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Abstract

This thesis presents different methods of estimating the co-integrating parameter
in a bivariate fractionally co-integrated model. The proposed estimates enjoy op-
timal convergence rates and standard asymptotic distributions, yielding Wald test
statistics with x? null limit distribution. In the last few years increasing interest has
developed in the issue of fractional co-integration, where both the observable series
and the co-integrating error can be fractional processes, nesting the familiar situation
where their respective orders are 1 and 0. These values have typically been assumed
known. Chapter 1 is mainly devoted to reviewing this traditional prescription and
motivate the relevance of fractional co-integration. In Chapter 2, we analyse a fully
parametric model where the co-integrating gap, that is the difference between the
integration order of the observables and that of the co-integrating error, is larger
than 0.5. There, we show that our estimates share with the Gaussian maximum like-
lihood estimate the same limiting distribution, irrespective of whether the orders of
integration are known or unknown, subject in the latter case to their estimation with
adequate rates of convergence. Chapter 3, still in a parametric framework, proposes
estimates of the parameter of co-integration in case the co-integrating gap is less
than 0.5. Again, we cover both situations where the orders of integration are known
and unknown. Our estimates are inefficient relative to the Gaussian maximum like-
lihood, but share with this estimate optimal rate of convergence and asymptotic
normality, being computationally much more convenient. Chapter 4 concentrates
on both situations described in the previous two chapters from a semiparametric
perspective, that is without assuming knowledge of the parametric structure of the
input series generating the fractional processes in the model. Finally, Chapter 5
describes a simple procedure of testing for the equality of orders of integration of
different series. This is as essential step in any empirical work in order to asses for
the presence of co-integration in a certain estimated model.
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Chapter 1

Introduction

Traditionally, co-integration analysis has developed almost exclusively in the con-
text of processes with non-fractional integration orders. Most popularly, observed
series are assumed to have a single unit root, such that first differencing produces a
weakly dependent, invertible stationary process, while co-integrating errors also sat-
isfy the latter description. This basic setting has been greatly extended, to observed
series in which twice differencing is required to produce stationary weak depen-
dence, and to polynomial co-integration; polynomial time trends have also been
introduced, and co-integration with respect to cyclic and seasonal frequencies has
been examined. However, co-integration can exist among much more general non-
stationary (and indeed stationary) observations, with stationary or non-stationary
co-integrating errors, and it seems desirable to develop the topic in a broader con-
text, nesting the integer-order cases in a more general class, allowing integration
orders to be real-valued. Undoubtedly, dealing with fractional processes could entail
some difficulties, but in recent times, knowledge of their statistical properties has
advanced considerably, so that issues like their role in co-integration analysis can
be explored. In fact, fractional co-integration has become a relatively popular issue
in the last decade among both theoretical and empirical econometricians, and this
thesis mainly concentrates on one of the most relevant issues in this field, that is
the estimation of a relation of fractional co-integration.

Before describing our aim in detail, we need to place this work in the right
perspective. This Introduction has been written with this idea in mind, stressing
the connection between the wider framework that fractional co-integration allows
and the traditional prescription of unit roots and standard co-integration.

Section 1.1 is devoted to describing in some detail the concept of integrated
series, which is essential in order to define the concept of co-integration, analysed
in Section 1.2. Section 1.3 relates directly to the bulk of the thesis, as it presents
different methods of estimating, in a given co-integrated model, the co-integrating
parameter. As will become clear, our estimates, presented in Chapters 2, 3 and
4, were inspired by some of these methods, but apply more generally than many of
them, mainly under situations of less knowledge about the structure of the estimated
model. Section 1.4 presents some empirical evidence of fractional co-integration, and
finally, Section 1.5 describes briefly our main proposals in the thesis.



1.1 The concept of integration

Following Engle and Granger’s (1987) seminal work, a scalar series (;, t € Z,
Z = {t:t=0,+1,..}, is integrated of order d, denoted traditionally ¢; ~ I (d) (see
Definitions 1.2 and 1.3 below), if it has no deterministic component and could be
represented as a stationary, invertible autoregressive-moving average (ARMA) after
differencing it d times. Usually, the parameter d has been assumed to be 0, 1 or
2, the original series being modelled as I (0) processes without, or under first or
twice differencing respectively. Undoubtedly, the key aspect of that definition is
the concept of I (0) process, which in popular terms has been referred to as “short
memory”, “weakly dependent”, “short-range dependent” or, in our view the most
appropriate description, “weakly autocorrelated” process. The I (0) concept has
taken different, although relatively closely related, shapes in the literature. With-
out the aim of being very exhaustive in an otherwise quite extensive field, we will
comment on different ideas related to this issue.

Engle and Granger (1987) completed their above definition with some character-
istics that they attributed to I (0) processes. In particular, among other features,
they stated that the spectral density of a covariance stationary I (0) process (;,

fe (A), given by

[ o]

=5 3 % G)e, (11)

j=—co

where ~; (j) represents the lag j autocovariance of the process (;, should have the

property
0 < f (0) < oo, (1.2)

which clearly implies that its autocovariances decrease steadily in magnitude for
large enough j, so that their sum is finite. This relates directly to the concept of
I (0) process implied by Robinson’s (1993) definition of a covariance stationary I (d)
scalar process, which he defined as one with spectral density

g =]1-€*"5(), (1.3)

where 0 < §(0) < oo. This implied definition of an I (0) process also appears
in Robinson (1994a), Marinucci and Robinson (2001) and Robinson and Yajima
(2002). Robinson (1994a) stressed the appropriateness of the term “weakly auto-
correlated” to design this class of processes, as only second moments are involved,
but he admitted that other terminology in popular use was “short-range dependent”
or “short memory”. In his view, these are more global concepts referring not only
to second moments, although, of course in the Gaussian case all these concepts are
Synonymous.

Other authors considered as I (0) a very wide class of processes which are weakly
dependent (in certain sense to be described subsequently) and possibly heteroge-
neously distributed. The main feature of these processes is that they satisfy the
following invariance principle: let {; be one of these processes, then with [-] denoting



integer part and n the sample size, for r € [0,1],

[nr]

ni EQ =W (02;1") , as n — 00, (1.4)
t=1

where in case W (4;r) is a scalar, it denotes a Brownian motion with variance A,
whereas if it is a k x 1 vector, it represents a k-dimensional Brownian motion with
variance-covariance matrix A, for which the following notation will be used

W (A;7) = (W1 (4;7), ..., Wi (4; 7)), (1.5)

with the prime denoting transposition; o2 is a finite scalar given by

o2 = nli.n.}o n-E ((Z:=1 Ct) 2) > 0; (1.6)

“=" denotes weak convergence of the associated probability measures. This ap-
proach was followed for example by Phillips (1986), Phillips and Durlauf (1986),
Phillips (1987), Park and Phillips (1988, 1989), Lo (1991), Phillips (1991b). (1.4)
has been established in the literature under various conditions on the process. (;.
Billingsley (1968) proves it for a strictly stationary process under certain conditions
on its dependence, but his results have been extended by several authors. Among
them, Herrndorf (1984) presented a set of sufficient conditions, allowing for tempo-
ral dependence and a degree of non-trending heteroskedasticity in the process (;, a
strong mixing condition satisfied by (; characterizing the typical “weak dependence”
of the process.

Also, note that if we further assume that (; is covariance stationary with spectral
density f; ()), 02 = 27 f; (0), so that (1.6) implies the familiar condition that {; has
finite and strictly positive spectral density at frequency 0. In any case, on theoretical
grounds, the distinction between both versions is not that relevant, because while an
I (0) process is usually considered as stationary, proper extra conditions are usually
set so that certain invariance principle holds. See for example our Assumptions 2.1
and 2.2 in Chapter 2. Nevertheless, we could adopt Robinson’s (1993) implication
as our benchmark for a definition of I (0) process.

Definition 1.1. Integrated of order zero process
A zero-mean scalar covariance stationary process (i, t € Z, with spectral density
fc (X) is integrated of order zero, denoted (; ~ I (0), if

0 < fc(0) < oo. (1.7)

As mentioned before, in the last few years, increasing interest has developed in
a wider framework which takes into account that I (0), and also I (1), I (2),..., are
very specific types of stationary and nonstationary processes respectively. In this
vein, and in fact as a direct consequence of the definition of integrated process given
in Engle and Granger (1987), one could think about a process which is I (0) after
d-differencing, where d needs not be an integer. Note first that by the binomial
expansion, for any real o, a # —1, -2, ...,

(127 = Y 0y (@), 05 () = e br-)

@TG+1)’ (18)

10



with I' denoting the gamma function, so that defining A = 1— L, where L represents
the lag operator and 1(-) the indicator function, we could establish the following
definition.

Definition 1.2. Type I fractionally integrated process
For any real number d, given a scalar I (0) process (;, t € Z, T;, t € Z, is a Type I
fractionally integrated process of order d, denoted z, ~ I, (d), if defining

e = ARG, (1.9)
for an integer k such thatd —1/2 < k< d+1/2,

%t = ’(llt, k‘SO, (110)
& = AR {Q1(E>0}, k>0 (1.11)

In case 0 < d < 1/2, k =0 and T; is a covariance stationary process given by

= o (@) Gy, (1.12)
=0
with spectral density .
) =1—€ef. (0. (1.13)

In this case, Granger and Joyeux (1980) showed that, under certain additional con-
ditions on the I (0) process (;, the lag j autocovariance of the process Z;, vz (j),
behaves like

7z (§) ~ K (d) j%71, j — oo, (1.14)

where K (d) is a constant depending only on d, “~ ” representing that the ratio of
both sides of the relation tends to 1 as a certain specified condition holds (in this
particular case j — 00). Note that, if for example (; is a stationary and invertible
finite ARMA process, its lag j autocovariance exhibits an exponential decay that
contrasts heavily with the much slower hyperbolic decay of (1.14). This illustrates
the “long-memory” aspect of the fractionally integrated process when d > 0. (1.14)
also implies that the autocovariances are not summable, hence the spectral density
of z; at the origin is unbounded. More precisely, from (1.13),

fz(A) ~ fe(0)A2 X —0. (1.15)

As Robinson (1994a) indicates, the non-summability of the autocovariances and
unbounded spectrum at the origin characterize a stationary but “strongly auto-
correlated” sequence. On the contrary, when d < 0, the process Z; is covariance
stationary, but with zero spectrum at the origin.

For larger d’s, Definition 1.2 has to be taken with caution. For example, when
1/2 < d < 3/2, the process AT, that is first differences of T, is an I; (d — 1)
covariance stationary process, but z, itself is nonstationary and Z; = 0 for ¢ < 0.

11



On this range of values of d, the most widely used in the literature is d = 1, for
which Definition 1.2 states that

t

T o= ) (pt>0, (1.16)
j=1

i = 0, t<0, (1.17)

noting that a; (1) = 1, j > 0, so that when dealing with d = 1, Definition 1.2
represents the standard Engle and Granger’s definition of an I (1) process (given at
the beginning of this section), with specific initial conditions given by (1.17). This
is also the case for larger integer orders. The reason why 7, is defined as

Et = A—dgg, (1.18)

only for d < 1/2 is that when d > 1/2, Z, in (1.18) is not well defined in mean square
sense, as it does not have finite variance. On the contrary, when d > 1/2, Definition
1.2 implies that the variance of Z; is finite (albeit evolving at rate t2*~!). Definition
1.2 is not the unique way of defining fractionally integrated processes, and next, we
propose an alternative definition.

Definition 1.3. Type II fractionally integrated process
- For any real number d, given a scalar I (0) process (;, t € Z, z;, t € Z, is a Type II
fractionally integrated process of order d, denoted z; ~ I (d), if

e = G d=0, (119)
r, = A™{¢1(t>0)},d#0. (1.20)

This definition has different implications from those of Definition 1.2. For example,

in case d < 1/2, d # 0, on the contrary of T;, z; is nonstationary, although as showed
in Lemma 3.4 of Robinson and Marinucci (2001), under relatively mild conditions,
for all j > 0,

tlirg) {CO’U (l't, xt+j) —Cov (Et, Et+])} =0. (121)

Hence, z; could be considered in this case as “asymptotically stationary”, the non-
stationarity being only due to the truncation on the right hand side of (1.20). For
d > 1/2, z; is purely nonstationarity, the truncation in (1.20) ensuring z; is well
defined in mean square sense. Note that both definitions are equivalent for d = 0
and positive integers.

Definitions 1.2 and 1.3 were proposed by Marinucci and Robinson (1999). Both
concepts mirror different definitions of fractional Brownian motions (denoted also
as Type I and II) to which the suitably normalised different fractionally integrated
processes converge. Robinson (2002) provides bounds for differences between the
two fractionally integrated processes. Throughout the thesis, due to notational con-
venience, we will mostly consider Type II fractionally integrated processes, and we
will employ the simplifying notation I (d) instead of I, (d) to denote this kind of
processes. Undoubtedly, all the results in the thesis could be slightly modified to
accommodate for Type I processes, the main implication of this change being the

12



presence of Type I Brownian motions instead of Type II in some limiting distri-
butions derived below. Marinucci and Robinson (1999) presented a very detailed
analysis of the different types of convergence and the probabilistic properties of the
two different classes of Brownian motions.

1.2 The concept of co-integration

Engle and Granger (1987) suggested that in case two processes z; and y; are both
I (d), then it is generally true that for a certain scalar a # 0, a linear combination
w; = y; — az; will also be I (d), although it is possible that w, ~ I (d —b) with
b > 0. This idea characterized the concept of co-integration, which they adapted
from Granger (1981) and Granger and Weiss (1983). They provided the following
definition for multivariate series.

Definition 1.4. CI (d,b) co-integration
Given two real numbers d, b, the components of the vector z; are said to be co-
integrated of order d, b, denoted z; ~ CI (d,b), if

(i) all the components of z; are I (d),

(ii) there ezists a vector o (# 0) so that wy = o/z, ~ I (d —b), b > 0.

Here, a and w; are called co-integrating vector and error respectively. This
definition applies to both classes of fractionally integrated processes (see Definitions
1.1 and 1.2), but, as mentioned before, in the thesis we will mainly consider co-
integration among Type II processes. These authors offered some intuition behind
this crucial concept in modern time series econometrics, suggesting the existence of
forces in economics which tend to keep series not too far apart. Given a vector of
economic variables z;, and a certain vector a # 0, economic theory would say that
the variables are in equilibrium if a’z; = 0, that is a specified linear constraint holds
among those variables. This is a very tight notion of equilibrium, and it is a very
narrow view that this equality could hold for every time period . Alternatively, we
might think of an equilibrium error, as w; = o'z;, which accommodates deviations
from equilibrium. If, for example, in Engle and Granger’s (1987) definition d = b =
1, the variables in 2; are not stationary, with variances that go to infinity as ¢ goes
to infinity and non mean-reverting behaviour, that is the expected time between
crossings of their mean is infinite. What characterizes in this case co-integration as
a “long-run equilibrium” relationship is that a linear combination of I (1) processes
is I (0), so that the series in z; cannot drift too far apart.

To be fair, the idea of equilibrium between I (1) processes was hinted long before
in the statistics literature. In the autoregressive (AR) model

Y = py-1te, t>0, (1.22)

€; being a sequence of independent normally distributed random variables with mean
0 and finite variance, Dickey and Fuller (1979) studied the properties of the regression

13



estimate of p, p, under the assumption that p = 1. In fact, this represented a
situation of co-integration between the I (1) processes y; and y;-1, as the linear
combination y; — y;_1 is I (0). This is a particular case of what Park (1992) denoted
as “singular co-integration”, which was characterized by co-integrating errors being
linear combinations of innovations driving also regressors. Dickey and Fuller’s work
was a direct consequence of a fertile line of research starting on the fifties. It is
worth mentioning two works here which represented very important advances in
this literature. Rubin (1950) showed the consistency of p for any value of p. White
(1958) obtained the limiting distribution of p— p for |p| # 1, and for p = 1 was able
to represent the limiting distribution of n(p— 1) as that of the ratio of two integrals
defined on a Brownian motion.

Engle and Granger (1987) introduced another important concept. If the multi-
variate I (d) process 2; has p > 2 components, there may be more than simply one
co-integrating vector a, representing this the case where several equilibrium rela-
tions drive the joint movement of the variables in 2;. It is easy to realize that the
maximum number of linearly independent co-integrating vectors is r < p — 1, and
the value r was defined as the “co-integrating rank” of 2;. Note that it does not
make sense to possibly consider r = p, as in this case, any vector in p-dimensional
Euclidean space would be a co-integrating vector, including for example vectors like
(1,0,...,0), (0,1,0,...,0)" and so on, which would indicate that the first, second,...,
components of z; are I (d — b), which is contradictory.

Also, even considering only integer orders of integration, a more general defini-
tion of co-integration than the one given by Engle and Granger (1987) is possible,
allowing for a multivariate process with components having different orders of in-
tegration, noting that long-run economic relationships are possible among variables
with different behaviours. Here, denoting d; and d, the largest and smallest of
these orders respectively, Johansen (1996) proposed that any vector o # 0 such
that o/z; ~ I(d,) with d,, < d; was a co-integrating vector. Flores and Szafarz
(1996) narrowed Johansen’s definition, proposing instead that the vector series is
co-integrated if there is a non-trivial linear combination of its components (with
at least a non-zero scalar multiplying on d;) which is integrated of order d,, < d;.
Alternatively, Robinson and Marinucci (1998) defined 2; to be co-integrated if there
exists a vector a # 0 such that o'z, ~ I (d,,) with d,, < dp, which is a much stronger
requirement. Robinson and Yajima (2002) offered an alternative (rather more in-
volved) definition and good comparisons among the different definitions appeared
in the literature. Fortunately, we will avoid the problem of choosing among these
definitions of co-integration in a multivariate framework, as throughout the thesis
we only consider bivariate models, for which all the previous definitions are equiva-
lent. This is an important limitation of our analysis, but we considered that at this
point is more adequate to present results in a relatively simple framework, multivari-
ate extension being mostly straightforward, but notationally much more involved,
extensions of our work.

Thus, once fractionally integrated processes are defined, the concept of fractional
co-integration appears as a natural extension of the traditional co-integration, where
the observables were treated as I (1) processes, and certain linear combinations of
them as I (0) processes. In fact, the standard definition of co-integration by Engle
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and Granger (1987) does not necessarily refer to integer orders of integration. Thus,
by Definition 1.4, in the simple bivariate case, two series y;, z; sharing the same
order of integration, say 8, are co-integrated C1I (8, §), if there exists a vector a # 0
such that o’z ~ I (v), § > v, with 2; = (3, z:)’ and

B=6—17. (1.24)

Throughout the thesis we will consider an extension of Phillips’ (1991a) triangular
system for this simple bivariate case, given by

¥y = v+ AT, (1.25)
z, = A7%E, (1.26)

for t = 0, %1, ..., where the # superscript attached to a scalar or vector sequence v,
has the meaning
v =v1(t>0). (1.27)

Also, u; = (uu,u%)' is a bivariate covariance stationary unobservable process with
zero mean and spectral density matrix, f ()), satisfying

o

E(uou)) = / e f () dA, (1.28)

that is at least nonsingular and continuous at all frequencies; and finally
v # 0, (1.29)
6 > >0, (1.30)

noting that (1.30) implies ¥ > 0. As mentioned before, the truncation in (1.26)
ensures that z; has finite variance, and implies that z; = 0, ¢ < 0. The truncation
in (1.25) is unnecessary if v < 1/2 (y; — vz, is covariance stationary without it and
“asymptotically covariance stationary” with it), but is imposed there also for the
sake of a uniform treatment, implying that y; = 0, ¢ < 0. In common parlance, u;
is an I(0) vector process, z; is an I(§) process, as is (due to (1.25), (1.26), (1.29),
(1.30)) y:, while the co-integrating error y; — vz, is an I(-y) process, and we say
that (z:,y:) is co-integrated of order (6,8) (CI(,0)), noting Definitions 1.3 and
1.4. If B = 0, there is no co-integration and v is not identified. (1.25), (1.26)
reduces to the bivariate version of Phillips’ triangular form when v = 0, § = 1,
which is one of the most popular models displaying CI (1,1) co-integration con-
sidered both in empirical and theoretical literature. (1.25), (1.26) allows greater
flexibility in representing equilibrium relationship between economic variables than
the traditional CI (1,1) prescription. On the one hand, it is plausible the existence
of long-run co-movements between nonstationary series which are not precisely I (1).
On the other, usually there is not any a priori reason for which to restrict to simply
I(0) co-integrating errors, as perhaps the convergence to equilibrium that any co-
integrating relation ensures could be much slower than the adjustment imposed by
for example a finite ARMA co-integrating error. Furthermore, we could also con-
sider co-integration among (asymptotically) stationary variables, with some linear
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combinations producing co-integrating errors characterized by having weaker mem-
ory than that of the observed series. Also, it could be that the co-integrating error
is purely nonstationary but mean reverting, so that a certain long-run equilibrium
among perhaps non-mean reverting observables holds. Note that a normalisation
has been carried out in (1.25), the co-integration vector corresponding to Engle and
Granger’s (1987) definition being now (1,—v)". Note that a co-integrating vector
is only identifiable up to a scale parameter, so that if « is a co-integrating vector,
that is o'z ~ I (), ca’z; ~ I () for any scalar constant ¢, hence ca could also be
considered a co-integrating vector.

As denoted by Phillips and Loretan (1991), (1.25), (1.26) with v = 0, § =
1, represents “a typical co-integrated system” in structural form. (1.25) could be
regarded as a stochastic version of the partial equilibrium relationship y; = vz,
with A=7u¥, representing deviations from this equilibrium. (1.26) is a reduced form
equation. (1.25), (1.26) is the key structural model in this thesis and Chapters 2,
3, 4 are devoted exclusively to investigate methods of estimating in this framework
the parameter v. Some other work on fractional co-integration has employed the
alternative Type I definition of fractional integrated process, replacing (1.25), (1.26)
by

g = vig+o, t21, (1.31)
Z o= o+ +0d, t>1, (1.32)

where vg) and vg) are jointly stationary I;(vy) and I;(6 — 1) processes, respectively,

with |7] < 1/2,1/2 < 6 < 3/2. Wheny = 0,6 =1, 0,(7,6) = (017, v5)’ = (uze, )’
implies (Z:, §:) = (z:,¥:), but more generally, with v;(7y, §) having spectral density
matrix A(X;7,8)f(A)A(=X;7,6), for A(X;7,8) = diag {(1 — )77, (1 — )19},
this is not the case. In particular, note that (1.32) represents a Type I fraction-
ally integrated process I; (6). Model (1.31), (1.32) covers a different range of v, é
values from (1.25), (1.26), but higher § can be involved by extending (1.32) to include
two or more unit roots, while v € (—1/2,0) could be allowed in (1.25).

1.3 Estimation of co-integrating relations

During the last two decades, plenty of effort has been devoted to developing dif-
ferent estimates of the co-integrating parameter v in (1.25), mainly assuming y = 0,
6 = 1. Here, there is a clear distinction between what Jeganathan (1997) denotes
as first and second stage procedures. Typically, limiting distributions of procedures
in the first stage are nonstandard and unsuitable for use in statistical inference,
whereas procedures in the second stage imply estimates of v belonging to the locally
asymptotic mixed normal family. This class of estimates enjoy several attractive
features. They are symmetrically distributed, median unbiased and optimal theory
of inference applies under Gaussian assumptions (see Saikkonen, 1991). Also, they
lead to Wald test statistics with standard x? null limit distribution. Jeganathan
(1997) suggested that first stage procedures could be used to test for the presence of
unit roots in a given model, and then, by second stage methods, one could estimate
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co-integrating relationships on the model where the unit roots tested in the first
stage are imposed. Thus, as a practical consequence, the main difference between
the two types of procedures is that first stage methods do not require knowledge of
v and/or 8, whereas second stage do. For example, in the standard CI (1,1) case,
first stage procedures implicitly estimate the unit roots present in (1.25), (1.26),
hence nonstandard asymptotics appear. On the contrary, second stage methods
incorporate the information about the values of v and 6 into the estimation pro-
cedure, achieving desirable asymptotic properties (see Phillips, 1991a). However,
there are exceptions to this setting. For example, Hendry’s methodology described
below (see Hendry and Richard, 1982, 1983), makes use of the information v = 0,
6 = 1 without achieving estimates of v with optimal asymptotic properties. More
importantly, in fractional circumstances, there could be situations where assuming
v and/or § are known is highly unrealistic, even after pretesting. As it will become
clear in Section 1.5, our purpose in this thesis is to provide estimation methods for
v in (1.25), (1.26), under different situations, which share in many cases the optimal
asymptotic properties of the second stage procedures without assuming knowledge
of v and/or é.

We present below the main approaches proposed in the literature for both classes
of procedures, focussing mainly on the CI (1,1) framework, where most theoretical
and empirical contributions concentrate. Among different first stage methods, we
will focus on two procedures that we also use throughout the thesis as preliminary
estimates necessary to obtain our proposed second stage estimates. For the second
stage ones, we will focus on two classes of estimates which are closely related to the
ones we propose in Chapter 2, 3 and 4, and also one that has enjoyed great popularity
in the CT (1,1) situation, and has also been extended to fractional frameworks.

1.3.1 First stage procedures
Ordinary least squares (OLS)

Phillips and Durlauf (1986) analysed the asymptotic properties of the OLS es-
timate of v in a multivariate version of (1.25) with v = 0, § = 1, which for our
particular bivariate situation is given by

_ E?:l YTy
e
Dt 37
In case, we assume that the process u; is independent and identically distributed
with mean 0 and variance-covariance matrix §2 (zid (0, 2)), their results imply

N fol Wa (1) dWy (84 7) + wia
fol W2 (;7)dr

where W (1) = (W1 (Q;7), W (7)) and wy; is the (i,5)th element of Q. Note
that the limit distribution on the right of (1.34) could be rewritten as

fol W2 (Q, T‘) dWl_z (Q, ’I') n wi2 fol W2 (Q, ’I") dW2 (Q, 7‘) wig
fo W2(;r) dr wag fy WE(Q;r) dr J W2 (r)dr’

Vo

(1.33)

n (o — v) , (1.34)

(1.35)
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where w

Wi (7)) = Wy (7) - w—::WZ (), (1.36)
which is uncorrelated with W, (€2;7), and thus by Gaussianity independent, so that
the first term in (1.35) represents a mixed normal distribution. The second and third
terms are the “unit root distribution” arising from the implicit estimation of the unit
roots present in the model and the “second-order bias” originated by the endogeneity
of the regressor z; (due to the correlation between uy; and ug;) respectively. Stock
(1987) had earlier suggested for a co-integrated model with id errors that a result
like (1.34) could be obtainable. In fact, Phillips and Durlauf (1986) showed that a
multivariate version of this result holds under more general conditions on the error
input series u;. Denoting

5 — : -1 n /
£o = lmn Zt=1E(utut), (1.37)
— n t—1
Ty = lim n—lzt=22j=lE(uju;), (1.38)
T = S+ 45, (1.39)

under some regularity conditions on the autocorrelated (and possibly heteroskedas-
tic) process u;

fol W2 (E, 7') dW1 (E, ’l") + 312
fol W3 (Zir)dr ’

n (Vo —v) = (1.40)
where @;; is the (i, j)th element of T.

In fractional circumstances, the properties of the OLS estimate (1.33) could be
very distant from those in the traditional CI(1,1) situation. Robinson (1994c)
showed the inconsistency of the OLS in a similar model to (1.25), where the ob-
servable y;, z; were covariance stationary long-memory processes, sharing the same
memory parameter, whereas the co-integrating error was also a covariance station-
ary long-memory process with memory strictly smaller than the memory of the
observables. In this framework, the inconsistency of the OLS estimate is due to
correlation between stationary regressor and co-integrating error. It can be easily
shown that Robinson’s conclusions would also hold for our model (1.25), (1.26),
where v < 6§ < 1/2 implies that both observables and co-integrating error are
asymptotically stationary.

Robinson and Marinucci (1998, 2001), for a model similar to (1.25), (1.26), but
where the different processes considered belonged to a class closely related but wider
than the Type II fractionally integrated, provided the asymptotic distribution of the
OLS (with or without intercept) for the case § > 1/2, v > 0. They showed that
the rate of convergence of the OLS is n™*(%-1.8) except for the case where § > 8
and 26 — B = 1, where the OLS is n?/log n-consistent. In all cases, the OLS have a
nonstandard limiting distribution which, as mentioned before, complicates statistical
inference. Finally, Chan and Terrin (1995) developed asymptotic theory for the OLS
estimate in a general AR process with fractional innovations.
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Narrow band least squares estimate (NBLS)

For | = 0,1 and integer m, with ! < m < n/2, we could estimate of v in (1.25)
by

Fay (1,
7 (m) = L), (L41)
Fyz (I,m)
where given (perhaps identical) scalar or vector sequences a;, b, t = 1,...,n,
Fiy(1,m) = 2Re 2—7’531 O =2 (M 1m=n/2)  (142)
ab\t, M) = n - ab \Aj n ab = .

is the averaged (cross-) periodogram, where for integer j, A; = 2mj/n are the Fourier
frequencies,

Iy (A) = wa, (N) wy, (=) (1.43)
being the (cross-) periodogram and
1
we (A) = ——— ae’?, 1.44
3= Gy 2™ (49

the discrete Fourier transform. Note that
ﬁab (lam) = ﬁab (O’m) —EB, (145)

with@ =n"13_,_, a:, so omission of zero frequency implies sample-mean correction.

Under the assumption

—1-+m——>0asn—+oo, (1.46)
m n

the averaged (cross-) periodograms are based on a degenerating band of frequencies
around 0, so that (1.41) only considers low-frequency components of the series in
the relation of co-integration. In this situation, 7; (m) is the narrow band estimate
of v. This is certainly a sensible approach, as co-integration defines a long-run
relationship, and in order to estimate the co-integrating parameter, we could hope
that extracting from the observable series the relevant elements, we avoid high-
frequency components that could be distortive and uninformative in order to asses
for a low-frequency phenomenon. Note also that from the orthogonality properties of
the complex exponential (see (2.95) below), T, ([n/2]) = Up in (1.33), and similarly

R ) (147

Dt (@ — 5)2
which are the OLS estimates without and with intercept respectively. The NBLS
estimate was proposed by Robinson (1994c). It is related to the band estimate
proposed by Hannan (1963), developed later by Engle (1974), with the fundamental
difference that the band estimate focuses on a nondegenerate band of frequencies,
so (1.46) does not hold. Due to (1.46), NBLS resembles nonparametric spectral
estimation, where now the focus is the parameter v instead of a spectral density
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at a given fixed frequency. Robinson (1994c) showed the consistency of the NBLS
in case of stationary co-integration (with stationary or asymptotically stationary
observables), where, as mentioned before, OLS is inconsistent. The reason for this is
that focussing on a slowly degenerating band of low frequencies reduces the bias due
to contemporaneous correlation between uy; and uy,. Robinson and Marinucci (1998)
gave a rate of convergence (which they conjectured as sharp) for the NBLS estimate
of v, when the memory parameters of the observables and co-integrating error are § <
1/2 and v > 0 respectively. In a similar framework, Christensen and Nielsen (2001),
provided a better rate than that of Robinson and Marinucci (1998), and showed that
under their assumptions, the NBLS has a normal asymptotic distribution. This was
at cost of introducing a very strong condition, which in our model (1.25), (1.26)
would imply that the coherency between the weak dependent processes uy;, uy;, at
frequency 0 is 0, condition that is not satisfied if for example u; is a bivariate finite
ARMA. They only considered the case 0 < vy < § <1/2,8+v < 1/2.

For the nonstationary case, Robinson and Marinucci (1998, 2001) also exploited
the bias reduction achieved by focussing on a degenerating band of frequencies
around 0, and showed that in case 26 — 1 < Bor 26 —1 = B with § > 3, the
rates of convergence previously given for the OLS can be improved upon. These
are now nm?-A-1if 26 — 1 < B, nP/logm if 26 — 1 = B with § > 3, and n?
otherwise, noting (1.46). As OLS, NBLS has nonstandard limiting distributions in
all situations. For CI(1,1) co-integration, convergence rates of 7, (m) and 7; ([n/2])
are identical, but 7, (m) eliminates the “second-order bias” present in the asymp-
totic distribution of 7; ([n/2]), which is similar to (1.34) with demeaned Brownian
motions instead the undemeaned ones. The superiority of the NBLS over the OLS
does not appear when comparing 7, (m) and 7, ([n/2]) however, for this standard
CI(1,1) case.

Other first stage estimation methods

The traditional CTI(1,1) literature has proposed other methods to estimate ei-
ther v in (1.25), or alternatively a basis for the co-integrating space. In general,
these methods enjoy less popularity than the previous two (especially than OLS),
and we also considered them as first stage procedures, as they do not require to in-
corporating information about (v,8). Stock and Watson (1988) proposed two tests
for the number of stochastic trends driving the behaviour of a multivariate unit
root process. Equivalently, these tests could be viewed as tests for co-integrating
rank. As an intermediate step for the feasibility of their test statistics, these authors
suggested a consistent estimate of a basis of the co-integrating space consisting of
orthonormal co-integrating vectors. As these co-integrating vectors are linear com-
binations of the vector of observable I (1) variables, say z;, with bounded variance,
they proposed the following approach. The first co-integrating vector forms the lin-
ear combination of z; having the smallest variance, the second co-integrating vector
having the next smallest variance and so on. Thus, in case the co-integrating rank is
r, the co-integrating vectors are estimated as those linear combinations correspond-
ing to the smallest r principal components, leading this method to estimates of the
co-integrating vectors up to an arbitrary linear transformation.
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Bossaerts (1988) proposed a different estimate of a basis of the co-integrating
space. Given certain vector of I (1) variables 2; with co-integrating rank r, his idea
was to use canonical correlation analysis, which searches for linear combinations
of elements of z; and linear combinations of z;_, which are maximally correlated
subject to certain normalization constraint. He concluded that the last r canonical
variables, which are the r canonical variables of z; and z;—; with smallest squared
correlation coefficient between them, are defined by vectors in the co-integrating
space, hence they are co-integrating vectors.

Finally, Phillips (1995) motivated by the well reported non-Gaussianity of finan-
cial data (mainly in terms of leptokurtosis and heavy tails), analysed asymptotic
properties of the least absolute deviations (LAD) and M-estimates of v in model
(1.25), (1.26) with v = 0, § = 1. Defining

n

VULAD = argn%inz lye — oz, (1.48)
t=1

Phillips showed that like OLS, the LAD estimate although n-consistent, suffers from
nonstandard asymptotics. Also, the limiting distribution of ¥y 4p depends on the
value at the origin of the probability density function of u;;, noting that due to the
particular shape of this limiting distribution (similar to (1.40)), the scale effect due
to this factor has a more distortive effect than just inflating the asymptotic variance
of the estimate of v. Phillips also proposed a general M-estimate given by

Uym = arg mallnz T (y, — az), (1.49)
t=1

where T is a chosen function. Potentially, this general framework could include the
LAD estimate (and indeed also the OLS), but Phillips set some restrictive conditions
on T, as twice differentiability, which ruled out this possibility. Nevertheless, he gave
some hints on how to treat the case where T is non-differentiable. As expected, the
general M-estimate of v has also a nonstandard limiting distribution, depending on
a scale factor given by E (T” (uy;:)), where T” represents the second derivative of Y.

As mentioned before, the nonstandard limiting distributions of first stage meth-
ods make statistical inference problematic, and our work in the thesis is devoted
to providing estimates, that although computationally slightly more involved than
simple first stage procedures, enjoy standard asymptotic theory without assuming
knowledge of the I (v) /I (6) structure of the model. Also, although convergence
rates of OLS and NBLS are optimal in some circumstances, in others, their rates
seem capable of further improvements over some regions of the (v,48)-space. In
Chapters 2, 3, 4, we will provide estimates which apart from enjoying asymptotic
distributions leading to standard statistical inference, are, in some cases, faster than
OLS or NBLS.
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1.3.2 Second stage procedures
Full system parametric estimation

Phillips (1991a) proposed full system estimation of a multivariate triangular
system error correction mechanism representation which, corresponding to (1.25),
(1.26), with v =0, § = 1, is given by

(§21)=‘((1))(1 V)(zij)ﬂt, (1.50)

1 v
V= ( 0 1 )Ut, (151)

noting that linearity in the co-integrating parameter v is kept, all the transient
dynamics being absorbed by the error process v; or equivalently u;. The linearity
imposed in the system produces equivalence between full system Gaussian maximum
likelihood (ML) estimation and simple OLS in a suitably augmented model. In case
u, is assumed to be #id (0, 2), the full system Gaussian ML estimate of v is equivalent
to the OLS estimate of v in the augmented linear regression equation

where

Yt = VT + AT + ur 2, (1.52)

where
Utz = U — PUzt, P = wiz/waa. (1.53)

Prior information about the unit root present in the system is crucial, and in fact
Phillips (1991a) admits that in our bivariate structural model rewriting (1.26) with
6=1as

Ty = T)Ti—1 + Usat, (1.54)

with 7 = 1, the key to obtain optimal asymptotic theory is to incorporate in the
estimation the valid information that = 1, which is equivalent to knowledge that
7=0, 6§ =11in (1.25), (1.26). Full system estimation involving unrestricted param-
eters v, , would produce estimates of v with non-optimal properties due to the, in
this particular case, explicit estimation of the unit root parameter 7. In fact, due to
the triangularity of (1.25) with v = 0, (1.54), with the second equation already in
reduced form, two stages least squares (2SLS) is equivalent to the full information
ML estimate of v. Thus, taking xz;—; as instrument for z,; in (1.25), maintaining
ug ~ id (0, ), the asymptotic distribution of the 2SLS estimate of v, Upgg is

Jo Wa (1) dWh 2 (O 7) L vz iy Wa (7) dW, (O 7)

n (v —-V) =
(Zasis — v) [TWE () dr wap fy W3 (@7) dr

, (1.55)

where the “second-order bias” term present in the asymptotic distribution of the OLS
estimate is eliminated (see (1.35)), but not the unit root distribution. The white
noise case is heavily stressed in Phillips (1991a), although a similar “augmentation”
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of the OLS could be done in case u; has an AR representation of finite order. For
example, in case

b 0
U = ( 0 0 ) Ut-1 + Et’ (1'56)

where ¢; is iid (0, 2), the optimal estimate of v would come from unrestricted OLS
in the augmented regression

ys = VT + Az, + by, — vbx_1 + €191, (1.57)

where
€19t = €1t — PEat, P = Wiz/waa. (1.58)
The treatment of an arbitrary I (0) linear process u; is more delicate, however.

Next, we propose asymptotically equivalent methods to full system Gaussian ML
estimation. Given the AR representation for u;

B (L) us = &, (1.59)

with €; ~ iid (0,9), _ |
B(s)=1I, - ijl B;s, (1.60)

where I, is the r X7 identity matrix, the first method is a time-domain approximation
to the infeasible generalised least squares estimate of v, given by

(B (D) 2y B (L) (5, Acty
Yra(Bi (L) af)yQ 1By (L) zf

where B; (L) denotes the first column of B (L). Of course this estimate is infeasible,
but replacing 2, B (L) by suitable consistent parametric estimates Q, B (L) respec-
tively, the feasible version of 7 would have under relatively mild conditions the same
asymptotic properties of ¥ to first order.

More elegant seems the proposal of Phillips (1991a) of a fully parametric frequency-
domain approximation to the Gaussian likelihood, known as the Whittle approxi-
mation. Here, noting (1.28), we define

p(A)=(L0)f(N), ¢(N)=(1,0) (N (1,0, (1.62)
and the infeasible Whittle estimate of v is given by

22;1 p (AJ) Wy (_)‘j) (wy (’\J) y WAz ()‘J)),
2 ie19 (X)) I (Ag) ’

noting (1.43), (1.44). A feasible version could be obtained by replacing p (A), g (A)
by consistent parametric estimates. All these approaches would produce optimal
estimates under Gaussianity with mixed normal asymptotic distributions, but all
of them require knowledge of the I (1) /I (0) structure of the model, which is the
reason for the presence of first differences of z; throughout.

Jeganathan (1997) considered model (1.25) with v = 0, (1.54), where |7| < 1
and u; with known density function. His approach was based on a one-step iterative

V=

(1.61)

V=

(1.63)
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procedure from a suitable preliminary estimate. He showed that in order to obtain
analogous optimality properties to previous methods (with mixed-normal asymptotic
distribution and corresponding Wald tests with x? null limit distribution) in case
n = %1, these unit roots needed to be imposed in the estimation procedure.

In fractional circumstances, Jeganathan (1999, 2001) considered ML estimation
in (1.31), (1.32), stressing pure fractional v;(7, ) (corresponding to white noise wu,
in (1.25), (1.26)), having innovations with completely known, but not necessarily
Gaussian, distribution. He obtained mixed normal asymptotics for his estimate of
v, in case v and § are known, though including some discussion of their estimation.
In fact, he did not consider (1.32) explicitly, but

Fy = NFe_y + 050, (1.64)

with |n| < 1, but apart from also considering the case n = —1, Jeganathan’s model
allowing for a free extra parameter 7, is not more general that (1.31), (1.32). De-

noting for example v$? = A=(6=Duy, if |n| < 1, (1.64) implies that
it = A_(6—1)€2t, (1.65)

with
€yt = Mezt—1 + Uz, (1.66)

so that Z; is a completely standard Type I fractionally integrated process of order
6 —1. If on the contrary n = 1, with the extra assumption Z, = 0, (1.32) is the right
representation of Z;. Thus, it seems that (1.32) for certain general I (0) process uy;,
with § € (—1/2,1/2)U(1/2, 3/2) captures both situations for a different definition of
fractionally integrated process. It is true that in Jeganathan’s framework the input
I(0) series generating the fractionally integrated process is different depending on
whether || < 1 (eg is the input series generating Z,) or 7 = 1 (ug; is the input series
generating Z,), but this does not seem a very relevant difference.

We devote Chapters 2 and 3 in this thesis to investigate model (1.25), (1.26),
from a fully parametric perspective, including cases where y and § are unknown.

Full system nonparametric frequency domain approach

Inspired by Hannan (1963), Phillips (1991b) proposed a narrow band frequency
domain estimate with optimal asymptotic properties under Gaussianity which relies
on a nonparametric estimate of the spectral density matrix of the error u; in (1.25),
(1.26) with v = 0, § = 1 (or equivalently the one of v; in (1.50)). The idea of his
approach is that taking Fourier transforms in (1.25), (1.26), we obtain a triangular
system in the frequency domain given by

(&z(()\,\)))=((l))(1 v )we (A) +wu (A). | (1.67)

Given the spectral density of u;, f (A), we could estimate v efficiently applying full
band weighted least squares to (1.67), obtaining 7 in (1.63). Of course, this esti-
mate is not feasible, as in practice f (\) is unknown. Focussing on a nonparametric
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approach, one could replace f (A) by some nonparametric estimate and show that
the feasible estimate share the asymptotic properties, to first order, of the infeasible
one. Phillips introduced two modifications on this idea. First, as co-integration
is basically a long-run phenomenon, we could concentrate on a degenerating band
of frequencies concentrated around frequency 0. Also, he replaced the (cross-) peri-
odograms w; (—A;) (wy (V) , waz (A;)) and I (A;) by consistent estimates of the cor-
responding (cross-) spectrums (more precisely these were averaged periodograms),
although it is possible to show that this change does not matter asymptotically, at
least to first order asymptotic properties. Furthermore, he also presented an esti-
mate that is the narrow band equivalent of (1.63), where p ()), g ()), are replaced by
nonparametric estimates of p (0), g (0) respectively. As Phillips (1991b) showed, this
estimate also enjoys optimal asymptotic distribution under Gaussianity, the reason
being that although p (0), ¢ (0) are “imperfect” weights compared to p(};), g (};),
as the estimate only concentrates on a degenerating band of frequencies around 0,
the weights are approximately correct.

As an alternative to previous procedures, a different but asymptotically equiva-
lent nonparametric approach would be to employ a similar AR orthogonalization to
the one given in the parametric estimation, assuming u; is an AR process of order
p (AR(p)), with p tending suitably slow to infinity.

For fractional models, in a multivariate semiparametric version of (1.31), (1.32),
and allowing also for the possibility of nonstationary 'uﬂ), Velasco (2000) considered a
tapered version of local Whittle estimation of v, y and 6, for the case 1/2 < § < 3/2,
0 < v < § with 8 > 1/2, more particularly taking one Newton step from preliminary
estimates with suitable convergence rates. This produces an estimate of v which
does not have optimal convergence rate but, unlike ours described in Chapter 4 and
those in the other references, is asymptotically normal. In a similar setting, Hassler,
Marmol and Velasco (2002) focused on log periodogram estimation of v and é given
preliminary estimation of v, developing rules of asymptotic inference. As explained
in Section 1.5, our approach in Chapter 4 deals also with a nonparametric situation,
being close in spirit to Phillips (1991b), but including cases where knowledge of the
orders 4, 6 is not assumed.

Fully modified OLS (FM-OLS)

Several authors have proposed modifications of the OLS in (1.25), with the aim
of obtaining estimates of v sharing the asymptotic properties of the fully parametric
Gaussian ML estimate of v. This was originated by the work of Phillips and Hansen
(1990) for the case y = 0, § = 1. These authors proposed an optimal single equation
procedure based on appropriate treatment of the autocorrelation structure of the
process u; in a multivariate extension of our basic model (1.25), (1.26) with v =0,
6 = 1. The aim of the method is to remove bias and endogeneity effects that this
autocorrelation in general produces. Their FM-OLS estimate of v is given by

~ ~—]~
n + ] —_— —_—
i1 TeYy — nA (1, —09 012)

UrM =
Do T3 ’

(1.68)
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where

=y — 0y 01242, (1.69)
A and T,; being nonparametric estimates of A = 37>, E (ugous) and of the (4, j)th
element of 27 f (0) (the so-called long-run variance-covariance matrix of u;) respec-
tively. Again, note that in this approach, knowledge of the I (1) /I (0) nature of
the observables/co-integrating error is crucial, as it is precisely the use of this in-
formation which motivates the use of first differences of z; in the modification of
y: and in the estimation of A and 27 f (0). The relevance of this work is that they
achieved optimal estimation of v under Gaussianity assumptions without the need
of assuming a fully parametric structure for u;, and also avoiding system estimation.
Park (1992), extending Park and Phillips (1988, 1989), proposed a similar modifi-
cation to the OLS. Noting that a co-integrating relationship is not altered by certain
modifications of the observables, in (1.25), (1.26) with v = 0, § = 1, he proposed to
transform the observables as

zf = z,— (Z70,) s, (1.70)
¥ = %— (S Tov+ (0 5105 )) w, (1.71)

with ¥ = E (us;), Ty = (112, 722), with
Vi =Y B (wujey), 4,5 = 1,2. (1.72)
k=0

Park showed that these transformations had nonnegligible effects on the limiting
distribution of the least squares estimates based on the transformed variables and, in
fact, this estimate enjoyed the mixed normal asymptotic distribution also achieved
by Phillips and Hansen (1990). It is clear that modifications (1.70), (1.71) are
close in spirit to those of these latter authors. Of course, these transformations are
infeasible, but the unknown parameters related to the covariance structure of w,
could be replaced by appropriate nonparametric estimates, v by its OLS estimate,
and u; by the residuals (y; — Vo, Az;)’ (see (1.33)). Park showed the validity of
a feasible estimate constructed following these lines. The main advantage of his
procedure over Phillips and Hansen’s one is that it requires only a once-and-for-all
transformation of the data. Once the data are transformed, standard regression
software will be enough to carry on any statistical analysis.

In a fractional framework, Dolado and Marmol (1996) considered a fractional
extension of the FM-OLS estimate of v, with nonparametric autocorrelation in wu;,
and assuming knowledge of v and §. In relation to (1.31), (1.32), with v a matrix
and both equations vectors but depending still on only two integration orders v and
8, Kim and Phillips (2000) consider an alternative extension of FM-OLS to that
of Dolado and Marmol (1996), and its relation to Gaussian ML estimation. They
assume parametric autocorrelation in v;(7,6), obtaining limit distribution theory
that differs from that of Jeganathan (1999, 2001), and from ours in Chapters 2
and 4 below (see (2.32)), even after replacing their version of fractional Brownian
motion by ours. They also consider estimation of nuisance parameters, but only
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treated the cases 1 < 6 < 3/2, v+ 6 > 1, —1/2 < 4 < 1/2, which imply g > 1/2
and 1 < 6§ <3/2,1/2< v <1 for the case § > 1.

Other second stage estimation methods

A different research strategy was based on single equation error correction mech-
anism. Noting that from (1.25), (1.26) with y =0, § =1,

(a2)=(s 1) (). 479

( ﬁi’i ) =C(L)e, (1.74)

where ¢; is a bivariate iid process, for a certain moving average (MA) polynomial
C (L) = %32, C;L7. For our particular situation, the Granger Representation The-
orem implies that C (1) is of rank 1, so there exists a 2 x 1 vector a, such that
C(1)a = 0. This theorem also implies that there exists a vector ARMA represen-
tation

so that in general

A(L) ( gi ) =d(L)e, (1.75)
for certain lag polynomials A (L), d (L), and also an error correction representation
A*(L)(1-1L) ( Ztt ) = —a(Yt—1 — vTs—1) + d (L) &, (1.76)

where
AL)=AQ1)+(1-L)A" (L), (1.77)

and A* (0) = I,. In general, A (L), A* (L), d(L) are infinite AR lag polynomials, but
in practice finite-order approximations are used, the purely AR representation where
d (L) = 1 having been stressed in the literature. Note that v appears nonlinearly in
(1.76), as a is unknown and must be estimated.

Stock (1987) analysed through a Monte Carlo experiment the case where A* (L) =
(1—pL)I; and d(L) = 1 in (1.76), and estimated v by means of nonlinear least
squares in (1.76). His main finding was large Monte Carlo bias for this estimate.
From Phillips and Loretan’s (1991) arguments, it is clear that the asymptotic dis-
tribution of Stock’s estimate is non-standard, with bias, asymmetry and non-scale
nuisance parameters. Stock’s approach is very related to Hendry’s methodology,
explained precisely in Hendry and Richard (1982, 1983). This approach suggests
working back from a very general unrestricted dynamic specification towards cer-
tain more parsimonious model satisfying certain prescriptions, including that the
model should fit the data up to a white noise innovation which is a martingale
difference sequence relative to the selected data base. The starting point of this
methodology is a general unrestricted regression, which in case u; = Z;io Ajes_j
with &, = (e1,€2:)" being #id (0,1), is equivalent to running least squares on the
equation

Yy =vzy +a (L) (ye — vzs) + b (L) Az + €19, (1.78)
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noting (1.58), where a (L), b (L) are lag polynomials of infinite order. Phillips (1988)
and Phillips and Loretan (1991) showed that, in general, this single equation proce-
dure does not lead to optimal inference, due to the improper account for autocorre-
lation given in (1.58). In fact, mixed normal asymptotics would be attained in case
€1.2¢ and uo; were incoherent at frequency 0, but this is not usually the case, as in
general, uy; is not necessarily orthogonal to the past history of £1.2. In any case,
as Phillips (1988) admits, Hendry approach comes remarkably close to achieving
optimal asymptotic properties.

Saikkonen (1991) presented asymptotically efficient estimates inspired by Hendry’s
error correction model methodology. In a multivariate version of (1.25), (1.26),with
v =0, § = 1, based on the validity under certain regularity conditions of the pro-
jection

Uit = Z HjUzt_j + e, (179)
j=—oc0
where 7, is an I (0) process such that
E (ugm44) =0, j =0,%£1,£2, ..., (1.80)
this author proposed to estimate by OLS the linear regression equation
P
Yt = VI + Z HjAZt_j'l" 'fh, (181)
j=-p
where _
Ni=mn + Z HjAUzt._j, (182)
lil>p

so that proper orthogonalization is “almost” achieved, as heuristically II; is close to
0 for |j| > p and p large enough. As, in general, one cannot assume that IT; = 0 for
|7| > p, for the asymptotic argument to go through, it is necessary to require that
p tends to infinity with n at a suitable rate. Clearly, the choice of p is a delicate
issue here, and the author suggests experimenting with a few values of p in empirical
analysis. In any case, this difficulty is at the same level of the choice of bandwidth
for consistent estimates of the long-run variance-covariance matrix of u, in Phillips
and Hansen’s (1990) method, or even the choice of a parametric model for fully
parametric methods like Phillips (1991a). An unpleasant issue related to Saikkonen’s
method is that his estimate is infeasible unless the future values z,41,...2n4p, are
known. Thus, removal of the p most recent observations of y; seems necessary in
general. As p grows with n but at a slower rate, this removal could be negligible
asymptotically, but the finite sample performance of the estimate will surely be
affected.

Phillips and Loretan (1991) proposed a very similar method. The problem with
estimation of the equation (1.78) is that uy; is not necessarily orthogonal to the past
history of €74, hence these two processes are not incoherent at frequency 0. By
means of the linear least squares projection

E (61.2t| {u2s}jit+1) = chu2t+k, (1.83)
k=1
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denoting ¢ (L) = Y o, cxL*, the error
e1o = €12t — ¢ (L7) ugy, (1.84)
is a martingale difference sequence with respect to the filtration
Mg =0 ({us}il o {u2s}2 o) - (1.85)
Thus, nonlinear least squares in
Y = vz + a (L) (ye — vz) + b(L) Azy + ¢ (L7) Azy + €} 5, (1.86)

would produce asymptotically efficient estimates under Gaussian assumptions. A
similar problem as in Saikkonen (1991) also appears in order to deal with the possi-
bly infinite lag polynomials in (1.86). In fact, Phillips and Loretan reported results
for four different combinations of number of leads and lags in their Monte Carlo ex-
periment. As Saikkonen suggested, Phillips and Loretan’s procedure has the compu-
tational disadvantage of facing a nonlinear estimation problem, whereas Saikkonen’s
method was linear. On the contrary, the residual from the nonlinear regression in
Phillips and Loretan approximates a white noise process, this not being the case in
Saikkonen’s approach. Thus, hypothesis testing on v could be constructed in a very
simple way, as normalisation only implies the estimation of a matrix that could be
straightforwardly approximated by sample second moments of the residuals from the
nonlinear regression. Stock and Watson (1993) extended this approach to situations
of co-integration with general I (d) variables and deterministic components, where
d is integer but not necessarily 1. :

Apart from these methods, a couple of procedures have been proposed which
are useful in case the Gaussian assumption is unrealistic. First, we present the so-
called adaptive estimates. Jeganathan (1995), in a multivariate version of model
(1.25), (1.26), with v = 0, § = 1, a single co-integrating relation and u; ~ %id (0, 2),
proposed an adaptive estimate of the equivalent to v in his multivariate model.
The previously discussed second stage methods were Gaussian, in the sense that
they were optimal in case the data were Gaussian. Sometimes, the Gaussian as-
sumption is highly unrealistic, and proper ML estimation exploiting knowledge of
the non-Gaussian joint density of the process u; would achieve higher efficiency than
Gaussian methods. Adaptive estimation produces estimates which share the asymp-
totic optimality properties of the ML estimate in case the density function of the
error input series is unknown. Should the density be known, one could always obtain
an asymptotically efficient estimate by a one-step procedure from certain adequate
preliminary estimate of the parameter of interest. However, this requires knowledge
of the score and information of the density of u;. In case the density is unknown,
one could compute nonparametric estimates of these quantities and substitute them
by the true quantities in the iterative procedure. Jeganathan (1995) showed that
this is an asymptotically valid method in the sense that the same asymptotic dis-
tribution as the ML estimate was achieved by his adaptive estimate. This limiting
distribution is mixed normal with smaller conditional variance than the one offered
by Gaussian methods in case data are not Gaussian. Jeganathan showed this under
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the relatively strong condition that the (in our case) bivariate joint density p (a, b)
of u; should be elliptical symmetric, that is

p(a,b) = [det 2~ f* (

‘Q"%(a b )'

), (1.87)

for some function f*, where here ||-|| denotes euclidean norm.

Hodgson (1998a) extended Jeganathan’s work to allow for ARMA process of
order 7, ¢ (ARMA(r,q)) with finite r, g, structure for the co-integrating error in
(1.25), that is

r q
e = Z“jul,t—i + Z bi€1t-; + €1y (1.88)
Jj=1 J=1

where (EIu,uZt)’ is an id vector sequence. There could be controversy on whether
to describe Hodgson’s approach as adaptive, because the ARMA structure for uy;
was assumed to be known (of course without knowledge of the ARMA parameters),
although the joint density of (€14, us:) was assumed unknown. “Adaptive” estima-
tion of v was proposed, assuming also joint density of (e1:,uz:) with the elliptic
syminetry property.

As an alternative non-Gaussian robust method, corresponding to the first stage
LAD and M-estimates, Phillips (1995) also proposed fully modified versions of these
estimates. As opposite to most of the previously discussed second stage procedures,
these fully modified estimates are non-Gaussian, as they do not share the asymptotic
properties of the maximum likelihood estimates when the data are Gaussian. The
fully modified LAD (FM-LAD) estimate requires a very similar correction to the one
in Phillips and Hansen (1990), achieving also mixed normal asymptotics, with the
extra requirement that certain nonparametric consistent estimate of the density of
uy¢ at 0 is necessary. Phillips also showed that provided u;; is leptokurtic enough, the
FM-LAD is more efficient than the FM-OLS, meaning this in the present framework
smaller conditional variance in the limiting distribution. Using a very similar type
of correction, Phillips also presented a fully modified M-estimate, which achieved
mixed normal asymptotic distribution via a nonparametric correction similar to
the one for the FM-LAD, the most distinctive feature being that the sample mean
of T"(uy,) is involved, where u;; are residuals originated by certain preliminary
consistent estimate of v.

Johansen (1988) derived ML estimates of the co-integrating vectors for a co-
integrated vector autoregressive (VAR) process with independent Gaussian errors.
He assumed that a p-dimensional vector of random variables z; had a VAR repre-
sentation

z=Ihzi1+ 1z 0+ ... + Uz + &, (189)

where €, ~ iid (0,Q2). Johansen considered the case where the determinant of the
polynomial
B(s) = I, — ;s — [Is® — ... — [;s*, (1.90)

has roots at s = 1. More specifically, he assumed that Az, was I (0) and that

M=I,—I; -1, — ... - I, (1.91)
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had rank r < p, indicating this in terms of the Granger representation theorem
that there are r co-integrating relations among the elements of z;. Expressing II as
II = ad’ for suitable p x r matrices a, ¢, the linear combinations o/z; are I (0), and
the space spanned by « is denoted as the co-integrating space. Johansen employed a
method based on canonical correlations, and showed that a suitably normalised ML
estimate of o was mixed normal asymptotically distributed, although, as he admits,
this result is not very useful in practice as his normalization depends on the unknown
matrix a. Knowledge of the co-integrating rank (the number of linearly independent
co-integrating vectors) was essential in order to derive his result. Apart from this
important result, which could be taken as an intermediate step in the whole of his
analysis, one of the strongest contributions of his work is to propose a test of linear
restrictions about the co-integrating vectors with standard x2 null limit distribution.
He also proposed a likelihood ratio test for the dimension of the co-integration space.
In a similar setting, Ahn and Reinsel (1990) suggested a partial reduced rank es-
timating procedure that explicitly incorporated the unit roots present in the model,
obtaining estimates of the co-integrating vectors with mixed Gaussian limiting dis-
tributions. Their key idea was to write (1.89) in error correction form as

k—1
Az =Tz 1+ Y Az +e, (1.92)

=1

where I} = — Y7 .| TI;, j < k — 1, and they estimated IT with the reduced rank
structure imposed, which they found to be equivalent to imposing in the estimation
of the VAR model (1.89), p—r unit roots. Through this procedure, optimal inference
was achieved in contrast to the full rank least squares estimation of (1.89), which
suffer from the typical problems originated by implicit estimation of the unit roots
present in the model. The authors related their work with Johansen’s (1988), claim-
ing more flexibility for their approach, in terms of allowance of very straightforward
incorporation of zero constraints on the stationary parameters.

Johansen (1991) showed that his proposed ML estimate of the co-integrating
relations had a mixed normal asymptotic distribution in more general framework
than in Johansen (1988), allowing for a constant term and seasonal dummies in his
specified VAR model. As in his previous work, the co-integrating rank was assumed
to be known, but Johansen also proposed a likelihood ratio test for the null of r
linearly independent co-integrating vectors against diverse alternatives, including
co-integration spaces of dimensions 7 + 1 and p. The test statistics related to the
previous tests have nonstandard null limit distributions, but depending only on
the dimension of the problem (p — r) and certain behaviour of the constant term.
Furthermore, he also presented a test for the validity of linear restrictions of the
co-integrating space with x?2 null limit distribution in this wider framework.

Finally, Hodgson (1998b) in a multivariate co-integrated finite order VAR pro-
posed an adaptive estimate of the vector of the different parameters including both
long and short-run coefficients, obtaining corresponding results to Johansen (1988)
and Ahn and Reinsel (1990) (derived under the Gaussianity assumption) in case the
density of the input error series is unknown.
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1.4 Empirical evidence of fractional co-integration

There are numerous empirical applications based on the notion of fractional
co-integration. For example, Diebold, Husted and Rush (1991) examined the pur-
chasing power parity (PPP), that is the tendency for nominal exchange rates and
prices to adjust in such a way that the real exchange rate reverts (perhaps slowly)
to its parity value. Thus, the (log) real exchange rate could be viewed as the co-
integrating error in a linear combination of (log) nominal exchange rate and (log)
prices with co-integrating vector (1,—1)". Although, the authors approximated the
log of the real exchange rate in a particular way, and not as the difference of the logs
of nominal exchange rate and prices, what seems clear from their empirical analysis
is that taking into account that is well assumed in the literature that the (log) nom-
inal exchange rate is a unit root process (see e.g. Baillie and Bollerslev, 1994a,b),
they reported situations where the estimated memory of the real exchange rates
(e.g. France/Germany, Germany/UK) suggested non-stationary mean-reverting be-
haviour, whereas for other real exchange rates the authors provided evidence of
stationary long memory. This evidence, in view of the lack of power of the tradi-
tional unit root tests against fractional alternatives was suggested by the authors
as the main reason why lack of PPP, that is unit root behaviour in real exchange
rates, was argued in many studies.

In a similar framework, Cheung and Lai (1993) proposed to check the PPP hy-
pothesis via a regression of a foreign price index converted to domestic (US) currency
units on a domestic price index, the errors of this relation capturing deviations from
the PPP. While they provided evidence of the unit root character of the observables,
they stated that the PPP will be characterized by certain stationary, or at least mean
reverting behaviour of the co-integrating error. They computed semiparametric esti-
mates of the degree of memory of the co-integrating error for different countries and
bandwidths, and provided evidence of co-integrating errors with positive memory.

Similarly, Baillie and Bollerslev (1994a) argued whether seven spot exchange
rates appear to be tied together in the long run or not, taking into account that
there seems not to be discussion in the literature about the unit root character of
those series, being much more fragile the idea that those series are co-integrated,
see e.g. Sephton and Larsen (1991), Diebold, Gardeazabal and Yilmaz (1994), who
concluded that “there exists substantial uncertainty regarding the existence of co-
integrating relationships among nominal dollar exchange rates”. Baillie and Boller-
slev’s (1994a) explanation for this finding was that unit root tests, which served
traditionally to detect the presence of unit roots, had very low power against frac-
tional alternatives, hence a situation of fractional co-integration with long memory
co-integrating error could be hidden. In fact, their estimate of the memory of the
co-integrating error was d = 0.89, over five standard errors away from 1.

Baillie and Bollerslev (1994b), analysed the so-called forward premium, f; — s;,
where s, and f; are logs of the spot exchange rate and of the one month maturity
forward rate respectively, having in mind the “overwhelming” evidence of presence
of unit roots in spot exchange rates. Again, the difference f; — s; could be con-
sidered as a co-integrating error with co-integrating vector (1,—1)'. They claimed
that standard unit root tests, like augmented Dickey-Fuller (ADF), (see Engle and

32



Granger, 1987) and KPSS (see Kwiatkowski, Phillips, Schmidt and Shin, 1992) gen-
erally reject that the forward premium is I (0), which is paradoxical as given that
forward premium is associated with risk, it seems hard to see any theoretical reason
for a I (1) risk premium. The purpose of their paper was to show that the forward
premium is indeed mean-reverting, the estimates of the memory of the forward pre-
mium for Canada, Germany and UK (with respect to US) being 0.45, 0.77 and 0.55
respectively.

In a similar setting as Diebold, Husted and Rush (1991), Crato and Rothman
(1994) provided estimates of the (log) real bilateral sterling exchange rates with
different countries, and for several of them it was reported evidence of fractional
co-integration.

Dueker and Startz (1998), analysing a fractional co-integration relation between
US and Canadian bond rates, suggest that it is desirable not to rely on an assumed
value for the order of integration of the observables as was done in previous empirical
analyses related to fractional co-integration, which most commonly considered this
integration order to be one. Their estimates of the memory of the observables and
co-integrating error were 0.674 and 0.200 respectively.

Kim and Phillips (2000) provided a similar analysis to the one by Baillie and
Bollerslev (1994a), assuming also the memory of certain series of exchange rates to
be one. Evidence of fractional co-integration was reported.

Marinucci and Robinson (2001) analysed two macroeconomic data sets used
in earlier papers by Engle and Granger (1987) and Campbell and Shiller (1987).
For consumption and income, Engle and Granger found evidence of CI(1,1) co-
integration. Marinucci and Robinson estimated the memory parameter of both
observables and showed that for different semiparametric methods and bandwidths
they were very close to one for both variables. They also estimated the memory of
the co-integrating error, and the estimates ranged from 0.19 to 0.87, suggesting this
that the CI (1,1) framework could produce a good approximation for the behaviour
of the observable series but not for the co-integrating errors. For stock prices and
dividends data in Campell and Shiller, Marinucci and Robinson concluded that the
evidence of co-integration was weak, as it seemed clear some evidence of mean re-
verting behaviour of the dividends, and the estimated memory of the co-integrating
error ranged from 0.57 to 0.77 for different methods and bandwidths. This could
provide an explanation to Campbell and Shiller’s findings that, in their own words,
were inconclusive about the existence of co-integration.

Andersen, Bollerslev, Diebold and Ebens (2001) examined “realized” daily eg-
uity return volatilities and correlations obtained from high-frequency transaction
prices on individual stocks in the Dow Jones Industrial Average. They provided
evidence of long memory for certain time series of logarithmic standard deviations
and correlations, and stressed the evidence of comovements in volatility across as-
sets. Christensen and Nielsen (2001) took a similar point, and claimed the existence
of stationary co-integration between the volatility implied in option prices and the
subsequent realized return volatility of the underlying asset, as in their view, the
observables (log-volatilities) were fractionally integrated processes with estimated
order ranging from 0.35 to 0.4, whereas the co-integrating error seemed weak de-
pendent. By using a narrow band estimate, they obtained a much higher value for
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the estimate of the slope of their co-integration relation than the one provided in
a similar work by Christensen an Prabhala (1998), who used an OLS estimator, as
showed by Robinson (1994c) inconsistent in the case of stationary co-integration.
Finally, stationary co-integration has been also considered by Robinson and Yajima
(2002), who provided empirical work on testing for the rank of co-integration among
spot closing prices of crude oil.

1.5 Description of the thesis

Throughout the thesis, we establish a very clear distinction between the cases
where § > 1/2 or B < 1/2. We denote the former situation as “strong fractional
co-integration”, as the order of integration of the observables is reduced by the linear
combination in more than 1/2, nesting this the traditional CI (1,1) co-integration
framework where 3 = 1. As mentioned before, this situation was also theoretically
analysed by Kim and Phillips (2000) and Velasco (2000). The latter case is denoted
as “weak fractional co-integration”, because the memory of the observables could
be reduced by just a very small amount in the linear combination. This appears to
be a framework that theoretical researchers have been not paying much attention
to, but it seems to be supported by some data and also covers relevant situations.
For example in financial data, it could be that the observables are “less” stationary
than the co-integrating error, and in macroeconomic data, it could well be that the
observables have a close to unit root behaviour, whereas the co-integrating error is
nonstationary but mean-reverting. In fact, most of the empirical evidence provided
in the previous section supports these two possibilities. Note that we have omitted
from our analysis the 3 = 1/2 case, which, as it can be inferred from our results
in Chapters 2 and 3, would require a separate treatment. Thus, although from
a theoretical viewpoint it could be interesting to fill this gap, it is important to
note that the treatment of this very particular case would undoubtedly entail some
difficulties, while its interest from a practical perspective is limited, and also we felt
that omission of this specific situation was of less relative importance in view of the
great generality that our treatment of all except one 8 > 0 allows.

Regarding the strong fractional co-integration case, we propose estimates with
analogous optimal properties to the Gaussian second stage procedures applied to
the triangular system (1.25), (1.26) for CI (1,1), which were discussed in Section
1.3. Our main contribution here is that those optimal properties hold irrespectively
of whether § and/or « are known or unknown, subject to adequate estimation of
these orders in this latter case. Thus, we provide theoretical evidence that, on the
contrary to what the literature suggests, the incorporation of information about the
true orders in the estimation is not necessary in order to obtain optimal Gaussian
estimates. The reason for this outcome can be easily understood by comparison of
the equivalent models

Ty = NTi_1+uy, t>1, =0, t<1, (193)
z, = A7%uf, (1.94)

when § = 7 = 1. In the traditional approach, the incorporation of the information
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that n = 1, hence avoiding the estimation of this parameter, was crucial, because
estimation of the unit root n along with v in a full system estimation procedure,
produced non-standard asymptotics for the estimate of v due to the discontinuity
on the behaviour of z; at n = 1 in (1.93). In our approach, we estimate the equiv-
alent to the unit root in (1.93), which is the parameter § = 1 in model (1.94),
where the discontinuity does not appear, and therefore the estimation of v is not
affected. We consider our approach to be a step ahead in the direction that, for
example, Jeganathan (1997) indicates. This author states that there is a generalised
opinion in the profession that “procedures whose limiting distribution involves unit
root component and nuisance parameters are not to be highly recommended and
that Wald-type procedures having the limit central chi-squared are the ones to have
sound statistical basis”. In Jeganathan’s opinion these optimality results by them-
selves have little meaning, as what he considers as the crucial issue is whether the
underlying structure of the model is reasonably supported by the data. For example,
the optimal Gaussian procedures are reasonable in case the I (1) /I (0) structure is
assumed or imposed on the underlying structure of the model, and he states that
how well this fits the data is the relevant issue here. Noting that the acceptance of
a null hypothesis of unit root means basically that the unit root structure has sup-
port in view of the available data, it could well be that the model could correspond
to one in which the root is only close to unity, with the nature of this closeness
being unknown. We consider that our approach fits naturally in the essence of Je-
ganathan’s interesting thoughts, as we try to accommodate in a more realistic way
the underlying structure of the model to the actual data, avoiding complications
due to pre-testing. Related to this 3 > 1/2 case, Chapter 2 is devoted to analysing
this strong fractional co-integration framework from a fully parametric perspective,
where the short memory model driving the error input series in (1.25), (1.26) is
known up to some finite vector of unknown parameters. We propose different time
and frequency domain estimates, which are relatively straightforward generalisations
of (1.61), (1.63) respectively. We show that those estimates (and also a competitive
but computationally simpler one when 8 > 1), have analogous optimal properties
to the Gaussian second stage procedures, with mixed normal asymptotics leading
to Wald tests with x2 null limiting distributions, implying straightforward inference
on v. Our results nest the traditional CI (1, 1) framework, where in order to obtain
the same asymptotic properties as ours, the values v = 0, § = 1 were assumed to be
known. In Chapter 4, we show that parametric assumptions about the I (0) struc-
ture of the error input series u; are not necessary in order to obtain same results as
given in Chapter 2. In this chapter, we propose several different frequency domain
estimates, including both full band and narrow band approaches, whose feasibility is
achieved through nonparametric estimates of the spectral density matrix of u; and
semiparametric estimates of the orders 7, 6.

We also consider in the thesis the weak fractional co-integration situation. Here,
our main contribution is to propose in the adverse situation where the co-integrating
gap [ is small, relatively simple estimates, which in all cases are asymptotically
normal, and, at least in a fully parametric framework, enjoy optimal convergence
rates, by which we mean that they match the rates achieved by the Gaussian ML
estimate under suitable regularity conditions. The weak fractional co-integration
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case is more complex, and one could argue that has less interest than the g > 1/2
situation, which embodies the traditional CI (1,1) framework. The 8 < 1/2 case
contrasts heavily with this econometric prescription, but as noted in Section 1.4
empirical evidence has emerged of this possibility, and we will further motivate this
issue in Chapter 3. We found that asymptotic inferential theory is very different
in this case from members of the class 3 > 1/2. Chapter 3 is devoted to studying
the 8 < 1/2 case assuming that the error input series u, in (1.25), (1.26) is a VAR
process of known finite order. Here, we propose time domain estimates of v with
\/n rate of convergence, asymptotically normal, less efficient that the Gaussian ML,
but computationally more convenient, as only univariate optimization is involved.
The estimate of v depends on the estimates of 7, §, and these estimates need to be
v/n-consistent, being the asymptotic variance of the estimate of v sensitive to their
precise form. In Chapter 4, we provide a nonparametric extension of Chapter 3,
where u; is an arbitrary I (0) process of unknown form. Considering only different
narrow band estimates, we showed that our estimates are asymptotically normal,
slower than in the fully parametric case, and affected by the estimation of the orders
7, 6 or f(A) in a subtle manner.

Finally, the thesis is completed with Chapter 5, which considers a test procedure
for the equality of the orders of integration of two fractionally integrated processes.
This topic does not directly refer to estimation of the co-integrating parameter, but,
nevertheless, we found that this is a very relevant issue in any empirical analysis re-
lated to fractional co-integration, and of particular importance in order to justify the
use of the techniques derived in the previous three chapters. Note that a necessary
condition for two time series to be co-integrated is that their orders of integration
be equal. Different test have been proposed in the literature from both parametric
and semiparametric perspectives, but this latter approach has been showed to be
invalid in case the series are actually co-integrated. In this chapter, we propose a
simple testing procedure which does not suffer from this serious limitation.
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Chapter 2

Parametric estimation of strong
fractional co-integration

2.1 Introduction

As presented in Chapter 1, methods of estimating co-integrating vectors have
been developed which have optimal asymptotic properties, with a limiting mixed
normal distribution, thereby generating Wald test statistics with a standard, x?2,
null limit distribution (see our description of methods by Phillips and Hansen, 1990,
Phillips, 1991a,b, Johansen, 1988). These methods have been justified under the
assumption that integration orders of observed series and co-integrating errors are
correctly specified integers, though it is standard practice to test these integration
orders, particularly by unit root tests against stationary AR alternatives. Under
fractional co-integration, the different orders of integrations involved in the esti-
mated model are taken to be real numbers, and certainly, this consideration poses
additional difficulties. For example, the “optimal” methods referred to above lose
their most desirable properties (such as the x? hypothesis tests, for example) when
integration orders on which they are based are misspecified, a fair possibility under
fractional circumstances. Also, the methodology developed by Engle and Granger
(1987) and subsequent authors is not designed to detect such co-integrating rela-
tionships. Thus, our aim is to propose a general estimation method, nesting the
traditional co-integration cases as CI (1,1) (see Definition 1.4), and allowing inte-
gration orders to be unknown and real-valued.

In this chapter, we consider the bivariate model (1.25), (1.26), for the case of
strong fractional co-integration, with

6> p6>1/2, (2.1)

noting (1.24). In (1.25), (1.26) the possibility that 4 and/or § are known, but not
necessarily integers, does not lack interest (in particular when § = 1 is fixed after
pre-testing) but allowing both v and § to be unknown, thereby avoiding complica-
tions and ambiguities due to pre-testing, may be attractive. Fractional values may
be difficult to interpret economically, though aggregation explanations have been
developed, mean-reversion is nicely described, in the present context v and § are
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just nuisance parameters, while fractional, like non-fractional, co-integration is a
kind of dimensionality-reducing structure.

As shown in Chapter 1, simple estimates of v not requiring knowledge of 7
and/or 6 are readily available. For example OLS, with or without intercept, is
nmin(26-1.8)_consistent (except in the case where § > 8 and 26 — 8 = 1, in which
case it is (n®/log n)—consistent), as shown under mild conditions by Robinson and
Marinucci (2001). Also, we saw in the previous chapter that in case 26 — 1 < §,
the rate of convergence can be improved upon by using a version of OLS in the
frequency domain that focuses on a slowly degenerating band of low frequencies and
thereby reduces the bias that is due to contemporaneous correlation between wuy, us;
(Robinson and Marinucci, 1998); these estimates were applied empirically by Marin-
ucci and Robinson (2001). Both least squares and its narrow-band counterpart have
nonstandard limit distributions, which are unsuitable for use in statistical inference,
while their rate of convergence seems capable of still further improvement over some
regions of (v, §)-space. In the present chapter, we develop and justify estimates of v
which have analogously optimal properties, in the presence of possibly unknown v, 8,
to those previously established by, for example, Phillips and Hansen (1990), Phillips
(1991a,b), in case § = § = 1 is known. The estimates of v are of generalised least
squares (GLS) type, based on a constrained transformed bivariate regression model
derived from (1.25), (1.26) and having the property that regressors are orthogonal
to disturbances.

We allow for very general forms of parametric autocorrelation in u;, in which
circumstances a frequency-domain form of estimate of v is convenient and flexible,
though we also consider a time-domain form based on AR transformation. The
model (1.25), (1.26) is perhaps the simplest interesting one possible. Our treatment
of (1.25), (1.26), with parametric autocorrelation, itself requires lengthy proofs,
whose ideas are relevant to more general models but best conveyed in a relatively
simple setting. Admittedly, assuming knowledge of the structure of u; could be
a strong requirement, but the parametric approach has enjoyed great popularity
among time series researchers, and, in any case, our work in this chapter could also
be considered as a first step in order to investigate estimation issues in more general
frameworks, where perhaps the spectral density of u; is a nonparametric function.
In fact, Chapter 4 will be devoted to analysing this situation, so focusing initially
on a parametric setting could both fit naturally in the literature and also provide
many useful results which undoubtedly will simplify subsequent analyses.

Our model presumes the existence of co-integration. The question of establish-
ing such existence, or non-existence, is itself especially difficult in our fractional
context, with unknown integration orders. Recently, Robinson and Yajima (2002)
have developed methods for determining fractional co-integrating rank in a multi-
variate extension of (1.25), (1.26) based on sequential testing, principal components
analysis, and a model choice procedure, while Marinucci and Robinson (2001) pro-
posed and empirically applied a Hausman-type test for determining the existence of
co-integration in (1.25), (1.26). In this chapter we do not consider this issue, but
this is briefly explored in Chapter 5, where we present an alternative methodology
for testing for the equality of orders of integration, which is a necessary condition
for the existence of co-integration.
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Our estimates of v are described in the following section. Section 2.3 presents
regularity conditions and the main results, also introducing simpler estimates that
are asymptotically competitive when § > 1. In Appendix 2.A we outline the proofs,
which rest heavily on a series of propositions which are proved in Appendix 2.B.
Appendices 2.C and 2.D collect respectively some results used in the proofs of several
propositions, and technical lemmas pertaining to properties of the a;(a) in (1.8).
Section 2.4 consists of a Monte Carlo study of finite-sample behaviour, Section 2.5
reports an empirical investigation of the purchasing power parity (PPP) hypothesis,
and Section 2.6 discusses related topics.

2.2 Estimates of co-integrating parameters
For any sequence {w;}, and any ¢ > 0, introduce the notation
we(c) = A%wf, (2.2)
noting (1.8), (1.27). Also define, for ¢ > 0, d > 0,

z(e,d) = (u(c), ze(d)) . (2.3)

Thus (1.25), (1.26) can be written

2(7,6) = {m(y)v + o, (2.4)

where
¢ =(1,0). (2.5)
In case u, is white noise, with known, nonsingular covariance matrix €2, and ¥
and 6 are also known, GLS based on (2.4) and observations (z:,1), t = 1,...,n,
is motivated by the orthogonality property E (u}Q~1(z;(7)) = E (ugut) 271¢ = 0.
More generally, GLS estimates can also be constructed in the presence of serial
correlation in u;, given known 2n x 2n covariance matrix ¥ of u = (4}, ...,u)". If ¥
is a known function of an unknown finite-dimensional parameter vector , we might
hope that insertion of sufficiently good estimates of «, § and 6, producing a feasible
GLS estimate of v, will not affect limiting distributional properties. However, ¥ and
its estimate can be difficult to handle, both numerically and theoretically, so more
convenient alternatives to such GLS or feasible GLS might be considered.
One such is based on AR transformation. Suppose u; has an AR representation

B(L)ut = &4, (26)

where €, is a bivariate sequence that is at least (see Section 2.3 below) uncorrelated
across t with nonsingular covariance matrix €2, and

B(s)=I - ij B;s’, 2.7)

J
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where the B; are 2 x 2 matrices satisfying conditions prescribed below. Suppose
further that we know functions Q(h), B;(h), where h € RP, p > 1, such that for
some 0 € R?, we have Q = Q(6), B; = B;(0). Define

B(s;h) = I, ~ Y. By(R)s, (2.8)

and then

a(e,d,h) = Y {B(L;h)(z(e)} Q)T {B(L; h)zi(c, d)} (2.9)

~

be,h) = Y _{B(L;h)(zu(e)Y QW) {B(L;h)Czu(e)} . (2.10)

Note that each of the AR transformations automatically entails a truncation since
z4(c) =0, z(c,d) =0, t < 0. Now write
B(c,d, h) = &b h) (2.11)
b(c, h)

and consider as estimates of v
7(v,6,9), 7(v,6,0), (,6,8), 7(v,5,6), ¥(3,5,6), (2.12)

given estimates 7, 3, 9. The estimates (2.12) respectively consider the cases in which
v, 6 and @ are all known, the integration orders v and é are known but é is not,
followed by the cases in which one or other and then both of -y, § are unknown and
6 is also unknown: (v, 4, 6) covers situations familiar from the integer integration
order co-integration literature, where for example vy = 0, § = 1 is known; ¥(¥, 6, @)
extends this by assuming knowledge of the integration order of the observable z;
(say 6 = 1), but the order of the co-integrating error is not known to be 0; 7(%, 6, 6)
expresses the situation of least knowledge.

The estimates (2.12) are computationally convenient when u; is a finite-degree
AR process, but less so otherwise, for example when u; is a finite-degree moving
average (MA) or ARMA sequence, when the B;(h), though recursively calculable,
do not have a very neat closed form. On the other hand, the spectral density matrix
f(X), defined in (1.28) has a neat form in such cases, so a frequency-domain ap-
proach might be preferred, as was considered by Phillips (1991a) in the case v = 0,
6 =1 is known, and one can construct parametric models for which the gap between
tractability of the spectral density on the one hand, and AR coefficients (or indeed
autocovariances) on the other, is even greater (see e.g. Bloomfield, 1973, Robin-
son, 1978). A frequency-domain approach also has the advantage of approaching a
well-established form of semiparametric estimate in which f()) is a nonparametric
function (see, e.g. Hannan, 1963, in case of regression models, and Phillips, 1991b,
in case of CI(1,1) co-integration).

To define the frequency-domain estimates, first introduce f(\;h), a known func-
tion of A € (—m,n] and h € RP, such that f(}\;60) = f(A) (see (1.28)). In terms of
the AR representation (2.6), we have

F(Ash) = (2m) 7' B(e™; h)IQ(h) B(e™; b)Y, (2.13)
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so f(\h) is of simple form in the finite ARMA models, replacing B(e**; k)™ by
B(e*; k)1 A(e*; h), A and this B both being finite-degree matrix polynomials. (Our
assumptions below guarantee the existence where necessary of matrix inverses). De-
noting

p(Gh) = Fh)TY g R) = F(AR)TY, (2.14)

put
a(c,d,h) = Zp()\j; h)Wa(e) (—Aj) Wa(ea) (A7), (2.15)
b(c,h) = ZQ()‘j;h)Iz(c)()‘j)v (2.16)

noting (1.43), (1.44). Define
a(c,d, h)

v(c,d,h) = bch) (2.17)
Corresponding to the five estimates (2.12) we may consider also
2(1,6,6), 9(1,6,0), 9(3,6,8), 9(7,3,), P(3,3,8). (2.18)

From the orthogonality properties of the complex exponential function (see (2.95)
below), it readily follows that when v, is a priori white noise, so that B;(h) =0, j >
1, f(A\; h) = (27)"1Q(h), we have ¥(c, d, h) = ¥(c, d, h), so corresponding members of
(2.12) and (2.18) are identical. Otherwise, when u, is believed to be autocorrelated,
they differ, but under regularity conditions all members of (2.12) and (2.18) have
the same first-order asymptotic properties, as shown in Theorem 2.1 of the following
section.

