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Abstract

This study is concerned with the application of multivariate 
nonparametric models known as regression trees to the analysis of the 

U.S. wage structure. In Chapter 1, I first review regression trees and 

other available multivariate nonparametric techniques, highlighting 
their differences and common features. In the second part of Chapter 1, 
I look at the literature on the U.S. wage structure in connection with 
the issue of functional specification and argue that regression trees 
is particularly well suited for analyzing wage structures. In Chapter 

2, I implement regression trees on U.S. wages for white male workers to 
estimate experience-wage profiles and unveil local sudden breaks in the 
profiles at the end of the working life. For 1980, these breaks account 
for about 50% of the negative average differential between the last two 
experience groups. This effect decreases continuously until 1995. In 
Chapter 3 I propose a simple extension of the Oaxaca-type average wage 
gap decompositions between any two groups of workers. This procedure 
can be carried out without any compromise in the interpretation using 
a nonparametric wage structure. I then study wage gap decompositions 
for Mexican workers in the U.S. labor market. Finally, in Chapter 4 I 
apply regression trees to study both the relative growth performance of 
workers' real wages and the sources of wage dispersion and its 
evolution in the U.S. from 1980 onwards. On trends, the technique 
uncovers a linear structure for the growth experience of white workers 
with less than forty years of experience. On dispersion, at least 10% 
of the increase in observed variance came from changes in the structure 
of wages itself.
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Chapter 1

Introduction: Regression trees and nonparametric
wage structures

In the following chapters I will be concerned with the 
application of multivariate nonparametric models known as 

regression trees to the analysis of the U.S. wage structure. In 

this chapter, I first review neural networks, projection pursuit 

and regression trees -all of them available multivariate 
nonparametric techniques-. Then, I present a brief survey on 
empirical results on the wage structure in the U.S. labor 
market. The chapter ends with an outline of the rest of the 
thesis.

1.1 Regression trees and predictive learning

Mathematics, statistics, engineering, artificial intelligence, 
and neural networks all study the problem of predictive
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Chapter 1: Introduction

learning. A simple example of a predictive learning problem 
involves one set of variables, sometimes called inputs, 

sometimes called explanatory variables, and other times called 
independent variables, and just one variable called either 
output, response, or dependent variable. This variable is 
defined over a subset of the real line1.

The problem can consist of designing a system with which 

interpolations of the output can be obtained from the inputs. 
This is a mathematical problem called function approximation. 
If some of the inputs are not observable, the mathematical model 
is of a statistical nature. Let the model be

y = f ( x 1 , • • • ,xn) + e = f (x) + e. (1.1)

In (1.1) I assume an additive relation for the two sets of 

independent variables. The residual e is the effect of all the 

unobserved variables on the dependent variable. A fixed effect 

can be thought both as an observed constant effect and as the 

effect of a constant unobserved variable. This makes model (1.1) 

ambiguous. To solve this ambiguity, the unobserved residual e 

can be defined by E[e|x]=0 where E[] is the expectation 

operator.

The objective of predictive learning is to obtain a useful

1 In statistics, when the response is categorical, the 

problem is one of classification or discriminant analysis.
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Chapter 1: Introduction

approximation to f(x)=E[y|x].

Neural networks use finite learning samples {yi/X^ and learning 

algorithms to produce outputs f* in response to inputs x* and 

adapt its outputs f* according to residuals { (yi-f*(Xi) ) }iB 

Statistics seeks to obtain true approximations of f on the local 

area defined by the finite sample {y^x.^. Thus, the stress in 

statistics is on validating results while the stress in neural 
networks is on learning.

Predictive learning is implemented through an optimization 
problem on a finite sample. The objective function could be

An infinite number of functions can yield the minimum value, 

zero, for the solution in (1.2). In order to obtain a well 

defined problem in finite samples2, further assumptions must be

2 The similar problem for a "sample of infinite size" is 
well defined in the sense that only f (•) will be the solution 
of the problem. Thus,

f (x) (1.2)

f (x)
g

+ e - g (x) ] 2 p (x) dx.

See e.g. Friedman (1994).
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Chapter 1: Introduction

added. Every predictive learning method can be characterized as 

a set of constraints on problem (1.2).

There are two general forms of restrictions. The first way to 

restrict the problem is to place constraints on the class of 

eligible functions g(x). The second alternative consists of 

selecting a small number of input variables, so that the 
dimension of the variable space is small relative to the finite 

sample.

For high dimensional spaces, the second alternative is in many 
practical cases not feasible. The reasons are generally known 
as the curse of dimensionality. Firstly, there is the problem 
of minimum required number of observations to have a densely 

packed sample. If 100 observations represents a dense sample for 

a single input system, then for xeRN, the required sample would 

be 100N. For 10 input variables we would need 1020 observations. 
Secondly, all observations are close to an edge of the sample3. 
Consider a sample of three observations in a one-dimensional 
problem. Two of the observations must be at the edge of the 
sample. If you add a new dimension (input) to the problem, all 

three observations will be at the edge, making interpolation 

impossible.

3 That is, there are no more observations between that 
observation and the edge of the space along one dimension.
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Chapter 1: Introduction

The only way to overcome these problems in a high dimensional 

setup is by incorporating outside knowledge -knowledge not 
related to the sample- in the way of functional restrictions. 

A direct way of doing this is by incorporating a penalty to 

criterion (1.2):

The best penalty <p>0 is one that has small values for those g(x) 

that are close to f (x) and large values otherwise. The strength 

parameter A is inserted so that the penalty effect can be 

adjusted independently from its form.

If no restriction is imposed on A, then we might want to solve 

the two-step problem:

However, this is not very interesting since (1.4) always yields

The best fit is given by the solution without penalty. This fit, 
however, may be very poor for any other independent sample, 
i.e., the estimated surface may have very low predictive power. 

A common approach to overcome overfitting is to divide the 

sample into a learning and a test sample. The learning sample

f (x) (1.3)

(1.4)

X = 0. (1.5)

16



Chapter 1: Introduction

pursuit, neural networks, and regression trees5. The objective 

is to highlight what is common between these methods and what 

characterizes regression trees more neatly.

1.1.1 Least squares parametric regression

Penalty function 0 takes the form

where h(*) is a continuous, doubly differentiable function with 

respect to 8 that is completely specified but for a finite 

number of unknown parameters in 0.

Problem (1.3) collapses to

The choice of A becomes irrelevant and there is no need for 

cross-validation.

5 For an introduction of neural networks, see e.g. Kuan and 
White (1994). See Huber (1984) for a review on projection 
pursuit. The basic reference for regression trees is Breiman et 
alia (1984). These are the most popular predictive learning 
models.

<t> [g (x) ] = - if g(x) + h(x | 01,...,8k)
4> [g (x) ] =0 if g (x) = h(x I 0lf . . ., 0k) , (1.6)

= argmin
0x e*

0j, • • .,9k) ]2K (1.7)

18



Chapter 1: Introduction

Assuming certain statistical properties for the error term, e, 

leads to a complete inferential theory.

The function h(*) needs not be linear, as it is the case of the 
binary logit probability model, where

h(x | 9) = G (x, 0) = ----- ---- -— . (1.8)1 + exp ( -x 6)

This is a multivariate nonlinear model and can be thought of as 
a three-layer system. The first layer corresponds to the inputs, 

x. The second layer is the linear index of the inputs, x' 0. The 

third layer is the output h(*).

The model is flexible in the sense of giving nonlinear responses 
because of the nonlinear relation between the second and the 
third layer. This fundamental source of flexibility is fully 
exploited in artificial neural networks, projection pursuit, and 
regression trees.

1.1.2 Single hidden layer artificial neural networks

Penalty function <p now takes the form

<J>[g(x) ] = °° if g(x) f JhT(x | 0) J (19)
<t>Cg(3c)] = p(9)< 00 else

where the family of functions {hT} are

19



Chapter 1: Introduction

h (x|a,y) = ]fcat ’ s( x V t ) (1.10)t-i

and s(*) is any smooth sigmoid function such that 0£s(*)£l 

Thus, G(*) in (1.8) is one of such functions6.

The indicator function

1 if p true
I(li) = (1.11)

0 if p false

was chosen as s (• ) in the first published articles on neural 
networks. The indicator function is an activation devise. It 
incorporates a new structure to model (1.10) when a threshold 

is overcome in an index or hidden layer.

For some applications, smooth functions as activation devices 

seem more useful than step functions. In biological neural 

systems there is a tendency of certain types of neurons to be 

idle in the presence of low levels of observed input activity, 

and to become active only after input activity passes a 
threshold. However, in empirical studies the threshold cannot

Another common example is the arctangent function:

1 _ -l 1s (z) = —  tan z + —  . n 2

20



Chapter 1: Introduction

be properly detected when the problem is highly complex, as when 

there are millions of switches. Therefore, it is probably a 

better modelling strategy to bet on smooth activation functions, 
where the threshold is blurred.

There are three ways in which (1.10) generalizes over (1.8). 

Although model (1.10) has also three layers, its second layer 

is more complex than the second layer in model (1.8). This layer 

is usually called the hidden layer in the neural network 
literature. The number of elements in the hidden layer is not 
fixed to one, but chosen in the optimization. The second way in 

which model (1.10) is more general is that each component of the 

second layer affects the output independently. The extent to 
which it does so, am, must also be estimated. The smooth 
activation function, s (•), can be chosen from several 
alternatives. Finally, cross-validation is crucial and the 

selection of p ( ‘ ) will influence the complexity of the

estimated model.

The role of s (• ) is pivotal in understanding the potential 
applicability of neural networks. When s(*) is near 1, then the 
corresponding am intensively affects the output. If it is near 

zero, the output is almost not affected by that element. One can 

think of the elements of the hidden layers as rules, which will 

specially apply under particular conditions in the inputs. This 

feature is known in artificial neural networks as context 

sensitivity and in regression trees as nonhomogeneity. It is

21



Chapter 1: Introduction

correctly regarded as a feature of the model’s flexibility.

When the number of elements in the hidden layer is assumed to 

be known, consistency results are obtained for backpropagation 

estimates of model (1.10). See for example Kuan and White (1994) 
for consistency and asymptotic normality results.

1.1.3 Projection pursuit and multiple hidden layer artificial 

neural networks

In these two cases, penalty functions <p take the same general 

form as in (1.9). In projection pursuit the family of functions 

{hT} are

so that projection pursuit can be seen as a generalization from 
single hidden layer artificial neural networks. The functions 
st(•) need not have a sigmoid form and, for example, smoothers 
on local linear fits can be chosen to estimate their shape.

Multiple hidden layer artificial neural networks are also more 

general models than single hidden layer models. Four layer 

neural networks have two hidden layers. The outputs from the 

first hidden layer are taken as the inputs for the second hidden 

layer. In practice, hT(•) will have a more flexible structure 

than a single hidden layer with the same number of elements in

t-i (1.12)
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Chapter 1: Introduction

each layer.

Whether adding more hidden layers improves prediction will 

depend on how well the resulting effect of the functions hT (•) 

matches f (•) •

1.1.4 Tree structures

Tree structured models have penalty functions similar to that 

in (1.9). The family hT(•) includes all functions with the 

generic form

where I(•) is the indicator function and T is a partition of the

Usually, the subsets teT are restricted to be hyper-rectangles 
parallel to the coordinate axis, so that

where the parameters {Uj,v-j} are the respective lower and upper 
limit of the region on each axis.

Thus, hT(• ) can also be expressed as

hT (x|a) = £  at l( x e t) (1.13)teT

space of all possible values of x, RM.

j-i
(1.14)

hT(x|x 6 t) = at . (1.15)

23



Chapter 1: Introduction

These models borrow their name from the fact that they can be 
represented by two-dimensional binary trees. This is not a small 
advantage in a high dimensional nonparametric context.

Consider, as an example, the following tree structure defined

on the set C2={[0,xi2], xi26R, i=l,2}

f(xx , x2)
if x2 £ x21 
if x2 > x21 
if x2 > x21

x i * x n
xi > xii

(1.16)

Figure 1.1 in Appendix A shows a two-dimensional representation 

of this three-dimensional surface. If the structure had more 
inputs, it would not be possible to draw this graph.

The same structure can be represented by Figure 1.2 in Appendix 
A. This figure is a binary tree diagram. Each brand represents 
a split of the input space. Each node of the tree represents a 
subregion of the space. The root node represents the entire 
space. The terminal nodes represent the regions, t, associated 
with partition T.

Another example of a tree structured model is shown in Figure

1.3 in Appendix A. The dimension of the input space is four. 
Thus, it is impossible to draw something like Figure 1.1. 
Nonetheless, all the relevant information that can be obtained 
from graphs such as Figure 1.1 can also be obtained from tree 
diagrams when the surfaces are smooth but for a limited number
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of edges.

The most important assumption in tree models such as (1.16) is 

therefore the existence of sudden changes in the flat surfaces. 
This is a very bad assumption if the surface changes smoothly. 
Another problem is the possibility that the surface does not 
change along parallel lines from the axis. Figure 1.4 represents 
a structure with these two features. These shortcomings suggest 
generalizing (1.15) to propose

General models along this line have been implemented. They 

mitigate the rigidity of the activation function by looking at 
a very large number of splitting criteria and a large number of 
surfaces. The cost comes both in terms of the complexity of the 
efficient algorithms and the interpretation of the results.

1.1.5 Universal approximators

In the artificial neural networks literature, the models 

reviewed in the previous sections are often interpreted as 

approximations of the true model. A universal approximator is 

a flexible functional form that can approximate an arbitrary 
function to a particular level of accuracy. Neural networks, 
projection pursuit and trees all share the functional form

hT(x|x € t) = ft(x, afc). (1.17)

(1.18)

25



Chapter 1: Introduction

These models are also universal approximators for the class of 

all continuous functions in the sense that any arbitrary 

continuous function f (•) admits the representation

oo
f(x) = £ a t • b ( x, y ) (1.19)t-i

for some set of sequence coefficient values7 {am}“. Therefore, 
these nonparametric models have similar spanning properties as, 
for example, polynomials.

In spite of this result, it is reasonable to expect that in 
small samples selection of the method becomes critical.

1.2 Estimation of regression trees

The original problem of estimating (1.15) is rather trivial if 

we know the tree structure. Since the constant c which minimizes 

E [ (y-c) 2|xet] is E[y|xet], then the least squares estimator, LS, 

is the sample average within each terminal node.

If we do not know the structure of the tree, then LS will not 

be in general implementable for even not-too-high dimensional 

problems. The reason is that LS will be a combinatorial -not an 

analytical- problem in this context. In order to minimize (1.3) 
one should evaluate all possible structures. This is an enormous

7 See Friedman (1994).
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task. Consider LS on a sample with 50 different cells assuming 

that the structure has at most two terminal nodes. The number 

of possible models is near 6xl014. This is a very big number. If 

we could process every iteration in a millionth of a second, we 

would obtain LS only after 17 years of uninterrupted 
computations. Given the state of computer technology other 
alternatives must be considered.

A second best solution of the problem is recursive partition. 
The initial region is divided into two regions according to a 
splitting criterion. Then, recursive partition is carried out 
on each region. This strategy is implementable because, as 
partitioning takes place, the corresponding regions -nodes in 
tree terminology- include smaller and smaller subregions of the 
original input space. The number of nodes increases at every 
step, but each node becomes ever more local. An essential 
feature in the procedure is that splitting of each region is 

assessed only by studying a limited number of possible splits.

Let us now describe the splitting or tree-growing algorithm. 

Assume that we have already several nodes and a tree structure 

T and that we want to split node t*, one terminal node in T.

Define d(x) as the tree structure projections from T. The 

average residual sum of squares for tree T is

R(T) (1.20)
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Chapter 1: Introduction

where N is the number of observations in our estimation sample. 

We can also express R(T) explicitly as a function of the 

residual sum of squares within each terminal node of the tree. 

Then, (1.20) becomes

R(T) = ̂ E E ( Yi " ̂(xj)2 (1.21)
N  teT Xjet

where d ( x ±) = (1/Nt) • £xet y ± .

Recursive partitioning is defined through recursive 
optimization. Heuristically, when a variable has a strong 
contribution to the true tree structure, a split based on that 
variable will likely improve the fit and thus reduce R(T) 
greatly. Thus, recursive partitioning can be defined by choosing 
the split at each step of the algorithm such that the reduction 
in R(T) is maximized. The split chosen at each step of the 
algorithm, s*, satisfies

AR(s*,T) = max R (T) -R(T), (1 2 2 )
ses

where Ts is any tree obtained by splitting a terminal node, t, 

into a left node, tL, and a right node, tR. Since

R(T) - R(TS) = i  E  ( Yi - d(Xi))
N,I‘et , (1.23)- TT E < Yi - dU , ) ) 2 - _  E ( Yi - d (xi))2
iN x  et JN x  eti L

the algorithm involves at each step the evaluation of the

28



Chapter 1: Introduction

optimal split at each two new terminal nodes from the previous 

split.

We can keep splitting the estimation sample until there are no 

nodes with elements with different characteristics or the number 
of observations reach a lower limit. This lower limit can be 
fixed by the researcher according to the problem and is called 

the splitting rule. Splitting ends when we obtain the largest 

possible tree, T,^. Often, the result will be equivalent to 

dividing the sample into all possible cells and computing within 

cell averages, a standard nonparametric analysis.

Growing the tree until no further partitioning is possible helps 
avoiding having to select a rule to stop splitting. Usually, 
however, Tj^ will be too complex in the sense that some terminal 
nodes could be aggregated into one terminal node. A more 
simplified structure will normally lead to more accurate within 
node estimates since the number of observations in each terminal 
node grows as aggregation takes place. It is also intuitive to 
see that if aggregation goes too far, aggregation bias will 
become a serious problem.

In order to aggregate from we can use a clustering algorithm 
procedure8. Breiman et alia (1984) propose to compute the

See e.g. Gordon (1993) and Hartigan (1975) for 

introductions to clustering algorithms. Piccolo (1990) proposes
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Chapter 1: Introduction

error-complexity measure R(Q',T)=R(T)+ojT| for all possible trees 

obtained from simplifying the structure by cutting, or pruning, 

tree TV^. Here, |T| denotes the number of terminal nodes in T, 

that is, the complexity of the tree, and O' is a given parameter. 

Note that R(ar, T) is an error-complexity function by which a 

model is selected trading variance with complexity.

The tree structured estimate for a given a  is the value that 

minimizes R(Q7 T) for the set of subtrees of The resulting

tree belongs to a much broader set of trees than the sequence 

of all trees obtained in the recursive partition algorithm. 
Heuristically, part of the harm done by recursive partition is 
reduced. Thus, regression trees are much more powerful pattern 
recognition tools than ordinary clustering algorithms.

Optimization of the error-complexity function for a l l  possible 

values of a  leads to an increasing finite sequence of real 

values 0 = a 1< a 2< • • • <qq anc* a decreasing finite sequence of 

subtrees T1>T2>...>{root}, such that for any real value 

Gk+i) r Tk is the smallest subtree of T,^ minimizing R(o,,T). See 

Breiman et alia, (1984, p.289) for a proof of this result. 

Implementing cost-complexity minimization for all a is then 
possible through a weakest-link algorithm.

an alternative use to clustering algorithms in time series 
modelling. See Scott and Symons (1971) and Bryant and Williamson 

(1978) for the statistical analysis of these techniques.
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Any branch, Tt, spanning from a nonterminal node t of a tree T, 

is cut only if

•i E ( yi - d<*i> >2 + « s 1 E E < y± - d(Xl> >2 + alTtI»<i.24)
N  *i«t W  t*eTt x ^ t *

so that the first branch to be cut minimizes

E ( yL - d(x.))2 - £ E ( yt - d(Xi))2
*iet_________________f«Tt »,«t-______________ (1.25)

|Tt| - 1

The initial intractable problem is thus reduced to one of

selecting an optimum-size tree from a decreasing sequence of
subtrees.

At each step of the pruning algorithm R(T) increases so that 
R(TX) is the lowest value of the sequence {TX>T2 >. . . >{root}} . For 
the learning sample, our estimates d(x) from Tx are therefore 

least squares estimates among the sequence. This property is 
satisfied in the estimation sample by definition, but it does 
not have to do so in an independent sample. Choosing R(TX) as 

our fit of the tree structured model may lead to overoptimistic 
results for R(*) and the model will be overfitted.

There are three strategies to obtain unbiased estimates of R(*)* 
The first one is the use of an independent test sample. This is 

most appropriate, due to its simplicity, when the data set has 

many observations. It simply consists of randomly dividing the
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entire sample into a learning and a test sample. The tree is 
grown and pruned with the learning sample, while unbiased 

estimates of R(T) , Rts, can be obtained with the observations of 
the test sample and the estimates of the learning sample.

The other two alternatives to obtain unbiased estimates of R(*) 
are K-fold cross-validation and the bootstrap method. Since they 
will not be implemented in the following chapters, I refer the 

reader to Breiman et alia (1984) for an introduction to the 
application of these methods in regression trees.

It is possible to compute standard errors for Rts from the test 
sample, SE(Rts). Rts may be very flat along the sequence only to 
increase at the last, coarser subtrees. When this happens it may 
be difficult to justify the least squares subtree and it is 
probably better to study several alternatives. Breiman et alia 

(1984) suggest the 1 SE rule, which consists of selecting the 
simpler tree whose Rts is not larger than the minimum Rts plus 
1 standard error. Using these corrections may greatly reduce the 

number of terminal nodes of the tree. In the regression trees 
literature, sometimes this is referred to as the goal of 
obtaining parsimonious models. In a more general context 
parsimony and complexity are, however, different concepts. For 
example, in a simple linear model with one continuous 
independent variable, complexity is infinity, whilst we can 

still talk of a simple parsimonious model. In parametric 

structures, the goal of parsimony can be obtained not only by
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reducing the number of projected values for the dependent 

variable -complexity-, but also through the estimation of simple 
relations between the dependent variable and the independent 
variables. In the following, I will nonetheless use the concepts 
of parsimony and complexity as interchangeable.

The small sample statistical properties of the estimator just 

described are not known. This problem is not trivial because the 
technique involves partitions of the input space based on the 
learning sample. Thus, the estimates are the results of random 

partitions.

Nonetheless it is possible to know something about the behavior 
of the recursive estimates as the sample becomes larger and 
larger. The fundamental consistency conditions for random 
partitions are surprisingly general. All we need is an ever more 
dense sample at all n-dimensional balls of the input space in 

order to approximate in a q-square sense the nonparametric 

surface. If the partition guarantees this, then the estimates 

should converge to the true function. Cost-complexity 
minimization together with test sample unbiased estimates of 
R ( • ) guarantee that such condition is satisfied by regression 

tree partitions. The basic results can be found in Breiman et 
alia (1984, chapter 12).

A word of caution is nonetheless necessary. For small samples, 

high correlation in the explanatory variables will induce
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instability in the tree topology so that slight changes in the 

learning sample may cause splits to be made on different 

variables. In this case, the interpretation of the contribution 

of each variable will become problematic.

1.3 Regression trees in economics

Although regression trees has been used in several scientific 

fields such as medical diagnosis, automatic identification of 
chemical spectra and pollution level predictors in urban areas, 
its implementation in economics has been to date rather small.

Nonetheless, we have seen some examples of implementation of the 
technique in economics during the 90s. Here I present a brief 
summary of three of them.

They highlight in my view its potential applicability to study 
economic issues. In the following section I will argue that the 

study of wages is a field where this technique can be 

interesting to apply.

1.3.1 A classification algorithm

Cotterman and Perachi (1992) describe a method for deciding how 
to aggregate a set of elementary U.S. industries. The method is 
based on regression trees methodology and it is an alternative 

procedure to standard clustering algorithms that allows for a
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much broader set of aggregation alternatives.

The fundamental difference with respect to standard regression 

trees is that their methodology simplifies the first algorithm, 

growing-the-tree, into a simple clustering algorithm. The second 

step corresponds to pruning-the-tree. Finally, since they are 
only interested in reporting alternative levels of industry 
aggregation, they do not implement cross-validation, but present 
the differences between their aggregation techniques and the 
15-industry level proposed be the U.S. Bureau of the Census.

In order to grow the tree, they propose two measures of 

closeness between the elementary industries. First, using data 
from the Current Population Survey prepared by the Bureau of the 
Census, CPS, and a matching algorithm, it is possible to have 
for some individuals two independent codings of the industry of 
employment. For some workers, however, these codings do not 
coincide. Further, they seem to affect some pairs of industries 
more'than others. The authors attribute them to three potential 
causes: data collecting errors, errors in the matching algorithm 
or, finally, ambiguity in the definition of the elementary 

industries. They assume that the last cause is the relevant one 

and propose mismatch rates between industry codings as measures 

of similarity. The second proposed measure of industry closeness 

is the workers' transitions between industries. The measure is 
reasonable when individuals move more frequently between similar 

industries. A pooled sample from 1977 to 1982 was used in the
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algorithms. Both measures led to different results for the 

hierarchical tree. It is interesting that the authors depart 

from common practice in clustering when they propose these 

measures. The usual procedure is to define closeness through a 

distance based on a vector of characteristics. They tried to 
overcome the arbitrary step of defining this vector.

Optimal pruning using log-wage data for the years 1971-1982 
again from the CPS was carried out. Residual sum of squares were 
obtained from regressions of weekly wages on years of schooling, 
years of experience and its square. The authors find important 
differences in the various aggregation schemes, and conclude9 
that since "(...) the outcome of much applied work may hinge on 
the aggregates employed", then " (...) procedures for
classification and aggregation are legitimate and important 
subjects of inquiry".

1.3.2 Melon prices

Russel Tronstad (1995) applies regression trees to estimate 

discounts and premiums due to various characteristics of 
wholesale melons. Characteristics considered are melon type, 

size, grade, shipping container, week, and year.

