to determine what new events might be scheduled. This latter phase is typically
where the decision is made to start work on a particular task and hence enter

into the diary the scheduled time of its completion.

246

The principal system entities are the work centres which follow a simple
life cycle alternating between periods of processing jobs and idleness. Each
work centre has a list of allocated tasks, some of which may be suspended
pending the arrival of necessary components, from which a next task may be

selected.

The arrival of orders and consequent inflow of further jobs may either
be on the specific intervention of the user, from a predefined file of orders or
according to a randomised arrival mechanism. On receipt each order is

translated into its components and incorporated into the job shop schedule.

A.4 THE USER INTERFACE

The job-shop model makes use of an interface which is largely
menu-driven from a multi-window screen. The interface design was manually
created rather than using the ESSIM interface generator, and so output is
largely text based. The ESSIM interface design was developed follcSwing from

the experiences gained from implementing the job-shop model interface.

The basic screen is shown in Figure A73. The various windows contain
the main menu offering options, 'Simulate', 'Edit Product File', 'Edit Rule Base'
and 'View Orders'. Subsidiary pull-down menus allow a further range of
options. Selection of options is effected under cursor control, by initial letter
or using a mouse. Figure A73 actually shows some of the sub-menus which are

presented to the user before the simulation begins.

247

Edit Data GRAPHICS Rule Base View orders Quit

NONE -Dialog-
LINE
HI-RES
ACD
CANCEL RUNNIN: FILENAME : *.EXP
DURATION: 600 ESS1.EXP
ESS2.EXP
LFT=0K / RGT=CANCEL ESS.EXP
ESSIM.EXP
-Message— ‘T race—

FIGURE A73 THE JOB-SHOP APPLICATION INTERFACE

The windows provide further areas for system 'Messages’', textual
'Output' during the execution of the simulation, user-machine 'Dialog' and
execution 'Trace'. Simple, directed editors permit the examination, addition

and deletion of entries in product and order files and rule-base.

The dynamic behaviour of the simulated job shop may be studied through
alternative display formats. The user may select from a textual display, a
diagrammatic representation of the job shop through the life cycle of the work
centres or through high resolution graphs of the accumulating work loads of

a selected set of work centres, (see Figures A74 and A75)

248

TIHi: 2?0 - Speed O94/.
WC 1

HC 2

NC2 —1lIC3 — MC4 — MC5 300

FILCURh A7 GRAPH OF WORK-CENTRE QUEUE LENCTHS FIGURE A7* AGP TYPE pJSfIAY OF WORK CENTRf yUEUES§

Details of the orders completed and those still outstanding can be viewed

on request either during or following the execution of the simulation program.

A .5 THE EXPERT SYSTEM AND INTERFACES WITH THE SIMULATION MODEL

During the execution of the simulation model, the C-phase of every cycle
requires that decisions be made as to which activity, if any should start at
that time. When a work centre finishes its current task, it must select the next
job from those possible. When a new order arrives, it must either be rejected
or the component tasks must be allocated amongst the appropriate work centres.
The simulation executive looks to the associated expert system to specify such
selections and allocations. The current state of the simulation model provides
the context within which the expert system applies its knowledge and thus the

expert system is able to access the simulation state variables.

The knowledge base of the expert system is defined in terms of a

249

structured file of IF-THEN production rules. The structure reflects the
intrinsic hierarchical structure of production planning processes and is
described in detail in section 3.2 (see figure 8 and Bitran et al.[1982], Erschler

et al.[1986], and Bullers & Schultz[1986]).

The decision as to which job to start at a given work centre may be made
with reference to the loéal environment of that work centre. i.e. the job may
be selected from the list of possible jobs currently available according to local
operating constraints and sequencing rules. These may include specific
management direction as to which rules to apply at particular times or with

respect to particular jobs.

The job-shop application was developed as a means of gaining
understanding of the requirement of the simulation modeller. A lack of detailed
rules relating to the operation of the production plant made the implementation
of a realistic knowledge-base difficult. The job-shop application was
consequently used for the validation of the expert system and its links to the
simulation model. This formed the basis for the development of the ESSIM

environment and its subsequent validation using the port model.

250

APPENDIX B

251

APPENDIX B

THE PORT MODEL KNOWLEDGE-BASE UNDER ESSIM

EXTERNAL {declaration of integer variables to be shared with the simulation

model}

NumbStackRmgldle, NumbMoveToShipJob, NumbMoveToExitJob,
NumbRmgAtSSide, NumbRmgAtLSide, RmgToLeaveSSide,
RmgToLeaveLSide, NumbTruckToBay, BayPos,
NumTruckOutside,ShipImportJobs, ShipExportJobs, NumShipCranesldle,
NumTotalimportJobs, NumCranesOnImports, CurrentShipBerth,
NumberOfGateVehicles, NumberOfJobs, NumberOfBerths, NumberOfImvs,
NumberOfShipCranes, NumbFulllmvsToStore, _Time,
NumbEmptyImvsToStore ExportsLeftForShip StoreNumWithExpContainer,
NumberOfShips, NumberOfStores, NumbEmptyImvToShip,
NumbFullimvToShip, NumberOfShipsAtSea, NumEmptyImvAtShip,
NumEmptyImvAtBerth, NumEmptyImvAtOtherBerth,

NumIdleImvs, NumFullimvAtBerth, NumImportsRemaining,
NumbShipsWaitingToBerth, NumbFreeBerths, TimeToUnloadFulllmv,
TimeToFetchImvFromShipQ, TimeToUnLoadShip, TimeTolLoadShip,
TimToGetImvFromOtherShipQ, TimeToFetchImvFromidleQ,
TimeToMoveToShipEmpty, TimeToMoveToShipFull,
TimeToMoveToLandEmpty, TimeToMoveToLandFull,

TimeToGetAuthorization : INTEGER ;

252

{declaration of boolean variables to be shared with the simulation model}
CraneOperational, ShipInBerthOne, ShipInBerthTwo, CraneOnImports,
Cranel.oaded, _Loadimv, _UnLoadlmv, _LoadShip, _UnLoadShip,
GetAuthorization, AuthorizeCraneToExport, ReturnlmvsToldle,
FetchImvFromShipQ, FetchImvFromOtherShipQ, FetchImvFromldleQ,
_FulllimvToUnload, _ChangeACraneToExports, _Makelmvldle,
ShipArrivalDue, WorkAtBerthCompleted , _MoveGantryToShipSide,
_MoveGantryToLandSide, MoveGantryToShipEmpty,
MoveGantryToLandEmpty, NextShipJoblsAnImport,
NextLandJobIsAnImport, LoadVehicleWithImport,
UnLoadExportFromVehicle, NextJobIsAnImport, MovelmportToStack,
MoveEmptyToStack, MoveEmptyToStackFromGate, MoveExportToStack,

LoadImportFromImv, UnloadExportToImv: BOOLEAN ;

PASCAL FILE 'Rules.pas' ; {File of Pascal routines to be called from within

the expert system. }

LOCAL {declaration of local expert system boolean variables}
StartlandSideWork, StartShoreSideWork, StartNewdJob,
StartMoveFromSSide, StartMoveFromLSide, MoveToBay, BayFree,
TruckWaiting, TruckOutside, WaitingForTruck, ShipJobsLeft,
LetTruckInPort ' BerthedShip, CraneJobs, NoExportsInStore,
SendFulllmvToStore, SendEmptyImvToShip, SendFulllmvToShip,
StartShipArrive, StartShipLeave, StartDockAtBerth, ShipFullOfExports,
Imvsldle, SendEmptyImvToStore, EmptyImvToLoad, JobToBeDone,
JobToDo, PriorityToShipjobs, JobOutstanding, NextJob,

JobFound, CraneInCorrectMode, ShipToLoad, ShipToUnload : Boolean;

253

{Declaration of local expert system intenger variables}
Bay : INTEGER ;

RULESET StackManager ;

[*] NumberOfStores = 10; {number of stores is 10}

[*] NumberOfJobs = 50 ; {number of jobs is 50}

[1] STARTNEWJOB = True WHEN (NumbStackRmgldle > 0)

AND (JobToBeDone = True) ;
[2] PriorityToShipJobs = GantryToShipSide ; {enquiry to rules.pas}
[3] _MoveGantryToShipSide = True
IF ((NumbMoveToShipJob * NumbMoveToExitJob > 0)
AND (PriorityToShipJobs = True)) ;
[{4] _MoveGantryToLandSide = True
IF ((NumbMoveToShipJob * NumbMoveToExitJob > 0)
AND (PriorityToShipJobs = False)) ;

[5] MoveGantryToShipSide = True WHEN NumbMoveToShipJob > 0 ;

[6] _MoveGantryToLandSide = True WHEN NumbMoveToExitJob > 0 ;

254

[7] (MoveGantryToShipEmpty = True) AND (JobToBeDone = True)
AND (_MoveGantryToLandSide = False)
AND (TimeToMoveToShipEmpty = 40)
IF (_MoveGantryToShipSide = True)

AND (NextShipjoblsAnImport = True) ;

(8] (MoveGantryToSMpﬁmpty = False) AND (JobToBeDone = True)
AND (_MoveGantryToLandSide = False)
AND (TimeToMoveToShipFull = 60)
IF (_MoveGantryToShipSide = True)

AND (NextShipjobIsAnImport = False);

[9] (MoveGantryToLandEmpty = True) AND (JobToBeDone = True)
AND (_MoveGantryToShipSide = False)
AND (TimeToMoveToLandEmpty = 40)
IF (_MoveGantryToLandSide = True)

AND (NextLandJoblIsAnImport = False) ;

[10] (MoveGantryToLandEmpty = False) AND (JobToBeDone = True)
AND (_MoveGantryToShipSide = False)
AND (TimeToMoveToLandFull = 60) ~ (JobToBeDone = False)
IF (_MoveGantryToLandSide = True)

AND (NextLandJoblIsAnImport = True) ;

255

[11] (JobOutstanding = True) AND (LoadImportFromimv = True)
AND (UnloadExportToImv = False) AND (_Time = 60)
~ (JobOutstanding = True) AND (UnloadExportTolmv = True)
AND (_Time = 60) AND (LoadImportFromImv = False)

IF NextJoblsAnImport = True;

[12] STARTSHORESIDEWORK = True WHEN (NumbRmgAtSSide > 0)

AND (JobOutstanding = True);

[13] (JobToDo = True) AND (LoadVehicleWithImport = True)
AND (UnloadExportFromVehicle = False) AND (_Time = 60)
~ (JobToDo = True) AND (UnloadExportFromVehicle = True)
AND (_Time = 60) AND (LoadVehicleWithImport = False)

IF NextJobIsAnImport = True;

[14] STARTLANDSIDEWORK = True WHEN (NumbRmgAtLSide > 0)

AND (JobToDo = True);

[15] (NextJob = True) AND (MovelmportToStack = True)
AND (MoveEmptyToStack = False) AND (_Time = 60)
~ (NextJob = True) AND (MoveEmptyToStack = True)
AND (_Time = 40) AND (MovelmportToStack = False)

IF NextJoblsAnImport = True;

[16] STARTMOVEFROMSSIDE = True WHEN (RmgToLeaveSSide > 0)

AND (NextJob = True);

256

[17] (JobFound = True) AND (MoveEmptyToStackFromGate = True)
AND (MoveExportToStack = False) AND (_Time = 40)
~ (JobFound = True)
AND (MoveEmptyToStackFromGate = False) AND (_Time = 60)
AND (MoveExportToStack = True)

IF NextJobIsAnImport = True;

[18] STARTMOVEFROMLSIDE = True WHEN (RmgToLeaveLSide > 0)

AND (JobFound = True);
[19] Bay = WhichBay ;
[20] (bayFree = True) AND (BayPos = Bay) ~ (bayFree = False) IF Bay > 0 ;

[21] NoExportsIinStore = True WHEN StoreNumWithExpContainer = 0 ;

RULESET GateManager (INHERIT StackManager,Shipmanager) ;
[#] NumberOfGateVehicles = 50 ; {Number of gate vehicles is 50}
[1] (TruckOutSide = True) ~ (TruckOutside = False)

AND (waitingForTruck = False)

IF NumTruckOutside > 0 ;

[2] waitingForTruck = True WHEN shipJobsLeft = True;

257

[3] (truckWaiting = True) ~ (truckWaiting = False) AND (bayFree = False)

IF NumbTruckToBay > 0 ;

[4] LETTRUCKINPORT = True WHEN (truckOutside = True)

AND (waitingForTruck = True);
[5] (MOVETOBAY = Trué) AND (_Time = 0) ~ (MOVETOBAY = FALSE)
IF (truckWaiting = True) and (bayFree = True) ;
RULESET ShipManager ;
[*] NumberOfShips = 9 ; {maximum number of ships is 9}
[*] NumberOfBerths = 2 ; {maximum number of berths is 2}

[1] shipJobsLeft = True WHEN (ShipImportJobs > 0)

OR (ShipExportJobs > 0) ;

[2] berthedShip = True WHEN (ShipInBerthOne = True)

OR (ShipInBerthTwo = True);

[3] shipFullOfExports = True WHEN ExportsLeftForShip = 0 ;

258

[4] (STARTSHIPARRIVE = True) AND (_Time = 1200)
~ (STARTSHIPARRIVE = False)
IF (NumberOfShipsAtSea > 0)

AND (ShipArrivalDue = True) ;

[5] (STARTDOCKATBERTH = True) AND (_Time = 120)
~ (STARTDOCKATBERTH = False)
IF (NumbShipsWaitingToBerth > 0)

AND (NumbFreeBerths > 0) ;

[6] (STARTSHIPLEAVE = True) AND (_Time = 3600)
~ (STARTSHIPLEAVE = False)

IF WorkAtBerthCompleted = True ;
[7]1 ShipToload = True WHEN ((CurrentShipBerth = 1)

AND (ShipInBerthOne = True))

OR ((CurrentShipBerth = 2) AND (ShipInBerthTwo = True));
[8] ShipToUnload = True WHEN ((CurrentShipBerth = 1)

AND (ShipInBerthOne = True))

OR ((CurrentShipBerth = 2) AND (ShipInBerthTwo = True));

RULESET ImvManager (INHERIT ShipManager,StackManager);

[*] NumberOfImvs = 100 ; {maximum number of imvs is 100}

259

[1] (imvsIdle = True) AND (ReturnlImvsToldle = True) ~ (imvsIdle = False)

