Valuing Credit Spread Options
under Stochastic
Volatility /Interest Rates

T.H.S. BOAFO-YIRENKYI

Thesis submitted for the Ph.D. in Statistics.

London School of Economics and Political Science Oct 2003



UMI Number: U613356

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

Dissertation Publishing

UMI U613356
Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346



2510/

mono*



ABSTRACT

This thesis studies the pricing of credit spread options in a continuous
time setting. Our main examples are credit spreads between US
government bonds and highly risky emerging market bonds, such
as Argentina, Brazil, Mexico, etc. Based on empirical findings we
model the credit spread options as a geometric Brownian Motion with
stochastic volatility. We implement and compare several one-factor
stochastic volatility models, namely the Vasicek, Cox-Ingersoll-Ross
and Ahn/Gao. As a stochastic model for the credit risk free interest
rate, we use the Vasicek model.

As a further new ingredient we introduce dependence between the
spread rate and interest rate in our pricing model (stochastic volatility
is assumed to be independent of the other factors). The mean reverting
property of the short rate models enables us to view the mean reverting
stochastic volatility models as moment generating function of a time
integral of positive diffusion. The moment generating function of the
average variance of the credit spread price process is evaluated. The
Numerical Laplace inversion method is used to invert the moment
generating function to obtain the density of the average variance.
This average variance density is then used in the analytic pricing
formulae. We compare the credit spread option prices under the closed
form and the numerical formula in the cases of no correlation and
some correlation between the credit spreads and the short rate under
the Vasicek, Cox/Ross and Ahn/Gao(Alternative) mean reverting
stochastic volatility model.

We also look at the delta hedge parameters for the credit spread options
under the various stochastic volatility models. Further analysis is
carried out on the effects of correlation between the credit spread, the
short rate and various mean reversion parameters on the pricing and
hedging of the credit spread options.

We finally compare our credit spread option price/hedging stochastic -
volatility model with the Longstaff and Schwartz model on mean revert-
ing credit spreads under constant volatility.



Acknowledgements

I thank the almighty God for giving me the strength
and courage to overcome the obstacles that came
my way.

My thanks are due to my supervisor Riidiger Kiesel
for taking me on as one of his research students and
offering me encouragement, assistance and advice
throughout the research study.

I am indebted to Elaine my wife for her motivation,

moral support and contribution over the years.



Contents

1 Introduction

2 One-factor Mean reverting models

3 Credit Spreads Option Valuation

3.1
3.2

Contingent Claim Pricing . . . . ... .. ... .. ..
Appendix A: Proof of Vasicek Zero bond price . . . . ... ..

4 Closed form Pricing of Credit Spread Call

4.1

General Pricing Formula . . . .. ... ... ... .......

5 European Call Vasicek Stochastic Volatility Model

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

Analytic Credit Spread Call under no correlation . ... ...
Numerical Credit Spread Call Price under no Correlation . . .
Analysis of Closed/Numerical Call Prices under no Correlation
Analytic Credit Spread Call with correlation. . . . . . . . . ..
Numerical Credit Spread Call Price with Correlation . . . . .
Analysis of Closed/Numerical Call Prices with Correlation . .
Appendix A: Table of Call Prices under no correlation

Appendix B: Table of Call Prices with correlation . . . . . . .

6 European Call Cox/Ross Stochastic Volatility Model

6.1
6.2
6.3
6.4
6.5
6.6

Analytic Credit Spread Call under no correlation . . ... ..
Numerical Credit Spread Call Price under no Correlation . . .
Analysis of Closed/Numerical Call Prices under no Correlation
Numerical Credit Spread Call Price with Correlation . . . . .
Analytic Credit Spread Call with correlation. . . . . . ... ..
Analysis of Closed/Numerical Call Prices with Correlation . .

14

19
23
27

32
33

38
38
45
48
50
53
56
58
59

62
62
65
66
69
71
74



CONTENTS 5

6.7 Appendix A: Table of Call Prices under no correlation . ... 76
6.8 Appendix B: Table of Call Prices with correlation . . . . . . . 79
7 European Call Ahn/Gao Stochastic Volatility Model 81
7.1 Numerical Credit Spread Call Price under no Correlation . . . 81
7.2  Analytic Credit Spread Call under no correlation . . . . . .. 83
7.3 Analysis of Closed/Numerical Call Prices under no Correlation 86
7.4 Numerical Credit Spread Call Price with Correlation . . . . . 88
7.5 Analytic Credit Spread Call with correlation . . . . . . . . .. 90
7.6 Analysis of Closed/Numerical Call Prices with Correlation . . 93
7.7 Appendix A: Table of Call Prices under no correlation . ... 95
7.8 Appendix B: Table of Call Prices with correlation . . . . . .. 96
8 Credit Spread Call Hedge Parameters 99
8.1 Delta Call on Credit Spread . . . .. ... .. ... ...... 102
8.2 Gamma Call on Credit Spread . . . . . ... ... ....... 103
8.3 Vega Call on Credit Spread . . . . ... ... ... ...... 104
8.4 Theta Call on Credit Spread . . . . . . ... ... ... .... 106
9 Longstaff/Schwartz Credit Spread Option Model 107
10 Sensitivity Analysis of Credit Spread/Delta Calls 110
10.1 Cox/RoSS . . . . o v v i e 110
10.2 Vasicek . . . . . . . . . . e 111
103 Ahn/Gao . . . . . .. .. 111
10.4 Longstaff/Schwartz . . . . . . .. ... ... ... ....... 112
10.5 DeltaHedging . . . . . ... ... ... ... . ....... 112

11 Conclusion . 115



Chapter 1

Introduction

Credit risk is the risk whereby counterparties fail to make payments to
transactions they are obligated. It is sometimes referred to as counterparty
risk. A great deal of attention has been placed in credit risk management by
academics and practitioners over the years and further research is ongoing
in this new area.

In the last decade, a new innovation in credit risk management appeared,
the credit derivative instruments. Credit derivatives are designed to
segregate market risk from credit risk and to allow separate trading of credit
risk. They allow a more efficient allocation of credit risk, which greatly
benefits those who borrow, lend and transact interest rate and credit
derivatives. This ensures that premiums associated with default risk are
appropriate for that level of risk. Credit derivatives may also be defined

as contracts that pass credit risk from one counterparty to another. They
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allow credit risk to be stripped from loans, bonds and swaps and placed in a
different market. Their performance is based on a credit spread, credit rating
or default status.

Besides the obvious advantage of eliminating and trading credit risk, other
benefits include the diversification of highly concentrated portfolios
(reducing liquidity risk), balance sheet management and the reduction of
regulatory capital for better return on capital.

Credit derivative instruments include total return swaps(TORS), defaults
swaps, credit default swaps(CDS), credit spread options(CSO), credit spread
forwards, credit linked notes(CLNs), credit debt obligations(CDOs), credit
loan obligations(CLOs) and synthetic CDOs etc.

The instruments of interest in our research paper are credit spread options.
These are options where the underlying is the spread on a 3rd party
security. Suppose a trader feels that the rating agencies have given the 3rd
party too low a credit rating and want to exploit this. Given the current
credit spread as 100 basis points, the trader pays a premium to go long

the credit spread option. If spreads narrow or fall below the current level of
100 basis points he or she profits. But if the spread widens he or she will

abandon the option and the maximum loss is the premium paid. Also banks
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and insurance companies may sell credit spread option protection for a fee
because they think that the asset is undervalued and that the credit spread
widening is not indicating a default event.

A trader holding the bond issued by the 3rd party might purchase a

credit spread option that pays if spreads widen as a result of bond issuer

or reference asset being downgraded. CSOs can also be used to hedge index
related basis risk by say an insurance company purchasing an option on
the credit spread between a bond index and an index on a similar

duration and maturity US Treasuries.

Overall the credit spread option offers the flexibility where it can be used
to reduce credit exposure, hedge against potential default risk, speculate

on credit spreads widening or narrowing and the selling of credit
protection.

In this paper we propose the valuation of credit spread options under a
continuous time model with the following assumptions:

(a) credit spread is a traded asset. This is a standard assumption in CSO
pricing literature which can be justified by holding a portfolio of long credit
risk bond and short a default free bond with same characteristics.

(b) credit spread exhibits stochastic volatility in contrast to Longstaff and
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Schwartz spread option model. This is motivated by our prime example:
the spreads between US government bonds and emerging market bonds.

(c) interest rates are stochastic (Vasicek short rate model), which is standard
in this context.

(d) the credit spread and the short rate are correlated, is supported by
empirical evidence, although the evidence on the sign of the correlation is
mixed.

We use the following model.

Assume a stochastic basis (Q, F,Q,F ); F= (Fy) filtration satisfying usual
conditions.

Let

dX; = moo2dt + a:dWi(2) (1.1)

where X; = log S; ( log of credit spread ).

The SDE in (1.1) is supported by the empirical study on derivatives of
credit spreads. See working paper on the valuation of derivatives on credit
spreads by Rudiger Kiesel.

For a; the volatility, we consider one-factor mean reverting volatility

processes of the following forms:
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Vasicek SDE:
do? =0 (c— o) dt + a1dW;(t) (1.2)

Cox, Ingersoll and Ross SDE:

do} = 6 (c — o?) dt + a10,dWs(t) (1.3)

Ahn/Gao SDE:
do? = 0 (c — o7) o2dt + a107dWs(t) (1.4)

where W, and W3 are independent Brownian motions.

Given the framework above, the credit spread option model is valued
under a stochastic interest rate and stochastic volatility dynamics. Under
stochastic interest rates we consider cases of zero, positive and negative
correlation between the credit spreads and the Vasicek short rate process
in our pricing and hedging models. The choice of interest rate process is
purely from an analytic tractability point of view. Other one-factor short
interest rate process could be applied to our model.

For the stochastic volatility dynamics we consider 2 well known one-factor
mean reverting stochastic processes, Vasicek, Cox, Ingersoll and Ross as well
as an alternative one-factor stochastic process Ahn Gao. The credit spread

has no correlation with the stochastic volatility processes.
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Chapter 2 discusses the one-factor mean reverting stochastic processes
Vasicek, Cox, Ingersoll and Ross and Ahn Gao in a more general setting
rather than focusing on its use in the interest rate world. In Chapters 3
and 4, we build a general closed form credit spread valuation model

under a risk neutral price framework, from which we derive a pricing
formula for European call credit spreads under the risk neutral measure as
the expectation of the Black Scholes call credit spread conditional on the
realised volatility. The realised volatility is obtained from the average
variance over the life time of the credit spread call option.

In chapters 5, 6 and 7 we derive the credit spread call formula for closed
form and numerical form under the three one-factor mean reverting
stochastic volatility processes (Vasicek, Cox, Ingersoll and Ross and Ahn
Gao). For each of the one-factor mean reverting stochastic volatility
process, its stochastic differential equation is expressed as a random
variable for the average variance. The moment generating function for the
average variance is obtained by applying a concept well known from bond
pricing, where the mean reverting short rate are viewed as moment
generating functions of the time integral of positive diffusions.

The three mean reverting stochastic volatility processes in the form of
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Vasicek, Cox, Ingersoll and Ross and Ahn Gao SDE’s have closed form
solutions for the moment generating functions. Obtaining the distribution for
the average variance analytically by Inverse Laplace transform techniques
is only possible for simple moment generating functions. The complex
moment generating functions for the mean reverting volatility processes
requires numerical inversion for the distribution.

We apply the Abate/Whitt method to numerically invert these moment
generating functions to obtain the distribution of the average variance for
the chosen one-factor stochastic volatility process. The density of the
average variance is then used in evaluating the risk neutral expectation

of the credit spread option price conditional on the distribution of the
average variance process.

Credit spread options prices are evaluated for the closed form and numeric
models (Monte Carlo) under zero and non zero correlation for a given
stochastic volatility model of either Vasicek, Cox, Ingersoll and Ross or
Ahn/Gao. Credit spread prices from the closed and numeric models are
compared to establish how close they are. The numerical and closed form
prices are listed in the appendix sections for chapters 5 to 7.

Further analysis is done on how the structural or mean reverting
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parameters and the correlation between the credit spreads and the
short rate affect credit spread option prices. Calculations are done

for in and out of the money credit spread call prices for our credit
spread option model.

In chapter 8 we derive the hedge parameters for the credit spread
option model. Chapter 9 briefly mentions the Longstaff/Schwartz credit
spread option pricing and hedging model. We calculate in and out

of the money credit spread call prices for the Longstaff/Schwartz
model. Delta call hedge parameter values are calculated for both our
credit spread option and Longstaff/Schwartz models.

Chapter 10 compares the spread option prices and delta hedge values
for our credit spread option model with the Longstaff/Schwartz credit spread
model by analysing the graphs of credit spread option price against
underlying spread and Delta against underlying credit spread plots for
maturities of 0.5, 1.0 and 1.5 years.

Finally we discuss our findings in the conclusion in chapter 11.



Chapter 2

One-factor Mean reverting
models

In this chapter we discuss the three classes of one-factor mean reverting
models mentioned in the introduction.

Two of the models are of the general form

dv = k(0 — v)dt + ovPdz (2.1)

The third model is of the general form

dv = k(0 — v)vdt + ovPdz (2.2)

These models have widely been used for the modelling of the short rate
in the interest rate literature. We try to give a more general view of these
models. The choice of 3 in (2.1) is usually dictated by a compromise

between analytic tractability and reasonableness of the resulting

14
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distribution. The empirical issue of which exponent gives the best
description of the process to be modelled has not been settled yet, although
Chan et al(1991) indicate that a higher 3 might describe the observed
underlying better whether it is volatility or short rates.

In our study we consider the following cases

(i) B8 =0 under (2.1);

(ii) 8 = 0.5 under (2.1);

(iii) B = 1.5 under (2.2);

The case of 3 =0 in (2.1) is the Vasicek process of the form

dv = k(0 —v)dt + odz (2.3)

The Vasicek process is related to the Ornstein-Uhlenbeck process. .

As a Gaussian process it produces a symmetric distribution. It allows
for negative values for the underlying asset process, which is an
undesirable property. As a mean reverting model, when the underlying
asset is above (below) a long term level it experiences a downward

(upward) pull towards this level.



