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Abstract

Option prices in the Black-Scholes model can usually be expressed as so-
lutions of partial differential equations (PDE). In general exponential Lévy
models an additional integral term has to be added and the prices can be
expressed as solutions of partial integro-differential equations (PIDE). The
sensitivity of a price function to changes in its arguments is given by its
derivatives, in finance known as greeks. The greeks can be obtained as a
solution to a PDE or PIDE which is obtained by differentiating the equation
and side conditions of the price function. We call the method of simultane-
ously solving the equations for the price function and the greeks the dynamic
partial (-integro) differential approach. So far this approach has been anal-
ysed for a few contracts in the Black-Scholes model and in a Markov Chain
model. ‘

In this thesis, we extend the use of the dynamic approach in the Black-
Scholes model and apply it to a financial market where the underlying stock
prices are driven by Lévy processes. We derive and solve systems of equa-
tions that determine the price and the greeks both for vanilla and for exotic
options. In particular we are interested in options whose prices depend only
on time and one state variable. Furthermore, we calculate sensitivities of op-
tion prices with respect to changes in the stochastic model of the underlying
price process. Such sensitivities can again be expressed as solutions to PIDE.
The occurring systems of PIDE are solved numerically via a finite difference
approach and the results are compared with simulation and numerical in-
tegration methods to compute prices and sensitivities. We show that the
dynamic approach in many cases outperforms its competitors. Finally, we
investigate the smoothness of the price functions and give conditions for the
existence of solutions of the PIDE.
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Chapter 1

Introduction and summary

1.1 Introduction

In order to be able to manage the risk of a financial contract it is crucial to
know how sensitive the contract’s price function is with respect to changes
of the underlying asset price, with respect to changes in parameters of a cho-
sen model, and with respect to changes of the model altogether. For option
pricing the benchmark model is the one proposed by Black and Scholes (6],
where the stock price is driven by a geometric Brownian motion. This model
has gained great success mainly because it gives closed form solutions for
a wide range of options. However, it has become clear that option pricing
in the Black-Scholes framework is inconsistent with prices seen in the mar-
ket. Empirical distributions of market returns tend to be skewed and have
much heavier tails than returns generated by the Black-Scholes model. The
two main lines of extensions of the Black-Scholes model aiming to accommo-
date such features are stochastic volatility models and models with jumps.
Stochastic volatility models with heavy tails, though, are obtained at the
“price of a unrealistically high variation of the volatility. Models with jumps
allow for more realistic representations of price dynamics. This is not too
surprising as one can actually observe jumps in market data. A very popu-
lar type of option pricing models with jumps are exponential Lévy models,

where the underlying asset price S; is modelled as the exponential of a Lévy
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process X;. Depending on the financial contract and the market under con-
sideration, various Lévy processes have been put forward that can adequately
represent price dynamics. In exponential Lévy models option prices can be
expressed as solutions to partial integro-differential equations for which we
will throughout use the abbreviation PIDE.

We are interested in how sensitive prices of financial derivatives are to
changes in the model parameters in a given model and to changes of the
stochastic nature of the model. Knowledge of the sensitivities, in finance
known as the greeks, is crucial to management of the risk of the financial
contract. Most textbooks on mathematical fiance such as Bingham and
Kiesel [4], Bjork [5], Hull [24], and Musiela and Rutkowski [32] have chapters
on sensitivity analysis and the greeks. However, they only treat the case
where the price function is given in a closed form. This is possible for a wide
range of options in the Black-Scholes model. In exponential Lévy models
closed form solutions do not exist in general. When closed form expressions
are out of reach one has to resort to numerical methods in order to obtain op-
tion prices and their sensitivities. Several numerical methods have been put
forward to price options. The most prominent are simulation and (integro-)
differential equation methods, but also Fourier transform methods and nu-
merical integration are being used. To obtain sensitivities simulation is most

widely used.

1.2 Summary

In this thesis, we extend the use of a dynamic partial (integro-) differential
equation approach to obtain greeks for a wide range of models. The greeks
are computed through their governing equations which in turn are obtained
by differentiating the equations of the price function. The price determining
equationé and the equations determining the values of the greeks are simulta-
neously solved as a system of equations. This approach is presented in Tavella
and Randall [38] for the Black-Scholes model, proposed by Kalashinikov and
Norberg [27] for the reserve in life insurance, and used by Norberg [33] for
option prices, both in the Black-Scholes and in a Markov chain model. Fol-
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lowing this latter approach we first extend its use to a range of options in
the Black-Scholes model and then apply this method to exponential Lévy
models where we solve a system of PIDE in order to obtain option prices
and greeks. The dynamic PIDE approach is further extended to calculate
sensitivities of option prices with respect to changes in the stochastic model
of the underlying price process. ‘

We start in Chapter 2 with an overview of sensitivity analysis in option
pricing. Three different ways of calculating the prices and their sensitivities
can are presented: the closed form approach, the dynamic approach, and
Monte Carlo simulation. Next, we introduce the dynamic approach in the
case of the Black-Scholes model in Chapter 3. For European vanilla and bar-
rier options we follow Norberg [33] and then extend the technique to various
types of path-dependent options. In Chapter 4 we review some facts about
Lévy processes as described in Sato [35], Applebaum (2], or Kyprianou [28],
and about exponential Lévy models as presented in Cont and Tankov [14].
Exponential Lévy models have become very popular in mathematical finance
over the past few years as they can capture the observed prices of financial
products very well and are still tractable. In particular we look at three differ-
ent models, the jump-diffusion model introduced by Merton [30], the variance
gamma model by Madan, Carr, and Chéng [29], and the Carr Geman Madan
Yor model [9]. In Chapter 5 we apply the dynamic sensitivity approach to a
range of options in the three previously introduced exponential Lévy models.
To start with we show that if the price function is sufficiently differentiable,
it can be represented as a solution of a partial integro-differential equation.
The PIDE is obtained by a standard martingale technique outlined as fol-
lows: The discounted option price is a martingale with respect to some risk
neutral measure. Hence, we apply It6’s lemma to the discounted option price
to obtain its dynamics. As we are dealing with a martingale, the drift term
must vanish almost surely. Setting the drift term to zero we obtain the PIDE.
We apply this method to European vanilla options, lookback options, Asian
options, and exchange options. We are particularly interested in some look-
* back, Asian, and exchange options where the state space can be reduced and
one has to solve a PIDE in time and one space direction only. For European
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vanilla and barrier options as well as for American vanilla options the PIDE
method is presented in Cont and Tankov [14]. In Vecer and Xu [39] a PIDE
for Asian options in a general semimartingale framework is derived. The ap-
plication of this method to exchange options and lookback options combined
with a state space reduction is original to this thesis. Upon differentiating
the integro-differential equation with respect to some model parameters, we
obtain the integro-differential equations for the sensitivities. Thus, to ob-
tain both the price and the sensitivities, the system of corresponding partial
integro-differential equations is solved simultaneously. The application of the
dynamic sensitivity approach to exponential Lévy models is also original to
this thesis. In Chapter 6 we introduce novel greeks as we investigate the sen-
sitivity of an option price with respect to changes in the stochastic model of
the underlying stock price. First, we investigate a model with two dependent
stock prices and investigate how the option price changes when one process is
gradually replaced by the other. Then, we propose a model where the price
process is given as an exponential mixing of two Lévy processes and evaluate
sensitivities in that model. After having derived a system of PIDE we want
to solve it numerically. In Chapter 7 we extend the explicit-implicit finite
difference scheme presented in Cont and Voltchkova [15] to numerically solve,
not only the price determining PIDE, but simultaneously also the PIDE for
the greeks. In the case of the vanilla option in the jump-diffusion model the
price of the option can also be expressed as a sum of Black-Scholes prices.
In the variance gamma model the density function of the process taken at
some fixed time is known and the vanilla option price can alternatively be
obtained using numerical integration. Prices of exotic options can as well
be obtained using simulation. We perform numerical tests and compare our
results with alternative ways to compute the prices and the sensitivities. We
shall see that, when one is interested in the price and the sensitivities of a
financial contract for a whole range of strikes and maturities, the dynamic
approach not only outperforms simulation but may provide the superior al-
gorithm for numerical computation even for contracts where closed form
expressions exist. In the Black-Scholes framework, when we are dealing with
a PDE, the price function is smooth and all the derivatives of the equation



1 INTRODUCTION AND SUMMARY 15

are well defined. In exponential Lévy models we are not guaranteed that
the price function is smooth enough to ensure that the PIDE has a classical
solution. In Chapter 8 we further investigate the smoothness of the price
function. We find that the smoothness of the Lévy measure combined with

some integrability conditions guarantees the existence of the derivatives.



