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ABSTRACT
This thesis studies the pricing of credit spread options in a continuous 
time setting. Our main examples are credit spreads between US 
government bonds and highly risky emerging market bonds, such 
as Argentina, Brazil, Mexico, etc. Based on empirical findings we 
model the credit spread options as a geometric Brownian Motion with 
stochastic volatility. We implement and compare several one-factor 
stochastic volatility models, namely the Vasicek, Cox-Ingersoll-Ross 
and Ahn/Gao. As a stochastic model for the credit risk free interest 
rate, we use the Vasicek model.

As a further new ingredient we introduce dependence between the 
spread rate and interest rate in our pricing model (stochastic volatility 
is assumed to be independent of the other factors). The mean reverting 
property of the short rate models enables us to view the mean reverting 
stochastic volatility models as moment generating function of a time 
integral of positive diffusion. The moment generating function of the 
average variance of the credit spread price process is evaluated. The 
Numerical Laplace inversion method is used to invert the moment 
generating function to obtain the density of the average variance. 
This average variance density is then used in the analytic pricing 
formulae. We compare the credit spread option prices under the closed 
form and the numerical formula in the cases of no correlation and 
some correlation between the credit spreads and the short rate under 
the Vasicek, Cox/Ross and Ahn/Gao(Alternative) mean reverting 
stochastic volatility model.

We also look at the delta hedge parameters for the credit spread options 
under the various stochastic volatility models. Further analysis is 
carried out on the effects of correlation between the credit spread, the 
short rate and various mean reversion parameters on the pricing and 
hedging of the credit spread options.

We finally compare our credit spread option price/hedging stochastic 
volatility model with the Longstaff and Schwartz model on mean revert­
ing credit spreads under constant volatility.
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Chapter 1 

Introduction

Credit risk is the risk whereby counterparties fail to make payments to 

transactions they are obligated. It is sometimes referred to as counterparty 

risk. A great deal of attention has been placed in credit risk management by 

academics and practitioners over the years and further research is ongoing 

in this new area.

In the last decade, a new innovation in credit risk management appeared, 

the credit derivative instruments. Credit derivatives are designed to 

segregate market risk from credit risk and to allow separate trading of credit 

risk. They allow a more efficient allocation of credit risk, which greatly 

benefits those who borrow, lend and transact interest rate and credit 

derivatives. This ensures that premiums associated with default risk are 

appropriate for that level of risk. Credit derivatives may also be defined 

as contracts that pass credit risk from one counterparty to another. They
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allow credit risk to be stripped from loans, bonds and swaps and placed in a 

different market. Their performance is based on a credit spread, credit rating 

or default status.

Besides the obvious advantage of eliminating and trading credit risk, other 

benefits include the diversification of highly concentrated portfolios 

(reducing liquidity risk), balance sheet management and the reduction of 

regulatory capital for better return on capital.

Credit derivative instruments include total return swaps(TORS), defaults 

swaps, credit default swaps(CDS), credit spread options(CSO), credit spread 

forwards, credit linked notes(CLNs), credit debt obligations(CDOs), credit 

loan obligations(CLOs) and synthetic CDOs etc.

The instruments of interest in our research paper are credit spread options. 

These are options where the underlying is the spread on a 3rd party 

security. Suppose a trader feels that the rating agencies have given the 3rd 

party too low a credit rating and want to exploit this. Given the current 

credit spread as 100 basis points, the trader pays a premium to go long 

the credit spread option. If spreads narrow or fall below the current level of 

100 basis points he or she profits. But if the spread widens he or she will 

abandon the option and the maximum loss is the premium paid. Also banks
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and insurance companies may sell credit spread option protection for a fee 

because they think that the asset is undervalued and that the credit spread 

widening is not indicating a default event.

A trader holding the bond issued by the 3rd party might purchase a 

credit spread option that pays if spreads widen as a result of bond issuer 

or reference asset being downgraded. CSOs can also be used to hedge index 

related basis risk by say an insurance company purchasing an option on 

the credit spread between a bond index and an index on a similar 

duration and maturity US Treasuries.

Overall the credit spread option offers the flexibility where it can be used 

to reduce credit exposure, hedge against potential default risk, speculate 

on credit spreads widening or narrowing and the selling of credit 

protection.

In this paper we propose the valuation of credit spread options under a 

continuous time model with the following assumptions:

(a) credit spread is a traded asset. This is a standard assumption in CSO 

pricing literature which can be justified by holding a portfolio of long credit 

risk bond and short a default free bond with same characteristics.

(b) credit spread exhibits stochastic volatility in contrast to Longstaff and
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Schwartz spread option model. This is motivated by our prime example: 

the spreads between US government bonds and emerging market bonds.

(c) interest rates are stochastic (Vasicek short rate model), which is standard 

in this context.

(d) the credit spread and the short rate are correlated, is supported by 

empirical evidence, although the evidence on the sign of the correlation is 

mixed.

We use the following model.

Assume a stochastic basis ^ , F , Q,F'j; F = (Ft) filtration satisfying usual 
conditions.

Let

dXt = noa^dt +  atdWi(t) (1.1)

where X t = log St ( log of credit spread ).

The SDE in (1.1) is supported by the empirical study on derivatives of 

credit spreads. See working paper on the valuation of derivatives on credit 

spreads by Rudiger Kiesel.

For at the volatility, we consider one-factor mean reverting volatility 

processes of the following forms:



CHAPTER 1. INTRODUCTION 10

Vasicek SDE:
da* = 0 (c — a*) dt +  aidWz(t) (1.2)

Cox, Ingersoll and Ross SDE:

da* = 6 (c — a*) dt +  a\atdWz{t) (1.3)

Ahn/Gao SDE:
da* = 9 (c — a*) a*dt + aiafdW^t) (1.4)

where W\ and W3 are independent Brownian motions.

Given the framework above, the credit spread option model is valued 

under a stochastic interest rate and stochastic volatility dynamics. Under 

stochastic interest rates we consider cases of zero, positive and negative 

correlation between the credit spreads and the Vasicek short rate process 

in our pricing and hedging models. The choice of interest rate process is 

purely from an analytic tractability point of view. Other one-factor short 

interest rate process could be applied to our model.

For the stochastic volatility dynamics we consider 2 well known one-factor 

mean reverting stochastic processes, Vasicek, Cox, Ingersoll and Ross as well 

as an alternative one-factor stochastic process Ahn Gao. The credit spread 

has no correlation with the stochastic volatility processes.
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Chapter 2 discusses the one-factor mean reverting stochastic processes 

Vasicek, Cox, Ingersoll and Ross and Ahn Gao in a more general setting 

rather than focusing on its use in the interest rate world. In Chapters 3 

and 4, we build a general closed form credit spread valuation model 

under a risk neutral price framework, from which we derive a pricing 

formula for European call credit spreads under the risk neutral measure as 

the expectation of the Black Scholes call credit spread conditional on the 

realised volatility. The realised volatility is obtained from the average 

variance over the life time of the credit spread call option.

In chapters 5, 6 and 7 we derive the credit spread call formula for closed 

form and numerical form under the three one-factor mean reverting 

stochastic volatility processes (Vasicek, Cox, Ingersoll and Ross and Ahn 

Gao). For each of the one-factor mean reverting stochastic volatility 

process, its stochastic differential equation is expressed as a random 

variable for the average variance. The moment generating function for the 

average variance is obtained by applying a concept well known from bond 

pricing, where the mean reverting short rate are viewed as moment 

generating functions of the time integral of positive diffusions.

The three mean reverting stochastic volatility processes in the form of
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Vasicek, Cox, Ingersoll and Ross and Ahn Gao SDE’s have closed form 

solutions for the moment generating functions. Obtaining the distribution for 

the average variance analytically by Inverse Laplace transform techniques 

is only possible for simple moment generating functions. The complex 

moment generating functions for the mean reverting volatility processes 

requires numerical inversion for the distribution.

We apply the Abate/Whitt method to numerically invert these moment 

generating functions to obtain the distribution of the average variance for 

the chosen one-factor stochastic volatility process. The density of the 

average variance is then used in evaluating the risk neutral expectation 

of the credit spread option price conditional on the distribution of the 

average variance process.

Credit spread options prices are evaluated for the closed form and numeric 

models (Monte Carlo) under zero and non zero correlation for a given 

stochastic volatility model of either Vasicek, Cox, Ingersoll and Ross or 

Ahn/Gao. Credit spread prices from the closed and numeric models are 

compared to establish how close they are. The numerical and closed form 

prices are listed in the appendix sections for chapters 5 to 7.

Further analysis is done on how the structural or mean reverting
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parameters and the correlation between the credit spreads and the 

short rate affect credit spread option prices. Calculations are done 

for in and out of the money credit spread call prices for our credit 

spread option model.

In chapter 8 we derive the hedge parameters for the credit spread 

option model. Chapter 9 briefly mentions the Longstaff/Schwartz credit 

spread option pricing and hedging model. We calculate in and out 

of the money credit spread call prices for the Longstaff/Schwartz 

model. Delta call hedge parameter values are calculated for both our 

credit spread option and Longstaff/Schwartz models.

Chapter 10 compares the spread option prices and delta hedge values 

for our credit spread option model with the Longstaff/Schwartz credit spread 

model by analysing the graphs of credit spread option price against 

underlying spread and Delta against underlying credit spread plots for 

maturities of 0.5, 1.0 and 1.5 years.

Finally we discuss our findings in the conclusion in chapter 11.



Chapter 2

One-factor M ean reverting  
m odels

In this chapter we discuss the three classes of one-factor mean reverting 

models mentioned in the introduction.

Two of the models are of the general form

dv = k(0 — v)dt + av^dz (2.1)

The third model is of the general form

dv = k(0 — v)vdt + av^dz (2.2)

These models have widely been used for the modelling of the short rate 

in the interest rate literature. We try to give a more general view of these 

models. The choice of (3 in (2.1) is usually dictated by a compromise 

between analytic tractability and reasonableness of the resulting

14
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distribution. The empirical issue of which exponent gives the best 

description of the process to be modelled has not been settled yet, although 

Chan et al(1991) indicate that a higher (3 might describe the observed 

underlying better whether it is volatility or short rates.

In our study we consider the following cases

(i) (3 = 0 under (2.1);

(ii) (3 = 0.5 under (2.1);

(iii) (3 = 1.5 under (2.2);

The case of (3 — 0 in (2.1) is the Vasicek process of the form

dv = k{Q — v)dt +  adz (2.3)

The Vasicek process is related to the Ornstein-Uhlenbeck process.

As a Gaussian process it produces a symmetric distribution. It allows 

for negative values for the underlying asset process, which is an 

undesirable property. As a mean reverting model, when the underlying 

asset is above (below) a long term level it experiences a downward 

(upward) pull towards this level.
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The case of (3 =  0.5 in (2.1) gives us the Cox, Ingersoll and Ross 

stochastic process of the form

dv =  k(9 — v)dt + ay/vdz (2.4)

It is widely known as the squared gaussian process with a non central 

chi-square distribution i.e. a skewed distribution with a fatter right hand 

tail. For large t, i.e. t —» oo, its distribution approaches a Gamma 

distribution. For k, 0 > 0 this corresponds to a continuous time first 

order autoregressive process whereby the random volatility is elastically 

pulled toward a long term value 6. The mean reversion parameter 

k which determines the speed of adjustment can reach 0 if a2 > 2k9.

If 2k6 > <t2, the upward shift is sufficient to make the origin 

inaccessible. This implies an initially non negative volatility can never 

become negative.

Other analytical properties imply the following:

(a) negative volatilities are precluded;

(b) if volatility reaches 6, it can subsequently become positive;
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(c) the absolute variance of the volatility increases when volatility

increases, as the volatility process is proportional to the square root

of the volatility process;

The Vasicek and Cox, Ingersoll and Ross stochastic processes have the

same drift volatility specifications. These processes can be extended

further by making the speed of the mean reversion and the long term

mean reversion of the volatility process a function of time rather than

a constant. However the extended Vasicek process still exhibits

the properties of negative values.

Empirical studies by Ahn Gao on the parametric nonlinear model of 

term structure dynamics propose a mean reverting SDE of the one factor 

form as in Chan et al, where /? =  1.5 but the drift is non linear.

The Ahn Gao SDE is of the form

dv — k(9 — v)vdt + av15dz. (2.5)

The long term parameter 9 is the threshold of the volatility process, 

where the drift is 0. The assumption of k > 0 is necessary for the 

stationarity of the volatility process. The drift is positive if long term 

reversion is above the volatility process, implying the volatility process
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reverts to the normal range. When the volatility process exceeds long 

term mean reversion 9, the drift becomes negative. A negative drift 

pulls long term mean reversion to its normal range. The mean 

reversion parameter k also determines the curvature of the drift which 

measures the degree of nonlinearity in the drift. When the drift climbs 

until the volatility process reaches | ,  the drift hits its maximum 

Once the volatility passes this point, the drift begins to decline, 

reaching 0 when the volatility process is 9. The further away the 

volatility process is from 9, the faster the mean reversion. In contrast 

to the linear drift models, the mean reversion speed remains the same. 

A negative K with a diffusion of crv15 causes the volatility process to 

explode. The density of Ahn/Gao stochastic volatility process is a 

form of the modified Bessel function of the first kind of order q.

The three single factor models discussed above exhibit the affine term 

structure property and are thus analytically tractable with closed form 

solutions for derivative prices.



Chapter 3 

Credit Spreads Option  
Valuation

The continuous time model for the credit spreads in (1.1) are general 

Markovian models for all continuous time stochastic volatility models.

We assume we model under an equivalent martingale measure Q.

By ltd’s Lemma, from (1.1)

dS(t) = S(t) (Uafdt + atdW^t)) (3.1)

where U = 7To +

We assume the Vasicek type short rate r has Q dynamics

dr(t) = (b — ar(t))dt + a(pdWi(t) + y/l  — p2dW2 {t)) (3.2)

where p is based on the assumption that there is a correlation between 

the short rate and the credit spread.

19
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(\VhW2 ) are uncorrelated Brownian motions.