CHAPTER 2. ONE-FACTOR MEAN REVERTING MODELS 16

The case of f = 0.5 in (2.1) gives us the Cox, Ingersoll and Ross

stochastic process of the form

dv = k(6 — v)dt + ov/vdz (2.4)

It is widely known as the squared gaussian process with a non central
chi-square distribution i.e. a skewed distribution with a fatter right hand
tail. For large t, i.e. t — o0, its distribution approaches a Gamma
distribution. For k, 6 > 0 this corresponds to a continuous time first
order autoregressive process whereby the random volatility is elastically
pulled toward a long term value 8. The mean reversion parameter

k which determines the speed of adjustment can reach 0 if 02 > 2k6.

If 2k6 > 02, the upward shift is sufficient to make the origin

inaccessible. This implies an initially non negative volatility can never
become negative.

Other analytical properties imply the following:
(a) negative volatilities are precluded;

(b) if volatility reaches 8, it can subsequently become positive;
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(c) the absolute variance of the volatility increases when volatility
increases, as the volatility process is proportional to the square root

of the volatility process;

The Vasicek and Cox, Ingersoll and Ross stochastic processes have the
same drift volatility specifications. These processes can be extended
further by making the speed of the mean reversion and the long term
mean reversion of the volatility process a function of time rather than

a constant. However the extended Vasicek process still exhibits

the properties of negative values.

Empirical studies by Ahn Gao on the parametric nonlinear model of
term structure dynamics propose a mean reverting SDE of the one factor
form as in Chan et al, where # = 1.5 but the drift is non linear.

The Ahn Gao SDE is of the form

dv = k( — v)vdt + ov'°dz. (2.5)

The long term parameter € is the threshold of the volatility process,
where the drift is 0. The assumption of k£ > 0 is necessary for the
stationarity of the volatility process. The drift is positive if long term

reversion is above the volatility process, implying the volatility process
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reverts to the normal range. When the volatility process exceeds long
term mean reversion 6, the drift becomes negative. A negative drift
pulls long term mean reversion to its normal range. The mean
reversion parameter k also determines the curvature of the drift which
measures the degree of nonlinearity in the drift. When the drift climbs
until the volatility process reaches %, the drift hits its maximum k‘iﬁ.
Once the volatility passes this point, the drift begins to decline,
reaching 0 when the volatility process is §. The further away the
volatility process is from 6, the faster the mean reversion. In contrast
to the linear drift models, the mean reversion speed remains the same.
A negative K with a diffusion of ov!® causes the volatility process to
explode. The density of Ahn/Gao stochastic volatility process is a
form of the modified Bessel function of the first kind of order q.

The three single factor models discussed above exhibit the affine term

structure property and are thus analytically tractable with closed form

solutions for derivative prices.



Chapter 3

Credit Spreads Option
Valuation

The continuous time model for the credit spreads in (1.1) are general
Markovian models for all continuous time stochastic volatility models.
We assume we model under an equivalent martingale measure Q.

By Ité’s Lemma, from (1.1)

dS(t) = S(t) (Uoldt + o, dW1(t)) (3.1)

where U = m9 + %

We assume the Vasicek type short rate r has Q dynamics

dr(t) = (b — ar(t))dt + o(pdW1(t) + /1 — p?dWs(t)) (3.2)
where p is based on the assumption that there is a correlation between

the short rate and the credit spread.

19
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(W1,W,) are uncorrelated Brownian motions.

Our aim is to model the contingent claims with S as underlying.

The price process II(t; X) of any such integrable T contingent claim X is
obtained with the risk neutral valuation technique by computing the Q
expectation i.e. II(t; X) = E9[X exp(— ftTr(u) du) | Fy).

If we are interested in a contingent claim, X = ®(r(T')) with sufficiently
smooth ® then using the Feyman Kac formula, the arbitrage free price
process is given by II(¢; X) = F(t,7(t)), where F is the solution of the

partial differential equation, also known as the term structure equation.

2
Ft+(b—ar)F,+%F"—rF=O (3.3)

with terminal condition F(T,r) = ®(r) for all r € R.

For example zero bond prices with maturity T are given by p(¢,T) = F(t,r(t)); T),
where F is a solution to (3.3) and terminal condition F(T,r;T) = 1.

The bond price process will be of the form

p(t,T) = A(t,T)exp(—B(t,T)r), 0<t < T,

where r follows the Vasicek short rate process in (3.2), with A(t,T) and B(t,T)
deterministic functions.

We can find the process p(t,T) = F(t,r(t)); T), by solving (3.3) with
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terminal condition F(T,r;T) = 1.
= F(t,r;T) = A(t,T) exp(—B(t, T)r)
where

B(t,T) = é [L — exp (=a(T — )], (3.4)

AwT) =ep (T -0 - BTN 2 - T+ LW (39

See appendix A at end of chapter 3 on the derivation of B(¢,T) and A(t, T).
Define Z(t) = pWi(t) + /1 — p?Wo(t), then Z(t) is a Brownian Motion

and the Vasicek short rate process in (3.2) can be specified as

dr(t) = (b —ar(t)) dt + 0dZ(t). (3.6)

Given that the bond price are of the form,

p(t,T) = A(t,T) exp (—B(t,T)r), 0 <t < T, where r follows the Vasicek
short rate process in (3.2), with A(t,T) and B(t,T) as deterministic functions,
then Ito’s formula implies

dP(t,T) = P(t, T)dt + P,(t, T)dr + 1 Pu(t, T)d < 1 >.
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Thus
dP(t,T)

[A:(t, T)exp (= B(t, T)r) — rA(t, T)B:(t, T) exp (—B(¢, T)r)] dt
—[A(t,T)B(t,T) exp (—B(t, T)r)] dr

+% [A(t,T)B*(t,T)exp (—B(¢t, T)r)] d < r >

[A¢(t, T) exp (—B(t,T)r) — rBy(t, T)P(t,T)| dt — P(t,T)B(t,T)dr
+%BQ(t,T)P(t,T)d <r>

Ai(t,T)exp (—B(t,T)r)dt — P(t,T)

rBy(t,T)dt + B(t,T) (b — ar(t)) dt + 0dZ(t)) — %BQ(t, T)azdt]
Aq(t, T) exp (= B(¢, T)r) dt — P(t,T)

(rBt(t, T) - %Bz(t, T)o? + B(t, T) (b— ar(t))) dt + oB(t, T)dZ(t)] .

From the derivation of A(t,T) and B(t,T) in appendix A of this chapter

dP(t,T)

[

A(t,T) exp (—B(t, T)r) (bB(t, T) - i‘;—Bz(t,T)> dt
—P(t,T) [(Bt(t,T)r - %Bz(t, T)o? + bB(t,T) — aB(t,T)r)dt + o B(t, T)dZ(t).

P(t,T) (bB(t,T) - %232(t, T)—rB(t,T) + 50232(15, T) — bB(t, T)) dt

+P(t,T) (aB(t,T)rdt — o B(t,T)dZ(t))
P(t,T) ((aB(t,T) — By(t,T)) rdt — o B(t,T)dZ(t))
P(t,T) (rdt — oB(t, T)dz(t)) .

Hence the bond prices under the Vasicek short rate model are given by

dP(t,T) = P(t,T) (r(t)dt — oB(t,T) (del(t) +/1- p’sz(t))) .

(3.7)
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3.1 Contingent Claim Pricing

We want to find the arbitrage price Ilg of G(S(T")) (G an appropriate func-
tion)

From chapter 8 of Bingham-Kiesel(Bingham and Kiesel 1998)

) = B)-Fe | paslF

T
= Fg |Gexp(—/r(s) ds)|Ft] .

t

Also P(t,T) = Eq [exp(— [ r(s) ds)m].

The risk neutral pricing formula is

II,(t) = Eq(exp(— [’ r(u) du) G(S(T))|F).

By the change of numéraire theorem we find

I1,(t) = P(t, T) B, [G(S(D))|Fi,

where the expectation is under Q measure.

The change of measure is such that P(¢,T) is the new numeraire thus
S(t) = 1%% has to be a martingale.

By the product rule

dS(t) = S(t).d(zpm) + dS(t)- sam+ < SO), ppry >
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dS(t) = S(t) (Uokdt + o;.dW;(t)) from (3.1) and

dP(¢,T) = P(¢,T) (r(t)dt — oB(t, T)(pdWi(t) + dez(t))) from (3.9).
We start with evaluating d ( Z0 T))

By Ito’s lemma, with f = ;,

(= =0 ,fo=Ffu=235)

we have

df(t,) = frdt + foda + L frg.da?,

d [P(tl, T)] - PG, ;‘)2 P(t,T) ( (t)dt — o B(t, T)(pdWi(t) + \/1_—7dW2(t)))
+P(t,2T)3'P(t§T) (6?B*(t,T)(p* + 1 — p*)dt)

- 7—"(;t,lT_) (r(t)dt — o B(e, T) (pd Wi (0) + v/T— 2aWa(s)))

+ B tl 7 (o*B%(¢,T)dt)

oB(t,T)
P(t, T)

(pdW1(t) + /1 — p2dWa(t)

> = St){ovdWi(t)} x

S(t)

= . T)aath(t ,T)dt,
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- Pft(tf)r) (r(t)dt o B(t, T)(pdWi(t) + /1 — p2dWi(t )
+F%% (02B2(t, T)dt) + P‘? t(,tgr) (0opB(t, T)dt),
=dS(t) = §( t) (Uo? + o*B*(t,T) + 001pB(¢t,T) — r(t))) dt

+5(t) ((at + poB(¢t,T)) dWi(t) + o B(t, T)/1 — p2dWa(t) )

Let W = (W1, W) be a 2-dimensional Brownian motion defined on a filtered
probability space (2, F,Q, F) if F = (F,) is the Brownian filtration,
any pair of equivalent probability measures Q ~Q on F = F, is a

Girsanov pair, i.e.

Q| _
| - L(t)
with
L(t) = exp (- fy(a(w) dWi () + Do) dWa(w)) — 3 J5(3(u) + () du)

where (A(t) : 0 <t < T) a measurable, adapted 2 dimensional process
Wlthfo A2(t)dt < o0 a.s., i =1,2.

If L is a continuous local martingale which satisfies Novikov’s condition:

B (exp{d [y (IR3@) + X)) du} ) < oo,
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then L is a martingale with E (L (T)) = 1, therefore we can change

measure to Q. Then Girsanov’s theorem implies

= dW; = dW; — A (t)dt

= dW, = dW, — M\ (t)dt

Substituting dW; and dW, above in dS(t),

and grouping terms together

=dS(t) = S [(Uo? + 00:pB(t,T) + 0*B2(t,T) — r(t)) dt]

—S(t) [((o¢ + paB(t,T)) M (t)) di]
=5(t) [(¢BETIVI = Pxa(t)) ]

+5(t) [(at + poB(t,T)) dW, + o B(t, T)\/1 - pzdvf/z] .

Under Q risk neutral T forward measure, S has to be a local Q martingale,

hence the drift coefficient has to be zero.

So

Uoi+ooipB(t, T)+0*B(t, T)—r(t)—oA (t)—aB(t, T) (pz\l(t) ++/1- p2)\2(t)) =0

so we choose A;(t), A(t) for a unique equivalent martingale.

Let p)\l(t) + AV 1- pz)\z(t) =1

— Al(t) _ {Uo2400:pB(t,T)+02B2(t,T)~r(t)—oB(t,T)} where o, 74 0.

at

For the A, solution, substitute A; in
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Ao = %ﬁ ,where —1 < p < 1.

Hence under Q measure
d5(@t) = 3(¢) [(at + poB(t,T)) dWi(t) + o B(t, T)\/1 - pzdwz(t)] (3.8)

without any effect on W3 the Brownian motion for the stochastic volatility

process.

3.2 Appendix A: Proof of Vasicek Zero bond
price

The Vasicek bond price process is of the form

F(t,r;T) = A(t,T) exp(—B(t,T)r).

Taking partial derivatives of F(t,r;T),

F, = Ait,T)exp(—B(t,T)r) — A(t,T)Bi(t,T)rexp (—B(t,T)r)
= At,T)exp(—B(t,T)r) — By(t,T)rF,

F,

—A(t,T)B(t,T)exp (—B(t,T)r)
—B(t,T)F, '

F.. = A(t,T)B*t,T)exp(—B(t, T)r)
= B*(t,T)F.

Substituting the partial derivatives above into the term-structure equation
(3.3),

Ay(t, T) exp (—B(t,T)r) — By(t, T)rF — (b—ar) B(t,T)F + 2 B*t,T)F —
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rF =0

= A4 _ By(t, T)rF — (b ar) B(t, T)F + Bt T)F —rF = 0.

D) _ B,(t,T)r — (b ar) B(t,T) + 2Bt,T) ~r =0

= 480 _bB(¢,T) + $BX(t,T) — (Bi(t,T) +1—aB(t,T))r =0.
A(T,T) =1 and B(T,T) = 0 satisfies terminal condition F(t,r;T) =1
if 7 =0 or 1+ By(t,T) — aB(¢t,T) = 0, B(T,T) = 0.

A(t,T)
At,T)

—bB(t,T) + C’;Bm, T) =0, A(T,T) = 1. (3.9)

We solve By(t,T) — aB(t,T) + 1 =0, where B(T,T) =0
Bi(t,T) —aB(t,T) = —1. (3.10)
Multiplying through by the integrating factor
exp (a(T —t)) Bu(t,T) — aexp (a(T — t)) B(¢,T) = —exp (a(T — 1))

gives
d(B(t, T) exp (a(T — t)) = —exp (a(T — 1)),

= B(t,T)exp (a(T — t)) = —/exp (a(T -1)),

or
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B, T)exp(a(T— 1)) = K+ % fexp (a(U — )]

- K+%[exp(a(T—t))—1].