The CI(1,1) literature has stressed error-correction model (ECM) formulations,
on which parameter estimation can be based. We can rewrite (2.4) as

APz = —C(1 - AP) {A%F(1, —v)z )} + o, (2.19)

with 2, = 2(0,0) = (y;, z;)’ and v} = (uﬁ + Vuf:,u?:)’. When 6§ = =1, (2.19) re-
duces to the triangular ECM representation of Phillips (1991a) for the CI(1,1) case,
on which he based a frequency-domain approximate Gaussian pseudo-ML estimate
of v. It is readily shown that this is equivalent to a corresponding Gaussian pseudo-
ML estimate based on (2.4). In case u, is known to be white noise, this is equivalent
to the OLS estimate of v in the extended regression y;(7) = vzy(7) + @z:(6) + wi,
where ¢ = E(ujugy)/E,) and w¥ = u, — pu¥, namely 7(v, 6), where

5o, d) — et 2@ Sy 2 ule) = L, 3i(Je(d) T, auld)u()
’ Yor 23(0) Y, 22(d) — {0, zi(c)z(d)) ’

to extend Phillips’ (1991a) observation in the CI(1,1) case (though he derived from
his ECM representation the OLS estimate of v in y:(y) = v {z:(7) — z:(6) } +xz:(6) +

(2.20)
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w}, with x = v + ¢, which is identical to (v, §)). Further, (v, ) can be shown to
be equivalent to the GLS estimate 7(y, 6,8;) = D(v, 6,8;), with 8; consisting of the
three distinct elements of (v, §), where

Qe,d) =n™" z (<) — 5(e, d)ze(c), 2e(d)] [uele) — (e, d)zele),muld)] . (2.21)

Thus, our GLS approach can be seen to include Gaussian pseudo-ML estimation as
a special case, where particular estimates of 2 are used, this interpretation contin-
uing to apply when autocorrelation in wu; is incorporated. Based on (2.19) in the
CI(1,1) case, Phillips (1991b), employed a semiparametric version of GLS, involving
smoothed nonparametric estimation of f()) across a coarser grid than the Fourier
frequencies, following Hannan (1963).

2.3 Conditions and main results

We present first a series of regularity conditions.

Assumption 2.1. The process us, t = 0, %1, ..., has representation

uy = A(L) g, (2.22)
where -
A(s) =D+ ) A, (2.23)
=1 :

and the A; are 2 x 2 matrices such that :

(1)
det{A(s)} #0, |s|=1; (2.24)

(ii) A(e®) is differentiable in A with derivative in Lip(n), n > 1/2;

(iii) the €, are independent and identically distributed vectors with mean zero, pos-
itive definite covariance matriz Q, and E ||| < oo, ¢ > 4, ¢ > 2/(28 - 1).

Notice that (i) implies Y 32, j ||4;]| < oo, because the derivative of A(e*) has
Fourier coefficients jA;, whence Zygmund (1977 p-240) can be applied. Further, this
also implies )77, 7 || 4; |I* < oo, which, along with the condition in (iii), enables us
to apply the functional limit theorem of Marinucci and Robinson (2000) (developing
earlier work of Akonom and Gourieroux, 1987, Silveira, 1991) to the nonstationary
process z; (), as is required to characterize the limit distribution of our estimates
of v. Further, due to (i), B(e**) (see (2.7)) satisfies the same smoothness condition
as A(e") in (ii), and thus

> 5 lIB;| < oo, (2.25)
=1
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which implies the required conditions on the B; in our other proofs, in particular of
Propositions 2.1 and 2.2. It is Proposition 2.1 that requires the strongest conditions
on the Bj;, and this is possible by a lengthier proof under the milder requirement
that A(e**), and thus B(e®), is boundedly differentiable, which itself implies (see
Zygmund, 1977, p.251) 3 32, 5*/2||4;|| < oo, and, from (i), 3 32, 5/2||B;|| < oo.
However our present conditions seem satisfactorily mild, easily covering stationary
and invertible ARMA systems. The moment assumption on ¢; is satisfied, for any
8 > 1/2, by Gaussianity.

The above assumption, with (1.25), (1.26), (1.29), (2.1), suffices in order to
establish Theorem 2.1 below for the infeasible estimates ¥ (v, 4§,60) and 7 (v,6,6),
but in order to insert estimated parameters further conditions are required. It is
convenient to denote by O the set of all admissible values of 8; often we may take
O to be a bounded set, in part to satisfy stationarity conditions, while compactness
of © would help to ensure existence of 6.

Assumption 2.2
(i) f(X6)=f(N);
(i) f (A;h) has determinant bounded away from zero on ([—m, 7] x ©);

(iii) f (X;h) is boundedly differentiable in h on ([—m, 7] x ©), with derivative that
s continuous in h at h = 6 for all );

() f(X;0) is differentiable in A, with derivative satisfying a Lipschitz condition
of order greater than 1/2 in );

(v) (8/0h) f (A;h) is differentiable in X at h = 0, with derivative satisfying a
Lipschitz condition of order greater than 1/2 in A.

Given correct specification (i), these assumptions seem innocuous, again being
easily satisfied by standard stationary and invertible ARMA parameterizations, for
example, and could be slightly relaxed at cost of greater proof detail.

Assumption 2.3

(i) There ezists K < oo such that
Al + I3| < K, (2.26)
and k > max (0,1 — 3) such that
F=74+0,(n"), §=6+0, (n™"); (2.27)

(i)
6=6+ Op(n"%), where § € O. (2.28)
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Condition (2.26) is innocuous if 4 and 5 optimize over compact sets, as is stan-
dard for implicitly defined estimates. The convergence rates required in Assumption
2.3 are all less than those achieved of estimates (2.12) and (2.18) of v in Theorem
2.1 below. In fact (ii) could be relaxed to the rate on ¥ and é of (i) if f();h) is
smoother in h than required in Assumption 2.2, in particular if it is analytic in A
(as in the ARMA case). We prefer our milder Assumption 2.2, and the relatively
brief proof that (ii) affords, because n'/2—consistency of parameter estimates in
short memory time series models is familiar, for example in case of Whittle esti-
mates, see eg. Hannan (1973). On the other hand, we might be content to assume
k = 1/2 in (2.27). The n'/?2—consistency and asymptotic normality of estimates of
nonstationary integration orders (and indeed of parameters corresponding to 8 in
nonstationary fractional models), based on scalar series was established by Velasco
and Robinson (2000), for Type I processes (see Definition 1.2). By bounding a mea-
sure of distance between Type I and Type II processes, Robinson (2002) showed
that the same results hold for Type II processes, thereby checking (2.27) and (2.28)
for estimates of 6 and elements of # identified by the uy process. Robinson (2002)
likewise checked (2.27) and (2.28) for estimates (computed from residuals) of v and
elements of 6 identified by {u;;}, employing a preliminary estimate of v, which sat-
isfies a rate of convergence condition. This is satisfied by OLS when v+ § > 1,
but not when v + 6§ < 1, where it is, however, satisfied by the NBLS estimate of
Robinson and Marinucci (1998, 2001), using a bandwidth that increases sufficiently
slowly; the strength of this rate condition is due in part to allowing the compact
set of admissible values of v to be arbitrarily large - if this is suitably reduced the
condition can be relaxed so as to be satisfied by OLS even when v + § < 1, so long
as § < 1/2. The only gap left in demonstrating that Assumption 2.3 can be fully
checked is that in general methods based on the bivariate series 2; are appropriate
in order to estimate part of §. However the extension of Velasco and Robinson’s
(2000) theory to cover bivariate series, and the subsequent adaptation to our set-
ting, seems straightforward, while if B(s;#) is a priori diagonal the only parameter
not estimated by two univariate procedures is the off-diagonal element of §2, which
is estimated by an obvious side calculation, to satisfy (ii). Unless 3 is close to 1/2,
(2.27) is capable of being satisfied also by “semiparametric” estimates of vy and §,
which might in any case be employed at an initial stage in determining the para-
metric model for f. On the other hand, from the viewpoint of a full co-integration
analysis, efficient estimates of vy, § and 8 are desirable, suggesting construction of a
Gaussian pseudo-ML approach, estimating all parameters jointly, which is compu-
tationally more onerous than the kind of step-by-step approach we have envisaged,
but undoubtedly possible; asymptotic properties have yet to be explicitly derived,
but the problem of differing convergence rates encountered by Saikkonen (1995) in
a different setting can be avoided by concentrating out v first.

We introduce notation to describe the limit distribution of our estimates. Denote
by W (r) the 2 x 1 vector Brownian motion with covariance matrix £ (noting the
simplifying notation W (r) = W (Q; r) with respect to that of Chapter 1), and define
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(Type II-see Marinucci and Robinson, 1999) fractional Brownian motion

W (r; B) = / ’"; " (), (2.29)
and then define .
W (r;8)=¢B(1)" W (r;8), (2.30)
where
=(0,1)". (2.31)

By “=" we will mean convergence in the Skorohod J; topology of D [0, 1].

Theorem 2.1. Let (1.25), (1.26), (1.29), (2.1) and Assumptions 2.1-2.3 hold.
Then, denoting by v* any of the estimates in (2.12) or (2.18), we have as n — o,

1

(v —v)=> {q(O)/W(r;,&?)2 dr} 2n¢'B (1 / (r). (2.32)

0

The proof is outlined in Appendix 2.A, by a series of propositions whose proofs
appear in Appendix 2.B. The rate of convergence in (2.32) is optimal for any reg-
ular parametric estimate in this model. Theorem 2.1 desirably implies that we can
estimate v as well, asymptotically, not knowing v and/or § and/or 6 as knowing
them, subject to the rate conditions of Assumption 2.3, with the implication that
efficiency of estimation of v, 6 and 8 does not matter.

The variates ¢'B (1)’ Q"W (r) and W (r; 8) are uncorrelated and thus, by Gaus-
sianity, independent, so (2.32) indicates mixed normal asymptotics. As a conse-
quence of this, and of the propositions in Appendix 2.A, we have

—~

Corollary 2.1. Denoting by b* any of the quantities b(v,6), 5(3,6), b(7,9), b7, 6),
b(v,6), b(F,9), b(v,8), b(3,8), as n — oo, the Wald statistics

b (v —v)? -4 X2 (2.33)

The form of the limit distribution in (2.32), where spectral properties of u; at
only zero frequency are involved, and the nonstationarity of z;(7), suggests simpler
forms of estimate than (2.12), (2.18). We replace p(A;; h), g(\j; k) by p(0; k), ¢(0; h),
and thence consider

7(7,6,9), (7,6,6), ¥(3,6,9), ¥(v,6,0), T(7,8,0), (2.34)
where a(c,d h)
a c,
d,h) = ——" 2.35
(c,d,h) = o) (2.35)
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in which
a(c,d, h) = p(0; h) t:il z(c,d)zi(c), b(c,h) = q(0;h) tzzn:l ri(c), (2.36)

after applying (2.95) below. If we act on the belief that w; is white noise, (2.34) is
identical to (2.12), (2.18), but to cover other circumstances we have:

Theorem 2.2. Let (1.25), (1.26), (1.29), (2.1) and Assumptions 2.1-2.3 hold.
Then, denoting by v° any of the estimates in (2.34), we have as n — oo :

(i) for1/2< B <1,

n?10° —v) = {q (O)/W (r; ,3)2 dr} p(0) } FO)EQ —e ) Pdy;  (2.37)

-

(i) for B =1,

n( —-v) = {q(O)/W('r‘;ﬂ)zdr}
0

X {p(o) 2 Y-, +21¢'B (1)’ Q7! / W (r;1)dW (r)} (2.38)

where
= E(uouy)§; (2.39)

(i) for B > 1,

nf (V° —v) > {q(O)/W(r; B)* dr} 2n¢'B (1) Q“I/W(r; B)dw (r). (2.40)

If u; is white noise, so f(A) = f(0), we have p(0)f(A)é = 0 and (2.37) becomes
v° = v + 0,(n'~?), but Theorem 2.1 applies here, with the sharp result (2.32);
also, p(0) > o2 ¥-s = p(0)1ho = 27p(0)f(0)¢ = 0, so (2.38) reduces to (2.32). For
autocorrelated u;, when 8 > 1, (2.40) indicates that (2.34) still does as well as
(2.12), (2.18), but when 8 = 1 the convergence rate in (2.38) is as good but the
desirable mixed-normal asymptotics are lacking, due to “second-order bias” (see
Chapter 1) appearing as the first term in the second factor on the right of (2.38),
and when § < 1, in (2.37), not only are mixed-normal asymptotics lacking but
convergence is slower. Indeed, for 1/2 < 3 < 1 (2.34) never converges faster, and
nearly always converges slower, than OLS of y; on z;. From Propositions 6.1, 6.2 and
6.5 of Robinson and Marinucci (2001), OLS is n?*~-consistent when y+6 = 26— 08 <
1, n®~!/log n-consistent when v+ 6 = 26 — 3 = 1 and vy > 0, n-consistent when
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6§ =1,y =0, and nP-consistent when v+ 6 = 26 — 8 > 1, so over the intersection
of these regions with 1/2 < 3 = § — v < 1 the rate in (2.37) is equalled when v =0
and exceeded when v > 0, indicating that proper fractional differencing without
proper accounting for I(0) autocorrelation can do worse than simple methods based
on unfiltered data.

Focusing more closely on v = 0, where the central case (ii) is that of I(1) z,
while the widespread evidence of unit root behaviour based on tests against AR
alternatives cannot be taken very seriously from a fractional viewpoint (see Diebold
and Rudebusch, 1991, Robinson, 1994b), it might be reasonable to interpret this as
suggesting that integration orders may often be close to 1, but either greater or less
than 1, when the discontinuity in Theorem 2.2 at 3 = 1 makes use of (2.34) ques-
tionable. Even when > 1, the detailed corrections for autocorrelation in (2.12)
and (2.18) might be expected to produce better finite-sample properties than (2.34),
which is based on an appeal to asymptotic theory due to a high degree of nonsta-
tionarity in z;(vy), while the extra computational burden of (2.12) and (2.18) does
not seem prohibitive. Because this discussion indicates that it is less important than
Theorem 2.1, and because its proof is in part embodied in that of Theorem 2.1 and
in part straightforwardly uses Theorems 4.1, 4.3 and 4.4 of Robinson and Marin-
ucci (2001), we have omitted the proof of Theorem 2.2. Theorem 4.3 of Robinson
and Marinucci (2001) can also be applied to justify narrow-band frequency-domain
versions of (2.34) which, at cost of introducing a user-chosen bandwidth, eliminate
the second-order bias term in (2.38) and thereby achieve the asymptotics in (2.32),
corresponding to an idea due to Phillips (1991b) in a semiparametric setting for the
CI(1,1) case. We will also pursue this idea in Chapter 4 below.

2.4 Monte Carlo evidence

With the main aim of studying the effect of estimating integration orders «, on
our estimates of v and their limiting distributional properties, a Monte Carlo study
was carried out on the case where in (2.23)

A(s) = dz’ag{ii;[:z, iigzz} (2.41)

where v, ¢;, ¢ = 1,2, are allowed to take values which represent different situations
where u; is a bivariate:

1. white noise process, with ¢; =; =0, i =1,2;

2. purely AR(1) process, with ¢; = ¢ = 0.5,0.9, ¥; =0, i = 1,2;
3. purely MA(1) process, with ¢, = 9 =0.5,0.9, ¢; =0, i =1,2;
4. ARMA(1,1) process, with ¢; = ¢o = 0.4, 9, = 1P, = 0.2.

We generated Gaussian ¢; with covariance matrix €2 having ijth element Wij,
varying the correlation p = wys /(w1; wee )V/? (taking values 0, 0.5, -0.5, 0.75) and
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variance ratio 7 = wyp/wy; (taking values 0.5, 1, 2 when u, is a white noise and just 1
for the autocorrelated cases). The parameter p heavily influences the “simultaneous
equation bias” in (1.25), regressors and disturbances being orthogonal only when
p = 0, while 7 affects the signal-to-noise ratio in (1.25), with increase in 7 generally
being associated with an increase in precision in estimation of v. Our estimates are
invariant to v # 0 and also to a scale factor of 2, and so we fixed v = wy; = 1 with
no loss of generality.

We generated 1000 series of lengths n = 64, 128,256. For the white noise case,
we computed the Infeasible estimate 7; and Feasible estimate U, given by

v = 9(7,6,61) = (1,6,61) = (7,6,81), (2.42)
Up = 9(:7, 6;9-17‘) = D‘(”?! 67517) = Tj(?’ 6’-61'1)’ (243)

for 7,6 to be described subsequently. 6;,0p represent in this case 3 x _1 vectors
of estimates of § = (w1 ,w12 ,ws2 ), such that 7; = 7(y,98),vr = (7, ) notmg
(2.20), 6,0 consisting of the appropriate elements of $; = (y,6),0r = Q(7, )
(see (2.21)). Thus, we compare an optimal estimate () in case v, § are known (one
that is familiar from the unit root co-integration literature in case (v, §) = (0,1))
with one (Ur) where +, § are unknown, and replaced by estimates.

Unlike in the white noise case, for the different autocorrelated situations, esti-
mates in (2.12) and (2.18), although asymptotically equivalent, are not identical.
Noting that time-domain estimates (2.12) are only computational convenient when
u; is a finite-degree AR process, as we deal in our experiment with MA and ARMA
situations, for the sake of a uniform treatment, we present only results for the fre-
quency domain estimates (2.18), and compare them with those in (2.34). Thus, in
the different autocorrelated situations, we examined the performance of

v, = (v,6,8)), vr =0(¥,6,0r), (2.44)
7 = 9(v,6,0;), 7% =7(7,6,0F), (2.45)

for certain estimates 8y, 8F, 7, 5 to be described subsequently.

To describe the procedure of estimation of the various short-memory parameters
in the autocorrelated situations, let 8 = (8,65)’, where 64, 0g collect the ARMA
parameters and the distinct elements of (2 respectively, i.e. fq = (wi1,wia,wss)’.
Now, given estimates 7, 8 of the orders of integration, and estimates 847, G4 of
64, where in the computation of 84; and 84, we assumed that v, 6, were known
and unknown respectwely, the correspondmg estimates 8q;, Oqp are the appropriate
distinct elements of (v, 8, 8as; €), (7, 8,045; €), where

Qlc,d, b ) = 27” S D (e,dy s Ag) " we () wh (< A) D (e, B =A) ™", (2.46)
Jj=1

with .
et = (g — Doy, Ty — 2111 (6 > 1)), (2.47)
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where T is the OLS estimate (see (1.33)), and

(1-e?)~

D(c,d,h;/\)=( 0 (1_

0 |
ein) THHIC2D ) A(h;e™), A(84;5) = A(s).

(2.48)
Note that (7, 6,04; ), with € = (y; — vz, s —2;:_11 (6 > 1))’ would be the standard
parametric Whittle estimate of 2 based on the bivariate process (y: — vz, z;) or
(ys — vzy, 24 — 74—1)" depending on whether § < 1 or § > 1 respectively. Of course,
this estimate is infeasible, as it requires knowledge of the unknown parameters 7,
8, 64, v. Also, Up does not represent the current state of the art in estimating co-
integrating vectors in the presence of unknown integration orders without employing
estimates of these, Robinson and Marinucci (1998) having demonstrated how it can
be improved upon by a narrow-band frequency domain least squares procedure. The
use of such an estimate would presumably lead to an improvement in fq;, for (and
also, as it will be seen later, in 847, f4r, 7), and thence in the different estimates in
(2.18), but it involves choice of a bandwidth number, and in the purely “parametric”
context of the current chapter we prefer to keep to the more familiar and simpler
T, whose performance as an estimate of v we also compare with 7y, Up, 7} and 7%.

In the situation when we consider known orders of integration, the short memory
parameters in 64 related to the process uy; are estimated by the method described
in Hannan (1973) after taking 6 differences on the process z;. In the case of un-
known orders, we computed 5 and the estimates of the short memory parameters
in 04 related to ug; by variants of the univariate Whittle procedure of Velasco and
Robinson (2000), using untapered z; for § < 1, but for § > 1 using untapered Az,
and adding back one to the estimate of §. The estimation of memory parameters of
nonstationary series by means of integer-differenced stationary and invertible obser-
vations incurs no loss of efficiency (cf. Robinson, 1994b), but of course our use of
knowledge of the actual 4 in doing this may favour U, 7% and the estimate of 2 (see
(2.48)). On the other hand, it appears that Velasco and Robinson’s (2000) estimates
based on untapered data are only n!/?-consistent (and asymptotically normal) when
the memory parameter is less than 3/4, so that our application of their procedure
to first-differenced untapered data when § = 2 (see (2.50) below) is not supported
by their results, and may in itself lead to inferior Tp, 7%, compared to ones using
memory parameter estimates which incorporate suitable tapering. The estimation
of the parameters related to u;; is more problematic, as even in the case of known
orders of integration the process uy; is not observable. If the orders are considered to
be known, we estimated the short memory parameters in 64 related to the process
uy; applying the Hannan’s (1973) procedure to v differences of the OLS residuals
Y+ — Vox:. In case the orders are considered to be unknown, we computed ¥ and
the corresponding estimates in 64 by the Velasco and Robinson’s (2000) procedure
applied to the residuals y; — Vox;.

The previous estimation procedure was applied to all autocorrelated situations
except the one where u;; and ug, are purely AR processes with known v, §, where we
preferred a more natural and computationally simpler way of estimating the short-
memory parameters. In this situation, the estimates of ¢; and ¢, (see (2.41)) were
obtained as the OLS coefficients in the regressions of y; () — Doz: (7) on y:—1 (y) —
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Voxi-1 (7), and z; (6) on z,_, (6) respectively. Here, we computed our estimate of
Q as " n
_ _ 1 Z T %t Z T1tTat
Q(’Y; 6, BAI) = - 1£=1 t=%1 y (249)
"\ Xrura X
t=1 t=1

being ry; and 7o the OLS residuals obtained from those regressions respectively.

There are two parts to our Monte Carlo investigation, the first comparing per-
formance in fractional circumstances of estimates assuming both v and § are known
with ones where both are estimated, and the second focussing on the standard case
(v,6) = (0,1) just for the white noise case, and considering also estimates in which
one of v or 4 is estimated.

2.4.1 Performance for different combinations of orders

In the first part of the study, we employed all five (v, §) combinations of v = 0,0.4
with § = 0.6,1.2,2 where § > 1/2:

(7,6) = (0,0.6),(0,1.2), (0,2), (0.4,1.2), (0.4,2) . (2.50)

The first case, (y,6) = (0,0.6), is one in which the bias of OLS is so strong as to
dominate rate of convergence when p # 0 (see Robinson and Marinucci, 1998), while
the remaining four cases are all ones in which OLS achieves the optimal rate. Table
2.1 records the convergence rates of OLS when p # 0, OLS when p = 0, and the
optimal rates (achieved in Theorem 2.1).

TABLE 2.1
CONVERGENCE RATES:
OLS WITH p # 0, p = 0 AND OPTIMAL RATES

(7,6) ](0,06) (0,12) (0,2) (04,12) (0.4,2)

OLS, P) ?é 0 n2 nl? n? n.8 nl®

OLS, p=0 n'b nl2 n2 n8 nl®
Optimal n® nl2 n? n8 nl-6

Behaviour of the bias

We show the Monte Carlo bias (defined as the estimate minus v) of the estimates
corresponding to the white noise case in Tables 2.3-2.6. Overall, Uy, Ur and 7o are
individually no worse than any of the other estimates in 172, 108, and 75 out of
180 cases (considering all 7, p, n and order combinations) respectively, so that 7; is
clearly best and our feasible estimate T, although more complicated to calculate,
seems worth relative to the computationally simpler 7p. In fact, out of those 180
different cases, Ur behaves strictly better than 7o (with absolute value of the bias
strictly smaller) 98 times, whereas that T is better than Up just four times (we will
say that they perform in relation or proportion, 98/4). The overall predominance
of Ur over Uy in terms of bias, is clear for all values of p, although slightly less
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noticeable for p = 0. It is reassuring that while 7 is damaged by nuisance parameter
estimation, it nevertheless emerges as worthwhile relative to OLS, whose bias is
indeed unacceptably large in the case (v, 6) = (0,0.6), even for n = 256, except, of
course, when p = 0. While the bias of 7; is virtually unaffected by varying p, there
is evidence that the bias of Ur somewhat increases in absolute value with |p|, with
sign opposite to that of p. As expected, biases tend to decrease with n. For all p,
7, bias tends to decrease in absolute value as 3 increases, as rates of convergence
predict. There is also a tendency for bias to vary inversely with 7, but this is very
noticeable only in the case (v, §) = (0,0.6).

In Tables 2.7-2.10, we show the Monte Carlo bias for the purely AR(1) case.
Overall, 79 outperforms the other four estimates as, out of 120 possible cases (for all
combinations of p, n and (v, §)), is no worse than any of the others 96 times. It is
followed by 7, U, Up and 7%, which are no worse than any of the other estimates in
84, 56, 54 and 41 cases respectively. Apart from the clear superiority of the infeasible
estimates over the rest, the overall classification hides some very important features.
For example, comparing Ur with Do, when ¢; = 0.5, ¢ = 1,2, Up is strictly better
than Tp with relation 22/8. Similarly, when ¢; = 0.9, T shows certain improvement
(most noticeable for (v, §) = (0, 0.6) with p # 0), but the relation is still favourable to
Ur (22/16). When u, is close to the nonstationarity situation, the joint estimation
of orders of integration and AR parameters gives for some replications estimates
of these latter parameters very close to one. In this case, r behaves very poorly,
although this effect seems to be noticeable only when £ is small. 7§ improves over 7;
for all different combinations of orders of integration when p # 0. This is completely
surprising for the cases where 3 < 1, as here the rate of convergence of 77 is smaller.
This better behaviour of 7§ is maintained when ¢; = 0.9. The performance of 7% is
somehow strange. It performs very badly in some cases, especially when ¢; = 0.9.
This estimate seems more affected than U when the estimates of ¢; are very close to
one, in which case, bias for some replications is extremely large, affecting the overall
behaviour of the estimate across all Monte Carlo replications. Nevertheless, this
effect tends to disappear as the sample size gets larger, so for n = 256 and ¢; = 0.5,
7% outperforms Uy in almost all cases, whereas for ¢; = 0.9 just does it for the case
(7,6) = (0,0.6). 7% emerges as worth against 7o when ¢; = 0.5 (in relation 20/13),
but this changes completely when ¢; = 0.9, where the relation is now in favour of 7p
(43/2). Thus, it does not seem advisable to use 7% in a situation where we suspect
there exists short-memory AR structure, especially if there is certain evidence of
closeness to the nonstationary situation. As in the white noise case, for all p, bias
tends to decrease in absolute value as 3 increases, as rates of convergence predict.
In general bias of all the estimates increases in absolute value with |p|, with sign
opposite to that of p and tend to decrease in absolute value as n increases.

For the purely MA(1) case (Tables 2.11-2.14), as in the AR case, bias improves
as |p| decreases and § increases. Overall, 7%, 7%, U, Ur and U are individually no
worse than any of the other estimates in 101, 81, 78, 71 and 55 out of 120 cases. The
most surprising result here is that 7% performs better than the infeasible estimate
7y (with relation 18/7 out of 60 cases in both situations where 1; = 0.5 or 4; = 0.9),
being this more noticeable for the cases where § < 1, against what convergence
rates predict. It is completely clear that both feasible estimates improve over 7o
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(27/2 out of 60 cases for both 1; = 0.5 and 9; = 0.9 for the relation between Up
and Tp, and 27/2 and 27/3 out of 60 cases for ¢; = 0.5 and v; = 0.9 respectively
for the relation between 7% and 7). Estimates are in general not very affected by
the increase in the parameter 1);. When this happens, 7; performs slightly worse in
small sample sizes, but a bit better when n = 256, while Ur does not have a very
clear reaction, except that it becomes worse for the case (v,8) = (0,0.6). Also, 7%
improves slightly in most of the cases, whereas 7%} performs a bit worse. It has to
be stressed that as opposite to the results for the AR situation, 7% does not seem
to be very sensitive to values of short memory parameters close to noninvertibility,
as it was the case for values of AR parameters close to nonstationarity. In general,
our employed estimation method in AR circumstances, tends relatively often to
give results where the orders are underestimated, whereas the AR parameters are
overestimated, obtaining values very close to one. This seems not to occur when we
approach the noninvertibility region.

Results for the ARMA(1,1) case are given in Tables 2.15, 2.16. Overall, out of
60 cases, 7%, U1, Ur, Vo and U% are individually no worse than any of the other
estimates in 53, 43, 30, 29 and 21 cases respectively. Unlike the previous figures
suggest, there is still clear evidence that 7r improves over Tp (with a relation of
23/11 out of those 60 cases). Now, 7% does not improve over % (22/15 in favour of
Vo), being the feasible estimate 7% better than 7o just for the case (v, §) = (0,0.6)
when p # 0. As before, biases react as theory predicts when n increases and also
decrease in absolute value with increases in § and decreases in |p| .

Behaviour of the standard deviation

For the white noise case, Monte Carlo standard deviations are reported in Tables
2.17-2.20. Overall, out of 180 cases, Uy, U and Tp are not worse than any of the other
estimates 166, 78 and 75 times respectively, showing this clearly that ¥; performs
best. Ur performs better than 7y (with relation 63/50), standard deviations of the
former estimate improving relatively faster when n and |p| increase, and being also
more favoured by negative p. As anticipated, standard deviations tend to decrease as
T and n increase. The standard deviations of both 7; and 7 show some tendency to
decrease as |p| increases, though it frequently increase for Ty when (v, §) = (0, 0.6).
Otherwise, the close similarity in variability of 7; and T for n = 256 is encouraging.
For n = 64, the change in sign of p is associated with some small improvement.
Note that Ty is often more precise than g, and even 7, when either n is small or
(7,6) = (0,0.6).

Results for the purely AR(1) case are presented in Tables 2.21-2.24. Out of the
120 cases reported, 73, 71, Vo, Ur and 7% perform individually not worse than any
of the remaining four estimates in 87, 80, 60, 39 and 23 cases respectively. Now,
To beats Up and 7%, with relations 43/31 and 85/10 respectively. Although this is
not an desirable result, it is certainly supportive that for n = 256 and ¢; = 0.5, Up
and 7% perform slightly better than Up. U; performs better than Uy with bigger
differences for the cases (v,6) = (0,0.6), (0.4,1.2). For n = 64, Uy is best for
the case (v, 6) = (0,0.6), but this better performance vanishes as n increases. 7o
is slightly better than Ty for all sample sizes in the case (v,6) = (0,1.2). 73 is
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generally worse than 7y, although differences tend to shrink, and for n = 256, both
estimates behave quite similarly, 7} improving a bit over 7y when ¢; = 0.9 in case
(7,8) = (0,1.2). On the other hand, 7% behaves much worse than Tz in almost all
cases, with unacceptably large values of standard deviations when the sample size
is small, results being even worse when ¢; = 0.9. The feasible estimate in Theorem
2.2 appears to be very sensitive to estimates of the AR parameters very close to one.
Finally, standard deviations tend to decrease as 8, n and |p| increase.

Results for the purely MA(1) case are given in Tables 2.25-2.28. As opposite to
the AR case, in the MA(1) situation, all different estimates behave quite similarly,
feasible estimates being much less damaged by the estimation of the short-memory
parameters than in the AR(1) situation. The overall classification is 7%, 71, Vo, 7%
and U, being no worse than any of the others 107, 77, 56, 50 and 39 times out of 120
cases respectively. 7% clearly beats Up, with relation 49/26, this better behaviour
being present in almost all cases when n = 128,256 and p # 0. In fact, the only
two cases where Do performs consistently better than 7% are just (v, 6) = (0,0.6),
(0,1.2) when p = 0. The other feasible estimate, 7r, behaves worse than 7o with
relation 42/29 in favour of 7, but this is completely driven by the bad behaviour
of Ur when n = 64 (especially for ; = 0.9). Fortunately, when n = 256 (and even
when n = 128 for ¥; = 0.5), apart from the cases (v,6) = (0,0.6), (0,1.2) with
p =0, Up beats . Clearly, 7} and 7 are best, and as n increases, 7 is normally
worst, being this very noticeable for the case (v,6) = (0,0.6) when p # 0. When
the short memory parameters change to ¢; = 0.9, 7; tends to behave slightly worse,
while U gets damaged specially in case (v, §) = (0.4,1.2) when n = 64, although it
gets closer to the 9; = 0.5 situation as n increases. 7§ and 7% remain similar to the
¥; = 0.5 case, the main change being now that 7% is now preferable to 7 for most
of the cases.

Results for the ARMA(1,1) are given in Tables 2.29, 2.30. Overall, out of 60 cases
V1, VY, Vo, Ur and 7% perform individually no worse than any of the other estimates
in 48, 48, 27, 13 and 12 cases respectively. Thus, apart from the (vy,6) = (0,0.6)
case with p = 0, where ¥ is best, 7; and 7} are the dominant estimates. T, and
especially 7%, behave clearly worse than 7o, with relations 32/6 and 41/2 in favour
of Do, although the behaviour of these three estimates becomes closer as sample size
increases.

Behaviour of empirical sizes

We next examine the accuracy of the large sample x? approximation of Corollary
2.1, looking at the size of Wald tests. For the white noise case, we define the Wald
statistics Wy = by (Uy — 1)2 and Wg = bp (U — 1)2 , Where

5[ = 6(71.9_1) =E(7’§I) =§(7v6)a (251)
br = b(7,0r) =b(7,0r) =7(7,96), (2.52)

with

n {2¢a:t2(c)2ta:t2(d) - {Etzt(c)xt(d)}Z}

v(e,d) = S T2 (¢ d) (2:53)
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where &; (c,d) are residuals from the OLS regression of y;(c) on z:(c) and z:(d).
Note that T (c,d) is the usual OLS estimate of variance of the coefficient of z;(c)
in the OLS regression of y(c) on z:(c) and z,(d). Table 2.31 contain empirical
sizes (meaning percentage of rejections) for the white noise case, corresponding to
nominal sizes a = 0.05, 0.10, for the four values of p but 7 = 1 only, the results
for 7 = 0.5 and 2 being very similar. The results for W; are on average too large,
but only slightly, and performance here seems very satisfactory over all (v, ) and p.
The empirical sizes of W are clearly too large, but though the asymptotic theory
would here only provide a good approximation in a larger sample size than any we
have employed, nevertheless the sizes also decrease significantly over the range of n
considered. The sizes of W tend to decrease in 8 for |p| > 0.5. The results for Wg
are again worst when (v,8) = (0,0.6), but are not so conspicuous as in the tables
of biases.
For the different autocorrelated situations, we define

Wr = b(v,01) 71 —-1)%, Wr =b(3,0F) 7r — 1)°, (2.54)
Wy = b(1,6:) W3- 1)", Wp =5 (,0r) 0% - 1)°. (2.55)

For the purely AR case (Tables 2.32-2.35), in general, the approximation gets worse
as p increases in absolute value. For ¢; = 0.5, results for W; are on average too
large, but performance is reasonably satisfactory, (v,8) = (0,0.6) being the worst
case, especially when p = 0.75. Empirical sizes of W are clearly too large, but they
seem to react well to the increase in the sample size. The convergence is again very
slow for the case (v,6) = (0,0.6) (and even for (v,6) = (0.4,1.2) when p = 0.75).
Empirical sizes corresponding to W7 and Wp follow a similar pattern to the one
described above, but surprisingly they are much smaller than those for W; and Wg.
This could make sense for the cases where # > 1, but is most surprising otherwise,
as Theorem 2.2 implies that the estimates 79 and 7% do not enjoy mixed-normal
asymptotics. In fact, in those cases, the theory says that the corresponding Wald
statistics should explode as n increases, but this is not reflected in our experiment.
For ¢; = 0.9, as expected, the approximation gets worse. For (v, §) = (0, 0.6), sizes
corresponding to Wr do not behave as theory predicts (getting the situation worse
as |p| increases), but we believe, this is due to the somehow extreme situation of
an error process very close to non-stationarity with a value of 8 very close to the
lower allowed limit of 1/2. Sizes of W3 for this case, also increase as n increases,
and taking into account our previous results, is somehow noticeable that sizes also
increase with the sample size for the case (0.4,1.2), as the theory predicts, whereas
for this case, sizes of W react more appropriately to increases in n.

For the purely MA case, results for the case 3; = 0.5 are given in Tables 2.36,
2.37. Basically, similar conclusion as for the AR case apply. Sizes for W; are on
average too large, but performance is satisfactory, again results being worst when
(v,6) = (0,0.6). Wp improves on these sizes, result not supported by the theory for
the cases (y,6) = (0,0.6), (0.4,1.2). Sizes for Wy are too large, but they seem to
react well to the increase in sample size. Now, sizes for W§ are similar to the ones for
W, which represents a different behaviour compared to the results for the AR case,
where in fact the improvement of Wg over Wy was more important. In our present
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situation, this improvement is only very noticeable for the case (v,6) = (0,0.6),
which in fact is a case for which sizes for Wy should behave better according to
the asymptotic theory. Results for ¢; = 0.9 are given in Tables 2.38, 2.39, and are
somehow surprising. Sizes corresponding to W; and Wp get in general worse with
the increase in the value of the short memory parameters, but they again react well
to the increase in the sample size. In contrast with this, sizes for WP and Wg improve
slightly when 4); increases, mainly for n = 64, although for the case (v, §) = (0,0.6)
with p = 0.75 sizes corresponding to Wy increase when n increases, which supports
the theory.

Results for the ARMA(1,1) case are reported in Tables 2.40, 2.41. Basically,
the arguments presented for the previous autocorrelated cases also apply here. Im-
provements of Wy and Wg over Wy and Wr respectively, are most noticeable for the
case (y,6) = (0,0.6), being not very important for Wy when g is large, W2 beating
clearly Wg even in this situation.

2.4.2 Standard situation: y =0, =1

For the second part of the Monte Carlo study, we focus on the familiar case
(v,6) = (0,1), presenting only results for the white noise situation. As discussed
in Section 2.2, we include now also the “intermediate” estimates, employing prior
knowledge of either v or 4,

v‘Y = 17(0”6\) = A(Oa 3)5'1) = ;(Oig) a'7)) (256)
vs = v(7,1) =0(7,1,05) =U(¥,1,65), (2.57)
where 0., 85 consist of the appropriate elements of Q(0, 3), Q(7, 1), respectively.
Note that in this case Vo has the same rate of convergence as vy, U, U,,, Us, being
n-consistent, but lacking the mixed normal asymptotics. We employed the same
values of p and 7 as before. Table 2.42 reports Monte Carlo biases. The best and
worst estimates, when p # 0, are again ¥; and U respectively. However, though 7
(which correctly assumes § = 1) is second-best, 7., (which correctly assumes vy = 0)
is inferior to Tp; this is all the more surprising because v is more problematic to
estimate than 6 as it uses residuals. It might appear that in Zr the contributions
to bias from estimation of v and § to some degree cancel each other out. However,
we must stress that this is in any case a small-sample phenomenon, being barely
noticeable for n = 128 and absent when n = 256, while even for n = 64 the bias of
U, is never so large as to cause serious concern.

As before, the standard deviations, reported in Table 2.43, are much less variable.
For |p| > 0.5, Tp clearly performs worst, but there is little to be said about the
optimal estimates, though for small n, 7, seems best, followed closely by 75, with
almost identical values for 7, and 7.

Table 2.44 reports empirical sizes, including now results for W, = b, (7., — 1)?
W =55 (75 - 1)2, where
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and )
n (Vo — 1)° T,z

e (ys — Vofct)z ,

though W does not have a limiting null x? distribution. We find that the empirical
size of W; is the most accurate, followed by W,,, the discrepancy increasing with
|o|- Even for p # 0, Wo often does better than W5 and W, which perform quite
similarly; clearly the effect of estimating < is playing a dominant role here, and use
of an improved preliminary estimate of v, such as that proposed by Robinson and
Marinucci (1998, 2001), or iteration, may be warranted.

Wo =

(2.60)

2.5 Empirical investigation: the purchasing power
parity hypotheses

Numerous empirical studies have cast significant doubt on the purchasing power
parity (PPP) hypothesis with respect to the short run, but have yielded mixed
evidence with respect to the long run (see e.g. Corbae and Ouliaris, 1988, Enders,
1988, Kim, 1990, Taylor, 1988). Cheung and Lai (1993) proposed a fractional version
of the PPP specification, essentially (1.25), (1.26) with z, representing the domestic
price index and y; the foreign price index, converted to domestic currency units. The
coefficient v in (1.25) is unity according to the absolute or homogeneous version of
PPP, so this is testable by our Wald statistic of Corollary 2.1. Using unit root
tests, Cheung and Lai (1993) failed to reject the hypothesis § = 1 and then, using
differenced OLS residuals, they computed semiparametric log periodogram estimates
of 6§ — B — 1 and then tested the non-co-integration null hypothesis of § = 0 against
the alternative § > 0, using critical values computed by simulation in view of the
inapplicability of standard asymptotic theory in this case. They found evidence of
co-integration in a number of bivariate series, but did not test v = 1. We employ
a step-by-step approach, first testing whether the integration orders 6, and &, of z;
and y; are the same, then for the presence of co-integration, then for § > 1/2 and
finally, given all these hurdles have been crossed, ¥ = 1. In the first three steps
we used semiparametric procedures (as did Cheung and Lai, 1993, Marinucci and
Robinson, 2001), while in the final step, which is most relevant to the material of
the current chapter, we identified parametric models for the autocorrelation in u;
and thence computed estimates of v and Wald statistics.

The semiparametric estimates of integration orders were all Robinson’s (1995a)
versions of log periodogram estimates, but without trimming, using first differences
and then adding back 1. We estimated 6, and §, separately, and then tested
8; = 6,(= 6) by an adaptation of Robinson and Yajima’s (2002) statistic T.s to
log periodogram estimation, with their trimming sequence h(n) chosen as b=5-% for
i = 1,...,4, with b the bandwidth used in the estimation. Given §, = §, is not
rejected, we performed the Hausman test for no-co-integration of Marinucci and
Robinson (2001), comparing the estimate &, of é, with the more efficient bivariate
one of Robinson (1995a), that uses the information 6, = §,. Given co-integration
is not rejected, the null § = 1/2 was rejected in favour of B > 1/2 if and only if

56



a studentized &, — ¥ — 1/2, was significantly large relative to the standard normal
distribution, where 7 is the estimate of v using OLS residuals.

Using annual data (as is relevant to the long-run version of PPP) of Obstfeld
and Taylor (2002) for the period 1870-1992 (with n = 123), we applied the above
methodology to four bivariate series, the US (“domestic”) versus the “foreign” coun-
tries Australia, Canada, Italy, UK. Strong evidence against equality of integration
orders was found in case of Australia and Italy, and against co-integration in case
of Canada. However, the UK “passed” all three initial tests. Across the range
b=10,...,29, (5,,6,) varied between the extremes (1.341, 1. .095) and (1.572, 1.376),
and across b = 16, ...,25 and the four h(n) choices, 6, = §, was rejected in only 9
out of 40 cases, and these all at the 10% level. For the same b no-co-integration was
rejected at 10% in all cases, at 5% in 4 cases, and at 1% in 3 cases, while 8 = 1/2
was rejected against 8 > 1/2 at the 1% level in all cases.

For the US-UK data, we identified parametric models for f()) as follows. Through-
out, A(L) in (2.22) was diagonal, and us, up; treated separa,tely They were proxied
by AV (y, — Doz:), A%z, for each of the extreme 3,85, namely 7 = .374,.698 and
5, = 1. 572, 1.341, and then Box-Jenkins-type procedures identified models within
the ARMA class. This resulted in AR(1) and ARMA(1,1) u;; and white noise
and ARMA(1,1) uy, and we fitted all four combinations. We also fitted bivariate
versions of Bloomfield’s (1973) model, where

A(s) = diag {exp (E;’:l 01jsj) , €Xp (Zi.’:l 92j3j)} , (2.61)

for p = 1,2,3. For each model we applied the univariate Whittle procedure in
Velasco and Robinson (2000), using untapered, differenced data and adding back 1.
We summarize the seven models and the resulting (6,7) as follows:

Model 1: uy; is AR(1) and ug, is white noise. (8,7) = (1.612,.669).
Model 2: uy, is AR(1) and uy, is ARMA(L, 1). (8,7) = (1.408, .669).
Model 3: uj; is ARMA(1,1) and ug, is white noise.  (8,9) = (1.612,.660).
Model 4: uy; is ARMA(1,1) and uy is ARMA(1,1). (8,7) = (1.408, .660).

Model 5: wu; is bivariate Bloomfield with p = 1. (6,7) = (1.214,.710).
Model 6: wu; is bivariate Bloomfield with p = 2. (6,7) = (1.434,.701).
Model 7: wu; is bivariate Bloomfield with p = 3. (6,7) = (1.323,.547).

The 5 seem very robust to the short memory specification, the 6 rather less so. We
also took this opportunity to examine another question which in one form or another
always arises with application of fractional models, and perhaps most acutely when
nonstationary data are involved. This is the matter of truncation. When estimated
innovations from a stationary fractional model are computed, the (infinite) AR rep-
resentation has to be truncated because the data begins at time “1”, not at time

oo”. Now in our model (1.25), (1.26) for nonstationary data, the truncation is
actually inherent in the model, so strictly speaking there is no “error” associated
with it. However, the model reflects the time when the data begins, and if we were
to drop the first observation, say, and start the model off at the next one, the degree

o7



of filtering applied to all subsequent observations would change, and it is possible
that this could have a marked effect, especially with nonstationary data. Thus, in
Table 2.2 we report computations of our estimates v(¥, 6, ) = 7; and Wald statistics

b@.0) {7 (%,5,8) - 1} =w, (2.62)

for models i = 1,...,7, based on the last n’ = n — j observations, for j =0,1,..,10,
in order to explore sensitivity to starting value.

TABLE 2.2
PPP EMPIRICAL EXAMPLE: ESTIMATES OF v AND WALD TESTS OF v =1
FOR MODELS 1-7 COMPUTED FROM THE LAST n' =113, ...,123
OBSERVATIONS OF US/UK DATA

n' | 123 122 121 120 119 118 117 116 115 114 113

7; | 1.139 1.050 1.014 952 .889 .875 .871 .867 .864 .875 .875
w; | 2623 352 .017 .163 .759 .940 .986 1.035 1.082 .903 .890
7y, [ 1.204 959 1.030 .995 .949 .941 941 .938 936 944 .943
Wo | 1173 231 .078 .002 .159 .208 .206 .226 .243 .181 .182
73 | 1.113 1.084 1.017 .955 .889 .871 .866 .863 .859 .871  .868
W3 | 1864 1.070 .027 161 .823 1.079 1138 1.196 1.251 1.051 1.059
7y | 1.200 966 1.028 997 .950 .939 .939 .936 934 .942 .939
W, | 1226 .178 .078 .001 .170 .241 .240 .263 .281 .212  .227
Us | 1.274 1.042 1.025 .98 .940 .933 .932 931 929 939 .936
Ws | 1122 225 .065 .014 .230 .283 .283 .296 .306 .223 .239
Ts | 1278 960 1.015 .983 .939 932 931 .930 .927 937 .935
We { 1149 211 .019 .020 .241 .292 .292 306 .325 .246 .255
v [ 1.298 999 1.048 1.024 975 .961 .962 .956 .956 .963  .958
W;|1169 .000 .279 .052 .047 .109 .105 .138 .136 .096 .122

Substantial variation is evident across the larger n', with all 7; exceeding 1 and
the homogeneity hypothesis being strongly rejected when n’ = 123, across all seven
models, but as n’ decreases, things stabilize. For n’ < 119 some sensitivity to the ug;
specification was found, the white noise cases (Models 1 and 3) providing estimates
of v less than .9, whereas for the other models they all exceed .9, with the largest
values for Model 7. For n’ < 122 the homogeneity hypothesis v = 1 is never rejected
even at the 10% level.

From certain perspectives, practitioners could considered our empirical analysis
simplistic, as we do not take into account possible alternative features of our data.
In particular, we did not check for the possibility of structural breaks or nonlinear-
ities in our long time series. Admittedly, these are relevant issues, whose linkages
with fractional processes are mainly undiscovered, but which already attracted the
attention of some researchers. For example, Granger (1999) showed that structural
break processes could produce “long-memory” properties of the data, while he sug-
gested that, among nonlinear time series, there could be other plausible alternatives
to I (d) processes. Undoubtedly, a very rigorous and exhaustive analysis of the PPP
hypothesis should contemplate these issues, but, at this stage, our intention was
simply to propose a sensible methodology incorporating the techniques developed in
this chapter, which, at the same time, motivated our testing problem appropriately.
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2.6 Final comments

Our treatment of a bivariate system in a parametric setting is quite general,
in that a very wide range of models for the I(0) input series u, is covered, while
our regularity conditions seem to afford little scope for relaxation. Nevertheless,
there are significant aspects we do not consider here, some of which are studied in
subsequent chapters.

1. Our case # > 1/2 includes the familiar CI(1,1) setting, but 0 < § < 1/2
is also of interest. As discussed in Chapters 1 and 3 of this thesis, z;(7)
is then “asymptotically stationary” and our estimates are n'/2-consistent and
asymptotically normal, with limiting variance that is affected by the estimation
(and the efficiency of estimation) of one or more of v, 6 and 6, because the
requirement x > 1—( on « in (2.27) still appears to be relevant when 8 < 1/2,
but (2.27) is unachievable then because 7, & are at most n!/ 2_consistent, no
matter the values of v and 8, see eg. Velasco and Robinson (2000).

2. In view of the literature on non-fractional co-integration, there would be em-
pirical interest in incorporating also in (1.25) and/or (1.26) deterministic com-
ponents. Modification of the theory to cover polynomial time trends seems rel-
atively straightforward, though our fractional focus suggests allowing for pos-
sibly non-integral powers of ¢ in studying the relative importance of stochastic
and deterministic trends, as Robinson and Marinucci (2000) did in connection
with OLS and its narrow-band modification, while if such powers are unknown
the extension is decidedly non-trivial.

3. Extension of our methods and theory to vector y; and z;, and matrix v, seems
straightforward when there is no variation in integration orders across ele-
ments of z; and y; — vz;. However, multivariate data invite consideration not
only of multiple co-integrating relationships but also of observables and/or
co-integrating errors with differing integration orders, which would raise par-
ticular questions of identifiability and complicate estimation.

4. Our parametric treatment of autocorrelation in u; follows a classical economic
time series tradition and allows parsimony, but the unit root co-integration
literature has stressed a nonparametric approach. Nonparametric estimation
of f () should lead to the same outcomes as in Theorems 2.1 and 2.2, and cor-
responds in (2.12) to taking B; = 0, j > p, but letting p go slowly to infinity in
the asymptotic theory, while in (2.18) or (2.34) weighted autocovariance or pe-
riodogram estimation might be used. As shown in Chapter 4, the forms (2.34)
are easiest to handle technically, while in (2.18), the variation in f (};) across
the n Fourier frequencies might be dealt with by techniques like those used
by Robinson (1991, pp.1354, 1355). Alternatively, one can employ estimates
which are constant over slowly degenerating bands, as proposed in Hannan
(1963) and employed by Phillips (1991b) in the CI(1,1) case. Note that the
slow convergence of nonparametric estimates of f is of concern because even

99



the refinement of Assumption 2.3 (ii) mentioned in the discussion of that as-
sumption requires a convergence rate that approaches arbitrarily close to n™ 1/2
as 8 — 1/2. In principle n¢~1/2—consistent nonparametric spectral estimates
can be found, for any ¢ > 0 (where, for example, ¢ depends on kernel order,
see eg. Cogburn and Davis, 1974), though, as § is unknown, one can never be
sure that the e achieved is sufficient. These issues are discussed in detail in
Chapter 4, where we comment on the problem of relatively slow nonparametric
estimates of the nuisance parameters.

2.7 Appendix 2

2.7.1 Appendix 2.A: Outline of proof of Theorem 2.1

Though the proof of (2.32) for the time-domain estimates (2.12) is not contained
in that for the frequency-domain estimates (2.18), nevertheless the proof for the
latter does involve approximation in the time domain so that many of the steps
are similar. Thus, because it entails the greater technical challenge, computational
elegance and generality, we give the proof only for (2.18).

Consider first the infeasible estimate 7 (, §, 8) . We have

2 (¢c,d) = Czs (c) v + v (¢,d) (2.63)
where
v (e, d) = (wa (¢ = 7),2:(d)) . (2.64)
Thus (c.d,R)
D(c,dh) —v = eb—‘zc—h)— (2.65)
where n
e(c,d,h) = ZP (A3 B) wa(e) (—A5) Woea) (A7) - (2.66)

From (1.26), (2.64), v, (7, 6) = u¥, so that

3(7761 9) —V= %1 (267)
where n
b() =b(1,0) = a(N) [y W), (2.68)
€ (7) =e ('Y’ 6: 0) = Zp (AJ) W() (_’\j) Wy (’\J) ) (269)
with
p(N) =p(X0), ¢(A) =q(X9). (2.70)
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Also define

e (1)=) {Cmm (1) - ZB (Zms ( } Qem, (2.71)

m=1

e () =¢'B) Q™ Z Zm-1 (1) €ms (2.72)

b* (7) = Z {Cmm ('7) - Z— Bscxm—s (7)} Q—l {C"L‘m (7) - Z— Bsczm—s (7)} ’

2.73)
i ()= 20 302 () (2.14)

m=1

Now (2.32) for ¥ (v, 6,0) follows on establishing the following six propositions.

Proposition 2.1. Asn — oo,

e() — e (7) =0, (nf). (2.75)
Proposition 2.2. Asn — oo,
&t (1) = € (1) = 0, (). (2.76)

Proposition 2.3. Asn — oo,

1
nBe™ (v) = ¢'B (1) Q-1 / W (r; B)dW (r) . (2.77)
0
Proposition 2.4. Asn — oo,
b(7) — b* () = 0 (n¥). (2.78)
Proposition 2.5. Asn — 00,
b* (7) = b (7) = 0, (n?) . (2.79)

Proposition 2.6. Asn — oo,

n~#p (v) = %(%)/W (r; B)* dr, (2.80)
0

where the right side is almost surely positive.

To prove (2.32) for the remaining four estimates in (2.18), it suffices to con-

sider only ¥(, 6, 9) and (7, 5, 9) as the proof for the other, intermediate cases, will
essentially be implied. It thus remains to show that

7(v,6,8) — 9(7,6,8) = 0, (nf) (2.81)
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7(3,8,8) — 9(,6,8) = 0, (n) . (2.82)

We have first R
9(v,6,0)—v = E(L’&Li), (2.83)
b(v,9)
so that, from (2.65), the left side of (2.81) is
9) — 1
e(7,6,6) —e(1,8,0) e(7,6,0) 4 — — _ (2.84)
b(7,96) b(v,8) b(7.0)

In view of Propositions 2.1-2.6, the proof of (2.81) follows on establishing the fol-
lowing two propositions.

Proposition 2.7. Asn — oo,

e(7,6,0) — e(v,6,6) = o, (n?) . (2.85)
Proposition 2.8. As n — oo,
b(v,8) — b(,6) = o, (). (2.86)

To prove (2.82), note that
e(9,,0)

9(3,6,0) —v = 222
b, 9)

(2.87)

so from (2.83) the left side of (2.82) is

e(:% gy 5) - e(;)\/a 5’ 0) — 6(7’ 6’ 9\) + 6(’)/, 6, 0)
b(,6)
+6(”7\, 67 0) — e(’Yu 5’ 0) _ 6(77 6a 0)
b(7,0) b(7, 0)b(v,6)

~

{6(3,6) — b(7,9)}

o~ ~

e(7,6,6) ~ ~
"5, 0)b(.9) {b(% 0) — b(7,0) — b(,6) + b(v, 9)} : (2.88)

and (2.82) follows from Propositions 2.1-2.8 on establishing the following four propo-
sitions.

Proposition 2.9. Asn — oo,

e(3,6,0) — e(7,6,0) = o, (n?). (2.89)

Proposition 2.10. Asn — oo,
e(3,5,8) — (7,6,0) — e(,6,8) + e(7,6,0) = 0, (n?) . (2.90)

Proposition 2.11. Asn — oo,
b(,0) — b(v,0) = 0, (n?) . (2.91)

Proposition 2.12. Asn — oo,
b(7,6) — b(%,8) — b(7,8) + b(y,6) = o, (n*). (2.92)
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2.7.2 Appendix 2.B: Proofs of propositions
Proof of Proposition 2.1. Write e () as

Z Z Be i1 Z B.e™ Zx et Z uge™™ | (2.93)

J=1 l=—00 m=—00 =1

taking B, =0,1<0, By = I, B, = —B;, | > 0. We can rewrite this as

7 n n n oo oo
% Z Z z Z E_se—i(l-—s)/\jﬂ—l Z Em_tei(m—t))\j T, (’)’) e—isz\juteit,\j

s=1 t=1 j=1l=-o00 m=—00

= Z Z {Zﬁm—s%—rnczs (’7)} Q_l Z-B_m—tuh (294) .
s=1 t=1

m=1r=-oc

because . N

Z e =n, t = 0,mod (n) ;= 0, otherwise. (2.95)
j=1

The expectation of the absolute value of the difference between (2.94) and

Z Z {Z Bm—s+rnTs (Y } Q! Z Bor—tus (2.96)

m=1r=—o0

is bounded by

Z ZBm s+rnzas vU2y

r=—00 s=1

m—tUt

] . (2.97)

with a; = a; (8), K denoting throughout the thesis a generic positive constant. The
second expectation is bounded by

259> / Bt B, dA} <

Ki[

m=n+1

2
—itA

m—t€
t=1 s=1

||Bm-t|| <K Z 1B, (2.98)

t=m—n

for m > n. The first expectation in (2.97) is bounded by

/ Z ZZBm—Hmas—ue —ivA f Z ZZ ot ran i weiwz\d/\}

r=—o00 s=1 v=1 g=—o0 t=1 w=1
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2
dx

o0 n L]

E : E :} : —ivA
Bm s+rnas—ve w

r=—o0 s=1 v=1

IA

g
n oo mn min(s,t)

K333 3 [Bassrl| B 2 Gty

r=—00 8=1 g=—o0 t=1

IA

(2.99)

where f;;()) is the (i,1)th element of f()), and thus is bounded. From Lemma 2.D.2,
(2.99) is bounded by

0o 2
Kn?! (Z IIBz”) =0 (n?71), (2.100)
=0

using (2.25). It follows that (2.97) is bounded by

KnP~3 i ( Z ”Btllz) KnP~3 i (i “Bt“2)

m=n+1 \t=m-n m=1 \t=m

< K303 B

m=1t=m
o o}

Kn 4" 51Bjll = 0(P~4), (2.10)

IA

IA

again using (2.25).
Next, the expectation of the absolute value of the difference between (2.96) and

Z Z {Z Bm—s+ra(%s (7)} Q7 en (2.102)

m=1r=-o00 \ s=1

is bounded by

Ki[

Proceeding as in (2.98), the second expectation is bounded by K 3°5° ||B;||?, so
since the first expectation is bounded by (2.100), it follows that (2.103) is bounded
by

0
Z Fm—tut

t=—o00

Z Z Bm—s+rn Z Qs U2y

r=—o0 s=1 v=1

2] 2
] . (2.103)

KnPh Y ( > ||Bt||2)2 — 0}, (2.104)

m=1 \t=m+1
as in (2.101). The expectation of the absolute value of the difference between (2.102)
and e* (y) is bounded by
} 3

K E [ Z Z Bm-—s+‘r'n Z As_yU2y

>0 s=1
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_ 1
< kY 3y ||§m_s+m||2] 2

m=1 L r>0 s=1

n

- 1
< Knf 1) |13 B° 2

m=1 Lt=m

, (2.105)

which is O(nf~1/2), to complete the proof.
Proof of Proposition 2.2. Consider first the difference

CZZBm_ 18 (1) Q7 2Em, (2.106)

m=1 s=1

where dp—1,5 (7) = Zm-1 () — =5 (7) . Because there is a contribution to the mean
only when s = m, (2.106) has expectation

=Y (O E[emer,] € = —n(’é = 0. (2.107)
m=1
(2.106) has variance ¢; + ¢ + ¢3, where

=S S S B, Q7 E [emel)] Q7 By E [dm-1s () dg-re (7)), (2108)

m=1 g=1 s=1 t=1

ZZZZC B, Q7 'E[emdg_1 ()] E [€hdm-1, (7)] @ By, (2.109)

m=1 g=1 s=1 t=1

and cs is a fourth cumulant term to be described subsequently. We have

dm—l,s (’Y) = Um-1 (—ﬁ) — U2, (—ﬁ)

s m—1
= Z(am—l—v - aa—v)u% + Z a'm—l—v'u2v]- (3 S m— 2) )
v=1 v=s+1

(2.110)

with a_) = 0.
Considering first ¢;, there is a contribution only when ¢ = m, and then

|E [dm-1,5 (7) dg-1. (M| = l. fa2 (A) Tom(=A)rem(A)dA

™ T 1/2
< K { f foz (0) [Fam () dA / f22 () |nm<x>|2dx}

< K(remrem)?, (2.111)
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writing

s m—1

Tsm(A) = Z(am—l—v - as—v)eiv’\ + Z am—l—veivl\l (5 <m-— 2) )
v=1 v=s+1
(2.112)
s m—1
Tsm = Z(a’m-—l—v - as—v)2 + Z a’fn—l-—ul (S <m-— 2) . (2113)
v=1 v=s8+1

Then (2.111) is bounded by K {|m — s — 1| |m — t — 1]}*/2 mm™=(0.28-2) on taking
t =m — 2 in Lemma 2.D.3 for s < m — 2, then noting that r,,_;» = 0, and that
m—1

Tom = 3 (Gmey — @m-1-y)? + 1 = O(m™x(02-2)) ' on applying Lemma 2.D.3 with
v=1
s=m —1,t = m. It follows that

n m 2
les] < K mmex(026-2) {Zﬁ IIBjII}
m=1 Jj=0
= O(n)1(1/2<B<1)+0 (n* 1) 1(B>1). (2.114)

Next, note that c, is zero unless m = g = s = t, so ¢c; = O (n) = o(n??). Finally,
the fourth cumulant term, cs, involves the fourth cumulant of em, €4, Tm-1 () —
Zs (), Tg—1 () — ¢ (), which is easily seen to be zero unless m = ¢ = s = t, so
that c3 = O (n) also.

It remains to show that

¢y {B (1) - Zﬁm_s} Tm-1(7) Q7 em = 0, (nf) . (2.115)

s=1

Clearly the left side has mean zero. Its variance is, from arguments similar to those
above, bounded by

KZ B(1) - ZB
(2.116)

s=0
because Ez2, (v) = O(m*~!) from Robinson and Marinucci (2001). Then, (2.116)
is 0 (n??) from the Toeplitz lemma, to complete the proof.

s=m

s () E lleml® <sz_: (ZHB ||)2

Proof of Proposition 2.3. Note that ¢'B (1)’ Q~l¢,, has mean zero and variance
q(0) /2; in view of Theorem 1 of Marinucci and Robinson (2000) and Assumption
2.1, the proof follows by Theorem 2.2 of Kurtz and Protter (1991).

Proof of Proposition 2.4. Omitted, as it is similar to the proof of Proposition
2.1 but significantly easier, especially in view of the norming n~?? rather than n="2.

Proof of Proposition 2.5. This is likewise omitted due to its similarity to, and
simplicity relative to, the proof of Proposition 2.2.
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Proof of Proposition 2.6. Follows straightforwardly from Marinucci and Robin-
son (2000), the continuous mapping theorem and Assumption 2.1, and the fact that
W (r; B) is almost surely nonzero, from (2.29), (2.30).

Proof of Proposition 2.7. By the mean-value theorem, p(\;8) —p(X;0) = (6 -
0)'P(\), where P()) is the matrix P(); h) = Op(; h)/Oh, with columns evaluated
respectively at 5(1), 5(2), where “@"’ - 0” < 'l@\— 0“, i = 1,2. Writing P()\) =
P(X;0),

sup [P(X) = P(N)|| < 2sup sup |[P(Xh)— POV
A heNe A

+4sup sup [P\ )| 1 (l(?- 9| >e), (2117)
heo A

where € > 0 and N, = {h : |h — 6|| < €} . Noting Assumption 2.2 parts (ii) and (iii),
since continuity in h for all A implies uniform continuity on the compact set [, 7],
the first term on the right of (2.117) tends to 0 as € — 0. The second term is o0,(1)
as n — oo for € > 0 from Assumption 2.2 (ii) and (iii) and Assumption 2.3 (ii). It
follows that

n

> {PO) — P(Ag) } wai) (= A5)wa(X))

=1

0 (Z ;|wz(7><—x,-)wuw>ll)

0 ({Zzi(v)Zuutu?} )

(2.118)

which is 0,(nf*1/2), where we use the Cauchy inequality, (2.95), 31, [lus||* = O, (n)
and

Zn:xt(y)"’ = 0, (n*), (2.119)

from Robinson and Marinucci (2001). Thus, noting Assumption 2.3 (ii), it remains
to show that

> POy )wa (—As)wa(hy) = 0 (n71) (2.120)

i=1
Denote by Pp()) the partial sum, to L terms, of the Fourier series of P()), so

L k3
. 1 .
P()) = § Pe™, P = > / P(\)etrd. (2.121)

l=—L

From Assumption 2.2 (ii) and (v), and Zygmund (1977, p.64),

sup [IP(3) ~ Py ()] = O (1°§L), (2.122)
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as L — oo. Thus

1
n n 2
< k8L {Zztw)@uutn?} ,
t=1 t=1
(2.123)
proceeding as in (2.118). With L = [n"/?], (2.123) is O, ((logn) nf) = o, (nf*1/%).
On the other hand, for L < n,

ZPL D Way) (= Aj)wu(A;) = Z I {Z )iyl

5 {PO) — Pulh)} e (M)

j=1 l——-L t(l)

" m
+ 3 T MNertint Y TV Uiin ¢ (2.124)
m #(0)

where

LD MNDIE D VNS S Y (2.125)

tl) 1<t t+<n tl)  1<tt+l4n<n t(l)  1<ttH-ngn

on applying (2.95). Looking first at the second and third terms in (2.124), we note
that 1 < ¢t,t+1l+n <nand 1< tt+1—n < n are equivalent, respectively, to
1<t<-lfor—-L<I<-l,andl+n—-1<t<n,forl <I<L. Then

n—1

<K la,(8) < K [ijnf,  (2.126)

s=0

" m
E Z xt(7)ut+l+n+z T4 () Ut i—n

(1) 0

from Lemma 2.D.1. Thus, because Assumption 2.2 (ii) and (v) implies

[o o]

S A < oo, (2.127)

l=—00

(Zygmund, 1977, p.240), the contribution from the final two terms of (2.124) is
O, (nP) . Finally

!
>z = Op (O (2.128)
)

uniformly in [, from Lemmas 2.C.1 and 2.C.2, which, with (2.127) and Assumption
2.3 (ii), completes the proof of (2.120).

Proof of Proposition 2.8. Follows similarly to, but more easily than, the proof
of Proposition 2.7.

Proof of Proposition 2.9. The left side of (2.89) is
> 0u) {wan) (<23) = e (~33)} {wyzz) ) = wa )} (2129)
=1
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+Zp ) Waiy) (=) { W55 (A7) — wu ()‘j)} (2.130)

+ ZP (Ag) {wz@) (=A3) = wai) (=X5) } wu (Ag).- (2.131)

=1

Consider first (2.131)). Noting Assumption 2.2 (ii) and (iv) and proceeding as
in the proof of Proposition 2.7, define

L m
. 1 ,
= — g = A 2.132
=3 pe ™ 37 [ PP (2132)
where
log L
sup [Ip (1) bz ()| =0 ( : ) S Wlpd <o, (2133)
l=—00
Thus "
Z {p (N;) — oL (M)} {w=) (—A5) — Wagy) (=A5) } wa (A (2.134)
j=1
is bounded in norm by
1
KlogL [N, n 2
7 {Z {£(7) -z (M} ) IIugIIQ} : (2.135)
t=1 t=1

using the Cauchy inequality and (2.95) again. Now choosing L = [n!/?] and taking
¢c=6—~=p,¢=6—7 in Lemma 2.C.5, (2.135) is O, ((logn)* n’~*) = o, (n?).
On the other hand, for L < n,

=1 =—L | tQ)

> L () {wem) (—25) = wapy (—A5) Fwu (A) = % > m [Z' {ze(¥) — ze(7) } wen

+ 3 {2e) = M)} trrant 3 (@A) — (1)} um_n] . (2.136)

70) (1)
As in the proof of Lemma 2.C.5, we can write, for any R > 2,

(7)) — z(7) = ua(¥ - 6) — uau(-P)
=Z””W(@§Linww

(2.137)

where, for a vector or scalar sequence ¢;, and real b > 0,
9 (py;b Za(ﬂ )Pt—s, (2.138)

69



with a(")( b) = (d7/db")a,(b) and |7 — v| < |7 — 7| . Applying (2.159) of Lemma 2.C.4
with r = R, ¢ = 3, ¢= 6 — 7, and Assumption 2.3 (i), indicates that the final term
in (2.137) is uniformly O, (n~%#t?+<) | for any € > 0. Thus, the contribution of this
term to (2.136) is, by the Cauchy inequality and (2.133), O, (nf*<+1=%*) | which is
op (n?) on choosing R large enough.

Next, as in (2.126), we have

" n
E Z 9 (uat; B) wepiynt Z 97 (uge; B) wepion| < K |1 (logn)™nf,  (2.139)

#(l) t(l)

applying again Lemma 2.D.1, so on taking account of the (v — %)” factors and invok-
ing Assumption 2.3 (i) and (2.133), the contribution of the sums Z;I(z) and Z:'(',) to
(2.136) is O, ((log n)™n?~") +0, (n?) = o, (n?) . It remains to consider the quantities

L

(= Y m Y 97w fun, 1STSR-1L (2140)

=L )
From (2.147) of Lemma 2.C.1 and (2.153) of Lemma 2.C.2 the sum over ), is
Oy ((log n)n™=x(31)) | and thus, using (2.133) and Assumption 2.3 (i), (2.140) is
O, (n™=(N)-*1ogn) for k > max(0,1 — B), that is, o, (n?). This completes the
proof that (2.131) is o, (nf) .
We next consider (2.130), and again wish to replace p(A) by pr(A). First

is bounded by
Klsz {Z z; () Z'vt(7,5)—ut } . (2.142)

Noting that v,(5, 8) = (ult F—7),uz(b— 6)) the second factor in braces is

2
from Lemma 2.C.5, so that, choosing L = [n!/?], and using (2.119), (2.141) is
O, ((log n) nP=*) = o, (nP).

Next, proceeding as above, for R > 2,

ZPL ey (=) {z (O) = (4}

L  R-1
17r szz : < 4 OrY) (536)' ) Z ()9 (us41;0) + 0, (n°),

-L

[0:3,8) || = 0, (%), (2.143)

(2.144)
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and the leading term is o, (n?) from (2.148) of Lemma 2.C.1 and (2.154) of Lemma
2.C.2, (2.133) and Assumption 2.3 (i).

We are left with (2.129). It is clear from its structure, which involves both the
differences appearing in (2.130) and (2.131), that application of similar arguments
to those above will show it is o, (nf) , so we omit the details.

Proof of Proposition 2.10. The left side of (2.90) has norm bounded by

1

5) 2
Wy5,8) (Aj) — wu ()\j)H }

K sup | 1(:0)7 = F(50)7 {X_j e Mijl

+ {Z |wa@) (A7) — wage) (’\")|2Z [ (/\j)llz} ] ) (2.145)

and this is clearly O, (n~"*<) for any € > 0, from earlier arguments.

Proof of Proposition 2.11. Omitted, being similar to but easier than the proof
of Proposition 2.9.

Proof of Proposition 2.12. Omitted, in view of the remarks about the proofs of
Propositions 2.10 and 2.11.

2.7.3 Appendix 2.C: Technical lemmas
Lemma 2.C.1. Uniformly inl € [-L,L], L <n,

E {ZI CCt('Y)utH} =0 (nmax(ﬂ’l)) ) (2.146)

()

E {Z, 9 (uas; ﬂ)ut+l} =0 ((log n)rnmax(ﬂ’l)) J (2.147)

(1)

E {ZI 24(7)9" (usy; 0)} =0 ((10g ”)rnmax(ﬂ’l)) . (2.148)
0

Proof. The proofs are very similar, and in fact are possible under milder conditions
following techniques of Robinson and Marinucci (2001), and we just discuss the proof
of (2.148), which is slightly the most complicated. Writing I'y = E (ugtsy,), the
left side is

, t—1 t+1-1
>3 a(B) ) aP(0) sy, (2.149)
t(l) s=1 q=r
which has norm bounded by
>3 [a O] 3Tl = O (togmym) (2.150)
t=1 g=r s=1
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for 8 < 1, uniformly in [, and by

- pfl ZZ |2l (0)| ; TS|l = O ((log n)™n) (2.151)

t=1 g=r
for > 1, by Lemma 2.D.4 and Assumption 2.2, to complete the proof.
Lemma 2.C.2. Uniformlyinl € [-L,L], L <mn,

Var {ZI mt(fy)um} = 0 (n¥), (2.152)

(1)

Var {Z’ g™ (uge; B)ugyr p = O ((log n)zrnm) , (2.153)
#(1)

Var {Z' (1) (urs; 0)} =0 (n*7), (2.154)

t(l)
for any n > 0.

Proof. The results follow from minor modifications of the proof of Theorem 5.1 of
Robinson and Marinucci (2001). There are only two differences. The first is that the
sums in the latter reference are over t € [1,n], whereas the lemma requires uniformity
in ! for sums over t(l). But because the t(I) are just a subset of [1,n], this follows
easily. The second difference is that in (2.153) and (2.154) (though not in (2.152)),
the weights a{”(8) and a{”(0) that are involved are not covered by the weights of
Robinson and Marinucci (2001), due to the presence of log factors. But allowance
for such log factors is readily made, and they contribute the (logn)?" and n” factors
in (2.153) and (2.154). We observe that the regularity conditions of Robinson and

Marinucci (2001) are noticeably weaker than those on u; in the present chapter.
Lemma 2.C.3. Fori=1,2, and uniformly inr > 1 and t > 2,
E{g™(uy;0)%} = O(1), (2.155)

and for ¢ > 1/2
E {g(’)(uu; )’} = O((log t)*rt*1). (2-156)

Proof. For any c > 0,

t—1 t—1

E{g" (ui;0)*} = ZZaﬁ’)(c)an)(C) / Fia(A)ee="Pd)

s=1 v=1

" t—1 2 T 2
r s=1 J =
t-1
< KDY af(c) (2.157)
s=1
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From Lemmas 2.D.1 and 2.D.4, this is bounded by the right sides of (2.155) and
(2.156), for ¢ = 0 and ¢ > 1/2 respectively.

Lemma 2.C.4. Fori=1,2, k >0, uniformly int € [1,n], r > 1,
97 (ua; ©) = Op(t2), (2.158)

if €= Op(n~*), and
g")(uu;ﬁ) = Op(tc+‘), (2.159)

forany e >0, ifc=c+ Op(n~"), c > 1/2.
Proof. By the Cauchy inequality, for any ¢ > 0,

1
t—1 t—1 2
197 (ui; )| < {Zaﬁ”(i)z sz} : (2.160)
s=1 s=1

From Lemma 2.D.5, for € > 0,
t-1 t—1
S @ =0, (Z {log(s + 1)} (s + 1)2(‘“‘"”) , (2.161)
=0 =0

where ¢ = 0 or ¢ > 1/2. Thus, with 3>*_1 2 = O, (t), the bounds (2.158) and
(2.159) follow.

Lemma 2.C.5. Fori=1,2,ifc=c+ O, (n7*), £ > 0, uniformly in t € [1,n], as
n — 00

ug(—€) —ux = Op(n™*), c¢=0, (2.162)
up(—C) —u (—c) = O, (n"”t‘"% log t) , > -;— (2.163)

Proof. We have, for ¢ > 0,

is(—C) — uap(— Z {as(2) ~ as(c)} wip—s, (2.164)

with u;(0) = uy;. By Taylor’s theorem, for any R > 2,

)R

r ) (C —C
a,(2) — as(c) = Za‘ =Y 4 e B (2.165)
where [¢ — ¢| < [c—¢|, so we can write (2.164) as
R-1,~ \p B
> G T|c) g7 (wars ) + (C_RC‘)‘Q(R)(Um o). (2.166)

r=1

Taking ¢ = 0, (2.155) and (2.158) indicate that (2.166) is O, (n™*) + O, (n~R=t1/2) |
whence (2.162) is proved by choosing R large enough and observing that ¢ < n. In the
same way, (2.163) is proved because (2.166) is O, (n="t*"1/2logt) + O, (n~Fx¢c+)
for n > 0, due to (2.156) and (2.159).

73



2.7.4 Appendix 2.D: Lemmas concerning the a; weights
Lemma 2.D.1. For c € [cy,Cy], co > 0, Cp < 00, s >0,

las ()] < Ko(l+s), (2.167)
las (¢) — ass1 (¢)] < Ko(1+s8)2, (2.168)
|af) ()] < Kor(log(1+s))" (1+ 51, 1<r<R, (2.169)

where Ko < oo depends only on ¢y and Cy and Kor < 0o depends only on ¢y, Cy
and R.

Proof. First, (2.167) is familiar from Stirling’s approximation, or derivable by
induction, while (2.168) follows easily from the identity

as41(c) ={(s +¢c)/(s+1)}a; (c). (2.170)

To prove (2.169), introduce the digamma function and its derivatives

Y(z) = ilogr(x), b () = d"y (z)

17 T (2.171)
which exist for » > 1 and =z > 0. We deduce from the chain rule that
r—1
o (¢) =) m{v® (s+¢) — v (0} a9 (o), (2.172)

i=0

with the convention that %© (-) = ¢ (-), a®® (-) = a(-), and for finite constants ;,
0 < i <r—1. Now from Gradshteyn and Ryzhik (1994, p.95), for z > 0

oo

Y (z) = ;0 #ﬁ -1, (2.173)

where 7 is Euler’s constant. Thus for z > 0

fx] o0
W@ < Y+ +[z—-1 Y it+g

=0 i=[z]+1
< log(z+1)+1+n< Klog(z+1), (2.174)

where K is independent of z. Also, for [ > 1,

PO @) = (D0 @+, (2.175)
=0
so that _
WO @) < U+ ) S Kor1+2) (2:176)

1 <1< r<R,for x> cy. The proof is completed by applying (2.172) recursively,
(2.176), and noting that |log (s +c+ 1)| < Kplog (s +1).
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Lemma 2.D.2. Uniformly in s,t € [1,n], forc > 1/2

min(s,t)

Z as—y (€) @ty (€) = O (n*71). (2.177)

v=1

Proof. From (2.167), the left side of (2.177) is bounded in absolute value by

KY v (vt s =t (2.178)
v=1
Since
(w+]s—t)" < v*lfore<l, (2.179)
< Kn®lforc>1, (2.180)

(2.177) readily follows.
Lemma 2.D.3. For1<s<t-1,¢>1/2,

D {aru(0) — @ (@F + Y al(c) < K(t — s)tmex02-2), (2.181)

v=s+1

Proof. Writing a, = a,(c), for 1 < v < s,a4—y — @5—y =0, ¢ =1, while for ¢ # 1
we have from (2.168)

t t
lat—y — @g—y| < Z |r—y — @r_1-| < K Z (r—v)2. (2.182)

r=3+1 ’ r=s+1
Now (2.182) is bounded on the one hand by K (s +1 —v)*" ' 1(c < 1) + Ktc'1(c >

1), and on the other by K (t — s) {(s + 1 — v)°?1(c<2)+t21(c > 2)} . It follows
that (2.182) is also bounded by

K(t—s)(s+1—v)"F, % < e<1, (2.183)
K(t—s)itT (s+1-0v)f", 1 < c<2, (2.184)
K(t-s)it-3 ¢ > 2 (2.185)
Thus °°_, {a:_(c) — as_y(c)}? is bounded by

K(t-5)) (s+1-v)*° < K(t-s), -1-<c<1, (2.186)

v=1 2

K-8t (s+1-v)? < K(t-s)t*D, 1<c<?,
v=1

(2.187)
K({t—-s)t*3s < K(t—-s)td ¢>2 (2.188)
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that is by K (t — s)t™>*(02=2) ¢ > 1/2. On the other hand, for all ¢ > 1/2

t
Y al ,<K(t-s*T, (2.189)

v=s+1
whence the result immediately follows.
Lemma 2.D.4. Forr > 1,

a”(0)=0, s<r (2.190)
" K, (log (s + 1))
(r) < r (108 s+ 1 >
|a8 (0)| —_ (s —_r + 1) ] 8 - 'r, (2.191)

where K, < oo depends only on r.

Proof. On taking logs in (1.8) and differentiating with respect to o we have

oo

—log(1—-2)(1-2)""=> a{ () 2°. (2.192)

s=0

Evaluating this expression at a = 0 gives a(()l) (0) = 0 and oV (0) = 51, s > 1.
This proves the lemma for r = 1. For r > 1 we differentiate (2.192) r — 1 times and
evaluate at o = 0 to get

(e}

{-log(1-2)}" =) al”(0)2". (2.193)

s=0

Clearly a{" (0) =0, s < r. Also, we have the recursion

Y e (0) 2 = ~log(1-2) Y al ™V (0) 2, r 2 2. (2.194)

s=0 s=0
It follows that

a7 (0) , & (0)

™ (0) =
2" (0) s—r+1 s—r

4. +a"00), s>r>1. (2.195)

If (2.191) is true with r replaced by r — 1 we have

ol (0)] < K,—1(log(s+1))"? { 1.(s —lr +1) t3 (sl— T) ety (s —17' +1) }

(log (s + 1))“1
s—r+1 °’

regl 1
< 2K, flog s+ 1)y BT < ¢

for K, > 2K,_;. The proof thus follows by induction.

Lemma 2.D.5. Let¢=c+ Op(n™"), k > 0 such that 0 < ¢ < K and |c| < K for
some K < 0o, and suppose € satisfies [¢ — c| < [¢—¢|. Then uniformly in s € [0,n)
as n — oo, and for any € > 0,

a{" (¢) = Oy ((log (s + 1)) (s + 1)°*71), (2.197)

(2.196)
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as n — oQ.