IF (berthedShip = False) AND (NumEmptyImvAtShip > 0);

[2] (emptyImvToLoad = True) AND (FetchImvFromShipQ = True)
AND (FetchImvFromOtherShipQ = False)
AND (FetchImvFromidileQ = False)
AND tTimeToFetchIvaromShin = 40)

IF NumEmptyImvAtBerth > O ;

[3] (emptyImvToLoad = True) AND (FetchImvFromOtherShipQ = True)
AND (FetchImvFromShipQ = False)
AND (FetchImvFromldleQ = False)
AND (TimToGetImvFromOtherShipQ = 40)

IF NumEmptyImvAtOtherBerth > 0 ;

[4] (emptyImvToLoad = True) AND (FetchImvFromldleQ = True)
AND (FetchImvFromShipQ = False)
AND (FetchImvFromOtherShipQ = False)
AND (TimeToFetchlmvFromIdleQ = 40)

~ (emptyImvToLoad = False) IF NumldleImvs > O ;

[5] (_FulllmvToUnLoad = True) AND (TimeToUnloadFulllmv = 40)

~ (_FullimvToUnload = False) IF NumFulllmvAtBerth > 0 ;

260

[6] (SENDEMPTYIMVTOSTORE = True) AND (_Time = 30)
~ (SENDEMPTYIMVTOSTORE = False)
IF (NumbEmptyImvsToStore > 0)

AND (_MakeImvIdle = False) ;
{SENDEMPTYIMVTOSTORE Must return _Makelmvldle}

[7] _MakeImvIdle = True WHEN (shipFullOfExports = True)

OR (noExportsInStore = True) ;

[8] (SENDFULLIMVTOSTORE = True) AND (_Time = 60)
~ (SENDFULLIMVTOSTORE = False)

IF (NumbFulllmvsToStore > 0);

[9] (SENDEMPTYIMVTOSHIP = True) AND (_Time = 60)
~ (SENDEMPTYIMVTOSHIP = False)

IF (NumbEmptyImvToShip > 0) ;
[10] (SENDFULLIMVTOSHIP = True) AND (_Time =120)

~ (SENDFULLIMVTOSHIP = False)

IF (NumbFulllmvToShip > 0) ;

261

RULESET CraneManager (INHERIT ImvManager,ShipManager);

{CRANEJOBS must return _LoadImv, _UnLoadlmv, _LoadShip, _UnloadShip,

FetchImvFromShipQ, FetchImvFromOtherShipQ, FetchImvFromldlieQ,

_FulllmvToUnload, ReturnlmvsToldle, _ChangeACraneToExports,

GetAuthorization}

[*] NumberOfShipCranes = 5 ; {Total No. of ship cranes}

[*] TimeToLoadShip = 40 ;

[*] TimetoUnloadShip = TimeToUnloadCalc ; {Call to Pascal function}

[1] CRANEJOBS = False IF CraneOperational = False ;

[2] CRANEJOBS = True WHEN ((_LoadImv = True) OR (_UnLoadImv = True)
OR (_LoadShip = True) OR (_UnLoadShip = True))

AND (CraneInCorrectMode = True) ;

[3] CraneInCorrectMode = True WHEN (CraneOperational = True)

AND ((CraneOnImports = True) AND ((_LoadImv True)

OR (_UnloadShip = True))) OR ((CraneOnlmports = False)

AND ((_UnLoadImv = True) OR (_LoadShip = True)));

[4] LoadImv = True WHEN (CraneLoaded = True)

AND (emptyImvToLoad = True) ;

262

[5] _UnLoadImv = True WHEN (Craneloaded = False)

AND (_FulllmvToUnLoad = True);
[6] _LoadShip = True WHEN (CraneLoaded = True) AND (ShipToLoad = True);

[7] _UnLoadShip = True WHEN (_ChangeACraneToExports = False)

AND (CraneLoaded = False) AND (ShipToUnload = True) ;

[8] (_ChangeACraneToExports = True) AND (GetAuthorization = True)
AND (TimeToGetAuthorization = CalcFromCurrentTime)
{Call to Pascal function}
AND (CraneOperational = False)

~ (_ChangeACraneToExports = False)

AND (GetAuthorization = False)

IF ((CurrentShipBerth

1)
AND (NumCranesOnlmports > 0))
OR ((CurrentShipBerth = 2)
AND (NumCranesOnImports > 1))
AND (NumImportsRemaining = 0)

AND (NumTotalimportJobs > 0);

263

[9] (AUTHORIZECRANETOEXPORT = True) AND (CraneOperational = True)
AND (CraneOnlImports = False)
- (AﬁthoﬁzeCraneToExport = False)
IF ((CurrentShipBerth = 1)
AND (NumCranesOnlmports > 0))
OR ((CurrentShipBerth = 2)
AND (NumCranesOnImports > 1))
AND (NumImportsRemaining = 0)

AND (NumTotallmportJobs > 0);

END.

264

APPENDIX C

265

APPENDIX C

ADDITION OF A RULE-SET TO THE KNOWLEDGE-BASE

RULESET StackManager (INHERIT LMVmanager) ;
[*] NumberOfStores = 10; {maximum number of stores is 10}
[#*] NumberOfJobs = 50 ; {maximum number of jobs is 50}

[1] STARTNEWJOB = True WHEN (NumbStackRmgldle > 0)

AND (JobToBeDone = True) ;
[2] PriorityToShipJobs = GantryToShipSide ; {enquiry to rules.pas}

[3] _MoveGantryToShipSide = True
IF ((NumbMoveToShipJob * NumbMoveToExitJob > 0)

AND (PriorityToShipJobs = True)) ;

[4] MoveGantryToLandSide = True
IF ((NumbMoveToShipJob * NumbMoveToExitJob > 0)

AND (PriorityToShipJobs

False)) ;

[5] _MoveGantryToShipSide = True WHEN NumbMoveToShipJob > O ;

[6] _MoveGantryToLandSide = True WHEN NumbMoveToExitJob > 0 ;

266

[7] (MoveGantryToShipEmpty = True) AND (JobToBeDone = True)
AND (_MoveGantryToLandSide = False)
AND (TimeToMoveToShipEmpty = 40)
IF (_MoveGantryToShipSide = True)

AND (NextShipjobIsAnImport = True) ;

[8] (MoveGantryToShipEmpty = False) AND (JobToBeDone = True)
AND (_MoveGantryToLandSide = False)
AND (TimeToMoveToShipFull = 60)
IF (_MoveGantryToShipSide = True)

AND (NextShipjobIsAnImport = False);

[9] (MoveGantryToLandEmpty = True) AND (JobToBeDone = True)
AND (_MoveGantryToShipSide = False)
AND (TimeToMoveToLandEmpty = 40)
IF (_MoveGantryToLandSide = True)

AND (NextLandJobIsAnlmport = False) ;

[10] (MoveGantryToLandEmpty = False) AND (JobToBeDone = True)
AND (_MoveGantryToShipSide = False)
AND (TimeToMoveToLandFull = 60)
~ (JobToBeDone = False) IF (_MoveGantryToLandSide = True)

AND (NextLandJoblsAnImport = True) ;

267

[11] (JobOutstanding = True) AND (LoadImportFromlmv = True)
AND (UnloadExportTolmv = False) AND (_Time = 60)
~ (JobOutstanding = True) AND (UnloadExportTolmv = True)
AND (_Time = 60) AND (LoadImportFromImv = False)

IF NextJobIsAnImport = True;

[12] STARTSHORESIDEWORK = True WHEN (NumbRmgAtSSide > 0)

AND (JobOutstanding = True);

[13] (JobToDo = True) AND (LoadVehicleWithImport = True)
AND (UnloadExportFromVehicle = False) AND (_Time = 60)
~ (JobToDo = True) AND (UnloadExportFromVehicle = True)
AND (_Time = 60) AND (LoadVehicleWithImport = False)

IF NextJoblsAnImport = True;

[14] STARTLANDSIDEWORK = True WHEN (NumbRmgAtLSide > 0)

AND (JobToDo = True);

[15] (NextJob = True) AND (MovelmportToStack = True)
AND (MoveEmptyToStack = False) AND (_Time = 60)
~ (NextJob = True) AND (MoveEmptyToStack = True)
AND (_Time = 40) AND (MovelmportToStack = False)

IF NextJoblsAnImport = True;

[16] STARTMOVEFROMSSIDE = True WHEN (RmgToLeaveSSide > 0)

AND (NextJob = True);

268

[17] (JobFound = True) AND (MoveEmptyToStackFromGate = True)
AND (MoveExportToStack = False) AND (_Time = 40)
~ (JobFound = True)
AND (MoveEmptyToStackFromGate = False) AND (_Time =60)
AND (MoveExportToStack = True)

IF NextJoblIsAnImport = True;

[18] STARTMOVEFROMLSIDE = True WHEN (RmgToLeaveLSide > 0)

AND (JobFound = True):;
[19] Bay = WhichBay ;
[20] (bayFree = True) AND (BayPos = Bay) ~ (bayFree = False) IF Bay > 0 ;
[21] NoExportsIinStore = True WHEN StoreNumWithExpContainer = 0 ;
[22] (BALANCESTACKS = True) AND (_Time = 60)

~ (BALANCESTACKS = FALSE)

IF (_TransfExpToRhtStack

True)
OR (_TransfExpToLftStack = True)
OR (_TransfImpToRhtStack = True)
OR (_TransfImpToLftStack = True)

AND (IdleStackVehicles = True) ;

269

RULESET LMVmanager ;

1]

(2]

[3]

[4]

[51]

(6]

MoreExptsInLeftStack = True

WHEN (ExportsInStackLeft - ExportsInStackRight) > 0 ;

_TransfExpToRhtStack = True WHEN (MoreExptsInLeftStack = True)

AND (ExportsinStackRight < ExportsInCurrentStack) ;

_TransfExpToLftStack = True WHEN (MoreExptsIinLeftStack = False)

AND (ExportsIinStackLeft < ExportsInCurrentStack) ;

MorelmptsInLeftStack = True

WHEN (ImportsinStackLeft - ImportsInStackRight) > 0 ;

_TransfImpToRhtStack = True WHEN (MorelmptsInLeftStack = True)

AND (ImportsInStackRight < ImportsInCurrentStack) ;

_TransfImpToLftStack = True WHEN (MorelmptsInLeftStack = False)

AND (ImportsinStackLeft < ImportsInCurrentStack) ;

270

APPENDIX D

271

APPENDIX D

CODING THE PORT MODEL KNOWLEDGE-BASE IN PASCAL

MODULE expertrules ;

VAR[External] {Variablés shared with the simulation module}
NumbStackRmgldle, NumbMoveToShipJob, NumbMoveToExitJob,
NumbRmgAtSSide, NumbRmgAtLSide, RmgToLeaveSSide,
RmgToLeaveLSide, NumbTruckToBay, BayPos, NumTruckOutside,
ShipImportJobs, ShipExportJobs, NumShipCranesldle,
NumTotallmportJobs, NumCranesOnlmports, CurrentShipBerth,
NumberOfGateVehicles, NumberOfJobs, NumberOfBerths, NumberOfImvs,
NumberOfShipCranes, NumbFulliImvsToStore, _Time,
NumbEmptyImvsToStore ExportsLeftForShip StoreNumWithExpContainer,
NumberOfShips, NumberOfStores, NumbEmptyImvToShip,
NumbFulllmvToShip, NumberOfShipsAtSea, NumEmptyImvAtShip,
NumEmptyImvAtBerth, NumEmptyImvAtOtherBerth, NumldleImvs,
NumFulllmvAtBerth, NumImportsRemaining, NumbShipsWaitingToBerth,
NumbFreeBerths, TimeToUnloadFulllmv, TimeToFetchImvFromShipQ,
TimeToUnLoadShip, TimeToLoadShip, TimToGetImvFromOtherShipQ),
TimeToFetchImvFromldleQ, TimeToMoveToShipEmpty,
TimeToMoveToShipFull, TimeToMoveToLandEmpty,

TimeToMoveToLandFull : INTEGER ;

CraneOperational, ShipInBerthOne, ShipInBerthTwo, CraneOnImports,

CranelLoaded, _LoadImv, _UnLoadImv, _LoadShip, _UnLoadShip,

272

ReturnImvsToldle, FetchImvFromShipQ, FetchImvFromOtherShipQ,
FetchimvFromlIdleQ, _FullimvToUnload, ChangeACraneToExports,
_MakeImvldle, ShipArrivalDue, WorkAtBerthCompleted,
_MoveGantryToShipSide , _MoveGantryToLandSide,
MoveGantryToShipEmpty, MoveGantryTolLandEmpty,
NextShipJobIsAnIlmport,NextLandJobIsAnImport,LoadVehicleWithImport,
UnLoadExportFrorﬁVehicle , NextJobIsAnImport, MovelmportToStack,
MoveEmptyToStack, MoveEmptyToStackFromGate, MoveExportToStack,

LoadImportFromImv, UnloadExportToImv: BOOLEAN ;

VAR ({variables local to this module}
BayFree, TruckWaiting, TruckOutside, WaitingForTruck, ShipJobsLeft,
BerthedShip, NoExportsInStore, ShipFullOfExports, Imvsldle,
EmptyImvToLoad, JobToBeDone, PriorityToShipjobs, JobOutstanding,

NextJob, JobFound:Boolean;

Bay : INTEGER ;

FUNCTION GantryToShipSide : Boolean; Extern;

FUNCTION WhichBay: Integer ; Extern;

273

FUNCTION StartNewJob : Boolean ;

BEGIN
PriorityToShipJobs := GantryToShipSide ; {enquiry to rules.pas}
IF ((NumbMoveToShipJob * NumbMoveToExitJob > 0) AND
(PriorityToShipJobs = True)) THEN
BEGIN
_MoveGantrfToShipSide := True;
_MoveGantryToLandSide := False ;
END ELSE
IF ((NumbMoveToShipJob * NumbMoveToExitJob > 0) AND

(PriorityToShipJobs = False)) THEN

BEGIN
_MoveGantryToLandSide := True;
_MoveGantryToShipSide := False ;

END ELSE

IF NumbMoveToShipJob > 0 THEN

BEGIN
_MoveGantryToShipSide := True ;
_MoveGantryToLandSide := False;

END ELSE

IF NumbMoveToExitJob > 0 THEN
BEGIN .
_MoveGantryToLandSide := True ;
_MoveGantryToShipSide := False ;
END ELSE

