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Abstract

The excursion time of a Levy process measures the time it spends continuously 
below or above a given barrier. This thesis contains five papers dealing with the 
excursions of different Levy processes and their applications in mathematical finance 
and insurance. Each of the five papers is presented in one of the chapters of this 
thesis starting from Chapter 2.

In Chapter 2 the excursions of a Brownian motion with drift below or above 
a given barrier are studied by using a two-state semi-Markov model. Based on 
the results single barrier two-sided Parisian options are studied and the explicit 
expressions for the Laplace transforms of their price formulae are given.

In Chapter 3 the excursion time of a Brownian motion with drift outside a 
corridor is considered by using a four-state semi-Markov model. The results are 
used to obtain the explicit expressions for the Laplace transforms of the prices of 
the double barrier Parisian options.

In Chapter 4 Parisian corridor options are introduced and priced by using the 
results of the excursion time of a Brownian motion with drift inside a corridor.

In Chapter 5 the main focus is the excursions of a Levy process with negative 
exponential jumps below a given barrier. Based on the results, a Parisian option 
whose underlying asset price follows this process is priced, as well as a Parisian type 
digital option. This is the first ever attempt to price Parisian options involving 
jump processes. Furthermore, the concept of ruin in risk theory is extended to the 
Parisian type of ruin.

In Chapter 6 the excursions of a risk surplus process with a more general claim 
distribution are considered. For the processes without initial reserve, the Parisian 
ruin probability in an infinite time horizon is calculated. For the positive initial 
reserve case, only the asymptotic form can be obtained for very large initial reserve 
and small claim distributions.



Chapter 1

Introduction

The excursion time measures the time a process spends above or below a given 

barrier. More precisely, the excursion time below (above) a barrier starts counting 

from zero each time the process crosses the barrier from above (below) and stops 

counting when the process crosses the barrier from below (above). Mathematically, 

for a continuous process S  the excursions with respect to the barrier L can be defined 

as follows:

gsLt =  sup{s < t | Sa = L}, dsLt =  inf{s > t \ S s = L}

with the usual convention, sup{0} =  0 and inf{0} =  oo. The trajectory between 

pf t and d f t is the excursion of process S  above or below L, which straddles time t. 

Assuming d\ > 0, c?2 > 0, we now define

tI l =  inf {* > 0 | l{st>L} (t -  g it)  > di} ,
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t 2 , l  = inf {t > 0 | l{5t<L} (t ~  g l,t) > d2} ,

Ts _  s  A s
T L  —  1,L A  r 2,L-

r f L is therefore the first time that the length of the excursion of the process S  above 

the barrier L reaches given level d\\ r^L corresponds to the one below L; and t£  

is the smaller of r f L and For a jump process, similar definitions are given in 

Chapters 5 and 6.

The excursion time has very important applications in both mathematical fi­

nance and insurance. In mathematical finance, it is the key to price a type of path 

dependent options, Parisian options.

The Parisian option was first introduced by Chesney, Jeanblanc-Picque and Yor 

[13]. Its payoff does not only depend on the final price of the underlying asset, 

but also its price trajectory during the whole life span of the option. A Parisian 

option will be either initiated or terminated upon the price reaching a predetermined 

barrier level L and staying above or below the barrier for a predetermined time D 

before the maturity date T. Here are two examples. The owner of a Parisian down- 

and-out option loses the option if the underlying asset price S  reaches the level L 

and remains constantly below this level for a time interval longer than D. For a 

Parisian down-and-in option, the same event gives the owner the right to exercise 

the option. Now assume S  is the price of the underlying asset following a geometric 

Brownian motion:

dSt =  rStdt +  aStdWt, So = x, x > 0, (1.1)

2



where Wt with Wo = 0 is a standard Brownian motion under a risk neutral measure 

Q. Also assume r is the risk-free rate, T  is the term of the option, K  is the strike 

price. The price of a Parisian down-and-out call option with the barrier L can be 

expressed as:

>T} (St ~  K f )  ■

and the price of a Parisian down-and-in put option is:

P io w n —in—put =  & -tT E q  ( l { r s L < T }  { K  -  S T ) + )  .

One advantage of Parisian options is that the cost is lower than the corresponding 

barrier options and for the knock-out options the owner can keep the right to exercise 

the options longer. Furthermore, to a certain degree, Parisian options protect the 

holders from deliberate action taken by the writers. One example is the down-and- 

out options. For a barrier down-and-out option, when the price of its underlying 

asset is approaching the barrier, an influential agent who has written the option 

could try to push the price below this barrier, even momentarily, to make the holder 

lose the right to exercise it and benefit from the elimination of liabilities. In the 

case of Parisian options, however, this action might prove more difficult or more 

expensive. For more details see [13].

There are many works concerning the pricing of Parisian options. See for example 

[13], [38], [46] and [37]. From (1.1) it is clear that in order to study the excursions 

of the asset price S  we just need to study the excursions of the Brownian motion

P down—out—call ^ tTEq



W , on which S  depends. In all works mentioned above the pricing problem was 

reduced to finding the Laplace transforms of the distribution density functions of 

the first time the length of the excursion of W  reaches level D, i.e. t ^ ,  i = 1,2 and 

the position of the process W  at time r ^ ,  i =  1,2. These were obtained by using 

the Brownian meander and the Azema martingale (see [5]). A restriction of this 

technique is that it relies heavily on the properties of standard Brownian motions; 

therefore the result cannot be extended to other processes easily. It is also hard to 

see how it can be used for the pricing of the more complicated options that we will 

introduce.

In Chapters 2, 3, 4 and 5, a different approach is adopted. For the single barrier 

Parisian options studied in Chapter 2, a two-state semi-Markov model is considered. 

This model, however, cannot be applied to Brownian motions directly due to the 

peculiar properties of the sample paths of Brownian motions. A major problem is 

the occurrence of an infinite number of very small excursions. In order to solve these 

problems a new process, perturbed Brownian motion, X where e > 0 is introduced 

as follows. Assume L = 0 and is a Brownian motion with non-negative drift 

and it starts from zero. Define a sequence of stopping times

So — 0,

(jn =  inf {t > 6n | W f = -e }  ,

<5n+i =  inf { t > a n \ W?  =  0} ,

4
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Figure 1.1: A Sample Path of 

where n — 0,1, • • •. Now define

. W? +  e, if 8n < t < an 
x j  = < , (see Figure 1.1).

Wf,  if an < t <  6.n+l

By introducing the jumps to the original Brownian motion, we get the new 

process X ^  which has a very clear structure of excursions above and below zero, 

i.e. the excursions above and below zero alternate with the length of each excursion



greater than zero. It will be proved in Chapter 2 that the Laplace transforms of the 

variables defined based on converge to those based on as e goes to 0. As 

a result, we can obtain the results for W*1 by carrying out the calculations for 

and taking the limit e —► 0. Hence we will focus on studying the excursions of X ^  

and introduce a two-state semi-Markov model based on it. Set

Z x = {
1, if X,(e) > L

2, if X,(e) < L

We can now express the variables defined above in terms of Z x :

§L ,t =  sup {s < f I Z x  ^  Ztx } ,

d L,t = inf {s > f | Z *  ^ Z f }  , 

t *l =  inf {f > 0 I 1{ZX=1} (f -  g ^ t) > di} ,

t 2 , l  = inf {* > 0 | l{zx=2} (* - g?,t)  ̂<&} ,

n-X  —  n -X  A r X
r L  = r l , L A T 2,L-

We then define

V x  - t - n x  vt ~ 1 9l,v

the time Z x  has spent in its current state. It is easy to see that (Z X, V X) is a 

Markov process. Z x  is therefore a semi-Markov process with the state space {1,2}, 

where 1 stands for the state when Z x  is above the barrier and 2 corresponds to the 

state below the barrier.



Furthermore, we set Uxk, i = 1,2 and k = 1,2, • • • to be the time Z x  spends in 

state i when it visits i for the kth  time. And we have, for each given i and k ,

u& = Vd lt = dL,t ~  9L,t, for some t.

Notice that given i, Uxk, k = 1,2, • • • , are i.i.d. We therefore define the transition 

densities for Z x :

F%3K } At^O A t

More precisely, according to the definition of Z x , we actually have the transition 

densities for Z x  as follows:

rX JX „x

Based on the countable and alternating structure of the excursions above and be­

low the barrier, together with the transition densities we have obtained there, the 

Laplace transforms of txl , txl and r x  can be easily calculated. Taking the limit 

e —► 0 yields the Laplace transform of tJJJ*, and where is a Brownian 

motion with drift.

For the double barrier case related to the double barrier Parisian options and the

Parisian corridor options in Chapters 3 and 4, a doubly perturbed Brownian motion

and the four-state semi-Markov model are introduced. In this case, however, the

alternating structure of the excursions does not exist anymore. In order to calculate

the Laplace transforms of the relevant stopping times, a more advanced technique
7



using the generator of the process is needed.

One of the main differences between the approach in this thesis and the one 

in [13] in terms of pricing is that, instead of looking for the Laplace transform of 

the stopping time for W, e.g. t^ l , and the position of W  at the stopping time, 

e.g. WTw , the Laplace transform of the stopping time for a Brownian motion with 

drift W 1* is obtained, e.g , using which the joint probability of the right to 

exercise the option with respect to an exponential time and the position of W  at the 

exponential time, e.g. P  ( t^ l < W f E dx^ for a Parisian down-and-in option, is 

calculated, where T, independent of W, is exponentially distributed. The explicit 

form of the Laplace transform of the option price then can be obtained using this 

joint probability. Even in the single barrier one-sided case, the formula derived in 

this thesis involved one integral less than the formula in [13].

Moreover, pricing Parisian options with a jump process has also been attempted 

in this thesis. A classical surplus process in continuous time {At}t>0 is considered, 

which is defined by
N t

Xt =  U  + ct -  Yk,
k=0

where u > 0 is the initial reserve, c is a constant rate of premium payment per 

time unit, Nt is the number of claims up to time t which has a Poisson distribution 

with parameter A, and Yk, k =  1 , 2 , . . . ,  are claim sizes which are independent and 

identically distributed non-negative random variables that are also independent of 

Nt. We also assume c > XE (Yi) (the net profit condition). Our underlying asset 

price follows

St =  exp (X t) , with So = eu,

8



Since the process itself has the countable and alternating structure of excursions 

above and below zero, a similar technique as that in Chapter 2 can be directly applied 

to obtain the Laplace transform of the stopping time we are interested in, so as the 

Laplace transform of the option price. The transition densities required to complete 

the calculation can be calculated by inverting their Laplace transforms, which can 

be obtained by applying the optimal sampling theory to certain martingales.

As mentioned at the beginning, another application of the excursion time is 

in insurance. According to the bankruptcy regulations in many counties, such as 

U.S., Japan and Prance, the defaulted firm is granted some ”grace” period before 

liquidation, during which the firm is given the chance to reorganize and to put its 

finance back in order. As a result, instead of the classical ruin, it makes more sense to 

consider the risk of a Parisian type of ruin, for which to occur, the surplus process 

must fall below zero and stay negative for a continuous time interval of specified 

length.

Two cases are discussed here, one with zero initial reserve, i.e. u = 0 and one 

with positive initial reserve, i.e. u > 0. With zero initial reserve, the probability 

of a Parisian type of ruin ever occurring is calculated, which can not be done for 

a general u > 0 and a general claim distribution. An asymptotic form is obtained 

for large u and small claim size. For an exponential claim distribution, however, an 

explicit form for the Parisian ruin probability in the finite time horizon is calculated 

for a general u > 0.

In Chapter 2, the excursion time is studied in a more general framework using a 

simple semi-Markov model consisting of two states indicating whether the process is

9



above or below a fixed level L. Based on these results, for the first time, the explicit 

form of the Laplace transforms of the prices of the single barrier one-sided Parisian 

options defined in [13] are given. One can then invert the Laplace transforms using 

techniques as in [38].

Furthermore, the single-barrier two-sided Parisian options are studied. In con­

trast to the Parisian options mentioned above, the excursions below and above the 

barrier should both be considered. The explicit forms of the Laplace transforms for 

the prices of this type of options are also obtained.

In Chapter 3 the excursion time outside a given corridor is studied using a semi- 

Markov model consisting of four states. Applying these results gives the explicit 

forms of the Laplace transforms for the prices of double barrier Parisian options.

In Chapter 4 the main focus is on the excursion time inside the corridor. By using 

the similar technique as in Chapter 3 the explicit forms of the Laplace transforms 

for the prices of Parisian corridor options are calculated.

In Chapter 5 the excursions of a classical surplus process with negative exponen­

tial jumps below a given level are studied. Based on the result, pricing a Parisian 

option and a Parisian type digital option, whose underlying asset prices follow this 

jump process is attempted for the first time. The Parisian type of ruin is introduced 

here and the explicit form for the Parisian ruin probability in the finite time horizon 

for exponential claims is calculated. Moreover, a diffusion approximation is carried 

out to obtain similar results for Brownian motions with drift.

In Chapter 6 the Parisian ruin probabilities are studied for a general claim distri­

bution. The probability of ruin in the infinite horizon is obtained for the processes

10



without initial reserve. For positive initial reserve case, only an asymptotic form 

for large initial reserve can be obtained for small claim distributions. It is shown 

that in the small claim case an asymptotic formula similar to Cramer’s formula, i.e. 

Ce~ru where u is the initial reserve, is true.

Each of Chapters 2, 3, 4, 5, and 6 are independent papers. To keep the papers 

as self-contained as possible, some definitions and preliminary results are repeated 

in each paper.

11



Chapter 2

Perturbed Brownian M otion and 

Its Application to  Parisian Option  

Pricing

12



A bstrac t

In this paper, we study the excursion time of a Brownian motion with drift below 

and above a given level by using a simple two-state semi-Markov model. In math­

ematical finance, these results have an important application in the valuation of 

path dependent options such as Parisian options. Based on our results single barrier 

two-sided Parisian options are priced.

Keywords: excursion time, two-state semi-Markov model, path dependent op­

tions, Parisian options, Laplace transform.
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2.1 Introduction

The concept of Parisian options was first introduced by Chesney, Jeanblanc-Picque 

and Yor [13]. A Parisian option is a special case of path dependent options. Its 

payoff does not only depend on the final price of the underlying asset, but also its 

price trajectory during the whole life span of the option. More precisely, a Parisian 

option will be either initiated or terminated upon the price reaching a predetermined 

barrier level L and staying above or below the barrier for a predetermined time D 

before the maturity date T.

There are two different ways of measuring the time , spent above or below the 

barrier, corresponding to the excursion time and the occupation time defined below. 

The excursion time below (above) the barrier starts counting from 0 each time the 

process crosses the barrier from above (below) and stops counting when the process 

crosses the barrier from below (above). The occupation time up to a specific time t 

adds up all the time the process spend below (above) the barrier; it is therefore the 

summation of all excursion time intervals before time t. In [13] the Parisian options 

related to the occupation time are called cumulative Parisian options.

The owner of a Parisian down-and-out option loses the option if the underlying 

asset price S  reaches the level L and remains constantly below this level for a time 

interval longer than D. For a Parisian down-and-in option the same event gives 

the owner the right to exercise the option. The owner of a cumulative Parisian 

down-and-out option loses the option if the total time the underlying asset price 

S  stays below L up to the end of the contract for longer than D. For details on 

the pricing of Parisian options see [13], [37], [38] and [46]. For cumulative Parisian

14



options see [13] and [41] and since these are related to the occupation times and 

hence the quantiles of the process, also see [1], [17] and [42]. For American Parisian 

options, see [11]. In this paper, we focus on the Parisian option defined upon the 

excursion time.

From the description above, we can see that the key for pricing a Parisian option 

is the derivation of the distribution of the excursion time. As in [13] we first focus 

on finding the Laplace transform of the first time the length of the excursion reaches 

level D. In [13] this was obtained by using the Brownian meander and the Azema 

martingale (see [5]). A restriction of this technique is that it relies heavily on the 

properties of standard Brownian motions; therefore the result cannot be extended 

to other processes easily. It is also hard to see how it can be used for the pricing of 

the more complicated options that we will introduce.

In this paper, we are going to study the excursion time in a more general frame­

work using a simple semi-Markov model consisting of two states indicating whether 

the process is above or below a fixed level L . By applying this model, we can, for 

the first time, get the explicit forms of the Laplace transforms for the prices of the 

Parisian options defined in [13]. One can then invert the Laplace transforms using 

techniques as in [38] and [6].

Furthermore, we study the single-barrier two-sided Parisian options. In contrast 

< to the Parisian options mentioned above, we consider the excursions both below and 

above the barrier. Let us look at two examples, depending on whether the condition 

is that the required excursions above and below the barrier have to both happen 

before the maturity date or that either one of them happens before the maturity.

15



In one example, the owner of a Parisian Max Out option loses the option if the 

underlying asset price S  has both an excursion above the barrier for longer than 

d\ and below the barrier for longer than before the maturity of the option. In 

another example, the owner of a Parisian Min Out option loses the right to exercise 

the option if there is either an excursion above the barrier for longer than di or 

below the barrier for longer than g?2 before the maturity. For more details, see [12]. 

Later on, we will give the explicit forms of the Laplace transforms for the prices of 

this type of options.

In Section 2.2 we give the mathematical definitions and set out the model. We 

also introduce a new process, perturbed Brownian motion, which has the same be­

havior as a Brownian motion except that each time when it hits 0, it jumps towards 

the other side of 0 by size e. In Section 2.3 we present an important lemma for 

the perturbed Brownian motion together with its proof, which will be used in the 

following sections. We give our main results for Brownian motions in Section 2.4, 

including the Laplace transforms for the stopping times we define for both Brownian 

motions with drift and standard Brownian motions, which are vital for the pricing. 

In Section 2.5 we focus on pricing our newly defined Parisian options by using the 

results in Section 2.4. As a special case, we also give the explicit forms of the Laplace 

transforms for the prices of the Parisian options studied in [13] for the first time. 

In [13] these were given in the form of double integrals. Using a different approach 

yields explicit results in our paper (see remark after Corollary 2.4.3.1 later).

16



2.2 Definitions

We are going to use the same definition for the excursion as in [13], [14] and [43], 

Let L be the level of the barrier and assume S  is the price of the underlying asset 

following a geometric Brownian motion:

dSt = rStdt +  aStdWt, So = x, x > 0, (2.1)

where Wt with Wo =  0 is a standard Brownian motion under a risk neutral measure 

Q. As in [13], we define

gsL t =  sup{s < t | Ss = L}, dsL t =  inf{s > t \ Ss = L} (2.2)

with the usual convention, sup{0} =  0 and inf{0} =  oo. The trajectory between

g^ t and dsL t is the excursion of process S , which straddles time t. Assuming di > 0, 

d2 > 0, we now define

ti ,l = inf {* > 0 I 1(st>L} (t -  g it)  > d i } ,  (2.3)

t2,l =  inf {t > 0 | l{ St<L} {t -  gsL t) > d2} , (2.4)

rL = T1,L A T~2,L’ (2-5)

Tf L is therefore the first time that the length of the excursion of the process S  above 

the barrier L reaches given level d\\ t 25l  corresponds to the one below L\ and r f  is 

the smaller of r f L and r^L.

17



Assume r is the risk-free rate, T  is the term of the option, K  is the strike price, 

S  is the underlying asset price defined as above. If we have an up-out Parisian call 

option with the barrier L , its price can be expressed as:

^ \ ip —out—call =  e  r T E q  ( i - j r f l > t }  ( $ T  ~  ^ 0 + )  5

and the price of a down-in Parisian put option with the barrier L is:

Pdown—in—put ~  6  E q  ^  •

Without loss of generality, from now on, we assume L = 0. We simplify the

expressions of g^t, d%t, r05, r f 0 and t 250 by gf, d f , r 5, r f  and r25.

Prom (2.1) we can see that in order to study the excursion of the asset price S  we 

just need to study the excursion of the Brownian motion W. However, the peculiar 

properties of the sample paths of Brownian motions result in many difficulties. A 

major problem is the occurrence of an infinite number of very small excursions. 

