ESTIMATING THE EFFORT IN THE EARLY
STAGES OF SOFTWARE DEVELOPMENT

Zeeva Levy

London School of Economics
and Political Science

Submitted in fulfilment of the requirements
for the award of the degree of
Doctor of Philosophy
of the University of London.

July, 1990

UMI Number: U555047

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

Dissertation Publishing

UMI U555047
Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346

S50

Do

DO

ABSTRACT

Estimates of the costs involved in the development of a software product and the
likely risk are two of the main components associated with the evaluation of
software projects and their approval for development. They are essential before
the development starts, since the investment early in software development
determines the overall cost of the system. When making these estimates, however,
the unknown obscures the known and high uncertainty is embedded in the process.
This is the essence of the estimator’s dilemma and the concerns of this thesis.

This thesis offers an Effort Estimation Model (EEM), a support system to
assist the process of project evaluation early in the development, when the project
is about to start. The estimates are based on preliminary data and on the
judgement of the estimators. They are developed for the early stages of software
building in which the requirements are defined and the gross design of the
software product is specified. From these estimates only coarse estimates of the
total development effort are feasible. These coarse estimates are updated when
uncertainty is reduced.

The basic element common to all frameworks for software building is the
activity. Thus the EEM uses a knowledge-base which includes decomposition of
the software development process into the activity level. Components which
contribute to the effort associated with the activities implemented early in the
development process are identified. They are the size metrics used by the EEM.
The data incorporated in the knowledge-base for each activity, and the rules for
the assessment of the complexity and risk perceived in the development, allow the
estimation process to take place. They form the infrastructure for a ‘process
model’ for effort estimating.

The process of estimating the effort and of developing the software are
linked. Assumptions taken throughout the process are recorded and assist in
understanding deviations between estimates and actual effort and enable the
incorporation of a feedback mechanism into the process of software development.

These estimates support the decision process associated with the overall
management of software development, they facilitate management involvement
and are thus considered as critical success factors for the management of software
projects.

To my family, who went with me all the long way, with love.

ACKNOWLEDGEMENTS

On my completion of this research, I would like to thank the staff and my
colleagues in the Department of Information Systems at the London School of
Economics. Particular thanks are extended to my supervisor, Professor Ian
Angell, who was a constant source of advice and encouragement. His support
helped me shape many of the ideas presented in this thesis, to conduct my research
successfully and to bring it to completion.

My sincere thanks to the many individuals in Israel, the UK and the
Netherlands for their time, co-operation and contribution to this research by
acting as facilitators, completing the questionnaires, participating in the
walkthrough sessions, commenting and advising.

I extend special thanks to my friend and colleague Dr. Edgar Whitley, who
worked with me to build the prototype. Edgar made every effort to transform my
ideas into a working system and as a result could give help and advice in many
other aspects of the research, thank you Edgar.

Last, but by no means least, I would like to thank my family for all the
support, encouragement and love. This thesis is dedicated to them.

TABLE OF CONTENTS

PART |
Chapter 1 THE PROBLEM DOMAIN 16
1.1 INTRODUCTION 16

1.2 DEFINITION OF SOFTWARE AND SOFTWARE ENGINEERING 17
1.3 SOFTWARE ENGINEERING AS AN EDUCATIONAL SUBJECT 19

1.4 THE NEED FOR EFFORT ESTIMATION 20
1.5 THE PROBLEM DOMAIN 21
1.6 SOFTWARE DEVELOPMENT AND EFFORT ESTIMATION 26

1.6.1 Software development and effort estimation as

interactive and iterative processes 26

1.7 CURRENT RESEARCH 29
1.8 DIFFICULTIES IN ESTIMATING SOFTWARE

DEVELOPMENT EFFORT 31

1.8.1 The Software product and its development process 32

1.8.2 The people 33
1.9 THE ESTIMATOR'S DILEMMA 34
1.10 LONG-TERM RESEARCH GOALS AND SPECIFIC

OBJECTIVES 35
1.11 RESEARCH DIRECTIONS 37

1.11.1 The principles of the proposed solution 39

1.11.2 The Effort Estimation Model (EEM) 40
1.12 RESEARCH METHOD AND THESIS STRUCTURE 43

1.12.1 Thesis structure and outlines 43

Chapter 2 SOFTWARE DEVELOPMENT AND THE EFFORT

ESTIMATION PROCESSES 46

2.1 INTRODUCTION 46
2.2 LIFE CYCLE MODELS FOR SOFTWARE DEVELOPMENT 47
2.2.1 The Waterfall Model 48

2.2.2 The Verification and Validation (V&V) concept 53

2.2.3 Deviations from the Waterfall route 55

2.2.4 Motivation for the new paradigms 57
2.2.5 The new paradigms 58
2.3 RESEARCH FINDING 66
2.4 THE TRADITIONAL AND NEW PARADIGMS (for SDLC) -
DISCUSSION 67
2.41 lIssues required special attention when using the New
Paradigms 69
2.4.2 Summary of discussion 71
2.5 THE PROCESS OF EFFORT ESTIMATION 72
2.6 TOP-DOWN VERSUS BOTTOM-UP ESTIMATING 75
2.7 ALTERNATIVE ESTIMATION APPROACHES 76
2.7.1 Expert judgement 77
2.7.2 Analogy 77
2.7.3 Parametric Models 79
2.7.4 Standards Estimates and Ratio analysis - 80
2.7.5 Parkinson’s Law 81
2.7.6 Price-to-win 82
2.8 IMPLICATIONS FOR EFFORT ESTIMATION 83
2.8.1 Future trends 83
2.8.2 Base Model for effort estimation process 84
2.8.3 Phase-based estimation 85

2.8.4 Judgement and measurement: On the horns of a dilemma 87

PART I STATE-OF-THE-ART 91

Chapter 3 SOFTWARE EFFORT AND COST ESTIMATION MODELS92

3.1 INTRODUCTION 92
3.1.1 Estimation models and tools what do they provide? 93
3.1.2 Classification of Estimation Models 93
3.2 STATISTICALLY BASED MODELS 94
3.2.1 The System Development Corporation (SDC) Model 95

3.3

3.4

3.5

3.6

3.7

3.2.2 Aron’s Model

3.2.3 Bailey and Basili's Model
HISTORICALLY BASED MODELS
3.3.1 The TRW Cost Estimation Model
3.3.2 Walston and Felix's Model

3.2.3 Doty’s Model

ANALYTICAL MODELS

3.4.1 Background - Norden’s Model
3.4.2 Putnam’s Model - SLIM

- COMPOSITE MODELS

3.5.1 Boehm's COCOMO Models

COMPARISON OF MODELS

3.6.1 Economies and diseconomies of scale

3.6.2 Comparison among schedules

3.6.3 Sensitivity to elapsed time

3.6.4 Comparison: Putnam’s SLIM and Boehm’s COCOMO
CONCLUSION

Chapter 4 ESTIMATING THE PROJECT SIZE

4.1

4.2

4.3

4.4

INTRODUCTION

4.1.1 Standard Measure for Unit of Product
IMPROVING THE ESTIMATES OF LOC

4.2.1 The General Approach

4.2.2 Sizing by Analogy

4.2.3 Comparison of Project Attributes

4.2.4 Size - in - Size - Out or Expert Judgement

ALTERNATIVE UNITS OF MEASUREMENT FOR SOFTWARE

PRODUCT

4.3.1 Function Point Analysis

4.3.2 Rubin’'s ESTIMACS Model

4.3.3 Converting the Function Point Value to SLOC
4.3.4 DeMarco’s Bang (Function Weight)
CONCLUSIONS

97

99
100
100
104
109
111
111
113
125
125
135
135
139
139
140
143

146

146
147
150
150
151
155
158

160
160
167
168
168
172

Chapter 5 CRITIQUE OF PARAMETRIC MODELS AND

5.1

5.2

5.3

5.4

5.5

5.6

5.7

COMPLEXITY

INTRODUCTION

5.1.1 Problems with effort estimating - the current practice

EVALUATION OF MODELS - EMPIRICAL STUDIES

5.2.1 Rubin’s study o

5.2.2 Kitchenham’s and Taylor's study

5.2.3 Miyazaki's and Mori's evaluation study

5.2.4 Conte et al.’s study

5.2.5 Kemerer's evaluation study

TRANSPORTABILITY OF COST ESTIMATION MODELS

5.3.1 The relative efficiency of the models

5.3.2 The need for calibration

RESOURCE ALLOCATION AMONG PHASES OF

DEVELOPMENT

UNDERSTANDING COMPLEXITY

5.5.1 Uncenainty

5.5.2 Feedback and entropy

ALTERNATIVE APPROACHES TO COMPLEXITY

5.6.1 Logical complexity

5.6.2 Structural complexity

5.6.3 Cyclomatic Complexity Value

5.6.4 Composite software complexity

5.6.5 Environmental Composite Complexity

5.6.6 Inter-connections between system components

5.6.7 Discussion

COMPLEXITY DETERMINANTS

5.7.1 User interface and the relative stability of the
requirements

5.7.2 Management factors; Number of decision levels

5.7.3 Team composition

5.7.4 Systems interactions

5.7.5 Multi-sites development

174

174
175
177
177
179
179
180
185
185
185
186

188
190
191
192
195
195
195
196
198
200
201
201
203

204
204
205
206
207

5.7.6 Re-use of software
5.7.7 Complexity of software product
5.7.8 Various size attributes: Data elements, I/O and files
5.7.9 Factors affecting productivity - summary
5.8 THE NEED FOR HISTORICAL DATA-BASES
59 SUMMARY
5.10 CONCLUSIONS - PART I

PART Ill THE EFFORT ESTIMATION MODEL (EEM)

Chapter 6 RESEARCH METHOD

6.1 INTRODUCTION

6.2 DEVELOPMENT METHOD
6.2.1 Conceptual design the Knowledge-base
6.2.2 Knowledge acquisition
6.2.3 Data collection

6.3 BUILDING THE PROTOTYPE

Chapter 7 THE EFFORT ESTIMATION MODEL - (EEM)

7.1 INTRODUCTION
7.2 THE FUNDAMENTALS OF THE EEM
7.2.1 Decomposition of the problem
7.2.2 Recording and tracing assumptions and decisions
7.2.3 The applicable size metrics for the Preliminary System
Design
7.3 THE STRUCTURE OF THE EFFORT ESTIMATION MODEL
(EEM)
7.4 BASE MODEL FOR EFFORT ESTIMATION
7.4.1 The Software Development Life cycles
7.4.2 Alternative strategies for software development
7.4.3 Cost drivers

207
208
209
210
212
213
213

216

217

217
217
218
219
221
222

223

223
224
226
227

228

229
231
231
237
239

7.5

7.6
7.7

7.8

7.9
7.10

7.11

7.4.4 Standard of Effort

RISK AND COMPLEXITY

7.5.1 Complexity and risk assessment

WHO IS THE ESTIMATOR?

THE EEM'S ESTIMATION PROCESS: ALGORITHM,
ITERATION AND JUDGEMENT

7.7.1 The first cycle: Reviewing, choosing and tailoring

the SDLC strategy
7.7.2 The first cycle: Assessing the characteristics of
the project

7.7.3 The second cycle: Consultation session, estimator - EEM
7.7.4 The third cycle: Fine tuning the EEM to the specific

environment

7.7.5 The fourth cycle: Providing a coarse estimate for the

total effort and re-assessing project risk
CALCULATION OF THE ESTIMATES
7.8.1 Assessing alternate complexity
THE PRODUCTS OF THE MODEL
A CASE STUDY - PROJECT ‘A’
7.10.1 An estimation session, using the EEM
7.10.2 Analysis of results
7.10.3 Conclusions - project ‘A’
A CASE STUDY - PROJECT ‘B’
7.11.1 Recording life cycle assumptions
7.11.2 Assessing the complexity of project ‘B’
and its environments _
7.11.3 The EEM estimation session and the outputs
7.11.4 Analysis of results
7.11.5 Conclusions - project 'B’

240
242
245
251

251

253

256
257

258

259
260
261
262
263
265
271
272
273
274

275
277
279
280

10

Chapter 8 EVALUATION OF THE EEM

8.1
8.2

8.3

8.4

INTRODUCTION

EVALUATING THE EEM - QUALITATIVE ANALYSIS

8.2.1 Evaluation summary

EVALUATING THE EEM - QUANTITATIVE ANALYSIS

8.3.1 Comparison: the EEM planning approximates with the
projects teams’ estimates

8.3.2 Regression Analysis

CONCLUSIONS

Chapter 9 CONCLUSIONS

9.1
9.2

9.3

9.4

9.5
9.6

INTRODUCTION

EFFORT ESTIMATION MODELS FOR SOFTWARE
DEVELOPMENT

WHAT IS UNIQUE ABOUT THE EEM IN RESPECT

TO CURRENT MODELS AND TOOLS?

THE BENEFITS OF THE APPROACH TAKEN IN THE EEM
AGENDA FOR FURTHER RESEARCH

CONCLUSION

281

281
282
288
290

292

293

294

296

296

296

297

300

302
304

11

LIST OF APPENDICES

4A

5A

6A

7A
7A1

7B
7C
7D

7E
7F

Definition of the Information Domain - Walston and Felix

Complexity determinants - A comparison table

The EEM questionnaire

Decomposition of the PSD phase into segments and activities
Decomposition of the PSD phase into segments and activities
for the iterative strategy

List of cost drivers used in the EEM

The EEM structure and concepts - examples

Complexity and risk determinants and rules for calculation
7D.1 COMPLEXITY AND RISK CALCULATION

7D.2 ASSESSMENT OF GENERAL COMPLEXITY

7D.3 ORGANISATIONAL ENVIRONMENT

7D.4 TECHNICAL ENVIRONMENT

7D.5 PROJECT TEAM COMPOSITION

7D.6 ASSESSMENT OF PROJECT RISK

Case study ‘A’, examples screen

Case study ‘B’, examples screen

LIST OF FIGURES

Figure 1.1 The cost spent and commitment, hardware and software

Figure 1.2 A general view of software development.