BEGIN

_MoveGantryToLandSide := False ;

274

_MoveGantryToShipSide := False ;

’

END;
IF (_MoveGantryToShipSide = True) AND (NextShipjobisAnlmport = True)
THEN
BEGIN
MoveGantryToShipEmpty := True;
JobToBeDoﬁe := True;
_MoveGantryToLandSide := False;
TimeToMoveToShipEmpty := 40;

END ELSE

IF (_MoveGantryToShipSide = True) AND (NextShipjobIsAnImport = False)
THEN
BEGIN
MoveGantryToShipEmpty := False;
JobToBeDone := True;
_MoveGantryToLandSide := False;
TimeToMoveToShipFull := 60;

14

END ELSE

IF (_MoveGantryTolLandSide = True) AND (NextLandJoblsAnImport = False)
THEN

BEGIN
MoveGantryToLandEmpty := True;
JobToBeDone := True;
_MoveGantryToShipSide := False;

TimeToMoveToLandEmpty := 40;

END ELSE

275

IF (_MoveGantryTolLandSide = True) AND (NextLandJoblIsAnImport

THEN
BEGIN
MoveGantryToLandEmpty := False;
JobToBeDoné := True;
_MoveGantryToShipSide := False;
TimeToMoveToLandFull := 60;
END

ELSE JobToBeDone := False;
IF (NumbStackRmgldle > 0) AND (JobToBeDone = True) THEN
STARTNEWJOB := True ELSE StartNewJob := False ;

END;

FUNCTION StartShoreSideWork : Boolean;
BEGIN
IF NextJoblIsAnImport = True THEN
BEGIN
JobOutstanding := True;
LoadImportFromImv := True;
UnloadExportTolmv := False;
_Time := 60;
END ELSE
BEGIN

JobOutstanding := True;

276

True)

UnloadExportToImv := True;
_Time := 60;
LoadlmportFromlmv := False;
END;
IF (NumbRmgAtSSide > 0) AND (JobOutstanding = True) THEN
STARTSHORESIDEWORK := True ELSE StartShoreSideWork := False;

END;

FUNCTION StartLandSideWork : Boolean;
BEGIN
IF NextJoblsAnlmport = True THEN
BEGIN
JobToBeDone := True;
LoadVehicleWithImport := True;
UnloadExportFromVehicle := False;
_Time := 60 ;
END ELSE
BEGIN
JobToBeDone := True;
UnloadExportFromVehicle := True;
_Time := 60;
LoadVehicleWithImport := False;
END;
IF (NumbRmgAtLSide > 0) AND (JobToBeDone = True) THEN
STARTLANDSIDEWORK := True ELSE StartLandSideWork := False ;

END;

277

FUNCTION StartMoveFromSSide : Boolean;
BEGIN
IF NextJobIsAnlmport = True THEN
BEGIN
NextJob := True;
MovelmportToStack := True;
MoveEmpty'I;oStack := False;
_Time := 60;
END ELSE
BEGIN
NextJob := True;
MoveEmptyToStack := True;
_Time := 40;
MovelmportToStack := False;
END;
IF (RmgToLeaveSSide > 0) AND (NextJob = True) THEN
STARTMOVEFROMSSIDE := True ELSE StartMoveFromSSide := False ;

END;

FUNCTION StartMoveFromLSide : Boolean;
BEGIN
IF NextJobIsAnImport = True THEN
BEGIN
JobFound := True;
MoveEmptyToStackFromGate := True;

MoveExportToStack := False;

278

_Time := 40;
END ELSE
BEGIN
JobFound := True;
MoveEmptyToStackFromGate := False;
_Time := 60;
MoveExport'foStack := True;
END;
IF (RmgToLeaveLSide > 0) AND (JobFound = True) THEN
STARTMOVEFROMLSIDE := True ELSE StartMoveFromLSide := False ;

END:

FUNCTION LetTruckInPort : Boolean;

BEGIN

IF NumTruckOutside > 0 THEN TruckOutSide := True ELSE
TruckOutside := False;

IF (ShipImportJobs > 0) OR (ShipExportJobs > 0) THEN

shipJobsLeft := True ELSE ShipJobsLeft :

1

False ;

IF shipJobsLeft = True THEN waitingForTruck :

True ELSE
WaitingForTruck := False ;

IF (truckOutside = True) AND (waitingForTruck = True) THEN
LetTruckInPort := True ELSE LetTruckInPort := False ;

END;

279

FUNCTION MoveToBay : Boolean ;
BEGIN
IF NumbTruckToBay > 0 THEN
BEGIN
truckWaiting := True;
Bay := WhichBay ;
END ELSE |
BEGIN
truckWaiting := False;
bayFreg := False;
Bay := 0 ;
END;
IF Bay > 0 THEN
BEGIN
bayFree := True;
BayPos := Bay;
END ELSE bayFree := False;
IF (truckWaiting = True) AND (bayFree = True) THEN
BEGIN
MOVETOBAY := True;
_Time := 0;
END ELSE MOVETOBAY := FALSE ;

END;

280

FUNCTION StartShipArrive : Boolean ;
BEGIN
IF (NumberOfShipsAtSea > 0) AND (ShipArrivalDue = True) THEN
BEGIN
STARTSHIPARRIVE := True ;
_Time := 1200 ;
END ELSE STARTSHIPARRIVE := False;

END;

FUNCTION StartDockAtBerth : Boolean;
BEGIN
IF (NumbShipsWaitingToBerth > 0) AND (NumbFreeBerths > 0) THEN
BEGIN
STARTDOCKATBERTH := True;
_Time := 120;
END ELSE STARTDOCKATBERTH := False;

END;

FUNCTION StartShipLeave: Boolean ;
BEGIN
IF WorkAtBerthCompleted = True THEN
BEGIN
STARTSHIPLEAVE := True;
_Time := 3600;
END ELSE STARTSHIPLEAVE := False;

END;

281

FUNCTION SendEmptyImvToStore : Boolean;

BEGIN

END;

IF StoreNumWithExpContainer = 0 THEN noExportsInStore := True ELSE
NoExportsIinStore := False ;

IF ExportsLeftForShip = 0 THEN shipFullOfExports := True ELSE
ShipFullOfExports := False;

IF (shipFu]lOfEprrts = True) OR (noExportsInStore = True) THEN
_MakelImvldle := True ELSE _Makelmvidle := False ;

IF (NumbEmptyImvsToStore > 0) AND (_MakeImvIdle = False) THEN

BEGIN
SENDEMPTYIMVTOSTORE := True;
_Time := 30;

END ELSE SENDEMPTYIMVTOSTORE := False;

{SENDEMPTYIMVTOSTORE Must return _Makelmvidle}

FUNCTION SendFulllmvToStore : Boolean ;

BEGIN

END;

IF NumbFulllmvsToStore > 0 THEN
BEGIN
SENDFULLIMVTOSTORE := True;
_Time := 60;

END ELSE SENDFULLIMVTOSTORE := False;

282

FUNCTION SendEmptyImvToShip: Boolean;
BEGIN
IF (NumbEmptyImvToShip > 0) THEN
BEGIN
SENDEMPTYIMVTOSHIP := True;
_Time := 60;

END ELSE SENDEMPTYIMVTOSHIP := False;

END;

FUNCTION SendFulllmvToShip : Boolean ;
BEGIN
IF (NumbFulllmvToShip > 0) THEN
BEGIN
SENDFULLIMVTOSHIP := True;
_Time :=120;
END ELSE SENDFULLIMVTOSHIP := False;

END;

283

{CRANEJOBS must return LoadImv, _UnLoadImv, _LoadShip, _UnloadShip,
FetchImvFromShipQ, FetchImvFromOtherShipQ, FetchImvFromlIdleQ,

_FulllmvToUnload, ReturnimvsToldle, ChangeACraneToExports}

FUNCTION CraneJobs : Boolean;
BEGIN
IF (SMpInBenhOﬁe = True) OR (ShipInBerthTwo = True) THEN
berthedShip := True
ELSE BerthedShip := False ;
IF (berthedShip = False) AND (NumEmptyImvAtShip > 0) THEN
BEGIN
imvsIdle := True;
ReturnImvsToldle := True;
END ELSE imvsIdle := False;
IF BerthedShip = True THEN
BEGIN
IF NumEmptylmvAtBerth > 0 THEN
BEGIN
emptyImvToLoad := True;
FetchImvFromShipQ := True;
FetchImvFromOtherShipQ := False;
FetchImvFromidleQ := False;
TimeToFetchImvFromShipQ := 40;
END ELSE
IF NumEmptyImvAtOtherBerth > 0 THEN
BEGIN

emptyImvToLoad := True;

284

FetchImvFromOtherShipQ := True;
FetchImvFromShipQ := False;
FetchImvFromlIdleQ := False;
TimToGetImvFromOtherShipQ := 40;
END ELSE
IF NumIdleImvs > 0 THEN
BEGIN |
emptylmvToLoad := True;
FetchImvFromlIdleQ := True;
FetchImvFromShipQ := False;
FetchImvFromOtherShipQ := False;
TimeToFetchImvFromlIdleQ := 40;
END ELSE emptyImvToLoad := False;

END;

IF BerthedShip = True THEN
IF NumFulllmvAtBerth > 0 THEN
BEGIN

_FullimvToUnLoad := True;

TimeToUnloadFulllmv := 40;
END ELSE

_FullimvToUnload := False;

IF BerthedShip AND (CraneOnlmports = True)
AND (CraneLoaded = True) AND (emptyImvTolLoad = True)
THEN _LoadImv := True

ELSE LoadImv := False ;

IF BerthedShip AND (CraneOnlmports = False)

AND (CraneLoaded = False) AND (_FulllmvToUnLoad = True)

285

THEN _UnLoadImv := True

ELSE _UnLoadImv := False ;

IF BerthedShip AND (CraneOnlmports = False) AND
(CranelLoaded = True) THEN

BEGIN
_LoadShip := True;
TimeToLoadShip := 40;

END ELSE _LoadShip := False;

IF (CurrentShipBerth = 1) AND
((NumImportsRemaining < (NumTotallImportJobs / 2)) AND
(NumCranesOnImports = 2)) OR
((NumImportsRemaining = 0) AND
(NumCranesOnImports = 1)) THEN

BEGIN
changeACraneToExports := True;
CraneOnlImports := False;

END;

IF (CurrentShipBerth = 2) AND
((NumImportsRemaining< (2«*NumTotallmportJobs/3)) AND
(NumImportsRemaining> (NumTotalImportJobs/3)) AND
(NumCranesOnImports=3)) OR
((NumImportsRemaining< (NumTotallmportJobs/3)) AND
(NumImportsRemaining > 0) AND
(NumCranesOnImports=2)) OR
((NumImportsRemaining = 0) AND
(NumCranesOnImports = 1)) THEN

BEGIN

286

changeACraneToExports := True;
CraneOnlmports := False;
END ELSE
changeACraneToExports := False;
IF BerthedShip AND (ChangeACraneToExports = False) AND
(CraneOnlmports = True) AND
(CraneLoadéd = False) THEN
BEGIN
_UnLoadShip := True;
TimeTqUnloadShip := 40;
END ELSE _UnloadShip := False;
IF ((CraneOperational = False) AND (imvsIdle = True)) OR
(CraneOperational = False) THEN CRANEJOBS := False;
IF ((_LoadImv = True) OR (_UnLoadImv = True) OR
(_LoadShip = True) OR (_UnLoadShip = True)) AND
(NumShipCranesldle > 0) THEN CRANEJOBS := True ELSE
CraneJobs := False ;
END;

END.

287

APPENDIX E

288

E.1

E.2

E.3

CONTENTS - APPENDIX E

Introduction.

Using Designer.

E.2.1 Creating pull-down windows.
E.2.2 Pop-Up windows.

E.2.3 External program calls.
E.2.4 Code Generator.

Modifying Designer files.

E.3.1 Using the generated files.

289

290
290
292
293
294
294
295
295

APPENDIX E

DESIGNER - An interactive approach to man/machine

interface development.

E.1 INTRODUCTION

Designer was created as a tool for use with the ESSIM simulation language
and expert system, allowing programmers to add a graphic/windowing interface
for the presentation of output. The concept behind Designer was not just to
provide a library of pre-written routines, but to let the user create an
interface interactively. Designer is a form of 4GL in which 'interactive
programming' is used to generate PASCAL program code. Once created, the
interface layout can be 'edited' and new code produced. Simulation models which
initially provide a crude form of input/output and screen design can be
transformed by replacing 'read' and ‘'write' commands. Furthermore, the
eventual user of the model can be directly involved with the setting out of the

interface and the presentation of the output.

E.2 USING DESIGNER

The standard Designer interface is based on the use of high-resolution
inverse-video graphics (black characters on a white background). Characters
shapes are user defined and options are selected using a mouse. All input and
output, whether in graphic or character format, is displayed in 'pull-down' or

'pop-up' windows. The top two lines of the screen are reserved for default

290

menu options. The bottom line is used for the display of instructions.

The default menu options are specified by simply typing the appropriate
text. Two or more spaces indicates the start of a new option. The position of
the menu options is automatically adjusted such that an even layout is always
obtained. Pointing the mouse icon at an options results in its display

characteristics being reversed.

FIGURE E76 DEFINING MENU OPTIONS USING ’'DESIGNER'

291

E.2.1 CREATING PULL-DOWN WINDOWS - Pointing the mouse icon at a default
option and clicking the left mouse button results in the creation of a pull-down
window. The width of the window is set to be the same as that of the displayed
option. The height of the default window is sufficient for a single window
option. Window options are entered by simply typing the appropriate text. If
the width of the text exceeds the width of the window, the window size is
adjusted. Pressing the enter key expands the window downwards and positions
the cursor on the following line. Text input to the window is terminated by
pressing the ESC key. Pointing the mouse icon at a window option reverses
the display characteristics of the text. The window is removed from the screen

by moving the mouse icon to a point outside the window area.

M W1Ul $tM il21)] afffIMWflhSm

SBCPTICN 1.
SUB-OPTION Z.
- SUB-OPTION 3.
mwm>\Vina fiii i 1 -+ o t ink to a prograM

FIGURE E77 CREATING PULL-DOWN MENU TYPE WINDOWS USING 'DESIGNER'

292

Pull-down windows can be stacked. Pointing at a new window option and
clicking the left mouse button results in the creation of a default window.

