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Abstract

Estimation of stochastic volatility (SV) models is a formidable task because the
presence of the latent variable makes the likelihood function difficult to construct. The
model can be transformed to a linear state space with non-Gaussian disturbances.
Durbin and Koopman (1997) have shown that the likelihood function of the general
non-Gaussian state space model can be app.roximated arbitrarily accurately by
decomposing it into a Gaussian part (constructed by the Kalman filter) and a remainder
function (whose expectation is evaluated by simulation). This general methodology is
specialised to the estimation of SV models. A finite sample simulation experiment
illustrates that the resulting Monte Carlo likelihood estimator achieves fuﬂ efficiency
with minimal computational effort. Accurate values of the likelihood function allow
inference within the model to be performed by means of likelihood ratio tests. This
enables tests for the presence of a unit root in the volatility process to be constructed

which are shown to be more powerful than the conventional unit root tests.

The second part of the thesis consists of two empirical applications of the SV model.
First, the informational content of implied volatility is examined. It is shown that the in-
sample evolution of DEM/USD exchange rate volatility can be accurately captured by
implied volatility of options. However, better forecasts of ex post volatility can be
constructed from the basic SV model. This suggests that options implied volatility may
not be market’s best forecast of the future asset volatility, as is often assumed. Second,
the regulatory claim of a destabilising effect of futures market trading on stock market
volatility is critically assessed. It is shown how volume-volatility relationships can be
accurately modelled in the SV framework. The variables which approximate the
activity in the FT100 index futures market are found to have no influence on the

volatility of the underlying stock market index.
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Chapter 1: Modelling financial time series

1.1. Introduction

Understanding the dynamics of stock market returns and other financial time series has
been of a considerable interest in the finance literature for a long time. Bachelier
(1900) initiated the idea of the stochastic nature of stock returns by first noting, that
the geometric Brownian motion may be a reasonable approximation. The body of
knowledge has grown immensely since then and some stylised facts have been

established.

The evidence suggests that the empirical distribution of most financial time series differs
substantially from distributions obtained from sampling independent homoscedastic
Gaussian variables. Unconditional density functions exhibit leptokurtosis and
skewness; time series of asset returns show evidence of volatility clustering whereas
little or no serial dependence can be detected in the return process itself (Fama, 1970,

1991, Lo and MacKinlay, 1988; Pagan, 1996).

As an illustrative example, consider the daily time series ofthe FTSE100 UK stock market
index over the 27/10/86-14/12/95 period. In what follows the first difference of log-prices,

R,=In(PrP,.i), will be conventionally referred to as the ‘returné4series.
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Figure 1.1: FTSE100: returns, r,; density; correlogram ofrt correlogram ofr 2.

The picture which emerges is typical of most financial data. First, as the time plot Figure
1.1fa) reveals, intervals of large price movements are followed by more quiet periods. This
time varying volatility behaviour became known as the “volatility clustering” phenomenon.
Secondly, Figure 1.1(b) allows us to compare the estimate of the unconditional density of
returns with the corresponding normal density (which is calibrated by equating the first two
unconditional moments). The empirical density has fatter tails, and a much higher peak
around zero than the corresponding normal distribution. While it may be difficult to detect
the fatter tails from the picture above, note that the range was chosen so as to correspond
to the minimum and maximum of the observed values, events whose probability of
occurrence under the Gaussian assumption would be zero. This indicates that there are
many more small and large returns than predicted by the Gaussian approximation. Weak
evidence of serial dependence in the mean is provided by Figure 1.1(¢) which documents
the correlogram of Rt for lags up to 10 together with the corresponding +27 "'5 bounds.
And finally, very strong serial dependence in the squares of the process is documented in
Figure 1.1(d). Taken together, these empirical regularities rule out the geometric Brownian

motion as a feasible model for asset returns

What can be done ifthe Brownian paradigm is rejected? The econometric literature can be
seen as being divided into two categories. Models in the first category assume that returns
are driven by a process with some fixed, time homogenous distribution. More recently,
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there has been an emphasis on intertemporally dependent models. The special feature of
models in the latter category is the dependence of the distribution on previous realisations
of the process. In particular, the volatility parameter is made to follow an evolution of its
own, thus shifting the whole conditional distribution. Since models of latter category form
the core of the study, the description of the time-homogenous models will be brief and is

included here for the sake of completeness.

The unifying framework which provides the rationale for modelling asset returns by
means of time homogenous as well as intertemporally dependent models is provided by
the Mixture of Distributions Hypothesis (MDH). Here, the central idea is formed by the
assertion that the rate information arrival is non-constant over time, and possibly
stochastic. As will be seen in the next Section; most of the time series models for asset
returns can be regarded as sp;ecial cases of MDH. Since the MDH forms the raison
d'etre for the time series models employed in our empirical work, a brief exposition is

required before we can proceed any further.

1.2. Information arrival and Subordinated Stochastic Processes

The Mixture of Distributions Hypothesis (MDH) appears several times in various
disguises in the literature. Rather than following the development of MDH in
chronological order, the exposition here will commence with the most recent treatment
of the model by Andersen (1996) and provide connections to earlier work, whenever
necessary. This is largely due to the fact that this particular derivation is well justified
by microeconomic arguments and does not have the ad hoc character of previous

approaches.

Andersen’s model is a version of Glosten and Milgrom (1985) microstructure model in

which a single asset with a random liquidation value is traded between three types of

11



risk-neutral agents: a market maker, and two groups of informed and uninformed
investors. During the trading process informed investors obtain private signals as to the
value of the asset. The crucial property of the equilibrium is that a sequence of trades
fully reveals the content of all available private information leading to a (temporary)
equilibrium price. This price prevails until new private information arrives and the
dynamic learning process starts anew. Thus the market moves from one temporary
equilibrium to the next in response to a large number of information arrivals during

each trading period.

To fix ideas, denote by P, the transaction price recorded during the j-th temporary
equilibrium of the trading period ¢ (e.g. day). Let furthermore, the random variable
symbolising the total number of information arrivals during each trading period be

denoted as Ji. Then the return over the full trading period can be decomposed as:

RI,,! o ])j,t o 2
R =In 7 )" Z]m > =lem,,, . o, ~IID0,0))
! J= =

J-Lt J

If, w,, are independent of J; then an appropriate generalisation of the standard central limit

theorem (Clark, 1973) delivers the desired result:
RIJ, ~ N(0,0,J,) (1.1)

which shows that the returns are conditionally normal but have variances that reflect the
intensity of information arrival. In some trading periods little news is released and trading is
slow, with incremental price movements. When new, possibly lumpy, information arrives,

trading is fast and prices fluctuate strongly until a new equilibrium is attained.

Notice, that the argument above delivers almost instantly the justification for the time
varying volatility models which are discussed in Section 1.4. In particular, if J; is a dynamic

stochastic process - e.g. a mean reverting Omsten-Uhlenbeck process (Karlin and Taylor, -
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1981) - one obtains directly the stochastic volatility model. However, time homogenous \
models can be equally obtained from the MDH by observing that that J; does not have to be
a dynamic variable and can be assumed to be drawn form a particular time invariant
distribution.

An interesting alternative point of view can be obtained by regarding (1.1) as a paricular
example of a subordinated stochastic process. Denote by {X:}.0 a Wiener process and
{Ji}0 some other stochastic process. Then the process {R~=X[J:]}w0 is called the
subordinated and {J:}w.0 the directing process (Feller, 1971, Chapter 17). Let the
conditional variance of the subordinated process, given the filtration (information
structure) 3.1, be denoted by Var[R|J.,]=ci. If the directing process {Ji}wo is
constant over time, the return process {R}0 is itself a Brownian Motion with drift. Its
variance only depends on the length of the time intérval over which the return is
measured, i.e. Var[R(At)[S’,]=o]At. However, if the directing process is non-constant,
- possibly stochastic then the variance of R, will depend upon the number and

importance of events occurring within the time interval: Var[R(41)| J(4), F)=c°J(At).

The essence of subordinated stochastic processes can be best understood in terms of a
model of uncertainty. If the ‘state of nature’ is a completg description of the economy up to
time t, J(At) may be regarded as a stochastic change in state over the interval [, #+A4¢]. This
is due to the change in the stock of information available to the market participants. In the
classical theory of consumption under uncertainty knowledge of the state is sufficient for
the knowledge of the state dependent variable. Here, only the distribution of the state

dependent variable R(Az) is known.'

' This argument leads to the idea of time deformation (Stock, 1988) where the process is regarded as
being driven by the event time scale and not the calendar time scale. An interesting application can be
found in e.g. Ghysels and Jasiak (1996).
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Thus, non-constant, possibly stochastic information arrival forms the core of the
justification for the usage of models which transcend the Brownian terrain. If the latent
variable is drawn from a particular time homogenous distribution a number of interesting
models for the evolution of asset returns can be obtained. On the other hand, if the latent
variable is assumed to follow a dynamic procesé, intertemporally dependent time series

models immediately follow.

1.3. Early approaches: time homogenous models

Fama (1965) and Mandelbrot (1963, 1967) considered a class of so-called Stable Paretian
distributions as a potential model describing asset returns. The model has two interesting
features: it captures the fat tails property of the unconditional densities and comprises the
normal distribution as a special case. Mandelbrot and Taylor (1967) show that if the
directing process J{4t) follows a strictly positive stable distribution then the subordinated
process R(Ay) will follow a symmetric stable distribution. The model has been fitted to data
and was found to describe data reasonably well (Fama and Roll, 1971). In general,
however, its density function is unknown and the variance is infinite thus rendering the

model rather unappealing.

A more promising approach was suggested by Blattberg and Godenes (1974) who consider
a model for stock returns where the variance parameter of a normal density is drawn from
an inverted Gamma distribution, ie. {o’J(A1)}'~Gamma. The resulting conditional
distribution of the return process {R,} is no longer normal but Student-t. The evidence
indicates that this process is a better description of returns dynamics than the Stable
Paretian model (Blattberg and Godenes, 1974). In particular, the fat tail property of the
unconditional density can be addressed by adjusting the number of degrees of freedom.

Alternatively, the variance to be drawn directly from the Gamma distribution (Madan and

14



Seneta, 1990). An analytical representation of the conditional density of the return process
could not be found in this case but the empirical analysis suggested that this model is a

better fit than the lognormal distribution.

Another interesting model has been proposed by Kon (1984). Here the return process is
described by a mixture of normal distributions such that each period return is drawn
independently from one of a finite number of independent normal distributions. Kon (1984)
argues that this specification is a better description of stock returns than either the Student-t

model or the Stable Paretian model.

Finally, Press (1967), Merton (1976), and Ball and Torous (1983), among others
investigate the applicability of mixed jump-diffusion model: dP = yPdt + odW + Pdq,
where W is the standardised Wiener, ¢ a Poisson process with intensity A, and the
distribution of the size of the jump is normal J~N(i, &*;). In an empirical study of exchange
rate futures Tucker, Madura and Marshall (1994) find that this specification dominates the
mixture-of-normals model which in turn dominates the Stable Péretian specification.
However, they disregard the issues of parsimony and compare models on the basis of the
likelihood function value only. Using the Schwarz criterion, which corrects for the presence
of additional parameters, Kim and Kon (1994) in an analysis of stock returns, find that the
Student-r model dominates both, the mixed jump-diffusion and the mixture-of-normals

| models.

Whatever the relative merits of individual time homogenous models one important
~ empirical characteristic of asset returns cannot be captured by any of the models presented
above: the phenomenon termed “volatility clustering”. As indicated in the introduction one
of the most salient features of financial time series is the fact that intervals of large price
movements (i.e. high volatility) are often followed by more quiet periods, with small price

fluctuations. This can be interpreted as direct evidence that the latent information flow
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variable J; follows a process whose evolution is time-varying thus giving rise to ARCH and

stochastic volatility models described in the following Section.

1.4. Time dependent models: ARCH vs. stochastic volatility

Intertemporally dependent models recognise that conditional mean and variance of asset

returns, R=in(P/P..;) may change over time:

R =p+o,v,, v,~IDQ)) (12)

1

where the evolution of 4 and o; depend on the previous realisations of the process. Models
in this category can be divided into two groups: those imposing a strict functional
relationship on the variance evolution (ARCH models) and those treating the variance as an
unobserved component following some stochastic process (stochastic volatility, or SV

models).

Despite large differences in the set-up, the two approaches can be conceptually reconciled.
Notice, that framework of subordinated processes encompasses both, the ARCH and the
SV models. Since little is known about the rate of information arrival apart from its time
dependence, it is natural to assume that the process is stochastic, possibly mean-reverting.
This yields immediately the SV model. Specific assumptions about the information arrival
process give the ARCH model (Gallant, Hsieh and Tauchen, 1991). Thus, one resolution
to the question about model adequacy is to regard SV models as generalisations of ARCH.
Alternatively, one can regard ARCH models as discrete time approximations to a diffusion
process followed by latent, unobserved volatility, while the SV models are simple
discretisations of this diffusion. It can be shown (Nelson, 1990a) that the Exponential
GARCH model converées to a continuous time SV model as the distance between the
observations becomes smaller. By implication, ARCH models can be used to estimate .

parameters of a continuous time stochastic volatility model (Engle and Lee, 1994; Nelson
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and Foster, 1994). Dassios (1992), however, shows that even though both discrete time SV
and EGARCH models will converge to the same continuous time limit, the rate of

convergence of the SV model is faster.

While ARCH models dominated the finance literature in the past decade, insights into the
properties and estimation of SV models were made very recently. In fact, empirical
applications considered in this Thesis illustrate that the SV models offer an interesting
alternative to GARCH models routinely used in applied empirical research. The empirical
question of superior descriptive ability remains unresolved. The prime difficulty with direct
comparison is the fact that the models are non-nested so that the standard likelihood ratio -
tests are inapplicable (Non-nested likelihood ratio tests were examined by Kim,
Shephard and Chib, 1996). In addition the conclusions remain largely data dependent.
Overall, the evidence seems to suggest that both model specifications perform equally well

when fitted to data (Andersen, 1994a; Taylor, 1994; Kim, Shephard and Chib, 1996).

An altogether different approach is to regard the volatility process as being generated by a
discrete state Markov chain (Kim, 1993; Naik, 1993; Rockinger, 1994; Billio and
Monfort, 1995). Unlike diffusion models, where the variable is allowed to take a continuum
of values, here the volatility variable is assumed to be in one of the discrete states, say oy
and oy. The motivation is provided by the idea that major events may have drastic (but
temporary) effects on asset’s risk characteristics, thus periodically shifting the volatility
level.? While models of this kind might be conceptually appealing they have a number of
drawbacks. First, mere two volatility levels are likely to be inadequate. When more states
are included the analytical tractability of the framework is lost. On the other hand, it is
conceivable that the model converges to the continuous state space SV model as the

number of admissible states increases. The analytical tractability is also lost when bivariate
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asset return processes are considered or the regression effects of explanatory variables are
to be investigated (Rockinger, 1994). Whatever the merits of volatility switching models,
the present research is focused on the empirical validity of continuous state space time
varying volatility models mentioned above, the statistical propérties of which are reviewed

below.

1.4.1. Statistical aspects of ARCH models

ARCH (AutoRegressive Conditional Heteroscedasticity) models were first introduced by
Engle (1982) and achieved widespread popularity over the last decade. Generalisations of
the original specification gave rise to GARCH, EGARCH, IGARCH, FIGARCH, ARCH-
M, and many others. It is not the aim of this survey to compare and discuss all formulations
proposed in the literature since several extensive surveys are available (Bollerslev, Chow
and Kroner, 1992; Bera and Higgins, 1993; Bollerslev, Engle and Nelson, 1994). Instead
we concentrate on some selected examples of ARCH models which have either proved to
be more descriptive or provide for a comparison to the stochastic volatility models

discussed in the next section.
(i) Definition.

The ARCH(p) model (Engle, 1982) imposes a fixed functional form on the specification of
the variance parameter o’ in (1.2) making it dependent on past squared residuals of the

mean equation:

012=a0+zairt:—ii ’;=R1—ﬁr (13)

? This is different from the model proposed by Hamilton and Susmel (1994) where the parameters of
an ARCH process come from different regimes.
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Since many lags are required to describe persistence in conditional variance Bollerslev
(1986) and Taylor (1986) proposed a more parsimonious representation, the GARCH(p,q)

model:?

of =a+ 2o rk + DAoL, 19

In an attempt to accommodate the negative correlation between returns and return volatility
(Black, 1976; Christie, 1982) into the ARCH framework Nelson (1991) proposed the
Exponential GARCH model:

. P q
Ino’ =q, + > a,g(r,_,)) +D_B/Ina’, (1.5)
j=1

i=1

where g(>) is some asymmetric function of 7. Further interesting extensions have been
suggested by Engle, Lilien and Robbins (1987) who propése to model the time varying risk
premium by including the standard deviation as an explanatory variable in the mean

equation:
R =60, +0,v,, v, ~N(,1) (1.29)

with o; following some ARCH parameterisation. Finally, it is well known that the
assumption of conditional normality of the error term is often not sufficient to account for
the leptokurtosis of the unconditional density observed in real data (Engle and Bollerslev,
1986; Baillie and Bollerslev, 1989; Terdaswirta, 1996). Instead, the GARCH-f model

(Bollerslev, 1987) may be more appropriate:
R=p+ov, v-~1 (1.27)

Here, the mean equation errors are drawn from a Student- distribution with v degrees of

freedom. Clearly, the conditionally Gaussian model is obtained in the limit, as v—»0.

* Mirroring the relationship between MA(w) and ARMA(p,q) model (1.4) can be represented as
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Using the law of iterated expectations the unconditional moments of 2 GARCH process can
be derived. Any GARCH model produces serially independent observations with mean
zero. If the sum of the coefficients @; and /4 is less than unity then the unconditional
distribution has fat tails (leptokurtosis) and finite variance. Finally, the model has been
artificially constructed so as to mimic the volatility clustering, producing serially correlated
squared observations. Thus, almost all of the ai)ove mentioned stylised facts can be

simulated in the ARCH framework.

Numerous extensions have been proposed accommodating more and more empirical
regularities, extending the taxonomy of the ARCH literature and making the framework
increasingly popular. The framework owns its popularity to primarily two factors. First, the
models allow for tractable specification of the exact functional form of the conditional
variance function. Secondly, ARCH models are designed to formulate explicitly the

likelihood function as well as analytic scores.
(ii) Schwert models.

Another ARCH-type model (in the sense that the variance equation is described in
terms of some function of lagged residuals) hés been proposed by Schwert (1990).
Here two regression equations are formulated which describe the evolution of the
mean and the volatility of the process in terms of lagged endogenous variables:
I J
R=c+) ¢R_ +D 1m0, +u,
=1 J=1

M L (1.6)
G( =a+ Zﬂm Ut-m + Zal ul—l + 5‘!
m=1 =1

where R, represents the return on the asset, o; is the instantaneous standard deviation
of the residuals u,, and circumflexes indicate fitted values from a previous iteration.

The residuals from one regression are used as observations in the other, and the system

ARCH().
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is re-estimated until convergence is achieved. Despite simple estimation possibilities,
model (1.6) is highly unparsimonious (Engle, 1996) and enjoyed limited popularity
(Bessembinder, 1994; Bessembinder and Seguin, 1992, 1993).

(iii) Estimation.

We now turn briefly to the estimation of GARCH models. Let ¥=(y» 1) denote the set
of unknown mean, y, (in (1.2), (1.2), or (1.2"), above) and variance equation
parameters, ¥, (in either of (1.3), (1.4), or (1.5) above). Then the likelihood function of
the model can be written down explicitly since, conditional on the past, the density of
the observations is Gaussian with a known volatility parameter. Thus the full likelihood
function is given by the product of conditionally Gaussian densities, ps(-), with means,

. 2
m,, and variances, o;":

L(R|¥) = H pe(m,, 073,

One of the crucial features of the model is the asymptotic independence of the mean and
variance equation parameters. In other words the information matrix is block diagonali with
respect to the two parameter sets. The OLS in the mean equation is thus consistent. The
residuals are then used to obtain the estimates of the variance equation parameters by
optimising the likelihood function by means of the BHHH algorithm (Berndt, Hall, Hall

and Haussman, 1974).

Analytical scores can be obtained by conditioning on initial values ¢;=0 and r=0.
Assuming the boundedness of conditional fourth moments, E(r,'|3.:) the maximum
likelihood estimator ' is asymptotically normal and consistent (Weiss, 1986). Even if
the data are not conditionally normal, maximum likelihood, now called quasi maxinium
likelihood, is still an efficient procedure. Lee and Hansen (1994) showed that in fact

weaker restrictions are sufficient for such estimators to be consistent.

21



(iv) Explanatory variables.

As will be seen in due course, one attractive feature of GARCH (as well as SV models) is
the possibility of examining the impact of explanatory variables on the evolution of
volatility. Here, in addition to the lagged values of r? the functional form of the conditional
variance of an ARCH model can be made dependent on a set of exogenous variables
Z=(zu,...,2)'. For instance, the GARCH(p,q) model can be amended as:

P q
o’ =q +Zair,2_i +Z,:ﬁja,2_j +Z'y 1.7
j=

i=1

where ¥ is a (kx1) vector of unknown parameters. Such parameterisation has been
advocated by numerous researchers, e.g. Lamoureux and Lastrapes (1990, 1993), with a
single notable exception: Baillie and Bollerslev (1989) who estimate the model (1.9)

discussed below.

Specification (1.7) imposes a very rigid structure in which the explanatory variables are
allowed to affect volatility. In particular the effect of Z; on the variance of the process
is geometrically declining. To see this effect, let &=r?-o?=0(v>~1) be the
‘innovation’ in the. conditional variance process. For illustrative purposes the

discussion below will focus on the GARCH(1,1) case. Extensions to GARCH(p,q) and

EGARCH(p,q) are straightforward. Equation (1.7) can be reformulated as:
(1-gL)? =ay+2'y +(1- BL)E

where L is the backshift operator, Lx~x., and ¢=a;+f;. Since the conditional
expectation of & is zero by construction, in fact, & is white noise, taking expectations

repeatedly we obtain the expression for the unconditional variance of 7;:

, a Z |},. Qa © . )
Er} = ——+— =——+> @' [7'Z'y (1.8)
l-¢ (l—¢L) -9 ,Z:‘
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Thus, Z, in model (1.7) is no longer an estimate of the variance of the pro;:ess at any
time. Instead, the variance is influenced by an exponentially weighted average of past
values of explanatory variables. This is an important drawback since, as will become
evident later, we will be interested in modelling the instantaneous impact of the

explanatory variables Z on the evolution of volatility.

In order to avoid this feed-back effect, (1.8) indicates that it is necessary to re-

parameterise the model; in the GARCH(1, 1) case:

ol=a,+ar} +Bol +(1-gL)Z,'y (1.9)
which is the model estimated by Baillie and Bollerslev (1989).
(v) Multivariate extensions.

Some difficulties with the ARCH specification arise when the transition from the univariate
to multivariate case is made. Even though exact likelthood function can be obtained, the
proliferation of parameters poses a serious restriction on the applicability of the models. In
addition, elaborate restrictions need to be imposed on parameter values to ensure that the

(NxN) matrix of volatilities, 2; is positive definite for all time (Engle and Kroner, 1995).
The general parameterisation of the conditional vanance I, = Var(r,lS,_,) of an N-
dimensional GARCH(1,1) model is:

vech(Z,) = vech(A,) + Avech(r,_,r,_,') + Bvech(Z,_)) (1.10)
where vech() denotes the column stacking operator of the lower portion of a symmetric
matrix, 7, is (Mx1), Ag is (NxN), while A and B are (N(N+1)/2xN(N+1)/2) matrices. This

formulation involves the estimation of 21 (sic!) parameters if the case of a bivariate model,

N=2._ A more parsimonious specification is:

* However. (1.9) makes the gradients highly non-linear in the parameters creating difficulties in
estimation.
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T, =A,+Cr_r,'C+DZ, D (1.11)

where r; is (Nx1), while Ay, C and D are all (Nx) matrices. Provided 4, is positive definite
specification (1.11) ensures that % is p.d.. The number of unknown parameters can thus be

reduced to 12 for the case of N=2.

Assuming that the matrix of correlations between individual elements of the return vector, 7
is constant over time, Bollerslev (1990) developed a more tractable and empirically viable

(Baillie and Bollerslev, 1990) specification:

Z, = diag(\[Z,,, ,\[Zwv. ) RAQG(Z), s Zp ) (1.12)

where R is an (MxN) correlation matrix and the individual variances, Z; are standard
GARCH(p,q) processes. This mode! involves the estimation of mere 7 parameters in the
GARCH(1,1) case and N=2. Finally, factor ARCH models were proposed by Engle, Ng

and Rothschild (1990) and are discussed in Lin (1992) and Shephard (1996).

Summing up, the generalisation to multivariate ARCH models is not obvious: the models
proposed are either highly constrained or not parsimonious. As will be shown in the next

section, SV models generalise to the multivariate case much more naturally.

1.4.2. Statistical aspects of stochastic volatility models

An alternative way of modelling changes in conditional variance is to allow it to evolve
stochastically over time. Rather than imposing a prespecified functional form on the
variance function, o7’ in (1.2) is assumed to be driven by some unobserved, latent factor.
Unlike ARCH models, knowledge of the parameters and past realisations of the process is
not sufficient to determine with certainty the value of o; at any one time: the variance is

now an unobserved component. The exposition below will focus on some selected aspects
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of stochastic volatility (SV) modelling since, again several surveys are available (T aylor,\

1994; Ghysels, Harvey and Renault, 1996; Shephard, 1996).

(i) Definition.

The most widely used SV model is the lognormal. The statistical model in discrete time
is defined by the mean equation (1.2), whence the variance equation is given by:

Inc} =a+¢lnc’, +n,, n ~ N(O,a,f), Corr(v,,n,)zp (1.13)

This specification highlights the similarity to the EGARCH(1,1) model (1.5) but instead of
some function of lagged values of 7, the evolution of the variance is now driven by an

additional disturbance, 7. It is often convenient to re-parameterise (1.13) as:

Ino} =Inc’ + A,
(1.13)

h=¢h_ +n, m ~N(0,0'3), Corr(v,,m)=p
The equivalence is established by noting that the constants capturing the long run
(log)variance levels are mapped via In&? = a(1 - ¢)_1 .

Other definitions have been proposed in the context of option pricing. Various authors have

examined SV models formulated in continuous time, taking the general form:

{dlnS=/lSdt+0dVVl

df (o) = ulo)dt +vlc)o,dW, d(W,.W,) = p

where dWW denotes a standard Wiener process and the specifications of the functions f{c),

(o), and V(o) are summarised in:

volatility process Study
Mi do = A(x - o)dt + o,dW, Scott (1987)
4 Stein and Stein (1987)
M2 do® = Ak - o*)dt +o'a\/?sz Heston (1993)
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M3 do Hull and White (1987)

— = Adt + 0,dW,
c Johnson and Shanno (1987)
M4 dlno = A(x - Ino)dt +o,dW, Scott (1987)
Chesney and Scott (1989)
Wiggins (1987)

All these specifications postulate a Markovian structure on the volatility process and ensure
the intuitive condition - that the volatility process {o:}w0 be positive almost surely - is
satisfied. While these various definitions are admissible, the time series literature focuses
almost exclusively on the statistical aspects of the parameterisation (1.13) which is the
discrete time analogue of Model M4. The correspondence is established by defining

¢ =e*, the speed of mean reversion, InG* = 2x, the long run volatility level, and

o, =A"o; (1 —e'“‘“) , the variance parameter (Gouriéroux and Monfort, 1996, p. 125;
Renault and Touz, 1996). The predominance of (1.13) is due to the fact that the model can
be estimated by various methods (Chapter 2) and captures most of the regularities found in

financial data.

The statistical properties of the SV model are valid even if v, and 7, are contemporaneously
correlated. First, if ¢ is less than unity in absolute value the return process, r;, will be

stationary with the even moments being given by:

. 1. 12
E(rll)zj!eXp(ij)"'s.] mz)’ m,=%, m2=1f77¢2

2:(4)

while the odd moments are zero. It follows that the variance and the kurtosis are:

- CXPLI e 2(10-:¢2)] =

= 3exp(l:’52] >3 (1.14)
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As can be seen from (1.14) the kurtosis is larger than that of the normal density, even if
¢=0. When p=0 the model implies further that the squares of the process are autocorrelated

in accordance with:
E(r?r2,) = exp(2m, + m,)(exp(¢'m,) - 1)

which translates into an exponentially decaying autocorrelation function (ACF). More
general results concerning the ACF of |r|° for arbitrary constants ¢ and extensions to 7
distributed mean equation errors - as in (1.2”) - can be found in Ghysels, Harvey and

Renault (1996).

Similarly to GARCH models the SV model can be extended in a number of directions likely
to be of importance in applied empirical research. Thus, the leverage effect (Black, 1976;
Christie, 1982) is captured automatically by a non-zero correlation coefficient between the
two disturbances, 1; and 7,. Furthermore, the time varying risk premium can be modelled by
including the volatility as an explanatory variable in the variance equation (1.2"). Finally,
additional leptokurtosis may be incorporated in the basic SV model by allowing the mean

equation residuals to follow a Student #, distribution as in (1.2").
(ii) Estimation.

The main drawback of SV models has been the difficulty associated with parameter
estimation. Likelihood-based estimation requires the latent volatility process, o; to be
integrated out of the joint density of the observed returns, 7, and latent volatilities, ;. This
fundamental difficulty has preserved the widespread popularity enjoyed by GARCH

models.

Chapter 2 is entirely devoted to SV estimation methodology where a new estimation
technique is proposed. It should be noted here, however, that if the parameter vector ¥'is
partitioned into mean, ¥, and variance equation parameters, 4, and the volatility process
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is strictly stationary, OLS in the mean equation is inefficient but consistent. Thus, the mean
equation parameters, Y, can be estimated by OLS but their variance-covariance matrix
needs to be adjusted for the effect of heteroscedasticity. Suppose the mean equation takes

the form:
R=x'B+ov, v,~N(O]) 1.2

where x; is a (kx1) vector of explanatory variables, possibly including lagged values of R,
and B (i.e. ¥ in the previous notation) is a (kx1) vector of unknown coefficients. Harvey

and Shephard (1993) show that the variance of the feasible GLS estimator is given by:

-1

Var(ﬁ) = l:ix,x,'eq""]_l éx,x,'e‘"’"(R, —x,'ﬁ)2 [ix,x,'e"‘"] (1.15)

where 4, = Ino} and the notation /,, symbolises the smoothed estimate of 4. Therefore,

the estimation of the SV model proceeds in tree steps. First, OLS is applied to the mean
equation to obtain the mean adjusted returns, .. Secondly, the parameters of the stochastic
volatility process are estimated, for instance by means of the method proposed in Chapter

- 2. And finally, the covariance matrix of mean equation coefficients is obtained via (1.15).
(iii) Explanatory variables.

Similarly to GARCH models, the basic SV model (1.12) can be extended so as to allow for
regression effects in the variance equation. However, unlike GARCH models the SV model

is formulated in terms of a time varying deterministic mean which is approximated by a

weighted average of explanatory variables 2*’s and an autoregressive component:

{ Inc>=2Z'y +h (116

h=¢ph,+n, n~N0o?)
where Z~(zy.,...,z)' and yis a (kx1) vector. In fact, model (1.13") is obtained as a special
case by setting k=1, z/=1, V¢. The statistical properties are not difficult to derive. In
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particular, the unconditional variance of the process is given by:

0_2

Er? = Eg} E(af)=exp[2,'7 +-2(1_—"¢2)] (1.17)

Thus, instantaneous variance is described by the information contained in the
explanatory variables at that moment in time, rather than some weighted average of
past values. Clearly, if this information is irrelevant the coefficients y will be
insignificant. On the other hand, if the autoregressive coefficient, ¢ is insignificant the
explanatory variables capture accurately the dynamics of conditional variance. In this
case the model reduces to the multiplicative heteroscedasticity model (Harvey, 1976)
with noise: Ina’=Z/y+n, n~N(0,5,’). If neither hypothesis can be rejected, we are
left with a mean reverting volatility process where the mean is approximated by the

information encoded in Z/’s.

If, for some reason, the geometric lag structure is specifically required, then the SV can

be adjusted accordingly:

Inc} = h, |18
h=Z'y +¢h_ +n, '7'~N(0’0:) 19

so that model (1.13) is obtained as a special case by setting k=1, z'=1, V¢. Equation

(1.18) is the SV analogue of (1.7) and the resulting unconditional variance is:

1. Z'y 03
Er, —exp[1_¢L+2(l_¢2)] | (1.19)

which - upon expansion - leads to an expression similar to (1.8).

(iv) Multivariate extensions.
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Stochastic volatility models generalise to the multivariate case by allowing the
logarithm of variance to follow an AR(1) process. This leads to the following

parameterisation of the mean adjusted returns, r::

i=1..,N v, ~ND(0,Q,)
(1.20)
h=®h_ +7 n ~ NID(0,Z,)

Where r;, are the individual elements of the (Nx1) vector r, o is a (Nx1) vector
capturing the long run volatility levels, @ is a (NxN) non-diagonal matrix of mean

reversion coefficients, and X, is a (NxV) covariance matrix of innovations in the

(Nx1) log-variance vector, k.. Notice, that the vector of mean equation disturbances is
multivariate normal with a constant correlation matrix, €2, 6. Thus, similarly to
Bollerslev’s (1990) GARCH model, (1.20) is a model of changing covariancies but

constant correlation.

The closer @ is to the identity matrix the more persistence is present in the volatility
process, or the slower mean reversion. If the eigenvalues of @ are within the unit circle
the model is strictly stationary. Differences in volatility adjustment mechanisms will
therefore be reflected entirely in the elements of @. The diagonal elements {¢"} give
the degree of persistence while the off-diagonal elements {¢’} indicate cross market

dependence.