In order to solve these problems we introduce a new process, perturbed Brownian 

motion, X ^ \  where e > 0 as follows. Assume is a Brownian motion with 

non-negative drift and it starts from 0. Define a sequence of stopping times

So — 0,

an =  inf {t > Sn | Wt =  —e} ,

6n + 1 =  inf {t > on | =  0} ,

18
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Figure 2.1: A Sample Path of 

where n = 0,1, • • •. Now define

Wf  +  e, if 6n < t < a n 
Xf —  ̂ , (see Figure 2.1).

if an < t <  8n+1

By introducing the jumps to the original Brownian motion, we get this new 

process X ^  which has a very clear structure of excursions above and below 0, i.e. 

the excursions above and below 0 alternate with the length of each excursion greater
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than 0. In the later section we prove that the Laplace transforms of the variables 

defined based on X ^  converge to those based on as e goes to 0. As a result, we 

can obtain the results for W M by carrying out the calculations for and taking 

the limit e —» 0; for more details see Theorem 2.4.1. Hence we will focus on studying 

the excursions of X ^  in the rest of this section and next section.

Prom the description of the excursion above, it is clear that we are actually 

considering two states, the state when the process is above the barrier and the state 

when it is below. For each state, we are interested in the time the process spends 

in it. We introduce a new process based on X^e\

Z ? =  I
1, if X{‘] > 0

2, if X (e) < 0

In this definition, we deliberately ignore the situation when Z.x  = 0. It is because 

process Z x  satisfies

[  l{z^=o}dw =  0.
Jo

We can now express the variables defined above in terms of Z x :

9t = sup {s < 1 1 Z x  ^  Z x } , (2.6)

d f  = inf {s > t | Z x  ^  Z x ) , (2.7)

T\ =  inf {t > 0 | {t ~  9 t)  > ^l} , (2.8)

r2x  =  inf > 0 | 1 {Z*=2} (* ~ 9 t)  > ^2 } , (2.9)
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Tx  =  Tx  A i f .  (2 .1 0 )

We then define

Vtx  = t - g x ,

the time Z x  has spent in its current state. It is easy to see that (Zx , V x ) is 

a Markov process. Z x  is therefore a semi-Markov processes with the state space 

{1,2}, where 1 stands for the state when Z x  is above zero and 2 corresponds to the 

state below zero.

Furthermore, we set Uxk, i = 1,2 and k = 1,2, • • • to be the time Z x  spends in 

state i when it visits i for the kth  time. And we have, for each given i and k ,

Ui\k =  vJxt = d x  -  gx , for some t.

Notice that given i, Uxk, k = 1,2,--- , are i.i.d. We therefore define the transition 

densities for Z x :

P s(1),  ,im +
yi3K J At^o A t

Pij(t) = P ( U x < t ) ,  Pij(t) = P { U x > t ) .

We have

pij(t) = [  Pij(s)ds = l - P i j ( t ) ,  
Jo

which is actually the probability that the process will stay in state i for no more 

than time t. More precisely, according to the definition of Z x , we actually have the
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transition densities for Zx  as follows:

Pl2(s) = p|pexp{JHr£}- (2-n)
(2-i2)

where P i 2 ( s )  is actually the density of the first time that a Brownian motion with 

drift started from e hits 0 and P2i(s) is the density of the first time that a Brownian 

motion with drift started from —e hits 0 .

2.3 An Im portant Lemma

In this section, we will present an important lemma for X ^  together with its proof.

Lem m a 2.3.1 For the perturbed Brownian motion X^e\  we have the following re­

sults:

E  (exp { - a , i f  -  a 2 T2*} l{ Tx<Txj.) (2.13)

_  e-a'd' - md°P21(d2) / “  e-°»*p1 2 (s)ds 
G{d1,d2)

E  (exp { -a i- r f  -  a 2r2*} l { Tx >Tx f )  (2.14)

e-aidi-c?2<kP12(di) / “  e~aisp2i (s)ds Jgl e-(“i+Q2)sp1 2 (s)ds 
=  G idudk) ’

where

G(di,d2) = {-r e âi+a2^pi2 (s)ds J  e Q̂l+Q2̂ p2 i(s )d s |

( r°o pd2
| l  -  I e~a2Spi2(s)ds I e~Q2Sp2i{s)ds | .
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Proof: Let A* denotes the event that the first time the length of the excursion above 

zero reaches d\ happens during the ith excursion above zero, and the first time the 

length of the excursion below zero reaches d2 happens during the j th  excursion below 

zero. So we have,

E  (exp { - a n ?  -  a n ? }  1{T* <T*})
OO j

=  Y l i 2 E  (exp { - “ r f  -  a *T? }  4 ) p  ( 4 )  >
j=z 1 i—l

and

E  (exp { - a n ?  -  a2r? }  l{ Tx>T*})
OO OO

=  X )  X I  E  ( exp { ~ a iT ?  ~  a2T? )  | 4 )  P  ( 4 )  '
j = 1 i—j +1

Since excursions above and below alternate, given event j4J, t*  is comprised of i — 1  

full excursions below zero with the length less than d2, i — l full excursions above 

zero with the length less than d\ and the last one with the length d\. We have

.x A) -  U*i +  U*2 H 1- ^ i* -i +  U2l +  U*.2 H------ h U2i_i +  di,

where U*k < d\ for k = 1 , • • • , i — 1 , U2k < d2 for k = 1 , • • • , j  — 1, > d\ and

U*j > d2. For simplicity, we denote the above condition of U*k s by C. Similarly, 

for r2 , we have

.x A) — U*i +  U*2 H h Ui j +  U2l +  U2>2 H 1- +  d2,
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where s satisfy the condition C.

More importantly, due to the Markov property of X^e\  these excursions are 

independent of each other, t/j^ ’s have distribution P 1 2 ; U*n's have distribution P2 1 . 

As a result, when i < j ,

E  ^exp {— a\T* — OL2J 2 '} |4 )

=  E  I exp |  +  u & ) +

- “ 2 (  E  K b  +  u*k) +  U?J +  d2 }  )

i —1

k=1

_ g-QJidl— Ot2d,2

{ £

{£

u :
>-(011+0:2)3 P n (s

c
i —1

Pii(d
Id,}
1) J XJch Pn(di) J

e Q2Spi2 (s)dsnr ,—0(23 P2l (s)e ^  ds 
^ 2 1 (^2 ) r

-(ai+g>)a P2 l(s) ,

and

P(M)  = P12(d1)i- 1P21(d2y - 1P12(d1)P21(d2).

We have therefore

E  ^exp {—a ir*  — olit* }  1 { + < + } )

= _a272r}|4)p(4)
00 3

j = l  i=l

e-aidl_Q2d2P21(d2) j™ e~a2Upi2 (s)ds
G(du d2)

The proof of the case when t* > t*  follows the same steps. 

□
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Rem ark: We can get E  (exp {— a ir*  — a^r^}) by adding up (2.13) and (2.14).

2.4 M ain R esults

In this section we show how to obtain results for Brownian motions through X^e\

In order to simplify the expressions, we define

^(z) =  2 ypKxJV {^/2x^j — y/nx +  e x2,

where «/K(.) is the cumulative distribution function for the standard Normal distri­

bution.

Theorem  2.4.1 For a Brownian motion with Wj) = 0, p > 0, and

r wtl defined as in (2.3), (2.4) and (2.5) with S  = W^, we have following Laplace 

transforms:

E ( e - ^ l { r r <r r } )
(2 (S+H2)dx (2(3+(j,2)d,2

e - «

E  ( e ~ ^  l { T r > T r } )
s f & [  j & i p k

e -M

(2.17)

e~Pdl

(2j9+/i2)d1 (2 0+n2)d2

25



For a standard Brownian motion, the special case when p = 0, we have

, - 0di

E { e *  + ( 2 ' 1 8 )

E(e-<* 1{TW>TW}) =  W & W W S ) '  ( 2 ' 1 9 )

E ( e - ^ w)  =  +  ^ e~” *____   (2 .2 0 )
' ' \ / ^ ^ r (y/j3di) +  y/di*  ( \ / fid^

Proof: We prove in the appendix that

E  ( e - ^ l { r r< T r , }) = l im £  ( e - ^ Xl K < r * })

We have therefore

E (e /3r l { Tjr-<rf»-}) -  E ( e 0Ti

Similarly, we can get

E (e~0T 1 {r«"‘>r«"‘}) =  ^ ( e - ^ 2

= S s ^ ^ 1^ } ) -

According to (2.13) and (2.14) of Lemma 2.3.1., we can actually calculate that

e~PdlP12(di)
£ ( e - ^ l K < T , }) =  — / 0dl e~Psp12(s)ds / d2 e -^ p 2i(s)ds

26



E ( e~*f  l r x  xX) =  e~Sdlp^ t i l e ~ > l^ ds 
v | T1 > r 2 }/ i _  J dl e~Pspi2(s)ds Jq2 e~Psp2i (s)ds’

where

Pi2(di) =  1  -  e~2̂ j V  ^p y /d i -  -  J /  ^ - p \ [ d x -  ,

P2i(d2) = 1 - ^ V  (py f tk  -  ~^= Ĵ ~ (^ -p \ fd2 ~  ,

J  e~0up12(u)du = g -^+ V 2̂ 2)6̂  ^ y / (20 +  p2) d1 -

+ e( v ^ ^ - M ) e ^  ^ (2/? +  //2 )dl _  ?

J  e~Pup21(u)du . =  e ^ -V 2̂ 2) 6̂  ^ (2/5 +  /z2) d2 -

+ c ( m + v ^ ) € ^  ^-V (2/3 +  /z2 )d2 - - | = ^  .

By taking the limit e —► 0, we obtain (2.15) and (2.16). Adding up (2.15) and (2.16) 

give (2.17).

□

R em ark: A similar result for a standard Brownian motion, i.e. p = 0 in the 

case when double barriers are considered can be found in [2 ].

If we let (3 —» 0, we get the following remarkable results.

Corollary 2.4.1 . 1  The probability that W M achieves an excursion above 0 with
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length as least d\ before it achieves an excursion below 0 with length at least

is

, / d & L J % )  + / m / ^r.>(-W» ^ JW*\ _  V V 2 /  ^ V 2 (o oi\
F (r l < T2 ) =   7-7= 7---------------- 7-----7= T -  (2 -2 1 )

\/^ 2 ^  ( v y  J +  y  - f j

Similarly, for a standard Brownian motion we have

' < * < * >  ■  - J t T T K -  <“ >

-  v r h s  {2 S '

R em ark  1 : The result stated by (2.22) has also been obtained in [2]. However, 

the result for Brownian motions with drift, (2.21) is presented here for the first time.

R em ark  2: If we set d\ =  =  d in (2.22) and (2.23), we have for a standard

Brownian motion

p  (riv < rD  = p  ( jV  > t ? )  =

which can be explained by the symmetry of standard Brownian motions.

R em ark  3: For a Brownian motion with positive drift, by setting d\ =  ^ 2  =  d 

in (2 .2 1 ), we have

II /  i i  j

P ( - r r < r D = \  + ^ y > i  n r r > r D  = \ - ^ < \ ,

because it has a tendency to move upwards.

If we only consider the excursion below 0, we have the following results.
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Corollary 2.4.1.2 For a Brownian motion W M with Wq = 0 and t.g defined as

in (2.4) with S  = W^, we the have the Laplace transform for t™1* :

/  e_/?d2 I * (W?) -
£  ( e - ^  )  =  A  A V 2 1 V 2- / .. (2.24)

' ^ (2/3+M2)rf2~ j _|_ (2(3+ n2]dfiz

When p =  0, we have the result for a standard Brownian motion:

( i2 5 )

Proof: When di —> 0 0 , we have T\ —» 0 0 , therefore t 5  —> r.f.

As a result, we have

di 

□

R em ark: As one of the most important results, (2.25) has been obtained in [13]. 

But the result for Brownian motions with drift, (2.24) is presented here for the first 

time.

So far we have been considering the case when the process starts from 0 and the 

barrier level is set to be 0. In practice, however, the barrier is different from the 

starting point of the underlying asset price in most cases. Therefore, in order to 

price the options, we introduce the following theorems and corollaries.

Theorem  2.4.2 For a Brownian motion W M with Wq = 0 and barrier L = I, the 

Laplace transform of is given by
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when I < 0,

E  (2.26)

+  ( v W V M  +  - j A

(~y/ (2P + fl3)d1 + |

e - «  Vd2 { *  ( /x ^ /f )  +  / x ^ f Z }  + e - ^ V d l  { *  ( / x ^ f )  ~

^  ( J s s ± f K \  + ^  L j l m p ! k \

when I > 0 ,

E  (e~0r!vl‘') (2.27)

+e('i+v/̂ + '? ),^  f - y / ( 2 0 T / ^ R  -  ^ = )  |

e - ^ V d i  { *  ( /x ^ /f )  +  + e ~ ^ V c T i{ ^  {» \[% ) ~

V d &  ( j o e + j p t S  + ^  L j O S ± f h \

Proof: We only prove the case when I < 0. The same arguments apply to the case 

when I > 0. Define

Ti =  inf {£ > 0  | =  1} .

The left hand side of (2.26) can be expressed as follows

E  ( e - ^ )  =  E  ( e - ^ l {T,>Jl}) +  E  ( e '13̂ " l {Tl<dl})  .
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Moreover, we have

E  ( e - ^  = e - M p W t c h )

= e“*‘ j1 - * * *  + i )  - ^ (" ^  + i )  }

=  £  ( e - ^ i p j ^ j )  £  ( e - ^ )  =  £  (e-m l m<dl}) E  ( e ^ )

where W M stands for a Brownian motion starting from I. We have obtained E (e~^rW  ̂

in Theorem 2.4.1. We also have that

E (e~0Tll {Tl<dl})

=  C e ~ * ^ h e *p { J 1 = £ l } ds

=  ei^'Sw + i'2) ‘j r  (^ (2 /3  +  n2) d, +  - j = \  +  JY  +

We have therefore proved (2.26).

□

We will now extend Theorem 2.4.2 to obtain the join distribution of t™ and W  

at an exponential time. This will be an application of (2.26), (2.27) and Girsanov’s 

theorem.

Theorem  2.4.3 For a standard Brownian motion W  with W q  — 0, and r ^  defined



as in (2.5) with S  = W  and L = I, we have the following results:

For the case I > 0, when x > l ,

P ( w f e  d x ,r ^  < f )  = { a (d !)e - '4 i<*-,) + blP(x -  l ,dl t d2) \d x ;  (2.28)

when x < I

P  ( w f  G dx ,tY  < T  \ = {a(d2 )e'/^ (l“i) +  blP(l -  x, d2, di)} dx; (2.29)

For the case I < 0, when x > I,

p ( w f e d x , T ^  < t ) =  •[a(di)e-v^ (x- ,> +  6 2p ( x - ; >d1 ,d 2 )}dx; (2.30)

when x < I

P  ( w f  G dx ,t?  < f \  = la (d1)e'J*i(-x- v> +  b2p(l -  x, d2, dj)} dx; (2.31)

where T  is a random variable independent o f W , with an exponential distribution of 

parameter 7  and

°(*) = V? + V7̂ ) - e ™ - *  + %/2̂ ) } .

h  = e ~ ^ 1̂  ( - - ) =  + y /2 ^ h j  + ( - - ) =  -  v /2 ^ )  ,
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b2 = +  e ~ ,

=  7 V 2 ^ i e - ^ - 0  f e - »  e ^  v ( x - l
p ( ’y’ > ^ { ^ f y )  + ^ { ^ f z ) \ 2 ^ i n y  1-JW z \ V v  J

- J f  ( - \ / 2 to)  -  ^  ( —v/2tz) -  e ^ ^ j V  _  \ /2 r o ^  j  •

Proof: see appendix.

□

Similarly, we can obtain the result when we only consider the excursion below 

the barrier by taking the limit d\ —* oo.

Corollary 2.4.3.1 For a standard Brownian motion W  with Wo = 0 and t.^  de­

fined as in (2.4) with St = Wt and L = I, we have the following results:

For the case I > 0, when x > I,

P  (w f  e  dX,T% < f )  = +  6 'l5l(x -  l ) \ dx; (2.32)

when x < I

P  ( w f  € dx, < t ) = +  6 'l92(x -  /)} dx; (2.33)

For the case I < 0, when x >  I,

P  (w f  6  dx ,t ™ < T \  = +  b‘2qi(x -  01  dx; (2.34)
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when x < I

P  ( w f  6  dx, 7$  < f ) =  U \ e ^ x- l) + b'2q2{x -  I )} dx; (2.35)

where

a[ = -  {e  ^  -  e ^ ' j  , a'2 =  a (d2) ,

b[ =  6i, b'2 =  e ^ ‘,

9i(*) =  U  -
2y/iry~d2

2\/'K^d2J f  {\/2'yd2) +  e~^d2 J ’

. . y e '/^ xy/2ird2 f  e yd2 (  x  / \
q2 X 2\/'K')d2jV' (y/2jd2) +  e_ 7 d 2  \  2y/ir'yd2 +  \  \[d2 7  j  -

( - v ^ T * )  -  e - 2̂ * j r  -  y / W k \  \  ;

and where T  is a random variable , independent of W , with an exponential distri­

bution of parameter 7 .

R em ark: By using this result, we can calculate the explicit form of the Laplace 

transform of the price of the Parisian option defined in [13]. This approach is 

different from [13], where they try to find the Laplace transform of r™ and the 

density of WTw , and the Laplace transform is given in form of double integral. Our 

approach produces explicit expressions without integrals.
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2.5 Pricing Parisian Options

The result presented by (2.25) has been obtained in [13] and used to price Parisian 

options which consider the excursions at only one side of the barrier. Here we want 

to introduce a new type of Parisian options, considering the excursions at both sides 

of the barrier.

For example, we want to price a Parisian call option, the owner of which will 

obtain the right to exercise it when either the length of an excursion above the 

barrier reaches d\ , or the length of an excursion below the barrier reaches before 

T. Its price formula is given by

P w in —call—in = 6 E q  (̂»St K^j 5

where S  is the underlying stock price, L is the barrier level, Q denotes the risk 

neutral measure. The subscript min-call-in means it is a Call option which will be 

triggered when the minimum of two stopping times, r f  L and t£ l , is less than T, i.e. 

t£  < T. We assume S' is a geometric Brownian motion defined as in (2.8). Set
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By applying Girsanov’s Theorem, we have

P m in —call—in =  e ^ ^ E p  \ ( x e ^  -  K ) +  e mYn { r y < T }] ,

where P  is a new measure, under which Yt is a standard Brownian motion with 

Yq =  0. And we define

p *   t>(r + hm 2)T  p
m in—call—in ■‘■min—call—in'

We are going to show that we can obtain the Laplace transform of Pmin-caii-in w-r -f 

T, denoted by ££t - 

First of all, we have

EP [ { x f Y* -  K) + r Y* l {Tv< fh  

=  J  (x e -  K ) emyP  (Yf  e  dy, tJ  < T )

poo poo

=  /  'ie~yT /  (xe',y -  K) emyP  (VT e  dy, i f  <  T) dT  
Jo  Jb

=  7 J " [ ( xe°VT ~ K ) + emYr1K < r }]  dT  

= 7  S£t

Hence we have

y T =  ^ P  (xe°y -  K) emyP  (Yf  €  dy, tJ  <  t )  .

By using the results in Theorem 2.4.3, this Laplace transform can be calculated
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explicitly.

