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Abstract
Option prices in the Black-Scholes model can usually be expressed as so­
lutions of partial differential equations (PDE). In general exponential Levy 
models an additional integral term has to be added and the prices can be 
expressed as solutions of partial integro-differential equations (PIDE). The 
sensitivity of a price function to changes in its arguments is given by its 
derivatives, in finance known as greeks. The greeks can be obtained as a 
solution to a PDE or PIDE which is obtained by differentiating the equation 
and side conditions of the price function. We call the method of simultane­
ously solving the equations for the price function and the greeks the dynamic 
partial (-integro) differential approach. So far this approach has been anal­
ysed for a few contracts in the Black-Scholes model and in a Markov Chain 
model.

In this thesis, we extend the use of the dynamic approach in the Black- 
Scholes model and apply it to a financial market where the underlying stock 
prices are driven by Levy processes. We derive and solve systems of equa­
tions that determine the price and the greeks both for vanilla and for exotic 
options. In particular we are interested in options whose prices depend only 
on time and one state variable. Furthermore, we calculate sensitivities of op­
tion prices with respect to changes in the stochastic model of the underlying 
price process. Such sensitivities can again be expressed as solutions to PIDE. 
The occurring systems of PIDE are solved numerically via a finite difference 
approach and the results are compared with simulation and numerical in­
tegration methods to compute prices and sensitivities. We show that the 
dynamic approach in many cases outperforms its competitors. Finally, we 
investigate the smoothness of the price functions and give conditions for the 
existence of solutions of the PIDE.
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Chapter 1 

Introduction and summary

1.1 Introduction

In order to be able to manage the risk of a financial contract it is crucial to 
know how sensitive the contract’s price function is with respect to changes 
of the underlying asset price, with respect to changes in parameters of a cho­
sen model, and with respect to changes of the model altogether. For option 
pricing the benchmark model is the one proposed by Black and Scholes [6], 
where the stock price is driven by a geometric Brownian motion. This model 
has gained great success mainly because it gives closed form solutions for 
a wide range of options. However, it has become clear that option pricing 
in the Black-Scholes framework is inconsistent with prices seen in the mar­
ket. Empirical distributions of market returns tend to be skewed and have 
much heavier tails than returns generated by the Black-Scholes model. The 
two main lines of extensions of the Black-Scholes model aiming to accommo­
date such features are stochastic volatility models and models with jumps. 
Stochastic volatility models with heavy tails, though, are obtained at the 

' price of a unrealistically high variation of the volatility. Models with jumps 
allow for more realistic representations of price dynamics. This is not too 
surprising as one can actually observe jumps in market data. A very popu­
lar type of option pricing models with jumps are exponential Levy models, 
where the underlying asset price St is modelled as the exponential of a Levy
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process X t. Depending on the financial contract and the market under con­
sideration, various Levy processes have been put forward that can adequately 
represent price dynamics. In exponential Levy models option prices can be 
expressed as solutions to partial integro-differential equations for which we 
will throughout use the abbreviation PIDE.

We are interested in how sensitive prices of financial derivatives are to 
changes in the model parameters in a given model and to changes of the 
stochastic nature of the model. Knowledge of the sensitivities, in finance 
known as the greeks, is crucial to management of the risk of the financial 
contract. Most textbooks on mathematical fiance such as Bingham and 
Kiesel [4], Bjork [5], Hull [24], and Musiela and Rutkowski [32] have chapters 
on sensitivity analysis and the greeks. However, they only treat the case 
where the price function is given in a closed form. This is possible for a wide 
range of options in the Black-Scholes model. In exponential Levy models 
closed form solutions do not exist in general. When closed form expressions 
are out of reach one has to resort to numerical methods in order to obtain op­
tion prices and their sensitivities. Several numerical methods have been put 
forward to price options. The most prominent are simulation and (integro-) 
differential equation methods, but also Fourier transform methods and nu­
merical integration are being used. To obtain sensitivities simulation is most 
widely used.

1.2 Summary

In this thesis, we extend the use of a dynamic partial (integro-) differential 
equation approach to obtain greeks for a wide range of models. The greeks 
are computed through their governing equations which in turn are obtained 
by differentiating the equations of the price function. The price determining 
equations and the equations determining the values of the greeks are simulta­
neously solved as a system of equations. This approach is presented in Tavella 
and Randall [38] for the Black-Scholes model, proposed by Kalashinikov and 
Norberg [27] for the reserve in life insurance, and used by Norberg [33] for 
option prices, both in the Black-Scholes and in a Markov chain model. Fol­
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lowing this latter approach we first extend its use to a range of options in 
the Black-Scholes model and then apply this method to exponential Levy 
models where we solve a system of PIDE in order to obtain option prices 
and greeks. The dynamic PIDE approach is further extended to calculate 
sensitivities of option prices with respect to changes in the stochastic model 
of the underlying price process.

We start in Chapter 2 with an overview of sensitivity analysis in option 
pricing. Three different ways of calculating the prices and their sensitivities 
can are presented: the closed form approach, the dynamic approach, and 
Monte Carlo simulation. Next, we introduce the dynamic approach in the 
case of the Black-Scholes model in Chapter 3. For European vanilla and bar­
rier options we follow Norberg [33] and then extend the technique to various 
types of path-dependent options. In Chapter 4 we review some facts about 
Levy processes as described in Sato [35], Applebaum [2], or Kyprianou [28], 
and about exponential Levy models as presented in Cont and Tankov [14]. 
Exponential Levy models have become very popular in mathematical finance 
over the past few years as they can capture the observed prices of financial 
products very well and are still tractable. In particular we look at three differ­
ent models, the jump-diffusion model introduced by Merton [30], the variance 
gamma model by Madan, Carr, and Chang [29], and the Carr Geman Madan 
Yor model [9]. In Chapter 5 we apply the dynamic sensitivity approach to a 
range of options in the three previously introduced exponential Levy models. 
To start with we show that if the price function is sufficiently differentiable, 
it can be represented as a solution of a partial integro-differential equation. 
The PIDE is obtained by a standard martingale technique outlined as fol­
lows: The discounted option price is a martingale with respect to some risk 
neutral measure. Hence, we apply Ito’s lemma to the discounted option price 
to obtain its dynamics. As we are dealing with a martingale, the drift term 
must vanish almost surely. Setting the drift term to zero we obtain the PIDE. 
We apply this method to European vanilla options, lookback options, Asian 
options, and exchange options. We are particularly interested in some look- 
back, Asian, and exchange options where the state space can be reduced and 
one has to solve a PIDE in time and one space direction only. For European
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vanilla and barrier options as well as for American vanilla options the PIDE 
method is presented in Cont and Tankov [14]. In Vecer and Xu [39] a PIDE 
for Asian options in a general semimartingale framework is derived. The ap­
plication of this method to exchange options and lookback options combined 
with a state space reduction is original to this thesis. Upon differentiating 
the integro-differential equation with respect to some model parameters, we 
obtain the integro-differential equations for the sensitivities. Thus, to ob­
tain both the price and the sensitivities, the system of corresponding partial 
integro-differential equations is solved simultaneously. The application of the 
dynamic sensitivity approach to exponential Levy models is also original to 
this thesis. In Chapter 6 we introduce novel greeks as we investigate the sen­
sitivity of an option price with respect to changes in the stochastic model of 
the underlying stock price. First, we investigate a model with two dependent 
stock prices and investigate how the option price changes when one process is 
gradually replaced by the other. Then, we propose a model where the price 
process is given as an exponential mixing of two Levy processes and evaluate 
sensitivities in that model. After having derived a system of PIDE we want 
to solve it numerically. In Chapter 7 we extend the explicit-implicit finite 
difference scheme presented in Cont and Voltchkova [15] to numerically solve, 
not only the price determining PIDE, but simultaneously also the PIDE for 
the greeks. In the case of the vanilla option in the jump-diffusion model the 
price of the option can also be expressed as a sum of Black-Scholes prices. 
In the variance gamma model the density function of the process taken at 
some fixed time is known and the vanilla option price can alternatively be 
obtained using numerical integration. Prices of exotic options can as well 
be obtained using simulation. We perform numerical tests and compare our 
results with alternative ways to compute the prices and the sensitivities. We 
shall see that, when one is interested in the price and the sensitivities of a 
financial contract for a whole range of strikes and maturities, the dynamic 
approach not only outperforms.simulation but may provide the superior al­
gorithm for numerical computation even for contracts where closed form 
expressions exist. In the Black-Scholes framework, when we are dealing with 
a PDE, the price function is smooth and all the derivatives of the equation
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are well defined. In exponential Levy models we are not guaranteed that 
the price function is smooth enough to ensure that the PIDE has a classical 
solution. In Chapter 8 we further investigate the smoothness of the price 
function. We find that the smoothness of the Levy measure combined with 
some integrability conditions guarantees the existence of the derivatives.



Chapter 2 

Sensitivity analysis in finance: 
the greeks

The greeks of a price function tell us how much the price function changes 
if there are changes in the price of the underlying asset, changes in model 
parameters, or potentially in changes across families of parametric models. 
At first glance sensitivities with respect to changes in model parameters seem 
self-contradictory, since a model parameter is by definition a constant, and 
thus cannot change within a given model. The greeks with respect to changes 
in model parameters are therefore sensitivities with respect to misspecifica- 
tions of the model parameters. Greeks with respect to changes across families 
of parametric models are sensitivities with respect to misspecifications of the 
p.arametric model.

Whereas prices are observable in the market, the greeks are not, and 
hence accurate calculation of sensitivities is arguably even more important 
than calculation of prices. In this chapter we present three ways of calculating 
prices and sensitivities. These are the closed form approach, as presented in 
most textbooks on mathematical finance, the dynamic approach, and the 
Monte Carlo approach.
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2.1 The Black-Scholes market and the greeks

We consider the Black-Scholes market [6] with two basic assets, a risk-free 
one (typically a bond or a money market account) and a risky one (typically 
a stock). Under the risk neutral measure the prices of the two assets are 
given by

Bt = er\

S( =  S0e H ? ) t+'’H\

where r is the risk-free interest rate, o the volatility of the stock, and Wt is a 
Brownian motion. Their dynamics under the risk neutral measure are given 
by the stochastic differential equations

dBt = Bt r dt,

dSt = St {r dt +  a dWt).

The unique price c(t, St) at time t of a European style option with payoff h 
and maturity T  is given by the risk-neutral valuation formula

c(t, St) = E[e~r<-T~i> h(Sr)\ F t l  (2.1)

where E is the expectation under the risk neutral measure and (FT)o<T<t is 
the filtration generated by the Brownian motion. Using Ito’s formula it can 
be shown that the price function c(t,s) = ’E[e~r r̂~t^h(ST)\St = s] satisfies 
the Black-Scholes equation

ct(t, s) = r c(t, s) -  rs cs(t, s) -  2s2 css(t, s), (2.2)

for all (t , s) G [0, T) x (0, oo), subject to the terminal condition

c(T, s) =  /i(s), s > 0,
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where we have used subscripts to denote derivatives. For a European call 
option the terminal condition is

c(T, s) =  max(s — K, 0), s > 0.

For computational purposes it may be useful to add auxiliary boundary con­
ditions, which for a European call option are

c(t,0) = 0,

c(i, s) ~  s — Ke~r(T~t\  s —> oo.

While deriving differential equations we will often encounter the quadratic
covariation [X , Y]t of two processes X t and Yt. For all processes we consider, 
the quadratic variation exists and is defined as

[X, y], =  lim ]T (X (i+1 -  X k)(Ylw  -  Yti) in probability, (2.3)
1 1 ii€n

where we sum products of increments along the partition II of the time 
interval [0, £], letting the grid size go to zero. In case X t = Yt we call it the 
quadratic variation process.

The greeks take their name from the fact that they are denoted by Greek 
letters. The most common ones are A measuring the sensitivity of the price 
function c with respect to the underlying asset price, T measuring the sen­
sitivity of A with respect to changes in the underlying asset price, p the 
sensitivity of c with respect to the interest rate, V the sensitivity of c with
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respect to the volatility, and 0  the sensitivity of c with respect to time:

dc 
ds' 
d2c
ds2 ’ 
dc
d r ’ 
dc
d a ’ 
dc
d t ’

where c = c(t, s, <r, r) is a function of the initial stock price, time, and the 
model parameters. We now discuss several ways of calculating the greeks.

2.2 Classical approach based on closed from 
expressions

The greeks of options that have a closed form price function can be obtained 
by simply differentiating the price function with respect to the underlying 
stock price value, time, and the model parameters. Solving the Black-Scholes 
equation (2.2) for an European call with strike K  and maturity T  yields

c(s,t) = sN{d1) -  K e - r<:r- t) N(d2),

A =

r  =

p = 

V = 

0 =

where
ln(A ) +  ( r ± £ )  (T - 1)
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The greeks for this option are 

A = N(di),

r  =  J W _
s a \JT — t ’ 

p =  K ( T - t ) e - r^  N(d2),

V = sy /T^ tN ' id . ! ) ,

0 =

where N(-) denotes the cumulative standard normal distribution and N'(-) its 
density. This approach works for many options in the Black-Scholes frame­
work such as for barrier options, lookback options, and exchange options, 
where the price function can be expressed in closed form. For Asian options 
this approach is not straightforward. The price of an Asian option can be 
expressed as a triple integral which is difficult to evaluate numerically, see 
Yor [42].

2.3 Dynam ic approach

Upon differentiating the PDE for the price function with respect to some 
parameter in the model one obtains a PDE for the derivative. Solving the 
system of the two PDE one obtains solutions for both the price and the sen­
sitivity. This dynamic approach has been in the air for a while. It is outlined 
in the Black-Scholes model by Wilmott [40] and by Tavella and Randall [38]. 
It is proposed and investigated by Kalashnikov and Norberg [27] in the con­
text of life insurance mathematics. In Norberg [33] it is analysed in the 
Black-Scholes model for vanilla and barrier options and in a Markov Chain 
market for general European options where also the existence of derivatives is 
investigated. However, so far the powers of the method have not been widely 
recognised, and it is not widely used. We will investigate the potential of 
this approach in the next chapters.
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2.4 M onte Carlo approach

Simulation has proved to be a valuable tool for estimating security prices 
for which simple closed form solutions do not exist. The estimation of sen­
sitivities presents both theoretical and practical challenges to Monte Carlo 
simulation. Following Broadie and Glasserman [8] and Glasserman [21] we 
present the most important methods for obtaining derivatives of security 
prices using simulation. In many cases the parameter with respect to which 
we want to calculate the price sensitivity can be seen as either a parameter 
of the payoff or a parameter of the probability measure. We illustrate this 
with a European vanilla call option. If all the parameters are assumed to be 
in the payoff function, the price function at time t is written as

\  1 _ x 20 1 , e 2 dx.
)  V27T

If all the parameters are put in the probability measure, the price is written 
as

c(£, s) =  e_r(T_t) f  maxfa: — K, 0)----- . —~—y=e  ^ dx,
V '  7 - o o  x a y / T ^ t y / 2 ^

where

^  M ! )  -  (»■ -  S )  ( r  -  0
d { x )  =   ■

In the finite difference method the parameter of interest is assumed to be 
in the payoff function and the probability measure is fixed. This method goes 
as follows: Firstly, an initial simulation is run to determine the price of an 
asset. Secondly, the parameter of interest is perturbed and another simula­
tion is run to determine the perturbed price. The estimate of the derivative 
is the difference in the simulated prices divided by the parameter perturba­
tion. This method is easy to understand and implement, but since it involves 
simulating at two values of the parameter of interest it is computationally 
not very efficient. Moreover it produces biased estimates [21]. Consider a

c(t,s) = e r T̂ m a x fse (r 2 )̂ T ^ £
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European style option whose price depends on a parameter 9 and is given by

/oo

h{x\ 6)g(x)dx,
•OO

where h(8) is the discounted payoff. To estimate the derivative of c(9) 
with respect to 6 we simulate n independent replicates h\{9),. . . ,hn(9) at 
the parameter value 6 and n additional replicates h\{9 +  d) , . . . ,  hn{9 +  d) 
at the parameter value 6 +  d for some d > 0. Then, we average each set of 
replicates to obtain h{9) = £ and h{9 + d) =  £ S L i  KiO +  d).
The form of the forward difference estimator of the sensitivity is then

h{9 +  d) -  h{9)

The bias of the forward difference estimator is

dc(X,9)
Bias(Aj?) =  E A p

d9 o(d),

where we used Landau’s notation /  =  0(g(d)), meaning

v f(d) limsup - r -r  < oo. 
d—*o g\d)

By simulating at 9 +  d and 9 — d, we can form a central difference estimator

h(9 +  d) -  h{9 -  d)
A c  =

It has a bias of

Bias(Ac) =  E Ar? —

2d

dc(X, 8)
d9

= 0(d2).

The pathwise method is also designed for situations where the parameter 
of interest is in the payoff function and the probability measure is fixed. 
It involves simulation at only one parameter value and produces unbiased 
estimates. The idea of this method is that if the differentiation and the
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expectation operator can be interchanged, one can write the sensitivity as

d
± E [ h ( X , 9)] =  E deKx,e) /oo ^

— h{x\9)g{x)dx,

where h is the discounted payoff function and 9 is a parameter in the pay­
off. From the dominated convergence theorem we know that the inter­
change of differentiation and integration is allowed if the derivative ^ h{9) 
exists almost everywhere and there is an integrable function k(x) such that 
\\{h{x] 6 +  d) — h(x\9))g(x)| < k(x) for all x and d small enough. This is 
typically only true if the payoff function is uniformly continuous in the pa­
rameter of differentiation 6. The name of the method stems from the fact 
that the expression ^ h(0) is called the pathwise derivative of h at 9.

The likelihood method, like the pathwise method, involves simulation at 
only one parameter value and produces unbiased estimates. It puts the de­
pendence of the parameter of interest in the underlying probability measure 
rather than in the payoff function and hence does not require smoothness in 
the discounted payoff. We consider a discounted payoff h as a function of a 
random variable X  and suppose that X  has probability density g{x,9) where 
9 is a parameter of that density taking values in R. To derive a derivative 
estimator, we suppose that the order of differentiation and integration can 
be interchanged and we obtain for the sensitivity

-^Eg[h{X)] =  J  h(x) 6) dx

g(x-,e)
=  E„ \h{X) g{x-,e) J

where we have written g(x\ 9) for • Just 85 in the pathwise method this 
method is valid if the differentiation and integration can be interchanged. 
This is true if the derivative ^g{x\ 9) almost everywhere exists and the func­
tion |h(x)2(g(x] 9 +  d) — g(x\ 0))| can be bounded by an integrable function 
k{x) for small enough x and d. As probability densities are typically smooth 
functions this is usually satisfied.

The fact that payoff functions are typically not smooth and sometimes
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not even continuous limits the scope of the pathwise method. In contrast, 
smoothness conditions are usually satisfied by the probability densities aris­
ing in applications of the likelihood ratio method. The main drawback of 
the likelihood ratio method is that it requires the explicit knowledge of the 
probability densities and that its estimates tend to have a large variance [21].

With the Malliavin method several authors [19], [3], [31] have extended 
the likelihood method. By means of Malliavin calculus, one can calculate 
unbiased estimators for sensitivities without having to differentiate the pay­
off function even when the density function g{x\0) is not known in closed 
form. One has to calculate the derivative as an expectation of the payoff 
times a weight function. The Malliavin method is for example suitable to 
simulate sensitivities of options whose payoff depends on the time average of 
a geometric Brownian motion such as Asian options.



Chapter 3 

Dynam ic sensitivity analysis in 
the Black-Scholes market

3.1 European vanilla options

Throughout we will denote the interest rate by r, the strike price by K ,
and the volatility of the Brownian motion by a. Recall the Black-Scholes
equation (2.2) for a European call option

ct(t, s) = r c(t, s) -  rs cs(t, s) -  ^ 2s2 css(t, s), (3.1)

for (£, s) E [0, T) x (0, oo), subject to the terminal condition

c(T, s) =  max(s — K, 0), s > 0, (3.2)

and the boundary conditions

c(t,0) =  0, (3.3)

c(t, s) ~  s — K  e~r(T~t\  s —> oo, (3-4)

which are added for computational convenience. Differentiating (3.1), (3.2),
(3.3), and (3.4) with respect to the interest rate r, we obtain the differential
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equation for the sensitivity p — :

pt(t, s) = r p(t, s) +  c(t, s) -  rs ps{t, s) -  s cs(£, s) -  ^<r2s2 pss(£, s), (3.5) 

for (t,s) G [0, T) x (0,oo), with the terminal condition

p(T, s) — 0, s > 0, (3.6)

and the auxiliary side conditions

p{t, 0 ) =  0 ,

p(t, s) = (T — t ) e~r(T~^ K , s —► oo.