Melons are highly perishable products, so that supply of melons

9 Cotterman and Perachi (1992, p.50).
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can be assumed to be perfectly inelastic. After correcting from 
season, differences in prices between different types of melons 

thus show differences in demands that are due to differences in 

the characteristics, not in relative supplies.

The model was estimated with weekly price data from 3 January 

1990 through 28 December 1993. Twelve different melon types were 

considered. The data source was the L o s  A n g e l e s  W h o l e s a l e  F r u i t  

a n d  V e g e t a b l e  R e p o r t , published by the U.S. Department of 

Agriculture.

The results compared favorably to standard parametric regression 
in the sense of a higher coefficient of determination. The 
author also considers that regression trees performed better 
since it allowed for interaction between discrete variables. 
Allowing for these interactions on the OLS regression would have 
required a very large number of dummy variables. Efficient 
estimation would have then demanded the implementation of some 
model selection algorithm.

1.3.3 Multiple growth regimes

Durlauf and Johnson (1995) use regression trees to identify 

national economies with different laws of growth.

They argue that a cross-section linear regression applied to 

growth data generated by economies converging to multiple steady
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states can produce a negative initial income coefficient. Thus, 
a negative sign in this coefficient cannot be taken as evidence 
of convergence in income per capita for all countries.

The data source is Summers and Heston (1988) and the World 

BankTs W o r l d  T a b l e s and W o r l d  D e v e l o p m e n t  R e p o r t . The authors 

initially carry out ad hoc splits of the countries into two, 
three and four groups based on their initial per capita output 

and literacy rates. They then test for the existence of a common 
growth path for these groups. They reject the null hypothesis 
against the alternative of multiple regimes in a human capital 
specification and in an augmented version that tries to 

incorporate social and political factors. In both cases, they 

reject the hypothesis of a single growth regime against the 
hypothesis of several regimes.

Regression trees allows for endogenously finding the number and 
specification of growth regimes. The splitting criteria in the 
tree are based on initial literacy rates and income per capita. 
This is consistent with the multiple regime framework since if 

economies are concentrated around several steady states, then 
their initial values for these variables will cluster for each 
group. Within nodes sum of squares are computed from the 
residuals of the growth equations.

The algorithm partitions the world economy into four groups and 

the estimates are consistent with the view that different
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economies have access to different aggregate technologies.

In the following section I will consider the use of regression 
trees in the study of the wage structure. I will present 

empirical results that highlight the strong context-sensitivity 

feature that wages present in the U.S.. I will then give an 

outline of the rest of this volume and will end with a 

description of the data and programming to be used in the 

following empirical applications.

1.4 Nonparametrie Wage- Structures

1.4.1 Wage structures

The concept of the wage structure is fundamental in the 
empirical analysis of the characteristics of the wage 
distribution. It refers to the vector of prices set for various 
labor market skills and the rents received for employment in 
particular sectors of the economy.

The labor market is seen as a complex structure that consists 
of interrelated local markets with different market equilibrium 
wages. A description of this structure and its evolution is of 
clear interest to study problems as varied as the effects of 
technological change, the sources of wage inequality, and 
discrimination in the labor market.
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We can start by simply assuming that the logarithm of the 
market-clearing wage for any worker, wif depends on observed and 
unobserved characteristics that position the worker in a segment 

of the labor market.

It is customary to assume a linear relation between the observed 

and unobserved effects, where the unobserved effect term will 
have zero expected value and small variance a2. The general 
specification for the econometric model in this literature is 
then simply

w. = f(x.) + v. . (1.26)

The simplest and commonest specification for (1.26) is a 

polynomial parametric relation between the explanatory 
variables. For example, a squared term for experience on top of 
a linear model is usually included since the publication of the 
seminal work of Mincer (1974) 10.

The linear parametric approach implies that each variable’s 
additional contribution to wages is constant or follows a

10 It is customary to refer to a wage equation that is 

linear on the education level, experience, and experience2 as a 

Mincer equation. The conection between human capital models and 
this simple specification was one of the main contributions of 

Mincer. This is nowadays sometimes recognized by referring to 

Mincer equations just as human capital specifications.
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be solved by adding just a few quadratic terms in the right-hand 
side of the equation? My intuition is that it cannot. By 
postulating a rigid structure, the researcher may distort the 
information available in the data set so that the results will 

not be useful.

In the next section, I will review the empirical evidence on 

context sensitivity in the U.S. wage structure.

1.4.2 A survey on context sensitivity in the U.S. wage structure

There is a remarkable consensus in the economic literature on 
the recent general trends of relative wages. It seems that the 
fundamental dynamic features of wages are sufficiently well 
described along just three or four dimensions.

First, there was a general trend of wage dispersion and a slow 

down of growth in real wages during the eighties. Second, there 
have been increases in the wage differentials between workers 
with college and high school education for all demographic 
groups defined by gender and age. Experience differentials have 
continued a long-term increasing trend. On the other hand, 
gender differentials narrowed further while race differentials

reported that the parameters of these terms were not

significantly different from zero when wages instead of earnings 

were used in the regression.
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remained stable in the last twenty years. Industry differentials 

have also remained stable.

Compared with the trends observed in the sixties and seventies, 
the growing inequality in the eighties was not a unique 
phenomenon. Wage dispersion within groups and increases in 
experience differentials were not new trends. However, the 
reductions in the College premium during the 1970’s and the 

narrowing of the race differentials before 1975 did not occur 
later13.

On top of these general stylized facts we can find many reported 

local cases of context sensitivity or nonhomogeneity in wage 

differentials. Probably the best known of these is the different 
behavior of the experience differential between high school and 
college graduates. It seems that the combination of college 
attendance and job experience was an unbeatable one during the

13 See, for example, Levy and Murname (1992) and Bus chins ki 

(1994). Allen (1995) analyzes changes in the wage structure 

across manufacturing over the years 1890-1990. He concludes that 

interindustry wage differentials were highly stable over the 

entire period for production workers. Interindustry wage 
differentials were stable for all workers from 1958 onwards.
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eighties14. Welch (1979) argued that college graduates are more 

imperfect substitutes for more experienced graduates than is the 

case for workers with less education.

Similar asymmetries can be found along other demographic 
dimensions. Let us consider the interaction between education 
and race. While the college-going rate for 18-24 year old, 
white, high-school graduates increased from 31.2% to 38.1% 
between 1979 and 1987, the college going rate for black high 

school graduates in this age group fell from 29.5% to 28.1%, 
suggesting that the college premium has a race story inside15.

The race differential for women almost disappeared in the 1970s, 
while it remained stable for male16. Thus, either the wage 
structure is becoming nonhomogeneous with respect to the race 
differential, or it never was.

Some authors have studied the relationships between sector of 

employment and race. Greene and Rogers (1994), for example, find 

important differences between the private and public sectors 

with respect to earnings of college-educated black and white

14 See, amongst others, Bound and Johnson (1992), Katz and 
Murphy (1992), and Murphy and Welch (1992).

15 See Levy and Murnane (1992) and also Ashraf (1995).

16 See, for example, Murphy and Welch (1992) and Blau and 

Beller (1992).
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professionals.

Bound and Holzer (1993) estimate the effects of industrial 

shifts in the 1970s on the wages and employment of black and 
white males and find that while the magnitudes of these effects 

are fairly small for many groups, they can account for about 40- 

5 0 percent of the employment decline for less-educated young 

blacks.

Firm and industry effects have also been compared on several 
occasions. Davis and Haltiwanger (1991) find that steady growth 
in wage differentials among plants in the manufacturing sector 
between 1975 and 1986 accounts for half of the growth in wage 
dispersion within this sector17.

Bound and Johnson (1992) find that when 45 instead of 17 
industries were used for "all men” and "all women" groups, most

17 It is unclear whether this pattern extends to other 
industries, particularly after considering that international 
competition may have increased the pressure on firms to choose 
between quality improvements or cost reductions in the labor 
force. Levy and Murnane (1992) argue that the eighties may just 

have been a period of adjustment for the manufacturing sector 

that will end when those firms which chose the losing strategy 

disappear.
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of the industry effects were picked up by the dummy variables 
for 17 industries. The interesting exceptions were non-college 

men during the 1980 fs, for whom the use of detailed industry 
dummies increased the total industry wage effects by up to one- 

half .

Blackburn (1990) shows that approximately 15 percent of the 

increase in within-group variation for men stems from the 

movement of workers from goods producing industries to services.

Other variables of potential interest have also been studied and 
their interactions locally analyzed. A few examples follow.

There is no clear consensus on regional variations and their 

effects on the wage structure. Eberts and Schweitzer (1994) find 
that the trend in regional variation can be traced to declining 

differences in labor market valuations of worker attributes 
rather than to shifts in the regional composition of the 
workforce. See also Gyimah and Fichtenbaum (1994) for an 
investigation on the regional differences in labor market gender 
and race discrimination. Larger differences do not imply larger 
discrimination.

Immigrants with lower initial wages were assimilated in the U.S. 

market faster than those with higher initial wages (LaLonde and 
Topel, 1991).
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Social status has also been considered: Among males, growth in 
the proportion of males in the labor force who are unmarried has 
affected the married status differential18.

Finally, Adamson (1993) study differences in union affiliation 

relative wages across gender and race and finds that the female 
union effect declined over the 1970-1982 period whilst the size 
of the male union effect remained stable.

The list of cases is not at all exhaustive. The examples 

nevertheless transmit the message that local analysis unveils 
context sensitivity. This is done by focusing on the 
interactions of at most three variables. Note that in order to 
observe context sensitivity using parametric techniques we must 
include at least quadratic effects in the set of explanatory 

variables or, more generally, estimate different wage equations 

in different segments of the labor market. This, in effect, 
eliminates the possibility of a global context-sensitive 
parametric approach.

From the extensive literature on wage premiums we must conclude 

that any global analysis of wages may suffer from aggregation 
bias and that even local studies should take account of 
nonhomogeneous features in the structure.

18 See Blackburn (1990) and Blackburn and Korenman (1994).
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It seems therefore desirable to keep the empirical analysis to 
the highest level of flexibility. A nonparametric approach over 
all possible points of the input space cannot be used for 
practical reasons. A simple example will fix ideas. Bound and 
Johnson (1992) did not try a very detailed specification of the 
input space. They took three periods (1973-1974, 1979, and 1988) 

and for each of them the population was divided into 32 
subsamples -according to education, potential labor market 

experience and gender- on which wage regressions were carried 

out with dummies for the following characteristics: Educational 
attainment, nonwhite, part-time employment, residence in an 
SMS A, four major regions and employment in 17 major industries. 
The most complex nonparametric surface would involve 15,000 
different labor groups. In order to have at least 50 
observations for each type of worker, the research can only be 
carried out with samples of at least 750,000 observations.

Thus, it seems that ad hoc searches for the best functional 

local parametric specification is the only available strategy. 

It is not. Parsimonious nonparametric econometric models such 

as regression trees allow for simple nonparametric structures 
in the sense of a low number of different expected equilibrium 
wages19. They thus provide a very useful tool in the study of 

local segments of the labor market.

19 This is the result when the splitting rule constraint is 
activated in the splitting algorithm.
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1.5 Outline of the thesis

1.5.1 Outline of the thesis

The fundamental econometric problem that model (2.1) may have 

is related to the statistical relation between the observed 
variables and a subset of the unobserved variables. The general 
idea is that if economic agents take decisions based on an 

opportunity set not observable to the researcher, and if 
opportunities vary across agents, then observable data will be 
censored and the error term may not be independent of one of the 
regressors.

In the context of measuring the returns to education, this self­
selection/omitted variables problem would imply that OLS 
estimates of the education coefficient may be upward biased. 
Intuitively, individuals with higher ability, an unobservable 

variable, will normally choose higher levels of schooling 

because they can benefit most from it (e.g. Griliches (1977)). 

The interpretation of the importance of the education variable 
in the estimated tree will also present the same problem.

In the context of gender differentials, participation decisions 

in the labor market censors especially female data. Again, LS 

estimates will be biased if the decision to participate is 

affected by some observable factors in the wage equation (2.1) 
or an ability dimension related to observable variables, such
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as education. The same problems affect again the interpretation 

of the gender estimate in regression trees.

It is possible to define regression trees so that these problems 

can be addressed. The main idea is to use standard parametric 

regression techniques designed to cope with these problems at 
each node instead of simple within node averages in order to 
estimate the impurity at each node. This is, no doubt, a very 
interesting direction to enlarge this study.

In the rest of the thesis, I will present, however, the results 
of applying the simplest regression trees algorithms to samples 

of populations for whom, I will argue, the econometric problems 
just mentioned are minimized.

Three applications of regression trees on the study of the wage 
structure are implemented in the following three chapters of 
this dissertation:

a.- I will first estimate experience-wage profiles for 

white male full-time employed workers.

b.- Secondly, I will decompose average wage differentials 

of different groups using nonparametric structures estimated by 
regression trees.

c.- Finally, I will look at trends and inequality using
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nonparametric wage structures estimated by regression trees.

Obviously, the choice of the subjects probably reflects mostly 

the interests of the author and I would not like to suggest that 

these fields are the most promising for the application of 

nonparametric multivariate techniques to the study of wage 

structures.

Before turning to the results of the empirical applications, I 
would like to comment on the data set and the programming
language used.

1.5.2 Data and programming

In the following chapters I will use the outgoing rotation 
groups of the Current Population Survey (CPS). The Current
Population Survey is a monthly survey of now about 60,000 
households prepared by the Bureau of Labor Statistics, BLS. An 
adult (the reference person) at each household is asked to
report on the activities of all other persons in the household. 

There is a record in the file for each adult person. The
universe is the adult noninstitutional population.

Each household entering the CPS is administered four monthly 

interviews, then ignored for eight months, then interviewed 

again for four more months. If the occupants of a dwelling unit 

move, they are not followed, rather the new occupants of the
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unit are interviewed. Since 197 9 only households in months 

fourth and eighth have been asked their usual weekly 

earnings/usual weekly hours of work. These are the outgoing 

rotation groups, and each year the BLS gathers all these 
interviews together into a single Merged Outgoing Rotation 
Group. A consequence of this construction is that an individual 

appears only once in any file year, but may reappear in the 

following year. The National Bureau of Economic Research, NBER, 

has prepared a CD-ROM with extracts of the files.

These data have, however, some limitations as a data set for 
studying the evolution of wages across different groups20. I will 
comment on four problems that may distort results.

First, the definition of income does not include fringe 
benefits, which have constituted a rising proportion of income 
compensation. Levy and Murnane (1992) argue that after adjusting 
for fringe benefits the difference between the rates of growth 
of real wages for the sixties and eighties diminishes, but the 
eighties value is still well below the pre-1973 period.

Second, to preserve confidentiality in the upper tail of the 

income distribution, the statistics reported are top-coded at 
$50,000 from 1968-1981, $75,000 from 1982 to 1984 and $99,000

20 For a more detailed discussion, see Levy and Murnane 

(1992).
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from 1985. This problem can actually be lessened by avoiding all 

together the tails of the distribution although more 

sophisticated procedures have been proposed21.

The fact that the CPS lacks information on firm specific 

activities can be important if workers have heterogeneous 
characteristics and production potential across firms.

Finally, the CPS data may overstate the rate of growth during 
the 198 0’s in the proportion of new labor market entrants who 
were college educated and underestimate the earnings of workers 
who completed a normal high school programme. Bishop (1991) 
finds an unprecedented mismatch in the 1980's between the CPS 
data on new entrants who had accomplished college education and 
the number of degrees awarded in the U.S.. With respect to high 
school graduates, before 1988 the CPS treated both holders of 
the General Educational Development exam and traditional high 
school graduates as having completed 12 years of schooling. 
However, Cameron and Heckman (1991) find, with data from the 

National Longitudinal Study of Youth data set, that the first 
group earnings patterns are indistinguishable from high school 

dropouts.

21 Truncation corrections for top coding normally assume a 
gamma distribution for the upper tail of the yearly income 
distribution.
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I implemented regression trees algorithms on large data sets of 
wages. The computations were carried out using the author's 

procedures programmed in GAUSS for regression trees on ordered 

variables. An interesting feature of the chosen programming 

language was the possibility of using a simple matrix 
programming language together with large data sets. In 
particular, the procedures were able to process sets with more 

than 60,000 observations with speed in a personal computer and 
limited memory. Available commercial software would not do the 

job. The procedures are available upon request to the author.
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Appendix A

Figure 1.1 2D representation of structure

f(xx , x 2) =
if x2 s x21
if X2 > X 21
if x2 > x21

X1 s x u  
X1 > x u
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x2>x21x2<=x21

x1 >x11x1 < =x11

Root
Node

Node 3

Node 4

Node 2

Node 5

Figure 1.2 Binary tree representation of structure
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x2>b1

x l  < = J

Node 5 Node 7

x3<=b3
Node 7 Node 8 

c4
Node 9 

c5

Node 11 Node 12 
c8

Node 6

Node 10

1 x4<=b5

Node 2

Node 4

Node 3

Figure 1.3 Binary tree representation of a 4-dimensional tree 

structure
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Figure 1.4 2 D  r e p r e s e n t a t i o n  o f  a  g e n e r a l  t r e e  s t r u c t u r e



Chapter 2

Tree estimation of experience-wage profiles

2.1 Introduction

The theory of human capital in its general form has no 
functional specification. The observed inverted-u shape in the 
experience- wage profile1 is explained as the result of two 

effects: (a) increases in the wage as the worker gains

experience and spends less time in training, and (b) decreases 

in wages due to human capital losses or depreciation. For 

convenience, the depreciation rate is often taken to be 

constant. However, if it is not, multiple human capital 

accumulation paths can occur in a cross-section of workers.

1 See Figure 2.1 in appendix A.
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While the general human capital model predicts wages that 

eventually decline, alternative theories of wage growth 

over the life cycle do not necessarily predict declining 

wages at older ages. So, for example, the shirking model 

which views wage growth as a worker discipline device, can 

have rising wages if the future disutility of effort is not 

too high (See Johnson and Neumark, 1996) . Declines in wages 

for older workers are then related to negative shifts in 

the labour demand for these workers.

In this chapter I will assume that sudden losses of human 
capital can affect individuals at the late stages of their 
working lives. This may induce different human capital 
accumulation regimes in a cross-section that will result in 
structural breaks in the observed experience-wage profiles. 
Although I use the human capital explanation to fix ideas, it 
is interesting to note that the empirical analysis could also 
be carried out trying to isolate sudden drops in observed wages 

at the end of the working life for some local types of workers 

and study whether these falls are demand or supply driven. 

Alternatively we can see this study as a way of characterizing 
local types of workers that suffered sudden losses in their 
wages at the end of their working lives.

A parametric fit of profiles with late structural breaks will 

wrongly exploit losses of human capital for the most experienced
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workers as information on the concavity of the profile. For 

example, if we fit a smooth quadratic function, a sudden loss 

will be understood not as a step movement but as a smooth 

decline and the fit may still be reasonably good2.

Moreover, parametric regressions will smooth differentials in 

the experience-wage profiles among workers with different 
characteristics. Thus, local losses or breaks in the experience- 

wage profiles will pass unnoticed to the researcher.

In section 4 of this chapter I present the results from 
estimating a multivariate nonparametric human capital surface 
for 1980, 1985, 1990, and 1995 with regression trees. This
econometric model allows for local breaks of the experience-wage 
profiles in a multivariate context. We can therefore uncover 
sudden losses of wages for old workers by defining local 
smoothness applying a kernel estimator on the projections 
obtained from the nonparametric regression.

This exercise will allow me to answer the question: Are there 
any breaks in the experience-wage profiles? If there are, can 
they explain the declining average tendency of wages at the end 
of the working life as in Figure 2.1 in Appendix A?

2 Murphy and Welch (1990) argue that Mtwo-thirds of the 

late career decline implied by the quadratic is an artifact of 

specification" (Murphy and Welch, 1990, page 204).
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2.2 The theoretical framework

Each worker works a fixed amount of time and has a certain 
amount of productive capacity. We can call this potential 

earnings or human capital. Human capital is not transferable and 
it can be augmented by learning at school, at college, as an 

apprentice, and on the job. Let us denote human capital by k and 

its time derivative by k .

I will assume that on-the-job learning is not firm-specific and 
is provided by firms freely as a by-product of the production 
process. They do so because they cannot reap the returns of 

learning from the worker. If they tried, the worker would move 
to another firm at a wage reflecting the full value of the human 
capital embodied in her ( Becker, 1993, pages 30-40).

Training is however not costless for the worker since firms will 

implicitly charge her with its cost. We can assume, for example, 
that firms offer jobs with different learning and production 
intensities. Take O^x^l as the proportion of training of a job. 
If the loss of output for the firm due to training is associated 
solely with the shift of the worker’s own time from work to 
training, then we can think of x as the proportion of time spent 
on training and (1-x) as the proportion of time spent on 
production. Each worker’s contribution to the production process 
will depend on (l-x)*k.
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Competitive firms will offer to the worker a contract specifying 
the wage and the training content. Profit maximization implies 
that wages will equal marginal revenues for the firms. If r is 
the rental rate of human capital and if workers are perfect 
substitutes in the production process, r must equal the marginal 
productivity of total human capital. Then, wages for workers 

with k human capital in a job with x learning intensity are 
equal to w=r(l- x)k. The costs of training are rxk.

Working under this contract will produce new human capital to 
the worker as a by-product. We can denote this by k = f(k,x). 
The problem the worker faces is dynamic. Training today raises 
tomorrow's wage through an increase in human capital, but 
decreases today's wages.

This problem3 can be formally stated as

where T is the worker's fixed end of the working life and i is 
the interest rate in the capital market.

3 See Ben-Porath (1967) for a similar formulation and an 

introduction to the early literature. See Weiss (1986) for a 
survey on functional specifications.

s. t.
k = f (k,x) , k (0) =kQ, 
0<x<l

(2 .1)
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This is a standard control problem and can be solved by 
maximizing full earnings of the worker, that is, his current 
earnings and the value of the additional human capital. This is 
effectively done by the Maximum Principle of Pontryagin. 

Different human capital production functions, f(* ), will render 
different optimal paths for x(t), k(t), and w(t).

Since k is net increase of human capital, f(* ) must take
account of the fact that human capital can also depreciate. Some 
examples are of interest. General technological improvements 
will make part of all workers’ human capital obsolete. It is 
reasonable to assume that this type of destruction of human 
capital will be proportional to the amount of human capital the 
worker has. The proportion will also be equal among workers, 
reflecting the generality of the process. This case justifies 

the assumption of a constant rate of depreciation among 
workers4. Workers suffering certain progressive illnesses will

4 Growing old is a source of physical deterioration that 
may have a similar property. Fair (1994) studies the rate at 
which people phisically deteriorate using data on race and field 
records. The results show that the depreciation rate remains 

fairly constant until athletes are in their fifties. Mincer 
(1974, page 22) already suggests that a very low rate of 

depreciation during most of the working life, beginning to rise 

only at the end, could be assumed on health and psychological 
grounds.
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have increasing destruction of their productive capacity. Here, 
the best model is a positive time trend for the human capital 
depreciation rate. Finally, specialists working in a 

technologically changing sector of the economy may suffer sudden 
losses of human capital with a positive probability. Here, human 

capital depreciation is probably best modelled as a random 
process.

Therefore, as Mincer (1974, page 20) argues, "[...] the 
finiteness of life, the increasing incidence of illness at older 
ages, and the secular progress of knowledge, which makes older 
education and skill vintages obsolescent, are compelling facts 
suggesting that as age advances, effects of depreciation 
eventually begin to outstrip gross investment".

In the next subsections, I will review several specifications 

for f(k,x), commenting on the properties of the optimal paths. 
I will stress the effects of the assumption of a constant rate 
of depreciation of human capital on the evolution of optimal 
human capital accumulation and wages.

There are of course many other specifications available in the 

literature. The purpose here is to show the effects of the 

assumptions on the depreciation of human capital. I begin with 

a simplified version of the benchmark model developed in Ben- 
Porath.
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2.2.1 Ben-Porath (1967)

We assume that f (k, x) = (kx) 1_a-5k. This specification incorporates 
a constant rate of depreciation that is not necessarily 

different from zero. A positive constant rate of depreciation 

means that all individuals suffer proportional losses of human 

capital at all ages. One can think of this as the effect of 
general technological progress. When gross investment in human 
capital is small enough, this depreciation can be the driving 
force behind falls in potential earnings. A priori, we can 
expect this to happen at the end of the working life, when it 
simply does not pay to fight against the loss of knowledge by 
sacrificing current earnings.

The Hamiltonian of the control problem (2.1) takes on the form

where v is the discounted marginal value of an additional unit 
of human capital.

Necessary conditions for the optimal control path for this 
problem are

v (T) = 0
H (k % v *, x *, t) = H (k *, v *, x, t), Vte[0,T]

Let us define current marginal values as u=veit:. From now on,

(2 .2)

k
HV = 0 
k (0) = k (2.3)
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I omit for simplicity asterisks in the optimal paths. From (2.3) 

we have three groups of necessary conditions:

D y n a m i c  c o n d i t i o n s

1 l-a
u = / • s\ (l-a) (kx) . ... .(i+5) - ---- — ------ u - r(l-x),

(2.4)
k = (kx)1-3 - 5k.

I n i t i a l  a n d  t e r m i n a l  c o n d i t i o n s

k (0) = kQ 
u(T) = 0

S t a t i c  c o n d i t i o n s

If u (l-a) k1'3 > rk - x = 1

(2.5)

If u (l-a) (kx)1 3 = r k - 0 < x ^ l  (2 ' 6)x

Conditions (2.6) show that the worker will either devote all 

time to learning, schooling, or will learn on the job, but at 
no point in the worker's working life will on-the-job learning

5 This result is contingent on the functional 

specification. When the marginal productivity of training on 
production of human capital is linear, there must be a period 

at the end of the working life in which no training takes place.

