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Abstract

This study is concerned with the application of multivariate
nonparametric models known as regression trees to the analysis of the
U.S. wage structure. In Chapter 1, I first review regression trees and
other available multivariate nonparametric techniques, highlighting
their differences and common features. In the second part of Chapter 1,
I look at the literature on the U.S. wage structure in connection with
the issue of functional specification and argue that regression trees
is particularly well suited for analyzing wage structures. In Chapter
2, I implement regression trees on U.S. wages for white male workers to
estimate experience-wage profiles and unveil local sudden breaks in the
profiles at the end of the working life. For 1980, these breaks account
for about 50% of the negative average differential between the last two
experience groups. This effect decreases continuously until 1995. In
Chapter 3 I propose a simple extension of the Oaxaca-type average wage
gap decompositions between any two groups of workers. This procedure
can be carried out without any compromise in the interpretation using
a nonparametric wage structure. I then study wage gap decompositions
for Mexican workers in the U.S. labor market. Finally, in Chapter 4 I
apply regression trees to study both the relative growth performance of
workers' real wages and the sources of wage dispersion and its
evolution in the U.S. from 1980 onwards. On trends, the technique
uncovers a linear structure for the growth experience of white workers
with less than forty years of experience. On dispersion, at least 10%
of the increase in observed variance came from changes in the structure

of wages itself.
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Chapter 1

Introduction: Regression trees and nonparametric

wage structures

In the following chapters I will be concerned with the
application of multivariate nonparametric models known as
regression trees to the analysis of the U.S. wage structure. In
this chapter, I first review neural networks, projection pursuit
and‘ regression trees -all of them available multivariate
nonparametric techniques-. Then, I present a brief survey on
empirical results on the wage structure in the U.S. labor
market. The chapter ends with an outline of the rest of the

thesis.
1.1 Regression trees and predictive learning

Mathematics, statistics, engineering, artificial intelligence,

and neural networks all study the problem of predictive

12



Chapter 1: Introduction

learning. A simple example of a predictive learning problem
involves one set of variables, sometimes called inputs,
sometimes called explanatory variables, and other times called
independent variables, and just one variable called either
output, response, or dependent variable. This wvariable is

defined over a subset of the real line!l.

The problem can consist of designing a system with which
interpolations of the output can be obtained from the inputs.
This is a mathematical problem called function approximation.
If some of the inputs are not observable, the mathematical model

is of a statistical nature. Let the model be

y=f(X1 rt 'Ixn) +e = f(x) +e. (1.1)

In (1.1) I assume an additive relation for the two sets  of
independent variables. The residual e is the effect of all the
unobserved variables on the dependent variable. A fixed effect
can be thought both as an observed constant effect and as the
effect of a constant unobserved variable. This makes model (1.1)
ambiguous. To solve this ambiguity, the unobserved residual e
can be defined by E[e|x]=0 where E[] is the expectation

operator.

The objective of predictive learning is to obtain a useful

! In statistics, when the response is categorical, the

problem is one of classification or discriminant analysis.

13



Chapter 1: Introduction

approximation to f(x)=E[y|x].

Neural networks use finite learning samples {y;,%;}; and learning
algorithms to produce outputs f* in response to inputs x* and
adapt its outputs £f* according to residuals {(y;—-f£f*(x;))};.
Statistics seeks to obtain true approximations of f on the local
area defined by the finite sample {y;,x;};. Thus, the stress in

statistics is on validating results while the stress in neural

networks is on learning.

Predictive learning is implemented through an optimization
problem on a finite sample. The objective function could be

f(x) = argmin ﬁb b& - g(xi)r . (1.2)
g(x)  i=1

An infinite number of functions can yield the minimum value,
zero, for the solution in (1.2). In order to obtain a well

defined problem in finite samples?, further assumptions must be

? The similar problem for a "sample of infinite size" is
well defined in the sense that only f(:) will be the solution

of the problem. Thus,

£(x) = argmin fEt[ f£(x) +e - g(x)]2 p(x)dx.
g

See e.g. Friedman (1994).

14



Chapter 1: Introduction

added. Every predictive learning method can be characterized as

a set of constraints on problem (1.2).

There are two general forms of restrictions. The first way to
restrict the problem is to place constraints on the class of
eligible functions g(x). The second alternative consists of
‘selecting a small number of input wvariables, so that the
dimension of the variable space is small relative to the finite

sample.

For high dimensional spaces, the second alternative is in many
practical cases not feasible. The reasons are generally known
as the curse of dimensionality. Firstly, there is the problem
of minimum required number of observations to have a densely
packed sample. If 100 observations represents a dense sample for
a single input system, then for xeR", the required sample would

0?° observations.

be 100Y. For 10 input variables we would need 1
Secondly, all observations are close to an edge of the sample®.
Consider a sample of three observations in a one-dimensional
problem. Two of the observations must be at the edge of the
sample. If you add a new dimension (input) to the problem, all

three observations will be at the edge, making interpolation

impossible.

3 That is, there are no more observations between that

observation and the edge of the space along one dimension.

15



Chapter 1: Introduction

The only way to overcome these problems in a high dimensional
setup 1is by incorporating outside knowledge -knowledge not
related to the sample- in the way of functional restrictions.
A direct way of doing this is by incorporating a penalty to
criterion (1.2):

f(x) = argmin{ii b@ - g(xiHZ + A ¢[g(x)]}. (1.3)

g(x) i=1

The best penalty ¢>0 is one that has small values for those g(x)
that are close to f(x) and large values otherwise. The strength
parameter A 1is inserted so that the penalty effect can be

adjusted independently from its form.

If no restriction is imposed on A, then we might want to solve

the two-step problem:

A = argmin 5§ [yi— (x| A)F . (1.4)

A i=1

However, this is not very interesting since (1.4) always yields

>
[}
(@]

(1.5)

The best fit is given by the solution without penalty. This fit,
however, may be very poor for any other independent sample,
i.e., the estimated surface may have very low predictive power.
A common approach to overcome overfitting is to divide the

sample into a learning and a test sample. The learning sample

16



Chapter 1: Introduction

pursuit, neural networks, and regression trees®. The objective
is to highlight what is common between these methods and what
characterizes regression trees more neatly.

1.1.1 Least squares parametric regression

Penalty function ¢ takes the form

o[g(x)] = if g(x) * h(x |61,...,ek) 16
olg(x)] =0 if g(x) =h(x|6,...,8,), (1.6
where h(*) is a continuous, doubly differentiable function with

respect to 6 that is completely specified but for a finite

number of unknown parameters in 6.

Problem (1.3) collapses to

{él""’ék} = argmin {i ly, - h(x; | 8, ...,ek)]z}. (1.7)

6,,...,8, (i1

The choice of A becomes irrelevant and there is no need for

cross-validation.

® For an introduction of neural networks, see e.g. Kuan and
White (1994). See Huber (1984) for a review on projection
pursuit. The basic reference for regression trees is Breiman et
alia (1984). These are the most popular predictive learning

models.

18



Chapter 1: Introduction

Assuming certain statistical properties for the error term, e,

leads to a complete inferential theory.

The function h(:*) needs not be linear, as it is the case of the

binary logit probability model, where

1
1+ exp(—xle)

h(x | 8) = G(x,0) = (1.8)

This is a multivariate nonlinear model and can be thought of as
a three-layer system. The first layer corresponds to the inputs,
x. The second layer is the linear index of the inputs, x“6. The

third layer is the output h(‘).

The model is flexible in the sense of giving nonlinear responses
because of the nonlinear relation between the second and the
third layer. This fundamental source of flexibility is fully
exploited in artificial neural networks, projection pursuit, and

regression trees.
1.1.2 Single hidden layer artificial neural networks

Penalty function ¢ now takes the form

L

olg(x)] == if g(x) ¢ {h(x]|0)} (1.9)

¢[g(x)] = p(B)< = else

where the family of functions {h;} are

19



Chapter 1: Introduction

h (x|a,y) = ;at - s(xly, ) (1.10)
and s(°*) is any smooth sigmoid function such that 0<s(°)xl.
Thus, G(*) in (1.8) is one of such functions®.

The indicator function

1 if p true

I(p) = (1.11)
0 if p false

was chosen as s(+*) in the first published articles on neural
networks. The indicator function is an activation devise. It
incorporates a new structure to model (1.10) when a threshold

is overcome in an index or hidden layer.

For some applications, smooth functions as activation devices
seem more useful than step functions. In biological neural
systems there is a tendency of certain types of neurons to be
idle in the presence of low levels of observed input activity,
and to become active only after input activity passes a

threshold. However, in empirical studies the threshold cannot

¢ Another common example 1s the arctangent function:

s(z) = 1 tan’lz + -1-
b 2

20



Chapter 1: Introduction

be properly detected when the problem is highly complex, as when
there are millions of switches. Therefore, it is probably a
better modelling strategy to bet on smooth activation functions,

where the threshold is blurred.

There are three ways in which (1.10) generalizes over (1.8).
Although model (1.10) has also three layers, its second layer
is more complex than the second layer in model (1.8). This layer
is wusually called the hidden layer in the neural network
literature. The number of elements in the hidden layer is not
fixed to one, but chosen in the optimization. The second way in
which model (1.10) is more general is that each component of the
second layer affects the output independently. The extent to
which it does so, a, must also be estimated. The smooth
activation function, s(*), <can be chosen from several
alternatives. Finally, cross-validation is crucial and the
selection of p(+ ) will influence the complexity of the

estimated model.

The role of s(+*) is pivotal in understanding the potential
applicability of neural networks. When s(*) is near 1, then the
corresponding a, intensively affects the output. If it is near
zero, the output is almost not affected by that element. One can
think of the elements of the hidden layers as rules, which will
specially apply under particular conditions in the inputs. This
feature is known in artificial neural networks as context

sensitivity and in regression trees as nonhomogeneity. It is

21



Chapter 1: Introduction

correctly regarded as a feature of the model's flexibility.

When the number of elements in the hidden layer is assumed to
be known, consistency results are obtained for backpropagation
estimates of model (1.10). See for example Kuan and White (1994)

for consistency and asymptotic normality results.

1.1.3 Projection pursuit and multiple hidden layer artificial

neural networks

In these two cases, penalty functions ¢ take the same general
form as in (1.9). In projection pursuit the family of functions
{hr} are

h(xla,y) = 3 s ( xy, | ay) (1.12)

tel

so that projection pursuit can be seen as a generalization from
single hidden layer artificial neural networks. The functions
s.{*) need not have a sigmoid form and, for example, smoothers

on local linear fits can be chosen to estimate their shape.

Multiple hidden layer artificial neural networks are also more
general models than single hidden layer models. Four layer
neural networks have two hidden layers. The outputs from the
first hidden layer are taken as the inputs for the second hidden
layer. In practice, he(*) will have a more flexible structure

than a single hidden layer with the same number of elements in

22



Chapter 1: Introduction

each layer.

Whether adding more hidden 1layers improves prediction will
depend on how well the resulting effect of the functions hg(*)

matches f£(-).

1l.1.4 Tree structures

Tree structured models have penalty functions similar to that

in (1.9). The family hg(*) includes all functions with the

generic form

hy(xja) = ¥ a I(xet), (1.13)
ter
where I(+) is the indicator function and T is a partition of the

space of all possible values of x, RM.

Usually, the subsets teT are restricted to be hyper-rectangles

parallel to the coordinate axis, so that

I(xet)=jrjl(uj<xjsvj), (1.14)

where the parameters {u;,v;} are the respective lower and upper

limit of the region on each axis.

Thus, h;(*) can also be expressed as

hT(xlx €t) =a, . (1.15)

23



Chapter 1: Introduction

These models borrow their name from the fact that they can be
represented by two-dimensional binary trees. This is not a small

advantage in a high dimensional nonparametric context.

Consider, as an example, the following tree structure defined
on the set CZE{[O,xﬂ], X;,€R, 1=1,2}
1 if X, $ X,y

c
=3¢, if X, > X, s X S Xy . (1.16)
c if X, > X, 1 X > Xy,

f(xl, xﬂ

3

Figure 1.1 in Appendix A shows a two-dimensional representation
of this three~-dimensional surface. If the structure had more

inputs, it would not be possible to draw this graph.

The same structure can be represented by Figure 1.2 in Appendix
A. This figure is a binary tree diagram. Each brand represents
a split of the input space. Each node of the tree represents a
subregion of the space. The root node represents the entire
space. The terminal nodes represent the regions, t, associated

with partition T.

Another example of a tree structured model is shown in Figure
1.3 in Appendix A. The dimension of the input space is four.
Thus, it is impossible to draw something 1like Figure 1.1.
Nonetheless, all the relevant information that can be obtained
from graphs such as Figure 1.1 can also be obtained from tree

diagrams when the surfaces are smooth but for a limited number

24



Chapter 1: Introduction

of edges.

The most important assumption in tree models such as (1.16) is
therefore the existence of sudden changes in the flat surfaces.
This is a very bad assumption if the surface changes smoothly.
Another problem is the possibility that the surface does not
change along parallel lines from the axis. Figure 1.4 represents
a structure with these two features. These shortcomings suggest

generalizing (1.15) to propose

h (x|x € £) = £ (x, a,). (1.17)

General models along this line have been implemented. They
mitigate the rigidity of the activation function by looking at
a very large number of splitting criteria and a large number of
surfaces. The cost comes both in terms of the complexity of the

efficient algorithms and the interpretation of the results.
1.1.5 Universal approximators

In the artificial neural networks 1literature, the models
reviewed in the previous sections are often interpreted as
approximations of the true model. A universal approximator is
a flexible functional form that can approximate an arbitrary
function to a particular level of accuracy. Neural networks,
projection pursuit and trees all share the functional form

hy(xla,v) = Ya, - b(xv, ). (1.18)
t=1

25



Chapter 1: Introduction

These models are also universal approximators for the class of

all continuous functions in the sense that any arbitrary

continuous function f(+) admits the representation
£(x) = Y a_-b(xy,) (1.19)
tel

for some set of sequence coefficient values’ {a,}”. Therefore,
these nonparametric models have similar spanning properties as,

for example, polynomials.

In spite of this result, it is reasonable to expect that in

small samples selection of the method becomes critical.

1.2 Estimation of regression trees

The original problem of estimating (1.15) is rather trivial if
we know the tree structure. Since the constant c¢ which minimizes
E[(y—c)ﬂxet] is E[ylxet], then the least squares estimator, LS,

is the sample average within each terminal node.

If we do not know the structure of the tree, then LS will not
be in general implementable for even not-too-high dimensional
problems. The reason is that LS will be a combinatorial -not an
analytical- problem in this context. In order to minimize (1.3)

one should evaluate all possible structures. This is an enormous

7 See Friedman (1994).
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Chapter 1: Introduction

task. Consider LS on a sample with 50 different cells assuming
that the structure has at most two terminal nodes. The number
of possible models is near 6x10'!. This is a very big number. If
we could process every iteration in a millionth of a second, we
would obtain LS only after 17 vyears of wuninterrupted
computations. Given the state of computer technology other

alternatives must be considered.

A second best solution of the problem is recursive partition.
The initial region is divided into two regions according to a
splitting criterion. Then, recursive partition 1is carried out
on each region. This strategy is implementable because, as
partitioning takes place, the corresponding regions -nodes in
tree terminology- include smaller and smaller subregions of the
original input space. The number of nodes increases at every
step, but each node becomes ever more local. An essential
feature in the procedure is that splitting of each region is

assessed only by studying a limited number of possible splits.

Let us now describe the splitting or tree-growing algorithm.
Assume that we have already several nodes and a tree structure

T and that we want to split node t*, one terminal node in T.

Define d(x) as the tree structure projections from T. The

average residual sum of squares for tree T is

R(T) = % i (y, -d(x;))? (1.20)
i=1

217



Chapter 1: Introduction

where N is the number of observations in our estimation sample.
We can also express R(T) explicitly as a function of the
residual sum of squares within each terminal node of the tree.

Then, (1.20) becomes

R(T) =~ ¥ ¥ ¢ y, - d(x,))?2 (1.21)

N teT x;et
where d(x;)=(1/N) e v;-

Recursive partitioning is defined through recursive
optimization. Heuristically, when a variable has a strong
contribution to the true tree structure, a split based on that
variable will 1likely improve the fit and thus reduce R(T)
greatly. Thus, recursive partitioning can be defined by choosing
the split at each step of the algorithm such that the reduction
in R(T) is maximized. The split chosen at each step of the

algorithm, s*, satisfies

OR(s*,T) =max R(T) - R(T,), (1.22)

SES

where T, is any tree obtained by splitting a terminal node, t,

into a left node, t;, and a right node, tz. Since

R(T) -R(T,) = = ¥ (y, -d(x,))?

x. et
' (1.23)
-z Z (yi'd(xi))z"l E (y; -d(x))?
N xietL N ‘xetn

the algorithm involves at each step the evaluation of the
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Chapter 1: Introduction

optimal split at each two new terminal nodes from the previous

split.

We can keep splitting the estimation sample until there are no
nodes with elements with different characteristics or the number
of observations reach a lower limit. This lower limit can be
fixed by the researcher according to the problem and is called
the splitting rule. Splitting ends when we obtain the largest
possible tree, Typx. Often, the result will be equivalent to
dividing the sample into all possible cells and computing within

cell averages, a standard nonparametric analysis.

Growing the tree until no further partitioning is possible helps
avoiding having to select a rule to stop splitting. Usually,
however, Tyax Will be too complex in the sense that some terminal
nodes could be aggregated into one terminal node. A more
simplified structure will normally lead to more accurate within
node estimates since the number of observations in each terminal
node grows as aggregation takes place. It is also intuitive to
see that if aggregation goes too far, aggregation bias will

become a serious problem.

In order to aggregate from Tyay We can use a clustering algorithm

procedure®. Breiman et alia (1984) propose to compute the

® See e.g. Gordon (1993) and Hartigan (1975) for

introductions to clustering algorithms. Piccolo (1990) proposes
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Chapter 1: Introduction

error-complexity measure R(q,T)=R(T)+a|T| for all possible trees
obtained from simplifying the structure by cutting, or pruning,
tree Tyax- Here, |T| denotes the number of terminal nodes in T,
that is, the complexity of the tree, and &« is a given parameter.
Note that R{(a,T) is an error-complexity function by which a

model is selected trading variance with complexity.

The tree structured estimate for a given «a is the value that
minimizes R(a,T) for the set of subtrees of Typx. The resulting
tree belongs to a much broader set of trees than the sequence
of all trees obtained in the recursive partition algorithm.
Heuristically, part of the harm done by recursive partition is
reduced. Thus, regression trees are much more powerful pattern

recognition tools than ordinary clustering algorithms.

Optimization of the error-complexity function for all possible
values of « leads to an increasing finite sequence of real
values O=q<a,<...<a and a decreasing finite sequence of
subtrees T;>T,>...>{root}, such that for any real value of[«,
%41) s Tx is the smallest subtree of Tyx minimizing R(a,T). See
Breiman et alia, (1984, p.289) for a proof of this result.
Implementing cost-complexity minimization for all a is then

possible through a weakest-link algorithm.

an alternative use to clustering algorithms in time series
modelling. See Scott and Symons (1971) and Bryant and Williamson
(1978) for the statistical analysis of these techniques.
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Chapter 1: Introduction

Any branch, T., spanning from a nonterminal node t of a tree T,

is cut only if

S Yy mdx)iras T XX (y -d)? v alTli1.2)

N xet t'el, xet’

so that the first branch to be cut minimizes

Y (y, -dx, - Y Y (y, -dix))?
x,et I t:l‘ez'l‘t x, et . (1.25)
T,| - 1

The initial intractable problem is thus reduced to one of
selecting an optimum-size tree from a decreasing sequence of

subtrees.

At each step of the pruning algorithm R(T) increases so that
R(T,) is the lowest value of the sequence {T;>T,>...>{root}}. For
the learning sample, our estimates d(x) from T, are therefore
least squares estimates among the sequence. This property is
satisfied in the estimation sample by definition, but it does
not have to do so in an independent sample. Choosing R(T;) as
our fit of the tree structured model may lead to overoptimistic

results for R(*) and the model will be overfitted.

There are three strategies to obtain unbiased estimates of R(-).
The first one is the use of an independent test sample. This is
most appropriate, due to its simplicity, when the data set has

many observations. It simply consists of randomly dividing the
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entire sample into a learning and a test sample. The tree is
grown and pruned with the learning sample, while unbiased
estimates of R(T), R'%, can be obtained with the observations of

the test sample and the estimates of the learning sample.

The other two alternatives to obtain unbiased estimates of R(-)
are K-fold cross-validation and the bootstrap method. Since they
will not be implemented in the following chapters, I refer the
reader to Breiman et alia (1984) for an introduction to the

application of these methods in regression trees.

It is possible to compute standard errors for R'S from the test
sample, SE(R"*®). R may be very flat along the sequence only to
increase at the last, coarser subtrees. When this happens it may
be difficult to justify the least squares subtree and it is
probably better to study several alternatives. Breiman et alia
(1984) suggest the 1 SE rule, which consists of selecting the
simpler tree whose R"° is not larger than the minimum RS plus
1 standard error. Using these corrections may greatly reduce the
number of terminal nodes of the tree. In the regression trees
literature, sometimes this is referred to as the goal of
obtaining parsimonious models. In a more general context
parsimony and complexity are, however, different concepts. For
example, in a simple 1linear model with one continuous
independent variable, complexity is infinity, whilst we can
still talk of a simple parsimonious model. In parametric

structures, the goal of parsimony can be obtained not only by
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reducing the number of projected values for the dependent
variable -complexity-, but also through the estimation of simple
relations between the dependent variable and the independent
variables. In the following, I will nonetheless use the concepts

of parsimony and complexity as interchangeable.

The small sample statistical properties of the estimator just
described are not known. This problem is not trivial because the
technique involves partitions of the input space based on the
learning sample. Thus, the estimates are the results of random

partitions.

Nonetheless it is possible to know something about the behavior
of the recursive estimates as the sample becomes larger and
larger. The fundamental consistency conditions for random
partitions are surprisingly general. All we need is an ever more
dense sample at all n-dimensional balls of the input space in
order to approximate in a g-square sense the nonparametric
surface. If the partition guarantees this, then the estimates
should converge to the true function. Cost-complexity
minimization together with test sample unbiased estimates of
R(+) guarantee that such condition is satisfied by regression
tree partitions. The basic results can be found in Breiman et

alia (1984, chapter 12).

A word of caution is nonetheless necessary. For small samples,

high correlation in the explanatory variables will induce
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instability in the tree topology so that slight changes in the
learning sample may cause splits to be made on different
variables. In this case, the interpretation of the contribution

of each variable will become problematic.

1.3 Regression trees in economics

Although regression trees has been used in several scientific
fields such as medical diagnosis, automatic identification of
chemical spectra and pollution level predictors in urban areas,

its implementation in economics has been to date rather small.

Nonetheless, we have seen some examples of implementation of the
technique in economics during the 90s. Here I present a brief

summary of three of them.

They highlight in my view its potential applicability to study
economic issues. In the following section I will argue that the
study of wages 1is a field where this technique can be

interesting to apply.

1.3.1 A classification algorithm

Cotterman and Perachi (1992) describe a method for deciding how
to aggregate a set of elementary U.S. industries. The method is
based on regression trees methodology and it is an alternative

procedure to standard clustering algorithms that allows for a
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much broader set of aggregation alternatives.

The fundamental difference with respect to standard regression
trees is that their methodology simplifies the first algorithm,
growing-the-tree, into a simple clustering algorithm. The second
step corresponds to pruning-the-tree. Finally, since they are
only interested in reporting alternative levels of industry
aggregation, they do not implement cross-validation, but present
the &ifferences between their aggregation techniques and the

15-industry level proposed be the U.S. Bureau of the Census.

In order to grow the tree, they propose two measures of
closeness between the elementary industries. First, using data
from the Current Population Survey prepared by the Bureau of the
Census, CPS, and a matching algorithm, it is possible to have
for some individuals two independent codings of the industry of
employment. For some workers, however, these codings do not
coincide. Further, they seem to affect some pairs of industries
more than others. The authors attribute them to three potential
causes: data collecting errors, errors in the matching algorithm
or, finally, ambiguity in the definition of the elementary
industries. They assume that the last cause is the relevant one
and propose mismatch rates between industry codings as measures
of similarity. The second proposed measure of industry closeness
is the workers' transitions between industries. The measure is
reasonable when individuals move more frequently between similar

industries. A pooled sample from 1977 to 1982 was used in the
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algorithms. Both measures led to different results for the
hierarchical tree. It is interesting that the authors depart
from common practice in clustering when they propose these
measures. The usual procedure is to define closeness through a
distance based on a vector of characteristics. They tried to

overcome the arbitrary step of defining this vector.

