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Abstract

The excursion time of a Lévy process measures the time it spends continuously
below or above a given barrier. This thesis contains five papers dealing with the
excursions of different Lévy processes and their applications in mathematical finance
and insurance. Each of the five papers is presented in one of the chapters of this
thesis starting from Chapter 2.

In Chapter 2 the excursions of a Brownian motion with drift below or above
a given barrier are studied by using a two-state semi-Markov model. Based on
the results single barrier two-sided Parisian options are studied and the explicit
expressions for the Laplace transforms of their price formulae are given.

In Chapter 3 the excursion time of a Brownian motion with drift outside a
corridor is considered by using a four-state semi-Markov model. The results are
used to obtain the explicit expressions for the Laplace transforms of the prices of
the double barrier Parisian options.

In Chapter 4 Parisian corridor options are introduced and priced by using the
results of the excursion time of a Brownian motion with drift inside a corridor.

In Chapter 5 the main focus is the excursions of a Lévy process with negative
exponential jumps below a given barrier. Based on the results, a Parisian option
whose underlying asset price follows this process is priced, as well as a Parisian type
digital option. This is the first ever attempt to price Parisian options involving
jump processes. Furthermore, the concept of ruin in risk theory is extended to the
Parisian type of ruin. ,

In Chapter 6 the excursions of a risk surplus process with a more general claim
distribution are considered. For the processes without initial reserve, the Parisian
ruin probability in an infinite time horizon is calculated. For the positive initial
reserve case, only the asymptotic form can be obtained for very large initial reserve
and small claim distributions.
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Chapter 1

Introduction

The excursion timé measures the time a process spends above or below a given
barrier. More precisely, the excursion time below (above) a barrier starts counting
from zero each time the process crosses the barrier from above (below) and stops
counting when the process crosses the barrier from below (above). Mathematically,
for a continuous process S the excursions with respect to the barrier L can be defined

as follows:
gf,t =sup{s <t|Ss =L}, df,t =inf{s >t| Sy =L}

with the usual convention, sup{@} = 0 and inf{@} = oo. The trajectory between
git and df,t is the excursion of process S above or below L, which straddles time ¢.

Assuming d; > 0, ds > 0, we now define

TfL = inf {t >0 I 1{5’:>L} (t - git) > dl} y



TéS:L = 1nf {t > 0 l 1{S¢<L} (t - git) Z d2} ’
Tg = Tig’L /\ TéSZL.

771, is therefore the first time that the length of the excursion of the process S above
the barrier L reaches given level di; 'rf 1, corresponds to the one below L; and 77
is the smaller of Tf ;, and 7’25: ;- For a jump process, similar definitions are given in
Chapters 5 and 6.

The excursion time has vefy important applications in both mathematical fi-
nance and insurance. In mathematical finance, it is the key to price a type of path
dependent options, Parisian options.

The Parisian option was first introduced by Chesney, Jeanblanc-Picqué and Yor
[13]. Its payoff does not only depend on the final price of the underlying asset,
but also its price trajectory during the whole life span of the option. A Parisian
option will be either initiated or terminated upon the price reaching a predetermined
barrier level L and staying above or below the barrier for a predetermined time D
before the maturity date 7. Here are two examples. The owner of a Parisian down-
and-out option loses the option if the underlying asset price S reaches the level L
and remains constantly below this level for a time interval longer than D: For a
Parisian down-and-in option, the same event gives the owner the right to exercise
the option. Now assume S is the price of the underlying asset following a geometric

Brownian motion:

ng = T'Stdt + O'Stth, S() =z, IT> 0, (11)



where W, with Wy = 0 is a standard Brownian motion under a risk neutral measure
Q. Also assume r is the risk-free rate, T is the term of the option, K is the strike
price. The price of a Parisian down-and-out call option with the barrier L can be

expressed as:
Piown—out—can = € T Eq (1{,§L>T} (Sr— K )+) ;
and the price of a Parisian down-and-in put option is:
R ]

One advantage of Parisian options is that the cost is lower than the corresponding
barrier options and for the knock-out options the owner can keep the right to exercise
the options longer. Furthermore, to a certain degree, Parisian options protect the
holders from deliberate action taken by the writers. One example is the down-and-
out options. For a barrier down-and-out option, when the price of its underlying
asset is approaching the barrier, an influential agent who has written the option
could try to push the price below this barrier, even momentarily, to make the holder
lose the right to exercise it and benefit from the elimination of liabilities. In the
case of Parisian options, however, this action might prove more difficult or more
expensive. For more details see [13].

There are many works concerning the pricing of Parisian options. See for example
[13]; [38], [46] and [37]. From (1.1) it is clear that in order to study the excursions

of the asset price S we just need to study the excursions of the Brownian motion



W, on which S depends. In all works mentioned above the pri(;ing problem was
reduced to finding the Laplace transforms of the distribution density functions of
the first time the leﬁgth of the excursion of W reaches level D, i.e. T,-‘}f, i=1,2 and
the position of the process W at time Ti%, 1 = 1,2. These were obtained by using
the Brownian meander and the Azéma martingale (see [5]). A restriction of this
techniqﬁe is that it relies heavily on the properties of standard Brownian motions;
therefore the result cannot be extended to other processes easily. It is also hard to
see how it can be used for the pricing of the more complicated options that we will
introduce.

In Chapters 2, 3, 4 and 5, a different approach is adopted. For the single barrier
Parisian options studied in Chapter 2, a two-state semi-Markov model is considered.’
This model, however, cannot be applied to Broyvnian motions directly due to the
peculiar properties of the sample paths of Brownian motions. A major problem is
the occurrence of an infinite number of very small excursions. In order to solve these
problems a new process, perturbed Brownian motion, X(©, Whére € > 0 is introduced
as follows. Assume L = 0 and W* is a Brownian motién with non-negative drift

and it starts from zero. Define a sequence of stopping times

b = 0,
on = inf{t>6,|W}=—¢},

Opt1 = inf {t > o, | W} =0},



=

The trajectory of the original Brownian Motion
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The trajectory of the Perturbed Brownian Motion

500 1000 1500
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Figure 1.1: A Sample Path of

where n —0,1, **+. Now define

XJj

W? +e if S&<t<an
=< , (see Figure 1.1).

W, if an <t< 6,4

By introducing the jumps to the original Brownian motion, we get the new

process X which has a very clear structure of excursions above and below zero,

i.e. the excursions above and below zero alternate with the length of each excursion



greater than zero. It will be proved in Chapter 2 that the Laplace transforms of the
variables defined based on X (©) converge to those based on W* as € goes to 0. As
a result, we caﬁ obtain the results for W* by carrying out the calculations for X
and taking the limit ¢ — 0. Hence we will focus on studying the excursions of X ()

and introduce a two-state semi-Markov model based on it. Set

1, fX9>L
zZ¥ =

2, fX9Y<L

We can now express the variables defined above in terms of ZX:

gr,=sup{s <t|ZX #ZX},

df, =inf{s >t | Z} # Z}},
i =inf {t> 01 1 ppyy (- gfy) 2 i},
3% =inf {¢> 0| 1z gy (¢ — o) Zdz} ,
TR =1L A r{fL.

We then define

‘/tX = t_gita

the time Z* has spent in its current state. It is easy to see that (Z%,VX) is a
Markov process. ZX is therefore a semi-Markov process with the state space {1, 2},
where 1 stands for the state when Z¥ is above the barrier and 2 corresponds to the

state below the barrier.



Furthermore, we set Ui)";c, i=12and k=1,2,--- to be the time ZX spends in

state ¢ when it visits ¢ for the kth time. And we have, for each given ¢ and &,
Ufjc = Vd})ﬁ(t = dﬁt - gﬁt, for some t.

Notice that given i, Ui)f;, k=1,2,---, are i.i.d. We therefore define the transition

densities for ZX:
' . P(<UE <t+At)
pii(t) = fim, A7

More precisely, according to the definition of ZX, we actually have the transition

densities for ZX as follows:

Based on the countable and alternating structure of the excursions above and be-
low thé barrier, together with the transition densities we have obtained there, the
Laplace transforms of i, 737, and 7{ can be easily calculated. Taking the limit
€ — 0 yields the Laplace transform of 7{%", 737 and 7}"" where W* is a Brownian
motion with drift.

For the double barrier case felated to the double barrier Parisian options and the
Parisian corridor options in Chapters 3 and 4, a doubly perturbed Brownian motion
and the four-state semi-Markov model are introduced. In this case, however, the

alternating structure of the excursions does not exist anymore. In order to calculate

the Laplace transforms of the relevant stopping times, a more advanced technique
7



using the generator of the process is needed.

One of the main differences between the approach in this thesis and the one
in [13] in terms of pricing is that, instead of looking for the Laplace transform of
the stopping time for W, e.g. 7'27“2, and the position of W at the stopping time,
e.g. sz”,"L , the Laplace transform of the stopping tﬁne for a Brownian motion with
drift W* is obtained, e.g 7'2,”2", using which the joint probability of the right to
exercise the option with respect to an exponential time and the position of W at the
exponential time, e.g. P (7‘2“2 < T, Wz e dz) for a Parisian down-and-in option, is
calculated, where ff, independent of W, is exponentially distributed. The explicit
form of the Laplace transform of the option price then can be obtained using this
joint probability. Even in the single barrier one-sided case, the formula derived in
this thesis involved one integral less than the formula in [13].

Moreover, pricing Parisian options with a jump process has also been attempted
in this thesis. A classical surplus process in continuous time {X;}, , is considered,

which is defined by

Nt

Xi=u+ct— Z Y,

k=0
where u > 0 is the initial reserve, c is a constant rate of premium payment per
time unit, /V; is the number of claims up to time ¢ which has a Poisson distribution
with parameter A, and Y, k = 1,2,..., are claim sizes which are independent and
identically distributed non-negative random variables that are also independent of
N;. We also assume ¢ > AE (Y1) (the net profit condition). Our underlying asset
price follows

St = exp (X;), with Sy = e*.

8



Since the process itself has the countable and alternating structure of excursions
above and below zero, a similar technique as that in Chapter 2 can be directly applied
to obtain the Laplace transform of the stopping time we are interested in, so as the
Laplace transform of the option price. The transition densities required to complete
the calculation can be calculated by inverting their Laplace transforms, which can
be obtained by applying the optimal sampling theory to certain martingales.

As mentioned at the beginning, another application of the excursion time is
in insurance. According to the bankruptcy regulations in many counties, such as
U.S., Japan and Fraﬁce, the defaulted firm is granted some ”grace” period before
liquidation, during which the firm is given the chance to reorganize and to put its
finance back in order. As a result, instead of the classical ruin, it makes more sense to
consider the risk of a Parisian type of ruin, for which to occur, the surplus process
must fall below zero and stay negative for a continuous time interval of specified
length.

Two cases are discussed here, one with zero initial reserve, i.e. u = 0 and one
with positive initial reserve, i.e. u > 0. With zero initial reserve, the probability
of a Parisian type of ruin ever occurring is calculated, which can not be done for
a general u > 0 and a general claim distribution. An asymptotic form is obtained
for large u and small claim size. For an exponential claim distribution, however, an
explicit form for the Parisian ruin probability in the finite time horizon is calculated
for a general u > 0.

In Chapter 2, the excursion time is studied in a more general framework using a

simple semi-Markov model consisting of two states indicating whether the process is



above or below a fixed level L. Based on these results, for the first time, the explicit
form of the Laplace transforms of the prices of the single barrier one-sided Parisian
options defined in [13] are given. One can then invert the Laplace transforms using
techniques as in [38].

Furthermore, the single-barrier two-sided Parisian options are studied. In con-
trast to the Parisian options mentioned above, the excursions below and above the
barrier should both be considered. The explicit forms of the Laplace transforms for
the prices of this type of options are also obtained.

In Chapter 3 the excursion time outside a given corridor is studied using a semi-
Markov model consisting of four states. Applying these results gives the explicit
forms of the Laplace transforms for the prices of double barrier Parisiah options.

In Chapter 4 the main focus is on the excursion time inside the corridor. By using
the similar technique as in Chapter 3 the explicit forms of the Laplace transforms
for the prices of Parisian corridor options are calculated.

In Chapter 5 the excursions of a classical surplus process with negative exponen-
tial jumps below a given level are studied. Based on the result, pricing a Parisian
option and a Parisian type digital option, whose underlying asset prices follow this
jump process is attempted for thé first time. The Parisian type of ruin is introduced
here and the explicit form for the Parisian ruin probability in the finite time horizon
for exponential claims is calculated. Moreover, a diffusion approximation is carried
out to obtain similar results for Brownian motions with drift.

In Chapter 6 the Parisian ruin probabilities are studied for a general claim distri-

bution. The probability of ruin in the infinite horizon is obtained for the processes

10



without initial reserve. For positive initial reserve case, only an asymptotic form
for large initial reserve can be obtained for small claim distributions. It is shown
that in the small claim case an asymptotic formula similar to Cramér’s formula, i.e.
Ce™™ where u is the initial reserve, is true.