Whent=T,0=k+0,s0 k=0, and

B(t,T)exp (o(T - 1)) = 7 [exp (a(T — ) ~ 1],
B(t,T) = = [exp (a(T ~ 1)) ~ 1] exp (~a(T ~ 1)),
B(,T) = - [1 - exp (—a(T — 9,

exp (—a(T —t)) =1 —aB(t,T).

from (3.4) £55 = bB(¢,T) — 5 B¢, T)
= tT ——(—)-"X(;’Tq; ds =K + bftT B(s,T)ds — "72 ftT B%(s,T),ds
= InA(t,T) = K +b [ B(s,T)ds — % [ B¥(s,T),ds

whent =T, A(T,T)=1,= K =0.

29

(3.11)

(3.12)
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o?

QI'—‘

[1 —exp(—a(T — s))]ds —

Do

a2

T T
nA({t,T) = b / B(s,T)ds — % /
/T 1 —exp (—a(T — 5)))* ds

T
:b/
g

T T
/[1—exp —a(T — s))}ds — —/1—exp (—a(T — 5)))? ds

2a?

Qo

T

Qo

t[s— Fexp (-alT - 5)|
T

[s _2 exp (—a(T — s)) + % exp (—2a(T — 3))]

_ g[ ___(t_-exp<—a<cr-—t>>)]

- [T S (t — 2 exp (~a(T ~ ) + 5 exp (~2a(T - t)))]

_ b [(T —t)— % (1 —exp (—a(T - t)))]

l\.')

t

Q

o?

~552 {(T —t)— % (1—exp(—a(T —t))) + % (1 — exp (—2a(T — t)))] .

Also from (3.12) exp (—2a(T — t)) =1 — 2aB(t,T) + a?B%(t,T)

Substituting (3.11) and (3.12) for In A(¢,T") above
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InA(t,T) = Z[(T t) — B(t,T)] — 2; [(T t) — 2B(t,T) + %(ZaB(t, T) - 0232(t,T))]
— g (T —t)—B(t,T)] - 0—2 [(T —t)—2B(t,T) + B(t,T) — %}
= ((T-t)-B(T)) [Z 2"_2] +2 g ),

or

A T) = exp ([(T - ) - BET) 2 - 53]+ SB(LT)]) -



Chapter 4

Closed form Pricing of Credit
Spread Call

We now focus on a European credit spread call option G on S with maturity
T and strike K
So G(S(T)) = (S(T) — K)*.
The risk-neutral pricing formula gives
I(t) = P(t,T).Eq ((S(T) — K)" |F).
Under the Q measure
~ +
I(t) = P(t,T).Eg ((S(T) - K) [Ft).
By the law of iterated conditioning,
~ + ~ +
B (30 - K)"11:) = B (B4 (50 - &) l@ususr) IR,
conditional on (oy)i<u<r realised volatility,

From (3.8)

32
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5(8) = 5(0) exp (s(t) - %vzu)) (4.1)

where
&(t) = [ (0w +0B(u, T)p) dWi(u) + f; 0B(u,T)1/1 — p? dWa(u

So S(t) is a Gaussian variable with mean = 0 and variance

(0w + 0B(u, T)p)? du+/a2B2(u,T)(1 — p%) du. - (4.2)

c
[
o\“L

4.1 General Pricing Formula

I(t) = P(tT).E ((S’(T) - K)+ |Ft)
= P(t,T).Eg (E ((S(T) - K)+ l(ou)tsug) IFt) :

by iteration of conditional expectation

Substituting (4.1) in II.(¢) above

() = B, [P(t,T).S’(O) exp (£(T) — W(T)) - KP(t, T)m].

Here ) denotes the risk neutral T forward measure, and P(t,T) the price

process of a zero coupon bond.
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The expectation is separated into two terms:
II.(t) = Ey — Es,
where Ey = Fg [P(t, T)3(0) exp (£(T) — 2A(T)) 15> K]

and

Since S(0) = PS((()?%) we have

By = KP(t,T)) [—5(T) <In (Rﬁ_gg%) - %v"’(T)].

Divide £(T') by 4/v3(T) to normalise to N(0,1).

_ - (=& I g"‘(gL, 7) — 3v3(T)
E, = KP(t,T)Q(U(T) < K ’-:T)
S(0 lU2
= KP(t,T)N <_. (IH(KP(O,Z)()T) 2 (T)>>
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d:-( (KP(OT))) vA(T )). (43)

where

v(T

For By = Eg |P(t, T)S(0) exp(¢(T) — 30%(T)) Lypys |
&(t) is a normal random variable with law N(0, v:2).

By normalising we obtain Z = i@% which has law N(0,1).

d
E = P(tT) / 3(0). exp (—%U2(T)+ZU(T)) .\/%exp(—%zz)dz
d
= P(t,T) / 5’(0)\/—12—_7; exp (—% (2 - 'U(T))2) dZ.

Compute E,; by letting U = Z — v(T)

= Ey = P(t,T) [*"® 5(0). = exp (-3U?) dU.

d depends on the evaluation of the indicator function
= Ey = P(t,T)S(0).N (d — v(T)).

Substituting the definition of d as in (4.3) in E;

= F

n( o) 4+ Ly
P(t,T)5(0).N (—l (K”“”f})()jf; v (T) U(T))

- In(zagm) — $0%(T)
= P(t,T)S(O).N( KP 2(7’) )
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Therefore
In( gy )+ 3v*(T) In(gptoiry) - §v%(T)
i R )
So for a European Call on credit spread
I1(0) = E(Ilex(0)|(0x) 0 <t < T).
let v2 = J—Z be average variance
= IL(0) = (CBS ( K0,V T) |v2) (4.4)

where Cpg is the Black-Scholes formula for a European Call Option.
From (4.2) we need to find the distribution of Average variance v?

where v2(T) = fo (04 +B(u,T)p) du+fT a?B%(u,T) (1 — p?) du.
v2(T') depends on o2 a mean reverting volatility process of the SDE form
n (1.2), (1.3) or (1.4).

The distribution of ©% can be obtained from the inversion of the moment
generating function of the average variance.

One obtains that the moment generating function of the average variance,
v?ie & is I(N),

where
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1) = 5 (e (-2552))

= E (exp (—Mv?))

T T
= E (exp (%)‘/( +0B(u,T)p T)\/ pz)du))
A r 0 0 A ’
= exp (%/U2BZ(U,T)(1 - ) ( ?‘/(au+arB(u,T)p)2 du) ,

since 02B%(¢,T) (1 — p?) is deterministic, see B(¢,T) as in (3.4).



Chapter 5

European Call Vasicek
Stochastic Volatility Model

5.1 Analytic Credit Spread Call under no cor-
relation

In this section we derive the closed form formula of a European call on the
credit spread under the assumption of zero correlation between the credit
spread and the short rate.

We model the short rate and the stochastic volatility of the spread as a
Vasicek process.

We know from chapter 4 that the moment generating function of the

average variance is given by

T
I(A)—exp(T/\/ o?B*(u, T)(l—p)du) E( T)\

0

o\'_]
Q)
+
Q
=
£
3
=
m..
v

38
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Let p = 0, then the moment generating function of the average variance from
(5.1) is

T T
I()\) = exp (%/0232(u,T) du) E (exp—?l—,é/aﬁ du) , (5.2)

0 0

where 02B%(u, T is deterministic and the SDE for o2 is of the Vasicek form
as in (1.2).

ie. do? =0 (c— o2)dt+ a;dWs(t).

We now find a closed form solution for o2 using L.C.G Rogers[1995]

paper.

Let K; = [, 0du,

= K; = 6t.

Multiplying the SDE for o7 in (1.2) by exp (K3), i-e. exp (6t), and using

the product rule,

d(exp (6t)o?) = d(exp(6t)).o7 + exp (6t) .doj+ < o7,exp (6¢) >
= Oexp (0t).07dt + exp (6t) [fcdt — o7 dt + a,dW3(t)]
= exp (0t) [a1dW3(t) + fcdt] .
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Integrating d (exp (6t) o?) above,
t
o2 = exp (—0t) [ag + /exp (6u) (a1 dWs(u) + 0c du)] . (5.3)
0

Differentiating equation (5.3),

0
+exp (—0t) [dcexp (6t) dt + exp(6t)a; dW3(t)]

d(c?) = —0@exp(—6t) lag +00/exp (6u) du +/exp (6u) a; de(u):| dt
0

= do? = 0 (c— o) dt + a1, dW3(2).

Hence equation (5.3) is the solution to do? = 8 (c — 02) dt + a;dW3(t) from
(1.2).

From L.C.G Rogers[1995],

o? = exp (—0t) [a?, + f(: exp (6u) (a1 dW3(u) + ¢ du)]
is a Gaussian process with

mean

pe = E (02) = exp (—6t) [03 + [ exp (6u) bc, du]

and covariance

p(s,t) = cov(a3, 7).

By Ité’s Product rule, the covariance is
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p(s,t) = exp (—0t — 0s) OsAt exp (20u) a2 du.

Thus [} 02 du has Normal Distribution N(m(t),v(t)), where

m(t) = /t exp (—6u) (a§+ /" exp (0s) b, ds) du

= /exp (—Hu) (Ug + C(eXP (Bu) - 1)) du

exp (—9u) (03 — ¢) du

Il
o,

— - (é. (02 — ¢) (exp (=6t) — 1)) ,

and the variance v(t) is obtained by setting ¢ = s in cov(0?,0?) to obtain
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t u 8
v = 2/ du/ ds/af exp (20y) exp (—6s) exp (—0u) dy
0 0 0

8

Il

Do

)

- N
~—~——.

&
~——c¢

dsexp (—0s — 6u) [iﬁ exp (292/)]

0

0
du/exp (—6s — Bu) [exp (26s) — 1] ds
0

u

du/exp (0s — Ou) — exp (—fs — Ou) ds
0

u

) i
= a—l-/exp (—6u) lexp (0s) + —l-exp(—Bs) du
7 9 9 .

0

t
) i
-4 _ou) L L o (—gu) — 2
= O/GXP( 6u) _0exp(0u)+0exp( 0u) 0] du

—exp (—260u) — —3— exp (—6u) du

Il
%IHN
o\h
%I —
Q: —

t
'U,

= %la" 2 TEeet 9“)]0
t
0

exp (—26¢t 2 v 1 2
———p-(——-)-+——2-exp(—0t)+ﬁ —55]

262

20t — exp (=20t) + dexp (—6t) + 1 — 4]

= —-[20t — exp (—20t) + 4exp (—6t) — 3].
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From (5.2) we evaluate

E (exp (-7_,,—)‘ fOT o2 du)),

where o2 is the solution to the Vasicek SDE in (1.2).
Let I*(A) = B (exp (3 Jy o3 du)).

We already know that

Jo o2 du ~ N(m(t), v(1)),

= -}—A fot oldu~N (:Tém(t), %‘;V(t))

T
I'\) = E (exp (%/aﬁdu))

— exp (-_T—)\m(T) + %%;(t)) ,

Hence

which is the moment generating function of N (‘T’\m(T), %Z;V(t))

Hence the moment generating function for I(A) from (5.2) is

I(\) = exp (‘T’\ fOT 0?B%*(u,T) du) exp (:Tﬁm(T) + %%zz-l/(t))

We can express this moment generating function as I(\) = E (exp (—AD))
where ¥ is the average variance.

Hence I(A) = [*°_exp (—A0) m(D) do.

The distribution of the average variance is obtained by the classical inversion
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theorem, written as

m(0) = 55 Li:;o exp (AT) I()\) d) for © € [0, 00).

This integral is also known as the Bromwich Mellin contour integral, where
c is a vertical contour in the complex plane chosen so that all

singularities of m(?) are to the left of it.

Make the change of variables A = ¢ + ¢z in the above integral to reduce

it to the Laplace inversion integral:

[e o]

m(0) = eXI;I(ICﬁ) / exp (—ivz) I(c+ iz) dz
= ex2pHcU [?R (I(c+iz)) cos Dz — X (I(c+ i2))sinvz] dz

where R (I(c+i2)) and S (I(c+ iz)) are real and imaginary parts of
I(c + iz) respectively.

The Abate and Whitt numerical inversion method reduces the Laplace
inversion integral to give us the density of the average variance as

m(v) = 22BL [ R (I(c + iz)) cos Uz dz.

Hence the European call on credit spread, where the correlation between

the credit spread and the short rate is zero under a Vasicek stochastic
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volatility process, is

I(0) = /CBS(g(O)aKaoy \/EaT) m(ll_)) do

= /CBS(S'(O),K,O,\A:),T) (26)?106/§R(I(c+z’z))cos1izdz) do,
0 0

where R (I(c+i2)) is the real part of I(c + iz).
The numerical inversion techniques can be performed using techniques from

Mark Craddock, David Heath and Eckhard Platen[2000].

5.2 Numerical Credit Spread Call Price un-
der no Correlation

We price numerically the European call on credit spreads with no correlation
between the credit spread and the Vasicek short rate under Vasicek stochastic
volatility by Monte Carlo simulation. The Vasicek variance process is
simulated over a thousand random samples of the standard normal
distribution. An average variance is calculated and substituted in the Black
Scholes call price formula to obtain a simulated call price.

As the convergence rate of the Monte Carlo estimate is \/LN, the variance
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reduction by the antithetic method is used to increase precision and speed
up the numerical computation. The method of antithetic variates is based
on the observation that if sample € is N(0,1) so is —e. An average
variance is then calculated from the anithetic standard normal variables
(e, —¢€).

About 100 simulated call prices are obtained for antithetic pairs

of average variances (VJ, V). Two sets of average call prices are obtained
and the best estimate of the call price is the mean of the 2 average

call prices.

From (1.2), o; the volatility process is of the Vasicek form

do? =0 (c— o?)dt + a;dWs(t)

Let V;* = o?

= dV;* =0 (c— V;*) dt + a1dWs(t).

For much better accuracy we simulate the closed form solution of the above

Vasicek SDE

1 — exp(—20At)
20 ’

Vi = Viyexp (—0AL) + 0 (c— Vi) At + alei\/ (5.4)

where € is random sample from N(0,1).

Given a 1000 steps of interval At we end up with total time T, where
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T = AtL and At is the time interval and L is the number of steps i.e.

1000 in this case.

We calculate a 1000 V;*; by simulating from the random sample ¢; ~ N(0,1)
in equation (5.4).