Our aim is to model the contingent claims with S as underlying.

The price process II(t; X) of any such integrable T contingent claim X is

expectation i.e. II(£; X) = EQ[X exp(— f ^  r(u) du) | Ft].

If we are interested in a contingent claim, X  = $(r(T)) with sufficiently 

smooth then using the Feyman Kac formula, the arbitrage free price 

process is given by IT(f; X) = F(t, r(t)), where F is the solution of the 

partial differential equation, also known as the term structure equation.

with terminal condition F(T, r) =  <f>(r) for all r  G R.

For example zero bond prices with maturity T are given by p(t, T) = F(t , r(t)); T), 

where F is a solution to (3.3) and terminal condition F(T,r;T) = 1.

The bond price process will be of the form

where r follows the Vasicek short rate process in (3.2), with A(t,T) and B(t,T) 

deterministic functions.

We can find the process p(t,T) = F(t,r(t));T ), by solving (3.3) with

obtained with the risk neutral valuation technique by computing the Q

(3.3)

p(t, T) = A{t , T) exp(—B(t, T)r), 0 < t < T,
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terminal condition F(T,r;T) = 1.

=*► F(£, r;T) = A(t,T)exp(—B(t,T)r) 

where

B(t, T) =  -  [1 — exp (~a(T - t ) ) ] ,  (3.4)
a

A(t, T) =  exp ([((T -  t) -  B(t, T)) [J + £ B2((, T)]) . (3.5)

See appendix A at end of chapter 3 on the derivation of B(t,T)  and A(t,T). 

Define Z(t) = pW\{t) + y/l --p*W 2 (t), then Z(t) is a Brownian Motion 

and the Vasicek short rate process in (3.2) can be specified as

dr(t) = (b — ar(t)) dt +  adZ(t). (3-6)

Given that the bond price are of the form,

p(t,T) =  A(t,T) exp (—B (t ,T )r) , 0 < t < T, where r follows the Vasicek

short rate process in (3.2), with A(t,T) and B(t,T) as deterministic functions,

then Ito’s formula implies

dP(t, T) = Pt(t, T)dt + Pr(t, T)dr + |P rr(t, T)d < r >.
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Thus 
dP(t, T) = [At(t, T) exp ( -B(t ,  T)r) -  rA(t, T)Bt(t, T) exp (- B ( t , T)r)] dt 

-  \A{t, T)B(t, T) exp (~B(t,  7 » ]  dr

+ \  [A(t, T ) B \ t ,  T) exp (-B (f , T)r)] d < r >

= [At{t, T ) exp T)r) -  rBt(t, T)P(t, T)] dt -  P(t, T)B(t, T)dr

+±B2( t ,T )P ( t ,T )d< r>

= At(t, T) exp (—B(t, T)r) dt — P(t, T)

rBt(t, T)dt + B(t, T) ((b — ar(t)) dt + adZ{t)) -  ^ S 2(t, T)a2dt 

= At(t,T)exp(—B(t,T)r)dt — P(t,T)

rBt(t,T) -  ^ B 2(t,T)a2 + B{t,T) (b - a r ( t ) U  dt + aB{t,T)dZ{t)

Prom the derivation of A(t, T) and B(t, T) in appendix A of this chapter

dP{t, T) = A(t, T) exp (~B(t, T)r) ( bB(t, T) -  -~B2{t, T) ) dt

- P( t ,T ) (Bt(t,T)r -  ~B2(t,T)a2 + bB{t,T) -  aB{t,T)r)dt + aB(t,T)dZ(t)z
2 -I

°  n 2 / j .  r r i \  f j .  r r i \  , 1 2 D2,= P(t, T ) (bB(t, T) -  ~— B 2(t, T) -  rBt(t, T) + ^a 2B2(t, T) -  bB(t, T) ) dt

+P(t,T)  (aB(t,T)rdt -  aB(t,T)dZ{t))
= P(t,T)  ((aB(t,T) -  Bt( t ,T )) rdt -  <jB{t,T)dZ{t))
= P(t, T) (rdt — crB(t, T)dz(t)).

Hence the bond prices under the Vasicek short rate model are given by

dP(t,T) = P(t,T) (r(t)dt -  oB(t,T) (pdW^t) + \ / l  -  p W 2(f))) .
(3.7)
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3.1 Contingent Claim Pricing
We want to find the arbitrage price Ilcr of G(S(T)) (G an appropriate func­
tion)

From chapter 8 of Bingham-Kiesel(Bingham and Kiesel 1998)

n ^ ( t )  — B(t).EQ
G

[B(T) \Ft

EtQ

i
Gexp(— J  r(s) ds)\Ft

Also P(t,T) = Eq [exp(—/ tTr(s)ds)|FtJ.

The risk neutral pricing formula is 

Ug(t) = Fg (exp(- r(u) du) G(S(T))\Ft).

By the change of numeraire theorem we find

n,(t) = P(t,r)£5j[G(s(r))|F(],

where the expectation is under Q measure.

The change of measure is such that P(t, T) is the new numeraire thus 

S(t) = has to be a martingale.

By the product rule

dS(t) = S(t).d(p^ j')) + dS(t).py. < S(t), p^r)

Now
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dS(t) = S(t) (Ucrfdt + at.dWi(t)) from (3.1) and

d.P{t,T) = P(t,T) (r(t)dt -  aB(t,T)(pdW!(t) + from (3.9).

We start with evaluating d ■

By Ito’s lemma, with /  =

f t  — 0 , i f x  =  i fx x  =  ~^s)

we have

df(t,x) = f t.dt + f x.dx + l f xx.dx2,

d 1 -1 -.P(t,T) (r(t)dt -  aB(t,T){pdWi(t) +  ^ 1  -  p‘dW2(t))j

^ b 2̂ p 2+ 1 -  f t dt)

( r{t)dt -  aB(t,T)(pdW1(t) + y / l  -  f idW^t)))  

1 (a2B2(t,T)dt) ,P(t,T)

K S { t ) ' P ^ T )  >  =  d W l { t ) }  *  T ^ {p d W l { t )  +  V ^ d W i i t ) )

= p ^ T ^ tpB{t,T)dt,
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(r(t)dt -  crB(t,T)(pd\Vi(t) + ^ 1  -  f?d,W2(t))\S(t)
P(t,T)

^ 2B2{t' T)dt) +  l ^ T )  (™<pB(t,T)dt) ,

=*dS(t) = S(t)((Ua?+<72B2(t,T) + aatp B ( t ,T ) - r ( t ) ) )d t

+S(t) ((<7t + paB(t,T)) dW^t)  +  aB(t ,T )s / l  -  p?dW2(t)\ .

Let W  =  (Wi, W2) be a 2-dimensional Brownian motion defined on a filtered 

probability space (f2, F, Q , F) i f  F = (Ft) is the Brownian filtration, 

any pair of equivalent probability measures Q ~  Q on F = Ft is a 

Girsanov pair, i.e.

dQ
dQ = L(t)

F,

with

L(t) = exp f*(\i(u) dWi{u) + \ 2{u) dW2(u)) -  \  f*(Aj(u) + A\{u)) duj 

where (A(t) : 0 < t < T) a measurable, adapted 2 dimensional process 

with Jq A?(t) dt < oo a.s., i = 1, 2.

If L is a continuous local martingale which satisfies Novikov’s condition:

■ ^ ( e x p d / o ^ l l ^ K " ) ! !  +  P I ( “ ) I D < M )  <  0 0 ,
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then L is a martingale with E  (L (T)) = 1, therefore we can change

measure to Q. Then Girsanov’s theorem implies

=► dWi = dW\ -  Ai (t)dt 

=► dW2 = dW2 -  A2{t)dt

Substituting dW\ and dW2 above in dS(t),

and grouping terms together

=> dS(t) = S(t) [(Ua2 + aatpB(t, T) +  a2B 2(t, T) — r(t)) dt]
-S{t)  [(((j4 + paB(t,T)) Ai(t)) dt]
-S ( t )  dt]

+S(t) \iat + paB{t,T))dWl + aB{t,T)s/ r ^ d W 2 .

Under Q risk neutral T forward measure, S  has to be a local Q martingale, 

hence the drift coefficient has to be zero.

So

Ua*+<j<7tpB(t,T)+a2B 2( t ,T ) -r ( t ) -cM t) -< rB ( t ,T )  (pXtf) + -  f?X2(t)\

so we choose Ai(t), X2(t) for a unique equivalent martingale.

Let pXi(t) + y/l — p2X2(t) = 1

=» A,(t) =  where at ^  o.

For the A2 solution, substitute Ai in
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A2 = C1 jWhere — 1 < p < 1.
v 1—p2

Hence under Q measure

dS{t) = S(t) (at + paB(t, T)) dWi(t) + aB{t , T ) \ / l  -  p2dW2(t) (3.8)

without any effect on W3 the Brownian motion for the stochastic volatility 

process.

3.2 A ppendix A: P roof of Vasicek Zero bond  
price

The Vasicek bond price process is of the form 

F(t,r,T) = A(t,T)exp(-B(t,T)r).

Taking partial derivatives of F(t , r; T),

Ft = At(t, T) exp (- B ( t , T)r) -  A(t, T)Bt(t, T)r exp (~B(t, T)r)
= At(t, T) exp (-£(£ , T)r) -  Bt(t, T)rF,

Fr = -A(£,T)£(£,T) exp (-£(£ , T)r)
= —B(t,T)F, 

Frr = A(t ,T)B2{t ,T)exp(-B(t ,T)r)  
= B2(t,T)F.

Substituting the partial derivatives above into the term-structure equation
(3.3),

At(t, T) exp T)r) -  Bt{t,T)rF -  (b — ar) B{t,T)F + %B 2(t,T)F -
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rF  = 0

=*• -  Bt(t, T)rF -  (b -  ar) B(t, T)F + £ B 2(t, T ) F - r F  = 0.

-  Bt(t,T)r -  (b -  ar) B(t,T) + B \ t , T ) -  r = 0 

=► ~ bB(t,T) + %B2(t,T) -  (Bt(t ,T) + 1 -  aB(t,T))r  =  0.

A(T,T) =  1 and B(T,T) = 0 satisfies terminal condition F(t,r-,T) — 1 

if r =  0 or 1 +  Bt(t, T) -  aB(t, T) = 0, B(T, T) = 0.

-  bB(t, T) + y  B2(t, T) = 0, A(T, T) = 1. (3.9)

We solve Bt(t,T) — aB(t,T) + 1 = 0, where B(T,T)  = 0

Bt(t,T) — aB(t,T) = -1 . (3.10)

Multiplying through by the integrating factor

exp (a(T — t)) Bt(t, T) — a exp (a(T — t)) B(t , T) = — exp (a(T — t))

gives 

so

or

d(B(t, T) exp (a(T — t)) = — exp (a(T — t) ) , 

=+ B(t, T) exp (a(T — t)) = — J  exp (a(T — t)),
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B(t,T)exp(a(T — t)) =  K  + -  [exp (a(U — t))]J

= K  + -  [exp (a(T — t)) — 1]
a

When t = T, 0 = k +  0, so k =  0, and

B(t , T) exp (a(T — t)) = — [exp (a(T — t)) — 1],

B it , T) = — [exp (a(T — t)) — 1] exp i—a{T — t) ) , a

B{t,T) =  i  [1 — exp (—a(T — t))], a

exp {—a{T — t)) = 1 — aB{t, T). 

from (3.4) = bB(t,T) -  % B \ t ,T )

=► £  ds = K  + bK B (s’T )'ds ~ t  if  s2(*.n *
=!■ In A(f, T) = K  + b f f  B(s, T ) d s - f  jf  B2(s, T), ds

when t = T, A(T,T) = 1,=>K = 0.

(3.11)

(3.12)
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In A(t,T)
2

b I  B ( s , T ) d s - ^  /  B 2(s,T)ds
t t
T T

bI  a ^  ~~ 6XP ~ dS~^a? J  ^  ~ GXP ^~a T̂  ~ Ŝ
t t

T T

a /  ̂  _ 6XP ~ dS~%a? J  ̂  _ 6XP ( ~ a (T  ~  Ŝ 2

ds

ds

■ -  [s — -  exp (—a(T — s)) a a
2 15 -----exp (—a(T — s)) + — exp (—2 a(T — 5))a 2 a

T — -  — ( t  — -  exp (—a(T — t)) 
a \ a

o
2a? T  ~ a +  'kt ~  (* ~  a eXf> _̂ a T̂ ~ t^ + ‘k  6XP (-2 a (T “

(T — t )  (1 — exp (—a(T — t)))a
a
2a?

(T -  t) -  -  (1 -  exp (—a(T -  t))) +  (1 -  exp (-2 a(T -  t)))a 2a

Also from (3.12) exp (—2a(T — t)) = 1 — 2aB(t, T) + a2B?(t, T) 

Substituting (3.11) and (3.12) for In A(t,T)  above
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( T - t ) -  2B(t,T) + — (2aB(t,T) -  a2B 2(t ,T)) 2a

(T — t) — 2B(t,T) + B(t, T) - aB2(t ,T)

= ((T -  t) -  B(t,T)) b _ a j _  
a 2 a2 + T ) ,

or

A(t, T) =  exp ([((T -  f) -  B(t, T)) [J -  £ ]  +  £ B 2(t, T)])



Chapter 4 

Closed form Pricing o f Credit 
Spread Call

We now focus on a European credit spread call option G on S with maturity 

T and strike K 

So G(S(T)) = (S(T) -  K)+.

The risk-neutral pricing formula gives 

nc(t) = P(t,T ) .E q ((S(T) -  K f  |F().

Under the Q measure

nc(t) = P{t,T).EQ U s {T )  -  k ) + |F() .

By the law of iterated conditioning,

Eq ( ( s (T) -  k ) + |F()  =  Eq ( eq  ((5 (T ) -  k ) + |K ) (<u< t)  | f (Y

conditional on (cru)t<u<T realised volatility,

Prom (3.8)

32
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S(t) = 5(0) exp ( £(<) -  i « 2(f) ) (4.1)

where

m  = fo K  + <rB(u,T)p) dW^u) + j ‘a B ( u , T ) ^ T ^ d W 2(u).