Each of Chapters 2, 3, 4, 5, and 6 are independent papers. To keep the papers
as self-contained as possible, some definitions and preliminary reéults are repeated

in each paper.
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Chapter 2

Perturbed Brownian Motion and
Its Application to Parisian Option

Pricing
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Abstract

In this paper, we study the excursion time of a Brownian motion with drift below
and above a given level by using a simple two-state semi-Markov model. In math-
ematical finance, these results have an important application in the valuation of
path dependent options such as Parisian options. Based on our results single barrier
two-sided Pa,ri.sian options are priced.

Keywords: excursion time, two-state semi-Markov model, path dependent op-

tions, Parisian options, Laplace transform.
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2.1 Introduction

The concept of Parisian options was first introduced by Chesney, Jeanblanc-Picqué
and Yor [13]. A Pé.risian option is a special case of path dependent options. Its
payoff does not only depend on the final price of the underlying asset, but also its
price trajectory during the whole life span of the option. More precisely, a Parisian
option will be either initiated or terminated upon the price reaching a predetermined
barrier level L and staying above or below the barrier for a predetermined time D
before the maturity date T'.

There are two different ways of measuring the time spent above or below the
barrier, corresponding to the excursion time and the occupation time defined below.
The excursion time below (above) the barrier starts counting from 0 each time the
process crosses the barrier from above (below) and stops counting when the process
crosses the barrier from below (above). The occupation time up to a specific time ¢
adds up all the time the process spend below (above) the barrier; it is therefore the
summation of all excursion time intervals before time ¢. In [13] the Parisian options
related to the occupation time are called cumulative Parisian options.

The owner of a Parisian down-and-out option loses the option if the underlying
asset price S reaches the level L and remains constantly below this level for a time
interval longer than D. For a Parisian down-and-in option the same event gives
the owner the right to exercise the option. The owner of a cumulative Parisian
down-and-out option loses the option if the total time the underlying asset price
S stays below L up to the end of the contract for longer than D. For details on

the pricing of Parisian options see [13], [37], [38] and [46]. For cumulative Parisian

14



options see [13] and [41] and since these are related to the occupation times and
hence the quantiles of the process, also see [1], [17] and [42]. For American Parisian
options, see [11]. In this paper, we focus on the Parisian option defined upon the
excursion time.

From the description above, we can see that the key for pricing a Parisian option
is the derivation of the distribution of the excursion time. As in [13] we first focus
on finding the Laplace transform of the first time the length of the excursion reaches
level D. In [13] this was obtained by using the Brownian meander and the Azéma
martingale (see [5]). A restriction of this technique is that it relies heavily on the
properties of standard Brownian motions; therefore the result cannot be extended
‘to other processes easily. It is also hard to see how it can be used for the pricing of
the more complicated options that we will introduce.

In this paper, we are going to study the excursion time in a more general frame-
work using a simple semi-Markov model consisting of two states indihating whether
the process is above or below a fixed level L . By applying t.his model, we can, for
the first time, get the explicit forms of the Laplace transforms for the prices of the
Parisian options defined in [13]. One can then invert the Laplace transforms using
techniques as in [38] and [6].

Furthermore, we study the single-barrier two-sided Parisian options. In contrast
to the Parisian options mentioned above, we consider the excursions both below and
above the barrier. Let us look at two examples, depending on whether the condition
is that the required excursions above and below the barrier have to both happen

before the maturity date or that either one of them happens before the maturity.

15



In one example, the owner of a Parisian Mazx Out option loses the option if the
underlying asset price S has both an excursion above the barrier for longer than
d; and below the barrier for llonger than dp before the maturity of the option. In
another example, the owner of a Parisian Min Out option loses the right to exercise
the option if there is either an excursion above the barrier for longer than d; or
below the barrier for longer than ds béfore the maturity. For more details, see [12]..
Later on, we will give the explicit forms of the Laplace transforms for the prices of
this type of options.

In Section 2.2 we give the mathematical definitions and set out the model. We
also introduce a new process, perturbed Brownian motion, which has the same be-
havior as a Brownian motion except that each time when it hits 0, it jumps towards
the other side of 0 by size €. In Section 2.3 we present an important lemma for
the perturbed Brownian motion together with its proof, which will be used in the
foliowing sections. We give our main results for Brownian motions in Section 2.4,
including the Laplace transforms for the stoi)ping times we define for both Brownian
motions with drift and standard Brownian motions, which are vital for the pricing.
In Section 2.5 we focus on pricing our newly defined Parisian options by using the
results in Section 2.4. As a special case, we also give the explicit forms of the Laplace
transforms for the prices of the Parisian options studied in [13] for the first time.
In [13] these were given in the form of double integrals. Using a different approach

yields explicit results in our paper (see remark after Corollary 2.4.3.1 later).
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2.2 Definitions

We are going to use the same definition for the excursion as in [13], [14] and [43).
Let L be the level of the barrier and assume S is the price of the underlying asset

following a geometric Brownian motion:
dS; =rSydt + oS, dW,, So=2z, >0, (2.1)

where W, with W, = 0 is a standard Brownian motion under a risk neutral measure

Q. As in [13], we define
gi,=sup{s<t|S, =L} di,=inf{s >t| S, =L} (2.2)

with the usual convention, sup{@} = 0 and inf{@} = oco. The trajectory between
git and dj , is the excursion of process S, which straddles time ¢. Assuming d; > 0,

dy > 0, we now define

TiS:L = inf {t >0 | 1{S¢>L} (t - gf’t) > dl} , (23)
Top = inf {t > 0| 1(s,<ry (¢ — 97;) 2 da}, (2.4)
TS = 'rfL A TQS:L. (2.5)

771, is therefore the first time that the length of the excursion of the process S above
the barrier L reaches given level dy; 7'2": 1, corresponds to the one below L; and 77 is

the smaller of 77, and 75

17



Assume r is the risk-free rate, T is the term of the option, K is the strike price,
S is the underlying asset price defined as above. If we have an up-out Parisian call

option with the barrier L, its price can be expressed as:
Rava o =T (g0 5 1)
and the price of a down-in Parisian put option with the barrier L is:
Piown—in—put =€ "TEq (1{T§L<T} (K - ST)+) .

Without loss of generality, from now on, we assume L = 0. We simplify the
expressions of g5, d3;, 75, oo and 75, by g7, dF, 75, 77 and 75 .

From (2.1) we can see that in order to study the excursion of the asset price S we
just need to study the excursion of the Brownian motion W. However, the peculiar
properties of the sample paths of Brownian motions result in many difﬁculties. A
major problem is the occurrence of an infinite number of very small excursions.
In order to solve these problems we introduce a new process, perturbed Brownian
motion, X(©, where € > 0 as follows. Assume W* is a Brownian motion with

non-negative drift and it starts from 0. Define a sequence of stopping times

60 = Oa
on = inf{t> 6, | W = —¢},

Snpr = inf{t > on|WF =0},

18



The trajectory of the original Brownian Motion
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The trajectory of the Perturbed Brownian Motion
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Figure 2.1: A Sample Path of

where n = 0,1, **+. Now define

Wf+e if m<t<an
X —" , (see Figure 2.1).

if an<t< &tl
By introducing the jumps to the original Brownian motion, we get this new
process X~ which has a very clear structure of excursions above and below 0, i.e.

the excursions above and below 0 alternate with the length of each excursion greater
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than 0. In the later section we prove that the Laplace transforms of the variables
defined based on X(©) converge to those based on W* as € goes to 0. As a result, we
can obtain the results for W* by carrying out the calculations for X and taking
the limit € — 0; for more details see Theorem 2.4.1. Hence we will focus on studying
the excursions of X(®) in the rest of this section and next section.

From the description of the excursion above, it is clear that we are actually
considering two states, the state when the process is above the barrier and the state
when it is below. For each state, we are interested in the time the process spends
in it. We introduce a new process based on X(©.

1, X9 >0
z¥ =

2, if X9 <0

In this definition, we deliberately ignore the situation when ZX = 0. It is because

process ZX satisfies

t
/ l{zfzo}du = 0
0

We can now express the variables defined above in terms of ZX:

g¥ =sup{s <t|ZX # Z}}, 26
d¥ =inf {s >t | ZX # Z¥}, (2.7)
7 =inf {t >0 Lz (t-9F) 2 di}, (2.8)
X = inf {t >0 1 ppgy (E—65) 2 d2} , (2.9)

20



X =X AT (2.10)

We then define

V;X:'t_gtxa

the time ZX has spent in its current state. It is easy to see that (ZX,V¥) is
a Markov process. ZX is therefore a semi-Markov processes with the state space
{1, 2}, where 1 stands for the state when ZX is above zero and 2 corresponds to the
state below zero.

Furthermore, we set U{i, i=1,2and k=1,2,--- to be the time ZX spends in

.

state 7 when it visits ¢ for the kth time. And we have, for each given ¢ and k,

UX =V) =df — g, forsomet.
’ Lt

(2

Notice that given i, Uﬁc, k=1,2,---, are i.i.d. We therefore define the transition

densities for ZX:

. P<UX <t+At -
pu(t) = fm, TR0

P;(t)=P (U} <t), P;t)=P(U%>1).

We have

Pa = [ pule)ds =1~ Py(0),

which is actually the probability that the process will stay in state ¢ for no more

than time ¢. More precisely, according to the definition of ZX, we actually have the
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transition densities for ZX as follows:

p12(s) = \/;?eXP{—eT—}, | (2.11)
€ exp {—(G_Tgs)i} (2.12)

w3

where pi2(s) is actually the density of the first time that a Brownian motion with
drift started from € hits 0 and py; (s) is the density of the first time that a Brownian

motion with drift started from —e hits 0.

2.3 An Important Lemma
In this section, we will present an important lemma for X () together with its proof.

Lemma 2.3.1 For the perturbed Brownian motion X(©, we have the following re-

sults:
4 . .
E (exp {—alTl — a272 } 1{1_1)((1_2)(}) (213)
e—a1d1—azd2]321 (dZ) fdolo e “?%ps (S)dS
G(dl, d2) ,
E (exp {—0117'1X - 0127'2}{} 1{7-1">rf§}> (2.14)
e~ndi—e2dz Py (d)) f;: e~ *°py (s)ds fodl e~ (*1%22)p 1y (s)ds
G(dh d2) ,
where

d1 d2
G(dy,dp) = { / —(a1+az)s (s)ds/ e—(a1+az)sp21(s)ds}
0 0

=) dz
{ / e plg / 6_a2sp21(3)d3} .
0 0



Proof: Let A;'- denotes the event that the first time the length of the excursion above
zero reaches d; happens during the ith excursion above zero, and the first time the
. length of the excursion below zero reaches d; happens during the jth excursion below

zero. So we have,

=

(exp {—OleiX - agT{{} 1{T5<T;{})

= i . E (exp{—al'rlx — (1T, } ’Az) Ai‘) ’

and

E (exp {—a17'1X - azTZX} l{TIX>7_2x}>

—Z Z E(exp{ o — gty }

7=1i=j+1

4) P (4).

Since excursions above and below alternate, given event A%, ¥ is comprised of i —
full excursions below zero with the length less than ds, 7 — 1 full excursions above

zero with the length less than d; and the last one with the length d;. We have
X Az _ UX UX . d
T = 1,1+ 1,2+ +U11+U21+U22+ +U1'1+ 1,

where U < dy for k=1,--+,i—1, Uy <dyfor k=1,---,j—1, U > dy and
Uz)fj > dy. For simplicity, we denote the above condition of U;fk’s by C. Similarly,

for 75, we have

T2 A U11+U12 U +U21+U22+ +U2X,j_1+d2,
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where U;X’s satisfy the condition C.
More importantly, due to the Markov property of X (€, these excursions are
independent of each other. U7, X ., 8 have distribution Pjs; U 'S have distribution Ps;.

As a result, when ¢ < 7,

A;'.)

(U +U2k)+d1}

FE (exp {—al'rlX — 012’7';{}

- & (exp{_al {

j—1
—a {Z (U + UX) + UK + dz}} |C)

k=1

{/0 *2°p12(s)d } { g-a2s g;:T(Z) i }J—z
{ /0 ? o—(artan)s P21((d2) } |

—_

>
Il

1

and

P(A%) = Pia(d1)" " Pa1(da)’ ' Pia(dy) Pa1 (da).

We have therefore

E (exp {—Ozl’TIX - asz} l{qux})

oo J

= ZZE(eXP{'alTl — o7y } Al) ()
j=1 i=1
e—c1d1—az2dz le(dg) f;lo e"%pyy (s)d’s

G(d1,dp)

The proof of the case when 7{¥ > 75 follows the same steps.

a
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Remark: We can get E (exp { —a17{* — a»75 }) by adding up (2.13) and (2.14).

2.4 Main Results

In this section we show how to obtain results for Brownian motions through X (.

In order to simplify the expressions, we define
U(z) = 2\/mz N (\/Ezv) —Vrz+e ™,

where #(.) is the cumulative distribution function for the standard Normal distri-

bution.