The formulation allows for common trends in volatility by placing reduced rank

restrictions on X, . Thus, if rank(Z, )=K<N then there are only X components in

volatility so that

h = @h, (1.21)
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where @ is an (NxK) matrix of factor loadings and E follows a VAR(1). When the

volatilities are assumed to follow a multivariate random walk, i.e. @=I, (1.21) is

replaced by

h=0h+h - 1.21)

where h is a vector of constants. As we can see, despite a parsimonious

parameterisation, multivariate SV models have a potential to be empirically viable.

1.5. Qutline of the thesis

Having established the relative advantages and highlighted the similarities between the
ARCH and SV frameworks, we will now focus our attention on estimation of SV models.
A novel algorithm for the estimation of SV models is proposed in Chapter 2. It is
demonstrated that the finite sample performance of the estimator is on par with the fully

efficient Bayesian MCMC method. The extensions of the basic SV model are addressed.

Chapter 3 discusses some aspects of hypothesis testing within the model. The likelihood
ratio test for the presence of the unit root in the (log)variance process is considered.
However, despite the possibility of model estimation under the null and under the
alternative the distribution of the test statistic in unknown. Our Monte Carlo experiments
suggest that the distribution can be well approximated by the weighted 7° density, critical
values of which are readily available. It is also shown that the conventional unit root tests

are unreliable in this context.

The empirical validity of the SV model is illustrated in the subsequent Chapters. It is shown
how a number of interesting empirical questions can be addressed in this framework by
extending the basic SV model to include a set of explanatory variables. The hypothesis that

implied volatility of options contain relevant information about the evolution of the
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latent return volatility process is examined in Chapter 4. It is found that in-sample the
implied volatility captures most of the time series dynamics of the conditional volatility
of the return process. However, the out-of-sample forecasting experiment suggests
that the predictions from the basic SV model across all forecasting horizons are at least

as accurate as the forecasts obtained from the iniplied volatility data.

In Chapter 5, the hypothesis that futures trading destabilises the corresponding spot
market, leading to an increase in price volatility is examined. It is shown that when the
explanatory variables are included as in (1.7) - as has been done on numerous
occasions in the literature of volume-volatility relationship - results are potentially
misleading. Using the SV model, no evidence for the UK in support of the hypothesis

(that futures trading destabilises the spot market) is found.

32



Chapter 2: Estimation of stochastic volatility models

2.1. Introduction

Despite their intuitive appeal, SV models have been used less frequently than ARCH
models in empirical applications. This is due to the difficulties associated with the
estimétion of SV models. Unlike ARCH models, where the likelihood function can be
evaluated exactly, the likelihood function of an SV model is hard to construct. Existing
estimation procedures can be subdivided into two groups: (7) methods that attempt to
build the full likelihood function, and (i7) methods which rely on alternative, usually

less efficient principles.'

Several propositions have been made as to how the likelihood function may be
evaluated. Kim, Shephard and Chib (1996) show how the likelihood can be
constructed when a mixture of normals is used to approximate the density of the
disturbances. Jacquier, Polson and Rossi (1994) have proposed a Bayesian approach to
the estimation of SV models using the Markov Chain Monte Carlo (MCMC)
technique. Fridman and Harris (1996) show how the extended Kalman filter can be
used to perform numerical integration. Finally, Danielsson (1994a) suggested that
accurate approximations to the likelihood function can be obtained by means of

importance sampling.

Building on the work of Durbin and Koopman (1997a) and Shephard and Pitt (1997) -
who have designed importance sampling methods for general state space models - this
Chapter shows how the general concept of importance sampling can be used efficiently
in the context of SV model estimation. The crucial feature is the formulation of the SV

model in a linear state space form with In(y,”) disturbances in the measurement

' The Quasi-Maximum Likelihood (QML) method of Harvey, Ruiz and Shephard (1994), and GMM
methods of Andersen and Sarensen (1996) are examples of this category.
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equation. The linear state space form allows very powerful algorithms for filtering and
smoothing to be utilised, and more generally, to draw upon a vast body of knowledge
on structural time series models. The gain is also due to the fact that the Monte Carlo
simulation is only employed to construct that residual part of the likelihood function,
which is not already captured by the Gaussian likelihood (QML), which we know to be

an inefficient but close approximation.

Apart from reducing the computational effort considerably (while attaining full finite
sample efficiency), the algorithm has two distinct advantages. First, the sampling
variation can be reduced, giving arbitrarily close approximations to the true likelihood
function. Availability of the accurate values of the likelihood function allows for
hypothesis testing by means of the likelihood ratio tests. This is likely to be very useful
since numerical standard errors of model parameters often leave much to be desired.
This area is further explored in Chapter 3 where the likelihood ratio test for the
presence of the unit root in the (log)variance equation is shown to be more powerful
than the conventional unit root tests. Second, a wide range of extensions can be
addressed without any modifications of the estimation procedure due to the fact that
the state space form is retained. Thus, the Qariance of the return process can be
examined for the presence of serial correlation, seasonal components and trends, and
the effects of dummy and exogenous explanatory variables may be explored in detail.
The remaining Chapters are devoted to empirical applications. Furthermore, the method
can be extended to multivariate models, an area, where sampling techniques like MCMC as

well as variants of the Method of Moments become cumbersome.

This Chapter is organised as follows. Section 2.2 discusses in more detail the various
aspects of estimation and inference in the context of SV models. In Section 2.3 we

describe the new estimation algorithm while Section 2.4 compares its finite sample
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performance with existing techniques by means of a Monte Carlo experiment. Section
2.5 illustrates how the method should be adjusted when the basic SV model is
extended in a number of directions. Here, the question of how to treat zero
observations - which will make In(y,”) ill-defined - is also addressed. Finally, Section

2.6 extends the method into the multivariate context. Section 2.7 concludes.

2.2. Existing approaches

The univariate stochastic volatility model was introduced earlier in (1.13) and (1.13")

and is restated here for ease of reference:

—Fe™ ~ N(0,1
{r, ey, Vi ( ) Corr(v,,n,) =p @2.1)

h=ph,+n 1~ Noo)
As before, , is the mean adjusted return on an asset, 7, = R, — 4, . The estimation of 4

has been addressed in Section 1.4.2, equation (1.15), and will not be the subject of
interest in the present context. An attractive feature of specification (2.1) is the
possibility of linearising the model. By taking logarithms of the squared mean adjusted

returns one obtains:

Inr? =In&* +h +¢ &=V}
' Corr(e, , 77,) =0 (22)

ho=¢h_ +n, 7.~ N(0.07)
If the original mean equation disturbance, v, is standard normal, & follows the In(y,%)
distnibution whose mean and vaﬁaﬁce are known to be -1.27 and 77/2, respectively.
Notice, that even if the mean and variance equation disturbances v and n are
correlated, the transformed disturbances, & are uncorrelated with 7, Therefore the
information regarding p is lost when the transformation is taken (Harvey and Shephard

(1996) show how it can be recovered by conditioning on the signs of r.).
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Harvey, Ruiz and Shephard (1994) suggested a Quasi-Maximum Likelihood (QML)
method of estimating the model based on the Kalman filter. Assuming joint conditional
normality of (&, 7,), equation (2.2) represents the measurement and transition equations

of the general linear state space model:

V=20 +¢ & ~ N(0,H,) )
a, =T1a, +n, n ~ N(O,Q,) t=L...T (23)

where, in general, y, is (Vx1) vector of observations, a. is the (mx1) state vector, and

the covariance matrices 4, and Q, are non-singular. Appendix 2 illustrates how the

unknown variance equation parameters ¥,=(¢,0o,, o ), henceforth y, are placed in the
system matrices H,, O,, 7,, Z,. Once the model is in the state space form, the
advantages of this approach become evident: (i) explanatory variables can be easily
incorporated into the variance equation, (ii) more complicated process can be assumed
for the evolution of the latent variable, (7ii) missing or irregularly spaced observations
can be handled, and (7v) generalisations to the multivariate case are straightforward.
The QML. estimation method involves a numerical optimisation of the Gaussian
(log)likelihood function over the set of parameters y details of which can be found in

Appendix 3.

QML approximates the distribution of & by N(-1.27,7%/2), while & is far from being

Gaussian. In fact, its density is given in:

Proposition 2.1: Let the scalar variable x be standard normal. Then the density of

=Inx? is:

l - 2
Pyy (z)=mexp[z 2€ } (2.9)
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Proof: The univariate  density with v degrees offreedom is given by:

y .}me, J

2% 1(f)

Setting v=I, noting that r(y) = , and making the change of variables z=Ilny gives

the desired result.o

Figure 2.1 shows in how far e, deviates from its normal approximation which implies
that the QML estimator is likely to have poor small sample properties even though it is

consistent.

0.25
' “"™True Density
0.2 Normal density
0.15
0.05

Figure 2.1: The In(%?) density and the Gaussian approximation N(-1.27, 77 12).

Note the high degree of skewness and the long tail on the negative half line. Large
negative values reflect small values of 7, - termed inliers - which may arise in empirical

applications with high frequency data.

Several other estimation techniques achieved prominent attention in the literature
First, various method of moments (MM) estimators have been suggested by various

authors (Taylor, 1986; Melino and Turnbull, 1990; Andersen and Sorensen, 1996).
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MM . estimators avoid the problems associated with the linearisation of the model as
well as the evaluation of the likelihood. They are not difficult to implement and to
generalise but the efficiency of these estimators is known to be suboptimal to the
likelihood-based method of inference. It is evident in the simulation experiments of
Andersen (1994b) and Andersén and Serensen (1996) that sample sizes of less than
7=1,000 are insufficient for meaningful estimatién by the Generalised MM (GMM).
For the sample size of 7=500, it has been found that the efficiency of MM and QML
estimators are very similar (Ruiz, 1994, Andersen and Serensen, 1996) but both are
strictly outperformed by the fully efficient MCMC method (Jacquier, Polson and Rossi,
1994). The QML estimator usually dominates for values of ¢ close to unity because for
¢~1 the autocorrelations decrease slowly and are captured less well by the moments
used in the MM procedure. This simulation evidence on finite sample performance
suggests that the full likelihood procedure will be superior to both estimation

techniques.

Fufthermore, the method of moments is frequently used in econometrics when some
variables are restricted to be uncorrelated and no distributional assumptions about the
d_isturbances are made. Neither of these motivations is valid since the SV model is fully
specified. Moreover, the estimation methodology does not provide an estimate of the
instantaneous volatility o;’ throughout the sample, #=1, .., T so that an additional form
of estimation is required. For instance, Andersen (1994a) and Ghysels and Jasiak
(1996) use various MM techniques to estimate the parameters and the Kalman filter to

obtain the volatility estimates.

Second, Kim, Shephard and Chib (1996) suggest to approximate the distribution of &
by a mixture of normals. Conditional on a particular mixture, the likelihood can be

computed via the prediction error decomposition since the linear structure of the model
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is essentially retained. An important drawback of this method is that no matter how
many mixture components are used, the mixture of normals can never give a good
approﬁmation to the tail behaviour of the In(y,’) distribution. Jacquier, Polson and
Rossi (1994, p. 416) argue that the convergence of the algorithm is likely to be very

sensitive to the number and weight of individual mixture components.

Third, Jacquier, Polson and Rossi (1994), JPR thereafter, have developed a Bayesian
approach to the estimation of SV models using a Markov Chain Monte Carlo
(MCMC) technique. The likelihood function can be expressed as a mixture of

distributions for the observations conditional on the volatilities:

L) = [ pOio)plolv)ply)do @.5)

where y and o are (Tx1) vectors of univariate observations, y, and volatilities, o,
respectively. Writing the expression in terms of o; rather than 4, avoids the problems
associated with the linearising transformation. The first density, p(y|o) is determined by
the choice of the distribution for v;, e.g. Gaussian. Second, the marginal distribution of
model parameters, p(y) is given by a Bayesian prior, e.g. inverse Gamma. The MCMC
algonthm is employed to simulate draws from the augmented density p(o; y|y) and
Vobtain the marginal distribution p(oiy) by averaging the appropriate conditional

distributions over simulated draws.

Following this approach, Shephard and Pitt (1997) have constructed a more efficient
block MCMC algorithm for performing Bayesian inference on general non-linear and
non-Gaussian state space models of which the SV model (2.1) is a special case. They
conclude that the performance of the multi-block MCMC methods outperforms the

single block approach of JPR in terms of computational efficiency.
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JPR have performed extensive simulation experiments in which they have
demonstrated that this method is superior to QML and MM estimation techniques
across a wide range of parameter values. Particularly in the region of the parameter
space where the variance of the volatility process is small, the MCMC technique was
found to perform much better. However this is also the region of parameter space in
which the VMCMC estimates are highly sensitive to the prior used in initialising the
Markov Chains (Breidt and Carriquiry, 1996). Furthermore, this technique has some
undesirable features. The procedure is quite involved, requiring a large amount of
computer intensive simulations. In addition, the method needs to be nontrivially
modified for the extensions like the introduction of explanatory variables, alternative
processes for the evolution of variance, or multivariate specifications (Jacquier, Polson

and Rossi, 1995).

Fridman and Harris (1996) suggest that the non-Gaussianity of the measurement
equation disturbances can be handled by means of a “brute force” numerical
integration. In a Monte Carlo study - similar to the one presented here - the authors
demonstrate how Kitagawa’s (1987) extended Kalman filter can be applied in this
context. By retaining the state space form, Fridman and Harris’ (1996) estimation
technique offers the same advantages as the one developed here, and indeed, may

prove a strong competitor in applied research.

Some of the disadvantages of this method consist of computational inefficiencies (the
extended Kalman filter is known to be rather slow) and the necessity to choose a
priory a fixed grid, over which the volatility process will be integrated. This creates a
trade-off between numerical accuracy on the one hand, and computational efficiency
on the other. It is conceivable, that in some instances an optimal grid may not exist.

For instance, when estimating the volatility process around the stock market Crash of
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’87 the grid selection procedure proposed by Fridman and Harris (1996) will either
lead to a very coarse grid over the entire volatility range, or place no probability weight

on the high volatility state during the Crash.

Finally, Danielsson (1994a) proposed to estimate the SV model by the Monte Carlo
likelihood (MCL) estimation method. At the core of the method is the search for
progressively informative sampling densities so that very accurate approximations to
the integral (2.5) can be obtained. Once a suitable importance sampling density is
found (from which values of the latent volatility vaﬁable can be sampled), the latent
volatility variable can be integrated out of the joint density of observations and
volatilities. This is a powerful technique whose time requirement and precision is
similar to MCMC. However, the method is difficult to generalise and remains
computationally expensive largely due to the failure of the technique to exploit the
linear structure resulting from the transformation (2.2) and the availability of standard

simulation algorithms (de Jong and Shephard, 1995).

Durbin and Koopman (1997a) and Shephard and Pitt (1997) have designed importance
sampling methods for general state space models. Specialising this approach to the
estimation of SV models the next Section demonstrates that the resulting MCL
estimator is a viable alternative to the MCMC technique. The finite sample
performance of our estimator is as good as MCMC, the computational requirement is
smaller by a factor of 10, and the method need not be modified when the basic model is

‘extended in a number of interesting directions.

2.3. The Monte Carlo Likelihood (MCL) method

Taking logarithms of the squared residuals in (2.1) gives the linear state space (2.2) but

invokes an additional difficulty: the disturbance term in the measurement equation

4]



becomes non-Gaussian. Let 6=(6;, &, .., &)’ be a (Tx1) vector of (unobserved)
signals® in the measurement equation of (2.3) with individual elements 6=Z;a;. Then

the likelihood function of the general state space model (2.3) can be expressed as:

LOI) = [ p(y,Aw)d6 = | p(16,v)p(6ly)de 2.6)

T
where d@ stands for Hd&, . The second equality illustrates the necessity to integrate

P
the latent variable 6 out of the joint density of y and 6. Monte Carlo integration is a
method which attempts to perform this task. A naive Monte Carlo estimator of the
likelihood function can be obtained by drawing a number of independent random
sequences §” i=1,... N (each of length T) from the unconditional distribution of 6,
p(6 ). This estimator will be given by:

Lyly)= N2 p(16”,p)

While such an estimator will be unbiased, and have a variance O(N''), allowing more
accurate approximations with larger A, it is likely to be very poor. The reason for this,
is the fact that in the 7-dimensional space of y there will be very few draws of & which
will be close enough to the particular sample path of y so as to make a meaningful

contribution.

The idea of importance sampling (Ripley, 1987) can be best appreciated by noting that

the likelihood function (2.6) can also be expressed as:

_pOI6,v)p(ly)

Holw) p(@y.v)

2.7

2 The signals. 6, correspond to the (log)variances, Ing;’ in the previous notation.
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Now, define a random variable, sometimes called the remainder function (Danielsson;

1994a):

p(y16,v)p(Qly)
2.8
56y v) 28)

X(6) =

where the importance density p(fy,y) is an arbitrary conditional density of & given y
and w. It is simple to verify that for any choice of p(dy,y), the expectation of the

remainder function X(§), taken with respect to the distribution of @ is precisely the

conditional likelihood function needed for maximum likelihood estimation:

o, Ay)_
E(x(@)=[2 ‘”1'5(6',]” )),’;(,)"”)pwly, v)d0 = L) 29)

Danielsson (1994a) suggested applying this general idea to the estimation of stochastic
| volatility models. His is an elaborate algorithm for détermining the exact form of the
importance sampling density p(@y,y), which is non-trivial. The central idea of Durbin
and Koopman (1997a) is the observation that X(8) can bev decomposed into two parts:
the Gaussian likelihood function and a residual term. If the disturbance term & were

Gaussian, the likelihood function would be:

Ps W6, ¥)p(6ly)
P (Bly,vw)

L;(yly)= (2.10)

where pg(x|z) denotes a Gaussian density function for random vector, x, conditional on
z. This is the likelihood criterion function which is maximised in the QML procedure.

Taking the importance density p(@|y,y)= p;(0ly,y¥) and combining (2.8) and

(2.10) one obtains:

0,
L(yly) = L (yw)E[%} @.11)
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where the expectation is now taken with respect to the Gaussian density ps(€y, ¥).
The first component is obtained by the Kalman filter while the second is simulated.
Thus, the latent variable can be integrated out of the joint density of observations and
volatilities by standard filtering and smoothing algorithms. Importance sampling is only
required in the second stage to correct for the‘non-normality induced by applying the
linearising transformation. Defining |

s P69, w)
OIS 4 S4 LS ¥ 2.12
P (V169 ,y) 212)

where §” is a particular draw from pg(@y, y). The Monte Carlo estimator of the

likelihood function is readily obtained as:

N

Ly)=LOly)w ,  w=N"2w? (2.13)

i=1
As before, this estimator is unbiased. Its variance is given by

Var[ﬂyx)]z N7'I*(w)o? where ¢, can be consistently estimated by the sample

variance of w"

. Thus, the Monte Carlo technique delivers the expectation of that
element of the likelihood function which is not captured by the Gaussian term.
Because of the one-to-one correspondence between the signals and the noise, the

quantities w" in (2.12) can be re-expressed as:

Py (&”1w)

!
w =] w®, w?= . (2.14)
H ' C Pe(E )

which is a useful result. It implies that in univariate models, instead of drawing (7xm)
signals, 8" from ps(@y,w), we can compute (2.12) by. drawing (7x1) disturbances,
£"=(g), &, .., &) from ps(ely). This operation is accomplished by means of the
simulation smoother of de Jong and Shephard (1995), details of which can be found in
Appendix 2.
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From our experience, the quantities w” in (2.14) are very small numbers and in
practice - for reasons of numerical stability - we work with /”=Inw,”. This has the
added advantage of reducing the number of exponential function calculations, as may
be seen from (2.16). Furthermore, is more convenient to work with the log-likelihood

function, an unbiased estimate of which is given by:

2

n . s,
InL(y)=InL;(Y|y)+Inw + N (2.15)

where W and %, are calculated in the following manner:
1. Sample &'=( &, &, .., &), i=1,...N from pg(ely).

2. Compute w" in (2.14).
3. Calculate w and 5°, as the sample mean and variance of w;.

Notice that quantity w" is a ratio of the true density of the disturbances - In(y,°) - to
the Gaussian sampling density. Its expectation gives that part of the likelihood surface
which is not already captured by the Gaussian approximation. By Proposition 1, a

closed form for w,"” is given by:
) _ gy (1) £ @\ -1
w' = H " exp|l0¢' —e +(£, ) H, (2.16)
where H, is the variance of the measurement equation noise in the general state space

form (2.3).

Durbin and Koopman (1997a) consider a number of devices which improve the

accuracy of the MCL function (2.15) which are now discussed.
(i) Antithetic variables.

Antithetic variables is a standard technique in importance sampling aimed in reducing

the simulation variance. In the present context antithetic samples are constructed as:
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é:(i) = 26‘:1 - gt(i) ’ é:t = E(8:|Y) (2.17)
where the £,’s are obtained from a disturbance smoother (Appendix 2). Equation

(2.17) creates equiprobable draws - since £ —& =—(g" -&) - which is useful if control
variables are used (as discussed subsequently). When antithetic variables are employed
the sample mean, % and sample variance, °, in (2.15) are effectively taken over 2N
draws.

(ii) Equalising density slopes.

So far the importance sampling density ps(€|y) has been taken to be the Gaussian
density with constant variance, i.e. we assumed that &, ~ N(0,H,), H,=/2 for =1,
.., T. However, the importance sampling density p(fy,y) can be chosen arbitrarily in
any way that improves the accuracy of the simulation. In particular, one can use
€ ~ N(0,H) where the scalar variances H,’s are chosen so as to make the

differences between the logdensities lnphzl,(dy/) and Inp,;(gy) as constant as possible

in the neighbourhood of & = E(g,lY). Intuitively, large negative values of £ would
require high values of H, in order for the slopes of the densities in Figure 2.1 to be

roughly equal.

The choice of H,’s is determined by equalising the derivatives of the logdensities at &

leading to a set of vector equations:

2¢,
SPLI |

!
T

t=1,..,T (2.18)

It is simple to verify that for any choice of £ the nominator and denominator of (2.18)

have the same signs, thus ensuring that A , 1s positive.
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The vector equations (2.18) can be solved for H¢ by iteration, starting at 2V

t. Given a parameter vector % we iterate K times between computing # and H {k),

k=1, K, effectively running the Kalman filter and the disturbance smoother.
Choosing the metric d(k) - to describe successive changes in

the variance vector, H, we find that after about six to eight iterations the elements of
the variance vector cease to fluctuate, i.e. H.k) —» Ht, results of which are reported in

Table 2.1, at the end of this Chapter. Table 2.1. shows rapid convergence across a

range of parameter values for the simulated SV model (2.1).
The individual elements ofthe variance vector H are now different across =1, .., T

120
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Figure 2.2: Effect of equalising density slopes

Figure 2.2 presents the histogram of H¢ for one realisation of the basic SV model
with 7'-1,000 observations. It is the mirror image of the density of s¢ (Figure 2.1) and
reconfirms the intuition behind the method: Large negative, but infrequent values of et
require high values of variance parameter H¢ in order to compensate for the difference
in density slopes in this region. The converse is represented by large probability mass

of Ht lower than 77/2.
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Thus the likelihood construction algorithm - described below equation (2.15) - is
modified to include K iterations between the Kalman filter, the disturbance smoother,

and the transformation (2.18) before N samples are drawn in Step 1.
(iii) Control variables.

Control variables is another variance reduction technique often used in the context of
simulation which is based on factoring out the mean of the random variable. In our

experience, the contribution of this technique above (i) and (i) is not very large but

(i)

nevertheless deserves some attention. Expanding /(e”)=Inw" as a Taylor series about

£ one obtains:

7 i G _ 2\
l(s“’) ~ () + c(a(i)) , c( (')) = ZZ ﬁ'l(b‘( ke ( rl ) (2.19)

r=1 t=

where the series have been truncated at q. Conveniently, the odd r order terms cancel
out due to the way in which antithetic samples we constructed in (2.17). This allows us
to expand the Taylor series up to the fifth order term (¢=5) by considering merely the

second and fourth derivatives of /(&"):

dz.: == %eq +Hr—l
1 (2.20)
d, =-—e
) 2

Both, d>, and d,, are scalar. The contribution of the Taylor expansion terms, c(€”) to

N
[=Inwisc=N" 'Zc( ) whose expectation is given by:

c=E[c(e")] = ZZ ut E(e - 4)" ZZ;:' (2.21)

rlll(2)| r=1 t=1
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where the quantities C, = E(e, - E,)z are obtained from the disturbance smoother.
Thus, the expectation of W in (2.15) may be approximated by exp(l(é) + c) )

Numerical maximisation of the MCL likelihood (2.15) - details of which can be found
in Appendix 3 - gives the estimates of the hyperparameters y. The choice of the
number of draws, N governs the accuracy of the apprbximation to the likelihood
function: as N increases, the approximation becomes more accurate. In the event, the
discussion below indicates that N=5 is sufficient for most npractical purposes. Observe,
that once the SV model is formulated in the state space form (2.3) the simulation
algorithm and the optimisation procedure are invariant to many extensions of the basic

SV model.

2.4. Finite sample performance

To assess the performance of the new method we conducted simulation experiments
following the design of JPR, thus facilitating direct comparison with the MCMC
method. The range of parameter values y=(o,4 0,) is selected in the following
manner.? First, the values of the autoregressive parameter ¢ are set to 0.90, 0.95, and
0.98. This choice is motivated by empirical studies which reported the values of the
autoregressive coefficient close to unity, ranging between 0.9 and 0.995. Second, for

each value of ¢, the values of o, are selected so that the coefficient of variation:

,_ var(h) _ o |
CcV = EA] —exp(]_¢2) 1 (2.22)

takes the values 10, 1, and 0.1. High values of the ratio of volatility variance to its
squared mean indicate pronounced relative strength of the stochastic volatility process

while low values of CV signify that the model is close to the one of constant volatility.
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In fact, if preliminary exploratory analysis of the data from a model with low CV" was
based only on the autocorrelation structure of 7.’ or Inr? the practitioner without a
strong prior belief that the SV model is the correct specification will be unable to
distinguish between the SV and a homoscedastic model. Nevertheless, the parameter
triplets y~ypo are included for the sake of completeness. The focus of interest is thus
centred around parameter triplets yi-ys whicil correspond ‘to the coefficient of
variation close to unity. Most of the empirical studies surveyed by JPR report

parameter estimates in this range.

Finally, the values of long run volatility level, & are chosen such that the expected

variance:

o,
Elnl=c? exp(mj (2.23)

is set to 0.0009. If the simulated data are regarded as daily returns, this corresponds to
approximately 22% annualised volatility if the data are thought as being sampled at
weekly frequency. Note, that JPR chose the parameterisation (1.13) rather than

(1.13"), This gives the following range of parameter triplets:

Cr=10 Cv=1 CV=0.1
4} 2 V4] 7] Ys Ws %4 Vs 4]
¢ 0.9 0.95 0.98 0.9 0.95 0.98 0.9 0.95 0.98
o, | 0675 0484 0308 [ 0363 0.260 0.166 | 0.135 0.096 0.061
a |-0.821 -0411 -0.164|-0.736 -0.368 -0.147|-0.706 -0.353 -0.141

For each of the nine triplets, y;, we generate samples of length 7=500, estimate the

model by various techniques and compute means and root mean squared errors of the

* The correlation coefficient, p is set to zero.
*In fact. samples of length 7=600 are simulated and the first 100 observations deleted. This is a well
known technique aiming at reducing the dependence on initial conditions.

50




parameter estimates over K=500 simulated realisations of the process. In all

calculations the number of draws, N used to take the expectation in (2.15) is set to 5.

Results from the sampling experiments are presented in Table 2.2 which is divided into
three panels in accordance with the coefficient of variation CV. Within each panel the
true parameter values are displayed first. The JPR simulation results for the Bayes
(MCMC) estimator, their Table 7, are reproduced in the first row, the Quasi-Maximum
Likelihood estimator (QML) in the second, followed by the MCL estimator given in
equation (2.15). The sampling standard deviations of the parameter estimates are in
parenthesis below. The starting parameter values for both, the QML and MCL
optimisation routines are obtained from a two dimensional grid search procedure which

searches for an optimum across the surface of the Gaussian Likelihood function (2.10).

The figures presented in Table 2.2 allow several conclusions to be drawn. First, the
experiment demonstrates that the Monte Carlo Likelihood (MCL) estimator (2.15) is
as efficient as JPR’s MCMC estimator across all parameter values. In most cases the
standard errors of the MCL estimator, documented in the final row of each panel, are
at least as small as those reported for the MCMC estimator. In addition the bias
exhibits a similar behaviour; the average parameter estimates obtained by MCL are as
close to the true values as the MCMC estimates and significantly closer than the QML

estimates.

The performance of the MCL estimator is further illustrated by examining the sampling
distributions of the parameter estimates. Figures 2.3 and 2.4 present the smoothed
densities of the estimates of ¢ and o, for two triplets y, and s, see Appendix 1 for
details of nonparametric kernel density estimation. The MCL estimator is shown to
exhibit a much tighter sampling distribution then the QML estimator, a property

already indicated by smaller standard errors of the estimates reported in Table 2.2.
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Figure 2.3: Sampling distributions ofthe MCL and the QML estimators; y+4

050 Os* 056 OC 066 070 07 079 083 082 09 09 096 Off 08 Qz 031 [ [0 (0] Q on o.3)

7=0.95 <7"=0.260
Figure 2.4: Sampling distributions ofthe MCL and the QML estimators; y5

Second, confirming the JPR’s results, the QML estimator (2.10) is found to be
inefficient. Across the entire parameter space the standard errors ofthe QML estimator
are at least twice the size of the fully efficient MCL estimator while the bias is non-
negligible. The efficiency of the QML estimator increases as the strength of the SV
process becomes more pronounced, i.e. for parameter triplets corresponding to the
values of CV equal to ten. For instance, for the case of CV- 10 the sample standard
error on ¢=0.95 is 0.046 while in the case of CV- 1 the standard error on *=0.95 is

twice as large, 0.101.

However, although we find QML to be inefficient, its performance is nowhere as near
as bad as reported by JPR. Same conclusion was reached by Breidt and Carriquiry
(1996) who also re-examined the finite sample performance of the QML estimator.
Since Figures 2.3 and 2.4 were constructed so as to correspond to JPR’s Figures 4

and 5 respectively, direct comparison reveals dramatic differences in the performance
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of the same estimation technique. This raises the question of possible inefficiencies in
JPR’s QML estimation method such as poor starting values, different convergence

criteria, or inefficient implementation of the algorithm.

Thirdly, the performance of all three estimators deteriorates as CV decreases. The
standard errors on ¢ increase twofold by going from CV=10 to CV=1 and eight times
by going from CV=1 to CV=0.1. Comparison of the MCL and the MCMC estimators
in this region reveals that the MCL estimator exhibits slightly larger standard errors but

a considerably smaller bias.

However, as the number of draws, N, increases the expectation of the MCL likelihood
function in (2.15) can be taken more precisely, thus leading to increased performance.
In principle, the approximation can be made arbitrarily close by choosing a large N, but
the computational burden will render this strategy impractical. In our experience, a
very small number of draws is sufficient to produce results comparable with the

MCMC estimator. This is illustrated in Table 2.3.

The interest is primarily focused upon two factors: the number of draws required, and
the benefit of using the device of equalising density slopes as in (2.18). First, observe
that already a small number of draws, N=10, and without equalising the density slopes,
the MCL technique produces results comparable to the fully efficient MCMC
est;mator. Both in terms of bias and precision the MCL (¥=10) and MCL (N=20)
estimators match the performance of MCMC. Second, -the precision of the MCL
estimator can be significantly improved by employing the density slope equalisation
technique, as can be seen by examining the standard errors of the MCL*(N=5). For

instance, employing this device, only 5 draws are sufficient to reduce the standard error

on each parameter by a factor of two, as can be seen from the line labelled
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MCL*(N=5) in Table 2.3. Increasing N more dramatically reduces the standard errors

even further.

The final column of Table 2.3 reports average time that was required to obtain
parameter estimates, given the initial guess: for each realisation of the process the
initial guess was obtained from a coarse grid of the quasi-likelihood surface. That same
parameter vector was then used by each estimation technique as the starting value.
Since time required for the convergence of the algorithm is machine dependent we
chose to report the figures in terms of multiples of the QML time (All calculations
were performed on a 586, 90mhz, 8 RAM, PC. On average the QML estimation took
0.572 seconds, thus requiring 0.572*27.67=15.8 seconds for the MCL*(N=5)
estimator). The experiment suggests, that full efficiency can be achieved by the MCL
with only N=5 draws if the device of equalising density slopes is employed. This is our
preferred estimator whose performance across the entire parameter space was already

reported in Table 2.2.

Finally, we investigated the computational requirement for the MCL estimator across
different sample sizes. Due to timing considerations we chose to measure the average

time for one function evaluation the results of which are presented below:

T OML |[MCL (N=10) [MCL (N=20)| MCL*(N=5) | MCL*(N=10)
500 0.020 14.55 2632 25.66 31.56
1,000 0.037 15.62 28.33 27.56 33.90
2,000 0.072 16.29 29.49 2817 3458
6,000 0.220 15.59 28.22 27.53 33.84
10,000 0.359 16.00 28.96 27.94 3439

The column labelled QML reports average time for one function evaluation in seconds,
which is, of course, slowly increasing in 7. The following columns give the average .

~ time for the different MCL estimators expressed as a multiple of the QML time within
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each row. While the relative function evaluation time for the MCL*(N=5) is less than
twice as large (25.66 vs. 14.55) as for MCL(N=10) estimator, the average time until
convergence is almost identical (27.66 vs. 27.66). This indicates that the likelihood
surface is better specified and fewer iterations are required by the MCL*(N=5)
estimation. Thus, despite larger function evaluation times, parameter estimates can be

obtained within same time periods for either method.

Finally, we would like to compare the computational requirement for the MCL
estimator with that of MCMC. Unfortunately, JPR do not report their average
estimation times, not even as multiples of QML, and one has to make an indirect

comparison referring to the times reported by Danielsson (1994b).