Similarly, differentiating with respect to the volatility a we obtain the PDE

and the auxiliary boundary conditions

V(t,0) =  0 ,

V(t, s) =  0 , s —► oo.

To determine the price function and its greeks, the system of PDE (3.1),
(3.5), and (3.7) has to be solved subject to its terminal conditions (3.2),
(3.6), and (3.8). One starts with the boundary condition at time t = T, 
specifying the known terminal values for the price function and the greeks 
in the state interval one has chosen to work in, and then works backwards 
in time calculating at each time step the option prices and the sensitivities. 
Doing so, one obtains the price and the sensitivities for a whole range of

for V =  £ :

V,(f, s) = rV ( t , s )  -  rs Vs(f, s) -  ^cr2s2Vss -  as2 c,s(t, s), (3.7)

for (t, s) £ [0 , T) x (0, oo), the terminal condition

V(T, s) =  0, s > 0, (3.8)
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strikes and times to maturity. This method is called the dynamic approach.

3.2 Lookback options

Lookback options provide investors with the possibility to look back in time 
and exercise an option at the ideal time. Obviously this opportunity has its 
price and invariably lookback options are more expensive than their European 
counterparts. We write St for the stock price process, Mt = sup0<T<t ST for 
its running maximum, and mt =  inf0<r<t ST for its running minimum over 
the interval [0, t]. There are four basic types of lookback options. The two 
floating strike lookback options are, firstly, the call option with payoff

h(Sr, ttit) =  St ~  ttit:

giving the right to buy at the low over [0 ,T], and secondly, the put with 
payoff

H(Stj Mt ) — Mt — St ^

giving the right to sell at the high over [0, T\. Floating strike lookback options 
are not options in a strict sense as they will always be exercised and hence the 
pricing reduces to finding the expectations of the running maximum E [ M r ]  

and the running minimum E [ r a r ]  under the risk neutral measure. The two 
fixed strike lookback options are the call, with payoff

Ii(Mt ) = max (Mr — K, 0),

and the put, with payoff

h(mr) =  max (A" — mr, 0).

The fixed strike prices are special cases of the functional E  [ h ( r a r ) ]  and 
E [ h ( M r ) ] .  P D E  approaches to lookback options can be found for exam­
ple in Wilmott [18] or Zhu [43]. In the Black-Scholes framework closed form 
solutions exist for the four standard lookback options presented above. The

\
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closed form solutions for the floating strike lookback options have been de­
rived in Goldman et al. [22]. The closed form solutions for the fixed strike 
lookback options have been derived in Conze and Viswanathan [17].

3.2.1 Floating strike lookback put

We take the floating strike lookback put as an example and undertake to 
derive PDE governing its price and the greeks. We show two different ways 
how the state space can be reduced and a PDE in time and only one more 
variable can be obtained. The price of a floating strike lookback put option 
at time t is

c(t, St, Mt)  =  E [Mt  -  Srl-FJ,

where T t is the er-algebra generated by the Markov process (St, Mt). To 
derive a PDE for the price of the lookback option we apply Ito’s lemma to 
the discounted option price e~Tt c(t, St, Mt). Following Shreve [37] we obtain

d(e~rt c(t, St, Mt)) =  e~rt ^ -  r c(t, St, Mt) dt +  c*(£, St, Mt) dt 

+  cs{t, St, Mt) dSt +  2 Css(^’ Mt)d[S, S']*

+  cm{t, St, Mt)dMt^j 

= e~r t ( j ^ - r  c(t, St, Mt) +  ct (t, St , Mt)

-\-rSt cs(t, St, Mt) +  Sf css(t, St , Mt)̂ j dt 

+ crSt cs(t, St, Mt) dWt +  cm(t, St, Mt) dM ^j ,

where we have written [S, S]t for the quadratic variation of the process St. 
The discounted option price is a martingale. As the stock price process 
attains its running maxima on a set with Lebesgue measure zero, the term 
involving dMt cannot be cancelled by the drift term, and both the drift term 
and cm(t, St, Mt) dMt must be zero. Setting the drift term to zero one obtains
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the PDE

Ct(t} s, m) +  ^<r2s2 css(t, s , m) +  rs cs(£, s, m) — r c(t, s, m) = 0, (3.9)

for t G [0, T) and 0 < s < m < oo, subject to the terminal condition

c(T,s,m)  =  m  — s. (3.10)

For the first auxiliary boundary condition we investigate the option price 
when the stock price is close to zero and obtain

limc(£, s,ra) =  m e_r T̂_^. (3.11)
s—+0

To obtain the second auxiliary boundary condition we use the fact that 
cm{t,Su Mt)dMt must be zero. The term dMt is zero when St < Mt. How­
ever, at the times when Mt increases, this is when the stock price is equal 
to its running maximum, cm(£, St, Mt) must be zero for cm(t, St, Mt) dMt to 
vanish. This gives us

C m ( t , s , m )  |a=m = 0. (3.12)

Due to the special form of the payoff function (3.10), equation (3.9) and 
its side conditions can be transformed and written in new coordinates using 
c(t ,s ,m) =  mw(t,£)  where £ =  Doing so, both the PDE and the side 
conditions only depend on time and the state variable £ =  The derivatives 
of the price function in the transformed coordinates are

ct(£, s,m) = m w t(t, £), 

cs( t , s ,m ) =  Wf(t,£),

css(t, s, m) = -j-iuK(t,£).

In the transformed coordinates the PDE is

+  i ^ 2£2 w«(*,£) +  £rw €(i,£) - r w ( f , £ )  =  0, (3.13)
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for (tj£) € [0 , T) x (0,1). The boundary conditions for w(t, £) can be obtained 
from the boundary conditions (3.10), (3.11), and (3.12) of c(t,s,m). In 
particular,

m — s — c(T, s, m) =  m w(T, £)

implies

Furthermore,

m e~r (T-t) _  c(^ o, m) =  m w(t, 0)

implies

w(t, 0) = e~r(T~t\

and finally

0 =  cm(t, s, m)\s=m = w(t, 1) -  wz(t, O k-i

implies

^ ( t , 0 k=i =w(t , l ) .

We now calculate the greeks using the dynamic approach. As the PDE for 
the lookback option and the vanilla option differ only in the side condition, 
the same goes for the PDE for the greeks. Differentiating equation (3.13) 
with respect to the interest rate we obtain a PDE for g =

et{t, 0 + ^ 2£2 Qttfa 0 + f r wdt> t ) ~ r e(t, 0 -w( t ,  f) =  o, (3.14)

for (t, f) 6  [0, T) x (0,1) with terminal condition

e ( r , 0  = o,
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and auxiliary side conditions

e«(*.?)l£=i =  e(t, 1)-

Differentiating (3.13) with respect to the volatility, we obtain a differential 
equation for v =

+ i r v ( (t,(.) — rv(t ,£)  =  0, (3.15)

for (t,() 6  [0 , T) x (0 , 1) with terminal condition

u(T,O =  0,

and auxiliary side conditions

v(t, 0) =  0 , 

v*(*,f) le=i =  v(t, 1).

Solving the system of equations (3.13), (3.14), and (3.15) with the appropri­
ate side conditions and transforming the variables w , p, and v back to c, p, 
and V, using

c(t, s,m) =  mw(t,£),  

p{t,s,m) = mg(t,£),

V(t, s, m) = m v( t , £),

we obtain the price and the greeks for the lookback put.
The values obtained can then be compared with the values one obtains
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from the closed form expression as derived in [32]:

2

c(s, t) = - s  N (—di) + m e - 'M  N ( - d 2) + s N(di)
2 r

«3‘6>
where

In (A) +  (r ±  |<t2) (T -  t)
di,2 — (T y/T — t

The greeks in the closed form approach are then obtained by differentiating
(3.16).

3.2.2 A  m artingale m ethod

We now give an alternative derivation of the option price defining PDE baaed 
on a martingale technique. Consider the martingale

Mt = E [Mt  -  ST\ f t],

where St is the stock price process and Mt = sup0<T<tST is its running 
maximum. The martingale can be written as

Mt = E (Mt,St supmaxv
" t < r < T

= St f ( t ,Q t ), 

with

Q t ~ ^
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and

r n  \  urT (  ( r - £ ) T + c T W T\  ( r - d ) ( T - t ) + a ( W T -W t )f{t,q) = E max I g, sup 2 / I — eV 2 '
L V 0 < r < T - t  )

(3.17)

Using Ito’s lemma we obtain the dynamics of Qt-

dQt =  j -  dMt -  ^  dS, + d[S, S]t, 

which can be written as

dQt = Qt( - r  dt -  adWt + a 2 dt), Qt > 1.

The dynamics of the martingale Mt are

dMt — dSt f ( t , Qt) +  St ^f t(t , Qt) dt +  f q(t, Qt)dQt

+ 2 ^ " ^ ’ ^1*) fq(t, Qt)dQt,

=  ■?( ( /t( i, Qt) + r / ( i ,  Qt) +  ~<7̂ Qj /„(<, Q,) -  r  Q, /,(«, Q,) J  dt 

+ St a f ( t ,Q t)dWu (3.18)

where we used d[Q, Q]* =  Q2 a2 dt. Setting the drift term in equation (3.18) 
to zero one obtains the PDE

ft(t, q) + r f ( t , q) +  ^ a 2q2 f qq(t, 9) -  rg /,(£, g) =  0 ,

valid for (t ,q) £ [0,T) x (l,oo). The terminal condition in this parametrisa- 
tion is

/(T ,g) =  g - 1 .
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If the stock price goes to zero then we obtain the first auxiliary boundary 
condition

f{t,q) = q - e r{T~t\  q -> oo.

We obtain the second auxiliary boundary condition by inspecting equation
(3.17). If the stock price is at its maximum then q = 1. Because of the diffuse 
nature of Brownian motion the second term in the maximum function in
(3.17) is always bigger than 1. Therefore, f(t ,q)  does not explicitly depend 
on q at q = 1. This leads to the second auxiliary boundary condition,

f q(t,q) |,=i =  0 .

The price function of the option is then

p(s,t) = e~r{-T~t) sf(t ,q) .

3.3 Asian options

Asian option is a generic name for the class of options whose terminal payoff 
depends on the average value of the underlying asset during some period 
of the option’s lifetime. In contrast to standard options, Asian options are 
more robust against manipulation near their expiry dates. Asian options are 
widely used in practice, for instance, for commodities and in foreign exchange 
markets. The two major types of Asian options are floating strike Asian 
options and fixed strike Asian options. The payoff of a floating strike Asian 
call option is max (St — f  At , 0) and the payoff of a floating strike Asian put 
option is m ax ^A r — St,0). The expression j A t is the average of the stock 
price over the time interval from 0 to t. There are various ways of forming 
an average of past values of the stock price. We will restrict ourselves to the 
continuously sampled arithmetic average which for which At = f* STdr. The 
payoff of a fixed strike Asian call option is m ax ^A r — A, 0) and the one 
of a fixed strike Asian put option is max(A — ip At , 0), where A is a fixed



3 D y n a m ic  s e n s it iv it y  a n a l y s is  in  t h e  B l a c k - S c h o l e s  m a r k e t  3 5

number called the strike price. There also exist more general Asian options 
with payoffs such as At — K\St — 0), where Ki and K2 are two
fixed numbers.

3.3.1 F loating strike Asian options

We consider a floating strike Asian call option. The price of such an option 
is given as the expected discounted payoff under the risk neutral measure

Using Ito’s formula one can show that in the Black-Scholes model the price 
function

valid for (t , s, a) G [0, T) x (0, oo) x [0, oo) subject to the terminal condition

This is just the Black-Scholes equation for a vanilla option with the addi­
tional term ca(t, s, a), taking into account that the option also depends on 
an average price of the underlying asset over a certain time period. PDE 
methods for a wide range of exotic options can be found in Zhu [43]. Follow­
ing [25], [36], and [18] we show, that the state space of equation (3.19) can 
be reduced and a PDE in only two variables can be obtained. Alternatively 
one can use a martingale method to directly derive a price determining PDE 
that only depends on time and one further variable. We will present the 
martingale technique in the next section as it works for both fixed strike and 
floating strike Asian options.

c(t,Su At) = e~r^  E max 5t - - A t ,0 T t .
1_
T

c(t,s,a) =  e r (T max ( St

is the solution to the PDE

max s
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To reduce the state space we use the ansatz c(t,s,a) = sh(t,q) with
X 9l 
T  s'q = h- .  The derivatives of the price function in the new coordinates are

Cf(t,s,u) =  sht(t,q), 

cs(t, s, a) = h(t, q) -  q hq(t, q), 

Q̂Css(t> = hqqipi 

ca(t,s,a) = 7f,hg{t,q). (3.20)

Inserting (3.20) into (3.19), we obtain

ht(t, q) + hqq(t, q) +  ^  -  rq'j hq(t, q) =  0, (3.21)

valid for (t , q) G [0, oo) x [0, oo) with the terminal condition

h(T, q) = max(l — g, 0).

For computational convenience we introduce the auxiliary boundary condi­
tions as outlined in [18]. When Qt = is very large the probability that 
the stock price at expiry is greater than the average over T  goes to zero:

lim P
q—*oo Qt q =  0,

and the option expires worthless. This gives us the first auxiliary boundary 
condition

h(t, q) =  0 , g —> oo.

The second auxiliary boundary condition, when q goes to zero, can be stated 
as a differential equation. This equation can be derived from equation (3.21) 
as follows: First, we note that the term qhq(t,q) is negligible for small q as 
it is much smaller that the term ^h q(t, q). Second, we show that g2 hqq(t, q) 
vanishes for g —► 0 by assuming the opposite and demonstrating that this
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leads to a contradiction. By Assumption, the term g2 hqq{t, q) is bounded:

Integrating twice we see that this means h(t, q) =  0(\ogq). For small q this 
contradicts the fact that h(t, q) is bounded. We therefore conclude that

\im q2hqq(t,q) =  0 , 

and equation (3.21) reduces for q —► 0 to the second boundary condition

ht(t,0) + ^ h q(t,q) |g=0 =  0 .

Using the dynamic approach, the greeks can easily be calculated. Differ­
entiating (3.21) with respect to the interest rate r, using P — % = and
k = one obtains the PDE for A:,

h{t, q) +  ^cr2q2 kqq{t, q) + -  rq^j kq(t, q) -  q hq(t, q) =  0, (3.22)

valid for (t , g) E [0 , oo) x [0 , oo) with the terminal condition

k(T,q)=  0 ,

and auxiliary side conditions

' k(t, g) =  0 , q —> oo,

fct(i,0) +  i/cg(^g)|g=o =  0 .

Differentiating (3.21) with respect to the volatility cr, using V = =  s |£
and Z =  one obtains the PDE for Z

h(t, q) +  ^ a 2q2 lqq{t, g) +  ^  -  rg^ Zg(Z, g) +  aq2 hqq(t, g) =  0, (3.23)
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valid for (t , q) G [0, oo) x [0, oo) with terminal condition

and auxiliary side conditions

l{T,q) = 0 ,

l(t,q) = 0 , q-+ oo,

lt (t, 0) +  — lq(t, <z)|g=0 — 0 .

Then the system of equations (3.21), (3.22), and (3.23) has to be solved with 
respect to the relevant terminal and side conditions. Finally, the variables h, 
A;, and I have to to transformed back to c, p and a.

3.3.2 F ixed strike Asian options

Rogers and Shi [34] showed that not only for floating strike but also for fixed 
strike Asian options the state space can be reduced. Hence, the problem 
reduces again to solving a parabolic PDE in two variables. We derive the 
PDE for the fixed strike Asian call option with payoff max(^ At  — K , 0) using 
a martingale technique. Consider the martingale

Mt = E max Tt

= St E 

=  St h{t,Qt),

(  t In St dr h f T ST dr K  '
^ [ z A s ^  + z A s t S i- 0

where

Qt — ± f i S Td T - K
S,
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and

h(t, q) =  E max q -1- k i t  Sr <lT 
S,

,0 (3.24)

We have essentially split the payoff into a part which only depends on the 
past and a part which only depends on the future. To see this we write

/ (T STdr J *  e ^ - x )  (’--*)+"0vr-w,)dT

which does not involve anything from the sigma-algebra T t and hence, be­
cause of the independence of increments, is independent of Ft. Using Ito’s 
formula we obtain the dynamics of Qt:

dQt = Qt{~r dt -  a dWt +  a2 dt) +  ^ dt.

We can then apply Ito’s formula to the martingale Mt to obtain its dynamics

dMt = dSt h(t, Qt) + St dh(t, Qt) +  dSt dh(t, Qt)

= St(r dt +  a dWt) h(t , Qt)

+  St ^ht(t, Qt) dt +  hq(t, Qt) ^Qt( - r  dt -  a dWt +  a2 dt) +  Tpdt'j 

+  ^hqqit, Qt) dt ĵ -  cr2 StQthq(Qt, t) dt.

Setting the drift term to zero, we obtain a P D E  for h:

ht(t, q) +  r h(t, q) +  ^ a2q2 hqq(t, q) +  Q ;  -  rq^j hq(t, q) = 0, (3.25)

valid for (t ,q) G [0, T) x (—00 , 00). Equation (3.25) has to be solved subject 
to the terminal condition

h(T, q) = max(g, 0).



3 D y n a m ic  s e n s it iv it y  a n a l y s is  in  t h e  B l a c k - S c h o l e s  m a r k e t  4 0

Introducing

f(t ,q)  =  e_r(T_t)/i(t,g) 

equation (3.25) can be simplified to

ft(t, <l) + \  /w(*> ?) +  Q ; -  rqj  f q(t, q) = 0, (3.26)

valid for (t , q) E [0, T) x (—00 , 00) with the terminal condition

f(T,q) = max(<7, 0), 

and the auxiliary side conditions

f ( t ,q )=  0 , q - > -  00
1 1 _  p - r ( T - t )

/ ( t , g) =  e -’'<T- t>g + - --------------- , ? > 0 .
1 r

To derive the first auxiliary side condition note that when ^ STdr < K  
and the value of the stock price St goes to zero, the probability that the 
option will expire worthless goes to one. In this case Qt goes to minus
infinity and this gives us the first auxiliary boundary condition. To derive
the second auxiliary boundary condition, note that when q > 0 the term in 
the maximum function of (3.24) will always be greater than 0. In this case 
the maximum function drops out. Using that e~rtSt is a martingale, one 
obtains
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and one can explicitly calculate the price of the option. The option price 
function at time t = 0 can be written as c = s /(0, — y  )• The same martingale 
technique can be applied to a floating strike Asian option and one obtains the 
PDE (3.21). Note that apart form having different side conditions the PDE 
for the fixed strike Asian option (3.26) and the PDE for the floating strike 
option (3.21) are the same. To obtain the greeks we use the dynamic approach 
and derive their corresponding PDE. p is obtained via p(0, s) =  sg(0,-^-),  
where g = is given by the PDE

9t(t, q) +  i  a2q2 gqq{t, q) +  -  q'j gq{t, q) -  q f q(t, q) = 0,

valid for (t,q) G [0,T) x (—00 , 00) with terminal condition

g(T, q) =  0, 

and the auxiliary boundary conditions 

g{t,q)= 0 , q —» —00 ,

9 { t ' q )  =  T 7 e " t r ' ' )  “  ( T  “  t)e"r(T' ‘,<7 -  7 ^ 2  ( !  -  e " r ( r ' t ) ) .  9  >  0 .

The greek V is given by V(0, s) = sw(0, —y), where w = satisfies the 
PDE

wt(t, q) +  ^ a 2q2 wqq(t, ?) +  Q ; “  wg(*, q) +  aq2 f gq(t, g) =  0 ,

valid for (t ,q) G [0,T) x (—00, 00) with terminal condition

w(T, q) = 0 , 

and the auxiliary boundary conditions

w(t, q) =  0 , q —* —00 , 

w(£, 9) =  0 , q > 0 .
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3.4 Barrier options

Barrier options are options where the payoff depends on whether the price of 
the underlying asset reaches a certain barrier level B  during a certain period 
of time. There are four basic types of barrier options. Down-and-out options 
are similar to vanilla options, but they have the additional feature that they 
cease to exist if the stock price hits a barrier level B < So and nothing is paid 
to the holder of the contract. Up-and-out options cease to exist if a barrier 
level B > Sq is reached. Up-and-in options only come into existence if a 
barrier B > So is hit during the lifetime of the option. Down-and-in options 
only come into existence if a barrier B < So is hit during the lifetime of the 
option. The prices of the ’in’ options can be obtained by calculating the price 
of the corresponding vanilla option and the corresponding ’out’ option and 
the using the fact that the price of the ’in’ option must be equal to the price 
of the vanilla option minus the price of the ’out’ option. Many other types 
of barrier options have been developed. These include moving-boundary 
options where the constant barrier is replaced by a stochastic process, Asian 
barrier options, and options where the barrier only applies to a certain part of 
the time-interval. For the standard barrier options closed form solutions for 
the price exist in the Black-Scholes model. Many of the more exotic barrier 
options can easily be implemented with the PDE approach, and since usually 
no closed form solutions exist, this is the only possible analytic approach.