Theorem 2.4.1 For a Brownian motion W* with W§ =0, u > 0, V", 7" and
W defined as in (2.8), (2.4) and (2.5) with S = W*, we have following Laplace

transforms:

e~ {\/(1_2\11 (u\/‘) "‘/‘\/_} (2.15)

\/——\I/( 2ﬂ+;2241) -|—\/d_1\Il( (2ﬁ+;22d2)1

S {\/d_l\ll (u d—f) - ”\/@} (2.16)

V¥ ( R dl) + Va1 ¥ ( (2B+12)dy d2>

—BrWH
FE (6 B I{TW"<TW"}>

E (e_ﬂfw Lfrwrsrpw “}) -

E (e—ﬁrW“) -
e {E (4) F} SICORIES
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For a standard Brownian motion, the special case when p =0, we have

B(eP™ 1y ) = Ve
tr<rt) = Vv (VBG) + VA (Vi)
W \/d—le—ﬁdz
(e 1pnnyy) = V& U (VBd) + V¥ (VBds)
E (e—BTW) _ dae B4 1 \/d e P
V&Y (VBE) + V& ¥ (VBE)

Proof: We prove in the appendix that

_ Twl‘ . - 'rx
B (T 1 cgoy) =l B (P ).
We have therefore

_ wH _ Twﬂr
E(e pr 1{1_1wu<7_2w/4}) = E(e By 1{1-{”“<1‘;V“})

— i —Br¥
= LB (T 1)
- Similarly, we can get

_BrwWH _BWH
E(e A l{leu>1_;vu}) = E(C pr; l{leu>Tgvu})

— 1 -Br¥
= 1B (1)

(2.18)
(2.19)

(2.20)

According to (2.13) and (2.14) of Lemma 2.3.1., we can actually calculate that

) e_ﬁdlplz(dl)
XX =
<’} 1-— fodl e Bsp1o(s)ds f0d2 e P51 (s)ds

E (e_ﬂTlxl{

b
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e=P% Py (dy) fodl e Pop1a(s)ds
1— [y ePopra(s)ds fy” e Popar(s)ds’

E (e_ﬁszl{fffng ) =

where

Pip(dy) =1 — e (u\/d_1— \/—6d—1> - (-ﬂ\/a— ﬁ) ;

le(d2)=1—/V(ﬂ dz—%)—ezm«/‘/(—u dz—ve——('i—),
2 2

/0d1 e Ppip(u)du = e (+VEBHR)e 4y (\/m_%d—l)
+ VIR (T - ).

/:2 e_ﬁupzl(“)du L= e(u——\/w_—t-u_i)e'/‘/ (\/m - \/Ld—2)
N (‘\/m - —\;d:) '

By taking the limit € — 0, we obtain (2.15) and (2.16). Adding up (2.15) and (2.16)
give (2.17).

O

Remark: A similar result for a standard Brownian motion, i.e. g = 0 in the

case when double barriers are considered can be found in [2].
If we let 3 — 0, we get the following remarkable results.

Corollary 2.4.1.1 The probability that W* achieves an excursion above 0 with
27



length as least di before it achieves an ezcursion below 0 with length at least ds

18

P < TQW“). = i (N\/%) +#\/@ . (2.21)
b (18~ (%)

Similarly, for a standard Brownian motion we have

vy
PV >7)) = ———\/d_1”+ T (2.23)

Remark 1: The result stated by (2.22) has also been obtained in [2]. However,
the result for Brownian motions with drift, (2.21) is presented here for the first time.
Remark 2: If we set d; = dy = d'in (2.22) and (2.23), we have for a standard

Brownian motion

P(TII/V<7'2VV)=P(T1‘/V>T2VV)=%,

which can be explained by the symmetry of standard Brownian motions.
Remark 3: For a Brownian motion with positive drift, by setting d; = d; = d

in (2.21), we have

dm dm

1, M7 1 1 M3 1

PR <) =5+ —s >3, P<TF">T5”">=§‘W(L23)<§’
2

v

~~
(V] Itto
IS 9

N

because it has a tendency to move upwards.

If we only consider the excursion below 0, we have the following results.
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Corollary 2.4.1.2 For a Brownian motion W* with W¥ = 0 and 737" defined as

in (2.4) with S = W*, we the have the Laplace transform for 73/":

E (e—ﬁrz‘”") _ e {\IJ (N\/@) B ,u\/%} (2.24)
_q,(\/iw W)ﬂﬁ"’"*‘f Jar |

When p = 0, we have the result for a standard Brownian motion:

e_Bd2

E (e’ﬂ"2w) =37 (m) - \/m

(2.25)

S S

Proof: When d; — oo, we have 13 — 0o, therefore 7° — 75.

As a result, we have

E (e_ﬂffg) = lim F (e‘ﬁfs) .

dy —oo

Remark: As one of the most important results, (2.25) has been obtained in [13].
But the result for Brownian motions with drift, (2.24) is presented here for the first

time.

So far we have been considering the case when the process starts from 0 and the
barrier level is set to be 0. In practice, however, the barrier is different from the
starting point of the underlying asset price in most cases. Therefore, in order to

price the options, we introduce the féllowing theorems and corollaries.

Theorem 2.4.2 For a Brownian motion W#* with W} = 0 and barrier L = I, the

Laplace transform of V" is given by
29



when [ < 0,

E (e—ﬁfzw ) (2.26)

- e (o ) o (s )
+ {e(‘”\/m‘/ ( 28+ p2) d; + L)

Vdi
+elrVaBRA) 4 (— (28+ p?) dy + ﬁ) }

{3 o 8) T {0 (1) - /)

vae (/SR ¢ i (/e )

when 1 > 0,

E (e—f’fz“’“) ' (2.27)

_ e—ﬁdz{l_,/y<p dz—%(Tz)—ez‘“‘/V(—li dz—ﬁ)}

(e (v 1)

+le VIR (- yET G- ) |
o o 8) ) T 0 (o 5) /)

vapy (\/E5) ¢ v ()

Proof: We only prove the case when [ < 0. The same arguments apply to the case
when [ > 0. Define

Ty =inf{t>0|WF=1}.

The left hand side of (2.26) can be expressed as follows

E (e"ﬁflwp) =F (e‘ﬂTlW#lthdl}> +E (e’ﬁ"lWFl{ngdl}) .
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Moreover, we have

E (e_ﬁnW”l{nzdl}) = ePhp (Tl > dl)

= ¢ Ph {1 _ gy (ﬂ\/c—ﬂ+ \/ZTT) s (_#\/d—1+ \/Ld_) }
1 1
B( " ) = B (e D)
= F (e_ﬁTll{Tl<dl}) E (e_ﬂﬁw“) _E (e_ﬂTll{Tl<dl}) E (e_ﬂTwﬂ) ,

where W* stands for a Brownian motion starting from /. We have obtained F (e‘f”wu)

in Theorem 2.4.1. We also have that

E (e 1i5<a))

dy _ _ 2
= e_ﬂ'g l exp{_w_}ds

0 V2omrs3 2s
N N ( (26 + p?) di + \/—ldzl) +elbv2snR) g (— 26+ p?) di + \/Ld_1>

We have therefore proved (2.26).

O

We will now extend Theorem 2.4.2 to obtain the join distribution of ¥ and W
at an exponential time. This will be an application of (2.26), (2.27) and Girsanov’s

theorem.

Theorem 2.4.3 For a standard Brownian motion W with Wy = 0, and 7}V defined
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as in (2.5) with S =W and L = l, we have the following results:

For the casel > 0, when x > 1,
P (WT edz, 7V < ff) = {a(dg)e_m“"l) + bip(z — 1, dl,.dz)} dz; (2.28)
when z <1
P (W—T~ € dz, 7V < T) - {a(d2)eﬁ_7(z—” +bip(l — z, da, dl)} do;  (2.29)
For the casel < 0, when x > 1,
P (WT €dz, " < T) = {a(dl)e‘m(z‘” + bop(z — 1, dy, dz)} dz;  (2.30)
when z < 1
P (WT € dz, 7V < :’r") - {a(dl)e‘/m‘”_’) + bop(l — x, da, dl)} dz;  (2.31)

where T is a random variable independent of W, with an exponential distribution of

parameter vy and
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by = eV (% + \/2'yd1) +e VIl (% - \/2'7d1) ,

1

_ 'y\/We—m“_l) e~ e~ % :v_—_{ _
Ko = o7t v v v~ (S V)

o (V) = () ety (- vam)

Proof: see appendix.
O
Similarly, we can obtain the result when we only consider the excursion below

the barrier by taking the limit d; — oo.

Corollary 2.4.3.1 For a standard Brownian motion W with Wy = 0 and T{‘{ de-
fined as in (2.4) with Sy = W; and L = [, we have the following results:

For the casel > 0, when x > 1,
P (W:F €dz, 1) < T) = {a’ze‘mw_l) + biqi(z — l)} dz; (2.32)
when z < 1
P (WT € dz, % < :F) - {a'ze‘/F’(z'l) + ¥ ga(z — z)} da; (2.33)
For the case l < 0, when z > 1,

P (Wf €dz, 1 < T) = {a’le_‘/m”_l) + bhyaqi (z — l)} dz; (2.34)
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when z < 1

P (Wf € dz, 73y < T) = {a'leﬂ:’(“’_l) + Vygo(z — l)} dr; (2.35)
where
a; = {e vl e‘/w} as = a(ds),
by=by, by=e"",
@) = /1 (1- 2V,
1 2 Wil N (VOID) +e7% )
vz, ond, —vd2 z

ve mds e

= N | ——==—V2vd
%() 2(/myde N (V27ds) + e 7% {2\/7r'yd2 * ( Vda g 2) .

e (-1}

and where T is a random variable , independent of W, with an exponential distri-

bution of parameter 7.

Remark: By using this result, we can calculate the explicit form of the Laplace

transform of the price of the Parisian option defined in [13]. This approach is

different from [13], where they try to find the Laplace transform of Tz"fl’ and the

density of sz"‘f’ and the Laplace transform is given in form of double integral. Our

approach produces explicit expressions without integrals.
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2.5 Pricing Parisian Options

The result presented by (2.25) has been obtained in [13] and used to price Parisian
options which consider the excursions at only one side of the barrier. Here we want
to introduce a new type of Parisian options, considering the excursions at both sides
of the bairier.

For example, we want to price a Parisian call option, the owner of which will
obtain the right to exercise it when either the length of an excursion above the
barrier reaches di, or the length of an excursion below the barrier reaches d, before

T'. Its price formula is given by
Prin—call—in = e—rTEQ ((ST - K)+ 1{1’5<T}) ’

where S is the underlying stock price, L is the barrier level, ) denotes the risk
neutral measure. The subscript min-call-in means it is a Call option which will be
triggered when the minimum of two stopping times, 71, and 75 1, is less than T, i.e.

77 < T. We assume S is a geometric Brownian motion defined as in (2.8). Set

m=l(r—102>, bzlln(f{_), l=11n<£), Y, =mt+ W,
o 2 o T o T :

We have

St = zexp { (r - 502) t+ UW}} = zexp {o(mt + W,)} = ze° ™.
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By applying Girsanov’s Theorem, we have
—(r+im? ‘ +
Pmin—call—in =€ ( tam )TEP [(wanT - K) emYTl{Tl\’<T}j| s

where P is a new measure, under which Y; is a standard Brownian motion with

Yy = 0. And we define

* _ (r+im®)T
min—call-in — 6( 2 ) Pmin—call—in-

We are going to show that we can obtain the Laplace transform of Py, w.r.t

in—call—in
T, denoted by Zr.

First of all, we have

Ep [(me"y’f - K)+ e™r 1{T1Y<f}j|
_ / (ce? ~ K)e™P (Y € dy,r¥ <T)
b
= / e T / (ze”Y — K)e™P (Yr € dy, 7’ <T)dT
0 b

= fy/o e "TEp [(manT — K)+ emYTl{le<T}] dT

= 7%
Hence we have
1 [, ™ v =
Ly =— (ze” — K)e yP(YfEdy,Tl <T).
Y Jb

By using the results in Theorem 2.4.3, this Laplace transform can be calculated
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explicitly.

When b > 0, i.e. L > x, we have

_ aflo+m)— Kf(m)
Vit (Adh) + V¥ (Vods)'

Zr

where

when b < 0, i.e. L < z, we have

zg(o +m) — Kg(m)

1= T8 (VAdh) + Vv (Vi)
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eb(z+\/2_7)

o) = VEaH | S o () 4 (-

("\/72 B 27‘12) Tavmd 2\/7r7dz]
e z—/27)b
s (V)
2% leKZZ;TE (JV (a: dy — L) —JV(:D d2)>

2y — z2 Vd,

L ] B [ e e
! 2y —12? |2/mydy  2ymydy | |

A special case is when we only consider the excursions below the barrier. The
results can be calculated using the results in Corollary 2.4.3.1.

When L > z, we have

& = 1 \/27r—d2 xe("'fm_m)b Ke(m_m)b ‘
= m_2\/7r'yd2./1/(\/_2—')m72)+e‘7d2 V2y—oc-m J2y-m |’

when L < z, we have

_ zh(oc+m)— Kh(m)
2v/myde N (V27dz) + e’

T
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where

- 8 e () ()]
Qe 42 ela—vE)b b '
T m{m_xd’/(\/d; - \/27_dz)
(A gg) - (8

Remark 1: It is the first time we manage to get the explicit expressions for
the Laplace transforms of the option prices even for the one-sided excursion case.
In [13] an expression involving double integrals is provided.

Remark 2: The prices can be calculated by numerical inversion of the Laplace

transforms.