In the absence of depreciation this will lead to a flat 

experience-wage profile in the last stages of the working life.
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Terminal condition u(T)=0 secures no schooling at the end of the 
worker's life. Dynamics during the schooling period are

* . (i + 5) - JilfL,
U k a

(2.7)
k - 1 R_    o ,
k ka

with k(0)=k0. The terminal condition for u, u(ts)=us, can be 

fully characterized once the solution for the optimal path in 
the following phase, on-the-job learning, has been obtained.

We can solve this system by a change of variable. Note that 
human capital growth depends on its value only. Taking z=l/ka we 
get the separable differential equation

dz-------  = adt (2 .8)(5 - z)z i*-®/

and solving back for ka we obtain the optimal path for k(t), 

k(t)a = { (l - (1 - 6 k 0a) e-a5t). (2.9)

Taking into account the differential equation for u -the value 

of human capital investment- (2.9) implies that u will decrease 

during this period. As the worker ages, investment in human 
capital becomes less valuable as future life becomes shorter.

If there is depreciation, the plateau happens in the middle of 
the working life. See, for example, Sheshinski (1968).
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As u decreases and k increases, the system moves closer to the 

interior solution and on-the-job learning.

From the terminal condition on u(T) and the static conditions 

we see that there must always be a phase of on-the-job learning. 

The existence of schooling will depend on the life span of the 
worker. The shorter the working life is, the lower the 
discounted marginal value of investing in human capital, and the 
more likely it is that it is optimal for the worker to start 
working at t=0.

I will now study the interior solution for x. The static 
condition for the internal solution is

(1 - a) u (kx)1 ‘ a = rkx, 0 < x < 1. (2.10)

Consider for simplicity the case when a=l/2. If we substitute
(2.10) into the differential equation for k in (2.4) we obtain:

U - 5. (2.11)k 2rk

If the marginal value of training is positive, u>0, then from

(2 .10) we see that there will be some amount of training, x>0, 

and the rate of growth of the human capital stock will tend to 
be positive. However, when the training effort is so small that 

the first term of the right-hand side of (2 .11) is smaller than 

5, then the stock of human capital will fall. It will be shortly 

shown that u also follows a declining path during the working
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phase. Thus, human capital will fall at the late stages of the 

worker’s life, when u/2rk is smaller than the constant rate of 
depreciation.

The constant rate of depreciation is therefore the driving force 
behind the decline of potential and observed wages.

If no depreciation affected human capital, average wages would 

increase always. Then, since human capital investment has always 

a positive although decreasing marginal value, potential 

earnings will always increase, and the training effort will 
gradually be reduced.

Let us now study the system for 0<a<l. If we substitute the 
dynamic condition for human capital into the static condition, 
we get

T  ' (1-arl k
r x 
u - 5. (2 .12)

On the other hand, from the two dynamic conditions we have

u - r (1 - x) (2.13)u /
(i + 5) - (l-a)

( . \ k x —  + 5
\

u V I k Jj

so that by substituting (2.12) into (2.13) and rearranging we 

obtain that the marginal value of investment depends only on 
time:
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u = (i + 5)u - r, u(T) = 0 (2.14)

so that

(2.15)

which is a decreasing function of time6. From this and the 
static condition we have that gross human capital investment 

always increases:

(kx)a =
( \ l-a
\ r /

u (2.16)

and human capital will decrease when

(l-a)u < 5k. (2.17)

A simple analytical solution for the optimal path of k can be 
obtained if we further assume that a=l/2 .

The differential equation for k takes then the form:

uk = -- - 5k,2r k(t ) = k (2.18)

6 This is, again, a feature of the Ben-Porath model that 

makes solving the model a simple task. We will see a similar 

result once we introduce a random shock.
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The solution for k is

k (t) = k Se5(ts"t) + A(1 - e5(ts'fc)) + B (e (i * 6)t - e5(ts_t)) (2.19)

where A=l/(2(i+5)5) and B=- (e_(i+5)T) / (2 (i+5) (i+25) .

Since w=r*k*(l~x) and (kx)= (u/2r)2, we have that wages increase 
only if human capital increases since the marginal value of 

human capital investment is always decreasing:

w = rk- r -ij- (kx) . (2 .20)

Obviously, wages will peak later than potential wages due to the 
cost of training.

To sum up, when the depreciation rate is positive, this model 
generates concavity of the experience-wage profile during the 
working period with increasing wages at the beginning and 
decreasing wages at the end7.

If there is no depreciation, this model will generate concavity 

of the experience-wage profile during the working period but 

cannot account for the observed decline in wages during the last 
years of the working life.

7 As already stated, a linear model for the effect on human 
capital acumulation of training with depreciation, as in 

Sheshinski (1968), will generate concave experience-wage 

profiles with a plateau in the middle of the working life.
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There may be, however, an alternative explanation for the 
reduction in average wages in a cross-section. Consider the 
effect of an unexpected drop in the stock of human capital for 

an old worker.

To use the results of the model, we simply have to consider what 

happens when T is very small and there is a sudden loss in k0. 
If the loss is sufficiently big, there will be not enough time 

left in the working life to recover from the initial loss, and 
the wage will be lower that at t=0. Thus, we can see declining 
wages for workers who suffer unexpected losses of human capital. 
This argument is clearly not a satisfactory explanation if all 
wages tended to decline at the last stages of the working life 
in a cross-section, since if there was a tendency for losses of 
human capital then, they would not be unexpected.

It may be however a good explanation for part of the decline of 

average wages at the last stages of the working life. The 

argument would be that although not everyone suffers 
depreciation of human capital, those who do, do in such a scale, 
that push average wages down because all incentives for further 

investment have been exhausted.

If we introduce in the model different types of workers and 
observe that different old workers are affected in different 

periods by losses of human capital, we may compute the effect
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of these losses on average wages8. It is however then more 

realistic to assume that this uncertainty in the losses is 
nevertheless taken into account by the workers in their plans 
for human capital accumulation. I will follow this line of 
modelling at the end of this section.

2.2.2 Uncertainty and human capital

The model just reviewed includes the two fundamental aspects of 
the human capital explanation to the inverted-u shape of average 
wages. First, finiteness of life is crucial since human capital 
is embodied in each person and cannot be transferred. This 
becomes an irresistible factor to decrease investment effort 
along time since there is a trade off between investment and 
current earnings. For the same reason, on-the-job learning will 
tend to take place at the beginning of the working life. This 

accounts for concavity.

Secondly, losses of human capital will induce decreases in wages 
at all ages. However, since the investment effort decreases with 
experience, the overall effect of the losses plus learning will 

tend to be negative only at the end of the working life.

We have seen that even when no unexpected vintage effects in a

8 See Willis (1986) for a simple model of heterogenous 
human capital and schooling.
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cross-section are present, average wages may first go up and 
then down depending on our assumptions on human capital 

destruction. To account for this behavior in a model without a 

constant rate of depreciation, we need that old workers suffer 

losses of human capital.

Uncertain losses of human capital have been modelled by Williams 

(1979) in a context of uncertainty for a level parameter in f(.) 
and the rental rate of human capital. He further assumes a 
positive correlation for the two shocks and concludes that 
workers may hedge against obsolescence by greater investment.

Williams (1978) uses a two period model to conclude that 
investment in human capital is encouraged when risk increases. 
Nonetheless, the fundamental result on investment effort still 
holds: investment in human capital is declining monotonically 
with the worker's age.

In the following section I present a simple model of human 
capital accumulation when there is uncertainty in the 
depreciation of human capital.

2.2.3 A simple model of uncertainty in the depreciation of human 

capital

In this section I will develop a model of human capital 

accumulation using the theoretical setting introduced at the
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beginning of this section. For simplicity, I will present the 
model in discrete time.

I assume a Ben-Porath technology with parameter a=l/2. 

Depreciation of human capital has two sources:

overall technological improvements lead to global 
obsolescence in human capital. This effect is assumed to be 

proportional to the amount of human capital and will be called 
overall depreciation.

- workers may suffer a sudden loss of human capital9. The 
degree of the loss will be a multiple of a certain constant 
level. The probability of this event follows a Poisson 
distribution. This effect will be called sudden depreciation.

The timing of information and actions in each period is as 
follows. At the beginning of period t the current value of the 
sudden loss of human capital is realized. The worker chooses 
human capital investment based on this realization and the human

9 Following Williams (1979), one could assume that workers 
may suffer sudden stochastic losses in their rental rate of 

human capital due to changes in supply and demand factors. The 

model I present is, I believe, simpler and makes the point 

clearer, but interpretations in terms of more complex models are 

also of obvious interest.
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capital for the beginning of next period is obtained.

The problem any worker faces can be formally stated as

v1 (ka, ux) = max E1
{ X. >

£  rkt(l-xt)
t-i

s. t. (2 .21)
kt+1 = (1-5) kt + A(ktxt)1/2 - utk, 
kQ given
Oi xt si, t = l,... , T-l

where T is the worker's last period and ut is a random variable 

that follows a Poisson distribution with coefficient At. 

Bellman's Principle of Optimality implies that the worker must 

assume that he will also optimize her decisions in future 
periods10:

v1(k1,u1) = max rk1(l-x1) + El | v2 (k2, u2) J, (2.22)

and, for any period t=l,...,T-l,

vt(kt,ut) - max rkt(l-xt) + Et [ vtrt (kttl, ut<1) j. (2.23)

A simple way to solve this problem is by backward recursion. I 
will see what happens at T, and T-l and propose a recursive 
solution to the problem. At t=T, the worker has no further 
incentive for training, so xT=0,vT=rkr so that E^ [4 (^,4 ) ] =rl<%. .

10 See, for example, Stokey and Lucas (1989).
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At t=T-l,

V T-1 <k T- l ' U T-l) = m a X  r k T- l ^ 1 _ X T-l^ + r k t* (2.24)

Taking into account the difference equation for kt, it is simple 
to see that an internal solution of the problem at T-l satisfies 
the first order condition:

■rkT , +T-l

/ \ A
v 2/

rk_ . (k_ .x_ .V1/2 = 0T-l \ T-l T-l/ (2.25)

so that

(k T-lX T-l)
1/2 _

/ \
(2.26)

We can immediately see that 

kT = (1 -5) kT_1 + - ku T-l (2.27)

Note that if XT_1<1 and 5=0, the most likely event is that human 

capital will increase in the last period by A2/2. Nevertheless, 
if we study a cross-section of workers with independent and 
identically distributed shocks, then the average level of human 
capital may decrease since

E [kT] = kT_1 + A
2 - kX,T-l * (2.28)
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We finally obtain that vT_1=rkx_1+rkT-r (A2/4) .

To sum up, we have the following results

V T-1 = r k T-l + r k I * r
/ 7\ ̂A
v " 4  /

(2.29)

and

kT = (1-5) kT_1 + (1 + (1-5) )
l o \

\
- kuT-l (2.30)

Suppose that

Vt = rkt + + ft, <2.31)

and

kt+1 = (1-5) kt + at / A 2' - kut, (2.32)

where ft is a function only of the parameters of the model and

at_x = 1 + (1-5) afc,
aT = 0. (2.33)

Note that these conditions hold for t=T-l. Under (2.32)-(2.33) 
the problem at t-l takes the form

vt_1 = max rkt_1-rkt_1xt_1 + Et_1 [ vj , (2.34)
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and the first order condition for the internal solution11 is

( \ A
V *■)

(2.35)

By substituting this last equation in the equation in 
differences for k, we see that kt takes the form that is 

equivalent to (2.32) one period in advance:

kt = (1-5) + at-i - kut-i (2.36)

On the other hand, substituting (2.35) into (2.34) and applying 

the expectation operator Et . 1 on kt+1, we have:

v t - i = r k t - i + r a t-iE t-i[k t] + f t-i' (2.37)

where

f t - i  =  " r
at-iA + r (atA) - ratAtk + ft (2.38)

Thus, (2.36) is indeed the optimal solution of human capital 

accumulation.contingent on the stochastic shocks. From (2.35) 

and (2.36) and taking into account that at is a decreasing 

sequence we obtain that wages will decrease only if human

11 Thus, as in the perfect foresight model, gross 

investment is a decreasing function of time.
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capital decreases12 since:

wt - wt_1 = r(kt - kt.1) + (a ^  - at2)^-. (2.39)

From (2.36) we see that wages will tend to fall when

depreciation of human capital takes place. Uncertain

depreciation only at the end of the working life can be modelled

by assuming that At=0 for all t<T. Further assuming that CXA^l 

will lead to rare falls in human capital in the sense that most 
workers will probably not experience them. However, average 
wages across workers will likely show a decline even when 5=0 
since Ar>0 .

Are these effects relevant to explain observed data? To answer 
the problem, we need an econometric specification that can
encompass on one hand accumulation paths with sudden local 
losses of capital and on the other hand accumulation paths which 
are smooth.

2.3 The econometric model

The theory of human capital predicts declining levels of on-the- 

job training intensity. Alternative human capital models predict

12 Note that wages may increase even if human capital 

decreases when the effect of less training compensates in wages 

the effect of destruction in human capital.
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either constant experience-wage profiles after a plateau is 
reached, increasing but concave experience-wage profiles, or 

inverted-u shaped experience-wage profiles.

The existence of heterogeneous human capital that can be 

subjected to local sudden losses induce different human capital 

accumulation paths in the same experience-wage profile. Old 

local workers will give up net investing after the loss. Young 

local workers will still find heavy investment profitable. 
Furthermore, if losses concentrate on older local workers, a 
structural break in the local profile will appear only at the 
end of the profiles. The inverted-u shape will be the result of 
the overlapping of different accumulation regimes for young and 
old local workers. Mincer (1974) justifies the use of a 
quadratic function for the experience returns over a log linear 
schooling model for the analysis of the wage structure on 
theoretical and empirical grounds. It is instructive to 
replicate the basic arguments.

Following human capital arguments, schooling takes place only 
if it gives a positive return p. Potential earnings when leaving 
school thus are k(s)=k0*eps where s is the number of years at 
school. This is the log-linear schooling model. After leaving 

school, individuals will take on-the-job training. If investment 

in human capital declines linearly so that k(x)=k0(l- x/T) then 

potential wages after x years of experience are
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E (x) = k (s) exp[f k<0) ( 1 - t) dt (2.40)

and observed log wages then take the form

logw = logkQ + ps + pkQx - f p M
2T x 2 + log ( 1 - k (x) ) . (2.41)

The quadratic specification is a convenient simplification of 

(2.41). There is some empirical evidence in favor of this 

compromise13.

Smooth simple specifications -like that of equation (2.41), or 

the quadratic simplification that results from dropping the last 
term, or even the Ben-Porath specification- do impose 

restrictions on the wage structure that might render the results 
useless in studying local breaks in the experience surfaces.

Interaction terms between education, experience, or other 
variables in parametric forms may also prove of little value 
because we are looking precisely for nonhomogeneous behavior in 
the experience-wage profiles at the end of the working life.

13 Heckman (1976) was not able to reject a quadratic 

specification against the alternative hypothesis that earnings 

were generated by the Ben-Porath model. For more sceptical 

views, see Willis (1986, footnote 2), Murphy and Welch (1990) 

and Yuengert (1994) .
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In order to study the problem of sudden losses in the wage 
during the last stages of the working life I carry out the 
following two-step empirical analysis:

- I estimate a nonparametric surface for log wages for 
white male nonfarm full-time employed workers. This model does 
not restrict local behavior in the experience-wage profiles, but 
obtains a simplification from the general nonparametric model 
in a multivariate context. This simplification is a product of 
the structure observed in the data, so that no theoretical 
considerations must be introduced. Since the theoretical model 

of human capital in its general form needs not to be conclusive 
about the evolution of the marginal value of training investment 
and the structure of depreciation to render the fundamental 

results, this model can be used to learn about depreciation and 
human capital accumulation from the data.

- I then postulate smooth local expected values based on 
the estimated surfaces for workers in their last stage of the 
working life by levels of education, type of job, and area. 

Finally, I test whether local log wages are statistically below 
the predicted smooth value of the surface.

This two-step procedure is fully justified if we assume flat 
wage experience profiles after a certain level of experience is 
reached. It is a conservative approach when profiles are always 

increasing. Only when overall depreciation is substantial may
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this strategy lead to misleading results. Assuming possible 
changes in the rental rates of human capital for different 
workers, one can interpret the results as evidence of local 

drops in the willingness of employers to employ old workers - 
assuming the labor supply constant-.

The analysis is replicated in four different years to check 
whether the breaks in the surfaces have persistence over the 
decades. I present the results in the following section.

2.4 Empirical results

The data that I will use in this section corresponds to the 
extracts of the 1980, 1985, 1990, and 1995 Annual Earnings File 
of the Current Population Survey (CPS) prepared by the NBER.

Before identifying any loss in observed wages as losses in human 
capital, we should try to control for other possible causes. 
Gustman and Steinmeier (1984) show that failing to account for 

partial retirement may result in an overestimate of the decline 

in wages at old ages. As Johnson and Neumark (1996) point out, 

if higher-wage workers tend to retire before lower-wage ones, 

a cross-section analysis will show a spurious decline in wages 

at older ages. Mincer and Ofek (1982) study the effects of 
interruption in work careers on human capital and wages. Their 
study is an investigation of depreciation of human capital in 

immigrants or returnees to the job market. Using longitudinal
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data they show that the longer the interruption the greater the 

decline in wages. Thus, demographic groups that are more likely 

to interrupt their job careers may present spurious declines in 

their wages in a cross-section.

In order to minimize the magnitude of these problems, the sample 
I study consists of wages for white full-time employed male 
workers with no more than forty years of experience14.

Wages are the logarithms of earnings per week divided upon hours 

per week on the job. The variable specification includes 
education, potential experience, type of job, and region. Here, 

education is divided upon six categories: Less than six years 
of education, between six and 12 years of education, high school 
completed, some college, college completed, and postgraduate 
studies. Potential experience is divided into eight categories 
of five years ranging from 1 to 40 years of experience. 
Potential experience is computed from age minus education minus 
six. Type of job is a binary variable relating to whether the 

occupation can be classified as white or blue collar15. Region

14 An interesting topic beyond the scope of this study is 
whether wage decline also implies decline in total compensation. 
See Johnson and Neumark (1996, footnote 4).

15 White-collar workers includes managerial, executive, 

technical, sales and administrative occupations. Blue-collar 

workers includes craft, precision, and repair operations,
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refers to three main areas: east, central and west16.

For each year, the sample is randomly divided into two samples 

of sizes of 2/3 and 1/3 of the total, respectively. The first 

sample is used to carry out the estimation of the wage 
structure, the second to obtain an honest size tree. The stop- 
splitting rule is 100 observations. The honest size tree is 

obtained each year with a zero-SE rule17.

Aside from the nonparametric analysis, I carry out "Mincer" 
quadratic equations extended with type of job and region . Table
2.1 shows the fit and complexity results of the regressions for

operatives, and transport and service workers. For the 1970 and 
1980 occupation codes, white-collar workers would range from 
codes 1 to 400.

16 East comprises New England, Middle Atlantic, and South 
Atlantic. West is Mountain and Pacific. The rest is Central.

17 The k-SE tree is the simplest tree with the test sample 
average residual sum of squares smaller than R (TLS)+k* SE (TLS) 

where SE(Tls) is the estimated standard error for R(TLS) and TLS 

is the test sample LS partition in the sequence. If observations 

are independent, Breiman et alia (1984,p.306) show that

SE (T)
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the nonparametric and for the parametric functions for all 

years.

The results show that simple nonparametric structures have at 

least as good a descriptive power as the parametric analysis 
carried out. For the second sample, this advantage does not 
disappear. The more interesting fact in Table 2.1 has to do with 

the last column. Complexity of the model is described by the 

number of different logwage expected values the model gives. The 

parametric structures give always 288 different values18. Trees 

will tend to be simpler due to the interaction between the stop- 
splitting rule and pruning19. In Table 2.1 we see that in the 
more complex tree, complexity drops 44% with respect to the 
unrestricted nonparametric model or the parametric model.

18 This is the number of cells in the independent variables 
space: (8 levels of experience) x (6 levels of education) x (3 
main areas) x (2 types of employed workers).

19 However, note how complexity in the tree structures 
seems to change widely in the years. This is in my opinion an 
artifact of the 0-SE rule in the algorithm and the flat surface 

for Rts along the sequence of optimal trees. Differences in 

complexities for the nonparametric surfaces should be taken with 

caution.
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Table 2.1 Goodness-of-fit results for logwage regressions. 

Human capital specification.
Data: Labour extracts-CPS. Male, white, full-time employed workers.

Human capital variable specification + Region + Type of Worker

1980
Tree

Quadratic

1985
Tree

Quadratic

1990
Tree

Quadratic

1995
Tree

Quadratic

N o .observations 

Learning Test

28.650

28.650

24.795

24.795

46.827

46.827

39.121

39.121

14.239

14.239

12.323

12.323

23.273

23.273

19.443

19.443

Goodness-of-fit

RE

21.11%

23.34%

31.11%

31.71%

21.72%

18.4%

25.26%

21.7%

31.18%

29.2%

30.48% 

29. 4%

Complexity2

161

288

50

288

130

288

33

288

Note: Tree refers to surfaces estimated with regression trees using the 0-SE rule and 

100 as the stop-splitting rule in the algorithms. Quadratic refers to "Mincer" 

quadratic equations extended with type of job and region.

1For the tree: RE=1-R(T)/ R (root) in the second sample, whilst Rz is for the first 

sample. For the quadratic specification, R2 is computed for the entire sample.

C o m p l e x i t y  is the number of terminal nodes in the trees whilst for the parametric 

regressions it consists of the number of cells in the independent variables space.

To give a graphical description of the wage structures predicted 
by the optimal size trees, I plot average predicted values by 

experience and education for all years in Figures 2.2 to 2.5 in 

Appendix A. Appendix B shows the results of the parametric
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analysis. From the graphs in Appendix A we see that concavity 
is a clear feature of the surface. Plateaus are quite common, 

so that there are many experience-wage profiles that show a 

linear behavior with no positive slope.

Note that predictions for workers with the lowest levels of 

experience and education for 1985, 1990, and 1995 are the same 

as for workers with a higher level of education. This is the 
result of lack of observations for these cells. As Tables 2.7 

to 2.11 in Appendix A show, there are no workers for these 
characteristics during those years. The parametric approach will 
just use the structure as the only information to predict the 

values for the wages of these workers. If we do not want any 
structure imposed, the best we can say here is that we do not 

know what their predicted wages are.

Experience-wage profiles in a cross-section inevitably mix 
several effects with the increase in human capital. When we 
compare different years' experience profiles, as in Figure 2.1 
in Appendix A, inflation will shift the profiles upwards when 
we work with nominal log wages. Therefore, differentials along 

different experience levels will be the same.

We also have vintage effects in cross-sections. These are 
related to differences in the quality of the workers due to 
changes in the quality of education prior to work and other 

factors. Continuous improvements in education levels lead to an
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underestimation of true experience differentials, since younger 
workers are of higher quality than older workers. When the same 

age group is considered along several years, a continuous 

improvement of the quality of the workers will show up in a 
decrease in positive experience differentials and an increase 
in negative experience differentials20. Thus, if we regress 
differentials for the same age group for different years on a 
constant and a time trend, a positive coefficient on the trend 

would signal a gradual deterioration in the quality of the 

newcomers, while a negative coefficient would signal a gradual 

improvement of the workers' quality. If changes in quality 

stabilize, the trend parameter will be zero. These step- 

improvements in the quality of the workers are observationally 
analogous to sudden losses of human capital in a generation and 
will not be considered here.

If we work with experience groups instead of age groups, the 
analysis of the previous paragraph must be changed to account 
for the education effect. In experience groups there are workers 
of different ages because there are workers with different 

levels of education. Thus, under gradual improvements of the 
quality of the workers, differentials are bigger the higher the 

education of the workers, since these workers are older. 
Conversely, if quality is decreasing, differentials are smaller 
the higher the education of the workers. Thus, by introducing

20 See, for example, Neuman and Weiss (1995) .
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education on our regression on experience levels we can correct 

for the education bias.

To sum up, positive signs in the trend coefficient together with 
negative signs in the education coefficient are signals of a 
decreasing quality in the newcomers to the labor market. 
Negative signs in the trend coefficient together with positive 
education coefficients along the same experience levels signal 
increasing quality in the newcomers.

In order to test for the vintage effect, I use the projections 

from the tree. These are simply within groups averages, so this 

analysis can be seen as "between groups" were the groups have 
been endogenously identified by the data. The results of these 
regressions are summarized in Table 2.2. The regressions were 
carried out for individuals with more than five years of 
education since, as already mentioned, the projections given by 
the tree for some workers with less than five years of education 

were obtained without observations. Differentials are changes 

with respect to the least experienced groups, so that all 

differentials are positive.

Trend coefficients are positive for most experience groups. The 
only non-significant coefficients occur for the least 
experienced groups. Education is generally significant, and 
corroborates the hypothesis of a general continuous decline in 

the quality of newcomers during the period with respect to
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Table 2.2 Experience wage differentials in the nonparametric 
surfaces and vintage effects

Data: Projections from Trees at all points of the independent variables space.

Independent variable: experience wage differential with respect to group

experience.

