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Abstract

This research describes a study of learning and organizing within the Linux kemel open source
collective. For its empirical focus it concentrates on Linux kernel development activities and this
collective’s debates about the role of, and need for, an agreed approach to version control
software. This is studied over a period of eight years from 1995-2003. A textual analysis of
messages in the Linux Kernel mailing list is used as the primary data source, supported by other
contemporary accounts. In this work learning and organizing are understood to be mutually
constitutive, where one entails and enables the other. Learning is about interacting with the
environment, organizing is about reflecting this in the collective.

The thesis uses the theoretical approach of actor network theory, Bateson’s levels of learning and
Weick’s concept of organizing, to analyze learning and organizing in the kernel collective. The
analysis focuses on the discourse and interplay between relevant actors (human and non-human),
and the ongoing debates among kernel developers over whether to use version control software,
and then which version control software to adopt. The persistence and passion of this debate (it
spans the 8 years studied and is ongoing) is evident, and allows a longitudinal study of the
becoming of learning and organizing. Drawing on actor network theory, the thesis emphasizes the
performative (worked out, lived, ‘in the doing of’, in other words the becoming) character of
learning and organizing.

The findings of the study reveal how learning is understood in the collective and is, to a degree,
reflected in its organizing activity. Key themes that emerge include: the organizing of time and
space, maintaining of transparency and the overall concern with sustaining the assemblage. The
thesis offers a distinctive account of technical actors as an essential part of the open source
process. In conclusion, it re-emphasizes the significance of code and the agency of non-human
actors.
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Chapter 1
Introduction

It’s not the answer but the question

that drives us mad...'

This thesis considers the question of how a particular technical actor (version control software) is
implicated in activities of learning and organizing within an open source project. The work is
described as taking a performative view because the emphasis is on what happens or is happening
(process), rather than what is achieved or some end state (structure). There is always a balance to
be struck between structure and process but this work is biased towards process. Cooper (1976)
defines structure as the “invariant pattern of relationships among functional points in a system,
while process is the continuous emergence of new elements from those already vexisting”.
Structure concerns itself with stability or quasi-stability; process, with change. Drawing on this
distinction we seek to reveal change in an open source collective in terms of learming and

organizing, in this work taken as an ensemble construct and inextricably linked.

The theoretical perspective used here allows us to construct a framework for analysis that allows
us to shed new light on the open source process and how, through the combined agency of people
and other artefacts, interests are aligned and new capacities are imagined, and operationalised,
what Callon and Law (1995) call an emergent effect. In this work, drawing as it does strongly on
actor-network theory (ANT) and specifically the usage of Callon and Law, open source activity is
characterised as a collectif (or in more standard English a collective) where “a collectif is an
emergent effect created by the interaction of the heterogeneous parts that make it up” (Callon and
Law 1995, p485). In conventional ANT terms, we may see this as a socio-technical account, but

following Latour (2005b) we may be bolder and state it as just a social account.

This does not mean that people alone are the focus, but that we are concerned with the society of
all things. Thus a social understanding of a collectif lays emphasis on tracing all manner of
associations. Social does not imply some privileged kind of material that is social, rather it is a
“type of connection between things that are themselves not social” — after all a person alone is not
performing socially (Latour 2005b, p5). This claim links with the reason why the word collectif
has been adopted here over the more common designation of open source as a community or
group. Society and other such words are used so often in everyday language that they too have
come to mean some type of material stability rather than emphasising the process of assembling

which is implied in the collecting of a collectif. Thus, a collectif “will designate the project of

! The Matrix (1999) - a film directed by the Wachowski brothers: Conversation snippet between Trinity and Neo.
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assembling new entities not yet gathered together and which, for this reason, clearly appear as
being not made of social stuff” (Latour 2005b, p75). The idea of a collective and its binding and
evolving force is explained well by Weick (2001) as “collective structures form when self-
sufficiency proves problematic” (pp17) so others must be enticed to participate and help achieve
goals. He adds that “people commit to and coordinate instrumental acts (means) before they worry
about shared goals. But shared goals do emerge as people search for reasons that justify the earlier
interdependent means to which they have become bound” (ppl7). Weick thus uses his idea of
sense-making in hindsight to explain why collectives are created and why individuals collaborate.
Learning and understanding happen in hindsight, learning is thus the reflective time affer an

action has been taken.

Learning in the Context of Information Systems

We take a moment here to take a step back and place this work on learning and organizing in the
broader context of information systems studies. Boland et al.(1994) discuss how computer-based
systems should be developed to support distributed cognition. It is the understanding of this
researcher that version control systems are one such manifestation of distributed cognition. Huber
(1991), talks of information and knowledge synonymously, and as Jones (1995) points out, the
work on Artificial Intelligence suggests that “learning may be instantiated not just in information
systems, but in information technology itself”’. Galbraith (1977) and Pentland (1992) both make
similar claims about how cognition and the cognitive approach is a “natural outgrowth of the

information-processing model of organizations” (Galbraith, 1977).

Jones (1995) provides three ways to link organizational learning with information systems when
organizational learning is something that occurs through individuals. Stata (1989, cited in Jones
(1995)) provides one such route and argues that information is the same as learning because
information is “essential to the learning process” and thus information systems should be designed
around the needs of organizational learning and with the latter as the goal. Another way to
understand the link is to look for the contribution information systems make to organizational
learning, for example the use of information systems to provide an organizational memory.
Argyris and Schon (1978) and their idea of theories-in-use is one such example, through which to
link with open source and the use of version control software as a repository of code. And finally
Jones (1995) adds that information systems also provide mechanisms to support formal and
informal learning, like electronic mail to spread stories that create a sharing of organizational
experience (Brown and Duguid, 1991). We know that in our domain of study, open source, one of

the main forms of communication is via electronic mail.

13



Domain of Study

Over the last few years open source software development has aroused a growing interest in
academic and business communities alike. There is a perceived need to make sense of this
seemingly strange and paradoxical phenomenon. What motivates individuals to give their work
away freely to others? Why would any business want to release the source code of its product
which could then be appropriated and copied by rivals? These and other pertinent questions have
absorbed researchers from many disciplines including software engineering, social psychology,
sociology, political economy and business strategy. This research is an attempt to understand a
specific, and we argue insufficiently studied question, that of how learning and organizing occurs
and is manifested in OS activity. The specific focus of the empirical work is to comprehend

learning and organizing in OS through a study of the adoption and use of version control software.

A review of the technology used by the Linux developers initially helped to concentrate the work
to find a focus on a specific problematic issue, that of which version control software the Linux
developers would adopt, but later lead to the realization that version control software is itself one
of the stroné actors in the network and (potentially) can become the medium [obligatory passage
point] through which the collective organizes and developers learn. Oops! Now we have just split
the technology from the human and this is not in keeping with the basic premise of actor network
theory, that of the social and symmetry. However, as will be seen in Chapter 2, we are often
forced to start at least by theorizing the technology apart from the human actors because that is
how other research in this area has been conducted. Thus, in order to survey the literature on open
source and version control software we have acknowledged the distinction. However, we do see it
as artificial and we only adopt it so that we can make transparent the lack of symmetry in other
work. Then, as can be seen later in chapter 7 we draw the two rightfully together to theorise the
collective as truly a hybrid.

It is not surprising that academics with a software engineering background have shown interest in
open source as a software development process, but what is perhaps more surprising is that the
wider interest in open source, and here we refer to sociologists, political scientists, management
etc has to date often concentrated on software development without noticing the software
embodied in the process. There has been little attempt to unpack the software or technology to
signify anything more than a necessary facilitator. Even Weber (2004, p118) whose ideas we
draw on extensively in this work, when discussing the Linux case, states that “technology is a
facilitator. For this community in particular, the idea of a technological fix helped bring the
parties together on common ground, but ultimately the solution was going to be a political one”.

What Weber, amongst others, seems to miss is that technology or any software is itself a political
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artefact. It doesn’t materialize out of nothing, indeed the (political) effort it takes to be created and
moulded is often monumental. But more importantly it behaves (performs) as a political artefact

(Winner 1986).

This study then focuses on how a political technological artefact (with its own agency), an
assemblage like version control software, seeks to persuade other different actors to do its bidding
or join its programme and perpetuate its use and existence. We can then ask the question, what do -
such poli’tical actors, within the social hybrid mean for the Linux collective and how it organizes
and learns, or more exactly the question that this research addresses is - how does learning and
organizing occur and manifest itself in open source collectives? This is the goal of the study and

we will draw back to the question throughout this work.

A Brief History of Open Source

We need to reflect briefly on the various designations that the open source phenomenon has
achieved. In this thesis, for purposes of simple English we will speak about open source as the
generic domain of activity, abbreviated to OS, with OSS standing for open source software.
However we must acknowledge that there are plenty of other designations in good currency, and
they require us to present a little history. Some comprehensive historical accounts of open source
software have been written (Moody 2001, Raymond 1999a, Rosenberg 2000, Weber 2004) and

there is no intention here to attempt yet another.

The origins of open source software can be traced back to the hacker culture of the sixties when
software was being sold together with hardware and macros and utilities were freely exchanged in
certain user forums (Hars and Ou, 2000). In the early 1980s Richard Stallman, a researcher at
MIT started to write a free UNIX system, GNU, and in 1984 founded the Free Software
Foundation (FSF) (Ljungberg 2000). His work is recognised as providing the conceptual
foundation for open source software as we know it today. Stallman who saw free software as
having nothing to do with price but with rights (Stallman 1999a). In keeping with hacker tradition
Stallman called his project GNU, a recursive acronym for ‘GNU’s Not UNIX".

The free in free software is about freedoms and not about being free of charge — Stallman is oft
quoted saying that “think of *‘free” as in “'free speech,” not as in “‘free beer” (Stallman, 1999).
His definition of free software is about the ability of a user to have the freedom to “run, copy,
distribute, study, change and improve the software” (Stallman, 1999). This definition incorporates

four freedoms;
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= The freedom to run the program, for any purpose.

= The freedom to study how the program works, and adapt it to your needs. Access to the
source code is a precondition for this.

= The freedom to redistribute copies so you can help your neighbour.

= The freedom to improve the program, and release your improvements to the public, so
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that the whole community benefits. Access to the source code is a precondition for this

(Stallman, 1999).

These freedoms were embodied in the copyleft method. Copyleft uses copyright law but “instead
of using it as a means of privatizing software, it becomes a means of keeping software free”
(Ljungberg, 2000). This creates a highly viral clause because the implication is that if a developer
uses any part of GPL-ed code then the code s/he creates is also automatically GPL-ed as well’,

It is clear that a key innovation concerning open source was Stallman’s GNU General Public
Licence [GPL] which made it possible “to legally improve and adopt software developed by
others...[and] the open source licensing rules are important for learning and for creating
derivative works” (Tuomi, 2002, p194). Indeed, as we will argue following Weber (2004),
licences form the constitution for open source production. The GPL, for example, enshrines the
rules of communication and openness allowed for any software under creation. Tuomi recognizes
this but only goes as far as to explain that “an important role of copyrights ... is that they create
norms that act as interfaces between developer communities™ (2002, p201) stressing that this is

how trust is crucially built up in such communities.

Stallman’s Free Software Movement [FSM], and especially Stallman himself, are generally
considered to be fanatical about free software and the GPL. But it was the word ‘free’ that forced
a few people in 1997, including Eric Raymond, Bruce Perehs, Larry Augustin, Sam Ockman to
rename the movement (Perens, 1999). The free in FSM was considered to discourage businesses
from taldng up OS use and development*, The name ‘open source’ was coined by Chris Petersen
and this change in the name was mainly the initiative of Todd Anderson, Chris Peterson, John
"maddog" Hall and Larry Augustin, Sam Ockman and Eric Raymdnds. This has led to two
factions where Stallman leads the FSM and Raymond the Open Source Initiative [OSI]. Perens

(1999) explains how Eric Raymond approached him at an invited conference, the Hacker’s

I1tis interesting to note how the basic freedoms are couched, especially in the terms of making changes to the source
code. The source is an obligatory passage point for developers if they want to help develop 7t further.

3 an interesting aside here raises the question that Feller and Fitzgerald named the Berkeley Conundrum (2002, pp173),
“if users do not actually download and modify the software source code, does it matter that its open?".

4 Libre is the European word for free software and has been adopted by many to avoid any confusion over the meaning of
‘Sfree' (Anonymous 2005).

http://www.opensource org/docs/history,php
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Conference, and then continued his conversation by correspondence in February of 1997.
Raymond had come up with the idea of renaming free software to open source to make it more
business friendly and steer clear of the taboo companies felt at anything to do with the word free.
He began by approaching, what were then, small companies that dealt in Linux products and
managed to convince Larry Augustin of VA Research and Sam Ockman. Thus began the open
source movement and the Debian Free Software guidelines were adapted by Perens to become the
open source definition and the name open source was registered as a trademark for the Open
Source Initiative [OSI]. The OSI is controlled by Raymond and Perens (1997) and it was, and is,
an ‘organization exclusively for managing the Open Source campaign and its certification mark’

(Perens 1999).

The ‘open source’ movement proper was thus initiated by people who were concerned that the
word ‘free’ made their software unappealing to businesses. This can now be seen in its modified
form on the Open Source Initiative website® where the definition has been divided into the main
arguments it makes about the source code, derived works etc, and serves as the constitution of

open source.

Focus of Study

The route chosen here to study the question of learning is through the ongoing debate among the
members of the Linux kernel developers collective over whether to use version control software,
and then which one to adopt. A version management system is software that “manages and keeps
track of the configuration items which are any documents created during a software development
process, and which are found necessary to be placed under configuration control like
requirements documents, data flow diagrams, design documents, source code, and test results”
(Kilpi 1997). This is true of version control software but it fails to emphasize its many other
facets. In the current research the aim is to draw out the more interesting aspects of VCS and to
reflect on how contentious and challenging a piece of software it truly is. It is only able to be so
problematic because it has agency, material agency that it exercises to ensure its power and

survival, Survival for all actors depends on evolving, adapting, or in a sense, learning.

A significant feature of version management system implicit in the above definition is that they
act as an organizational memory and prima facie as a potential resource for learning, and as a
basis for organizing. This debate of whether and which version control software to adopt within
the collective is appropriate as a focus for this research because it has the ability to reveal how,

when and why learning and organizing may occur, how learning and learning and organizing

S hitp://www.opensourc o finition,ph
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support is understood in the collective. Kogut and Metiu (2001) understand that open source
activity exploits the intelligence in a distributed system and it is this ‘intelligence’ to learn,

organize and evolve that this research addresses.

Theoretical and Methodological Orientation of Study

In this study a combination of Actor Network Theory, Bateson’s concept of learning and Weick’s
concept of organizing are used to create a theoretical framework. Actor Network Theory [ANT]
with its performative realist ontology sets the scene for studying the ‘process of learning and
organizing’. ANT is important to this study because it doesn’t privilege human actors over
material ones and thus provides a better lens to understand the role of version control software.
This is aligned with Weick’s similarly processual ontology of organizing with the added claim
that an understanding [sense-making or learning] only comes to an actor in hindsight and after
reflection. Bateson’s simple yet powerfully flexible definition of learning as a change in

behaviour is used because neither ANT nor Weick’s ideas made explicit any exact definition.

The methodology of this study is strongly guided by ANT. ANT understands that technologies
“indeed move through stages, have a chronology; that they may have setbacks that need to be
overcome; that how they evolve is a function of background “macrosocial” factors of one kind or
another as well as other relatively stable conditions in the real world; that there is more
technological knowledge around at the end than at the beginning” (Law and Singleton, 2000).
What is being studied gathers [and loses] certain features or factors on its journey, and the
methods we employ to study also affect what is being studied. There are macro factors that are
inscribed in the situation, technology etc but there are macro factors which affect the researcher as
s/he gathers data. This is drawing back on Law’s (2004) argument about how reality is created
performatively but the methods engaged by researchers to understand this reality are also
performative and affect the situation. Can actor network theory deal with both macro and micro
issues is a question that has been asked before and often been claimed that there is too heavy a
focus on the micro (Constant 1999) but as Law and Singleton (2000) explain in their reply to
Constant all actors and especially technology are a product of the macro factors. To study them a

researcher traces the network and this begins to unpack the macro concerns.

Seen from an ANT perspective the software development process needs to be transparent in order
for the resources to lend themselves to recombination. The black box of the socio-technical
artefact needs to be thrown open. In the open source process the openness is written into the
software through the licence, for example the GPL (Lessig 1999a) and is implicit in the process

too. Thus the source code is always available to view, modify and update. This makes resource
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recombination easier and maintains that the “open source model relies on mechanisms that

effectively support recombinatorial innovation” (Tuomi 2002, p34).

Chapter Summaries

Chapter 1 provides insight into the motivation that provoked this particular study. The focus on
open source and more pointedly on learning and organizing was stimulated by a curiosity in this
phenomenon and how such widely dispersed actors are able to organize themselves and leamn in
order to survive. Chapter 2 maps out the main areas of research that have been studied to date in
open source and places the current work in context. The main areas of research such as business
models of open source, IPR issues, motivation of developers and structure questions are discussed
before moving onto the four more specific areas related to this research. These four areas are
technology in open source, license and governance of open source, learning and innovation in

open source, and organizing and coordination in open source.

Chapter 3 introduces the first part of the theoretical framework, that of learning and organizing,
using ideas of both Bateson and Weick. Bateson’s ideas of learning and levels of learning are
adopted which help to ‘recognize learning when it happens’ when studying the empirical data.
Weick speaks of organizing as opposed to organization to stress the action and process aspect of
his ontology. This helps to focus on movement rather than any stability because the claim is that

there is no real stability as reality is constant change and movement.

This focus on process leads naturally into the next chapter, Chapter 4, which discusses the
performative nature of learning and organizing using the terminology and methodology of ANT.
The use of ANT is based on a premise that does not privilege human actors over and above
material actors and thus allows a study of the social to emerge. Adopting the more recent
approach taken by ANT (Latour 2005b, Latour and Weibel 2005), in particular by Latour, this
study explains learning and organizing in open source as a socio-political unfolding over time and

across space.

Chapter 5 explains the methodological route taken to carry out the empirical element of this
research, linked tightly with ANT. The Linux kernel mailing list is studied to extract emails
discussing version control software adoption. These messages are then coded using techniques of
Grounded Theory but the attempt is not to create theory but merely to code the vast number of
emails to allow the text to speak. This work is theory-laden and so only the techniques of
Grounded Theory are used while keeping in mind Weick, Bateson, and especially the ordering

narratives idea of ANT. The emphasis in this methodology is performative because it focuses on
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process, both the process of actor realities unfolding and the reality that the researcher feels

emerging.

Chapter 6 details the case study of this research. The study of the adoption of version control
software in the Linux kernel is told through the voice of the collective. We enter into the Linux
kernel story in 1991 (though very little was discussed about version control software at that time)
but the issue of adoption did substantiate in1995. Data was thus collected from 1995 to 2003
inclusive. The story of version control adoption leads the reader through the various challenges
faced by the kernel collective of license struggles, exclusion from metadata, drive towards
hybridicity through a gateway between different VCS, and finally the dubious monopoly

(BitKeeper) VCS being snatched away from the collective, forcing them to create their own.

Chapter 7 and 8 together comprise the analysis of the data collected. While Chapter 7 discusses
three micro themes of organizing time and space, sustaining the assemblage and machine agency,
Chapter 8 draws all these together through the macro theme of transparency of learning and
organizing. Of the three themes discussed in Chapter 7 organizing time and space through version
control sofiware conveys the message that VCS manages time and space and so allows the
collective to revisit time, it has the ability to manage time is necessary and displace control in the
collective, and that its capacity to fold time is critically dependent on its ability to hold and

manipulate code.

The second theme, that of sustaining the assemblage, relates how code creates a collective around
itself, keeps the collective together and sustains it; the future is hybridization, and not either .
extreme of closed or open source because code is practical and there is little room for fanaticism;
and finally that technology, in this case VCS, manages the rather delicate balance between
learning and organizing in open source. Theme three in Chapter 7 is machine agency. It is an idea
which is key to this study because it develops the concept of the fluid nature of agency and how it
dances between actors. VCS is structured as space in a way that increases the ability of the macro
actor to control the collective, and this is somewhat mitigated through collective ownership of the
software because at the same time it provides transparency, and can be a vehicle for collective

learning,

Chapter 8 folds the three themes mentioned above into the larger encompassing theme of
transparent learning and organizing. This chapter explains how efficient organizing and effective
collective learning require transparency and openness of process and structure. VCS thus behaves
rather like a marketplace. It then goes on to explain how transparency, through the use of VCS,

makes apparent ‘becoming in action’. VCS use in the Linux collective creates a balance between
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learning and organizing, which can be understood as ‘evolving organizing’ or learning through

organizing.

Chapter 9 returns attention to the research question of this work and methodically frames an
answer based on the two analysis chapters. It steps through how learning occurs and is manifested
in open source collectives and then follows these sections with a focus on organizing and
manifestation of organizing in open source collectives. It then draws organizing and learning
together in open source to show how it is only through a combination of the two concepts that we
can better understand how either occurs in such collectives. The link between the two, this
research asserts, is in the explanation and transparent unfolding of becoming which sways the
collective towards organizing at times and at other times towards learning. However, the primary
carrier of this process, we stress is code. This brings us back a full circle from studying code to
understand learning and organizing to find that is the code that learns along with other actors and

that it organizes other actors in the collective around itself.

Chapter 9 also details the main contribution of this research. The theoretical contribution of
operationalizing the constructive realist ontology of ANT is coupled with adapting Bateson’s
ideas of learning to stretch to material actors as well. The methodological contribution made is an
explanation of the rigorous analysis of a large amount of archival data through ANT tools and
textual analysis. And finally, the practical contribution for open source and other such collectives
can be considered as the varied, and we claim, better understanding of the role version control
software plays in a collective. It is not a simple tool but a far more contentious, power and control
seeking actor which knows that it must continually evolve to sustain itself and its position in the

collective.
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Chapter 2
The Study of Open Source

Introduction

This chapter presents a literature review of research in the field of open source. Figure 1 outlines
the structure of the chapter. First we address the broader accounts of open source before we focus
on the specific areas that provide the necessary background for the current work, the technology
used in open source development; the effect of the license on the governance structure of a
collective; learning and innovation research in open source (developed further in Chapter 3); and

studies of organizing and coordination.

Broad Aspects of Open Source

Structure/Process Motivation Business Models

Paradox within open source

Focus Areas of Research

Technology in License, Governance Learning and Organizing and
Open Source - VCS and Constitution of OS Innovation in OS Coordination in OS

Figure 1: The Structure and Focus Areas of Open Source for this Research

Most early literature on open source incarnated the ideology of ‘hackers’ as central to open source
and, as most of the famous work written was by free/open source programmers and leaders
themselves, like Raymond, Stallman and O’Reilly, this forces one to question the objectivity of
the work (O'Reilly 1997, O7Reilly 1999a, OReilly 1999b, O'Reilly 1999¢c, Raymond 1998a,
Raymond 1999a, Raymond 1999b, Raymond and Trader 1999, Stallman 1984, Stallman 1999b).
The desire here has been to steer clear of the regurgitated ideological fare presented by most of
the ‘hackers’ themselves. Indeed the intention is to go beyond the rhetorical accounts of open
source as a better way or a model for organizing and subject it to a more detailed and probing

study.
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Since the early period a body of more independent research has emerged, but still most OS work
can be seen, implicitly or explicitly, to reflect a sense of challenge, a new departure or a radical
turn. This fundamental characteristic leads to much writing expressing the phenomenon in terms
of a clash of interests or a battle — for example, in the many detailed accounts of Microsoft vs
Linux (Garcia 2001, Moody 2001, Valloppillil ez al. 1998a, Valloppillil et al. 1998b). At other
times this sense of a radical turn is used as a metaphor or exemplar for a wider process of change
in how organisations or markets might work, how organising may be achieved in both societal
and organisational terms, and how interests of producer and consumer are redefined in a digital
economy (Ciborra 2000, Markus et al. 2000). In such work it is generally understood that the
technical and social aspects are intertwined and so must be dealt with side by side. Still, as an
endeavour essentially bound up with technology and a process of technological production, the

actual means used (process) is of considerable interest.

In most literature the collaboration-based process of OS is usually seen to stem from the academic
background of the early hackers, including Richard Stallman of MIT and Linus Torvalds at the
University of Helsinki. Thus OS is seen to share many features with academic peer-reviewed
work. Eric Raymond presented the most influential early analysis of the OSS process in his
Cathedral and the Bazaar (1998b). Here he, rather romantically, likened the OS process to a
bazaar where a cacophony of ideas is exchanged. This famous analogy laid out some guiding
principles of the ‘bazaar model’ (essentially a process model not an economic model) concerning
how a project begins (by scratching an itch), its reliance on reusability, parallel processing, throw-

away prototype modelling, and the choice of a successor.

Structure and Process of Open Source

Much literature sees open source collectives as a cohesive community (Butler et al. 2002,
Gallivan 2001, Himanen 2001, Sharma et al. 2002), while others are more interested in how such
developers create quality software (Kesan and Shah 2002), and what is novel about the software
process (Bowman et al. 1999, Crowston and Scozzi 2002, Jorgensen 2001, Raymond 1999a).
Bergquist and Ljungberg (2000), for example, describe OS as a form of virtual community on the
Internet. They suggest that the community has developed an advanced culture for ‘information
sharing, online co-operation and organizational learning that is structured without formal bodies
but with the help of a very strong clan-like “gift culture’” (Bergquist and Ljungberg 2000,
Bergquist and Ljungberg 2001). Though a rather rosy description of OS, it is missing the
underlying passion of OS work which Himanen (2001), captures well with his ‘passionate and

freely rhythmed work’. It is this passionate phenomenon with mysterious motivations and rewards
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that has inspired much recent research, a quality caught well by Raymond (1998b) “No quiet,
reverent cathedral-building here — rather, the Linux community seemed to resemble a great
babbling bazaar of differing agendas and approaches.... out of which a coherent and stable system

seemingly emerges only by a succession of miracles”.

The ‘community’ concept has been debated by Ciborra (1996) and Markus et al (2000), who
suggest rather that OS should be seen as a new organizational form. Yet the word community has
become the most persistent way of describing this phenomenon. Tuomi (2000, 2002), drawing on
Fleck’s work, uses a combination of the terms organization and community to explain how OS,
and in particular the Linux developers, are a ‘fractal’ organization. Tuomi (2002) describes a
fractal organization as a “community of communities...where people are members of a broad
‘Linux’ community at the same time joining one or more of its sub-communities. These
communities are organized around central ‘gurus’, ‘old-timers’, and more peripheral novices who
have been accepted as legitimate members of the community”. Drawing on Fleck (1979) Tuomi
also used the concept of a collective — a thought collective — defined as a “community of persons

mutually exchanging ideas or maintaining intellectual interaction”.

As explained in Chapter 1, we understand the Linux kernel actively as a collective which “unlike
the words ‘group’ or ‘organization’ refers to individuals who aét as if they are a group. People
who act as if they are a group interrelate their actions with more or less care, and focusing on the
way this interrelating is done reveals collective mental processes that differ in their degree of
development” (Weick and Roberts 1993, p360).

Motivation

One of the earliest areas of academic study relating to the structure and process of OS explored
participants motivation (Hars and Ou 2000). Their more elaborate study (Hars and Ou, 2001;
2002) became the basis for many studies that followed (Lakhani et al. 2003), Lakhani and Wolf
(Lakhani and Wolf 2005), Hertel et al (2003) and Rossi and Bonaccorsi (Rossi and Bonaccorsi
2005b). Hars and Ou (2002) used Deci’s (1975) classification between intrinsic and extrinsic
motivation where intrinsic concerns internal psychological factors and extrinsic is about external
rewards. They make a comparison between Deci’s and Maslow’s (1959) ideas of motivation but

preferred the former for their study, and most researchers have followed suit.
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Bonaccorsi and Rossi (2003); Kollock (1999a);
Lakhani and Hippel (2003)

Feller and Fitzgerald (2002); Hertel, efa/.
(2003); Lerner and Tirole (2002b)

Dalle and David (2005); Lerner and Tirole
(2001); Bezroukov (1999)

Lerner and Tirole (2004); Fielding et al (2002);
Lee et al (2003); Ljungberq (2000)

von Krogh, eta/. (2003b); Dutta and Prasad
Learning (2004); Edwards (2001); Lakhani and von
Hippel (2003)

Raymond (2001); Bonaccorsi and Rossi (2003);
Roberts et al (2004).

Weber (2004); David and Pfaff (1998) (1998);
Pavlicek (2000)

Feller and Fitzgerald (2002); Green (1999);

Low opportunity costs
Monetary rewards
Reputation among peers

Future career benefits

Contributions from the community

Technological concerns

Fillinn an unfilled markpf

7ud3) .

Bitzer, eta/., (2005); Zeitlyn (2003) Altruism

Crowston and Howison (2004); Hars and Ou Sense of belonging to the community
(2002)

Stallman (1984) Fight against proprietary software

Level Motivation

Independence from price and license
Lerner and Tirole (Lerner and Tirole 2002a) policies of larqe software companies

Feller and Fitzgerald (2002); Wichmann Supplying software-related services

(2002b); Lerner (2002)
Indirect revenue from selling related

Lerner and Tirole (2002b); Wichmann (2002b) products
Hawkins (2002); Lakhani, efa/. (2003); Exploiting R&D activity of other
Dahlander (2004) developers and OS firms
Aoki (2001); von Hippel (2002); Fink (2003) Software testing by users' community
Fink (2003); Wichmann (2002c); Lerner (2002); Hiring good Open Source technicians
Henkel (2004) .
Feller and Fitzgerald (2002); Tuma (2005) Lowering hardware costs
Fink (2003) Security concerns
Conforming to the values of the OS
Kuster, efa/. (2002); Lerner and Tirole (2002a) community (not betraying the trust of
other developers)
Kuster, eta/., (2002); Franck and Jungwirth Code sharing with the community
(2002) (reciprocating to sustain cooperation)
Fight for software freedom (reducing the
Feller and Fitzgerald (2002) market shares of large software
companies)
) Affordable software for developing
Feller and Fitzgerald (2002) countries (reducing digital divide)

lapted from Bonaccorsi and Rossi (2004)) Table 1: Macro/Micro Motivation in Open Source (A
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intrinsic motives that have been discussed in the wider OSS literature: (a) user programmers that
actually need a particular software solution, (b) the fun of play or mastering the challenge of a
given software problem, i.e. homo ludens payoff, and (c) the desire of belonging to the gift
society of active OSS programmers” (p12). Nonetheless, other motivation studies have shown
how developers work to gain a reputation (signalling) that could then lead to better job prospects
and real financial gain. Head-hunters for sofiware development companies, for example, regularly
scan the credits list of OS products in order to discover talent, which could then lead to offers of
good jobs and pay (Hars and Ou 2001, Hertel et al. 2003). Others emphasise the concept of a gift-
culture, though this is not without its demands of reciprocity. The giving of a gift may seem like
an altruistic gesture yet the implication behind gifts is that one day the receiver will have to
respond likewise, not to mention the underlying power which comes with the ability to make gifts
(Bergquist and Ljungberg 2001, Mauss 1954).

Feller and Fitzgerald (2002) make their own macro/micro distinction when discussing motivation.
The micro involves individual level motivation and the macro concerns the collective incentive.
Three broad categories of motivation are proposed within the macro/micro division;
technological, social-political, and economic. Rossi and Bonaccorsi (2005a, 2005b) interpret the
macro issues to indicate firm or organization level motivation for open source software adoption
or development and provide a comprehensive overview of literature in open source motivation
[see Table 1}.

Business Models and Economic Aspects of OS

Another strand of research that links to structure and process is that of business models. There is
literature on OS in relation to particular markets or environments (Mockus et al. 2002) and the
role of media and infrastructure (Potter 2000). Academic studies here try to make sense of how
open source manages to exist as a viable business model (Johnson 2001, Lerner and Tirole 2000,
Ljungberg 2000, Weber 2000, Weber 2005b). Some influential business models include Ghosh’s
(1998) ‘cooking-pot’ model. It explains that people put into the pot what they have, the cooking
pot combining and cloning them, and people then taking out what they need. This cooking pot
model is viable if people see that they get more out than they put in, and he notes in particular that
what they take out and value is the diversity of things to be found in the cooking pot. If these
conditions generally hold, the cloning of inputs, the valuing found in diverse outputs, then
problems of free riders are not catastrophic, or put more helpfully, positive network externalities
are seen. As in other accounts of OS, Ghosh sees reputation as the primary form of value that
drives this process; and quotes Linus Torvalds in support, ‘Yes, you can trade in your reputation

for money," said Torvalds, “[so] I don't exactly expect to go hungry if I decide to leave the
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University. 'Resume: Linux' looks pretty good in many places”. (Subsequently, we know Torvalds
did leave the University -and moved to the USA — see Moody (2001) for this and other OS

pioneers who have traded their reputation.)

This cooking-pot model may (misguidedly Ghosh suggests) lead us to believe that the trade of
ideas on the Internet smacks of altruism, but he notes, this would be missing the point. He insists
that a participant in an OS commuhity is not offering an idea for free, but knows that there will be
recompense; the only uncertainty is the exact time of claiming a return. If we have other people
doing the same it keeps the pot ‘cooking’, as some are taking and others are adding. Still,
everybody knows that if they stop contributing then there will be a time when the pot will run dry
(indeed the fate of most OS projects).

Another model, offered by Benkler (2002), he names commons-based peer production. He
suggest that peer-production will thrive where three characteristics are present: modularity to »
allow parallel work, finegrained work activities to allow participation of many with a little to give
(a little motivation), and finally, integration of fine grained modules must be efficient, otherwise
the integrator will appropriate the residual value (p8). The ‘central characteristic is that groups of
individuals successfully collaborate on large-scale projects following a diverse cluster of
motivational drives and social signals, rather than either market prices or managerial commands’
(Benkler 2002). This places the commons-based peer production model midway between either
extreme and appears to provide a better explanation of open source production and continued

existence.

Tuomi (2002, p28) uses de Certeau’s (1988) work on the concept of la perrugue to explore the
relations of OS to the business world. La perruque translated literally means ‘the wig’ and alludes
to the idea of a disguise. La perruque is about using resdurces of your place of employment for
work that is not for your employer. De Certeau differentiates this from absenteeism or stealing
from the employer because la perrugue is about using the resource, time mostly, to work on
something that is not for the employer but during work hours. Many open source developers are
“guilty” of this but some are fortunate enough to have this allowed and written into their
employment contract. If /a perruque is the reason for open source developers being able to
support themselves while they work on what they enjoy then this could explain, at least
economically how it is viable for them to work ‘for free’. Tuomi pushes this concept further to
explain how open source developers exploit the resource of time at work because there is usually
a certain amount of slack or space built into organizations. A certain amount of slack is
encouraged or at least ignored because it is believed that this can lead to innovative activities that

will eventually benefit the company, or to entice employees to work for you. Tuomi (2002, p28)
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argues that “a ‘perfectly efficient’ organization has full accountability and predictability and no

slack, and therefore no space for new interpretations or practices”.

With increased business interest in open source a more recent research focus has been directed to
company level adoption of open source (Bonaccorsi et al. 2004, Grand et al. 2004, Wichmann
2002a). Grand ef al. (2004) create a multi-level management model of increasing private resource
allocation through, paradoxically, greater public investment. Their ‘ladder’ model explains how
and why companies engage deeper and deeper into open source software production and business
models where “each level implies greater outlay of private resources and increased dependency
upon publicly available knowledge assets” (p591). The four steps of the ladder are; firm as a user
of OSS; OSS as a complementary asset; OSS as a design choice; and finally the highest level of

the ladder is when a firm adopts an OS compatible business model [see Figure 2].

Firm perspective: . OS project perspective:
Development of too'f knovriodgo Requiring i .
s . equiring increasing
and expertise as dynamic . .
investment in OS software

cunyumtivo process .
of gift exchange development projects

Four levels of involvement
and investment in OS
software development

Developing'tiistdbuttng

Level 4 services to OS projects
OS software as
. . Level 3
a design choice
OS software as Adaptation and extension
oompiementafv asset of OS software code

Firm as user Implementing and running

of OS software OS software code

Figure 2: The Ladder: A four-level management model of resource allocation (Grand et al, 2004,
p595).

Paradox of OS

Fitzgerald and Feller (2001) note in their introductory editorial to a special issue of the
Information Systems Journal that “opinion on OSS tends to be quite polemic”. Open source
manages to court controversy but this is probably because it lays bare many questions, questions
and confusions which are compounded by hacker indecision over the reason of their apparent
success! Wayner (2000, pi 18), mentions three problems [which are related to each other] with the

OS model; making collective decisions; limited desire to work on less attractive or boring but
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‘needed projects; and maintenance (documentation). He uses an example of changing a lightbulb
to describe the first, ““How many open source developers does it take to change a lightbulb?” The
answer is: 17. Seventeen to argue about the license; 17 to argue about the brain-deadedness of the
lightbulb architecture; 17 to argue about a new model that encompasses all models of illumination
and makes it simple to replace candles, campfires, pilot lights, and skylights with the same easy-
to-extend mechanism; 17 to speculate about the secretive industrial conspiracy that ensures that
lightbulbs will burn out frequently; 1 to finally change the bulb; and 16 who decide that this
solution is good enough for the time being”. This illustrates how hard it can be to convince OS
developers to decide on the best approach and get to work. Collective decision making processes

often suffer from such futility but is there something distinctive and unique about OS?

Other well-cited issues with OS development include the problem that OS developers are more
than keen and capable of producing innovative and exciting software, yet can hardly ever be made
to work on a task that is dull, repetitive or not sexy; “fine-tuning a graphical interface, or making
sure that the scheduling software used by executives is as bulletproof as possible” (Wayner 2000,
p118). This draws into the next problem highlighted by Wayner (2000), that of maintenance and
the lack of documentation which causes developers and users real anxiety. While this is a problem
that besets software development in general it does pose some distinct challenges for open source,

(e.g. given the primacy of code).

Maintenance is a slightly different issue in open source if (ideally) the users are the developers
and the maintainers too. Indeed it may be easier to explain maintenance as straightforward ‘more
development’ if open source projects are kept alive by constant improvement and work. This can
be viewed as lifelong maintenance or just development. Clearly the four classic types of
maintenance, adaptive, corrective, perfective and preventive (Swanson 1976) all tie into the
activities of open source and are a part of the open source development process. But as Rodriguez
et al (2004) point out, “maintainers must know what changes [they] should do to the software,
where to do those changes and how those changes can affect other modules of the system.
Frequently they do not have enough knowledge to make the best decision and must consult other
information sources, but these sources are often unknown or difficult to locate”. This is where

they believe that version control software plays an important role.

Fitzgerald and Agerfalk (2005) see OS as innately paradoxical as a result of its openness of source
code, and explore six paradoxical issues that result; the extent to which the cathedral énd bazaar
metaphor holds true for open source; the collectivist versus individualist Question of motivation
and contribution of open source developers; the apparent tensions and in-house quarrelling

between various factions like OSS and FSF; the extent to which open source truly reflects a
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departure from software engineering principles of production and distribution; and the question of
so-called better quality software creation in open source. They examine the trend and analyze
whether open source has the potential to apply to areas other than software development. They
also question whether a name change from free to open source software will prove to be enough
to make such software development attractive to businesses. The latter issue especially leads to
the concept of what Fitzgerald (2006) calls OSS 2.0. Fitzgerald explains that there is a strong
trend and evolution of FOSS towards a more commercially aware and viable hybrid. Indeed, the
term open source was introduced in 1997 to create the potential for such business viability, but
Fitzgerald provides a finely teased out distinction between FOSS and OSS 2.0 to explain the
subtle transition. However, what is less obvious in this work is any comparison between OS and

OSS 2.0.

Technology in Open Source

Relatively speaking, the literature on open source is less well developed in considering the
technology and tools used. Often they are seen as being simple and obvious choices made on the
basis of needed functionality and posing few substantial issues. Still, open source developers not
only create software technology but their process of development is heavily reliant on it for
infrastructure, tools and communication e.g. Emacs, GVim, Netbeans, GNU Mﬁke etc (Bittman et
al. 2001). Some face-to-face interaction does take place but the largest part of communication is
carried out via mailing lists, websites, email and chat group sessions. But, for example, mailing
lists perform more than just a facilitation of communication role; when they are archived (e.g. the
Linux kernel LKML studied here) they form a collective or organizational memory and can be
“searched when someone needs to know whether something is known about a potential bug. In
that way the mailing list archives provide a simple but effective form of community memory”

(Tuomi, 2002, p193).

In this section we consider in particular version control software (VCS) (Berliner 1990, Fogel
1999, Rochkind 1975, Tichy 1985, van der Hoek 2000), one of the most ubiquitous technical
elements in wider OS activity, though, as we shall see in Chapter 6, problematic for Linux. Thus
Feller and Fitzgerald (2002, p95) write that VCS [CVS] is the “most mission-critical OSS tool”.

Version control software is part of the basic eyeballing of bugs and patches that is encouraged in
open source and has been proposed as a ‘law’ by Raymond — Linus’s Law — “Given enough
eyeballs, all bugs are shallow” (Raymond, 1999). The wider potential and role for VCS is well
captured by Louridas (2006, pl04) as allowing developers to “retrace and restore our

30



programming past, proceed along two or more development lines in a single project, and

coordinate our work with the work of others in the same project”.

Authors such as Spinellis (2005) and Atkins et al (2002) are émblematic of the tool like lens
through which version control software is often understood — simply an unproblematic tool and no
more. Robbins (2005) similarly describes various ‘tools’ used by open source collectives but
again we have the very apolitical discussion about technology. He does however, provide a useful
categorization of tools consisting broadly of seven areas; version control (e.g. CVS, Subversion);
bug tracking and technical support (e.g. bugzilla, Scarab); technical discussions and rationale (e.g.
Mailing lists, project websites); build systems (e.g. Gump, Automake); design and code
generation (e.g. ArgoUML, Torque); quality assurance (e.g. Flawfinder); and collaborative
- development environments (e.g. Sourceforge). Louridas (2006) comes closest to approaching the
political dimensions of technology through his discussion of the issue of vendor lock-in and how
this is a particular concern when adopting version control for a project. He stresses the importance
of version history and how vendor lock-in can leave you bereft of your past work if the repository

is not in a portable format.

Tuomi (2002, p23) goes on to suggest that the drivers for innovation are “often found by looking
for tensions and contradictions in)existing social practice” and that “technology addresses a need
when it releases or reduces some of the tensions generated in this process”. However, this ignores
that technology is often the reason and source of contradiction and often innovation too. We
develop this idea further in this research with a focus on the process of version control software

adoption.

Version Control Software

Software configuration management has been defined as the discipline of controlling the
evolution of complex software systems. “Configuration management is the controlled way of
leading and managing the development of and changes to combined systems and products during
their entire life cycle” (Asklund and Bendix 2002). Configuration management is used by both
proprietary software developers and open source but is perhaps more central to the OS process
(van der Hoek 2000).

Version control is a mechanism by which multiple versions of any software can be managed, kept
track of and protected against overwriting (Clemm 1989, Kilpi 1997). A schematic overview of
such systems is given by Keats (2003). Such a tool in many cases has provision for adding

metadata (data about code) and acts as a repository of code. It is usually referred to as a tool but

31



here we describe it as software. This is a more appropriate term because our ANT stance seeks to
give it equal status as an actor. The term fool relegates it to a simple artefact which has no agency

or control.

UNIX has had a history of using such tools from the start, the most popular have been RCS
[Revision Control System] or SCCS [Source Code Control System] (Koike and Chu 1997a, Koike
and Chu 1997b) but CVS [Concurrent Versions System] is the tool which has gained the most
popularity in OS and it would now be hard to find an OS project which doesn’t draw on CVS or
one of its derivatives (van der Hoek 2000).v The UNIX community needed a tool to “manage
software revision and release control in a multi-developer, multi-directory, multi-group
environment” (Berliner 1990). Add to this distributed development and one can see just how
integral coordination mechanisms are in geographically distributed development over and above

collocated development (Herbsleb and Grinter 1999).

The earliest form of version control software was the diff and patch programs. The diff program
on its own provided the chaﬁges that had been made to a file, or the difference, thus the name diff.
Larry Wall then created the patch tool to ameliorate this problem and his work was later added to
by Paul Eggert (MacKenzie e? al. 2002). Developers now had both the diff and the original patch
which enabled them to compare two or more patches line by line for changes. In order to be able
to see the entire code a developer could add the diff to the patch and realize the most recent
improvements. The diff and patch programs were followed by Marc Rochkind’s Source Code
Control System (SCCS) in 1972 developed at Bell Telephone Laboratories (Bolinger and Bronson
1995). SCCS was an.improvement on the diff and patch method because it converted all changes
into deltas which could then be strung up tdgether to form the complete software (Rochkind,
1975). The diff and patch tool didn’t provide the flexibility of being able to access various
changes, one could compare two pieces of code but each delta (patch) was not a separate file with

a date stamp and other information.

Walter Tichy’s Revision Control System (RCS) in the early 1980’s was yet a further enhancement
in version control software. It allowed for both forward and reverse deltas (both adding and
removing changes). Its ‘lock-modify-unlock’ method authorized a developer to lock the tool thus
disabling any other developer from making simultaneous changes, to make his changes, and then
unlock the tool for others (Fogel, 1999). The locking ensured that no patch was overwritten by
two or more developers adding their work at the same time. Improvements offered by RCS in the
form of reverse deltas, branching in versions, and ‘stamping’ of revisions with unique markers for
easy identification of particular version (Tichy, 1991) were outweighed somewhat by the
constraint of locking other developers out. Dick Grune of Vrije Universiteit in Amsterdam created
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patches to add to RCS which became the first form of Concurrent Versions System (CVS), “The
initial commit of CVS under itself was on 1985/11/23 23:24:37. I posted the improved scripts to
comp.sources.unix (and so implicitly to mod.sources) on June 23, 1986, by sending them to one
"Rich" at sources@mirror.UUCP. Two years later Brian Berliner picked it up, turned it into C

code, and the rest is history” (Grune, 2003).

Brian Berliner’s enhancements of CVS were created under the GPL so that the community could
benefit from this tool (Berliner, 1990). CVS, according to Berliner was a “program...[that] fills a
need in the UNIX community for a freely available tool to manage software revision and release
control in a multi-developer, multi-directory, multi-group environment. This tool also addresses
the increasing need for tracking third-party vendor source distributions while trying to maintain
local modifications to earlier releases” (Berliner, 1990). Using an innovative copy-modify-merge
model, CVS eradicated the need to lock developers out of the system. Instead, developers would

make a personal copy of the program or file, modify and work on that, until they were ready to
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2002). It also, somewhat like CVS, allows for a copy of the master program to be made, called a
clone in BK, and it has a push-pull method of control,. However the key attraction of BK is its
auto-merging algorithm, though there is still the possibility to perform manual merges as well. A
developer can perform two-way as well as three-way merges9 with BK. This tool also allows for
metadata to be held along with the patches of code. Metadata “is information about the data
managed by the BitKeeper Software in a BitKeeper Package, such as the ChangeSet file; the
messages which annotate modifications of the data (also known as check in comments,
ChangeLog entries, and/or log messages); and all files contained in the top level BitKeeper
directory in a BitKeeper Package, in particular the BitKeeper/html directory and the
BitKeeper/etc/config file” (Corbet 2002, BitKeeper License version 1.38, created on 28/03/02)10

Henson and Garzik (2002) (both Linux developers, Val Henson one of the few female Linux
hackers) claim that BitKeeper has a superior architecture to traditional source control systems and

it is this feature which attracts Linux developers. Developers want to be able to commit work
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Tuomi does relate learning with creativity (innovation), “Quality control in innovative and
continuously evolving projects is essentially about learning, Whereas the traditional models of
learning in product development focused on decreasing errors in a given product design, in the
case of Linux learning is also creative” (Tuomi, 2002, p193). However, he uses terms like
learning, innovation, creativity etc interchangeably and rather loosely. In the next chapter we
focus in depth on learning and organizing. In the rest of this section we briefly review two useful
contributions that directly relate to learning in open source (von Krogh et al. 2003a) and its
distribution (Weber 2005a).

Some have explained learning as essentially a part of the communal resource (von Krogh et al.
2003a) which is created through “the production process of knowledge in an open source software
project [and] has as a byproduct communal resources that reward its contributors”(p10). Von
Krogh et al. seem to believe that learning opportunities are simply a by-product of the
development process. Of the three rewards they discuss the last (learning opportunities) is our
focus but the explanation of the second (control technology) given by the authors merits mention,
if only as an opposing view to the one we stand by in this research recognizing non-human
agency. When describing learning opportunities they manage to draw an intriguing connection
between learning and level of control over change and decision-making. They ‘manage’ because
this link is not consciously drawn out, but it seems an obvious conclusion from their data analysis

that could have been usefully expanded.

We now turn our attention to the distribution of learning. This is an issue in this study because
VCS not only facilitates the creation of knowledge but plays a pivotal role in distributing it in the
collective. Weber (Weber 2005a) attempts to create a loose framework which incorporates
learning creation with distribution. His ideas include; “design for evolution (allow the community
to change); open a dialogue between inside and outside perspectives (tightly insulated
communities tend to corrode); allow for different and bursty levels of participation (different
people will participate at different levels, and any single person will participate at different levels
over time); preserve both public and private community spaces (not all community interactions
are public; backchannels should be available); focus on the value that is created for the people in
the community; mix the familiar and the new; and facilitate the creation of a rthythm (pure bursty-
ness and unpredictability tend to corrode commitments)”. These ideas are interesting because they
help to place VCS in a broader context but a VCS may qualify directly on a number of these

needs mentioned.
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Organizing and Coordinating in Open Source

Ljungberg’s (2000) seminal paper on organizing, though not the earliest, maps out a
comprehensive understanding of organizing in OS. Ljungberg.raises a number of questions for
further research and we have taken up some of the challenge in this thesis. The most intriguing
point, which is often cited by others but never truly thought through, is how open source may be
key to understanding the future of organizations, ‘and how they organize. For example, he explains
the Linux Kkernel as a ‘mixture between hierarchy and market... [but it is] loosely coupled in the

form of a community regulated by norms rather than rules’ (p214).

There are three distinct accounts of organizing presented here — as gift and people, as market and
environment, and a coordination and modularity. Each one furthers our understanding of how
organizing happens in open source collectives but from our perspective misses a key issue, that of

the role and agency of material actors.

Organizing has been explained in the OS literature in terms of gift-giving as a means that
‘organizes relationships between people’ (Bergquist and Ljungberg 2001). Gift-giving is not seen
as altruistic; rather it provides the giver with the ability to attract attention and move vertically in
the hierarchy of collective power. The authors add that the giver-user dynamic is a process which
changes and evolves over time where at one point in time a particular actor through his/her
contribution has a more influential role. This work raises some very interesting claims but the
insistence on only human actors being capable of playing games to harness greater influence

disappoints and thus we stress a need to study the social in totality.

Weber (2004, p37), drawing on Sabel’s (1982) words, explains how it is possible that both
proprietary and non-proprietary forms of software development are able to coexist because they
are “different ways of organizing work, “based on different markets, rooted in correspondingly
different patterns of property rights,” [and thus they can] simultaneously prosper. Neither is a
technological necessity, and neither can claim to have “won out” in any meaningful sense”. What
interests us in the current work is how proprietary and non-proprietary forms co-organize, which
is distinct from them co-existing. In our case we have the BitKeeper License and GPL both trying
to out-organize each other in an attempt to take control over the collective. Koch and Schneider
(2002) allude to the idea that open source projects., like proprietary ones, will need to adopt a
version control system if the project grows fairly large. Iannacci (2003), using the example of
BitKeeper use, a particular version control system in Linux describes how the managing model
‘leans towards adaptability rather than adaptation’. The latter creates a sense of ongoing change

- and links in well with our performative perspective on learning and organizing.
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Crowston and Howison (2006) studied three different repositories for bug fixing interactions and
found that in Sourceforge, GNU Savannah and Apache Bugzilla the structure became more
modular and centralized as the project grew larger so the “level of centralization is negatively
correlated with project size, suggesting that larger projects become more modular, or possibly that
becoming more modular is a key to growth”. Crowston et al (2005) have specifically focused on
the coordinating aspect of organizing. Their model builds on the collective mind idea of Weick
and Roberts (1993) and in this way create a social focused model of coordinating but largely
ignore technology as an actor. The view taken in this thesis is that no model of coordinating in
open source can be presented without due attention to technology and the agency it has to
organize both human and non-human actors. Our study then reflects organizing as ajoint process

in OS between all actors ofthe collective where neither human nor non-human is privileged.