So S(t) is a Gaussian variable with mean = 0 and variance

t t
v2 = J  (<ju + aB(u,T)p)2 du + J  cr2B 2(u,T)(l — p2) du. (4.2)

4.1 General Pricing Formula

nc(t) =  P(t,T)-E [ ( s (T )  -  k ) +\Ft]

= P(t, T).Eq ( e q  f ( s ( T )  -  k ) + |(<t„)(<u<t )  |F t)  ,

by iteration of conditional expectation 

Substituting (4.1) in IIc(t) above

n c(«) =  Eq [P(t,T).5(0) exp (£(T) -  i V2(T)) -  KP ( t ,T)|Ft] .

Here Q denotes the risk neutral T forward measure, and P(t,T) the price 

process of a zero coupon bond.
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The expectation is separated into two terms: 

n c(t) = Ei — E2 , 

where E, = E$ [p(t, T)S(0) exp (?(T) -  ±u2(T)) .1S(T)>K

and

E2 = KP(t ,T)Q (s(T) > k \

= KP(t,T)Q  (s(0)exp U{T) -  \ v 2(T) \ > K  

= KP(t,T)Q (t(T) -  \ v \ T )  > In ( J j -

= KP(t,T)Q  

= KP(t,T)Q

\S{0)J  2A T )  

1-£(T) < 1„ ( M  j _ t v \ T )

Since 5(0) = pŜ 0̂  we have

E2 =  KP(t,T)Q  [-{(T) < In -  §v*(T)]

Divide £(T) by y/v2(T) to normalise to N{0,1).

Eo —
KP(t,T)Q ( -  \ A T )

= KP(t ,T )N  I -  

=  KP(t,T)N(d),

v{T) v(T)

~ \ v \ T )
v(T)
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where
/  inf—̂

A = - (  Uf><°
v(T)

For Ex =  Eq [p (t,r)S (0 )exp (« r) -

£(t) is a normal random variable with law N(0,vt2).

By normalising we obtain Z = which has law N(0,1).

Ei = P(t,T) J  S ( 0 ) . e x p ( - \ v 2(T) + Z v ( T ) Y - ^ = e x p ( - ^ ) d Z
—oo 

d
= P(t,T) J  S(0).-^=exp f - J  ( z  -  v(T))2)  dZ.

Compute Ei by letting U — Z — v(T)

=>E1 = P{t, T ) f ^ T) S ( 0 ) .^  exp ( - | U2) dU. 

d depends on the evaluation of the indicator function 

=» Ei = P{t ,T)S{0).N(d-v(T)) .

Substituting the definition of d as in (4.3) in Ei

E t = P(t,T)S(0).N I  „ ( T ) -----------v "̂>

=  P (( ,T )S ,( 0 ) J V -------— (0,T) 2 '
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k1(/c.p[o?r) )+2l,2(-̂ ) 
v{T)

Therefore

n c (<) =  ( -

So for a European Call on credit spread 

IIc(0) = ^ ^ ( 0 ) 1 ^ )  0 < t < T). 

let v2 = be average variance

—KP(t ,T)N Kp{o]t) ) 
v(T)

n c (0) = E (Cbs ( s ( 0 ) ,K , 0 , V t ? , r )  |tJ2)  , ( 4 .4 )

where Cbs is the Black-Scholes formula for a European Call Option.

From (4.2) we need to find the distribution of Average variance v2 

where v2(T) = J0T (cru + crB(u,T)p)2 du +  / Qr  a2B2(u,T) (1 — p2) du. 

v2{T) depends on o\ a mean reverting volatility process of the SDE form 

in (1.2), (1.3) or (1.4).

The distribution of v2 can be obtained from the inversion of the moment 

generating function of the average variance.

One obtains that the moment generating function of the average variance,

v2 i.e. y  is /(A),

where
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7(A) =

= E  (exp (—Xv2))
/  /  T T

= E  I exp I J  (au + crB(u,T)p)2du + - ^  J  a2B2(u,T)(l -  p2) du

exp | J  g2B2(u,T)(1 -  p2)du j E (exp ^  J  {a u + aB(u,T)pY du

since a2B2(t,T) (1 — p2) is deterministic, see B(t,T)  as in (3.4).



Chapter 5 

European Call Vasicek  
Stochastic Volatility M odel

5.1 A nalytic Credit Spread Call under no cor­
relation

In this section we derive the closed form formula of a European call on the 

credit spread under the assumption of zero correlation between the credit 

spread and the short rate.

We model the short rate and the stochastic volatility of the spread as a 

Vasicek process.

We know from chapter 4 that the moment generating function of the 

average variance is given by

/(A) = exp J  a2B 2(u, T)( 1 -  p2) du ^  E  ^exp J ( v u + crB(u, T)p)2 du

(5.1)

38
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Let p = 0, then the moment generating function of the average variance from

(5.1) is

/(A) = exp J cr2 B 2(u,T) du j E  ^ exP-jT J , (5.2)

where a2B 2(u,T) is deterministic and the SDE for a2 is of the Vasicek form 

as in (1.2).

i.e. da2 = 9 (c — a2) dt + aidW^t).

We now find a closed form solution for a2 using L.C.G Rogers[1995] 

paper.

Let Kt = f* 9 du,

=>Kt = 9t.

Multiplying the SDE for of in (1.2) by exp (Kt), i.e. exp (9t), and using 

the product rule,

d (exp (9t) of) =  d (exp (9t)) .of + exp (9t) .dcr2jt  < a2, exp (9t) >
= 9 exp (9t) .cr2dt +  exp (9t) [9cdt — 9a2dt + a\dWz(t)\
= exp (9t) [a\dW$(t) +  9cdt\ .
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Integrating d (exp ($t) of) above,

of = exp (—dt)
t

of + J  exp (du) (ai dWz(u) +  dcdu) (5.3)

Differentiating equation (5.3),

= -dexp(-d t)
t t

a% + 0c J  exp (du) du + J  exp(du)aidWs(u) dt

+ exp (—6t) [6cexp (dt) dt + exp(6t)ai dWs(t)]

=> dof = d(c— of) dt + aidW3(t).

Hence equation (5.3) is the solution to dof = 0 (c — of) dt + a\dWz(t) from 
( 1.2).

From L.C.G Rogers[1995],

of =  exp (—dt) of + /J  exp (du) (ai dW$(u) +  dcdu)

is a Gaussian process with

mean

fit = E  (of) = exp (—dt) jof +  f* exp (du) dc, du 

and covariance 

p(s,t) =  cov(a2s,cr2).

By Ito’s Product rule, the covariance is
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p(s, t) = exp (—Ot — Os) f*At exp (2Ou) af du.

Thus f* crj du has Normal Distribution N(m(t)Ji'(t)), where

!(t) = J  exp (—Ou) | Oq + J  exp (Os) Oc, ds 
o V o  ,
t

= J  exp (—Ou) (<Tq + c (exp (Ou) — 1)) du 
o
t

= J  exp (—Ou) (<Jq — c) du 
o

=  c t - Q  ( a g - c ) ( e x p ( - f t ) - l ) ) ,

and the variance i/(t) is obtained by setting t = s in cov(a^,a^) to obtain
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t u

Vt = 2 J  du J  ds J  a\ exp (2Oy) exp (—Os) exp (—Ou) dy
0 0 0 

t u
= 2a\ J  du J  dsexp (—Os — Ou)

0 0 
2 t u

= j  du J  exP (— ~ ®u) [exP (29s) — 1] ds

^  exp (2 6y)



CHAPTER 5. EUROPEAN CALL VASICEK STOCHASTIC VOLATILITYMODEIAZ 

From (5.2) we evaluate

E (exp ( :r Io  °'ldu))>

where a\ is the solution to the Vasicek SDE in (1.2).

Let I*(X) = E  (exp / QT a\ du) ).

We already know that 

f*aZdu~N(m(t) ,i /(t )) ,

=* "t Jo °u d u ~  N  (y m (t) , £ v { t j )  .

Hence

/*( A) =  E  |exp  J  al  du j  j

=  exP |  ) .

which is the moment generating function of N  (^ ra (T ), jvv(t)).

Hence the moment generating function for /(A) from (5.2) is

/(A) = exp (■=£ Jq a2B2(u,T) du) exp (^ m (T ) + \ ^ ^ ( t ) ) -

We can express this moment generating function as /(A) = E  (exp (—Xv))

where v  is the average variance.

Hence /(A) = f ^ e x p  (—Xv) m(v) dv.

The distribution of the average variance is obtained by the classical inversion
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theorem, written as

TO(S) =  2® fc-,™ eXP (AS) 7(A) dX fOT 0 € [°> °°)-

This integral is also known as the Bromwich Mellin contour integral, where 

c is a vertical contour in the complex plane chosen so that all 

singularities of m{v) are to the left of it.

Make the change of variables A = c + iz in the above integral to reduce 

it to the Laplace inversion integral:

oo

m(v) = exP ^ )  J  exp (—ivz) I(c +iz) dz
—oo 
oo

= J  (^(c *z))cos^ z ~  ^ (Hc +  ®z)) sinuz] dz
—oo

where 5? (I(c + iz)) and S( / (c  +  iz)) are real and imaginary parts of 

I(c +  iz) respectively.

The Abate and Whitt numerical inversion method reduces the Laplace 

inversion integral to give us the density of the average variance as 

m(v) = 2exPctJ J0°° 5R (/(c + iz)) cos vz dz.

Hence the European call on credit spread, where the correlation between 

the credit spread and the short rate is zero under a Vasicek stochastic
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volatility process, is

n c (0 )  =  J c BS( S ( 0 ) ,K ,0 , ^ ,T ) m ( v )  dv 
0

r (  - 7 \
= I Cbs(S(0),K,0,\/v ,T) I 2 P I %t(I(c + iz))co$vzdz I dv, 

where 5ft (/(c + iz)) is the real part of /(c + iz).

The numerical inversion techniques can be performed using techniques from 

Mark Craddock, David Heath and Eckhard Platen [2000].

5.2 Num erical Credit Spread Call Price un­
der no Correlation

We price numerically the European call on credit spreads with no correlation 

between the credit spread and the Vasicek short rate under Vasicek stochastic 

volatility by Monte Carlo simulation. The Vasicek variance process is 

simulated over a thousand random samples of the standard normal 

distribution. An average variance is calculated and substituted in the Black 

Scholes call price formula to obtain a simulated call price.

As the convergence rate of the Monte Carlo estimate is ^==, the variance
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reduction by the antithetic method is used to increase precision and speed 

up the numerical computation. The method of antithetic variates is based 

on the observation that if sample e is N(0,1) so is —e. An average 

variance is then calculated from the anithetic standard normal variables

(e> -<0-

About 100 simulated call prices are obtained for antithetic pairs 

of average variances (V?, Vk)- Two sets of average call prices are obtained 

and the best estimate of the call price is the mean of the 2 average 

call prices.

From (1.2), at the volatility process is of the Vasicek form 

dof — 6 (c — of) dt + aidWs(t)

Let V; =  a?

=»• dV? = 0 ( c -  Vt') dt + aidWz{t).

For much better accuracy we simulate the closed form solution of the above 

Vasicek SDE

K+ij =  « P  M A f ) + 0 ( c -  V?j) A t  + art  y /1 (5.4)

where e is random sample from N(0,1).

Given a 1000 steps of interval A t we end up with total time T, where
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T  = AtL  and A t  is the time interval and L is the number of steps i.e.

1000 in this case.

We calculate a 1000 V*j by simulating from the random sample e* ~  iV(0,1) 

in equation (5.4).

For each e*, we generate the — e* sample values, which is used to calculate 

another 1000 V*k using

V-+1,k = VZ, exp (-0A t) + 9 ( e -  V-k) A t  -  (5.5)

We obtain two sets of average variances:

Vj = \  Ylj=i Vi*j from €{ random samples of N(0,1),

14 = x Vik from ~ ei random samples of N(0,1), 

where L = 1000 and for each SDE we use the Riemann sum 

approximation of the integral. We calculate 100 Vj and calculate the 

average call price as yi = £ c bs{y/Vi) 

where n = 100

Also calculate 10014 and calculate the average call price as y2 — ~ Ylk=i CBs{y/Vk) 

where n — 100

N.B in equations (5.4) and (5.5) all instances of negative Vj or 14 are
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discarded.

Hence the best estimate of the European call price is

5.3 Analysis o f C losed/N um erical Call Prices 
under no Correlation

In this section we carry out a sensitivity analysis of the closed form and the 

Monte Carlo simulation of European call credit spread prices for zero 

correlation between the credit spread and the Vasicek short rate 

under the Vasicek stochastic volatility process 

da% = 0 (c — of) dt + a\dWz(t)

where 9 is the speed of mean reversion, c is the long term mean, a\ is the 

volatility of variance and of at t = 0, the initial variance.

See Appendix A at the end of this chapter for a table of closed form and 

Monte Carlo credit spread call option prices.

For the closed form solution, we compute the credit spread option prices 

for contour values c = 0.05 with inner upper bound of average variance 

density integral set to 25 and outer bound integral set to 60. See Ted 

Huddleston(1999) on numerical inversion of Laplace transforms on the 

choice of contour values and the inner upper boundary of the average
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variance density integral. The average computation time is 20 seconds.

The use of larger contour values or average density integral upper bounds 

increases computational time over 5 minutes which we find unacceptable 

for a closed form solution. This increase in computation time is due to 

the large terms obtained in the expansion of the call spread option price 

integral. The optimum choice of the upper bound of the outer integral is 

non trivial as our Maple computation package cannot compute option price 

when it is set to infinity. We choose upper bound of 60 for which the double 

integral credit spread price formula converges to the Monte Carlo 

simulation prices.

For Monte Carlo simulation, the variance reduction method of antithetic 

variates is employed which increases our computation time by 2 minutes 

to 27 minutes on average, but does not improve the price accuracy by much. 

For convenience we set the initial variance in the Monte Carlo Vasicek 

equation to the long term mean.