Optimal pruning using log-wage data for the years 1971-1982
again from the CPS was carried out. Residual sum of squares were
obtained from regressions of weekly wages on years of schooling,
years of experience and its square. The authors find important
differences in the various aggregation schemes, and conclude®
that since "(...) the outcome of much applied work may hinge on
the aggregates employed"”, then " (...) procedures for
classification and aggregation are legitimate and important

subjects of inquiry".

1.3.2 Melon prices

Russel Tronstad (1995) applies regression trees to estimate
discounts and premiums due to various characteristics of
wholesale melons. Characteristics considered are melon type,

size, grade, shipping container, week, and year.

Melons are highly perishable products, so that supply of melons

° Cotterman and Perachi (1992, p.50).

36



Chapter 1: Introduction

can be assumed to be perfectly inelastic. After correcting from
season, differences in prices between different types of melons
thus show differences in demands that are due to differences in

the characteristics, not in relative supplies.

The model was estimated with weekly price data from 3 January
1990 through 28 December 1993. Twelve different melon types were
considered. The data source was the Los Angeles Wholesale Fruit
and Vegetable Report, published by the U.S. Department of

Agriculture.

The results compared favorably to standard parametric regression
in the sense of a higher coefficient of determination. The
author also considers that regression trees performed better
since it allowed for interaction between discrete variables.
Allowing for these interactions on the OLS regression would have
required a very large number of dummy variables. Efficient
estimation would have then demanded the implementation of some

model selection algorithm.

1.3.3 Multiple growth regimes

Durlauf and Johnson (1995) use regression trees to identify

national economies with different laws of growth.

They argue that a cross-section linear regression applied to

growth data generated by economies converging to multiple steady
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states can produce a negative initial income coefficient. Thus,
a negative sign in this coefficient cannot be taken as evidence

of convergence in income per capita for all countries.

The data source is Summers and Heston (1988) and the World
Bank's World Tables and World Development Report. The authors
initially carry out ad hoc splits of the countries into two,
three and four groups based on their initial per capita output
and literacy rates. They then test for the existence of a common
growth path for these groups. They reject the null hypothesis
against the alternative of multiple regimes in a human capital
specification and in an augmented version that tries to
incorporate social and political factors. In both cases, they
reject the hypothesis of a single growth regime against the

hypothesis of several regimes.

Regression trees allows for endogenously finding the number and
specification of growth regimes. The splitting criteria in the
tree are based on initial literacy rates and income per capita.
This is consistent with the multiple regime framework since if
economies are concentrated around several steady states, then
their initial values for these variables will cluster for each
group. Within nodes sum of squares are computed from the

residuals of the growth equations.

The algorithm partitions the world economy into four groups and

the estimates are consistent with the wview that different
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economies have access to different aggregate technologies.

In the following section I will consider the use of regression
trees in the study of the wage structure. I will present
empirical results that highlight the strong context-sensitivity
feature that wages present in the U.S.. I will then give an
outline of the rest of this volume and will end with a
description of the data and programming to be used in the

following empirical applications.

1.4 Nonparametric Wage. Structures

1.4.1 Wage structures

The concept of the wage structure is fundamental in the
empirical analysis of the <characteristics of the wage
distribution. It refers to the vector of prices set for various
labor market skills and the rents received for employment in

particular sectors of the economy.

The labor market is seen as a complex structure that consists
of interrelated local markets with different market equilibrium
wages. A description of this structure and its evolution is of
clear interest to study problems as varied as the effects of
technological change, the sources of wage inequality, and

discrimination in the labor market.
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We can start by simply assuming that the logarithm of the
market-clearing wage for any worker, w;, depends on observed and
unobserved characteristics that position the worker in a segment

of the labor market.

It is customary to assume a linear relation between the observed
and unobserved effects, where the unobserved effect term will
have zero expected value and small variance o¢?. The general
specification for the econometric model in this literature is

then simply

w, = f(x,) +v, . (1.26)

The simplest and commonest specification for (1.26) is a
polynomial parametric relation between the explanatory
variables. For example, a squared term for experience on top of
a linear model is usually included since the publication of the

seminal work of Mincer (1974)1°.

The linear parametric approach implies that each variable's

additional contribution to wages is constant or follows a

1© Tt is customary to refer to a wage equation that is

linear on the education level, experience, and experience? as a
Mincer equation. The conection between human capital models and
this simple specification was one of the main contributions of
Mincer. This is nowadays sometimes recognized by referring to

Mincer equations just as human capital specifications.
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be solved by adding just a few quadratic terms in the right-hand
side of the equation? My intuition is that it cannot. By
postulating a rigid structure, the researcher may distort the
information available in the data set so that the results will

not be useful.

In the next section, I will review the empirical evidence on

context sensitivity in the U.S. wage structure.

1.4.2 A survey on context sensitivity in the U.S. wage structure

There is a remarkable consensus in the economic literature on
the recent general trends of relative wages. It seems that the
fundamental dynamic features of wages are sufficiently well

described along just three or four dimensions.

First, there was a general trend of wage dispersion and a slow
down of growth in real wages during the eighties. Second, there
have been increases in the wage differentials between workers
with college and high school education for all demographic
groups defined by gender and age. Experience differentials have
continued a long-term increasing trend. On the other hand,

gender differentials narrowed further while race differentials

reported that the parameters of these terms were not
significantly different from zero when wages instead of earnings
were used in the regression.
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remained stable in the last twenty years. Industry differentials

have also remained stable.

Compared with the trends observed in the sixties and seventies,
the growing inequality in the eighties was not a unique
phenomenon. Wage dispersion within groups and increases in
experience differentials were not new trends. However, the
reductions in the College premium during the 1970's and the
narrowing of the race differentials before 1975 did not occur

later?®s.

On top of these general stylized facts we can find many reported
local cases of context sensitivity or nonhomogeneity in wage
differentials. Probably the best known of these is the different
behavior of the experience differential between high school and
college graduates. It seems that the combination of college

attendance and job experience was an unbeatable one during the

13 see, for example, Levy and Murname (1992) and Buschinski
(1994). Allen (1995) analyzes changes in the wage structure
across manufacturing over the years 1890-1990. He concludes that
interindustry wage differentials were highly stable over the
entire period for production workers. Interindustry wage

differentials were stable for all workers from 1958 onwards.
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eighties!. Welch (1979) argued that college graduates are more
imperfect substitutes for more experienced graduates than is the

case for workers with less education.

Similar asymmetries can be found along other demographic
dimensions. Let us consider the interaction between education
and race. While the college-going rate for 18-24 year old,
white, high-school graduates increased from 31.2% to 38.1%
between 1979 and 1987, the college going rate for black high
school graduates in this age group fell from 29.5% to 28.1%,

suggesting that the college premium has a race story inside?s.

The race differential for women almost disappeared in the 1970s,
while it remained stable for male!®. Thus, either the wage
structure is becoming nonhomogeneous with respect to the race

differential, or it never was.

Some authors have studied the relationships between sector of
employment and race. Greene and Rogers (1994), for example, find
important differences between the private and public sectors

with respect to earnings of college-educated black and white

4 See, amongst others, Bound and Johnson (1992), Katz and
Murphy (1892), and Murphy and Welch (1992).

!5 See Levy and Murnane (1992) and also Ashraf (1995).

¢ Ssee, for example, Murphy and Welch (1992) and Blau and
Beller (1992).
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professionals.

Bound and Holzer (1993) estimate the effects of industrial
shifts in the 1970s on the wages and employment of black and
white males and find that while the magnitudes of these effects
are fairly small for many groups, they can account for about 40-
50 percent of the employment decline for less-educated young

blacks.

Firm and industry effects have also been compared on several
occasions. Davis and Haltiwanger (1991) find that steady growth
in wage differentials among plants in the manufacturing sector
between 1975 and 1986 accounts for half of the growth in wage

dispersion within this sector!’.

Bound and Johnson (1992) find that when 45 instead of 17

industries were used for "all men" and "all women" groups, most

7 It is unclear whether this pattern extends to other

industries, particularly after considering that international
competition may have increased the pressure on firms to choose
between quality improvements or cost reductions in the labor
force. Levy and Murnane (1992) argue that the eighties may just
have been a period of adjustment for the manufacturing sector
that will end when those firms which chose the losing strategy

disappear.
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of the industry effects were picked up by the dummy variables
for 17 industries. The interesting exceptions were non-college
men during the 1980's, for whom the use of detailed industry
dummies increased the total industry wage effects by up to one-

half.

Blackburn (1990) shows that approximately 15 percent of the
increase in within-group variation for men stems from the

movement of workers from goods producing industries to services.

Other variables of potential interest have also been studied and

their interactions locally analyzed. A few examples follow.

There is no clear consensus on regional variations and their
effects on the wage structure. Eberts and Schweitzer (1994) find
that the trend in regional variation can be traced to declining
differences in 1labor market valuations of worker attributes
rather than to shifts in the regional composition of the
workforce. See also Gyimah and Fichtenbaum (1994) for an
investigation on the regional differences in labor market gender
and race discrimination. Larger differences do not imply larger

discrimination.
Immigrants with lower initial wages were assimilated in the U.S.

market faster than those with higher initial wages (Lalonde and

Topel, 1991).

46



Chapter 1: Introduction

Social status has also been considered: Among males, growth in
the proportion of males in the labor force who are unmarried has

affected the married status differentiall®,

Finally, Adamson (1993) study differences in union affiliation
relative wages across gender and race and finds that the female
union effect declined over the 1970-1982 period whilst the size

of the male union effect remained stable.

The list of cases is not at all exhaustive. The examples
nevertheless transmit the message that local analysis unveils
context sensitivity. This 1is done by focusing on the
interactions of at most three variables. Note that in order to
observe context sensitivity using parametric techniques we must
include at least quadratic effects in the set of explanatory
variables or, more generally, estimate different wage equations
in different segments of the labor market. This, in effect,
eliminates the possibility of a global context-sensitive

parametric approach.

From the extensive literature on wage premiums we must conclude
that any global analysis of wages may suffer from aggregation
bias and that even 1local studies should take account of

nonhomogeneous features in the structure.

¥ see Blackburn (1990) and Blackburn and Korenman (1994).
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It seems therefore desirable to keep the empirical analysis to
the highest level of flexibility. A nonparametric approach over
all possible points of the input space cannot be used for
practical reasons. A simple example will fix ideas. Bound and
Johnson (1992) did not try a very detailed specification of the
input space. They took three periods (1973-1974, 1979, and 1988)
and for each of them the population was divided into 32
subsamples -according to education, potential 1labor market
experience and gender- on which wage regressions were carried
out with dummies for the following characteristics: Educational
attainment, nonwhite, part-time employment, residence in an
SMSA, four major regions and employment in 17 major industries.
The most complex nonparametric surface would involve 15,000
different 1labor groups. In order to have at 1least 50
observations for each type of worker, the research can only be

carried out with samples of at least 750,000 observations.

Thus, it seems that ad hoc searches for the best functional
local parametric specification is the only available strategy.
It is not. Parsimonious nonparametric econometric models such
as regression trees allow for simple nonparametric structures
in the sense of a low number of different expected equilibrium
wages'®. They thus provide a very useful tool in the study of

local segments of the labor market.

® This is the result when the splitting rule constraint is
activated in the splitting algorithm.
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1.5 Outline of the thesis

1.5.1 Outline of the thesis

The fundamental econometric problem that model (2.1) may have
is related to the statistical relation between the observed
variables and a subset of the unobserved variables. The general
idea 1is that if economic agents take decisions based on an
opportunity set not observable to the researcher, and if
opportunities vary across agents, then observable data will be
censored and the error term may not be independent of one of the

regressors.

In the context of measuring the returns to education, this self-
selection/omitted wvariables problem would imply that OLS
estimates of the education coefficient may be upward biased.
Intuitively, individuals with higher ability, an unobservable
variable, will normally choose higher 1levels of schooling
becaﬁse they can benefit most from it (e.g. Griliches (1977)).
The interpretation of the importance of the education variable

in the estimated tree will also present the same problem.

In the context of gender differentials, participation decisions
in the labor market censors especially female data. Again, LS
estimates will be biased if the decision to participate is
affected by some observable factors in the wage equation (2.1)

or an ability dimension related to observable variables, such
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as education. The same problems affect again the interpretation

of the gender estimate in regression trees.

It is possible to define regression trees so that these problems
can be addressed. The main idea is to use standard parametric
regression techniques designed to cope with these problems at
each node instead of simple within node averages in order to
estimate the impurity at each node. This is, no doubt, a very

interesting direction to enlarge this study.

In the rest of the thesis, I will present, however, the results
of applying the simplest regression trees algorithms to samples
of populations for whom, I will argue, the econometric problems

just mentioned are minimized.

Three applications of regression trees on the study of the wage
structure are implemented in the following three chapters of

this dissertation:

a.- I will first estimate experience-wage profiles for

white male full-time employed workers.

b.- Secondly, I will decompose average wage differentials
of different groups using nonparametric structures estimated by

regression trees.

c.- Finally, I will look at trenhds and inequality using
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nonparametric wage structures estimated by regression trees.

Obviously, the choice of the subjects probably reflects mostly
the interests of the author and I would not like to suggest that
these fields are the most promising for the application of
nonparametric multivariate techniques to the study of wage

structures.

Before turning to the results of the empirical applications, I
would like to comment on the data set and the programming

language used.

1.5.2 Data and programming

In the following chapters I will use the outgoing rotation
groups of the Current Population Survey (CPS). The Current
Population Survey is a monthly survey of now about 60,000
households prepared by the Bureau of Labor Statistics, BLS. An
adult (the reference person) at each household is asked to
report on the activities of all other persons in the household.
There is a record in the file for each adult person. The

universe is the adult noninstitutional population.

Each household entering the CPS is administered four monthly
interviews, then ignored for eight months, then interviewed
again for four more months. If the occupants of a dwelling unit

move, they are not followed, rather the new occupants of the
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unit are interviewed. Since 1979 only households in months
fourth and eighth have been asked their wusual weekly
earnings/usual weekly hours of work. These are the outgoing
rotation groups, and each year the BLS gathers all these
interviews together into a single Merged Outgoing Rotation
Group. A consequence of this construction is that an individual
appears only once in any file year, but may reappear in the
following year. The National Bureau of Economic Research, NBER,

has prepared a CD-ROM with extracts of the files.

These data have, however, some limitations as a data set for
studying the evolution of wages across different groups?®. I will

comment on four problems that may distort results.

First, the definition of income does not include fringe
benefits, which have constituted a rising proportion of income
compensation. Levy and Murnane (1992) argue that after adjusting
for fringe benefits the difference between the rates of growth
of real wages for the sixties and eighties diminishes, but the

eighties value is still well below the pre-1973 period.

Second, to preserve confidentiality in the upper tail of the
income distribution, the statistics reported are top-coded at

$50,000 from 1968-1981, $75,000 from 1982 to 1984 and $99, 000

?® For a more detailed discussion, see Levy and Murnane

(1992).
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from 1985. This problem can actually be lessened by avoiding all
together the tails of the distribution although more

sophisticated procedures have been proposed?!.

The fact that the CPS lacks information on firm specific
activities can be important if workers have heterogeneous

characteristics and production potential across firms.

Finally, the CPS data may overstate the rate of growth during
the 1980's in the proportion of new labor market entrants who
were college educated and underestimate the earnings of workers
who completed a normal high school programme. Bishop (1991)
finds an unprecedented mismatch in the 1980's between the CPS
data on new entrants who had accomplished college education and
the number of degrees awarded in the U.S.. With respect to high
school graduates, before 1988 the CPS treated both holders of
the General Educational Development exam and traditional high
school graduates as having completed 12 years of schooling.
However, Cameron and Heckman (1991) find, with data from the
National Longitudinal Study of Youth data set, that the first
group earnings patterns are indistinguishable from high school

dropouts.

21 Truncation corrections for top coding normally assume a
gamma distribution for the upper tail of the yearly income

distribution.
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I implemented regression trees algorithms on large data sets of
wages. The computations were carried out using the author's
procedures programmed in GAUSS for regression trees on ordered
variables. An interesting feature of the chosen programming
language was the possibility of wusing a simple matrix
programming language together with large data sets. 1In
particular, the procedures were able to process sets with more
than 60,000 observations with speed in a personal computer and
limited memory. Available commercial software would not do the

job. The procedures are available upon request to the author.
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Appendix A

Figure 1.1 2D representation of structure

if x2 s x21
f(xx , X2) = if X2 > X21 X1ls xu
if x2> x2

X1 > xu
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Root
Node
x2<=x21 x2>x21
Node 2 Node 3
x1 <=x11 x1>x11
Node 4 Node 5

Figure 1.2 Binary tree representation of structure
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Node 2
Node 4 Node 5
x3<=b3
Node 7 Node 8
c4

Figure 1.3 Binary tree

structure
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x2>b1
Node 3
Node 6 Node 7
1 x4<=b5
Node 9 Node 10
c5
Node 11 Node 12
(02}

representation of a 4-dimensional

tree
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F:Lgure 1.4 2»p representation of a general tree structure



Chapter 2

Tree estimation of experience-wage profiles

2.1 Introduction

The theory of human capital in its general form has no
functional specification. The observed inverted-u shape in the
experience- wage profile! is explained as the result of two
effects: (a) increases in the wage as the worker gains
experience and spends less time in training, and (b) decreases
in wages due to human capital losses or depreciation. For
convenience, the depreciation rate is often taken to be
constant. However, if it is not, multiple human <capital

accumulation paths can occur in a cross-section of workers.

! See Figure 2.1 in appendix A.
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While the general human capital model predicts wages that
eventually decline, alternative theories of wage growth
over the life cycle do not necessarily predict declining
wages at older ages. So, for example, the shirking model
which views wage growth as a worker discipline device, can
have rising wages if the future disutility of effort is not
too high (See Johnson and Neumark, 1996). Declines in wages
for older workers are then related to negative shifts in

the labour demand for these workers.

In this chapter I will assume that sudden losses of human
capital can affect individuals at the late stages of their
working 1lives. This may induce different human capital
accumulation regimes in a cross-section that will result in
structural breaks in the observed experience-wage profiles.
Although I use the human capital explanation to fix ideas, it
is interesting to note that the empirical analysis could also
be carried out trying to isolate sudden drops in observed wages
at the end of the working life for some local types of workers
and study whether these falls are demand or supply driven.
Alternatively we can see this study as a way of characterizing
local types of workers that suffered sudden losses in their

wages at the end of their working lives.

A parametric fit of profiles with late structural breaks will

wrongly exploit losses of human capital for the most experienced
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workers as information on the concavity of the profile. For
example, if we fit a smooth quadratic function, a sudden loss
will be understood not as a step movement but as a smooth

decline and the fit may still be reasonably good?.

Moreover, parametric regressions will smooth differentials in
the experience-wage profiles among workers with different
characteristics. Thus, local losses or breaks in the experience-

wage profiles will pass unnoticed to the researcher.

In section 4 of this chapter I present the results from
estimating a multivariate nonparametric human capital surface
for 1980, 1985, 1990, and 1995 with regression trees. This
econometric model allows for local breaks of the experience-wage
profiles in a multivariate context. We can therefore uncover
sudden losses of wages for old workers by defining 1local
smoothness applying a kernel estimator on the projections

obtained from the nonparametric regression.

This exercise will allow me to answer the question: Are there
any breaks in the experience-wage profiles? If there are, can
they explain the declining average tendency of wages at the end

of the working life as in Figure 2.1 in Appendix A?

? Murphy and Welch (1990) argue that "two-thirds of the
late career decline implied by the quadratic is an artifact of
specification” (Murphy and Welch, 1990, page 204).
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2.2 The theoretical framework

Each worker works a fixed amount of time and has a certain
amount of productive capacity. We can call this potential
earnings or human capital. Human capital is not transferable and
it can be augmented by learning at school, at college, as an
apprentice, and on the job. Let us denote human capital by k and

its time derivative by k.

I will assume that on-the-job learning is not firm-specific and
is provided by firms freely as a by-product of the production
process. They do so because they cannot reap the returns of
learning from the worker. If they tried, the worker would move
to another firm at a wage reflecting the full value of the human

capital embodied in her ( Becker, 1993, pages 30-40).

Training is however not costless for the worker since firms will
implicitly charge her with its cost. We can assume, for example,
that firms offer jobs with different learning and production
intensities. Take 0<x<l as the proportion of training of a job.
If the loss of output for the firm due to training is associated
solely with the shift of the worker's own time from work to
training, then we can think of x as the proportion of time spent
on training and (l1-x) as the proportion of time spent on
production. Each worker's contribution to the production process

will depend on (1-x)-k.
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Competitive firms will offer to the worker a contract specifying
the wage and the training content. Profit maximization implies
that wages will equal marginal revenues for the firms. If r is
the rental rate of human capital and if workers are perfect
substitutes in the production process, r must equal the marginal
productivity of total human capital. Then, wages for workers
with k human capital in a job with x learning intensity are

equal to w=r(l- x)k. The costs of training are rxk.

Working under this contract will produce new human capital to
the worker as a by-product. We can denote this by k = f(k,x).
The problem the worker faces is dynamic. Training today raises
tomorrow's wage through an increase in human capital, but

decreases today's wages.

This problem® can be formally stated as

T
max| rk(l-x)e it dt
{x!} 0

s.t. (2.1)
k = f(k,x), k(0)=kg,
O<x<1

where T is the worker's fixed end of the working life and i is

the interest rate in the capital market.

3 See Ben-Porath (1967) for a similar formulation and an

introduction to the early literature. See Weiss (1986) for a

survey on functional specifications.
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This 1is a standard control problem and can be solved by
maximizing full earnings of the worker, that is, his current
earnings and the value of the additional human capital. This is
effectively done by the Maximum Principle of Pontryagin.
Different human capital production functions, £(* ), will render

different optimal paths for x(t), k(t), and w(t).

Since k is net increase of human capital, f(+ ) must take
account of the fact that human capital can also depreciate. Some
examples are of interest. General technological improvements
will make part of all workers' human capital obsolete. It is
reasonable to assume that this type of destruction of human
capital will be proportional to the amount of human capital the
worker has. The proportion will also be equal among workers,
reflecting the generality of the process. This case justifies
the assumption of a constant rate of depreciation among

workers'!. Workers suffering certain progressive illnesses will

! Growing old is a source of physical deterioration that

may have a similar property. Fair (1994) studies the rate at
which people phisically deteriorate using data on race and field
records. The results show that the depreciation rate remains
fairly constant until athletes are in their fifties. Mincer
(1974, page 22) already suggests that a wvery 1low rate of
depreciation during most of the working life, beginning to rise
only at the end, could be assumed on health and psychological

grounds.

64



Chapter 2: Tree estimation of experience-wage profiles

have increasing destruction of their productive capacity. Here,
the best model is a positive time trend for the human capital
depreciation rate. Finally, specialists working in a
technologically changing sector of the economy may suffer sudden
losses of human capital with a positive probability. Here, human
capital depreciation is probably best modelled as a random

process.

Therefore, as Mincer (1974, page 20) argues, "[...] the
finiteness of life, the increasing incidence of illness at older
ages, and the secular progress of knowledge, which makes older
education and skill vintages obsolescent, are compelling facts
suggesting that as age advances, effects of depreciation

eventually begin to outstrip gross investment".

In the next subsections, I will review several specifications
for f(k,x), commenting on the properties of the optimal paths.
I will stress the effects of the assumption of a constant rate
of depreciation of human capital on the evolution of optimal

human capital accumulation and wages.

There are of course many other specifications available in the
literature. The purpose here is to show the effects of the
assumptions on the depreciation of human capital. I begin with
a simplified version of the benchmark model developed in Ben-

Porath.
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2.2.1 Ben-Porath (1967)

We assume that f£(k,x)=(kx)®-3k. This specification incorporates
a constant rate of depreciation that is not necessarily
different from zero. A positive constant rate of depreciation
means that all individuals suffer proportional losses of human
capital at all ages. One can think of this as the effect of
general technological progress. When gross investment in human
capital is small enough, this depreciation can be the driving
force behind falls in potential earnings. A priori, we can
expect this to happen at the end of the working life, when it
simply does not pay to fight against the loss of knowledge by

sacrificing current earnings.
The Hamiltonian of the control problem (2.1) takes on the form
H = rk(1-x)e 7t + v{(kx)1"2 - 3k}, (2.2)

where v is the discounted marginal value of an additional unit

of human capital.

Necessary conditions for the optimal control path for this

problem are

H, = -

H =0

k(0) =k (2.3)
v(T) =0

H(k®*,v"x"t) =H(k", Vv x,t), Vte[0,T]

Let us define current marginal values as u=v-eit., From now on,
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I omit for simplicity asterisks in the optimal paths. From (2.3)

we have three groups of necessary conditions:

Dynamic conditions

_ 1-a
a =((i +5) - tima) (kx) )u - r(l-x),
k (2.4)
k = (kx)'™® - 3k.
Initial and terminal conditions
k(0) =k,
u(T) =0 (2.5)
Static conditions
If u(l-a)kl®>rk=x=1
(kx)12 (2.6)

If u(l-a) =rk=0<xx<1

Conditions (2.6) show that the worker will either devote all
time to learning, schooling, or will learn on the job, but at
no point in the worker's working life will on-the-job learning

cease’.