Licence, Governance and Constitution

Recently there has been a renewed emphasis in the literature on the legal implications of OS
addressing issues such as policies, licenses and public goods (Aigrain 2001, Aigrain 2002, Lerner
and Tirole 2002a, Lessig 1999a, Lessig 1999b, Lessig 1999c, Lessig 2001). The license of a
project can be seen as a critical concern because it is the blueprint of the collective and code,
described as the Constitution of'a project by Weber (2004, pi79) “Yet there is another way to see
the license, as a de facto constitution. In the absence of hierarchical authority, the license becomes
the core statement of the social structure that defines the community of open source developers
who participate in a project”. This is reiterated by Stallman when he describes the GPL in terms
of copyright of code, but also in terms of the inseparability of code and freedoms, “to copyleft a
program, we first state that it is copyrighted; then we add distribution terms, which are a legal
instrument that gives everyone the rights to use, modify, and redistribute the program's code or
any program derived from it but only if the distribution terms are unchanged. Thus, the code and

the freedoms become legally inseparable” (Stallman, 2006)12

Weber (2004) plays on this idea using the example of BitKeeper to show how there was a clash in

Constitution between the GPL of Linux kernel software and the closed source licenseB3 of

12 http://www.anu.orQ/copvleft/coDvleft.html

B The Third Way of Licensing: An interesting challenge to the governance and control in open source is found when
the collective seeks to incorporate elements drawn from other jurisdictions and governed by other constitutions. For some
such issues may be resolved by schemes of dual licensing. A dual license is what Olson calls the 'third strategy of
licensing', it is not proprietary or open source, well not exclusively because it incorporates principles of both. Dual
licensing is when companies "provide a single software product under two different licenses. One license, which imposes
open source terms, is available to a certain class of users. A second license, with proprietary terms, is available to others"
(Olson 2005, p71). All open source licenses are "'as is" licenses, with no warranties, no promises, and no recourse in the
event of problems' (Olson, 2005, pp77) as are all open source strands of a dual licence. This may help companies mitigate
risk. Olson (2005) sums up the main arguments in favour of dual licensing and provides reasons for why this form will
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BitKeeper. The interesting element of this story is how both Constitutions were forced to live
side-by-side [could some mixing be avoided?] and what effect this had on the governance
structure of the Linux collective, collaboration patterns and importantly on the code created. Our

findings from the case study expand on this in detail.

Moving on from a specific focus on the GPL Lessig focuses on the significance of code, “we live
life in real space, subject to the effects of code. We live ordinary lives, subject to the effects of
code. We live social and political lives, subject to the effects of code. Code regulates all these
aspects of our lives, more pervasively over time than any other regulator in our life” (LessiAg
1999a, p233). This sums up Lessig’s (rather pessimistic and technological deterministic) view of
control and regulation (Lessig 1999c¢) of the Internet and the world. Critics of Lessig’s work claim
that he has just added yef another metaphor to explain social ordering and that Lessig’s “‘code is
law’ [conclusion is a little] far-fetched” (Leenes and Koops 2005, p330) not to mention the “fact
that the struggles in cyberspace amongst social orders are not fundamentally different from those

that already exist in ‘real’ space social orders” (Savirimuthu 2005, p347).

Kiskis and Petrauskas (2005) also find dubious the idea that “technology, when tied to law, now
promises almost perfect control over content and its distribution and it is this perfect control that
threatens to undermine the potential for innovation that the Internet promises” (p307). Kleve and
Mulder are even stronger in their criticism of Lessig’s ideas and claim that “his theories are based
on an outdated model of man and a misunderstanding of the role of technology. A more rational
approach would be to accept that technological developments lead to social developments and to
the evolution of norms and law... Firms will gradually move to better ways of making money. In
the meantime, general levies for home copying could be arranged. Code is not law. At the present

state of technology, if code would be law this could only mean Murphy’s Law” (2005, p326).

Governance and Control

Many open source projects have been studied for their governance structures, but the bulk of such
work focuses on a small subset, including Linux, Apache and Mozilla (Fielding 1999, Mockus e?
al. 2002). Mockus et al (2002) contrast Apache and Mozilla but both projects have some form of
‘ruling committee’ comprised of 12 or more developers. Their work on governance of open
source projects has taken a strong functionalistic and narrow view. Authors such as Weber have

gone beyond looking at governance simply in terms of functions and provide us instead with a

never stamp out either proprietary or pure open source licenses. Proprietary licenses will survive because companies will
want and need to protect their heavy investments in new developments, and open source development and distribution
will continue to thrive because it brings core infrastructure costs down. As Olson explains open source is innovative yet
the most successful products are those that belong to technology which is stable, mature and easily commoditized like
operating systems, databases and web servers.
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stronger theoretical idea of governance as part of the Constitution of a collective that needs to find
a formal accommodation. As Weber states it, there is always the ability to fork, and though
“forks are rare but the threat of forks is a way to empower the community to have a strong voice”

* (Weber, 2005).

Weber (2004, p262) asks “what happens at the interface, between networks and hierarchies,
where they meet?” Linux, as we show in the case study chapter, is not a typical network structure,
nor is it a true hierarchy, rather it is a hybrid of the both, a netarchy as coined by Goodall and
Roberts (Franck and Jungwirth 2002). Stewart and Gosain (2006) on the other hand discusses
open source as clan based. Their model [which finds its roots in transaction cost theory] is based
“on the idea that ideology provides clan control, which is important in OSS development settings
because OSS teams generally lack formal behavioural and outcome controls”. This is true, but the
more you explore open source projects you realize that there are a significant number of rules and
norms which if not followed make an outsider of that actor, no matter who it is. We even see, in

Chapter 6, Torvalds pushed towards the periphery when he commits the sin of ignoring patches.

Control in OS, as Tuomi (2002, p173) proposes it “is indirectly based on capability to mobilize
resources. Directly it lies very much with the users and potential co-developers”. He then qualifies
this by stating that, “The Linux developer community resembles a dynamic meritocracy where
authority and control are closely associated with the produced technological artefacts”,

emphasising the power of technological reason (Tuomi, 2002, p173).

Thus governance studies can be traced to have focused on the role and functions of day-to-day
governing to broader ideas of naming different governance structures to better understand them.
We have the clan based hierarchy and even netarchy. Moving closer to the current study is
Tuomi’s point about control being in the hands of those developers that are closest to technology.
Our study aims to push this yet further by dispensing with the human/material distinction so that a

truer reflection of control and governance in open source collectives is allowed to emerge.

Conclusion

The aim of this chapter is to put into context the current study on learning and organizing in the
Linux kernel collectif. The four main areas of literature that are scoped are téchnology of open
source, learning and innovation in' open source, organizing and coordinating in open source and

finally license and governance modes in open source.

40



Various technologies are used for open source development but the focus in this work is on
version control software. Such software, we claim, is able to mesmerize the collective that
appropriates it in order to keep its true controlling nature under cover. This research studies the
collective with version control as the central point of contact and the results revealed in Chapters

7, 8 and 9 prove quite intriguing.

The second area of literature dealt with here, learning and innovation in open source, marks the
strong trend to date of focusing on innovation rather than learning, and that from an economic
perspective. And the tendency to attempt to understand open source purely from an economic
perspective is also evident in the third area tackled here, organizing and coordinating in open
source. Often coordination is studied keeping only the human developefs as the focus at the
expense of technology. The current study draws learning and organizing together arguing that one
is not fully understandable without the other. This is evident from Weber (2005a) explaining
learning and learning distribution but he attempts to do so without explaining how such learning is

coordinated or how the distribution of it is coordinated.

The final section of literature needed to put the current study into context is that on license,
governance and questions of constitution. An open source process is regulated by the license
which is used to create it. The license is thus the blueprint or constitution that governs the
development process and collective (Weber 2004). The level of openness allowed by the license

affects how learning and organizing occur in a collective.

Drawing all these points together the research question of this study emerges — how does learning
and organizing occur and manifest itself in open source collectives? Version control software
plays a role in both learning and organizing in open source collectives but the extent and detail of
this role is what is explored in this work. A strong link between learning and organizing is drawn
in order to understand both concepts better and then to understand how both occur in open source
collectives. It is also clear now that licenses and governance structures of various collectives
affect and direct how learning and organizing transpire so it is important to appreciate their
significance. In the next chapter concepts of learning and organizing used in this research are

explained in more detail where the inseparability of both is made more apparent.
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Chapter 3
Learning to Organize a Collective

“Organizing and leamning are essentially antithetical
processes, which means the phrase ‘organizational
learning’ qualifies as an oxymoron. To learn is to
disorganize and increase variety. To organize is to forget
and reduce variety” (Weick and Westley 1996).

Introduction

In this chapter we build the learning and orgaxﬁzing part of the framework needed for this work.
Learning is addressed first. This is followed by consideration of organization and organizational
_learning. Finally the chapter considers the link between learning and organizing. As the title of
this chapter suggests we seek to draw a strong link between learning and organizing, giving
emphasis to the performative nature of creating and sustaining a collective. Both, it is argued, are
needed to sustain the collective in some form, but it is a balance, or the performance of balancing
the two, that keeps a collective alive. We argue, following Weick, that the noun form
(organization, community etc.) denotes a form of stability, a stability that we believe is illusory.

Our attention instead is on active, performative, organizing, and for the collective — collecting.

Background to Learning in Organizational Learning

This section positions learning within organizational learning literature. Cyert and March’s (1963)
book is considered to be ‘the foundational work of organizational learning’, but according to
Easterby-Smith and Lyles (2003) it was Cangelosi and Dill (1965) who produced the first
publication with “organizational learning” in the title. Learning does not have to be a conscious or
intentional effort by individuals or an organization, and nor does learning necessarily increase the
learner’s effectiveness (Huber 1991). Rather Huber claims that an organization learns ‘if any of its
units acquires knowledge that it recognizes as potentially useful to the organization’ (Huber 1991,
p89). Senge’s (1990, p3) definition of a learning organization captures more closely an open
source collective, ‘learning organizations are organizations where people continually expand their
capacity to create the results they truly desire, where new and expansive patterns of thinking are
nurtured, where collective aspiration is set free, and where people are continually learning to see

the whole together’.
DeFillippi and Ornstein (2003) describe the dominant theoretical perspectives in organizational

learning based on psychological explanations. Among them are behavioural theories of learning

defined as ‘those theories which focus on the antecedents to and changes in organizations’
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routines and systems as the organization responds to its own experience and that of other
organizations’ (DeFillippi and Ornstein 2003). Nelson and Winter’s (1982) ‘evolutionary model
of the firm’ is quoted by them to be the most well-developed theory of behavioural learning. Their
use of two main concepts of path dependence and trajectory combine to explain how history is
important in shaping the future form of an organization and how it learns and develops in a certain

direction or trajectory of cumulative learning.

In contrast, social construction perspectives consider that ‘learning is embedded in the
relationships and interactions between people’ (DeFillippi and Omstein 2003, Orr 1990a, Orr
1990b, Wenger 1998). Penrose (1959, p52), because she believed that ‘success depends upon a
gradual building up of a group of officials experienced in working together’ was essentially
proposing a social constructionistic model of learning. Social constructionists thus ‘emphasize
that organizations know more than the sum of the knowledge of individuals within them’
(Easterby—Smith and Lyles 2003, p8) and at the same time they also, like Penrose, emphasize the

significance of experience.

From this perspective learning is considered to be a social process which is based on concerted
(collective) sense-making (Weick 1991). Both Nonaka and Takeuchi’s (Nonaka and Konno 1998,
1995) SECI model and Lave and Wenger’s (1991) community of practice models of
organizational learning are based on Weick’s sense-making ideas. The community of practice
theory emphasizes how sharing a common language, practices and values can lead to the
formation of a learning community where newcomers become part of the community through a
process of legitimate peripheral participation (Lave and Wenger 1991). But as Hargadon and
Fanelli (2002, p300) clarify, ““‘shared knowledge” refers not to knowledge that is commonly held
(meaning identical) across technicians but rather knowledge that has been shared between
technicians—knowledge made empirical through the generation of social artifacts, in their case
stories, and made latent again through each individual’s interpretation of those stories’. We can
then agree with Simon (Simon 1991, p125) and others that, “all learning takes place inside
individual human heads,” just as we agree with Boland and Tenkasi (1995, p335) that “the
individual does not think in isolation and is not an autonomous origin of knowledge™’. Nonaka
and Takeuchi (1995) similarly understand learning to occur in collectives but they speak more
about teams where the members pool their resources and ideas and through discussion come to
new ideas and understanding. Weick and Westley’s (1996) emphasis, as ours, is the collective
organizing and they call it the collective mind because they believe that this phrase pays attention
to action, “the word “collective” unlike the words “group” or “organization”, refers to individuals
who act as if they are a group. People who act as if they are a group interrelate their actions with

more or less care, and focusing on the way this interrelating is done reveals collective mental
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processes that differ in their degree of development. Our focus is at once on individuals and the
collective, since only individuals can contribute to a collective mind, but a collective mind is
distinct from an individual mind because it inheres in the pattern of interrelated activities among

many people” (Weick and Roberts, 1993).

Pentland’s (1995, p2) framework, the ‘organizational knowledge system’, in this tradition views
an organization ‘as a social knowledge system... within which phenomena like organizational
learning can be analyzed and interpreted’. He grounded his framework in the sociology of
knowledge taking ideas from Holzner and Marx (1979), Berger and Luckman (1966), Bloor
(1976) and Latour (1987). The idea of his framework is to analyze organizations as ‘““knowledge
systems” composed of a collection of socially enacted ‘“knowledge processes™ and this
framework is limited for analysis of organizational learning because ‘it focuses on pragmatic
knowledge that is intended to achieve a certain end within a certain time and space’ (Pentland

1995, pp2-3).

Weick (1991) makes the assertion that learning is a topic that seems to have engaged the interest
of organizational theorists at a point where psychologists (behavioural perspective) have
concluded that it is not a workable concept. Weick (1991) makes a simple learning definition the
centre of his argument and then works around it to suggest that perhaps it is not productive to
disregard old definitions as they provide the building blocks for future work. In psychology
learning is defined as a “combination of same stimulus and different response” (1991, p117).
There are two strategies possible, according to Weick, the first is to stick to this traditional
definition and to understand organizational learning in light of it or otherwise to look elsewhere
for a new definition. He weighs the advantages and disadvantages of both strategies and finally
concludes that the first strategy is probably the better. One out of the many arguments he develops
to make his point is the distinction between organizational learning and individual learning
because the “combination of same stimulus, different response is rare in organizations meaning
either that organizations don’t learn or that organizations learn but in non-traditional ways. Choice

between these two possibilities has important consequences” (1991, p117).

The distinction made in learning literature between the terms ‘organizational learning’ and a
‘learning organization’ also needs consideration. Organizational learning ‘refers to the study of
the learning processes of and within organizations’ (Easterby-Smith and Lyles 2003) whereas a
learning organization is ‘seen as an entity, an ideal type of organization, which has the capacity to
learn effectively and hence to prosper’ (Easterby-Smith and Lyles 2003) or as Tsang (1997) adds,
it refers to a ‘particular type of organization in ;md of itself’. This important debate is picked up

by Jones (1995) where he fractures the literature on organizational learning and a learning
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organization into categories where organizational learning happens independently of individuals,
or through individuals. Jones stresses that in order to better make sense of organizational learning
researchers must adopt approaches that “recognize the social nature of individual cognition and
the situated nature of learning” (Jones 1995, p75), and also that applying this understanding to

information systems design could lead to more effective systems.

Senge’s (1990) work focuses on dialogue in an organization arguing that it is through
communication or conversation that understanding is achieved. Gadamer (1975, cited within

Senge (1990)) explained this idea of dialogue/conversation in his work Truth and Method.

“Thus it is a characteristic of every true conversation that each opens himself

to the other person, truly accepts his point of view as worthy of consideration

and gets inside the other to such an extent that he understands not a particular

individual, but what he says” (Gadamer 1975, p347).
It is then not about agreeing per se, but about having the conversation which leads to better
understanding. In this way we may see open source developers use of chat forums and email. This
‘conversation’ allows them to mould their ideas and may lead to innovation in process as well as
product. In open source, for our research, the process and product cannot be fractured apart, they
are often one and the same, or better still one so effortlessly steals into the other that to study any

one alone would be both difficult and unnecessarily reductionist.

With many learning theories to choose from in this work we have returned to a basic concept of
learning offered by Bateson. As explained below this simple yet powerful definition of learning
can be effective. Bateson focused on human learning but his definition can be extended to include

collective learning.

Bateson’s Model of Learning

“[Man] appears to us ... as a creature who learns.”
(Bateson quoted in Visser (2003, p270))

Gregory Bateson extended the cybernetic model introduced to him by Norbert Wiener showing
interdependence between humans, nature and technology. This provided a stimulus for many in
the anthropology field to take this understanding of social systems further, including Haraway’s
‘cyborg manifesto’ and Bruno Latour’s work on ‘hybrids’ (Tresch 1998). Bateson focused on
‘interactions’ rather than upon fixed structures and this influenced his work on learning. Learning
is not a process or experience which comes about in isolation, for Bateson, it involves interacting
with the environment and others and is about ‘shared understanding’ (Tognetti 1999). Most

free/open source developers do not work in isolation. It is the process of peer review and
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brainstorming which is carried out over the message forums and email that leads to a kind of
shared understanding which then leads to the creation of software and software process. Software
versions are one reflection of this, but so too is the ongoing performance of the collective.
Bateson’s theory is essentially a behavioural theory of organizational learning, as is Weick’s
(1991), and engages two concepts, that of deutero-learning and double bind, explained below
(Visser 2003). As a behavioural theory it allows one to focus on ‘observable interactions’ (Visser,
2003) which form some reflection of a level of learning. However, this does not imply that a

social understanding of collective learning cannot be extended to both.

Bateson (1972, p283) gives a simple definition of learning as ‘a kind of change’. ‘Change denotes
process’ (Bateson 1972, p283) but he explains that a process itself is ‘subject to “change’. He
elaborates his ideas of learning as change through the metaphor of acceleration. He lays the
foundation for various levels of learning that he believes can or do exist. These are ‘logical
categories’ of learning from Level Zero onto Level III [and perhaps Level IV]. An individual
evolves, through contact with the environment and self-reflection, from one level to the other.
Bateson’s levels of learning are based on individual learning [through interaction with others] but
Level IV, which is evolutionary change, focuses more explicitly on what we might call

organizational learning (Rothwell 1983).

Star and Ruhleder (1996) use Bateson in their infrastructure study of the Worm Community
System. This work provides a good example of how effective and useful Bateson’s levels of
learning ideas are for studying human/technical collectives. Though Bateson’s ideas on learning
form the basis of some influential learning literature today, it is strange how little research has
been carried out in this area using his ideas. The infrastructure study by Star and Ruhleder (1996)
stands out in its application of Bateson’s levels of learning. Most related work found by this
author was in the management area and application was more poised towards how to better
manage employees, which does have possible significance even for the current study, but it still
doesn’t help to understand why organisational learning literature bears little stamp of Bateson. On
the other hand knowledge management researchers make heavy use of Argyris and Schon’s work

which they admit themselves is heavily based on Bateson.

Bateson'’s Levels of Learning

Zero Learning
Zero learning does not mean that there is no change, but that there is enough change to maintain a
‘constant velocity’. So in order to keep the status quo the change required may be very minimal

but that in itself is enough to merit zero learning. Zero Learning involves ‘the receipt of a signal...
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not subject to correction by trial-and-error’ (Bateson 1972, p248). To use Bateson’s acceleration
example, this type of learning could be explained as constant velocity. Zero learning is defined as
‘the case in which an entity shows minimal change in its response to a repeated item of sensory
input’ (Bateson 1972, p283). Bateson supplies us with a number of examples which reflect this
level of learning, like that of habituation in an animal, where it stops ‘to give overt response to
what was formerly a disturbing stimulus’. It is a very primitive form of learning which includes

animal instinct (Rothwell, 1983).

Learning I — Proto-Learning

Learning I is the next step in the hierarchy. Bateson sees learning as change and that implies, as a
premise, a ‘notion of repeatable context’ (Bateson 1972, p292). This, in Steps to an Ecology of
Mind, is explained with the Pavlov conditioning of the dog example. At Time 1 Pavlov rang a
buzzer and then accompanied that with some food. At Time 2 he just rang the buzzer and the dog
began to salivate in anticipation of food, even though no food was given. The context was the
same [as much as possible] so the buzzer became the stimulus for another response. The same can
be said by using the example of rote learning, ‘in which an item in the behaviour of the organism
becomes a stimulus for another item of behaviour’ (Bateson 1972, p288). Bateson uses the
concept of a ‘context marker’ to reflect how ‘an organism responds to the “same” stimulus
differently in differing contexts’ where context is ‘a collective term for all those events which tell
the organism among what set of alternatives he must make his next choice’ (Bateson 1972, p289).
This level includes memorization and other instrumental change which is adopted to either gain a

reward or to avoid punishment (Jacobson 2003).

Learning II - Deutero-Learning

Learning II is a change in Learning I. It has also been called ‘deutero-learning’ and ‘leaming to
learn’. It, according to Rothwell (1983, p24) is a ‘discovery of how one learns best’. Bateson
continues with the Pavlov example to explain how Learning II differs from Learning L If an
individual is capable of showing the same behaviour in a different context then this reflects an
ability to adapt and assimilate or Learning II. Take rote learning as an example, an individual, if
he continues to practice learning any material in this way, will deepen his experience and will
begin to rote learn better, faster and more efficiently. This reflects that he will have devised
context markers for himself that will stimulate his mind to recall more material. But what will
really differentiate this from Learning I is the way this individual has reflected on his learning so
far and devised a scheme or technique to improve his ability to learn. Bateson (1972, p301) adds
that, ‘this self-validating characteristic of the content of Learning II has the effect that such

learning is almost ineradicable’. We are also given the example of “reversal learning” where
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meanings given to something are reversed. If the individual is able to not only spot the reversals
but can detect a sequence in the reversal pattern or ‘contradictions’, then Learning II can be said

to have occurred.

Learning III — Trito-Learning

Learning III, according to Bateson, rarely occurs in human beings. This requires a ‘profound
reorganization of character’ which may sometimes be found in religious conversion (Bateson,
1972, p301). This could be an attempt by an individual to ‘resolve the contraries’ raised by
Learning II in order to improve learning. Indeed Bateson (1972, p306) explains Learning III with
a comparison to psychosis where individuals ‘find themselves inhibited from using the first
person pronoun’. However, in this work, focused on the collective, the potential for ‘profound
reorganization’ may be more possible, for example, as in the case presented here, a transition

away from total commitment to the open source license.

Learning IV — Organizational Learning

Bateson never presented a Level IV of learning. Rothwell (1983), however, suggests that
Bateson’s learning concepts can be connected to theories of open systems and organizational
learning. He draws on Argyris and Schon (1978) and argues that Learning IV might be
understood ‘as an organization’s ability to learn through time’ (Rothwell, 1983). Leaming III
forces individuals to assess ‘fundamental assumptions about how they learn’ but Learning IV
suggests how the same would happen for organizations which would imply a serious shift in

organizational culture which is sustained over time’ (Rothwell, 1983).

In the many interpretations of Bateson’s work the common explanation of the levels of learning is
an interesting phenomenon, in spite of the fact that most of the researchers belong to different
fields (Burgoyne and Hodgson 1983, Wills 1994). One of the commonalities between the
interpretations is the lack of mention of zero learning. Most authors have been rather dismissive
of this level. Learning 1 is about short-term learning whose relevance is immediate. This sort of
learning makes little impact on the personality of the individual. Learning 2 is about behaviour
change but not about drastic personality change. This behaviour change is a result of a building up
of knowledge, and the interesting role of this behaviour change is that it is transferable from one
situation to another. Learning 3 is related to ideas of self-awareness. When an individual becomes
conscious of his own behaviour and learning pattern then he is more capable of changing it -
‘learning how to learn’. This level of learning is consequently not situation-specific. Wills (1994)
renamed these three levels respectively as cerebral learning, behavioural learning and
transformational learning. These names reflect well the difference between the various levels. The

claim made is that all learning [with the exception perhaps of zero learning] is stochastic, meaning
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it ‘contains components of “trial and error”’ (Bateson 1972, p287). Thus each level of learning is
about a process of correction of past errors and learning enough about why they happened in order
to improve the ability to learn. Weick’s sense-making is also contingent upon reflection in

hindsight.

Deutero-Learning and the Double-bind
Rothwell (1983) understands Bateson’s theory of learning as a heterarchy'* which is based on

three assumptions.

= Learning denotes change, but the degrees and the types of change may differ.

= Learning is a communicative process, but the degrees and the types of communication
may differ.

= Learning involves the mastery of new approaches or solutions to problems (Rothwell
1983).

Bateson linked the idea of message levels [metacommunication] and paradox to develop the
concept of deutero-learning. However, in the case when “Type confusion leads to paradox when
both message and meta-message contain negatives. On this principle we can imagine the
generation of paradox in the deutero-learning system when an organism experiences punishment
following some failure and learns that it must not learn that punishment follows failure” (Bateson
in a letter in 1954 quoted in Lipset (1980, p205)). This is what Bateson calls the ‘double-bind’ or
“pathological deutero-learning” (Bateson 1963, p180). If a mother punishes her child for a
particular behaviour like screaming but then also punishes that child for learnir;g that punishment
will follow the act of screaming she then ‘induces a paradox’ in him because she has ‘combined
negative proto-learning ’with negative deutero-learning’ (Visser 2003, p272). A sustained and
prolonged exposure to such double-bind communication and learning, especially when the child
cannot escape from this situation or speak out his mind will, according to Bateson, lead to
schizophrenia (Lipset 1980).

Bateson explains metacommunication, which can be useful when considering how interaction is
not just based on words or text but rather on other physical cues as well. This ‘communication
about a communication’ has three types: 1) messages which are ‘mood-signs’, 2) messages which
stimulate mood-signs, and 3) messages which enable the receiver to distinguish between mood-

signs and any other signs which resemble them (Bateson 1972, p189). In open source interaction

' The word heterarchy is formed from the Greek prefix heter, meaning different, and the Greek suffix arche, meaning to
rank. Hence heterarchy is a ranking by differences or contrasts as opposed to hierarchy which is ranking based on
importance (Rothwell, 1983).
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‘smileys’ and various emoticons which are used abundantly provide the role of

metacommunication.

Building on Bateson

Argyris and Schon (1996) base their organizational learning work on Bateson’s (1972) levels of
learning and Ashby’s (1940) distinction between single-loop and double-loop learning [see Figure
4]. Drawing on Bateson’s idea of maintenance of constancy in a living system as indicative of the
kind of change required in order to sustain organizational constancy, Argyris and Schon (1978)
call such organizational maintenance ‘zero-order learning’ (Schon 1975, Schon 1983, pi 19).
“Single-loop learning is the error-detection-and-correction process... Double-loop learning occurs

when error is detected and corrected in ways that involve the modification of an organization’s

underlying norms, policies, and objectives” (Argyris and Schon 1978, pp2-3).

governing action consequences
variable strategy
i — T e—TI ———e N |

Double-loop learning

Figure 4: The model and three elements of theory of action (Argyris 1982, Smith 2001)

Argyris and Schon (1978) draw on Bateson more heavily when it comes to deutero-leaming. This
would correspond with Bateson’s second-order learning and can be described as the process of
‘learning to learn’ or as Argyris and Schon claim, learning how to single and double-loop learn.
“When an organization engages in deutero-leaming, its members leam, too, about previous
contexts for learning... They discover what they did that facilitated or inhibited learning, they
invent new strategies for learning, they produce these strategies, and they evaluate and generalize
what they produced. The results become encoded in individual images and maps and are reflected

in organizational learning practice” (Argyris and Schon, 1978, p27).

Constituting an Organization

Argyris and Schon (1978) explain what distinguishes a collection or mob of people from an
organization. An organization implies that members develop measures which firstly, allow
members to make decisions on behalf or in the name of the collective; secondly, delegate to
certain people the authority to act for the collective; and lastly, to set a boundary between the

collective and the ‘rest of the world’, thus creating a well defined ‘we’ feeling (Argyris and



Schon, 1978, p13). These measures or rules developed by the members may be tacit but must
have some form of continuity to ensure that the organization continues to exist even as its
members leave or new ones join. The three conditions laid out above provide some indication that
the case being researched, the Linux kernel development, coﬁld indeed be an ‘organization’ - it
qualifies on all three points. There is a boundary between the community and the rest of even the
open source world. This boundary is most noticeable when an individual wants to join this
organization. Joining is not as easy as it seems. You have to prove your ability as a developer and
a debugger. And many times, you begin as a debugger and then work your way up from a

‘ peripheral membership to developer status and beyond (Zhang and Storck 2001).

An organization, in these terms, is made up of individuals so how does one distinguish between
individual and organizational learning? To begin with, an organization ‘is not merely a collection
of individuals’ and organizations often ‘know Jess than their members’ (Argyris and Schén 1978,
p9). In a later work, Schon (1983) elaborated on individual versus organizational learning through
an example of a crafisman making wooden shovels. To describe individual learning Schon
explained the steps and chores the craftsman must perform from log selection right down to the
last smoothing of the wooden shovel. If the craftsman would not be able to find a particular type
of wood that he is used too working with then he may, on occasion, switch to another. This
reflects how he would adapt and amend his ‘theory of action” which reflects how he learnt and
changed. Would an organization then consist of a number of craftsmen performing the same
tasks? This is where Schon distinguishes between an individual and an organization learning. In -
an organization the individuals would allocate themselves to various duties according to expertise
or other factors and there would thus be delegation and division of labour. So, it is agency that is
important, ‘just as individuals are the agents of organizational action, so they are the agents for

organizational learning’ (Argyris and Schon 1978, p19).

Organizational learning is then defined by Argyris and Schon (1978, p19) as learning which
occurs “when individuals, acting from their images and maps, detect a match or mismatch of
outcome to expectation which confirms or disconfirms organizational theory-in-use”. In order for
organizational rather than just individual, learning to occur all detections and changes must be
‘embedded in organizational memory’ because if they aren’t then when the individual leaves the
organization he will take the learning with him, thus ‘individual learning is a necessary but
insufficient condition for organizational learning’. Attewell (1992, p6) argues likewise when he
says that “the organization learns only insofar as individual skills and insights become embodied
in organizational routines, practices, and beliefs that outlast the presence of the originating

individual.”
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Organizational Memory

Individual members of the organization have to devise a way to ‘measure’ the quality of their
work according to some criteria set by them and the rest of the organization. Schon (1983, p117)
calls these ‘organizational artifacts’ which consist of maps, programs and memories. A map is a
‘picturé of the system — organization charts or building plans. Programs describe sequences of
organizational action in work-flow diagrams... or in lists of procedures. Memories are reservoirs
of information about past organizational experience, for example, price or inventory lists: they
may be kept in publicly accessible files or in the head of an “old hand™’. The Linux kernel FAQ is
a simple example of a map used by the developers as guidance for communicating their work and

questions online.

Individuals leave an organization and remove learning, “In order to avoid such “organizational
entropy” or loss of organizational memory, members must continually work at the recruitment
and instruction of new members, the preservation of organizational maps and memories, and the
detection and correction of errors” (Schon 1983, p119). This scenario is very real for many open
source projects. The initial stage of any project is extremely difficult because there is no guarantee
that it will manage to garner enough support from the larger community of developers or keep
their attention, ‘volunteers are not cheap so code is not cheap — so it is kept archived’ (Massey
2003). '

Another form of organizational memory in an open source project is the archive kept in the
version control system studied here. Most patches created undergo peer review and some
amendments. Version Control keeps a track of every change, who made it, why it was made and
exactly what kind of a change it is. In order to get a more complete picture of the software under
development and to assess how it is has evolved an individual has only to backtrack to all the
small changes, called deltas, to piece together a full picture. SourceForge.net is a website which
performs the key role of an infrastructure and organizational memory for thousands of open
source projects, ‘having an organizational memory is one of the top 3 selling points of

SourceForge’ (Augustin 2003).

Walsh and Ungson’s (1991) seminal paper on organizational memory provides an interesting
overview of how organizational memory is seen and defined by various academics. They explain
how Argyris and Schon (1978) consider organizational memory to be a mere metaphor because
“organizations do not literally remember”, in contrast to Sandelands and Stablein (1987) who
define organizations as “mental entities capable of thought”. Walsh and Ungson (1991, p59) relate
how other opinions ‘fall some place between these rather divergent perspectives’ and it is ‘unclear

as to whether information is stored and processed by individuals who comprise the organization
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(Kiesler and Sproull 1982, O'Reilly 1983, Sims and Gioia 1986, Ungson et al. 1981), by the
organization itself (Galbraith 1977), or by the dominant coalition or upper echelon as a reflection
of the organization (Hambrick and Mason 1984)’. These authors do, later in this paper, clarify that
it is important to study the individuals of an organization and how they acquire, store and retrieve
information in order to be able to understand how organizations learn and acquire a memory.
They make this claim based on the simple argument that it is individuals which comprise an

organization.

Alavi and Tiwana (2003) understand organizational memory as ‘stocks of organizational
knowledge’ and include storage and retrieval as necessary characteristics. They comprehend
organizational memory to include an internal and external part. Internal memory is ‘the stocks of
knowledge that reside within the individuals or groups of individuals in an organization’ and
external memory ‘contains codified and explicit organizational knowledge and includes formal
policies and procedures, and manual and computer files’ (Alavi and Tiwana, 2003, p108). Duncan
and Weiss (1979) understand that a ‘facility’ must exist within an organization which is capable
of holding ‘communicable, consensual and integrated knowledge’. One view of organizational
memory is that a ‘clear view of the past will obscure an accurate view of the present’ (Walsh and
Ungson, 1991, p72). However, Hedberg er al (1976, p4l) provide an opposing view that,
‘footholds in time are the appropriate components for assembling trajectories into the future’. We
understand open source collectives to have managed a healthy balance between avoiding getting
stuck in old patterns (in other words such collectives have a healthy approach towards unlearning)
and also have the ability to build on prior work. Version control software holds repository of code
over time so there is definitely a strong history, however, when you access the code you realize
that each code comes forth from various trajectories and that code is a building block that can be
teased apart to create s'omething totally new. Thus Raymond’s (1998) “Good programmers know

what to write. Great ones know what to rewrite (and reuse)”.

We can assume that open source developers are not often in face-to-face contact so there is a
strong need to keep information stored in a way that is retrievable by all, and more than one of
them could be working on the same problem at one time without being aware of each other. This
is where version management tools play an important role in not allowing an overwrite of any
patch or ‘knowledge creation’. Repositories ‘bring together content from various data sources,
providing a unified access point and reducing knowledge search costs’ (Hansen 1999). The Linux
email archive is the kind of repository that von Krogh would describe as a ‘communal resource’
where knowledge is shared ‘without the prerequisite of an agency that monitors and enforces

cooperation’ (von Krogh, 2003, p379). A view which we challenge here.
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As we learn later, when the Linux kernel collective debates over version control software
adoption is described in more detail (Chapter 6). Indeed, one of the key ideas to emerge amongst
the various issues that were argued was the strong controlling force such software exercised over

the collective.

Huber (1991) concluded that there are four variables that can influence organizational memory,
namely, membership attrition, distribution and interpretation of information, norms and methods
of information storage and finally, methods of locating and retrieving information from the
memory stores. Membership attrition is quite a concern with open source communities. Of course,
to obtain a critical mass of developers is the primary concern of any new project but then to be
able to maintain a certain level of membership becomes the long-term concern. Benkler (2002)
describes how, through a fine granularity of modules in open source projects, this becomes easier
to manage because no one developer is over-burdened and many are free to join the community
fleetingly, add their tiny patch and then disappear. If enough developers behave this way then the
project will continue to grow because this ‘allows the project to capture contributions from large
numbers of contributors whose motivation level will not sustain anything more than quite small
efforts towards the project’ (Benkler, 2002, p10).

The interesting quality of open source communities is that there is a conscious effort to store
information. The developers communicate via email and these email messages are all archived for
future reference. Fogel (2005) when speaking of mailing list archives claims that “archives are
precious data — a project that loses them loses a good part of its collective memory” (pp59). Even
the IRC conversations that developers engage in are saveable but perhaps they are not accessible
to more than just the individuals who were party to the real-time discussion. The latter feature
could well fall into Huber’s (1991) claim that certain kinds of memory are difficult to store or are
easily erased, like wiping a blackboard clean after a class. This happens in situations when people
are unaware of the importance of what they have discovered or written, or when they are unable
to anticipate a need for this information in the future. IRC chat logs, if not loaded onto a shared

site or server, are hard or impossible for other developers to locate and access.

Unlearning

We have argued here that learning relies on memory but what about unlearning? Martin de Holan
and Phillips (2003, p393) state ‘that forgetting is the necessary counterpart of learning’. Their
model of organizational knowledge links organizational memory to learning and forgetting.
Hedberg (1981, p18) was one of the first to write about this concept and defined unlearning as ‘a
process through which learners discard knowledge’ and this knowledge is supposedly ‘obsolete
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and misleading’ (p3). As Huber (1991) points out Hedberg’s definition has a strong implication
that this knowledge is useless and outdated and so to be rid of it ‘is functional’ (Huber 1991,
p104). This is a rather narrow view and Huber attempts to rectify this by allowing for the idea that
unlearning may be a disadvantage to an organization. He discusses how unlearning ‘can lead to
either a decrease, or an increase, in the range of potential behaviours’ (Huber 1991, p104). As
Martin de Holan and Phillips (2003) indicate there has been much work on learning and
organizational knowledge management but forgetting and unlearning has only been touched upon
in passing by a few like Bettis and Prahalad (1995), Day (1994) and Nystrom and Starbuck
(1984), Peters (1994) was particular about mentioning that unlearning is an area in dire need of
further research yet offered little more than a short vignette on the issue. Depreciation of
knowledge is a premise offered by Argote (1999), where depreciation was explained as when
‘ﬁroducts or processes change and render old knowledge obsolete... organizational records are

lost or become difficult to access... [due to] member turnover’.

Four effects of unlearning were proposed by Huber (1991) and they increase the scope of what it
means to unlearn. Firstly, if for whatever reason, an organization has been through some
unlearning then it is very likely that there will be a time period when it will become inactive in the
context of where this knowledge was previously used. Secondly, with the right incentive to find a
substitute fact or belief, the organization would make every effort to accomplish this while still
maintaining other functions. Here Huber points out that certain authors like Lindblom (1959) and
Cyert and March (1963) believe that often this search for a replacement belief leads the
organization to something very close to the recently unlearned belief as the search is focused ‘in
the same vicinity’ (p104). Of course there is a potential problem with this ‘solution’ because if the
first belief was unlearned for the reason that it was not effective or beneficial then finding a close
substitute as a replacement would hardly do good. Thirdly, unlearning can have the positive effect
of opening the way for ‘new learning to take place’ (Huber 1991, p105). One very extreme form
of this type of unlearning in an organization is cited as a discharge of employees who are not
considered to be able to unlearn old ways and adopt the new. And /astly, unlearning can be said to
be part of the socialization of new members in an organization by forcing ‘the knowledge that the

new members possessed upon entry [to] become unavailable to the organization’ (p105).
Having explained what is learning (Bateson 1972), organizational memory (Walsh and Ungson

1991), and unlearning (Huber 1991, Martin de Holan and Phillips 2003) we now draw the link
between learning and organizing (Clegg et al. 2005).
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Organizing and Learning |
“Knowledge of organizing and the organizing
of knowledge implicate and explicate each
other and are thereby inextricably
intertwined’ (Chia 1998).
The main argument in this chapter is that organizations exist through learning. It is the process of
learning that creates and sustains. Ontologically, this understanding complements that of Actor
Network Theory [more on this in Chapter 4], where ideas of performativity and reality creation
are interlinked. Organizations are described by Hasselbladh and Theodoridis (1998) as ‘magmatic
mode(s) of being’ because they are never stable and nor do they take any specific shape, but are
always in flux. Organizations never take any specific shape and we understand this to mean that
they never stay the same for long enough to be recognized in one pan\icular form. According to
Clegg et al (2005) this constant change is reflective of an organization learning through the
continual acts of organizing, ‘learning is thus a form of dis-organization that connects with and
can destabilize the desire for a unified, timeless and static idea of organization’ (p161).
Organizing is the movement to stability, formality and structure, while learning is the movement
into or towards the unknown, to chaos or instability. Too much of either cannot be good for the
long term prospects of any organization or collective but too little may be equally fatal. Thus,
Clegg et al (2005) argue, in the tension between the dimenéion of organizing (closing down
discussion, establishing boundaries and excluding, resolving issues, managing information flows),
and that of learning (opening up discussion, engaging with and including the new, absorbing
variety and encountering new information sources), we can seek the generative processes that
sustain and mutate a collective over time. And ‘organization is the knot, the fold, where order and
disorder meet. It is the very process of transgressing the boundaries between the old and the new,
the stable and the unstable’ (Clegg et al. 2005).

Becoming is not a specific state but ‘rather a focus on movement from the then to now, not a move
from one state to another. It reflects a passing of time and a process, ‘becoming thus sees the idea
of an organization’s existence not as an ontologically stable, but rather as something that exists
only in its duration’ (Clegg et al, 2005, p159). It is in this becoming that organizing and/or
learning occur, and ‘considering learning in terms of becoming focuses on movement rather than
that which is moved’ (Clegg et al, 2005, p159). More specifically learning ‘is the driving force
beyond organization’ and a necessary precondition for learning is organizational slack. Chaos and
disturbance, and in particular engagement with those outside, demands a response which opens
up the collective to future possibilities; it is in this uncertain and scary ‘movement towards’ some

not quite known future, that is ‘becoming’ — not certain, not defined, but a journey into the chaos.
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Organizing and learning are thus constitutive of becoming; played out in the spaces or folds

between an extant order (that which is already organized) and futures yet to be encountered.

The previous tradition of studies of change have been criticized for focusing on stability in order
to understand change (Feldman 2000, Orlikowski 1996, Weick 1998). This suggests the need to
reverse ‘ontological priorities’ (Tsoukas and Chia 2002) and for keener perceptions of the
ongoing nature of change or ‘changing’ (Weick and Quinn 1999). This reversal is helpful not least
if it allows a better understanding of the micro-processes of change, treats change as dynamic and
unfolding rather than as a fait accompli, and makes it ontologically possible to ‘see’ change by
directly looking for changing, rather than as a byproduct of some comparative stabilities (Tsoukas
and Chia 2002). Thus in developing the concept of becoming Clegg et al. (2005) emphasize the
focus on movement, not on what has moved or where it arrives (at best mere snap shots, moments
in time); becoming is about travel and mutation rather than what has mutated. Stability is then at

best fleeting but more likely to be illusionary; change is reality.

Becoming is then a way of renaming and revealing the arena where learning and organizing
resolve and shape the futures of the collective. We speak of futures in the plural because
becoming is essentially the journey, not the destination, and just as a ship sails ‘towards’ a port,
not ‘to’ a port, the collective can at best debate and resolve on a new course to steer, but can never
arrive (Orlikowski and Hofman 1997). Beconﬁng is thus an essential space of connections that
can express the dynamics of learning and organizing. Becoming is not the specific state that is
left, nor what is achieved, but the movements that take us from ‘then to now", or now towards
some future, embodied in the tension between outward looking and exploratory processes of
leamning, and cautious and considered acts of organizing. This duality has to coexist in order for
either to operate. A fine balance that Clegg et al (2005) describe as a ‘generative dance on the

edge of a volcano’.

Other authors have discussed this as the ‘space’ of learning (Nonaka and Konno 1998). They
argue that knowledge is created and fostered in ‘shared spaces’ called ba. Ba is a Japanese
concept established by Kitaro Nishida, however, Nishida never linked ba to knowledge creation.
Nonaka and Konno (1998) used the concept of ba along with their ideas on tacit and explicit
knowledge to show how individual tacit knowledge can be made, first explicit individual

knowledge, and finally, organizational tacit knowledge.

Many authors (Clegg et al. 2005, Patriotta 2003, Weick and Westley 1996) have drawn on
Bateson’s idea of breakdowns and the belief that learning or understanding occurs after action, so

hindsight is needed to better understand the conditions under which learning occurs or becomes
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necessary (Argyris and Schén 1978). A breakdown, as a catalyst for learning, is a very useful
concept because it helps to operationalize learning, As a researcher curious about learning, it
helps to focus in on something as elusive as the moment when learning can be said to occur. The
core of Weick’s (1988) idea of sensemaking is that ‘action precedes cognition and focuses
cognition’ (Weick, 1988, p307). We act first and then make sense of what we have achieved in
hindsight or in the process of acting. Learning thus occurs in doing. Actor network theory
understands this idea well and builds on this concept of action in doing, its ontology being, in
terms of action between more than one actors creating reality in the process of their interaction.
Action is organizing and organizing is also called interrelating (Weick and Roberts 1993). Indeed,
without making the link explicit, the authors combine organizing with learning — they call it
heedful interrelating — where heedful encapsulates ‘an important set of qualities of mind’ (Weick
and Roberts, 1993, p361) and people are heedful when “they act more or less carefully, critically,
consistently, purposefully, attentively, studiously, vigilantly, conscientiously, pertinaciously”
(Ryle 1949, p151 - cited in Weick and Roberts (1993)). Heedful acts imply that the ‘agent is still
learning’ (Weick and Roberts, 1993, p362). Heedful interr;:lating implies purposeful organizing
where something is being learnt. As Weick and Roberts (1993) emphasize, who is doing the
learning, the individual or the collective is still an open question, “learning is not an inherent
property of an individual or of an organization, but rather resides in the quality and the nature of
the relationship between levels of consciousness within the individual, between individuals, and

between the organization and the environment” (Weick and Westley 1996, p446).

“Learning is an ongoing and implicit feature of the organizing process. By this we mean that as
organizing unfolds, it does so in ways that intermittently create a set of conditions where learning
is possible. We call these ‘learning moments’. As organizing becomes disorganized, the forgotten
is remembered, the invisible becomes visible, the silenced becomes heard. These changes create
an opportunity for learning. Learning can be said to occur when forgetting, concealing, and
silencing hide a new set of conditions and in their place create new categories, different meaning,
and more organization” (Weick and Westley, 1996, p456). Part of the ability to organize and
learn depends on the ability to unlearn. Weick (1996), using the example of the fire-fighters of the
Mann Gulch disaster, explains how in many cases unlearning is required to cope or organize in a
particﬁlar situation. He stresses that there are a number of reasons why unlearning can be difficult,
even if lives depend on it. Some such reasons are a lack of trust in leadership, loss of control,
dilution of intensity of crises because of fading social dynamics, and skills to generate

replacement activities.

The question arises then as to how one can study the spaces where learning occurs because

“Learning moments and spaces tend not to be obvious precisely because they retain vestiges of
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order, routine, and expected exploitation. They are almost business as usual” (Weick and Westley,
1996, p451).

Conclusion

The key concepts addressed in this chapter are learning and organizing. We adopted Bateson’s
definition of learning as change. This definition is broad and flexible enough to encompass all
manner of actors, both human and non-human. Drawing on Weick this study appreciates that
learning and organizing are interlinked concepts and the study of one often leads to the
exploration of the other. Organizing indicates the tendency towards stability, however short-lived
-it is eventually. We emphasize the link between learning and organizing through the use of Clegg
et al.’s (2005) becoming concept, where becoming helped to bring the focus to the actual process

that unfolds into learning and/or organizing.

Two more issues need to be carried further in this thesis, the importance of organizational
memory and the concept of unlearning. Organizational memory has real significance for both
learning and organizing as it holds together both the past and future trajectories that are possible.
The paths that can be taken are usually heavily dependent on what we already know and
understand. Something new usually emerges from the familiar [though not always as
revolutionary innovation would otherwise not be possible]. The existence of an organizational
memory can also make it somewhat difficult for an organization to experience dramatic and
perhaps needed change. This sort of change [Level IV learning] requires unlearning in order to
learn afresh. Unlearning or forgetting is then the necessary counterpart to learning (Martin de

Holan and Phillips 2003), the catalyst for innovation.
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Chapter 4

The Performative Ontology of Actor
Network Theory

In this chapter Actor network theory, with its distinct ontology, was chosen for its strength in
describing and ‘following’ both human and non-human actors, without privileging either (Callon
1986b, Latour 1987, Latour 1991, Latour 1999¢, Law 1992) and it forms the other part of the
theoretical framework. We take the main premise of actor network theory [ANT] to be that it

considers it inappropriate to distinguish between the social and the technical world.

The function of this chapter is to explain and justify our use of ANT as the second part of our
theoretical framework. Actor network theory is described briefly and then its use as constructivist,
interpretivist and then realist is weighed. Some researchers urge the rejection of ‘epistemological
rivalry between realism and constructivism’ on the basis that it is philosophically flawed (Tsoukas
2000). It is flawed because neither on its own is a fair expression of the ‘truth’. There is an
objective reality which is ‘outside our heads’ but at the same time we help create structures by our

understanding of them which is institutionalized and ‘historically adopted’ (Tsoukas 2000).

Actor Network Theory

Actor network theory has evolved, as theories do, over the years since its conception, and its
authors have diverged in their explanations of it. Actor Network Theory [ANT] was pioneered at
the Ecole des Mines in Paris by Michel Callon (1986b) and Bruno Latour (1987). The very title of
this theory has led to grave and perhaps misleading speculation (Latour 1999b, p5) as to its
meaning. The authors admit that ‘actor network’ was perhaps not the most appropriate name for it
but this was the closest translation from the French ‘acteur reseau’ (Latour 1999b, p15). The
effect that Callon and Latour desired was to emphasize a ‘tension’ between the two words actor
and network, where you have the ‘centred actor’ and the ‘decentred network’ (Latour 1999b, p5).
According to Law (1999) the misconception stems from the use of the word network in everyday
language, especially with the rise of networked systems and the Internet. And this has caused
further trouble with the concepts of space and time and how ANT deals with both. “The notion of
‘network’ is itself an alternative topological system. Thus in a network, elements retain their
spatial integrity by virtue of their position in a set of links or relations” (Law 1999, p6). It is this

relationship which is important as will be explained in more detail below.

60



One of the main and most widely discussed premises of actor network theory is its claim to
consider the social and the technical world at the same level offering the notion of heterogeneity
to describe projects and to offer a socio-technical account (Latour 1986, Law and Callon 1988).
This avoids questions of: ‘is it social?” or ‘is it technical?’, for this would be missing the point.
ANT rather suggests that the question to ask in considering conspiring heterogeneous networks of
intertwined social and technical elements is: is this association stronger or weaker than that one?’
(Latour 1988b). This question captures well one of the main concerns of this work, which is to
study OS as conspiring heterogeneous networks where there are machines, texts, developers,
code, Internet infrastructure, users/databases and mailing lists etc, and within which we seek to

find the “stronger” associations.

ANT is called a theory but its creators vacillate between both discussing and using it as a method
or tool and a theory in the framework-providing sense (Callon 1999, Latour 2004a). In an
amusing [insulting?] article where Latour is in a dialogue with an LSE student, Latour skilfully
manages to draw out many fallacies held about actor network theory and how it is mis-applied to
research. Latour disagrees with the word network and shifts the responsibility onto Callon for
creating such an ambiguous name and then goes onto show how ANT doesn’t say much about
what we study but “about how to study things, or rather how not to study them. Or rather how to

let the actors have some room to express themselves™.

Latour (1987) suggests that ANT is based on three principles; agnosticism, symmetry of
description and free association. Agnosticism means that the observer refrains from making any
ethical or moral judgements concerning the protagonists in/under study. Symmetry of description
emphasizes how social and technological issues are described using the same terminology or
vocabulary [or each others]". Free association does away with the dualism between the social and
the technical, thus neither of the two are privileged, in other words this is a ‘repudiation of a priori
distinctions between the social and the natural or technical’ (Doolin and Lowe 2002) and such an
approach ‘starts from a closed definition of the social and then uses this repertoire as an
explanation of nature’ (Ormrod 1995) [see also (Callon 1986a, Callon and Latour 1992, Silva and
Backhouse 1997)].

These principles have of course been sharply criticized (Collins and Yearley 1992a, Habers 1995,
Pels 1995, Reed 1995, Winner 1993) in what has since been called the ‘science wars’ and even
the “Chicken debate’ (Harbers and Koenis 1996)'°. Collins and Yearley (1992a, 1992b) make a

'3 The point here is that though the human and technical do have a separate vocabulary a researcher should be able to
use the vocabularies interchangeably when needed. )
16 http://www.chem.uva.nl/easst/easst961 2 html#harbers
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number of criticisms but two of their main points will be considered here. They attacked Callon
and Latour on their condition of symmetry between ‘nature’ and the ‘social’ and the idea that
Callon and Latour are allowing or returning agency back to nature, “This backward step has
happened as a consequence of the misconceived extension of symmetry that takes humans out of
their pivotal role” (Collins and Yearley 1992a). They follow this with an assault on Callon and
Latour’s use of semiotics, implying that their approach does not help to understand the world in
any significant way because ‘discourse analysis has been largely abandoned within SSK’ (Collins

and Yearley 1992a, p305).