Window options and further sub-windows can be specified as before.

E.2.2 POP-UP WINDOWS - Pop-up windows differ from pull-down windows in
that they are independent from any specific menu option. Furthermore, pop-up
windows are not used for the display of menus but rather for the display of

free-form text, requests for user input, and the creation of graphical forms.

itTirnm{?

FIGURE E78 CREATING POP-UP WINDOWS FOR SIMULATION OUTPUT USING 'DESIGNER:

293

Pop-up windows are created by clicking the right mouse button. The
window can be positioned by moving the mouse, and the size of the window
altered using the arrow keys. A code unique to the new window is displayed
at the bottom of the screen. The window 'editing' session is terminated by
pressing the ESC key. Several pop-up windows can be displayed simultaneously

to make it simpler to sort out relative positioning problems.

E.2.3 EXTERNAL PROGRAM CALLS - External programs can be activated by
associating a file name with a menu option. Designer remains memory resident
until termination of .the sub-process. To specify a file name, the mouse icon
has to be positioned over a given window option. Typing CTRL~-L leads to the
user being guided through a series of questions. Several types of program
calls are possible. The user can 'chain’' or 'spawn' a program, with, or without
the use of parameters. Alternatively DOS commands can be activated, again
with the possibility of parameters passing. Output generated by external
programs can either be displayed on a clear screen(in text-mode) or re-directed
to a specified pop-up window. What is particularly unusual with Designer is
that the program calls can be tested straight away without having to generate
and compile the code. Designer's ability at executing DOS commands is
particularly useful in the context of providing the eventual user, facilities
such as directory listings (possibly to a window), file copying/backup,

changing default directories, and so on.

E.2.4 CODE GENERATOR - Having designed the interface, the corresponding
program can be produced by typing CTRL-Q . The user is prompted for a file
name. Designer then generates the PASCAL code and compiles it to EXE format.

A 'screen design' file is also generated which can be used to re-load a

294

previously designed interface.

E.3 MODIFYING DESIGNER FILES

There are two ways of modifying Designer files. Re-loading the screen
design file or altering 'the PASCAL code. The PASCAL code is split into
modules. Only one of these modules is accessible by the user and consists of
a single procedure. The procedure consists of a CASE statement relating to
window and menu options. By inserting library commands and/or procedure
and function calls, particular menu options can be made to activate given tasks.
The file must then be re-compiled using the RERUN batch file to analyse the

effect of the changes.

E.3.1 USING THE GENERATED FILES - Having designed an interface, the
user's program has to be modified. The first step is to alter the heading of
the program code from PROGRAM FileName to MODULE FileName. The second
step consists in enclosing the program body within a procedure. This procedure
must then be called by one of the menu options. This can be done by modifying
the CASE statement as described above. The procedure must also be declared
as being EXTERNAL .before LINKING the modules. The read and write
statements in the user's program will also need changing. These can be
replaced by READWIN and WRITEWIN library functions that re-direct I/0
commands to specified windows. Graphs can also be produced within windows
using the appropriate library functions. All the ESSIM port model interfaces

were created using Designer.

295

APPENDIX F

296

CONTENTS - APPENDIX F

Rxp

F.1 Introduction. 298
F.2 What is object oriented programming. 299
F.3 Examples of languages based on the object oriented approach. 300
F.3.1 SmallTalk-80. 300

F.3.2 ROSS. 302

F.3.3 KBS / Simulation Craft. 310

F.3.4 BLOBS. 315

F.3.5 SLICE. 317

F.3.6 SIMYON. 320

F.4 Applying the object-oriented approach to model development. 325

297

APPENDIX F

OBJECT-ORIENTED SIMULATION

F.1 INTRODUCTION

Knowledge Base Systems (KBS) and Expert Systems (ES) have been
receiving increasing attention as potential components of a new generation of
simulation models. The interest in amalgamating the two techniques has resulted
predominantly out of the difficulties in representing human expertise using
present simulation modelling methods. Furthermore, ESs have increasingly been
applied to problems of manufacturing control in real-time which has resulted
in the need to represent the same ES components in a simulation model of the

real-world system.

A number of approaches have been used in combining expert system and
simulation methodologies in creating an environment for decision support. The
method that will be discussed is that of Object Oriented Programming (OOP)
in which human expertise in the form of rules depicting decision making is

represented as an integral part of the simulation model.

The next section will consider the general features of Object Oriented
languages. In section F.3, the application of the object oriented approach will
be considered with respect to a number of developments which have use the
OOP concept in developing simulation models (other than F.3.1 which discusses
the Smalltalk language). In section F.4, the advantages and disadvantages of

the OOP approach are considered and compared to alternative methodologies.

298

Some brief concluding remarks are given in section F.5.

F.2 WHAT IS OBJECT ORIENTED PROGRAMMING

Object-Oriented programming is a fairly loose term to describe a method
of knowledge representafion based on the description of objects and their
interrelationships. The technique originates from the AI field where it is used
in developing Expert Systems most often using LISP as a basis for the language
construct. It was not long before it was noticed that the Object-Oriented
approach would be suitable for the development of simulation models. Being
based on the Expert System(ES) paradigm, object-oriented simulation provides

an effective environment for the specification of domain knowledge.

In constructing an object-oriented simulation, the user first creates a set
of objects that broadly correspond to real-world objects. The characteristics
of these objects are then defined; the inputs they respond to, and the actions
they carry out in response. The interplay between objects is represented by
the passing of messages. In other words, the action carried out by one object
may lead to a message being transmitted to another object specifying that an

action should be carried out.

Another important aspect of object-oriented simulation is the concept of
'inheritance' which is derived from the semantic networks knowledge
representation scheme used in many expert systems. Inheritance is useful in
creating hierarchies of objects, each of which can inherit characteristics from

a higher ranking set.

299

F.3 EXAMPLES OF LANGUAGES BASED ON THE OBJECT ORIENTED APPROACH

F.3.1 SMALLTALK-80 (Reference Ulgen and Thomasma[1986])

The Smalltalk-80 language was developed about 15 years ago to provide
an alternative to the procedural programming techniques. Smalltalk-80 replaces
the procedural concept of operators and operands by that of messages and
objects. A good exampie described by Ulgen and Thomasma[l986], is a
comparison of a mathematical operation using a procedural and object-oriented
language. In the case of a procedural language, an operation such as SIN(X)
would be carried out by applying the SIN operator on the operand. The
operand remains passive whereas the operator is active and carries out a
calculation based on the value of the operator. The integrity of the operation

is maintained by insuring that the operand is of the correct data-type.

In contrast, the object-oriented approach defines the operator (X) as
being an object. The object can then perform the operation (SIN) on itself.
Consequently, a more logical way of writing the command would be X SIN in
which SIN is a message sent by the object (X) asking for the operation to be
performed. In Smalltalk-80, messages that do not have arguinents are referred
to as unary messages. Conversely, messages that have one or more arguments
are known as keyword messages. The syntax of a typical message that has two

arguments would be as follows:
Machine acquire: 1 Resource: 'replacement grinder'

Machine is the object that receives the message. The two arguments are

1 and 'replacement grinder’.

300

Inheritance also plays a role in such a simple operation. Smalltalk-80
supports a tree like structure for the classification of objects and operations.
For example, X may belong to ‘a predefined 'Class' of objects known as
'Number'. 'Number' is in turn known to consist of three subclasses; Float,
Fraction and Integer. The class 'Integer' in turn has three subclasses;
Smalllinteger, LargePosiﬁveInteger, and LargeNegativelnteger. These classes
are arranged in a hierarchical order in which a subclass is contained entirely
within its superclass. Consequently, an instance of a specific class must also
be an instance in the corresponding superclass. Operations are also defined

as part of classes.

The same class systems applies to operations. For example, Factorial
belongs to the class Integer. If the message Factorial is sent to an instance of
the class Smalllnteger (say X), then a search for the Factorial operation will
first be made in the Smalllnteger class and if it is not found, then in its
superclass, Integer. If this were also to be unsuccessful the backward search
would continue until no more superclasses were left (The top class is 'Object'

and is the only class not to have a superclass).

Smalltalk-80 is a general purpose object-oriented language and is
therefore not specifically designed for simulation. As with any high level
procedural language such as Pascal or C, the simulation control framework has
to be defined. Indeed, Smalltalk-80 can be used to create models that use any
of the well known methodologies such as activity scanning, process interaction
or event scheduling. Furthermore, the language can be used to model time

using the methods of discrete changes, continuous changes or combined

301

discrete/continuous changes.

ADVANTAGES DISADVANTAGES
Compact code. Code difficult to understand.
Supports inheritance. Not designed for simulation.
graphical output possible. Difficult to debug.

Data structures limited.

Inflexible (similar to 4GL)

F.3.2 ROSS (Klahr[1984], Klahr[1985], Klahr & Faught[1980], McArthur[1986],

Adelsberger [1986])

ROSS (Rand Object-oriented Simulation System) is an object-oriented
simulation language that uses an English like syntax which is supposed to make
the code easier to read and intelligible to non-programmers. ROSS is
implemented in LISP (MacLisp, Interlisp-ZQ, Vax-Interlisp, Interlisp-D,
Franzlisp and Zetalisp) and is therefore interpreted. This, RAND claim, is an
advantage since it permits interruption of the simulation run (for queries &
code modification), removes the need for compilation (hence easier & quicker
modification/experimentation cycle), and simplifies the debugging process.
ROSS also provides textual simulation output designed for tracing purposes

and graphics facilities for animated presentations.

302

ROSS differs from Smalltalk-80 in that it is specifically designed for
simulation, but the general concept of programming using objects and message
passing is retained. The syntax for a message being passed from one object

to another is as follows:
(ASK <object> <message>)
for example:
(ASK operatorl send repair_teaml to machine3)
<message> is a sequence of LISP ATOMS. In the example, 'operatorl' is

sent the message 'send repair _teaml to machine3'.

Having sent a message to an object, the object has to have a way of
responding. In ROSS, the response to the message will also take the form of

messages and has the following syntax:

(ASK <object> WHEN RECEIVING <message-template> <body>

<message-template> is a sequence of Lisp atoms uses in detecting the
message being received. <Body> is a list of ROSS commands or LISP code. An

example object response would be:

303

ASK operator WHEN RECEIVING (send >repair_team to >machine)
(ASK !myself add !repair team to list of busy_teams)
(ASK !myself remove !repair_team from list of

repair_teams_available)

In ROSS, the concept of global functions is not supported and so each
object in the system must have a behaviour defined (it is assumed that all
objects in the system are unique). In the above example, when operatorl
receives a message, it gets compared to the message template. The symbol >
which is used as a prefix in the message template indicates the use of a
variable. For example, >repair_team is a variable and will be bound to its value
'repair_teaml'. Variables in <body> are prefixed by the character ! which
indicates that the value of the variable should be used rather than its name.
Also notice the use of the variable !myself. This indicates that a message
should be passed to the currently active object (a form of looping with a rather
strange syntax). Hence, a typical list of actions carried out by an object
consist of a complex chain of subsequent message transmissions (which include

messages passed from an object to itself).

As with Smalltalk, ROSS supports the concepts of object hierarchies and

inheritance. To syntax for creating a new object is as follows:

304

(ASK <objectl> CREATE GENERIC <object2>)

for example:

(ASK operator CREATE GENERIC operatorl)

'‘Operatorl’' is created as being an instance of 'operator'. In this case,
'operator' can be interpreted as a class of object while 'operatorl' represents
a member of that class. 'operatorl' inherits the attributes of its parent which
is why in the first example a message was sent to the object 'operatorl' and yet
in the subsequent example, the behaviour of the object was attributed to the
object 'operator'. However, the fact that 'operator' is a subclass of 'operatorl'
does not mean that their behaviour must be identical. During code execution,
ROSS first checks whether 'operatorl' has any behavioural responses attached
to it. If none can be found, the parent class of which the object is an instance

is searched.

A simulation model known as SWIRL, developed using the ROSS language
(McArthur[1986]) is a good example of the use of inheritance structures. When
an instance of an object of the hierarchy receives a message, a search is made
through the hierarchy to find an object that has a behaviour attributed to it
that matches the message received. So for example, if the object 'fighter-basel'
receives a message, a successive search is done through the defined object
behaviours for 'fighter-basel', 'fighter-base', 'fixed-object' and finally

‘'simulator’' (top class in the hierarchy). The objects or classes of object can

305

also have values associated with them. For example, in creating 'fighter-base'

the following CREATE command could be used:

(ASK fixed-object CREATE GENERIC fighter-base WITH

Position (0 0)
Status | active
Fighters-avail nil
Scramble-delay 10
Alert-duration 1800

some of the values such as 'Alert-duration' are taken as being defaults
for all instances of 'fighter-base'. On the other hand attributes such as
'Fighter-avail' are given a NIL value meaning that each individual instance of
'Fighter-base' may have its own value for the specified attribute. The values
of attributes, as with variables in general, can be manipulated as follows using

messages:

(ASK Fighter-basel RECALL YOUR alert-duration)

(ASK Fighter-basel SET YOUR status TO destroy)

(ASK Fighter-basel INCREMENT YOUR alert-duration BY 100)

306

In the second and third example, if 'status' or 'alert-duration' do not
exist for the specified object, then the attribute is automatically created. In
the third example, if ‘'alert-duration' does not exist its value is inherited from
the 'fighter-base' class, the attribute created under 'fighter-basel' and the

value 100 added to its present value (1800).

ROSS provides commands that are specific to simulation. Time handling
is of course one of the most critical aspects of simulation and is handled by

commands of the following form:

(ASK operator3 PLAN AFTER 20 SECONDS

TELL Machine2 to terminate)

the 'PLAN AFTER' command ensures that the following message is only
sent after the specified delay in simulated time has elapsed. To advance clock

time, ROSS provides the following command:

(ASK nclock TICK)

'nclock’ has an attribute 'ticksize' which determines the clock time
increment. Advancing the clock by a specified number of time units does not
mean than an event that should have occurred before the new clock time does

not get executed. The events that have been 'missed' are carried out until the

307

new clock time has been reached. This simply permits interruption of the

simulation at set time intervals for analysis of results.

ADVANTAGES AND DISADVANTAGES OF ROSS

ADVANTAGES:

1. English like syntax increases the readability of the code.

2. Some si{nulation problems can naturally be expressed in terms of
objects and messages. In particular human communication, which
explains why object-oriented programming originates from Artificial
Intelligence research.