3 This result is contingent on the functional
specification. When the marginal productivity of training on
production of human capital is linear, there must be a period
at the end of the working life in which no training takes place.

In the absence of depreciation this will lead to a flat
experience-wage profile in the last stages of the working life.
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Terminal condition u(T)=0 secures no schooling at the end of the

worker's life. Dynamics during the schooling period are

Sy - 22
u k2
(2.7)
._k.=.i—6,
k k2

with k(0)=k,. The terminal condition for u, u(tg)=u®, can be
fully characterized once the solution for the optimal path in

the following phase, on-the-job learning, has been obtained.

We can solve this system by a change of wvariable. Note that
human capital growth depends on its value only. Taking z=1/k® we

get the separable differential equation

dz

ICEE TR (2.8)

and solving back for k? we obtain the optimal path for k(t),

k()2 = ( - (1 - Bk$) e, (2.9)

o=

Taking into account the differential equation for u -the value
of human capital investment- (2.9) implies that u will decrease
during this period. As the worker ages, investment in human

capital becomes less valuable as future life becomes shorter.

If there is depreciation, the plateau happens in the middle of

the working life. See, for example, Sheshinski (1968).
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As u decreases and k increases, the system moves closer to the

interior solution and on-the~job learning.

From the terminal condition on u(T) and the static conditions
we see that there must always be a phase of on-the~job learning.
The existence of schooling will depend on the life span of the
worker. The shorter the working 1life 1is, the 1lower the
discounted marginal value of investing in human capital, and the
more likely it is that it is optimal for the worker to start

working at t=0.

I will now study the interior solution for =x. The static

condition for the internal solution is

(1 -a)u(kx)*"2=rkx, 0<x<1. (2.10)

Consider for simplicity the case when a=1/2. If we substitute

(2.10) into the differential equation for k in (2.4) we obtain:

k
= = - 3. 2.11
" ( )

If the marginal wvalue of training is positive, u>0, then from
(2.10) we see that there will be some amount of training, x>0,
and the rate of growth of the human capital stock will tend to
be positive. However, when the training effort is so small that
the first term of the right-hand side of (2.11) is smaller than
5, then the stock of human capital will fall. It will be shortly

shown that u also follows a declining path during the working
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phase. Thus, human capital will fall at the late stages of the
worker's life, when u/2rk is smaller than the constant rate of

depreciation.

The constant rate of depreciation is therefore the driving force

behind the decline of potential and observed wages.

If no depreciation affected human capital, average wages would
increase always. Then, since human capital investment has always
a positive although decreasing marginal wvalue, potential
earnings will always increase, and the training effort will

gradually be reduced.

Let us now study the system for 0<a<l. If we substitute the
dynamic condition for human capital into the static condition,

we get

% - (l-a)'l(-r—x] - 5. (2.12)

On the other hand, from the two dynamic conditions we have

=l (1 + ) —(l—a)(% +5J)u -r(l - x) (2.13)

cle

so that by substituting (2.12) into (2.13) and rearranging we
obtain that the marginal value of investment depends only on

time:
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ua=(i+3du-r, u(T) =0 (2.14)

so that

u(t) =( = )(1 - e"i*é’”'“) (2.15)

(1+8)

which is a decreasing function of time®. From this and the
static condition we have that gross human capital investment

always increases:

(kx)? =(-———) u (2.16)

and human capital will decrease when

(_”_'ra)_“)ﬁ<5k. (2.17)

A simple analytical solution for the optimal path of k can be

obtained if we further assume that a=1/2.

The differential equation for k takes then the form:

r<=%-5k, k() = k=, (2.18)

¢ This is, again, a feature of the Ben-Porath model that
makes solving the model a simple task. We will see a similar

result once we introduce a random shock.
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The solution for k is

S(t

S(t,-t) +A(L - e ,-t)) +B (e‘i +8)t

k(t) = ke - %5y (2.19)

where A=1/(2(i+3)3) and B=-(e ‘**3Ty /(2 (1i+58) (1+235).

Since w=r-k-(1l-x) and (kx)=(u/2r)?, we have that wages increase
only if human capital increases since the marginal value of

human capital investment is always decreasing:

W=rk—r%(kx). (2.20)

Obviously, wages will peak later than potential wages due to the

cost of training.

To sum up, when the depreciation rate is positive, this model
generates concavity of the experience-wage profile during the
working period with increasing wages at the beginning and

decreasing wages at the end’.

If there is no depreciation, this model will generate concavity
of the experience-wage profile during the working period but
cannot account for the observed decline in wages during the last

years of the working life.

’ As already stated, a linear model for the effect on human
capital acumulation of training with depreciation, as in
Sheshinski (1968), will generate concave experience-wage
profiles with a plateau in the middle of the working life.
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There may be, however, an alternative explanation for the
reduction in average wages 1in a cross-section. Consider the
effect of an unexpected drop in the stock of human capital for

an old worker.

To use the results of the model, we simply have to consider what
happens when T is very small and there is a sudden loss in kg.
If the loss is sufficiently big, there will be not enough time
left in the working life to recover from the initial loss, and
the wage will be lower that at t=0. Thus, we can see declining
wages for workers who suffer unexpected losses of human capital.
This argument is clearly not a satisfactory explanation if all
wages tended to decline at the last stages of the working life
in a cross-section, since if there was a tendency for losses of

human capital then, they would not be unexpected.

It may be however a good explanation for part of the decline of
average wages at the last stages of the working life. The
argument would be that although not everyone suffers
depreciation of human capital, those who do, do in such a scale,
that push average wages down because all incentives for further

investment have been exhausted.

If we introduce in the model different types of workers and

observe that different old workers are affected in different

periods by losses of human capital, we may compute the effect
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of these losses on average wages®. It is however then more
realistic to assume that this uncertainty in the losses is
nevertheless taken into account by the workers in their plans
for human capital accumulation. I will follow this line of

modelling at the end of this section.
2.2.2 Uncertainty and human capital

The model just reviewed includes the two fundamental aspects of
the human capital explanation to the inverted-u shape of average
wages. First, finiteness of life is crucial since human capital
is embodied in each person and cannot be transferred. This
becomes an irresistible factor to decrease investment effort
along time since there is a trade off between investment and
current earnings. For the same reason, on-the-job learning will
tend to take place at the beginning of the working life. This

accounts for concavity.

Secondly, losses of human capital will induce decreases in wages
at all ages. However, since the investment effort decreases with
experience, the overall effect of the losses plus learning will

tend to be negative only at the end of the working life.

We have seen that even when no unexpected vintage effects in a

® See Willis (1986) for a simple model of heterogenous

human capital and schooling.
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cross—-section are present, average wages may first go up and
then down depending on our assumptions on human capital
destruction. To account for this behavior in a model without a
constant rate of depreciation, we need that old workers suffer

losses of human capital.

Uncertain losses of human capital have been modelled by Williams
{(1979) in a context of uncertainty for a level parameter in £(.)
and the rental rate of human capital. He further assumes a
positive correlation for the two shocks and concludes that

workers may hedge against obsolescence by greater investment.

Williams (1978) uses a two period model to conclude that
investment in human capital is encouraged when risk increases.
Nonetheless, the fundamental result on investment effort still
holds: investment in human capital is declining monotonically

with the worker's age.

In the following section I present a simple model of human
capital accumulation when there 1is uncertainty in the

depreciation of human capital.

2.2.3 A simple model of uncertainty in the depreciation of human

capital

In this section I will develop a model of human capital

accumulation using the theoretical setting introduced at the
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beginning of this section. For simplicity, I will present the

model in discrete time.

I assume a Ben-Porath technology with parameter a=1/2.

Depreciation of human capital has two sources:

- overall technological improvements lead to global
obsolescence in human capital. This effect is assumed to be
proportional to the amount of human capital and will be called

overall depreciation.

- workers may suffer a sudden loss of human capital®. The
degree of the loss will be a multiple of a certain constant
level. The probability of this event follows a Poisson

distribution. This effect will be called sudden depreciation.

The timing of information and actions in each period is as
follows. At the beginning of period t the current value of the
sudden loss of human capital is realized. The worker chooses

human capital investment based on this realization and the human

® Following Williams (1979), one could assume that workers
may suffer sudden stochastic losses in their rental rate of
human capital due to changes in supply and demand factors. The
model I present is, I believe, simpler and makes the point
clearer, but interpretations in terms of more complex models are
also of obvious interest.
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capital for the beginning of next period is obtained.

The problem any worker faces can be formally stated as

Vl(kz'u1) = max E, Lil rkt(l-xt)}

{x !
s.t.

(2.21)
Ke,, = (1-8)k, +A(k.x,)Y? - uk,

t+l
k, given

0s x, <1, t=1,...,T-1

where T is the worker's last period and u, is a random variable
that follows a Poisson distribution with coefficient A,.
Bellman's Principle of Optimality implies that the worker must
assume that he will also optimize her decisions in future

periods?C:

v, (kyou) =max Tk (1-x)) +E, | v,(k,u,) | (2.22)
X
and, for any period t=1,...,T-1,
v (k) =mxax rk (1-x.) + E | v, (K yrug,,) J (2.23)

T

A simple way to solve this problem is by backward recursion. I
will see what happens at T, and T-1 and propose a recursive
solution to the problem. At t=T, the worker has no further

incentive for training, so x.=0,w=rk so that E_; [% (k,&)]l=rk.

10 see, for example, Stokey and Lucas (1989).
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At t=T-1,

Voo (kpqrn

-1 = max rk;_ (1-x,,) + rk,.

Xp-1

-1 (2.24)

Taking into account the difference equation for k., it is simple
to see that an internal solution of the problem at T-1 satisfies

the first order condition:

- A -1/2
rk,, + (E] rkyy (Kp.yXpy) 2 = 0 (2.25)
so that
A
(kr-lxr-1)1/2 = [3) . (2.26)

We can immediately see that

1\2
k, = (1-8)k,_, + (_2_) - ku,_,. (2.27)

Note that if A;.;<1 and &=0, the most likely event is that human
capital will increase in the last period by A?/2. Nevertheless,
if we study a cross-section of workers with independent and
identically distributed shocks, then the average level of human

capital may decrease since

2
Elk,] = ko, + [52_) - kA - (2.28)
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We finally obtain that vg.;=rkq.,+rke-r (A2/4).

To sum up, we have the following results:

T T/
A2 (2.29)
rkT_l + rkT 'r[ —4-] ’

<
"

and

AZ
kp = (1-8)k, ; + (1 + (1-3)) ['ET) - ku,_;. (2.30)
Suppose that
v, = rk,  +rakbk [k 1 +£f, (2.31)
and
AZ
Ke,p = (1-8)k, + a, - - ku,, (2.32)

where f, is a function only of the parameters of the model and

=1+ (1-3)a,,

a
t-1
210l (2.33)

T

Note that these conditions hold for t=T-1. Under (2.32)-(2.33)

the problem at t-1 takes the form

= - +
V,., = max rkt_1 rkt_lxt_1 Et_1 [vt],

(2.34)

e
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and the first order condition for the internal solution!! is

(koo ) = at_l( %) : (2.35)

By substituting this 1last equation in the equation in
differences for k, we see that k., takes the form that is

equivalent to (2.32) one period in advance:

AZ
k, = (1-8)k,_, +a,, (—2-] - ku,_, . (2.36)

On the other hand, substituting (2.35) into (2.34) and applying

the expectation operator E..; on Kkg¢,;, we have:

Ve =Tk *ra L E k] + £, (2.37)
where
a .A\2 (a_n)?
o t-1 t _
ft—l = r( 5 ) + r_...._.2___. rat}\tk + ft' (2.38)

Thus, (2.36) is indeed the optimal solution of human capital
accumulation contingent on the stochastic shocks. From (2.35)
and (2.36) and taking into account that a, is a decreasing

sequence we obtain that wages will decrease only if human

1 Thus, as in the perfect foresight model, gross
investment is a decreasing function of time.
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capital decreases!? since:

w, - w._, =r(k -k

) *fady - ad) = (2.39)

From (2.36) we see that wages will tend to fall when
depreciation of human capital takes place. Uncertain
depreciation only at the end of the working life can be modelled
by assuming that A,=0 for all t<T. Further assuming that 0<:A<1
will lead to rare falls in human capital in the sense that most
workers will probably not experience them. However, average
wages across workers will likely show a decline even when 3=0

since Ap>0.

Are these effects relevant to explain observed data? To answer
the problem, we need an econometric specification that can
encompass on one hand accumulation paths with sudden local
losses of capital and on the other hand accumulation paths which

are smooth.

2.3 The econometric model

The theory of human capital predicts declining levels of on-the-

job training intensity. Alternative human capital models predict

12 Note that wages may increase even if human capital

decreases when the effect of less training compensates in wages
the effect of destruction in human capital.
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either constant experience-wage profiles after a plateau is
reached, increasing but concave experience-wage profiles, or

inverted-u shaped experience-wage profiles.

The existence of heterogeneous human capital that can be
subjected to local sudden losses induce different human capital
accumulation paths in the same experience-wage profile. 01ld
local workers will give up net investing after the loss. Young
local workers will still find heavy investment profitable.
Furthermore, if losses concentrate on older local workers, a
structural break in the local profile will appear only at the
end of the profiles. The inverted-u shape will be the result of
the overlapping of different accumulation regimes for young and
old local workers. Mincer (1974) justifies the use of a
quadratic function for the experience returns over a log linear
schooling model for the analysis of the wage structure on
theoretical and empirical grounds. It 1is instructive to

replicate the basic arguments.

Following human capital arguments, schooliﬂg takes place only
if it gives a positive return p. Potential earnings when leaving
school thus are k(s)=ky'e°® where s is the number of years at
school. This is the log-linear schooling model. After leaving
school, individuals will take on-the-job training. If investment
in human capital declines linearly so that k(x)=ky(1- x/T) then

potential wages after x years of experience are
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E(x) = k(s) exppfx k(0) ( 1 -%) dt (2.40)
0

and observed log wages then take the form

Pk
logw = logk, + ps + pk X -( 2T°]x2 +log( 1 - k(x)). (2.41)

The quadratic specification is a convenient simplification of
(2.41). There is some empirical evidence in favor of this

compromisel3.

Smooth simple specifications -like that of equation (2.41), or
the quadratic simplification that results from dropping the last
term, or even the Ben-Porath specification- do impose
restrictions on the wage structure that might render the results

useless in studying local breaks in the experience surfaces.

Interaction terms between education, experience, or other
variables in parametric forms may also prove of little wvalue
because we are looking precisely for nonhomogeneous behavior in

the experience-wage profiles at the end of the working life.

13 Heckman (1976) was not able to reject a quadratic
specification against the alternative hypothesis that earnings
were generated by the Ben-Porath model. For more sceptical
views, see Willis (1986, footnote 2), Murphy and Welch (1990)
and Yuengert (1994).
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In order to study the problem of sudden losses in the wage
during the last stages of the working life I carry out the

following two-step empirical analysis:

- I estimate a nonparametric surface for log wages for
white male nonfarm full-time employed workers. This model does
not restrict local behavior in the experience-wage profiles, but
obtains a simplification from the general nonparametric model
in a multivariate context. This simplification is a product of
the structure observed in the data, so that no theoretical
considerations must be introduced. Since the theoretical model
of human capital in its general form needs not to be conclusive
about the evolution of the marginal value of training investment
and the structure of depreciation to render the fundamental
results, this model can be used to learn about depreciation and

human capital accumulation from the data.

- I then postulate smooth local expected values based on
the estimated surfaces for workers in their last stage of the
working life by levels of education, type of job, and area.
Finally, I test whether local log wages are statistically below

the predicted smooth value of the surface.

This two-step procedure is fully justified if we assume flat
wage experience profiles after a certain level of experience is
reached. It is a conservative approach when profiles are always

increasing. Only when overall depreciation is substantial may
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this strategy lead to misleading results. Assuming possible
changes in the rental rates of human capital for different
workers, one can interpret the results as evidence of local
drops in the willingness of employers to employ old workers -

assuming the labor supply constant-.

The analysis is replicated in four different years to check
whether the breaks in the surfaces have persistence over the

decades. I present the results in the following section.
2.4 Empirical results

The data that I will use in this section corresponds to the
extracts of the 1980, 1985, 1990, and 1995 Annual Earnings File

of the Current Population Survey (CPS) prepared by the NBER.

Before identifying any loss in observed wages as losses in human
capital, we should try to control for other possible causes.
Gustman and Steinmeier (1984) show that failing to account for
partial retirement may result in an overestimate of the decline
in wages at old ages. As Johnson and Neumark (1996) point out,
if higher-wage workers tend to retire before lower-wage ones,
a cross—section'analysis will show a spurious decline in wages
at older ages. Mincer and Ofek (1982) study the effects of
interruption in work careers on human capital and wages. Their
study is an investigation of depreciation of human capital in

immigrants or returnees to the job market. Using longitudinal

85



Chapter 2: Tree estimation of experience-wage profiles

data they show that the longer the interruption the greater the
decline in wages. Thus, demographic groups that are more likely
to interrupt their job careers may present spurious declines in

their wages in a cross-section.

In order to minimize the magnitude of these problems, the sample
I study consists of wages for white full-time employed male

workers with no more than forty years of experiencel‘.

Wages are the logarithms of earnings per week divided upon hours
per week on the job. The wvariable specification includes
education, potential experience, type of job, and region. Here,
education is divided upon six categories: Less than six years
of education, between six and 12 years of education, high school
completed, some college, college completed, and postgraduate
studies. Potential experience is divided into eight categories
of five years ranging from 1 to 40 years of experience.
Potential experience is computed from age minus education minus
six. Type of job is a binary variable relating to whether the

occupation can be classified as white or blue collar!®. Region

¥ An interesting topic beyond the scope of this study is
whether wage decline also implies decline in total compensation.
See Johnson and Neumark (1996, footnote 4).

13 White-collar workers includes managerial, executive,
technical, sales and administrative occupations. Blue-collar

workers includes craft, precision, and repair operations,
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refers to three main areas: east, central and west!®,

For each year, the sample is randomly divided into two samples
of sizes of 2/3 and 1/3 of the total, respectively. The first
sample 1is used to carry out the estimation of the wage
structure, the second to obtain an honest size tree. The stop-
splitting rule is 100 observations. The honest size tree is

obtained each year with a zero-SE rule!’.

Aside from the nonparametric analysis, I carry out "Mincer"
quadratic equations extended with type of job and region . Table

2.1 shows the fit and complexity results of the regressions for

operatives, and transport and service workers. For the 1970 and
1980 occupation codes, white-collar workers would range from
codes 1 to 400.

6 East comprises New England, Middle Atlantic, and South
Atlantic. West is Mountain and Pacific. The rest is Central.

17 The k-SE tree is the simplest tree with the test sample
average residual sum of squares smaller than R(Tyg)+k*SE(T.g)
where SE(T.g) is the estimated standard error for R(T.g) and T.g
is the test sample LS partition in the sequence. If observations

are independent, Breiman et alia (1984,p.306) show that

o () [ 4)E s} ne
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the nonparametric and for the parametric functions for all

years.

The results show that simple nonparametric structures have at
least as good a descriptive power as the parametric analysis
carried out. For the second sample, this advantage does not
disappear. The more interesting fact in Table 2.1 has to do with
the last column. Complexity of the model is described by the
number of different logwage expected values the model gives. The
parametric structures give always 288 different values!®. Trees
will tend to be simpler due to the interaction between the stop-
splitting rule and pruning!®. In Table 2.1 we see that in the
more complex tree, complexity drops 44% with respect to the

unrestricted nonparametric model or the parametric model.

8 This is the number of cells in the independent variables
space: (8 levels of experience) x (6 levels of education) x (3
main areas) x (2 types of employed workers).

% However, note how complexity in the tree structures
seems to change widely in the years. This is in my opinion an
artifact of the 0-SE rule in the algorithm and the flat surface
for R®*™ along the sequence of optimal trees. Differences in

complexities for the nonparametric surfaces should be taken with

caution.
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Table 2.1 Goodness-of-fit results for logwage regressions.

Human capital specification.

Data: Labour extracts-CPS. Male, white, full-time employed workers.

Human capital variable specification + Region + Type of Worker

No.observations Goodness-of-fit! Complexity?
Learning Test RE R?
1980
Tree 28,650 14,239 21.11% 21.72% le6l
Quadratic 28,650 14,239 18.4% 288
1985
Tree 24,795 12,323 23.34% 25.26% 50
Quadratic 24,795 12,323 21.7% 288
1990
Tree 46,827 23,273 31.11% 31.18% 130
Quadratic 46,827 23,273 29.2% 288
1995
Tree 39,121 19,443 31.71% 30.48% 33
Quadratic 39,121 19,443 29.4% 288

Note: Tree refers to surfaces estimated with regression trees using the 0-SE rule and
100 as the stop-splitting rule in the algorithms. Quadratic refers to “Mincer”

quadratic equations extended with type of job and region.

lFor the tree: RE=1-R(T)/R(root) in the second sample, whilst R? is for the first

sample. For the quadratic specification, R? is computed for the entire sample.

2Complexity is the number of terminal nodes in the trees whilst for the parametric

regressions it consists of the number of cells in the independent variables space.

To give a graphical description of the wage structures predicted
by the optimal size trees, I plot average predicted values by
experience and education for all years in Figures 2.2 to 2.5 in

Appendix A. Appendix B shows the results of the parametric
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analysis. From the graphs in Appendix A we see that concavity
is a clear feature of the surface. Plateaus are quite common,
so that there are many experience-wage profiles that show a

linear behavior with no positive slope.

Note that predictions for workers with the lowest levels of
experience and education for 1985, 1990, and 1995 are the same
as for workers with a higher level of education. This is the
result of lack of observations for these cells. As Tables 2.7
to 2.11 in Appendix A show, there are no workers for these
characteristics during those years. The parametric approach will
just use the structure as the only information to predict the
values for the wages of these workers. If we do not want any
structure imposed, the best we can say here is that we do not

know what their predicted wages are.

Experience-wage profiles in a cross-section inevitably mix
several effects with the increase in human capital. When we
compare different years' experience profiles, as in Figure 2.1
in Appendix A, inflation will shift the profiles upwards when
we work with nominal log wages. Therefore, differentials along

different experience levels will be the same.

We also have vintage effects in cross-sections. These are
related to differences in the quality of the workers due to
changes in the quality of education prior to work and other

factors. Continuous improvements in education levels lead to an
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underestimation of true experience differentials, since younger
workers are of higher quality than older workers. When the same
age group 1is considered along several years, a continuous
improvement of the quality of the workers will show up in a
decrease in positive experience differentials and an increase
in negative experience differentials?*. Thus, if we regress
differentials for the same age group for different years on a
constant and a time trend, a positive coefficient on the trend
would signal a gradual deterioration in the quality of the
newcomers, while a negative coefficient would signal a gradual
improvement of the workers' quality. If changes in quality
stabilize, the trend parameter will be =zero. These step-
improvements in the quality of the workers are observationally
analogous to sudden losses of human capital in a generation and

will not be considered here.

If we work with experience groups instead of age groups, the
analysis of the previous paragraph must be changed to account
for the education effect. In experience groups there are workers
of different ages because there are workers with different
levels of education. Thus, under gradual improvements of the
quality of the workers, differentials are bigger the higher the
education of the workers, since these workers are older.
Conversely, if quality is decreasing, differentials are smaller

the higher the education of the workers. Thus, by introducing

20 see, for example, Neuman and Weiss (1995).
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education on our regression on experience levels we can correct

for the education bias.

To sum up, positive signs in the trend coefficient together with
negative signs in the education coefficient are signals of a
decreasing quality in the newcomers to the labor market.
Negative signs in the trend coefficient together with positive
education coefficients along the same experience levels signal

increasing quality in the newcomers.

In order to test for the vintage effect, I use the projections
from the tree. These are simply within groups averages, so this
analysis can be seen as "between groups" were the groups have
been endogenously identified by the data. The results of these
regressions are summarized in Table 2.2. The regressions were
carried out for individuals with more than five years of
education since, as already mentioned, the projections given by
the tree for some workers with less than five years of education
were obtained without observations. Differentials are changes
with respect to the least experienced groups, so that all

differentials are positive.