Winner’s (1993) paper mainly criticized social constructivism but this was a critique of all the
theories and approaches he believed were social constructivist in nature, including, but not only,
ANT. His critique can be summarized in four main arguments. Firstly, he felt that social
constructivists showed a °‘total disregard for the social consequences of technical choice;
secondly, it worried him that only certain voices were ‘heard’ in such studies, “who says what are
the relevant social groups and social interests? What about groups that have no voice but that,
nevertheless, will be affected by the results of technological change?; thirdly, he lamented the fact
that this approach was narrow in the sense that it did not allow for the possibility that there may
be ‘dynamics evident in technological change beyond those revealed by studying the immediate
needs, interests, problems, and solutions of specific groups and social actors’ and; lastly, he
sensed a reluctance, and disdain or even inability of such an approach to ‘take evaluative stances

or invoke moral or political principles’ (Brey 1997, Winner 1993).

Many of these criticisms have been given a response by ANT’s main proponents (Bijker 1993,
Callon and Latour 1992, Latour 1991, Latour 1993, Latour 1996, Law 1991, Law and Bijker
1994, Star 1991) and/or were accepted and changes made to this theory by its pioneers to
accommodate them. One of the key changes perceived is the more direct attitude taken by Latour
(1999c) in his most recent work, Pandora’s Hope, towards the criticism of being constructivist or
realist, and this will be dealt with in more detail below. Callon and Latour (1992) responded to
Collins and Yearley’s (1992a) criticism of symmetry by making their point clear that the social
and nature do indeed play significant roles and they are equal in the sense that there needs to be a
certain degree of agency given back to non-human actants since without it we would not see the
entire picture, “to pretend that to document the ways scientists bring in nonhumans, we
sociologists should choose one of these positions - that scallops do not interfere at all in the debate
among scientists striving to make scallops interfere in their debates - is not only counter-intuitive
but empirically stifling” (Callon and Latour 1992). However, Latour and Callon make it clear that
they don’t ‘wish to extend intentionality to things, or mechanism to humans’, but just the ability

to act, or as Rose and Jones (2004) describe it as “the capacity to make a difference”.
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Callon and Latour did not directly respond to Winner [indeed Winner never really attacked them
directly either] but Mark Elam (1994) did instead, “Assuming high moral ground, he [Winner]
accuses everyone linked with “social constructivism” of being, among other things, elitist,
implicitly conservative, blasé, and politically naive. Winner appears to be declaring war on
something despicable...” (Elam 1994). He took Winner’s last criticism of social constructivism’s
lack of moral stance and replied to that by pitting Woolgar’s “‘antirealism’ against Winner’s ‘anti-
constructivism’. He admitted that all he really wanted to achieve was to ‘silence one without
wishing to condone the other’ (Elam 1994). This gave way to another battle of sorts with Winner
responding (1994) likewise with more personal insults being aimed at one another rather than
pure academic arguments, “he [Elam] seems more interested in applying ideological decals and
passing peremptory judgments than in addressing any of the issues I posed. Presenting himself in
the image of a “good liberal ironist,” Elam shoots some rather illiberal, nonironic shots at “fear

and loathing,” “predilection for cruelty,” and such like” (Winner 1994).

It is interesting to note that some of the criticisms made by Winner and Collins and Yearley
highlighted, even then, the ‘confused’ position ANT adopted. It has taken Latour a number of
revisions and improvements on clarity to make a clean admission to the middle position ANT"
holds between constructivism and realism. Collins and Yearley’s comments about symmetry and
giving agency to non-humans, especially, could be considered to have arisen from this ambiguity
fostered by the authors of ANT. The more recent work of Latour (Latour 1999c, Latour 2005b,
Latour and Weibel 2005) has made a strong attempt to refine the position of ANT.

ANT as Ontology

The use of ANT in this research is somewhat novel, for the intention here is to use ANT
principally as an ontological position, while in other studies it is often subsumed under the socio-
constructivist ontology of interpretivism. Indeed, ANT has proven to be innately flexible and it is
this very flexibility which has allowed it to be ‘folded’ into interpretivist research, despite ANT’s
potentially holding a very decided ontology unique to itself (Cordella and Shaikh 2003). Most
work using this theory such as Walsham (1993a), Hanseth and Monteiro (1996), Bowker and Star
(1996) and Monetiro and Hanseth (1995a, 1995b), to mention a few, have focused explicitly on
using ANT within an interpretivist and/or constructivist approach. Broadly stated, this ontology
sees reality constructed in the interplay of actants'’ as they come together in some form of

interaction; the interpretivist ontology argues that it is the interpreter who constructs reality in

17 Actants is a term created by Latour and Callon to indicate both human and non-human actors, where actants are
defined as “Any element which bends space around itself, makes other elements dependent upon itself and translates
their will into a language of its owrf", (Callon and Latour 1981) (pp286).
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his/her mind. Interpretivism sees reality as constructed in the acts of interpretation of a situation.
In our reading of ANT reality comes into existence in the interaction, when more than one actants
interact, and reality is not in the mind of any individual but is ‘out there’ in the interactions
(Latour 1999a). In ANT the focus is on the constitutive forces found in the interplay among actors
as they jointly define, constitute and construct this reality through associations (Latour 1999c,
Law 1999). Such a theoretical stance is indeed critical towards constructivism, social-

constructivism and hence interpretivism.

It follows that ANT does not only propose a new way of understanding reality; it also introduces
its own epistemology, a distinct way of conceptualising the routes available to an understanding
of that reality, what Latour (1999a) calls ‘realistic realism’ (Stalder 2000). This is explained in
more depth later in this chapter under the section of ‘operationalizing the ontology of ANT”’, but
suffice it to say here that Latour has steered away from ‘conventional’ constructivism to create a

more flexible approach to the research of socio-technical hybrids (Lee and Hassard 1999).

The argument is that ANT has its own distinct ontology which is “more objective than
objectivists” (Latour 2001), and thus there is little room for interpretivism even if ANT has often
been forced to adopt the ontology of interpretivism and thus suppress its own ontology.
Interpretivism is certainly socio-constructivist in nature, but ANT is not. The ontology of
interpretivism deems the interpreter to be in a position to construct reality in his/her mind
whereas, ANT accentuates that reality is constructed by the interplay of two or more actors (both
human and non human), and this reality emerges from such interaction. Therefore for
interpretivism, reality is created in the mind, while for ANT, reality emerges ‘out there’ as action
and interplay — it is performed. These differences in the ontological foundation of ANT and
interpretivism should be taken into consideration when ANT is used to inform research in IS.
These differences impact the very defining of the object of analysis and thus also the outcome.
However, before ANT’s ontology is clarified in more detail there is a need to go back to

interpretivism and constructivism.

Interpretivism

Interpretive research can be distinguished from other kinds of research by the underlying
philosophical assumpﬁoné which guide the work (Klein and Myers 1999, Myers 1997).
Interpretive studies generally attempt to understand IS phenomena through the meanings that
people assign to them, and interpretive methods of research in IS are ‘aimed at producing an
understanding of the context of the information system, and the process whereby the information

system influences and is influenced by the context’ (Garcia and Quek 1997, Walsham 1993b,
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Walsham 2006). Fitzgerald and Howcroft (1998) claim that in interpretivism there is no universal
truth, uncommitted neutrality is impossible and realism of context is important. An alternative
paradigm is suggested by them, critical theory, which is ‘characterized by a realist ontology allied
to a subjectivist epistemology’ (Fitzgerald and Howcroft 1998).

If reality cannot make direct reference to the world "itself," but needs some intermediation so that
nature and social reality are constructed via this intermediation, the task of the researcher is to
interpret and hence explain the processes that are “producing” the phenomenon. Interpretivism,
like positivism, is itself socially constructed, populated with social science researchers whose
shared beliefs include the four concepts outlined by Lee ef al. (1997). First, the subject matter of
interpretative research involves the ‘life world’, which includes humanly created meanings, be
they individually held or those shared by groups. Second, the researcher himself must inevitably
serve as an instrument of observation. Third, interpretation is iterative (hermeneutic) and lastly the

validity of an interpretation can be assessed ’(Lee et al. 1997).

The ontology [nature of reality] would be where each person is considered to construct his or her
own reality (Walsham 1995a, Walsham 1995b). The epistemology [nature of knowledge claims]
of interpretivism is that ‘facts and values are intertwined and hard to disentangle, and both are
involved in scientific knowledge’. We all have our own ‘realities’ as Walsham states, but the
importance of this approach is in understanding how every person’s reality connects with another
persons. For interpretive researchers it is when people create ‘shared realities’ that it becomes
interesting to study. Thus in most interpretative approaches, a central idea is ‘mutual
understanding’ — the phenomenon of a person understanding (i.e. ‘interpreting’) what another
person means, whether it is a person engaged in everyday life taking a natural attitude to
understanding another person in everyday life, or it is a person engaged in scientific research
taking a calculated scientific attitude to understanding everyday people/phenomena in their
everyday lives (Lee et al. 1997).

Much interpretive information systems research is characterized by an explicit intention to
understand the relation of information technology to organizational activity through ‘an
understanding of the context of the information system, and the process whereby the information
system influences and is influenced by its cohtext’ (Walsham 1993b). This is based on the belief
that: ‘the same physical artefact, the same institution, or the same human action, can have
different meanings for different human subjects, as well as for the observing social scientist’ (Lee
1991). Within such IS research interpretivist approaches acknowledge that, although information
systems have a physical component which permits their technical operation, they are designed and

used by people operating in a complex social context (Doolin 1998). Thus, an information system
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is understood (constructed) differently by different individuals, and is given meaning by the
negotiated shared understanding of such phenomena which arises out of social interaction:
“Events, persons, objects are indeed tangible entities. The meanings and wholeness derived from
or ascribed to these tangible phenomena in order to make sense of them, organize them, or
recognize a belief system, however, are constructed realities” (Lincoln and Guba 1985). Much
interpretivist research has also been constructivist in nature, though the two are by no means
inseparable. ANT in particular has been labelled as constructivist, and till rather recently the

authors of this theory themselves admitted to the same.

Constructivism and Social Constructivism

Crotty (1998) endeavours to define constructivism, constructionism and then social
constructivism. The first two are very close but differ in the respect of individual versus a
collective construction of reality. Crotty explains that constructionism is not about creating
meaning but about constructing meaning. Constructivism, according to Crotty, is a term “reserved
for epistemological considerations focusing exclusively on ‘the meaning-making activity of the
individual mind’ and proposes to use constructionism where the focus includes ‘the collective
generation [and transmission] of meaning’” (1998, p58). Social constructionism or constructivism
mean different things to different people. Crotty explains the difference effectively when he says
that some “understand social constructionism as denoting ‘the construction of social reality’ rather
than ‘the social construction of reality’. The difference lies in whether you believe that there is an
objective reality ‘out there’ which you then understand in your own way [which is the social
construction of reality] or if you believe that all reality is socially constructed and no object or
thing has any significance other than the one given to it; a chair is a chair only because we ‘see’ it

to be a chair and if we hadn’t been told that it is a chair we may not even have noticed it at all.

. Latour (2003) also makes a distinction between constructivism and social constructivism, as does
Crotty, but many writers in this field conflate these concepts and thus use these terms
interchangeably. This is the reason why Sismondo (1993) and others who have tried to provide a
taxonomy of constructivism end up by suggesting that it is not worthwhile to make a distinction.
Perhaps this could help to explain somewhat how the ‘science wars’ went on for as long as they
did because there are and were too many diverging definitions of even constructivism, let alone
actor network theory. Latour (2003) believes such a distinction is necessary because the word
‘social’ before constructivism gives the wrong impression that ‘the construction is made of social
stuff” rather as if it implied certain ingredients and that is why he insists on using ‘constructivism’

and more recently, constructive realism (Latour 1999c).
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Writers such as Bijker, Hughes and Pinch (1987) in the 1980°s could be called the pioneers of the
social constructivist approach (Brey 1997). Not surprisingly, this approach is frequently
consideredv synonymous to the Social Construction of Technology [SCOT] approach of Pinch and
Bijker (1987). Berger and Luckmann (1966) may not have invented the phrase ‘social
construction’ (Sismondo 1993), and albeit the recent understanding of this phrase is quite diverse
from theirs (Knorr Cetina 1993), but their book The Social Construction of Reality laid the
foundation for sociology studies and merits a mention here. This book has two parts, one which is
devoted to ‘society as objective reality’ [the ‘out there’ position] and the other to ‘society as
subjective reality’. However, before they begin on these they spend some time discussing two
social processes, legitimation and institutionalisation. They then explain subjective and objective
reality in terms of the above social processes. Society as objective reality is explained through an
example of a child moving to a new place and, as everything is new, how he accepts many rules
as they are, so for him this is an objective reality. In other words it already exists out there and he
begins to accept the rules and culture of the place. However, as soon as you begin to follow the
rules of a society, even after coming to a better understanding of them, and perhaps not even
agreeing with them you still reify them because as everybody else takes them to be ‘real’ you end
up having to reinforce them as well. This locks in both social processes of legitimation and
institutionalisation and also explains sociecty as subjective reality. So we move from an objective
reality to a subjective one through the process of first legitimising rules, which then over time

institutionalises them, and as such everybody contributes to their social construction.

Orlikowski and Baroudi (1991) continue with the tradition to define constructionism and social
constructivism. They attempt to distinguish, perhaps not too convincingly, between weak and
strong constructionism, where weak constructionism denotes minimal or no intervention of the
researcher into the study, thus it is more about describing the agents and what and why they are
doing what they do. However, ‘strong’ constructionism is described more as an intervention by
the researcher because in order to make sense of the study s/he needs to be a part of it and thus
construct it too. The former may be allowed by positivists but the latter is the exact opposite.
Though a distinction is made between the two types it is less than convincing. Brey (1997)
develops another classification, based roughly on the categories developed by Bijker and Law
(1992), Sismondo (1993), Collins and Yearley (1992a), Woolgar (1991) and Grint and Woolgar
(1995). His taxonomy included strong social constructivism, mild social constructivism and actor

network theory.
Strong social constructivism, according to Brey (1997), is affected by a need to ‘vigorously

uphold the principle of symmetry’ where ‘technology is a genuine social construction’ and

genuine here implies stabilization. This includes the SCOT approach. Mild social constructivism
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refers to the ‘more moderate’ approaches such as the ‘social shaping’ ones developed by
MacKenzie and Wajcman (1985) and MacKenzie (1990). This approach differentiates between
society and technology and though they admit that technologies do have a role and even
properties they come back to the belief that this is only so because technology is éocially
constructed. Actor network theory (Callon 1987, Callon and Latour 1992, Latour 1987) is similar
to strong social constructivism but the difference is that ANT relates to a generalized symmetry
where the emphasis is not on the social elements, indeed, stabilization is ‘not the result only of

social factors’ (Brey 1997).

Hacking (1999, p6) came up with yet another classification which is summarized in his words,
“Social constructionists about X tend to hold that: (1) X need not have existed, or need not be at
all as it is. X, or X as it is as present, is not determined by the nature of things; it is not inevitable.
Very often,. he suggests, they go further, and urge that: (2) X is quite as bad as it is. (3) We would
be much better off if X were done away with, or at least radically transformed”. Luckily we do
come out of that tangle with Hacking (1999, p48) supplying us with a definition of social
constructionism, “Hence by constructionism (or social constructionism if we need, on occasion, to
emphasize the social) I shall mean various sociological, historical, and philosophical projects that
aim at displaying or analyzing actual, historically situated, social interactions or causal routes that

led to, or were involved in, the coming into being or establishing of some present entity or fact”.

Sismondo’s (1993, p516) constructivism classification consists of “(a) the construction, through
the interplay of actors, of institutions, including knowledge, methodologies, fields, habits, and
regulative ideals; (b) the construction by scientists of theories and accounts, in the sense that these
are structures that rest upon bases of data and observations; (c) the construction, through material
intervention, of artefacts in the laboratory; and (d) the construction, in the neo-Kantian sense, of
the objects of thought and representation”. But what interests us is Sismondo’s (1996) ‘creeping
realism’. This he equates with what he calls Latour’s ‘heterogeneous constructivism’ because
Latour’s ideas involve both human and non-human but also because such a take on constructivism

is prone to ‘realism’. So where does ANT stand then, within constructivist approaches or realist?

Part of that question can be answered by retracing the difference between constructivism and
constructionism. If one does try to categorize ANT as either constructivist/constructionist or
objectivist, it needs to be clarified again that constructivism is closer to objectivism than
constructionism could ever be. “Constructivism describes the individual human subject engaging
with objects in the world and making sense of them. Constructionism, to the contrary, denies that
this is what happens... Instead, each of us is introduced directly to a whole world of meaning”

(Crotty 1998, p79). As a result, constructionism, by making it clear that there is a reinforcing
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culture already present which is constructed socially leaves little room for objectivist ideas [ideas
such that ‘truth and meaning reside in objects independently of any consciousness’ (Crotty 1998,
p42)]. Again, Orlikowski and Baroudi’s (1991) weak constructionism, because this allows a
certain amount of freedom to the objects of study to ‘speak’ for themselves, does let ANT squeeze

through onto a common ground, albeit a rather grey one.

Numerous taxonomies have thus been developed to make sense of the diverse work carried out
under the umbrella term, constructivism. The significance of such taxonomies for this work lies in
the question as to where, or if even, ANT can be placed in the work called constructivist. As can
be seen from the above classifications, there is no one definitive definition of constructivism, and

there are far too many differing classifications.

Ontology of ANT

“All the absurdities [which] I have disputed
Jor twenty-five years [are]: that science is
socially constructed; [and] that there is no
reality out there; ... such nonsense’’(Latour
1999c¢, pp299-300).

We are meant to be surprised when Latour’s friend asks him the question “Do you believe in
reality?” (Latour 1999c¢, pl) but there is more to that cryptic question than is apparent. Where is
this reality, and where do we study it? Is it ‘out there’ or in our minds? “Why, in the first place,
did we even need the idea of an outside world looked at through a gaze from the very
uncomfortable observation post of a mind-in-a-vat?” (Latour 1999c, p12) Latour stresses that we
don’t need to construct an oqtside world, just so that we can sit and view it from the ‘inside’
because there is a reality but it is not ‘out there’. Reality is created in the very act of actants
coming together in some form of interaction, “There is no sense in which humans may be said to
exist as humans without entering into commerce with what authorizes and enables them to exist
(that s, to act)” (Latour 1999c, p192) and Latour repeats the same for non-humans. Callon (1987)
explains the same concept of ANT, but from the point of view of the network, “The actor network
is reducible neither to an actor alone nor to a network.. An actor network is simultaneously an
actor whose activity is networking heterogeneous elements and a network that is able to redefine

and transform what it is made of”.

There is thus a strong objective stance within ANT, and Latour (2005b) makes this claim more
openly and strongly in his recent article than in any of his previous work, even Pandora’s Hope,
so when the imaginary LSE student asks him, “Surely you don’t want to say you are of the

objectivist type?” Latour replies with an emphatic “You bet I am!”. Of course this confession is
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not without some problems. Isn’t the idea that we are interpretivist and subjective human beings
taken as a given? Latour’s response to any such claim is that when we are enjoying the sight of
some beaufiful sculpture it is not us, the viewer, who brings subjectivity to the situation but the
object instead because, “If you can have many viewpoints on a statue it’s because the statue itself
is in three-dimensions and allows you, yes, allows you to turn around it. If something supports
many viewpoints, it’s just that it’s highly complex, intricately folded, nicely organized, and

beautiful, yes, objectively beautiful”.

Actor network theory, seen in this way, clearly sets itself against the notion of constructivism.
ANT maintains that the constitutive forces in the interplay among actors themselves define,
constitute and construct this interplay (Latour 1999a, Law 1999). This theoretical stance is indeed
critical towards constructivism, social-constructivism and hence interpretivism. The essence of
the theory, as used here, stands in the argument of the co-definition and co-evolution of objects
and humans, both called indistinctly, actors. Thus, the constitutive essence of actor network
theory cannot be confused with the constructivist assumption of interpretivism. It follows that
ANT does not only propose a new way of questioning reality, it also introduces a new way of
conceptualising the understanding of reality. What Latour (1999¢) calls “realistic realism’ (Stalder
2000). This argues that reality does not exist per se, but states that the construction of reality is
achieved through the interplay between different actors, both human and non-human, with

symmetric constitutive characteristics (Latour 1987, Law 1992, Law 1999).

It is not altogether true that ANT is constructivist but then again nor is it convincing to say that
ANT is not constructivist. It may be better understood as a particular flavour of constructivism
which is not conventional at all but does involve certain elements, or how Sismondo (1996) would
describe ‘creeping realism’, In ANT information technology and users are not defined outside
their relationship but in their relational networks. This consideration moves the focus of the
analysis from the actor, either human or non-human, towards a more complex and less defined
phenomenon, that is the interaction. This change in focus not only affects the analysis of the
phenomena, but also the assumptions about the nature of the entities that constitute the
phenomena. Actor-network'® theory rather incites us to reconsider sociotechnical relationships as
an open ended set of interactions where the actors of the sociotechnical interplays do not pre-exist
the relationships; the actor is generated in and by these relationships. It has a “relational

materiality” (Law 1999) i.e. actors achieve their form and attributes as a consequence of their

18 Originally this theory was named with a hyphen between the words actor and network but most of the time this hyphen
is either dropped or ignored, even by Latour and Callon. Latour (Latour 1999b) (pp15 and 21) made an explicit mention of
this hyphen to explain why this is one more reason why ANT has been misunderstood. It draws one back into a discussion
over agency and structure which according to Latour actually emerges from a deeper problem stemming from a ‘world
outside’ and a subjective inside.
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relations with other actors. This reflects an aversion to accept a priori the pre-existence of social
structures and differences as somehow intrinsically given in the order of things. There are no
distinctions between social and technical subsystems. It is the relationship that produces the -
actors, emergent from the very interplay among different, human and non-human, entities. There

is no case of a local or global dimension here, only a relational one (Latour 1999a).

However, and this is where the complexity and power of the theory emerges, the actors that are
part of the network, where Callon defines a network as a “group of unspecified relationships
among entities of which the nature itself is undetermined" (Callon 1993), are also the constitutive
elements of the network. Therefore, the concept of actor and network are concatenated and cannot
be defined without the other — thus we have an actor-network. "The actor network is reducible
neither to an actor alone nor to a network....An actor network is simultaneously an actor whose
acti.vity is networking heterogeneous elemerits and a network that is able to redefine and
transform what it is made of" (Callon 1987). In ANT actors are not defined and analysed in a
stable set of relationships: It is the researchers who artificially define the analytical range of the
study to see “what the various actors in a setting are doing to one another” (Akrich and Latour
1992). By limiting the level or focus of the investigation it is possible to study and understand
some of the relationships that are shaping both actors and the relational networks. However, it
must remain clear that actors and actor-networks are naturally embedded in open ranges of
relationships that cannot be artificially limited by the scope of any particular analysis. Actor
network are “open ended” and can only be artificially (but usefully) closed and isolated from the

broad and natural openness of relationships.

The complexity of the relational pattern in an actor-network is given shape and structure when all
the actors in the actor-network embody the same level of flexibility. Actors embody various
characteristics that are the outcome of their relationships with “heterogeneous elements, animate
and inanimate, that have been linked to one another for a certain period of time” (Callon 1987).
These characteristics are renegotiated in the interplay with other actors. An actor-network
embodies these characteristics so that the outcome is the result of “a set of diverse forces” (Akrich
1992) that affect and define the inter-networked relational settings. These forces can be
considered as an embodiment of prescriptions by the actors. A prescription is defined as “what a
device allows or forbids from the actors -humans and non-humans - that it anticipates; it is the
morality of a setting both negative (what it i)rescribes) and positive (what it permits)" (Akrich and
Latour 1992). A point worth mentioning here is that as can be seen networks do have their own
morality; but ANT doesn’t want the researcher to bring his/her morality to the study because this

would then colour what the ‘reality’ is as reality is created by the actors being investigated. This
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responds to Winner’s fourth criticism about how constructivism, and particularly ANT, fails to

take a moral stance.

If an actor is analysed in isolation (taken out from the network) it may be seen to embody specific
inscribed characteristics that may strongly affect the configuration of the contextual relational
network under analysis. But people and technology “are never located in bodies and bodies alone,
but rather that an actor is a patterned network of heterogeneous relations, or an effect produced by
such a network” (Law 1992). As a consequence, actors do not embody, in isolation, action or
actantiality (potential for action) but it is their relational dimension that generates instances of
action (Latour 1999a, Law 1992). Such actantiality is generated in a process of negotiation. A
process which is circular and recursive, the course that defines and redefines actors in their
multiple contexts. Actors are in action and, as a consequence, in a continuous state of mutation.
This continuous relational interplay is the performative characteristics of actor networks, where

actors are in fact “performed in, by, and through relations” (Law 1999, p7).

Actors, in their interplay within the actor-network, negotiate their forces in a process of
translation. "By translation we understand all the negotiations, intrigues, calculations, acts of
persuasion and violence thanks to which an actor or force takes, or causes to be conferred to itself,
authority to speak or act on behalf of another actor or force." (Callon and Latour 1981).
Translation is the circular process of “interpretation” or as Callon (1991) puts it, the “definition”

that every actor makes of other actors in the actor-network.

Finally, recalling the concept of circularity of the actor-networks relations, it is clear that every
actor-network affects and is affected by the characteristics of the actors and then by the different
interests the actors bring to the actor-network. Every actor can bring characteristics that have
emerged from other actor networks to which it belongs, because an actor can and usually does
belong to more than one actor-network at one time. Recursively, new, emergent characteristics are
re-proposed back into the other actor-networks. This circularity can explain the action that is

endogenous to the relational interplay analysed by actor-network theory.

Constructive Realism or Realistic Realism'??

Lee and Hassard (1999) suggest that ANT is ‘ontologically re}ativist, in allowing the world to be
organized differentially, yet empirically realist in providing “theory-laden” descriptions of
organization’. Such ‘ontological slipperiness’, stress Lee and Hassard (1999) and even Doolin and

Lowe (2002), can be very valuable in studying organizations, and their practices and forms,

19 Latours phrases from Pandora’s Hope (1999) p135 and p15, respectively.
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because “if we are to have successful organizational form now, it must emerge through interaction
and negotiation, and if we are to respect organizational form as an emergent property of
relationships, we must allow that form to change at a moment’s notice” (Lee and Hassard 1999).
The authors explain how this ontological relativity and empirical realism makes ANT more
‘flexible’. This is based on their idea that ANT never created boundaries, indeed Latour and
Callon made a real attempt to keep this theory in a ‘state of permanent revolution’ (Lee and
Hassard 1999). As Latour (1999b, p20) points out, “From the very beginning, ANT has been
sliding in a sort of race to overcome its limits and to drop from the list of its methodological terms
any which would make it impossible for new actors (actants in fact) to define the world in their

own terms, using their own dimensions and touchstones”.

Latour sums up his dilemma with ANT by drawing on the example of Pasteur at work on his
lactic acid yeast in his laboratory “An experiment shifts ouf”’ action from one frame of reference
to another. Who is acting in this experiment? Pasteur and his yeast. More exactly, Pasteur acts so
that the yeast acts alone. We understand why it is difficult for Pasteur to choose between a
constructivist epistemology and a realist one: he creates a scene in which he does not have to
create anything. He develops gestures, glassware, protocols, so that the entity, once shifted out,
becomes automatic and autonomous. According to the ways in which these two contradictory
features are stressed, the same text becomes constructivist or realist” (Latour 1992). This is the

crux of what Latour calls constructive realism.

So, for Latour (1999c, p296) “There is no world outside, not because there is no world at all, but
because there is no mind inside, no prisoner of language with nothing to rely on but the narrow
pathways of logic.” He (Latour 1999c, p281) goes on to explain what he means by constructive

realism through an analogy of creation,

“...whenever we make something we are not in command, we are slightly overtaken
by the action... Thus the paradox of constructivism is that it uses a vocabulary of
mastery that no architect, mason, city planner, or carpenter would ever use. Are we
fooled by what we do? Are we controlled, possessed, alienated? No, not always, not
quite. That which slightly overtakes us is also, because of our agency, because of the
clinamen® of our action, slightly overtaken, modified. Am I simply restating the
dialectic? No, there is no object, no subject, no contradiction, no Aufhebung”, no
mastery, no recapitulation, no spirit, no alienation. But there are events. I never act; I

2 ‘Shifting out is a semiotic expression that describes the possibility of displacing action-into another time, another space,
or another actant. On its use in scientific text, see Latour (Latour 1988c)
‘Shifting i means dosing the first shift by reverting to the original frame. I have introduced "shifting down" to express
the delegation to technical objects: see Latour (Latour 1994).
2 an inclination, bias - The round and the square would, by certain clinamina, unite. An insensible clinamen (to borrow a
Lucretian word) prepares the way for it. No old word; which, with a slight clinamen given to its meaning, will answer the
purpose.

Abolition
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am always slightly surprised by what I do. That which acts through me is also
surprised by what I do, by the chance to mutate, to change, and to bifurcate.”

Constructive realism is then a way of expressing how agency is passed to non-human actors. Thus
allowing them to really make a difference instead of just passive objects. Non-humans can in turn
pass back some of this agency to humans again. Latour and Johnson (Latour 1988a, Latour and
Johnson 1995, p263) calls this prescription, “the behaviour imposed back onto the humans by
nonhuman delegates. Latour’s ideas of constructive realism are operationalized below and
Latour’s constructive realism can be seen ‘in action’. Suchman (1987, 1998) links the idea of
agency with performativity and stresses that “the price of recognizing the agency of artifacts need
not be the denial of our own. Agency — and associated accountabilities — reside neither in us or
nor in our artifacts, but in our intra-actions. The question ... is how to figure our differences in

such a way that we can intra-act responsibly and productively with and through them”.

Operationalizing the Ontological Concepts of ANT

In order to apply the ideas of constructive realism we must operationalize them. Latour and
Callon have provided us with such vehicles in the form of circulating references etc but a very
simple way to understand this would be, “If we display a socio-technical network — defining
trajectories by actants’ association and substitution, defining actants by all the trajectories in
which they enter, by following translations and, finally, by varying the observer’s point of view —
we have no need to look for any additional causes. The explanation emerges once the description
is saturated” (Latour 1991, p129). Simply, but exquisitely put, this describes one way ANT can be
operationalized because ANT is about intense description which leads the researcher to
understand and ‘see’ what transpired and how reality was created. The researcher must allow the
actants to ‘speak’® for themselves and not put words in their mouths. Any attempt to interpret the
actants in the heterogeneous networks would invalidate the first principle given by Latour, and
Amsterdamska (1990) would seem to agree. Moreover, using the ontological dimension of ANT,
this attempt would simply become an action of merely ore of the actors in the network instead of
an interplay, thus it seems that ANT considers reality to be “emerging out there” while

interpretivism states that reality is constructed via interpretation.

We can also look to certain tools which might be used for this explanation and description;
circulating references, immutable mobiles and the concept of centres of calculation. This research
has used a combination of these three, along with ideas of shifting in and out to explain how

‘learning’ circulates, grows, changes and evolves in open source software creation,

2 For more on actants ‘speaking’ see Pouloudi, A. and Whitley, E. A. (Pouloudi and Whitley 2000)
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Circulating Reference

The concept of circulating reference is used both as an instrument which allows something to be
studied and at the same time it clarifies what Latour means by constructive realism. In order to
study something much too large or complex, like the forest in Pandora’s Hope or a large
community of open source developers, you need to be able to extract from that complexity
something manageable and transportable. However, you then risk losing any sense of the greater
object. Latour believes that scientists rely on what he calls the circulating reference to keep the
link between the samples they collect and the more complex whole that those samples were a part

of. These samples are a representation of the original object of study.

The origin of the word reference is the Latin ‘referre’ meaning “to bring back” (Latour 1999c,
p32). Latour’s use of this word is subtle because the ‘reference’ both extracts from the object of
study but then draws this information back into the line of discourse. There is a heavy leaning into
semiotics and the concept of circulating references draws on this area through its use of ‘internal
referents’ and both ‘shifting in” and ‘shifting out;. A reference is a sign which signifies something
else, thus the sign is an indication for something. Latour gives the example of the forest of Boa
Vista and how the soil samples taken by the scientists are a reference of the larger forest. They are
a part of the forest but in the laboratory of scientists these references play the role of ‘being’ the
forest. Now how is this leap between the object of study to its reference actually achieved? A
laboratory dish full of a soil sample does not immediately conjure up the image of a real forest

and yet to the scientists this soil is a way not only of ‘seeing’ the forest but of magnifying it.

How is a link made between the object and the reference in the first placé? Many things, words or
even ideas can be a reference for an object because “one never travels directly from objects to
words, from the referent to the sign, but always through a risky intermediary pathway” (Latour
1999c¢, p40) . In Latour’s study of the scientists at work in the forest it was pictures of the forest,
branches from trees, soil samples, labels on various trees, maps etc. In this research on open
source a single thread of conversation on a specific topic printed out is a reference for the larger
community of open source developers. However, going back to the forest, a branch snapped off
and taken back to a laboratory is a reference, not only for that tree but perhaps the entire forest as
well. The branch will be carefully labelled, coded, classified, categorized and stored in a specific
area. It is this process that this branch goes through from selection onwards to being studied and
stored in a laboratory that helpS to create the reference, and “what a transformation, what a
movement, what a deformation, what an invention, what a discovery! In jumping from the [tree]

to the drawer, the [tree branch] benefits from a means of transportation that no longer transforms
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it. Having made the passage from a [tree branch] to a sign, the [branch] is now able to travel
through space without further alterations and to remain intact through time” (Latour 1999c, p51).

A strong connection between the object and the reference is essential, and this ‘gap’ is traversed
by a series of tiny connections “we never detect the rupture between things and signs... We see
only an unbroken series of well-nested elements, each of which plays the role of sign for the
previous one and of the thing for the succeeding one” (Latour 1999¢c, p56) . Each tiny connection
connects to the previous connection but not to the one before that so in effect we have a chain
where if one link is broken then the reference fails to make the link to the object so, “No step —
except one - resembles the one that precedes it, yet in the end, when I read the field report, I am
indeed holding in my hands the forest of Boa Vista. A text truly speaks of the world. How can
resemblance result from this rarely described series of exotic and miniscule transformations
obsessively nested into one another so as to keep something constant?” (Latour 1999c, p61).
However, one thing that needs to be pointed out here is that this is about aligning these

connections and not about resembling the preceding ones.

Now we have the link between the object and reference but what purpose does this serve? This
brings us back to how these references serve as magnifying devices. Latour explains this through
‘reduction’ and ‘amplification’. The branch reference no longer shows us the finer’ details
available to us if we study the real and entire forest and we also ‘lose locality, particularity,
materiality, multiplicity, and continuity’, but on the other hand this reference now allows us to
gain ‘greater compatibility, standardization, text, calculation, circulation, and relative
universality’ (Latour 1999c, p70). These changes are respectively called reduction and

amplification.

For Latour (Latour 1999c¢, p80) facts circulate and are followed in order to reconstruct the system,
“Phenomena are what circulates all along the reversible chain of transformations, at each step
losing some properties to gain others that render them compatible with already-established centres
of calculation” (Latour 1999¢, p71-72). Thus the circulating reference is called thus because it is
always in motion and while in motion it tends to take on new layers and facts while dropping
others, in other words it is produced ‘when immutable mobiles are cleverly aligned’ (Latour
1999c¢, p307). This is a simple but persuasive idea which is evident in open source development.
Patches move in search of acceptance, and on this journey they both lose and gain properties as

they pass from actor to actor.

How does the circulating reference concept help explain ANT as realist and objectivist? The

circulating reference is ‘constructed’ by the scientists in steps but eventually becomes more realist
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because it speaks to us louder and clearer then could the real object. For example, the Boa Vista
forest was too large to study and understand standing in it, but by collecting the samples and
reconstructing the forest in a laboratory, the scientists were able to make real sense out of it. From
this point on the references took on a role of their own and began to interact and construct reality
in their acts of interaction. So a reference “does more than resemble. It takes the place of the
original situation, which we can retrace, thanks to the [references]”. However, ‘it replaces withou_t
replacing anything. It is a strange transversal object, an alignment operator, truthful only on
condition that it allow for passage between what precedes and what follow.;; it” (Latour 1999c,
p67). And of course here “the stress is on the granting of agency — the inscriptions have to be
- inscribed and the immutable mobiles have to be created and to gain assent. But once the agency
has been granted, the inscriptions gain a degree of autonomy. They can compel further assent. It is
in this that their immutability lies” (Collins and Yearley 1992a) and the ‘realism’ of Latour’s

constructive realism.

Amsterdamska (1990), in a review of Latour’s Science in Action, criticized ANT and Latour for
trying to strike an uneasy balance between his realism and constructivism. This critique hinged on
Latour’s first principle, which states, “The fate of facts and machines is in later users’ hands; their
qualities are thus a consequence, not a cause, of collective action”. Amsterdamska (1990) insists
that this is the most direct proof of the social constructivist nature of ANT. However, I disagree
with her interpretation because though I understand that in his early work Latour never explicitly
made any claim here he aims to show that it takes more than one inscription to build a circulating
reference. The point Latour is trying to make in the first half of the sentence is that fate of any fact
is left to the people who follow this experiment over and over in order to bring out some new
element each time. Knowledge here is accumulative and dependent on how strongly the
immutable mobiles are aligned to stop the circulating reference from losing momentum. It is not
the first person who carries out this experiment who is the most important, it is all the people who
follow it up and test it because this is the process of creating a circulating reference. How these
people choose their reference and then allow it to amplify itself is important and that is why this is
a consequence and not a cause of collective action. The circulating reference takes on a role and

life of its own and thus constructs its own reality.

Centres of Calculation and Immutable Mobiles

Closely linked to the concept of circulating reference is that of centres of calculation. Immutable
mobiles are created and combined in ‘centres of calculation’, ahd immutable mobiles allow
centres of calculation to ‘act at a distance’. Centres of calculation are concerned with making

implicit knowledge explicit. The process of knowledge acquisition takes a scientist/ researcher
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through the steps of gathering Jocal knowledge from actants and converting it to universal
knowledge which then helps to shape the ‘fuzzy beliefs’ gathered from the actants into ‘certain
and justified knowledge’ (Latour 1987, p216). Knowledge, here means, “how to bring things back
to a place for someone to see it for the first time so that others might be sent again to bring other
things back. How to be familiar with things, people and events, which are distant”” (Latour 1987,
p220). Latour uses the example of early explorers venturing forth to discover new lands. The
explorers, through their interaction with the local people, gathered knowledge which they brought
back with them. The first explorer didn’t have any past collected knowledge to guide him in this
discovery but when he takes the knowledge he gains back with him and renders it more logical
and compact, he then has some legacy for the next group of explorers who follow in his footsteps.
If this next group have had access to the first explorer’s collection of knowledge then they won’t
see the new land for the first time even for themselves, because the first ‘glimpse’ of the land will
have come to them through their perusal of the collected knowledge. So now when they do go to
this land they will be in a position to build on the knowledge gained by the previous explorers and
bring this new knowledge back to add to the knowledge base.

Thus centres of calculafion act at a distance, which means that they somehow bring ‘home’
events, ‘places and people’ which are in fact distant and they manage this by ‘inventing’ ways to
make them mobile, stable and combinable, “a) render them mobile so that they can be brought
back; b) keep them szable so that they can be moved back and forth without additional distortion,
corruption or decay, and ¢) are combinable so that whatever stuff they are made of, they can be
cumulated, aggregated, or shuffled like a pack of cards” (Latour 1987, p223). This is the process
of ‘calculation’ and at the centre is the events, people and places which are being changed into

immutable mobiles.

These centres of calculation or traces also make backtracking possible, so one can move from the
centre to the periphery and back again, And it is this calculation and backtracking that, once
caught in the centre, can then be condensed onto ‘paper’. Like circulating references, or perhaps
because of the link between them and centres, the traces in the centres have to be tightly linked
together. Each link leads to a greater degree of abstraction, “which is the process by which each
stage extracts elements out of the stage below so as to gather in one place as many resources as
possible” (Latour 1987, p241). Statistics, according to Latour is a fine example of abstraction,
managing very succinctI;', to condense a large amount of data, but this data is linked closely to the
phenomenon of study and the scientist can trace his way back from this centre to the object of

study.
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Moser and Law (2006) differentiate between calculation and qualculation. They understand
immutable mobiles to be mutable rather than immutable. Calculation, they insist, can be ‘taken to
be mechanical and algorithmic in form. The implication is that it demands information that is
relatively clear and codified, information that holds its shape’ (2006, p58). However, they argue
that often information does not hold its shape, and instead it changes as it moves so rather than
being immutable it is a mutable mobile. As information circulates it changes and adapts both its
content and form, thus information is performative and able to generate something novel. This
nature and ability of information they name as qualculability. It is through performance that
agency emerges, a hybrid agency that belongs to neither human or non-human exclusively but
only comes into existence as part of the performance of the collectif (Callon and Law 1995), thus
‘politics is no longer limited to humans’(Latour 2005a, p31). This multifaceted and interesting

idea of a mutable mobile is something we intend to explore in more depth later in the thesis.

Centres of calculation and circulating references are also intertwined because it is the centres of
calculation that enable creation of immutable mobiles which can go on to be strongly aligned to
become a circulating reference. And both these concepts are extremely useful for this research
because when used together they will help to analyse and explain how learning occurs in open
source communities and more specifically through version control tools. These ANT concepts
allow for the detail that reality is actually constructed in the very interaction of actants and is not a
construction in a person’s mind. There is a “totally different ‘outside’ now that epistemology has

been turned into a circulating reference” (Latour 1999b, p23).

Version control tools are a way of “transforming the juxtaposed set of allies into a whole that acts
as one to tie the assembled forces to one another, that is, to build a machine. A machine, as its
name implies, is first of all, a machination, a stratagem, a kind of cunning, where borrowed forces
keep one another in check so that none can fly apart from the group” (Latour 1987, pp128-129).
Open source is a strange blend of technology and humans where you have developers, code, tools,
the Internet, different communication and governance modes. Thus it lends itself to an ANT
scrutiny. Kavanagh and Araujo (1995) explain that “within [a] script are inscribed a series of
instructions called a programme of action (Akrich 1992). A simple example of a programme of
action is a line of code or ‘an IF ... THEN statement’ (Kavanagh and Araujo 1995). The writing of
a programme of action is a process of inscription and when these programmes of action are
successfully enacted they create a transformation and thus time (Kavanagh and Araujo 1995). If
one were to make a fleeting or superficial analysis of open source one could say that it is all about
creating code of which the source can be read, changed, amended and learnt from. And the above
example from Kavanagh and Araujo (1995) shows quite neatly how ANT aids in doing this and

more.
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Circulating references and centres of calculation take us further than just a slim description. They
help to explain how learning itself happens in open source communities. Both concepts show how
a strong and unbreakable link is needed to allow for following the traces but more importantly
they reflect how learning is about small additions being made to something over time which allow
every actant that comes in contact with it to grow and expand in one respect but also the ability to
funnel and sift out the key features needed, in other words abstraction. It is all about adding to
some findings and getting a better ‘view’ because you are now sitting on a greater number of
inscriptions and can thus ‘see’ further and have a better understanding, “it is important for us to
do justice to the cleverness of this additional work going on in the centres without exaggerating it

and without forgetting that it is just that: additional work” (Latour 1987, p236).

Every version of software is a combination of knowledge gained and accumulated slowly as it
moves further and further away from the original so “If we fail to recognize how much the use of
a technique, however simple, has displaced, translated, modified, or inflected the initial intention,
it is simply because we have changed the end in changing the means, and because, through a
slipping of the will, we have begun to wish something quite else from what we at first desired. If
you want to keep your intentions straight, your plans inflexible, your programmes of action rigid,
then do not pass through any form of technological life. The detour will translate, will betray,
your most imperious desires” (Latour 2002, p252). If we consider what constructive realism can
help us to see and explain then perhaps it will be easier to understand why a pure constructivist
approach would not have been useful or perhaps even half as interesting. In open source learning
and software development go hand in hand and this is what creates reality. Actors in the form of
developers allow the actants to gain a certain degree of agency (Jones 1998) and from the moment
of attaining agency actants become independent of the actors and are thus able to take some
control. This very key, interesting and even ambitious approach is worth exploring because it has
the potential to make a real contribution to learning theories, open source process understanding,
and to actor network theory. Such nuances would be entirely missed if a social constructivist

.

approach had been taken in this work.

Shifting out and Shifting in: Parallel Time Dimensions

Latour (1995, p275) defines shifting out as ‘any displacement of a character either to another
space or to another time or to another character’ [see Fig 5 and 6]. It is a semiotic expression and
these three types of shifting out are called spatial, temporal or actorial, respectively (Latour
1988c, pS). Shifting in reverts one back to the ‘original frame’ and shifting down denotes
‘delegation to technical objects’ (Latour 1992). Shifting thus creates delegates. More than one
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delegate is needed to verify ‘reality’. One person’s reading of the occurrence, or even two for that
matter, would not be enough to substantiate any claim made by one. It is hoped that a third
delegate would agree, at least partly, with one of the other delegates, thus confirming some event.
The internal referent is what is used to compare the versions of the incident from various
delegates. This step is also followed by the internal referent being compared and matched with the
underwritten referent [see Fig 6], ‘the internal referent of the text is complemented, asserted,
evaluated by its adequation, fit, superimposition, to another referent that I will call underwritten
(or subscribed) because it is made of another set of inscriptions that establish the credibility of the

ones used in the text to establish the reference of the narration’ (Latour 1988c, p13).

Shifting implies delegation and a movement between time and space. Centres of calculation are an
accumulation of many traces where time and space is constructed locally; and this links with both
Mol (1999) and Kavanagh and Araujo’s (1995) ideas of multiplicity. Kavanagh and Araujo
(1995) consider the notion of time construction using the concepts of ANT. They draw an analogy
with the Japanese art of creating objects through paper folding, Origami, and how time is
“networked, inscribed, folded, durable and dynamic” (Kavanagh and Araujo 1995) — what they
called chronigami. “Time is the distant consequence of actors as they seek to create a fait
accompli on their own behalf that cannot be reversed... Time does not pass. Times are what are at
stake between forces. Of course one force may overtake the others, but this can only be local and
temporary because permanence costs too much and requires too many allies” (Latour 1988c,
p165). The Origami analogy is extended to networks and objects, “the objects themselves may be
quite robust and easily retain their shape. Paradoxically, they are also very fragile and are often
discarded once completed” (Kavanagh and Araujo 1995) so it is the very act of inscribing that
attracts attention. Once ‘durable’ inscription is achieved, or irreversibility in ANT terms, then the
object fades into the background, unless and until some competing actant manages to draw this
attention away. It is ironic that this attention can only be regained by this object if it breaks down
because smooth operation becomes something implicitly expected. It is this fragility or varying
degrees of durability which allows for new associations to build and society is thus able to
recursively reproduce itself (Law 1992). Latour (2002, pp248-249) explains the role played by

technology in folding time and space,

“What is folded in technical action? Time, space and the type of
actants, The hammer that I find on my workbench is not
contemporary to my action today: it keeps folded heterogeneous
temporalities, one of which has the antiquity of the planet,
because of the mineral from which it has been moulded, while
another has that of the age of the oak which provided the handle,
while still another has the age of the 10 years since it came out of
the German factory which produced it for the market. When I
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grab the handle, I insert my gesture in a ‘garland of time’ as
Michel Serres (1995) has put it, which allows me to insert myself
in a variety of temporalities or time differentials, which account
for (or rather imply) the relative solidity which is often associated
with technical action. What is true oftime holds for space as well,
for this humble hammer holds in place quite heterogeneous
spaces that nothing, before the technical action, could gather
together: the forests of the Ardennes, the mines of the Ruhr, the
German factory, the tool van which offers discounts every
Wednesday on Bourbonnais streets, and finally the workshop of a
particularly clumsy Sunday bricoleur”.

Shifting Out and In The Underwritten Referent

out

Space-time 2

>in
Internal referent Internal referent ¢

S -ti 1 .
pace-time underwritten referent

Figure 5: The two basic semiotic operations, Figure 6: Source - Latour (1988c, pl4)
shifting in and shifting out (Source: Latour
(1988c, p6)

Kavanagh and Araujo’s (1995) interpretation of time is interesting because according to these
authors there is no universal time, “rather we see a multiplicity of times, of chronigamis,
constructed in a loose, dynamic network of tangles, mangles, ensembles and assemblages”. If
there exist a multiplicity of times then how can there be a previously created reality which only
needs to be studied to materialize? Does this not reinforce the argument for reality being
constructed in the very act of actants interacting because how else or why else would there be
multiple times? Latour (1987, p230) reiterates this multiplicity claim in Science in Action ‘that
space and time may be constructed locally ... these are the most common of all constructions.
Space is constituted by reversible and time by irreversible displacements. Since everything
depends on having elements displaced each invention ofa new immutable mobile is going to trace

a different space-time”.

Even when software is created without a greater design developers still manage to code design
into the very software section they are working on and thus ‘speedily lock [the design] into the
path leading to the final shape’ (Kavanagh and Araujo 1995). This plays in neatly with Kavanagh
and Araujo’s (1995) chronigami metaphor. Every fold the paper is given lays down a stronger
foundation for the eventual object which is created; indeed, it is the first few folds which play the
most significant role in dictating what form the object will take. Can this also be said to be true of

learning? Latour (1999¢c, pi26-127) explains competence or learning as, “No event can be
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accounted for by a list of the elements that entered the situation before its conclusion. ... If such a
list were made, the actors on it would not be endowed with the competence that they will acquire
in the event. .. They all leave their meeting in a different state from the one in which they
entered.” What we ‘learn’ initially dictates sow and what we learn later, or which paths are
‘taken’ and which ‘paths foreclosed’ (Kavanagh and Araujo 1995). To further this, how fixed
these paths become depends on the degree of inscription, just as ‘macro-actors are simply micro-
actors seated on top of black boxes, networks of stabilized associations between human and non-
human elements’ (Callon and Latour 1981, pp286-287). Such associations between humans and
humans not only create a heterogeneous network but an evolving network, and yes it does evolve,
adapt and change, in turn creating the situation in which actants themselves change. And as it is
the actants that actually make up the network, when they change so does the network and vice

versa.

Pickering (1993, 1995) takes up the cudgels from the epistemoldgical chicken debate (Collins and
Yearley 1992a) and through his mangle idea pushes ANT yet further. He defends ANT and its
stance on material agency though other authors besides Collins and Yearley have also criticized
ANT on the issue of intentionality bestowed upon material actors. Pickering, like Latour and
Callon is not aiming to confer intentionality to material actors or what Schaffer (1991) calls
illegitimate hylozoism. However, nor is he satisfied with the explanation given of material agency
by Latour and Callon and believes that certain problems emerge when the latter authors take the
agency idea from semiotics and use shifting out ideas. He doesn’t agree that the material agency
to human agency concept is as transferable as vice versa. His contribution comes from linking
time to material agency. Pickering (1995) understands material agency as emergent temporally
through practice and action. It is performative and in that moment it emerges but no actor knows
what will happen next as the future is still in the process of unfolding, “human and material
agency are reciprocally and emergently intertwined in this struggle.... the dance of agency”
(Pickering 1995, p21) (italics added). In keeping with the main premise of ANT Pickering does

add that human agency too is temporally emergent.

While Kavanagh and Araujo (1995) speak about the multiplicity of time, Annemarie Mol (1999,
p74-75) attacks the same problem but her emphasis is on the multiplicity of reality. Mol uses the
term ontological politics” to explain how, when these two words, ontology and politics, are
combined, the word politics steers us away from the belief “that reality does not precede the
mundane practices in which we interact with it, but is rather shaped within these practices. So the

term politics works to underline this active mode, this process of shaping, and the fact that its

24 A term Annemarie Mol borrowed from John Law (Law 2002)
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character is both open and contested”. This, according to Mol, leads us to believe that “if reality is
done, if it is historically, culturally and materially located, then it is also multiple. Realities have
become multiple”. So, though ontological politics is ‘informed by’ constructivism, it ‘does not
directly follow from or easily coexist with... constructivism’ because the emphasis is on the
performative nature of interaction and thus reality is ‘enacted’. Latour thus explains the role of

technology in this performance

Conclusion

Actor network theory, Bateson’s levels of learning and Weick’s organizing concept together make
up the theoretical framework for this study. ANT offers little in the way of a definition of learning
and Weick’s focus is clearly on organizing (though sense-making is another way to understand
learning), thus Bateson provides the necessary clarity on learning. ANT, through the concept of
framing, operationalizes the link between learning and organizing. It demonstrates  the
performative duality between learning and organizing. This research uses the term becoming to
describe the movement (performative duality) between varying (fleeting) states of both learning
and organizing. It is becoming that draws our attention in this work and we explain this concept

further through the study and analysis of the Linux kernel collective.
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Chapter 5 |
Ordering the Performance of ‘Reality’

"Tracking narratives and changes in narrative forms is a viable way
of approaching the examination of meaning making and, thereby,
learning in organizations... Narratives are real, everyday experience.
They are the fundamental process of cognition and organizing”
(Tenkasi and Boland, 1993, pp98-99).

The current study was based on an analysis of a large amount of textual data. In order to study and
analyze it rigorously a content analysis of the material was carried out, and a form of discourse
analysis was done. Discourse analysis is just one of many types of textual analysis that a
researcher can choose from and as explained below is seen as compatible with the theoretical
position of ANT. The tracing of actors and allowing them to speak for themselves is an attitude
advocated by ANT and studying the discourse that leads to action and organizing is facilitated
through discourse analysis, thus we can see how it is useful to approach this research with such a

[y

theoretical stance and methodological tools.