Figure 1.3 A general view software development and effort

estimating process

Figure 1.4 The conceptual view of the EEM

Figure 2.1 The Waterfall model including the V&V process

305

306

307

309

310

312
313
314
318
318
318
322
324
326
327
330
334

27

28
42

54

12

Figure 2.2
Figure 2.3

Figure 2.4

Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5

Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4
Figure 7.5
Figure 7.6
Figure 7.7
Figure 7.8
Figure 7.9

Figure 7.10

Figure 8.1

The prototype paradigm and its relationship to the
conventional SDLC

Software cost estimate accuracy versus phases [Boe81]
The interaction between software development

and phase-based effort estimation processes

R & D project are composed of cycles
Current manpower utilisation

Cumulative manpower utilisation
Alternative manpower loading strategies
Relative effort and elapsed time [Mac87]

The conceptual model of the EEM

An activity data-model (a partial view)

Alternative strategies for software development used by
the EEM

A partial view (a) of the conceptual data model used in
the EEM. (A base model view)

A partial view (b) of the conceptual data model used in
the EEM. (A project view)

A partial view (c) of the conceptual data model used in
the EEM. (A base model view)

A partial view (d) of the conceptual data model used in
the EEM. (A project view)

Complexity and risk

Complexity and risk assessment

The EEM's function chart

A plot of the results of the regression analysis

In Appendices 7A and 7A1

Figure 7.11
Figure 7.12

Decomposition of the PSD Phase into segments
Decomposition of the iterative approach into segments

61
74

86
112
116
117
119
141

231
234

237

241

241

242

243

244

250

252

295

310
312

13

LIST OF TABLES

Table
Table
Table
Table
Table
Table
Table
Table

Table
Table

Table

Table

Table

Table

Table
Table

Table

Table

Table

Table

Table

2.1
3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2

4.3

5.1

5.2

5.3

5.4
5.5

5.6

5.7

7.1

7.2

7.3

Productivity by estimation approach [Jef85]

Aron’s Matrix of Productivity Rates

The Cost Drivers affect the size/effort tradeoff [Boe81]
The basic effort and schedule coefficients COCOMO
models [Boe81]

Phase distribution of effort and schedule

Project classification as function of project size
Comparison of effort equations [Boe81]

Comparison of schedule equations [Boe81]

The Function Domain and their weighting factors
Complexity weighting factors for various classes of
functions

Weighting factors for ‘data-strong’ systems

Rubin’s key Estimation Results

Conte’s calibration of Jensen’s Model and SLIM
Funch’s nominal effort and schedule coefficients
compared with Boehm'’s originals coefficients [Fun87]
Typical top level breakdown structure, after [Tau83]
Typical resource allocation for customised development
[Wol74]

Typical resource allocation, after [Wal77]

Comparison of typical resource allocation prior to the
detail design

Actual versus estimated effort (A Case study -
Project ‘A’)

The contribution of the various cost drivers

to the total effort

Actual versus estimated effort - project ‘B’

82

98
128

130
131
132
136
139

164

170
171

178
182

187
188

189
189

190

272

278
279

14

Table 8.1 Comparison of the EEM approximations and estimates
with the actual and estimates effort by project team 282
Table 8.2 A comparison of the EEM with the IIT’s size models 284

In Appendix 7C :

Table 7.2 An example of activities and their associated cost drivers 315
Table 7.3 An example of ‘standard of effort’ associated with

activities and cost drivers 317
BIBLIOGRAPHY 339
GLOSSARY 375

15

Chapter 1
THE PROBLEM DOMAIN

1.1 INTRODUCTION

This chapter discusses the motivation for estimating the effort needed for software
development and the problems associated with this process. The various
approaches, models and tools currently available are analysed. This establishes
the foundation for further research by proposing the infrastructure for a process
model for the task of forecasting the development effort. The results will assist
development project team members, managers and users of software, by linking
between the process of software development with that of estimating the effort
needed for software building.

How does this research fit into the broader area of software engineering
and management science research? The processes of software development and
effort estimation are strongly interconnected. Software strategy decisions affect
the effort estimation process, while the estimates resulting from the effort
estimation process affect decisions related to the development process. Cost
estimation is thus a major layer in the economic evaluation of a new or an
upgraded software product. The ability to evaluate software cost is dependent on
fundamental knowledge stemming from computer science and management
science, incorporating various disciplines such as information systems,
organisational behaviour and psychology.

16

CHAPTER1 THE PROBLEM DOMAIN

1.2 DEFINITION OF SOFTWARE AND SOFTWARE ENGINEERING

Let us begin by defining software, the product and the discipline used for the
process of developing the software product, for which estimates are needed. This
thesis considers software in a broad sense. Webster’s New Collegiate Dictionary’s
definition of software is a good starting point:

Software is the entire set of programs, procedures and related documentation
associated with a system, especially, computer system [Web79].

The emphasis here is on the words system and computer system. Webster defines
a system as:

A group of interacting bodies under the influence of related forces, or the body
considered as a functional unit [Web79].

Within this thesis, the key terms are interacting bodies and functional units. The
interacting bodies are processed for attaining an end, a functional unit. In
emphasising the functional unit, it is suggested that software includes, both the
application software itself and the operational configuration on which the
application software is built. A computer based system is defined as:

A set or arrangement of elements organised to accomplish some method,
procedure or control by processing information [Web79).

The elements involved in this arrangement are, procedures, documentation,
hardware, systems, data-bases, software and people. This definition is quite broad
and includes more than just computer programs. However, even this broad
definition may not suffice as software itself is a very general term. For instance,
considering software projects and systems, software products and software support,
do we really mean the same when using each of these terms? The answer is,
usually not. Fox [Fox82] states:

Software is too broad a word. It is generic, like the word ‘animal’ which can be
a pet or a cat or an 800 pound Polar bear. Yet, people talk about software as

17

CHAPTER1 THE PROBLEM DOMAIN

though it were a thing, or a uniform body of things. It is everything but.

The term software engineering was introduced at the 1968 NATO
Workshop devoted to the issue, at Garmisch, West Germany [Nau69]. The
software engineering concept evolved further in the 1970’s with Fritz Bauer,
applying the stronger disciplines of engineering (in contrast to ‘art’) to the
software development process. Bauer defined software engineering‘as:

The establishment and use of sound engineering principles (methods) in order
to obtain economically software that is reliable and works efficiently on real
machines [Bau72].

This definition encompasses the key issues at the heart of all definitions of the
engineering discipline. ‘Sound engineering principles’ for the development process
should result in an economical, reliable and functional product. The term ‘sound
engineering principles’ also includes managerial considerations.

The fundamental objective of software engineering is to produce a quality
product and to reduce the severity of possible failures in software development.
The software engineering concept encompasses the key factors of methods, tools
and procedures in support of all principle stages of software development. This
enables the manager of software development to gain control over the process and
provides the system developer with a foundation for building software. Based on
these concepts, more comprehensive definitions have been proposed, all
reinforcing the importance of engineering discipline in software development.
Boehm’s [Boe81] definition emphasises the management of expectation and the
necessity of satisfying human need, which means that software is a working
product only when it satisfies a set of requirements:

Software Engineering is a application of science and mathematics, by which
the capabilities of computer equipment are made useful to man via computer
programs, procedures and associated documentation [Boe81].

18

CHAPTER1 THE PROBLEM DOMAIN

1.3 SOFTWARE ENGINEERING AS AN EDUCATIONAL SUBJECT

Researchers and practitioners, including Freeman [Fre76], Wegner [Weg80],
Jensen and Tonic [Jen79], Boehm [Boe81], Sommerville [Som85] and Macro and
Buxton [Mac87], view software engineering as a branch of engineering. Macro and
Buxton [Mac87] question whether or not software engineering should be taught in
educational establishments, and if so how it should be discriminated from
computer science. Jensen and Tonic suggest that a software engineering
curriculum, as a professional and as an academic subject, should be composed of
the following primary areas: management science, engineering fundamentals,
computer science, physical science, communication skills and project laboratory
work.l They propose to place cost estimation under the umbrella of management
science and in particular under the topic of cost analysis.

Yet, it is controversial whether estimating software cost should be taught
only as a part of cost analysis. Cost estimates support the decision process
associated with the project definition and the management of software
development. Furthermore, the parties involved in this decision process come
from various parts of the organisation and may have conflicting objectives and
views of the solutions offered for a given set of requirements. Complexity and
uncertainty, caused by a wide range of problems, are also associated with the
development of software and therefore with the estimation process. The reasons
for complexity in software development might be logical and/or technical.
Problems stem from the nature of the application being developed, or external
factors such as the organisational and the technical environments. Modelling
software costs is dependent on understanding the broad areas of management
science and computer science. However, modelling of software costs interacts
with other disciplines in management science, particularly organisational, cognitive
psychology and decision theories. The subject of estimating the effort required for
software development would undoubtedly benefit from interdisciplinary treatment.

1. This work was supported by the Institute of Electrical and Electronic Engineers, Inc. (IEEE) .

19

CHAPTER1 THE PROBLEM DOMAIN

1.4 THE NEED FOR EFFORT ESTIMATION

Planning and forecasting is imperfect work beset with uncertainties of various
kinds, yet it is essential to keep the gap between disaster and simple variance
wide enough to enable progress to be made in some orderly way [Blu69].

The incentive for estimating the effort needed in software development arises
from the need for planning. Forecasting is a difficult management task, since
uncertainties of all kinds are involved. Planning is the process of setting formal
guidelines and constraints for managerial action. Its purpose is to show how to act
instead of react, to provide adaptable methods and to overcome the alarm
syndrome that prevails today. Management of software is still a matter of personal
style and individual experience. nManagement, from a software engineering
viewpoint, is primarily the management of the design process. The process is
highly creative knowledge work, yet it must still be estimated and scheduled so that
the various life cycle activities can be co-ordinated and integrated into an
harmonious result.

Knowing the estimated cost of software development assists us in the
processes of justifying the cost for a software project, analysing realistic tradeoffs,
planning resource requirements, designing-to-cost and/or designing-to-schedule,
and controlling the development process.?

The need to estimate the effort required for software development exists
before and during the development process, therefor, the cost analysis of a project
should be a continuing activity throughout the project life cycle. Yet, as decisions
made early in the software development determine the cost of the software life
cycle, an estimate of the total effort required to build a software product, its
schedule and cost, is essential before any investment decision is made. Estimating
the effort required to develop a software product is a major factor in evaluating a
potential project. Labour is not only the most expensive resource, it is a scarce
resource: there is a shortage of high quality, experienced people. We can’t

2. This is an iterative procedure. It consists of design and estimation activities and aims to ensure
design-to-cost and design-to-schedule. This process also enables us, if it is at all necessary, to design
only the minimum to satisfy a set of requirements stated by the customer.

20

CHAPTER 1 THE PROBLEM DOMAIN

"...indefinitely, add people and get the job done faster" [Nor63], nor are "Manpower
and time interchangeable" [Bro75]. Knowledge about the behaviour of this
valuable resource assists management in prioritising both alternative solutions and
development strategies, in which the estimated effort differs meaningfully.

The timing of the installation of a new project might be of critical
importance to the user organisation as far as changes in the economic feasibility of
the project are concerned. Software users are often more concerned about
predictability and control over software costs and schedule than they are about the
absolute values of the costs and schedule. Good estimates enable management to
synchronise their software development with other critical development, such as
major changes in their services.

Knowledge about the estimated effort and the development schedule, for
each development phase, is essential through the project life cycle. This
knowledge enables managers to control the development process by tracing the
project status with regard to two important factors: the effort and schedule
associated with the process.

However, the degree of understanding of the project under development
varies throughout the life cycle. The uncertainties in factors influencing the
estimating process are also reduced as the development process continues. The
nature of the estimates differ for each type of system, as well as in each phase of
the software development life cycle, according to the estimation objectives and the
maturity level of the project. Therefore, although an interdependent estimation
model for the entire life cycle is claimed to be of benefit, this research will
question whether it is reasonable (or worthwhile) to explore such a model. This
research takes the attitude that each software development phase should employ
different estimating procedures.

1.5 THE PROBLEM DOMAIN

The 1980’s have often been called the information decade. The trends established
throughout this decade are certain to continue into the 1990’s and probably well

21

CHAPTER1 THE PROBLEM DOMAIN

into the next century. The implications of these trends on management of
software development should be understood. The convergence in the late 1970’s
of computer technology (hardware & software) with communications has resulted
in the software development environment becoming far more complex. Man-
power costs have increased continually while the management skills needed to
control this complex process, which is technically oriented and heavily affected by
human and organisation behaviour factors, have remained scarce.

The computer industry has seen a dramatic rise in the cost of software
relative to hardware. Hardware costs have been declining significantly while
software costs have been increasing. Typically, at the time when only 2% of the
project costs have been spent, a commitment already exists for 70% of the
software and hardware costs, as shown in Figure 1.1. Whilst this percentage varies
slightly, the conclusion is well supported. Therefore, decisions made at the outset
of a project will significantly and unalterably shape the system cost.

100% =
75% | System spectfication y
/
/
. /
System requirements /
/
/
50% [~ /
/
/
. /
Commitment /
25%
|
Concept Definition Development Production

Figure 1.1 The cost spent and commitment, hardware and software [Win87]

22

CHAPTER 1 THE PROBLEM DOMAIN

If the trends in software costs are being also considered, then we realise
that the ‘software crisis’ is important and is not just a cliche. Problems that have
been addressed in this context are associated with schedule and cost estimates of
software development which are often inaccurate. The software industry has often
experienced inaccurate cost and schedule estimates as well as overruns in software
development. Therefore, it is not at all surprising that meeting project deadlines
has become a prime worry for managers in major industrial countries.3

The total world population of professional programmers in 1980 was
estimated to be 3,250,000 [Jon83]; [Boe88a]. Of these about 1,000,000 were
located in the US, 1,000,000 in Western Europe and 500,000 in the Far East
(mainly Japan). The 1980 annual cost of the programming labour force in US
accounted for approximately 40 billion dollars, which represented 2% of the GNP.
With an estimated growth of 7% per year, the expected population and cost of
programmers for 2000 is [Boe88a]:

* uUsS 3 million professional programmers,
at a cost of 400 billion dollars.