3.4.1 Down-and-out call

As an example we explain how a down-and-out call option and its greeks can 
be priced. Both the dynamic and the closed form approach to calculate the 
greeks for a down-and-out option are explained in Norberg [33]. The price 
function of such a down-and-out call option at time t is

cDO(t,s) = e- ’-(r - ‘)E[(Sr -  =  «]•

where mt is the running minimum of the stock price process in the interval 
from 0 to t. The option price can be given as the solution to the Black-Scholes
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PDE

ct(£, s) = r  c(t, s) -  rs cs(t, s) -  css(t, s), (3.28)

for £ G [0, T) and 0 < s < B, subject to the natural side conditions

c(£, B) =  0,

c(T, s) = max(0 , s — K ),

and the auxiliary side condition

c(t, s) ~  s — Ke~r(T~t\  s —> oo.

The greeks can be obtained by differentiating the defining PDE (3.28) using 
the dynamic approach. Doing so, we obtain the same equations as for the 
vanilla call option except for the additional barrier condition that the payoff 
is zero once the barrier has been hit. There exists a closed form expression 
for the price of a down-and-out call [32]. If the barrier level B is smaller that 
the strike K  then the option price is given by

t, ^ )  , (3.29)

where

CBs{t, s) = s N(di(t , s)) -  e_r(T_f) K  N(d2(t, s)),

and N(-) is the cumulative normal distribution. If the barrier level B  is 
bigger that the strike then the option price is given by

CDo{t, s, B) = cBs{t, s) -  ( —
~7~1n

C-BS

CDo(t,s) = sN(xi) -  KN { x2)
/ n \  +1 / rj \ —1

- s f - V  N M  + K e - r V - V j - Y  N(y2), (3.30)
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where

l n ( * )  +  ( r ± £ )  ( T - t )

Xl'2 "  a j T = i
M D  +  ^ t )  (T - i )

Vl'2 = ----------- T j r * ---------- ■

Differentiating equation (3.29) or (3.30) with respect to the parameters in 
question we obtain the corresponding greeks.

3.5 Numerical results

The systems of PDE of this chapter can efficiently be solved using finite 
differences. A finite difference solver for PIDE is explained in detail in chapter 
7. As the finite difference solver for PDE is a special case of the finite 
difference solver for PIDE we refer to chapter 7 for the technicalities and 
only report the numerical results here.

We compare the results obtained with the dynamic approach with the 
results obtained using the closed form expressions. All computation are per­
formed on a Pentium 4, 2.8 GHz computer. For options with a continuous 
payoff such as the vanilla options, Asian options, and lookback options con­
sidered in this chapter the numerical solution of the PDE converges very fast 
to the correct value (which can be obtained by evaluating the closed form 
expression). For vanilla options it takes less than one second to compute the 
price and the greeks on a grid with 1000 strikes times 1000 maturities with 
a maximum relative error around the strike of less than one per mille even 
for the greeks. For barrier options the payoff is discontinuous and the PDE 
solution converges considerably slower to the closed form solution. We have 
to run the computer program for about one minute to obtain a maximum 
relative error for the greeks of less than one per cent.



Chapter 4 

Exponential Levy models

4.1 Levy processes and exponential Levy mod­
els

As we want to apply, in the next section, the dynamic sensitivity method to 
models with jumps, in particular to exponential Levy models, we first state 
some facts about Levy processes and about exponential Levy models. The 
properties about Levy processes are drawn from Sato [35]. We begin with 
the definition of a Levy process. A stochastic process X t is a Levy process if 
the following statements are satisfied:

1. X t has independent increments: For any choice of n > 1 and 0 < to < 
t\ < • • • < tn, the random variables X to,X tl — X to, • • • , X tn — Xtri_1 are 
independent.

2. X t has stationary increments: The distribution of X s+t — X t does not 
depend on t.

3. X t is stochastically continuous: Ve > 0 lim ^o P{\Xt+h ~ X t \ > e) =  0.

4. Xo = 0 a.s.

Let X t be a Levy process. Its jump measure /^([ti, £2], A) is defined as the 
number of jumps of X t occurring between the times t = t\ and t =  £2 and
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whose size is in the Borel set A C R bounded away from zero 

vdthh] ,  A) = G [̂ 1,^2] : AX* G A}.

The Levy measure v(A) of X t is defined as the expected number of jumps of 
X t per unit time interval whose size is in the Borel set A bounded away from 
zero

i /( i4)=E[#{4G[0, 1] :A  X t eA}].

The Levy measure v is a positive measure in R. Its density (if it exists) need 
not be integrable and may exhibit a singularity at 0. It has the following 
properties

1. i/(T) < 00 if T is a Borel set bounded away from zero.

2 . x21/(dx) < 00 and ^({0}) =  0 .

The Levy-Ito decomposition states that any Levy process Xt  can be writ­
ten as

X t = j t  + a B t + / x/j,(ds:dx)
J(o,t]x( R\(-i,D)

+  lim I x (p(ds, dx) — v{dx)ds),
£_*° *Ao,t]x([—1,—e)U(e,l])

which is the sum of a drift, a Brownian motion, a term comprising large 
jumps, and a term comprising compensated small jumps.

The characteristic function of a Levy process X t has the so called Levy- 
Khinchin representation

a 2 2 roc
E[e“ *‘] =  e^W, ^{z) = ---- —  +  iy z +  (eizx -  1 -  * z i lw<i) v[dx),

“ J — OO
(4.1)

where a2 is the variance of the Brownian motion part of the Levy process, 
7  is the drift, and z/ is the Levy measure of the jumps. The Levy process is
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characterised by the triplet (7 , <r2,^), hence called the characteristic triplet. 
A Levy process X t with characteristic triplet (7 , a2, v) is said to be of

1. type A if a2 = 0 and u(M) < 00 . The process X t is then of compound 
Poisson type.

2. type B if a2 = 0, i/(R) =  00 , and Jjx|<:l |a;| 1'(dx) < 00 . The process 
X t is then of finite variation and infinite activity, which means that its 
jumping times are dense in R+.

3. type C if either a2 > 0 or |ar| v(dx) = 00 . The process X t is then 
of infinite activity and unbounded variation.

In exponential Levy models, the stock prices are given as an exponential of a 
Levy process X t,

St  =  S0 ert+X‘.

A good introduction to exponential Levy models can be found in Cont and 
Tankov [14]. The discounted stock price process So eXt has to be a martingale 
under some risk neutral measure. This can be achieved by imposing the 
following conditions

2 p
7  +  y  +  / ( e 2 :_1_  :rlNI<i) v (dx) =  °-

The first condition ensures that E[eXt] < 00 . The second condition is ob­
tained by setting z =  — i in the Levy-Khinchin representation 4.1. Prom a 
mathematical point of view the process X t can be any arbitrary Levy process. 
However, certain choices of X t are more sensible than others when we want 
to capture the dynamics of a stock price. Infinite activity jump processes 
include both frequent small moves and rare large moves. Empirical stud­
ies [9] show that in many cases a diffusion component is superfluous when 
the jump component has infinity activity. Therefore most models either have
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a Brownian motion part and a finite activity jump part or a infinite activity 
jump part but no diffusion part. The former models are called jump-diffusion 
models. However, Brownian motion can be obtained as the limit of an in­
finite activity process and is thus essentially included in pure jump infinite 
activity models.

4.2 Jump-diffusion model

In jump-diffusion models the evolution of a stock price is given by the sum 
of a Brownian motion and a process that has a finite number of jumps in 
each finite time interval, representing rare events such as crashes. We restrict 
ourselves to the Merton jump-diffusion model [30], where the stock price is 
driven by the sum of a Brownian motion Wt and a compound poisson process 
where Nt is the Poisson process counting the jumps of X t and YJ are normally 
distributed random variables representing the jump sizes:

N t

X t = y t  + a W t + Y ,Y i ,
i=l

St = S0ert+X‘,

Y t - N i f i J 2).

The drift parameter 7  is chosen such that the discounted stock price process 
St = e~rt St = eXt is a martingale under some risk neutral measure. In this 
model the Levy measure is given by

The parameter A is the intensity of the occurrences of jumps, and /z and 
8 are the mean and the atandard deviation of the jump size distribution, 
respectively.
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4.3 Variance gamma model

The variance gamma model [29] is a pure jump model with infinite activity 
and finite variation. This model permits a good description of the volatility 
smile observed in option pricing at all maturities and for a wide variety of 
underlying assets. It has therefore become very popular within the finance 
community. The model is based on the variance gamma process

Yt = e z t + cjwZt,

(4.3)

which is obtained by subordinating a Brownian motion with drift to a Gamma 
process Zt. Hefe a is the volatility of the Brownian motion and 6 is the drift 
of the Brownian motion. The density function /  of the gamma distribution
r(a,/?) is

f(x\  a, (3) = xa~l ~ e~ - , for x > 0, r (a)

where T is the Gamma function, a is called the shape parameter, and (5~l is 
a scale parameter. We choose the parameters a = £ and P = \  to obtain a 
gamma process with mean t and variance nt. The variance gamma process 
has the particularly simple characteristic function

K ( z ;  t, e, a ,«) =  E(e*sY‘) =  “ .

The stock price process is given by

St = S0eTt+x‘ =  S0ert+Y,+W\

where the drift term
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is such that eXt is a martingale under some risk neutral measure. The random 
variable X t has the density

t i
p(x,t) =  eAx C(t) |x|« 2 K t_  i(B|a:|),K 2

where Kn(x) is the modified Bessel function of the second kind,

A  =  - 9 3a1
yjd2 + 2cr2/ K,D =  --------   .

C(t) = 2(\/2nKttK<jY(t/k)) (2(j2/ k, +  62)* 2«.

The modified Bessel function of the second kind Kn{x) is one of the solutions 
to the PDE

+ x i ~ (x 2 + n 2 ) y =0>

and can be expressed as the integral

r ( n + i ) ( 2 x ) n r°  cos(«)
Kn{x) =  {n + f - { X) (  

V n Jo
Y<it.

0 ( t 2 - \ - X 2) n + 2

More on Bessel function can be found in Abroamovitz [1]. The fact that the 
density of the process X t at time t is known as a function of a Bessel function 
will allow us to compute the price function of an option in the variance gamma 
model using numerical integration and to compare this results with the ones 
obtained using the dynamic PIDE approach. The Levy measure of this model 
is

v(dx) = -^-.eAt~B^dx.  (4.4)
k \x \

In the next section we present a generalisation of the variance gamma model.
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4.4 Carr Geman Madan Yor (CGM Y) model

In [9] a new model for asset returns is investigated. It is named the (CGMY) 
model after the authors Carr, Geman, Madan, and Yor and contains the 
variance gamma model as a special case. This model allows for the jump

tivity and variation, depending on the choice of the parameters. The authors 
conclude in their empirical study that most equity prices are best described 
by pure jump processes of infinite activity and finite variation. The stock 
return driving process X t is, not surprisingly, called the CGMY process. This 
process is a generalisation of the variance gamma process and a special case 
of the tempered stable process. Unlike in the variance gamma model, how­
ever, the density of the process X t at time t is in general not known in terms 
of some special function of mathematics. The Levy density of the CGMY 
process X t is given by

where C > 0, G > 0, M  > 0, and Y  <2.  The condition Y  < 2 is induced by

of 0. In the case Y  =  0 the CGMY model reduces to the variance gamma 
model. In the case Y  < 0 the process X t has finite activity. The parameter C 
may be viewed as a measure of the overall level of activity. The parameters G

side respectively of the Levy density. The parameter Y  characterises the fine

infinite activity and variation. The stock price under the CGMY model is

component of the asset return driving process to display finite or infinite ac-

(4.5)

the requirement that the Levy densities integrate x2 in the neighbourhood

and M  control the rate of exponential decay on the positive and the negative

structure of the process and determines whether the process is of finite or

St = S0e ^ u)t+Xt

where r is the interest rate and

U = CT(-Y ) ((M -  l)y -  M y +  (G +  l )Y -  GY) .
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is such that e rtSt is a martingale under some risk neutral measure. The 
characteristic function (J)cgmy of the CGMY process is

(pCGMY =  E[eiuXt] = etCT{-Y)((M-iu)y-My+(G+iu)y-Gy)

The variance gamma process can be constructed through subordination 
of simpler processes and in the next sections we will investigate sensitivities 
of option prices with respect to changes in the parameters of this simple 
processes. For the CGMY model we will investigate sensitivities with respect 
to changes in the parameters of the Levy measure. This is the reason why, 
although the variance gamma model is a special case of the CGMY model, 
we presented them in separate sections.



Chapter 5

Option prices and greeks in 
exponential Levy models

5.1 European vanilla options

5.1.1 D erivation o f the PID E

To start with we show how in exponential Levy models the price of an option 
can be expressed as a solution to a PIDE. Throughout we assume that the 
underlying stock price is given by an exponential Levy process which has the 
representation St =  So ert+Xt, where X t is a Levy process with characteristic 
triplet (cr, 7 , v) and r stands for the interest rate. The dynamics of the stock 
price process are given by

/ oo
(ex — 1) dx) — v(dx)dt), (5.1)

■OO

where Wt is the Brownian motion part, fi(dt, dx) is the jump measure, and 
v(dx) is the expected number of jumps in dx in a unit time interval. The 
integral term in (5.1) therefore represents a possible jump in the stock price 
process minus its expected value. The price of a European vanilla option at 
time t with payoff h on this stock is

(5.2)
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Due to the independent increment property of Levy processes the conditional 
expected value in equation (5.2) can be written as

E[MSr)l H =  ElHst er<T-')+x’- Xt)l H
= K (t ,S t),

where K(t,u)  =  M[h(uer r̂~t +̂XT~Xi)] = E[h(u5V-t)]- As St is the only
relevant state variable, conditioning on the filtration (^>)o<r<t is the same 
as conditioning on St and we can write (5.2) as

c{t,St) =  e_r r̂_t'E[h(5r)|5(].

The discounted option price

c(t,St) = e-r ic(t,St) (5.3)

is a martingale. We want to apply ltd’s lemma to the discounted option price. 
The following condition assures that the option price function is smooth 
enough for Ito’s formula to make sense, see [35] and [14]. If

a > 0 or 3 /?e(0 , 2), s.t. liminfe-/3 f  \x\2v(dx) > 0, (5.4)
£-+° J - e

then for each t > 0, X t has a smooth density with derivatives vanishing 
at infinity and therefore c(t, s) is a smooth function in s. Differentiability 
in time can be shown by Fourier methods. Condition (5.4) is fulfilled for 
all jump-diffusion models with non-zero diffusion component as well as for 
Levy densities behaving near zero as v(x) ~  c/x1+>3 for some constants c and 
P > 0 [16]. It is therefore true for the Merton model and for our choice of 
parameters for the CGMY model, but not for the variance gamma model. 
For the variance gamma model we show in Chapter 8 that ihe option price is 
continuously differentiable with respect to the stock price value and thus the 
use of Ito’s lemma is justified. Note however, that in the variance gamma 
model the option price is not twice differentiable with respect to the stock 
price value s. From now on we assume that the option price function is
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sufficiently differentiable and we apply Ito’s formula to equation (5.3) to 
obtain the dynamics of the discounted option price

dc(t, St) = — re~Ttc{t, St. )  dt +  e~rt dc(t, St. )

= e~rt ^ -  rc{t, St. )  dt +  ct{t, St. )  dt +  cs(t, St. )  dSt

+ \c , s(t,St-)d[S,S]i

+ J  (c(t, St- e x) -  c(t, St_) -  (ex -  1 )St-cs(t, St-))n(dt, d x ) ) ,

where [S , is the continuous part of the quadratic variation [S , S]t defined
in equation (2.3). Dividing the dynamics into a drift and a local martingale 
part and using the fact that E [fi(dt,dx)\ = v(dx)dt, we obtain

dc{t, St) = e~rt ^  -  rc{t, St. )  +  <*(*, St. )  +  rSt. c s(t, S’*.)

+  ^ S 2_a2c„(t, St-)

+ J°° (c(t,St-ex) -  c(t,St-)  -  (e* -  l)St-cs(t,St- ))v(dx)jdt  

+ aSt-Cs{t,St- )dW t

+ J  [c(t, St-ex) — c(t, St-)) (fi(dt, dx) — v(dx) dt)J 

= a(t) dt +  dMt.

We now show that if

M>i

the local martingale part

[  exv(dx) < oo, (5.5)
J  lil>i

dMt = o St- cs(t, St-) dWt

/OO
(c(£, St. e x) — c(t, St. ) )  (fJ>{dt, dx) — v(dx) dt)

OO
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is actually a true martingale. Prom Sato [35] we know that

j ex v(dx) < oo <=> E [eXt] < oo,
J  |x|>l|x|>l

which in turn implies that

"t roo
E

r t  roo
/ / (ex — 1 )(fi(dx,dr) — ly(dx)dr)

JO J —oo
<  00 .

Since the payoff function is Lipschitz, the price function c(t, s) is also Lips- 
chitz with respect to the stock price value

\c(t,sex) - c ( t , s )| < |s{ex -  1)|,

which implies that

»t roo
E

r  i roo
/ / (c(t, s ex) — c(t, s))(fi(dx, dr) — v(dx)dr)

J o  J —oo
<  00 ,

and that Mt is a true martingale. Thus, the coefficient in front of a{t) has to 
be zero almost surely and it has to be zero for all possible values of St. This 
leaves us with the PIDE for the price function,

ct(t, s) +  rs cs(t, s) +  ^ a 2s2 css(t, s) -  r c(t, s)

/ oo
v(dx) (c(t, sex) — c(t, s) — (ex — l)s cs(t, s)) =  0, (5.6)

■OO

valid for (£, s) G [0, T) x (0, oo), subject to some terminal condition. For a 
European vanilla call option the terminal condition is

c(T, s) =  max(s — K, 0), (5.7)

where K  is the strike price of the option. Equations (5.6) and (5.7) de­
termine the price function c(t,s) uniquely as a mathematical object. For
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computational purposes is necessary to add the boundary conditions 

c{t, 0) =  0 ,

c(t, s) ~  s — K  e~r T̂~t\  s —► oo.

In order to facilitate the numerical computations later on, we perform the 
change of variables as shown in Cont [16]:

t =  T  — t,

2/ =  ln ( ^ )  + r r ,

and define new functions n(r, y)  via

c(t,s) = e~rT K  u(r,y). (5.8)

The derivatives of the price function in the new coordinates are

c«(t, s) = e~rT K  (r u(r, y) -  uT(r, y) -  r u„(r, y)) , 

cs(t,s) =  e~rT — uy(r,y),

css(t, s) = e~rT^  (uyy(r, y) -  uy{r, y)), (5.9)

and the shifted option price becomes

c(t, s ex) = e~rT K u (t , y  +  x).  (5.10)

Inserting the equations (5.8), (5.9), and (5.10) into equation (5.6) we ob­
tain in equation (5.11) below a PIDE for the function u(r,y). This PIDE 
has constant coefficients, linear arguments, and less terms than the original 
equation (5.6). The new equation is
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valid for (r, y)  G (0, T] x (—00 , 00), subject to the initial condition

w(0 , y)  = max(0 , ey — 1),

and the auxiliary boundary conditions

u{r,y)=  0 , y -> - 00 ,

u(t, y) ~  ey — 1 , y —> 00 .

The fact that there are only linear functions in the argument of u(r, y) will 
later on simplify the numerical computation of the PIDE as it will allow us 
to evaluate it with finite difference methods on a grid with constant grid size.