So far, we have shown how to obtain the Laplace transform of

* _ (r+im?)T
min—call—in — e( im) Prin—cali—in-

For

Prin—call—out = e_TTEQ ((ST - K)+1{'rf>T}) )

we can get the result from the relationship that
Pmin—call—o'ut = e_TTEQ {(ST - K)+} - Pmin—call—'in- ’

Furthermore, if we set

-y _ Yy Y
T, =Ty V ToLs
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we can define another type of Parisian options by 77 :
Praz—cai—in = € T Eg ((ST -K)*1 (s <T}) )
In order to get its pricing ‘formula, we should use the following relationship:
Yagery = Yogpar} Mo ar} = Loger}-
We have therefore
Proz—call—in = Pup—in—call + Paown—in—call = Prin—call—in-
Similarly, from
.Pmaa:—call—o'u.t = 6_'"TE.Q {(Sr — K)*} — Prac—cali=in

we can work out P,oz—call—out-

2.6 Appendix

2.6.1 Proof of the convergence

We show in this section that we can take limits of Laplace transforms when € — 0

as we did earlier. First of all, we consider two processes W# and W#€ = WH* + e.
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According to the definitions, X satisfies

lim X9 = W, a.s. for all ¢,

. €e—0

WE < X < WP for all ¢,

and g always lies between g/"* and g}¥*". Since
. T We _ we
lim gy = lim et =9t >
€—0 e—0

we have that

lim g% = g/"*, a.s.
e—0

Since g/ is a right continuous function with respect to ¢, we have that
l%gf =g a.s. forallt
and therefore
lim 1{X§¢)>0} (t—gF) = Liweso} (t—g") a.s. for all t.

From the definition of 7 we have that

(<t} = {sup T (s-g:V“)}zdl}

0<s<t

_ lim{ sup {1{X§e)>0} (- gg()} > dl} ~lim {r¥ <t}

=0 | o<s<t
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Consequently,

. "
lim7¥ =" a.s.
1 1

e—0

By the same argument, we can show that
. “
lim7* =" a.s.
e—0

Since 75 = 77 A 7, we have
lim* = 7" a.s.
e—0

The next step is to show the convergence of the stopping times leads to the
convergence of their Laplace transforms. In order to simplify the notations, we
define RS = (R{, R5, R3) = (7,75, 75). We have just shown that

lim RX = R"" a.s.

e—0

Therefore for any given non-negative constants g;, ¢ = 1,2, 3,

3 3
. x| _ wH
El_l}%GXp {— ;ﬂiR,- } = exp {—— gﬂiRi } a.s.
Since R > 0, we also have,

<1

3
exp {— Z ﬁiRiX }
i=1 :
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By the Dominated Convergence Theorem,

(e Z) - o emen| - Sow)
- e Zaw)

When p = 0, we can get the same conclusion for the standard Brownian motion by

the above argument.

2.6.2 Proof of Theorem 2.4.3

We prove Theorem 2.4.3 in this section. Let T" be the final time. According to the

definition of ¥(z), we have

U(z) = 2v/mz N (\/511;) — V7T + €% = \/rz — \/7zErfc(z) + e .

It is not difficult to show that

E(e—ﬂn ( / BeT1y, W,,<T}dT)

By Girsanov’s theorem, this is equal to

> - (B+383)T W
/Oﬂe 2 E(e Tl{nwd})dT
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Setting v = B + u? gives

B(e”) = [t e E (Ve ) o
= 7_:_%_&2.]3 (e#Wi 1{'?IW<T}) ,

v

where T is a random variable, independent of W, with an exponential distribution

of parameter . Assume p > 0. We have therefore when [ > 0

E (euwfl{-r,w <T})

= 71 —E (e‘ﬁ"lwu)
Y~ 2H

S (i ) o (055
= 7—%#26 N | —u d2+\/d_2 e N | —ur\/do VA
fy{e‘m’./}’ (\/27d2 - ﬁ) + eVt ¥ (—\/27d2 - \/Ld—z) } et

(’Y - %Nz) {\/d—2-‘1’ (v 7d1) + Vd ¥ (\/’Yd2)}

o0t {\/d_z‘lf (u\/ %) + —dlcziﬂ}
2
+e 0 {\/cZ\If (ﬂ\/ %) - w2 H

e 1% d 2 l 2l l
= gt (e ) - (- )
e (= ) < (i )
(= 1) (VR (Vo) T VAt (VD))

[e"’dl {\/27ra'1d2ll'eﬂ2““2 + v/ dy {1 — %nue%”ZErfc ( %p,) }}
+eT1%2/d; {1 - \/%wue%“zErfc ( %Zu) H :

+

+
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We will now invert the moment generating function above. We have that

dg 2 © 1 =2
e N | —u d2+—— = eh* e 22dz,
l

!:1:—21!2
62”‘2 2“"%( II’ ) / \/m 2dy dm,
2
H_ / et VIrdgy — / e eV2dg,
Y — —o0

! /oo KT 1 e"mxdz+/0 et* 1 e
= el ——
y—& Jy V2y o V¥

mxdm,

1—\/%7!’#62“]31‘&(\/? ) -——e 2"dm

d
The inversion of &= el ( wy/ds + % is given below.
o

For z > |,

doy . —
= _1 e—‘z”:—z 1 e—\/ﬁ(z—y)dy=—e’y ‘e \/ﬁzﬂ <_

l
—=+27dy };
. Vard, VA V27 “)

Vda

for x < I,

1 21 eYd2ev2iz l
e 2d2 e\/ﬂ(z—y)d = ———JV (—-—-— — 2 d ) .
. Vonds V2 V=T 2y Vi VIR

The inversion of QE‘L—;l—“ (—p\/@ - 7’—(72-) is given below.

2

For z > [,

© 1 _@==? 1 192 g2VDY g~ V21T l
e 24 e VI Ev gy = ' N < + v/2vd ) :
/l V2rd; 2 T VA ?
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for z <1,

) ) B2
The inversion of ’ie——F_r is
773

© 1 _(z=p)? /O 1 _(z—p)?
-2y 7d V2vy 7d
e e 1 dy — e e 1 d
/o V2rd, Y —oo V2emd, v

- e (G- ) o ()}

1— %iwue%‘“zErfC(\/%‘u) .
3 is given below.
Lt

The inversion of

For z > 0,

0 Yy - 21 —\/Q_(z—y)d € T vdi—v/27x wd: N o~d
R 2d; e — i . —_ L)
/ ie \/_e ’ y= N e vV 2nd; ( \/fyz>,

for z < 0,

NT
— e\/ﬂ — e¥di—vhz /QWdi/V( T _ 2’ydi)

+evd1-+«fwm{dy (Vord) - ¥ ( o+ m)}

Consequently, we can get Theorem 2.4.3.
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Chapter 3

Double Barrier Parisian Options
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Abstract

In this paper, we study the excursion time of a Brownian motion with drift outside
a corridor by using a four-state semi-Markov model. In mathematical finance, these
results have an important application in the valuation of double barrier Parisian
options. We subsequently obtain an explicit expression for the Laplace transform of
its price.

Keywords: excursion time, four-state Semi-Markov model, double barrier Parisian

options, Laplace transform.
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3.1 Introduction

The concept of Parisian options was first introduced by Chesney, Jeanblanc-Picqué
and Yor [13]. It is a special case of path dependent options. The owner of a Parisian
option will either gain the right or lose the right to exercise the option upon the
price reaching a predetermined barrier level L and staying above or below the level
for a predetermined time d before the maturity date 7'

More precisely, the owner of a Parisian down-and-out option loses the option if
the underlying asset price S reaches the level L and remains constantly below this
level for a time interval longer than d. For a Parisian down-and-in option the same
event gives the owner the right to exercise the option. For details on the pricing of
Parisian options see [13], [37], [38] and [46].

Double barrier Parisian options are a version with two barriers of the standard
Parisian options introduced in [13]. In contrast to the Parisian options mentioned
above, we consider the excursions both below the lower barrier and above the up-
per barrier, i.e. outside a corridor formed by these two barriers. Let us look at
two examples, depending on whether the condition is that the required excursions
above the upper barrier and below the lower barrier have to both happen before
the maturity date or that either one of them happens before the maturity. In one
example, the owner of a double barrier Parisian maz-out option loses the option if
the underlyiné asset price process S has both an excursion above the upper barrier
for longer than a continuous period d; and below lower the barrier for longer than
ds before the maturity of the option. In the other example, the owner of a double

barrier Parisian min-out option loses the right to exercise the option if either one of
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these two events happens before the maturity. For pricing double barrier Parisian
options using excursion theory, see [39)].

In this paper, we are going to use the same definition for the excursion as in [13]
and {14]. Let S be a stochastic process and [3, ls, I; > I be the levels of these two

barriers. As in [13], we define

gn,=sup{s < t|S, =1}, dy , =inf{s >t | S, =1}, i=1,2, (3.1)

with the usual conventions, sup{@} = 0 and inf{} = oo. Assuming d; > 0,

ds > 0,we now define

5 =inf {t > 0| Lis1)(t — g ;) > di}, . (3.2

5 = inf {t > 0] Lcsicurligs ogs JE = 900 = dz} , (3.3)
S = inf {t >0 Lpcsicnt s o8 }(E =95 2 d3} , (3.4)
Tf = inf{t >0 I 1{5t<12}(t - gii,t) 2 d4}7 (3'5)

S =1SAT). (3.6)

We can see that 7 is the first time that the length of the excursion of process
S above the barrier /; reaches a given level dj; 7§ corresponds to the one below ly
with required length d4; and 75 is the smaller of 77 and 7. We also see that 77 is
the first time that the length of the excursion in the corridor reaches given level dy,

given that the excursion starts from the upper barrier l;; 7§ corresponds to the one
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in the corridor starting from the lower barrier l;. Our aim is to study the excursions
outside the corridor, therefore 75 and 74 are not of interest here. However we need
to use these two stopping times to define our four-state semi-Markov model that
will be the main tool used for calculation.

Now assume r is the risk-free rate, T' is the term of the option, S is the price
of its underlying asset, K is the strike price and @ is the risk neutral measure. If
we have a double barrier Parisian min-out call option with the barrier /; and [y, its

price can be expressed as:
DPrin-out—cant = € Eq (1grss1y (St — K)¥);5
and the price of a double barrier Parisian min-in put option is:
DPrin—in—put = e-’TEQ (1rs<ry (K = Sr)¥).

In this paper, we are going to study the excursion time outside the corridor using
a semi-Markov model consistiﬁg of four states. Based on the results, we can get the
explicit form of the Laplace transform for the price of double barrier options. One
can then invert using techniques as in [38].

In Section 3.2 we introduce the four-state semi-Markov model as well as a new
process, doubly perturbed Brownian motion, which has the same behavior as a
Brownian motion except that each time it hits one of the two barriers, it moves
towards the other side of the barrier by a jump of size €. In Section 3.3 we obtain

the martingale to which we can apply the optional sampling theorem and get the
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Laplace transforms that we can use for pricing later. We give our main results
applied to Brownian motions in Section 3.4, including the Laplace transforms for
the stopping times defined by (3.2)-(3.6) for both a Brownian motion with drift, i.e.
S = W*, and a standard Brownian motion, i.e. S = W. In Section 3.5 we focus on

pricing the double barrier Parisian options.

3.2 Definitions

From the description above, it is clear that we are actually considering four states,
the state when the stochastic process is above the barrier /; the state when it is
below [, and two states when it is between I; and l; depending on whether it comes
into the corridor through [; or l,. For each state, we are interested in the time the

process spends in it. We introduce a new process

1, if S > 1

s _ 2, ifl; > 8; >y and glb;,t > gg,t
Zt - <
3, ifly >S,>1l;and gf, < g5,

4, if Sy <y

We can now express the variables defined above in terms of Z:

glsi,t = sup {s <t|Zz5+# ZtS}, (3.7)
d’, =inf {s >t| Z5 # 25}, 3.8
li,t 8 t
75 = inf {t >0 1{Z§=1} (t—g5,) > dl} , (3.9)
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= inf{t > 0|1z (t—95,) 2 dz} , (3.10)

s =inf {t> 0150 oy (t-g5,) 2 ds}, (3.11)
70 = inf {t >0] 1{Z§=4} (t—gh,) > d4} . (3.12)

We then define
VP =t—max (g 05 ,) (3.13)

the time Z° has spent in the current state. It is easy to see that (ZS,VS) is
a Markov process. Z° is therefore a semi-Markov process with the state' space
{1,2, 3,4}, where 1 stands for the state when the stochastic process S is above the
bafrier l1; 4 corresponds to the state below the barrier l3; 2 and 3 represent the state
when S is in the corridor given that it comes in through /; and I, respectively.

For Z5 the transition intensities \;;(u) satisfy

P(Zia=10i#712 =i, V7 =u) = X;(u)At + 0 (At), (3.14)
P(Zia=1127 =4,V =u)=1-) M\;(w)At+o(At). (3.15)
i#j

Define

Pz(u) — e {— /uz /\ij('v)dv} , pij(u) = /\U(U)E(U)

0 izj

Notice that

is the distribution function of the excursion time in state ¢, which is a random
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variable U; defined as
. . S . /S
U,-=;I>1£{Zf;éz|Zo =i,Vy =0}.