When b > 0,

where

f ( x )  =

when b < 0, i.e.

i.e. L > x, we have

=  x f ( a  +  m) -  K f ( m )
T +  V d i^  (V t^2 ) ’

f  e~ldx | e~^2
\/Zy — x  \  2y/7tydi 2y/'K'yd2

^  ( -V ^ y d i)  -  ( - a /2 7 ^2 ) |

L < X, we have

^  =  * xgjcr +  m) -  Kg(m)
T y /d ^ f (\fyd~i) +  ( v % )  ’
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where

g(x) =  y /2 'Kd\d‘2
^(x+v^y) 

y/2rj + x
J f  +  Jtf ^ - x / 2 7 ^ ^

-  y/2 jd 2̂
(x-v^)b ^ 5

\ / 2 7  -  x \y /d 2

2x \ ( j 2 ~ 27) d2

2 7  — x2

(x2- 27)d1
—e 2 ! J f (xy/dCj + 2 y ^  

27 — x 2

-7̂ 1 ,-jd2
+

2 \ / ^ d \  2a/7T7c?2.

A special case is when we only consider the excursions below the barrier. The 

results can be calculated using the results in Corollary 2.4.3.1.

When L > x, we have

1 y/2nd‘2 xe (cr+m-v^7)b (771- ^ 7 ) ft'

v/2 7  2̂ /'K')d2jy' [\f2'yd2)  +  e - ^ 2 y \ v ^ 7  — a  — m ^

when L < x, we have

xh(a  +  m) — Kh(m)  
2a/7ttdiJY [yJ2'yd2)  +  e~ ^ d2 ’
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where

e&(x+v̂ ) ,   r \ /  ft  \  ] e - i d 2

ft(x) =  ^  J w )V^y +  z
2 e-7d2

2 7  — x2

(x2-27)̂ 2 
2 a;e 2

2 7  — x2

— yj2'ird'2
, ( x - y f2Fj)b

v/27 — £ Va/ ^ 2
-

( z \/c^
\fd i

- j r ( . XyJ d > .

R em ark  1 : It is the first time we manage to get the explicit expressions for 

the Laplace transforms of the option prices even for the one-sided excursion case. 

In [13] an expression involving double integrals is provided.

R em ark  2: The prices can be calculated by numerical inversion of the Laplace 

transforms.

So far, we have shown how to obtain the Laplace transform of

p* — f>(r + hm2) T P1 m in—ca ll-in  e 1 m in—call-in -

For

E m in—call—out =  e~TTEq ({St -  K )+l {rs>T})  ,

we can get the result from the relationship that

E m in —call—out — C E q  { (S71 FT)  ̂ E m in —call—i

Furthermore, if we set

~y _  y  w y
TL ~  Tl,L  V r2,L>
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we can define another type of Parisian options by fjf:

P m a x -c a ll- in  = e~rTEq ST ~ K ) +l ^ f s<Tyj  .

In order to get its pricing formula, we should use the following relationship:

X { f £ < r }  =  1 { r £ 1 < r }  +  1 { r « 1 < r }  “  1 { r £ < r }  •

We have therefore

P m ax—call—in = P up—in —call d" P io w n —in—call P m in —call—in-

Similarly, from

Prnax—call—out =  & E q  { (*St -^0 } P m ax—call—ini

we can work out P m a x -c a ll-a a t•

2.6 A ppendix

2.6.1 P roof of th e  convergence

We show in this section that we can take limits of Laplace transforms when e —*■ 0 

as we did earlier. First of all, we consider two processes W M and d- e.
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According to the definitions, X ^  satisfies

lim = Wf ,  a.s. for all t,
- e—>0

W f < X t(e) < Wf '6 for all t, 

and g f  always lies between gff* and gY*'*. Since

we have that

v x  w* limgt = g t , a.s.
e—►()

Since g f  is a right continuous function with respect to t, we have that

lim g f  = gY* , ol.s . for all t
e—>0

and therefore

i‘j 3 1 {x,«)>o} (* -  9?) =  (* -  fff") a s - for 311 *•

From the definition of r f  we have that

{ i - r  < t}  =  j 0sup { l { w > 0 } (s -  9 T ) }  >  rfi |

= S8 {„<̂ t {x{̂ >o} ̂  -  £ )} ^di} = H  ^  < *1
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Consequently,

t  x  w* limTi =Ti a.s.
€—►O 1

By the same argument, we can show that

lim r*  =  t™1* a.s.
e—>0 1 1

Since r 5  =  r f  A r^, we have

T xlim r  =  r  a.s.
e—>0

The next step is to show the convergence of the stopping times leads to the 

convergence of their Laplace transforms. In order to simplify the notations, we 

define R s =  (i?f, i?f, R§) =  ( r f , r-f, r s ) . We have just shown that

lim R? = RV* a.s. 
€—*0 “2 2

Therefore for any given non-negative constants A> i = 1,2,3,

2= 1 2=1

Since > 0, we also have,

exp 1
< 1.

2=1
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By the Dominated Convergence Theorem,

e
i=1

3

E  y}™ exp j_Z PiR *

When 11 = 0, we can get the same conclusion for the standard Brownian motion by 

the above argument.

2.6.2 P roof of T heorem  2.4.3

We prove Theorem 2.4.3 in this section. Let T  be the final time. According to the 

definition of ^(rr), we have

^ \/2 x'j — yfnx +  e~x2 = \fn x  — \ / 7nrErfc(x) +  e~x2.

It is not difficult to show that

By Girsanov’s theorem, this is equal to



Setting 7  =  (3 +  |/z2 gives

E ( e - » T )  =  j r 0°(7 - ^ 2 )e-7 r s ( e " W'Tl {Tr<r}) d T

1 . .2

where T is a random variable, independent of W,  with an exponential distribution 

of parameter 7 . Assume n >  0. We have therefore when I > 0

+ J5 ) - ̂  }
7  ( ~ V 2 ^  -  } e"'

'ye 7d2

 r ^ e 27 - ^ 2

+
d\d27r

+e (7  V )<*2 I  ( / ^ Y y  j -  V y d\d2^

'ye ld2 £2  
e 2

7 ~ ^ 2
(-» V S + i )  -  « » v  ( - ^  ~ )  }

7  { e - ^ ^ r  ( v ^  -  +  e ^ ' j r  ( - V 2 W 2 -  ^ j )  } e*

( 7  -  i//2) { \ f &  (> /t5 )  +  ^  (>/7^) }

e_7dl |  v /2 7 rd ^ //e^M2 + y ^  | l  — \ j y  717/e "^ E rfc  

+e_7d2\/d i / 1  — y //y 7r/ze"f^Erfc
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We will now invert the moment generating function above. We have that

c V / ( - p v ^  + 'j =  /  ft*1*— -
J  Ji y /2 k d 2

e 2d2 dx ,

(*-2Q2 
e 2d2 dx,

7

—^ -T =  f  e ^ e - ^ d x  -  [  e ^ e ^ d x ,
7  — JO */—oo

1 / ‘00 1 /*° 1  
 =•= / e^x- = e - ' /s^da:+  /  e ^ - ^ e ^ d x ,4  i  7-oc v̂ 7

dj
e 2 * 2 f °  i« 1 /  x 2  \  ^/« _  i   -  exp < — —  > (It.

7.00 v ^ a r  i  2 d ij

1 -  A/^Tr/ie^Erfc f  j =  J eflX_Jie 2di([x 
di

oo  2 /    \

The inversion of -—g -vV y—fiy/d^ +  ^f=J is given below. 

For x > I,

J, 1 £  1 eld<le-yfFix
:e" f e —= e - ^ (x_®)d2/

i y/2  ird2 V*y

for x < I,

r ° °  1 „2 1 pTldZpyflnx /  / ____

The inversion of ^  j V (̂ —fiy/da — is given below. 

For a: > /,

Z*00 1 (» -2 0 2 1 ’ x p 7d2 p 2 l^ F j  - y fF jx  /  ;  -------

/  T t m ^ W y '  V  - W ' ' 5 *
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for x < I,

r ° °  1 (y - 2 l)2 1 x p id i  p - l ly /T y  p y ff ix  /  /  \
/  - ^ e - V  =  6 6   ^  ( - 4 = -  )

Ji y/2ird2 a/2 7  a/27 \ > / 5  /

The inversion of g- isry-B lI 2

=  e7dl

/ * ° °  « -  1  ( x - y ) 2 / * °  1  ( s - y ) 2
/ g \/57y_^__g 2dx _ / g\/̂ 7j/__-----_g 2d!

7o \Z 2 n d i  J -o o  \ j2 'K d \

(A  - '/5S) - ̂  ( - 7 1  - ̂ }

The inversion o f --------------- ^ i s  given below.

For a; ^  0,

-y_H± ' 2

/ 0   2 1 p—y/̂ yx f _V

„  ? e_2d<  - W  " e“  ( - ^ ) ;

for a: < 0 ,

r  _ £ e- 4 T =e-v5f(*-»)d„ +  f  ev57(*-»)dy
J—cx3 di \J2‘~{ Jx d{ y/2rf

_j_e7di+\/2rcy/zirdi (^ /2 ^d ^  -  J f  +  |  •

Consequently, we can get Theorem 2.4.3.
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Chapter 3

D ouble Barrier Parisian Options
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A bstrac t

In this paper, we study the excursion time of a Brownian motion with drift outside 

a corridor by using a four-state semi-Markov model. In mathematical finance, these 

results have an important application in the valuation of double barrier Parisian 

options. We subsequently obtain an explicit expression for the Laplace transform of 

its price.

Keywords: excursion time, four-state Semi-Markov model, double barrier Parisian 

options, Laplace transform.
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3.1 Introduction

The concept of Parisian options was first introduced by Chesney, Jeanblanc-Picque 

and Yor [13]. It is a special case of path dependent options. The owner of a Parisian 

option will either gain the right or lose the right to exercise the option upon the 

price reaching a predetermined barrier level L and staying above or below the level 

for a predetermined time d before the maturity date T.

More precisely, the owner of a Parisian down-and-out option loses the option if 

the underlying asset price S  reaches the level L and remains constantly below this 

level for a time interval longer than d. For a Parisian down-and-in option the same 

event gives the owner the right to exercise the option. For details on the pricing of 

Parisian options see [13], [37], [38] and [46].

Double barrier Parisian options are a version with two barriers of the standard 

Parisian options introduced in [13]. In contrast to the Parisian options mentioned 

above, we consider the excursions both below the lower barrier and above the up­

per barrier, i.e. outside a corridor formed by these two barriers. Let us look at 

two examples, depending on whether the condition is that the required excursions 

above the upper barrier and below the lower barrier have to both happen before 

the maturity date or that either one of them happens before the maturity. In one 

example, the owner of a double barrier Parisian max-out option loses the option if 

the underlying asset price process S  has both an excursion above the upper barrier 

for longer than a continuous period d\ and below lower the barrier for longer than 

c?2 before the maturity of the option. In the other example, the owner of a double 

barrier Parisian min-out option loses the right to exercise the option if either one of
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these two events happens before the maturity. For pricing double barrier Parisian 

options using excursion theory, see [39].

In this paper, we are going to use the same definition for the excursion as in [13] 

and [14]. Let S' be a stochastic process and Zi, l2, h > h  be the levels of these two 

barriers. As in [13], we define

9iitt = sup (s < * I Ss =  k}, dfut = inf{s > t \ Ss =  h}, i =  1 , 2 , (3.1)

with the usual conventions, sup{0} =  0 and inf{0} =  0 0 . Assuming d\ > 0, 

d2 > 0 ,we now define

r f  =  inf {«> 0 | l {St>il}(«- f t * , ) >  di} , . (3.2)

t 2 =  inf ( f  > 0 | a{i2<s,</i>1{as i>ss t}(( -  ft*,) >  d2} , (3.3)

r3s =  inf {f > 0 | 1{i2<s,<i,}l{9s (<9s t}(* -  > ds} , (3.4)

t? = i n f > 0 | l{st<,2}(< -  ft*,) > d4), (3.5)

r s =  r f  A r f . (3.6)

We can see that r f  is the first time that the length of the excursion of process

S  above the barrier li reaches a given level di\ r f  corresponds to the one below l2

with required length d4 ; and r s is the smaller of r f  and r f . We also see that r<f is 

the first time that the length of the excursion in the corridor reaches given level d2, 

given that the excursion starts from the upper barrier Zi; r /  corresponds to the one



in the corridor starting from the lower barrier I2 . Our aim is to study the excursions 

outside the corridor, therefore r 25  and r f  are not of interest here. However we need 

to use these two stopping times to define our four-state semi-Markov model that 

will be the main tool used for calculation.

Now assume r is the risk-free rate, T  is the term of the option, S  is the price 

of its underlying asset, K  is the strike price and Q is the risk neutral measure. If 

we have a double barrier Parisian min-out call option with the barrier li and I2 , its 

price can be expressed as:

D P m in -a u t - c a l l  =  C~VTE q  (l{ rs>T} ( S t  ~  K ) + ) 5

and the price of a double barrier Parisian min-in put option is:

D P m i n - i n - p u t  =  e  *T E q  (1{ts<T} ( K  ~  $ t ) + ) •

In this paper, we are going to study the excursion time outside the corridor using 

a semi-Markov model consisting of four states. Based on the results, we can get the 

explicit form of the Laplace transform for the price of double barrier options. One 

can then invert using techniques as in [38].

In Section 3.2 we introduce the four-state semi-Markov model as well as a new 

process, doubly perturbed Brownian motion, which has the same behavior as a 

Brownian motion except that each time it hits one of the two barriers, it moves 

towards the other side of the barrier by a jump of size e. In Section 3.3 we obtain 

the martingale to which we can apply the optional sampling theorem and get the
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Laplace transforms that we can use for pricing later. We give our main results 

applied to Brownian motions in Section 3.4, including the Laplace transforms for 

the stopping times defined by (3.2)-(3.6) for both a Brownian motion with drift, i.e. 

S  = W M, and a standard Brownian motion, i.e. S  = W. In Section 3.5 we focus on 

pricing the double barrier Parisian options.

3.2 Definitions

Prom the description above, it is clear that we are actually considering four states, 

the state when the stochastic process is above the barrier li the state when it is 

below I2 and two states when it is between l\ and I2 depending on whether it comes 

into the corridor through or l2. For each state, we are interested in the time the 

process spends in it. We introduce a new process

1, if St >h
2, if l\ >st >  12311(1 9i,,t > 9h,t

3, if l\ >st >  12“ d 9iut < € , t

4, if St <  12

We can now express the variables defined above in terms of Z:

9u,t = sup {s < t | Z ss =4 Z f )  , (3.7)

dh,t = ™ t { s > t \  Z s8 ^  Z f } , (3.8)

r f  =  inf {f > 0 | l{ zs=i} (* -  9w,t) > di} , (3.9)
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r2® =  inf | i  > 0 | l{ zs=2} (* -  gfut) >  cfe} , (3-10)

t £  =  inf {f > 0 I l{ zs=3} ( t  -  ft®,) >  d3} , (3.11)

Ti  =  inf {f > 0 | l {zs=4} (f -  ft®,) >  d4} • (3.12)

We then define

V? = t -  max (ft® t , ft® t) , (3.13)

the time Z s has spent in the current state. It is easy to see that (ZS,V S) is 

a Markov process. Z s is therefore a semi-Markov process with the state space 

{1 , 2 ,3,4}, where 1 stands for the state when the stochastic process S  is above the 

barrier 4 corresponds to the state below the barrier I2; 2 and 3 represent the state 

when S  is in the corridor given that it comes in through l\ and I2 respectively.

For Z s the transition intensities A -̂(u) satisfy

p  (Zt+At = j , i ¥ : j \  z t = i, vtS = u ) =  \ ,3(u)At + 0  (A t) , (3.14)

P  « A! =  * I Z f  = h Vts = u) =  1 -  Y ,  \ij(u)A t  +  o (A t ) . (3.15)

Define

Pi(u) = exp < -  / Y ]  \ij(v)dv \ , pij(u) = Aij(u)Pi(u).
I Jo J

Notice that

Pi(u) =  1 -  ^ ( i t )

is the distribution function of the excursion time in state i, which is a random
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variable Ui defined as

01 =  inf {Z? j t i \ Z * ; = i ,V 0s = 0}

Note that because the process is time homogeneous this has the same distribution

as

for any time t. We have therefore

, A v P  (U i  E  ( u ,  u  + Aw), Z §  =  j )
V i i i u ) =  l i m  —  ----------------------- 7 ----------------------------

J A u —>o A u

Moreover, in the definition of Z s , we deliberately ignore the situation when 

St = k, i = 1,2. The reason is that we only consider the processes, which

f  l{su=h}du = 0, z =  l, 2. 
Jo

Also, when 7i and I2 are the regular points of the process (see [8] for definition), 

we have to deal with the degeneration of pij. Let us take a Brownian Motion as an 

example. Assume W{* = pt + Wt with p > 0, where Wt is a standard Brownian 

Motion. Setting Xq to be its starting point, we know its density for the first hitting 

time of level /*, i = 1,2 is
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(see [9]). According to the definition of transition density, pu(t) = P2i(t) =  Ph(t) = 

0 and pu(t) = P4 3 M =  Pi2(t) = 0, for t > 0.

In Chapter 2 in order to solve the similar problem, we introduced the perturbed 

Brownian motion X ^  with the respect to the barrier we are interested in. We apply 

the same idea here, and construct a new process doubly perturbed Brownian motion, 

Y^e\  e > 0, with the respect to barriers l\ and l2. Assume Wq =  h  +  e. Define a 

sequence of stopping times

£ o = 0 ,

(jn =  inf{£ > Sn | W f = h},

<5n+i =  inf{£ > an \ W f  = h + e},

where n = 0,1, • • • (see Figure 3.1). Now define

r
x M  = W? if 5 „ < t < an

<

X ^  = W t - e  if cn < t < S n+1
<

Similarly, we then define another sequence of stopping times with the respect to 

process and barrier I2

Co =  0?

rjn = inf{£ > | X t(e) = l2),

Cn+i =  inf{£ > r)n | X t(€) = l2 +  e},

where n =  0,1, • • • (see Figure 3.2). Then define
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Figure 3.1: A Sample Path of
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Figure 3.2: A Sample Path of X ^
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P ro c e ss  Y(e)
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Figure 3.3: A Sample Path of Y ^

J y«(e) = X t } if C» < f < Vn 

[ Yt(e) = X t(e> -eif < Cn+i

It is actually a process which starts from l\ + e and has the same behavior as the 

related Brownian Motion expect that each time when it hits the barrier l\ or I2 , it 

will have a jump towards the opposite side of the barrier with size e (see Figure 3.3).

From the definition, it is clear that /1 and I2 become irregular points for Y  

Furthermore, we prove later that the Laplace transforms of the variables defined 

based on converge to those based on W As a result, we can obtain the results 

for the Brownian Motion by carrying out the calculation for Y ^  and take the limit 

e — 0.

57



For Y ^ , we can define Zy , r Y, r y , r y , r y and r Y as above (we suppress (e) on 

the superscribe). For Z Y, we have the transition densities (see [9])

Pu{t) =  v h exp{ j l ^ ~ } ’ (3-16)

V2\{t) = e x p j/ ie — ^ Y ^ s s t (h - 12 ~ e ,h  -  Z2) , (3.17)

P2 4 W = e x p |- /x ( / i  - l 2 - e )  -  ^ | s s t (e,/i - /2) ,

P3i(t) = exp |/i(^ i -  l2 -  e) -  ^ " j  sst (e,/i -  Z2) ,

P3 4 W =  exp |- /x e  -  ^  j sst (h -  l2 -  e,h -  l2) , (3.20)

Pi3{t) =  v h e x p { J l ^ } ’ (3-21)

(3.18)

(3.19)

where

( ( 2 k + l ) y - x ) 4
21

k = —oo '  V. ^

Also we know that

P2 3 W =  P3 2 W = P1 4 W = P4 1 W =  0. (3.22)

Clearly, all the arguments above apply to the standard Brownian motion, which is 

a special case of W M when fi = 0.