3. High level code which simplifies the programming task.

4. Good for rapid prototyping because of the interpreted natures of
the code.

5. ROSS uses just a few commands which simplifies the programming
process (ASK & TELL are the most common instructions). In this
respect the language resembles LISP, in which ROSS is itself
written.

6. 'Inheritance' can simplify the programming task if objects in the

system have similar characteristics.

308

DISADVANTAGES:

1. The user has very little control over variable structures and data
types.
2. ROSS assumes that the messages that are going to be sent are

simple consisting of just a few variable values. In most cases,
real-world rﬁessages are far more complex than can be modelled.

3. 'Inheritance' though useful in many cases, can make tracing
execution of the model difficult. Complications are for example,
inevitable when variables can assume values without there being
any direct instruction from the programmer.

4. Some ROSS commands are unnecessary, messy and confusing. For
example, the need for an object to sent itself messages in modifying
variable values.

5. The interpretive nature of the code combined with the pattern
matching characteristics of the message passing system, mean that
large sections of simulation code are very slow to execute, though
admittedly, quicker to modify.

6. ROSS has limited applicability. There would be little point in using
ROSS in simulating problems which do not have the characteristics
of inheritance.

7. Some simqlation processes can be identified with objects and
messages. This is not however always the case and it can become
somewhat confusing to call some hypothetical process an 'object'.
Furthermore, a message is often not what one can visualise an
object as sending, particularly when the 'object' is not really an

object in the first place!

309

8. A point mentioned by McArthur[1986] is that ROSS cannot deal
effectively with 'non-intentional’ events. The example given is of
a plane entering the range of a radar. The plane is hardly going
to announce its position to the radar by sending it a message! The
plane entering the radar range is a side effect of it flying its
course and can therefore be categorises as a non-intentional side

effect.

F.3.3 KBS / SIMULATION CRAFT (Reddy Et. Al.[1986], Baskaran Et.

Al.[1986])

KBS (recently renamed as SIMULATION CRAFT) was developed at
Carnegie-Mellon University and resembles ROSS in design. KBS is written in
a Schema Representation Language(SRL) which is itself implemented in Franz
Lisp. Objects in a KBS model are represented by 'Schemata' which are made
up of 'Slots'. The slots contain data corresponding to physical limitations,
event behaviour etc.. An example schema for a distribution centre would be as

follows:

310

{{distribution-centre:
CAPACITY:
INVENTORY:

SHIPMENT~-TRANSIT-TIME:
RECEIVE-ORDER-EVENT : "receive~order-rule"
Range: (TYPE instance event-rule)

REC EIVE-SﬁIPMENT-—EVENT :"Receive-shipment-rule"
Range: (TYPE instance event-rule)
ADMINISTRATOR
Range: (TYPE instance administrator)
ORDER-TRANSIT-TIME:
Default:0
BACKORDERS:
TOTAL-ORDERS:

INVENTORY-COST}}

The entries in capital letters represent the slots whereas the entries,
'Range' and 'Default' are known as Facets. The range facet defines the type
of value that may fill the slot. The default facet is used in providing a default

value if a specified slot is empty.
The schemata that describe the model can be interrelated to form a

network by using slot values as links. Furthermore, slots may inherit values

from slots in other schemata.

311

{{event-24

33

The above example is of a schema known as an event-notice. The event

KBS uses the discrete event approach to simulation. Event behaviour can

INSTANCE:event-notice
FOCUS:D1
comment:Focus of event,the entity
EVENT: "receive-order-event"
comment:event-slot in event-schema
TIME:"21 Aéril 1985 11:00:00"
comment:time of execution
PRE-ACTION:nil
comment:Action to be taken before event execution
POST-ACTION:nil
comment:Action to be taken after event execution
EVENT-PARAMETER:orderl0
comment: Event parameters
RUN-EVENT :run-event

comment:method to execute event

to take place at the specified time is the arrival of an order focused around
the distribution centre Dl1. The "receive-order-event" entry is a cross
reference to a slot in the 'focus' schema. The content of the slot may be a

reference to a LISP function.

be expressed in the form of rules to be executed when the event occurs. The

312

following example rule links with the distribution centre schema.

{{receive~order-rule

INSTANCE:event-rule

IF : (something-in-inventory)

THEN : (schédule—transport) (deduct from inventory)
13

There are other facilities provided by KBS which are meant to simplify
the model building, experimentation and analysis stages. The user may build
a rule base which can then be used in automatically selecting new experiments
at the end of a simulation run. Furthermore, a facility exists for detecting

causal relationships and defining these as part of the domain rule base.

Simulation Craft is a successor to KBS and is implemented using a
knowledge engineering tool for the development of expert systems known as
Knowledge craft. The underlying code in the system is written in Common Lisp.
Although the kernel of simulation Craft is almost identical to that of KBS,

Simulation Craft differs from KBS in a number of respects.

A Model Building Expert System can be used in assisting the user to
create a graphical representation of the problem. The expert system also checks
for model completeness and identifies inconsistencies. A Model Execution Expert
is intended to help in deciding on start and end times for the simulation run as

well as identifying the number of runs needed and the alternatives that should

313

be evaluated. Finally, a Model Analysis Expert helps in evaluating the results

of a simulation run.

Simulation Craft provides a further facility for automating the simulation
life cycle. The Dynamic Planner is a rule based expert system that can be used
in identifying a possible system configuration that could potentially be used to
attain a desired goal. The expert system rule base consists of knowledge on

cause and effect relations and on desirable system configurations.

ADVANTAGES & DISADVANTAGES OF KBS / SIMULATION CRAFT.

Because of the similarities between KBS and ROSS, the two environment
have many of the same limitations. Where KBS differs is in the degree of
background support provided to the user in developing and analysing the
simulation. This additional support is based on the use of expert system
knowledge-bases to analyse the available information. In this respect, the
advice or decisions that are made automatically by KBS can only be as good as
the coded knowledge. Whereas good advice given to the inexperienced simulation
model user is unquestionably useful, one must also consider that bad advice
is confusing and can be worse than providing no assistance at all. In the case
of KBS/simulation craft, the problem is aggravated because of the degree to

which the processes are automated.

314

F.3.4 BLOBS (REFERENCE: Middleton & Zanconato[1985])

As in the case of ROSS, BLOBS (BLackboard OBjectS) is an
object-oriented language for simulation which was specifically developed for
military aircraft control applications. BLOBS was developed using the POPLOG

environment which is based on the AI language POP-11.

Middleton claims that it was originally intended to develop an environment
based on an expert system that would obtain data from an existing radar
simulator. The idea was abandoned in favour of an integrated approach because
of the potential difficulties in sharing data from different sources and of
modifying the behaviour of the simulation in response to a flight controllers
decision represented by the expert system. The first system to be subsequently
developed consisted of a blackboard system for modelling the aircraft controller
and an object-oriented message passing system for representing the aircrafts
and radars. Problems did however arise because the blackboard model held all
data centrally with no possible restriction on access. There was therefore no

way of ensuring consistency.

Objects in the model are described as sets of declarations and definitions
each known as a BLOB. A BLOB may consist of local variable declarations,
procedure definitions, behavioural responses (procedure-like) and an

inheritance list.

Communication between BLOBS is possible in a number of ways: One
BLOB may interrogate the public variables of another BLOB, a message may

be sent to a BLOB, or demons may activate a behavioural response. Demons

315

are attached to variables and may be activated by a change in the value of the

variable. Demons can also monitor the creation and removal of BLOB instances.

The following is an example of the representation of an aircraft under

BLOBS:

Dynamic blob aircraft;
public vars position heading speed climb_rate;
private vars target_heading target_height target_speed;
on_message change_course
with new_heading -> my target_heading do
;7 Initiate change in heading
enddo;
on_message climb
with new_height -> my target height
climb_rate -> my climb_rate do
;;;Initiate climb
enddo;
:;:Other behaviours

endblob;

ADVANTAGES & DISADVANTAGES OF BLOBS

The author of the BLOBS system claims that the language has several

advantages over the ROSS implementation: The distinction between local and

316

global variables in defining objects, the use of demons in triggering behaviours
when variables are updated, stricter type checking of messages and the
possibility of deleting objects during the simulation run. On the other hand,
the author also recognises certain pitfalls in the BLLOBS language: A BLOB that
is a recipient of a message requires prior knowledge of the identity of the
sender. A BLOB that is created during the simulation run cannot have demons
attached to it. And finall.y, the restrictions imposed by the type checking (and
consequently the inability to apply arbitrary expressions), are said to cause

problems with the generalisation of methods.

F.3.5 SLICE (Reference: Gosling & Okseniuk[1986])

SLICE (Simulation in LIsp of Continuous Events) is a LISP program code
generator that is based on the object-oriented message passing paradigm. SLICE
was originally developed for modelling air traffic control systems. SLICE
represents the objects of the model as 'actors' and allows the user to define
their behaviour in terms of continuous or discrete events. Information can be
passed between actors in the form of messages and communication with a central

database is also possible.

SLICE allows an expert system rule-base to interact with the model. This
may be achieved by defining the expert system as an actor, or by representing

it as a separate entity, invokable by the behaviour routines of actors.

SLICE can be used as a program generator using a 'script' file for the

definition of the problem. Alternatively, SLICE functions can be embedded in

317

existing LISP code.

Other SLICE properties are as follows:

- Data is local to an actor. Remote access is not possible other than
by sending énd receiving messages.

- A central database can be used by any of the processes, using
messages to gain access. entry to specific areas of the database
can be restricted.

- messages sent between actors contain certain specific information.
A unique identification code, sender identification, recipient
identification, start time, duration and content.

- Objects (and more specifically their defined behaviours) have
different priority levels. In establishing the event queue, the
system considers both the priority level and the scheduled time
for activation. Messages are always taken as having the highest
priority.

- Processes (known as T-processes) in SLICE contain data structures
and function definitions. Furthermore, these processes may have
many 'instances' of actors of the same type. These instances
contain the same data and function definitions, but the value of
the data items may differ. T-Processes are organised hierarchically
and can inherit the characteristics of higher ranking processes

(the structure is identical to that used in ROSS).

318

Each T-process consists of a stack (stores information on the execution
state), a list of pointers linking variable names with their values, a reference
to the message type expected, and a pointer to the t-process that is one level
higher in the hierarchy of processes. The behaviour of a T-process is
described by a set of IF-THEN type rules. The action part of the rules refer
to functions that have the effect of advancing the simulation clock, sending

messages etc..

The behaviour of actors may be inherited. Vehicles for example have some
characteristics that apply to all vehicles, but also have features that are unique
to a particular type of vehicle. In SLICE, T-processes are organised
hierarchically with each sub-process being able to inherit the characteristics
of its parent. This relieves the user from the burden of having to define
general characteristics for every occurrence of a particular type of actor. Both
data and rules can be inherited. The total data set for a specific T-process is
made of the data specific to the T-process and the data values inherited from
T-processes further up the hierarchy. However, when specific variables occur
several times in different T-processes, the value corresponding to the lowest
member of the hierarchy gets priority. In the case of rules, inheritance works
slightly differently. Rules in different T-processes belonging to the same class
of actor are combined. This leads to a risk of inconsistencies in the rules.
However, rules may also be inconsistant for other reasons and so an algorithm

is used in resolving the conflicts.

319

ADVANTAGES & DISADVANTAGES OF SLICE.

SLICE is different from the object-oriented languages previously
discussed in that the systems is infact a LISP code generator. This, from the
perspective of flexibility is an advantage. Another important benefit of SLICE
is the importance attributed to modelling human behaviour in terms of IF-THEN
type rules. The abﬂitf of accessing external rule-bases is also particularly

attractive.

Facilities that are lacking include the ability to attach weights to different

rules and the capability of seeking a goal in a rule-base.

F.3.6 SIMYON (References: Ruiz-Mier Et. Al.[1985,1987])

SYMION is a network simulation environment developed using the CAYENE
language which is said to be based on a combination of object-oriented
programming, logic programming and the discrete event approach to system

modelling.

A SYMION model is created by unifying a number of CAYENE objects.
These objects, are arranged hierarchically and can inherit the characteristics
of objects in a parent class. SYMION also supports the use of DEMONS which
are evaluated if an attempt is made at retrieving a specific value. For each
defined object in the model, there exists a set of rules. When an object receives
a message, a search is made of the rules to find a premise that matches the

message type. The action part of the rule may then be carried out which

320

typically involves sending messages to other objects. Consider the following

message and rule as an example:

(send'CREATE'(Start)) Message

(Start) <== (Send_at >time_to_start MYSELF '(Next_arrival)) RULE

CREATE is the name of the object to which the message 'Start' is being
sent. One of the rules which form part of the object definition has a premise
that matches the message. CAYENE will now take the action part of the rule
as a sub-goal. This results in a message 'Next_arrival' being sent to the object
CREATE (represented by the MYSELF clause) at the time given by the constant
'time_to_start'. This new message also has a matching rule defined as part of

the CREATE object:

(Next_arrival) <== (send_at TNOW >next_node
(newsym >transaction_name))
(send_at (+ TNOW >time_bet_creation)

MYSELF '(Next_arrival))

The action part of the rule now results in the creation of two further
sub-goals which also take the form of messages. The use of >next node in the

first of two rules activates a demon requesting user input. A message is then

321

sent to another object. The second rule is a next arrival scheduling mechanism
which operates by scheduling the sending of a message by the object to itself

(at time TNOW + time_bet_creation).