Note that because the process is time homogeneous this has the same distribution
as

i {28, #1128 =3,V =0}

for any time t. We have therefore

. P (Ui € (u,u+ Au), Z5, =j)
pii(v) = Jlim, Au

Moreover, in the definition of Z°, we deliberately ignore the situation when

S; = 1l;, 1 = 1,2. The reason is that we only consider the processes, which

t
/ lis,=;)du =0, i=1,2.
0 .

Also, whenl; and I, are the régular points of the process (see [8] for definition),
we have to deal with the degeneration of p;;. Let us take a Brownian Motion as an
example. Assume W} = ut + W; with g > 0, where W; is a standard Brownian
Motion. Setting z, to be its starting point, we know its density for the first hitting

time of level [;, 1 = 1,2 is
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(see [9]). According to the definition of transition density, p12(t) = p21(t) = py, (t) =
0 and ps4(t) = pas(t) = pi,(t) =0, for ¢ > 0.

In Chapter 2 in order to solve the similar problem, we introduced the perturbed
Brownian motion X (® with the respect to the barrier we are interested in. We apply
~ the same idea here, and construct a new process doubly perturbed Brownian motion,
Y©®, € > 0, with the respect to barriers /; and l;. Assume W} =1, + €. Define a

sequence of stopping times

S = 0,
oo = inf{t> 6, | WF =1},

Ont1 = mf{t > 0op | VVty’ =0l + E},

where n =0,1,--- (see Figure 3.1). Now define

X =wp if 6,<t<oy,

XO=Wt-e¢ if 0,<t<6bppn

Similarly, we then define another sequence of stopping times with the respect to

process X9 and barrier

CO = Oa
T = inf{t> G| X =1},

Cop1 = inf{t > 7, | X =l + ¢},

where n = 0,1, -- (see Figure 3.2). Then define

bl
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The Original Brownian Motion

0 00 1000

Time

Figure 3.1: A Sample Path of

Process X(e)

|0

5O

Time

Figure 3.2: A Sample Path of X *
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Process Y(e)

®)

e

0 00 1000 1300

Time

Figure 3.3: A Sample Path of Y

J y@©=Xt} if G<f<In

[ Yo =Xt < i

It is actually a process which starts from /| + e and has the same behavior as the
related Brownian Motion expect that each time when it hits the barrier /| or L, it

will have a jump towards the opposite side of the barrier with size e (see Figure 3.3).

From the definition, it is clear that 1 and 2 become irregular points for ¥
Furthermore, we prove later that the Laplace transforms of the variables defined
based on converge to those based on W  As a result, we can obtain the results
for the Brownian Motion by carrying out the calculation for ¥~ and take the limit

e— 0.
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For Y(®), we can define Z¥, 77,

Y .Y
T27T3

, 7¥ and 7Y as above (we suppress (€) on

the superscribe). For ZY, we have the transition densities (see [9])

€ _(e+pt)?
p2(t) = o exp { [ (3.16)
pt
pzl(t) = €Xp 4 u€e — ———} 88t (ll — lg — €, l] - lg) y (317)
2
pous(t) = exp {—u (lh—=lp—e€)— T} sst (€l — 1o), (3.18)
2
psi1(t) = exp {p (h—la—€)— _é—} sst (6,0 — 12), (3.19)
plt
p3u(t) = exp {—;1,6 - T} ssg(lh —lo— €, 1 — lp), (3.20)
I _(e—pt)?
p43(t) - \/ﬁ €Xp { 2t ) (3.21)
where ‘
= (2%k+ )y -z _(k+ 1)y —2)?
85:(2, y) k;w 5y P 5 -
Also we know that
pas(t) = p32(t) = pra(t) = par(t) = 0. (3.22)

Clearly, all the arguments above apply to the standard Brownian motion, which is

a special case of W# when u = 0.

3.3 Results for the semi-Markov model

In Section 3.2 we have introduced the Markov procéss (Z5,V5). Now we apply

the same definition to the doubly perturbed Brownian motion Y©; therefore we

have (Z¥,VY), where Z¥ is the current state of Y, taking value from state space

{1,2,3,4} and VY is the time Y has spent in current state. VY is also a stochastic
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process. Now we consider a function of the form

S (u,1,t) = f; (u,t),

where fi, i = 1,2, 3,4 are functions from R? to R. The generator & is defined as

the operator such that
f (v, zft) /df Vy,zY,s)ds
is a martingale (see [18], chapter 2). Therefore solving
Af=0

subject to certain boundary conditions specified later will provide us with martin-
gales of the form f (V,¥, ZY ,t) to which we can apply the optional stopping theorem

to obtain the Laplace transform we are interested in. More precisely, we will have

4

0fi(u,t)  0fi(u,t)

99

A fi(u,t) = 3t’ + Bu, + A2(w)(f2(0, 2) — fi(w,2))

i) = 200 SD 4y (10,0 = oo, t) + daa) 0,6 ~ (o, 0)
4

o foust) = LRy ST s (1100, ~ Foon ) + Asa()(Fa(0,8) ~ o 1)
| Ay = 28D ORD ) 10,0 - o)



Assume f; has the form

fi(u,t) = e_'@tgi(u).

4 4
&ffl =0 gl(dl) = M
.!Z{fz = 0 QQ(dz) = Q9
By solving the equation & f =0, i.e. ¢ subject to ¢
Zfs = 0 g3(d2) = o3
\ Zfy =0 \ gs(d2) = ay
we can get
d;
gi(u) = a;exp {—/ (,6 + Z )\ij(v)) dv} (3.23)
u J#i
d; L]
+ Zgj(O) / Aij(8) exp {—/ (,8 + Z )\,;k(v)) dv}ds.
J#i u u k#i

In our case, we are only interested in the excursion outside the corridor. Hence, we
set dp and d3 to be 0o. Also limg, 0 g2 (d2) = limg, o g3 (d3) = 0 gives ap = a3 = 0.

Therefore, we have

91(0) = c1ePi(d) + {010 Pu() + 00 Pu(8) } Po(8),  (3:24)

9(0) = cue P “Py(ds) + {01 (0)Pu(8) + 94(0)Pu(8) } Pus(B).  (3.25)
Solving (3.24) and (3.25) gives

91(0)
a1e‘ﬁ’?1131(d1) (1 — 1534(3)1343(13)) + auue™P% Py (da) Pa(B) Pr2(B)

(3.26)

94(0)
aue P4 Py(dy) (1 - P21(ﬂ)}312(:3)) + a1e7P4 Py (d1) P31 () Pua(6)

1 — P51(B)Pi2(B) — Psa(B)Pu3(B) + Po1(B)Pr2(8) Psa(B) Puz(B) — Ps1(8) Pss(8) Paa(B) Pr2(B)’

(3.27)

1 — P51(B)P12(B) — Psa(B) Paz(B8) + Pa1(B) Pr2(8) Psa(B) Pas(B8) — P31(8) Pis(8) Paa(B) Pr2(B)
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where

Bi®) = [ e Pops(s)ds, (3.29
d;
P;(8) = /0 e Ppij(s)ds. (3.29)

As a result, we have obtained the martingale
M, = f(VY,t) =ePguy (VY), i=1,234 (3.30)

We now can apply the optional stopping theorem to M with the stopping time 7Y At,

where 7Y is the stopping time defined by (3.6):
E (M p) = E (Mo). (3.31)
The right hand side of (3.31) is
EMuyp)=E(Mxlpvey) + E(Mlvsy).
Furthermore,

E 7Y 1{TY <t})

(M.
= E( Ty]_{_’_y<7_y} {TY<t}) + E( TY].{.,.IY>TZ}1{T}’<t})
(

= Ele ﬂTygl (d1) 1{r"<¢"}1{r"<t}) +E ( Yg4 (da) 1{7'1”>"'2’}1{"{<t})

= alE( R TESESe {,1Y<t})+a4E( B VEERS P <t})
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We also have

E (Miliv>y) = e™E (gzr (V) 1{rY>t}) ’

where Z} can take values 1,2,3 or 4.

When Z} =1 or 4, since 7¥ > ¢, we have 0 < V;¥ < d; Ady. Since g;(u), i =1,4
are continuous functions, we have g; (VtY) and g4 (Vty) are bounded.

When Z} = 2 or 3, since limg, .0 g2 (d2) = limg, .00 g3 (d3) = 0, we have that
92 (V¥) and g3 (V;¥) are bounded.

Therefore

tliIg;E (Mtl{.,.Y>t}) = 0.

Hence we have
. _BrY _BrY
t]igloE(MTYAt) = F (6 A 1{7’}’<1{}) +as B (C A 1{1,1y>7_4y}) . (332)

The right hand side of (3.31) gives
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By taking a; = 1, ay = 0 and a; =0, ay = 1 we will have that when YO(E) =l +e¢

B Yrary) %
e84 Pra(dy) (1 - Pa(6) Pus(9))

1 — Py (8)Pria(B) — Paa(B) Pas(8) + Po1(8) Pra(B) Psa(8) Pas(8) — Ps1(8) Pz (8) Pra(B) Pra(8)”

A CRUE TNy N

e'ﬂd4p43(d4)ﬁ24(ﬁ)1312(ﬁ) .
1= P (B)Pra(8) — Psa(8)Pus(8) + P (8) P12 (B) Paa (8) Pas(B) — Pix (8) Pas(B) Poa(8) Pra(8)”

and when V¥ =1, — ¢

g (e—‘@Tyl{le<T4Y}) (3.35)
e P4 Pry(d1) Pa1(8) Pis(B)
1— Py (8)Pra(8) — Paa(B) Pua(B) + Po1(8) Pra(8) Paa(8) Pua(B) — Pu1(8) Pz (8)Poa(B) Pra(8)”

B (e_ﬁfyl{‘rly>r{}) . (3.36)
e84 Pyy(dy) (1 = Prn(8)Pra(6)
1 — Py1(8) Pr2(B) — Psa(8) Piz(B) + Po1(B8) Pi2(B) Psa(B8) Paz(B) — Ps1(8) Paz(B) Pos(B) Pr2(B)

3.4 Main Results

In Section 3.2 we have stated that the main difficulty with Brownian Motion is that
its origin point is regular, i.e. the probability that W# will return to the origin at
arbitrarily small time is 1. We have therefore introduced the new processes Y€ and
(Z¥,VY) with transition densities fof ZY defined in (3.16) to (3.22).

In order to simplify the expressions, we define

U(z) = 207z N (\/ﬁz) —Vrr+e ™,
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where #/(.) is the cumulative distribution function for the standard Normal Distri-

bution.

Theorem 3.4.1 For a Brownian Motion W#, 7" V" W defined as in (3.2),
(3.5) and (8.6) with S = W*, we have the following Laplace transforms:

when W§ =1,

Gl (dlv d47 ll')

E —prW* 1, wn u = =2 .
(6 {VH <l }) G(dl,d4,ﬂ) ’ (3 37)
TR Ga(dy, d1, —p) .
E (e 1wesew }) e d (3.38)
_ “ G (d1 d4 /.L) +G2(d4 d1 —,U/)
E BrW — 1 ’ ) ’ ) . .
(‘3 ) G(dr, da, p) ’ (3:39)
when W' = s,
N T TR N Ga(d1,da, ).
E (e 1we o }) Gl (3.40)
_3,,.W“ " u — Gl (d4, d17 ) .
B tomam) = “gaanm (341
E(e—ﬁrw“) _ Gl(d4,d1,G—((l;1) ‘(11‘4G2)(d1,d4, ), (3.42)
where

Gilaws) = eV e (D) 22 )
(1 — e2(-l2)y/ 2B+22) e Pz =
|\ —

228 + 22 { ('z 3

)
{\@W( @B+ )y, Zzz)y) (2ﬁ+z2)y}

+
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Ga(z,y,2) = e*(’l‘;z)(W—Z)—ﬁx {\/gw <|z|\/§) + z\/@} . (344

Gy = VT {m ( ZREIE ) + VD (\/@M)}
(1-eVi) ([ [EEE )z @6+
Lo ) )
{\/gq’ (\/WJF——Q—ZV%) + V(20 +2%) y} - (3.45)

Proof: We apply the transition densities in (3.16) to (3.22) to the results in (3.33)

to (3.36) and take the limit as € — 0. In order to show that we can take the limit,
we consider two processes W# and WH*~2¢ = W* — 2¢. According to the definitions,
Y(©) satisfies

liII{l)}/t(e) =W¥, a.s. for all ¢,
€—

W2 <Y <WF forallt,
and g, always lies between g}¥; and g/";" ™. Since

. Whi—2¢
l‘_{% 9yt = hm 911+2e t= 911 t )

we have that
limgl}:,t = glvxf, a.s.
e—0
Since g7 is a right continuous function with respect to ¢, we have that

. Y _  WH
ll_l,%gll,t =g+, as forallt

65



and therefore

11_{16 1{Yt(6)>ll} (t - g?:’t) = 1{W{‘>11} (t - glvl‘/,:) a.s. for all t.