We re-estimate the basic SV model on the same data set used by JPR and Danielsson
(1994b). The data set consists of daily observations oh the S&P500 stock index level
in the period 2/1/80-30/12/87. The return series are prefiltered to remove the calendar
effects as documented in Gallant, Rossi and Tauchen (1992). The sample length is

7=2,023 observations.

The choice of this particular data set is convenient for two reasons. First, the
parameters of the process have already been estimated by MCMC and Danielsson’s
MCL which gives a reference point. More importantly, this is the only instance in the
literature where the times for the MCMC estimation are reported thus allowing us to
calibrate the relative time requirement of our method. The results of the estimation

were:

a ¢ Oy time
MCL| -0.00 0.96 0.16 1:21

MCM(C| -0.00 0.97 0.15 7:15
Danielsson’s MCL| -0.00 0.97 0.15 10:45

55



As in the simulation experiment, the device of equalising density slopes and N=5 draws
were used. The parameter estimates are almost identical and the time requirement for

the new MCL is about five times smaller than either of the of the methods.’

These results are very encouraging. They demonstrate that the MCL estimator
proposed here exhibits very satisfactory small sample performance which is directly
comparable to the fully efficient Bayesian MCMC method. The evidence also suggests

that these results can be achieved by using a very small number of draws.

2.5. Further issues

Having shown that the MCL estimator exhibits satisfactory finite sample performance
we would now like to turn to the practical issues in SV model estimation and indicate

some of the interesting extensions of the basic SV model (2.1).

2.5.1. Inlier problem

Since our method, as much as QML, relies on the use of the linear state space, taking
the logarithms of squared mean adjusted returns becomes a problem when zero, or
small values are encountered. In particular, if the drift in of the asset can be assumed to
be zero and the series to be investigated is high frequency data, or prices are recorded
discretely then it is possible that some returns will be zero. In many practical
applications, however, equality of prices at two successive observations in time,
leading to zero returns, arise due to data irregularities. For instance, properly
accounting for holidays eliminates many “zero” returns in any daily exchange rate

series. Deleting such observations from the sample eliminates the inlier problem.

* Direct comparison of computational requirement is obscured by the difference in computer platforms
(SPARC superstations vs. PC), resources (size of RAM, clock speed), as well as differences in
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Alternatively, the updating equations of the Kalman Filter can be modified so as to

handle missing values (Harvey, 1989).

If the inlier cannot be assumed to be an irregular observation there are three
alternatives of dealing with the problem. First, the sample mean of the series may be
subtracted from the observations. While the method may be feasible numerically (the
resulting series are devoid of entries identically equal to zero) it does not solve the
problem conceptually. Second, Breidt and Carriquiry (1996) suggest a transformation
of the data which amounts to a truncation of large negative values of In(r’) thus

shifting some probability mass towards the centre of the distribution:

*f,2 2 2 ﬂsrz 2 1 ~\2
In (r, ):ln(r, +b')_r2+2s2 , s, =-;Z(r,—r)

where A is some subjectively chosen constant, e.g. 0.02. The authors demonstrate that
this transformation improves the performance of the QML estimator and mitigates the
inlier problem. On the other hand, this transformation alters the entire density of the
data, an unsatisfactory solution. Finally, one may cut off the inliers by setting the

observation at some value

ln'(rf) = ln{r,2 I, u—}} +Ink? I{ (2.24)

I’,(K}

where I{-} is the indicator function, and x is a small number. Invariably, the choice of
is subjective but it is demonstrated below that (2.24) leads to reasonably good MCL

estimates for very small .

To assess the performance of the MCL and QML methods across various values of ¥
we designed the following Monte Carlo experiment. For the parameter triplet ;s we

generated the basic SV model (2.1) as before, except that the &'s have now a 10%

programming languages (C++ vs. GAUSS).
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chance of taking the value zero and 90% chance of being drawn from MN(0,1). It is
rarely the case in practical applications that 10% of the sample are identically equal to
zero but the experiment has been designed to illustrate the behaviour of the estimators
in extreme situations. The generated series was then transformed according to (2.24)
with In(x;?) taking the values of -20, -30, -100, and -200. The results of the simulatioﬂs
are presented in Table 2.4 and compared to those of the previous Section. It will be
recalled, that in that experiment samples were generated in accordance with (2.1) while
none of the draws £~N(0,1) was ever identically equal to zero®. The first row of each
panel presents true parameter values, the second row reproduces the relevant results
from Table 2.2 and the following rows give simulation results when about 10% of the

observations are set to x;.

It is apparent that the performance of QML leaves much to be desired. The bias and
the standard errors are very sensitive to the choice of x. As x is decreases the
performance deteriorates rapidly, leading to enormous biases in all three parameters.
However, the decline in precision is not homogenous across the three model
parameters. Interestingly, for tiny x (e.g. &4 = 3._72*10’44) the bias in the estimate of the
autoregressive parameter ¢ disappears, while the biases in the estimates of o and o,

remain very large.

The results of the MCL estimator are considerably better. The bias and the standard
errors on all three model parameters decrease with the cut off value x. Comparison
with the estimation results for the full sample (Table 2.4, Panel B, row two), reveals
that less precision can be achieved when 10% of observations are zero, the standard

errors in this case are about twice as large. This is not surprising, and stems from the

° Which is a property of the random number generator.
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fact that the likelihood function is ‘flatter’ in cases when many zero observations are

present.

2.5.2. Heavy tails

The unconditional density of many financial series exhibits larger kurtosis than can be
captured by simply incorporating conditional heteroscedasticity into a Gaussian
process. As has been pointed out before, the basic SV model can be generalised so as
to allow the mean equation innovations V; to be Student-t distributed as in (1.2"). The

density of the transformed disturbances, &=In v is given by:

Proposition 2.2: Let the scalar variable x have a Student-t distribution with v degrees

of freedom. Then the density of z=Inx* is:

— vl
z 2 : I‘(w—l)
()=C.|1 e_) § C =—-\2)_ 2.25
p‘""'() "[ +V ¢ Y Jer'(%) @2

Proof: The density of a variable which follows a Student-t distribution with v degrees

of freedom is given by:

v+l

N )7 G,
p,‘_(x)—Cv(H v) CV~MT(§)

Making first the change of variable y=x’ one obtains:

v+l

P )= p, (\/;)I%I =C, (1 + %j z 05y712

Now, let z=Iny and the proposition follows. [J
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The limit of (2.25), as v, is of course, the In(y,”) density (2.4) which can be

verified by taking logarithms of (2.25), and expanding In(1+x) as a Taylor series.

The computation of the MCL likelihood (2.15) involves the quantities w,” in (2.14)
which are now constructed as:

v+l

W = (22 ,)" explos(e® + () B))C, (14v7e) T @216)

Furthermore, the first, second and fourth derivatives of (2.25), required for equalising

density slopes in (2.18) and Taylor series expansions in (2.19) are:

d}(z)=%+kv[ e’ ]

viv+e®

A
dZ(Z) g [v+e’]2

e[V -Sv+e’(v+1 1
d4(2)=kv [ 4( )]’ kvz_V(V'i' )
[v + e’] 2
So that the updating equations for 17, in (2.18) become:
q =2 t=1,...,T (2.18")

! E[V+IJ
el B _1
v+e'

Again, the Gaussian equations (2.18) are obtained in the limit, as v—c in equation
(2.18"). Moreover, (2.18") automatically ensures the non-negativity of 17, , which can

be verified by observing that the signs of the nominator and denominator are the same

for any value of vand &,.

The number of degrees of freedom, v enters the parameter vector y;, over which the

likelihood function is maximised. This is different from the Harvey, Ruiz and |
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Shephard’s (1994) QML set-up where the variance of the measurement equation, H

in (2.3) is treated as a parameter.

To illustrate the method, we proceed to fitting the SV-/ model to the S&P500 return
series, which were described earlier in Section 2.4, results of which are presented in
Table 2.5. For ease of reference the results of the basic SV are reproduced in the
upper panel. The estimated number of degrees of freedom is 7.634, well in the range of
empirical estimates reported by Bollerslev (1987) using the GARCH-/ model: 6.211-
13.889. The likelihood ratio test statistic takes the value 26.6 which is significant at the
1% level when compared to the relevant critical value ofthe %2 distribution. Similarly,
the standard error on v indicates the significance ofthis parameter. The introduction of
the Student-t distributed mean equation disturbances reduces the value of the implied
coefficient of variation, CV from 0.389 to 0.255: intuitively, lower variance of the

latent process is sufficient to account for the variability in the series.
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Figure 2.5: S&P500: unconditional density and the density ofthe SV-/ model
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Finally, Figure 2.5 demonstrates that the unconditional density of the S&P500 returns
is closely approximated by the unconditional density from the SV-z model.’” By
contrast, the unconditional density of the basic SV model (with normal v;) does not
capture as well the unconditional distribution of asset’s returns. Thus the MCL

estimator can be easily adjusted so as to incorporate heavy tailed distributions.

2.5.3. SV in the mean

SV in the mean models can be estimated by MCL by rewriting the mean equation (1.2’)
as 7,=0 o™ (5 + v,) and applying the logarithmic transformation to obtain the

. ~ 2 D .
residuals €, = ln(5 + v,) . The new measurement equation disturbances will now have

a non-central In(y,°) distribution with the nbn-centrality parameter A=4". The analytic

expression for this density is given in:

Proposition 2.3: The non-central In(y,°) distribution with the non-centrality parameter

Als:

P2 = exp[z —2e' }Zocj(/l)e" (2.26)

where

B YEAY
cj(’?')z . el (2) et
j!r(3+j)2 ?

Proof: Starting with the non-central y,° density (Johnson and Kotz, 1970, p. 130) the

change of variables z=Iny gives the result.[]

" Parameter estimates of Table 2.5 were used to draw two samples of the SV process the density of
which is presented in the figure. The t-distributed random numbers were constructed in accordance
with the Bailey (1994} algorithm. I am grateful to Jon Danielsson for pointing out this procedure.

62



The density in (2.26) can be seen as a mixture of central In(z,’) densities with varying
degrees of freedom. Clearly, when SV in the mean effects are not present (1=0), the
density (2.26) reduces to (2.4) because c,~.=o(0)=(27r)'"2 and c¢;»(0)=0. Despite the

infinite sum in (2.26) it is possible to calculate the derivatives-of Inp, . (z), the first of

which - required for the equalising density slopes procedure - is:

d(z)= %[1 ~e']+g(z.1), glzd)= Zj(:)cj(ﬂ.)je” {gcj(l)e“}

so that equation (2.18) becomes:

_ 24
H=2 -1-2g(£,,4)

t=1..,T (2.18")

The function g(é, ,l) is non-negative and increasing in £ implying that in practice the
modulus of (2.18") needs to be taken to ensure the non-negativity of I?, .

On the other hand it is possible to approximate (2.26) with a multiple of a central

In(y,”) density by matching the first two moments:

p=n2+y(%), v(3) = icj(l)l//(%*ﬁ)

2 _ gc](g)[w'(-;-+j)+ {t//(%+j)"/7(%)}2]

where yfa) and y{a) are the diagamma and trigamma functions respectively (Benett,
1955). However, it is well known (Johnston and Kotz, 1970, Chapter 28) that the
approximation is rather poor for low values of v in case of the non-central y,” density

which is likely to be also true in the case of In(y;).

The calculation of the likelihood function (2.15) requires the quantities w,” of (2.16)

which are computed as:
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where as before, ef(j) are univariate draws from the simulation smoother, H¢ are scalar
mean equation variances in (2.3), and the weight function ¢/X) is defined in (2.26). The
truncation of the infinite sum is made at some finite value K. A guide to the choice of

ATis the surface ofthe function ¢/X) X>0,j=\,..., K, which is presented in Figure 2.6.

Figure 2.6: Weight function ¢/X) in the non-central InOfr2) distribution.

Figure 2.6 indicates that A=4 is a reasonable cut-off value for the range of X likely to
arise in applied empirical research. For instance, using the ARCH(p) model, Engle,
Lilien and Robbins (1987), obtain estimates ofthe risk premium, S, in the range 0.505-0.8,
thus giving values of X (0.255-0.64) well in the range of the horizontal axis in Figure

2.6

2.5.4. Explanatory variables

As has been mentioned earlier, the basic SV model can be extended to include a set of
regressors, Z, in the variance equation Chapters 4 and 5 are entirely devoted to the
empirical validity of this model. It should be mentioned here, however, that since the

explanatory variables enter the state vector, as can be seen in Appendix 2, the MCL



estimation procedure need not be adjusted in order to estimate the coefficients.
Moreover, because only ¢ and o, enter the hyperparameter vector, the likelihood
function needs to be maximised in two directions only, irrespective of the number of
explanatory variables. This is very useful since it reduces the dimensionally of the

optimisation problem.

2.5.5. Smoothing

Once the model parameters have been estimated, interest might centre on obtaining
estimates of the volatility process throughout the sample, and beyond. Unlike in the |
GARCH models, where knowledge of the model parameters is sufficient to construct
the volatility figures recursively, in the SV framework the latent volatility can only be

estimated.

Several issues are relevant here. First, one may want to construct volatility estimates
which take account of the parameter uncertainty. This operation can only be performed
within the fully Bayesian MCMC framework where the joint density of latent
volatilities and model parameters is readily available. In classical estimation - and in the

MCL in particular - the estimated parameters are treated as fixed.
Second, even if the parameters are estimated by the fully efficient MCL, smoothed
estimates of the state vector a,; = E(a, l¥ ) in the general state space formulation (2.3)

need to be obtained. Conventional state smoothing algorithms do not explicitly take
account of the non-Gaussianity in the measurement equation. One solution would be to

consider the posterior mode of the state vector, denoted by a,;, rather than its
posterior mean a,, . The mode of a random variable is the most probable value, one at
which the p.d.f. achieves its maximum. In the present context the posterior mode &,

is defined as the solution to the vector equation Jlnp(al|Y)/Jda =0 (Durbin and
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Koopman, 1997b). The posterior mode is obtained simply by employing the device of
equalising density slopes (2.18) and running the state smoother, described in Appendix

2.

The second approach consists of estimating the posterior mean of the signal,

6,r = Z,a,; rather than of the state vector itself. This is sufficient when only the in-
sample estimates of the volatility process are required, as can be seen in (2.28) below.
The solution (Durbin and Koopman, 1997b) is given by:

w®

N
_, 0 Y 227
0‘[1 yl ; -f; 8! ’ .f; Wt ( )

where the &” are drawn from the simulation smoother, w” are constructed from

(2.14). Intuitively, the weights, f; correct for the non-Gaussianity in the measurement

equation.

Finally, if the posterior mean of the state vector itself, ayr is required, the following
procedure may be followed in the case of the basic SV model with explanatory

variables. Once the parameters are estimated, Z,y is subtracted from the observations
and the state space model reformulated so that the state, q,, the signal, 6,, and the
latent AR(1) process, / become identical. Thus equation (2.27) may be applied.

The final difficulty is the fact that the estimation error, a,; —«, (where @, now
denotes the true state vector) is O(1). Thus treating exp(a,, ) as lognormal may lead

to distortions. This lead Harvey and Shephard (1993) to consider the following

estimate of the volatility process. Given a smoothed estimate of the state vector, a,,

throughout the sample, an estimate of the variance of mean adjusted returns, denoted

by G is:
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T

~ —_ Z, — - =-Z,

Gl=ape™™ ,  GF=T'Drie™™  ¢=1.,T (2.28)
t=1

Equation (2.28) demonstrates that for the in-sample volatility estimation the posterior
mean of the signal (2.27) is sufficient. Similarly, the L-step ahead forecasts of the

variance will be given by:

&2 =&2et e I=1,.L (2.29)

e+lls — Yt

where Z, and 7, are system matrices in the linear state space (2.3), whereas 7 is the

final observation time (previously denoted by 7). In the univariate model with AR(1)

dynamics and % explanatory variables, equation (2.29) is specialised to:

G =ges M =1 L (2.30)

t+l|t r

where Z=(z', .., z*,)’ now denotes a (1xk) vector of explanatory variables - including a

constant - at the final observation 7, and ¥ is a (kx1) of vector of coefficients.

2.6. Multivariate extensions

The multivariate form of the basic SV model was given in (1.20). Applying the

linearising transformation (2.2) yields the linear state space:

Y =Ing +h, +¢, g,=Inv},, v, ~NID(0,Q,
{’ ’ ' . v~ Mp(0.0,) (2.31)

h =®h_ +7, n ~ NID(0,%, )
where V,, Inc, h,, 1, and & are now (Nx1) vectors, and N is the number of series in
the model. However, having assumed the Gaussianity of the v;‘s, the new residuals, &,
will now have a multivariate In(y,’) distribution. Harvey, Ruiz and Shephard (1994)

show that the transformed disturbances, &, will each have a mean of -1.27 and a
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covariance matrix, £, whose diagonal elements are 72/2, while off-diagonal elements

are given by:

29T,
= , ,J=1L...,N 232
75 (2+_])_] — P 1,J (2.32)

i.k

where p;; are the off-diagonal elements of the correlation matrix Q. Notice, that the

signs of p;; cannot be estimated since the relevant information is lost when the
observations are squared. In QML - as in MCL - we estimate the sign of p;x as positive

if more than half of the pairs 7,7, in (1.20) are positive, and vice versa.

Again, QML yields consistent, alas inefficient estimates of parameter values and full
efficiency can be achieved by MCL. All that is required for the implementation of the
algorithm is the knowledge of the true density of the disturbances. This issue is

addressed in the following two Sections.

2.6.1. General case

For simplicity of exposition we focus on the bivariate case here. The analytic

expression for the bivariate In(z,°) density is given in the following proposition:

Proposition 2.4: Let X be bivariate standard normal with the correlation coefficient p.

Then the density of Y=InX? is given by:
p, (V)= ZK (p)Hexp(y, (j+03)-05(1-p*) ey‘) (2.33)

P’
T(j+4)r@E) 12 (1- )"

’ j=11-",w

K, (p)=

Proof: The bivariate ¥’ density with v degrees of freedom is given by:
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where /? (W) denotes a univariate central density with v degrees of freedom

(Johnson and Kotz, 1972). Setting v*< and making the change of variables Z=\nY gives

the desired result.o

As in the univariate case it is helpful to visualise the shape of the density, a graph of

which is presented in Figure 2.7.

0.14
0.12
0.10
0.08
0.06
0.04
0.02

0.0C

Figure 2.7: The bivariate In(xi2) density with a correlation coefficient p=0.9

Again, the approximation of this density with a bivariate Gaussian, as required by the
QML, will be poor since the true density is highly skewed on the negative half plane

However, the Gaussian density will provide a reasonable sampling density for the

MCL The quantities w/'7in (2.16) are computed as:
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where / is a (2x1) unit vector, s#) is (2x1), and K is a constant at which the infinite

sum in (2.33) is truncated. The structure ofthe (2x2) mean covariance matrix Ht = 'Le
was described in (2.32).

Again, a suitable truncation value « needs to be chosen. Figure 2.7 below depicts the
surface of the weight function K}¥{p) in (2.33) . Observe that different values of p will
allow for different cut-off points K. However, AT=10 appears to be a reasonable upper
bound, after which the contribution of further In(xi2 densities in the summation (2.33)

is negligible.

Figure 2.8: Weight function K/p) in the bivariate In{xi2) distribution.

It has been shown earlier that the computational efforts can be reduced when w,0 in

(2.14) are subjected to Taylor series expansion. Similarly the quality of the sampling

density p G(ely/) is improved by equalising the slopes ofthe p Glely/) and phka\;e\y IS
in the neighbourhood of ¢, - E(etly) . This amounts to equating the first derivatives of

the \npGfe\f)) and X np ~"e” and solving for the matrix Ht¢ which becomes time

varying.
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These techniques require analytic expressions for the first, second and fourth

derivatives of the logdensity, Inp,_ , (¥). However, the infinite sum in (2.33) makes it

difficult to find tractable analytic expressions for the derivatives of the logdensity. And

estimation may therefore proceed directly by calculating (2.16") and (2.15).

2.6.2. Uncorrelated case

Considerable simplification can be achieved when the mean equation disturbances v;,

and v, in (1.20) are uncorrelated, i.e. Q, =7, in (2.31). In this case, the bivariate

In(z,°) density, p_ " (¥) takes a simple form:

2 1 y __e)‘i
AY) = -
plnzl( ) E‘I‘/E;CXP{ > }

This follows from Proposition 2.4, by setting p=0, or directly from Proposition 2.1, by
observing that the joint density of two independent variables is a product of their
individual densities. Therefore, the first, second and fourth derivatives of the

logdensity, In pml,(Y) are:

- 0 0 0
1-e” 1 -e” 0 I 0O 00 O
dl(Y)'=— ’ dz(Y)=E b d4(Y):'2‘
1-e* 0 -en 0O 00 O
| 0 0 0 -7

Equalising the density slopes, the diagonal matrices 4, are chosen so as to satisfy:

= t=1,.,T i=12 (2.18")
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which is an extension of (2.18). Letting £ = ¢ — & one obtains the multivariate

equivalents of the Taylor series expansions (2.19) and (2.20):

40)= 326 (B(8)+ F) + ;S veclgg (6wt

T

Be =5 ol(d(6) + ") Egg ]+ %grr[d4(é)zs[vec(;,g Yeccg]]

where the quantities E{(' =Var(e,|Y ) are again obtained from the disturbance

smoother. Notice, that matrix of fourth moments, E[vec({ <, ') vec({ <, ')'] , need not be
evaluated completely since d(Y) selects merely the first and fourth diagonal elements

of this matrix.

Finally, the univariate quantities w,” in (2.14) and (2.16) can now be computed as:
w® = ,ﬁ,rlz exp(O.S(i'ef” —i'e" + 8,‘”'1?,"’8,“))) (2.16"")

where i is a (2x1) unit vector, & is (2x1), and H, is (2x2).

2.7. Conclusion

This Chapter proposes a new method of estimating stochastic volatility models. At the
core of the procedure is the representation of the model in a linear state space form.
Kalman filter can then be applied to yield the prediction error decomposition which in
turn constitutes the Gaussian likelihood function. However, due to the log chi-square
disturbances in the measurement equation, the Gaussian likelihood will only make up a
part of the true likelihood function. The expectation of the remainder term is simulated.
As the number of simulations (/) increases, the approximation becomes more accurate.

The final sample performance of the MCL algorithm is examined in a simulation study.
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The results indicate full efficiency of the estimator across a range of possible parameter

values even for moderate simulation sizes, N=5.

Apart from computational efficiency, the advantage of the approach lies in the
formulation of the model in state space from. This allow§ the basic model to be
extended in a number of directions likely to arise in empirical research. One such
extension is the inclusion of explanatory variables in the variance equation which shall
be examined in more.detail in the following Chapters. Once the model is in the state
space form, no modifications of the estimation procedure are required beyond

determining the analytical form of the true density function of the disturbances.
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Table 2.1. Equalising density slopes: a recursive solution

Vi Y2 Vs Ye Vs Vs Ve Ye Ve
d) 3.135 3.181 3.225 3215 | 3.239 3.260 3.281 3.285 3.292
d2) 1.309 1.417 1.516 1.490 1.546 1.602 1.634 1.654 1.676
de) 0.264 0.281 0.295 0.298 0.302 0.306 0.310 0.311 0.311
d@) 0.144 0.131 0.110 0.125 0.107 | 0.0090 | 0.0087 | 0.0079 | 0.0070
d¢s) | 0.0049 | 0.0042 | 0.0031 | 0.0038 | 0.0029 |0.00223 | 0.0021 | 0.0018 | 0.0015
de) | 0.0023 | 0.0016 | 0.0010 | 0.0014 | 0.0009 | 0.0006 | 0.0005 | 0.0004 | 0.0003
d(7) |0.00099 | 0.00064 | 0.00034 | 0.00050 { 0.0003 | 0.0002 | 0.0001 | 0.0001 | 0.0001
d(8) | 0.00048 | 0.00027 | 0.00011 | 0.00019 | 0.00009 | 0.00004 | 0.00003 | 0.00002 | 0.00001
d(9) |0.00026 | 0.00011 | 0.00004 | 0.00007 | 0.00003 | 0.00001 [ 8e-6 6e-6 3le-6
d(10) |0.00012 | 0.00005 | 0.00001 | 0.00003 | 0.00001 3e-6 2e-6 le-6 le-6

This table reports the values of the metric d(k)=T""' ZLJFI,“‘) - H*| fork=1, ..,
10 iterations of the simulated SV model with 7=1,000 and across several parameter
triplets y,=(a, @,6%,);. Small values of d(%) indicate that the individual elements of the

variance vector H are not changing considerably across further iterations, i.e.
kT
HY > H,.
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Table 2.2. Comparison between MCMC, QML and MCL estimators

CcV=10 v y2 Vs
a ¢ oy a @ oy a @ oy
True -0.821 0.9 0.675 -0.411 0.95 0.484 -0.164 0.98 0.308
McMcC -0.679 0.916 0.562 -0.464 0.94 0.46 -0.19 0.98 0.35
1 (0.22) (0.026) 0.12) (0.16) (0.02) (0.055) (0.08) (0.01) (0.06)
OML -0.945 0.885 0.703 -0.513 0.937 0.506 -0.250 0.969 0.324
0.471) | (0.057) | (0.177) | (0.376) | (0.046) | (0.138) | (0.267) | (0.032) | (0.098)
MCL -0.662 0.907 0.621 -0.360 0.949 0.458 -0.174 0.975 0.300
(0.19) (0.026) | (0.075) { (0.139) | (0.019) | (0.062) | (0.112) | (0.016) | (0.05)
Cv=1 7 Vs Vs
a ¢ o, a ¢ Oy a @ Oy
True -0.736 0.9 0.363 -0.368 0.95 0.26 -0.147 0.98 0.1657
MCMC -0.87 0.88 0.35 -0.56 0.92 0.28 -0.22 0.97 0.23
(0.34) 0.046) | (0.067) (0.34) (0.046) | (0.065) 0.14) (0.02) (0.08)
OML -1.002 0.864 0.410 -0.591 0.920 0.302 -0.330 0.955 0.200
(0.91) (0.122) | (0.228) | (0.756) | (0.101) | (0.176) | (0.619) | (0.083) | (0.142)
McCL -0.598 0.904 0.336 -0.327 0.947 0.249 -0.163 0.974 0.163
(0.274) | (0.044) | (0.076) | (0.186) | (0.030) | (0.059) | (0.155) | (0.025) | (0.046)
CV=0.1 v Vs Vo
a ¢ ) a ¢ Oy a 4 Oy
True 0.706 0.9 0.135 -0.353 0.95 0.0964 -0.1412 0.98 0.0614
McMC -1.54 0.78 0.15 -1.12 0.84 0.12 -0.66 0.91 0.14
(1.35) (0.19) (0.082) (1.15) (0.16) (0.074) (0.83) (0.12) | (0.099)
OML -1.007 0.858 0.165 -0.890 0.875 0.153 -0.688 0.903 0.129
(1.33) 0.19) (0.203) (1.40) (0.20) (0.19) (1.21) 0.17) | (0.179)
McCL -0.884 0.848 0.102 -0.641 0.890 0.088 -0.453 0.922 0.067
(1.51) (0.21) (0.097) (1.34) (0.23) (0.079) (1.11) (0.19) | (0.061)

This table reports the results of the simulation experiments. For each set of parameter
triplets v,=(a.4,0°,),, samples of length 7=500 of the basic SV model (2.1) are
generated K=500 times. The model is then estimated by various techniques and the
average estimated parameter values (and their standard deviations) are presented in
each row. The results for the MCMC estimator are reproduced from Jacquier, Polson
and Rossi (1994), Table 7.
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Table 2.3. Performance of the MCL estimator

CV=] Vs
a ¢ Oy time
True -0.368 0.95 0.26
MCMC -0.56 0.92 0.28 -
(0.34) (0.046) (0.065)
OML -0.591 0.920 0.302 1
(0.756) (0.101) (0.176)
MCL (N=10) -0.388 0.947 0.234 27.66
(0.378) (0.051) (0.126)
MCL (N=20) -0.390 0.947 0.232 49.49
(0.378) (0.051) (0.109)
MCL* (N=5) -0.327 0.947 0.249 27.67
(0.186) (0.030) (0.059)
MCL*(N=10) -0.325 0.947 0.249 35.08
(0.180) (0.029) (0.059)

This table reports the results of the simulation experiment on a single set of parameter
values, 5. Samples of length 7=500 of the basic SV model (2.1) are generated K=500
times and estimated by MCL. Values 10, 20, and S in parenthesis signify the number of
draws, N, employed by taking the expectation in (2.15). When the device of equalising
density slopes (Equation (2.18)) has been used, a * appears. The final column reports
the average relative time until convergence as a multiple of the QML speed.
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Table 2.4. Inlier problem: Sensitivity of the QML and MCL estimators

Panel A: Sensitivity of QML w.r.t. cut-off value x

a ¢ oy

True ys -0.368 0.95 0.26

Full sample -0.591 0.920 0.302
(0.756) (0.101) (0.176)

K =4.54*10° -1.393 0.836 0.966
(1.144) (0.132) (0.292)

x:=3.06*107 -0.835 0.912 0.888
0.877) (0.093) (0.121)

x; =1.93*10% -0.851 0.948 0.848
(0.649) (0.040) (0.099)

K =3.72*107* -1.360 0.949 0.849
(1.731) (0.063) (0.104)

Panel B: Sensitivity of MCL w.r.t. cut-off value x

a ¢ oy

True ys -0.368 0.95 0.26

Full sample -0.327 0.947 0.249
(0.186) (0.030) (0.059)

x; =4.54*10° -0.845 0.869 0.396
(0.698) (0.107) (0.142)

x: = 3.06*107 -0.854 0.867 0.411
(0.548) (0.085) (0.131)

x;=1.93*10% -0.601 0.906 0.370
(0.286) (0.044) (0.116)

K =3.72*10% -0.575 0.910 0.365
(0.280) (0.043) 0.111)

This table reports the results of the simulation experiment on a single set of parameter
values, ;. Samples of length 7=500 of the basic SV model (2.1) with approximately
10% zero values are generated X=500 times and estimated by QML and MCL. Inliers
are cut-off at x; in accordance with (2.24) where the cut-off constants x;-x, were
chosen so as to correspond to In(x;%)= -20, -30, -100, and -200.
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Table 2.5. Estimates of the SV model with fat-tailed disturbances

é oy In&? v CV  LogLik LR

v 0960  0.026 -9.313 - 0389 -4311.6 266
se(y) | (0.018) (0.009) (0.094) - - - -
v 0984 0007 9498 7634 0255 -42983 -
se{y) | (0.010) (0.003) (0.122) (0.003) - - -

This table reports the estimation results of the SV model where the mean equation
disturbances follow a Student-t distribution with v degrees of freedom. The standard
errors of (¢,a,,2, v) are obtained from the numerical approximation to the Hessian,
while the standard errors of the estimate of Ing’ are taken from the corresponding
diagonal element of P, . The likelihood ratio test statistic follows the y,° distribution.
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Chapter 3: Inference in the SV model

3.1. Introduction

It was shown in Chapter 2 how efficient parameter estimates can be obtained by
correcting the Gaussian (QML) likelihood function for the Iny distribution. This
difficulty arises when the original observations are transformed to give a linear state
space. The true likelihood function is decomposed into the Gaussian part and a
remainder term, which is computed by simulation. A finite sample simulation
experiment suggested that the performance of the estimator is at least as good - and

often better - than other fully efficient estimation procedures available in the literature.

One further aspect of the method needs more detailed attention. Apart from efficient
parameter estimates the procedure delivers arbitrarily accurate approximations to the
likelihood function itself This opens the possibility of likelihood ratio hypothesis

testing.

In general, the object of hypothesis testing is to derive test statistics which indicate the
reasonableness of some hypothesis (Hy) being true. If the data fall into a particular
region of the sample space (critical region) then the test is said to reject the null
hypothesis, otherwise the test fails to reject. Because there are only two possible
outcomes, there are only two ways to make incorrect inferences. Type I errors arise
when the null hypothesis is falsely rejected. 7ype II errors occur when the null is
incorrectly not rejected. Comparison and evaluation of tests is based upon the notions
of size (the probability of rejecting the null, when it is true) and power (the probability
of rejecting the null, when it is false). A test is preferred if it has maximum power

among all tests with size less than or equal to some particular level.
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This Chapter is organised as follows. Section 3.1.1. briefly reviews significance tests
and suggests how confidence intervals of model parameters can be constructed.
Section 3.2. shows how the volatility process can be tested for the presence of a unit
root. The new estimation method can be used to construct likelihood ratio tests of the
hypothesis H,: ¢=1. However, the asymptotic distribution of the test statistic is
unknown. We simulate this density and tabulate cﬁtical values. The power of the test is
compared to that of the augmented Dickey-Fuller test. Section 3.3. illustrates how the
AR(1) specification for the (log)variance process can be tested against higher order

dynamics. Section 3.4 concludes.

3.1.1. Significance tests and confidence intervals

The object of the maximum likelihood procedure is to obtain an efficient point estimate

of the parameter vector, denoted by . After the estimation, the focus is usually
centred around testing of hypotheses concerning individual elements of . This is
conventionally accomplished by means of #-tests:

y' -y

1

where SE stands for the estimated standard error, the superscript, i, on y points to a
particular element of the parameter vector, and ' is a fixed value of that parameter,
e.g. zero. In large samples the limiting distribution is N(0,1). For reasons that will
become apparent in the following Section, for now, we concentrate on ¥’ strictly
within the parameter space.

Thus, for instance the significance of the explanatory variables in (1.16) or (1.18) can

be tested by dividing the parameter estimate by the standard deviation and comparing

80



to the critical value of the limiting normal distribution.! In the general state space
model, the standard deviation is obtained from the diagonal element of the state

covariance matrix, P, (Appendix 2). This is a test of Hp: y/=0 against a two-sided

alternative H;: ¢/=0.