Textual Analysis

“Much of what constitutes organizational life resembles a discourse. Organizational life takes
place in language. It is the process of meaning creation and of meaning sharing. Meaning
generation is work in progress. Thus, as a continuous process of meaning creation and enactment
the interactions which constitute organizational life may be seen as a form of organizational ‘text’

which may also be subject to forms of textual analysis” (Truex, 1996).

Truex (1996) explains content analysis, a form of textual analysis, as ‘a search for structures and
patterned regularities within the text’. Content analysis has a long history and as Krippendorff
(1980) notes perhaps the first documented case of content analysis is from the eighteenth century
in Sweden (Dovring, 1954-1955). The case concerned a collection of 90 hymns which were titled
Songs of Zion. The dilemma surrounding these hymns had much to do with their content, content
which was Aconsidered to be a ‘carrier of dangerous ideas’ and was not liked by the orthodox
clergy of the Swedish state church who felt their role being undermined. This form of analysis is
now used in many fields and with the growth of studies of online communities this has proved a

very effective and rigorous approach of data analysis (Kollock 1999b, Wellman 2001).
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Discourse Analysis

The method of research chosen was discourse analysis because this “has an analytic commitment
to studying discourse as texts and talk in social practices. That is, the focus is... the medium for
interaction; analysis of discourse becomes, then, analysis of what people do” (Potter 1997). It
serves to clarify at this point that the method of research for this study is indeed inspired by
discourse analysis but as Gill (2000) points out there are at ‘least 57 varieties of discourse
analysis’ and it is hard to place this work as a particular kind. Rather, this researcher has adopted
the techniques and tools of coding [borrowed from grounded theory] to fracture her data. Gill
(2000) recommends the use of coding as one method of extracting information from empirical

textual data and we found it very effective.

Discourse analysis is a ‘particular type of qualitative methodology that tries to understand the
processes whereby reality comes into being, rather than simply examine how actors make sense of
a pre-existing reality (Hardy 2004, Phillips and Hardy 2002) . Heracleous and Barrett (2001)
provide us with a framework of different schools of thought in discourse, differentiating between
functional, interpretive and critical perspectives on discourse. Very briefly, the functional
perspective is where discourse is understood as a ‘language-based communication, used
instrumentally by social actors to achieve their ends’. The interpretive perspective sees discourse
as a ‘communicative action, which is constructive of social and organizational reality’. Lastly,
critical discourse énalysis stresses ‘power/knowledge relations linguistically communicated,
historically located and embedded in social practice’. Phillips and Hardy (2002) add to this
breakdown and Hardy (2004) furthers this work by including a distinction between a study of
context and textuai discourse analysis. If the focus of study is the text that is created then it is a
textual discourse analysis but if the broader social context is taken into account where cultural
sites and settings in which the discourse unfolds is explored then that would fall under contextual
discourse analysis (Wetherell 2001). A number of other categorizations have been developed
(Grant et al. 1998, Mumby and Clair 1997, van Dijk 1997a, van Dijk 1997b) but all are quite

similar.

As Truex (1996 - 19th December) explains discourse analysis ‘builds on the elementary ideas of
both content and conversation analysis’. Content analysis (Krippendorff 1980, Neuendorf 2002) is
basically a search for ‘structures or patterned regularities within the text’ (Truex 1996 - 19th
December). In conversation analysis (Wynn 1979) the context of ‘words’ is more important
because the belief here is that meaning is formed and embedded in layers of contexts and that
these meanings require a process of hermeneutic analysis to be elicited. Forums are the place

where OS developers interact, discuss, probe and basically live one part of their life. Discourse
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analysis (Klein and Truex 1996, Wood and Kroger 2000) was used because the need here is to
study large amounts of text in the form of the mailing list archives of the Linux kernel developers
which is their chief form of communication. The development forum of the Linux kernel
developers covers both the crucial and trivial concerns. Like the narrative approach (Czarniawska
1998, Dunford and Jones 2000), discourse analysis affords the researcher with multiple versions

of the same issue.

Mumby and Clair (1997) claim not to adopt discourse analysis but instead to take the concept
forward and describe what they term organizational discourse. By organizational discourse they
speak not of discourses that ‘occur in organizations. Rather, we suggest that organizations exist
only in so far as their members create them through discourse’ (p181). However, they quickly
clarify that they also do not mean that organizations are no more than simply discourse, rather
discourse is the ‘principal means by which organization members create a coherent social reality

that frames their sense of who they are’ a thought echoed by Doolin (2003) and Hull (1997).

Alvesson and Karreman (2000) similarly suggest that discourse ‘acts as a powerful ordering force
in organizations’. And organizational discourse relates the idea of how texts, or structured texts
order organizational elements and bring them into being in the process by which they are created,
distributed and consumed (Grant et al, 1998; Grant and Hardy, 2004; Phillips and Hardy, 2002).
Discourse is understood here ‘as action in society’ (van Dijk, 1997) related to the idea of social
action, order and organization. This link between discourse, organizing and organization is
intrinsic to this study of learning in open source communities. Following Weick and Westley
(1996) we see organizing and learning as a duality, where they both occur as a balance between
disorder and order is achieved, but if one outstrips the other this balance is lost. And Chia (2000)
explains “‘organizational discourse’ ... in its wider ontological sense as the bringing into existence
of an ‘organized’ or stabilized state. Discourse works to create some sense of stability, order and
predictability and to thereby produce a sustainable, functioning and liveable world from what

would otherwise be an amorphous, fluxing and undifferentiated reality indifferent to causes”

(p514).

The aim of this current work is to then link organizational discourse to learning and organizing,
creating a framework which allows us to better understand how these concepts, when related to
each other, and combined, can reveal learning and organizing in an open source collective and
more generally in online communities at large. This is possible because, “Tracking narratives and
changes in narrative forms is a viable way of approaching the examination of meaning making
and, thereby, learning in organizations... Narratives are real, everyday experience. They are the

fundamental process of cognition and organizing” (Tenkasi and Boland 1993, p98-99).
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One such attempt to link organization, discourse and organizing, on which we build is Law’s
concept of ordering narratives. For Law (Law 1991, Law 1994) ‘ordering narratives’ relate how
organizations change and organizing occurs. An ordering narrative takes into account the social,
material and discursive dimensions of organization (Doolin, 2003). Narrative in this sense means
more than just the text, written or spoken, of an organization but rather it refers to narratives that
are ‘recursively told, embodied, and performed in a series of different materials’ (Law, 1994,
p259). Doolin (2003) explains that such narratives produce ‘materially heterogeneous
organizational arrangements’ such as machines, talk, technologies, text, people and architectures.
Such narratives can thus explain how organizations are performed or enacted, understanding that
organizations are not static entities, rather they are constantly being performed and there is no
stability as such but just recurrent attempts at achieving and challenging stability. This is an echo
of Weick and Robert’s (1993) words, “narrative skills (Bruner 1990, Orr 1990a) (Weick and
Browning, 1986) are important for collective mind because stories organize know-how, tacit
knowledge, nuance, sequence, multiple causation, means-end relations, and consequences into a
memorable plot”, There is a strong link between language and learning reiterated in literature and
emphasized by Weick and Westley (1996), “all learning occurs through social interaction.
Language is both the tool and the repository of learning.... Language has the interesting property
that it is as closely linked to forgetting as it is to learning” (p446).

Law explains that ordering narratives have certain characteristics. They are strategic, discursive,
performed, materially heterogeneous and incomplete. Narratives are’ strafegic because each
narrative is a specific combination of the material, social and discursive, and though intentionality
is not always present the fact that one combination is generated rather than any other implies a
level of strategy. Ordering narratives are discursive because we understand the world through
narratives and discourse and it is these discourses that strengthen our commitment to a worldview

of reality.

Ordering narratives are performed and this key characteristic clarifies the link between
organizing, relational performance and coming into existence. This characteristic is predicated on
the idea that entities come into existence when they form some bond or relationship with other
entities. Performance implies enactment, seen as a reaching out and relating to others to create a
network and make you significant. As Law (1999) explains, ‘entities are performed in, through
and by the very relations that define them’. Such relations are with both human and non-human
entities. This brings us to the next characteristic of ordering narratives, that of their material
heterogeneity. All relations are part social and part material and it is this combination that

provides durability to the relationship. Durability yes, but not long term stability or completeness,
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because ordering narratives are innately incomplete. Incompleteness refers to the fragility of any
level of stability that is achieved because it doesn’t last and this is why organizations are never

really organizations but just constant organizing.

In his recent work Law (2004) built on his idea of ordering narratives, with ‘modes of ordering’.
This entire work, called After Method: Mess in Social Science Research, is concerned with
making explicit some of the flaws in methods of research in social science. Modes of ordering is
what we understand can be called an inscription device that he uses to explain the key argument in
the book, that the method of research that is adopted to conduct research, in the process of its use,
actually creates reality. And indeed, there is not one reality but a multiplicity of them, “Method is
not, I have argued, a more or less successful set of procedures for reporting on a given reality.
Rather it is performative. It helps to produce realities” (Law, 2004, p143). Law calls this the
method assemblage and builds on this idea in his book and makes his conclusions as above but we
have started with the end so a tracing of this inscription is needed here for better explanation.
Drawing heavily on Latour, Callon and Mol, Law (2004) shows how researchers, using methods,
probe the environment and actors for answers. The aim usually is to tell a narrative that is singular
in flow and logic, and that contains the truth. But he stresses, how can we be so sure that there is
only one true representation of reality when there has to be more than one reality because every
actor, human and non-human, has their own version of reality. This is the idea behind multiplicity
(Mol 2002) which exposes that there is more than one reality and that all realities usually overlap.
The overlap is important because this is often what is caught by the researcher, this is the
narrative that emerges from research. A particular reality emerges from the silencing or Othering
of certain phenomenon and here Law plays with ideas of presence and absence. An actant’s
reality is unique in that it will have a particular presence of phenomenon which necessarily entails
the absence of others. A researcher, when confronted with a situation, usually takes some time to
listen to the emerging overlap of truth because at first it is not easy to distinguish the ‘noise’ from
the overlapping reality that usually emerges. “Realities grow out of distinctions between ‘right’
and ‘wrong’ patterns of similarity and difference” (Law, 2004, p110 — authors italics) because
according to Law, researchers look for patterns of similarity and difference and this helps them
explain how they understand a situation to be, but they need to be able to find the right pattern so
that “what had been dazzle, an overwhelming out-thereness, was converted into signal on the one
hand and silence (which did not resonate with the relevant pattern) on the other... Bits and pieces
in those observations became instances of repeatable patterns and signs of ... discursive reality of |
the laboratory and its ordering. At the same time other bits and pieces became less significant.
The signal grew against a growing background of silence. Indeed, in due course I found it difficult -
to attend to forms of talk which did not fit this basic pattern of repetition” (Law, 2004, p111).
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The idea of ordering narratives and modes of ordering are very similar except for the fact that
ordering narratives are how what is being studied emerges, and modes of ordering is concerned
with how a researcher draws out a singular story from all the noise that ordering narratives create.
Both are performative and indeed they share all the characteristics listed for ordering narratives

above. So one is about what is being studied and the other about zow we study.

Research Design

The primary data for this research was gathered from the Linux kernel mailing list archive
[LKML]. This site is kept up to date by the University of Indiana and claims to include every
email message passed by the Linux kernel developers. The message on the site says, “The linux-
kemel list is a majordomo mailing list hosted at vger.kemel.org. It exists for the discussion of
kernel development issues, including new features, bug reports, and announcements of new kernel
releases. This list is not for the faint of heart. It is designed for people who have some experience

with the kernel and are interested in participating in the development of the kernel”25.

This site was chosen, though a number of other host sites exist for kernel development, because it
was a more complete site dating as far back as June, 1995. Its Google powered search allows easy
access to particular threads or phrases, though many sites have also taken up Google searching,
the University of Indiana site was one of the first. It has a simple and very clear interface where
every year can be broken down into months and then weeks. At times other LKML sites were
used to refine searches and points of reference because each site offered some unique facilities
which proved helpful when cross-checking that all the material had been collected and nothing on

the topic of version control been left out from the data set.

The Mailing List ARChives2 offers similar facilities to the one held by the University of Indiana
but the interface is dark and rather stark in appearance. A useful characteristic of this site was the
breakdown of the number of messages sent back and forth for a single thread. This provided an
easy and accurate way to measure the level of interest in a particular topic at a glance. The search
facility, however of this site only scanned thread titles and not the text of emails so the results of
any search were quite skewed. Another website which has a simple but attractive interface is the
LKML.org27. This site allows one to see how many total messages were passed on all topics in a
year and then breaks them down monthly, and even daily. There is a search facility on the main

page but this search was not as productive of accurate results as the search engines on other host

25 http://www.uwsa.indiana.edu/hvpermail/linux/kemeiyinfo.html
26 http://marc.theaimsaroup.com/7Hinux-kernel
27 http://Ikml.orQ/lkml/
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sites. A number of irrelevant emails would be grouped with useful ones because the search did not
narrow down on keywords. The main page does hold some interesting information that is
presented in an easy and quick to grasp fashion, for example, there is a chart which indicates the

level of messages passed over a week or more and what days the developers were most active

emailers.

The Linux kernel messages website held on Gossamer Threads28 has an advanced search feature
which proved very useful when trying to search for very specific terms and keywords. However,
the messages held on this website only date as far back as January lst, 1998 and the usability of
the site is limited because navigating from one year to another or even month to month is not easy
since it holds all the messages on pages and there is no simple way to navigate to a particular time
period of messages. On the other hand it does open up entire threads for you so that you can read
the conversation in a chronological flow rather than having to open up each email separately, and
even better is the fact that it shows and allows access to all attachments. Many developers send

their patches as attachments and thus the possibility to study these attachments is useful.

1 in this research because the search for the offshoot of others. This feature was very helpfu
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are not heavily debated but the time and effort spent on negotiating the ‘correct’ version control
software for Linux began as early as 1995, and continues to this day [the only variation being that
different tools are discussed in different time periods]. Over the eight year period of Linux
development under study here more than 440000 messages were sent through the LKML, and the
version control discussion only makes up a little over 3000 of them (less than 1%). However, few
other topics lasted or spread over so many years or even managed half the interest level that
version control discourse did, [interest is measured here by the number of posts sent on a

particular topic].

Taking all the threads and messages discussihg version control tools from June 1995 to June 2003
a systematic collection was made, systematic but within the bounds of theoretical sampling.
Theoretical sampling is defined by Glaser and Strauss (1967, p45) as “the process of data
collection for generating theory whereby the analyst jointly collects, codes and analyzes his data
and decides what data to collect next and where to find them”. The collection was stopped in June
2003 artificially, as version control continues to be discussed today. However, we needed a cut off
time in order to move away from data collection and onto data analysis. Eight years worth of data
already yielded more information than strictly needed for one study, and prior to June 1995 the

Linux kernel project was hardly large enough to even merit discussion of this topic.

The University of Indiana website divides the email threads and messages by week. It is kept up
to date by the Unix Systems Support Group at Indiana University. However, from June 1995 to

February 1996, because the message postings were fewer, the time period of each link begins by
being monthly and then falls into a fortnight of messages pattern. By March 1996, the number of
- messages had begun to grow so from then till the present day each link on the site represents a

weeks worth of threads and messages.

Data was collected in chronological order, not because this was a serious concern when it came to
the analysis stage, but for the pragmatic reason of reducing the likelihood of missing any relevant
threads. Often one thread will break into another one which has a different title, and unless you
follow the ‘story’ you can easily miss an important exchange. Each link on the LKML page
hosted by the University of Indiana was searched by keywords. The exploratory search introduced

us to certain names of developers and keywords to begin the real search.

The LKML site allows the messages on each page to be sorted three different ways, date, subject
and author wise. This facility was helpful, especially the subject sort because this broke all the
messages down into their respective threads, thus making it possible to download each message

related to every identified thread. All the messages were copied and pasted into a text document in
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readiness for analysis with the help of content analysis software, Atlas.ti. The researcher
continued this process for all the messages in the time period of June 1995 - June 2003. The
URL’s were saved for each email to ensure that the researcher could return to the original text

should the need arise.

The search keywords were constantly adapted as the story unfolded. Some of the keywords like
CVS dropped out of use for a few years, to be taken over, in more ways than one, by BK. The
criteria for a message to be included into the data set was to have some mention of version
control, be it of some specific software like BK or Subversion, or about not being able to manage
without any such aid, like the thread of messages titled ‘Linus doesn’t scale’. This necessarily
entailed reading a number of threads which potentially could have been of use, but were later
discarded for their lack of direct contribution to this study. Over time the data could be said to
have been saturated ‘whereby no additional data’ could be found where the researcher could
develop more properties’ (Glaser and Strauss, 1967, p61). Still, it was an organizational narrative
and if a gap was felt and the developers seemed to discuss something that had not been followed
by the researcher then a retracing of messages was carried out to ensure that nothing had been
missed. The different steps taken to ensure that all the relevant threads and messages were
collected include simple repeated searches with keywords, the use of derivative keywords, cross-
searching across other LKML archive sites because their search methods offered specific
facilities, and following up a number of emails from the key protagonists even with seemingly

unrelated thread titles just to ensure they don’t refer back to other themes of discussion.

Table 2 illustrates the total number of threads selected as related to version control over the 8 year
time period of this study, with useful statistics. All 3,352 email messages were collected in a text
file and then using Atlas.ti to aid with the content analysis, the next stage of data analysis began,

that of coding it.

No of threads on VCS 249
Total messages sent 3352
Maximum no of messages for longest thread 320

. *
Average no of messages per thread ’ ! 1; ’

Table 2 Number of threads and messages collected from the LKML
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Data Analysis

All 3352 messages were saved in a text file which was then used as a primary document for the
Atlas.ti content analysis software. Note however that the aim of this work is not to go down the
grounded theory route but to simply use the tools of grounded theory (Strauss 1987, Strauss and
Corbin 1999), in particular coding at various levels in order to fracture and expose the main
themes in the data. However in this case, as explained in Chapter 7 and 8, the themes used for this

work are founded on ANT and learning/organizing concepts.

A further pilot study was undertaken at this point. The purpose of this pilot was to generate a code
scheme which could then be refined and made more sophisticated before returning to the body of
total messages. For this a hundred messages from the over 3000 were chosen at various time
periods during the eight year study period. These one hundred messages were then coded, using
two levels of coding suggested by Strauss (1987), namely open coding, and axial coding. The data
was never taken to the final stage of coding, selective coding, because this process involves
‘integrating and refining the theory’ (Strauss and Corbin, 1999, p143), and theory building in this
manner is not the reason why coding was adopted in this study. Strauss and Corbin (1999) clearly
lay out that if ‘theory building is the goal of the research project, then findings should be
presented as a set of interrelated concepts, not just a listing of themes’ (p145) however, the
method embraced here was to help themes emerge from the data, and to create theory in this way
was never the intention, thus the empirical data collected was coded using only open and axial
techniques. However the potential do some future work in this area has certainly proposed itself
after the coding was completed, and in the former it is clear that line-by-line coding is generative

of new thoughts and concepts.

Pilot Study

Coding is to allow the data ‘to speak’ (Strauss and Corbin, 1999, p65) and this was the purpose
behind choosing this technique. Actor network theory claims that in order to understand the
network the actors must be heard and traced. Coding thus becomes here the tool by which the
Linux developers [amongst other actors] can be heard and followed. The pilot study hundred
messages were open coded, and this gave rise to 97 initial different codes. Some were generated
by the researcher, keeping in mind the theoretical framework and others [most] emerged from the
data as coding proceeded. Open coding is the ‘analytic process through which concepts are
identified and their properties and dimensions are discovered in data’ (Strauss and Corbin, 1999,
pl01). It is a process of fracturing the data and there are three main ways to open code data, line-
by-line analysis, analyzing entire paragraphs or sentences and finally by studying entire

documents. We began with line-by-line analysis of the 100 messages because we were learning to
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code at this stage and felt it best to start detailed and then progress to larger sections of code as we
gained experience. Strauss and Corbin (1999) point out that it is this type of open coding which
generates the most in-depth results and recommend this approach for any initial study noting that

once a code scheme has been built up it can then be used on similar material as a guiding force.
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Figure 7: Screenshot of data analysis in Atlas.ti

As Pries-Heje et al (2004, pp51-54) point out there are two fundamental parts to open coding: the
first is of labelling phenomena; and second to discover categories. Labelling, as can be seen by
the example given below is the giving a name to certain ideas that emerge as the researcher reads
through the collected data. Discovering categories is the process of looking or finding
relationships between different codes and data which can then be grouped together. Memo writing

is one facet of this procedure.

Thus part of the process of detailed open coding of the 100 messages involved writing memos and
comments about ideas that the data gave rise to or some point that the researcher needed to focus
on. Memo writing in Atlas.ti was the initial attempt to move to axial code the material; axial
coding implies collating some of the more detailed open codes into fewer categories. Axial coding

is ‘the process of relating categories to their subcategories’ and is ‘termed “axial” because coding
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occurs around the axis of a category, linking categories at the level of properties and dimensions’
(Strauss and Corbin 1999, p123). The purpose of axial coding, according to Strauss and Corbin
(1999, p124) is to reassemble ‘data that were fractured during open coding’. There are a few steps
that need to be covered for axial coding (Strauss, 1987) and they include fracturing the data,
labelling their attributes, categorizing the numerous conditions, actions/interactions, and
consequences related to the phenomenon and finally, looking for relationships between categories

and subcategories and searching for such relationship cues in the data.

There is however, a controversy concerning different approaches to axial coding (Kendall 1999).
Glaser and Strauss (1967) jointly developed grounded theory principles and methods but then
went their separate ways. Glaser (1987) went on to write Basics of Grounded Theory Analysis
(1992) and Strauss began work with Juliet Corbin (1999). The controversy was over various
coding stages. Glaser (1992) developed two levels of coding, substantive [which was similar
though not exactly the same as open coding] and theoretical, whereas Strauss and Corbin’s (1999)
coding process had three levels, open, axial and selective. Again selective coding, to a degree,
resembles Glaser’s theoretical coding so the real difference was axial coding. The rationale
behind the introduction of this stage of coding for Strauss and Corbin was to help researchers
doing grounded theory for the first time. Glaser (1992), criticized Strauss’s writings, claiming
that ‘he fractures the concept (theoretical sampling) and dilutes its meaning by defining open
sampling, relational and variational sampling and discriminate sampling, all of which occur
anyway, I believe, and offer no methodological help’ (p102). Robrecht (1995) made similar
comments on Strauss and Corbin’s work, ‘the newly enlarged methodological procedures have
tended to encourage the production of grounded theory with poorly integrated theoretical
explanations resulting from violations of the original premises of the grounded theory method, in
which theory comes directly from data’ (p171). Coyne (1997) believes this encourages
researchers to look for data rather than look ar data (p627) and Kendall (1999) too decided to
adopt Glaser’s approach because she found the Strauss and Corbin way limited. Having
understood how to do grounded theory using Strauss and Corbin’s approach Kendall was able to
progress to a more difficult but more generative of theory approach, that of Glaser’s. However,
the purpose behind the use of Strauss and Corbin’s approach for this research is based on
pragmatic choice, this is the first time, and also because Grounded Theory is not the appropriate

way to link with the way this work has developed.
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A Step by Step Illustration of Coding
This section takes us through the steps of how the data was analyzed using Atlas.ti software. A
small section of the data is extracted here in order to be able to illustrate the example [see Fig 8

below]. The analysis was carried out using version WIN 5.0 of Atlas.ti.
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is familiar to them indicating that any new tool used implies a learning curve which means time
'wasted'. He also says that CVS is available "everywhere" and I feel that everywhere here gives
the impression of likening it to air or anything else that is that freely available. Open source
products are public goods but this seems to be a particular charm of CVS, along with the fact that
it is a dependable tool. However this user does say that Subversion, once it has developed further

as a VCS tool will be his future choice and Subversion is an open source tool’.
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Data Analysis: Coding of Complete Data I .

The initial coding of the 100 messages gave rise to a number of

open and axial codes, and armed with these the researcher then

began to code the larger bulk of her data. This time the open is4Codes breakdown {660~ Al Name- Tife
coding was made slightly less time consuming because now that the detailed line-by-line analysis
had been done in the pilot study she was able to open code larger sections [see Fig 12]. Strauss
and Corbin (1999) agree that coding entire sentences or paragraphs is a useful approach ‘when the
researcher already has several categories and wants to code specifically in relation to them’
(p120). This is not to say that more and new open codes were not generated during the open
coding of the full email data collected but the coding scheme created during the pilot study was
used to guide the analysis in a large way. Indeed the open codes grew from 97 to 163 [Fig 11] (the
aim was to keep the codes to a limit of 150 if possible, as having too many was beginning to
defeat the purpose of organizing the data and it was generating far too many unrelated concepts.

They will be very useful for a follow-up study but too distracting for this research).
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Figure 12: An Illustration of Paragraph Coding for the Complete Data

There were twenty-seven memos but the researcher felt that a few key themes were emerging

from an organized grouping of some of the memos. Finally, after having studied the memos and

all the notes taken during the memoing over time the researcher noticed an emergence of four

main themes where the other memos and ideas began to fade into the background as noise at first,

and then a simple silencing or othering (Law, 2004). The main themes indicated a strong pattern

and eleven various memos helped each theme and pattern to emerge [see Table 3].

Analysis  VCS - Time and VS - Material
Theme Space Agency
Memo Time .wrap . Agency
title Learning repository Control
Ownership

VCS- VCS-

Assemblage  Transparency
Mobilization Transparency
GPL-Constitution Organizing
Breakdown Learning

Table 3: Main Analysis Themes and Memo Titles

The Study of twenty-seven memos hplrwxH fmir main
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eleven memos were then extracted from Atlas.ti and copied into a word document for further
scrutiny. There were over a 150 messages or message fragments which the researcher continued
to work on [more than 22,000 words]. They were grouped below each memo and then a more
minute and fine grained analysis of only these 150 messages was carried out [see Figure 13].
Unlike the previous coding where only some messages would generate a memo or be linked to a
concept, this time each message was re-memoed more finely to generate a yet more detailed
understanding of the data. The researcher reread each message but this time the aim was to see ifa
coherent argument and interesting revelations could be found through a linking of various memos

for each theme.
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Figure 13: Screenshot indicating the more intense level of re-memoing.

As can be seen in Figure 13, each message was memoed a second time [text in blue] and these
150 or so memos were then further extracted from this document into one where now only the

memos could be seen and not the data. More organizing of the concepts thus elicited from the data
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was then carried out. This entailed mining the memos for ideas, linking the memos together for
each theme to assess for a coherent argument, and then organizing the ideas in a descending order
of relevance. By relevance in this instance the researcher means those ideas that were oft repeated,
revealing of something new and interesting to the researcher, or that naturally required to be put
before others in order to make the following themes more consistent and logical. These organized
and pain-staking steps lead to a reality emerging from the data which reflects the appropriateness
of the methodology adopted for this research in practice and hopefully makes this study scientific.
The analysis derived from this study is detailed in Chapters 7 and 8 but before we move to that
phase of this work it is necessary that the case study and the main story of the data is related to the

reader.

Conclusion
In this chapter the aim has been to explain the steps taken to perform this research rigorously. The
online case study analysis of email threads and messages through coding helped develop the core

themes for analysis which are fully expanded in Chapters 7 and 8.

The methodology is built on Law’s ordering narratives and modes of ordering and it has steered
closer to narrative and discourse analysis. The appeal and indeed the appropriateness of this
strategy is reinforced by Tenkasi and Boland (1993) because they, like this researcher claim that
“tracking narratives and changes in narrative forms is a viable way of approaching the
examination of meaning making and, thereby, learning in organizations... Narratives are real,
everyday experience. They are the fundamental process of cognition and organizing” (Tenkasi
and Boland, 1993, pp98-99). This method has found a way to be folded with both learning and
organizing in a manner that helps to operationalize the ability to recognize, study and analyze

learning and organizing in the Linux kernel case study.
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Chapter 6

The ControlStruggle of Version Control in
the Linux Collective

In this chapter we tell the story of version control adoption in the Linux kernel development
collective. We allow the actors ofthe collective to speak for themselves and from the multitude of

realities that are open to us we begin ordering one reality, the researcher’s reality.

The Linux kernel development project, in the last 8 years, has engaged in a long standing
controversy concerning the choice ofusing version control software. The present study traces this
story from June 1995 to June 2003. This covers the transition from no version control software
[VCS] to, first, partial use of Concurrent Versions System [CVS], and then to the use of
BitKeeper [BK]. The principal source of data reported here was the Linux Kernel mailing list
[LKML] archive, supported by other accounts of the period and other relevant online archives and

discussion list.

The Linux kernel could probably be said to have started development around 1991 but back then

it was a very small project initiated by a young Finnish student at the Helsinki University, called

it, it was merely to announce that “I'm working on afree version o fa minix-lookalike system Kerm

omputers. It hasfinally reached the stage where it's even usable ... and I am willing for AT-386 ¢



200237]. Landley [January 28th, 200233] explains further, ‘He's an architect. He steers the project,
vetoing patches he doesn't like and suggesting changes in direction to the developers. And he's the
final integrator, pulling together dispirate patches into one big system”. However, Torvalds can
inspire statements such as ‘7 nominate Linus for Beloved Benevolent Dictator” (Esh, April 24th
199634 where beloved seems to be at odds with dictatorship, but he also invokes “/ wish Linus
would be more responsive... Linus likes the way he does things and doesn't care ifothers don't like
it. I don't expect to see much change there” [Gooch, December 27th, 200135]. Senior developers
like Raymond say “You're our chosen benevolent dictator and maybe the second coming of Ken”
[Raymond, August 22nd 20003¢], but also play a sobering influence if adulation and praise have,
on occasion, gone to Torvalds’ head ‘Now you listen to grandpafor afew minutes. He may be an
oldfart, but he was programming when you were in diapers and he's learned afew tricks..[I] can
see that *you* poor damn genius thatyou are, are cruisingfor a serious bruising"(Torvalds and
Raymond, August 22nd 200037). This interesting character and leader has steered the Linux kernel
project through many troubled moments and below is a tracing of action and actors of this

collective, especially Torvalds.

Pre-VCS to Partial VCS

In the mid 1990s coordinating LINUX as a small project was simple. Of course CVS was in use
by UNIX developers but again this project didn’t merit the need for any such tool because it did
not have critical mass yet. Torvalds was in the habit of making pre-patches and/or releases, and so
coordination was achieved through individuals called maintainers who acted as a filtering device,
“ftp.kemel.org is where Linus puts stuff, but I think David Miller has been putting out some fairly
complex 2.0.x patches as well. I have no problem giving access to ftp.kemel.org for people
working on major Linux subsystems -- please feel free to contact me” (Anvin, 19973%). If
maintainers could keep up with patches, and not lose or confuse them, then VCS was not needed.
Thus, Torvalds decided in 1995 to not adopt CVS for kernel development and this decision was
backed by his trusted lieutenants Alan Cox and David Miller, “I'm afraid that I don't like the idea
ofhaving developers do their own updates in my kernel source tree. I know that's how others do
it, and maybe I'm paranoid, but there really aren't that many people that I trust enough to give
write permissions to the kernel tree. Even people I have worked with for a long time I want to

have the option o flooking through their patches Jirst_, and maybe commenting on them (and I

http://www.uwsa.iu.edU/hypermail/linux/kernel/0201.3/1000.htm1l
http://www.uwsq.iu.edU/hvpermail/linux/kernel/9604.3/0007.html
http://www.uwsa.indiana.edU/hvpermail/linux/kemel/0112.3/0467.htm1
36 http://www.uwsa.iu.edU/hvpermail/linux/kernel/0008.2/0240.htm1
http://www.uwsa.iu.edU/hvpermail/linux/kernel/0008.2/0240.htm1l
* http://www.uwsq.iu.edu/hvpermail/linux/kernel/9705.2/0270.html
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do reject patches from peoplej” (Torvalds and Schlenter 1995, 1996)39. As Moody describes, at
least Miller was not to remain so happy with Torvalds disregarding the use of CVS (Moody 2001)

and, by late 1997, CVS was widely if unofficially used within the Linux collective.

However early 1997 coordination started to become problematic. While controlling a small band
of developers working on a small application was fairly straightforward, it did not help a project
of the size that the Linux kernel had grown too. Questions concerning version control began to
proliferate and there was doubt amongst the community about the status of CVS-use which some
developers attempted to address, “The CVS tree is not the official kernel tree. Linus controls what
gets into the official kernel tree, a lot ofdifferent developers have write-access to the CVS tree”
[Rosenkraenzer, July 26th 199840]. A number of senior maintainers in late 1996 began to voice
their need of some version tool. Managing all the patches being sent to them and maintaining
communications within the broader community was getting impractical. Torvalds, when asked
about a version tool, showed interest but was decidedly against the use of CVS. This decision of
his provoked a small but persistent outcry in the community, where some said that “/ envy Alan,
Linus, and Marcelo for having the ability to silently drop patches and waitfor resends.” [King,
December 27th 200 141] and even Rik van Riel criticized the maintainer abilities of Linus, ""Silently
dropping bugfixes on thefloor is not maintainership” [van Riel, December 27th 200142]. Trust is a
key feature of the OS process, the deterioration of which could lead to a breakdown of the
community and process. There was even some pleading from developers to, "'Linus: Please please
please please please sync the official tree up with vger, I and many others can't use CVS, and it
seems that it is increasingly the only way to get afunctional kernel with framebuffer support”
(Leas, 28th Sept 1998)43. The developers wanted Torvalds to pay attention to their patches and to
provide them with one definitive tree to pull from. Messages in early 1997 proved to be the
precursor to a heated debate over the decision of Torvalds to not use CVS, and September 1997
saw David Miller’s post to announce “This is a new thing I'm going to start doing’, a decision to
make full raw snapshots ofmy tree on vger availablefor ftp on a somewhat regular basis from
now on. It contains also a copy ofthefull ChangeLogfilefrom my CVS repository, itgoes realfar
back, back to 1.99.x something” (Miller 1997 - Sun, 14 Sep)44. CVS then had an ally close to the

top, and became more acceptable within parts of the Bazaar. Torvalds himself was never

39 http://www.uwsg.indiana.edu/hvpennail/Linux/kemel/9602/0800.html
40 http://www.uwsg.indiana.edU/hvpennail/linux/kemel/9807.3/0161 .html
41 htip://w'ww.uwsg.indiana.edu/hvpeirnail/linux/kernel/0112.3/0447. html
4 http://www.uwsg.indiana.edu/hvpermail/linux/kernel/0112.3/0498.html
4 http://www.ussg.iu.edU/hypennail/linux/kemel/9809.3/0550.html

4 http://www.uwsg.indiana.edU/hvpermail/Linux/kemel/9709.1/0432.htm1
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convinced of CVS use, indeed was hostile to it45 so the ‘tree’ kept up to date by Miller was only

quasi-official.

Torvalds had his reasons for not adopting CVS for the kernel, “I'm _really disappointed by how
the thing has been handled, and very very disappointed by vger. The reason I'm disappointed is
that vger in particular has been acting as a "buffer” between me and bug-fixes, so that now we're
in the situation that there are obviously bugs, and there are obviously bug-fixes, but I don't see it
as such, I only see this humongous patch. I don't know what itfixes, because vger has kept me out
of the loop, and quite frankly I don't have the time to look at several hundred kilobytes of
compressedpatches by hand. And I refuse to apply patches that I don'tfeel comfortable with. As a
result, I want people to _tell me what the patch fixes. And that probably means by now that I
need to get each driver update on its own, with explanations. This is _exactly the same thing that
made me hate vger when it came to networking patches. And I'm going to ask David once again to
just shut vger down, because these problems keep on happening” (Torvalds, 1998 - Tues 29th
Sept)4o.

Miller’s reply to Torvalds was just as aggressive, “I won't disable it... I want to have the problem
fixed as much as the next person... People are maintaining this code, and if you block patches
they can't do theirjob. I ask you to be a part of the solution instead of the problem” (Miller, 1998
- Tues 29th Sept)47 and told Torvalds to “stop pointing fingers towards "vger", people are sending
you patches, continually, and are being ignored and not being told why” (Miller, 1998 - Tues 29th
Sept)4R. This conversation does not disprove the fact that Miller had great respect for Torvalds and
he knew that he was “David "on Linus's shitlist" Miller” (Miller, 1998 - Wed 30th Sept)49.
Torvalds reply was not too gracious, “77/ also take afew days off. Quitefrankly, Ijust got veryfed
up with a lot ofpeople. David, when I come back, I expect a public apology from you. Others,
lookyourselfin the mirror, and askyourselfwhetheryoufeel confident thatyou could do a better
job maintaining this. If you can, get back to me, and maybe we can work something out’
(Torvalds, 1998 - Tues 29th Sept)30. Other developers in the community recognized the fact that,
“there are basically three people that should stick their heads together and have a little talk,

namely Linus, Dave and Geert. If they don't, and if everybody else keeps on this "bazaar-

4 see http://www.uwsq.indiana.edU/hvpennail/Linux/kemel/9809.3/0766.html where Torvalds said, "I'm _really
disappointed by how the thing has been handled, and very very disappointed by vger."
46 httD://www.uwsa.indiana.edu/hvDermail/linux/kemel/9809.3/0766.htm1
47 http://www.ussg.iu.edU/hvDermail/linux/kemel/9809.3/0672.html
§ http://www.ussq.iu.edu/hvpermail/linux/kemel/9809.3/0674 .html
49 http://www.ussq.iu.edU/hvpermail/linux/kernel/9809.3/0877.html
50 http://www.ussa.iu.edU/hvpermail/linux/kemel/9809.3/0837.html
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fighting", this will be the end of linux real soon” (Welwarsky, 1998 - Wed 30th Sept)S1. There was

real support for CVS in the Linux kernel collective,

One central CVS tree, with mirrors around the world.
- Team of "core" members around the world (with Linus as a
chairman) with write access to central CVS tree. This team decides
what "official” Linux is. From other hand this team gets patches from
"mortals" and add it to "official” Linux ifit is "good"
- All others have read-only access to CVS tree - so they could
synchronize via Internet their local Linux source tree with "stable" or
"development" Linux kernel branches. This also provides easy way to
document what has been done and easy to convert diffdescriptions to
HTML or otherformats” (Indenbaum, 1998 - Oct 1st)52
It was during this time that a number of other solutions were proposed to help Torvalds and the
Linux kernel community. One of them was a web based remedy in use by the WINE community,
“/ think it would help matters all around ifthere were a web page somewhere. This is what Wine
uses: there's a public web page for patches, but everything has to be accepted by the principal
maintainer (Alexandre Julliard) to get into the main release. Some of the subsystems are
maintained by other designated maintainers, who then submit patches to Alexandre. It seems to
work quite well. The main tree is released on a regularfixed schedule, every two weeks except
when Alexandre takes a holiday. I don't know if it would help Linus to work that way” (Lokier,
1998 - Wed 30th Sept)S3. However, more of the developers were interested in the use of a tool
called Jitterbug including Miller, “Maybe we have to come to terms with thefact that it is possible
for aprojects size tojust require that there is some mechanism to "mechanize” the development
process. This can come in two forms: 1) Something like Jitterbug, [or] 2) Letting more than 1
person be the only ones who can make direct changes to the source” (Miller, 1998 - Wed 30t
Sept)4 Torvalds did not agree with the use of Jitterbug either but developers asked “Why was
Jitterbug closed down? IfI understand correctly, it served as a patches queue, where patches were
sorted as incoming/on hold/applied/..., so adding the category 'on hold until 2.3.0'for all those
patches that won't go into 2.2.0 would be an option?” (Niemann, 1998 - Wed 30th Sept)35. But

Cox agreed with Torvalds in that, “Yes the current system is a complete mess. Yes it needsfixing,
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Solutions aside, it was discussed that the reason why Torvalds faced more problems now than he
had previously was because, “Linus’s strategy for making his "job" manageable is to make sure
that only good patches get it. So he wants to make sure that the overall structure of Linux is
aesthetic AND EXTENDABLE! However, patch maintainers tend to submit patches that are only
LOCALLY aesthetic (ifthat), and may have bad implicationfor the OVERALL structure... So, the
solution that Linus has proposed is basically that other people shoulder the work by writing better
patches and thinking more about things in terms ofoverall structure and code structure, so that
Linus doesn't have to do all the thinking about whether the patches are goodfor Linux's overall
structure, or whether the changes will cause problemsfurther down the road” (Redelings, 1998 -

Thurs 1s Oct)57.

Though nothing official had been announced as yet about BitKeeper, McVoy often threw in some
minor comments about the work he was doing. He wanted feedback from the developers as to
what would be acceptable to them in a source code management system. The developers were
aware that he was busy working on closed source version software and even at that time they
showed their hesitancy about such licence mixing. McVoy was eager to please this community of
developers because he needed them to do the testing of his product so he went as far as to
promise, “making BitKeeper GPLed software if BitMover ever got bought” (McVoy, 1998 - Sun
4th Oct)S8 McVoy was not without support because many of the developers had responsibilities,
“I'd like the Linux community to support Larry in working out the detailsfor this "hybrid" model
for "open software". I and many others would like to do something like what Larry is doing. In
particular, it allows *small* software groups to produce very high quality software and still pay
the mortgage and send the kids to school. Let's be pragmatic, exceptfor over-caffeinated college
students, the rest ofus simply cannot afford to indulge in "free/open" software with out a clever
way to make afew bucks to putfood on the table. I'd like to propose a topic for Eric R (our
resident pundit and deep thinker): Software as a Cottage Industry” (Leighton, 1998 - Mon 5th
Oct)5.

Not directly related to this story of VCS adoption but closely connected is a thread of
conversation on the LKML which began in November of 1998. This was called ‘The history of

the Linux OS’, and was a small project initiated by Simon Kenyon,

“The History of'the Linux Operating System - I'm going to start to pull together
anything and everything that I canfind about the history of'the Linux OS. Could
everybody please send me any/all o fthefollowing:

57 http://www.ussg.iu.edU/hvpeirnail/linux/kernel/9810.0/0094.html
B http://vvww.ussg.iu.edu/hvpennail/linux/kemcl/9810.0/0441 .html
39 http://www.ussg.iu.edu/hypenTiail/linux/kernel/9810.0/0545.html
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- original and significant email/new messages

- timings o freleases

- biographies o fcontributors to the kernel, utilities

- pointers to web pages containing information

- stories/photographs o famusing and/or significant occasions

I'll put this together on a web site and try to keep it up to date. This OS is
important to a lot of people and we should keep a record of what/why/how
happened and when. Any and all help appreciated’ (Kenyon, 1998 - Sun 22nd
Nov).

This need to archive and preserve the Linux history arose because there was no version control
software being used and a few developers were getting anxious about losing various versions of
Linux that had been created over the years. The reason why this thread has been documented here
is because it sheds light on how the Linux developers understood the older versions to be
important for the learning they could glean from reading the old code, “4s Andries pointed out,
the old kernels are actually fairly well preserved. What is much less well-preserved is the old
original distributions. That's because they are bigger, and tended to change over time, sometimes
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irie wimrluununs iruruuueeu, wrneri uisirluununs were uezeenueu jr urn uirier wuizir luullOYIS, eiC
(Ts’o, 1998 - Mon 23dNov)6l. The feeling was that some version control software was required
to preserve the Linux history and at the same time make it accessible to everyone, “7've been
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substantial step forward from CVS” (McVoy 1999 - Sun, 21 Feb)&4 BitKeeper [BK] was the
product of McVoy meeting with Torvalds and few ofthe other senior kernel developers. CVS was
not efficient enough for Torvalds and there was a growing crisis around Torvalds ‘dropping
patches’ and a long thread of messages focused on the topic of ‘Linus doesn’t scale’65; indeed
there was talk about the kernel forking. McVoy took this opportunity to explain how BK would
resolve many of the issues Torvalds was facing. ‘Linus, Dave Miller, and Richard Henderson
came up to my housefor dinner and we drew pictures on thefloorfor about 3 or 4 hours, and
when we were done, Linus said "yeah, that's cool, ifyou build it and it works likeyou say, I'll use
it". And Ifoolishly said "No problem, I've done it before, 6 months or so". That would have been
around thefall of '98 I think” (Andrews and McVoy 2002)66. McVoy explained that, “7 had this
picture in my mind o fsort o fthis star topology, peer to peer system, with Linus at the centre. Then
the next ring o fpeople out are his lieutenants, like Dave and Alan. Then beyond that was another
ring ofpeople, and then beyond that was another ring ofpeople. What I visualized was that
everyone would kind o fhang on to somebody else, but it would be a smaller and smaller set of

people the closeryou got to Linus”, [Barr, 200367).

McVoy was willing to create software that would closely match the needs of specifically Torvalds
because he felt that, “Linus is what makes Linux great. He's the glue that holds it all together.
Without him, Linux would splinter like the BSDs have” (Andrews and McVoy 2002)68. McVoy
gives much ofthe credit for the idea behind BitKeeper to Torvalds, “Well, for what'it's worth, the
BitKeeper stuffreally got rolling after Linus, Dave Miller, and Richard Henderson came by for
dinner and we hashed out how the solution should work. That picture got refined through talks
with people like Eric Raymond (who came up with the patchfile format, or at least a comment he
made prompted the design), and kernelfolks like Alan, Ted, and Stephen at Linux Expo. So not
only is BitKeeper not thefirst thing to come along, it's also not like it'sjust some dream I have
concocted in a vacuum. It's been, and will continue to be, a process that gets changed by the
needs of the primary developers” (McVoy, 1998 - Sun 4th Oct)®. Torvalds was interested but
didn’t give a definite reply. He insisted that he needed to use the software and then make his
judgement. When McVoy’s company BitMover in the late 1990s did finish the first version of BK
it was not Torvalds who was the first user but, ‘For a couple ofyears before Linus ever touched
it, Cort [Cort Dougan of FSM Labs and the Linux PowerPC Group] and his team used it. They

jumped on it and used it when it was very early (in the development process) and were just

64 http://www.uwsg.tndiana.edU/hvpemiail/Linux/kernel/9902.2/0812.html
65 http://www.uwsg.iu.edu/hvpermail/Linux.''kemel/0201.3/I000.html

66 http://kerneltrap.org/node.php?id=222

67 http://www.linuxworld.com/site-stories/2003/0127.barr p.html

68 http://kemeltrap.org/node.php?id=222

6 http://www.ussg.iu.edU/livpermail/linux/kernel/9810.0/0439.html
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incredibly helpful helping us debug problems. If there was some issue, they always saved the
repository so we could go poking through it and try tofigure out what was going on. Those guys

you know they have done morefor us than anybody else.” (Barr and McVoy 2003)70

The first real mention of BK was made by McVoy on the 21st of February, 1999 when he
announced that “Most ofyou know we've been working on the next gen revision controlfor the
kernelfor a while now. For those o fyou who don't know, BitKeeper is an Open Source distributed
revision control system which I claim is a substantial step forwardfrom CVS” (McVoy, 19997).
BK was not, however, universally seen as a remedy, and, for example, inspired the ‘Darkstar’
project; not being open source (GPLed) was anathema to many Linux developers. However,
McVoy didn’t accept that BK was closed source software, “// is you, not me, that is casting things
as either "open source" or "closed source". BitKeeper isn't "closed source". You can get the
source andyou canfix it ifyou want to. You can redistribute patches as long as you don't apply

them, redistribute the vresult, and call it BitKeeper (if you want to call it



initiative of Linus Torvalds, Sebastian Kuzminsky, Theodore Ts'o and Daniel Quinlan but it never
really took off the ground (Quinlan, September 13th 2000)75. The discourse on this topic
generated many emails but the context steered off into a comparison of CVS and BK rather than

showing any genuine interest in the proposal.

Torvalds, however, didn’t think the licence would pose such an issue, and in February 2002
declared it the official version tool for the kernel, “The long-range plan, and the real payoff,
comes if main developers start using bk too, which should make syncing a lot easier” [Torvalds,
February 5th 200276] and thus it was official that the Linux kernel would use BitKeeper and this
too with Linus’s initiative and blessing. Torvalds suffered some initial hassles using BK when he
had to “spend about a week trying to change my working habits and scripting bitkeeper... I expect
to be a bit slower to react to patchesfor a while yet, until the scripts are better. However, some of
it pays offalready. Basically, I'm aiming to be able to acceptpatches directlyfrom email, with the

comments in the email going into the revision control historv” (Torvalds. February Sth 200277.
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because of it qualities as distributed source code management system.” [Zippel, April 22nd

20027

Torvalds believed that CVS “o//ow[ed] automatic acceptance of patches, and positively
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they need to be updated. It knows. That's a benefit ofhaving changesets, I only need to compare
the ChangeSetfile to know that 4 files were updated 2 were moved, and 5 were created, then I
move those “portions * o fthosefiles across the wire. Other than the initial repository create (aka
cvs checkout), BK *never* moves an entirefile across the wire. Never means never and includes
the process ofdeciding what to do. CVS moves wholefilesjust to discover there is nothing to do”
[McVoy, September 11th 200081]. David Gatwood came up in strong defence of CVS with,
“Faster, yes, but it still does the same thing, just in a different way that uses less bandwidth”
[Gatwood, September 11th 20008] but McVoy hit back with” BitKeeper is faster in practice
because it isn't trying to talk to the CVS serverfor all ofthe operations”. [McVoy, September
1 1th 200083] and he showed comparative figures for time taken to carry out a null update for both

“CVS: 139.5 seconds and BK: 1.6 seconds” [McVoy, September 11th 2000&4].

Many in the community, due to its non-GPL licence, did not like BK. Pragmatically, Ts’o
suggested ‘TfLinus were willing to dictatefrom high that we were going to use bitkeeper, and that
all patches had to come in as bitkeeper changelogs, then that might get us critical mass” [Ts’o,
September 13th, 200085] and he was right. A volley of dissenting voices came across the LKML,
“Linux ceases to befree software when you require nonfree software to contribute it” and this

from a trusted lieutenant, Alan Cox (Cox 2000 - Wed Sep 13)86.

The situation was exacerbated when in early October 2002 some developers noticed that the
BitKeeper license [BKL] had been changed to include a new clause, ‘..this License is not
available to You if You...develop, produce, sell, and/or resell a product which contains
substantially similar capabilities of the BitKeeper Software, or, in the reasonable opinion of
BitMover, competes with the BitKeeper Software’. “This would seem to be a change which is not
Open Source developerfriendly said Gall, (Gall 2002- Fri Oct 04)8 but McVoy replied, clarifying
that BitMover [BM] had left out the word ‘distribute’ in the clause in order to protect open source
developers (McVoy 2002 - Fri Oct 04)&. The substance of concern about BK not being GPLed is
well expressed by Molnar, “Today the 'Linux kernel' is not the source code anymore, it's the
source code plus the BK metadata... by default the data and the MetaData is owned by whoever

created it. You, me, other kernel developers. We GPL the code, but the metadata is not

81 http://www.uwsg.indiana.edii/hvpermail/linux/kemel/0009.1/0549.htm1

8 httD://www.uwsg.indiana.edu/hvpermail/linux/kernel/0009.1/0560.html

8 http:// www.uwsg.indiana.edU/hvpermail/linux/kerpel/0009.1/0565.htnil

84 http://www.uwsg.indiana.edU/hvpermail/linux/kemel/0009.1/0530.htm1

8 http://www.uwsg.indiana.edU/hvpermail/linux/kernel/0009.1/1022.html

86 http://www.uwsg.indiana.edu/hvpemiail/Linux/kernel/0009.1 /1076.html
87 http:// www.uwsg.iu.edU/livpemiail/Liiiux/kemel/0210.0/1496.htm1

8 http://www.uwsg.iu.edu/hypermail/Linux/kernel/0210.0/1500.html
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automatically GPL-ed.” (Molnar 2002 - Sun Oct 06)% Molnar stressed that a change in the BKL
was needed which ‘ensures that metadata attached to GPL-ed code is also licensed under the

GPL, and creates a clearly GPL-ed repository\

Support [or a need to be fair] for McVoy came from what seemed like an unlikely person, David
Miller. After all Miller had argued quite sharply with Torvalds over the use of CVS but Miller did
admit that BitMover does not charge the Linux community anything for their use of BK, “nobody
need[s] to give Larry one dime to use BKfor kernel work. And to be honest, I get better support

from Larryfor *free* than you'll most often get when paying some companyfor software support.
This is afact. When was the last time you got a ring on your cellphone 4 minutes after emailing a
bug report to someone? Larry isn't Microsoft” [Miller, October 7th 200290]. But there were others
in this community who would rather that ‘Your [Larry McVoy’s] company dies ASAP and
bitkeeper stops poisoning air here”, [Machek, October 6th 200291].