We investigate the effects of stochastic volatility mean reversion 

parameters and no correlation between the credit spread and the short 

rate on the credit spread option prices obtained from either analytic form 

or numerical form.



CHAPTER 5. EUROPEAN CALL VASICEK STOCHASTIC VOLATILITYMODEL50

For the numerical form increasing the mean reversion reduces the credit 

spread price as the variance decreases. Increasing the long term mean, initial 

variance or volatility of variance increases the credit spread option price.

For the closed form, increasing the long term mean, the initial variance or 

volatility of variance increases the credit spread option price. An increase in 

the mean reversion reduces the credit spread option price due to the variance 

increasing.

The difference in prices between closed form and numerical form prices is 

within the convergence rate of the Monte Carlo estimate =.

5.4 A nalytic Credit Spread Call w ith corre­
lation.

In this section we derive the closed form formula of the European call credit 

spread price for the case where there is correlation between the credit spread 

and the short rate. Again we model the volatility and the short rate with a 

Vasicek process.

From (4.2) we need to compute the dynamics of the process

x t =  (ct +  apB(t,T))2
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where the dynamics of the volatility process is given by 

dof = 6 (c — of) dt -f- a\dWz{t).

Although the dynamics of the process X t can be obtained using ltd’s lemma 

there is little hope of obtaining an explicit expression for its distribution. 

We therefore use as our analytical proxy the standard Vasicek type SDE

dXt = e { c - X t)dt + aidWt

with initial condition X 0 = <70 +  (JpB(0,T).

So as in the no-correlation setting, one can compute an analytical 

solution, which we compare with the numerical results.

Using L.C.G Rogers[1995] approach as in previous section, we now find a 

closed form solution for X t as

X t = exp (—6t) X 0 +  Jq exp (6u) (ai dWz(u) + 6cdu)

X t is a Gaussian process with 

mean

Ht = E  (X t) = exp (—Ot) X q +  f* exp (6u) 0c, du 

and covariance 

p(s,t) = cov(Xa,X t)
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By ltd’s Product rule, the covariance is 

p(s, t) = exp (—9t — 9s) f*At exp (26u) a\ du.

Thus f * X 2du has Normal Distribution N(m(t),v(t)) where

m(t) = I pudu
t

f

du

du

= J  exp (—9u) Xo +  J  exp (6s) 9c, ds 
o L 0
t

= J  exp (~9u) (Xo +  c (exp (9u) — 1)) 
o
t

= J  exp (—9u) ((cr0 +  apB(0, T))2 + c (exp (9u) — 1)) du 
o

= ct -  Q ((cro + vpB(0, T ) f  -  c) (exp (~9t) -  1)^

and the variance v(t) is obtained by setting t = s as in the previous

section to obtain

Vt = M$ [29t — exp (—29t) + 4 exp (—9t) — 3].

Hence the moment generating function /(A) for the correlation case from

(5.1) is

/(A) = exp Jq a2B 2(u,T)( 1 — p2)du  ̂ exp ( ^ m ( T )  + \^ zv ( t )Sj .
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We apply the Abate and Whitt numerical inversion method as in 

the previous section to give us the density of the average variance as 

m(v) = 2^ ° ^  J0°° 3ft (I(c + iz)) cos vz dz, 

where 3ft (/(c +  iz)) is the real part of I(c + iz).

Hence the European call on credit spread, for correlation between the credit 

spread and the short rate under a Vasicek stochastic volatility process, is

oo

nc(0) = J Cb s ( s (0),K,0,Vo,t )  m(v) dv 
0y ~  \

= /  Cbs îS'(O), A, 0, I 2—^ ^  I $l{I(c +iz)) cos vzdz  I dv,

where 3ft (/(c + iz)) is the real part of I(c +  iz).

5.5 Num erical Credit Spread Call Price w ith  
Correlation

We price numerically the European call credit spreads with non zero 

correlation between the credit spread and the short rate by Monte Carlo 

simulation.

We model the short rate with the SDE as in (3.2)
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dr(t) =  (b — ar(t)) dt + a (pdWi(t) -f y/l  — »

where p is the correlation between the short rate and the credit spread.

We also assume (1.2), so at the volatility process is of the Vasicek form.

do\ =  6 (c — of) dt + a\dWs{t). 

Let Vt* = of. 

Then dVt* = 6 (c—Vt*)dt + a\dWz{t).

We also evaluate the Vasicek SDE using an Euler scheme,

t& U = V'j exP +  0 (c -  K j) Ai +  al£l<f 1 ~  (5.6)

where ei* is a random sample from N(0,1).

From (3.1) the credit spread SDE is of the form 

dS(t) = S(t) (Ua\dt + atdW^t)), 

where U = no +

We simulate the credit spread SDE by

Si+i,j = Si j  + &i,j {Uo^At + aty/At€2i  ̂ , (5-7)

where C2 i is the random sample from N(0,1) independent of e^.
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We simulate the short rate SDE by

ri+i j  = exp ( -aAt)  + -  (1 -  exp (-aA t))
a

+a f ^ - e x P(-2aAt )  +

where €31 is the random sample from N(0,1) independent of eu and 62*• 

In our simulation, we take a 1000 steps of interval At.

We obtain the average variance by 

V- = -  V L V*.VJ L A,j=l vi,j'

We obtain the average spreads :

c   _1_ c~  L Atj=1 °i,ji

and the average short rates :

Lj = l ^ j= i rM >

where L = 1000. For each SDE we use the Reimann sum approximation 

of the integral.

We then calculate 100 of Vj, S j , fj and then 

calculate the call credit spread price for n = 100 as 

Vl = ±TZ-lCBs(Si ,K ,r j ,y ff i) .
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5.6 Analysis of C losed/N um erical Call Prices 
w ith Correlation

In this section we carry out a sensitivity analysis of the closed form and the 

numerical form of European call credit spread prices with correlation between 

the credit spread and the short rate under a stochastic volatility process.

The volatility process is of the form da% = 6 (c — of) dt +  aidWz(t), 

where 6 is the speed of mean reversion, c is the long term mean, a\ is the 

volatility of volatility and Gq the initial variance.

Appendix B at the end of this chapter contains the table of closed form 

and Monte Carlo credit spread call option prices for various parameter 

values.

We compute credit spread option prices using choice of contour values and 

upper boundary of inner integral as mentioned previously in the no 

correlation sensitivity analysis on closed and numerical form. The average 

computation time is 20 seconds.

Once again we observe that large contour values or upper bounds for 

inner integral, increases computation time with no convergence. We try 

different upper bounds for the inner integral and realise that values beyond 

200 result in an indefinite integral. We choose 60 as it converges much closer
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to credit spread call prices produced by the Monte Carlo simulation.

The Monte Carlo simulation is done without the variance reduction method 

of antithetic variates. Our initial trial with variance reduction increases our 

computational time to several hours with no convergence. Hence all 

simulation results are obtained without variance reduction.

We analyse the effects of the mean reversion parameters and correlation on 

either the analytic or numerical credit spread option pricing model. For 

the Monte Carlo approach, increasing the long term mean, the initial 

variance and the volatility of variance drives up the credit spread call price.

Increasing the speed of mean reversion decreases the credit spread call price.

In general correlation regardless of whether its positive or negative results in 

higher credit spread call prices than the no correlation case. Average 

computation time is about 1 hour. We also realise that the correlation effect 

increases the computation time of the credit spread option price.

The analytical form produces similar effects as observed for the 

numerical form where increasing the long term mean, the initial variance 

and the volatility of variance increases the credit spread call price. Increasing 

the speed of mean reversion decreases the credit spread price as the volatility 

decreases. Average computation time is about 10 seconds.
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The correlation effect is the same for both the analytic and numerical 

models as increase in positive correlation drives up the credit spread price 

but increase in negative correlation reduces the credit spread price.

We observe that at high long term mean variances or initial variances, the 

Monte Carlo credit spread call prices deviate from the closed form call prices.

In the case of low long term mean variances or initial variances the price 

difference between models for numerical and closed form is within 

the convergence rate of the Monte Carlo estimate

5.7 A ppendix A: Table o f Call Prices under 
no correlation

Table of closed form and Monte Carlo simulation of European call credit 

spread prices for no correlation between the credit spread and the Vasicek 

short rate under Vasicek stochastic volatility process.

6 is speed of mean reversion,

<7$ is the initial variance, 

c is the long term mean variance, 

ai is the volatility of volatility,

Given underlying spread price = 0.3, strike = 0.1, risk free rate= 0.06.
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Time to maturity is 6 months.

e °0 c ai Closed form Price Monte Carlo Price
0.05 0.05

0.06
0.25

0.05
0.06
0.25

0.10 0.2032125907
0.2033142221
0.2052549110

0.2029554558
0.2029554626
0.2029716572

0.2 0.2
0.3
0.6

0.2
0.3
0.6

0.40 0.2048549003
0.2058817398
0.2089932438

0.2030120233
0.2030846868
0.2037329933

0.3 0.3
0.4
0.8

0.3
0.4
0.8

0.60 0.2060320831
0.2070648231
0.2072768672

0.2031974429
0.2033495644
0.2046975370

0.5 0.09
0.10
0.60

0.09
0.10
0.60

0.20 0.2036416106
0.2037434571
0.2089012470

0.2029564758
0.2029567698
0.2036378389

0.5 0.09
0.10
0.60

0.09
0.10
0.60

0.40 0.2037306403
0.2038325310
0.2089925762

0.2029725462
0.2029745372
0.2037203970

4 0.09
0.10
0.30

0.09
0.10
0.30

0.40 0.2037269257
0.2038288148
0.2058773283

0.2029572654
0.2029576826
0.2030178641

5.8 A ppendix B: Table o f Call Prices w ith  
correlation

Table of closed form and Monte Carlo simulation of European call credit 

spread prices for correlation between the credit spread and the Vasicek short 

rate under Vasicek stochastic volatility process.
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9 is speed of mean reversion,

V0 is the initial variance, 

c is the long term mean variance, 

ai is the volatility of volatility,

p is the correlation between credit spread and short rate,

Si is the initial credit spread,

Vi is the initial short rate,

The constants a and b in the Vasicek short rate SDE are set to 0.5 

for this Monte Carlo simulation. Time to maturity is 6 months.
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0 ^0 c a i P Si n Closed form Monte Carlo
0.5 0.09 0.09 0.20 0.2 0.3 0.06 0.2032569813 0.2131646733

-0.2 0.2031297228 0.2131182330
0.4 0.2033257050 0.2132029562

-0.4 0.2030711819 0.2131114595
0.5 0.09 0.09 0.40 0.2 0.3 0.06 0.2046254670 0.2171814597

-0.2 0.2041134871 0.2175215639
0.4 0.2049023533 0.2169406820

-0.4 0.2038782906 0.2176155111
4 0.09 0.09 0.40 0.2 0.3 0.06 0.2041613430 0.2063988377

-0.2 0.2039115854 0.2070990111
0.4 0.2042893246 0.2059812749

-0.4 0.2037898015 0.2073760953
0.5 0.10 0.10 0.20 0.2 0.3 0.06 0.2032686893 0.2141766567

-0.2 0.2031414237 0.2141107070
0.4 0.2033374172 0.2142394880

-0.4 0.2030828793 0.2141090925
0.5 0.10 0.10 0.40 0.2 0.3 0.06 0.2046372540 0.2161956656

-0.2 0.2041252448 0.2153616905
0.4 0.2049141562 0.2160777968

-0.4 0.2038900345 0.2154665130
0.5 0.60 0.60 0.20 0.2 0.3 0.06 0.2038549632 0.2169431960

-0.2 0.2037273303 0.2170657790
0.4 0.2039238889 0.2169064108

-0.4 0.2036686170 0.2171518108
0.005 2.0 2.0 0.20 0.2 0.3 0.06 0.2032333601 0.2702459460

-0.2 0.2030886349 0.2701967694
0.4 0.2033102632 0.2702917256

-0.4 0.2030230042 0.2701934584
0.005 2.2 2.2 0.20 0.2 0.3 0.06 0.2032347983 0.2790800248

-0.2 0.2030911715 0.2790181936
0.4 0.2033128024 0.2791316490

-0.4 0.2030255402 0.2790080588
0.005 3.0 3.0 0.20 0.2 0.3 0.06 0.2032449518 0.3166480382

-0.2 0.2031013177 0.3165493624
0.4 0.2033229598 0.3167163370

-0.4 0.2030356832 0.3165190206



Chapter 6 

European Call C ox/R oss  
Stochastic Volatility M odel

6.1 A nalytic Credit Spread Call under no cor­
relation

In this section we derive the closed form formula of a European call on 

credit spread for zero correlation between the credit spreads and the 

short rate. We assume a Cox, Ingersoll and Ross stochastic volatility 

process and model the short rate via Vasicek’s model.

From (5.1) with p = 0, the moment generating function of the average 

variance is

/(A) = exp J0T a2B2(u, T) du  ̂ E  (exp =£ / Qr  of du j ,

where a2B2(t, T) is deterministic and the SDE for a2 is of the Cox, Ingersoll

and Ross form as in (1.3)

i.e. da2 = 0 (c — of) dt +  a\GtdWz{t).

62
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Let /*(A) =  E  (exp / 0T crlduj'j 

and Vt* = .

Then J*(A) = E  [exp ( -  /Qr V(s) ds)|, 
where Vt* = follows the process 

dVt* =  (£0c -  0VJ*) dt +  axJii:y/V?dW3.

Using the Cox, Ingersoll and Ross result in Ball and Roma (1994),

a closed form for /*(A) is

/*(A) = exp (N*(T) + M*(T)Vt*),

where

jV*m = f l„ ( 3 2 f ^ 2 ) i l ) ,

M ’(T) =

7 = y ^ 2 + 2 (y)of,

flf(T) = 27 +  ((0 -  7) (1 -  exp (-tT ))).

Hence the moment generating function under the Cox, Ingersoll and Ross 

stochastic volatility model is

/(A) =  exp ( V  Jo T) du )  exp (N'(T) + M*{T)Vt%

where N*(T) and V*(T) are as above.