Proof. From Lemma 2.D.1 and Lemma 2.D.4 we have, for any ¢ > 0
607 @] < [af? @|1(E—c| <€)+ [al’ @) 1(]E~c| > €)
~ M
T cte-1 k-1[c—c|
< K(log(s+1)) ((3 +1) +(s+1) —ET)
< K(log(s+1)" ((s +1) 4 (s + 1) n"M") . (2.198)

for any M > 1. We may choose M > (K — ¢ — €) /x which, with s < n, completes
the proof.
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TABLE 2.3
MONTE CARLO BIAS OF 7,7, Vo FOR p =0, ¢ = ; = 0,7 = 1,2

n =064 n =128 n = 256
7] 6 Uy 7 Vo U1 23 Yo Uy Up Vo
o .6 {-.006 -003 -007]|-.002 -002 -.003|-.001 -.001 .000
0f12(-002 -001 -.002]|-.001 -.001 -.001 | .000 .000 .000
0| 2| .000 .000 .000 | .000 .000 .000 | .000 .000 .000
4112(-.004 -003 -.009 | -.001 -.002 -.005 | -.001 -.001 -.002
4| 2 | .000 .000 .000 | .000 .000 .000 | .000 .000 .000
0| .6 |[-004 -002 -.005|-.001 -.002 -.002 | .000 -.001 .000
0]12}-001 -001 -.001]| .000 .000 .000 | .000 .000 .000
o} 2 | .000 .000 .000 | .000 .000 .000 | .000 .000 .000
4112]-003 -.002 -.007|-.001 -.001 -.003 | .000 .000 -.001
41 2 | .000 .000 .000 | .000 .000 .000 | .000 .000 .000
0| .6 |-.003 -001 -.004]-.001 -.001 -.001 | .000 .000 .000
0|12]-001 -001 -001|( .000 .000 .000 | .000 .000 .000
0| 2 { .000 .000 .000 | .000 .000 .000 | .000 .000 .000
4112(-002 -001 -.005|-.001 -.001 -.002 | .000 .000 -.001
41 2 | .000 .000 .000 | .000 .000 .000 | .000 .000 .000
TABLE 2.4
MONTE CARLO BIAS OF v;,Vr, Vo FOR p=0.5,¢;, =9, =0,1=1,2
n =64 n =128 n = 256
T |7 ) Vr Vp Vo Ur Up To v Vr Vo
0| .6 |.002 -05 .269 {.004 -.019 223 1 .002 -.013 .185
012(.001 -002 .010 |.000 -.001 .003 | .000 .000 .001
S| 0f 2 ].000 .000 -.001].000 .000 .000 | .000 .000 .000
4112].002 -013 .052 (.002 -.003 .030 | .001 -.002 .016
4] 2 |1.000 -001 .000 | .000 .000 .000 | .000 .000 .000
0| 6 |.0001 -040 .194 | .003 -.014 .160 | .001 -.010 .133
0|12}.000 -002 .007 |.000 -.001 .002 | .000 .000 .001
110] 2 |[.000 .000 -.001].000 .000 .000 | .000 .000 .000
4112(.001 -009 .038 | .001 -.002 .022 | .001 -.001 .012
411 2 |.000 .000 .000 | .000 .000 .000 | .000 .000 .000
of{ .6 [.001 -020 .137 |.002 -.009 .113 | .001 -.007 .094
0]12].000 -001 .005 | .000 .000 .002 | .000 .000 .000
20| 2 |.000 .000 .000 | .000 .000 .000 | .000 .000 .000
41]12].001 -007 .027 | .001 -.002 .015 | .000 -.001 .008
4] 2 {.000 .000 .000 | .000 .000 .000 | .000 .000 .000
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TABLE 2.5
MONTE CARLO BIAS OF 7;,TF, o FOR p = =05, ¢ = ; = 0,5 = 1,2

n =64 n =128 n = 256
T |7 6 Ur Vg Vo U Vr Vo v Up Vo
0} .6 | .000 .052 -.265 | -.002 .020 -.218 | -.002 .013 -.184
0| 1.2 ] .000 .002 -.010 | .000 .001 -.003 | .000 .000 -.001
510 2 | .000 .000 .001 | .000 .000 .000 | .000 .000 .000
4| 1.2 | .000 .010 -.053 | -.001 .004 -.029 | -.001 .001 -.016
4] 2 |.000 .001 -.001 | .000 .000 .000 | .000 .000 .000
0| .6 | .000 .038 -.191 | -.001 .014 -.157 | -.001 .009 -.132
01121 .000 .001 -.007 | .000 .000 -.002 | .000 .000 -.001
110 2 |.000 .000 .001 | .000 .000 .000 | .000 .000 .000
41 1.2} .000 .007 -.038 | -.001 .003 -.021 | .000 .001 -.011
41 2 |.000 .000 .000 | .000 .000 .000 | .000 .000 .000
0| .6 | .000 .026 -.135 | -.001 .010 -.111 | -.001 .007 -.094
0]12].000 .001 -.005 | .000 .000 -.002 | .000 .000 .000
210 2 | .000 .000 .000 | .000 .000 .000 | .000 .000 .000
41 1.2 .000 .005 -.027 | -.001 .002 -.015 | .000 .001 -.008
41 2 |.000 .000 .000 | .000 .000 .000 | .000 .000 .000
TABLE 2.6
MONTE CARLO BIAS OF 7;,Vr, Vo FOR p=0.75, ¢; = 1; = 0,1 = 1,2 .
n =64 n =128 n = 256
T | 6 Ur Vp Vo Uy Up Vo Ur Vp Yo
0 6 ].002 -.166 .406 | .003 -.062 .331 | .001 -.044 .275
0| 12].000 -003 .015 | .000 -.001 .005 | .000 .000 .001
S50 2 | .000 .000 -.001 | .000 .000 .000 | .000 .000 .000
4112)].002 -.014 .078 | .001 -.003 .044 | .000 -.001 024
41 2 |).000 -.001 .001 | .000 .000 .000 | .000 .000 .000
0| .6 |.002 -119 293 | .002° -.045 .238 | .001 -.033 .198
0(12].001 -.002 .011 | .000 .000 .004 | .000 .000 .001
110 2 | .000 .000 -.001 { .000 .000 .000 | .000 .000 .000
4112].001 -.010 .056 | .001 -.002 .031 | .000 -.001 .017
4 2 |.000 -.001 .000 | .000 .000 .000 | .000 .000 .000
0| .6 |.001 -08 .207 | .001 -.031 .169 | .001 -.023 .140
0]12].000 -.002 .008 | .000 .000 .003 | .000 .000 .001
210 2 | .000 .000 -.001 | .000 .000 .000 { .000 .000 .000
4112).0001 -007 .040 | .001 -.001 .022 | .000 -.001 .012
41 2 |.000 .000 .000 | .000 .000 .000 | .000 .000 .000
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MONTE CARLO BIAS OF Ty, U, Vo FOR 7 = 1, ¢,

TABLE 2.7

.5,¢i=0,i=1,2

n =64 n =128 n = 256
plr| 6| Wi VR To vy UF Vo Uy i3 Vo
0| .6 |-005 -.006 -.006 | -.001 -.003 -.002 | .000 -.001 .000
0f|12-001 -001 -001} .000 -.001 .000 | .000 .000 .000
00| 2 .000 .000 .000 | .000 .000 .000 | .000 .000 .000
41121]-004 -003 -.007|-.001 -.002 -.003 | .000 -.001 -.001
4] 2 .000 .000 .000 | .000 .000 .000 § .000 .000 .000
0| .6 | .052 .064 121 | .036 .044 .097 | .023 .029 .078
0|12} .000 -.002 .003 | .000 -.001 .001 | .000 .000 .000
S 10| 2 .000 .000 .000 | .000 .000 .000 | .000 .000 .000
4112 .006 .004 .033 | .003 .001 .020 | .001 .000 .011
4] 2 .000 -.001 .000 | .000 .000 .000 | .000 .000 .000
0} 6 |-049 -061 -119|-.034 -.042 -.095 | -.024 -.029 -.078
01]1.2] .000 .002 -.003 | .000 .001 -.001 | .000 .001 .000
-510 2 .000 .000 .000 | .000 .000 .000 | .000 .000 .000
41121]-006 -004 -.034|-.003 -.001 -.019 | -.001 .001 -.011
4] 2 .000 .001 .000 | .000 .000 .000 | .000 .000 .000
0| .6 | .078 .097 .183 | .051 .063 144 | .034 .042 116
0] 1.2 .000 -.002 .005 | .000 -.001 .001 | .000 .000 .000
751 0 2 .000 .000 -.001 | .000 .000 .000 | .000 .000 .000
4112 .010 .007 .049 | .004 .002 .029 | .001 .000 .016
4| 2 .000 -.001 .000 | .000 .000 .000 | .000 .000 .000
TABLE 2.8
MONTE CARLO BIAS OF 1%,7% FORT=1,¢; = .5, 9; = 0,1 = 1,2
n 64 64 128 128 256 256
ply| 6| vy vy | vy vy | V3 g
0| 6 |-005 -.018|-.002 -.003] .000 -.001
0(12]-001 .000 | .000 -.001] .000 .000
0 0 2 .000 .000 | .000 .000 | .000 .000
4112]-004 -072(-001 -.001] .000 -.001
4| 2 .000 -.004 | .000 .000 | .000 .000
0] 6| .031 .040 | .021 .039 | .014 .024
0)]12;.000 .000 | .000 -.001] .000 .000
S 10 2 .000 .000 { .000 .000 | .000 .000
4112] .003 -114] .002 .004 | .001 .000
4| 2 .000 .007 { .000 .000 | .000 .000
0 .6 |-031 -.099|-020 -.037|-014 -.024
0(12]-001 -.001] .000 .001 | .000 .001
510 2 .000 .001 | .000 .000 | .000 .000
4112]-004 -.013]|-.002 -002]|-001 .000
41 2 .000 -.002 | .000 .000 [ .000 .000
0} .6 | .047 .082 | .030 -989 | .020 .035
0]12] .000 -.003] .000 -.001]| .000 .000
7510 2 .000 -.001| .000 .000 | .000 .000
4112) .006 -046| .003 .019 | .001 .001
4| 2 .000 .018 | .000 .000 | .000 .000
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TABLE 2.9
MONTE CARLO BIAS OF 7],7}?,170 FOR 7= 1, (,ZS-,‘ = .9, ¢i = 0, 1= 1, 2

n = 64 n =128 n = 256
p 7] ¢ 12 Up Vo 12 UF Vo Uy 7 Vo
0 .6 | -.006 -.008 -.009]-.001 -.003 -.004 | .001 .000 -.001
0]12]-001 .000 -.001 | .000 .000 -.001 | .000 .000 .000
0 0 2 .000 .000 .000 | .000 .000 .000 | .000 .000 .000
4112]-004 -006 -.008 | -.001 -.002 -.004 | .000 -.001 -.001
4] 2 .000 .000 .000 | .000 .000 .000 | .000 .000 .000
0 .6 .029 .092 .073 | .019 .079 .056 | .012 .068 .042
01]12] .001 -.001 .003 | .000 -.001 .001 | .000 -.001 .000
S50 2 .000 -.001 .000 | .000 .000 .000 | .000 .000 .000
41 1.2 .005 014 .031 | .001 010 .018 | .001 .007 .010
41 2 .000 .000 .001 | .000 .000 .000 | .000 .000 .000
o .6 |-.027 -097 -075]-.018 -.078 -.054 | -.011 -.066 -.041
0(1.2]-.001 .001 -.004 { .000 .001 -.001 | .000 .002 .000
-510 2 .000 .001 .000 | .000 .000 000 | .000 .000 .000
4112]-00 -019 -033| -.002 -.008 -.019 | .000 -.006 -.010
4] 2 .000 .000 -.001 | .000 .000 .000 | .000 .000 .000
0 .6 042 144 A11 .028 117 .081 .018 .097 .061
0] 1.2 .000 -.002 .006 | .000 -.001 .002 | .000 -.001 .000
7510 2 .000 -.001 .000 | .000 .000 .000 | .000 .000 .000
4112 .007 .020 .046 | .003 013 .026 | .001 .010 015
4] 2 .000 -.001 .001 | .000 -.001 .000 | .000 .000 .000
TABLE 2.10
MONTE CARLO BIAS OF 13,7% FORT=1,¢; = .9,¢; =0,i = 1,2
n 64 64 128 128 256 256
p|~] 6 2 V% vy vy Uy Vg
0] 6 |-010 -397|-003 -.001]-.001 -.001
0|12]-001 .0511{-001 .000 | .000 .000
0|0 2 .000 -.006 | .000 .000 | .000 .000
4112 .011 438 | -.002 .360 | -.001 -.001
41 2 .000 .210 | .000 -.015| .000 .000
0| .6 011 -1367 .008 .051 | .005 .059
0112 .001 -510| .000 .001 | .000 -.002
S5 10 2 .000 .008 | .000 .001 | .0c00 .000
4112]-007 -310{( .000 .427 | .000 .012
41 2 .002 850 ] .000 -.002| .000 .000
o .6 |-016 137 |-008 .007 |-.005 -.056
0]12]-001 -1.28] .000 -.011| .000 .002
-51]0 2 .000 -.016 | .000 .000 | .000 .000
4(121]-004 -6.86]|-001 -030| .000 -.012
4| 2 .000 -.240] .000 -.018 | .000 .000
0] .6 .025 1.06 { .017 .134 | .010 .082
0112} .002 .38 | .000 .004 | .000 -.001
7510 2 .000 .004 ] .000 .000 { .000 .000
41121 .007 10.5 | .002 -.286{ .001 .018
41 2 .000 1.25 | .000 .027 | .000 .000
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TABLE 2.11
MONTE CARLO BIAS OF 7,75, Vo FORT=1,¢; =0, ¢ = .5,i = 1,2

n =64 n =128 n = 256
p|lv]| 6 12 Up Yo U1 UF Vo Ur Vg Vo
0} .6 |-005 -005 -005]-001 -.002 -.002 | .000 .000 .000
0(12{-001 -001 -.001] .000 -.001 .000 | .000 .000 .000
0 0 2 .000 .000 .000 | .000 .000 .000 § .000 .000 .000
411.2]-004 -.004 -.007|-.001 -.002 -.003 | .000 -.001 -.001
41 2 | .000 .000 .000 | .000 .000 .000 | .000 .000 .000
0| .6 | .065 .076 147 | 044 .052 121 | .030 .034 .099
0|12 .001 -.002 .004 | .000 -.001 .001 | .000 .000 .000
S5 10| 2 | .000 .000 -.001 | .000 .000 .000 | .000 .000 .000
4| 1.2 .009 .003 .035 | .004 .001 .021 | .001 .000 .011
41 2 | .000 .000 .000 | .000 .000 .000 | .000 .000 .000
0 .6 |-062 -073 -.145 ]| -.042 -.049 -.118 | -.030 -.034 -.099
01}12]-001 .001 -.004 | .000 .000 -.001 ( .000 .000 .000
5101 2 | .000 .000 .001 | .000 .000 .000 | .000 .000 .000
4112]-008 -005 -.036|-.003 -.001 -.020 | -.001 .000 -.011
41 2 | .000 .000 .000 | .000 .000 .000 | .000 .000 .000
0] .6 | .097 114 223 | .064 .075 179 | .043 .050 147
0|1.2] .001 -.002 .007 | .000 .000 .002 | .000 .000 .000
7510 2 | .000 .000 -.001 | .000 .000 .000 | .000 .000 .000
4112 .012 .006 .052 | .005 .002 .030 | .002 .001 017
41 2 .000 -.001 .000 | .000 .000 .000 | .000 .000 .000
TABLE 2.12
MONTE CARLO BIAS OF 77,V FOR T =1,¢; =0, ¢, = .5,1 = 1,2
n 64 64 128 128 256 256
plylé|l®m wm | ®w w | B %
0| .6 | -004 -006|-001 -002| .000 .000
0|12}-001 -001(.000 .000 | .000 .000
0|0 2| .000 .000]|.000 .000]) .000 .000
4112(-003 -004]-001 -002] .000 .000
41 2 .000 .000 [ .000 .000 | .000 .000
0] .6 .049 059 | .03 .040 | .022 .025
0]12] .001 -002| .000 -.001] .000 .000
S5 |0| 2 | .000 .000 ([ .000 .000 | .000 .000
4|12 .006 .001 (.003 .000 | .001 .000
4 2 .000 .000 | .000 .000 | .000 .000
0] 6 |-047 -057|-032 -0381-022 -.025
0]12]-001 .002 | .000 .000 | .000 .00O
-5 0] 2 .000 .000 | .000 .000 | .000 .000
41|12}-006 -002(-003 .000 |-.001 .000
41 2 | .000 .000 | .000 .000 { .000 .000
0] 6| .0713 .087 | .048 .056 | .032 .035
0|12] .001 -002| .000 .000 [ .000 .00O
7510 2 .000 .000 | .000 .000 | .000 .000
4112(.009 .003 |.004 .001 | .001 .000
41 2 .000 -.001| .000 .000 | .000 .000
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| TABLE 2.13
MONTE CARLO BIAS OF U,,Up,Uo FORT=1,¢; =0,9; = .9, = 1,2

n = 64 n =128 n = 256
I3 e 6 U Ufp Yo Ur Up Vo U UFp To
0] 6 |-004 -004 -005]-001 -.002 -.002 | .000 .000 .000
0|12}-001 -001 -001]| .000 .000 .000 | .000 .000 .000
010 2 .000 .000 .000 | .000 .000 .000 | .000 .000 .000
4112|-003 -003 -.007]-.001 -.002 -.003 | .000 -.001 -.001
4| 2 .000 .000 .000 | .000 .000 .000 | .000 .000 .000
0 .6 | .068 .085 140 | .045 .058 115 | .029 .038 .094
0l12] .002 -.011 .004 | .000 -.001 .001 | .000 .000 .000
S5 10| 2 .000 .001 -.001] .000 .000 .000 | .000 .000 .000
41121 .012 .000 .035 | .005 .004 .021 | .002 .000 .011
4| 2 .000 .007 .000 | .000 .000 .000 | .000 .000 .000
0] .6 [|-.066 -081 -139 | -.043 -.056 -.113 | -.029 -.038 -.094
0{1.2]-001 .001 -.004 | .000 .000 -.001 | .000 .000 .000
50| 2 .000 .000 .001 | .000 .000 .000 | .000 .000 .000
4| 1.21]-.010 .001 -.036 | -.004 -.006 -.020 | -.001 -.001 -.011
4] 2 .000 .000 .000 | .000 .000 .000 | .000 .000 .000
0] .6 | .102 129 212 | .066 .085 170 | .042 .056 .140
0|12]| .002 -.001 .006 | .000 -.001 .002 | .000 .000 .000
gJ510 | 2 .000 .000 -.001 | .000 .000 .000 | .000 .000 .000
4 (1.2 .017 .012 .051 | .006 .004 .030 | .002 .001 .016
4] 2 .000 .000 .000 | .000 .000 .000 | .000 .000 .000
TABLE 2.14
MONTE CARLO BIAS OF v},vx FOR17=1,¢; =0,¢; = 9,1 =1,2
n 64 64 128 128 256 256
p 1yl 6| v Tp | T} Vg | U} Vg
0| .6 |-.004 -.006]{-001 -.002(.000 -.001
0]1.2]-001 -001| .000 .000 {.000 .000
0)]0] 2] .000 .000]| .000 .000 | .000 .000
4112]-003 -004|-001 -001( .000 -.001
41 2 ].000 .000( .000 .000 | .000 .000
0| .6 | .046 .059 | .032 .041 | .021 .026
0}12] .000 -.001|.000 -001]| .000 .000
S (0] 2 (.000 .000 | .000 .000 | .000 .000
4112 .006 .003 | .003 .001 [ .001 .000
4] 2 | .000 .000 | .000 .000 { .000 .000
0] 6 |-044 -.058|-.029 -038|-.021 ~-.027
0]12(-001 .001 1} .000 .000 | .000 .000
-5]10] 2 | .000 .000 | .000 .000 | .000 .000
4112]-006 -004]-003 -.001](-.001 .000
41 2 | .000 .000 | .000 .000 | .000 .000
0O} 6] .069 .08 | .045 .058 | .030 .037
0|112] .001 -.002) .000 .000 | .000 .000
751 0] 2 | .000 .000 | .000 .000 [ .000 .000
41121 .009 .005 1| .004 .002]{ .001 .001
4| 2 .000 -.001{( .000 .000 | .000 .000
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TABLE 2.15
MONTE CARLO BIAS OF U;,Up, o FORT=1,¢; = 4, ¢ = 2,i = 1,2

n =64 n =128 n = 256
p|ly| 6 vUr Ur Vo 12 Ur Vo Uy UF To
0 6 | -.005 -006 -.006|-.001 -.004 -.002 | .000 -.001 .000
0|12} -001 -.001 -.001 | .000 -.001 .000 | .000 .000 .000
0 0 2 .000 .000 .000 | .000 .000 .000 | .000 .000 .000
4112 ]-004 -003 -.007|-.001 -.002 -.003 | .000 -.001 -.001
4| 2 .000 .000 .000 | .000 .000 .000 | .000 .000 .000
0 .6 .056 .057 123 | .038 .039 .100 | .025 027 .081
01}1.2] .001 -.003 .003 | .000 -.002 .001 | .000 -.001 .000
S50 2 .000 .000 -.001 | .000 .000 .000 | .000 .000 .000
4112 .001 .002 .033 | .003 -.001 .020 | .001 -.003 011
41 2 .000 .000 .000 | .000 .000 .000 | .000 .000 .000
0 6 1-054 -.056 -.122 | -.036 -.037 -.098 | -.025 -.027 -.081
0|12 -001 .003 -.003 | .000 .002 -.001 | .000 001 .000
510 2 .000 .000 .000 | .000 .000 .000 | .000 .000 .000
41121]-008 -002 -.034]-.003 .002 -.020 | -.001 .002 -.011
4| 2 .000 .001 .000 { .000 .000 .000 | .000 .000 .000
0 .6 .083 .083 187 | .054 .055 148 | .036 .039 119
0] 1.2] .001 -.004 .005 | .000 -.002 .001 { .000 -.001 .000
751 0 2 .000 .000 -.001 | .000 .000 .000 | .000 .000 .000
41 1.2) .011 .004 049 | .005 .000 .029 | .002 -.002 016
41 2 .000 -.001 .000 | .000 .000 .000 | .000 .000 .000

TABLE 2.16
MONTE CARLO BIAS OF 7%, 7% FOR 7 =1, ¢ = .4, ¥; = .2,i = 1,2

n 64 64 128 128 256 256
plylé|lm »wn | »|n ®n
0} .6 | -005 -007}-002 -.004]| .000 -.001
0]12}-001 -001| .000 .000 | .000 .000

0 0 2 .000 .000 | .000 .000 j .000 .000
4112]-004 -061)-001 -011| .000 -.001

41 2 .000 .005 | .000 .014 | .000 .000

0| .6 | .034 .058 | .023 .039 | .015 .024
0f(12]| .000 -.003| .000 -.002| .000 -.001

S 10] 2 .000 .000 | .000 .000 | .000 .000
4112 .004 -400| .002 -2.60| .001 -.001

4] 2 .000 .021 | .000 -.001 | .000 .000
0 .6 |-034 -052]-022 -.035]|-015 -.024
0112]-001 .003 1 .000 .002 { .000 .001

-5 10| 2 .000 .000 | .000 .000 | .000 .000
4112]-005 -250]-002 -.052](-.001 .001

41 2 .000 .000 { .000 -.002 | .000 .000

0O .6 | .051 .077 { .032 .055 | .021 .035
0|12 .001 -.004| .000 -.003 | .000 -.001
7510 2 .000 -.001| .000 .000 { .000 .000
4112 .007 1.64 | .003 -.027| .001 -.002

4] 2 .000 .024 | .000 .012 | .000 .000
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TABLE 2.17
MONTE CARLO S.D. OF 7;,Vp, Vo FOR p=0,¢; =9, =0,i = 1,2

n =64 n =128 n = 256

T |9 6 Vr Vr Yo Ur Vg Vo Vg Urp To
0] .6 |.164 221 .120 | .092 .098 .073 | .057 .058 .046
0]12)].035 .037 .035 | .015 .015 .014 | .006 .006 .006

510 2 |.004 .004 .004 | .001 .001 .001 | .000 .000 .000
41121 .09 .103 .110 | .050 .052 .064 | .027 .028 .035
41 2 | .012 .013 .015 | .004 .004 .005 | .001 .001 .002
0] .6 |.117 .158 .086 | .066 .070 .052 | .041 .041 .033
0112].025 .026 025 | .010 .011 .010 | .004 .004 .004

110 2 1.003 .003 .003 | .001 .001 .001 | .000 .000 .000
41121 .069 .074 .078 | .035 .037 .046 | .020 .020 .025
41 2 | .009 .010 .010 | .003 .003 .003 | .001 .001 .001
0] .6 |.083 113 .061 | .047 .050 .037 | .029 .030 .023
0]12].018 .019 .018 | .007 .008 .007 | .003 .003 .003

2|0 2 | .002 .002 .002 | .001 .001 .001 | .000 .000 .000
4112 .049 .053 .060 | .025 .027 .033 | .014 .014 .018
41 2 |.006 .006 .007 | .002 .002 .002 | .001 .001 .001

TABLE 2.18
MONTE CARLO S.D. OF 7y, 7,70 FOR p = 0.5, ¢ = 4 = 0,7 = 1,2
n=064 n =128 n = 256

T| 7 é vy Vp Vo Ur Up Vo v Ur 7o
0| .6 |.142 .345 .140 | .081 119 .105 | .048 .064 .079
0121 .030 .033 0311 .012 .013 .013 | .005 .005 .005

S0 2 1.004 .004 .004 | .001 .001 .001 | .000 .000 .000
41121 .083 .110 .094 | .043 .050 .056 | .023 .026 .031
41 2 [.011 011 .013 | .003 .003 .004 | .001 .001 .001
0| .6 |.101 .247 .100 | .058 .085 .075 | .034 .046 .057
0)12].021 .024 .022 | .009 .009 .009 | .004 .004 .004

110 2 |.003 .003 .003 | .001 .001 .001 | .000 .000 .000
41 1.21.059 .079 .067 | .031 .036 .040 | .016 .018 .022
41 2 |.008 .008 .009 | .002 .002 .003 | .001 .001 .001
0] .6 {.072 .176 .071 | .041 .061 .053 | .025 .033 .040
01]121.015 .017 .016 | .006 .007 .006 | .003 .003 .003

210 2 |.002 .002 .002 | .000 .000 .001 { .000 .000 .000
41121 .042 .056 .048 | .022 .026 .029 { .012 .013 .016
41 2 | .005 .006 .007 | .002 .002 .002 | .001 .001 .001
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TABLE 2.19
_MONTE CARLO S.D. OF 7;,Up, Vg FOR p = —0.5, ¢ = 9; = 0,1 =1,2

n = 64 n =128 n = 256
T ) Vr Vp Vo vy ) Vo Vr Ur Vo
0 .6 |.136 .276 .135 | .080 113 .103 | .051 .069 .081
0121 .028 .030 .031 | .012 .013 .013 | .005 .006 .005
510 2 .003 .003 .004 | .001 .001 .001 | .000 .000 .000
4112 .078 .100 .092 | .042 .050 .056 | .024 .027 .032
4| 2 |].010 .010 .013 | .004 .004 .005 | .001 .001 .001
0} .6 | .096 .205 .097 | .057 .081 .074 | .036 .049 .058
0112].020 .021 .022 | .009 .010 .010 | .004 .004 .004
1]0 2 | .002 .002 .003 | .001 .001 .001 | .000 .000 .000
41121 .056 .07 .066 | .030 .035 .040 | .017 .020 .022
4 2 |.007 .007 .009 | .003 .003 .003 | .001 .001 .001
0] .6 | .069 141 .069 | .041 .058 .053 | .026 .035 .041
01121 .014 .015 .016 ; .006 .007 .007 | .003 .003 .003
2 (0 2 |.002 .002 .002 | .000 .001 .001 | .000 .000 .000
4112 .040 .051 .047 | .022 .025 .029 | .012 .014 .016
41 2 | .005 .005 .006 | .002 .002 .002 | .001 .001 .001
TABLE 2.20
MONTE CARLO S.D. OF ¥}, Up, Do FOR p = 0.75, ¢ = 1 = 0,1 = 1,2
n =64 n =128 n = 256
T\ ) vr U Yo Uy Up Vo vr Up 726)
0] .6 |.108 1.80 .163 | .062 152 .128 | .039 .084 .103
0| 1.2].022 .030 .028 | .010 .011 .011 | .004 .004 .005
510 2 | .003 .003 .004 | .001 .001 .001 | .000 .000 .000
4 (1.2 .063 .106 .081 | .033 .044 .046 | .019 .023 .026
4] 2 .008 .009 .011 | .003 .003 .004 | .001 .001 .001
0| .6 |.07T6 1.27 117 | .043 .110 .092 | .028 .060 .074
0]12] .016 .021 .020 | .007 .008 .008 | .003 .003 .003
110 2 |.002 .002 .003 | .000 .001 .001 { .000 .000 .000
41121 .044 .076 0567 | .023 .031 .033 { .013 .016 .019
41 2 |.006 .006 .008 | .002 .002 .003 | .001 .001 .001
0| .6 | .055 .916 .083 | .031 .078 .065 { .020 .043 .053
0(12].011 .015 .014 | .005 .006 .006 | .002 .002 .002
210 2 1.001 .002 .002 | .000 .000 .001 | .000 .000 .000
41121 .032 .054 .041 | .017 .023 .024 | .010 .011 .013
4] 2 1.004 .005 .005 | .001 .001 .002 | .000 .000 .001
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TABLE 2.21
MONTE CARLO S.D. OF U;,Up, Vo FOR T =1, ¢; =

S, =01=1,2

n =64 n =128 n = 256
plv] 6| v Up Vo | VI Up To | U1 Ur To
0] .6 | .106 .109 .096 | .061 .064 .056 | .038 .040 035
0]121].025 .026 .026 | .010 .011 .010 | .004 .005 .004
0 0 2 | .003 .003 .003 | .001 .001 .001 | .000 .000 .000
41121 .070 .073 .083 | .036 .040 .047 | .020 021 .025
41 2 |.009 .009 011 § .003 .003 .003 | .001 .001 .001
0| .6 | .096 .101 .092 | .058 .062 .062 | .036 .038 .042
01]12] .022 .026 .022 | .009 .011 009 | .004 .004 .004
S 10| 2 |.003 .003 .003 | .001 .001 .001 | .000 .000 .000
41 1.2 .062 071 .069 | .032 037 .040 | .017 .020 .022
41 2 | .008 .009 .010 | .002 .003 .003 | .001 .001 .001
0| .6 |.090 .096 .088 | .057 .061 .061 | .037 .039 .043
0]1.2].020 .024 .021 | .009 .011 .009 | .004 .005 .004
-510 2 1 .002 .003 .003 | .001 .001 .001 | .000 .000 .000
411.2] .058 .068 .067 | .032 .038 .041 | .018 .021 .023
41 2 |.007 .008 .009 { .003 .003 .003 | .001 .001 .001
0 .6 | .082 .091 .089 | .050 .056 063 | .033 .038 .048
0112} .017 022 .018 | .007 .010 .008 | .003 .004 .003
751 0 2 .002 .002 .003 | .001 .001 .001 | .000 .000 .000
41121 .049 .061 .057 | .025 .033 .032 | .014 019 018
41 2 .006 .007 .008 | .002 .003 .003 | .001 .001 .001
TABLE 2.22
MONTE CARLO S.D. OF 72, 7% FOR T =1, ¢; = .5, ¢); =0, i = 1,2
n 64 64 128 128 | 256 256
ply| 6|V T | V3 VRV Ty
0| .6 |.115 .630 | .065 .070| .040 .042
0112 .026 .037 (.010 .011 1| .004 .005
0 0 2 | .003 .004 | .001 .001 | .000 .000
4112(.072 1.42|.036 .040 | .020 .021
41 2 |.009 .087|.003 .003 | .001 .001
0 .6 | .104 .414 | .060 .068 | .036 .041
0112].021 .048 | .010 .011 | .004 .004
S 10| 2 (.003 .005|.001 .001 | .000 .000
4112(.063 264 |.032 .038 | .017 .020
4| 2 [.008 .714 | .002 .021 | .001 .001
0 6 |.097 154 | .059 .068 | .037 .042
0]12(.020 .08 | .009 .011 | .004 .005
-510 2 |.002 .010 ] .001 .001 | .000 .000
411.2).069 284 .031 .038 | .018 .021
41 2 |.007 .165|.003 .004 | .001 .001
0| .6 |.082 .118 | .048 33.0 | .031 .043
0112](.016 .044 | .007 .010 | .003 .004
7510 2 |.002 .003§.001 .001 | .000 .000
4112].050 4.19].025 .444 | .014 .020
41 2 |.006 .376 | .002 .006 { .001 .001
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TABLE 2.23

MONTE CARLO S.D. OF 71,Ufp, 7o FORT=1,¢; = 9,4, =0,i=1,2
n =64 n =128 n = 256
plv] 6| wr Ur Vo | 7r Ur Vo | Tr 123 To
0§ .6 |.134 123 125 | .078 071 .071 | .046 .045 .041
01{12].033 .028 .030 | .014 013 .011 | .006 .006 .005
0 0 2 | .004 .003 .003 | .001 .001 .001 | .000 .000 .000
41 1.2 .086 .089 110 | .047 .050 .057 | .024 .026 .028
41 2 1.012 012 .014 | .004 .004 .004 | .001 .001 .001
0] .6 |.119 115 .109 | .067 077 .066 | .040 .056 .039
01f1.2].027 .028 .025 | .011 012 .010 | .004 .007 .004
S5 101 2 1.003 .003 .003 | .001 .001 .001 | .000 .000 .000
41121 .077 .082 .090 | .039 .043 .047 | .021 .023 .023
4| 2 | .010 010 .012 | .003 .003 .003 | .001 .001 .001
0] .6 | .108 119 .104 | .067 .079 .064 | .042 .057 .040
0121 .024 .026 .023 | .011 012 .011 | .005 .007 .004
-510 2 | .003 .003 .003 | .001 .001 .001 | .000 .000 .000
4112 .068 .072 .081 | .041 .043 .049 | .022 .024 .025
41 2 ].008 .010 .011 | .003 .003 .004 | .001 .001 .001
0| .6 | .092 117 .089 | .053 .078 .053 | .033 .066 .035
0112].020 .024 .020 | .008 .011 .009 | .004 .007 .003
7510 2 | .002 .003 .003 | .001 .001 .001 | .000 .000 .000
41121 .059 .068 .071 | .031 .036 037 | .017 .021 .019
41 2 | .007 .009 .009 | .002 .003 .003 | .001 .001 .001
TABLE 2.24
MONTE CARLO S.D. OF 7},v FORT=1,¢; = .9, ¢%; = 0,1 = 1,2

n 64 64 128 128 | 256 256

ply| 6| Vg TR |V§ VR |Tp T

0Of .6 |.161 115 | .081 .076 | .046 .046

0(12].030 219 .011 .012 ] .005 .006

0 0 2 | .003 .287 | .001 .004 | .000 .000

41 1.2) .423 33.5 | .043 8.63 | .021 .023

41 2 1.011 4.26 | .003 .845 | .001 .001

0 .6 |.139 6.26 | .075 .544 | .041 .085

0]12].024 1341 .009 .513 | .004 .008

S5 101 2 |1.003 .259 | .001 .043 ! .000 .000

4(1.271.195 289 |.039 6.04 | .019 .024

41 2 |.0563 260 | .003 .746 | .001 .002

0 .6 1.134 220 .075 3.85| .044 .061

0]12)].023 345 .010 .338 | .004 .008

-510 2 |.003 .311].001 .001 | .000 .000

4112].101 156 | .037 5.25|.020 .025

41 2 ]1.012 646 | .003 .977 | .001 .004

0| .6 |.115 284 | .059 .845| .035 .070

0]12].018 4.76 | .008 .136 | .003 .008

75| 0 2 |.002 .244 | .001 .001 {.000 .000

4112).156 251 | .030 13.8{ .015 .027

41 2 |.110 37.0( .002 .868 | .001 .001
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TABLE 2.25
_ MONTE CARLO S.D. OF 7;,7p, 7o FORT =1, ¢ = 0, ) = .5,i = 1,2

n =64 n=128 n = 256
p |l ) vy Up Yo Ur Vp Vo Vr Vp Yo
0 .6 [.102 .103 .091 { .059 .059 .054 | .038 .037 .034
0]12].025 .026 .025 | .010 .011 .010 | .004 .005 .004
0 (0] 2 .003 .003 .003 | .001 .001 .001 | .000 .000 .000
41121 .068 .070 .080 | .035 .036 .046 | .020 .020 .025
41 2 |.009 .009 .011 | .003 .003 .003 | .001 .001 .001
0| .6 | .094 .097 .093 | .059 .060 .065 | .038 .038 047
0112].021 .024 022 | .009 .009 .009 | .004 .004 .004
S5 10 2 (.003 .003 .003 | .001 .001 .001 | .000 .000 .000
41121 .059 .067 .067 | .031 .034 .040 | .017 .018 .022
41 2 1.008 .008 .009 } .002 .003 .003 | .001 .001 .001
0| .6 | .09 .095 .089 | .058 .059 .064 | .039 .039 .048
0]12].020 .022 .021 | .009 .010 .009 | .004 .004 .004
-5101} 2 ].002 .003 .003 | .001 .001 .001 | .000 .000 .000
41 1.2{.056 .063 .066 | .031 .034 .040 | .017 .019 .022
41 2 |.007 .007 .009 | .003 .003 .003 | .001 .001 .001
0| .6 | .08 .097 .097 | .055 .057 .073 | .037 .038 .057
0]12].016 .021 .018 { .007 .008 .008 { .003 .003 .003
5101 2 |.002 .003 .003 | .000 .001 .001 | .000 .000 .000
41 1.2 .046 .058 .056 | .023 .029 .032 | .013 .016 .018
41 2 1.006 .008 .008 | .002 .002 .003 | .001 .001 .001
TABLE 2.26
MONTE CARLO S.D. OF 73,7% FOR 7 = 1, ¢ = 0, ¢); = .5, i = 1,2
n 64 64 128 128 | 256 256
plylolm »mlw wlw »n
0| .6 |.108 .110) .062 .062 | .039 .039
0112}.025 .027.010 .011 1} .004 .005
0[O0 2 (.003 .003|.001 .001,.000 .000
4112].069 .071|.035 .036 | .019 .020
41 2 1.009 .009].003 .003.001 .001
0f .6 |.096 .101 |.059 .060 |.036 .037
0]12].021 .025|.009 .009|.004 .004
S 10 2 1.003 .003}.001 .001]) .000 .000
4(1.2).060 .069 |.031 .035 ]| .017 .018
41 2 |.008 .008 |.002 .002}.001 .001
0} .6 |.091 .097 | .057 .059 ) .037 .038
0|12].020 .022(.009 .010 | .004 .004
-5 (0 2 |.002 .002|.001 .001 |.000 .000
4112].057 .064|.030 .034|.017 .020
414 2 1.007 .007(.003 .003|.001 .001
0] .6 |.080 .089(.050 .053 | .033 .034
0|12].016 .022|.007 .008|.003 .003
5101 2 1.002 .0034).000 .0011{.000 .000
4112).045 .060 | .023 .030 | .013 .016
4| 2 |.006 .008|.002 .002]|.001 .001
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TABLE 2.27
MONTE CARLO S.D. OF U}, Tp,Uo FORT=1,¢; =0,%; = .9, = 1,2

n =64 n =128 n = 256
plyl 6| 7r Up Vo | U 123 Vo | V1 Up Vo
0 .6 .103 114 .092 | .061 .060 .054 | .038 .038 .034
011.2].025 .027 .025 | .011 011 .010 | .005 .005 .004
00| 2 |.003 .003 .003 | .001 .001 .001 { .000 .000 .000
4112 .069 .088 .080 | .037 .046 .046 | .020 .021 .025
41 2 |.009 .010 .011 | .003 .003 .003 | .001 .001 .001
0| .6 |.098 .102 .093 | .060 .065 .064 | .038 .039 .046
0]121].023 .388 .022 | .009 .010 .009 | .004 .004 .004
510 2 | .003 .026 .003 | .001 .001 .001 | .000 .000 .000
41 1.2 .062 .400 .068 | .032 .052 .040 | .017 .021 .022
41 2 |.008 222 .009 | .003 .003 .003 | .001 .001 .001
0| .6 | .092 .099 .088 | .060 .061 .063 | .039 .039 .046
0] 12{.021 .052 .021 | .009 .011 .009 | .004 .004 .004
5101 2 ].003 .003 .003 | .001 .001 .001 | .000 .000 .000
41 1.2 .057 272 .066 | .032 .051 .040 | .018 .020 .023
41 2 |.008 .012 .009 | .003 .003 .003 | .001 .001 .001
0| .6 |.092 11 .094 | .058 .063 .070 | .038 .041 .055
0112 .018 .026 .018 | .007 .019 .008 | .003 .005 .003
7510 2 {.002 .003 .003 | .001 .001 .001 | .000 .000 .000
41121 .051 .084 .056 | .024 .059 .032 | .014 .021 .018
41 2 ].006 .009 .008 | .002 .003 .003 | .001 .001 .001
TABLE 2.28
MONTE CARLO S.D. OF v},vz FORT=1,¢; =0,v¢; = .9,i = 1,2
n 64 64 128 128 | 256 256
plyls|lm wm|m »n|®n »
0| .6 .109 .111 | .063 .064 | .039 .039
0]12].025 .026|.010 .011 | .004 .005
0|0} 2 |.003 .003|.001 .001].000 .000
4112].069 .071].036 .037 | .020 .020
41 2 ].009 .009|.003 .003|(.001 .001
0| .6 |.097 .102|.059 .061 | .036 .037
01]12].021 .024 | .009 .009 | .004 .004
S50 2 {.003 .003[.001 .001|.000 .000
4112).059 .069{.031 .035 | .017 .018
41 2 |.008 .008|.002 .0021{.001 .001
0| .6 |.092 .100 | .058 .060 | .037 .038
01]12}.020 .022).009 .010 ] .004 .004
-510]) 2 ].002 .003|.001 .001|.000 .000
411.2).057 .064|.031 .034 | .017 .019
41 2 ].007 .007]).003 .003 | .001 .001
0] .6 |.080 .088].050 .054|.032 .034
012].016 .0211|.007 .008 | .003 .003
75100 2 1.002 .003).000 .001|.000 .000
411.2|.045 .058 | .023 .029 [ .013 .015
41 2 |.006 .007|.002 .002}.001 .001
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TABLE 2.29
MONTE CARLO S.D. OF U, Up, Vo FORT =1, ¢ = 4, % = 2,i=1,2

n = 64 n =128 n = 256
p | ) vy Up Yo vr Vg Vo v Up Yo
0 .6 ].105 .116 .095 | .061 .069 .056 | .038 .041 .035
01]12].025 .029 .025 { .010 .012 .010 | .004 .005 .004
010} 2 |.003 .004 .003 | .001 .001 .001 | .000 .000 .000
411.2].070 .085 .082 | .036 .045 .046 | .020 .022 .025
41 2 |.009 .010 .011 | .003 .004 .003 | .001 .001 .001
0 .6 | .095 .107 .092 | .058 .067 .062 | .036 .040 .043
0| 1.2} .022 .028 .022 | .009 .012 .009 | .004 .005 .004
S5 10 2 |.003 .003 .003 | .001 .001 .001 | .000 .000 .000
4112 .061 .084 .069 | .032 .043 .040 | .017 .023 .022
41 2 |.008 .010 .010 | .002 .003 .003 | .001 .001 .001
0] .6 | .090 101 .087 | .0568 .067 .061 | .038 .042 .043
0] 12]{.020 .025 .021 | .009 .012 .009 | .004 .005 .004
-510]| 2 |.002 .003 .003 | .001 .001 .001 | .000 .000 .000
4] 1.2 .058 .074 .067 | .032 045 .041 | .018 .025 .023
41 2 |.007 .009 .009 | .003 .003 .003 | .001 .001 .001
0] .6 |.082 .100 .089 | .051 .064 .064 | .034 .041 .049
0112;.017 .025 .018 | .007 .011 .008 { .003 .004 .003
7510 2 | .002 .003 .003 | .001 .001 .001 | .000 .000 .000
4] 1.2 .048 .071 .056 | .025 041 .032 | .014 .024 .018
41 2 | .006 .008 .008 | .002 .003 .003 | .001 .001 .001
TABLE 2.30
MONTE CARLO S.D. OF 17,7 FOR 7 =1,¢; = 4, ¥, = 2,1 =1,2
n 64 64 128 128 | 256 256
plY| 6|V Vg | V] V|V Vg
0| .6 |.114 .126 | .065 .072 | .040 .043
0)12).026 .030 ] .010 .012 | .004 .005
0 {0] 2 (.003 .004].001 .001 | .000 .000
4112].071 1.02 ] .036 .244 | .020 .023
4| 2 |1.009 .139] .003 .425 | .001 .006
0| .6 [.102 .262|.060 .073 | .036 .043
0112].021 .028}.009 .012| .004 .005
S 01 2 (.003 .003).001 .001(.000 .000
4112].062 206} .032 670 | .017 .022
4] 2 |.008 .648 | .002 1.66 | .001 .001
0l .6 |.096 .112(.059 .073 | .037 .045
0|12].020 .025(.009 .012 [ .004 .005
-5(0| 2 [.002 .003|.001 .001 | .000 .000
4(1.2].069 7.77 (.032 .798 | .018 .023
4| 2 [.007 .999 [ .003 .066 | .001 .001
0| .6 |.081 .112;.048 .073|.031 .048
0|12].016 268 ]|.007 .012|.003 .005
751071 2 [.002 .003|.001 .001(.000 .000
4112 (.048 60.1 ) .025 331(.014 .061
41 2 |.006 .737|.002 .246 | .001 .001
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TABLE 2.31

EMPIRICAL SIZES OF W; AND W FOR 7 =1, =9 = 0,i = 1,2

a .05 .10
n 64 64 128 128 256 256 64 64 128 128 256 256
gl 6 Wr W W; Wgp Wi W { Wy Wy Wr Wy W; Wrg
0| .6 |.072 .194 .049 .125 .052 .090 | .131 .261 .099 .166 .116 .137
0(12].059 .198 .062 .136 .048 .097 ( .113 .260 .110 .208 .122 .161
0|0 2 ].054 .184 .057 .122 .058 .1021}.109 .255 .108 .199 .120 .167
4112(.060 .193 .050 .115 .051 .076 | .125 .254 .109 .176 .099 .131
41 2 [.051 .177 .071 .133 .059 .104 | .108 .238 .123 .201 .121 .157
0| 6 | .064 .238 .054 .152 .052 .116 | .128 .322 .113 .224 .105 .178
01}12]|.067 .203 .057 .132 .053 .097 | .122 .289 .108 .202 .104 .157
b5 10 2 |[.065 .201 .055 .133 .059 .108 | .116 .272 .112 .193 .111 .160
4112].067 .231 .051 .153 .049 .110 ] .127 .312 .102 .207 .092 .168
41 2 |1.066 .184 .055 .114 .058 .095 | .122 .254 .114 .187 .111 .149
0 .6 |.062 .227 .059 .166 .059 .129 | .128 .311 .120 .231 .109 .203
0]12].047 .209 .074 .161 .052 .095 | .105 .202 .129 .225 .100 .149
-5 0 2 |[.049 .199 .073 .163 .063 .112 | .110 .264 .129 .222 .109 .157
4112 .056 .238 .061 .167 .050 .109 | .120 .318 .117 .222 .103 .174
41 2 |.049 .186 .074 .146 .066 .094 | .097 .248 .134 .214 .105 .152
0] .6 |.069 .332 .050 .259 .052 .247].120 .416 .107 .337 .104 .327
0]12].066 .231 .054 .144 .053 .100} .127 .311 .099 .217 .112 .158
7510 2 | .054 .221 .042 .144 .064 .104 | .122 .203 .104 .208 .112 .150
41121 .066 .292 .048 .195 .057 .1411!.130 .383 .110 .278 .111 .199
41 2 {.064 .210 .054 .130 .060 .097 | .123 .267 .110 .193 .112 .148

TABLE 2.32
EMPIRICAL SIZES OF Wy AND Wr FORT=1,¢; = .5, ¢; =0,1=1,2

o .05 .10
n 64 64 128 128 256 256 64 64 128 128 256 256
plr| 6 | Wi We W Wrp Wi Wp | Wi Wrp Wi Wrp W Wp
0| .6 |.147 .225 .101 .18 .090 .163 ] .219 .286 .166 .259 .158 .229
0(12].103 .194 .075 .190 .062 .160 | .166 .268 .137 .246 .121 .206
0 0 2 |.092 .187 .073 .191 .068 .179 | .162 .249 .133 .240 .130 .247
41121.119 .221 .080 .18 .062 .145 | .211 .285 .150 .244 .120 .217
41 2 1.095 .206 .072 .194 .075 .167 | .156 .260 .137 .260 .117 .228
0] .6 {.211 .330 .173 .309 .160 .286 | .301 .407 .264 .394 .258 .373
0(121}.110 .215 .071 .214 .057 .176 | .164 .203 .123 .276 .111 .240
S50 2 |.111 202 .082 .179 .067 .166 | .176 .255 .141 .241 .114 .225
411.21.140 .274 .079 .234 .075 .209 | .208 .333 .149 .304 .129 .276
41 2 [.106 .209 .075 .181 .062 .153 ] .165 .261 .124 .244 .105 .202
0| 6 1{.210 .312 .188 .302 .180 .298 { .288 .389 .268 .383 .251 .393
0|12j.101 .233 .089 .211 .05 .176 | .169 .309 .150 .281 .105 .255
-510 2 |.099 .198 .093 .192 .071 .168 | .154 .258 .156 .252 .121 .236
4112§.125 .263 .102 .242 .074 .190} .212 .339 .162 .309 .138 .263
41 2 |1.090 .214 .087 .200 .061 .157 | .146 .262 .159 .246 .112 .218
0| .6 |.346 .520 .346 .519 .342 .509 | .445 .591 .432 .605 .441 .597
04124 .116 .267 .072 .279 .062 .227 | .192 .335 .127 .343 .109 .203
7510 2 |.118 .18 .080 .197 .060 .160 | .184 .250 .131 .252 .116 .226
4 12(.158 312 .095 .306 .085 .281 .242 .390 .163 .380 .142 .346
41 2 |.106 .180 .08 .18 .062 .139 | .167 .243 .123 .246 .118 .191
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EMPIRICAL SIZES OF W2 AND W2 FORT =1, ¢; = .5, ¢; =0, i =1,2

TABLE 2.33

a .05 10
n 64 64 128 128 256 256 | 64 64 128 128 256 256
p |y | 6 |Wp Wp Wp Wp Wp Wp|Wp Wp Wp Wp WP Wp
0| 6 (.119 .164 .08 .163 .076 .148 | .190 .230 .145 .217 .136 .209
0]12).093 .153 .070 .160 .055 .138 | .153 .200 .121 .214 .122 .195
OO0} 2 |.077 .137 .063 .156 .064 .153 | .138 .184 .124 214 .125 .217
4112].098 .151 .073 .148 .053 .130 | .173 .209 .132 .202 .102 .197
4] 2 1.090 .149 .073 .155 .071 .145 | .139 .207 .123 219 .123 .201
0] .6 ].150 .249 .112 .260 .097 .224 | .221 .307 .187 .335 .169 .315
0)12].099 .178 .063 .181 .054 .170 | .148 .232 .116 .251 .106 .233
bS50 2 ].099 .154 .063 .145 .064 .142|.156 .199 .121 .210 .110 .199
4112}.111 .196 .073 .195 .069 .199 | .184 .254 .131 .257 .112 .266
41 2 1.093 .142 062 .147 .059 .141 | .143 .195 .117 .211 .105 .183
0| .6 |.144 .239 .127 .261 .110 .250 | .229 .314 .203 .340 .186 .331
0112].084 .180 .079 .191 .055 .167 | .155 .244 .141 .248 .099 .245
-5(10} 2 |.08 .144 .085 .158 .071 .155|.140 .195 .146 .214 .117 .212
4112].106 .181 .08 .199 .058 .180 | .179 .247 .137 .272 .123 .252
4|1 2 1.079 .148 .082 .159 .062 .143 | .136 .196 .143 214 .112 .210
0] .6 |.209 .378 .156 .399 .164 .389 | .282 .451 .252 484 250 .474
0]12]).092 .214 .063 .257 .060 .234 ] .156 .277 .117 .329 .109 .305
7510 2 |.095 .157 .068 .162 .060 .143 | .164 .211 .122 .219 .111 .202
411.2).134 .248 078 .252 073 .270 | .189 .329 .142 .321 .123 .342
41 2 |.087 .140 .071 .146 .060 .117 | .136 .184 .111 .206 .113 .178
TABLE 2.34
EMPIRICAL SIZES OF W; AND Wp FORT=1,¢; = .9, ¢, =0,i=1,2
a .05 .10
n 64 64 128 128 256 256 | 64 64 128 128 256 256
14 Y 6 W[ WF W] Wp W[ WF W[ WF W[ Wp WI WF
0| .6 |[.382 .265 .308 .181 .224 .137 | .470 .341 .388 .261 .311 .213
0112} .407 .234 .357 .187 .284 .120 | .479 .287 .433 .247 .353 .178
00| 2 |.430 .237 .376 .215 .326 .158 | .517 .307 .458 .261 .419 .201
4(12(.398 .320 .307 .270 .235 .216 | .467 .390 .384 .355 .325 .279
41 2 |.406 .393 .360 .359 .309 .296 | .509 .472 442 424 405 .361
O .6 |.425 .448 .337 .504 .264 .565 | .504 .532 .430 .598 .345 .638
0f12].423 .253 .341 .210 .252 .160 | .504 .315 .430 .285 .349 .233
S |0 2 ) .445 252 385 .217 .325 .139 | .523 .326 .475 .271 .390 .199
4(12].405 .376 .309 .322 .234 .275| .494 .440 .400 .392 .315 .348
4| 2 | .425 410 .367 .351 .286 .272 | .506 .482 .450 .409 .365 .334
0| .6 .418 .472 343 .502 .288 .561 | .506 .565 .419 .584 .359 .635
0)12].423 .256 .357 .215 .272 .154 | .495 .318 .442 .290 .364 .239
-5 10| 2 |.443 252 394 219 .340 .134 | .510 .307 .469 .270 .407 .190
4]12].400 .380 .344 .325 .268 .271 | .488 .450 .408 .392 .352 .367
41 2 [ .420 417 387 .346 .307 .273 | .486 .471 458 .420 .387 .334
0| 6 [.486 .679 .398 .751 .354 .790 | .562 .733 .492 .810 .446 .841
0| 1.2(.428 .283 .342 .244 .272 .237 | .499 .342 .423 .313 .350 .309
750 0| 2 | 455 247 389 .217 .311 .142 | .533 .312 .459 283 .402 .196
4112] 433 .393 .350 .360 .265 .360 | .503 .484 .418 431 .336 .444
41 2 | 436 427 364 347 .298 .275 | .509 .488 .430 .411 .375 .335
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EMPIRICAL SIZES OF WP AND W2 FOR7=1,¢; = .9, ¢ =0,i =1,2

TABLE 2.35

a .05 .10
n 64 64 128 128 256 256 64 64 128 128 256 256
ol 6 |we we wp wp we weplwp we wr wp wp wp
0y .6 |.18 .153 .124 .117 .080 .078 | .244 .213 .180 .18 .133 .148
0|12]|.177 .118 .124 .075 -077 .053 | .231 .165 .180 .125 .144 .092
0 0 2 |.169 .118 .117 .085 .095 .060 | .230 .178 .167 .129 .165 .092
4112 .157 .149 .105 .107 .073 .076 | .218 .192 .164 .147 .124 .126
41 2 |.155 .190 .121 .158 .090 .099 | .216 .242 .177 .216 .153 .151
0| .6 {.211 .270 .159 .306 .114 .368 | .263 .346 .221 .397 .169 .456
0]12]).178 .139 .121 .120 .090 .119 | .231 .191 .168 .178 .144 .202
S5 10 2 |.193 .116 .130 .086 .092 .054 | .256 .180 .180 .129 .153 .096
41121 .171 178 .129 170 .096 .191 | .231 .241 .183 .233 .149 .275
41 2 |.163 .184 .120 .140 .090 .091 | .218 .247 .167 .201 .144 .149
0| .6 |.220 .279 .167 .310 .137 .380 | .278 .361 .233 .387 .189 .467
0(12](.173 .145 .139 .115 .090 .112{ .231 .196 .190 .191 .151 .192
-51{0 2 |.177 126 .140 .090 .089 .056 | .229 .184 .190 .133 .152 .088
4112 .18 .172 .140 .171 .103 .177 | .227 .217 .204 .232 .150 .271
41 2 |.161 .184 .123 .148 .094 .098 | .210 .230 .176 .209 .133 .148
0| .6 | .276 .423 .227 .507 .181 .611 ] .340 .505 .307 .587 .243 .682
0|12/ .186 .171 .123 .175 .095 .220 | .237 .230 .185 .255 .154 .293
7510 2 |.194 .126 .136 .096 .100 .052 | .257 .177 .193 .152 .159 .089
4112 .206 .227 .158 .270 .118 .369 | .265 .290 .213 .357 .182 .460
41 2 | .148 .164 .112 .142 .090 .090 | .200 .228 .180 .193 .141 .140

TABLE 2.36
EMPIRICAL SIZES OF W; AND Wr FORT =1, ¢; =0, ’5!),' =.5,1=1,2

@ .05 .10
n 64 64 128 128 256 256 64 64 128 128 256 256
p | [ Wr Wp Wy Wg Wy Wrp | Wi Wr Wi Wr W Wr
0O 6 |.125 .195 .082 .122 .089 .105| .187 .249 .146 .189 .148 .159
0})12(.076 .159 .065 .114 .050 .084 | .127 .225 .124 .170 .122 .138
0 0 2 {.061 .148 .068 .112 .065 .096 | .126 .222 .114 .176 .120 .153
411271.096 .170 .069 .111 .065 .067 | .167 .240 .140 .166 .115 .130
41 2 1.060 .147 .070 .105 .064 .094 | .117 .201 .128 .176 .120 .147
01 .6 ].206 .321 .194 .284 .199 .265 | .302 .380 .281 .376 .299 .365
0(12].074 .191 .061 .116 .057 .092 | .135 .255 .116 .185 .109 .144
510 2 | .076 .161 .066 .108 .067 .088 | .135 .225 .115 .164 .110 .139
4112).107 .202 .075 .137 .061 .113 | .179 .280 .123 .199 .107 .163
41 2 1.068 .148 .062 .092 .061 .075 1] .129 .196 .114 .147 .110 .120
0| .6 §|.217 .326 .203 .273 .212 .260 | .288 .408 .285 .379 .291 .358
0(12].059 .182 .082 .149 .049 .081 | .126 .252 .137 .192 .105 .140
-5 10 2 1.059 .158 .082 .123 .061 .090 | .126 .209 .141 .189 .110 .144
41 1.2).097 .208 .079 .159 .063 .113| .169 .292 .142 .218 .129 .178
41 2 ].061 .142 076 .105 .063 .074 | .112 .185 .139 .158 .112 .129
0| 6 |.391 .525 .406 .531 .408 .513 | .491 .627 .492 .616 .521 .612
0f(12}.074 .217 .055 .136 .055 .099 | .135 .273 .104 .200 .110 .149
7510 2 |.071 .156 .051 .114 .059 .078 ( .140 .211 .104 .162 .103 .123
43 12(.114 262 .071 .18 .071 .137 | .192 .325 .131 .258 .122 .198
41 2 |.068 .119 .058 .092 .061 .066 | .133 .177 .108 .133 .110 .102
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TABLE 2.37
EMPIRICAL SIZES OF W9 AND W2 FOR7 =1, ¢; =0, ¢; = .5, i = 1,2

a .05 10
n 64 64 128 128 256 256 | 64 64 128 128 256 256
plol 6 |we wp wp wp wp wel|wp wp wy wp wp wp
0| .6 |.115 .18 .083 .118 .074 .098 | .177 .246 .140 .187 .144 .158
0|12].073 .161 .061 .105 .048 .084 | .116 .210 .115 .161 .123 .138
0|0] 2 |.056 .139 .060 .114 .065 .101 | .113 .213 .114 .159 .118 .153
4112 .086 .162 .060 .105 .058 .062 | .150 .231 .128 .154 .108 .123
4| 2 |.055 .137 .066 .109 .062 .087 | .113 .196 .118 .160 .112 .150
0] .6 ].142 .252 .133 .209 .132 .192 | .230 .317 .214 .296 .224 .266
0]12).067 .183 .060 .112 .056 .092 | .138 .243 .112 .177 .106 .141
510 2 |.067 .166 .060 .104 .067 .085 | .119 .216 .117 .155 .112 .137
41121}.100 .198 .073 .130 .059 .110 | .160 .268 .118 .206 .108 .161
4| 2 .066 .144 .059 .086 .061 .075 | .121 .187 .114 .136 .114 .122
0] .6 | .157 .262 .140 .209 .146 .198 ) .223 .350 .224 .312 .220 .282
0112].060 .183 .074 .140 .050 .082 | .115 .244 .134 .189 .102 .147
510 2 (.054 .151 .074 .122 .064 .094 | .122 .206 .135 .176 .110 .142
41121.08 .198 .072 .156 .061 .107 | .163 .275 .132 .212 .116 .173
41 2 1.060 .135 .073 .097 .066 .070 | .113 .180 .124 .158 .106 .131
0] 6 |.240 .369 .248 .374 .263 .339 | .344 .461 .352 .479 .358 .436
0]12].065 .213 .059 .132 .050 .098 | .130 .261 .105 .201 .113 .157
751 0 2 .061 .153 .044 .114 .063 .077 | .123 .206 .102 .155 .110 .122
4112].091 .259 .065 .183 .058 .135| .156 .316 .124 .257 .122 .195
4| 2 .061 .120 .058 .087 .059 .065 | .119 .165 .107 .128 .114 .105

TABLE 2.38
EMPIRICAL SIZES OF W; AND W FORT=1,¢;,=0,¢%;,=.9,i=1,2

o .05 .10
n 64 64 128 128 256 256 | 64 64 128 128 256 256
ply| 6 |\ W W Wy Wp W W | W W Wi W W Wg
0 .6 | .1561 .224 .105 .142 .088 .102 | .221 .289 .176 .208 .152 .165
0]12].138 .222 .114 .147 .073 .093 | .199 .276 .179 .227 .134 .147
0|]0]| 2 ].156 .229 .129 .173 .086 .110].227 .293 .206 .242 .152 .172
4112].133 .209 .102 .136 .075 .088 | .213 .280 .177 .201 .147 .149
4 2 |.130 .210 .123 .158 .076 .097 | .203 .268 .199 .234 .145 .168
0| .6 |.258 .3718 .221 .339 .204 .309 | .357 .459 .310 .439 .301 .413
0|12 .140 .252 .105 .155 .080 .094 | .201 .318 .167 .228 .134 .166
S0 2 [.168 .245 .121 .171 .087 .106 | .241 .314 .203 .253 .152 .159
41121} .156 .232 .108 .155 .073 .119 | .231 .307 .179 .220 .127 .170
4] 2 }.148 .210 .114 .141 .077 .083 | .213 .263 .186 .208 .142 .136
0| 6 ].274 .393 .239 .336 .215 .307 | .337 .477 .310 .425 .291 .420
0]12].144 .233 .126 .184 .067 .094 | .209 .319 .192 .249 .124 .145
510} 2 |.174 .236 .142 .173 .082 .105|.255 .311 .230 .242 .137 .161
41121.139 .251 .115 .165 .072 .107 1 .210 .318 .191 .230 .133 .181
4] 2 |.148 .201 .138 .153 .079 .087 | .212 .257 .216 .214 .133 .139
0| 6 |.434 .593 .430 .610 .405 .575 ] .532 .676 .516 .692 .501 .671
0)12}.161 .277 .105 .168 .080 .102|.223 .340 .158 .241 .138 .163
751 0] 2 |.191 .238 .131 .178 .098 .094 | .251 .313 .199 .234 .143 .143
4112 .174 .302 .115 .199 .081 .136 | .256 .373 .177 .273 .141 .190
4] 2 |.166 .188 .127 .138 .094 .081 | .229 .239 .178 .201 .142 .118
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EMPIRICAL SIZES OF W AND W2 FORT =1, ¢; =0, ¢; = 9,5 = 1,2

TABLE 2.39

« .05 10
n 64 64 128 128 256 256 | 64 64 128 128 256 256
p |yl 6 |wp we wp we we wel|wp we wp wp we wp
0| .6 |.111 .170 .079 .125 .075 .092].179 .239 .146 .183 .145 .163
0]12}.063 .150 .061 .106 .048 .076 | .116 .204 .113 .150 .121 .136
0 0] 2 |.049 .131 .062 .100 .063 .091 | .112 .188 .117 .150 .120 .149
4112|.083 .148 .059 .102 .056 .064 | .139 .221 .126 .146 .108 .117
41 2 | .03 .129 .068 .100 .062 .087 | .111 .175 .127 .150 .117 .143
0] 6 ].136 .248 .128 .211 .126 .192 | .206 .313 .201 .302 .206 .282
0]12].069 .162 .057 .099 .053 .079 .127 .220 .108 .167 .107 .135
S 10)] 2 |.066 .139 .057 .097 .065 .078 | .114 .187 .116 .146 .116 .133
4112(.089 .175 .070 .122 .054 .104 | .151 .247 .124 .186 .107 .152
41 2 |.070 .129 055 .081 .061 .073 | .115 .168 .113 .130 .112 .119
01 6 |.148 .254 .126 .218 .140 .203 | .215 .340 .207 .311 .206 .294
0|12(.052 .143 .075 .134 .052 .079 ] .113 .226 .127 .182 .100 .132
-5 0| 2 (.056 .130 .072 .106 .062 .082 ) .108 .183 .126 .164 .111 .131
4112|.081 .183 .074 .137 .059 .097 | .151 .246 .124 .195 .115 .158
41 2 |.060 .126 .0v2 .096 .067 .069 | .106 .167 .125 .140 .106 .125
0| .6 |.136 .359 .221 .382 .242 .355 | .206 .457 .326 .474 .327 .463
01f{12}.069 .172 .053 .109 .050 .083 | .127 .225 .095 .179 .112 .141
7510 2 [.065 .131 .041 .096 .064 .072 | .114 .178 .099 .139 .111 .109
4112.089 .221 .063 .161 .057 .121].151 .293 .125 .232 .119 .170
41 2 |.070 .103 .058 .078 .058 .062 | .115 .144 .110 .117 .108 .095

TABLE 2.40
EMPIRICAL SIZES OF W; AND Wr FOR 7 =1, ¢i=4,9;=.2,i=1,2

a .05 .10
n 64 64 128 128 256 256 | 64 64 128 128 256 256
el 6 W Wg Wi W W; Wg | Wi Wr W; Wr Wr Wr
0| 6 |.148 .305 .098 .250 .090 .222 ] .219 .373 .169 .326 .158 .287
0]12].109 .308 .076 .261 .063 .208 | .168 .371 .137 .316 .120 .27T1
0 )]0 2 [.090 .204 .079 .255 .072 .226 | .167 .360 .141 .319 .130 .286
4112(.114 373 .083 .307 .063 .239 | .204 .435 .147 .371 .116 .310
4] 2 [.094 .3711 .074 .315 .077 .239 | .164 .420 .140 .372 .120 .290
0| .6 |.223 .390 .190 .361 .171 .306 { .307 .473 .268 .445 .273 .404
0]12].100 .333 .072 .310 .062 .258 | .169 .405 .120 .385 .111 .329
S |10 2 [.113 .310 .082 .263 .066 .211 | .183 .377 .135 .327 .115 .278
4112).137 413 .083 .374 .074 .298 | .210 .466 .147 .433 .129 .355
4] 2 |.104 .364 .072 .315 .060 .212{.170 .432 .120 .364 .107 .277
0f .6 {.221 373 .210 .352 .187 .327 | .302 .456 .280 .437 .264 .410
0(12].0908 .332 .093 .312 .059 .272 | .177 .407 .153 .397 .098 .328
-5 (0 2 ].099 .292 .092 .257 .074 .222 | .167 .347 .154 .335 .124 .277
4(12].134 .402 .107 .370 .081 .307 | .202 .471 .168 .433 .138 .373
41 2 ].088 .361 .089 .303 .063 .240 | .152 .418 .156 .362 .111 .299
0| .6 ].365 .516 .368 .530 .358 .513 | .465 .597 .445 .611 .450 .594
0|12].109 .368 .071 .392 .061 .292|.179 .438 .124 454 .115 .353
7510 2 |.119 299 .075 275 .062 .200| .186 .361 .134 .339 .118 274
4] 12 .164 .447 .096 .446 .084 .358 | .238 .518 .165 .516 .140 .426
40 2 |.104 .350 .081 .307 .061 .219| .163 .403 .122 .360 .115 .263
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TABLE 2.41
EMPIRICAL SIZES OF W2 AND W FOR 7 =1, ¢; = .4, ¥; = 2,i = 1,2

a .05 .10

n 64 64 128 128 256 256 | 64 64 128 128 256 256

o lal 6 |wp wp wr we wp wplwp wp wp wp wp wp
0| .6 ]1.125 .601 .085 .564 .075 .556 | .198 .659 .152 .627 .141 .618
0]12].095 .580 .071 .583 .058 .543 | .153 .640 .124 .645 .124 .597
0|0 2 |.080 .572 .072 .584 .065 .535 | .139 .630 .125 .647 .126 .607
4112].105 .589 .072 .576 .057 .578 | .175 .642 .130 .638 .106 .622

41 2 |.084 .573 .073 .596 .072 .540 | .134 .622 .130 .639 .124 .607

0| .6 |.146 .680 .122 .685 .106 .654 | .218 .735 .189 .733 .174 .707
0]12).097 .635 .062 .659 .056 .624 |.145 .687 .117 .715 .110 .658
S50 2 |.094 .584 .068 .585 .066 .559 [ .152 .639 .121 .648 .113 .628
4112].115 .6561 .072 .630 .067 .604 | .174 .694 .127 .689 .110 .661

4] 2 |.094 .587 .061 .578 .061 .556 ( .149 .637 .119 .635 .105 .617

0] .6 |.158 .670 .130 .680 .128 .659 | .231 .716 .215 .743 .187 .714
0|12].083 .628 .081 .634 .057 .585 | .152 .697 .143 .677 .097 .646
-5]10] 2 |.08 .570 .088 .584 .070 .557 | .134 .628 .145 .649 .115 .631
411.2(.111 .647 .089 .625 .064 .605 | .181 .698 .143 .681 .124 .667

4| 2 | .082 .547 .083 .591 .062 .555 | .129 .608 .152 .660 .107 .621

0] .6 |.216 .747 .191 .763 .165 .764 | .296 .792 .277 .801 .253 .813
0]12).088 .671 .066 .697 .063 .626 | .145 .714 .112 .752 .111 .672

5] 0] 2 |1.096 .585 .063 .600 .063 .580 | .153 .639 .117 .659 .116 .637
411.2].128 .691 .081 .695 .076 .669 | .189 .739 .139 .744 .132 .724

4| 2 |.090 .585 .073 .583 .064 .563 | .141 .636 .112 .629 .116 .625

TABLE 2.42
MONTE CARLO BIAS OF Vr,V,Vs,UVr, Vo, FOR 6=1,v=0,¢;=9;=0,1=1,2
T 1 2 5

pln 64 128 256 64 128 256 64 128 256
Ur | -002 -.000 .000 |{-.001 .000 .000 {-003 -.001 .000
v, | -002 -.001 .000 |-.001 .000 .000 {-.002 -.001 -.001
0 | s |-002 -001 .000 |-001 -001 .000 [-.002 -.001 .000
Up | -001 -001 .000 |-001 -001 .000 |-002 -.001 .00O
7o | -.002 -.001 .000 }-.002 -.001 .000 [-.003 -.001 .000
Uy | .001 .000 .000 | .001 .000 .000 | .001 .001 .000
v, | -010 -.002 -001}-.007 -.002 .000 |[-014 -.003 -.001
.5 | s | 004 .001 .000 { .003 .001 .000 | .005 .001 .000
vp | -005 -001 .000 [-.003 -001 .000 |-.006 -.002 -.001
7o | .030 .015 .007 [ .021 .011 .005 | .041 .021 .010
Uy | .00 .000 .000 [ .000 .000 .000 [ .000 .000 .000
7, | .009 .003 .001 | .007 .002 .001 | .013 .004 .001
-5 | ws |-003 -.000 .000 |-.002 -.001 .000 |-.004 -.002 .000
vp | .004 .001 .001 | .003 .001 .000 | .005 .002 .001
vo | -.028 -014 -007|-020 -.010 -.005]-039 -.020 -.010
vr { 001 .001 .000 [ .000 .000 .000 | .001 .001 .000
U, | -016 -.004 -001]-012 -003 -.001]-023 -005 -.001
.75 | vs | .004 .001 .000 | .003 .001 .000 | .005 .001 .000
Up | -008 -002 -001(-005 -001 -.001|-010 -.003 -.001
o | 044 .022 011 | .031 .016 .008 | .061 .030 .015
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TABLE 2.43
MONTE CARLO S.D. OF ﬁ;,ﬁ.,,ﬁg,ﬁp,ﬁo, FOR § = 1,vy=0, ¢'i = ¢i =0,1=1,2
T 1 2 .5
p n 64 128 256 | 64 128 256 | 64 128 256
Ur | .041 .019 .009 | .029 .014 .007 | .08 .027 .013
v, | .043 .020 .009 | .031 .014 .007 | .060 .028 .013
0 | 7s|.043 .020 .009].030 .014 .007 ; .060 .028 .013
Ur | .044 020 .009 | .031 .014 .007 | .061 .028 .013
7o | .040 .019 .009 | .029 .014 .007 | .056 .027 .013
Ur | .035 .016 .008 §.025 .012 .006 | .049 .023 .011
v, |.043 .017 .008 { .030 .012 .006 | .060 .024 .011
5 | U | 037 017 008 | .026 .012 .006 | .052 .024 .012
Up | .043 .018 .008 | .031 .013 .006 | .060 .025 .012
To | .040 .020 .010 | .028 .014 .007 | .056 .028 .014
vy | .033 .016 .008 | .024 .012 .006 | .046 .023 .011
v, ) .040 .018 .009 | .029 .013 .006 | .056 .025 .012
-5 | Us | .035 017. .008 | .025 .012 .006 | .049 .024 .012
vrp | 039 .018 .009 | .028 .013 .006 | .055 .025 .012
Uo | .039 .020 .010 | .028 .014 .007 | .054 .028 .014
vy |.026 .012 .006 | .019 .009 .004 | .037 .018 .009
Uy | .042 .015 .007].030 .011 .005 | .059 .022 .010
75| 75 | 031 .015 .007 | .022 .010 .005 | .043 .021 .010
7r | .042 .016 .007 { .030 .011 .005 | .059 .022 .010
Vo | 043 021 011 .030 .015 .007 ] .060 .029 .015

TABLE 2.44
EMPIRICAL SIZES OF W;, W, W5, We, Wo FOR 6 =1,7y=0, ¢ = 1h; = 0,3 = 1,2

a .05 .10

P n W[ W-y Wa WF Wo WI Wa, W5 WF Wo
64 | .061 .055 .199 .200 .058 | .122 125 .267 .264 .122
0 | 128 1.053 .053 .126 .126 .052 | .107 .107 .191 .191 .113
256 | .048 .048 .090 .090 .046 | .118 .115 .154 .153 .109
64 | .066 .106 .199 .218 .126 | .127 .175 .266 .297 .213
.5 ] 128 | .066 .067 .137 .140 .126 { .113 .129 .209 .202 .201
256 | .053 .064 .085 .095 .107].095 .117 .146 .159 .180
64 | .047 .104 .196 .223 .131].110 .174 .274 .309 .210
-5 1128 [ .068 .086 .145 .159 .121 ( .114 .148 .221 .218 .205
256 { .045 .061 .093 .100 .119|.101 .123 .148 .156 .199
64 | .066 .185 .211 .254 .212].122 .262 .280 .333 .331
.75 128 { .052 .116 .153 .156 .204 | .099 .190 .217 .224 .330
256 | .056 .094 .102 .115 .197 |.109 .159 .170 .170 .306
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Chapter 3

Parametric estimation of weak
fractional co-integration

3.1 Introduction

In this chapter, as opposite to the situation considered in Chapter 2, we will
focus on the case where in model (1.25), (1.26), the co-integrating gap £ is small,

more precisely
B <1/2, (3.1)

and where the real numbers 7 and § satisfy
0<y<é. (3.2)

As anticipated, we describe this situation as weak fractional co-integration, since the
memory reduction achievable is small relative to the CI (1,1) case, or other cases in
which 8 > 1/2. We anticipate that in (1.25), (1.26),

COU(Ult,Uzt) §£ 0, (33)

so that, viewing (1.25) as a regression model, the regressor z; is contemporaneously
correlated with the co-integrating error A‘”’uﬁ. The most dramatic contrast with
this familiar CI(1, 1) situation arises when

§<1/2, (3.4)

because the “simultaneous equation bias” inherent in (3.3) leads to inconsistency
of the OLS due to the fact that z; is asymptotically stationary and so its sum of
squares does not asymptotically dominate that of A~"u¥. To overcome this problem,
Robinson (1994c) showed that the NBLS is consistent, due to the dominance near
zero frequency of an I(-y) spectral density by an I(6) one. (He considered the purely
stationary situation, where there is no truncation in (1.25), but our modification does
not affect such basic asymptotic properties). The same method was subsequently
studied by Robinson and Marinucci (1998, 2001) in case

6>1/2, (3.5)
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where there is trending nonstationarity. Here, the OLS is consistent, with con-
vergence rate depending on the location of v and § in the non-negative quadrant,
but the NBLS still sometimes converges faster, and never converges slower, despite
dropping high frequency information, as we showed in Chapter 1. In any case, as
discussed in Chapter 2, the question which then arises is whether the rates of con-
vergence of OLS and NBLS are optimal, by which we mean whether they match the
rates achieved by the Gaussian ML estimate under suitable regularity conditions.
They are optimal for the combination v+ 6 > 1, § —y > 1/2, but otherwise not. In
particular, the n®~" rate is optimal for § —y > 1/2 without the restriction y+6 > 1,
and we have established it in Chapter 2 for estimates asymptotically equivalent to
the ML, allowing for consistent estimation of unknown - and § and a vector 6 of
unknown parameters describing the autocovariance structure of w;; these estimates
of v have mixed normal asymptotics, and a Wald test statistic with an asymptotic
null x? distribution, as established earlier in the CI(1,1) case by Phillips (1991a).
Indeed, we found the limit distribution unaffected by the question of whether 8,
and § are known or unknown.

In case of weak fractional co-integration with 8 < 1/2, a substantially differ-
ent asymptotic inferential theory prevails, impacting also on the question of how
and v should be estimated. Under (3.1), since y; () and z; (y) are I(3), they are
asymptotically stationary, and so, intuitively, one anticipates the existence of n!/2-
consistent and asymptotically normal estimates of v; the OLS and NBLS converge
slower than this owing to the dominance of bias due to (3.3). Note that (3.1) ex-
cludes the traditional CI(1,1) case and so might be thought of as less plausible than
B > 1/2. However, the vast bulk of the co-integration literature has focused only on
the CI(1,1) possibility and there has been little study of fractional possibilities, or
even the testing of the unit root hypothesis on y;, ; against fractional alternatives,
as distinct from stationary AR ones. In fact, the fractional co-integration analysis
by Robinson and Marinucci (1998) of two of the bivariate series originally analysed
by Engle and Granger (1987) (namely M1/nominal GNP and M3/nominal GNP)
and one analysed by Campbell and Shiller (1987) (stock prices/dividends) in the
CI(1,1) context was suggestive of (3.1). Moreover, we cover not only § > 1/2, but
also the asymptotically stationary case § < 1/2, which may be relevant for many
financial time series. In fact, some of the empirical evidence presented in Chap-
ter 1 is also suggestive of this type of co-integration. Note that here, the NBLS
of Robinson (1994c) is only m'/?-consistent for m increasing slower than n (indeed
the optimal minimum-mean-squared error rate is n? %), so that we again achieve an
improvement.

We are principally concerned with estimation of v. If 4 and é are known, while
u; is known to be white noise with unknown variance-covariance matrix 2, then the
ML estimate of v is given in closed form, and may be computed by means of an
added-variable least squares regression, as pursued in the following section, which
also extends to VAR wu;, of known degree, but with unknown AR coefficients, when
our estimate of v is no longer as efficient as the ML but has the same, /n, rate of
convergence, under (3.1). When 7 and/or § are unknown, and u; has parametric
autocorrelation (such as following a VAR), then it seems that the Gaussian ML of
all the unknowns is again \/n-consistent and asymptotically normal, but with limit
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covariance matrix that is not block-diagonal, so that in particular the asymptotic
variance of the estimate of v differs from that when -y and § are known. If § < 1/2,
a priori, conveying the implication that § and ~ are both estimated by optimizing
over subsets of the intersection of (3.2) and (3.4), then the consistency and asymp-
totic distribution theory would largely follow the lines of authors such as Fox and
Taqqu (1986) and Hosoya (1997), who were the first to develop such theory for
standard scalar and vector long memory time series models respectively, the most
notable difference perhaps being the fact that in our setting z; and y; would be only
asymptotically stationary. If the possibility that § > 1/2 is admitted, and possibly
v > 1/2 also, then the situation is more delicate, as discussed in Section 3.4.

The preceding discussion makes it apparent that when -« and § are unknown
the issue of how they are estimated is of greater significance when 8 < 1/2 than
when § > 1/2. It is indeed essential here (due to the correlation between z; and
uy;) that they be estimated ./m-consistently in order for v to then be estimated
v/n -consistently, so that simple closed-form semiparametric methods such as log
periodogram regression will not suffice. Closed-form y/n-consistent estimates of
integration orders are available (see Kashyap and Eom, 1988, Moulines and Soulier,
1999), but these do not cover our bivariate situation and VAR wu,, and also entail
logging the periodogram, which raises technical difficulties not present in estimates
based on quadratic forms, such as the ML. In our setting some degree of numerical
optimization seems inevitable. Since this is likely to entail an initial search of the
parameter space to locate the vicinity of a global optimum, it is desirable if the
computations can be arranged so that only univariate optimizations are involved.
Even after concentrating out parameters, when both v and § are unknown the
Gaussian ML estimation requires a bivariate optimization under white noise u;, and
at least a trivariate optimization when u; is VAR. We propose y/n-consistent and
asymptotically normal estimates that require only univariate optimizations.

The basic structure of the estimates of v is described in the following section.
Section 3.3 provides asymptotic theory in case v and 6 are known. Section 3.4
considers estimation of -y and § and the effect on estimating v. Section 3.5 contains
Monte Carlo evidence of finite sample behaviour, and Section 3.6 several empirical
applications.

3.2 Estimation of v

Noting (2.4) in Chapter 2, we take u; to be generated by the VAR

p
U = Z Bju;_j + &, (3.6)
i=1
where all zeros of det{l; — 3 7_, B;z’} lie outside the unit circle, the B; being 2 x 2

matrices, while ¢, is a bivariate sequence, uncorrelated and homoskedastic over t,
with mean zero and covariance matrix 2. We take (3.6) to mean white noise wu;
when p = 0.
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From (2.4) and (3.6) we have

J

zt('Yaé) - -I:I szt—j(776) =V {Cmt(’)’) - i:lBijt—j(7)} + E?-i t> 1, (37)

where
6’;- = U,
t-1
62' = U — X%Bjut_j, t= 2, ey Dy (38)
J:
62- = &, t>p

Denote by B;; the ith row of B;. Writing ;; for the ith element of &, for ¢ > p, the
second equation of (3.7) can be written as

P P
z4(6) — Zleth—j(’Y, 6) =—v EIszCZt—j(’Y) + €2, (3.9)
j= j=
whence the first equation can be written as

v:(7) = th(7)+‘ﬂzt(5)+i:l (B1j — ¢Ba;) z—j(7,6)—v é (B1j — ¢Baj) Cxi—j(7) €125

(3.10)
where €12¢ = €1 — e, ¢ = E(enen)/E(e}); (3.10) is a form of error-correction
representation.

We wish to cater for the possibility of prior zero restrictions on the B; which serve
to eliminate some y;_;(7y), i—;(7), :-;(6), as this will improve efficiency. Thus we
introduce a ¢ x (3p + 2) matrix, which is I3, when there are no such restrictions,
but for ¢ < 3p + 2, Q is formed by dropping rows corresponding to the restrictions.
Thus we can write (3.10) as

w(7r) = 9QZ(v,6) + €124, (3.11)

where
Zy(c,d) = (z:(c), m(d), w}_ (¢, d), ..., w;_,(c, d)) (3.12)
wy(c, d) = (z:(c), z(d), we(c))' . (3.13)

Since E(e12:7Z:(7,6)) = 0, we consider the (possibly constrained) least squares
estimate R
3(e,d) = G(c,d) g(c,d), (3.14)

taking (c,d) = (v,96), (7,6), (7,90) or (7,6), depending on whether « and/or § are

o~

known or estimated by 7, §, and
1 n , , 1 n
Glc,d) = Q= ¥ Zi(c,d)Zy(c,d)Q’, g(c,d)=Q— > Zi(c,d)ye(c). (3.15)

N 4=pt1 N t=p+1
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For example, in case p = 1, if u;; is white noise while uy; is AR(1), then ¢ = 3 and
(3.10) becomes

y:(7) = v (v) + xe(8) — pBanz-1(8) + €12, (3.16)

where By, is the second element of B,;. Notice that v, ¢ and Bsj,; are all identified
in (3.16), but it is apparent from comparison of (3.10) with (3.11) that in general,
while v and ¢ are expected to be identified, only some elements of the B; are.
However, we are treating the B; as nuisance parameters, indeed it is principally v
that is of interest, so we stress

v(c,d) = 1'G(c,d)tg(c,d), (3.17)

where 1 = (1,0, ...,0)".

The representation (3.10) is of error-correction type and in case p = 0, U(v, §)
actually provides the Gaussian ML estimate of v, given knowledge of «, § but lack
of knowledge of 2. For p > 1, it is less efficient than the ML for this case, but
still n/2-consistent and computationally considerably simpler. Notice that over-
specification of p results in a further efficiency loss, but under-specification of p
produces inconsistency. In moderate sample sizes, a modest choice of p, even p =
1, might thus be a wise precaution. On the other hand, one could also regard
(3.6) as approximating a more general infinite AR process with nonparametric (0)
autocorrelation.