Chapter 2

Sensitivity analysis in finance:

the greeks

The greeks of a price function tell us how much the price function changes
if there are changes in the price of the underlying asset, changes in model
parameters, or potentially in changes across families of parametric models.
At first glance sensitivities with respect to changes in model parameters seem
self-contradictory, since a model parameter is by definition a constant, and
thus cannot change within a given model. The greeks with respect to changes
in model parameters are therefore sensitivities with respect to misspecifica-
tions of the model parameters. Greeks with respect to changes across families
of parametric models are sensitivities with respect to misspecifications of the
parametric model.

Whereas prices are observable in the market, the greeks are not, and
hence accurate calculation of sensitivities is arguably even more important
than calculation of prices. In this chapter we present three ways of calculating
prices and sensitivities. These are the closed form approach, as presented in
most textbooks on mathematical finance, the dynamic approach, and the

Monte Carlo approach.
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2.1 The Black-Scholes market and the greeks

We consider the Black-Scholes market [6] with two basic assets, a risk-free
one (typically a bond or a money market account) and a risky one (typically
a stock). Under the risk neutral measure the prices of the two assets are

given by

— rt
Bt—e )

St — So e(‘r—é) t+o Wy

)

where 7 is the risk-free interest rate, o the volatility of the stock, and W; is a
Brownian motion. Their dynamics under the risk neutral measure are given
by the stochastic differential equations

dBt = Btrdt,
dS; = S; (rdt + o dW,).

The unique price ¢(t,S;) at time ¢t of a Furopean style option with payoff h
and maturity T is given by the risk-neutral valuation formula

c(t,S;) = E[e™ T h(Sr)| F, (2.1)

where E is the expectation under the risk neutral measure and (F;)o<r<¢ is
the filtration generated by the Brownian motion. Using It6’s formula it can
be shown that the price function c(t,s) = Ele™"T-9h(Sr)|S; = s] satisfies .
the Black-Scholes equation

1
alt,s) =rc(t,s) —rscs(t,s) — 50252 css(t, s), (2.2)
for all (¢,s) € [0,T) x (0,00), subject to the terminal condition

c(T,s) =h(s), s>0,
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where we have used subscripts to denote derivatives. For a European call

option the terminal condition is
c(T,s) = max(s — K,0), s>0.

For computational purposes it may be useful to add auxiliary boundary con-
ditions, which for a European call option are

c(t,0) =0,

ct,s) ~s—Ke™TD 500,

While deriving differential equations we will often encounter the quadratic
covariation [X, Y]; of two processes X; and Y;. For all processes we consider,

the quadratic variation exists and is defined as

[X,Y], = | xlﬁ’i‘o Y (Xt = X)) (Ye,, - Y,)  in probability, (2.3)

t; €Il

where we sum products of increments along the partition II of the time
interval [0, ], letting the grid size go to zero. In case X; = Y; we call it the
quadratic variation process.

The greeks take their name from the fact that they are denoted by Greek
letters. The most common ones are A measuring the sensitivity of the price
function ¢ with respect to the underlying asset price, I' measuring the sen-
sitivity of A with respect to changes in the underlying asset price, p the
sensitivity of ¢ with respect to the interest rate, V the sensitivity of ¢ with
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respect to the volatility, and © the sensitivity of ¢ with respect to time:

" Oc
A—(—,)g,
. 9s?’
_o
p_ar’
_ o
~ 9o’
_oc
_at’

r

where ¢ = c(t, s,0,r) is a function of the initial stock price, time, and the
model parameters. We now discuss several ways of calculating the greeks.

2.2 Classical approach based on closed from

expressions

The greeks of options that have a closed form price function can be obtained
by simply differentiating the price function with respect to the underlying
stock price value, time, and the model parameters. Solving the Black-Scholes
equation (2.2) for an European call with strike K and maturity T yields

c(s,t) = sN(dy) — K e " T N(dy),

where

n(f)+(r£%) T -1)

hals) = =
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The greeks for this option are

A = N(dy),
ro V()
so VT =t

p=K(T —t)e"T9 N(dy),

V= sVT =i N'(dy),
_soN'(di)
2yT -t

where N(-) denotes the cumulative standard normal distribution and N'(-) its

0= — Kre T N(dy),

density. This approach works for many options in the Black-Scholes frame-
work such as for barrier options, lookback options, and exchange options,
where the price function can be expressed in closed form. For Asian options
this approach is not straightforward. The price of an Asian option can be
expressed as a triple integral which is difficult to evaluate numerically, see
Yor [42].

2.3 Dynamic approach

Upon differentiating the PDE for the price function with respect to some
parameter in the model one obtains a PDE for the derivative. Solving the
system of the two PDE one obtains solutions for both the price and the sen-
sitivity. This dynamic approach has been in the air for a while. It is outlined
in the Black-Scholes model by Wilmott [40] and by Tavella and Randall [38].
It is proposed and investigated by Kalashnikov and Norberg [27] in the con-
text of life insurance mathematics. In Norberg [33] it is analysed in the
Black-Scholes model for vanilla and barrier options and in a Markov Chain
market for general European options where also the existence of derivatives is
investigated. However, so far the powers of the method have not been widely
recognised, and it is not widely used. We will investigate the potential of
this approach in the next chapters.
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2.4 Monte Carlo approach

Simulation has proved to be a valuable tool for estimating security prices
for which simple closed form solutions do not exist. The estimation of sen-
sitivities presents both theoretical and practical challenges to Monte Carlo
simulation. Following Broadie and Glasserman [8] and Glasserman [21] we
present the most important methods for obtairﬁng derivatives of security
prices using simulation. In many cases the parameter with respect to which
we want to calculate the price sensitivity can be seen as either a parameter
of the payoff or a parameter of the probability measure. We illustrate this
with a European vanilla call option. If all the parameters are assumed to be

in the payoff function, the price function at time ¢ is written as

oo 62 12
C(t, S) = e_r (T_t)/ max (s e(r_T)(T-t)“a vT—-tz _ K, 0) 1 C—de,
—oo Var

If all the parameters are put in the probability measure, the price is written

as

1 1 _&@

-5y
xa\/T—t\/27re *

c(t,s) =e™" (T't)/ max(z — K,0)

where

n(2) - (r-%)(T-1)
oVT —t '

In the finite difference method the parameter of interest is assumed to be

d(z) =

in the payoff function and the probability measure is fixed. This method goes
as follows: Firstly, an initial simulation is run to determine the price of an
asset. Secondly, the parameter of interest is perturbed and another simula-
tion is run to determine the perturbed price. The estimate of the derivative
is the difference in the simulated prices divided by the parameter perturba-
tion. This method is easy to understand and implement, but since it involves
simulating at two values of the parameter of interest it is computationally

not very efficient. Moreover it produces biased estimates [21]. Consider a
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European style option whose price depends on a parameter § and is given by
c(6) =Eh(X,0)] = | hiz;O)s(a)da,

where h(6) is the discounted payoff. To estimate %022 the derivative of c(6)
with respect to § we simulate n independent replicates h;(6),.. ., hn(6) at
the parameter value # and n additional replicates hy(8 + d), ..., h,(6 + d)
at the parameter value 6 + d for some d > 0. Then, we average each set of
replicates to obtain k() = 13" hy(f) and h(6 +d) = 137 hi(6 + d).

The form of the forward difference estimator of the sensitivity is then

h(6 + d) — h(8)

Afp = 7

The bias of the forward difference estimator is

Bias(r) =E 47 - 250 - o),

where we used Landau’s notation f = O(g(d)), meaning
: f(d)
limsup ——= < o0
0" 9(d)

By simulating at 8 + d and 6 — d, we can forin a central difference estimator

~ Rh(6+d)—h(6-d)
Ao = 2d

It has a bias of

A A de(X, 0
Bias(Ac) = E {Ac _ %} — O(d).
The pathwise method is also designed for situations where the parameter
of interest is in the payoff function and the probability measure is fixed.
It involves simulation at only one parameter value and produces unbiased

estimates. The idea of this method is that if the differentiation and the
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expectation operator can be interchanged, one can write the sensitivity as

4 Bin(x,0)] = B [ih(x e)] = 7 L 0)g(2)de

do ’ de ' o dfd ’

where h is the discounted payoff function and # is a parameter in the pay-
off. From the dominated convergence theorem we know that the inter-
change of differentiation and integration is allowed if the derivative Edéh(ﬁ)
exists almost everywhere and there is an integrable function k(z) such that
|3(h(z; 0 + d) — h(z;6))g(z)| < k(z) for all z and d small enough. This is
typically only true if the payoff function is uniformly continuous in the pa-
rameter of differentiation §. The name of the method stems from the fact
that the expression £h(6) is called the pathwise derivative of h at 6.