* World 10 million professional programmers,
at a cost of 800 billion dollars.

By the turn of the century, the software industry is estimated to have total
turnover cost of about 800 billion dollars world-wide.* Therefore, controlling and

3. Price Waterhouse International Computer Opinion Survey indicates that managers in US, UK,
Australia and France considered meeting project deadlines as their major worry while, managers in
Japan didn’t considered this issue to be a problem [Pri88].

4. Total software cost trends, based on 1985 figures with a continued estimated growth of 12% per
year (indicating a 5% annual increase in personnel costs and 7% increase in the number of
personnel) [DODS8S5], [Boe87a}, in billion dollars are:

1985 1995 2000
US DOD 11 36 63
US Overall 70 225 400
World wide 140 450 800

23

CHAPTER 1 THE PROBLEM DOMAIN

saving even a small part of this cost is meaningful. The gap between the demand
for new and upgraded systems and the ability of the software industry to fulfil this
demand is wide. This stems from a shortage of talented software engineers,
programmers and managers, which is the major cause for the increase in software
cost.> However, this is only part of the problem. Analysis of a sample of nine US
Federal projects [Usg79] (at the total cost of 6.8 million dollars) showed that less
than a tenth of all projects are delivered on time and within the specified budget.
Furthermore:

- Only 5% of the software had paid for been used ($0.3M), and less than 2%
($0.1M) had been used as delivered, i.e. without change.

- 29% of the contracted software was paid for but not delivered ($2M).

- 47% of the contracted software was delivered but never used ($3.2M) and
19% was abandoned or reworked ($1.3M).

Although this sample represents only a tiny part of total software cost in the US, it
is well supported. This picture should alarm those who have the authority over
software contracts and those who manage software development. What are the
reasons for such a poor record? It is not a question of technological
breakthroughs, for they are required on few, if any, software projects. So where
does the problem lie? The actual difficulty has been in estimating the appropriate
resources needed for the solution. This difficulty is derived mainly from the
inability to identify and appréciate all aspects of the problem [Ton79].

Even so, this situation is only one side of the coin. There are other
endeavours from which we can learn a lesson although a very different one. Mills
[Mil80] of IBM, describes his experience with very large and complex projects

5. The world wide programming backlog for 1980 was estimated as 5 million programmers, which is
150% of the world wide calculated professional programmer for this year [Pri88]. This trend
continued throughout the eighties. The backlog is defined as requests outstanding for new or
improved computer systems. This is supported by the US Air Force survey which has identified a
four years backlog of important data processing functions which cannot be implemented mainly due
to limited availability of personnel [Boe88a].

24

CHAPTER 1 THE PROBLEM DOMAIN

which were delivered on time and within budget. One of the projects was
developed for 8 different processors and involved 200 person years of effort over a
period of 4 years. The successful development of this project and of a few
additional projects, all of which were implemented using an incremental
(evolutionary) strategy, is attributed to the strategy chosen for the development
process. This approach enabled the completion and delivery on time and within
budget for each of the 45 incremental deliveries. Mills’s conclusion that there were
few late or overrun deliveries in that decade and none at all in the past few years"
[Mil80] contradicts the previous example. Though this does not represent a
common view held by the professional and the academic communities, it does
suggest a better way of estimating the software development effort.%

Computer hardware technology has advanced rapidly whilst customers and
users’ requirements have become more sophisticated. Software complexity has
steadily increased, creating a significant gap between software technology and
management. Software technology, which includes both managerial and
development methodologies, was inadequate to satisfy the innovative users’
requirements [Jen79a]. For example, only the convergence of computer hardware
and communication enabled the introduction of office automation into
organisations in an attempt to meet the long-time vision of a ‘paperless society’.
Although the technology exists, these expectations are still unfulfilled. Given the
increasing dependence of organisations on software-based systems, it has become
increasingly difficult and eventually will be impossible to return to the previous
way of doing business, or even to continue effective operation if the computing
systems are out of date [Leh89].

Increase in size of software systems, particularly when poorly structured,
may cause the management effort to increase exponentially [Weg80al].
Unfortunately, software projects expand if not properly controlled. The
evolutionary nature of system development is subject to a "Law of increasing

6. Fox [Fox82] supplies us with few examples of that type. Two major airlines, each sued its supplier
because after $40 million, already spent, the system was not even close to working. A major
European bank went to court for a $70 million claim over software.

25

CHAPTER 1 THE PROBLEM DOMAIN

unstructuredness” [Bel79b] unless specific resources are devoted to maintaining
the structure during the system development and growth. Good management is
essential to the development of successful and reliable systems. Software
development requires a careful, intense management system, which must be aimed
at ensuring the highest quality of delivered products within budget and constraints
of the project. These two aspects of a project are interdependent. The quality
management of the software development process cannot be implemented by
ignoring its economic aspects. The ability to evaluate the costs and benefits of a
potential project at an early stage is paramount.

1.6 SOFTWARE DEVELOPMENT AND EFFORT ESTIMATION

Estimating the effort needed for software development cannot be discussed
without considering the software development life cycle (SDLC), a conceptual
framework that underlies the development and management processes.

Software development can follow a number of alternative approaches to
fulfil a desired set of requirements. Sequential software development where the
development process is consists of discrete phases and stages (within the phases)
implemented in definite sequence, or an iterative development process are two
possible strategies. Customised software development, or modification of an
application package are additional two alternative approaches. Each of these
strategies can incorporate the use of tools such as, data-base management systems
(DBMS) and report generators. Each strategy will make use of the universal view
of software development as discussed below.

1.6.1 Software development and effort estimation as interactive and
iterative processes

The software development process is composed of four principal phases, regardless
of the specific development approach or the unique features of that project.

26

CHAPTER 1 THE PROBLEM DOMAIN

These phases are definition, design implementation and operation.

DEFINITION >DES TGN >IMPLEMENTATION >OPERAT 10N

Figure 1.2 A general view of software development.

The main concern of the definition step is what should be done from the
viewpoint of the users. In other words, what are the desired functions, what is the
data to be processed (in order to implement these functions) and what is the
desired performance of the new system. This is explored in detail in this thesis so
that all implications are understood. The design phase addresses the questions of
how the data is to be structured and how the overall hardware and software
architecture are to be designed. In the implementation phase the designed
architecture is constructed and the designed functions are implemented. The
operation step focuses on changes to existing software. Changes that result from
user requirements, from errors, from modification and adaptations due to changes
in the technical, users and/or external environments.

But, project development does not occur in a vacuum. A software project
is a part of a larger computer and societal system. Projects are being initialised
either in long range planning for information systems, or in a Project Planning
phase. Initialisation through a Project Planning phase occurs as a result of an
urgent, or ad hoc need, where established priorities for development cannot be
undertaken. Cost analysis for proposed projects is done in either of these project
initialisation phases. Therefore, this thesis takes the view that the definition phase
should be comprised of 2 phases, a Project Planning phase and a Preliminary
System Design (PSD) phase. The concepts identified at the Project Planning
phase are further analysed into system requirements at the Preliminary System

Design. These are similarly transformed into detailed design that is then

27

CHAPTER 1 THE PROBLEM DOMAIN

implemented as a computer program. This is done at the Construction phase.”
The processes of identifying what is desired and how it should be implemented are
of an iterative and interactive nature. The process of estimating the software
effort should be implemented in each of these major phases and should continue
throughout the project life cycle, as shown in Figure 1.3.

Estimation

Model A1
PROJECT < i COSTS PLANNING < STATIST I CAL<- -
PLANN | NG AND EST | MAT ING DATA FROM
OR OTHER PROJECTS

LONG RANGE
SYSTEM PLANNING

Estimation

Model A2
PRELIMINARY < - COST PERFORMANCE PROJECT ..o >
SYSTEM DESIGN AND PERFORMANCE
(Requirement ESTIMATION DATA < e
and
product
design}
CONSTRUCTION < -
{Detailed Yes
design and IS COST PERFORMANCE <
implementation} MON | TOR ING CONS | STENT

WITH PLANNING?

NO

v
COST PLANN | NG
AND EST | MAT ING

OPERAT ION

Figure 1.3 A general view, software development and effort estimating processes.

7. This phase is often called the development, production or implementation phase. However, as
the main work of this phase is around the actual construction of the target system, the title
Construction phase will be used in this thesis.

28

CHAPTER1 THE PROBLEM DOMAIN

1.7 CURRENT RESEARCH

Research into effort estimation cannot be isolated from research within adjacent
fields of interest. In order to understand the behaviour of the effort required for
software development, researchers investigating it have approached the subject
from different aspects. The earlier works of Benington, [BenS6] and Norden
[Nor63] influenced Putnam [Put79], whilst Parr [Par80] proposed an alternative
approach. Royce [Roy70], Boehm [Boe76] and Jensen [Jen84] modelled the
process of software development, and concluded with various versions of a process
model popularised as the ‘Waterfall’ model for SDLC. As new technologies
became available, new paradigms for the SDLC were proposed and labelled with
the generic term Prototyping.3

Researchers have long been interested in staff productivity using different
software development processes and environments. The aim has been to define an
agreeable and reliable measure of productivity for the software industry and
perhaps to come up with a standard measure as is customary in the engineering
arena. With such a measure we could record the effort of the SDLC (as a whole,
or for various parts), measure productivity, establish productivity trends and
hopefully predict the effort required for a new project.’

Researchers have been looking into the various aspects of the complexity
associated with the software development process. Complexity is both a
characteristic of the product to be developed and of the organisational
environment. There are different causes for the complexity associated with
software development. Complexity can stem from the behaviour of the people
involved in the development, their attitudes, their roles in the organisation, their
expertise and skills. A further aspect is technical complexity emerging from the
development environment, such as new hardware and new development tools.

8. [Bal83]; [Ala84]; [Zav82;84]; [Agr86;86a].

9. [Wal77]; [AIb79]; [DeM85]; [Jon86]; [Dun83].

29

CHAPTER 1 THE PROBLEM DOMAIN

Complexity often results from uncertainty associated with the project and the
development process. Entropy caused by interactions among system components
(in the broad context of systems) and the feedback associated with these
interactions, are the prime cause for the uncertainty which is inherent in the
process of software development. The outset of the project life cycle is
characterised by a high level of uncertainty.1°

Empirical research in the subject of estimating software development costs
has been done since the late 1960’s in the area of estimating the effort and cost of
software development.!l In the early 1970’s, with the dynamic growth of the
information technology industry, the need to compete for large and risky software
development contracts, illuminated the necessity to improve the process of
estimating the effort needed to produce software. It was only in the late 1970’s
and the 1980’s that intensive research resulted in a number of effort and cost
estimation models, which were followed by the development of support tools for
estimating the software development effort.12, However, a few new projects have
been launched in recent years stemming from the work of the Esprit and Alvey
committees, such as the MERMAID, SPEM, COSMOS and PIMS projects. Even
with such intensive research no clear understanding of the behaviour of the
software development process resulted.

Most of the models were developed, not coincidentaily, by very large
companies. These companies not only realised the need for estimating methods,
models and tools, but they themselves could not afford to stay out of the race for
software tenders and contracts. They needed support tools throughout the
estimation process. This was the incentive to carry out intensive research into the
area of software effort and cost estimation. But, the new approaches introduced
by that work did not bring salvation to the industry. The early models were used
by their developers (companies such as RCA, Boeing, BelllLaboratories, IBM) as

10. [MaC76;89]; [Gil77]; [Hal72;77]; [Che78]; [Cur81]; [Bas81]; [Bel81]; [DeM82]; [Leh89;89a]
11. [Nel66]; [Wol74;84]; [Dot77]; [Wal77]; [Hal77]; [Boe73]; [Put78;79;80;80a;81]; [Alb79;83]

12. [Put78;79;83;84;84a]; [Alb79]; [Boe81]; [Moh81]; [Jen83]

30

CHAPTER 1 THE PROBLEM DOMAIN

competitive weapons. The studies and research findings did not become ‘common
knowledge’.

1.8 DIFFICULTIES IN ESTIMATING SOFTWARE DEVELOPMENT EFFORT

The difficulties in estimating the costs of software development appear to stem
from the management of complexity, in other words managing people and
developing products in a dynamic and uncertain environment. Complexity is not a
well-defined term in software engineering literature. A consensus does exist,
however, as to its importance in estimating the effort for software development.
The term appears in different contexts and is generally used in this problem
domain, to indicate difficulty in the development process, caused by one or more
factors. A definition which emphasises the interaction between all agents involved
in the process was proposed by a panel which dealt with complexity in software
development!3:

Complexity is the measure of the resources expended by another system
interacting with a piece of software. Categories of systems that may interact
with software are machines, other software, people and even external
environment [Bas79a).

But can complexity, which is an intuitive concept, be quantified and measured?

The nature of the software product, its development process, the people
who are involved in it and the environments in which the software is being
developed and/or will be used, are important factors in the process of software
development and that of software cost estimation. Understanding the
characteristics of the software product and the factors influencing its development
is essential.

13. After Curtis [Cur79]

31

CHAPTER 1 THE PROBLEM DOMAIN

1.8.1 The software product and its development process

The process of software development is characterised by the software product
itself and the associated environments in which the development process takes
place. During most of its development, software is basically an intangible product.
Only as a working end product, which satisfies the requirements, is the software
tangible and therefore, quantifiable. The fact that 50,000 lines of code (LOC)
were written indicates nothing meaningful about the status of the development
process. It can be used as a posterior measuring of productivity only when
software is fully completed. On the other hand, the ‘life-time’ of this end-product
is naturally limited as the application domain undergoes continuous changes. The
software product should be treated as: "an ever to be adapted organism rather than
as a to be produced once artifact” [Leh89]. This last point implies that a software
product should be built in an evolutionary manner, to be modified and changed.
The way to build software for that purpose is entirely different from development
software as a ‘black box’ which is easy to use but need never be opened.