Mod e 1 1: Contant + trend Model 2: Constant+trend+educa

Experience Const Trend R2 Const Trend Educa

6:10 years 0.284 -0.012 0.013 0.418 -0.012 -0.033
0.174

(0.026) (0.009) (0.037) (0.009) (0.007)

11:15 years 0.341 -0.009 0.008 0.470 0.009 -0.032
0.172

(0 .025) (0.009) (0 .035) (0.008) (0 .006)

16:20 years 0.348 0.025 0.036 0.527 0.025 -0.045
0.226

(0 .032) (0 .012) (0.044) (0.011) (0.008)

21:25 years 0.326 0.042 0.090 0.577 0.042 -0.063
0. 413

(0.034) (0.012) (0.041) (0 .010) (0 .008)

26:30 years 0.354 0.040 0.068 0.632 0.040 -0.070
0.396

(0.037) (0.014) (0 .046) (0 .011) (0 .009)

31:35 years 0.363 0.035 0.054 0.676 0.035 -0.078
0.492

(0 .037) (0.013) (0.041) (0 .010) (0 .008)

36:40 years 0.348 0.036 0.046 0.618 0.036 -0.068
0.313

(0.041) (0.015) (0.053) (0.013) (0 .010)

N o t e :
Standard Errors in parenthesis. The regressions were carried out for individuals with 
more than five years of education. There were 120 observations in each regression:4 
years x 5 levels of education x 2 types of workers x 3 regions.

workers with more than 15 years of experience.

How may these results affect our analysis of sudden losses of 
human capital at the last stages of working lives? If this 
deterioration of quality was a long started process, then 

observed experience differentials in the cross-sample actually
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underestimate the absolute value of the real experience 

differentials for equal-quality workers between the most 

experienced and the previous group when this differential is 
negative. In other words, our observed experience differentials 
by education may undervalue the real loss of human capital for 
these workers, because they are of intrinsically higher quality 
than workers of the following generation. In the following, I

will assume that there was no deterioration in the quality of
labor market entrants.

Can we see "general" sudden losses of human capital for the most 
experienced workers in the surfaces? We can try to uncover these 
effects by fitting parametric surfaces on the nonparametric 
surfaces and see whether a dummy variable for the most 
experienced workers has a significantly negative coefficient.

The main results of the analysis are presented in Table 2.3. 

Based on the surface graphs in Appendix A, I try two simple 

parametric specifications. The first one is the quadratic 

experience profile. The second specification is a linear profile 
with a single spline in one of the interior experience groups21.
This group is chosen by selecting the spline model which
minimizes the errors sum of squares. This is therefore a LS 

estimate of the spline model when the point of the spline is

21 See Poirier (1976) for a general discussion of 

polynomial splines.
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Table 2.3 General breaks in accumulation paths and experience

profiles
Data: Projection 
variables space.

experience differentials from Trees at 

1st Coefficient1 2nd Coefficient1

all points of the independent 

Dummy R2

1980
Quadratic 0.077

(0.02)
-0.005
(0 .002)

• 0.547

Quadratic+Dummy 0.076
(0.03)

-0.005
(0.003)

-0.002
(0 .04)

0.547

Spline 26:30ys 0.033
(0 .006)

-0.038
(0.02)

• 0.544

Spline+Dummy 0.033
(0.006)

-0.038
(0.02)

-0.002
(0 .05)

0.544

1985
Quadratic 0.074

(0.02)
-0.004
(0.02)

• 0.732

Quadratic+Dummy 0.099
(0.02)

-0.008
(0 .003)

0.052
(0.03)

0.734

Spline ll:15ys 0.094
(0 .02)

-0.073
(0.02)

• 0.736

Spline+Dummy 0. 095 
(0.02)

-0.074
(0.02)

0.006
(0.02)

0.737

1990
Quadratic 0.155

(0 .02)
-0.013
(0 .002)

• 0.784

Quadratic+Dummy 0.156
(0 .03)

-0.013
(0.003)

0.0009
(0.04)

0.784

Spline 21:25ys 0.071
(0.008)

-0.081
(0 .01)

0.781

Spline+Dummy 0.068
(0.01)

-0.069
(0 .02)

-0.033
(0.03)

0.782

1995
Quadratic 0.127

(0 .02)
-0.008
(0 .002)

• 0.873

Quadratic+Dummy 0.119
(0.02)

-0.008
(0 .002)

-0.014
(0.03)

0.873

Spline 21:25ys 0.071
(0 .006)

-0.061
(0 .01)

• 0.875

Spline+Dummy 0.070
(0.006)

-0.053
(0 .01)

-0.023
(0 .03)

0.875

Note:
Standard Errors in parenthesis. There were 288 observations in each regression: 8 levels 
of experience x 6 levels of education x 2 types of workers x 3 regions.
1For quadratic functions, the first coefficient refers to the linear effect and the 
second to the quadratic effect.For Linear functions with splines, the first coefficient 
is the first slope, whilst the sum of the first and the second coefficient is the 
second slope.
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unknown. If errors are assumed normal, this is a ML estimate. 
Since the relevant information is the shape of the 
differentials' profile, all projections are used here.

The quadratic model fits the surfaces better than linear splines 

in all years but 1985. Inference is not valid if model 

specification has been implemented with the same data. We can 

see, nonetheless, results in Table 2.3 as results coming from 
two different researchers with different prior beliefs regarding 
functional especification. What Table 2.3 says is that none of 
them would reject the hypothesis of absence of general breaks 
in the accumulation paths for the most experienced workers. This 
could be interpreted as evidence that workers smooth their 

profiles by taking into account the general obsolescence effect 

that technological progress induces on human capital.

I am sceptical about how Table 2.3 can answer questions on 
sudden losses of human capital. The reason is that general 
parametric specifications impose restrictions on human capital 
destruction. In particular, the restriction that it is not 
locally affecting workers of a certain type, that is, workers 
with a particular class of human capital. A model including 

different types of workers and knowledge should allow for 

possible different depreciation experiences. Therefore, we could 

try to observe breaks in parametric profiles for each particular 
type of worker fitted from the tree projections.
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Table 2.4 Parametric especification searches for each type of 
worker along the nonparametric surfaces
Data: Projection experience differentials from Trees at all points of the independent

variables space.

Number of Cases Constant better R2 -range

Quadratic 37 2 0 - 0.941

Spline at 11:15 years experience 87 19 0 - 1

Spline at 16:20 years experience 12 0 0.359 - 0.978

Spline at 21:25 years experience 4 0 0.299 - 0.828

Spline at 26:30 years experience 4 0 0.197 - 0.849

N o t e :
For each type of worker, the model with the best fit in terms of R2 was chosen. There 
were two simple parametric models evaluated: the quadratic model included a constant 
and a polinomial of second order for experience. A  single spline was allowed in a 
linear model for experience. There were 144 types of workers (4 years x 6 levels of 
education x 2 types of workers x 3 regions)-and 7 observations in each regression. 
Regressions were fitted without a constant and shifting the experience codes one level 
to the left, so that the differential between the group with least experience and 
itself should be zero.

A summary of specification searches for each worker's experience 

profile is presented in Table 2.4. There are 144 different types 
of workers depending on the year, the area, the education level, 
and the occupation type. Again, I consider the quadratic 
specification and linear splines. Models were chosen using the 
LS principle.

Table 2.4 can be read in two different ways. It can be seen as 
a convenient way of summarizing the general characteristics of 

the surfaces induced by the tree. From this point of view, we 

learn from Table 2.4 that the quadratic form is not necessarily 
the best description of most experience profiles when we carry 
out the analysis at a more disaggregated level. Mostly, linear 

specifications are better descriptions of the overall shape of
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experience profiles for workers. The last column puts a question 
mark on the validity of these parametric approximations. Some 
of them are not even better than the constant differentials 

model22, as the second column shows.

Inference on the models is invalidated if the same data is used 
both for model searches and testing. So, testing for a break in 
the wages of the workers is not valid here. Traditional 
inference is valid only when either the model function is known 
or when a new data set is available for inference.

The practical consequence of not following this rule is that a 
test for the absence of a negative break in the experience 

profiles for each type of worker under the best model will more 

frequently be not rejected than as predicted by theory. Here, 
only one type of worker was accepted to suffer a significant 
drop at the 10% significance level. Namely, 1980 most 
experienced workers who had completed College, were white- 

collar, and worked in the west. It could be argued that a case 

had arisen in the disaggregated analysis of a break, 

contradicting the general rejection of such a situation in Table 

2.3. However, should not we expect from inferential theory as

22 Regressions were fitted without a constant and shifting 
the experience codes one level to the left, so that the 
differential between the group with least experience and itself 

should be zero.

98



Chapter 2: Tree estimation of experience-wage profiles

likely a rejection between 144 cases even when no drop took 

actually place?

The way I choose to study sudden losses on wages is by defining 

a smooth local value of log-wages for most experienced workers 
based on a nonparametric smoother on the surface projections of 
workers with no less than 20 years of experience23 for each type 
of worker.

I carry out a simple t-student test to see whether the expected 

value, estimated with the average of the workers’ logwages, for 
each type of worker was significantly below the smooth value. 
The null hypothesis is that the expected value equals the smooth 
value. The alternative is that it is below the smooth value. 
Table 2.5 presents the categories of those workers for which the 
null was rejected at the 5 percent level of significance.

Perhaps the most surprising result is the fact that most cases 

concentrate24 on just two years, 1980 and 1990. This is an

23 The Nadaraya-Watson kernel estimator was chosen to 

smooth the proyections. The Gaussian kernel was taken. The 
kernel estimator is then a simple weighted average of the three 

nearest values with weigths approximately equal to 0.80, 0.18 
and 0.02. See, for example, Fan and Gijbels (1996).

24 If we assume that each affected group represents a case 
of one in the Poisson distribution, then naive first moment
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Table 2.5 Tests for sudden losses of human capital
Workers for which the null hipothesis H„: wage = smooth value was rejected against the 

alternative wage < smooth value at the 5 percent confidence region.

Type of Worker

Year Reg Type1 Educ2 Smooth Value Average3 St. Dv.4 No.5

1980 East W-C H-S 2.0567631 1.9993380 0.32727646 380

1980 West W-C H-S 2.2069504 2.1534498 0.38769741 194

1980 East B-C H-S 2.0779702 1.9554500 0.37040496 101

1980 West B-C H-S 2.1500409 2.0501431 0.39944996 48

1980 West W-C C 2.2267310 1.9033250 0.39612297 7

1985 Cent B-C S-C 2.3042300 2.0418850 0.48328715 21

1990 East W-C 6-12 2.3832221 2.3560687 0.41897359 815

1990 West W-C S-C 2.5997430 2. 4490954 0.45836199 54

1990 East B-C C 3.0015800 2.7901184 0.46135565 19

1990 Cent B-C P 2.9400951 2.6934876 0.78710996 77

1990 West B-C P 3.0356000 2.8906128 0.55138070 51

1995 Cent W-C C 2.6722500 2.4806190 0.37476633 32

Note: The smooth-•value is obtained with the Nadaraya -Watson kernel estii

Gaussian kernel was taken on the three nearest experience levels tree projections. 

^■W-C: white collar B-C: blue collar

26-12: between 6 and 12 years of education; H-S: High school completed; S-C: Some 

colleged done; C: College completed; P: Postgraduate

3 Average logwage for all workers in the sample.

4 Standard deviation of logwage for all workers in the sample.

5 Number of workers in the sample.

indication that these falls are erratic in time. Also note that 
no type of worker suffers these losses during several years. For

estimates of \ Q are 0.035 for 1980 and 1990 amd 0.007 for 1985 

and 1990. The estimates are much lower if we use individual 

data.
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the 1980 sample, we have predominantly High School, white collar 

workers in the list. In 1990, most of the workers belong to a 

single group, east white collar workers with 6 to 12 years of 
education. However, several groups of College and Postgraduate 
Studies also appear. Causal inspection on the list suggests that 
Higher Education and Blue-collar occupation was a dangerous 

combination.

It is tempting to give explanations for these results. However, 

"ex-post" explanations are unsatisfactory in the sense that they 
may be reasonable, but just like a number of many other 
reasonable explanations. To properly explain these results, we 
would have to go far beyond the scope of this analysis25.

How big is the combined effect of the fall in wages for all 
these workers on average wages of the entire sample? Can it 
explain declining wages at the end of the working life?

To answer this question, I computed the average fall in the 
sample for each year at the last stage of the working life first

25 But simple explanations could be treated as initial 
hypothesis. Results in Table 3.5 may be the result of 

geographical, technological and institutional factors such as 

regional shocks, the introduction of computers in the work place 

affecting educated workers with administrative tasks, or short 

term effects of trade liberalization.
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Table 2.6 Effects on .average wages at each level of experience 
of human capital
Data: Individual observations.

No. workers Sample Average No losses1 Substituted2

1980
31:35 years 3234 2.03 • •
36:40 years 2934 1.99 1.98 2.01

1985
31:35 years 2384 2.26 • •
36: 40 years 2157 2.23 2.24 2.24

1990
31:35 years 5218 2.59 • •
36: 40 years 3925 2.53 2.57 2.54

1995
31:35 years 4915 2.72 • •
36: 40 years 3286 2.68 2. 68 2.68

Note:
1 Average logwages when workers from types listed in table 2.5 are not included.
2 Average logwages with smooth values for workers of types listed in table 2.5.

for all workers and then for the subsample of workers who do not
appear on the list of Table 2.5. I also computed average wages
if workers from the list in Table 2.5 had the smooth wages 
instead of the actual wages so that the comparison between 
averages is done on the same population. The results are
presented in Table 2.6.

For all years but 1995, average wages would be 1% higher if no 
breaks had occurred. If we consider the effect on average wages 
of these workers, the value of 1990 shows the importance of the 
effect of the loss in workers with low wages. Average wages 

without these workers would be 4% higher and the drop in wages 

for the last experience group would have been of only 2% instead 
of the reported 6%. However, this result is overestimating the
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effect because many low-wage workers are excluded in the 
hypothetical situation. A more realistic measure of that would 

be average wages with smooth values for the workers with a loss. 

Then, the wage differential would still be 5%.

For 1980, the sudden losses help reducing the negative 

experience differential by about 50%. For 1985, by around 33%. 
The value for 1990 is of only 16.6%. Finally, the reduction in 
the negative differential is null for the last year of the 
analysis.

Thus, it seems that sudden losses may have been rather important 

for some workers in 1980 and 1990. However, their overall impact 

on the experience-wage profiles is rather limited for 1990 and 
1995. On the other hand, these local falls were as important in 
1980 as smooth falls in all wages.

2.5 Conclusions

In this chapter I have estimated a nonparametric experience-wage 
profile in a multivariate environment to search for local 

workers who suffered a sudden loss in wages in their last stage 

of their working life. I estimated the model with regression 
trees for individual observations of white male workers for 
1980,1985,1990, and 1995.

The nonparametric approach to the estimation of the experience
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profile fitted the sample better than a simple quadratic 
specification. When the projections of the tree were carefully 

studied, linear splines appeared as reasonable alternatives to 

the quadratic function for many workers.

With respect to sudden losses in wages, there were not many 
groups affected in two years, 1985 and 1995. For 1980 and 1990 
I found drops in log wages for groups of blue-collar, educated 
workers.

With respect to the extent these losses explain the decline in 

average wages, I had mixed results. For 1980, 1985, and 1990, 
average wages would be 1% higher if no breaks had occurred. For 

1980, the sudden losses help reducing the negative experience 
differential by about 50%. For 1985, by around 33%. The value 
for 1990 is of only 16.6%. Finally, the reduction in the 
negative differential is null for the last year of the analysis.
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Appendix A
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Figure 2.1 Average wages of white, male, nonfarm, full-time 

employed workers.
Source: CPS.
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years of experience

Figure 2.2 Experience-wage profiles. Unweighted averages of 

nonparametric projections. 1980.
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Postgraduate 
College 

Some College 

High School A  
6:12 years /  

than 6 years s'

years of experience

Figure 2.3 Experience-wage profiles. Unweighted averages of 

nonparametric projections. 1985.
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Postgraduate 
College > 

Some College /  
High School /  

0:12 years /
Less than 6 years /

years of education

Figure 2.4 Experience-wage profiles. Unweighted averages of 

nonparametric projections. 1990.
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Postgraduate 
College 

Some College 
High School 

6:12 years 
Less than 6 years /

years of experience

Fig u r e  2.5 Experience-wage profiles. U n w e i g h t e d  averages of 

n onp a r a m e t r i c  projections. 1995.
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Table 2.7 No. of observ a t i o n s in each cell .1980.
Ed u c a t i o n

Exp (l) (2) (3) (4) (5) (6)
5 2 1660 4812 2020 648 160
10 28 764 2358 1042 310 102
15 38 664 1742 578 112 72
20 38 700 1458 394 106 28
25 52 740 1190 264 48 24
30 46 792 1080 220 58 26
35 58 948 926 192 54 20
40 72 946 738 118 22 8

(1) Less than five y ears o f education; (2) From six to t w e l v e  years; (3) High School;

(4) Some college; (5) College; (6) Postgraduate.

Table 2.8 No. of o b s ervations in each cell .1985.
E d u c a t i o n

E xp (l) (2) (3) (4) (5) (6)
5 0 950 3590 1724 516 182
10 12 732 2518 878 328 138
15 14 580 1854 832 258 76
20 28 480 1412 488 110 44

25 32 484 1162 342 70 52
30 28 494 866 220 50 26
35 20 522 788 166 42 14
40 44 628 696 120 24 12

(1) Less than five years o f education; (2) Fro m  six to t w e l v e  years; (3) High School;

(4) Some college; (5) College; (6) Postgraduate.
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Table 2.9 No. of observations in each cell.1990.
E d u c a t i o n

Exp (1) (2) (3) (4) (5) (6)

5 0 3734 678 2806 228 476

10 16 3946 556 2286 194 628

15 66 4080 628 2376 220 792

20 58 3202 54 8 2378 200 7 94

25 86 2564 420 1500 162 594

30 54 2402 246 1050 88 454

35 62 1960 198 824 72 362

40 56 1650 124 512 40 176

(1) Less than five years of education; (2) From six to twelve years; (3) High S c h o o l ; (4)

Some college; (5) College; (6) Postgraduate;

Table 2.10 No. of observations in each cell.1995.
E d u c a t i o n

Exp (l) (2) (3) (4) (5) (6)

5 0 456 1272 1336 1662 246

10 2 426 1720 986 1802 494

15 10 470 2014 1140 1870 600

20 14 498 2262 1094 1788 762

25 26 406 1942 1106 1680 834

30 24 346 1514 964 1082 588

35 50 340 1194 67 0 682 292

40 22 310 956 388 370 176

(1) Le s s  than five years of education; {2) F r o m  six to t w e l v e  years; (3) Hig h  

S c h o o l ; (4)Some c o l l e g e ; (5) C o l l e g e ; (6) Postgraduate;
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Appendix B
PARAMETRIC ESTIMATION: 1980:
Valid cases: 42889
Missing cases: 0
Total SS: 7644.148
R-squared: 0.184
Residual SS: 6234.926
F (5/42883) : 1938.489

Dependent vari able: 
Deletion method: 
Degrees of freedom: 
Rbar-squared:
Std error of est: 
Probability of F:

LOGWAGE
None
42883
0.184
0.381
0.000

Standard Prob Standardized Cor with
Variable Estimate Error t-value > 111 Estimate Dep Var
CONSTANT 1.070337 0.010627 100.722457 0.000 -- --
EXP 0.218934 0.003500 62.545170 0.000 1.204839 0.271903
EXPSQ -0.019240 0.000417 -46.122679 0.000 -0.887876 0.217968
EDUCA 0.110929 0.002259 49.099929 0.000 0.234894 0.147801
OCUPA -0.046345 0.005003 -9.263719 0.000 -0.042722 0.020096
REGION 0.071170 0.002425 29.352184 0.000 0.128683 0.127628
PARAMETRIC ESTIMATION: 1985:
Valid cases : 37118 Dependent variable: LOGWAGE
Missing cases: 0 Deletion method: None
Total SS: 7699.400 Degrees of freedom: 37112
R-squared: 0.217 Rbar-squared: 0.217
Residual SS 6026.651 Std error of est: 0.403
F(5,37112): 2060.151 Probability of F: 0.000

Standard Prob Standardized Cor with
Variable Estimate Error t-value > 111 Estimate Dep Var
CONSTANT 1.131831 0.012019 94.173997 0.000 -- --
EXP 0.257480 0.004022 64.018482 0.000 1.240128 0.312701
EXPSQ -0.022294 0.000481 -46.329343 0.000 -0.898808 0.249725
EDUCA 0.127588 0.002531 50.417168 0.000 0.251709 0.185025
OCUPA -0.017138 0.005432 -3.155097 0.002 -0.015402 0.046476
REGION 0.052103 0.002778 18.757760 0.000 0.086334 0.093425
PARAMETRIC ESTIMATION: 1990:
Valid cases : 70100 Dependent variable: LOGWAGE
Missing cases: 0 Deletion :method: None
Total SS: 19603.098 Degrees of freedom: 70094
R-squared: 0.292 Rbar-squared: 0.292
Residual SS : 13873.564 Std error of est: 0.445
F(5,70094): 5789.514 Probability of F: 0.000

Standard Prob Standardized Cor with
Variable Estimate Error t-value > 111 Estimate Dep Var
CONSTANT 1.310001 0.008837 148.240205 0.000 -- --
EXP 0.235094 0.003359 69.999573 0.000 0.926566 0.261332
EXPSQ -0.019718 0.000391 -50.444566 0.000 -0.668458 0.208301
EDUCA 0.133183 0.001512 88.060455 0.000 0.333783 0.412387
OCUPA 0.159974 0.004001 39.979573 0.000 0.151054 0.338184
REGION -0.014856 0.002190 -6.783754 0.000 -0.021573 -0.029885
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PARAMETRIC ESTIMATION: 1995:
Valid cases: 58564
Missing cases: 0
Total SS: 18194.644
R-squared: 0.294
Residual SS: 12843.937
F (5,58558) : 4878.982

Dependent variable: 
Deletion method: 
Degrees of freedom: 
Rbar-squared:
Std error of est: 
Probability of F:

LOGWAGE
None
58558
0.294
0.468
0.000

Variable Estimate
Standard

Error t-value
Prob 
> 111

Standardized
Estimate

Cor with 
Dep Var

CONSTANT 1.159559 0.011309 102.538437 0 . 0 0 0 -- --
EXP 0.250461 0.004009 62.474000 0 . 0 0 0 0.915443 0.274595
EXPSQ -0.020126 0.000459 -43.811163 0 . 0 0 0 -0.642602 0.223619
EDUCA 0.169929 0.001961 86.657689 0 . 0 0 0 0.359592 0.415750
OCUPA 0.124692 0.004612 27.039037 0 . 0 0 0 0.111853 0.318421
REGION -0.021175 0.002550 -8.303805 0 . 0 0 0 -0.028850 -0.044604
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Chapter 3

Decomposition of average wage differentials for 
nonparametric wage structures: An application to 
Mexican workers in the U.S.

3.1 Introduction

Wage gaps between two groups exist because of differences in the 

characteristics of workers of each group and differences in the 
value the market assigns to the characteristics in each group. 

The wage gap reflects skills’ differences, both observed and 
unobserved, and differences in the premiums that the two groups 
have. The basic method to decompose wage gaps can be found in 

Oaxaca (1973).

If the two groups are equally productive, the extent of the
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second source of the wage gap is frequently interpreted1 as wage 
discrimination. To measure the 'non-discriminatory' wage 
structure, one must make some assumptions on how the market 

would behave in such a situation. There have been some attempts 
to solve this difficulty, notably Cotton (1988), Neumark (1988) 
and Oaxaca and Ransom (1994).

This paper extends these decomposition techniques to 
nonparametric tree surfaces. Although it is impossible to talk 
of simple gender, race, or ethnicity differentials in tree 

structures, we can still decompose average wage gaps in observed 

and unobserved components. We can also obtain measures of 

discrimination and/or sample effects, etc., by simply applying 
the existing procedures to the nonparametric case.

In short, the model gives flexibility to the wage structure at 
no cost in the scope of the analysis.

In the next section I present the standard decompositions

1 Unobservable factors such as motivation and cultural 

background may be related to some observable factors and affect 
the individual's productivity. Kim and Polachek (1994), Neumark 
and Korenman (1994) and Polachek and Kim (1994) use panel data 
to solve endogeneity and heterogeneity problems. Heckman (1979) 

proposes an adjustment in OLS techniques to account for sample 

selection bias.
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carried out in the literature. Then, I carry out the same 

decompositions for nonparametric structures and interpret them. 

In the empirical section of this chapter, I carry out two 
empirical applications of these decompositions to U.S. micro 
data on wages of Mexican workers. The chapter ends with some 
conclusions.

3.2 Decomposition of average wage differentials

3.2.1 The parametric approach

The problem is to measure the shares in the average wage gap 
between any two groups, say group 1 and group 2 due to different 
workers' characteristics and different wage premiums. The 
commonest approach consists of fitting a wage function to each 
group and then computing the decomposition.

Let us first assume that we know the values of the wage 

premiums, bx and b2, so that the wage for any worker i belonging 

to group 1 is

w. = b 1 + e. (3.1)

and the wage for any worker i from group 2 is

w± = x[ b2 + ei. (3.2)

Average wages within each group are simply
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where the bar over a variable stands for the average operator. 

If we denote b as the wage premiums that would exist if workers 
from groups 1 and 2 were indistinguishable, then it is 
straightforward to decompose the average wage gap between groups 
1 and 2 as the sum of three conceptually different components:

wx- w2 = x1/(b1- b) + x ^ b -  b2) + (x^ x2) + ( e^ e2 ). (3.4)

The first two components in the right hand-side of the equation 
measure the importance of different wage premiums for the two 
groups. The first one could be understood to be a prize to group 
number 1 if it is positive. Also, the second term could be seen 
as the effect of discrimination against group number 2. If we 
expect that workers from the two groups have different 
productivity levels, then these first two terms show the extent 
to which the wage premiums are affected by the productivity 

differentials for the two groups.

The third component in the right-hand side of (3.4) measures the 
effect on the wage gap of the differences in the characteristics 
for the two groups.