The likelihood method, like the pathwise method, involves simulation at
only one parameter value and produces unbiased estimates. It puts the de-
pendence of the parameter of interest in the underlying probability measure
rather than in the payoff function and hence does not require smoothness in
the discounted payoff. We consider a discounted payoff h as a function of a
random variable X and suppose that X has probability density g(z, §) where
@ is a parameter of that dénsity taking values in R. To derive a derivative
estimator, we suppose that the order of differentiation and integration can

be interchanged and we obtain for the sensitivity

ZEACO] = [ ho) olai6) do

where we have written g(z; 6) for g%"g—‘ol. Just as in the pathwise method this
-method is valid if the differentiation and integration can be interchanged.
This is true if the derivative d% g(z; 6) almost everywhere exists and the func-
tion |h(z)3(g(z;0 + d) — g(=; 6))| can be bounded by an integrable function
k(z) for small enough z and d. As probability densities are typically smooth
functions this is usually satisfied.

The fact that payoff functions are typically not smooth and sometimes
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not even continuous limits the scope of the pathwise method. In contrast,
smoothness conditions are usually satisfied by the probability densities aris-
ing in applications of the likelihood ratio method. The main drawback of
the likelihood ratio method is that it requires the explicit knowledge of the
probability densities and that its estimates tend to have a large variance [21].

With the Malliavin method several authors [19], [3], [31] have extended
the likelihood method. By means of Malliavin calculus, one can calculate
unbiased estimators for sensitivities without having to differentiate the pay-
off function even when the density function g(z;6) is not known in closed
form. One has to calculate the derivative as an expectation of the payoft
times a weight function. The Malliavin method is for example suitable to
simulate sensitivities of options whose payoff depends on the time average of

a geometric Brownian motion such as Asian options.



Chapter 3

Dynamic sensitivity analysis in
the Black-Scholes market

3.1 European vanilla options

Throughout we will denote the interest rate by r, the strike price by K,
-and the volatility of the Brownian motion by o. Recall the Black-Scholes
equation (2.2) for a European call option

ci(t,s) =rc(t,s) —rscs(t,s) — %0232 css(t, 8), (3.1)
for (¢,s) € [0,T) x (0,00), subject to the terminal condition
¢(T, s) = max(s — K,0), s>0, (3.2)
and the boundary conditions

c(t,0) =0, (3.3)

clt,s) ~s—Ke T 500, : (3.4)

which are added for computational convenience. Differentiating (3.1), (3.2),
(3.3), and (3.4) with respect to the interest rate r, we obtain the differential



3 DYNAMIC SENSITIVITY ANALYSIS IN THE BLACK-SCHOLES MARKET 26

equation for the sensitivity p = gﬁ:

pi(t,s) =rp(t,s) +c(t,s) —rsps(t,s) — scs(t, s) — %0232 pss(t, ), (3.5) |
for (t,s) € [0,T) x (0,00), with the terminal condition
p(T,s) =0, s>0, (3.6)
and the auxiliary side conditions A

p(t,0) =0,
p(t,s) =(T—-t)e " T VK, s oo

Similarly, differentiating with respect to the volatility o we obtain the PDE
for YV = ;9375:

Vilt,s) = rV(t, ) — rs Vi(t, s) — 30232 Vo — os2cu(t,s),  (37)
for (¢,s) € [0,T) x (0,00), the terminal condition
V(T,s)=0, s>0, (3.8)
and the auxiliary boundary conditions

V(t,0) =0,
V(t,s)=0, s— oo.

To determine the price function and its greeks, the system of PDE (3.1),
(3.5), and (3.7) has to be solved subject to its terminal conditions (3.2),
(3.6), and (3.8). One starts with the boundary condition at time t = T,
specifying the known terminal values for the price function and the greeks
in the state interval one has chosen to work in, and then works backwards
in time calculating at each time step the option prices and the sensitivities.
Doing so, one obtains the price and the sensitivities for a whole range of
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strikes and times to maturity. This method is called the dynamic approach.

3.2 Lookback options

Lookback options provide investors with the possibility to look back in time
and exercise an option at the ideal time. Obviously this opportunity has its
price and invariably lookback options are more expensive than their European
counterparts. We write S; for the stock price process, M; = supy<,<; Sr for
its running maximum, and m; = info<,<; S, for its running minimum over
the interval [0,¢]. There are four basic types of lookback options. The two
floating strike lookback options are, firstly, the call option with payoff

h(St,mr) = St — mr,

giving the right to buy at the low over [0,T)], and secondly, the put with
payoff
h(Sr, Mt) = Mr — Sr,

giving the right to sell at the high over [0, T]. Floating strike lookback options™
are not options in a strict sense as they will always be exercised and hence the
pricing reduces to finding the expectations of the running maximum E[M7]
and the running minimum E[m7] under the risk neutral measure. The two

fized strike lookback options are the call, with payoff
h{Mr) = max(Mr — K, 0),
and the put, with payoff
h(mr) = max(K — mr,0).

The fixed strike prices are special cases of the functional E[h(mr)] and
E[h(Mr)]. PDE approaches to lookback options can be found for exam-
ple in Wilmott [18] or Zhu [43]. In the Black-Scholes framework closed form
solutions exist for the four standard lookback options presented above. The
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closed form solutions for the floating strike lookback options have been de-
rived in Goldman et al. [22]. The closed form solutions for the fixed strike
lookback options have been derived in Conze and Viswanathan [17].

3.2.1 Floating strike lookback put

We take the floating strike lookback put as an example and undertake to
derive PDE governing its price and the greeks. We show two different ways
how the state space can be reduced and a PDE in time and only one more
variable can be obtained. The price of a floating strike lookback put option
at time ¢ is

C(t, St, Mt) = C—T(T—t)E[MT - STlFt],

where F; is the o-algebra generated by the Markov process (S;, M;). To
derive a PDE for the price of the lookback option we apply Ité’s lemma to
the discounted option price e~ c(t, S, M;). Following Shreve [37] we obtain

d(e_” C(t, St; Mt)) = e'”( -T C(t, St, Mt) dt + Ct(t, St, Mt) dt
: 1
+ C_g(t, St, Mt) dSt + §Css(t) St, Mt)d[S, S]t
+ Cm(t, St, Mt)th)
= e—rt(( —-T C(t, St, Mt) + Ct(t, St, Mt)
1 2 Q2
+ 7.5, cu(t, Sty My) + 507 S (1, S, Mt)) dt

+ O'St Cs(t, St, Mt) th + Cm(t, St, Mt) th) y

where we have written [S, S]; for the quadratic variation of the procéss S;.
The discounted option price is a martingale. As the stock price process
attains its running maxima on a set with Lebesgue measure zero, the term
involving dM; cannot be cancelled by the drift term, and both the drift term
and ¢, (t, Sy, M;) dM, must be zero. Setting the drift term to zero one obtains
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the PDE
ci(t, s,m) + %0252 css(t, s, m) + rscs(t,s,m) —rc(t,s,m) =0, (3.9)
fort € [0,T) and 0 < s < m < 00, subject to the terminal condition
c(T,s,m) =m — s. (3.10)

For the first auxiliary boundary condition we investigate the option price
when the stock price is close to zero and obtain

lintl)c(t,s,m) =me (T, : (3.11)

To obtain the second auxiliary boundary condition we use the fact that
cm(t, St, Mt)th must be zero. The term dM, is zero when S; < M;. How-
ever, at the times when M; increases, this is when the stock price is equal
to its running maximum, ¢, (¢, Si, M;) must be zero for ¢, (¢, S;, M) dM, to
vanish. This gives us

Cm(t, s, m)|s=m = 0. (3.12)

- Due to the special form of the payoff function (3.10), equation (3.9) and
its side conditions can be transformed and written in new coordinates using
c(t,s,m) = mw(t, &) where £ = <. Doing so, both the PDE and the side

m
conditions only depend on time and the state variable { = Z. The derivatives

of the price function in the transformed coordinates are

Ct(tv S, m) = mwt(ta 5)’
cs(t, s, m) = we(t, €),

v 1
Css(t, S)m) = gwff(t E)

In the transformed coordinates the PDE is

wi(t, €) + %0262 wee(t, €) + rwe(t, €) —rw(t,§) =0, (3.13)



3 DYNAMIC SENSITIVITY ANALYSIS IN THE BLACK-SCHOLES MARKET 30

for (¢,€) € [O, T) % (0,1). The boundary conditions for w(t, £) can be obtained
from the boundary conditions (3.10), (3.11), and (3.12) of c(t,s,m). In

particular,

m — s = ¢(T,s,m) = mw(T,§)

implies ,
w(T, &) =1-¢&.
Furthermore,
- me " T = ¢(t,0,m) = mw(t,0)
implies
w(t,0) = e 7T,
and finally
0= cm(t, 5,m)|s=m = w(t, 1) — we(t, §)le=1
implies

wé(t>§)'6=l = ’w(t, 1).