Desired software characteristics are often in conflict, requiring tradeoffs
among factors (such as core storage requirement versus light code, flexibility or
adjustibility to new needs, accuracy and reliability). The application developer of
software finds himself in a dynamic environment. The software cost is derived by
an extremely intricate environment in which many factors play a role and it is very
difficult to isolate each of the factors influencing the software development. In
addition, these factors behave differently in various situations. For example, a
high response time might be of crucial importance for a project and, therefore,
expands the effort needed for its development. The same factor might not be of
importance in a different development environment and, hence, may affect
differently the effort needed. Even within a given company, fluctuations in
company project demands may dictate changes in priorities and thus affect project
development dissimilarly. It is only the combination of all the factors of this
environment which drive the cost of a software effort.

Volatility of the requirements. There is no one discrete correct solution to
a set of requirements. Furthermore, there is no way to check the attributes of a

32

CHAPTER1 THE PROBLEM DOMAIN

‘correct’ software solution, the same way in which the stress characteristics of
materials might be used to check the properties of design for a building [Kit89].
Software requirements are often driven by forces far removed from the actual
software laboratory. Product requirements in most cases are not well-defined nor
are they frozen before any design activities began. Software engineers like to start
quickly the detailed design and coding, they have problems stemming from
frequently underestimating the time needed to understand the user functional
requirements. This can result in software that does not meet the user
requirements, which will inevitably alter during the lifetime of the project.

The control of the development process. There are virtually no objective
standards of measure by which to evaluate the progress of software development.
Software work is ‘knowledge work’ which can’t be seen, does not fit into discrete
tangible units and is difficult, if not impossible to measure. Therefore, a manager
of ‘knowledge work’ faces difficulty in knowing when he has accomplished
something. The abstract nature of software development makes it more difficult
to manage. The physical visibility of a partially completed building must be
replaced by documentation, that provides the state of a partially completed
project, which aids in understanding and modifying the system.

Product development is often dependent upon the availability of supporting
software, programs or data-base elements of another project. Delays in the
availability of supporting programs or data-bases may subsequently induce
slippages in the product development. The current practice, often used to describe
the progress and the status of software development by indicating percentage of
completion, is not satisfactory.

1.8.2 The people

Experience indicates that software size and complexity is generally underestimated
[Boe81]; [Wol74); [Bro75]. If we could understand the reasons for this
phenomenon we might be able to overcome these obstacles. Cultural behaviour is
considered as the cause. The people involved in software work are optimistic, they

33

CHAPTER 1 THE PROBLEM DOMAIN

desire to please and they tend to have incomplete recall of previous experience.
Team members are generally not familiar with the entire software job.
Furthermore, software engineers and programmers tend to ‘gold-plate’ the
developed product to satisfy their own technical challenge aspirations rather than
the essential functionality of the system.

Software engineers and programmers often have trouble communicating
directly with users. They prefer interesting work which often gets done in
preference to dull work, meaning that the latter is frequently postponed or
ignored. The software manager often has more interest in the feasibility and
technical issues of the project, while the business manager’s awareness of the
influence of the loose control, direct or indirect, is low. Both types of managers
are not always motivated or equipped to consider an information technology
project.

Lastly, managers of software development effort often find themselves in
conflict and are forced to act defensively. They are asked to estimate the required
effort and to take responsibility for the development process following their
estimates. At the same time, they face pressure to lower their estimates, knowing
that high estimates, although well justified, might not be accepted by higher
authority, causing the postponement or even abandonment of the project.

1.9 THE ESTIMATOR’S DILEMMA

There is a need to know what the costs of developing a software product will be.
Yet, it is difficult to estimate these costs accurately. It is even more difficult at the
outset of the project life cycle. A strong link exists between the availability of
estimates of effort and duration for software development, the functionality within
the project problem domain being estimated and the capability to plan, manage
and control the software development effort and cost. We cannot manage without
being able to control and we cannot control without knowing what is to be
controlled. In other words we cannot control without planning, nor can we plan
without estimating.

34

CHAPTER 1 THE PROBLEM DOMAIN

The abstract nature of the software development process cannot be
changed. Neither can we change the volatile nature of the requirements and the
driving forces of this phenomenon. Yet, does the fact that it is difficult to estimate
the effort required for software development imply that nothing should be done
about estimating this effort? Does the fact that we cannot isolate the exact effects
of each of the influencing factors on the software development process justify
doing nothing about estimating this effort? These difficulties do not eliminate the
need for effort estimates. Nor are they a reason to abandon software cost
prediction and to improve methods of estimating.

Estimates deal with the unknown, and the unknown has a perverse way to

- subject poor developers to all kinds of rude shocks. I know only one thing that
keeps these rude shocks to a minimum, and I shall take this opportunity to pass
it to you: Good Luck!, [DeMT77].

1.10 LONG-TERM RESEARCH GOALS AND SPECIFIC OBJECTIVES

Perhaps there are avenues in which we could help the ‘Goddess of Fortune’. We
should not rest quietly waiting for Her to help us, although such help is truly
needed. The subject of this research is about what should be done to help the
software manager, the project team, the users and all who are involved in the
process of software development with this matter.

Having discussed the difficulties stemming from the phenomenon described
as the ‘software crisis’, recognising the trend of software costs, and having gained
understanding of the difficulties associated with estimating the effort needed for
software development, it is now the time to establish the long range goals and the
specific objectives for this research. This research aims to pave the way for
members of organisations who are parties to the software development and effort
estimation processes, by proposing a concept which will aid the understanding of
these complex processes. The long-term research goals are:

1. To describe a practical and systematic method of software estimation which

35

CHAPTER 1 THE PROBLEM DOMAIN

will serve as a guideline for the parties involved in estimating the software
effort.

2. To identify the possibilities of automation and to specify a system which
will make use of the ‘common knowledge’ which exists with regard to
software development management.

3. To build an automated tool for future research.

4 To establish the foundation for an historical data-base for further research.

The problem of designing an effective model and tool for estimating the
effort required for software development is both important and difficult. Yet,
what can be done to help in solving the estimator’s dilemma? The scope of this
research is restricted to estimating the effort required during the Preliminary
System Design (PSD) phase only. By so doing, a response will be given to a part of
the process that needs special attention that it does not receive in current tools.
This thesis offers a model which has the following advantageous properties:

1. A practical and systematic method of software estimation which would
serve as guidance for the parties involved in estimating the software effort,
and by that:

* Assist experienced project managers and all other data processing
professionals by suggesting an interactive and structured estimation
process. This process which facilitates thinking about both their
work and their decision making and allow the incorporation of the
estimators’ judgement into the estimation process. |

* Serve as a training tool for the inexperienced project manager and
user, by proposing a standard procedure for software project
development and for the estimation process.

* Provide a basis for assessing project risk, comparing and evaluating
the various development alternatives and for developing a working
plan for a project.

36

CHAPTER1 THE PROBLEM DOMAIN

2. A way to capture and to retrieve the assumptions underlying the estimation
process and therefore to:

Keep the organisational knowledge and the knowledge associated
with a project, and so they are not lost through personnel change.

* Gain better knowledge and understanding of the process and the
factors that influence it.

3. A software estimation process which is integrated into the process of
software development. |

These qualities will hopefully allow informal interaction among all parties
in the development process: the user, the project manager, the project team and
the organisation’s management and hence, improve reliability among these parties,
produce more precise estimates and decrease overruns.

1.11 RESEARCH DIRECTIONS

Background. The economic evaluation segments are the weak links in the various
phases of the projects’ life and they do not receive the degree of attention they
deserve. There are many different reasons for this phenomenon. It is common to
think that most projects get off on the wrong foot because the project definition
and the project planning factors are not treated with sufficient attention and
competence. The manageability of any development process is determined by the
amount of uncertainty experienced during the development. Unfortunately these
properties are particular to the Project Planning phase. Yet, the argument is that
if the information system manager had an understandable, friendly and practical
method, which emphasises the principles involved in the estimation process and
the results, using tools of support, then he would have taken advantage of it and
used it.

One way of supporting quality management in this area is to provide, at the

37

CHAPTER 1 THE PROBLEM DOMAIN

different phases of the life cycle, guidelines for the products to be supplied and the
means for producing them. This will serve as a facilitator to the information
technology manager and will assist in the dissemination and usage of the ‘common
knowledge’ which already exists in the organisation, related to both the software
development process and the effort estimation process.

' One possible way to deal with the issue of estimating the cost for software
development is derived from the world of engineering. In the software
development process, we could employ a standard approach similar to that used
for production planning and scheduling. Some qualitative attributes might be
drawn from the production process. For instance, we might gain insight from
analysing the software development process, the various procedures, their
components, and the ways they interact and integrate, whilst bearing in mind an
analogy derived from the engineering practice, the ‘Bill of Material’ and the
‘Routeing’ principles. This research will argue that it is feasible to approach
software development estimates using surveyors, decomposing the software
development life cycle into standards components which have an associated
average effort needed to produce them.

Each of the SDLC phases employs activities characterised by various
attributes. Therefore, this research takes the view that effort estimation for each
phase should be dealt with differently. None of the current models, known to the
author of this thesis, deal with estimating the effort for the Preliminary System
Design phase (PSD) of software development explicitly.

Aiming to provide an insight into the process being modelled, this research
advocates the bottom-up approach for estimating the effort for the subsequent
phase (the PSD) and a top-down approach for the Construction phase. A better
understanding of both the software development process and the effort estimation
process will help in producing better estimates, since, the major obstacle is
underestimating the effort which results from not knowing what is involved in a
specific solution. The bottom-up approach assists in providing insight into the
estimating process. This property is of high benefits although intangible.

38

CHAPTER 1 THE PROBLEM DOMAIN

1.11.1 The principles of the proposed solution

The Effort Estimation Model (EEM) developed in this thesis has the following
major principles:

- Life cycle. Software development has a life cycle pattern which is
composed of phases, segments and activities which represent the processes
of transforming concepts and desires into a real operating software system.
The concept is borrowed from the engineering world where the notion of
product life cycle has long been used in product planning.

- Phase - by - phase estimation. The prime aim of this research is to develop
a model appropriate for the process of effort estimation which takes place
at the Project Planning (PP) phase and provides estimates for the
subsequent phase only. At that phase the effort is estimated only for the
PSD phase of the software development process. The effort needed for the
rest of the project is extrapolated from these estimates using resource
allocation among the development phases based on resource distribution
among the project’s phases, which is known statistically.

- Activities. Most activities involved in the software development life cycle
have a standard list of cost drivers. The cost drivers serve as the basic unit
for estimating the effort needed for each activity. A cost driver is, for
example, an input document, a report, a file to be converted, a contract to
be signed, etc.

- Measurement. Each of the standard list of cost drivers involved in system
development has associated standards of effort. A Standard of Effort
(SOE) is the amount of effort required to accomplish one work unit, or the
amount of effort needed for a defined cost driver which is not expressed in
work units e.g. system overhead. Standard of Effort (SOE) is the
(organisational) inverse of a standard rate of productivity, measured in
person-hours (PH). It is the result of measurement of projects
performance, but with and heuristic adjustment process.

- Judgement. However, some of the activities involved in the software

39

CHAPTER 1 THE PROBLEM DOMAIN

development life cycle do not have a standard list of cost drivers and,
therefore their standard of effort is not known a priori. The effort needed
to implement these activities is estimated separately, by the effort estimator
for each project, using his experience and expert judgement.

- Complexity. Every project has a complexity level which affects the
productivity of a project. It should be noted and emphasised that the
productivity rate of a project is a function of various attributes, among them
staff ability and management competence which, also, inferred productivity.
But, the aim of the estimation process at the outset of the project life cycle
is to predict the person months (PM) required for the development. The
‘natural’ schedule, the number of various professionals and their required
skills can be worked out only after the person months number, the effort
required, is known and agreed upon. At that time it is not yet known who
will be the individuals assigned to the project. Therefore, the only valid
assumption about the productivity of a project, is a function of the general
system complexity, uncertainty and difficulty associated with the system.
Consequently, the project complexity affects the set of standards of effort
associated with a project.

The concept proposed in the Effort Estimation Model (EEM) should be
applicable for each of the alternative approaches for software building, however,
with an adaptation to the specific approach. .

The nature of the effort estimating task relies heavily on the judgement of
experienced performers. Effort estimation of software development, in particular
at the outset of the project, is an ‘ill defined’ problem and therefore, a closed
algorithm is not an adequate solution for this process.

1.11.2 The Effort Estimation Model (EEM)

The EEM developed in this thesis assumes the use of a management framework
for the software development life cycle (SDLC) of phases, which are composed of

40

CHAPTER1 THE PROBLEM DOMAIN

segments (group of related activities) and activities.

A standard list of cost drivers is associated with each activity. The cost
drivers serve as the basic unit for estimating tasks associated with each activity. A
cost driver might be viewed as a further refinement of an activity and indeed, in
some cases, the cost drivers are work components that identify the tasks to be
performed. However, this is not always the case, some of the cost drivers identify
an overhead for a system.

A S‘standard of effort’ (SOE) is associated with each of these combined
entities, composed of a cost driver and a concurrent activity. The standard of
effort associated with each of the cost drivers and corresponding activity may
differ for an identical set (of cost driver and concurrent activity), according to the
complexity of the project.

The proposition is to associate with each combination of activity and cost
driver, three different ‘standards of effort’ according to the assumed complexity
level of the system, complex, moderate or simple. The degree of complexity is
considered as a subjective classification since human beings are involved in the
development and in the complexity assessment. The various parties involved in
the development may differ in their attitude and understanding of the project
under discussion. The different groups might also have conflicting objective.

