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ABSTRACT

This thesis is concerned with Intelligent Tutoring Systems. It investigates the architecture 

of an Intelligent Knowledge Based Tutoring System in terms of three knowledge models: 

that of the domain, the student and the tutor, and examines the interrelatedness and 

interconnectedness of these three knowledge models.

Existing Knowledge Based Tutoring Systems are reviewed, and the relationship between 

their behaviour and architecture is analysed by evaluating them against Wenger’s model 

of a didactic operation. Two such systems, PROUST, a tutoring system for Pascal 

program debugging skills, and micro-SEARCH, a tutoring system for mathematical 

transformations skills, are used in the study. This evaluation serves two purposes: to 

unravel the requirements for interrelatedness and interconnectedness between the three 

knowledge models in order to develop a true Knowledge Based Tutoring System with a 

full-scale didactic operation, and to uncover the limitations of the current generation of 

Knowledge Based Tutoring Systems and how they fail to fully encompass these 

requirements.

On this basis the thesis goes on to propose a hybrid model made up of Artificial 

Intelligence and Hypertext concepts which helps to overcome the limitations of existing 

Knowledge Based Tutoring Systems. This model in particular addresses the requirements 

for the development of an Intelligent Tutoring Systems with a full-scale didactic operation. 

The model integrates Hypertext’s explicit information nodes and linking properties with 

Artificial Intelligence’s logical inferencing on knowledge representation schemes. The 

thesis finally shows how to use this model to design a generic Intelligent Tutoring System 

that supports a full-scale didactic operation.



To my parents, 

Costas and Christàlla



ACKNOWLEDGEMENTS

This thesis would not have been possible without the encouragement, friendship, support, 

and patience of Dr. Georgios I. Doukidis, Dr. Edgar A. Whitley, and Dr. Ray J. Paul. I 

am very grateful to Georgios who accepted me in 1988, when he was still a lecturer in 

the Information Systems Department at the London School of Economics, to pursue this 

Ph.D. degree under his supervision. Georgios has given me so many opportunities (and 

he still does) in the years that I have known him that I cannot hope to ever repay him for 

what he has done for me. Special thanks are also due to Georgios’ wife Lina who had to 

put up with me (both in Athens and while they were living in London) every time I had 

to consult with George about the Ph.D.

I am also indebted to Edgar who agreed to read for Georgios the drafts of my thesis when 

these started coming through. Without his support and encouragement this thesis would 

still be no more than hazy ideas rather than a properly presented argument. I have 

benefitted greatly from the endless debates about the thesis, his views on my work, and 

his friendship.

I am also deeply indebted to Ray whose experience with Ph.D. supervision I called up on 

at the finishing stages of my thesis. With his continuous support, patience, and 

encouragement during the three difficult months leading to the viva, the draft matured to 

a Ph.D. thesis. I have also benefitted greatly from his views on my thesis and his true 

friendship. Ray agreed to be my ’supervisor’ for the purposes of the graduate office 

records when Georgios was required to go to Greece in 1989. During this time, I called 

up on him endless times for signatures, references, advice, supervision. Ray has helped 

so much in all my years at the LSE (since my early undergraduate years) that I cannot



hope to ever repay him for what he has done for me.

To my parents, who have given me so much love, I am dedicating this thesis. They, my 

godparents and my grandmother Maria, have taught me the most important lessons about 

life, love, and friendship. My parents have made many sacrifices to enable me to do the 

work I enjoy so much. Special thanks are due to my sister Avgoula who sacrificed several 

days of her holidays in London to help me submit the thesis for the viva. Thank you.

The Information Systems department at the London School of Economics and Political 

Science has been a wonderful place to work in - both as a student and, more recently, as 

a member of staff. The friendship, encouragement, and discussions I have enjoyed with 

the lecturers, secretaries and students have shaped many of the ideas expressed in this 

thesis to an extent that I could never mention all the individuals concerned. However, I 

would not be doing justice if I did not thank Miss Alison O’Neil, my efficient secretary, 

who typed parts of the thesis, and Miss Geraldine Gibson, a student on the M.Sc. course 

on Analysis, Design and Management of Information Systems who practically became my 

assistant during the three days leading to the viva.

Last, but by no means least, I am grateful for the love and companionship of aU my 

friends who kept me happy and ‘sane’ while I was researching my thesis. Their patience 

was particularly appreciated when I became ‘anti-social’ in the final stages of preparing 

the thesis. Special thanks go to my friend Kurt Klappholz who was the first university 

academic I met when I arrived at the LSE and who became a dear friend. I much enjoyed 

the endless discussions I had with Kurt in Rosebery Hall. I am very grateful to him for 

all his support and advice and the many opportunities he has given me in Rosebery Hall,



when they were most needed. Special thanks also go to my very good friend Harry 

loannides who gave me (free) accommodation in his house for the first three months as 

a Ph.D. student and whenever, I wanted a break fi’om work. I enjoyed very much living 

with him and his family. Special thanks are also due to Michael Lambrou, Lakis 

Theodotou, Lakis Tsiakkas and his family, and Panayiotis Panayis for all the help they 

gave during the time that I have known them.

The first two years of this research were supported by an ORS Award no. 8855029. In 

addition, the first year of the research was supported by an LSE Library Bursary and a 

bursary from the LSE 1980’s fund and the second year was supported by a Wingate 

Scholarship and the LSE Jackson Lewis Scholarship.

Marios Angelides 

September 1992.



TABLE OF CONTENTS

TABLE OF FIGURES.....................................................................................................13

CHAPTER 1: INTELLIGENT TUTORING SYSTEMS...............................................17

1.1 Popular Intelligent Tutoring Systems Architectures................................19

1.2 The Domain Expert M odel....................................................................... 23

1.2.1 Black Box Models ...................................................................... 26

1.2.2 Glass Box Models........................................................................ 27

1.2.3 Cognitive M odels........................................................................ 28

1.3 The Student M o d e l...................................................................................34

1.3.1 Bandwidth.................................................................................... 36

1.3.2 Target knowledge type ............................................................... 37

1.3.3 Differences between Student and Expert ...................................37

1.3.4 Diagnostic Techniques................................................................. 38

1.4 The Tutor M odel........................................................................................44

1.4.1 Curriculum: Propaedeutics, Selection and Sequencing..............46

1.4.2 Instruction: Presentation Methods, Answering Questions, Tutorial

Intervention..................................................................................48

1.5 User Interface.............................................................................................50

1.5.1 First-person interfaces......................................* .........................52

1.5.2 Second-person interfaces.............................................................52

1.5.3 Alternative interface technologies...............................................53

1.6 Research Objectives and M ethods............................................................ 54

1.7 Thesis Outline.............................................................................................55



CHAPTER 2: WENGER’S MODEL OF A DIDACTIC OPERATION....................... 58

2.1 The Model of a Didactic Operation........................................................60

2.1.1 Didactic Plan of A ction .............................................................. 60

2.1.2 Pedagogical Contexts: Opportunistic versus Plan-based...........62

2.1.3 Decision Base: constraints and resources.................................. 64

2.1.4 Target Levels: Behavioural, Epistemic and Individual.............. 68

2.2 Knowledge Presentation versus Knowledge Communication................70

CHAPTER 3: KNOWLEDGE BASED TUTORING SYSTEMS: PROUST AND micro- 

SEARCH ..................................................................................................74

3.1 PROUST: An Automatic Debugger for Pascal programs .....................74

3.1.1 PROUST’S Approach to Debugging ......................................... 76

3.1.2 PROUST’s Problem Description................................................ 79

3.1.3 PROUST’s Programming Knowledge .......................................80

3.1.4 PROUST’S Matching Plans ....................................................... 83

3.1.5 PROUST’s Bugs Identification...................................................85

3.2 Micro-SEARCH: A shell for building systems to help students solve non- 

deterministic task s....................................................................................86

3.2.1 Non-Deterministic Algorithms ...................................................87

3.2.2 Teaching Non-Deterministic Algorithms .................................. 89

3.2.3 Problem-Solving M onitors..........................................................89

3.2.4 TSEARCH: A Generalised Version of the Problem Solving

M onitor.........................................................................................90

3.2.5 Micro-SEARCH.......................................................................... 93



CHAPTER 4: EVALUATION OF DIDACTIC OPERATIONS IN KNOWLEDGE

BASED TUTORING SYSTEMS: THE CASE OF PROUST AND micro- 

SEARCH ..................................................................................................97

4.1 Evaluation of Intelligent Tutoring Systems............................................. 97

4.1.1 External Evaluation: The Cognitive Perspective ....................... 99

4.1.2 Internal Evaluation: The Architecture Perspective................... 102

4.2 The Internal Evaluation of PROUST and micro-SEARCH..................104

4.2.1 Evaluation against real users...................................................... 105

4.2.2 Evaluation against Wenger’s model of a didactic operation . 107

4.3 Didactic Operations in Knowledge Based Tutoring System s 135

4.3.1 Requirements for the development of an Intelligent Knowledge 

Based Tutoring System with a full-scale didactic operation . 136

4.3.2 Limitations of existing Knowledge Based Tutoring Systems with 

respect to the requirements for the development of an Intelligent 

Knowledge Based Tutoring System with a full-scale didactic 

operation.....................................................................................141

CHAPTER 5: TOWARDS A HYBRID MODEL OF ARTIFICIAL INTELLIGENCE

AND HYPERTEXT ..............................................................................151

5.1 Hypertext................................................................................................. 151

5.1.1 A Hypertext Architecture...........................................................158

5.1.2 Hypertext N odes.........................................................................161

5.1.3 Hypertext Links .........................................................................164

5.1.4 Navigating through Hypertext....................................................169

5.2 Hybrid Models of Artificial Intelligence and H ypertext...................... 173



5.2.1 Hypertext and Semantic Networks............................................ 177

5.2.2 Hypertext and Minsky’s F ram es...............................................179

5.2.3 Expert Systems with Hypertext support...................................180

5.2.4 Hypertext with Expert Systems support...................................184

5.2.5 Automating Search, Linking and Inference in Hypertext . . .  188

5.2.6 Artificial Intelligence techniques for dealing with Uncertainty in

hypertext.....................................................................................191

5.2.7 Expert Help in Hypertext...........................................................192

5.2.8 Natural Language Processing Interfaces in Hypertext 193

5.3 Hyperframes: A Knowledge Representation Scheme that integrates

Minsky’s Frames with Hypertext Information Nodes and Links . . .  194

5.3.1 Resolving the Limitations with Knowledge Based Tutoring 

Systems.......................................................................................200

CHAPTER 6: USING HYPERFRAMES TO DESIGN A GENERIC MODEL FOR THE 

ARCHITECTURE OF AN INTELLIGENT KNOWLEDGE BASED 

TUTORING SYSTEM WITH A FULL-SCALE DIDACTIC

OPERATION......................................................................................... 205

6.1 Developing the Decision Base: Domain Expert, Student and Tutoring

Knowledge and Process Models ...........................................................206

6.1.1 The Domain Expert Knowledge M o d e l...................................208

6.1.2 The Tutoring Knowledge M odel...............................................210

6.1.3 The Student Knowledge M odel................................................. 212

6.1.4 Knowledge Models Interconnectedness ...................................217

6.1.5 Generative Behaviour ............................................................... 223

10



6.1.6 User Interface............................................................................. 226

6.1.7 The Domain Knowledge Process Model: Expertise................ 229

6.1.8 The Student Knowledge Process Model: Diagnostics 230

6.1.9 The Tutor Knowledge Process Model: Didactics..................... 232

6.2 The Didactic Plan of A ction...................................................................233

6.3 The Pedagogical C ontext....................................................................... 241

6.4 The Target Level..................................................................................... 243

6.5 An Interaction Protocol with the Tutoring System ............................... 244

6.5.1 An interaction protocol involving the tutoring system’s generative 

behaviour.....................................................................................260

CHAPTER 7: SUMMARY AND CONCLUSIONS.....................................................265

7.1 Sum m ary................................................................................................. 265

7.2 Conclusions ............................................................................................ 269

7.2.1 Hyperframes................................................................................270

7.2.2 A (scalable and open) generic model for the architecture of an 

Intelligent Knowledge Based Tutoring System with a full-scale 

didactic operation.......................................................................273

7.3 Future Research and Development......................................................... 279

BIBLIOGRAPHY ..........................................................................................................283

APPENDIX A: GENERIC CATEGORIES OF INTELLIGENT TUTORING

SYSTEMS.................................................................................. 293

A.l Tutorial Dialogues................................................................................... 294

11



A.2 D rills .........................................................................................................302

A.3 Simulations............................................................................................... 306

A.4 Instructional Gam es................................................................................. 318

A.5 Knowledge Based Tutoring Systems ..................................................... 326

APPENDIX B: QUESTIONNAIRE......................................................................345

APPENDIX C: A NOVICE’S GUIDE TO INTELLIGENT TUTORING

SYSTEMS.................................................................................. 355

C.l Leading experts’ definitions................................................................... 355

C.2 A simple guide to the functionality and components of Intelligent Tutoring

System s.................................................................................................. 358

GLOSSARY OF INTELLIGENT TUTORING SYSTEMS TERM S..........................364

12



TABLE OF FIGURES

1.1: Classification of Intelligent Tutoring Systems Architectures..............................22

1.2: The Intelligent Tutoring System Architecture ........................................................ 24

1.3: MYCESr and GUIDON Rules [Clancey, 1987] ......................................................29

1.4: Production rule on subtraction skills in BUGGY [Brown and VanLehn, 1980] . 30

1.5: A schema representation for evaporation in WHY [Stevens and Collins, 1977] . 32

1.6: An example of a tutoring rule for WHY [Stevens and Collins, 1977]............... 33

1.7: The development of Qualitative Simulation ...........................................................34

1.8: Student Diagnostic techniques...............................................................................39

2.1: Wenger’s [1988] Intelligent Tutoring Systems Architecture .................................58

2.2: Aspects of the Didactic Operation [Wenger, 1988] ...............................................61

2.3: Aspects of the Decision Base of the Didactic Operation [Wenger, 1988] ........... 65

3.1: A programming assignment for PROUST [Johnson and Soloway, 1985] ........... 77

3.2: A goal from PROUST’s [Johnson and Soloway, 1987] Knowledge B a s e  82

3.3: A plan from PROUST’s [Johnson and Soloway, 1987] Knowledge B a s e  83

3.4: Matching a plan against a student program [Johnson and Soloway, 1987] . . . .  84

3.5: A Bug report generated by PROUST [Johnson and Soloway, 1987] .................. 86

3.6: An example of a trigonometric transformation ......................................................87

3.7: An example of an algebraic transformation..........................................................88

3.8: User facilities provided by TSEARCH [Sleeman, 1982]........................................91

3.9: Screen layout at the beginning of a trigonometric transformation........................ 95

3.10: Screen layout at intermediate step in solving a Boolean Algebra ta sk ................ 96

13



4.1: A Frame-based representation of a portion of Domain Knowledge ................... 143

4.2: Portions from the three Knowledge Bases ........................................................... 144