We can also test whether ¢ or o, take specific values, say ¢ <1 or g,>0, by the same

~

method. This is justified because the ML estimators ¢ and cf,, are normally

distributed, even though the measurement equation noise is non-Gaussian (Dunsmuir,
1979). The standard deviations of the hyperparameters can be obtained from the
numerical estimate of the information matrix. Asymptotic 100(1-£) percent confidence

intervals for the estimates of ¢ and o, can be constructed in accordance with:
V't oz, SE(V/i) (3.1

where zy5. is the 0.5 point of the normal distribution. This gives a pair of values ',
w''"' which are symmetrically centred around . Notice, however, that when the

parameter estimate is close to the boundary of the parameter space (e.g. (;; =0.98) this

may not be desirable. First, it may well happen that one of the numerically computed
values will be outside the parameter space (i.e. greater than unity). Second, it has been
shown in Chapter 2 (Figures 2.3 and 2.4) that in finite samples the posterior density of
parameter estimates is skewed away from the boundary. One would therefore expect
the confidence interval to be described by a pair of values which are asymmerrically
placed around the estimated coefficient. For a given sample size 7 this asymmetry will

be more pronounced, the closer the coefficient estimate is to the boundary.

' However. because of the non-Gaussianity of the measurement equation disturbances but linear
filtering the standard errors obtained in this fashion will be consistent but inefficient. A better test
statistic can be constructed based on the likelihood ratio principle since the MCL delivers arbitrarily
accurate approximations to the likelihood function value.
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During the estimation the general problem of constrained likelihood optimisation is
translated to the unconstrained optimisation problem by transforming the parameter
space (Hamilton, 1994, p. 146; Koopman et al, 1995, p. 209). Specifically, unrestricted

optimisation is performed on a set of parameters 0 which are related to the true

parameters via 6 = h~x(y ) . The vector function, /2(*) which incorporates the necessary

restrictions is given by: y* =01+ 0~ |, ya - exp(#@) where (Hand (i denote the

elements of 0 corresponding to #*and on More details can be found in Appendix 3.

000-
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Figure 3.1: Imposition of parameter restrictions.

Figure 3.1 shows how, in the case of the basic univariate SV model, the restricted

parameters " (”,cr7)' - on the horizontal axis - are mapped into unrestricted ones via
0-h '(™) Optimisation delivers 6 and var(#), from which )/ and its covariance

matrix are constructed in accordance with:

_ % '
¥ =¥ 40" 00
Now, instead of constructing the confidence interval on 7/ according to the equation

above, we may choose to construct a confidence interval on 6 giving a pair 6", &"

for each element of the parameter vector, /. It can be seen from Figure 3.1 that the

non-linearity of /() induces the corresponding pairs /", if/'” to be asymmetric
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around the point estimate ¥ . The resulting confidence intervals on ¢ and o; will be

skewed away from the respective boundaries (1 and 0). This may prove useful in

empirical research.

This method, however, is not applicable when the true parameter is posed to be on the
boundary of the parameter space, e.g. é=1 or 0,=0, and different procedures are
required. The latter case is a test for the presence of the time varying volatility against

a fixed level (Harvey and Streibel, 1997). The former is a test for the unit root in the

volatility process and is addressed in the following Section.

3.2. Testing for a unit root in the volatility process

Empirical applications of SV models document one striking regularity: the
autoregressive parameter, ¢ is often found to be close to unity. Similarly, in the
GARCH literature the sum of the parameters on the lagged squared residuals, a;, and
on lagged conditional variances, S, are often found to sum up close to unity (Engle

and Bollerlev, 1986).

Estimates of SV model parameters reported in previous studies are reproduced in
Table 3.1. With empirical estimates of ¢ well above 0.9 a natural question arises as to
the stationarity of the volatility process. While estimation and statistical analysis of SV
models with ¢=1 is possible, the stationary version is more appealing on several
grounds. First, the mean of the process can be consistently estimated by OLS. Even
though, as has been mentioned in Chapter 1, the dynamic properties in the mean are
less pronounced, some interest may still be focused on regression effects, as in e.g.

equation (1.2""). Second, a model of asset prices with infinite unconditional variance,

? Nelson (1990b). however, showed that the long run behaviour of such models is unsatisfactory:
depending on the value of the intercept term, the variance process tends to 0 or o
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which can be seen by setting ¢=1 in (1.14), poses difficulties for the framework of .
most of the modemn finance theory. In particular, the portfolio theory and the CAPM
are based upon the existence of unconditional second moments. And finally, there are a
number of empirical observations which indicate that the true volatility process is mean
reverting. Thus, for instance, the implied volatility of options - in as far as it can be
regarded as an indicator of the true volatility process - is strongly mean reverting, as

we discuss in Chapter 4.

The non-stationarity in the mean of the process has been studied at some length
(Stock, 1993; Hamilton, 1994). Testing for the presence of a unit root against a
stationary alternative usually proceeds by means of augmented Dickey-Fuller tests. The
discussion in Kim and Schmidt (1993) indicates that the tests are valid under quite
general conditions regarding the distribution of the error term. Most importantly, only

the independence of the disturbances - and not their Gaussianity - is required.

In principle therefore, the tests are applicable to the problem of testing for the presence
of the unit root in the (log)variance process. However, with the empirical estimates of
the signal-noise ratio, g being relatively small, the reduced form of the linearised
stochastic volatility model (2.2) - under Hy:¢=1 - will resemble an ARIMA(0,1,1)
model with the moving-average parameter close to the non-invertibility region. The

isomorphism is established (Harvey, 1989, p. 68) by:

=

6=0.5|:(q2+4q) —2—q:|,. q=20, /7

In such circumstances, the Dickey-Fuller tests are known to be oversized (Phillips and
Perron, 1988; Schwert, 1989; Pantula, 1991) rendering the tests based on the tabulated

critical values unreliable. Their performance is examined in Section 3.2.1.
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Alternative testing procedures for the presence of the unit root were proposed by‘
Nyblom and Makelainen (1983) and Kwiatowski et al. (1992).° In both cases the
process has a unit root under the alternative hypothesis. However, under the null, the
process is level stationary in Nyblom and Makelainen (1983), and trend stationary in
Kwiatowski et al. (1992). Thus despite the validity of the tests underv non-Gaussianity
of the disturbances neither test procedure is applicable if a test for a unit root against

an autoregressive alternative is required.

Summing up, on the methodological level there is clearly a need for a test of a unit root
(Ho:¢=1) in the volatility process against a stationary alternative (H,:¢<1). On the
empirical level, on the other hand, estimates of the autoregressive coefficient close to
unity necessitate formal testing of the unit root hypothesis. Such a test can be
constructed based on the likelihood ratio testing principle. Its empirical distribution is
investigated in the remainder of the Section and contrasted with the augmented

Dickey-Fuller tests.

3.2.1. Distribution of the Dickey-Fuller tests
Dickey-Fuller tests are based on the regressions of the form
P
Vi=a+Qy W Ay, +g (2
i=]

The process y; has a single unit root in the autoregressive polynomial under the null.*

Consequently, ¢ will tend to be negative but close to zero. Under the null the
distribution of ¢ is given by a Brownian Bridge (Hamilton, 1994, p. 486) and

therefore the test statistics

* See also Tanaka (1983) and Watson and Engle (1985).
* Alternatively. v=v,+& is a random walk starting at y,~a, in which case lagged differences were
included in an attempt to account for more general error distribution.
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-1
ADF, =& (3.3a)

(3.3b)

will have the non-standard distributions tabulated in Fuller (1976). The tests may be
applied to the linearised SV model (2.2) by setting y=Inr? in (3.2), where r, is the

mean adjusted return on the asset.

Monte Carlo evidence in Phillips and Perron (1988) and Schwert (1989) suggests that
the tests in (3.3) exhibit non-trivial size distortions when the data generating process is
Gaussian ARIMA(0,1,1) with the MA parameter, @ close to the non-invertibility
region. Intuitively, a large number of lags will be required in the autoregression (3.2) to
achieve a reasonable approximation to the mixed process, even if the errors were
Gaussian. For instance, Said and Dickey (1984) advocate values of p of the order 7'~.
We expect similar behaviour in the present context, possibly exacerbated by the In(y,%)

distribution of the error term.

The size of the tests (3.3) in the context of SV model is examined in a Monte Carlo
experiment. Data samples of variable lengths, 7;=500 and 7,=1,000, are drawn from
the basic SV model (2.1). The choice of the sample length, T"is motivated by the trade-
off between the sample sizes likely to arise in empirical applications and the
computational constraints of the Monte Carlo experiment. While far larger sample
sizes are feasible in the context of augmented Dickey-Fuller tests, the likelihood ratio
test - considered in the subsequent Section - requires the MCL estimation of the SV
model under the null as well as under the alternative leading to a very large

computational effort.
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Since the interest is focused on the distribution of the test statistic under the null, the
autoregressive parameter in the (log)variance process is set to unity. The volatility
parameter, o, takes the values 0.1 and 0.3 corresponding roughly to upper and lower
bounds of the empirical estimates reported in Table 3.1. The values of o, imply
reduced form MA parameter values of -0.96 and -0.87 respectively.’ Under the null the
unconditional variance of the return process is not defined and the value of the long
run volatility level, o is undetermined. However, since o is merely a scale parameter
it will be irrelevant to the distribution of the test statisticc. We set & =0.014
corresponding to a value likely to arise in empirical applications. This choice of

parameters gives four cases:

6,0.1(q=0.002)  ,=0.3 (q=0.018)
T=500 Cl1 c2
T=1000 C3 c4

For each case, K=10,000 sample paths were drawn. For each realisation of the process,
the Dickey-Fuller test statistics were calculated based on variable lengths of the
autoregressive polynomial in (3.2), p=10, 20, 30, 40, 50. Since deterministic time
trends in the (log)variance process do not constitute a sensible model for asset returns
the null hypothesis is a random walk without the drift. The critical values for the

nominal sizes of 10, 5, and 1% are given by Fuller (1976, pp. 371,373):

0.10 0.05 0.01

ADF,; | T=500 -2.57 -2.87 -3.44
7=1,000 -2.57 -2.86 -3.43

ADF, | T=500 -11.2 -14.0 -20.5
T=1,000 -11.3 -14.1 -20.7

* The process is non-invertible with g=0 and 6=-1
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The null hypothesis is rejected if the test statistic is /ess than the critical value and is
not rejected otherwise. The rejection frequencies are reported in Table 3.2. Three
conclusions can Be drawn. First, the distribution of the ADF test (3.3b) is more
adversely affected than the distribution of the ADF; test (3.3a). Irrespective of the
value of o; and the sample length, 7 the size distortions are uniformly more severe for
the ADF) test. This is not mitigated by higher lags of the autoregressive polynomial.
The same conclusion was reached by Schwert (1989). By contrast, the size distortions
of the ADF test can be corrected by increasing the number of lags, p. Second, for low
o, (0.1) a large number of lags, p (50) is required to induce the size of the test statistic
to approach its nominal value. Even then the test remains slightly oversized irrespective
of the length of the time series. Finally, for higher values of o, (0.3), lower orders of
the polynomial are required (p=30), again, irrespective of the length of the time series.
This is not surprising, since lower values of o, imply MA models with the coefficient

closer to the non-invertibility region.

Overall, the ADF; test (3.3a) appears to exhibit tolerable size distortions for very large
lag lengths (p=50 for 0,=0.1, and p=30 for 0,=0.3). This is the preferred test whose

power will be compared with the likelihood ratio test developed in the next Section.

3.2.2. Distribution of the likelihood ratio test

In general, the likelihood ratio test, &, is concerned with testing the validity of

restrictions of the form:

flw)=0 (3.4)

where v is a (px1) vector of model parameters, and f{) denotes some - possibly
nonlinear - matrix function such that the matrix of first derivatives, J{-)/dy, has rank
m. When the restrictions are linear, (3.4) takes the form: Ry —r» =0 where R and r
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are (mxp) and (mx1) matrices of fixed values respectively (Engle, 1984, Harvey, 1989,

p. 234; Gouriéroux and Monfort, 1995, pp. 82).

Under the null hypothesis, H,, the parameter vector, i satisfies the restriction (3.4).
Denote the estimate of the parameter values under the null, by ¥, and the value of the
maximised likelihood function by L(y?o). By contrast, under the alternative, H, the
unrestricted parameter estimate and the corresponding likelihood ﬁnction value are

denoted by v, and L(y?,) respectively.

The basis of the Likelihood Ratio test is the fact that under some regularity conditions -

(Silvey, 1975; Godfrey, 1988; Harvey, 1989), the statistic

& =2(nL(y,) - n L(y,)) (3.5)

is asymptotically distributed as g, under H, The intuition behind the LR test is that

whenever the maximised likelihood function under Ho, L(i,) is much smaller than the

unrestricted maximised likelihood L(y?,), there is evidence against the null hypothesis.
The construction of the test statistic in the context of SV models is, however,
computationally demanding since the model needs to be estimated twice, under the null
and under the alternative. On the other hand, the test statistic does not require the
knowledge of the information matrix and is based exclusively on the values of the
likelihood function. Thus MCL estimation under the null and under the alternative is

sufficient to construct &x.

In the proceeding discussion it was assumed that the restricted parameter vector, ¥,

was strictly in the interior of the parameter space. When one (or several) parameters
are constrained to lie on the boundary of the parameter space the issue becomes more

involved. In general, if the order of differencing required to achieve stationarity is the
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same under the null and under the alternative, then the distribution of the test statistics
under Hy is given (Gouriéroux, Holly and Monfort, 1982) by a weighted sum of 3

densities:
guz ~ Zw(msi)Ziz
- i=0

In particular, when Hy involves a test of a single parameter lying on the boundary, &z

is known to be distributed as:
$ir "';'Zoz +]7le (3.6) -

The density in (3.6) has a concentration at the origin since y,° is a degenerate

distribution with all its mass at zero.

However, when ¢=1 the process is I(1) under the null and I(0) under the alternative
and the standard theory does not apply. The distribution of the test statistic is unknown
even in the case of Gaussian measurement equation noise. Analysis, of the kind
performed in e.g. Dickey and Fuller (1981), is hindered here by the fact that closed
form expressions for the test statistic in terms of sums and partial sums of observations
and disturbances are not available. In addition, the distribution of the unrestricted ML
estimates /, under the null hypothesis is difficult to derive. Nevertheless, progress can
be achieved by Monte Carlo experimentation. The density is simulated by calculating
&1» from random samples of the basic SV model drawn under the null hypothesis. The

resulting critical values are tabulated for several nominal sizes. ¢

To achieve compatibility with the Dickey-Fuller tests examined earlier, the
experimental design of the previous Section is retained. The choice of o, and T is

motivated by our incentive to determine
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(i) whether or not the asymptotic distribution of &z depends on oy,
(ii) how accurately can it be approximated in finite samples, and
(iii) the extent to which it differs from the weighted chi-squared density (3.6).

Clearly, MCL estimation will be most accurate in case C4 and least precise in C1 since
the strength of the stochastic volatility process is increasixig in oy, and the likelihood
function is always better specified when larger sample sizes are available. However, it
is interesting to see whether this will be reflected in the finite sample distribution of the
likelihood ratio test statistic. Differences in sample densities of & for cases C3 vs. C4
and C1 vs. C2 will shed light on the first research objective, (i). By contrast, the
comparison of C2/C4 and C1/C3 will provide indicative evidence regarding the
question (ii) above. And finally, difference to the density (3.6) will be highlighted by

the size distortions of all four cases, thus addressing (iir).

Estimation was performed in the following manner. Since o, is the only
hyperparameter (o enters the state vector as described in Appendix 2), under the null
hypothesis a one-dimensional grid search provided the starting values. Next, parameter

estimates were obtained by the MCL method and the value of the restricted likelihood
function, L(!/?O) stored. The &, obtained under H, provides a useful starting value for

the estimation under the alternative. The starting value for the autoregressive
parameter was set to a value close (but not equal) to unity (0.981) since under the

alternative, ¢ is constrained to be less than unity. The model was then re-estimated by

MCL giving L(,).

® See Garbade (1977) for a similar investigation of the distribution of &5 in the context of the time
varying regression coefficient model and Kremers, Ericsson and Dolado (1992) for an example where
the simulated critical values are used to examine the power of a test in the context of co-integration.
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Attention needs to be paid to the initial conditibns with which the Kalman recursions
are initialised. When the autoregressive parameter is constrained to be less than unity in
absolute value the starting values for the Kalman filter may be taken as the mean and
covariance matrix of the unconditional distribution of the state vector. The likelihood
function will then be based on the prediction error decomposition with the summation
starting at =2 (Appendix 2, 3). However, when .¢=l the unconditional variance of the
state is not defined. Usage of the diffuse prior, P=k1,,, where £ is a large number (10°)
and I, is an (mxm) identity matrix is problematic since in this case (a) the likelihood
will have to be based on a summation starting at =3, and, more importantly, (3) the
constant level is not identified. In order to overcome this problem we initialise the
Kalman filter for the non-stationary model with the diagonal element of P,
corresponding to 4, equal to zero. This implies that this element of the state vecfor is
fixed. The likelihood for both models is therefore based on prediction errors starting at
=2

Sﬁmmary statistics of the sampling densities of model parameters were obtained as a
by-product of the experiment and are reported in Table 3.3, Panel A. First, estimation
of the scale parameter o is equally accurate for all cases, C1-C4 and under both
hypothesis. As expected, o, is more precisely estimated when larger sample sizes are
available. This is illustrated by smaller sample standard deviations for the cases C1 vs.
C3 and C2 vs. C4. Second, the posterior density of ¢3 under the alternative of ¢<1, has
a sample mean very close to unity (0.994-0.997) and a tiny sample standard deviation

(0.008-0.003). This is encouraging and provides additional evidence for the efficiency

of the MCL estimation technique discussed in Chapter 2.

Now turn to the main object of the investigation, the estimation of the density of the

likelihood ratio test statistic. First, the following regularity was encountered: many
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values of 4R were negative. This implied that the value of the maximised likelihood

function was lower under the alternative than under the null hypothesis. However,
examination of a scatter plot of ¢> (vertical axis) against %R (horizontal axis) e.g. for

the case C3 presented in Figure 3.2 resolves the contradiction.

Figure 3.2: Estimates of * vs. values ofthe LR statistic

The graph documents that values of L,(y,) smaller than L,(3”) - leading to negative

£IR - are likely to arise when the estimate of $4is very close to unity. Of course, in these
circumstances the estimate of ¥tends to unity, leading to the equality of the function
values (and £7j?=0). However, under the stationary alternative, Hi.</r<\| the estimation
is performed in such as way that the autoregressive coefficient cannot become unity
(Appendix 3). Therefore all negative values of %R are henceforth set to zero. The

resulting mass at the origin is reported in the final column of Table 3.3, Panel B.

Given a set of sample values {£LRY, k=1, .., 1,000,y=1, .., 4 for each ofthe four cases,

the densities are estimated non-parametrically, details of which can be found in

Appendix 1. One density estimate, (x) for the case C2 - deliberately

undersmoothed, and excluding the mass at the origin is presented in Figure 3.3. For

comparison the graph ofthe x * density, / )d(x) is also drawn.
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Figure 3.3: Estimated density ofthe LR statistic and the 0.5xi2 approximation

It is evident that the estimated density of the likelihood ratio test statistic (solid line)
resembles the continuous part of the weighted  density (3.6), (dotted line). Roughly
half the mass is concentrated at the origin and the remainder of the density is highly

skewed agreeing closely with / X(X)'

This assertion is further supported by the results reported in Table 3.4, Panels B and
C. The rejection frequencies - where the critical values were taken from (3.6) - are
given in Panel B. The empirical sizes are very close to the nominal values, except,
perhaps in the extreme right hand tail of the distribution. This may be explained by the
fact the tail of the distribution may be difficult to approximate with A=1,000 draws. In
general the %R test based on the critical values obtained under (3.6) appears to be
slightly undersized, i.e. rejecting less often than it should, leading to a conservative test

statistic.

Conversely, Panel C presents the critical values obtained by numerical integration.
Since the density estimates depend weakly on the bandwidth parameter, 4, we present
summary statistics across a range of smoothing parameters, 2k /=1, .., 10 equally
spaced between 0.05 and 0.5. The critical values thus obtained allow several
conclusions to be drawn. First, when the number of observations in the series is large,
7=1,000, the difference in estimated cut-off points across values of  is comparably

small (comparing C4 vs. C3). For instance, the absolute difference in average cut-off
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values across all sizes ranges between 0.01 and 0.20, as rows 11 and 8 illustrate. This
evidence is suggestive of the claim that the asymptotic distribution of the likelihood
ratio test does not depend on o, By contrast, for smaller sample sizes, 7=500 -
comparing the entries in rows five (C2) and two (C1) - the absolute difference in the
cut-off values across oy, is larger, ranging between 0.04 and 0.70. Not surprisingly, the
difference becomes larger as the size decreases. "fhis is explained by the fact that the
estimate of the extreme right tail of the distribution is based on progressively few
~observations. Sample lengths of 7=500 observations are not sufficient to achieve
accuracy in the tail of the distribution as the comparison of average cut-off values
across the cases with the same o, but varying T illustrates. For instance, the difference

between rows 8 and 2 ranges between 0.35 and 0.75.

And finally, the simulated critical values do not differ substantially from those obtained
under the mixture of ¥’ densities (3.6). Slightly less weight is concentrated in the
extreme tail of the distribution leading to lower cut-off values for the simulated
distfibution for any nominal size less than 0.05. Summing up, the distribution of the
likelihood ratio test statistic is resembles very closely the weighted 3* density: roughly
half the mass is concentrated at the origin and the continuous part of the distribution is

similar. Critical values of the weighted z° density lead to a conservative test statistic.

3.2.3. Power of the tests

The second stage of the Monte Carlo experiment compares the power of the test
statistics ADF in (3.3a) and &z in (3.5). The process is now simulated under the
alternative hypothesis with the autoregressive coefficient strictly less than unity. Six
parameter triplets y;=($,0,, & ); are constructed such that for each of the two values

of 0, (0.3, 0.1) there are three corresponding values of the autoregressive coefficient ¢
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(0.90, 0.95, 0.98). The long run volatility level, & is calibrated each time so as to yield
23% annualised volatility. The resulting parameter values and the corresponding values
of the coefficient of variation, CV are recorded in the first three rows of Table 3.4. To
reduce the computational burden the sample length was fixed at 7=500 but the
rejection frequencies are based on K=1,000 repliéations. While the critical values of the
ADF, test were taken from Fuller (1976), the cut-off points for the &z test were taken

from (3.5), see Table 3.3, Panel C. This implies that the &z test is a conservative test.

As expected, the power of the Dickey-Fuller test is low. More importantly, the power
decreases as the autoregressive parameter approaches unity. For instance, for the
nominal size of 0.05 and 0,=0.1 the power is 0.559 for ¢=0.9 and only 0.245 for
¢=0.98. Second, the power is not a monotone function of the coefficient of variation,
CV which implies that the mean reversion - captured by ¢ - is the pivotal quantity and
not the strength of the stochastic volatility process per se. The power increases slightly
with o, for a given ¢ which is not surprising given that the discussion in Section 3.2.1.
And finally, the power decreases with the nominal size which may indicate that the tail

behaviour is approximated less accurately with finite number of draws, X.

Turning now to the power of the likelihood ratio test statistic &z we observe the
following regularities. The power of the likelihood ratio test is higher than the power
of ADF; test at each nominal size level; except in the last two cells, (6,=0.1, ¢=0.95)
and (0,=0.1, ¢=0.90) which will be discussed shortly. The behaviour is similar, in as
much as the power increases as the true value of the autoregressive coefficient
decreases. For instance, for 0,=0.3 at the 10% level the power of the &z is 0.987
when ¢=0.90 and 0.765 when ¢=0.98, despite the CV taking a relatively high value of

8.71. The results of this Section can be best summarised by a graph, comparing the
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relative powers of the two tests. In Figure 3.4. the power is plotted against the

coefficient of variation, CV for the nominal size of 10%.

—
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Figure 3.4: Power of %R and ADFI at 10% nominal size.

It is interesting to observe that the strict dominance over the Dickey-Fuller test is not
present in the two final cells. Here, however, the CV values indicate that the strength
of the stochastic volatility process is almost negligible (CF=0.11, CV=0.05), making
the likelihood “flat” over the relevant region ofthe parameter space. This behaviour is

illustrated in Figure 3.5.
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Figure 3.5: Sampling distribution of * and the scatter plot of ~ vs. gut.

The sampling distribution of presented in Figure 3.5(a), exhibits a long tail

corresponding to a non-negligible mass of * away from the true value of 0.9. Figure

3.5(b) presents a scatter plot of # (vertical axis) vs. KR (horizontal axis). The graph
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demonstrates three key features. First, for q? close to unity &z may become negative;
this phenomenon has been discussed earlier. Second, when the likelihood is well

specified, ;5 is close to the true value of 0.9 and one obtains the intuitive behaviour:

& g increases, as ¢3 falls. However, when the likelihood is “flat” @ is away from the
true value and the likelihood function values under the null and under the alternative do

not differ much, leading to low values of &z.

Summing up, it has been demonstrated that testing for a unit root in the (log)variance
process against a stationary alternative by means of augmented Dickey-Fuller tests is
not a reliable procedure. The tests are ether oversized (when the lag of the
autoregressive polynomial in (3.2) is chosen too small) or have low power (when the
lag is chosen so as to approximate the correct size). Moreover, the power declines as
the true value of the autoregressive coefficient approaches unity, which is arguably the
most interesting case from the point of view of applied empirical analysis. Furthermore,
it is shown that the likelihood ratio test based upon the estimation of the SV model by
MCL is more powerful. The distribution of the likelihood ratio test statistic is unknown
but the Monte Carlo experiment presented herg suggests that it can be well

approximated by the weighted 7 density, critical values of which are readily available.

3.3. Testing for higher order dynamics

The likelihood ratio testing principle can be also be applied in other situations. The
basic SV model (2.1) can be extended in a number of directions, some of which were
indicated in Section 1.4.2. A further generalisation might allow A, to follow a more

complicated ARMA process, for instance an AR(2) process:
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r,=age’My, v, =N(O,])

3.7
2

hr = ¢1 ht—l + ¢2 hr—z +7, M~ N(O’a")

Model (3.7) can be easily represented in the state space form, as can be seen in
Appendix 2. Similar models were briefly discussed by Shephard (1996) and Kim,
Shephard and Chib (1996). GARCH counterparts were proposed by e.g. Engle and

Lee (1992).

The hypothesis of interest is the validity of the restriction ¢,=0. Thus under the null,
(log)variance is a stationary AR(1) process, Hy:¢=0,¢,<1 while under the alternative,

it is stationary AR(2), H,:¢.#0,|4,|<1 where

b =5 (4 £4E +48,) G.8)

are the roots of the autoregressive polynomial, 1-¢,L-¢,L°=0. Again, estimation by
MCL allows the likelihood ratio test, &z to be easily constructed. Moreover, the
asymptotic distribution of the test is y,° since the restricted parameter is not on the

boundary of the parameter space, ¢,€(-1,1).

In order to investigate the finite sample properties, and shed more light upon the
estimation of SV models with higher order dynamics, a small scale Monte Carlo
experiment was conducted. The process was generated under the null of stationary
AR(1) with the parameter values’ (¢, 0,, 6 )=(0.95,0.26, 0.025). The length of the time

series was set to 7,=500 and 7,=1,000 while the number of draws was X=1,000.

Since the process is stationary under the null and under the alternative, a proper

stationary distribution exists and can be used to initialise the Kalman recursions

" This is ;s of Chapter 2.
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(Appendix 2). Furthermore, parameter estimates under the null provide good starting

values for the estimation under the alternative, while ¢ is initialised at zero.

The results are reported in Table 3.5. Summary statistics of the posterior distribution
of parameter estimates are reported in Panel A while the rejection frequencies of the
likelihood ratio test are to be found in Panel B. First, parameter estimation under the
true null is more accurate when the sample size is large. The sampling standard
deviation on the estimates of <% and o decreases as T grows from 500 to 1,000. This
is not surprising since the likelihood becomes more informative as 7 increases. More
interesting are the results of the estimation under the alternative: parameter estimates
appear to be on average nowhere near the true values. For instance the mean on (@ is
1.478 and on ®1is -0.502 for 7=1,000. More insightful is the posterior distribution of

the roots ofthe autoregressive polynomial, Ay and X2which is presented in Figure 3.6.
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A A,
Figure 3.6: Estimation ofthe AR(2) process: sampling densities ofthe roots A,

As expected, the density of the first root, A; is centred around the true value of 0.95.
By contrast, the posterior density of X2 is at best bi-modal, with some mass
concentrated at the origin, and the remainder being close to unity. This implies that the

information is often not sufficient to allow for a distinction between the two roots; they

are estimated as Ay«A2. The autoregressive parameters are related to the roots via
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AN=4 4N < r > 2 = (3-9)
In consequence, roughly equal roots will induce estimates of % to be around 1.8 and
2 around -0.8, which is well documented in the summary statistics of Table 3.5, Panel

A. The mean of the posterior density of 4 is -0.502 which is between 0 and -0.8.

Similarly the mean of ¢4 (1.4) is between 0.9 and 1.8.

Additional evidence in support of this interpretation is given in Figure 3./(a) where a
scatter plot of $2 (horizontal axis) vs. ~ +48, (vertical axis) [which - by virtue of

(3.8) - is a measure of closeness of the roots of the autoregressive polynomial] is
presented. It illustrates that negative values of $#are likely to occur when the diference

in the roots is small (i.e. a single root is found).

(a). 2 vs. +4$, B\ fa vs. "
Figure 3.7: Aspects of'the posterior density of f#and fa in AR(2).

On the other hand, estimates of the two coeffcients are strongly related. Figure 3.1(b)
illustrates that the relationship between $ (horizontal axis) and (2 (vertical axis) is
linear. The likelihood will therefore be “flat” along the line sketched in Figure 3.1(b).
Finally, note that while the posterior density of an is centred around the true value
under the null, it is shifted towards the origin under the alternative. This can be

explained by noting that whenever higher order dynamics are present, lower values of

the signal-noise ratio are sufficient to produce an acceptable fit to the data.
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The resulting distribution of the likelihood ratio test is summarised in Table 3.5, Panel
B. Here the rejection frequencies of the test are reported for several nominal sizes. The
critical values are taken from the 7, distribution. Two conclusions can be drawn. First,
small sample sizes (7=500) are not sufficient to approximate the distribution of the test
statistic. The empirical sizes are far away from the nominal levels. Second, for 7=1,000
the approximation is much better with the empirical sizes being reasonably close to the
nominal levels. More importantly, the size distortions are not uniform across the

nominal sizes which indicates that the difference may well be due to sampling variation.

Summing up, estimation of a higher order autoregressive process in (log)variance is
feasible alas the procedure for constraining the autoregressive coefficients adopted
here leads to parameter estimates which need to be interpreted with caution. The
likelihood ratio test of stationary AR(1) dynamics can be constructed but appears to be

valid for large sample sizes only.

3.4. Conclusion

This Chapter considers some aspects of inference within the SV model. Confidence
intervals on model hyperparameters are briefly discussed. At the centre is the
discussion of the test of the unit root in the (log)variance process. Two methods are
juxtaposed: the augmented Dickey-Fuller test and the likelihood ratio test. It is shown
that large number of lags are required in the augmented Dickey-Fuller test so that the
distribution of the test statistic is approximated reasonably close. This leads to the loss
of power. By contrast, the distribution of the likelihood ratio test is unknown but is
shown to resemble closely the 0.5y, density. The likelihood test is shown to be more

powerful than the augmented Dickey-Fuller test except in the unrealistic case where
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the strength of the stochastic volatility process is so low as to make the likelihood

surface ill-conditioned.

As we consider only particular data generating processes - and the distribution of the
tests may depend upon the particular parameter values chosen - the results may only be
illustrative. Nevertheless, the results are informative and conclusive within the bounds
of Monte Carlo experimentation. This translates into a recommehdation for applied
empirical research: whenever the value of the likelihood ratio test statistic is found to
be in the region of 2-4 the p-value can be simulated by means of Monte Carlo methods

similar to the ones adopted here.
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Table 3.1. Empirical estimates of SV model parameters

Study Time series

Melino&Turnbull (1990) | CAD/USD, 7=3,011 0.91 0.14 0.14 0.005

portfolios, 7=1,540 0.93 032 1.07 0.02

JPR stocks, 7=1,540 0.89 036 084 0.03
exchange rates, 7=2614 | 0.95 020 - 0.77 0.01
Danielsson (1994a) S&P500, 7=2,202 0.96 0.17 0.37 0.005
HRS’ exchange rates, 7=946 | 0.97 0.14 0.58 0.004
Taylor (1994) DEM/USD, 7=3,283 0.94 022 0.50 0.01

This table reproduces the parameter estimates of the basic SV model (1) reported in
several empirical application of the SV model. For reasons of brevity only average
parameter values for Jacquier, Polson and Rossi (1994) and Harvey, Ruiz and
Shephard (1994) are reported. The entries are denoted by JPR" and HRS" respectively.
The coefficient of variation,

CV = var(o, )E[a, ]—2 = exp(a,f (1- ¢2)_1) -1

is conventionally used to describe the strength of the volatility process (Jacquier,
Polson and Rossi, 1994) and is reported in the penultimate column. The final column

reports the empirical estimates of the signal-noise ratio, ¢ = 2o, / .
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Table 3.2. Distribution of the Dickey-Fuller tests

Panel A. Size of the ADF; test

Size 0.0S 0.01

P 10 20 30 40 50 10 20 30 40 50

Cl1 | 0909 0453 0.196 0.103 0.070 | 0.786 0.233 0.069 0.028 0.014
C3 [0.246 0.075 0.051 0.044 0.039|0.104 0.018 0.010 0.009 0.007
C2 (0938 0.544 0.275 0.145 0.092 | 0.851 0.346 0.117 0.044 0.024
C4 | 0267 0.080 0.056 0.048 0.044 | 0.126 0.020 0.011 0.009 0.008

Panel B. Size of the ADF, test

Size 0.05 0.01

)4 10 20 30 40 50 10 20 30 40 50

Cl1 [0961 0.684 0.466 0.358 0.301 0903 0.528 0.327 0.246 0.205
¢3 {0371 0.175 0.163 0.184 0.207 [ 0.217 0.088 0.088 0.109 0.131
C2 (0968 0685 0443 0309 0.246 0911 0.521 0.285 0.182 0.145
C4 10355 0.139 0.112 0.115 0.132|0.196 0.051 0.042 0.050 0.062

This table reports the rejection frequencies of the augmented Dickey-Fuller tests (3.3)
for two nominal sizes (0.05 and 0.01). K=10,000 samples of the basic SV model (2.1)
are drawn for each case, C1-C4, and the test statistics are computed based on p lags in
the autoregression (3.2).
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Table 3.3. Distribution of the likelihood ratio test against Hj:¢=1

Panel A: Distribution of the MCL parameter estimates

0,01 ¢=1 G | 6,703 ¢ 3
Under H, | 0.093 3 0014 | 0277 ; 0.014
T=500 (0.027) . (0.008) | (0.038) - (0.005)
UnderH, | 0103 0994 0014 | 028 0995  0.015
(0.029) (0.008) (0.003) | (0.038) (0.005) (0.006)
Under H, | 0.095 ; 0.014 | 0278 ; 0.014
7=1000 (0.016) - (0.003) | (0.027) - (0.005)
UnderH, | 0104 0997 0014 | 0286 0997 0015
(0.018) (0.003) (0.003) | (0.036) (0.003) (0.006)

Panel A reports sample means and standard deviations (in parentheses) of the posterior
densities of the parameters. The basic SV model (2.1) is simulated X=1,000 times and
estimated twice, under the null hypothesis, Hy:¢=1, and under the alternative, H,:¢<1.