5.1.2 Greeks in the jum p-diffusion m odel

In order to obtain the sensitivities we differentiate equation (5.11) with re­
spect to the parameters in question. To start with we calculate V, the sen­
sitivity with respect to a. In the transformed coordinates we will call this 
sensitivity v. We hence have

du m dc is -rrv = — , V = —  = Ke v.
0 0  da

The equation for v is 

2
w (r , y) =  — (Vyy{r, y) -  vy{r, y)) +  a(uyy{T, y) -  uy(r, y))

/ oo
I'(dx)(v(T,y + x) -  v(r,y) -  (ex -  1 )vy(r,y)), (5.12)

■OO

valid for (r, y) G (0,T] x (—00 , 00), subject to the initial condition

v(0,y)  =  0,
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and the auxiliary conditions

v ( r , y )  = 0 , y  —> —oo,

v(t , y)  = 0 , y -* oo.

To obtain V, the solution of the system of equations is transformed back to 
the original coordinates.

Next, we calculate the sensitivity with respect to the volatility of the 
jump-size distribution 5 and call this k. The derivative of u with respect to 
5 is called k. This translates into

Recall from (4.2) that the Levy density in the jump-diffusion model is

v(dx) =  —
V ' 5V2^

The equation for k is

M l  v) = y  (kyy(T>y) “  ky^  y^

x (u(r, y +  x ) -  u { t ,  y) -  (ex -  1 )uy(r, y ) ) , (5.13)

valid for (r, y)  G (0,T] x (—00 , 00), subject to the initial condition

k(0,y)  =  0,

and the auxiliary side conditions

k ( r , y ) =  0,  y  - > - 0 0 , 

k( r , y )  = 0 , y^>  0 0 .
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The sensitivity with respect to the jump intensity A will be named /? and 
in the transformed coordinates we call it b. Thus

*-£■
The equation for b is 

2
br(r ,y)  =  -^(byy(r , y)  -  by(r , y) )

/ oo

I;(dx) (b(r, y + x ) -  6(r, y) -  (ex -  1 )6y(r, y))
■OO

/OO ^
i / ( d x ) j ( u { r , y  +  x) - u { r , y )  -  (ex -  1 )uy( r , y ) ) ,  (5 .14)  

valid for (r, y)  G (0,T] x (—00 , 00), subject to the initial condition

&(0 , y) =  0 ,

and the auxiliary side conditions

6(r, y ) =  0 , y - +  - 00 ,

6(r, y) = 0 , y  -> 00 .

The variable p is the sensitivity with respect to changes in the interest 
rate. Let q be the sensitivity of the transformed variable u with respect to 
changes in the interest rate. The corresponding equations are

du dc is -rri \
e = Tr' P = W r= K e  { e~ Tu)■

The equation for g is
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valid for {r,y) G (0, T] x ( - 00 , 00), subject to the initial condition

0(0 , 3/) =  0 ,

and the auxiliary side conditions 

g(r ,y)  =  0,  y  - > - 0 0

e(T<y) = =  § ^ ! ; ( eV - : ) = TeV' y ^ ° ° -

Solving the system of PIDE for the price function (5.11) and the sensitivities 
(5.12), (5.13), (5.14), and (5.15), we obtain the price and the sensitivities in 
the transformed coordinates. Transforming back, we obtain the final results.

5.1.3 Greeks in the variance gam m a m odel

The price of a European option in the variance gamma model (4.3), as in 
any pure jump model, can be given as the transformed solution of the PIDE

/ oo

v(dx)  (u (t , y  +  x) -  u(r,  y) -  (ex -  1 )uy(r, y ) ) ,

■OO

valid for (r, y) G (0, T] x (0,00). This is just equation (5.11) with all the 
terms stemming from the Brownian motion set to zero. Remember from 
(4.4) that the Levy density in the variance gamma model is

1 0 y/8̂  +2o-2 j K . -
vidix)  =  — j— -.e^x v* ^dx .  

k\ x \

As, unlike in the Merton model, the measure has a singularity at zero one 
might be worried about the contribution of the small jumps. However, for 
small x the integrand

(u(r, y +  x) -  u(t, y) -  (ex -  1 )uy(r, y))

is of the order x2 and the Levy density is of the order Therefore the 
integrand goes faster to zero than the measure goes to infinity and the integral
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is well defined. In the numerical computations we will approximate the small 
jumps by a Brownian motion term. For sufficiently small jumps the jump 
term could also just be neglected, as in the variance gamma model the integral

J  u(dx) (u{r, y +  x) -  u{r, y) -  (ex -  1 )uy(r, y))

is of the order e2 for small e.
Being interested in the greeks we first calculate vega, the sensitivity with 

respect to the volatility a in the Levy measure (4.4). The derivative of the 
transformed variable u with respect to o is called v. Thus we have

d u  v  d c  is  - r rv =  — , V = —  = K e  v.
0 (7  0 (7

The PIDE for v is

/oo
v(dx) (v(r, y +  x ) -  v ( t ,  y) -  (ex -  1 ) v v ( t ,  y))

•OO

/OO
s(dx) (u(t , y + x ) -  u(t, y) -  (ex -  1 )uy{r, y)) ,

•oo

where

d  (  20x 2\x\ 2 ^ 9 2 +  2o2/ k \x \ \
S{dx) =  — v(dx)  = ---------------------    =------------------------ ------------ ------------ o- v(dx),

d(7 \  (73 y/02  +  <l(721KC7K ^  J

valid for (r, y) G (0, T] x (0, oo), subject to the initial condition

v(0,y) = 0 ,

and the side conditions

v(r ,y )=  0, y - > -  oo,

v(r,y) =  0, y - > o o .

The derivative with respect to 6 will be called 0, and in the transformed
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coordinates it will be called p, hence

The PIDE for p is

where

valid for (r ,y ) £ (0, T] x (0,oo), subject to the initial condition

p(9,y) = o,

and the auxiliary side conditions

p{r,y)=  0 , y -> -oo, 

p(r,y) = 0 , y ► oo.

Let -0 be the derivative of the price with respect to k and q be the deriva­
tive in transformed coordinates

The PIDE for q is

Qt(t , y) =  i'(dx) (g(r, y +  x) -  q(r, y) -  (ex -  1 )qy(r, y))

g(dx) (u(t , y +  x) -  u(r , y) -  (ex -  1 )uy(r, y)),
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where

g(dx) = -^-v(dx) = ( ------  \x \ ,  ---- |
K J Ok v ' y K2̂ yQ2 + 2cj2/ k kJ  V

valid for (r, y)  G (0, T] x (0,oo), subject to the initial condition

9(0 , y) =  0,

and the side conditions

g ( r , 0 ) = 0 ,  y  —> —oo, 

q{r, y) =  0, y - *  oo.

5.1.4 Greeks in the C G M Y  m odel

As before we start with the option price determining PIDE. The CGMY 
model defined in section (4.4) is a pure jump model and therefore all the terms 
in the PIDE coming from a Brownian motion are zero. In the transformed 
coordinates the PIDE for the price function therefore is

/oo
v{dx) (u(r, y +  x ) -  u( r , y) -  (ex -  1 )uy(r, y ) ) , (5.16)

■•OO

valid for (r, y)  G (0, T] x (0,oo). Recall from equation (4.5) that the Levy 
measure in the CGMY model is

i , , /  C ^ - d x  x > 0 ,
'{dx) = \  'JMW

[  C ^ p + r d x  x <  0.

Just as in the variance gamma model the measure i'(dx) has a singularity at 
zero. Therefore it can be difficult to numerically evaluate the contribution 
of the small jumps. This is most pronounced when Y  is close to two and one 
is dealing with an infinite variation model. One way around this problem 
is again to approximate the small jumps by a diffusion term. We show how 
this is done in the section 7.1.2.
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Starting from equation (5.16) we calculate the sensitivities with respect 
to the parameters C and Y. Other parameter sensitivities can be dealt with 
in a similar way. Note that here we calculate sensitivities with respect to the 
parameters in the Levy measure whereas in the variance gamma model we 
calculated sensitivities with respect to the parameters 6, a, and « introduced 
in (4.3) which are parameters of the stock price driving process Yt.

First, we derive the PIDE for the sensitivity of the option price with 
respect to the parameter C. Let

du v = d1  = Ke-rrv
dC' dC

We therefore differentiate equation (5.16) with respect to C to obtain the 
PIDE

/ oo
v{dx) (v(t , y + x ) -  v{t, y) -  (ex -  1 )vy(r, y))

OO
1 f°°

+ q ]  vidx) W r> y +  x) ~ U(T> y) ~ (eI ~  1)wy(r > y)) >

valid for (r, y) G (0 ,T] x (0 , oo), subject to the side conditions which are all
zero. To obtain the sensitivity with respect to the parameter Y  we differen­
tiate equation (5.16) with respect to Y. We denote the derivative of c with 
respect to Y  by (j), the derivative of u with respect to Y  by q, and define the 
function

_  dv(dx) _  j ln(z)) x  > 0

a r  |  C^ ( _ !„(_„)) x < 0 .

Thus the PIDE for q reads

/oo

i/(dx) (g(r, y + x ) -  q{r, y) -  (ex -  1 )qy(r, y))
■OO

/OO
£(dx)(u(r,y + x) -  u(r,y) -  (ex -  l)uy(r,y)),

•OOvalid for (r, y) G (0, T] x (0, oo), subject to the side conditions which are all
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zero. Note for small e the integral

J  £(dx) (*u(t , y + x ) -  u(t , y) -  (ex -  1 )uy(r, y) ) , 

can be approximated by a constant times

/ x l~Y log(:r) dx,
Jo

which is finite for Y  < 2 . Therefore we do not need any additional condition 
on the parameters.

5.2 Lookback options

5.2.1 D erivation o f the PID E

We will extend the results from section 3.2 to exponential Levy models and 
derive the PIDE for a option whose payoff depends on the stock price St = 
Soert+Xt and the running maximum Mt = su.pQ<T<tST of the stock price 
realised over the lifetime of the option. The dynamics of the stock price are 
the same as in the previous section and are given by (5.1). To obtain the 
price of an option that depends on the minimum instead of the maximum 
one replaces the maximum process Mt with the minimum process mt ~  
info<T<f ST in a straightforward manner. In order for the discounted option 
price option price

c(<, St, Mt) = e~rt c(t, St, Mt), (5.17)

to be a true martingale we have to impose the additional condition

I  e^u(dx) < oo.
J M > i (5.18)
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Condition (5.18) implies that the running maximum process of the stock 
price is finite and therefore the option price process a true martingale:

The proofs of all these statements can be found in Sato [35]. The moment

tions B  > A  +  1 and A +  B > T for the parameters in the variance gamma 
model and G > 1 and M  > 1 for the parameters of the CGMY model.

The option price depends now on time, on the stock price process, and on 
the maximum process. The running maximum process of a Brownian motion 
is a strictly increasing process, hence of bounded variation. Therefore the 
continuous part of the quadratic variation of the maximum process d[M, M]£ 
and the continuous part of the quadratic covariation of the stock price process 
and the maximum process d[M, S]  ̂ are zero. We want to apply Ito’s formula 
to equation (5.17) and obtain the dynamics of the option price process. We 
shall see that the derivative of the option price function with respect to 
the value of the running maximum of the stock price disappears from our 
formula. Still we would have to verify sufficient differentiability of the option 
price function with respect to the stock price value and time for Ito’s formula 
to make sense. This seems to be a very difficult task. We therefore assume 
sufficient differentiability of the option price function with respect to the 
relevant variables. The numerical results in section 7.6.2 will justify this 
assumption. Finally applying Ito’s formula to equation (5.17) we obtain the

e^i/(dx) < oo <=> E [ e ^ ]  < oo for some t > 0

•<=>• E [esup°<r<* < oo 

=> E [esup°<T<t Xt] < oo

<*=>■ E sup eXr < oo
0 < T < t

condition above is always true for the Merton model and implies the condi-
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dynamics

dc(t, St, Mt) = e -  rc{t, St-, Mt-) dt + ct{t, St-, Mt-) dt 

+  ca(t, St~, Mt~) dSt +  cm{t, St~, Mt~) dMt 

+ ±css(t,St- , M t-)d[S,S]ct 

+  (c(t, St, Mt) -  c(t, St-, Mt-)

-  A S t cs(t, St-,  Mt-) -  AMtcm(t, St-, Mt-))  ), (5.19)

where we have written A St = St —St~ for the jumps in the stock price process 
and AMt =  Mt — Mt~ for the jumps in the maximum process. The parts 
in the brackets on the last two lines of 5.19 cannot necessarily be separated. 
However, as the running maximum process Mt is of bounded variation the 
terms c(t, St,Mt)-c{t,  St_, Mt- ) - A S t cs(t, St- ,M t-)  and A M t cm(t, St~, Mt-) 
in equation (5.19) can be separated and one can combine cm(t, S t-, Mt-) dMt 
and —AMt cm{t, St~, Mt~) to cm(t, St- ,M t-) dM£. Equation (5.19) therefore 
simplifies to

dc(t, St, Mt) = e~Tt ( -  rc(t, St-, Mt-) dt +  ct(t, St- , Mt-) dt

+  cs(t, St~, Mt~) dSt +  -c ss(t, St~, Mt~) d[S, ^  

+  cm(t, St~, Mt~) dM£

/ oo

(c(t, St-  ex, max(Mt_, ex St-)) -  c(t, St~, Mt-)
*OO

-  (ex -  1 )St-  cs(t, St-, Mt-))fi(dt, dx )J . (5.20)

We now show that the term cm(t, St- , M t-) dM£ is zero. Plainly, when the 
stock price is not at its maximum then dMjr is zero. To obtain the result
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when the stock price is at the maximum we inspect the price function

=  m .

(5.21)

If the process St is of infinite variation or has a positive drift, then the price 
function does not depend on m  at s = m, as the second term in the maximum 
function of (5.21) is always greater than m, and hence cm(t, s,m)\s=m = 0. 
If the stock price process has a negative drift, it attains its maxima on a 
countable set and therefore cm(t,s,m) dM£ must be zero for the discounted 
option price to be a martingale. Condition (5.18) guarantees that one can 
divide the dynamics of (5.20) into a drift and a true martingale part. Setting 
the drift term to zero one obtains the PIDE for the price function

— r c(t, s, m) +  ct(t, s, m) +  rs cs{t, s, m) +  j:(t2s2 css(t, s, m)

/OO
i/(dx) (c(£, s ex, max(s ex, m)) — c(t, s, m) — (ex — l)s cs(t, s, m)) =  0 ,

■OO
(5.22)

valid for t G [0, T) and 0 < s < m, where s is the value of the stock price at 

time t and m  is the value of the running maximum at time t.
As an example we consider the floating strike lookback put with terminal 

condition
c(T, s,m) = m — s.

For such a contract one would only need to find E[Air], the expected value 
of the running maximum process at time T. However, the distribution of the 
maximum of a Levy process is not always known and it makes perfect sense 
to work with the PIDE method to obtain the price and the sensitivities even 
for this simple contract. The auxiliary side conditions for this option which

c(t, s, m) =  e r (T max(m,5 sup e r<J ^ + X r  X t ) — S t
t< r < T

St =  s ,M t
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are used for computational convenience are

C - m m) |s=m 0,

c(t, 0 , m) = m e~T ̂ T~^.

These side conditions are the same as equations (3.11) and (3.12) used in 
the Brownian motion setting in section 3.2.1. If the stock price process has 
infinite variation or a positive drift then the first boundary condition follows 
from the derivation of the PIDE and we will restrict ourselves to this case. 
The reason behind the second auxiliary condition is that if the stock price 
approaches zero we have lims_>o c(t, s, m) = me~r(T~t\  The option price is 
then just the discounted value of the current maximum.

The floating strike lookback put can be recast in terms of only two vari­
ables, time and one state variable if the option price function is rewritten 
as

c{t, s,m) = m w(t, z), 

with z = —. In the new coordinates the derivatives are

(5.23)

The shifted option price becomes in the new coordinates

c(t, s ex, max(s ex, m) =  m  max(z ex, 1) w(t, min(l, 2 e1)). (5-24)

Ct(t, s, m) = m w t(t, z) 

cs(t,s,m) = wz(t,z),

cS3( t ,s ,m ) =  —wZ2(t,z), 
m

cm(t,s,m)  = wit, z) -  zw 2(t,z).

Replacing equations (5.23) and (5.24) into equation (5.22) one obtains a
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PIDE that depends only on time and one further variable z 

wt(t, z) +  rz wz(t, z) +  \ v 2z2 wzz(t, z) —r w(t, z)

/OO
v(dx)  ( max(z ex, 1) w(t, min(z ex, 1))

■OO

-  iu(i, z) -  (ex -  l)z wz(t, z)) = 0 , 

valid for (t , z) E [0, T) x (0,1) subject to the terminal condition

w(T, z) — 1 — z,

and the auxiliary conditions

wz(t,z)\z=i = w(t, 1), 

w(t, 0) = e~r(T~t\

In order to have constant coefficients and a constant grid size, we perform 
a second transform of variables from w(t, z) to u(r, x):

r  = T  — t, 

y =  lnz, 

w(t,z) = e~TTu{r, y), 

wt{t, z) =  e~rT (r u {t , y) -  uT(r, y))

wz(t,z) = e~rT- u y(r, y) 
z

wzz{t,z) = e~rT—z(uyy(r, y) -  uy(r,y)). 
z*

In the u coordinates we obtain the PIDE

^ t(t, y) = ^ r -  y ^  Uy(T, y) +  y uyy(r, y)

/ oo

^(drc)(max(eJ/+x,l)w (r, min(y-|-a;,0 )) — u(r,y)
-OO

- ( e x - l  )uy{r,y)), (5.25)
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for (r,y) E (0, T] x (—oo,0) subject to the initial condition

u(0,y) = l - e y,

and the auxiliary side conditions

u(r,y) = 1, y - 

uy{Ti y)\y=0 = 0).

■oo, (5.26)

(5.27)

5.2.2 A  m artingale m ethod

We now extend the alternative derivation of the option price defining PIDE 
from section 3.2.2 to a model where the underlying stock price is an expo­
nential Levy process. Consider the martingale

Mt = E[Mt  -  ST\Ft],

where St is the stock price process and Mt = sup0<T<f 5'T is the running 
maximum. The martingale can be written as

Mt = E max. ( m , ,S,  sup _  Ster{T-t»xT- x t
\  t<T<T J

Tt

with

and

/(£, q)=  E max | q, sup erT+Xr ) — er T̂ ^+Xt Xt
0<t<T—t

We have again separated the payoff into a part which only depends on the 
past and a part which only depends on the future. Using Ito’s lemma, we
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obtain the dynamics of Qt:

dQt =  j - d M t -  ^ I r d S ,  + ^ d [ S ,  S]?

+  ( f “ t r ' i ; A " + # A S ' ) -  (SA81

The process M  has finite variation. We assume that the jump part of the 
stock price process also has finite variation. This allows us to open the 
parentheses in equation (5.28) and to simplify the equation to

dQt = J -d M f  -  ^ d S t  + 5]?

+  Mt _  Mt.
St St.

which in turn can be written as

dQt =  gT- d M f  -  Q ^dS f +  |p d [ S ,  S]f +  A Qt, (5.29)

where

A Qt =  Q t - Q t -  =  ^ L -  ¥ —■£>t £>t-

At jump times of St we have to express Qt in terms of its value before the 
jump and the jump size:

Mt max(Mt_, St) (  Mt.
Qt = ^ r  =  gr =  max = m ax(<5<-e

The continuous part of the quadratic variation of Qt is

d[Q> Q\t =  Ql- a 2 clL (5.30)
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Using equation (5.30), we proceed from (5.29):

dQt =  — ^  dSf 4- Qt-&* dt 4- AQt, Qt > 1-

Now we work out the dynamics of the martingale M,  still assuming the jump 
part of St has finite variation:

dMt =  dSt f{t,  Qt_) +  St-  f t(t , Qt-) dt

) d.\S. 01? 4-+ St.  /,(<, Qt-) dQt + /,((, Qt~) d[S, Qlt + l s t - f„ ( t ,  Qt-) d[Q, Q]J

+ St f i t , Qt) — St- f ( t , Qt-)

= St~ (^rdt + a dWt — J  (ex -  l)v(dx) dt ĵ f(t,  Qt-)

+ St-ft(t,Qt~) dt

4- St-  f q{t, Qt-)  ^  -  Qt-  (^rdt + cr dWt -  J  (ex -  l)is(dx) dt 

4- Qt-i72 dt'j -  f q{t, QJSt-Qt-o2 dt 4- ^ S t- f qq(t, Qt-)Q2_a2 dt

/oo
{St- ex f i t , max {Qt~e~x, 1)) -  St- f { t , Q*_)) /i(cfe, dx). (5.31)

■OO

Setting the drift term in equation (5.31) to zero one obtains the PIDE

( r  ~  /  (ex -  1M dx)^j f { t , q ) - q ( r -  J  {ex -  l)v(dx)^ f q{t, g)

1 Z*00
9) +  92 /?«(*> <?) +  / (eI (/(t, max(<;e“x, 1)) -  /(<, <7))) =  0 ,

(5.32)

valid for (£, <7) G (0, T) x (l,oo). The terminal and the side conditions here 
are the same as the ones were the stock price process is a Brownian motion 
which where derived in section 3.2.1. For convenience we state them here as 
well. The terminal condition is

f(T,q) =  q - l ,  q >  1,
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and the side conditions are

fq(t,q) U=i =  0 ,

f{t,q) = q ~ e r{T~t\  q -> oo.