Finally, the last component of equation (3.4) reflects the 

importance of unobservable factors in the wage gap.
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If b^b, that is, if we consider the wage structure for group 1 

as the one that would prevail when workers from the two groups 

were, holding everything else constant, indistinguishable, then 
the decomposition simplifies to

Wi- w2 = x2'(bi~ b2) + x2)' bx + ( ex- e2 ) (3.5)

This is the well-known Oaxaca decomposition, and consists of 

only three components: the structural term, the sample term and 

the rest. A similar expression can be obtained by assuming that 

b2=b.
Of course, there is no reason why sample and structural 
components should be the same in the two decompositions. Thus, 
these decompositions depend upon the assumption on b.

Following Oaxaca and Ransom (1994), we can assume that

b  = A ' b x + ( I - A )  - b 2 ( 3 . 6 )

where A is a weighting square matrix, not necessarily diagonal. 
Obviously, to make these decompositions operational we need to 

have estimates for bj_, b2, and A.

A simpler decomposition can be obtained after making further 

assumptions on the way bx and b2 relate. Suppose, without loss 
of generality, that the first element of this vector corresponds 

to the constant term in the wage equation. Suppose that bx is 

the same as b2 except for the value of the parameter of the 
constant term. Thus, bli=b2i for all i*l, bn #b21. and we can set
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bx=( ax+d , a2 , a3 , ..., an )’ and b2=a= ( ax , a2 , a3,...,an)'. 
Then, the wage for any worker i belonging to group 1 is

w± = x7 a + d + e± (3.7)

while the wage for any worker i from group 2 is

w. = x7 a + e. (3.8)

and we can again decompose the average wage differential in 

several components:

wr  w2 = d + x^a- b) + x27(b- a) + (â - x2)7 b + ( e2- e2 ). (3.9)

Now, the first three components measure structural components 
in the average wage gap. Note that although this expression now 
simplifies irrespectively of b into

w1- w2 = d + (3E1- x 2)/a + e1- e2 (3.10)

the second term in the last equation will measure the sample

effect only under the assumption that b=a. Although this is

again arbitrary and other specifications for b are potentially 
valid, the advantage of (3.10) is that it can be implemented in 
a single regression with a dummy variable. All previous 

expressions are not implementable in the sense that bx, b2, and 

b are not known. The empirical counterpart of (3.4) is:

wx- w2 = x / ^ -  b) + x27(b- b2) + (Xa- X2)fc + ¥2 (3.11)

where the hat superscript denotes estimated values. So, if we 

assume b=b! and estimate the wage equations within each group
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with OLS we obtain the following decomposition:

wx- w2 = x2/(b1~ b2) + (x:- x2) fb1 . (3.12)

As suggested above, other possibilities are available. Reimers 

(1983) chooses

b  = T b l + I b 2 <3 - 1 3 )

whilst Cotton (1988) takes A=s1*I, where sx is the fraction of
workers from group 1. Neumark (1988) proposes a least square 
criterion to estimate the nondiscriminatory wage structure from 
the pool sample of workers2.

Again, if estimates are obtained with OLS, then the fourth term 

in the decomposition in (3.4) disappears, and the resulting 

decomposition has the form:

wx- w2 = x1/(b1- b) + x2'(b- b2) + (x:- x2)£ . (3.14)

There are two criticisms to this approach. First, it is 
unwarranted that the unexplained term in the wage gap must be 
zero. This is a result of the estimation technique, which fully 
exploits the null covariance between the error term and the

2 Oaxaca and Ransom (1994) show this is equivalent to a 
weighting matrix estimated by premultiplying the inverse of the 

moment matrix of the vector of characteristics for the pooled 
sample to the moment matrix of one of the groups.
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constant included in the set of regressors in each equation. 
Thus, although it is reasonable to argue that the average effect 
of this term will be small, the unobservable effects in both 

groups do not have to cancel each other out. Second, OLS will 

lead to biased estimates when the error term of the equation is 
correlated with a regressor. Thus, panel data or IV techniques 

must be used to implement the decompositions.

3.2.2 Nonparametric decompositions

The basic feature in a nonparametric model such as

is that the wage differential between two types of workers will 
depend on the other set of characteristics and this dependence 
cannot be captured by independent functions for each group. 
Thus, the nonparametric case is a natural generalization of the 
model in which there are different wage premiums for each group.

Suppose that we want to study the average wage differential for 

a dichotomous variable xjf Xj=l,0. Take Xj (k) = (x_j, x3=k) where x_j 

is a vector of characteristics containing all elements of x 

except Xj. The expected wage differential for variable Xj, 

d(x_j(k)), is of the form

f (x.) = X  cfc l( x± 6 t }, (3.15)teT *

d(x.(k)) = f(x.(k)) - f * (x_ j ) • (3.16)
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Note that f* (•) is the expected wage if the market could not 

distinguish between workers for which x.j=l and workers for which

How can we decompose the observed average wage differences 

between workers with Xj=l and Xj=0? Since

where N* is the number of observations for which Xj=k, and

we can therefore decompose the observed average differences in 
three terms,

The interpretation of these terms is equivalent to the 

interpretation in the linear parametric specification. As in 

(3.4), the first term can be decomposed into "discrimination" 

and "favoritism".

In order to do so, what is crucial again is the assumption we

X i=0 .

(3.17)

f(x.|xj=k) =f(x.(k)) = f*(x_3) +d(xj(k)) V k  = 0,l (3.18)

(3.19)
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take on the nondiscriminatory wage structure. For example, if 

f*(x -j)=f (x-j (1) ) , then

The interpretation of each component is now apparent. The third 
term in the right-hand side of the equation is the average 

effect of unobserved skills on the wage gap. The second term is 
the wage gap that would exist if there were no premiums to the 
variable Xj and the individuals' distribution of unobserved 
skills were similar across types. It is therefore the effect of 
the workers' specialization. The first term is the effect of 
differing premiums for the two different types.

In the last expression, I have assumed that the structure of the 
' non-discriminatory' (i.e. the x-j-blind) market would be that of 
the individuals for which Xj=l. This is, as noted before, 

arbitrary. However, a similar approach to that explained in the 

parametric case is easily implementable here. In particular, we 
can assume that

and we could implement decompositions in the same way as in 

Cotton (1988), Reymers (1983), or Neumark (1988).

f * ( j) = a(x.) -f (x. (1) ) + (l-a(xj) ) -f (x. (0) ) , V0<a(-)<1 (3 .21)
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We can therefore compute nonparametric decompositions with the 

same interpretation as in the parametric case. A detailed 

analysis of the estimated structures may unveil regions where 

any discriminatory interpretation would differ. Thus, this 
technique is an interesting alternative to the parametric 
methods proposed in the literature. In the following section, 

I will carry out two empirical applications of these 
decompositions to U.S. micro data on wages.

3.3 Empirical findings

Persons of Hispanic origin make up one of the fastest growing 
worker groups in the United States. Mexican Americans are, by 
far, the largest single Hispanic group. Some studies have looked 
at the characteristics of workers of Hispanic origin3. Here, I 
carry out two wage gap decompositions first between male workers 
of Mexican origin born in the U.S. or Mexico and then between 
Mexican Americans and white non-Hispanic male workers.

3.3.1 Parametric and nonparametric average wage gap 
decompositions for workers of Mexican origin

3 See, for example, Cattan (1993) for a description of 
labor statistics for Hispanics. Reimers (1983), Verdugo (1992), 

and Cotton (1993) all study the earnings differentials between 

Black, Hispanic, and non-Hispanic workers with a parametric 

approach.
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The data that I will use in this section corresponds to the 

extracts of the 1994, 1995, and 1996 Annual Earnings File of the 

Current Population Survey (CPS) prepared by the NBER.

Two variables are recorded in the extracts of the CPS relating 

to Mexican origin. The first one is country of birth and the 
second one is ethnicity. This last variable is the answer to the 

question: "What is your origin or descent?". This is intended 

to be the national or cultural group a person is descended from 

and is determined by the nationality or lineage of a person’s 

ancestors. There is no rule on how many generations to consider. 
A respondent may report origin based on the origin of a parent, 
or a far-removed ancestor. Origin is not necessarily related to 
race or country of origin. It shows the respondent's self­
perception in terms of ethnicity. Two ethnic groups are 
considered in this study: Mexican Americans and Mexicanos.

Country of birth may help us to control for integration in the 
labor market. There is empirical evidence4 showing that English 
proficiency counts. Furthermore, in the sample, the vast 
majority of workers born in Mexico do not hold full U.S. 
citizenship. There is also indirect empirical evidence showing

4 See, for example, Davila et alia (1993) and Bloom and 

Grenier(1993).
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that this may also be affecting their wages5.

The sample I study consists of full-time employed male workers 

of Mexican origin born in the U.S. or Mexico. The data for 1994, 
1995, and 1996 are pooled in a single sample to enlarge the 

number of observations available. In order to avoid duplications 
in the observations, I choose the first outgoing rotation 
interview for each household. In the following, I will refer to 
this data set as the "Mex data"6.

There is, as said, no perfect relation between ethnicity and 
country of birth7. Thus, we can find Mexican Americans born in 
Mexico and in the U.S., and Mexicanos again born in Mexico and 
in the U.S.. More Mexican Americans hold U.S. citizenship than

5 Donato and Massey (1993) show that the Immigration Reform 
and Control Act (IRCA) of 1986 increased the wage penalties 
accruing to undocumented status. Pagan and Davila (1996) find 

however that IRCA reduced the true wages of male natives most 

likely to be mistaken as unauthorized.

6 See also Appendix A for a description of the data set.
7 The Spearman rank correlation coefficient between the 

country of birth code and the ethnicity code was 0.73, 0.70, and 

0.70 for 1994, 1995, and 1996 respectively.
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are born in the U.S.8.

Wages are the logarithms of earnings per week divided upon hours 

per week at the job. The variable specification includes 

education, potential experience, country of birth, and 

ethnicity. Education refers to whether the worker has completed 

high school and at least started further education, xl=2, or 
not, xl-1. Potential experience is divided into 5 categories: 
from 1 to 10 years of potential experience, from 11 to 20, from 
21 to 30, from 31 to 40 and from 40 years of potential 
experience onwards. Potential experience is computed from age 
minus education minus six. Values from 1994 are inflated with 
the index of wage inflation from the entire sample of full time
employed workers. Values from 1996 are deflated with the same

index for 1995:1996. The data set contains 5265 different cases. 
The sample is randomly divided into two samples of sizes of 2/3 
and 1/3 of the total, respectively.

The result of the splitting process can be seen in Appendix A.
The splitting stops if there are less than 50 observations in 

a node. Figure 3.1 in Appendix B shows the residual sum of 

squares both for the estimation and the test sample.

The minimum Rts is obtained with tree T21, as it is shown in

8 For example, in 1995, 88% of Mexican Americans had U.S. 
citizenship whilst only 86% were born in the U.S..
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Table 3.1 Regression results: Goodness-of-fit measures1 for 

the Mex data set.
Data: CPS,1994,1995,1996. 1st outgoing rotation group. Born in Mexico or in the USA; 

full time; male; Mexican American or Mexicano. Estimation Sample:3517 cases. Test 

Sample: 17 4 8 cases.

Human capital variable specification + Country of birth + Ethnic

1st sample 2nd sample Both samples

Non-parametric regression: 

Tree T21

Parametric regressions: 

with Dummy 

born in U.S. 

born in Mexico

0.2286 0.2099

0.2123

0.1826

0.0833

0.2154

0.2003

0.0805

Note: Tree T21 refers to the surface estimated with regression trees using the 0-SE 

rule and 50 as the stop-splitting rule in the algorithms. Parametric regressions refer 

to "Mincer" quadratic equations extended with ethnic.

:For the tree: RE“ 1-R(T)/R(root) in the second sample, whilst R2 is for the first 

sample. For the quadratic specification, R2 is computed for the entire sample.

Appendix A. This tree has 13 terminal nodes and the R2 measure 
based on the estimation sample is 0.2286. For the test sample, 
it falls to 0.2099. Table 3.1 gives goodness-of-fit indices for 
the nonparametric regression and for two parametric 

specifications. The first parametric regression estimates the 

effect of place of birth and ethnic association on wages by 

including these variables in the wage equation. The second 

specification consists of different equations for workers born 
in the U.S. and workers born in Mexico. Similar results were 

obtained using different wage equations for workers declaring
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to be of Mexican American origin and workers considering 
themselves as Mexicanos. There are very little differences in 

our goodness-of-fit measures for all these different models, so 

it seems hard to choose one model on this basis.

How complex are the models? The parametric models incorporate 
square terms for potential experience and linear terms for all 
the variables. This implies 40 different expected wages. 

Therefore, tree T21 is a simpler structure, with only 13 
different expected wages.

Figure 3.2 in Appendix B shows tree T21. High average wages will 

tend to occur on the right branches of the tree due to the 
variable specification. The influence of experience is clearly 
nonlinear. Some workers with very low or very high level of 
experience do have average wages smaller than workers with 
potential experience of between 10 and 40 years. It is 
interesting to note that the negative effect of potential 
experience for old workers only appears in workers born in the 
U.S. -splits at nodes number 9 and 14. If anything, we observe 
an increasing earnings experience profile for Mexico-born 

workers -node 23.

The role of place of birth is clear. Being born in the U.S. 
usually carries a premium in the wage structure. A simple way 
of getting this information is by plotting all wage 

differentials between U.S. and Mexico-born workers. Figure 3.3
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in Appendix B shows the predicted wage differentials for the 

variable country-of-birth in descending order. The graph shows 

the wage differential between a worker born in the U.S. and a 

worker born in Mexico in all points x_j. The ordering is however 

arbitrary. I chose to present wage differentials in descending 
order to make the range of values more visible to the reader. 
It can be argued that place-of-birth is a crude indicator of 
other variables describing the degree of integration of the 
worker in the country. Therefore we can expect9 a positive 
premium for most workers born in the U.S., as it is shown in the 

graph. Although there are some negative values, most of the 
differentials are of the expected sign, ranging from around 0.10 
to 0.50. The majority are around 0.20. We could expect a value 
near -0.20 in the estimation of the parameter of the variable 
country-of-birth in the parametric specification. In Appendix 
C I present the results of the parametric regressions with dummy 
variables for country-of-birth and ethnicity. The estimated 
value for the country-of-birth effect is -0.23, a reasonable 
value considering what tree T21 tells us about the

9 As mentioned before, language proficiency is a clear 
productive factor. However, other arguments have been examined 
in the literature. Walker (1996), for example, argues that 
"captivity mechanisms may be present in allocating Mexican 
immigrants and local women to the lowest paid and most 

undesirable mobs within production". Addressing this debate is 

beyond the scope of this empirical analysis.
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differentials.

We can also look at the differentials for workers who declared 
to be of Mexican-American origin and workers who declared to be 
of Mexicano origin. As mentioned before, this variable shows the 

respondent’s self perception. If this perception corresponds 

also to the way the market perceives the worker, then a negative 

effect of this variable on wages could be understood as wage 

discrimination.

In Figure 3.4 in Appendix B I show ethnic differentials obtained 
from T21. Clearly ethnicity is not a relevant factor for most 
workers. Perhaps more interestingly, when it is relevant in 
explaining differences, it does so with different signs. Among 

workers born in Mexico, with low education and with more than 
10 years of experience, those who considered themselves as 

Mexican-American had a higher wage than those who considered 
themselves as Mexicano. However, among workers born in the U.S., 
with higher education, and with potential experience of between 
10 and 40 years, those who considered themselves as Mexicano had 
higher wages than those who considered themselves as Mexican- 
American.

The interesting methodological point that ethnicity raises is 
that the tree structure deals with the strong non-homogeneity 
already described. The dummy variable approach takes the
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differential to be constant. The estimated value10 of the dummy 
specification is "near" zero, but statistically significant and 
of negative sign. Looking at the results of the parametric 
regressions, we could argue that there is overall 

"discrimination". Using different equations for Mexican- 
Americans and for Mexicanos does not help: for some Mexican-

Americans and for some Mexicanos the distinction matters, for 

most it does not.

The difference between regression trees and the linear 
specification can be understood as the result of two factors. 
It is first a consequence of the algorithm used to estimate the 
tree structure in regression trees. The recursive algorithm used 

in the estimation of the nonparametric surface works in practice 
not only as a nonparametric estimation technique, but also as 

a variable selection procedure. Secondly, it also reflects that 
linear regressions use linear covariation to render the 
estimates.

Thus, although all models score similarly in terms of the fit 
in and out of sample, the structures are different. Next, I will 

show how this affects the results of a standard decomposition 
of average wage differentials.

I first computed the decompositions of average wage gaps

10 See Appendix C.
132



Chapter 3: Average wage differential decompositions

Table 3.2 Average Wage Decompositions. Mex data. Reference

variable: Country of Birth., Reference worker: born in Mexico.
Data Total Structure Sample Rest

Tree T21

Estimation Sample 0.35 0.28 0.068 0.00

Test Sample 0.34 0.28 0.061 0.0006

All 0.34 0.28 0.065 0.0007

Sees1
Estimation Sample 0.35 0.23 0.11 0.00

Test Sample 0.34 0.23 0.11 0.0007

All 0.34 0.23 0.11 0.0007

Sea2
Estimation Sample 0.35 0.23 0.12 -0.001

Test Sample 0.34 0.23 0.11 0.0007

All 0.34 0.23 0.11 0.00

Tees3
Estimation Sample 0.35 0.15 0.20 0.00

Test Sample 0.34 0.15 0.19 -0.001

All 0.34 0.15 0.20 0.00005

Tea4
Estimation Sample 0.35 0.17 0.17 -0.0004

Test Sample 0.34 0.19 0.16 -0.0009

All 0.34 0.17 0.17 0. 00

1 Single equation estimated with the estimation sample.

2 Single equation estimated with all observations.

3 Two equations estimated with the estimation sample.

4 Two equations estimated with all observations.

The last three columns in all rows do not sum up to the first column due to rounding

errors.

assuming that the "blind" wage was similar to that of the worker 

born in the U.S.. I obtained six decompositions for each
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parametric model: single linear parametric regression and

separate linear regressions. These decompositions depend upon 

whether all observations or those from the estimation sample are 

used to get the estimates and on whether the decompositions were 

carried out on the estimation sample, the test sample, or all 

observations. For T21 I also carried out three decompositions 
depending again on the sample used. Table 3.2 gives the results 
of the decompositions of the average wage differential between 
workers born in the U.S. and workers born in Mexico. In the 
first column we can see the positive gap in average wages in 
favor of workers born in the U.S.. All models suggest the 
importance of the structure of wages to explain the gap. There 
is a clear difference, however, between T21 on one side and the 
parametric models analyzed on the other side regarding the 
importance of the sample effect. T21 gives very little weight 
to the sample effect, that is, to the different characteristics 
of the workers. From T21 we can deduct that what most matters 
is the fact that the advantaged workers were born in the U.S.. 
This'fact allows us to predict them as more productive holding 

all other observed characteristics constant.

The parametric models suggest that U.S.-born workers have on 

average a higher wage in part because they were born in the U.S. 

and in part because they tend to consider themselves as Mexican- 
American, a trace that comes with a premium in the labor market 

in the parametric models.
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We can do a similar exercise for the wage gap between workers 

who considered themselves as Mexican-American and workers who 

considered themselves as Mexicano.

The results are presented in Table 3.3. The first column of the 
table shows the average wage premium for workers who considered 

they were of Mexican-American origin. There is more overall 
agreement in the models regarding this decomposition. The wage 
gap is mainly described by the sample differences between the 
two groups. Crucially, the fact that most Mexican-American were 
born in the U.S..

From Figure 3.4 in Appendix B we can obtain an explanation of 
why the overall structural effect is smaller in the parametric 
models than in T21. The parametric models impose a structure to 
the data that in practice smooth out large wage differentials 
between some workers with different ethnic affiliation.

T21 does not smooth this differentials, as seen in figure 3.4. 
The overall effect in the nonparametric decomposition will 

depend on the number of observations falling in each category. 

In this example, the effect of the structural differences is 

clearly positive.

Note how adding more flexibility to the parametric single 
equation model by estimating two equations does not solve the 

problems of parametric regression in this particular example.
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Table 3.3 Average Wage Decompositions. Mex data. Reference 

variable: Ethnic. Reference worker: Mexicano.

Sees3

Sea"

Tees'

Tea^

Data Total Structure Sample Rest

Estimation Sample 0.28 0.11 0.16 0.013

Test Sample 0.29 0.11 0.17 0.0074

All 0.28 0.11 0.17 0.0074

Estimation Sample 0.28 0.05 0.23 0.00

Test Sample 0.29 0.05 0.24 -0.005

All 0.28 0.05 0.24 -0.001

Estimation Sample 0.28 0.04 0.24 0.001

Test Sample 0.29 0.04 0.25 -0.003

All 0.28 0.04 0.24 0.00

Estimation Sample 0.28 -0.004 0.29 0.00

Test Sample 0.29 0.002 0.30 -0.03

All 0.28 -0.002 0.29 -0.002

Estimation Sample 0.28 0.005 0.27 0.002

Test Sample 0.29 0. 01 0.28 -0.006

All 0.28 0.007 0.28 0.00

equation estimated with the estimation sample.

equation estimated with all observations.

3 Two equations estimated with the estimation sample.

4 Two equations estimated with all observations.

The last three columns in all rows do not sum up to the first column due to rounding 

errors.

Why do the unobservable factors have a negative effect in the 

wage gap in all parametric models? A plausible explanation is
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that the linear parametric models are too restrictive and T21 

is nearer the true model. We know from Figure 3.4 that wage 
differentials for most workers along ethnic origin are null and 

that the parametric structures nonetheless force a positive wage 
differential in favor of Mexican-American workers. The 
adjustment in the wage gap equation comes as an artificial 
negative effect of the unobservable effect11.

3.3.2 Average non-Hispanic-Mexican wage differentials in the 

border states

I study the wage gap between Mexican Americans and white non- 
Hispanic male full-time employed workers in the border states12 
between Mexico and the U.S.. I concentrate on this region to 
avoid possible regional effects in the wage gap that may arise 
since almost three quarters of Mexican Americans interviewed 
were from the four border states.

The data that I will use in this section corresponds to the 

extracts of the 1995 Annual Earnings File of the Current 
Population Survey (CPS) prepared by the NBER. Here Mexican 
Americans are all respondents who stated they were of Mexican

11 To see this, it is enough to consider that the first 

term in (3.20) is overestimated whilst the third term is 

computed as a residual.

12 California, Arizona, New Mexico, and Texas.
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American, Chicano, or Mexicano ethnic origin and their parents 
and themselves were born in the U.S.. Non-Hispanic white workers 
were all those white Non-Hispanic workers born in the U.S. whose 
parents were also born in the U.S..

Wages are the logarithms of earnings per week divided upon hours 
per week at the job. The variable specification consists of 

education and potential experience. Education refers to whether 

the worker has not completed high school, has just high school, 

or has higher education. Potential experience is divided into 
five categories: from 1 to 10 years of potential experience,
from 11 to 20, from 21 to 30, from 31 to 40 and from 40 years 
of potential experience onwards. Potential experience is 
computed from age minus years of education minus six.

The sample consists of 5,527 cases of which 661, 11%, were

Mexican American. To obtain an honest size tree, I randomly 

split the Non-Hispanic sample into an estimation and a test 
sample. All Mexican Americans are included in both samples13. I 
will call this data set14 the "Texmex data".

13 This is a procedure somewhere between v-fold cross 
validation and spliting the sample into two. The reason to do 
this here is that I want to minimize the possibility of one 

group of Mexican Americans not being sufficiently represented 

in either sample.

14 See also Appendix A.
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The result of the splitting process can be seen in Appendix A. 
The splitting stops if there are less than 10 observations in 
a node. Figure 3.5 in Appendix B shows the residual sum of 
squares for the test sample. The minimum Rts is obtained with 
tree-Tl. Nevertheless, the fundamental structure in the data can 
be analyzed by looking at simpler trees, such as T8 . This tree 
has 23 terminal nodes and the R2 measure based on the estimation 
sample is 0.25. For the test sample, it rises to 0.26. Tree T8 
is shown in Figure 3.6 in Appendix B.

Ethnicity is a split criterion in all regions of the independent 
variables1 space. Casual inspection of the figure shows that 
Mexican origin comes with a penalty, that is, all ethnic left- 
branch projections are higher than right-branch projections. 
Figure 3.7 in Appendix B shows all predicted wage differentials 
for ethnic in descending order. But for a few exceptions15, wage 
differentials are around 0.20.

The 'interesting methodological point that this analysis shows 
is that regression trees may unveil also linear structures. The 
dummy variable approach takes the differential to be constant. 
In this example, this is almost right, so we might expect small

15 Consider, for example, workers with more than 40 years 
of experience who went into higher education. The projected log 

wage for non-Hispanic white workers was 2.82, whilst the 
projection for Mexican origin workers was only 1.54.
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Table 3.4 Average Wage Decompositions. Texmex data. Reference

variable: Ethnicity. Reference worker: Mexican American,

Chicano or Mexicano.
Data Total Structure Sample Rest

Tree T21

Estimation Sample 0.36358 0.23052 0.13306 0.00

Test Sample 0.37291 0.23052 0.13063 0.011764

All 0.36825 0.23052 0.13184 0.0058821

Sea1
All 0.36825 0.23146 0.13679 0.00

1Single equation estimated with all observations.

The last three columns in all rows do not sum up to the first column due to rounding

errors.

differences in the results of the decompositions.

Table 3.4 gives the results of the decompositions of the average 

wage differential between white Non-Hispanic and Mexican 
ethnicity workers. As suspected, the decompositions are almost 
equivalent, reflecting that the parametric decomposition is 

meaningful because almost all wages follow a linear structure 
with respect to ethnicity16.