SYMION has a rule structure that is particularly attractive in the context

of manufacturing problems. Consider the following object description:

(defob SCHEDULE

:properties:_

(machines (M1 M2 M3..Mn))

crules:

(Move ?Part ?Mach) <==
(find ?Mach)
(available ?Mach)
(can_process ?Mach ?Part)
(not(full(queue ?Mach)))
(send_at TNOW ?Mach ?Part)

(Available ?Mach) <==
{not(overloaded ?Mach))
(not(down ?Mach))

(Down ?Mach) <==
(maintenance ?Mach ?T1 ?2T2)
(lessp ?T1 TNOW ?T2)

(Down ?Mach) <==

(needs_repair ?Mach)

322

The machines Ml..Mn are objects that are defined as part of a class
known as a SCHEDULE. The defined rules are used to check if a part (?PArt)
should be moved to a particular machine (?Mach). The first rule represents
the highest level of abstractions in the decision making process and can be
translated as follows: Move part P to machine M if and only if M exists, M is
available, M can proceés P, and if M's queue is not full. Each condition in the
premise of the rule are treated as sub-goals and can be solved by other defined
rules. For example, the availability of machine M is determined by checking if
M is not currently overloaded and that it is not currently out of action. The
search for solutions to sub-goals is not limited to the current object. For
example, the rule for solving the 'Needs repair' condition is defined as part

of the object definitions:

(defob M1
:properties:
(a_Kind_of MACHINE)
(queue Q1)
(operator Operatorl)
(output_rate (/ ?Num_parts ?Time))
(noise_level (;ample_detector ?Det 1))
:rules:
(Needs_repair) <==
(lessp >output_rate 13)

(lessp 30 >noise_level)

323

The rule identifies machine M1 as needing repair if the output rate falls

to below 13 and the noise level rises to above 13db.

ADVANTAGES & DISADVANTAGES OF SIMYON

SIMYON is a flexible language in terms of the use of rules. As Ruiz-Mier
points out, changes to the logic of the simulation can be very simple to make.
It would for example be very simple to include a rule that stipulates that an

operator will stop working between certain times during the day:

(Busy Operator <== (lessp Tl TNOW T2)

Unfortunately, SIMYON does lack in power in processing defined rules.
The inference strategy is purely backward chaining and as a consequence, the
search for a solution will sometimes be very slow (when many sub-goals are
identified). The provision of a forward chaining strategy would have been

desirable. Other limitations exist but are less serious:

1. The syntax of the language is complex, in particular when defining
mathematical statements.

2. Variable declarations are not required and so the risk of syntax
errors in variable names are high.

3. Reading the code can be difficult as rules can be defined as part

of different objects.

324

F.4 APPLYING THE OBJECT-ORIENTED APPROACH TO MODEL DEVELOPMENT

From the examples, one can see that the applicability of the
object-oriented paradigm very much depends on the target problem for which
a model is to be deve.lbped. The approach to modelling is dependent on the
entities in the model having a sufficiently close relationship as to be able to
establish a hierarchy in which inheritance of characteristics can play a part.
The use of inheritance is a key factor in reducing the complexity of the model
by limiting the duplication of facts and rules about objects. It is also desirable
for the problem domain to be of a type that can be naturally broken down into
constituent ‘objects' or 'actors' and in which communication plays a significant
role. These characteristics are not vital to the model development process, but
simplify the overall task by allowing a more natural visualisation of the real
world system, that the model is meant to represent. Such considerations are
behind the suitability of the object-oriented approach to the simulation of
tactical warfare problems to which the ROSS, BLOBS and SLICE languages
specifically address themselves. In military applications, aircrafts, tanks etc.
are effectively described using inheritance. In the case of aircrafts one could

have a class inheritance hierarchy that would be as follows:

325

TRANSPORT

VEHICLE AIRCRAFT

AIRCRAFTTYPE

NON-JET

COMMERCIAL MILITARY

BOMBER SURVEYANCE

AWACS

Figure F8Q /NHER/TENCE/N OBJECTORIENTED ENVIRONMENTS

Some of the characteristics of an AWACS plane are specific and cannot be
found in any other existing military aircraft. These are therefore defined as
part of the AWACS object description at the bottom of the hierarchy. However,
some of the characteristics of an AWACS are more general and can therefore
be inherited from classes of objects higher up in the hierarchy. Furthermore,
an AWACS is used for surveyance operations and can therefore inherit
characteristics from a separate hierarchy defining the capabilities of radar
systems. Communication between object in a tactical warfare problem also plays
an important role for which the object-oriented paradigm is well suited. An

aircraft wishing to land at an airfield can for example be described as sending

326

a message to the control tower requesting permission. The landing activity will

then commence, conditional on the airstrip object being available.

Even in the case of applications that would seem suitable targets for an
object oriented approach there can be problems such as those identified by
McArthur(1986]. Of particular concern is the dependence on message passing
for communication and activation of events. Consider the-example of two enemy
aircraft which are about to go into battle. For one aircraft to recognise and
attack the other aircraft, messages need to be transmitted between the two

which obviously contradicts the real-world rules of engagement.

As with expert systems, models developed using the OOP approach are
based on a relatively unstructured search algorithm. Furthermore, the desire
to allow the user to develop the model incrementally by defining the
characteristics of objects as and when they are identified also leads to problems
in maintaining a structure. Consequent difficulties also arise because of the
problem of ensuring that the defined model is complete and is not ambiguous or
inconsistent. Lack of a formal structure also tends to mean that execution is
slow for large models which is a problem aggravated by the interpretive nature
of the Lisp environment which tends to be the language used in developing
and implementing object-oriented models. The loss in speed is however offset
by the advantages of being able to test the effect of changes in the code
without having to compile and being able to trace and debug the model

interactively.

The use of inheritance can be advantageous in terms of code size by

reducing the repetition of characteristics of objects. However, problems can

327

arise when values are inherited unexpectedly. Hence, the characteristics of
each member of the object hierarchy has to be carefully defined with particular
attention to the possible values that may be inherited from parent classes.
Similar care is needed in OOP languages in which rules can be inherited. A set
of rules may be spread across a number of object classes making it difficult to
trace potential actions and increasing the risk of rules being mistakenly
inherited in satisfying a goal. Such problems aggravéte the difficulties in
specifying the characteristics of the components of the model and particularly
in cases where the concept of objects and messages do not seem to be a natural

structure for the formalisation process.

328

APPENDIX G

329

APPENDIX G

ESSIM OUTPUT DISPLAYS FOR THE PORT MODEL

0R ORTIRUE

KULESET CRANEMANAGER (INHERIT IMUMANAGERJSHIPNANAGER)i1

(M NUHBEROFSHIPCRAHES = 5 Ié C1] CRANEOOBS = FALSE IF ((CRANEOPERATIONA
(CRAHEOPERATIORAL : FALSE)

[ZD CRANEQOBS = TRUE WHEN éCLOAOIMU = TRUE) OR CUNLOADIMU = TRUEE OR
LOADSHIP : TRUE) OR OJNLOADSHIP = TRUE)) AND

00BOUTSTANDING NEXTUOB UOBFOUND ,BAT,

Messages

Opening File: IMUNANAG.TEM
Opening File: CRAHEMAH.TEM

FIGURE G81 TRACE OF ESSIM COMPILATION OF RULE-SETS

330

ANiw W AW W ww X v AV/XXVIVXVXVX; A 1=

o O€lav (0..100)

Berthl BerthZ

z 1
| 80 | 50
E500 E 500
Nunber Ships waiting to berth: 7
SO

i
0

/4 14 1z

fHi jfljxiirM'iii
FIGURE G82 TRACE DISPLAY OF SHIP CYCLE IPOFUP
RM DS iMM W
1P m 1 [

A VXXVAXW

Gate Uehicles at stack
4 13 4 012 S 3 3
Number of Us outside 13
Number of os waitin to fm *lioc*ted/move to a hay
Hunber of Us in svs Y i)

al) VUK 16 624 7

Bav 12 34 7 8 910

Spl 16 8 33 S4

exp I I I 11 1 1

O D

0 0

Z 14 1z

FIGURE G83 TRACE DISPLAY OF GATE VEHICLE CYCLE

331

INPCRTS 1 ->
PFACRIS 1 ->
IMPORTS Z ->
PARS Z->

QAL StartShipArr
4
StartDockAtBerth
StartShipLeaue

c

'DELAY OPTION ALSO SHOWNI

"h'sm:

3

1

AAW *AAAVMVIV* VI,

1+> 156
> 0
Z> ZIl
z> 0

GoAL sendEnmptylmu

SencEnptViiDU
GAL SendEoptvifDu
QAL SendFUIIDIUT

bR A R \F71P et w1 1

sXv-v>.vMftm & .

OO0 TTOOO O - Lo

EBS 1 3
FIS 10
EIL 0 0
FIL 3
IMuidle 64
Shi icidle 1 L
fullinutoship 0L
enptyimutoship 0L
fullimutostore 0 L
emptyimutostore 0 u
14
TAMIHDOgSi
1
imp 7 3 3 7z 6
ep 0 0 0 0 0
imp 3 4 9 z 1
exp 8 0o 0 0 O
imp 0 0 6 O
exp 0 0 0 0 1
im 0 0 0 0
exp 0 0 0 0 1
im 0 0 0 0 O
exp 0 0 0 O O
im 0 0 0 0 O
exp 0 0 0 0 0
im 0 0 0 0 0
s g
imp 0
exp 0 0 0 0 0
im 0 0 0 0 O
ep G 0 0 0 0
H m HI

OEIN!m3*i*::S:ElSai«

(=Y =N =) -]

elect nenu option
FIGURE G84 TRACE DISPLAY OF IMV CYCLE

MIRDE

4 S 5
0 0 0
i 4 a4
0 1 0
30 0
o 0 0
0 0 Z
0 0 0
o 0 0
o 0 o
o 0 o
0 0 0
0 0 O
0 0 O
0 0 O
0 0 0
0 0 O
G G G

HiHI

o=

[F%)
OO TCOOTCOO O AR ONWwWo—

MMILw 1L I Mil IfHU

3 LMV

D H HM
i 1Z

IMPCRTS 1 ~> 164
BARS 1-> 0
IMPCRTS Z -> Z9
PARS Z-> 1

GOAL StartShipArr
(4
StartDockAtBerth
StartShipLeaue

A4

FIGURE G85 TRACE DISPLAY SHOWING NUMBER OF CONTAINERS IN THE STACK AREAS

332

APPENDIX H

333

APPENDIX H

REFERENCES

Adelsberger,H.H. [1984], "Prolog As A Simulation Language", Proceedings Of

The 1984 Winter Simulation Conference. British Computer Society.

Adelsberger,H.H. [1986], "Rule Based Object Orientated Simulation Systems",

Proceedings Of The Conference On Intelligent Simulation Environments.

Alty,J.L. and Coombs,M.J. [1984], "Expert Systems - Concepts and Examples"”,
NCC Publications, The National Computing Centre Ltd, Oxford Road,

Manchester M1 7ED, England. ISBN 0-85012-399-2.

Alty,J.L. [1985], "The Limitations of Rule Based Expert Systems",

in Knowledge-Based Expert Systems In Industry, Chapter 2.

Arumugam,V. [1985], "Priority Sequencing In A Real World Job Shop

Simulation", Simulation 45:4, ppl179-186.

Balci,O. [1986], "Requirements for Model Development Environments",

Computers and Operations Research, 13:1.
Balci,O. and Nance,R.E. [1987], "Simulation Support: Prototyping. The

Automation Based Paradigm", Technical Report 87-20, Department Of Computer

Science. Virginia Tech. University.

334

Balmer,D.W., Goodman,D.H., and Doukidis,G.I., [1988], "Knowledge Based
Management Support Systems.", Ed. Doukidis,G.I., Land,F., and Miller,G.

Ellis Horwood Ltd, Chichester.

Balmer,D.W., and Paul,R.J. [1986], "CASM - The Right Environment For
Simulation", Journal of the Operational Research Society, Vol. 37, N. 5,

pp443-452.

Barrett,R.T. and Barman,S. [1986], "A SLAM II Simulation Study Of A

Simplified Flow Shop", Simulation 47:5, ppl81-189.

Baskaran,V. Fox,M. Sathi,N. and Bouer,J. [1986], "Simulation Craft: An Al
Approach To Simulation Model Creation", Proceedings Of the IASTED

Conference, June 4-6,1986, Vancouver, Canada.

Bassett,G and Kochar,A.K. [1985], "Decision Support For Material
Requirements Planning Systems Using Computer Simulation", Proceedings Of
The 1985 Summer Computer Simulation Conference, July 22-24,Chicago,Illinois,

pp573-578.

Birtwistle, G.M. [1979], "Discrete Event Modelling on SIMULA", MacMillan,

London.

Bitran,G.R., Hass,E.A. and Hax,A.C. [1982], "Hierarchical Production

Planning: A Two-Stage System", Operations Research, 30:2, pp232-251.

335

Brooks,R. et al. [1979], "The Acronym Model Based Vision System",
Proceedings Of The International Joint Conference On Artificial Intelligence.

Volume 6, ppl05-113.

Brown,T. Alexander,S. and Jagannathan,V. [1985], "Demonstration Of An
Expert System For Manufacturing Process Control", AlI, Graphics And
Simulation, (Birtwistle,G. Ed), The Society For Computer Simulation, San

Diego, California.

Buchanan,B.G. and Shortliffe, E.H. [1984], "Rule-Based Expert Systems: The
MYCIN Experiments Of The Stanford Heuristics Programming Project”,

Addison-Wesley Publishing Company, Reading, MA.
Bullers,W.I. and Shultz,C.R. [1986], "Pprduction Rule-Based Simulation For
Job Shop Scheduling", Proceedings of the Summer Simulation Conference. Reno,

Nevada. pp718-723.

Chew,S.T. [1986], "Program Generators For Discrete Event Digital Simulation

Modelling", Ph.d. Thesis, London School of Economics and Political Science.

Cleary,J. Goh,K. and Unger,B. [1985], "Discrete Event Simulation In Prolog",

Al, Graphics & Simulation, The Society For Computer Simulation.

Clementson,A.T. [1982], "Extended Control And Simulation Language",

CLE.COM Ltd, Birmingham."

336

Clementson,A.T. [1978], "Extended Control And Simulation Language/Computer
Aided Programming System.", Reference Manual, University Of Birmingham,

Birmingham, England.

Clocksin,W.F. and Mellish,C.S. [1984], "PROGRAMMING IN PROLOG", 2nd

Edition, Springer-Verlag.

Costa,R.S. and Jardim,E.G.M. [1986], "Ouso da Simulacao Computacional no
Plahejamento e Controle da Producao", Sao Paulo, 6th ANAIS, Sociedade

Brasileira de Comando Numerio. SOBRACOM.

Crookes,J.G. and Valentine,B. [1982], "Simulation In Microcomputers", Journal

of the Operational Research Society, N.33, pp855-858.

Doukidis,G.I. [1987], "An Anthology On The Homology Of Simulation With
Artificial Intelligence", Journal Of The Operational Research Society Vol 38,

N.8, pp701-712.