4.3: Alternative Viewpoints and Generative Behaviour............................................... 147

4.4: Representation of a portion of student knowledge............................................... 149

5.1: A Hypertext structure with six nodes and nine links ...........................................153

5.2: Link inheritance with structured Hypertext........................................................... 172

5.3: An example of a HyperFrame................................................................................ 195

5.4: A knowledge representation based on hyperframes ............................................. 196

5.5: Example of generative behaviour from an alternative viewpoint ....................... 202

6.1: A hyperframe from the Domain Expert Knowledge.............................................208

6.2: Representation of a portion of the Domain Knowledge ......................................210

6.3: Teaching Goals and Teaching Strategies............................................................... 212

6.4: Representation of a portion of the Tutoring Knowledge......................................213

6.5: A student hyperframe..............................................................................................214

6.6: Extracts from the Bugs Library..............................................................................215

6.7: A portion from the Student M odel.........................................................................216

6.8: An instruction knowledge unit ............................................................................. 220

6.9: A hypertext view of the Tutoring System’s data structure................................... 222

6.10: Example of Generative Behaviour...................................................................... 225

6.11: A protocol of interaction with the tutoring system .............................................228

6.12: A Protocol of interaction with the tutoring system .............................................229

6.13: The Continents instruction knowledge unit prior to any interaction ................ 244

6.14: Man-Machine interaction with the Continents instruction knowledge unit . . . 245

14



6.15: The Continents instruction knowledge unit after interaction ............................ 247

6.16: The current state of the student overlay knowledge model ...............................248

6.17: The Europe instruction knowledge unit prior to any interaction........................249

6.18: Man-machine interaction with the Europe instruction knowledge un it 250

6.19: The Europe instruction knowledge unit after interaction................................... 251

6.20: The current state of the student overlay knowledge model ...............................252

6.21: The UK instruction knowledge unit prior to any interaction ............................ 253

6.22: Man-machine interaction with the UK instruction knowledge u n i t ...................255

6.23: The UK instruction knowledge unit after interaction ........................................256

6.24: The current state of the student overlay knowledge model ...............................257

6.25: Man-machine interaction with the Europe instruction knowledge un it 258

6.26: The current state of the student overlay knowledge model ...............................260

6.27: The instruction knowledge unit for German Speaking European Countries . . 262

6.28: Man-machine interaction with the generated u n it ............................................... 263

6.29: The generated instruction knowledge unit after the interaction..........................264

A.l: The general structure and flow of a Tutorial Dialogue........................................ 295

A.2: An interaction protocol with SCHOLAR [Carbonell, 1970] ...............................298

A.3: An interaction protocol with the new version of SCHOLAR [Carbonell, 1973] 299

A.4: An interaction protocol with WHY [Stevens and Collins, 1977]........................301

A.5: The general structure and flow of a D rill............................................................. 302

A.6: An interaction protocol with the INTEGRATION Tutor [Kimball, 1982] . . . .  304

A.7: The general structure and flow of Simulation...................................................... 307

A.8: An interaction protocol with the METEOROLOGY Tutor [Brown et al, 1973] 310 

A.9: An automaton for the condition of the air ...........................................................311

15



A. 10: An interaction protocol with SOPHIE [Brown et al, 1975]......................... 312

A .ll: An interaction protocol with SOPHIE-I [Brown and Burton, 1975]...........314

A. 12: An interaction protocol with SGPHXE-II ...........................................................315

A. 13: The general structure and flow of an Instructional G am e.................................319

A. 14: An interaction protocol with WEST [Burton and Brown, 1976] ..................... 321

A. 15: An interaction protocol with WUSOR-II [Goldstein, 1982] ............................ 323

A. 16: An interaction protocol with BUGGY [Burton, 1982] ......................................325

A. 17: A programming assignment for PROUST [Johnson and Soloway, 1985] . . . 329

A. 18: A program report generated by PROUST [Johnson and Soloway, 1985] . . .  331

A. 19: An interaction protocol with PROUST [Johnson and Soloway, 1985] .........332

A.20: Interaction protocol with the MENO-TUTOR [Woolf and MacDonald, 1984] 333

A.21: An interaction protocol with GUIDON [Clancey, 1987]..............................335

A.22a: An interaction protocol with the LISP Tutor [Anderson and Reiser, 1985] . 343 

A.22b: An interaction protocol with the LISP Tutor [Anderson and Reiser, 1985] . 344

16



CHAPTER 1: INTELLIGENT TUTORING SYSTEMS

After many years of research and development the educational approach is still very much 

the same as it was centuries ago. As mentioned by Anderson and Reiser [1985], on the 

one hand, we have conventional classroom instruction and learning that involves listening 

to lectures, reading texts, and working alone on assigned homework problems. On the 

other hand, we have individual tutoring that provides the student with an experienced 

person, the tutor, whose major role is to guide the student’s reading of texts and problem 

solving, and to turn problem solving episodes into more effective learning experiences. 

Studies of students learning experience have revealed that individual tutoring appears to 

be more effective. The studies such as that by Anderson and Reiser [1985] revealed that 

with private tutors it only takes approximately 25% of the time spent to leam as much as 

classroom students learned. In such studies, the tutored students are seen to perform better 

on tests than the average classroom student The major benefit occurred with the poorer 

tutored students rather than with the best students for whom there was relatively little 

advantage.

Teaching of students has recently entered a new era. For a number of years, we have been 

studying how students leam logic, mathematics, programming, and similar skills. We have 

reached a stage where we can develop computer-based tutors for these kind of domains. 

From its early beginnings, the computer has been considered as capable of instructing, 

thereby improving the quality of education. Computer systems for student tutoring that 

could offer to the student the same instructional and pedagogical potential as a human 

tutor, are being developed [Swartz and Yazdani, 1992].
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The major objective of these systems has been to explore and understand the student, the 

student’s special needs and interests, and respond to these needs as a human tutor would. 

These systems are considered as very important, especially in university teaching 

[Duchastel and Imbeau, 1988], in the promise which they offer as learning resources 

which the instructors can place at the disposal of their students to foster their learning. It 

is also believed that they will contribute to shaping the future direction of educational 

technology and influence positively the way we conceive of learning and how it can take 

place. However, Dede [1986] stresses that it is still the case that without the continual 

presence of human tutors, the new educational and pedagogical technologies will weaken 

the quality and efficiency that computer-based instructional programs can attain.

Computer-Assisted tutorials or Computer-Assisted Instruction as they are better known, 

have been developed in many areas such as Mathematics, Geography, Nuclear Physics, 

Grammar, Electronics, Medicine, Meteorology, Statistics and Programming Languages, 

especially Lisp and Pascal.

Work in Computer Assisted Instruction has been taken over and gradually dominated by 

Artificial Intelligence to become another Artificial Intelligence application, that of 

Intelligent Tutoring Systems [Swartz and Yazdani, 1992], [Clancey and Soloway, 1990], 

[Clancey, 1987], [Harmon, 1987], [Anderson and Reiser, 1985], [Sleeman and Brown, 

1982].

In this Chapter, the thesis gives an account of the state-of-the-art in the Intelligent 

Tutoring System architecture and in particular the components that make up this 

architecture. The Chapter first presents the most popular Intelligent Tutoring System
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Architectures. It then gives a detailed analysis of the individual components of an 

Intelligent Tutoring System according to these architectures. The thesis then proposes to 

examine the nature of interaction of these components, during the period of use of an 

Intelligent Tutoring System. As is shown in this Chapter, most of the recent Intelligent 

Tutoring Systems have been developed as Knowledge Based Systems, as the result of the 

field being an Artificial Intelligence Application area. Consequently, the thesis will focus 

on Intelligent Knowledge Based Tutoring Systems, although in Chapter 1 the discussion 

includes non-Artificial Intelligence Systems. The reason for this is simply to provide a 

better understanding of the field.

1.1 POPULAR INTELLIGENT TUTORING SYSTEMS ARCHITECTURES

Brecht and Jones [1988] suggest that, although there has recently been some agreement 

regarding the components of an Intelligent Tutoring System, nevertheless, there is still 

little consensus regarding the exact nature and interaction of these components. What 

would really be the ideal Intelligent Tutoring System?

A computer system is classified as an Intelligent Tutoring System if it passes three tests 

of intelligence [Bums and Capps, 1988], [Clancey and Soloway, 1990], [Bums and Parlett, 

1991]. First, the subject matter, or domain, must be "known" to the computer system well 

enough for the embedded domain expert to draw inferences or solve problems in the 

domain of application. Second, the system must be able to deduce a learner’s 

approximation of that knowledge. Third, the tutorial strategy or pedagogy must be 

intelligent in that the "instmctor in the box" can implement strategies to reduce the 

difference between the expert and the student performance. These ideas are found in the 

three most common architectures for tutoring systems: Anderson’s architecture, the
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Hartley and Sleeman architecture and O’Shea’s five ring model.

According to Anderson’s architecture [Anderson et al, 1985] [Anderson, 1989] there are 

four sources of knowledge in an Intelligent Tutoring System. First is the Domain Expert 

module which is capable of actually solving problems in the domain. This is sometimes 

also referred to as the ‘ideal student’ model. Second is the Bugs catalogue, an extensive 

library of common misconceptions and errors in the domain. These are the possible 

deviations a student can make from the ideal expert behaviour. Third, is the Tutoring 

knowledge module, which contains the strategy to teach the domain knowledge. It is based 

on three sets of principles: one for determining from student’s behaviour what they know 

and what misconceptions or bugs they have, another for deciding when to interrupt them 

in the problem solving process and what advice to offer at this point, and last, to figure 

out what exercises a student should do and when the student should advance to new 

material. In Anderson’s fourth source of knowledge, internal models of the students are 

built by the tutor where the students’ knowledge, difficulties, and misconceptions are 

represented. This will enable the tutor to tailor its instructions to each individual student. 

Finally, there is a user interface module to administer the interaction between the tutor and 

the students.

The Intelligent Tutoring System architecture proposed by Hartley and Sleeman [1973] has 

four similar primary components represented as four distinct knowledge bases. These 

contain, firstly, a representation of the teaching task, that is knowledge of the task domain, 

which will not only include specific educational objectives, but also the task analyses 

which indicate the structure of material and the components of operations. Secondly, a 

model of the student through their performance data or other achievement measures, in
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other words, a model/history of their behaviour. Thirdly, a set of teaching operations, that 

will include curriculum management, teaching style and type of feedback, and use of 

remedial material, in other words teaching strategies. Finally, a set of means-ends 

guidance rules, which are decision rules that state the conditions under which the teaching 

operations should be used with particular students during their learning.

O’Shea’s five ring model, [O’Shea et al, 1984], has five primary components, one for 

every ring of the model: the student history, which is a record of material presented to the 

learner and the learner’s responses; the student model, which makes predictions about the 

learner’s future performance and current state of knowledge and ability; the teaching 

strategy, which relates the systems view of the learner to the general types of teaching 

action that are possible, and decides the type of the next action; the teaching generator, 

which is a mechanism that yields a specific teaching action for use by the teaching 

administrator; and finally, the teaching administrator, which presents material to the 

learner and processes learner responses.

Yazdani [1986a] classifies the three different schools of thought in terms of two extremes 

(see Figure 1.1). One is the typical learning environment, where the Anderson proposal 

is closer, and the other is the traditional Computer Assisted Instruction with distinctive 

emphasis on teaching, where the O’Shea proposal is closer. He argues that the choice of 

strategy is dependent on the nature of expertise to be taught. He points that exceptionally 

abstract and general concepts, e.g. Model building can be better taught within a learning 

environment by constructing a computer-based microworld. Also the teaching of skills 

which are basically problem solving in a specific domain can be best achieved via 

problem-solving monitors such as Anderson’s. As the tasks become less abstract and more
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concrete the traditional Computer Assisted Instruction approach becomes more suitable.

Learning Environments
Traditional 

Computer Assisted Instruction

Anderson
Proposal

Hartley and Sleeman 
Proposal

O’Shea
Proposal

Figure 1.1: Classification of Intelligent Tutoring Systems Architectures

These three architectures suggest that at the foundation of Intelligent Tutoring Systems 

one finds three special kinds of knowledge and problem-solving expertise programmed 

in a sophisticated instructional environment: Domain Expert Knowledge, Student 

Diagnostic Knowledge, and the Instructional or Curricular Knowledge.

The Instructional Environment refers to the ‘Environment’ part of the system which is 

responsible for specifying or supporting the activities that the student does and the 

methods available to the student to do those activities [Burton, 1988]. It defines the kind 

of problems the student is to solve and the tools available for solving them. In the 

SOPHIE I troubleshooting environment [Brown, Burton and deKleer, 1982], the activity 

is finding a fault in a broken piece of equipment, and the primary tool available to solve 

the problem is the ability to ask in English for the values of measurements made on the 

equipment. The environment part of SOPHIE I supports these activities by providing a
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circuit simulation, a program to understand a subset of natural language, and the routines 

to set up contexts, keep history lists, etc. The Environment includes some aspects of help 

that the system provides to the student while he is solving problems, but does not include 

those forms of help that one would classify as requiring intelligence; these are dealt with 

by the tutor in the box. The Instructional Environment in many ways defines the way the 

student looks at the subject matter [Burton, 1988].

A major consideration in developing Intelligent Tutoring Systems is how the three kinds 

of knowledge are embedded in such systems. Other considerations include how these 

systems accrue the advantages of advanced computer interface technologies, how 

Intelligent Tutoring Systems will emerge in the real world of complex problem solving, 

how both researchers and developers must leam to evaluate the efficiency and 

effectiveness and overall quality of these systems, when, where, and how is an Intelligent 

Tutoring System quality understood, and what is the exact nature of the interaction 

between the "real" components and the system in its actual environment of operation?

For the sole purpose of convenient classifications of Intelligent Tutoring Systems research 

and development dimensions, it is assumed that the anatomy of an Intelligent Tutoring 

System is as is shown in Figure 1.2. The components highlighted are discussed in the 

following sections. Appendix A classifies existing Intelligent Tutoring Systems under five 

generic categories. As explained before, non-Artificial Intelligence systems are also 

classified under these categories.

1.2 THE DOMAIN EXPERT MODEL

The first key place for intelligence in an Intelligent Tutoring System is in the knowledge
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Figure 1.2: The Intelligent Tutoring System Architecture

that system has of its subject domain [Woolf, 1987], [Woolf, 1988]. Anderson [1988] 

claims that this is the backbone of an Intelligent Tutoring System. A domain expert model 

must have an abundance of domain knowledge. A great deal of the effort in developing 

a complete and efficient domain expert model would be expended on knowledge 

elicitation and analysis and knowledge codification for the domain expert model. The 

sheer amount of knowledge required in most complex domains ensures that the 

development of the domain expert will be labour-intensive. As Intelligent Tutoring 

Systems techniques evolve, tutoring system shells may be expected to assume much of 

the work involved in tutoring systems development. However, such authoring systems 

cannot do any part of the work of knowledge elicitation and analysis and can only provide 

an easier means to codify the knowledge into the domain expert.