For each ¢;, we generate the —¢; sample values, which is used to calculate

another 1000 V% using

1 —exp(—20At)
20 '

Vg = Vivexp (—0AL) + 0 (c— Vi) At — alei\/ (5.5)

We obtain two sets of average variances:

V= %ZJI.’:l V;; from €; random samples of N(0,1),

Vi =157, V% from —¢; random samples of N(0,1),

where L = 1000 and for each SDE we use the Riemann sum

approximation of the integral. We calculate 100 V; and calculate the

average call price as y; = 2 1, Css(V/Vi)

where n = 100

Also calculate 100 Vj and calculate the average call priceas yo = 1 3¢ Cas(vV/ Vi)

where n = 100

N.B in equations (5.4) and (5.5) all instances of negative V; or V; are
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discarded.

Hence the best estimate of the European call price is (4’“—42’—”2.

5.3 Analysis of Closed/Numerical Call Prices
under no Correlation

In this section we carry out a sensitivity analysis of the closed form and the
Monte Carlo simulation of European call credit spread prices for zero
correlation between the credit spread and the Vasicek short rate

under the Vasicek stochastic volatility process

do? = 0(c— o) dt + a;dWs(t)

where @ is the speed of mean reversion, c is the long term mean, a; is the
volatility of variance and o? at t = 0, the initial variance.

See Appendix A at the end of this chapter for a table of closed form and
Monte Carlo credit spread call option prices.

For the closed form solution, we compute the credit spread option prices
for contour values ¢ = 0.05 with inner upper bound of average variance
density integral set to 25 and outer bound integral set to 60. See Ted
Huddleston(1999) on numerical inversion of Laplace transforms on the

choice of contour values and the inner upper boundary of the average
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variance density integral. The average computation time is 20 seconds.

The use of larger contour values or average density integral upper bounds
increases computational time over 5 minutes which we find unacceptable
for a closed form solution. This increase in computation time is due to

the large terms obtained in the expansion of the call spread option price
integral. The optimum choice of the upper bound of the outer integral is
non trivial as our Maple computation package cannot compute option price
when it is set to infinity. We choose upper bound of 60 for which the double
integral credit spread price formula converges to the Monte Carlo
simulation prices.

For Monte Carlo simulation, the variance reduction method of antithetic
variates is employed which increases our computation time by 2 minutes

to 27 minutes on average, but does not improve the price accuracy by much.
For convenience we set the initial variance in the Monte Carlo Vasicek
equation to the long term mean.

We investigate the effects of stochastic volatility mean reversion
parameters and no correlation between the credit spread and the short

rate on the credit spread option prices obtained from either analytic form

or numerical form.
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For the numerical form increasing the mean reversion reduces the credit
spread price as the variance decreases. Increasing the long term mean, initial
variance or volatility of variance increases the credit spread option price.
For the closed form, increasing the long term mean, the initial variance or
volatility of variance increases the credit spread option price. An increase in
the mean reversion reduces the credit spread option price due to the variance
increasing.

The difference in prices between closed form and numerical form prices is

within the convergence rate of the Monte Carlo estimate J—lﬁ

5.4 Analytic Credit Spread Call with corre-
lation.

In this section we derive the closed form formula of the European call credit
spread price for the case where there is correlation between the credit spread
and the short rate. Again we model the volatility and the short rate with a
Vasicek process.

From (4.2) we need to compute the dynamics of the process

Xy = (Ut+0PB(t7T))2



CHAPTER 5. EUROPEAN CALL VASICEK STOCHASTIC VOLATILITY MODEL51

where the dynamics of the volatility process is given by

do? =0 (c — o?) dt + a,dW3(t).

Although the dynamics of the process X; can be obtained using Ité’s lemma
there is little hope of obtaining an explicit expression for its distribution.

We therefore use as our analytical proxy the standard Vasicek type SDE
dXt = 0 (C - Xt) dt + alth

with initial condition Xy = 09 + 0pB(0,T).

So as in the no-correlation setting, one can compute an analytical
solution, which we compare with the numerical results.

Using L.C.G Rogers[1995] approach as in previous section, we now find a
closed form solution for X; as

X = exp (—6t) [Xo + f(f exp (0u) (a1 dWs(u) + 0c du)]

X is a Gaussian process with

mean

pe = E(X;) = exp (—6t) [Xo + J; exp (6u) bc, du]

and covariance

p(s,t) = cov(Xs, Xz)
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By It6’s Product rule, the covariance is
p(s,t) = exp (—6t — bs) OSM exp (20u) a? du.

Thus fot X2 du has Normal Distribution N(m(t),v(t)) where

m(t) = /t,uu du
= O/exp (—6u) |:X0 +'0/‘exp (6s) fc, ds] du

exp (—0u) (Xo + c(exp (6u) — 1)) du

exp (—0u) (g0 + apB(0,T))? + c(exp (8u) — 1)) du

o\“ o\“

= ct- (% ((00 + 0pB(0,T))* — c) (exp (—6t) — 1))

and the variance v(t) is obtained by setting ¢t = s as in the previous
section to obtain

v, = 2k [20t — exp (—26¢) + dexp (—6t) — 3].

Hence the moment generating function I(A) for the correlation case from

(56.1) is

I(\) =exp (‘T’\- foT ?B%*(u,T)(1 — p?) du ) exp (‘T’\m(T) +

8=
%
<
—~
o~
N
N—r’
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We apply the Abate and Whitt numerical inversion method as in

the previous section to give us the density of the average variance as

m(0) = 22X [* R (I(c + i2)) cos Dz dz,

where R (I(c+ i2)) is the real part of I(c + i2).

Hence the European call on credit spread, for correlation between the credit

spread and the short rate under a Vasicek stochastic volatility process, is

m(0) = / Css (5(0), K,0,V5,T) m(®) do

o0

= /CBS (0), K, 0, \/_T (exp / I(c+1i2) cosz‘)zdz) dv,

0

where R (I(c+ 12)) is the real part of I(c+ iz).

5.5 Numerical Credit Spread Call Price with
Correlation

We price numerically the European call credit spreads with non zero
correlation between the credit spread and the short rate by Monte Carlo

simulation.

We model the short rate with the SDE as in (3.2)
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dr(t) = (b— ar(t)) dt + o (pdw1 (t) + dez(t)),

where p is the correlation between the short rate and the credit spread.
We also assume (1.2), so o; the volatility process is of the Vasicek form.
do? =0 (c — 0?) dt + a,dWs(2).

Let V;* = a?.

Then dV;* = 0 (c — V;*) dt + a;dWs(¢).

We also evaluate the Vasicek SDE using an Euler scheme,

1 —exp(—260At)

50 , (5.6)

Vi = Viexp (—0At) 4+ 6 (c - V,*]) At + alel,-\/

where €;; is a random sample from N(0,1).
From (3.1) the credit spread SDE is of the form
dS(t) = S(t) (Uoidt + o, dWy(2)),

where U = g + %

We simulate the credit spread SDE by

Si+1,]‘ = Si,j + Si,j (UO‘?At + ot/ AtEZi) ; (57)

where €; is the random sample from N(0,1) independent of €;;.
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We simulate the short rate SDE by

Ti+1,; = Tijexp(—alt) + % (1 — exp (—aAt))

1 —exp(—2a/\t 1 —exp(—2a/\t
s T )

a

where €3; is the random sample from N(0,1) independent of €;; and ez;.
In our simulation, we take a 1000 steps of interval At.
We obtain the average variance by

V=TV

j=1Yij°
We obtain the average spreads :
S L
Si =1 2521 Sy
and the average short rates :
- L
75 =1 Xju1 Tids
where L = 1000. For each SDE we use the Reimann sum approximation
of the integral.
We then calculate 100 of V;, S;, 7; and then

calculate the call credit spread price for n = 100 as

nh= %E?:l Crs(Sj, K, 75, \/‘7])
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5.6 Analysis of Closed/Numerical Call Prices
with Correlation

In this section we carry out a sensitivity analysis of the closed form and the
numerical form of European call credit spread prices with correlation between
the credit spread and the short rate under a stochastic volatility process.
The volatility process is of the form do? = 0 (c — 02) dt + a;dW3(¢),

where 6 is the speed of mean reversion, c is the long term mean, a; is the
volatility of volatility and o2 the initial variance.

Appendix B at the end of this chapter contains the table of closed form
and Monte Carlo credit spread call option prices for various parameter
values.

We compute credit spread option prices using choice of contour values and
upper boundary of inner integral as mentioned previously in the no
correlation sensitivity analysis on closed and numerical form. The average
computation time is 20 seconds.

Once again we observe that large contour values or upper bounds for

inner integral, increases computation time with no convergence. We try
different upper bounds for the inner integral and realise that values beyond

200 result in an indefinite integral. We choose 60 as it converges much closer
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to credit spread call prices produced by the Monte Carlo simulation.

The Monte Carlo simulation is done without the variance reduction method
of antithetic variates. Our initial trial with variance reduction increases our
computational time to several hours with no convergence. Hence all
simulation results are obtained without variance reduction.

We analyse the effects of the mean reversion parameters and correlation on
either the analytic or numerical credit spread option pricing model. For

the Monte Carlo approach, increasing the long term mean, the initial
variance and the volatility of variance drives up the credit spread call price.
Increasing the speed of mean reversion decreases the credit spread call price.
In general correlation regardless of whether its positive or negative results in
higher credit spread call prices than the no correlation case. Average
computation time is about 1 hour. We also realise that the correlation effect
increases the computation time of the credit spread option price.

The analytical form produces similar effects as observed for the

numerical form where increasing the long term mean, the initial variance
and the volatility of variance increases the credit spread call price. Increasing
the speed of mean reversion decreases the credit spread price as the volatility

decreases. Average computation time is about 10 seconds.
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The correlation effect is the same for both the analytic and numerical
models as increase in positive correlation drives up the credit spread price
but increase in negative correlation reduces the credit spread price.

We observe that at high long term mean variances or initial variances, the
Monte Carlo credit spread call prices deviate from the closed form call prices.
In the case of low long term mean variances or initial variances the price
difference between models for numerical and closed form is within

the convergence rate of the Monte Carlo estimate ﬁ

5.7 Appendix A: Table of Call Prices under
no correlation

Table of closed form and Monte Carlo simulation of European call credit
spread prices for no correlation between the credit spread and the Vasicek
short rate under Vasicek stochastic volatility process.

0 is speed of mean reversion,

02 is the initial variance,

c is the long term mean variance,

a; is the volatility of volatility,

Given underlying spread price = 0.3, strike = 0.1, risk free rate= 0.06.
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Time to maturity is 6 months.

2

6| o5 c| a; | Closed form Price | Monte Carlo Price
0.05 | 0.05 | 0.05 | 0.10 0.2032125907 0.2029554558
0.06 | 0.06 0.2033142221 0.2029554626
0.25 | 0.25 0.2052549110 0.2029716572

02 02| 0.2]040 0.2048549003 0.2030120233
03] 03 0.2058817398 0.2030846868

0.6 | 0.6 0.2089932438 0.2037329933

03} 03| 0.3|0.60 0.2060320831 0.2031974429
04| 04 0.2070648231 0.2033495644

08| 0.8 0.2072768672 0.2046975370
0.5|0.09 | 0.09 | 0.20 0.2036416106 0.2029564758
0.10 | 0.10 0.2037434571 0.2029567698
0.60 | 0.60 0.2089012470 0.2036378389
0.5]0.09 | 0.09 | 0.40 0.2037306403 0.2029725462
0.10 | 0.10 0.2038325310 0.2029745372
0.60 | 0.60 0.2089925762 0.2037203970
410.090.0910.40 0.2037269257 0.2029572654
0.10 | 0.10 0.2038288148 0.2029576826
0.30 { 0.30 0.2058773283 0.2030178641

5.8 Appendix B: Table of Call Prices with

correlation

Table of closed form and Monte Carlo simulation of European call credit
spread prices for correlation between the credit spread and the Vasicek short

rate under Vasicek stochastic volatility process.
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0 is speed of mean reversion,

Vb is the initial variance,

c is the long term mean variance,

a; is the volatility of volatility,

p is the correlation between credit spread and short rate,

S; is the initial credit spread,

r; is the initial short rate,

The constants a and b in the Vasicek short rate SDE are set to 0.5

for this Monte Carlo simulation. Time to maturity is 6 months.
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0 Vo c a1 pl Si r; | Closed form | Monte Carlo
0.5(0.09]0.09(020| 0.2]0.3]|0.06|0.2032569813 | 0.2131646733
-0.2 0.2031297228 | 0.2131182330

0.4 0.2033257050 | 0.2132029562

-0.4 0.2030711819 | 0.2131114595
0.5(0.09]0.09040| 0.2]0.3|0.06|0.2046254670 | 0.2171814597
-0.2 0.2041134871 | 0.2175215639

0.4 0.2049023533 | 0.2169406820

-0.4 0.2038782906 | 0.2176155111

410.09]0.09|040| 0.2]0.3]0.06|0.2041613430 | 0.2063988377
-0.2 0.2039115854 | 0.2070990111

0.4 0.2042893246 | 0.2059812749

-0.4 0.2037898015 | 0.2073760953
0.50.1010.10(0.20| 0.2 0.3 |0.06 | 0.2032686893 | 0.2141766567
-0.2 0.2031414237 | 0.2141107070

0.4 0.2033374172 | 0.2142394880

-0.4 0.2030828793 | 0.2141090925

0.5/0.1010.10 {040 | 0.2 0.3 |0.06 | 0.2046372540 | 0.2161956656
-0.2 0.2041252448 | 0.2153616905

0.4 0.2049141562 | 0.2160777968

-04 0.2038900345 | 0.2154665130
0.5]0.600.60(0.20( 0.2 (0.3 0.06|0.2038549632 | 0.2169431960
-0.2 0.2037273303 | 0.2170657790

04 0.2039238889 | 0.2169064108

-0.4 0.2036686170 | 0.2171518108

0.005| 20| 2.0(0.20| 0.2 |0.3]0.06|0.2032333601 | 0.2702459460
-0.2 0.2030886349 | 0.2701967694

0.4 0.2033102632 | 0.2702917256

-04 0.2030230042 | 0.2701934584

0.005| 22| 2.2{0.20| 0.2]0.3|0.06 |0.2032347983 | 0.2790800248
-0.2 0.2030911715 | 0.2790181936

0.4 0.2033128024 | 0.2791316490

-0.4 0.2030255402 | 0.2790080588

0.005| 30| 3.0/0.20| 0.2 |0.3]0.06 | 0.2032449518 | 0.3166480382
-0.2 0.2031013177 | 0.3165493624

0.4 0.2033229598 | 0.3167163370

-04 0.2030356832 | 0.3165190206




Chapter 6

European Call Cox/Ross
Stochastic Volatility Model

6.1 Analytic Credit Spread Call under no cor-
relation

In this section we derive the closed form formula of a European call on
credit spread for zero correlation between the credit spreads and the

short rate. We assume a Cox, Ingersoll and Ross stochastic volatility
process and model the short rate via Vasicek’s model.