The price function of the option is

p(s,t) = e~r{T- t) sf(t ,q).

5.2.3 Greeks in the jum p-diffusion m odel

To calculate the greeks we start from the price determining equation (5.25). 
Alternatively we could start from equation (5.32) derived with the martingale 
argument. To obtain vega, the sensitivity with respect' to a, we differentiate 
equation (5.25) with respect to a. Using

du dc _rT
v = — , V =  —  =  me  v

0(7  0 (7

we obtain the PIDE for the sensitivity

r ~ ~ 2 j  Vyij' ^  + ~2Vyy^  y^ + a (uyy(T' y) “  uy(T>

/ oo

i/(dx) ( max(e3/+a:, 1) v(r, min(y +  x , 0)) — v(r, y)
OO

-  (ex ~ l)vy{r,y)), 

valid for (r, y) G (0,T] x (—oo,0), subject to the initial condition

v (0, y) =  0,

and the auxiliary side conditions
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We denote by k the sensitivity of the option price with respect to changes 
in the volatility of the jump size distribution 6

\  du dc -rr l
k = dS’ K = d6 = me  k■

Recall from (4.2) that the Levy density in the jump-diffusion model is

v(dx) = —= e  2,5 dx.

Differentiating equation (5.25) with respect to 8 we obtain the PIDE for 
k( r , y):

( 2 \ 2

r ~ Y )  ky(j’y^ + Y kyy(r ' ^

+  J  v(dx) ^ max(ey+1, 1 )k(r,  min(2/ + x, 0)) — k ( r , y) 

- ( e x - l  )ky{r , y)

+ ^ ~  ( m a x (e3/+x5 l)w(r, min(y +  x , 0))

- u ( r , y )  -  (ex -  l )uy(r, y))^j ,

valid for ( r , y)  G (0, T] x (—oo,0), subject to the initial condition

^(0 , y) — 0 ,

and the auxiliary side conditions

k(r , y )  = 0 , y  -► -oo, 

ky(T>y)\y=o =  K r , ° )-

We denote by (3 the sensitivity of the option price with respect to changes
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in the jump intensity A

h d u  R d c  - r r  u
b = a v  P = a \ = b■

We differentiate equation (5.25) with respect to A to obtain the PIDE for 
6(r, y):

/  2 \  2 

bT{r, y) = f r  “  y  J by{r, V) +  y ' 2/)

+  J  v(dx) ^ max(ey+1, 1 )6(r, min(?/ +  £, 0)) — 6(r, y)

-  (ex -  l ) 6y(r, ?/) +  i(m ax (ey+x, l)u(T,mm(y +  x ,0 ))

-  w(r, i / )  -  (ex -  1) u v { t ,  y ) ) J ,

valid for (r, y) 6  (0, T] x (—oo,0), subject to the initial condition

6(0 , 2/) =  0 ,

and the auxiliary side conditions

b(r,y) = 0 , y -* -o o , 

by(r,y)\y=o = b(r, 0).

5.2.4 Greeks in the variance gam m a m odel

We start with the PIDE for the option price

ut(t , y) = r u y(r,y)

/oo
v(dx) ( max(ey+x, 1 )u(r, min (y -f :r, 0)) — u(r, y)

•OO

-  (e1 -  1 )uy{r,y)). (5.33)

This is the same equation as (5.25) except that the diffusion part is now 
zero and is(dx) is the Levy measure of the variance gamma model as defined
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in equation (4.4). First, we calculate the sensitivity of the lookback option 
price with respect to changes in cr, the volatility of the subordinated Brownian 
motion which occurs in the jump measure.

Differentiating equation (5.33) with respect to a we obtain the PIDE for

v, ( t , y) =  r v y(r, y)

/OO
v(dx) ( m a x ( e y + x , l)u(r, min(y +  x , 0)) — v(r, y)

-OO

~  (e* -  1 H ( t ,  y ))

/ oo

<i(dx) ( max(ey+a:, 1 ) u ( t ,  min(y -f x, 0))
■OO

-  u( r , y )  -  ( e x -  l )uy(T, y) ) ,

where

( . \ d  . \ (  2Ox 2\x\ 2y /62 +  2(j2/ k\ x \ \q(dx) = Trv{dx) =  r  ■■-. - +  — -------   ■ 1 ' I/(ch),
da K \  a 3 y / p  +  2a2/KaK /

valid for (r, t/) G (0,T] x  ( —oo, 0 ) .  The initial condition is

v(0 , y) = 0 ,

and the auxiliary side conditions are

v(r,y) = 0 , y —> —oo,

^y(r > V) ly=o =  w(r,0 ).

To transform back to the original coordinates, we use the formula V(t,s,m) = 
me~TT v(r, y).

Next, we derive the PIDE for the sensitivity of the option price with 
respect to changes in 6, the drift of the subordinated Brownian motion as 
defined in equation (4.3). In the transformed coordinates we denote this 
sensitivity p. Consequently we have P = % and | |  =  me~rT p. The equation
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for p is

P r ( r , y )  =  rpy(r, y )

/ oo
v{dx) ( m ax(ey+x, 1) p(r, min(?/ +  x, 0)) -  p(r, y )

-OO

- ( e x - l  ) P y ( r , y ) )

/ oo
p(dx) ( max(ey+x, 1) u(r , min(y +  x, 0))

■OO

— u(t ,  y) -  (ex -  1 )uy(r,y)),

where

P(dX  ̂ =  =  I ̂ 2 ------ /  ' ] l/(dx)<

valid for (r, ?/) G (0, T] x (—oo,0). The initial conditions is

P(0,2/) =  0, 

and the auxiliary side conditions are

p ( r , y ) =  0, y  -»  - o o ,

Py(u V)\y=0 =  p ( T, 0) .

Finally, we calculate the sensitivity of the option price with respect to
and p

OK OK
k, the variance of the subordinator. Using q = jp and I s = m e  rT q one
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obtains the PIDE for q:

Qr(r,y) =  rqy(T,y)

/OO
v{dx) ( max(ey+x, 1) q(r, min(t/ + x, 0)) -  q{r, y)

■OO

~  (ex -  1 )qv(r,y))

/oo
g(dx) ( m a x ( e y + x , 1) u(r, min(?/ +  x, 0)) — u(r , t/)

■oo

- ( e x - l ) w y( r ,2/)),

where

=  - ^ - v ( d x )  =  I  -  -  I v { d x ) .
d* \ k^ 62 + «J

The initial conditions is

q(0,y) = 0 ,

and the auxiliary side conditions are

q{r,y) = 0 , y -> -oo,

9 y ( r > v ) \ y = o  =  0 ) .

5.3 Asian options

5.3.1 D erivation of the PID E

We generalise the results from section 3.3 and derive the PIDE for a float­
ing strike Asian call option when the underlying randomness stems from an 
exponential Levy process. The payoff of such an option is

max
S t ~ ^ I o S r d T ’° ) -
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We denote the integral over the stock price process by At = f* STdr, which is 
a continuous process even when St is discontinuous. The discounted option 
price

c(t,Su At) = e~r tc(t,St,A t) 

is a martingale. Its dynamics are

dc(t,St,A t) = e~r t( -  r c(t, St-, At) dt + Ct(t, St-, At) dt 

+ cs(t, St~, At) dSt +  — css(t, St~, A t) dfS1,

4- ca(t, St~, At) dAt

/oo
(c(t, St~ex, At) — c(t, St~, At)

■OO

-  (ex -  1) St-  cs(t, St-, At))fi(ds, dx)). (5.34)

We expect c(t,s, a) to be differentiable in a whenever it is differentiable in s, 
that the condition (5.4) guarantees differentiability both in s and a, and thus 
the use of Ito’s lemma is justified. Also condition (5.5) guarantees that the 
dynamics (5.34) can be split into a drift and a true martingale part. Setting 
the drift term to zero one obtains the PIDE for the price function

Ct(t, s, a) +  rs cs(t, s, a) +  i a2s2 css(t, s,a) +  s ca(t, s,a) -  r c(t, s, a)
&

/OO
v{dx) (c{t, sex, a) — c(t, s, a) — (ex — l)s cs(t, s, a)) = 0, (5.35)

■OO

valid for (t , s ,m ) G [0,T) x (0, oo) x [0, oo). The option price function can 
be written as the stock price times a function that depends only on time and 
the variable z = ^  J which is the average value of the stock price over the 
lifetime of the option divided by the current value of the stock price. We 
write

c(t, s, a) = sw(r, z),
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where r  =  T  — t.  The derivatives in the new variables w  and the new 

parameters r  and z are

c t ( t , s , a )  =  - s w t (t , z ), 

cs ( t , s , a )  =  w (t , z )  -  z w z {t , z ), 

z2
S) &) =  WZz(t , Z),

S-

ca { t , s , a )  =  - W z ( r , z ) ,  

c( t ,  s e x , a) =  s uf(r, ze1).

Inserting the equations above into equation (5.35) one obtains the PIDE  

w A t , z ) =  ^ a 2z 2 w z z ( r , w ,(r , *)

/oo
i/(efc)(w(r, z ex) -  w (t , z) -  (ex -  l)(w (r , 2:) -  z w z(t , z ) ) ) ,

-oo
(5.36)

valid for (r, z) E (0, T] x [0, oo) with the initial condition

u>(0, z )  =  max (1 — z, 0 ).

For numerical purposes we add the side conditions

w (t , 2:) =  0, 2: —► 0 0 , (5.37)

wt (t ,0 )  =  ^ w z(t , z ) \ z= 0 . (5.38)

One could perform an additional transformation of variables w ( r ,  z )  =
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/ ( t ,  y), where y =  lnz to obtain the equation 

/r ( r ) y) = \ ° 2(fyy(T,y) ~  fy(j,y))  +  ^ e~y -  r j  f y{r,y)

/ oo
v(dx)( f(r ,x  + y) -  f{r,y) -  (ex -  1 ){f(r,y) -  f y(r,y))).

■OO

(5.39)

On the one hand, this makes things easier as one can evaluate /  on a constant 
grid. On the other hand, it is difficult to evaluate the above equation at the 
point z = 0 as the coefficient e~y goes to infinity. The point z =  0, however, 
is interesting as it corresponds to An Asian option at t = 0 when the average 
so far is zero. For this reason we evaluate equation (5.36) instead of equation 
(5.39).

5.3.2 Greeks in the jum p-diffusion m odel

To obtain the greeks we again differentiate equation (5.36) with respect to 
the parameters in question. First, we want to calculate vega, the sensitivity 
with respect to a. We use

dw . dcv =  — , V =  —  = sv
oo oo

and obtain for the equation for v

vt(t , z) =  ^ o 2z2 vzz(t , z) +  -  rz^j vz(r, z) + oz2 wzz(r, z)

/oo
j/(dx)(v(T,zex) -  v(r,z) -  (ex -  1 )(u(r, z) -  zv z(r, z))),

-OO

valid for (r, z) £ (0,T] x [0, oo), subject to the initial condition

u(0,z) =  0,
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and the auxiliary side conditions

v ( r ,  z )  — 0 , 2 —► oo,

uT(r ,0 ) =  ^ vz{t , z)\z=0.

We call the derivative of the option price with respect to the jump inten­
sity beta and use

dw dc
b = 3 x ’ p = ax = sb-

The equation for 6(r, z )  is

&t(t, z) = t2z2 bzz{r, *) +  Q ; “  rz ĵ z )

1
+  -  J  u(dx) (6(r, z ex) -  b(r, z) -  (ex -  1 )(6(r, z) -  z bz{r, z))),

valid for (r, z) £ (0,T] x [0, oo), with the initial condition

6(0 , z) =  0 ,

and the auxiliary side conditions

6(r, z )  = 0 , z —* oo,

M t , 0) =  ^ 62(r, z)|2=0.

In the same manner one can derive the PIDE for other parameter sensitivities 
such as the sensitivity with respect to £, the standard derivation of the jump 
distribution.
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5.4 Exchange options

5.4.1 D erivation o f the PID E

Assume that the prices of two stocks are given under a martingale measure 
by the following dynamics

/oo
(ex — 1 dx) — u(dx)dt),

■OO

/OO
(ex — 1 )(ji(dt, dx) — v{dx)dt).

•OO

The two Brownian motions are correlated with E [dWtdWt] = pdt. For the 
joint jump measure, which counts the jumps both in St and in St, we write 
fi(dt, dx, dy) and for its expectation we write v{dx, dy) dt = E [pt(dt, dx, dy)]. 
We suppose that the stock prices are such that all the derivatives of the 
option price exist and thus the use of Ito’s lemma in equation (5.40) can be 
justified. In particular we are will work in a jump-diffusion setting where no 
differentiability problems arise and sufficient moment conditions are in place 
such that the stock price process is a square integrable martingale. The price 
of an exchange option at time t is defined as

c(t, Sti St) = e -r(T- i} EQ[max(ST -  ST, 0) |^ ]

5Vmax ( —  — 1 ,0  
St

Tt

In Vecer and Xu [39] change of measure techniques are used to obtain the 
price of a Asian option with a quite general payoff as the solution of a PIDE. 
We can use similar techniques to obtain a price determining PIDE for an ex­
change option which depends only on time and one additional state variable. 
To do so we introduce the process Zt =  I 1 and define a new measure Q byot

dQ _  St 
dQ ~  §oert
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Performing a change of measure, the option price can be written as

c(tiSu St) = e-r^ E Q

St

St max ( ^  — 1 ,0  
St

Ft

— c - r ( T - t )  £<Q

Soe't

= St E®

= St E ° [m a x (Z r-1,0)1^].

c i St i n \ S° e ST max | -  1 ,0  —g-
d t  J dt

t T

Ft

STmax | —----- 1 ,0
ST

Ft

We now show that the process Zt is a local martingale under Q. Using that 
the discounted stock price e~rt St is a Q martingale we obtain

s
St St

•/ it
St S o f t

For notational convenience we introduce

/oo
(ex — 1 )v(dx),

■oo

/oo
(ex — 1 )9(dx).

•oo
Let us write the process Zt as a function /  of St and St: Zt =  f (S t ,S t). 
Calculating the dynamics of Zt one obtains

dZt = f a{t, St-, St-) dSt +  fs(ti St-i St-) dSt

+ St-, St-) d[S, S]‘ +  f„(t, St-, St-) d[S, S]J

+  f  -  -  a St- ,St-)  -  AS th( t ,S t- ,S t- )
St St-

J -  dSt -  dSt + %=■ 
St- (St- ¥  St-

St-
St-

St St- A „ 1 ~ St-
+  -F - -J------- ASt̂ ~ +  ASt^ —

st st- lst- \ s t - y
(5.40)
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The jumps of the process Zt can be expressed as

o  o  poo poo

2  -  %=■ =  Zt- /  /  (e*-v -  1 dx, dy). (5.41)
O f — J  —oo J  — oo

Inserting equation (5.41) into the equation for the dynamics (5.40) one ob­
tains

dZt =  Zt._ dt +  cri dWt — r2 dt — <j2 dWt +  a%dt — pai<J2 dt

/ oo poo  \

/  ( e ^ - l  )ti(dt,dx,dy)\.  (5.42)
■oo J — oo /

By definition the value function v(t, Zt) = El®[max(Z7’ — 1,0)\Ft] is a mar­
tingale. Therefore we calculate its dynamics and set the drift term to zero 
to obtain the governing PIDE. For the dynamics of v we obtain

dvt = vt(t, Zt-)  dt +  vz{t, Zt-)  dZt -1- ^vzz(t , ZtJ) d[Z, Z\ct 

+ v{t , Zt) -  v(t , Zt_) -  AZt_ vz(t, ZtJ) 

= vt(t, Zt-)  dt +  vz(t, Zt-)  dZt +  ^ v zz(t, Zt-){(j\ -  elp o \o 2 +  <4)z t- dt

/ oo poo
/  (v(t ,Zt-e*-”) - v ( t , Z t-)

■oo J  —oo

-  z t- (ex~y -  1 )vz(t, Zt- ) )p (d t , dx , dy).

To be able to reduce the dimension we have to specify the joint jump distri­
bution of St and St . As an example, assume that the jump size distribution of 
St is normal N(mi,  $i), the jump size distribution of St is normal N (m 2,62), 
and their correlation coefficient is g. The distribution of the difference of 
jumps in St and in St is then also normal

f  ~  N(mi — m2, 6l -  2q5i62 +  <Sf). (5.43)
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The dynamics of v can be written as

dv(t, Zt~) = vt(t, ZtJ) dt +  vg{t, Zt-) dZt

+  ^vzz(t, ZtJ)(<j\ -  2pai(T2 +  crl)Z2_ dt

/OO
(v(t,Zt-  e*) - v ( t , Z t-)

■oo
-  Zt-(e* -  1 )vz(t, Zt-))fi(dt, d£). (5.44)

The drift term in (5.44) has to be zero almost surely. Equating it to zero we 
obtain the PIDE

vt(*>z) +  ~  2/H7i<72 +  crfjz2 vzz{t, z)

/ oo
(v(t, z e*) -  v(t, z) -  z(e* -  1)) i/(df) =  0 ,

■OO

valid for (t , z) E [0, T) x (0, oo). The option price function at time t is then 
given by

c(t, s, s) = sv(t, z).

We perform the change of variables y =  \nz  to obtain constant coefficients 
and constant grid size. In addition we change the time to r  = T  — t. The 
terms in the PIDE then change to •

v(t, z) = «(r, y) 

v( t,ze*) = u(r,y + £) 

vt(t,z) = - u T(r,y)

yy(t,z) = ~uy(ri y)

v vi/(*> z) =  2̂ K y (r> V ) ~  u y ( r > V ))•
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In the new coordinates the price determining PIDE is 

Ut(t, y ) =  -  2p<ri<72 +  v l ) ( u y y { T ,  y )  -  u y ( r , y ) )

/ oo

v(d0  y +  0  -  u fc  2/) -  -  i n f o  2/))> (5-45)
■CXI

valid for ( t ,  y )  E (0, T] x (—00,00), subject to the terminal condition

u(T, ?/) =  max(ey — 1, 0)

and the auxiliary boundary conditions

u ( r , y )  =  0 , y  -> -00 , 

u(t,2/) =  ey — 1, y  ^  0 0 .

5.4.2 A  m artingale m ethod

Alternatively one can derive a PIDE whose solution is the discounted price 
of an exchange option using a martingale technique. Consider the martingale

Mt = E Jmax ('St — St , 0  ̂| 

= St E 

=  St g(t, Zt),

T ,

where Zt — ^  = f ( S t, St). Applying Ito’s lemma to Zt we obtain its dynam­
ics as in equation (5.42):

dZt = ^ri dt 4- a 1 dWt — r2 dt — cr2 dWt + a\dt  — p<J\<J2 dt
/ <00 roc '

/  (ex~y — l)fi(dt, dx, dy)
OO J —OO >
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Applying Ito’s lemma to the martingale Mt and assuming that St and St 
have finite variation we obtain the dynamics

dMt = St-  ((r2 dt +  a2 dWt)g(t, ZtJ) +  gt(t, ZtJ) dt

+ gz(t, Zt-) Zt_ (ri dt +  a\ dWt — r2dt — o2 dWt +  o\ dt — pcr\G2 dt) 

+ ^ gzz{t, Zt-) ZU<j\ +  <72 -  2p<Ti<T2)dt 

+  (-02 +  po\<r2)Zt-  gx(t, Zt_) eft) +  5t y(t, Zt) -  5t_ y(t, ZtJ).