Panel B: Size of the likelihood ratio test

Size 0.1 0.05 0.025 0.01
critical value [1.642] [2.706] [3.841] [5.412]
Cl 0.085 0.033 0.016 0.003
2 0.087 0.048 0.021 0.004
a3 0.125 0.059 0.022 £ 0.003
C4 0.110 0.051 0.034 0.019

Panel B reports the rejection frequencies of the likelihood ratio test, &&. The nominal
size and the critical values of the weighted 7 density (3.6) are reported in the first two

rows.
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Panel C: Critical values of the likelihood ratio test statistic

Size 0.1 0.05 0.025 0.01 | massat0

1| Min 1.443 2.193 2.963 4.402

C1 2| Avg 1.500 2.263 3.030 4421 0.448
3 | Max 1.590 2.339 3.129 4433
4 | Min 1.486 2.602 3.701 4716

Cc2. 51 Avg 1.545 2.641 3.726  4.790 0.461
6 | Max 1.644 2.688 3.763 4.860
7 | Min 1.855 2.930 3.717 4.745

C3 8 | Avg 1.914 2.946 3.777 4770 0.500
9 | Max 1.990 2.965 3.851 4.804
10 | Min 1.689 2431 3.504 4.759

C4 11| Avg 1.712 2.483 3.534 4778 0.518
12| Max 1.769 2.567 3.568 4.807

1+ |13 - 1.642 2.706 3.841 5.412 0.5

Panel C tabulates the critical values of the &z test. The nominal size is reported in the
column header. Each density was estimated with 10 different bandwidth parameters, 4;,
equally spaced between 0.05 and 0.5. Averages (Min/Max) across i are reported in
rows 1 to 12. For comparison, the final row reports the critical values of the weighted
& density (3.6) which are taken as the 2« significance points of the 3%, density for the
size a. The final column gives the percentage of sample values at the origin.
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Table 3.4. Power of the Dickey-Fuller and the likelihood ratio tests

03 0.1

On

¢ 0.98 0.95 09 0.98 0.95 0.9

o 0.008 0.011 0.013 0.013 0.014 0.014
cv 8.71 1.52 0.61 0.29 0.11 0.05

[0.1] 0.355 0.796 0.965 0.404 0.676 0.764
ADF, [0.05] 0.213 0.614 0.896 0.245 0.457 0.559
[0.01] 0.043 0.247 0.582 0.063 0.151 0.221

[0.1] 0.765 0.989 0.987 0.549 0.594 0.470
Eir [0.05] 0.506 0.931 0.966 0.335 0.372 0.199
[0.01] 0.130 0.618 0.806 0.063 0.097 0.05

This table tabulates the rejection frequencies of the augmented Dickey-Fuller ADF,
(3.3a) and the likelihood ratio test, &z (3.5). The nominal size is given in parenthesis.
The lag length, p in the autoregression (3.2) is selected so that the size distortions are
minimised. This requires p=50 for 0,=0.1 and p=30 for 5,=0.3. The basic SV model
(2.1) is simulated with the values of the parameters reported in the first column
K=1,000 times. The length of the time series is 7=500.
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Table 3.5. Distribution of the likelihood ratio test against Hy: ¢,=0

Panel A. Distribution of MCL parameter estimates

& #2 A (A2 oy o
0.95 0 0.95 0 0.26 0.025
Under H, | 0.947 - 0.947 - 0.249 0.025
=500 (0.030) -  (0.030) -  (0.059) (0.003)
Under H; 1.398 -0.426 0.934 0.464 0.132 0.025
(0358) (0.345) (0.047) (0.373) (0.075) (0.003)
Under H, | 0.948 - 0.948 - 0.252 0.024
T=1,000 00200 - (00200 -  (0.034) (0.002)
Under H; 1.478 -0.502 0.939 0.539 0.117 0.025
(0308) (0.297) (0.031) (0.320) (0.064) (0.002)

Panel A reports sample means and standard deviations (in parentheses) of the posterior
densities of the parameters. The basic SV model (2.1) is simulated K=1,000 times and
estimated twice, under the null hypothesis, Hy:¢=0, and under the alternative,

H; . ¢#1.

Panel B. Rejection frequencies of the likelihood ratio test

Size 0.1 0.05 . 0.025 0.01
critical value [2.706] [3.841] [5.024] [6.635]
7=500 0.053 0.013 0 0

7=1,000 0.173 0.071 0.02 0.002

Panel B tabulates the rejection frequencies of the &z test. The nominal size and the
corresponding critical value - taken from a y,° distribution - are reported in the first

two rows.
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Chapter 4: Implied volatility revisited

4.1. Introduction

GARCH and SV models attempt to explain the time series properties of second
conditional moments of asset returns by taking into account the price history of the
process. Often additional information is available from the implied volatility of options.
Implied volatility is defined as that value of the diffusion coefficient, Gimp w}ﬁch
equates the theoretical Black and Scholes (1973) price, BS thereafter, to the market
price of the option. Given a price, the formula is inverted to give a value of implied

volatility as a function of exercise, or strike price, £ and maturity, 7.
Omu(7,E) = BS (7, E) 4.1)

This can be represented in a matrix of implied volatilities sorted by £ and 7. For a fixed
maturity, the graph of the mapping E—0imy is typically U-shaped: implied volatilities
‘smile’; but sometimes this smile is more or less lopsided, or ‘skewed’. For a fixed
strike the mapping 7—>0im, defines the term structure of implied volatility, or the
‘volatility curve’. Finally, each individual element of the volatility matrix, Gimp.{7,E)

exhibits pronounced time series dynamics.

In principle, therefore, two sources of information are available: the time series of the
underlying asset and the time series of the matrix of implied volatilities. One question
which arises naturally in this context is that of the information content of implied
volatilities. Can the information contained in the volatility matrix be employed to
further the understanding of the true dynamics of the underlying instrument? Important
implications for the construction of optimal volatility forecasting rules arise if the
answer to this question is affirmative. The present Chapter addresses this research

objective by adding the information contained in implied volatilities as a set of
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explanatory variables to the basic SV model. It is shown that implied volatilities
capture accurately the time series dynamics of the latent asset volatility in that the

autoregressive component is often rendered redundant.

The second research objective is a joint test of market efficiency and unpriced volatility
risk. Under these two assumptions, implied volatilities can be shown to be the options
market’s subjective forecast of the future volatility of the underlying asset even if the
volatility is stochastic. In these circumstances the history of the price process should
have no incremental explanatory power. By implication, volatility forecasts constructed
from time series models should be less accurate than those obtained from implied
volatilities. Our out-of-sample forecasting experiment indicates that while volatility is
very hard to predict, forecasts obtained from the SV model are at least (and often

more) accurate that those given by implied volatilities.

The present Chapter addresses these issues in the light of uniquely available over-the-
counter data. Section 4.2 contains a review of related work and identifies the
measurement problems associated with previous tests of the hypothesis. Section 4.3
introduces the data, and contains the empirical analysis of the volatility curve. The

main results are discussed in Section 4.4, while Section 4.5 concludes.

4.2. Overview of previous work

One of the main assumptions of the BS model is that the underlying instrument follows
a diffusion process with a constant volatility parameter. The matrix of implied
volatilities constructed by equating the theoretical BS prices to the market prices of

European call options' as in (4.1) should be flat across all maturities and strikes.

' A call option gives the holder the right to purchase one unit of the underlying asset at a
predetermined exercise, or strike price, £. A European (American) option can be exercised only on
(anvtime prior to) the specified expiry, or maturity date. The time remaining to the expiry date is
called the maturity of the option, 7 (Hull, 1993).
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However, one of the most striking and widely documented regularities of observed
option prices is that the matrix of implied volatilities obtained by inverting the BS
formula is neither flat nor constant over time (Latane and Rendelman, 1976;

Schmalensee and Trippi, 1978; Rubinstein, 1985).

This empirical observation motivated three distinct research areas. Firstly, the ‘smile’
effect inspired the development of more sophisticated option pricing models.? In these
models (Hull and White, 1987; Johnson and Shanno, 1987; Scott, 1987; Wiggins, 1987,
Renault and Touzi, 1996) the volatility is itself a stochastic process following a

diffusion:

ds
St = 1,8, Y, )dt + o,aW,
5, = A L+ odw, 42)

d l’og o;i = k(c -log cr,z)dt +0o,dW;
where S, is the price of the underlying asset, and the instantaneous (log)variance
follows a mean reverting process. Hull and White (1987) show that when the volatility
risk is unpriced and the two Wiener processes are uncorrelated, the price of the option
can be expressed as the expectation of the BS price taken with respect to the
distribution of the sample paths of the volatility process.f By making the volatility
parameter follow a continuous process it is possible to match the observed volatility
skew (Hull and White, 1987, Chesney a.nd Scott, 1989; Melino and Turnbull, 1990;
Heynen, 1994). This research suggests the empirical validity of stochastic volatility

option pricing models.

* But see also models of volatility switching (Naik, 1993), mixed jump diffusions (Merton, 1976;
Amin. 1993). and state dependent volatility models (Derman and Kani, 1994; Dupire, 1994; Rubinstein,
1994) as well as evidence of empirical validity of such models (Dumas, Fleming and Whaley, 1995; Malz,
1996: Bates. 1996).

* Willard (1996) shows that this result is valid even if the volatility and spot processes are
instantaneously correlated.
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Second, the term structure of implied volatility has been tested for consistency with
rational expectations hypothesis, according to which long term implied volatility is
some average of expected future short term volatilities. Stein (1989) showed how
mean reversion in volatility and rational expectations can be combined to impose
testable restrictions on the evolution of the term structure of implied volatility. In
particular, under rational expectations, the long. term implied wvolatility should equal
some weighted average of expected future short term implied volatilities. Using two
(short and long maturity) daily time series of S&P100 index options he found evidence
to the contrary, interpreting it as market ‘overreaction’. Campa and Chang (1995)
examined a richer dataset consisting of implied volatilities of six maturities and were

unable to reject the expectation hypothesis.

Recognising that this is a test of a joint hypothesis of correct time series specification
and a particular rational expectations model, Heynen, Kemma and Vorst (1994) re-
examined the issue by considering alternative processes describing changes in asset
priée volatility. Comparison of an SV model, a GARCH, and an EGARCH
specification showed that the joint hypothesis could be rejected in the first two cases
but not in the latter. This research suggested that a major factor in the understanding of
the dynamics of volatility term structure is the ability of the model to capture the time
series dynamics and in particular, the mean level of volatility. Xu and Taylor (1994)
proposed an alternative model of expectation generation in which expectations are
assumed to revert some time dependent long run average level. Their model is well
supported by the data and no evidence of ‘overreaction’ could be found. The authors
document significant term structure dynamics with the slope of the volatility curve
changing approximately once every two to three months. Thus, depending on the

process which is assumed to govern the evolution of volatility and the model of
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expectation generation one may conjecture that implied volatility may or may not be a

poor predictor of future implied volatilities.

The final research avenue is the question of whether the information encoded in
implied volatilities is helpful in forecasting realised, ex post variance of returns. It is
here that this Chapter aims to make a contribution. The information content of implied
volatilities has been investigated by several authors. Canina énd Figlewski (1993)
analyse daily data on the S&P100 stock index options for the period 1983-1986. The

hypothesis is tested by means of regressions of the form:
Griss =@+ B0 (1.E) + BO,,.1 +1, 43)

where o, ,,, is the realised return volatility over some future horizon t,t+L, Oimpi{7,E)
is the implied volatility at ¢ with maturity 7, and strike E, and o,,,, is the predictor

obtained from the time series of the underlying asset using data up to the time 7. In a
joint test of market efficiency and optimality of the implied volatility as a forecast
variable one expects a=0, =1, and =0 (Fair and Shiller, 1990; Pagan and Schwert,
1990). Canina and Figlewski (1993) find that implied volatility is a poor predictor of
future ex post volatility, and better forecasts can be obtained from simple historical

moving averages.

Day and Lewis (1992) and Lamoureux and Lastrapes (1993) approach the problem by
adding the time series of implied variance as an exogenous explanatory variable into

the variance equation of a GARCH (and an EGARCH) model as in (1.7):

{ r=o,v,, v, ~N(O]I @)

2 2 2 2
o, =a, +ar., + o, +yo, pl.t—l(z"E)

im;

where, as before, r; is the mean adjusted return on the asset. The hypothesis, that

contemporaneous prices of options contain information beyond of what can be

114



obtained from the historic price series of the underlying asset is tested by examining the
significance of the coefficient y. Both studies report that the hypothesis of no influence,
»=0 and the hypothesis of exclusive influence, a;=f;=0 can be simultaneously rejected.
This evidence led the authors to conclude that implied volatility has some informational
content but by itself, it is not sufficient to account for all time series variation if the

conditional variance.

However, the formulation (4.4) is unduly restrictive in that the coefficient on the
regressor does not capture the instantaneous impact of implied volatility on

unconditional variance. Instead, equation (1.8) shows that

A .
Erl =g+ 2y 0 o (W), p=at A (45)
= |

Thus the unconditional variance of returns is given by an exponentially weighted
average of past implied volatilities but not the current value, 6%y {7,E), arguably the

most relevant of all observations.

By contrast, Xu and Taylor (1995) who examine four exchange rate series together
with the corresponding implied volatilities taken from exchange traded contracts
during the period 1985-1991 find the opposite result. The evolution of the conditional

volatility in-sample can be best captured by the time series of 07 mr.

The comparison of the out-of-sample predictive power of forecasts obtained from time
series models and implied volatilities has been examined by Day and Lewis (1992),
Lamoureux and Lastrapes (1993), Xu and Taylor (1995) and Jorion (1995). The
results of the first two papers suggest that the time series mddels, which only utilise the
information contained in the price history of the process, perform better than implied
volatilities. By contrast, Xu and Taylor (1995) and Jorion (1995) find the opposite '
result: the forecasts constructed from GARCH models are shown to be inferior to the
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implied volatility figures. Jorion (1995) suggests that measurement problems may be
responsible for the discrepancy. Stale, non-synchronous quotes for the underlying
stock market index, arbitrage restrictions due to transaction costs, and bid/ask
distortions in the recorded option prices may contribute to measurement errors,
particularly in stock index implied volatilities. Further distortions are induced by
attempting to invert American options on dividend paying stocks in order to obtain
values of implied volatilities. For instance, Canina and Figlewski (1993) report several
cases where implied volatility calculated by their method is negative. The empirical
analysis presented in this Chapter demonstrates that even in the case of foreign
currency options - which minimise the measurement problems mentioned above -

better forecasts may be constructed from the history of the return process.

An altogether different approach to testing the informational content of implied
volatilities is advocated by Noh, Engle and Kane (1994). Here option trading strategies
are devised based upon the predictions derived from time series models of the
underlying (GARCH) and compared to the predictions obtained solely from the history
of the implied volatilities. In an application to S&P500 stock index options for the
period 1985-1992 the authors find that the cumulative return generated by the trading
strategy based on GARCH forecasts is much higher than when the rules are derived
form implied volatilities. The results, however, are unconvincing; for example, Exhibit
9, pg. 27 reveals that the superiority of the GARCH based trading rule is driven by a
single observation: during the Crash of 1987 the GARCH portfolio generates an
abnormal profit, while the implied volatility portfolio generates an abnormal loss.
Moreover, prior to this event the cumulative return grows at a faster rate for the
implied volatility based strategy than for the GARCH portfolio. This highlights some
iinportant limitations of the methodology. Apart from measurement problems

discussed earlier, sensitivity to outliers, execution risk, various assumptions regarding
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transaction costs, opportunity cost of capital etc., and subjectivity of the trading rules

contribute to the shortcomings of this method.

One difficulty associated with all previous studies is the unavailability of “time
homogenous” implied volatility data. A time series of implied volatility, Gimyd 7,E),
=1, .., T is called time homogenous if the maturity, 7 and the moneyness, E/F; of the
option are set relative to the observation date, ¢ and are thus constant throughout the
sample. Exchange traded options do not allow for a construction of a time
homogenous implied volatility data-sets because such options have a fixed calendar

expiration date and a fixed nominal strike.

For instance, in order to construct a univariate time series of daily implied volatility
from exchange traded contracts, at each observation date an option with some strike
and some maturity has to be selected. On the following date this particular strike will
still be available but because the underlying will have moved the moneyness of the
option will now be different. Similarly, the calendar expiry is fixed so that the maturity
of the option is now shorter by one period. In the presence of pronounced term
structure dynamics of the kind documented in this Chapter, and elsewhere (Xu and
Taylor, 1994, 1995) this data construction procedure will induce maturity mismatch

which may affect inference.

When the out-of-sample forecasting experiments are performed, the horizon of the
time series model may be synchronised with the maturity of the option (Lamoureux
and Lastrapes, 1993) at each observation date. As a consequence, however, the quality
of the forecast from the time series model will vary throughout the sample because the
predictive ability of time series models depends crucially on the length of the
forecasting horizon. Thg [-step ahead forecast function of the GARCH(1,1) model

(4.5) with no explanatory variables (y=0) is:
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o‘:tz,nl =o + ¢1_1 (612 - tD') » 0 =a, (1 - ¢)—1

For large lead periods /, the forecast will tend to the long run mean, @ so that the
analysis is reduced to the comparison of the predictive power of implied volatility to
that of the long run variance. This explains why Day and Lewis (1992) and Lamoureux
and Lastrapes (1993) (who study lead periods between /=64 and /=129 trading days)
find that a naive forecast, the sample variance, performs at least as well as the

GARCH/EGARCH forecast.

Finally, tests based on (4.3) are invalidated by econometric difficulties. First, the
forecasts from time series models and implied volatilities have typically a correlation
coefficient above 0.85 potentially leading to the multicollinearity problem. More
importantly, the volatility persistence parameter is typically well above 0.9 leading to
highly autocorrelated volatility forecasts. The strong autocorrelation in the dependent
and the exogenous variables will induce small sample biases in the coefficient estimates
of (4.3). This is a well known problem in the context tests for rationality (Mankiw and

Shapiro, 1986).

Summing up, the evidence reported in previous studies suggests that ATM implied
volatilities are rich in time series and term structure dynamics and have some
informational content as to the evolution of the conditional variance of the process.
However, the difficulties associated with the data, the measurement techniques, and

the experimental set-up render the results open to discussion.
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4.3. Empirical study
4.3.1. Data description

One of the @jor difficulties of the empirical. research in this area has been the
unavailability of a contemporaneously recorded prices of the underlying and a time
homogenous implied volatility matrix. Our data set comprises daily bid and ask quotes
for over-the-counter (OTC) foreign exchange options on the DEM/USD exchange
rate’ together with the corresponding, contemporaneously recorded quotes of the spot
exchange rate.* The sample period is April, 1, 1992 until November 10, 1996 totalling

T=1,169 observations.

The market convention is to quote prices for at-the-money (ATM) forward® straddles,
i.e. a call and a put with an identical strike equal to the current forward exchange rate.
At each observation date we have a full term structure of implied volatility as defined
by the one, two, three, six, nine, and twelve months maturities, 7=1,..,6. The strike on
thése options is set relative to the instantaneous price of the underlying, while the
maturity is a fixed period relative to the observation date. Unlike exchange traded
options with fixed nominal strike and a calendar maturity date, these OTC data are
devoid of maturity and strike mismatch encountered in previous research. For
notational convenience the dependence of implied volatilities on the strike price is
henceforth suppressed. Similarly, the bid/ask distortions discussed earlier are avoided

by averaging bid and ask quotes to give the mid market observation.

* Quoted on REUTERS Page TRDO and Telerate Page 4720. I am grateful to Banker’s Trust for
collecting the data, and making them available for this research.

* Similar data-set, alas devoid of the contemporaneous price of the underlying, was investigated by
Campa and Chang (1995).

® So that the strike, E equal to the forward price of the underlying, F,.
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The market convention is to quote pdceé in terms of BS implied volatilities (4.1) rather
than option premia. Provided the volatility risk is unpriced, this method is justified
even under the stochastic volatility dynamics (4.2). In this case the price of the call
option, Csy is given by the expectation of the BS price over the distribution of the

average variance (Hull and White, 1987):
Cs = E[BS(7)] (4.6)

where V7 is the average variance until contract expiry. Furthermore, because the BS
formula is approximately linear in volatility (Cox and Rubinstein, 1985) and roughly
linear in variance (Lamoureux and Lastrapes, 1993) the expectation operator and the

function in (4.6) may be interchanged, to give:
Cy ~ BS[E(7)] “4.7)

So that the BS implied volatility obtained via (4.1) is reinterpreted as the expectation
of the average volatility over the remaining life of the option. From the practical point
of view, (4.7) eliminates the need to filter option prices through a more sophisticated
pricing model in order to obtain values of implied volatilities. This task is unfeasible for
two reasons. First, most stochastic volatility models involve costly numerical
simulations. Semi-closed form solutions (Heston, 1993; Stein and Stein, 1991) are only
valid for specific processes which may be mis-specified. Second, the parameters which
govern the evolution of the volatility process have to be estimated (Renault and Touzi,
1996) thus inducing an additional source of error. Instead, our results are conditioned
upon the validity of the pricing model (4.6) and thus present a joint test of model

validity and market efficiency.

The underlying instrument is the DEM/USD exchange rate and summary statistics are

given in Table 4.1, Panel A. The data are strongly consistent with many earlier studies
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of exchange rates (Baillie and Bollerslev, 1989; Diebold and Nason, 1990) in that the
unconditional density of r¢ (as characterised by the first four sample moments) is: (/)
centred around zero (/w/=-7.0-10'9); (i#) negatively skewed (/Wi=-0.13); and (Hi)
exhibits large kurtosis (/w/=7.58). The minimum (maximum) observation is 6.88 (4.96)

standard deviations away from the mean.

More importantly, returns appear to have little time series dynamics while their squares
and log squares do. This is captured by the Box-Ljung (9-statistic which is barely
significant for rt (Qid=21.38, Q44=51.25), but is highly significant, both for r2
(0/0=64.42, 0"0=156.00) and Inr2 (0/0=209.96, 2*0=440.69) with the relevant

and 405% critical values being 18.3 and 55.8. The correlogram of %, (a) and Inr2, (b)
together with the +£27 ®'Sbands7is presented in Figure 4.1. The graphs are indicative

of little autocorrelation in the return series and some time series dynamics for Inr,.

M
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Figure 4.1: DEM/USD: Correlogram ofru and Inr,

We proceed by fitting the basic SV model:

. =o v, ~ 70,1
Ino: - Ino~ +h (4.8)
h, =iphl, +7,

In large samples the autocorrelations from a white noise process are approximately uncorrelated and
normal with mean zero and variance 7~ (Harvey, 1993, p.42).
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to the entire sample period, results of which are presented in Table 4.1,Panel B
Volatility is found to be persistent with the estimate of the autoregressive parameter
taking the value of #=0.911. The coefficient of variation (CF=1.5) is well within the
region documented in earlier studies (and summarised in Table 3.1). The graph of the
contours of the likelihood function, presented in Figure 4.2(a), suggests a unique
maximum in the interior of the parameter space. Using the results of Chapter 3, the
hypothesis of a unit root in the (log)variance process is rejected at the 1% level by
comparison of the likelihood ratio test statistic, %4R=25.2 with the critical value of
5.412. Figure 4.2(b) shows the in-sample estimates of the volatility process (light line)
obtained from the basic SV model (4.8). For comparison the one month implied

volatility (heavy line) is also presented.

(@ ®

Figure 4.2: DEM/USD: Likelihood contours and volatility estimate

The graph suggests that the implied volatility can be regarded as a slowly moving
component around which the daily conditional volatility evolves. This motivates the
use of implied volatility data as proxies for the time varying mean of the volatility
process. Notice, that in our sample the implied volatility is generally above the
volatility estimated from the price process8 the implications of which will become
evident in Section 4.4.2. Several suggestions may be put forward as to why options

implied volatility is above historical volatility. A premium associated with small but
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non-negligible possibility of a market crash may lead to this phenomenon.
Alternatively, counterparty risk premium may be priced in this OTC market leading to

higher option premia and hence, implied volatilities.

Summary statistics of implied volatility data are presented in Table 4.2. While fhe
mean levels across maturities are equal’ implied volatilities of shorter maturities
fluctuate considerably more than those with longer time to expiry: the standard
deviation is a strictly declining function of maturity. This leads to periodical inversion
of the slope of the term structure, a feature also captured by the fact that the minimum
observation is lower and the maximum observation is higher the shorter the maturity.
As can be seen in Panel C, the correlogram and partial correlogram for all maturities
resemble closely the ACF and PACF of a first order autoregressive process: the ACF
decreases slowly and the PACF has a peak at the first lag and is negligible otherwise.
Thus each individual series is well described by a mean reverting process. Panel B also
presents the correlation matrix of implied volatilities. As expected, correlation is a
decreasing function of the distance in maturities: the implied volatilities of

neighbouring maturities have higher correlation than those further apart.

4.3.2. Analysis of the volatility curve

The term structure of implied volatility is defined as a collection of six implied
volatilities with varying maturities, =1,..,6. The whole data set is represented in a
matrix, X, of size (7xp) so that each row gives the volatility curve at time ¢ while each
column gives the time series of Gimy(7) for a given maturity, 7. It is clear from the
summary statistics of Table 4.2 that the evolution of the entire volatility curve can be

represented by a set of variables with dimension strictly less that six.

¥ The same regularity is reported by Jackwerth and Rubinstein (1996, p.1613).
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One way of énalysing the dynamics of the term structure of implied volatility is
principal component analysis (Basilevski, 1994). This is a general technique aimed at
determining the factors which account for most of the co-variation in a set of variables,
X. The objective of the method is to find a unique orthonormal linear decomposition
Z=XP which is obtained by diagonalising the (pxp) sample covariénce matrix, X=
X'X."* The principal component analysis is performed on the covariance matrix rather
than the correlation matrix since (i) all series are measured in same units, and (i7) it
allows us to assign meaningful interpretations to individual components (Basilevski,
1994). The eigenvectors of X, denoted by v, form columns of P and are ordered in
such a way that the first corresponds to the largest eigenvalue, 4, the second to the

second largest etc. where A, are the diagonal elements of L=R'X'XP.

The resulting transformation of X to a new set of fegressors, Z is such that the
elements of Z are pairwise uncorrelated and of which the first will have the maximum
possible variance, the second the maximum possible variance among those
uncorrelated with the first, and so forth. The columns of Z - denoted by z; - sorted in
order of their contribution to the covariance matrix £ are called the principal
components of X. The proportion of the variance explained by each z, is measured by
the ratio of each 4, to the total sum of the eigenvalues. The advantage of the technique
is that a small number, g<p of principal Components, z; i=1,..,q can explain a large
proportion of the variability in the data. On the other hand, the method does not

deliver any information about the dynamic properties of z;.

Principal component analysis is sufficient for present purposes since the aim is to

construct easily interpretable proxy variables for the in-sample evolution of the

* Comparing the distribution of the test statistic in the lower diagonal part of Panel B with the critical
value of 1.96 leads to a rejection of the hypothesis of a difference in means for all maturities.
' The multiple (7-1)" may be omitted w.L.o.g.
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volatility curve. When compared to static factor analysis (Everitt, 1984; Bartholomew,
1987) the uniqueness of the decomposition facilitates the interpretation of the
components. By contrast, dynamic factor analysis (Engle and Watson, 1981) while
delivering a structpral representation of the implied volatility curve requires additional
assumptions, e.g. regarding the expectation generation mechanism (Xu and Taylor,

1994).

Assuming that the observed volatility curve results from the asset price dynamics of the
kind (4.2), let X be a (7x6) matrix of logarithms of squared implied volatilities." The
results of the principal component analysis, as reported in Table 4.3 allow three
conclusions to be drawn. First, column 3 indicates that 99.6% of the variability in the
term structure of implied volatility can be explained by the first two principal
components of which the leading one captures 97.3%. This is not surprising given the
high degree of correlation between individual implied volatility series. Second, the first
eigenvector, v, is strictly positive. This allows us to reinterpret the leading component
as the level of the term structure, since it is some average of implied volatilities of
different maturities with positive weights, z=Xv;. By contrast, the second eigenvector
v, has negative weights on the shorter and positive weights on the longer maturities
effectively forming differences between the short and long maturities. We interpret it as

a measure of the slope of the volatility curve.

"' The log transformation does not significantly alter the covariance structure of the variables, the
composition of the eigenvectors, and relative weights. See also the discussion in Bartholomew (1987,
pg. 40) regarding the indeterminacy with regard to the log transformation.
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4.4. Informational content of implied volatility
4.4.1. In-sample explanatory power

In this Section the hypothesis that implied volatility contains relevant information as to
the evolution of the (log)variance of the underlying asset is examined. The richness of

the data-set allows for a detailed investigation of ﬁe following questions:
(i) Can in-sample return volatility be exclusively captured by implied volatility?
(ii) Is information regarding the slope of the volatility curve relevant?
(iii) Is information encoded in the entire volatility curve relevant?

The research objectives are addressed by extending the basic SV model (4.8) to include

a set of K explanatory variables:

r, =0V, v, ~ N(0,1)
Inc} =Z'y +h, 4.9)
h=¢h.+n  n~N(0o;)

where Z=(1, ..., ) and yis a (K+1x1) vector. The first element of Z, is unity so that
the corresponding element of ¥ is In 5_2 . Model (4.9) collapses to (4.8) if the remaining
elements of y are zero. In this case the explanatory variables are seen as having no
informational content. By contrast, if ¢ is zero, the autoregressive component is redundant
and the explanatory variables capture accurately the asset’s volatility dynamics (apart from

an /ID disturbance, 7,)."”

Formulation (4.10) is more appropriate than the GARCH counterpart (4.5) employed by

Day and Lewis (1992) and Lamoureux and Lastrapes (1993) since the instantaneous

2 Testing for o,=0 is more problematic since the autoregressive parameter is not identified under the
null hypothesis (Harvey and Streibel. 1997).
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impact of the explanatory variables is modelled, rather than some weighted average of past

values, as equation (4.5) demonstrates.

In order to verify the working hypothesis the following variables were selected:
IMoVol = In&® impiA1),
12MoVol =N impiA6),
Slope =6 mpi,{1)-0 impi{6),
PC1, PC2

where o mp.A 7) is the (squared) implied volatility of maturity 7, and PC/ and PC2 are
first two the principal components obtained in Section 4.3.2. The first research
objective is addressed by comparing the explanatory power of /MoVol and 12MoVol
and the extent to which the autoregressive component in (4.9) remains significant after
the introduction of explanatory variables. The Slope variable (defined as the difference
between implied volatilities of short and long maturities) gives a measure of the
steepness of the volatility curve. Inclusion of this variable in conjunction with /MoVol
allows inferences about the second working hypothesis to be made. And finally,
question (7ii) is addressed by examining the explanatory power of the entire volatility
curve, which - due to the multicollinearity issues - is approximated by the first two

principal components.

The results of the estimation for the entire sample of 7=1,169 observations are
presented in Table 4.4, Panel A. For ease of comparison the column labelled M0
reproduces the results of the estimation of the basic SV model, already presented in
Table 4.1, Panel B. The general finding is that the coefficients on all explanatory
variables are significant, which can be verified by comparing the ratio of the coefficient .

estimate to the standard deviation (reported in parenthesis below) to the limiting
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normal distribution. Similarly, the likelihood ratio tests (reported in the row labelled
LRI) indicate the significance of the explanatory variables when compared to the

relevant critical values of the % distribution.

The estimates of the hyperparameters ¢ and o7, change considerably depending on the
set of explanatory variables. For instance, estimates of the autoregressive coefficient
decline from ¢=0.911 in the basic SV model, M0 to ¢=0.569 in model A3. However,
the hypothesis Hy: ¢=0 is rejected in all cases by observing that (a) the #-statistics, and
(b) the likelihood ratio tests (reported in the row labelled LR2) are significant at 1%
level, except for model M4 where the LR2 test is significant at 5% level. Day and
Lewis (1992) and Lamoureux and Lastrapes (1993) also found that the estimates of
the components describing the evolution of conditional variance declined, but remained
statistically significant after the introduction of explanatory variables. This finding led
the authors to the conclusion that implied volatilities are “insufficient statistics” (Day
and Lewis, 1992, p. 278) for the conditional variance specification. Recall, that both of
these studies employ a single implied volatility measure which is not time homogenous,

with varying maturity of three to six months.