Trend coefficients are positive for most experience groups. The
only non-significant coefficients occur for the 1least
experienced groups. Education is generally significant, and
corroborates the hypothesis of a general continuous decline in

the quality of newcomers during the period with respect to
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Table 2.2 Experience wage differentials in the nonparametric

surfaces and vintage effects

Data:

Independent variable:

Projections from Trees at all points of the independent variables space.

experience wage differential with respect to group with less

experience.
Model 1: Contant + trend Model 2: Constant+trend+education
Experience Const Trend R? Const Trend Educa R 2
6:10 years 0.284 -0.012 0.013 0.418 -0.012 -0.033
0.174
(0.026) {0.009) (0.037) (0.009) {0.007)
11:15 years 0.341 -0.009 0.008 0.470 0.009 -0.032
0.172
(0.025) (0.009) (0.035) (0.008) (0.006)
16:20 years 0.348 0.025 0.036 0.527 0.025 -0.045
0.226
(0.032) (0.012) (0.044) (0.011) (0.008)
21:25 years 0.326 0.042 0.090 0.577 0.042 -0.063
0.413
(0.034) {0.012) (0.041) (0.010) (0.008)
26:30 years 0.354 0.040 0.068 0.632 0.040 -0.070
0.396
(0.037) (0.014) (0.046) (0.011) (0.009)
31:35 years 0.363 0.035 0.054 0.676 0.035 -0.078
0.492
(0.037) (0.013) (0.041) (0.010) (0.008)
36:40 years 0.348 0.036 0.046 0.618 0.036 -0.068
0.313
(0.041) (0.015) {0.053) (0.013) (0.010)
Note:

Standard Errors in parenthesis. The regressions were carried out
more than five years of education. There were 120 observations
years x 5 levels of education x 2 types of workers x 3 regions.

for individuals with
in each regression:4

workers with more than 15 years of experience.

How may these results affect our analysis of sudden losses of

human capital at the last stages of working lives? If this

deterioration of quality was a long started process, then

observed experience differentials in the cross-sample actually
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underestimate the absolute value of the real experience
differentials for equal-quality workers between the most
experienced and the previous group when this differential is
negative. In other words, our observed experience differentials
by education may undervalue the real loss of human capital for
these workers, because they are of intrinsically higher quality
than workers of the following generation. In the following, I
will assume that there was no deterioration in the quality of

labor market entrants.

Can we see "general" sudden losses of human capital for the most
experienced workers in the surfaces? We can try to uncover these
effects by fitting parametric surfaces on the nonparametric
surfaces and see whether a dummy variable for the most

experienced workers has a significantly negative coefficient.

The main results of the analysis are presented in Table 2.3.
Based on the surface graphs in Appendix A, I try two simple
parametric specifications. The first one is the quadratic
experience profile. The second specification is a linear profile
with a single spline in one of the interior experience groups?!.
This group is chosen by selecting the spline model which
minimizes the errors sum of squares. This is therefore a LS

estimate of the spline model when the point of the spline is

21 See Poirier (1976) for a general discussion of

polynomial splines.
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Table 2.3 General breaks in accumulation paths and experience

profiles

Data: Projection experience differentials from Trees at all points of the independent
variables space.

1st Coefficient! 2nd Coefficient! Dummy R?

1980

Quadratic 0.077 -0.005 . 0.547
(0.02) (0.002)

Quadratic+Dummy 0.076 -0.005 -0.002 0.547
(0.03) (0.003) (0.04)

Spline 26:30ys 0.033 -0.038 . 0.544
(0.006) (0.02)

Spline+Dummy 0.033 -0.038 -0.002 0.544
(0.006) (0.02) (0.05)

1985

Quadratic 0.074 -0.004 J 0.732
(0.02) (0.02)

Quadratic+Dummy 0.099 -0.008 0.052 0.734
(0.02) (0.003) (0.03)

Spline 11:15ys 0.094 -0.073 . 0.736
(0.02) (0.02)

Spline+Dummy 0.095 -0.074 0.006 0.737
(0.02) (0.02) (0.02)

1990

Quadratic 0.155 -0.013 . 0.784
(0.02) (0.002)

Quadratic+Dummy 0.156 -0.013 0.0009 0.784
(0.03) (0.003) (0.04)

Spline 21:25ys 0.071 -0.081 . 0.781
(0.008) (0.01)

Spline+Dummy 0.068 -0.069 -0.033 0.782
(0.01) (0.02) (0.03)

1995

Quadratic 0.127 -0.008 . 0.873
(0.02) (0.002)

Quadratic+Dummy 0.119 -0.008 -0.014 0.873
(0.02) (0.002) (0.03)

Spline 21:25ys 0.071 -0.061 . 0.875
(0.006) (0.01)

Spline+Dummy 0.070 -0.053 -0.023 0.875
(0.006) (0.01) (0.03)

Note:

Standard Errors in parenthesis. There were 288 observations in each regression:8 levels
of experience x 6 levels of education x 2 types of workers x 3 regions.

lFor quadratic functions, the first coefficient refers to the linear effect and the
second to the quadratic effect.For Linear functions with splines, the first coefficient

is the first slope, whilst the sum of the first and the second coefficient is the
second slope.

—— —
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unknown. If errors are assumed normal, this is a ML estimate.
Since the relevant information is the shape of the

differentials' profile, all projections are used here.

The quadratic model fits the surfaces better than linear splines
in all years but 1985. Inference 1is not wvalid if model
specification has been implemented with the same data. We can
see, nonetheless, results in Table 2.3 as results coming from
two different researchers with different prior beliefs regarding
functional especification. What Table 2.3 says is that none of
them would reject the hypothesis of absence of general breaks
in the accumulation paths for the most experienced workers. This
could be interpreted as evidence that workers smooth their
profiles by taking into account the general obsolescence effect

that technological progress induces on human capital.

I am sceptical about how Table 2.3 can answer questions on
sudden losses of human capital. The reason 1is that general
parametric specifications impose restrictions on human capital
destruction. In particular, the restriction that it is not
locally affecting workers of a certain type, that is, workers
with a particular class of human capital. A model including
different types of workers and knowledge should allow for
possible different depreciation experiences. Therefore, we could
try to observe breaks in parametric profiles for each particular

type of worker fitted from the tree projections.
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Table 2.4 Parametric especification searches for each type of

worker along the nonparametric surfaces

Data: Projection experience differentials from Trees at all points of the independent

variables space.

Number of Cases Constant better R? -range
Quadratic 37 2 0 - 0.941
Spline at 11:15 years experience 87 19 0 -1
Spline at 16:20 years experience 12 0 0.359 - 0.978
Spline at 21:25 years experience 4 0 0.299 - 0.828
Spline at 26:30 years experience 4 o] 0.197 - 0.849

Note:

For each type of worker, the model with the best fit in terms of R? was chosen. There
were two simple parametric models evaluated: the quadratic model included a constant
and a polinomial of second order for experience. A single spline was allowed in a
linear model for experience. There were 144 types of workers (4 years x 6 levels of
education x 2 types of workers x 3 regions)~and 7 observations in each regression.
Regressions were fitted without a constant and shifting the experience codes one level
to the left, so that the differential between the group with least experience and
itself should be zero.

A summary of specification searches for each worker's experience
profile is presented in Table 2.4. There are 144 different types
of workers depending on the year, the area, the education level,
and the occupation type. Again, I consider the quadratic
specification and linear splines. Models were chosen using the

LS principle.

Table 2.4 can be read in two different ways. It can be seen as
a convenient way of summarizing the general characteristics of
the surfaces induced by the tree. From this point of view, we
learn from Table 2.4 that the quadratic form is not necessarily
the best description of most experience profiles when we carry
out the analysis at a more disaggregated level. Mostly, linear

specifications are better descriptions of the overall shape of
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experience profiles for workers. The last column puts a question
mark on the validity of these parametric approximations. Some
of them are not even better than the constant differentials

model??, as the second column shows.

Inference on the models is invalidated if the same data is used
both for model searches and testing. So, testing for a break in
the wages of the workers 1is not wvalid here. Traditional
inference is valid only when either the model function is known

or when a new data set is available for inference.

The practical consequence of not following this rule is that a
test for the absence of a negative break in the experience
profiles for each type of worker under the best model will more
frequently be not rejected than as predicted by theory. Here,
only one type of worker was accepted to suffer a significant
drop at the 10% significance 1level. Namely, 1980 most
experienced workers who had completed College, were white-
collar, and worked in the west. It could be argued that a case
had arisen in the disaggregated analysis of a break,
contradicting the general rejection of such a situation in Table

2.3. However, should not we expect from inferential theory as

22 Regressions were fitted without a constant and shifting
the experience codes one level to the 1left, so that the
differential between the group with least experience and itself
should be zero.
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likely a rejection between 144 cases even when no drop took

actually place?

The way I choose to study sudden losses on wages is by defining
a smooth local value of log-wages for most experienced workers
based on a nonparametric smoother on the surface projections of
workers with no less than 20 years of experience?® for each type

of worker.

I carry out a simple t-student test to see whether the expected
value, estimated with the average of the workers' logwages, for
each type of worker was significantly below the smooth wvalue.

The null hypothesis is that the expected value equals the smooth
value. The alternative is that it is below the smooth wvalue.
Table 2.5 presents the categories of those workers for which the

null was rejected at the 5 percent level of significance.

Perhaps the most surprising result is the fact that most cases

concentrate? on just two years, 1980 and 1990. This is an

22 The Nadaraya-Watson kernel estimator was chosen to

smooth the proyections. The Gaussian kernel was taken. The
kernel estimator is then a simple weighted average of the three
nearest values with weigths approximately equal to 0.80, 0.18
and 0.02. See, for example, Fan and Gijbels (1996).

24 If we assume that each affected group represents a case
of one in the Poisson distribution, then naive first moment
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Table 2.5 Tests for sudden losses of human capital

Workers for which the null hipothesis H,: wage = smooth value was rejected against the
alternative H,: wage < smooth value at the 5 percent confidence region.

Type of Worker

Year Reg Type1 Educ? Smooth Value Average?® St. Dv.¢ No.®
1980 East W-C H-S 2.0567631 1.9993380 0.32727646 380
1980 West W-C H-S 2.2069504 2.1534498 0.38769741 194
1980 East B-C H-S 2.0779702 1.9554500 0.37040496 101
1980 West B-C H-S 2.1500409 2.0501431 0.39944996 48
1980 West W-C C 2.2267310 1.9033250 0.39612297 7
1985 Cent B-C s-C 2.3042300 2.0418850 0.48328715 21
1990 East W-C 6-12 2.3832221 2.3560687 0.41897359 815
1990 West W-C s-C 2.5997430 2.4490954 0.45836199 54
1990 East B-C c 3.0015800 2.7901184 0.46135565 19
1990 Cent B-C p 2.9400951 2.6934876 0.78710996 71
1930 West B-C P 3.0356000 2.8906128 0.55138070 51
1995 Cent W-C (o} 2.6722500 2.4806190 0.37476633 32

Note: The smooth-value is obtained with the Nadaraya-Watson kernel estimator. The
Gaussian kernel was taken on the three nearest experience levels tree projections.
W-C: white collar B-C: blue collar

26-12: between 6 and 12 years of education; H-S: High school completed; S-C: Some
colleged done; C: College completed; P: Postgraduate

3 Average logwage for all workers in the sample.

4 Standard deviation of logwage for all workers in the sample.

5 Number of workers in the sample.

indication that these falls are erratic in time. Also note that

no type of worker suffers these losses during several years. For

estimates of Ag are 0.035 for 1980 and 1990 amd 0.007 for 1985
and 1990. The estimates are much lower if we use individual

data.
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the 1980 sample, we have predominantly High School, white collar
workers in the list. In 1990, most of the workers belong to a
single group, east white collar workers with 6 to 12 years of
education. However, several groups of College and Postgraduate
Studies also appear. Causal inspection on the list suggests that
Higher Education and Blue-collar occupation was a dangerous

combination.

It is tempting to give explanations for these results. However,
"ex-post" explanations are unsatisfactory in the sense that they
may be reasonable, but just like a number of many other
reasonable explanations. To properly explain these results, we

would have to go far beyond the scope of this analysis?.

How big is the combined effect of the fall in wages for all
these workers on average wages of the entire sample? Can it

explain declining wages at the end of the working life?

To answer this question, I computed the average fall in the

sample for each year at the last stage of the working life first

2> But simple explanations could be treated as initial

hypothesis. Results in Table 3.5 may be the result of
geographical, technological and institutional factors such as
regional shocks, the introduction of computers in the work place
affecting educated workers with administrative tasks, or short

term effects of trade liberalization.
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Table 2.6 Effects on average wages at each level of experience

of human capital

Data: Individual observations.

No. workers Sample Average No losses! Substituted?

1980

31:35 years 3234 2.03 . .
36:40 years 2934 1.99 1.98 2.01
1985

31:35 years 2384 2.26 . .
36:40 years 2157 2.23 2.24 2.24
1990

31:35 years 5218 2.59 . .
36:40 years 3925 2.53 2.57 2.54
1995

31:35 years 4915 2.72 . .
36:40 years 3286 2.68 2.68 2.68
Note:

! Average logwages when workers from types listed in table 2.5 are not included.
2 Average logwages with smooth values for workers of types listed in table 2.5.

for all workers and then for the subsample of workers who do not
appear on the list of Table 2.5. I also computed average wages
if workers from the list in Table 2.5 had the smooth wages
instead of the actual wages so that the comparison between
averages 1is done on the same population. The results are

presented in Table 2.6.

For all years but 1995, average wages would be 1% higher if no
breaks had occurred. If we consider the effect on average wages
of these workers, the value of 1990 shows the importance of the
effect of the loss in workers with low wages. Average wages
without these workers would be 4% higher and the drop in wages
for the last experience group would have been of only 2% instead

of the reported 6%. However, this result is overestimating the
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effect because many low-wage workers are excluded in the
hypothetical situation. A more realistic measure of that would
be average wages with smooth values for the workers with a loss.

Then, the wage differential would still be 5%.

For 1980, the sudden losses help reducing the negative
experience differential by about 50%. For 1985, by around 33%.
The value for 1990 is of only 16.6%. Finally, the reduction in
the negative differential is null for the last year of the

analysis.

Thus, it seems that sudden losses may have been rather important
for some workers in 1980 and 1990. However, their overall impact
on the experience-wage profiles is rather limited for 1990 and
1995. On the other hand, these local falls were as important in

1980 as smooth falls in all wages.

2.5 Conclusions

In this chapter I have estimated a nonparametric experience-wage
profile in a multivariate environment to search for local
workers who suffered a sudden loss in wages in their last stage
of their working life. I estimated the model with regression
trees for individual observations of white male workers for

1980,1985,1990, and 1995.

The nonparametric approach to the estimation of the experience
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profile fitted the sample better than a simple quadratic
specification. When the projections of the tree were carefully
studied, linear splines appeared as reasonable alternatives to

the quadratic function for many workers.

With respect to sudden losses in wages, there were not many
groups affected in two years, 1985 and 1995. For 1980 and 1990

I found drops in log wages for groups of blue-collar, educated

workers.

With respect to the extent these losses explain the decline in
average wages, I had mixed results. For 1980, 1985, and 1990,
average wages would be 1% higher if no breaks had occurred. For
1280, the sudden losses help reducing the negative experience
differential by about 50%. For 1985, by around 33%. The value
for 1990 is of only 16.6%. Finally, the reduction in the

negative differential is null for the last year of the analysis.
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Appendix A
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Figure 2.1 Average wages of white, male,
employed workers.

Source: CPS.
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years of experience

Figure 2.2 Experience-wage profiles.

nonparametric projections. 1980.

Unweighted averages
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Figure 2.3 Experience-wage profiles. Unweighted averages of

nonparametric projections. 1985.
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Figure 2.4 Experience-wage profiles. Unweighted averages of

nonparametric projections. 1990.
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Figure 2.5 Experience-wage profiles. Unweighted averages of

nonparametric projections. 1995.
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Table 2.7 No. of observations in each cell.1980.

Education

Exp (1) (2) (3) (4) {5) (6)
5 2 1660 4812 2020 648 160
10 28 764 2358 1042 310 102
15 38 664 1742 578 112 72

20 38 700 1458 394 106 28

25 52 740 1190 264 48 24

30 46 792 1080 220 58 26

35 58 948 926 192 54 20

40 72 946 738 118 22 8

(1) Less than five years of education; (2) From six to twelve years; (3) High School;

(4) Some college; (5) College; (6) Postgraduate.

Table 2.8 No. of observations in each cell.1985.

Education
Exp (1) (2) (3) (4) (5) (6)
5 0 950 3590 1724 516 182
10 12 732 2518 878 328 138
15 14 580 1854 832 258 76
20 28 480 1412 488 110 44
25 32 484 1162 342 70 52
30 28 494 866 220 50 26
35 20 522 788 166 42 14
40 a4 628 696 120 24 12

(1) Less than five years of education; (2) From six to twelve years; (3) High School;

(4) Some college; (5) College; (6) Postgraduate.
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Table 2.9 No. of observations in each cell.1990.

Education
Exp (1) (2) (3) (4) (5) (6)
5 0 3734 678 2806 228 476
10 16 3946 556 2286 194 628
15 66 4080 628 2376 220 792
20 58 3202 548 2378 200 794
25 86 2564 420 1500 162 594
30 54 2402 246 1050 88 454
35 62 1960 138 824 72 362
40 56 1650 124 512 40 176

(1) Less than five years of education; (2) From six to twelve years; (3) High School; (4)

Some college; (5) College; (6) Postgraduate;

Table 2.10 No. of observations in each cell.1995.

Education
Exp (1) (2) (3) (4) {(5) (6)
5 0 456 1272 1336 1662 246
10 2 426 1720 986 1802 494
15 10 470 2014 1140 1870 600
20 14 498 2262 1094 1788 762
25 26 406 1942 1106 1680 834
30 24 346 1514 964 1082 588
35 50 340 1194 670 682 292
40 22 310 956 388 . 370 176

(1) Less than five years of education;(2) From six to twelve years;(3) High

School; (4)Some college; (5) College; (6) Postgraduate;

111



Chapter 2: Tree estimation of experience-wage profiles

Appendix B
PARAMETRIC ESTIMATION: 1980:
Valid cases: 42889 Dependent variable: LOGWAGE
Missing cases: 0 Deletion method: None
Total SS: 7644.148 Degrees of freedom: 42883
R-squared: 0.184 Rbar-squared: 0.184
Residual SS: 6234.926 Std error of est: 0.381
F(5,42883): 1938.489° Probability of F: 0.000
Standard Prob Standardized Cor with
Variable Estimate Error t-value >t Estimate Dep Var
CONSTANT 1.070337 0.010627 100.722457 0.000 -—- -—=
EXP 0.218934 0.003500 62.545170 0.000 1.204839 0.271903
EXPSQ -0.019240 0.000417 -46.122679 0.000 -0.887876 0.217968
EDUCA 0.110929 0.002259 49,099929 0.000 0.234894 0.147801
OCUPA -0.046345 0.005003 -9.263719 0.000 -0.042722 0.020096
REGION 0.071170 0.002425 29.352184 0.000 0.128683 0.127628
PARAMETRIC ESTIMATION: 1985:
Valid cases: 37118 Dependent variable: LOGWAGE
Missing cases: 0 Deletion method: None
Total SS: 7699.400 Degrees of freedom: 37112
R-squared: 0.217 Rbar-squared: 0.217
Residual SS: 6026.651 Std error of est: 0.403
F(5,37112): 2060.151 Probability of F: 0.000
Standard Prob Standardized Cor with
Variable Estimate Error t-value >t Estimate Dep Var
CONSTANT 1.131831 0.012019 94.173997 0.000 —-— -—
EXP 0.257480 0.004022 64.018482 0.000 1.240128 0.312701
EXPSQ -0.022294 0.000481 -46.329343 0.000 -0.898808 0.249725
EDUCA 0.127588 0.002531 50.417168 0.000 0.251709 0.185025
OCUPA -0.017138 0.005432 -3.155097 0.002 -0.015402 0.046476
REGION 0.052103 0.002778 18.757760 0.000 0.086334 0.093425
PARAMETRIC ESTIMATION: 1990:
Valid cases: 70100 Dependent variable: LOGWAGE
Missing cases: 0 Deletion method: None
Total SS: 19603.098 Degrees of freedom: 70094
R-squared: 0.292 Rbar-squared: 0.292
Residual SS: 13873.564 Std error of est: 0.445
F(5,70094): 5789.514 Probability of F: 0.000
Standard Prob Standardized Cor with
Variable Estimate Error t-value >t Estimate Dep Var
CONSTANT 1.310001 0.008837 148.240205 0.000 -— -—
EXP 0.235094 0.003359 69.999573 0.000 0.926566 0.261332
EXPSQ -0.019718 0.000391 -50.444566 0.000 -0.668458 0.208301
EDUCA 0.133183 0.001512 88.060455 0.000 0.333783 0.412387
OCUPA 0.159974 0.004001 39.979573 0.000 0.151054 0.338184
REGION -0.014856 0.002190 -6.783754 0.000 -0.021573 -0.029885
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PARAMETRIC ESTIMATION:

Valid cases:
Missing cases:

Chapter 2: Tree estimation of experience-wage profiles

1995:
58564
0
18194.644
0.294
12843.937
4878.982

Standard
Error

Dependent variable:
Deletion method:
Degrees of freedom:
Rbar-squared:

Std error of est:
Probability of F:

Prob Standardized

Total SS:

R-squared:

Residual SS:
F(5,58558):

Variable Estimate
CONSTANT 1.159559
EXP 0.250461
EXPSQ -0.020126
EDUCA 0.169929
OCUPA 0.124692
REGION -0.021175

0.011309
.004009
.000459
.001961
.004612
.002550

[eNoNeoNoNe)

t-value >t Estimate
102.538437 0.000 —-—
62.474000 0.000 0.915443
-43.811163 0.000 -0.642602
86.657689 0.000 0.359592
27.039037 0.000 0.111853
-8.303805 0.000 -0.028850

0.274595
0.223619
0.415750
0.318421
0.044604
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Chapter 3

Decomposition of average wage differentials for
nonparametric wage structures: An application to

Mexican workers in the U.S.

3.1 Introduction

Wage gaps between two groups exist because of differences in the
characteristics of workers of each group and differences in the
value the market assigns to the characteristics in each group.
The wage gap reflects skills' differences, both observed and
unobserved, and differences in the premiums that the two groups
have. The basic method to decompose wage gaps can be found in

Oaxaca (1973).

If the two groups are equally productive, the extent of the
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second source of the wage gap is frequently interpreted! as wage
discrimination. To measure the ‘'non-discriminatory' wage
structure, one must make some assumptions on how the market
would behave in such a situation. There have been some attempts
to solve this difficulty, notably Cotton (1988), Neumark (1988)

and Oaxaca and Ransom (1994).

This paper extends these decomposition techniques to
nonparametric tree surfaces. Although it is impossible to talk
of simple gender, race, or ethnicity differentials in tree
structures, we can still decompose average wage gaps in observed
and unobserved components. We can also obtain measures of
discrimination and/or sample effects, etc., by simply applying

the existing procedures to the nonparametric case.

In short, the model gives flexibility to the wage structure at

no cost in the scope of the analysis.

In the next section I present the standard decompositions

1 Unobservable factors such as motivation and cultural

background may be related to some observable factors and affect
the individual's productivity. Kim and Polachek (1994), Neumark
and Korenman (1994) and Polachek and Kim (1994) use panel data
to solve endogeneity and heterogeneity problems. Heckman (1979)
proposes an adjustment in OLS techniques to account for sample

selection bias.
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Chapter 3: Average wage differential decompositions

carried out in the literature. Then, I carry out the same
decompositions for nonparametric structures and interpret them.
In the empirical section of this chapter, I carry out two
empirical applications of these decompositions to U.S. micro
data on wages of Mexican workers. The chapter ends with some

conclusions.

3.2 Decomposition of average wage differentials

3.2.1 The parametric approach

The problem is to measure the shares in the average wage gap
between any two groups, say group 1 and group 2 due to different
workers' characteristics and different wage premiums. The
commonest approach consists of fitting a wage function to each

group and then computing the decomposition.

Let us first assume that we know the values of the wage
premiums, b, and b,, so that the wage for any worker i belonging

to group 1 is

w, =x, b, +e, (3.1)

and the wage for any worker i from group 2 is
/
W, = X b2 +e,. (3.2)

Average wages within each group are simply
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= _ .\
Wi

xb +e
o B (3.3)
W, =x2'b2 + e ’

where the bar over a variable stands for the average operator.
If we denote b as the wage premiums that would exist if workers
from groups 1 and 2 were indistinguishable, then it is
straightforward to decompose the average wage gap between groups

1l and 2 as the sum of three conceptually different components:
W- W, =X/(b-b)+ X,/(b-b)+ (X-X,)b +(5,- 5, ). (3.4)

The first two components in the right hand-side of the equation
measure the importance of different wage premiums for the two
groups. The first one could be understood to be a prize to group
number 1 if it is positive. Also, the second term could be seen
as the effect of discrimination against group number 2. If we
expect that workers from the two groups have different
productivity levels, then these first two terms show the extent
to which the wage premiums are affected by the productivity

differentials for the two groups.
The third component in the right-hand side of (3.4) measures the
effect on the wage gap of the differences in the characteristics

for the two groups.