From the definition of 7{ we have that

4{TIW# <t} = { sup {I{th} (s —gvi:)} > d1}

0<s<t

_ 933{ sup {1{1‘(6)%} (s— g;;S)} > dl} ~lim {r¥ <t}

0<s<t

Consequently,

. M
limry =7 a.s.
Qmm 1

By the same argument, we can show that

. “
limry =7 a.s.
BTy 4

S

Since 75 = 77 A 75, we have

Y _ W

limr ™" a.s.

e—0

In Chapter 2 we have shown that the convergence of ¥, 7¥ and 7¥ to 7/V*, 7}V*
and 7%" respectively leads to the convergence of their Laplace transforms. Therefore

we will get the results shown by (3.37), (3.38), (3.40) and (3.41). We can then get
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(3.39) and (3.42) by the fact that

E (e‘ﬂ"wu) =E (e"ﬂrwl‘ 1w <ryu}) +E (e_ﬁ " Liawesoy “}> :

Corollary 3.4.1.1 For a standard Brownian Motion (u = 0), we have

when Wy =1,

W
B (e 1 ey

w

BT
B (e 1w,

- E (e"ﬁfw>
when Wy = o,

E (e_ﬂ“'w 1{1-{"’ <TXV})

. _A+W
E(e o 1{r¥">rz"})

()

Gi(dy, ds, 0)

G(dr,ds,0)

Gz(d4, dl, 0) .

G(dr,ds,0)

Gi(dy, ds,0) + Gs(ds, di1,0)
G(dy, ds, 0) ’

Ga(d1,ds,0) |

G(dh d4, O) ’

Gl (d4a dla 0) .

G(dy,ds,0)’

G1(ds, dy,0) + Ga(dy,ds,0) |
G(dy,d4,0) !
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where

Ci(z,y,0) = e 2tVBbe (3.52)
(1 — 6—2(ll—l2)\/27) e Pz 5
+ 375 {\/;W(\/ﬂy)+ 2ﬂy},
Go(z,y,0) = e (-lVBbe 1y | (3.53)

C(z,y,0) = e 22V {\/gqf (\/ﬂ_x) + /70 (\/ﬂ_y)} (3.54)
(1 - 6—2(11—12)\/2—5)

(¥ (V) + v} {2 () + vama.

+

Remark 1: By taking the limit [; — l; — 0, we can get the result for the single
barrier two-sided excursion case as in Chapter 2.

Remark 2: If we only want to consider the excursion above a barrier, we can
let I — —oo. Similarly, for the one below a barrier, we can let [; — +00. These

results have been shown in Chapter 2.

Corollary 3.4.1.2 For a Brownian Motion W*, TW* defined as in (8.6) with S =
WH, we have the following Laplace transforms:

when W§ = zq, 2o > 11,

E (e—f”“’“) (3.55)
_ —(M+ 208+u? (10—11)J/ ( 2 2 _ Zo— ll)
= e + d
{ (26 + u2) dy VA
—(p— zo—h =1 G (dlad41y‘) +G2 (d4ad17~U)
+ (It V28412 ) (2o l)JV (_ 28 + 12)d _To 1)} 1
‘ Vestia - G (e, do, 1)

_ _ _ - -1
LB {1 — e~ (Wt (o hu/( Ja, - Zo )
€ —€ |.“| 1 /—dl

—1
el (@ot)_yr (—I —_m—h)]
€ NIV 1 ;
Vdy
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when W¥ = xo, lo < 29 <1y,

E (e—arW“) (3.56)
ell1—z0)u {eV Wtut(@o—l) _ g~V 2'3+”2("”°—12)} {G1(d1, ds, 1) + Ga(da, di, —p) }

{e\/2ﬂ+ﬂ2(ll_12) - e—v2ﬁ+;t2(ll—l2)} G (dy,ds, 1)
ell2—zo)u {e\/m(h—xo) —eV 2ﬁ+"2(ll_x°)} {G2 (dr, dy, p) + G1(ds, dr, —p1)}
{ eV/2B+12(h-12) _ o=/ 2ﬂ+#2(h—‘2)} G (dy,da, p1) |

+

when Wé" = Zo, Tog < lz,

E (e-f’fw“) (3.57)
= {e(ﬂ—v2ﬁ+ﬂ2)(l2_$)‘/’/ ( /(2ﬁ+ NZ) d4 — lz\/_d‘_‘:n)
+e(#+\/2ﬁTl‘2)(lz—z)JV (_\/(m b 1‘)} G1(dy, dy, —p) + Ga (dy1, dy, 1)

\/d_4 G(dlad‘i, .u‘)

- _ _ lLh—x
+e Pk {1 — eWluhlz—=) g ( Vids— v/ )
|l %

ot —2)_gr (_[ ul/ds — 12\/—8; z ) } ,

Proof: We will first prove the case when xq > I;. Define T = inf {t | W} = 1}, i.e.
the first time W* hits l;. By definition, we have T™W* = d,, if T > dy; 7" = T+rW*,

if T < dy, where W* here stands for a Brownian motion with drift started from ;.
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As a result

E (e‘ﬁfwn)
= F (e_ﬁ,rw“ l{TZdl}) + F (e_ﬂ-rW“ 1{T<d1})

= ePhP(T>d)+E (e 1ir<ay) E (e—mu)

E (e“ﬂTW“) has been calculated in Theorem 3.4.1 (see (3.39)). The density for T is

" given in [9] as

We can therefore calculate

PT>d) = 1—e Wit g4 (Iul\/d—1 _To— ll)

v,
e~ lu(zo-t) g (—I N w(:/;l_ll) |
1

B i) = ¢ CVIRDy (orTiag - 20

vV,
o . —1
e (VBB o) gy (— 28+ 1) d; — 2 1).
@B +w)dy —

We therefore get the result in (3.55). For the case when zy < I3, we can apply the
same argument.
When I, < zg < I;, we define T = inf (t | WE & (ls,11)). By definition, we have

WE =T 4+ 77" if Wk =1; 7" =T + " if W = 1, where W* stands for a
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Brownian motion with drift started from /5. Consequently,

B (e “”’W“)

= F ( —BTe- 1{T=11}) + E (e—ﬂTe—ﬁrﬁ” 1{T=12})

= E (e‘ﬁTl r=1}) E (e-—,@TW“) +FE (e—ﬂTl{f=,2}) E (e‘ﬂrﬂ#)

The last equality is based on the independence of T' and W*. E (e‘ﬁTwu) and
E (e_‘”w) have been obtained by Theorem 3.4.1, (3.39) and (3.42). According

to [9], we have

e(l1=zo)u {e\/2ﬂ+lt2($o‘—lz) _ e—\/2ﬁ+ﬂ2(20—l2)}

E(ePT1ip,) = ,
( {r ll}) eV28+p*(hi—l2) _ o=/ 28+p2(lh—12)

e(zz—zo)u{ V2B (11 -20) _ o=\/26+47 ll—xo)}

—-8T —
E (e r-1)) eV2B+12(—lz) _ o—1/28+42(1—12)

We have therefore obtained (3.56).

O

Theorem 3.4.2 The probability that W#* with W§' = o, lo < zo < 11, achieves an
excursion above l; with length as least d; before it achieves an excursion below [y

with length at least dy is

e(l1—zo)u {elul(mo—lz) — e-l#l($0“l2)} Fi(dy,dy, 1)
{elHlti—B) — e—lult=1)} F(dy, dy, 1)
ell2—zo)u {elul(ll—wo) — e—lul(ll—“)} Fy(d1,dy, )
{eMG—T) — e-Wl—1)} F(dy, dy, ) ’

P(TIVV“<TIW) =

(3.58)

+
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eli=zoln felullzo—ta) _ g=lul@o=t2)} Fy(dy, dy, —p)
{ellt=1) — e=lkli=2)} F(dy, dy, )

ellz—zo)u {e|#|(ll—f‘0) — e—lul(h—z’o)} Fi(ds,dy, —p) )
(W) — W8} F(dy, da, ) ’

P >1") = (3.59)

+

where

Fi(z,y,2) = e 2-h {\/37\11 <|z|\/§) + z\/%Ty} | (3.60)
Ll 2|(|)H) Lo (i5)++/ %} {\/gq; (11y/%) + W@} ,

e 71 (CN PN (361)

F(z,y,2) = e2b-bll {\/gw (|z|\/§) + T (m@)} (3.62)
G G;T(z'l‘_“"") {q; (|z|\/§) +12] %} {\/gxp (]zl\/g) + |z|¢g} :

Proof: From Theorem 3.4.1 and (3.56) in Corollary 3.4.1.2, we actually know that,

when W§' = o, I < 19 < 1y,

o (e-ﬁfw"l o ) _ elaeo {ell(zo—ta) _ g=lul@o=12)} Gy (dy, da, 1)
(V¥ <r} {ellti=t2) — e~TWl@—2)} G(dy, da, )

ellz—zo)p {e[ul(ll—xo) - e—lul(ll—m)} Go(dy,dg, 1)

{elHlti—la) — e=ll1-1)} G(dy, dy, ) ’

(3.63)

+
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elh—zolis {glul(@o—ta) _ g=lul(z0-12)} Gy (dy, dy, —pu)
{ellt—1) — e—lkli—12)} G(dy, ds, )

elta=z0)i { glullls=a0) _ g=lul(1-20)} G (dy, dy, —ps)
{ellti—t2) — e-i-12)} G(dy, dy, )

_BrWH
E (™" Lipnspony ) = (3.64)

+

Setting 8 = 0 in (3.63) and (3.64) yields the results.

O

Theorem 3.4.2 leads to the following remarkable result.

Corollary 3.4.2.1 The probability that a standard Brownian motion W with Wy =

Ty, lz S o S ll, we have

P(rf <1)) = Vi (0 —h) , (3.65)

Vi + Vg + (L — )

5

2
T

o

2
T

P(rf > 1) = Vi + b= w) \/; : (3.66)

V& VI + (1~ 1) /2

Remark: When we take [; — 0, I, — 0, o — 0, we can get the results for the
one barrier case as in Chapter 2.
We will now extent Corollary 3.4.1.2 to obtain the joint distribution of W and

7W at an exponential time. This is an application of (3.56) and Girsanov’s theorem.

Theorem 3.4.3 For a standard Brownian Motion W with Wy = xg, ls < 29 < I3

and 7™V defined as in (3.4) with S = W, we have the following result:
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For the case x > [,

P (Wf € dz, ™V < T) = a1 (o) f (& — by, di)+az2 (z0) f (z — lo, ds)+ay (zo) hz—1y, dy);
(3.67)

For the case l; < x < 14,
P (WT e€dz, ™V < T) =ay (zo) f (x — 11,d1) + a2 (z0) f (z — l2,d4) ; (3.68)
For the case ¢ < I,

P (WT €dz, ™ < T) = a1 (z0) f (z — b, d1)+az2 (o) f (z — b2, da)+a2 (z0) h(z—12, ds);
(3.69)
where T is a random variable with an ezponential distribution of parameter v that

is independent of W and

e—Vlal

f@y) = —7= = VI omy A (-v2w), (3.70)
o 5 () ).
| (3.71)
a (.T ) Y {e\/ﬂ(mo—lz) — e_M(zo—lz)} b (dI, d4) + {e\/ﬂ(h—xo) - e—ﬁ'?(h—xo)} b (dl, d4)
P G {6\/27(11"2) — e—\/ﬂ(h—lz)} ’
(3.72)
a (.’II ) _ 7 {e\/ﬂ(m—lz) — e_\/ﬂ(zo—lz)} by (d4, dl) +7 {emax—zo) _ e—\/ﬂ(h—zo)} by (d4, dl)
B G {emal—l?) — e—mal—lz)} ’
(3.73)
_ _ v 1-— 3—2‘1\/27 v 2
bl(a:,y)=e 2(h-b)vV2y—y \/?;4‘ 2\/2_7 e~ {\/;\IJ(\/’_Y@)-FM}, (374)
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be(z,y) = e_(h'lz)m"w\/@, (3.75)

—2£zl—zz>m{ 40 (\/77 ) +/d ¥ ( 7d4) | (3-76)

1 — 20— lz)\/ﬁ—
G {xp( 'ydl)—l— yrd; { 2\1: 7d4 + 27d4}.

@

™

Proof: see appendix.

O

3.5 Pricing double barrier Parisian Options

We.wa.nt to price a double barrier Parisian call option with the current price of its
underlying asset to be z, L; < < Lo, the owner of which will obtain the right to
exercise it when either the length of the excursion above the barrier L, reaches d;,
or the length of the excursion below the barrier L, reaches d, before T. Its price

formula is given by

DPmin—in—call = e_TTEQ ((ST - K)+ 1{1'5<T}) s

where S is the underlying stock price, @ denotes the risk neutral measure, 7° is

defined with the respect to barrier L; and L. The subscript min-in-call means it is
S

a call option which will be triggered when the minimum of two stopping times, 7;

and 77, is less than T, i.e. 75 < T. We assume S is a geometric Brownian motion:

dSt = rStdt + O'StdI/Vt, So =7,
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where Ly < x < Lo, r is the risk free rate, W; with Wy = 0 is a standard Brownian

motion under ). Set

We have
S, = xexp{ (r - %az) t+ aWt} = zexp {o(mt + W;)} = ze”Bt.
By applying Girsanov’s Theorem, we have
DPrin—in—can = e "t3™)TEp [(IBCGBT -K )+ 6mBT1{73<T}] ,

where P is a new measure, under which B; is a standard Brownian motion with
By = 0, and 78 is the stopping time defined with the respect to barrier I3, l;. And
we define

* r+im2)T
DF, call = 6( 2 ) DPmin—in—call-

min—in—

We are going to show that we can obtain the Laplace transform of DP}. . .
w.r.t T, denoted by Zr.