We now calculate the greeks using the dynamic approach. As the PDE for
the lookback option and the vanilla option differ only in the side condition,
the same goes for the PDE for the greeks. Differentiating equation (3.13)

with respect to the interest rate we obtain a PDE for o = %i::

Qt(ta €)+%02§2 Q{{(ta €)+§T Q{(t1 £)+§w£(t7 E) -r g(t1 6) —'I.U(t, §) = 01 (314)

for (¢,€) € [0,T) x (0,1) with terminal condition

o(T,€) =0,
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and auxiliary side conditions

0(t,0) = —(T —t)e T,
0¢(t, )le=1 = o(t, 1)

Differentiating (3.13) with respect to the volatility, we obtain a differential

equation for v = —g%:

vw(t, &) + 50262 vee(t, &) + o€? wf‘.(t;é) +&rve(t, &) —ro(t,€) =0, (3.15)
for (¢,€) € [0,T) x (0,1) with terminal condition
v(T,€) =0,
and auxiliary side conditions

v(t,0) =0,
ve(t,€)]e=1 = v(t,1).

Solving the system of equations (3.13), (3.14), and (3.15) with the appropri-
ate side conditions and transforming the variables w, g, and v back to c, p,
and V, using

C(t, S7m) = mw(t’E)’

p(t, s,m) = mo(t,§),
V(t,s,m) = mu(t,§),

we obtain the price and the greeks for the lookback put.
The values obtained can then be compared with the values one obtains
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from the closed form expression as derived in [32]:

2
c(s,t) = — sN(=dy) + me " T N(=dy) + s ‘2’— N(dy)
T

2 _2r / —
_seT@n T (i) N (dl _ VTt Z t) : (3.16)

2r \m

where
In(£) + (r+10?) (T —1t)
oT —t )

The greeks in the closed form approach are then obtained by differentiating
(3.16).

d1,2 =

3.2.2 A martingale method

We now give an alternative derivation of the option price defining PDE based
on a martingale technique. Consider the martingale

M, = E[Mr — S7|F),

where S; is the stock price process and M; = supy<,<; S is its running
maximum. The martingale can be written as

M, = E[max(Mt,St sup e(r—é)(r—t)ﬂ Wr=W)y _ Ste(r—"TQ)(T—t)+a (Wi —Wa)
) t<r<T

= St f(t7 Qt)’

With.
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and

f(t,q) =E [max (q, sup e(r—é)rwW,) _(r7) @040 (WT—W,):l'

0<7<T-t

(3.17)

Using It6’s lemma we obtain the dynamics of @:

1 M, M,
th = §t th - Etz- dSt + “5;:? d[S, S]t,

which can be written as
dQ, = Q,(—rdt — o dW, + o2 dt), @Q,> 1.
The dynamics of the martingale M, are
A, =dS: f(t, Q) + St (£i(t, Q) dt + fult, Q)dQ:
+ 5t Q)AIQ, QL) + S, £,(1, Q)4Q,
=5, (6, Q) + 7 £1.Q) + §0°G2 Fu(0,Q) ~ T Qe 16, Q0)) dt
+ S, o f(t, Qi) AW, (3.18)

where we used d[Q, Q]; = Q? o2 dt. Setting the drift term in equation (3.18)
to zero one obtains the PDE '

filt,@) + 1 f(t,q) + %02q2 faa(t, @) —rq fo(t,q) =0,

valid for (¢,¢) € [0,T) x (1,00). The terminal condition in this pararhetrisa—
tion is
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If the stock price goes to zero then we obtain the first auxiliary boundary

condition
ft,g)=q—€eTH, g co.

We obtain the second auxiliary boundary condition by inspecting equation
(3.17). If the stock price is at its maximum then g = 1. Because of the diffuse
nature of Brownian motion the second term in the maximum function in
(3.17) is always bigger than 1. Therefore, f(t,q) does not explicitly depend
on q at ¢ = 1. This leads to the second auxiliary boundary condition,

fq(t, Q)|q=l =0.

The price function of the option is then

p(s,t) = e T s f(t,q).

3.3 Asian options

Asian option is a generic name for the class of options whose terminal payoff
depends on the average value of the underlying asset during some period
of the option’s lifetime. In contrast to standard options, Asian options are
more robust against manipulation near their expiry dates. Asian options are
widely used in practice, for instance, for commodities and in foreign exchange
markets. The two major types of Asian options are floating strike Asian
options and fized strike Asian options. The payoff of a floating strike Asian
call option is max(Sy — %AT, 0) and the payoff of a floating strike Asian put
option is max(%AT — St,0). The expression %At is the average of the stock
price over the time interval from 0 to t. There are various ways of forming
an average of past values of the stock price. We will restrict ourselves to the
continuously sampled arithmetic average which for which A; = fot Srdr. The
payoff of a fixed strike Asian call option is max(%A7r — K,0) and the one
of a fixed strike Asian put option is max(K — %AT, 0), where K is a fixed
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number called the strike price. There also exist more general Asian options
with payoffs such as max(%AT — K;Sr — K,,0), where K; and K, are two

fixed numbers.

3.3.1 Floating strike Asian options

We consider a floating strike Asian call option. The price of such an option

is given as the expected discounted payoff under the risk neutral measure

1
oft, S, Ai) = e TIE {ma" <5T — AT, 0) ‘F] |
Using It6’s formula one can show that in the Black-Scholes model the price
function

St=s,At=a:|

1
c(t,s,a) =e"TTIE [max (ST - TAT’ 0)

is the solution to the PDE

1
ci(t, s, a)+rscs(t, s, a)+§cf252 Css(t, 8, a)+scq(t, s,a)—rc(t, s,a) =0, (3.19)

valid for (¢, s,a) € [0,T) x (0,00) x [0, 00) subject to the terminal condition

¢(T, s,a) = max (s - %a, 0) .

This is just the Black-Scholes equation for a vanilla option with the addi-
tional term c¢,(¢, s, a), taking into account that the option also depends on
an average price of the underlying asset over a certain time period. PDE
methods for a wide range of exotic options can be found in Zhu [43]. Follow-
ing [25], [36], and [18] we show, that the state space of equation (3.19) can
be reduced and a PDE in only two variables can be obtained. Alternatively
one can use a martingale method to directly derive a price determining PDE
that only depends on time and one further variable. We will present the
martingale technique in the next section as it works for both fixed strike and

floating strike Asian options.



3 DYNAMIC SENSITIVITY ANALYSIS IN THE BLACK-SCHOLES MARKET 36

To reduce the state space we use the ansatz c(t,s,a) = sh(t,q) with

q= %5 The derivatives of the price function in the new coordinates are

Ct(t,s)a) = Sh’t(t1 q)1
CS(t’S’a) = h(t) Q) - qhq(taq)a

7
css(t, s,a) = " hy(t, q),

calt, s,a) = % ho(t, ). (3.20)

Inserting (3.20) into (3.19), we obtain

1 1
hi(t, q) + 502q2 heo(t,q) + (T — rq) hq(t,q) =0, (3.21)
valid for (t,¢q) € [0,00) X [0,00) with the terminal condition

For computational convenience we introduce the auxiliary boundary condi-
tions as outlined in [18]. When @, = %% is very large the probability that
the stock price at expiry is greater than the average over T' goes to zero:

1
lim P —A
im [S’T > TAT

g—0oo

Qt=Q:| =0a

and the option expires worthless. This gives us the first auxiliary boundary

condition
h(t,q) =0, q— 0.

The second auxiliary boundary condition, when ¢ goes to zero, can be stated
as a differential equation. This equation can be derived from equation (3.21)
as follows: First, we note that the term g h,(t, ¢) is negligible for small q as
it is much smaller that the term Fhy(2, q). Second, we show that g2 he(t, q)
vanishes for ¢ — 0 by assuming the opposite and demonstrating that this
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leads to a contradiction. By Assumption, the term g2 hgq(t, ¢) is bounded:

hog(t,q) = O (q_12) .

Integrating twice we see that this means h(t, ¢) = O(log gq). For small q this
contradicts the fact that h(t, q) is bounded. We therefore conclude that

g% g hqq(t: q) =0,
and equation (3.21) reduces for ¢ — 0 to the second boundary condition
1
h(t,0) + T hy(t, q)|g=0 = 0.

Using the dynamic approach, the greeks can easily be calculated. Differ-

entiating (3.21) with respect to the interest rate 7, using p = gf = s% and

k= % one obtains the PDE for k,

Blt,0) + 50°¢ kol 0) + (% - rq) ha(t, @) — ghalt,)) =0, (3.22)
valid for (t,q) € [0,00) X [0,00) with the terminal condition
k(T,q) =0,
and auxiliary side conditions

' ' k(t,q) =0, ¢q— oo,
' 1
kt(t, 0) + T kq(t, q)|q=0 = 0

Differentiating (3.21) with respect to the volatility o, using V = % = s%

and [ = % one obtains the PDE for [

1 1
L(t,q) + 502q2 log(t, q) + (T - rq) lo(t,q) + 0q hee(t,q) =0,  (3.23)
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valid for (¢, gq) € [0,00) X [0, 00) with terminal condition
I(T,q) =0,
and auxiliary side conditions

I(t,9) =0, g— o0,
1
L(¢,0) + T lg(t, 9)lg=0 = 0.
Then the system of equations (3.21), (3.22), and (3.23) has to be solved with

respect to the relevant terminal and side conditions. Finally, the variables h,
k, and ! have to to transformed back to ¢, p and o.