3.3 R esults for the semi-M arkov m odel

In Section 3.2 we have introduced the Markov process (Z5, V5) . Now we apply

the same definition to the doubly perturbed Brownian motion Y ^ ; therefore we

have (Z Y , V Y), where Z Y is the current state of Y^e\  taking value from state space

{1,2,3,4} and V Y is the time has spent in current state. V Y is also a stochastic
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process. Now we consider a function of the form

f { u , i , t )  =  fi (u, t ) ,

where fi, i = 1,2,3,4 are functions from R2 to R. The generator stf is defined as 

the operator such that

/  {VtY, Z Y, t ) -  f  (V f ,  Z Y , s) ds
JO

is a martingale (see [18], chapter 2). Therefore solving

^ f  = 0

subject to certain boundary conditions specified later will provide us with martin­

gales of the form /  (VJy , Z y , t) to which we can apply the optional stopping theorem 

to obtain the Laplace transform we are interested in. More precisely, we will have

£?f2 (u,t) —  ^  — f 2(u,t)) + X24 (u)(f4 (0 ,t) — f 2(u,t))

<^h(u,t)  —  ̂ H—  ̂ ^3i(w)(/i(0, t) — fs(u , t)) +  A34(u)(/4(0, t) — f 3(u, t))
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Assume fi has the form

By solving the equation srff =  0, i.e. <

= 0 9i(di) = Oil

srf f 2 =  0 02 (d2) =  ol2
subject to <

=  0 gz{d2) — OL$

=  0 g±(d2) =  0(4

we can get

(3.23)flj(u) = Oil exp |  -  y  |/9 + y ^  Ai_,(y)jdy|

Ai:?-(s) exp { - /  ^  + X]Aifc(u)  ̂dvjds.

In our case, we are only interested in the excursion outside the corridor. Hence, we 

set d2 and d3 to be 0 0 . Also lim<i2_f00 g2 (d2) = lim^^oo g$ {df) =  0 gives a2 = a3 = 0. 

Therefore, we have

5 i(0 ) =  a ie - '5* P 1(di) +  {ffi(0)P2i(/3)+54(0)P24(/3)}A2(/3), (3.24)

S4 (0) =  ai e - ^ P 4(di ) + {g1(O)P31(P)+gi {O)P3i(0 )]P 43(l3). (3.25)

Solving (3.24) and (3.25) gives

Si (0) (3.26)
a1e ~ ^ P 1(d1) ( l -  h iW P u ip j )  + a4 e-^4P4(d4)P24(/J)Pi2()3)

1 -  Pn{P)Pn(P) ~ P3i(0)Pim + Pn(P)Pu(P)hi(P)Pia{P) ~ hi(P)P43{P)Pu(P)Pu(0) ’
54(0) (3.27)

a te -^ P i td i)  ( l  -  P2i(0)Pi2(0)) + a i e - ^ ‘A(«ii)fti03)P4303) 

i -  p2i(P)Pi2(P) -  Pu(P)Pi3(P)+ p2m h 2(0)P3i(0)P43(P) -  h m P * m P H (P )P i2 (P ) '
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where
poo

Pij(P) = /  e~(39pij{s)ds, (3.28)
Jo

Pij(P) = f  e~f3sPij (s)ds. (3.29)
Jo

As a result, we have obtained the martingale

Mt =  f  ( V f , t) =  e~gtgz y (VtY) ,  i =  1 ,2 ,3 ,4. (3.30)

We now can apply the optional stopping theorem to M  with the stopping time t y  At, 

where r Y is the stopping time defined by (3.6):

E ( M t y m ) = E ( M o) .  (3.31)

The right hand side of (3.31) is

E  (M t y m ) =  E  (MTYl{TY<ty) +  E  (Mtl{ry>t}) .

Furthermore,

E  (Mry l{Tr <t})

= a iE  (e“^Tyi | Ty<Ty j l {Ty<j}) +  a^E  (e .
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We also have

E  (M,1{TV>(}) =  e -* E  {gzr  (V f) 1{TV><}) ,

where Z j  can take values 1,2,3 or 4.

When Z Y =  1 or 4, since r Y > t , we have 0 < V Y < d\ A d±. Since ^(/x), i = 1,4 

are continuous functions, we have g\ (VY) and (V̂.y) are bounded.

When Z j  =  2 or 3, since limd2-KX) <?2 (^2 ) =  lim^-^oo # 3  (^3 ) =  0, we have that 

92 (V̂ y ) and <73 (VJy) are bounded.

Therefore

lim £  (Mtl {Ty>t}) =  0.
t—>00 v L j '

Hence we have

^  =  a iE  ( e_^T 1{r1v<r4y}) +  (e ^  l | Ty>TyJ.) . (3.32)

The right hand side of (3.31) gives

lim E  (M0) =  E  (M0) =  <
t —y oo

<7i(o), y0(e) =  'i +  f 

94(0), Y0(e) =  l2 - e
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By taking a\ = 1, 0 :4  =  0 and ai = 0, 0:4 =  1 we will have that when =  l\ +  e

E <3'33)
e-M'Puich) ( l  -  P34(/3)P43 (/3))

1  -  P2l(0 )Pl2(0 ) -  Pu(0)p43(0) + P2l(0)Pl2(0)Pu(P)Pi3(P) ~ P3l(0 )Pi3(0 )p2i(0)Pn{0) '

(3'34)
_____________________________ e - ^ P 43(d4)P24(ff)fi2(^)____________________________ .

1 -  P2l(0)Pl2(P) ~ P3i(0)Pi3(0) + P2l(f3)Pl2(0)P3l(f})Pi3(P) ~ P3l(0)Pi3(0)p2i{0)Pl2{0) '

and when Yq^ =  l2 — e

E { ^ H r r ^ X } )  (3'35)
_____________________________ e -^ P i2 {d 1)P31(0)Pi3(p)______________________________

1 -  P2l(0)Pl2(0) ~ P3i{0)Pi3(0) + P2l(0)Pl2(0)PM(0)PA3(0) ~ P3l(0)Pi3(0)p24(0)Pl2(0) ’

E (e~ffTYlW>rX}) (3-36)
e - ^ P 4 3 (d4) ( l  -  P2l(0)Pl2(0))

1 -  P2l(0)Pl2(0) -  Pu{0)Pa(0) +  P2l(0)Pl2(0)P34(0)Pi3(0) -  P3l(0)Pi3(0)p2i(0)Pl2(0y

3.4 M ain R esults

In Section 3.2 we have stated that the main difficulty with Brownian Motion is that 

its origin point is regular, i.e. the probability that will return to the origin at 

arbitrarily small time is 1. We have therefore introduced the new processes Y ^  and 

(ZY,V Y) with transition densities for Z Y defined in (3.16) to (3.22).

In order to simplify the expressions, we define

\k(x) =  2yJlxxjY — y/nx +  e x2,
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where is the cumulative distribution function for the standard Normal Distri­

bution.

Theorem  3.4.1 For a Brownian Motion W^, r Wil defined as in (3.2),

(3.5) and (3.6) with S  = we have the following Laplace transforms: 

when Wq = l\ ,

E [ e  l { r r < T r y )  -  G ( d u d i ^ y  (3-37)

F ( r- 0TW>X1 \  _  G2{dA,dl , - f i )
E [ e  i {r r > r r } )  -  - o (-d,. d,:;,) ' (3-38)G(di,dA,fi)

t; M) +  ( 
G(d\, c?4, fi)

^ ( e- 0rwlx\  _  Gi(d\,d±,fi) +  G2 {d4 ,di, —fi) (3 3 9 ) 
V / G(di, d/i, u)

when Wq = I2 ,

1 \  _  G2{di,dA,fi)
E [ e  l {,r < r r } j  -  G{dudiaiy  (3-40)

i?(„-0Tw>ii \  _  Gi{d±,di,-fi)
E [ e  l l T r > T r i )  -  G { d l M  . (3-41)

f i ( e- 0Twti\  _  G \{d ^ d \ ,—fi) -\-G2(d i ,d ^ f i  (3 4 2 )
V / G{d\,d±,fi)

where

G i(x,y,z) = ( z \ ^  + (3.43)

+  ^ J W T 7  {* (WV 2 ) + z H \
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G(x,y, z)  =  e 2{h W 2̂ 2 j^ /y ^  ^ y j (2(3 + z 2) y

{ \ / ! $  ( V ^ ¥ ^ )  +  v W T i ^ j  . (3.45)

Proof: We apply the transition densities in (3.16) to (3.22) to the results in (3.33) 

to (3.36) and take the limit as e —► 0. In order to show that we can take the limit, 

we consider two processes and W /i,_2e =  W M — 2e. According to the definitions, 

Y ^  satisfies

lim Yt(t) = W t,  a.s. for all t,
€—►0

W *-2« <  yM  <  jyM for aU t, 

and gjl t always lies between g™, and pjf . Since

v W^’~2c i * WM W

we have that

lim<?M =  0W- a s -

Since g f  is a right continuous function with respect to £, we have that



and therefore

l l 5 S 1 { y W > i 1}  ( f  _  & . t )  =  1 { w ? > h }  (*  - S h , t )  a  s ■ f o r  ^  *•

From the definition of r f  we have that

h r  < t}  =  { “ p j 1^ , }  ( « - 3 “’")}  > <iij

=  {o<“5 . { V ’x i }  (s -  } - d i } = i ^  K  <  f i

Consequently,

t  Y  W 1limr, =  Tn a.s.
e—0 1 1

By the same argument, we can show that

1* ylim 7 7  =  r; a. s.
e—vO 4 4

Since r s =  r f  A r f , we have

t y w*1h m r =  r  a.s.
e—+0

In Chapter 2 we have shown that the convergence of Ty , r y and r y to r ^ ,  

and r Wfl respectively leads to the convergence of their Laplace transforms. Therefore 

we will get the results shown by (3.37), (3.38), (3.40) and (3.41). We can then get

6 6



(3.39) and (3.42) by the fact that

E  (e 0tW )  =  E (e ^  1 {tw/*<twm}) +  E (e 0tW 1{t^ >twm})

□

Corollary 3.4.1.1 For a standard Brownian Motion (fi = 0), we have 

when Wo =  l\,

\ Gi(di,d4,0)
E [ e »  l {rr<rr } ) = G [ d M  y

7-? ( „ - 3 t w  1  ^ G 2 (d4 , d i , 0 )

E \? =  G (4 (J ii o ) ’
Gi{di, d±, 0) +  £ 2 (^4 ? di, 0)E ( e - ^ )  =

G(d\,d4,0) 

when Wo — I2 ,

T ? (  - 3 t W  4  ^ G 2 ( d l , d 4 , 0 )

J{r1«'<r1»'}j =  G(di,di,0) '
r ? ( „ - 3 T W H \  ^1(^4, di,0)
E { e "  = G(du di,0) ’

p /  - 3 t w \  _  Gi(d&, di, 0) +  ^ 2 (^1 , d4, 0)
V /  G(du di t 0)
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(3.49)
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where

Gi(x,y,0) = e- 2(ll- h)^ - ^ ^ / y  (3.52)
(1 -  e-2((i-l!)v/53') e-H* ( u  )

+ % m  {vs*(^)+^ } -
G2(x,y, 0) =  e - V ' - ' ^ - ^ y / y ,  (3.53)

G(x,y, 0) =  e~Wl~h>̂  ( v ^ )  +  ( v ^ ) }  (3-54)

fl — e_2(/l_z2>\/2̂>\ f /T 1
+ - ------- --------------- - { ®  (y /0x)  +  V P ™ }  < \ J - V  (y/Pv)  +  \ / W y \ •

R em ark  1: By taking the limit Zi — Z2 —̂ 0, we can get the result for the single

barrier two-sided excursion case as in Chapter 2.

R em ark  2: If we only want to consider the excursion above a barrier, we can 

let I2 —► —0 0 . Similarly, for the one below a barrier, we can let l\ —> + 0 0 . These 

results have been shown in Chapter 2.

Corollary 3.4.1.2 For a Brownian Motion W*1, Tw>i defined as in (3.6) with S  =

W74, we have the following Laplace transforms: 

when Wq = Xo, xo > l\,

E  (e“/3T""‘)  (3.55)

j e - ( / ‘+ v '2« - / '2)(*o— +

_̂ e-(»-y/20+»2)(xo-h) j y  f / ( 2 P  + p?)di ~ X° ~  ll ^ 1 ^  +
\  1 \/di / J  G {d\, c?4, / i )

+ e -/M> | l  _  e - ( « + M ) ( x o - i i ) ^  ^

=  < e

l)(*0
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when Wq =  xq, I2 < xq < l\,

E ^e- pT”"‘)  (3.56)

e(ii-*>)/* / eV/2/s+KJ(xo-i2) _  e-V2/J+»ia(*o-!j)\ { G ^ ,  d4,/x) +  G2(d4, du - n ) }  

| e V ^ ( ' i - ' a) -  e -V ^ + ^ ^ -w }  G(du d2,fi) 

e(b-*o)<* | eV2W(i.-xo) _  e- 0 W ( i i - x o ) |  {G2 (d1;d4,/x) +  Gi(d4,di, -/x)} 

| ev W ( ‘>-fe) _  e-\/2W x?(<i-fe)|g(di,d2,fj.) ’

w/ien W q =  X q , X q <  I2 ,

E  (3.57)

=  L ? ( 2 0  +  y ? )  d4  -  l- ^ £ \

( - J m + f f i d i  -  h j z l )  )  Gl (di ,d1, - ^ )  + G2 (du di ^ )
V v^ 4 /  J G (d i,d 4,//)

+e-'Ml | l  -  r ^ |V d I -

_ e(«+M)(i2-x)^ ^ ^ 1  ̂  _  l- ^ r - \  1 .

Proof: We will first prove the case when x q >  l \ .  Define T  =  inf {t \ W f =  l i }  , i.e. 

the first time W M hits l \ .  By definition, we have r w t l  =  d \ ,  if T  >  d \ \  r w>x =  T + r w>*, 

if T  ^ d \  3 wliGrG 14̂  ̂ herG stsmds for QrowniEiii motion with drift st^rtGd from /]_•
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As a result

E  ( e - * ” *)

= E  ( e - ^ l {!->*}) +  E  

= e ~ ^ P { T  > d,) +  E  ( e - ^ l p ^ y )  E  (e- ^ )

E  PrWI‘ ĵ has been calculated in Theorem 3.4.1 (see (3.39)). The density for T  is 

given in [9] as

\ h - x 0\ ( (k -  xo -  fit)2 \
p-  = 7 ^ r exp\ — 2<— )•

We can therefore calculate

E  ( e - ^ l iT<dl}) = ( / Q p  + ^  di _

+e- ( ^ - V ^ } ^ - h ) ^  f  X/( 2|3 +  M2)d l _ ^ z i l ^  .

We therefore get the result in (3.55). For the case when xo < h, we can apply the 

same argument.

When I2 < Xq < li, we define T  = inf (t \ W f  $ (I2 , /1 )). By definition, we have

TW» = T  +  TW^ j£ = /i; TW» = T  +  TW^ if = 1̂  where jy/x stands for a
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Brownian motion with drift started from Z2 . Consequently,

E

= E  l p w l})  +  E  l {T=i2})

=  E  ( e - ^ l {T ^ l}) E  (e-****) +  E  (e- 'STl {f=l2}) E  { e ^ T~ )

The last equality is based on the independence of T  and W 11. E  (e~®rW J and 

E  (e~^T~   ̂ have been obtained by Theorem 3.4.1, (3.39) and (3.42). According 

to [9], we have

e (h~xo)fj, fgy / 2(3+n2{xQ—h ) _ e—y/2f}+n2( x o - h ) \

E  ( e - ^ l i T ^ y )  = ---------- } = --------------- = = ------------ i ,
v 1 u j  e y / m ^ ( h - l 2) _  e - y j 2 ( 3 + n * { h - h )

e ( h ~ x o )/x ( e y / 2 0 + f j , 2 ( l i - x o ) _  e - y / 2 ( 3 + n 2 { l \ - x o ) \

E  {e-pTl {T=h}) = ---------- } = ---------------= = ------------
V 1 U  e y / 2 f 3 + » 2 ( h - h )  _  e - y / 2 ( 3 + n H h - l 2)

We have therefore obtained (3.56).

□

Theorem  3.4.2 The probability that W M with Wq = xq, I2 < xq < l\, achieves an 

excursion above l\ with length as least d\ before it achieves an excursion below I2 

with length at least gZ4 is

^  4 > {gMlh-h) -  e -W (h -h ^ F id u d ^ n )  ’
e (h -x o )n  { e M h - x 0) _  e - m i - x o ) j  F2(di, d4, p)

{ e W h - h )  -  g-H(h-ia)} F(di, <Z4, p )
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p / W " ^  H W \  e ( i i  ? o ) ( i  { e lf* l(x o  h )  _  e  W I(* o  W }  F 2 ( r f 4 l r f l i  —

^  >T4 '  { e H l 'i -W -e -W li i -y jF ^ A i,^ )  1 '
e (h -x o )n  | e|/i|(ii-x0) _ g-HUi-so) j Fi(d4 ,<ii, —//)

+  {elMl(ii-i2) _  e - M V i - U y F i d p d ^ n )  ’

where

’x \ In xy1
(3.61)

F (x ,y ,z )  =  e 2(fl *2),z| j v ^ +  I l-zk/ -

( l _  e-2(Ii—l2)|z|)

^  lzl \ /  o +  \z \\ r  ̂ V \z \\ o +  WV5 r •

Proof: Prom Theorem 3.4.1 and (3.56) in Corollary 3.4.1.2, we actually know that, 

when Wq =  zq, h < xq < h ,

e 6 i - x 0)M { e N ( x o - / 2) _  e - H ( x 0- / 2) }  G i { d u d i , n )  

| e |/x|(Zi-/2) _  e - |M lG i- i2)J. G ( d i ,  G?4 , / / )  

e (/2-xo)/x | e H 6 i - x o )  _  e - H ( * i - * o ) |  G 2 ( d i ,  d 4 , / / )  

| e |/z|(/i-z2) _  e -\fJ.\(h-h)y G ( d i , d 4 :, //)

(3.63)
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n f .-B r* * ,  \  { e ^ ~ ^  -  e - M ^ - ‘̂ } G 2(d4,d1, - f i ) ,o ^
V 1{-r>-r}j {eM(h-h) -e-MVi-h^Gidud^fi)  ̂ '

e ( h - x 0)/x | elM|(/i-x0) _  e-H(ii-xo)| (7 ^ ^ , d 1, - f l )

{eM(/l-/2) — e- ! ^ 1-*2)} G(di, d±, p)

Setting ft = 0 in (3.63) and (3.64) yields the results.

□

Theorem 3.4.2 leads to the following remarkable result.

C orollary 3.4.2.1 The probability that a standard Brownian motion W  with Wq = 

Xq, I2 < Xq < li, we have

y/d& “I- (*^0 — 2̂ ) \ /~
P  (T f < r f ) = ---------------------- 1 ^ - = ,  (3.65)

\fd\ +  y/di +  (l\ - l 2) y j l

y/di +  (̂ 1 — ^0) \  f%
P { r Y > T f )  = — ---------------- 1 ^ - = .

\[d\ +  \fd l  +  {l\ - l 2) y j l

Rem ark: When we take l\ —> 0, l2 —*► 0, Xq —*■ 0, we can get the results for the 

one barrier case as in Chapter 2.

We will now extent Corollary 3.4.1.2 to obtain the joint distribution of W  and 

r w  at an exponential time. This is an application of (3.56) and Girsanov’s theorem.