From (5.1) with p = 0, the moment generating function of the average
variance is

I\ = ( fo 2Bzquu) E(expro 2du)

where 02 B2(t, T) is deterministic and the SDE for o2 is of the Cox, Ingersoll
and Ross form as in (1.3)

ie. do? =0(c— o?)dt + a10:dWs(t).

62
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Let I*(\)=FE (exp (—TA fOT a2 du))

and V; = 202,

Then I*(\) = E [exp (— fOT V*(s) ds)],

where V;* = 207 follows the process

aV;' = (30c— V) di + ary [ 3/ VEdWs,

Using the Cox, Ingersoll and Ross result in Ball and Roma (1994),
a closed form for I*()) is

I*(X) = exp (N*(T) + M*(T)Vy),

where
(T _ 20c 2yexp((6-7)F)
N (T) = :{ In ( o(D) 2 ,
. _ —2(1—exp(—+T
M*(T) = J__;(’%(_'Y_ll,

9(T) =27+ ((6 — 7) (1 — exp (—T))).

Hence the moment generating function under the Cox, Ingersoll and Ross
stochastic volatility model is

I(\) = exp (‘T’\ fOT 0?B%(u,T) du ) exp (N*(T) + M*(T)V;*),

where N*(T') and V*(T') are as above.

Let © be the average variance = 7 fOT (02 + 02B2%(u,T)) du
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for zero correlation from (4.2).

We already know that the moment generating function can be expressed
as

I()\) = E (exp (—A0)).

Therefore I(X) = [;° exp (—A0) m(v) do.

We apply the Abate and Whitt numerical inversion method for inverse
Laplace transforms to invert the moment generating function to obtain the
density of average variance under the Cox, Ingersoll and Ross stochastic
volatility model as

m(0) = 2282 [* R (I(c + iz)) cos Dz dz,

where R (I(c+ iz)) is the real part of I(c + iz2).

Hence the European call on credit spread, where correlation between credit
spread and short rate is zero under the Cox, Ingersoll and Ross

stochastic volatility process, is

II,(0) = f Css(5(0), K,0,vD,T) m(v) do
0

exp cv

= / Cps(5(0), K,0,v5,T) |2 i / m(l(c+z‘z))cosazdz) do,

where R (I(c + ¢2)) is the real part of I(c+ i2).
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6.2 Numerical Credit Spread Call Price un-
der no Correlation

We apply the numerical approach of Monte Carlo simulation to price
European call credit spreads with no correlation between the credit spread
and the short rate under Cox, Ingersoll and Ross stochastic volatility. The
short rate is modelled by a Vasicek process.

From (1.3), o the volatility process is of the Cox, Ingersoll and Ross form
do? =0 (c — o) dt + a10:dWs(t).

Let V;* = 62, then

= dV;* = 0 (c — V;*) dt + a1/ V7 dWs(t).

Discretizing the above SDE,
V:l-l,] = ‘/;:7+9(C— ‘/:J) At+a11/‘/:]‘\/ At X €;, (61)

where ¢; is random sample from N(0,1).

We simulate over a 1000 steps from the random sample ¢; ~ N(0,1) .

The variance reduction method of antithetic variates is employed, where for
each ¢;, we also calculate the —¢; sample values, which is used to

calculate a 1000 V% using

ke = Vie +0 (c— Vi) At + ayy Vi VAL x =6, (6.2)
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Two sets of average variances are calculated as follows:

V= %EJI.;I V% from ¢; random samples of N(0,1),

Vi = %Zle V. from —e¢; random samples of N(0,1),

where L = 1000.

We calculate 100 V; and calculate the average call price asy; = 1 > i Css(v/V;),
where n = 100.

We also calculate 100 V;, and calculate the average call price as y, = % > hei CBS(\/ﬁ)

where n = 100.

Hence the best estimate of European call price is @2

6.3 Analysis of Closed/Numerical Call Prices
under no Correlation

We analyse the sensitivity of the closed form and the Monte Carlo
simulation of the European call credit spread prices for zero correlation
between the credit spread and the short rate under Cox, Ingersoll and Ross
stochastic volatility process,

do? = 0 (c — a2) dt + a10:dWs(t),

where @ is the speed of mean reversion, c is the long term mean, a; is the

volatility of variance and ¢Z the initial variance.
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See Appendix A at the end of this chapter for the table of closed form and
Monte Carlo credit spread call option prices.

In the analytic case, the credit spread prices are computed using contour
values ¢ = 0.05 and inner upper bound of average variance density
integral of 25 as mentioned in previous chapters. The choice of the outer
bound integral is set to 20.

Large contour values or upper bounds for average density integral results
in more expansion terms for call spread price integral, which increases
computation time to over 5 minutes. We choose a value of 20 for the
upper bound of the outer integral at which the analytic form converges

to the Monte Carlo estimate. Higher upper bound values result in an
undefined integral due to singularity. The average computation time is 30
seconds.

Monte Carlo simulation is used for the numerical form. A variance reduction
method of antithetic variates is employed to improve the simulation. We
observe close credit spread prices obtained for variance reduction and
without variance reduction techniques, but at the expense of increased
computation time. As in previous chapters we set the initial variance in

the Monte Carlo Cox, Ingersoll and Ross equation to the long term mean.
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An additional table of credit spread option prices for the Monte Carlo
simulation without variance reduction is listed in appendix A to show that
including variance reduction does not improve the credit spread price
considerably for the increased computation time. The average computation
time is about 27 minutes.

We investigate the effects of mean reversion parameters for stochastic
volatility and no correlation between the credit spread and the short

rate under the analytic or numerical pricing models.

For both numerical and analytic form, increasing (decreasing) the long term
mean, the initial variance of credit spread or the volatility of variance
increases (reduces) the credit spread option price. Increasing (decreasing)
the speed of mean reversion reduces (increases) the credit spread option price
as the volatility of variance is reduced (increased).

The difference in European call prices between the analytic and the Monte
Carlo pricing models is within the convergence rate of the Monte Carlo

: 1
estimate 7N
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6.4 Numerical Credit Spread Call Price with
Correlation

In this section we price numerically European call credit spreads with
correlation between the credit spread and the short rate under Cox, Ingersoll
and Ross stochastic volatility by Monte Carlo simulation.

We model the short rate in (3.2) by a Vasicek process,

dr(t) = (b— ar(t)) dt + o (del(t) + dez(t)),

where p is the correlation between the short rate and the credit spread.
From (1.3), o; the volatility process is of the Cox, Ingersoll and Ross form
do? =6 (c — o?) dt + a10:dW3(t).

Let V* = o2

= dV;* = 0 (c — V;*) dt + a1/ VFdWi(2).

Discretizing the above SDE,
Vi = Vi + 0 (c— Vi) At + ayy /Viy/Dtey, (6.3)

where ¢€y; is a random sample from N(0,1).
From (3.1) the credit spread SDE is of the form
dS(t) = S(t) (Ua?dt + o:dW:(t)),

where U = mo + 1.
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We simulate the credit spread SDE by,

S,'.H,j = S,;,j + Si,j (UO'?At + ot/ Atfgi) , (64)

where €; is random sample from N(0,1), V;* = 02 and e; is independent
of €15,

We simulate the short rate SDE using the Vasicek closed form,

Tiv1; = Tijexp(—alt)+ g (1 — exp (—aAt))

1- —2a/A\t 1- —2a/\t
+o (Pﬁzi\/ epr(a alt) + /1 —=p? 531‘\/ ea:pz(a 2 )) )

where €3; is random sample from N(0,1), independent of e;, €1;.

We simulate a 1000 V¥ from the random sample €;; ~ N(0,1) in the above
Cox, Ingersoll and Ross SDE.

We calculate a 1000 S; ; by simulating from the random sample e2; ~ N (0, 1)
in above credit spread SDE.

For each €3; random samples we calculate r; ; by simulating from random
sample €3; ~ N(0,1) for short rate SDE values.

We obtain average variance,

V; =137, V¢ from €; random samples of N(0,1).

We obtain average spreads,
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S;=13"0,S; from €; random samples of N(0,1).

We obtain average short rates,

= %Z]I.“:l r; from €;; and €;; random samples of N(0,1)
where L = 1000.

We calculate 100 V;, S;, 75

We then calculate the call credit spread price for n = 100 as

y1=72;-1Cnps (S_j’K’fj’ \/VD

6.5 Analytic Credit Spread Call with corre-
lation.

In this section we derive the closed form formula of European call credit
spread price for non zero correlation between the credit spread and the short
rate under a Cox, Ingersoll and Ross stochastic volatility process. The short
rate is modelled by a Vasicek process. In the case of correlation between
the credit spread and the Vasicek short rate, the expectation of credit spread
prices remains conditional on the volatility process.

However from (5.1), we have the correlation term p in the expression for

the moment generating function of the average variance
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I(\) = exp (‘T’\ fOT 02B%(u, T)(1 — p?) du ) E (exp 7 foT(au + o B(u, T)p)? du)
where 02B2%(u, T) (1 — p?) is deterministic.

In order to evaluate

E (exp (‘T’\- fOT (0w + 0B(u,T)p)* du))

we use the moment generating approach for square root mean reverting
volatility processes, as in Ball and Roma (1994).

As in previous section for the Vasicek case we assume that the SDE
process for (o + 0 B(t, T)p)? is of the Cox, Ingersoll and Ross form.

We thus compare again the numerical solution with an analytical solution,
where we change the initial value of the process only (compare the
discussion on pages 50,51).

So we assume that now

I*A)=E [exp (—— foT V*(s) ds)], where V;* follows the SDE

dV;' = (3¢ — 0V, )dt + any /2 v/VEdW.

with initial condition V3 = (00 + 0 B(0,T)p)

Using the Cox, Ingersoll and Ross result in the Ball and Roma paper (1994),
the closed form for I*(\) is

I*(A) = exp (N*(T) + M*(T)V;"),

where
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M*(T) — —2(1—exp(—1T))

9(T) !
9(T) =2y + ((0 —7) (1 — exp (—T))).
Hence the moment generating function under the Cox, Ingersoll and Ross
stochastic volatility model with correlation term is
I()) = exp (-TA JT 2B (t, T)(1 — p?) du ) exp (N*(T) + M*(T)V;*),
where N*(T'), M*(T') and V* is as above.
Let D average variance = % fOT ((oy + 0B(u, T)p)? + 0*B%*(u, T)(1 — p?)) du..
From section (4.1), we already know that the moment generating function
can be expressed as
I(\) = E (exp (—AD)).
Therefore I(A) = [°_exp (—A0) m() do.
We apply the Abate and Whitte numerical inversion method for the
inverse Laplace transform to invert the moment generating function to obtain
the density of average variance with correlation term under Cox, Ingersoll
and Ross stochastic volatility model as

m(v) = 222 [* R (I(c+ iz)) cos Uz dz,
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where R (I(c + 42)) is the real part of I(c + iz).
Hence the European call on credit spread, for correlation between the credit
spread and the short rate under the Cox, Ingersoll and Ross stochastic

volatility process, is

() = / Cps (5(0), K,0,v/5,T) m(s) do

= /C’BS(S'(O),K,O,\/%,T (exp / I(c+i2) cosz‘)zdz) dv
0

where R (I(c + iz)) is the real part of I(c + iz).

6.6 Analysis of Closed/Numerical Call Prices
with Correlation

In this section we carry out a sensitivity analysis of closed form and Monte
Carlo simulation of European call credit spread prices with correlation
between the credit spread and the short rate under the Cox, Ingersoll and
Ross stochastic volatility process

do? =6 (c— o) dt + aj0:dW3(t),

where 0 is the speed of mean reversion, c is the long term mean,
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a; the volatility of variance and o3 the initial variance.

See Appendix B at the end of this chapter for table of closed form and
Monte Carlo credit spread call option prices.

Once again we use contour values ¢ = 0.05, inner upper bound of

average variance density integral set to 25 and outer bound integral of 40
to compute the credit spread option prices. The choice of contour values

is based on our computations in the previous sections. The average
computation time is 20 seconds.

We select an upper bound of 40 for outer integral as option prices obtained
converge to numerical form. Upper bound values above 40 result in
singularity for the double integral credit spread option price formula.

For Monte Carlo simulation, no variance reduction is used as we already
know that it increases computation time with no improvement. Our
average computation time is 1 hour. The introduction of correlation
increases the computation time. For convenience we set the initial variance
in the Monte Carlo Cox, Ingersoll and Ross equation to the long term mean.
The Monte Carlo and closed form pricing models produce similar mean
reversion effects as increasing the long term mean, the initial variance and

the volatility of variance drives up the credit spread option prices. Increasing
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the speed of mean reversion increases the credit spread option price. We
note that this effect is opposite to the no correlation case as in the

previous section. The introduction of correlation does increase the credit
spread option prices.

We observe closer credit spread call prices between the analytic and
numerical models for the no correlation case than correlation case. The
difference between prices for analytic and numerical pricing models is within

the Monte Carlo convergence rate of ﬁ

6.7 Appendix A: Table of Call Prices under
no correlation

The table of closed form and Monte Carlo simulation of European call credit
spread prices for no correlation between the credit spread and the Vasicek
short rate under Cox, Ingersoll and Ross Stochastic Volatility process.