3.3 Asymptotic theory with known +, ¢

__ The present section establishes the n!/2-consistency and asymptotic normality of
9¥(, 6), and hence of ¥(y, §). We assume in addition to the description of (3.6) that
the €, are stationary and ergodic with finite fourth moment, satisfying also

E (&| Fio1) =0, E (&g Fia) =Q (3.18)

almost surely, where F; is the o-field of events generated by ¢,, s < ¢, and also
assume that conditional (on F;_;) third and fourth moments and cross-moments
of elements of ¢; equal the corresponding unconditional moments. Thus, the &;
essentially behave like an #id sequence up to 4th moments. Now, noting from (1.26)

that
-1

z:(7) = ;]aj(ﬂ)uz,t_,-, t>0; =0, t<0, (3.19)

J:

define -
zi(y) = Z( )aj(ﬁ)w,t—j, zi(7) = z2(7) + Z:(7), (3.20)

j=max(t,0
so that because of (3.1), Z;(), t = 0,%1,..., is a covariance stationary sequence.
Likewise, so is

%e(7) = vZe(7) + une, (3.21)
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as is ug;. Now define
ﬂ;t = (it(’)’), U2t gi(’Y)Y ) Zt = (Et(7)7u2ta ﬂ;;—l’ i) 'w;—p)’ ’ (322)
¢ = E(ZZ), v=E(3.,%7). (3.23)
The proof of the following theorem is left to Appendix 3.A.

Theorem 3.1. Asn — o

2 {3(y,6) =8} -4 N (0,(Q2Q)'QUQ(Q2Q)™),  (329)
and the covariance matriz on the right hand side is consistently estimated by
G(7,8) K (7,6)G(v,6)™", (3.25)
where { =
K(c’ d) = Q- E é?.u(c: d)Zt(ca d)ZtI(c> d)Q’: (3'26)
N t=p+1
in which R
Er2:(c,d) = w(c) — ¥(c,d) QZ:(c, d). (3.27)

Remark 3.1.1. For p > 1, U(v, 6) is ineflicient relative to the Gaussian ML. Over-
parameterization in the B; results in further loss of efficiency in estimation of v.
Consider the case where, in the estimation, the B; are taken to be diagonal, with
also wuj; white noise and uy; AR(p), to extend (3.16). Then, if in fact uy is also
white noise the limiting variance of n'/2{#(v, §) — v} is

wi o/ (w§ jz;i:l af—(ﬂ)) : (3.28)

where w}, = E(e},,), w} = E(e3,); (3.28) is increasing in p. As a simpler alternative
to (3.26), (3.27), we can consistently estimate (3.28) by

02(7,6) (VG(v,6)1) 77, (3.29)
where | =
Dra(n8) =~ 3 E44(7,9). (3.30)
t=p+1

Note that (3.28) and (3.29) also apply in case p = 0 is correctly taken in the
estimation, when ¥(v, §) is equivalent to the Gaussian ML, and (3.28) becomes

wi o/ (w% {TTM’B (1/2-8,1/2—p) - 1}) : (3.31)

Note also that (3.28) and (3.31) do not depend on fourth cumulants of ¢;. However,
if in fact u, is not white noise, the limiting variance of n*/2{#(y, ) — v}, namely

1'(Q2Q)7'QUQ'(QeQ") ™1, (3.32)
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(see (3.24)), in general depends on the fourth cumulant of €14, €12+, €2t and €2,
though of course this is zero under Gaussianity.

Remark 3.1.2. On the other hand, under-parameterization of the B; produces
inconsistency of (v, 6), as when u; is actually AR(p + 1). In this connection,
note that in Chapter 2 we considered the Gaussian ML for 8 > 1/2 in case of a
far more general parametric class than (3.6). We can view (3.6) more informally,
as approximating an actual, unknown, time series model in the hope that bias is
decreasing in p, a statement which can likely be justified in a rigorous way by allowing
p to increase slowly with n. Qur AR approach is computationally convenient, and is
in a long tradition of macroeconometric estimation of linear simultaneous equations
systems, as well as relating to Johansen’s (1991) approach to CI(1,1) co-integration.
In case of ARMA models, over-parameterization of both AR and MA orders can have
more serious consequences than those discussed in Remark 3.1.1.

Remark 3.1.3. So long as p > 1 and some B; are non-diagonal, the endogeneity
property (3.3) holds even when 2 is diagonal, i.e. ¢ =0.

3.4 The case of unknown v, §

The main practical interest in fractional co-integration centres on the realistic
situation in which v and/or § are unknown. We shall focus on the case where
both v and é are unknown, as being the most difficult both computationally and
theoretically.

First, suppose that u; is correctly taken to be white noise, with unknown co-
variance matrix ) satisfying (3.3). Considering the Gaussian log-likelihood, both
Q and v can be concentrated out to leave an objective function of «y and é. The
resulting estimates of 4 and 6§ can then be plugged into (3.17). As mentioned in
Section 3.1, asymptotic theory under § < 1/2 is a relatively standard extension of
that for Gaussian estimates in such models as stationary fractional ARIMAs. For
fractional ARIMAs whose integration order is allowed to take nonstationary val-
ues, there has been difficulty with the consistency proof (an essential preliminary
to limit distribution theory, because estimates are only implicitly defined). This is
especially due to lack of uniformity of convergence of the objective function around
admissible values 0.5 less than the true value of the integration order, as discussed by
Velasco and Robinson (2000), who by means of tapering, and a different definition of
fractional nonstationarity from ours, established /n-consistent and asymptotically
normal frequency-domain estimation of integration orders and other parameters in
quite general univariate models, while allowing the admissible set to be arbitrarily
large. Tapering, however, inflates the variance, while time domain estimates conve-
niently exploit the simple white noise or VAR structure of u;, and seem natural for
our definition of nonstationarity, and are certainly justifiable if é and ~ are known
to lie in intervals of length no greater than 1/2, for example (0,1/2) or (1/2,1].

We propose estimates of v, § and v that are \/n-consistent and asymptotically
normal and require two univariate nonlinear optimizations, in place of one bivariate
one. Our procedure extends nicely to the VAR u; case, where after cancelling out
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Q and the B;, the Gaussian ML is a trivariate function; note that v and the B; are
involved bilinearly as well as linearly in (3.7).
Pursuing the case of white noise u;, i.e. p=0 in (3.6), we can write (1.26) as

z(6) = €9, t2>1. (3.33)
It is proposed to estimate § by
b0 =arg min Sy(d), (3.34)
deD
for a compact set D and
So(d) =zl z3(d). (3.35)
t=
Then, we estimate v by
o =arg min Tp(c), (3.36)
ceC

for a compact set C (presumably a subset of [0, 5]) and
n ~ ~ ~ 12
To(e) = 3. {ur(e) = Ple Bo)au(c) ~ les Bau(Bo) | (337)
where 7(c, d) is given by (3.17), taking p = 0, and $(c,d) is the second element of
@(c, d) in this case. Notice that the presence of c as argument in y;(c), and indeed of
d in z,(d) of (3.35), presents no barrier to consistent estimation because, for example,
y:(c) involves ¢ only in the coefficients of lagged values y;_1, y¥:—2, ..., DOt ;.
In case of VAR wu;, we develop further the triangular structure of (1.25), (1.26)
by assuming
Bj is upper-triangular, j =1,...,p. (3.38)

This corresponds to a kind of causal structure, with y; formed from y;_;, 42, ... and
Z¢, Ti_1, ..., but z; being determined by

4(6) — ¢ RX,(6) = ea, (3.39)

with
Xt(d) = (.’Et_l(d), caey IEt_p(d))’, (340)

and R an r X p matrix with R = I, in case r = p but for r < p, R is formed by
dropping specified rows from I, in case Byg; = 0 for some j. The prescription (3.39)
includes the case of diagonal B;, does not seem an excessive requirement given the
allowance for non-diagonal €2, and introduces an element of parsimony.

Define

$(d) = H(d)™h(d), (3.41)

where

n n

H(d) =R~ 3 X(d)X/(I)R, h(d)=R% 5 X,(d)z(d). (3.42)

N t=p+1 t=p+1
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First, estimate 6 by

6, =arg min S,(d), (3.43)
deD
where n )
S(d)= ¥ {wld) - Sd/RX(A)} - (3.44)
t=p+1
Then, estimate v by
¥ =arg min T,(c), (3.45)
ceC
where n .
Toe) = 3 {ule) - 9(e.5)Qz(c.5)} - (3.46)
t=p+1

As abbreviating notation, we denote throughout, for any p > 0, 5= Ep, Y =Y.
In the following theorem, we assume v € C, § € D and take the supports of C and
D to be of width less than 0.5 to avoid a difficulty described earlier in this section.
The proof is omitted as it is extremely complicated and lengthy, while not entailing
any novel difficulty.

Theorem 3.2. Asn — o©

D(ﬁa g) -V
nt/? -7 —4 N(0,ABA'), (3.47)
5—6

where A is a 3 x (¢ + 2) matriz and B is a (¢ + 2) x (g + 2) matriz, for which
consistent estimates A and B are presented in Appendiz 3.B.

Remark 3.2.1. Analytic formulae, in either the time or frequency domain, for A
and B are excessively complicated, and thus omitted. Note that the estimate ABA
provided by Appendix 3.B is guaranteed non-negative definite.

Remark 3.2.2. As well as being useful in inference on v, the theorem could also be
applied in inference on v and §, for example to set a confidence interval for § which
could be useful in judging the suitability of the weak co-integration specification
(3.1).

Remark 3.2.3. On the other hand, our estimation procedure, though not our
asymptotic theory, can also be used when 8 > 1/2, though alternative, possibly
computationally more convenient, methods, are available here.

Remark 3.2.4. One approach, suggested in Chapter 2 when § > 1/2, is the use of
residuals from OLS or NBLS estimates of v in the estimation of 4. However, these
are always less-than-n'/2-consistent under (3.1), and so it appears that the resulting
estimates of  will not achieve the essential n!/?-consistency needed to provide an
n'/2-consistent estimate of v.

Remark 3.2.5. Even when u, is white noise, 7(7, ), 6 and 7 are inefficient relative
to the Gaussian ML; intuitively, this is due to the estimation of § from only the
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second equation of system (1.25), (1.26) (i.e. (3.34)), whereas the first equation also
contains relative information. However, the estimates can be updated to efficiency
by a single Newton step.

3.5 Monte Carlo evidence

With the main aim of investigating the performance in finite samples of the
estimates of v proposed in this chapter and associated rules of inference, and making
comparisons with the simplest estimate, the OLS, a Monte Carlo experiment was
carried out. In data generation from (1.25), (1.26), (3.6), we took p = 1 throughout,
with

Bl =S5 dzag {b]_, b2} , (348)

where each of the b; was allowed to take each of the values 0, 0.5, 0.9. The case
by = by = 0 actually corresponds to p = 0 in (3.6), where u; is a white noise
vector. Likewise, by = 0, by # 0 corresponds to (3.16). We have employed in
(3.48) abbreviating notation compared to (3.16), so by = Bag;. The ¢, in (3.6) were
generated as Gaussian with E(e?,) = E(e2,) = 1 and E(ey62;) = p, taking values
-0.5, 0, 0.5, 0.75, via the g05ezf routine of the Fortran NAG library. We varied p in
order to assess possible “simultaneous equation bias”, z; and u;; being orthogonal
only when p = 0. We employed four (v, §) combinations:

(v,6) = (0,0.4), (0.2,0.4), (0.4,0.8), (0.7,1), (3.49)

for all of which 8 < 1/2. Notice that variances of all estimates, both in finite samples
and asymptotically, will inevitably vary across parameter values. For example, be-
cause the E(e2) are fixed throughout, E(e? ,,) will decrease in |p|, while E(u2) will
increase in b;. Finite sample biases of our estimates will doubtless also be affected
by such variation, though in a more subtle manner. We took v = 1.

For each combination of parameter values, 1000 series of {y;,z:} of lengths n =
64,128,256 were generated. Fractional series were generated as in (3.19), using
ap (@) =1, ajy1(a) = ((F +a)/(F+ 1))aj (), j > 1, for @ > 0. For each series, we
computed estimates of the following three types:

(i) The OLS, given in (1.33).

(ii) The Infeasible estimate 7y = ¥(y, §) based on correct specification and misspec-
ification and/or over-specification.

(iii) The Feasible estimate Tr = (¥, §) based on correct specification and misspec-
ification and/or over-specification.

By “correct specification” we mean that all prior zero restrictions on B in (3.48),
including the non-diagonal ones and any diagonal ones, are incorporated in the
estimation, but not equality restrictions. By “mis-specification” we mean that for
b, # 0 and by # 0 we took Z;(c,d) = (z;(c),z:(d)). By “over-specification” we
mean that for b; = by = 0 we took Z; (¢, d) = (z: (c), z: (d) ,w}_, (c, d))'. Of course,
knowledge of p = 0 was never used. Table 3.1 records the convergence rates of the
OLS and, under the heading “optimal”, of 7y, Up.
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TABLE 3.1

CONVERGENCE RATES:
OLS WITH p # 0, p = 0 AND OPTIMAL RATES
.9) (0,04)  (02,04) (04,08 (0.7,1)
Optimal n® n n® n®
OLS, p # 0 | inconsistent inconsistent nt n3
OLS, p=0 ns ns n4 n3

We describe how § and ¥ in Vr were computed. In estimating 6, we fixed

D =[6 — 0.15,5 + 0.15] in (3.43), where 8 is the version of the log periodogram esti-
mate of Geweke and Porter-Hudak (1983) proposed by Robinson (1995a), applied to
the series z; without pooling or trimming, based on bandwidths m = 20, 30, 60, cor-
responding to n = 64, 128, 256, respectively in case ug, is assumed in the estimation
to be white noise, and on m = 10, 15, 30, corresponding to n = 64,128, 256, in case
ug; is assumed in the estimation to be AR(1). In all cases, D contains the asymptotic
95% confidence interval [6 — 1.96s.e.(3),6 + 1.96s.e.(8)], where s.e.(8) = 7/v/24m
is the asymptotic standard error of 5 (Robinson, 1995a). In estimating v, we fixed
C =[6 — 0.50,5 — 0.05] in (3.45). The lower bound corresponds to the assumption
B < 1/2. The upper bound seems reasonable since a very small (less than 0.05) G is
unlikely to be detectable, indeed there is then near loss of identificability and very
poor behaviour of estimates of v.

Tables 3.6-3.15 report Monte Carlo bias (defined as the estimate minus the true
value) of Dp, Uy and Tp, each table referring to a particular (b, b;) combination
with either correct specification, mis-specification or over-specification. Generally,
7 performs best, followed by Up, with Tp worst, being these estimates no worse
than any of the others in 387, 65 and 51 out of 480 cases (considering all p, n, (v, 6),
b1, by combinations) respectively.

We discuss first the cases of correct specification (Tables 3.6-3.12). The overall
ordering is found in the full white noise case b; = by = 0 (Table 3.6), and in the AR
case (Tables 3.7-3.12) when p # 0, but not when p = 0 with b; = by # 0, where Ty is
best. For b; = b, = 0.9, (7, 6) = (0.7,1) and small n, Up usually beats 7 even when
p # 0 (Table 3.8), but this effect does not occur for the same case when b; = b = 0.5
(Table 3.7). For b; = 0, by # 0 (Tables 3.9, 3.10), we are close to the white noise
outcome when b, = 0.5, but for b, = 0.9 (Table 3.10), Tp improves relatively to the
other estimates, and although it is still generally worst, its performance is relatively
close to the one of 7r. When b; # 0, by = 0 the bias of 7 decays very slowly, and
is unacceptably large when b, = 0.9 (Table 3.12). In any case, out of the 336 cases
reported with correct specification, U beats Tp with relation 275/54 (see Chapter
2 for description of this concept). Focusing now more on variation across (v, §), the
bias of U; decreases in 3, as is the case for 7r when b, = by = 0. With AR structure,
the worst performance of U is generally found for (v,6) = (0.2,0.4) or (0.7,1). As
for U, bias varies with collective memory «+ 6 when p = 0, but when p # 0, (0,0.4)
and (0.2,0.4) are the worst cases, unsurprisingly in view of the OLS’s inconsistency
here. Generally, 7r works best under (0.4,0.8). With respect to variation in p,
overall, the bias shares the sign of p in case of 7y, 7y, but is opposite in case of

109



TUp. Uj is relatively insensitive to p, though for b, = 0.9, by = 0 (Table 3.12), bias
increases in |p|, as is the case for 7, but no clear pattern can be found in the results
for U, though there is evidence of increase in bias with |p|. Looking at variation
across (b, bs), AR structure tends to reduce bias in 7o but increase it, and possibly
change its sign, in ¥;. For Up, the worst performances occur when b; # 0, but even
here bias decays rapidly as n increases, as it does also for 7.

Mis-specification (Tables 3.13, 3.14) has surprisingly little effect on 7, but seri-
ously damages UF, especially when £ is small, (0.7,1) being clearly the worst case,
though when 8 = 0.4 and b; = b, = 0.5, bias decreases substantially with n. As
expected, now Ug clearly dominates Ur with relations 27/18, 37/9 for b; = b, =
0.5,0.9 respectively, out of 48 cases for each of the relations. As anticipated, over-
specification (Table 3.15) makes little difference to 7y, Tp, which do much better
than Uy (out of 48 cases, Ur beats TUp with relation 40/4).

Tables 3.16-3.25 contain Monte Carlo standard deviations. As noted before,
variability is considerably affected by parameter values. In fact, 7o was superior to
71 for most of the combinations, with 7 a poor third, being these estimates no worse
than any of the others 377, 115 and 0 times, out of 480 cases, respectively. With
correct specification, this was most notably the case for small n and b; = by # 0
(Tables 3.17, 3.18), in part due to the proliferation in regressors, five in ¥; and
Ur versus one in Vo, with variability in 8 and ~ considerably inflating standard
deviations of U relatively to those of 7;. Precision also increases with increasing n,
and when one or both of the b; is zero (see Tables 3.16, 3.19-3.22), the performance
of Uy and Dp improves relative to that of 7. In fact, for the b, = 0.9, b, = 0
situation, Uy clearly beats Up (with relation 37/11 out of 48 cases), while under the
same AR structure, Ur also dominates 7 for cases (v,8) = (0.4,0.8), (0.7,1) when
n = 256, and (v, ) = (0.7,1) when n = 128.

Mis-specification (Tables 3.23, 3.24) improves matters with respect to correct
specification, especially when n is small, but the decrease in value of the standard
deviation is quite slow, mainly for the case (v,8) = (0.7,1). On the other hand, with
over-specification (Table 3.25), ¥; and Up unsurprisingly deteriorate further, and
generally larger sample sizes will be required in order for their faster convergence
rate to consistently deliver smaller standard deviations than 7. Nevertheless, it
must be borne in mind that this chapter’s motivation is not to minimise variance
but rather to achieve n!/2-consistency and asymptotic normality in a fairly general
context, which the OLS 7y does not provide.

We now go in to examine the usefulness of these limit distributional properties
of 7; and Up in finite-sample statistical inference, by examining the size of Wald
tests. We computed

@ —v)in
[ABAI] 1)

_ @ —v)’n
[G('Y) 6)-1K(7’ 6)0(7a 6)—1](1) ’

Wi Wp = (3.50)

where [-](i) denotes ith diagonal element. Empirical sizes, with respect to nominal
sizes o = 0.05 and 0.1, again across 1000 replications, are reported in Tables 3.26-
3.35, for each of the (b, bg) for which biases and standard deviations were given.
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With correct specification, even for b; = by = 0 (Table 3.26), sizes of the infeasible
statistic W; are somewhat too large, and autocorrelation in u, exarcebates this, with
the case b; # 0, by = 0 again worse than b; = 0, by # 0, but not necessarily worse
than by, = by # 0 (Tables 3.27-3.32). Results for o = 0.1 are clearly better than for

= 0.05. Overall, there is improvement as n increases, and even for small n, the
performance of W; seems quite satisfactory. Predictably, mis-specification (Tables
3.33, 3.34) plays havoc, producing sizes that are unacceptably high, especially for
a = 0.05 and b; = b; = 0.9. With over-specification, performance is again good,
though we would not expect high power.

For the feasible statistic Wr, with correct specification and no autocorrelation
in u; (Table 3.26), sizes are worse than for W;, with less evidence of settling down
as n increases and varying more across parameter values, sometimes actually being
less than the nominal values. Indeed, with autocorrelation (Tables 3.27-3.32), sizes
are emphatically too small and mostly further from the nominal values than the
corresponding W are in the opposite direction, though this is by no means always
the case, and for n = 64 and a = 0.05 the results are extraordinarily good. However,
we would not wish to draw over-optimistic general conclusions here, and certainly
not from Tables 3.33, 3.34, where the mis-specification so evident in the results for
W can barely be seen in those for W, superiority of Wy being even more dramatic
when b; = by = 0.9. With over-specification (Table 3.35), Wr mostly beats W7,
especially when o = 0.05. It is possible that the performance of Wg relative to
Wi is not accidental because W) has an asymptotic formula in the denominator.
Certainly, our overall experience with Wy is quite encouraging.

While we have stressed estimation of v, estimates of § and v would also be of
interest in any empirical analysis of fractional co-integration, and so we also give
some space to the performance of § and %, and of Wald tests for § and ~ based on
Theorem 3.2. _

Tables 3.36 and 3.37 report Monte Carlo bias and standard deviation for 6 for
the same values of § (0.4, 0.8, 1), b2 (0, 0.5, 0.9) and n (64, 128, 256) as before, again
based on 1000 replications. However, we fix p = 0.5 here, using the same estimates
of 6 computed in this case for the feasible estimates 7p and Wald statistics Wxr
discussed previously. We report results for minimization of both Sy (d) and S; (d)
(see (3.35), (3.44)), so that Sy (d) with by = 0 and S} (d) with by # 0 both correspond
to correct specification, S; (d) with b, = 0 to over-specification, and Sy (d) with
by # 0 to mis-specification.

Biases based on Sp(d) and S; (d) with b, = 0 increase somewhat with §, but
look satisfactory even for n = 64, and are decreasing in n. For S; (d) with b, = 0.5,
there is some deterioration, but nevertheless performance is still acceptable, but for
by = 0.9, the results are very poor, even for n = 256, though this is not too surprising
in view of the difficulties often caused by a near-unit root. Unsurprisingly, there is
severe bias, increasing with by, when Sp (d) is used with b, # 0. Standard deviations
in the correctly specified and over-specified cases are pretty stable over 6§, but, as
expected, worse in the latter case.
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Tables 3.38 and 3.39 report Monte Carlo sizes of Wald statistics for §
5 o2
A ) (3.51)
[ABA']
®3)

based on Theorem 3.2, with respect to the nominal sizes a = 0.05, 0.1 respectively.
As expected, under mis-specification they are far too large, and this is also the case
using S; (d) with b, = 0.9. Otherwise, while still too large, they are not bad, and
decrease in n, the ones for a = 0.1 being best.

Tables 3.40-3.43 give corresponding results for 7, with b, = by = b taking values
0, 0.5, 0.9, and for the four (v, §) combinations considered previously, the results
(not reported) for the cases corresponding to p = 0, -0.5, 0.75 being very similar
to the ones for p = 0.5. Our estimation procedure being sequential, we consider
two categories, Sy (d) followed by Ty (c) (see (3.37)), and S; (d) followed by T (c)
(see (3.46)), so that in the former case there is correct specification for b = 0 and
mis-specification for b # 0, and in the latter, over-specification for b = 0 and correct
specification for b # 0. The bias and standard deviation results of Tables 3.40 and
3.41 exhibit somewhat some variation across (vy,6), but otherwise the qualitative

conclusions for § still apply. With the Wald statistic

w, = =)

) (3.52)
|ABZ|
2
more variation in sizes is also found, in Tables 3.42 and 3.43, than for Wj, some of
the sizes being smaller than the nominal ones.

3.6 Empirical examples

Using a methodology involving the OLS and NBLS of v, and semiparametric
estimates of v, Robinson and Marinucci (1998) found evidence that 8 < 1/2 in some
of the bivariate macroeconomic series originally examined by Engle and Granger
(1987), Campbell and Shiller (1987), who were investigating only the possibility
of CI(1,1) co-integration. This experience motivates application of our present
approach to the same data. The main departure from the methodology of the
previous section was an attempt at greater realism by determining p in (3.6) from
the data, rather than assuming its value a priori. For this purpose, we need proxies
for the u;;, which can only be obtained by operating on the observed ¥;, z;, series with
preliminary estimates of v, v and 6. To estimate v here we used the OLS 7y, given
by (1.33) (and computed by Robinson and Marinucci, 1998). To estimate v and 4,
we used semiparametric estimates (already computed by Robinson and Marinucci,
1998, Marinucci and Robinson, 2001) in order to provide robustness against a range
of short-memory specifications for u;. Specifically, the estimates of -y and § computed
by these authors were of log periodogram (LP) and semiparametric Gaussian (SG)
type (of the precise form considered by Robinson 1995a,b), using various bandwidths
and based either on raw data/residuals or on first differenced ones followed by adding
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back 1. For asymptotic theory under stationarity we appeal to Robinson (1995a,b),
and under nonstationarity, to Velasco (1999a,b). For preliminary estimates of =,
8, v, sample correlograms and partial correlograms were computed (to lag length
36) in order to identify, in the spirit of Box and Jenkins (1971), the AR orders of
the u;. For each data set, this was done for both the smallest and largest of the
various univariate estimates based on the series z;/residuals provided by Robinson
and Marinucci (1998), Marinucci and Robinson (2001), and implications of both
provided when the results could not be reconciled, recognizing the imprecision in
semiparametric estimation. As in Chapter 2, to check for stability with respect to
the truncation phenomenon, we report computations based on the last n' = n — j
observations, for j = 0,1, ..., 10.

We look first at Engle and Granger’s (1987) quarterly consumption and income
data, 1947Q1-1981Q2 (n = 138). They found evidence of CI (1,1) co-integration,
but did not investigate fractional possibilities. Marinucci and Robinson’s (2001)
analysis tends to support the notion of § = 1, but not of vy = 0, with positive
estimates of « that sometimes fall in the nonstationary region, thereby hinting that
B < 1/2 is possible.

Taking y=consumption, z=income, the OLS of v, from Robinson and Marinucci
(1998), is 0.229. The two preliminary estimates of § taken from Marinucci and
Robinson (2001) were 0.89 (LP applied to first differences of z and adding back 1,
with bandwidth 22) and 1.08 (SG applied to first differences of z and adding back
1, with bandwidth 40). In each case, the corresponding correlograms and partial
correlograms suggested modelling uy; as white noise. The preliminary estimates of
v were 0.19 (LP applied to raw residuals with bandwidth 22) and 0.87 (SG applied
to first differenced residuals and adding back 1, with bandwidth 40). This large gap
results in identification of an AR(1) uy, in the first case, and white noise u;; in the
second. In view of these investigations, we carried out two distinct co-integration
analyses, one with p = 0 in (3.6), the other with p = 1in (3.6) with B; = diag (b;,0).

In case u;; and uy; are both white noise, Table 3.2 reports values of the following
statistics with n replaced by n’ =n -3, 5 =0,...,10: ¥ = U(7, 6) 6 v, and their
estimated standard errors SE(V), SE(E), SE(x ) from Theorem 3.2, $ = $(¥,6),
which is the estimated coefficient of z;(6) in (3.10) for p = 0 with 7, 5, replacing -,
6, and the correlation Corr (€1, €2;) is estimated by

= §(¥, 6) (@n2/@1)7, (3.53)

where

ou =Y (5@ - 96,82®) , 2 =n" Y 226), (3.54)

with Y, meaning summation over the last n’ observations.

As n' falls, 7 and 5 tend to increase, and ¥ to decrease, but there is high stability
for n’ < 133, and generally the changes are insignificant relative to standard errors,
v for n’ = 128 being one standard error larger than ¥ for n’ = 138 (and also
somewhat larger than the OLS). The estimates of § and v are certainly consistent
with § < 1/2. More especially, exploiting the standard errors provided by our
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approach, the hypothesis that § = 1 seems rejectable against § > 1, but (though we
do not report standard errors of § = § —%, which could be computed using Theorem
3.2) there is no evidence against 8 < 1/2. Substantial negative contemporaneous

correlation between uy; and uy; is suggested. Note that dropping the first observation
does not affect 6, as z; (d) = z; for any d.

TABLE 3.2

Consumption and Income: u; white noise

~|

n 138 137 136 135 134 133 132 131 130 129 128
v 2223 222 251 252 .251 .248 .247 242 243 .245 .246
SE(W) | .027 .031 .024 .022 .023 .022 .023 .021 .022 .023 .023
5 1.07 107 109 115 115 117 118 118 118 118 1.18
SE (3) .028 .028 .059 .068 .073 .080 .083 .082 .083 .082 .084
¥ 714 745 715 692 694 696 696 685 .692 .694 .693
SE(¥)| 084 092 .087 .087 .089 .090 .090 .089 .093 .093 .093
7] -.024 -055 -.08 -.090 -.090 -.086 -.085 -.072 -.073 -.073 -.074
T -195 -189 -297 -311 -310 -294 -285 -.247 -251 -250 -.253

The analysis with u;; AR(1) in Table 3.3 presents a very different picture.
Here, we also report b; and vb,, which are the estimated coefficients of y;_,(¥) and
—z;-1(7%) in the regression (cf. (3.10)) used to compute ¥ and @, and @, in r is now

the sample average of the squared residuals from the regression of y(7) ~v(7, 6)z+(7)
on y-1(7) — ¥(%, 6)ze1(7)-

TABLE 3.3
Consumption and Income: u;; AR(1), ug: white noise

n' 137 136 135 134 133 132 131 130 129 128 127

v 163 .257 .264 .267 .263 .265 .258 .261 .262 .263 .262
SE(@) | 179 .055 .054 .057 .053 .056 .051 .056 .055 .055 .054
5 1.07 109 115 115 117 118 118 118 118 118 1.18
SE(~) .028 .059 .068 .073 .080 .083 .082 .083 .082 .084 .084
5 -101 -167 -183 -.184 -184 -179 -193 -180 -.184 -.189 -.186
SE(®)| .234 .187 .181 .183 .18 .193 .180 .193 .192 .191 .192
b 798 843 .842 839 837 .832 .845 .842 .842 .842 .843
u/\bl JAd16 221 .228 .230 .226 .226 .223 .225 .226 .227 .226
7] .009 -088 -102 -104 -.102 -105 -.093 -096 -094 -.095 -.094
T 009 -.128 -122 -.119 -126 -.127 -128 -128 -119 -117 -121

In view of the AR(1) component, we effectively lose one observation, so n’ goes
from 127 to 137, the effect of then dropping the first observation being very striking,
but the estimates subsequently exhibiting little variation across n'. As wuy is still
considered a white noise, the estimates of § are identical to those of Table 3.2,
but estimates of y are all now less than zero, although not significantly, Engle and
Granger’s (1987) CI(1,1) conclusion now being supported. The AR component
in u;, clearly accounts for the bulk of the autocorrelation in co-integrating errors,
resulting in the small estimates of -y, which are based on AR-transformed data. The
ML, which estimates v simultaneously with b; and the other parameters, would
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allow AR and fractional features to compete more favourably, though, as discussed
in the Introduction, it would require much heavier computation. Notice that vb,
looks quite consistent with the values of ¥ and by, possibly providing some support
for the present specification. Note also that the various ¥ are larger than before, but
that, if indeed 8 > 1/2, their standard errors have to be interpreted with caution,
as U is then no longer asymptotically normal.

Engle and Granger (1987) found no evidence of CT (1,1) co-integration between
log M; (y) and log GNP (z), on the basis of 90 quarterly observations, 1959Q1-
1981Q2. Robinson and Marinucci’s (1998) fractional analysis admitted the possibil-
ity of co-integration, with 8 < 1/2. In our preliminary analysis of autocorrelation in
uz, we took from their estimates of § the values 1.22 (SG applied to first differences of
z and adding back 1, using bandwidth 30) and 1.36 (LP applied to first differences
of z and adding back 1, using bandwidth 22), and from their estimates of 4 the
values 0.76, 1.2, both LP estimates but applied respectively to raw residuals using
bandwidth 22, and first differences of residuals and adding back 1, using bandwidth
16. Employing also the OLS of v, 0.643, we found no evidence of autocorrelation
in u;, so proceeded to a co-integration analysis on the basis of p = 0 in (3.6). The
results are reported in Table 3.4. We found large variation across the largest n’, but
a good degree of stability is then achieved, with substantially larger values of § and
% (and of their standard errors). Clearly, § significantly exceeds 1, while 5 does not,
and the resulting B=05—7are extremely close to the threshold value of 1/2. There
is considerable negative correlation between u;; and us;, and for the smaller n’, U is
close to the OLS.

TABLE 3.4
LogM1 and LogGNP: u; white noise

n’ 90 89 88 87 86 85 84 83 82 81 80

v .704 740 .578 .564 608 .640 .638 .644 .643 .649 .658
SE a_('l'/\) .077 145 040 .058 .058 .054 .054 .061 .061 .061 .061

6 _ | 106 106 191 1.8 174 163 164 163 163 161 159
SE(6) | .057 057 .025 .121 .117 .068 .083 .082 .086 .084 .076

¥ 884 928 112 116 111 1.09 1.09 111 110 110 1.09
SE®) | .108 .122 .121 .121 .131 .136 .138 .140 .140 .139 .139

7] -134 -222 -261 -268 -.315 -.352 -.350 -.379 -376 -391 -.408

T -839 -.543 -402 -413 -455 -475 -473 -507 -.504 -515 -522

Finally, we looked at the n = 116 annual observations, 1871-1986, on stock prices
(y) and dividends (z), analysed by Campbell and Shiller (1987). Their findings with
respect to C1 (1,1) co-integration were inconclusive, but Robinson and Marinucci’s
(1998) and Marinucci and Robinson’s (2001) analyses again offered the possibility of
co-integration with § < 1/2. The preliminary estimates of § taken from Marinucci
and Robinson (2001) were 0.86 and 0.95, being SG based on first differences of z and
adding back 1, with bandwidths respectively 30 and 40. The preliminary estimates
of v were 0.57, 0.77, being LP on first differences of residuals and adding back one,
with bandwidth 30, and SG on raw residuals with bandwidth 22, respectively. We
also used the OLS of v, 31. In this case, both 7 estimates suggested white noise
uy¢, while the § estimates variously suggested white noise and AR(1) uy;, but our
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subsequent fractional co-integration analysis produced ¥ and 8 that were too close
to admit the likelihood of any co-integration. Thus, we report, in Table 3.5, only
the results with both u;; and ug, white noise. There is little variation with »’, and
strong support for the unit root hypothesis on §, and, since ¥ is significantly larger
than 1/2 at the 5% level, co-integration with § < 1/2 is certainly a possibility. We
find that ¥ is somewhat larger than the OLS value, though not significantly so.

TABLE 3.5
Stock Prices and Dividends: u; white noise
n' 116 115 114 113 112 111 110 109 108 107 106
v 32.7 327 322 319 317 318 317 320 32.1 321 321
SE(v)| 756 764 780 783 78T 793 791 799 802 799 8.01
5 1.04 104 108 109 109 109 1.09 1.09 110 110 1.10
SE(g) Q077 077 .090 .092 .092 .092 .093 .093 .095 .095 .095
¥ 749 751 751  .752 .751 .752 .752 .751 749 749 749
SE(®) | .114 .116 .116 .117 .116 .117 .117 .116 116 .116  .116
7] -897 -9.52 -9.13 -8.82 -8.56 -8.67 -8.54 -852 -864 -859 -8.69
r -.209 -283 -272 -263 -256 -259 -255 -.252 -255 -253 -.256

3.7 Appendix 3

3.7.1 Appendix 3.A: Proof of Theorem 3.1

We prove first that ¢ is nonsingular, which ensures existence of the inverses in
(3.24). Define

o+ =E (Z;Z;r’) y = (@ By, ) (3.55)
It clearly suffices to show that ®* is positive definite. Defining
[ (73;) , Ze= (@B, Ty (3.56)

for W, = (ZT4(y), uat, uz)', from (3.21) it suffices to show that 3" is positive definite,
and similarly, defining
—++

T -F (R‘Z‘fz';R') , (3.57)

where R is a full rank 3 (p + 1) x 3 (p + 1) matrix whose columns are orthonormal
vectors such that

RZ,=[z(v),m,w], (3.58)
where Z(v) = (T:(7), .., Te—p(7)), T2 = (uot, oy Unpp)s B = (Utey-reyUss—p), it
suffices to show that &' is positive definite. Define the vectors

e()) = (Le>,...,e™)", d(\) = (1 —e*)Pe(N), (3.59)
and the 3(p + 1) x 2 matrix

B = [d&)' Oy @ ] (3.60)
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where (' is here a 1 X (p+ 1) vector of zeros. As in our previous chapter, f(A) is the
spectral density matrix of u;, and note from positive finiteness of (2 and finiteness of
the B; that the smallest eigenvalue of the Hermitian matrix f()) is bounded from
below by a positive constant ¢, uniformly in A. Then we can write

T = / EOF)E(=\)d), (3.61)
which for some ¢ > 0 exceeds
7 A B 0
c EMNE(=-N'drx=c| B I,z 0 (3.62)
- 0 0 I

by a non-negative definite matrix, where 0, A and B are (p+ 1) X (p+ 1) matrices,
having (i, 7)th elements 0, Y ;2 aeasji—j) and a;_;1(j > i) respectively, with a; =
a;(B). It thus suffices to show that A— BB’ is positive definite. But for a (p+1) x 1
vector ¢ = (),

¢'(A— BB = g (@eCorn + - + GesnCi)?, (3.63)

which is positive unless ¢ = 0 because ag/a,—1 = (£ + 5 — 1)/£ is strictly increasing
infd>1for < 1.
We now have to show that

1

—2'Z2(1,6)Zi(1,6) — 59, (3.64)

n~1/2 Y 'Zy(7,6)e10: — aN(0,7), (3.65)
writing ' =31 .. To prove (3.65), note first that it suffices to show

Y23 ' Zie1 04 —a N(O, T), (3.66)
because
~ 2 K ~ 2
E “"_1/2 > {Zt(% 6) — Zt} €1.2,t“ < 71— S'E ”Zt('y,E) - Z,
K P
< =YY e
J=
K P T oo 2
< SRR ae | IF )] dA
Jj=1J -7 |s=t—j
K n o 2
< —=> > a;—0, (3.67)
N t=1s=t

as n — 00, by the Toeplitz lemma, the last inequality following because f()\) is
bounded due to the assumption on the B,. Write Z = Zga + Zy:, where the first
two elements of Z,;, and the last 3p elements of Z;, equal corresponding ones of Z.
Thus Z; is F;—;-measurable and

E (51.2,t2t) l]:t—l) = E(e124Zat) + ZuE (€124 | Fi-1) =0, a.s. (3.68)
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Further,
E (20,27, 1Fi1) = B (0 Zuli) + B (15,%u1) Z
+ZuE (€35,70) + E(€12,) ZuZy, a.s., (3.69)
and so )
~ [E {Ef.z,tZtZt' Ift—l} -FE {E%.Z,tZtZt’}] —5 0, (3.70)
because Z,; and ZyZ;, — E(ZwZ;,) are stationary and ergodic with zero means.
Since (3.69) has expectation ¥, (3.66) then follows from the Cramer-Wold device
and Theorem 1 of Brown (1971), noting that the Lindeberg condition in the latter
reference is trivially satisfied because €, 5,7, is stationary with finite variance. Thus
(3.65) is proved. The proof of (3.64) follows from (3.67) and elementary inequalities.

This concludes the proof of (3.24). The proof of the final statement of the theorem
is omitted as it is standard given (3.24) and its proof.

3.7.2 Appendix 3.B: Definitions of A and B
For brevity we write G = G(3,8), 9 = 9(3,8), H = H(}), ¢ = $(8). We have

T& a4
A= 0 &y a5 |, (3.71)
0 0 a
where
& = 1'GY, ay=-19.357, (3.72)
a3 = 105,583} ~ 10455}, ba= -3, (3.73)
&s = 51835, = -5, (3.74)
in which
9, = G- (gc-écfs'), 9y =G (gd—éﬁ), (3.75)
_ 1 e Ca s
ge = QX' {ZuDul®) + 27,8yl } (376)
A 1 ~ ~ % ~ Nl [~ /
. = Q-2 {2.5)2%8 + 23,927} @, (3.77)
i 1 =
g = Q- 'Zu(6)y:(3), (3.78)
< 1, . Cx =
G = Q=" {Zu®)Z(3.6) + 2.7,8)2.,(0)} @, (3.79)
with
ytc(;)'/) = log(l_l’)yt(;y): (380)
Zi(y) = log(l — L) {z:(¥),0, 2:-1(%), 0, 41-1(%), -+, e—p(7), 0, (1)},
(3.81)
Z4(3) = log(l - L) {o,mt('é),o,mt_l(E),o,...,o,mt_,,(?s’),o}, (3.82)
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and where )

1 1
~ 1~2 ~ I~ ~ _ 1~2
See = =22 Uty Bed = 3 Vicluay  Saa = Y by,

with
B = () ~9.QZ(7,8) ~ Y QZec(),
B = —9,QZ(7,6) — VQZu(d),
Wa = T1a(6) — gaRX(6) - ¢'RXa(8),
za(6) = log(1 - L)z,(),
Xu(6) = log(l — L)X,(d),
¢a = H(ha— Hyd),
he = B S Xul®)od) + X(Bau(®)}
B = RS {Xu@)X(6) + X.5)Xu(®) ) R.
We also have
1 [8243.8Q2:3,8) T [ 6124(%,6)QZ(%,9) |
B = E Z, él.2,t(:‘?1 6)5tc él.Z,t(iaa)ﬁtc )
E20(8)ra £24(8) g
where

€9¢(d) = z:(d) — ¢’ RX;3(d).

119

(3.83)

(3.84)
(3.85)
(3.86)
(3.87)
(3.88)
(3.89)

(3.90)

(3.91)

(3.92)

(3.93)



TABLE 3.6
MONTE CARLO BIAS, b; = by = 0, correct specification

n 64 128 256
plylé6| 71 Ur Vo vr VF Vo 12 Ur Yo
0| .4]-006 -.005 -007]|-001 -001 -.003]-.001 -.002 .000
21 .41|-014 -036 -011| .000 -.004 -.005|-.003 -.009 .000
0 |.4]|.81-006 -.002 -015(-001 -002 -.0091)-001 -001 -.002
J111(-009 -024 -031( .000 -.002 -.0231(-.002 -.003 -.005
0.4 .0001 -117 337 | .005 -.032 .320 | .003 -.009 .308
2| .4(-001 -268 .394 | .009 -143 .384 | .006 -.071 .376
S5 1.4).8].001 -124 .192 | .005 -.029 .155 ]| .003 -.009 .120
7111 .000 -246 .214 | .006 -074 .182 ]| .004 -.024 .143
0.4 .000 .104 -338]|-002 .031 -320{-.003 .007 -.307
21.4] .000 .212 -401/(-005 .137 -.387]-.010 .061 -.377
-51.4].8].000 .091 -193}-002 .027 -151|-003 .007 -.120
711 .000 .181 -220(-003 .065 -.176|-.006 .019 -.142
0| .4] .002 -178 .511 | .003 -.042 .481 | .002 -.011 .460
214} .003 -353 .599 | .007 -209 .578 | .006 -.097 .562
751 .4|.8(.002 -177 .287 | .003 -.043 .226 | .002 -.010 .176
711 .003 -308 .315 1| .005 -120 .258 | .004 -.031 .206
TABLE 3.7
MONTE CARLO BIAS, b; = b; = 0.5, correct specification
n 64 128 256
P v | é vr Up Vo vr Up VYo Ur Up Vo
0|.4]-042 -053 -.008 |-032 .002 -.003]-.006 .012 .00O
2]1.41-069 -131 -015]-.044 -060 -.006 | -.003 -.013 -.001
0 |.4|.8]-042 -139 -017|-.032 .051 -.010]| -.006 .009 -.002
7119-052 -111 -0331-.036 .023 -.024 | -.005 .006 -.005
0.4 .004 -072 .240 | -.004 -.041 .222 | -.006 -.004 .208
21.41].016 -012 .337 | .007 .035 .326 |-.009 .008 .314
b5 (.4]1.8] .004 -065 .164 |-004 -044 .135 | -.006 -.005 .105
J111].009 -073 .204 ) .000 -070 .177 | -.007 -.032 .140
0f.4]-017 .095 -242|-014 -003 -.221| .005 .034 -.208
2| .4]-012 -026 -346|-.019 .011 -.328| .009 .034 -.316
-5|.4).8]-017 .081 -167]-014 .011 -131( .005 .033 -.105
7(111]-015 .058 -212|-016 -.015 -170| .007 .062 -.138
0(.4)-001 -160 .365 |-.006 -.079 .332 | -.009 -.015 .310
2(.441-010 -.122 .513 {-.007 -.036 .487 { -.018 -.033 .469
75]1.4|.81-001 -128 .244 | -.006 -092 .196 | -.009 -.017 .154
711 1-004 -258 .300 | -.006 -.168 .250 | -.012 -.043 .201
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MONTE CARLO BIAS, b; = by = 0.9, correct specification

TABLE 3.8

n 64 128 256
p iv]|6| U Up Vo 12 Ur Do 1% Ur_ Vo
0| .4]-026 -150 -014|-.016 .110 -.005) -.008 .025 .000
21 .41-057 .028 -.027)-.033 -.038 -.012(-009 .013 -.001
0 |.4]|.8]-026 .019 -025)-016 .052 -.014|-.008 -.011 -.003
J11(-036 -012 -043|-.022 -153 -.030( -.008 .001 -.006
0f.4)] .016 .050 .158 | .004 -.023 .137 | .005 -.003 .120
21.4] .028 -094 .281 1} .010 .135 .267 | .008 .086 .247
5|14 .8] .006 -109 .140 | .004 -052 .116 | .005 -.020 .090
J11( .09 -287 .195 | .006 -.191 .170 ( .006 -.034 .134
0| 4(-015 -001 -.161]-.003 -.025 -.136(-005 .010 -.120
2] .4(-041 .130 -293 | -.008 -023 -266]|-006 -.140 -.248
-51.4].8}-015 .066 -.147]-003 .024 -113}-.005 .040 -.088
Jg111-024 .209 -207(-005 .121 -.166| -.006 .136 -.131
0.4 .027 .037 .237 | .010 -025 .202 | .007 .018 .176
2| .4 .047 -025 421 | .020 .093 .390 | .010 .134 .364
751 .41 .8 .027 -194 .206 | .010 -.038 .165 | .007 .005 .129
711 .03 -483 .283 | .013 -270 .236 | .008 -.116 .192
TABLE 3.9
MONTE CARLO BIAS, b, = 0, by = 0.5, correct specification
n 64 128 256
p ly|6]| Ur Up To Ur UF Vo 2 Up To
0|.4|-001 -003 -004(.001 .004 -001] .001 .001 .000
2|4 .001 -016 -008| .004 -001 -003| .003 .009 .000
0]|.4|.8]-001 -022 -008]|.001 .005 -005| .001 .001 -.001
7111 .000 -044 -017(.002 .012 -012 ] .002 -.001 -.002
0|4 .006 .009 .142 ]).004 -.003 .129 | .001 .001 .119
2|.4( .016 .028 .201 | .010 -013 .18 | .004 .000 .180
b5 |.4|.8| .006 .010 .082 (.004 .001 .067 | .001 .001 .052
11 .009 .002 .102 | .006 -.006 .088 | .002 -.004 .069
0] .4(-001 .001 -142|.000 .005 -.128 | .000 .004 -.119
2|1.4|-002 -031 -203|.001 .011 -189|-001 .021 -.181
-5|1.4].8]-001 -003 -083|.000 .008 -.065| .000 .004 -.052
J711]-001 -009 -106|.000 .015 -.085( .000 .017 -.069
0.4 .004 .005 .216 {.002 .002 .192 | .000 .000 .178
2{.4] .011 .042 .305 | .006 -.004 .283 | .001 -.017 .269
J75(.41.8] .004 .002 .123 |.002 .000 .097 | .000 .001 .076
711 .006 -012 .151 |.003 -.018 .124 | .001 -.010 .100
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TABLE 3.10
MONTE CARLO BIAS, b; =0, b, = 0.9, correct specification

n 64 128 256
p iy 6]| 71 vp  To U1 Vr Vo 12 Tp  Up
ol.47{-001 .03 -001)-001 .002 .000}| .000 .001 .000
21.4(-002 .002 -003|-002 .002 -001{ .001 .001 .000
0 |.41.8]-001 .002 -003|-001 .001 -001| .000 .001 .000
J7(111(-001 .03 -049-.001 -001 -003| .000 .001 -.001
0.4} .002 -007 .015 | .001 -008 .011 | .c00 -.009 .009
21.4| .006 -019 .034 | .002 -017 .028 | .000 -.016 .025
b5 1.4|.8}.002 -005 .012 | .001 -005 .010 | .000 -.005 .008
g1 .003 .002 .020 | .001 .000 .016 | .000 -.002 .013
0(.4(-001 .012 -014) .000 .010 -011}| .001 .010 -.009
2| .41-004 .026 -033| .000 .020 -.028 ] .002 .017 -.025
-51.4|.8(-001 .005 -013| .000 .006 -.009 | .001 .006 -.007
J7114-002 .001 -021| .000 .002 -.016| .001 .003 -.012
0.4 .002 -016 .022 | .000 -.014 .016 | .000 -.013 .014
21.4| .0056 -035 .050 | .001 -.028 .041 |-.001 -.025 .037
751 .41.8).002 -009 .018 | .000 -.008 .014 | .000 -.007 .011
7111 .003 .003 .029 | .000 -004 .023 | .000 -.004 .018
TABLE 3.11
MONTE CARLO BIAS, b, = 0.5, by = 0, correct specification
n 64 128 256
g lvl6| wr Ur Vo Uy Ur Do 174 17 Vo
0.4 .008 .029 -012| .004 -.019 -.005]| .004 .003 .000
2]1.41 .012 .067 -021| .010 -016 -.009 ] .005 -.022 -.002
0}{.4|.8| .008 .033 -020| .004 -.023 -.018| .004 .003 -.003
g1 .010 .60 -061| .006 -.022 -.046| .005 -.002 -.009
01.44 .019 -162 429 | .007 -101 .416 | .000 -.037 .403
2.4 .076 -144 .525 | .036 -.128 .526 | .013 -.097 .522
S5 1.4).8].019 -162 .332 | .007 -103 .280 | .000 -.037 .221
g1 .040 -194 403 | .018 -.140 .354 | .005 -.065 .282
0.4 .014 229 -4371| .011 .109 -418 | .007 .049 -.404
21.41(-037 .191 -5441-.009 .140 -.534| -.008 .098 -.525
-5|.4].8] .014 .216 -339) .011 .110 -.274| .007 .049 -.222
711 ]-006 .256 -.419| .003 .138 -.342 | .001 .082 -.280
0].4| .002 -301 .654 |-.003 -.129 .625 | -.004 -.049 .603
214 .01 -260 .800 | .028 -201 .792 | .011 -.147 .781
751 .4 .8 .002 -300 .496 | -.003 -124 .408 | -.004 -.048 .325
gJ11).029 -325 .594 | .009 -.172 .501 | .002 -.098 .407
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MONTE CARLO BIAS, b; = 0.9, by = 0, correct specification

TABLE 3.12

n 64 128 256
p |yl 6] Wi Tr Do Ur Ur Yo Uy Urp Vo
0|.4] .006 -036 -.039| .006 .045 -015| .005 .013 -.002
21 .4(-002 -056 -.065| .009 .020 -.030| .005 -.001 -.005
0|.4|.8] .006 -053 -119| .006 .053 -.082| .005 .014 -.013
711 .003 -063 -251{ .006 .039 -.2101| .005 .009 -.038
0|4 .1290 .325 .714 | .052 .165 .740 | .018 .050 .741
2.4 .258 .223 .970 | .126 .141 1.07 | .056 .061 1.12
51 .4(.8}).129 333 .994 | .0562 .167 .981 | .018 .055 .854
g1 .177 240 142 | .079 .148 1.46 | .032 .053 1.27
0} .4|-118 -457 -758|-.040 -144 -.755 1| -014 -.043 -.746
2| .4|-264 -403 -1.05]|-110 -153 -1.11}-.054 -094 -1.14
-51.4|.8]-118 -475 -1.05|-.040 -.143 -965| -.014 -.045 -.852
g11¢f-172 -397 -1.51 | -.066 -.159 -1.41]-.029 -068 -1.26
0.4} .167 419 109 | .065 .192 1.11 | .022 .036 1.11
21.4) .363 379 148 | .172 213 1.61 | .079 .064 1.68
751 .4 .8 .167 423 148 | 065 .191 142 | .022 .036 1.25
gJ114).242 376 208 | .106 .166 2.05 | .043 .049 1.83

TABLE 3.13

MONTE CARLO BIAS, b; = by = 0.5, mis-specification

n 64 128 256
p|lv]| 6 24 Ur Vo Ur Up Vo Uy 73 Vo
0O|.4(-005 .003 -008( .000 .000 -.003| .000 -.004 .000
2]1.4|-010 -027 -016]| .002 -002 -.006|-.001 -015 -.001
0||.4]|].8]-00 .009 -017| .000 .001 -010]| .000 -.002 -.002
711(-007 -004 -033| .000 .005 -.024| .000 -.015 -.005
0.4 .004 -240 .240 | .006 -.188 .222 | .003 -.096 .208
2|1 .4 .008 -361 .337 | .013 -365 .326 | .007 -.343 .314
S5 1.4).8] .004 -352 .164 | .006 -.230 135 .003 -140 .105
711 .006 -808 .204 | .008 -.842 177 .004 -866 .140
0.4} .000 .176 -.242|-001 .174 -221|-.003 .101 -.208
2| .4]| .000 .287 -.346(-.003 .356 -.328 1 -.009 .304 -.316
-51.4.8) .000 .299 -167|-.001 .244 -132|-003 .146 -.105
(1| .000 .790 -212|-.002 .818 -170|-.005 .883 -.138
0.4 .004 -318 .365 | .003 -.217 .332 | .002 -.117 .310
21 .4 .009 -500 .513 | .008 -.564 .487 | .006 -.493 .469
751 .4 .8 .004 -457 .244 | .003 -280 .196 | .002 -.154 .154
711 .006 -120 .300 {( .005 -1.18 .250 | .003 -1.18 .201
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TABLE 3.14
MONTE CARLO BIAS, b; = by = 0.9, mis-specification

n 64 128 256
p |6 Vi Tr Vo Ur Up  To | Up Ur Vo
o0l .41]-013 -003 -.014]|-.007 .007 -.005}-001 -.006 .000
211.4]-03 -.033 -027|-015 -002 -.012|-.002 -.014 -.001
0| .4]|.8|-013 .025 -.0251}-007 .010 -014]|-001 -.009 -.003
JgJ111]-020 .010 -.043]-.010 .006 -.030{-.001 -.005 -.006
0.4} .004 -284 .158 [ .005 -.144 .137 | .002 -.073 .120
21 .41 .013 -463 .281 | .016 -.347 .267 | .006 -.278 .247
S5 1.4]1.8] .04 -130 .140 | .0056 -1.27 .116 | .002 -1.26 .090
7111 .009 -1.39 .95 .009 -1.34 .170 | .004 -1.38 .134
0f.4]-005 .236 -.161]|-003 .142 -136{-001 .068 -.120
21.41-013 .393 -293(-.007 .316 -266]-004 .250 -.248
-5]1.41.8}1-005 126 -147]|-003 1.25 -113|-001 1.24 -.088
.7]111]-008 138 -207]|-004 135 -166|-002 136 -.131
04| .002 -38 .237 [ .003 -167 .202 | .000 -.095 .176
2| .4 .006 -654 421 | .008 -.534 .390 { .000 -.402 .364
751 .41.81.002 -190 .206 | .003 -1.76 .165 | .000 -1.73 .129
711 .003 -206 .282 ( .006 -2.01 .236 | .000 -2.02 .192
TABLE 3.15
MONTE CARLO BIAS, b; = by = 0, over-specification
n 64 128 256
P vy |6 vr Up Vo Uy Up 7o Ur Ufp TUo
0[.4]-032 -138 -.007|-006 .013 -.003| .007v .006 .000
2].4]-036 .007 -011| .023 .021 -.005| .027 .024 .000
0].4|.8]-032 -091 -.015|(-.006 .000 -009 | .007 -.001 -.002
J711(-034 -036 -.031(.003 .000 -023]| .014 -.009 -.005
0{.4) .006 .040 .337 ( .017 .044 .320 | -.005 .014 .308
214 .021 -122 .394 | .061 .020 .384 | .004 -.036 .376
S5 .4].8] .006 .019 .192 | .017 .021 .155 |-.005 .007 .120
171 .012 -133 .214 | .032 .043 .182 | -.001 .008 .143
0.4 .020 -.047 -338{ .013 .032 -320( .021 .018 -.307
2.4 .065 -129 -4011| .042 .137 -387| .035 .086 -.377
-51.41.8] .020 -053 -193| .013 .045 -.1511} .021 .033 -.120
J411(.035 -044 -220| .022 .028 -176)| .026 .062 -.142
0].4|-018 .002 .511 [ .002 .08 .481 | -.016 .001 .460
2| .4(-034 -083 .599 [ .016 -.127 .578 | -.021 -124 .562
751.4).8]-018 -016 .287 | .002 .058 .226 | -.016 -.013 .176
11 (-023 -118 315 | .007 -.051 .258 | -.017 -.037 .206
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MONTE CARLO S.D., b; = by = 0, correct specification

TABLE 3.16

n 64 128 256
p |Y|6| 71 Vr Vo | V1 Vr Vo | Vi VUr Vo
0| .4].212 .383 .107| .128 .160 .073 | .086 .092 .049
21 .4] .48 103 .141 1} .310 .559 .105| .217 .318 .076
0 41.8].212 .387 .171 | .128 .159 .128 | .086 .092 .093
7111.305 .679 .3221.189 .323 .278 ( .130 .153 .214
0[.4].184 .566 .112|.113 .218 .084 | .073 .098 .063
21 .41 .426 1.12 .136 | .276 .650 .104 | .187 .366 .078
S 1.4 .8].184 .569 .160 | .113 .194 .127 | .073 .098 .092
J111].266 .913 .283 | .168 .376 .247 | .112 .176 .192
01.4|.178 .528 .109 | .112 .227 .084 | .076 .101 .065
21 .41.419 1.01 .131 ] .274 .614 .102 ) .193 .359 .077
-5 .4.8].178 .485 .154 | .112 .221 .122 | .076 .103 .092
71 1.259 758 .270 | .167 .361 .237 | .116 .185 .188
01.4].140 .711 .114 | .087 .237 .091 | .058 .102 .075
21 .41.328 1.08 .116( .213 .706 .092 | .146 .426 .073
75 .4 .8].140 .734 .140 | .087 .260 .111 | .058 .101 .086
g1 1].203 973 .226  .129 .537 .188 | .088 .197 .152
TABLE 3.17
MONTE CARLO S.D., b; = by = 0.5, correct specification
n 64 128 256

plv|6| Vi Vr Vo | Vi Vr Vo | V1 Tr Vo
0]|.4]150 3.09 .127| .873 1.36 .084 | .526 .768 .057
21.4129 435 .197|1.71 280 .145|1.06 169 .106
0 41.81150 3.10 .195| .873 1.48 .141 | .526 .746 .099
111196 387 .348 | 1.13 217 .202( .693 1.14 .219
0].4]134 266 .123(.779 1.51 .089 | .472 .673 .064
21.4(261 402 .183 | 1.55 2.59 .140 | .950 1.42 .102
S| .4.8]11.34 271 176 .779 1.55 .133 | 472 .666 .094
J11(174 353 304102 198 .257 | .623 1.04 .196
0f.4113 284 .118(.766 1.32 .086 | .468 .713 .064
21 .41265 427 176|152 220 .135].952 1.56 .100
-51.4|1.8{13 298 .168|.766 1.33 .128 | .468 .752 .093
ST 1176 366 .287|1.00 1.75 .245] .620 1.10 .192
0].4]106 217 .114 | .595 1.04 .086 | .365 .469 .068
2]1.4)208 306 .150( 1.19 207 .115|.738 1.23 .088
751.41.8[1.06 220 .143|.595 1.10 .108 | .365 .479 .082
711138 274 .242 | .783 1.63 .194 | .483 .784 .154
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TABLE 3.18
MONTE CARLO S.D., b; = by = 0.9, correct specification

n 64 128 256
ply| 6 71 Up Vo vr VR Vo vr Up Vo
0].4]106 4.16 .192}.553 2.10 .122 | .306 143 .079
21.4]1204 528 354|110 3.06 .253|.634 193 .177
0 |.4|.8]106 414 .282|.553 231 .191|.306 1.24 .120
11137 422 483 1.729 2.10 .370 | .411 1.01 .249
01| .4].901 338 .172| 472 2.18 .115 ) .266 1.23 .075
21.4]117 446 .319].953 3.01 .233|.553 1.65 .161
S| .4(.8(1.901 3.51 .241 | 472 215 .170 | .266 1.19 .109
7111117 410 .405) .625 239 .313}.358 1.02 .219
0].4).918 347 .164 | .480 1.93 .112 | .271 1.16 .075
21.4(1178 5.12 .300].961 2.85 .225 ) .557 1.67 .159
-5|.4(.8]1.918 373 .225| .480 190 .161 | .271 1.09 .108
7111119 382 3714 .633 215 .296 | .363 1.26 .216
0].4].717 275 .138|.372 1.67 .093 | .212 .946 .066
21.41139 393 .248.747 226 .179 | .441 137 .131
751 .4 .8]1.7117 322 195 | .372 1.52 .128 | .212 .823 .088
71 1(1.930 3.38 .331 1 .491 1.83 .232 | .286 .938 .169
TABLE 3.19
MONTE CARLO S.D., b; =0, b, = 0.5, correct specification
n 64 128 256
p || é vy Up To v Up Yo Uy Ur Vo
0} .4(.156 .529 .074 | .088 .219 .047 | .054 .075 .031
2| .4].428 101 .107 ] .262 .611 .076 | .168 .284 .055
0 |.4].8].156 .508 .100| .088 .185 .071 | .054 .071 .050
g1 .244 743 177 | 144 359 .147 | .090 .146 .110
0].4].128 .307 .074 | .077 .156 .052 | .046 .062 .037
.21.41.350 .759 .101 | .225 491 .076 | .143 .271 .055
b5 |4 .8(.128 .322 .090 | .077 .146 .067 | .046 .066 .047
7] 1].202 .560 .154 | .124 .297 .129 | .077 .152 .098
0|.4].124 .296 .071 | .077 .152 .051 | .048 .071 .038
2] .4].348 .691 .098 | .225 .463 .073 | .145 .277 .055
-51.4).8].124 .290 .086 | .077 .179 .065 | .048 .071 .047
11 4.196 .470 .146 | .124 .296 .123 | .079 .162 .096
0j.4].100 .245 .074 | .058 .116 .052 [ .036 .056 .041
21.41.2719 .596 .0891}.171 .382 .066 | .111 .256 .051
75 .41 .81.101 .243 074 | .058 .137 .054 | .036 .057 .041
1 141.158 442 123 | .094 .267 .097 | .060 .126 .077
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TABLE 3.20
MONTE CARLO S.D., b; =0, b, = 0.9, correct specification

n 64 128 256
P ¥y | 6 Vr Ur Vo Vr Vg Vo vy Vg Vo
0].4]|.058 .088 .030]|.029 .046 .016 | .015 .026 .009
21 .47.174 112 .049 | .092 .057 .029 | .053 .032 .019
0 {.4|.8].0s8 .072 .035|.029 .036 .021 | .015 .019 .012
711 ].094 .142 .058 | .048 .056 .040 | .027 .027 .025
01].4].049 .077 .025|.026 .040 .014 | .014 .022 .008
21 .41.149 .099 .042 | .084 .052 .027 | .048 .029 .017
S5 |.4(.81.049 .058 .029].026 .031 .018 | .014 .017 .011
711 1.080 .104 .048 | .044 .050 .034 (| .024 .024 .022
0] .4]|.047 .083 .025|.024 .039 .014{.013 .022 .009
21.41.143 .098 .040 | .080 .049 .026 { .046 .029 .017
-51.4].8].047 .068 .028 | .024 .031 .018 { .013 .017 .011
711077 112 .045 ] .042 .049 .032 | .023 .024 .022
0}.4].040 .064 .021(.019 .031 .011{.011 .019 .007
21.4].122 .087 .034]| .063 .043 .021 | .036 .026 .014
751 .41 .8(1.040 .049 .024|.019 .028 .014 | .011 .014 .009
J7(1].066 .126 .039 ] .033 .045 .025{.019 .020 .017
TABLE 3.21
MONTE CARLO S.D., b; = 0.5, b, = 0, correct specification
n 64 128 256
plyl 6| 7 UfR Vo v Up 7o vr Vp Vo
0| .4/.593 125 .164 | .367 .571 .115 | .229 .279 .079
21.411.03 171 .246 | .660 1.06 .191 | .425 .721 .143
0 [4].8].593 125 .331| .367 .580 .255 | .229 .279 .186
711 ].726 148 .633 | 457 .831 .553 | .289 .428 427
0].4).507 112 .157} .316 .614 .117 | .196 .281 .086
2].4(.908 166 .229 | .559 1.01 .179 | .357 .628 .134
5| .4|.8(.507 111 .305|.316 .612 .244|.196 .279 .179
7)1 (.628 1.39 .557 | .387 .797 .490 | .242 439 .383
0).4].500 1.07 .152( .315 .613 .115 | .200 .312 .087
21.4(.886 158 .221|.565 1.06 .173 | .364 .652 .129
-5|.4].8/.500 1.03 .292].315 .615 .235|.200 .311 .178
7|1 1].614 1.38 .528|.390 .800 .469 | .248 .479 .375
0).4].398 112 .137| .243 .617 .110 | .156 .262 .089
2|.4].708 143 .182 | 424 .862 .143 | .277 .612 .107
A5 .41.8).398 1.13 .249 | .243 .583 .202 | .156 .256 .160
JT11 ) .485 1.27 441 200 .716 .372 | .187 .450 .302
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TABLE 3.22
MONTE CARLO S.D., b = 0.9, by = 0, correct specification

n 64 128 256
p|v|6| 71 Tr Vo | V1 Vr Vg | VI Vr Vo
0}.4].666 208 .4661 .399 1.22 3731} .239 .560 .280
21.4]114 265 .864|.711 1.66 .764 | .443 .882 .615
0|.4|.8]1.666 2.05 1.36].399 1.20 1.18 | .239 .567 .907
711 1.813 224 270 .496 133 2601 .301 .655 2.09
0|.4].615 206 .450 | .358 1.09 .353 | .205 .468 .262
2(1.4]1109 255 .849 | .657 1.62 .729 | .408 .816 .585
S5 1.4).8]1.615 215 124 | .358 1.10 1.08 | .205 .486 .816
711 ].768 225 238 .451 1.28 2.27 | .268 .586 1.85
0|.4].608 216 .434| .346 1.13 .338 | .210 .510 .249
214110 272 .831|.642 1.51 .714 | .403 .903 .555
-5(.4].8}1.608 221 118 .346 1.14 1.04 | .210 .515 .818
711 1.761 234 223 | 438 1.34 216 .270 .678 1.81
0 .41.529 2.01 .383|.205 1.02 .297|.166 .349 .217
21.4].986 267 .769|.590 1.55 .652 | .362 .787 .508
75 .4].8]1.529 2.05 .974].295 .941 .835 .166 .359 .678
J111.681 224 1891 .391 1.13 1.72| .228 .521 1.44
TABLE 3.23
MONTE CARLO S.D., b; = b, = 0.5, mis-specification
n 64 128 256
P vy 6 vV VF Vo Vi VFp Vo Vr Vr Vo
0| .4].228 .542 .127 | .137 .338 .084 | .090 .150 .057
21 .4].541 125 .197 ) .346 .834 .145 ] .238 .544 .106
0 |.4].8].228 .620 .195( .137 .358 .141 | .090 .171 .099
11 (.333 1.13 .348 | .207 .778 202 ] .139 .525 .219
0f1.4].195 .840 .123|.121 .556 .089 | .077 .245 .064
21 .4].468 1.28 .183| .302 .881 .140 | .204 .685 .102
b5 .4].8].195 919 .176 | .121 .578 .133 | .077 .316 .094
J711).287 130 .304 | .181 1.03 .257 | .119 .885 .196
0|.4).18 .643 .118 | .120 .498 .086 | .080 .313 .064
21.4|.457 114 .176 | .304 .868 .135 ] .209 .668 .100
-5 .4(.81.18 .799 .168 | .120 .614 .128 | .080 .375 .093
g1 11.278 1.27 287 ( .181 1.01 .245 ] .123 .907 .192
0|.4].148 956 .114 | .091 .632 .086 | .061 .259 .068
21.4].356 124 .150 | .230 1.00 .115] .159 .803 .088
75| .41.8].148 110 .143]|.091 .691 .108 | .061 .290 .082
J111.217 145 .242 |1 137 1.28 194 | .094 1.17 .154
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MONTE CARLO S.D., b; = by = 0.9, mis-specification

TABLE 3.24

n 64 128 256
p 0 é vy Vg Vo vr Vp Yo vr Vp Vo
0].4].318 .571 .192].189 .290 .122|.116 .150 .079
21 .41 .844 131 .354 | .540 .827 .253 | .357 .489 .177
0|.4].8].318 111 .282| .18 .734 .191 | .116 .520 .120
J7111.49 171 4831 .303 1.09 .370 | .194 .743 .249
0|.41].271 .807 .172| .171 .438 .115| .103 .214 .075
21.41.732 133 .319| .489 .876 .233 |.313 .628 .161
S| 4]1.8]1.271 137 .241(.171 1.11 .170).103 1.03 .109
g1 1] .422 1.57 4051 .275 1.03 .313 | .170 .766 .219
0|.4].259 .729 .164 | .166 .451 .112|.105 .221 .075
21 .41.701 1.22 .300 | .479 .841 .225] .321 .640 .159
-5(.4(.8].259 130 .225|.166 1.10 .161 | .105 1.01 .108
711 .403 1.583 .374 | .267 1.05 .296 | .175 .792 .216
0].4].213 100 .138].125 .454 .093 | .082 .263 .066
2.4 .572 128 .248|.360 .983 .179 | .248 .773 .131
S751.4|.81.213 1.58 .195 | .125 1.44 .128 | .082 1.42 .088
7(1].330 136 .3314.201 1.02 .232|.135 .831 .169

TABLE 3.25

MONTE CARLO S.D., b; = by = 0, over-specification

n 64 128 256
plY|8|l VI Yp Vo | V1 Ur Vo | U Vr Vo
0|.4]204 446 .107]1.19 223 .073 | .748 .929 .049
2]1.41403 698 .1411237 4.40 .105( 1.52 270 .076
0 [4|.8]1204 440 .171{1.19 224 .128|.748 .914 .093
7111266 539 .32211.56 3.38 .278 | .988 1.59 .214
0).4|174 322 .11211.06 1.79 .084 | .668 .907 .063
2141339 604 .136] 212 390 .104 | 1.35 239 .078
bS5 |1 .41.8|174 347 .160} 1.06 1.72 .127 | .668 .899 .092
7111226 453 .283 | 140 2.85 .247 | .881 1.44 .192
0].4]|178 355 .109]1.07 191 .084 | .670 .925 .065
2141346 548 .131} 214 392 .102|1.36 233 .077
-51.4].8]178 342 .154} 1.07 1.92 .122| .670 .971 .092
711]230 452 270 | 1.41 2.85 .237 | .887 1.53 .188
0| 4142 273 .114 | .831 1.63 .091 | .519 .651 .075
21 .4]1274 451 .116 | 1.67 3.24 .092 | 1.05 1.85 .073
75 .4|.8]1142 276 .140| .831 1.57 .111 | .519 .636 .086
J711]183 348 .226)1.09 231 .188 | .686 1.06 .152

129




TABLE 3.26

EMPIRICAL SIZES OF W; AND Wr, b; = by = 0, correct specification

a .05 .10
n 64 64 128 128 256 256 64 64 128 128 256 256
plylé6| Wy Wp W, Wp Wi Wp | Wy Wp W; Wrp W; Wpg
0| .4|.078 .061 .053 .056 .057 .059 | .136 .122 .112 .094 .125 .114
21 .41].077 .045 .054 .032 .062 .034 | .133 .083 .104 .072 .114 .069
0\{.4/.81.078 .069 .053 .055 .057 .059 | .136 .125 .112 .087 .125 .114
27111.076 .08 .058 .057 .053 .053 | .134 .107 .105 .103 .120 .098
0] .4].074 .057 .055 .061 .055 .065 | .136 .089 .119 .092 .117 .111
21 .41.073 .105 .055 .082 .054 .079 | .141 .153 .120 .128 .111 .112
S5 |.4(.8].0714 .059 .055 .057 .055 .066 | .136 .089 .119 .094 .117 .111
J1171.068 .088 .055 .076 .050 .069 { .140 .125 .121 .117 .116 .109
0].4].076 .063 .072 .061 .068 .068 | .124 .103 .124 .107 .122 .118
2(.4].076 .123 .059 .106 .058 .084 | .134 .168 .117 .145 .130 .119
-51.4].81.076 .071. .072 .059 .068 .069 | .124 .101 .124 .105 .122 .118
g1 11.0v3 .102 .066 .08 .060 .078 | .1290 .144 .118 .142 .128 .117
0|.4].075 .052 .059 .054 .063 .070| .136 .083 .112 .097 .116 .111
2]1.4).073 .168 .058 .136 .069 .094 | .143 .207 .113 .166 .116 .132
751 .41.8]1.075 .049 .059 .054 .063 .073 | .136 .083 .112 .097 .116 .110
J7111.076 .120 .060 .105 .064 .078 | .143 .155 .113 .138 .110 .117

TABLE 3.27
EMPIRICAL SIZES OF W; AND Wp, b; = by = 0.5, correct specification

a .05 .10
n | 64 64 128 128 256 256 64 64 128 128 256 256
ply|61 W, Wgp Wy Wgp W; Wrp | W, Wgp Wi Wp Wi Wr
0f(.4(1.100 .036 .078 .046 .060 .034 | .151 .070 .127 .079 .103 .066
21.41.097 .035 .065 .034 .064 .024| .144 .070 .126 .062 .098 .051
0 (.4).8].100 .040 .078 .041 .060 .032 | .151 .073 .127 .080 .103 .067
J711].103 .039 .071 .041 .057 .028 | .154 .077 .130 .073 .101 .055
0.4].092 .030 .077 .033 .068 .037 | .156 .062 .129 .066 .121 .081
.2|.4].08 .043 .076 .048 .060 .042 | .157 .084 .129 .080 .105 .077
o | .4(.8].092 .027 .077 .030 .068 .041 | .156 .058 .129 .071 .121 .074
7111.094 .042 .082 .042 .060 .038 | .159 .073 .128 .062 .122 .073
01].4).093 .046 .075 .045 .058 .041 ] .151 .072 .133 .080 .109 .073
2).4).080 .046 .076 .051 .053 .039 | .140 .079 .138 .095 .107 .079
-5(.41.8].093 .049 .075 .052 .058 .038 1} .151 .077 .133 .089 .109 .067
J711].091 .054 .077 .048 .052 .041 | .147 .082 .131 .087 .105 .069
0.4].099 .038 .068 .036 .068 .038 | .165 .067 .124 .065 .114 .073
21.4].101 .056 .069 .067 .062 .075| .164 .093 .124 .103 .112 .114
75|41 .8(1.099 .038 .068 .032 .068 .039 | .165 .074 .124 .063 .114 .074
7111.094 .050 .073 .044 .060 .049 | .165 .093 .126 .077 .114 .089
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TABLE 3.28 _
EMPIRICAL SIZES OF W; AND Wk, b; = by = 0.9, correct specification

a .05 .10
n| 64 64 128 128 256 256 64 64 128 128 256 256
plylé|we We Wi We Wi We|Wi Wgp Wi We Wi We
0| .4].122 .038 .080 .035 .077 .025.187 .066 .150 .064 .129 .053
21 .41(.125 .033 .092 .023 .063 .024 | .191 .069 .146 .051 .130 .050
0|.4].81.122 .032 .080 .033 .077 .033 | .187 .068 .150 .068 .129 .064
JJ111].125 .043 .079 .035 .075 .018  .192 .073 .146 .055 .122 .055
0| .41].112 .027 .097 .031 .067 .030 | .177 .054 .160 .064 .145 .063
21 .41.118 .035 .094 .042 .071 .055 | .182 .069 .161 .084 .139 .096
Si1.4].81.112 .038 .097 .035 .067 .036 | .177 .080 .160 .069 .145 .064
g1 141.121 .048 .090 .039 .073 .055 | .179 .075 .165 .070 .133 .081
0| .4].114 .037 .092 .034 .084 .028 | .184 .080 .161 .071 .132 .063
21.41.109 .048 .098 .046 .074 .054 | .180 .088 .158 .088 .138 .101
-51.4]1.8].114 .054 .092 .039 .084 .036 | .184 .079 .161 .070 .132 .068
J111.112 .060 .097 .044 .082 .053 | .182 .089 .161 .072 .136 .093
o(.41].115 .035 .100 .026 .079 .035| .185 .069 .161 .069 .151 .059
.21.41.107 .057 .096 .063 .081 .105 ] .188 .108 .162 .104 .146 .156
5] .4 .8(.115 .047 .100 .033 .079 .033 | .185 .073 .161 .062 .151 .061
2711 (.112 .046 .101 .059 .079 .061 | .181 .090 .159 .087 .141 .106

TABLE 3.29
EMPIRICAL SIZES OF Wy AND Wp, b; = 0, by = 0.5, correct specification

o .05 .10
n 64 64 128 128 256 256 64 64 128 128 256 256
P Y ) W] WF W] WF W[ Wp W] WF W[ Wp W] WF
0| .4].069 .010 .067 .022 .059 .028 (.113 .018 .122 .048 .106 .072
21 .41.066 .020 .064 .023 .065 .018 | .114 .035 .120 .041 .112 .038
0}|.4(.8].069 .010 .067 .017 .059 .029 (.113 .018 .122 .050 .106 .068
71 11.070 .015 .067 .027 .065 .023 | .114 .034 .125 .054 .107 .062
0|.4].062 .020 .054 .024 .049 .034 | .124 .042 .115 .053 .105 .054
.21.4].061 .044 .053 .064 .049 .059 | .127 .078 .110 .091 .103 .096
S5 1.4(.8].062 .019 .054 .022 .049 .037 | .124 .039 .115 .051 .105 .057
.71 1|.066 .040 .051 .045 .047 .054 | .127 .076 .118 .069 .102 .076
0| .4|.067 .017 .067 .018 .05% .033}.125 .033 .117 .045 .100 .059
21 .4|.067 .0563 .063 .063 .055 .059 ) .119 .082 .119 .095 .094 .088
-5}1.4|.8].067 .013 .067 .019 .055 .031{ .125 .035 .117 .046 .100 .054
711 ].067 .045 .066 .038 .058 .047 .122 .071 .120 .074 .103 .073
0].4).073 .024 .055 .025 .054 .022 | .145 .037 .107 .053 .096 .043
21.4/(.069 .108 .054 .126 .057 .113 | .131 .158 .104 .164 .099 .151
751 .41 .8(.073 .031 .055 .024 .054 .023 | .145 .051 .107 .056 .096 .051
g1 1].067 .082 .058 .055 .051 .0651 .137 .117 .106 .096 .103 .106
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TABLE 3.30

EMPIRICAL SIZES OF W; AND Wg, by =0, by = 0.9, correct specification

o .05 .10
n 64 64 128 128 256 256 64 64 128 128 256 256
plylé6 (Wi Wp W Wrp Wy Wp | Wi Wgp W, Wrp W; Wp
0f.4(.074 .002 .064 .001 .046 .000 | .122 .002 .114 .001 .099 .001
2]1.4].0714 .000 .064 .005 .053 .002} .125 .004 .113 .008 .097 .010
0|.4].8].0714 .004 .064 .005 .046 .014 1] .122 .012 .114 .010 .099 .028
J7111.0714 .017 .063 .032 .052 .028 1 .123 .036 .113 .052 .096 .064
0|.41].067 .000 .074 .000 .053 .000 | .122 .000 .127 .004 .122 .003
2|(.4].066 .000 .079 .001 .054 .004|.118 .002 .124 .009 .110 .010
S5 .4|.8].067 .005 .074 .005 .053 .008 |.122 .008 .127 .019 .122 .022
J111.069 .016 .079 .023 .054 .028 ) .118 .037 .125 .057 .115 .051
0|.4|.073 .001 .066 .000 .045 .000].130 .004 .128 .003 .097 .000
2|1.4)].070 .004 .058 .004 .038 .005|.129 .008 .122 .011 .102 .012
-5|.4].8(.073 .002 .066 .008 .045 .009 | .130 .006 .128 .016 .097 .021
J111.070 .019 .065 .027 .045 .027|.128 .045 .124 .050 .099 .071
0f.4].080 .001 .076 .002 .059 .003].153 .003 .123 .006 .112 .007
21 .4].086 .004 .073 .001 .053 .007|.151 .007 .124 .013 .100 .025
.751.4|.8].080 .005 .076 .009 .059 .010] .153 .013 .123 .021 .112 .025
J11].081 .016 .077 .020 .055 .030 ] .155 .032 .117 .050 .105 .065

TABLE 3.31
EMPIRICAL SIZES OF W; AND Wk, by = 0.5, b, = 0, correct specification

o .05 .10
n 64 64 128 128 256 256 64 64 128 128 256 256
p Y ) W] Wp WI WF WI WF W] Wp W[ WF Wj WF
0.4].071 .043 .068 .048 .069 .054 | .137 .075 .136 .093 .121 .087
2|.4].070 .051 .078 .048 .065 .043|.135 .083 .129 .091 .i24 .080
0|.4).8].071 .045 .068 .051 .069 .053| .137 .076 .136 .089 .121 .086
T 1(.075 .049 .072 .055 .065 .050 | .133 .081 .133 .091 .118 .084
0] .4].067 .046 .068 .045 .059 .0411{ .125 .079 .130 .095 .095 .074
21.41.078 .045 .055 .052 .053 .042 | .139 .077 .108 .081 .112 .076
b5 | .4].8].067 .044 .068 .044 .059 .039 | .125 .087 .130 .089 .095 .071
711 ].072 .051 .058 .046 .053 .044 | .135 .083 .124 .087 .100 .066
0].4].077 .032 .071 .049 .062 .047 [ .145 .083 .122 .082 .112 .091
21.4).078 .049 .076 .049 .057 .045| .136 .078 .134 .082 .098 .086
-51.4]1.8}1.077 .033 .071 .050 .062 .047 ] .145 .085 .122 .082 .112 .089
71 1].081 .040 .077 .046 .057 .058 | .134 .082 .126 .089 .106 .111
0| .4].066 .048 .058 .042 .053 .036( .129 .075 .111 .078 .089 .070
21.4].080 .050 .053 .054 .048 .057 | .151 .086 .113 .092 .111 .084
751.4].8]1.066 .049 .058 .042 .053 .037 ] .129 .071 .111 .080 .089 .069
J111.072 .053 .056 .050 .052 .0501{ .140 .083 .115 .090 .091 .076
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TABLE 3.32

EMPIRICAL SIZES OF W; AND Wg, by = 0.9, b, = 0, correct specification

a .05 .10
n 64 64 128 128 256 256 64 64 128 128 256 256
o lvl 6| W Wwe W, We Wi Wel|W, W Wi We W, W
0|.41].097 .053 .08 .042 .071 .042 ]| .162 .087 .157 .077 .125 .072
21.41.090 .038 .091 .026 .077 .021|.166 .065 .150 .045 .127 .042
0 |.4].8].097 .044 .08 .042 .071 .045| .162 .080 .157 .075 .125 .073
7111.092 .039 .08 .035 .070 .030 | .155 .068 .150 .068 .124 .056
0.4].112 .041 .073 .031 .053 .031|.165 .063 .141 .059 .101 .066
21 .4].097 .023 .078 .027 .064 .019 | .161 .045 .139 .049 .120 .045
bS5 |1.41.8].112 .043 .073 .030 .053 .031| .165 .063 .141 .058 .101 .062
711 1.109 .027 .082 .031 .060 .032 | .164 .054 .147 .064 .110 .064
0)|.4].101 .051 .081 .033 .068 .030 | .171 .082 .140 .062 .115 .062
21.41].106 .031 .087 .023 .060 .021 | .178 .059 .139 .046 .123 .031
-51.4}.8]1.101 .051 .081 .034 .068 .030]| .171 .081 .140 .060 .115 .061
71171.101 .036 .08 .031 .061 .031 | .175 .068 .140 .052 .119 .055
01| .4].117 .032 .082 .024 .051 .0211|.185 .053 .133 .052 .104 .051
21 .4].107 .028 .078 .026 .065 .024 | .173 .044 .133 .042 .114 .043
75 .4 .81.117 .033 .082 .022 .051 .0211|.185 .053 .133 .053 .104 .051
71171.111 .030 .08t .028 .058 .029 | .184 .059 .143 .03 .106 .054

TABLE 3.33
EMPIRICAL SIZES OF W; AND Wpg, b; = b, = 0.5, mis-specification

a .05 .10
n 64 64 128 128 256 256 64 64 128 128 256 256
ply|6| Wi Wgp Wi Wp Wi Wrp | W Wrp Wy W Wy Wp
0].41.258 .026 .245 .027 .248 .037 | .344 .063 .319 .060 .325 .079
2| .4].242 013 .214 .012 .229 .013 | .327 .043 .296 .024 .310 .035
0 |.4].8].258 .022 .245 .024 .248 .035] .344 .061 .319 .052 .325 .073
71 1].255 .019 .229 .006 .241 .017{.339 .042 .308 .029 .322 .031
0| .4].264 .040 .246 .030 .248 .032( .356 .070 .324 .052 .324 .069
21 .4].245 .072 .230 .051 .224 .052 | .341 .105 .303 .079 .317 .064
S| .4].8]1.264 .033 .246 .028 .248 .029 | .356 .054 .324 .046 .324 .070
J11(.253 .031 .239 .028 .239 .014 | .347 .047 .306 .043 .325 .025
0].41].274 .033 .250 .026 .255 .030 | .349 .067 .333 .053 .341 .068
21 .41].258 .077 .228 .053 .228 .047 | .331 .117 .317 .080 .317 .073
-5 .4(.8)1.2714 .031 .250 .024 .255 .024| .349 .058 .333 .046 .341 .070
711].270 .036 .243 .019 .233 .011} .343 .050 .331 .033 .334 .022
0].4].274 .035 .244 .024 .251 .025] .360 .057 .329 .043 .333 .064
21.41.249 .119 .221 .079 218 .054 | .336 .155 .310 .099 .313 .071
75 .4 .81 .2714 .028 .244 .022 .251 .025| .360 .044 .320 .034 .333- .063
71 1].262 .041 .240 .032 .238 .010] .350 .051 .318 .040 .318 .013
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TABLE 3.34

EMPIRICAL SIZES OF W; AND Wpg, b; = by = 0.9, mis-specification

a .05 .10
n 64 64 128 128 256 256 64 64 128 128 256 256
plylo{Wr Wp Wi Wgp Wi Wrp | W, Wp W; Wp W; Wp
0| .4].622 .040 .647 .037 .651 .058 | .681 .078 .694 .076 .709 .114
21 .4 .581 .020 .605 .019 .620 .018 | .651 .053 .662 .043 .677 .056
01.4].8].622 .027 .647 .015 .651 .019 | .681 .043 .694 .031 .709 .042
711 |.603 .006 .627 .003 .644 .002 | .667 .011 .682 .006 .692 .008
0].4].617 .040 .644 .039 .637 .041 )| .670 .064 .700 .067 .695 .086
2.4 .614 .068 .612 .065 .594 .056 | .658 .098 .668 .087 .661 .081
S5 1 .4].8].617 .020 .644 .009 .637 .013 | .670 .027 .700 .020 .695 .033
J11).615 .010 .631 .003 .619 .006 | .663 .011 .688 .006 .679 .008
0] .4].643 .038 .643 .041 .648 .047 | .700 .075 .705 .064 .705 .083
21.41.616 .081 .623 .066 .620 .067 | .677 .109 .673 .106 .670 .090
-51.4{.8].643 .019 .643 .012 .648 .006 | .700 .031 .705 .024 .705 .029
J111.635 .011 .639 .007 .632 .002 | .687 .015 .696 .010 .692 .003
0].4].637 .034 .645 .022 .623 .033 | .684 .045 .701 .042 .690 .057
2|1 .4].618 .110 .606 .091 .594 .072 | .676 .137 .687 .116 .681 .092
75| .41 .8].637 .012 .645 .012 .623 .005| .684 .016 .701 .016 .690 .016
711).628 .013 .631 .009 .615 .004 | .682 .018 .696 .011 .683 .004

TABLE 3.35
EMPIRICAL SIZES OF W; AND Wrg, by = by = 0, over-specification

@ .05 .10
n 64 64 128 128 256 256 64 64 128 128 256 256
pP Y ) W] Wp W[ Wp W] Wp W] Wp W] WF WI WF
0|.4]|.078 .047 .061 .047 .050 .042 | .127 .085 .115 .088 .100 .082
21.41.072 .040 .054 .042 .047 .027 | .135 .075 .107 .070 .086 .048
0[.4|.8].078 .049 .061 .041 .050 .042 | .127 .091 .115 .083 .100 .080
7111.075 .049 .052 .037 .049 .033 | .132 .083 .104 .074 .094 .074
0] .4].068 .037 .063 .052 .056 .048 ] .124 .071 .118 .093 .105 .082
21 .41.0711 .052 .064 .045 .061 .026 | .113 .079 .116 .071 .110 .046
S| .4|.8]1.068 .039 .063 .050 .056 .047 | .124 .071 .118 .088 .105 .083
71 |.065 .043 .056 .047 .060 .046 | .120 .076 .110 .087 .110 .074
0].41}1.091 .057 .072 .048 .066 .048 | .143 .087 .109 .093 .112 .095
21.4].084 .051 .065 .049 .053 .021 1| .139 .088 .115 .080 .099 .056
-51.4].81.091 .054 .072 .051 .066 .051 | .143 .092 .109 .090 .112 .100
7111.088 .062 .067 .051 .058 .040 | .137 .103 .112 .094 .105 .084
0|.4].085 .052 .072 .047 .060 .047 | .144 .087 .129 .081 .113 .085
21.41.074 .051 .073 .057 .057 .026 | .138 .099 .126 .084 .114 .045
.75 .41 .8].085 .049 .072 .042 .060 .047 | .144 .084 .1290 .076 .113 .088
711 ].080 .056 .080 .051 .058 .044 | .143 .093 .125 .093 .112 .090
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TABLE 3.36 _
MONTE CARLO BIAS OF §, p = 0.5

n 64 128 256
estimation | 5\ 0 .5 .9 0 .5 .9 0 .5 9
4 |-023 .377 .795|-.011 .358 .818 | -.005 .363 .833
So (d) .8 | -025 .328 .493 | -008 .332 .524 | -.004 .343 .545
1 |-.036 .227 .267|-.014 .232 .292|-.006 .236 .290
4 | -045 .127 662 | -.029 .047 .595 | -.015 .025 .570
S (d) .8 | -040 .105 .4051| -.017 .048 .379 | -.011 .029 .356
1 |-051 .047 .196 | -.033 .015 .166 | -.016 .007 .150
TABLE 3.37 _
MONTE CARLO S.D. OF 4, p=0.5
n 64 128 256
estimation | s\%2 [ 0 5 .9 0 5.9 0 5 .9
4 |.125 135 .139{ .082 .105 .104 | .052 .073 .071
So (d) 8 ]1.125 .145 .206 | .082 .110 .203 | .051 .079 .193
1 122 164 217 | .079 .139 .222 | .050 .113 .211
A4 253 240 .259 | .161 .171 .222 | .093 .116 .172
S (d) 8 1 .257 245 .275 | .170 .174 .254 | .095 .119 .232
1 240 224 278 | .163 .168 .249 | .092 .116 .221
TABLE 3.38
EMPIRICAL SIZES (a = 0.05) OF W5, p=0.5
n 64 128 256
estimation | s\*2 | 0 .5 .9 0 .5 9 0 5 9
4 ].134 902 1.00.099 .968 1.00].073 1.00 1.00
So (d) 8 | .126 .839 .984 | .095 .952 .993 | .068 .997 1.00
1 121 611 .786 | .082 .800 .923 | .064 .918 .981
4 |.129 .140 .685 | .103 .084 .741 | .074 .063 .877
S (d) .8 123 125 337 | (115 .090 424 | .080 .058 .473
1 .088 .083 .141 | .090 .048 .146 | .069 .035 .177
TABLE 3.39
EMPIRICAL SIZES (a = 0.10) OF W, p = 0.5
n 64 128 256
estimation | 5\ 0 .5 9 0 .5 9 0 .5 9
4 1.188 935 1.00 | .147 .975 1.00].122 1.00 1.00
So (d) .8 | .191 .889 .989 | .151 .970 .996 | .123 .997 1.00
1 177 705 .851 [ .136 .856 .939 | .111 .941 .983
4 190 190 .752 | 175 127 792 | 120 .091 .930
S (d) .8 |.186 .168 .397 | .187 .129 .479 | .137 .099 .529
1 .150 .116 .158 | .150 .088 .182 | .130 .066 .210
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TABLE 3.40
MONTE CARLO BIAS OF ¥, p=0.5, by = by = b

n 64 128 256
estimation | v | 5\ 0 .5 9 0 5 9 0 .5 .9
0| .4 {-.008 .420 .87]|-006 .413 .866 |-.004 .414 .871
2| 4 |-046 372 809 (-020 .388 .844 |-006 .407 .865
So(d), To(c) | 4| .8 | -008 .405 .743 |-005 .409 .775 |-004 .413 .794
g1 1 |-034 347 494 | -015 .371 .520 [ -.006 .389 .523
0 4 |-047 .094 .642 | -.027 .024 .582|-.015 .001 .561
2| 4 |-176 -051 .481|-.103 -.098 .412 | -040 -.089 .376
S1(d),Th(c)| 4| 8 |-043 .079 414}-020 .026 .387|-.013 .003 .343
g1 1 ]-116 -042 173 | -070 -.058 .149 [ -.032 -.056 .115
TABLE 3.41
MONTE CARLO S.D.OF 7, p=0.5, b = by = b
n 64 128 256
estimation | v | s\ | 0 5 9 0 5 .9 0 5 .9
0O .4 |.096 .106 .107 |.067 .078 .079 | .048 .057 .056
2| .4 ].106 .111 .111|.075 .085 .085 |.051 .058 .058
So(d), To(c) | 4| .8 | .095 .110 .124|.066 .081 .107 |.048 .058 .090
711 f.103 113 173 | .074 .087 177 | .051 .061 .172
0| 4 ].233 .220 .254|.133 .159 .224 | .077 .115 .192
2 4 ].266 .224 .270|.180 .179 .253 | .094 .151 .233
S1(d), Ti(c) | 4| 8 | 232 220 .288|.142 .155 .265 | .077 .114 .267
7|01 | .237 216 .277 | .159 .162 .241 | .089 .134 .216
TABLE 3.42
EMPIRICAL SIZES (o = 0.05) OF W.,, p=0.5,b; = by = b
n 64 128 256
estimation | v | s\°| 0 .5 9 0 .5 9 0 .5 .9
0| 4 (.03 979 1.00(.041 1.00 1.00 (.051 1.00 1.00
2| .4 {.087 939 1.00{.08 .995 1.00|.059 1.00 1.00
So(d), To(c) | 4| .8 |.039 969 1.00|.040 1.00 1.00|.045 1.00 1.00
711 |.064 917 993 ( .076 .992 .998 | .059 1.00 1.00
0| 4 |.072 .098 .683[.039 .058 .722|.034 .033 .826
2| 4 [.096 .053 .455|.106 .077 .464 | .090 .092 .505
S1(d), Ti(c) | 4| .8 | .070 .084 .383|.047 .055 .412|.034 .032 .465
71 1 [.070 .061 .163 | .060 .045 .152 | .074 .058 .161
TABLE 3.43
EMPIRICAL SIZES (a = 0.10) OF W,,, p=0.5,b; = by = b
n 64 128 256
estimation | v | 5\°| 0 .5 9 0 .5 9 0 5 .9
0| 4].075 993 1.00{.081 1.00 1.00]|.107 1.00 1.00
.2 .4 ].151 .964 1.00{ .128 .997 1.00|.111 1.00 1.00
So(d), To(c) | 4| .8 |.082 984 1.00|.080 1.00 1.00|.108 1.00 100
101 (122 946 997 | 123 995 998 | .123 1.00 1.00
0| 4 ).116 .135 .733|.080 .088 .778 | .064 .068 .890
2] .4 |.157 .094 .515(.179 .113 .5201{ .151 .143 .569
S1(d),Ti(c) | 4| 8 |.120 .127 .427 | 094 .087 .461|.062 .068 .512
71 [ .112 083 .191 | .121 .075 .189 | .129 .092 .195
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Chapter 4

Semiparametric estimation of
strong and weak co-integration

4.1 Introduction

As presented in Chapters 2 and 3, fully parametric estimation of parameter v in
(1.25) enjoys several attractive properties but, undoubtedly, is not free from the usual
concern associated to any parametric prescription: the possible misspecification of
the model driving the process u;. Thus, although any criticism to our approach
in those chapters would be shared by any parametric methodology, we felt that
extending our analysis to a situation where knowledge of a parametric model for u;
is difficult to justify, would nicely complete our discussion about the estimation of v
in (1.25). We denote our approach as semiparametric, because while we consider the
spectral density of u; to be an unknown nonparametric function, we still deal with
Type II fractional integrated processes (see Definition 1.3), which are less general
than those of Robinson and Marinucci (1998, 2001) or other stationary and non-
stationary long memory processes which commonly appear in the literature.