This tonic generated a heated discussion which lasted-fioilLJ2iQi£-thaii 20Q-email-m£ssafles-Qii-th£-

iiis cuimiiimuy icawicu wiui, w irus is a concern, u actually appears that UK has Me <
"enforce" a license, in that I could make BK aware ofthe GPL and that would cause L

a window saying "Do you agree to this license" before thefirst check-in by a perse



better place ifpeople had less ideology, and a whole lot more "I do this because it's FUN and
because others mightfind it useful, not because I gotreligion (Torvalds 2002 - Sat Apr 20)%

Dual VCS the BKMCVS gateway

BK slowly began to gain ground and a number of other kernel developers adopted its use. This
tentative peace broke down when in February of 2003 Pavel Machek announced that he had
decided to start a project called BitBucket fa] bitkeeper clone’ (Machek 2003 - Wed Feb 26)95.
Not surprisingly Larry McVoy retaliated quickly, ‘BitKeeper is a trademark, please don't use the
BitKeeper name when describing BitBucket’ (McVoy 2003 - Sat Mar 01)9%, because saying
“BitBucket is a GPL-ed clone ofBitKeeper’ ... implies that BitBucket does what BitKeeper does
and nothing could be farther from the truth”, (McVoy 2003 - Sat Mar 01)97. McVoy’s reply to
Machek then began a long repertoire of emails, most poking fun at BK and McVoy’s adherence to
proprietary software. This was carried out in a good humoured way where developers like Alan
Cox joined in too, although he made it clear that he did think Larry was right, “Something is
wrong, I agree with Larry. He should instead say "A toolfor accessing bitkeeper repositories
[Cox98 2003]. Some developer comments were: “7/ would be better ifyou stored it in BitKeeper
just to piss Larry off, said Lehmann [20039)] and Eckenfels [2003 10°] added but “that would be a
license violation And some rather amusing clone names cropped up like KitBeeper and even

ButtCreeper!

Garzik's "SourceForge Syndrome"

Issues which grew out of this discussion were that the developer base was getting diluted by
initiating too many version control projects and thus not creating any truly useful one, what
Garzik called the ‘SourceForge Syndrome’ (Garzik 2003 - Sat Mar 01)101; recalling how a real
conversation is needed before initiating any new tool (here McVoy having dinner with Torvalds

and others was brought up as an example ... (Machek 2003 - Mon Mar 03)102 ) (Bradford 2003 -

9% http://www.uwsg.indiana.edu/hvpermail/Linux,/kemel/0204.2/1018.html
95 http://www.uwsg.indiana.edn/hvpennail/Linux/kemel/0302.3/0931.html
96 http://www.uwsg.indiana.edU/hypemiail/Linux/kernel/0303.0/0052.html
97 http://www.uwsg.indiana.edU/hypermail/Linux/kemel/0303.0/0057.html
98 http://www.uwsg.indiana.edU/hvpermail/linux/kemel/0303.0/0060.htm1
9 http://www.uwsg.indiana.edU/hvpermail/linux/kemel/0303.0/0064.html
100 http://w'ww.uwsg.indiana.edu/hvpermail/linux/kernel/0303.0/0068.html
101 http://www.uwsg.indiana.edU/hypermail/Linux/kemel/0303.0/0147.html
102 http://www.uwsg.indiana.edU/hvpermail/Linux/kernel/0303.0/0422.html
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Sun Mar 02)103; and why projects should be encouraged to keep open source the free and open

infrastructure it is supposed to be (Hellwig 2003 - Sat Mar 01)104.

During the debate over BB Garzik, who is a strong proponent of BK kept insisting that the only

reason why he was against a BK clone was because, “a BK clone would just further divide

resources and mindshare. I personally _want _an open source SCM that is as good as, or better,

than BitKeeper. The open source world needs that, and BitKeeper needs the competition. A BK

clone may work with BitKeeperfiles, butI don't see it ever being as good as BK, because it will

always be playing catch-up” [Garzik 105, 2003]. “7 call this the "SourceForge Syndrome”, where

developers ask,

“Q. Ifound a problem/bug/annoyance, how do I solve it?

A. Clearly, a brand new sourceforgeproject is calledfor’

Garzik added that

>

“while people would certainly use it, I can't help but think that a BK

clone would damage other open source SCM efforts”. Instead, Garzik wants efforts to be

geared towards improving an existing SCM tool which is able to read and write BK files,

and of course this seems reasonable enough as can be witnessed by the concurring replies
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07)10. McVoy took this as encouragement enough to give a more detailed explanation ofhow BK

is more technically efficient and useful to the kernel developers.

Larry's Offensive Defence of BK

McVoy repeated the argument that none of the developers seem to be aware ofjust how much

effort had been put into the development of BK and that was much harder than it looked,

‘To create something like BK is actually more difficult than creating a kernel... To
understand why, think o fBK as a distributed, replicated, version controlled user level
file system with no limits on any of the file system events which may happened in
parallel. Now put the changes back together, correctly, no matter how much
parallelism there has been. Pavel hasn't understood anything but a tiny fraction of
the problem space yet, he just doesn't realize it. Even Linus doesn't know how
BitKeeper works.. That's not a slam on Linus or Pavel or anyone else.

Rename handling in a distributed system is actually much harder than getting the
merging done...in BK's case, there can be an infinite number o fdifferentfiles which
all want to be src/foo.c....in a centralized system it is trivial but in a distributed
system you have to handle thefact that the same symbol can be put on multiple revs.
Time semantics are the hardest of all. It [time] goes forwards, backwards, and
sideways on you ... Again, not a problem for CVS/SVN/whatever, all the deltas are
made against the same clock. Not true in a distributed system.

It [BK] started in May of 1997, that's almost 6 years ago ...there is more than 40

uyeurs.

The disbelievers think that I'm out here waving the "it's too hard"flag so you'll go
away

[McVoy11Q 2003]

This rant was continued over the next few days with Larry pitching in more heatedly, “BK is
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problem because ‘“there _cannot_be multiple concurrent renames that have to be merged much
later (well, CVS cannot handle renames at all..)... With a central repository, you avoid a lot o fthe
problems, because the conflicts must have been resolved _before the commit ever happens”, [8th

March, 2003 113].

The BitBucket debate soon converted into a technical discussion of what are the basic
requirements for a version tool. The developers talked knowledgeably about changesets and file
names. McVoy, not being able to suppress himself, broke into this discussion after 50 odd
messages had passed, “in reading over your stuff, you aren't even where I was before BK was
started. That's not supposed to be offensive, just an observation. As you try out the ideas you
describedyou'llfind that they don't work in all sorts ofcorner cases and the problem is that there
are a zillion of them”, but then he did allow that, ‘“Arch is probably closer to mimicing how
development really happens in the real world, in theory, at least, it can do better than BK, it lets
you take out oforder changesets and BK does not. But it is light years behind SVN in terms of
actually working and being a real product. SVN is almost there, they are self hosting, they eat
their own dogfood, Arch is more a collection ofideas and some shell scripts. From SVN, you're
going to learn more ofthe hard problems that actually occur, but Arch might be a better long
term investment” [McVoy 114 9thMarch, 2003].

BK->CVS Gateway

However, perhaps McVoy felt that he had made little headway so less than a month later he
surprised developers by creating a gateway between CVS and BK (McVoy, 2003 - Tue 11th
March) 115

“We have a first pass of a real time gateway between BK and this CVS tree
done... What we (actually Wayne Scott) did was to write a graph traversal alg
whichfinds the longest path through the revision history which includes all tags.
For the 2.5 tree, that is currently 8298 distinct points. Each ofthose points has
been captured in CVS as a commit. I[f we did ourjob correctly, each ofthese
commits has the same timestamp across allfiles. So you should be able to get any
changeset out of the CVS tree with the appropriate CVS command based on
dates. We also created a ChangeSetfile in the CVS tree. It has no contents, it
serves as aplace to capture the BK changeset comments.”

This was not exactly encouraging competing VCS but did allow CVS users more access into what
was happening in Linux development. McVoy (2003 - Tue 11th March)116 summed up his

company’s motivation as,

113 http://www.uvvse.indiana.edu/hypermail/linux/kernel/0303.1/0162.html
114 http:/www.uwsg.indiana.edu/hypermail/linux/kernel/0303.1/0385.html
115 http://www.ussg.iu.edu/lwDermail/linux/kemel/0303.1/0889.htm1
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"... you might be wondering why we bothered. First of all... I realized that
because BK is notfree software some people won't run BK to get data out of
BK... I simply did not anticipate thatpeople would be that extreme... Second, our
goal is to provide the data in a way thatyou can get at it without being dependent
on us or BK in any way. As soon as we have this debugged, 1'd like to move the
CVS repositories to kemel.org (ifl can get HPA to agree) and then you'll have
the revision history and can live without the fear of the "don't piss Larry off
license". Quitefrankly, we don't like the current situation any better than many of
you...

Another goal is to have the freedom to evolve our file formats to be
better, better performance and morefeatures. SCCS is holding us back... we have
gone as far as is possible to provide all of'the information, checkin comments,
data, timestamps, user names, everything. The graph traversal alg captures
information at an extremely fine granularity, absolutely as fine is possible. We
have 8298 distinct points over the 2.5.0 .. 2.5.64 set ofchanges, so it is 130 times
finer than the official releases. Ifyou think something is missing, tell us, we'll try
andfix it



This debate even included some neutral senior developers like Alan Cox who did try to diffuse the
situation by explaining that perhaps it is a better idea that developers who have a problem with the
new gateway should solve the problem themselves, “CVS can't represent it all because CVS isn't
up to thejob. Ifthe rest exists as comments then its your problem to write a VCS that can extract
the comment data and represent it infull' [Cox119, 12th March 2003]. But, as explained Roman
Zippel, the ‘changeset ids are missing’ thus some of the valuable information needed was not
accessible to all [13th March 2003 1X)]. This after McVoy emphasized that, “it is easy to write the
BK to CVS exporter completelyfrom the command line... you guys could have done this yourself
without help from us because all the metadata is right there. The whole point ofprs is to be able
to have a will-always-work way to get at the data or the metadata, it makes thefileformat a non-
issue” [12th March 2003 12]. BitMover even allowed Linux developers who had previously used

[or still did use] competing tools to access converted material [Ts’o 12, 13thMarch 2003].

Perhaps Larry was quite justified for his exasperated comment “none ofus at BitMover would
shed a tear ifyou moved off BK. This has *not* been a pleasant experiencefor us” [McVoyl23,
12th March 2003] because “The main thing is that the CVS server and the tarball of the CVS
repository are *not* under our control. That's the only way some people are going to believe that
we're not out to screw them and it would oh-so-nice to have people think that, it really would”

[McVoyI4 11thMarch 2003].

The Linux developers did have a point when they said that not everything would be available to
them through this gateway because Larry admitted that though Ithe full revision history is
preserved [the CVS are only] 'CVS: 110,076 deltas over allfiles' whereas ‘BK: 121,891 deltas
over allfiles' [McVoy12, 12thMarch 2003]. Collins [12thMarch 2003 1X] was justified in saying,

‘T wasn'tfar offby saying 90%. And don't tell me I can get all the data, when in
fact, I can't... The kernel's revision history is always available. I get the cset
emails. I can extract all the info I want manually. The problem I have is thatyou
are going to make it so that the original files that hold this data cannot be
extracted in any meaningful way without your tools. So if bitkeeper suddenly
could not be used by Linus or any others, for whatever reason, we are locked out
ofthat original dataset”

119 httD://www.ussg.iu.edu/hvpermail/linux/kernel/0303.1/1150.html
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Larry insisted that nothing was missing from the data and that some of the developers were just
being paranoid and mistrustful, “we actually captured 100% of'the checkin information, both in
datafiles and in the pseudo ChangeSetfile, not one byte of'that is lost. All we did is collapse all
the branches into the longest possible straight line, which is actually for many purposes nicer

than the rats nets thatyou get with BK” [McVoy12], 12thMarch 2003].

It may seem that there are more developers unhappy with BK or Larry but he has some staunch
loyalists like Jeff Garzik and Andreas Dilger, besides others. One developer [Brandon Low 12X
12thMarch 2003] very pragmatically said,

"I'd like to say that before Linus started using BK, close to 50% o f'the revision
data that is now saved was completely lost in the process ofhim merging patches
by hand into his repository. I mean be realistic, do you think that Linus kept
perfect track o fEVERY single that he changed when merging a patch with
minor rejects with his repo? Do you think that every single time that he made a 1
line change or merged a 1 line change that was sent to this list it was
documented and recorded? I doubt it. So now we are able to get a publicly
available CVS repository with close to two times the data that was ever available
before, and infinitely more than was ever available to anyone outside ofLinus'
own head.

I personally think that Larry has done an amazingjob supporting this project and

it's goals, and I will give him a big "Thanksfor all your support and hard work"

at this time. I think that those o fyou complaining about this as bitmover clearing

the road to steal our data should take a long hard look at what you are really

saying and consider what BK has given us that we never had before because

nothing before was ever usable by Linus. ”
This flamefest even inspired a mental T-shirt for one developer [John Bradford12, 12th March
2003], which read like,

m  ‘HiLarry, BK is evil, please make a BK->CVSgateway.
m Well... OK, Iguess I can I do that without hurting my business.
m  Larry, this BK->CVS gateway ispure evil!!!”

Larry’s rather brazen show of ownership of the metadata disturbed a number of developers, “As
for the data, you are right, we don't own that. As for the metadata which makes BK work, that's
ours, not yours. BK made that metadata, you did not. If you don't like those terms, convince Linus
and friends to get off of BK. That would be just fine with us” [McVoy13) 16thMarch 2003]. But
according to Roman Zippel Larry had left out some key events so he added them himself, “You
forgot to mention that some people are not allowed to use bk (without paying) and some people

also don't like the invasion of privacy (unless they pay). This has never been an issue, the

127 http://www.ussg.iu.edu/hvpermail/linux/kernel/0303.1/1134.htm1
128 http://www.ussg.iu.edu/hvpermail/linux/kemel/0303.1/1128.html
129 http://www.ussg.iu.edu/hvpermail/linux/kemel/0303.1/1009.html
130 http.y/www.ussg.iu.edu/hvDermail/lmux/kernel/0303.2/0121 .html
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complete version history is only available to bk users. This makes it difficult for other SCM
developers to assist users in easy exchange of information with bk users or converting their
information from bk into other formats. Flame wars happened and when the dust settled, the
BitKeeper folks built a BitKeeper to CVS gateway which captures the bulk of the information,
because only the bk folks have the tools and the license to produce such a product.” [Zippell3l,
20th April 2003]. On the 17th March 2003 Larry announced that the BK to CVS gateway has gone
live and can now be accessed and used [2003132]. This is where we leave the story; however, a
recent developments has been the breakdown of this gateway ‘due to disuse and security

problems’ (Anvin 2004 - Thu Jul 22)133.

We add a postscript that describes the turn of events in April 0f2005. BK was no longer available
to the Linux kernel collective, and so Torvalds decided to create his own VCS, which he named

GIT.

Bl http://www.ussg.iu.edn/hvpermail/linux/kemel/0304.2/0859.html
132 http://www.ussg.iu.edU/hypennail/linux/kemel/0303.2/0219.htm1
1B http://www.uwsg.indiana.edU/hvpermail/Linux/kernel/0407.2/0490.htm1
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Postscript - April 6th 2005 - 74e

After using BK for 3 years and strongly giving it support it was quite a surprise to the people following the Linux
kernel development to hear Torvalds say that he would no longer use BK for the Linux development, ‘we've been
trying to work out a conflict over BK usage over the last month or two (and it feels like longer ;). That hasn't been
working out, and as a result, the kernel team is looking at alternatives" (Torvalds, 2005 - Wed 6th April)134 This
message on the LKML was covered by every open source related online magazine. Slashdot began a poll named If I
were Linus, I'd replace BitKeeper with...'135 where Mind melding was the clear favourite with 37% of the votesI36

Torvalds made it clear that he was very satisfied with BK, ‘the three years with BK are definitely not wasted: I’m
convinced it caused us to do things in better ways, and one of the things I'm looking at is to make sure that those
things continue to work. So I just wanted to say that I'm personally very happy with BK, and with Larry. I't didn't



forced him to give up BK use (Shankland, 2005)144 and look for an alternative. Torvalds and a number of other
developers are now happily working away on Giti5but it is not usable yet so only time will tell if the move away from
BK was in the best interests of Linux.

144 http://news.coiTi.eom/Torvalds-Hinveils+tnew+Linux+control+svstem/2100-7344 3-5678651 .html
¥ GIT has its own discussion forum which has seen steady growth and interest -  see
http.7/ww,w.gelato.unsw.edu.au/archives/git/
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Rank

Date

September
1998

November 1998

December 2001

January 2002

Title of Thread

2.1.123 and
fbcon.c

The historv of
the Linux OS

The direction
Linux is taking

A mpdest
DroDOsal - We
need a patch
Denauin

Description

What began as a small complaint about a patch soon flared into a serious argument where Torvalds
took active and aggressive part. This was around the time when there were rumours of him not being
able to 'scale' and being aware of this, he can be seen to demand more respect and control. However,
he ends up insulting his trusted lieutenant David Miller and tops that with heavy abuse for VGER, the
CVS server and tree updated by Miller. Torvalds makes a clear demand to Miller to shut VGER down as
he claims it 'keeos me out of the Iood' .

A desire to preserve the historical evolution of the Linux operating system spurred a developer to ask
the community to send him details about significant emails that were sent in the past, personal details
about contributors and contributions, and even anecdotal summaries and photos. The amount of
interest this request generated is a good indication of a strong desire to archive, and to even access
the archive almost as organizational memory. Another thread around this time was The Linux Kernel
Compilation Project [proposal]. Interestingly, CVS was brought up as a way to preserve history. McVoy,
who at that time was developing BK, made an attempt to advertise his software but most of the
developers ignored and continued with CVS, and even RCS ideas.

This is another thread concentrated on an urgent need for a VCS for the kernel. The conversation
steered into what good maintainership should be, but was later hijacked by McVoy to promote BK.
Oddly enough, it ended with some developer, who had obviously not been following this thread, asking
why they don't use CVS!

A strong need for a VCS is voiced as Linus drops patches and developers become agitated that they
and their code is ignored. Linus advises the community to "don't try to come up with a "patch
penguin". Instead try to help existing maintainers, or maybe help grow new ones. THAT is the way to
scalability". He added that "development is done by humans" which makes quite a claim for human
supremacy over technology, however, is this a true picture of the reality, or maybe it is? The latter half
of the messages are focused on BK where we see McVoy make a strong attempt to enrol Torvalds into
using his software for kernel development.

10 Longest Threads on V(S between 1995-2003, Date order, with Ranking

No of
Messages

73

87

118

320



10

April 2002

April 2002

October 2002

October 2002

February 2003

March 2003

TPATCH1 Remove
Bitk§eper
documentation
from Linux tree

BK. deltas,
snapshots and
fate of Dre...

New BK License
Problem?

Bitkeeper
outraae. old and
new

BitBucket: GPL-
ed KitBeeoer
clone

rANNOUNCEI
BK->CVS (real
time mirror)

BitKeeper documentation is inserted into the Linux Documentation directory and this caused uproar
amongst those opposed to BK, but also with some BK supporters. The kernel developers want it made
clear that the kernel is not too intimately linked with a closed source software like BK. Proprietary
software is looked upon with distaste and extreme mistrust. The worry is that BK will contaminate the
open source code of the kernel.

A continuation of [PATCH] Remove BitKeeper. where the discussion continues about ideology,
proprietary software and possible adulteration of Linux code. This is the time of early BK use and the
developers are keen to put up a fight to rid the kernel of it.

A clause is added to the BK License which makes it illegal for any developer working on a BK
competing software to use BK. This forces the developers to reassess questions about 'openness'. The
developers wonder if McVoy and his company intend to creep in more subtle such changes, and as
trust is very slender between the two, it is not surprising that McVoy's every move is closely watched,
speculated upon, and usually not given the benefit of the doubt.

Richard Stallman initiated this thread with his obvious call to the Linux kernel community to beware of
BK and its proprietary license. BK supporters rallied around in defence of BK and McVoy. Their
retaliation was based on the claim that Stallman, by telling other developers to not use BK, was
infringing on the community's freedom to make their own choice.

This thread emerged from Machek's announcement of the BitBucket [BB] project, a self-professed
clone of BK. BK users and supporters gathered together to crush this move through technical
arguments of BK superiority. We are led into a discussion of the merits of mostly BK, but also other
VCS like Subversion and Arch. BB never materialized but managed to cause a stir with a simple
announcement.

Focus of this thread was the announcement of the BK-»CVS gateway by McVoy, however, this soon
degenerated into another argument between CVS and BK users. The CVS users complained that
metadata written by the developers was not complete in the gateway version of CVS. This thread
linked into another, rather colourfully named one, Constant BitKeeper bitching.
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144

70
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Chapter 7

Version Control Software in the Open
Source Process

"If an organization is narrow in the images that it directs toward its
own actions, then when it examines what it has said, it will see only
bland displays. This means in turn that the organization won't be able
to make much interesting sense of what's going on or of its place in it.
That's not a trivial outcome, because the kind of sense that an
organization makes of its thoughts and of itself has an effect on its
ability to deal with change. An organization that continually sees itself
in novel images, images that are permeated with diverse skills and
sensitivities, thereby is equipped to deal with altered surroundings
when they appear." fWeickV46

Introduction

This chapterandthe following onepresent the analysis of our data. They are  organized such that
this chapter relates threethemesoforganizing found in the data; themesof time and space,
sustaining the assemblage and material agency. The following chapter then turns to the macro
theme oflearning and transparency.This is not to imply that the three themes addressed in this

chapter are micro in relevance, butit is structured so to provide a logical break for the reader to

take pause before all themes are linked to show the overall significance of the findings.

These two analysis chapters analyze the data using the framework of ANT, Bateson and Weick
developed in earlier chapters [Chapters 3 and 4]. The ontology and epistemology of ANT guided
the data collection and data analysis phases of the research. The organizing of the collected data,

through the use of some grounded theory techniques, gave rise to a number of open and axial



As explained in the Chapter 4, ANT, as methodology, has been operationalized here with the help
of Law’s concepts of ordering narratives (Law 1991, 1994) and modes of ordering (Law 2004).
Both concepts stress the performative nature of ' Memo Manager [HU: 08 coding]

Memos Edit Miscellaneous Output View

reality and of doing research. Ordering f3 *| n 2£ x *

: : : : Name - Lyp~"" 1 Den... 1Size
narratives give sound to the voice of various HESSE! H iwarn

. . . (6 BKis magic Memo 8 8 470

actors in a collective. The emphasis is on the ¢ srinsoming Memo 2 2 1153

breakdowns Memo 40 40 1501

performative nature of narrative of the actors, call for more developers Memo 3 3 188

|£ constant need for change and Impro... Memo 3 3 501

whereas modes of ordering is concerned With [\l mmwiamspurins e 0 1 s

delegation Memo 13 13 691

how the researcher creates a coherent story out  “zovernance models Memo S s 1536

kosher licence ﬁe_nlo 11 11 968
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. . . . . limitations of open source Memo S 5 134

The different narratives (multiplicity) have |, .obiizaion ’ vemo 2 ) ga

£ need for information Memo 3 3 231

some over]ap and this is often what the £ official kernel->2:27 Comme... 28 28 372

im offine learning and change Memo 1 1 374

researcher captures, and is certainly true in this ™o Mo 4 ¢ !

im ownership Memo 20 20 659

im reason for use of partkiJar VCS Memo 4 4 586

work. * reverse tactics to convince/mobSze  Memo 1 1 234

£ technical issues Memo 9 9 395

im transparency Memo 8 9 273

Figure 14: Final List of Memos im trusted lieutenant Memo 4 4 205

ifrvC'S a learning reposfcy and vehicle Memo 8 8 483

The four themes (narratives) of this research
include; version control software and how it

the idea of a tool being able to 'take' impfies a good deal of agency.

organizes time and space m d]str]buted Take brings with It force, choice, perhaps even Intentlonalty, power....
thus the name tool seems at odds with the ablties this tool has because

. . . the word tool Imptes something that helps but Is secondary.

collectives; version control software and its

. . [26 Memos  Jaguncy {30-Me} - Super AT btame-TMe
ability to hold and sustain the assemblage; the
agency of actors and how version control software is a controlling device; and finally (addressed

in the next chapter) how version control software supports transparent learning and organizing.

Organizing Time and Space

Two main memos emerged from the data that lead to this theme of time and space. The two were
titled ‘time wrap’ and ‘learning repository’. Time wrap, as will become clear below, signifies that
version control software is able to wrap and unwrap time and space freely and flexibly, while the
learning repository memo helped the research to explore how the actors in the Linux collective
understand the repository created by version control software as a potentially valuable learning
resource which could be accessed at any point in time and space and can return you to any point

in space and time.
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Time Wrap: The Linux Collective's Understanding of Time and Space

Open source developers work across geographical and temporal boundaries. Neither space nor
time is similar for most ofthe actors when for example they develop or send patches for inclusion
in the Linux kernel. In open source development it is commonly understood that were it not for
the creation and use of the Internet as a medium of communication then open source development

would not be possible.

Here we understand the concept of time through the discourse of the Linux collective. For them
time is polychronic (Lee 1999). As Lee describes polychronic time implies that ‘events take place
in an unexpected temporal way’ meaning that events are sporadic and irregular, whereas
monochronic time refers to a predetermined and predictable sequence of events. Lee distinguishes
between monochronic events and a monochronic manner of working for actors. He presents a 2
by 2 matrix to indicate the various possibilities of events and actor working styles that can arise.
VCS, and human actors, probably lean towards a polychronic way of working and managing
events. Time is then socially and collectively constructed, and grows to be significant for actors as
they communicate with each other (Lee and Liebenau 2000). In the data analyzed the collective
proposes more than one perspective on both time and space, which is perhaps natural when the
collective is comprised of varied actors. The most recurring awareness of time in the discourse
was of two types, chronological and time measured by change. The discussion below anchors
itself initially on chronological time but soon diffuses into change issues; a change in code; in

behaviour; in work processes; and in perspective.

Time as efficient change: Time and efficiency are linked in the example below where the VCS
that responds the fastest is considered better because time taken is a waste of resources, not just

developer time, but also bandwidth use,

CVS: 139.5 seconds BK: 1.6 seconds Infairness to CVS, I ran this a
third time and got 78 seconds, so the net must have been busy. It's
still about a 50:1 performance difference. On the other hand, ifyou
doa

find. -typef | xargs touch

time cvs update.
it will melt down your DSL line for what seems forever. I killed it
after 20 minutes, I have better things to do with my bandwidth. It's
pretty clear that CVS is comparing timestamps so ifyour files get
modified at all, it's going to transfer them to see what needs to be
updated. The same sort of "touch all, then update" operation in BK
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has no effect on performance, BK doesn't do its work that way

(McVoy, 2000-Sept 11th) 147
CVS understands time through the timestamps of changes that are added to the code. It reads the
timestamps on the files and if a difference is noticed it attempts to incorporate the changes. It uses
a simple inscription of time. BK, as McVoy points out [see below], offers a cleverer inscription of
time in its metadata and changesets. It does not work like CVS, and manages to both save time

and discern a finer-grained sense of change.

BK only moves the data it needs to move. That means ifyou have a 100GB

file in which you have changed one byte, BK will move on the order of 1 byte

to update thatfile. And that's it - it doesn't compare the twofiles, or read the

twofiles, or in any way look at the twofiles tofigure out that they need to be

updated. It knows. That's a benefit of having changesets, I only need to

compare the ChangeSetfile to know that 4files were updated 2 were moved,

and 5 were created, then I move those “*portions * of those files across the

wire. Other than the initial repository create (aka cvs checkout), BK *never*

moves an entire file across the wire. Never means never and includes the

process ofdeciding what to do. CVS moves wholefiles just to discover there

is nothing to do” (McVoy, 2000 - Sept 11t 148
Here time is associated directly with change and its ability to perceive and track a finer-
granularity of change. And in the debate the collective relates time to technology. BK is better

able to manipulate time and is thus the ‘better’ version control software.

In the discussion each VCS is weighed and compared based on its ability to organize, and
interpret changes and to do this efficiently. The ability to interpret changes which in CVS is
described as ‘comparing timestamps’ in BK is simply explained as ‘It knows’, reflecting not only
the varying capacity of each as a centre of calculation, but implicitly laying claim to differing
levels of learning that each VCS is capable off. The need for speed reflects the idea that VCS
should use time wisely and that VCS should have the ability to interpret and distinguish changes.
In other words, it needs to be ‘intelligent’ and be able to learn and remember as the code changes.
Put another way VCS must understand change in order to control time. BK’s learning is more
advanced and a rather mysterious ‘it knows’. It is purposefully mysterious because it is closed

source and cannot afford to demystify the collective.

Time is control. Time is also understood as control. The superior abilities of BK created a
situation whereby, when Torvalds adopted it for Linux kernel development, CVS not only became
marginalized but was also forced to accept patches via BK, “We have afirst pass ofa real time

gateway between BK and this CVS tree done. Right now it is done by hand (by me) but as soon as

147 http://www.ussQ.iu.edU/hvDermail/linux/kernel/0009.1/0540.htm1
148 http://www.ussq.iu.edU/hvpermail/linux/kernel/0009.1/0549.htm1
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it is debuggedyou will see this tree being updated about 1-3 minutes after Linus pushes to bkbits”
(McVoy, 2003 - March 11th. BK is updated before CVS, albeit a few minutes apart, but BK
‘knows’ before CVS does and more importantly CVS cannot know unless and until BK wants it
too and makes the changes available. BK thus has sought to control other VCS used by the
collective. The collective needs to be kept abreast of changes, there is a need to know what every

actor knows (transparency).

Time is experience'. Time is also considered to be experience, “Adegisl49 is under GPL and has
over 8 years ofdevelopment behind it” (Mendelson, 1999 - Sept 27th) 130 Time is measured in
experience where experience is highly valued and a form of currency amongst the collective
because experience is equated with learning and ability, and thus provides legitimacy. McVoy
(1999 - Sept 27t) ISl makes the same point but uses BK as an example and illustrates BK
embodying learning as, “BK has...more than 8 years ofproving at Sun”. Experience [gained over
time] is manifested in the product, Aegis or BK. Both people and code are symmetrical in this

way, for both time as experience gained is used as legitimation.

Time is process: Finally, time is seen as process, it is performative or it is becoming (a concept
introduced in Chapter 3, which refers to the movement from one point to another), “Right now,
Alan's tree is in the process ofgoing back into circulation. He tells me that his tree is basically a
delta against marcello (2.4), and DJ is doing a delta against linus (2.5). Over time, the needfor a
2.4 delta will probably diminish as new development shifts over to 2.5. Right now, the patch
constipation we've been seeing is, in my opinion, directing development to occur against 2.4 that

should at the very least be eyeing 2.5” (Landley, 2002 - Jan 28th) 12

The release strategy of the kernel provides some direction to the becoming, but this becoming is
framed over time in a performative manner. VCS frames this performative changing for all actors
to openly view. The collective is potentially given a position of advantage to view changes to
software as they unfold, to see and help create the new reality together. VCS, in the process of
folding current work, gives rise to a number of possible trajectories that the software could follow.
In the case above growth in software development lays open more potential becomings or
trajectories, but of course it siphons off other possibilities at the same time. Becoming is about

possible trajectories, about potential pathways.

149 http://aeQis.sourceforQe.net/

150 http://www.uwsq.indiana.edU/hypermail/linux/kernel/9909.3/0514.htm1
151 http://www.uwsq.indiana.edU/hvpermail/linux/kernel/9909.3/0518.htm1
152 http://www.uwsQ.indiana.edU/hvpermail/linux/kernel/0201.3/1072.htm1
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VCS collapses time and space: VCS provides more than just a vantage point to view reality
creation (becoming), it also makes available a repository of code and code changes that allow
actors to travel back in time to earlier releases and patches. So we have both a ‘present’ and a
retrospective view of time “ifyou ever wanted to know what changed in this file between 1.0.4
and 2.3.99-pre5, ifyou ever wanted to know at which version thatfile was last changed or want to
find where some special structure is defined (or dozens ofother things) - then you are right here
:-) ok - the changes include: there is now an "all" tree which contains all versions together - so

you can now diffarbitrary versions ofafile” (Graichen, 2000 - Aug 22nd) IS3.

Technology as place and space: The collective is more likely to discuss time than space. Thus
space, a concept closely linked to time, is less obviously evident as an area of discourse for the
collective. Space is made somewhat irrelevant in open source development if the actors that
participate, be they developers or circulating patches, never have to consider where they are (or
others are) at any moment in time. The patches, being digital artefacts and thus weightless (Quah
2002a, 2002b, 2003), can be reproduced effortlessly and circulate, and grow as they circulate.
Earlier in the kernel development the infrastructure for collaboration was discussion forums and
emails but when this no longer sufficed the collective accepted another actor into its midst, VCS.
We see space as folded through VCS as it brings together patches and code from developers
which are based all over the world (Latour 2002). VCS is a heterogeneous mix of patches and
code from all over the world, and what it manages to archive is another heterogeneous mix of

actors (machination) folded together in what seems an effortless way.

VCS managing time and space: One of the reasons why a VCS is needed, besides the obvious
coordination facilitation it provides, is that humans are constrained to work in chronological time
and thus need help. The use of VCS provides to the human actors the ability to manoeuvre around
time and space constraints, they feel they can control time through VCS use. As far as Torvalds
was concerned CVS was not the correct VCS for kernel development and it threatened to take the
collective down the wrong trajectory and break this assemblage of hybrid actors. A break in the
collective is often not very desirable however breakdowns are an important and integral part of
learning. Breakdowns bring about change if the realization that something is not working properly
provokes an attempt towards improvement. Change over time happens through breakdowns,
though too many can lead to increased complexity and disorganization. VCS is seen as precious
and needed software because it is able to reduce the number of breakdowns and thus make
experience more gainful and accessible. It provides the collective with a window on time to help

deal with any breakdown and allow a quicker amelioration of the situation. Bateson (1972)

13 http://www.uwsq.indiana.edU/hvpermail/linux/kemel/0008.2/0112.htm1l
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understands a change in behaviour to be learning but we deal with hybrid actors in this study so it
is a change in hybrid behaviour. VCS manages breakdowns but also creates boundaries
concerning what solutions can be adopted. It is capable of organizing time and space and in doing

so it lays out possible trajectories (becomings).

Time semantics: Software is able to have an effect on the collective because it possesses agency
[material agency]. For example, it makes chronological time fade away through merging and
folding changes that were done in the past with recent work seamlessly, “one important thing to
consider is that time can goforward or backward. ... Time semantics. A distributed system cannot
depend on reported time being correct. It can goforward or backward at any rate” (Brown, 2003
- Mar 8th) 1% VCS specializes in controlling parallel dimensions of time. Each branch or
trajectory of software held by the VCS is a parallel dimension of time because each branch can be
and is developed at the same time. VCS space is virtual where time and space are both fluid, ‘T om
can do that, can have separate branches, distributed repository, any normal development tree can
be an arch. You have to reconcile among distributed versions, star-merge, patches replay or
update in any direction. You choose what you want to merge, you can always list the missing
patches, you can generate the neededpatches tojoin the branches...” (Aliagas, 2002 - Mar 8th) 155
Technology then makes this collective durable and does so via a passing of agency from non-
humans to humans and vice versa. If you create the needed patches they will seamlessly attach
themselves to the correct branch of software as if the patches themselves were looking to be part

of something and contribute, or to be whole and meaningful.

Merits of Various VCS to Manage Time and Space

Ordering and efficiency. Each particular VCS manages time and space in its own way. BK is



How big is your revision history file? About 9,000 times bigger than a BK file doing the same
thing” (McVoy, 1999 - Sept 27t 157.

Distributed Architecture: The collective also retains an architectural dimension in its
deliberations. BK is structurally more flexible and allows for greater manipulation of space and
time because the architecture is distributed and thus time and space are more easily folded,
“...work includes reordering changesets/massaging them (BTW, reordering is done as adding
empty changeset, pulling changes I want into it and rippling them forth; then collapsing the old
one). The real differencefrom BK is that history and tree ofchangesets are independent things.
It's not a "growing tree", it's "changing tree ofchangesets and its previousfo rm s '(Viro, 2001 -
Dec 27th) I8 In the discourse we see use of words like growing, rippling, and changing, all verbs
that help explain that the collective sees itself as in a constant state of flux, never stable or still.
These chosen words have significance, and it is interesting that the spokesman says that the code
BK holds is a changing tree rather than a growing one. Change implies something far more
dynamic than grow. Grow is defined as [when relating to material or immaterial things] to
increase gradually in magnitude, quantity, or degree, to develop gradually (OED) but change is
defined as to make (a thing) other than it was; to render different, alter, modify, transmute, to
become (OED). To change does not, like to grow, mean that when something is added to X that it
now becomes X + n, instead we could now have Y or even Z depending on the transmutation.
This is what learning is, it changes the actor. The actor not only ‘grows’ but more importantly it

becomes something else.

Sense-making by technology: BK does not operate like other VCS though of course its creation is
inspired by other VCS (Aegis and Subversion) not to mention to some degree CVS. But “CKSI
thinks ofchanges as having been applied in a certain order, with each change applying to the
result o fprevious changes. Bitkeeper does not. Each change applies to a historical version o f'the
tree, and when it gets two sets ofchanges based on the same historical tree neither one ofthem
goes "before" the other, they both apply to the old tree. (This isn't a linear process, it's lots and
lots of branches. Conflicts don't come up at this point, think quantum indeterminacy and the
trousers oftime and all that.) Sofinally, when you want to know what the code looks like with all
the changes added, THEN it has tofigure out what order the patches have to go in to make some
sort ofsense. And it has to do that again the next time you ask what the tree looks like, because if

you add new changes that are based on older versions of'the tree, they don't go AFTER the most



(Landley, 2003 - Jun 2nd) 19 BK is better able to ‘sense-make’. It operates like a fluid network
very close to how Actor Network theory understands the world as numerous networks all
connected by actor relationships (associations). Technology has control and mastery over time
and space if it is able to make sense; be intelligent, capable of sense-making and able to leam. BK
makes sense of the various changesets and is not distracted by the order in which they may have

been added, it has the competence to make sense of the changes and string them together into

some sensible order.

Access and visibility to aid learning: Technology can leam, but it also allows access to the
collective to leam. VCS helps the collective see the entire process (framing) of software change
and this is reflected in the collective changing. Through VCS the collective has access to
becomings and also the fleeting stabilities achieved in the process. This process of making visible
all the transactions, relationships or contact that actors undergo is called framing (Callon 1998b)
but framing also makes visible all the failed relationships and transactions. The capability of VCS
to support framing helps to create an open and transparent environment and is what lends to its

capacity to fashion a learning-friendly environment.

The bias in the current discussion has been of time, but space is no less central to understanding
VCS. Latour (2005b) explains how time and space can be folded with the example of a
handkerchief. If it is spread out then the distance between two extreme comers is great but if you
then crumple it up distant points suddenly become very close. VCS manipulates code and patches

in a similar manner, and the superior VCS will be able to do this with more flexibility,

“But you can'tfigure out what each patch means without looking at
the original, notjust at the results o f'the previous patch. This is the
fundamental problem with purely a linear approach like CVS: you
either get patch 2 stomping patch 1, or vice versa, or a "it just
doesn't apply" error. Creating a linear set ofchanges by coming up
with a sane order to do it in, and adjusting later ones to take earlier
ones into account, isn't that hard. But when you add more
intermediate patches between point A andpoint B and come up with
a new list, the new intermediate patches don't naturally go on the
end, they go in the middle somewhere (since that$ the version the
changes were done against), and they may affect several of the
patches after them slightly. This is why the CVS repository has to be
recreatedfrom scratch every time. It's like the difference between a
typewriter and a wordprocessor, whenyou insert in the middle o fthe
paragraph everything after it gets wordwrapped differently. CVS is a
typewriter that can only type at the end, and has to stick "errata" and
correction notices at the end ofthe bookyou're writing to keep track
ofany changes you make. Bitkeeper is more like a word processor,
where the order changes are made in doesn't matter so much because

139 http://www.uwsQ.indiana.edU/hvpermail/linux/kernel/0306.0/0443.htm1
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it doesn't have to wordwrap the sucker into itsfinalform untilyou're

done” (Landley, 2003 - Jun 2nd) 160
Control of space: Space however, is not an uncontested issue. As Foucault (1995) using
Bentham’s Panopticon example explains, space is used to create and sustain power dynamics.
Discipline “proceeds from the distribution of individuals in space... Each individual has his own
place; and each place its individual.” What it avoids are ‘distributions in groups’ and the ‘break
up’ of ‘collective dispositions’. What it seeks are analyses of ‘confused, massive or transient
pluralities’. Thus, disciplinary space ‘tends to be divided into as many sections as there are bodies
or elements to be distributed. One must eliminate the effects of imprecise distributions, the
uncontrolled disappearance of individuals, their diffuse circulation, their unusable and dangerous
coagulation ... Discipline organizes an analytical space” (Foucault 1995, ppl41 and 143) from
Komberger and Clegg (2004). Space is thus a highly political issue because how it is organized
has important repercussions on how information and actors move through it and use it. As
Komberger and Clegg (2004) state “the exercise of power is not added from the outside, it works
from the inside, it is inscribed into the heart of the spatial organization: in fact, architecture is

power” (ppl 104).

The visibility a VCS affords the collective of the code and the process is needed but comes at an
architectural price. The CVS architecture was ‘too’ open for Torvalds, almost to the point of
promiscuity as it meant that he had to monitor every point of entrance, of which there were many.
As all actors had equal access (equal space) to add code there were additions being made from
everywhere. Torvalds found it more difficult to control the process of development and identify
what was happening at each stage of the Linux kernel code. BK, according to Torvalds, offered
the Linux kernel collective exactly what they needed, which was open access and transparency
but still gave the final decision-making authority (power) to either Torvalds or to his ally BK
[through the auto merge tool]. Such access provides the opportunity and transparency needed for
actants to study and reflect on what code changes happened and why, but from their own allotted

space.

Learning Repository

Time and space are manipulated by VCS, and it allows tracing ofprocess through time and space.
The collective’s keenness to create a historically true development can be traced back to their
need for a full repository which would create a memory. This is only possible if all the code is

available, open and accessible and easily retrievable.

160 http://www.uwsq.indiana.edU/hvpermail/linux/kernel/0306.0/0443.htm1
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Access to the History of Code

“The most important point (for me) is that currently no history and no log messages are visible.
CVS would solve this, even if only one person commits” (Cracauer, 1998 - Oct 5th) 16l This
developer, amongst others, voiced a strong need for visibility of code and kernel history. Code is
precious and has real significance for the collective because they jointly create it. When
developers discuss archiving and how precious the data is they understand it as an organizational
memory, for code to be open and accessible to all is encapsulated by the GPL. The freedoms or
rights that the GPL endows on the licensee form the Constitution (Weber, 2004) of the collective.
The GPL, coupled with Linus’s Law I& - “Given enough eyeballs, all bugs are shallow” - create
an environment and ideology which propagates visibility, openness and transparency of code

which can ensure future development and possibilities [possible becomings or trajectories].

Code is scarce and valuable: The urge to build a full history is strong because developers, and
their time and effort is valuable. There is panic if a file is missing or gets corrupted and the
collective tries to hunt for an uncorrupted version of'it, “there's actually quite afew missingfrom
it, as well as one that's corrupted. All the ones that I Ve tracked down are listed in the kernel
version index I Ve put online at the URL below, and those ['ve come across that aren't on the
SunSite-UK mirror offtp.kernel.org ...can be found at... fitp://ftp.amush.ml.ore/pub/rhw/Linux/
All have been timestamped with the most recent timestamp contained therein” (Williams, 1998 -
Nov 27th) 18. The repository is not with patches in some random order, the files are timestamped
so that the order is kept intact, so it is more about which patch follows another rather, than a close

binding to chronological time.

Searchable history: The developers voice a need for the code to be not only visible but browsable
as well. A good VCS must provide a history, but more importantly, a searchable history. Old
source code is precious because it manifests knowledge. It can be and is used as a way to leam
about kernel development, revisit issues and learn, and how to code better. With millions of lines
of code stored there is plenty of knowledge but there is a need to be able to browse and search it.
OS developers are famous for ‘scratching their own itch’ so when a developer asked ‘7 want fo
know what tools can be used to browse thru the kernel source code under linux. Looking at the
volume o f'the source codefind and grep can become very annoying” (Raju, 1999 - May 21¢) 164

another quickly replied that, “two fools that work excellent together, are bonsai and Ixr (of

16l http://www.ussa.iu.edU/hvpermail/linux/kernel/9810.0/0548.htm1

1& http://www.free-soft.ora/literature/papers/esr/cathedral-bazaar/cathedral-bazaar-4.html
163 http://www.uwsa.indiana.edU/hvpermail/linux/kernel/9811.3/0746.html

164 http://www.uwsq.indiana.edU/hvpermail/linux/kemel/9905.3/0067.htm1
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www.mozilla.org and Ixr.linux.no respectively). Bonsai let you query and browse CVS histories,

and LXR let you cross-reference the files and every function/variable” (Wesen, 1999 - May
221Ky65

Visibility of breakdowns'. The collective attaches real importance to code visibility because “I/
would make things easier for developers to watch code changes as they happen, see where
collisions with their own patches occur as the kernel progresses, and a few other things”
(Brozefsky, 1997 - Apr 10th) 166 The increased transparency argument stems from a necessity to

be able to read and study code and to critique it,

“the most important thing is probably to lookfor special cases the
new code will break and that the committer haven't been aware of.
A single person with a wide overview may be good in this area, but
it is not scalable. Also, a patch that was committed, but backed out
after protests may still be o fvalue, since it:
- Documents that this way doesn't work (and why), better than a
mailing list archive can.
- The patch may still be usefulfor some people and they canfind it
in the RCSfiles.
Personally, I climb up the walls everytime I look at a Linux kernel
patch because I don't have commit messages for the diffs. They're
*so* handy ” (Cracauer, 1998 - Sept 30th) 167.
The above message extract captures some central ideas discussed in this research. It demonstrates
that the collective is sensitive to the idea that breakdowns create awareness. This extract very
nicely brings together the idea that VCS can be a repository for the Linux kernel collective, not
just a historical repository but a learning repository. Past learning is manifest through the code but
also in the way that VCS makes it transparent for all to see and study. Code is to be studied, read,

and critiqued and the learning from this process continues as it is poured back into the collective.

Conclusion

This analysis ofthe ‘organizing time and space’ theme crystallizes three main ideas:

Managing space and time: Time is understood by the collective variously to mean change,
control, experience and process. Such a polychronic understanding provides insight regarding the
role VCS might perform in the collective. VCS should allow for change and make changes easily
apparent. Time is also measured in experience or vice versa, and finally VCS is a window to

watch processes of change. Time is inscribed into artefacts (bugfixes and patches).

165 http://www .uwsa.indtana.edu/hvpermail/linux/kernel/9905.3/0Q67.htm1
166 http://www.ussQ.iu.edU/hvDermail/linux/kernel/9704.1/0125.htm1
167 http://www.ussq.iu.edU/hvpermail/linux/kernel/9809.3/0898.html
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VCS displaces control in the collective: The ability to organize and manipulate time and space
makes VCS a strong actor. In the Linux kernel case it becomes apparent that CVS displaces to a
degree Torvalds’ control and this becomes the motivation for Torvalds to search for another VCS.
Each VCS has some strengths and merits but the deciding factor in favour of BK adoption, for
Torvalds, is the ability of BK [and its push and pull changes technique] to persuade the collective
that they control the code.

Time/space and V/CS repository creation: The idea of a repository of kernel code and time and
space are inseparable from each other. Code is rare and precious, and thus there is a need to

safeguard it, but what makes it more valuable is the open source principle of reusing code.

Sustaining the Assemblage

A fundamental question in this research concerns how the collective manages to hold together and
sustain itself - to appear as organized. What makes the mobilization of actors possible is a
combination of factors such as the leadership mé)del, the role assigned to technology, the license
scheme of the collective (Constitution), and how effectively breakdowns in work communication
and relationships are handled. The data analysis gave rise to three main relevant memos which
were grouped together to make sense of how the Linux kernel collective is sustained. These
- memos were mobilization, GPL-constitution and breakdowns. Combined together these help
make sense of what kept and continues to keep the kernel collective working together as a

cohesive group (becoming).

Mobilization

Capable steward: The Linux kernel assemblage has been through a number of crises since 1991
but has managed to maintain itself as a collective and mobilize enough actors to not only survive
but also to grow. The leadership model of the Linux kernel is usually called a benevolent
dictatorship, which is a paradox in itself, and is revealing about what the collective expect from
their leader. He should be kind and generous but decisive and autocratic at the same time. More
than that he should be an efficient manager and organizer of resources, but the only way he can do
the latter is if the leader is able to visualize the greater scheme of where the software development
is headed,

“Linux is what it is in very large part because it has a highly
discriminating and intelligent filter (Linus) who also has the whole
picture in his head. The size and sanity of the kernel are jealously
guarded. Any disruption of this modality would put Linux in severe
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danger of becoming NT-ish - fixes/features going in without clear

understanding or motivation. Bloat and decay lie that way. With

more companies becoming dependant on Lima's ongoing success,

it would behoove "Someone(TM)" (Intel? Netscape? Some

enlightened consortium?) to sponsor/hire 1 or 2 highly capable

"mechanics"” to do Linus's grunt work, and let him concentrate on

what Linux most needs to retain - a careful, capable steward who is

unwilling to let simple expedience ruin everything. These

mechanics should be tools and collaboration gurus, not kernel

gods. What are the chances of that happening? The current

distributed volunteer method looks like it is becoming strained at

the upper levels, and it behooves those who feed at the Linux

trough to do something that demonstrates foresight and

commitment” (Freeman, 1998 - Sept 30th) 1R
The developers are enrolled into the Linux kernel network - they may have some concerns,
serious concerns at times, with the leader Torvalds, but are only slightly disillusioned at this time
because they still feel the need to keep the leader appeased. Their belief at this point is that their
leader Torvalds is the ultimate filter and controller for the kernel. However, he needs assistance of
a technological actor, a human, or even better, a hybrid. Torvalds is seen as the obligatory passage
point for not just the developers but also their patches and the collective demands some way to

help him scale.

Still, VCS is not half as important as Torvalds because, unlike VCS, Torvalds can ‘see’ the
direction of the project. The basic idea expressed here is that the developers givecontinued
support to Torvalds no matter how much he breaks down. He has their loyalty andno competing

translation is able to persuade them away from kernel development.

Patch inscription: The collective, as we know from the story of kernel development [Chapter 6],
realize that as the collective grows so do Torvalds’ responsibilities. But patches are dropped and
ignored and the number of unhappy developers and patches grows from a murmur to a loud roar.
Cracks begin to appear in the collective and there is a need for some aid to keep the assemblage
from breaking apart. Being part of the collective is the way to ensure survival for the patches and
developers alike. Patches lying around will be ignored and that is not what they want nor their
writers.

“We are most likely to find full source releases, not patches sitting

around, and it's unlikely that interim patches for older releases (i.e.

the equivalent of2.0.35ac*) have survived. And, as you noted, even

the patches aren't guaranteed to produce official released source
trees...:" (Albery, 1998 - Nov 24th) 1.

18 http://www.ussa.iu.edU/hvDermail/linux/kernel/9809.3/Q902.html
169 http://www.uwsq.indiana.edU/hvpermail/linux/kernel/9811.3/0291.htm1
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This post makes clear that patches become significant if they are attached to other patches, there
must be interaction for them to exist in terms of functionality and this is evidence that reality is
created when actors interact because any actor on its own is meaningless and ineffectual. It leaves
no trace. When patches interact they create useful algorithms and thus the resulting software is

valuable and there is a need to store it - the learning repository.

Assistance ofa tool: The discourse in the kernel focuses on searches for options and they decide
that as Torvalds is already helped by his trusted lieutenants, and it is one of them (David Miller
and his vger) that is indirectly causing Torvalds some grief, that perhaps some technological actor
is required but there are certain requirements it must fulfil before collective acceptance, “this tool
(or a connected one) should be able to force the user to enter all important data (by asking
appropriate questions) and then redirect the report to the right forum/developer"’ (Rosenbaum,
1999 - Sept 28th) 1M We now see the rise of a minor obligatory passage point [OPP], technology
provides the first filter and supports most of the key details needed, but then it too must yield and
pass this information onto another actor, in most cases human. There are two interesting
developments here, first of course we have the rise of the secondary but weaker OPP but, we can
also observe humans passing some of their agency to material actors. Technology is distinctly
called a tool and is only allowed to do what the humans make room for or design. However, this is
an important step for technology because it now wields some measure of control over the
collective. We had Torvalds [and a few ofhis lieutenants] mobilizing the collective alone but now

we have Torvalds p/us some tool.

Tool taking control to become OPP: The use of some technical help for Torvalds was only a
suggestion at first but then slowly we see the emergence of more widespread use of VCS within
the collective, ‘T've started using BitKeeper to control Linux 2.4 source code. My latest tree can
be found at linux24.bkbits.net’ (Tosatti, 2002 - Mar 13th) 171 Software is able to control other
software. This is one of Torvalds trusted lieutenants speaking on behalf of the stable branch of
Linux [even numbered releases are the stable ones]. Such key actors accepting VCS was an
immense inscription device for translating the goals and opinions of the collective. Marcelo
Tosatti’s enrolment into VCS use and the BK network is guided by the beliefthat it allows him to
control his stable branch of development better and make faster releases. The BK network is
growing when the actors that join its network are influential, like Tosatti, and bring in their own

network.