Theorem  3.4.3 For a standard Brownian M otion W  with Wq =  xq, l2 <  xq <  l\ 

and r w  defined as in (3.4) with S  = W, we have the following result:
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For the case x > l\,

P (\V f  G dz, r w < T ĵ = di (x0) f ( x -  h,di)+a2 (x0) f  (x -  l2, d4)+ai (x0) h(x-li,d i)]

(3.67)

For the case l2 < x < l\,

P  (W f  G dx, r w < T ^  = ai (x0) f { x -  Zi, d\) +  a2 (x0) /  (x -  l2, d4) ; (3.68)

For the case x < l2,

P  (\V f  G dx , r w <T^j = ai (x0) f  (x — h, di)-{-a2 (x0) f  (x — l2, d4)+a2 (x0) h ( x - l2, d4);

(3.69)

where T  is a random variable with an exponential distribution of parameter 7  that 

is independent of W  and

p — y/^rj\x\ , V
f (x ,  y) =  - ^ = -  -  e ™ - ^ l  v / 2 ^ ^ -  ( - v ^ w )  , (3.70)

h(x,y) =  t/ 2 wye iv ( e  — -\/2yyJ — ( —“ y  —

(3.71)
_  7  {e^7(*°-W -  e - V 5 7 ( * o - i 2)}.  6l (dl) d4) +  7  _  g-vrfdi-w)} ^  (dlj

ai X̂°' G { e ^ d i-W  _  e-V^di-W }

(3.72)
_  7  { eVSf(»o-'a) -  e -v^7(*O-Ia)} 63 (d4, dj) +  7  { e ^ d i - w )  -  e-^ 7 d i-* o )} ^  fa ) 

“2 (Xo' G { e ^ d i-b )  -  e -^ fd i-h )}

(3.73)
1 — p _ 2 7 v ^ 7  f  f o  1

M*, 2/) = g e~^ j ( ^ )  + f , (3.74)
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b2(x ,y) = e ~ l-h- ,^ - < * y/y, (3.75)

G = e- 2(ii_i2 ) ' A r ( v t ^ i )  +  y/di'S! (x /T ^I)}  (3.76)

*  (V T ^i) +  V ^ T ^ j  •

Proof: see appendix.

□

3.5 Pricing double barrier Parisian Options

We want to price a double barrier Parisian call option with the current price of its 

underlying asset to be x, L\ < x  < L2 , the owner of which will obtain the right to 

exercise it when either the length of the excursion above the barrier L\ reaches di, 

or the length of the excursion below the barrier L2 reaches c?2 before T. Its price 

formula is given by

D P m in - in -c a l l  =  £ ~ VT E q  ((St  ~  K ) + 1  {t s < T })  j

where S  is the underlying stock price, Q denotes the risk neutral measure, r s is 

defined with the respect to barrier L\ and The subscript min-in-call means it is 

a call option which will be triggered when the minimum of two stopping times, r f  

and r f , is less than T, i.e. r s < T. We assume 5  is a geometric Brownian motion:

dSt = rStdt + aStdWu S0 = x,

_  e-2{h-h)VZy^
7T
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where Li < x < L2 , r is the risk free rate, Wt with Wo =  0 is a standard Brownian 

motion under Q. Set

m =  i  ( r  -  ~<j2̂  , b = ^  In > Bt = mt + Wt,

h  =  -  I n f — ) ,  ;2 =  - l n ( —a \  x J a \  x

We have

St — x  exp \ ( r — - a 2 ) t +  aWt \ = x exp {cr(mt +  Wt)} — xeaBt

By applying Girsanov’s Theorem, we have

D P min- in-caii = e - ( T+i m*)TEP (xecBT -  K ) + emBn {Ts <T}

where P  is a new measure, under which Bt is a standard Brownian motion with 

Bo =  0, and r B is the stopping time defined with the respect to barrier Zi, I2 . And 

we define

7~)p*____________ __ ( r + |m 2) T r ) p
■L/jrm in - in —call e ■LJjrm in—in—call •

We are going to show that we can obtain the Laplace transform of DPmin-in-caii 

w.r.t T, denoted by jSfy.

Firstly, assuming T, independent of W, is a random variable with an exponential

76



distribution with parameter 7 , we have

EP -  K ) +emBn {rB<ri

= J™  (xe™ - K ) e myp ( B f e d y ,T B < T )
poo poo

= /  n/e~lT I (xe”y - K ) e myP ( B T e d y ,T B < T ) d T
J O Jb

poo r -|

=  7 y  e - ^ E p  \(xe°BT -  K ) +emBT 1 {tb<7-}J dT  

=  ■yJ&r

Hence we have

S£r  =  ^  /  (xecy — K) emyP  e d y ,  t b  <  f )  .

By using the results in Theorem 3.4.3, this Laplace transform can be calculated 

explicitly.

When 6  > Zi, i.e. K  > Li, we have



where

Fi(z) =  ai(0) |  - j =  -  eldl \p2/Kd\J/r V^i) j
ŷ/Zyh + ̂ x-y/Zŷ b 

■s/2 7  -  X

ey/5yl2 + (x-y/!F()b

2xexh- rdl+h^ - ^ r  (x*Jd[ -  ^ )
+ ai (0 ) \/2irdie,dl

27  — X 2

+
eV57l1+(x-V^) b ^  ^  e-^Il+(x+V ^)l

— X y / 2 j  +  X

when l2 <b < l\, i.e. L2 < K  < L\, we have

-£r = - F 2(<j +  m) — — F2(m), 
7 . 7

where

F2(x) =  j 1 +  * > /* * * * + -^  ( x V g )  |

- a i(0 ) { 7 =  -  e7*  ( - \ / 2 7 ^

+a 2 (0 ) j - 7 =  -  e7 < i4 V2tt5^.vK (^— \ / 2 - y d (

e-^h+(x+yffi)b

y /2 ~ f — X  

eyffih + (x-y/Z7 )b

— X

when b < l2, i.e. i f  < L2, we have

j<gT =  + m) -  — F3(m),
7 7
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where

F2(x ) =  | l  +  xy/27Td[e X2 ^ ( , V S ) }

r  1 .____  z    \  'i e -V % yh + (x+ ^)b

" a i(0 ) ( - v ^ ) )  —

+  2-^ S -  j1 - (*V5 ) }
(  i  .____  /    x  'i p-V^yi2+(x+V^r)b

_ a 2 { 0 ) ~ } ^ - x  

2 J !Fyexh~rdi+^ - j T (xy/dl -
+ a 2(0) ^ 2^ e ^  J  ---------------- ----------A-------------

2 7  —

gv'Sft+Or- J Z y ) ^  ^  e-va7b+(*+vS7)^

V^7 — x \ / 2 7  +  a;

R em ark: The price can be calculated by numerical inversion of the Laplace 

transform.

So far, we have shown how to obtain the Laplace transform of 

d p *  p ( r+ i m 2)-^ n p^  r min—call—in J-y r  m in—call—in-

For

D P m in - c a l l - a u t  =  ^ ~ r T E q  ( ( S t  ~  K ) + l {t s >T}) j 

we can get the result from the relationship that

D P m i n —call—out =  C tT E q  { ( S t  -  K ) + }  -  D P min —ca l l - in •

/
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Furthermore, if we set

~s _  s  w s  T = n V r2  ,

~ Y .we can define another type of Parisian options by t

D P ma x -c a l l - in  =  C ^  E q  ( ( S t  ~  K )  +  l { f S< T y)

In order to get its pricing formula, we should use the following relationship:

We have therefore

D P m a x - c a l l - i n  — P  P up—in—call “1“ Pdown—in—call P P m i n —call—in-

Similarly, from

P P m a x —call—out — ^ tTE q {(5r -  K)+} -  DPmax—call—ini

we can work out P P m a x -c a l l -o u t -
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3.6 A ppendix

We prove Theorem 3.4.3 in this section. Let T  be the final time. According to the 

definition of x ), we have

=  ‘ly fxxJ / '  [y/2x^ — \pKx +  e~x2 = y/nx — y/irxExic (z) +  e~x2.

It is not difficult to show that

E (I
■oo

fie <TydT J .

By Girsanov’s theorem, this is equal to

Setting 7  =  /? +  gives

where T, independent of W , is a random variable with an exponential distribution 

of parameter 7 . Therefore we have



In order to inverse the above moment generating function, we first need to inverse

the following expressions:

_ J L _  =  f ° °  e ^ e - ^ d x  -  f  e ^ e ^ d x ,  
1 — \  Jo J-oo

i r°° 1 r° i
 t  =  /  e ^ - ^ e - ^ d x  +  /  e l ix — = e ' ^ ' x d x ,
7 Jo J-oo

r e x p { - ^ } d x ’

1 — ^J^^^lle~2fJ'2Er^c =  J  e^x—̂-e~™idx.

it*2Therefore the inversion of s is
i 2

fJo
-yfirfV. (x~y)2 r

:e 2di ay — I ,VZyy. (x ~ v )
:e 2di d?/

=  e7*

V2tt3i J - oo \ZlTsd\

Erfc
The inversion o f ----------------- 2— * *- is given below.

'r-'r
For x ^  0,

1 e“^ x/ U 2 *1_______________________________ _v/2/YX

=  W  ■  ( - v ^ ) :
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For x < 0,

L  ~ ie <  w s +f

+et‘k + ^ * ^ d i ( v ^ )  -  j V  (-?=  + ^ q d i j  | .

Consequently, we can get Theorem 3.4.3.
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Chapter 4

Parisian Corridor Options
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A bstrac t

In this paper, we study the excursion time of a Brownian motion with drift inside a 

corridor by using a four-state semi-Markov model. In mathematical finance, these 

results have an important application in the valuation of options whose prices depend 

on the time their underlying assets prices spend between two different values. In this 

paper, we introduce the Parisian corridor option and obtain an explicit expression 

for the Laplace transform of its price formula.

Keywords: excursion time, four-state Semi-Markov model, Parisian corridor 

options, Laplace transform.
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4.1 Introduction

The Parisian corridor options replace the barrier by a corridor. Instead of considering 

the excursion above or below a barrier, we consider the excursions inside a corridor. 

For example, the owner of a Parisian corridor in option gains the option if the 

underlying asset price process S  has an excursion in the corridor for longer than d 

before the maturity of the option. For the pricing of the Parisian options whose 

prices depends on the excursion outside a corridor see Chapter 3. We will explain 

later in this section that these options can be used to take positions depending on 

volatility. We will also explain that they can be viewed as generalisations of certain 

types of double barrier options.

In this paper, we are going to use the same definition for the excursion as in [13] 

and [14]. Let S' be a stochastic process and h, h, h > h  be the level of two barriers 

forming the corridor. We define

9k,t = SUP(S < t \ S s  = h}, d?ift = inf{s > t \ S s = Z<}, 2 =  1 , 2 , (4.1)

with the usual conventions, sup{0} =  0 and inf{0} =  oo. Assuming di > 0 , i = 

1 , 2 ,3,4, we now define

r f  =  inf { t  > 0 | l{s,>(!}(< -  gfut) > d i } ,  (4.2)

t 2s  =  inf j f  >  0 | 1{i2<st<i,}l{9s 1>9S t}(i -  9®,t) >  d i }  , (4.3)

t f  =  inf [ f  > 0 | 1fe<s.<ii}1{9fi ,<9f2 ,}(* -  9i2,t) > <fe} . (4-4)
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r f  =  inf{t > 0 | l{s,<i2}(t -  Silt) ^  d4 >, (4.5)

T s  =  t 2s  A  Tg . ( 4 .6 )

We can see that r«f is the first time that the length of the excursion in the corridor 

reaches the given level d,2 , given that this excursion starts from the upper barrier l\] 

t /  corresponds to the one in the corridor with the given level cfo starting from the 

lower barrier and r s is the smaller of r-f and r f .  When we take d2 = d% = d, 

r s is actually the the first time that the length of the excursion inside the corridor 

reaches given level d, which is what we want to study later on.

We can also see that r f  is the first time that the length of the excursion of process 

S  above the barrier reaches given level d\\ r f  corresponds to the one below Z2 with 

required length d4. Although r f  and t£ are not of our interest in this paper (see 

Chapter 3 for the pricing of the Parisian options depend on r f  and r f ), we need to 

use these two stopping times to define our four states semi-Markov model.

Now assume r is the risk-free rate, T  is the term of the option, S  is the price of 

its underlying asset, K  is the strike price, Q is risk neutral measure. If we have a 

Parisian corridor out-call option with the barrier l\ and I2 , its price can be expressed 

as:

PCnt-cM =  e-rTEQ ( l {Ts>r} {St  -  K )+) ; 

and the price of a Parisian corridor in-put option is:

= e-rTEQ ( l {TS<r} (K  -  ST)+) ■
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In-put and in-call Parisian corridor options can be viewed as options that are 

activated only when the price has gone through a low volatility period, demonstrated 

by the fact that it has stayed between two fixed values for a certain time interval. 

Out-put and out-call Parisian corridor options can be viewed the opposite way. 

Either way, the buyer and the seller of these derivatives take positions on volatility 

in the sense that they are betting on the ability of the price to stay within two values 

long enough.

As we said earlier, Parisian corridor options can also be viewed as generalisations 

of double barrier options. For example in the case where the starting price is inside 

the interval, they are generalisations of one-touch knock-out double barrier options. 

For more details on double barrier options and their pricing, see Chapter 2 and [39].

In this paper, we are going to study the excursion time inside the corridor using a 

semi-Markov model consisting of four states. By applying the model to a Brownian 

motion, we can get the explicit form of the Laplace transform for the price of Parisian 

corridor options. One can then invert using techniques as in [38].

In Section 4.2 we introduce the four-state semi-Markov model as well as a new 

process, doubly perturbed Brownian motion, which has the same behavior as a 

Brownian motion except that each time it hits one of the two barriers, it moves 

towards the other side of the barrier by a jump of size e. In Section 4.3 we obtain 

the martingale to which we can apply the optional sampling theorem and get the 

Laplace transform that we can use for pricing later. We give our main results 

applied to Brownian motions in Section 4.4, including the Laplace transforms for 

the stopping times we defined by (4.6) for both a Brownian motion with drift, i.e.



S  = W7*, and a standard Brownian motion, i.e. S  =  W. In Section 4.5 we focus on 

pricing the Parisian corridor options.

4.2 Definitions

Prom the description above, it is clear that we are actually considering four states, 

the state when the stochastic process is above the barrier l\ the state when it is 

below I2 and two states when it is between l\ and I2 depending on whether it comes 

into the corridor through l\ or I2 . For each state, we are interested in the time the 

process spends in it. We therefore introduce a new process

1 , if St > h

2 , if h >  St > l2 and gfut > gf2t

3, if h >  St > l2 and gfut < gf2yt

4, if St < I2

We can now express the variables defined above in terms of Z s :

9u,t =  sup{.s < 1 1 Z f  ±  Z f }  , (4.7)

d?i,t =  inf {« > « I Z f  ±  Z f }  ,

Ti =  inf { t  >  0 | l { z s=i}  (t ~  >  di }  .

r f  = inf > 0 | l { zs=2} (f -  gfa ) > <f2} ,

r f  =  inf { t > 0  | l{ zs=3} (< -  >  rfa} ,
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r f  =  inf | t  > 0 | l{ zs=4} (t -  ftli)  > <*4} • (4.12)

We then define

Vts = t  -  max (ft® t , ft® t) , (4.13)

the time Z 5  has spent in the current state. It is easy to see that (Zs , V s ) is 

a Markov process. Z s is therefore a semi-Markov process with the state space 

{1,2,3,4}, where 1 stands for the state when the stochastic process S  is above the 

barrier l\\ 4 corresponds to the state below the barrier I2 ; 2 and 3 represent the state 

when S  is in the corridor given that it comes in through l\ and I2 respectively.

For Z s the transition intensities Ay (u) satisfy

p  (Zt+At = 3 , i¥ z3 I z t = h VtS = u ) =  Xij(u)At +  o (A t ) , (4.14)

p  (Zt+At = i \ z t = h vtS = u) = 1 Xij(u)At +  o (A t ) . (4.15)
i^j

Define

A^(?;)du j , pij(u) = Xij(u)Pi(u).

Notice that

Pi(u) =  1 -  Pi(u)

is the distribution function of the excursion time in state i , which is a random 

variable Ui defined as

0i =  in f{Z f ^ i | z s  =  i , ^  =  0}.
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Note that because the process is time homogeneous this has the same distribution

as

=  i,Vts =  0}

for any time t. We have therefore

P { U i e ( i i , u  +  Au) , ZSi = j )  
p,l(u> a““ o A u

Moreover, in the definition of Z s , we deliberately ignore the situation when 

St = k, i = 1 , 2 . The reason is that we only consider the processes, which

[  l{ su=ii}du =  0, i =  l,2. 
Jo

Also, when l\ and I2 are the regular points of the process (see [8 ] for definition), 

we have to deal with the degeneration of pij. Let us take a Brownian Motion as an 

example. Assume W f = fit + Wt with (i > 0 , where Wt is a standard Brownian 

Motion. Setting xq to be its starting point, we know its density for the first hitting 

time of level k, i = 1 , 2  is

(see [9]). According to the definition of transition density, p n ( t )  =  P 2 i ( t )  =  p i x { t )  =  

0 and p34(£) =  P 4 s ( t )  = P i 2 ( t )  = 0, for t  > 0.

In Chapter 2, in order to solve the similar problem, we introduced the perturbed 

Brownian motion X ^  with respect to the barrier we are interested in. We apply
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The Original Brownian Motion

to

500 1000 1500O
T i m e

Figure 4.1: A Sample Path of W^

the same idea here, and construct a new process doubly perturbed Brownian motion, 

Y^e\  e > 0, with respect to barriers Zi and I2 . Assume Wq = l\ +  e. Define a 

sequence of stopping times

<$0 =  0 ,

<rn =  inf{£ > Sn | W t  = Zi},

£n+i =  inf{£ > an \ W f  = h + e},

where n = 0,1, • • • (see Figure 4.1). Now define

I Xt(e> =  W t  if

( Xt(t> = W ? - e  if

Similarly, we then define another sequence of stopping times with respect to process
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Process X(e)

§

X ^  and barrier U

Figure 4.2: A Sample Path of X ^

Co

r)n

Cn+1

=  0 ,

inf{t > C„ | = ;2},

inf{t > ri„| x j e «},

where n = 0,1, • • • (see Figure 4.2). Then define

if

Yt(e) = xP-eif

The process Y ^  is actually a process which starts from l\ +  e and has the same 

behavior as the related Brownian Motion expect that each time when it hits the 

barrier l\ or Z2 , it will have a jump towards the opposite side of the barrier with size 

e (see Figure 4.3).

From the definition, it is clear that l\ and I2 become irregular points for Y^e\  Also
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Process V<e)

CO

O 500 1500

Figure 4.3: A Sample Path of

converges to with Wjf = l\ almost surely for all t. Therefore as we prove in 

Chapter 2, the Laplace transforms of the variables defined based on converge to 

those based on As a result, we can obtain the results for the Brownian Motion 

by carrying out the calculation for Y ^  and take the limit as e —> 0 .

For Y ^ \  we can define t y  , r Y , r Y , t y  and r Y  as above (we suppress (e) on 

the superscript). For Z Y, we have the transition densities (see [9])

P n ( t )

P2l( t )

P 2 * { t )

P 3 l { t )

P34(t)

P&(t)

V2nts
exp< -

f i t

(e + fit)'
2 1

e x p  {fie -  —  |  sst (h h ) ,

e x p  { - f i  (h  -  l2 -  e) -  ^  |  sst (e, h -  l2),

e x p  { n (h -  l2 -  e) -  ^  |  sst (e, h -  l2) ,

e x p   ̂ —fie -  }  sst (h - l 2 - e , l i -  l2) ,

(e -  pt)'
\/2itL3

exp < - 2

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)
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where

Also we know that

P2s(t) = P32(t) = Pu(t) = P4i(t) = 0. (4.22)

Clearly, all the arguments above apply to the standard Brownian motion, which is 

a special case of when p = 0 .

4.3 R esults for the semi-M arkov m odel

In Section 4.2 we have introduced the Markov process (ZS,V S). Now we apply

the same definition to the doubly perturbed Brownian motion Y therefore we

have (ZY , Vy), where Z Y is the current state of Y^e\  taking value from state space 

{1 ,2,3,4} and V Y is the time Y ^  has spent in current state. V Y is also a stochastic 

process. Now we consider a function of the form

/  (u,i,t) = f i (u , t ) ,

where /<, i = 1,2,3,4 are functions from M2 to M. The generator $4 is defined as an 

operator such that

f { V ? , Z ? , t ) -  f  da
Jo
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is a martingale (see [18], Chapter 3). Therefore solving

* 7  =  0

subject to certain conditions will provide us with martingales of the form /  (V f ,  Z j , t) 

to which we can apply the optional stopping theorem to obtain the Laplace trans­

form we are interested in. More precisely, we will have

* 7 i(M ) = ^  ^  +  Ai2 (w)(/2 (0 ,t) -  fi(u,t))

— ^du  ̂ — ^2(w7 ))  ^ 24(^ )(/4 (0 ,t) — / 2(u,£))

+  +  A3 lM (/l(°^ )  -  /3 M ) )  +  -  f 3(u,t))

h ( u,t) =  ̂H  ̂ +  A43(u)(/4 (0,t) — f3(u,t))

Assume /* has the form

/i(u ,t) =  e '^g ^u ) .