3.3.2 Fixed strike Asian options

Rogers and Shi [34] showed that not only for floating strike but also for fixed
strike Asian options the state space can be reduced. Hence, the problem
reduces again to solving a parabolic PDE in two variables. We derive the
PDE for the fized strike Asian call option with payoff max( %AT — K, 0) using
a martingale technique. Consider the martingale

T
Mt=]E[ma,x(—1-/ STdT—K,O) .7-}]
T Jo

1t 1T ‘
o (Rl 251

St St St ,

|

= St h(t7 Qt))

where

%[ S;dr—K
- =
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and
1 T
1 - d
h(t,q) =E [max (q + % 0)] . (3.24)
t

We have essentially split the payoff into a part which only depends on the
past and a part which only depends on the future. To see this we write

T
ft Srdr . /Te(r—é) (r—t)+o (WT—Wt)dT
St t

which does not involve anything from the sigma-algebra J; and hence, be-

cause of the independence of increments, is independent of F;. Using It6’s
formula we obtain the dynamics of Q:

1
dQ, = Qi(—rdt — o dW, + o* dt) + Fdt-
We can then apply It6’s formula to the martingale M; to obtain its dynamics

th = dSt h(t, Qt) + St dh(t7 Qt) + dSt dh(t’ Qt)
= St(’I” dt +o th) h(ta Qt)

+ 5, (ht(t, Q.) dt + hy(t, Q:) (Qt(—r dt — o dW; + o2 dt) + %dt)
+ %Qfathq(t, Q:) dt) — 0%5,Q1hy(Qs, t) dt.
Setting the drift term to zero, we obtain a PDE for h:
h(t,q) +rh(t,q) + %cfzq2 heq(t, q) + (% - rq) he(t,q) =0, (3.25)

valid for (¢,q) € [0,T) x (—o0,00). Equation (3.25) has to be solved subject

to the terminal condition

h(T, q) = max(q, 0).
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Introducing

f(t,q) = 7T n(t, q)

equation (3.25) can be simplified to

He0) + 57 e+ (1 -r0) L) =0, (320)

valid for (¢,q) € [0,T) X (—o0, 00) with the terminal condition

ﬂTA%=mw@ﬂ%7

and the auxiliary side conditions

ft,9) =0, g— —o0
11—e7T-)
t,q) =e TN —_— 0.

flt,g)=e 9+ — ¢>
To derive the first auxiliary side condition note that when % fot S,dr < K
and the value of the stock price S; goes to zero, the probability that the
option will expire worthless goes to one. In this case @; goes to minus
infinity and this gives us the first auxiliary boundary condition. To derive
the second auxiliary boundary condition, note that when ¢ > 0 the term in
- the maximum function of (3.24) will always be greater than 0. In this case

the maximum function drops out. Using that e~"!S; is a martingale, one

1 (TS,
7_'-/& '§t'd7'

obtains

E

T erT
7| = [ GBS

i

Ter‘r

= —e_”St dr

t St

1er (Tft) -1
= (3.27)
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and one can explicitly calculate the price of the option. The option price
function at time ¢ = 0 can be written as ¢ = s f(0, —-Isi) The same martingale
technique can be applied to a floating strike Asian option and one obtains the
PDE (321) Note that apart form having different side conditions the PDE
for the fixed strike Asian option (3.26) and the PDE for the ﬁoa'ting strike
option (3.21) are the same. To obtain the greeks we use the dynamic approach
and derive their corresponding PDE. p is obtained via p(0, s) = s g(0, — %),
where g = ‘;—;:f is given by the PDE

1 1
gi(t,9) + 5 o> gag(t,q) + (:_,: - q) 9q(t,q) — q fo(t,q) =0,

valid for (¢,q) € [0,T) X (—o0,00) with terminal condition

9(T,q) =0,

and the auxiliary boundary conditions

g(t)q) = 07 q — —00,

T-1

e’ (T-t) _ (T _ t)e—r (T-t), _ _1__
r

Tr2

g(t,q) = (1—e"@ 1), g>o0.

The greek V is given by V(0, s) = sw(0, — %), where w = g—g satisfies the
PDE :

' 1 1
wy(t, q) + 502q2 weq(t, q) + (f - Tq) w,(t, q) + 0¢* fult,q) =0,

valid for (¢,q) € [0,T) x (—oo,00) with terminal condition
w(T,q) =0,
- and the auxiliary boundary conditions

’U)(t, q) = 01 q— —00,
w(t,q) =0, ¢>0.
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3.4 Barrier options

Barrier options are options where the payoff depends on whether the price of
the underlying asset reaches a certain barrier level B during a certain period
of time. There are four basic types of barrier options. Down-and-out options
are similar to vanilla options, but they have the additional feature that they
cease to exist if the stock price hits a barrier level B < Sy and nothing is paid
to the holder of the contract. Up-and-out options cease to exist if a barrier
level B > S is reached. Up-and-in options only come into existence if a
barrier B > Sy is hit during the lifetime of the option. Down-and-in options
only come into existence if a barrier B < Sy is hit during the lifetime of the
option. The prices of the ’in’ options can be obtained by calculating the price
of the corresponding vanilla option and the corresponding ’out’ option and
the using the fact that the price of the ’in’ option must be equal to the price
of the vanilla option minus the price of the 'out’ option. Many other types
of barrier options have been developed. These include moving-boundary
options where the constant barrier is replaced by a stochastic process, Asian
barrier options, and options where the barrier only applies to a certain part of
the time-interval. For the standard barrier options closed form solutions for
the price exist in the Black-Scholes model. Many of the more exotic barrier
options can easily be implemented with the PDE approach, and since usually
no closed form solutions exist, this is the only possible analytic approach.

3.4.1 Down-and-out call

As an example we explain how a down-and-out call option and its greeks can
be priced. Both the dynamic and the closed form approach to calculate the
greeks for a down-and-out option are explained in Norberg [33]. The price
function of such a down-and-out call option at time ¢ is

cpol(t,s) = e TDE[(St — K)Lsy>kmr>8lS: = 3],

where m, is the running minimum of the stock price process in the interval
from 0 to ¢. The option price can be given as the solution to the Black-Scholes
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PDE

1
ci(t,s) =rc(t,s) —rscs(t,s) — 50232 css(t, 8), (3.28)

for t € [0,T) and 0 < s < B, subject to the natural side conditions

c(t,B) =0,
¢(T, s) = max(0,s — K),

and the auxiliary side condition
c(t,s) ~s— Ke"TH 500

The greeks can be obtained by differentiating the defining PDE (3.28) using
the dynamic approach. Doing so, we obtain the same equations as for the
vanilla call option except for the additional barrier condition that the payoff
is zero once the barrier has been hit. There exists a closed form expression
for the price of a down-and-out call [32]. If the barrier level B is smaller that
the strike K then the option price is given by

2r
B\-*! B?
cpo(t, s, B) = cps(t,s) — (;) CBS <t, ?) , (3.29)

where

cas(t,s) = s N(dy(t,s)) — e " T~ K N(dyt, s)),

di2 = ;—\/—,Il,z_; (ln (%) + (ri %2) (T‘t)) :

and N(-) is the cumulative normal distribution. If the barrier level B is
bigger that the strike then the option price is given by

coolt,s) = sN(z1) — KN(z») |

=S (‘;) N(y) + KeTm @0 ("s‘) N(y2), (3.30)
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where

T12 =

ovT —1 ’
n(2)+ (r£%)(T-1)
.z = ovT —1 '

Differentiating equation (3.29) or (3.30) with respect to the parameters in

question we obtain the corresponding greeks.

3.5 Numerical results

The systems of PDE of this chapter can efficiently be solved using finite
differences. A finite difference solver for PIDE is explained in detail in chapter
7. As the finite difference solver for PDE is a special case of the finite
difference solver for PIDE we refer to chapter 7 for the technicalities and
only report the numerical results here.

We compare the results obtained with the dynamic approach with the
results obtained using the closed form expressions. All computation are per-
formed on a Pentium 4, 2.8 GHz computer. For options with a continuous
payoff such as the vanilla options, Asian options, and lookback options con-
sidered in this chapter the numerical solution of the PDE converges very fast
to the correct value (which can be obtained by evaluating the closed form
expression). For vanilla options it takes less than one second to compute the
price and the greeks on a grid with 1000 strikes times 1000 maturities with
a maximum relative error around the strike of less than one per mille even
for the greeks. For barrier options the payoff is discontinuous and the PDE
solution converges considerably slower to the closed form solution. We have
to run the computer program for about one minute to obtain a maximum
relative error for the greeks of less than one per cent.