170 http://www.uwsa.indiana.edU/hvDermail/linux/kernel/9909.3/0648.htm1l
171 http://www.uwsQ.indiana.edU/hvpermail/linux/kernel/0203.1/0642.htm1l
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VCS is life-giving bloodfor the collective: BK is able to build on its strengths and in its keenness
to grow stronger is willing to offer the Linux kernel collective every update free of monetary
charge. This is an effective strategy, not only because BK is free but also because it is a more able
way of communicating patches and any changes to the rest of the collective. It has managed to
grow in strength and that too quite quickly, “if’it was not enough that "bleeding-edge" required a
pint ofblood but now we get BitKeeper access to the latest and greatest. Cool! Maybe I should be
on the regular shipment list from the local blood bank. Keep up the good work. I certainly

appreciate it” (Torri, 2002 - Mar 14th) 12

The implication is that BK gives far more than it demands. Other technology, like CVS, asks for
effort and manoeuvring from the developers but BK gives so much and also offers the most
advanced techniques. The analogy between BK and blood is interesting. A VCS needs to be up-
to-date and so software must be upgraded constantly, thus there is a need to be linked to the

‘blood bank’ for regular shipments. Technology is better if it is constantly learning and the centre

it has managed to insinuate itself into the Linux kernel and is now busy enrolling as many actors
as possible. We see here a move away from a discussion of Torvalds as coordinator and a focus
on VCS, or more precisely BK. This tool has managed to create a strong enough network to sit
beside Torvalds as the dual OPP, “Through the magic ofBK :) Just do a 'bkpuli' on my marcelo-
2.4 tree. Since it is based on the original linux-2.4 treejust like Marcelo's tree, I was able to
mergefrom my 2.4 line to his 2.4 line” (Garzik, 2002 - Mar 14th) 173. As long as Torvalds is happy
to have BK take charge the collective is too. The collective’s new found respect is based not
simply on Torvalds’ acceptance of BK but also on the technical merit of BK. Merging is made
effortless and thus appears magical with BK. It is not just merging of different trees or lines of
development but also a merge of two different dimensions of time. Garzik is able to merge his

work with Marcelo’s tree which were both created in different time and space.

BK has made working and coordinating so simple that actors don’t question what they lose. It is a
relative feeling, because some consider the freedom to be able to do what they want with code
very precious butjust because they are working on OS code does not necessarily entail that they
all covet freedom. For some actors being able to write code and have it included into the project is
enough. In this section we have seen the collective move from a single OPP, Torvalds, to a dual
one where Torvalds now shares [and happily] the OPP position with BK. It is talked of as a tool
but it is a ‘tool’ with real power, so perhaps tool [as we conventionally consider it] is the wrong

word for VCS.

12 http://www.uwsq.indiana.edU/hvpermail/linux/kernel/0203.1/0903.htm1
173 http://www.uwsqJndiana.edU/hYPermail/linux/kern.el/02Q.3.1/0902,html
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GPL- Constitution

Law is embedded in code and is dictated by the license chosen for the software (Lessig 1999a,
Weber 2004). The license lays down the Constitution for the software product and guides what
the code is allowed to do and what other actors can do with, and too, the code. We do however see
the collective struggle when their GPL ideology conflicts with making practical decisions. And
we can see how and whom resolves this dilemma (partially at least). Finally the collective is

forced to make a compromise - a compromise that seems to appease most actors if not make them

entirely happy.

Ideology versus Pragmatism

FSMvs OSI: The ideological strength of Stallman’s beliefs is often considered rather fanatical and
obsessive and so Raymond and the OSI group attempted to put a more pragmatic twist on free
software. This is not to say that they adopted more permissive licences, because they too work
under the GNU Public Licence [GPL]. In this aspect they were in keeping with Stallman’s
original idea of free software. Stallman created the GPL because it “protects the crucialfreedoms

for every user, which means that middlemen cannotpass along our code but strip offthefreedom.

Thin I'Cthe nlr! "W e're nnt free unlevv we nre 'free'tn den\> freer!nm tn ntherv" nrm,w,>"i mm/i



GPL vs BKL: The strength of ideological beliefs is not just restricted to Stallman. A substantial
part of the collective is wary of anything that is not GPL’d, “don't expect me to care about your
pseudo-open-source product's bottom line” (Marshall, 1999 - Sept 27th) 176 And we can see how
aggressively this section ofthe collective fights back when their belief system is belittled as it was
by Hawkins (1998) “You're supposed to be using the software that deals with the problem, not
some half-assed GPL'd variant” (Hawkins, 1998 - Oct 4t)17/. Hawkins made this remark in
relation to some members of the collective remonstrating against the use of BK for kernel
development. The counter attack to Hawkins remark raised some real concerns with BK’s licence
[BKL],

"Supposed to be? I would think that they're "supposed to be using"

software that they're comfortable with. If the licensing ofa product

makes me uncomfortable, I won't use it. Simple. Effective. I'm happy,

and the more people who vote like me, the bigger the hint passed

along to the licensee. *shrug* And I think some free software

developers (myself included) would find your depiction of GPL'd

software as being 'half-assed'more than a little insulting."” (Marshall,

1998-O ct 3rd) IR
This interchange is reflective of how the collective is not just one generic network but many
smaller networks. One such network is the staunch GPL believer one, and to this collective of
actors software should be GPL’d and no consorting with proprietary code should ever be
sanctioned. The GPL network is in competition with the BK network for superiority. Overall this
competition may make Linux kernel software stronger because the collective is forced to
understand many issues before big decisions are taken. As we have seen the collective worries
about breakdowns and tries to take pre-emptive action. The worry is that BK could change Linux
kernel code in a way that might make it inaccessible to the collective that created it. The license

clearly dictates what can be done with the code and is linked to how open or transparent the

activity is and how this transparency is reflected in the created code.

Opaque and invasive software: Not only is access to the source code restricted, but BK software is

also very invasive and insidious,

“/ got bitkeeper. It forced me to give my email address (ouch#l).
Licence contains such things as "allyour changes are now ours" and
"if our costs on you exceed something, we may terminate your
licence". You will not be even able to use your changes (ouch #2)
Then I realized I'm getting self-extracting executable (ouch#3)... Self-
extracting executable is about as evil as thing can be, because I am
not able to say what damage it tries to do when I run it. So I created

176 http://www.uwsq.indiana.edU/hypermail/linux/kernel/9909.3/0578.htm1
177 http://www.ussa.iu.edU/hvpermail/linux/kernel/9810.0/0387.htm1
178
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sandbox user (fortunately I'm root) and installed. And then... If
contains

guest@amd:/opt/bitkeeper$ Jdiff—version
diff- GNU diffutils version 2.7
guest@amd.:/opt/bitkeeper$

That's GPL'ed tool, butyou have not included text o f GPL anywhere
close, and I do not see written offer thatyou'll give me sources in the
package. Even ifyou included those sources, I would not be able to
regenerate that self-extracting archive. I thinkyou are violating GPL
by putting diffetc. into self-extracting archive user has no chance to
regenerate. Issue should be easy to resolve by including GPL, offer
for sources, and by distributing bitkeeper in plain .tar.gz” (Machek,
2002-Mar 15th) 1P,
Here we see that in order to make itself indispensable to the collective BK has ‘written in’ certain
regulations and rules that must be obeyed before BK can be put to use. This is apparent with the
GPL as well, “either its allowed by the GPL or its not. There are good reasons to think that may
ways ofdoing it are not (The GPL defines source as including installation instructions). However
that$ a debatefor lawyers, andyou can have the debate as long as you like but it doesn't change
what the GPL says” (Cox, 2003 - Apr 24t) 18 Alan Cox makes it clear that Torvalds is not the
boss of the code, it is the law [Constitution] embedded within the code that dictates what is

allowed. The law is clear and must be obeyed as it stamps all code produced under its patronage.

BK provides an example of code taking control of any actor that interacts with it. The way code
mobilizes actors (e.g. on installation) whether open source software is used or proprietary, is not
always so obvious but at least with open source software, because the source is open and
transparent the interacting actor is in a better position to make a more informed decision about
adopting the software. BK, because it is closed source software, is invasive. It is working towards
maintaining its position of indispensability (OPP). Its lack of transparency creates a shroud that
helps it to manipulate and manoeuvre the collective. Many Linux kernel developers are experts
who use the transparency and openness of the source to keep abreast of changes and to leam from
their peers. GPL offers developers the ability to replicate certain algorithms, it is thus more
scientific as it is open to scrutiny. BK is using some GPL’d code but that means that all of BK
should become GPL’d, however, BK has used some debatable loopholes in the law to protect
itself from having to give its source to anyone, or so Machek claims. Perhaps this can be
explained because the GPL has not been enforced (GPL has never been defended in court

(Mogien 2001)).

I http://atrev.karlin.mff.cuni.cz/~pavel/bitkeeper.txt
18 http://www.ussq.iu.edU/hypermail/linux/kernel/0304.3/0236.html
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Pragmatic adoption of BK: The interesting question that arises is why some actors of the
collective are accepting of proprietary software use when they obviously and eagerly work on
open source software out of choice? It could possibly be because in this particular case the owner
and creator of BK, McVoy, makes the collective a very enticing deal, “It's a private company, |
own 100% of'it. It's likely to stay that way for exactly the reasons that you want. I would be
willing to make a poison pill in the company that says ifmy ownership ever goes lower than 51%,
the sources as ofthat moment become GPLed (that says nothing about the sources goingforward,
BitMover could do whatever they want with that), but at least you'd be assured that there would
be something out there” (McVoy, 1998 - Oct 3rd) I8L. The collective is eager to sustain the survival
of Linux kernel code, and recognizing this fact the owner of BK proposes to make a deal which
might remove competing translations from BK and thus encourage the collective to enrol into BK
use. This makes apparent the very pragmatic side of the collective. Their belief system is

important but it seems that thev or at least a larpe enonph section of the collective is willing to



Code is Practical

Licensefanaticism: In the study the clash of two different constitutions is obvious. BK brings the
‘outsider’ constitution inside the collective and the GPL supporters are very unhappy. A clash of
political beliefs ensues between actors. The clash seems to indicate that it is dictated by economic
concerns but perhaps it is more about the code, desirous of pragmatic solutions, taking charge and
telling the collective what it wants. The developers are the spokesmen for patches and code, but
there is an insistence on getting the job done rather than just ideology. This is interesting because
when we hear trusted lieutenants like David Miller speak up for GPL’d software we are convinced
that the kernel would not do well to make BK use compulsory, “7'm not sure that it's fanaticism.
How is "we won't use/ distribute/promote this product if the license doesn't suit us"fanaticism?
Also, note that a number o fcompanies have been making money offo fsoftware withfree licenses.
[I'm sure you've heard of Cygnus and Red Hat.] Which merely underlines the point that making
money offofsoftware doesn't necessarily require that its use is restricted —though it does require
understanding your market” (Miller, 1998 - Oct 3rd) 18 Miller points out that economics play a
minimal role in this argument yet we eventually see BK enrol a large part of the collective. It
manages this through various means of inscription, goal translation, creating conflicts which it
then comes in to solve in the light of a hero, and perhaps bribes. Most importantly, however, it
seems to have greater sway over the patches than the developers because we see the patches
become mobilized with the simple argument that I [BK] can find you a mate quickly and

efficiently and you will no longer be ignored or deleted.

Spokesman for Linux code and BK: BK supporters couch their argument in terms of efficient and
effective version control software which will be a competent coordinator of code, developers and

ideas. Software is the real boss in open source development, a point made by Hawkins (1998),

“Beggars can't be choosers. You're supposed to be using the software that
deals with the problem, not some half-assed GPL'd variant. The license
Larry is proposing is quite reasonable IMO. Basically what it amounts to
is a royaltyfee to commercial developers using Larry's software to make
money for themselves. How can that NOT suit us? We're developingfree
software, therefore we are not required topayfor a commercial license. |
can tellyou misunderstand the meaning of "free". In the context of "free
software" it refers to the source code being available - hence why the
term has been recently renamed "open source" to avoid confusion by the
people who think it means "no cost". Money has nothing to do with it
whatsoever. Last time I read the GPL, it was perfectly legal to sell
software licensed under itfor fun and profit with the provisos ofthe GPL
such as you provide the full source code with it it's allowed to be

18 httg://wwwtus$q,iu,edu/hvpermail/linux/kernel/9810.0/0325.html
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modified, etc. You're implying that Linus conforms to your perverted view

of the software community and won't use a better tool simply because it

isn't GPL and here insult him by saying that Linus is incapable of

understanding let alone resolving patch conflicts” (Hawkins, 1998 - Oct

4th) 134
Clearly the pragmatic approach to development is taken to be the only logical one to be adopted.
It is taken to be a matter of fact [not in the Latourian sense]. Ideology is sidelined by the
practicalities of development. The most efficient software is always chosen and in this case it
seems that BK is winning through improved service and efficient algorithms. The writer believes
that anyone dictated by ideology has a ‘perverted’ understanding of software development. The
non-believers in idealistic OS are as extreme in their views as the GPL followers. Software, and
VCS, inspire very passionate discussions about how things should be done. If the GPL followers

believe closed source to be a sacrilegious way for development, the unconvinced are equally

scathing about GPL’d software - ‘half-assed GPL’d variant’. The Linux kernel collective is also



software development and management so that no patches are lost and the kernel grows in size
and functionality. We argue that this is the code speaking through this spokesman because
survival of the patches is at stake. So many licenses are similar in their intentions that the

collective is getting annoyed over the fastidiousness of some actors.

More is better. The need to preserve kernel code and archive it for future reference is an oft-
repeated theme in the developer discourse. The comments that make the kernel code
understandable, the metadata, are often seen as just as valuable as the code. A VCS that is able to
generate such comments and preserve them over time has a definite advantage over competing
VCS, “CVS is the "preferredform"” o fthe Linux kernel source code, because it isfreely available.
IfBK has everything in it that CVS does, and also information that is not even POSSIBLE to store
in CVS (i.e. ChangeSet information which links a bunch o findividualfile changes and comments
into a single change entity) what happens then? [fyou had never put the kernel into BK, that
information wouldn't exist at all, yet it is not possible to extract it without resorting to some
source-of-all-evil tool like BK (I hope everyone reading here understands the sarcasm, but the
fact that I have to annotate it makes me believe some people will not). Thefact that BK is used
creates information which WOULD NOT HA VE EXISTED had BK not existed. Infact, until BK
was in use by Linus, not even basic CVS checkin comments existed, so the metadata was in a
format called linux-kernel mbox (ifthat). So, the use ofa tool like BK makes more data available,
but people cannot be worse off than when the kernel was shipped as a tarball and periodic
patches. For the sake o fthose people who don't or can't use BK, just pretend BK doesn't exist and
they will not be any worse offthan a year ago” (Dilger, 2003 - Jan 20th) 18 This draws back on
pragmatism. The claim is that BK makes more information available than CVS was ever capable
of doing or even Torvalds when he was acting as the VCS so the question is does any VCS, be it
OS or otherwise lead to greater transparency of code and metadata? The argument that OS is more
transparent does hold true in theory, but in practice we find that it all depends on the ability of the
software to manipulate information and provide detail. If the VCS is useful it will provide an
archive, with both code and metadata, will function efficiently, and coordinate activities of the
various actors in an organized fashion. Following this line of argument the licence thus does not
play such a key role in determining the choice of adoption, it is efficiency and meeting the

particular needs of the collective.



licences is forced to work together in the same binary there is a problem. The GPL is an

aggressive and viral licence which forces other licences into oblivion.

“Its simply a question of intent. The GPL is intended to create

software guarded by a very strict set o fprotections designed to keep

the software "free" to a set ofdefinitions it imposes. As part ofthat it

brooks no compromises. It draws afirm line and labels one side GPL

compatible the other side not. The BSD style licenses are either

Take a copy, enjoy it, hope its useful but don't bug or blame me, or

Take a copy, enjoy it, hope its useful, don't bug or blame me but I

want crediting in allyour documentation and advertising...

Andyou can dual license things too. ..I'd encourage people to look at

both licenses when writing stuffand ifthey simply want people to use

their stuff, commercially, binary only, whatever then to use a dual

license. If they want to enforce source access etc then the GPL is

probably the right choice” (Cox, 1998 - Oct 5th) 187.
Each license varies in what it allows the code to do, and is eyed with scepticism by the other
licenses. Each has its own politics and may not allow mixing. Each is protective of its code and
the code in turn uses the licence when appropriate to make itself heard. In the case of the GPL we
know that any code that is under a different licence, if used with GPL’d code automatically
becomes GPL’d. We can understand this as the code flexing its muscles and showing agency.
Another interesting concept we see emerge here is that of the dual licence, or the ability to exist
under different constitutions, or ‘dual nationality’. If any pragmatic approach is preferred in OS
development, it can be argued that this because the code is pragmatic and has little loyalty or
belief in one constitution, and/or that developers too are pragmatic in their approach to coding.
Can we also add that the constitution of code is more flexible and open than appears? The
collective are able to side step it when needed, or clutch it when it seems it will ensure control and

survival of a particular way of existence. The move towards dual licensing in open source is

definitely worth exploring because it reflects a form of hybridization or compromise.

Technology as Excluding and Including (Collecting)

The parallel release strategy used by Linux kernel developers gives both the developers and the
code more time to learn if they wish to take this process slower than other actors. New versions
solve problems found in older versions. Technology is learning and changing, and so are the
developers who read, use and implement the code. When code is changed the behaviour of code
changes (learning) and it is now able to do something different and perhaps better. The code
changes as does what holds the code, VCS, and the developers change too. It is interesting to see

that some changes are completely groundbreaking for the collective while others solve smaller

187 hittp://www,ussa.iu.edu/hvpermail/linux/kernel/9810.0/0586.htm1
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breakdowns. Perhaps this is a manifestation of levels of learning or could be seen as such through

Bateson’s levels of learning.

BK excluding alternative VCS users: The ability to learn varies from actor to actor but there is
also another possible obstacle. Not all actors have the same right of access to collectively created
software. Technology can help exclude or be including of others (Winner 1986). Technology is
political just like humans and in the case of BK can be used to exclude any actor that has worked
on a competing VCS or has decided not to adopt BK for use. This raises other questions, since BK
is closed source software, about the possible defilement of Linux kernel software, “Using a
closed-source, proprietary source control system for the kernel is even worse than using other
forms ofproprietary software such as source code analysis systems, because the revision control
metadata (version numbers, branches, changelog comments, etc.), would be stored in aformat
defined by the proprietary software. This metadata is really a part ofLinux, because people will
want to use it when talking about the kernel. Those who can't or don't want to use BitKeeper are
left out in the cold. One ofthe most important parts of Open Source and Free Software is that we,
the community, are in control. But by using and advocating BitKeeper, we would lose part ofthat

controF (OS Club at the Ohio State University, 2002 - Mar 5th) 188

VCS, as even the name implies is version control software, it is there to control and part of the
mechanism of control is to restrain and regulate others. BK does not allow access to everybody,
even those who create Linux kernel code. Ifthey want to submit code they have to choose another
channel, but what is worse is that they may have written code but cannot access it once it has been
accepted and included into the kernel. This has repercussions on the collective because they can
no longer study the code and versions written previously in the same format as most of the
collective, however as this spokesman mentions, what troubles them more is that the informative
comments, the metadata, are strictly only accessible to BK users and via BK, and BK can keep
members ofthe collective away from code. There is also a threat that BK may in the future decide
to restrict the entire collective’s access. It won’t be able to restrict access to Linux kernel code,
but the metadata is created by BK and this throws it’s ownership into a grey area. The collective

wants ownership ofit to be clearer and in their favour,

‘foryears people sent emails to Linus that describedpatches and this
was not a big issue - Linus has kept 99% of the metadata in the
source code. But today the 'Linux kernel' is not the source code
anymore, it's the source code plus the BK metadata, which are
separate bits, and this creates a new situation, the BKL.txt license
currently says:



By transmitting the Metadatato an Open Logging server, You
hereby grant BitMover, or any other operator ofan Open Logging
server, permission to republish the Metadata sent by the
BitKeeper Software to the Open Logging server,
what i'm worried about is thefollowing issue: by default the data and
the MetaData is owned by whoever created it. You, me, other kernel
developers. We GPL the code, but the metadata is not automatically
GPL-ed, just like writing a book about the Linux kernel is not
necessarily GPL-ed. ..I'm 100% sure that the Linux commit messages
are already valuable today, and they will become afew orders more
valuable in afew years, btw, this is also the case with the emails
Linus puts into BK commit info - the email someone sends to Linus is
_not_ GPLed by default. ” (Molnar, 2002 - Oct 6) m .
Code Constitution clash: There is a clash in Constitution between the code and metadata being
created and held in BK (Linux kernel code), and that of BK’s code. Accessibility and the ability to
make changes was Stallman’s main reason for creating the Free Software Foundation, and these
rules are embedded in the GPL. What happens to code, or is allowed by the code, is embedded
and dictated in the Constitution and thus affects what it can do and how it can do it. Code is thus
law (Lessig 1999a). Code controls what machines do and Lessig’s question is how do we in turn
control code so that we control machines. Code controls, orders and organizes social and
economic activity. Lessig’s metaphor of code can be said to take a rather technological
deterministic attitude towards open source and software in general, and yet we do see in this case
study some real indication of this controlling nature of code, or material agency. Information and
knowledge is power and so is code so whoever controls it and can access it, has power. A fear of
losing control over their jointly created knowledge emphasizes the hybrid nature of Linux kernel
metadata, which is nearly as valuable as the code itself. Without the metadata the repository will
not be complete, and without the metadata the code will not make much sense, thus this repository
will no longer be a learning repository. This is a breakdown threatening to happen, and indeed the

above message precipitated a long discussion on this topic which did lead to a rather serious

breakdown in the collective.

Hybridization
Open source distributionfor BK: Laws are embedded within the code and laid out in the licence.
Laws are unyielding but not entirely inflexible. We know that BK has managed to exploit some

flexibility even with the GPL, because according to Machek (2002) BK contains some GPL’d

Idoes not contain pointer to the sources. [I bitkeeper docs does not mention its GPL-ed, anc
<ushould shut up and be gladyou may use this pointed couple other issues.] Larry's attitude is "yc
?n, he tried to punish mefor pointing at those forfree" and "sue me to get GPL issuesfixed". Th

)210.0/1918.html 189 http://www.uwsq,indiana.edu/hypermail/linux/kem el/(
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mistakes by withdrawing installer from GPL. Nice attitude, 1'd suggest you to stay away from

bittrojanAWbitkeeper My’ (Machek, 2002 - Mar 18th) 191

McVoy claimed that at first “BitKeeper is an Open Source distributed revision control system”
(McVoy, 1999 - Feb 21st)12 This seems to imply that software can have different licences for
various functions. The GPL obviously cannot take into account every contingency and there is
often a loophole in the law that can be manipulated, thus it seems that no constitution is beyond
circumvention. The GPL has never been defended in court but that should not imply that it is not
enforceable (Moglen, 2001)193. However, Moglen (2001) believes that perhaps there should be a
greater emphasis on enforcing at least a few GPL cases as that would make potential wrongdoers

wary. This could also explain how so much has been allowed in BK’s case.

Hybrid metadata: Proprietary software can have open source distribution andmetadata created by
proprietary software can be GPL’d. At least this is what McVoy claims. In late 2002 McVoy was
asked “[is] the commit messages and other BK metadata GPLed?” (Anonymous developer,
2002)1% His reply was “That isn't up to BitMover, that is up to Linus. Look at clause 3(b). Linus,
as the creator and owner of that vrepository, can put anything he wants in

BitKeeper/etc/REPO_LICENSE so long as it doesn't conflict with the BKL. He can say that all the

metadata is GPLed if that's what the world wants. It's his issue. noL-aurs. This-clausE-is-uenL
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mse, the BKL is automatically not granted,
id to” (McVoy, 2002 - Oct 6th) 195 But little
sly renege on his statement, ‘the metadata
e that metadata, you did not” (McVoy, 2003
some GPL’d, even claiming ownership. This
en the metadata, but as BK allowed for it to
t have existed in the first place if it hadn’t
of it. Torvalds in 2002 didn’t exercise the

metadata open to appropriation from BK

id and contestable nature and ownership of
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access the repository. Ifyou don't agree with his lic<
He could use the BKL to enforce the GPL ifhe wanU
over five months later McVoy went on to compleh
which makes BK work, that's ours, notyours. BK mad
- Mar 16th) 1% And denied that the metadata could be<
is in spite of the fact that neither he nor BK has writt
be written and stored, McVoy argues that it wouldn
been for BK. On this premise he claims ownership
control given to him and thus left the Linux kernel
owners. The collective is now left with a rather hybi

the kernel metadata.

190 http://atrev.karlin.mff.cuni.cz/~pavel/bitkeeper.txt
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Ajar source: The nature of BK itself, surprisingly, is also not very clear. The licence is proprietary
but even the actors that don’t agree with using BK for kernel development only go so far as to call
it “ajar source” (Miller, Sept 28th, 1999)197 a neat name for it as another hybrid, neither clearly
open or closed source. Ofcourse McVoy insists that, “BitKeeper is as open as it can be. You get
source, you get to xvack it and redistribute itforfreeI® The license isn't as open as you want but
that's because we need to make money in order to support BK and move on to developing the next
generation of tools: bug tracking, binary file revisioning, project management, etc.” (McVoy,
1999 - Sept 27t) 19, So the licence is not open yet McVoy claims BK is open. One possible
interpretation of this paradox is that the licence is not the clear cut constitution of software and is
indeed open to rife manipulation, or this could be indicative of the pragmatic approach always
preferred by the actors ofthe collective. Whatever is able or demanded to keep the collective from
breaking down, and holds it firmly together to create software will become permissible. The latter
argument resonates more clearly from the case study, and if hybridization occurs, that is another

attempt to ignore rules in order to sustain the collective.

Hybrid open source model. There is then some support for not only dual licensing but also a
hybrid OS model, “I'd like the Linux community to support Larry in working out the details for
this "hybrid" modelfor "open software". I and many others would like to do something like what
Larry is doing. In particular, it allows *small* software groups to produce very high quality
software and still pay the mortgage and send the kids to school. Let's be pragmatic, exceptfor
over-caffeinated college students, the rest of us simply cannot afford to indulge in "free/open"
software with out a clever way to make afew bucks to putfood on the table. 1'd like to propose a
topic for Eric R. (our resident pundit and deep thinker): Software as a Cottage Industry”
(Leighton, 1998 - Oct 5th)200. Back in 1998 when this developer spoke of such a move towards
hybridization there were not too many such attempts as yet so this idea was quite novel, even
ahead of its time. Now of course we have other hybrid business models, licences, strategies and
software. What is interesting is that there emerged a realization of the need for hybrids. The
constitution may be fixed but patches and developers manage to ease the collective away from

any extreme to some middle ground where the licenses, business models and constitutions can be

more flexible and inviting, and more pragmatic.

197 http://www.uwsQ.iu.edU/hypermail/linux/kernel/9909.3/055Q .html
" The developers will be able to learn from example and this contradicts the issues which emerged later when this
collective stopped using BK and began its own VCS, GIT. It was rumoured this was forced because McVoy got annoyed at
some attempts to reverse engineer BK There would be no need to reverse engineer if the source code was available and
visible.

19 http:// www.uwsQ.indiana.edU/hvpermail/linux/kernel/9909.3/0558.htm1l

200 http://www.ussg.iu.edU/hvpermail/linux/kernel/9810.0/0545.html
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Breakdown

Most, if not all theories of learning and organizing understand that change often causes some form
of breakdown and vice versa. Different authors call by it different names, double bind or paradox
(Bateson, 1972), crisis (Weick, 1988), breakdown (Patriotta, 2003; 2004), and mismatch of
outcome to expectation (Argyris and Schon, 1978). Breakdowns vary in their intensity. If a
breakdown is managed well the outcome or change can reflect a better understanding of the
problem, or learning. However, not all breakdowns are manageable and sometimes result in fatal
fragmentation. Below we deal with a few different kinds of breakdowns that the Linux kernel

collective suffered and how they overcame them.

Fear of Breakdown

Loss o fcritical mass'. The threat ofa breakdown is feared by the Linux kernel collective. A fork in
the collective, though allowed, is considered to be a taboo act and only to be undertaken when
there is no alternative left. But the more experienced developers do admit that the ability to be
able to fork a project and go your own way with your code base is a safety valve. When the
pressure becomes too much and a serious breakdown occurs then the best way forward is to take
the code base and develop it in any direction you want rather than stay in a situation where the
code suffers. A fork can also lead to greater chances of improvisation and learning within the
collective. However, there is also some real wisdom in discouraging forks in OS projects because

such a step dilutes the developer and knowledge base, and all segments of the project become in



no longer adequate to meet the challenges ofsuccess, and some way
to institutionalize and distribute the leader's role has to be found.

Movements that fail to make this transition die, generally by
implosion orfragmenting into feuding sub-sects. 1fyou werefamiliar
with the historical precedents, Rob, you would understand that your
modest proposalAR re-enacts a common pattern. A relatively junior
member of the movement, one with few political ties, sees the
developing stress fractures in the organization o fthe movement and
proposes a modest, incremental change to relieve some of them.

Conservatives interpret the attempt to separate and institutionalize
part ofthefounder's role as an attack on the authority o fthefounder.

Huge flamewars ensue, with the original pragmatic sense of the
proposal often being lost as it becomes a political football in the
movement's internal status games. Sometimes thefirst such attempt at
institutionization succeeds. More often, the movement has to go

through a series o fescalating crises (burning up would-be reformers
each time) before anyone finally succeeds in changing the
movement's internal culture. Religions go through this. Secular
social movements go through this. Companies founded by brilliant
entrepreneurs go through this (the B-schools have a whole literature
on "entrepreneurial overcontrol” and its consequences). It's one of
the dramas that gets perpetually re-enacted; it's built in to our
wiring. The unhappy truth is that even *successful* transitions o fthis
kind are invariably painful, and often leave deep scars on the
survivors and on the institution that arises from the transition”
(Raymond, 2002 - Jan 29th)203.

The interesting point he makes is his understanding that this crisis stems from a desire for over
control. The founder, in this case, Torvalds, does have a strong need to control every aspect of his
project. He is beginning to micromanage when the reverse is needed from him because the project
is far to large for him and just a handful of people to control. The collective is undergoing some
drastic changes and learning to cope with this change is not straightforward. Each breakdown the
collective faces either makes it stronger, or may break it apart, but no matter what the result the
only constant is change. In 2002 control of the collective, the code and coordination is slipping

away from Torvalds and he is reacting badly.

Sanctioned knowledge: Vger [CVS] often held ‘more’ information and patches than did the tree
kept up-to-date by Torvalds, “ We're painfully aware of'this. We do sync up with you though, so
the vger tree does have what he needs along with your changes” (Dougan, 1998 - Sept 28th)204
VCS holds knowledge that Torvalds has not sanctioned and has not even read. The VCS seems
more informed than Torvalds and this could be what bothers Torvalds about CVS in particular.
VCS is gaining more control and power than the leader. Of course control is needed but it is how
this control is organized and managed that is important. Control allows for organization and thus
202 See http://www.uwsQ.indiana.edU/hvDermail/linux/kernel/020£.3/1000.htm1 for more details on Rob Landley's
Patch Penguin Proposal

203 http://www.uwsQ.indiana.edU/hvpermail/linux/kernel/0201.3/1393.html
204 http://www.ussa.iu.edU/hvpermail/linux/kernel/9809.3/0548.html
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better access to information and knowledge. An interesting question to debate would be that by
bringing in a moderator for the LKML would we get a more organized approach or a more

controlled one?

Breakdown in Collective

A breakdown for Torvalds soon becomes a large concern for the collective because his inability to
scale is affecting the entire development process. The breakdown in communication between
Torvalds and the collective now threatens a much larger breakdown. A lack of VCS may have
caused this but at the same time we see that not any old VCS is acceptable to the collective,

especially the leader, who will not settle for CVS. See Miller (1998 - Sept 29th) 5.

CVS is not accepted by Torvalds but some software is needed. This crisis may eventually lead to
some VCS being adopted, but there will have to be a VCS very soon. The OS community does
not rise to the occasion and create something that fits Linux, instead we see proprietary software
begin to insinuate its way into the open source collective. The leader feels threatened by CVS
because too much of his control is slipping away from him, which also means that the collective

and his project is beginning to desert him.

Collective breakdown: Not only are individuals facing breakdowns, so is the collective and all this
because there is a breakdown in the patch submission system. The patches are in revolt and are
using their developers as spokesmen to voice their problems, “Thisjust because it slows down the
process, and is a lot ofpressure when things are tight. Receiving a large number o fpatch all at
once, or a single huge patch is daunting even when you are blessed with copious spare time. But
when you are working a regularjob, taking care o ffamily, and under the gun to release a kernel
that senior folks suggested could be out a month ago (admittedly VERY tentatively), well, you
might be more than testy. I think Linus's explanation ofhow he wants to work is reasonable. 1'd
bet he gets 500 mails a day, many o fthem patches to this and that. He probably pays attention to
the onesfrom the senior peoplefirst, but I bet he does a wholesale slash and burn after a certain
point, just because it's too much to deal with at once” (Todd, 1998 - Oct 2nd)206. Todd provides an
alarming visual picture of hundreds of patches, instead of becoming part of the kernel being
deleted into oblivion. So much hard work is wasted and no collective can afford such squander. If
patches are not accepted then the Linux kernel will not grow, the centre of calculation (software)

will not grow and change and thus stagnation will set in which will be the end ofthe kernel.

205 http://www.ussq.iu.edU/hvDermail/linux/kernel/9809.3/0732.html
206 http://www.uwsQ.indiana.edU/hvpermail/linux/kernel/9810.0/0243.html
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Breakdown in Learning

Sub-optimal coordination: An historical archive was called for to protect Linux kernel code for
the future. This issue was brought up at a time when the collective was worried about the future of
Linux as Torvalds was facing scalability problems and patches were being dropped, around 1998.
The patches that were dropped by Torvalds are already lost knowledge, but the collective doesn’t
want to lose old versions which are scattered because there is no one recognized repository for
kernel code. The other problem the collective faces is that without one recognized repository or
version of Linux kernel code, and vger is not acknowledged by Torvalds, some parts of the
collective are working to a different version and others are unaware that some problem has
already been solved and wastefully continue to look for a solution. This is a misuse of resources
and one of the basic tenets of OS is reuse as opposed to trying to reinvent the wheel, “Good
programmers know what to write. Great ones know what to rewrite (and reuse)” (Raymond,
1999). The collective soon recognize that “there is something going wrong with vger <-> Linus
relationship. 2.1.123p2 was out and a lot o fpeople complained about thefbcon.c breakage. It was
said, that there are patches in vger which cure this, but 2.1.123 still suffers the same problems. So
the coordination between vger and Linus is suboptimaU (Garloff, 1998 - Oct 2nd)207. There is a
loss of knowledge as software patches are being ignored and though solutions to problems exist
some parts of the collective are oblivious to them. There is learning but it is not being passed
around so the circulating reference has been broken in a way that it no longer moves and takes on
new ideas to the actors that it comes into contact. Put more strongly the Linux kernel release no
represents the collective - a situation that cries out for some software to step in and solve the

problem.

Disorganization: Too many breakdowns lead to disorganization, and the potential learning
involved cannot be assimilated, ‘It is really a pity that the most popularfree UNIXis so chaotic,

and it's only becoming worse. Please don't misunderstand me: I'm not trying to persuade anyone



of patches and bug fixes but as this is not assimilated back into the collective - waste ofresources

and fragmented learning.

Breakdown in patch queue system: The Linux kernel collective were faced with a leader who
openly stated that “if some person cannot be bothered to re-submit, I don't WANT the patch.
Anybody who is not willing to take that much care ofhis patches that he can't maintain it while I
haven't accepted it, I don't want to accept patches from anyway (Torvalds, 1998 - Sept 29th)29.
Developers were irritated by this attitude because the larger problem in this breakdown was not
that they were not willing to take responsibility for updating their patches but that developers
were forced to work on solving problems for which fixes already existed. Miller’s (1998)
response to Torvalds reflects how some technological aid is clearly needed to overcome the
invisibility of the patch queue system, ‘Linus, the problem is that when I submit a patch, I don't
want to unnecessarily overload you by resubmitting on too short a notice. So I wait, and wait.

Nothing happens. People are ignoring the fact that we had solved this problem (at least in my



Technology Makes the Collective Durable

Linus does not scale: Jitterbug was discussed by Miller (see above) as a potential solution to the
problem faced by Torvalds and the Linux collective, as were so many other tools like Aegis,
Subversion, PRCS, and a patch robot like LSM Robot. However, CVS had the strongest backing
and network. Of all the tools available CVS was the most advanced and used by many OS
projects for coordination like BSD and Mozilla but the Linux kernel collective didn’t adopt it
“because Linus doesn 7 like CVS. CVS is [IMHO] exactly how the Linux kernel 2.1.x stuffshould
be run simply because Linus doesn 7 (and now by his own admission doesn7) scale. Linus does
have some good reasonsfor not liking CVS in that CVS has no real control by 'area’. It lacks the
ability to easily say things like xyz has remote cvs access to drivers/sound?’* and to
include/linux/sound.h but if it the latter notify me... It works, nothing else free comes close.
Right nowfor example ifyou want to know why a patch was added to the Linux kernelyou have to
hope its in my patch archive or it was added via vger and thus notified. Yes the current system is a
complete mess. Yes it needs fixing, but someone has to find a system that works and Linus is
happy with. Jitterbug was close for tracking, but doesn 7 solve all the scaling mess. [fyou have
the solution then do the yelling. Also ifsomeone has a good way o fefficiently replicating a 40Mb
CVS tree over a modem to an anonymous cvs server let me know. Then I can look at putting
2.0.37prel or whatever under CVS” (Cox, 1998 - Oct 3rd)211. The collective is agreed on the idea
that some technological aid is necessary in order to sustain Linux. This draws on Latour’s
understanding of the role a machine plays in a collective, “A machine, as its name implies, is first
of all, a machination, a stratagem, a kind of cunning, where borrowed forces keep one another in
check so that none can fly apart from the group” (1987, pp 128-129). VCS is potentially a machine
or machination and the collective understand that in order to sustain their collective or assemblage
they need one, and soon. VCS has convinced them that, though there are a few other solutions that
could be adopted like a patch robot, or just another way of organizing through emails or a
webpage, the collective must use a VCS because that is the only way Linux kernel will not fork or

break apart.

Again we see the pragmatic approach taken by the collective. Code is important and the
continuation of the Linux project is crucial, so anything that is required to achieve that end will be
acceptable. There is a communication and coordination breakdown and CVS, especially the vger
version is offered as a remedy, at least a short-term one. A VCS might give the entire collective
access and transparency so that knowledge [patches] is visible to all. Knowledge is power and
brings control to who holds it. However, CVS does not seem to provide the kind ofaccountability

that Torvalds desires. Perhaps CVS provides too much transparency, and transparency to a/l and

211 http://www.ussa.iu.edU/hvDermail/linux/kernel/9810.0/0347.htm1
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that is why Torvalds is not keen to adopt it. We thus understand that perhaps, depending on who
in the collective is asked this question, transparency is not always needed or even appreciated.

Each VCS provides varying degrees of transparency.

Conclusion

Three main points that emerge from the ‘sustaining the assemblage’ theme include:

Code sustains a collective: Interest in the future of code brings various actors together and it a
similar continued interest that sustains the collective. Code is both the software being created and

other code like version control software that provides the infrastructure for software development.

Hybridization of collective, process, code, licenses.... Linux development demonstrates a clear
move towards hybridization. Software with different licences mix together and either a blind eye
is turned or such mixing is written into the licence. The collective is not just human actors or
technological, but a complex intertwined mix of both. Non-humans contrive to bring other actors
to assemble around and form a network. However, what is more interesting and of use to us is the
idea “that we don't assemble because we agree, look alike, feel good, are socially compatible,
wish to fuse together, but because we are brought by divisive matters of concern into some
neutral, isolated place in order to come to some sort of provisional makeshift (dis)agreement”

(Latour and Weibel 2005). This is what we discuss later as a creative space.

Technology balances learning with organizing: Technology and in particular VCS is responsible
for maintaining a balance between learning and organizing. Weick makes clear that slack is a
‘prerequisite for learning but too much of the former causes disorganization. Our study is
indicative of how VCS is keen to both organize the actors of the collective but very importantly,

to also ensure growth and learning.

Machine Agency: VCS, a Controlling Device

The third theme of this Chapter is ihat of material agency and how version control software is a
controlling actor. Three memos of agency, control and ownership contribute to a better
understanding of how version control software has the ability to act and make other actors do its
bidding. It has agency and uses it to get control over the collective because it wants to own the

software produced.
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The agency memo expands on how action by material actors can be understood only when we
consider the agency they have to respond, create and learn. VCS controls other actors or is used
by some strong actor to control the larger collective in order to ensure the sustainability of the

collective and the learning it has created.

The control memo shows how space as infrastructure, or as in this case VCS space, directly
impacts on access and transparency allowed to the collective to manoeuvre. We also get a glimpse
of the struggle between Torvalds and CVS for control of the collective but we eventually

understand this to be the collective’s attempt at regaining control over learning and thus its future.

The ownership memo makes explicit how the one who controls the collective becomes the
‘owner’ of the learning created and that is why Torvalds battles the VCS until he manages to find

a VCS which is willing to become his apprentice rather than his boss.

Agency

The concept of hybrid agency which is inclusive of both human and material agency emerges
here. The constructive-realist perspective of actor network theory provides a way to discover such
agency as it emerges. This section considers two main areas, agency and control and agency and
learning. The key ideas which become apparent when the link between agency and control is
studied are; the dance of agency; material agency voicing its opinion through action; material
agency controlling the ability of other actors to behave in the way they desire; the appropriation of
technology by actors to control others; and control through transparency of agency. This section
clarifies that technology acts on its own behalf or of that of another actor to control the behaviour
of the collective. This is only made possible by the ability of both human and material actors to

influence and this in turn implies a level of agency for every actor.

Discussion then moves to agency and learning. Agency and learning are coupled because it
becomes apparent that actors are only able to learn because they have the capacity to act and need
to learn in order to survive. The main arguments raised by this study connecting learning and
agency are that; the able VCS is the one that is better able to learn; technology is forced to reckon
with unlearning; VCS are able to detect difference; VCS can discover corruption; and can control
time and space to search for learning. The ability to perform these acts reflects the capacity to

learn in technical actors.
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Agency and Control

Dance o fagency. The role of version control software in open source development has changed
and evolved over time. It provides a useful mechanism for coordinating work and workers but as
we have seen through the Linux kernel study, it is more than just a simple tool. Technology and
all material actors are capable and empowered to act because they have agency. Agency does not
imply intentionality but it does entail the ability to act, react, and learn. This is a constructive-
realist perspective on actor agency. We speak of ability but it is coupled with empowerment.
Technology, just as other actors, must be empowered by others to operationalize its latent
agency212 e.g. every actor claims a network. The Linux kernel reality is then co-constructed by all
kinds of actors, material and human. We have many examples of human and material actors
working side by side to create and sustain the collective and the evolution of software. An
expressive example of constructive realism is the relationship between the user of any VCS, in
this case BK, and technology, ‘Tfduring any ofthese steps Linus changes any ofthesefiles, I bk
pull, and with luck, bk does the nasty bits for me, andfires up the conflict resolution tool if
needbe” (Jones, 2002 - Mar st)213 The ‘dance of agency’ (Pickering, 1993: 1995] is well

pp 10 piay a pan m la wu itauu iv auiiK maiciim uevice. nowever, once mey aiiow uus aevi
3es exactly what is the unfolding of the problem it begins, gradually, to take control. At first it di

o resolve the issue. asked of it but each situation it is confronted with varies so it then improvises t



potentially good code isn't doing a goodjob ofdefending itself’ (Hand, 1998 - Oct 4t)214 Good
code can speak for itself and does. The ability of code to speak through its smooth and efficient
operation is indicative of agency in technology. If code is written well it is able to satisfy the need
it was intended for and allow more efficient coding strategies and trajectories in the future which

build on prior work.

Technology hinders: Material actors, because they possess agency, can also become an obstacle to
others in the collective. Technology can be intractable “Unix gets in the way less, whereas with
VMS Ifound myselfbattling the API more toforce it to do what I wanted” (Gooch, 2002 - Mar
11t)215. It hinders as well as aids. It is controlling because it is able to apply force on other actors
and deflect their decisions. Gooch compares various technologies in relation to how controllable

they are which clearly indicates that technology is not the pliant tool considered by many.

Technology shows partiality: 1f actors share a similar ambition then, be they material or human,

we see them collude to control others to achieve their numose. The collective is sustained through



Deceptive transparency’. VCS and other such technology bring visibility and transparency to the
process of development. However, we are only able to see what technology ‘allows’ us to see.
Thus we have a mixture of control and transparency or rather control through a particular type of
transparency, a deceptive transparency. With the availability and openness of the source code in
open source software the level of transparency is enhanced. The collective is able to ‘see’ more
clearly what is happening, where, when and how, “With a management system in place, a self-
documenting system o fchanges would provide a method of viewing these sort of changes in a
patch-by-patch basis” (Mendelson, 1999 - Sept 27t)218 If open source is more transparent it
lends itself more to reversibility rather than irreversibility. Mol and Law (1994) consider the idea
of irreversibility in ANT and through the example of fluids and anaemia, explain how ideas can
be mutable rather than immutable. Anaemia means different things to different people, even
doctors, across the world. The idea thus mutates and is never the same from one actor to another.

The idea or artefact in open source. becaiiS£-ii-is_mihl£j"ds-ii££1f-frL-gifal£r-Jimtahilii'Y—Each-

jency ana Learning

~affunctionality reflects learning: Technology is able to mutate and evolve. In this section we
nsider the various abilities of technology that indicate learning. Material actors must have a
ice in order to be able to reflect their learning techniques and ability. As we noted above
ihnology speaks through spokesmen but also through effective and elegant action, “Yelling at
ople will never convince them that BitKeeper is good. Only BitKeeper itself can do that”
anza, 1999 - Sept 28th)219. A spokesman alone is not always enough to convince other actors. In
s example the VCS needs to convince the collective of its worthiness to be adopted by all
;mbers through active and efficient control and coordination. This takes the control and agency
'ay from the core developers of BK once they release BK code. The developers may be unable
sustain themselves as obligatory passage points and BK, if accepted by the collective becomes
; new and stronger OPP. Efficient technology is indicative of embedded learning. BK code
ist be elegant and intelligent in order for BK to run smoothly and thus persuade the collective to

propriate it.

tdearning difficulties’. VCS demonstrates agency and learning when it can learn more but also
en itfaces difficulties unlearning. The spokesmen of the collective often speak of technology
i refer to how much a specific technology ‘knows’. This could possibly be the usual
thropomorphizing that developers are often blamed with, but developers are also the actors that

to mould the technology in a particular way. It is very probable that developers and other

Al

Co

\¥

an

an



actors that interact very closely with software have a better understanding ofthe forceful nature of
technology, “Note that it's a lot easier to expand tools that already know about revision control
than it is to expand tools that have never known about it” (Torvalds, 2002 - Mar 15t)20. Past
learning can help with future learning. This is true of both human and material actors.
Nevertheless, technology is often intractable. And like human actors VCS tends to retain
embedded learning which can make it reluctant to try a different approach. How it is structured
determines the possible trajectories future learning can form. Material actors, like human ones are
just as prone to the difficulties of unlearning and unlearning is the most difficult part of learning

something new.

Detecting difference: VCS exhibits agency and learning when it is able to detect difference. VCS
is able to decipher differences in software, no matter how minute, thus it appears to be intelligent,
“The push command is used to update your parent repository with your work. The push command

will never create conflicts in the parent repository, instead itfirst does an implicit pull to make

cnanges jMcvoy, iyyy - aepiz/ ; .11 taxes cnarge 01 activities, 11 controls ana organizes the

actors in the collective. It commands, patrols and reminds, perhaps even chides with reminders.
Through these various mechanisms of organizing VCS makes sure that nothing precious is lost.
The ability to make comparisons between various patches, and in the case of BK, to then make a
decision autonomous of humans via the automerge is strongly indicative that technology has the

ability to make decisions based on understanding.

Controls time and space: VCS illustrates agency and learning when it controls time and space.

VCS folds space and brings it together at any point in time. It has the affordance and agency to be



other VCS. It thus has more agency than most VCS because it does control corruption and control

time and space.

Control

The second memo of control gave rise to issues of space and control, human versus material
control and finally, collective control. The section on space and control elucidates how
controlling space brings control through transparency because control over space is possible only
through access and visibility. The second argument this section makes is that the underlying
infrastructure and architecture of any space dictates how fully control can be exercised over other

actors.

Human versus material control helps to explain how powerful material agency can be because we
see Torvalds struggling against it to regain control over the Linux collective. VCS is aware that it
has the ability to be more efficient than Torvalds so it attempts to bring this strength into focus to
prove how it is more worthy to control the collective. However, we also see how Torvalds

manages to manipulate the VCS of his choice to become his apprentice OPP.

Finally, collective control stresses how the assemblage is held together through collective co;xtrol
and continual pressure. The need for a VCS in the collective emerged from a realization that
collective control was only possible with some material actors that would provide better levels of
access to all actors. Testing or ‘eyeballing the code’ written by other actbrs is another form of
collective control in open source. And finally collective control comes about through the ability to -
read the code of everyone. This is past learning which is used by all actors to trigger new learning

(code) and is a necessary prerequisite for the collective to sustain itself.

Space and Control

Control of space: Controlling space gives an actor immense power through the transparency it
affords. The control exercised by Torvalds over the patches and developers of Linux is useful
because as Torvalds points out he can then step in and fix issues as he is able to examine the
overall structure and direction of the project as he says in his first major comment on VCS (CVS)
in 1995, “I'd be more than happy to make some easy change logging facility available, but I'm
afraid that I don't like the idea of having developers do their own updates in my kernel source
tree. I know that's how others do it, and maybe I'm paranoid, but there really aren't that many
people that I trust enough to give write permissions to the kernel tree.. Even people I have worked
with for a long time I want to have the option of looking through their patches _first_, and maybe
commenting on them (and I do reject patches from people). Also, the fact that all the patches go
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through me also means that I generally have a reasonably good idea on what people are working
on, so when problems crop up, I also have a chance in hell o fgetting themfixed. Or I can decide
(unilaterally) to revert a patch that results in problems. For once, Linus being lazy is actually
only a secondary concern” (Torvalds, 1995 - Dec 11th)223. The maintainers only have control over
one specific module and even then part of their responsibility lies in reporting back to Torvalds
and always keeping him in the loop. VCS might provide Torvalds with the panopticon position of
being able to see and control all and everything - a very powerful position. But CVS threatened
this view for Torvalds because it did not allow control over space (as BK later managed) and thus
we see Torvalds fight hard to retain his stronghold. He dissuaded actors from adopting CVS by
clearly refusing to embrace it himself. How space is organized or created around actors is

important because the space and architecture brings with it real power and control.

Human versus Material Control

Torvalds ’tussle with VCS: The dictator side of Torvalds is very apparent and intense on occasion.
His reluctance to adopt CVS for kernel development reveals less of the benevolent and more of
the dictator side of his character. He struggled for control with CVS to regain dominion of his
project “Note that saying "it's in vger so you're wasting your time" is still completely and utterly
stupid. Thefact that it is in vger has absolutely no bearing, especially as there's a lot ofstuffin
vger that will probably never make it into 2.2” (Torvalds, 1998 - Sept 28t)24. And even “7 have
stopped synching up to vger a long time ago. Anybody who still thinks vger has any relevance to
the standard kernel is very much misguided” (Torvalds, 1998 - Sept 28t)225. Torvalds has final
say over what code makes it into the Linux kernel release and he intends to maintain that
decision-making power. Struggle between Torvalds and CVS over who will control the code
continues. Control means power to make decisions and dictate to others, “The reason I'm
disappointed is that vger inparticular has been acting as a "buffer" between me and bug-fixes, so
that now we're in the situation that there are obviously bugs, and there are obviously bug-fixes,
but I don't see it as such, I only see this humongous patch. I don't know what itfixes, because vger
has kept me out of'the loop, and quite frankly I don't have the time to look at several hundred
kilobytes of compressed patches by hand. And I refuse to apply patches that I don't feel
comfortable with. As a result, I want people to tell me what the patch fixes. And that probably
means by now that I need to get each driver update on its own, with explanations. This is exactly
the same thing that made me hate vger when it came to networking patches. And I'm going to ask

David once again tojust shut vger down, because these problems keep on happening” (Torvalds,

223 http://www.ussq.iu.edu/hvpermail/linux/kernel/9602/1096.htm1
224 http://www.ussq.iu.edU/hypermail/linux/kernel/9809.3/0554.html
225 http://www.ussq.iu.edu/hypermail/linux/kernel/98Q9,3/0540,html
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1998 - Sept 29t)226. Torvalds wants only one dictator in Linux, he is not willing to share control
with CVS because this opens the flood gates to the collective for joint control. Democratic as
many open source projects are promoted to be, this example of a tussle between Torvalds and
CVS for supremacy indicates that the benevolent dictatorship model has more dictator in it than

often credited.