16 I implemented other variable specifications to see 

whether the result was robust. In particular, an aggregate of 

occupation and also union membership were introduced in the 

analysis. Although the estimated tree was sensitive to these
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3.4 Conclusions

In this chapter I show that average wage gap decompositions 

between any two groups of workers can be carried out without any 

compromise in their interpretation using a nonparametric wage 

structure. Oaxaca type decompositions are simply generalized to 

decompositions when the differentials do not have a simple 

parametric structure.

I proceed by studying wage gap decompositions for two groups of 
Mexican workers. I choose a human capital specification 
augmented with ethnic/origin variables. Of course, there may be 
some relevant variables not considered in the analysis. It is 
thus of interest to obtain realistic estimates of the effect on 
the wage gap of these unobservable factors.

The nonparametric approach differs in this example from 
parametric specifications in that it gives different 
counbry-of-birth and ethnic differentials depending on the 
worker's characteristics. In particular, ethnicity has very 

little effect on expected wages, even affecting in different 
ways U.S. born workers and Mexico-born workers and lower- and 

higher-education workers.

changes, the decompositions of the wage gap between mexican and 

white non-Hispanic were similar.
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In the nonparametric model, the structural effect -the part of 

the wage gap due to the pricing of the worker’s characteristics 

in the labor market- is larger than the sample effect -the 

effect of differing characteristics in the two populations- 

after decomposing the average wage gap between workers born in 

Mexico and workers born in the U.S.. For the parametric models 

the difference between the structural and the sample component 

is very small.

It is reasonable to take birth-of-place as a proxy of 
integration in and accessibility to the U.S. labor market. The 
nonparametric approach suggests that this factor is a predictor 
of overall productivity. The wage gap between Mexican workers 
born in the U.S. and those born in Mexico is primarily due to 
their productivity differentials. Their characteristics’ 
differentials play a more limited role. The parametric 
decompositions fail in recognizing this fact.

In the second empirical analysis, I study the average wage gap 
between Mexican Americans and white non-Hispanic male workers 
in the border states between Mexico and the U.S.. Regression 

Trees unveils a linear relation in the wage structure with 

respect to ethnicity so that most ethnic differentials are 

around 20%. Due to this linear behavior, the nonparametric 

decomposition is very similar to a simple decomposition with a 
dummy variable.
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Appendix A
Mex Data:
CPS,1994,1995,1996.1ST OUTGOING ROTATION GROUP.
BORN IN MEXICO-BORN IN THE USA
MALE, EMPLOYED, WORKS MORE THAN 35 HOURS
ETHNIC: MEXICAN AMERICAN, MEXICANO
5265 OBSERVATIONS: Estimation Sample:3517 cases. Test Sample: 1746 cases.
Variables:
x l : Potential experience 1:1-10 2:11-20 3:21-30 4:31-40 5:+40
x2: Education 1: At most, High School 2: more than High School
x3: Country of Birth 1: USA 2: Mexico
x 4 : Ethnic 1: Mexican American 2: Mexicano

T r e e : (Yes) (No) Average

Nodo 1 : x2<=l.5 2682 833 2.1422908
Nodo 2 : x3< = l .5 867 1815 2.0412585
Nodo 3 : x l < = l .5 344 489 2.467583
Nodo 4 : xl< = l .5 283 584 2.2087824
Nodo 5 : xl< = l .5 433 1382 1.9612348
Nodo 6 : x3< = l .5 226 118 2.2783496
Nodo 7 : x3< = l .5 356 133 2.6007041
Nodo 8 : x4< = l .5 211 72 2.0157391
Nodo 9 : xl< = 4 .5 538 46 2.302329
Nodo 10 : x4<=l.5 35 398 1.8321234
Nodo 11 : x4< = l .5 114 1268 2.0016872
Nodo 12 : x4< = l .5 168 58 2.3425075
Nodo 13 : x 4< = l .5 17 101 2.1554711
Nodo 14 : x l< = 4 .5 348 8 2.6799407
Nodo 15 : x l < = 2 .5 89 44 2.3886124
Nodo 18 : x l < = 2 .5 276 262 2.3184431
Nodo 22 : xl< = 2 .5 39 75 2.1784505
Nodo 23 : xl< = 2 .5 569 699 1.9857952
Nodo 28 : x4<=l. 5 280 68 2.6937847
Nodo 30 : x4< = l .5 11 78 2.3332398
Nodo 32 : x4 < = 1 .5 213 63 2.2804515
Nodo 33 : xl< = 3 .5 170 92 2.3584648
Nodo 35 : xl <=4.5 63 12 2.2429412
Nodo 37 : xl<=3.5 402 297 2.017662
Nodo 38 : xl< = 2 .5 158 122 2.6556589
Nodo 39 : xl< = 3 .5 56 12 2.8507733
Nodo 4 4 : x4 < = 1 .5 134 36 2.3958163
Nodo 4 5 : x4< = l .5 80 12 2.2894457
Nodo 4 6 : x l < = 3 .5 38 25 2.2566656
Nodo 4 9 : xl<=4.5 203 94 2.0288882
Nodo 51 : xl<=3.5 92 30 2.7272823
Nodo 52 : xl<=2.5 33 23 2.8284754

Terminal Nodes' Averages:
16 2.0183977 17 2.007948
19 2.1138643 20 1.941488
21 1.8225059 24 2.3488662
25 2.3240891 26 2.3875722
27 2.1164045 29 2.0777244
31 2.5006162 34 2.05443
36 1.9466478 40 2.3438962
41 2.3317369 42 2.2746859
43 2.2999447 47 2.170888
48 2.009368 50 2.6003548
53 2.9548298 54 2.3935341
55 2.4043114 56 2.2671271
57 2.4382362 58 2.2696462
59 2.2369352 60 2.0351454
61 2.0153752 62 2.7075008
63 2.7879454 64 2.8280592
65 2.8290726

Residual Sum of Squares 737.94732 
Complexity: |T| = 33
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Tree Pruning
Tree Node Critical Value S(T)
T1 0 0 737 . 9
T2 52 1.392e-05 737.9
T3 30 0.001425 737 . 9
T4 44 0.003296 738
T5 8 0.005862 738
T6 46 0.01614 738
T7 49 0.02511 738
T8 12 0.02647 738
T9 32 0.03102 738.1
T10 37 0.06508 738.1
Til 35 0.07417 738.2
T12 51 0.1464 738.3
T13 39 0.1578 738.5
T14 45 0.3055 738.8
T15 10 0.4554 739.3
T16 33 0.6754 739.9
T17 18 0.818 740.8
T18 15 0.8249 741.6
T19 22 0.9118 742.5
T20 13 1.07 743.6
T21 38 1.109 744 .7
T22 23 1.582 746.3
T23 9 1.774 748
T24 28 2.083 750.1
T25 6 2.712 752.8
T26 14 2.968 755.8
T27 11 3.882 759.7
T28 7 8.218 767.9
T29 5 9.479 777.4
T30 4 15.66 793
T31 3 20. 98 814
T32 2 35. 95 850
T33 1 115.5 965.5

T1 is the largest tree.

Test sample Impurity:
Tree S (T) StDev(S(T )/N)
T1 411.5 0.02274
T2 411.5 0.02274
T3 411.5 0.02274
T4 411.5 0.02274
T5 411.5 0.02274
T6 411.4 0.02274
T7 411.4 0.02271
T8 411.3 0.02271
T9 411.2 0.02271
T10 411.3 0.0227
Til 411.2 0.02269
T12 411.2 0.0227
T13 411.5 0.0227
T14 411.7 0.0227
T15 411.8 0.02271
T16 411.3 0.02271
T17 410.8 0.0227
T18 412 0.0227
T19 410. 9 0.02269
T20 409. 9 0.02268
T21 409.9 0.02268
T22 411 0.02243
T23 411.3 0.02243
T24 410 0.02242
T25 411.7 0.02241
T26 411.5 0.02241
T27 410. 9 0.02252
T28 418. 9 0.02257
T29 420. 9 0.02223
T30 428.5 0.02224
T31 439.8 0.0223
T32 454 .2 0.02297
T33 517.8 0.0241

Honest Tree: Prune until node 38 (SE rule: 0 )

T I
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
21
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Texmex Data:
CPS,1995. 1ST OUTGOING ROTATION GROUP.
BORN IN US. PARENTS BORN IN US.
MALE, EMPLOYED, WORKS MORE THAN 35 HOURS. CALIFORNIA, NEW MEXICO, ARIZONA, TEXAS. 
ETHNIC: MEXICAN, WHITE NONHISPANIC.
5527 OBSERVATIONS: Estimation Sample: 3094 cases. Test Sanple: 3094 cases.
Variables
x l : Education: l.Less than High School 2.High School 3.More than High School
x 2 : Experience: 1.1-10 2.11-20 3.21-30 4.31-40 5.+40
x3: Ethnic: 1.White nonhispanic 2.Mexican American, Chicano or Mexicano

Tr e e :
(Yes) (No) Average

Nodo 1 : x l < = 2 .5 1155 1939 2.6049518
Nodo 2 : x l < = l .5 278 877 2.3823716
Nodo 3 : x 2 < = l .5 520 1419 2.7375357
Nodo 4 : x3< = l .5 127 151 2.1187014
Nodo 5 : x 2 < = l .5 200 677 2.4659523
Nodo 6 : x 3 < = l .5 423 97 2.4821661
Nodo 7 : x 3 < = l .5 1249 170 2.8311173
Nodo 8 : x 2 < = l . 5 35 92 2.2931483
Nodo 9 : x 2 < = l .5 31 120 1.9719811
Nodo 10 : x 3 < = l .5 133 67 2.1999375
Nodo 11 : x 3 < = l .5 •501 176 2.5445387
Nodo 14 : x 2 < = 2 .5 562 687 2.8581375
Nodo 15 : x 2 < = 4 .5 167 3 2.6325979
Nodo 17 : x 2 <=3.5 52 40 2.3935835
Nodo 19 : x 2 < = 2 .5 42 78 2.0194799
Nodo 22 : x 2 < = 2 .5 222 279 2.5973261
Nodo 23 : x 2 < = 3 .5 156 20 2.3942744
Nodo 25 : x2<=4.5 659 28 2.8811077
Nodo 26 : x 2 < = 2 .5 92 75 2.6521559
Nodo 28 : x 2 < = 2 .5 32 20 2.3388681
Nodo 29 : x 2 < = 4 .5 21 19 2.4647137
Nodo 31 : x2<=4.5 54 24 2.0611008
Nodo 33 : x 2 < = 4 .5 247 32 2.6313505
Nodo 34 : x 2 o 2 .5 98 58 2.3770661
Nodo 35 : x2< = 4 .5 17 3 2.5284999
Nodo 36 : x2< = 3 .5 471 188 2.8834933
Nodo 39 : x2< = 3 .5 61 14 2.7060273
Nodo 4 4 : x 2 < = 3 .5 31 23 2.1161947
Nodo 4 6 : x 2 < = 3 .5 140 107 2.6358814

Proyecciones de los Nodos Terminales:

12 2.5132 13 2.3468 16 2.0291 18 1.7881
20 2.2665 21 2.0679 24 2.8301 27 1.5439
30 1.9422 32 2.5546 37 2.825 -38 2.6082
40 2.3693 41 2.2902 42 2.6208 43 2.2922
45 1.9371 47 2.5964 48 2.3729 49 2.3841
50 2.528 51 2.5315 52 2.8848 53 2.8802
54 2.6857 55 2.7947 56 2.1416 57 2.0819
58 2.6277 59 2.6466

Residual Sum of Squares: = 648..24877
Number of Nodes: 30

Pruning
Tree Node Critical Value R(T) 1 T |
T1 0 0 0.2095 30
T2 35 3.271e-05 0.2095 29
T3 36 0.002775 0.2095 28
T4 34 0.00462 0.2095 27
T5 46 0.02172 0.2095 26
T6 33 0.04421 0.2095 25
T7 44 0.04699 0.2096 24
T8 28 0.07699 0.2096 23
T9 25 0.09201 0.2096 22
T10 39 0.1354 0.2097 21
Til 26 0.3951 0.2098 20
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T12 23 0.4065 0.2099
T13 19 0.4594 0.2102
T14 17 0.7176 0.2107
T15 22 0.7289 0.2109
T16 14 0.8056 0.2112
T17 9 1.319 0.2116
T18 10 1.757 0.2122
T19 6 2.186 0.2129
T20 8 3.367 0.214
T21 15 3.62 0.2151
T22 11 5.37 0.2169
T23 4 7.115 0.2192
T24 7 7.612 0.2216
T25 5 18.33 0.2276
T26 2 25.45 0.2358
T27 3 46.34 0.2508
T28 1 91.31 0.2803
: the largest tree.

. Sample Impurity:
Tree R(T) Standard Deviations
T1 0.2077 0.005154
T2 0.2077 0.005153
T3 0.2077 0.005155
T4 0.2077 0.005155
T5 0.2077 0.005154
T6 0.2079 0.005159
T7 0.2079 0.005163
T8 0.2078 0.00516
T9 0.2081 0.005181
T10 0.2081 0.005181
Til 0.2083 0.005188
T12 0.2084 0.005197
T13 0.2087 0.005212
T14 0.2093 0.005211
T15 0.21 0.005211
T16 0.2102 0.005207
T17 0.2106 0.005216
T18 0.2114 0.005222
T19 0.2122 0.005273
T20 0.2136 0.005282
T21 0.2148 0.005533
T22 0.2168 0.005538
T23 0.2194 0.005549
T24 0.222 0.005682
T25 0.2277 0.005726
T26 0.236 0.005799
T27 0.2505 0.005921
T28 0.2798 0.00626

Honest tree: Prune from T1 until node 28 (SE rule: 0.05 )

19
17
15
14
13
12
11
10
9
8
7
6
5
4
3
21
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Appendix B

0.32-

0.30-

0.28-

0.26-

1 SE Bands
Test Sample

Estimation Sample
0 .2 2 -

0.20

Figure 3.1 A verag e  r e s id u a l  sum o f  sq u ares  f o r  th e  

sequence o f  o p t im a l s u b tre e s . E s t im a t io n  and T e s t  

Sam ples. Mex d a ta .

Standard Errors are computed assuming independence in the observations
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Chapter 3: Average wage differential decompositions

0.50

0. 40 -

0. 30 -

0.20-

0 .00

-0 . 1 0 -

-0.20-

- 0. 30 -

Figure 3.3 W a g e  d i f f e r e n t i a l s  p r o j e c t e d  b y  T 2 1  b e t w e e n  w o r k e r s  

b o r n  i n  t h e  U . S .  a n d  w o r k e r s  b o r n  i n  M e x i c o .

The horizontal axis shows types of workers ordered b y  the size of the wage differ e n t i a l s  
according to country of birth. There are 20 d i f f e r e n t  possible comparisons: 5 experience 
levels x 2 education levels x 2 ethnic. The reference worker w as b o r n  in the US.
Types of w o r k e r  as t h e y  appear ordered in the horizontal axis:

1 H igher education, Mexicano, 11-20 years of  experience
2 H igher education, Mexicano, 21-30 years of experience
3 H igher education, Mexicano, 31-40 years o f  experience
4 Lower education, Mexicano, 11-20 years of experience
5 Lower education, Mexicano, 21-30 years of experience
6 Lower education, Mexicano, 31-40 years of experience
7 H igher education, Mexican-American, 11-20 years of e x p e rience
8 Higher education, Mexican-American, 21-30 years of e x p e rience
9 Higher education, Mexican-American, 31-40 years of e x p e rience
10 H igher education, Mexicano, 1-10 years of experience
11 Lower education, Mexicano, 1-10 years of experience
12 Higher education, Mexican-American, 1-10 years of expe r i e n c e
13 Lower education, Mexican-American, 1-10 years of e x p e rience
14 Lower education, Mexican-American, 11-20 years of e x p e rience
15 Lower education, Mexican-American, 21-30 years of e x p e rience
16 Lower education, Mexican-American, 31-40 years of e x p e rience
17 Lower education, Mexicano, +40 years of experience
18 Lower education, Mexican-American, +40 years of e x p e rience
19 Higher education, Mexican-American, +40 years of e xperience
20 Higher education, Mexicano, +40 years of experience
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0.50

0.40-

0.30-

0. 20-

0 . 10- n
0.00

- 0 .  1 0 -

- 0 .20  -

-0.30-

-0.40

Figure 3.3 Wage differentials projected by T21 between workers 

born in the U.S. and workers born in Mexico.
The horizontal axis shows types of workers ordered by the size of the wage differentials 
according to country of birth. There are 20 different possible comparisons: 5 experience 
levels x 2 education levels x 2 ethnic. The reference worker was bora in the US.
Types of worker as they appear ordered in the horizontal axis:

1 Higher education, Mexicano, 11-20 years of experience
2 Higher education, Mexicano, 21-30 years of experience
3 Higher education, Mexicano, 31-40 years of experience
4 Lower education, Mexicano, 11-20 years of experience
5 Lower education, Mexicano, 21-30 years of experience
6 Lower education, Mexicano, 31-40 years of experience
7 Higher education, Mexican-American, 11-20 years of experience
8 Higher education, Mexican-American, 21-30 years of experience
9 Higher education, Mexican-American, 31-40 years of experience
10 Higher education, Mexicano, 1-10 years of experience
11 Lower education, Mexicano, 1-10 years of experience
12 Higher education, Mexican-American, 1-10 years of experience
13 Lower education, Mexican-American, 1-10 years of experience
14 Lower education, Mexican-American, 11-20 years of experience
15 Lower education, Mexican-American, 21-30 years of experience
16 Lower education, Mexican-American, 31-40 years of experience
17 Lower education, Mexicano, +40 years of experience
18 Lower education, Mexican-American, +40 years of experience
19 Higher education, Mexican-American, +40 years of experience
20 Higher education, Mexicano, +40 years of experience
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0.25 

0.20 

0. 15 

0. 10 

0.05 

0.-00 

-0.05 

-0. 10 

-0. 15 

-0.20

Figure 3.4 Wage differentials projected by T21 between Mexican- 

Americans and Mexicanos.
The horizontal axis shows types of workers ordered by the size of the wage differentials 
according to ethnicity. There are 20 different possible comparisons: 5 experience levels 
x 2 education levels x 2 countries of birth. The reference worker declares to be Mexican 
American.

t 1---------1--------- 1---------1--------- 1--------- 1--------- 1--------- 1---------1---------1---------1---------1---------1--------- 1---------1--------- 1---------1--------- r

Types of worker with non-zero differential as they appear in the graph: 
Positive differentials:

Lower Education, bora in Mexico, 11-20 years of experience
Lower Education, born in Mexico, 21-30 years of experience
Lower Education, bora in Mexico, 31-40 years of experience
Lower Education, bora in Mexico, +40 years of experience

Negative differentials:
Higher Education,
Higher Education,
Higher Education,

bora in US, 11-20 years of
bora in US, 21-30 years of
bora in US, 31-40 years of
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!. 50E+02
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6.OOE+02 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
tree

Figure 3.5 Residual sum of squares for the

sequence of optimal subtrees. Test Sample. Texmex data
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Figure 3.6 Tree T8. Texmex data
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1.10E+00

l. 20E+00

l.OOE+OO

8.00E-01

6.00E-01

1.00E-01

2.00E-01

0.OOE+OO

Figure 3.7 Wage differentials projected by T8 between Mexican and 

White Nonhispanic
First digit in type of worker refers to Education, second digit refers to 

Experience.

The horizontal axis shows types of workers ordered by the size of the wage differentials 
according to ethnicity. There are 15 different possible comparisons: 5 experience levels 
x 3 education levels. The reference worker is white non-hispanic.

Type of worker:
35: More than High School; +40 Years of experience
14: Less than High School; 31-40 years of experience
12: Less than High School; 11-20 years of experience
15: Less than High School; +40 years of experience
23: High School; 21-30 years of experience
11: Less than High School; 1-10 years of experience
13: Less them High School; 21-30 years of experience
32: More than High School; 11-20 years of experience
21: High School; 1-10 years of experience
33: More than High School; 21-30 years of experience
22: High School; 11-20 years of experience
31: More th«m High School; 1-10 years of experience
24: High School; 31-40 years of experience
25: High School; +40 years of experience
34: More than High School; 31-40 years of experience

—

—

—

.........  n— V — ‘-r1— “-t1— V — V — V — *t*— V — ltj— V — V — ltj— V — ltj—  
35 11 12 15 23 11 13 32 21 33 22 31 21 25 31

tupe of uorker
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Appendix C
Single Parametric Equation Results 
Max Datai
CPS,1994,1995,1996.1ST OUTGOINO ROTATION GROUP.
BORN IN MEXICO-BORN IN THX USX 
MALZ, EMPLOYED, WORKS THAN 35 HOURS 
ETHNICs MEXICAN AMERICAN, CHI CANO, MEXICANO
5265 OBSERVATIONSs Estimation Samples3517 cases. Test Samples 1748 cases. 
Variables:
xl: Potential experience 1:1-10 2:11-20 3:21-30 4:31-40 5:+40
x2: Education 1: At most, High School 2: more than High School
x3: Country o£ Birth 1: USA 2: Mexico
x4: Ethnic 1: Mexican American 2: Mexicano or Chicano

SINGLE EQUATION OLS estimation sample 
Valid cases: 3515
Missing cases: 0
Total SS: 965.484
R-squared: 0.219
Residual SS: 753.951
F (5,3509): 196.901

Dependent variable: 
Deletion method: 
Degrees o£ freedom: 
Rbar-squared:
Std error of est: 
Probability of F:

logwages
None
3509
0.218
0.464
0.000

Variable Estimate
Standard
Error t-value

Prob
>|t|

Standardized
Estimate

Cor with 
Dep Var

CONSTANT 1.673534 0.056325 29.712364 0.000 -- --
EXP 0.351444 0.030059 11.691782 0.000 0.760256 0.100941
EXP2 -0.051551 0.005530 -9.322746 0.000 -0.605373 0.068913
EDUCA 0.363401 0.019655 18.488641 0.000 0.294851 0.345905
COUNTRY -0.230939 0.023108 -9.993865 0.000 -0.216901 -0.324550
ETHNIC -0.048701 0.022902 -2.126544 0.034 -0.044958 -0.259945

SINGLE EQUATION OLS ALL OBSERVATIONS
Valid cases: 
Missing cases: 
Total SS:
R-squared: 
Residual SS:
F (5,5256) :

52620
1482.842

0.214
1165.341
286.402

Dependent variable: 
Deletion method: 
Degrees of freedom: 
Rbar-squared:
Std error of est: 
Probability of F:

logwages
None
5256

0.213
0.471
0.000

Variable Estimate
Standard
Error t-value

Prob
>|t|

Standardized
Estimate

Cor with 
Dep Var

CONSTANT 1.666944 0.046957 35.499059 0.000 -- --
EXP 0.326815 0.024770 13.194033 0.000 0.701631 0.098411
EXP2 -0.046764 0.004522 -10.341912 0.000 -0.549416 0.068020
EDUCA 0.378114 0.016380 23.083655 0.000 0.300420 0.347497
COUNTRY -0.230654 0.019121 -12.062930 0.000 -0.213030 -0.317615
ETHNIC -0.044363 0.019103 -2.322338 0.020 -0.040283 -0.257735
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Chapter 4

An application of regression trees to the analysis 

of the evolution of the U.S. wage structure since 

1980

4.1 Introduction: Relative growth performance and dispersion 
changes In wages

In this chapter I aim to apply regression trees to study two 
related empirical problems in wage structures. First, I will look 
at the relative growth performance of male workers' real wages 
since 1980 in the U.S. labor market and study the role that 
several economic and social variables had on it. Second, I will 
analyze wage dispersion and its evolution also from 1980 onwards.

The analysis of relative growth performance may seem a rather
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Chapter 4< Evolution of wagea

simple task. Consider the problem of comparing the evolution of 
the wages of two workers in two consecutive periods. Growth rates 
will give us all we need to know since by looking at their 
relative growth rates, we will be obviously able to ascertain 
whose wage increased the most. Also, we will be able to say 
whether their wages are converging or diverging in the sense that 
their absolute difference decreased or increased during the 
period. If the higher wage experienced higher growth, then there 
was increased dispersion. If the lower wage increased the most, 
then either convergence or divergence with overtaking took place.

However, the problem of relative growth performance becomes more 
subtle when more than two agents or more than two periods are 
considered.

For example, with three periods and two agents, suppose that the 
growth in the variable for the first agent was positive in the 
first period and stagnant thereafter while the reverse was true 
for the second agent. Then, it is not clear to what extent the 
overall growth rate is a good descriptor of both growth patterns. 
The basic idea is that an average growth rate does not entirely 
describe what happened since only information at the beginning 
and at the end of the time span is considered.

Relative performance and dispersion are also more complicated to 
study when more than two agents are included in the analysis.
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What matters is the evolution of the distribution of the variable 
across agents and an overall measure of dispersion may again 
destroy too much relevant information.

A simple strategy that may succeed in overcoming these potential 
problems is to study the nature of the data and propose general 
reasonable patterns that these data should satisfy. Sometimes, 
this will be enough to allow us to judge whether indicators such 
as average growth rates and standard deviations are meaningful. 
In other words, it may be possible to restrict the 
data-generating process to a statistical model that gives 
structure both in the cross-section and the time series 
dimensions of the problem and also allows us to judge the 
properties of one-dimensional indicators of multidimensional 
phenomena.

Following this introduction, I will present an econometric model 
that I understand is well suited to study these dynamic issues 
for large cross-sections of relative real wages. Namely, the 
dynamic index model with one latent trend. It will be further 
assumed that the parameters of the model have a nonparametric 
tree structure. The advantage of this approach lies in that it 
allows us to have clear-cut definitions of what we understand by 
growth performance and dispersion in real wages. I will argue 
that the model is very general indeed and reflects well our 
understanding of wage structures.
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In the following section, I will describe alternative indicators 
of growth and inequality and comment on their statistical 
properties when they are applied to a sample generated by a 
dynamic index model with one latent variable. In the fourth 
section of the chapter, empirical results on the evolution of 
wages are presented and compared to results in the literature. 
Next, empirical results of wage dispersion are given. The chapter 
ends with a reminder of the main conclusions.