Chapter 4

Exponential Lévy models

4.1 Lévy processes and exponential Lévy mod-

els

As we want to apply, in the next section, the dynamic sensitivity method to
models with jumps, in particular to exponential Lévy models, we first state
some facts about Lévy processes and about exponential Lévy models. The
properties about Lévy processes are drawn from Sato [35]. We begin with
the definition of a Lévy process. A stochastic process X; is a Lévy process if

the following statements are satisfied:

1. X; has independent increments: For any choice of n > 1 and 0 < ¢y <
t1 < --- <ty the random variables X;,, Xy, — X4, -+, X¢, — X3,_, are
independent.

2. X; has stationary increments: The distribution of X,,; — X; does not

depend on t.
3. X, is stochastically continuous: Ve > 0 limy_,q P(| X1n — Xi| > €) = 0.
4. Xo =0 a.s.

Let X; be a Lévy process. Its jump measure u([t1, 2], A) is defined as the
number of jumps of X; occurring between the times ¢t = ¢; and t = ¢, and
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whose size is in the Borel set A C R bounded away from zero
,u([tl,tz],A) = #{t € [tl,tz] AX; € A}

The Lévy measure v(A) of X, is defined as the expected number of jumps of
X per unit time interval whose size is in the Borel set A bounded away from

v(A) = E[#{t € [0,1] : AX, € A}].

The Lévy measure v is a positive measure in R. Its density (if it exists) need
not be integrable and may exhibit a singularity at 0. It has the following

properties
1. »(I') < 00 if T is a Borel set bounded away from zero.
2. flzlsl 2% v(dz) < oo and v({0}) = 0.

The Lévy-Ité decomposition states that any Lévy process X; can be writ-
ten as

Xt='yt+oBt+/ z u(ds, dz)
(O,t]X(R\(—l,l))

+ lim z (u(ds, dz) — v(dz)ds),
0 J0.4x([-1,~u(e1) ‘
which is the sum of a drift, a Brownian motion, a term comprising large
jumps, and a term comprising compensated small jumps.
The characteristic function of a Lévy process X; has the so called Lévy-

Khinchin representation
. 0.222 S
IE[e""X‘] = etv,b(z), zj)(z) = -——2-— + 2")’2 + / (e’”’ -1- ilekz[fl) I/(dl‘),
(4.1)

where o2 is the variance of the Brownian motion part of the Lévy process,

« is the drift, and v is the Lévy measure of the jumps. The Lévy process is
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characterised by the triplet (v, 02, v), hence called the characteristic triplet.
A Lévy process X; with characteristic triplet (v, 02, v) is said to be of

1. type A if 2 = 0 and v(R) < oco. The process X; is then of compound
Poisson type.

2. type B if 0% = 0, v(R) = oo, and flml<1 |z| v(dz) < oco. The process
X is then of finite variation and infinite activity, which means that its

jumping times are dense in R*.

3. type Cif either 02 > 0 or flzl<1 |z| v(dz) = oo. The process X; is then

of infinite activity and unbounded variation.

In ezponential Lévy models, the stock prices are given as an exponential of a

Lévy process X,
St = So e’ t+Xe

A good introduction to exponential Lévy models can be found in Cont and
Tankov [14]. The discounted stock price process Sy et has to be a martingale
under some risk neutral measure. This can be achieved by imposing the

following conditions

/ e”v(dr) < oo,
[z]21

2
Y + % + /(Cz -1- l'1|z|51) I/(dx) =0.

The first condition ensures that E[eXt] < 0o. The second condition is ob-
tained by setting z = —¢ in the Lévy-Khinchin representation 4.1. From a
mathematical point of view the process X; can be any arbitrary Lévy process.
However, certain choices of X; are more sensible than others when we want
to capture the dynamics of a stock price. Infinite activity jump processes
include both frequent small moves and rare large moves. Empirical stud-
ies [9] show that in many cases a diffusion component is superfluous when

the jump component has infinity activity. Therefore most models either have
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a Brownian motion part and a finite activity jump part or a infinite activity
jump part but no diffusion part. The former models are called jump-diffusion
models. However, Brownian motion can be obtained as the limit of an in-
finite activity process and is thus essentially included in pure jump infinite

activity models.

4.2 Jump-diffusion model

In jump-diffusion models the evolution of a stock price is given by the sum
of a Brownian motion and a process that has a finite number of jumps in
each finite time interval, representing rare events such as crashes. We restrict
ourselves to the Merton jump-diffusion model [30], where the stock price is
driven by the sum of a Brownian motion W; and a compound poisson process
where N, is the Poisson process counting the jumps of X; and Y; are normally

distributed random variables representing the jump sizes:

N;
Xe=qt+oW,+ ) Y,

i=1
—- rt+X:
S;=5¢e ,

Y ~ N(u,6%).

The drift parameter + is chosen such that the discounted stock price process
S,=emS, =eXtisa martingale under some risk neutral measure. In this

model the Lévy measure is given by

T—p 2

e 27 dz. (4.2)

A
v(dz) =
(dz) 0V 2m
The parameter A is the intensity of the occurrences of jumps, and x and
0 are the mean and the standard deviation of the jump size distribution,
respectively.
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4.3 Variance gamma model

The variance gamma model [29] is a pure jump model with infinite activity
and finite variation. This model permits a good description of the volatility
smile observed in option pricing at all maturities and for a wide variety of
underlying assets. It has therefore become very popular within the finance
community. The model is based on the variance gamma process

Y, =0Z+0Wg,
t 1

Zt NF (—,—> ) (43)
K K .

which is obtained by subordinating a Brownian motion with drift to a Gamma
process Z;. Here o is the volatility of the Brownian motion and 6 is the drift
of the Brownian motion. The density function f of the gamma distribution

(e, B) is

ol ﬂae—ﬁz

I(a) ’

flz;a,08) =1z for z >0,

where I is the Gamma function, « is called the shape parameter, and 87! is
a scale parameter. We choose the parameters a = i and 8 = i to obtain a
gamma process with mean t and variance xt. The variance gamma process
has the particularly simple characteristic function

| 1 .
. _ i2Ye)
¢ug(z,t70a g, Ii) —E(C ) (1 — 7:0/62"‘0'2/{22/2) )

The stock price process is given by

_ rt+X: _ rt+Yi+wt
St = Soe b= Soe t ’

where the drift term

w=lln(1-9h:—lcr2n)
K 2
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is such that et is a martingale under some risk neutral measure. The random

variable X; has the density
p(z,t) = €2 C(t) |a| "2 K:_1(Blzl),

where K, (z) is the modified Bessel function of the second kind,

6
A= ;,
B V0?2 + 202 /k

?

o2

C(t) = 2(Varwt/"oT(t/x)) " (20*/r+ 7)1
The modified Bessel function of the second kind K,(z) is one of the solutions
to the PDE

By dy
22 Y 2. 2y
22 +z8a: (z* +n*)y =0,

and can be expressed as the integral

Kn(z) =

T(n+ 2)(2:1:)” / cos(t)
(2

+ xZ)n+2

More on Bessel function can be found in Abroamovitz [1]. The fact that the
density of the process X; at time ¢ is known as a function of a Bessel function
will allow us to compute the price function of an option in the variance gamma
model using numerical integration and to compare this results with the ones
obtained using the dynamic PIDE approach. The Lévy measure of this model
is

v(dz) = ”|$| eAeBlel gy, (4.4)

In the next section we present a generalisation of the variance gamma model.
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4.4 Carr Geman Madan Yor (CGMY) model

In [9] a new model for asset returns is investigated. It is named the (CGMY)
model after the authors Carr, Geman, Madan, and Yor and contains the
variance gamma model as a special case. This model allows for the jump
component of the asset return driving process to display finite or infinite ac-
tivity and variation, depending on the choice of the parameters. The authors
conclude in their empirical study that most equity prices are best described
by pure jump processes of infinite activity and finite variation. The stock
return driving process X; is, not surprisingly, called the CGMY process. This
process is a generalisation of the variance gamma process and a special case
of the tempered stable process. Unlike in the variance gamma model, how-
ever, the density of the process X; at time ¢ is in generél not known in terms
of some special function of mathematics. The Lévy density of the CGMY
process X; is given by

ZM|a| - (4.5)

J(dz) = c;;‘[—ﬂ;ldx >0,
Cﬁ_ﬁxydiv z <0,

where C > 0,G >0, M >0, and Y < 2. The condition Y < 2 is induced by
the requirement that the Lévy densities integrate z2 in the neighbourhood
of 0. In the case Y = 0 the CGMY model reduces to the variance gamma
model. In the case Y < 0 the process X; has finite activity. The parameter C
may be viewed as a measure of the overall level of activity. The pafameters G
and M control the rate of exponential decay on the positive and the negative
side respectively of the Lévy density. The parameter Y characterises the fine
structure of the process and determines whether the process is of finite or
infinite activity and variation. The stock price under the CGMY model is -

St — SO e(r-l—w) t+Xt’

where r is the interest rate and

w=CIL(-Y)((M-1)Y - MY + (G +1)¥ - G¥).
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is such that e~"%S,; is a martingale under some risk neutral measure. The

characteristic function ¢cgpry of the CGMY process is

bcemy = E[eiuxt] = tOT(=Y) ((M—iu)Y—MY+(G+iu)Y_GY).