Control through efficiency. But if Torvalds needs to strive to regain control it proves just how
much influence VCS is able to wield. VCS voices its concerns and even flexes its’ muscles
through various spokesmen, “But sorry, there are driver updates for platforms you don't give a
crap about (i.e. non-Intel) and this is where the immense size comes from. Martin and Geert are
quite diligent aboutfixing all bugs reported to them, and now that it has all accumulatedyou still
are not taking the patch. What do you want him to do? It is at a state where you can'tjust "pick
out 200 lines ofthefixes" because it simply is a sizable patch. Apply it and be done with it, then
you can be sure any further changes will be tiny. Currently it is at a stale-mate. People are
maintaining this code, and ifyou blockpatches they can't do theirjob. I askyou to be a part o fthe
solution instead of the problem” (Miller, 1998 - Sept 29th)27. VCS’ strength is efficiency of
control which Torvalds is unable to match. Open source democracy is at play because even the
leader is not above being scolded or told to step aside when the survival of software is at stake,
and various software, both VCS and kernel patches are working together to add pressure to the
situation. Software has the most to gain from a more efficient coordination process, be it VCS
software or kernel patches. So many lines of code are not scrutinized and thus frustrate the
developers because it becomes impossible to debug. The aim ofa patch always remains the same,

to be included into a final version ofsoftware so that it has a purpose and is recognized.

Technological successor. Another instance of Torvalds battling technology is when the question
of naming a successor was raised, “it's a sign ofa healthy organization to havefolks that could
step up hanging around being groomed. It means that the organization is more important than the
individual and I think that is the case here, with no disrrespect intended” (McVoy, 1998 - Oct
2nd)228 Torvalds was not inclined towards naming a successor. The collective felt the need for an
heir so that the kernel assemblage could be sustained, “Any leader needs to delegate. Grooming a
replacement, and keeping said replacement on board as a hot spare, could be done by having
Linus delegate some authority to this person. He already has people he more or less trusts to

submit good patches... I agree that the grooming process would have to be preceded by (or
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include under its umbrella) a selection/weeding-out p r o ¢ e s s (Kwrohrer, 1998 - Oct 2nd)29.
This message was written in 1998 and now it is 2006 and still there is no mention of any
replacement by Torvalds. It can be argued that his chosen successor (at least for a time) was not a
human, but rather it was a VCS - BitKeeper. It is interesting to note that Torvalds no longer uses
BK but has decided to create his own VCS, GIT. It is rumoured that this step was forced upon
Torvalds by McVoy because a kernel member (Andrew Tridgell) was accused of trying to reverse
engineer BK, but perhaps BK was also beginning to gain too much control over kernel

development.

Collective Control

Assemblage crumbling’. There is a struggle within the kernel collective between human and
material actors for greater control but the overall drive is towards collective (hybrid) control. The
collective is stronger when it acts as a uniform assemblage, rather like the Borg (Star Trek). We
see Torvalds fight CVS for control but the collective was not entirely happy. This dissatisfaction
stemmed more from his continued ignoring of patches and developers, but it became focused on a
Torvalds versus CVS argument. Torvalds felt that he was losing his collective nearly caused
irreparable damage to his status as benevolent leader. The ironic point in defence of his own
leadership was that by refusing to loosen control over the collective he was in more danger of
losing the collective and indeed causing it to fracture, “Linus You do realize that your powertrip
lately is really hurting Linux development. Linux has been getting a bunch ofgood press lately
(finally) but if'this ego/head-in-sand/etc trend continues.. 2.2 will never go out the door and we'll
have this buggy heap called 2.1 still around. 2.1 has been drawn out too long and people are
bailing ship left and right over stupid arguments. Jitterbugflopped., vger is nowflopping., you've
already lost some damn good IDE coders, and I'm sure you're going to lose more at this rate. 1
hate writing a message sounding like this but I think it should be said” (Tiensivu, 1998 - Sept
29th230. The clashes and problems that arose between vger and Torvalds threatened to dissuade
the collective from holding together. They are together because they offer code and constant
feedback to each other, but if the code and feedback is ignored, they no longer feel needed. This is

a breakdown ofthe assemblage.

Micro-management of code: There are various levels of control and different VCS are able to
provide a choice of granularity of control to the collective. The developers know that they need
some technological help to coordinate their work and keep the assemblage together yet the help
mustn’t be at the expense of giving up too much control, “CVS is ugly anyway, because there's no
fine-grained access control (i.e. either you can change everything at will or you have only read-

229 http:/www.uwsQ.indiana.edU/hvpermail/linux/kernel/9810.0/0260.htm1
230 http://www.ussq.iu.edU/hvpermail/linux/kernel/9809.3/0789.html
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only access). I really hope the PRCSpeople would do something about their planned client-server
support, it looks just like what we'd need —I have the whole kernel under PRCS locally (every
release since 1.0.0) and might be able to share the thing somehow, once the PRCS support is
there” (Urlichs, 1998 - Oct 2nd)231. Fine grained access control is required, a need for filters in the
VCS that bring some flexibility to Torvalds. Torvalds is better able to delegate work and organize
his collective if what organizes the code, and thus the workers too, operates in the way that he
wants. He wants the VCS to answer to him and not the other way around. But does the code care
who it answers too? Perhaps not, because the code is worried about survival, meaning it wants to
make it into the final version release of Linux kernel, and it doesn’t matter how or who does that
for it. The collective is eager for patches to proliferate and become part of the Linux kernel,
however, it must grow in quality and strength, so the filter in the VCS must ensure that only the

fittest of all patches survive.

Democratic collective control: Collective control is also manifested in testing or ‘eyeballing the



collective control (transparency) to guarantee that no one takes undue advantage, and we also
have the significant argument of collective control through eyeballing of the code to certify
quality. Another point made apparent in this email is how VCS makes possible learning and
knowledge accumulation i.e. as a learning repository for tﬁis collective. The collective controls
what is considered to be quality code, but the examples of code that don’t inspire more work are
also made available through the VCS (through the trajectories that could be followed) to provide a

loop of learning to both new and old developers.

This developer also speaks of the limited information which is given along with the patches in
Linux. He claims that this is irksome to the collective because the code alone cannot ‘talk’ to
other actors. There is a need for commit messages or metadata [in BK] to make the patches
understandable. Without the commit messages the developers find it hard to manipulate the code.

Inadequate information thus leads to less control for the collective.

Ownership

The final memo that contributed to the theme of material agency is ownership. Ownership ideas
gave rise to an understanding that the collective is eager to regain/retain collective ownership, and

that collective ownership leads to collective learning.

Regaining collective ownership indicates how the collective began to feel incapacitated by
Torvalds’ strong sense of ownership of the Linux kernel collective. The campaign to ease it back
into their own power was manifested firstly into a drive to make the collective aware that some
form of help was needed to control Linux, and secondly, by brainstorming for ideas of what form
that help should actually take, with a clear suggestion that VCS should be used. Collective
ownership for collective learning makes it apparent that the collective needs to own what it
creates because this is the reason for its being. If it owns the software produced then the collective
is guaranteed that Linux will continue to evolve and learn and thus in turn it too will prolong its

existence.

Regaining Collective Ownership

Torvalds initiated the project but he does not own all of it, however some actors of the collective
feel he is the saviour so “the simplest way to reduce pressure is to accept just the 'way he wants it'
and to follow it. (don't forget, he's the copyright holder anyway ) Given the enormous Linux users
pool (estimated 8 million?), there ever will be a lot of 'patch noise’' and Linus can't apply it all
-anyway. If we now try to 'administer’ the noise in order to not loose anything, even a very clever

strategy cannot avoid, that the queue accumulates to death. On the other side, the way Linus
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handles patch input will lead to sort of 'Darwinisme’ such that only the 'strongest' (re-posted
often) demands for inclusion will succeed. This 'filters' by itself So, just accept Linus' way to
handle it. As he often says (and is right saying it): the simple solutions are the most stable (and
effective) ones” (Lermen, 1998 - Oct 2nd)233. Torvalds does not single-handedly own the kernel. In
fact under the GPL (Constitution) the form of collective ownership is such that each contributor
owns that small section or patch s/he submitted and nothing else. The reason why it is called
collective ownership is because in order for someone to download GNU/Linux the numerous
authors or owners [of their patches only] give mutual consent to the third person to take their
work and use it. Contributing a small patch to GPL’ed software implies your consent to allow
others to use your patch again and again. Each member of the collective does not own every patch
of Linux, the member only owns what he or she created. In spite of this indirect form of
‘collective ownership’ we see that Torvalds persists in calling Linux ‘his project’, his repository,

his working area and his tree. Further, he also expects preferential treatment based on this



“If a person can't be bothered, as the maintainer of a piece of
software, to respond to my submissions, maybe I don't won't want to
work on that piece of software. This all brings back horrible
remembrances ofan altercation the gcc developers had, what was
the result? EGCS. So ifLinus keeps on acting like a Richard Kenner,
thenfine, this will be the result, the developers will go elsewhere and
address the development process problems Linus refuses to install
permanentfixes for. We had it going so well too, using Jitterbug. It
was the answer, or at worst it made things better, and now its offfor
the moment and we have the same problem again. Maybe we have to
come to terms with thefact that it is possible for a projects size to
just require that there is some mechanism to  "mechanize" the
development process. This can come in twoforms:

1) Something like Jitterbug

2) Letting more than I person be the only ones who can make direct
changes to the source

#2 is not an option to Linus, we did #1 and it worked, now #7 is gone
and we have problems again. I didn't like when Jitterbug was
disabledfor code-freeze, but I understood the decision and kept my



Sept 30t)237. We hear the technology call out softly at this point. It wants to become a member of
the network. And the collective is keen to find any way to ease some control back from Torvalds.
They want ownership of their code because this ensures survival of code (learning). It is precious
and must be protected and conserved. Part of the building, learning and conservation process is

testing. In OS this is predicated on Linus’ Law of ‘given enough eyeballs, all bugs are shallow’.

Brokenfeedback loop: Eric Raymond, in a long monologue below, expressed his concern with the
broken process of development that Linux suffers from without any actor like VCS helping. His
main worry was that the feedback loop (deutero learning) is damaged and this will dissuade

developers from creating more learning and this will in turn adversely affect collective learning.

“Linus is god until *he* says otherwise. The basic bazaar strategy

still works (the flakiest 2.1.x I've ever seen would be considered

production-quality by most OS vendors) but the ad-hoc way

integration is presently handled is foredoomed to increase

frustrations on all sides. Patches get lost. Patches get dropped.

Patches get missed. This is bad and wasteful in itself but it has a

secondary effect that is worse — it degrades the feedback loop that

makes the whole process work. Anybody who starts to believe they're

throwing good work down a rathole will be *gone* Ifthat happens

too many times, we're history. These risks are bound to get worse

over time because both system complexity and the developerpool are

increasing.” (Raymond, 1998 - Sept 30th)238

Raymond is an enrolled actor who believes that Torvalds is the absolute OPP without which
Linux as an evolving collective won’t survive. Enrolment in the case of Torvalds’ followers
implies that they accept him as owner and ‘god’. God in this sense is an actor who controls all,
sets the agenda, determines the direction that Linux will take and constrains the ability of other
actors to act when their actions are in conflict with his own. The more compelling concern for the
collective seems to be that their OPP might breakdown, and though that doesn’t seem to concern
Torvalds overmuch. It lays bare something particular about this collective. The collective is
worried about the project and see Torvalds both as the problem and salvation. They don’t act out
of pure admiration for Torvalds but rather from a need for the survival of Linux software and this
is what compels the collective to follow him. The real OPP is the Linux kernel and the patches
that circulate and become centres of calculation for the project. They are the real owners of Linux.

Torvalds has a role to play in holding the project together, but it is the patches created by the

developers that circulate the collective to ensure the survival of Linux

237 http://www.ussa.iu.edU/hvpermail/linux/kernel/9809.3/0987.htm1l
238 http://www.ussa.iu.edU/hvDermail/linux/kernel/9809.3/0849.html
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Access to metadata provides collective transparency: Finally, the collective wants ownership of
not just the patches but all the annotations that are added to the code. It is such annotation,
metadata that makes the code understandable to the collective at large. Thus when the metadata
held by BK was threatened by McVoy the collective panicked about the survival of Linux kernel
development in the future, “Asfor the data, you are right, we don't own that. Asfor the metadata
which makes BK work, that's ours, notyours. BK made that metadata, you did not. Ifyou don't
like those terms, convince Linus andfriends to get off of BK. That would be just fine with us”
(McVoy, 2003 - Mar 16t)239. Information is power. Learning is the opportunity to gain more
power and control. VCS makes learning possible and creates a collective within a collective. The

collective that obeys the VCS is given access to prized information.

Conclusion

The three main ideas to emerge from this narrative of machine agency include:

Fluid agency. Agency is not contained within anyone particular type of actor, it is a becoming that
passes back and forth in a network which changes form and becomes stronger or otherwise
depending on who attempts to appropriate it. Human actors as well as material are equally capable
of acting because they have agency, and it is this facet that allows the network to learn and

evolve.

Collective control: Space around actors is designed with a clear purpose and VCS is no different.
We understand better Torvalds reluctance to accept CVS because instead of giving him greater
control it actually managed to pull far too much control away from the leader. BK with its pull
and push strategy gave the impression of greater collective control yet it provided the facility to

Torvalds to watch over the entire collective.

Collective ownership: A VCS is useful to help restore the balance of ownership rights within the
collective. Legally [via the GPL] all actors have ownership to some part of the code yet Torvalds
emerges as the owner. The use of a VCS redresses this imbalance and supports the creation and

continuation ofthe collective through a feeling of ownership and control.

http://www.uwsa.indiana.edU/hvDermail/linux/kernel/0303.2/0121.html
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Chapter 8

Learning and Organizing in the Linux
Collectif

Introduction

In the previous chapter three themes of time/space, sustaining the assemblage and machine
agency were discussed. In this chapter they are brought together through the overarching theme of
the transparency of learning and organizing. VCS, and its ability to manipulate time and space is a
necessity for the collective and makes collective learning and organizing so much more fluid. The
collective is held together in part by a machination, VCS. The collective’s ability to learn holds it
together expressed principally through the code. Together, the VCS and code are able to
manipulate the collective, as actors they have agency (“the capacity to make a difference” (Rose
and Jones 2004).

These cohcepts are key to the understanding of the final theme discussed in this chapfer. The
memos give rise to three main ideas that are intertwined and interrelated. The first is transparency
— this section discusses how the license gives transparency to learning and organizing, and just as
it lets the researcher in so too it lets the members of the collective in. The second concept is
organizing, and this section explains how organizing is a technical domain in OS, but our
understanding of the technical is balanced by the social structures and governance. We then
explain learning and organizing in OS as inseparable concepts because they are inseparable
phenomenon. It may appear that learning and organizing are treated apart. It is pragmatic to
structure the chapter in this way but we are clear that learning and organizing are intertwined
concepts — a duality, a performative duality. Third, we have the learning memo exploring

processual change in all actors, human and non-human — which expresses collective learning.

This chapter proposes an argument which begins with a transparent license (thus a transparent
infrastructure, governance model and code) upon which a collective (comprised of human, non-
human and hybrid actors) is sustained through the intertwined process of learning and organizing

that holds the collective together and allows it to face the futures.
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Transparent Learning and Organizing

Transparency

This section focuses on the collective’s understanding of transparency and how this affects its
approach to learning and organizing. We begin by defining transparency and continue with the
four sub-sections that together show the significance of transparency in open source collectives.
As we have argued before, open source is premised on a particular kind of license and it is the
license that in a large way dictates the level of openness (transparency) permitted for the chosen
project. The need for transparency for learning and organizing is explained through various
examples including metadata, and the need for a historical log. Finally the relevance of material
transparency is highlighted to indicate that collective sense-making can only be considered

“collective” when material (non-human) actors are given appropriate attention and significance.

The argument in the transparency section is that version control software allows both software
and software creators to become obvious which creates an environment of openness. However,
this openness is predicated to a great extent on the licence of the software but also the process, in

this case version control software.

License Transparency
The license (Constitution) is the basis of transparency in a software process and in this section we

get a glimpse of'the practical implications ofthe chosen Constitution.

Trust through transparency - Some BSD developers believe that the GPL is not needed to create
accessible software, and rather that it is about employing some VCS to manage patch
coordination, “this mess makes me happy that I'm running and tracking FreeBSD, where there is
a single CVS sourcefor everything (kernel *and* userland) without such issues; not to say that
there are never conflicts, but at least it is clear what the single source for the system is, and
everyone can view it (see every single source line being changed) and about 80 people can
directly commit changes. It creates stability, unity and a steady progress” (Mutsaers, 1998 - Oct
2nd24o. The aim is to have little or no ambiguity and transparency through the use ofa VCS in the
belief'that in the long run the project will be stable and grow. Linux developers believe otherwise
as we can see in this reply to Mutsaers by Ts’o, “BSD folks say that they don't like the GPL
because they want to let anybody use their code; yet when the OpenBSD crowd start taking
NetBSD patches and applying them to their tree, suddenly they start singing another tune. There

was even the time when a developer put a copyright notice on their code saying anybody (except

240 http://www.uwsa.indiana.edu/hypermail/linux/kernel/9810.0/0152.html
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for this particular other BSD variant) was allowed to use thatparticular patchfile” (Ts’o, 1998 -
Oct 2nd241. The BSD collective has fractured many times into a number of smaller and less
powerful collectives or networks. Such breakdowns have been caused by political tussles, a lack
of trust, and no clear organizing structure which can help lay down rules. There is not more but
actually less transparency in BSD. The GPL provides transparency because it forces the code to
stay open and accessible to all. According to Ts’o the BSD developers ‘pretend’ to not like the
GPL because they don’t want to add restrictions to their code yet in practice they don’t want
anybody using it and cause arguments when it happens because they feel that credit has been
taken from them. If every member is allowed commit rights then there is a chance that they will
all want to exercise that right. The BSD collective somewhat proves the latter argument and one
needs to pause to assess how democracy affects or can affect the organizing of an open source
project. Transparency is essential in order to keep political issues low and trust amongst the actors
high. This exchange predates the introduction of BK, the closed source product so an intriguing
question to ask is that is it enough to use some VCS, even if it is not an open source VCS, or
should all software used in the OS process have a similar licence as the software under creation?
BK use was withdrawn from the collective not because the collective had mustered enough OS-
enthused energy to create an OS VCS, but because the philosophy of openness in the collective

began to endanger BK’s closed sourceness.

Transparency o fcode in action’- Transparency comes from being able to see the code and make
changes to it and with closed source software that is not easily possible. Transparency is also
about being able to use and understand software, *“/ don't give a damn ifyou make a dime offyour
product. I work on open source projects for my own amusement. I[fyou happen tofind a way to
make money doing it, more power to you. But don't expect me to care about your pseudo-open-

source product's bottom line. Especially because I haven't seen compelling evidence posted to this



proprietary licences. He is looking for transparency of code ‘in action’ of the artefact, not in

another actor claiming that his work is effective.

Transparency breeds diversity - Openness of code has some distinct advantages such as
generating diversity of ideas and code by making it possible to follow different trajectories of the

code or even a fork,

“2.4.5 is 26 meg now. It's time to considerforking the kernel. Alan
has already stuck his tippy-toe is that pool, and his toe isfine. The
"thou shalt notfork" commandment made sense at one point, when
free unix was a lost tribe wandering hungry in the desert. When you
have a project with several million users that has a scope that simply
doesn't scale, it doesn't. Forking should be done responsibly, and
with greatjoy. As in nature, software success breeds diversity. Linux
isfar more interesting to mefor it's general usefulness and openness,
which are inextricably related, thanfor it's unixness, although unix is
certainly beautiful. Alan was going tofilefor divorce over dev_t. Isn't
is funny how estranged couples so often are so much alike?...
preserve unixness, openness, ...an open source OS for end-users

wugn. iNriUA, nud tuat u tut uj “troytt™ity i gut trttu triruugri urtu trer

it is a loss” (Hohensee, 2001 - Jun 24th)243.
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which can only strengthen the use and adoption of Linux as a
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create such a collective within the larger Linux collective, like BitKeeper. The excluded actors are
not privy to developer comments and often they have to wait longer for updates to Linux, “those
who now chose to carry out their development using the patch+email method, and prefer to
submit everythingfor discussion on Ikml before it gets included are now largely out ofthe loop.
Thingsjust seem to *appear® in the tree now, without muchfanfare. That's my impression. Rather
than Linux development becoming more open, as I'd hoped with the advent o f Bitkeeper, it seems
to be turning more in the direction ofbecoming a closed club. This may befun ifyou're a member
ofthe club. Ah well, I'm a 'sorta’ club member, why should I complain? All the same, [feel that
something we all seemed to be headed towards with unity ofpurpose is somehow becoming more
elusive. Being attacked personally for having this feeling does not help” (Phillips, 2002 - Apr
19th)244. Transparency lent by the GPL needs to be complemented by a transparency of organizing.

BK and its ‘closed source principles’ of inclusion of BK-users but exclusion of all others has

created a collective within the laraer T.innx collective. This detracts from the transr*'>»v»n™ cmH



given cvsup, annoncvs etc. The most important point (for me) is that currently no history and no
log messages are visible. CVS would solve this, even ifonly oneperson commits” (Cracauer, 1998
- Oct 5th)A45. Transparency and access to code and logs is considered to be the most important
element of VCS use and how Linux is organized in the way of commit rights is secondary to the

collective. The learning repository idea is again coupled with the need for transparency.

Transparency afforded by metadata - Organizing code through a VCS is encouraged because it
provides easier and more direct access to code for the collective which is needed in a distributed
development process but it also allows anyone who does access the code more information and a

better understanding of why any change was made,

“You would have snapshots ofa tree, without any ofthe commentary
that usually goes with tree. Ifsomeone changes
outp(0x56, 0x60); to
outp(0x76, 0x60);
all you know is that the change has happened. With a good source
code control system, you would know why. That is what makes the
CVS trees from FreeBSD, at least, so valuable. People tend to
document why they made the changes, so you'd know that the
MUMBLEFOO bit was added to the initialization sequence to help
BRAIN-DEAD-MONKEY keyboards operate properly....” (Losh,
1996-Feb 19th)246-

This making sense of code is very important in collective learning. VCS thus creates a transparent

environment of organizing that fosters learning, growth, trust and a learning collective.

Marketplace transparency makes imitation and inspiration possible - Actors reiterate the point
that VCS makes possible a marketplace for learning ideas and that code is accessed, among other
reasons, for learning purposes “the whole reason d'arte behind the "open software"process is that
it gives people a way to take advantage ofthe monkey-see-monkey-do effect, a recompense that
previously wasn't available at all. Ofcourse I am not expecting my next GNU contribution to pay
my bills. Yep, afine line, but deep. Did they copy your code? Go get some relief... Did they copy
your idea? Take the hit and move on... Was "your idea" conceived in a vacuum? Ifnot, bow your
head in shame for yelling at others for doing "to you" what you yourself have done in greater
orders of magnitude to all those who came before you. (that being building on someone else's
ideas, ifyou haven't kept up...” (White, 2003 - Apr 8t)247. The collective tends to learn by
imitation so transparency in the process is paramount. Learning is reflected and manifested in new
code that builds on old code, thus old learning begets new learning. The case being built here is
that a marketplace builds and organizes open source activity and the understanding of this thesis is
245 http://www.ussq.iu.edU/hvpermail/linux/kernel/9810.0/0548.html

246 http://www.UssQ.iu.edu/hvDermail/linux/kernel/9602/0671. html
247 http://www.uwsQ.indiana.edU/hvpermail/linux/kernel/0304.1/0257.htm1
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that VCS is the marketplace which organizes and performs the economy of transactions that the
actors involved in the open source process explore. Callon draws on his idea of framing to explain
how this marketplace functions but adds that we are able, through VCS, to also make sense of the

failed as well as the successful transactions.

Transparent Organizing

Transparency o fprocess - Organizing is premised on some level of transparency in the process. If
the collective is unable to understand why and how things are done then there will be little trust,
which will in turn not promote sharing of code created by actors. Linux was losing patches and
this slowed down progress of the entire process. There was no reason given as to why patches
were not being added or even studied. This caused a breakdown in the collective. Ifthe OPP is not
able to hold the collective together and loses their trust then the network breaks down. If the
collective performs its role in the network then there are expectations from the OPP [Torvalds] to
do likewise. “As a 'black helicopter devotee'I'll state I have no desire to see anything resembling
a 'core team' or the bullshit politics that most certainly will come with it. Things just need to
become ORGANIZED. There needs to be a solid system for supplying patches and publishing
kernels and Linus needs to USE IT. I've supplied afew small patches and a new feature. I have
NEVER heard anything back on them. The closest I got was when I submitted the 2.0 version to
Alan Cox...and ended with Alan waiting to hear backfrom Linus. : P Until Linus gets his shit
together I'm apprehensive about working on the kernel anymore except for things I can ship
directly back to Alan. (Which generally does not mean newfeatures;, what 1'd like to play with.)”
(Cinege, 1998 - Oct 1s)248 To be organized for this developer means to have a one-actor leader
and not a core team. The core team just breaks out into political rivalry and fights that cause more
confusion. Some help is needed but from technology and perhaps not another human actor. The
misguided belief of this developer is that technology does not bring any politics with it.
Everything has politics (Latour 2005a), and the politics of technology are far more insidious
because they are less apparent, and not expected. Technology is created by humans and hybrids
and the creators embed their own politics into the code and design of technology. With OS
software these politics are a bit more apparent because the code is visible and accessible. It is also
read by experienced developers and others who want to learn and are thus more aware of what the

code is capable of doing.
Organizing patch submission (collecting) - Transparency, organizing and learning are

interdependent. It is a combination of all three that keeps the collective assembled together,

248 http://www.ussa.iu.edu/hvpermail/linux/kernel/9810.Q/0175.htm1
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fosters and maintains learning, allows for innovation and maintains trust. We see a breakdown of

the above through an exchange between Torvalds and the collective, in particular herewithTs’o,

"The reason I'm disappointed is that vger in particular has been
acting as a "buffer” between me and bug-fixes, so that now we're in
the situation that there are obviously bugs, and there are obviously
bug-fixes, but I don't see it as such, I only see this humongous patch.
I don't know what itfixes, because vger has kept me out ofthe loop,
and quite frankly I don't have the time to look at several hundred
kilobytes of compressed patches by hand. And I refuse to apply
patches that I don't feel comfortable with (Torvalds, 1998 - Sept
298 249

Linus, To befair to the vger people, one ofthe problems which the
vger CVS tree is trying tofix is that sometimes you don't take patches
very quickly. There's been at least one set of'tty patches which I had
to send you two or three times before you finally accepted it — and
they were short patches (1-3 line changes in 4files), and with afull
explanation of what it did. Heck, in the most recent case you and
Alan and I discussed different approaches for solving this problem
before I even started coding the patch. Yet I had to resubmit the
patch and the explanation at least *THREE* times, over the course
0f2-3 weeks, before Ifinally got a response out o fyou. And this was
for a utterly uncontroversial patch! And this was not the first time
I've had to resend patches 2 or 3 times, either. Is Martin going to
have to sendyou each driver update 2 or 3 times before theyfinally
get accepted?!? Now, I've had to do this enough times that I just
simply consider itparfor the course, and the changes are important
enough that I'm willing to repeatedly resend you patches again and
again. But the risk is that other people who are not so persistent may
give up, and we therefore end up seeing patches get dropped. So we
have a problem, and perhaps vger isn't the best solution. Maybe the
linux-patches web page is a better solution. But before you go
slamming the vgerfolks because this patch batching effect which you
don't like, it might be nicefor you to acknowledge that some o fyour
bandwidth constraints may have contributed to the problem, and they
were simply trying to find a way around it. If the vger CVS tree
doesn't work, fine, we can try tofind another solution. But before we
canfind an effective solution, it often helps to admit that we have a
problem” (Ts’o, 1998 - Sept 29t)250.



Transparency ofroles - Part of the problem with Linux kernel development is that not many roles
for any actor are clear-cut. As this developer points out the role of Torvalds too is ambiguous.
Torvalds seems reluctant to give up some of the key roles like integration maintainer due to a lack
of trust in the collective’s ability to carry out that function faithfully. He is able to delegate work

but needs to build very high levels of trust before he allows others into his closer network,

“Torvalds - One "patch penguin" scales no better than I do. Infact, 1
will claim that most o fthem scale a whole lot worse.

Landley - But Alan doesn't, and Dave Jones (with enough experience)
shouldn't. You have architecture duties. You're worried about the
future of the code. You have to understandjust about everybody's
subsystem. An integration maintainer would NOT be making any
major architectural decisions, they would be integrating the code
from the maintainers, collecting the patches for the unmaintained
areas of code, and resolving issues between maintainers that are
purely implementation details.

Torvalds - The fact is, we've had "patch penguins" pretty much
forever, and they are called subsystem maintainers. They maintain
their own subsystem, ie people like David Miller (networking), Kai
Germaschewski (ISDN), Greg KH (USB), Ben Collins (firewire), Al
Viro (VFES), Andrew Morton (ext3), Ingo Molnar (scheduler), Jeff
Garzik (network drivers) etc etc.

Landley - Query: Do you not believe you have been dropping a
significant number ofgoodpatches on thefloor?

Torvalds - Good maintainers are hard tofind. Getting more ofthem
helps, but at some point it can actually be more useful to help the
existing _ ones. I've got about ten-twenty people I really trust, and
quitefrankly, the way people work is hardcoded in our DNA. Nobody
"really trusts" hundreds ofpeople. The way to make these things
scale out more is to increase the network of trust not by trying to
push it on me, but by making it more of a network , not a star-
topology around me.

Landley - I'm talking about clarifying the current ad-hoc
development process. Formalizing an existing de facto position so
peoplefarther out in the development process know what to do and
where to go” (Landley and Torvalds, 2002 - Jan 28th)251

Torvalds explains that he wants a network of actors that are related and interacting on the basis of
close trust. Connecting actors to other right actors is the solution to the Linux backlog problem, or
so Torvalds believes as he is not at this point willing to consider any material actor intruding into
his development process. He doesn’t want any more maintainers as he says that he is not able to
trust everybody but he is happy with his maintainers organizing their trust with other developers
and then pouring that learning back to Torvalds for affirmation. This conversation between
Torvalds and Landley is indicative of the organizing problems the Linux development process
faced. There was no transparency in the process because the feedback loop was broken and the

collective did not feel like a collective anymore because their OPP, Torvalds, had suddenly fallen

251 http://www.uwsQ.indiana.edU/hvDermail/linux/kernel/0201.3/1074.htm1
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out of contact. Torvalds holds the network together and when he stops responding the collective
begins to fragment and splinter. Torvalds insists it is not about trusting more people but about
trying to create networks within networks that will bind the collective together stronger. Landley
feels that this may well be true but actors need to have specific roles in order to organize more
effectively and trust more openly. If roles are clear-cut then so is the line of responsibility but it

may well be that Torvalds prefers a more opaque (flexible) structure.

Politics and transparency - Transparency and openness of Linux is linked with its lack of strict
and clear-cut ways of organizing and is highlighted as the real strength and reason for survival of
the Linux kernel project. The belief is that there are already too many versions of Linux flying
around and more are not needed. There is a need to consolidate the collective rather than let it
disintegrate into numerous smaller and less strong collectives. And helping Torvalds to do that is

the way forward rather than letting his control over the kernel disintegrate by adopting a



Linux kernel has shared ownership, in the GPL sense, so this spokesman is remonstrating against
any small group taking control. There is little faith in a purely human remedy and so indirectly,
some form of material intervention or inclusion is endorsed. Speaking against formal rules and
bureaucracy, it seems that the collective prefers more fluid organizing which is emergent, open
and accessible in process but ambiguous and nebulous at the same time. This may promote
collective control of the Linux kernel and a more democratic approach to organizing. Landley,
above, asks for greater organizing and clearer roles but Schmeidehausen believes that the strength

of Linux lies in this lack oforganizing (or a new form of organizing).

Material Transparency (usability of artefact)

Transparent control over code - VCS makes possible traceability of patches but certain VCS, like
BK, are able to fold the chronological collection of patches to disconnect them from any one

moment in time and that is why there is ‘“no excuse to keep the kernel source without a version

transparency would again encourage trust in the organizing of Linux. The collective needs access
to such material so that they can all read a patch they need without depending on anything other

it of time.



But Alan had a bad week, some butthead managed to slip something into the alan branch, so his
branch looks like good. I - good. 2 - bad. 1 - good. 3 Linus, being the smart guy that he is, reads the
unified diffs which he insisted be at thefront ofeach BK patch, and notices that there is a bad
patch in there. So he whips up the gui tool, finds thatpart ofthe patch, andsays "OK, I'll take the
three good ones but exclude the bad one". And the system does. The really coolpart is that BK
has a sort o f#include facility which works across branches - the datafor each patch enters the
revision control system exactly once.” (McVoy, 1999 - Sept 271)254 VCS creates the sort of
openness to the code that can be understood, at least by this actor, to generate higher levels of
security for the Linux kernel code. There is also greater transparency for BK-users but far less for

others.

Summary

The main claim of transparency has been explored and in conclusion we add that collective sense-
making and organizing requires a level of transparency in the infrastructure, governance, and
actors that allows openness such that learning and organizing can occur. Collective sense-making
is explained by Brozefsky (1997) when he sums up the basic need for a VCS, “CVS could be
useful to the Linux kernel project as a whole possibly. I'm not sure how this wouldfit into the
usual Linux methodologies for adding things to the kernel, but it would make things easierfor
developers to watch code changes as they happen, see where collisions with their own patches
occur as the kernel progresses, and afew other things” (Brozefsky, 1997 - Apr 10t)25. The
becoming of different trajectories becomes less ‘opaque’ when a VCS is included into the
collective. This message reflects the synergy of the three ideas of transparency, organizing and
learning. The Linux kernel is a strong collective because it is a learning collective. It is the ability
to see and read the code, and understand what happens to it and why, that helps the collective
sense-make. This developer importantly points out that actors are able to see where collisions or
breakdowns happen and learn to counter such challenges. Survival of the kernel reveals an ability
to leam and adapt in the Linux kernel collective. Bateson would argue (as would Weick (1979),
Patriotta (2003, 2004) and Latour (1991, 1994, 1995)) that a breakdown stimulates reflection

which in turn often creates an unpacking of the issue and thus some level of learning.

Organizing

The organizing memo leads to a narrative that focuses more on the technical side. The human side
of organizing has been explored (Crowston and Howison 2004, Moon and Sproull 2000) as have

some aspects of technical organizing (Hemetsberger and Reinhardt 2004) but the non-human as a

254 http:/www.uwsa.indiana.edU/hvpermail/linux/kernel/9909.3/0547.htm1l
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social phenomenon in the OS literature has not been studied, thus the social aspects of technical
organizing (collective organizing) is explored here. The technicalities of VCS quickly lead to a
framing of the technical and social governance structures side-by-side to indicate how each
mirrors the other. The empirical data draws our attention strongly back to thelinkbetween
learning and organizingas we find it impossible to speak of one without exploring the other. The
last section of this memo is thus devoted to the intertwined nature of both where we draw out the
link from an organizing perspective. In the last memo, learning, we return to this point but this

time from a learning perspective.

Weick’s concept of organizing emphasizes that there is little stability in any process. It is all about
changing and organizing not organization or organized. Actors strive for stability but it is very

fleeting. The Linux collective is also in a constant state of flux,

“The problem is that some complicated changes were made. Those
affect the whole system. So while 2.3.8 may workfor a whole bunch
ofpeople we can be pretty sure that it will breakfor others. Sure,
Linus is optimistic about it. 1f1 make a graphical representation of
the trajectoryfrom 2.3.0 to 2.4.0, it could look like this: Read the "X"
as "change made" and the "—" as ‘change still has some problems "
2.3.0.8 2.3.99 2.4.0

a X--------

bX.
cX-
dX-
eX---—--

So, as you can see, there is no moment in the development where
everything is sorted out” (Wolff, 1999 - Jun 23rd)256.

Software development is a process and Wolff (1999) makes it clear that nothing is ever ‘sorted

out’ or organized. He speaks of different trajectories of the code and how any patch sent to

trajectory and if it gains critical mass and the inscription grows then that trajectory will become
the stronger translation. Each change has some positive effect but often changes bring some
unintended consequences. Attempts at solving the new issues then force the process of organizing

and learning to continue.

Technical Organizing
Mechanizing organizing - The significant breakdown faced by the Linux collective [when

Torvalds began to drop patches and ignore his developers] forced the collective to understand that



the current form of organizing is not productive. They began brainstorming for alternative
approaches to organizing Linux development. The discourse of searching amongst alternatives
was a collective approach to both learning and organizing. A strong need for the collective to

become more of a hybrid was voiced,

“Maybe we have to come to terms with thefact that it is possiblefor
a projects size to just require that there is some mechanism to
"mechanize" the development process. This can come in twoforms:

1) Something like Jitterbug
2) Letting more than I person be the only ones who can make direct

changes to the source
#2 is not an option to Linus, we did #1 and it worked, now #7 is gone

and we have problems again” (Miller, 1998 - Sept 30th)257.
Basically, this is demand for a VCS because it will allow for both organizing and learning. The
collective has understood that it needs to resolve the current crisis in organizing. This can be
understood as level 2 learning (Bateson 1972) which is the ability to adapt behaviour when the

context is changed and is a result of reflection and paradox resolution. It also shows that the new



alpha again, thereby killing and restarting the branch. Oh. And that's 3 branches and not halfa
dozen. ;) Hope that made sense. (CaT, 1999 - Jun 24%)258 VCS is capable of managing
numerous branches of code running in parallel and each branch can be folded to create a singular
coherent one in an organized way. This is relatively straightforward for a VCS but a human actor
is more vulnerable to error. Software makes sure that nothing valuable is overwritten and multiple
trajectories are possible to exist concurrently. Each trajectory or branch is a possible learning
pathway and hypothetically, the more branches there are the greater the ability to innovate for the

collective.

Feedback as a crucial element o forganizing - Communication is essential in organizing [Weick’s
idea of the double interact]. If Torvalds had sent some form of feedback to the collective then the
breakdown in the collective would not have escalated as fast, “a// these stories about repeated
patch resubmissions being necessary sound all too plausible in the absence of any official,
publicly visible patch queue with your annotations on it. I think it would help matters all around if

there were a weh rtnoe somewhere lisfiner nendinv nntehes emd even os little as a nne-line

network theory also
/isible feedback and
arency as it helps to
tive where access to
) everyone allows all
m has awakened the
as a way to solve a

iue which actors have

etant macro actor and
ality. Code needs to
'elopers are outraged
died these actors into

de. In such instances

organize your own work better” (Raymond, 1998 - Sept 30t)259. Actor
speaks of interaction and a network of relationships. Transparent or 1
interaction is a crucial element of organizing. The collective needs transp
redress the imbalance in control between itself and the leader. A collec
information like patches, versions, comments and feedback is accessible tc
actors to leam and express their ideas. A breakdown in the current syste
collective to the lack of interaction and thus breakdowns should be seen
problem rather than as the problem itself. It is symptomatic of some other iss

been oblivious too but it forces open the blackbox to reveal the problem.

Technology Mirrors Collective Organizing

The Linux kernel development process is about the code. Code is an impoi
we often hear it ‘speak’ through various spokesman and via its function
survive and survival depends on constant change and evolution. When de>
that patches are being dropped we have strong indication that code has enrc
believing that their survival depends on the long term existence of the co

Torvalds is not looked upon too kindly.



Refining organizing - Code is organized to allow some measure of stability but enough slack is
allowed so as not to stifle creativity and innovation. The period when Torvalds began ignoring
patches and developers the collective made attempts to organize the collective to function in the
event that Torvalds left. We saw a greater need for organizing (less slack). “That is goodfor
identifying which parts of'the linux kernel are beta (or alpha quality). I am talking about a stamp
ofapprovalfrom the kernel developersfor the overall kernel. Right now there are only 2 labels —
Development and Stable. I am taking about refining it a bit more—development, beta and stable.
At the risk ofsounding bureaucratic, let me suggest a scheme. I think we should waitfor x days (a
week, 10 days pickyour choice) before a beta version is declared stable. Itjust make the life of
users a little easier if the software itselfgives more information about its quality” (Juwadi, 1999
- Jun 22nd)240. If code has more authority to speak then this brings about disintermediation in the
collective and makes the middle man, Torvalds, less indispensable. Code speaks through its
quality and usability. If it is elegant code then it takes control from other actors around it, be they
human, technological or hybrids. Patches have to work together so if code were allowed to
organize itself it could be more efficient. The act of organizing is linked to non-human actors in
OS. If code is stable and works then the programme will run smoothly. When code works it shows

that a certain trajectory can and should be pursued, thus code leads the way to organizing.

Macro actor decides - Most open source projects are a strange mix of democratic plus rather
autocratic structures. Linux is no exception, indeed it is a good example of a mixed form of
structure and governance. The structure of Linux is informed by the governance style of the
project and vice versa. Linux is considered to have a dictatorship style of governance by its
collective and there is open approval of this style ofrule, “the essential problem with a core team

is specifying how you decide who is a member ofthe core team, and who is not (which is an

extremely political act), and how do you resolve disputes within the core team. In the Linux
model, one of'the things which works is that we don't have the argument ofwho is on the core
team, because there is no such thing (in all ofthe *BSD cases, the splits occurred when someone
was thrown out o fthe core team). Also, we have a relative simply dispute resolution mechanism —
- Linus decides. Richard and Larry and others may argue about scheduling changes, or Richard
and I may argue about the appropriateness ofdevfs, but ultimately Linus gets to make the final
decision. This all boils down to the old saying that the benevolent dictator is the bestform of
government — there's only one problem: finding the benevolent dictator. Linus has, up till now,

served as a very good benevolent dictator. It may be that thejob has been putting much pressure
on him, and we need tofind ways o frelieving this pressure, or otherwise solving the problem. [

also see the NetBSD and OpenBSD, and the conflicts which produced them, and that's also part of

260 http://www.uwsq.indiana.edu/hypermail/linux/kernel/99Q6,2/144Q.html
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the *BSD model. Note thatfor better orfor worse, the organization ofthe various *BSD's aren't
all that different. The personalities involved seem to be what makes the most amount of
difference” (Ts’0o, 1998 - Oct 2nmd)261. The single, strong OPP style of governing is clearly chosen
over and above the more ‘democratic’ BSD style. A single OPP has a better chance of becoming
and sustaining an assemblage with a critical mass of followers, and that is why forking ofprojects
is not encouraged in open source. GPL promotes a democratic culture, but this raises the question
of why Linux is not a truer democracy. Is it all about making organizing easier, and is organizing
made easy when one person makes all the serious decisions rather than a committee of experts?
Linux shows us both sides of the argument. It is very successful in so many organizing methods
yet the premise of a dictatorship puts far too much pressure on a single actor. Torvalds needs help,
but help that suits him and doesn’t make him feel powerless and nor gives too much power to the

collective. There is thus a need for a particular and tailored VCS - BK.

Distributed controlled hierarchy of VCS and Linux - VCS reflects the hierarchy of the
governance structure of the collective. The need for a VCS stems from a need for organizing, but
the interesting point is what sort of organizing does any particular VCS allow. BK allows the
collective to do a ‘BK pull’ and thus clone the code and work with it freely, and in that respect it
is very distributed in structure, yet when it comes to a ‘BK push’ of any changes back to BK and

Torvalds then the situation is more controlled,

“A big part of using BitKeeper is organizing the various trees you
have on your local disk, and organizing theflow of changes among
those trees, and remote trees. Since a "bkpush" sends all changes not
in the target tree, and since a "bk pull” receives all changes not in
the source tree, you want to make sure you are only pushing specific
changes to the desired tree, not all changesfrom "peerparent” trees.
One would typically work on only one "theme" at a time, either vm-
hacks or bugfixes orfilesys, keeping those changes isolated in their
own tree during development, and only merge the isolated with other
changes when going upstream (to Linus or other maintainers) or
downstream (to your "union" trees, like testing-and-validation
above). It should be noted that some of this separation is notjust
recommended practice, it's actually [for now] -enforced- by
BitKeeper. BitKeeper requires that changesets maintain a certain
order, which is the reason that "bk push" sends all local changesets
the remote doesn't have. This separation may look like a lot o fwasted
disk space at first, but it helps when two unrelated changes may
"pollute" the same area of code, or don't follow the same pace of
development, or any other o fthe standard reasons why one creates a
development branch.

Small development branches (clones) will appear and disappear..
While long-term branches will parallel a tree (or trees), with period
merge points. In this first example, we pull from a tree (pulls, "\")

261 http://www.uwsQ.indiana.edU/hvDermail/linux/kernel/9810.0/0257.htm1l
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periodically, such occurs when tracking changes in a vendor tree,
neverpushing changes back up the line...

And then a more common case in Linux kernel development, a long
term branch with periodic merges back into the tree (pushes,
Submitting Changes to Linus - There's a bit of an art, or style, of

submitting changes to Linus.

Since Linus's tree is now fully

integrated into the distributed BitKeeper system, there are several
prerequisites to properly submitting a BitKeeper change.” (Garzik,

2002-Feb 21s*00

This actor talks about working towards being upstream or downstream depending on whether you

are respectively trying to approach Torvalds with your patch or working back towards your own

base code branch. Each branch has the sort of slack required to let each actor fiddle with the code

but the more upstream you go the less slack there is as you are trying to fit into some other actor’s

branch so must work within that area and the trajectories found suitable by that actor. The more

distributed the VCS the more slack there is in the network lower down in the branches but the

moment a smaller network clashes with a larger, stronger one, then the smaller one must adapt.
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stability - but in order to secure stability we need to keep changing (Weick and Westley’s (1996)
oxymoron). The more structured the collective becomes, the less slack is available but actors are

desperate for some stability and are willing to a degree to give up the freedom to improvise.

Desire for stability - The desire and need for stability is more forcefully expressed by Brian
(1999) when he complains that “couldnt the "incomplete or experimental” sections of 2.2.x
kernels already be considered Beta? I mean, I think the beta channel already exists in the current
versioning system” (Brian, 1999 - Jun 22nd)265. In the process of organizing the Linux model has
created greater possibility for both stability and learning. The stable branch of any version release
is the outcome of trying to achieve stability or organization. The experimental branch makes
every room for slack to be built into the system so that learning and innovation can be allowed to
happen. When this learning is consolidated enough [well inscribed] then it is added to the stable
branch. The Linux versioning system is a product ofa greater level of organizing that allows more
micro organizing and learning to flourish at the same time without impeding either stability or

learning. VCS facilitates such organizing and indeed in the case of Linux, makes it possible.

Evolving organizing - Actor Network Theory and Bateson’s levels of learning concepts stress the
evolutionary aspect of reality creation. The Linux collective is also quite clear on the evolving
nature of code organizing, “The current linux versioning scheme is very clever. It underscores the
point that a software project never really completes. It only evolves. This strategy has served us
very well in the past, but I do think there is a needfor a change. At present, the code evolves in
two branches — development (odd number) and stable (even number). I think we should at least
split it into three branches —development, beta, and stable.

Development — kernel developers only

Beta — Adventorous users only

Stable —No serious bug reported in thepast x days

Of'course, we get into the problem ofnot getting enough users to pound on beta versions. But [
think the number of linux users is large enough that bug reporting will not be a problem”

(Juwadi, 1999-Jun 22nd)266.

VCS is designed in a way that it provides ample room for evolving organizing. It is
complemented by the release strategy of Linux where there is both an experimental and a stable
branch of development. This model of versioning is useful not only for utilizing the software
produced but also a way of organizing the developers in the process of development. The

important point Juwadi makes is that the Linux versioning system is also an evolving one and

265 http://www.uwsQ.indiana.edU/hvpermail/linux/kernel/9906.2/1417.html
266 http://www.uwsa.indiana.edU/hvpermail/linux/kernel/9906.2/1368.html
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there is no clear stability or end. VCS makes possible parallel dimensions of code. Nothing is ever
stable, the only constant for software, as for the collective at large, is change. A form of
organizing where there are more rules (organizing) could eventually detract from learning,
however, too many trajectories of ideas could dilute the critical mass of actors related to any OPP.
The situation could arise that there are numerous parallel translations and none of them strong
enough to hold the collective together. Development (learning) is not more important than
organizing because it is the process of organizing and learning together, in a reflexive way that
allows for both. This message thus brings the idea of learning and organizing together very well.
We can understand, as Weick points out, that learning and organizing often go hand in hand and if
either gets out of control then there is a strong possibility of a breakdown. The aim is to keep a
balance between organizing and learning for any ‘healthy’ collective to continue and thrive at a
stable pace. This is not to say that major breakdowns cannot be turned around into yet more

learning/organizing.

Organizing Meets Learning

Bad mutable mobiles - We find that learning and organizing are linked at a more micro level as
well. This example illustrates our claim. Developers are unhappy about the lack oftransparency in
the development process “7 think the Iinux-palches(d)samba.anu. edu.au idea is much better: That
way notjust Linus but other people too have a chance to look and try the patches, and bad ones
will get marked by comments saying so. This shouldfilter out much useless stuff. What happened
to that?” (von Brand, 1998 - Sept 30t)267. An open approach is a requirement because of the
transparency it lends the process. Comments and metadata (transparency in the process) provide
information on why certain patches were accepted while others rejected. A website may not be as
flexible as a VCS but it will provide the needed transparency. Feedback in this model is what
ANT would describe as the circulating reference and the evolving centre of calculation. The
circulating reference in this case is the idea which is passed on, but as it changes ‘hands’ it lets go
of certain properties and takes on new ones from the actors it comes into contact. This way it
grows and adapts to the needs of the collective. It is a centre of calculation that is being added to
or shedding attributes. This is not an immutable mobile but rather a mutable one because it
changes as it moves (Mol and Law 1994, Moser and Law 2006). Transparency makes apparent
‘bad’ mutables so that they can be forced to evolve in an appropriate way or discarded entirely.
How such fluid mutables flow and to which actor is clearly linked to organizing and make
becoming apparent through the trail they leave. A mutable is learning trying to manifest itself and

as it flows through the network it evolves in a way that is allowed by both the structure and actors.

267 http://www.ussa.iu.edU/hvpermail/linux/kernel/9809.3/0987.html
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Organizing and learning - When a certain level of learning is achieved then the collective direct
the code development towards stability, no matter how short-lived, ‘it is unstable development
kernel which is becoming stable since it is nearing end ofdevelopment cycle for 2.3.x series”
(Sulmicki, 2000 - May 10th)268. Stability or irreversibility is needed in order to hold the collective
together, and in this case the collective includes the users of Linux [business users and novice
users]. A mutable mobile is forced into an immutable stage to stop short too many off-shooting
trajectories. ‘End’ in the sentence implies death or no more change. Learning and organizing are
continuous but actors attempt to set short goals and thus create artificial stability points in the
development process. This provides space for reflection and some manner of planning for the

future.

Ordering patchesfor sense-making - VCS orders patches and organizes them in a way to help the

collective make sense ofthe code created,

“The whole point o f having things under revision control is so that

you can browse them, in the order that the events happened, not in
some random order which corresponds to when you happened tofind
some old kernel. As to the tree itself, I'll take responsibility for
checking in what we have archived to date andproviding that tree as
a basis for future work. It's true that ifyou are at version 1.100 in
your copy ofthe source and patch which consists of the diffs from
1.200 .. 1.203 comes by, BitKeeper will not allow you to patch that
into your tree. Under no circumstances, not even if Cindy Crawford
showed up and begged, would I change that behaviour (she's
welcome to show up and try to convince me, however :-) The reason
is that "the source" is a distributed thing. There are copies of the
samefiles all over the world. You guys all want that managed well so
that you can do your work in a distributedfashion with a minimal
amount offuss. When Linus edits diffs, what is in the tree isyour diffs
plus Linus' changes, *as one delta*. And that delta is different than
the one delta you made in your tree. The correct set of changes is
whatever you did plus whatever Linus did as two distinct events.
Linus gets to work the way he wants and we can still preserve the
invariants required to have a distributed source base” (McVoy, 1998
-Nov 24th)2®.

Patches and changes are not sent in any order but for each branch of the Linux code the chosen
VCS has to order and sort the work in some fashion that reflects evolutionary learning. If one

patch builds upon another then these patches must be ordered that way too. This does not detract



it accessible, in other words it must be organized. The ability to track any change back to its root
is the sort of traceability required to build a collective knowledge base or repository. VCS is thus
capable of organizing from random to some meaningful order. It is intelligent software and

capable of evolving and learning.