4.2 Random fields and dynamic wage structures

4.2.1 Dynamic wage structures

I have in previous chapters assumed that the labor market is 
fragmented and consists of many sectors, each with an equilibrium 
wage. For any worker of type x, her log wage is:

W A = f(x) + V A . (4.1)

In this chapter, I will assume that vt is independent of any of 
the regressors although the techniques developed could be 
generalized to more realistic assumptions. This model is clearly 
static and we need to enlarge it to study dynamic phenomena in 
the labor market. We assume that both the structural component 
and the idiosyncratic component may evolve through time. Then, 
the log wage of any worker, i, of group x at any period, t, will 
have the form:
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W.t  = ft(x) + v l t  . (4.2)

We can further assume that at any point in time the wage 

structural component ft can be described by means of a tree 

plot.

If the vector of characteristics, x, were constant in time for 

any worker, equation (4.2) would also describe the evolution of 
wages for individuals. In this chapter, x may include time 

dependent variables for individuals, such as experience, so that 

(4.2) is only the evolution of the representative worker’s wage.

I will use this general formulation to study wage dispersion 
trends within groups since only the idiosyncratic term effect 
differs across individuals of the same group. As suggested in 
the introduction, an overall analysis of wage dispersion may be 
misleading. Even if we control for variables that affect 

expected wages, a parametric approach may not be appropriate. 

The reason is that changes in the structural component in (4.2) 
will also affect the distribution of log wages. In section 4, 
I will use this nonparametric framework to study the role of 
structural change in the evolution of wage dispersion.

An important property of (4.2) is that wages are double-indexed. 
In other words, if we conceptualize the observed wage as an 

observation from a stochastic process, then it is neither a 

cross-section point, nor a time series realization, but a random
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field observation. In other words, the data may show structure 
not only along the cross-section dimension but also along the 
time dimension. The model that I consider in this chapter is a 

random field with a nonparametric specification for the cross- 

section and a parametric specification for the time series. The 

main methodological strategy consists of choosing among all 

reasonable models for wages the family that incorporates the 

least structure so that no relevant features of growth and wage 
inequality are lost in the process.

4.2.2 A dynamic index model for dynamic wage structures

The model proposed here is a restricted version of the dynamic 

index model1. Three features of this model make it interesting 

in the analysis of the evolution of the wage structure:

(a) Changes in the individual specific components only

1 See Quah and Sargent (1993). Their work is an extension 
of the common factors model to nonstationary models where the 
statistical techniques to estimate the model are robust 
orthogonality conditions that qualify as quasi-maximum 
likelihood estimators. See Lawley and Maxwell (1963) for an 

introduction to factor analysis. For a dynamic stationary factor 

analysis model, see Geweke (1977). Engle and Kozicki (1993) set 

up a general framework in which cointegrated models and common 

factor models appear as special cases.
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have temporary effects on wages. This is a self-evident 
desirable property for the synthetic worker model.

(b) Trends in wages will be the result of the interaction 

of two types of factors:

(bl) Global factors: They affect all wages. A typical 
example is the technological level of the economy. By its own 
nature, this factor is dynamic and cumulative or integrating. 
All new inventions are added to the stock of knowledge for ever. 
This is a powerful source of trending behavior.

(b2) Local characteristics: The global factors will 

affect each type of worker in a different way. Local 

characteristics may allow some workers to take more advantage 
of new changes in the global conditions of the labor market. 
These effects are by definition constant within each class.

(c) Wages tend to be log-proportional between groups: In 
the absence of new permanent and temporary disturbances, 
relative growth of observed wages will be proportional. In other 

words, workers who are doing better in terms of growth in wages 
will keep on doing better to the same extent in the steady-state 
equilibrium.

Feature (c) is very restrictive. To see why, consider two types 

of workers, and x2. For simplicity, suppose that their real
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log wages follow deterministic trends

wn. = a.t + at lt 1 2 (4.3)w2t = bjt,

where wit denotes the real log wage of worker i. Only if a2=0 
will relative log wages be constant.

Why should we disregard a2>0 for our analysis? If a2>0 growth in 
wages in the second group will be increasing while growth in the 
first group will be constant. Relative growth performance will 
therefore not be constant along the period. If ax<bx, then it 
will make sense to split the time span of our sample in two 

periods, the splitting point in time being t*= (bi-a^/2a2. The 

fundamental problem in (4.3) is of course the fact that growth 

in the first group has two independent sources. By assuming just 
one source of long-term growth, we impose long-term constant 
relative growth performance in observed wages. This will allow 
us to talk of a single relative growth performance indicator for 
the entire period.

As already stated, the model is a restricted version of the 

dynamic index model. As in the original model, the data results 

from the interaction of both a common source of shocks and 
idiosyncratic shocks. In contrast to the original model, the 
common source of shocks is constrained to be a single factor.

The data set is a realization of a random field. Workers belong
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to groups within which the structural component in the wage is 

equal. The number of groups in the sample is unknown. Following 

Quah and Sargent (1993), assume that {wit} is an observed segment 

of a random field that satisfies the relation

where ★ denotes convolution. The source of the permanent 
component on wit/ ut, is a scalar unobserved nonstationary 
process, common to all elements. The idiosyncratic component, 
vit, is the idiosyncratic term with zero mean and possibly 
nonstationary variance. It is further assumed independent of any 
stationary transformation of the stochastic component in ut.

The transference filter operator, ax, is assumed to have all 
roots outside the unit circle and to be such that log wage 
variance conditional on the initial value u0 is finite.

Expression (4.4) is a general model that incorporates as special 

cases well-known examples of structural time series models. The 

simplest case is the so-called deterministic polynomial trend 

model in which the trend takes a polynomial functional form in 

time.

When this form is linear, we have the linear deterministic trend 

model:

w.it (4.4)

w = d • (1 + b • t) + v ,it x v ' it' (4.5)
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with dx and b real numbers.

In another family of models stemming from (4.4) the common 

factor, ut, has a stochastic trend component. For example, if ut 

is an unobserved random walk and vit is a noise term that is 
uncorrelated with any stationary transformation of ut at all 
leads and lags, the trend will have a stochastic component and 
the common variance in the cross-sample will originate in the 

trend. The model for the trend would be:

ut = ut-i + d + et (4.6)
c°v(vit , es) = 0, V t,s,

with et random noise with variance one. If the transference 
operator ax is a real number, then we have the one common factor 
version of the common factor model (Harvey, 1989, page 450).

A fully dynamic version of the common factor model is obtained 
by relaxing some assumptions. We can call this the dynamic 

factor model, and it is a nonstationary version of common factor 

models as in Geweke (1977).

The model takes the form

w it = u t + v it ' (4.7)

with real nonnegative ax(l) and with ax(B) a polynomial in the

lag operator. For the trend, the model is:
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(1-B) • g (B) ut = d + et 
cov(v.t , es) =0, V t,s

(4.8)

where g(B) is a lag polynomial with g(0)=l and |g(z)|^0 V|z|sl.

Model (4.4) encompasses these and other model specifications. 

They all share an important feature. Relative long-term growth 
performance for each element of the cross-section of the random 

field depends on ax(l) . Heuristically, if ax(l)>ay(l), for any 

two groups of workers, x and y, then the effect of the sources 
of growth are larger for group x than for group y.

A second interesting property of model (4.4) is that it admits 

pairwise projections between the elements such that relative 
growth performance can be studied from estimates of the filters. 
More precisely, since

then the coefficients in dxy can be consistently estimated by a 

least squares estimation. For the dynamic factor model (4.7) and 
(4.8), the variables are pairwise cointegrated2 so that pairwise

2 See Appendix A.

(4.9)

where

(4.10)
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cointegrating regressions will also give consistent estimates.

4.3 A review of trend estimators

In this section I present a brief account of the properties of 

simple estimators of trends in dynamic index models. Since the 

objective is to obtain estimates of relative growth performance, 

I will only review estimators for d^. I will consider 

estimators for the special cases introduced in the previous 

section for the brevity of exposition, but the arguments can be 
extended to more general models, as pointed out at the end of 

the previous section.

If wit follows the linear deterministic trend model we can carry 
out OLS regression of the wage on the linear trend and on any 
linear combination of the other wages. The estimators converge 
0 (T"1) to the parameter of the structural model under very 

general assumptions for vit. The estimators are superconsistent 
since OLS minimizes the error sample variance and only the 
correct parameter will give sample errors that do not explode 
in variance.

Although the model is more complex, this is also the basic 
reason for the consistency result in the cointegrating 
regression. Assume that wit and wjt are cointegrated with a 

cointegrating
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vector (1,-dij). Under general regularity conditions3 we have 
that T1'5 (doLg-dij) —>0 for 5>0, where ai;J is the OLS slope 
estimator of regressing wit onto wjt plus a constant.

Thus, pairwise cointegrating regressions give consistent 
estimates for the normalized cointegrating vectors in the 

dynamic factor model.

Maximum Likelihood estimation in the dynamic factor model is 
accomplished via the EM algorithm4. Consider the reduced MA form 
of the dynamic factor model, zt=C(B)£t, where zt=Vwt-E [Vwt] , 
C(0)=IN, is p.d. and C(l) is of rank 1. The maximum
likelihood estimators of the MA parameters are consistent as T 
goes to infinity5. Consistency of the structural parameters just

3 See Stock (1987).

4 See Watson and Engle (1983), Watson and Kraft (1983), 

Engle and Watson (1981) and Quah and Sargent (1993) for 
applications of the EM algorithm to the dynamic factors model. 
At every step, this method involves the maximization of the 
expected likelihood of the latent data. Under general 
conditions, this iterative procedure will lead to a fixed point 
which is also a local maximum of the likelihood. See Ruud (1991) 
for an introduction to the algorithm and Wu (1983) for 
convergence results.

5 See Dunsmuir and Hannan (1976) . No central limit theorems 
are available as the spectrum density matrix of the process is
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follows identification6. ML estimation is even more relevant 
when the interest lies on the estimation of the unobserved 
common index, as in Quah and Sargent (1993). When all that is 
needed is an indicator of growth performance, then simple robust 
estimators may be worth studying. Notably, ratios of average 

growth give consistent estimates of dxy when the common trend is 

stationary after differencing and when the trend is 

deterministic.

not of full rank at frequency zero. Indeed, we cannot use 

Dunsmuir and Hannan’s law of large numbers for general processes 
to check consistency of the Quasi-maximum likelihood estimator 

of the structural parameters since the conditions are not 
satisfied. Check condition B4 in Dunsmuir and Hannan (1976).

6 The identification problem for the dynamic factor model 
in stationary variables has been discussed by Geweke and 

Singleton (1981). As in the conventional factor model, necessary 

and suficient conditions for the identification of the model are 
unknown. As stressed by Geweke (1993), additional identification 
problems are introduced if the common trends are non-stationary, 

since there are several ways to represent the stationary 
transforms of the common trends as a linear combination of 

serially uncorrelated processes. This situation, however, does 

not necessarily arise in the model of a single non-stationary 

common factor. For example, Hotta (1983) studies the univariate 

case and finds neccesary and sufficient order conditions.
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As pointed out at the end of the previous section, pairwise OLS 
regressions also lead to consistent estimators. For small 

samples, however, estimates will depend on the normalization 
chosen. Thus, in practice, we will have several estimates of 

relative growth performance.

A solution to this problem consists of adding a further step to 
the estimation procedure. Let there be N different workers. Note 
that we can always carry N-l pairwise OLS regressions of any wit 
on any other group's wage. This will give us N-l parameter 
estimates for each wit. Define aA= (alif . . ., au , . . ., aNi) ' where a^ 
is the consistent estimate resulting from regressing wjt on wit, 
Vj^i and aii=l. Also let d± be ai(l).

Since plim aji=d^/di, di^plim ai)=d where d= (dx, . . ., dN) ' . If we 
define Ma= £i(ai a^) and normalize so that, without loss of 
generality, £i(di)'2 =1, we get plim Ma=d*d'. Thus, as T goes to 
infinity, the moment matrix Ma is of rank one, its eigenvector 
being the parameter vector d.

The finite sample eigenvector associated with the largest 

eigenvalue in Ma is the least squares estimator of d in the 

latent variable model:

plim a± = d u., (4 .11)

where l=diui. Least squares is defined as:
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min SvrNd, u £  K  ■ d u i)ta i ■ d u i)-i-1
(4.12)

First order conditions are:

i-l (4.13)
N =-2d /(ai - duj = 0, i = l N

Then ui=(d,ai) and d= (^Uj2)_1 (^u^) . Combining these two 
conditions, we have

If is the largest eigenvalue of Mg and v its corresponding
normalized eigenvector, Xvv=Mav, so that Xv=vTMav. Therefore, 
dLS=v and u ^I/v -l is a solution to the first order conditions. 
Let us call v the latent estimator.

To sum up, we can transform the parameter estimates of all 
possible pairwise regressions so that all vectors resulting from 
different normalizations are on the same one-dimensional space. 

For samples with unbounded T, matrix Ma is of rank one and its 

unique, up to normalization, nonnegative eigenvector is the 

growth performance indicator.

In the following section I apply the latent indicator to the 

study of growth performance in wage structures, therefore 

departing from the common practice of directly using average

(d/Mad}Id = Mad (4.14)
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growth rates.

As average growth rates, the latent estimator is a simple robust 

estimator. The fundamental advantage of this estimator of growth 

performance results from its exploiting cross-section 

information as much as time series variation7.

4.4 Trends in U.S. real wages

It is generally agreed that, during the eighties, there was a 
slow down of growth in real wages. There were also increases in 
the wage differentials between workers with college and high 

school education. Finally, experience differentials continued 
a long-term increasing trend, while race differentials remained 
stable8.

7 Studying consistency results as N goes to infinity is 
however beyond the scope of this empirical study. To obtain a 
taste of this advantage in small samples, I carried out a very 
simple simulation exercise for two models. Results are presented 

in Appendix B.

8 The literature on the evolution of wages in the U.S. is 
indeed vast. See, amongst others, Levy and Murname (1992), Bound 

and Johnson (1992), Katz and Murphy (1992), and Murphy and Welch 
(1992) for overall evaluations. See Ashraf (1994) for a study 

of trends in white-black earnings differentials and Buschinsky 

(1994) for a study of the changes in the wage structure using
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Were there nonlinear features in the trend behavior of U.S. 

wages since 1980? The objective in this section is to judge to 

what extent nonlinear effects of workers' characteristics were 

prevalent among the basic features of wage trends since 1980.

4.4.1 Description of the data

I use the extracts of the Annual Earnings Files of the Current 

Population Survey (CPS) prepared by the NBER for the years 1980, 
1985, 1990, and 1995. Each individual can only be interviewed 

at most twice and in two consecutive years, so that no 

individual observation is repeated in this data set.

The universe is reduced to male adults working more than 35 
hours every week, and employed in any industry group but 
agriculture who live in either metropolitan or non-metropolitan 
areas.

Wages here are the logarithm of earnings per week divided upon 

hours per week at the job and deflated by wage inflation. To 
distinguish among different representative workers, I consider 
six characteristics:

quantile regression. On inequality, see, for example, Juhn, 

Murphy and Pierce (1993), Borjas and Ramey (1994), Topel (1994), 

and Bound and Johnson (1995).
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1. Education: I classify education into three categories, 

lower education, some college, and higher education. Lower 

education includes all those workers who at most completed High 

School. Some college refers to those workers who started some 

form of higher education but did not finish it. Finally, higher 
education refers to workers with a higher education degree.

2. Experience: This is an index of potential experience, 
since the sample does not give a direct measure of the workers’ 

experience. The usual procedure is used here: age-education-six. 

Then, individuals are divided into five categories of 
experience. The first category includes those individuals with 
less than ten years of experience. The second are those with no 
less than 10 and less than 20, and so on. The fifth group 
includes individuals with more than forty years of experience.

3. Region: This variable segments the labor market into 
four geographical regions. South includes the East South Central 
division, the South Atlantic division except Delaware, Maryland 

and D.C., and Arkansas and Louisiana. East includes the New 
England division, Middle Atlantic, and D.C., Delaware, and 
Maryland. Middle West includes all remaining states from central 
divisions, and finally the west includes Mountain and Pacific. 
This grouping was chosen to obtain an ordered variable with 
geographical and historical intuition, starting from South and 
ending in West.
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4. Type of worker: This variable refers to whether the 
worker is a blue collar or a white collar worker.

5. Industry: This is another binary variable that 
describes whether the job is in a goods-producing industry or 
in a services-producing industry.

6. Race: workers are either white or black workers.

This variable specification segments the labor market in at most 

480 markets. However, due to the sample size and the fact that 

the sample design did not contemplate surveying all these 
groups, only 334 of all possible cells are represented in all 
years so that two samples, estimation and test, can be 

extracted.

The overall sample is then randomly divided into two samples of 

sizes of 1/2 each. Within each subsample, individuals' 

observations are transformed into 'groups' observations by 

averaging across individuals with the same demographic 

characteristics. This is done for each single year. I will refer 
to this data as the "trends" data.

The need for grouping observations arise from the fact that 
individuals are not interviewed in different years. If groups 

are not weighted for the number of observations within each 

group, the results from regression trees may depend on the
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variable specification chosen. However, an advantage of carrying 

unweighted regression trees is that poorly represented groups 
will come soon out in the splitting algorithm.

4.4.2 Empirical results

Growth indicators were computed for both samples. Figures 4.1 
and 4.2 in Appendix B plot latent growth indicators against 

average growth rates for the entire period. Although the plots 
indicate a positive correlation between both indicators, the 
relation is clearly less than perfect.

Figures 4.3 and 4.4 in Appendix C show histograms for latent 
growth indicators both in the estimation and the test sample. 
They can be thought of as the effect of the overlapping of 
several sample distributions of the growth estimators. Groups 

with the same long-term growth performance will have their 

growth sample indicators around their true value.

A nonparametric tree structure for growth patterns is assumed. 

A tree will partition the input space so that the overlapping 
of distributions will be unveiled. Figure 4.5 in Appendix C 
plots within-nodes sum of squares for the sequence of optimal 

trees both for the estimation and the test sample. The minimum 
value for the test sample residual sum of squares is achieved 

at tree T182, with only seven different groups. Figure 4.6 in 

Appendix C shows T182.
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The estimation sample residual sum of squares for tree T182 was 

0.4171. This contrasts with the value for the simpler one single 
group model, 0.6528. The test sample validates these results. 

The residual sum of squares takes now the value 0.4349. These 
values imply that the coefficient of determination for the 
estimation sample is approximately 36% while the test sample 

value drops to 30%.

We can now study the structure of tree T182 with the help of 
Figure 4.6 in Appendix C. Nonlinearities exist concerning the 
interaction of variables such as experience, race, and 
education. For higher education workers with more than 40 years 
of experience, growth shows poor performance. However, 
performance was good for more experienced black workers with 
lower education whose type of occupation fell into the category 
of blue collar workers.

Other interactions are worth mentioning. In general, blue collar 

workers are associated with better performance than white collar 
workers. The exception is black workers with less than 40 years 
of experience.

Education splits the sample into higher and lower performance 

workers. In general, workers with lower education, including 

those with some college, had worse growth in real wages than 

those with higher education. For higher education workers, 

nodes 12 and 13 are the more numerically important. Education
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seems the most important factor in explaining relative growth 
performance in the labor market in the last 15 years. However, 
experience, type of worker, and race also help in explaining 

local growth performances.

Neither geographical nor industrial factors seemed to have 

influenced growth performance. This result corroborates the idea 

that whatever the wage differentials between workers from 

different large regions and different aggregate sectors were, 

they have, on average, remained the same.

In order to have a better understanding of the growth 
experiences of the seven different groups, Table 4.1 gives basic 
statistics for real wages of the workers in each of the seven 

groups for each of the four years.

The groups are presented in ascending order according to their 
average latent growth indicators. This gives the opportunity to 
understand the relation between Figure 4.1 in Appendix C and 
tree T182. Terminal nodes are of two general types. First there 
are the marginal small groups formed, for example by workers 
with more than forty years of experience. The number of 

individual cases of these types of workers is very low indeed. 

Their trend behavior is nonetheless well isolated by the growth 

indicators.

The second type of node is obviously more interesting in the
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sense that it involves bigger segments of the labor market. Two 

nodes, terminal nodes 4 and 10, are particularly important, 

since they account for around two thirds of the entire sample 
in each year.

Node number 4 represents lower education, white collar workers. 
Table 4.1 suggests a nearly linear fall in their real wages at 
an annual rate of 1.1%. Node number 10 represents lower 
education, white, blue collar workers. Table 4.1 shows how 
differently their average real wage evolved from that of the 
equivalent white collar group.

They first experienced a steady increase in their average real 
wage. During the eighties, it grew at an annual rate of 1.1%. 
However, this gain was lost between 1990 and 1995. Overall, 
average growth in real wages was near zero.

Black workers with the same characteristics also experienced 
some real gains from 1980 to 1990, but their losses from 1990 

to 1995 were greater, so their growth performance was among the 

worst ones. Their average annual real growth was -0.6%. It is 

this important fall from 1990 to 1995 that made their indicator 

of growth performance to be worse on average than that of lower 
education, white collar workers.

Blue collar workers with higher education also suffered some 

real loss in their wages for the entire period. A very small one

178



Chapter 4: Evolution of wages

Table 4.1 Main growth experiences from regression trees. 

Latent growth indicator. Trends data.1980-1995.
Data: CPS 1980-85-90-95. Male, full-time, non-farm workers. Individual observations.

Nodes in tree T1821

Year 7 22 4 12 10 13 23

1980 N o .O b s .2 36 635 40317 1191 6646 1672 32

Real wage 1.84 1.77 1.87 1.96 1.88 2.03 1.89

Std.Dev. 0.48 0.40 0.35 0.43 0.41 0.44 0.34

1985 N o .O b s . 24 627 33084 1176 6312 1762 29

Real wage 2.23 1.81 1.86 1. 97 1.89 2.09 1.84

Std.Dev. 0.52 0.43 0.45 0.45 0.44 0.42 0.50

1990 N o .O b s . 183 1655 43212 5495 26251 7632 63

Real wage 2.11 1.79 1.72 1.98 2.02 2.32 1.67

Std.Dev. 0.74 0.48 0.46 0.52 0.51 0.49 0.53

1995 N o .O b s . 203 1059 30111 4657 11407 18023 44

Real wage 2.04 1.68 1.70 1. 92 1.88 2.20 1. 94

Std.Dev. 0.73 0.49 0.51 0.49 0.53 0.50 0.53

N o t e :
1 Tree 182 refers to the tree with 0-SE rule and 1 as stop-splitting rule obtained with 
dependent variable the latent growth indicators after pooling individual observations 
according to: potential experience -five levels-, education -three levels-, region - 
four large areas-, type of worker -binary-, industry -binary-, and race. Each node 
represents a region in the independent variables space:

7: Higher Education; Experience>40 years.
22: Lower Education; Experience<40 years; Black; Blue collar.
4: Lower Education; White collar.
12: Higher Education; Experience <40 years; White collar.
10: Lower Education; White; Blue collar.
13: Higher Education; Experience <40 years; Blue collar.
23: Lower Education; Experience>40 years; Black; Blue collar.

2No.Obs. is the number of individual observations in each erminal node. Real wage is 
the average logwage within each terminal node. Std.Dev. is the standard deviation in 
each node.

indeed, at an annual rate of 0.3%. This decline concentrated in 

the last five years, since there had been gains, although very 

modest, during the first 10 years of the period.
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The best performing large group, node 13, was the only one that 

experienced average gains in their real wages. Again, there were 

losses in the last five years, but these were small compared to 
the gains that had taken place from 1980 to 1990. Overall, real 

wages for higher education, blue collar workers with less than 
40 years of experience increased at an annual rate of 1.1%.

Tree T182 suggests a linear structure for the growth experience 

of white workers with less than forty years of experience. Table

4.2 gives the results of linear parametric regression for these 
workers. The results show that for this group of workers, blue 
collar and higher education workers had always better 
performance than white collar and lower education workers.

Note, however, that linearity does not extend to a wider segment 
of the labor market, although the number of groups in tree T182 
is only seven.

For each year, I have also computed the standard error within 

each group to study whether these trend differentials were the 
only source of changes in the dispersion of wages.

The results can be found in Table 4.1. For all groups the 
standard deviation at the end of the period was higher than in 

1980. For some groups, this increase represented around 50% of 

the original level of within groups dispersion.
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Table 4.2 Growth structure for white workers with less than 40
years of experience. Trends data.
(A) Tree T182 Projections of latent growth indicators:

White Collar 
Blue Collar 
Differential

Lower education 
-0.034 
0.0051 
0.0391

Higher education 
-0.0092 
0.0356 
0.0448

Differential 
0.0248 
0.0305

(B) Linear regression results:

Data: Latent growth indicators for white workers with less than 4 0 years of experience 
Independent Variables: region -four large areas-, experience -five groups-, education
-binary-, type of worker -binary-, and industry -binary.

Valid cases: 189
R-squared: 0. 424
Variable Estimate Standard Error t-value
CONSTANT -0.1086 0.0153 -7.0919
region -0.0019 0.0023 -0.8215
experience 0.0038 0.0023 1.6120
education 0.0248 0.0032 7.7998
type 0.0426 0.0052 8.2360
industry -0.0084 0.0052 -1.621

N o t e :
1Lower education includes College dropouts.

If standard deviations had not shown any trend, then we could 

argue that all the sources of the changes in the dispersion of 

wages came from the different growth behavior of the seven 
groups already studied. Since there has been an increase in wage 
dispersion, as shown in the next section, some of these 
increases must come from changes in the dispersion of wages 
within groups.