However, the standard of effort is not known for every activity involved in
software development. There are activities which are characterised by a high
variance of effort needed to accomplish them in different projects. Therefore, the
estimates of the effort required to accomplish these activities is subject to the
judgement of the estimator.

The Effort Estimation Model (EEM) is supported by a conceptual SDLC
composed of phases, segments and activities, each activity is associated with one or
more cost drivers which are correlated to a ‘standard of effort’. The forecasted
effort for some activities which differ widely in the effort required for their
implementation is provided by the estimator based on his judgement, as
schematically described bellow: |

41

CHAPTER 1 THE PROBLEM DOMAIN

SDLC
Which consists of

PHASES
Which consist of

SEGMENTS
Which consist of

which have

ACTIVITIES < --=---=+----- >COST DRIVERS

which consume

RESOURCES

which can be forecast based upon

MEASUREMENT and JUDGEMENT

which produces which leads to

STANDARD OF EFFORT PREDICTED EFFORT (PH)
which is measured in which is not a

PERSON HOURS (PH) STANDARD OF EFFORT

And is classified by the

GENERAL SYSTEM COMPLEXITY of the PROJECT

Figure 1.4 The conceptual view of the EEM.

42

CHAPTER1 THE PROBLEM DOMAIN

1.12

RESEARCH METHOD AND THESIS STRUCTURE

The research incorporates the following methods:

1.12.1

Developing a conceptual model of the process of estimating the effort
required for software development early in the life cycle of a project.
engineering. ‘

Acquiring knowledge, using walkthrough sessions, case studies and
discussions, developing a questionnaire which imitates an estimation
session.

Developing an algorithm for estimating the effort for the Preliminary
System Design phase of the software development process.

Designing a support system and building a prototype using the suggested
algorithm.

Capturing and analysing data, mainly for the purpose of tuning the
algorithm, assessing the complexity rules incorporated in the EEM and
evaluating the model.

Thesis structure and outlines

The following parts and chapters encompass this thesis.

Part 1

Focuses on two issues, setting the scene for this research and
establishing the basic foundation for understanding the two
processes of concern: the life cycle development process and the
software estimation process. Two chapters are included:

Chapter 1: In this chapter the concept of software engineering and the

estimator’s dilemma were introduced. The need to estimate the
required effort for the software development at the outset of the
development process is contrasted against our inability to do so.
This inability results from the complexity of the problem, uncertainty

43

CHAPTER 1

Chapter 2:

Part I1

Chapter 3:

Chapter 4:

Chapter S:

THE PROBLEM DOMAIN

related to the objectives and preferences of the people concerned,
the lack of information associated with the complexity of the
problem, and the uncertainty of the problem solving methods
themselves.

This chapter will focus on the processes of software development,
and on the alternative methods for estimating this effort. Armed
with the required understanding of the two processes and their
implications on the desired structure of an effort estimation model,
this chapter culminates with a short discussion of the primary
concepts of the EEM proposed solution.

These three chapters focus on the current research in the area of
effort estimation which is a multi-disciplinary area.

The ontology of effort estimation models, tools for software
development and their evolutionary development is the subject of
this chapter. Two models which represent the most commonly used
approaches are discussed in detail. These are SLIM which
represents the analytical approach and COCOMO which represents
the composite approach. A comparison among the models, with
particular emphasis on COCOMO and SLIM. The chapter
concludes with a short summary of the current approaches and
conclusions.

Estimating the size of the software product is a prerequisite for
estimating the effort required for its developmeht. However,
estimating the product size is a very difficult task which has
implications for the ability to estimate the effort required for the
development process. An error in size prediction results in a much
higher error in the effort estimates. Two issues are addressed in this
chapter, improving the size estimates and using alternative sizing
methods which use a non-Line of Code (LOC) unit of measure.
This chapter provided a critique of parametric models and
complexity. Its starts with the presenting and analysing the results of

44

CHAPTER 1

Part ITI

Chapter 6:
Chapter 7:

Chapter 8:

Chapter 9:

THE PROBLEM DOMAIN

empirical comparative studies and the major findings from the
discussion in chapters 2 and 3. Resource allocation among the
phases of software development is of particular interest for this
research and is analysed in detail. The discussion elaborates on
themes associated with complexity of software development. They
are: uncertainty, entropy and feedback as the causes of complexity.
The major complexity determinants are analysed.

Focuses on the Effort Estimation Model. The methodology used to
develop the EEM and that which is incorporated in it are discussed.
The structure of the EEM is described, accompanied examples of its
use and a case study. Part III culminates with an evaluation of the
EEM and with the contribution of this thesis to further research.
The methodology used in developing the EEM is discussed.

The Effort Estimation Model (EEM) is presented in this chapter.
The discussion starts with analysis of the fundamentals of the EEM,
followed by a thorough description of the model. A general system
description, data models and functional chart of the process are
given. The chapter closes with two case studies.

The focus of this chapter is on the evaluation of the EEM. An
evaluation of the qualitative feature of the EEM as presented in the
prototype built, and a quantitative evaluation of the results from a
field study are analysed.

This chapter summarises the major issues addressed in this thesis,
discusses the advantages of the model developed. The chapter
closes with a look ahead, the contribution of this thesis to further
research into the problem domain.

45

Chapter 2
SOFTWARE DEVELOPMENT AND THE
EFFORT ESTIMATION PROCESSES

2.1 INTRODUCTION

This chapter addresses the processes of software building and estimating of effort
required for software development. Various models used to direct and manage
software development are analysed with the aim gaining of a better understanding
of the process. The unique characteristics of each phase which together constitute
the software development life cycle (SDLC), and its major concerns, will be
considered. The nature of the estimation process and the classical approaches
used in estimating effort will be introduced. The implications stemming from the
analysis of the two processes will lead us to the basic assumptions upon which the
Effort Estimation Model (EEM) will be based. This forms an introduction to the
models and tools considered in the following chapters.

The processes of software development and effort estimation are strongly
interconnected. Decisions taken at the outset of the software building process
heavily influence the course of the development, its costs and schedule. Examples
of such decisions include those associated with the approach chosen for the
development process, the choice of support tools for this process and the decisions
related to the functions incorporated into a software product and their desired
quality. Decisions on software strategy clearly affect the effort estimates which, in

46

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

turn, affect decisions relating to the development process.

Software projects vary in many respects, but we can learn much from the
similarities in the process of building software, which will be helpful in estimating
the effort needed for developing software. These similarities serve as the
infrastructure for software building. Therefore, the place to begin the analysis of
effort estimation is with a study of the software development life cyclé.

22 LIFECYCLE MODELS FOR SOFTWARE DEVELOPMENT

The software development life cycle (SDLC) is essentially a heuristic process
which serves as the basic framework for software development. The SDLC models
are descriptive representations of the software process and the documentation
required in each life cycle stage. The documentation, defined to be the
satisfactory completion criteria for each stage, are the deliverables or the
intermediate products of that stage. Even though the software development
process is customarily characterised by a top-down approach and decomposed into
stages, each having defined starting and ending points, it does not progress in a
sequential manner from project inception to system implementation. The SDLC
is an iterative and often evolutionary process. The primary functions of a software
development model are to determine the order in which the major stages should
be carried out and to establish transition criteria for moving from one step to the
next [Boe88§].

A number of software development models have been proposed: the
conventional Waterfall model and its variations [Roy70]; [Boe76]; [Ton79]; the
Iterative Enhancement to the Waterfall life cycle [Bas75]; the Canonical model
[Leh84]; the Contractual model [Leh85]; the Spiral model [Boe88] and new
paradigms such as the Prototyping [Sch83]; Operational Specification [Bal81;83]
and the Transformational Implementation model [Bau82]; [Che81]. There are
many representations of the life cycle, each subculture of the software industry has
its own representation and each of these tends to be modified somewhat for
specific projects.

47

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

2.2.1 The Waterfall Model

The traditional SDLC model, the Waterfall model, was foreseen in early works,
such as Benington’s [Ben56] who described a process model with the basic
characteristic, subsequently termed the Waterfall model by Royce [Roy70].
However, Boehm’s [Boe76] presentation of the Waterfall model, in which he
described the model and its basic assumptions, was an influential milestone
providing the economic rationale underlying the model. This model became the
standard for software development in US government and industry.

The software development process consists of discrete phases decomposed
into stages, implemented in a definite sequence, each of which aims to achieve a
defined set of sub goals, before the next stage starts. These phases and stages
although sequential are interdependent, and a change made in one may have
significant influence on the other.

Four major phases are clearly identified in the process of software
development. They are, the Project Planning, the Preliminary System Design and
the Construction (including the: detailed design, coding and testing) and forming a
complete software product life cycle model, and the Operation including
maintenance.

The Project Planning phase

Project planning involves the development and the selection of the necessary
course of action to achieve an objective. The Project Planning phase (PP) aims to
develop an overall plan, a detailed programme for implementation of the plan and
the method for controlling the progress, cost and time variables of the project.
Project control consists of the appraisal of the performance and the execution of
plans in accordance with the established standards, and the initiation of corrective
action, if required. Thus, the availability of a plan and established standards of
performance are prerequisites for controlling the effort required for project
development. The main concerns of this phase are:

48

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

- To establish which resources are required for the development process,
when are they required and to ensure that they are obtained.

- To evaluate the alternatives and to choose between them.

- To establish standards of performance and methods of control for the
development process.

The Preliminary System Design phase

The Preliminary System Design phase (PSD) aims to specify what the system
should do from the viewpoint of the user needs and the technical aspects to be
solved, in order to develop the desired system’s functionality.! Even though this
phase is the most important of the development process, because it affects the rest
of the process, it is the least studied and the least understood. The PSD phase is
concerned with the problem formulation and analysis, the search for potential
solutions, their evaluation and comparison. Three major stages are incorporated
into this phase. They are system feasibility, system requirements and product
design. The software requirements stage emphasises the user’s view of the target
system, while the product design emphasises the technical requirements. The
product design stage deals with the functions needed to fulfil the users
requirements and with the data necessary to support these functions. Various
design alternatives are evaluated and iterated between the software designers and
the users, until an acceptable design emerges which satisfies the user
requirements.> The model assumes that all the required information about an
application can be obtained prior to the development, and a concise and consistent
specification of the proposed system can be produced prior to the product design

1. This phase is often called the requirements specification and product design phase. However, as
it is in this phase that the preliminary architecture and the functionality of the target system is
designed, it should be titled as the Preliminary System Design.

2. The process of choosing the preferred solution to the problem is tricky, it is usually based on trial
and error, negotiation and social interaction.

49

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

stage.3 Experience shows that various types of inherent uncertainties are
associated with the software development process.

Formalisation of user requirements is a difficult task and is often ignored in
favour of the easier one of developing solutions to what the programmer thinks
the problem to be. The difficulty stems from the fact that users, more often than
not, do not know how to state their needs in a manner that the software analyst
can clearly understand. However, the main difficulty arises from the fact that the
problem has been formalised by those who are not the problem owners. The term
‘problem owner’ is used to indicate the owner of the business problem that is the
trigger for the target system. Communication of concepts between the users and
the designers of the system, and later on in the process, between the designers and
the implementors becomes a problem. This is especially true when a system
includes the need for new hardware elements to be incorporated, particularly
elements such as displays, logic chips and customised interfaces. The key
considerations of this phase are in:

- Understanding the user requirements, mapping them onto a design which
will eventually be approved by the users, and identifying the technical
requirements needed to build the system.

- Setting the design baseline for the target system and ensuring that all
parties responsible for using and operating the system, understand and
agree with the key design and cost factors.

- Securing management commitment to the project and arranging for user
participation in the development process.

There are good reasons for the identification of the Preliminary System
Design as a critical phase. Firstly it is more costly to resolve software problems if
they are identified further into the development cycle. Errors detected early in the
life cycle can be solved much more easily and more cheaply than those discovered

3. This view point introduces problems and therefore invited critique from researches such as:
Peters [Pet81], McCraken and Jeckson[McC81] and Swartout and Blazer [Swa82].

50

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

in later stages of SDLC. When using the Waterfall model, the first time a software
project is totally assembled and tested is quite late in the life cycle, at the early
part of the integration and implementation stages. Obviously, a great risk is
involved in such an approach. Major implementation problems can only be
tackled at a time when solving the problems would imply delay in schedule and
overruns of costs. Secondly, the effort needed for software development
accumulates exponentially, starting immediately after the PSD has been
completed. At that transition point we are still in a position to terminate the
project if necessary, having used only a relatively small amount of the planned
resources and before a commitment is made for a high percentage of the total
costs [Win87].

Analysis of system requirements provides a detailed foundation upon which
the technical programmes and procedures will be developed. The initial emphasis
is directed entirely to an analysis of the user operation. Once the user
requirements and environment are understood, the technical approach is
determined. The designers of the system then have a sound basis on which to
proceed with implementation. The definition of the system is formally reviewed
and agreed upon and the design baselines are revealed. Changes to the baselines
are accepted and accomplished only through a formal change of control process.

The Construction phase

The Construction phase aims to specify the chosen solution in detail, to indicate
how the requirements are to be met by the data processing system, and to
construct the design of the system. The following major stages are included in the
Construction phase: detailed design, coding, system integration and
implementation. Each of these stages is accompanied by an iteration loop feeding
back details to a previous stages or phases and thus forcing a more complete
definition of requirements. This phase starts by further refining the definitions
and system design which resulted in the design baselines. It continues with
finalising the technical software and the system design necessary to complete the

51

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

software. The Construction phase focuses on completing, documenting and
validating the design, establishing an approach for converting the system to be
replaced, keeping the development status visible and controlled, establishing the
testing approach; testing the system and delivering a quality system to the users.
The major concerns of this phase are in:

- Controlling the construction process by monitoring project activities and
progress. This is achieved by maintaining the design at a proper level of
refinement, based on the design baselines and by keeping programming
simple. Unless requirements for response time or other constraints make it
absolutely essential, unnecessarily complex programs should be avoided.