(5.46)

Setting the drift term in equation (5.46) to zero, one obtains the price deter­
mining PIDE:

gt{t, z) + rg(t, z) +  i(<7? +  g\ -  2pa1<j2)z2 gzz(t, z)

/oo
(ev g(t, 2 ex~y) -  ey g(t, z) +  (ex -  ey)z gz(t, z))z/(ch, dy) =  0 ,

■OO

valid for t , z) G [0,T) x (0, oo), subject to the terminal condition

g(T, z) = max(z — 1, 0) 

and the auxiliary boundary conditions

g(t,0) = 0

g(t,z) =  z -  1, z o o .

5.4.3 Greeks in the jum p-diffusion m odel

We are interested in the sensitivity of the option price with respect to changes 
in the correlation coefficients. First, we investigate how the price changes 
if the correlation coefficient between the two Brownian motions changes. 
Thus, denoting R = j* we differentiate equation (5.45) with respect to the
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correlation coefficient p to obtain the PIDE

y) =  2/0*102 +  oZKRyyir, y) ~ Ry(r , y))

+ (Ji<J2{uy{r, y) Uyy (T: y))

/oo
v(d£) (R{r, y +  g) -  R{r , y) -  (e* -  l)Ry(r, j/)),

-OO

valid for (r,y) G (0,T] x (—00 , 00), with R = 0 at all boundaries. The 
sensitivity of the option price ^  =  si? is then obtained by multiplying the 
value s of the stock price St times R(r , y).

Secondly, we investigate the change of the option price with respect to 
changes of the correlation of the jumps of the two stocks. Recall from (4.2) 
the Levy measure of the Merton model

A _is(dx) = —- = e  2*2“ dx ,
5 \

and from (5.43) that p =  mi — m2 and 5 =  5\ — 2g5\52 +  d\. We denote 
Q = |^ . To obtain the PIDE for Q, we differentiate equation (5.45) with 
respect g and obtain

Qr(rty) = ~((Tj -  2pa1a2 +  ^l)(Qyy{r,y) -  Qy{r,y))

/oo
v(d£) (Q(r, y + £) -  Q(r, y) -  (e* -  l)Qy(r, y))

■oo

. f°° f ,  ( £ “ m l +  m2^  f ,  ( \J  I  £2 J (HTty +  Q - u f a y )  

- ( e € - l  )uy{r,y)),

valid for (r, y) G (0, T] x (—00 , 00), with Q = 0 at all boundaries. The 
sensitivity =  sQ of the option price with respect to changes in g is then 
obtained by multiplying the value s of the stock price St times Q(r, x).



Chapter 6 

Two factor models and model 
risk

6.1 Basket option

We are interested in finding the price of a basket option with payoff max(aS'7’+ 
(1 — a) St — K, 0) on two stocks which are given as the exponential Levy pro­
cesses St = ert+Xt and St = ert+Xt. Two dimensional option models driven 
by Levy processes are considered in Clift and Forsyth [13]. The character­
istic triplet of the process X t is (of,*/, 71) and the one of the process X t is 
(cr|, 72). The drift terms 71 and 72 are chosen such that the discounted
stock prices are martingales. The parameter a takes a value in the unit in­
terval. This basket option is an option on an asset which is the weighted sum 
of the two stock processes. We are interested in how the option price changes 
if one moves from one underlying process St to the other St and therefore 
from a =  1 to a = 0. The dynamics of the two stock prices are
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where r is the interest rate, fi(dt, dx) and £i(dt, dx) are the jump measures 
of the two stock prices, and the rest of the parameters come from the char­
acteristic triplets of X t and X t. The two Brownian motions are correlated 
with pdt = K[dWt dWt]. We introduce the joint jump measure p,(dt,dx,dy) 
which counts the jumps of size dx and dy in the time interval dt, and the two 
dimensional Levy measure v(dx,dy) dt = E [p(dt,dx,dy)\. We suppose that 
the stock prices are such that all the derivatives of the option price exist and 
thus the use of Ito’s lemma can be justified. The price function of the basket 
option at time t is

c(t, s, s) =  e~r(T~^ E max(aST + (1 — a)S>T — K, 0) St =  s ,S t = s

The discounted option price

c(t,St,S t) = e~r tc(t,St,S t) (6.3)

is a martingale. Applying Ito’s lemma to equation (6.3) we obtain the dy­
namics of the discounted option price

dc(t, St_, St-) = -  re~Tic(t, St_, St-)dt +  e~rtdc(t, St- t St-)  

= e~r t (̂ -  r c{t, St-, St-)dt +  q(£, St-, St-)dt 

+  cs(t, St~, St~)dSt +  Cg{t, St~, St-)dSt 

+ St.,  St-)d[S, S]J +  icss(t, St. , S t.)d[S, 5]“ 

+  c„-(t, St. ,  St.)d[S, 5]tc +  c(t, St, St) -  c(t, St.,  St. )

-  ASt ce(t, St.,  St .)  -  ASt Cg{t, St. ,  St. ) ) , (6.4)

where ASt = St — St-  and A S t =  St — St-.  Inserting equation (6 .1) and (6 .2) 
into (6.4) and expressing the jumps as integrals over the jump measures, we
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can write the increment dc(t, St, St) in the discounted option price as

dc(t,St- , S t-) = e~rt ^ -  r c(t, St-,  St-)dt + Ct(t, St-,  St-)dt

+ cs(t, St St-) (rSt_ dt +  aiS'f-

+  S'*- f (ex — 1 )(fi(dt, dx) — v(dx)dt)\
J  — OO

+ c-s{t, 5t_, 5t_) {rSt- dt + a2St-  dWt 

+  St~ f {ex — 1 )(fl(dt, dx) — i)(dx)dt)\
J  —OO

+ 5t_, s (-)d[5, Stf +  5(_, St-)d[S, 5]'

+ cs5(t, St-, St-)d[S, S]t

n oo
(c(t,5t_ea!,S t_ e» )-c (t,S t_ ,5 t_)

•oo

— St-(ex — 1) cs(t, S(_, St_)

-  S,_(e» -  l)cj(t,S t_,St_))/i((ft,<iE,d»)Y (6.5)

We split equation (6.5) into a drift and a martingale part and set the mar­
tingale part to zero and obtain the PIDE

Cf(t, s, s) — r c(t, s, s) +  rs cs(t, s, s) +  rs Cs(t, s, s)
1 1

+  -o fs 2 Css(£, S, s) +  S> 5) +  P<Tl<T2SS CaS(t, S, S)
/■oo /*oo

+  I I (c(£, sex, sey) — c(£, s, s) — s(ex — 1) cs(t, s, s)
J  —oo J  —oo

— s(ey — 1) cs(£, s, s)) v(dx, dy) = 0 , (6 -6)

for (t , s, s) G [0, T) x (0, oo) x (0, oo). The terminal condition accompanying
(6 .6) is

c(T, s, s) = max(as +  (1 — a)s — K , 0).
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In order to have a linear dependency in the arguments of the option price we 
perform the following transformations of variables

r  = T  — t,

1 =  1 n ( ^ ) + r r ,

f = i n ( £ ) + rr ’

and then introduce the transformed variables u(r,l,l)  and its derivatives 
which are defined by

c(£, s, s) =  e~rTK  u ( t , Z, Z),

c(t, sex, sey) =  e~rT K  u(r , Z +  x, Z +  y),

Ct(t,s,s) = e~rTK(ru(r , lJ )  -  uT(r,lJ)),
Kcs(t,s,s)  =  e~TT— ui(r,lJ),  
s

css(t, s, s) =  e~rT— (uu(r, Z, Z) -  itz(r, Z, /)),

Cs{t, s, s) =  e~rT— u j ( t , Z, Z),
5
K -

c-s-s{t, s, s) =  e_rT ~2 (%(r ’ 0  “  ui(r ’ 0 ) >

csS(Z, s, s) = e“rT^ w zz(T, Z, Z).
ss

In the new variables the PIDE (6 .6) turns into

- i t r ( T ,  Z ,  Z )  +  r  u z ( r ,  Z ,  I) +  r u f ( r ,  Z,  Z )  +  ( ^ ( r > ^  0  “  ui(T> ^  0 )

+  ^ 2  > 0  -  ^~(r > ^ 0 )  +  w Zi ( r ,  Z, Z) r

/oo
(u(t, Z +  rc, Z +  2/) — w(t, Z, [)

■oo

-  (e1 -  l )u z(r, Z,Z) -  (ey -  l)ui(r,l j))i /(dx,dy)  = 0, (6.7)
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valid for (t , Z, Z) E (0, T] x (—oo, oo) x (—oo, oo), subject to the initial condition

u(0, Z, Z) = max(a;ez +  (1 — a)ez~ — 1,0). (6 .8)

We are interested in how much the option price changes if one moves from 
one underlying process St to the other St, and thus how sensitive the option 
is with respect to changes in a. Therefore, we differentiate the PIDE (6.7) 
and the side condition (6 .8) with respect to a and obtain a system of PIDE 
for the price and the sensitivity that can be solved simultaneously. Note 
that the parameter a only appears in the side conditions. Let <f) = be the 
derivative of u(r, Z, Z) with respect to a. The PIDE for 0(r, Z, Z) is then

- 0 t (t, Z, Z") +  r 0 /(t, Z, I) +  r 0 r(r, Z, Z~) +  ^ o \ (0 /z(r, Z, 1) -  </>z(r, Z, Z~))

+  \ ° l (fe(r » *i 0  ~ <£z(r > 0 )  + P&1&2 <f>u(r, Z, Z)

/oo /-oo

/  (0(r, Z +  a:, Z~+ y) -  0(r, Z, Z~) -  (ex -  1) ^ ( r ,  Z, Z)
■OO J  —oo

-  (ey -  1) (r , Z, I))v(dx, dy) = 0, 

valid for (Z, Z, Z) E (0, T] x (—oo, oo) x (—oo, oo), subject to the initial condition 

0(0, Z,Z) =  (e — e")l^Qe«+(i_Q,)er>i}-

In general it is not straightforward to specify the joint jump measure and 
hence the Levy measure v(dx, dy) of the two processes St and St. One has to 
make some assumptions about the correlation between the jumps of St and 
St. One possible assumption which leads to a tractable model is that the 
jumps sizes are bivariate normally distributed. The Levy measure is then
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with

x -  III x -  /ii \ y -  n2

+ { h r )  ) d x d y ■

6.2 M odel sensitivity - exponential mixing

We are still interested in the sensitivity of an option price with respect to 
moving from one underlying process to another. Instead of looking at a model 
with two exponential Levy processes we now investigate a model which has 
two sources of randomness in one exponent. To start with, we want to find 
the price of an option whose underlying stock price is the exponential of a 
mixture of the two independent Levy processes X t with characteristic triplet 

71) and X t with characteristic triplet (cr2,P ,72). The stock price in 
this model is given by

St = SQert+aXt+{1- a)Xt.

The Brownian motion parts and the jump parts of the two driving processes 
X t and X t do not explicitly depend on a. The drifts 7 1  and 7 2  however are 
chosen such that the processes eaXt and e 1̂_a^Xt are martingales and thus 
usually depend on a. As X t and X t are independent it then follows that also 
the discounted stock price process e“ **+(!-“) js a martingale. The drifts 
71 and 7 2  can be obtained by solving the following equations

2 2 roo

a 7i +  —j 1  +  J  (eax -  1 -  axl|*|<i)i/(dx) =  0,
/ 1   ^ 2 —2 roo

(1 -  q;)7 2 + ----------- - + J  (e(1_a)x -  1 -  (1 -  a)xl\x\<i)v{dx) = 0 .
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The dynamics of the stock price is

dSt =  St~ dt +  acti dWt -f J  (eax — 1 )(fi(dt, dx) — v{dx)dt)

+ (1 — a)cr2 dWt +  J  — l)(/i(dt, dx) — i> (d x )d t , (6.9)

where n(dt, dx) and jl(dt, dx) are the jump measures of the processes X t 
and X t respectively and the other parameters all occur in the characteristic 
triplets of the two processes. The price c(t, St) of a European call option on 
a stock with a price process St is

c(t, St) = e~r E[max(S'r -  K,0)\Tt}.

The discounted option price c(t, St) = e~rtc(t,St) is a martingale and its 
dynamics is

dc(t, St) =  e rt ^ -  rc(t, St~) dt +  ct(t, St-) dt +  cs(t, St-) dSt

+ \ c ss(t, St~) d[S, £]£ +  c(t, St) -  c(t, St~) -  ASt cs(t, St-)  Y

(6 .10)

where A S t = St — St~ are the jumps of the stock price process. As X t and 
X t are independent we can reformulate equation (6 .10) to
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Inserting equation (6.9) into equation (6.11) and using d[5, =  SJL (a2of +
(1 — a)2&%) dt we obtain

dc(t,St) = e~r t ^ ~  rc(t ,St-)  +  ct(t,St-)  +  cs(t, St- )S t-  (rdt

/ 'oo
(eQI — 1 )(fi(dt,dx) — v(dx)dt)

■oo

+  (1 — a)a 2 dVVi +  f (ê 1_a *̂ — 1 dx) — v{dx)dt)\
J  —OO

+ i c ss(£, iS't-)^2.  (aV j2 +  (1 -  a )20| )  dt

/oo
(c(t, eaxSt. )  -  c(t, 5t_) -  S(_(eal -  1) c,(t, S,_))M*> dx)

■oo

/oo
(c(t, -  c(t,

■oo

-  5t_ (e^-“*v -  1) c,(t, St_))A(dt, dj,)) (6 .12)
Setting the drift term to zero, one obtains the PIDE 

Ct(t, s) -  r c(£, s) +  rscs(t, s) +  (a2of +  (1 -  a )2cr2)s2css(£, s)

/oo
(c(£, seax) — c(£, s) — s (eax — 1) cs(£, s))v(dx)

•OO

/OO
(c(£, s e(1_“)y) -  c(t, s) -  s (e(1-a)y -  1) cs(£, s))v{dy) = 0 ,

■OO

(6.13)

valid for (t , s) G [0, T) x (0, oo), subject to the side condition

c(T, s) =  max(s — K, 0).
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Differentiating (6.13) with respect to a and writing =  0, we obtain the 
PIDE for the sensitivity:

s) - r  <j>(t, s) +  rs <j>s(t, s) +  (a2of +  (1 -  a )2<r2)s2 (f)ss(t, s)

+ (2aal+ 2(a -  l)crl)s2 cS3(t,s)

/oo
(</>(£, s eax) +  x c(t, s eax) — <j)(t, s)

-OO

— s (eax — 1 s) — s x e ax cs(t, s))v(dx)

/oo
(0 (£, s e(1-a)y) -  y c(t, s ê 1_Q!̂ y) -  0 (£, s)

■OO

-  s (e(1_Q) y -  1 )0 S(£, s) +  s y e(1-a) y cs(t, s)) v{dy) =  0 , 

valid for (£,s) G [0, T) x (0,oo), subject to the side condition

4>(T,s) =  0 .

We want to compute the sensitivity in this framework for the very simple
2

example where the first Levy process is X t = a W t — 9Lf - t  is driven by a 
Brownian motion Wt with volatility a and the second process X t = Nt — 
A~'e(f-T~~ ̂  driven by a Poisson process Nt with intensity A. The stock 
price process in this example is given by

dSt =  St-  (rdt + aadWt +  (e(1- Q) -  l) (dNt -  Xdt)) .

As we are dealing with a Poisson process with a fixed jump size the PIDE 
reduces to a PDE as is given by

Cf(£, s) - r  c(£, s) +  rs cs(t, s) +  i a2a2s2 css(t, s)

+  A (c(£, s e^~a )̂ — c(£, s) — s (e^1_a  ̂— l)cs(£, s)) =  0, (6.14)

valid for (t,s) G [0, T) x (0, oo)* subject to the terminal condition

c(T, s) =  max(s — K, 0).
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Differentiating (6.14) with respect to the mixing parameter a , we obtain the 
PDE

<f)t(t, s) - r  s) +  rs (p3(t, s) + a2aj s2 (j)33(t, s) +  2aaj s2 cS3(t, s)

+  A(<p(t, s ê 1-^ )  — c(t, s ê 1-0^) — <f>(t, s)

-  s -  1 )(j)s(t, s) +  s e(1_a) cs(t, s)) =  0

valid for (£,s) G [0, T) x (0, oo), subject to the terminal condition

<KT,s) = 0.



Chapter 7

Numerical solution of PIDE

7.1 Finite difference approximations for vanilla 
options

To numerically evaluate the systems of PIDE that we have derived in the 
previous chapters, we use finite difference methods. These methods are based 
on replacing derivatives with finite differences and replacing the integral with 
a sum. As outlined in Cont [14] there are three main steps in the construction 
of the finite difference approximations for PIDE: localisation, approximation 
of the small jumps, and discretisation.

7.1.1 Localisation to  a bounded dom ain

The original PIDE for all the options we have been considering is defined 
on a unbounded domain. In order to be able to numerically solve the PIDE 
we localise the variables and the integral to bounded domains. We take 
the European vanilla call option as an example. The calculations for exotic 
options go along the same lines. Recall the PIDE for the European call from
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equation (5.11)

;2
ut(t , y) =  —  (uyy{ r , y) -  uy (r,  y ))

/oo
v(dx)  ( u (t , y  +  x) -  u (t , y)  -  (ex -  l ) u y (r, y ) ) .

•OO

To start with we truncate the domain of y  from M to an interval [a, 6], where 
a and b are some finite numbers. We then need to assess u ( r , y)  for y  ^ [a, b\. 

Since the option price behaves asymptotically like the payoff, one sensible 
choice is to set the option price outside the domain to the payoff h( y ):

u { r , y )  = % ) ,  V?/ £ [a, b].

It is shown in [15] that for bounded payoffs the error from localisation de­
creases exponentially with increasing domain size. Alternatively, we will 
show in section (7.1.3) that after discretisation one has to evaluate u (t , x ) 

only at a few points outside the interval [a, b]. Therefore, one can first calcu­
late the Black-Scholes prices of the option at the relevant points outside the 
interval [a, b] and then set the values of u(r,  y)  outside the interval [a, b] to 
the corresponding transformed Black-Scholes prices.

Secondly, we truncate the integral for values below a lower boundary Bi 
and above an upper boundary Bu. It is shown in [15] that the error occurring 
from truncating the integral decays exponentially with increasing upper and 
decreasing lower boundary. The truncated PIDE (5.11) is

wr (r ,  y) =  —  (uyy( r , y ) -  uy(r,  y ))

Bu
i/{dx) (u(r,  y  +  x ) -  u (t , y)  -  (ex -  l ) u y {r, y ) ) ,  y e  [a, 6].

h
(7.1)

7.1.2 Approxim ation of small jum ps

Whenever we are working in an infinite activity model, the numerical eval­
uation of the integral around zero of the PIDE needs special attention. As
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we are dealing with models with infinitely many jumps, the integral over the

in equation (7.1) goes faster to zero than the Levy measure goes to infinity 
and the integral is well defined. Still, the problem remains how one can nu­
merically evaluate the integral close to zero. One way around this problem 
is to approximate the small jumps by a diffusion term. Doing so the stock 
price driving process X t is replaced by the process X \  which has the Levy 
triplet (7 (e), a2 +  a2(e), vl\x\>e) with

Hence, for small jump sizes the term under the integral is replaced by

-A(-m )

Starting from equation (7.2) we can derive the PIDE for the sensitivity 
with respect to any parameter £ occurring in the Levy measure. We use

Levy measure i/(dx) around zero goes to infinity. However, the integrand

u(r, y + x ) -  u ( t , y) -  (ex -  1 )uy(r, y) - x 2 (%y(r, y) -  uy(r, y)) ,

and the PIDE can be written as

v{dx) (u(t, y + x ) -  u(r, y) -  {ex -  1 )uy(r, y)) . (7.2)

du

and therefore differentiate equation (7.2) with respect to £ to obtain the
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PIDE

Vt(t,2/) =  °  ^  {vyy(T, y) -  vv(t , y))

+  /  ^(c?2/) (v (r ,  y +  a;) -  v (t , y) -  ( e x -  1) uv(t , y))
■/R\(-e,e)

+ K v fo  2/) -  Uy(T, 2/)) J  n(dx)x2

+  /  / / ( d z )  ( u ( t ,  y +  x) -  u (t , y) -  ( e x -  1 ) % (t ,  y ) ) ,
J R\(—e,e)

where

//(dz) =  — v(dx).