£ / f 2{u,t) =

<

*73 (M ) =
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By solving the equation srff =  0, i.e. <

we can get

* 7 i

s f  / 2  

s t f z

subject to <

9i(di) 

5 2  (^2 ) 

5 3 (^2 ) 

5 4  ( d 2 )

Ql

a 2

<*3

a4

pi (it) =  a* exp Atj(v) )du (4.23)- / * ( " + E
•/u \  jyi

+ Y^9j(P) J  Aij(s)exp j - y  ^  +  ^ A ijb(v)^ d v jd s.

In our case, we are only interested in the excursion inside the corridor. Hence, we set

di and d4 to be 0 0 . Also lim^-^oo g\ (d\) =  lim^ — 00 p4 (d4 ) =  0 gives a\ — = 0.

Therefore, we have

#2 (0 ) =  Oi2e l3d2p 2(d2) +  g2(O)Pi2(0)p2l(P) +  93$) P4&(P) P2a(P) i (4.24)

g3( 0 ) =  a 3e - ^ P 3(d3) + g2(0)P12(P)P31(p) + g3(0)Pi3(l3)Pu (l3). (4.25)

Solving (4.24) and (4.25) gives

0 2 (0 ) =

53(0) =

where

a2e ~ ^ P 2(d2) ( l  -  P M h i W )  +  a3e -^ h { d 3 )P a (0 ) f>n(0)

1 -  P 13W P 21W) ~  Pi3(0 )Pu(P)  +  Pi2(0)P2i(0)P43(0)PmW) ~  P n (P )P 3 i {P ) P u W ) P u (P )
(4.26)

a3e - ^ P 3(d3) ( l  -  P n ( P ) h m )  + a2e ~ ^ P 2(d2)P12(/3)P31(l3)

1 -  Pu (0)Pk (0) -  Pa(P)ht(0) + Pa(P)h\{P)Pa(P)hi{P) -  P a{P )h i(P )P *W h t(P )
(4.27)

poo

Pij(P) = /  e~0spij(s)ds, 
Jo

(4.28)
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P i j ( P )  =  [  e  PsP i j ( s ) d s .  
Jo

As a result, we have obtained the martingale

(4.29)

Mt =  f  (VY, t) =  e~0tgzy ( V f )  , i  =  1,2,3,4. (4.30)

We now can apply the optional stopping theorem to Mt with the stopping time 

t y  A t, where r Y  is the stopping time defined by (4.6):

E ( M ty m) =  E ( M 0) .  (4.31)

The right hand side of (4.31) is

E  (M ty m ) =  E ( M ty 1{tv«}) +  E  (Mtl {TY>ty) .

Furthermore,

E  (MTYl{TY<ty)

=  E ( M ry l {Ty<Ty} l {Ty<t}) + E ( M Tv l {Ty>Ty} l {ry<t})

=  E  ( e - f f rY g 2 (d2) 1 { r y < r y } 1 { ^ < t } )  +  E  9 3  (<fe) 1{r2''>T3''}1{T3''<(})

=  a 2E (e~0rY'i-{ry<ry}1{ry<t}) +  <**E ( e' 0TYl{ry>ry}1{ry<t}) ■

We also have

E (Mtl {ry>t}) =  e~<*E ( gz y {VtY) l {rr > ( } )  ,
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where Z Y can take values 1,2,3 or 4.

When Z j  = 2 or 3, since rY > t, we have 0 < V Y < d,2 A d$. According to the 

definition of gi(fi) in (4.23), we have p2 (^*y) and g3 (VY) are bounded.

When Z Y =  1 or 4, since lim^-^oo gi (di) =  lim^^oo # 4  (<4) =  0 and looking at 

(4.23) with di and d± replaced by 0 0  we have that g\ (VY) and <74 {VY) are bounded. 

Therefore

lim E  (Mtl{TY>t}) = 0.t—>00 '

The right hand side of (4.31) gives

E  (Mo) =  <
5 2 (0 ), Y ^ = h  + e

5 3 ( 0 ) ,  y 0( e ) = z 2 - e

By taking a 2 =  3 =  1 and ' / 2 =  d3 =  d, we will have when Yjf1 = l\ + t

E {e~'lrY) (4.32)

‘ e -^ P 2(d) ( l  -  Pi3{fi)Pu(0)) + e - ^ h { d ) P M P u ( P )  

1 -  Pi2(P)hi{P) -  Pi3{0)hi(P) +  Pi2(P)Pii(P)Pia{P)hi.{P) ~ h2{P)hi(P)Pts{P)P2i{P)'-

when y0(e) =  I2 — €

E (e~PrY] (4.33)

e-/3dP2(d)P12(0)P3m  + e-WPsid) ( l  -  P n i f t h m )

1 -  Pn{P)Pa(P) ~ Pii(0)Pu(0) + Pn(0)P2i(0)Pi3(0)P34(0) -  Pu(0)P3i(0)Pi3(0)Pu{0) '
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4.4 M ain R esults

In Section 4.2 we have stated that the main difficulty with Brownian Motions is that 

its origin point is regular, i.e. the probability that W M will return to the origin at 

arbitrarily small time is 1. We have therefore introduced the new processes Y ^  and 

(Zy , V Y) with transition densities for Z Y defined in (4.16) to (4.22).

Theorem  4.4.1 For a Brownian Motion W t w i * defined as in (4-6) with S  =  W  

we have following Laplace transforms: 

when Wq = l\,

E
1  '  G? ( / ? + £ ) - < ? !  (/? +  £ )

when Wq =  l2,

E ( e - 0 r ^ \  = (P +  £ )  ~  F M G i  ( l3 + ^ ) . (435)
 ̂ '  G \( p  + £ ) - G l ( j .? +  £ )

where

I = h — l2; (4.36)



(*) =  T Z ^ S l  +  (4 -39)
fc=—oo '  '

k ~ —oo

V a  £ , 1 {- 1 (!S^i- * ) }  “ «>

Proof: We apply the transition densities in (4.16) to (4.22) to the results in (4.32) 

and (4.33) and taking the limit e —> 0. We now show that we can take the limit. 

We have shown in Chapter 3 that

a.s. for all t.

Therefore we have that



Prom the definition of we have that

{ 7 -r  < t} =  j m p  (« -  O }  ^

{ ^ ,  { 1 {'*0 '-(0 <'*}1 K ^ } (* “  9l"a)}  -  d2J
=  lim

l im {r 2y < t } .

Consequently,

T Y  W *lim r9 =  To a.s.e—*0 * *

By the same argument, we can show that

v  Y  W *limTo =  To a. s.
c—>0 6 6

Since r s =  t 2s A t3s , we have

limTy =  r Wfi a.s.
c—►O

In Chapter 2 we have shown that the convergence of r Y to t w>1 leads to the 

convergence of their Laplace transforms, i.e.

limE  (exp {— (3ty }) =  E  (exp {— (3rwt*}) a.s.

Therefore we get the results shown by (4.34) and (4.35).

□

C orollary 4.4.1.1 For a standard Brownian Motion W  (fi = 0), we have for both

1 0 2



cases (i.e. when W q =  l\ and when Wo =  h )

E { e~ ^ )  =  e ^ W Y  (441)

where

W )  =  ' j h  £  e' 2̂  { e",v/23exP { " 5  -  ^ ) 2} (4-42)

- ~ H  (3 -**)'}}' l I S -
+ 2 ^  J  e - * ^  ^  -  e - W j T  -  V m j }

fc=—OO

We are also interested in the cases when a Brownian Motion starts from the 

point other than l\ and I2 . The results are shown in the following corollary.

C orollary 4.4.1.2 For a Brownian Motion W r wtl defined as in (4-6) with S  = 

W 1*, we have the following Laplace transforms: 

when W q  =  x q ,  x q > 1 \ ,

E  (e~PtW  ̂ =  exp j  — (ji +  y/2(3 + fi2̂ j (zo -  h) -  /3d^ (4-43)

e~tJ,lF2(fi)G2 (ft +  — Fi(fi)Gi (ft +  ^

G i ( p + i ) - G i ( p + i )
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when Wq =  x q , X q <  I2,

E (e &TWtl>j  = exp { ~ y/2/? +  M2) (fe -  aj0) -  fid} (4.44)

e^lFi(fi)G2 (fi +  ^  — F2(fi)Gi (jl +  ^

G ? ( / ? + £ ) - C 3  (/? +  £ )

when Wq = Xq, I2 < Xq <l \ ,

E ( e - ^ )  -  f ;  ( - H  V d + 2kl+j 2 ~ h )  (4.45)
k = —oo

- e l - K ^ + x o - W ^  -  2kl+ J 0 ~ h \  }

+e/*<li-*o)-0d /'_ |/t|Vrf+ 2kl ~ * 2  +  M
k = —oo

_ eW(2ki-zo+h)^ f - M V d -  2kl~°% + h )  } +

e - | / / |Z - / 3 d  j e /i(Z2 - x 0 ) ^e |/ x | ( Z i - x 0 ) _  e - | / 4 | ( Z i - x o ) )  _j_ e /x (Z i—x o )  ^e lM l(^o— 2̂ ) _  e ~ Im K ^ o — 2̂ )  ̂ j.

1  — e —2 |m |z

—y/2/3+fj,2le fi(l2—xo) ^e y/2fi+fj,2( l i—xo) _ g—a/20+p2(Z1 — x o )̂

1  _  e -2 y /2 (3 + t i2l

M h - x o )  S£2 L V W + n H u i + x o - h ) ^  ( - y / ( 2 (3 +  i i 2) d - 2 k l  +  X ® ~ l 2 \

fc——00

_ e - V ^ + ^ P * ' + x o - i 2 ) ^  ( — ^ ( 2 / 3  + /i2) d  + 2k!+J ?  ~ ‘2)  }

e-^F 2 (p)G2 (/J + £ )  -  Fi (m)Gi (/? +  £ )

G ? ( / J + £ ) - G l ( / J  + f )
- y /2 (3 + i i2l e n ( h - x a )  ^ g y /2 P + n 2{ x o - h )  _  e ~ y / 2 /3+ m 2 ( x o - Z 2 ) ^

1  _  e - 2 ^ 2 0 + n 2l

+eM(Z!-x0 ) ^  | eV2 +̂/x2 (2 fcZ-xo+Z1)cyr +

k = —oo

_ e - s /W + i? (  2 k l - x 0+ h ) j y  ( _ v ^ 2 J T W ) d +  m ~ j 2 + l 1 )̂ }

e^Fi(/i)G2 (/? + £ )  -F 2(m)Gi (/?+£)

G ? ( / ? + £ ) - G | ( / J + f )
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Proof: We will prove the case when xq > h at first. Defined T  = inf {t \ W /* = h} , 

i.e. the first time Wj* hits l\. By definition, we have t wi* = T  +  r w>i, where W M 

here stands for a Brownian motion with drift started from l\. By the strong Markov 

property of the Brownian motion, we therefore have

E  ( e - ^ )  =  E  («-»•) E  ( e " * " )  .

E  ^e~PrW  ̂ has been calculate in Theorem 4.4.1 (4.34). According to [9], we have 

E  (e~l3T) = exp j -  (ji +  y / 2 +  (x0 -  /i)}.

For the case when xq < Z2 , we can apply the same argument.

When I2 < Xq < li, by definition, we have r wtl = d, if T  > d; r wtl = T  +  r w>x, 

if T  < d, and = l\ where here stands for a Brownian motion with drift 

started from r w>i = T  +  r—“, if T  < d, and W? = I2 where here stands for

a Brownian motion with drift started from I2 . As a result

E (e-*-**)

=  E  (e ~ ^  l{T>d}) +  E  (e~^T l{T<d}l{H''=(1() + E  (e~l3r l{r<d}l{iv^=(2})

=  e - V p  (T > d )  + E  ( e - ^ l {r<4 l {w,#=ll})  E  

+E { e - ^ l {T<i}l {w. =h}) E  ( e - ^ -  )  .
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E  and E  (e ^  have been calculated in Theorem 4.4.1 (see (4.34) and

(4.35)). The density for T  is given in [9] as

pxo(t) = e ^ h~xo)~ ^ s s t (li -  x0, 1) +  e ^ h~Xo)~ V Sst (xQ -  l2,1) .

We can therefore calculate

P { T > d )

g ImK x q ' )  ^g|/x|(ii-x0)  g  M(ii ®o)) _|_ gM(̂ l *o) (gl/̂ K̂O fe)  g  ImI(®0 2̂)) ).

1 —  g —2 |/x|i

+ e M(<2 -*o) ^  | e -N(2«+»o-h)t̂  f - \ / j t \ y / d  +  2M +  X* ~  ^
k = —00  ̂ \  V

_ e M(2H +xo-l2) ^  ( _ | ^ | v / d _  2kl+̂ ~ l?) \
Y2 | e —H(2M—x o + h ) ^  ( _ | ^ |  V'rf +  2fci ~ J j  +  l l

k=—oo

00

,fi (h-xo)

_ el„|(2H-xo-Hx)^ ( _ |M|Vd -  ^  J^0 + ~ )  } -

E  (e '3Tl{r<d}l{H/"=i1})
e - y / 2 0 + n 2le n(l2- x o) ^ e y/2/3+n2( l i - x 0) _  2fi+n2( h ~ x 0) ^

j  _  e-2y/2(3+n21

+ e f i ( l 2 -x o )  ^  | e v ' 2 g + ^ ( 2 M + x o -i2 ) ^ /  ( — ^ ( 2 / ?  +  ^ 2 )  rf -  2 k l  + J ?  ~  2̂ )  

_ e- v^ ? ( 2M+x„-i;!)t/K +  2fc<~ ^ :~ - )  )  -
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E ( e  ^Tl {r<d}l {W£=h})

g-\J2(3+fj,2l - xq) ĝ y/2^+fj^(xo —I2) _ g-\/2/3+/X2 (x0 ~b) ̂

1 _ g-2v/2/3+M2«

+ e M (ll-^ o ) ^  | e%/2 g + M 2( 2 ^ - x o + l l ) ^ -  / ' _ v / ( 2 |9  +  ^ 2 ) cj -  2 k l - X o  +  h \

k= —00 '  V /

We therefore get the result in (4.45).

□

Notice that for a Brownian motion with drift, it is possible that will never 

be achieved. Take the case when p > 0 and xq > l\ as an example. We obtain the 

following result by taking (3 =  0 in (4.43).

Corollary 4.4.1.3 For a Brownian motion with positive drift, W M with p > 0 and 

xq > li we have that,

e~'‘iF2(/i)G 2 ( ‘y ') -  Fi(p)Gi ( t j ]
P ( t < oo) =  exp { -2 p  (z0 -  h )} ------------ , \  — - J T \— (4-46)

G? ( f )  -  G! ( f )

Remark 1: As a result, for a Brownian motion with positive drift and xo > Zi, 

with probability

e~txlF2(p)G2 -  Fi{p)G\
1 -  e x p { - 2 p (z 0 -  h )}  T T a  — T T F \— ^

G? ( £ )  "  G! ( 4 )

that it will never achieved a excursion in the corridor (l2, li) with length equal or 

greater than d.
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R em ark 2: For a Brownian motion with negative drift and xq > Zi, taking 

(3 = 0 in (4.43) gives that with probability

e lilF2{ii)G2

1 G? ( £ )  -  G l ( £ )

that it will never achieved a excursion in the corridor (l2,h )  with length equal or 

greater than d.

R em ark  3: For a standard Brownian motion, we can carry out a similar calcu­

lation to (4.41), from which we can easily that the result that

P  (tw < oo) =  1.

We will now extent Corollary 4.4.1.2 to obtain the joint distribution of W  and 

r w at an exponential time. This is an application of (4.43), (4.44) and Girsanov’s 

theorem.

Theorem  4.4.2 For a standard Brownian Motion W  with Wo =  xo and rW defined 

as in (4-6) with S  = W , we have the following result:

For the case xq > l\ and x > l\,

P (\Vf e dx, tw < f ' j  

= 7 exp |  —y 2 7  (xq — Z i) |-----------------------------------------------------------------------

(4.47)

~ h ) )
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fo r  the case Xq >  Zi and I2 <  x <  l\,

P (Wf  G dx, rw < f )  (4.48)

„ f 7 ^  G2{ l ) ( u 2 { x - h ) - U 2 { x - l 2) ) - G l ( l ) { u i { x - l 2 ) - U 4 c( x - l i ) )
-  7  exp |  G ^ ) 2 -  G2(l)2

for the case xq > h and x < l2,

P (w f  G dx, rw < f ) (4.49)

_  / _  nr-( j ^  g 2 (7 ) (^3 {X ~ Zl) ~ U±{X -  l2)) ~ 6 1̂ (7 ) (lf3 (# -  Z2) ~ UA{x -  h))
7 exp | h)}  Gi(7 )2 - G 2 (7 ) 2

/or Z/ie case x < l2 and x > l \ ,

p ( w f z d x , r w <T}  (4.50)

^  f_ nr-n „ ^  G2{l) (m (x -  l2) -  u 2(x -  h) )  -  Gi(7) (m (re -  Zi) -  u2{x -  l2))
I  V  2 7 ( ^ 2  Z 0) j  G i ( 7 ) 2 - G 2 (7 ) 2

/or Z/ie case x < l2 and l2 < x < l\,

p ( w f £dx,TW <T^  (4.51)

_  f _  / 5 - , 7 „ Q £ 2 (7 ) ( m  (x -  l2) -  u4(x  -  Zi)) -  Gi(7) (u3 (x  -  f i )  -  u 2 ( x  -  Z2))
{ V 2 7 ^ 2 G?i(7 )2 - G 2 (7) 2

/o r the case x < l2 and x < l2,

p ( \ V f  e d x ,r w <f^ j  (4.52)

 f . rKI.n „ 0  ^ 2 (7 ) (U3 (X ~ h) -  w4(x -  Zi)) -  Gi(7) (u3 (® -  Zi) -  u4(z -  Z2))= 7 e x p ( - v/2 7 (Z2 - x 0) j -----------------------------_ _ _ _ _ _ _ ----------------------------- ,

where T, independent of W, is a random variable with an exponential distribution
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of param eter  7  and

Ui(x) =  e ^ xai ( —s/fry) , 

u2(x) = e~'/^ xa2 ( - y / 5 )  1

(4.53)

(4.54)

00  r  /

u s ( x )  =  2 ^ 2  exP { _ \/2 7  ((2A: +  1)Z +  z ) j  J f  (
fc=—00  ̂ '

a; +  (2& +  1)/ — y/2rjd
Vd

(4.55)

+  exp | y/Zy ({2k + \)l + x)^  JV  ^  +  (2fe +  _  ev^*ai ?

u4(x) = 2 ^  |~exp j  — y /2 j  (2kl +  rc)| J f  ^  (4.56)
k = —00 *-

+ exp { ̂  (2 W + x)} ^  ( £ ± ^ ± ^ ) - e.'^,xa2 (x /^y) .

f c = —OO

a i ( i ) = 2  exp {x(2 fc +  l)i} ^   ̂ ._

2kl +  x d \  e~ld [ 2

(2 fc +  1)Z +  x d \ e->d [ Y  ^  f  (2 fc +  l) 2 i2 1

' •  - v ^ i > x p t -k = —oo 2d, J

(4.57)

. . „ ^  ( 2 kl +  x d \  e~yd I 2 ^  f 2fc2/2 )
a2 (x) =  2  £  e*p{2 * « } ^ ( — ^ - ) + — ^  £  e x p | - — j .

k = —oo k = —00

(4.58)

Proof: see appendix. 