The variance gamma process can be constructed through subordination
of simpler processes and in the next sections we will investigate sensitivities
of option prices with respect to changes in the parameters of this simple
processes. For the CGMY model we will investigate sensitivities with respect
to changes in the parameters of the Lévy measure. This is the reason why,
although the variance gamma model is a special case of the CGMY model,
we presented them in separate sections.



Chapter 5

Option prices and greeks in

exponential Lévy models

5.1 European vanilla options

5.1.1 Derivation of the PIDE

To start with we show how in exponential Lévy models the price of an option
can be expressed as a solution to a PIDE. Throughout we assume that the
underlying stock price is given by an exponential Lévy process which has the
representation S; = Sg "'t Xt where X; is a Lévy process with characteristic
triplet (o, 7, v) and r stands for the interest rate. The dynamics of the stock

price process are given by

o

dS, = rS,_dt + oS, dW, + S,_ / (¢° — 1) (u(dt, dz) — v(dz)dt), (5.1)
where W, is the Brownian motion part, p(dt, dz) is the jump measure, and
v(dz) is the expected number of jumps in dz in a unit time interval. The
integral term in (5.1) therefore represents a possible jump in the stock price
process minus its expected value. The price of a European vanilla option at

time ¢ with payoff h on this stock is

c(t, S) = e T E[R(Sr)| Fi). (5.2)
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Due to the independent increment property of Lévy processes the conditional

expected value in equation (5.2) can be written as

E[h(St)| 1] = E[h(S, &’ T~ XT=%)| 7]
= K(t: St):

where K(t,u) = E[h(ue" T9+Xr-Xt)] = E[h(uSr—;)]. As S; is the only
relevant state variable, conditioning on the filtration (F;)o<r<; is the same
as conditioning on S; and we can write (5.2) as

c(t, 8;) = e TV E[h(Sr)| S).
The discounted option price
é(t, St) = e“” C(t, St) (53)

is a martingale. We want to apply It’s lemma to the discounted option price.
The following condition assures that the option price function is smooth
enough for Itd’s formula to make sense, see [35] and [14]. If

c>0 or 38€(0,2), st. lim ionf e_ﬁ/ |z|?v(dz) > 0, (5.4)

then for each ¢ > 0, X; has a smooth density with derivatives vanishing
at infinity and therefore c(t, s) is a smooth function in s. Differentiability
in time can be shown by Fourier methods. Condition (5.4) is fulfilled for
all jump-diffusion models with non-zero diffusion component as well as for
Lévy densities behaving near zero as v(z) ~ ¢/z'*# for some constants ¢ and
B > 0 [16]. It is therefore true for the Merton model and for our choice of
parameters for the CGMY model, but not for the variance gamma model.
For the variance gamma model we show in Chapter 8 that £he option price is
continuously differentiable with respect to the stock price value and thus the
use of Itd’s lemma is justified. Note however, that in the variance gamma
model the option price is not twice differentiable with respect to the stock

price value s. From now on we assume that the option price function is
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sufficiently differentiable and we apply Itd’s formula to equation (5.3) to
obtain the dynamics of the discounted option price

dé(t,Sy) = —re "te(t, S, ) dt + e "t dc(t, ;)

= ehrt( - Tc(t, St—) dt + Ct(t, St_) dt + Cs(t, St_) dSt
1
+ ECss(t, St—) d[SJ S]E

+ /°° (c(t, Si—€®) — c(t, Si=) — (€* — 1)Ss-cs(t, Se-)) pu(dt, da:)),

—00

where [S, S]¢ is the continuous part of the quadratic variation [S, S]; defined
in equation (2.3). Dividing the dynamics into a drift and a local martingale
part and using the fact that E[u(dt, dz)] = v(dz)dt, we obtain

dé(t,S;) =e™ "t (( —rc(t, Si-) + ci(t, Si-) + 7Si—cs(t, Si-)
+ %s}_a%,s(t, Si-)
+ /_ : (c(t, Si-€%) — c(t, S;-) — (6° — 1)S;-cs(t, St_))v(dx))dt
+ 08,-cs(t, Si-) AW,
+ / " (elt, Si-e®) — elt, Sio)) (uldt, d) — v(da) dt))

—00

We now show that if
/ e“u(dz) < oo, (5.5)
|z|>1
the local martingale part

th = G'St_ Cs(t, St_) dVVt

o /'°° (c(t, Se—€") — c(t, S;-)) (n(dt, dz) — v(dz) dt)

—00
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is actually a true martingale. From Sato [35] we know that
/ e” v(dz) < 0o <= E [e¥*] < oo,
|z|>1
which in turn implies that

E [ /0 t /_ :(ez — 1) (u(dz, dr) — v(dz)dr)| < oo.

Since the payoff function is Lipschitz, the price function c(t, s) is also Lips-
chitz with respect to the stock price value

le(t, 5 €%) — c(t, s)] < s (e® — 1),

which implies that

E [ /0 t /_ :(c(t,se’) — oft, 8))(u(dz, dr) — v(dz)dr)| < oo,

and that M, is a true martingale. Thus, the coefficient in front of a(t) has to
be zero almost surely and it has to be zero for all possible values of S;. This
leaves us with the PIDE for the price function,

1
c(t,s) +rses(t,s) + -2-0232 css(t, s) —rc(t, s)

+ /oo v(dz)(c(t, se”) — c(t, s),— (¥ — 1)scs(t, 5)) =0, (5.6)

—00

valid for (¢,s) € [0,T) x (0,00), subject to some terminal condition. For a
European vanilla call option the terminal condition is

c(T, s) = max(s — K, 0), (5.7)

where K is the strike price of the option. Equations (5.6) and (5.7) de-
termine the price function ¢(¢,s) uniquely as a mathematical object. For
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computational purposes is necessary to add the boundary conditions

c(t,0) =0,

c(t,s) ~s—Ke T s 0.

In order to facilitate the numerical computations later on, we perform the

change of variables as shown in Cont [16]:

T=T-1t,
y=In (%) +7rT,

and define new functions u(r,y) via
c(t,s) =e " Ku(r,y). (5.8)
The derivatives of the price function in the new coordinates are

Ct(t5 S) =e 'K (T U(T, y) - uT(T’ y) - Tu’y(T’ y))a

cs(t,s) =e T i(— uy (T, Y),
s
—-rT K
css(t7 S) =e€ ;2' (Uyy(T, y) - uy(r, y))a (59)

and the shifted option price becomes
c(t,se®) =e T Ku(r,y + z). (5.10)

Inserting the equations (5.8), (5.9), and (5.10) into equation (5.6) we ob-
tain in equation (5.11) below a PIDE for the function u(r,y). This PIDE
has constant coeflicients, linear arguments, and less terms than the original

equation (5.6). The new equation is

o?

ur(7,y) = b} (uyy(7,9) — uy(7,9))

+ [ " u{de) (ulmy + 7) — u(r,9) — (& ~ Duy(r9)),  (5.11)

(>}
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valid for (7,y) € (0,T] x (—o0, 00), subject to the initial condition
u(0,y) = max(0,¢e” — 1),
and the auxiliary boundary conditions

u(T: y) = Oa y— "'007

u(r,y) ~e¥ -1, y— oo

58

The fact that there are only linear functions in the argument of u(r,y) will
later on simplify the numerical computation of the PIDE as it will allow us

to evaluate it with finite difference methods on a grid with constant grid size.

5.1.2 Greeks in the jump-diffusion model

In order to obtain the sensitivities we differentiate equation (5.11) with re-

spect to the parameters in question. To start with we calculate V), the sen-

sitivity with respect to o. In the transformed coordinates we will call this

sensitivity v. We hence have

Ou Jc —rr
’U——é}', V—EE—KG V.

The equation for v is

v, (T, ) = %2’ (Vyy (7, 9) = vy(T, ) + o(uyy (7, ) — uy(7,9))

+ [ vdn) ol +2) - u(r,9) - (€ = V()

—00

valid for (,y) € (0,T] x (—o00, ), subject to the initial condition

v(0,y) =0,

(5.12)
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and the auxiliary conditions

'U(T, y) = Oi Yy — —0Q,

v(r,y) =0, y— oo.

To obtain V, the solution of the system of equations is transformed back to
the original coordinates. |

Next, we calculate the sensitivity with respect to the volatility of the
jump-size distribution § and call this k. The derivative of u with respect to
0 is called k. This translates into

du dc —pr
k——ag, K,—--(%-—Ke k.