7.1.3 D iscretisation

To numerically evaluate equation (7.2), we replace it by its finite difference 
approximation and solve the finite difference approximation on a uniform 
grid. The function it(r, y) will not be evaluated on the continuous domain 
[0,T] x [a, b] but on a grid with uniform grid spacing in time r  and space 
y laid over the continuous domain. The grid points in the y direction are 
yi = a +  i • Ay, i =  0, . . . ,  N. The grid size in the y direction is given by 
Ay =  The continuous variable r  representing time is replaced by its 
discrete counterpart rn =  n • A t, n =  0, . . . ,  M. The discrete time increment 
is then given by A t =  For m(t, y) evaluated at t  = rn and y = yi we 
write it"

u(rn, y{) -> u? =  u{n • A t, a +  i • Ay).
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We denote by un the vector of all for i =  0, . . . ,  N. The derivatives of 
u ( t , y ) are replaced by their corresponding finite differences

where we used a forward discretisation in time and centred discretisations in 
the space direction. The integral in (7.2) over the large jumps with continuous 
jump size distribution is approximated by a sum over Ki + K u + 1 jumps with 
fixed jump sizes — uf  weighted by the integral over the Levy measure

Vj = /  i/(dx),
1/2) A y

with the corresponding jump size. The approximation becomes

d u ( r ,  y )  < +1 -  <  
d r  A t

d u ( r ,  y )  < +1 ~  < _ i 
d y  2A y

d 2u ( r , y )  u?+1 -  2u ?  +  u^_x

dy2 (Ay)2

where Ki and Ku are integers such that

(K, -  i )A y < B t < (K, + i)A y, 

-  ^)Ay < B U< (Ku + i )A y.
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The diffusion part D and the jump part J  of the finite difference approxima­
tion of the PIDE can be written as

= g2 +  ^  2 < + 1 + < - +11 _
( ’’ 2 I, (Ay f  2Ay )  ’

( J u %  =  £  v,  («?+, -  <  +  -  l ) " ™ ^ 1)

To solve the PIDE, we use an explicit-implicit scheme as explained in [15] 
which means that when moving from time step n t o n + 1  we use an implicit 
scheme for the diffusion part D and evaluate the function u(r, y) at the time 
point n +  1, whereas for the jump part J  we use an explicit scheme and 
evaluate the function u(t, y) at the time point n. In an explicit scheme 
the time derivative of the option price at time rn, given by , is the
only term depending on the option price un+1 at time rn+i. Therefore, one 
can explicitly solve the discretised equation for un+1. In an implicit scheme 
the time derivative of the option price is again u"~^~uW, however, all the 
other terms are evaluated at time rn+1. As un+1 occurs in all the terms, 
the equation cannot be solved explicitly for un+1. One can obtain un+1 by 
inverting a matrix as discussed below. The discretised PIDE can be written 
as

un+1 — ur
At

= Dun+1 +  Jun. (7.3)

Using an explicit-implicit scheme, we do not have to invert the non-sparse 
matrix J  coming from the jump part, and our scheme is stable, meaning that 
for bounded initial conditions we will have a bounded solution. To obtain 
the values of u for the next time step, equation (7.3) is solved recursively via

un + l  __=  un +  At Dun+1 + At Jun.

In order to do so first the pure diffusion equation

un+l = un + A tD u n+1
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is solved for the auxiliary vector un+1. Inverting the matrix I  — At  D one 
obtains

y U + 1  =  ( / _  A t D ) " V .

As the matrix I  — At D is tridiagonal, the inversion can be done rapidly [18]. 
The explicit jump part is added and one obtains the values of u at the next 
time step

un+1 = (1 + A tJ)un+1.

When adding the jump part, we need a grid approximation of the Levy 
measure. For the jump-diffusion model this is

vj = /  v(dx) =  —j=e~  2 Ay,
J ( j - 1/2) A y  V kK

where Xj = j  • Ay. The grid approximation of the Variance Gamma Levy 
measure is

/ •0 + l/2 )A y

/,•= /  v(dx) =  -j—je
J(i-l/2)Av K\x i\

• 0 + l /2 )A y  

' 0 - 1 /2 )  Ay

For the CGMY model, the grid approximation is

r ij+1/2)Ay m   ̂ /  c ^ A y x *  °»Vj = / v{dx) = < ' I
J(j-l/2)Ay [ C^-p+yAy X < 0,

For the jump-diffusion model this approximation is unproblematic. For the 
variance gamma model and the CGMY model we have a singularity at y =  0. 
This problem can be solved by approximating the small jumps by a diffusion 
term as outlined in the section 7.1.2.
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7.2 Finite difference approximation for ex­
otic options

Most of the finite difference approximations carry over from the European 
vanilla options in a straightforward way to exotic options. Still, there are 
a few things to mention. For vanilla options we are mainly interested in 
values of the option price and the greeks around the strike. This means we 
are interested in values far away from the boundaries of the grid. For exotic 
options this is not always true and we might have to very accurately compute 
option prices and greeks at a boundary of the grid. Another difference is that 
for vanilla options we know the value of the price function and its derivatives 
at the boundaries, which is not always true for exotic options where the 
values of the price function at the boundaries might only be given as the 
solution to a differential equation.

7.2.1 Lookback option

For lookback options we are interested in the value of u{r, y) close to y = 0 as 
this is where the value of the stock price is close to its maximum. Hence, we 
are interested in the function u(r, y) close to the boundary of its domain at 
y = 0. Remember the auxiliary side conditions of the PIDE for the lookback 
option from equation (5.26):

w(r,3/) =  1, 3/ ->-oo ,

uy(T. y)ly=o = u(r, 0).

To solve the PIDE for the lookback option (5.25) numerically we have to' 
make approximations both at the lower and at the upper boundary. In order 
to obtain a good approximation for the lower boundary condition, we have 
to restrict the domain of computation from [—oo, 0] to [a, 0], where a is such 
that u(r,a) is close to one. At the upper boundary we approximate the
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derivative by a one sided difference

dujr, y) 3u(t, y) -  4it(r, y -  Ay) -  u(r , y -  2 Ay)
#2/ 2A y

Thus we obtain the value of u(r, y) at y = 0 by solving the equation

3u (t , y) -  4u (t , y -  Ay) -  u(y -  2Ay)
----------------------------- — ----------------------------------=  u [t , y )

2A y K

for u(r,y), and we obtain the value at the boundary

( ~ A y) +  u(~2A y)U(T, U) =  --------------  —----------- .
v ’ J 3 - 2 A y

7.2.2 A sian option

For the Asian option we have from equation (5.37) the boundary condition 
wT = wz at 2 =  0. At the boundary z =  0we cannot use the centred differ­
ence approximation as this would require the knowledge of w(r , z) at negative 
values of z. Instead we use the one sided finite difference approximation

dw(r, z) —3w (t , z ) + 4w(r, z +  Az) — w(r, z + 2Az)
dz 2Az

Using this one sided difference approximation the side condition at z =  0 
and time r  =  iAr  becomes

—3w (t , z ) +  4w (t , z +  Az) — w (t , 2 +  2A,z) _  w (t , 0) — w{r — A t ,  0) 
2Az A t

Another complication for the Asian option is that we have the term w(t ,zex) 
in the PIE)E. If a jump occurs we have to evaluate w(t, z ex) at the point z ex 
which is not a grid point. Therefore we have to approximate z e x to the 
nearest grid point.
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7.3 Splitting the integral

The integrand of the PIDE in our models has three parts. The value of a 
function, say u , before a jump occurred, the value of the function u after a 
jump occurred, and a term involving a derivative of u. For the vanilla option 
in transformed coordinates the integral part is

/oo
v{dx)  ( u{t , y +  x ) -  u (t , y) -  (ex -  1 )uy(r, y ) ) .

■OO

The question arises whether these three parts can and potentially should 
be separated into more than one integral during the numerical analysis. In 
jump-diffusion models the three terms can be separated as each of them is 
integrable on its own. When we are working in a model with infinite activity 
but finite variation, the first and the second part of the integrand cannot 
be separated, as they are not integrable on their own. In a model with 
infinite variation none of the terms in the integrand can be separated. In the 
numerical evaluation of the integral in infinite activity models we replace the 
small jumps by a diffusion term. Using this trick, the integral can again be 
separated into three terms.

The numerical calculation of the integral is very time consuming com­
pared with the calculation of the diffusion part since, at each point (rn,yi) 
in the grid, one has to evaluate a sum over all the jump sizes. Thus it seems 
to be a good idea to approximate the small jumps with a diffusion term and 
to split the integral

j  v(dx)  (u(t, y  +  x ) -  u { t , y )  -  (ex -  1 )uy{r, y ) ) . (7.4)
R\(-e,e)
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into three parts. The PIDE for the option price then becomes

^ t ( t ,  x ) =  °  ^  " - K y C r ,  y) -  uy{ r , y ))

+  /  ^(drr)u(T, 2/ +  rr) -  u ( t ,  2/) /  z/(d:r)
Vr\(-£(£) jR\(-e,e)

- u y(T,y) [  v(dx)(ex -  1)).
•/R\(—e,c)

In this form only the integral / R̂ _e c) is(dx)u(r, y +  x) has to be evaluated 
at each grid point, whereas for the second and third part of the integral in 
equation (7.4) one has to calculate f R̂ _ee  ̂v(dx) and / R\(_ee) v(dx){ex — 1) 
only once in the numerical procedure and then can just multiply them at 
each grid point with u(r,y) and uy(r>y).

7.4 Consistency, stability, and convergence

A finite difference scheme is said to be consistent with a (integro-) differential 
equation if the difference of the finite difference operator and the (integro-) 
differential operator acting on any sufficiently smooth function goes to zero as 
the time and space increments go to zero. A scheme is stable if for a bounded 
initial condition a solution exists that is bounded independent of the size of 
the time increment At  and the space increment Ay. For this to be true, the 
discretisation error, that is the difference between the exact solution and the 
numerical approximation, has to be damped with time. A numerical scheme 
is said to be convergent to the exact solution if the difference between the 
finite difference solution and the exact solution of the PIDE goes to zero when 
both the time and the space increment go to zero. It is show in [15] that the 
scheme we used is consistent and stable. For sufficiently smooth functions 
consistency and stability ensure convergence of the difference scheme to the 
exact solution. If the solution is not sufficiently smooth, then the finite 
difference approximation converges to a viscosity solution.
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7.5 Higher order schemes

There exist many different finite difference schemes to solve the PDE that 
occurs in the Black-Scholes framework. There are mainly two things that 
have to be considered when choosing the scheme: the stability and the order 
of the error term. The simplest scheme is the explicit scheme, which is has 
error terms of O(At) in time and 0((Ay)2) in space and is only stable if 
~(Ay)2 — 2' Standard textbooks in numerical finance advocate the Crank- 
Nicolson scheme as it is unconditionally stable, which means that it is stable 
for all choices of At  and A y , and has error terms of the order 0((A t )2) in time 
and 0((Ay)2) in space. Another popular scheme is the Douglas scheme which 
has a higher order error term in the space direction. It can be shown that 
these schemes are consistent and converge to the exact solution if they are 
stable. Modern finite difference solvers can have error terms of much higher 
order. In [12] a finite difference method is presented which is fourth order 
both in time and space. When we are leaving the Black-Scholes framework 
and move from a PDE to a PIDE the numerical analysis becomes much more 
involved. The jump term is generally calculated explicitly and hence we have 
error terms of the order O(At) in time and 0({Ay)2) in space. In [7] so-called 
Implicit-Explicit (IMEX) Runge-Kutta methods to solve PIDE in a jump- 
diffusion setting are proposed. The methods presented have error terms up to 
order three. We apply an implicit-explicit midpoint scheme which has error 
terms of order two both in time and space to the European vanilla option 
price and the its vega. Thus, we consider the system of equations
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subject to the appropriate boundary conditions. The idea of the midpoint 
scheme is to calculate in each time step a midpoint u™ between the grid points 
u" and u”+1, where the upper scripts denote the time steps and the lower 
scripts denote space steps. In a second step the PIDE is then evaluated at this 
midpoint. In the first step of the midpoint scheme the diffusion component 
is calculated implicitly for reasons of stability whereas the other terms are 
calculated explicitly. The discretisation thus becomes

„» -  4. ( < +l ~ 2u?  +  U?-l _ < + ! - < - A
‘ ' +  2 V 2 I, (Ay f  2Ay  )

and the second step is

u"+1 =  <  +  At
mi+1 u:mt+1

mt-1
(Ay)2 

«r+J. -  < • -  (e*> -  1 )■

2Ay
—  ? / m  ui-1

2A y

where Xj = j  Ay. The grid approximations for the PIDE for vega are for the 
first step

v m =  y n + ( ° *  ( V™1 ~  2VT  + 'Cl C l ~  C 1
2 (  2 (  (Ay)* 2Ay

  /

2A y

and the second step is
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Comparing the midpoint scheme with the simple implicit-explicit scheme we 
find that the error term given equal computation time can be significantly 
reduced with the higher order scheme. Furthermore, this scheme could be ap­
plied not only in jump-diffusion models but generally in Levy process driven 
models.

7.6 Numerical results

We compute the price and the Greeks both for vanilla options and for ex­
otic options, and compare the performance of the dynamic approach with 
numerical integration and simulation. All computation are performed on a 
Pentium 4, 2.8 GHz computer.

7.6.1 Vanilla options

First, we illustrate the performance of the dynamic partial integro-differential 
method for a European call option in the jump-diffusion model from section 
4.2 and solve numerically equation (5.11) and the corresponding equations 
for the greeks subject to their side conditions. The price of a call option in the 
Merton jump-diffusion model can also be expressed as a series expansion of 
Black-Scholes option prices. We compare the prices and sensitivities obtained 
with the two different methods. For the numerical computations we use the 
parameters r = 0.1, K  =  50, T  = 1, a = 0.1, A = 0.1, /i =  0, and 5 = 0.1. 
The results can be seen as plots (A.l), (A.2), (A.3), (A.4), and (A.5) in the 
Appendix. For the price function, vega, rho, and beta, we obtain virtually 
the same numerical results for both methods. Using the dynamic approach, 
the calculations of the price and the greeks on a grid of 1000 maturities 
times 1000 stock prices takes only a few seconds when we approximate the 
continuous jump size distribution with a discrete jump size distribution that 
can take 200 different jump sizes. Using the series expansion approach it 
takes roughly one minute to calculate the price and the greeks for 1000 stock 
prices at just one maturity.
Next, we investigate how the dynamic partial integro-differential method
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perforins for a European call option in the variance gamma model introduced 
in section 4.3. The price of a call option in the variance gamma model 
can also be expressed by means of Bessel functions and can be obtained 
via numerical integration. We compare the prices and sensitivities obtained 
with the two different methods. For the numerical computations we use the 
parameters r = 0.1, K  =  50, T  = 1, a = 0.1, k = 3, and 6 = —0.001. The 
results can be seen as plots (A.6 ), (A.7), and (A.8) in the Appendix. We use 
again a lattice of 1000 time steps times 1000 stock prices and approximate 
the continuous jump size distribution with a distribution with 200 different 
fixed different jump sizes. The calculations of the price and the greeks for 
these specifications take about fifteen seconds. Alternative calculations using 
integrals over a Bessel function take several minutes for just 100 strikes and 
only one maturity. Better results can be expected when pricing via fast 
Fourier methods. Still, when one is interested in prices and sensitivities for 
a range of initial stock prices and maturities, the dynamic approach clearly 
outperforms its competitors.
Despite the fact that most stock returns in the study [9] are of finite variation 
we choose for our investigation the parameters of the CGMY process from 
section 4.4 such that it has infinite variation, namely Y  = 1.5, C = 0.081, 
G = 25.04, and M = 25.04. The reason for this is that some stocks are 
modelled by an infinity variation process and the infinite variation process 
is more difficult to tackle. Therefore we want to show that our methodology 
can also be applied to this situation. The results can be seen as plots (A.9) 
and (A. 10) in the Appendix.

7.6.2 Exotic options

The distribution of the maximum or the average over a certain time period 
of a Levy process is generally not know, nor is the distribution of the dif­
ference of two exponential Levy processes. Therefore, we have to resort to 
simulation to obtain prices and sensitivities that we can compare with the 
results obtained from the dynamic PIDE method.

We compare numerical results obtained from the dynamic PIDE method
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with simulation results for the price and the greeks of a lookback option with 
price function

c(£, s, m) =  e~r (T-i) E[Mr — Sr\St = s, Mt = m],

where St is the stock price at time t and Mt is the running maximum of 
the stock price. We assume that the stock price follows the jump-diffusion 
process as outlined in section (4.2). With the dynamic PIDE method outlined 
in section (5.2) we calculate the price and the greeks of a lookback option 
where the running maximum is measured continuously Mt =  maxo<T<t ST. 
In the table the results from this approach are labelled PIDE. With the 
simulation method the maximum is measured at n discrete points along the 
path of the stock price. The maximum is calculated as Mt =  maxj=i...n Sti, 
where U =  -t,  i =  1 . ..  n. We choose three different values form the number1 n  *

of sampling points: n=10, n=100, and n=500. For all calculations we set the 
value of the stock price at time t =* 0 to s =  1, the interest rate to r =  0.1 

and the time to maturity to T  = 1.

SIM n=10 SIM n=100 SIM n=500 PIDE
c
dc
9(7
dc

&
dfi

0.027
0.047
0.014
0.023

0.039
0.061
0.018
0.025

0.042
0.066
0.018
0.027

0.044
0.068
0.019
0.029

Table 7.1: Price function and greeks for a lookback option with parameters 
A =  0.1, a =  0.1, (5 =  0.1.

SIM n=10 SIM n=100 SIM n=500 PIDE
c 0.041 0.054 0.057 0.060
dc 0.44 0.58 0.62 0.63
dc
dX 0.015 0.017 0.017 0.018
oc
dti 0.25 0.27 0.27 0.27

Table 7.2: Price function and greeks for a lookback option with parameters 
A = 1, a =  0.1, S =  0.1.

From the tables one clearly sees that, when the number of sampling points
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increases, the price and the greeks of the lookback option with discrete sam­
pling converge to the price and the greeks of the lookback option with con­
tinuous sampling. This shows that the results obtained with the dynamic 
PIDE approach are consistent with the simulation results.

The computation of the price and the greeks with the dynamics PIDE 
approach on a grid of 1000 initial quotients of maximum over current stock 
price times 1000 time steps and with 100 possible jump sizes takes about two 
minutes. The simulation of the price and the greeks takes about five minutes 
for n = 10 and much longer for the n =  100, and n = 500. Moreover, with 
the simulation one only obtains a result for the case where the maximum is 
equal to the stock price at the initial time and only obtains the option price 
at time t = 0. The results of the PIDE method for this lookback option 
are also displayed in the figures (A.11), (A.12), (A.13), and (A.14) in the 
Appendix.

In the Appendix we furthermore plot the results for an Asian option in 
figures (A. 19), (A.20), and (A.21) and for an exchange option in figure (A.22), 
(A.23), and (A.24).



Chapter 8 

Existence of derivatives

8.1 Vanilla options - density known

We shall show that all the terms in the PIDE that determine the price and 
the greeks are well defined for vanilla options in the jump-diffusion and the 
variance gamma model.

8.1.1 Existence in the jum p-diffusion m odel

The PIDE approach does only make sense if all the terms in the equation 
are well defined. In particular, we have to prove that the price function and 
the relevant derivatives thereof exist. The integral part does not cause any 
problems, as we are dealing with only a finite number of jumps in finite time 
intervals. The value of a European call option in the transformed coordinates 
can be expressed as

w,(t, x) =  E[max(eaH~*T, 0)]

/oo
max(i

-OO

l ,0)pAy)dy (8 .1)

where pT(y) is the density function of the Levy process X T at time r  and 
x = In{s/K) +  rr. In the Merton jump-diffusion model, the density pT(y)
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has the form

(V—yr-kfi)2!T72\
r. (.? ~  "~AtYI (At? e~ 2(JT+M|

“  A:! yj2'K(a2T +  k82)

Inserting the density pT(y) into equation (8.1), a simple change of variables 
yields

/  , (y-x-yr-kfi)2 \
f°° ( \ (At ) e 2(a2T+kS2) \

u x)= L max(eS■1,1D)(e~ T§ ) dy■ (8,2)

The partial sum in equation (8.2) up to summand n can be seen as the limit 
of a bounded monotone sequence of functions. As all the summands are 
integrable and decay rapidly, u ( t ,  x) is finite and we can interchange the sum 
and the integral

(y-x-~/ r-kn)2
. “  fAr)* f°° e z^r+ks*)

u(r,x) = e ^  ——— /  max(ey — 1,0)—, ...........  dy. (8.3)
M  J - o o  \ /2 t t ( < 7 2t  +  M 2) V ^

For the price determining PIDE to be well defined, also the derivatives with 
respect to r, x, and the second derivative with respect to x have to exist. 
For the PIDE that determines the value of the greeks to be well defined the 
derivatives of all terms in the price determining PIDE with respect to the 
parameter in question have to exist. The proof of existence of any of those 
derivatives relies on the dominated convergence theorem. We explicitly show 
that the time derivative of u(r, x) is well defined. The proofs for all other 
derivatives go along the same lines. Writing the integral as

/oo
/ ( r ,  y)dy,

■OO

the time derivative of u(r,x) exists if we can find an integrable g such that

^  If(T + K y ) -  / ( r , y )| < g(y),
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and can show that the limit

l i m i | / ( r  +  M - / ( ^ ) |h—+o ti

exists. The difference is

r  f ( T + h, y ) - f i r , y ) <

sup
r m€( t , t +h )

( y - x - 7 r *  ~ k n )

(y — x — 7 r* — k/i) a e
(<r2r* +  fa52)5/2 ^ t i V t  +  fa52)

( y - x - ^ T *  - k j j .)2 
£J2 g 2(er2T*+fc52)

2(<j2r* +  M 2) y j 2 ' K { d 1T* +  fcJ2) 

which is integrable. Clearly, the limit exists as the integrand is smooth in r.