There have been three approaches in encoding knowledge into the domain expert which
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give rise to the three different types of models for domains experts. The first approach, 

which gives rise to the BUick Box Model of a domain expert, involves finding a method 

of reasoning about the domain that does not actually require codification of the knowledge 

that underlies human intelligence. In other words, the reasoning is implemented using 

conventional data processing rather than symbolic processing methods. The second 

approach, which gives rise to the GUiss Box Model of a domain expert, involves reasoning 

about the domain by applying codified knowledge. This is the standard Expert Systems 

approach to reasoning with knowledge [Kopec et al, 1992]. The third approach, which 

gives rise to the Cognitive Model of a domain expert, involves making the domain expert 

a simulation, at some level of abstraction, of the way humans use the knowledge. As 

argued by Anderson [1988], the third approach, although the most demanding of the three, 

produces the best high-performance tutoring systems. Anderson [1988] argues that the 

pedagogical effectiveness of the three domain expert models increases along with the 

implementation effort in the order in which they have been presented.

First generation expert systems were developed using the knowledge engineering 

methodology which involved deploying humanlike knowledge that was codified using one 

or more knowledge representation schemes, mainly production rules, stored in a separate 

knowledge base [Doukidis, Angelides and Harlow, 1988], [Doukidis, Rogers and 

Angelides, 1989]. Expert performance was achieved through reasoning with the contents 

of such a knowledge base. Such products were named knowledge based expert systems 

an equate to the Glass Box models of a domain expert. First generation expert systems 

were also developed following the criterion-based approach: any system that achieves high 

quality performance could be classified as an expert system. Therefore, any kind of 

domain expert in an Intelligent Tutoring System capable of undertaking a complex task
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proficiently would be regarded as an expert system by the criterion-based approach. Such 

were the Black Box models of a domain expert although they were originally of limited 

scope.

Second generation expert systems which promise a more fundamental understanding of 

their domain of discourse and are not so narrow or brittle as their predecessors, are 

currently under test and development They have not yet achieved the same levels of 

performance as the first generation of expert systems but they are regarded as the hope 

for the future [Anderson, 1988]. Expert systems of this kind are developed as Qualitative 

Process models which are a special kind of Cognitive model [Clancey, 1988]. They are 

concerned with reasoning about the causal structure of the world and in particular the 

domain of discourse. Both generations of expert systems are currently in use in the 

development of domain expert models [Fink, 1991].

1.2.1 Black Box Models

A Black Box model of a domain expert is one that generates the correct input-output 

behaviour over a range of tasks in the domain, and so can be used as a judge of 

correctness. However, the internal computations by which it provides this behaviour are 

either not available or are of no use in delivering instruction.

A classical example of the use of a Black Box model for a domain expert is WEST 

[Burton and Brown, 1982], a tutor for a mathematical game. In this system the domain 

expert performs an exhaustive search of the possible moves and determines the optimal 

move given a particular game strategy. Such a domain expert model can be used in a 

reactive tutor that tells the students whether they are right or wrong, and possibly what
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the right move would be. This suggests a cheap and easy way of converting off-the-shelf 

expert systems into tutoring systems that could be quite pedagogically effective.

The intelligent tutoring paradigm, however, is based on the belief that what a tutor says 

is critical and that is helpful to say more than just "right", "wrong" and "do this". The 

problem with Black Box models of domain experts is how to build a more articulate tutor 

around such an expert system when the knowledge of that system is not accessible. Burton 

and Brown [1982] suggested a methodology, caUed issue-based tutoring which involves 

recognising patterns, in both the student’s and the expert’s surface behaviour, so called 

issues, and generating instruction for those patterns. This is the approach which Burton 

and Brown [1982] followed in WEST. Nevertheless, this surface-level issue-based tutoring 

does not solve the problem of providing explanations about the actual reasoning process, 

if the Intelligent Tutoring System does not have access to the internal structure of the 

domain expert.

1.2.2 Glass Box Models

A Glass Box model of a domain expert is similar to that of a conventional Expert System. 

As King and McAulay [1992] argue, the basic methodology of building these expert 

systems involves a knowledge engineer and a domain expert who can identify a problem 

area and its scope, who can enumerate and formalise the key concepts in the domain, 

formulate a system to implement the knowledge, and then iteratively test and refine that 

system. These systems are characterised by the great quantity and humanlike nature of 

knowledge that is articulated. Because of its nature, the emerging expert system should 

be more amenable to tutoring than a Black Box model because a major component of this 

expert system is an articulate, humanlike internal representation of the knowledge

27



underlying expertise in the domain.

The expert system methodology in its variations has been successfully used to tackle a 

wide range of tasks: interpretation, prediction, diagnosis, design planning, monitoring, 

debugging, repair, control, and in certain cases [Stevens, Collins and Goldin, 1982] 

tutoring expertise.

GUIDON [Clancey, 1982 and 1987] uses MYCIN [Shortliffe, 1976] as a Glass Box model 

in a tutoring system. MYCIN consisted of 450 if-then rules which encoded a model of the 

probabilistic reasoning that underlies medical diagnosis. With GUIDON, tutorial 

interaction is driven by t-rules (i.e. tutorial rules), an extension of issue-based tutoring. T- 

rules are compiled to be a combination of the difference between the expert behaviour and 

the student behaviour and an expert’s reasoning process. In Figure 1.3 below, the t-rule 

refers to the internal structure of the domain expert, such as rules and goals, and not on 

the surface behaviour.

The GUIDON project has highlighted one further important issue: for tutoring systems to 

be effective, it is not enough to understand the knowledge in the domain expert but also 

the way in which this knowledge is deployed and the humans restrictions levied on it.

1.2.3 Cognitive Models

A Cognitive model of a domain expert is a simulation of human problem solving in a 

domain in which the knowledge is decomposed into meaningful, humanlike components 

and deployed in a humanlike manner [Anderson et al, 1990]. Cognitive Models are best 

understood in the context of the three types of knowledge that a tutoring system may be
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IF
The infection which requires therapy is meningitis
Organisms were not seen in the stain of the cuiure
The type of infection is bacteriai
The patient does not have a head injury defect
The age of the patient is between 15 and 55 years
THEN
The organisms that might have been causing the 
infection are dipiococus-pneumoniae (.75) and 
neisseria-meningitidis (.74)

A typical MYCIN rule
IF
The number of factors appearing in the domain 
which need to be asked by the student is zero 
The number of subgoais remaining to be determined 
before the domain ruie can be appiied is equal to 1 
THEN
Say: subgoai suggestion 
Discuss the (sub)goai with the student in a 
goai-directed mode
Wrap up the discussion of the domain being considered

A Guidon tutorial rule

Figure 1.3: MYCIN and GUIDON Rules [Clancey, 1987]

developed to tutor: procedural that entails knowledge about how to perform a task such 

as calculus problem solving, declarative that entails a set of facts appropriately organised 

so that an Intelligent Tutoring System can be implemented to reason with them, and 

causal knowledge in the form of qualitative models that entails knowledge about a device 

that allows one to reason about the behaviour of that device, for example, electronic 

circuit troubleshooting.

Procedural Knowledge

Procedural knowledge represented as a Cognitive Model can take the form of a rule-based 

production system. This provides some model of human problem solving behaviour 

matched to a working memory of facts which is regarded as some form of human short­

term memory. This is the approach followed in the Lisp Tutor [Anderson, Boyle and 

Reiser, 1985], the Geometry Tutor [Anderson, Boyle and Yost, 1985], AlgebraLand
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[Brown, 1983], BUGGY [Brown and VanLehn, 1980], and many other systems.

One of the major advantages of production rules for the purposes of instruction is their 

modularity: each production rule is an independent piece of knowledge. This means that 

a rule can be communicated to the student independently of communicating the total 

problem structure in which it appears. However, this does not mean that they are context- 

free. They specify explicitly that part of the context which is relevant. The current 

generation of goal-factored production systems make explicit reference in their conditions 

to goals that each and every one of their production rules are relevant to. This allows 

communication to the student of only the relevant information. Another major advantage 

of the modularity of production rules is that we can use the rules to represent the student’s 

knowledge state. Given in Figure 1.4 below is a production rule representation of the 

subtraction skiU as procedural knowledge from the BUGGY system.

Sub 0 Satisfaction Condition: TRUE

LI : {} —> (ColSaquanca RlghtmostTOPCaKlghtmostBottomCall RIghtmostAnswarCell)
COLSEQUENCE (TO BC AC) Satisfaction Condition: (Blank? (Next TC))

L2: {} —> (SubCol TC BC AC)
L3: {) (ColSaquanca (Naxt TC) (Naxt BC) Naxt AC))

SubCol (TC BC AC) Satisfaction Condition: (NOT (Blank? AC))
L4: ((Blank? BC)} —> (WrItaAns TC AC)
L5: {(Lass? TC BC)} —> (Borrow TC)
L6:{)~> (DIffTCBCAC)

Borrow (TC) Satisfaction Condition: FALSE
L7: {) ->  (BorrowFrom (Naxt TC))
L8:{}--> (AddlOTC)

BorrowFrom (TC) Satisfaction Condition: TRUE
L9 : {(Zaro? TC)} —> (borrowFrotnZaro TC)
L10:{}~> (DacrTC)

BorrowFromZaro (TC) Satisfaction Condition: FALSE 
L11:{}->  (WrItaSTC)
LI 2: {} —> (BorrowFrom (Naxt TC))

Figure 1.4: Production rule on subtraction skills in BUGGY [Brown and VanLehn, 1980
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With this rule-based approach it is possible to implement a tutoring methodology called 

model tracing in which a student’s surface behaviour in solving a problem is contrasted 

with a sequence of production rules that are firing in the domain model. This 

correspondence can then be used to produce an interpretation of the student’s surface 

behaviour. The major function of such a student model trace is to provide feedback or 

student errors as soon as possible. With this rule-based approach is possible to compile 

the expert out and perform in advance all possible computations of the expert for a 

particular problem and to store them in some efficiently indexed scheme.

Declarative Knowledge

In many situations, there is a need for students to understand the principles and facts of 

the domain and how to reason with them generally and not just become competent at any 

one application of such knowledge. This calls for the use of declarative knowledge 

representations. However, this does not suggest that procedural tutoring and declarative 

tutoring are incompatible. On the contrary, the Artificial Intelligence community has 

labelled them dual semantics  ̂ because they mutually complement each other [Doukidis 

and Whitley, 1988]. As a result, the goal of instruction of an Intelligent Tutoring System 

may be to make a student competent with the procedures of a domain and articulate about 

the justifications of those procedures and other factual information. With declarative 

knowledge one wants hierarchical representations of knowledge, structured so that flexible 

inference procedures on the knowledge base can be defined.

With declarative representations, the knowledge base is separate from the inference 

mechanisms, unlike most procedural representations. With some declarative mechanisms, 

such as frames and schema systems, procedural attachments are also embedded in the
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declarative knowledge structure. Procedural attachments are rules that actively wait for 

their conditions to become true and fire in dynamic systems.

Figure 1.5 shows a schema representation for evaporation as declarative knowledge from 

WHY [Stevens and Collins, 1977]. There are slots for the actors of evaporation, for the 

factors that influence the amount of evaporation, for the functional relationships among 

these factors, and the result of evaporation. Bugs are created by erroneous entries in the 

slots.

Evaporation
Actors

Source: Large-body-of-water 
Destination: Air-mass

Factors
Temperature (Source)
Temperature (Destination)
Proximity (Source, Destination)

Functional-reiationship
Positive (Temperature (Source))
Positive (Temperature (Destination)) 
Positive (Proximity (Source, Destination)) 

Resuit
increase (Humidity (Destination))

Figure 1.5: A schema representation for evaporation in WHY [Stevens and Collins, 1977

In tutoring with declarative knowledge bases, it is assumed that the student has already 

in hand the inference procedures that can be used for reasoning with the knowledge. 

Therefore, the task becomes one of representing the knowledge in a such form that these 

inference procedures can be invoked. This suggests the making of a very simple tutorial 

agenda, namely, to determine what the student has filled in for each node, fill in any
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missing conceptions and debug any misconceptions. With declarative knowledge, as 

opposed to procedural knowledge, the Intelligent Tutoring System must be able to 

understand how students draw inferences on their declarative knowledge base. Figure 1.6 

illustrates a rule from the set of tutoring rules formulated by Collins for use in WHY.

IF
The student gives an explanation of one or more factors that are not sufficient 

THEN
Formulate a general rule for asserting that the factors given are sufficient 
Ask the student if the ruie is true

Figure 1.6: An example of a tutoring rule for WHY [Stevens and CoUins, 1977]

These rules have a resemblance to the issue-based recognition rules used for black and 

glass box models. However, here the conditions for such rules refer to the underlying 

knowledge rather than to any surface behaviour and incorporate a mixture of knowledge 

assessment and instruction.

Qualitative Process Models

A qualitative model of a domain expert is concerned with the knowledge that underlies 

our ability to mentally simulate and reason about dynamic processes [White and 

Frederiksen, 1990]. This is important when engaging in troubleshooting behaviour, which
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involves reasoning through the causal structure of a device to find potential faults, de 

Kleer and Brown’s work on envisionment with SOPHIE is an example in which the causal 

structure of an electronic circuit is communicated to the user. They divide the process of 

envisionment into constructing a causal model and then simulating the process in this 

model [White and Frederiksen, 1990]. Figure 1.7 shows their conception of the process.

descriptio 1 of structure

mental simulationrunning

envisioning I : inferring causality

projection:

selection

Device Topology 
component models

envisionments: 
set of causal models

Causal Model

PredictionsPhysical Device

Figure 1.7: The development of Qualitative Simulation

The causal structure of the device is inferred from its topology by examination of the 

local interactions among components and not of their function in the device. As a result, 

it is called the no function in structure principle. Having this causal model, de Kleer and 

Brown then use a calculus to propagate the behaviour of the device through these 

components.

1.3 THE STUDENT MODEL

The second key place for intelligence in an Intelligent Tutoring System is in the
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knowledge that the system infers of its user-leamer- the student. An Intelligent Tutoring 

System infers a model of a student-user’s current understanding of the subject matter and 

uses this individualised model to adapt the instruction to the student’s needs [Corbett, 

Anderson and Patterson, 1990]. The component of an Intelligent Tutoring System that 

represents the student’s current state of knowledge is called the Student Model. Inferring 

a student model is called Student Diagnosis. An Intelligent Tutoring System’s diagnostic 

system attempts to uncover a hidden cognitive state (the student’s knowledge of the 

subject matter) from observable behaviour. The student model and the diagnostic module 

are tightly linked together. Designing these two components is known as the Student 

Modelling Problem.

The input for diagnosis is garnered through the interaction with the student The particular 

kinds of information available to the diagnosis module depend on the overall Intelligent 

Tutoring System application. This information could be answers to questions posed by the 

Intelligent Tutoring System, moves taken in a game, or commands issued to an editor. 