Finally, the last component of equation (3.4) reflects the

importance of unobservable factors in the wage gap.
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Chapter 3: Average wage differential decompositions

If b,=b, that is, if we consider the wage structure for group 1
as the one that would prevail when workers from the two groups
were, holding everything else constant, indistinguishable, then

the decomposition simplifies to

W,- W, = %,/(b,-b,)+ (X,-X,)'b, +(5,- 5,) (3.5)

This is the well-known Oaxaca decomposition, and consists of
only three components: the structural term, the sample term and
the rest. A similar expression can be obtained by assuming that
b,=b.

Of course, there is no reason why sample and structural
components should be the same in the two decompositions. Thus,

these decompositions depend upon the assumption on b.

Following Oaxaca and Ransom (1994), we can assume that

b = A'b, + (I-A) b, (3.6)

where A is a weighting square matrix, not necessarily diagonal.
Obviously, to make these decompositions operational we need to

have estimates for b,, b,, and A.

A simpler decomposition can be obtained after making further
assumptions on the way b, and b, relate. Suppose, without loss
of generality, that the first element of this vector corresponds
to the constant term in the wage equation. Suppose that b, is
the same as b, except for the value of the parameter of the

constant term. Thus, b;;=b,; for all i#l, b,;;#b,;. and we can set
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b,=( a;+d , a,, as ..., a, )" and by,=a=( a, , a, , asz, ...,a,".

Then, the wage for any worker i belonging to group 1 is

_ !
W, =x;a+d+e, (3.7)

while the wage for any worker i from group 2 is

/
W, =X a+e (3.8)

and we can again decompose the average wage differential in

several components:

W-w, = d+x/(a- b+ X,/ (b-a)+ (X- %) b+ (55, ) (3.9

Now, the first three components measure structural components
in the average wage gap. Note that although this expression now

simplifies irrespectively of b into

w,-w, =d+ (X,-X,)a+e-F¢ (3.10)

the second term in the last equation will measure the sample
effect only under the assumption that b=a. Although this is
again arbitrary and other specifications for b are potentially
valid, the advantage of (3.10) is that it can be implemented in
a single regression with a dummy variable. All previous
expressions are not implementable in the sense that b,, b,, and

b are not known. The empirical counterpart of (3.4) is:

-~ ~ pa— -~

s = < !/ /& ey - \ A = =
w,-w, =Xx/'(b-b)+ X, (b-b,)+ (x,-%,)b +&-& (3.11)

where the hat superscript denotes estimated values. So, if we

assume b=b, and estimate the wage equations within each group
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with OLS we obtain the following decomposition:
w-w, =x/(b,-b)+ (X,- x,)b, . (3.12)
1 2 2 1 2 1 2 1 *

As suggested above, other possibilities are available. Reimers

(1983) chooses
b =3b, +-b, (3.13)

whilst Cotton (1988) takes A=s,-I, where s, is the fraction of
workers from group 1. Neumark (1988) proposes a least square
criterion to estimate the nondiscriminatory wage structure from

the pool sample of workers?.

Again, if estimates are obtained with OLS, then the fourth term
in the decomposition in (3.4) disappears, and the resulting

decomposition has the form:

~ ~
.

w,-w, =x/(b,-b)+ X,/ (b-b,)+ (x,- x,)b (3.14)

There are two criticisms to this approach. First, it is
unwarranted that the unexplained term in the wage gap must be
zero. This is a result of the estimation technique, which fully

exploits the null covariance between the error term and the

2 oOaxaca and Ransom (1994) show this is equivalent to

weighting matrix estimated by premultiplying the inverse of the
moment matrix of the vector of characteristics for the pooled

sample to the moment matrix of one of the groups.
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constant included in the set of regressors in each equation.
Thus, although it is reasonable to argue that the average effect
of this term will be small, the unobservable effects in both
groups do not have to cancel each other out. Second, OLS will
lead to biased estimates when the error term of the equation is
correlated with a regressor. Thus, panel data or IV techniques

must be used to implement the decompositions.

3.2.2 Nonparametric decompositions

The basic feature in a nonparametric model such as

£(x,) = Y c, Ix, et}

teT*

(3.15)

is that the wage differential between two types of workers will
depend on the other set of characteristics and this dependence
cannot be captured by independent functions for each group.
Thus, the nonparametric case is a natural generalization of the

model in which there are different wage premiums for each group.

Suppose that we want to study the average wage differential for
a dichotomous variable x;, x;=1,0. Take x;(k)=(x_,x,=k) where x_
is a vector of characteristics containing all elements of x

except x;. The expected wage differential for variable xy,

d(x_;(k)), is of the form

d(x,(k)) = £(x,(k)) = £7(x_). (3.16)

121



Chapter 3: Average wage differential decompositions

Note that £'(-) is the expected wage if the market could not
distinguish between workers for which x;=1 and workers for which
X]=O.

How can we decompose the observed average wage differences

between workers with X4;=1 and x;=0? Since

= = _ 1 _ 1
Wix,=17 Yix0 T N ) £(x;) -« by £ix,)

1 (1]xy=1) 0 (ijxy=0)
(3.17)
1 1
o e T Yey
1 (i]x,=1) 0 (i]x,=0)

where N, is the number of observations for which x;=k, and

£(x,|x,=k) = £(x,(k)) = £7(x_y) +d(x,(k)) Vk=0,1 (3.18)

we can therefore decompose the observed average differences in

three terms,

— — (1 a1
w"‘:'l_ w'xj'o_(N_l 1|§J:-1d(xj(l)) N, E d(xj(O)))

0 ilxy=0
+{ > £o(x_,) - = £(x_.)
(Nl i.xz,:.l -3 N i,xz;_o -3 (3.19)

1 1
Al e E e T N Z 4] -
1 odxye1 0 ifxy=0

The interpretation of these terms is equivalent to the
interpretation in the linear parametric specification. As in
(3.4), the first term can be decomposed into "discrimination”

and "favoritism".

In order to do so, what is crucial again is the assumption we
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take on the nondiscriminatory wage structure. For example, if

£ (x _;)=f£(x;(1)), then

Tipe™ Wpeyeo = ( iy d(xjw)))

0 i|x,=0

ilxy=1 ] i]xJ-O

1 2: 1 2:
+ | — ei _— ei .
N, . Ny
1oifxy=1 0 i|xy=0

+(',:_1 E f(xj(l)) _ﬁl— E f(xj(O))) (3.20)

The interpretation of each component is now apparent. The third
term in the right-hand side of the equation is the average
effect of unobserved skills on the wage gap. The second term is
the wage gap that would exist if there were no premiums to the
variable x; and the individuals' distribution of unobserved
skills were similar across types. It is therefore the effect of
the workers' specialization. The first term is the effect of

differing premiums for the two different types.

In the last expression, I have assumed that the structure of the
'non-discriminatory' (i.e. the xy-blind) market would be that of
the individuals for which x;=1. This is, as noted before,
arbitrary. However, a similar approach to that explained in the
parametric case is easily implementable here. In particular, we

can assume that

£7(x_ ) = a(x,) £(x,(1)) + (l-a(xy)) - £(x(0)), VO0<a(:)<1l (3.21)

and we could implement decompositions in the same way as in

Cotton (1988), Reymers (1983), or Neumark (1988).
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We can therefore compute nonparametric decompositions with the
same 1interpretation as in the parametric case. A detailed
analysis of the estimated structures may unveil regions where
any discriminatory interpretation would differ. Thus, this
technique is an interesting alternative to the parametric
methods proposed in the literature. In the following section,
I will <carry out two empirical applications of these

decompositions to U.S. micro data on wages.

3.3 Empirical findings

Persons of Hispanic origin make up one of the fastest growing
worker groups in the United States. Mexican Americans are, by
far, the largest single Hispanic group. Some studies have looked
at the characteristics of workers of Hispanic origin®. Here, I
carry out two wage gap decompositions first between male workers
of Mexican origin born in the U.S. or Mexico and then between

Mexican Americans and white non-Hispanic male workers.

3.3.1 Parametric and nonparametric average wage gap

decompositions for workers of Mexican origin

3 See, for example, Cattan (1993) for a description of

labor statistics for Hispanics. Reimers (1983), Verdugo (1992),
and Cotton (1993) all study the earnings differentials between
Black, Hispanic, and non-Hispanic workers with a parametric

approach.
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The data that I will use in this section corresponds to the
extracts of the 1994, 1995, and 1996 Annual Earnings File of the

Current Population Survey (CPS) prepared by the NBER.

Two variables are recorded in the extracts of the CPS relating
to Mexican origin. The first one is country of birth and the
second one is ethnicity. This last variable is the answer to the
question: "What is your origin or descent?". This is intended
to be the national or cultural group a person is descended from
and is determined by the nationality or lineage of a person's
ancestors. There is no rule on how many generations to consider.
A respondent may report origin based on the origin of a parent,
or a far-removed ancestor. Origin is not necessarily related to
race or country of origin. It shows the respondent’s self-
perception in terms of ethnicity. Two ethnic groups are

considered in this study: Mexican Americans and Mexicanos.

Country of birth may help us to control for integration in the
labor market. There is empirical evidence' showing that English
proficiency counts. Furthermore, in the sample, the vast
majority of workers born in Mexico do not hold full U.S.

citizenship. There is also indirect empirical evidence showing

¢ See, for example, DAvila et alia (1993) and Bloom and

Grenier (1993).
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that this may also be affecting their wages®.

The sample I study consists of full-time employed male workers
of Mexican origin born in the U.S. or Mexico. The data for 1994,
1995, and 1996 are pooled in a single sample to enlarge the
number of observations available. In order to avoid duplications
in the observations, I choose the first outgoing rotation
interview for each household. In the following, I will refer to

this data set as the "Mex data"®.

There is, as said, no perfect relation between ethnicity and
country of birth’. Thus, we can find Mexican Americans born in
Mexico and in the U.S., and Mexicanos again born in Mexico and

in the U.S.. More Mexican Americans hold U.S. citizenship than

> Donato and Massey (1993) show that the Immigration Reform
and Control Act (IRCA) of 1986 increased the wage penalties
accruing to undocumented status. Pagan and Davila (1996) find
however that IRCA reduced the true wages of male natives most
likely to be mistaken as unauthorized.

¢ See also Appendix A for a description of the data set.

’ The Spearman rank correlation coefficient between the
country of birth code and the ethnicity code was 0.73, 0.70, and
0.70 for 1994, 1995, and 1996 respectively.
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are born in the U.S.%.

Wages are the logarithms of earnings per week divided upon hours
per week at the job. The variable specification includes
education, potential experience, country of birth, and
ethnicity. Education refers to whether the worker has completed
high school and at least started further education, x1=2, or
not, x1=1. Potential experience is divided into 5 categories:
from 1 to 10 years of potential experience, from 11 to 20, from
21 to 30, from 31 to 40 and from 40 years of potential
experience onwards. Potential experience is computed from age
minus education minus six. Values from 1994 are inflated with
the index of wage inflation from the entire sample of full time
employed workers. Values from 1996 are deflated with the same
index for 1995:1996. The data set contains 5265 different cases.
The sample is randomly divided into two samples of sizes of 2/3

and 1/3 of the total, respectively.

The result of the splitting process can be seen in Appendix A.
The splitting stops if there are less than 50 observations in
a node. Figure 3.1 in Appendix B shows the residual sum of

squares both for the estimation and the test sample.

The minimum R is obtained with tree T21, as it is shown in

® For example, in 1995, 88% of Mexican Americans had U.S.

citizenship whilst only 86% were born in the U.S..
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1

Table 3.1 Regression results: Goodness-of-fit measures® for

the Mex data set.

Data: CPS,1994,1995,1996. 1lst outgoing rotation group. Born in Mexico or in the USA;
full time; male; Mexican American or Mexicano. Estimation Sample:3517 cases. Test
Sample: 1748 cases.

Human capital variable specification + Country of birth + Ethnic

1st sample 2nd sample Both samples
Non-parametric regression:
Tree T21 0.2286 0.2099 .
Parametric regressions:
with Dummy . 0.2123 0.2154
‘born in U.S. . 0.1826 0.2003
born in Mexico . 0.0833 0.0805

Note: Tree T21 refers to the surface estimated with regression trees using the 0-SE
rule and 50 as the stop-splitting rule in the algorithms. Parametric regressions refer

to “Mincer” quadratic equations extended with ethnic.

!For the tree: RE=1-R(T)/R(root) in the second sample, whilst R? is for the first

sample. For the quadratic specification, R? is computed for the entire sample.

Appendix A. This tree has 13 terminal nodes and the R? measure
based on the estimation sample is 0.2286. For the test sample,
it falls to 0.2099. Table 3.1 gives goodness-of-fit indices for
the nonparametric regression and for two  parametric
specifications. The first parametric regression estimates the
effect of place of birth and ethnic association on wages by
including these variables in the wage equation. The second
specification consists of different equations for workers born
in the U.S. and workers born in Mexico. Similar results were

obtained using different wage equations for workers declaring

128



Chapter 3: Average wage differential decompositions

to be of Mexican American origin and workers considering
themselves as Mexicanos. There are very little differences in
our goodness-of-fit measures for all these different models, so

it seems hard to choose one model on this basis.

How complex are the models? The parametric models incorporate
square terms for potential experience and linear terms for all
the variables. This implies 40 different expected wages.
Therefore, tree T21 is a simpler structure, with only 13

different expected wages.

Figure 3.2 in Appendix B shows tree T21l. High average wages will
tend to occur on the right branches of the tree due to the
variable specification. The influence of experience is clearly
nonlinear. Some workers with very low or very high level of
experience do have average wages smaller than workers with
potential experience of between 10 and 40 years. It is
interesting to note that the negative effect of potential
experience for old workers only appears in workers born in the
U.S. -splits at nodes number 9 and 14. If anything, we observe
an increasing earnings experience profile for Mexico-born

workers -node 23.

The role of place of birth is clear. Being born in the U.S.
usually carries a premium in the wage structure. A simple way
of getting this information is by plotting all wage

differentials between U.S. and Mexico-born workers. Figure 3.3
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in Appendix B shows the predicted wage differentials for the
variable country-of-birth in descending order. The graph shows
the wage differential between a worker born in the U.S. and a
worker born in Mexico in all points x_;. The ordering is however
arbitrary. I chose to present wage differentials in descending
order to make the range of values more visible to the reader.
It can be argued that place-of-birth is a crude indicator of
other variables describing the degree of integration of the
worker in the country. Therefore we can expect® a positive
premium for most workers born in the U.S., as it is shown in the
graph. Although there are some negative values, most of the
differentials are of the expected sign, ranging from around 0.10
to 0.50. The majority are around 0.20. We could expect a value
near -0.20 in the estimation of the parameter of the wvariable
country-of-birth in the parametric specification. In Appendix
C I present the results of the parametric regressions with dummy
variables for country-of-birth and ethnicity. The estimated
value for the country-of-birth effect is -0.23, a reasonable

value considering what tree T21 tells us about the

° As mentioned before, language proficiency is a clear
productive factor. However, other arguments have been examined
in the literature. Walker (1996), for example, argues that
"captivity mechanisms may be present in allocating Mexican
immigrants and 1local women to the lowest paid and most
undesirable mobs within production”. Addressing this debate is
beyond the scope of this empirical analysis.
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differentials.

We can also look at the differentials for workers who declared
to be of Mexican-American origin and workers who declared to be
of Mexicano origin. As mentioned before, this variable shows the
respondent's self perception. If this perception corresponds
also to the way the market perceives the worker, then a negative
effect of this wvariable on wages could be understood as wage

discrimination.

In Figure 3.4 in Appendix B I show ethnic differentials obtained
from T21. Clearly ethnicity is not a relevant factor for most
workers. Perhaps more interestingly, when it is relevant in
explaining differences, it does so with different signs. Among
workers born in Mexico, with low education and with more than
10 years of experience, those who considered themselves as
Mexican-American had a higher wage than those who considered
themselves as Mexicano. However, among workers born in the U.S.,
with higher education, and with potential experience of between
10 and 40 years, those who considered themselves as Mexicano had
higher wages than those who considered themselves as Mexican-

American.

The interesting methodological point that ethnicity raises is

that the tree structure deals with the strong non-homogeneity

already described. The dummy variable approach takes the
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differential to be constant. The estimated value!® of the dummy
specification is "near" zero, but statistically significant and
of negative sign. Looking at the results of the parametric
regressions, we could argue that there is overall
"discrimination". Using different equations for Mexican-
Americans and for Mexicanos does not help: for some Mexican-
Americans and for some Mexicanos the distinction matters, for

most it does not.

The difference between regression trees and the linear
specification can be understood as the result of two factors.
It is first a consequence of the algorithm used to estimate the
tree structure in regression trees. The recursive algorithm used
in the estimation of the nonparametric surface works in practice
not only as a nonparametric estimation technique, but also as
a variable selection procedure. Secondly, it also reflects that
linear regressions use linear covariation to render the

estimates.

Thus, although all models score similarly in terms of the fit
in and out of sample, the structures are different. Next, I will
show how this affects the results of a standard decomposition

of average wage differentials.

I first computed the decompositions of average wage gaps

% see Appendix C.
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Table 3.2 Average Wage Decompositions. Mex data. Reference

variable: Country of Birth. Reference worker: born in Mexico.

Data Total Structure Sample Rest
Tree T21

Estimation Sample 0.35 0.28 0.068 0.00

Test Sample 0.34 0.28 0.061 0.0006

All 0.34 0.28 0.065 0.0007
Sees!

Estimation Sample 0.35 0.23 0.11 0.00

Test Sample 0.34 0.23 0.11 0.0007

All 0.34 0.23 0.11 0.06007
Sea?

Estimation Sample 0.35 0.23 0.12 -0.001

Test Sample 0.34 0.23 0.11 0.0007

All 0.34 0.23 0.11 0.00
Tees?

Estimation Sample 0.35 0.15 0.20 0.00

Test Sample 0.34 0.15 0.19 -0.001

All 0.34 0.15 0.20 0.00005
Tea*

Estimation Sample 0.35 0.17 0.17 -0.0004

Test Sample 0.34 0.19 0.16 -0.0009

) All 0.34 0.17 0.17 0.00

! Single equation estimated with the estimation sample.

Single equation estimated with all observations.
Two equations estimated with the estimation sample.
‘ Two equations estimated with all observations.

The last three columns in all rows do not sum up to the first column due to rounding

errors.

assuming that the "blind" wage was similar to that of the worker

born in the U.S.. I obtained six decompositions for each
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parametric model: single linear parametric regression and
separate linear regressions. These decompositions depend upon
whether all observations or those from the estimation sample are
used to get the estimates and on whether the decompositions were
carried out on the estimation sample, the test sample, or all
observations. For T21 I also carried out three decompositions
depending again on the sample used. Table 3.2 gives the results
of the decompositions of the average wage differential between
workers born in the U.S. and workers born in Mexico. In the
first column we can see the positive gap in average wages in
favor of workers born in the U.S.. All models suggest the
importance of the structure of wages to explain the gap. There
is a clear difference, however, between T21 on one side and the
parametric models analyzed on the other side regarding the
importance of the sample effect. T21l gives very little weight
to the sample effect, that is, to the different characteristics
of the workers. From T21 we can deduct that what most matters
is the fact that the advantaged workers were born in the U.S..
This fact allows us to predict them as more productive holding

all other observed characteristics constant.

The parametric models suggest that U.S.-born workers have on
average a higher wage in part because they were born in the U.S.
and in part because they tend to consider themselves as Mexican-
American, a trace that comes with a premium in the labor market

in the parametric models.
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We can do a similar exercise for the wage gap between workers
who considered themselves as Mexican-American and workers who

considered themselves as Mexicano.

The results are presented in Table 3.3. The first column of the
table shows the average wage premium for workers who considered
they were of Mexican-American origin. There 1is more overall
agreement in the models regarding this decomposition. The wage
gap is mainly described by the sample differences between the
two groups. Crucially, the fact that most Mexican-American were

born in the U.S..

From Figure 3.4 in Appendix B we can obtain an explanation of
why the overall structural effect is smaller in the parametric
models than in T21l. The parametric models impose a structure to
the data that in practice smooth out large wage differentials

between some workers with different ethnic affiliation.

T21 does not smooth this differentials, as seen in figure 3.4.
The overall effect in the nonparametric decomposition will
depend on the number of observations falling in each category.
In this example, the effect of the structural differences is

clearly positive.

Note how adding more flexibility to the parametric single
equation model by estimating two equations does not solve the

problems of parametric regression in this particular example.
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Table 3.3 Average Wage Decompositions. Mex data. Reference

variable: Ethnic. Reference worker: Mexicano.

Data Total Structure Sample Rest
Tree T21 Estimation Sample 0.28 0.11 0.16 0.013

Test Sample 0.29 0.11 0.17 0.0074

All 0.28 0.11 0.17 0.0074
Sees!?

Estimation Sample 0.28 0.05 0.23 0.00

Test Sample 0.29 0.05 0.24 -0.005

All 0.28 0.05 0.24 -0.001
Sea?

Estimation Sample 0.28 0.04 0.24 0.001

Test Sample 0.29 0.04 0.25 -0.003

All 0.28 0.04 0.24 0.00
Tees?

Estimation Sample 0.28 -0.004 0.29 0.00

Test Sample 0.29 0.002 0.30 -0.03

All 0.28 -0.002 0.29 -0.002
Tea!

Estimation Sample 0.28 0.005 0.27 0.002

Test Sample 0.29 0.01 0.28 -0.006

All 0.28 0.007 0.28 0.00

! single equation estimated with the estimation sample.

Single equation estimated with all observations.

3 Two equations estimated with the estimation sample.

¢ Two equations estimated with all observations.

The last three columns in all rows do not sum up to the first column due to rounding

errors.

Why do the unobservable factors have a negative effect in the

wage gap in all parametric models? A plausible explanation is
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that the linear parametric models are too restrictive and T21
is nearer the true model. We know from Figure 3.4 that wage
differentials for most workers along ethnic origin are null and
that the parametric structures nonetheless force a positive wage
differential in favor of Mexican-American workers. The
adjustment in the wage gap equation comes as an artificial

negative effect of the unobservable effect!!.

3.3.2 Average non-Hispanic-Mexican wage differentials in the

border states

I study the wage gap between Mexican Americans and white non-
Hispanic male full-time employed workers in the border states!?
between Mexico and the U.S.. I concentrate on this region to
avoid possible regional effects in the wage gap that may arise
since almost three quarters of Mexican Americans interviewed

were from the four border states.

The data that I will use in this section corresponds to the
extracts of the 1995 Annual Earnings File of the Current
Population Survey (CPS) prepared by the NBER. Here Mexican

Americans are all respondents who stated they were of Mexican

1 To see this, it is enough to consider that the first

term in (3.20) 1is overestimated whilst the third term 1is
computed as a residual.
12 california, Arizona, New Mexico, and Texas.
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American, Chicano, or Mexicano ethnic origin and their parents
and themselves were born in the U.S.. Non-Hispanic white workers
were all those white Non-Hispanic workers born in the U.S. whose

parents were also born in the U.S..

Wages are the logarithms of earnings per week divided upon hours
per week at the Jjob. The variable specification consists of
education and potential experience. Education refers to whether
the worker has not completed high school, has just high school,
or has higher education. Potential experience is divided into
five categories: from 1 to 10 years of potential experience,
from 11 to 20, from 21 to 30, from 31 to 40 and from 40 years
of potential experience onwards. Potential experience is

computed from age minus years of education minus six.

The sample consists of 5,527 cases of which 661, 11%, were
Mexican American. To obtain an honest size tree, I randomly
split the Non-Hispanic sample into an estimation and a test
sample. All Mexican Americans are included in both samples3. I

will call this data set!* the "Texmex data".

33 This is a procedure somewhere between v-fold cross

validation and spliting the sample into two. The reason to do
this here is that I want to minimize the possibility of one
group of Mexican Americans not being sufficiently represented
in either sample.

14 See also Appendix A.
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The result of the splitting process can be seen in Appendix A.
The splitting stops if there are less than 10 observations in
a node. Figure 3.5 in Appendix B shows the residual sum of
squares for the test sample. The minimum R*®* is obtained with
tree  Tl. Nevertheless, the fundamental structure in the data can
be analyzed by looking at simpler trees, such as T8. This tree
has 23 terminal nodes and the R? measure based on the estimation
sample is 0.25. For the test sample, it rises to 0.26. Tree T8

is shown in Figure 3.6 in Appendix B.

Ethnicity is a split criterion in all regions of the independent
variables' space. Casual inspection of the figure shows that
Mexican origin comes with a penalty, that is, all ethnic left-
branch projections are higher than right-branch projections.
Figure 3.7 in Appendix B shows all predicted wage differentials
for ethnic in descending order. But for a few exceptions!®, wage

differentials are around 0.20.

The interesting methodological point that this analysis shows
is that regression trees may unveil also linear structures. The
dummy variable approach takes the differential to be constant.

In this example, this is almost right, so we might expect small

1> Consider, for example, workers with more than 40 years
of experience who went into higher education. The projected log
wage for non-Hispanic white workers was 2.82, whilst the

projection for Mexican origin workers was only 1.54.
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Table 3.4 Average Wage Decompositions. Texmex data. Reference

variable: Ethnicity. Reference worker: Mexican American,

Chicano or Mexicano.