By contrast, our data allow a more detailed exémination of this issue, leading
ultimately td a different interpretation. Consider the estimation results of models M/
and M2 and recall that in M/ only the /MoVol is used as the sole explanatory variable
while only /2MoV ol is used in M2. The important observation is that the change in
volatility persistence is not identical across the two models: the autoregressive
coefficient is found to be lower for the model M/ (¢=0.578) than for M2 (¢=0.892).
The in-sample explgnatory power of implied volatility is thus related to the maturity of
the option: implied volatilities of shorter maturities lead to lower degrees of volatility

persistence.
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Notice, that the autoregressive component in (4.9) appears relevant in either model.
However, this finding is not robust across sub-samples. Both, rolling and updating
sample construction procedures are considered. With 500 observations reserved for the
minimum sample size®, our sample length, 7=1,169 permits 669 estimations of each
model. Sample means and standard deviations of parameter estimates are reported in
Table 4.4, Panel B. Irrespective of the sample construction procedure the volatility
persistence parameter in model M/ declines sharply. On average, estimates of ¢ are
centred around 0.100 (0.223) for the rolling (updating) samples. Notice, that the
sampling standard errors indicate a large number of sub-samples for which estimates of
¢ are, in fact, negative. By contrast, estimates of ¢ in model M2 are centred around
0.544 (0.817) for the rolling (updating) samples. Thus, in many sub-samples implied
volatilities of 1Mo maturity render the autoregressive component redundant, which
cannot be achieved by 12Mo volatility figures. Xu and Taylor (1995) who also
examined foreign currency options obtained a similar, but stronger result: in their data-
set the time series of implied volatility is by itself sufficient to describe the evolution of

conditional volatility.

The second research objective (importance of the slope information) is addressed by
examining the significance of the Slope variable in model M3. First, the r-statistic
associated with the estimated coeficient (2.88) is significant at 1% level. Second, the
likelihood ratio test - constructed by reference to the maximised likelihood function
values in models M3 and M/ of Table 4.4, Panel A - takes the value 7.80 which is
significant at 1% when compared to the critical value of y,°. When sub-samples are
examined (Table 4.4, Panel B), the esﬁmates of the volatility persistence parameter are

centred at -0.031 (0.230) for the rolling (updating) samples, indicating that the two

'* Chapter 2 showed that sample sizes of 500 observations are large enough to successfully estimate
SV models. Fewer observations may lead to the likelihood function being ill-conditioned. or “flat”
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variables together capture the evolution of the DEM/USD volatility even more

accurately, than the level of the implied volatility on its own.

Very similar results are obtained when the informatioﬁ encoded in the entire volatility
curve (as approximated by the first tWo principal components, PC/ and PC2) is
inserted into the variance equation, as has been done in model AM4. Since models M4
and M3 are non-nested, likelihood ratio tests cannot be performed. Examination of the
hyperparameter estimates for the entire sample and across sub-samples indicates little
difference between the two specifications. We interpret this as weak evidence against
the hypothesis that the information encoded in the entire volatility curve is required to

explain the in-sample evolution of return volatility.

Summing up, the introduction of implied volatility data into the variance equation of
the SV model shifts the estimate of the volatility pefsistence parameter, ¢ towards
zero. By implication, contrary to the claims made in previous research, most of the
time series dynamics of conditional volatility can be explained by implied volatilities.
We interpret the discrepancy in the light of measurement problem associated with
selecting the most informative volatility measure, which we find to be given by options

of very short maturities.

4.4.2. Out-of-sample forecasting power

The preceding Section indicated that the information encoded in the term structure of
implied volatility explains most of the in-sample time series dynamics of the conditional
variance. However, the question regarding the predictive ability of implied volatilities
should be addressed in the context of an out-of-sample forecasting experiment. If the
volatility risk is unpriced, equations (4.1) and (4.7) show that implied volatility is the

expectation of the average volatility of the underlying instrument until option

over the relevant region of the parameter space. ,
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expiration. In these circumstances no time series model should exhibit better

forecasting performance than implied volatility.

The predictive power of various models is examined in its ability to forecast the
realised, or ex post volatility over the remaining contract life. The realised volatility is
conventionally taken as the average of squared returns over the remaining life of the

contract:

L
Oppor = “L_' > R, L =20,40,60,130 (4.10)
I=1

where, as before, R; is the return on the asset. The lead period, L corresponds to the
approximate number of trading days in respectively one, two, three and six months
period. Thus the forecasting horizon and the maturity of the option are not only
matched but also constant throughout the sample. This is important, since it warrants

the comparison of the forecasts across various forecast horizons.

The figure is annualised by a factor of V260 for ease of comparison With implied
volatility figures, which are scaled by the same factor. The measure (4.10) is widely
used i‘n the context of volatility forecasting éxperiments (Day and Lewis, 1992;
Lamoureux and Lastrapes, 1993; Jorion, 1995; West and Cho, 1995; Xu and Taylor,
1995). The justification of which is given by the following argument. If the mean of the
return process is zero (or the mean is negligibly small as is often the case with financial
time series) then the squared return is a proxy for the realisation of o°, The measure
(4.10) will therefore give an estimate of the average realised volatility over the time

period, L.

Clearly, if the true volatility process is (4.2), then (4.10) can only be considered to be a
noisy proxy for the long run average volatility level. The obvious shortcomings of this
measure necessitate the consideration of an alternative proxy for the ex post volatility.
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Under the null hypothesis of the SV model being true, an alternative measure of the ex
post variance is given by the in-sample volatility estimate from the SV model estimated

at a later time period:'

l

Q

(4.11)

t+L —

The measure (4.11) will be subject to estimation error as well as model
misspecification error. In the event, both ex post volatility measures lead to identical
results when contrasted with the implied volatility value Oimpy(7), and the forecasts,

O,... from the basic SV model (4.8).

Again, rolling and updating samples are considered. At each consecutive time step /-
days forecasts from the basic SV model (4.8) are generated in accordance with the

forecast function (2.30) reproduced here for ease of reference:
G =ged M o1 L (4.12)

where the scale parameter &, is defined in (2.28). The volatility forecast is taken as

the average of one-step ahead forecasts over the forecasting horizon, L, and annualised
by the factor V260. The results of the out-of-sample forecasting experiment are

~

reported in Table 4.5. Summary statistics of the forecast errors, #,(L) =3,,,, - ..., ,

where the volatility proxy,d,,,, is calculated as in (4.10) are reported in Panel A and

allow three conclusions to be drawn. First, in terms of average errors (4VG), mean
absolute deviation (MAD), and root mean squared error (RMSE) the forecasts
constructed from time series models are at least a good and often more accurate than
the forecasts given by implied volatility. This applies to all forecasting horizons. In

general, implied volatilities are upward biased forecasts (AVG>0) of future realised

" The results are robust to the alternative specification: &, ,,, = L' Z &:.r+th .
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volatility, indicative evidence of which was represented in Figure 4.2. This does not
however, imply that the SV model forecasts are excellent predictors of future ex post
volatility. On the contrary, particularly over short forecasting horizons, the forecasts

can be extremely inaccurate, as the MIN/MAX statistics indicate.

Second, forecasts constructed from updating samples are better than those constructed
from rolling samples. This is not surprising, since larger sample sizes lead to more

accurate parameter estimation. Hence the forecasting ability is improved.

Furthermore, all RMSEs and MADs decline as the forecasting horizon increases. This
property is due to two facts. First, the variability in the ex post variance proxy (4.10)
stabilises as the forecasting horizon increases. Second, the predictors from time series
models revert to the long run mean levels. In both instances the comparison of the
forecasting power becomes less meaningful and reduces to the comparison of the

forecasting power of the long run mean.

The results concerning the sub-optimality of implied volatility forecasts are unaltered
when an alternative ex post volatility measure (4.11) is considered, as can be seen from
Panel B of Table 4.5. Again, the forecasts obtained from the time series models are
more accurate (in terms of AVGs, MADs and RMSEs) than implied volatility figures.
Finally, the accuracy of all predictions across all horizons is increased when (4.11) is
taken as the ex post volatility proxy. This is indicative of the decreased noise

component in the second ex post volatility measure.

- This forecasting experiment lends further support to the claim that better volatility
forecasts can be cons;mcted based upon time series specifications of conditional
variance than simply upon implied volatility figures. Similar conclusion was reached by
Day and Lewis (1992) and Lamoureux and Lastrapes (1993) who examined stock

index options. On the other hand Xu and Taylor (1995) and Jorion (1995) show that
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opposite results can be obtained in the foreign exchange options market where
measurement problems associated with stale prices, transaction costs and bid/ask
bounce are absent. This Chapter demonstrates that even within the foreign exchange
options market the question regarding the predictive ability of implied volatility

remains open.

4.5. Summary and conclusion

This Chapter re-examined the hypothesis that implied volatility of options contain
relevant information about the evolution of the latent volatility process of asset returns.
Contrary to the results reported in earlier studies (Day and Lewis, 1992; Lamoureux
and Lastrapes, 1993), we find that in-sample the implied volatility captures most of the
time series dynamics of the conditional volatility of the return process. The discrepancy
is related to measurement problems encountered in previous research associated with
selecting the most informative implied volatility measure. It is shown that the
explanatory power of implied volatility varies with the maturity of the contract: implied |

volatilities of short maturity (1Mo) are more informative.

However, the our-of-sample forecasting experiment suggests that the predictions from
the basic SV model across all forecasting horizons are at least as accurate as the
forecasts obtained from the implied volatility data. This finding augments the
conclusions reached in some studies (Day and Lewis, 1992; Canina and Figlewski,
1993; Lamoureux and Lastrapes, 1993) in that implied volatility of options may not be
the best forecast of the average realised volatility. The data-set employed here allows
our experiment to be set up in such a way that the criticisms raised in response to

earlier work by Jorion (1995) do not apply. Specifically, all measurement probiems
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associated with stale prices, bid/ask quotes, and different forecast horizons are

carefully avoided.

To conclude, the results indicate that - if the options market is efficient - the
assumptions underlying the SV option pricing model (4.7) may not hold. In panicuiar,
a volatility risk premium may be required by the market. Alternatively, demand and
supply circumstances caused by preferences of; options’ market participants for

particular risk patterns may invalidate the pricing relationship.
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Table 4.1. Preliminary analysis of DEM/USD exchange rate

Panel A: Summary statistics, time period 1/4/1992-10/10/1996, 7=1,169.

m; m; ﬂdﬁ/m: max/mz m;z my Q]a Q;g

r. |-7.010° 6.5-10° 6.88 4.96 -0.13 758 2138 5125
’ [4210° 1.1.10* -0.39 18.11 824 11223 6442 156.00
In” | -11.65 1.93 1.73 282  -0.04 219 20996 440.69

Panel A reports the sample means (m;), standard deviations (m2;), skewness (m3), and
kurtosis (m,), as well as the modulus of the minimum (and maximum) deviation from
m; expressed as a multiple of m; for the returns (r,), their squares (+%;), and log squares
(In”?)). The Box-Ljung statistic

0, - T(T+z)§(r- 1)5()

is evaluated at 10 and 40 lags, where p(7) is the sample autocorrelation at lag 7.

Panel B: Results of the estimation of the basic SV model, 7=1,169.

¢ oy Ing? q CV  LogLik i

v 0911 0155 -10634 003 150  -2633.5 2520
se(v) | (0.001) (0.002) (0.137) - ] ] ]

Panel B reports the parameter estimates of the basic SV model (4.7). The standard
deviations of the hyperparameters (#,0°,) are taken from the numerical approximation

to the Hessian, while the standard deviation of the estimate of Ing * is taken from the
relevant diagonal element of P;. The remaining columns give the signal-noise ratio, g

and the coefficient of variation, CV defined by
q=20, /7", CV = var(o, )E[a, ]-2 = exp(o;f(l - ¢2)-I) -1

as well as the value of the maximised likelihood (LogLik). The final column reports the
likelihood ratio test, &x of ¢=1, the distribution of which was shown to be closely
approximated by the 0.5y, density.
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Table 4.2. Summary statistics of the DEM/USD volatility curve

Panel A: Summary statistics, time period 1/4/1992-10/10/1996, T=1,169.

IMo 2 Mo 3 Mo 6 Mo 9 Mo 12 Mo
m,; 12.19 12.22 12.23 - 12.23 12.22 12.21
m; 241 1.96 1.63 . 122 0.97 0.79
Min 7.80 8.65 9.05 10.00 - 10.35 10.53
Max 21.80 20.75 18.75 16.20 15.10 14.10
m; 1.04 0.96 0.69 0.54 0.20 0.00
my, 1.58 1.22 0.39 0.18 -0.52 -0.84

Panel A reports the sample means (m,), standard deviations (m;), skewness (ms), and
kurtosis (m,), as well as the minimum and maximum values for the implied volatilities
of varying maturities.

Panel B: Correlation matrix and test of the equality of the means, 7=1,169

tcorr IMo 2Mo 3 Mo 6 Mo 9 Mo 12 Mo
IMo - 0.99 0.97 0.94 0.91 0.88
2 Mo -0.05 - 0.99 0.97 0.95 0.92
3 Mo -0.05 -0.03 - » 0.99 0.97 095
6 Mo -0.04 -0.02 -0.01 - 0.99 0.97
9 Mo -0.02 0.00 0.01 0.04 - 0.99
12 Mo -0.01 0.00 0.02 0.04 0.04 -

The upper triangular part of Panel B contains the correlation figures (p;). The lower
triangular part - the values of the test statistic for the difference in the mean:

ﬁi—/}j

tlj = o] + A2 _2 A A
g’ +0, -2p,0,0,
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Panel C: Correlogram and sample partial autocorrelations, 7=1,169

IMo 2 Mo 3 Mo 6 Mo 9 Mo 12 Mo
ACF
1 0.97 0.98 0.98 0.98 0.98 0.98
2 0.94 0.95 0.95 0.96 0.96 0.97
3 0.91 0.93 0.93 0.94 0.94 0.95
4 0.89 0.91 0.91 0.92 0.93 0.94
5 0.87 0.89 0.90 0.90 0.91 0.92
6 0.85 0.87 0.88 0.88 0.90 0.91
7 0.83 0.85 0.86 0.87 0.88 0.89
8 0.81 0.83 0.84 0.85 0.87 0.88
9 0.80 0.82 0.83 0.84 0.86 0.87
10 0.78 0.80 0.82 0.83 0.84 0.85
PACF

1 0.97 0.98 0.98 0.98 0.98 0.98
2 -0.09 008 | -008 0.13 -0.05 -0.04
3 0.10 0.11 0.07 0.09 0.05 0.03
p 0.07 0.01 0.04 -0.01 0.05 0.02
5 0.01 0.07 0.03 0.03 -0.01 0.04
6 -0.04 -0.04 -0.02 0.04 0.01 -0.03
7 0.03 0.00 -0.01 0.02 0.03 -0.03
8 0.00 -0.02 -0.01 -0.02 -0.02 0.01
9 0.10 0.07 0.08 0.08 0.03 0.03
10 -0.04 0.03 0.00 0.00 0.02 0.03

Panel C reports the sample autocorrelations and partial autocorrelations for the
implied volatility series of each maturity.
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Table 4.3. Principal component analysis of the DEM/USD volatility curve

A % 1Mo 2 Mo 3 Mo 6 Mo 9Mo 12Mo

#1 0374 973% | 0.608 0502 0424 0313 0249 0.198
#2 0.009 23% | -0.621 -0.082 0221 0401 0444 0.449
#3 0.001 02% | 0447 -0471 -0444 -0.090 0311 0.525
#4 0.000 0.1% | 0.158 -0.357 -0.164 0.759 0.050 -0.493
#5 0.000 0.0% | 0.141 -0.626 0.740 -0.181 -0.087 -0.035
#6 0.000 0.0% | -0.013 0.027 0.009 -0.353 0.797 -0.490

This table reports the eigenvectors and eigenvalues of the covariance matrix of implied
volatilities of the DEM/USD exchange rate, 7=1,169. The column labelled “%” gives
the proportion of total variance explained by each individual component .
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Table 4.4. Significance of the explanatory variables in the variance equation

Panel A: Entire data set, 7=1,169.

Mo MI M2 M3 M4
p 0911 0.578 0.892 0.569 0.828
(0.001) (0.008) (0.001) (0.009) (0.003)
&y 0.155 0.291 0.145 0277 . 0.121
(0.002) (0.010) (0.002) (0.010) (0.004)
Const -10.634 -2.706 3.868 -5.515 -12.746
(0.137) (0.695) (2.614) (1.197) (2.320)
IMoVol 1.497" 0.965"
(0.130) (0.225)
12MoVol 2.772"
(0.499)
Slope 158.940”
(55.724)
PCl1 0.824™
(0.093)
PC2 3.705™
(0.584)
LogLik -2633.50  -260030  -2626.30  -2596.40  -2604.70
LRI - 66.40" 14.40" 72.20" 57.60"
LR2 90.80" 10.00” 40.60" 30.00" 5.60°

This panel reports the estimation results of the extended SV model (4.9) for the entire
sample period. The models are labelled M0-M4 depending on the choice of the
explanatory variables. The row labelled LR/ represents the likelihood ratio test against
MO. LRI~y’k, where K=1,2 is the number of explanatory variables in excess of M0.
The row labelled LR2 represents the likelihood ratio test of Hy: ¢=0 (so that each
model was re-estimated with ¢=0, details of which are not reported). LR2~7’;. The
standard deviations of the hyperparameters (g,0°,) are taken from numerical
approximation to the Hessian, while the standard errors of y are taken from the
diagonal elements of P, . Significance of the coefficients at (1%) 5% level is denoted

by a (double) star. .
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Panel B: Hyperparameter estimates across sub-samples

rolling Mo M1 M2 M3 M4
¢ 0.792 0.100 0.544 -0.031 0.080
(0.133) (0.451) (0.300) (0.467) (0.438)

oy 0.256 0.275 0316 0.236 0.226
(0.212) (0.177) (0.192) (0.170) (0.169)

updating Mo M1 M2 M3 M4
¢ 0.907 0.223 0.817 0.230 0.252
(0.043) (0.167) (0.146) (0.139) (0.227)

o, 0.094 0.208 0.123 0.207 0.164
(0.063) (0.071) (0.099) (0.069) (0.083)

This panel reports the averages and standard deviations of the hyperparameters across
rolling and updating samples. With the minimum sample size of 500 observations the
data permit 669 estimation of each model M0-M4 for each sub-sample construction
procedure. Estimates of other model parameters are not reported.
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Table 4.5. Summary statistics of the out-of-sample volatility forecasting errors

Panel A: Ex post volatility proxy (4.10)

IMPL 1=20 L=40 L=60 L=130
AVG 1.99 2.03 2.08 211
MAD 2.82 233 231 2.33
RMSE 4.08 3.72 3.67 3.58
MAX 11.10 9.28 7.84 6.61
MIN -8.23 -8.22 -7.60 426
ROLL L=20 L=40 L=60 L=130
AVG 2057 20.76 2087 71,09
MAD 2.82 2.62 2.42 2.11
RMSE 3.70 3.29 3.14 2.75
MAX 5.63 3.84 2.82 2.78
MIN -13.25 -10.65 -10.14 -6.63
UPD L=20 L=40 ~ L=60 L=130
AVG 013 2021 2027 20.47
MAD 2.79 2.56 2.39 2.08
RMSE 3.57 3.18 3.00 2.55
MAX 6.33 4.72 3.98 3.22
MIN -12.54 -10.78 -9.64 -6.16

This table reports the summary statistics of wvolatility forecast errors
u(l)=0 G,,.. - The ex post volatility, &,,,, is defined as the average of squared

tr+l

returns over L trading days, corresponding to the number of trading days in a 1Mo,
2Mo, 3Mo and 6Mo respectively. The forecast volatility, o,,,, is either the implied
volatility imp.A7) of the relevant maturity (/MPL) or the forecast from the basic SV
model (4.10) constructed using rolling samples (ROLL) and updating samples (UPD).
The summary statistics are the sample average (4VG), mean absolute deviation
(MAD), root mean squared error (RMSE), and the minimum (MIN) and maximum
(MAX) values. The statistics in each column are based upon 649,629, 609, and 539
observations.
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Panel B: Ex post volatility proxy (4.11)

IMPL L=20 L=40 L=60 L=130
AVG 3.11 3.33 3.45 3.64
MAD 1.85 1.71 1.73 1.80
RMSE 3.99 414 4.18 4.16
MAX 10.13 898 8.04 6.76
MIN -5.67 492 -3.65 -0.42
ROLL L=20 L=40 L=60 L=130
AVG 0.99 1.09 1.09 1.06
MAD 1.64 1.55 1.46 1.12
RMSE 2.35 2.36 2.23 1.74
MAX 5.10 3.95 3.83 3.39
MIN -8.86 -7.48 -5.34 -2.39
UPD L=20 L=40 L=60 L=130
AVG 0.56 0.54 0.49 0.44
MAD 1.66 1.59 1.46 1.08
RMSE 2.24 2.14 1.98 1.45
MAX 5.11 4.09 3.53 3.64
MIN -8.52 -7.36 -5.39 -2.86

This table reports the summary statistics of volatility forecast errors
u(L)=6,,,, -6,,.. The ex post volatility, &;,,,, is defined as the average of in-

sample volatility estimates from the basic SV model (4.9) estimated at a later time, #+L.
The forecast volatility, &,,,, is either the implied volatility Gimy{7) of the relevant

maturity (/MPL) or the forecast from the basic SV model constructed using rolling
samples (ROLL) and updating samples (UPD). The summary statistics are the sample
average (AVG), mean absolute deviation (MAD), root mean squared error (RMSE),
and the minimum (MIN) and maximum (MAX) values. The statistics in each column are
based upon 649,629, 609, and 539 observations.
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Chapter 5: Effect of futures market volume on spot market volatility

5.1, Introduction

The focus of this Chapter is the behaviour of volatility in two parallel markets: the
equity (spot or cash) market and the market for futures on an equity index. The two
markéts are linked by arbitrage since the price of the derivative security, the future,
depends directly on the price of the underlying cash instrument, the market index. It
has been found, however, that the futures returns are more volatile than the
corresponding spot returns. For example, Board and Sutcliffe (1995) report several
papers on this question. The general finding is of higher volatility for the futures
markets, sometimes up to seven times that for the spot market: and only rarely (notably
for Japan) are spot returns found to have higher volatility than the corresponding
futures returns. This has led to a considerable interest, both academic and regulatory,
in the hypothesis that the higher volatility of the futures market might have
distortionary effects on spot market prices. For example, following the stock market
crash of October 1987, it was claimed that index futures had increased stock market

volatility (NYSE, 1990).

One way of testing the significance of the futures market is to model one-off effects
like the introduction of the futures exchange. A permanent shift in spot market
volatility would signify such a causal link. The empirical evidence of the existence of
such an effect is inconclusive. Edwards (1988) documents a small but significant
decline in cash market volatility after the introduction of the equity futures. By
contrast, Harris (1989) finds that the S&P equities are more volatile subsequent to the

. introduction of the futures trading.

An alternative approach - adopted here - is to model a continuous influence from

futures to the spot market volatility. The hypothesis that increases in futures market

144



trading activity increase spot market price volatility is tested by constructing proxy
variables for the relative importance of the futures market. Among previous studies of
this question, Schwert (1990) mentions that, when volatility for the S&P500 index is
high, stock market and futures volumes are also high, while Smith (1989) found that
S&P500 futures volume had no effect on changes in the volatility of S&P500 index
returns. Santoni (1987) found a negative correlation between S&P500 futures volume
and the daily spot (high-low)/close, suggesting that an increase in futures trading does
not lead to an increase in the volatility of the index. Darrat and Rahman (1995)
concluded that futures volume did not affect S&P500 spot price volatility.
Bessembinder and Seguin (1992) found that expected (i.e. informationless) S&P500
futures trading activity was negatively related to spot market volatility when spot
market activity variables were included in the analysis. This result supports the notion
that futures trading improves liquidity provision and depth in spot markets, and rejects
the hypothesis of the destabilising effect of the futures market.! Brown-Hruska and
Kuserk (1995) also found evidence for the S&P500 that an increase in futures volume,

relative to spot volume, leads to a drop in spot volatility.

However, many of the papers in this area, iﬁcluding those on the effect of futures
volume on futures volatility and spot volume on spot volatility, suffer from a number
of problems both of model speciﬁcation and in the construction of the activity
variables. These problems are severe enough to bias the results of the empirical
investigation, and render their conclusions open to question. The remainder of this
Chapter is organised as follows: Section 5.2 contains an outline of the principal

difficulties with the approaches used in most previous tests of the hypothesis; Section

' Bessembinder and Seguin (1992) also find that, although price volatility does increase close to the
date of the futures contract’s expiry, it is not systematically related to the futures life cycle as a whole.
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5.3 describes the data and preliminary tests; Section 5.4 contains the results of tests of

the principal hypothesis, while Section 5.5 concludes.

5.2. Overview of previous work

We begin by outlining three classes of problem common in volatility tests of spot and
futures markets. The first is a problem in the interpretation of the coefficients of
exogenous variables commonly added to the variance equation of a GARCH model.
The second is a consequence of the simultaneity bias present in variance-volume
models, which means that the volume of information-based trading should not be
included in the test as an exogenous variable. The third is a difficulty with the common
decomposition of aggregate volume into informationless and unpredictable

components.

(i) Implied Lag Structures. The first difficulty associated with the conventional
econometric framework is that it imposes a very rigid structure within which the
explanatory variables, 7, affects volatility. For example, Chatrath, Ranchander and
Song (1996), Foster (1995), Lamoureux and Lastrapes (1990), Najand, and Yung
(1991), Sultan, Hogan, and Kroner (1995), Yang and Brorsen (1993) have examined
the effect of volume on volatility by adding volume as an exogenous explanatory

variable to the variance equation of the GARCH model as in (1.7):

P q9

oi=ay+yarl, +> B0, +Z'y | (1.7)

i=] J=1

Other studies - e.g. Bessembinder and Seguin (1992, 1993), and Brown-Hruska and
Kuserk (1995) - have used the estimation procedure proposed by Schwert (1990).

Here two regression equations are formulated which describe the evolution of the
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mean and the volatility of the process in terms of exogenous and lagged endogenous
variables:

] J
R=c+) R, +2.7,0_, +u,
i~ = (5.1)

L

M K

~ ~ rS k

G, =@+ B Gt LGH, + 27,2 +E,
m=] I= k=1

1

where R, represents the return on the asset, o; is the instantaneous standard deviation
of the residuals u, z%, are volume related terms, and circumflexes indicate fitted values

from a previous iteration.

While it might seem that these models capture the contemporaneous effect of Z; on o,
this is not the case. In fact, as has been mentioned in Chapter 1 the effect of z*, on the
variance of the process is modelled in terms of a geometrically declining lag structure.
This is also true for models (5.1): the coefficient can be shown to be an exponentially
weighted average of past values of the volume measure. This is an important drawback
since the real issue is the effect of the instantaneous volume in the futures market on

stock market volatility.

(ii) Simultaneity Bias. In both, GARCH models and specification of the form (5.1) the
exogenous (volume related) variables z*, and lagged values of volatility are included
simultaneously. It is well known that such specifications suffer from simultaneity (or
errors in variables) bias since volume cannot be assumed to exogenous. Instead,
volatility and volume are jointly determined by the same unobservable variable (i.e.

information arrival). To illustrate this point, assume that the true data generation

process is:
o,=al, +g, (5.2.2)
z, =Bl + &, (5. 2b)
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where o; is the conditional volatility (or variance) of the price process, z; is now
volume and /; is the (latent) information arrival variable. Re-expressing /; in terms of z

in (5. 2.b) and substituting into (5.2.a) gives:

a 82.:
o, =_ﬂ-zt + &, — ﬂ =yz tu

which yields a system in which the regressor, z and the error term, u, are not
orthogonal. As a result, the estimate of the coefficient of interest, 7, will be biased, and
the estimates of any other coefficients that might have been included in the regression
equation will also be inconsistent. This observation led Lamoureux and Lastrapes
(1994), Andersen (1996) and Liesenfeld (1996), among others, to model volume and
volatility jointly in bivariate mixture models:

= 8:\/Ft -
v - P(mo +m1F:) g ~N(0,0) (5.3)

where P(x) denotes the Poisson distribution, F, is the measure of latent information
which drives both volume and volatility. Therefore, if volume is to be included in the
variance equation it needs to be separated from its information component.
Bessembinder and Seguin (1992), for instance, undertake this sepafation, but
nevertheless include the information-related component in their estimation, leading to

the problems of bias and inconsistency described above.

(iii) Construction of the Activity Variables. Having selected the estimation model,
volume is conventionally decomposed into predictable and unpredictable components
which are related to informationless trading activity and news arrival, respectively. For
example, Bessembinder and Seguin (1992) first remove the time trend in volume (and
log-volume) for both markets. They then fit a 100 day moving average to the series.

Finally they fit univariate ARIMA(10,1,0) models to the residuals and interpret the new
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errors as unexpected volume, while the fitted values plus the moving average term are
regarded as expected volume. The sum of the three series gives the original
(detrended) volume series. This is done for the futures and the spot market volumes
separately, and all six variables are included as exogenous explanatory variables in the

model.

A number of problems with this approach can be identified. First, as spot and futures
volumes are typically highly correlated, inclusion of both futures and spot market
volume series in the ultimate regression equation for volatility may lead to
multicollinearity problems (resulting in difficulties in identifying the true influence of
the underlying futures market volume). Second, because the two volume series are
inherently interdependent - as suggested in (5.2) - the use of univariate ARIMA models
may lead to the omitted variables problem. Finally it is shown below that in our data
futures and spot volume are trend-stationary, which means that both detrending and

differencing the original data will lead to a loss of information.

5.3. Empirical study
5.3.1. Data description

Since the real issue underlying the research is the impact of futures trading on the
equity market, we define the spot market volume, VS, as the daily total value of all
stocks traded on the London Stock Exchange (in £10m). Similarly, the futures market
volume, VF,, is defined as the total nominal value of all FT-SE 100 contracts traded at
LIFFE on a particular day (also in units of £10m).? To eliminate potential irregularities
associated with the 1987 crash, the time period has been chosen to be 4 January 1988

to 14 December 1995, yielding a total of 2,011 daily observations. The influence of
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dividend payments is ignored. Even if the uncertainty associated with dividend
payments is assumed negligible, lumpy dividend payments might well affect returns.
On ex-dividend days the price of a share is reduced by the dividend amount. Thus, if
the individual ex-dividend days are unevenly distributed over time and the returns are
not corrected for the dividend payments, the returns on the index will appear to be
more volatile. In the event, Gallant, Rossi and Tauchen (1992) found that this effect

was negligible for the S&P500 index.

Continuously compounded daily return series is constructed from closing values of the
FTSE 100 index. Summary statistics of the returns are presented in Table 5.1. The
returns are centred around the origin (1,=-3.7-10%); are negatively skewed (ms=-1.81);
and exhibit large kurtosis (m,=29.94). The moments of the unconditional density
provide strong evidence against the hypothesis of the returns being drawn
independently from a Gaussian density. Some time series dynamics are present in the
return process itself, but the autocorrelation in the squares and log squares is very
much stronger. The Box-Ljung Q-statistic which is significant for r. (Q,~32.29,
Q4=66.54), and is highly significant, both for 7, (0,~1192.8, Q«~=1259.1) and In/?,
(01185.05, 04=339.71) with the relevant ¥*;, and 34 5% critical values being 18.3

and 55.8.

The graphs of the two volume series as well the corresponding log-transformations are

presented in Figure S.1.

? The stocks in the FT-SE 100 index account for over 70% of the total capitalisation of the London
Stock Exchange.
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Figure 5.1: FTSE100: Futures and spot market volume and log-volume series.

The graphs ofthe log-transformation of volume lend some support to the hypothesis of
a constant linear growth in volume, and this transformation also stabilises the
variability ofthe series. It is interesting to observe that the rates of growth in volume in
the two markets are not identical. Futures market volume is growing more rapidly,

signifying increasing popularity ofthe futures market.

It is not clear a priori whether volume or log-volume should be used. Most of the
theoretical models (Tauchen and Pitts, 1983; Glosten and Milgrom, 1985; Easley and
O’Hara, 1992) concentrate on volume. This consensus is not present in the applied
work. Gallant, Rossi and Tauchen (1992) and Andersen (1996) employ the log-
transformation, while Lamoureux and Lastrapes (1990, 1994) and Jones, Kaul and

Lipson (1994) do not. We choose to work with log-volume.
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5.3.2. Volume and informationless trading activity

Examination of Figure 5.1 raises the question as to the nature of the non-stationarity
ﬁresent in the volume series. Univariate tests for the presence of a unit root in /n(VS)
and In(VF) are reported in Table 5.2, Panel A. With the augmented Dickey-Fuller
statistics being highly significant, the null hypothesis of a random walk with drift is

rejected in all cases in favour of the alternative of a trend-stationary process.

As an alternative test, we may assume that /n(VS) and In(VF) are integrated and
formulate a Vector Error Correction Model (VECM):

P
AY,=a+1I¥_ +D B'AY,_ +E, , E,~N(0,2)

j=1

where V; = (In(VSy), In(VF)) is a (2x1) vector and 17, B, and T are (2x2) matrices.
The rank of the long run impact matrix 77 is an indicator of the nature of non-
stationarity of V,. If rank(/7) = 2 then each element of V; is trend stationary, when
rank(/7) = 1, the series are cointegrated, and when rank(/7) = O, they are individually
I(1) but not cointegrated. Monte Carlo evidence in Lee and Tse (1996) suggests that
this test is robust under a variety of alternative assumptions about the disturbance

process, E;.