□

4.5 Pricing Parisian Corridor Options

We want to price a Parisian corridor in-call option with the current price of its

underlying asset to be x, x > Li, the owner of which will obtain the right to exercise
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it when the length of the excursion inside the corridor formed by the barriers L\ 

and Z/2 {L\ > L2) reaches d before T. Its price formula is given by

P C in -c a i i =  e VTEq ((S t — K ) +  l { r S < T } )  ,

where S  is the underlying stock price, Q denotes the risk neutral measure, t s  is

defined with the respect to L \  and L2. We assume S' is a geometric Brownian 

motion:

d St = rStdt +  aStdWt, S0 = x,

where x > Li, r is the risk free rate, Wt with Wo =  0  is a standard Brownian motion 

under Q. Set

We have

St = x exp =  x e

By applying Girsanov’s Theorem, we have

P C in -c a i i  =  e - ( r + i m’ ) T E p  \ ( x e ° BT -  K ) +  e mBn {Ts < T y] ,
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where P  is a new measure, under which Bt is a standard Brownian motion with 

Bo = 0 , and r B is the stopping time defined with respect to barrier Zi, Z2 . And we 

define

PC'n-caU = e(r+> 2)TPCi„_ca,i.

We are going to show that we can obtain the Laplace transform of -PC'*n_coZZ w.r.t 

T, denoted by

Firstly, assuming T, independent of W, is a random variable with an exponential 

distribution of parameter 7 , we have

EP [(xe°Bt  -  K ) +emBn ^ rB<f}

= r ( x e ,,y- K ) e myP^Bf£dy,TB<f^
poo poo

= /  ■ye~~lT /  (x e -  K ) emyP  (BT e  Ay, tb < T) AT
J O Jb

= 7  r  ^ xe<rBr ~ k ^+ em BTi^ B<Ti  

~  1

Hence we have

_S?T = i /  (xe"y - K ) e myp ( B f €Ay,TB < f y

By using the results in Theorem 4.4.2, this Laplace transform can be calculated 

explicitly.
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e(x-y/^r)y+V^yz
9l(x,y,z) =  ^ . _ x a,

e (x-y /V y)v+ y/Syz
Q2{x,y,z) =

y / 2 j  — X
d2

(4.65)

(4.66)

qa(x ,V,z)  =
2  Y '  exp{ —\fFj{(1k + l ) l -  z)} [ ( , _ a ) ! /  /  y -  z + (2fc + 1 )1  -  y ^ A

fc“ o ® -v ^ 7  [ \  Vd )

-exp  |  (* -  V ^ )  (* -  ( »  + 1)1 + V*fd) + (X ~ ^ p l l |

y — 2: -f (2fc + 1)Z — xd

+ 2 £
fc= —00

\fd
exp {v/^r((2fc + 1)/ -  z)} 

x + a/ 2 7

,(x + ^ ) ŷ  ^ 2/ -  2  + (2 fc + 1 )/ + \/ 2 yd^

exp |  +  V ^ y )  ( *  -  (2fc +  1)Z -  \ /2 y d )  +  (x  +  |

«/K
y — z + (2A; + 1)Z — xd

\fd )]
l( y /T y + x )y -y/ ^ y z  

X  +  y / 2 j
•ai ( â ) , (4.67)

q4(x,y,z) = 2  y '  exp {—y/2 7 (2 fcl-z)} \ (x-y/Fi)y^ ( y ~ z  + 2 k l ~ ^ d \
x - j f , i v v s  y

- e x p  j ( x -  y /27) (z  -  2fci +  v/27d) +  ^ ^  — ~ )

y '  exp {^ y (2 fc f — 2?)} I" ( x + v ^ y ^  /"V ~  z +  (2  ̂+  1)£ +  \f2^d\
X + V*y I V Vd )

-  exp |  (x + v ^ )  ( 2; -  2kl -  V^yd) + (^ + V2y) d l ^  ^ y— z + ™ —

,(y/%y+x)y-y/5yz
X  +  y / 2 j

CL2 ( â ) - (4.68)

R em ark: The price can be calculated by numerical inversion of the Laplace trans­

form.
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So far, we have shown how to obtain the Laplace transform of

PCI-,.*,, = e(r+3m2)Tpin_caiI.

For

PC out-call = e~rTEQ ((St — K )+l  {t s>t}) >

we can get the result from the relationship that

PCovt-cau = e-rTEQ {(Sr -  K )+} -  PCin_m!I.

4.6 A ppendix

We prove Theorem 4.4.2 in this section. Let T  be the final time. According to the 

definition of '&(x ), we have

^(x)  =  cI\PkxjY ( ŝ/V.x'j — ypirx +  e~x2 — tx — y/nxEiic (x) +  e~x2.

It is not difficult to show that

E  ( e - ^ )  =  E  Q T / J e - ^ l p ^ d r )  .

By Girsanov’s theorem, this is equal to

poo
/  pe-W+b>*)T-mE  ( e " ^ l {Tlv<r}) dT.

Jo

115



Setting 7  =  (3 + \ n 2 gives

E { e - ^ W") = J ~ ( 1 - ± ft2)e->T-^ ° E (e » wT l{Tw<T})d T

■e~m E ,

where T, independent of W , is a random variable with an exponential distribution 

of parameter 7 . Therefore we have

In order to inverse the above moment generating function, we just need to inverse 

the following expressions:

7

roo /»0

=  /  e ^ e - v ^ d x -  /  e ^ e ^ d x ,
J O  J — 0 0

r°° 1 /*** 1
/  e**1 —= e -v^ x-,‘)dx +  /  e ^ ^ e ^ ^ - ' ^ d x ,

Jk v * y  J -00

e~niae
( 7 3 '- ^ )

2d
Therefor the inversion o f ----------- 5 -----------L is as follows:y-Ul I 2
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for x > U,

=  exp 1 7 d -  y/2^(nl -  +  x) j  J f  i

for x < li,

=  exp{7d -  %/2rf{nl -  l{ +  j ) |^ K  ^ x +  r^  —V^T^X

-  exp {7d +  (ni -  A +  *)} {^K ( n / ~ ^ rf)  -  ^  ( * + n l ~ ^ + V ^ d \  J

Consequently, we can get Theorem 4.4.2.
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Chapter 5

Parisian Options and Parisian  

Type Ruin Probabilities w ith  

Exponential Jum p Size
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A bstrac t

In this paper, we study the excursions of a Levy process with negative exponential 

jump size below a given level by using a simple two-state semi-Markov model. Based 

on this result, we price a Parisian option whose underlying asset price follows this 

process. To our knowledge this is the first ever attempt to price Parisian options 

involving processes with jumps. We also price the Parisian type digital options and 

extend the concept of ruin in risk theory to the Parisian type of ruin. Moreover, 

we consider a diffusion approximation and use it to obtain similar results for the 

Brownian motion with drift.

Keywords: Parisian type of ruin, Parisian option, risk process, Laplace trans­

form, ruin probability.
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5.1 Introduction

A Parisian option is a special case of path dependent options. It will be either 

initiated or terminated upon the price reaching a predetermined barrier level L  and 

staying above or below the level for a predetermined time d before the maturity 

date T. An example is a Parisian down-and-in option, the owner of which gains the 

right to exercise the option if the underlying asset price S  reaches the level L and 

remains constantly below this level for a time interval longer than d . For details on 

the pricing, see [13], [37], [38], Chapters 2 , 3 and 4.

Under the Black-Scholes framework, one of the basic assumptions is that the 

underlying asset price follows a geometric Brownian motion. However the features 

of the price trajectory violate the continuity and the scale-invariance properties 

of Brownian motions and therefore pricing models based on jump processes have 

become more and more popular. In this paper, we try price the Parisian options 

with an underlying asset price with jumps for the first time. Although, the model is 

rather simplistic, it could be a starting point for further results. From risk theory, 

the classical surplus process in continuous time {A< } t > 0  is defined by

N t

X t = x  +  ct -  Yk, (5.1)
fc=0

where x > 0  is the initial reserve, c is a constant rate of premium payment per time 

unit, and {Nt}t>0 is a Poisson process with parameter A representing the numbers 

of claims up to time t. The sequence {V*;}, k = 1,2,..., are claim sizes which are 

independent and identically distributed non-negative random variables that are also
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independent of the number of claims. We also assume c > AE  (Yi) (the net profit 

condition). Our underlying asset price follows

St = exp (X t) , with So = ex. (5.2)

We assume that this is the behaviour of the underlying assets under an equivalent 

martingale measure. As the market is not complete, this would not be unique but

the calculations are valid under any equivalent martingale measure that preserves

the structure defined by (5.1) and only changes the values of the parameters. On 

later sections, we show that we can obtain the Laplace transform of the option price.

Moreover, the classical surplus process X  defined in (5.1) has been widely used 

in risk theory. Motivated by the idea of Parisian option, we extend the concept of 

ruin to the Parisian type of ruin. Define the stopping time

Tx =  inf {t > 0 | A* < 0} . (5.3)

In risk theory, the event of ruin in infinite time horizon can be expressed as {Tx < oo}. 

The density of Tx and the probability of ruin have been widely studied. See for ex­

ample [19], [20], [21], [22], [27], [28], [32] and [40].

Parisian type ruin will occur if the surplus falls below zero and stays below zero 

for a continuous time interval of length d. More practically, this level can be any 

level greater than 0. In some respects, this gives a useful measure to monitor the 

financial situation of a company as it gives the office some time to put its finances 

in order.
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In order to introduce the above concepts mathematically, we will first define the 

excursion. Set

g ltt =  sup{s < t | sign (Ss -  L) sign (St -  L) < 0}, (5.4)

df >t =  inf{s > 1 1 sign (Ss — L ) sign (St — L) < 0 }, (5.5)

with the usual convention, sup{0 } =  0  and inf{0 } =  oo, where

sign(rr) =  <

1 , if x > 0

—1 , if x < 0  •

0 , if x =  0

The trajectory between gfit and dsL t is the excursion of process S  which straddles 

time t. Assuming d > 0, we now define

t [ 4  =  inf{« > 0  I 1 { S , < £ } ( *  -  9 L , t )  >  4 - (5.6)

We can see that r f  d is the first time that the length of the excursion of process 

X  below L reaches given level d. The price for a Parisian down-in-call option can 

therefore be expressed as

P io w n —in—call — 6 E  ^(S t  d<T)-  ̂ ’ (5.7)

where r is the risk-free rate, K  is the strike price and S  is the underlying stock price 

satisfying (5.2).
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When L = 0, we simplify the notation to g f , df and r j . We define the events 

{r£  < t}  and { r /  < 0 0 } to be the Parisian type ruin in the finite and infinite 

horizons. We are interested in the corresponding probabilities

p  (? f  < t)

and

P  (Td < 0°) •

We will restrict ourselves here to claim sizes that are exponentially distributed as 

this is a case where explicit results can be obtained. We therefore assume that the 

claim sizes have density ae~ax, where x >  0. Prom the net profit condition above, 

we also have that c > - .a

In Section 5.2 we provide results on hitting times that will be used in Section 

5.3 to give the Laplace transform of the stopping time t*  , together with price of 

a Parisian type digital option and the Parisian type ruin probability in the infinite 

horizon as its immediate results. In Section 5.4, we focus on pricing the Parisian 

options. In Section 5.5 we introduce a diffusion approximation and thus obtain 

results for the Brownian motion.

5.2 Definitions

Set I = In L. Since X  is translation invariant, without losing the generality we 

simply study the case when I =  0. We consider the X  with x = 0 at first. In this 

section we are going to introduce a semi-Markov model consisting of two states, the
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Z?

state when the process is above the 0 and the state when it is below. Therefore we 

define f

1 , if > 0

2, if X t < 0

We can now express the variables defined above in terms of Z x :

9t = SUP(S < t I z ?  ±  z t ) i  (5-8)

dt = inf( s > * I Zs ±  z tX )> (5-9)

Td = inf{* > 0  I l{zt*=2}(* “  9 t)  > d}- (5.10)

We then define

Vtx  = t - g :x ,

the time Z x  has spent in the current state. It is easy to prove that (ZX, V X) 

is a Markov process. Z x  is therefore a semi-Markov process with the state space 

{1,2}, where 1 stands for the state when the stochastic process X  is above 0 and 2 

corresponds to the state below 0 .

Furthermore, we set Uxk, i = 1,2 and k = 1,2, * ■ • to be the time Z x  spends in

state i when it visits i for the kth. time. And we have, for each given i and k there

exist some t satisfying that

=  V ?  = d? ~  9t-

Notice that assuming that the jump size V* is exponentially distributed, it is a well-
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known result that the size of the overshoots are also exponentially distributed with 

the same parameter (the memoryless property). Therefore the excursions above

0  and below 0  are independent. Consequently, we have that Uxk, k = 1,2, ••• , 

are independent and identically distributed, so as for Uxk, h = 1,2,--* , and Uxk,

1 = 1 , 2 , k = 1,2,••• , are independent with each other. We therefore define the 

transition density for Z x :

which is actually the probability that the process will stay in state i for no more

in P  (Uxk = oo) > 0 for all k (we adopt the convention Uxk = oo if the process

positive probability, the process will stay in state 1 forever. Hence, in this case

Moreover, in the definition of Z x , we deliberately ignore the situation when 

X t == 0. The reason is that

pij(t) = p(u*k<t), p v (t) =  p  (tr$ > t ) .

We have

than time t. We will see in the later discussion that the condition c > -  resultsa

never leaves state i at its kth. excursion); therefore J0+ocpi2 (s)ds < 1 , i.e. with a

Pn(t) >  Jt+00pn(s)ds.

We will now show how to get P i j i t ) .  We use Pij(P) to represent the Laplace



transform of P i j ( t ) ,  i.e.

poo . .

h 0 )  =  I e - ^ Pij(t)dt = E  ( e - ^ S )

Consider the equation

■(3 +  cvp +  A ( — — 1 ] — 0,
yp + a

which has two roots,

v t  =
yj  ( col + (3 +  A) 2 — 4caA — (col — (5 — A)

2 c

and

(ca +  /3 +  A) 2 — 4caA — (ca — (3 — A)
2 c

First of all, we want to look at the length of an excursion below 0, i.e 

1,2,3,  Define the stopping time

Tx = inf {t > 0, X t = 0 | Xo = x, x < 0} .

It has been shown in [25] that

E  (exp (~0TX)) =  exp (v^x) .

(5.11)

(5.12)

(5.13)

(5.14) 

• Ugk, k =

According to the definitions of the process X  and f/A. and the argument above, every 

excursion below 0  starts from an point below 0  whose absolute value is exponentially



distributed with parameter a . We have therefore

/ \ r°°
P2 1 (/3) = E  \ e~®u*kj  = J  E  (e_/3T-*) a e ' ^ d x

POO

= / exp (—Vpx) ae~axdx
Jo

2ca
\ J  ((3 +  A +  ccn)̂  — 4c\a  +  (/? +  A +  co;)

Inverting this Laplace transform with respect to /3 gives the transition density

P2i(t) =  ^ ^ e - (A+câ t-1/i ( 2 t V c X a j  . (5.15)

The formulae for the inversion can be found in [7].

For the length of an excursion above 0, i.e. U*k, k = 1 ,2 ,3 , . . . ,  we define the 

stopping time

T0 = inf {t > 0 ,X t < 0 | Xo =  0}.

By results in [26], [27] and [28] and the independence of the time and the size of the 

overshoot, i.e. To and X tq we have

E(e~in'°)E(exp(v0 X To)) = l.

And we also know that X t q follows exponential distribution with parameter a.
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Therefore

P 1 2 GS) =  E  (e -W * * )  =  E  (e-'3To) =  ----- }  v  ,,
'  > y ’ E  (exp ( v j Xn ) )

1

J0°° exp (—Vp x ) ae~axdx 
2X

(/? +  A -f- col) 2 — 4cAo; +  (/3 A +  COL)

Inverting Pi2 (/3 ) gives

p 1 2(i) =  J ^ i V c A o )  (5.16)

(see [7] for the formulae).

5.3 The Laplace Transform of r f

In this section we give the Laplace transform of r f  for the cases when x  =  0 and 

when x > 0  together with the proofs.

Theorem  5.3.1 For X  with x  =  0, we have

E  (.-> ■ -) ■ (U 7 )
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where

P2\{d) =  1 — J  J\ j ^ e  (x+câ t  !/ i  (2 tV c \a j  dt, (5.18)

P2i (/3) =  f  dt, (5.19)

A 2 (/3) =  2X  , (5.20)
y / ( j 3  +  A - f  ca)2 — Ac\a +  ((3  +  A +  ca)

and I\ (x) is the modified Bessel function of the first kind.

Proof: Ak denotes the event that the first time the length of the excursion in 

state 2 , i.e. below 0 , reaches d happens during the kth. excursion in this state, i.e.

{At*} =  {r *  is achieved in the kth. excursion in state 2 } .

So we have
oo

E  ( e - ^ )  =  E  ( e“^  I Ak)  P  W t ) ' (5-21)
fc=l

. XNotice that given Ak, r f  is comprised of k full excursions above 0, k — 1 below 

0  with the length less than d and last one with the length d, i.e.

k - 1

Ti \ A k  =  Y J  ( U l ,n  + A*„) + U& +  d \ U & < d , —  , < d ,  U*k >  d .
n —1
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More importantly, U*n's have distribution Pi2; U*n s have distribution P2i and all 

these variables are independent of each other. As a result,

E ( e ~ ^  | A t)

=  £  ( e -P & - i ( u*"+u&)+u&+d) <<!,■■■ , l/2*  _i < d, U*k >  d)

=  ^ m { r  e ~!>y* {u)A u}  { [ e^ w ) Au}

Also

P ( ^ )  =  P2i(d)k~lP2i(d).

We have therefore

E  (e_|3T*)
OO

fe=l

= e-^pniu)d«| 2̂i(d)fc- 1Ai(d)

_  e-/3dP21(d) / Q+oc e~^pi2 (g)ds

1 “  Jo °° e~psPi2 (s)ds Jq e~/3sp2i{s)ds

We should also consider the case when x > 0. 

T heorem  5.3.2 For X ,  with X q = x  > 0 we have

a VP „~0d+V»X &21 (d)( e - r f )  =  _ _ j L e-Pd+vpx « ------- , (5 22)
V '  *  1 - P 12W P 21W

E
\  J a
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Proof: When x > 0, we need to find the Laplace transform for Uxlt which has 

different distribution from Uxk: k = 2,3,4,....

Applying the optional sampling theorem to the martingale e~^t+v0 Xt (it is easy 

to check that e~^t+vPXt is a martingale), we have

X 0 = x ) = e

Since the distribution of the overshoot of this process, i.e. —Xy x  , is still an expo­

nential distribution with parameter a  and it is independent of the time of overshoot, 

i.e. Uxx, we have

E (e~0u^ x ^  | X0 =  i )  =  -^ ~ = E  ( eX ,  | X0  =  .

Therefore

E
\  a  +  Uo _

x 0 =  x )  =  — e v e x .
/ a

As a result,

(5.23)

E  (e- ^ )

=  E  + E

= e~ »E  ( e - ^ l {ufi>_d}) + E  { e < u^ l {u£l<d}) E  ( e ~ ^ )  ,
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where X  is the same process with X 0 = 0. E   ̂ has been calculated in

Theorem 5.3.1. Since and U*\ are independent, we have

E  (e- ^ )

=  e - » E  P  (0&  > d ) + E  (e“* « )  E  ( e " * *  l Kl<<i}) E

_  Q +  /’°°P2 1 (t)dt + ^ E e vex J * e - 0ipn(t)d tE  (e_/?T*)■e
a;

Q +  ^ c-/3d+,-x A lW
a  1 — P u ify h i i f l )

□

R em ark: One can define a perpetual Parisian digital option as follows: the 

owner of a perpetual Parisian digital down-in option will get £1 when the length 

of excursion below a given level L reaches d for the first time. The underlying stop 

price is defined by (5.2) and set I =  In L as above. We have therefore

Pdigital—down—in =  E  rT*-.^ =  E  ( e  TTl’d ĵ

  ^  £ —rd+vr (x—l )  ^21 (̂ Q_____

ot I - A 2 M P 2 1 M

By taking (3 = 0 in (5.22), we obtain the probability that r*  will ever be achieved. 