Recall from (4.2) that the Lévy density in the jump-diffusion model is

o2
v(dz) = A e 57 dz.
2n

The equation for & is

0.2

k-(7,y) = (kyy(Ta y) — ky("', y))

oo

2 .
+ [ v(dz)(k(r,y + 2) — k(r,9) - (" — 1)ky(7,))

RG-S

(u(T, y+ :E) - u(Ta y) (ea: - l)uy(T’ y))a (5’13)

valid for (7,y) € (0,T] x (—o0, 00), subject to the initial condition
k(0,y) =0,
and the auxiliary side conditions

k(r,y) =0, y— —oo,
k(t,y) =0, y— oo.
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The sensitivity with respect to the jump intensity A will be named 3 and

in the transformed coordinates we call it b. Thus

ou = aC—K“”b

b= E))

The equation for b is

b-(1,y) = %( yy("" by(T, y))
+

v(dz) (b(r,y + z) — b(7,y) — (" — 1)by(7,3))

+ /00 v(dzx)

—00

Fonmn

(u(r,y +z) —u(r,y) — (€© — Duy(r,y)), (5.14)

>

valid for (,y) € (0,T] x (—00, ), subject to the initial condition
b(0,y) =0,

and the auxiliary side conditions

b(Ta y) = 01 Yy — —00,
b(r,y) =0, y— oo

The variable p is the sensitivity with respect to changes in the interest
rate. Let p be the sensitivity of the transformed variable v with respect to

changes in the interest rate. The corresponding equations are

ou oc —rr
0= p=5 =Ke (o —Tu).

The equation for p is

2

or(1,9) = S (en(r,y) — 0,(7,9))
+ [ sam) ety 9) - o) - (€ - V() (519
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valid for (1,y) € (0,T] x (—o00, 00), subject to the initial condition

e(0,y) =0,
and the auxiliary side conditions

Q(T’ y) = Oa Yy— —x

o) = (@ - =P - =re yooo
Solving the system of PIDE for the price function (5.11) and the sensitivities
(5.12), (5.13), (5.14), and (5.15), we obtain the price and the sensitivities in

the transformed coordinates. Transforming back, we obtain the final results.

5.1.3 Greeks in the variance gamma model

The price of a European option in the variance gamma model (4.3), as in
any pure jump model, can be given as the transformed solution of the PIDE

w(ry) = [ " () (ulr,y + 7) — u(r,y) — (& — Duy(r,0)),

—00

valid for (7,y) € (0,T] x (0,00). This is just equation (5.11) with all the
terms stemming from the Brownian motion set to zero. Remember from

(4.4) that the Lévy density in the variance gamma model is

v(dz) = —1—6397’_ = "ol d,

k||

As, unlike in the Merton model, the measure has a singularity at zero one
might be worried about the contribution of the small jumps. However, for

small z the integrand

(u(r,y+2) - u(r,y) = (€ = Duy(r,)

is of the order z? and the Lévy density is of the order % Therefore the

integrand goes faster to zero than the measure goes to infinity and the integral
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is well defined. In the numerical computations we will approximate the small
jumps by a Brownian motion term. For sufficiently small jumps the jump
term could also just be neglected, as in the variance gamma model the integral

[ o)ty + 2) —u(r,y) - ( = Dun(r0)
is of the order €2 for small e.

Being interested in the greeks we first calculate vega, the sensitivity with
respect to the volatility o in the Lévy measure (4.4). The derivative of the

transformed variable u with respect to ¢ is called v. Thus we have

The PIDE for v is

wlrg) = [ Hda) oy +2) = o(19) - (& = Duy(r,0)

—00

+f " o(dz) (ulr,y + 7) — u(r,y) — (€ — Duy(r,9)),

—00

where

2 2
f(de) = Ddz) = (222l 2V H20 /82l ),
0o o VO +20%/kok o

valid for (7,y) € (0,T] x (0, ), subject to the initial condition
v(0,9) =0,
and the side conditions

U(T: y) = 07 Yy — -0,

v(r,y) =0, y— oo

The derivative with respect to 6 will be called ¢, and in the transformed
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coordinates it will be called p, hence
_ @ ac
P= %0 e
The PIDE for p is

b9 = [ " dz)(p(r,y + 2) — p(r,9) — (& — Dpy(r,3)

—00

+ [ " p(de) (u(r,y + 2) — u(r, ) — (¢ — Duy(r,9)),

—o0

where

AR (S 1) PR
p(dx)_aﬁ (d) (0,2 \/mag) (d )’

valid for (7,y) € (0,T] x (0,00), subject to the initial condition

2(0,y) =0,

and the auxiliary side conditions

p(r,y) =0, y— —oo,
p(1,y) =0, y— oo.

Let 1 be the derivative of the price with respect to x and q be the deriva-
tive in transformed coordinates

ou _ Jdc

== = Ke™g.

=5 =

The PIDE for q is

Q‘r(;) y) = / N v(dz) (g(r,y + z) — q(7,y) — (¢° — 1)gy(7,9))

—00

+ [ olda)(ulry +2) — ulr,y) - (€ = Dy (r,0),
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where

—-21/ z) = 21 _1 v(dz
g(dl‘) = ok (d ) (Hz\/62+—20§/—l€ K,) (d ):

valid for (7,y) € (0,T] x (0, 00), subject to the initial condition

9(0,y) =0,
and the side conditions

Q(T7 O) = 01 y — —0Q,
q(t,y) =0, y— oo.

5.1.4 Greeks in the CGMY model

As before we start with the option price determining PIDE. The CGMY
model defined in section (4.4) is a pure jump model and therefore all the terms
in the PIDE coming from a Brownian motion are zero. In the transformed
coordinates the PIDE for the price function therefore is

w(ry) = [ vlda)(ulry+2) - urg) - (@ = Duy(ra),  (516)
valid for (7,y) € (0,T] x (0,00). Recall from equation (4.5) that the Lévy
measure in the CGMY model is

—M]|z|

v(dz) = C’fT_li%zyldx z >0,
Ci—lmdﬂi z <0.

Just as in the variance gamma model the measure v(dz) has a singularity at
zero. Therefore it can be difficult to numerically evaluate the contribution
of the small jumps. This is most pronounced when Y is close to two and one
is dealing with an infinite variation model. One way around this problem
is again to approximate the small jumps by a diffusion term. We show how
this is done in the section 7.1.2.
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Starting from equation (5.16) we calculate the sensitivities with respect
to the parameters C' and Y. Other parameter sensitivities can be dealt with
in a similar way. Note that here we calculate sensitivities with respect to the
parameters in the Lévy measure whereas in the variance gamma model we
calculated sensitivities with respect to the parameters 6, o, and « introduced
in (4.3) which are parameters of the stock price driving process Y;. '

First, we derive the PIDE for the sensitivity of the option price with
respect to the parameter C. Let

Ou ., Oc

=%, 1% = Ke v.

v =5 =
We therefore differentiate equation (5.16) with respect to C to obtain the

PIDE

wﬁm%=jﬁvwﬂbﬁw+w%—dﬂw—%f—D%UwD

oo

+ é /_Z v(dz)(u(r,y + z) — u(t, y) — (" — Duy(,y)),

valid for (7,y) € (0,T] x (0, c0), subject to the side conditions which are all
zero. To obtain the sensitivity with respect to the parameter Y we differen-
tiate equation (5.16) with respect to Y. We denote the derivative of ¢ with
respect to Y by ¢, the derivative of u with respect to Y by ¢, and define the
function |

§(d-7") = Y% M|

ov(dzx) _ { Cﬁgg(—ln(m)) z>0
Comv(—In(-z)) z<0.

Thus the PIDE for ¢ reads

9-(T,y) = _/ N v(dz)(q(r,y + ) — q(7,y) — (6° - 1)gy(7,9))

—00

+/f«mmww+@—waw—w—n%mmx

valid for (7,y) € (0,T] x (0, 00), subject to the side conditions which are all
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zero. Note for small ¢ the integral

[ €@ utry+3) - u(ry) - € - Duy(r,v),
can be apprbximated by a constant times

/ z'7Y log(z) dz,
0

which is finite for Y < 2. Therefore we do not need any additional condition

on the parameters.

5.2 Lookback options

5.2.1 Derivation of the PIDE

We will extend the results from section 3.2 to exponential Lévy models and
derive the PIDE for a option whose payoff depends on the stock price S; =
Spe™**X¢ and the running maximum M, = supy<,<; Sy of the stock price
realised over the lifetime of the option. The dynamics of the stock price are
the same as in the previous section and are given by (5.1). To obtain the
price of an option that depends on the minimum instead of the maximum
one replaces the maximum process M; with the minimum process m; =
info<r<¢ S- in a straightforward manner. In order for the discounted option
price option price

&(t, Sy, My) = e~ "t c(t, Si, M), (5.17)

to be a true martingale we have to impose the additional condition

/ ePly(dz) < oco. (5.18)
|z]>1