- Avoiding the ‘after-thought’ and the ‘gold-plating’ syndromes. The
temptation to incorporate changes which are improvements or
modifications to the design baselines often exists. Such refinements should
be employed only after thorough consideration of costs and schedule delays
that may be incurred.

- Correcting errors as soon as detected. As time passes, designers tend to
forget the reasoning and rationale used to support an approach or a
particular technique. Therefore, the early detection and correction of
errors is of great value to the development process.

The Operational phase

Finally, when the system test is formally completed and audited, the software is
transferred to the user’s control. The Operational phase starts at that point in a
project and is not part of the ‘development effort’, even though the target system
may undergo changes. This phase embraces all the activities that are required to
continue operational use of the software. The required modifications resulting
either from errors discovered while software is operational or from the need for
software upgrades, are accumulated and evaluated periodically. The evaluation
process aims to establish short-term and long-term strategies for the employment

52

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

of the desired changes. Each change, if major, should be considered as a new
project or an additional increment to the system. The formality of the SDLC is
again employed, either in total or in part. The main considerations of the
Operation phase are:

- Identifying and controlling the cost, schedule and sequences of the desired
changes to the system.

- Assessing the quality and structure of the system to provide a basis for
future planning.

2.2.2 The Verification and Validation (V&V) concept

The ability to minimise the risk associated with the development process, and the
power to control the actual development process, are critical to the success of
software development and in particular to the PSD phase. Experience has shown
that the most extensive cause of late delivery of software and inadequate
performance is an ineffective requirements analysis [Deu79]; [Boe81]; [Fox82].
The introduction of the Verification and Validation (V&V) concept aims to
improve the means to deal with these key issues. A constant iteration takes place
between levels, as analysis and synthesis at one level uncover deficiencies in the
design at a earlier level. Similarly, an iteration loop takes place between the
stages of the life cycle, feeding back to the predecessor stage and thus forcing a
more complete definition of requirements as illustrated in Figure 2.1

The verification process -aims to assure that the right product is being
developed that each level of requirement or specification correctly echoes the
desired requirements. The validation procéss aims to assure that the right product
is being built, that each end item functions and contains the features prescribed by
its requirements or specifications. The V&V processes are addressed in each
stage of the SDLC and are the major means of providing quality assurance to a
software system. They are often referred to as Configuration Management. This
formal mechanism minimises the expensive rework involved in feedback across

53

CHAPTER2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

STAGES
SYSTEM /
FEASIBILITY / VALIDATION
|
SOFTWARE /
REQUIREMENTS / VALIDATION
PRODUCT
DESIGN / VERIFICATION
Sl
I I
DETAILED / |
DESIGN /' VER | FI CAT ION 1<
[T RTOTPPPPPPPTRRI I
CODE / UNIT
/ TEST
IINTEGRATION / PRODUCT j
I / VERIFICATION]|<
o Lo |
| IMPLEMENTATION / SYSTEM
1 / TEST

OPERATION /
/' REVALIDATION

PHASES

PROJECT
PLANNING PHASE

PRELIMINARY
SYSTEM
DESIGN
PHASE

SYSTEM
CONSTRUCTION
PHASE

OPERATIONAL
PHASE

Figure 2.1 The Waterfall model including the V&V process [After BoeSl]

54

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

many stages, since a major source of reworking results from misinterpretation of

4

requirements.” Each stage culminates with a verification or validation feedback

loop to the predecessor stage.

2.2.3 Deviations from the Waterfall route

Presumptions implicit in software development following the Waterfall process are
that the developer knows the requirements, that the requirements are stable and
that an efficient approach to satisfy them can be designed. However, the real life
situation is very different, in particular when systems are either new to the user
and/or to the developer, or when the subject of development is state-of-the-art.
The sequential approach, usually forced by the Waterfall model, is not appropriate
for the development of software in situations where either the user is unable to
define the nature of the system to be solved, or where there is no simple solution
to the problem. In such circumstances, the problem description and definition can
benefit from extended exposure of the user to the data processing capabilities in
the real environment. Thus, only when the user gets the first version of a system
can he recognise the capabilities of the technology and what it can supply. This is
achieved by either of the following approaches: ‘throw it away’ prototyping or
incremental development within the framework of the waterfall approach.

The initial incorporation of prototyping via a ‘throw it away’ or ‘build it
twice’ step, helps the user to accumulate experience with the functionality of the
target system and its behaviour. The user is then more capable of adding to and
changing the original requirements. The prototype is implemented in parallel with
the requirements analysis and product design [Boe81]. Only mainline functions,

4. An often quoted failure, that perhaps could have been avoided, if the initial requirements and
specification had been validated and verified, is described in the US Congress Bulletin [Con76]. The
initial requirement for the Advanced Logistics System, contracted by the US Air Force, was that
90% of the transactions should be performed online. However, previous to cancellation of the
project it was quite clear that only 10% of the transactions needed to be performed online. The US
Air Force spent over $300 million in a futile attempt to automate this system [Boe81]; [Fox82].

55

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

which are related to the basic tasks desired by the user, should be implemented on
a trial basis.

The second deviation from the sequential development is employing the
incremental strategy. Recognising the difficulty of achieving a good design for a
new system on the first attempt, Basili and Turner [Bas75] suggest incremental
development as a way to cope with the uncertainty associated with the
specification of complex systems. This approach forces top-down implementation
to be incremental, and the increments represent all the functions desired for the
target system. However, a parallel development of increments can start only when
the Preliminary System Design is completed and verified. Thus, taking this
approach forces solid preliminary design work and a careful selection of the
appropriate system for incremental development. Each increment is developed
and delivered to the user. The lessons learnt from the development are
incorporated, if applicable, to the increments not yet delivered. The aggregation
of the increments become the total target system. This approach allows for the
implementation of the design-to-cost approach discussed in Section 1.4. However,
taking this approach may reduced the alternative solutions.

The advantage of the incremental strategy over the prototype ‘build-it
twice’ approach, stems from the difference between the process of building a total
system to that of building successive increments. In the traditional development
process a ‘prototype’ is produced by using iteration over the entire development
cycle. Thus, the effort accumulation curve needed to build the system behaves
differently in each of these approaches. When the prototyping strategy is taken,
the requirements are completed only after the prototype has been built, exercised
and approved by the user. Therefore, the incremental approach provides a less
expensive way to incorporate the users’ experience into a refined system than the
total development involved in the ‘build it twice’ approach. The effort
accumulation curve takes a ‘flatter shape’ when developing in increments than
when the prototype approach is followed.

56

CHAPTER2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

2.2.4 Motivation for the new paradigms

The key factor in the search for alternative methods for developing software was
the convergence of the recognition that Waterfall model has not been able to
satisfy completely the requirements evolving, with a dramatic change in the state-
of-the-art of the industry. The cost of hardware has been declining significantly,
while software costs have been increasing constantly since the introduction of the
Waterfall model in early 1970’s [Cor80]; [Boe81]; [Mus83]. Computerised
information systems, often complex, incorporating distributed and communication
capabilities, became essential to the operation of many sectors of society.
However, the demand for new and updated systems is not being met as result of an
extreme shortage of adequately trained professionals, a shortage which causes
manpower to be a very expensive commodity in the process of software
development. A need therefore, has developed to accelerate the software building
process.

All critique of the Waterfall model is centred on its inflexibility. The model
fails to provide adequate mechanisms both for managing the inevitable changes in
requirements and for involving end users throughout the development process.
Although the Waterfall model employs a systematic approach to software building,
in which a successful system is achieved by attaining sub-goals in a particular order,
it does not provide much insight into the processes occurring within these phases.
In addition, the emphasis on fully elaborated documents as completion criteria for
the requirements design is a primary difficulty and not always effective.
Organisations undergo changes continuously, therefore, when the specified system
is completed and delivered to the user, it is often no longer desired. Curtis
[Cur87] sees that the major shortcoming of the model is in its failure to treat
software building as a problem solving process:

Not only the developer trying to solve problem presented by stated requirements
and the constraints of available technology, but customers are also trying to
solve a problem for which they believe the requirements will yield a solution.
Yet, since customers often don’t understand the subtleties of their problem, and
even more often don’t understand the limit of technology, software
development becomes a problem solving process involving multiple agents.

57

CHAPTER 2 " SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

An additional critique of the Waterfall model arises from the fact that it is
difficult to extricate the analysis of what should be done, from the synthesis and
how it should be done. For many years, researchers advocated the need to
separate specification from implementation.® This rests on the assumption that
the analyst has, or can obtain, a detailed understanding of the problem, can
implement a solution and move on to another project, leaving the maintenance to
others. But, since the new hardware and software technologies afford us more
flexibility in software building, this separation now seems artificial. Too many
problem-oriented issues, such as decomposing high-level functions, and system
performance constraints, are left to impinge on design decisions.

Similarly, researchers who advocate the evolutionary approach to software
building, such as Lehman [Leh84;85;85a;87], Dixon [Dix88] and Williams [Wil88],
are opposed to the separation of the Construction and the Operation phases.
They argue that software development is not a ‘one-off production process,
followed by maintenance. They believe instead that it is an evolutionary process
throughout the system life cycle. Upgrades and changes are constantly needed.
This is the philosophy which led to the development of the Transformational
Implementation paradigm, which is discussed in Paragraph 2.2.5.

2.2.5 The new paradigms

The search for alternative methods of specifying requirements motivated the new
developments. Users and developers of software systems felt that "it is really
impossible for a client, even working with a software engineer, to specify completely,
precisely, and correctly the exact requirements of a modern software product before
trying some versions of the product” [Bro87]. The earlier an activity occurs in the
SDLC, the less we understand about the nature of the activity. Therefore,
alternative ways to facilitate the process of understanding user requirements and
hence speed up the software development, are of great benefit. The new

5. [Knu74]; [Dij75}; [Mil80];[Bau82]; [Sch83]; [Bal82;83]

58

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

paradigms for system development exploit the advances in computer technology
itself, through powerful and high-level software tools, made practical by
inexpensive hardware. These technologies provide us with the capability to
develop a quick version of the software system or part of it, which can then be
evaluated and re-specified if necessary. This is known as prototyping.

The process of prototyping aims to clarify the characteristics and operation
of a system or a part of it. It is used for exploration and experimentation, which
often takes place with the user in an operational environment and before the ‘real’
system is developed. Issues which are difficult to specify, using the traditional
process, are often addressed, e.g. user requirements, user interface, feasibility
design and system performance. The process is a continuous one, until the fit
between user and system is acceptable.

The terms ‘prototyping’ and/or ‘rapid prototyping’ are frequently used as
generic terms for all models of the new paradigms, often classified as Prototyping,
Operational Specification and Transformational Specification® These three
models are partial models only, in the sense that each of them responds to a
different need or disadvantage experienced in the conventional life cycle model.
The information gained from the implementation of a prototype in understanding
the users needs, the operational and the design feasibility, can be incorporated
into the conventional life cycle procedures, and thus improve both the complex
communication and the feasibility decisions involved in the process.

Prototyping

As noted above, the most cited of the new paradigms is the prototyping model, the
building of an early version of a system or a part of it. A software prototype
mainly aims towards producing rapidly and cheaply, as early as possible, a working

6. Other terminologies and classifications for the various types of prototypes exist. Floyd [Flo84]
suggests: Exploratory, Experimental and Evolutionary. Law [Law85] adds the Performance and the
Organisational prototypes, which are special cases of the Experimental prototype. Yet, the
Organisational prototype aims to evaluate the associated organisational implications.

59

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

model of a system, and gaining information about the problem from it. This
information is used later in the development process of the operational version of
the software product. This type of prototyping is often referred to as Specification
Prototyping [Keu82], Specification by Example [Chr84] or Exploratory Prototyping
[Flo84]; [Law85). The prime value of the prototyping approach is in the PSD
phase, particularly in the product design stage, for the purpose of feasibility
evaluation.

Two schools of thought exist. The first advocates the use of a prototype
approach only as an initial version of the system, which is thrown away when the
needed information is gained [Geh82]; [Bud84]. The second suggests that a
prototype may become the final version of a system by means of an evolutionary
development process. In cases where a working prototype is identified to provide
a core of functionality certified by the user to meet his needs, it is feasible to
extend this core into a final system. This approach was suggested as early as 1975
by Basili [Bas75] as a alternative route to the Waterfall model. The approach is
highly recommended by researchers as: Mills [Mil80]; Scharer [Sch83] and Gilb
[Gil87]. However, only the new technological capabilities such as 4GL’S and
‘formal specification’ methods, justify them being called new paradigms.

The prototype approach can be implemented either as a separate route, or
accommodated within the traditional Waterfall SDLC. The information gained
about the user requirements or design issues is transferred to the relevant
processes in the conventional SDLC, to be incorporated into the final
requirements and design specification. See Figure 2.2.

By adopting the prototype approach as part of the conventional SDLC, we
may gain:

- Improvement in the communication between the various groups involved in
building the software, mainly information technology personnel and users.
This is achieved by relating the prototype to user experience.

- Simplification of the process of identification of the user’s real needs. This
can be achieved since the flexibility to adopt changes, in the perception of
user’s needs, is relatively easy when using prototyping tools.

60

CHAPTER2 SOFTWARE DEVELOPMENT AND TIIE EFFORT FvSTIMATION PROCESSES

PRELIMINARY SYSTEM DESIGN

--DETERMINE SCOPE AND
OBJECTIVE OF PROTOTYPE

--PROTOTYPE STATEMENT OF WORK

--PLAN SCHEDULE AND RESOURCES
FOR DEVELOPING THE PROTOTYPE

--BUILD PROTOTYPE AND DELIVER
IT TO THE USER

USER EXERCISE

PROTOTYPE
--ANALYSE USER.........
REQUI REMENTS USER PREPARE LIST
I NFORMALLY VER | FI CAT I ON - - OF REVI SION
(PROTOTYPE PARADIGM)
--REVISE
PROTOTYPE

-REFINE AND EVOLVE PROTOTYPE
or

SYSTEM

REUUI REMENTS-- -TRANSFER INFORMATION TO
REQUIREMENTS ANALYSIS
and/or

-TRANSFER INFORMATION ABOUT
DESIGN FEASIBILITY TO DESIGN

--ANALYSE USER .. PROTOTYPING PARAD1GM- -
REQUI REMENTS
(CONVENT IONAL PARAD | GM)

- - PRODUCT DESIGN

SYSTEM CONSTRUCTION

DETAILED
DESIGN

Figure 2.2 The prototype paradigm and its relationship to the conventional
SDLC.