This information is sometimes complemented by the student’s educational history. The 

output of the diagnostic module depends on the use of the student model. Nevertheless, 

it should reflect the student’s current knowledge state. Some of the most common uses 

for the student model include, advancement of the user to the next curriculum topic, 

offering unsolicited advice when the student needs it, dynamic problem generation, and 

adapting explanations by using concepts that the student understands. All these assume 

consultation with the student model before any kind of action is taken.

Because there are so many ways to use the student model, one cannot talk sensibly about 

the output of the diagnosis module, nor can one classify student modelling problems by
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the desired input-output relationship. What makes sense is to classify these problems 

partially according to the structural properties of the student model and partially on 

properties of the input available to the diagnosis module [VanLehn, 1988]. This 

classification has three dimensions. The first relates to the input, and the other two are 

structural properties of the student model.

1.3.1 Bandwidth

The input to the diagnosis unit consists of various kinds of information about what the 

student is doing or saying. From this, the diagnosis unit must infer what the student is 

thinking and believing. The Bandwidth dimension is a rough categorisation of the amount 

and quality of the input information. In attempting a task posed by an Intelligent Tutoring 

System, students go through a series of mental states [Payne, 1988]. The highest 

bandwidth an Intelligent Tutoring System could attain would be a list of the mental states 

that the students traverse as they solve problems. Since an Intelligent Tutoring System can 

only approximate a student’s mental state via some indirect information, the highest 

bandwidth category is Approximate Mental States,

In more complicated forms of problem solving the students may make observable changes 

that carry the problem from its initial unsolved state to its final solved state, for instance, 

while playing chess. This results in a series of observable intermediate states, for example, 

midgame board positions. Sometimes an Intelligent Tutoring System has access to these 

intermediate states, and sometimes it can see only the final state. This suggests two other 

categories of bandwidth: intermediate mental states and final mental states. Each category 

is intended to include the information in the category beneath i t
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1.3.2 Target knowledge type

Student models might be asked to solve the same problems that students do and therefore 

be used to predict the student’s answers. Solving problems requires some kind of 

interpretation process that applies knowledge present in the student model to solve the 

problem. There are two types of interpretation, one for declarative knowledge and one for 

procedural. The interpreter for procedural knowledge does not perform any form of 

knowledge base search but makes decisions based on local knowledge about which strand 

of knowledge to turn onto and follow. A declarative interpreter searches through all the 

strands of knowledge, assembles facts and deduces answers from them.

These considerations underlie the second dimension in the space of student modelling 

problems, the type of knowledge in the student model. There are, therefore, two types of 

knowledge: procedural and declarative. Procedural knowledge is further subdivided into 

two subcategories: flat and hierarchical. Hierarchical representations allow subgoaling, 

flat ones do not. Therefore, procedural knowledge may be represented as a hierarchical 

tree where as flat cannot.

1.3.3 Differences between Student and Expert

The Domain Expert Model is used for providing explanations of the correct way to solve 

a problem. The student model must keep track of the degree to which the student-user has 

equivalent knowledge. Because students will move gradually from their initial state of 

knowledge towards mastery, student models must be able to change from representing 

novices to representing experts. Most Intelligent Tutoring Systems use the same 

knowledge representation language for both the expert model and the student model. 

Conceptually, an Intelligent Tutoring System has one knowledge base to represent the
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expert and one to represent the student. Nevertheless, the student model is generally 

represented as the expert model plus a collection of differences [Wilkins, Clancey and 

Buchanan, 1988]. There are basically two kinds of differences: missing conceptions and 

misconceptions. A missing conception is an item of knowledge that the expert has and the 

student does not. A misconception is an item of erroneous knowledge that the student has.

Conceptually, the student model is a proper subset of the expert model along with a list 

of student misconceptions. Such student models are called Overlay models. With overlay 

models, a student model consists of the expert model plus a list of items that are missing. 

Weights on each element in the expert knowledge base are also introduced [VanLehn, 

1988].

To model misconceptions an Intelligent Tutoring System employs a library of predefined 

misconceptions and missing conceptions known as the Bugs Library. In this case, the 

student model consists of an overlay model plus a list of bugs. Such a system performs 

student diagnosis by finding bugs from the library that, when added to the overlay model, 

yield a student model that fits the student performance. An alternative to the bug library 

approach is to construct bugs from a library of bug parts. Bugs are constructed during 

diagnosis rather than being predefined [VanLehn, 1988].

1.3.4 Diagnostic Techniques

Figure 1.8 shows how the nine diagnostic techniques that have been used in existing 

Intelligent Tutoring Systems align with the student model knowledge and, in specific, with 

the three kinds of information described above, namely, bandwidth, target knowledge type 

and difference between student and expert.
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Figure 1.8: Student Diagnostic techniques 

Model Tracing

The model tracing technique assumes that all of the student’s mental states are available 

to the diagnostic program. The basic idea is to use an undetermined interpreter for 

modelling problem solving [Corbett, Anderson and Patterson, 1990]. At each step in 

problem solving, the undetermined interpreter may suggest a whole set of rules to be 

applied next, whereas a deterministic interpreter can only suggest a single rule. The 

diagnostic program Hres all these suggested rules, obtaining a set of possible next states. 

One of these should correspond to the state generated by the student If so then is 

reasonably certain that the student used the corresponding rule to generate the next mental 

state and so must know that rule. The student model is updated accordingly. The term 

Model Tracing comes from the fact that the diagnostic program merely traces the 

execution of the model and compares it to the student’s activity.
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Path Finding

If the bandwidth is not high enough to warrant the assumption that the student has applied 

just one mental rule, then model tracing is inapplicable. However, it is feasible to put a 

path-finding algorithm in front of the model-tracing algorithm. Given two consecutive 

states, like the current state and the goal state, it finds a path, or a chain of rule 

applications, that takes the first state into the second state. The path is then given to a 

model tracing algorithm, which treats it as a faithful rendition of the student’s mental state 

sequence.

Condition Induction

In contrast, model tracing assumes that two consecutive states in the student’s problem 

solving can be connected by a rule in its model. This puts strong demands on the 

completeness of the model. Bug part libraries are used as the basis for student modelling 

with Condition Induction. Given two consecutive states, the system constructs a rule that 

converts one state to the other. This technique requires two complete libraries: a library 

of operators that converts one state to the other, and a library of predicates. An operator 

would be the action part of a rule and a logical combination of predicates the condition 

part of a rule. A student’s record of past problem solving is consulted in building the rule. 

This technique requires a lot more data than the techniques covered so far would require 

in order to help the diagnosis program update the student model. For this reason a bug 

parts library which includes a larger number of hypotheses serves as the basis for this 

diagnostic technique.

Flan Recognition

Path finding followed by model tracing with or without rule induction, can theoretically
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diagnose everything. However, when the paths between two states are long, reliable 

diagnosis may become infeasible. Plan recognition is a diagnostic technique that, like path 

finding, may be used as a front end to model tracing. However, plan recognition requires 

that the target knowledge type is procedural hierarchical and all of the student’s mental 

states in the student’s problem solving are available to the diagnostic program. For 

example, in the case of the goal being to win a game of chess, the tree is the plan and 

plan recognition is the process of inferring a plan tree when only its leaves are available. 

Assuming that Plan recognition can find a unique plan tree that spans the student’s 

actions, this can be regarded as the student’s mental state which can then serve as input 

to a model tracer, which updates the student model accordingly.

Issue tracing

This model tracing technique assumes that the knowledge in the student model is a fairly 

accurate psychological model of the knowledge employed by a student. If any coarse­

grained student model is available then issue tracing, a variant of model tracing, may be 

employed. Issue tracing works by analyzing a short episode of problem solving into a set 

of microskills or issues that have been employed during the episode. The analysis does 

not produce an account of what was the role of these issues in problem solving or how 

they interacted with each other but simply a list of these. Therefore a student model 

diagnosed by such a technique is not a detailed one but merely a list of issues that the 

student has used. The first step in issue tracing is to analyze the student’s move and the 

expert’s would-be move into issues. Each issue is then allocated two counters: used and 

missed. Used counters are incremented for all the issues in the student’s move. Missed 

counters are incremented for all the issues in the expert’s would-be move that are not in 

the student’s move. If the used counter is high and the missed counter is low, the student
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probably understands the current issue. If the missed counter is high and the used counter 

is low, then the student probably does not understand the issue. If both counters are zero, 

the issue has not come up yet. If both counters are high, the model is inadequate in some 

way. This situation in issue tracing is called tear (as in ‘rip’).

Expert Systems

The basic idea of the expert systems approach to student diagnosis is to provide diagnostic 

rules for all the situations that arise. Guidon [Clancey, 1987], for example, uses inference 

rules to diagnose a student model. This approach is much more complicated than issue 

tracing. Usually students have more than one missing conception or misconception. The 

techniques covered so far assume that at most one rule fires between consecutive mental 

states, so each missing conception or misconception will show up in isolation as a buggy 

rule application. Because bugs appear in isolation, each bug can be accurately diagnosed 

even when there are several of them. Systems with less bandwidth use a less accurate 

description of missing conceptions and misconceptions, which allows them to model 

combinations of missing conceptions and misconceptions much more simply.

The next three techniques aim for more accurate diagnoses with bandwidths of mainly 

final mental states. The student models diagnosed with these techniques are based on bug 

libraries which contain not necessarily accurate bug descriptions. These techniques predict 

the sequence of intermediate states, and perhaps even the sequence of approximate mental 

states. Furthermore, the following three techniques aim at diagnosing multiple bugs by 

generating the symptoms of co-occurring bugs from the union of the symptoms these bugs 

display when in isolation.
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Decision Trees

The decision tree technique is an approach to bug compounding and analysis of the 

interaction between bugs. It first appeared in the BUGGY [Brown and VanLehn, 1980] 

diagnostic system, a system teaching arithmetic, where the bugs library was enlarged by 

forming all possible pairs of bugs. With BUGGY there were 55 bugs and bugs 

compounding generated 55  ̂ (= 3025) bug pairs. BUGGY preanalysed an arithmetic 

problem that students were given and formed a decision tree that indexed the bugs by the 

students’ answers to the problems. The top node of the tree corresponds to the first 

problem. BUGGY always generates problems in pairs. Answers from all possible 

diagnoses, either a bug or a bug pair, are collected. For each generated answer, a daughter 

node is created in the tree, labelled by an answer and linked to the root node. Associated 

with each node are the diagnoses that gave that answer. This tree-building operation is 

repeated for each of the daughter nodes, using the second problem. When BUGGY is 

finished a large tree has been built. Each diagnosis corresponds to a path from the root 

to some leaf of this decision tree where each leaf corresponds to exactly one diagnosis, 

provided the test problems are appropriately chosen. The decision tree is constructed 

before any interaction has taken place. Assuming the student makes no unintentional 

errors or slips, then his answers are used to steer BUGGY on a diagnosis path fi-om the 

top node to a leaf node, and hence a diagnosis that is appropriate.

Generate and Test

The generate and test diagnostic technique generates a set of diagnoses, finds the answers 

that each diagnosis predicts, tests those answers against the student’s answers, and keeps 

the ones that match best. Generate and test is coupled with domain specific heuristics. 

This technique has been used in DEBUGGY [Brown and VanLehn, 1980] that was
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designed to diagnose up to four or five multiple co-occurring bugs. Unlike BUGGY, it 

does not calculate the answers of co-occurring bugs in advance, but dynamically. It finds 

a small set of bugs that match some, but not necessarily all, of the student’s answers. It 

then forms pairs of these bugs and selects the ones that match the student’s answers. It 

then forms triples of these and selects those that match the student’s answers. The bug- 

compounding process occurs again and again until no further improvement in the match 

is found. The resulting tuple of bugs is the output of DEBUGGY’s diagnosis of the 

student.

Interactive Diagnosis

BUGGY and DEBUGGY work with a set of predefined problems, the student’s answers 

to it, and the corresponding remedial action. IDEBUGGY [Brown and VanLehn, 1980] 

is an Intelligent Tutoring System which can generate a problem whose answer will help 

the diagnosis most Given a set of diagnoses consistent with the student’s answers, it tries 

to construct a problem, an arithmetic operation, that will cause each diagnosis to generate 

a different answer. Interactive diagnosis, where the diagnosis algorithm drives the tutorial 

interaction, puts heavy demands on the speed of the diagnostic program. However, it 

yields highly accurate diagnoses with much less predefined problems.

1.4 THE TUTOR MODEL

The third key place for intelligence in an Intelligent Tutoring System is in the principles 

by which it tutors students and in the methods by which its applies these principles. 

Clearly, human tutors are instructionally effective only when they possess both kinds of 

intelligence: Domain knowledge, and effective Tutoring ability. Human tutors cannot tutor 

effectively in a domain in which they are not expert, and there are also inarticulate experts
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who make terrible instructors. Automated tutors can use many different instructional 

techniques, but tutorial interactions, however they are conducted, must exhibit three 

characteristics [Halff, 1988], [Woolf, 1991]:

[1]. A tutor must exercise some control over curriculum, that is, the selection and 

sequencing of material to be presented to the student and some control over 

instruction, that is the process of the actual presentation of that material to the 

student.

[2]. A tutor must be able to respond to student’s questions about the subject matter.

[3]. A tutor must be able to determine when students need help in the course of 

practising a skill and what sort of help is needed.

There are three inter-related cental issues that underline the development of any kind of 

Domain Tutor for an Intelligent Tutoring System: the nature of learnings the nature of 

teaching, and the nature of the subject matter [Lesgold, 1988] [Brown, Collins and 

Duguid, 1991]. Some Domain Tutors are primarily concerned with teaching factual 

(declarative) knowledge and inferential skills. These are the expository tutors. They teach 

students a body of factual knowledge and the skills needed to draw first-order inferences 

from that knowledge.

Other Domain Tutors are primarily concerned with teaching skills and procedures that 

have application outside the tutorial situation. These are the procedural tutors. Tutors of 

this kind are concerned with teaching the procedures that manipulate factual knowledge. 

As a result, procedure tutors function much more like coaches. They present examples to 

exhibit problem-solving skills, and they pose exercises for purposes of testing and
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practice.

1.4.1 Curriculum: Propaedeutics, Selection and Sequencing

Curricula in Intelligent Tutoring Systems serve several functions [Lesgold, 1988] [O’Neil, 

Slawson and Baker, 1991]:

[1]. A curriculum should divide the material to be learned into manageable units. 

These units should address at most a small number of instructional goals and 

should present material that will allow students to master them.

[2]. A curriculum should sequence the material in a way that conveys its structure to 

students.

[3]. A curriculum should ensure that the instructional goals presented in each unit are 

achievable.

[4]. Tutors should have mechanisms for evaluating the student reaction to instruction 

on a moment-to-moment basis and for reformulating the curriculum.

The problem of curriculum can be broken down into two problems [Halff, 1988]: 

formulating a representation of the material in the Domain Expert, and selecting and 

sequencing concepts from that representation. In addition, Halff [1988] argues that a 

Domain Tutor must also incorporate some form of propaedeutics, that is knowledge which 

is needed to enable learning but not for achieving proficient performance.