Excessive slack and little organizing - Some amount of slack in every collective is needed if it
wants to retain the flexibility to evolve and learn yet too much slack and a lack of rules that
accompany such a state often lead to a breakdown. This is clearly evident in the Linux kernel

collective as can be seen in the discourse below between Ts’o, Torvalds and Wolff (1998),

“Theodore Ts’o: Yet I had to resubmit the patch and the explanation
at least *THREE* times, over the course of 2-3 weeks, before I
finally got a response out of you. And this was for a utterly
uncontroversialpatch!

Linus Torvalds: Nofe that if'some person cannot be bothered to re-
submit, I don't WANT the patch. Anybody who is not willing to take
that much care o fhis patches that he can't maintain it while I haven't
accepted it, I don't want to acceptpatchesfrom anyway.

Rogier Wolff: Linus, the problem is that when I submit a patch, I

don't want to unnecessarily overload you by resubmitting on too

short a notice. So I wait, and wait. Nothing happens. The way things

work right now (almost never anyfeedback) you'll get the same bad

patches to look at over and over again, especially nowyou've begged

maintainers to be persistent in sending you patches. I'm willing to

take as much workload offyou as possible, but you do have to be

clear in howyou want us to do that” (Wolff, Ts’o and Torvalds, 1998

- Sept 30th)270.
Without any rules of engagement and relationship building organizing is breaking down. There is
real confusion and hesitancy in the collective and so we have Wolff ask for a ‘Linus manual’ to
set out criteria that the collective can follow with some hope of patch acceptance. The Linux FAQ
page no longer covers the unexpected situation of Torvalds ignoring both developers and patches
and so is a defunct way of organizing. Patches are as unhappy as the developers and speak aloud
through spokesmen like Ts’o and Wolff. The current model of organizing has broken down and
now there is too much inefficiency in the system to allow any progress of the project. Excessive
slack has converted to inefficiency and lead to disorganization. This inevitably won’t allow for
much coordinated learning. We see the collective coping to learn in the face of Torvalds’

capricious behaviour. It is however, through this breakdown, and others, that the collective

‘learns’ to eventually organize better.

270 http://www.ussa.iu.edU/hvDermail/linux/kernel/9809.3/0871.htm1l
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Summary

The main purpose of the organizing section is to tease the intertwined nature of learning and
organizing which is more fully explored in the next section titled learning. We show how the
collective is able to organize learning, or what we term as learning through organizing. Even a
brief glimpse at how VCS organizes development and the collective will make clear that VCS not
only coordinates and organizes but in this process organizes learning. Most importantly however,

VCS makes learning through organizing possible,

“Check in the new source on the same branch as the lowest and
jclosest version number. 1fsaid version number is not at the head of
the branch in question, branch at said version number.
1 hope this made sense. Good luck w/ the Linux history repository”
(Alexander, 1998 - Nov 24i)271.
Each branch is labelled and order is being created. The collective learns as it organizes itself, it is

a way of organizing learning or learning through organizing.

Learning

Drawing on Bateson’s work of learning (1972) (combined with Weick’s (1995, 1988, 2001) ideas
of sense-making) we have focused on how the Linux collective understands learning. This section
explores learning as change. It then goes on to make evident how learning and organizing is a
process which is ongoing and never ending. The subject of learning in technology is considered
and some similarities in the process of learning and evolving of human and non-human actors is
reflected on. The last section under the learning memo emphasizes the move from individual to
collective learning and organizing. The key aspect we would like to draw the reader’s attention to
is how at this point of the analysis we find it very difficult to explore or speak of organizing
without learning and vice versa. This strengthens our claim of how intertwined both concepts are

in practice.

Learning as Change

Changing - Bateson defines learning as a change in behaviour (Bateson 1972), and ANT
discusses performative learning through change in inscriptions and centres of calculation (Latour
1987). The Linux kernel collective describes learning through change as well, “that's an

interesting growth in file size over the last 7.2 years, and really shows how something can

271 http://www.uwsQ.indiana.edU/hvDermail/linuxykernel/9811.3/0301.htm1l
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change...” (Williams, 1998 - Nov 22nd)272 Technology [the code] is learning as is the network at

large, including the developers. The entire collective learns through changes in the code.

Changing is becoming ofsolving problems - The collective stresses the constructive aspects of
change in the behaviour of code despite the fact that not all change is positive, ‘fixing the
problems will mean changing the current system. [fyou don't change anything, you wont fix
anything” (Miller, 1999 - Sept 28t)273. Two points need discussion here, one is the clear message
that a change in code entails a change in the behaviour of the code and software functionality, and
two, that there are many potential ways or becoming before the correct trajectory becomes
apparent. When a problem becomes noticeable one learns that the approach taken is not working
and must be changed. The realization of the problem is learning Level 1 (Bateson 1972) and
efforts to solve it can lead to Level 2 learning. ‘Scratching a personal itch’ amounts to Level 1
learning and though a very simple example of a breakdown it is one that developers face very

often.



another part. Such erroneous trajectories are windows to learning. Collective learning can be very
helpful in such situations because ‘given enough eyeballs, all bugs are shallow’, “4s someone who
maintains afairly large source base I get nervous when people tell me they need a debugger to
work on the code. Why? Because ifyou really need that it is EXTREMELY likely thatyou don't
understand the code. Ifyou don't understand the code then YOU SHOULDN'T BE CHANGING
IT. It is infuriating to have a section o ftricky code that used to work, you turn your back, only to
find that someone made a "simple change" which seems to work but actually makes things worse

and invariably seems to break the code in afar more subtle way” (McVoy, 2002 - Sept 15t)275.

Remembering and learning - A vital element of learning is memory. Technology is capable of
retention and making decisions based on an ability to distinguish and differentiate, “after that the
SCM remembers that this merge was done already and doesn't ask me to do it again when I move
my code base to the next official kernel version” (Aliagas, 2002 - Mar 8th)276. VCS must adapt
alongside all the code changes in order to keep abreast and perform effectively. This ability to
keep up and evolve as the environment changes is learning in technology. Technology is capable
of learning but the more interesting question to raise is what level of learning is technology
capable of achieving? Does technology possess the requisite agency to be able to achieve Level 2

of'learning and above? [More on this below]

Learning as Process/Performance

Learning by doing is learning by organizing - Learning is performative as is organizing ‘the
above tells me you haven't tried BK and stayed with it very long. It's been intuitive for doing
simple things and almost the same is true for complicated things. CVS for the kernel is a
nightmare compared to BK. I've had to go back to CVSfor some linux/mips work (linux/mips is
managed mostly through CVS, not my choice) and it's been a mess.... Ifit takes a man-year to
learn BK, thatperson shouldn't be doing kernel work. It's beyond them. Putting shoes on would be
a monumental effort ofmental powerfor them. BK isn't CVS, RCS or any other revision control
software. It aims to do things differently - and better. There is some learning, but it isfarfarfrom
a year. It took me 2 hours to get to the point where I was competently creating trees and giving
other people access to our trees. That includes merging in Linus' patch with the weird _pre-
patchformat - that's not such an easy thing. My experience isn't unique. All o four PPC guys have
caught up to speed very very quickly I hate mixing metaphors on the kernel list since they tend
to degrade into discussions o fsocial-Darwinism, bunnies, bazookas and wolfs with IT-manager
claws (check out the kgdb thread). So I'll avoid the penguin jumping in metaphor. I did take the
leap to BK, and took the PPC and RTLinux guys with me. Weplowed the pathfor Linux work with

275 http://www.uwsQ.indiana.edU/hvDermail/linux/kernel/0209.1/1856.htm1
276 http://www.uwsa.indiana.edU/hvDermail/linux/kernel/0203.1/0027.htm1
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BK already. We've several pitfalls, influenced BK enough to remove some problems (Larry has
been really accommodating) and I'd recommend it to nearly anyone. Linux BK doesn't depend on
Linus using it. 1f it did, I wouldn't be using it. We've been tracking Linus for nearly a year,
merging with him, taking patchesfrom BK and non-BK users and it does work” (Dougan, 2000 -
Sept 141)277. BK requires more learning [or unlearning and then new learning] compared to other
VCS like CVS and RCS because it behaves differently and users cannot rely on prior knowledge
to guide them. Learning new things and ways is easier if new technology is similar to what has
been used before [as it builds on old learning or relearning] and if such problems are dealt with
frequently. Level 2 learning is made smoother iflevels 0 and 1 have been worked through soundly
and with real reflexive understanding. Returning to the idea of learning as a process, Dougan
(2000) elaborates on how the use of any VCS guides learning in a particular way. Each stage of
learning accomplished will affect all learning that occurs afterwards. One is set on a particular
trajectory and to follow it is usually simpler than retracing ones steps [unlearning] and then
making other attempts. These new attempts are more knowledgeable as they profit from hindsight
learning (Weick 1995, Weick 1996, Weick and Quinn 1999). VCS organizes and as actors use it
to organize material they learn through the process ofusing the software and about the code under

production as well. Learning by doing is learning by organizing.

Learning by organizing in action - A clear example of learning and organizing in action is
provided by McVoy (2002), “mirror the tree into CVS/etc and you will very quickly learn why
CVS/etc have serious problems. By learning about those problems, you'll either develop some
insight which will aidyou in making CVS/etc better, andyou'll develop a healthy respectfor what
BitKeeper can do” (McVoy, 2002 - Mar 5th)278. This is learning through organizing in action.
Using BK files and converting them to use in CVS will cause problems but this process will
provide insight about BK to the actor. The actor will either be converted to BK or will be unable
to realize the real worth of BK through a lack of prior learning [inexperience] about VCS. The
implication is that the actor who truly manages to learn from this experience will understand the

SUDerior worth of TIIC Thus fhr thf* PnllfV 'tivp’s artnrs lisincr n VPS is nlsn ahnnt leamincr thrnnoh



“there's a major learning curve and mind-set change required to
work with captured data as opposed to interactive debugging....
Easier for kernel beginners to learn the kernel internals. Having
worked on 10+ operating systems over the years, I can testify that
some form of kernel/OS tracing facility is extremely useful to get
people started. I agree with Linus when he said:
"'Use the Source, Luke, use the Source. Be one with the code.’
Think o fLuke Skywalker discarding the automaticfiring system
when closing on the deathstar, andfiring theproton torpedo (or
whatever) manually. Then_do you have the right mindsetfor

fixing kernel bugs."”
But Linus has also said "The main trick is having 5 years of
experience with those pesky oops messages Beginners need

some way ofgetting that experience. Reading the sourcefrom a cold

start is an horrendous learning curve, debuggers help to see what the

source is really doing. Always remember that 90%+ o fkernel users

are beginners, anything that helps to convert somebody from kernel

beginner to kernel expert cannot be bad” (Howell, 2000 - Sept

15 )2m.
Some key points that emerge from Howell’s email include; learning as a process implies making
mistakes and learning from them; instinctive [Level 0 and sometimes Level 1] learning is natural
to all actors; and all actors will take different trajectories of learning for the same problem, thus
actors organize material and reality in a way conducive to their own particular learning style and
level. VCS makes evolutionary learning for developers so much easier. It makes everything
transparentand accessible to all. Each actor can follow the steps taken by others before it and by

paying attention to the breakdowns faced by them and what they did to overcome theproblem

actors are able to learn what to do in particular situations.

Building on past learning - Software creation, especially open source, is in large part dictated by
reusing ideas and code of other programs. BK is a better VCS for the Linux collective but BK is
the way it is because it has leamt from the mistakes made by RCS, CVS, etc and been able to
cultivate the strengths of those programmes, ‘“Its also not clear that open source companies will
replicate everything or have the ability to do so. Even without USpatent bogons its doubtful that
open source is going to replace Oracle in a hurry. It takes timefor stuffto become commodity. As
to using one companies lessons to do your work, how much did BK learnfrom what *didn't* work
well in Clearcase. Rather a lot I believe. That learning fuels innovation” (Cox, 2003 - Apr
27)280. Cox points out that learning fuels innovation as it stimulates ideas for improvement.
Technology has to prove that it is better than its competitors and this is only achievable when
many use it and understand its benefits. Such translation implies that technology is able to ‘speak’

through its efficiency and effectiveness, and critical mass acceptance.

279 http://www.ussq.iu.edU/hvDermail/linux/kernel/0009.1/1331.html
280 http://www.uwsq.indiana.edU/hypermail/linux/kernel/03Q4.3/0853 ,html
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Learning in Technology

Past learning may strengthen new learning - Technology, like humans, is able to build on old
learning, “note that it's a lot easier to expand tools that already know about revision control than
it is to expand tools that have never known about it” (Torvalds, 2002 - Mar 15t)281. Technology
needs a strong base upon which ideas and concepts can be built. Learning is evolutionary where
some weak ideas are dropped and new stronger ones are accepted which then help technology
grow [centre of calculation]. The more intelligent the tool the more capable it is of learning

because it makes possible more trajectories of growth.

Technology can be ignorant - The opposite is also true of technology. If it has no prior
knowledge of something then it can be ignorant and find learning challenging, “CVS doesn't even
know what a directory is” (Andersen, 2002 - Mar 7t)28 This implies that other forms of
technology are capable of ‘knowing’ and if CVS doesn’t know then it is less intelligent software
and thus less capable of learning. Developers understand software and how wilful it can be, or

simply unintelligent.

Learning can lead to radical change - Learning can lead to radical change in technology as well

nc humane /iYnu ruvet ntvan tonrh CVS In rtn thiv hut t* thn Usr, v/nimV/i

implication is that technology is able to leam? And like humans the ability of technc
varies from one to another based on its earlier teachings (code, algorithms and design
make CVS understand the needs of the Linux kernel CVS will have to be taught

(plenty of rewriting of the code base so that other trajectories become possible) he
learning will be slower than BK’s because BK has already moved on from CVS ¢
quite distinct structurally from CVS. Learning happens through rewriting as well, bu
a process of organizing. The collective leams from breakdowns but also learns fron
of trying to fix the problem. Organizing is as much a way of learning as the eureka n

breakdown often triggers.



collective to innovate, “the real difference from BK is that history and tree of changesets are
independent things. It's not a "growing tree", it's "changing tree ofchangesets and its previous
forms” (Viro, 2001 - Dec 27t)284. Actors are free to follow any trajectory they want. In this

respect BK is more transparent and is also better able to fold time and space.

Collective Learning

Successful collective learning requires critical mass - Collective learning [Level 4] is made
possible when enough members of the collective make an effort to learn the same idea. In the
Linux kernel an added ingredient makes the latter possible, “ifLinus were willing to dictatefrom
high that we were going to use bitkeeper, and that all patches had to come in as bitkeeper
changelogs, then that might get us critical mass. 1f he doesn't do that, though, my big concern is
whether or not it'll be able to gamer enough critical massfor it to be worth the troublefor kernel
developers to want to spend time learning it” (Ts’o, 2000 - Sept 13t)285. The collective will only
take out the time and effort to understand something to learn a concept unless the majority of the
collective can be induced to do likewise. This is how collective learning is promoted and how it
can be made faster. VCS allows for actors to learn through it as it makes the code visible and
flexible but the code written for the VCS itselfis also just as open to learning and helping others
to learn. VCS allows actors to learn via its use and via the very building and use of the VCS
software. Itserves a dual purpose or reflects dual learning. All technology learns but how to use it
efficientlyalso requires learning. The more intricate the software often means that thelearning of
how to use it will be steep as well. The stress in open source is thus on collective learning as the
collective always brings the question very pragmatically back to gaining critical mass for any
decision to be taken and accepted [translation in action]. Access to the code of others is an asset of
the collective because as explained by Ts’o it allows others to view code and allow them to learn
from imitation. The collective also helps developers by pooling their resources and creating a
learning repository where questions can be asked and answered. All the actors learn from each
and develop faster because they can depend on other actors for support and feedback (collective

learning).

Individual to collective learning - 1t is critical mass that allows any collective to make the jump

between individual to collective learning,

“The real valuefor bitkeeper comes when I start getting patchesfrom
*other* people as changesets, all derivedfrom the same BK "root"
repository. Then I can much more easily merge changes, and do all
of'the things which makes BK so nice. It's this critical mass which is

284 http://www.uwsq.indiana.edU/hvpermail/linux/kernel/0112.3/0612.html
285 http://www.ussq.iu.edU/hvpermail/linux/kernel/0009.1/1022,html
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missing...The problem though is time. I took afull day's worth ofmy
time trying to play with BK. That was a significant investment on my
part, since I could have done a lot o fother things with that time. And
in orderfor me to get really familiar with it, I'll have to spend more
time....

Now multiply my experience by the several hundred kernel

developers out there, and you can easily see how the kernel

development community could easily have to invest a man-year or

more learning how to use BK. But there's catch-22, in that ifwe don't

have a critical mass ofpeople using it, then the value of BK is

seriously diluted. I recall the old story ofpenguins lined up at the ice

floe's edge, each nudging each other to see who would be the first

one tojump. Eventually one would getpushed in, and ifhe/she wasnt

eaten by a shark, they would alljump in and they would all getfat

and happy. There seems to be nice parallel to this situation” (Ts’o,

2000 - Sept 14th)286.
His learning becomes collective learning through gaining critical mass [a stronger network and
translation]. Collective learning has a strong imitation flavour to it. Actors learn from each other,
the pool of knowledge grows and this ensures widespread adoption and acceptance. If respected
members of the collective adopt something then others are more likely to follow, perhaps even

blindly because they feel this is safe or more tried and tested an approach.

Collective learning takes time - The implication about garnering a critical mass of actors is that
collective learning is bound to happen when the acceptance rate of any technology grows
however, very importantly some developers explain that collective learning takes much longer

than individual learning,

“Ted Ts’o: The kernel development community could easily have to
invest a man-year or more learning how to use BK. But If'it takes a
man-year to learn BK, that person shouldni be doing kernel work.

1t's beyond them. Putting shoes on would be a monumental effort of
mentalpowerfor them.

Juan Quintela: [ think ted means that it takes a man-year for the

kernel community, notfor a single person :)))))” (Quintela, 2000 -

Sept 15th)287-
Actors learn and rely on each other for answers and feedback so it takes longer for the entire
collective to learn. Part of collective learning includes the new learning trying to become an OPP.
This takes time and effort but if done well, as in the case of BK, it ensures that the entire

collective [or a large part] speaks the same ‘language’ with each other.

286 http:/www.ussQ.iu.edU/hvDermail/linux/kernel/0009.1/1281.htm1
287 httD;//www.ussqJu.edu/hvpermail/linux/kernel/0009.1/1374 .html
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Metadata as a source ofcollective knowledge and learning - Collective learning is often used as
an inducement to use BK. The metadata created and held by BK is a vital element needed to
understand code written by other actors and it is the circulating of such comments that help create
a more fluid learning collective. McVoy insists that BK has been accepted by the collective
because it helps to create a learning collective, rather than the fact that Torvalds’ acceptance and
use of it almost forced some members of the collective to adopt it, ‘Linus started using an SCM
(source code management) tool called BitKeeper in February o f2002. Since BitKeeper isn'tfree
software, he does not require that anyone else use BitKeeper, he continues to accept patchesjust
like he always did. The only difference is that information about who did what, and maybe why
they did it, is recorded and is usefulfor learning the source base, tracking down bugs, etc. Many,
but not all, ofthe core developers have switched to using BitKeeper because it makes their life

easier in various ways” (McVoy, 2003 - Apr 19t)28 Organizing and learning are again coupled



If open source development is ‘bazaar-like’ then it is given some coherent organizing structure
through VCS.

‘Becoming in action’: VCS makes apparent the grey area of becoming between learning and
organizing. This is possible because it allows framing. Framing (Callon, 1998) is the conceptual
idea of making all trajectories visible, both successful and unsuccessful ones, which is
operationalized through VCS in open source collectives. ‘VCS allows one to study all the various
pathways taken by actors and allows us to see what step manifested itself in learning or
organizing. VCS is thus both a methodological and practical aid to our better understanding

becoming.

Learning through organizing: VCS indicates what needs to be organized and how organizing is
unfolding. We are made aware of the performative nature of both learning and organizing by
following the trajectories of development or even by retracing steps done in the past. VCS
organizes and as actors use it to organize material they learn through the process of using th.e
software and about the code under production as well. Learning by doing is learning through
organizing. VCS manages the fine balance between keeping slack enough to learn but not too

much to cause fragmentation and un-organizing.

Here at the end of the analysis my detailed reading is overwhelmingly one of richness. The data
allowed me to explore many intriguing aspects of OS learning and organizing, and sometimes
could even be said to have been a real distraction. Chapters 7 and 8 include the main themes
which emerged from the data and in the following chapter we set out to answer the research

question,
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Chapter 9

The Creative Space of Learning and
| Organizing

In the previous two chapters we have focused on how the Linux kernel collective interpret and use
version control software. Now we return to the research question using the empirical data and
analysis as a foundation to providing some answers. To recall, the main research question of this

study asks:
‘How does learning and organizing occur and manifest itself in open source collectives?’

The process of both learning and organizing have been explored in this thesis, but on occasion we
have artificially kept them separate. However, as mentioned in Chapter 3, the overall position
taken throughout the thesis is that it is not appropriate to speak of one without the other, and here
we bring them rightfully back together. This idea is not new (Weick and Westley 1996) but has
seldom been operationalized in a way that is both theoreticaily and methodologically powerful.

In the case studied here a combination of dynamics helps create the balance observed between
learning and organizing. These are discussed below and include; the LKML; VCS; the license; the
politics of space; the centrality of code; and questions of governance style. What brings all of
these aspects together and makes them meaningful is their contribution to the establishment of a

creative space where changing (becoming) occurs.

Learning and Organizing

Learning needs to become organized to be useful to the collective, and the question of how to
better organize and manage the collective will come from better understanding (learning). This
claim is evident in the Linux kernel case. Open source development, as we have argued, is a
collective process where learning and organizing are revealed in a distinctive way. But organizing
is not the same as organized. As explained earlier in the thesis, the focus is not on the
achievement of the organized, though the manifestation of organizing does touch upon the former,
rather it is on the becoming of organizing itself. For example, to coordinate collective learning
certain “movements” (decisions) are made concerning which actor will be invited in to help
manage the others. Such moves to improve coordination are acts of organizing. As we have seen,
the question of which actor will be asked to help organize the collective is not a minor one, indeed
it is a highly political one with great signiﬁ%:ance for the survival of the whole collective. Instead

of (or alongside) Linux kernel code we see VCS code become the larger matter of concern around
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which other actors assemble and hold serious discourse. This we learn is because VCS is designed
in a certain way and aligned to certain interests, which in turn affects how the space where actors
assemble is structured and how actors and information move inside it. In other words the very

Constitution of Linux kernel development is under debate.

In this study we have approached this issue empirically through the LKML, and made discussion
of VCS the focus. VCS, in Clegg et al.’s phrase, is ‘the knot, the fold, where order and disorder
meet’ (Clegg et al. 2005). Patches and developers meet in this space to build attachments and
their own network, and each actor is attempting to entice and command others. VCS (the idea of
VCS) is more than a mere conventional meeting point for different actors; it is (potentially) a new
creative space that can allow collective learning and thus organizing of the collective, through its
own particular form of transparent and highly political governance. This is a creative space that
can be folded by actors, but without depriving other actors of the ability to do the same for
themselves. It is also a space whose traces are archived and can keep the collective fluid and

flexible.

Creative Space

As suggested above, we see VCS as a particular kind of space, a ‘creative space’, where in
Latour’s (2005a) words various matters of fact come together and struggle to become matters of
concern. As various actors point out, VCS allows one to follow the trajectory of patches and bugs,
and observe collisions and fusions. We have also seen that this is a political space where patches
struggle to gain visibility as VCS allows each patch to show off its ability and strengths. The
visibility afforded makes possible learning and innovation by imitation, and adoption. Of course,
VCS does not act alone to build a creative space, the LKML shares, to some degree this ability.
Latour (2005a, p6) would call this space the Body Politik, “How to represent, and through which
medium, the sites where people (the Body Politik is composed of humans, material actors, and
hybrids) meet to discuss their matters of concern? It's precisely what we are tackling here...: How

do they assemble, and around which matters of concern?”.

The extent of visibility that any Body Politik is willing to extend is given in large part, in open
source and other software processes, by the licence (implicit or explicit) under which it is created,
where the more ‘free’ the licence the greater the transparency of actors and their movements and
vice versa. Here we see an interesting dilemma emerge as the GPL aligned sofiware is forced to
work closely with closed source software. This casts both short-term and long-term doubts on the
visibility of code and metadata, and thus on the democracy of the Body Politik. Indeed the

Constitution of the kernel is seen by some to be threatened. This issue of transparency (openness)
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is central to open source development, seen by most as fundamental to ensuring the survival of the
code. The alien VCS, BK, is considered to be at best ‘ajar source’ and this brings up the possible
hybrid nature of other code in the collective. The GPL has no room for mixing with code of other
licences as it automatically converts any code into GPL’ed software. Yet we see emerge a trend
towards hybridization in open source projects, including Linux kernel development, for a time?®.
But we also see that code, amongst other actors, is too pragmatic to not make use of differently
licensed allies. Whatever is created is also then necessarily of a hybrid nature. The coexistence of
opposing actors in the same space changes the nature of the creative space and how learning can

move (becomes, organizes) within it.

The need for coordination and organizing emerges as a network grows and becomes more
interconnected with other networks. It is usually at this point that decisions begin to be processed
(becoming), and choice of fidelity to the licence is one of them — questions of the licence offer a
guiding set of rules for current and future organizing, including what the code is able to learn and
to teach (allowed to do). From this perspective the GPL guides the development process and,
broadly speaking, decides what can be done with the code and what is not possible — the
Constitution (Weber 2004). As the GPL organizes the boundaries of what code can do, it is the
associated but not equivalent governance model, no matter how emergent, which “organizes” the
developers. We then argue that both the license and associated governance model structure the

creative space, which in turn makes some forms of learning possible while restricting others.

What we also see from the case study is that the governance changed over time, beginning with a
clear leader, Torvalds, to whom all other actors would look to make decisions on code, process,
releases etc. However as the network grew so did his responsibilities. Organizing kernel
development was becoming unmanageable so some work was redistributed to other actors like
Dave Miller and Alan Cox (trusted lieutenants). The success of the kernel continued which
attracted yet more actors to the network. The level of learning and number of learners that
required organizing grew quickly. We saw a technical actor come forward to facilitate the sorting
(Bowker and Star 1999) of issues but this actor, CVS, was viewed with great mistrust by the
leader. This spurred a drive for new organizing, expressed as a search for the appropriate VCS.
For various reasons the VCS that emerged from this desire, BK, was not welcomed by the

collective wholeheartedly, indeed it was subsequently rejected.

2 Linux kemel developers used BK for a number of years before McVoy pulled his VCS away from this collective because

he felt some members were trying to reverse engineer his closed source software, It was at this point that Torvalds
decided to create his own customized, open source VCS - GIT.
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We argue here also that material actors too are capable of their own agency in leaming and
organizing. This claim is premised on the view that all actors of a network possess agency to act,
or discover how to acquire it to achieve their goals. In the two previous chapters we have seen
various instances of material agency. For example how CVS was seen to threaten to become more
powerful than another actor (Torvalds). To achieve this CVS gained an assemblage which was
beginning to match Torvalds’ following and CVS was able to engineer such growth because it
gathered the requisite agency from other actors. The findings of this research thus corroborate the
constructive-realist ontology of ANT. We see material actors harness agency from human actors,
and once they are able to do that, how they behave is as unpredictable as human actors with
agency. Agency is fluid and mobile and we see it dance between actors thus giving them the
capability to act and attempt to gain critical mass for their assemblage. Furthermore, material
actors, like human actors, need to change and constantly evolve to keep other actors interested.
Such change, we argue, is a manifestation of learning and can support constant improvement in

the collective, fed back into the collective through organizing.

VCS organizes time and space, patches, metadata, different branches of development and
developers. In the previous chapter we elaborated on various examples of collective organizing
through VCS use. One example often repeated by actors is the role VCS plays in making the
organizing of learning transparent. Actors can view collisions and fusions and can thereby, better
understand (learn) which trajectories of code are more appropriate. A closely linked issue is that
of organizing through branching. VCS allows actors to take any idea and organize it further in
another trajectory if they so wish. Each trajectory is part of the overall becoming of open source
development because it helps offer the potential to differentiate one segment of code from another

or reformat code in a new way.

VCS organizes patches and developers through branching but also via the merging facility. As
patches are sent into the VCS by various actors across time and space it is the role of the VCS to
make sure there are no conflicts and if any do arise then it must resolve them by either flagging
them up or, in the case of BK, by its auto-merge organizing ability. The merging technique is an
expression of organizing as patches are sorted and the question of why one is better and thus
acceptable to the collective is resolved. Once merged and accepted the patch becomes part of the

larger code base (learning manifested) stored in the code repository.
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Becoming Through the Creative Space

The ability of VCS to frame a creative space for the collective is premised on its power to make
transparent the becoming of learning and organizing in action. Becoming, as explained in Chapter
3, is an essential space of connections that express the dynamics of learning and organizing.
Becoming is not the specific state that is left, nor what is achieved, but the movements that take us
from ‘then to now’, or now towards some future, embodied in the tension between outward
looking and exploratory processes of learning, and cautious and considered acts of organizing.
This duality has to coexist in order for either to operate, a balance that Clegg et al. (2005)
describe as a ‘generative dance on the edge of a volcano’. Becoming is then a way of naming and
revealing the space where learning and organizing resolve and shape the futures of the collective.
Remember, we understand VCS as making possible more than one future or trajectory through its
ability to branch and fold time and space, and thus there is always, and often in parallel, more than

one way that organizing or learning is taking place.

The fleeting or transitory nature of becoming makes it challenging to study since the instant you
capture it you realize that you have focused at best on some short-lived stability. For this reason
we have coupled the idea of becoming with ANT’s concept of framing to make becoming more
visible but less frozen. Ontologically, both concepts are compatible because both stress the
creation of reality in real-time. Thus reality is performed and unfolds and emerges, it is
processual. Framing adds a dimension that helps operationalize becoming. Framing is the process
of making visible all the transactions, and relationships that actors experience, and significantly,
these include all the failed relationships and transactions too (Callon 1998b). Framing thus makes
learning and organizing more visible, “these investments apply and produce both knowledge, in
that they cause hitherto invisible links to appear, and also a reconfigured collective in which these
now visible and calculable links have been renegotiated” (Callon 1998a, pp259-260). The process
of learning inspires actors to traverse varied paths before they achieve the momentary stability'
that our research reveals. Often it is the abandoned paths that become the catalyst for learning and
so we argue that a researcher needs to follow an actor through both successful and unsuccessful
paths to disentangle the process of learning and organizing the actor participates in. Framing can

in this way operationalize becoming,
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Use the Source, Luke, use the Source. Be One with the
Code20.

Framing gives us the ability to locate, trace or follow interactions, but in open source what exactly
is it that we are following? The final claim made here is that it is the code that must be followed
because in the end it is the code that learns and organizes. Code as an organizer of learning is the
concept that allows us to move from a macro perspective of creative space to the more micro one
of becoming in action. In this study we show source code to be the primary learning and
organizing stratagem. It is also the way learning travels from the individual actor to others to
create collective learning. It is the most precious resource of the collective and remains the main
motivation for actors to assemble together. We then argue that code is a strong actor with agency
and the ability to harness more, to force and insist that the collective become pragmatic, even in

the face ofa direct clash of constitutions of licences.

Code we argue brings the collective together and creates around itself a network of actors willing



mutable mobile which circulates and spreads learning across the collective (and is what makes
possible boundary crossing between different collectives). Code gathers ideas in its movement
through the collective and interacts with other actors. Through this interaction the code passes or
delegates ideas and concepts. Delegation, in actor network theory, is explained as shifting in or
out (Latour 1987). Shifting implies movement in time and space. Centres of calculation, of which
VCS is a prime example, are the accumulation of many traces where time and space can be (re-

Jconstructed locally.

Code is then the strongest actor in the collective, and it has its spokesmen, e.g. Torvalds. If
Torvalds decides that “his” code needs a closed source VCS then contentious issues of
constitution differences are swept aside to give code what it needs. Code is pragmatic and
encourages the collective to be likewise, this in spite of the collective’s strong ideology that
suggests otherwise. The collective begins with a drive to create and maintain code and in effect is
driven by the same throughout its performance. And if code is not convincing an open source

project will wither and die (as indeed most do!).

Manifestation of Learning and Organizing in OS Collectives

This research suggests that nothing is stable in open source and we do not use the word manifest
#Zor manifestation in the main question to mean something static or unchanging. We refer rather
to the traces of learning and organizing found in the becoming. The significance of manifesting is

explained below through a number of chosen exémples from the study.

One of the key forms of learning’s manifestation in most open source collectives is the
development mailing list, for example the LKML. Any email message sent to the group email is
ruthlessly archived on various mirror sites” for both current and future reference. The archival
nature of such sites is enhanced with a proper search facility and a clear breakdown of
information by subject, date and even author. The findings of this study show that past emails are
often referred too by various actors when attempting to make an argument. Such sites are a key
resource because this is the assembly point (Latour 2005a) for various actors such as developers,
and patches (as they are often emailed to the collective at large), where discussions are held about
the merits 6f patches, decisions taken and possible new approaches to development proposed. The

openness of the mailing list ensures that all actors have equal access to it to view and read, but

292 Manifest means to ‘display (a quality, condition, feeling, etc.) by action or behaviour; to give evidence of possessing’
(OED) and that is how it is understood in this research, or perhaps we would be better saying manifesting as all forms of
lz%gming are continuously being changed.

A number of such sites were discussed in Chapter 5.
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also to contribute, thus adding to the “democratic” nature of open source development — actors are

given some potential voice through the LKML — themselves or via spokesmen.

The LKML is thus not only a manifestation of learning, it is a manifestation of learning being
organized, LKML and its continued use by the collective indicates a manifestation of organizing.
Over time the LKML has changed with various forms, like the decision to organize the email
messages first by month only but then as the need for greater organizing arose (due to an
increased number of emails exchanged) by week as well and then the addition of search

interfaces.

Another manifestation of learning in the Linux kernel collective, we argue, is the archive of code
which is stored and accessible via the version control software used. The patches and code are a
‘manifestation of collective learning indeed the most precious resource of the collective, not just its
output. We see that every attempt is made to collect such a learning repository from the long
email exchange about the ‘kernel release history’ (see Chapter 6). Prior to the use of any accepted
VCS the Linux kernel collective were forced to keep numerous personal archives which were
often incomplete. This became a growing worry to the collective and was part of the reason that
spurred the debate over VCS adoption. Actors express a need to access any segment, patch, or
trajectory that they wish at any time or place in other words to be able to fold time and space in a
seamless manner. VCS can do this and it providesv a window for actors to ‘see’ breakdowns’ and
collisions happen as the catalysts for learning, explained in Chapter 8 as the transparency of

control.

Each release or version of software is the forced or artificial manifestation of organizing. Actors
contrive a stability point in the code and it is released, but again this is no indication that there
will be no more changes. Stability is a pretence because the collective releases code but that
doesn’t preclude actors from adding to and changing it. Even the released ‘stable’ versions can
and sometimes are taken up by other collectives who then begin to reframe the code in a way that
suits them. In this way the parallel release strategy in Linux kernel development is a good
example of the manifestation of organizing. It is not stagnant, it does change and evolve, and
suggestions are often made to increase the number of concurrent releases, but at the same time it
reflects momentary stability in the collective where a consensus has been reached by actors and so
for some moments there is stability. However this stability is of the sort that Bateson illustrates
well when he describes the trapeze artist walking a tightrope. The artist appears not to be moving
at all but in fact his/her muscles are working frantically to appear steady.
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VCS holds patches and code but VCS also create and hold metadata (code about code). As
mentioned earlier metadata are comments and notes added by patch authors that help make the
submitted patch understandable (including author details and timestamp). These are generally as
essential as the patch and we see this in the serious altercation between different actors when the
metadata is threatened by BK. Metadata explains the reasoning of patches and allows other actors
to follow traces of kernel development. Again, like the VCS, metadata helps make sense of not
only the patches but also the breakdowns that have occurred, and helps to explain the steps taken

to overcome a crisis.

The final conclusion is then that the most significant manifestation of learning and organizing in
open source is the code. That is code is what makes learning happen and is learning. It passes
from actor to actor in the network showing off its abilities and at the same time inspiring others to
make changes to it to improve it yet further. This builds on our argument that code has more than
one function. Its relevance in the collective is suggested by the panic its potential loss causes and

the real effort that is put into maintaining and sustaining a repository (archives) of it for the future.

Code creates a bridge between individual to collective learning in open source because code is
mobile and promiscuous. Under the GPL every patch created is owned by the author but the GPL
allows that anyone else can then use, read and improve that patch which creates an impression of
collective ownership (but we see it differently). Collective behaviour is learnt and circulated
through open access to the LKML, metadata, learning repository and the code. A different licence
would change the dynamics of what and how code travels and who can access it. The GPL
doesn’t allow mixing of licences but the recent trend in open source projects has become dual
licensing where two or more different licences are adopted for the code developed. Sometimes
this can lead to a hybrid process, business model and perhaps even code, though the latter is not

evident from the current study.

Arguments in Summary

This chapter has explored our findings in relation to learning and organizing as a performative
duality. From this we draw an understanding of how open source collectives learn to organize and
organize to learn better. The study of learning through organizing based on the concept of
becoming, a concept we couple with Callon’s idea of framing to help make transparent the
interactions between actors which are the performance of learning and organizing. The canvas
upon which this becoming is revealed in this study is a creative space, a VCS. This space is
structured, governed and moulded to create and reinforce certain power structures. Code and other

actors move within and, in this creative space, changing and organizing others. We conclude that
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in open source collectives it is essentially code that is the manifestation of leamning, but also the
means of organizing. This may appear to be a rather technologically deterministic explanation but
our understanding of code is not merely as a technical artefact. Rather, code is a political, social
and technical hybrid which aggressively and selfishly manipulates the collective to prolong its

survival.

Can we ‘Generalize’ from these Findings?

The word generalize is often associated with positivist research, and the current work does not fall
within that category. So how do we indicate the relevance of interpretivist work beyond the area
we have researched? Lee and Baskerville (2003) argue that we cannot generalize from any type of
research if we are trying to generalize across different cases. They quote Geertz (1973) who
encourages “not to generalize across cases but to geﬁeralize within them” (pp25-26). Positivism
aims to achieve, through research, some universal laws but Lee and Baskerville apply Hume’s
(1978) truism of induction to prove that the very process and logic of induction is flawed and thus
invalid (Rosenberg 1993). Hume’s main criticism of induction is summarized by Campbell and

Stanley (1963, p17 - quoted within Lee and Baskerville, 2003),

“The problems are painful because of a recurrent reluctance to accept
Hume’s truism that induction or generalization is never fully justified
logically. Whereas the problems of internal validity are solvable
within the limits of the logic of probability of statistics, the problems
of external validity are not logically solvable in any neat, conclusive
way. Generalization always turns out to involve extrapolation into a
realm not represented in one’s sample. Such extrapolation is made by
assuming one knows the relevant laws. Thus, if one has an internally
valid (design), one has demonstrated the effect only for those specific
conditions which the experimental and control group have in
common... Logically, we cannot generalize beyond these limits; i.e.,
we cannot generalize at all. But we do attempt generalization by
guessing at laws and checking out some of these generalizations in
other equally specific but different conditions. *

Based on Hume’s premise Lee and Baskerville (2003) build a framework of four types of
generalizability. Suffice it to say here that they understand most interpretive research to fall within
the second category of their framework which explains generalizing from description (data) to
theory. Again it is stressed that such generalizations can only be made within the data collected
and not across case studies. Generalizing from description to theory implies a greater
understanding of the theory through a study of the data. It is a way of adding to where the
theoretical framework proved inadequate or broke down. In this spirit the next section is my

personal experience of a breakdown in the theoretical framework used and how my findings
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helped to build on both theory and my understanding of the findings to create a concept which is

relevant to other researchers and fields (within the remit of Hume).

~Thus while we agree with Lee and Baskerville’s (2003) point concerning not being able to-
generalize across case studies yet at the same time our understanding through this study has
encouraged us to discern some implications, for theory, practice and methodology, which could

have relevance beyond this study.

Theoretical Discussion and Contribution

This study of the Linux kernel collective has enabled a better understanding of the constructive-
realist ontology of ANT. For this researcher the point of access to Linux kernel development was
via the LKML which made it possible to follow reality creation being performed. The
constructive-realist ontology of ANT is premised on the claim that both human and non-human
actors are able to act — they have agency or are able to acquire it. Non-humans acquire agency
from other actors, but once acquired, what the non-humans are capable of doing with it is
unpredictable and in many cases innovative and evolving. We see this in the case of the
collective’s adoption and use of BK, and how once BK acquired enough agency it was able to
make itself (for a time) indispensable, grow in power and control over the network, and to coerce
the collective to help to evolve and learn. Agency dances between actors and is what provides
actors with the ability to control other actors and become meaningful within the network. Both
human and non-human actors need to evolve and change in order to remain meaningful and in
control. This they achieve through agency which they can galvanize to change, evolve, and to
learn. The study indicates just how significant continual learning is to sustaining the collective.
Non-human learning rests on obtaining agency with which to control and direct the future of code

and the collective.

The research framework created with ANT coupled with Bateson’s definition of learning and
Weick’s ideas of organizing showed code to be the main learning and organizing stratagem in
open source collectives. Learning and organizing are strongly linked but more importantly it
helped to build on ANT theoretically and methodologically because linking organizing with
learning (inscription) gives impetus to the circulating reference as more than just learning but also
organizing. Inscription is organizing of learning or learning through organizing as explained by
ANT. ANT concepts coupled with Weick’s ideas of organizing help operationalize both learning
and organizing. ANT complemented by Bateson’s learning and levels of learning adds depth to
the former because ANT does not make a clear distinction between changing and growing. ‘As

mentioned in Chapter 7 growing is usually defined as a gradual increase in something but change
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or changing is a more radical transmutation. ANT mentions change and growth but never quite
makes a clear distinction. The work of Law and Mol (Mol and Law 1994, Moser and Law 2006)
on fluid objects, when linked to inscriptions and centres of calculation, helps to develop ideas of
learning as change, yet it would still be rather difficult to distinguish between various levels of
learning through just an ANT lens. Bateson’s levels of learning then lend an added dimension to
our understanding of change and we are able to distinguish between different types of learning.
This is one way to counter critiques of ANT that complain about the ‘flatness’ of reality when
understood through ANT. The levels of learning concept enables us to understand unlearning and
adds to ANT which is unable to explain properly level two or three learning where the idea is to

learn to learn.

ANT'’s concept of framing is powerful and when coupled with Chia’s (1999, Tsoukas and Chia
2002) ideas is an effective way to operationalize becoming. Chia speaks of learning and
organizing and the grey area between which he calls becoming. It is in this creative space that
‘something happens’ to create learning or organizing. Framing operationalizes becoming, or in
other words it helps make available the performance of ‘becoming in action’. ANT is accused of
allowing a researcher to only follow successful trajectories at the expense of other possible
becomings. The concept of framing (becoming) mitigates the criticism of ANT that it only allows
the macro (strong) actor to speak, or be heard — this is keenly obvious in the Linux kernel case

study.

Time plays an implicit role in ANT and there has been little work to push this area further except
by Kavanagh and Araujo (1995) on time and space folding (they call it chronigami). We claim
here, as do Kavanagh and Araujo that time is processual (performative) but at the same time can
be folded and accessed at any point. The current study is able to operationalize their concept. We
also add that the ‘chronigamic’ ability of VCS makes for a more effective method of organizing
and learning diffusion. It allows for more creative action as actors are able to work on any thread
of development that interests them. This helps create a balance between slack and stability. It also
adds to science and technology studies [STS] and actor network theory as applied to an open
source case which not only helps to understand the case better but also leads to further insight into

the applicability and limits of this theory and school of thought.

Contribution to Practice — Open Source
As a social scientist the contribution to the technical understanding of open source and version
control software may be slim, but this has not been the aim of this research. Instead this work has

led to a better understanding of the social, political, and even economical issues concerning VCS
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adoption. VCS has been and is used in open source development but is usually taken as matter of
fact (Latour 2004b, Latour 2005a) rather than the matter of concern that this study makes evident.
A matter of concern (Latour 2004b) is a divisive and problematic idea, it is ‘disputable’ (Latour
2005c¢). Yet in most literature VCS is accepted as an unproblematic aﬁd apolitical tool to be used
by open source collectives. This study made obvious the contestable nature of VCS and this can
help to make sense of the role other ‘tools’ are also capable of playing and how such technology

should be viewed warily (Ciborra 1999).

Technical actors are political actors and need to be understood as such. VCS plays a vital role in
open source development and we recognize from this research that the design of space of VCS is
closely linked to how the collective is governed. It is a political creative space that can make the
flow of information transparént to some while restricting others, thus it organizes space to match
the governance mode and vice versa. The mode of governance is also framed by the adopted
license. A better understanding of VCS and other software is a way this researcher would like to

contribute back to the open source collective she has studied over the last few years.

VCS plays an integral part in encouraging, organizing and distributing learning. Repositories or
archives (organizational memory) that are made possible through VCS spur collective innovation
and learning. Our findings indicate that the actors of the Linux kernel developmexit collective
place great value on not only old code, patches, and metadata but also archive their discourse [the
LKML]. They actively tried to assemble a history of Linux where all previous code written was
organized. Individual actors in the collective, especially the more experienced are sensitive to the
need for an archive but this research helps understand in more depth the need for an up-to-date
archive of all communication, of code or about it. In part, perhaps because open source developers
are keen to reuse rather than reinvent but the strength of their need to protect this knowledge base
shows a deeper and long term need to preserve the code as teaching and learning material to
support novices and create core programmers. In other words an archive is needed for survival of

the collective.

The archive needs to include metadata. Torvalds made a mistake when he didn’t accept McVoy’s
offer to allow metadata to be GPL’d along with kernel code in October, 2002 and McVoy revoked
his offer in early 2003. The current study makes more apparent the role metadata plays in leaming
and its diffusion in open source collectives. The Linux kernel code is difficult to understand
without metadata and this study indicates how both the code and metadata need to be under the
same licence for the collective to flourish. Code may appear pragmatic when a license concern

crops up but it seems that metadata is not able to move as freely. License and regulations are able
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to restrict metadata so open source collectives need to be more careful about keeping ownership

of metadata within their control.

In open source it is code that is the Jearning and organizing stratagem — code is both the carrier
and catalyst for learning and organizing. Open source developers are aware of the significance of
code but perhaps not so clear on the vital scope code plays in sustaining the collective (as
described above). The crisis faced by the Linux kernel collective of closed source software
making attempts to trespass on open source software provided insight to the actors concerning the
depth to which their process and product could be affected by a mixing of constitutions (licenses).
vThis crisis lead to ideological conflicts, ownership problems, reusability concerns, question of

distribution styles, and a discussion of which licence should prevail.

Lessons for Open Source
We summarize here the main points from this thesis that could be pertinent for open source

developers.

e Software, like hardware, has an architecture that organizes space in a specific way. The
architecture of software is both a way to create openness in the collective but at the same
time it is restrictive, depending on the level of access an actor is allowed. Thus developers
need to be aware of the political spatial issues they create when certain software is
designed and then appropriated for use.

e Research on open source software has largely ignored understanding software as anything
other than a technical artefact. This view, though important, blinds one to the political
manoeuvrings that software is capable of which this study makes very evident. A greater
awareness of the capability of software to behave in a fashion not intended by the
developer and the possible repercussions of this not simply on functionality but on the
political element of organizing is needed.

o The idea of openness has layers which are reflected in the licence for software. The strong
drive in open source towards pragmatic solutions and a desire to blend into the
mainstream is creating a hybrid form of software, process, licence, and collective. What
sort of future does this trend spell for open source? This thesis raises such questions
through the crisis of metadata loss and a need for the collective to press forward with
Linux kernel software work despite the obvious problems encountered with BK use.

e A more detailed understanding of version control software from a social science
perspective makes visible its distinctive and sometimes subtle role in how learning and

organizing occurs in distributed development collectives. A study of the open source
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process and how temporal and spatial issues are managed in distributed development
through the use of software creates implications for areas other than software. There is
much to study and learn in the open source model of collaborative leaming and
organizing but our sense-making of their process can then be pooled back to open source.
We believe that this particular study of how version control software allows learning and
organizing to occur at various levels through sustaining the assemblage, control over time
and space, and the ability to act and make a difference all contribute to how learning and
organizing unfolds and is manifested.

o Different governance structures adopted by open source projects are capable of creating
environments that are on a continuum ranging from very open to the more dictatorial. The
Linux kernel collective study provides insight into how a benevolent dictatorship model
develops and unfolds under crisis situations. This study reflects the strengths of such a
model when a single decision maker is needed to draw the project out of a difficult
situation but also shows how the open source way (or one manner of it) causes a
breakdown when the leader finds it impossible to scale. Burdened leaders often adopt
software to lessen their load sometimes without reflecting on the consequences of such a
move on the hierarchy within the collective and the power struggles that ensue (even

between the leader and technology).

Methodological Discussion and Contribution

This study shows that online data, data collection and analysis can offer a very rich data set to
study a collective (about how actors in any field communicate, live, organize, learn etc). Online
data can be seen as true a representation of a real world situation, as true as other forms of
collected data (from interviews or ethnographic observations). Online data collection and analysis
provides a more accessible route and methodology to study distributed online collectives such as

open source (and other forms of online activity).

In this study we operationalized Law’s ( 1594, 2004) concept of organizing narratives. VCS makes
parallel dimensions possible and this draws an interesting parallel with Law’s organizing
narratives and Mol’s (2002) multiple realities concept (multiple realities out of which ‘one’ reality
emerges as stronger). Textual analysis of the collected data not only provided this study with a
more rigorous method of analyzing data but at the same time helped to create and make visible the
links between various narratives so that ‘one reality’ (the researcher’s mode of ordering) could

emerge. This helped to operationalize our ANT methodology.
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Operationalizing Law’s ideas contributes to traditional research methodology which seems a little
slow to catch up with research conducted via the Internet. Most researchers that study email
archives or any such large repository accessible through the Internet are faced with the problem of
data mining and then analysis of large amounts of information. Some examples of narrative
analysis in IS exist (Alvarez and Urla 2002, Davidson and Chiasson 2005) but there is no real
tradition of such a methodology in the IS field (though medicine, law, and especially sociology
have long ~been using similar methods). There is also some cynicism about how traditional
methods of research have so far been adapted to Internet research. The method used in this
research we have termed as an archival longitudinal study. This was a longitudinal study of the
Linux kernel collective and spanned over eight years of the case yet as it was done online through
a study of the LKML archive we were able to do the study and collect the data in a much ‘shorter’
time. Longitudinal case data collection can thus be done in a few months if the data is online and
archived. This contributes to an understanding of what it means to do a longitudinal study.

However, the data analysis time can (and was in this case) quite time-consuming.

We kept a diary of the steps taken during data collection and data analysis and this material was
then used in writing the methodology (Chapter 5). Our detailed explanation of our archival
longitudinal study shows the rigorous manner in which every step was executed and can thus
serve as a possible example for other researchers interested in a similar methodology. To
conclude, the IS field has few studies that focus on data which has only been collected from
online sources but the Internet and all it has to offer is an area that needs to be tapped for
accessible and straightforward data collection. As we point out above accessible data collection
does not imply that data analysis is any easier than when other methods are adopted but we hope
that our meticulous account will be a guide to others wishing to pursue an archival longitudinal

study.

Future Direction and Research

There are many possible and interesting avenues which this researcher would like to develop as a
follow-up study to the current work. Some are related directly to this work and others reflect a

need to be able to use the current understanding to shed light on areas other than software.

A study which deeply interests this researcher involves researching the impact of a fork in a
collective on learning and organizing (including the emergent governance structures). The current
study focuses on a high profile open source case but one could do a comparative study through an
investigation of a small OS project to better understand how learning and organizing occurs in the

average small OS collective. It would also be fascinating to do a follow-up study on the Linux
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kernel collective to trace the progress of GIT and its interaction with the collective. How different
an actor is GIT from say CVS or BK and compare the various VCS on learning diffusion and
governance. Another exciting study involves a focus on the trend towards hybridization in OS and
with OS adoption. There is hybridization of business models, license, code (perhaps) and

governance, but what are the implications of this trend? .

Taking a more broad perspective of OS ideology it is necessary to see the application of OS
principles, practices, ideology and techniques to areas other than software. Some examples of
areas that could find the OS way useful include education, and health, to name a few. This would
have implications in both developing and developed countries. One could also explore the impact
and relevance of the OS model on various loosely coupled ‘organizations’ spread across time and
space in the world. The form of communication adopted by such virtual forms of organizing could
also be studied to appreciate how effectively communication occurs and what purpose besides

simple interaction do communication methods serve in collectives.

Reflecting back on this study the researcher can say that there is much more to learn, and open
source as an area and phenomenon still has much to offer research-wise. This research has been a
performative experience for the researcher which was extremely enjoyable. She made many
choices for different reasons which led her to traverse certain trajectories. These choices are
justified at every stage but this is not to deny that approaches adopted by other researchers are not

useful — this study simply offers an alternative.
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