In the following section I will assess the importance of each 
source of increased dispersion in the wage distribution.

4.5 Wage dispersion and nonparametrie dynamic wage structures
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In this section I will study changes in the dispersion of wages 
due to three possible factors:

a. Changes in the dispersion of unobservable factors.

b. Changes in the value of observable factors.

c. Changes in the structure of wages.

The last element can only be studied if we do not impose a 
constant wage structure. Therefore, it is natural to compute the 
wage structure in these demographic and economic groups of 

workers using regression trees. If the structure is 
nonparametric and can evolve, then this evolution will likely 
have an effect on the dispersion of wages.

At the beginning of section 2 we assumed that the log wage of 

any worker, i, of group x  at any period, t, would have the form:

wit = ft<x> + vit • (4.15)

This model is very general. For each year, not only may wage 

differentials between different groups change, but also the 

relevant groups may also change. In terms of tree structures, 
not only can the projections in the tree change with time, but 
the tree itself may change.

Taking 1980 as the reference year, we can easily compute for the
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following years the wage any worker would have had if no change 

had occurred in the tree structure. In order to do so, we add 

her estimated idiosyncratic residual to the projected wage she 
would have had if the tree structure had not changed from 1980.

More precisely, if ft(x,bt) is the expected wage of any worker 

from group x at time t, then we can define, for any synthetic 

worker at time t+s, her wage with no structural change since t 
as:

wi(t+s,t) - ft(x,bt.,) + vut4s) . (4.16)

To evaluate the importance of changes in the wage structure, I 
set up an algorithm in three steps:

(a) Estimation of the tree structure for each year. This 
is the standard output in regression trees. From this, residuals 
for each observation can be computed: vi(t+s).

(b) Using the structure obtained for 1980, we can compute 
projections for all the other years. These projections are 
sample averages of wages within terminal nodes in the tree 

structure for 1980: ft(x,bt+s).

(c) Creation of an artificial sample: this is simply done 
by adding to each residual obtained in (a) the projection for 

that worker obtained in (b): wi(t+s|t).
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Table 4.3 Regression Trees: Validation Results. Dispersion

data. 1980-1995.
Data: CPS 1980-85-90-95. Male, full-time,non-farm workers. Individual observations.

Residual Sum of Squares Complexity

Estimation Sample Test Sample

Root Best1 Root Best N o . O b s . No. Nodes

1980 6043 4955 2987 2453 33671 115

1985 5801 4630 2851 2304 28734 110

1990 14245 10023 7132 5088 53100 219

1995 13146 9774 6111 4552 43757 206

N o t e :
Regression trees was carried out for each year with a 0-SE rule and a 50 stop-splitting 
rule. The independent variables were education, experience, region, type of worker, 
type of industry, and race.
^ o o t  refers to the entire sample and Best is the honest tree with a 0-SE rule. An R2- 
alike measure of goodness of fit can be computed as 1-RSS(root)/RSS(best), where RSS 
denotes the residual sum of squares.

Heuristically, if trees become ever more complex, then 

projections will tend to introduce more variance to the 
distribution of wages. However, if changes in the complexity of 
the trees do not lead to substantial differences in the 
projections, then changes in the structure cannot be regarded 
as an important source of increasing wage dispersion.

I use the extracts of the Annual Earnings Files of the Current 

Population Survey (CPS) prepared by the NBER for the years 1980, 

1985, 1990, and 1995. I use the same variable specification as 

in the previous section but must implement the analysis 

obviously on individual observations. I will refer to this data 
set as the "dispersion” data.
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Results of step (a) are shown in Tables 4.3 and 4.4. Table 4.3 

gives some statistics on the tree structures obtained. Table 4.4 

presents basic statistics for real log wages and residuals in 

the trees. Figures 4.7, 4.8, 4.9, and 4.10 in Appendix C show 

histograms of test sample residuals for each year.

Several comments are worth making. Wage dispersion for each year 
within each terminal node is a fairly large part of total wage 
dispersion. This follows from the statistics in Table 4.3 and 
from the residual and log wage basic statistics in Table 4.4.

The residual sum of squares estimates in Table 4.3 imply 
coefficients of determination never greater than 29.64% for the 
estimation sample and 28.66% for the test sample.

Residual variance increased during the period less than total 
variance. Changes in the wage structure account for 53.25% of 
the increase in wages dispersion measured with variance. Thus, 
although residual variance was around 82% of total variance in 
1980, it fell to 73% in 1995.

Figures 4.7 to 4.10 in Appendix C give a fair idea of the way 

that regression trees work with the data. Since the splitting 

rule consists of minimizing within-node sum of squares, it is 

natural that the estimation sample residuals show a symmetric
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Table 4.4 Wages and tree residuals . Dispersion data. Basic

statistics.
Data: CPS 1980-85-90-95. Male , full-time,non-farm workers. Individual observations.

Log wages (all observations) mean sta.dev. min max n o .o b s .

1980 1.88 0.42 0.23 3.24 50406

1985 2.10 0.44 0.47 3.34 42418

1990 2.43 0.50 0.42 3. 99 78547

1995 2.56 0.49 0.70 4.00 63814

Residuals (test sample)

1980 -0.005 0.38 -1.69 1.58 16735

1985 -0.001 0.39 -1.66 1.40 14083

1990 -0.003 0.42 -1.95 1.72 26077

1995 0.004 0.42 -2.24 1.59 21186

Note: Residuals are obtained with the test sample and the projections of the trees

computed each year with a 0-SE rule and 50 stop-splitting rule. See Table 4.3 for the

variable specification.

normal distribution resemblance. This feature is thus fabricated 
in the residuals of the estimation sample in the same way that 
linear regression with a constant will give zero mean residuals. 
This property has passed nicely onto the residuals plotted in 

the figures, which come from the test sample observations.

A summary of statistics for the artificial data computed in 

steps (b) and (c) can be found in Table 4.5 and 4.6. In Table
4.5 I present univariate descriptive statistics for all 
variables: original wages, constructed wages, residuals, and the 

structures under the assumption of no change in the functional 

form and with change.
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Table 4.5 The effect of structural change in observed wages

dispersion. Dispersion data.1980-1995.
Data: CPS 1980-85-90-95. Male, full -time,non-farm workers. Individual observations .Test

Sample. Reference Year: 1980.

1985

Variable Mean Std Dev Minimum Maximum N o .O b s .

wi{t+s\t) 2.0946 0.4356 0.722 3.288 14083

2.0959 0.1872 1.641 2.418 14083

vi (t+s) -0.0013 0.3939 -1.657 1.403 14083

f t+3 (̂t+3 ) 2.0965 0.1921 1.609 2.784 14083

wi (t+s) 2.0951 0.4357 0.693 3.301 14083

1990

Variable Mean Std Dev Minimum Maximum N o .O b s .

w^ (t+s11) 2.4231 0.4924 0.782 4.196 26077

2.4263 0.2560 1.858 2.936 26077

vi (t+s) -0.0032 0.4207 -1.954 1.724 26077

ff3(bt*s) 2. 4271 0.2748 1.757 3.211 26077

wi (t+3) 2.4240 0.5006 0.734 3.994 26077

1995

Variable Mean Std Dev Minimum Maximum N o .O b s .

Wift+slt) 2.5697 0.4815 0.682 4.196 21186

ft(tot+s) 2.5656 0.2379 2.060 2.921 21186

vi (t+s) 0.0041 0.4164 -2.239 1.548 21186

2.5646 0.2541 2.045 3.190 21186

wi(t+s) 2.5688 0.4884 0.738 3.948 21186

Note:Wi(t+S|t) 
ft̂ t+s) : vi(t+s) : t̂+3 (̂t+s) wi (t+3) :

computed wage at t+s under no structural change since 1980. 
projection at t+s under no structural change since 1980. 
residual of observation i,t+s.

: projection at t+s with honest tree, 
logwage of observation i,t+s.

For all years, the variance of the constructed wages is smaller 

than the variance of wages. This suggests that part of the
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Table 4.6 The effect of structural change. Correlation matrix.
Dispersion data.1980-1995 .
Data: CPS 1980-85-90-95. Male, full-time,non-farm workers. Individual observations .Test

Sample. Reference Year: 1980.

1985 Wi(t+s|t) ft(bt+s) vi (t+s) W*>t+3> wi (t+3)
Wĵ (t + s 11) 1.0000 0.4269 0.9030 0.4019 0.9936

0.4269 1.0000 -0.0031 0.9663 0.4233

vi (t+s) 0.9030 -0.0031 1.0000 -0.0147 0.8976

ft+3 (bt+s) 0.4019 0.9663 -0.0147 1.0000 0.4276

w i (t+s) 0.9936 0.4233 0.8976 0.4276 1.0000

1990 Wi(t+s|t) ft(l>t+s) vi (t+s) ft+3 (̂t+3 ) wi(t+3)
Wi(t+S|t) 1.0000 0.5196 0.8542 0.4779 0.9803

0.5196 1.0000 -0.0003 0. 9329 0.5119

vi (t+s) 0.8542 -0.0003 1.0000 -0.0083 0.8358

W * t + s ) 0.4779 0.9329 -0.0083 1.0000 0.5420

wi (t+3) 0.9803 0.5119 0.8358 0.5420 1.0000

1995 Wi(t+s|t) ft(bt+s) vi(t+3) f t+3 t^t+3 J wi (t+s)
Wi(t+S|t) 1.0000 0.5021 0.8695 0.4624 0.9818

ft(*t+s> 0.5021 1.0000 0.0094 0.9311 0.4924

vi (t+s) 0.8695 0.0094 1.0000 0.0029 0.8540

ft+3(*t+3> 0.4624 0.9311 0.0029 1.0000 0.5227

wi(t+3) 0.9818 0.4924 0.8540 0.5227 1.0000

N o t e : 
Wi(t+s|t): 
ft«*>t+s): 
v i (t+s) : 
ft+3 (^t+3 J *wi(t+3) :

computed wage at t+s under no structural change 
projection at t+s under no structural change since 

residual of observation i,t+s. 
projection at t+s with honest tree, 
logwage of observation i,t+s.

since 1980. 
1980.

increased dispersion in wages may have been due to changes in 
the structure of wages.

This is also corroborated by looking at the correlation matrices
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in Table 4.6. The correlation results show that the structures 
and the residuals are almost orthogonal decompositions of both 

types of wages and thus these variance measures approximate 
variance decompositions. The results depend however on the year 
of study. In 1985, observed variance9 was 8.4% higher than in 
1980.

Residual variance was only 7.7%. The combined effect on the 

variance of changes in prices and structure must have increased

by almost 11.5%, or 0.0034. However, only 0.0001 remains
unexplained after accounting for the change in prices.

In 1990, nonresidual variance increased by 0.0429 units, more 
than 100%. Around 0.0081 can be attributed to the effect of
structural change on wages dispersion. This is near 18.98% of
all the effect from variability in the structure.

In 1995, the amount unexplained by changes in prices is 0.0069. 

Total nonresidual variance increased by 0.03064, so the effect 

of a changing structure contributed in 22.52% of all increases 

in nonresidual variance.

To sum up, overall dispersion of wages increased from 1980 to 

1985 by 0.0148. Increase in the dispersion within groups, or

9 These computations are carried out with test sample data. 
The variance of observed wages was 0.1746 in 1980.
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increase in inequality, accounts for 75.7% of this increase. The 
rest must be mainly attributed to price changes in the labor 
market, but not to changes in the interaction of the workers1 
characteristics. For 1990 and 1995 I find similar results. Less 
than half of the increase in the variance of log wages was due 
to increased wage inequality. At least 10% of the increase in 

variance came from changes in the interaction of different

variables. In other words, due to changes in what the labor
market would understand as homogeneous workers with a single 
expected wage. If these changes had not taken place, the 
increased variance in wages since 1980 would have been 10% 
lower.

4.6 Conclusions

In this chapter I applied regression trees to study the relative 

growth performance of workers’ real wages and the sources of 

wage dispersion and its evolution in the U.S. from 1980 onwards. 
In order to study these problems I assumed that real wages 
follow a random field with a nonparametric specification for the 
cross-sample and a parametric specification for the time series. 
By doing so I can unveil nonlinear features in the trend

behavior of real wages and compute the extent to which

dispersion in wages has a structural source different from 
changes in prices.

The main results on trends agree with the results in previous
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studies. Education was an important factor of growth. Industry 

and region were not. Here I add two remarks.

First, the estimated tree suggests a linear structure for the 

growth experience of white workers with less than forty years 

of experience. The results show that for this class of workers, 

blue collar and higher education workers had always better 
performance than white collar and lower education workers.

Second, nonlinearities were present in other segments of the 
labor market. For example, the "effect" of race and experience 
on growth was not uniform and even differentials were of 
different sign.

On wage dispersion I started by noting how dispersion increased 
within groups with the same growth experience, therefore 
vindicating previous work on growing inequality within groups 
defined by socioeconomic variables. I then assessed the 
importance of each source of increased dispersion in the wage 
distribution. There are three potential sources of increased 

wage dispersion in observed wages: growing within groups

inequality, changes in the premiums, and changes in the 

segmentation of the labor market. The last element can only be 

studied if the structural form of the wage structure is 
estimated.

Increase in within groups inequality accounts for most of the
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increase in wage dispersion from 1980 to 1985. The rest must be 

mainly attributed to price changes in the labor market, but not 

to changes in the interaction of the workers' characteristics. 

For 1990 and 1995, however, at least 10% of the increase in 

variance came from changes in the interaction of different 

variables.
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Appendix A

The implication of cointegration in integrated dynamic common 
factor models is easy to obtain. The other direction in the 
relationship cannot be established when the elements of the 
cointegrated vector have no idiosyncratic disturbances. This 
highlights the important difference between common factor models 
on one side and common trend extraction in cointegrating systems 
as in Stock and Watson (1988) on the other.

I will show that a dynamic factor model entails cointegrating 
relations amongst the elements of the vector. Assume that Xjt 
satisfies the relation

xjt =8^8) ut + yjt , j=l, . . . ,N.

Here is a Kxl vector of unobserved orthogonal random walks; yjt 
is a noise term with the usual stationary and orthogonal 
properties that is uncorrelated with the first differences in u* 
at all leads and lags. The common factors have a multivariate 
representation of the form

T(B) (1-B)ut = b + et,

where r(B) is a diagonal lag polynomial matrix and et is a vector 
white noise with variance matrix the identity. Let a(B) be 
(ax (B) , .. ., aN (B)) 1 . Assume that aj(l)^0 and that a(l) is of full
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rank K. Further assume that a(B) and r(B) are finite matrix 
polynomials with r(0)=IK. Finally, suppose that |r(z)|ĵ 0 V|z|sl, 
so that (l-Bjiit follows a multivariate stationary invertible 
process.

The common factors structure originates cointegration and the 
number of factors determines the rank of the cointegrating space, 
N-K.

To see that is C(l,l), first note that it is 1(1) since1 it is 
the linear combination of 1(1) and 1(0) processes and the 1(1) 
processes are not cointegrated. The vector {1-B)xt is stationary 
since it is the sum of 1(0) elements. Since the spectrum of 
(1-B)xt is not of full rank at frequency zero, it is strictly 
noninvertible, as one should expect if cointegration is to hold. 
I will now show that there are N-K independent cointegrating 
relationships. We can always decompose a(B) as

M
a (B) " E 3, 6 * * 3 !1) +a°(B)(l-B),

1*0

where

M-l

• =!♦!

xSee Engle and Granger (1987).
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Therefore, we have that x ^ a (1)ut+wt where wt=a°(B) r"1 (B) et+d+yt. 
Note that wt is always stationary.

On the other hand, since its power spectrum is fw(A) = (2n) ■1a°(e" 
iA)r'1(e'lA)r'1 (elX) 'a°(eix) '+fy(A), the invertibility condition for 
wt is simply that the process yt be invertible.

Since a(l) is of full rank K, there exists a base H, matrix 
Nx(N-K) of rank N-K, of the subspace orthogonal to that spanned 
by the columns of a(l) and so H'a(l) =0(N_K)xK. Thus H'Xt^H'Wt must 
be stationary. Invertibility is assured by the invertibility of 
yt and the fact that H is a full rank matrix. When H'fy(X) is of 
full rank, H'Xt is jointly invertible and, thus, Xt is C(l,l).

When K=1 then for any two elements of Xt, xit and Xjt, i<j, the 
vector (l,-aA(l)/aj (1)) 1 is a (normalized) cointegrating vector.

Cointegration does not imply a common factor structure with 
idiosyncratic disturbances. Simply consider the previous model 
without idiosyncratic shocks. The elements in Xt are cointegrated 
although the model is not one with idiosyncratic shocks.

Common trend decompositions do not build a bridge between 
cointegration and dynamic factor models where each element is 
influenced by disturbances that are orthogonal to the other
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disturbances. A very simple example is that of the structural 
random walk with noise model. The model can be postulated as:

= x t  +  e n '  i = 1 ' 2  '*

where ^  is unobservable and follows a random walk process:

xt = xt-i + V

We can think of eit as purely idiosyncratic to yit whilst vt would 
be common to yit and x±.

Clearly, all nonstarionary variables are cointegrated. The common 
trend extraction methods usually proposed do not identify the 
"true" trend x^ What is more important, the decompositions into 
a nonstationary and a stationary component give a single 
stationary element that cannot be idiosyncratic to each element. 
Usually, this element takes the form:

®. = *•<«.. - e»>-

Escribano and Peria (1994) propose k=l/\/2, Stock and Watson (1988) 
propose k=l and Kasa (1992) proposes k=l/2.
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Appendix B

Since the cross-section information is not used when computing 

average growth rates for each variable, there will not be gains 
in accuracy when these rates are computed for large cross- 
sections. The latent growth indicator described in section 3 of 
the chapter does use cross-section information by computing OLS 
pairwise regression between all elements of the vector and 

extracting the principal component of the moment matrix of those 

estimates.

I carried out a simulation to assess the importance of these 
gains in small samples for two simple examples of dynamic 
structures.

The first model corresponds to equation (5) : the linear

deterministic trend model. The simulation was implemented for 

parameter values dx=l, b=l, and var(vit)=l. The number of periods 

was always 5. Six different sizes for the cross section were 

evaluated: N=25,50,75,100,200, and 300.

The second model corresponds to the common factor model in 
Harvey (1989, p.450) with the common factor equal to equation

(6) and the transference matrix a column vector of ones. The 

simulation was implemented for parameter values d=l, and 

var(vit)=l. The number of periods was again 5, and also six 

different sizes for the cross-section were evaluated:
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Table 4.7 Simulation results.
Number of periods: 5. Number of iterations: 200. 

Model 1: Deterministic Linear Trend Model. 

Parameter Value=l.

Average Growth Rates Latent Indicator

N mean sta.dev. mean sta.dev,

25 0.7484 0.3465 0.9541 0.0605

50 0.7563 0.3527 0.9544 0.0422

75 0.7471 0.3532 0.9450 0.0344

100 0.7484 0.3520 0.9547 0.0298

200 0.7480 0.3536 0.9542 0.0212

300 0.7492 0.3540 0.9537 0.0174

Model 2. Common Factor Model. Parameter Value=l. 

Average Growth Rates Latent Indicator

N mean sta.dev. mean sta.dev,

25 0.7436 0.3462 0.8765 0.0660

50 0.7231 0.3524 0.9220 0.0453

75 0.7324 0.3533 0.8933 0.0374

100 0.7606 0.3522 0.9009 0.0325

200 0.7636 0.3533 0.8989 0.0228

300 0.7247 0.3541 0.8727 0.0191

N=25,50,75,100,200, and 300.

The results of the simulation are given in Table 4.7. They show 
the expected good behavior of the latent estimator in terms of 

accuracy. This gain for small samples when the number of periods 

is very small may be a very important advantage when we try to 

partition the cross section according to growth performance.
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Appendix C

* * * ** *

*
*■
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la ten t Growth Ind ica tor

Figure 4.1 Latent Growth Indicator vs Average Rates.

Trends data. Estimation Sample. 1980-1995.
Note:
Data: Pooled observations from CPS 1980-85-90-95, male, full time, nonfarm workers
according to education, experience, race, type of worker, type of industry and region. 
On the vertical axis, average growth rates in real wages for each of the groups are 
plotted. On the horizontal axis, the laten growth estimators are plotted. The estimators 
have been normalized so that the sum of squares equals to one. The correlation between 
the average growth rates and the latent growth estimators is 0.74.
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Latent Grooth Indicator

Figure 4.2 Latent Growth Indicators vs Average Rates.

Trends data. Test Sample.1980-1995.
Note:
Data: Pooled observations from CPS 1980-85-90-95, male, full time, nonfarm workers
according to education, experience, race, type of worker, type of industry and region. 
On the vertical axis, average growth rates in real wages for each of the groups are 
plotted. On the horizontal axis, the laten growth estimators are plotted. The estimators 
have been normalized so that the sum of squares equals to one. The correlation between 
the average growth rates and the latent growth estimators is 0.79.
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Figure 4.3 Histogram for Latent Growth Indicator. Trends data

Estimation Sample. 1980-1995.
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Figure 4.4 Histogram for Latent Growth Indicator. Trends data. 
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Figure 4.5 Residual sum of squares for the sequence of 

optimal trees. Trends data. Latent growth estimator
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Figure 4.7 Histogram for regression tree test sample residuals. 

Dispersion data. 1980.
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Figure 4.8 Histogram for regression tree test sample residuals. 

Dispersion data. 1985.
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Figure 4.9 Histogram for regression tree test sample residuals. 

Dispersion data. 1990.
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Dispersion data. 1995.
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Chapter 6

Conclusions

This study was concerned with the application of multivariate 
nonparametric models known as regression trees to the analysis 
of the U.S. wage structure.

In the first application I have estimated a nonparametric 
experience-wage profile in a multivariate environment to search 
for local workers who suffered a sudden loss in wages in their 
last stage of their working life. This approach to experience- 
wage profiles in cross-sections mimics the work done on growth 
paths by Durlauf and Johnson (1995) . The main methodological 
difference is that in my study I am only interested in the 
possible effects of sudden losses of human capital in the profile
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of a cross-section. The regression trees approach to the 
estimation of the experience profile fitted the sample better 
than a simple quadratic specification. When the projections of 
the tree were carefully studied, linear splines appeared as 
reasonable alternatives to the quadratic function for many 
workers. Further, simple parametric specifications are for some 
types of workers clearly inappropriate when an extended human 
capital specification is chosen. The algorithm used to identify 
sudden losses of human capital at the end of the working life is 
a reasonable strategy when overall human capital depreciation is 
small. It is totally justified if we assume that no overall human 
capital depreciation takes place. The results show that for 1980, 
1985, and 1990, average wages of the last experience group would 
be 1% higher if no breaks had occurred. For 1980, the sudden 
losses help reducing the negative experience differential by 50%. 
For 1985, they do so by 33%. The value for 1990 is only 16.6%. 
Finally, the reduction in the negative differential is null for 
the last year of the analysis.

In the second application, I propose average wage gap 
decompositions between any two groups of workers for 
nonparametric structures. Even when it is not possible to talk 
of simple race, ethnic, or gender differential, Oaxaca-type 
decompositions are still useful decompositions of the observed 
average wage gap. These decompositions do take account of
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reasonable features such as context sensitivity. I think that the 
methodology is well suited to unveil local differentials and 
therefore it can help in understanding the complexity of the 
labor market. I carry out the proposed decompositions for two 
data sets. In the first empirical application, I study average 
wage gaps between male workers of Mexican origin b o m  in Mexico 
and in the U.S. and between male workers of Mexican origin who 
labelled themselves as Mexicano and Mexican American. Although 
a very simple human capital specification is implemented, I 
obtain interesting differences with respect to the parametric 
analysis. Somewhat intuitively, the structural differential is 
bigger in the nonparametric case when I decompose average wage 
gaps between workers b o m  in the U.S. and workers b o m  in Mexico. 
However, the nonparametric decompositions for average wage gaps 
by ethnic origin show a very interesting and contrasting feature 
of regression trees. This technique not only performs 
nonparametric multivariate analysis, but implicitly carries out 
variable selection in its search for a simple structure. In this 
example, ethnicity appears as an important factor in only very 
specific local cases, rendering a smaller structural effect than 
the sample effect. In the second empirical analysis, I study the 
average wage gap between Mexican Americans and white non-Hispanic 
male workers in the border states between Mexico and the U.S.. 
Regression trees unveils a linear relation in the wage structure 
with respect to ethnicity so that most ethnic differentials are
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around 20%. Due to this linear behavior, the nonparametric 
decomposition is very similar to a simple decomposition with a 
dummy variable. In other words, regression trees can encompass 
parametric approaches.

Finally, in my third application of regression trees to the study 
of the wage structure I look at the evolution of wages and the 
sources of wages dispersion in the U.S.. In order to study these 
problems I assumed that real wages follow a random field with a 
nonparametric specification for the cross-sample and a parametric 
specification for the time series. By doing so I can unveil 
nonlinear features in the trend behavior of real wages and 
compute the extent to which dispersion in wages has a structural 
source different from changes in prices. A robust estimator of 
the trend is implemented to exploit the large cross-section 
information.

As in previous studies, I find that education was an important 
factor for growth performance. Two interesting features are 
unveiled by regression trees. First, the estimated tree suggests 
a linear structure for the growth experience of white workers 
with less than forty years of experience. Second, nonlinearities 
were present in other segments of the labor market. For example, 
the effect of race and experience on growth was not uniform and 
even differentials were of different sign.
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On wage dispersion, I found that the increase in inequality 
accounts for most of the increases in wage dispersion from 1980 
to 1985. The rest must be mainly attributed to price changes in 
the labor market, but not to changes in the interaction of the 
workers' characteristics. For 1990 and 1995, however, at least 
10% of the increase in variance came from changes in the 
interaction of different variables.
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