Propaedeutics

There have been tutoring systems where a knowledge representation was suited for 

instruction but not to a skilled performance [Leinhardt and Greeno, 1991]. With such
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propaedeutic representations which serve to support performance up to an intermediate 

level, there is an underlying assumption that skilled performance will be achieved only 

with practice. Propaedeutic representations have two characteristics: first, they make 

explicit the functional basis of the procedures used in exercising the skills, and second, 

they are manageable with the limited cognitive resources that are made available to 

students. As a result, they serve, firstly, to relate theory to practice, secondly, to justify, 

explain, and test possible problem solutions, thirdly, as a stepping-stone to more efficient 

problem- solving strategies and, fourthly, as strategies for management of the working 

memory during intermediate stages of learning.

Selection and sequencing

The differences between expository and procedure tutors are evident in the problems 

associated with selecting and sequencing material to the student. Procedural tutors need 

to establish the ordering of the subskills of the target skill and the selection of exercises 

and examples to reflect that order. With expository tutors, the problems are, in addition, 

those of maintaining focus and coherence and of covering the subject matter in an order 

that supports later retrieval of the concepts being taught [Halff, 1988].

Curricula and topic selection in expository tutors must deal with two sources of 

constraints. One set of constraints arises from the subject matter: topics must be selected 

to maintain coherence and to convey the structure of the material being taught. A second 

set of constraints comes from the tutoring context Selection of some topic or fact for 

discussion must reflect the student’s reaction to previous tutoring events.

In either case, the methods used to construct curricula must reflect the structure of the
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material [Halff, 1988]. Procedural skills are nearly always taught by exercise and example. 

In these cases, the major curricular issue is that of choosing the correct sequence of 

exercises and examples. Ideally, the choice of exercises and examples should be dictated 

by a model of learning but in practice the lack of a precise computational learning theory 

makes this impossible.

1.4.2 Instruction: Presentation Methods, Answering Questions, Tutorial Intervention

The tutor may use different methods to deliver a curriculum. These methods cover initial 

presentation of the material, ways of responding to students’ questions and the conditions 

and content of tutorial intervention [O’Neil, Slawson and Baker, 1991].

Presentation Methods

The methods used to present material depend on the subject matter and the instructional 

objectives of the Intelligent Tutoring System. Expository tutors mainly use dialogue as the 

form of communication whereas procedural tutors use examples and coached exercises to 

develop those skills. With tutorial dialogues, teaching facts and concepts is accomplished 

by asking for or explaining the material. The decision to ask or tell is made on the basis 

of the importance of the material and the student’s knowledge thereof. Teaching of rules 

in tutorial sessions usually involves inducing the student to consider the relevant data and 

to formulate the rule. This can be achieved by presenting case data that makes the rule 

clear or by entrapment strategies that enable the student to eliminate incorrect versions of 

the rule.

Skills for deriving rules are taught as procedures. These procedures are broken down into 

their components (e.g. listing factors or generating cases to specification) and exercises
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and examples are provided that address each subskill. Instructional modelling, the use of 

worked examples or guided practice, is a prime vehicle for introducing students to 

procedures that they must learn. Essential to the success of modelling in Intelligent 

Tutoring Systems is the formulation and presentation of procedures for working the 

examples. These procedures must be based on the representations (including propaedeutic 

ones) that students need to acquire the target skills, and they must be presented to the 

student in a manner that shows how each step applies to the case being modelled.

Answering Questions

Effective answering of questions is related to the difficulty of natural language 

comprehension and generation which has been described as the Achilles’ Heel of any 

effort on Intelligent Tutoring Systems development.

Tutorial Intervention

Tutorial intervention is needed in order to maintain control of the tutorial situation to 

protect the student from inappropriate or incorrect learning, to keep the student fi’om 

exploring paths that are not instructionally useful, and to speed the course of instruction. 

This involves devising rules for deciding when or when not to intervene and formulating 

the content of the intervention. There are two major approaches to decisions about tutorial 

intervention.

First, model tracing which calls the tutor to intervene whenever a student strays from a 

known solution path. A tutor using this technique maintains a model of the student’s 

cognitive processing as the student moves through an instructional unit. This model aims 

to reflect the cognitive processes of a competent performer in the instructional setting. As
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the student progresses, the model traces that behaviour, attempting to match it to one of 

the paths that could be taken by the ideal student When the matching process fails, the 

tutor intervenes with advice that will return to a successful path.

Second, issue-based tutoring calls the tutor to intervene when the tutor can make a 

positive identiAcation of a particular occasion for intervention. It does not restrict its 

intervention just to remedial instruction. Furthermore, issue-based tutors can be more 

informative in the content of their intervention, since they can speak about the issue that 

caused the intervention. Issue-based tutors do not require perfect expert models to run 

with. While model-tracing tutors will intervene even when the student finds a ‘better’ or 

alternative approach than the expert model, issue-based tutors will remain silent in these 

circumstances. When a tutor decides to intervene it must also formulate the content of the 

intervention. There has been no uniform approach to the content of intervention among 

the few existing computer coaches. The obvious technique, to directly correct the problem 

that caused the intervention, is not in general used because informing the student of the 

low level actions needed to recover from a bad situation does not generally constitute a 

viable context for instruction. Goldstein [1982] suggests that naive users making an error 

must receive suggestions of a coarse nature whereas advanced students making the same 

error must receive more detailed advice.

1.5 USER INTERFACE

The interaction between students and Intelligent Tutoring Systems is inherently complex 

because the users of these systems are, by definition, working with concepts they do not 

understand well [Bonar, 1991]. Consequently, a well-designed interface can add 

considerably to the way in which the student will conceptualise the problem domain, as
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well as over the vocabulary the student will use to talk about the domain [O’Malley, 

1990]. Human interface techniques affect two aspects of Intelligent Tutoring Systems 

[Miller, 1988]. First, they determine how students interact with the Intelligent Tutoring 

System. A well-designed human interface allows the Intelligent Tutoring System to 

present instruction and feedback to students in a clear and direct way [Baker, 1990]. 

Similarly, it can provide students with a set of expressive techniques for stating problems 

and hypotheses to the Intelligent Tutoring System. Second, they determine how students 

interact with the domain that is being tutored, through either a simulation of the domain 

or direct connection to the domain itself. This interaction is generally tied closely to the 

tutorial component of the system so that actions in the domain are analyzed and acted 

upon.

A tutorial interface defines the way that students think about the concepts in which they 

are being taught. Human-computer interaction in such terms is not a mechanical exchange 

of actions, but a communication of concepts, a semantic process [Miller, 1988] in which 

the interface reflects the semantic nature of this interaction [Streitz, 1988]. The interface 

needs to embody an understanding of, and appreciation for, the goals and concepts that 

are important to users and in the domain being tutored. Consequently, it needs to embody 

an understanding of the user’s cognitive abilities and limitations, and the domain to which 

the interface serves as a portal. Therefore, the important issue is not the application area 

of the interface but the definition of the ways in which good interfaces can support people 

as they gradually acquire an understanding of a complex semantic domain.

Based on the overall structure and orientation of the interface to the user, that is the 

perceived relationship between the user and the domain addressed by the computer
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system, interfaces can be divided into two groups [Bonar, 1991]: interfaces that allow 

users to become direct participants in the domain, or interfaces where the users control 

the domain by instmcting an intermediary to carry out actions in the domain.

1.5.1 First-person interfaces

In first-person interfaces or direct manipulation interfaces, the user has a feeling of 

working directly with the domain. These interfaces allow users to carry out desired actions 

by manipulating objects. Such interfaces are designed so that the actions and objects 

relevant to the task and domain map directly to actions and objects in the interface. The 

underlying mechanism behind such systems are almost always iconSy which are small 

pictures on the screen which when selected by the user trigger some action. Icons 

represent data structures and procedures, and links between these objects specify how the 

procedures are to be applied on the data.

Although first-person interfaces appear to offer significant advantages to users, some 

aspects of the system’s functionality may not be self-evident to the inexperienced user. 

In such cases, the Intelligent Tutoring System may have to explain the different 

capabilities of the system to a user. Furthermore, the link between the semantics of the 

domain and the semantics of the interface may be fuzzy. The problem here is how much 

of the underlying application is conveyed through the model for the users to understand 

which parts of the system they can directly manipulate.

1.5.2 Second-person interfaces

With second-person interfaces, users interact with the domain by giving commands to a 

computerised intermediary, which then carries out the desired actions.
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Command languages^ typical second-person interfaces, are keyword-oriented interfaces 

in which a command consists of a string of words and sometimes special characters that, 

when processed by the system’s command interpreter, specify the action the user wants 

to carry out. With Menus, a list of options is shown to the user, who selects the desired 

option by striking a key. Menu-based systems stand between first-person and second- 

person interfaces: being presented with information and selecting some of this information 

is a characteristic of second-person interfaces, whereas the direct way in which the user 

can specify the information is characteristic of first-person interfaces.

With a natural language interface, the most popular user interface to an Intelligent 

Tutoring System, users communicate in a language they already know with an agent that 

can interpret their requests for action to be triggered. Human computer interaction in 

natural language is normally restricted to some form of stylised English. Full coverage is 

difficult because natural language interfaces are second-person interfaces in which the 

style of interaction is that of speaking to an intermediary who will carry out the requested 

actions. There have been many approaches in developing natural language interfaces: 

symbolic pattern matching, sub-languages, semantic grammars, context-free grammars, 

generative grammars, etc. [Miller, 1988].

1.5.3 Alternative interface technologies

Developmental changes in the hardware platform on which these interfaces are presented 

are relevant to the communication needs of tutoring systems and allow information to 

flow much more directly between the Intelligent Tutoring System and the student. These 

developments can contribute to the primary design goal of a good interface: to make the 

semantics of the domain evident and manipulable. Graphics technology, large and small

53



displays, videodisks, CD-ROMs, touch screens and digitising tablets, speech recognition 

and understanding, speech coding and synthesis have been used to bring together multiple 

colours, multiple windows, menus, icons, animations, two-dimensional and three- 

dimensional images, digitised information and images, pointing devices, finger sensing, 

voice processing, digitised and synthetic speech as part of the same Intelligent Tutoring 

System interface.

1.6 RESEARCH OBJECTIVES AND METHODS

This Chapter and most of Appendix A show that the vast majority of existing Intelligent 

Tutoring Systems have been developed as knowledge based systems. There have been 

many reasons why Knowledge Expert Based Systems seem to offer an ideal basis on 

which to build Intelligent Tutoring Systems, other than the obvious fact that they embody 

large amounts of expert knowledge! One advantage of these systems is the separation of 

the (usually) production rules in the knowledge base from the procedural interpreter that 

uses them. This allows access to modular pieces of knowledge, which are expressed 

declaratively and can often be understood independently. In addition, explanation facilities 

have been developed to justify the behaviour of some systems. These can trace the chains 

of inferences, thus offering explanations of both how the reasoning has led to the 

conclusions the system proposes and why the system needs certain pieces of information 

when it requests data from the user. A Knowledge Based Expert System with good 

explanation capabilities can none the less only justify its actions passively. To be able to 

present knowledge actively, it is acknowledged that an Intelligent Tutoring System must 

be endowed with the ability to select instructional material, to be sensitive to the student 

and to conduct an effective interaction.
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The research objective of the thesis is to investigate the nature of interaction of the three 

knowledge models (domain, student and tutoring Knowledge models) within a general 

architecture of an Intelligent Knowledge Based Tutoring System. This is achieved through 

an investigation of their interrelatedness and interconnectedness during the course of 

interaction.

The research method that has been followed is the traditional Empirical Information 

Systems research approach, the Laboratory Experiment, The purpose of a Laboratory 

Experiment is to improve the efficiency and effectiveness of the Intelligent Tutoring 

System in Practice and to examine the impact that system behaviour has on the individual 

in terms of its Architecture. The key feature of this research method is the identification 

of the precise relationships between variables in a designed laboratory situation, using 

quantitative analytical techniques in the hope of making generalisable statements 

applicable to real-life situations. The strength of this research is the isolation and control 

of a small number of variables which may then be studied intensively. The weaknesses 

of this research approach is the limited extent to which identified relationships exist in the 

real world due to over-simplification of the experimental situation and the isolation of 

such situations from most of the variables which are found in the real world.

1.7 THESIS OUTLINE

Chapter 1 has given an overview of the three knowledge models that make up the 

Intelligent Tutoring System and showed that the vast majority of existing Intelligent 

Tutoring Systems have been developed as Knowledge Based Systems. Consequently, the 

thesis will pursue its objective (i.e. the investigation into the interrelatedness and 

interconnectedness between the three knowledge models), by concentrating on existing
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Intelligent Knowledge Based Tutoring Systems.

Chapter 2 presents Wenger’s model of a didactic operation which provides the framework 

within which the interrelatedness and interconnectedness of the three knowledge models 

presented in Chapter 1 will be examined. This model does not explicitly state what the 

nature of interaction between the three components should be, but it does serve to explain 

the behaviour of an Intelligent Tutoring System that follows a full-scale didactic operation.

At this stage the thesis will suggest that to continue with the investigation, an evaluation 

that examines the relationship between such a system behaviour and the architecture for 

existing Knowledge Based Tutoring Systems is required. This would help uncover what 

the requirements for interrelatedness and interconnectedness between the three knowledge 

models should be in the context of the didactic operation. Chapter 3 introduces two 

existing Knowledge Based Tutoring Systems, PROUST and micro-SEARCH, that are used 

in the evaluation exercise that is discussed in Chapter 4.

The evaluation of PROUST and micro-SEARCH in Chapter 4 against Wenger’s Model 

of a didactic operation yields several requirements with respect to interrelatedness and 

interconnectedness between the three knowledge models. The evaluation also highlights 

a number of limitations of the knowledge based systems approach to developing a tutoring 

system with a full-scale didactic operation.

Chapter 5 proposes a hybrid model made up of Artificial Intelligence and Hypertext that 

seeks to overcome the limitations of existing Knowledge Based Tutoring Systems with 

respect to the requirements for the development of an Intelligent Tutoring Systems with
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a full-scale didactic operation.

Chapter 6 explains how to use the model derived in Chapter 5 to design a generic model 

of an Intelligent Tutoring System with a full-scale didactic operation. The model caters 

for the design of an open and scalable system that allows for a variety of system 

components, such as domain, student and tutoring knowledge, to be combined into a 

single model while allowing for additional knowledge models to be included at a later 

stage.
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CHAPTER 2: WENGER’S MODEL OF A DIDACTIC OPERATION

This Chapter presents Wenger’s [1988] model of a didactic operation which is used to 

provide a framework in which the architecture of an Intelligent Tutoring System and the 

interrelatedness and interconnectedness of the three knowledge models presented in 

Chapter 1 will be examined. The underlying idea behind this model is that all three forms 

of knowledge are organised around the model of the domain knowledge. The model of 

a didactic operation also assumes the existence of a pedagogical process model that 

provides some global coordination of the system’s didactic operation. According to 

Wenger’s model, the architecture of an Intelligent Tutoring System is as shown in Figure

2.1 below. The architecture is similar to that presented in Chapter 1 in Figure 1.2.