Firstly, assuming T, independent of W, is a random variable with an exponential

76



distribution with parameter 7, we have

[(xe T — K) emBTl{TB<T}]
= / (ze¥ )e™P (BT~ €dy, 78 < T)

/ e T / (ze’¥ — K)e™P (Br € dy, 7% < T)dT
0 b

o0
= fy/ e TEp [(me"BT — K)+€mBT1{TB<T}] dT
0

= 1%
Hence we have
1 * oy m B 2
Lr==] (ze¥—K)e yP(BTedy,r <T).
Y Jb

By using the results in Theorem 3.4.3, this Laplace transform can be calculated
explicitly.

When b > [y, i.e. K > L;, we have

K
..gT = EF'I(O' +m) - —Fl(m),
Y Y

7



where

VIl +(z—vE7)b

Fi(z) = a1(0){71§—;_67d1m‘/’/ (—M)} V2 -z

emlz+(z—\/27§)b

ra0) { = - /B (—v/Eds) b

V2y —z
2
ozeth—rdt - g (g /a7 — bk
+a; (0)\/ 27!'d167d1 (2 \/IH)
2y —x
P EVEN (k- ody) e VPR (ki)
i V2 -3 " N

when [, < b <1y, i.e. Ly < K < L, we have
K
Zr = ~Fy(0+m) = _Fy(m),

where

Fyz) = 2ae ’”{1”\/577116 £ (o \/—)}

2v —
e~ VITh +(z+v27)b

—a;(0) {\/—12—— — €74/ 2mdy N (-\/27—‘11)} V2y -z

V2 +(z—vE )b

ot~ () £

when b < I, i.e. K < Lj, we have

K
gT = g:'.F;;(O' +m) - —Fg(m),
Y v
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where

201 (0 l1:1:
2y —z2

—a;(0) {\/—_ — 4,/ 21rd1/
laz
2a2(0 . {1—2\/7rd4fye p JV

27 2y —z2
—(12(0 {\/—_— — €7d4\/ 27I'd4</V

{1+x\/27rd—1@ E (o \/“)}

2’7d1 } ¢

—v2yli+ :c+\/2_)

)

—VZyla+( z+¢2—)
2’yd4 }

2\/77-63:12~rd4+—42—/ (3: dy — \/Ld_f)

+as (0) vV 27I'd4€’yd4

ew/ﬂlﬁ(z—\/ﬂ)bJ (% _ \/2,7—(14)

2y — x2?

\/2_12+(a:+\/?_)be( l:/iz_ _ \/m)

V2y—z

V2v+z-

Remark: The price can be calculated by numerical inversion of the Laplace

transform.

So far, we have shown how to obtain the Laplace transform of

DP:,

in—call—in

For

_ r+im2)T
= 6( 2 ) DPmin—call—-in-

DPrin—cati—out = e_rTEQ ((ST - K)+1{T5>T}) ’

we can get the result from the relationship that

DPrin-caii-out = € T Eq { (St —
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Furthermore, if we set

=V,

we can define another type of Parisian options by 7¥:

DPozcall—in = e—rTEQ ((ST - K)+1{7-S<T}) .

In order to get its pricing formula, we should use the following relationship:

Lizs<ry = Lsery + 1(mser} = Lirs<ry-

We have therefore

DPmax—call—in = D-Pup—in—call + Pdmun—in—call - DPmin—call-in-

Similarly, from

DPrs—cali—out = e_rTEQ {(ST - K)+} - DPma:z:—-call—in7

we can work out DPyuz—call—out-
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3.6 Appendix

We prove Theorem 3.4.3 in this section. Let T' be the final time. According to the

definition of ¥(z), we have
U(z) = 2Tz AN (\/511:) — Tz + e = \/rz — \/rzErfc (z) + 7.

It is not difficult to show that

E (e—ﬁ.TW#) =F (/0°° ,Be—ﬁTl{Tw#<T}dT) )

By Girsanov’s theorem, this is equal to
> ;(ﬁ+l#2)T—#$0 uWr
;Be 2 E (6 1{1-W<T}) dT.
0
Setting v = B + Fu?® gives

© 1
E (e~ﬁTW“) = /0 (v = 50)e™ T HRE (T 1w qy) AT
v — 2

1
—” _ ~
=5 ¢ ("1 gwary)

where T, independent of W, is a random variable with an exponential distribution

of parameter . Therefore we have

) ko -
E (e“WT 1{1.W<T}) = —’Y_ 1 2 E (e ,37'W“ )
Y — 3K
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In order to inverse the above moment generating function, we first need to inverse

the following expressions:

e o) 2
d 2 1 T
ezh = et exp{————}dx,
—00

vV 27I'd1

d; di 2. - d; 0 —r _z%
— [ G e %)= N 7
1 5 THe z 4" Erfc ( 5 ,u) /_oo e ) e idzx.

Fa?
g is

Therefore the inversion of T
=3

* 1 _(=z=w? 0 1 _GE=»?
-2y 24, dy — / V3Ivy__ 24, d
e e e e
A \' 271-dl 1 v —o0 Vv 271'dl 1 v

- o femr (o) (- ).

d.
1- izime*z‘ﬂzErfc(,/%iu)
The inversion of -z is given below.
R

For z > 0,

0 _ 2 —/2z
y 1 _ (z—y) e di— ~
—e 2% e VIEgy = — 5V ford, N (—\/2'yd,~) ;
~/—oo dz \/2'7 V2’7
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For z < 0,

e FPARY
eVire T

= ——e”d‘"mz\/dei./V( - 27d,-)
V2y Vid;

+evda~+«m\/m{/ (Vo) - ( T+ W)}

Consequently, we can get Theorem 3.4.3.
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- Chapter 4

Parisian Corridor Options
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Abstract

In this paper, we study the excursion time of a Brownian motion with drift inside a
corridor by using a four-state semi—Markov model. In mathematical finance, these
results have an important application in the valuation of options whose prices depeﬁd
on the time their underlying assets prices spend between two different values. In this
paper, we introduce the Parisian corridor option and obtain an explicit expression
for the Laplace transform of its price formula.

Keywords: excursion time, four-state Semi-Markov model, Parisian corridor

options, Laplace transform.
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4.1 Introduction

The Parisian corridor options replace the barrier by a corridor. Ins;cead of considering
the excursion above or below a barrier, we consider the excursions inside a corridor.
For example, the owner of a Parisian corridor in option gains the option if the
underlying asset price process S has an excursion in the corridor for longer than d
before the maturity of the option. For the pricing of the Parisian options whose
prices depends on the excursion outside a corridor see Chapter 3. We will qxplain
later in this section that these options can be used to take positions depending on
volatility. We will also explain that they can be viewed as generalisations of certain
types of double barrier options.

In this paper, we are going to use the same definition for the excursion as in [13]
and [14]. Let S be a stochastic process and 1, I3, [; > I3 be the level of two barriers

forming the corridor. We define
g, =sup{s<t|S, =1}, dj ,=inf{s > t| S, =1}, i=1,2, (4.1)

with the usual conventions, sup{@} = 0 and inf{@} = co. Assuming d; > 0, i =

1,2,3,4, we now define

7 =inf {t > 0| L5513t — g5 ,) > di}, (4.2)
75 = inf {t > 0| LpcsicusLigs sgs J(E— 95 2 dz} , (4.3)
Tég = inf {t >0 | 1{12<S‘<h}1{9ﬁ,e<9i§>,t}(t — gg’t) > d3} , (4.4)
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Tf = inf{t >0 | 1{5t<l2}(t - gg,t) 2 d4}7 (45)

S =1d N1 (4.6)

We can see that 73 is the first time that the length of the excursion in the corridor
reaches the given level ds, given that this excursion starts from the upper barrier [;;
75 corresponds to the one in the corridor with the given level d3 starting from the
lower barrier ly; and 7° is the smaller of 75 and 75. When we take dy = d3 = d,
75 is actually the the first time that the length of the excursion inside the corridor
reaches given level d, which is what we want to study later on.

We can also see that 77 is the first time that the length of the excursion of process
S above the barrier [, reaches given level d;; 77 corresponds to the one below I, with
required length dy. Although 77 and 77 are not of our interest in this paper (see
Chapter 3 for the pricing of the Parisian options depend on 7{ and 7;), we need to
use these two stopping times to define our four states semi-Markov model.

Now assume r is the risk-free rate, T is the term of the option, S is the price of
its underlying asset, K is the strike price, @ is risk neutral measure. If we have a
Parisian corridor out-call option with the barrier I; and ls, its price can be expressed

as:

PCout—can = € "TEq (1(rs51y (St — K)¥);

and the price of a Parisian corridor in-put option is:

PCz‘n—put = E_TTEQ (1{7s<1:} (K - ST)+) .
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In-put and in-call Parisian corridor options can be viewed as options that are
activated only when the price has gone through a low volatility period, demonstrated
by the fact that it has stayed between two fixed values for a certain time interval.
Out-put and out-call Parisian corridor options can be viewed the opposite way.
Either way, the buyer and the seller of these derivatives take positions on volatility
in the sense that they are betting on the ability of _the price to stay within two values
long enough.

As we said earlier, Parisian corridor options can also be viewed as generalisations
of double barrier options. For example in the case where the stérting price is inside
the interval, they are generalisations of one-touch knock-out double barrier options.
For more details on double barrier options and their pricing, see Chapter 2 and [39].

In this paper, we are going to study the excursion time inside the corridor using a
semi-Markov model consisting of four states. By applying the model to a Brownian
motion, we can get the explicit form of the Laplace transform for the price of Parisian
corridor options. One can then invert using techniques as in [38].

In Section 4.2 we introduce the four-state semi-Markov model as well as a new
process, doubly perturbed Brownian motion, which has the same behavior as a
Brownian motion except that each time it hits one of the two barriers, it moves
towards the other side of the barrier by a jump of size €. In Section 4.3 we obtain
the martingale to which we can apply the optional sampling theorem and get the
Laplace transform that we can use for pricing later. We give our main results
applied to Brownian motions in Section 4.4, including the Laplace transforms for

the stopping times we defined by (4.6) for both a Brownian motion with drift, i.e.
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S = WH, and a standard Brownian motion, i.e. S = W. In Section 4.5 we focus on

pricing the Parisian corridor options.

4.2 Definitions

From the description above, it is clear that we are actually considering four states,
the state when the stochastic process is above the barrier [; the state when it is
below l; and two states when it is between /; and l; depending on whether it comes
into the corridor through {; or l;. For each state, we are interested in the time the

process spends in it. We therefore introduce a new process

1, if St > ll
2, ifly > 8; > 1 and gg,t > gls;,t

3, ifly>S >land gi , <gj,

4, if St < l2

We can now express the variables defined above in terms of Z5:

gis=sup{s <t| 2z #Z’}, (4.7
di ,=inf{s>t| 2% +# 7]}, (4.8)
5 = inf {t >0 1155y (t—95,) 2 dl} , (4.9)
s =inf {t> 0] 155 1 (£ g5,) 2 &}, (4.10)
75 = inf {t >0 1yze_gy (t-05,) 2 d3} , (4.11)
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75 = in {t >0 1peogy (t=95,) 2 d4} . (4.12)

We then define

‘/ts =t _ max (gﬁ,hgg,t) H (413)

the time Z5 has spent in the current state. It is easy to see that (Z5,VS) is
a Markov process. Z° is therefore a semi-Markov process with the state space
{1,2, 3,4}, where 1 stands for the state when the stochastic process S is above the
barrier l;; 4 corresponds to the state below the barrier lo; 2 and 3 represent the state
when S is in the corridor given that it comes in through !; and I, respectively.