61

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

- Efficiency in understanding the system characteristics. As a result, all
parties that have participated in the development process are better armed
to evaluate high risk issues at an early stage of the development process
and possibly to avoid them. The use of this approach gives us an additional
opportunity to alternate strategy or course of action, when it is still
possible, at relatively low cost and risk.

- Assistance in the design and the operational feasibility processes, hence
reducing the ‘deadline’ effect of the project. This can be achieved since an
initial version of the system is delivered and available to the user early in
the SDLC.

Discussion

Prototyping is not the panacea to all software problems. There are some crucial
issues associated with software development for which the prototyping approach
does not provide information. They are discussed below.

Effort required for the implementation of the final system. It is generally
possible to obtain a large portion of the most valuable capabilities of a system
after implementing only a small part of that system. However, the effort
consumed for building a prototype cannot be extrapolated into the effort
requirements for the total system. Building the total system will differ from the
prototyping in the use of tools for the development. Tools such as 4GL’s and
small Data-base Management System (DBMS) packages are generally used for
prototyping. However, the real system will often reside on the organisation’s
DBMS which differs from the experimental one used for prototyping.

System interaction with other elements in the software environment.
Figuring how to handle interfaces between elements of the systems is a crucial
issue in any software development, and if not well planned it will cause significant
difficulties mainly in the systems integration stage.

The major aim of prototyping is to gain information about user
requirements and feasibility issues, which are otherwise difficult to visualise. Since

62

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

major decisions are based on the results of prototyping, the value of this
information lies in getting it as early as possible in the development process.
Otherwise, the total planning of the system suffers. System planning, more often
than not, is done less comprehensively when prototyping than when specifying a
system. One of the neglected areas, resulting from this phenomenon, is the
systems interface.

System behaviour in extreme situations. When creating a prototype
performance characteristics such as speed, security, accuracy or completeness of
error handling are sometimes compromised. What is achieved from prototyping
may be enough for the users to extrapolate what they want, whether the
requirements were correctly understood by the implementors or whether it is
feasible to implement them as requested. But, to get the full performance of the
system may require much additional work.

The Operational Specification

An Operational Specification is a prototype, sometimes called a functional
prototype. The basic idea of this form of prototype is that a system can be
specified using a formal specification language, that has a precise meaning and
therefore can be executed directly. The paradigm has a twofold aim: exploration
of the behavioural aspect of the system and improvement of maintainability.
Operational Specifications are machine processes, written in a language which is
not understood by end users nor other non-technical people. Computer specialists
specify the desired system, in terms of implementation-independent structures,
that generate the behaviour of the target system [Bal82]; [Zav84].” Thus, the
Operational Specification output can be seen and evaluated by the end user.
When using the traditional development process, the functional behaviour of a
system can be analysed, only very late in the software life cycle, after the

7. The structures provided are independent of a specific hardware or software configuration, while
the conventional design process refers to a specific environment.

63

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

implementation stage. But, when implementing an Operational Specification
process it is possible to evaluate and interpret the specification, to show the system
behaviour and hence to help in various feasibility decisions. By using the
Operational Specification approach we may gain:

- A shortcut towards the understanding of the functional behaviour of a
system but not the efficiency aspect of the system®. This can be achieved as
the communication process between the users and the developers about the
preferred behaviour of a system benefits from implementation of the
Operational Specification, for the purpose of approval, even though it is
not readable by users.

- A basis for rapid prototyping. Since by implementing and evaluating an
Operational Specification prototype, the essential relations among the
system elements are captured, it can provide a basis for interpreting the
specification.

The Operational Specification responds to the problem of separation
between what should be included in a system and how it should be built, as
discussed in Paragraph 2.2.4. However, by so doing the paradigm introduces new
problems of over-constraining and premature Operational Specification. Formal
specification responds to significant decisions early in the SDLC, yet these
decisions cannot be validated until the very end of the development process. The
Operational Specification prototype often introduces internal structure (detail
design function) into the process before specifying it thoroughly.

The paradigm aims mainly to enhance maintainability. However, the price
is a less efficient system. Therefore, after the specification is stabilised, it is usually
compiled. But, if compiled then it contradicts the evolutionary development
objective. Although the Operational Specification process consumes more effort

8. Efficiency under extreme workload is very difficult to predict. Efficiency of workload is evaluated
by a prototype running in an operational situation with simulated workload. But, as a prototype is
only a simplified version of the target system this aim is difficult to achieve.

64

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

than the conventional specification, part of the output can be re-used in other
Operational Specification processes. This approach can be employed as an
integral part of the conventional life cycle, or only for a demonstration. Similarly,
in addition to the formal specification resulting from the implementation of this
process, the Operational Specification can be used as an input to the
Transformational Implementation process.

Transformational Implementation

The Transformational Implementation is an approach to software development
that uses automated support to convert a desired specification, which is written in
a formal language, into a concrete software system.” This paradigm aims to
reduce the labour intensive aspect of software development. It responds to the
constant needs for safe, verified and reliable softwarel®, as well as for upgrades
and changes to working systems. These needs cannot always be postponed until a
periodical change of control process takes place. By using the Transformational
Implementation, the separation between the development and the system
maintenance is not so sharp as employed traditionally.

The process starts with a formal statement of a problem or its solution and
ends with an executed program. The formal specification of the desired system is
automatically transformed into system design and code. Successive application of
transformation rules that preserve corrections is constructed and iterated to
optimise the results. Most methodologies of this class consider the relationship
between data and processes. The functional specification is prepared as structured

11

outlines of the two objects: processes and data aggregates. Three products

9. [Bal81]; [Che81]; [Bau82]; [Agr86].

10. These objective are of special importance when dealing with production of correct chips, critical
software for weapons or nuclear systems.

11. The analyst is free to start defining either process or data groups since there is no algorithms

which will produce repeatable specifications as the link between the data aggregates and the
processes.

65

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

emerge from the process: a formal specification; a delivered system and a formal
record of the sequence of the transformations, and the decisions taken during the
process. The expected benefits from this model are:

- Reduction of labour intensiveness.

- Preservation of correctness, as a result of applying automated tools for
transformation.

- Elimination of final product test. By applying such a process it is
guaranteed that the final version of a program will satisfy the initial
specification.

The Transformational Implementation paradigm can be used in a wide
scope of application such as general support for program modification [Par83].
This may include the optimisation of the control structure, efficient
implementation of data structure or rule generation. Additional applications are
program synthesis, program adaptation to a particular environment, or program
description by building a family tree of algorithms. It is essential, therefore, that
the user of this approach is armed with a thorough understanding of the technical
details of the system such as I/O, internal representation, mode of operation and a
understanding of the implementation technique.

Two points of weakness are indicated [Zav84];[Blu84]. The first one relates
to the maturity of the model which they considered an ‘un-developed’
methodology. The second has to do with the difficulty associated with the
management of these processes. Managers may find it difficult to guide this
process and analysers find it difficult to analyse.

2.3 RESEARCH FINDINGS
Boehm [Boe84] describes a case study in which seven teams developed the same
small application: 4 of the teams used the traditional method of software building

and 3 of the teams followed the prototyping approach.

66

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

- The prototype products averaged about 40% smaller, in Lines of Code
(LOC), than the specified products and they required about 45% less effort.

- The effort needed to implement a prototype did not tend to produce a
higher productivity level in the common productivity measurement, lines of
code per person-month (LOC/PM). However, the prototyping approach
produced more user specification per person-months than the conventional
development.

- The prototype product led to somewhat better maintainability.1?

In comparison with the conventional SDLC, however, the prototype
paradigm tended to create several negative effects:

- Prototype implementations consumed proportionally less effort for
planning and designing and more for testing and fixing the system.

- System integration appeared to be more difficult in prototype
implementations due to lack of an interface specification.

- System design phase appeared to be less coherent in implementing the
prototype approach than in a specified product.

2.4 THE TRADITIONAL & NEW PARADIGMS FOR SDLC - DISCUSSION

The reader is now acquainted with various approaches currently in use for
managing the process of building software, for which estimates of effort are
required. Two paradigms, very different in their basic assumptions, were
presented: the traditional Waterfall model and the new approaches for
prototyping and Transformational Implementation. The first one, the Waterfall
model represents a conservative alternative which misses the flexibility needed to
support a dynamic environment. The inability to present the user with a product

12. The maintainability was evaluated subjectively by asking the students who participated in the
experiment to grade their preference in an ordinal way.

67

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

other than a verbal or graphic description is a real obstacle. It is difficult either to
identify the real business problems, or to visualise the technological opportunities
which can be incorporated in a system to satisfy these needs. The second
alternative presents a flexible approach which overcomes this obstacle. The new
paradigms enable us to demonstrate the system or part of it early in the SDLC,
and to exercise the use of the product and its capabilities in a semi-operational
environment. They enable us to conclude if this is really the expected product or if
there is a need for revision. Or, if it is desirable and possible to extend the
capabilities of the demonstrated product, in an evolutionary process, so it will
become the target system.

However, the new paradigms are not a homogeneous group of models.
The first representative of the new paradigm, the prototype, aims mainly towards
exploration and experimentation of user requirements. The implementation uses
4GL tools. The Operational Specification is also a prototype and has the same
aims, mainly towards the experimentation part of the system behaviour.
Implementation of the Operational Specification involves the use of a formal
specification language. Its output can be used as the input for the process of
Transformational Implementation. But, a conflict arises when the output of the
Operational Specification is transferred to the process of Transformational
Implementation. The objectives of the two models differ and thus both cannot be
optimally achieved. The main objective of the first paradigm is maintainability of
the software, while the Transformational Implementation paradigm aims at
optimisation of the performance.

The Transformational Implementation represents a totally different
approach, will involves automatic transformation of programs and systems. The
Transformation process might be from one language to another, or transformation
of a system by automating the selection of transformation rules and optimising the
process of system execution.

Each of the new paradigms responds to a particular problem in software
development. Therefore, they are mainly partial models which can be integrated
into the various stages of the software development life cycle and hence, improve
the conventional process. Yet, these models can be used as stand-alone models.

68

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

However, they do not offer comprehensive solutions to the chronic problems,
rather only modest improvements in productivity. Productivity and quality can be
achieved from employing the new models, but only through skilful management.

2.4.1 Issues requiring special attention when using the New Paradigms

The new paradigms for software development require careful attention to
economic considerations, to management implications, to potential pitfalls, and to
the question of when to use them.

Economic considerations. The economic rationale of the new paradigms is
based on the tradeoffs between hardware, software resources and scarce skilled
manpower, since the industry is no longer hardware bound, but instead, limited by
the number of experienced people. Prototyping has often been dismissed as a
practical approach because it is considered expensive. Certainly, the costs of
building a prototype are influenced by the availability of appropriate development
tools, which are quite expensive if their cost is applied to one project only. But, if
these costs are considered in terms of the organisational overheads and applied to
a number of projects, a different picture emerges. Indeed, Gomaa and Scott
[Gom81;83] and Zelkovitz [Zel80;82] reject the notion that prototyping is too
expensive. They argue that although somewhat higher costs are agreed for
building a system using prototyping, the aid offered by the approach is of high
value to the requirements stage.

Implementing a prototype involves the expensive time of the most
knowledgeable people in the users’ organisation. Time cannot always be secured
for this process, even if planned for ahead of time.

A crucial aspect associated with prototyping, and which has an economic
effect on the development process, is setting the scope for a prototype and
deciding when to stop the iteration process for revision purposes. These decisions
heavily influence both the effort needed for prototyping a system, and the ability to
estimate this effort. The only possible way to keep the development process under
control and effective is if the implementation rules are defined at the outset of the

69

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

process.

When to use prototyping. The prototyping strategy should be used, where a
learning process is involved in articulating either the user needs or the technical
means required (e.g. an algorithm) to build a system with the desired properties.
The Prototype and the Operational Specification models serve as a mechanism for
exploration and experimentation in order to identify and to clarify the user
requirements and to support the decision process of what is technically feasible.
The flexible development process, in which the role of automation is increased,
allows us to deliver to the user an executable object in the early stages of the
software building. Therefore, the prototyping approach plays a great role in
reducing uncertainty and risk associated with software development. The risk
anticipated from user abandonment of a system is largely reduced. Hence, the
tangible contribution unfolding from the new paradigms is mainly at the early
SDLC stages and provides a risk reduction capability.

Management aspects. The management process of the new paradigms is
more complex than that which controls the conventional Waterfall model. The
flexible development process requires more management effort and is of a
different style, as more uncertainty and changes are involved in the process. The
users are heavily involved in this process, which aims to better their understanding
of the system requirements and its behaviour. The emphasis, while employing
these strategies, is on a fast response to requests for changes, using high-level
hardware and software tools. The use of a formal mechanism, for control of
change for each modification required, is therefore not appropriate as it slows
down the development process. Yet, although not easy to manage, building a
prototype should not be exempted from the management process by the reason of
it being a ‘quick and dirty’ product which is not incorporated in the released
version. The basic conventional sequence of activities: specification, design,
coding and testing, should be maintained. Documentation of the positive and
negative lessons learned from each implementation of a prototype is of great
importance. Thus the new paradigms require a different management style, which
emphasises the control of an environment which changes often and provides the
tools to match it.