Diagnosis

Student Model

Communication Level

Pedagogical Control

Presentation Level

INTELLIGENT
TUTORING

SYSTEM

Didactics

Tutoring
Model

Expertise

Domain Model

Interface

Discourse
Model

Figure 2.1: Wenger’s [1988] Intelligent Tutoring Systems Architecture

The model assumes that the two process models in the lower half of Figure 2.1 do not 

directly take part in major pedagogical decisions. Instead, they support the tutoring
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process by making the representation of domain knowledge available. The domain expert 

knowledge process model can directly answer student questions or provide information 

to other models about the domain if and when they need it. To extract useful information 

from the domain knowledge representation, the domain expert knowledge process model 

applies reasoning processes. The interface process model translates the flow of information 

to and from the student-user.

The activities of the process models in the upper half of Figure 2.1 result in decisions that 

shape the course of instruction. Didactics refers to pedagogical activities intended to have 

a direct effect on the student, as opposed to diagnostic activities. The task of these 

activities is to create a pedagogical bridge between the tutoring model, the domain expert 

model and the student model. Strategies for dealing with this take the form of pedagogical 

plans that incorporate fixed sets of diagnostic expectations along with mechanisms for 

dealing with common student problems, like misconceptions. There are three classes of 

circumstances each with different implications for the respective roles of student diagnosis 

and the didactic operation. In opportunistic pedagogical strategies, the monitored activities 

provide a focus for both diagnostic and didactic activities but diagnosis is the driving 

force because it reveals opportunities for tutorial interventions. Pedagogical goals are 

associated with diagnostic units and their attainment is monitored by differential 

modelling. In plan-based pedagogical strategies, the main task of diagnosis is to monitor 

the implementation of teaching plans that embody pedagogical goals. These plans provide 

a focus for diagnostic activities with the consequence that differential modelling is 

performed in terms of plan failures so that revisions can be made.

The pedagogical module is responsible for optimising the interplay of diagnosis and

59



didactic operations thus providing for a coherent pedagogical strategy. According to 

Wenger, it is central to an Intelligent Tutoring System because it includes decision making 

about the degree of control exercised by the system, the choice of teaching strategy to 

apply, the selection of strategic contexts (i.e. opportunistic versus plan-based contexts) the 

interleaving of pedagogical episodes, the allocation of computational resources required 

by competing functions and the target level of operations (i.e. behavioural, epistemic or 

individual). All these decision making aspects conjecture the didactic operation which is 

the mechanism by which the pedagogical process model drives the interaction in order to 

attain its pedagogical goals.

2.1 THE MODEL OF A DIDACTIC OPERATION

Wenger [1988] defines a didactic operation to be a unit of decision in the tutoring process. 

It is more general than a didactic intervention, in that it does not necessarily correspond 

to actions visible to the student. A didactic operation has four characteristic aspects as 

shown in Figure 2.2: the plan of action that enacts a didactic operation, the strategic 

context in which the operation is triggered, the decision base, that provides constraints 

and resources for the construction of the operation, and the target level of the student 

model at which the operation is aimed.

2.1.1 Didactic Plan of Action

A framework for defining didactic operations is the concept of a plan, because it can be 

made general enough to encompass all situations: from the simple prestored interventions 

of current systems to the dynamic knowledge communication capabilities. A curriculum 

is a plan, nevertheless, the concept actually applies to most didactic activities. Even a 

local explanation, for instance, can be considered a plan since an explanation rarely
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Figure 2.2: Aspects of the Didactic Operation [Wenger, 1988]

consists of a single conceptual element. A non-trivial explanation is a plan, a kind of 

mini-curriculum, for leading the student along a local learning path.

In addition to generating an episode of actions or subgoals, a didactic operation can also 

generate explicit diagnostic expectations. Planning distinguishes situations in which the 

actual effects of operations in an episode can be predicted accurately, from those in which 

they cannot, and in which the execution of a plan requires some monitoring. Diagnostic 

expectations that articulate goals and possible outcomes can be both local, monitoring the 

unfolding of a plan, and global, building up a long-term context and creating continuity 

throughout the tutorial session. Most didactic operations in today’s Intelligent Tutoring 

Systems consist of a single basic action, such as presenting a piece of prestored text or 

submitting a selected problem.

61



2.1.2 Pedagogical Contexts: Opportunistic versus Plan-based

Instruction has goals which can be achieved either through intentional planning activities, 

by which one gains control over the environment, or through the recognition of 

opportunities presented by the environment’s resources. Goals are best achieved by an 

appropriate combination of both styles. Hence, in attaining teaching goals and in 

generating subgoals, opportunistic and plan-based approaches define a range of 

pedagogical styles that vary in the Intelligent Tutoring System’s control over the shape 

of the tutorial sequence. The degree of this control determines different triggering contexts 

for didactic operations and suggests different roles for diagnosis and didactics.

Opportunistic strategies take advantage of teaching opportunities that arise in the context 

of some activity or dialogue in which the student is engaged. If the environment is rich 

and structured enough, instructional goals may be eventually achieved, and the student’s 

activities or statements can provide a focus for diagnosis and hence for the content of 

tutorial interventions. If the strategic context is loose, teaching opportunities may be 

revealed by diagnostic information, and planning can be locally focused on these 

opportunities. As a consequence, the presentation of the material is driven by the student’s 

interaction with the environment. Nevertheless, the adoption of an opportunistic strategy 

does not necessarily imply that the student is given a greater amount of freedom.

Although the pedagogical expertise required for intelligent opportunistic interventions can 

be quite sophisticated, these strategies are suited to teaching in sitû  for problem-solving 

guidance or coaching in learning environments, especially if the tutored activities 

complement other kinds of teaching such as formal instruction. In such cases problem­

solving environment often contains an implicit plan or curriculum, in the form of a pool
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of activities or topics ordered or otherwise, that the interaction is expected to cover. 

However, opportunistic Intelligent Tutoring Systems have little control over how the 

organisation of instructional sessions communicates the subject matter to the student. This 

limits their adaptive monitoring of the student’s learning and their usefulness as a primary 

source of instruction.

In plan-based contexts, pedagogical goals predominate and their attainment is dynamically 

controlled by the Intelligent Tutoring System, which organises the activity and the 

interaction around them. Therefore, planning tends to be hierarchical. Although the 

structure of the environment and the student’s behaviour play a less central role, the 

student does not necessarily have less freedom.

A plan based context simply means that the tutor manipulates the sequences of 

experiences through which the student is expected to acquire the target expertise. Thus the 

Intelligent Tutoring System plans learning events, globally or locally, even when the 

student enjoys a great deal of freedom within this context, and this plan provides the focus 

for didactic and diagnostic activities. This also changes the function of diagnosis in a 

subtle way from triggering interventions to monitoring an unfolding plan. In those 

Intelligent Tutoring Systems where the order of topics is not predefined, diagnostic 

information is combined with local optimisation criteria to determine good exercises or 

issues to attack next.

Within a globally opportunistic strategy, the tutor can take control with local interventions 

that are strongly plan-based in order to get a focused point across to the student. Within 

a plan-based strategy, new goals can emerge in a completely opportunistic fashion, taking
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advantage of unexpected events. A complex interleaving of such embedded contexts with 

alternating opportunistic and plan-based strategies can result in a ‘Socratic’ dialogue 

similar to that which might be led by a human tutor. This suggests the need for an 

internal agenda  ̂which can keep track of active subgoals and emergent goals and provide 

a complex triggering context for didactic operations.

2.1.3 Decision Base: constraints and resources

Didactic operations must comply with a number of constraints  ̂ which ensure their 

effectiveness but which often imply the resolution of conflicts between various competing 

factors affecting decisions. Also didactic operations require resources as building materials 

and whose limitations are also an implicit source of constraints. In particular, the 

triggering context provides important constraints and resources by focusing didactic 

operations on recognised opportunities or prevailing plans.

There are three major sources of both constraints and limitations for Intelligent Tutoring 

Systems: didactic  ̂ domain  ̂ and diagnostic information, as shown in Figure 2.3, each 

corresponding to a knowledge model.

What Wenger calls the ‘Didactic Base’, that is the tutoring knowledge and process model, 

is a source of local tutoring tactics and global teaching strategies. Local tactics refers to 

situation-specific or domain-specific goals and plans that will be applied in the context 

of a didactic episode. Global strategies refers to domain-independent teaching strategies 

that are suitable for tutoring with the domain knowledge. An Intelligent Tutoring System’s 

teaching strategies, especially for material sequencing, provide good examples of didactic 

constraints in the form of pedagogical principles.
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Figure 2.3: Aspects of the Decision Base of the Didactic Operation [Wenger, 1988]

These constraints often interact with other requirements, competing and cooperating with 

them. Wenger’s model indicates that, at the global decision making level, domain- 

independent teaching strategies interact with the domain knowledge for material 

sequencing, with the representational syntax of the domain knowledge being a determining 

factor. The means-ends analysis of the student, that is the classification of the user as a 

learner (e.g. as a novice, advanced beginner, etc.) also influences the choice of strategy 

that is to be used and the level of detail. In the context of a didactic episode, when a 

teaching strategy is used to attain a teaching goal, it should also have access to the 

corresponding knowledge in the domain knowledge model. In addition, it should have 

access to the student overlay model in order to check for attained goals and missing 

concepts from goals that have been attempted.

What Wenger calls the ‘Domain Base’, that is the domain knowledge and process model,
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is a source to the tutoring knowledge process model for global domain material 

sequencing and for providing material for the content of local tutorial interventions, for 

example, explanations in problem-solving episodes. The organisation, structure and 

functionality of the domain knowledge is a source of constraints about the relative 

importance of topics and the functionality of the tutoring strategies.

Wenger’s model indicates that the domain knowledge model, when augmented with the 

two other knowledge and process models, is a source of domain information. At the global 

decision making level, the tutoring knowledge process model requires access to domain 

material, and the student knowledge process model performs means-ends analysis by 

differential modelling which involves comparing the student model with the domain expert 

model, perhaps with an overlay technique.

In the context of a didactic episode, the goals that the student-user has to attain, and the 

knowledge that the student already has acquired, relate to specific domain knowledge. The 

domain knowledge model is a source of information for any missing conceptions in the 

corresponding local student overlay model, for diagnosis of any student errors and for 

providing relevant remedial information. The domain knowledge will serve to provide the 

(correct) knowledge for diagnosing the student’s perception of the concept that a didactic 

episode is dedicated to, and of the domain as a whole. This perception needs to be 

determined and incorporated into the student model.

The Diagnostic Base, that is student knowledge and process knowledge, is a source for 

means-ends analysis of the student-user (classifying the student-user as a learner and thus 

infer/assume additional information about him) and for integration of domain knowledge
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and remediation of misconceptions in the student model. In the student model, domain 

expertise acquired by the student is represented in an overlay model which represents an 

orthogonal variability between knowledge of the student that has been inferred and 

represented in the student model and knowledge in the domain knowledge model.

At the global decision making level, the student knowledge process model performs a 

means-ends analysis by differential modelling which involves comparing the entire student 

knowledge model to the domain knowledge model. The relative strengths or weaknesses 

of the student as a result of differential modelling can then influence the flow of the 

tutorial interaction.

In a didactic episode, the student model is superimposed on the corresponding part of the 

domain knowledge model to obtain an indication of the level of mastery of the concept 

that the didactic episode is dedicated to. In addition, this overlay model provides a way 

of determining potential candidate areas for further pedagogical action. The student 

knowledge process model, having access to libraries of commonly observable deviations 

from the correct knowledge, and access to the correct knowledge in the corresponding part 

of the domain base, is able to diagnose such deviations in the student behaviour.

Once a didactic operation has been triggered, diagnosis can provide further constraints by 

revealing weak areas of the student’s knowledge by considering underlying 

misconceptions or missing conceptions. The first task of diagnosis is then to determine 

from the user input both which knowledge, correct or incorrect has been used by the 

student, and which relevant domain knowledge has been overlooked. This requires student 

diagnosis with access to missing or buggy rules about the knowledge domain, and also
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the knowledge used by the student to be compared to the relevant knowledge in the 

domain knowledge model.

With respect to tailored interventions, for instance explanations called by the student 

knowledge process model, the didactic operation must not only satisfy didactic principles 

but must also take diagnostic information into account so as to tailor their content and 

detail levels to individual students. This requires access to those teaching strategies that 

proved to be effective for the student. The value of diagnostic information as a resource 

is clearest in remedial situations, for instance, in an opportunistic context.

Therefore, in the context of a didactic episode the goals that the student-user has attained, 

and the best teaching strategy for the user, relate to specific tutoring knowledge. In 

addition, the knowledge which the student has already acquired, that which is missing 

from the student knowledge model or that which is a source of misconceptions also relates 

to specific domain knowledge.

2.1.4 Target Levels: Behavioural, Epistemic and Individual

The target level of a didactic operation is the level of the student model at which an 

operation seeks immediate modifications. The target level my be behavioural, epistemic 

or individual. Thus different target levels define different classes of instructional 

capabilities and strategies. Selecting the target level or levels to which an operation should 

be addressed is an important didactic decision.

At the behavioural level didactic interventions guide the performance of a task without 

addressing domain knowledge in any direct or organised fashion. Thus, they can be
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constructed dynamically even when only compiled knowledge (black box knowledge) is 

available. From this target level perspective, hints or pieces of advice are different from 

explanations, and corrections are different from remediation since they only address 

behaviour. Also simple demonstrations and traces of reasoning are restricted to exposing 

faulty behaviour in the domain without providing other forms of support to learning. 

Finally, situations only expose the behaviour of objects in the form of manipulations of 

the simulated environment. In such a case the didactic operation requires interpretation 

by the student in order to be converted into useful knowledge. The pedagogical 

assumption with this target level is that students will be able to acquire the correct 

expertise by being repeatedly exposed to problems. This involves conceptual 

understanding beyond that of the Intelligent Tutoring System.

Didactic operations targeted at the behavioural level capitalise on the fact that performing 

a task and being exposed to an environment constitute a valid learning context which 

provides students with raw material for actively forming their own conceptualisation of 

the domain. Student interpretation of difficulties and errors can be turned into a learning 

experience, if these difficulties and errors are properly resolved. Thus didactic operations 

targeted at the behavioural level support the acquisition of knowledge in sitû  provided the 

Intelligent Tutoring System is conducive to the types of interpretation that can warrant 

beliefs.

At the epistemic level, didactic operations explicitly seek to modify the student’s 

knowledge state, either via direct communication of domain knowledge or via practice, 

by organising specific experiences to expose the student to. At this level, explanations are 

central to dealing with the articulation of knowledge. Unlike behaviouraUy oriented
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interventions, explanations explicitly supply some of the interpretations of phenomena that 

serve as warranting processes for the student. At this level direct modifications in a 

knowledge state and within the different dimensions of variability between knowledge 

states are sought.