The results of the analysis are presented in Table 5.2,Panel B. The hypbthesis of the
reduced rank of I7is strongly rejected, irrespective® of the number of lags included in
the autoregressive specification and the log-transformatién. All statistics are highly
significant at 1% level, in particular, the A’ statistic which rejects the null Hy:
rank(/7)=1 in favqur of H;: rank(ZI)=2. Thus, despite the fact that in general the

distinction between unit root and trend stationary data is difficult to make (Canova,

*It is a well known phenomenon that the eigenvalue statistics decrease as the number of lags rises.
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1997), in our data set the detrended volume appears to be stationary, rendering

additional differencing unnecessary.

In the next stage, we follow Gallant, Rossi and Tauchen (1992) and Andersen (1996)
and remove the trend by regressing volume in each market on a constant and a time

trend: v, = @ + 81 +¢,, where v, represents In(VS,) or In(VF,) as appropriate.* The
residuals from these univariate regressions, £, are used to construct the adjusted
volume series v/ =a+b £, where a and b are chosen so that the sample moments of v,

and v/ are equal. This rescaling facilitates interpretation of the results by ensuring that

the variables are in appropriate units.

Finally, the detrended volume is decomposed into predictable and unpredictable

components through the bivariate model:

t

)4
Y=a+) BY_ ,+E , E ~N(Z) (5.4)
Jj=1

where Y, = ( vs/, va')’. The simultaneous estimation in (5.4) allows the calculation of
the level of informationless trading in each market, conditional on the observed level of
past trading in the other market. Because of their role in price discovery futures prices
are usually found to lead spot prices by a few minutes (Sutcliffe, 1997), but such
effects are fast enough to be absent in daily data. However, there do not appear to
have been any previous studies of leads and lags between spot and futures volume.
Table 5.3 shows that there are significant cross-market effects in informationless

volume, with a number of significant coefficients, for both spot on futures (lags 1, 2,

* As a preliminary. following Gallant, Rossi and Tauchen (1992), we included dummy variables to
identify any weekly deterministic seasonal components. Because none of these dummies was
significant. the results are not presented here but are available on request.
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and 5) and futures on spot (lags 3 and 5).5 Univariate tests of Granger causality
(Hamilton, 1994, p.304) reject the hypothesis of “no causality” with the test statistics6
taking the values 12.58 and 36.15 both of which are significant at the 5% level when
compared with the critical value of the Xs2 distribution of 11.07. The size and pattern
of the coefficients suggests that, in terms of daily levels of informationless trading
volume, the spot market leads the futures market. In addition, both markets exhibit
significant own-market autocorrelation of first and higher orders. The presence of
significant cross-market effects (i.e., in the off-diagonal elements of the ff matrices)
indicates that the use of univariate models to divide volume into information-driven

and informationless components may be inappropriate.

The fitted values from (5.4), denoted by V*=(vst\ vft*)' are interpreted as the amount
of informationless trading in the relevant market. Their graphs are presented in Figure

5.2.

Figure 5.2: FTSE100: Informationless spot and futures volume.

The residuals from the model, denoted by Et=(ens, e?)’ are interpreted as a measure of

information impact. The difference between the fitted values for the futures and spot

51t is interesting to observe that atj =5 there are significant cross effects between the spot and futures
markets While this is consistent with a lagged weekly cross-relationship, it does not imply a day-of-
the-week effect.

0 The test statistics are computed as S=7(RSSO-RSS,)/RSS, where T is the number of observations,
RSS0is the residual sum of squares from the 5th order autoregression of x including a constant term,
and RSS, is the residual sum of squares from the previous model augmented by 5 lags ofy.
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markets, vf; -vs, gives a measure of informationless futures trading activity in excess of

informationless spot market activity.

5.4, Does the level of trading in futures influence stock market volatility?

5.4.1. Econometric specification

It has been indicated earlier that the basic SV model, extended to include a set of
explanatory variables allows for the modelling of the instantaneous impact of

exogenous variables on the evolution of (log)variance:

r,=o,yv, v, ~N(0,])
Inc} =Z'y +h (5.5)
h=¢h,+n 7 ~N00?)

Thus the working hypothesis of a contemporaneous effect of futures trading activity on
spot market volatility can be tested in this framework by examining the significance of

the coefficients y.

However, the declining lag structure may also be modelled in the SV framework:

r,=o,v, v, ~ N(0,])
Ino} =h, (5.6)
h=2'y +¢h.+n  n~N00c?)

The change is accomplished by trivially adjusting the state system matrices (see

Appendix 2 for details) without any modifications of the estimation procedure.

5.4.2. Estimation results

The SV model (5.5) was estimated with five alternative sets of explanatory volume

. . . . . . . .
variables (none, vs, vf, vf-vs, vs-vf) representing informationless trading, or
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differences in informationless trading?7 and the parameter estimates are presented in
Table 5.4. Column MO in shows the results of the estimation of the basic SV with no
explanatory variables, for which the implied coefficient of variation, which measures
the strength ofthe stochastic volatility process, takes the value 0.24. Volatility is found
to be persistent,  0.965, and the implied annualised unconditional volatility is about
13%. Figure 5.3 contrasts the plot ofthe SV volatility estimate (solid line) and the 30
day rolling volatility often used as a crude measure of volatility. Both series are

annualised by a factor V260.

Figure 5.3: FTSE100: SV volatility estimate and 30 day rolling volatility.

The second and third models reported in Table 5.4 - columns M/ and M2 respectively
- show the effect of including the amount of informationless spot market and futures
market activity In the case of M/, contemporaneous spot market volume is seen to
have a negative, but insignificant coefficient. The sign of the coefficient is consistent
with the hypothesis of increased liquidity provision in the presence of high predictable
trading activity. Model M2 shows that informationless futures volume has no effect on
spot volatility. These results suggest that spot market volatility is at best unaffected by

informationless volume in either market. The hypothesis is verified by both, the /-ratios

In addition, dummy variables representing: closed market. Stock Exchange account and expiration
dummies were included in the models. Neither the closed market nor expiry effects were significant.
Although the Stock Exchange account dummy was weakly positively significant, its definition is not
straightforward, in view of the abandonment of the system towards the end of the sample period.
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and the likelihood ratio test statistics being insignificant at the 5% level (with the

relevant °; 5% and 1% critical values being 3.841 and 6.635 respectively).

Because it is possible that spot volatility is affected by the way in which total volume is
split between the spot and futures markets (i.e. the relative volumes), column headed
M3 shows estimates of simultaneous effects of spot volume, vs™ and excess futures
volume, vf-vs' on spot volatility. The coefficient of primary interest, vf-vs', is
insignificant, suggesting that excess futures volume has no effect on spot volatility.
Similarly, in column M4 the effect of informationless futures volume is separated from
any effect of excess spot market volume (measured as vs -vf'). Again, the coefficients
are insignificant, confirming the principal result that informationless futures volume has
no effect on spot volatility. For completeness, column M35 shows the effect of including
both v/ and vs' in the model. The results are unaffected. In all cases the likelihood
ratio test statistics with M0 as the null hypothesis are insignificant at the 5% level (with

the relevant °> 5% and 1% critical values being 5.991 and 9.210 respectively).

We now demonstrate that the econometric pitfalls of previous research may lead to the
conclusions contrary to those presented here. First, we impose the exponentially
declining lag structure on the coefficients of the explanatory variables by including
them in the transition equation as in (5.6). This parallels the work of many previous
studies in the area. The results of the estimation are presented in Table 5.5. The
models are labelled M0“M5’ to signify the modification in the specification of the
variance equation. The estimates of the coefficients are of the same sign as before but
are now significant. For instance, in model M2”the coefficient on v/ is now significant
at 1% level, with the likelihood ratio test being significant at the 5% level. Thus, the

inclusion of volume, an apparently straightforward extension of the GARCH model, in .
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our data would incorrectly imply that futures volume is positively associated with spot

market volatility.

Second, we follow Bessembinder and Seguin (1992) by including the residuals, (¢*,¢”)
as well as the fitted values of (5.4) in the equation of the conditional variance. We
revert to the specification of the conditional variance as in (5.5) in order to ensure that
the effects of the simultaneity bias and variance specification remain well separated.
This leads to the estimation of models AM6-MS, results of which are presented in Table
5.6. It has been mentioned previously that such specifications suffer from the
simultaneity bias which leads to inconsistency of the model parameters. This point is -
clearly illustrated in Table 5.6. Both information related variables, (¢”,e”) are highly
significant. Most importantly, however, the informationless futures volume, v/ is now
significant as well, lending support to the claim regarding the distortionary effects of
futures market trading activity. On the other hand, informationless spot volume, v/~

remains insignificant and of the same sign.

The final issue is the robustness of the results to the volume decomposition procedure
(5.4). To verify this hypothesis the autoregressive matrices, B and the error covariance
matrix X are restricted to be diagonal which implies fhat (5.4) can be estimated by two
univariate autoregressions. The fitted values are denoted by vs and vf . The models
M1-M5 are reestimated and denoted by M/~ M5” to signify the fact that alternative
informationless volume measures are used. The results, reported in Table 5.7, verify
the conclusions drawn earlier: futures trading does not increase stock market volatility.
The r-ratios associated with the coefficients on all explanatory variables, and in
particular on vf~ are insignificant and the likelihood ratio test is significant in some

cases only at the 5% level. The signs of the coefficients remain unchanged.
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Summing up, informationless futures trading activity is found to have no effect on
stock market volatility. This finding is robust to alternative volume decomposition
procedures. However, the conclusion could not be reached when information related
volume variables were included in the variance specification. Similarly; opposite results
were obtained when the explanatory variables were included so as to mirror models

utilised in previous research.

5.5. Summary and conclusion

This Chapter has examined the hypothesis that futures trading destabilises the
corresponding spot market, leading to an increase in price volatility. It was shown that
the use of the GARCH or Schwert (1990) models to test this hypothesis leads to
results that are potentially misleading. In particular, the estimated coefficients on
volume represent the effect of an exponentially weighted average of past levels of
volume, not the instantaneous effect. In addition, there is a need to disaggregate
volume into informed and informationless trading in a way that allows for leads and
lags between spot and futures volume. The resulting analysis, which used the SV
model, found no evidence for the UK to support the hypothesis that futures trading
destabilises the spot market. There was also no evidence that spot trading destabilises
the spot market, or that an increase in volume in one market, relative to the other,
destabilises the spot market. Overall, the results clearly demonstrate that, contrary to
some regulatory claims (e.g. NYSE, 1990), futures trading, after adjusting for the

effects of information arrival and time trends, does not destabilise the spot market.
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Table 5.1. FTSE returns: summary statistics

my m; Miﬂ/m: max/m; ms my Q]o Q4a

r. |-3.7.10* 8210° 13.47 784  -181 2994 3229 6654
7 |6.710° 1.110% -0.19 33.87 2588 78642 11928 1259.1
In”, | -10.68 1.75 2.01 377 -0.25 252 185.05 339.71

This table reports the sample means (m,), standard deviations (m;), skewness (m;), and
kurtosis (m,), as well as the modulus of the minimum (and maximum) deviation from
m; expressed as a multiple of m, for the returns (r,), their squares (), and log squares
(Inr/?). The time period is 4/1/1988-14/12/1995, T=2,011. The Box-Ljung statistic

0, - r(r+z)z:(r— 25(2)

is evaluated at 10 and 40 lags, where p(7) is the sample autocorrelation at lag 7.
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Table 5.2. Unit root tests in the stock and futures market volume

Panel A. Augmented Dickey-Fuller tests

In(vs) In(VF)
é 0.453 0.655
s.e(9) 0.020) . (0.017)
a 1.104 -0.011
se(d) (0.042) (0.017)
B 0.0003 0.0005
s.e.(4) (0.00002) (0.00003)
ADFs -1099.0 -692.2
ADF, -27.5 -20.4
é 0.677 0.819
s.e. (g;) (0.029) (0.020)
é 0.652 -0.002
s.e.(@) (0.059) (0.016)
§ 0.0002 0.0003
s.e(5) (0.00002) (0.00003)
ADF, -338.7 -190.2
ADF, -11.2 -8.9

The top half of this panel reports the results of univariate OLS regressions of the form:

Y, =¢y,, +ta+6t+eg

where y, is the volume series indicated in the column heading. The second half reports
the results from the regressions of the form:

P
Yo=Y ta+St+ )y Ay, +¢

i=]

where the coefficients y; are not reported. The number of lags, p=5, was selected in
accordance with the minimised value of the Schwartz information criterion. The
statistics ADF,;, ADF,, and ADF; are computed as:

ADE=(¢fl) ADFzzl(—?:—l) ADF, = 1§ -1) |
O-¢ I_ZV;i

and are tabulated in Fuller (1976). The 1% critical values for these statistics are,
respectively, -3.96, -29.5, -29.5.
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Panel B: Cointegration test

Ln(VS), Ln(VF)
Statistic Atrace Al o A
H, r=0 r=0 =]

Crit Value 1% 19.310 17936 6.936
Crit Value 5% 15.197 14.036 3.962
Lag 1 33847 295.27 43.21
Lag2 23291 206.53 26.38
Lag 3 160.46 141.22 19.24
Lag 4 105.77 91.93 13.84
Lags 102.57 90.72 11.85

This panel reports the maximal eigenvalue and trace statistics:

2

)vaccz—Tzln(l—Ai) j«;,mx=—Tll'l(l—ﬂ,)

i=]

where A, are the eigenvalues of the canonical chrelation matrix, see Johansen (1989).
Arrace 18 a test of Ho:r=0 against H,:r=2, while A'p,, is a test of Hy:r=i against H,.r=i+1
where 7 is the rank of the long run impact matrix /7in the VECM:

)4
AY,=a+IIY,_, + ) BAY_ +E, , E,~N(0,%)

J=1

Y, =(InVS,, InVF)y, and 11, B, and X are (2x2) matrices. VS and VF respectively
represent the spot and futures market volumes.
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Table 5.3. Cross effects between spot and futures volume

vs’
v s.e.(y?) y?/s.e.(y?)
Const 0.8037 0.0750 10.7090
vs'os 0.3516 0.0248 14.1650
V', 0.0487 0.0266 1.8299
vs'es 0.0003 0.0267 0.0140
vs' oy 0.0668 0.0266 2.5037
vs'.s 0.2300 0.0249 9.2303
il -0.0014 0.0088 -0.1547
vz 0.0041 0.0097 0.4258
Vs 0.0195 0.0097 1.9926
v 0.0029 0.0097 0.3018
vfes -0.0270 0.0088 -3.0580
vf

Const 0.8442 0.2148 3.9297
vs'es -0.1851 0.0710 -2.6052
s’ -0.1669 0.0762 -2.1892
vs'es -0.1385 0.0764 -1.811
vs' e 0.0395 0.0764 0.5178
vs'es 0.2246 0.0713 3.1493
Vily 0.4755 ©0.0252 18.8550
Vf'e.z 0.1418 0.0279 5.0785
v s 0.1259 0.0280 4.4946
Vil 0.0505 0.0279 1.8087
vfies 0.0365 0.0252 1.4480

This table reports the estimated coefficients of two VARSs of the form:
p .
Y,=a+) BY_,+E,, E ~N(XI)
J=l

where ¥=(vs", vf})’ is a (2x1) vector. The symbol # symbolises the fact that detrended
volume figures are used. The coefficients are grouped to facilitate comparison. The
first panel shows the equation for spot market volume, vs” while the second shows the -
equation of futures volume, vf’.
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Table 5.4. Effect of volume on spot volatility

Mo Mi M2 M3 M4 M5
¢ 0.965 0.961 0.965 0.959 0.959 0.959
(0.0004)  (0.0005)  (0.0005)  (0.0005)  (0.0005)  (0.0005)
oy 0.015 0.017 0.015 0.017 0.017 0.017
(0.0002)  (0.0003)  (0.0003)  (0.0003)  (0.0003)  (0.0003)
Ing? -9.779 -7.843 -9.850 -7.476 -7.475 -7.475
(0.084)  (1.565)  (0.213)  (1.600)  (1.600)  (1.600)
Vs -0.732 -0.810 -0.942
(0.590) (0.591) (0.626)
vf 0.051 -0.810 0.132
(0.137) (0.591)  (0.146)
v -vs' 0.132
(0.146)
vs-vf -0.942
(0.626)
LogLik | -4136.6  -4136.0  -41356  -4133.5  -4133.5  -4133.5
LR 1.28 2.08 6.15 6.15 6.15

This table reports the estimation results of the extended SV model (5.5). The
explanatory variables, z' represent informationless trading in spot and futures markets
and are measured as the fitted values from (5.4) in the text. The models are labelled
MO0-M35 depending on the choice of z'. The standard errors are reported below each
parameter estimate. These are obtained from the numerical approximation to the
Hessian for the hyperparameters (4,0°,) and from the diagonal elements of the state
covariance matrix P, for the remaining coefficients. The f-ratio is asymptotically

Gaussian and the likelihood ratio test, LR ~ fK, where K—l 2 1s the number of
explanatory variables in excess of M0.
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Table 5.5. Effect of the model specification on the volume-volatility relationship

Mo’ M1’ M2’ M3’ M4’ M5’
¢ 0.959 0.959 0.944 0.943 0.943 0.943
(0.0005)  (0.0005)  (0.0009)  (0.0009)  (0.0009)  (0.0009)
oy 0.017 0.017 0.019 0.017 0.017 0.017
(0.0003)  (0.0003)  (0.0004)  (0.0004)  (0.0004)  (0.0004)
Ing? -9.797 0.230 -10.821  -1.050 -1.051 -1.051
(0.079)  (0.177)  (0.020)  (0.191)  (0.191)  (0.191)
vs' -0.155* -0.165* -0.213**
(0.067) (0.072) (0.073)
v 0.040%* -0.165*  0.048**
(0.014) (0.072)  (0.014)
vf -vs' 0.048**
(0.014)
s -vf -0.213**
(0.073)
LogLik | -4136.6  -41362  -41343  -41312  -41312  -41312
LR 0.88 4.68* 10.75**  10.75**  10.75**

This table reports the estimation results of the extended SV model (5.6) where the
explanatory variables enter the transition equation. The standard errors are reported
below each parameter estimate. These are obtained from the numerical approximation
to the Hessian for the hyperparameters (¢,0%,) and from the diagonal elements of the
state covariance matrix P, for the remaining coefficients. Significance of the
coefficients at (1%) 5% level is denoted by a (double) star. The t-ratio is
asymptotically Gaussian and the likelihood ratio test, LR ~ y’x where K=1,2 is the
number of explanatory variables in the model specification.
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Table 5.6. Effect of the simultaneity bias on the volume-volatility relationship

Mé6 M7 M8
¢ 0.985 0.993 0.996
(0.0002)  (0.0001)  (0.0001)
oy 0.005 0.002 0.001
(0.0001)  (0.0000)  (0.0000)
In&? 8845  -10.765  -8317
(1.478)  (0.224)  (1.459)
s’ -0.368 -0.952
(0.556) (0.568)
v 0.636**  0.698**
(0.131)  (0.141)
e” 2.829%* 0.838**
0.256) (0.305)
e’ 1.489%*  1.327**
(0.092)  (0.109)
LogLik | -4059.0  -3975.5  -3967.2
LR 155.15%*  322.15%*  338.70**

This table reports the estimation results of the extended SV model (5.5). The
explanatory variables, z' are vs", vf, €”, e” which represent informationless and
information based trading in spot and futures markets and are measured as the fitted
values and the residuals from (5.4) in the text. The standard errors are reported below
each parameter estimate. These are obtained from the numerical approximation to the
Hessian for the hyperparameters (¢,0°,) and from the diagonal elements of the state
covariance matrix P, for the remaining coefficients. Significance of the coefficients at
(1%) 5% level is denoted by a (double) star. The likelihood ratio test, LR ~ y’x where
K=2.4 is the number of explanatory variables in the model specification.
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Table 5.7. Effect of volume decomposition on the volume-volatility relationship

Ml M2 M3 M M5
) 0.961 0.965 0.959 0.959 0.959
(0.0005)  (0.0004)  (0.0005)  (0.0005)  (0.0005)
o, 0.017 0.015 0.017 0.017 0.017
(0.0003)  (0.0002)  (0.0003)  (0.0003)  (0.0003)
Ing2 -7.531 -9.808 -7.145 -7.144 -7.144
(1.585) (0.215) (1.640) (1.640) (1.640)
Vs -0.850 -0.940 -1.061
(0.597) (0.603) (0.645)
v 0.021 -0.940 0.121
(0.138) (0.603) (0.150)
vf-vs 0.121
(0.150)
s -vf -1.061
(0.645)
LogLik -4135.7 -4135.5 -4132.9 -4132.9 -4132.9
LR 1.71 2.28 7.35* 7.35% 7.35%

This table reports the estimation results of the extended SV model (5.5). The
explanatory variables, z: vs, vf, vf -vs ", vs' -vf  represent informationless trading
in spot and futures markets and are measured as the fitted values from restricted (5.4)
in the text. The standard errors are reported below each parameter estimate. These are
obtained from the numerical approximation to the Hessian for the hyperparameters
(¢,o”,,) and from the diagonal elements of the state covariance matrix P, for the
remaining coefficients. The #-ratio is asymptotically Gaussian and the likelihood ratio
test, LR ~ ,(’K, where K=1,2 is the number of explanatory variables in excess of M0.
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Conclusion

It is widely documented that the time series dynamics of many financial time series is
well described by models which account for the time varying nature of return volatility.
While ARCH models predominated the empirical analysis in the past decade, stochastic
volatility models have been recently proposed as an alternative way of modelling
volatility. Here the volatility is assumed to be driven by a stochastic process of its own,

rather than some function of past realisations of the return process.

However, the estimation of SV models is a formidable task because the presence of the
latent volatility variable makes the likelihood function difficult to construct. In
consequence, comparatively few empirical applications of the SV model can be found

in the literature.

The aim of this Thesis is therefore twofold. First a new and efficient estimation method
is proposed. Second, the empirical validity of the SV model is verified in two
applications, demonstrating that the model is a viable alternative to the ARCH

methodology often used in applied empirical research.

The first part of the research agenda is covered in Chapters 2 and 3. Here, the new
estimation method is developed. At the core of the procedure is the representation of
the model in a linear state space form with non-Gaussian disturbances. It is well known
that the Kalman filter can be used to construct the likelihood function but - due to the
non-Gaussianity of the measurement equation errors - the estimates thus obtained
(QML) will be inefficient. Durbin and Koopman (1997) have shown that the likelihood
function of the general non-Gaussian state space model can be approximated arbitrarily

accurately by decomposing it into a Gaussian part (constructed by the Kalman filter)
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and a remainder function (whose expectation is evaluated by simulation). This general

methodology is specialised here to the estimation of SV models.

The final sample performance of the resulting Monte Carlo Maximum Likelihood
(MCL) estimator is examined in a simulation study. The results indicate that the
performance of the method is comparable to (and often better than) that of the fully
efficient Bayesian MCMC estimator. The MCL method owns its computational
efficiency and flexibility to the linear state space form which allows powerful
algorithms of filtering and smoothing to be utilised. The gain is also due to the fact that
the Monte Carlo simulation is only employed to construct that residual part of the
likelihood function, which is not already captured by the QML component. In the
event, it is shown that only five simulations (draws) are required to achieve finite

sample efficiency.

Apart from reducing the computational effort (while attaining full finite sample
efficiency), the algorithm has several distinct advantages. First, the sampling variation
can be reduced giving arbitrarily close approximations to the true likelihood function.
Second, estimation of the SV model with stationary AR(1) dynamics as well as
estimation with a nonstationary volatility component is equally feasible. Taken
together, the two aspects enable tests for the presence of the unit root in the volatility
process to be constructed. This issue is addressed in Chapter 3. It is shown that the
augmented Dickey-Fuller (ADF) tests are unreliable. The tests are ether oversized
(when the lag of the autoregressive polynomial in is chosen too small) or have low
power (when the lag is chosen so as to approximate the correct size). The power
declines as the true value of the autoregressive coefficient approaches unity, which is,
arguably, the most interestirig case from the point of view of applied empirical analysis. -
It is shown that the likelihood ratio test based upon the estimation of the SV model by
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MCL is more powerful. However, the distribution of the likelihood ratio test statistic is
unknown. The Monte Carlo evidence presented here suggest that it can be well

approximated by the weighted »’ density, critical values of which are readily available.

The second part of the Thesis, Chapters 4 and 5, consists of two empirical applications
of the SV model employing the new algorithm. First, the hypothesis that implied
volatility of options contain relevant information about the evolution of the latent
return volatility process is examined. A unique data-set of contemporaneously
recorded quotes of the DEM/USD exchange rate and a term structure of implied
volatility of over-the-counter (OTC) options is used. We find that in-sample the
implied volatility captures most of the time series dynamics of the conditional volatility
of the return process. In particular, implied volatility of short maturity options are
more informative. However, the out-of-sample forecasting experiment suggests that
the predictions from the basic SV model across all forecasting horizons are at least as
accurate as the forecasts obtained from the implied volatility data. This finding
augments the conclusions reached in sbme studies in that implied volatility of options
may not be the best forecast of the average realised volatility. A possible explanation
for this regularity is the existence of non-negligible volatility risk premia. In this case
the inversion of the Black and Scholes formula in the presence of stochastic volatility
does not permit the interpretation of implied volatility as an expectation of future

historical volatility.

In the second empirical application, Chapter S, the hypothesis that futures trading
destabilises the cori’esponding spot market, leading to an increase in price volatility is

critically examined. It is shown that the way in which ARCH models have been used in
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the literature of volume-volatility relationship, leads to results that are potentially
misleading. Using the SV model, no evidence for the UK in support of the hypothesis
(that futures trading destabilises the spot market) is found. Overall, the results clearly
demonstrate that, contrary to some regulatory claims, futures trading, after adjusting
for the effects of information arrival and time trends, does not destabilise the spot

market.
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Appendix 1: Nonparametric density estimation

A sample, {X], ..., X,}, is drawn from a continuous univariate distribution with the

(unknown) probability density function f{x)eC". The kernel estimate is given by:

A 1 x-X, j |
=— - All
jw)= 3 K(E | (L)
where the kernel K(?) is a symmetric, non-negative function satisfying
JK(t)dt =1 ItK(t)dt =0 ItzK(t)dt =k, #0

and 4 is the smoothing parameter, or bandwidth (Silverman, 1986). The kernel density
estimator is thus an average over probability density functions centred at each
observation point and converges to f{x) under suitable regularity conditions. Despite
the availability of alternative kernels, in this work K(?) is set to the Gaussian density. In
our experience the estimated densities are robust with respect to the choice of the

kernel.

In some cases the support of the density to be estimated is bounded on one side, e.g.
the distribution of & in Chapter 3 is defined on the positive half line. Because of the
observations on (or close to) the boundary, b, the kernel method induces some mass to
outside of the region on which the "true" density is defined. This may lead to the
density estimate not integrating to unity‘ In these circumstances the density is
estimated in the following way. First, values X=b, j=1, .., n, positioned exactly on the
boundary are subtracted from the data set. The remaining observations are reflected

giving a new data set, {X, -X.}, i=1, ., n, i#j, of size 2(n-n,). Finally:
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n for x>b
f(x)=<n7” Jorx=5
Jor x<b

where f*(x) is the density estimate based on the augmented data set.

The bandwidth choice is important but nontrivial. As 4 tends to zero f(x) becomes a
sum of Dirac delta functions at the observations, while as # becomes large, all detail in
the shape of the estimated density is obscured. Available cross-validation procedures
(Bowman et al, 1984) are computationally intensive, sensitive to outliers, and
sometimes inconsistent (Silverman, 1986). This naturally leads to a subjective choice of
h. Whenever density estimation is performed for illustrative purposes, e.g. Chapter 2,

this option is preferred and values of 4 are not reported.

When accurate estimates of the density are required, a reference bandwidth, A, is
calculated such that the mean integrated square error is minimised (Parzen, 1962):
‘5

h,, =k {fK(t)zdt}'/s U (%) dx}"/ s

For the Gaussian kernel the expression is reduced, but still depends on the second

derivative of the “true” density:

By = {4} {,ff "(x)zcbc}—lls n" (A12)

One way obtaining 4, is by reference to a standard distribution (Silverman, 1986). For
the likelihood ratio test, Chapter 3, it is natural to take a 7/ density in which case the

integrand in (A.1.2) becomes:
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xvHy +4x +x2-6v -

()= 16 21'¢* r(f)

For v=2 this dramatically reduces to / ,"(x)2=(64¢') ' leading to for

«=1000. When v=\, however, the integral

f ”/ v I‘(3+2x+X‘f/’?
M (D-Ax= 1= g d A (A.13)

diverges as z—»0, due to the discontinuity at the origin. Numerical approximations

translate into the following values for 2gx when the number o f observations is w=1000:

0.05
0.04

0.03

Figure Al: Bandwidth, g as a function of'the lower bound, z in (A. 1.3).
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Appendix 2: State space form, filtering and smoothing

(i) The general multivariate state space form with N series is:

y,=Za +¢ £ ~ N(O,H,) f=1 T (A2.1)
al = ]:ar—l + 77: 77: ~ N(O:Qt) T

where y; is an (Nx1) vector of observations at time #, @, is the (mx1) state vector, and
the covariance matrices H, (NxN) and Q, (mxm) are non-singular (Harvey, 1989).
The univariate (N=1) SV model with k explanatory variables, z* grouped into

2=(211,...,21) asin (1.15) is put into the state space form by defining the matrices

' 2
hl ¢ ek o-” ek ' 2

. V1
> Qt= > Zt=[1 2,], th 2
Y, e, I, e, ee,'

R
I
3
1l

where ¥, is (kx1), e is a (kx1) vector of zeros, and 7, is the (kxk) identity matrix. The
basic SV model (1.12") is obtained a special case by setting k=1, z'=1, V1 so that the

constant, Ing > becomes an element of the state vector. When the explanatory

variables are included in the transition equation as in (1.17) only the 7, and Z,

matrices are modified to:

¢ z'
t=|8 ]z e

When AR(2) dynamics are present as in (3.7), H is unchanged, and the remaining

matrices are

a =k, |, T=|1 0 ¢'l, 0=|0 0 ¢'|, Z=[1 0 2]
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Similarly, the multivariate model (1.19) with explanatory variables is implemented by

setting

' !
O eyey L, eey

o= |.T= ,0= Z=[1 z']®1,

£ emey' Iy emey' evln'
where h, is now (Nx1), % is (Nkx1), while @ and Z, are (NxN). The off-diagonal

elements of H are given in the text, equation (2.32):

N, j=#i

. ﬂii (-1 ,,

= s i,j=1..,
(2'*‘]) 71 AN Pk J

where p;; are the off-diagonal elements of the untransformed correlation matrix

Q, .The diagonal elements remain 7°/2.

(ii) The Kalman filter is given by:

v, =y, —-Za, F=2PZ'+H,
K, =T.,PZ'F L=T,-KzZ (A22)
- TI‘Ha + K Y, 1)1+l 7;+lPLl' + Ql+l

fort =1, .., T. The recursions are initialised with the unconditional distribution of the

state vector, o, = N (a P ) where a, is a zero vector and

~

Fy € a€s'
P =
ese, . 10°1,

where d is the number of elements in the state vector not related to k.. Letting 7 and

Q to correspond to the state vector elements related to A, 130 is obtained from

vec(i’()) = (12(m—d) - T X T)_] veC(Q)
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For instance, for the for the basic SV model with AR(1) dynamics and & explanatory

variables as in (1.15) this implies

Po - (1_¢2) €
e, 10°7,

When the explanatory variables are included as in (1.17) the filter is initialised with the
diffuse prior, 13'0 =10°. Koopman’s (1997) method may used for the first d iterations

to make the initialisation exact.

(iii) The disturbance smoother (de Jong, 1988; Koopman, 1993) is used to construct:
£ =E(e|V)=He, C,=Var(e|V)=H, - H,D,H,

where Y is the matrix of all observations, and the quantities e, and D, are obtained

from the backwards recursions:

=E_]v1 - K!|rl Dr =E_] +K1’N1Kr

e
! A23
ro=Z'Fv +L'r, N =Z'FZ, +L'NL (A23)

for =T, ..., 1 with r,=0 and N, =0. The prediction errors, v,, their variances, F,, and

the Kalman gain matrix, X, are outputs of the Kalman filter (A.2.2).

(iv) The smoothed estimate of the state vector
a,; = E(a,|Y)
is constructed by the fixed interval state smoother of de Jong (1988):

a,=a,+Pr,_ (A.2.4)
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for +=T, ..., 1 where @, and P, are taken from the Kalman filter (A.2.2), and 7, is

taken from the disturbance smoother (A.2.3).

(v) A special version of de Jong and Shephard’s (1995) simulation smoother is used to

obtain draws of &’ from pe(e ¥):
e’ =Hzeg +ul u® ~N(O,5,)

where the quantities #, and C, are obtained from the backwards recursions:

£ =F'v,-K'F D +K'NK,

t

F
N _ (A2.5)
M, =H/(Dz - K'NT,,) C, =H, - HDH,

O
n

F,o=Z'F'v, -M'C'u® +L'F N_=2Z'F'Z +M'C'M, +L'N,L

for =T, ..., 1 with 7. =0 and N, =0. Note that when a set of samples is required, the

Kalman filter and the recursions for D,,M,,C,,N,_, need only be applied once since

these quantities remain the same for each sample.
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Appendix 3: Numerical implementation

(i) The Gaussian likelihood function is based on the prediction error decomposition

obtained form the Kalman filter (A.2.2):

T

LogLs(v) = —%Z(ann +1F|+v,'F'y,) (A3.1)

t=d

The hyperparameters are placed into the system matrices O, and 7, in (A.2.1). The
estimates of the hyperparameters are obtained by numerical maximisation of (A.3.1)
while the estimates of the coefficients on the explanatory variables, y are given by the

relevant elements of the final state vector, a,. The standard errors of ¢ and o, are

taken from the numerical approximation to the Hessian.. The estimated variances of ¥

are given by the relevant diagonal elements of P .

(ii)) The likelihood function is maximised numerically by means of a variable metric
optimisation routine like BFGS, details of which can be found in Press er al. (1992,

pp-425) and Koopman et al. (1995, p. 211).