We analyse the cases of strong and weak co-integration in model (1.25), (1.26)
simultaneously. As mentioned before, we do not treat the borderline case § = 1/2,
which is indeed very specific. Although this could be a limitation of our analysis,
we believe that, especially from an empirical perspective, is a minor one, as in
practice it is not possible to asses whether the co-integrating gap g is exactly 1/2
or arbitrarily close to it, situation covered by our allowed range of values for 3. We
propose two different classes of frequency domain estimates of v, which are directly
related to those in (2.18), (2.34) of Chapter 2. As anticipated, it could have been
equally possible to consider time domain estimates in the spirit of those in Chapter
3, based on an AR (p) representation of u;, with p tending suitably to infinity with n.
We preferred instead the more aesthetic and computationally appealing frequency
domain ones, for which we allow for simultaneous consideration of both full and
narrow band approaches.

In case of strong co-integration, properties of our estimates mimic those achieved
in the parametric setting: nf-consistency, mixed-normal asymptotics, and first order
asymptotics unaffected by insertion of estimates of the nuisance parameters which
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in our present framework are 7, 6§ and the nonparametric function f(A). In fact,
this result extends to the situation of strong fractional co-integration with possibly
unknown orders, the well established fact, developed in the CI (1,1) co-integration
literature, that parametric assumptions about the model generating the observables
are not necessary in order to obtain optimal asymptotic theory under Gaussianity.
For example, as described in detail in Chapter 1, Phillips and Hansen (1990) and
Phillips (1991b) showed that the same result as in Phillips (1991a) is obtainable
without assuming knowledge of the parametric structure generating the observables.

We also consider the case of weak fractional co-integration, and proposed narrow
band estimates of the co-integrating parameter v, which although do not share the
parametric optimal rate, \/n (achieved by our estimates in Chapter 3), are also
asymptotically normal. Our estimates are comparable to those of Christensen and
Nielsen (2001), who achieved similar results to ours (only for the case of stationary
co-integration) under much stronger conditions on the structure of the underlying
error input process u;.

In the present semiparametric situation, the issue of estimating nuisance parame-
ters with certain required properties is more delicate than in our previous parametric
setting, and in this chapter we also comment on sensible estimation procedures for
those parameters. We do not provide a proper theoretical justification of these meth-
ods, but this would mainly require extending previously derived results, as those de-
veloped by Robinson (1995a,b), Velasco (1999,a,b) and more recently by Robinson
and Henry (2003). Thus, we are content with just proposing some methods which
surely would offer, under certain regularity conditions, the desired properties. As
presented in Assumptions 4.2, 4.3, 4.2°, below, conditions on the estimates of the
nuisance parameters involve both the rate of convergence of these estimates and also
the rate at which the bandwidth, m, which defines the “band” structure of the pro-
posed estimate of v (see (4.2), (4.3), (4.35), (4.36) below), evolves. As it will become
apparent later, even if the estimates of the nuisance parameters are relatively slow,
those conditions could be still satisfied by simply constraining the rate of growth of
m. In case of strong co-integration, we could nicely take advantage of this result,
as in this case, the rate of convergence of our estimates of v is not affected by m.
However, under weak co-integration the picture changes, as the convergence rate of
our estimates of v is positively related to the rate at which m increases, and in par-
ticular, slower estimates of the nuisance parameters imply slower feasible estimates
of v (although still asymptotically normal).

Next section is devoted to describing the first class of estimates, denoted as
“optimally” weighted estimates. Section 4.3 presents and analyses the properties
of the second class, the “zero-frequency” weighted estimates. Proofs for the main
results in these two sections are collected in the Appendix 4. Finally, Section 4.4
contains Monte Carlo evidence of finite sample performance.

4.2 The “optimally” weighted class of estimates

As in the previous two chapters, we also consider now model (1.25), (1.26) with
(1.30), B # 1/2. Noting (2.2), (2.3), (2.4), (2.5), considering a certain nonparametric
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estimate of f (A) (see (1.28)), f (), we could define

PO =CFN™, TN =¢F ¢ (41)
Denoting by A; the Fourier frequencies (see Chapter 1), we could set in a similar
way as in Robinson and Marinucci (1998, 2001),

Um (c,d) = ZRe{ch ) Lc ey (M) } 5 (4.2)
bm () = ZRe{c,-a(A»Iz@(A,-)}, (43)

noting (1.43), (1.44), for an integer m such that
m-—o0asn— oo, 1<m<n/2, (4.4)
where ¢; = 1, j = 0,n/2, ¢; = 2, otherwise. Similarly, we could also define a, (c, d),

b (c) as (4.2), (4.3), but replacing p(A), g(A) (see (1.62)) by p(A), g(A) respectively.
Thus, defining

— a'm (C d) [ (C’ d)
Um (c,d ¢,d) = =—"—, 4.5
(c,d) = b () Um (¢, d) o (0 (4.5)
we could consider, as in Chapter 2, the following set of estimates
Vn(7,6), Pm(1,6), Tm(3,6), Tm(7,9), (3, 9), (4.6)

for certain estimates 7, 8 of v, 6, to be described subsequently. Note that for the
particular choice m = [n/2], our set of estimates (4.6) is closely related to (2.18) in
Chapter 2. This similarity comes from the fact that due to the symmetry of the real
part of a periodogram about A =0 and A =,

amy2) (¢, d) = ZP (A3) L(eara(e) (A7), bmyay (c Zq ) Loy (A5), (4.7)

j=1

which are the same expressions as (2.15), (2.16) in Chapter 2 when evaluated at
h = 0, implying that Ty, q (7,6) = U(7,6,0) given in (2.18) in Chapter 2, whereas
the rest of the estimates in (4.6) represent a natural extension of estimates (2.18) in
Chapter 2, allowing for non-parametric estimates of the spectral density at different
frequencies instead of parametric ones. For this reason, we refer to these estimates
as full band estimates. Note also that for m = [n/2], expressions inside braces in
(4.2), (4.3) are real, so our notation is certainly redundant in this case.

When m < [n/2], the most interesting case is when m/n — 0 as n — oo, in
which case estimates (4.6) are the narrow band versions of estimates with m = [n/2],
being this the only situation we consider in case of weak fractional co-integration
with 8 < 1/2. The motivation for considering also a narrow band approach is
basically that estimation of the parameter of the relation of co-integration, relates
to estimation of a long run equilibrium relationship, so we could just focus on a
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band of frequencies near frequency 0, with the hope that the suppression of “high”
frequencies does not affect the asymptotic properties (to first order) of our estimates,
while perhaps dropping frequencies helps bias reduction in finite samples, as for the
narrow band estimate of Robinson and Marinucci (1998, 2001).

As we might hint later, the rates of convergence of the estimates of the spectral
density f (\) and orders of integration are very much dependent on the smoothness .
of f()). These estimates, as it could be inferred from Chapter 2, need to reach
rates very close to the parametric ones in certain circumstances, but this is only
achievable in case f(\) is smooth enough, with a possibly very large number of
existing derivatives. Thus, in case we suspect this kind of smoothness condition
does not hold in our case, in principle, feasible full band estimates would not share
the same asymptotic properties as the infeasible one when 3 is only slightly bigger
than 1/2. Then, as we will show later, the main point in favour of narrow band
estimates is that even in the hypothetical case that relatively slow estimates of the
nuisance parameters are available, feasible narrow band estimates could enjoy the
same asymptotics as infeasible full band estimates given in Chapter 2, being this
achievable by constraining the rate of growth of m accordingly. Thus, apart from its
plausible “improved” finite sample behaviour over estimates with m = [n/2], narrow
band estimates are interesting from a theoretical point of view, as in certain cases,
they will reflect the “sacrifice” made on the rate of growth of m under minimal
conditions of smoothness of f(A). This narrow band approach was followed by
Phillips (1991b) for the standard case in the unit root literature v =0, § = 1.

Our aim will be to find conditions which guaranteed a uniform behaviour for
all the estimates in (4.6) under both situations of strong and weak fractional co-
integration. First, related to the bivariate process u;, we will work under Assump-
tion 2.1 (see Chapter 2). As in Chapter 2, this assumption enables us to apply the
functional limit theorem of Marinucci and Robinson (2000) to the purely nonstation-
ary process z; (y) when 3 > 1/2, as is required to characterize the limit distribution
of our estimates of v. The application of this functional central limit theorem is
the reason for the need of a global smoothness assumption, even for the narrow
band estimates. Assumption 2.1 is the only condition needed in order to calculate
the asymptotic distribution of the infeasible estimate 7y, (v,§) (the one given in
Theorem 2.1, for § > 1/2) as long as m — oo.

Noting (2.29), (2.30), (2.31), define the random variable

-1

V=440 / W (B2 dr S 2mcA() Y Q- / W(r:B)dW (r),  (48)
0 0

and denote by fi; (A), f¥ ()) the (¢,;)th components of f()), f~! ()) respectively.
Theorem 4.1. Let (1.25), (1.26), (1.29), (1.30), (4.4) and Assumption 2.1 hold.
Then, as n — oo,

() i B> 1/2
nP(Tm(7,8) —v) = V; (4.9)
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(it) if B <1/2 and

mP~1210g? n 4 m¥+¥n 2=, (, (4.10)
Iy -B/= §) — _li 4.11
m2A (U (7y,6) —v) —4N (01 2f11(0) fa2 (0) ) (4.11)

As mentioned in Chapter 2, the variates ¢'A(1)™" Q='W (r) and W (r; 3) are
uncorrelated, and thus by Gaussianity independent, so (4.8) indicates mixed-normal
asymptotics. As a consequence of this property and of some steps in the proof of
Theorem 4.1, given in the Appendix 4,

b (7) @ (7, 6) — v)? —a X3, (4.12)

under the various conditions specified in Theorem 4.1. Also, note that the condition
on the second term of the left side of (4.10) is similar to A4’ and A4 in Robinson
(1995b) and Lobato (1999) respectively, imposing an upper bound to the rate of
increase of m with n. Under our Assumption 2.1, in their notation § = 1+17. (4.11)
indicates that, in presence of weak fractional co-integration, our proposed estimate
is in general faster than the narrow band estimate of Robinson and Marinucci (1998,
2001) (see Chapter 1). As shown in Christensen and Nielsen (2001), this latter es-
timate enjoys the same rate of convergence as our estimate under their very strong
A’, which in our framework would imply that the coherency at frequency 0 between
the processes u;; and uy; is zero. This condition does not hold in general for u; be-
ing an ARMA process, where the rate of convergence of the narrow band estimates
would be given by Theorem 3.1 in Robinson and Marinucci (1998), where they con-
jectured that their derived rate, n®m~", was sharp. Note also that Christensen and
Nielsen gave results for a similar model to (1.25), (1.26), with covariance station-
ary observables and co-integrating error, with memories 6, -y respectively, satisfying
0<y<b6<1/2,6+y<1/2.

As in the fully parametric cases described in Chapters 2 and 3, in order to insert
estimated parameters further regularity conditions are needed.

Assumption 4.1. There exists K < 0o such that

5]+ }g‘ <K, (4.13)
and £ > 0 such that
T=7+0, (n™"), 6§=6+0,(n™), (4.14)
where, as n — 00
n~rml-max{min{8,1},1/2} 160y _, ), (4.15)

Assumption 4.1 is unprimitive and very similar to Assumption 2.3. Undoubtedly,
the search for particular estimates of v, 6 to satisfy (4.14) and (4.15) in the present
framework could entail some difficulties. In view of (4.15), semiparametric methods,
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like the log-periodogram due to Geweke and Porter-Hudak (1983), whose asymp-
totic properties were developed by Robinson (1995a), the Gaussian semiparametric
Whittle estimator hinted by Kiinsch (1987) and studied by Robinson (1995b), or
the ones proposed by Hurvich, Deo and Brodsky (1998), Velasco (1999a,b), might
not be valid in certain cases (when 3 is close to 1/2 and m = [n/2] for example)
due to their relatively slow rate of convergence. As shown by Giraitis, Robinson
and Samarov (1997) and Hurvich, Deo and Brodsky (1998), the typical rate of
convergence of these local semiparametric methods is limited to n%3. Alternative
methods based on nonparametric assumptions about the short memory component
of a fractionally integrated process have been proposed in order to improve this rate
of convergence. Here, Moulines and Soulier (1999), Bhansali and Kokoszka (1999)
and Hurvich and Brodsky (2001) have proposed broad-band approaches originally
motivated by Janacek (1982), where a nonparametric estimate of the spectrum at
all frequencies is used. Typically, the rate of convergence of the estimate of the order
of integration depends on the smoothness of the short memory component of the
process, and the rate (4.14) with

K= Kp= % (1 —log ' nlog (logn)), (4.16)

that is the rate n1/2log™/%n, is achievable in case the short memory component
f(}) is analytic. This is a relevant result here, as when m/n does not tend to 0 as
n tends to infinity, for the case of strong fractional co-integration, this rate would
suffice for any value of 8 > 1/2. A different approach with the aim of obtaining
bias-reduction and hence improvements in rates of convergence was considered by
Robinson and Henry (2003). They proposed a very general narrow-band estimate
which, depending on certain user-chosen parameter and function, could be viewed
as Gaussian semiparametric, log-periodogram or a mixture of both, achieving bias-
reduction by the use of higher order kernels. They obtained for the estimates of the
orders rates as n'/2-¢, for possibly arbitrarily small e > 0, where € basically depends
on the number of existing derivatives of the spectrum of a long memory process near
frequency 0. Undoubtedly, their approach could be accommodated to our framework
of (possibly non-observable) processes with arbitrarily large memory, but, as in prac-
tice 8 is unknown, even in the situation where f () is analytic near frequency 0, this
method does not allow us treat all § > 1/2. Andrews and Sun (2001) achieved sim-
ilar improvements in convergence rates by extending the Gaussian semiparametric
estimate in Robinson (1995b) through the use of local polynomials instead. In any
case, all these estimation methods are given for covariance stationary long memory
processes, including the so-called Type I fractionally integrated (see Definition 1.2).
This differs substantially from our situation, where, as it is clear from (1.25), (1.26),
we have to deal with Type II fractionally integrated processes of arbitrarily large
memory. Undoubtedly, the use of tapering seems unavoidable in our case, but our
guess is that similar results, just taking into account the inflation in the variance due
to tapering, to the ones in Robinson and Henry (2003) or Andrews and Sun (2001)
are going to apply to our type of processes following the results in Robinson (2002),
at least when 3 > 1/2. Related to this, it is important to note that estimation of 4
requires a preliminary estimate of v, as the process y; — vz; is unobservable. In view
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of results in Robinson (2002), it could be shown that this would not affect first order
asymptotic properties of the chosen estimation procedure of v when 8 > 1/2, but if
B < 1/2, any estimation method produces relatively slow estimates of v. Here, our
guess is that « in (4.14), could only be arbitrarily close to 3, not to 1/2, regardless of
the smoothness conditions enjoyed by f (A), in case we have a preliminary estimate
of v whose rate of convergence is n®~ for a certain arbitrarily small e > 0. Thisis a
strong assumption, and certainly the OLS does not satisfy this condition for every
(7,6) combination if § < 1, but in this case the narrow band estimate proposed by
Robinson and Marinucci (1998, 2001) suffices.

Similarly, we establish unprimitive conditions related to the nonparametric esti-
mate of the spectral density f ().

Assumption 4.2. Uniformly in j, there exist x > 0, ¢ > 0, such that

FO) =) = 0p(n7™), (4.17)
FOus) = FQun) = (FO) = 1) = 0p(n7%), (4.18)
where, as n — oo
n-*ml-max(min{s1}1/2} _, (4.19)
n~%m2-max{min{8,1},1/2} _, (4.20)

As for the estimates of the orders, when m/n does not tend to zero, estimates
with sz, ¢ arbitrarily close to 1/2 and 3/2 respectively could be needed in case of
strong fractional co-integration with 3 just above 1/2. As noted before, the full band
case is not allowed for the weak fractional co-integration situation, so depending on
», ¢, we could adjust m accordingly so that (4.19), (4.20) are satisfied, procedure
also valid when 3 > 1/2. While we could guess that a value for ¢ similar to the one
for k in (4.16) is achievable under analycity of f()), as it could be inferred from
Moulines and Soulier (1999), it could be proven that for standard spectral density
estimates similar results as for the estimates of the orders hold. These estimates
could be based on residuals

i = [u@) - Pu(3), 20 | (4.21)

for certain preliminary estimate of v, U, and f(/\) could be for example the weighted
periodogram
27h 27r
ﬁOP—ZKAA) ZMAA(L (4.22)

]—"'OO

where

=b Y K(b(\+2mj)), (4.23)



and K is a real and even function, b — oo as n — oo but more slowly than n, or
the weighted autocovariances estimate

n—1
1 3\ ~ —1is8
Fo) = / KO -wE@de=5 > k() R@e™,  @29)
s=1l-n
where
Tle) = = 3l 920, (4.25)
t=1
= 4. (-s), s<0, (4.26)
and
k(z) = / K ()\)e™d\, z € R, k / Ky ()\) emd. (4.27)

For both estimates, it could be proven that similar results as the ones for the esti-
mates of the orders of integration could be achieved for appropriate choices of the
kernel functions K and k. In fact, apart from other regularity conditions, assuming
for example

|1 — k(z)| < K |z|* for some h >0, (4.28)

where h > s, s indicating that A(e®) is s times differentiable in A € [, 7] with
sth derivative in Lip(n), n > 1/2, means that the function k (z) is locally (in a
neighbourhood of 0) Lip(h). If h > 1, this implies that d°k (z) /dz¢ = 0 for any
¢ < h, so bias reduction is possible provided the spectral density f ()) is smooth
enough. Condition (4.28) relates to what Parzen (1957) describes as characteristic
exponent of a kernel k (z), that is the largest number h such that k(") exists and is
finite (nonzero), where

k) —tim L= *(2) ’“h(”). (4.29)

z—0 |$I

In fact, this condition relates closely to the idea of higher order kernels, as (4.29)
implies that d°k (z) /dz® = 0 for any ¢ < h. This, in view of (4.27), readily implies
that

m

/ pKs (1) dp = 0, (4.30)

-
for any ¢ < h, which is the basis for bias reduction in nonparametric estimation of the
spectral density. Of course, the higher A is chosen, the higher the rate of convergence
of our estimates will be. As Robinson (1991) mentions, condition (4.29) holds for
h = 1,2 for many of the usual kernels, but it seems that in case the h required is
very large, a careful choice of the covariance averaging kernel is required. One could
use, for example, a continuous impulse spline,

o0

1 aq —irT
k(z) = o > eire, (4.31)

1 4+

r=—oo
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as proposed by Cogburn and Davis (1974) with differential operator L = d%/2/dz%/?
(which in their view is the natural choice), with g being an even number. For an
appropriate choice of a, (4.31) could lead to estimates of the spectral density with
rates of convergence arbitrarily close to n!/2, for certain smoothness conditions on
f (X). Finally, note that under certain regularity conditions, estimating the spectral
density from the true error process u; would produce consistent estimates for any
choice of b. As we estimate f()) from residuals, the rate of growth of b in general
cannot be chosen freely, and has to account for this “residuals” effect.

Now, we present a theorem collecting the results related to the infeasible estimate
stressed in the traditional co-integration literature with v =0, 6§ = 1, v,, (v, 6), the
“more” feasible estimates 7, (7, 8), U (7, 5) and the fully feasible estimate 7,(3, ).
We denote by v}, any of this four estimates.

Theorem 4.2. Let (1.25), (1.26), (1.29), (1.30), (4.4) and Assumptions 2.1, 4.1,.4.2
hold. Then, as n — oo, '

(i) if B> 1/2

(vt —v) = V; (4.32)
(it) if B < 1/2 and (4.10) hold
% -B(,* _1)) — 1- 2.6
m2\ P (v, —v) —=;N (O, 5711(0) 22 (0) (0)) . (4.33)

The proof of Theorem 4.2 is given in the Appendix 4. As in the fully infeasible
case, following the steps given in the proof of Theorem 4.2, it can be easily shown
that denoting by b7, either b,, () or b, (7),

b (v~ v)* —a X3, (4.34)

under the various conditions of Theorem 4.2.

4.3 The “zero-frequency” weighted class of esti-
mates

As in (4.2), (4.3), we could define

@ (c,d) = Re {5 (0) Z ¢ La(c,a)a(c) (’\j)} ; (4.35)
i=0

zgn () = Re {E(O) Z chz(c)(AJ')} ) (4.36)
=0

and ap, (c,d), b3, (c), where p(0) and ¢ (0) replace p(0) and g (0) respectively in
(4.35), (4.36). Thus, defining

7° (c’ d) — ar, (c, d) 7o (C, d) = M (4.37)

" bo(c) 7™ B (c)
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we could consider, as before, the following set of estimates

7.(1,8), 7%(7,6), T%(F,6), P5u(7,0), P2u(F,6). (4.38)
Note that for the particular choice m = [n/2],

~ n ~ n
a0 d) =20 S 4 (0, d)n0) Toym (= LD Yl (439)
t=1 t=1

so in this case, our estimates could be naturally expressed in the time domain.
These estimates are related to the ones of Theorem 2.2. As stated there, the lack
of “optimal” weighting does not only produce dramatic change in the limiting dis-
tributional properties of the estimates, but also slower rate of convergence in some
cases. Thus, we could exploit the bias reduction obtained by averaging over a degen-
erate band of frequencies (as opposite to full-band averaging), as shown in Robinson
and Marinucci (1998, 2001), and thus compensate for the lack of optimal weight-
ing. However, it is true that for frequencies arbitrarily close to 0, the weighting of
these estimates is close to the optimal one, and this is precisely the reason why our
approach works in this case. In fact, it was already mentioned in Chapter 2 that a
narrow band approach could make the estimates in Theorem 2.2 have mixed normal
asymptotics for the case § = 1, being this a straightforward implication of Theorem
4.3 of Robinson and Marinucci (2001). It could have been conjectured that this was
also going to be the case for 1/2 < # < 1, but this is not a completely straightfor-
ward implication of the results in Robinson and Marinucci (2001). Our purpose is
to prove that under certain conditions the bias reduction due to narrow-band av-
eraging is strong enough so to make the “zero-frequency” weighted estimates have
mixed-normal asymptotics and optimal convergence rates even when § < 1, in case
of strong fractional co-integration.

The main advantage of these estimates is their simplicity, as no estimation of the
spectral density at different Fourier frequencies is needed, so they could be preferable
to the “optimally” weighted ones in terms of computational convenience.

We simplify slightly Assumptions 2.1 and 4.2 to accommodate for this kind of
estimates.

Assumption 2.1°. Assumption 2.1 holds with the condition
det {A(1)}#0 (4.40)
replacing (2.24).
Assumption 4.2°. There ezxist « > 0 such that
f0) - £(0)=0, (n7), (4.41)

where, as n — o0
n=*mimadfl/2 o, (4.42)

Denoting by v2* any of the estimates in (4.38), we collect in one theorem the
equivalent to Theorems 4.1 and 4.2 in the previous section.

Theorem 4.3. Let (1.25), (1.26), (1.29), (1.80), (4.4) and Assumptions 2.1°, 4.1,
4.2° hold. Then, as n — o0,
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(i) if B> 1/2 and

mn~? — 0, (4.43)
PV —v) = V; (4.44)
(i) if B <1/2 and (4.10) hold
1,- o* 1-— 2:8
m2 )\mﬂ(l/m—v) —"'dN (O, m—(o—)) . (445)

We give the proof of this theorem in the Appendix 4, but just for the infeasible
estimate T2,(7,8), as the proof for the rest of the estimates in (4.38) follows imme-
diately from the proof of Theorem 4.2. Note here that (4.43) is a new condition,
which is not restrictive when 3 > 1, but for 8 < 1 has a very important implication,
as in this case a choice of m such that m/n® does not tend to 0 is not allowed for
this type of estimates. As hinted before, the reason for this is that when 8 <1
the nonstationarity of the process z;(7y) is not strong enough to compensate for the
lack of optimal weighting, compensations which could be achieved by using a narrow
instead of a full band approach. Again, under the various conditions of Theorem
4.3, denoting by b2 any of b2, (), b2, () or b3, (7)

bt (12 —v)? =4 X2 (4.46)

4.4 Monte Carlo evidence

A Monte Carlo study was carried out with the aim of comparing the performance
in terms of bias and standard deviation of our proposed estimates (in both situations
where the orders of integration are assumed known and unknown), with an estimate
which does not require any knowledge of either the orders of integration or the
short memory structure of », in (1.25), (1.26), which is a band estimate given by
T (m) (see (1.41)), for m < [n/2], which, provided the chosen bandwidth m tends to
infinity at a relatively slower rate than the sample size n, is the so-called narrow band
estimate discussed in Chapter 1. Note that when m = [n/2], this band estimate is
identical to the OLS estimate given in (1.33). Apart from comparing these estimates,
we also analyse the adjustment of the Wald statistics, corresponding to our different
estimates of v, to its limiting x? distribution.

As in Chapter 2, we generated Gaussian ¢; with covariance matrix {2 having
ijth element w;;, varying the correlation p = wiy /(wi; wag )/?, taking values 0, 0.5,
-0.5, 0.75, fixing v = wy; = wye = 1. We consider the combinations of integration
orders corresponding to strong and weak fractional co-integration cases given in
Chapters 2 and 3 respectively. Table 4.1 presents the different convergence rates of
our proposed estimates and also the ones of the band estimate for both cases where
p # 0 and p = 0. These rates are derived from our results in Theorem 4.1 and 4.2,
and Robinson and Marinucci (1998, 2001). For the strong fractional co-integration
case, the described rates for the band estimates apply for any m < [n/2], m — oo,
noting that the rates of our proposed estimates are optimal in this case. For the weak
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co-integration situation, we only consider narrow band estimates with m/n — 0 as
n — oo, noting that (4.10) needs to be satisfied.

TABLE 4.1
CONVERGENCE RATES:
BAND WITH p # 0, p = 0 AND OUR PROPOSED ESTIMATES

(7,6) | BAND, p#0 BAND, p=0 PROPOSED
(0, 06) nm—4 n6 n®
(0, 12) nl2 nl2 nl 2
(0,2) n? n2 n?
(0.4,1.2) n® n8 n®
(04, 2) nlé nl-6 nl .6
(0,0.4) nim=—* n*m? “4m1
(0.2,0.4) n?m=2 n?m?3 n 2m 3
(0.4,0.8) n nd ndm1
(0.7,1) n3 n3 3m 2

We generated 1000 series of lengths n = 64, 128, 256, and choosing different band-
widths b (taking values 15,25,45, depending on whether n is 64,128,256 respectively),
computed the nonparametric estimate of the spectral density as

Fow =50 Z I (M), (447)
k=j-b
with
s (c,d,a) = (y; (c) — az; (c) , z; (d)), (4.48)

where in all cases a = Ty (b) and (c,d) = (v,6) or (7, ) depending on whether
the orders of integration are considered to be known or unknown respectively. The
estimates 7, 6, are Robinson’s (1995a) version of the log-periodogram estimates
of Geweke and Porter-Hudak (1983) without trimming or pooling applied to the
untapered series y; — Up (b) z: and T;, where T; = z; for § < 1, T; = Az, for 6 > 1,
adding back one to the estimate of the order of Z; in this case to compute the final
estimate of 6. b is also the chosen bandwidth for the semiparametric estimates of
the orders of integration.

4.4.1 Strong fractional co-integration

In this case, we computed “optimally” weighted Infeasible estimates 7; and
Feasible estimates U, defined as

Tt = Um (1,8), Tr =0m(¥,0), (4.49)

and also “zero-frequency” weighted ones, given by

~

vy =03 (7,6), =, (7,6). (4.50)

148



We reported results for these four estimates and also for the Band estimate in
(1.41), denoting Ug = Uy (m), for three different sets of bandwidths m, given by
(LII,IIT)=(10,20,32), (20,40,64), (40,80,128), depending on whether n = 64, 128,256
respectively. Note that the highest bandwidth (III) for each sample size corresponds
to the full band case. In our experiment, related to the structure of u;, we only
considered cases 1.,2. and 3. described in the Monte Carlo section of Chapter 2.

Behaviour of the bias

Results concerning Monte Carlo bias (defined as the estimate minus v) for the
situation where u; in (1.25), (1.26) is a purely white noise process are presented
in Tables 4.2-4.9. Overall, 7%, ¥y, Ur, ¥%, Up are no worse than any of the other
estimates in 167, 144, 104, 99 and 81 out of 180 cases respectively. These figures
show the expected dominance of the infeasible estimates and also, the relatively
better performance of the feasible estimates over the computationally simpler band
estimate. In fact, when comparing vis a vis the behaviour of 7r and 7% relative
to Ug, the results are totally clear in favour of our two feasible estimates with
relations (note the definition of this concept given in Chapter 2) 89/7 and 91/13
respectively, out of 180 cases. As expected, biases increase in absolute value with
|o|, being this most noticeable for the cases where 3 < 1, for which there is also the
biggest differences between our proposed feasible estimates and the band one. The
“zero-frequency” weighted (ZW) infeasible estimate is slightly superior, especially for
p # 0, to the “optimally” weighted (OW) infeasible one (with proportion 33/10),
with the exception of the full band situation with 8 = 0.6, where as the theory
predicts, 7y beats 7. On the contrary, the OW feasible estimate outperforms the
ZW feasible with relation 53/12, differences being most noticeable for the full band
situation. In general, biases decrease as n, 8 increase and m (with the exception of
the case p = 0) decreases. The sign of the bias for the infeasible, band and feasible
estimates (just when G < 1 for this latter class of estimates) is the one of p, being
the opposite of p for the feasible estimates when § > 1.

Results for the AR situation are presented in Tables 4.10-4.25. Comparing these
results with the ones for the white noise case, the only estimates which enjoy big
improvements in the AR framework are 7y and the infeasible estimates, especially
for the case 8 = 0.6, being this effect stronger the bigger are the AR parameters ¢;,
i =1,2. Uy tends also to perform slightly better when the strongest autocorrelation
structure is imposed for the case 8 = 0.6. When ¢; = 0.5, overall, 73, U, Up, Up, V¥
are no worse than any of the other estimates in 167, 126, 90, 89 and 87 out of 180
cases respectively. This general ordering shows the predominance of the infeasible
estimates, but suggests an undervalued image of our proposed feasible estimates. In
fact, both, p and T} clearly beat Up, with relations 83/15 and 79/18 out of 180
cases respectively, being this predominance more noticeable as 3 decreases, with
Vg showing a competitive behaviour only when n is small and g large. The ZW
infeasible estimates clearly outperform the OW infeasible ones, with relation 42/1,
being this superiority more evident when 8 < 1 and p # 0, even for the full band
estimates, although in general the differences between these two classes of estimates
are very small. Both feasible estimates behave in a rather similar way, as Ur beats
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7% just with relation 30/28. Here, 7% tends to behave slightly better than 7r when
B = 0.6, especially for the two narrow band cases, whereas Uy improves over 7%
when (v, 6) = (0.4,1.2), or for the full band situation when (v, 6) = (0, 0.6), being
this performance relatively better for smaller n. When ¢; moves to 0.9, the picture
slightly changes. The overall ordering is pretty similar to the ¢; = 0.5 situation,
being 7%, ¥, Ur, Uy, U, No worse than any of the other estimates in 146, 136, 90,
81 and 76 out of 180 cases respectively. Again, Ur and 7% beat g (with relations
88/30 and 73/44 respectively), showing these figures the previously referred relative
improvement of g when the AR structure is stronger. As before, 7g is competitive
for the cases where [ is large, while 7% does not show clear superiority over g when
|o| # 0. While 779 still seems preferable to ¥y, this is less clear than in the ¢; = 0.5
case, as now the relation is 13/4 in favour of the ZW estimate. On the contrary, the
OW feasible superiority over the ZW one is now much clearer, with relation 58/4
in its favour. As in the white noise case, biases decrease as n and  increase and
|o| decreases, the sign of the bias following the same pattern as in the white noise
situation.

Results for the MA case are given in Tables 4.26-4.41. Overall, the most re-
markable feature here is that results are mainly unaffected by the value the MA
parameter takes. The only relevant difference appears to be an small improvement
when we move from 1; = 0.5 to ¥; = 0.9 for the case 8 = 0.6, especially for the full
band estimates. Also, results for both infeasible and feasible estimates are extremely
similar to those in the white noise situation, with some small improvements over the
white noise case for the band estimate when § = 0.6. The overall ordering of the
different estimates is 7%, U, Ur, U%, Up, which are no worse than any of the others
in 176, 130, 101, 94, 84 (or 176, 128, 103, 89, 83) respectively when ¢; = 0.5 (or
¥; = 0.9), out of 180 cases. Both feasible estimates present strong predominance
over Ug in a more evident way than in the AR case, being this mainly based on a
better behaviour when § = 0.6,0.8. 7r dominates Tp with relation 87/10 (88/10)
when ¢; = 0.5 (0.9). Similarly, 7% beats Up with proportion 84/14 (84/15) when
¥; = 0.5 (0.9). In general, these values are very close to those obtained in the white
noise case, and more favourable to our feasible estimates than in the AR situation
(especially when ¢; = 0.9). The main difference with respect to the white noise
framework appears from the comparison of ZW and OW estimates. In general, the
MA situation gives more support to the use of ZW estimates, as 77 is superior to 7y
with relation 47/1 (48/0) for the case ¥; = 0.5 (0.9), being these differences mainly
based on the cases where # < 1. For the feasible estimates, the superiority of the
ZW is less clear, but still evident, with relations 31/22 and 32/18 for ¢; = 0.5 and
0,9 respectively, although differences are only noticeable for § = 0.6, with mixed
evidence for § = 0.8. The general behaviour of biases (including their signs) when
n, B, p and m change, described for the white noise and AR situations is maintained.

Behaviour of the standard deviation

Results corresponding to the white noise case are presented in Tables 4.42-4.49.
Overall, the superiority of the infeasible estimates is clear, with a general ranking of
v1, VY, VB, Vr, U, which are no worse than any of the other estimates in 145, 144,
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82, 58 and 56 out of 180 cases respectively. Vg is only better than the infeasible
estimates when 8 = 0.6 and p = 0, showing also certain less clear superiority when
p # 0 for the same 3, when n and m are small. The main difference with the results
for the bias is that now, the band estimate emerges as competitive relative to the
feasible estimates. For example, r and Up show an extremely close behaviour, with
relation 57/56 in favour of our proposed feasible estimate. Here, two features seem
relevant. U is clearly superior to Zg for the two cases where # < 1, the relative
dominance of the band estimate being most noticeable for the case (v, 8) = (0,1.2).
Also, as sample size increases Up performs relatively better than Ug, being this a
certainly supportive result. 7% clearly shows a worse behaviour than Tg, which is
superior to its zero-frequency counterpart with relation 68/15. Also, 7% is beaten by
the band estimate with relation 75/32. Most of this effect is caused by the relative
deterioration of 7% for the cases § < 1, especially for the full band situation. Both
infeasible estimates behave in a similar way, with relation 29/27 in favour of 7y,
ZW being better than OW when 3 = 0.6 for the smallest bandwidth, the opposite
happening for the full band estimates when 3 < 1. As expected, standard deviations
decrease when n, [ increase, but in general they are not very affected by variations
in bandwidth. When p = 0, some decrease in standard deviations when m increases
is apparent when 8 = 0.6, but for this § case this effect is reversed when p = 0.75.

Results for the AR cases are presented in Tables 4.50-4.65. The overall ranking
of the estimates is relatively similar to the one in the white noise situation. When
¢; = 0.5, %, Uy, Up, UF, U}, are no worse than any of the other estimates in 165,
148, 83, 46 and 45 out of 180 cases respectively. When ¢; = 0.9, the main difference
is that 7y performs better than 7}, the rest of the estimates being ranked in the
same way, with 147, 139, 92, 46 and 36 out of 180 cases being no worse than any of
the other estimates respectively. In general, standard deviations tend to decrease as
¢; decreases (especially for both cases where 3 < 1). As the overall ranking shows,
the infeasible estimates are superior to 7p except for the case 8 = 0.6 when p =0
and ¢; = 0.5, and also for some cases with |p| = 0.5 and n small. When ¢; = 0.9,
with p < 0.5 and 8 = 0.6, Uy is also better than the infeasible estimates, this fact
being also apparent for the same 3 case when p = 0.75 and n = 64. One of the main
differences with the white noise situation is that in general 7p beats the feasible
estimates when ¢; = 0.5 (with relations 77/29 and 97/14 respect to U and 7%).
When ¢; = 0.9, this relative superiority of the band estimate is even more evident, as
it dominates U and 7% with relations 92/30 and 120/9 respectively. This improved
behaviour is mainly based on the results for n = 64 and (v, 6) = (0,1.2), the most
favourable case for the feasible estimates being (vy,6) = (0.4,1.2). The reported
similarity between the two infeasible estimates in the white noise case is less clear
now. Although there are not big differences in values, when ¢; = 0.5, 7% beats 7;
with relation 26/6, whereas the opposite happens when ¢; = 0.9, where the relation
is 16/2 in favour of 7y, the superiority in this case being almost exclusively based
on the full band situation. On the contrary, the gap between the feasible estimates
reported in the white noise situation is now augmented. 7y is now clearly better
than 7% with relations 85/2 and 100/1 when ¢; = 0.5 and 0.9 respectively.

Results for the MA case are given in Tables 4.66-4.81. For both feasible and
infeasible estimates the values of standard deviations are very close to the ones in
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the white noise situation, without showing important differences with respect to the
value of 1;. Certain general improvement in the behaviour of 75 over the white noise
situation is noticeable. The infeasible estimates are superior to the rest, with overall
ranking, out of 180 cases, of 7%, ¥y, U, Ur, Uy, being no worse than any of the
other estimates in 164, 127, 76, 57, 51 and 165, 124, 86, 55, 49 cases when ¥; = 0.5
and 0.9 respectively. The situation § = 0.6 with n = 64 is the only one where g
performs better than the infeasible estimates. The MA framework is much more
supportive than the AR one for our feasible estimate Tp in relation to 7g. Thus,
Up is superior to Ug, but only with relation 61/53 for both ; = 0.5 and 0.9 cases.
Up clearly dominates Up when n = 64, especially for the cases (v,6) = (0,0.6) and
(0,1.2), whereas Ur performs better than g for the case (0.4,1.2). As in the AR
framework, Ug is superior to 7% with relations 76/36 and 79/35 for v; = 0.5 and
0.9 cases respectively, being (0.4,1.2) the only case where in general 7% beats Tp.
In any case, the differences, especially when n is large, are not of serious concern.
The ZW infeasible estimates clearly outperform 7;, with relations 43/6 and 44/6
for 1; = 0.5 and 0.9 cases respectively, being p = 0 the case where both estimates
differ the least. On the contrary, Tr beats U$, with relations 78/7 and 80/10 for
¥; = 0.5 and 0.9 cases respectively, being the situation with § < 1 where the biggest
differences appear. In any case, the values for both ZW and OW estimates, although
showing the previous general patterns, are very similar.

Behaviour of empirical sizes

We next analyse the adjustment to their limiting x? distribution of the Wald
statistics Wy, Wr, Wy, Wg, defined as

Wi = b (T —1)?%, Wp=0br(@@r-1)>, (4.51)
Wy = b (v;— 1)2 ’ F="br (Vg — 1)2, (4.52)
where
br = bm(7), br=bm(d), (4.53)
by = (), bp=0b5(). (4.54)

Tables 4.82-4.89 contain empirical sizes corresponding to nominal a = 0.05,0.10,
for the four values of p, when u; is generated by a white noise process. Results
corresponding to the infeasible Wald statistic W; are on average too large, but
certainly close to the nominal sizes, even for n = 64, for all values of p and m when
B > 1, empirical sizes reacting as theory predicts when n increases. For the case
B = 0.8, empirical sizes of W; behave worse than in the previous situation when
n = 64, but they react quickly in the appropriate direction, so that when n = 256,
sizes for § = 0.8 are comparable to those corresponding to larger 3. For this case,
sizes are not very affected by changes in p, but the combination of simultaneous
increases in |p] and m seems to have certain deterioration effect. This is much
more evident when 3 = 0.6, where in general empirical sizes are substantially higher
than for all the previous 3 cases. For this situation, there is a clear worsening of
the empirical sizes when |p| and m increase, and also there is not evidence of the
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expected response to the increase in sample size, except for the case where p = 0,
where values for W; are not very far from those corresponding to cases with higher
B. Empirical sizes for Wr are substantially larger than the ones for W;, although
in almost all cases react appropriately when n increases, being the worst case the
one for B = 0.6 with p = 0.75. Clearly, results are closer to the nominal sizes for
a = 0.10 than for @ = 0.05. In general, Wy behaves better as |p| decreases and
B increases, the deterioration of the empirical sizes when |p| increases being more
evident when § < 1. The increase in m does not almost have any effect in Wg
when p = 0, or p # 0 with 8 > 1. When p # 0, Wr suffers certain deterioration
when # < 1, which is very important for the case § = 0.6, with empirical sizes
corresponding to p = 0.75 and the largest bandwidth being unacceptably large in
this latter case. When § > 1, empirical sizes of W} and Wj are extremely similar
to the ones of Wj, Wg, for all p, m, n and 8. For 8 = 0.8, both W} and especially
W2, behave worse than W; and Wy respectively, this effect being more noticeable
as m increases, which is a predicted result by the theory. Similar effect is evident
when (3 = 0.6, the relative deterioration of W} and W being more important now.

Results on empirical sizes for the AR situation are given in Tables 4.90-4.105.
Clearly, W is heavily damaged with respect to the white noise framework, with
values corresponding to ¢; = 0.9 being unacceptably large. When 8 > 1, these values
are relatively unaffected by p, m and (3, decreasing in all cases when n increases,
quite slowly for ¢; = 0.9, however. For ¢; = 0.5, 8 = 0.8, W} is also not very
affected by the value of p, but certain increase in sizes along with increases in m
is noticeable, especially for large |p|. When ¢; = 0.9, this effect is less important.
For the case 8 = 0.6 and ¢; = 0.5, sizes of W; clearly increase with |p| and m,
being this latter effect stronger as |p| increases. Again, this is less evident when
¢ = 0.9, but sizes are very large here, although not far from ones corresponding
to bigger . The behaviour of W is one of the most striking results in our Monte
Carlo experiment. For ¢; = 0.5 and p < 0.5, empirical sizes are substantially smaller
than those corresponding to the infeasible statistic Wj, especially when g is large.
Again, when 8 > 1, sizes are relatively unaffected by m, with small increments
as |p| increases (especially for § = 1.2), and always decrease as n increases, with
empirical sizes very often being smaller than the nominal ones when n = 256. In
fact, when ¢; = 0.9, empirical sizes when 8 > 1 behave qualitatively in a similar
way to the ¢; = 0.5 case, but they are importantly pushed down, so that when
n = 256 empirical sizes are much smaller than the nominal ones. The behaviour
of the empirical sizes when 8 < 1 is interesting. When ¢; = 0.5 and p = 0, they
are substantially smaller than those corresponding to Wy, being very close to the
nominal ones when n = 256. As |p| increases, this pattern is less clear, and while
when |p| = 0.5 sizes are still better for Wr (only slightly when 8 = 0.6 though),
they are clearly worse for p = 0.75, a very important deterioration as |p| increases
taking place, whose effect is more evident as m increases, especially for 8 = 0.6.
This very strong worsening of the behaviour of Wy as |p| increases is also observed
when ¢; = 0.9, but here, even for the most adverse situation where 8 = 0.6 and
p = 0.75, empirical sizes of Wy are better than the ones of W; for any m, as now
sizes corresponding to Wy decrease when ¢; increases. Generally, W7, W3 perform
very similarly but slightly better than W;, Wg, except for the cases where 8 = 0.8
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or #=0.6 and ¢; = 0.9, for which Wy tends to behave better than Wz.

Results for the MA framework are presented in Tables 4.106-4.121. W} behaves
in a very similar way (with sizes slightly larger) to the white noise situation. For
n = 256, empirical sizes are quite close to the nominal ones, except for the § = 0.6
case. This holds for both values of ;, the “close to noninvertibility” situation
not showing any important difference with the one where ¢; = 0.5. Sizes for W,
although still worse than those of W7y, are closer to them now than in the situation
with ¢; = s = 0, i = 1,2. Again, the effect of increasing the MA parameter does
not have any important effect. Also, Wy and W3 perform relatively better than W;
and Wpr respectively, the clearest improvement appearing when 8 = 0.6.

4.4.2 Weak fractional co-integration

For this case, we simplified and modified substantially the content of the Monte
Carlo experiment. We just present results corresponding to the simplest case where
¢;i =1; =0,1=1,2, in (2.41) for estimates in (4.49) and also for the band estimate
U, for the different sets of bandwidths (LILIIT)=(2,8,15), (2,12,20), (3,15,25), for
n = 64,128,256 respectively. These different choices for (I,II,III) represent in all
cases narrow band situations. Instead of “zero-frequency” weighted estimates, we
report results corresponding to infeasible and feasible two-steps estimates, given
by 4 and 7{ respectively. Now, 7} is calculated from an estimate of the spectral
density based on (two-steps) residuals u; (7, 8,7;), noting (4.48). Similarly, in order
to compute 7%, the estimate of  is calculated from residuals y, — Upx;, and given
this estimate, say %,, the estimate of the spectral density is based on residuals
Ut(¥2,6,7F). Results for these two-steps estimates are reported for the same set of
bandwidths specified before.

Behaviour of the bias

Results for the bias are presented in Tables 4.122-4.129. The overall ranking
presents an overwhelming dominance of the two-steps infeasible estimate. This
ranking is 7{, V1, U, U5, Up, which are no worse than any of the other estimates in
134, 10, 9, 8 and 3 out of 144 cases respectively. As we will show later, this ranking
damages strongly the image of the performance of the feasible estimates, which,
specially for the two-steps estimate is excellent. The behaviour of the bias differs
substantially depending on whether p = 0 or p # 0. In the former case, although
74 is clearly best, dominating for example 7; with relation 22/4 out of 36 cases,
the same does not happen for the feasible two-steps estimate which is inferior to 7;
and Up with relations 21/10 and 13/11 respectively, out of those 36 cases, smaller
bandwidths benefitting clearly one-step estimates. Ur and 72 perform better than
U, with relations 18/12 and 16/13 respectively, the band estimate being superior
only when m and n are small. As theory predicts, biases decrease in absolute value
when (8 and n increase, and, unexpectedly, tend to decrease as m increases.

This picture changes dramatically when p # 0. Here, in all cases, the biases
share the sign of p, increase in absolute value when m increases and show the same
pattern as when p = 0 with respect to 8 and n. There are two important features to
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note when p # 0, however. First, both feasible estimates are better than the band
estimate in all cases. Second, 7, whose corresponding biases are in almost all cases
slightly bigger than those of 71, performs much better not only than T, but also,
and more importantly, than ;. The relation with respect to the one-step infeasible
estimate is 91/16 out of 108 cases in favour of 7§, being this a certainly encour-
aging result, providing evidence of an important bias reduction achieved through
our proposed iterative procedure. In fact, we suspect that more iterations could
lead to further improvements. The only cases where 7y is competitive correspond
to (v,6) = (0.4,0.8), (0.7,1), for high bandwidths when n is small. Finally, as
expected, biases increase with |p|.

Behaviour of the standard deviation

Results for standard deviations are presented in Tables 4.130-4.137. Over the
four values of p, Up is clearly superior to the other estimates, with a complete
predominance for the two cases where vy + 6§ < 1, i.e. (7, 6) = (0,0.4), (0.2,0.4) for
all p, m and n. This fact is reflected in the overall ranking, which is Vg, V1, V}, Up,
7%, no worse than any of the rest in 98, 23, 22, 4 and 0 out of 144 cases respectively.
For all estimates, standard deviations decrease as (3, n, p and m increase. Tp is
the least affected (although still very noticeably) by increments in m, hence the gap
between this estimate and the rest tends to shrink as m increases. Ug beats Up with
relation 108/34, showing Ur’s predominance over 7y only when (v, §)=(0.4, 0.8) for
the highest m, and (v,8) = (0.7,1) for the two highest bandwidths. Similarly, Tg
beats f with relation 124/20. Also, 7 is superior to Zg when (v,6) = (0.7,1) for
the two highest bandwidths.

As opposite to the evidence related to the bias, the two-steps estimates perform
in terms of standard deviations clearly worse than the one-step ones. 7; dominates
v} with relation 122/22, 7} being only superior to 7; (with small differences though)
when (v,6) = (0.7,1) for the two highest bandwidths. Even more striking is the
difference between the feasible estimates, as U outperforms 7, with relation 137/6,
V% being only superior for some cases with (v, §) = (0.7, 1) for the highest bandwidth.

Behaviour of empirical sizes

We next analyse the adjustment to their limiting x? distribution of the Wald
statistics W, Wg, WY, WF, where the two-steps Wald statistics are defined as

Wi =by (75— 1), WF =br (V5 — 1)%, (4.55)

where by; and bor differ from their respective one-step counterparts, b; and bg re-
spectively, in the same way as 7} and 74 differed from ¥; and Tp.

Results for the empirical sizes corresponding to the different Wald statistics are
given in Tables 4.138-4.145. Sizes for all cases are too large, in most of the situations
being very far from the nominal ones, showing in some cases certain convergence
as n increases, although this is usually very slow. Also, as expected, their values
increase as ( decreases. Overall, results are not at all encouraging here.
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When p = 0, empirical sizes corresponding to Wj are too large, but somewhat
acceptable. For the smallest bandwidth, they react in the appropriate direction as
n increases, being this less clear for the other two bandwidths, except for the case
(v,6) = (0.4,0.8). For (v,6) = (0.2,0.4) sizes tend to be smaller as m increases,
the opposite clearly happening with (y,6) = (0.7,1), and in a less evident way
with (y,8) = (0.4,0.8). Sizes corresponding to the two-steps infeasible estimate
for this p = 0 situation are clearly larger than those of W;, with the exception
of some cases for (y,8) = (0.7,1) for the two highest bandwidths. These sizes
behave in a qualitatively similar way to those of Wy, including the very important
deterioration of the sizes as n increases for (vy,6) = (0.2,0.4) associated with the
highest bandwidth. As |p| increases, sizes suffer from further increments, which
are especially evident for cases (v,6) = (0.2,0.4), (0.7,1). Also, there is now a
substantial deterioration of the empirical sizes as m increases for all 3, without
evidence of the appropriate reaction as n increases for the case (y,6) = (0.2,0.4)
for the two highest bandwidths. For the smallest bandwidth and |p| = 0.5, sizes of
W/ are still larger than those of W;, but although they also suffer increments as m
increases, W/ is less damaged than W; under those increases. Also, the deterioration
of W] as p increases is less important that the one of W;, so that when p = 0.75, in
almost all cases, W presents smaller sizes than W (especially for (v, 6) = (0,0.4)).
This relative better performance of WY is also evident for |p| = 0.5, but only for the
two highest bandwidths. When p # 0, W also shows a better behaviour than W;
when n increases.

Sizes corresponding to Wy and W follow in general the same pattern as their
corresponding infeasible counterparts, but they are in almost all cases larger, the
gap between sizes of infeasible and corresponding feasible statistics increasing as |p|
increases.

4.5 Appendix 4

Proof of Theorem 4.1. We show first (4.9). Clearly

em(7)
bm(7)’

Um(7,6) —v = (4.56)

where
em(7) =Re {Z cip (X) qu(v)(’\j)} : (4.57)
3=0
First, we show that
E(en(7)) = onf). (4.58)
We can write the left side of (4.58) as the real part of

j=0

1 m A n .
5 2P () [ Dalhy =) Y an-se MDY= A)f (), (459
e t=1
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where a; = a,(8), Dy()\) = 3\, **, the Dirichlet kernel, where for 0 < A <,
|Dy(N)| < K min {|A|7},¢}. (4.60)

Noting that for any A,
p(A) fF(NE=0, (4.61)
by periodicity, we can write (4.59) as

2mchp )‘)/D Z“ X Do) [f (w+ A5) = £ (X)) édp. (4.62)

Next, by summation by parts, (4.62) is

‘%LHZCJP(AJ)/D':%(_ Qn— 1D1(p,) [f (u.}.A ]fze_""\fdp,

mzcgp(x /D( B[ (- A) = F O)]€

-2

X Z (@841 Dn—t-1(p) — atDns(p)) Z e Midp. (4.63)
1=0 h=0

Clearly, the first term in (4.63) is
%p (0) ] Dn(=p)an-1Di(p) [f (1) = [ (0)] €dp, (4.64)
noting (2.95). Now, (4.64) is bounded in modulus by
K |ap| ] |Dn(u) dp = O (nf~*logn), (4.65)

as f is a differentiable function, for any finite ¢ > 0, by the Stirling’s approximation
las (c)] < K (1438)°1,5>0, (4.66)

and .

[ 1D21du = 0 togm), (467)

-1

(see e.g. Zygmund, 1977). Regarding the second term in (4.63), note that
az+1Dn—t—1(#) - atDn—t(#) = (at+1 - at) Dn—t—l(.u) — gt ay. (4-68)
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First, the contribution of the first term on the right of (4.68) to the second term
of (4.63) is 0 for 8 = 1, as in this case a;41 = a¢, t = 0,...,n — 2. For B # 1, this
contribution is bounded in modulus by

Kn7! {2 / |Dn ()P 11 (4 Aj) — £ (/\j)lldu}

J=0",

{5

=

n—2 2
Z (@41 — @) Dp—g—1 () (De(=Aj) + 1) Ilf (e + )‘j) - f ()‘J)” d.U'}

(4.69)
Now, the term inside the first braces is bounded by
K [ 14D (] dpt = O (mlogn), (4.70)

by (4.60) and (4.67), noting that by Assumption 2.1 f is boundedly differentiable.
Next, the inside of the second braces is bounded by

Ky i 252 (aes1 — a2) Dot () (De(=2y) + 1)

X (@411 — ) Dncamr(—1) (Du(Xy) +1)

m n 2
= 0 (n2 log'nX:j—2 (Z tﬁ"") ) , (4.71)

j=1 t=1
by Lemma 2.C.1 of Chapter 2 and (4.60), which is

O(n2logn),ﬂ < 1,
O (n*logn), B > 1, (4.72)

implying that (4.69) is
0] (m% logn) , B < 1,
0] (nﬁ_lm% log n) , 0 > 1. (4.73)

Finally, the contribution of the second term on the right of (4.68) to the second term
of (4.63) is bounded in modulus by

1

Kn‘lz_;{/lﬂDn(“)ﬁd“/ ;ei(""t)"at(Dt(—)\j)+l) dy} - (4.74)
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Now, the first integral inside braces is O (1) by (4.60), whereas the second one is
bounded by K 37 a?|D;()\;)|*, so that (4.74) is bounded by

Kn™t Z {nw“j_z}% =0 (nﬂ_% log m) , (4.75)
=1

to conclude the proof of (4.58).
Next, we prove that as n — oo,

1P (em(7) = E(em(y ))) = (A /1 (r; 8)dW (r). (4.76)
This proof will just consist on showing that as n i 00,
enlt) = Elen} = 5 Y oAt oef), 0
because —
;r(gﬂz:xt (MAQ) e = (A1) QL /WrﬂdW() (4.78)

by Proposition 2.3 of Chapter 2. Now, in view of Propositions 2.1, 2.2, (4.77) holds

on showing
fn/2]
Var {Re{ Y eip(A) Lo )}} = o(n%), (4.79)

j=m+1

but, as mentioned in Robinson and Marinucci (2001), (4.79) follows by a simple
modification of their Theorem 5.1, as p(A) is a well-behaved function without poles.
Finally, to complete the proof of (4.9), we show that as n — oo,

Wb, () = L0 [F sy an, (4.80)
0

where the right side is almost surely positive. This result follows in view of Propo-

sitions 2.4, 2.5, 2.6, as by Theorem 4.4 and simple modification of Theorem 5.1 of
Robinson and Marinucci (2001) and Assumption 2.1,

(n/2]
Re{ Y cia () L )} 0p(n). (4.81)

j=m+1

Now, we prove (4.11). First, defining
zy () = Za'ju2,t—j; (4.82)
=0
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(4.11) follows on showing

i Re {¢;p (M) Leen(N)} = 2D Re{p(N) Lian(X)}
=0

+:1(nﬁm%* ) (4.83)

iRe{ch(,\j)Im(.,)(,\,-)} = ZiRe{Q(/\j)Iz(v)(Aj)}
~ +:1(n2ﬂm1-2ﬂ) , (4.84)
miAs-12T ZRe{p La(A\)} — aN (o%f)_f%()o—)) (4.85)
Ai?‘l%”ZRe{q(Aj)Im(Aj>} - 0RO (480

Jj=1

by simple application of Cramer’s Theorem. First, we show (4.83). Now, the left
side of (4.83) is

2 Z Re {p (%) Lua(y) (A1) } + 2 (0) Lz (0) + P (0) (Tuz() (0) — Luz()(0))

+2ZRe {p(\) (Tua(n (A3) = Lz (X)) } - (4.87)

j=1

Now, the second term in (4.87) is

%7(7% ;"t ;5@ (1) = Op (n) = 0, (nPm?9), (4.88)

as under Assumption 2.1, > i, uy = O, (n¥/?), 31, T; (7) = O, (n!/+P) (see eg.
Robinson, 1994a). Next, the third term in (4.87) is

PO S0 @) -5 (), (4.89)

s=1

where the expectation of the second summation in (4.89) is 0, whereas its variance
5 e

is bounded by
3|
s=1 1=0

KZZ E (t+ 0 (s + 1)

t=1 s=1 I=0

IA

n t-1 oo

KZZ E+DP 2+ KY DDt + 0P s+ )7

t=1 1=0 t=2 s=1 I=0

IA
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n oo n t-1 oo

< KY Y PP KY N D (s + )% < Kn?, (4.90)

t=1 l=t t=2 s=1 =0

implying that

i (zs (1) = Zs (7)) = Op (n‘”%) , (4.91)

s=1
hence we conclude as in (4.88). Finally, regarding the fourth term in (4.87), we first
calculate the order of magnitude of its expectation, which is the real part of

/ Zp(A)D =) 3D ahrse™™f (0) e, (492)

Zx J= 5=0 k=1

which by (4.61) and periodicity is equal to

oo n+s
_/Zp(/\ )D Z Z ae tk/\j #+AJ‘) — f()\])) Ee—is(y—Aj)du
Zp =1 =0 k=s+1

IN

- {/ S IDa (=) If (m+25) = FODIIP d#}

A/

Now, by Assumption 2.1 and (4.60) the first element inside braces in (4.93) is O (m).
The second element is

oo n+s

§ : § : axe tkA,e—zs(p—AJ)

8=0 k=s+1

d/.a} . (4.93)

m oo n+s nts

ZWZZ Z Z akalei("‘k))‘f

j—l 8=0 k=s+11=s+1

1)%#-2 R
< KZZ Tf\? ~0(n?), (4.94)

j=1 s=0

by Lemma 3.2 in Robinson and Marinucci (2001), to conclude that the expectation
is O(m'/?). Next, we calculate the order of the variance of the fourth term in (4.87),
which is bounded by the real part of

7r2n2 Z Z Z Z Z Z Z Z Q541Qg4p eiri(t—9)—irk(r—q)

j=1 k=1 t=1 r=1 s=1 g=1 =0 p=0
xp (M) {E () E (ua,—ruz,—p) + E (weuz,—p) E (upug,—1) + k} p' (—Xi)
(4.95)

where & is a fourth cumulant term of the processes u, uy, ug —i, Uy, —p. We just give
detail of the contribution to the variance of the first term in braces in (4.95). It can
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be shown by simple application of the Cauchy inequality that the contribution of
the second and third terms is of the same order as the one of the first term. Now,
this contribution is bounded by

m m [o o] n

Kn2) % 0% D aene™ Z Gg €™ Z et —2)

_1—-1 k=1 I=0 s=1
n

< Kn“IZZZa+¢e —iXjs Z 1€, (4.96)

j=1 I1=0 s=1

by (2.95). Now, (4.96) is bounded by

n

Kn™lm Z Z a2, +Kn™ i i Z Z Qg p10q4 €209, (4.97)

=0 s=1 j=1 1=0 s#q

Clearly, the first term in (4.97) is O (mn®~1), and by (4.60) the second is bounded
by

» = L2 (s l‘“ l
Kn ZZZGHI%HIM—&I < KZZZ( +1) ‘I+)

=0 s#q =0 ¢g=2 s=1
n gq—1 =) n g-1 28-1
1 S
< K 28-2 <
< k3T LS cpy
q=2 s=1 I=s q=2 s=1
n—1 n—gq
= K Z q! Z s~ < Kn®logn. (4.98)
g=1 s=1
Thus, the fourth term in (4.87) is
O, (m% + nflog? n) =0p (nﬂm%"ﬂ) , (4.99)

by (4.10), to conclude the proof of (4.83). Next, we show (4.84). First, noting that
from previous arguments

ﬁ(zw) =0, (™) =0, (i), (a100)

(4.84) follows on showing

> " Re {g(A) wap (M) (wain) (=) — wa) (=) } = 0p (n¥m! =) . (4.101)
j=1
First the expectation of the left side of (4.101) is the real part of

n n—t
o Z‘I(’\ ZZiiaqe" 10541679 ”/fzz e {(Hugy,

i=1 t=1 q=0 s=1 [=0
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1 T m n .
= o [ SO Ym0 - )
J =1 t=1

XY Y aguei%eT M (for (1) — f22. (X)) dps, (4.102)

s=1 [=0

n

/ e Hrdy — 0, (4.103)

2
du}

for all t > 1,1 > 0. Then, (4.102) is bounded by
2 3
d,u.} . (4.104)

D=

3 ante @D, (A 1) (frz (1) = frr ()

t=1

e

x =1

I

Now, the first element in braces in (4.104) is bounded by

n o

E : § :as+le—iAjae—ilp

s=1 =0

KZ ZZ ant@n—qg | D (\j — )| |Dg (1 — Xj)] (F22 (1) — f2 (A3))°

i=1 t=1 ¢g=1
< Kmn?, (4.105)

by (4.60). The second element in braces is

2 Z Z Z Z a,,+;ap+zei(”—")'\"
j=1 s=1 p=1 I=0
n oo n [o <]
< KmZZa,z+Kn ZZ ZM
s=1 l=s s#p =0 IS —p|
= O (mn® +n**logn), (4.106)

where the order corresponding to the second term in the right of the inequality in
(4.106) is calculated as in (4.98). Thus, the expectation of the left side of (4.101) is

O (n28-1/2m1/210g 2 ). Next, we consider the variance of the left side of (4.101)
which is bounded by the real part of

n n-tn-r n n

1 m m n oo 00

22220202200 2 A a (=X
j=1 k=1 t=1 r=1 ¢g=0 p=0 s=1 u=1 I=0 v=0

igAj iXj(t—s) e—'b\k(r-—u)

Xage ape“ip’\ka,+lau+,,e
X {E (U2tU27-) E (’U.Q'_[’U.z,_u) + E (’U.gt’u,z'_v) E (’U,Q,.’U.z,_.[) + k} , (4107)
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where k is the fourth cumulant term of ug, ua, up i, ug—,. As before, we just
consider the contribution of the first term in braces, the treatment of the remaining
terms being very similar. Now, this contribution is bounded by

w3 {3e 3

t=1 =0 l=n+1

m n-—t n+l

ZZa el Z ase ”"’el(t“)’\J . (4.108)

j=1 g¢=0 s=l+1

Now, noting that by Lemma 3.2 in Robinson and Marinucci (2001)

n+l B/2—-1/2
—~i8)\;j (l + 1)
E ase < Kw, (4109)
s=l+1 I jl

the contribution of the summation in ! from 0 to n to (4.108) is bounded by

-1 B8/2-1/2
Kn Z ! Z <1 |3ﬂ/2+l/2

2
Kn*®, 3>1/3,

Kn*log’m, 8 =1/3,

<
< Kn¥m!=% g<1/3. (4.110)

Next, by Lemma 3.2 in Robinson and Marinucci (2001), the contribution of the
second summation in [ in (4.108) is bounded by

Kn—l i lﬂ—1n1+ﬁi]’—l—ﬂ

l=n+1 i=1
Thus, we conclude that the left of (4.101) is
O, (nzﬁ‘lﬂml/2 log/?n + nzﬁ) ,B>1/3,
Op (nzﬁ‘l/zml/z log'/?n + n% log m) ,B=1/3, (4.112)
0, (nZﬂ—1/2ml/2 log"?n + n2ﬂm1/2—3ﬂ/2) LB <1/3,

2

< Kn¥t )" %72 < K, (4.111)
l=n+1

in all cases o, (n**m!~%). Finally, (4.85), (4.86) follow as in the proof of Theorem
2 of Christensen and Nielsen (2001) who adapted the steps in Lobato (1999) to a
somewhat different situation. Following these references, it can be easily shown that

m2/\ﬂ 1 2n Z Re {P uz('y) ()‘ } Z Ct Z Ct—sCa + Op 1/2_3) y (4113)

j=1 t=2 s=1

where ¢, = Q1/2¢,,

o = mz.g()\j)cos (t\), (4.114)

and
o) =X [B N (1 - )P B(-X) + (1- %) 7 B (W) ep(-N B(-N)],
(4.115)
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with B (A) = A (e*) Q'/2. Now, probably the only point that is worth mentioning
is that

Wznsztr{g (=) e( )\)}ti;icos ((t = ) A)
- L (1)e )
= (”8;222235it {B’ AP ) E (L—e ™) P B(-))
x (1= €)™ B' () €p (—25) B(-)))} (4.116)

some cancellations taking place due to (4.61), so that (4.116) is equal to

(=1 NF 1 f22(0) f11 (0)
T om2m z |1 fa2 (X5) £ (=X5) — W‘, (4.117)

as n — oo, by (4.4).

Proof of Theorem 4.2. The result follows on showing that as n — oo

Um(7,6) = Um(7,6) = op (nPm!/2min(B1/2}) (4.118)
Un(7,8) — Dm(7,6) = o0, (nPml/2-min{B1/2}) (4.119)

noting that the proof for 7,(3,6) and (v, 8) is implied by the proof of (4.119).
First, (4.118) follows on showing

em(7) —em(7) = op(nPm!/Aminli/2A}), (4.120)
bn(7) = bm() = 0p(n¥mi2min{1/28}), (4.121)

We just prove (4.120) as the proof for (4.121) is similar, but significantly simpler.
Now the left side of (4.120) is

RG{ZCJ(}) (A ) p(A )) ua:(’Y)(’\ )} ) (4.122)

and noting that
BOY=p(N) = ¢FN) 1) - F] F, (4.123)

the two possible terms for which ¢; = 1 are O,(nf~*) = o,(nm!/2-min{1/28}) by
(4.19), as by Assumption 2.1, Y7, us = Op(n!/2), and by results in Robinson and
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Marinucci (2001) and previous arguments, ¥ ;. z:(7) = Op(nf*'/2). Next, by
summation by parts, the remaining terms in (4.122) are equal to

2Re {(ﬁ(,\m-) =P (Am)) Z qu(’v)(Aj)}

-2 Re{ z—: @ (Ajr1) —p(Nje1) — (@ (X)) —p (M) quz(w)()‘h)} )
h=1

7=1
(4.124)

where m* = m —1if m = n/2 or m* = m, otherwise. Now, we consider the order of
magnitude of the expectation of Y} _; Tu.z(y)(An), ¢ = 1,2, uniformly in j € [1,m)].
First, for 1/2 < 8 < 1, as in the proof of Proposition 4.1 of Robinson and Marinucci

(1998)
‘E (zj:Iuim(’Y)(Ah)) } ) (4'125)

where by Lemma 3.2 in Robinson and Marinucci (2001), for 0 < |A| < 7,

t
; 1
a e =0 — |, 4.126
Z |)‘II3 ( )
implying that, uniformly in j € [1,m],

o (frso0)

Next, for 8 = 1, noting that Assumption 2.1 ensures that the conditions for Lemma
5.4 of Robinson and Marinucci (1998) hold, uniformly in j € [1,m],

n—t

§ :aseis)\h

s=0

SKn‘%i{i

h=1 t=1

= 0 (nm!~?). (4.127)

E (Z Iu‘.z(,)()\h)) =0 (m), (4.128)
h=1

noting that uniformity in j follows easily from the arguments in the proof in that
lemma. Now, for § > 1, the left side of (4.128) is

1 : r = —itA
2rn ; / Dn (=) ; a1€™" " Dy (1) fiz (1 + An) dps (4.129)
which by summation by parts is equal to

— [ b, (—p) i atDne (1) fiz (B + X;) Dj (=) dpe

2mn
t=1

(1
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-1

27m_/D (= ZatD" t Z(fﬂ(“'*')‘hﬂ)—fﬂ(#‘*')\h))

=1
XDy (~\e) dpp+ 52— / 1D ()2 fiz (4 + Mn) . (4.130)

Now, the third term in (4.130) is O (j), noting that for any r > 1

m

/ D, () dps = 2nr, (4.131)

-

Next, uniformly in j, the first term is bounded by

K 3 ouD; (- {/w (1* du/IDn () dp}

t=1

Nl

< Kn) tP2=0(nf), (4.132)
t=1

by (4.60). Also, noting that by Assumption 2.1, uniformly in x and A,
fa (B4 M) = fa(p+ ) =0 (n7"), (4.133)

using a similar analysis to the one of the first term, it is easy to show that the second
term of (4.130) is O (nf~? ) Next, by the proof of Proposition 4.2 of Robinson and
Marinucci (1998), for any i = 1,2

J j n |n—t 2
Var (Z Iuiw(‘y)()‘h)) < Kn™! ZZ Zase"'s’\" , (4.134)
h=1 h=1 t=1 | s=0
which implies by (4.126) that, uniformly in j € [1,m],
J
Var (Z I,,‘.,,(.,)(Ah)) =0 (n?). (4.135)
h=1

Finally, for 8 < 1/2,

z Tuia(n(An) < {Z Tu.(An) Z Iz(‘Y)()‘h)} =0 (nﬁjl_ﬁ) ) (4.136)

by the properties of the periodogram described in Robinson (1995a), to conclude
finally that

J
ZIum('y)(/\h) = Op (nﬂml'ﬁ) , B<1,
h=1
= 0,(n?),B2>1, (4.137)
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uniformly in j € [1,m]. Thus, by Assumption 4.2, the first term of (4.124) is

O, (n’g”"ml“ﬂ),ﬂ < 1,
0, ("), 8 > 1, (4.138)

so the first term of (4.124) is 0,(nPm!/2-min{1/28}) noting (4.19). Now, Pj+1 —pjt1 —
(B; — ps) is

¢fit [f: — firn— (fi— fj+1)] i

+ (F -5 G- f)

+C' 7 (fi = fi) ( = ,111) (4.139)

First, by (4.137) and Assumptions 2.1, 4.2, the contribution of the second and third
terms in (4.139) to the second term of (4.124) is

O, (P 17*"m?* ), 8 < 1,
O, (n~17"m), B > 1, (4.140)

which is o,(nPm!/2-™i*{1/28}) by (4.19). Finally, by Assumption 4.2 and (4.137),
the contribution of the first term in (4.139) to the second term of (4.124) is

Op (nﬁ"¢m2‘ﬁ) , B < 1,
O, (n°~*m), B > 1 (4.141)
again o,(nfm!/2-min{l/2A}) by (4.20), to conclude the proof of (4.118).
Next, noting that
Pn(7,8) — v = el 5), (4.142)
b (4)
where
(’7»5) Re{z cip (i) 1, v(3,0)z(7) (A )} (4.143)
and R R
'U(;y\’ 6) = (ult(/i - 7) azt( )),1 (4144)

(4.119) follows on establishing

(nPml/2-min{l/28})  (4.145)
(nPml/2-min{l/28}y  (4.146)
(n?Pm1-2min{1/28Y)  (4.147)
(n?Pmi- 2mm{1/2,ﬂ}), (4.148)

en(3,8) —em(7) = op(n
&n(3,6) — em(3,8) —Em(7) + em(7) =
3 bm(7) = bm(7) =
bm(3) = bmn(A) = bm(7) + bm(7) = 0,

S

where e,,(7, 8) is like &, (3, 8) but with p(A) replacing p(\) in (4.143). We just prove
(4.145), (4.146), the proofs for (4.147), (4.148) being similar but simpler.
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Now, the left side of (4.145) is the real part of

m

> " eip(A) [wemy(—A5) = Watn(=A3)] [wu(:,,zs‘) (A5) — wu(&')] (4.149)

=0

+ zm: ;P (Aj) Wa(y) (=) [’wvﬁ’g) ()\j) - wu()\j)] (4.150)
j=0

+ Z ¢ (Ag) [waggy (= A7) = W) (= 25)] wa(R;)- (4.151)

Considering first (4.151), by Taylor’s theorem, this is the real part of

R-1 ~S\yr m
Zh ;'7) > cip () wl) (=g B)wa(Ny)
r=1 ) j=0

+(')’—:Y\)R m s (/\) R(_\-§—7 s 4152
R! 3P \Aj) Wy ( ' ’Y)Wu( ]), ( . )

j=0

where for a vector or scalar sequence ¢;, and real b > 0,

1 n i-1
wP (X)) = —— > > al (B)ps-se™, (4.153)
(21rn) t=2 s=1
with .
a{") (b) = —%b(—) (4.154)

and |[¥ — 7| < |¥— |- Now, by a straightforward extension of results in Robinson
and Marinucci (1998, 2001)

Zc;p(x )wl (=X Bwa(N) = Op (n°m!™* (logm)’), B <1,
= Op(nf(logm)), B2>1, (4.155)

the only differences being that the weights a{” (B) that are involved (see Lemma
2.C.1), are not covered by the weights of Robinson and Marinucci (2001) (but it
can be easily shown that they just contribute the (logm)" factors), and the smooth
weighting factor c;p (A;), which, as mentioned before, can be handled by simple mod-
ification of the proofs of Robinson and Marinucci (1998, 2001). Next, the summation
in the second term of (4.152) is bounded by

KZ|w<R> b=l < Kt Y a5 -7)

j=1
= O, (nft?), (4.156)
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for any € > 0 in view of Lemma 2.C.5. Thus, by Assumption 4.1, choosing R >
(k +2)/x, (4.151) is

O, (W**m'Plogm), B < 1,
O, (" logm), B > 1, (4.157)
orders which are o,(nm!/2-min{1/2A}) in view of (4.15). Now, again by Taylor’s

theorem, (4 150) is the real part of

Z ZCJP ’U):z(”/) =X ) ( (ﬁ _07)T (;5"'_05)1- ) ws.)()\j;o)

r=1

~_ ~\R
,ZCJP ’\ )wz("/)( —A; )( (7 (;Y) (3_?5)R ) ’SLR)(AJ”Y’ 6):

j=0
(4.158)

where

wiP(X;7,8) = (wfff’(/\; 7),w(’"(x\,,6)) (4.159)

and || < ¥ — 1, |5| < ‘3— 6'. Again, by straightforward modification of results in
Robinson and Marinucci (1998, 2001), the orders in (4.155) apply to the summation

over j in the first term of (4.158) as the weights a{” (0) involved (see Lemma 2.C.4),
just contribute the (logm)” factors. Next, the summation in the second term of
(4.158) is bounded by

KZ |w2('7)(_)\q)| \

q=0

q;inag)H

< Knf* Em: {|a§,”) @] + |a$,R) (3)|} , (4.160)

q=0

which is O,(n?+3/2%<) for any € > 0, in view of Lemma 2.C.5. Thus, by Assumption
4.1, choosing R > (3/2+ )/, the orders (4.157) apply to (4.150). Finally, by same
arguments as the ones above, we can easily show that (4.149) is 0, (nPm?!/2-min{1/2.8}),
to complete the proof of (4.145).