Data Total Structure Sample Rest
Tree T21
Estimation Sample 0.36358 0.23052 0.13306 0.00
Test Sample 0.37291 0.23052 0.13063 0.011764
All 0.36825 0.23052 0.13184 0.0058821
Sea!
All 0.36825 0.23146 0.13679 0.00

1Single equation estimated with all observations.
The last three columns in all rows do not sum up to the first column due to rounding

errors.

differences in the results of the decompositions.

Table 3.4 gives the results of the decompositions of the average
wage differential between white Non-Hispanic and Mexican
ethnicity workers. As suspected, the decompositions are almost
equivalent, reflecting that the parametric decomposition is
meaningful because almost all wages follow a linear structure

with respect to ethnicity!®.

' T implemented other variable specifications to see

whether the result was robust. In particular, an aggregate of
occupation and also union membership were introduced in the
analysis. Although the estimated tree was sensitive to these
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3.4 Conclusions

In this chapter I show that average wage gap decompositions
between any two groups of workers can be carried out without any
compromise in their interpretation using a nonparametric wage
structure. Oaxaca type decompositions are simply generalized to
decompositions when the differentials do not have a simple

parametric structure.

I proceed by studying wage gap decompositions for two groups of
Mexican workers. I choose a human capital specification
augmented with ethnic/origin variables. Of course, there may be
some relevant variables not considered in the analysis. It is
thus of interest to obtain realistic estimates of the effect on

the wage gap of these unobservable factors.

The nonparametric approach differs in this example from
parametric specifications in that it gives different
country-of-birth and ethnic differentials depending on the
worker's characteristics. In particular, ethnicity has very
little effect on expected wages, even affecting in different
ways U.S. born workers and Mexico-born workers and lower- and

higher-education workers.

changes, the decompositions of the wage gap between mexican and

white non-Hispanic were similar.
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In the nonparametric model, the structural effect -the part of
the wage gap due to the pricing of the worker's characteristics
in the labor market- is larger than the sample effect -the
effect of differing characteristics in the two populations-
after decomposing the average wage gap between workers born in
Mexico and workers born in the U.S.. For the parametric models
the difference between the structural and the sample component

is very small.

It 1is reasonable to take birth-of-place as a proxy of
integration in and accessibility to the U.S. labor market. The
nonparametric approach suggests that this factor is a predictor
of overall productivity. The wage gap between Mexican workers
born in the U.S. and those born in Mexico is primarily due to
their productivity differentials. Their characteristics'
differentials play a more limited role. The parametric

decompositions fail in recognizing this fact.

In the second empirical analysis, I study the average wage gap
between Mexican Americans and white non-Hispanic male workers
in the border states between Mexico and the U.S.. Regression
Trees unveils a linear relation in the wage structure with
respect to ethnicity so that most ethnic differentials are
around 20%. Due to this linear behavior, the nonparametric
decomposition is very similar to a simple decomposition with a

dummy variable.
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Appendix A

Mex Data:

CPS,1994,1995,1996.1ST OUTGOING ROTATION GROUP.

BORN IN MEXICO-BORN IN THE USA

MALE, EMPLOYED, WORKS MORE THAN 35 HOURS

ETHNIC: MEXICAN AMERICAN, MEXICANO

5265 OBSERVATIONS: Estimation Sample:3517 cases. Test Sample: 1748 cases.

Variables:

xl: Potential experience 1:1~-10 2:11-20 3:21-30 4:31-40 5:+40

x2: Education 1: At most, High School 2: more than High School

x3: Country of Birth 1: USA 2: Mexico

x4: Ethnic 1: Mexican American 2: Mexicano

Tree: (Yes) (No) Average

Nodo 1 : x2<=1.5 2682 833 2.1422908

Nodo 2 : x3<=1.5 867 1815 2.0412585

Nodo 3 : x1<=1.5 344 489 2.467583

Nodo 4 : x1<=1.5 283 584 2.2087824

Nodo 5 : x1<=1.5 433 1382 1.9612348

Nodo 6 : x3<=1.5 226 118 2.2783496

Nodo 7 : x3<=1.5 356 133 2.6007041

Nodo 8 : x4<=1.5 211 72 2.0157391

Nodo 9 : x1<=4.5 538 46 2.302329

Nodo 10 : x4<=1.5 35 398 1.8321234

Nodo 11 : x4<=1.5 114 1268 2.0016872

Nodo 12 : x4<=1.5 168 58 2.3425075

Nodo 13 : x4<=1.5 17 101 2.1554711

Nodo 14 : x1<=4.5 348 8 2.6799407

Nodo 15 : x1<=2.5 89 44 2.3886124

Nodo 18 : x1<=2.5 276 262 2.3184431

Nodo 22 : x1<=2.5 39 75 2.1784505

Nodo 23 : x1<=2.5 569 699 1.9857952

Nodo 28 : x4<=1.5 280 68 2.6937847

Nodo 30 : x4<=1.5 11 78 2.3332398

Nodo 32 : x4<=1.5 213 63 2.2804515

Nodo 33 : x1<=3.5 170 92 2.3584648

Nodo 35 : x1<=4.5 63 12 2.2429412

Nodo 37 : x1<=3.5 402 297 2.017662

Nodo 38 : x1<=2.5 158 122 2.6556589

Nodo 39 : x1<=3.5 56 12 2.8507733

Nodo 44 : x4<=1.5 134 36 2.3958163

Nodo 45 : x4<=1.5 80 12 2.2894457

Nodo 46 : x1<=3.5 38 25 2.2566656

Nodo 49 : x1<=4.5 203 94 2.0288882

Nodo 51 : x1<=3.5 92 30 2.7272823

Nodo 52 : x1<=2.5 33 23 2.8284754

Terminal Nodes' Averages:
16 2.0183977 17 2.007948
19 2.1138643 20 1.941488
21 1.8225059 24 2.3488662
25 2.3240891 26 2.3875722
27 2.1164045 29 2.0777244
31 2.5006162 34 2.05443
36 1.9466478 40 2.3438962
41 2.3317369 42 2.2746859
43 2.2999447 47 2.170888
48 2.009368 50 2.6003548
53 2.9548298 54 2.3935341
55 2.4043114 56 2.2671271
57 2.4382362 58 2.2696462
59 2.2369352 60 2.0351454
61 2.0153752 62 2.7075008
63 2.7879454 64 2.8280592
65 2.8290726

Residual Sum of Squares 737.94732
Complexity: ITt = 33
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Tree Pruning:

Tree Node Critical Value S(T) ITI
T1 0 0 737.9 33
T2 52 1.392e-05 737.9 32
T3 30 0.001425 737.9 31
T4 44 0.003296 738 30
T5 8 0.005862 738 29
T6 46 0.01614 738 28
T7 49 0.02511 738 217
T8 12 0.02647 738 26
T9 32 0.03102 738.1 25
T10 37 0.06508 738.1 24
T11 35 0.07417 738.2 23
T12 51 0.1464 738.3 22
T13 39 0.1578 738.5 21
T14 45 0.3055 738.8 20
T15S 10 0.4554 739.3 19
T1l6 33 0.6754 739.9 18
T17 18 0.818 740.8 17
T18 15 0.8249 741.6 16
T19 22 0.9118 742.5 15
T20 13 1.07 743.6 14
T21 38 1.109 744.7 13
T22 23 1.582 746.3 12
T23 9 1.774 748 11
T24 28 2.083 750.1 10
T25 6 2.712 752.8 9
T26 14 2.968 755.8 8
T27 11 3.882 759.7 7
T28 7 8.218 767.9 6
T29 5 9.479 7177.4 5
T30 4 15.66 793 4
T31 3 20.98 814 3
T32 2 35.95 850 2
T33 1 115.5 965.5 1

Tl is the largest tree.

Test sample Impurity:

Tree S(T) StDev(S(T)/N)
T1 411.5 0.02274
T2 411.5 0.02274
T3 411.5 0.02274
T4 411.5 0.02274
TS5 411.5 0.02274
T6 411.4 0.02274
T7 411.4 0.02271
T8 411.3 0.02271
T9 411.2 0.02271
T10 411.3 0.0227
T1l1 411.2 0.02269
T12 411.2 0.0227
T13 411.5 0.0227
T14 411.7 0.0227
T15 411.8 0.02271
T16 411.3 0.02271
T17 410.8 0.0227
T18 412 0.0227
T19 410.9 0.02269
T20 409.9 0.02268
T21 408.9 0.02268
T22 411 0.02243
T23 411.3 0.02243
T24 410 0.02242
T25 411.7 0.02241
T26 411.5 0.02241
T27 410.9 0.02252
T28 418.9 0.02257
T29 420.9 0.02223
T30 428.5 0.02224
T31 439.8 0.0223
T32 454.2 0.02297
T33 517.8 0.0241

Honest Tree: Prune until node 38 (SE rule: 0 )
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CPS,1995. 1ST OUTGOING ROTATION GROUP.
BORN IN US. PARENTS BORN IN US.

MALE, EMPLOYED, WORKS MORE THAN 35 HOURS. CALIFORNIA, NEW MEXICO, ARIZONA, TEXAS.
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ETHENIC: MEXICAN, WHITE NONHISPANIC.
5527 OBSERVATIONS: Estimation Sample: 3094 cases. Test Sample:

Variables

x1l: Education:
x2: Experience:
x3: Ethnic:
Tree:

Nodo 1 : x1<=2.5
Nodo 2 : x1<=1.5
Nodo 3 : x2<=1.5
Nodo 4 : x3<=1.5
Nodo 5 : x2<=1.5
Nodo 6 : x3<=1.5
Nodo 7 : x3<=1.5
Nodo 8 : x2<=1.5
Nodo 9 : x2<=1.5
Nodo 10 : x3<=1.5
Nodo 11 : x3<=1.5
Nodo 14 x2<=2.5
Nodo 15 x2<=4.5
Nodo 17 : x2<=3.5
Nodo 19 : x2<=2.5
Nodo 22 : x2<=2.5
Nodo 23 x2<=3.5
Nodo 25 X2<=4.5
Nodo 26 : x2<=2.5
Nodo 28 : x2<=2.5
Nodo 29 : x2<=4.5
Nodo 31 : x2<=4.5
Nodo 33 : x2<=4.5
Nodo 34 : x2<=2.5
Nodo 35 : x2<=4.5
Nodo 36 : x2<=3.5
Nodo 39 : x2<=3.5
Nodo 44 : x2<=3.5
Nodo 46 : x2<=3.5

3094 cases.

l.Less than High School 2.High School 3.More than High School

1.1-10 2.11-20 3.21-30
1.White nonhispanic

(Yes)

1155
278
520
127
200

Proyecciones de los Nodos Terminales:

Residual Sum of Squares:

2.5132
2.2665
1.9422
2.3693
1.9371

2.528
2.6857
2.6277

Number of Nodes:

Prun

ing
Tree

30

2.3468
2.0679
2.5546
2.2902
2.5964
2.5315
2.7947
2.6466
= 648.24877

Critical Valu
o]
3.271e-0
0.002775
0.00462
0.02172
0.04421
0.04699
0.07699
0.09201
0.1354
0.3951

16
37
42
48

56

e

5

(No)

1939
877
1419
151
677
97
170
92
120
67
176
687
3

40
78
279
20
28
75

2.0291
2.8301

2.825
2.6208
2.3729
2.8848
2.1416

R{T)
0.2095
0.2095
0.2095
0.2095
0.2095
0.2095
0.2096
0.2096
0.2096
0.2097
0.2098

4.31-40 5.+40
2.Mexican American,

Average

2.6049518
2.3823716
2.7375357
2.1187014
2.4659523
2.4821661
2.8311173
2.2931483
1.9719811
2.1999375
2.5445387
2.8581375
2.6325979
2.3935835
2.0194799
2.5973261
2.3942744
2.8811077
2.6521559
2.3388681
2.4647137
2.0611008
2.6313505
2.3770661
2.5284999
2.8834933
2.7060273
2.1161947
2.6358814

18 1.7881
27 1.5439
‘38 2.6082
43 2.2922
43 2.3841
53 2.8802
57 2.0819

Chicano or Mexicano
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T12 23 0.4065 0.2099 19
T13 19 0.4594 0.2102 17
Tl4 17 0.7176 0.2107 15
T15S 22 0.7289 0.2109 14
T1l6 14 0.8056 0.2112 13
T17 9 1.319 0.2116 12
T18 10 1.757 0.2122 11
T19 6 2.186 0.2129 10
T20 8 3.367 0.214 9
T21 15 3.62 0.2151 8
T22 11 5.37 0.2169 7
T23 4 7.115 0.2192 6
T24 7 7.612 0.2216 5
T25 5 18.33 0.2276 4
T26 2 25.45 0.2358 3
T27 3 46.34 0.2508 2
T28 1 91.31 0.2803 1

Tl is the largest tree.

Test Sample Impurity:

Tree R(T) Standard Deviations
Tl 0.2077 0.005154
T2 0.2077 0.005153
T3 0.2077 0.005155
T4 0.2077 0.005155
TS 0.2077 0.005154
T6 0.2079 0.005159
T7 0.2079 0.005163
T8 0.2078 0.00516
T9 0.2081 0.005181
T10 0.2081 0.005181
T1l1 0.2083 0.005188
T12 0.2084 0.005197
T13 0.2087 0.005212
T14 0.2093 0.005211
T1i5S 0.21 0.005211
T16 0.2102 0.005207
T17 0.2106 0.005216
T18 0.2114 0.005222
T19 0.2122 0.005273
T20 0.2136 0.005282
T21 0.2148 0.005533
T22 0.2168 0.005538
T23 0.2194 0.005549
T24 0.222 0.005682
T25 0.2277 0.005726
T26 0.236 0.005799
T27 0.2505 0.005921
T28 0.2798 0.00626

Honest tree: Prune from Tl until node 28 (SE rule: 0.05 )
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Appendix B

0.324

0.30

0.28 1

0.26

1 SE Bands
0.244 Test Sample

Estimation Sample
0.22

0.20 T LON S I | T T T T 7 T T T T T T T T T T T T T T T T T T T T Y

Figure 3.1 Average residual sum of squares for the

sequence of optimal subtrees. Estimation and Test
Samples. Mex data.

Standard Errors are computed assuming independence in the observations
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0.50
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0.00
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Flgure 3.3 Wage differentials projected by T21 between workers
born in the U.S. and workers born in Mexico.

The horizontal axis shows types of workers ordered by the size of the wage differentials
according to country of birth. There are 20 different possible comparisons: 5 experience
levels x 2 education 1levels x 2 ethnic. The reference worker was born in the US.

Types of workeras they appear ordered in the horizontal axis:

1 Higher education, Mexicano,11-20 yearsofexperience

2 Higher education, Mexicano,21-30 yearsofexperience

3 Higher education, Mexicano,31-40 yearsofexperience

4 Lower education, Mexicano, 11-20 years of experience

5 Lower education, Mexicano, 21-30 years of experience

6 Lower education, Mexicano, 31-40 years of experience

7 Higher education, Mexican-American, 11-20 years of experience
8 Higher education, Mexican-American, 21-30 years of experience
9 Higher education, Mexican-American, 31-40 years of experience
10 Higher education, Mexicano, 1-10 years of experience

1l Lower education, Mexicano, 1-10 years of experience

12 Higher education, Mexican-American, 1-10 years of experience
13 Lower education, Mexican-American, 1-10 years of experience
14 Lower education, Mexican-American, 11-20 years of experience
15 Lower education, Mexican-American, 21-30 years of experience
16 Lower education, Mexican-American, 31-40 years of experience
17 Lower education, Mexicano, +40 years of experience

18 Lower education, Mexican-American, +40 years of experience
19 Higher education, Mexican-American, +40 years of experience
20 Higher education, Mexicano, +40 years of experience
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Figure 3.3 Wage differentials projected by T21 between workers

born in the U.S.

The horizontal axis shows types of workers ordered by the size of the wage
according to country of birth.

levels x 2 education levels

and workers born in Mexico.

differentials
There are 20 different possible comparisons:
x 2 ethnic.

5 experience

The reference worker was bora in the US.

Types of workeras they appear ordered in the horizontal axis:

1 Higher education,Mexicano, 11-20years of experience

2 Higher education, Mexicano,21-30 yearsofexperience

3 Higher education, Mexicano,31-40 yearsofexperience

4 Lower education, Mexicano, 11-20 years of experience

5 Lower education, Mexicano, 21-30 years of experience

6 Lower education, Mexicano, 31-40 years of experience

7 Higher education, Mexican-American, 11-20 years of experience
8 Higher education, Mexican-American, 21-30 years of experience
9 Higher education, Mexican-American, 31-40 years of experience
10 Higher education, Mexicano, 1-10 years of experience

1l Lower education, Mexicano, 1-10 years of experience

12 Higher education, Mexican-American, 1-10 years of experience
13 Lower education, Mexican-American,1-10 years of experience
14 Lower education, Mexican-American, 11-20 years of experience
15 Lower education, Mexican-American, 21-30 years of experience
16 Lower education, Mexican-American, 31-40 years of experience
17 Lower education, Mexicano, +40 years of experience

18 Lower education, Mexican-American, +40 years of experience
19 Higher education, Mexican-American, +40 years of experience
20 Higher education, Mexicano, +40 years of experience
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0.20

0.-00

-0.05

-0. 10

-0. 15

-0.20 T

Figure 3.4 Wage differentials projected by T21 between Mexican-

Americans and Mexicanos.

The horizontal axis shows types of workers ordered by the size of the wage differentials
according to ethnicity. There are 20 different possible comparisons: 5 experience levels
x 2 education levels x 2 countries of birth. The reference worker declares to be Mexican
American.

Types of worker with non-zero differential as they appear in the graph:
Positive differentials:

Lower Education, bora in Mexico, 11-20 years of experience
Lower Education, born in Mexico, 21-30 years of experience
Lower Education, bora in Mexico, 31-40 years of experience

Lower Education, bora in Mexico, +40 years of experience
Negative differentials:

Higher Education, bora in US, 11-20 years of

Higher Education, bora in US, 21-30 years of

Higher Education, bora in US, 31-40 years of
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tree

Figure 3.5 Residual sum of squares for the

sequence of optimal subtrees. Test Sample. Texmex data
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Figure 3.6 Tree T8 . Texmex data
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Figure 3.7 Wage differentials projected by T8 between Mexican and
White Nonhispanic

First digit in type of worker refers to Education, second digit refers to

Experience.

The horizontal axis shows types of workers ordered by the size of the wage differentials
according to ethnicity. There are 15 different possible comparisons: 5 experience levels
X 3 education levels. The reference worker is white non-hispanic.

Type of worker:

35: More than High School; +40 Years of experience
14: Less than High School; 31-40 years of experience
12: Less than High School; 11-20 years of experience
15: Less than High School; +40 years of experience
23: High School; 21-30 years of experience

1l: Less than High School; 1-10 years of experience
13: Less them High School; 21-30 years of experience
32: More than High School; 11-20 years of experience
21: High School; 1-10 years of experience

33: More than High School; 21-30 years of experience
22: High School; 11-20 years of experience

31: More th«m High School; 1-10 years of experience
24: High School; 31-40 years of experience

25: High School; +40 years of experience

34: More than High School; 31-40 years of experience
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Appendix C

Single Parametric Equation Results

Nex Data:

CPS,1994,1995,1996.1ST OUTGOING ROTATION GROUP.

BORN IN MEXICO-BORN IN THE USA

MALE, EMPLOYED, WORKS THAN 35 HOURS

ETHNIC: MEXICAN ANERICAN, CHICANO, MEXICANO

5265 OBSERVATIONS: Estimation Sample:3517 cases. Test Sample: 1748 cases.

Variables:

x1: Potential experience 1:1-10 2:11-20 3:21-30 4:31-40 5:+40

x2: Education 1: At most, High School 2: more than High School
x3: Country of Birth 1: USA 2: Mexico

x4: BEthnic 1: Mexican American 2: Mexicano or Chicano

SINGLE EQUATION OLS estimation sample

Valid cases: 3515 Dependent variable: logwages
Missing cases: 0 Deletion method: None
Total SS: 965.484 Degrees of freedom: 3509
R-squared: 0.219 Rbar-squared: 0.218
Residual SS: 753.951 std error of est: 0.464
F(5,3509): 196.901 Probability of PF: 0.000
Standard Prob Standardized Cor with
Variable Estimate Error t-value >lt] Estimate Dep Var
CONSTANT 1.673534 0.056325 29.712364 0.000 --- ---
EXP 0.351444 0.030059 11.691782 0.000 0.760256 0.100941
EXP2 -0.051551 0.005530 -9.322746 0.000 -0.605373 0.068913
EDUCA 0.363401 0.019655 18.488641 0.000 0.294851 0.345905
COUNTRY -0.230939 0.023108 -9.993865 0.000 -0.216901 -0.324550
ETHNIC -0.048701 0.022902 -2.126544 0.034 -0.044958 -0.259945

SINGLE EQUATION OLS ALL OBSERVATIONS

Valid cases: 5262 Dependent variable: logwages
Missing cases: 0 Deletion method: None
Total SS: 1482.842 Degrees of freedom: 5256
R-squared: 0.214 Rbar-squared: 0.213
Residual SS: 1165.341 Std error of est: 0.471
F(5,5256): 286.402 Probability of F: 0.000
Standard Prob Standardized Cor with
Variable Estimate Error t-value >|t] Estimate Dep Var
CONSTANT 1.666944 0.046957 35.499059 0.000 -—-- .-
EXP 0.32681S 0.024770 13.194033 0.000 0.701631 0.098411
EXP2 -0.046764 0.004522 -10.341912 0.000 -0.549416 0.068020
EDUCA 0.378114 0.016380 23.083655 0.000 0.300420 0.347497
COUNTRY -0.230654 0.019121 -12.062930 0.000 -0.213030 -0.317615
ETHNIC -0.044363 0.019103 -2.322338 0.020 -0.040283 -0.257735
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Chapter 4

An application of regression trees to the analysis
of the evolution of the U.S. wage structure since

1980

4.1 Introduction: Relative growth performance and dispersion

changes in wages

In this chapter I aim to apply regression trees to study two
related empirical problems in wage structures. First, I will look
at the relative growth performance of male workers' real wages
since 1980 in the U.S. labor market and study the role that
several economic and social variables had on it. Second, I will

analyze wage dispersion and its evolution also from 1980 onwards.

The analysis of relative growth performance may seem a rather
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simple task. Consider the problem of comparing the evolution of
the wages of two workers in two consecutive periods. Growth rates
will give us all we need to know since by looking at their
relative growth rates, we will be obviously able to ascertain
whose wage increased the most. Also, we will be able to say
whether their wages are converging or diverging in the sense that
their absolute difference decreased or increased during the
period. If the higher wage experienced higher growth, then there
was increased dispersion. If the lower wage increased the most,

then either convergence or divergence with overtaking took place.

However, the problem of relative growth performance becomes more
subtle when more than two agents or more than two periods are

considered.

For example, with threé periods and two agents, suppose that the
growth in the variable for the first agent was positive in the
first period and stagnant thereafter while the reverse was true
for the second agent. Then, it is not clear to what extent the
overall growth rate is a good descriptor of both growth patterns.
The basic idea is that an average growth rate does not entirely
describe what happened since only information at the beginning

and at the end of the time span is considered.

Relative performance and dispersion are also more complicated to

study when more than two agents are included in the analysis.
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What matters is the evolution of the distribution of the variable
across agents and an overall measure of dispersion may again

destroy too much relevant information.

A simple strategy that may succeed in overcoming these potential
problems is to study the nature of the data and propose general
reasonable patterns that these data should satisfy. Sometimes,
this will be enough to allow us to judge whether indicators such
as average growth rates and standard deviations are meaningful.
In other words, it may be possible to restrict the
data-generating process to a statistical model that gives
structure both in the cross-section and the time series
dimensions of the problem and also allows us to judge the
properties of one-dimensional indicators of multidimensional

phenomena.

Following this introduction, I will present an econometric model
that I understand is well suited to study these dynamic issues
for large cross-sections of relative real wages. Namely, the
dynamic index model with one latent trend. It will be further
assumed that the parameters of the model have a nonparametric
tree structure. The advantage of this approach lies in that it
allows us to have clear-cut definitions of what we understand by
growth performance and dispersion in real wages. I will argue
that the model is very general indeed and reflects well our

understanding of wage structures.
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In the following section, I will describe alternative indicators
of growth and inequality and comment on their statistical
properties when they are applied to a sample generated by a
dynamic index model with one latent variable. In the fourth
section of the chapter, empirical results on the evolution of
wages are presented and compared to results in the literature.
Next, empirical results of wage dispersion are given. The chapter

ends with a reminder of the main conclusions.