C orollary 5.3.2.1 For X  with X q = x > 0, we have

P  ( r f  < oo) =  A e(i-°)* CQi'21p(d) , . . (5.24)
Vd cot c a - X P 2i(d) '
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R em ark: Prom (5.24) we can see that the Parisian ruin probability actually 

equals to the ruin probability multiplied by a constant. In fact, the Parisian type 

ruin probability can also be calculated in the following way:

P  ( t*  < oo) =  P (Tx < oo) J  P ( t*  < oo | X Tx =  -2/) ae a y d y, (5.25)

where Tx has the same definition as in (5.3) and X  is the risk process with X q = X Tx. 

Therefore P  (Tx < oo) is the ruin probability which has been well studied,

P (Tx < oo) =  A e( ; - “h  (5 .2 6 )
ca

By using the same method in Theorem 5.3.1, we can calculate that

f°° E (e~PT* | X 0 =  - A  a e -^ d y  =  — e —  (5 27)
Jo \  ' y > l - P i 2( m M

By taking /3 = 0 in (5.27) we have

f  P  (jd < 0 0  I X Tx =  - y)  cte~aydy = v  (5-28)jo '  ca — XP21 (0 2 )

Substituting (5.26) and (5.28) in (5.25) gives the same result as in Corollary 5.3.2.1 .

5.4 Parisian options pricing

In this section we focus on pricing the Parisian options we define in Section 5.1. We 

start with a Lemma.
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Lem m a 5.4.1 For X  defined by (5.1), we have

where T  is a random variable with an exponential distribution of parameter 7  and 

is independent of X  and

X ;  =  x  +  c t ~ Y , Y ? ,  (5-30)
i= 0

and {Nt } f > 0 is a Poisson process with parameter A* =  The sequence {!&},

k = 1 , 2 , are independent and identically exponentially distributed with parameter 

a* =  a  +  77.

Proof: Let T  be the final time. It is not difficult to show that

E { e - 0 r r ) = E ( r ^ Tl {Tr<T}d T y

By Girsanov’s theorem, this is equal to

J  f}e-{'5+A( ^ - 1)+°'}T- ’>a:£; (e”XTl {t x< t}) dT, 

where X  has the same definition as (5.1) and X% is defined by (5.30).
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Setting 7  =  (3 +  A -  l )  +  cq gives

*  ( e" ' r r )  =  r  (7 - a -  o “  ^  e"7T£ dT
7 - A ( ^ - l ) -

7 E  <*}) >

where T is a random variable with an exponential distribution of parameter 7  that 

is independent of X . Therefore we have

7  -E
cq

7  -E ( exp 1 -  ( 7  -  ^ (  7 7 7  -  1 ) +  ct) ] rt( \  1 Jr 1 I / 1£ j - i ) - c n  V I  V \ a  +  n ?•})

□

We can see that E  ^exp ^ 7  — A — 1  ̂ +  cr ĵ has been obtained

in Theorem 5.3.2 (5.22) with /3 = 7  — A — 1  ̂ +  crj, a  = a* and A =  A*. We 

have therefore obtained the moment generating function of the joint probability of 

X f  and t* < T. Define the inversion of (5.29) with the respect to 77 to be

p(y , x, d) = 11E {eVXfl{T̂ < f}  I ^ 0  =  x, x  > 0 )  j  . (5.31)
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We have therefore

P ( X f  e  dy, T% < f  I X 0 = X,  X  > o) =  p(y, x, d)dy.

For a Parisian down-in-call option, its price formula is given by

Pdown—in—call =  e ~ rT E  S t  ~  K ) +  l | r s d<T}) ’

where r is the risk-free rate, K  is the strike price and S  is the underlying stock price 

satisfying

St =  expXt, S0 = ex > L.

Set

We have

Z =  In L, b = \nK.

Pdown—in —call = e V lE  [ ( e XT — K ) + 1{t* < t})

Define

p *    „rT p
down—in—call down—in—call •
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We are going to show that we can obtain the Laplace transform of Pdown-in-caii w-r -t 

T, denoted by Jzfy.

E ( ( e X* - K ) + l {T, <f})

=  J ° °  (ev — K )P  ( x f  € dy, t *  < T \ X 0 = x , x > o )
poo poo

= /  1e - 'T (ey - K ) P ( X T € d y , T ^ < T \ X o = x , x > 0 ) d T
Jo Jb

=  y J \ ^ E ( ( e ^ - K ) +l Wd<T}) d T

= 7 -&T

Hence we have

Xt = ^r(eV-K)p(xf edy,Tlxd<f \Xo = x,x>0)

= 7 L  êV~ K ^p {x f  e d V - l<Td < r |  X 0 =  z - / )

=  -  [  (ey -  K)p{y -  l , x  -  l,d)dy.
7 Jb

5.5 A diffusion approximation

Set

cT2a  „ cr2o:2
C =  / i  +  —r—, A =2 ’ 2 ,

with f i> 0 and let ol —► +oo. The process X t—fit—x  converges weakly in D [0, oo) to 

a standard Brownian motion W  with Wo =  0 and hence X  converges to a Brownian 

motion with drift

W? = X + fl,t + (TWt.
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See for example [4], pp 117-118 and also [32], pp 159-160. Moreover, the events

and

{ sup {v.<0} (s - g f ) }  > d \

are identical and since

s u p  {1 {X ,< 0 }  ( s - s f ) }
0 < s< t

is a continuous functional of X t on D [0, oo) a.e., we can conclude that

lim P (t£  < t)  = P  (jY* < t ) (5.32)
a —t-oo

for all t\ and therefore

Jim E \ X o = x , x > 0 \ = E  ( e - W  \W $ = x , x > 0 \ .  (5.33)

As a result, by taking the limit a —> + 0 0  in (5.22) and applying the approximation

for the modified Bessel function of the first kind (see [29])

~  “7 f = ’ (5'34)y /2 i t z

we have

E  ( e ~ ^ r  \ WS = x , x > 0 )  = ,  Ji , (5.35)
v )  v ^ + j r _7 b e - * e- * ‘dt
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Calculating the integrals in (5.35) gives

E ( e - ^  | Wg =  x ,x  > o) (5.36)
\/ fi2+20cr2+tj.

' j £  + 2P + 7 k e~i^ )d -  J W  + S - *  ( " / ( W + £ ) d )

The same result with x = 0 and a =  1 has been obtained in [13], [38] and Chapter 2

And actually, but taking the limit as a —» oo in (5.29) and set fi = 0, we can get 

the moment generating function

which is invertible with respect to 77, where W  is a standard Brownian motion; 

therefore we have the explicit expression for p(y, x, d) and then the explicit expression 

for the Laplace transform for the option price. For details see Chapter 2.

Letting (3 = 0 in (5.35) and (5.36), we have the Parisian type ruin probability 

for a Brownian motion with positive drift,

using different approaches. It is an important result for pricing the Parisian options.

(5.38)

(5.37)
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R em ark: It is tempting to derive the Parisian ruin probability by taking the 

limit as a  —» oo in (5.24). However, the argument used to get (5.32) does not 

generalise in the case of an infinite horizon so we can not argue directly from (5.24). 

See [3] pp 196,199, [4] pp 119, [30], [31] and [32] pp 165-166 for more details. A 

simple way to proceed is via (5.35) or (5.36) as we did.
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Chapter 6

Parisian Type Ruin Probabilities 

in Infinite Tim e Horizon
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A bstrac t

In this paper, we extend the concept of ruin in risk theory to the Parisian type of 

ruin. For this to occur, the surplus process must fall below zero and stay negative 

for a continuous time interval of specified length. We obtain the probability of 

ruin in the infinite horizon for the case when the process starts from zero and the 

asymptotic form of the probability of ruin in the infinite horizon for the case when 

the process starts from the point far above zero. We show that in the small claim 

case an asymptotic formula similar to Cramer’s formula is true.

Keywords: ruin, Parisian type of ruin, surplus process, ruin probability, ad­

justment coefficient.
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6.1 Introduction

We consider a classical surplus process in continuous time {Xt}f>0

N t

X t = u + c t - ^ Y k, (6.1)
k=0

where u > 0 is the initial reserve, c is a constant rate of premium payment per time 

unit, and {Nt}t>0 is a Poisson process with parameter A representing the numbers 

of claims up to time t. The sequence {Yfc}, k = 1,2,..., are claim sizes which are 

independent and identically distributed non-negative random variables that are also 

independent of the number of claims. We also assume c > AE  (Yi) (the net profit 

condition). Define the stopping time

T  = i n f { t > 0 \ X t < 0 } .  (6.2)

The event of ruin in infinite time horizon can be expressed as {T  < oo}. The density

of T  and the probability of ruin have been widely studied. See for example [15], [16],

[19], [20], [21], [22], [24], [27], [28], [26], [32], [33], [34], [36], [40], [44] and [45],

In this paper, we extend the concept of ruin to the Parisian type of ruin. The

idea comes from Parisian options, the prices of which depend on the excursions of

the underlying asset prices above or below a barrier. An example is a Parisian

down-and-out option, the owner of which loses the option if the underlying asset

price S  reaches the level I and remains constantly below this level for a time interval

longer than d. For details and extensions, see [13], [37], [38], Chapters 2, 3, 4 and 5.

Parisian type ruin will occur if the surplus falls below zero and stays below
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zero for a continuous time interval of length d. In some respects, this is a more

appropriate measure of risk than classical ruin as it gives the office some time to put

its finances back in order. In practice, the bankruptcy procedures in many countries 

allow for this ’’grace” period, such as the Chapter 11 bankruptcy of the United 

States’ Bankruptcy Code. Similar bankruptcy regulations are also applied to Japan 

and Prance (see [10]).

In order to introduce the concept of Parisian type of ruin mathematically, we 

will first define the excursion. Set

gt = sup{s < t | sign (Xa) sign (Xt) < 0}, (6.3)

dt = inf{s > t | sign (Xa) sign (Xt) < 0}, (6.4)

with the usual convention, sup{0} =  0 and inf{0} =  oo, where

1, if x > 0

sign (a:) =  _ 1? if x < 0 .

0, if x =  0

The trajectory between gt and dt is the excursion of process X  below or above zero 

which straddles time t. Assuming d > 0, we now define

Td = inf{£ > 0 I l{ x t<0}(t -  gt) > d}. (6.5)

We can see that Td is therefore the first time that the length of the excursion of 

process X  below zero reaches given level d. We then define the events {r^ < oo}
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to be the Parisian type of ruin in the infinite horizon. We are interested in the

corresponding probabilities

P (rd < oo).

In Section 6.2 we calculate the Parisian type ruin probability for the case when

is greater than zero. The asymptotic form of the Parisian type ruin probability will

out some directions for the future research.

6.2 The ruin probability for the case when the  

initial reserve is zero

In this section, we are going to consider a simplified case with no initial reserve, i.e.

N t

Xt = ct~Y,Yk- (6.6)
fc=0

the initial reserve is zero. In Section 6.3 we study the case when the initial research

be given for the small claim case. We conclude our results in Section 6.4 and point

Set

G(y) = P  (Y< < y ) , G(y) = P  (Yt > y) ;

Denote the ruin probabilities to be

ip(u) = P (T  < oo | X 0 = u) , ipd(u) = P (rd < oo | X 0 =  u) .
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Since T  < Td, it is clear that ^(u) > i^d(u).

T heorem  6.2.1 For the process X  defined by (6.6), we have that

M 0 ) =  (6.7)c — AmH(d)  ’

where

m  -  * > '  ( S s l ) ' < M )

H(d) = 1 (6.9)

and v t  is the unique positive solution of

- 0  +  cvp +  A (g (vp) -  1) =  0. (6.10)

Proof: It is well-known that

c

and that the overshoot — X t is a non-negative continuous random variable with 

density

(6.12)
m

See for example [19], [20], [21], [22], [27], [28], [30], [31], [32] and [40]. Furthermore,
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define

T* = inf {t >0,X* =  0 | X o  =  x , z < 0 } .  (6-13)

It has been shown in [25] that

E  (exp (—(3T*)) =  exp (u j x) . (6-14)

We use h(t) to denote the density of the first (and actually any, due to the strong

Markov property of the process X)  excursion below zero. Its Laplace transform can

be obtained as follows:

=  r  E  (exp (—/?T* | X 0 =  -y ) )  ^ - d y  
J o  _ rn

= J  e x p ( - v ^ y ) ^ - d y
Jo m

c v + - p
mvp A mvp

Define then the cumulative distribution function of T* to be

We have actually

H{d) = P (T* < d) . (6.15)
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Moreover, the number of excursions N  below zero in infinite time horizon has a 

geometric distribution such that

P(iV =  n ) = ( l - ^ V ^ )  , n =  0 ,1 ,2 ,... (6.17)

As a result, the largest ever excursion below zero, denoted by L, is such that

,«,8,

Hence we have

( 6 1 9 )

□

R em ark: It is clear that ^ (0 )  < ^(0) by simply comparing (6.7) and (6.11). 

Also, we can obtain t/>(0) by taking d —> 0 in (6.7).

6.3 An asym ptotic formula for the Parisian ruin 

probability

In this section we focus on the asymptotic form for the Parisian ruin probability as 

u —> oo. We assume that we have small claims.

Assumption: The Laplace transform g(v) is defined for all v G (a, oo) for some 

a <  0 .
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T heorem  6.3.1 For the process X , X q = u, when u —> oo we have that

Mu) ~  Cde-Ru, . (6.20)

where

Cd

c 

Q(d)

and R is the adjustment coefficient which is the unique positive root of

- c R  +  A (g(-R)  -  1) =  0. (6.24)

Proof: First of all, the Parisian ruin probability can be written as follows:

=  P (rd < oo | X 0 = u)

= P {rd < oo, T  < oo, T* < d | X q = u) +  P (rd < oo, T  < oo, T* > d \ X q =  u)

' =  P ( T  <oo,T* < d \ X 0 = u)P(Td < o o \ X 0 = 0)

-\~P (T  < oo, T* ^  d | X q = u ) .

That last equality is due to the strong Markov property of X . We have obtained

=  c{  1 -
(c — Am) R  

(c — Am) (c — AmH{d)) Q(d)
} ■

c — m \  T f°° 
RX

^  I

roo
l  yeRvG(y)y

- l

v0 H  + r ) I '

(6.21)

(6.22)

(6.23)
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P (rd < oo | X q = 0) in (6.7). Furthermore, we have

/•OO

/  e~Pd lim eRuP  (T < oo,T* < d \ Xg = u) dd
J o  u^ ° °

p  oo

=  lim /  e~Vi eRuP  (T < o o ,T  < d \ X 0 = u)Ad
«-® y0

=  lim eRuE
i t —> 0 0

•l{T<oo} X n  — U

= lim
u—*oo

oo / e-DT

= lim
U—>00

im f  e (
^ ° ° J  0 V 

r°° f  p - $ T*
1 .  e ( —

-  Xr  =  z j  eRuP  (T < oo, - X T G dz | X0 =  u)

-  X T = z ) P  ( ~ X T 6 dz | T  < 0 0 , X 0 = u) e Rui>(u)

poo /  - 0 T * 

- 1  E ( —
— X T = z  ) lim P ( - X T 6 dz | T  < 0 0 ,X 0 =  u)eRnip(u)

By (6.14) we have that

E
-0 T *

&
- X T = z \  =

e~ve‘
0

It is well-known that

A R  r00
lim P ( - X T e  dz I T  < 0 0 , X a = u) = ----- —  /  eRlG(x + z)dxdz,u—>oo c — Am J0

- ^ - C^ \ r y e RvG(y)jlim eKui){u) = C =
- 1
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For more details see [15], [24] and [40]. We have therefore that

poo
/  e~ed lim eRuP ( T <  oo,T* < d I X 0 = u)dd

Jo  u^ ° °
poo p - V t z  \ p  poo

= C — --= J- /  e ^ G ix  +  z)dxdz
Jo (3 c -  Am Jo
CX 1 f g ( - R ) - g ( v t )  1 -  g ( v t ) \

c — Am (3 I Vp +  R Vp

CR (  1 \
c -  Am I Vp (vp +  R)

As a result,

OR
lim eRuP  (T < oo,T* < d, \ X 0 = u) = ----- T— Q(d),

«-*• oo c — Am

where

3 —  1

and hence

O R
P  (T < 00,T* < d I *0 =  u) ~  e“*“-----r— Q(d).c — Am

Also, we have

P ( T  <oo,T* > d \ X 0 = u)

= i>{u)~ P (T  <oo,T* < d \ X 0 = u)

(6.25)

(6.26)

(6.27)

151



We have therefore proved (6.20).

□

R em ark  1: The constant C given by (6.22) is the well-know Cramer constant. 

This theorem gives the modified version of the Cramer constant, Cd for the Parisian 

ruin case, which is given by (6.21).

R em ark  2: It is easy to see that Cd < C , and hence ipd{u) <^{u) .

6.4 Conclusion

In Section 6.3 we obtain the asymptotic result for the small claim case (see the 

Assumption). Note that it is not the case for the result in Section 6.2, which is 

true for all claim distributions. When u > 0, the difficulty with the large claim case 

is that we do not have a nice form for the distribution of overshoot on which the 

length of excursions below zero depend. The investigation of the large claim case 

can be a topic of future research.

For the small claim case, instead of asymptotic form we obtained here, it would 

also be nice to get a formula for ipd(u) for a general u > 0. One of the difficulties is 

that the length of the excursions below zero depends on the length of the preceding 

excursion above zero since the overshoots depend on the length of the excursion 

above zero. However, for exponential distributed claims, we do not have such prob­

lem in which case the overshoot is independent of the excursion and the explicit 

form for ipdM can be obtained (see Chapter 5).

Furthermore, as another direction of future research, one should try to study the 

Parisian ruin probability in finite time horizon, i.e. P fa  < t).
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Chapter 7

Conclusion

This thesis mainly focus on two subjects, pricing Parisian options and calculating 

Parisian type ruin probabilities.

As for Parisian options, under the Black-Scholes assumptions, four types of 

Parisian options are priced, single barrier one-sided Parisian options, single barrier 

two-sided Parisian options, double barrier Parisian options and Parisian corridor 

options. The results are given in the explicit forms of the Laplace transforms of the 

option prices with respect to the maturity time T. The inversion of these Laplace 

transforms has not been attempted in this thesis. There are some works concerning 

the inversion for the the single barrier one-sided Parisian options (see for exam­

ple [38]). The inversion for the other three types of Parisian options can be a topic 

of future research.

Additionally, pricing Parisian options under jump processes has been first at­

tempted in this thesis. The case studied here is restricted to the single barrier 

one-sided Parisian options whose underlying asset prices follow a classical surplus

process with negative exponential jumps. It is a relatively new area and more re-
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search can be done in the future to price a broader types of Parisian options with 

more general jump processes, for example the process with both negative and posi­

tive jumps. In this case, the excursion above and below an barrier does not preserve 

the independent structure anymore. The length of every excursion depends on its 

preceding excursion and therefore the methods used in this thesis cannot be applied. 

Different mathematical tools are needed in this case.

Regarding to the Parisian type ruin probabilities, the probability of ruin in the 

infinite horizon for zero initial reserve is calculated. When the initial reserve is 

larger than zero, only the asymptotic form can be calculated for very large initial 

reserve and the small claim distributions. The exact formula for any initial reserve 

larger than zero can only be obtained for the exponential claim. As a result, to 

obtain the exact formula for any initial reserve larger than zero and any small claim 

distributions and to study the large claim case can be a direction of future research. 

Furthermore, one can look at the ruin probability in finite time horizon, the exact 

form of which has only been obtained for the exponential claim case in this thesis.
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