Doukidis,G.I. and Paul,R.J. [1991], "SIPDES", Expert Systems with

Applications, Vol.2, No.2/3, pp 153-165.
Duda,R., Gaschnig,J. and Hart,P., [1979], "Model Design In The Prospector

Consultant System For Mineral Exploration", Expert Systems In The Micro

Electronic Age (D.Michie ed). Edinburgh University Press.

337

Erschler,J., Fontan.G. and Merce,M. [1986], "Consistency Of The
Disaggregation Process In Hierarchical Planning”, Operations Research, 34:3,

pp464-469.

Feigenbaum,F.A. [1982], "Knowledge Engineering For The 1980's."

, Department Of Computer Science, Stanford University, Stanford, California.

Fishman,G.S. [1973], "Concepts And Methods In Discrete Event Digital

Simulation", Wiley Press, New York.

Fjellheim,R.A. [1985], "A Knowledge Based Interface To Process Simulation",

Al Applied To Simulation, Simulation Series, VOL.18 N.1.

Flitman,A.M. [1986], "Towards the Application of Artificial Intelligence
Techniques for Discrete Event Simulation". Ph.d. Thesis, University of

Warwick, School of Industrial and Business Studies.
Flitman,A.M. Hurrion,R.D. [1987], "Linking Discrete-Event Simulation Models

With Expert Systems", Journal Of The Operational Research Society, Vol.38

N.8.

Fox,M.S. And Smith,S.F. [1984], "ISIS - A Knowledge Based System For

Factory Scheduling", Expert Systems, Volume 1, No 1, pp25-47.

Futo,I. [1985], "Combined Discrete/Continuous Modeling And Problem Solving",

Al, Graphics And Simulation. The Society For Computer Simulation.

338

Goodman,D.H. Balmer,D.W. and Doukidis,G.I. [1987], "Interfacing Expert
Systems And Simulation For Job-Shop Production Scheduling", Proceedings Of
The 3rd International Expert System Conference. Learned Information, Oxford.

ppl127-134, 2-4 JUNE 1987.

Gordon,G. [1981], "The Development Of The General Purpose Simulation System
(GPSS)", History Of Programming Languages", (Wexelblat,R.L. Ed.), Academic

Press, pp403-426.

Gosling,G.D. and Okseniuk,A.M. [1986], "SLICE - A System For Simulation
Through A Set Of Cooperating Expert Systems", Applications Of AI In

Engineering Problems, lst International Conference, Southampton University.
Gray,P. and Borovits,I. [1986], "The Contrasting Roles Of Monte Carlo
Simulation And Gaming In decision Support Systems", Simulation, 47:6,

pPp233-239.

Greig,I1.D. [1979], "Validation, Statistical Testing And The Decision To Model",

Simulation, 33:2.

Harmon,P. and King,D. [1985], "EXPERT SYSTEMS: Artificial Intelligence in

Business", John Wiley & Sons, Inc.

Helman,D.H. and Bahuguna,A. [1986], "Explanation System For Simulation",

Proceedings Of The 1986 Winter Simulation Conference.

339

Hill, T.R. and Roberts,S.D. [1987], "A Prototype Knowledge-Based Simulation

Support System", Simulation 48:4 ppl52-161.

Hills,P.R. [1971]. HOCUS P.E. Group, Egham, Surrey.

Hurrion,R.D. [1978], "An Investigation Of Visual Interactive Simumlation
Methods Using The Job-Shop Scheduling Problem", Journal of the Operational

Research Society, VOL.39, No.ll, ppl085-1093.

IEEE [1984], "American National Standard for the Pascal Computer Programming

Language", ISBN 0-471-88944-X, published by the IEEE, NY).

Jain,S. and Osterfeld,D. [1989], "Expert Simulation for On-Line Scheduling",
1989 Winter Simulation Conference, 4th-6th December 1989, The Capital Hilton

Hotel, Washington D.C.

Kheir , N.A. and Holmes,W.M. [1978], "On Validating Simulation Models Of

Missile Systems", Simulation, 30:4.

Kiran,A.S and Smith,M.L. [1983], "Simulation Studies In Job Shop Scheduling:
A Survey", Ed. Haluk Bekiroglu, Simulation in Inventory and Production
Control, Proceedings of the Conference on Simulation in Inventory and

Production Control.

Klahr,P. [1984], "Artificial Intelligence Approaches To Simulation", Proceedings
of the 1984 UKSC Conference On Computer Simulation, Published By

Butterworth, Bath.

340

Klahr,P. [1985], "Expressibility In ROSS: An Object-Orientated Simulation

System", Al Applied To Simulation, Simulation Series, VOL.18, N.1.

Klahr,P. and Faught,W.S. [1980], "Knowledge Based Simulation", Proceedings

Of The First Annual National Conference On AI, California, ppl81-183.

Koskossidis,D.A. and Davies.B. [1987],"Validation And Verification Of Job

Shop Simulation Models"

Langen,P.A. [1985], "Application Of Artificial Intelligence Techniques To

Simulation", Simulation and AI, Simulation Series, VOL.18, N.3.

Lavery,R.G. [1986], "Artificial Intelligence And Simulation: An Introduction",

Proceedings Of The 1986 Winter Simulation Conference.

Markowitz,H.M. Hausner,B. and Karr,H. [1963], "SIMSCRIPT: A Simulation
Programming Language", RAND Corporation RM-3310-PR, Prentice Hall,

Englewood Cliffs, New Jersey.

Matthewson,S.C. [1975], "Interactive Simulation Program Generators",
Proceedings Of The European Computing Conference On Interactive Systems,

Brunel University.

McArthur,D.J., Klahr,P. Narain,S. [1986], "ROSS: An Object Orientated
Language For Constructing Simulations", Expert Systems Techniques, Tools

And Applications, PP70-94, Adisson Wesley, Reading, Masechussets.

341

McFall,M.E. and Klahr,P. [1986], "Simulation With Rules And Objects",

Proceedings Of the 1986 Winter Simulation Conference.

McRoberts,M. Fox,M. and Hussain,N. [1986], "Generating Model Abstraction

Scenarios In KBS", Al Graphics And Simulation. SCS, San Diego, California.

Meadows,R. [1988], "Simulation - You Can Fake The Real Thing",

Port Development International.

Mellichamp,J. Kwon,O. and Wahab,A. [1987], "Desiging Flexible Manufacturing
Systems With Expert System Technology", 1987 Summer Computer Simulation

Conference.
Middleton,S. and Zanconato,R. [1985], "BLOBS: An Object Orientated
Language For Simulation And Reasoning", Artificial Intelligence Applied To

Simulation. ppl30-135. The Society For Computer Simulation, VOL.18, N.1.

Mihran,G.A. [1972], "Some Practical Aspects Of The Verification And Validation

Of Simulation Models", Operational Research Quartely, 23:1.

Miller,D.P. [1986], "Temporal Reasoning", Proceedings Of The 1986 Winter

Simulation Conference.

Moser,J.G. [1986], "Integration Of AI And Simulation In A Comprehensive

Decision-Support System", Simulation, 47:6, pp223-229.

342

Muetzelfeldt, R. Bundy,A. Uschold,M. and Robertson,D. [1985], "ECO - "An
Intelligent Front End For Ecological Modelling", AI Applied To Simulation,

Simulation Series, The Society For Computer Simulation, VOL.18, N.1.

Muller,C. [1986], "MODULA--PROLOG- A Programming Environment For

Building Knowledge Systems", Knowledge-Based Expert Systems In Industry.

Muller,C. [1986], "MODULA-PROLOG: A Software Development Tool.", IEEE

Software.

Nance,R.E. [1981], "The Time and State Relationships In Simulation Modelling",

Communication Of The ACM, 24:4, ppl73-179.
Nathan,D.L. and Sokol,D.Z. [1986], "A Decision Support Framework For
Manufacturing Simulation Models", The Proceedings Of The 1986 Summer

Simulation Conference, July 28-30, Reno, Nevada, pp737-740.

Naylor,T.M. and Finger,J.M. [1967], "Verification Of Computer Simulation

Models", Management Science, 14:2.

Nestman,C.H. and Windsor,J.C. [1985], "Decision Support Systems: A

Perspective For Industrial Enginners", IIE Transactions, 17:1, pp38-46.

O'Keefe,R. [1986], "Simulation And Expert Systems - A Taxonomy And Some

Examples", Simulation, 46:1, ppl0-16.

343

O'Keefe,R.M. [1986], "The 3-P Approach: A Comment On Strategy-Related

Characteristics Of DIS Languages and Models", Simulation, 47:5, pp208-211.

O'Keefe,R.M. Balci,O. and Smith,E. [1986], "Validating Expert System

Performance", IEEE Expert, Winter 1987, pp81-90.

O'Keefe,R.M. and Roach,J.W. [1987], "Artificial Intelligence Approaches To

Simulation", Journal Of The Operational Research Society, Volume 38, N.8.

Overstreet,C.M. and Nance,R.E. [1985], "A Specification Language To Assist
In Analysis Of Discrete Event Simulation Models", Communications Of The ACM.

VOL.28 No.2.

Paul,R.J. and Doukidis,G.I. [1986], "Further Development In The Use of
Artificial Intelligence Which formulate Simulation Problems", Journal of the

Operational Research Society, No.37, pp787-810.

Pidd,M. [1992], "Computer Simulation In Management Science", 3rd Edition,

John Wiley & Sons.

Prakash,S. and Shannon[1989], "Intelligent Back End of a Goal Directed
Simulation Environment For Discrete-Part Manufacturing”, 1989 Winter
Simulation Conference, 4th-6th December 1989, The Capital Hilton Hotel,

Washington D.C.

Pratt,W.K. [1978], "Digital Image Processing"”, J.Wiley & Sons, New York,

1978.

344

Reddy,R. [1987], "Epistomology Of Knowledge Based Simulation",

Simulation, 48:8, ppl62-166.

Reddy,Y.V. and Fox,M. [1986], "The Knowledge-Based Simulation System",

IEEE Software, 3:2, pp26-37.

Reddy,Y.V., Fox,M.S., Doyle,K., Arnold,J. [1983], "INET: A Knowledge
Based Simulation Model Of A Corporate Distribution System", Proceedings Of

The IEEE Conference On Trends And Applications, Gaithersburg, MD.

Robertson,P. [1986], "A Rule Based Expert Simulation Environment",

Proceedings Of The Conference On Intelligent Simulation Environments.

Rozenblit,J.W. and Zeigler,B.P. [1985], "Concepts For Knowledge-Based
System Design Environments", Proceedings Of The 1985 Winter Simulation

Conference (San Francisco, California). IEEE, pp223-231.

Ruiz-Mier,S. and Talavage,J. [1987], "A Hybrid Paradigm For Modeling Of

Complex Systems", Simulation, 48:4, ppl35-141.

Ruiz-Mier, S. Talavage,d. and Ben-Arieh,D. [1985], "Towards A

Knowledge-Based Network Simulation Environment", Proccedings Of The 1985

Winter Simulation Conference, pp232-236.

345

Sathi,N. and Bauer,J. [1986] Simulation Craft: An AI Approach To The
Simulation Life Cycle", Proceedings Of The 1986 Summer Computer Simulation

Conference, July 28-30, Reno,Nevada. pp773-778.

Schlesinger [1974], "Developing Standard Procedures For Simulation Validation
And Verification", Proceedings Of The 1974 Summer Computer Simulation

Conference, VOL.1.

Schruben,L.W. [1980], "Establishing The Credibility Of Simulations",

Simulation, 34:3.

Shannon,R.E. [1986], "Intelligent Simulation Environments", Proceedings Of

The Conference On Intelligent Simulation Environments.

Shannon,R.E. Mayer,R. and Adelsberger,H. [1985], "Expert Systems And

Simulation", Simulation, 44:6, pp275-284.

Shaw,M.L. and Gaines,B.R. [1986], "A Framework For Knowledge-Based
Systems Unifying Expert Systems And Simulation", Proceedings Of The

Conference On Intelligent Simulation Environments.

Shortliffe, E.H. [1976], "Computer-Based Medical Consultant: MYCIN",

Elsevier, New York.

Stewart,D. and Surgenor,B. [1987], "Simulation Validation Of An Expert
System For Process Fault Diagnosis", 1987 Summer Computer Simulation

Conference pp663-667.

346

Talavage,J.J. [1978], "Models For The Automatic Factors", Simulation, 30:3.
Tocher,K.D. [1962], "The Art Of Simulation", English University Press .

Turing,A.M. [1950], "Computer Machinery And Intelligence", Mind, Volume 59,

pp433-460.
Ulgen,0O.M. and Thomasma,T. [1986], "Simulation Modeling In An
Object-Oriented Environment Using Smalltalk-80", Proceedings Of The 1986

Winter Simulation Conference.

Van Horn,R.L. [1971], "Validation Of Simulation Results", Management Science,

17:5.
Vujosevic,R. [1990], "Object Oriented Visual Interactive Simulation", 1990
Winter Simulation Conference, 9th-12th December 1990, The Fairmont Hotel,

New Orleans, Louisiana.

Winograd, T. [1972], "Understanding Natural Language", Academic Press, New

York.

Zeigler,B.P. [1976], "Theory Of Modeling And Simulation", Wiley, New York.

347

APPENDIX 1

348

APPENDIX I

BIBLIOGRAPHY

Adelsberger, H.H. and Neumann,G. [1985], "Goal Orientated Simulation

Modeling Using Prolog", Modeling And Simulation On Microcomputers, pp42-47.

San Diego, California

Aggarval,R. [1981], "A Simulation Model For Managing Foreign Exchange In A

Multinational Company", Simulation In Business Planning And Decision Making

(Naylor, T.H. Ed.). Simulation Proceedings Series. SCS. pp49-57.

Alter,S.L. [1980], "Decision Support Systems: Current Practice And

Continuing Challenge", Addison-Wesley Publishing Co. Reading, Massechussets.

Ariav,G. and Ginzberg,M.J. [1985], "DSS Design: A Systemic View Of Decision

Support", Communications Of The ACM, 28:10, ppl045-1052.

Arons,H. and De Swann [1983], "Expert Systems In The Simulation Domain",

Mathematics And Computers In Simulation XXV, North Holland.

Baker,C.T. and Dzielinski,B.P. [1960], "Simulation Of A Simplified Job Shop",

Management Science, 6:3, pp311-323.

349

Bell,R. and Bilalis,N.G. [1982], "Loading And Control Strategies For An FMS
For Rotational Parts", Proceedings Of The First International Conference On

FMS, Brighton, U.K.