0 is the speed of mean reversion,

o2 is the initial variance,

c is the long term mean variance,

a; is the volatility of variance,

Underlying spread price = 0.3, strike = 0.1, Risk free rate= 0.06.
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Time to maturity is 6 months.

2

0| of c| a; | Closed form Price | Monte Carlo Price
410.09|0.09|0.40 0.2036205802 0.2029554999
0.10 | 0.10 0.2036783741 0.2029554999

0.30 | 0.30 0.2048376933 0.2029983349

0.05 | 0.05 | 0.05 | 0.10 0.2032786272 0.2029554484
0.06 | 0.06 0.2032798872 0.2029554484

0.25 | 0.25 0.2033038277 0.2029680026
0.005 2 210.20 0.2033251871 0.2131450556
22| 22 0.2033277650 0.2147307951

30| 3.0 0.2033378830 0.2209322592

02| 02| 0.2]040 0.2034558183 0.2029676970
03| 0.3 0.2035050185 0.2030207558

06| 0.6 0.2036526909 0.2036852839

03| 03[ 0.3]0.60 0.2037032447 0.2030591318
04| 04 0.2037759151 0.2032084570

08| 0.8 0.2040668565 0.2046544886
0.510.09 | 0.09 {0.40 0.2034261171 0.2029557487
0.10 | 0.10 0.2034378316 0.2029559249

0.45 | 0.45 0.2038482654 0.2032404457

0.5 | 0.09 | 0.09 { 0.20 0.2033416869 0.2029554596
0.10 | 0.10 0.2033533992 0.2029554675

0.60 | 0.60 0.2037637532 0.2036267784

See table of credit spread prices for Monte Carlo case without variance

reduction.

Underlying spread price = 0.3, strike = 0.1, Risk free rate= 0.06
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Time to maturity is 6 months.

@ | Initial Variance c a; | Closed form Price | Monte Carlo Price
4 0.09 | 0.09 | 0.40 0.2036205802 0.2029554589
0.10 | 0.10 0.2032798872 0.2029554739

0.30 | 0.30 0.2048376933 0.2029911729

0.05 0.05 | 0.05 { 0.10 0.2032786272 0.2029554485
0.06 | 0.06 0.2032798872 0.2029554485

0.25 | 0.25 0.2033038277 0.2029687860

0.005 2 2 (0.20 0.2033251871 0.2129228815
22| 2.2 0.2033272650 0.2144982606

3.0| 3.0 0.2033378830 0.2206740173

0.2 02| 0.210.40 0.2034558183 0.2029635161
03} 0.3 0.2035050185 0.2030246685

06| 0.6 0.2036526909 0.2035171963

0.3 03| 0.3]0.60 0.2037032447 0.2030275652
04| 04 0.2037759151 0.2031426631

0.8 0.8 0.2040668565 0.2043979407

0.5 0.09 | 0.09 { 0.40 0.2034261171 0.2029555881
0.10 | 0.10 0.2034378316 0.2029556830

0.45 | 0.45 0.2038482654 0.2031881831

0.5 0.09 | 0.09 | 0.20 0.2033416869 0.2029554543
0.10 | 0.10 0.2033533992 0.2029554633

0.60 | 0.60 0.2037637532 0.2035773025
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6.8 Appendix B: Table of Call Prices with
correlation

The table of closed form and Monte Carlo simulation of European call credit
spread prices for correlation between the credit spread and the short rate
under Cox, Ingersoll and Ross stochastic volatility process. The short rate
is modelled under a Vasicek process.

8 is Speed of mean reversion,

Vb is the initial variance,

c is the long term mean variance,

@, is the volatility of variance,

p is the correlation between the credit spread and the short rate,

S; is the initial credit spread,

r; is the initial short rate,

The constants a and b in the Vasicek short rate model are set to 0.5

for this Monte Carlo simulation. Time to maturity is 6 months.
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0 W c a; el S; r; | Monte Carlo | Closed form
0.510.09)0.09]0.20| 0.2{0.3|0.06|0.2061986814 | 0.2030125600
-0.2 0.2063770752 | 0.2030198592

0.4 0.2061332100 | 0.2031774913

-0.4 0.2064902354 | 0.2029740847
0.5{0.0910.09|040| 0.2]0.3|0.06 | 0.2070851661 | 0.2032619016
-0.2 0.2023134732 | 0.2030585006

0.4 0.2097252736 | 0.2032857932

-04 0.2027138958 | 0.2028865841
0.5/10.10/0.10|0.20| 0.2 (0.3 |0.06 | 0.2062651706 | 0.2030380251
-0.2 0.2064435616 | 0.2029382278

0.4 0.2061997014 | 0.2030929879

-04 0.2065567204 | 0.2028933885

0.510.10/0.1010.40| 0.2 0.3 |0.06 | 0.2071309395 | 0.2031774401
-0.2 0.2019929080 | 0.2029778432

0.4 0.2099311454 | 0.2032974997

-04 0.2023933225 | 0.2028982675

0.5(0.60 (060|020 0.2]0.3]0.06|0.2168929332 | 0.2036235932
-0.2 0.2170146360 | 0.2035235081

04 0.2168564896 | 0.2036787145

-04 0.2171001378 | 0.2034785395

0.0056| 2.0| 2.0{0.20| 0.2]0.30.06|0.2702087756 | 0.2029609287
-0.2 0.2701602636 | 0.2028487989

04 0.2702543336 | 0.2030231401

-0.4 0.2701573966 | 0.2027988740

0.8 0.2704091502 | 0.2031598740

0.005| 2.2 2.2{0.20| 0.20.30.06|0.2790113878 | 0.2029634635
-0.2 0.2789502388 | 0.2028513323

04 0.2790627872 | 0.2030256757

-0.4 0.2789405624 | 0.2028014067

0.005| 3.0| 3.0{0.20]| 0.2]0.3|0.06|0.3164031988 | 0.2029736018
-0.2 0.3163052028 | 0.2028614650

04 0.3164771283 | 0.2030358171

-04 0.3162753278 | 0.2028115370

4009 (009040 0.2|0.3]0.06|0.2082775851 | 0.2034563684
-0.2 0.2032751341 | 0.2033576921

0.4 0.2111244460 | 0.2035086922

-0.4 0.2023339154 | 0.2033113367




Chapter 7

European Call Ahn/Gao
Stochastic Volatility Model

7.1 Numerical Credit Spread Call Price un-
der no Correlation

In this section we price numerically European Call credit spreads with no
correlation between the credit spread and the short rate under the Ahn/Gao
stochastic volatility process by Monte Carlo simulation. The short rate is
modelled by a Vasicek process.

From (1.4), o, the volatility process is of the Ahn Gao form

do? =0 (c — o2) okdt + a,03dWs(t).

The Ahn/Gao mean reverting one-factor SDE is classified as an alternative
mean reverting stochastic process to normal ones such as Vasicek or Cox,
Ingersoll and Ross. It has a non linear drift and diffusion which is used

to model the explosiveness of a one-factor mean reverting stochastic

81
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process.
See the Jesper Andreasen (2000) working paper on credit explosions about
the explosive stochastic process.

Let V* = 0?2

= dV}* = 0 (c — V;*) Virdt + a1 V;* 2dWia(t).

Discretizing the above SDE,

Vi = Vi +0 (= Vi) Vight + v/ Bte, (71)

where ¢; is random sample from N(0,1).

We take a 1000 steps of interval At which results in total time T, where

T = AtL and At is the time interval and L is the number of steps i.e.

1000 in this case.

We calculate a 1000 V;*; by simulating from the random sample €; ~ N(0,1).
For each ¢;, we also calculate the —¢; sample values, which is used to

calculate a 1000 V;; using

Vi = Vi +0(c— Ve Vibt+ a Vi i VA X —a. (7.2)

We calculate two sets of average variances as follows:
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V= %Zf;l V;%; from €; random samples of N(0,1),

Vi = %Zf;l % from —¢; random samples of N(0,1),
where L = 1000.

We calculate 100 V; and calculate the average call price asy; = + -7, Cps (\/-‘7_,.)
where n = 100.

Also calculate 100 V;, and calculate the average call price as y; = % EZ=1 Cgs (\/‘Z)

where n = 100.

Hence best estimate of European Call price is ﬁ&;&)_

7.2 Analytic Credit Spread Call under no cor-
relation

In this section we derive the closed form formula of European call on credit
spread for zero correlation between the credit spread and the short rate under
the Ahn/Gao stochastic volatility process. The short rate is modelled by

a Vasicek process.

From (5.1) where p = 0 and moment generating function of average
variance is

I(\) = exp (-“T—A fOT 0?B%(u,T) du ) E (exp 2 fOT o2 du),

where ¢2B2(t, T) is deterministic and SDE for o7 is of the Ahn/Gao form as

in (1.4),
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ie. do? =0(c— o?)o2dt + ayoidWs(t).
Let I*'(\) =E (exp (‘T’\ fUT o2 du)) and
Ve = dot

Then I*(\) = E [exp (— fOT V*(s) ds)],

where V,* = -%Utz follows the process

dV; =0 (he— V) Vedt+ar\ 3V 2w,

Using the Cox and Ross result in the Ball and Roma paper (1994), I*())
is analogous to time 0 price of bond with maturity at time T, whose short
rate is of the % Ahn Gao one-factor non-linear drift model.

Hence closed form for I*(\) using Ahn/Gao paper (1994) is

I'(A) = 5820 M (v, B, —x (Vi 0,T)) .x (Vg 0, T)"

where M (.,.,.) is the confluent hypergeometric function (or Kummer func-
tion), represented as

M (7,8, —x (V5,0,T)) = tiidh=; Jo exp (—x (V5,0,T) 2) 27 (1 - 2)* "™ dz.

So I"(V) = iy Jo &b (—x(V3,0,7) 2) 277 (1 = 2)° " de,

where

20%0

X (VO*70’T) = az(exp(e%C)T_l)Vo“

Ve =% (02),

7=%[V#+207 - ¢,
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B=200+(1+7)07,

Therefore the moment generating function under the Ahn and Gao
stochastic volatility model is

I0) = exp( A [T 4282y, T) du) * I*()).

Let U average variance = % fOT (02 + 02B%(u,T)) du

for zero correlation from (5.1).

We already know that the moment generating function can be expressed
I()\) = E (exp (—\D)).

Therefore I(A) = [;° exp (—A0) m(T) do.

We apply the Abate and Whitt numerical inversion method for inverse
Laplace transform to invert the moment generating function to obtain
density of the average variance with correlation term under Ahn and Gao
stochastic volatility model as

m(v) = 22BL [ R (I(c+ iz)) cos Dz dz,

where R (I(c + i2)) is the real part of I(c+ iz).

Hence the European call on credit spread, where correlation between the

credit spread and the short rate is zero under the Ahn and Gao
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stochastic volatility process, is

IL(0) = / Crs(5(0), K,0,v/,T) m(v) do
0

= /CBs(g(O),K,O,\/z:;,T) (28)?[@/?R(I(c—l—iz))cosf)zdz) do,
0 0

where R (I(c + 12)) is the real part of I(c + iz2).

7.3 Analysis of Closed/Numerical Call Prices
under no Correlation

This section investigates the sensitivity analysis of the closed form and Monte
Carlo simulation of European call credit spread prices for zero correlation
between the credit spread and the Vasicek short rate under the Ahn Gao
stochastic volatility process,

do? =0 (c — 0?) o}dt + aro3dWs(t),

where 8 is the speed of mean reversion, c is the long term mean, q; is the
volatility of variance and o2 the initial variance.

See Appendix A at the end of this chapter for table of closed form and

Monte Carlo credit spread call option prices.
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In the analytic case, the credit spread options prices are calculated for contour
values of ¢ = 0.05, inner upper bound of average variance density integral of
25 and outer upper bound integral of 8.88. We select the same contour
values and inner upper bounds integral as in previous section. The outer
upper bound of 8.88 produces stable spread option prices which converge
to the Monte Carlo prices. Values higher than 8.88 result in singularity
causing the double integral credit spread option formula to be undefined.
The average computation time is 60 seconds.

For Monte Carlo simulation, the variance reduction method is not applied as
we already observe that the increase in computation time does not improve
the credit spread option prices. In our simulation we set the initial
variance to the long term mean. The average computation time is 1 hour.
We analyse the effects of the stochastic volatility mean reversion
parameters and no correlation on the credit spread option price obtained
from either analytic form or numerical form.

For closed form, an increase in initial variance or long term mean,

increases the credit spread option price. Increasing the volatility of
variance gives us an unexpected result of reducing the credit spread option

price. Increasing the speed of mean reversion, reduces the credit spread
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option price as expected.

For numerical form, increasing the initial variance and the long term mean
increases the credit spread option price. Increasing the volatility of
variance, increases the credit spread option price by a negligible amount.
Increasing the mean reversion, reduces the credit spread option price.

The difference in numerical form and closed form prices are within the

convergence rate of the Monte Carlo estimate #

7.4 Numerical Credit Spread Call Price with
Correlation

In this section we price numerically European call credit spreads with
correlation between the credit spread and the short rate under Ahn/Gao
stochastic volatility by Monte Carlo simulation.

From (3.2) the short rate is modelled by a Vasicek process whose SDE is
dr(t) = (b — ar(t) dt + o (pdWi(t) + /T = W3 (t)),

where p is the correlation between the short rate and the credit spread.
From (1.4), o; the volatility process is of the Ahn and Gao form

do? =0(c— o) o2dt + ayo3dWs(t)

Let V;* = 02, then
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AV = 0 (c — V,*) ViAdt + a,V;* 2dWa(t)
As in previous sections, we simulate the variance process by discretizing

the SDE

Vi = Vi +0 (e = Vi) Vi At + a Vi3 y/Dtey (7.3)

where €;; is random sample from N(0,1).

From (3.1), we simulate the credit spread SDE as ,

Si+1,j = S,',j + Si,j (UU?At + gt/ Atfgi) (74)

where €,; is a random sample from N(0,1) independent of €;;.