(iii) Since the parameters are estimated by numerical methods, restrictions need to be
imposed to ensure the stability of the algorithm. This can be accomplished by either
invoking some constrained optimisation method (Schoenberg, 1995) or transforming
the parameters to a new parameter space so that unconstrained optimisation (i) can be

performed. This method is discussed in e.g. Hamilton (1994, p.146).

Let the hyperparameters of the basic SV model (2.1) with stationary AR(1) dynamics

be represented by a (2x1) vector y=(yy ¥o)', where in an obvious notation y~=¢ and
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wo~0y. Let O be another (2x1) vector, partitioned as 8=(646,)'. Then the vector

function A(-): FxF—>(-1,1)xH ensures that the restrictions on the parameters are

satisfied and is given by:
v,=6,1+62)" (A3.22)
v, = exp(OG) (A.3.2b)

Alternatively, (A.3.2a) may be replaced by: y, = 27! tan(&,). The graph of the

inverse transformation, 4”(.) is presented in Figure 3.1 in the text. In the stationary
AR(2) case the parameter vector is y=(¢;,¢,,0,)', which may be replaced by
w =(A1,A2,0,) where the roots of the autoregressive polynomial are related to the

coefficients via:
=4 +4 ¢ =-44

A vector function which ensures that the roots lie within the unit circle and the

variance parameter is positive consists of a combination of (A.3.2a) and (A.3.2b).

Finally, a stationary VAR(1) model with N series requires that the covariance matrix of

the disturbances, X, is positive definite, and the roots of the matrix polynomial

I, — @L lie outside the unit circle. The constraints may be imposed by means of an

algorithm proposed by Ansley and Kohn (1986).

180



Bibliography

Amin, K.I. (1993), “Jump Diffusion Option Valuation in Discrete Time,” Journal of

Finance, 48, 1833-63.

Andersen, T.G. (1994a), “Stochastic Autoregressive Volatility: A Framework for

Volatility Modeling,” Mathematical Finance, 4, 75-102.

Andersen, T. G. (1994b), “Comment on Jacquier, Polson and Rossi,“ Journal of

Business and Economic Statistics, 12, 389-392.

Andersen, T.G. (1996), “Return Volatility and Trading Volume: An Information Flow

Interpretation of Stochastic Volatility,” Journal of Finance, 51, 169-204.

Andersen, T. G. and B. Serensen (1996), “GMM Estimation of a Stochastic Volatility
Model: a Monte Carlo Study,” Journal of Business and Economic Statistics, 14, 328-

52.

Ansley, CF. and R. Kohn (1986), “A Note on Reparameterising a Vector
Autoregressive Moving Average Model to Enforce Stationarity,” Journal of Statistical

Computation and Simulation, 24, 99-106.

Bachelier, L.J.B.A (1900), “Theorie de la Speculation,” reprinted in P.H. Cootner

(ed.),-The Random Character of Stock Market. Cambridge, Mass.: MIT Press.

Bailey, RW. (1994), “Polar generation of random variates with the t-distribution,”

Mathematics of Computation, 62, 779-81.

Baillie, R.-T. and T. Bollerslev (1989), “The Message in Daily Exchange Rates: A

Conditional Variance Tale,” Journal of Business and Economic Statistics, 7, 297-305.

181



Baillie, R.T. and T. Bollerslev (1990), “A Multivariate Generalised ARCH Approach to
Modelling Risk Premia in Forward Foreign Exchange Rate Markets,” Journal of

International Money and Finance, 16, 109-124.

Ball C. A and A. Roma (1994), “Stochastic Volatility Option Pricing,” Journal of
Financial and Quantitative Analysis, 29, 589-607.

Ball, C.A. and W. Torous (1983), “A Simplified Jump Process for Common Stock
Returns,” Journal of Financial and Quantitative Analysis, 18, 53-65.

Bartholomew, D.J. (1987), Latent Variable Models and Factor Analysis, London: -
Griffin.

Basilevski, A. (1994) Statistical Factor Analysis and Related Methods, New York:

John Wiley & Sons.

Bates, D.S. (1996), “Jumps and Stochastic Volatility: Exchange Rate Processes

Implicit in Deutsche Mark Options,” Journal of Financial Studies, 9, 69-107.

Bennett, B.M. (1955), “Note on the Moments of the Logarithmic Noncentral > and z

Distributions,” Annals of the Institute of Statistical Mathematics, Tokyo, 7, 57-61.

Bera, AK. and ML. Higgins (1993), “ARCH Models: Properties, Estimation and

Testing,” Journal of Economic Surveys, 7, 305-66.

Berndt, E K, B.H. Hall, R E. Hall and J. Haussman (1974), “Estimation and Inference
in Nonlinear Structural Models, Annals of Economic and Social Measurement, 4, 653-

65.

Bessembinder, H. (1994), “Bid-Ask Spreads in the Interbank Foreign Exchange

Markets,” Journal of Financial Economics, 35, 317-48.

182



Bessembinder, H. and P.J. Seguin (1992), “Futures Trading Activity and Stock Price

Volatility,” Journal of Finance, 47, 2015-34.

Bessembinder, H. and P.J. Seguin (1993), “Price Volatility, Trading Volume and
Market Depth: Evidence from Futures Markets,” Journal of Financial and

Quantitative Analysis, 28, 21-39.

Billio, M. and A. Monfort (1995), “Switching State Models: Likelihood Function,

Filtering and Smoothing,” mimeo, CREST-INSEE.

Black, F. (1976), “Studies in Stock Volatility Changes,” Proceedings of the 1976 Meetings

of the Business and Economic Statistics Section, American Statistical Association, 177-81.

Black, F. and M.S. Scholes (1973), “The Pricing of Options and Corporate Liabilities,”

Journal of Political Economy, 81, 637-54.

Blattberg, R.C. and N. Godenes (1974), “A Comparison of the Stable and Student

Distributions as Statistical Models for Stock Prices,” Journal of Business, 47, 244-280.

Board, J.L. and C.M.S. Sutcliffe (1995), “The Relative Volatility of the Markets in Equities

and Index Futures,” Journal of Business Finance and Accounting, 22, 201-23.

Bollerslev, T. (1986), “Generalised Autoregressive Conditional Heteroskedasticity,”

Journal of Econometrics, 31, 307-217.

Bollerslev, T. (1987), “A Conditional Heteroskedastic Time Series Model for
Speculative Prices and Rates of Return,” Review of Economics and Statistics, 69, 542-

547.

Bollerslev, T. (1990), “Modelling the Coherence in Short-run Nominal Exchange
Rates: A Multivariate Generalized ARCH Model,” Review of Economics and

Statistics, 72, 498-505.

183



Bollerslev, T., R.Y. Chow and K.F. Kroner (1992), “ARCH Modelling in Finance: A

Review of the Theory and Empirical Evidence,” Journal of Econometrics, 52, 5-59.

Bollerslev, T., R.F. Engle and D.B. Nelson (1994), “ARCH Models” in R F. Engle and

D.L. McFadden (eds.), Handbook of Econometrics, Vol. IV, Amsterdam: Noth-Hollnd.

Bowman, AW. PHall and DM. Titterington (1984), “Cross-validation in
Nonparametric Estimation of Probabilities and Probability Densities,” Biometrika, 71,

341-51.

Breidt, F.J. and A L. Carriquiry (1996), “Improved Quasi-Maximum Likelihood Estimation
for Stochastic Volatility Models,” Modelling and Prediction: Honouring Seymour Geisel,

A. Zellner and J.S. Lee (eds). New York: Springer Verlag.

Brown-Hruska, S. and G. Kuserk (1995),”Volatility, Volume and the Notion of
Balance in the S&P500 Cash and Futures Markets,” Journal of Futures Markets, 15,

677-689.

Campa, J. M. and P.HK. Chang (1995), “Testing the Expectations Hypothesis on the Term

Structure of Volatilities in Foreign Exchange Market,” Journal of Finance, 50, 529-47.

Canina, L. and S. Figlewski (1993), “The Informational Content of Implied Volatility,”

Review of Financial Studies, 6, 659-81.

Canova, F. (1997), “Detrending and Business Cycle Facts,” Journal of Monetary

Economics, forthcoming.

Chatrath, A., S. Ranchander and F. Song (1996), “The Role of Futures Trading

Activity in Exchange Volatility,” Journal of Futures Markets, 16, 561-584.

184



Chen. RR. and L. Scott (1993), “Multi-Factor Cox-Ingersoll-Ross Models of the
Term Structure: Estimates and Tests from the Kalman Filter Model,” mimeo,

University of Georgia.

Chesney, M. and L. Scott (1989), “Pricing Europeén Currency Options: A Comparison of
the Modified Black-Scholes Model with a Random Variance Model,” Journal of Financial

and quantitative Analysis, 24, 267-84.

Christie, A.A. (1982), “The Stochastic Behaviour of Common Stock Variances: Value,

Leverage and Interest Rate Effects,” Journal of Financial Economics, 10, 407-432.

Clark, P.K. (1973), “ A Subordinated Stochastic Process Model with Finite Variance

for Speculative Prices,” Econometrica, 41, 135-55.
Cox, J.C. and M. Rubinstein (1985), Options Markets, New Jersey: Prentice-Hall.

Danielsson, J. (1994a), “Stochastic Volatility in Asset Prices: Estimation with Simulated

Maximum Likelihood,” Journal of Econometrics, 61, 375-400.

Danielsson, J. (1994b), “Comment on Jacquier, Polson and Rossi,* Journal of Business

and Economic Statistics, 12, 389-392.

Danielsson, J. and J.F. Richard (1993), “Accelerated Gaussian Importance Sampler with
Application to Dynamic Latent Variable Models,” Journal of Applied Econometrics, 8,

S153-S174.

Darrat, AF. and S. Rahman (1995), “Has Futures Trading Activity Caused Stock Price

Volatility?”, Journal of Futures Markets, 15, 537-557.

Dassios, A. (1992), “Asymptotic Approximations to Stochastic Variance Models,”

mimeo, London School of Economics.

185



Day, TE. and CM. Lewis (1991), “Stock Market Volatility and the Information

Content of Stock Index Options,” Journal of Econometrics, 52, 265-87.

de Jong, F. (1996), “Time Series and Cross-Section Information in the Term Structure

Models,” mimeo, Tilburg University.

de Jong, P. (1988), “A Cross-Validation Filter for Time Series Models,” Biometrika, 75,

594-600.

de Jong, P.» and N. Shephard (1995), “The Simulation Smoother for Time Series

Models,” Biometrika, 82, 339-50.
Derman, E. and I Kani (1994), “Riding on a Smile,” Risk, 7, 32-39.

Dickey, D.A. and W.A. Fuller (1981), “Likelihood Ratio Statistics for Autoregressive Time

Series with a Unit Root,” Econometrica, 49, 1057-72.

Diebold, F.X. and J. Nason (1990), “Nonparametric Exchange Rate Prediction?,”

Journal of International Economics, 28, 315-32.

Dumas, B., J. Fleming and R.E. Whaley (1995), “Implied Volatility Functions: Empirical

Tests,” mimeo, Duke University.

Dunsmuir, W. (1979), “A Central Limit Theorem for Parameter Estimation in
Stationary Time Series and Its Applications to Models for a Signal Observed with

Noise,” Annals of Statistics, 7, 490-506.
Dupire, B. (1994), “Pricing with a Smile,” Risk, 7, 18-20.

Durbin, J. and S.J. Koopman (1997a), “Monte Carlo Maximum Likelihood Estimation

for non-Gaussian State Space Models,” Biometrika, forthcoming.

186



Durbin, J. and S.J. Koopman (1997b), “Time Series Analysis for Non-Gaussian

Observations Based on State Space Models,” mimeo, London School of Economics.

Easley, D. and M. O’Hara (1992), “Time and the process of security price

adjustment,” Journal of Finance, 47, 577-605.

Edwards, F.R. (1988), “Futures Trading and Cash Market Volatility: Stock Index and

Interest Rate Futures,” Journal of Futures Markets, 8, 421-439.

Engle, RF. (1982), “Autoregressive Conditional Heteroskedasticity with Estimates of

the Variance of the UK Inflation,” Econometrica, 50, 987-1007.

Engle, RF. (1984), “Wald, Likelihood Ratio, and Lagrange Multiplier Tests in
Econometrics,” in: Z. Griliches and M.D. Intriligator, eds., Handbook of

Econometrics, Vol 2. Amsterdam: North-Holland.

Engle, R.F. (1990), “Discussion [of “Stock Volatility and the Crash of 87", by G.W.

Schwert]”, Review of Financial Studies, 3, 103-6.

Engle, RF. and T. Bollerslev (1986), “Modelling the Persistence of Conditional

Variances,” Econometric Reviews, 5, 1-50.

Engle, R.F and K.F. Kroner (1995), “Multivariate Simultaneous Generalised ARCH,”

Econometric Theory, 11, 122-150.

Engle, RF. and G.G.J. Lee (1992), “A Permanent and Transitory Component Model

of Stock Return Volatility,” mimeo, University of California.

Engle, RF. and G.GJ. Lee (1994), “Estimating Diffusion Models of Stochastic

Volatility,” mimeo, Uni'versity of California.

Engle, RF., DM. Lilien and R.P. Robins (1987) “Estimating Time Varying Risk.

Premium in the Term Structure: the ARCH-M Model,” Econometrica, 55, 391-407.

187



Engle, RF., V.K. Ng and M. Rothschild (1990) “Asset Pricing with a Factor ARCH
Covariance Structure: Empirical Estimates for Treasury Bills,” Jowrnal of Econometrics,

45,213-238.

Engle, RF. and M. Watson (1981), “A One-Factor Multivariate Model of
Metropolitan Wage Rates,” Journal of the American Statistical Association, 76, 774-

81.

Everitt, B.S. (1994), An Introduction to Latent Variable Models, New York: Chapman

and Hall.

Fair, R.C. and R.J. Shiller (1990), “Comparing Information in Forecasts from

Econometric Models,” American Economic Review, 80, 375-89.

Fama, E.F. (1965), “The Behaviour of Stock Market Prices,” Journal of Business, 38,

34-105.

Fama, E.F. (1970), “Efficient Capital Markets: A Review of Theory and Empirical

Work,” Journal of Finance, 25, 383-417.
Fama, E.F. (1991), “Efficient Capital Markets II,” Jqurnal of Finance, 46, 1575-1617.

Fama, EF. and R. Roll (1971), “Parameter Estimates for Symmetric Stable

Distributions,” Journal of the American Statistical Association, 66, 331-338.

Feller, W. (1971), An Introduction to Probability Theory and its Applications, New

York: Wiley.

Foster, A.J. (1995), “Volume-Volatility Relationships for Crude Oil Futures Markets,”

Journal of Futures Markets, 15, 929-52.

Friedman, M. and L. Harris (1996), “A Maximum Likelihood Approach for Non-

Gaussian Stochastic Volatility Models,” mimeo, University of Southern California.

188



Fuller, W.A. (1976), Introduction to Statistical Time Series. New York: Wiley.

Gallant, AR., D.A. Hsiech and G. Tauchen (1991), “On Fitting a Recalcitrant Series:
the Pound/Dollar Exchange Rate, 1974-1983,” in W.A. Bamnett, J. Powell and G.
Tauchen (eds.) Nonparametric and Semiparametric Methods in Econometrics and

Statistics, Cambridge: Cambridge University Press.

Gallant, AR, P.E. Rossi and G. Tauchen (1992), “Stock Prices and Volume,” Review

of Financial Studies, 5, 199-242.

Garbade, K. (1977), “Two Methods for Examining the Stability of Regression

Coefficients,” Journal of American Statistical Association, 72, 54-63.

Ghysels, E. and J. Jasiak (1996), “Stochastic Volatility and Time Deformation: An

Application to Trading Volume and Leverage Effects,” mimeo, Univerité de Montréal.

Ghysels, E., A.C. Harvey and E. Renault (1996), “Stochastic Volatility,” in C.R. Rao

and G.S. Maddala (eds.), Statistical Methods in Finance. Amsterdam: North-Holland.

Glosten, L.R. and P.R. Milgrom (1985), “Bid-Ask, Transaction Prices in a Specialist
Market with Heterogeneously Informed Traders,” Journal of Financial Economics,

14, 71-100.

Godfrey, L. G. (1988), Misspecification Tests in Econometrics, Econometric Society

monographs, 16, Cambridge: Cambridge University Press.

Gouriéroux, C., A. Holly and A. Monfort (1982), “Likelihood Ratio Test, Wald Test
and Kuhn-Tucker Test in Linear Models with Inequality Constraints on the Regression

Parameters,” Econometrica, 50, 63-80.

Gouriéroux, C. and A. Monfort (1995), Statistics and Econometric Models, Vol. 2,

Cambridge: Cambridge University Press.

189



Gouriéroux, C. and A. Monfort (1995), Simulation Based Econometric Methods,

Cambridge: Cambridge University Press.
Hamilton, J.D. (1994), Time Series Analysis, Princeton: Princeton University Press.

Hamilton, J.D. and R. Susmel (1994), “Autoregressive Conditional Heteroscedasticity

and Changes in Regime,” Journal of Econometrics, 64, 307-33.

Hansson, B. and P. Hordahl (1996), “Forecasting Variance Using Stochastic Volatility

and GARCH,” mimeo, Lund University.

Harris, L. (1989), “S&P 500 Cash Stock Price Volatilities,” Journal of Finance, 44,

1155-75.

Harvey, A.C. (1976), “Estimating Regression Models with Multiplicative

Heteroskedasticity,” Econometrica, 44, 461-5.

Harvey, A.C. (1989), Forecasting, Structural Time Series Models and the Kalman Filter.

Cambridge: Cambridge University Press.
Harvey, A.C. (1993), Time Series Models. Cambridge Mass.: MIT Press, 2™ Ed.

Harvey, A.C. and N. Shephard (1993), “Estimation and Testing of Stochastic Variance

Models,” mimeo, London School of Economics.

Harvey, A.C. and N. Shephard (1996), “Estimation of an Asymmetric Stochastic
Volatility Model for Asset Returns,” Journal of Business and Economic Statistics, 14,

429-34.

Harvey, A.C. and M. Streibel (1997), “Testing for a Slowly Changing Level with

Special Reference to Stochastic Volatility,” Journal of Econometrics, forthcoming,

190



Harvey, A.C., E. Ruiz and N. Shephard (1994), “Multivariate Stochastic Variance

Models,” Review of Economic Studies, 61, 247-64.

Heston, S. (1993), “A Closed Form Solution for Options with Stochastic Volatility with

Applications to Bond and Currency Options,” Review of Financial Studies, 6, 327-43.

Heynen, R. (1994), “An Empirical Investigation of Observed Smile Patterns,” Review

of Futures Markets, 13, 317-54.

Heynen, R., A.G.Z. Kemma and T. Vorst (1994),” Analysis of the Term Structure of

Implied Volatility,” Journal of Financial and Quantitative Analysis, 29, 31-56.

Hull, J. (1993), Options, Futures and Other Derivative Securities, New Jersey:

Prentice-Hall, 2™ Ed.

Hull, J. and A. White (1987), “The Pricing of Options on Assets with Stochastic

Volatilities,” Journal of Finance, 42, 281-300.

Jackwerth, J.C. and M. Rubinstein (1996), “Recovering Probability Distributions from

Option Prices,” Journal of Finance, 51, 1611-31.

Jacquier, E., N.G. Polson and P.E. Rossi (1994), “Bayesian Analysis of Stochastic
Volatility Models,” Journal of Business and Economic Statistics, 12, 371-417 (with

discussion)

Jacquier, E., N.G. Polson and P.E. Rossi (1995), “Stochastic Volatility: Univariate and
Multivariate Extensions,” R.L. White Centre for Financial Research, DP #19-95.

Wharton School, University of Pennsylvania.

Johansen, S. (1988), “Statistical Analysis of Cointegration Vectors,” Journal of

Economic Dynamics and Control, 12, 231-54.

191



Johnson, N.L. and S. Kotz (1970), Continuos univariate distributions-2, Chichester:
John Wiley.

Johnson, N.L. and S. Kotz (1972), Continuos multivariate distributions, Chichester:
John Wiley. |

Johnson, H. and D. Shanno (1987), “Option Pricing when the Variance is Changing,”

Journal of Financial and Quantitative Analysis, 22, 143-51.

Jones, CM., G. Kaul and M L. Lipson (1994), “Transactions Volume and Volatility,”

Review of Financial Studies, 7, 631-651.

Jorion, P. (1995), “Predicting Volatility in the Foreign Exchange Market,” Journal of

Finance, 50, 507-28.

Karlin, S. and H.M. Taylor (1981), A Second Course in Stochastic Processes, London:

Academic Press.

Kim, CJ. (1993), “Unobserved Component Time Series Models with Markov
Switching Heteroskedasticity: Changes in Regime and the Link Between Inflation
Rates and Inflation Uncertainty,” Journal of Business and Economic Statistics, 11,

341-349.

Kim, D. and S.J Kon (1994), “Alternative Models for the Conditional

Heteroskedasticity of Stock Returns,” Journal of Business, 67, 563-98.

Kim, K. and P. Schmidt (1993), “Unit Root Tests with Conditional

Heteroskedasticity,” Journal of Econometrics, 59, 287-300.

Kim, S., N. Shephard and S. Chib (1996), “Stochastic Volatility: Likelihood Inference

and Comparison with ARCH models,” mimeo, Nuffield College, Oxford.

192



Kitagawa, G. (1987), “Non-Gaussian State Space Modelling of Nonstationary Time
Series,” Journal of the American Statistical Association, 82, 1032-63 (with

discussion)

Kon, S.J. (1984), “Models of Stock Returns: A Comparison,” Journal of Finance, 39,

147-65.

Koopman, S.J. (1993), “Disturbance Smoother for State Space Models,” Biometrika,

80, 117-26.

Koopman, S.J. (1997), “Exact Initial Kalman Filter and Smoother for Non-Stationary

Time Series Models,” Journal of American Statistical Association, forthcoming.

Koopman, S.J.,, A.C. Harvey, J.A. Doomnik and N, Shephard (1995), STAMP 5.0,

Structural Time Series Analyser, Modeller and Predictor. London: Chapman and Hall.

Kremers, J.J., N.R. Ericsson and J.J. Dolado (1992), “The Power of Cointegration

Tests,” Oxford Bulletin of Economics and Statistics, 54, 325-48.

Kwiatowski, D., P.C.B. Phillips, P. Schmidt and Y. Shin (1992), “Testing the Null
Hypothesis of Statidnarity Against the Alternative of a Unit Root: How Sure Are We

that Economic Time Series Have a Unit Root,” Journal of Econometrics, 44, 159-78.

Lamoureux, C.G. and W.D. Lastrapes (1990), “Heteroskedasticity in Stock Return

Data: Volume versus GARCH Effects,” Journal of Finance, 45, 221-29.

Lamoureux, C.G. and W.D. Lastrapes (1993), “Forecasting Stock-Return Variance:
Toward an Understanding of Stochastic Implied Volatilities,” Review of Financial

Studies, 6, 293-326.

193



Lamoureux, C.G. and W.D. Lastrapes (1994), “Endogenous Trading Volume and
Momentum in Stock-Return Volatility,” Journal of Business and Economic Statistics,

12, 253-60.

Latane. H A. and R.J. Rendelman (1976), “Standard Deviations of Stock Price Ratios

Implied from Option Prices,” Journal of Finance, 31, 369-81.

Lee, S.W. and B.E. Hansen (1994), “Asymptotic Theory for the GARCH(1,1) Quasi-

Maximum Likelihood Estimator,” Econometric Theory, 10, 29-52.

Lee, T-H and Y. Tse (1996), “Cointegration Tests with Conditional

Heteroskedasticity,” Journal of Econometrics, 73, 401-10.

Liesenfeld, R. (1996), “Dynamic Bivariate Mixture Models: Modelling the Behaviour

of Prices and Trading Volume,” discussion paper N#78, University of Tiibingen.

Lin, W.L. (1992), “Alternative Estimators for Factor GARCH models - a Monte Carlo

Comparison,” Journal of Applied Econometrics, 7, 259-279.

Lo, AW. and A.C. MacKinley (1988), “Stock Market Prices Do Not Follow Random
Walks: Evidence from a Simple Specification Test,” Review of Financial Studies, 1,

41-66.

Madan, D B. and E. Seneta (1990), “The Variance Gamma (V.G.) Model for Share

Market Returns,” Journal of Business, 63, 511-524.

Malz, AM. (1996), “Option-Based Estimates of the Probability Distribution of Exchange

Rates and Currency Excess Retumns,” mimeo, Federal Reserve Bank of New York.

Mandelbrot, B. (1963), “The Variation of Certain Speculative Prices,” Journal of

Business, 36, 394-419.

194



Mandelbrot, B. (1967), “The Variation of Some Other Speculative Prices,” Journal of '

Business, 40, 393-413.

Mandelbrot, B. and H. Taylor (1967), “In the Distribution of Stock Prices

Differences,” Operations Research, 15, 1057-1062.

Mankiw, N.G. and M.D. Shapiro (1986), “Do We Reject too Often?,” Economics

Letters, 20, 139-145.

Melino, A. and S.M. Turnbull (1990), “Pricing Foreign Currency Options with

Stochastic Volatility,” Journal of Econometrics, 45, 239-65.

Merton, R.C. (1976), “Option Pricing when Underlying Stock Returns are

Discontinuous,” Journal of Financial Economics, 3, 125-144.

Naik, V. (1993), “Option Valuation and Hedging Strategies with Jumps in the

Volatility of the Asset Returns,” Journal of Finance, 48, 1969-84.

Najand, M, and K. Yung (1991), “A GARCH Examination of the Relationship
Between Volume and Price Variability in Futures Markets, Journal of Futures

Markets, 11, 613-621.

Nelson, D.B. (1990a), “ARCH Models as Diffusion Approximations,” Journal of

Econometrics, 45, 7-38.

Nelson, D.B. (1990b), “Stationarity and persistence in the GARCH(1,1) Model,”

Econometric Theory, 6, 318-334.

Nelson, D.B. (1991), “Conditional Heteroskedasticity in Asset Returns: A New

Approach,” Econometrica, 59, 347-70.

Nelson, D.B. and D.P. Foster (1994), “Asymptotic Filtering Theory for Univariate

ARCH Models,” Ecoﬁometrica, 62, 1-41.

195



New York Stock Exchange (1990), “Market Volatility and Investor Confidence,

Report to the Board of Directors of the NYSE,” New York Stock Exchange, June.

Noh, J., RF. Engle and A. Kane (1994), “ Forecasting Volatility and Option Prices of

the S&P 500 Index,” Journal of Derivatives, 1, 17-30.

Nyblom, J. and T. Makelainen (1983), “Comparison of Tests for the Presence of
Random Walk Coefficients in a Simple Linear Model,” Journal of the American

Statistical Association, 78, 856-64.

Pagan, A R. (1996), “The Econometrics of Financial Markets,” Journal of Empirical

Finance, 3, 15-102.

Pagan, AR. and G.W. Schwert (1990), “Alternative Models for Conditional Stock

Volatility,” Journal of Econometrics, 45, 267-90.

Pantula, S.G. (1991), “Asymptotic Distributions of Unit Root Tests When the Process

is Nearly Stationary,” Journal of Business and Economic Statistics, 9, 63-71.

Parzen, E. (1962), “On Estimation of a Probability Density Function and Mode,” Ann.

Math. Statist., 33, 1065-76.

Phillips, P.C.B. and P. Perron (1988), “Testing for a Unit Root in Time Series

Regression,” Biometrika, 75, 335-46.

Press, S.J. (1967), “A Compound Events Model for Security Prices, “ Journal of Business,

40, 317-35.

Press, WH., B.P. Flannery, S.A. Teukolsky and W.T. Vetterling (1992). Numerical

Recipes in C. Cambridge: Cambridge University Press, 2™ Ed.

Renault, E. and N. Touzi (1996), “Option hedging and Implied Volatilities in a

Stochastic Volatility Model,” Mathematical Finance, 6, 279-302.

196



Ripley, B.D. (1987), Stochastic Simulation, New York: Wiley.

Rockinger, M. (1994), “Regime Switching: Evidence for the French Stock Market,”

mimeo, HEC.

Rubinstein, M. (1985), “Nonparametric Tests of Alternative Option Pricing Models
Using All Reported Trades and Quotes on the 30 Most Active CBOE Option Classes

from August 23, 1976 through August 3, 1978,” Journal of Finance, 40, 455-80.
Rubinstein, M. (1994), “Implied Binomial Trees,” Journal of Finance, 49, 771-818.

Ruiz, E. (1994), “Quasi-maximum Likelihood Estimation of Stochastic Volatility

Models,” Journal of Econometrics, 63, 289-306.

Said, S.E. and D.A. Dickey (1984), “Testing for Unit Roots in Autoregressive-Moving

Average Models of Unknown Order,” Biometrika, 71, 599-607.

Santoni, G.J. (1987), “Has Programmed Trading Made Stock Prices More Volatile?,”

Federal Reserve Bank of St. Louis Review, May, 18-29.

Schmalensee, R. and R.R. Trippi (1978), “Common Stock Volatility Expectations

Implied by Option Premia, “Journal of Finance, 33, 129-47.

Schoenberg, R. (1995), The GAUSS Constrained Optimisation Application, Aptech

Systems, available on: ftp://ftp.u.washington.edu/public/rons.

Schwert, G.W. (1989), “Tests for Unit Roots, A Monte Carlo Investigation,” Journal

of Business and Economic Statistics, 7, 147-60.

Schwert, G.W. (1990), “Stock Volatility and the Crash of ‘87, Review of Financial

Studies, 3, 77-102.

197


ftp://ftp.u.washington.edu/public/rons

Scott, L. (1987), “Option Pricing when the Variance Changes Randomly: Theory,
Estimation and an Application,” Journal of Financial and Quantitative Analysis, 22, 419-
38.

Shephard, N. (1996), “Statistical Aspects of ARCH and Stochastic Volatility,” in: D.R.
Cox, D.V. Hinkley and O.E. Barndorff-Nielsen, eds., 7ime Series Models, London,

Chapman and Hall.

Shephard, N. and MK. Pitt (1997), “Likelihood Analysis of Non-Gaussian Parameter-

Driven Models,” Biometrika, forthcoming.

Silverman, B.W. (1986), Density Estimation for Statistics and Data Analysis, London:

Chapman and Hall.
Silvey, S.D. (1975), Statistical Inference, London: Chapman and Hall.

Smith, C.W. (1989), “Market Volatility: Causes and Consequences, Cornell Law

Review, 74, 953-962.

Stein, E.M. and J.C. Stein (1991), “Stock Price Distributions with Stochastic Volatility: An

Analytic Approach,” Review of Financial Studies, 4, 727-52.

Stein, J.C. (1989), “Overreactions in the Options Market,” Journal of Finance, 44,

1011-23.

Stock, JH. (1988), “Estimating Continucs Time Processes Subject to Time

Deformation,” Journal of the Statistical Association, 83, 77-84.

Stock, J.H. (1993), “Unit Roots and Trend Breaks,” in: R.F. Engle and D. McFadden,

eds., Handbook of Econometrics, Vol. 4, Amsterdam: North-Holland.

Stoll, HR. and R.E. Whaley (1990), “The Dynamics of Stock Index and Stock Index

Futures Returns,” Journal of Financial and Quantitative Analysis, 25, 441-68.

198



Sultan, J., K. Hogan and K.F. Kroner (1995), “The Effects of Programme Trading on
Market Volatility: New Evidence,” in: New Directions in Finance edited by D.K.

Ghosh and S. Khaksari, Routledge, London.

Sutcliffe, C.M.S. (1997), Stock Index Futures: Theories and International Evidence,

London: International Thomson Business Press, 2™ Ed.

Tanaka, K. (1983), “Non-Normality of the Lagrange Multiplier Statistic for Testing

the Constancy of Regression Coefficients,” Econometrica, 51, 1577-83.

Tauchen, G.E. and M. Pitts (1983), “The Price Variability Volume Relationship on

Speculative Markets,” Econometrica, 51, 485-505.
Taylor, S.J. (1986), Modelling Financial Time Series, Chichester: John Wiley.

Taylor, S.J. (1994), “Modelling Stochastic Volatility: a Review and Comparative

Study,” Mathematical Finance, 4, 183-204.

Terédsvirta, T. (1996), “Two Stylized Facts and the GARCH(1,1) model,” mimeo,

Stockholm School of Economics.

Tucker, A.L., J. Madula and J.F. Marshall (1994), "Pricing Currency Futures Options
with Lognormally Distributed Jumps,” Journal of Business Finance and Accounting,

21,857-873.

Watson, M.W. and R.F. Engle (1985), “Testing for Regression Coefficient Stability

with a Stationary AR(1) Alternative,” Review of Economics and Statistics, 341-346

Weiss, A.A. (1986), “Asymptotic Theory for ARCH models: Estimation and Testing,”

Econometric Theory, 2, 107-131.

West, K.D. and D. Cho (1995), “The Predictive Ability of Several Models of Exchange

Rate Volatility,” Journal of Econometrics, 69, 367-91.

199



Willard, G.A. (1996), “Calculating Prices and Sensitivities for Path-Dependent
Derivative Securities in Multifactor Models,” mimeo, Washington University in Saint

Louis.

Wiggins, J.B. (1987), “Option Values under Stochastic Volatilities,” Journal of

Financial Economics, 19, 351-72.

Xu, X. and S.J. Taylor (1994), “The Term Structure of Volatility Implied by Foreign

Exchange Options”, Journal of Financial and Quantitative Analysis, 29, 57-74.

Xu, X. and S.J. Taylor (1995), “Conditional Volatility and the Informational Efficiency -
of the PHLX options market”, Journal of Financial and Quantitative Analysis, 29,

57-74.

Yang, S.R. and B.W. Brorsen (1993), “Nonlinear Dynamics of Daily Futures Prices:

Conditional Heteroskedasticity or Chaos?,” Journal of Futures Markets, 13, 175-191.

200