Berry,W.L. [1972], "Priority Scheduling And Inventory control In Job Lot

Manufacturing Systems", AIIE Transactions, 4:4, pp267-276.

Blackwell, R. [1986], "A Discrete Event Scheduler In A Dynamic Production

System", Proceedings Of The 1986 Winter Simulation Conference.

Bratko,I. [1986], "PROLOG Programming For Artificial Intelligence",

Addison-Wesley, Reading, Mass.

Broda,K. and Gregory,S. [1984], "PARLOG For Discrete Event Simulation",
Research Report Document 84/4. Department OfF Computing, Imperial College

Of Science & Technology, University Of London.

Brookes,C.H.P. [1985], "A Framework For DSS Development", Transactions Of
The Fifth International Conference On Decision Support Systems. Institute Of

Management Sciences.

Brown,R.G. [1968], "Simulation To Explore Alternative Sequencing Rules",

Naval Research Logical Quartely, 15, pp281-286.

Brown, T Alexander,S. and Jagamathan,V. [1985], "Demonstration Of An Expert
System For Manufacturing Process Control.", Al, Graphics And Simulation, The

Society For Computer Simulation.

350

Browne,J. and Davies,B.J. [1984], "The Design & Validation Of A Digital
Simulation Model For Job Shop Control", Internation Journal For Production

Research, Vol.22, No.2, pp335-357.

Bulkin,M.H. Colley,J. and Steinhoff,H. [1966], "Load Forecasting, Priority
Sequencing, and Simulation In A Job Shop Control System", Management

Science, 13, B29-B51.

Bullers,W.I. Et. Al. [1980], "Artificial Intelligence In Manufacturing Planning

and Control", AIIE Transactions, 12:4, pp.351-363.

Buxton,J.N. and Laski,J.G. [1962], "Control and Simulation Language",

Computer Journal 5, ppl194-199.

Calu,J. Et. Al. [1984], "Knowledge-Base Aspects in Advance Modelling and

Simulation", Proceedings of the 1984 Summer Computer Conference.

Cash,C.R. and Wilhelm,W.E. [1986], "A Simulation Modeling Approach For
Analysing Robotic Assembly Cells.", Proceedings of the 1986 Winter Simulation

Conference.

Cheng,T.C.E. [1985], "Simulation of Flexible manufacturing Systems",

Simulation 45:6, pp.299-302.

Colley,J.L. [1968], "Implementing A Job Shop Scheduling System", System

Procedures Journal, 19, pp.28-33.

351

Conway,R.W. [1965], "Priority Dispatching and Work-in-Progress Inventory in

a Job-Shop", Journal Of Industrial Engineering, 16:2, pp.123-130.

Conway,R.W. [1965], "Priority Dispatching and Job Lateness In a Job Shop",

Journal Of Industrial Engineering, 16, pp.228-237.
Conway,R.W. Et. Al. [1967], "Theory Of Scheduling", Addison-Wesley.

Cox,J.F. and Adams,F.P. [1981], "Manufacturing Resource Planning: An
Integrated Decision-Support System", Simulation In Business Planning And
Decision Making. (Ed. Naylor,T.H.), Simulation Proceedings Series. SCS.

pp.1-7.

Crookes,J.G. [1987], "Generators, Generic Models Ans Methodology.", Journal

of the Operational Research Society, 38:8, pp.765-768.
Crookes,J.G., Balmer,D.W., Chew,S. and Paul,R.J. [1986], "A Three-Phase
Simulation System Written In Pascal", Journal Of The Operational Research

Society, 37, pp.603-618.

Davies,R. [1980], "Meta-Rules: Reasoning About Control", Artificial

Intelligence, 15:3, pp.179-222.

Davis,D.A. [1986], "Modeling AGV Systems", Proceedings Of The 1986 Winter

Simulation Conference.

352

Deliyanni,A. and Kowalski,R.A. [1979], "Logic and Semantic Networks.",

Communications of the ACM, 22:3, pp.184-192.

Dogramaci,A. and Adam,N.R. [1979], "Current Issues In Computer

Simulation.", Academic Press.

Eilon,S. and Cotterill, D.J. [1968], "Modified SI Rule On Job Shop Scheduling",

International Journal Of Production Research, 7:2, pp.135-145.

Eilon,S. and Hodgson,R.M., [1967], "Job Shop Scheduling With Due Dates",

International Journal Of Production Research, 6:1, pp.1-13.

Elmaghraby,S.E. and Cole,R.T. [1963], "On The Control Of Production In

Small Job Shops", Journal Of Industrial Engineering, 14:4, pp.168-196.

Elvers,D.A. [1973], "Job Shop Dispatching Rules Using Various Delivery Date

Setting Criteria.", Production And Inventory Management, 14:4,pp.62-80.

Emery,J.C. [1969], "Job Shop Scheduling By Means Of Simulation And An
Optimum Seaking Search", Proceedings Of The Conference On Simulation, Los

Angeles.

Evans,J.B. [1984], "Simulation, An Intelligence"”, Technical Report TR-A5-84,

Centre Of Computer Studies And Applications, University Of Hong Kong.

Futo,I. Gergely,T and Deutsch,T. [1985], "Logic Modelling", AI Applied To

Simulation, Simulation Series, The Society For Computer Simulation, 18:1.

353

Futo,I. and Szeredi,J. [1982], "A Discrete Simulation System Based On
Artificial Intelligence Techniques", Discrete Simulation And Related Fields.

(Javor,I. Ed.) pp.135-150. North-Holland.

Garzia,R.F. [1986], "Simulation With GPSS/PC", Proceedings Of The 1986

Winter Simulation Conference.

Gere,W.S. [1966], "Heuristics In Job Shop Scheduling”, Management Science,

13:3.

Goldberg,A. and Robson,D. [1983], "Smalltalk-80: The Language And Its

Implementation", Addison-Wesley, Reading, Massachusetts.

Goyal Et. Al. [1985], "COMPASS", Expert Systems, 2:3.

Henriksen,J.O. and Schriber,T.J. [1986], "Simplified Approaches To Modeling
Accumulating And Nonaccumulating Conveyor Systems", Proceddings Of The

1986 Winter Simulation Conference.

Hershauer,J.C. and Ebert,R.J. [1975] ,"Search And Simulation Selection Of a

Job-Shop Sequencing Rule", Management Science, 2:7.

Hollier, R.H. [1968], "A Simulation Study Of Sequencing In Batch Production”,

Operational Research Quartely, 19, pp.338-407.

354

Holloway,C.A. and Nelson,R.T. [1974], "Job Shop Scheduling With Due Dates

And Overtime Capability", Management Science, 21:1.

Holloway,C.A. and Nelson,R.T. [1974], "Job Shop Scheduling With Due Dates

And Variable Processing Times", Management Science, 20:9.

Holloway,C.A. and Nelson,R.T. [1973], "Alternative Formulation Of The Job

Shop Problem With Due Dates", Management Science, 20:1.

Hottenstein,M.P. [1970], "Expediting In Job-order-Control Systems: A

Simulation Study", AIIE Transactions, 2:1.

Hurrion,R.D. and Secker,R.J.R. [1978], "Visual Interactive Simulation: An

AID To Decision Making", OMEGA 6, pp.419-426.

Jones,C.H. [1973], "An Economic Evaluation Of Job Shop Dispatching Rules",

Management Science, 20, pp.293-307.

Jones,D.W. [1986], "Concurrent Simulation: An Alternative To Distributed

Simulation", Proceedings Of The 1986 Winter Simulation Conference".

Kerckhoffs,E. Et. Al. [1985], "General Considerations On Al Applied To

Simulation", AI Applied To Simulation, Simulation Series, 18:1.

Klahr,P. Ellis,J. Giarla,W. Narain,S. Cesar,E. and Turner,S. [1986], "TWIRL:
Tactical Warfare In The ROSS Language.", Expert Systems: Techniques, Tools

And Applications. pp.70-94. Addison-Wesley.

355

Klahr,P. McArthur,D. and Narain,S. [1982], "SWIRL: An Object-Oriented Air
Battle Simulator.", Proceedings Of The 2ND Annual National Conference On

Artificial Intelligence. Pittsburgh, pp.331-334.

Knapp,V. [1986], "The Smalltalk Simulation Environment.", Proceedings Of The

1986 Winter Simulation Conference.

Kowalski,R. [1979], "Algorithm = Logic + Control", Communications Of The

ACM, 22:7, pp.424-436.

Kumar,D. [1986], "A Novel Approach To Sequential Simulation.", IEEE

Software.

Legrande,E. [1963], "The Development Of A Factory Simulation Using Actual

Operating Data", Management Technology, 8:1, pp.1-19.

Lirov,Y. Rodin,E. McElhaney,B. and Wilbur,L. [1988], "Artificial Intelligence

Modelling Of Control Systems", Simulation, 50:1, pp.12-24., ISBN 0037-5497/88.

Mamalis, A.G. Bilalis,N. and Konstantinidis,M. [1987], "On Simulation Modeling

For FMS", Simulation, 48:1, pp.19-23.

Martin,D.L. [1986], "Simulation Analysis Of An FMS During Implementation",

Proceedings Of The 1986 Winter Simulation Conference.

356

Mayer,R., Young,R. and Mamalis,A.[1984], "An Assessment Of AI Applications
To Manufacturing.", Industrial Automation Laboratory, Industrial Department,

Texas A&M University.

Moore,J.M. and WisonN,R.G. [1967], "A Review Of Simulation Research In Job

Shop Scheduling", Journal Of Production Inventory Management, 8, pp.1-10.

Moreira Da Silva,C. [1985], "The Use Of Decision Mechanisms In Visual
Simulation For FMS Modelling", Al Applied To Simulation, Simulation Series,

18:1, The Society For Computer Simulation.

Nelson,R.T. [1967], "Labor And Machine Limited Production Systems",

Management Science, 13:9.

Nof,S.Y. Whinston,A. and Bullers,W. [1980], "Control And Decision Support

In Automatic Manufacturing Systems", AIIE Transactions, 12:2, pp.156-169.

Nolan,P.J. and McCarthy,M.A. [1986], "AI Frame-Based Simulation In System
Dynamics.", Applications Of Al In Engineering Problems, 1lst International

Conference, Southampton University.

Norman,T.A. and Norman,V.B. [1986], "Interactive Factory Scheduling Using
Discrete Event Simulation.", Proceedings Of The 1986 Winter Simulation

Conference.

O'Keefe,R.M. [1986], "Experiences With Using Expert Systems In OR.", Journal

Of The Operational Research Society, Number 37, pp.657-668.

357

O'Keefe,R.M. [1985], "Expert Systems And Operational Research - Mutual
Benefits.", Journal Of The Operational Research Society, Number 36,

pp.125-130.

Orciuch,E. and Frost,J. [1984], "ISA: Intelligent Scheduling Assistant", IEEE.

Oren,T.I. [1986], "Knowledge Bases For An Advanced Simulation
Environment.", Proceedings Of The Conference On Intelligent Simulation
Environments.

Oren,T.I. [1985], "Artificial Intelligence and Simulation.", AI Applied To

Simulation, Simulation Series, 18:1.

Oren,T.I. and Zeigler,B.P. [1979], "Concepts For Advanced Simulation

Methodologies.", Simulation, 32:3, pp.69-82.

Overstreet, C.M. Nance,R. Balci,O. and Barger,L. [1986], "Specification
Languages:Understanding Their Role In Simulation Model Development.",
Technical Report SRC-87-001, Department Of Computer Science, Virginia Tech.

University.

Panwalkar,S.S. and Iskander.W. [1977], "A Survey Of Scheduling Rules.",

Operations Research, 25:1.

Radzikowski,P. [1983], "Perspectives Of The Business Decision Support Expert

System.", TIMS/ORSA.

358

Raghunath,S. and Perry,R. and Cullinance,T. [1986], "Interactive Simulation
Modelling Of Automated Storage Retrieval Systems", Proceedings Of The 1986

Winter Simulation Conference.

Rochette, R. and Sadowski,R.P. [1976], "Statistical Comparison Of The
Performance Of Simple Dispatching Rules", International Journal Of Production

Research, 14:1.

Rossley, T.R. [1983], "Simulation Of A FMS For The Manufacture Of Sheet Metal

Components", Annals Of The CIRP, 32:1, pp.427-431.

Rothenberg,J. [1986], "Object-Oriented Simulation: Where Do We Go From

Here?", Proceedings Of The 1986 Winter Simulation Conference.

Sargent,R.G. [1986], "Joining Existing Simulation Programs.", ProCeedings Of

The 1986 Winter Simulation Conference.

Sprague,R.H. and Carlson,E.D. [1982], "Building Effective Decision Support

Systems", Prentice-Hall Inc., Englewood Cliffs, N.J.

Stecke,K.E. and Solberg,J.J. [1981], "Loading And Control Policies For A
Flexible Manufacturing System", International Journal Of Production Research,

19:5, pp.481-490.

Subrahmanyam,P.A. [1985], "The Software Engineering Of Expert Systems: Is
Prolog Appropriate?", IEEE Transactions, Software Engineering, Vol. SE-11,

No. 11, pp.370-386.

359

Symankiewizk,J., McDonald,J. and Turner,K. [1988], "Solving Business

.Problems by Simulation", 2nd Edition, Mc Graw-Hill, London.

Unger,B.W. [1986], "Object Oriented Simulation - ADA, C++, SIMULA",

Proceedings Of The 1986 Winter Simulation Conference.

Vere,S.A. [1983], "Planning In Time: Windows And Durations For Activities
And Goals.", IEEE Transactions On Pattern Analysis And Machine Intelligence,

5:3, pp.246-267.

Wilbrecht,J.K. and Prescott,W. [1969], "The Influence Of Setup Time On Job

Shop Performance", Management Science, 16:4.

Wright,M. Et. Al. [1986], "An Expert System For Real-Time Control.", IEEE

Software, March 1986.

Yan,J.C. and Lundstrom,S.F. [1986], ""AXE": A Simulation Environment For
Actor-Like Computations On Ensemble Architectures.", Proceedings Of The

1986 Winter Simulation Conference.
Young,R.E. and Meyer,R. [1984], "History And Introduction To Artificial

Intelligence And Expert Systems.", Working Paper, Industrial Automation

Laboratory, Industrial Engineering Department, Texas A&M University.

360