The dimensions of a knowledge state provide for a framework for a taxonomy of didactic 

primitives. For instance, a statement with some examples may be enough for presenting 

a new assimilable fact, whereas the correction of a misconception may require 

confrontation, corrective suggestions and explanations. Wenger argues that a student needs 

to be actively engaged in problem-solving in order to perceive problems. Consequently, 

his viewpoint can be determined by an iterative process of uncovering current limitations 

and discovering new problem-solving capabilities that demonstrate a new viewpoint’s 

conceptual superiority.

At the individual level, didactic operations deal with the management of the learning 

process. These management tasks deal with dimensions of the individual model that have 

an impact on learning: motivation, cognitive load, interpretation of the instructional 

context At this level, the purpose is not to communicate knowledge directly, but to 

maintain knowledge communication. The line between epistemic and individual levels of 

the student model is fuzzy. If individual dimensions and learning strategies become open 

to direct communication, they become knowledge that can be taught.

2.2 KNOWLEDGE PRESENTATION VERSUS KNOWLEDGE COMMUNICATION

The dividing line in Figure 2.1 distinguishes between two classes of Intelligent Tutoring 

Systems: knowledge communication systems, which require all the process models and
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knowledge in the diagram, and more passive systems, which require only those in the 

lower half, and which can be called knowledge presentation systems.

Although they entail a subset of the process models of knowledge communication 

systems, knowledge presentation systems implement a different less sophisticated 

pedagogical approach. By simply making knowledge available rather than actively 

communicating it, they leave most of the responsibility of managing the learning process 

to the student-user, who acts as his own tutor. He is expected to have enough 

understanding of the domain and of his learning needs to decide what to explore or to 

focus on next, as well as to interpret what is presented. A knowledge presentation system 

simulates knowledge about the domain under study, thus the student does not explore the 

domain but the knowledge about the domain.

Because of the emphasis on knowledge, it is advantageous to view knowledge presentation 

systems as a subset of knowledge communication systems. Knowledge presentation 

requires a model of communicable domain knowledge as an active communication but it 

does not have to assume involvement with the student’s knowledge states.

From an educational standpoint, an Artificial Intelligence-based learning environment is 

quite attractive. Such environments provide students with the freedom to explore and a 

sense of control as they investigate a domain within a simulative context geared toward 

both operational knowledge and articulate conceptualisation.

Even in the context of exploratory learning, augmenting the presentation level with active 

knowledge communication capabilities involving the modules of the upper half of Figure
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2.1 usually extends the benefits derived from the instructional use of computer tutors. The 

unobtrusive interventions of a coaching component can save the student from problems 

typical of unguided learning such as stagnating, floundering excessively, or overlooking 

learning opportunities.

As an Intelligent Tutoring System assumes a more active pedagogical role and takes some 

dynamic responsibility for the students learning, the nature of its internal model of 

expertise becomes crucial. This model provides the language in terms of which the 

Intelligent Tutoring System can assess needs in order to adapt its actions. Therefore, 

intelligence at the pedagogical level is not possible without intelligence at the domain, 

student and instructional level, and the requirements of knowledge communication are 

more stringent than those of presentation. This argues that fully operational and articulate 

process models of domain expertise are indispensable for constructing process models of 

communication functions. Bringing more intelligence into knowledge communication 

requires an understanding of the communication environment in which it takes place.

This Chapter presented Wenger’s model of a didactic operation which provides the 

framework in which the interrelatedness and interconnectedness of the three knowledge 

models will be examined. The model of didactic operations assumes the existence of a 

decision base comprising of the domain, student and tutoring knowledge models. 

Secondly, it assumes a, or a combination of three, target level for the didactic operation: 

behavioural, epistemic or individual. Thirdly, it assumes a pedagogical context for the 

application of the didactic operation (i.e. the context and the nature of the man-machine 

interaction). Finally, it assumes an explicit didactic plan of action which defines the flow 

of tutorial interaction.
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The model does not explicitly state what the nature of interaction between the three 

components should be. It only serves to explain the behaviour of an Intelligent Tutoring 

System that pursues a full-scale didactic operation. To continue the investigation, an 

evaluation that aims to examine the relationship between the system behaviour, as it is 

assumed by the didactic operation, and its architecture is required. This would help 

understand the nature of interaction, and unravel the requirements for interrelatedness and 

interconnectedness, between the three knowledge models in the context of the didactic 

operation. This calls for a study of existing knowledge based tutoring systems in which 

the relationship between their behaviour and architecture with respect to the didactic 

operation is examined.
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CHAPTER 3: KNOWLEDGE BASED TUTORING SYSTEMS: 

PROUST AND micro-SEARCH

This Chapter introduces two Knowledge Based Tutoring Systems, PROUST and micro- 

SEARCH, that will be used for the evaluation exercise in Chapter 4. The Chapter gives 

a detailed account of their architecture and resulting functionality. There are four reasons 

why these two systems have been selected for the evaluation exercise. First, they have 

been labelled by the Intelligent Tutoring Systems community as representative of 

Knowledge Based Tutoring Systems [Wenger, 1988]. Second, they are two of the few that 

have been used in real environments. Third, they are available to the wider audience. 

Fourth, they are well documented. The remainder of this chapter discusses the architecture 

and functionality of each of these systems.

3.1 PROUST: AN AUTOMATIC DEBUGGER FOR PASCAL PROGRAMS

PROUST [Johnson and Soloway, 1985] [Johnson and Soloway, 1987] is a knowledge- 

based tutoring system for Pascal Programs Analysis. PROUST looks for both syntactic 

and semantic bugs in PASCAL programs written by beginner programmers. Whenever 

students attempt to compile a program, and the program compiles successfully, PROUST 

is automatically invoked to analyse the program. Any bugs that are present in the program 

are reported by PROUST to the student.

PROUST is not confined to some narrow class of bugs, but is designed to find every bug 

in most novice programs. When students are assigned moderately complex programming 

problems, PROUST is capable of identifying correctly all the bugs in over 70% of the 

programs that students write. When PROUST finds a bug, it does not simply point to the
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lines of code which are wrong, it also determines how the bug could be corrected. It even 

suggests why the bug arose in the program in the first place. PROUST came out of the 

MENO Project [Woolf and McDonald, 1984] which was an attempt to built an Intelligent 

Tutor for novice Pascal programmers which would assign programming exercises to 

students, read over their work, and give them helpful suggestions. However, the objective 

with PROUST is to reconstruct a plausible program-design process so as to provide a 

problem-specific context for the recognition and discussion of bugs rather than explaining 

the origins of misconceptions in programming knowledge with a generative theory of 

bugs.

The argument Woolf and McDonald put forward for developing PROUST was that 

diagnostic methods that look for bugs in computer programs by merely inspecting the 

code cannot cope with a wide variety of problems. Such methods fail to recognise that 

nonsyntactic bugs, e.g. semantic bugs, are not an intrinsic property of the fault program, 

but reside in the relation between the programmer’s intentions and their realisation in the 

code. This makes code inspection insufficient and even plan-recognition techniques, when 

used in isolation, can be easily thrown off by faulty code and by complex interactions 

between various goals and between different plans that implement them. PROUST, 

therefore, deals directly with the variability of bugs in novice programs, variability both 

in the students’ designs and in their bugs. Some bugs are accidental omissions, which 

might be easily recognised and corrected while others result from failures to reason 

through the interactions between program components. Each piece of a program in 

isolation may appear correct but, when combined, the program does not work. Still other 

bugs result from misconceptions about programming. In such a case, the code may appear 

correct to the programmer, but it doesn’t do what the student expects, for reasons the
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student does not understand. Bugs resulting from misconceptions are the most serious and 

students stand to benefit the most from having such problems pointed out to them.

PROUST attempts to figure out how a program is supposed to work, along with what the 

program does, via information about the programming problem and knowledge about how 

to write programs. The system set out to identify the programmer’s intentions, and this 

is worth the effort because knowledge of intentions makes it possible to identify more 

bugs as well as understand their causes. Novice programmers need help in identifying 

bugs, whether these are syntax bugs or semantic bugs, but especially the latter type which 

can cause the programs to fail after unusual inputs, result in a run-time error, or can yield 

the wrong output, often in paths which the student is unlikely to test [Angelides and 

Doukidis, 1990].

3.1.1 PROUST’S Approach to Debugging

PROUST was written in T, a Lisp dialect The original full system contains 15,000 lines 

of Lisp code and would normally run on a VAX 750. Micro-PROUST, an IBM PC 

version, was written in Golden Hill Common Lisp. Micro-PROUST is a stripped down 

version and as such there is a variety of tricky bugs which PROUST can identify but 

Micro-PROUST cannot.

PROUST’s analysis of programs is based upon knowledge about the programming 

problem that the students are working on. The students may solve the programming 

problem in a variety of ways, and their programs may have a variety of bugs, but they 

have one thing in common: they are all trying to solve the same problem. Knowledge 

about the programming problem makes the variability of program solutions more
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manageable. It also provides some information about the programmers intentions.

In order to provide PROUST with descriptions of the programming problem, the PROUST 

authors devised a problem-description language with which one can describe a 

programming problem, and provided PROUST with a library of programming problem 

descriptions. Each problem description is a paraphrase, in PROUST’s problem description 

language, of the English Language problem statement that PROUST’s authors assign to 

the students. The rainfall problem in the Figure 3.1 below is an example of a 

programming assignment that PROUST deals with.

Original Problem statement
Noah needs to keep track of rainfall In the New Haven In order to determine 
when to launch his ark. Write a Pascal program that will help him to do this.
The program should prompt the user to Input numbers from the terminal; each 
Input stands for the amount of rainfall In New Haven for one day. Note: since 
rainfall cannot be negative, the program should reject negative Input. Your 
program should compute the following statistics from this data:

1. the average rainfall per day;
2. the number of rainy days;
3. the number of valid Inputs (excluding any Invalid data that might have been read in);
4. the maximum amount of rain that fell on any one day.

The program should read data until the user types 99999; this Is a sentinel 
value signaling the end of Input. Do not Included the 99999 In the calculations.
Assume that If the Input value Is non-negative and not equal to 99999, then It 
Is valid Input data.
Problem statement as Input to PROUST (slightly simplified for readability)
Objects: ? Daily Rain Is of the class “scalar measurement"
Goals: Sentinel-controlled Input sequence (?DallyRaln, 99999)

Loop Input validation (?DallyRaln, ?DallyRaln < 0)
Output (Average (7DallyRaln))
Output (Count (?DallyRaln))
Output (Guarded count (?DallyRaln))
Output (Maximum (?DallyRaln))

Figure 3.1: A programming assignment for PROUST [Johnson and Soloway, 1985]

Included in Figure 3.1 is the formal description of the problem given to PROUST as input 

along with the student program to be analysed. PROUST would then search in its library 

of programming problem descriptions for the most plausible interpretation of the program 

with respect to the problem specifications. PROUST needs to infer a plausible design
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process that reproduces the programmer’s intentions in an analysis by synthesis theme. 

The method combines reconstruction of intentions with detection of bugs, because bugs 

can lead to misinterpretations of intentions, and intentions are necessary to distinguish 

bugs from unusual but correct code!

Knowledge of the problem that the students are working on helps to provide an 

understanding of the students’ programs. Nevertheless, this is only a description of what 

the program should do, not how it should do it. Solutions to a given programming 

problem may be implemented in a variety of different ways. PROUST therefore accesses 

knowledge about programming so that it can understand how each student designed and 

implemented his solution. Once it understands the programmer’s intentions, it can then 

use knowledge about common bugs in order to identify the bugs in the student’s program.

The method which PROUST uses for analysing programs is synthesis. When PROUST 

examines a program, it looks up the corresponding problem description in its problem 

description library. Using its knowledge about how to write programs, it makes hypotheses 

about the methods which the programmer may use for satisfying each requirement in the 

problem description. Each hypothesis is a possible correct implementation of the 

corresponding requirement. If one of these hypotheses fits the student’s code, then 

PROUST infers that the requirement is implemented correctly. If PROUST’s hypotheses 

do not fit the program, then PROUST checks its database of common bugs, to see if they 

can explain the discrepancies.

PROUST’s intention-based program analysis is a comparison of intended functions and 

structures to actual ones. PROUST’s diagnosis approach distinguishes between three
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levels: problem specifications give rise to an agenda of goals and subgoals, which in turn 

lead to the selection of plans, which are finally implemented as code. The exact set of 

intentions underlying a program is usually not available as data, but must be reconstructed 

on the basis of evidence provided by the problem specifications given to the programmer 

and by the program proposed as a solution.

3.1.2 PROUST’S Problem Description

PROUST’s problem descriptions describe the principal requirements which must be 

satisfied: the programming goals. Problem descriptors also describe the data which the 

program must manipulate: objects. Assume the following classic PROUST problem 

[Johnson and Soloway, 1985], known as the averaging problem:

Write a program which reads in a sequence of positive numbers, 
stopping when 99999 is read. Compute the average of these 
numbers. Do not inciude the 99999 in the average. Be sure to 
reject any input which is not positive.

The first step in translating an English Language problem statement into PROUST’s 

problem description language is to make explicit the various goals which were mentioned 

in the problem statement. Solutions to the problem operate on a sequence of input data, 

called NEW. The following goals can be extracted from the problem statement:

1. Read successive values of NEW stopping when a sentinel value, 99999, is read.

2. Make sure that the condition NEW <= 0 is never true.

3. Compute the average of NEW.

4. Output the average of NEW.

These goals must now be translated to a problem description for PROUST. Each data
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object that the goals refers to, is named and declared. Each goal extracted from the 

problem statement is recorded in the problem description. The resulting problem 

description is given below:

((Define-Program Average)
(Define-Object ?New)
(Define-Object ?Sentinel Value 99999)
(Deflne-Goal (Sentinel-Controi-input ?New ?SentlneI)) 
(Deflne-Goal (Input-Valldatlon ?New (<= ?New 0))) 
(Deflne-Goal (Output (Average ?New))))

The problem description is in list notation, where every statement and expression is 

enclosed in parentheses. The name of the program is denoted by Define-Program. Objects 

are denoted by Define-Object followed by the name of the object preceded by ?. Object 

names followed by a value are constants. With the description language of PROUST 

objects can have a variety of properties associated with them. Finally, goals are denoted 

by Define-Goal followed by a name of a type of goal and the list of its arguments. 

Arguments to goal expressions can take a variety of forms. They can be objects, 

predicates or even other goal expressions.

3,1.3 PROUST’s Programming Knowledge

PROUST analyses Pascal programs using an analysis by synthesis approach. It examines 

the program requirements listed in the problem description, suggests methods for 

implementing these requirements and then compares each possible method against the 

method that the student actually uses. In order to suggest the possible methods PROUST 

uses its own programming knowledge.

PROUST relies on a detailed knowledge base that provides information about the types 

of programs which is expected to encounter. The knowledge base is not an attempt to
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reproduce the design process that novices follow. It combines expert knowledge about 

programming with knowledge about programming errors.