Next, the left side of (4.146) is the real part of

i ¢ (P; — ps) {wz(’r)(—’\i) ["“vﬁﬁ)(’\f) —wul )]
=0

+ [wa@) (= 2A5) = Wain) (=25)] wu(X5)} - (4.161)

First, by arguments discussed in the proof of (4.145), (4.161) is dominated by the
real part of

Z(ff,-—p,-){( T 55 ) meAe 050
+(y = F)wG) (=X B)wa(A;)} - (4.162)
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As before, the terms where ¢; = 1 are of smaller order. For the rest, by summation
by parts, the second term of (4.162) is

2('7 - ;Y) {[5771 - pm] Z wz(alg)(_’\ﬁ ﬂ)wu()‘j)

m*—1 J
= ) Pis1 — pir1 — B — p5)] Zwﬁlz)(—Ah;ﬁ)wu(Ah)} . (4163)
=1 h=1 :
Now, by a straightforward extension of (4.137), uniformly in j € [1,m],

J
Zw&)(—/\h;ﬂ)wu()xh) = Op (n’m'Plogm), B <1,
h=1
= O, (nflogm), B >1, (4.164)
to conclude by Assumptions 4.1, 4.2, that (4.163) is

Op (N**m'Plogm(n™ +n~%m)), B < 1,
O, (n*logm(n™ +n"%m)), B8 > 1, (4.165)

orders which are o,(nfm?/2-min{l/28}) by (4.15), (4.19), (4.20).

Now, by same arguments as above and the ones described in the proof of (4.145),
it can be easily shown that the orders in (4.165) also apply to the first term of (4.162),
to complete the proof.

Proof of Theorem 4.3. Now, for 8 > 1, (4.44) follows in view of Theorem 2.2
when m = [n/2]. For m < [n/2],

Re {i chuz(‘Y)(’\j)} = Zﬂ: Luat) (A3) + 05(n?), (4.166)
=0 j=1

Re {i CJ'IZ('Y)()\J')} = zn: L) (A7) + 0p(n), (4.167)
§=0 j=1

by Propositions 4.1, 4.2 of Robinson and Marinucci (1998), and then we conclude
as in the case m = [n/2]. For 8 = 1, as mentioned in Chapter 2, (4.44) follows by
Theorem 4.3 of Robinson and Marinucci (2001) and (4.43). For 1/2 < 8 < 1, noting
that

o N ¢)
m (7, 6) 5. (7) (4.168)
where .
e?n(')’) = Re {p (0) Z chux('v) (’\J)} ’ (4169)
we first prove that
E(ep,(7)) = o(n?). (4.170)
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By the orthogonality condition (4.61), we can write the left side of (4.170) as the
real part of

—i(n—t)A; 2\ = . =()\.
2mn E / Dn(Xj— 1) ; On—t€ I Dy(p—A3) {E(m, Aj) + E(X;,0)} dp, (4.171)

where
E(a,b) =p(0){f (a) — f(b)}¢&. (4.172)
The contribution of the second term in braces in (4.171) is
m n—1
n1Y "E(),0)) a(n—t) e, (4.173)
j=1 t=0

By summation by parts, (4.173) is bounded in modulus by

'IZI%I (n—1) Z[" 2i,0) — E(Aj+1, 0)] Dj (—=Ar) + E(Am, 0) Din (—Ar)

t=0

<Km) t*72 < Km, (4.174)
t=1
as we only consider 3 < 1, to conclude by (4.43). Finally, the proof of (4.58) readily
implies that the contribution of the first term in braces in (4.171) is o(n?).
Next, we show that, as n — oo,

) - Bl = AW [F o). i
First, note that by Theorem 5.1 of Robinson a.ndoMa.rinuCCi (2001), as n — oo,
Var(es,(1)) = Var <p 3 qu(v)(Aj)) Foln®), (@170
implying that i
eh0) = Blenlo) = B Y e Blaohudh + o). (a7

Thus, in view of the proof of Theorem 4.1, it just remain to prove that

2OV S~ (ot — Bletud) - B2 S a s (A1) = o). (4178)
t=1 t=2

First, note that
Z {ze(V)us — E [ze(v)w]} - Z {z:(7)A — Elz(7)A(1) &)}
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—Z{xt ) (ve-1 — ) = E [2o(7) (001 — )]}, (4.179)

where -
v=) Ay A=) A (4.180)
j=0

and

n

Z-’Et(’)’) (V-1 —vg) = Z {z:(7) = ze-1(7) } ve—1 + 1 (Y)vo — Tu(Y)vn.  (4.181)

t=1 t=2

Now, as in the proof of Theorem 5.1 of Robinson and Marinucci (2001), as Assump-
tion 2.1 ensures boundedness of the spectrum of the process v; and the crosspectrum
of v, with ugy, it can be easily shown that

Var {Z {z:(7) — ze—1(7)} vt_l} =0(n). (4.182)
Next, .
E |z1(Y)vo| < {Ex1(7)*Evf}? < oo, (4.183)

due to the truncation in (1.26) and Assumption 2.1. Similarly, by Robinson and
Marinucci (1998, 2001),

Eea(1)va] < {Eza(v)2Bv2}? < KnP3, (4.184)
to conclude that (4.179) is 0,(n”). Finally, we have to prove that

n

Yo ziMAD e~ Y {zMAW) e — Ele(1)A(1) ]} = 0p(n”),  (4.185)

t=2
but this immediately follows, as

Var {Z [ze1(n) — ()] A (1) } =0(m), (4.186)

t=2

by similar arguments to the ones in the proof of Theorem 5.1 of Robinson and
Marinucci (2001), to complete the proof of (4.44).
Finally, (4.45) follows on showing that

6‘;(7)—em(7) = op(n’m!/*P), (4.187)
b (1) = bm (7) = 0p(n*m!~?). (4.188)

Now, by the bounds for the periodograms given in Robinson (1995a), Robinson
(2002) and Assumption 2.1, the left side of (4.187) is bounded in modulus by

1

{Ellp(/\ PO ILu (A5 )”Z“P (M) = P (O)l Loy (/\k)}
< K {nZﬁ—Z—Zn ij1+nikl+n—2ﬂ}2 < K,nﬁ—l—nm2+n—ﬂ’ (4189)
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so that (4.187) holds as
m3/2+n

n1+n

by (4.10). Finally, by the same arguments, the left side of (4.188) is bounded by

— 0 as n — 00, (4.190)

KZA ety () < Kn?P-1-1m20=28, (4.191)

so that (4.188) holds as
m1+n

T 0 as n — o0, (4.192)

again by (4.10), to conclude the proof.
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TABLE 4.2

MONTE CARLO BIAS OF Ty, Up, 75 FOR p =0, ¢ = ¢; = 0, i = 1,2
n = 64 n =128 n = 256
m | v ) Ur Vp 1] Vr Up TUp vr TUp Up
0] .6 }-003 -005 -005]|-.001 -.002 -.002 | .000 .000 .000
0}12(|-001 -001 -001]| .000 .000 .000 | .000 .000 .000
I 0 2 .000 .000 .000 | .000 .000 .000 | .000 .000 .000
4(121-002 -004 -007|-001 -.001 -.003 | .000 .000 -.001
41 2 .000 .000 .000 | .000 .000 .000 | .000 .000 .000
0| 6 [-003 -005 -.005|{ -001 -.002 -.002 | .000 .000 .000
0| 12| -001 -001 -.001 | .000 .000 .000 | .000 .000 .000
II{o 2 .000 .000 .000 | .000 .000 .000 | .000 .000 .000
41121]-003 -004 -.007|-.001 -.001 -.003 | .000 -.001 -.001
41 2 .000 .000 .000 | .000 .000 .000 | .000 .000 .000
0| .6 | -003 -005 -.005]|-.001 -.002 -.002 | .000 .000 .000
0(12]-001 -001 -001] .000 .000 .000 | .000 .000 .000
Inm| o 2 .000 .000 .000 | .000 .000 .000 | .000 .000 .000
41121}-003 -005 -.007|-001 -.002 -.003 | .000 .000 -.001
41 2 .000 .000 .000 | .000 .000 .000 | .000 .000 .000
TABLE 4.3
MONTE CARLO BIAS OF 7%,5% FOR p= 0, ¢; = 4 = 0, = 1,2
n 64 64 128 128 | 256 256
mlylé|l®m mlw w|w w»
0( .6 | -.003 -006]-001 -.001{(.000 .000
0(12]-001 -001] .000 .000 |.000 .000
I 0 2 .000 .000 | .000 .000 {.000 .000
4112]-003 -0041|-001 -.001].000 .000
41 2 .000 .000 | .000 .000 | .000 .000
0| .6 |-003 -007| .000 -.001].000 .000
0)12]-001 -001{ .000 .000 |.000 .000
II}]0 2 .000 .000 | .000 .000 | .000 .000
41121]-003 -.005]|-001 -001]|.000 -.001
41 2 .000 .000 | .000 .000 { .000 .000
0| .6 |-003 -006( .000 -.001]{.000 .001
0]12]-001 -001]| .000 -001].000 .000
IIm| 0 2 .000 .000 | .000 .000 [ .000 .000
4112(-003 -006]|-001 -002]|.000 .000
4] 2 .000 .000 | .000 .000 | .000 .000
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TABLE 4.4
MONTE CARLO BIAS OF ¥;,Ur, g FOR p= .5, ¢ = ) = 0,7 = 1,2

n =64 n =128 n = 256
m | v ) vy Vg ] Ur U Up v 1) 2]
0| .6 |.050 .063 .116 | .034 .043 .095 | .023 .026 077
0]12].001 -.001 .003 | .000 -.001 .001 | .000 .000 .000
I 0 2 | .000 .000 -.001 | .000 .000 .000 | .000 .000 .000
4112 .008 .014 .033 | .004 .007 .020 | .002 .003 011
4] 2 |.000 -.001 .000 | .000 .000 .000 | .000 .000 .000
0] .6 |.063 .078 .155 | .043 .053 .128 | .029 .033 105
0(12].001 -001 .005 | .000 -.001 .001 | .000 .000 .000
Im|o 2 | .000 .000 -.001 | .000 .000 .000 | .000 .000 .000
41 1.2 .009 .016 .036 | .004 .008 .021 | .002 .003 011
41 2 |.000 -.001 .000 | .000 .000 .000 | .000 .000 .000
0] .6 |.071 .087 194 | .048 .058 .160 | .032 .037 .133
0]12}.001 -.001 .007 { .000 -.001 .002 | .000 .000 .001
I o 2 | .000 .000 -.001 | .000 .000 .000 | .000 .000 .000
41121 .010 .019 .038 | .005 .009 .022 | .002 .003 .012
4] 2 |.000 -.001 .000 | .000 .000 .000 { .000 .000 .000
TABLE 4.5
MONTE CARLO BIAS OF 72,7% FOR p= .5, ¢ = ¢ =0, i = 1,2
n 64 64 128 128 | 256 256
mlyls|m wm|®w w|®n ®»
0) .6 ].045 .063 | .031 .042 | .021 .025
0]12].001 -.001].000 -001].000 .000
I (0| 2 |.000 .0001{.000 .000 | .000 .000
4112].006 .014 {.003 .007 | .001 .002
4| 2 ].000 -001]|.000 .000 |.000 .000
0] .6 |.059 .08 | .041 .058 | .028 .037
0(12)].001 -0011].000 -.001](.000 .000
IIm|{o{ 2 |.000 .000 |.000 .000 | .000 .000
4(12].008 .020 |.004 .010 |.002 .004
41 2 |.000 -001].000 .000 |.000 .000
0] .6 |.076 .109 |.052 .073 | .035 .049
0112;.000 .001 |.000 .000 |.000 .00O
Im{oj} 2 |.000 .000 |.000 .000 |.000 .000
4(1.2].010 .029 |.005 .013 | .002 .005
4| 2 |.000 -.001{.000 .000 |.000 .000

176




TABLE 4.6
MONTE CARLO BIAS OF Vi, Up,VB FOR p= —.5, ¢; = 1/),- = 0’ 7= 1,2

n =064 n =128 n = 256
m | v 6 Vs Vp Vs Ur Up Up vr VR VB
0| .6 |-046 -063 -.115] -.031 -.041 -.093 | -.022 -.026 -.077
0 (12| -001 .000 -.003 | .000 .001 -.001 | .000 .000 .000
I 0 2 .000 .000 .001 | .000 .000 .000 | .000 .000 .000
4112)-006 -016 -.035]|-.003 -.006 -.020 | -.001 -.002 -.011
4] 2 .000 .000 .000 | .000 .000 .000 | .000 .000 .000
0} 6 }-059 -078 -153 | -.040 -.051 -125 | -.028 -.034 -.105
0(12]-001 .000 -.004 | .000 .000 -.001 | .000 .000 .000
II|o 2 .000 .000 .001 | .000 .000 .000 | .000 .000 .000
4112(-008 -019 -036 ] -.003 -.008 -.020 | -.001 -.003 -.011
4| 2 .000 .001 .000 | .000 .000 .000 | .000 .000 .000
0| .6 |-066 -085 -.191 | -.045 -.056 -.157 | -.031 -.037 -.133
01]12]-001 .000 -.007 | .000 .000 -.002 | .000 .000 -.001
Imm|o 2 .000 .000 .001 | .000 .000 .000 | .000 .000 .000
4(12(-009 -021 -.038]-.004 -.009 -.021 | -.001 -.003 -.011
41 2 .000 .000 .000 | .000 .000 .000 | .000 .000 .000
TABLE 4.7
MONTE CARLO BIAS OF 73,7 FOR p= —.5, ¢; = % = 0, = 1,2
n 64 64 128 128 256 256
mlyls|®m m|lw »|®n »
0 .6 |-.043 -.064 [ -.028 -.040| -.020 -.025
0]12]-001 .001 | .000 .001 | .000 .001
1710 2 .000 .000 | .000 .000 { .000 .000
4112 -005 -.017 | -.002 -.007|-001 -.002
41 2 .000 .001 [ .000 .000 | .000 .000
0| .6 [-056 -086|(-038 -.056]|-027 -.037
0f12] .000 .000 { .000 .001 { .000 .000
IwIm|o 2 .000 .000 | .000 .000 { .000 .000
4112]-007 -.023}-003 -010|(-.001 -.003
A4 2 .000 .001 | .000 .000 | .000 .000
0] 6 |-071 -.106 | -.048 -.072|-.034 -.049
0]12]|-001 -.002| .000 .000 | .000 .000
Im | o 2 .000 .000 | .000 .000 | .000 .000
4112]-009 -.030]|-004 -.013]-.001 -.005
4 2 .000 .000 | .000 .000 | .000 .000

177




TABLE 4.8
MONTE CARLO BIAS OF 7;, 7,V FOR p = .75, ¢ = ¢; =0, i = 1,2

n =64 n =128 n = 256
m | v ) Uy Up VB Vr Up :) vr Up ;]
0] 6 }.0714 .091 .176 | .049 .060 .140 | .033 .038 114
0}12]|.000 -001 .004 | .000 .000 .001 | .000 .000 .000
I 0 2 | .000 .000 -.001 | .000 .000 .000 | .000 .000 .000
4(1.2].010 .023 .050 | .005 .012 .029 | .002 .004 .016
4] 2 |1.000 -001 .000 | .000 .000 .000 | .000 .000 .000
01t .6 | .095 117 .235 | .063 077 .189 | .043 .049 .156
0]112].001 -001 .007 | .000 .000 .002 | .000 .000 .000
Iwm|o 2 | .000 .000 -.001 | .000 .000 .000 | .000 .000 .000
41 121.013 .026 .053 | .006 .013 .030 | .002 .005 017
41 2 |.000 -001 .000 { .000 .000 .000 | .000 .000 .000
0| .6 |.108 132 203 | .071 .085 .238 | .048 .055 .198
0] 1.2].001 .000 .011 | .000 .000 .004 | .000 .000 .001
Imr { 0 2 | .000 .000 -.001 | .000 .000 .000 | .000 .000 .000
4(1.2].014 .029 .056 | .006 .014 .031 | .002 .006 .017
4( 2 |.000 -.001 .000 { .000 .000 .000 | .000 .000 .000
TABLE 4.9
MONTE CARLO BIAS OF 7%,7% FOR p = .75, ¢s = ¢ =0, i = 1,2
n 64 64 128 128 | 256 256
mlyl6|w ®m|® »|®» w»
0| .6 |.068 .091 |.044 .058 | .030 .035
0]12].001 -.001]|.000 .000 | .000 .0OO
1 0 2 | .000 .000 | .000 .000 | .000 .000
4]12(.009 .024 |.004 .012 | .001 .005
4] 2 [.000 -.001].000 .000 | .000 .000
0] 6 ].089 .127 | .059 .082 [ .040 .053
0(12].001 -.001].000 .000|( .000 .000
IImjo 2 | .000 .000 | .000 .000 | .000 .000
4112].011 .031 | .005 .015 | .002 .006
41 2 |.000 -.001]|.000 .000 (| .000 .000
0} .6 |.112 .164 | .075 .106 | .051 .072
0]12{.0010 .002 |.000 .000 | .000 .00O
I { 0 2 |.000 .000 | .000 .000 | .000 .000
4112).014 .041 | .006 .018 | .002 .007
41 2 |].000 .000 |.000 .000 |.000 .000
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TABLE 4.10
MONTE CARLO BIAS OF 7;,Up, U5 FOR p=0,¢; = .5, % = 0,3 =1,2

n =064 n =128 n = 256
m | v ) Ur Up Vg vy UFp VB Vi Up VB
0{ 6 1}-003 -003 -.005]|-001 -.001 -.002 | .000 .000 .000
0] 12]-.001 .000 -.001 | .000 .000 .000 | .000 .000 .000
1 0 2 .000 .000 .000 | .000 .000 .000 | .000 .000 .000
41121]-003 -003 -.007|-001 -.001 -.003 | .000 .000 -.001
41 2 .000 .000 .000 | .000 .000 .000 | .000 .000 .000
0| 6 |-004 -003 -.006|-.001 -.001 -.002 | .000 .000 .000
012]-001 .000 -.001 | .000 .000 .000 | .000 .000 .000
II10 2 .000 .000 .000 | .000 .000 .000 | .000 .000 .000
4112]-003 -003 -.007|-.001 -.001 -.003 | .000 .000 -.001
4| 2 .000 .000 .000 | .000 .000 .000 | .000 .000 .000
0| 6 1-004 -004 -.006{-.001 -.001 -.002 | .000 .000 .000
0121 -001 .000 -.001 | .000 .000 .000 | .000 .000 .000
Im || o 2 .000 .000 .000 | .000 .000 .000 | .000 .000 .000
4112]-003 -003 -.007]-.001 -.001 -.003 | .000 .000 -.001
41 2 .000 .000 .000 | .000 .000 .000 | .000 .000 .000
TABLE 4.11
MONTE CARLO BIAS OF 7%, 7% FOR p =0, ¢ = .5, 4 = 0, i = 1,2
n 64 64 128 128 256 256
mly|l6|®m m|® w|w »
o .6 |-004 -005]|-001 .000 [.000 .000
0112]-001 .000 | .000 .000 [.000 .000
I 0 2 .000 .000 | .000 .000 | .000 .000
4112(-003 -003|-001 .000 | .000 .000
41 2 .000 .000 | .000 .000 | .000 .000
0| .6 | -004 -005]|-001 .000 |[.000 .000
0}12]-001 -.001] .000 .000 [.000 .000
Im|o 2 .000 .000 | .000 .000 | .000 .000
4112 -003 -004(-001 .000 | .000 .000
4] 2 .000 .000 | .000 .000 | .000 .00O
0| .6 {-004 -005]-001 .000 |.000 .001
01]12]-001 .000 | .000 .000 | .000 .000
IIm | o 2 .000 .000 | .000 .000 | .000 .000
4112|-003 -004]|-001 -.001].000 .000
41 2 .000 .000 | .000 .000 | .000 .000
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TABLE 4.12
MONTE CARLO BIAS OF 7,7, Dg FOR p= .5, ¢y = .5, 0; =0, i = 1,2

n = 64 n =128 n = 256

m é vr Up VB Vi Vg Vg vy Vp Ug

.6 |.041 .063 .101 | .029 .045 .082 | .019 .029 .066
1.2(.001 -002 .002 {.000 -.001 .001 | .00O .000 .000
2 |1.000 -.001 -.001].000 .000 .000 | .000 .000 .000
1.2 | .007 .019 .032 | .004 .010 .019 | .001 .004 .011
2 |{.000 -.001 .000 | .000 .000 .000 | .000 .000 .000

.6 |.048 .076 114 | .034 .053 .092 | .023 .035 074
.21.000 -002 .003 {.000 -.001 .001 | .000 .000 .000
2 {.000 -.001 .000 { .000 .000 .000 | .000 .000 .000
1.2 1.008 .021 .033 | .004 012 .020 | .002 .005 011

2 1.000 -.001 .000 | .000 .000 .000 | .000 .000 .000

I

.6 |.052 .082 121 | .037 057 .097 | .025 .038 .078
1.21.000 -001 .003 | .000 -.001 .001 | .000 .000 .000
2 1.000 -.001 .000 | .000 .000 .000 | .000 .000 .000
1.2 1 .009 .024 .033 | .004 .012 .020 | .002 .005 011
2 |.000 -.001 .000 | .000 .000 .000 | .000 .000 .000

III

Ahooo|lprrnooolnino oo
—
o

TABLE 4.13
MONTE CARLO BIAS OF 2,7% FOR p= .5, ¢; = .5, ¢; = 0, i = 1,2
n 64 64 128 128 | 256 256
sl w|wn w | ®n W
.6 1.039 .061 | .027 .042 | .018 .026
1.2 ]1.001 -.002 | .000 -.001|{ .000 .000
2 | .000 -.001¢f.000 .000 | .000 .000
1.2 |1 .007 .019 | .003 .010 | .001 .004
2 |.000 -.001](.000 .000 |.000 .000
.6 | .043 .076 | .030 .051 | .019 .032
. .001 -002 | .000 -.001).000 .000
2 |.000 -001]|.000 .000 | .000 .000
1.2 1.007 .023 | .004 .012 | .001 .005
2 | .000 -.001 | .000 .000 |.000 .000
.6 | .046 .089 | .032 .058 | .021 .037
1.2 1.001 .000 | .000 -.001 | .000 .000
2 |.000 -.001(.000 .000 [.000 .000
1.2 | .007 .029 | .004 .013 | .001 .005
2 |.000 -.001|.000 .000 [.000 .000

m

11

11

rhoCooprnooonro ool
—
N
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TABLE 4.14
MONTE CARLO BIAS OF 7;,Tp,Ug FOR p=—5, ¢; = .5, 9; =0, i =1,2

n =64 n =128 n = 256

m 6 vr VR VB 12 UFR Up v Vr Up
.6 |-038 -062 -.101|-.026 -.042 -.080 | -.019 -.028 -.066
1.2 | -.001 .002 -.003 | .000 .001 -.001 | .000 .001 .000
I 2 .000 .000 .000 | .000 .000 .000 | .000 .000 .000
1.2 | -.006 -020 -.034 | -.003 -.009 -.019 | -.001 -.003 -.011

2 | .000 .001 .000 | .000 .000 .000 | .000 .000 .000
.6 | -045 -074 -112}-031 -.051 -.090 | -.022 -.035 -.074
.2 | -.001 .001 -.003 | .000 .001 -.001 | .000 .001 .000

I 2 .000 .001 .000 | .000 .000 .000 | .000 .000 .000

1.2|-007 -023 -034)-003 -011 -019)-.001 -004 -.011
2 | .000 .001 .000 | .000 .000 .000 | .000 .000 .000

.6 |-049 -079 -119]-034 -054 -.095|-024 -038 -.078
1.2-001 .001 -.003 | .000 .001 -.001 | .000 .001 .000
2 | .000 .000 .000 { .000 .000 .000 | .000 .000 .000
1.2 |-008 -025 -.034](-003 -012 -019]-001 -004 -.011
2 | .000 .001 .000 | .000 .000 .000 | .000 .000 .000

III

ArhOoOCOrroCO|nno oo
[
to

TABLE 4.15
MONTE CARLO BIAS OF 7%,7% FOR p = — 5, ¢ = .5, 9); = 0, i = 1,2

n 64 64 128 128 256 256
mlylé | wm|w w|wn w
0 .6 [-036 -.061]|-024 -.039|-.017 -.025
0)12(-001 .002 | .000 .001 | .000 .001

I1 10| 2 .000 .001 | .000 .000 { .000 .000
4112)-006 -.021}-002 -009]|-001 -.003

4 2 .000 .001 | .000 .000 | .000 .000

0| .6 [-040 -.075|-.027 -.049 | -.019 -.032
0}12}-001 .001 ]| .000 .001 { .000 .001
Im|oj| 2 .000 .001 | .000 .000 | .000 .000
4112|-006 -.026]{-003 -011]|-.001 -.004

41 2 .000 .001 | .000 .000 | .000 .000
0| .6 |-043 -.086|-.029 -.056 | -.020 -.036
012]-001 .000 | .000 .001 [ .000 .001
Imjyoy}| 2 (.000 .001 | .000 .000 | .000 .000
411.2(-007 -.030]{-003 -.013]|-001 -.004

41 2 | .000 .001 | .000 .000 | .000 .000
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TABLE 4.16
MONTE CARLO BIAS OF ¥}, 7,75 FOR p= .75, ¢; = .5, ¢; =0, i = 1,2

n =64 n =128 n = 256

m 6 vr Up Up v Up Up Ur Vp Vg

.6 .061 .091 .154 | .041 .063 121 | .028 .041 .097
1.21.001 -001 .004 | .000 .000 .001 | .000 .000 .000
2 |.000 -.001 -.001 | .000 .000 .000 | .000 .000 .000
1.2 .010 .031 .048 | .005 .016 .028 | .002 .007 .016
2 [.000 -.001 .000 | .000 .000 .000 | .000 .000 .000

6 1.072 111 172 | .049 .076 135 | .033 .051 .109
.21.001 -001 .005 | .000 .000 .001 | .000 .000 .000
2 |.000 -.001 -.001| .000 .000 .000 | .000 .000 .000
1.2 .011 .035 .049 1 .005 .018 .028 | .002 .008 016

2 |1.000 -.001 .000 | .000 .000 .000 | .000 .000 .000

1I

6 [.079 121 183 | .053 .082 144 | .036 .056 .109
1.2].001 -001 .005 | .000 .000 .001 | .000 .000 .000
2 [.000 -.001 -.001].000 .000 .000 | .000 .000 .000
1.2 ].012 .037  .049 | .006 .019 .029 | .002 .008 .016
2 |.000 -.001 .000 | .000 .000 .000 | .000 .000 .000

III

R OO R DODOOn OO OIR
—
)

TABLE 4.17
MONTE CARLO BIAS OF 73,7 FOR p= .75, ¢ = .5, 1h; = 0, i = 1,2

n 64 64 128 128 256 256
mly|lo|m wm|m »|n »
o6 .6 |.0567 .089 |.038 .058 | .025 .036
012}.001 -002{.000 -.001].000 .000

I 0 2 | .000 -.001}.000 .000 | .000 .0OO
4112].009 .032 |.004 .017 { .001 .007

41| 2 ].000 -.001].000 .000 | .000 .000

0| .6 | .064 .110 | .042 .071 | .028 .045
0(12].001 -.001]|.000 .000 | .000 .000
II|o 2 |.000 -.001|.000 .000 | .000 .000
4112)].010 .038 | .004 .019 | .002 .008

4|1 2 1.000 -.0011(.000 .000 | .000 .000

0| .6 |.068 .128 | .045 .080 | .030 .052
0|12].001 .000 |.000 .000 | .000 .000
IIm| o 2 |.000 -.001|.000 .000 | .000 .000
4112].010 .043 | .005 .020 | .002 .008

411 2 ]1.000 -.0011{.000 .000 |.000 .000

182



TABLE 4.18
MONTE CARLO BIAS OF T/-],EF,VB FOR p= 0, ¢i = .9, ¢i = O, 1= 1,2

n =64 n =128 n = 256
m |y ) U Up Up U Vr Up v Ur VB
0] .6 |-008 -005 -.009]|-.004 .000 -.004 | -.001 -.001 -.001
0112]-001 .000 -.001 | -.001 .000 -.001 | .000 .000 .000
I 0 2 .000 .000 .000 { .000 .000 .000 | .000 .000 .000
41121]-005 -002 -.008]-.002 .000 -.004 | -.001 .000 -.001
4 2 .000 .000 .000 | .000 .000 .000 | .000 .000 .000
0| .6 [-009 -005 -.009 |-.004 -.001 -.004 | -.001 -.001 -.001
0 (12| -001 .000 -.001 | -.001 .000 -.001 | .000 .000 .000
Imj|o 2 .000 .000 .000 | .000 .000 .000 | .000 .000 .000
4112]-005 -002 -008 | -.002 .000 -.004 | -.001 .000 -.001
4] 2 .000 .000 .000 | .000 .000 .000 | .000 .000 .000
0| .6 [-008 -006 -.009 |-.004 -.001 -.004 | -.001 .000 -.001
012 -.001 .000 -.001 | -.001 .000 -.001 | .000 .000 .000
Im | o 2 .000 .000 .000 | .000 .000 .000 | .000 .000 .000
4112](-006 -003 -.008 | -002 -.001 -.004 | -.001 .000 -.001
41 2 .000 .000 .000 | .000 .000 .000 | .000 .000 .000
TABLE 4.19

MONTE CARLO BIAS OF 73,7% FOR p =0, ¢; = .9, 1; =0, i = 1,2

n 64 64 128 128 256 256
mly|s|m w |®wm w|®n w
0 6 |-008 -0071]-004 .000}|-001 -.001
0(1.2}-001 .000 |-.001 .000 | .000 .000

I 0 2 .000 .000 | .000 .000 { .000 .000
4112(-005 -.003/(-002 .000 |-001 .000

41 2 .000 .000 | .000 .000 | .000 .000

0] .6 |-009 -.007|-004 .001 |-001 .000
0]12|-001 .000 {-001 .000 | .000 .000
m{oj| 2 .000 .000 [ .000 .000 [ .000 .000
4112]-005 -003|-002 .000 |-001 .000

4| 2 .000 .000 | .000 .000 | .000 .000

0| .6 {-009 -.007]-004 .000 (-001 .000
0f12(-001 .000 |-001 .000 {.000 .000
nrjyo| 2 .000 .000 [ .000 .000 | .000 .000
41121 -005 -004]-002 -001](-001 .000

4] 2 | .000 .000 | .000 .000 [ .000 .000
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TABLE 4.20
MONTE CARLO BIAS OF 7;,7p, U5 FOR p=.5, ¢; = .9, %; =0, = 1,2

n =64 n=128 n = 256

m 6 Ur Ufp VB vr Up Up Ur UVp VB

.6 1.034 .03 .072 ( .022 .039 .055 | .013 .024 .041
1.2 .000 .000 .003 | .000 .000 .001 | .000 .000 .000
2 |1.000 -001 .000 | .000 .000 .000 | .000 .000 .000
1.2 (.010 .026 .031 | .005 .016 .018 | .002 .008 .010
2 |.000 -002 .001).000 -001 .00O0 | .000 .000 .000

.6 1.035 .060 .073 | .022 .044 .0565 | .013 .028 .041
.21.001 .000 .003 | .000 .000 .001 | .000 .000 .000
2 |1.000 -.001 .000 | .000 .000 .000 | .000 .000 .000
1.2]1.010 .028 .031 | .005 .017 .018 | .002 .008 .010

2 [.000 -.002 .001f.000 -.001 .000 | .000 .000 .000

II

.6 1.036 .066 .073 | .023 .046 056 | .014 .030 .042
1.21.001 .000 .003 | .000 .000 .001 | .000 .000 .000
2 1.000 -.001 .000 | .000 .000 .000 | .000 .000 .000
1.2].011 .030 .031 | .005 .017 .018 | .002 .009 .010
2 [.000 -.002 .001|.000 -.001 .000 | .000 .000 -.000

I

BROOCOR RO OO|n b OOOR
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TABLE 4.21
MONTE CARLO BIAS OF 73,73 FOR p= .5, ¢; = .9, ¢ = 0, i = 1,2

n 64 64 128 128 | 256 256
mly|6|m w|® w|n w
0] .6 |.034 .055 | .022 .040 | .013 .024
0]12).001 .000 |.000 .000 |.000 .000
1|10 2 .000 -.001)|.000 .000 | .000 .000
4(12].010 .028 |.005 .017 | .002 .008

4] 2 1.000 -.002).000 -.001]|.000 .000

0] .6 |.03¢4 .067 |.022 .047 | .013 .029
0(12].001 .000 {.000 .000 | .000 .000
Iryo| 2 {.000 -.001].000 .000 |.000 .000
4112].010 .033 |.005 .019 | .002 .009

4] 2 ].000 -.002(.000 -.001].000 .000

0] .6 |.034 .080 |.022 .053 |.013 .032
0}12}.001 .002).000 .000 |.000 .000
IIm|yof{ 2 j.000 -.001).000 .000 |.000 .000
4112 .010 .040 | .005 .021 |.002 .010

4| 2 |.000 -.002]|.000 -.001]|.000 .000
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MONTE CARLO BIAS OF 7,7,

TABLE 4.22

F‘al_jB FORP= —.5, d),‘ = .9, I,b,' = 0, 1= 1,2

n =64 n =128 n = 256
m|y| 6 121 Up 2] |21 Up Up Ur 23 Vg
0| .6 |-03 -05 -.074 | -.021 -.035 -.053 | -.012 -.024 -.040
01]1.2]-.002 .001 -.004 [ .000 .001 -.001 | .000 .001 .000
I1 0] 2 .000 .001 .000 | .000 .000 .000 | .000 .000 .000
41121]-012 -026 -.033 ] -.005 -.014 -.019 | -.002 -.007 -.010
4] 2 .000 .002 -.001 [ .000 .001 .000 | .000 .000 .000
0| .6 |-036 -061 -.074]-021 -.041 -.054 | -.013 -.028 -.041
0112]-.002 .000 -.004 | .000 .001 -.001 | .000 .001 .000
II|oj 2 .000 .001 .000 | .000 .000 .000 | .000 .000 .000
4112]-012 -028 -.033 | -.005 -.016 -.019 | -.001 -.008 -.010
4| 2 .000 .002 -.001 | .000 .001 .000 | .000 .000 .000
0| 6 ]-037 -065 -.075]-.021 -.043 -.054 | -.013 -.029 -.041
0(1.2]-.002 .000 -.004 | .000 .001 -.001 | .000 .001 .000
nj|oj| 2 .000 .001 .000 | .000 .000 .000 | .000 .000 .000
4112]-012 -030 -.033]-.005 -.016 -.019 | -.001 -.008 -.010
41 2 .000 .002 -.001 | .000 .001 .000 | .000 .000 .000
TABLE 4.23
MONTE CARLO BIAS OF 1%,7% FOR p = —.5,¢; = .9, ¥; = 0,1 = 1,2
n 64 64 128 128 256 256
m|y| 6| 73 22 Uy 123 vy Vg
0] 6 |-035 -058]-021 -.036]-.012 -.023
0(12]-002 .000 | .000 .001 | .000 .001
I 0 2 .000 .001 | .000 .000 | .000 .000
41121}-012 -030|-005 -.016|-.002 -.007
4| 2 .000 .002 | .000 .001 | .000 .000
0| 6 |-036 -069|-021 -0441}-012 -.028
012]-002 -001( .000 .001 [ .000 .001
Imjo 2 .000 .001 | .000 .000 | .000 .000
4112]-012 -036|-005 -.0191|-.002 -.008
4| 2 .000 .002 { .000 .001 | .000 .000
0} .6 |-036 -0791]-021 -050]-.013 -.032
0]12(-002 -.002} .000 .000 | .000 .001
Imj o 2 .000 .001 | .000 .000 | .000 .000
4112]-012 -041|-005 -.021|-.002 -.009
41 2 000 .002 } .000 .001 | .000 .000
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TABLE 4.24
MONTE CARLO BIAS OF Uy, 7p, U5 FOR p= .75, ¢; = .9, ; = 0, i = 1,2

n =64 n =128 n = 256
6 vy Up Vg Ug Vg 1:) Vr Vp ;)

.6 [.061 .081 .108 | .031 .058 .080 | .018 .036 .060
1.21.002 .001 .006 | .001 .001 .002 | .000 .000 .000
2 {.000 -.001 .000 | .000 .000 .000 | .000 .000 .000
1.2 | .016 .042 .046 | .007 .025 .026 | .002 .013 .015
2 {.000 -.002 .001|.000 -.001 .000 | .000 .000 .000

.6 [.052 .090 .110 | .032 .064 .081 | .019 .041 .060
.21.002 .001 .006 | .001 .001 .002 | .000 .000 .000
2 {.000 -.001 .000 | .000 .000 .000 | .000 .000 .000
1.2 .016 .044 .046 | .007 .026 .026 | .002 .013 .015

2 [.000 -.002 .001|.000 -.001 .000 | .000 .000 .000

I

.6 [.063 .096 .111 | .032 .067 .081 | .019 .043 .061
1.2 .002 .002 .006 | .001 .001 .002 | .000 .000 .000
2 |.000 -.001 .000 | .000 .000 .000 | .000 .000 .000
121 .016 .046 .046 | .006 .026 .026 | .002 .014 .015
2 |.000 -.002 .001(.000 -.001 .000 | .000 .000 .000

II1
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TABLE 4.25
MONTE CARLO BIAS OF 72,73 FOR p = .75, ¢; = .9, ¢); = 0, i = 1,2
n 64 64 128 128 | 256 256

m s lm w|wm w | w W
.6 [.050 .084 | .031 .059 | .018 .036
1.2 |1.002 .002 j .001 .001 | .000 .000
I 2 | .000 -.001].000 .000 [.000 .000
1.2 | .016 .046 | .007 .028 | .002 .014
2 |1.000 -.002|.000 -.001](.000 .000
.6 | .0561 .099 | .032 .067 | .018 .041
1.2 (.002 .003 |.001 .001 |[.000 .00O
I .000 -.001 | .000 .000 | .000 .00O

12 (.016 .052 | .007 .030 | .002 .015
2 |.000 -.002]).000 -.001|.000 .000
6 1.051 .113 |.032 .073 | .018 .044
12| .002 .005 | .001 .001 | .000 .000
2 |.000 -.001).000 .000 |.000 .000
1.2 1.016 .058 | .007 .030 | .002 .015
2 |.000 -.002|.000 -.001|.000 .000

III
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TABLE 4.26
MONTE CARLO BIAS OF U;,Ur, Vs FOR p=0,¢; =0, ¢; = .5,i = 1,2

n =64 n =128 n = 256

m ) 121 Vr 17 v 7 VB VI Ur Vg

.6 1-003 -004 -005]-001 -.002 -.002{ .000 .000 .000
1.2 1-001 -001 -.001 ] .000 .000 .000 | .000 .000 .000
2 | .000 .000 .000 { .000 .000 .000 | .000 .000 .000
1.2 ]-003 -003 -.007|-001 -001 -.003 ) .000 .000 -.001
2 | .000 .000 .000 | .000 .000 .000 | .000 .000 .000

.6 [-003 -004 -005]-.001 -002 -.002 | .000 .000 .000
.2 (-001 -001 -.001| .000 .000 .000 | .000 .000 .000
2 | .000 .000 .000 | .000 .000 .000 | .000 .000 .000
12]-003 -004 -007]|-001 -001 -.003 | .000 .000 -.001

2 | .000 .000 .000 | .000 .000 .000 | .000 .000 .000

II

.6 |-003 -004 -005]|-001 -002 -.002|.000 .000 .000
1.2]-.001 -.001 -.001] .000 .000 .000 | .000 .000 .000
2 |.000 .000 .000 | .000 .000 .000 | .000 .000 .000
1.2 {-003 -004 -.007}-001 -002 -.003 | .000 .000 -.001
2 | .000 .000 .000 | .000 .000 .000 | .000 .000 .000

II1

-
(]

TABLE 4.27
MONTE CARLO BIAS OF 73,73 FOR p =0, ¢; = 0, ¥; = .5, = 1,2
n 64 64 128 128 | 256 256

s lw W | wm o wm | ® o ®

.6 | -.003 -.006 | -001 -.001].000 .000
1.2 -.001 -001| .000 .000 | .000 .000
2 .000 .000 | .000 .000 | .000 .000
1.2 | -003 -.004|-.001 -.001]| .000 .000
.000 .000 | .000 .000 | .000 .000
.6 | -004 -006{-001 -.001{.000 .000
1.2 | -.001 -001]| .000 .000 | .000 .000
.000 .000 | .000 .000 | .000 .000
1.2 {-.003 -.005]-.001 -.001]| .000 .000
2 .000 .000 | .000 .000 { .000 .000
.6 | -.003 -.0061-001 -001|(.000 .000
1.2 | -001 -.0011{ .000 .000 | .000 .000
2 .000 .000 | .000 .000 | .000 .000
1.2 | -.003 -.0051{-.001 -.001]|.000 .000
2 .000 .000 | .000 .000 | .000 .000

m
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TABLE 4.28
MONTE CARLO BIAS OF U;,Up,Up FOR p=.5, ¢i =0, 'l/)i =.5,1=1,2

n =64 n =128 n = 256

m ) vr Up Up vr Ufp Vg Ur VR Up
6 | .048 .066 113 | .034 .045 .092 | .023 .028 .074
1.2 .001 -.001 .003 | .000 -.001 .001 | .000 .000 .000
I 2 | .000 .000 -.001 | .000 .000 .000 | .000 .000 .000
1.2 | .008 .016 .033 | .004 .008 .020 | .002 .003 .011
2 |.000 -.001 .000 | .000 .000 .000 | .000 .000 .000
.6 | .062 .085 .138 | .043 .057 113 | .029 .036 .092
. .001 -.001 .004 | .000 -.001 .001 | .000 .000 .000
I 2 | .000 .000 -.001 ] .000 .000 .000 | .000 .000 .000

1.2} .009 .020 .034 | .005 .010 .021 | .002 .004 .011
2 [.000 -.001 .000 | .000 .000 .000 | .000 .000 .000

.6 |.067 .090 147 | .046 .060 121 | .031 .039 .099
1.2].0010 -001 .004 | .000 -.001 .001 | .000 .000 .000
2 {.000 .000 -.001 | .000 .000 .000 | .000 .000 .000
1.2 |1 .010 .022 .035 | .005 .010 .021 | .002 .004 .011

III

BN OO N O OO O O OIR
[
%)

2 [.000 -.001 .000 | .000 .000 .000 | .000 .000 .000

TABLE 4.29
MONTE CARLO BIAS OF 73,77 FOR p= .5, ¢; =0, 9; = 5,1 = 1,2
n 64 64 128 128 | 256 256
slm w|wm w | ® w
.6 |1.043 .063 | .030 .042 | .020 .025
1.2 ].001 -.002 | .000 -.001 | .000 .000
2 |.000 .000 | .000 .000 {.000 .000
1.2 | .006 .015 | .003 .008 | .001 .003
.000 -.001 | .000 .000 | .000 .000
.6 |.052 .081 | .037 .054 | .024 .034
1.2 | .001 -.002 | .000 -.001 ] .000 .000
.000 .000 | .000 .000 | .000 .000
1.2 1.007 .020 | .004 .010 { .001 .004
2 | .000 -.001].000 .000 |.000 .000
.6 | .056 .089 | .039 .059 | .026 .037
1.2 (.001 -.001 | .000 -.001 | .000 .000
2 |.000 .000 | .000 .000 | .000 .000
1.2 )1 .008 .023 | .004 .011 | .002 .004
2 |.000 -.001]|.000 .000 | .000 .000

m
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TABLE 4.30
MONTE CARLO BIAS OF ?I,FF,BB FOR p = —.5, qﬁ,‘- = 0, 'lpi = .5, 1, = 1,2

n = 64 n =128 n = 256
m Y 6 Vr Vr VB v Up VB vy .171:' VB
0| .6 |-.045 -.065 -.112(-.031 -043 -.090 | -.022 -028 -.074
0]|12;-001 .001 -.003| .000 .001 -.001 | .000 .001 .000
I |10f 2 ].000 .00 .001 | .000 .000 .000 | .000 .000 .000
4112}-006 -017 -034|(-003 -007 -.020|-.001 -002 -.011
4] 2 | .000 .001 .000 | .000 .000 .000 | .000 -000 .000
0| .6 |-.058 -.082 -136(-040 -054 -.111(-028 -.036 -.092
0|12}-001 .000 -.004| .000 .001 -.001 | .000 .000 .000
Imjoy¢( 2 J.000 .000 .001 | .000 .000 .000 | .000 .000 .000
4112)-008 -021 -036|-004 -009 -020]-.001 -.003 -.011
4] 2 |.000 .001 .000 | .000 .000 .000 | .000 .000 .000
0| .6 [-.062 -087 -145(-043 -058 -118(-.030 -.038 -.099
0(12|-001 .000 -.004 | .000 .001 -.001 | .000 .000 .000
Imj)o | 2 | .000 .000 .001 | .000 .000 .000 { .000 .000 .000
4(12)-009 -023 -036]|-004 -010 -020}-001 -003 -.011
41 2 | .000 .001 .000 | .000 .000 .000 | .000 .000 .000

TABLE 4.31
MONTE CARLO BIAS OF 72,73 FOR p= —.5, ¢; =0, th; = .5, 4 = 1,2

n 64 64 128 128 256 256

mlyl 6| ®m w|®w w|®n
0| .6 {-041 -063|-.027 -.040|-020 -.025
0]12|-001 .001 | .000 .001 | .000 .001
110 2 .000 .000 | .000 .000 | .000 .000
4112|-006 -018]-.002 -.007]|-.001 -.002

4] 2 .000 .001 | .000 .000 | .000 .000
0| .6 |-049 -.080][-.030 -.052|-.024 -.034
0)12}{-001 .001 | .000 .001 | .000 .001

II| 0] 2 .000 .000 | .000 .000 | .000 .000
4112]-006 -023|(-003 -.009|-001 -.003

4] 2 .000 .001 | .000 .000 { .000 .000
0) .6 |-053 -088]-036 -057|-.026 -.037
0112(-001 .000 (.000 .001 | .000 .000

Immj o] 2 .000 .000 | .000 .000 | .000 .000
4112 -007 -.025]-003 -.011]-.001 -.003

41 2 .000 .001 | .000 .000 | .000 .000
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TABLE 4.32
MONTE CARLO BIAS OF 7,7, Vg FOR p = .75, ¢;=0,19,=.5,1=1,2

n =64 n =128 n = 256

m | v 6 vr Vg Up vr Up VB Vs Up Up
0 .6 | .072 .096 171 | .048 .063 136 | .033 .040 110
0(12].001 -.001 .004 | .000 .000 .001 | .000 .000 .000
I 0 2 | .000 .000 -.001 | .000 .000 .000 | .000 .000 .000
41121 .010 .026 .049 | .005 .013 .029 | .002 .005 .016
41 2 |.000 -.001 .000 | .000 .000 .000 | .000 .000 .000
0| .6 | .094 .126 .209 | .063 .082 167 | .042 .054 137
04{12].001 -.001 .006 | .000 .000 .002 | .000 .000 .000
Imjo 2 | .000 .000 -.001 | .000 .000 .000 | .000 .000 .000
41121 .013 .031 .051 | .006 .015 .030 | .002 .006 .016
41 2 |.000 -.001 .000 | .000 .000 .000 | .000 .000 .000
o .6 |.101 .135 .223 | .068 .088 179 | .046 .058 147
01121 .001 .000 .007 | .000 .000 .002 | .000 .000 .000
Imm | 0 2 1.000 .000 -.001 | .000 .000 .000 | .000 .000 .000
41121 .014 .033 .0562 | .006 .016 .030 | .002 .006 .017
41 2 [.000 -.001 .000 | .000 .000 .000 | .000 .000 .000

TABLE 4.33
MONTE CARLO BIAS OF 72,73 FOR p= .75, ¢; =0, ¢; = .5, i = 1,2
n 64 64 128 128 | 256 256
s ®m w | ®n m|n %
6 | .065 .091 | .043 .058 {.029 .035
1.2 {.001 -.002 | .000 .000 | .000 .000
2 |1.000 -.001]|.000 .000 | .000 .000
1.2 ]|.009 .026 | .004 .013 | .001 .005
.000 -.001 | .000 .000 | .000 .000
.6 |.078 .118 [ .052 .075 ] .035 .048
. .001 -.001 | .000 .000 | .000 .000
2 |.000 -.001|.000 .000 (.000 .000
1.2 | .010 .032 | .005 .015 | .002 .006
2 |.000 -.001|.000 .000 [.000 .000
.6 |.083 .131 | .056 .083 | .038 .053
1.2 {.001 -001].000 .000 | .000 .000
2 |.000 -.001]|.000 .000 | .000 .000
1.2 7 .011 .035 | .006 .016 [ .002 .006
2 | .000 -.001]|.000 .000 1} .000 .000

m
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TABLE 4.34
MONTE CARLO BIAS OF 7,7, FOR p=0,¢; =0, 9; = .9, i = 1,2

n =64 n =128 n = 256
) 2 Vg VB Vr 17 1) Vr Up Vg

.6 [-003 -004 -005{-001 -002 -.002|.000 .000 .000
1.2 |-001 .000 -.001 | .000 .000 .000 | .000 .000 .000
2 | .000 .000 .000 | .000 .000 .000 | .000 .000 .000
1.2}-003 -003 -007)|-001 -001 -.003|.000 .000 -.001
2 | .000 .000 .000 [ .000 .000 .000 | .000 .000 .000

.6 |-.004 -004 -005|-001 -002 -.002|.000 .000 .000
.2|-001 -001 -.001| .000 .000 .000 | .000 .000 .000
2 | .000 .000 .000 | .000 .000 .000 | .000 .000 .000
1.2 ]-003 -004 -007]|-001 -001 -.003 |.000 .000  -.001
2 | .000 .000 .000 | .000 .000 .000 | .000 .000 .000

ITX

.6 |-.004 -004 -005]-001 -002 -.002].000 .000 .000
12 |-001 -001 -.001| .000 .000 .000 | .000 .000 .000
2 |.000 .000 .000 | .000 .000 .000 | .000 .000 .000
1.2 |-003 -004 -007|-001 -002 -.003 | .000 .000 -.001
2 {.000 .000 .000 | .000 .000 .000 | .000 .000 .000

R OO R RO OCR OO OR
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TABLE 4.35
MONTE CARLO BIAS OF 73,73 FOR p=0, ¢ =0, % = .9, i = 1,2
n | 64 64 | 128 128 | 256 256

m lw m|lw w | wn ®
.6 | -003 -006|-001 -.0014.000 .000
1.2} -001 -001| .000 .000 |.000 .000
1 2 .000 .000 | .000 .000 | .000 .000
1.2 | -.003 -004 | -001 -.001 | .000 .000
2 .000 .000 | .000 .000 | .000 .000
.6 | -004 -006|-001 -.001](.000 .000
1.2 ]-001 -001| .000 .000 [.000 .000
II .000 .000 | .000 .000 | .000 .000

1.2 | -.003 -.005|-.001 -.001].000 .000
2 | .000 .000 | .000 .000 {.000 .000
.6 | -.004 -.006|-001 -.001]f.000 .000
1.2 -001 -001 | .000 .000 {.000 .000
2 | .000 .000 [ .000 .000 | .000 .000
1.2 | -.003 -.005|-.001 -.001].000 .000
2 | .000 .000 [ .000 .000 | .000 .000

I
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TABLE 4.36
‘ MONTE CARLO BIAS OF v],ﬁp,ljB FOR p = .5, ¢i = 0, ¢1- = .9, 1= 1,2

n =64 n =128 n = 256

m 6 vy VF Up vr Up 3] vr Vrp VB

.6 | .048 067 .113 | .034 .046 .092 | .023 .028 .074
1.2(.001 -001 .003 |.000 -.000 .001 | .000 .000 .000
2 |.000 .000 -.001 | .000 .000 .000 { .000 -.000 .000
1.2 .007 016 .033 | .004 .008 .020 | .002 .003 011
2 |[.000 -.001 .000 | .000 .000 000 [ .000 .000 .000

.6 | .062 .087 136 | .043 .058 111 | .029 .037 .090
.21.001 -001 .004|.000 -.001 .001 | .000 .000 .000
2 |.000 .000 -.001 | .000 .000 .000 | .000 .000 .000
1.2 (.009 .021 .034 | .005 .010 .020 | .002 .004 .01
2 1.000 -001 .000 | .000 .000 .000 | .000 .000 .000

II

.6 [.0656 .091 .140 | .045 .060 .115 | .030 .039 .094
1.2 |.001 -001 .004 | .000 -.001 .001 | .000 .000 .000
2 |.000 .000 -.001 | .000 .000 .000 | .000 .000 .000
1.2 |.010 .022 .035 | .005 .010 .021 | .002 .004 .011
2 |.000 -.001 .000 | .000 .000 .000 | .000 .000 .000

III
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TABLE 4.37
MONTE CARLO BIAS OF 73, 7% FOR p= .5, ¢; =0, ¢; = .9, i = 1,2

n 64 64 128 128 | 256 256
miyl6|®w w|w w|®n »
0} .6 |.043 .063 | .030 .042 | .020 .025
0(12].001 -002]|.000 -.001]|.000 .000

I 0 2 | .000 .000 | .000 .000 |.000 .000
4112).006 .016 | .003 .008 | .001 .003

41 2 |.000 -.001].000 .000 | .000 .000

0} .6 |.0561 .080 [ .036 .053 | .024 .033
0(12].001 -002]|.000 -.001 ] .000 .000
II|o 2 |.000 .000 [ .000 .000 | .000 .000
41 12].007 .020 | .004 .010 | .001 .004

4|1 2 |.000 -.001].000 .000 [.000 .000

0 .6 |.053 .084 | .037 .056 | .025 .035
0(12].001 -.001]|.000 -.001|.000 .000
IIm| 0 2 |.000 .000 | .000 .000 | .000 .000
41(12].007 .022 |.004 .010 | .001 .004

4| 2 |.000 -.001].000 .000 [.000 .000
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TABLE 4.38
MONTE CARLO BIAS OF -171,‘17}7‘,-175 FOR p= —.5, ¢,’ = 0, 'l,bi = .9, 1= 1,2

n =64 n =128 n = 256
m | v é Ur Vr Vg v Urp ) vr Vp 7B
0| .6 |-045 -066 -.111 | -.031 -.043 -.090 | -.022 -.028 -.074
0f12]-001 .001 -.003 | .000 .001 -.001 | .000 .001 .000
I 10| 2 | .000 .000 .001 | .000 .000 .000 | .000 .000 .000
4112|-006 -.018 -.034|-.003 -.007 -.020 | -.001 -.002 -.011
4| 2 .000 .001 .000 | .000 .000 .000 | .000 .000 .000
0| .6 |-059 -.08 -134 | -.040 -.055 -.109 | -.028 -.037 -.091
0f12]-001 .000 -.004 | .000 .001 -.001 | .000 .000 .000
II10 2 .000 .000 .001 { .000 .000 .000 | .000 .000 .000
4112(-008 -022 -035]-.004 -.009 -.020 | -.001 -.003 -.011
41 2 .000 .001 .000 | .000 .000 .000 | .000 .000 .000
0| .6 |-061 -08 -.139 ]| -.042 -.058 -.113 | -.030 -.038 -.094
0] 1.2]-001 .000 -.004 | .000 .001 -.001 | .000 .000 .000
nj|o 2 .000 .000 .001 | .000 .000 .000 | .000 .000 .000
41121-009 -023 -.036 |-.004 -.010 -.020 | -.001 -.003 -.011
4] 2 .000 .001 .000 | .000 .000 .000 | .000 .000 .000

TABLE 4.39
MONTE CARLO BIAS OF 73,73 FOR p= —.5, ¢; =0, ¢; = .9, i = 1,2

n 64 64 128 128 256 256
mlyls|lm wm|®w wm|®wm »
0| 6 |-041 -063]-027 -040]-019 -.025
0f12}-001 .001 | .000 .001 ]} .000 .001

I 10| 2 .000 .000 { .000 .000 | .000 .000
41121|-006 -018|-002 -007]-001 -.002

4] 2 | .000 .001 ) .000 .000 | .000 .000

0] 6 |-048 -.079|-.033 -.0511}]-024 -.033
0|12}-001 .001 | .000 .001 ; .000 .001
IIr|joj| 2 | .000 .000 ) .000 .000 | .000 .000
4112]-006 -.023]|-003 -.009]-001 -.003

41 2 .000 .001 | .000 .000 | .000 .000

0] 6 |-050 -084][-034 -0541}-024 -035
0|12|-001 .000|.000 .001|.000 .001
Imjio| 2 .000 .000 | .000 .000 | .000 .000
4(121-007 -.024)|-003 -010} -001 -.003

41 2 .000 .001 | .000 .000 | .000 .000
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TABLE 4.40
MONTE CARLO BIAS OF U, Up,Up FOR p=.75, ¢; =0, ¥, = 9,1 = 1,2

n = 64 n =128 n = 256
m | v 6 Vr Up Up v Up 7:) Vr Up Vg
0| .6 {.072 .097 171 ] .048 .064 135 | .033 .040 110
0]12].001 -.001 .004 | .000 .000 .001 | .000 .000 .000
I 0 2 | .000 .000 -.001 | .000 .000 .000 | .000 .000 .000
4112 .010 .026 .049 | .005 .013 .029 { .002 .005 .016
41 2 ].000 -.001 .000 | .000 .000 .000 | .000 .000 .000
0] .6 | .094 .130 .205 | .063 .084 164 | .043 .054 134
0|12|.001 -.001 .006 | .000 .000 .002 | .000 .000 .000
I o 2 | .000 .000 -.001 | .000 .000 .000 | .000 .000 .000
41121 .013 .032 .051 | .006 .015 .030 | .002 .006 .016
41 2 ]1.000 -.001 .000 { .000 .000 .000 | .000 .000 .000
0] .6 [.099 .136 212 | .066 .088 170 | .045 .058 .140
01]12](.001 .000 .006 | .000 .000 .002 | .000 .000 .000
nmio 2 | .000 .000 -.001 | .000 .000 .000 | .000 .000 .000
41121 .014 .034 .051 | .006 .016 .030 | .002 .006 .016
41 2 |.000 -.001 .000 ] .000 .000 .000 | .000 .000 .000

TABLE 4.41
MONTE CARLO BIAS OF 75,03 FOR p= .75, ¢; =0, ¢); = .9, i = 1,2

n 64 64 128 128 | 256 256
mly|lé|mw wm|®w »n|®w ®»
0| .6 |.066 .091 |.043 .058 | .029 .035

0| 12].001 -.002].000 .000 | .000 .000

I 0 2 |.000 -.001}.000 .000 ]| .000 .000
4(12.009 .026 | .004 .013 | .001 .005

41 2 |.000 -.001]|.000 .000 | .000 .000

0] .6 {.077 .117 | .0561 .074 | .035 .047
0(12].001 -002]|.000 .000] .000 .000
Im|oj| 2 |.000 -.001].000 .000 ]| .000 .000
41121].010 .032 |.005 .015|.002 .006

41 2 1.000 -.001(.000 .000 | .000 .000

0| 61.079 .124 |.053 .079 | .036 .050
0(12].001 -001}.000 .000 | .000 .000
Imr | o 2 |.000 -.001]|.000 .000 |.000 .000
4112].010 .034 | .005 .016 | .002 .006

41 2 (.000 -.001].000 .000|.000 .000
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TABLE 4.42

MONTE CARLO S.D. OF _17],171:',?3 FOR p = 0, ¢ = ¢,~ = 0, 1= 1,2
n =64 n =128 n = 256
m |y ) vy Up Vg U Up Ug v Up VB
0l .6 [.111 .115 .098 | .065 .068 .058 | .040 .042 .036
0]12}.026 .030 .025 | .011 012 .010 | .004 .005 .004
I 0 2 .003 .003 .003 | .001 .001 .001 { .000 .000 .000
41 1.21.072 077 .080 | .037 .041 .046 | .020 .021 .025
4] 2 |.009 .010 .011 ] .003 .003 .003 | .001 .001 .001
0 .6 | .106 .109 .092 | .062 .063 .054 | .038 .040 .034
0112].026 .029 .025 | .010 .011 .010 | .004 .005 .004
I |10 2 .003 .003 .003 | .001 .001 .001 | .000 .000 .000
41121 .071 .075 .079 | .037 .041 .046 | .020 .021 .025
4 2 |.009 .010 .010 | .003 .003 .003 | .001 .001 .001
0 .6 | .103 .105 .086 | .061 .062 .052 | .038 .039 .033
0] 12](.026 .029 .025 | .010 .011 .010 | .004 .005 .004
Im | o 2 .003 .003 .003 | .001 .001 .001 | .000 .000 .000
4112(.071 075 .078 | .037 .041 .046 | .020 .021 .025
41 2 .009 .009 .010 | .003 .003 .003 | .001 .001 .001
TABLE 4.43
MONTE CARLO S.D. OF 7%,7% FOR p=0, ¢ = ¢%; = 0,4 = 1,2
n 64 64 128 128 | 256 256
mlyl6|® mlm »|w @
0] .6 |.110 .114 | .065 .068 | .039 .041
0]12].025 .030|.010 .011 ] .004 .005
I 0 2 .003 .003 | .001 .001 ] .000 .000
4112].070 .077 | .037 .041 ) .020 .021
4] 2 |.009 .010|.003 .003 | .001 .001
0 .6 |.106 .111 { .064 .065{ .040 .041
0]112].025 .029 | .010 .011 ] .004 .005
Imjio 2 .003 .003 | .001 .001 | .000 .000
4112).070 .079 | .037 .043 | .020 .022
41 2 .009 .010 | .003 .003 ] .001 .001
0] .6 |.108 .114 | .068 .069 | .042 .044
0]12].025 .030 | .010 .012 | .004 .005
i o 2 .003 .003 | .001 .001 | .000 .000
411.2].073 .087 | .039 .048 | .021 .024
41 2 .009 .009 | .003 .003 | .001 .001
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TABLE 4.44
MONTE CARLO S.D. OF v[,vp,vB FOR P = .5, ¢i = ’(/).,; = 0, 1= 1, 2

n =64 n =128 n =256
m |y ) Uy Up Up vy Up Upg Ur Vr )
0| .6 |.100 .106 .093 | .060 .064 .061 | .037 .040 .042
01}12](.021 .027 .022 | .009 .011 .009 | .004 .004 .004
1 0 2 | .003 .003 .003 | .001 .001 .001 | .000 .000 .000
41 1.2 .061 072 .068 | .032 .039 .040 | .017 .021 .022
41 2 | .008 .009 .009 | .002 .003 .003 | .001 .001 .001
0} .6 | .098 .103 .096 | .060 .063 .067 | .038 .040 .048
01]12].021 .027 .022 | .009 .011 .009 | .004 .004 .004
I1|0 2 | .003 .003 .003 | .001 .001 .001 | .000 .000 .000
41 1.21].061 .069 .067 | .032 .037 .040 | .017 020 .022
41 2 |.008 .009 .009 | .002 .003 .003 | .001 .001 .001
0| .6 {.097 .100 .100 | .060 .063 .075 1 .039 .040 .057
012{.021 .026 .022 | .009 01 .009 | .004 .004 .004
nr| o 2 | .003 .003 .003 | .001 .001 .001 | .000 .000 .000
4| 1.21{.060 .067 .067 | .032 .037 .040 | .017 .020 .022
4 2 |.008 .009 .009 | .002 .003 .003 | .001 .001 .001
TABLE 4.45
MONTE CARLO S.D. OF 72,7% FOR p = .5, ¢ = ¢ = 0, i = 1,2

n 64 64 128 128 | 256 256

mlylo|lm wm|w w|®w m

0| .6 {.098 .105| .059 .064 |.036 .039

01]12).021 .028].009 .011|.004 .004

I 0 2 |.003 .003(.001 .001].000 .00O

4112].060 .073].032 .040 | .017 .021

4] 2 |.008 .010{ .002 .003 | .001 .001

0| .6 |.096 .106 | .060 .068 | .038 .043

01]12).021 .028|.009 .011|.004 .004

II{o 2 |.003 .003 | .001 .001 | .000 .000

4112].060 .071).032 .039).017 .021

4] 2 |.008 .010].002 .003|.001 .001

0| .6 |.101 .123|.064 .079 | .042 .055

0]12).021 .027|.009 .011 | .004 .004

III | O 2 |.003 .003|.001 .001]|.000 .000

4112 .062 .077 | .033 .040 | .018 .022

41 2 |.008 .009 (.002 .003|.001 .001

196




TABLE 4.46
MONTE CARLO S.D. OF 71,7, U FORp= —.5,¢; =1, =0,i =1,2

n =64 n =128 n = 256
m |y 6 vy Up Ug vr Ur Ug VI Vr 7B
0| .6 |.094 102 .088 | .059 .065 .060 | .037 .040 .041
0/(12].020 .024 .021 | .008 011 .009 | .004 .005 .004
I 0 2 | .002 .002 .003 | .001 .001 .001 | .000 .000 .000
41121 .058 .068 .066 | .031 .038 .040 | .017 021 .022
41 2 |.007 .008 .009 | .003 .003 .003 | .001 .001 .001
0 .6 |.091 .098 .090 | .059 .064 .066 | .038 .040 .050
0(12].020 .024 .022 | .009 011 .009 | .004 .005 .004
II|0 2 | .002 .002 .003 | .001 .001 .001 | .000 .000 .000
41 1.2 .057 .065 .066 | .032 .037 .040 | .017 .020 .022
41 2 |.007 .008 .009 | .003 .003 .003 | .001 .001 .001
0] .6 | .090 .096 .097 | .060 .064 .074 | .039 .041 .058
01{1.2].020 .023 .022 | .009 .011 .010 | .004 .005 .004
Imm | o 2 | .002 .002 .003 | .001 .001 .001 | .000 .000 .000
411.21.057 .064 .066 | .032 .037 .040 | .018 .020 .022
41 2 |.007 .008 .009 | .003 .003 .003 | .001 .001 .001
TABLE 4.47
MONTE CARLO S.D. OF 7%,7% FOR p = —.5, ¢ = ; = 0,4 = 1,2
n 64 64 128 128 | 256 256
mlyl6|m m|® ®m|w »
0] .6 |.092 .102 | .058 .064 | .037 .039
0]12]|.020 .024 | .009 .011 | .004 .005
I 0 2 |1.002 .003|.001 .0011{ .000 .000
41121].057 .0681.031 .039} .017 .021
41 2 1.007 .0091{.003 .003|.001 .001
0| .6 |.091 .106 ]| .060 .071 [ .040 .046
0]12].020 .024{.009 .011 | .004 .005
Imio 2 |.002 .003 |.001 .001].000 .000
411.2].057 .069 | .032 .039|.018 .021
41 2 ].007 .0091}.003 .003|(.001 .001
0| .6 |.097 .122 | .065 .086 | .043 .058
012)].020 .024 |.009 .010]| .004 .004
I | o 2 |.002 .003|.001 .001 ] .000 .000
4112(.059 .076 | .034 .044 | .019 .023
41 2 ].007 .0081.003 .003|.001 .00t
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TABLE 4.48
MONTE CARLO S.D. OF 7, Ur, U FOR p= .75, ¢ =9, =0,i = 1,2

n = 64 n =128 n = 256
m |y 6 Uy VR Up 17 Up Ug Uy U Up
0| .6 |.083 .095 .087 | .051 .057 .061 | .034 .036 .046
0]12].016 .024 .018 | .007 .010 .008 | .003 .004 .003
I 0| 2 |.002 .003 .003 | .001 .001 .001 | .000 .000 .000
41 1.2 .048 .063 .056 | .025 .034 .032 | .014 .020 .018
41 2 | .006 .007 .008 | .002 .002 .003 | .001 .001 .001
0| .6 |.087 .097 .100 | .055 .061 .076 | .037 .039 .060
0112} .016 .025 .018 | .007 .010 .008 | .003 .004 .003
Im(o| 2 |.002 .003 .003 | .001 .001 .001 | .000 .000 .000
4112 .047 .059 .056 | .024 .032 .032 | .014 .019 .019
41 2 | .006 .008 .008 | .002 .002 .003 | .001 .001 .001
0| .6 | .089 .098 117 | .057 .063 .092 | .039 .040 .074
0]12].016 .023 .020 | .007 .010 .008 | .003 .004 .003
Imj) o | 2 | .002 .003 .003 | .001 .001 .001 | .000 .000 .000
4112 .048 .056 .057 | .024 .031 .033 | .014 .018 .019
41 2 | .006 .008 .008 | .002 .002 .003 | .001 .001 .001
TABLE 4.49
MONTE CARLO S.D. OF 72,7% FOR p = .75, ¢ = ¢ = 0, i = 1,2

n 64 64 128 128 | 256 256

mlals|lm mlw wm|n m

0| .6 |.080 .095| .048 .056 | .032 .035

0]12].016 .026 | .007 .011 | .003 .004

I |0 2 {.002 .003(.001 .001|.000 .00O

411.2].046 .063 |.024 .036 | .013 .021

4| 2 ].006 .008|.002 .002|.001 .001

0| .6 |.083 .105| .052 .068 | .035 .043

0112).016 .026 | .007 .010| .003 .004

IIr|o] 2 {.002 .003|.001 .001]|.000 .000

41121{.046 .058 | .024 .033 | .014 .018

41 2 ].006 .009].002 .002|{.001 .001

0 .6 ].092 .137(.060 .090 | .041 .061

0112].016 .0231.007 .009 | .003 .004

Imj)oy| 2 |.002 .003}.001 .001|.000 .000

4(12].049 .068).026 .034|.014 .017

4| 2 [.006 .008|.002 .002|.001 .001
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MONTE CARLO S.D. OF 7,7,

TABLE 4.50

F, VB FOR;pzoa ¢‘i = '51 ¢i=01i= 172

n =64 n =128 n = 256
m | v ) vr VR Vg vr Vrp VB vy Ur Vg
ol .6 |.113 A17 0 102 | .065 .069 .059 | .040 .043 .036
01{12].026 .033 .026 | .010 .013 .010 | .004 .005 .004
1 0 2 .003 .003 .003 | .001 .001 .001 | .000 .000 .000
41121 .072 .081 .083 | .037 .043 .047 | .020 .022 .025
41 2 .009 011 .011 | .003 .003 .003 | .001 .001 .001
0 6 | .111 107 .098 | .064 .063 .057 | .039 .040 .035
0]12]| .026 .031 .026 | .010 .012 .010 | .004 .005 .004
IIT|10f 2 {.003 .003 .003 | .001 .001 .001 | .000 .000 .000
411.21(.073 077  .083 | .037 .041 .047 | .020 .021 .025
41 2 |.009 .011 .011 | .003 .003 .003 | .001 .001 .001
0 .6 | .110 .105 .096 | .064 .063 .056 | .039 .039 .035
01]12] .026 .031 .026 | .010 .012 .010 | .004 .005 .004
i o 2 .003 003 .003 | .001 .001 .001 | .000 .000 .000
41121 .073 .076 .083 | .037 .041 .047 | .020 .021 .025
4| 2 .009 .011 .011 | .003 .003 .003 | .001 .001 .001
TABLE 4.51
MONTE CARLO S.D. OF V7,7 FOR p =0, ¢; = .5, ¢; = 0,1 =1,2

n 64 64 128 128 | 256 256

mlyl6|m mln w|®n »

0| .6 |.114 .117 | .065 .069 | .040 .042

0]12].026 .033|.010 .013 | .004 .005

I 0 2 .003 .003 | .001 .001 | .000 .000

4112].071 .080 | .037 .043 | .020 .022

41 2 ]1.009 .011 | .003 .003 | .001 .001

0| .6 |.112 .110 | .064 .065 | .039 .041

0|12)].026 .032|.010 .013 | .004 .005

IIm|{oj| 2 }.003 .003|.001 .001 | .000 .000

4112]).071 .079 | .037 .043 | .020 .023

41 2 ].009 .011 | .003 .003 | .001 .001

0] .6 |.111 .112 | .065 .067 | .040 .043

0112].026 .032|.010 .013| .004 .005

Imr(o| 2 |.003 .003}.001 .001 | .000 .000

4112].071 .084 | .037 .045 | .020 .023

41 2 .009 .011].003 .003 | .001 .001
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TABLE 4.52
MONTE CARLO S.D. OF U;,7r,Up FOR p=.5, ¢ = .5, ¢ = 0,0 = 1,2

n =64 n =128 n = 256

m 6 Vi Up Vg Uy Up ;] Ur VR VB

.6 1.099 .108 .093 | .060 .065 .060 | .036 .041 .039
1.21.021 .030 .022 | .009 .013 .009 | .004 .005 .004
2 {.003 .004 .003 | .001 .001 .001 | .000 .000 .000
1.2 (.060 .076 .070 | .032 .042 .041 | .017 023 .022
2 [.008 .010 .010 | .002 .003 .003 | .001 .001 .001

.6 |.098 .100 .092 | .060 .062 .061 | .037 .039 .041
.2].021 .030 .022 | .009 .012 .009 | .004 .005 .004
2 |.003 .004 .003|.001 .001 .001 | .000 .000 .000
1.21.060 .070 .069 | .032 .038 .041 | .017 .021 .022

2 1.008 .010 .010 | .002 .003 .003 | .001 .001 .001

II

.6 {.097 .097 .092 | .060 .061 .062 | .037 .039 .042
1.2 .021 .029 .022 | .009 .012 .009 | .004 .005 .004
2 1.003 .004 .003).001 .001 .001 } .000 .000 .000
1.2 .061 .068 .069 | .033 .037 .040 | .017 .021 .022
2 |{.008 .010 .010 | .002 .003 .003 | .001 .001 .001

1
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TABLE 4.53
MONTE CARLO S.D. OF V7,7 FOR p= .5, ¢; = .5, ¢¥; =0,i=1,2
n 64 64 128 128 | 256 256
sl nln »n|n w
.6 |.098 .110 | .059 .065 | .036 .041
1.2 {.021 .031].009 .013 | .004 .005
2 |.003 .004 | .001 .001 | .000 .000
1.2 | .060 .078].032 .043 | .017 .023
.008 .011 | .002 .003 | .001 .001
.6 | .097 .104 | .059 .064 | .036 .041
1.2 |.021 .031|.009 .013 | .004 .005
.003 .004 | .001 .001 | .000 .000
1.2 | .059 .074 1 .032 .041 | .017 .022
2 |.008 .011 | .002 .003 | .001 .001
6 | .097 .110 { .059 .066 | .036 .043
1.21.021 .030 | .009 .013 | .004 .005
2 |.003 .004 | .001 .001 |.000 .000
1.2 |1 .059 .075 | .032 .040 | .017 .022
2 {.008 .010 | .002 .003 | .001 .001

[

II

I
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TABLE 4.54
MONTE CARLO S.D. OF 71,7}? 'I_J_B FOR p= —.5, ¢1; = .5, ’(,bi = 0, 1= 1,2

n =64 n =128 n = 256
) vy vp Up vr VR VB Vr Up VB

.6 |.094 .104 .089 | .058 .065 .058 | .036 .040 .040
1.2 .020 .028 .022 | .009 .013 .009 | .004 .005 .004
2 {.002 .003 .003 | .001 .001 .001 | .000 .000 .000
1.2 (.058 .072 .068 | .031 .041 .041 | .017 .023 .023
2 |.007 .009 .009 | .003 .003 .003 | .001 .001 .001

.6 [.093 .097 .0838 | .059 .062 059 | .037 .040 .042
1.21.020 .027 .022 | .009 .012 .009 | .004 .005 .004
.002 .003 .003 | .001 .001 .001 | .000 -000 .000
1.2 | .058 .067 .067 | .032 .038 .041 | .018 .021 .023
2 [.007 .009 .009 | .003 .003 .003 | .001 .001 .001

II

.6 [.092 .095 .0838 | .059 .062 .061 | .038 .040 .043
1.2 .020 .026 .021 | .009 .012 .009 | .004 .005 .004
2 |.002 .003 .003 | .001 .001 .001 | .000 .000 .000
1.2 | .08 .065 .067 | .032 .038 .041 | .018 .021 .023
2 [.007 .009 .009 | .003 .003 .003 | .001 .001 .001

II1
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TABLE 4.55

MONTE CARLO S.D. OF 7%,7% FOR p = —.5, ¢; = .5, ¢ = 0, i = 1,2
n 64 64 | 128 128 | 256 256
s lm wm | W | ® W
.6 |.094 .105 ] .058 .065 | .036 .041
21.020 .029 | .009 .013 | .004 .006

2 |1.002 .003 |.001 .001].000 .000

1.2 | .058 .073 | .031 .042 | .017 .024
.007 .010 ) .003 .003 | .001 .001
.6 |.093 .102 | .058 .066 | .037 .042
2 1.020 .028(.009 .013{.004 .005
2 1.002 .003 |{.001 .001|.000 .000
1.2} .058 .070 | .031 .041 | .018 .023
2 |.007 .010 | .003 .003 | .001 .001

.6 [ .093 .109 | .059 .071 | .037 .045
1.2 |.020 .026 | .009 .012 | .004 .005
2 1.002 .003 | .001 .001|.000 .00O

1.21.058 .071(.032 .042 | .018 .022
2 |.007 .009 | .003 .003 | .001 .001

m

II

III
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TABLE 4.56
MONTE CARLO S.D. OF vj,vF,vB FOR p= 75, ¢,’ = .5, ’l,b.i = 0, 1= 1,2

n =64 n =128 n = 256

m 1) 24 Up Up vr Up VB Vr Ur 7B

.6 1.079 .095 .082 | .048 .056 .056 | .032 .036 .042
1.2 .016 .029 .018 | .007 .012 .008 | .003 .005 .003
2 (.002 .003 .003; .001 .001 .001 { .000 .000 .000
1.2 | .047 .067 .057 | .024 .038 .032 | .014 .022 .018
2 | .006 .009 .008 ] .002 .003 .003 | .001 .001 .001

.6 {.080 .090 .085 | .050 .056 .060 | .033 .036 .045
.2|.016 .028 .018 | .007 .011 .008 | .003 .005 .003
2 |.002 .003 .003 | .001 .001 .001 | .000 .000 .000
1.2 |.047 060 .057 | .024 .033 .032 | .014 .020 .018

2 |.006 .009 .008 | .002 .003 .003 ] .001 .001 .001

II

.6 [.082 .089 .089 | .051 .056 .063 | .034 .037 .048
1.2 | .016 .026 .018 | .007 .011 .008 | .003 005 .003
2 (.002 .003 .003 | .001 .001 .001 | .000 .000 .000
1.2 ] .048 .057 .057 | .024 .032 .032 | .014 .019 .018
2 [.006 .009 .008 | .002 .003 .003 | .001 .001 .001

1II

ArhOoOCO|lrnrooO|nhno OO
p—t
o

TABLE 4.57
MONTE CARLO $.D. OF 73,73 FOR p= .75, ¢ = .5, % = 0, i = 1,2
n 64 64 128 128 | 256 256

5w W | ® w|®n %
.6 | .078 .096 | .047 .057 | .030 .037
1.2 | .016 .030 | .007 .013 | .003 .005
2 |.002 .003]|.001 .0011(.000 .000
1.2 | .047 .070 | .024 .041 | .014 .024
.006 .010 | .002 .003 | .001 .001
.6 | .078 .094 | .047 .057 | .031 .036
. .016 .030 | .007 .013 | .003 .005
2 |.002 .004 | .001 .001 | .000 .000
1.2 ] .046 .064 | .024 .038 | .014 .022
2 |.006 .010( .002 .003 | .001 .001
6 | .079 .107 | .048 .062 | .032 .039
1.2 1.016 .027 | .007 .012 | .003 .005
2 1.002 .003{.001 .001 ]| .000 .000
1.2 .047 .064 { .024 .035 | .014 .020
2 | .006 .009 | .002 .003].001 .001

m
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MONTE CARLO S.D. OF 7,7,

TABLE 4.58

F, VB FORﬁzov ¢‘i = '97 ¢i =0,1= 1,2

n =64 n =128 n = 256
mly| 6 | U1 Up Up | U1 Up Vg | VI Ur Vg
0] .6 | .142 .128 .126 | .079 .076 .071 | .045 047 041
0]12].030 .036 .030 | .011 .017 .011 | .005 .008 .005
I (0| 2 |.004 .004 .003].001 .001 .001 | .000 .000 .000
4112 .08 .093 .110 | .043 .052 .057 | .022 .029 .028
41 2 | .011 .014 .014 | .003 .005 .004 | .001 .002 .001
0 .6 [.142 121 .125 | .079 .07 .071 ] .045 .043 .041
0)12(.030 .034 .030 | .011 .016 .011 | .005 .007 .005
Im(o| 2 |.004 .004 .003 | .001 .001 .001 | .000 .000 .000
41121 .09 .091 110 | .043 .050 .057 | .022 027 .028
41 2 ].011 .013 .014 | .003 .004 .004 | .001 .002 .001
0{ .6 |.140 119 125 | .078 070 .071 | .045 .043 .041
0|12 .030 .033 .030 | .011 .016 .011 | .005 .007 .005
nrjof| 2 |.003 .004 .003 | .001 .001 .001 | .000 .000 .000
41121 .089 .090 .110 | .043 .049 .057 | .021 .026 .028
41 2 |.011 .013 .014 | .003 .004 .004 | .001 .002 .001
TABLE 4.59