Let v be the average variance = L SS Wl + o 2B \u ,T ) )  du
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for zero correlation from (4.2).

We already know that the moment generating function can be expressed 

as

7(A) = E  (exp (—At;)).

Therefore /(A) = J0°° exp (—At;) m(v) dv.

We apply the Abate and Whitt numerical inversion method for inverse 

Laplace transforms to invert the moment generating function to obtain the 

density of average variance under the Cox, Ingersoll and Ross stochastic 

volatility model as

m(v) =  2exPCI; J0°° 5ft (7(c + iz)) cos vz dz, 

where 5ft (7(c 4- iz)) is the real part of 7(c + iz).

Hence the European call on credit spread, where correlation between credit 

spread and short rate is zero under the Cox, Ingersoll and Ross 

stochastic volatility process, is

oo

nc(0) = JCbs(S(0) ,K,0,V*,T)  m(v) dv 
0

7 (  - 1  \— /  Cb s(S(0), 7f, 0, V&,T) I 2exP ̂  / sft(/(c -}- iz)) cos vzdz  J dv,
0 \  0 /  

where 5ft (7(c -f iz)) is the real part of 7(c +  iz).
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6.2 Num erical Credit Spread Call Price un­
der no Correlation

We apply the numerical approach of Monte Carlo simulation to price 

European call credit spreads with no correlation between the credit spread 

and the short rate under Cox, Ingersoll and Ross stochastic volatility. The 

short rate is modelled by a Vasicek process.

Prom (1.3), at the volatility process is of the Cox, Ingersoll and Ross form 

dcrf = 0 (c — of) dt + aicrtdWz{t).

Let Vt* = o f, then

=* dV* = e { c -  Vt*) dt + aiy/V?dWz{t).

Discretizing the above SDE,

where e* is random sample from N(0,1).

We simulate over a 1000 steps from the random sample €i N( 0 ,1).

The variance reduction method of antithetic variates is employed, where for 

each Ci, we also calculate the — e* sample values, which is used to 

calculate a 1000 V*k using
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Two sets of average variances are calculated as follows:

Vj = jr J2j=1 K*j from e* random samples of N(0,1),

Vk = X)it=i Vi,k from ~ ei random samples of N(0,1), 

where L = 1000.

We calculate 100 Vj and calculate the average call price as y\ =  ^ Y^=i CBs(y/Vj), 

where n = 100.

We also calculate 100 Vk and calculate the average call price asy2 = ^ Ylk=i ^Bs(yfVk) 

where n = 100.

Hence the best estimate of European call price is

6.3 Analysis o f C losed/N um erical Call Prices 
under no Correlation

We analyse the sensitivity of the closed form and the Monte Carlo 

simulation of the European call credit spread prices for zero correlation 

between the credit spread and the short rate under Cox, Ingersoll and Ross 

stochastic volatility process, 

dcrj = Q(c — crt)dt + a\atdWz{t),

where 9 is the speed of mean reversion, c is the long term mean, ai is the 

volatility of variance and Oq the initial variance.
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See Appendix A at the end of this chapter for the table of closed form and 

Monte Carlo credit spread call option prices.

In the analytic case, the credit spread prices are computed using contour 

values c = 0.05 and inner upper bound of average variance density 

integral of 25 as mentioned in previous chapters. The choice of the outer 

bound integral is set to 20.

Large contour values or upper bounds for average density integral results 

in more expansion terms for call spread price integral, which increases 

computation time to over 5 minutes. We choose a value of 20 for the 

upper bound of the outer integral at which the analytic form converges 

to the Monte Carlo estimate. Higher upper bound values result in an 

undefined integral due to singularity. The average computation time is 30 

seconds.

Monte Carlo simulation is used for the numerical form. A variance reduction 

method of antithetic variates is employed to improve the simulation. We 

observe close credit spread prices obtained for variance reduction and 

without variance reduction techniques, but at the expense of increased 

computation time. As in previous chapters we set the initial variance in 

the Monte Carlo Cox, Ingersoll and Ross equation to the long term mean.
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An additional table of credit spread option prices for the Monte Carlo 

simulation without variance reduction is listed in appendix A to show that 

including variance reduction does not improve the credit spread price 

considerably for the increased computation time. The average computation 

time is about 27 minutes.

We investigate the effects of mean reversion parameters for stochastic 

volatility and no correlation between the credit spread and the short 

rate under the analytic or numerical pricing models.

For both numerical and analytic form, increasing (decreasing) the long term 

mean, the initial variance of credit spread or the volatility of variance 

increases (reduces) the credit spread option price. Increasing (decreasing) 

the speed of mean reversion reduces (increases) the credit spread option price 

as the volatility of variance is reduced (increased).

The difference in European call prices between the analytic and the Monte 

Carlo pricing models is within the convergence rate of the Monte Carlo 

estimate ^=.
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6.4 Num erical Credit Spread Call Price w ith  
Correlation

In this section we price numerically European call credit spreads with 

correlation between the credit spread and the short rate under Cox, Ingersoll 

and Ross stochastic volatility by Monte Carlo simulation.

We model the short rate in (3.2) by a Vasicek process, 

dr(t) = (b — ar(t)) dt + a  (^pdWiit) +  y / l — p2dW2 (t)^j, 

where p is the correlation between the short rate and the credit spread.

From (1.3), at the volatility process is of the Cox, Ingersoll and Ross form 

dcrf =  6 (c — of) dt +  ai(jtdWz{t).

Let V' = of

=*• dVt‘ = 8 ( c -  Vt‘) dt + aiy/V^dW3(t).

Discretizing the above SDE,

where eij is a random sample from N(0,1).

From (3.1) the credit spread SDE is of the form 

dS(t) = S(t) (Ua\dt +  atdW^t)), 

where U = 7r0 + | .
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We simulate the credit spread SDE by,

Si+hj =  S ij +  S ij (iJa^At +  (TtyfKte2̂  , (6.4)

where e2i is random sample from N(0,1), V* = of and e2i is independent 

of eu .

We simulate the short rate SDE using the Vasicek closed form, 

ri+hj = ritj exp (-aA t) + -  (1 -  exp (-aAt))

+ a  + ,

where €■& is random sample from N(0,1), independent of e2*, ei*.

We simulate a 1000 from the random sample eu ~  N (0,1) in the above 

Cox, Ingersoll and Ross SDE.

We calculate a 1000 S ij  by simulating from the random sample e2i r\j N (  0,1) 

in above credit spread SDE.

For each e2i random samples we calculate r^j by simulating from random 

sample 631 ~  iV(0,1) for short rate SDE values.

We obtain average variance,

Vj = j; 1 V*j from eu random samples of N(0,1).

We obtain average spreads,
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Sj = £ i Sj fr°m e2 i random samples of N(0,1).

We obtain average short rates,

fj = X E /= i rj from e2i and e3i random samples of N(0,1) 

where L = 1000.

We calculate 100 Vj, Sj, fj

We then calculate the call credit spread price for n = 100 as

6.5 A nalytic Credit Spread Call w ith corre­
lation.

In this section we derive the closed form formula of European call credit 

spread price for non zero correlation between the credit spread and the short 

rate under a Cox, Ingersoll and Ross stochastic volatility process. The short 

rate is modelled by a Vasicek process. In the case of correlation between 

the credit spread and the Vasicek short rate, the expectation of credit spread 

prices remains conditional on the volatility process.

However from (5.1), we have the correlation term p in the expression for 

the moment generating function of the average variance
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/(A) = exp Jq a2B2(u, T)( 1 -  p2) du  ̂ E  (exp Jq (o-u +  aB(u , T)p)2

where cr2B2(u,T) (1 — p2) is deterministic.

In order to evaluate 

E  (exp ( ^  / 0T (cru +  aB(u,T)p)2 duj'j

we use the moment generating approach for square root mean reverting 

volatility processes, as in Ball and Roma (1994).

As in previous section for the Vasicek case we assume that the SDE 

process for (at + aB(t , T)p)2 is of the Cox, Ingersoll and Ross form.

We thus compare again the numerical solution with an analytical solution, 

where we change the initial value of the process only (compare the 

discussion on pages 50,51).

So we assume that now

/*(A) = E  exp ( — Jq V*( s) ds^J, where Vt* follows the SDE

dVt‘ = (±9c -  9Vt*)dt +

with initial condition Vq =  (cr0 + aB(0,T)p)

Using the Cox, Ingersoll and Ross result in the Ball and Roma paper (1994), 

the closed form for /*(A) is 

7*(A) = exp (N*{T) + M*(T)V*), 

where
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N-(T) = %  l n ( 2̂ ^ ) ) ,

M*(T) =  

7 = yje2 + 2 (^ )a \ ,

g(T) = 27 + ((0 -  7 ) (1 -  exp ( - 7 T))).

Hence the moment generating function under the Cox, Ingersoll and Ross 

stochastic volatility model with correlation term is 

1(A) =  exp (=* f 0T c 2B2(t,T)( 1 -  p2) du )  exp (N'(T) +  M'(T)Vt%  

where N*(T), M*(T) and Vt* is as above.

Let v average variance = ^ So ((au + aB(u,T)p)2 + a2B 2(uyT)( 1 -  p2)) du . 

From section (4.1), we already know that the moment generating function 

can be expressed as 

/(A) = E  (exp (—Xv)).

Therefore /(A) = J^  exp (—Xv) m(v) dv.

We apply the Abate and Whitte numerical inversion method for the 

inverse Laplace transform to invert the moment generating function to obtain 

the density of average variance with correlation term under Cox, Ingersoll 

and Ross stochastic volatility model as 

m(v) = 2exPct> J0°° SR(/(c + iz)) cos vz dz,
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where 3ft (/(c + iz)) is the real part of /(c + iz).

Hence the European call on credit spread, for correlation between the credit 

spread and the short rate under the Cox, Ingersoll and Ross stochastic 

volatility process, is

oo
n c(0) = J  CBs (5 (0),# ,0 , m(v) dv

o

7 (  - 7 \
= /  Cbs ( s (0),K, 0, Vt>, T̂ j I / 3t(I(c + iz)) cos vzdz  I dv

where 3ft (/(c 4- iz)) is the real part of I(c + iz).

6.6 Analysis o f C losed/N um erical Call Prices 
w ith Correlation

In this section we carry out a sensitivity analysis of closed form and Monte 

Carlo simulation of European call credit spread prices with correlation 

between the credit spread and the short rate under the Cox, Ingersoll and 

Ross stochastic volatility process 

dof = 6 (c — of) dt + aiatdWs(t),

where 6 is the speed of mean reversion, c is the long term mean,
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a\ the volatility of variance and a\ the initial variance.

See Appendix B at the end of this chapter for table of closed form and 

Monte Carlo credit spread call option prices.

Once again we use contour values c = 0.05, inner upper bound of 

average variance density integral set to 25 and outer bound integral of 40 

to compute the credit spread option prices. The choice of contour values 

is based on our computations in the previous sections. The average 

computation time is 20 seconds.

We select an upper bound of 40 for outer integral as option prices obtained 

converge to numerical form. Upper bound values above 40 result in 

singularity for the double integral credit spread option price formula.

For Monte Carlo simulation, no variance reduction is used as we already 

know that it increases computation time with no improvement. Our 

average computation time is 1 hour. The introduction of correlation 

increases the computation time. For convenience we set the initial variance 

in the Monte Carlo Cox, Ingersoll and Ross equation to the long term mean.

The Monte Carlo and closed form pricing models produce similar mean 

reversion effects as increasing the long term mean, the initial variance and 

the volatility of variance drives up the credit spread option prices. Increasing
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the speed of mean reversion increases the credit spread option price. We 

note that this effect is opposite to the no correlation case as in the 

previous section. The introduction of correlation does increase the credit 

spread option prices.

We observe closer credit spread call prices between the analytic and 

numerical models for the no correlation case than correlation case. The 

difference between prices for analytic and numerical pricing models is within 

the Monte Carlo convergence rate of =.

6.7 A ppendix A: Table o f Call Prices under 
no correlation

The table of closed form and Monte Carlo simulation of European call credit 

spread prices for no correlation between the credit spread and the Vasicek 

short rate under Cox, Ingersoll and Ross Stochastic Volatility process.

6 is the speed of mean reversion,

<7q is the initial variance, 

c is the long term mean variance, 

ai is the volatility of variance,

Underlying spread price = 0.3, strike = 0.1, Risk free rate= 0.06.
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Time to maturity is 6 months.

6 ^0 c CLi Closed form Price Monte Carlo Price
4 0.09

0.10
0.30

0.09
0.10
0.30

0.40 0.2036205802
0.2036783741
0.2048376933

0.2029554999
0.2029554999
0.2029983349

0.05 0.05
0.06
0.25

0.05
0.06
0.25

0.10 0.2032786272
0.2032798872
0.2033038277

0.2029554484
0.2029554484
0.2029680026

0.005 2
2.2
3.0

2
2.2
3.0

0.20 0.2033251871
0.2033277650
0.2033378830

0.2131450556
0.2147307951
0.2209322592

0.2 0.2
0.3
0.6

0.2
0.3
0.6

0.40 0.2034558183
0.2035050185
0.2036526909

0.2029676970
0.2030207558
0.2036852839

0.3 0.3
0.4
0.8

0.3
0.4
0.8

0.60 0.2037032447
0.2037759151
0.2040668565

0.2030591318
0.2032084570
0.2046544886

0.5 0.09
0.10
0.45

0.09
0.10
0.45

0.40 0.2034261171
0.2034378316
0.2038482654

0.2029557487
0.2029559249
0.2032404457

0.5 0.09
0.10
0.60

0.09
0.10
0.60

0.20 0.2033416869
0.2033533992
0.2037637532

0.2029554596
0.2029554675
0.2036267784

See table of credit spread prices for Monte Carlo case without variance

reduction.