4.2 Random fields and dynamic wage structures

4.2.1 Dynamic wage structures

I have in previous chapters assumed that the labor market is
fragmented and consists of many sectors, each with an equilibrium

wage. For any worker of type x, her log wage is:

w, = f(x) + v, . (4.1)

In this chapter, I will assume that v, is independent of any of
the regressors although the techniques developed could be
generalized to more realistic assumptions. This model is clearly
static and we need to enlarge it to study dynamic phenomena in
the labor market. We assume that both the structural component
and the idiosyncratic component may evolve through time. Then,
the log wage of any worker, i, of group x at any period, t, will

have the form:
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W, = £ (x) +v,. . (4.2)

We can further assume that at any point in time the wage
structural component f, can be described by means of a tree

plot.

If the vector of characteristics, x, were constant in time for
any worker, equation (4.2) would also describe the evolution of
wages for individuals. In this chapter, x may include time

dependent variables for individuals, such as experience, so that

(4.2) is only the evolution of the representative worker's wage.

I will use this general formulation to study wage dispersion
trends within groups since only the idiosyncratic term effect
differs across individuals of the same group. As suggested in
the introduction, an overall analysis of wage dispersion may be
misleading. Even if we control for variables that affect
expected wages, a parametric approach may not be appropriate.
The ;eason is that changes in the structural component in (4.2)
will also affect the distribution of log wages. In section 4,
I will use this nonparametric framework to study the role of

structural change in the evolution of wage dispersion.

An important property of (4.2) is that wages are dquble-indexed.
In other words, if we conceptualize the observed wage as an
observation from a stochastic process, then it is neither a
cross-section point, nor a time series realization, but a random

159



Chapter 4: Evolution of wages

field observation. In other words, the data may show structure
not only along the cross-section dimension but also along the
time dimension. The model that I consider in this chapter is a
random field with a nonparametric specification for the cross-
section and a parametric specification for the time series. The
main methodological strategy consists of choosing among all
reasonable models for wages the family that incorporates the
least structure so that no relevant features of growth and wage

inequality are lost in the process.

4.2.2 A dynamic index model for dynamic wage structures

The model proposed here is a restricted version of the dynamic
index modell. Three features of this model make it interesting

in the analysis of the evolution of the wage structure:

(a) Changes in the individual specific components only

! see Quah and Sargent (1993). Their work is an extension
of the common factors model to nonstationary models where the
statistical techniques to estimate the model are robust
orthogonality <conditions that qualify as Qquasi-maximum
likelihood estimators. See Lawley and Maxwell (1963) for an
introduction to factor analysis. For a dynamic stationary factor
analysis model, see Geweke (1977). Engle and Kozicki (1993) set
up a general framework in which cointegrated models and common

factor models appear as special cases.
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have temporary effects on wages. This is a self-evident

desirable property for the synthetic worker model.

(b) Trends in wages will be the result of the interaction

of two types of factors:

(bl) Global factors: They affect all wages. A typical
example is the technological level of the economy. By its own
nature, this factor is dynamic and cumulative or integrating.
All new inventions are added to the stock of knowledge for ever.

This is a powerful source of trending behavior.

(b2) Local characteristics: The global factors will
affect each type of worker in a different way. Local
characteristics may allow some workers to take more advantage
of new changes in the global conditions of the labor market.

These effects are by definition constant within each class.

(c) Wages tend to be log-proportional between groups: In
the absence of new permanent and temporary disturbances,
relative growth of observed wages will be proportional. In other
words, workers who are doing better in terms of growth in wages
will keep on doing better to the same extent in the steady-state

equilibrium.

Feature - (¢) is very restrictive. To see why, consider two types

of workers, x;, and x,. For simplicity, suppose that their real
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log wages follow deterministic trends:

- 2
\ alt + a2t

1 4.3
= b t, (4.3)

£

2t

where w;, denotes the real log wage of worker i. Only if a,=0

will relative log wages be constant.

Why should we disregard a,>0 for our analysis? If a,>0 growth in
wages in the second group will be increasing while growth in the
first group will be constant. Relative growth performance will
therefore not be constant along the period. If a;<b;, then it
will make sense to split the time span of our sample in two
periods, the splitting point in time being t*=(b,;-a,;)/2a,. The
fundamental problem in (4.3) is of course the fact that growth
in the first group has two independent sources. By assuming just
one source of long-term growth, we impose long-term constant
relative growth performance in observed wages. This will allow
us to talk of a single relative growth performance indicator for

the entire period.

As already stated, the model is a restricted version of the
dynamic index model. As in the original model, the data results
from the interaction of both a common source of shocks and
idiosyncratic shocks. In contrast to the original model, the

common source of shocks is constrained to be a single factor.

The data set is a realization of a random field. Workers belong
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to groups within which the structural component in the wage is
equal. The number of groups in the sample is unknown. Following
Quah and Sargent(1993), assume that {w;.} is an observed segment

of a random field that satisfies the relation

wit = az* ut + Vit’ (4.4)

where +* denotes convolution. The source of the permanent
component on W;:, U, 1s a scalar unobserved nonstationary
process, common to all elements. The idiosyncratic component,
Vi, 1is the idiosyncratic term with zero mean and possibly
nonstationary variance. It is further assumed independent of any

stationary transformation of the stochastic component in u..

The transference filter operator, a,, is assumed to have all
roots outside the unit circle and to be such that log wage

variance conditional on the initial wvalue u, is finite.

Expression (4.4) is a general model that incorporates as special
cases well-known examples of structural time series models. The
simplest case is the so-called deterministic polynomial trend
model in which the trend takes a polynomial functional form in

time.

When this form is linear, we have the linear deterministic trend

model:

W =dt(1+bet) + v, (4.5)
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with d, and b real numbers.

In another family of models stemming from (4.4) the common
factor, u,, has a stochastic trend component. For example, if u,
is an unobserved random walk and v;, is a noise term that is
uncorrelated with any stationary transformation of u, at all
leads and lags, the trend will have a stochastic component and
the common variance in the cross-sample will originate in the

trend. The model for the trend would be:

= + +
u, u, d e,

(4.6)
cov(v,, , e,]) =0, Y t,s,

with e, random noise with variance one. If the transference
operator a, is a real number, then we have the one common factor

version of the common factor model (Harvey, 1989, page 450).

A fully dynamic version of the common factor model is obtained
by relaxing some assumptions. We can call this the dynamic
factor model, and it is a nonstationary version of common factor

models as in Geweke (1977).

The model takes the form
w, =2al(B)u +v, ., (4.7)
with real nonnegative a,(l) and with a,(B) a polynomial in the

lag operator. For the trend, the model is:
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(1-B) -g(B)ut =d + e,

(4.8)
cov(v, , e) =0, Vt,s,

where g(B) is a lag polynomial with g(0)=1 and |g(z)]|#0 V|z|s1.

Model (4.4) encompasses these and other model specifications.
They all share an important feature. Relative long-term growth
performance for each element of the cross-section of the random
field depends on a,(l). Heuristically, if a,(1l)>ay(l), for any
two groups of workers, x and y, then the effect of the sources

of growth are larger for group x than for group y.

A second interesting property of model (4.4) is that it admits
pairwise projections between the elements such that relative
growth performance can be studied from estimates of the filters.

More precisely, since

Elw, | w,] =d_(B)w, (4.9)
where
4 (B a_(B)
(B = 2, (51 (4.10)

then the coefficients in d,, can be consistently estimated by a
least squares estimation. For the dynamic factor model (4.7) and

(4.8), the variables are pairwise cointegrated? so that pairwise

2 See Appendix A.
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cointegrating regressions will also give consistent estimates.
4.3 A review of trend estimators

In this section I present a brief account of the properties of
simple estimators of trends in dynamic index models. Since the
objective is to obtain estimates of relative growth performance,

I will only review estimators for d I will consider

xy*
estimators for the special cases introduced in the previous
section for the brevity of exposition, but the arguments can be

extended to more general models, as pointed out at the end of

the previous section.

If w;, follows the linear deterministic trend model we can carry
out OLS regression of the wage on the linear trend and on any
linear combination of the other wages. The estimators converge
O(T™!) to the parameter of the structural model under very
general assumptions for v .. The estimators are superconsistent
sincé OLS minimizes the error sample variance and only the
correct parameter will give sample errors that do not explode

in wvariance.

Although the model is more complex, this is also the basic
reason for the consistency result 1in the cointegrating
regression. Assume that w;, and wy, are cointegrated with a

cointegrating
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vector (1,-d;y). Under general regularity conditions® we have
that Tbﬁ(dmﬁ—diquo for &>0, where a;; is the OLS slope

estimator of regressing w;. onto w;. plus a constant.

Thus, pairwise cointegrating regressions give consistent
estimates for the normalized cointegrating wvectors in the

dynamic factor model.

Maximum Likelihood estimation in the dynamic factor model is
accomplished via the EM algorithm'. Consider the reduced MA form
of the dynamic factor model, 2z.,=C(B)§,, where 2z, =Vw. -E[Vw.],
C(0)=Iy, Z is p.d. and C(1l) is of rank 1. The maximum
likelihood estimators of the MA parameters are consistent as T

goes to infinity®. Consistency of the structural parameters just

3 See Stock (1987).
! See Watson and Engle (1983), Watson and Kraft (1983),
Englg and Watson (1981) and Quah and Sargent (1993) for
applications of the EM algorithm to the dynamic factors model.
At every step, this method involves the maximization of the
expected likelihood of the latent data. Under geperal
conditions, this iterative procedure will lead to a fixed point
which is also a local maximum of the likelihood. See Ruud (1991)
for an introduction to the algorithm and Wu (1983) for
convergence results.

> See Dunsmuir and Hannan (1976). No central limit theorems

are available as the spectrum density matrix of the process is
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follows identification®. ML estimation is even more relevant
when the interest lies on the estimation of the unobserved
common index, as in Quah and Sargent (1993). When all that is
needed is an indicator of growth performance, then simple robust
estihators may be worth studying. Notably, ratios of average
growth give consistent estimates of d,, when the common trend is
stationary after differencing and when the trend |is

deterministic.

not of full rank at frequency zero. Indeed, we cannot use
Dunsmuir and Hannan's law of large numbers for general processes
to check consistency of the Quasi-maximum likelihood estimator
of the structural parameters since the conditions are not
satisfied. Check condition B4 in Dunsmuir and Hannan (1976).

¢ The identification problem for the dynamic factor model
in stationary variables has been discussed by Geweke and
Sing}eton (1981). As in the conventional factor model, necessary
and suficient conditions for the identification of the model are
unknown. As stressed by Geweke (1993), additional identification
problems are introduced if the common trends are non-stationary,
since there are several ways to represent the stationary
transforms of the common trends as a linear combination of
serially uncorrelated processes. This situation, however, does
not necessarily arise in the model of a single non-stationary
common factor. For example, Hotta (1983) studies the univariate
case and finds neccesary and sufficient order conditions.
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As pointed out at the end of the previous section, pairwise OLS
regressions also lead to consistent estimators. For small
samples, however, estimates will depend on the normalization
chosen. Thus, in practice, we will have several estimates of

relative growth performance.

A solution to this problem consists of adding a further step to
the estimation procedure. Let there be N different workers. Note
that we can always carry N-1 pairwise OLS regressions of any w;:
on any other group's wage. This will give us N-1 parameter
estimates for each w;.. Define a;=(a,y,...,ay,...,3y)"' where ay;
is the consistent estimate resulting from regressing wy. on wy,

Vi#i and a;;=1. Also let d; be a;(1).

Since plim a;;=d;/d;, d;-(plim a;)=d where d=(d;,...,dy)'. If we
define M,= Y,(a; a;') and normalize so that, without loss of
generality, Y,(d;)™? =1, we get plim M,=d-d'. Thus, as T goes to
infinity, the moment matrix M, is of rank one, its eigenvector

being the parameter vector d.

The finite sample eigenvector associated with the largest
eigenvalue in M, is the least squares estimator of d in the

latent variable model:

plinlai= d u,, (4.11)

where 1=d;u;. Least squares is defined as:
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min S, = i(ai - duiy(ai - dui). (4.12)

d,u i=1

First order conditions are:

%;; =-2 ﬁbl;i(ai-dui) =0
el (4.13)
a3s _ / - _ s
—a—u—‘: -_Zd (ai dui) = O' 1"1, ---’N-
Then u;=(d'a;) and d=(Yu;?)*(Yua;). Combining these two
conditions, we have
(a'M,q)d = M d. (4.14)

If A#0 is the largest eigenvalue of M, and v its corresponding
normalized eigenvector, A,v=M,v, so that A,=v'M,v. Therefore,
drs=v and u;=1/v,; is a solution to the first order conditions.

Let us call v the latent estimator.

To sum up, we can transform the parameter estimates of all
possible pairwise regressions so that all vectors resulting from
different normalizations are on the same one-dimensional space.
For samples with unbounded T, matrix M, is of rank one and its
unique, up to normalization, nonnegative eigenvector is the

growth performance indicator.

In the following section I apply the latent indicator to the
study of growth performance in wage structures, therefore

departing from the common practice of directly using average
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growth rates.

As average growth rates, the latent estimator is a simple robust
estimator. The fundamental advantage of this estimator of growth
performance results from its exploiting cross-section

information as much as time series variation’.

4.4 Trends in U.S. real wages

It is generally agreed that, during the eighties, there was a
slow down of growth in real wages. There were also increases in
the wage differentials between workers with college and high
school education. Finally, experience differentials continued
a long-term increasing trend, while race differentials remained

stable?®.

7 Studying consistency results as N goes to infinity is

however beyond the scope of this empirical study. To obtain a
taste of this advantage in small samples, I carried out a very
simple simulation exercise for two models. Results are presented
in Appendix B.

8 The literature on the evolution of wages in the U.S. is
indeed vast. See, amongst others, Levy and Murname (1992), Bound
and Johnson (1992), Katz and Murphy (1992), and Murphy and Welch
(1992) for overall evaluations. See Ashraf (1994) for a study
of trends in white-black earnings differentials and Buschinsky
(1994) for a study of the changes in the wage structure using
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Were there nonlinear features in the trend behavior of U.S.
wages since 19807 The objective in this section is to judge to
what extent nonlinear effects of workers' characteristics were

prevalent among the basic features of wage trends since 1980.

4.4.1 Description of the data

I use the extracts of the Annual Earnings Files of the Current
Population Survey (CPS) prepared by the NBER for the years 1980,
1985, 1990, and 1995. Each individual can only be interviewed
at most twice and in two consecutive years, so that no

individual observation is repeated in this data set.

The universe is reduced to male adults working more than 35
hours every week, and employed in any industry group but
agriculture who live in either metropolitan or non-metropolitan

areas.

Wageé here are the logarithm of earnings per week divided upon
hours per week at the job and deflated by wage inflation. To
distinguish among different representative workers, I consider

six characteristics:

quantile regression. On inequality, see, for example, Juhn,
Murphy and Pierce (1993), Borjas and Ramey (1994), Topel (1994),
and Bound and Johnson (1995).
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1. Education: I classify education into three categories.
lower education, some college, and higher education. Lower
education includes all those workers who at most completed High
School. Some college refers to those workers who started some
form of higher education but did not finish it. Finally, higher

education refers to workers with a higher education degree.

2. Experience: This is an index of potential experience,
since the sample does not give a direct measure of the workers'
experience. The usual procedure is used here: age-education-six.
Then, individuals are divided into five categories of
experience. The first category includes those individuals with
less than ten years of experience. The second are those with no
less than 10 and less than 20, and so on. The fifth group

includes individuals with more than forty years of experience.

3. Region: This variable segments the labor market into
four geographical regions. South includes the East South Central
diviéion, the South Atlantic division except Delaware, Maryland
and D.C., and Arkansas and Louisiana. East includes the New
England division, Middle Atlantic, and D.C., Delaware, and
Maryland. Middle West includes all remaining states from central
divisions, and finally the west includes Mountain and Pacific.
This grouping was chosen to obtain an ordered variable with
geographical and historical intuition, starting from South and

ending in West.
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4., Type of worker: This variable refers to whether the

worker is a blue collar or a white collar worker.

5. Industry: This 1is another binary wvariable that
describes whether the job is in a goods-producing industry or

in a services-producing industry.

6. Race: workers are either white or black workers.

This variable specification segments the labor market in at most
480 markets. However, due to the sample size and the fact that
the sample design did not contemplate surveying all these
groups, only 334 of all possible cells are represented in all
years so that two samples, estimation and test, can be

extracted.

The overall sample is then randomly divided into two samples of
sizes of 1/2 each. Within each subsample, individuals'
observations are transformed into 'groups' observations by
averaging across individuals with the same demographic
characteristics. This is done for each single year. I will refer

to this data as the "trends" data.

The need for dgrouping observations arise from the fact that
individuals are not interviewed in different years. If groups
are not weighted for the number of observations within each

group, the results from regression trees may depend on the
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variable specification chosen. However, an advantage of carrying
unweighted regression trees is that poorly represented groups

will come soon out in the splitting algorithm.

4.4.2 Empirical results

Growth indicators were computed for both samples. Figures 4.1
and 4.2 in Appendix B plot latent growth indicators against
average growth rates for the entire period. Although the plots
indicate a positive correlation between both indicators, the

relation is clearly less than perfect.

Figures 4.3 and 4.4 in Appendix C show histograms for latent
growth indicators both in the estimation and the test sample.
They can be thought of as the effect of the overlapping of
several sample distributions of the growth estimators. Groups
with the same long-term growth performance will have their

growth sample indicators around their true value.

A nonparametric tree structure for growth patterns is assumed.
A tree will partition the input space so that the overlapping
of distributions will be unveiled. Figure 4.5 in Appendix C
plots within-nodes sum of squares for the sequence of optimal
trees both for the estimation and the test sample. The minimum
value for the test sample residual sum of squares is achieved
at tree T182, with only seven different groups. Figure 4.6 in

Appendix C shows T182.
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The estimation sample residual sum of squares for tree T182 was
0.4171. This contrasts with the value for the simpler one single
group model, 0.6528. The test sample validates these results.
The residual sum of squares takes now the value 0.4349. These
values imply that the coefficient of determination for the
estimation sample is approximately 36% while the test sample

value drops to 30%.

We can now study the structure of tree T182 with the help of
Figure 4.6 in Appendix C. Nonlinearities exist concerning the
interaction of wvariables such as experience, race, and
education. For higher education workers with more than 40 years
of experience, growth shows poor performance. However,
performance was good for more experienced black workers with
lower education whose type of occupation fell into the category

of blue collar workers.

Other interactions are worth mentioning. In general, blue collar
workers are associated with better performance than white collar
workers. The exception is black workers with less than 40 years

of experience.

Education splits the sample into higher and lower performance
workers. In general, workers with lower education, including
those with some college, had worse growth in real wages than
those with higher education. For higher education workers,

nodes 12 and 13 are the more numerically important. Education
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seems the most important factor in explaining relative growth
performance in the labor market in the last 15 years. However,
experience, type of worker, and race also help in explaining

local growth performances.

Neither geographical nor industrial factors seemed to have
influenced growth performance. This result corroborates the idea
that whatever the wage differentials between workers £from
different large regions and different aggregate sectors were,

they have, on average, remained the same.

In order to have a better understanding of the growth
experiences of the seven different groups, Table 4.1 gives basic
statistics for real wages of the workers in each of the seven

groups for each of the four years.

The groups are presented in ascending order according to their
average latent growth indicators. This gives the opportunity to
understand the relation between Figure 4.1 in Appendix C and
tree T182. Terminal nodes are of two general types. First there
are the marginal small groups formed, for example by workers
with more than forty years of experience. The number of
individual cases of these types of workers is very low indeed.
Their trend behavior is nonetheless well isolated by the growth

indicators.

The second type of node is obviously more interesting in the
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sense that it involves bigger segments of the labor market. Two
nodes, terminal nodes 4 and 10, are particularly important,
since they account for around two thirds of the entire sample

in each year.

Node number 4 represents lower education, white collar workers.
Table 4.1 suggests a nearly linear fall in their real wages at
an annual rate of 1.1%. Node number 10 represents lower
education, white, blue collar workers. Table 4.1 shows how
differently their average real wage evolved from that of the

equivalent white collar group.

They first experienced a steady increase in their average real
wage. During the eighties, it grew at an annual rate of 1.1%.
However, this gain was lost between 1990 and 1995. Overall,

average growth in real wages was near zero.

Black workers with the same characteristics also experienced
some real gains from 1980 to 1990, but their losses from 1990
to 1995 were greater, so their growth performance was among the
worst ones. Their average annual real growth was -0.6%. It is
this important fall from 13890 to 1995 that made their indicator
of growth performance to be worse on average than that of lower

education, white collar workers.

Blue collar workers with higher education also suffered some

real loss in their wages for the entire period. A very small one
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Table 4.1 Main growth experiences from regression trees.

Latent growth indicator. Trends data.1980-1995.

Data: CPS 1980-85-90-95. Male, full-time,non-farm workers. Individual observations.

Nodes in tree T182!

Year 7 22 4 12 10 13 23
1980 No.Obs.? 36 635 40317 1191 6646 1672 32
Real wage 1.84 1.77 1.87 1.96 1.88 2.03 1.89
Std.Dev. 0.48 0.40 0.35 0.43 0.41 0.44 0.34
1985 No.Obs. 24 627 33084 1176 6312 1762 29
Real wage 2.23 1.81 1.86 1.97 1.89 2.09 1.84
Std.Dev. 0.52 0.43 0.45 0.45 0.44 0.42 0.50
1990 No.Obs. 183 1655 43212 5495 26251 7632 63
Real wage 2.11 1.79 1.72 1.98 2.02 2.32 1.67
Std.Dev. 0.74 0.48 0.46 0.52 0.51 0.49 0.53
1995 No.Obs. 203 1059 30111 4657 11407 18023 44
Real wage 2.04 1.68 1.70 1,92 1.88 2.20 1.94
Std.Dev. 0.73 0.49 0.51 0.49 0.53 0.50 0.53
Note:

! Tree 182 refers to the tree with 0-SE rule and 1 as stop-splitting rule obtained with
dependent variable the latent growth indicators after pooling individual observations
according to: potential experience -five levels-, education =-three levels-, region -
four large areas-, type of worker -binary-, industry -binary-, and race. Each node
represents a region in the independent variables space: ’

7: Higher Education; Experience>40 years.

22: Lower Education; Experience<40 years; Black; Blue collar.

4: Lower Education; White collar.

12: Higher Education; Experience <40 years; White collar.

10: Lower Education; White; Blue collar.

13: Higher Education; Experience <40 years; Blue collar.

23: Lower Education; Experience>40 years; Black; Blue collar.

%No.Obs. is the number of individual observations in each erminal node. Real wage is
the average logwage within each terminal node. Std.Dev. is the standard deviation in
each node.

indeed, at an annual rate of 0.3%. This decline concentrated in
the last five years, since there had been gains, although very

modest, during the first 10 years of the period.
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The best performing large group, node 13, was the only one that
experienced average gains in their real wages. Again, there were
losses in the last five years, but these were small compared to
the gains that had taken place from 1980 to 1990. Overall, real
wages for higher education, blue collar workers with less than

40 years of experience increased at an annual rate of 1.1%.

Tree T182 suggests a linear structure for the growth experience
of white workers with less than forty years of experience. Table
4.2 gives the results of linear parametric regression for these
workers. The results show that for this group of workers, blue
collar and higher education workers had always better

performance than white collar and lower education workers.

Note, however, that linearity does not extend to a wider segment
of the labor market, although the number of groups in tree T182

is only seven.

For each year, I have also computed the standard error within
each group to study whether these trend differentials were the

only source of changes in the dispersion of wages.

The results can be found in Table 4.1. For all groups the
standard deviation at the end of the period was higher than in
1980. For some groups, this increase represented around 50% of

the original level of within groups dispersion.
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Table 4.2 Growth structure for white workers with less than 40

years of experience. Trends data.

(A) Tree T182 Projections of latent growth indicators:

Lower education! Higher education Differential
White Collar -0.034 -0.0092 0.0248
Blue Collar 0.0051 0.0356 0.0305
Differential 0.0391 0.0448

(B) Linear regression results:

Data: Latent growth indicators for white workers with less than 40 years of experience
Independent Variables: region ~four large areas-, experience -five groups-, education
-binary-, type of worker -binary-, and industry =-binary.

Valid cases: 189

R-squared: 0.424

Variable Estimate Standard Error t-value
CONSTANT -0.1086 0.0153 -7.0919
region -0.0019 0.0023 -0.8215
experience 0.0038 0.0023 1.6120
education 0.0248 0.0032 7.7998
type 0.0426 0.0052 8.2360
industry -0.0084 0.0052 -1.621
Note:

Lower education includes College dropouts.

If standard deviations had not shown any trend, then we could
argue that all the sources of the changes in the dispersion of
wages came from the different growth behavior of the seven
groups already studied. Since there has been an increase in wage
dispérsion, as shown in the next section, some of these
increases must come from changes in the dispersion of wages

within groups.

In the following section I will assess the importance of each

source of increased dispersion in the wage distribution.