MONTE CARLO S.D. OF 73,7 FOR p=0,¢; = .9, ¢, = 0,1 = 1,2

n 64 64 | 128 128 | 256 256

mlyl6|lm Bn|®w wn|® »n

0] .6 |.142 .128|.079 .076 | .045 .047

0|12(.030 .036|.011 .017 | .005 .008

I {0f 2 ].004 .004)|.001 .001]|.000 .000

4112|.089 .092(.043 .052 | .022 .029

4| 2 ].011 .014 | .003 .005 | .001 .002

0| .6 |.142 .125|.079 .074 | .045 .047

0|12{.030 .034|.011 .016 | .005 .008

II]0| 2 |.004 .004|.001 .001|.000 .000

4(1.2].089 .094 | .043 .053 | .022 .029

4] 2 |.011 .013 | .003 .005 | .001 .002

0 .6 |.142 .137}.079 .079 | .045 .049

0|12(.030 .035|.011 .017 | .005 .008

Imjo| 2 |.004 .004|.001 .001]{.000 .000

4 (121].089 .105 ]| .043 .057 { .022 .031

4] 2 |.011 .013|.003 .005{.001 .002
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TABLE 4.60
MONTE CARLO S.D. OF TI-I,VF,VB FOR pP = .5, ¢'i = .9, ¢i = 0, 1= 1,2

n = 64 n =128 n = 256
m |y 6 Ur VR VB Ur Up VB Ur U Up
ol .6 {.119 119 110 | .071 .072 .066 | .041 .047 .039
0112/ .024 .033 .025 | .010 .016 .010 | .004 .007 .004
I {0{ 2 |.003 .004 .003 | .001 .001 .001 | .000 .000 .000
4112|.073 .088 .090 | .038 .048 .047 { .019 .029 .023
41 2 |.009 .011 .012 | .003 .004 .003 | .001 .001 .001
01 .6 ].119 110 109 | .071 .066 066 | .041 .042 .039
0]12].024 .032 .025 | .009 .016 .010 | .004 .007 .004
mjo| 2 {.003 .004 .003 | .001 .001 .001 | .000 .000 .000
4| 1.2(.073 .084 .090 | .038 044 .047 | .019 .027 .023
41 2 |.009 .012 .012 | .003 .004 .003 | .001 .001 .001
0] .6 |.118 .105 .109 | .070 .064 .066 | .040 .041 .039
0(12].024 .031 .025 | .009 .015 .010 | .004 .007 .004
nmrjiotl 2 |.003 .004 .003 | .001 .001 .001 | .000 .000 .000
41 1.2(.073 .080 .090 | .037 .043 .047 { .019 .026 .023
41 2 |.009 .011 .012 | .003 .004 .003 | .001 .001 .001

TABLE 4.61
MONTE CARLO S.D. OF 72, 7% FOR p= 5, ¢; = .9, ¥; =0, i = 1,2

n 64 64 128 128 | 256 256
mlyls|w »n|n wnl|w ®n
0O .6 {.119 .120{ .071 .073 | .041 .048
0]12).024 .034|.010 .017 | .004 .008

I1 10} 2 |.003 .004(.001 .001 ]| .000 .000
4112|.073 .090 | .038 .050 | .019 .031
41 2 ].009 .012 | .003 .004 | .001 .001

0{ .6 |.119 .114 | .071 .069 | .041 .045
0]112).024 .034| .010 .017 | .004 .008
Imf(of 2 ).003 .004 |.001 .001 1| .000 .000
41121).073 .088 | .038 .048 | .019 .029
41 2 {.009 .012|.003 .004 | .001 .001

0 .6 [.119 .121 { .071 .073 | .041 .047
0]12].024 .033|.010 .016 | .004 .008
Imm{ o] 2 |.003 .004|.001 .001]|.000 .000
411.2(.073 .0921.038 .048 | .019 .029
41 2 (.009 .012|.003 .004 | .001 .001
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TABLE 4.62
MONTE CARLO S.D. OF U;,Up,Ug FOR p=—-.5,¢; = .9, ¥; =0, =1,2

n =64 n =128 n = 256

m | v ) Ur Vg Vg Ur 7 7B U UF Up
0| .6 |.116 115 .105 | .069 .07 .064 | .041 .045 .040
0112] .022 .031 .023 | .010 .016 .011 | .004 .008 .004
1 0 2 | .003 .003 .003 | .001 .001 .001 | .000 .000 .000
4112 .070 .082 .081 | .037 .051 .049 | .019 .030 .025

41 2 |.008 011 .011 | .003 .004 .004 | .001 .001 .001
0] .6 1|.115 .106 .105 | .069 .065 .064 | .041 .042 .040
01121 .022 .030 .023 | .010 .015 .011 | .004 .008 .004

II| 0 2 | .003 .003 .003 | .001 .001 .001 | .000 .000 .000
41121 .069 .076 .081 | .037 .048 .049 | .019 027 .025

41 2 |.008 .011 .011 | .003 .004 .004 | .001 .001 .001

0} .6 |.113 .103 .104 | .069 .064 .064 | .041 .041 .040
01121 .022 .029 .023 | .010 .015 .011 | .004 .008 .004
Imm | o 2 | .003 .003 .003 | .001 .001 .001 | .000 .000 .000
4112 .068 .073 .081 | .037 .047 .049 { .019 .026 .025

41 2 |.008 .010 .011 | .003 .004 .004 | .001 .001 .001

TABLE 4.63
MONTE CARLO S.D. OF 73,7% FOR p= —.5, ¢; = .9, ¢); = 0, i = 1,2
n 64 64 128 128 | 256 256
sl nln wm|®n w
116 116 | .069 .072 | .041 .047
.022 .032 (.010 .017 | .004 .008
2 |.003 .003|.001 .001 ] .000 .000
1.2 1 .070 .082 | .037 .052 ] .019 .031
.008 .011 | .003 .004 | .001 .001
.6 | .115 .112 | .069 .071 | .041 .046
. .022 .031(.010 .016 | .004 .008
2 1.003 .003 |.001 .001 | .000 .000
1.2 1 .069 .081 | .037 .053 | .019 .030
2 |.008 .012|.003 .004 | .001 .001
6 | 115 .122 | .069 .078 | .041 .048
1.2].022 .030 | .010 .015 | .004 .008
2 |.003 .003|.001 .001{.000 .000
1.2 | .069 .085 | .037 .056 | .019 .029
2 | .008 .010 | .003 .004 | .001 .001

m
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TABLE 4.64
MONTE CARLO S.D. OF VI,T/-F,VB FOR p = 75, ¢i = .9, ’l/)i = 0, 1= 1,2

n=264 n =128 n = 256

m ) 13 Vp ;) Vs Up VB Ur Vp VB

.6 |.096 .103 .089 | .054 .063 .053 | .033 .043 .035
1.2 ].018 .031 .020 | .008 .015 .009 | .003 .007 .003
2 [.002 .003 .003 | .001 .001 .001 | .000 .000 .000
1.2} .08 .077 .072 | .029 .046 037 | .015 .029 .019
2 {.007 .010 .010 | .002 .003 .003 | .001 .001 .001

.6 |1.095 .094 .089 | .053 .057 .053 | .033 .038 .035
.2|.018 .030 .020 | .008 .014 .009 | .003 .007 .003
2 1.002 .003 .003| .001 .001 .001 | .000 .000 .000
1.2 ].058 .071  .072 ] .029 .041 .037 | .015 .026 .019

2 |.007 .011 .010 | .002 .003 .003 | .001 .001 .001

II

.6 1.095 .090 .089 { .053 .054 .053 | .033 .036 .035
1.2 .018 .029 .020 | .007 .014 .009 | .003 .007 .003
2 |[.002 .003 .003 | .001 .001 .001 | .000 .000 .000
1.2 1.057 .066 .071 | .028 .038 .037 | .015 .025 .019
2 {.007 .010 .009 | .002 .003 .003 | .001 .001 .001

III
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TABLE 4.65
MONTE CARLO S.D. OF 73, 0% FOR p = .75, ¢; = .9, ¢; = 0, i = 1,2
n 64 64 128 128 | 256 256
sl wm | w|® %
.6 |.006 .105 | .03 .066 | .033 .046
1.2 |1 .018 .033 | .008 .016 | .003 .008
2 .002 .003 | .001 .001 | .000 .000
1.2 ( .058 .080 | .029 .050 1} .015 .032
.007 .012 | .002 .004 { .001 .001
.6 | .095 .100 | .0563 .061 | .033 .040
. .018 .033 | .008 .016 | .003 .008
2 1.002 .004|.001 .001{ .000 .000
1.2 {.058 .075 1 .029 .050 | .015 .029
2 | .007 .012 | .002 .004 | .001 .001
.6 | .095 .111 | .054 .062 | .033 .039
1.2 ]1.018 .020 | .008 .014 | .003 .007
2 1.002 .003 (.001 .001 | .000 .000
1.2 ] .058 .076 | .029 .042}{ .015 .026
2 1.007 .011 | .002 .003 | .001 .001

m
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TABLE 4.66
MONTE CARLO S.D. OF U}, 7p, Vs FOR p=0,¢; =0, 9h; = 5,5 = 1,2

n =64 n =128 n = 256

m 6 Uy Up Ug Ur Up Up Ur VF VB
.6 | .110 114 .099 | .065 .068 .058 | .040 .042 .036
1.2 | .026 .031 .025 | .011 .012 .010 | .004 .005 .004
I 2 | .003 .003 .003 | .001 .001 .001 | .000 .000 .000
1.2 | .071 077 .081 | .037 .041 .046 | .020 .021 .025

2 {.009 .010 .011 | .003 .003 .003 | .001 .001 .001
.6 | .105 .105 .093 | .062 .062 .054 | .038 .039 .034
. .026 .030 .025 | .010 .011 .010 | .004 .005 .004
II 2 | .003 .003 .003 | .001 .001 .001 | .000 .000 .000

1.2 .07t .075 .080 | .037 .041 .046 | .020 .021 .025
2 [{.009 .010 .011 | .003 .003 .003 | .001- .001 .001

.6 [.104 .103 .091 | .062 .062 .054 | .039 .039 .034
1.21.026 .029 .025 | .010 .011 .010 | .004 .005 .004
2 1.003 .003 .003 | .001 .001 .001 | .000 .000 .000
1.21.071 .075  .080 | .037 .041 .046 | .020 021 025
2 |.009 .010 .011 | .003 .003 .003 | .001 .001 .001

I1I
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TABLE 4.67
MONTE CARLO S.D. OF 73,7% FOR p =0, ¢; =0, ¢); = .5, i = 1,2
n 64 64 128 128 | 256 256
blw wm|wn wm|®n »
6 |.110 .114 | .065 .068 | .039 .041
1.2 1.026 .030 | .010 .012 | .004 .005
2 |.003 .003 | .001 .001 | .000 .000
1.2 1 .070 .077 | .036 .041 | .020 .021
.009 .010 ) .003 .003 | .001 .001
.6 |.106 .108 | .063 .064 | .039 .040
. .025 .030 | .010 .012 (| .004 .005
2 |.003 .003|.001 .001 | .000 .000
1.2 1 .069 .077 | .036 .042 | .020 .022
2 |.009 .010].003 .003 | .001 .001
.6 |.106 .108 | .063 .064 | .039 .041
1.2 .025 .030 | .010 .012 | .004 .005
2 |.003 .003|.001 .001 | .000 .000
1.2 | .070 .078 | .037 .043 | .020 .022
2 |.009 .010 | .003 .003 | .001 .001

[
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TABLE 4.68
MONTE CARLO S.D. OF VI,EF,UB FOR pP= .5, ¢i = O, ’l,bi = .5, 1= 1,2

n =64 n =128 n = 256

m | v 1) Uy Up Ug vy Vr VB v UFr 1)
0 .6 | .098 .106 .093 | .060 .064 .061 | .037 .040 .041
0]12].021 .028 .022 | .009 .011 .009 | .004 .004 .004
I 0 2 ].003 .003 .003 | .001 .001 .001 | .000 .000 .000
41121 .060 .073 .068 | .032 .040 .040 | .017 .021 .022
41 2 | .008 .010 .009 | .002 .003 .003 | .001 .001 .001
0 .6 | .096 .100 .093 | .060 .063 .064 | .038 .040 .045
0]12].021 .027 .022 | .009 .011 .009 | .004 .004 .004
II| O 2 |.003 .003 .003 | .001 .001 .001 | .000 .000 .000
41121 .060 .067 .068 | .032 .037 .040 | .017 .020 .022
41 2 1.008 .010 .009 | .002 .003 .003 | .001 .001 .001
0] .6 | .096 .099 .093 | .060 .063 .065 | .038 .040 .047
0]12].021 .026 .022 | .009 011 .009 | .004 .004 .004
IIm{ 0 2 | .003 .003 .003 | .001 .001 .001 | .000 .000 .000
41121 .060 .066 067 | .032 .036 .040 | .017 .020 .022
41 2 |.008 .009 .009 | .002 .003 .003 | .001 .001 .001

TABLE 4.69
MONTE CARLO S.D. OF 7%,7% FOR p= .5, ¢; = 0, ¢; = .5, i = 1,2
n 64 64 128 128 | 256 256
slm w wn m|w
6 | .097 .106 | .059 .064 | .036 .039
1.2 .021 .028 | .009 .012 | .004 .004
2 }1.003 .003|.001 .001 1 .000 .000
1.2 |.059 .074 | .032 .040 | .017 .021
2 ]1.008 .010 | .002 .003 | .001 .001
.6 | .095 .103 | .058 .065 | .037 .041
2
2

.021 .028 | .009 .011 | .004 .004
.003 .003 | .001 .001 | .000 .000
1.2 |.059 .071(.032 .039 | .017 .021
2 |.008 .010].002 .003 | .001 .001
.6 | .095 .106 { .059 .067 [ .037 .043
1.2 .021 .028 | .009 .011 | .004 .004
2 |.003 .003 |.001 .001 | .000 .000
1.2 |.059 .070 | .032 .038 | .017 .020
2 |.008 .010).002 .003 | .001 .001

I
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TABLE 4.70
MONTE CARLO S.D. OF ﬁj,ﬁp 175 FOR p = —.5, (}5,' = 0, d),' = .5, 7= 1,2

n = 64 n =128 n = 256
6 Ur Up Vg vy Vp Up Ur Up VB

.6 [.093 .102 .08 | .058 .064 .059 | .037 .039 .041
1.2].020 .025 .021 | .009 .on .009 | .004 .005 .004
2 {.002 .002 .003 | .001 .001 .001 | .000 .000 .000
1.2 ].058 .068 .066 { .031 .038 .040 | .017 021 .023
2 [.007 .008 .009 {.003 .003 .003 | .001 .001 .001

.6 .091 .097 .088 | .059 .064 .063 | .038 .041 .046
21.020 .024 .021 | .009 011 .009 | .004 .005 .004
2 [.002 .003 .003 | .001 .001 .001 | .000 .000 .000
1.2 | .058 .064 .066 | .032 .037 .040 | .018 .020 .023

2 |.007 .008 .009 | .003 .003 .003 | .001 001 .001

II

.6 |.090 .096 .089 | .060 .064 .064 | .039 041 .048
1.2 )1.020 .023 .021 | .009 .011 .009 | .004 .005 .004
2 ]1.002 .002 .003 | .001 .001 .001 | .000 .000 .000
1.2 (.057 .063 .066 | .032 .037 .040 | .018 .020 .022
2 |.007 .008 .009 | .003 .003 .003 | .001 .001 .001

II1
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TABLE 4.71
MONTE CARLO S.D. OF 73,7% FOR p= —.5, ¢; =0, ¢; = .5, i = 1,2

n 64 64 128 128 | 2566 256
mlyl6|l®w Bn|®n w|w »
0| 6 [ 002 .102 |.058 .064 | .036 .040
0|12].020 .026|.000 .012|.004 .005

I |o| 2 |.002 .003|.000 .001].000 .000
4(12].057 .060|.031 .030|.017 .022

4 007 .009 | .003 .003 | .001 .001

0] 6 |00 .101|.058 .067|.038 .043
0]12].020 .025|.000 .011|.004 .005
im|{o| 2 |.002 .003|.000 .001].000 .000
4|12 .057 .067|.031 .039.018 .021

4| 2 | .007 .000].003 .003]|.001 .001

0] 6 |.001 .105|.050 .071|.039 .045
0|12].020 .024(.009 .011].004 .005
mr|o| 2 |.002 .003].000 .001].000 .000
4]12].057 .068|.032 .039|.018 .021

4| 2 | 007 .008|.003 .003.001 .001
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TABLE 4.72
MONTE CARLO S.D. OF FI,D'F,VB FOR p= 75, ¢i = 0, ’(,b,; = .5, 1= 1,2

n =64 n =128 n = 256

m |y 6 Vr Vp VB Ur Vg U vr Vr UB
0 .6 | .082 .095 .085 | .050 .057 .060 | .033 .036 .045
0] 1.2].016 .026 .018 | .007 011 .008 | .003 .004 .003
I (0| 2 |.002 .003 .003 | .001 .001 .001 | .000 .000 .000
411.2].047 .063 .056 | .024 .035 .032 | .014 .020 .018
41 2 |.006 .008 .008 [ .002 .002 .003 | .001 .001 .001
0 .6 | .085 .097 .093 | .054 .062 .069 | .037 .040 .054
0]1.2] .016 .025 .018 | .007 .010 .008 | .003 .004 .003
IIm|o 2 .002 .003 .003 | .001 .001 .001 | .000 .000 .000
41 1.21.047 .056 .056 | .024 .031 .032 | .014 .018 .018
4] 2 .006 .008 .008 | .002 .002 .003 | .001 .001 .001
0 .6 | .087 .099 097 | .056 .064 .073 | .038 .041 .057
01]1.2] .016 .023 .018 | .007 .010 .008 | .003 .004 .003
IIm | o 2 .002 .003 .003 | .001 .001 .001 | .000 .000 .000
41 1.2 .048 .055 .056 | .025 .030 .032 | .014 .017 .018
4] 2 .006 .008 .008 | .002 .002 .003 | .001 .001 .001

TABLE 4.73
MONTE CARLO S.D. OF 73,7% FOR p = .75, ¢; =0, t; = .5, i = 1,2
n 64 64 128 128 | 256 256
sl wmlw wm|®
.6 | .079 .094 | .047 .056 | .031 .035
1.2 ] .016 .027 | .007 .011 | .003 .004
2 |.002 .003 | .001 .001 | .000 .00O
1.2 | .046 .064 | .024 .037 | .013 .021
2 |.006 .009 |.002 .003|.001 .001
.6 1.079 .097 | .050 .061 | .033 .039
. 016 .027 | .007 .011| .003 .004
2 1.002 .0031({.001 .001 | .000 .00O
1.2 |1 .046 .059 | .024 .034 | .013 .019
2 |.006 .009|.002 .0031|.001 .001
.6 | .081 .106 | .051 .066 | .034 .042
1.2 .016 .025 | .007 .011 | .003 .004
2 |1.002 .003].001 .001|(.000 .000
1.2 | .046 .059 | .024 .032 1§ .014 .018
2 |.006 .009|.002 .003{.001 .001

m
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TABLE 4.74

MONTE CARLO S.D. OF -17[,7:',_173 FOR P = O, ¢i = 0, ¢,- = .9, 1= 1,2
n =64 n =128 n = 256
m |y 6 Uy VFp g vy Up ) Ur VR VB
0 .6 |.110 114 .099 | .065 .068 .058 | .040 .042 .036
0112 .026 .031 .026 | .011 .012 .010 | .004 .005 .004
I 0 2 | .003 .003 .003 | .001 .001 .001 | .000 .000 .000
41{121].071 .078 .081 | .037 041 .046 | .020 .021 .025
41 2 |.009 .010 .011 | .003 .003 .003 | .001 .001 .001
0| .6 |.105 .104 .093 | .062 .062 .055 | .038 .039 .034
0]12].026 .030 .025 | .010 .012 .010 | .004 .005 .004
Im|o 2 | .003 .003 .003 | .001 .001 .001 | .000 .000 .000
4 (1.2 .072 .075 .080 | .037 .041 .046 | .020 .021 .025
41 2 | .009 .010 .011 | .003 .003 .003 | .001 .001 .001
0} .6 |.104 .103 .092 | .062 .062 .054 | .039 .039 .034
0] 12].026 .029 .025 | .010 .012 .010 | .004 .005 .004
Imj o 2 | .003 .003 .003 | .001 .001 .001 | .000 .000 .000
41121 .072 .075 .080 | .037 .041 .046 | .020 .021 .025
41 2 1.009 .010 .011 | .003 .003 .003 | .001 .001 .001
TABLE 4.75
MONTE CARLO S.D. OF 73,7% FOR p =0, ¢; =0, 9); = .9, i = 1,2
n 64 64 128 128 | 256 256
mlals|lw »m|n ml|n »
0| .6 |.110 .115].065 .068 | .039 .041
0]12].026 .0311{.010 .012 | .004 .005
I 0 2 |.003 .003)|.001 .001|(.000 .000
4112).070 .078|.036 .041 | .020 .021
4] 2 |.009 .010 | .003 .003 | .001 .001
0| .6 |].106 .107 | .063 .064 | .039 .040
0]12).025 .030)].010 .012 | .004 .005
II1|0 2 |.003 .003].001 .001 | .000 .000
4112].069 .076 | .036 .041 | .020 .022
4| 2 1.009 .010(.003 .003 | .001 .001
0] .6 |.106 .107 | .063 .064 | .039 .041
01]12].025 .030).010 .012 | .004 .005
I | o 2 | .003 .003|.001 .001|.000 .000
4112].069 .077.037 .042 | .020 .022
41 2 ].009 .010 | .003 .003 | .001 .001
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TABLE 4.76
_ MONTE CARLO S.D. OF 7y, 75,7 FOR p=.5, ¢ = 0, ¢ = .9, i = 1,2

n =64 n =128 n = 256

m 6 Vr Vr Vg vy Vp ) vr 7 VB
.6 | .098 .106 .093 | .060 .064 .061 | .037 .040 041

1.2 | .021 .028 .022 | .009 011 .009 | .004 .004 .004

I 2 .003 .003 .003 | .001 .001 .001 | .000 .000 .000
1.2 | .060 .073 .068 | .032 .040 .040 | .017 .021 .022

2 .008 .010 .010 | .002 .003 .003 | .001 .001 .001

.6 | .096 101 .092 | .060 .063 .064 | .038 .040 045

. .021 027 .022 | .009 .011 .009 | .004 .004 .004
1I 2 1.003 .003 .003 | .001 .001 .001 | .000 .000 .000

1.2] .060 .067 .068 | .032 037 .040 | .017 020 .022
2 |.008 .010 .009 | .002 .003 .003 | .001 .001 .001

.6 [.095 .100 .093 | .060 .063 .064 | .038 .041 .046
1.2 .021 .026 .022 | .009 .011 .009 | .004 .004 .004
2 1.003 .003 .003 | .001 .001 .001 | .000 .000 .000
1.2 | .060 .066 .068 | .032 .036 .040 | .017 .020 .022
2 [.008 .009 .009 | .002 .003 .003 | .001 .001 .001

111
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TABLE 4.77
MONTE CARLO S.D. OF 7%,7% FOR p = .5, ¢ =0, ; = .9, i = 1,2
n 64 64 128 128 | 256 256
sl ®m | ®m|n »
.6 | .097 .106 | .059 .064 | .036 .039
1.2 §.021 .029 { .009 .012 | .004 .004
2 | .003 .004].001 .001(.000 .000
1.2]|.059 .074 | .032 .041 | .017 .021
.008 .010 | .002 .003 | .001 .001
.6 1.095 .102 | .058 .064 | .036 .041
1.21.021 .029 | .009 .011 | .004 .004
.003 .004 | .001 .001 | .000 .000
1.2]1.059 .071 ] .032 .039 | .017 .021
2 |.008 .010].002 .003 | .001 .001
.6 |.095 .104 1 .059 .065 | .037 .042
1.2 ].021 .028 | .009 .011 | .004 .004
2 |.003 .003|.001 .001 | .000 .000
1.2 .059 .070 | .032 .038 | .017 .021
2 | .008 .010 | .002 .003 | .001 .001

N

II

II1

B OOO|h O OOn OO OR
[

212




TABLE 4.78
MONTE CARLO S.D. OF 7[,71:',53 FOR p = —.5, ¢,‘ = 0, ’lpi = .9, 1= 1,2

n = 64 n =128 n = 256

m é Vr VFr 2} vr Up Up Ur Vr 2}

.6 |.093 .102 .088 | .058 .064 .069 | .037 .039 .041
1.21.020 .025 .021 | .009 .011 .009 | .004 .005 .004
2 1.002 .003 .003 ] .001 .001 .001 | .000 .000 .000
1.2 1.058 .069 .066 | .031 .038 .040 | .017 .021 .023
2 [.007 .008 .009 | .003 .003 .003 | .001 .001 .001

.6 1.091 .097 .0838 | .059 .064 .062 | .038 .041 .046
1.2 |.020 .024 .022 | .009 .011 .009 | .004 .005 .004
.002 .002 .003 | .001 .001 .001 | .000 .000 .000
1.2 |1 .058 .064 .066 | .032 .037 .040 | .018 .020 .023
2 1.007 .008 .009 | .003 .003 .003 | .001 .001 .001

II

.6 |1.090 .097 .088 | .059 .065 .063 | .039 .041 .046
1.2].020 .023 .021 | .009 011 .009 | .004 .005 .004
2 ]1.002 .003 .003|.001 .001 .001 | .000 .000 .000
1.2] .057 .063 .066 | .032 .037 .040 | .018 .020 .023
2 |1.007 .008 .009 | .003 .003 .003 | .001 .001 .001

111
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TABLE 4.79
MONTE CARLO S.D. OF 7},7% FOR p=—.5, ¢, =0, ¢, = 9,1 = 1,2

n 64 64 128 128 | 256 256
mlyls | ®n|® »|®w B
0] .6 |.093 .103 | .058 .064 | .036 .040
0]12(.020 .026 | .009 .012 | .004 .005

I 0 2 (.002 .003|.001 .001 | .000 .000
411.21.057 .069 | .031 .039 | .017 .022

4] 2 }1.007 .009|.003 .003 | .001 .001

0] .6 |.091 .101 | .058 .066 | .038 .043
0]12].020 .025|.009 .011 | .004 .005
Imj|yo| 2 |.002 .003|.001 .001 | .000 .000
4112].057 .067 | .031 .039 | .018 .021

41 2 {.007 .009 | .003 .003 | .001 .001

0] .6 |.091 .103 | .058 .068 | .038 .044
0]]12)].020 .025|.009 .011].004 .005
|04} 2 |.002 .003|.001 .001].000 .000
41 1.2].057 .067 | .031 .039 | .018 .021

41 2 1.007 .009 | .003 .003 | .001 .001
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TABLE 4.80
MONTE CARLO S.D. OF U}, Ur, U FOR p= .75, ¢; = 0, ¢); = .9, s = 1,2

n =64 n =128 n = 256

m 6 Vr Up VB P2 Ufp ) Vs VF UB
.6 | .082 .095 .085 | .050 057 .060 | .033 .036 .045

1.2 1 .016 .026 .018 | .007 .011 .008 | .003 .004 .003

1 2 | .002 .003 .003 | .001 .001 .001 | .000 .000 .000
1.2 | .047 .063 .056 | .024 .035 .032 | .014 .020 .018

2 | .006 .008 .008 | .002 .002 .003 | .001 .001 .001

.6 | .085 .098 .092 | .055 .063 .068 | .037 .040 .053

. .016 .024 .018 | .007 .010 .008 | .003 .004 .003

II 2 | .002 .003 .003 | .001 .001 .001 | .000 .000 .000

1.2 |.047 .055 .056 | .025 .031 .032 | .014 .018 .018
2 | .006 .008 .008 | .002 .002 .003 | .001 .001 .001

.6 | .086 .100 .094 | .056 .064 .070 | .038 .042 .055
1.21.016 .023 .018 | .007 .010 .008 | .003 .004 .003
2 1.002 .003 .003 | .001 .001 .001 | .000 .000 .000
1.2 | .048 .055 .056 | .025 .030 .032 | .014 .017 .018
2 |.006 .008 .008 | .002 .002 .003 | .001 .001 .001
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TABLE 4.81
MONTE CARLO S.D. OF 73,7% FOR p= .75, ¢; =0, ¢; = .9, i = 1,2

n 64 64 128 128 | 256 256

mly| 8| wm|® w|®n ®»
0| .6 ].079 .094 | .047 .056 | .031 .035
0|12 .016 .027 | .007 .012 | .003 .004

1 0 2 |.002 .0031].001 .001 | .000 .000
4112].046 .065 ] .024 .037 | .014 .021

4| 2 |.006 .009(.002 .003 | .001 .001

0| 6 |.079 .096|.049 .061|.033 .038
0|12].016 .027 [ .007 .011 | .003 .004
m|o| 2 |.002 .003].000 .001].000 .000
4|12|.046 .060|.024 .034]|.013 .020

41 2 |.006 .009|.002 .003|.001 .001

0| .6 ].080 .101 ] .050 .063 | .034 .040
0]12).016 .026 | .007 .011 | .003 .004
ur|o| 2 [.002 .003].001 .001|.000 .000
4(12].046 .059 | .024 .033 | .013 .019

41 2 |.006 .009|.002 .003|.001 .001
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TABLE 4.82
EMPIRICAL SIZES OF W; AND Wz FOR p =0, ¢; =th; = 0,7 =1,2

«a .05 .10
n 64 64 128 128 256 256 | 64 64 128 128 256 256
mily| 6 |\ W Wp W; Wp W; W | Wy W Wy Wgp Wi Wpg
0| .6 |.106 .171 .096 .146 .083 .121}.175 .222 .146 .206 .140 .191
0|12](.075 .190 .062 .147 .052 .125] .144 .247 .123 .195 .120 .169
1|10 2 (.066 .165 .070 .145 .066 .120] .119 .214 .117 .203 .120 .175
411.21.094 .179 .078 .139 .061 .122{ .157 .244 .132 .198 .116 .165
41 2 [.062 .172 .072 .154 .066 .118 | .125 .222 .131 .198 .122 .176
0] .6 [.119 .182 .089 .142 .081 .116].181 .231 .159 .196 .146 .184
0]12(.071 .191 .063 .144 .048 .124 ) .136 .246 .120 .193 .124 .171
Imjoy| 2 |.068 .154 .066 .144 .065 .119 ] .125 .215 .119 .201 .122 .177
411.2(.104 .183 .082 .138 .059 .121].170 .249 .130 .194 .116 .162
41 2 |.070 .172 .076 .155 .064 .121 ) .118 .226 .130 .194 .122 .173
0] .6 |.127 .18 .100 .146 .090 .123|.198 .233 .159 .204 .155 .192
012.074 .192 .065 .142 .052 .126 ] .141 .246 .122 .199 .123 .170
nmjoj| 2 y.071 .163 .065 .147 .066 .118 | .126 .219 .119 .198 .123 .176
41121 .104 .187 .08 .142 .064 .121 | .171 .251 .139 .200 .121 .168
41 2 |.067 .174 .071 .152 .062 .117{ .121 .219 .126 .202 .122 .172

TABLE 4.83
EMPIRICAL SIZES OF Wp AND ng’v FORp=0,¢;=¢%,=0,1=1,2

o .05 .10
n 64 64 128 128 256 256 | 64 64 128 128 256 256
m|y| 8§ |Wp wp Wwp wp wp Wp|Wp Wp Wp Wp Wp Wp
0] .6 |.103 .177 .090 .143 .078 .117| .175 .224 .151 .203 .133 .180
0]12].073 .192 .065 .149 .050 .126 | .137 .247 .122 .194 .122 .172
1102 ).066 .166 .071 .150 .065 .118|.118 .215 .117 .201 .121 .176
41 12|.091 .177 .077 .134 .053 .120( .163 .239 .126 .192 .111 .165
4] 2 |.064 .169 .075 .156 .065 .119 | .123 .224 .128 .199 .117 .174
0| .6 {.120 .194 .096 .151 .081 .126 | .204 .245 .161 .216 .148 .197
0|12(.070 .188 .063 .145 .049 .127 | .130 .249 .123 .193 .126 .173
mj|joy| 2 |.070 .159 .071 .149 .064 .118 | .116 .218 .116 .202 .121 .180
41 12].097 .192 .085 .147 .066 .132|.169 .251 .134 .208 .117 .178
41 2 |.068 .171 .076 .157 .062 .121 | .121 .223 .125 .194 .118 .17l
0| .6 [.149 .219 .131 .18 .118 .163 | .217 .275 .205 .252 .188 .243
0]12].066 .192 .066 .142 .051 .127 | .143 .250 .128 .196 .123 .174
arfo| 2 {.071 .162 .070 .145 .064 .117 ( .119 .221 .122 .202 .122 .176
41 121[.117 .228 .103 .164 .079 .143 ] .192 .286 .153 .225 .139 .201
4] 2 [.066 .172 .074 .155 .063 .118 | .125 .223 .124 .196 .118 .176
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TABLE 4.84

EMPIRICAL SIZES OF W; AND Wr FOR p= .5, ¢; =19; = 0,1 =1,2

a .05 .10
n 64 64 128 128 256 256 | 64 64 128 128 256 256
m|y| 6§ | W W Wy Wgp Wy W | Wy Wrp Wi Wp W; Wp
0| .6 | .143 .233 .128 .232 .132 .203 | .229 .304 .221 .308 .221 .290
0(12].078 .171 .064 .149 .061 .128 | .140 .225 .111 .195 .108 .184
I |0 2 |.075 .196 .068 .151 .069 .128 | .131 .248 .126 .195 .119 .176
4112].105 .204 .073 .190 .057 .161 | .165 .273 .133 .250 .111 .229
41 2 [.072 .189 .062 .140 .061 .123| .130 .233 .116 .182 .110 .175
0] .6 {.191 .279 .180 .275 .181 .248 | .281 .352 .267 .362 .279 .341
0(12].083 .173 .063 .146 .060 .128 | .144 .223 .114 .194 .112 .186
Imjof 2 [.071 .187 .064 .154 .068 .129 | .133 .247 .126 .194 .117 .175
4112(.112 .216 .076 .185 .061 .163 | .167 .287 .138 .246 .113 .226
41 2 |.072 .182 .066 .141 .061 .121 | .131 .234 .115 .180 .110 .170
ol .6 {.228 .311 .229 .315 .217 .291 | .343 .399 .311 .396 .321 .391
0(12(.083 .170 .065 .149 .059 .125 | .142 .224 .111 .191 .108 .181
Imjyojf 2 (.077 .192 .066 .152 .068 .128 | .129 .250 .123 .195 .117 .172
411.21.123 .226 .079 .18 .063 .163 | .177 .289 .139 .255 .114 .228
4| 2 [.075 .181 .063 .146 .062 .118 | .132 .235 .112 .182 .109 .177

TABLE 4.85
EMPIRICAL SIZES OF WP AND WFO‘ FORp=.5,¢; =9, =0,1=1,2

a .05 .10
n 64 64 128 128 256 256 | 64 64 128 128 256 256
m |y | 6 |Wwp wp we wp Wp wp|wp wp we wWs Wp Wp
0| .6 |.137 .231 .118 .224 .117 .193 | .227 .299 .198 .305 .197 .270
0112(.077 .179 .063 .149 .059 .120 | .145 .228 .104 .198 .106 .190
1|0 2 |.079 .191 .067 .152 .068 .128 |.133 .248 .124 .191 .117 .174
411.2].102 .212 .073 .194 .055 .170 ]| .162 .276 .122 .254 .105 .228
4| 2 |.071 .187 .060 .140 .059 .124 | .133 .235 .117 .182 .110 .176
0| .6 |.187 .306 .172 .307 .18 .281 | .279 .389 .256 .388 .258 .380
012].083 .182 .060 .147 .061 .130 | .143 .228 .111 .196 .109 .189
Im|o| 2 |.076 .186 .065 .152 .069 .129 |.134 .251 .127 .192 .117 .175
4 12|.116 .227 .072 .200 .061 .167 | .172 .294 .130 .261 .108 .220
41 2 |.073 .186 .063 .143 .061 .119|.138 .240 .119 .181 .107 .171
0 6| .281 .414 .269 .407 .253 .372| .356 .496 .353 .476 .341 .458
01112]|.080 .177 .059 .149 .059 .126|.134 .229 .109 .196 .109 .187
Imi{o}| 2 |.078 .190 .065 .153 .067 .127 | .128 .248 .123 .195 .119 .172
4112).126 .253 .080 .199 .076 .172].201 .323 .150 .278 .120 .224
41 2 |.0714 .178 .062 .143 .061 .118}.136 .237 .113 .182 .107 .173
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TABLE 4.86

EMPIRICAL SIZES OF W; AND Wr FOR p=—.5,¢; =9; =0,t = 1,2
«@ .05 10
n 64 64 128 128 256 256 | 64 64 128 128 256 256
m Y ) W[ WF W[ WF W] WF WI WF W] WF W[ Wp
0] .6 |.143 .241 .134 .246 .145 .212 | .215 .312 .221 .327 .211 .277
0]12).062 .180 .080 .177 .054 .120 | .128 .246 .133 .229 .107 .176
I]0¢{ 2 |.063 .161 .077 .166 .065 .129 | .127 .215 .137 .227 .111 .177
41]112}.085 .226 .075 .196 .065 .167 | .164 .298 .145 .272 .129 .222
41 2 |.063 .156 .078 .164 .061 .118 | .125 .208 .132 .211 .111 .170
0] .6 ).18 .291 .191 .287 .200 .256 | .271 .379 .273 .360 .282 .330
0]12].065 .18 .078 .177 .052 .122 | .130 .248 .133 .227 .104 .181
IITj]of| 2 j.061 .167 .076 .167 .064 .129 | .122 .216 .134 .223 .113 .180
4(12].095 .237 .08 .199 .070 .165 | .171 .299 .147 .272 .131 .216
A4 2 ]1.061 .161 .076 .162 .063 .117 | .123 .207 .134 .211 .112 .167
G| .6 |.220 .336 .224 .323 .231 .201 | .309 .414 .311 .394 .309 .369
012! .064 .18 .079 .177 .052 .119 | .129 .246 .135 .228 .102 .179
Imjo | 2 |.064 .166 .079 .168 .064 .128|.125 .219 .132 .221 .115 .178
41 121.102 .237 .090 .198 .074 .170 | .169 .306 .155 .270 .137 .223
4] 2 | .064 .160 .077 .165 .063 .115( .122 .211 .138 .211 .111 .168
TABLE 4.87
EMPIRICAL SIZES OF WP AND W2 FOR p=—.5,¢; =19; =0,i=1,2
o .05 .10

n 64 64 128 128 256 256 | 64 64 128 128 256 256
m|y| 6 |Wp Wp Wp Wz Wp Wp|Wp Wp Wp Wp Wp Wp
0] .6 (.145 .240 .125 .237 .136 .207 | .204 .316 .205 .311 .198 .268
0|12{.060 .182 .078 .178 .052 .123|.130 .249 .135 .224 .106 .179
I 10| 2 |.059 .164 .078 .166 .065 .127 | .128 .213 .135 .226 .113 .176
4112].08 .233 .084 .202 .061 .171| .160 .296 .138 .286 .128 .227
41 2 |.068 .156 .073 .168 .063 .118 | .120 .212 .133 .210 .113 .172
0] 6 [.190 .324 .181 .320 .200 .301 | .257 .404 .260 .407 .271 .367
0}12(.070 .189 .08F1 .180 .051 .125].132 .241 .134 .227 .107 .184
IIm{oy} 2 (.062 .167 .076 .169 .063 .128 | .124 .215 .133 .224 .112 .178
4112].088 .247 .08 .211 .073 .173 | .183 .330 .148 .290 .135 .241
41 2 1.064 .158 .072 .166 .061 .116 | .117 .205 .132 .215 .110 .167
0| .6 |.258 .411 .261 .413 .260 .395| .339 .491 .343 .499 .348 477
0|12/).070 .184 .080 .178 .050 .122).130 .249 .137 .215 .107 .184
Im;o | 2 |.060 .172 .078 .171 .064 .128 | .128 .213 .132 .224 .114 .181
4112].124 277 .108 .228 .089 .183 | .190 .352 .174 .291 .145 .254
41 2 ).062 .159 .073 .167 .059 .116 | .112 .208 .134 .211 .112 .170
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TABLE 4.88
EMPIRICAL SIZES OF W; AND Wr FOR p= .75, ¢; = ¢; =0, i = 1,2

o .05 10
n 64 64 128 128 256 256 | 64 64 128 128 256 256
m 07 1) W] WF W] WF WI WF WI WF WI WF WI WF
0] .6 |.227 .336 .237 .364 .254 .335]| .313 .420 .331 .455 .347 427
0[12].078 .205 .057 .184 .052 .156{ .138 .262 .115 .247 .113 .216
I 10| 2 |.064 .18 .052 .154 .064 .148 | .119 .242 .116 .198 .105 .208
411.2].099 .285 .065 .278 .061 .246 | .157 .352 .137 .356 .123 .314
4| 2 {.065 .170 .063 .144 .061 .142 | .118 .231 .118 .202 .115 .186
0} .6 |.346 .474 .364 478 .385 .474 | .459 .552 470 .560 .478 .568
0{12].0714 .2010 .057 .179 .055 .156 | .141 .258 .114 .245 .115 .215
Imjoj 2 |.067 .180 .053 .154 .065 .148 | .119 .240 .110 .204 .109 .205
4112].113 .204 .071 .275 .061 .238 | .176 .355 .146 .349 .128 .313
41 2 |.066 .175 .065 .146 .059 .139 | .119 .228 .116 .201 .115 .185
0| .6 | 462 .557 .445 .557 .455 .542 | .552 .634 .546 .633 .544 .638
0(12](.074 .199 .057 .178 .053 .157 | .144 .262 .113 .245 .108 .211
IIm| 0| 2 |.068 .184 .056 .155 .066 .146 | .127 .241 .113 .203 .109 .205
4112 .122 .304 .082 .280 .066 .233 | .187 .360 .154 .348 .126 .306
41 2 |.068 .174 .063 .150 .059 .143 | .125 .225 .113 .199 .113 .185

TABLE 4.89
EMPIRICAL SIZES OF Wf’ AND Wf,i FORp=.75,¢; =9, =0,1=1,2

@ .05 .10
n 64 64 128 128 256 256 | 64 64 128 128 256 256
m|y| 6 |wp wp wp wp Wp wp|Wp Wp Wp Wp Wp Wp
0| .6 |.192 .338 .202 .355 .214 .309 | .294 .415 .302 .438 .313 .402
0112).071 .210 .058 .195 .051 .164 | .135 .270 .112 .256 .116 .219
I 10| 2 |.066 .182 .051 .152 .063 .148 | .123 .244 .117 .201 .105 .206
41 12].098 .292 .060 .292 .057 .262 | .150 .365 .122 .385 .113 .338
41 2 |.066 .173 .064 .147 .062 .143 | .117 .226 .116 .203 .114 .186
0| .6 |.312 .500 .332 .501 .356 .497 | .422 .567 .424 .589 .450 .593
0]12).074 .209 .061 .187 .054 .163 | .138 .279 .111 .254 .118 .219
IIm{o| 2 |.066 .180 .052 .154 .064 .147 | .121 .242 .114 .202 .108 .206
4112].112 .309 .071 .291 .065 .248 | .173 .378 .125 .373 .125 .321
41 2 | .067 .178 .067 .147 .060 .141 | .122 .228 .115 .201 .113 .190
0| .6 | 460 .637 .465 .625 .479 .634 | .549 .703 .560 .707 .596 .723
012].078 .200 .057 .183 .052 .157 | .142 .268 .113 .244 .114 .213
Im{o| 2 |{.067 .180 .054 .154 .066 .146 | .130 .245 .114 .198 .108 .208
4112 .135 .341 .089 .285 .078 .228 | .212 .415 .152 .370 .125 .295
41 2 | .067 .177 .065 .147 .058 .144 | .125 .224 .113 .200 .111 .185
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TABLE 4.90
EMPIRICAL SIZES OF W; AND Wr FOR p=0, ¢ = .5, ¢ =0,i=1,2

a .05 .10
n 64 64 128 128 256 256 | 64 64 128 128 256 256
m Y 6 W] WF W1 WF W[ WF W] WF WI WF W] WF
0] .6 j.227 .133 .166 .101 .140 .068 | .303 .196 .237 .147 .231 .118
0]12].190 .095 .151 .067 .142 .045| .265 .147 .240 .102 .206 .070
I |01 2 |.187 .078 .145 .073 .140 .050 | .275 .114 .242 .103 .224 .070
41121.221 .118 .160 .078 .128 .046} .277 .167 .229 .115 .212 .088
4] 2 |.18 .079 .150 .070 .145 .039 | .261 .126 .244 .100 .215 .062
0| .6 |.233 .136 .177 .091 .151 .072 | .301 .190 .251 .157 .233 .119
012].191 .091 .151 .062 .141 .042| .262 .141 .239 .096 .204 .069
IImjof 2 |.181 .077 .144 .075 .142 .050 ] .273 .116 .236 .103 .219 .071
4112].228 .121 .164 .076 .131 .046 | .289 .170 .236 .115 .216 .085
41 2 1179 079 .148 .063 .146 .039 | .262 .126 .242 .100 .214 .060
0| .6 |.229 .139 .183 .099 .159 .079 | .317 .201 .260 .163 .249 .125
0]12].196 .095 .163 .063 .139 .044 | .269 .142 .246 .101 .202 .071
Inmj oy 2 (.190 .080 .152 .075 .138 .049 | .270 .120 .241 .102 .214 .073
41121.229 .121 175 .084 .134 .050 | .302 .173 .241 .116 .224 .089
4| 2 |.187 .080 .157 .067 .138 .040 | .265 .122 .244 .103 .220 .061

TABLE 4.91
EMPIRICAL SIZES OF WPy AND W2 FOR p=0, ¢; = .5, ¢; =0,i=1,2

a .05 10
n 64 64 128 128 256 256 | 64 64 128 128 256 256
m |y | § | Wp Wp Wp Wp Wp Wp|Wp Wp Wp Wp Wy Wp
0 6 (.224 .127 .169 .095 .138 .068 { .298 .198 .239 .141 .229 .111
0(12].193 .095 .151 .064 .141 .044 | .265 .141 .241 .098 .209 .070
I]0 2 |.186 .075 .147 .074 .138 .050 | .274 .118 .243 .098 .225 .070
4112].223 .112 .159 .075 .125 .043 | .277 .162 .221 .110 .209 .089
4| 2 ]1.18 .077 .151 .072 .146 .039 | .266 .124 .242 .097 .215 .062
0| .6 1.225 .138 .168 .097 .142 .070} .296 .195 .244 .153 .231 .124
0112].191 .096 .149 .061 .143 .042}.263 .143 .236 .099 .205 .073
Im{yo¢{ 2 |.187 .075 .145 .074 .140 .049 (.275 .121 .238 .102 .221 .072
4112].219 .123 .158 .076 .126 .047 | .289 .175 .234 .120 .211 .093
41 2 ]1.178 .077 .151 .068 .148 .040 | .264 .125 .245 .097 .213 .060
0O .6 ].220 .157 .173 .107 .145 .087 | .292 .215 .250 .162 .233 .135
0 (12].191 .091 .147 .064 .144 .043|.267 .143 .237 .099 .204 .073
Im| o 2 |.182 .076 .149 .075 .138 .048 | .274 .118 .241 .103 .222 .072
4112).222 129 .157 .084 .128 .049 | .292 .192 .232 .132 .216 .102
4 2 ]1.178 .078 .151 .069 .148 .040 | .261 .124 .244 .097 .213 .060
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TABLE 4.92

EMPIRICAL SIZES OF W; AND Wz FOR p = .5, ¢; = .5, ¥; =0, i = 1,2

@ .05 .10
n 64 64 128 128 256 256 | 64 64 128 128 256 256
mil~y| 6 | W Wp W; Wp Wy Wl Wy Wrp W; Wp W Wgp
0O .6 |.256 .202 .222 .206 .203 .173 | .360 .274 .319 .286 .290 .259
0(12].190 .103 .142 .078 .128 .053 | .267 .149 .225 .101 .204 .084
I ]0f{ 2 ].198 .093 .150 .082 .132 .050 | .269 .132 .216 .106 .193 .070
4 (121.200 .155 .154 .117 .121 .100 | .285 .217 .241 .187 .203 .162
41 2 |.189 .079 .142 .065 .126 .037 | .273 .113 .217 .090 .193 .069
0| .6 ].280 .236 .247 .237 .233 .206 | .369 .313 .338 .317 .323 .298
0f12].192 .101 .144 .077 .129 .055| .273 .145 .215 .103 .204 .082
IIm{of| 2 |.19% .092 .14 .079 .129 .048 | .273 .136 .218 .108 .196 .071
4112 .204 .154 .159 .112 .128 .096 | .294 .229 .249 .182 .211 .155
41 2 |.194 .078 .141 .065 .127 .039 | .272 .111 .209 .093 .192 .072
0 6 1.316 .259 .274 .266 .255 .240| .391 .353 .353 .350 .346 .332
0(12].191 .102 .147 .076 .127 .0521 .278 .142 .216 .103 .204 .084
Imi{oj| 2 |.197 .097 .147 .083 .131 .052 | .278 .135 .218 .106 .193 .071
411.2(.216 .159 .166 .113 .132 .097 | .297 .227 .252 .183 .207 .154
41 2 ].195 .077 .139 .066 .126 .039 | .268 .116 .223 .096 .197 .071

TABLE 4.93
EMPIRICAL SIZES OF Wy AND Wp FOR p = .5, ¢ =.5,9:;=0,1=1,2

o .05 .10
n 64 64 128 128 256 256 | 64 64 128 128 256 256
m |y | 6 |wp wp wp wp wp wpl|we wp wp wp wp Wp
0| .6 | .248 .203 .212 .202 .177 .161 | .345 .280 .303 .274 .269 .239
01}12].187 .106 .144 .078 .127 .055 | .268 .149 .221 .108 .203 .088
I |0} 2 |.195 .094 .147 .082 .130 .049 | .269 .138 .218 .105 .194 .070
4112].194 .159 .153 .132 .117 .111 | .281 .224 .235 .199 .202 .172
41 2 | .18 .078 .145 .067 .125 .037 | .277 .117 .217 .094 .195 .071
o .6 |.259 .250 .227 .229 .198 .190 | .360 .326 .322 .308 .282 .281
012.188 .103 .145 .079 .128 .056 | .275 .148 .221 .112 .204 .090
Imf{o| 2 1}.192 .094 .145 .082 .128 .048 ] .269 .138 .216 .106 .194 .071
41121.202 .165 .150 .139 .115 .108 | .284 .235 .235 .196 .203 .168
4] 2 ].189 .080 .142 .066 .124 .037 | .273 .116 .219 .094 .196 .073
0| .6 |.279 .306 .231 .264 .208 .227 | .367 .368 .328 .351 .294 .320
0|12(.18 .101 .145 .077 .127 .055 | .274 .147 .218 .108 .204 .089
Im{o | 2 ).193 .092 .148 .082 .128 .049 | .275 .135 .216 .104 .195 .Q70
4112].203 .173 .157 .131 .115 .111 | .282 .255 .243 .198 .201 .165
41 2 |.18 .079 .142 .065 .125 .038 | .269 .115 .221 .093 .194 .073
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TABLE 4.94

EMPIRICAL SIZES OF W; AND Wr FOR p=—.5, ¢; = .5, 0; =0,i=1,2

a .05 .10
n 64 64 128 128 256 256 | 64 64 128 128 256 256
m Y 6 W[ Wp W[ WF W1 WF W[ WF W] WF W] WF
0] 6 |.244 .203 .225 .192 .203 .187 | .326 .262 .313 .276 .288 .248
0]12].201 .110 .159 .087 .117 .058 | .284 .160 .228 .131 .193 .090
I (0] 2 |.183 .08 .165 .067 .132 .048 | .268 .121 .242 .106 .206 .073
41121.221 .152 171 .137 .146 .100 | .300 .226 .247 .187 .211 .151
41 2 ]1.172 079 .168 .066 .128 .042 | .262 .114 .246 .105 .198 .064
0] 6 ].272 .238 .259 .235 .239 .225{ .35 .322 .333 .313 .316 .300
0(12].200 .116 .164 .081 .117 .057 | .282 .159 .229 .132 .198 .088
IIr|oy| 2 ].181 .08 .163 .072 .130 .048 | .267 .126 .239 .104 .206 .072
4112].227 154 .178 .126 .150 .094 | .311 .224 .252 .184 .208 .147
4] 2 |.174 .084 .168 .066 .128 .043 | .269 .111 .243 .107 .197 .064
0] .6 |.281 .267 .276 .260 .252 .250| .376 .339 .355 .342 .342 .327
0(12}.203 .108 .170 .084 .120 .056 | .289 .152 .236 .129 .199 .091
Imjo} 2 |.18 .087 .170 .071 .135 .045 | .274 .124 .244 .111 211 .075
4112).235 .156 .179 .132 .154 .096 | .322 .222 .254 .186 .214 .156
41 2 {177 082 174 .070 .127 .044 | .272 .112 .246 .108 .193 .060
TABLE 4.95
EMPIRICAL SIZES OF W2 AND W2 FOR p= —.5,¢; = .5, ;i = 0,5 = 1,2
a .05 .10
n 64 64 128 128 256 256 | 64 64 128 128 256 256
m |y | 6 |Wp Wp Wp Wp Wp Wg|Wp Wp Wp Wp WP Wp
0| 6 ].244 .201 .219 .182 .189 .171 | .316 .266 .303 .270 .272 .245
0(12(.202 .116 .160 .08 .119 .060 | .283 .165 .232 .137 .195 .097
I (0 2 ].182 .08 .163 .066 .131 .049 | .263 .121 .241 .105 .203 .072
4112].216 .160 .165 .136 .143 .111 | .298 .237 .244 .192 .209 .174
41 2 ].172 079 .165 .070 .127 .042 | .263 .115 .242 .107 .196 .065
0 .6 |.250 .235 .236 .221 .210 .213(.335 .327 .307 .313 .284 .303
0f{12].202 .120 .163 .091 .117 .058 | .281 .166 .228 .131 .195 .095
IT|0( 2 [.184 .086 .164 .071 .132 .049 | .267 .123 .237 .104 .202 .070
40 12].224 179 174 138 .142 119 | .305 .245 .245 .194 .212 .182
4] 2 |.171 .081 .163 .065 .126 .043 | .268 .114 .241 .106 .201 .063
0 .6 |.266 .292 .249 .269 .216 .242 | .342 .378 .313 .365 .291 .329
0]12].203 .118 .165 .089 .119 .057 | .276 .159 .231 .131 .196 .094
Imj) o | 2 |.183 .085 .167 .070 .130 .047 | .268 .126 .240 .105 .200 .071
4(12(.223 .186 .178 .140 .144 113 ] .308 .252 .244 .192 .214 .178
4] 2 [.172 .080 .164 .069 .129 .043 | .267 .113 .246 .106 .196 .065
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TABLE 4.96

EMPIRICAL SIZES OF W; AND Wr FOR p = .75, ¢; =

S, =0,1=12

o .05 .10
n 64 64 128 128 256 256 | 64 64 128 128 256 256
mi|y| 6 wr Wg W Wr W; W | Wy W W; Wrp W; Wp
0| .6 | .319 .364 .303 .375 .307 .353 | .412 .434 .395 .466 .393 .438
0]121}.191 .121 .145 .08 .135 .079 | .271 .180 .212 .143 .201 .121
I]1]0} 2 |.176 .098 .145 .084 .115 .066 | .258 .136 .221 .110 .195 .094
41121 .206 .246 .150 .227 .131 .196 | .296 .319 .228 .305 .211 .275
41 2 |.158 .082 .144 .066 .132 .051 | .248 .109 .217 .099 .198 .074
0] .6 |.394 .431 .38 .467 .383 .474 | .484 .524 471 .561 .467 .558
0(12].184 .123 .142 .08 .132 .081 | .276 .173 .213 .139 .201 .117
Im|(oyj{ 2 ].183 .101 .144 .084 .116 .063 | .259 .138 .221 .111 .201 .094
411.21.218 .247 .157 .213 .138 .174 | .309 .325 .238 .295 .216 .242
41 2 [.164 .084 .141 .071 .133 .048 | .243 .112 .215 .100 .194 .076
0| .6 | .432 .494 .423 .523 .419 .516 | .518 .588 .502 .606 .512 .610
0]12].194 .125 .145 .083 .130 .083§.265 .172 .224 .135 .203 .116
Imjoj| 2 |.182 .107 .145 .085 .120 .060 | .261 .140 .227 .109 .192 .094
4112(.230 .245 .165 .213 .138 .174 | .319 .321 .242 .204 .216 .244
41 2 1.171 .08 .145 .071 .129 .052 | .250 .114 .217 .097 .199 .075

TABLE 4.97
EMPIRICAL SIZES OF W,° AND Wﬁ. FORp=.75,¢; =.5,¢9;=0,1=1,2

a .05 .10
n 64 64 128 128 256 256 | 64 64 128 128 256 256
m|y| 6 | wp wp wp wp wp we|wp wp We W Wwp Wp
0| .6 {.302 .342 .280 .356 .273 .312{.399 .437 .371 .441 .361 .399
0(12(.191 .133 .140 .098 .132 .086 | .274 .189 .214 .157 .199 .124
I1{0] 2 |.174 .101 .148 .08 .115 .066 | .260 .137 .219 .107 .195 .094
41 1.2].196 .266 .143 .248 .129 .227 1 .200 .335 .226 .342 .210 .307
41 2 |.156 .083 .144 .069 .133 .054 | .245 .115 .216 .102 .196 .077
0} .6 |.337 .429 .322 .420 .306 .386 | .433 .506 .408 .512 .406 .485
0]12].18 .136 .142 .091 .132 .085 | .276 .194 .215 .157 .199 .127
Im(oj}| 2 |.179 .102 .140 .085 .114 .067 | .260 .139 .219 .107 .196 .093
41121 .206 .284 .144 .246 .128 .214 | .298 .354 .227 .349 .213 .295
41 2 |.161 .087 .141 .069 .131 .054 | .243 .116 .213 .100 .195 .078
01 .6 | .371 .488 .348 .477 .334 .462 | .453 .568 .430 .5377 .426 .543
0112|.189 .129 .145 .089 .134 .083 | .271 .181 .216 .147 .198 .123
Imioj 2 |.179 .103 .144 .083 .116 .066 1 .260 .137 .218 .106 .193 .093
4112 .214 .286 .144 .230 .132 .191( .311 .366 .233 .322 .210 .269
41 2 | .164 .086 .143 .068 .131 .054 | .243 .117 .214 .099 .195 .080
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TABLE 4.98
EMPIRICAL SIZES OF W; AND Wy FOR p=0, ¢; = .9, ¥; =0, i =1,2

a .05 .10
n 64 64 128 128 256 256 | 64 64 128 128 256 256
m | é Wr Wr Wi Wg Wi Wg Wi Wg Wi Wg Wi Wg
0] .6 |.553 .130 .529 .091 .515 .056 | .611 .195 .599 .146 .587 .103
0112].578 .073 .546 .040 .484 .014 | .646 .113 .615 .061 .554 .034
I {0} 2 |.602 .052 .540 .029 .486 .006{ .650 .077 .603 .051 .557 .009
411.21.570 .093 .549 .059 .496 .034 | .630 .148 .613 .103 .574 .084
41 2 |.559 .048 .544 .023 .482 .005 | .617 .067 .611 .044 .558 .013
0] .6 |.563 .143 .535 .083 .518 .051 | .618 .198 .603 .143 .590 .110
0]12].585 .065 .547 .041 .485 .014| .640 .111 .610 .061 .555 .032
Imjoj| 2 |.604 .052 .548 .029 .484 .007 | .649 .078 .599 .052 .556 .010
411.21.571 .097 .554 .058 .503 .028 | .630 .148 .617 .097 .569 .070
4] 2 | .551 .046 .544 .022 .482 .006 | .624 .069 .616 .042 .555 .015
0] .6 |.567 .145 .545 .090 .529 .055 | .633 .216 .607 .156 .593 .115
012 .584 .068 .547 .040 .494 015 .636 .112 .611 .064 .565 .031
Imi{o}| 2 |.58 .064 .545 .029 .491 .007| .671 .078 .604 .053 .560 .010
41 12| .588 .099 .560 .058 .504 .029 | .641 .160 .613 .103 .577 .076
441 2 |.566 .050 .549 .022 491 .007 | .640 .070 .616 .045 .561 .015
TABLE 4.99
EMPIRICAL SIZES OF Wy AND W} FORp=0,¢;= .9, 9, =0,i=1,2
o .05 10
n 64 64 128 128 256 256 | 64 64 128 128 256 256
m|y| 6 | Wwp Wp Wy Wp wp Wp|Wp wp wp Wi Wp Wg
0| .6 |.555 .126 .531 .084 .515 .056 | .612 .190 .599 .137 .588 .104
0112].580 .070 .545 .041 .484 .015]| .645 .107 .613 .064 .554 .033
I 10| 2 |.601 .052 .541 .029 .486 .006 | .649 .078 .604 .053 .557 .009
4112].569 .091 .550 .058 .496 .036 | .630 .152 .614 .102 .574 .086
41 2 | .559 .049 .544 .022 483 .005 | .616 .069 .611 .044 .558 .014
0| .6 |.553 .151 .529 .086 .518 .063 | .616 .211 .599 .146 .588 .119
0]12].582 .070 .545 .039 .485 .016 | .641 .116 .611 .063 .551 .031
410 2 }|.599 .049 .541 .028 .486 .006 | .647 .079 .603 .053 .556 .010
41121.570 .103 .545 .058 .497 .041 | .628 .168 .615 .107 .574 .093
41 2 |.555 .048 .543 .020 .482 .006 | .621 .070 .610 .043 .557 .014
0| .6 {.555 .191 .531 .116 .517 .086 | .616 .256 .601 .180 .589 .159
0|12} .584 .072 .543 .040 .484 017 | .644 .119 .610 .066 .551 .032
Imi{of| 2 {.599 .051 .541 .028 .488 .006 | .649 .078 .601 .052 .556 .009
41121.572 135 546 .075 .501 .057 | .629 .208 .613 .126 .575 .096
41 2 ].553 .049 .544 .020 .482 .006 | .622 .072 .611 .043 .556 .015
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TABLE 4.100
EMPIRICAL SIZES OF W; AND W FOR p= 5, ¢; = .9, ¢, =0,i=1,2

«a .05 .10
n 64 64 128 128 256 256 | 64 64 128 128 256 256
ml|y| 6 | Wi W Wi Wp Wy Wep|Wr Wp Wi W W; Wr
0| .6 |.563 .193 .544 .197 .517 .168 | .628 .268 .612 .279 .589 .232
0|12 .570 .075 .531 .039 .476 .024 | .615 .117 .614 .077 .551 .044
I |0 2 |.58 .060 .527 .039 .457 .005 | .645 .102 .600 .063 .551 .009
4112(.560 .135 .532 .124 .496 .099 | .629 .205 .600 .196 .566 .177
41 2 | .571 .046 .541 .024 .451 .004 | .614 .073 .604 .045 .542 .007
0] .6 |.572 .214 .551 .203 .523 .165 | .634 .283 .618 .288 .501 .243
0]12]|.571 .073 .542 .035 .475 .022| .618 .113 .604 .074 .554 .043
Im|{o} 2 |.595 .067 .530 .040 .458 .005| .642 .098 .605 .061 .547 .009
4112 .561 .142 .529 .111 .503 .084 | .631 .202 .598 .185 .565 .157
4| 2 | .567 .047 .544 022 .456 .003 | .618 .072 .606 .042 .542 .007
0| .6 |.588 .231 .556 .225 .535 .179 | .643 .304 .622 .305 .600 .255
0(12(.572 .071 .545 .036 .481 .020 | .628 .108 .612 .075 .561 .042
Immyo| 2 |.598 .066 .531 .040 .470 .005 | .650 .097 .608 .065 .559 .008
41121 .573 .138 .528 .113 .499 .088 | .628 .209 .603 .187 .570 .157
4| 2 | .568 .048 .546 .022 .477 .004 | .634 .070 .621 .045 .554 .007

TABLE 4.101
EMPIRICAL SIZES OF WP AND Wp FOR p=.5,¢; = .9, ¢, =0,i=1,2

a .05 .10
n 64 64 128 128 256 256 | 64 64 128 128 256 256
m|y| 6 |Wp wp Wwp wp Wwp Wpl|Wwp wp Wp wp Wp Wp
0| .6 |.562 .216 .545 .205 .517 .176 | .628 .280 .612 .286 .589 .234
0(12]|.569 .078 .530 .044 .476 .028 | .616 .121 .612 .083 .548 .054
I 10| 2 |.586 .062 .526 .041 .459 .006 | .645 .098 .599 .063 .553 .008
4112 .558 .147 .533 .143 496 .128 | .628 .210 .599 .217 .565 .203
4] 2 | .572 .046 .542 .024 .450 .004 | .616 .073 .603 .046 .544 .009
0} .6 | .564 .243 .546 .218 .519 .174| .633 .314 .613 .299 .589 .258
0]12].572 .081 .531 .049 474 .027| .620 .118 .612 .090 .550 .054
Im{oy| 2 |.588 .066 .528 .040 .458 .006 | .643 .100 .601 .062 .554 .008
4112 .556 .155 .533 .149 497 .129 ] .629 .237 .602 .230 .566 .195
4 2 | .573 .047 540 .024 .453 .004 | .614 .074 .605 .043 .545 .009
0| .6 |.565 .288 .547 .254 .518 .201 | .629 .389 .615 .348 .589 .282
0]12).570 .081 .532 .047 476 .030 | .618 .117 .610 .088 .550 .049
Im{ o 2 |.58 .068 .524 .041 .458 .006 | .644 .099 .602 .064 .555 .008
4112 .556 .188 .533 .142 .496 .112 | .629 .261 .602 .221 .564 .195
4] 2 |.573 .048 540 .024 454 .004 | .613 .071 .607 .042 .545 .009
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TABLE 4.102

EMPIRICAL SIZES OF W; AND Wr FOR p=—.5,¢; = .9, 9¥: =0,1=1,2

o .05 .10
n 64 64 128 128 256 256 | 64 64 128 128 256 256
m | v ) Wy W W, W W; We | Wy Wrp Wi Wp W; Wp
0 6 [.586 .199 .554 .182 .531 .154| .664 .266 .622 .244 .599 .226
012 .575 .078 .533 .048 .507 .019 | .633 .120 .600 .077 .582 .044
I {0] 2 |.581 .054 .530 .034 .493 .006 | .629 .083 .594 .052 .564 .014
412 .583 .148 .564 .125 .515 .095 | .640 .221 .626 .174 .581 .164
4 2 |.555 .042 .533 .026 .491 .005 | .617 .070 .600 .042 .574 .014
0] .6 |.591 .224 .562 .199 .529 .167 | .660 .286 .623 .278 .599 .240
0(12].574 .076 .538 .050 .512 .017 | .631 .125 .604 .071 .576 .039
IImjol 2 |.579 .055 .529 .033 .490 .006 | .636 .089 .593 .054 .565 .016
4(12].589 .151 .570 .120 .518 .091 | .642 .222 .623 .162 .582 .145
4 2 |.559 .046 .540 .024 .485 .004 | .618 .064 .610 .044 .571 .013
0| .6 |.598 .230 .570 .214 .529 .179 | .657 .303 .631 .289 .597 .250
01}12].582 .073 .554 .048 .524 .018 | .641 .121 .597 .075 .587 .037
Imm|f{o| 2 |.586 .056 .532 .033 .505 .006 | .654 .087 .588 .057 .556 .015
4112 .589 .151 .578 .122 .522 .085 | .647 .219 .632 .163 .582 .144
41 2 | .575 045 .552 .023 .499 .004 | .629 .064 .613 .045 .569 .015

TABLE 4.103
EMPIRICAL SIZES OF W? AND Wg‘ FORp=-5,¢;=.9,¢;=0,1=1,2

« .05 .10
n 64 64 128 128 256 256 | 64 64 128 128 256 256
m |y 6 VWp Wg Wp Wp Wp W | Wp Wz WP % Wp W3
0] 6 ]|.58 .208 .554 .180 .531 .164 | .665 .270 .623 .260 .600 .250
0(12).576 .081 .533 .049 .507 .023 | .632 .132 .600 .077 .581 .052
I 0] 2 |.582 .054 .529 .033 .494 .006 | .629 .082 .596 .053 .563 .014
4112 .582 .157 .564 .134 .514 .116| .639 .238 .625 .201 .581 .197
41 2 | .55 .043 .531 .026 .491 .005| .617 .070 .602 .043 .575 .014
0| .6 |.587 .231 .557 .208 .531 .190 | .665 .321 .622 .298 .600 .280
0]12](.576 .084 .532 .054 .507 .023 | .631 .139 .600 .078 .583 .049
IIJo| 2 |.579 .057 .526 .030 .493 .006 | .633 .085 .595 .054 .565 .015
4112].581 .183 .564 .141 .517 .127 | .641 .249 .624 .205 .581 .198
4 2 | .551 .047 .531 .025 .491 .005 | .617 .073 .606 .045 .574 .012
0 .6 |.588 .287 .558 .262 .530 .212 | .663 .369 .623 .347 .600 .286
0(12].574 .079 .534 .048 .508 .021 | .632 .133 .600 .074 .582 .044
Imj|o| 2 |.579 .056 .530 .032 .493 .007 | .633 .086 .596 .052 .567 .015
41 121.579 .194 .565 .142 517 .119 | .639 .268 .624 .205 .581 .187
4| 2 |.555 .046 .530 .024 .493 .004 | .616 .069 .606 .046 .574 .013
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TABLE 4.104

EMPIRICAL SIZES OF W; AND Wy FOR p = .75, ¢; =

9,9, =0,i=1,2

a .05 .10
n 64 64 128 128 256 256 | 64 64 128 128 256 256
m|y]| 6 Wir We W Wp Wi W | Wr Wp W; Wp W; Wp
0| .6 | .610 .352 .577 .357 .545 .317 | .668 .412 .639 .439 .611 .394
0|12 .576 .084 .531 .070 .480 .045] .623 .139 .601 .111 .556 .077
I (0| 2 (.65 .063 .530 .043 .463 .009 | .621 .095 .598 .077 .541 .025
4112 .576 .244 .543 .249 489 .239 | .618 .332 .597 .356 .556 .339
4] 2 | .540 .049 .523 .025 .451 .008 | .596 .074 .599 .043 .533 .013
0] .6 |.621 .379 .585 .386 .558 .360 | .676 .455 .644 474 .611 .437
012 .569 .086 .531 .064 478 .045 1| .621 .141 .608 .105 .551 .073
II{0] 2 |.562 .061 .534 .042 .465 .007 | .621 .099 .599 .076 .549 .026
41121 .575 .245 .544 .238 .484 .222 | .619 .335 .597 .335 .557 .305
41 2 | .543 .048 .522 .022 454 .009 | .595 .078 .595 .040 .533 .013
0| .6 |.629 .404 .590 .416 .565 .391 | .687 .486 .641 .507 .626 .477
0|12 .58 .086 .543 .058 .482 .043 | .636 .134 .619 .108 .556 .073
Im{o} 2 |.577 .066 .533 .042 .469 .007 | .634 .107 .606 .078 .557 .023
4112 .579 .246 .546 .236 .478 .218 | .635 .338 .601 .325 .553 .296
4| 2 |.558 .048 .520 .022 470 .009 | .612 .075 .594 .038 .544 .014

TABLE 4.105
EMPIRICAL SIZES OF W}) AND W}?- FORp=.75,¢;=.9,¢; =0,i=1,2

o .05 .10
n 64 64 128 128 256 256 | 64 64 128 128 256 256
ml|y| 8 |wp we wp we wr wel|wr wp wr wp wp we
0| .6 | .613 .359 .573 .367 .544 .338 | .667 .417 .639 .449 .611 .403
0([12](.571 .094 .531 .083 .479 .060 | .622 .150 .601 .132 .556 .094
I1 10| 2 [.564 .063 .530 .043 .463 .009 | .620 .097 .600 .076 .540 .023
4 1.2].573 274 .542 .296 .488 .293 | .617 .365 .595 .399 .557 .379
41 2 [.539 .050 .524 .024 .452 .009 | .595 .086 .599 .044 .532 .015
0| .6 | .613 .416 .578 .403 .546 .356 | .670 .487 .640 .486 .612 .437
0|12 .574 .104 .528 .082 .478 .062 | .623 .162 .602 .134 .553 .090
Im{o| 2 |.561 .061 .530 .041 .463 .009 | .625 .105 .600 .073 .543 .024
41 12(.574 .301 .542 .305 .490 .276 | .619 .400 .595 .412 .557 .368
4 2 |.542 .055 .524 .024 .454 .009 | .596 .087 .602 .042 .531 .015
0} .6 [.618 .470 .577 .434 .549 .366 | .672 .538 .641 .525 .613 .474
0112].575 .090 .531 .076 .477 .056 | .625 .150 .603 .120 .553 .084
Imm| o} 2 |.564 .065 .526 .043 .463 .009{ .623 .103 .601 .075 .542 .024
4112(.573 .305 .540 .259 .489 .235 | .620 .398 .595 .360 .558 .319
41 2 |.546 .051 .527 .022 .453 .010] .596 .082 .599 .039 .531 .014
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TABLE 4.106
EMPIRICAL SIZES OF W; AND Wr FOR

=0,¢; =0, =.5i=12

o .05 .10
n 64 64 128 128 256 256 | 64 64 128 128 256 256
ml|~y| 6§ | W Wp Wi W Wi W | W Wp Wi Wrp W Wrp
0| .6 |.139 .164 .118 .134 .096 .105] .217 .214 .169 .182 .154 .167
04{12].106 .154 .079 .113 .066 .104 | .178 .204 .142 .174 .138 .148
110 2 1}.091 .135 .082 .118 .078 .097 | .165 .178 .136 .169 .140 .149
4112].132 .163 .097 .119 .070 .102 | .198 .218 .155 .166 .132 .146
41 2 |.094 .146 .092 .120 .075 .094 | .164 .183 .144 .176 .142 .145
0| 6 (.146 .162 .113 .128 .088 .100 | .220 .212 .176 .184 .158 .166
01]12].103 .159 .080 .113 .065 .106 | .173 .204 .143 .169 .142 .149
Imjof{ 2 |.094 .131 .08 .119 .081 .097 |.162 .176 .137 .165 .144 .152
A4112].137 .164 .099 .123 .072 .102| .207 .219 .163 .168 .140 .147
41 2 |.090 .147 .091 .123 .075 .095| .160 .189 .142 .175 .139 .144
0| .6 |.154 .170 .120 .133 .106 .110 | .227 .219 .184 .188 .172 .177
0)12].110 .158 .083 .114 .069 .1051| .174 .209 .151 .170 .139 .152
Im| o] 2 |.094 .137 .085 .126 .080 .097 | .163 .181 .142 .174 .139 .140
4112].139 .170 .107 .129 .075 .105| .213 .221 .167 .173 .143 .146
4 2 [.094 .152 .092 .129 .073 .098 | .163 .185 .148 .176 .140 .146

TABLE 4.107
EMPIRICAL SIZES OF W7 AND W2 FOR p=0,¢; =0, ¢, = .5,i=1,2

« .05 .10
n 64 64 128 128 256 256 64 64 128 128 256 256
m |y | 6 | Wy Wp We wp Wp Wpl|wp We Wp Wp WP Wp
(0] .6 | .138 .154 .109 .126 .089 .098 | .215 .212 .176 .181 .149 .160
0|12{.105 .158 .075 .113 .068 .103|.171 .200 .138 .171 .137 .150
I |10 2 }|.091 .133 .084 .117 .079 .098 | .161 .179 .138 .167 .142 .149
41127].121 .162 .094 .114 .061 .100 | .198 .212 .148 .160 .127 .140
A 2 [.092 147 .091 .120 .078 .093 | .161 .185 .142 .176 .141 .142
0| 6 |.146 .164 .108 .128 .090 .106 | .219 .214 .172 .182 .158 .164
0|12].101 .160 .077 .112 .069 .103 | .169 .199 .143 .167 .141 .149
II{o| 2 ].092 .128 .084 .117 .079 .094 | .164 .171 .137 .167 .141 .152
4112).128 .168 .098 .116 .066 .105 | .202 .218 .154 .170 .132 .149
41 2 ]1.092 146 .092 .122 .076 .094 | .158 .186 .144 .174 .140 .144
0| .6 |.148 .163 .115 .136 .102 .113( .225 .224 .179 .192 .160 .178
0|12].101 .159 .081 .113 .069 .102 | .171 .196 .142 .169 .142 .150
Imjoj| 2 |.092 .131 .08 .120 .082 .095 .160 .174 .136 .171 .141 .149
41121).131 .174 .04 .125 .071 .111 | .208 .228 .160 .176 .133 .155
4] 2 1.092 .146 .091 .123 .074 .095 ) .162 .183 .141 .176 .139 .145
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TABLE 4.108
EMPIRICAL SIZES OF W; AND Wr FOR p=.5,¢; =0, ¢; = .5, 5 =1,2

« .05 .10
n 64 64 128 128 256 256 | 64 64 128 128 256 256
m vy 6 W[ WF W[ WF W1 Wp WI Wp WI WF W[ Wp
0| 6 |.174 .221 .158 .226 .154 .203 | .273 .293 .243 .305 .240 .284
0(12].108 .150 .078 .123 .069 .102 | .167 .194 .140 .162 .122 .155
110} 2 (.099 .159 .084 .131 .077 .109{ .170 .203 .146 .164 .129 .155
41121 .131 .187 .08 .172 .068 .143 | .189 .246 .158 .227 .128 .211
41 2 |.09 .138 .081 .118 .073 .098 | .165 .190 .136 .156 .129 .148
0| .6 |.211 .278 .202 .283 .205 .253 | .324 .369 .298 .370 .306 .355
01]12].106 .150 .077 .124 .074 .099 ) .173 .191 .140 .162 .124 .155
Im|oyj 2 |.098 .157 .08 .130 .080 .107 | .177 .201 .143 .167 .127 .153
4 (1.2].139 .202 .094 .167 .074 .147 | .201 .262 .159 .222 .127 .204
41 2 |.098 .138 .083 .117 .073 .099 | .173 .187 .136 .158 .125 .146
0| 6 |.250 .308 .245 .313 .228 .287 | .355 .398 .327 .402 .339 .386
0f12(.109 .153 .077 .129 .074 .100 (| .172 .192 .141 .166 .125 .154
nmjoj| 2 |.106 .155 .08 .135 .080 .106 | .174 .203 .143 .167 .132 .156
41 12(.141 .202 .103 .166 .073 .140 | .216 .263 .157 .228 .133 .205
41 2 |.104 .136 .082 .124 .075 .097 | .172 .194 .134 .160 .127 .141
TABLE 4.109
EMPIRICAL SIZES OF WP AND W2 FOR p=.5,¢; =0, ¥; = .5,i=1,2
@ .05 .10
n 64 64 128 128 256 256 | 64 64 128 128 256 256
m

5 | wp wp Wy Wp Wp W2 | Wp Ws Wp Wi WP W

F I
.6 | .167 .218 .133 .213 .128 .191 | .256 .289 .215 .298 .209 .255
1.2 ].102 .152 .076 .123 .072 .102 | .164 .197 .138 .168 .122 .156
2 |.100 .158 .087 .129 .076 .109 | .169 .204 .144 .162 .126 .155
1.2 (.129 .194 .089 .175 .066 .150 | .187 .245 .147 .238 .120 .206
.096 .141 .078 .115 .073 .098 | .164 .193 .139 .156 .125 .150

N

.6 |.199 .276 .163 .263 .160 .240 | .284 .357 .251 .354 .247 .324
101 155 .074 .126 .070 .099 | .169 .198 .135 .172 .123 .159
2 |1.097 .156 .081 .129 .081 .108 | .173 .198 .144 .163 .127 .152
1.2 | .127 .203 .074 .178 .071 .151 | .191 .262 .135 .238 .123 .210
2 |.096 .140 .080 .115 .074 .098 | .170 .193 .137 .157 .125 .148

II

.6 |.213 .307 .183 .289 .186 .261 | .310 .386 .273 .382 .266 .361
1.2 .099 .154 .077 .126 .069 .100 | .170 .199 .135 .171 .123 .157
2 .01 .155 .084 .131 .081 .108 | .168 .199 .143 .162 .127 .153
1.2 (.139 .211 .090 .178 .070 .150 | .196 .272 .152 .230 .124 .208
2 [.096 .137 .078 .117 .073 .098 | .167 .192 .139 .156 .124 145
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TABLE 4.110

EMPIRICAL SIZES OF W; AND Wr FOR p=—.5,¢; =0, ¢; = .5,i=1,2

@ .05 .10
n 64 64 128 128 256 256 | 64 64 128 128 256 256
m|~vy| é Wi W Wi We Wy Wt W Wp Wy W W We
of .6 [.179 .220 .155 .238 .158 .213 | .246 .306 .247 .317 .231 .271
0[12].093 .156 .098 .155 .069 .112 1 .167 .211 .155 .198 .124 .150
I 10| 2 (.080 .138 .098 .140 .076 .104 | .163 .187 .156 .187 .134 .152
4112].126 .189 .095 .176 .078 .147 | .195 .276 .166 .241 .148 .205
41 2 |.096 .131 .091 .130 .080 .091.151 .172 .160 .181 .128 .137
0| .6 |.220 .284 .211 .280 .215 .259 | .298 .379 .298 .369 .292 .340
0112].098 .155 .096 .149 .068 .105 | .173 .205 .153 .201 .118 .149
Imjoyf| 2 |.090 .138 .095 .136 .076 .106 { .160 .181 .156 .189 .132 .154
4112(.138 .200 .100 .172 .083 .153 | .208 .277 .177 .237 .155 .200
41 2 (.092 .137 .087 .132 .080 .089 | .148 .172 .157 .179 .123 .136
0| .6 |.237 .308 .242 .318 .238 .281 | .326 .410 .328 .395 .323 .373
0(12].099 .160 .099 .152 .066 .104 ] .172 .204 .160 .199 .121 .147
Im|o4{ 2 j.091 .144 .096 .142 .076 .106 | .167 .184 .165 .193 .135 .147
41121].134 .201 .108 .177 .087 .149 | .216 .276 .184 .241 .156 .203
4 2 |[.090 .139 .089 .136 .078 .090 | .151 .179 .165 .183 .129 .139

TABLE 4.111
EMPIRICAL SIZES OF WP AND W2 FOR p=—.5,¢; =0, ¢; = .5,i = 1,2

a .05 .10
n 64 64 128 128 256 256 | 64 64 128 128 256 256
mly| 6 |we we wp wp wp wp|wp wp wp wp wr wp
0| .6 [.168 .215 .145 .225 .143 .197 | .236 .301 .234 .302 .209 .266
0(12(.091 .154 .097 .158 .068 .108 | .170 .208 .157 .204 .121 .156
I 10| 2 (.08 .137 .097 .138 .076 .105( .161 .18 .156 .187 .135 .152
41 12(.122 .196 .093 .177 .076 .157 | .193 .275 .167 .261 .144 .215
41 2 |.091 .132 .092 .128 .082 .091 | .150 .171 .157 .180 .129 .137
0| .6 |.203 .270 .194 .285 .184 .261 | .269 .368 .257 .361 .255 .330
0|12(.096 .159 .092 .152 .065 .106 | .175 .210 .154 .207 .118 .157
Im|jo| 2 |.091 .132 .096 .134 .073 .107 | .158 .181 .152 .191 .130 .152
4112(.124 209 .100 .18 .080 .160 | .208 .295 .170 .252 .152 .225
41 2 1.091 .135 .089 .131 .080 .090 | .149 .169 .153 .181 .125 .136
0f .6 |.211 .307 .202 .316 .201 .283 | .283 .401 .271 .393 .268 .355
0(12].097 .157 .095 .149 .065 .105{ .174 .210 .155 .206 .120 .156
Inmj o} 2 |.08 .136 .096 .135 .073 .106 | .158 .182 .155 .193 .131 .149
41121.128 .216 .103 .18 .083 .157 | .210 .300 .173 .251 .151 .222
41 2 |.080 .134 .090 .131 .078 .090 ] .150 .170 .156 .179 .126 .135
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TABLE 4.112