Underlying spread price =  0.3, strike = 0.1, Risk free rate= 0.06
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Time to maturity is 6 months.

e Initial Variance c a\ Closed form Price Monte Carlo Price
4 0.09 0.09 0.40 0.2036205802 0.2029554589

0.10 0.10 0.2032798872 0.2029554739
0.30 0.30 0.2048376933 0.2029911729

0.05 0.05 0.05 0.10 0.2032786272 0.2029554485
0.06 0.06 0.2032798872 0.2029554485
0.25 0.25 0.2033038277 0.2029687860

0.005 2 2 0.20 0.2033251871 0.2129228815
2.2 2.2 0.2033272650 0.2144982606
3.0 3.0 0.2033378830 0.2206740173

0.2 0.2 0.2 0.40 0.2034558183 0.2029635161
0.3 0.3 0.2035050185 0.2030246685
0.6 0.6 0.2036526909 0.2035171963

0.3 0.3 0.3 0.60 0.2037032447 0.2030275652
0.4 0.4 0.2037759151 0.2031426631
0.8 0.8 0.2040668565 0.2043979407

0.5 0.09 0.09 0.40 0.2034261171 0.2029555881
0.10 0.10 0.2034378316 0.2029556830
0.45 0.45 0.2038482654 0.2031881831

0.5 0.09 0.09 0.20 0.2033416869 0.2029554543
0.10 0.10 0.2033533992 0.2029554633
0.60 0.60 0.2037637532 0.2035773025
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6.8 A ppendix B: Table of Call Prices w ith  
correlation

The table of closed form and Monte Carlo simulation of European call credit 

spread prices for correlation between the credit spread and the short rate 

under Cox, Ingersoll and Ross stochastic volatility process. The short rate 

is modelled under a Vasicek process.

9 is Speed of mean reversion,

Vo is the initial variance, 

c is the long term mean variance, 

ai is the volatility of variance,

p is the correlation between the credit spread and the short rate,

Si is the initial credit spread, 

ri is the initial short rate,

The constants a and b in the Vasicek short rate model are set to 0.5 

for this Monte Carlo simulation. Time to maturity is 6 months.
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6 Vo c ai P Si n Monte Carlo Closed form
0.5 0.09 0.09 0.20 0.2 0.3 0.06 0.2061986814 0.2030125600

-0.2 0.2063770752 0.2030198592
0.4 0.2061332100 0.2031774913

-0.4 0.2064902354 0.2029740847
0.5 0.09 0.09 0.40 0.2 0.3 0.06 0.2070851661 0.2032619016

-0.2 0.2023134732 0.2030585006
0.4 0.2097252736 0.2032857932

-0.4 0.2027138958 0.2028865841
0.5 0.10 0.10 0.20 0.2 0.3 0.06 0.2062651706 0.2030380251

-0.2 0.2064435616 0.2029382278
0.4 0.2061997014 0.2030929879

-0.4 0.2065567204 0.2028933885
0.5 0.10 0.10 0.40 0.2 0.3 0.06 0.2071309395 0.2031774401

-0.2 0.2019929080 0.2029778432
0.4 0.2099311454 0.2032974997

-0.4 0.2023933225 0.2028982675
0.5 0.60 0.60 0.20 0.2 0.3 0.06 0.2168929332 0.2036235932

-0.2 0.2170146360 0.2035235081
0.4 0.2168564896 0.2036787145

-0.4 0.2171001378 0.2034785395
0.005 2.0 2.0 0.20 0.2 0.3 0.06 0.2702087756 0.2029609287

-0.2 0.2701602636 0.2028487989
0.4 0.2702543336 0.2030231401

-0.4 0.2701573966 0.2027988740
0.8 0.2704091502 0.2031598740

0.005 2.2 2.2 0.20 0.2 0.3 0.06 0.2790113878 0.2029634635
-0.2 0.2789502388 0.2028513323
0.4 0.2790627872 0.2030256757

-0.4 0.2789405624 0.2028014067
0.005 3.0 3.0 0.20 0.2 0.3 0.06 0.3164031988 0.2029736018

-0.2 0.3163052028 0.2028614650
0.4 0.3164771283 0.2030358171

-0.4 0.3162753278 0.2028115370
4 0.09 0.09 0.40 0.2 0.3 0.06 0.2082775851 0.2034563684

-0.2 0.2032751341 0.2033576921
0.4 0.2111244460 0.2035086922

-0.4 0.2023339154 0.2033113367



Chapter 7 

European Call A hn /G ao  
Stochastic Volatility M odel

7.1 Num erical Credit Spread Call Price un­
der no Correlation

In this section we price numerically European Call credit spreads with no 

correlation between the credit spread and the short rate under the Ahn/Gao 

stochastic volatility process by Monte Carlo simulation. The short rate is 

modelled by a Vasicek process.

From (1.4), at the volatility process is of the Ahn Gao form 

dof =  6 (c — of) crfdt + aiG^dWz{t).

The Ahn/Gao mean reverting one-factor SDE is classified as an alternative 

mean reverting stochastic process to normal ones such as Vasicek or Cox, 

Ingersoll and Ross. It has a non linear drift and diffusion which is used 

to model the explosiveness of a one-factor mean reverting stochastic



CHAPTER 7. EUROPEAN CALL AHN/GAO STOCHASTIC VOLATILITYMODEL82

process.

See the Jesper Andreasen (2000) working paper on credit explosions about 

the explosive stochastic process.

Let Vt* =  of

=!> dVtm = 6 { c -  Vt") V*dt + a ^ id W s^ t) .

Discretizing the above SDE,

V»U  =  ViJ + 0 (c ~ V 'd) K jA t +  o,V;* * jA te i ,  (7.1)

where e* is random sample from N(0,1).

We take a 1000 steps of interval A t  which results in total time T, where 

T  = A tL  and A t  is the time interval and L is the number of steps i.e.

1000 in this case.

We calculate a 1000 V*j by simulating from the random sample e* ~  N (0,1). 

For each e*, we also calculate the — e* sample values, which is used to 

calculate a 1000 V£j using

Vk+ 1 J =  K f  + 0 ( c -  Vffj) VCjAt + x -e,. (7.2)

We calculate two sets of average variances as follows:
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Vj = i V/j from €i random samples of N(0,1),

Vk = j; Ylf= i V/k fr°m ~ ei random samples of N(0,1), 

where L = 1000.

We calculate 100 Vj and calculate the average call price as y\ =  ^ ]C”=1 Cbs 

where n — 100.

Also calculate 10014 and calculate the average call price as 2/2 = ~ Ylk=1 Cbs ( V ^ )  

where n = 100.

Hence best estimate of European Call price is

7.2 A nalytic Credit Spread Call under no cor­
relation

In this section we derive the closed form formula of European call on credit 

spread for zero correlation between the credit spread and the short rate under 

the Ahn/Gao stochastic volatility process. The short rate is modelled by 

a Vasicek process.

From (5.1) where p = 0 and moment generating function of average 

variance is

I  (A) =  exp ('=*■ Jq a2B2(u, T )d u ^  E  (exp =£ / Qr  o2u d u j ,

where o2B2(f, T) is deterministic and SDE for of is of the Ahn/Gao form as

in (1.4),
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i.e. da\ = 6 (c — of) a%dt + aiafdWz{t).

Let /*(A) =  E  ^exp a^duj^j and

V? = ¥ 1

Then /*(A) =  E  exp / Qr  V^s) ds'j j , 

where Vt* = follows the process

dvt* = e (ic  -  17) v;*dt + a i J ^ v ^ m 3.

Using the Cox and Ross result in the Ball and Roma paper (1994), I*(A) 

is analogous to time 0 price of bond with maturity at time T, whose short 

rate is of the |  Ahn Gao one-factor non-linear drift model.

Hence closed form for I*(A) using Ahn/Gao paper (1994) is

7*(A) = (7 - P, -x  (KT,o, t ) )  ,x  (KT, 0 , r )7

where M  (.,.,.) is the confluent hypergeometric function (or Kummer func­
tion), represented as

M (7 , P, -X Off, 0,T)) = Jo exP (~X W, 0, T) Z) Z7"1 (1 - Z^7"1 rfz.
So Z*(A) = rfa f 0' exp (~X (V?, 0, T) Z) Ẑ -1 (1 - dz,

where

x(KT,o,T) = g2M g j !r _i)y. ,

0̂* =  f  (O ,

v ^ 2 +  2<T2 -  ^
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£ = £  I0 + (! + I'M ,

<j> =  9 +  §<r2,

<t2 =  a2^.

Therefore the moment generating function under the Ahn and Gao

stochastic volatility model is

/(A) =  exp / 0T<t2B2(u,T) du ) * /*(A).

Let t; average variance = ^ Jo ( ^  + o-2S 2(« ,r))  du 

for zero correlation from (5.1).

We already know that the moment generating function can be expressed 

/(A) = E  (exp (—At;)).

Therefore /(A) =  J0°° exp (—At;) m(v) dv.

We apply the Abate and Whitt numerical inversion method for inverse

Laplace transform to invert the moment generating function to obtain

density of the average variance with correlation term under Ahn and Gao

stochastic volatility model as

m(v) = 2exPcu Jq00 3ft (I{c + iz)) cos vz dz,

where 3ft (/(c +  iz)) is the real part of I(c + iz).

Hence the European call on credit spread, where correlation between the 

credit spread and the short rate is zero under the Ahn and Gao
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stochastic volatility process, is

OO
nc(0) = J  CBs { S { 0 ) , K , 0 ,  y /^ ,T )  m(v) dv 

o

7 (  - 7 \
= I CBs(S(0 ) ,K , 0 ,y/i),T) I 20X̂ .CL> / $ 1  (I(c + iz)) cos vzdz  I dv, 

where 3? (/(c + iz)) is the real part of I(c +  iz).

7 . 3  A nalysis o f C losed/N um erical Call Prices 
under no Correlation

This section investigates the sensitivity analysis of the closed form and Monte 

Carlo simulation of European call credit spread prices for zero correlation 

between the credit spread and the Vasicek short rate under the Ahn Gao 

stochastic volatility process, 

dcr\ = 6 (c — of) a\dt + aiafdW^t),

where 9 is the speed of mean reversion, c is the long term mean, a\ is the 

volatility of variance and of the initial variance.

See Appendix A at the end of this chapter for table of closed form and 

Monte Carlo credit spread call option prices.



CHAPTER 7. EUROPEAN CALL AHN/GAO STOCHASTIC VOLATILITY MODEL87

In the analytic case, the credit spread options prices are calculated for contour 

values of c =  0.05, inner upper bound of average variance density integral of 

25 and outer upper bound integral of 8.88. We select the same contour 

values and inner upper bounds integral as in previous section. The outer 

upper bound of 8.88 produces stable spread option prices which converge 

to the Monte Carlo prices. Values higher than 8.88 result in singularity 

causing the double integral credit spread option formula to be undefined. 

The average computation time is 60 seconds.

For Monte Carlo simulation, the variance reduction method is not applied as 

we already observe that the increase in computation time does not improve 

the credit spread option prices. In our simulation we set the initial 

variance to the long term mean. The average computation time is 1 hour. 

We analyse the effects of the stochastic volatility mean reversion 

parameters and no correlation on the credit spread option price obtained 

from either analytic form or numerical form.

For closed form, an increase in initial variance or long term mean, 

increases the credit spread option price. Increasing the volatility of 

variance gives us an unexpected result of reducing the credit spread option 

price. Increasing the speed of mean reversion, reduces the credit spread
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option price as expected.

For numerical form, increasing the initial variance and the long term mean 

increases the credit spread option price. Increasing the volatility of 

variance, increases the credit spread option price by a negligible amount.

Increasing the mean reversion, reduces the credit spread option price.

The difference in numerical form and closed form prices are within the 

convergence rate of the Monte Carlo estimate

7.4 Num erical Credit Spread Call Price w ith  
Correlation

In this section we price numerically European call credit spreads with 

correlation between the credit spread and the short rate under Ahn/Gao 

stochastic volatility by Monte Carlo simulation.

From (3.2) the short rate is modelled by a Vasicek process whose SDE is

dr(t) = (b — ar(t)) d t p  a (pdW\(t) -f y/l  — p2 dW2 (t)>j ,

where p is the correlation between the short rate and the credit spread.

From (1.4), at the volatility process is of the Ahn and Gao form 

dof = 9 (c — of) of d£ +  aiofdW^t)
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dVt* =  0 (c -  V?) V/dt + aiVt'U w 3{t)

As in previous sections, we simulate the variance process by discretizing 

the SDE

= V *,i + * (« -  K j) K j At +  arV/J V S teu (7.3)

where is random sample from N(0,1).

From (3.1), we simulate the credit spread SDE as ,

Si+i,j =  $i,j + Si,j (Ucr^At +  (Ji\/Ate2i^ (7-4)

where €2* is a random sample from N(0,1) independent of ei*.

The short rate is simulated using the closed form of Vasicek SDE ,

Ti+ij = riyj exp (—aAt) + -  (1 — exp (—aAt))
a

+ 0  U ^ l - exp^ 2a^ - +  ,

where ê i is a random sample from N(0,1) and independent of €2 1- 

Applying the simulation approach as in previous sections for correlation case, 

we obtain the average variance as:

Vj = V*j from random samples of N(0,1),
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the average credit spread as:

Si =  I  £ , i i  Sij from 6 2 i random samples of N(0,1), 

the average short rate :

fj = jt Y^=i ri,j from 2̂i and e3i random samples of N(0,1), 

where L number of steps is 1000.

We then calculate the credit spread call price for n = 100 as 

y i = ln Y .U c B8{sj , K ^ y / v j) .

7.5 A nalytic Credit Spread Call w ith  corre­
lation

In this section we derive the closed form formula of European call credit 

spread price for correlation between the credit spread and the short rate 

under Ahn/Gao stochastic volatility process. The short rate is modelled 

by a Vasicek process.

For correlation between the credit spread and the short rate, the expectation 

of credit spread price remains conditional on the volatility process.

However from (5.1), we have the correlation term p in the expression for 

the moment generating function of average variance,

/(A) = exp / 0T a 2 B 2(u, T)(l -  p2) du^j E  ^exp ^  Jq + (rB(u, T)p ) 2 duj
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where a2 B 2 (u,T) (1 — p2) is deterministic.