For Z° the transition intensities \;;(u) satisfy

P(Z5p=3i# | 28 =4,VE =u) = M)At +0(AL),  (414)
P(Zin =128 =4,V =u) =1-)  Nj(wAt+o(At). (4.15)
i#j

Define

R(u) =exp — uz Aij(v)dv o, pij(u) = )\,](u)l_%(u)
0

i#j

Notice that

is the distribution function of the excursion time in state i, which is a random

variable U; defined as

Ui=ir>1£{Zf7éi|Z§=i,V}]S=0}.
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Note that because the process is time homogeneous this has the same distribution
as

nf {28, #1128 =,V =0)

for any time t. We have therefore

P (Us € (w,u+ M), Z5, = )
py(w) = Jlim, A~ '
Moreover, in the definition of Z°, we deliberately ignore the situation when

S; = l;, 1 = 1,2. The reason is that we only consider the processes, which

t -
/ 1{5u=li}du = 0, 1= 1, 2.
0

Also, when [; and [, are the regular points of the process (see [8] for definition),
we have to deal with the degeneration of p;;. Let us take a Brownian Motion as an
example. Assume W}' = ut + W, with p > 0, where W, is a standard Brownian
Motion. Setting z( to be its startihg point, we know its density for the first hitting

time of level [;, 2 =1,2 is

|l — ol (i — 20 — pt)®
zo(t) ,_Tl'tg Xp{-— ;t }

(see [9]). According to the definition of transition density, p12(t) = pa(t) = pi, (t) =
0 and p34(t) = p43(t) = Di, (t) = O, for t > 0.
In Chapter 2, in order to solve the similar problem, we introduced the perturbed

Brownian motion X(® with respect to the barrier we are interested in. We apply
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The Original Brownian Motion

to

O 500 1000 1500

Time

Figure 4.1: A Sample Path of W*

the same idea here, and construct a new process doubly perturbed Brownian motion,
Y?é e > 0, with respect to barriers 4 and 2. Assume Wg = /| + e. Define a

sequence of stopping times

<0 = o,

)
Il

inf{£ > Su| W t="Zi},

£nt inf{£ > an\Wf=h + e},

where n = 0,1, **+ (see Figure 4.1). Now define

I X(e= Wt if

( X =W?-e if

Similarly, we then define another sequence of stopping times with respect to process
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and barrier U

Process X(e)

Figure 4.2: A Sample Path of X *

(@) = o0,
on inf{t > G,| =52},
Cn+l inf{t > nl, xjed,

where n = 0,1, ¢+ (see Figure 4.2). Then define

e (see Figure 4.3).

if

Yi)) = &

The process Y~ is actually a process which starts from /| + e and has the same
behavior as the related Brownian Motion expect that each time when it hits the

barrier /| or 2, it will have a jump towards the opposite side of the barrier with size

From the definition, it is clear that /\ and 22 become irregular points for Y”el Also
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@

converges to

Process V<©

500

Figure 4.3: A Sample Path of

Chapter 2, the Laplace transforms of the variables defined based on

those based on

by carrying out the calculation for Y~ and take the limit as e — .

For Y~ we can define

the superscript). For ZY, we have the transition densities (see [9])

Poa(t)
P2I(¢)
P2¥{n)
P3If1)
P34(1)

P&(1)

o S
V2nts P 21
exp {fie - f—lt | sst(h h),

exp {-fi(h- 12- ¢- ~ | sst(e,h - 12),
exp fn(h-12-¢- ~ | sst(eh- 12,

exp ~ —fie - ysst(h-12-¢e,li- 12,

(- pt)’

<
exp 5

\/21T13

94

1500

with Wjf = I\ almost surely for all t. Therefore as we prove in
converge to

As a result, we can obtain the results for the Brownian Motion

rv,rv,rv, rv and » v as above (we suppress (e) on

(4.16)
(4.17)
(4.18)
(4.19)
(4.20)

4.21)



where

Sst(x,y)‘__. i %ﬁ exp {_((Qk + 1)y — :v)2} .

k=—00

Also we know that

p23(t) = p32(t) = p1a(t) = pur(t) = 0. (4.22)

Clearly, all the arguments above apply to the standard Brownian motion, which is

a special case of W* when p = 0.

4.3 Results for the semi-Markov model

In Section 4.2 we have introduced the Markov process (ZS , Vs). Now we apply
the same definition to the doubly perturbed Brownian motion Y(©); therefore we
have (Z¥,VY), where ZY is the current state of Y(®), taking value from state space
{1,2,3,4} and VY is the time Y has spent in current state. VY is also a étochastic

process. Now we consider a function of the form

f(U,Z',t) = fi (uat)a

where f;, i = 1,2, 3, 4 are functions from R? to R. The generator & is defined as an

operatbr such that

(A8 /Jz{f (VY,z¥,s)ds
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is a martingale (see [18], Chapter 3). Therefore solving

#Zf=0

subject to certain conditions will provide us with martingales of the form f (Vty, zZY, t)

to which we can apply the optional stopping theorem to obtain the Laplace trans-

form we are interested in. More precisely, we will have

4

o fi(ut) = 3flgat) +8f1(«§2’t)
o folu,t) = afzg,t) ﬁﬁ;z,t)
4
df:;(’u,t) — af3§?)t)+af3a(z,t) '
| A falwt) = 6f4gtz,t) +8f45§2’t) A (a0.6) — faw 1))

Assume f; has the form

fi(u,t) = e Pgi(u).

96

+ M2(u)(f2(0,2) — fi(u, 1))
+ A21 () (f1(0,2) — fa(w, 1)) + A2a(u)(fa(0,2) — fa(u,1))

+ Aa1 () (f1(0,2) — fa(u,t)) + Aaa(u)(f4(0,2) — f3(u,t))



( (
,,dfl = 0 [ (dl) =
. .Q{fQ = 0 92(d2) = 2
By solving the equation & f =0, i.e. < subject to <
Afs =0 g3(d2) = a3
\ dfy = 0 \ 94(dz) = a4
we can get
d;
gi(u) = a;exp {—/ B+ Z )\,-j(v)) dv} (4.23)
u J#i
di s
+ Z gj(O)/ Aij(8) exp {—/ (ﬂ + Z )\ik(v)> dv}ds.
j#i uw u k#i

In our case, we are only interested in the excursion inside the corridor. Hence, we set
d; and d4 to be 0o. Also limg, o0 g1 (d1) = limy, .00 g4 (dg) = 0 gives a; = a4 = 0.

Therefore, we have

92000 = aze™P2Py(dp) + g2(0) Pr2(B) Pra (B) + 93(0) Pus(B) Pau(B),  (4.24)

93(0) = ase P Py(ds) + g2(0) Pr2(B) Psr(B) + 95(0) Pis(B) Psa(B).  (4.25)

Solving (4.24) and (4.25) gives

age™P% Py(dy) (1 = Pus(8) Poa(8)) + ase™> Py(ds) Pus(8) Pas(8)

o:(0) = 1 — P1o(8)Pa1(8) — Piz(B)Psa(B) + Pr2(B) Pa1(B) Pss(8) Psa(B) — Pr2(B8) Ps1(B)Pas(B) Pas(B)’
(4.26)
(0) = aze P Py(d3) (1 - F’lz(ﬂ)f’zl(ﬁ)) + aze™P92 Py(do) P1a(8) P31 (B)
BT Pi2(8) Pa1(8) — Pas(8) Psa(B) + Pr2(B) Pa1(8) Pia(8) Psa(B) — Pra(B8) Ps1(8) Pua(8) Paa(B)
(4.27)
where
By(8) = / ePip,i(s)ds, (4.28)
0
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d;
Po(B) = [ ms(a)ds. (4.20)

As a result, we have obtained the martingale
M= f (V) 8) =ePgzy (V¥), i=1234. (4.30)

We now can apply the optional stopping theorem to M; with the stopping time

¥ At, where 77 is the stopping time defined by (4.6):
B (M) = B (1)  (431)
The right hand side of (4.31) is
EMxp)=E (Mxylpvey) + E(Mdpvsy).
Furthermore,

E ag 1 {TY (t} )

(M
= E( Tyl{ ,,<Ty}1{,.y<t}) + E( TYI{TY>TY}1{Tg’<t}) .
- E (e ﬂTY 2 (d) 1{,y<7.y}1{TY<t}) +FE ( 93 (ds) 1{Tg’>rgf}1{rg’<t}) :

= aFE ( wad 1{7y<,.y} {,Y<t}) +03E( ﬂTYl{r§>T;}1{f§<t}) ’

We also have

E (Milrvsy) =eE (gz," (V") 1{TY>t}) )
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where Z} can take values 1,2,3 or 4.

When Zty = 2 or 3, since TY > t, we have 0 < V,¥ < dy A d3. According to the
definition of g;(x) in (4.23), we have g, (V;¥) and g; (V;¥) are bounded.

When ZY =1 or 4, since limg, o g1 (d1) = limg, 00 g4 (ds) = 0 and looking at
(4.23) with d; and d; replaced by co we have that g; (V,¥) and g4 (V;¥) are bounded.

Therefore

lim E (M;1vsg) =0.

t—o0

The right hand side of (4.31) gives

92(0), YO =1 +e
E (M) =

930), Y9 =l—e
By taking a; = a3 =1 and d; = d3 = d, we will have when Yo(e) =li+e
E (e77) (4.32)

~ e PiPy(d) (1 - 1343(:3)1334(5)) + e~PPy(d) Pgz(8) Paa(B)
1 — P1o(8) Po1(B) — Buz(B) Psa(B) + Pr2(8) Pa1 (8) Pas(8) Psa(B) — Pr2(B8) P31(B) Pus(8) Poa(B)’

when Y9 =1, —¢

E (e_ﬂ"y) (4.33)

e PPy(d) Pra(B) Pua (B) + P2 Py(d) (1 - Pra(8) P (8))
1 — P1o(B)Pa1(B) — Piz(8) Psa(B) + Pi2(B)Pa1(B) Pas(B) P3a(B) — Pr2(B8) Py (8) Pis(B) Pos(B)
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4.4 Main Results

In Section 4.2 we have stated that the main difficulty with Brownian Motions is that
its origin point is regular, i.e. the probability that W# will return to the origin at
arbitrarily small time is 1. We have therefore introduced the new processes Y(€) and

(Z¥,VY) with transition densities for Z¥ defined in (4.16) to (4.22).

Theorem 4.4.1 For a Brownian Motion W#*, TW" defined as in (4.6) with S = W*,

we have following Laplace transforms:

when W' = 14,
Gi(s+2)-c1(6+%)
when W} =1y,
B = . LSRG (6+ %) — Fy(p)G: 2(ﬂ +£) . )
Gi(6+4)-c3(p+4
where
l=1 —lo; (4.36)

\/— D el {exp{—% (%’fq |\/—> } (4.37)

k=—00

o35

+2|z| i e—zlz!lk{ ~(jal+3) z‘/,/< (2’\9/1“ 1) C I\/_) (313 " I\/_)}

k=—00
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\/g kgooe_mz]uc {exp{ (313 |z|vVd ) } (4.38)
_e~lel-o) gy {_% (Z(_Qk_\/—g_l) - lxl\/‘_i) }}

o § oo (22 a) o ()

k=—00
—2V2z o 21k
Gi(z) = - +2V2z Z e 2k g ( 73 \/2:1:d) (4.39)

k=—00

5 3 enmen] - (2 - vam) |

2y/2ze~ V22 SN VIRl (2t +1)

k=—00

\/—‘ Z e~ WET(2k+1) o p{ : (1(2%— 1) m)z} (4.40)

Proof: We apply the transition densities in (4.16) to (4.22) to the results in (4.32)
and (4.33) and taking the limit ¢ — 0. We now show that we can take the limit.

We have shown in Chapter 3 that
limgl}:t = glVlV:, a.s. for all t.
e—07" ’

Therefore we have that

Y W I
hm 1{12<Y(‘)<l1} {911 >90, o} ( gll-t) 1{l2<W"<l1} {g,1 >0y (t —9nt ) ) @.S.
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From the definition of 75 we have that

(" <t} = { sup 1{12<W#<11}1{9W“>gl2“{;‘ (s —gf’f’:)} > d2}

0<s<t s

— T Y
= 1 { o {1t i o) gﬁ's)} > i

= li_r'%{'r2Y<t}.

Consequently,

. "
limry =7" a.s.

e—0

By the same argument, we can show that

. »
lim7Y =7 a.s.
e X 3

S

Since 75 = 75 A 75, we have

Y _ W

lim T " a.s.

e—0

In Chapter 2 we have shown that the convergence of 7¥ to 7% leads to the

convergehce of their Laplace transforms, i.e.
lim E (exp{—B7"}) = E (exp{—B7""}) a.s.

Therefore we get the results shown by (4.34) and (4.35).

(]

Corollary 4.4.1.1 For a standard Brownian Motion W (u = 0), we have for both
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cases (i.e. when Wy =1, and when Wy = Ip)

E(e"ﬁTW) = e‘ﬂd%((%)); (4.41)

where

P G e e e O N B
—exp{—a(?}g \/éﬁ—) }}"136—\/—271?/2‘5

We are also interested in the cases when a Brownian Motion starts from the

point other than !y and /. The results are shown in the following corollary.

Corollary 4.4.1.2 For a Brownian Motion W#, ™" defined as in (4.6) with S =
Wk, we have the following Laplace transforms:

when W§' = zg, 29 > 1,

B(e™) = exp{=(u+ VBT (@) -fd)  (443)
e HF G (B+4) - R(WG: (B+1%)
G2 (ﬂ+ 1‘2—2) G2 (ﬂ+*‘2—2)

)
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when W§ = zg, 29 < Iy,

E (e_ﬂ’W#) = exp { (u - \/W) (lg — zo) — ﬂd} (4.44)
' e Fy (1) Ga (ﬁ + L;—) _ BWG (ﬂ + %) |
ci(o+4)-ca(p+4)

when Wél = Iy, ls < zg < Iy,

o0
E (e—ﬁrw“) = ekll2~20)—fd Z {e_|ﬂ|(2kl+zo—12)(/y (_|I—"|\/E+ 2kl +f§ - l2) | (4.45)
k=-00
—elklkl+zo—l2) g (_ Vd— 2kl + xo — l2> }
e |pl — v
e .
+eﬂ(11—zo)—ﬁd Z {e—lﬂl(2kl—x0+ll)'jy <—|u|\/c_i+ 2kl — zg +l1>
k=—00 \/E
2kl —xo +1
_lul(2ki—zo+l1) g (_ Vi 0 1)} gy
€ |l — 7
e~ |uli—Bd {eu(lz—zo) (e|ﬂ|(l1—zo) _ e—lul(ll—:co)) + e#ll1—<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>