EMPIRICAL SIZES OF W; AND Wg FOR p= .75, ¢; =0, ¢; = .5,1=1,2

o .05 .10
n 64 64 128 128 256 256 | 64 64 128 128 256 256
m |y 1) Wi Wr Wi Wg Wr Wg Wr Wr Wr Wr Wi Wr
0] 6 |.259 .358 .269 .387 .274 .346 | .360 .433 .357 .467 .367 .436
0|12].104 .175 .075 .154 .070 .132| .166 .227 .134 .220 .135 .188
I ({O0f 2 |.086 .154 .072 .125 .076 .125].160 .198 .139 .168 .119 .179
4112].130 .258 .090 .266 .076 .230| .191 .341 .154 .340 .131 .298
41 2 |.083 .137 .080 .120 .071 .123 | .149 .183 .141 .168 .133 .161
0 6 |.393 .512 .394 .514 .404 .501 | .503 .594 .489 .610 .502 .599
0]112|.106 .182 .074 .150 .068 .133 | .171 .231 .137 .217 .133 .186
Imjo| 2 |.087 .153 .073 .126 .075 .128 | .156 .202 .135 .170 .122 .178
4112(.137 .258 .093 .264 .078 .206 | .213 .338 .167 .332 .140 .286
41 2 |.086 .143 .080 .121 .069 .121 | .157 .178 .139 .169 .133 .163
0 .6 [ .442 .568 .445 .577 .450 .558 | .554 .651 .543 .652 .545 .653
0|12](.110 .176 .074 .144 .069 .136 | .176 .227 .137 .217 .131 .181
Im; o | 2 |.094 .147 .070 .128 .076 .128 ] .160 .202 .137 .173 .123 .174
4(121).156 .270 .103 .264 .084 .207 | .225 .341 .175 .324 .144 .280
41 2 1.092 .142 .078 .122 .073 .121 .165 .179 .138 .172 .129 .157

TABLE 4.113
EMPIRICAL SIZES OF WP AND Wg FOR p=.75, ¢; =0, ¢; = .5,i = 1,2

a .05 .10
n 64 64 128 128 256 256 { 64 64 128 128 256 256
m |y |6 |wp wp Wwp wp Wwp wplwp wp Wwp Wwp wp Wp
0 .6 |.221 .341 .219 .351 .225 .305| .324 .421 .320 .439 .326 .396
0{127.102 .181 .073 .162 .070 .138 | .168 .234 .133 .232 .134 .196
I1 10| 2 (.08 .157 .071 .127 .075 .126| .160 .202 .140 .169 .118 .180
4112(.123 .264 .082 .290 .067 .246 | .184 .352 .137 .368 .128 .328
4| 2 |.085 .139 .082 .120 .070 .123 | .147 .186 .138 .170 .133 .162
O 6 |.203 450 .309 .463 .312 .437 | .395 .536 .404 .545 .416 .552
0|12].105 .191 .072 .155 .068 .135| .163 .242 .136 .227 .133 .197
(0| 2 |.086 .156 .075 .128 .075 .129| .158 .200 .135 .171 .119 .179
4112(.132 .284 .079 .282 .075 .2371{.194 .360 .145 .358 .139 .320
41 2 |.083 .142 .079 .121 .069 .123 | .154 .184 .142 .166 .131 .164
0| .6 |.327 .505 .333 .503 .349 .490 | .437 .580 .433 .589 .439 .586
0}12{.107 .187 .071 .155 .066 .137 | .167 .236 .138 .223 .131 .194
Imj|of{ 2 |.087 .152 .071 .127 .075 .128 | .155 .200 .134 .170 .121 .176
4112|.136 .287 .082 .277 .076 .227 | .202 .368 .149 .348 .138 .304
4| 2 |.088 .143 .082 .123 .072 .124 | .153 .182 .141 .166 .134 .162
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TABLE 4.114

EMPIRICAL SIZES OF W; AND W FOR p=0,¢; =0, ¢;=.9,1=1,2
o .05 .10
n 64 64 128 128 256 256 | 64 64 128 128 256 256
m|~y| 6 | W W W Wp W; Wp| W Wgp Wi Wp Wi Wg
0| .6 [.141 .161 .121 .132 .097 .103 | .221 .211 .174 .183 .155 .165
0]12].113 .155 .080 .110 .068 .102 | .180 .199 .147 .170 .141 .146
I 0| 2 (.095 .1290 .08 .117 .080 .095| .171 .175 .137 .164 .144 .142
4112(.135 .157 .102 .116 .071 .098 | .203 .218 .160 .164 .135 .144
4] 2 |.103 .142 .093 .116 .076 .090 | .167 .182 .146 .169 .144 .139
0| .6 |.161 .160 .118 .125 .091 .099 | .227 .213 .182 .183 .161 .164
0]12].106 .154 .08 .113 .071 .103 | .179 .200 .144 .166 .144 .145
IL|o| 2 |.095 .130 .08 .116 .081 .094 | .169 .168 .138 .162 .148 .147
4112(.139 .162 .107 .116 .072 .100| .214 .221 .166 .168 .144 .145
41 2 |.101 .142 .095 .117 .076 .090 | .172 .187 .145 .167 .141 .140
0] .6 |.157 .162 .125 .134 .100 .105| .232 .218 .191 .188 .171 .176
0]12].115 .155 .087 .113 .072 .101 | .180 .203 .155 .165 .139 .148
Imjo| 2 |.099 .133 .087 .120 .084 .095 | .172 .178 .143 .173 .149 .139
4112 .142 171 105 .120 .077 .103 | .218 .222 .177 .174 .142 .146
4] 2 |(.101 .144 .093 .127 .077 .093 | .166 .181 .153 .170 .143 .144
TABLE 4.115
EMPIRICAL SIZES OF W ANDWRFOR p=0,¢;=0,¢9;=.9,i=1,2
a .05 .10

n 64 64 128 128 256 256 | 64 64 128 128 256 256
m |y | 6 |Wp wp wp wp Wp Wpl|wp Wwp Wp Wp Wp W
0] 6 ].142 .150 .110 .126 .095 .094 | .219 .208 .176 .178 .150 .159
012 .111 .57 .082 .111 .069 .100 | .175 .194 .146 .168 .141 .146
I |0 2 ]|.092 .129 .08 .117 .083 .094| .170 .170 .139 .163 .146 .146
41214127 .157 .097 .110 .062 .096 | .203 .207 .151 .157 .130 .138
4| 2 |.099 .141 .091 .115 .078 .091 ] .165 .179 .146 .171 .146 .138
0 .6 | .150 .159 .111 .127 .092 .101 | .223 .211 .177 .178 .158 .160
0]12).106 .156 .081 .108 .072 .099 | .173 .193 .146 .166 .141 .148
Imjo| 2 |.095 .127 .089 .116 .082 .095| .172 .166 .139 .160 .144 .145
4112 .131 .161 .096 .113 .067 .102 | .205 .215 .157 .165 .141 .146
4| 2 |.100 .143 .092 .117 .077 .093 | .170 .183 .147 .171 .145 .140
0| .6 |.145 .158 .113 .131 .096 .107 | .224 .216 .178 .184 .161 .168
0]12).107 .157 .082 .108 .070 .101 | .173 .193 .144 .166 .143 .148
Imj|o4{ 2 |.095 .127 .086 .115 .083 .094 | .172 .168 .140 .159 .142 .143
41127).132 .164 .102 .117 .069 .105| .212 .220 .158 .170 .137 .149
41 2 1.095 .143 .092 .117 .078 .091 | .161 .181 .147 .173 .143 .140
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TABLE 4.116
EMPIRICAL SIZES OF W; AND Wr FOR p=.5,¢; =0, 9%; = .9,1=1,2

a .05 .10
n 64 64 128 128 256 256 | 64 64 128 128 256 256
m |y 6 Wi Wg Wi Wp Wi Wr Wr Wg Wi Wg Wi Wg
0f .6 |.178 .223 .160 .229 .155 .205 ] .278 .294 .244 312 .246 .283
0]12].110 .147 .080 .120 .070 .100 | .174 .191 .141 .157 .127 .151
I {0} 2 |.108 .154 .086 .125 .079 .107 | .175 .196 .148 .158 .132 .151
4(12f.137 .18 .091 .170 .071 .141 ) .193 .241 .162 .222 .131 .209
41 2 ].101 .134 .081 .116 .075 .096 | .170 .174 .142 .155 .130 .144
0 .6 |].226 .283 .211 .284 .206 .258}.333 .370 .307 .370 .308 .357
0f12].111 .145 .079 .123 .073 .096 | .176 .190 .143 .159 .127 .150
II1jyjo| 2 {.104 .151 .08 .125 .083 .105 | .181 .197 .150 .157 .129 .147
4112].142 198 .098 .165 .075 .144 | .210 .259 .165 .219 .137 .201
41 2 [.102 .134 .084 .115 .078 .096 | .181 .176 .138 .155 .128 .142
0| .6 |.244 .305 .236 .311 .228 .283 | .357 .392 .328 .399 .333 .379
01}12].113 .149 .077 .126 .076 .099 | .181 .190 .146 .167 .129 .150
Imi{of| 2 |.112 .154 .094 .132 .081 .102 | .183 .194 .146 .163 .133 .147
411.2).151 .203 .102 .160 .075 .138 | .216 .262 .163 .225 .134 .203
41 2 ].111 136 .08 .120 .077 .096 | .181 .184 .138 .158 .128 .138

TABLE 4.117
EMPIRICAL SIZES OF Wﬁ’ ANDWEFOR p=.5,¢;,=0,9;=.9,1=1,2

a .05 .10
n 64 64 128 128 256 256 | 64 64 128 128 256 256
m |y | 6 |Wp wp Wp Wp Wp wal|Wp W Wp W WP Wp
o] .6 |.172 .219 .139 .216 .127 .189 | .262 .283 .218 .297 .211 .255
0]]12].104 .149 .079 .123 .074 .099 | .169 .195 .139 .165 .127 .154
110 2 |.110 .152 .08 .124 .079 .107 | .175 .195 .146 .158 .129 .153
411271.134 .192 .091 .173 .068 .149 | .189 .241 .150 .229 .122 .205
41 2 ]1.101 .137 .080 .114 .075 .097 | .172 .179 .143 .154 .128 .146
0| .6 |.202 .270 .166 .264 .160 .234 | .287 .350 .248 .348 .247 .313
0|12].102 .149 .077 .124 .073 .097 | .174 .198 .140 .169 .124 .155
Imj{oy| 2 |.108 .155 .085 .124 .082 .107 | .177 .194 .147 .159 .128 .149
4112].129 .200 .090 .176 .072 .148 | .194 .258 .148 .231 .123 .206
41 2 ]1.099 .136 .081 .113 .076 .097 | .176 .181 .139 .155 .126 .144
0| .6 |.207 .280 .174 .275 .176 .247 | 208 .359 .258 .366 .256 .346
0j)12].104 .150 .076 .123 .072 .097 | .174 .198 .138 .168 .124 .154
Imj)o| 2 |.106 .154 .087 .126 .083 .106 | .180 .191 .147 .160 .127 .148
4112 .137 .206 .091 .179 .071 .148 | .198 .265 .153 .229 .126 .208
41 2 |.101 .132 .080 .112 .0v7 .096 | .174 .183 .142 .155 .127 .143
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TABLE 4.118

EMPIRICAL SIZES OF W; AND Wy FOR p=—5,¢; =0, ¢; =.9, i =1,2

o .05 10
n 64 64 128 128 256 256 | 64 64 128 128 256 256
m | v ) Wr Wg Wi Wg Wi Wg Wi Wg Wi We Wi Wp
0| .6 |.182 .220 .160 .233 .162 .214 | .253 .309 .252 .318 .232 .274
0j121{.102 .15 .101 .150 .070 .109 | .176 .207 .158 .197 .124 .149
I1]0( 2 ].095 .135 .099 .137 .076 .104 | .170 .182 .157 .182 .136 .150
4112(.130 .180 .099 .173 .080 .144 | .202 .275 .168 .238 .150 .204
4| 2 |.102 .127 .090 .125 .082 .088 | .158 .170 .164 .177 .130 .130
ol .6 |.227 .286 .213 .293 .219 .262 | .303 .380 .303 .372 .293 .348
0|121].105 .150 .097 .144 .069 .104 | .177 .201 .156 .200 .121 .149
Imjo| 2 ].098 .132 .101 .130 .077 .102|.169 .178 .156 .183 .135 .148
4112].139 .193 .103 .171 .085 .149 | .218 .276 .183 .234 .158 .195
4] 2 1.097 .134 .089 .128 .082 .088 | .156 .166 .159 .176 .129 .130
0] .6 |.235 .304 .239 .317 .234 .281].318 .404 .323 .395 .318 .368
0]12].103 .155 .101 .148 .066 .103 | .181 .200 .165 .198 .125 .144
mjof| 2 |.097 .140 .098 .139 .077 .102 | .168 .186 .166 .185 .140 .150
41121 .141 .189 .117 .177 .091 .149 | .225 .273 .189 .238 .158 .198
41 2 |.094 .132 .090 .135 .080 .088 | .157 .169 .168 .177 .132 .130

TABLE 4.119
EMPIRICAL SIZES OF WP AND WE FOR p=—-.5,¢;, =0, ¢; =.9,i1=1,2

a .05 .10
n 64 64 128 128 256 256 | 64 64 128 128 256 256
ml|y| 6 |Wp Wp wp Wp wp wpl|wy we wp wp Wp Wp
0| .6 |.176 .217 .145 225 .145 .197 | .242 .295 .234 .303 .212 .263
0|12].097 .154 .100 .154 .070 .108 | .179 .203 .159 .201 .123 .152
I 0 2 {1.092 .131 .099 .138 .076 .105 | .167 .179 .156 .182 .136 .150
4112].129 .191 .093 .176 .079 .155 | .202 .277 .170 .258 .145 .212
41 2 [.095 .127 .093 .125 .083 .088 | .158 .168 .162 .177 .129 .131
0] .6 [.204 .265 .192 .279 .182 .257 | .267 .362 .257 .352 .255 .324
0)12(.095 .156 .099 .151 .067 .107 | .182 .208 .157 .203 .121 .154
Imjo| 2 |.09 .131 .101 .132 .074 .101 | .167 .177 .154 .185 .133 .148
4112(.130 .210 .100 .182 .084 .156 | .215 .280 .173 .253 .151 .220
41 2 .097 .132 .089 .128 .083 .090 | .154 .168 .158 .179 .129 .131
0| .6 [.206 .286 .197 .289 .192 .268 | .277 .379 .269 .375 .256 .338
0]12(.099 .158 .097 .148 .068 .106 | .180 .207 .159 .207 .120 .155
Imjot} 2 }.093 .131 .099 .131 .075 .103 | .163 .179 .154 .186 .133 .149
41121(.133 .209 .103 .182 .083 .157 | .214 .289 .173 .249 .150 .219
41 2 [.096 .132 .092 .129 .083 .090 | .153 .164 .157 .177 .129 .131
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TABLE 4.120

EMPIRICAL SIZES OF W; AND Wy FOR p= .75, ¢; =0, ¢; = .9, i = 1,2

o 05 10
n{ 64 64 128 128 256 256 | 64 64 128 128 256 256
m|y|l 6| W We Wi We Wi Wp| Wi Wp W, Wrp W; We
0] .6 |.261 .364 .276 .390 .275 .348 | .365 .439 .361 .469 .372 .447
0(12].109 .174 .076 .153 .072 .129(.170 .220 .134 .215 .138 .184
I 0 2 |.086 .150 .073 .120 .077 .121 | .167 .198 .146 .167 .121 .174
4112].130 .253 .094 .267 .079 .223 | .196 .337 .155 .337 .137 .297
41 2 |.089 .134 .083 .118 .075 .121 | .155 .178 .141 .165 .136 .160
0O .6 |.405 .528 .400 .528 .409 .510 | .516 .603 .494 .614 .504 .607
0|12].110 .18 .077 .144 .069 .127( .176 .226 .140 .211 .136 .184
Im|{o| 2 |.003 .149 .075 .122 078 .124|.165 .200 .141 .165 .122 .172
4|12|.142 257 096 .258 .079 .203 | .224 .332 .167 .323 .142 .282
41 2 |.090 .138 .08 .119 .072 .1201% .162 .171 .142 .162 .134 .160
0 .6 | .436 .565 .440 .567 .438 .546 | .543 .646 .521 .648 .531 .642
0{12].112 .175 .077 .143 .069 .133|.176 .221 .140 .210 .132 .178
Imrj o 2 | .096 .146 .073 .125 .078 .129 | .161 .201 .144 .169 .126 .177
41121 .154 .262 .103 .260 .083 .204 | .229 .336 .172 .321 .143 .274
41 2 1.097 .143 .082 .119 .074 .120| .162 .173 .141 .166 .134 .156
TABLE 4.121
EMPIRICAL SIZES OF WP AND W2 FOR p=.75,¢; =0, ¥, = .9,i=1,2
« .05 .10
n 64 64 128 128 256 256 64 64 128 128 256 256
m|y| 6 |Wp Wp Wp Wp Wp Wp|Wp Wp Wp Wp Wp Wp
0] .6 |.225 .340 .219 .355 .227 .306 | .320 .422 .325 .437 .325 .394
0]|12(.105 .182 .074 .158 .072 .134 | .169 .231 .135 .227 .137 .192
I 0 2 |.088 .149 .073 .120 .076 .122 | .167 .198 .143 .166 .121 .173
41121 .125 .265 .082 .280 .070 .246 | .18 .353 .143 .363 .133 .328
4 2 |.090 .138 .083 .117 .072 .123| .150 .180 .140 .165 .134 .161
0| 6| .288 .448 .209 .451 .307 .4291{ .395 .528 .398 .539 .406 .538
0|12]|.108 .18 .075 .155 .068 .133 | .167 .240 .142 .224 .135 .192
Imjo 2 |1.092 .150 .077 .122 .077 .124 | .164 .198 .140 .166 .120 .175
4(12].134 279 082 .281 .075 .236|.199 .362 .148 .353 .142 .321
41 2 |.088 .139 .086 .119 .072 .122 | .158 .182 .139 .163 .134 .161
0| .6 (.311 .469 .321 .480 .325 .459 | .408 .555 .415 .560 .426 .569
0]12].107 .187 .075 .153 .068 .133|.169 .239 .140 .221 .133 .192
I | 0 2 |.089 .149 .076 .121 .077 .124 | .163 .197 .140 .166 .119 .176
4(12].134 .281 .082 .277 .078 .228|.201 .365 .150 .347 .142 .312
41 2 (.092 .139 .082 .121 .074 .120 | .157 .179 .141 .164 .134 .161
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MONTE CARLO BIAS OF v

TABLE 4.122

r,ﬁp,vB FORp=0,¢i=’lPi=O,i=1,2
n =64 n =128 n = 256
m |y |6 Ur Up Up Ur 77 Ug Ur Ufp Up
0)|.4]-016 -023 -014 | -.001 -004 -.003 | -.001 -.003 -.001
1 |.21.4]-03¢ -033 -025|-.004 -.008 -.010 | -.001 -.006 -.001
41.8(-019 -025 -.020|-.005 -.004 -.013 | -.002 -.003 -.003
J711]-033 -041 -.036 | -.013 -.015 -.030 | -.003 -.005 -.007
01{.4]-008 -012 -.009 | -.001 -.002 -.002 | .000 -.001 .000
IIT|1.2).41-020 -024 -017 | -.005 -.006 -.007 | .000 -.001 .000
4 .8]-012 -015 -016| -.005 -.005 -.010 | .000 -.002 -.002
711 1-027 -030 -.032]-.016 -.017 -.024 | -.003 -.004 -.005
0|.4]-006 -007 -.008|-.002 -.003 -.003 | .000 .000 .000
Imj|.2{.49]-013 -013 -0141{-007 -.006 -.007 | -.001 -.001 -.001
4] .81-011 -012 -.016 | -.006 -.006 -.009 | .000 -.001 -.002
JJ(11]-026 -027 -.032]-.018 -.019 -.023 | -.003 -.004 -.005
TABLE 4.123
MONTE CARLO BIAS OF 7}, ¥ FOR p=0, ¢ =, =0,i=1,2

n 64 64 128 128 256 256

ml~y |6 ¥ O | ¥ OF | vi Of

0] 4]-017 -028]-001 -004]-001 -005

I}.2|.4(-041 -034]-001 -008]|-001 -014

41.81-.018 -.029 | -.002 -.001 | -.001 -.005

7(1(-032 -.046 | -.006 -.009 | -.002 -.007

0| .4]-007 -.012| .000 -.002| .000 -.001

I1 |.2|.4]-023 -027(-.004 -007| 000 -.003

41.8(-010 -.015]|-002 -.004| .000 -.002

71 11-023 -.030|-.010 -.015|-.001 -.004

0).4]-005 -.005]|-002 -004] .001 .000

Im | .2{.4]-012 -010{-007 -007]|-001 -.001

41| .8|-.009 -.010]|-.004 -005| .000 -.001

71 1]-022 -023]-014 -016|-.002 -.003
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TABLE 4.124
MONTE CARLO BIAS OF 7,7, g FOR p= .5, ¢; = 9; =0,i=1,2

n =64 n =128 n = 256

m |y 6 Vr VR VB v VF VR Ur 7 VB
0].4].060 .072 149 | .043 .054 119 | .028 .031 .096
I1(.2].41].182 .204 .276 | .164 194 .254 | 131 .140 .226
4.8 .055 .069 .140 | .040 .052 .109 | .025 .031 .085
g1 (.100 122 .194 | .080 107 .163 | .055 .066 132
0).41].119 141 211 | .093 .108 .181 | .063 .070 .146

II | .2}.4].263 .282 321 | .240 .256 301 | .203 212 273
4 1.8 .092 116 161 | .068 .088 .131 | .044 .054 .099
11| 142 173 .204 | .116 144 .176 | .082 .098 .138
01| .4].177 197 .259 | .127 143 .212 | .085 .093 170

IIm| .2 4| .318 .329 351 | .279 .289 323 | .235 .242 .292
41.81.120 .143 174 | .084 .103 137 1 .052 .064 .103
711 .169 .195 .208 | .133 157 178 | .092 .109 .140

TABLE 4.125
MONTE CARLO BIAS OF 7}, 7 FOR p= .5, ¢; =¢; =0,1i = 1,2

n| 64 64 | 128 128 | 256 236
ml~y| 6|78 o | ol oF | vk OF
0.4].025 .031(.019 .026[.010 .005
I|.2|.4]|.120 .164|.110 .162|.079 .089
4|.8].024 .031|.018 .026 | .009 .009
7] 1).053 .077].044 .075].025 .033
0 4].069 .105].050 .075|.029 .038
Imj|.2|.4|.216 .259|.191 .225]|.153 .172
4|.8].054 .001|.037 .065|.021 .032
7] 1).101 .150 | .078 .121|.050 .072
0[.4].123 .164 [ .078 .106 | .044 .057
m|.2|.4|.288 .315|.242 .266 |.189 .207
4|.8|.08 .123|.053 .081|.028 .042
7] 1].138 .182|.101 .140 | .062 .086
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TABLE

4.126

MONTE CARLO BIAS OF U;,Up,Vp FOR p= —.5, ¢; = Y, =0,1=1,2
n =64 n =128 n = 256
m|y|é vr T Ug 2 Ufp Up v Up Up
0} .4]|-064 -088 -154 | -.039 -045 -116 | -.026 -.029 -.095
I (.2|.4}-197 -229 -288|-.156 -.175 -249 | -129 -139  -.225
4].8]-062 -086 -.149 | -.035 -.045 -.106 | -.023  -.028 -.083
a711]-113 -144 -210( -.074  -.095 -.160 | -.051 -.061 -.128
0].4]-122 -148 -216|-.090 -108 -.180|-.064 -.072 -.147
Imy.2|.4-27m -295 -333| -.242 -258 -.304 | -.207 -.218 -.276
4]1.81-094 -123 -1651}-064 -084 -127|-.044 -.055 -.098
7)11]-150 -182 -213}-110 -137 -.170|-.081 -.098 -.137
0| .4]-176 -196 -2611-.125 -.142 -.212 | -.085  -.094 -171
mj ).2|4)-324 -331 -360|-282 -292 -326|-237 -.245 -.294
41.8]-119 -141 -176]-080 -098 -134|-.052 -.064 -.103
711]-173 -195 -.216 | -.127 -150  -.172 | -.091 -.108 -.138
TABLE 4.127
MONTE CARLO BIAS OF ¥},7f FOR p=—.5,¢; =9, = 0,5 = 1,2
n| 64 64 128 128 256 256
m|y|6| v, U5 | v O | vk Of
0|.4]-03 -.056]-015 -008 |-.008 -.002
1|.2}41]-138 -192]|-100 -.127 | -.075 -.088
41.81-029 -.058]-.014 -012]|-.007 -.004
71 1]-064 -108|-.037 -052{(-.021 -.024
0f.4]-071 -117]-.046 -.074|-.030 -.040
Im|.2(.4]-232 -273)-193 -228|[-158 -.180
4| .8]-05 -.099]|-033 -.061|-.021 -.033
7| 1(-107 -162 | -072 -.114 | -.0561 -.074
0| .4]-119 -163|-075 -107 | -.043 -.058
Inmm { .2 .4(-292 -313|-245 -2681-192 -.211
41.8]-081 -120]|-.048 -077 | -.027 -.042
71 1(-139 -178|-095 -.132 1| -.061 -.086
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TABLE 4.128
MONTE CARLO BIAS OF 7;, 7,75 FOR p= .75, ¢; = ¢; = 0,1 =1,2

n =64 n =128 n = 256
m|v| 6 U Vp Vg vy VF VB Vg Up VB
0] .41}.092 112  .227 | .057 .073 173 | .036 .047 .140
I11.21.41.282 318 .419 | .220 .250 .366 | .182 .200 .328
4] .81.084 114 .208 | .052 .076 .159 | .031 .046 121
g1 1| .149 .195 .285 | .104 142 234 | 072 .097 .188
0].4].183 212 323 | 136 .156 .270 | .091 .102 217
II}1.21 .41 .405 432  .492 | .357 .376 .450 | .298 313 .406
41 .8].138 174 .241 | .097 127 .190 | .061 .081 .143
711 .211 .258 .301 | .162 .204 249 | 115 .144 .199
0] .41 .269 .298 .394 | .189 .209 317 | 125 .136 .254
Imij.2|.4| 484 .496 .535 | 418 430 .483 | .349 .359 .435
41 .81.178 .208 .260 | .120 .147 .199 | 075 .095 .151
711 | .248 .283 .307 | .187 223 252 | 131 .159 .201

TABLE 4.129
MONTE CARLO BIAS OF 75, U FOR p= .75, ¢; = 9; =0, i = 1,2

n| 64 64 | 128 128 | 256 256
m|y|6| v | o o8| v Of
0| .4[.040 .054|.020 .020|.009 .011

I |.2].4].192 .2601{.133 .178|.100 .127
4(.8].037 .069|.019 .037|.007 .016

7] 1].081 .145).048 .088 | .027 .050

0 [.4].107 .160 | .O71 .106 | .040 .058

II [.2]|.4].33 .396|.283 .320|.221 .254
41.8].082 .140|.051 .095|.027 .052
01 ].50 .22 |.107 .172 | .067 .111

0 .4|.18 .246|.114 .153 | .063 .085

| .2|.4|.438 .471|.363 .394|.280 .306
41.8].124 .176 | .074 .118 | .038 .066

71 1].200 .261|.140 .200]|.087 .131
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TABLE 4.130
MONTE CARLO S.D. OF ¥;,Ur,’s FOR p =0, ¢; = ¢; = 0,5 = 1,2

n =64 n =128 n = 2566
m|~vy1{é vr Vp VB Uy VF Up 2 Ur Vg
0| .4].204 341 221 .216 .255 .169 | .131  .146  .105
I|.2]|.4]|.569 .601 .371]|.515 .555 .335|.341  .371  .234
A4(.81.205 .341 .250|.219 .257 .200 | .133  .145  .126
7| 1].420 495 406 | .353 433 369 | .227  .264  .251
0] .4].192 197 147 | 131 135 .101 | .092 .096 .072
Im|.2|.4|.296 .203 .217|.232 227 .170|.189 .191  .137
4| .8].207 209 .191|.143 147 142 | .097 100  .102
7|1 1].316 323 .339|.250 .265 .200 | .176  .190  .220
0.4 .152 .161 127 | 112 114 .091 | .083 .086 .066
Im|.2{.4|.213 .219 .178|.180 .180 .146 | .154 .156  .120
41.8|.188 185 .181|.133 137  .137|.093  .096  .099
711].307 306 .320].249 257 .285|.179 190 .218
TABLE 4.131
MONTE CARLO S.D. OF 7}, 7¥ FOR p=0,¢; =¢; =0,i=1,2
n| 64 64 | 128 128 | 256 256
mly| 6| v o | vl o | v oF
0 | 4|.324 .448 | 232 .320 | .139 .175
I [.2|.4f.711 .825]|.631 .752|.406 .503
4(.8|.324 449 .232 .323|.139 .171
7] 1|.478 .637].380 .538 | .237 .317
0|.4f.222 .240.149 .163 | .102 .114
II [.2]|.4]|.371 .366|.289 .284|.235 .243
4(.8).228 240 .153 .165(.103 .113
J11|.326 .346 | .244 274 | .170 .194
0].4|.177 .190| .129 .135|.094 .101
m| 2| .4(.253 .261|.217 .216{.188 .192
4| .8).197 202|.139 .147|.097 .105
7 1].300 .312|.234 .256 | .165 .189
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TABLE 4.132
MONTE CARLO S.D. OF vl,vp,l_/g FOR p = .5, ¢i = ’!/),' = 0, 1= 1,2

n =64 n =128 n = 256
m|y| 6| 7r Vp VB v U Vs U 7 7B
0| .4].262 .291 201 | .185 207 146 | .115 .129 .094
I1.21.4].521 .530 342 | .429 .455 .289 | .300 325 207
41 .8].261 .286 221 | .188 .207 174 | .116 128 113
711 ].382 413 .354 | .297 .336 .308 | .197 221 .219
0 41].172 179 137 | 117 121 .097 | .084 .088 .070
II [ .2 .4 .268 .267  .201 | .206 .205 158 | 171 170 127
41 .8].185 191 174 1 .129 .136 .133 | .089 .094 .095
7111 .283 .285 .298 | .222 .233 .256 | .159 171 197
01.4].144 153 123 | .105 110 091 | .076 .078 .066
Imm | .2 .41 .198 .204 167 | .167 170 .140 | .140 .139 112
4| .8].169 171 .166 | .123 .128 .130 | .084 .087 .093
71 ).273 .269 .289 | .223 .228 .252 | .159 .167 .195
TABLE 4.133

MONTE CARLO S.D. OF7£,7£ FOR p = .5, ¢i=1/)i=0,7:=1,2

ni 64 64 | 128 128 | 256 256

miy|6| o o | ovh oF | vl oF

0|.4|.288 .380(.199 .268 1] .121 .162

I |.2].4]|.648 .708 | .520 .637 | .357 .440

41.81.286 .363|.199 .248 | .121 .157

T 1| 427 514 ) .319 408 | .206 .266

0].4}.196 .214| .130 .142].091 .103

II |.2].4(.332 .328(.252 .246 | .209 .212

41 .81.202 .2211.135 .153|.092 .107

g1 (.292 311 | 214 .242 | 153 .177

0|.4].164 .179|.116 .125| .082 .088

Im | .2 .4(.233 .241 | .196 .198 | .167 .164

41 .8(.178 .187 | .125 .137 | .085 .095

J11].260 .2751.209 .228 | .146 .163
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TABLE 4.134
MONTE CARLO S.D. OF Uy, Up, U FOR p=—.5, ¢ =9); =0, i =1,2

n =64 n =128 n = 256
m |y |6 7y Vg VB v Ur VB Ur ) 17}
01 .4 .247 277 187 | .182 219 144 | .116 135 .095
I |.2].4] 483 .499 313 | 425 .480 .283 | .293 .316 .201
4] .8].249 273 213 | .183 .206 .164 | .116 .128 112
711 .356 .386 .333 | .289 .326 287 | .195 .218 221
0].4].161 .169 128 | 114 123 .094 | .085 .091 .070
Ir | .2{.4] .255 .254 .191 | .201 204 152 | .170 173 125
41 .8].173 177 165 | 124 131 128 | .090 .095 .095
7111 .263 .262 .280 | .210 217 .243 | .159 .169 .194
0|.4].136 .147 JA17 | 102 .109 .088 | .077 .081 .066
| .24} .4 .188 .193 159 | .161 .164 134 | 138 .139 110
41 .8 .160 .165 .159 | .118 122 125 | .085 .087 .093
g1 1] .259 .254 275 | 211 212 .240 | .157 .161 191

TABLE 4.135
MONTE CARLO S.D. OF U}, £ FOR p=—.5,¢; =; = 0,5 = 1,2

n| 64 64 128 128 | 256 256

ml|y| 6| vh o5 | o oF | @ o
0| .41].272 .381.194 .315] .122 .167
I1(.2].4].604 .693 | .515 .708 | .349 .421
41 .8(.272 .360 | .194 .277 | .122 .160
11| .400 .501 | .313 .425 | .205 .262
0.4 .184 .207 | .128 .148 j.092 .110
II|1.2].4].318 .312 ] .248 .254 | .209 .221
41 .8(.189 .206 | .131 .148 | .093 .111

T 11.271 283 | .205 .227 | .154 .180
0O.4).154 .173|.113 .127 | .084 .093

Im | .2 | 4.221 .227|.189 .195 | .166 .169
4| .81.168 .181 1] .121 .131 | .086 .095
J11).254 .2611.198 .209 | .145 .158
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TABLE 4.136
MONTE CARLO S.D. OF v,,iF,VB FOR p= 75, ¢i = ’tbi = 0, 1= 1,2

n=64 n =128 n = 256
m|vy| &6 Vr VF 7} vy Up 2 vy 173 ;)
0|.4].199 246 .156|.136 .160 .113].094 .109  .079
I |.2].4].308 432 .265]|.328 .348  .221| .242 255  .169
4|.8].200 .236 .176|.137  .154  .129 | .095 .110  .093
gJ11).294 325 .279|.219 233 227 .157 174  .171
0[.4].140 153 .117].004 099 .084 | .069 .072  .062
Im|.2|.4).216 219 .162].162 .162 .127].136 .136  .104
41.8].146 .153 .140|.098 .103 .106 | .072 .079  .081
Tl 1].223 224 .236|.164 164  .192].126  .132  .155
0]4].128 .145 113 | .091 .100 .084 | .067 .068 .063
mr|.24.4|.162 172 .138|.135 .141 114 |.116 115  .094
4|.8(.139 143 .138|.098 .101  .106 | .071  .075  .081
J01].218 215 .230|.168 .167 .190| .126  .131  .154
TABLE 4.137

MONTE CARLO S.D. OF 7,75 FOR p= .75, ¢; = 9; = 0,4 = 1,2

n| 64 64 [ 128 128 [ 256 256

m|y || v E |0 o | vh OF

0[.4].218 .332[.144 212 .099 .144

I [.2|.4].492 .575|.394 .476|.286 .345

4| .8|.217 317 |.144 .221|.099 .145

71 1].326 421 .234 .309 | .166 .220

0[.4].1565 .179 [.099 .117 [ .072 .088

Im|.2|.4|.267 .272|.196 .194 | .164 .165

4(.8].157 .180 ( .100 .120 | .073 .096

T 1].229 .247(.158 .170 | .120 .142

0|.4].139 .170 | .095 .111|.068 .075

Imr|.2(.4|.190 .204|.157 .167 | .136 .135

4| .8|.144 .160|.097 .110 | .069 .086

Tl 1].215 .223].158 .166 | .116 .132
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TABLE 4.138
EMPIRICAL SIZES OF W; AND Wr FOR p=0,¢;, =%, =0,71=1,2

a .05 .10
n| 64 64 128 128 256 256 | 64 64 128 128 256 256
m|y| 6| W, We W, W Wi We| Wi We Wi Wrp Wr Wg
0}.4].153 .211 .123 .18 .107 .171 | .226 .289 .185 .257 .183 .229
I |.2|.4(.225 .258 .218 .251 .208 .236 | .316 .333 .305 .326 .292 .301
4|.8].152 218 .134 .186 .116 .151 |.228 .271 .199 .242 .188 .205
J111.209 .229 192 .209 .173 .183 | .282 .283 .264 .270 .261 .251
0{.4].157 .211 .135 .173 .126 .162 | .231 .283 .207 .255 .198 .232
Imf{.2{.41(.206 .217 .194 .220 .212 .223 | .298 .297 .275 .292 .295 .320
41.81.197 232 .170 .211 .151 .168 | .290 .301 .258 .279 .221 .239
7| 1].203 297 303 288 .283 .267 | .378 .366 .385 .383 .355 .340
0].41.112 .167 .118 .156 .125 .139 | .182 .231 .189 .222 .197 .237
mi{.2(.4(.152 .179 .175 .192 .194 .211 | .227 .268 .254 .276 .268 .290
41 .81.197 .233 .194 .226 .158 .181 | .284 .305 .278 .308 .247 .269
T 1].344 348 351 346 .331 .321 | 422 417 .445 .434 409 .401
TABLE 4.139
EMPIRICAL SIZES OF W AND WF FOR p =0, ¢; =1; =0,i=1,2
a .05 .10
n| 64 64 128 128 256 256 | 64 64 128 128 256 256
miy| 6| W wF wi wf wi wf|wi wF wl wf w{ wf
0].4].191 .271 .147 .227 .130 .194 | .283 .350 .228 .290 .210 .270
I |1.2(4(.342 .360 .301 .349 .289 .304 ( .419 .441 .394 .422 .370 .372
41.8].194 .265 .145 .219 .131 .176 | .281 .332 .232 .279 .207 .246
1 11.264 .281 .220 .250 .193 .213 | .349 .348 .304 .309 .284 .288
0.4].230 .274 .197 .237 .161 .211 | .311 .345 .257 .306 .247 .285
IIm|.2|.4).313 .319 .202 .325 .317 .332| .410 .384 .380 .398 .390 .397
41.8].246 .284 .201 .232 .169 .194 | .330 .343 .272 .305 .253 .285
71 11.331 .329 .302 .304 .270 .270 | 411 .399 .394 .378 .357 .352
0f.4].176 .237 .177 .224 .177 .211 | .260 .300 .251 .295 .253 .299
Im | .2 .41 .228 .253 .253 .278 .279 .284 | .319 .337 .346 .375 .371 .378
4] .8(.239 .258 .209 .243 .183 .209 | .322 .332 .289 .319 .270 .316
711 .348 354 .346 .340 .314 .310 | .432 .436 .423 .432 .397 .397
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TABLE 4.140
EMPIRICAL SIZES OF W; AND Wr FORp=.5,¢; =9%; =0,1=1,2

« .05 .10
n| 64 64 128 128 256 256 64 64 128 128 256 256
m|y| 6| Wr We Wy W W; W | W W Wy Wrp W, Wr
0] .41}.172 .263 .151 .240 .111 .209 | .247 .335 .228 .298 .192 .284
I 1.21.4].275 .336 .283 .327 .263 .311 | .362 .416 .354 .398 .357 .381
41 .8].170 .242 .161 .240 .108 .194 | .244 .314 .232 .297 .199 .264
J11].222 275 221 .263 .193 .228 | .308 .345 .292 .341 .277 .299
0f.4].273 .343 .263 .361 .232 .320 | .361 .425 .346 .443 .326 .400
II}.2].4(.434 .473 .490 .549 .518 .536 | .511 .550 .578 .622 .588 .605
41.81.252 .325 .236 .343 .206 .3001( .329 .399 .317 .422 .294 .383
11 }.339 .398 .380 .448 .344 .406 | .430 .476 .470 .527 .423 .485
0| .4]|.418 .488 .407 .481 .365 .419( .521 .571 .502 .569 .462 .515
Imi| .2 .4|(.618 .646 .665 .701 .682 .706 | .694 .708 .741 .768 .747 .764
4] .81.322 .392 .301 .401 .261 .349 | .412 .473 .388 476 .348 .432
71 1] .444 488 .451 .513 .417 .480 | .514 .561 .529 .607 .506 .548

TABLE 4.141
EMPIRICAL SIZES OF W] AND Wf FOR p= .5, ¢; =19; =0,i=1,2

o .05 .10
n 64 64 128 128 256 256 64 64 128 128 256 256
miy|s| W wfF wi wf wi wf|wl wf wl wf wi wf
01.4].206 .312 .158 .274 .121 .242 | .287 .391 .246 .336 .210 .309
I 1.2].4].352 .430 .322 .394 .300 .353 | .455 .507 .412 475 .384 .431
41 .81.197 312 .162 .267 .121 .228 | .286 .380 .247 .333 .211 .295
71 11.275 333 .231 .285 .207 .259 | .362 .414 .298 .364 .275 .336
0.4].262 .347 .221 .356 .196 .321 | .338 .433 .308 .438 .281 .402
II|.2].4].439 .495 .447 .529 .446 .504 | .513 .573 .522 .606 .522 .574
41.81.262 .354 .227 .371 .192 .310 | .346 .446 .304 .444 281 .398
g1 11.344 415 .332 .441 .306 .394 | .433 .499 421 .523 .381 .460
01f(.41].320 .448 .276 .412 .220 .339 | .412 .526 .358 .488 .310 .424
Imm | .2 .4 .563 .623 .582 .647 .562 .613| .636 .691 .649 .703 .631 .672
41.81.292 .400 .246 .395 .204 .336 | .379 .484 .339 .472 .286 411
11| .415 492 404 .497 341 .440 | .502 .566 .488 .571 .441 .528
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TABLE 4.142
EMPIRICAL SIZES OF W; AND Wr FOR p=—5,¢; =1¢; =0, i =1,2

o .05 .10
n| 64 64 128 128 256 256 | 64 64 128 128 256 256
m Y 1) WI WF W[ WF W[ WF W] Wp W] WF W[ WF
0! .41].177 295 .134 .248 .134 .219 | .263 .353 .228 .318 .209 .293
I |.2(.4].294 .351 .265 .331 .264 .313 | .372 .434 .361 .405 .342 .386
4 .81.162 .285 .141 .241 .136 .203 | .262 .350 .236 .310 .208 .278
1 1].241 294 .207 .264 .201 .231 | .330 .364 .301 .336 .281 .304
0f.4].268 .372 .269 .366 .252 .313 | .351 .441 .363 .440 .336 .402
Imj.2|(.4].469 .512 .517 .550 .515 .557 | .549 .584 .588 .630 .595 .631
41 .8].242 352 .255 .362 .224 .291 | .328 .430 .339 .438 .301 .360
S711(.368 .416 .389 .450 .347 .400 | .449 .496 .464 .528 .432 .485
01].4].410 .475 .400 .485 .357 .405| .502 .574 .494 .563 .446 .495
Imij.2|.4|.637 .659 .695 .705 .677 .707 |.710 .733 .750 .765 .736 .767
41.81.310 .415 .310 .408 .254 .331 | .408 .494 .396 .489 .345 .416
711 (.463 501 .460 .524 424 477 | .545 578 .532 .585 .493 .540
TABLE 4.143
EMPIRICAL SIZES OF WJ AND WY FOR p= —.5,¢; =; = 0,7 = 1,2
a .05 .10
n| 64 64 128 128 256 256 | 64 64 128 128 256 256
ml|yl|ls|wi wF wi wf wi wf|wi wf wi wf wi wF
0|-41f.191 .340 .161 .290 .144 .254 | .285 .401 .242 .362 .220 .332
1 |.2].4(.349 .422 .311 .405 .299 .376| .431 .498 .397 .472 .375 .445
4| .81.190 .328 .160 .286 .140 .238 | .287 .392 .244 .356 .217 .318
711 (.270 344 236 .301 .214 .267 | .359 .403 .317 .367 .295 .352
0|.4(.249 .391 .226 .360 .188 .300] .331 .463 .304 .434 .282 .378
II |.2|.4].437 .504 .460 .520 .449 .499 | .516 .576 .544 .602 .524 .574
4| .8]1.246 .373 .222 .369 .187 .292 | .334 .463 .311 .436 .277 .367
711 |.358 .431 .347 441 305 .377 | .435 .518 450 .525 .399 .455
01].4].304 .456 .276 .417 .220 .342 | .400 .524 .359 .503 .316 .409
Im|.2|.4].569 .623 .601 .650 .547 .601 | .640 .689 .672 .707 .611 .669
41 .8].267 .407 .260 .390 .215 .308 | .358 .488 .348 .464 .306 .384
7| 1| 420 492 415 485 .361 .426 | .500 .563 .480 .554 .439 .507
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TABLE 4.144
EMPIRICAL SIZES OF W; AND Wr FOR p= .75, ¢; =9 =0,1=1,2

o .05 10
n| 64 64 128 128 256 256 | 64 64 128 128 256 256
m Y ) W[ WF WI WF W] WF W] WF WI Wp W[ WF
0].4].214 .365 .167 .341 .154 .329 | .303 .423 .249 418 .223 .392
I {.2].4].3900 .464 .372 .466 .385 .484 | .455 .536 .450 .528 .488 .551
4].8]1.209 356 .159 .336 .152 .337 | .294 427 .250 .409 .220 .390
1 11.204 405 262 .384 255 .378 | .378 .490 .344 .464 .338 .453
0| .4|.459 .560 .504 .595 .455 .541 | .562 .637 .594 .681 .554 .625
ImI|.2].4]|.748 .78 .840 .866 .841 .866 | .818 .849 .879 .897 .891 .914
4).8]1.373 .516 .366 .545 .316 .508 | .457 .591 .460 .616 .399 .591
g1 1].511 622 531 .666 .502 .627 | .594 .679 .617 .726 .578 .700
0|.4].768 .806 .750 .803 .691 .735| .835 .861 .819 .854 .770 .805
IIT| .2 .4].946 .944 .964 .963 .960 .968 | .963 .967 .972 .975 .976 .981
4] .8)].544 .647 .507 .653 .433 .597 | .622 .708 .590 .717 .518 .668
J11].645 .723 .664 .749 617 .726 | .699 .767 .730 .805 .686 .784
TABLE 4.145
EMPIRICAL SIZES OF WJ AND Wf FOR p= .75, ¢; =9, =0,i=1,2
a .05 .10
n| 64 64 128 128 256 256 | 64 64 128 128 256 256
m|y|s|w wWF wi wf wi wWf|wi wf wi wF wi wrF
01].41.209 .407 .148 .362 .124 .348 | .303 .486 .234 .440 .202 .416
1 ].21.4].393 .521 .345 .484 .317 .482 | .466 .574 .432 .555 .406 .538
41.8].212 402 .148 .370 .124 .357 | .299 .475 .237 .443 .202 .411
g1 11.299 435 233 .392 197 .371 | .381 .505 .309 .470 .281 .432
0f.4].333 .520 .283 .497 .228 .446 | .416 .589 .378 .560 .324 .525
II}.2| 4| .646 .734 .689 .783 .654 .758 | .698 .788 .751 .829 .720 .802
41.81.301 .514 237 .506 .216 .473 | .389 .574 .332 .566 .292 .544
g1 1| .427 604 .392 613 .360 .560 | .515 .657 .478 .672 .440 .631
0].4].546 .695 .483 .649 .357 .548 | .631 .757 .551 .7T14 .455 .623
Im| .2 .41.891 .901 .894 .926 .845 .902 | .916 .919 .924 .945 .885 .927
41 .81 .410 .587 .339 .580 .255 .516 | .500 .657 .437 .644 .349 .576
711 ].568 .697 .538 .711 471 .646 | .631 .752 .615 .761 .550 .719
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Chapter 5

Testing for the equality of orders
of integration

5.1 Introduction

From our results in Chapters 2, 3 and 4, it can be inferred that the wider mod-
elling framework that fractional co-integration (with possibly unknown integration
orders) allows, enjoys several important advantages over the traditional CTI (1,1)
setting, where the risk of misspecification in optimal Gaussian estimation is not
negligible. However, it is clear that this new methodology introduces additional chal-
lenges, as in practice those, generally noninteger, orders of integration are unknown.
Among other issues, it seems that the traditional way of testing for co-integration,
based on ideas like the ones of Dickey and Fuller (1979) or Phillips and Perron (1988)
needs to be revised. For example, given two observable series, y; and z;, a necessary
condition for these processes to be co-integrated is that their orders of integration,
say 6, and 0, be equal, so that a necessary preliminary step in order to test for
co-integration between two series is to check for the equality of their orders. Thus,
we devote this final chapter of the thesis to address this problem, choosing a point
of view which differs substantially from usual testing procedures proposed in the
literature. As will be seen, our procedure offers several important advantages over
those well known procedures.

Several tests involving linear restrictions among memory parameters of multivari-
ate time series have been developed, mainly assuming the processes (more general
than fractionally integrated processes) to be covariance stationary, and being based
on different estimates of the memory parameters of given series. In the parametric
setting, rigorous asymptotic theory has been developed, assuming the vector pro-
cess considered to be covariance stationary, by Heyde and Gay (1993) and Hosoya
(1997). In the semiparametric setting, under only local assumptions, Wald tests
of linear restrictions on memory parameters have been proposed for the stationary
case by Robinson (1995a) and Lobato (1999), but results in Robinson (1995b) and
Lobato (1996) suggest also the use of Lagrange Multiplier and Likelihood Ratio
tests, see Marinucci and Robinson (2001). These semiparametric tests enjoy stan-
dard asymptotics (feature also shared by the parametric ones), but suffer from a
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serious drawback, as they are invalid in case there exists co-integration among the
series. The reason is that the test statistics involve inversion of a matrix tending
in probability to a singular matrix. This problem was acknowledged by Marinucci
and Robinson (2001), and Robinson and Yajima (2002) offered a sensible solution
at cost of introducing an additional user-chosen number.

We propose a test procedure for the equality of orders of integration of two possi-
bly fractionally integrated (see Definitions 1.2 and 1.3) with arbitrary non-negative
orders of integration time series (as this is the most relevant case in practice), which
is valid irrespectively of whether the time series are co-integrated or not. Its com-
putation only requires estimates of the different orders of integration involved in
the null hypothesis and of the spectral density of the short memory input series
which originate the fractionally integrated processes. The different test statistics we
propose are based on partial sums of certain fractionally differenced processes and
can be computed under semiparametric or parametric assumptions. The kind of
assumptions made will determine the type of the estimates of the orders of integra-
tion and spectral density used in obtaining the test statistics. These statistics enjoy
standard asymptotic theory under the null hypothesis of equality of orders assuming
very mild conditions on our estimates of the nuisance parameters, which, in fact, are
very similar to those presented in Chapters 2 and 4. Partial sums are not expected to
be very informative about memory parameters (see Robinson, 1993, for a unit root
test based also on partial sums), but although low power could have been predicted,
our test seems to perform relatively well in finite samples. Qur test procedure can
be easily extended to the multivariate framework, and also can be interpreted as a
test for the size of the gap of co-integration (difference between the order of inte-
gration of the observables and the one of the co-integrating error) once the pretest
of equality of orders has been performed. Inference about the co-integrating gap
seems very relevant, because it heavily affects the asymptotic properties of different
estimates of the co-integrating parameter, as it is clear from our results in Chapters
2, 3 and 4 (see also Kim and Phillips, 2000, Velasco, 2000).

In the next section we present our testing procedure, which is rigorously justi-
fied in the Appendix 5. Section 5.3 includes a Monte Carlo study of finite-sample
behavior.

5.2 Testing the equality of fractional difference
parameters

Consider the bivariate process z; = (y;,z;)’, t € Z, where

y = A% {v,1(t>0)}, 31, =0,¢t<0, (5.1)
;= A% {vyl(t>0)}, 2,=0,t<0, (5.2)

with
62,6, > 0. (5.3)

We introduce
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Assumption 5.1. The process v; = (vis,v2:) , t € Z, has representation
[} o0
. 2
Vg = ZAjet—j': Z] “AJ” < o0, (5.4)

where

(i) €: are independent and identically distributed vectors with mean zero, positive
definite covariance matriz 2, E ||&:||? < o0, ¢ > 2;

(i1) g::(0) > 0, i = 1,2, where g;; (0) is the (¢,]) element of the spectral density of
vg, denoted by g (A).

In view of Definition 1.1, noting that (5.4) implies that g ()) is Lip (), 3¢ > 0,
by Assumption 5.1, vy, vot, are I (0) processes. Consider also certain estimates :5;,
gy, g (0) of &, 6,, g (0) respectively, such that
Assumption 5.2. Asn — oo,

9(0) —, g(0), (5.5)
and for any k > 0 and K < oo,
b =640, (n),8,=06,+0,(n™"), (5.6)
where
5| + |3,,| <K. (5.7)

This assumption, although not primitive, is very mild and, with respect to the
estimates of the orders of integration, very similar to Assumptions 2.3 and 4.1 of
Chapters 2 and 4 respectively. It is repeated here for readability, but note that it
now refers to estimates of integration orders of observable series. As in previous
chapters, under some parametric structure for v;, v/n-consistent estimates of the
orders of integration and g (0) could be achievable by a multivariate extension of the
results in Robinson (2002), which extended results in Velasco and Robinson (2000)
in the univariate case to cover our type of nonstationarity. Of course, this rate is
far better than needed, so we might be content by assuming some weak conditions
of smoothness of the spectral density of v, around frequency zero, and estimate
the orders and g (0) semiparametrically. For example, the estimates in Robinson
(1994c, 1995a,b), Velasco (1999a,b), justified by Robinson (2002) for our type of
nonstationarity, satisfy Assumption 5.2. Also, given estimates :5;, :5;, a nonpara-
metric estimate of g (0) could be based on weighted averages of the periodogram of
the proxy v, = (yt(gy), wt(gz))’ of v;. The validity of such estimate can be justified
by similar techniques as the ones in the proof of Theorem 5.1 below, or the ones
already employed in Chapters 2 and 4.
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Now, for any non-stochastic 2 x 1 vector a = (a1, az)’, such that a’g(0)a > 0,
noting (1.44), (2.2), (2.3), we could define the class of test statistics

a,/wz('gz ,3,,) (0)

a) = — 2w 5.8
(@' (0)a)'/? %)

for testing Hp : 6, = 6, against the alternative H; : §; # 6.

Theorem 5.1. Let (5.1), (5.2), (5.3) and Assumptions 5.1, 5.2 hold. Then, for
any 2 x 1 deterministic vector a such that a’g (0)a > 0, as n — oo,

t(a) — 4N (0,1) under Hy, (5.9)
t(a) ~ nlb=~%lynder H,, (5.10)

where “ ~” means now ezact rate of convergence.

The proof of the theorem is left to the Appendix 5.

Remark 5.1. The test statistic has standard asymptotic distribution under the null
and a rate of divergence increasing exponentially with the difference |6, — 8,| under
fixed alternatives. Although we presented results and proofs just for the Type II
fractionally integrated process, this was simply motivated by the uniform treatment
of any value of 6, and 6, this definition allows, the same result holding also for Type
I processes. Noting from (1.8) that for any j > 1,

a;j(d—1) = a;(d) —aj1 (d), (5.11)

with ag (d) =1, in case for example that 6, — 6, > 0,

n n n—t n
Sa=> 2 (B) = vu Y 06 =8) = 0nt(6:— 8 +1va, (512)
t=1 t=1 j=0 t=1

so Sy, is a Type II fractionally integrated process I (6; — 6, + 1). Hence, Theorem
1 and Corollary 1 of Marinucci and Robinson (2000) would straightforwardly imply
that

a22mgss (0)
"a'g (0)al' (6, — 6, + 1) (2(6: — &,) + 1)

n—(az—dy)?(a) — 4N (0 ) yif 65 — 6, > 0,

(5.13)

noting that max {2, 2/ (2 (6, — 6,) + 1)} = 2, so that our Assumption 5.1(i) implies
Assumption B in Marinucci and Robinson (2000). Similarly, it is straightforward to
show

a%27rgu (0)
a'g(0)al’ (6, — 6 + 1) (2(6, — 65) +1)

n‘(&—h)’t‘(a) — N (O, ) ,if 6, — 6, > 0,
(5.14)

hence (5.10) is justified.
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Note also that we could have proposed instead
~ a’Iz(gz’gy) (0) a
t(a) = — =7

a’g(0)a
where by straightforward application of the continuous mapping theorem and The-
orem 5.1,

(5.15)

a) — gx2 under Hy, (5.16)
a) ~ n2%=~%l ynder H,. (5.17)

—~ o~

W

Remark 5.2. This test procedure is also valid in case the processes y; and z; are
co-integrated. The main consequence of co-integration can be analysed in the simple
model (1.25), (1.26), which has been discussed in all previous chapters. This model
implies that

( ﬁzii ) = ( . _:)M 1 ){ml(t >0)}, (5.18)

where the spectral density (not constant over t) of the bivariate asymptotically
stationary process on the right hand side of (5.18) is singular at frequency zero.
Thus, the main implication of co-integration between two I () processes is that the
bivariate process resulting from §—differencing both time series has singular spectral
density matrix at frequency zero, and this is precisely the reason why the different
semiparametric tests considered in the literature are not valid with co-integration,
as they require inversion of a matrix which tends in probability to a singular matrix,
which is the equivalent to g (0) in a more general framework. Fortunately, in our case,
although g (0) could be singular, this does not prevent the condition a’g (0)a > 0
from holding for a certain deterministic vector a.

Remark 5.3. There is an element of arbitrariness in the test procedure due to
the choice of a, as different a’s could lead to different decisions in a given situation.
We consider this arbitrariness to be similar to certain extent to the one present in
Robinson and Yajima (2002) related to their choice of the additional bandwidth k (n)
to account for possible co-integration between the series (see Section 2.5 of Chapter
2). As it will become clear in the Monte Carlo section, a sensible approach in order
to improve the power of the test is to give less relative weight to the overdifferenced
process. This basic idea is captured in a certainly radical way by the choice for a

o~ —~ ~ —~ !
a:(u@-@gnﬂ%u@—@>nﬂ», (5.19)

for a certain 0 < 7 < k, although, due to the stochastic nature of @, the asymptotics
in Theorem 5.1 are not directly applicable to this choice of a.

Theorem 5.2. Let (5.1), (5.2), (5.3) and Assumptions 5.1, 5.2 hold. Then, as

n — oo

- w, 7+ (0
t@ = 7"1(}’2"&+o,, (%) if 6, <6, (5.20)
911 (0)
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wy(:{,) (O)

= %@ O 0y s =6, (5.21)
e TrW ’
w, 3, (0) _ .
2 Do, (%) 055, (522
22

The proof of this theorem is left to the Appendix 5. In view of Theorem 5.1, the
main consequence of this result is that £ (@) —4 N (0,1) under Hy and £ (@) ~ nl®=~0!
under Hj, but % (@) has also other desirable properties. Roughly speaking, under H,
the test statistic is going to be based simply on the underdifferenced processes y; (’6;)
or zt(gy) depending on whether §, < §, or 8; > 6, respectively. Under Hy, the test
statistic is asymptotically equivalent to w, gz , (0) /372 (0), but it could have been
equally based on w,,, (0) /5;42 (0), just considering
!

’

a= (1@ — 8 <n"),1(5, — 6, > n"’)) (5.23)

instead of a.

Remark 5.4. In case the series y; and z; are not co-integrated, an alternative test
statistic to consider is

t= w;(gzlgy) 030 W, .3, (0)-

Theorem 5.3. Let (5.1), (5.2), (5.3) and Assumptions 5.1, 5.2 hold. Then, if g (0)

is nonsingular, as n — oo,

t — axiunder Hy, (5.24)
t ~ n¥="Slynder H,. (5.25)

The proof is omitted as it is a straightforward application of the continuous
mapping theorem and the proof of Theorem 5.1. Using ¢ instead of 2 (a) we avoid
the arbitrariness due to the choice of a, but the test is invalid in case the series are
co-integrated. In fact, the introduction of the user-chosen number A (n) in Robinson
and Yajima (2002) was also due to the possible co-integration between the series, as
this was making invalid the standard test procedures based on normalized estimates
of 6, — b,.

Furthermore, ¢ has an interesting interpretation in terms of our original class of
test statistics as ¢ = £2 (@) with

a=3(0)" w3, (0, (5.26)

being the asymptotic distributions of 2 (@) and #* (a) for any deterministic a under
H, different due to the randomness of @. Also, for any a # 0,

T—(a) =05 >0, (5.27)
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with .
b= [L-70)a@5©a 5070 Fu,pz) 0,  (62)

so @ is the particular value of a that maximizes #2 (a), but we could not refer to a
as the “optimal” choice of a (in terms of maximizing the power of the test), as ¢
and 22 (a) are not directly comparable due to their different asymptotic distributions
under the null.

Remark 5.5. In case we want to perform a test of equality of the orders against
one-sided alternatives
H}:6, > 6,,0r HE : 6, <&y, (5.29)
we could use instead the test statistics
7 = =y 0 B = v © (5.30)
’ ~1/2 ’ .
a2’ 0) ()

respectively, where no choice of the weighting vector a is required. It is straightfor-
ward to show that, as n — oo,

t1,ta — 4N (0,1) under Hy, (5.31)
t, ~ n% % under H}, (5.32)
ta ~ n% % under HZ. (5.33)

Remark 5.6. Our test procedure could be also applied to test for the dimension of
the co-integrating gap (defined as §—+ in (1.25), (1.26)). Here, most of the literature
has been based on the case where § = 1, v = 0 in similar models to (1.25), (1.26).
In the more general framework of fractional co-integration, in view of Chapters 2, 3,
4 of this thesis, and also Kim and Phillips (2000),Velasco (2000), it seems to be very
relevant for estimation and testing whether the co-integrating gap is “big” (more
precisely 6 — v > 1/2) or “small” (with § — v < 1/2). We have denoted these two
situations as strong and weak fractional co-integration respectively. For example, a
test for “strong” co-integration could be set in our framework as

1 1
H0:6—'y=§, against Hy : 6 — v > 3 (5.34)
noting that we face an additional problem here, as u;, in (1.25) is not observable,
although we could use instead a proxy like y; — Uz, for certain estimate ¥ of v, which
could be for example the OLS or the NBLS estimate, whose asymptotic properties
were discussed in Chapter 1.

Remark 5.7. The idea of testing for the equality of the orders of integration of a
bivariate fractionally integrated process can be easily extended to test for the validity
of any linear restriction among the orders of integration of the elements of any p x 1
vector ¢; = (Qm --~,th)' where Qi (61) = Vi, 6 > 0,i=1, Ry 2 and v; = ('Ult, "'7'Upt)l
is an I (0) vector process for which the equivalent of Assumption 5.1 holds. Denoting
by 6 = (61,6;))", where 81y = (b3, ..., 6,)", without loss of generality, we could test
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for any linear restriction among two or more elements of § by means of Hy : b'6 =7
against H, : /6 # r, where b = (1,b(;,)’, b(1) being certain (p — 1) x 1 deterministic
vector and r a real number. Thus, denoting

glery o 6) = (@lc1), -y gp(cp))'s (5.35)

given certain estimate 5of 6 satisfying the equivalent of Assumption 5.2, for any
p X 1 deterministic vector a, defining now

, -~ o~ o~ -~ -~
a wq(r—b’(l)é(l),62+b’6,...,6,,+b’6) (0)

t(a) = , 5.36
@ (@' (0)a)"/? (5:30)
it is straightforward to show, as in Theorem 5.1, that
t(a) — 4N (0,1)under Hy, (5.37)
t(a) ~ n¥"under H;. (5.38)

5.3 Monte Carlo evidence

With the aim of assessing for the finite sample behavior of the test procedure
presented in the previous section, we performed a small Monte Carlo experiment.
We generated y; and z; as in (5.1), (5.2), v; being a bivariate Gaussian white noise

with covariance matrix
_(le

Q—(p 1), (5.39)
where results are displayed for p = 0, .5, —.5, 1, reflecting this last case the situation
where y; and z; are co-integrated. We computed the test statistic 2 (-) evaluated
at five different weighting vectors: a; = (1,1), as = (1,4)', a3 = (1,.25), @ as in
(5.26) and @ given by (5.19) with n = 0.3. Note that the test statistic with @ for
the case p = 1 is invalid, so we do not report results for this situation. All those
test statistics are obtained under parametric or nonparametric assumptions. In the
former case, we assumed knowledge of the white noise condition of v; (but of course

not of 2), and the orders &, 6, and g (0) were estimated parametrically by means
of the procedure described in Beran (1995) and

~ 1 -
9(0)=5— > o, (5.40)
t=1

respectively. In the nonparametric case (without considering v; to be white noise),
we computed the estimates of the orders as the Robinson’s (1995a) version of the
Geweke and Porter-Hudak (1983) log-periodogram estimate without pooling or trim-
ming, with bandwidth parameter m taking values to be described subsequently. The
nonparametric estimate of g (0) was

b
3(0)= %—:1 Z L(\), (5.41)

j=—b
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for a certain bandwidth b. We gave results for 1000 replications and three different
sample sizes n = 64,128,256, for which we chose bandwidths m = 20, 30,60 and
b =3, 6, 10 respectively.

We computed the empirical sizes of the different test statistics described above
corresponding to the nominal ones o = .01,.05,.10, for different combinations of
bz, 6,. Denoting ¢ = 6, — b, we considered only the case §, = 0.4, without loss
of generality, as our test procedure is invariant to the particular values of §;, 6y,
depending only on ¢, this difference taking values ¢ = 0,0.1,0.2,0.3.

Results are reported in Tables 5.1-5.8. In terms of comparison of the empirical
sizes with the nominal ones, looking at ¢ = 0, the first thing to be noted is that
there exists certain differences on the performance of the statistics depending on
whether the weighting vector is deterministic (a;, ¢ = 1,2,3) or stochastic. In
the former case, the behavior is reasonably good and quite similar for the three
vectors considered, with empirical sizes being on average too large (except for the
parametric statistic with p = 1), but in general moving in the appropriate direction
as the sample size increases. The behavior for the statistics with the two stochastic
weighting vectors is also relatively similar to each other for p = 0, 0.5, being for these
cases in general sizes bigger than for the statistics with deterministic weighting,
but clearly the one based on a behaving better than the one based on @, tests
based on @ being comparable to the ones based on deterministic a for the cases
p = —0.5, 1. As expected, sizes are closer to the nominal ones for statistics derived
from parametric estimates, than for the nonparametric ones, being generally this
difference accentuated the large p is. Also, sizes are larger for smaller p for the
deterministically weighted statistics. Finally, it is remarkably clear that the smallest
sizes correspond to the case of co-integration between z; and y;.

We also looked at the power related to the different test statistics by means of
letting ¢ # 0. The power increases as ¢ and n grow, being #2(@) the most powerful
one followed by t2(@) and 2(a3) which behave quite similarly. A very striking feature
of the experiment is the importance of the choice of a in order to obtain a test with
good power. As mentioned before, a sensible approach is to give more weight to
the process we believe is underdifferenced. If the contrary happens, the effect is
dramatic, as can be observed in the results for ?(az). Here, in most of the cases, the
test have negligible power, with the exception of the case ¢ = 0.3. Very noticeable
are the similarities in power of the parametric and nonparametric test statistics and
also the increase in power as p decreases.

Overall, it seems that the best test statistic is the one based on @, as it behaves
reasonably well in terms of empirical sizes, being in general the best in terms of
power. This statistic is also the most realistic one, as our decision about to which
process give more weight will be based on the comparison of the estimates of the
orders of integration, and this additional randomness source is not taken into account
by the statistics based on deterministic weighting vectors.
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5.4 Appendix 5
Proof of Theorem 5.1. Defining

!
2 0
t(a) = et L7 (1 ), (5.42)
(a'g (0)a)®
it is clear that under Assumption 5.1, by Central Limit Theorem (see Hannan, 1970)
t(a) —4 N (0,1) under Hy, (5.43)

(5.10) following by Marinucci and Robinson (2000) as in Remark 5.1, noting that
the overdifferenced process under H; has smaller order.
Thus, the main task is to prove that

t(a) —t(a) = o,(1) under Hy, (5.44)
= o0, (n'*~%I) under Hj, (5.45)

which, as by Assumption 5.2, g (0) is a consistent estimate of g (0), follows immedi-
ately from proving

’wz(gxygv) (0) — Wy(6,,6,) (0) = o0,(1) under Hy, (5.46)
= 0, (nl*~%!) under H,. (5.47)

Now, by Taylor’s expansion, for certain constant R to be defined subsequently, the
left hand side of (5.46) is

R-1

1 1 ( (6, 8,) 0
1 Z_( 0 (5 -5 )Zg vt,éy—6z,5,,—5y)

(27”1)5 r=1 !

1 (6::: —gz)R 0 R <
+—l( O 6 —6 )Zg( ) ’Uta 316 6y)7

(27n)z R!
(5.48)

where |3z - 6y| < ‘Ez — by , for any scalar or vector sequence

Y and any real b,

18, - 6] < |5j, — 6,

97 (e b Za(') ) sy (5.49)
with
o (b) = er(b) (5.50)
: dor ‘

and for any p-dimensional vector & and real by, ..., by,

g(’) (Et;bl, ~"’bp) = (g(r) (Eu; bl) ) -~-a9(r) (fpt;bp))’- (5°51)
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First, we prove (5.46). Now

- / > a{? (0) aff? (0) X3 (="RDug () dp,

(5.52)
which by Assumption 5.1 is bounded in norm by
n t-1 n t—1 ntj—t
K / >3 a7 (0) '“—J)“ D0)a (0)|.  (5.53)
t=2 j=1 t=2 j=1 k=1
Now, by the bounds in Lemma 2.D.4, (5.53) is bounded by
n t—1 nt+j—t r—1
KNS % (log (5 +k)) < Kn (logn)?, (5.54)
t=2 j=1 k=1
implying that
> 9% (00) = Op (nd (togn)"), (5.55)
t=2
and therefore the first term in (5.48) is O, (n™*logn).
Next, by Lemma 2.C.4
9 (036, — 8,8 = 5,) = O (11),, (5.56)

so that the second term in (5.48) is O, (n3/?~%~), and choosing R > (1 + &) /x,
(5.48) is O, (n~*logn), and we conclude (5.46) by Assumption 5.2.

Regarding (5.47), by previous arguments Var (3}_y_, g (vi; 6, — 65,6, — §,)) is
bounded in norm by

n t—1ntj—t

gr) (63 - 6y)‘}

o (5, — 5y)]} (5.57)

t=2 j=1 k=1
™ (8, -6
ay’ (6, — 6z)| +
which by Lemma 2.C.1 is bounded by

n t—1 ntj—t

KY D > (log(j+Kk) (k)77 < K (logn)” " n™="41, (558

t=2 j=1 k=1

and therefore

n

9 (v4:6 — 62,8 — 6,) = Op ((logm)" nit==0+1) (5.59)

t=2

noting that by a straightforward modification of this lemma and the Stirling’s ap-
proximation, for any ¢ < 0, s > 1,

|a) (c)| < K (logs)" s**. (5.60)
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Next, as in Lemma 2.C.4 of Chapter 2, for any € > 0,
t
E ||g® (vi; 6, — 8,6, — 5,) ||2 <K (logs)* s2Wobil+en), (5.61)

s=1

implying that
Q(R) (’vc; by — 82,6, — 3y) =0p (tmax{lsz—&""%}ﬂ) ) (5.62)

and choosing R > (max {|6; — 6,|,3} + 1/2 + &) /k, (5.48) is O, (nl%=~%I-*logn)
under H; to conclude the proof of (5.47).

Proof of Theorem 5.2. The result follows immediately from showing

a — ,(1,0) for &, <6, (5.63)
@ — ,(0,1) for & > 6, (5.64)
which as N SR
10z =6, <n™") 4+ 1(6; — by >n"") =1, (5.65)
follows from proving
16, -8, > n™") —,0for 6, <6, (5.66)
16, -8, < n™) —,0for &, > 6,. (5.67)

First, for 6, < 6y,

16, -8, > n ") =1 —b,— (6;—6,) >n"" = (6, — 6,))
gz —gy —(6: — 5y)

n-m— (6:: _ 6y) IR (568)
so that 1(6; — ;5; > n~") = O, (n"*) to conclude for (5.66) as n < «.
Next, for 8, > §,, noting that
16, - 8, <n~") = 1(|8, - Eyl <n ") +1(8, - 5, > n"), (5.69)
the left side of (5.69) is bounded by
-0 L
L +1(8, -8 = (6~ 8) > 07— (8, - )
8y — by
< " +)3,,—&—(5,,—5z) 5.70
R T (70

so that 1(, — gy <n™) = 0, (n~" + n~*) to conclude the proof.
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TABLE 5.1
EMPIRICAL SIZES OF #2 (-) FOR p = 0, PARAMETRIC ESTIMATION

n 64 128 256
a | ¢ 0 .1 .2 3 0 .1 2 3 0 1 2 3
a; [ .036 .054 .143 .279 | .034 .078 .189 .354 ( .015 .064 .223 .434
ap | .045 .010 .010 .023 | .033 .004 .008 .036 | .021 .003 .003 .058
.01 | a3 | .047 .127 .259 .420 | .047 .145 .305 .501 { .021 .150 .366 .585
a |.062 .095 .203 .364 | .052 .122 .257 447 .024 .121 .305 .526
a | .067 .140 .268 .432 | .055 .148 .317 .516 [ .027 .163 .381 .592
a; | .106 .147 .250 .405 | .096 .170 .300 .477 | .070 .154 .346 .569
ap | .093 .037 .023 .050 | .093 .024 .028 .089 | .068 .008 .019 .125
.05 | a3 | .094 .220 .381 .523 |.110 .236 .428 .615 | .076 .259 .475 .679
o {.133 .177 312 .449( .115 .18 .356 .550 | .076 .203 .406 .613
a |.117 .233 .390 .531 | .122 .255 .452 .620 | .083 .266 .485 .694
ap | 175 .228 337 .476 | .175 .235 .371 .557 | .123 .231 418 .632
ap [ .155 .071 .051 .076 | .147 .065 .054 .151 | .121 .032 .052 .189
10| a3 | 159 .202 439 .585 ] .158 .312 .503 .682 | .133 .333 .561 .731
a | .188 .249 .371 .507 | .189 .255 .416 .593 | .141 .259 .457 .661
a |.184 .311 .460 .596 | .165 .326 .518 .686 | .145 .355 .566 .735
TABLE 5.2
EMPIRICAL SIZES OF 2 (1) FOR p = 0, NONPARAMETRIC ESTIMATION
n 64 128 256
a | ¢ 0 .1 2 .3 0 .1 2 .3 0 .1 2 3
a | .066 .081 .159 .268 | .066 .106 .216 .353 [ .045 .075 .221 .432
ay | 075 .036 .024 .033|.077 .036 .021 .051|.055 .012 .015 .060
.01 |az|.083 .157 .271 .395|.084 .182 .318 .477].047 .153 .340 .578
@ | .140 .175 .257 .374|.134 .180 .309 .446 | .084 .133 .300 .533
a |.131 .182 .290 .409 | .134 .216 .334 .497 | .074 .165 .359 .586
ay | 131 .157 .249 387 | .145 .189 .304 .460 | .104 .168 .329 .565
ap | 133 .075 .053 .064 | .133 .068 .055 .113|.107 .037 .044 .119
.05 | a3 |.136 .239 .368 .500 | .141 .280 .424 .579 | .097 .253 .482 .662
a | .220 .243 .340 .465 | .216 .273 .374 .530 | .146 .209 .399 .619
a | .201 .269 .382 .523 |.204 .310 .443 .588 | .132 .265 .497 .668
ap | 195 .243 332 .468 | .199 .266 .373 .532|.162 .225 .420 .624
ay | .164 .106 .084 .112}.179 .101 .103 .161 | .159 .075 .073 .186
10} a3 | .188 .303 .435 .559 | .204 .333 .487 .644 | .146 .323 .559 .715
a |.274 .308 .396 .518 | .266 .324 .437 .582|.197 .283 .469 .651
a | .248 .347 456 .573 | .268 .366 .512 .652 | .175 .340 .560 .725
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TABLE 5.3
EMPIRICAL SIZES OF 2 () FOR p = .5, PARAMETRIC ESTIMATION

n 64 128 256

el¢l o 1 2 3|0 1 2 3|0 1 2 3
a; | 011 .024 .094 .216 | .008 .035 .123 .280 | .000 .027 .164 .358
az | 028 .005 .004 .009 | .025 .002 .002 .017 |.016 .000 .000 .026

01 |as|.028 .000 .228 .382|.023 .108 .275 .469 |.011 .122 .314 .545
2 |.068 .120 .248 .417|.049 .114 .301 .513|.030 .137 .349 .587
a|.048 136 .265 .435|.036 .131 .329 .526 | .017 .158 .366 .602
a; | 054 006 207 .337 | .068 .117 .241 420 | .047 .112 271 .485
ey | .067 .025 .009 .034|.071 .013 .013 .060|.050 .013 .015 .107

05| a3 |.083 .199 .346 .495|.080 .210 .409 .591 | .059 .225 .442 .660
@ |.139 .202 .338 .504 |.116 .203 .409 .593 | .078 .224 .452 .670
@ |.13 233 393 .544|.094 259 .458 .633 | .078 .264 .496 .688
a; | .133 .176 .283 430 | .130 .187 .320 .499 |.111 .186 .352 .573
ap | 131 052 .027 .071|.131 .050 .044 .118 | .105 .033 .047 .164

10 | a3 | .137 276 425 568 | .134 .203 489 .661 | .124 .299 .516 .703
@ |.203 .264 .413 .560 | .178 .279 .471 .652 | .148 .285 .505 .701
@ |.169 .306 .459 .615|.140 .339 .534 .694 | .138 .344 .567 .740

TABLE 5.4

EMPIRICAL SIZES OF #2(-) FOR p = .5, NONPARAMETRIC ESTIMATION
n 64 128 256

ea|l¢]l 0 a1 2 3|0 1 =2 3|lo 1 =2 3
a; | 029 058 .121 .201 | .053 .073 .152 .294 | .035 .067 .157 .361
az | 060 .029 .014 .024|.058 .025 .014 .039 |.046 .010 .010 .048

01 |as|.050 .135 .220 .344 | .064 .148 .290 .456 | .046 .132 .312 .540
@ |.141 .181 .279 .400 | .139 .184 .329 .480 | .088 .164 .346 .572
a |.122 .183 .279 .399 | .122 .187 .355 .496 | .073 .164 .365 .573
a; | 111 .152 207 .324 | .112 .148 .258 425 | .084 .137 .276 .486
az | 120 .062 .047 .059 | .111 .054 .057 .095|.100 .038 .043 .111

05| a3 |.124 212 320 462 |.122 .235 .407 .554 | .100 .226 .440 .620
@ |.209 .259 .359 .485 |.201 .266 .420 .570 | .148 .245 .442 648
a |.194 .263 379 507 |.174 288 .450 .610 | .133 .269 .490 .675
a; | .186 .204 288 394 | .170 .208 .326 481 | .146 .187 .354 .555
az [ 164 .096 .080 .111 |.163 .092 .094 .146 | .148 .079 .082 .160

10 | a3 | 188 .284 .394 .538 | .174 .322 .471 .633 | .137 .306 .516 .688
@ |.218 .319 413 545 | .261 .330 .463 .623 | .212 .299 .501 .693
@ |.256 .321 .444 583 | .230 .363 .507 .671 |.183 .344 .550 .722
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TABLE 5.5
EMPIRICAL SIZES OF #* (-) FOR p = —.5, PARAMETRIC ESTIMATION

n 64 128 256
«clol 0 1 2 310 1 2 3!l0 1 2 3
a; | .061 009 224 388 | 058 .119 .285 .479 | .026 .121 .329 .576
ay | .048 008 .007 .017 | .036 .005 .006 .035).029 .003 .003 .066
0l |as|.045 .130 302 .455 | 044 .157 .3390 .547 | .025 .173 .407 .628
G |.062 .103 .236 .406 | .051 .120 .201 .492 | .030 .132 .336 .580
G |.040 117 264 .427|.040 .140 .306 .512|.016 .155 .362 .595
a1 | 142 .184 343 512 | .118 .213 .396 .613 | .087 .216 .468 .677
az | .004 036 .020 .044 |.000 .024 .020 .096|.062 .007 .019 .139
05| a3 |.100 .241 411 .569 | .111 .266 .470 .666 | .078 .283 .530 .716
& |.127 .191 .337 .495|.119 .207 .376 .590 | .078 .219 .446 .652
G |.002 222 378 .532|.104 .247 .435 645 |.071 .272 .499 .686
a1 | 204 265 400 572 | .181 .286 463 .673 | .152 .289 .535 .725
az | 151 .067 .032 .075|.149 .041 039 .133|.115 .025 .039 .200
10 | as | .147 323 486 .615|.157 .339 .551 .711|.137 .353 .598 .753
a|.185 .257 408 .551 |.187 .272 .445 652 |.138 .277 504 .704
@ ].150 .301 456 .580 | .149 .312 .507 .691|.129 .337 .572 .736
TABLE 5.6
EMPIRICAL SIZES OF %2 (-) FOR p = —.5, NONPARAMETRIC ESTIMATION
n 64 128 256
ea|l¢lo 1 2 3o a1 2 3|0 a1 2 3
a; | .078 .106 .216 .360 | .078 .153 .280 .452 | .058 .127 .320 .572
as | .092 .044 .021 .033|.085 .027 .023 .058|.061 .012 .011 .077
01| as|.089 .173 292 .422|.100 .212 .355 .505|.059 .193 .412 .619
@ |.148 .187 275 .404|.149 205 .327 467 |.091 .163 .356 .576
@ |.140 .178 277 .392|.138 213 .333 474 | .068 .177 375 .580
a; | .143 .188 327 .472 | .168 .236 .381 .574 | .119 .206 .453 .666
as | .137 071 .047 .060|.137 .058 .045 .111|.099 .031 .033 .135
05| a3 |.154 .250 .378 .529 | .165 .200 .456 .614 | .111 .278 .527 .703
@ |.236 .262 .375 .480 | 230 .287 .405 .565|.150 .241 .454 .650
G |.198 264 .367 .507 | .215 .203 .432 587 | .131 265 .499 .674
a1 | .200 254 .303 .536 | .228 .303 .448 .631 | .170 274 .535 .714
ay | .177 102 .072 .094 | .186 .090 .076 .155|.152 .047 .065 .194
10 | a3 | .192 316 .450 .585 | .208 .361 .513 .670 | .162 .358 .504 .741
a | .287 322 417 .545].209 .335 457 .615|.202 .292 514 .693
@ |.252 .325 447 .560 | 267 .357 .495 .643 |.180 .339 .558 .725
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EMPIRICAL SIZES OF #2 (-

TABLE 5.7
FOR p = 1, PARAMETRIC ESTIMATION

n 64 128 256
ale¢lo 1 =2 3|0 1 2 3|0 1 2 3
a; | 000 000 .015 .118|.000 .000 .048 .240 | .001 .006 .084 .294
az | .00 .000 .000 .000 |.001 .000 .000 .000|.002 .000 .000 .002
01 | a3 |.000 .021 .147 .347|.000 .045 .243 .449 | .001 .062 .277 .509
@ |.000 .060 .235 .435|.001 .089 .319 .542 |.001 .111 .369 .607
a; | 013 030 118 264 | 022 051 .107 .367 | .030 065 .220 .433
ap | 017 .000 .000 .000 | .023 .002 .000 .014|.035 .003 .003 .05
05| a3 |.023 .128 207 .475|.027 .176 .376 .576 | .036 .180 .403 .633
a|.028 .189 .304 .583 | 020 .244 .472 649 | 037 .257 .490 .697
a | 077 .109 218 .369 | 094 .140 .278 .464 | .083 .130 .309 511
az | 081 .015 .006 .029 |.002 .016 .017 .068 | .077 .024 .033 .121
10 | a3 |.084 222 .397 .563|.001 .267 .469 .636 | .087 .273 .488 .686
G |.089 279 481 .646|.089 .332 .552 .708 | .085 .345 575 .739
TABLE 5.8 ,
EMPIRICAL SIZES OF #2(-) FOR p = 1, NONPARAMETRIC ESTIMATION
n 64 128 256
ealo|l 0o 1 2 310 1 =2 3|0 1 2 3
a; | 005 030 088 .174 | 020 049 .124 254 | 016 .041 .130 .300
ay | 025 005 .001 .000|.028 .008 .006 .020|.016 .004 .004 .032
01| as|.026 .092 .194 .337|.030 .121 .265 .431|.021 .116 .286 .488
G |.042 .123 263 .391|.041 .156 .337 .503 | .025 .160 .368 .568
a; | .101 .129 .184 .292 ] .100 .130 .226 .373 | .077 .114 244 .418
ay | 090 031 015 .032|.092 036 .038 .078 |.081 .026 .036 .106
05| a3 |.089 .190 .317 .438|.109 .220 .379 .533 | .080 .214 .402 .599
a|.098 231 376 522 |.115 .275 .449 619 |.080 .270 .483 .667
a; | 172 192 271 .363 | .156 .200 .298 .445 ] .129 .185 .314 .491
ay | 165 .091 .066 .100 |.145 .084 .081 .136 |.133 .068 .078 .162
10 | a3 | 162 267 .380 .513 |.156 .207 .453 .607 | .135 .288 .483 .652
@ |.152 .309 .443 592 | .155 .337 .517 684 | .137 .340 .547 .723
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