In order to evaluate 

E  (exp / 0T (cru + aB(u,T)p ) 2 duj^j

we use the moment generating approach for the square root mean 

reverting volatility process as in Ball and Roma (1994).

We assume that (crt + aB(t, T)p ) 2 has Ahn Gao SDE

Here, we approximate the volatility process with a volatility process of

Ahn Gao type where again ( as in the corresponding section before) the

correlation parameter is only used to find an initial value for the process.

Let /*(A) =  E  [exp ( -  V \ s )  *>)],

where Vt* follows the SDE

dVt* = 0 ( ± c -  Vt') Vt'dt + c n J ^ v i d W s

with initial condition Vq* = (ctq + aB(0, T)p).

The closed form /*(A) is obtained by applying the Cox and Ross result in the

Ball and Roma paper (1994) for the Ahn/Gao SDE as in the previous section.

Hence the closed form for /*(A) is

'"(A) =  f t )  /o exP ( - X  ( V ,  0, T) Z) Z t - 1 (1 -  dz,

where
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7 =  4j x/'A2 +  2o-2 -  <A] ,

/? =  £ P  + (1 +  7) <̂2].

(f) = 6 + |cr2, 
cr2 = a\X.

Hence the moment generating function under the Ahn and Gao

stochastic volatility model is

/ ( A) = exp Jq a2 B 2 (u,T)l — p2) du'j */*( A).

Let v be the average variance = T So + a B ^  T )P)2

We already know that the moment generating function can be expressed

/(A) — E  (exp (—At;)).

Therefore /(A) = exp (—Xv) m(v) dv.

We apply the Abate and Whitt numerical inversion method for the Laplace

transform to obtain the density of average variance under Ahn and Gao

stochastic volatility model as

m(v) = 2^3^  / 0°° 3ft (/(c +  iz)) cos vz dz,

where 3ft (/(c + iz)) is the real part of I{c + iz).

Hence the European call on credit spread, for correlation between the credit 

spread and the short rate under the Ahn and Gao stochastic volatility
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process is

OO
IIc(0) = f  CBS(S(0),K ,0 ,Vo,T)m(v) dv 

0

°r (  ~ 1  \
= I  Cb s (S (0) ,K ,0 , ' /€ ,T)  I 2 jy I ‘R (I(c-\-iz)) cosvzdz I dv, 

where 3ft (/(c +  iz)) is the real part of /(c + iz).

7.6 A nalysis o f C losed/N um erical Call Prices 
w ith Correlation

In this section we analyse the sensitivity of closed form and Monte Carlo 

simulation of European Call credit spread prices based on correlation 

between the credit spread and the short rate under the Ahn/Gao stochastic 

volatility process

dof = 9(c — of) rfdt  +  aiafdW^t),

where 6  is the speed of mean reversion, c is the long term mean, ai the 

volatility of variance and of at t = 0, the initial variance.

The short rate is modelled under a Vasicek process as in previous sections.

See Appendix B at the end of this chapter for the table of numerical and
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analytic credit spread call option prices.

In the analytic form, we compute the credit spread option prices for 

contour values c =  0.05 with inner upper bound of average variance 

density integral set to 25 and outer bound integral set to 8.88. Our choice of 

these contour value parameters is based on our analysis in the previous 

sections. The average computation time is 2 minutes. We observe that 

larger contour values increases computational time to over 5 minutes which 

we abort. This increase in computation time is due to the large terms 

obtained in the expansion of the call spread price integral. The optimum 

upper bound of the outer integral is set to 8.88 as the analytic pricing 

formula converges to the numerical form prices. Higher values of upper bound 

for outer integral result in singularity or the double integral analytic 

formula being undefined.

In the numerical form, we employ the no variance reduction method as 

variance reduction increases computational time to several hours, with no 

convergence. We limited the number of iterations for average call prices to 50 

to reduce our computational time. Our average computation time is 1 hour. 

The initial variance is set to the long term mean for the Ahn/Gao simulation. 

We observe the effects of mean reverting stochastic volatility and
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correlation on the credit spread option prices for the analytic form and the 

numerical form.

For Monte Carlo form, increasing the long term mean variance, the initial 

variance and the volatility of variance drives up the credit spread prices. 

Increasing the speed of mean reversion reduces the credit spread.

For closed form, increasing either the long term mean or the initial 

variance increases the credit spread option price. Increasing volatility of 

variance reduces the credit spread price which is unexpected. Increasing 

the speed of mean reversion reduces the credit spread price. The 

difference in numerical and analytic credit spread prices is within the 

convergence rate of the Monte Carlo estimate -j=. Overall we realise that 

the correlation effect produces higher option prices than the no correlation 

case with increased computation time.

7.7 A ppendix A: Table o f Call Prices under 
no correlation

Table of closed form and Monte Carlo simulation of European call credit 

spread prices for zero correlation between the credit spread and the Vasicek
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short rate under Ahn/Gao stochastic volatility process.

Underlying spread price =  0.3, strike = 0.1, Risk free rate= 0.06 

Time to maturity is 6 months.

0 Initial Variance c ai Monte Carlo Price Closed form
0.1 0.09 0.09 0.20 0.2029554484 0.2038431019

0.10 0.10 0.2029554492 0.2039599954
0.30 0.30 0.2029897727 0.2093391089

0.1 0.09 0.09 0.40 0.2029554484 0.2027111190
0.10 0.10 0.2029554484 0.2028304519
0.30 0.30 0.2029921654 0.2081914763

0.5 0.09 0.09 0.20 0.2029554485 0.2040516137
0.10 0.10 0.2029554491 0.2041334371
0.45 0.45 0.2029897262 0.2093699787

0.05 0.09 0.09 0.60 0.2029554486 0.2008404950
0.10 0.10 0.2029554501 0.2009692528
0.60 0.60 0.2036664988 0.2781594754

4 0.09 0.09 0.20 0.2029554485 0.2038028366
0.10 0.10 0.2029554492 0.2039544774
0.30 0.30 0.2029894249 0.2093210829

7.8 A ppendix B: Table of Call Prices w ith  
correlation

Table of closed form and Monte Carlo simulation of European call credit 

spread prices for correlation between the credit spread and the Vasicek short 

rate under Ahn/Gao stochastic volatility process.
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6  is speed of mean reversion,

Vo is the initial variance, 

c is the long term mean variance, 

a\ is the volatility of variance,

p is the correlation between the credit spread and the short rate,

Si is the initial credit spread, 

r* is the initial short rate,

The constants a and b in the Vasicek short rate model are set to 0.5 for 

this Monte Carlo simulation. Time to maturity is 6 months.
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6 V} c (Li P Si n Monte Carlo Closed Form
0.1 0.10 0.10 0.20 0.2 0.3 0.06 0.2058258360 0.2038897745

-0.2 0.2060042270 0.2040435593
0.4 0.2057603670 0.2038064181

-0.4 0.2061173858 0.2040933363
0.1 0.30 0.30 0.20 0.2 0.3 0.06 0.2090214858 0.2092698997

-0.2 0.2091912138 0.2094370610
0.4 0.2089606386 0.2092101873

-0.4 0.2093003408 0.2094816760
0.1 0.10 0.10 0.40 0.2 0.3 0.06 0.2079323452 0.2025276654

-0.2 0.2020692478 0.2031035458
0.4 0.2110868368 0.2021860289

-0.4 0.2004067506 0.2033344215
0.1 0.30 0.30 0.40 0.2 0.3 0.06 0.2123923894 0.2078824325

-0.2 0.2017193167 0.2078824327
0.4 0.2174766442 0.2084714860

-0.4 0.1981831329 0.2075495378
0.5 0.09 0.09 0.20 0.2 0.3 0.06 0.2057479910 0.2037740748

-0.2 0.2059263852 0.2037549999
0.4 0.2056825196 0.2037828231

-0.4 0.2060395454 0.2037549999
0.5 0.09 0.09 0.60 0.2 0.3 0.06 0.2098480375 0.2044173418

-0.2 0.2021738862 0.2043982068
0.4 0.2108736245 0.2043647672

-0.4 0.1996584778 0.2043236550
4 0.09 0.09 0.4 0.20 0.3 0.06 0.2057478896 0.2010533491

-0.2 0.2059262838 0.2010153479
0.4 0.2056824184 0.2016394586

-0.4 0.2060394440 0.2010153508



Chapter 8 

Credit Spread Call Hedge 
Param eters

Prom the previous chapters, the closed form credit spread call prices is given 

as

CO

nc(0) =  J c Bs(s (0 ) ,K ,0 ,y /€ ,T )  m(v) dv,
0

where 9̂  (I(c + iz)) is the real part of I(c + iz). 

m(v) is the density of the average variance process.

The distribution of average variance is obtained by the classical inversion 

theorem, written as

TO(*) =  2® Jc-i™ eXP (A°) 1M  dX fOT ® G [°> °°)'

This integral is also known as the Bromwich-Mellin contour integral, where 

c is a vertical contour in the complex plane chosen so that all
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singularities of m(v) are to the left of it.

Make change of variables A = c + iz in the above integral reducing it to 

the Laplace inversion integral

oo
m(^) = J  exp(i\vz) I(c +iz) dz

— o o  

oo
_  exp (cv) J  ^  cos _  Q1 (/(c + iz)) sin vz] dz,

2H
— 0 0

where 5ft (I(c +  iz)) and (/(c + iz)) are respectively real and imaginary

parts of I(c -f iz).

The Abate and Whitt numerical inversion method reduces the Laplace 

inversion integral to give us the density of the average variance as 

m(v) = 2- ^  J0°° 3ft (/(c +  iz)) cos vz dz, 

where 5ft (/(c + iz)) is the real part of I(c + iz).

0 0  /  0 0  '

n c(0) =  J  C b s  (5(0), K, 0, Vo, r )  I 2? ^  j  5ft (I(c + iz)) cos vz dz
0 \  0

We already have closed form solution for /(A) = J0°°exp (—\v)m(v) dv,
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where I  (A) is the Laplace transform of m(v) and m(v) is the density of 

the average variance process of the one-factor mean reverting stochastic 

volatility SDE as in (1.2) to (1.4).

The Black Scholes credit spread call price can be written as 

CBs(S(0),K,0,y/€,T) = S{0).N(d!) -  KP(0,T)N(<h), 

where

^4 K P ( o]t ) ) 2 v 2 ( T )
12 =  I -  I  LT(T)---------do= -

d \=  d2 — vy/T,

v2 = y -

The discount bond price process is

P(0,T) = A(0,T)exp(-B(0,T)r),

where r follows the Vasicek short rate process in (3.2)

with .4(0, T) =  exp ([(T -  B(0,T)) \\ -  £ ]  + £ b 2(0,T)])

and B(0,T) =  £ [1 — exp (—a(T))].
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8.1 D elta  Call on Credit Spread
The delta of call on credit spread is obtained by differentiating the credit 

spread call price IIc(0) above with respect to underlying credit spread:

dnc(0)
dS

_d_
dS

j  CBs(5 (0 ) ,if ,0 ,V o ,r )  m(v) dv 
.0

= f  J , c BS(s(o),/sr,o,v'5):r) m(v) dv
0
oo

= J  N(di)m(v) dv,

where N  (dx) = ^  exp (- \ x 2) dx is 

the cumulative normal distribution function and

5(0) =
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8.2 Gamma Call on Credit Spread
The Gamma of call on credit spread is obtained by differentiating the delta 

call on credit spread with respect to underlying credit spread:

d2 nc(o)
dS2

d_
dS

J  N  (di) m(v) d
,o

/  ~Is^N ^d l ^  di)o
oo

J i { N { d i ) ) ^ m(-0)  d0  
0
00
[ -n(d i)
1 g _ m(v)dv,

where n{d\) is the normal density function.
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8.3 Vega Call on Credit Spread
The Vega of call on credit spread is obtained by differentiating the credit 

spread call price IIc(0) with respect to average credit spread variance v. 

Vega on stochastic volatility is critical.

cfflc(0)
dv

JL
dv J  Cbs (s{$) ,K,$,y/v,T^ m(v) dv

.o

= J  ^ C BS( s (0 ) , K ,0 ,V d ,T )  m(v) dv
0
oo

- / [ S(0)n(di) — KP(0,T)-^N(d2) -  n{d2)K P{0 ,T )^ -av
dd\
dv

d_
dv

o

+

m{v) dv

CBS ( 5 (0), K, 0, Vv,  r )  ^ro(C)

J - K P ( 0, T)-^N (d2) m(v) +  -^m(v)CBs (5 (0), K, 0, 4v , T) dv,

provided =

5(0) is the underlying credit spread,

K is the strike price,

P(0, T) is the price of the zero coupon bond of maturity T. 

Under the Black/Scholes model,

S(0)n(di) = KP(0,T)n(d2), see Pg 265, Question 11.17(b) of John Hull(Hull 
2000).



CHAPTER 8. CREDIT SPREAD CALL HEDGE PARAMETERS 105

Proof

S(0) =  P(0,T)n(d2)
K  n(di)

=  P ( 0 , T ) ^ eXP( ~ ^

=  P(0,T)

^ e x p ( - f )

exP ( ~ f )

exp (-1)
P ( 0 ,T ) e x p ( - i ( d * - d ? ) )

P(0, T) exp ( ~  (d2 +  dj) (rfa -  dt)

p(
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8.4 T heta Call on Credit Spread
The Theta of call on credit spread(Time decay) is obtained by differentiating 

the credit spread call price IIc(0) with respect to time T.

dnc(0)
dT

_d_
dT J  CBs (jS{0),K,0, y/v.T^j m(v) dv 

.0 

= J  ± C BS( m , K A ^ T )  m(v) dv
o
oo

= J  [s(0)n (di) ^  -  KP(0,T ) - ^ N  (d2) -  n (d2) KP(0,T) 

CBS( s ( 0 ) , K , 0 , \ ^ , T ) - ^ m ( v )  

= J  - K P { 0, T ) ± N  (d2) m(v) + T m (v)CBS ( s ( 0), K, 0, v^ , t )

0

+

dd2
~dT m{v) dv

dv,

provided



Chapter 9 

Longstaff / Schwartz Credit 
Spread Option M odel

In the Longstaff/Schwartz 1995 paper on valuing credit derivatives, the 

dynamics of the logarithm of the credit spread X is given by the SDE

dX = ( a -  bX) dt + sdZu (9.1)

where a, b and c are parameters and Z\ is a standard Wiener process.