4.5 Wage dispersion and nonparametric dynamic wage structures
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In this section I will study changes in the dispersion of wages

due to three possible factors:

a. Changes in the dispersion of unobservable factors.

b. Changes in the value of observable factors.

c. Changes in the structure of wages.

The last element can only be studied if we do not impose a
constant wage structure. Therefore, it is natural to compute the
wage structure in these demographic and economic groups of
workers using —regression trees. If the structure 1is
nonparametric and can evolve, then this evolution will likely

have an effect on the dispersion of wages.

At the beginning of section 2 we assumed that the log wage of

any worker, i, of group x at any period, t, would have the form:

W, = ft(x) tv, - (4.15)

This model is very general. For each year, not only may wage
differentials between different groups change, but also the
relevant groups may also change. In terms of tree structures,
not only can the projections in the tree change with time, but

the tree itself may change.

Taking 1980 as the reference year, we can easily compute for the
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following years the wage any worker would have had if no change
had occurred in the tree structure. In order to do so, we add
her estimated idiosyncratic residual to the projected wage she

would have had if the tree structure had not changed from 1980.

More precisely, if f,(x,b,) is the expected wage of any worker
from group x at time t, then we can define, for any synthetic

worker at time t+s, her wage with no structural change since t

as:

wo(t+s,t) = £ (x,b ) +V, ..., - (4.16)

To evaluate the importance of changes in the wage structure, I

set up an algorithm in three steps:

(a) Estimation of the tree structure for each year. This
is the standard output in regression trees. From this, residuals

for each observation can be computed: vj t4q)-

(b) Using the structure obtained for 1980, we can compute
projections for all the other years. These projections are
sample averages of wages within terminal nodes in the tree

structure for 1980: £, (x,b:,s).

(c) Creation of an artificial sample: this is simply done
by adding to each residual obtained in (a) the projection for

that worker obtained in (b): w;(t+s|t).
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Table 4.3 Regression Trees: Validation Results. Dispersion

data. 1980-1995.

Data: CPS 1980-85-90-95. Male, full-time,non-farm workers. Individual observations.

Residual Sum of Squares Complexity
Estimation Sample Test Sample
Root Best! Root Best No. Obs. No. Nodes
1980 6043 4955 2987 2453 33671 115
1985 5801 4630 2851 2304 28734 110
1990 14245 10023 7132 5088 53100 219
1995 13146 9774 6111 4552 43757 206

Note:

Regression trees was carried out for each year with a 0-SE rule and a 50 stop-splitting
rule. The independent variables were education, experience, region, type of worker,
type of industry, and race.

!Root refers to the entire sample and Best is the honest tree with a 0-SE rule. An R?-
alike measure of goodness of fit can be computed as 1-RSS(root)/RSS{best), where RSS
denotes the residual sum of squares.

Heuristically, if <trees become ever more complex, then
projections will tend to introduce more variance to the
distribution of wages. However, i1f changes in the complexity of
the trees do not lead to substantial differences in the
projections, then changes in the structure cannot be regarded

as an important source of increasing wage dispersion.

I use the extracts of the Annual Earnings Files of the Current
Population Survey (CPS) prepared by the NBER for the years 1980,
1985, 1990, and 1995. I use the same variable specification as
in the previous section but must implement the analysis
obviously on individual observations. I will refer to this data

set as the "dispersion" data.
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Results of step (a) are shown in Tables 4.3 and 4.4. Table 4.3
gives some statistics on the tree structures obtained. Table 4.4
presents basic statistics for real log wages and residuals in
the trees. Figures 4.7, 4.8, 4.9, and 4.10 in Appendix C show

histograms of test sample residuals for each year.

Several comments are worth making. Wage dispersion for each year
within each terminal node is a fairly large part of total wage
dispersion. This follows from the statistics in Table 4.3 and

from the residual and log wage basic statistics in Table 4.4.

The residual sum of squares estimates in Table 4.3 imply
coefficients of determination never greater than 29.64% for the

estimation sample and 28.66% for the test sample.

Residual variance increased during the period less than total
variance. Changes in the wage structure account for 53.25% of
the increase in wages dispersion measured with variance. Thus,
although residual variance was around 82% of total variance in

1980, it fell to 73% in 1995.

Figures 4.7 to 4.10 in Appendix C give a fair idea of the way
that regression trees work with the data. Since the splitting
rule consists of minimizing within-node sum of squares, it is

natural that the estimation sample residuals show a symmetric
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Table 4.4 Wages and tree residuals. Dispersion data. Basic

statistics.

Data: CPS 1980-85-90-95. Male, full-time,non-farm workers. Individual observations.

Log wages (all observations) mean sta.dev. min max no.obs.
1980 1.88 0.42 0.23 3.24 50406
1985 2.10 0.44 0.47 3.34 42418
1990 2.43 0.50 0.42 3.99 78547
1995 2.56 0.49 0.70 4.00 63814

Residuals {test sample)

1980 -0.005 0.38 -1.69 1.58 16735
1985 -0.001 0.39 -1.66 1.40 14083
1990 -0.003 0.42 -1.95 1.72 26077
1995 0.004 0.42 -2.24 1.59 21186

Note: Residuals are obtained with the test sample and the projections of the trees
computed each year with a 0-SE rule and 50 stop-splitting rule. See Table 4.3 for the

variable specification.

normal distribution resemblance. This feature is thus fabricated
in the residuals of the estimation sample in the same way that
linear regression with a constant will give zero mean residuals.
This>property has passed nicely onto the residuals plotted in

the figures, which come from the test sample observations.

A summary of statistics for the artificial data computed in
steps (b) and (c¢) can be found in Table 4.5 and 4.6. In Table
4.5 I present univariate descriptive statistics for all
variables: original wages, constructed wages, residuals, and the
structures under the assumption of no change in the functional

form and with change.
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Table 4.5 The effect of structural change in observed wages

dispersion. Dispersion data.1980-1995.

Data: CPS 1980-85-90-95. Male, full-time,non-farm workers. Individual observations.Test

Sample. Reference Year: 1980.

1985

Variable Mean Std Dev Minimum Maximum No.Obs.
w; (t+sjt) 2.0946 0.4356 0.722 3.288 14083
£o (bres) 2.0959 0.1872 1.641 2.418 14083
Vi (tes) -0.0013 0.3939 -1.657 1.403 14083
fros (Dpes) 2.0965 0.1921 1.609 2.784 14083
Wi (tes) 2.0951 0.4357 0.693 3.301 14083
1990

Variable Mean Std Dev Minimum Maximum No.Obs.
wi (t+s|t) 2.4231 0.4924 0.782 4.196 26077
£e(beys) 2.4263  0.2560 1.858 2.936 26077
Vi (tes) -0.0032 0.4207 -1.954 1.724 26077
fres (Beys) 2.4271  0.2748 1.757 3.211 26077
Wi (tes) 2.4240  0.5006 0.734 3.994 26077
1995

Variable Mean Std Dev Minimum Maximum No.Obs.
w; (t+s|t) 2.5697 0.4815 0.682 4.196 21186
£o (Bees) 2.5656 0.2379 2.060 2.921 21186
Vi (tes) 0.0041  0.4164 -2.239 1.548 21186
fros (Dres) 2.5646  0.2541 2.045 3.190 21186
Wi (tes) 2.5688  0.4884 0.738 3.948 21186
Note:

wi(t+s|t): computed wage at t+s under no structural change since 1980.
fr(Deys): projection at t+s under no structural change since 1980.
Vi (tes) residual of observation i,t+s.

fres(Pres): projection at t+s with honest tree.

Wi (t+g) © logwage of observation i,t+s.

For all years, the variance of the constructed wages is smaller

than the variance of wages. This suggests that part of the
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Table 4.6 The effect of structural change. Correlation matrix.

Dispersion data.1980-1995.

Data: CPS 1980-85-90-95. Male, full-time,non-farm workers. Individual observations.Test

Sample. Reference Year: 1980.

1985 wilt+s|t) fy(by.s) Vi (tes) fris (Dres) Wi (tes)

wi (t+s|t) 1.0000 0.4269 0.9030 0.4019 0.9936
£ (beys) 0.4269 1.0000 -0.0031 0.9663 0.4233
Vi (tes) 0.9030 -0.0031 1.0000 -0.0147 0.8976
fros (Brys) 0.4019 0.9663 -0.0147 1.0000 0.4276
Wi (t+s) 0.9936 0.4233 0.8976 0.4276 1.0000
1990 wilt+s|t) £ (D) Vi (t+s) fres (Dres) Wi (t+s)

wi (t+s{t) 1.0000 0.5196 0.8542 0.4779 0.9803
fr(beys) 0.5196 1.0000 -0.0003 0.9329 0.5119
Vi (tes) 0.8542 -0.0003 1.0000 -0.0083 0.8358
frvs (Dres) 0.4779 0.9329 -0.0083 1.0000 0.5420
Wi (tes) 0.9803 0.5119 0.8358 0.5420 1.0000
1995 wi(t+s|t) felbe,) Vi(tes) fros (Deys) Wi (tes)

w; (t+s|t) 1.0000 0.5021 0.8695 0.4624 0.9818
£y (br.s) 0.5021 1.0000 0.0094 0.9311 0.4924
Vi (t+s) 0.8695 0.0094 1.0000 0.0029 0.8540
fris(Drys) 0.4624 0.9311 0.0029 1.0000 0.5227
wi(t,,)" 0.9818 0.4924 0.8540 0.5227 1.0000
Note:

wi(t+sit): computed wage at t+s under no structural change since 1980.
f.(beys): projection at t+s under no structural change since 1980.

Vi (tes) * residual of observation i,t+s.

frea(breg) t projection at t+s with honest tree.

Wi (tes) * logwage of observation i,t+s.

increased dispersion in wages may have been due to changes in

the structure of wages.

This is also corroborated by looking at the correlation matrices
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in Table 4.6. The correlation results show that the structures
and the residuals are almost orthogonal decompositions of both
types of wages and thus these variance measures approximate
variance decompositions. The results depend however on the year
of study. In 1985, observed variance®? was 8.4% higher than in

1980.

Residual variance was only 7.7%. The combined effect on the
variance of changes in prices and structure must have increased
by almost 11.5%, or 0.0034. However, only 0.0001 remains

unexplained after accounting for the change in prices.

In 1990, nonresidual variance increased by 0.0429 units, more
than 100%. Around 0.0081 can be attributed to the effect of
structural change on wages dispersion. This is near 18.98% of

all the effect from variability in the structure.

In 1995, the amount unexplained by changes in prices is 0.0069.
Total nonresidual variance increased by 0.03064, so the effect
of a changing structure contributed in 22.52% of all increases

in nonresidual variance.

To sum up, overall dispersion of wages increased from 1980 to

1985 by 0.0148. Increase in the dispersion within groups, or

® These computations are carried out with test sample data.
The variance of observed wages was 0.1746 in 1980.
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increase in inequality, accounts for 75.7% of this increase. The
rest must be mainly attributed to price changes in the labor
market, but not to changes in the interaction of the workers'
characteristics. For 1990 and 1995 I find similar results. Less
than half of the increase in the variance of log wages was due
to increased wage inequality. At least 10% of the increase in
variance came from changes in the interaction of different
variables. In other words, due to changes in what the labor
market would understand as homogeneous workers with a single
expected wage. If these changes had not taken place, the
increased variance in wages since 1980 would have been 10%

lower.

4.6 Conclusions

In this chapter I applied regression trees to study the relative
growth performance of workers' real wages and the sources of
wage dispersion and its evolution in the U.S. from 1980 onwards.
In order to study these problems I assumed that real wages
follow a random field with a nonparametric specification for the
cross-sample and a parametric specification for the time series.
By doing so I can unveil nonlinear features in the trend
behavior of real wages and compute the extent to which
dispersion in wages has a structural source different from

changes in prices.

The main results on trends agree with the results in previous
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studies. Education was an important factor of growth. Industry

and region were not. Here I add two remarks.

First, the estimated tree suggests a linear structure for the
growth experience of white workers with less than forty years
of experience. The results show that for this class of workers,
blue collar and higher education workers had always better

performance than white collar and lower education workers.

Second, nonlinearities were present in other segments of the
labor market. For example, the "effect"”" of race and experience
on growth was not uniform and even differentials were of

different sign.

On wage dispersion I started by noting how dispersion increased
within groups with the same growth experience, therefore
vindicating previous work on growing inequality within groups
defined by socioeconomic variables. I then assessed the
importance of each source of increased dispersion in the wage
distribution. There are three potential sources of increased
wage dispersion in observed wages: growing within groups
inequality, changes in the premiums, and changes in the
segmentation of the labor market. The last element can only be
studied if the structural form of the wage structure is

estimated.

Increase in within groups inequality accounts for most of the
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increase in wage dispersion from 1980 to 1985. The rest must be
mainly attributed to price changes in the labor market, but not
to changes in the interaction of the workers' characteristics.
For 1990 and 1995, however, at least 10% of the increase in
variance came from changes in the interaction of different

variables.
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Appendix A

The implication of cointegration in integrated dynamic common
factor models is easy to obtain. The other direction in the
relationship cannot be established when the elements of the
cointegrated vector have no idiosyncratic disturbances. This
highlights the important difference between common factor models
on one side and common trend extraction in cointegrating systems

as in Stock and Watson (1988) on the other.

I will show that a dynamic factor model entails cointegrating
relations amongst the elements of the vector. Assume that x,,

satisfies the relation

X, = aj(B) U, * ¥y o0 j=1,...,N.

Here u, is a Kx1 vector of unobserved orthogonal random walks; yj.
is a noise term with the usual stationary and orthogonal
properties that is uncorrelated with the first differences in u,
at all leads and lags. The common factors have a multivariate

representation of the form

I'(B) (1-BJu, =b +e,,

where I'(B) is a diagonal lag polynomial matrix and e, is a vector
white noise with variance matrix the identity. Let a(B) be

(a,(B),...,ay(B))'. Assume that aj(l);éo and that a(l) is of full
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rank K. Further assume that a(B) and I'(B) are finite matrix
polynomials with I'(0)=I,. Finally, suppose that |I'(z)]|#0 V|z|<1,
so that (1-B)u, follows a multivariate stationary invertible

process.

The common factors structure originates cointegration and the
number of factors determines the rank of the cointegrating space,

N-K.

To see that x, is C(1,1), first note that it is I(1) since! it is
the linear combination of I(1) and I(0) processes and the I(1)
processes are not cointegrated. The vector (1-B)x, is stationary
since it is the sum of I(0) elements. Since the spectrum of
(1-B)x, is not of full rank at frequency zero, it is strictly
noninvertible, as one should expect if cointegration is to hold.
I will now show that there are N-K independent cointegrating
relationships. We can always decompose a(B) as

M
a(B) =) a, B =a(l) +a°@)(1-B),
i=0

where

'See Engle and Granger (1987).
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Therefore, we have that x.=a(l)u.+w, where wt=a°(B)1"'1(B)et+d+yt.

Note that w, is always stationary.

On the other hand, since its power spectrum is fw(A)=(2n)'1a°(e'
i}‘) rei™Mrt(et) 'a°(e“‘) '+£,(7A), the invertibility condition for

w, is simply that the process y, be invertible.

Since a(l) is of full rank K, there exists a base H, matrix
Nx(N-K) of rank N-K, of the subspace orthogonal to that spanned
by the columns of a(l) and so H'a(l)=0y.gx- Thus H'x,=H'w, must
be stationary. Invertibility is assured by the invertibility of
Y. and the fact that H is a full rank matrix. When H'f,(A) is of

full rank, H'x, is jointly invertible and, thus, x. is C(1,1).

When K=1 then for any two elements of x, x; and x;., i<j, the

vector (1,-a;(1)/a;(1))' is a (normalized) cointegrating vector.

Cointegration does not imply a common factor structure with
idiosyncratic disturbances. Simply consider the previous model
without idiosyncratic shocks. The elements in x, are cointegrated

although the model is not one with idiosyncratic shocks.

Common trend decompositions do not build a bridge between
cointegration and dynamic factor models where each element is

influenced by disturbances that are orthogonal to the other
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disturbances. A very simple example is that of the structural

random walk with noise model. The model can be postulated as:

Yie =X * €y i=1,2;

where x, is unobservable and follows a random walk process:

We can think of e;, as purely idiosyncratic to y;. whilst v, would

be common to y;, and x,.

Clearly, all nonstarionary variables are cointegrated. The common
trend extraction methods usually proposed do not identify the
"true" trend x,. What is more important, the decompositions into
a nonstationary and a stationary component give a single
stationary element that cannot be idiosyncratic to each element.

Usually, this element takes the form:

u = k(e - ey

Escribano and Pefia (1994) propose k=1/V2, Stock and Watson (1988)

propose k=1 and Kasa (1992) proposes k=1/2.
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Appendix B

Since the cross-section information is not used when computing
average growth rates for each variable, there will not be gains
in accuracy when these rates are computed for large cross-
sections. The latent growth indicator described in section 3 of
the chapter does use cross-section information by computing OLS
pairwise regression between all elements of the vector and
extracting the principal component of the moment matrix of those

estimates.

I carried out a simulation to assess the importance of these
gains in small samples for two simple examples of dynamic

structures.

The first model corresponds to egquation (5): the 1linear
deterministic trend model. The simulation was implemented for
parameter values d,=1, b=1, and var(v;;)=1. The number of periods
was always 5. Six different sizes for the cross section were

evaluated: N=25,50,75,100,200, and 300.

The second model corresponds to the common factor model in
Harvey (1989, p.450) with the common factor equal to equation
(6) and the transference matrix a column vector of ones. The
simulation was implemented for parameter vwvalues d=1, and
var(vi.)=1. The number of periods was again 5, and also six

different sizes for the cross-section were evaluated:
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Table 4.7 Simulation results.

Number of periods: 5. Number of iterations:

Model 1: Deterministic Linear Trend Model.

Parameter Value=l.

Chapter 4: Evolution of wages

Average Growth Rates Latent Indicator
N mean sta.dev. mean sta.dev.
25 0.7484 0.3465 0.9541 0.0605
50 0.7563 0.3527 0.9544 0.0422
75 0.7471 0.3532 0.9450 0.0344
100 0.7484 0.3520 0.9547 0.0298
200 0.7480 0.3536 0.9542 0.0212
300 0.7492 0.3540 0.9537 0.0174
Model 2. Common Factor Model. Parameter Value=l.

Average Growth Rates Latent Indicator
N mean sta.dev. mean sta.dev.
25 0.7436 0.3462 0.8765 0.0660
S50 0.7231 0.3524 0.9220 0.0453
75 0.7324 0.3533 0.8933 0.0374
100 0.7606 0.3522 0.9009 0.0325
200 0.7636 0.3533 0.8989 0.0228
300 0.7247 0.3541 0.8727 0.0191

N=25,50,75,100,200, and 300.

The results of the simulation are given in Table 4.7. They show

the expected good behavior of the latent estimator in terms of

accuracy. This gain for small samples when the number of periods

is very small may be a very important advantage when we try to

partition the cross section

according to growth performance.
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Appendix C

1 1 1 1

latent Growth Indicator

Figure 4.1 Latent Growth Indicator vs Average Rates.

Trends data. Estimation Sample. 1980-1995.

Note:

Data: Pooled observations from CPS 1980-85-90-95, male, full time, nonfarm workers
according to education, experience, race, type of worker, type of industry and region.
On the vertical axis, average growth rates in real wages for each of the groups are
plotted. On the horizontal axis, the laten growth estimators are plotted. The estimators
have been normalized so that the sum of squares equals to one. The correlation between
the average growth rates and the latent growth estimators is 0.74.
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Figure 4.2 Latent Growth Indicators vs Average Rates.
Trends data. Test Sample.1980-1995.
Note:
Data: Pooled observations from CPS 1980-85-90-95, male, full time, nonfarm workers
according to education, experience, race, type of worker, type of industry and region.
On the vertical axis, average growth rates in real wages for each of the groups are

plotted. On the horizontal axis, the laten growth estimators are plotted. The estimators
have been normalized so that the sum of squares equals to one. The correlation between
the average growth rates and the latent growth estimators is 0.79.
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Figure 4.3 Histogram for Latent Growth Indicator. Trends data

Estimation Sample. 1980-1995.
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Figure 4.4 Histogram for Latent Growth Indicator. Trends data.

Test sample. 1980-1995.
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Test Sample

RE<T>

Estimation Sample

20 70 130 160 190 220 259
No. of Terminal Nodes

Figure 4.5 Residual sum of squares for the sequence of

optimal trees. Trends data. Latent growth estimator
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Figure 4.7 Histogram for regression tree test sample residuals.

Dispersion data. 1980.
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Figure 4.8 Histogram for regression tree test sample residuals.

Dispersion data. 1985.
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Figure 4.9 Histogram for regression tree test sample residuals.

Dispersion data. 1990.
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Figure 4.10 Histogram for regression tree test sample residuals

Dispersion data. 1995.
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Chapter 6

Conclusions

This study was concerned with the application of multivariate
nonparametric models known as regression trees to the analysis

of the U.S. wage structure.

In the first application I have estimated a nonparametric
experience-wage profile in a multivariate environment to search
for local workers who suffered a sudden loss in wages in their
last stage of their working life. This approach to experience-
wage profiles in cross-sections mimics the work done on growth
paths by Durlauf and Johnson (1995). The main methodological
difference is that in my study I am only interested in the

possible effects of sudden losses of human capital in the profile
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of a cross-section. The regression trees approach to the
estimation of the experience profile fitted the sample better
than a simple quadratic specification. When the projections of
the tree were carefully studied, linear splines appeared as
reasonable alternatives to the quadratic function for many
workers. Further, simple parametric specifications are for some
types of workers clearly inappropriate when an extended human
capital specification is chosen. The algorithm used to identify
sudden losses of human capital at the end of the working life is
a reasonable strategy when overall human capital depreciation is
small. It is totally justified if we assume that no overall human
capital depreciation takes place. The results show that for 1980,
1985, and 1990, average wages of the last experience group would
be 1% higher if no breaks had occurred. For 1980, the sudden
losses help reducing the negative experience differential by 50%.
For 1985, they do so by 33%. The value for 1990 is only 16.6%.
Finally, the reduction in the negative differential is null for

the last year of the analysis.

In the second application, I propose average wage gap
decompositions between any two groups of workers for
nonparametric structures. Even when it is not possible to talk
of simple race, ethnic, or gender differential, Oaxaca-type
decompositions are still useful decompositions of the observed

average wage gap. These decompositions do take account of
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reasonable features such as context sensitivity. I think that the
methodology is well suited to unveil local differentials and
therefore it can help in understanding the complexity of the
labor market. I carry out the proposed decompositions for two
data sets. In the first empirical application, I study average
wage gaps between male workers of Mexican origin born in Mexico
and in the U.S. and between male workers of Mexican origin who
labelled themselves as Mexicano and Mexican American. Although
a very simple human capital specification is implemented, I
obtain interesting differences with respect to the parametric
analysis. Somewhat intuitively, the structural differential is
bigger in the nonparametric case when I decompose average wage
gaps between workers born in the U.S. and workers born in Mexico.
However, the nonparametric decompositions for average wage gaps
by ethnic origin show a very interesting and contrasting feature
of regression trees. This technique mnot only performs
nonparametric multivariate analysis, but implicitly carries out
variable selection in its search for a simple structure. In this
example, ethnicity appears as an important factor in only very
specific local cases, rendering a smaller structural effect than
the sample effect. In the second empirical analysis, I study the
average wage gap between Mexican Americans and white non-Hispanic
male workers in the border states between Mexico and the U.S..
Regression trees unveils a linear relation in the wage structure

with respect to ethnicity so that most ethnic differentials are
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around 20%. Due to this linear behavior, the nonparametric
decomposition is very similar to a simple decomposition with a
dummy variable. In other words, regression trees can encompass

parametric approaches.

Finally, in my third application of regression trees to the study
of the wage structure I look at the evolution of wages and the
sources of wages dispersion in the U.S.. In order to study these
problems I assumed that real wages follow a random field with a
nonparametric specification for the cross-sample and a parametric
specification for the time series. By doing so I can unveil
nonlinear features in the trend behavior of real wages and
compute the extent to which dispersion in wages has a structural
source different from changes in prices. A robust estimator of
the trend is implemented to exploit the large cross-section

information.

As in previous studies, I find that education was an important
factor for growth performance. Two interesting features are
unveiled by regression trees. First, the estimated tree suggests
a linear structure for the growth experience of white workers
with less than forty years of experience. Second, nonlinearities
were present in other segments of the labor market. For example,
the effect of race and experience on growth was not uniform and

even differentials were of different sign.
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On wage dispersion, I found that the increase in inequality
accounts for most of the increases in wage dispersion from 1980
to 1985. The rest must be mainly attributed to price changes in
the labor market, but not to changes in the interaction of the
workers' characteristics. For 1990 and 1995, however, at least
10% of the increase in variance came from changes in the

interaction of different variables.
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