The short rate is simulated using the closed form of Vasicek SDE ,

ring = Tijexp(~adt)+ o (1 - exp(~ali)

1-— —2a/\t 1-— —2a/\t
+o (Pﬁzi\/ e:vpz(a ali) ++v1- P2€3i\/ ea:p2(a 2 )) ,

where €3; is a random sample from N(0,1) and independent of ey;.
Applying the simulation approach as in previous sections for correlation case,
we obtain the average variance as:

V; = L3>k | Vit from e;; random samples of N(0,1),
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the average credit spread as:

S; = %Zf;l Si,j from ey random samples of N(0,1),

the average short rate :

7 = %Z{;l rij from € and e3; random samples of N(0,1),

where L number of steps is 1000.

We then calculate the credit spread call price for n = 100 as

y =17 Cos(S;, K, 7, VV;) .

7.5 Analytic Credit Spread Call with corre-
lation

In this section we derive the closed form formula of European call credit
spread price for correlation between the credit spread and the short rate
under Ahn/Gao stochastic volatility process. The short rate is modelled

by a Vasicek process.

For correlation between the credit spread and the short rate, the expectation
of credit spread price remains conditional on the volatility process.
However from (5.1), we have the correlation term p in the expression for

the moment generating function of average variance,

I(\) = exp (‘TA fOT a2B?(u, T)(1 — p?) du ) E (exp F fOT(au + o B(u, T)p)? du)
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where 02B%(u, T') (1 — p?) is deterministic.

In order to evaluate

E (exp (-‘T—’\ foT (0u + 0B(u,T)p)? du))

we use the moment generating approach for the square root mean

reverting volatility process as in Ball and Roma (1994).

We assume that (o; + o B(t,T)p)? has Ahn Gao SDE

Here, we approximate the volatility process with a volatility process of
Ahn Gao type where again ( as in the corresponding section before) the
correlation parameter is only used to find an initial value for the process.
Let I*(\)=E [exp (— fOT V*(s) ds)],

where V,* follows the SDE

4V =0 (3e— V) Vidt +any[3V+Eaws

with initial condition V§ = (g0 + 0 B(0,T)p).

The closed form I*()) is obtained by applying the Cox and Ross result in the
Ball and Roma paper (1994) for the Ahn/Gao SDE as in the previous section.
Hence the closed form for I*()\) is

I'(N) = w5 Jo exp (—x (V*,0,T) 2) 2771 (1 - 2)° 77 dz,

Tt

where
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20%0
o? (exp(G%c)T—l)V‘;‘ !

v=%[VF+27 -9,

B=2[0+01+7) 0%,

x(V5,0,T) =

Hence the moment generating function under the Ahn and Gao

stochastic volatility model is

I()) = exp (‘T’\ fOT 02B%(u, T)1 — p?) du ) * I*()\).

Let © be the average variance = % foT (0. + 0B(t,T)p)* du.

We already know that the moment generating function can be expressed
I(A\) = E (exp (—D)).

Therefore I(A) = [*°_exp (—A0) m(0) dv.

We apply the Abate and Whitt numerical inversion method for the Laplace
transform to obtain the density of average variance under Ahn and Gao
stochastic volatility model as

m(v) = 2282 [ R (I(c +iz)) cos Dz dz,

where R (I(c + iz)) is the real part of I(c+ iz).

Hence the European call on credit spread, for correlation between the credit

spread and the short rate under the Ahn and Gao stochastic volatility
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process is

I.(0) = / Css(5(0), K,0,vD,T) m(v) do
0

= /CBs(g(O),K,O,\/E,T) (2ex113[c'0/%(I(c—l—iz))cosz’)zdz) do,
0 0

where R (I{c+ iz)) is the real part of I(c + iz).

7.6 Analysis of Closed /Numerical Call Prices
with Correlation

In this section we analyse the sensitivity of closed form and Monte Carlo
simulation of European Call credit spread prices based on correlation
between the credit spread and the short rate under the Ahn/Gao stochastic
volatility process

do? = 0(c— o?) oZdt + a103dWs(t),

where @ is the speed of mean reversion, c is the long term mean, a; the
volatility of variance and o at t = 0, the initial variance.

The short rate is modelled under a Vasicek process as in previous sections.

See Appendix B at the end of this chapter for the table of numerical and
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analytic credit spread call option prices.

In the analytic form, we compute the credit spread option prices for
contour values ¢ = 0.05 with inner upper bound of average variance

density integral set to 25 and outer bound integral set to 8.88. Our choice of
these contour value parameters is based on our analysis in the previous
sections. The average computation time is 2 minutes. We observe that
larger contour values increases computational time to over 5 minutes which
we abort. This increase in computation time is due to the large terms
obtained in the expansion of the call spread price integral. The optimum
upper bound of the outer integral is set to 8.88 as the analytic pricing
formula converges to the numerical form prices. Higher values of upper bound
for outer integral result in singularity or the double integral analytic
formula being undefined.

In the numerical form, we employ the no variance reduction method as
variance reduction increases computational time to several hours, with no
convergence. We limited the number of iterations for average call prices to 50
to reduce our computational time. Our average computation time is 1 hour.
The initial variance is set to the long term mean for the Ahn/Gao simulation.

We observe the effects of mean reverting stochastic volatility and
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correlation on the credit spread option prices for the analytic form and the
numerical form.

For Monte Carlo form, increasing the long term mean variance, the initial
variance and the volatility of variance drives up the credit spread prices.
Increasing the speed of mean reversion reduces the credit spread.

For closed form, increasing either the long term mean or the initial
variance increases the credit spread option price. Increasing volatility of
variance reduces the credit spread price which is unexpected. Increasing
the speed of mean reversion reduces the credit spread price. The
difference in numerical and analytic credit spread prices is within the
convergence rate of the Monte Carlo estimate ﬁ Overall we realise that
the correlation effect produces higher option prices than the no correlation

case with increased computation time.

7.7 Appendix A: Table of Call Prices under
no correlation

Table of closed form and Monte Carlo simulation of European call credit

spread prices for zero correlation between the credit spread and the Vasicek
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short rate under Ahn/Gao stochastic volatility process.
Underlying spread price = 0.3, strike = 0.1, Risk free rate= 0.06

Time to maturity is 6 months.

0 | Initial Variance c a1 | Monte Carlo Price | Closed form
0.1 0.09 | 0.09 | 0.20 0.2029554484 | 0.2038431019
0.10 { 0.10 0.2029554492 | 0.2039599954

0.30 { 0.30 0.2029897727 | 0.2093391089

0.1 0.09 | 0.09 { 0.40 0.2029554484 | 0.2027111190
0.10 | 0.10 0.2029554484 | 0.2028304519

0.30 1 0.30 0.2029921654 | 0.2081914763

0.5 0.09 | 0.09 | 0.20 0.2029554485 | 0.2040516137
0.10 | 0.10 0.2029554491 | 0.2041334371

0.45 | 0.45 0.2029897262 | 0.2093699787

0.05 0.09 { 0.09 | 0.60 0.2029554486 | 0.2008404950
0.10 | 0.10 0.2029554501 | 0.2009692528

0.60 | 0.60 0.2036664988 | 0.2781594754

4 0.09 | 0.09 | 0.20 0.2029554485 | 0.2038028366
0.10 | 0.10 0.2029554492 | 0.2039544774

0.30 | 0.30 0.2029894249 | 0.2093210829

7.8 Appendix B: Table of Call Prices with
correlation

Table of closed form and Monte Carlo simulation of European call credit

spread prices for correlation between the credit spread and the Vasicek short

rate under Ahn/Gao stochastic volatility process.
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0 is speed of mean reversion,

Vo is the initial variance,

c is the long term mean variance,

a, is the volatility of variance,

p is the correlation between the credit spread and the short rate,

S; is the initial credit spread,

r; is the initial short rate,

The constants a and b in the Vasicek short rate model are set to 0.5 for

this Monte Carlo simulation. Time to maturity is 6 months.
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0 Vo c a pl S r; | Monte Carlo | Closed Form
0.11010)0.10|0.20( 0.2 (0.3 0.06 | 0.2058258360 | 0.2038897745
-0.2 0.2060042270 | 0.2040435593
0.4 0.2057603670 | 0.2038064181
-04 0.2061173858 | 0.2040933363
0.1]0301030({0.20( 0.2]0.3(0.06]|0.2090214858 | 0.2092698997
-0.2 - 10.2091912138 | 0.2094370610
0.4 0.2089606386 | 0.2092101873
-04 0.2093003408 | 0.2094816760
01{0.10|0.10{040| 0.2{0.3|0.06 |0.2079323452 | 0.2025276654
-0.2 0.2020692478 | 0.2031035458
0.4 0.2110868368 | 0.2021860289
-04 0.2004067506 | 0.2033344215
0.1{0.30]0.30{040 | 0.2]0.3]0.06]0.2123923894 | 0.2078824325
-0.2 0.2017193167 | 0.2078824327
0.4 0.2174766442 | 0.2084714860
-04 0.1981831329 | 0.2075495378
0.5]10.09)009]|020( 0.2(0.3|0.06|0.2057479910 | 0.2037740748
-0.2 0.2059263852 | 0.2037549999
0.4 0.2056825196 | 0.2037828231
-04 0.2060395454 | 0.2037549999
05(009[009(060]| 0.20.3|0.06|0.2098480375 | 0.2044173418
-0.2 0.2021738862 | 0.2043982068
0.4 0.2108736245 | 0.2043647672
-0.4 0.1996584778 | 0.2043236550
41009(009| 04]0.20]0.3]|0.06|0.2057478896 | 0.2010533491
-0.2 0.2059262838 | 0.2010153479
0.4 0.2056824184 | 0.2016394586
-0.4 0.2060394440 | 0.2010153508




Chapter 8

Credit Spread Call Hedge
Parameters

From the previous chapters, the closed form credit spread call prices is given

as

IL(0) = 7 Chs (5’(0),1(,0, \/5,T) m(D) do,

where R (I(c+ i2)) is the real part of I(c + ¢2).

m(D) is the density of the average variance process.

The distribution of average variance is obtained by the classical inversion
theorem, written as

m(D) = 5k [H% exp (A) I(A) dA for © € [0, 00).

This integral is also known as the Bromwich-Mellin contour integral, where

c is a vertical contour in the complex plane chosen so that all
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singularities of m(T) are to the left of it.
Make change of variables A = ¢ + iz in the above integral reducing it to
the Laplace inversion integral
_ [o o]
m(T) = il;lgﬂz exp (iA0z) I(c + iz) dz

—00

exp (cD) : _ Wi
5 R(I(c+iz)) cosvz — X ([(c+iz))sinTz] dz,

~o0
where R (I(c+i2)) and (I(c + iz)) are respectively real and imaginary
parts of I(c+ iz).

The Abate and Whitt numerical inversion method reduces the Laplace
inversion integral to give us the density of the average variance as

m(v) = 222 [* R (I(c + i2)) cos Dz dz,

where R (I(c + iz)) is the real part of I{c+ iz).

I,(0) = ]OCBS (5’(0), K,0,v/3, T) (2@?1@ 70% (I(c+1iz)) cos Tz dz) do.
0 0

o —

We already have closed form solution for I(A) = f;~ exp (—A0)m(?) do,
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where I()\) is the Laplace transform of m(7) and m() is the density of
the average variance process of the one-factor mean reverting stochastic
volatility SDE as in (1.2) to (1.4).

The Black Scholes credit spread call price can be written as

CBS(S’(O)aKaO; \/":)7 T) = S(O)N (dl) - KP(O,T)N (d2)7

where
P In( afery)+50%(T)

1= - .,_-,(T) )
& = In(atory)—39%(T)

2 — - ,_—,(T) ]
dy =dy — VT,

2 _

o

The discount bond price process is
P(O)T) = A(O,T) exp(—B(O,T)T‘),

where r follows the Vasicek short rate process in (3.2)

a

with A(0,T) = exp ([(T —B(O,T)) [t - &)+ Z—ZB"’(O,T)]) |

and B(0,T) = 1 (1 — exp (—a(T))].
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8.1 Delta Call on Credit Spread

The delta of call on credit spread is obtained by differentiating the credit

spread call price I1.(0) above with respect to underlying credit spread:

dL(0) _ d / Cas (3(0),}{,0, \/5,T) m(v) do

where N (d1) = —= f:i;o exp (—12?) dz is

the cumulative normal distribution function and
_ In( gracery )+ 302(T)

dy = |~ o(T) )

o S(0
5(0) = ﬁ%,
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8.2 Gamma Call on Credit Spread

The Gamma of call on credit spread is obtained by differentiating the delta

call on credit spread with respect to underlying credit spread:

IO _ 4 [ m(v) do
5t = = O/Nuo ()d]

/
_ ]odidl (N (d) ‘%m(a) do
/

where n (d;) is the normal density function.
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8.3 Vega Call on Credit Spread

The Vega of call on credit spread is obtained by differentiating the credit
spread call price I1.(0) with respect to average credit spread variance o.

Vega on stochastic volatility is critical.

dI1(0)
dv

S| =

[7035 (5*(0),1(,0, \/5,T) m(D) da]

4

—Cas (S’(O),K,O,\/E,T) m(®) do

i

[S(O)n (dr) % - KP(O,T)%N (ds) — n (d3) KP(0, T) ‘fld2

U

Q\g °\8

]m('D) do
+ [CBS (S’(O),K, 0,v/3, T) d%m(a)] o

= ]O—KP(O,T)%N(dg)m(ﬁ)+{a%m(ﬁ)css (5(0),K,0,~/5,T)] do,

. S ;
provided 5} = £0Tin(d),

S(0) is the underlying credit spread,

K is the strike price,

P(0,T) is the price of the zero coupon bond of maturity T.
Under the Black/Scholes model,

S(0)n(d;) = KP(0,T)n(dz), see Pg 265, Question 11.17(b) of John Hull(Hull
2000).
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Proof

._.
Bol ok ——~
— N Nl
A
I
.,
—
N
N—

N D= N

(d2 + dy) (d2 — dl))

= P(0,T)exp (—% (-21n (f%_(g’%)) (%))

et
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8.4 Theta Call on Credit Spread

The Theta of call on credit spread(Time decay) is obtained by differentiating

the credit spread call price II.(0) with respect to time T.

d112(10) _ diT /ch(g( ), K,0,V/5,T) m(0) d]
- diTch (5’(0),K,0, ﬁ,T) m(v) do

[5(0) (dy) ‘Zﬁ KP(0,T)-% d‘; N (ds) — n (dg) K P(0, T)‘f;;f] m(5) do

9\8 0\8

+ [CBS (5(0) K,0,v3, T) (v)]

_ / ~KPO,T) 4N (@) m(o) + | Zm(o)Cas (30),K,0,V5,7) | ao

. S(0) __ P(0,T)n(dz)
provided == = AR



Chapter 9

Longstaff/Schwartz Credit
Spread Option Model

In the Longstaff/Schwartz 1995 paper on valuing credit derivatives, the

dynamics of the logarithm of the credit spread X is given by the SDE

dX = (a — bX) dt + sdZy, (9.1)

where a, b and c are parameters and Z; is a standard Wiener process.
This implies that the dynamics of the credit spreads are positive and
conditionally log-normally distributed.