70

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

Potential pitfalls. The dominant purpose of the new paradigms is to buy
information and they should be used for this purpose only, unless otherwise
planned at the outset of the project. When a new system concept or a new
technology is used, the ‘throw it away’ approach is beneficial since, even the best
planning is not so omniscient as to get it right the first time. Therefore, the
management dilemma is not whether to built a pilot system and throw it away, but
to plan for it in advance. A potential danger involves incorporating prototypes in
areleased version without designing them to do so.

State of maturity. The Operational Specification and the Transformational
Implementation models let us formally specify an idea which can then be
transferred to a concrete system. The concept employed in these two paradigms
is very promising for software development and for the development of process
models for software building. Although organisations, very advanced in
information technology, have been incorporating these tools, in their software
development process since the beginning of the 1980’s, the Operational
Specification and, in particular the Transformational Implementation are as yet in
an immature stage for commercial use.

2.4.2 Summary of discussion

Prototyping as a paradigm, like the classic life cycle, can be problematic, mainly
when the incremental evolution of the prototype system is integrated into the final
system. Here, the overall software quality is not always considered. Choices made
for demonstration purposes and thus not always the best for real systems, become
an integral part of the system. Long term maintainability suffers. A failure to
develop an overall system plan before prototyping individual modules, can cause
system integration to suffer. The new paradigms require a different management
style, which emphasises the control of a changing environment and must provide
tools for solution. Although the opportunities resulting from the new paradigms
are of great value to the process of software development, they introduce a new
set of problems. The aim of the Prototyping and the Operational Specification is

71

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

mainly to demonstrate a working product early in the software life cycle. But, the
overall planning of the process often suffers. Thus, integration and interface
problems arise later on in the process, when correcting them becomes a
complicated and costly issue. The Operational Specification often introduces the
problem of premature specification and, when integrated into the
Transformational Implementation process, a question of efficiency versus
maintainability arises. The Operational Specification aims to optimise
maintainability while the Transformational Implementation attempts to optimise
efficiency.

However, there is no general agreement as to what exactly Prototyping,
Operational Specification and Transformational Implementation should mean
within the context of software engineering. The new paradigms, mainly the
Transformational Implementation, are as yet in experimental stages, not all
aspects of their implementation are clear. Furthermore, even the classification
often used in the literature and discussed in this chapter is not the only one that
exists.

2.5 THE PROCESS OF EFFORT ESTIMATION

Having analysed the processes of software development, it now becomes obvious
that the iterative nature of the software development process is a dominant
characteristic. The process of estimating the effort for software development
should take the same form. Effort estimation should thus be integrated into each
of the SDLC phases, starting with high level estimates at the early life cycle phases.
These estimates are further refined and updated when new data is available, when
uncertainties associated with project funciionality are reduced and when the level
of complexity is understood. The process of estimating the effort is therefore a
continuous process, involving iteration and judgement. The following section will
deal with the process of effort estimation and with the classic approaches used in
this process.

Of particular interest is ‘Who are the estimators?’ Almost certainly they are

72

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

not a homogeneous group occupying identical positions and carrying out identical
tasks in organisations. Rather estimators come from all ranks; project managers,
programme managers and software engineers all take part in the estimation
process. Their needs are many and the task of building support for estimators is
further complicated when considering ‘when’ estimation takes place.

It is essential to know what total effort is involved in the development of a
software project throughout its life cycle. The need certainly exists at the project
initiation stage. However, this cannot be met because little is known about the
product. All that can be done is to make an intelligent guess as to the size of the
product, based on past experience. Boehm [Boe81] suggests that the estimates will
deviate by a factor of 4. In other words within 80% confidence limits, the estimate
will fall within a factor of 4 on either side of the final outcome.

Upon completion of the feasibility study an attempt can be made to supply
better estimates, although the level of uncertainty will still be high. At that stage,
the range of the estimates diminishes to a factor of 2 in either direction. The
scope and objective of the system under consideration are known at that stage, as
are the general design features. Issues such as the specific functions to be
performed and how they should be performed, or even the specific types of user
query to be supported are still to be pinned down.

The project manager acquires and accumulates knowledge which allows
him to refine the early estimates by taking account of actual values. Estimates are
further updated when the software requirement are specified, at the Preliminary
System Design when preparing the work plan towards the Construction phase. At
that time the user requirements as well as suggested ways to resolve them should
be well known to the project team. Boehm suggests that the estimated costs could
now fall within factor of 1.5. Figure 2.3 depicts the accuracy of software cost
estimates for each phase. Rubin [Rub85a] reports a faster drop off in the level of
uncertainty when using an interactive macro estimation procedure. That is, the
estimation process begins by using a few key variables to forecast macro project
characteristics and goes on to incorporate greater detail of a lower level to
forecast micro project characteristics.

73

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

I 1.25x-_

) Produet Detailed ‘
Coveeptoaf Pequiren eats lesitn - fesint Foeepted
0.25X - - pperetion speeificetions speifivitivns gpecifitations softvare

Feasibility Plons 11 Produet Detailed Development and test
requitem ents fesign tesign

Phases ond milestones

Figure 2.3 Software cost estimate accuracy versus phases [BoeSl].

The nature of the task of estimating effort relies heavily on the judgement
of experienced professionals, who know what is involved in the process of building
software and are capable of applying their past experience into the estimation
process. The process of effort estimation involves both analysis and synthesis. A
project can be broken down into tasks that are analysed separately and then
synthesised into an overall estimate. It is also an iterative process. However, at
present, resource estimation is a creative art which is not applied in large scale

software environments.

74

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

2.6 TOP-DOWN VERSUS BOTTOM-UP ESTIMATING

Essentially, there are two approaches for estimating of the quantitative product
and project attributes: the top-down and the bottom-up. When the estimator
approaches the process by applying his judgement to the overall system effort, by
comparing it to the effort of similar past projects, the approach is referred to as
top-down. The total development effort is divided up over the phases. In the case
where the estimator chooses to base his judgement on a breakdown of the project
into relatively small work units, to estimate them separately and then calculate the
cost of the overall system, the approach is referred to as bottom-up. The unit
breakdown is done to a degree that allows him to clarify the steps and the skills
involved in completing the task and to identify similarities and differences between
completed projects. Work units which are not comparable must be estimated by
other methods.

Items of information used in adjustments for differences between project
environments, include:

* Analysis of initial requirements.

* Type of software to be developed.

* User environment.

* Complexity and risk involved in the project.

* Programming technology used, languages and tools.
* Technical experience of development staff.

* Size of software product.

* Length of development.
* Number of development staff.

Thus, estimating software development can be implemented in either or
both of these ways. The two approaches are complementary, however, the top-
down approach is the only possibility before a detailed work breakdown structure
of the project is available.

The advantage of a top-down approach springs from focusing on functions

75

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

at the system level. Thus, functions such as integration, documentation quality
assurance or configuration management are considered, which might be neglected
when implementing a bottom-up approach. The pitfalls of a top-down approach
include the overlooking of technical difficulties and a lack of details needed for
future cost justification.

The advantage of the bottom-up approach is looking into the system
components in detail and can result in improved estimates. Furthermore, this
approach enables us to allocate the estimation activity to the person who will be
assigned to implement the task. This can result in a greatly improved commitment
to the estimates. The pitfalls of the bottom-up approach stem from the
accumulation of errors. Each piece of work being estimated includes some degree
of uncertainty and inaccuracy. Therefore, the calculated overall effort will
accumulate a high degree of error. However, this error is sometimes balanced out
if the errors are distributed equally in conflicting directions and sizes.

2.7 ALTERNATIVE ESTIMATION APPROACHES

The alternative approaches for estimating the software effort and cost are:

* Expert judgement.

* Analogy.

* Parametric Models

* - Standard estimating and Ratio Analysis.
* Parkinson’s law

* Price-to-win

Apart from the last approach, any of these can be applied to a project as a
whole (top-down), or as individual tasks (bottom-up).

76

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

2.7.1 Expert Judgement

One or more local or external experts are asked to estimate the required effort for
a project. The experts rely on their experience with similar projects and use their
intuition. This expert judgement can be implemented in various ways using
different approaches and depends on the estimation objectives and the state of the
project. Some researchers argue that the estimation process could be improved
through using group consensus techniques such as Delphi [Boe81] or Decision
.Conferencing [Phi87]. Using more than one expert involves either averaging
hence biasing the results, or grouping the experts and using group dynamics
techniques to obtain an agreed estimate. The question arises in this context of
how to average the individuals’ estimates. Should the years of experience be
considered as the important factor, which adds more value to the estimates
suggested by an experienced programmer than to those suggested by a novice
project leader? The literature does not support this view.

2.7.2 Analogy

It is frequently said that there is nothing new under the sun, which in this context
implies that no new system is completely new. We can always learn from past
experience, identify the resemblances or differences and make use of the known
cost components, to support the required cost estimates. Using projects histories,
similarities and differences as far as the effort estimation of the new project can be
identified. Differences between the projects might be in either the development
cycle or in system functionality. Estimating by analogy involves a form of pattern
matching (reasoning) by analogy with completed projects or tasks. Wolverton
suggested refining the first top-down estimates by reference to the more recent
successful projects which include activity, duration and costs [Wol74;84].
Advantages. Estimating by analogy is a version of ‘expert judgement’.
Hence, ‘expert judgement’ assisted by analogy to similar representative projects
might have advantages which stem from basing the estimate on recent experience

77

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

with projects or tasks successfully completed .

Disadvantages. There is a risk involved in this approach, which stems from
the way it is used. Analogy is developed by intuition. Items which are not really
related become associated out of the context of the considered issue. An
additional weakness of the approach arises from the fact that it is often not clear
which parts of the completed projects are represented in the new project.
Although analogy is the approach most used for estimating the required effort for
product development, it is the least definable in terms of mathematical or
statistical rigor. Analogy requires an estimator to have not only a thorough
understanding of the developed product, but also an in-depth knowledge of
completed projects which are similar in functionality to the developed product.
However, it is very difficult to retain the organisational knowledge of completed
projects as a result of staff turnover and effort required to establish a thorough
historical database. In addition, the development environments may differ
between projects in the same organisation.

As the type of information needed by parametric models may not be known
when software estimates are essential, and estimating by analogy may be the only
viable alternative.

Artificial Intelligence, in particular the Expert Systems approach has
recently been pressed into service for use in estimation by analogy. Estimation by
Analogy using an Expert Systems approach has been proposed by Cowderoy and
Jenkins [Cow86;88a], Galashan [Gal86] and Najberg [Naj88].13

All authors propose the incorporation of Expert Systems techniques for
selection and evaluation of analogous systems or their components. The
specification of the analogy selection criteria and technical definition of the
project which requires an estimate are compared against the historical database

13. The system proposed by [Naj88] aims to support avionic systems, with an embedded software
component. This system identifies the analogy by using one of the following approaches:

- Tolerances, which govern whether a certain data element value is equivalent.

- Weights associated with specific data elements which indicate their relative importance.
- Thresholds which determine whether an analogy exists or not.

78

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

for qualitative and quantitative attributes.

2.7.3 Parametric Models

The parametric modelling approach uses historical data to formulate one or more
algorithms which produce estimates of software development effort. This
approach makes use of an average ‘productivity factor’. This assumes productivity
as the basic factor, whereas software factors and organisational variables such as
project team composition are somehow incorporated in the calculated productivity
rate. Most researchers agree that there is a need to modify the results of the
models for the ‘software factors’ which are identified as potential amplifiers of
effort.14
The quality of the parametric models is highly dependent on an expert

estimation of the size and complexity of the individual components of the system
to be built. The underlying assumption is that the components of a model can be
estimated more accurately than the effort needed for the development of a system.
But, size is nearly impossible to predict with any degree of accuracy in the early
stages of a product SDLC. Even as the product matures, this difficulty remains.

The historical data, from which the parametric relationships were extracted,
affects the quality of the models. The parametric models are inherently linked to
the conditions of their development environments. Any variance exhibited by
effort estimation models is not so much due to a difference of perspective among
the developers as it is to the unique nature of the software effort estimating task
itself and more specifically to the dynamic environment that inherently governs the
world of software development. It is the environment that is being modelled and
not simply the required effort of a particular product.

Therefore, parametric models may be applied successfully only by analysts
who are very familiar with the requirements of the product to be developed and
with the characteristics of the development environment.

14. [Wol74;84]; [Her77]; [Wal77]; [Frei79]; [Boe81]; [Alb79;83]; [Jon83]; [Rub83]; [Jen84].

79

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

2.7.4 Standards Estimates and Ratio analysis

The ‘standards estimates’ approach is classified as a parametric model. This
research is based on this version of parametric modelling. This approach to the
estimation of software development effort is derived from the engineering world
and in particular the standardisation approach to production planning and
scheduling. Wolverton suggested a Standards Estimating approach, in which "the
estimator relies on standards of performance that have been systematically developed,
and have become a stable reference point from which new tasks can be calibrated by
ratio and or by similarities”" [Wol74;84].

It can be argued whether or not an analogy to the production line and
hence to the production planning and scheduling procedure is appropriate for the
software development process as a whole. This results in the view that a given
project is very rarely repeated, which inhibits project to project comparison.
Furthermore, the means of production is mainly human beings and not machines.
Nevertheless, an insight might be gained from analysing the software development
process, the various procedures, their components, and the ways they interact and
are integrated, whilst bearing in mind concepts derived from engineering practice
such as the ‘Bill of Materials’.

The route in which the activities are performed in the SDLC is not rigidly
defined. Various legitimate strategies are available for the development process,
in which the activities take different forms as a result of changes in emphasis and
therefore they are not always processed in a fixed sequence.

Ratio Analysis involves measurement of size and complexity at the module
level. Both ‘ratio analysis’ and ’standards estimating’ are adopted by the TRW
model which deals with the estimation process mainly at the tendering stage.
These methods have had some influence on the US DOD standards for software
project management (DOD 2176 and 2176a).

80

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

2.7.5 Park