8.1.2 E xistence in the variance gam m a m odel

The PIDE approach in the variance gamma model makes sense if all the terms 
in the PIDE, namely the price function, its first derivatives with respect to 
time and space, and the integral part are well defined. Note, that the second 
space derivative has a pole. This rules out models that would combine the 
variance gamma model with an additional Brownian motion term, as they 
would require the existence of the second derivative. The value of a call option 
in the variance gamma model can be written, in transformed coordinates, as

/ oo

max(ex+y+w — 1,0) C(t ) eAy K z _i(B\y\) dy,
■oo * 2

(8.4)

where

A =

B =

r 2 ’

yjQ2 +  2 <J2//C

C{t) = 2 { y / ^ ^ T̂ KaT{r/ k)) 1 (2ct2/ k +  02)* 2«,
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K  is the modified Bessel function of the second kind and

u  = — ln(l — Ok — ^-a2K).
AC &

We can rewrite (8.4) as

/ oo
max(eI-y+w — 1,0) C ( t ) e~Ay K z _i(B\y\) dy. (8.5)

k 2OO

First, we show that the integral (8.5) converges. For fixed n and large y the 
Bessel function Kn(y) can be approximated by

K n(y) «  (8.6)

The integral converges if the term from the Bessel function approximation 
(8 .6) dominates e~Ay e~y for large negative y. Hence, the integral is con­
vergent if A +  1 < B. For small values of y the Bessel function can be 
approximated by

K n( y ) « \ v { n )  ( D ' H , 

and the integral (8.5) is approximated around zero by

u (t , x ) ~  J  max(ex~y+UJ — 1, 0 ) C(r) \ y \ e ~ Ay

1 _  f r  1 \
X 2 r U " 2 j ( 2 ^ ' J

for a small t. This integral is convergent if B ^  0 and t / k  > 0. Since B  is 
strictly positive and k , being a variance, is also bigger than zero, the only 
requirement for the integral to converge is A -I-1 < B. Next, we show that 
the derivative with respect to x  exists. We want to differentiate (8.5) under 
the integral sign. The integrand is differentiable in x  and is

l{y<z+w}£x~y+u C ( t ) (B\y\)



8  E x is t e n c e  o f  d e r iv a t iv e s 1 2 3

The difference operator is bounded by an integrable function g 

^  | / ( t ,x + h , y ) -  / ( t , x ,y )| =

C(t) \ y \ ^  e~Ay K t_ i  (B\y \) i  \max(ex+h~y+u — 1,0) — max(eI_2,+u — 1,0)1 
k 2 h

< C(t ) \ y \ e ~ Ay K t_ i (B\y \) sup \ex*~y+Ui\ = g.
K 2 x*E[x,x+H\

We know that the function g is integrable as it is essentially of the same 
form as the integrand in (8.4). Hence, due to dominated convergence we can 
interchange the integration and the limit and the derivative is given by

/ X+UJ

e‘-» ^C (T )  |y|£-5 e-A*Ki_i_{B\y\)dy.
■oo

The existence of the time derivative of u(t , x) and the derivatives of u(r, x) 
with respect to model parameters can be shown with the same method based 
on the dominated convergence theorem. The integral term in the PIDE 
exists, as by definition of the Levy process

/  v(dy)y2 < oo
J\y\<£

and there can only be a finite number of large jumps in a finite time interval.

8.2 Vanilla options - density not known

The method above works only when the density function of the price process 
fixed at time r  is known. We consider a European vanilla option in an 
exponential Levy model where the density is not known explicitly. The price 
of this option can be expressed as an integral over a functional depending on 
the characteristic function of the driving Levy process. The option price as a 
function of the log strike k is not an integrable function. Therefore we have 
either to multiply it with a damping function as in [10] or subtract and later 
on add a term which then makes the new function integrable as presented 
in [14]. We will follow the latter approach and compute the Fourier transform
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of the modified time value zr(k) of the option

zr(k) =  e-rTE[max(erT+*T — efc, 0)] — max(l — ek~rT,0)

/ oo

pr(dx)(erT+x — ek)(lk<x+rT — 1 k<rr),
•OO

= e~rT

here pr{x) is the density of the process X t at time T. We used that the 
discounted stock price is a martingale and thus

/oo
dx pr{x) ex = 1.

■OO

Let Ct (^) be the Fourier transform of the time value.

/oo
eivk zT(k) dk

■oo

/oo roo
dk /  dx pT(x)elvk(erT+x -  ek)(lk<x+rT -  l*<rr)

■oo J  —OO

/oo rx+ rT
dxpr(x) /  dkeivk{erT+x -  ek)

■oo «/ rT
•oo / g(iu+l)rT _  g(n/+l)(x+rT)

=e~rT/OO
cfcr Pt (^)

•oo
+ 1

givrT+rT+x   ^ iv (x+ rT )+ x+ rT '

=e

IV
poo

- r T / oo /  e ivrT( l    C1 ) g t« rT + (iu + l)x    g iu r T + x \
dxpr{x) ( ——------------ 1--------- r-r.----- tt-------  ) . (8.7)

w  \  w +  1 . tu(tU + 1) J

Using

/oo

dx pr(x) (e1 — 1) =  0 ,
•OO

we can simplify the equation (8.7) to

- iv rT  /  roo \
( t (v ) =  . u  ( /  dxpT(x) e lx{v~l) -  1 )iv{iv +  1) \ J _oo /

= e «,rT M v  - i ) -  1
zu(l +  iu)
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The option price can then be written as 

1 f°°
c(k) = — /  e~tvk(T(v)dv +  max(l — ek~rT, 0). (8 .8)

J  — OO.

Our goal is to prove that the option price function (8 .8) is differentiable with 
respect to some parameters. To do so we have to show that we can switch 
differentiation and integration, then check that the characteristic function 
is differentiable with respect to the parameter, and finally show that the 
functional we are dealing with is integrable. Given a specific Levy process 
all these steps can be checked.

8.3 Brownian motion case

It is rather easy to check differentiability of option prices with respect to 
some parameters when the stock price driving process is a Brownian mo­
tion. The only model parameters we are dealing with are the variance of the 
Brownian motion cr2, the interest rate r, and time t. Furthermore we are 
obviously interested in the option’s delta and gamma. For many options in 
the Black-Scholes model such as the European vanilla options, barrier op­
tions, lookback options, and exchange options the price of the option can be 
expressed as a functional of the cumulative normal density. One can then 
simply differentiate this so called closed form solution and one easily sees 
if there are any problems. For a vanilla call option in the Black-Scholes 
model both the theta, the derivative of the option price with respect to time, 
and the gamma go to infinity if the option is at the money* and the time to 
maturity goes to zero. This is seen from the formulas for theta and gamma
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where N(x) is the normal probability distribution and

J I n f  + { r ± \ o * ) { T - t )  
di,2 = ------------- ,  •

Now, if s = K  the equations for d\ and reduce to

j  V T - t  (r ±  \a  
dl’2 “  ^  ’

which is zero as t goes to T  and hence the gamma and theta go to infinity.
The price of an Asian option can be expressed as a triple integral [41]. 

The numerical evaluation of this integral seems to be very difficult and hence 
other methods, in particular Laplace inversion techniques [20], [11], have been 
put forward to obtain an option price.

8.4 A Girsanov transform technique

The methods presented so far to prove the differentiability of the price func­
tion and hence the existence of the greeks all have some disadvantages. Either 
they are only applicable to vanilla options or they are only applicable in a 
Brownian motion setup. In Norberg [33] existence results of sensitivities 
in a Markov chain market were established by a martingale and change of 
measure technique. In this section we present and expand this method to 
investigate the existence of sensitivities of contingent claims with respect to 
changes in model parameters in a Levy process driven market. We show that 
for the most part Norberg’s approach can be applied to a Levy process driven 
market and obtain the corresponding results.

Consider a contingent claim whose price process under the measure P# is
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a functional of a Levy process

X t = le t +  <Jq Wt +  /  x dx)
J(0,t)x(R\(-l,l))

+ lim I x(fi(ds,dx) — i'g(dx)ds). .

Examples of such contingent claims are options in exponential Levy markets 
where the stock price is St = SoeXt. Let (^>)o<T<t be the filtration gen­
erated by X t. The price function of such a contingent claim is in general 
an expected value Eg[y], where Y  is an integrable T t measurable random 
variable. The sensitivity of the contingent claim with respect to changes in 
the model parameter 9 is

lim i ( E e+tf[y| Ft] -  Ee[y| JF,]). (8.9)

We now investigate under what conditions this limit is well defined. Due to 
the weak predictable representation property as described in Jacod [26] or 
He [23] the random variable Y  can be written as

f  /3g(r, x)(fi(dx, dr) -  ue(dx)dr), (8.10) 
J R

where ag(r) is a square integrable predictable process a : Q. x [0, T] —► R and 
/^(t, x) is a square integrable predictable process (3 : ft x [0, T] x R —» R.

In order to calculate the sensitivities by the martingale method, we have 
to perform a change of measure. We first introduce the model space {P# : 
6 G 0}, where 0  C Md. We fix two points 9 and 9 -1- 9 in 0 , where 9 is 
our reference point and d represents a small deviation from that. We aim at 
forming differentials. To do so we use the following two lemmas drawn form 
Cont [14] and Sato [35]. Let (Xu We) and (Xt,P0+1?) be two Levy processes 
on E with characteristic triplets (crjj, i>e, 70) and vg+$, 'Je+d)- This can
be interpreted as investigating X t at two points of our model space. We say 
the measures Fg\jrt and Fg+ \̂jrt are equivalent for all t if P<?[5] — 0 implies 
P0+,?[.B] =  0 and vice versa for all B  G

Y  = Eg [ Y ] +[  ae{r)dWT+ (  
Jo Jo
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Lemm a 1 . The measures P# and .P0+0 are equivalent if and only if:

1. ag = &e+ti-

2 . The Levy measures are equivalent, with

/oo
(e*M/2 _  !)%((&)

•oo

< oo,

where <p(x) =  l n ( % # ) .du6(x)

3. If erg =  0, we must in addition have

Lemma 2 . When the two measures are equivalent, the likelihood process
Lgj{t) is

aire+tilFt
d$)e\ Tt 

with

Ue,*(t) =  ^ t  ~  ~

= Loj(t) = eUs’«W

+  lin£ I S  ~ t  [  ( e ^  -  l)i/e(dx) ] .
£_> \s < t , |A X s |>e J\x\>e J

Here XI  is the continuous part of X t, and rj is such that

70+tf ~ 70 ~ J  x(i/g+̂  ~  ve)(dx) = ^oV

if ag > 0 and zero if ag = 0. Applying Ito’s lemma to Lg}̂ (t) and using
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X I  =  agWt -\- 7et we obtain

dLej(t) = r}<j eL0j(t)dW t

+ Aw(t) lim /
vg+#(dx) -  l/e(dx)

i /d(dx)

The likelihood process can therefore be written as

(fi(dx,dt) — i/e(dx)dt).

Le$(t) = 1 +  [  7](jLê (r -)d W T 
J o

Jo e—*° v / R \ { — e , e }  Ve(dx)
+

x (/i(dx, dr)  — VQ(dx)dr). (8 .11)

We are going to use the general relationship

Ee[YLeAT)\Ft]Ee+„ [ r |^ t] =
TS.e[L ^ (T )\^ t\

together with equations (8.10) and (8.11) to evaluate the differential (8.9). 
As both Yt = and the likelihood process Lg^(t) are martingales
most of the terms in our calculation vanish. There are only two non-zero 
terms, which can be evaluated by using the two subsequent formulae,

E ( J  ae(r)dwj\ ( J  wLtA^dWr 

= E \ J  a e(T)T)<TSLeA T)d 

and, as fi(dx,dt) is a pure counting measure

F t

Ft

E [ ( U  P(x,T)(n(dx,dT) — i/g(dx)dr) 

‘T r l/g+ti(dx) -  l/g(dx)jJ Rt J R 
T

=  E /  U X,r)

i/e(dx)
ve+ti(dx) -  i/g(dx)

(fi(dx,dr) — i/0(dx)dr) Ft

i/e(dx)
i/g(dx)dr Ft
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Hence, we obtain for the differential

- (E e+J[ y |^ t] - E s[y |^ ] )

1 / E e[yLM (T ) |^ t]
\  V.e[ L e A T ) \ r t] 

l - l — C o v l Y ^ e A n ^v L g tg [ t )

1 1

- E e[Y\Ft}

E#

>'T
x | / r}aeLgtg{r)dWT

QT ae{r)dWT + I L  (Jg{r, x)(fi(dx, dr) — vg{dx)dr)

+  r \ m r m *(dx)-Mdx) {Kdx  ̂dr) _ Mdx)dT)
Jt e^ ° J R \ { - e , e }

T
Ve(dx)

=  f  7a E [ [  Letg { r )ae {r )—I Jt ag

’le+d ~ l e  J 1 x ^vg+j(dx) - vg{dx)^̂ ̂
i/e+$(dx) -  ve(dx) 

d

T t

+ /  Lm (t) lim /  Po(r,x) 
Jt £_>0 JR\{-e,e}

dr Tt

Lemma. If the Levy measure vg(dx) and the drift 7g are differentiable 
functions of 6 and the processes

L g j ( T ) a g ( T )  —  
&0
1 ( l o+ti -  10 f 1 ( VQ+-d(dx) -  l/g(dx)

0 J-1X\ 0
and

>AT) /£̂ ° JR\{-e,e}
Pe(r, x)

l/g+#(dx) -  Vg{dx) 
0

can be dominated by integrable processes, then the derivative of Efl[y|^i]
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exists and is given by

i Es[Y{ ̂  = Z^(i)E[t .  ( I™ ~  L  x T e Ua{dx])  I  L ^ a ^ d
rT  r  ^

+  /  Lm (t) lim /  /36(T,x)— i/e{dx)d
Jt £-"° JR\{-e,e} d0

Example 1 . As a special case of the above lemma, we investigate the 
existence of a parameter sensitivity in a model driven by a compound Poisson 
process. The likelihood density is then

=  exp b(Afl -  As*,,) +  ( ^ p ( A  X T) j \  , (8 .12)

where A# =  i/#(M) and Afl+tf =  i/0+1?(R) are the jump intensities of the two 
processes. Applying Ito’s lemma to equation (8 .12), one obtains the dynamics

dLe^{t) = LeA t~) ~ *?-H>)dt + J  ~  *) dt)j ,

where /  is the density of the jump size distribution. The likelihood function 
can thus be written as

Le,d(t) =

1 + J  L 6j (t - )  (̂A 0 -  A 0+ti)dT +  J  ~  n ( d x , d r ) SJ .

The random variable F, where is again the price function of a contin­
gent claim, can be written as

F  =  E0[F] + f  f  p e(T,x)(n(dx, dr)  -  ve{dx)dr).
Jo JR
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For the sensitivity we then obtain

i ( E s+tf[y |^ t] - E s[ y |^ t])

Tt

If efe exists and the expression

r r \af \ (^e+dfe+d ~ ^e fe \  L o j {t )P( x , t ) I ------------ - -------------- 1

can be bounded by an integrable function, the sensitivity of the contingent 
claim with respect to the parameter 9 exists and is given by

£  Le y { T ) P ( x , T) ^ { \ e f e ) d i T

Exam ple 2. Another interesting special case of the general Levy process 
case is obtained if one only looks at the continuous part of the Levy process, 
that is if one considers a Brownian motion with drift.

X t = 'jet +  aeWt.

The likelihood process is then

t u\  ( l e ~  le+0 TJ/ 1 (70 -  70+i?)2 ̂LM (t) =  exp --------   Wt -  --------- --------- ~2-1 .
\  0-0 2 ae J

This can be written as

= 1 +  f  Lej ( T - ) ~e — —dWT.
Jo &6'0

The random variable Y  can be written as

*T

'o
r  = E[Y]+ / ae(T)dWT. 

Jo
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If the drift fie is a differentiable functions of 6 and the processes

r ( \ ( \  ̂ 'YQ
L e A r ) M r ) ~  ( — *— )

can be dominated by integrable processes, then the derivative of Eg[y| 
exists and is given by

Ft

For a simple t-claim with price process c(t, St) the process ae(r) is

a e{r)  =  cs (t , S t ) ctS t .

Exam ple 3. The discounted option price c{t, St) of a European vanilla 
option in the variance gamma model cap be written as

c(i, St) = c(0 , S0) +  [  [ (c(r, ST~ex) -  c(t, ST-))(fi(dr, dx) -  i/0(dx)dr) 
do d®

Identifying

Y  = c(T,S t ),

E[y] = c(0 ,5 o), 

a 0(r) =  0,

A?(r, x) =  c(t, ST-ex) -  c(r, ST_),

the sensitivity ^E#[y|.Ft] becomes 

=  1d.6 1 lJ LeAt)

[ [  d/0,1?(t) lim [  (c{r,ST-ex) -  c(r, ST-))-^ i/e(dx)di
[Jt £̂ ° d r\{-£>£}

As an example we calculate the sensitivity with respect to 6, the drift of the
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Brownian motion in the variance gamma model. This sensitivity is
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Figure A.l: Price of a call option with strike K = 50 in the Merton model
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Figure A.2: Vega of a vanilla call option in the Merton model
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Figure A.3: Rho of a vanilla call option in the Merton Model
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Figure A.4: Sensitivity with respect to changes in the jump intensity A of a 
vanilla call option in the Merton model
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Figure A.5: Sensitivity with respect to changes in the standard deviation 6
of the jump size distribution of a vanilla call option in the Merton model
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Figure A.6 : Sensitivity with respect to changes in a  of a vanilla call option 
in the variance gamma model
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Figure A.7: Sensitivity with respect to changes in 6 of a vanilla call option
in the variance gamma model
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Figure A.8 : Sensitivity with respect to changes in n of a vanilla call option 
in the variance gamma model
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Figure A.9: Sensitivity with respect to changes in C  of a vanilla call option
in the CGMY model
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Figure A. 10: Sensitivity with respect to changes in Y  of a vanilla call option 
in the CGMY model
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Figure A.11: Lookback option in the Merton model w(z, t )  =  ^ c(l,s,M )
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Figure A. 12: Sensitivity with respect to changes in a of a lookback option in 
the Merton Model
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Figure A. 13: Sensitivity with respect to changes in A of a lookback option in
the Merton model
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Figure A. 14: Sensitivity with respect to changes in J of a lookback option in 
the Merton model
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Figure A. 15: Lookback option in the variance gamma model
wCM) = m C( l’ S’ M)
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Figure A. 16: Sensitivity with respect to changes in a of a lookback option in 
the variance gamma model
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Figure A. 17: Sensitivity with respect to changes in k of a lookback option in
the variance gamma model
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Figure A. 18: Sensitivity with respect to changes in 9 of a lookback option in 
the variance gamma model
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Figure A. 19: Asian option in the Merton model w(t , z) =   ̂c(£, s, a)
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Figure A.20: Sensitivity with respect to changes in A of an Asian option in 
the Merton model
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Figure A.21: Sensitivity with respect to changes in a of an Asian option in
the Merton model
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Figure A.22: Exchange option v{t, z) = 4 c(t, s, s)
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Figure A.23: Sensitivity with respect to changes in p of an exchange option
in the Merton model
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Figure A.24: Sensitivity with respect to changes in g of an exchange option 
in the Merton model