They introduce stochastic interest rates of the one-factor Vasicek model in

which the dynamics of the short term interest rate r is given by

dr = (a — Br)dt + 0dZ,, (9.2)
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where o, B and o are parameters and Z; is a standard Wiener process.
The correlation coefficient between dZ; and dZ, is p.
Since X denotes the logarithm of credit spread, the payoff function for this

option is
H(X) =maz (0,expX — K). (9.3)

The value of the Longstaff/Schwartz European Call option on credit spread

is given by

C(X,r,T) = D(r,T)exp (U + -122—2-> N(d,) — KD(r,T)N(d,), (9.4)

where:
D(r,T) is the price of the riskless discount bond,

N (.) is the cumulative standard normal distribution,

_ =InK4U+7n?
dl - ) )

d2 = dl -n,
2 _ S%1—exp(—2bT
n= 2b ’

U = exp (—bT) X+1 (a — Z2) [1 —exp (—bT)]+§f% (1—exp(—(b+ B)T)).

The expression of delta call on the credit spread is obtained

by differentiating equation (9.4) with respect to credit spread i.e.
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D(r,T) exp (U + %2) N(dy)exp (=bT) exp (—X) . (9.5)



Chapter 10

Sensitivity Analysis of Credit
Spread /Delta Calls

In this chapter we discuss the sensitivity analysis of the graphs of credit
spread call price against the credit spread and Call Deltas against credit

spread. These graphs are listed after the bibliography section.

10.1 Cox/Ross

For non zero or zero correlation of out of the money credit spread options, the
call price is an increasing function of the credit spread. Long dated credit
spread options have a higher curvature than short to medium term credit
spread options. This higher curvature effect is due to increase in term to
maturity.

We also observe that the out of moneyness for credit spread option results in

the convex shapes at different maturities. In the money call options gives a
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linear shape for all maturities. Also the credit spread option prices increases

with maturity.

10.2 Vasicek

We observe convex shapes for plots of out of the money credit spread option
prices against credit spread. The curvature of these plots increases with
maturity, with curves for long dated credit spread options being steeper
than short to medium term spread options. In the money call spread
options have a linear shape.

For positive correlation under Vasicek stochastic volatility, the plots for short
to medium term credit spread options are not entirely convex shaped as

we observe kinks, followed by increase in steepness of convex shape. The
spread option prices increases with maturity.

We observe that Vasicek in/out of money credit spread call prices are higher
than Cox/Ross spread prices for zero/non zero correlation. Cox/Ross spread

prices are higher than Ahn/Gao credit spread option prices.

10.3 Ahn/Gao

We realise linear shape for in the money calls. Out of the money call spread

prices show convex shape plots. Long dated spread options have higher
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curvature than short to medium term spread options. The steepness of the
curvature for out of the money options is more pronounced in case of positive

and negative correlation. The spread option prices increases with maturity.

10.4 Longstaff/Schwartz

We observe linear shape at different maturities for in the money credit spread
call prices. The out of t‘he money credit spread call prices have a non linear
shape, which is an increasing function of the credit spread.

In general the Longstaff/Schwartz credit spread option prices are much lower
than option prices obtained from our stochastic volatility model for Cox/Ross,
Vasicek and Ahn/Gao. This could be attributed to the assumption of
constant volatility in the Longstaff/Schwartz model.

The spread option prices decrease with maturity for in/out of the money
options, because of the mean reverting behaviour of the credit spread in

the Longstaff/Schwartz model.

10.5 Delta Hedging

In general we observe positive deltas for at and out of the money options and
negative deltas for in the money credit spread options. Under Black/Scholes

option pricing delta calls are always positive but we realise negative deltas
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in our stochastic volatility model.

The delta calls for out of the money credit spread options decrease with
maturity and credit spread. For low spreads delta is close to or above 1,
whilst for high spreads it is a decreasing function of the credit spread. We
observe this behaviour for the 3 stochastic volatility modes of the Vasicek,
Cox, Ingersoll and Ross and Ahn/Gao forms. The plots are concave shaped.
For in the money call spread options under Vasicek, Ahn/Gao and Cox,
Ingersoll and Ross stochastic volatility, the delta decreases with increasing
credit spread. At high spreads the delta is close to 0.

In the case of Longstaff/Schawartz out of the money calls, delta is an
increasing function of the credit spread. For both in and out of the money call
options delta decreases with maturity. The delta is a decreasing function

of the credit spread for in the money call options.

A credit spread option under our stochastic volatility model can be hedged as
follows; A negative delta would imply that if one is long the option then
you can hedge shifts in credit spread by going long the credit spread. For
positive delta, when long the credit spread option, you can hedge shifts in
credit spread by going short credit spread. Likewise delta hedging a short

position on the European credit spread call involves maintaining a long
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position on the credit spread.



Chapter 11

Conclusion

In our thesis we present both closed form and numerical form pricing models
for credit spread options under stochastic volatility. The credit spread option
process is independent of the stochastic volatility, but we consider cases of
no correlation and some correlation between credit spread and short term
interest rate. The stochastic volatility models under consideration are
one-factor mean reverting stochastic processes of the forms, Vasicek,
Cox/Ross and Ahn/Gao. We then evaluate credit spread options with no
correlation or correlation under a chosen stochastic volatility process of the
3 forms above.

The numerical formulation is the simulation of various paths of the
variance under stochastic volatility. An average Black/Scholes credit spread
call price is obtained using several average variance values from the

simulation. The closed form formulae is derived as the expectation of Black/Scholes
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credit spread option price conditional on the density of the average
variance as the underlying credit spread is independent of the stochastic
volatility process. Deriving the density of the average variance is not
trivial. However the choice of the stochastic volatility models Vasicek, Cox,
Ingersoll and Ross and Ahn/Gao belong to the general affine class

models. These affine class models as seen in interest rate litefature

provide closed form expressions for transition and marginal densities of the
interest rate as well as bond prices. We employ the bond pricing concept
to obtain the moment generating function for the mean reverting average
variance process. The moment generating function is inverted via the Abate
and Whitt numerical Laplace inversion method to obtain the density of the
average variance, which is then used in the analytical pricing formula. The
density of the average variance involves an integral, hence our credit spread
option model results in the evaluation of a double integral, which is non
trivial. We select upper boundaries for which we obtain convergence of the
closed form double integral spread option prices to the Monte Carlo spread
option prices.

We observe closeness in option prices between closed form and numerical

form for low variances of the underlying credit spread, regardless of
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correlation. At high variances of the underlying credit spread with no
correlation between the credit spread and the short rate, the closed and
numerical form spread option prices deviate slightly from each other. In
the case of correlation combined with high variance of the credit spread,
the credit spread option prices are higher than the intrinsic value of the
credit spread option. This effect is due to a combination of high variances
and simulated high credit spread option prices from correlation. The
correlation between the credit spread and the short rate definitely produces
higher spread option prices than the no correlation case. Given that credit
spreads are correlated with short term interest rates, ignoring correlation
entirely could lead to mispricing of credit spread options.

The Longstaff/Schwartz credit spread option model under constant
volatility produces lower spread option prices than our stochastic

volatility pricing model. This could be attributed to the difference in
volatility between the models. We realise that our credit spread call

option model under Vasicek stochastic volatility produces higher prices than
Cox, Ingersoll and Ross stochastic volatility model. Once again the
difference in volatility is a contributing factor. The Vasicek model produces a

symmetric distribution, whilst Cox, Ingersoll and Ross produces a skewed
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distribution as its constrained to positive real numbers and has a fatter right
hand tail. This constraint means that the Cox, Ingersoll and Ross model

is likely to produce smaller volatility than Vasicek model. The Ahn/Gao
model has the least credit spread option price than Cox, Ingersoll and Ross
or Vasicek models, due to effects of stronger mean reverting drift and higher
diffusion coefficient. The credit spread call option prices from any of the

3 chosen stochastic volatility model increases with maturity. This would
imply that in/out of the money call options are likely to remain in/out of
the money over time. In comparision with the Longstaff/Schwartz model,
the mean reversion of the credit spread could result in credit spread reducing
over time when above its long run mean or could increase over time when
below its long run mean. This means that in the money call options are
less likely to remain in the money over time, resulting in the likelihood of
the call option on credit spread being less than its intrinsic value when only
slightly in the money.

From a hedging perspective, our spread option model does not reduce the
delta of long term calls to zero as in the case of the Longstaff/Schwartz model
where mean reversion reduces the delta of long term puts and calls to zero.

The delta of calls in our spread option model ranges from positive to negative
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values. Hence our spread option model can hedge the risk of changes in

the current credit spread for both short and long term maturities.

This thesis has concentrated on the pricing and hedging of European call
option on a credit spread with some or no correlation with the short term
interest rate under an independent stochastic volatility process. Closed form
pricing will always be obtainable if the stochastic volatility process under the
consideration is of the mean reverting form with analytical tractability.
Numerical pricing is obtainable via Monte Carlo simulation. Our pricing
model can be extended to European credit spread put options via the
put-call parity relationship. However there are areas that can be
considered for further research as follows:

(a) Optimum choice of upper bound of closed form spread price double
integral.

(b) Correlation between credit spread and volatility.

(c) Empirical analysis of mean reversion parameters of stochastic
volatility processes.

(d) American credit spread option under a tree approach.
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Plot of out ofthe money credit spread call prices obtained for Credit Spread model under
the Cox Ross Stochastic volatility with correlation of-0.2 between credit spread and short
rate for expiries T=0.5, 1.0 and 1.5.
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Plot of in the money credit spread call prices obtained for Credit Spread model under
the Cox Ross Stochastic volatility with correlation of-0.2 between credit spread and short
rate for expiries T=0.5, 1.0 and 1.5.
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Plot of in the money credit spread call prices obtained for Credit Spread model under the
Vasicek volatility with correlation of 0 between credit spread and short rate for expiries
T=0.5, 1.0 and 1.5.
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Plot of out of the money credit spread call prices obtained for Credit Spread model under
the Vasicek volatility with correlation of 0 between credit spread and short rate for
expiries T=0.5, 1.0 and L.5.
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Plot of out ofthe money credit spread call prices obtained for Credit Spread model under
the Ahn Gao volatility with correlation of 0.2 between credit spread and short rate for
expiries T=0.5, 1.0 and 1.5.
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Plot of in the money credit spread call prices obtained for Credit Spread model under the
Ahn Gao volatility with correlation of 0.2 between credit spread and short rate for
expiries T=0.5, 1.0 and 1.5.
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Plot of in the money credit spread call prices obtained for Credit Spread model under the
Longstaffand Shwartz volatility with correlation of 0 between credit spread and short
rate for expiries T=0.5, 1.0 and 1.5.
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Plot of out of the money credit spread call prices obtained for Credit Spread model under
the Longstaffand Shwartz volatility with correlation of 0 between credit spread and

short rate for expiries T=0.5, 1.0 and 1.5.
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Plot of in the money credit spread call prices obtained for Credit Spread model under the
Longstaffand Shwartz volatility with correlation of -0.2 between credit spread and short
rate for expiries T=0.5, 1.0 and 1.5.
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Plot of out of the money credit spread call prices obtained for Credit Spread model under
the Longstaffand Shwartz volatility with correlation of -0.2 between credit spread and

short rate for expiries T=0.5, 1.0 and 1.5.
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Plot of out of the money credit spread call prices obtained for Credit Spread model under
the Longstaff and Shwartz volatility with correlation of 0.2 between credit spread and
short rate for expiries T=0.5, 1.0 and 1.5.
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Plot of in the money Call deltas obtained for Credit Spread model under the Cox and
Ross volatility with correlation of 0 between credit spread and short rate for expiries
T=0.5, 1.0 and 1.5.
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Plot of out of the money Delta call prices obtained for Credit Spread model under the
Cox and Ross volatility with correlation of 0 between credit spread and short rate for
expiries T=0.5, 1.0 and 1.5.
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Plot of out of the money Call deltas obtained for Credit Spread model under the Cox and
Ross volatility with correlation of -0.2 between credit spread and short rate for expiries
T=0.5, 1.0 and 1.5.
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Plot out of the money Delta call prices obtained for Credit Spread model under the
Vasicek volatility with correlation of 0.2 between credit spread and short rate for
expiries T=0.5, 1.0 and 1.5.
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Plot of out ofthe money Delta call prices obtained for Credit Spread model under
Longstaff Schwartz with correlation of -0.2 between credit spread and short rate for

expiries T=0.5, 1.0 and 1.5.
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Plot of in the money Delta call prices obtained for Credit Spread model under Longstaff
Schwartz with correlation of -0.2 between credit spread and short rate for expiries
T=0.5, 1.0 and 1.5.
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Plot of out ofthe money Delta call prices obtained for Credit Spread model under
Longstaff Schwartz with correlation of 0 between credit spread and short rate for
expiries T=0.5, 1.0 and L.5.
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Plot of in the money Delta call prices obtained for Credit Spread model under Ahn Gao
volatility with correlation of -0.2 between credit spread and short rate for expiries T—0.5,

1.0 and 1.5.
Exhibit S
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Plot of out ofthe money Delta call prices obtained for Credit Spread model under Ahn
Gao volatility with correlation of -0.2 between credit spread and short rate for expiries

T=0.5, 1.0 and 1.5.
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