This implies that the dynamics of the credit spreads are positive and 

conditionally log-normally distributed.

They introduce stochastic interest rates of the one-factor Vasicek model in 

which the dynamics of the short term interest rate r is given by

dr = (a — Br) dt + crdZ2 , (9.2)
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where a, B and a are parameters and Z2 is a standard Wiener process.

The correlation coefficient between dZ\ and dZi is p.

Since X denotes the logarithm of credit spread, the payoff function for this 

option is
H(X)  = max (0, expX — K ) . (9.3)

The value of the Longstaff/Schwartz European Call option on credit spread 

is given by

C(X, r, T) = D(r, T) exp ( u  + | - )  JV(dj) -  KD(r, T)iV(rf2), (9.4)

where:

D(r,T) is the price of the riskless discount bond,

N  (.) is the cumulative standard normal distribution,

=  - I n  K+U+r?
77 7

d2 = d i~  T?,

2 g2[l-exp(-2br)]
” ~  2b ’

U = exp ( - bT) X + l  (a -  eg )  [1 -  exp (-&r)]+ 5^  (1 -  exp ( -  (6 +  B) T)).

The expression of delta call on the credit spread is obtained 

by differentiating equation (9.4) with respect to credit spread i.e.
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Chapter 10 

Sensitivity Analysis o f Credit 
Spread /D elta  Calls

In this chapter we discuss the sensitivity analysis of the graphs of credit 

spread call price against the credit spread and Call Deltas against credit 

spread. These graphs are listed after the bibliography section.

10.1 C ox/R oss
For non zero or zero correlation of out of the money credit spread options, the 

call price is an increasing function of the credit spread. Long dated credit 

spread options have a higher curvature than short to medium term credit 

spread options. This higher curvature effect is due to increase in term to 

maturity.

We also observe that the out of moneyness for credit spread option results in 

the convex shapes at different maturities. In the money call options gives a
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linear shape for all maturities. Also the credit spread option prices increases 

with maturity.

10.2 Vasicek
We observe convex shapes for plots of out of the money credit spread option 

prices against credit spread. The curvature of these plots increases with 

maturity, with curves for long dated credit spread options being steeper 

than short to medium term spread options. In the money call spread 

options have a linear shape.

For positive correlation under Vasicek stochastic volatility, the plots for short 

to medium term credit spread options are not entirely convex shaped as 

we observe kinks, followed by increase in steepness of convex shape. The 

spread option prices increases with maturity.

We observe that Vasicek in/out of money credit spread call prices are higher 

than Cox/Ross spread prices for zero/non zero correlation. Cox/Ross spread 

prices are higher than Ahn/Gao credit spread option prices.

10.3 A hn/G ao
We realise linear shape for in the money calls. Out of the money call spread 

prices show convex shape plots. Long dated spread options have higher
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curvature than short to medium term spread options. The steepness of the 

curvature for out of the money options is more pronounced in case of positive 

and negative correlation. The spread option prices increases with maturity.

10.4 Longstaff/Schwartz
We observe linear shape at different maturities for in the money credit spread 

call prices. The out of the money credit spread call prices have a non linear 

shape, which is an increasing function of the credit spread.

In general the Longstaff/Schwartz credit spread option prices are much lower 

than option prices obtained from our stochastic volatility model for Cox/Ross,

Vasicek and Ahn/Gao. This could be attributed to the assumption of 

constant volatility in the Longstaff/Schwartz model.

The spread option prices decrease with maturity for in/out of the money 

options, because of the mean reverting behaviour of the credit spread in 

the Longstaff/Schwartz model.

10.5 D elta  Hedging
In general we observe positive deltas for at and out of the money options and 

negative deltas for in the money credit spread options. Under Black/Scholes 

option pricing delta calls are always positive but we realise negative deltas
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in our stochastic volatility model.

The delta calls for out of the money credit spread options decrease with 

maturity and credit spread. For low spreads delta is close to or above 1, 

whilst for high spreads it is a decreasing function of the credit spread. We 

observe this behaviour for the 3 stochastic volatility modes of the Vasicek,

Cox, Ingersoll and Ross and Ahn/Gao forms. The plots are concave shaped.

For in the money call spread options under Vasicek, Ahn/Gao and Cox,

Ingersoll and Ross stochastic volatility, the delta decreases with increasing 

credit spread. At high spreads the delta is close to 0.

In the case of Longstaff/Schawartz out of the money calls, delta is an 

increasing function of the credit spread. For both in and out of the money call 

options delta decreases with maturity. The delta is a decreasing function 

of the credit spread for in the money call options.

A credit spread option under our stochastic volatility model can be hedged as 

follows; A negative delta would imply that if one is long the option then 

you can hedge shifts in credit spread by going long the credit spread. For 

positive delta, when long the credit spread option, you can hedge shifts in 

credit spread by going short credit spread. Likewise delta hedging a short 

position on the European credit spread call involves maintaining a long
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position on the credit spread.



Chapter 11 

Conclusion

In our thesis we present both closed form and numerical form pricing models 

for credit spread options under stochastic volatility. The credit spread option 

process is independent of the stochastic volatility, but we consider cases of 

no correlation and some correlation between credit spread and short term 

interest rate. The stochastic volatility models under consideration are 

one-factor mean reverting stochastic processes of the forms, Vasicek,

Cox/Ross and Ahn/Gao. We then evaluate credit spread options with no 

correlation or correlation under a chosen stochastic volatility process of the 

3 forms above.

The numerical formulation is the simulation of various paths of the 

variance under stochastic volatility. An average Black/Scholes credit spread 

call price is obtained using several average variance values from the 

simulation. The closed form formulae is derived as the expectation of Black/Scholes
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credit spread option price conditional on the density of the average 

variance as the underlying credit spread is independent of the stochastic 

volatility process. Deriving the density of the average variance is not 

trivial. However the choice of the stochastic volatility models Vasicek, Cox, 

Ingersoll and Ross and Ahn/Gao belong to the general affine class 

models. These affine class models as seen in interest rate literature 

provide closed form expressions for transition and marginal densities of the 

interest rate as well as bond prices. We employ the bond pricing concept 

to obtain the moment generating function for the mean reverting average 

variance process. The moment generating function is inverted via the Abate 

and Whitt numerical Laplace inversion method to obtain the density of the 

average variance, which is then used in the analytical pricing formula. The 

density of the average variance involves an integral, hence our credit spread 

option model results in the evaluation of a double integral, which is non 

trivial. We select upper boundaries for which we obtain convergence of the 

closed form double integral spread option prices to the Monte Carlo spread 

option prices.

We observe closeness in option prices between closed form and numerical 

form for low variances of the underlying credit spread, regardless of
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correlation. At high variances of the underlying credit spread with no 

correlation between the credit spread and the short rate, the closed and 

numerical form spread option prices deviate slightly from each other. In 

the case of correlation combined with high variance of the credit spread, 

the credit spread option prices are higher than the intrinsic value of the 

credit spread option. This effect is due to a combination of high variances 

and simulated high credit spread option prices from correlation. The 

correlation between the credit spread and the short rate definitely produces 

higher spread option prices than the no correlation case. Given that credit 

spreads are correlated with short term interest rates, ignoring correlation 

entirely could lead to mispricing of credit spread options.

The Longstaff/Schwartz credit spread option model under constant 

volatility produces lower spread option prices than our stochastic 

volatility pricing model. This could be attributed to the difference in 

volatility between the models. We realise that our credit spread call 

option model under Vasicek stochastic volatility produces higher prices than 

Cox, Ingersoll and Ross stochastic volatility model. Once again the 

difference in volatility is a contributing factor. The Vasicek model produces a 

symmetric distribution, whilst Cox, Ingersoll and Ross produces a skewed
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distribution as its constrained to positive real numbers and has a fatter right 

hand tail. This constraint means that the Cox, Ingersoll and Ross model 

is likely to produce smaller volatility than Vasicek model. The Ahn/Gao 

model has the least credit spread option price than Cox, Ingersoll and Ross 

or Vasicek models, due to effects of stronger mean reverting drift and higher 

diffusion coefficient. The credit spread call option prices from any of the 

3 chosen stochastic volatility model increases with maturity. This would 

imply that in/out of the money call options are likely to remain in/out of 

the money over time. In comparision with the Longstaff/Schwartz model, 

the mean reversion of the credit spread could result in credit spread reducing 

over time when above its long run mean or could increase over time when 

below its long run mean. This means that in the money call options are 

less likely to remain in the money over time, resulting in the likelihood of 

the call option on credit spread being less than its intrinsic value when only 

slightly in the money.

From a hedging perspective, our spread option model does not reduce the 

delta of long term calls to zero as in the case of the Longstaff/Schwartz model 

where mean reversion reduces the delta of long term puts and calls to zero. 

The delta of calls in our spread option model ranges from positive to negative
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values. Hence our spread option model can hedge the risk of changes in 

the current credit spread for both short and long term maturities.

This thesis has concentrated on the pricing and hedging of European call 

option on a credit spread with some or no correlation with the short term 

interest rate under an independent stochastic volatility process. Closed form 

pricing will always be obtainable if the stochastic volatility process under the 

consideration is of the mean reverting form with analytical tractability. 

Numerical pricing is obtainable via Monte Carlo simulation. Our pricing 

model can be extended to European credit spread put options via the 

put-call parity relationship. However there are areas that can be 

considered for further research as follows:

(a) Optimum choice of upper bound of closed form spread price double 
integral.

(b) Correlation between credit spread and volatility.

(c) Empirical analysis of mean reversion parameters of stochastic 
volatility processes.

(d) American credit spread option under a tree approach.
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Plot o f out o f the money credit spread call prices obtained for Credit Spread model under
the Cox Ross Stochastic volatility with correlation of -0.2 between credit spread and short
rate for expiries T=0.5, 1.0 and 1.5.
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Plot o f in the money credit spread call prices obtained for Credit Spread model under
the Cox Ross Stochastic volatility with correlation of -0.2 between credit spread and short
rate for expiries T=0.5, 1.0 and 1.5.
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Plot of in the money credit spread call prices obtained for Credit Spread model under the 
Vasicek volatility with correlation o f 0 between credit spread and short rate for expiries 
T=0.5, 1.0 and 1.5.
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Plot of out of the money credit spread call prices obtained for Credit Spread model under
the Vasicek volatility with correlation of 0 between credit spread and short rate for
expiries T=0.5, 1.0 and 1.5.
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Plot o f out o f the money credit spread call prices obtained for Credit Spread model under
the Ahn Gao volatility with correlation of 0.2 between credit spread and short rate for
expiries T=0.5, 1.0 and 1.5.
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Plot o f in the money credit spread call prices obtained for Credit Spread model under the
Ahn Gao volatility with correlation of 0.2 between credit spread and short rate for
expiries T=0.5, 1.0 and 1.5.
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Plot o f in the money credit spread call prices obtained for Credit Spread model under the 
Longstaff and Shwartz volatility with correlation o f 0 between credit spread and short 
rate for expiries T=0.5, 1.0 and 1.5.
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Plot o f out of the money credit spread call prices obtained for Credit Spread model under 
the Longstaff and Shwartz volatility with correlation of 0 between credit spread and 
short rate for expiries T=0.5, 1.0 and 1.5.
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Plot of in the money credit spread call prices obtained for Credit Spread model under the
Longstaff and Shwartz volatility with correlation of -0.2 between credit spread and short
rate for expiries T=0.5, 1.0 and 1.5.
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Plot o f out o f the money credit spread call prices obtained for Credit Spread model under 
the Longstaff and Shwartz volatility with correlation of -0.2 between credit spread and 
short rate for expiries T=0.5, 1.0 and 1.5.

Exhibit J

Call

G.06

0.04

1.151.05
Credit Spread



Plot o f out of the money credit spread call prices obtained for Credit Spread model under
the Longstaff and Shwartz volatility with correlation o f 0.2 between credit spread and
short rate for expiries T=0.5, 1.0 and 1.5.
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Plot o f in the money Call deltas obtained for Credit Spread model under the Cox and
Ross volatility with correlation o f 0 between credit spread and short rate for expiries
T=0.5, 1.0 and 1.5.
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Plot o f out of the money Delta call prices obtained for Credit Spread model under the
Cox and Ross volatility with correlation o f 0 between credit spread and short rate for
expiries T=0.5, 1.0 and 1.5.
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Plot o f out of the money Call deltas obtained for Credit Spread model under the Cox and
Ross volatility with correlation o f -0.2 between credit spread and short rate for expiries
T=0.5, 1.0 and 1.5.
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Plot out of the money Delta call prices obtained for Credit Spread model under the
Vasicek volatility with correlation of 0.2 between credit spread and short rate for
expiries T=0.5, 1.0 and 1.5.
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Plot o f out o f the money Delta call prices obtained for Credit Spread model under
Longstaff Schwartz with correlation o f -0.2 between credit spread and short rate for
expiries T=0.5, 1.0 and 1.5.

Exhib it P

Della

0 1

o.e
Credit Spread



Plot o f in the money Delta call prices obtained for Credit Spread model under Longstaff
Schwartz with correlation of -0.2 between credit spread and short rate for expiries
T=0.5, 1.0 and 1.5.

Credit Spre ad



Plot o f out o f the money Delta call prices obtained for Credit Spread model under
Longstaff Schwartz with correlation o f 0 between credit spread and short rate for
expiries T=0.5, 1.0 and 1.5.
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Plot of in the money Delta call prices obtained for Credit Spread model under Ahn Gao
volatility with correlation of -0.2 between credit spread and short rate for expiries T—0.5,
1.0 and 1.5.
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Plot o f out o f the money Delta call prices obtained for Credit Spread model under Ahn
Gao volatility with correlation o f -0.2 between credit spread and short rate for expiries
T=0.5, 1.0 and 1.5.
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