Programming knowledge in PROUST’s knowledge base is frame-based (see Figure 3.2) 

and each frame represents either a goal or a plan. Goals are problem requirements that 

appear in problem descriptions. These represent problem specifications and the ways in 

which they can be implemented or reformulated, implicit goals and objects that have to 

be inferred and can sometimes be omitted in the problem statement along with heuristic 

rules that can detect goal interactions and generate new goal expectations in connection 

with certain errors. Plans are stereotypical methods for implementing goals. These 

implementation lists are indexed by the goals they achieve and they also include 

information about incorrect applications of plans along with some buggy plans. 

PROUST’s authors argue that a major part of the process of writing programs consists of 

identifying goals which must be satisfied and selecting plans which implement these goals. 

PROUST retrieves plans from its knowledge base for each goal referred to in the problem 

description. It compares these plans against the student’s program to determine which fits 

the program best. Code consists of two types of rules to deal with plan differences: 

transformation rules which check for equivalence between two versions of a piece of code 

and bug rules that explain mismatches by hypothesising a bug of a known type.

Figure 3.2 is an extract of a goal from PROUST’s Knowledge Base which is frame-based 

[Minsky, 1986]. The Instances slot lists the various plans in PROUST’s knowledge base 

for implementing this goal. The filler of this slot is a list of five plan names. The 

InstanceOf slot indicates the class to which the goal belongs which in Read&Process and 

involves reading a sequence of values and then processing them.
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(Goal-Definition Sentinel-Controlied-input

InstanceOf Read&Process
Form (Sentlnel-Controlled-lnput 7New 7ST0P)
MalnSegment MainLoop:
MainVarlable New
MainPhrase "sentinel-controlled loop"
OuterControiPian T
Instances (Sentinel-Process-Read-While

Sentinel-Read-Process-W hlle
Sentinel-Read-Process-Repeat
Sentinel-Process-Read-Repeat
Bogus-Counter-Controlled-Loop))

Figure 3.2: A goal from PROUST’s [Johnson and Soloway, 1987] Knowledge Base

Figure 3.3 is an extract of a plan firom PROUST’s Knowledge base. This is one of the 

instances of the Sentinel-Controlled-Input goal. The Template slot describes the form of 

the Pascal implementation of this plan. It consists of Pascal statements, subgoals and 

labels written in Lisp notation, rather than ordinary Pascal Syntax. Symbols preceded by 

question marks are pattern variables which are substituted when the plan is used. T  is a 

wildcard pattern. Subgoals are indicated by (SUBGOAL ... ) forms in the template which 

in turn must be implemented using other plans.

With this knowledge, PROUST tries to construct an interpretation for the program to be 

analysed. Starting with a goal agenda derived from the problem specifications, PROUST 

selects successive goals for analysis and after performing any applicable reformulation or 

decomposition in terms of other goals, searches for corresponding implementations for 

which there is evidence in the code. Hypothesised plans are then evaluated according to
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(Plan-Definition Sentinel-Process-Read-W hlle

Constants (Stop)
Variables (New)
Template ((SUBGOAL (Input ?New))

(WHILE (<> 7New 7Stop)
(BEGIN

7*
(SUBGOAL (Input 7New))))))

Figure 3.3: A plan from PROUST’s [Johnson and Soloway, 1987] Knowledge Base

how well they match the code and how well they fit in the context of the overall 

interpretation. Transformation and bugs rules are then applied on the code. Competing 

hypotheses are compared to one another to examine how much code they can explain and 

how bad the students misconceptions are.

3.1.4 PROUST’s Matching Plans

Before any analysis of plans and goals takes place, PROUST parses the student’s Pascal 

program to a parse tree. All subsequent analysis of the student’s Pascal program is then 

performed on the parse tree, rather than on the original program. When PROUST analyses 

a Pascal program, it selects goals from the problem description, one-by-one. Then, for 

each and every goal, PROUST substitutes into the goal expression any objects whose 

values are known and retrieves from its programming knowledge base the plans which 

could be used to implement the goal. PROUST then hypothesises a plan (initially the first
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on the list of plans) that the program might use to implement the goal, and then matches 

this plan against the program. PROUST would then substitute in the selected plan any 

objects whose values are known. The values for those objects which remain unchanged 

will be determined during the matching process.

Figure 3.4 shows a successful match, because the plan has been implemented correctly. 

When PROUST tries to match SUBGOALs of the plan, these are treated as goals. In order 

to match them against the program, PROUST must go through the same plan selection 

process as with the main goal. The different plans and subplans for each goal implement 

a variety of different ways of implementing each goal.

Student’s  program:

Writein (’Enter value:’);
Read (Val); ---------
WHILE Val <> 99999 DO 

BEGINS-----------------
WHILE Val <= 0 DO 

BEGIN
Writein ( Invalid entry, reenter’);
Read (Val);

END;
Sum := Sum + Val;
Count := Count +1 ;
Writein ( Enter value:’);
Read (Val); READ PLAN

END;

(Read Val)

READ PLAN 

(Read Val)

?New = Val

SENTINEL PROCESS-READ-WHILE

(SUBGOAL (Input ?New))
(WHILE ( o  7New 99999)
 (BEGIN

?*
(SUBGOAL (Input 7New)))))

7New = Val

Figure 3.4: Matching a plan against a student program [Johnson and Soloway, 1987]

After PROUST has converged on one interpretation, it evaluates its reliability by 

measuring how fully it accounts for elements of the code and the specifications by 

detecting any flaws. It may discard parts of its analysis and thus warn the student about
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the completeness of its interpretation. Then it sorts bugs to be reported, trying to group 

them so that it can point to common underlying misconceptions.

3.1.5 PROUST’s Bugs Identification

When there are no match errors, PROUST assumes that there are no bugs in that 

particular plan. If, however, none of the plans which PROUST selects matches the student 

code, then PROUST looks for bugs which account for the mismatches in one of the plans. 

When such a plan difference is encountered, that is a difference between the expected 

plan and the code, PROUST interprets these as bugs.

Plan differences are explained by means of bug rules. Each rule has a test part, which 

examines the plan differences to see whether or not the selected bug rule is applicable and 

a test part which explains the plan difference. Given below is an example of a bug rule:

(Define-Rule WHILE-foNF 
Statement-Type IF 
Error-Pattern (IF. WHILE)
Bug (WHILE-for-IF-Concluslon

(FoundStmt, *MRet*) 
(Hlstlnst ; *HlstoryNode*)))

The rule is in slot-and-filler notation. In bug rules, one set of slots constitutes the test part 

of the rule whereas another set constitutes the action part In this case, the Statement-Type 

and Error-Pattem slots are the test part and the Bug slot the action part. The Statement- 

Type slot indicates that the plan component that fails to match the program is an IF 

statement. The Error-Pattem slot indicates that a WHILE statement is found where an IF 

statement should be expected. The action slot, which is a description of the bug associated 

with the plan difference, is a WHILE-for-IF confusion. When PROUST presents its 

findings to the student, it takes each bug description and generates an English Language
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translation for it, and may also generate data illustrating the presence of bugs. Figure 3.5 

shows an example of a program report by PROUST.

PROUST: Now reporting MINOR bug in the SETUP part of your program: The
initialisation at line 7 appears to be unnecessary . The statem ent in question is:

RAIN :=0
(To continue, please p ress  carriage return)

PROUST: Now reporting CRITICAL bug in the CONTROL part of your program:
You used a while statem ent at line 19 where you should have used  an IF. 
WHILE and IF are not equivalent in this context; using WHILE in place of IF 
results in an infinite loop. The statem ent in question is:

WHILE RAIN <> 99999 DO ...

(To continue, please p ress  carriage return)

Figure 3.5: A Bug report generated by PROUST [Johnson and Soloway, 1987]

When PROUST fails to understand a program completely, its ability to recognise bugs 

deteriorates. In those cases where PROUST analysed partially buggy code, it deleted from 

its bug descriptions those bugs analyses which were questionable. The remaining 

descriptions were mainly incorrect.

3.2 Micro-SEARCH: A SHELL FOR BUH.DING SYSTEMS TO HELP STUDENTS 

SOLVE NON-DETERMINISTIC TASKS

Sleeman [1987] claims that students of mathematics and science in general react poorly 

to tasks that involve the application of non-deterministic algorithms, that is algorithms in 

which they are required to make arbitrary choices. He reports several reasons that account 

for this: the student’s world views of subjects appear to be small, students expect all tasks
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to be solvable by well-defined algorithms, their teaching does not prepare them for this 

kind of algorithms since rarely there is discussion about search, for instance, 

transformation of algebraic and trigonometric forms and proofs in geometry.

3.2.1 Non-Deterministic Algorithms

Figure 3.6 shows a search tree for transforming a trigonometric expression into two 

alternative forms and Figure 3.7 shows the paths by which an algebraic expression is 

transformed into two alternative forms.

tan X

sin X
cot Xc o sx

cot X

cot^x +1
sin X . cos X

sin X . cos X

sin X . cos X

1 sin 2x

Transformation of tan x into both 1_sin 2x and cot x
(1 +tan2x) ^ (c o f  X +1)

Figure 3.6: An example of a trigonometric transformation

The two figures show that there is no one correct transformation to be applied at any 

stage. The diagrams pictured in the two figures are examples of search trees. The 

procedure for searching through these trees is non-deterministic because at any one stage, 

it may not be possible to decide uniquely on a single operator to apply. In such cases, the 

algorithm makes an arbitrary choice of operator, and only after exploring the path is it
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x y  (X + y)

X +

x + y

Transformation of (x^y + y 2%) Into x + y and ()? y + y^x^

Figure 3.7: An example of an algebraic transformation

clear whether the earlier choice was correct. Exploring such trees frequently entails 

backtracking.

Typical of any transformation, the user is given the initial state, the goal (or goal state) 

and explicitly or implicitly a set of transformations. Thus, while at the initial node, the 

person solving the task can know that out of the complete set of transformations only 

certain transformations are applicable, but would not know which, if any, would lead to 

the goal. So a strategy to solve such tasks is to apply each of the transformations in turn 

and after each node in the search tree has been expanded, to check to see if the goal has 

been achieved. If the goal has not been achieved the tree is expanded further. There are 

several ways of creating or traversing a possible solution tree. When a node results in a 

failure, no further expansion is made on the branch of the tree, and the next node is 

expanded. If there are no more nodes to expand, then the search fails, that is the goal is
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not attainable.

There are two well-known methods for searching through trees: depth-first and breadth- 

first. What was described above is known as breadth-first searching. Depth-first searching 

explores completely one path before considering another.

3.2.2 Teaching Non-Deterministic Algorithms

Sleeman [1987] argues that students are not taught that non-deterministic algorithms are 

a legitimate search strategy. Furthermore, the teacher frequently states the next 

transformation to be applied without explaining why this is so, thus giving students little 

guidance as to how to solve such tasks. He then suggests that students should be explicitly 

asked, first, to state all the transformations they consider to be appropriate to the task and, 

second, to systematically explore the complete solution space, by drawing trees like the 

ones in Figures 3.6 and 3.7. Nevertheless, a major problem is the potential size of the 

search tree.

3.2.3 Problem-Solving Monitors

Problem-Solving Monitors (PSM) or Coaches (PSC) [Sleeman, 1987] are Intelligent 

Tutoring Systems that support students* activities when they explore search spaces. These 

systems ensure that the search space is explored systematically and can provide certain 

support facilities. In 1975 Sleeman, much influenced by his background as a chemist, 

implemented the first of a series of such systems to assist students with the interpretation 

of simple nuclear magnetic resonance spectra. Students were provided with a molecular 

formula and a spectrum, and were required to produce the molecular structure.
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Sleeman’s system was able to accept input in three different forms: a solution to the next 

step of the task in the form of an assertion, for instance, the composition of the next 

chemical group and the corresponding peak in the spectrum, a request for help that would 

result in a list of possible next assertions for the user to choose from, and a request for 

an explanation which would be of great use after an incorrect assertion was made by the 

student.

When the input by the student is an assertion, the system checks to see if it is 

syntactically correct and used only resources remaining. For instance, an assertion that 

tried to use a peak not remaining in the spectrum was rejected. Transformations that 

passed these tests corresponded to feasible transformations. If the student input was a first 

request for help, the system listed all the next transformations possible from a particular 

node of the solution tree. On the second request for help, the system indicated what it 

calculated to be the best next move or it indicated that the goal was either simply not 

attainable through the current path or it could not be met in a reasonable number of 

moves. Solution paths whose lengths were greater than the best solution path by a certain 

path length were rejected. Finally, if the student input was a request for explanation, 

which was only made available after an incorrect assertion, the system demonstrated that 

the goal would not be accessible if the rejected goal was accepted. To do this, the system 

reported the whole of the tree below the rejected node.

3.2.4 TSEARCH: A Generalised Version of the PSM

TSEARCH [Sleeman, 1982] is a domain independent Poblem Solving Monitor, built to 

solve tasks that involved non-deterministic searches. It provides a variety of support 

facilities for its users. TSEARCH can be regarded as a shell for building a certain class
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of Intelligent Tutoring Systems. Figure 3.8 shows a list of the user commands in 

TSEARCH along with brief explanation of each command.

COMMAND Prints a list of com m ands 
PROBLEM Selects next task  
PRINTRULES Prints a list of ail rules in the database 
PRINTRULER Prints rule R
USERULE N If possible, apply rule N to current expression; if there are many 

possible m atches ask  user which is applicable 
HELP First use on each task  gives all the rules which could apply. Subsequent

u ses  for each task  give: either the rule TSEARCH would apply or advice 
that the goal is not reachable in a reasonable num ber of s tep s  

FORGET Backtracks one step
REMEMBER Forgets the FORGET command and reapplies the previously undone 

transformation
REVIEW Juxtaposes the u se r 's  and TSEARCH's solution paths. (Only available 

once the task  has been solved)
BYE Allows the user to leave the system

Figure 3.8: User facilities provided by TSEARCH [Sleeman, 1982]

With TSEARCH the student does not type in the transformed expression but the number 

corresponding to the expression to be applied. Thus TSEARCH would work only in a 

domain in which the set of operators could be specified in advance. TSEARCH’s authors 

claim this would reduce the number of typing errors made by the students while typing 

complex expressions in TSEARCH domains. As a result, the system assumes that the 

student-users know the domain operators and how to apply them. Nevertheless, this 

elementary form of Human Computer Interaction does not address the difficulty students 

may have in deciding when the operators should be applied and thus the difficulty in 

deciding on a solution strategy. TSEARCH’s authors developed knowledge bases for 

Trigonometry, Algebra and Boolean Algebra.
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Of the command list in Figure 3.8, TSEARCH’s authors highlight the REVIEW command 

which "places side by side" the student-user’s and TSEARCH’s solution path for the 

current task after it has been solved. The expert in such domains has inferred a whole 

range of heuristics, that is useful rules of thumb which suggest likely rules to be used in 

given situations. Thus the REVIEW command enables metacognition, that is, it allows 

users to see gross inefficiencies in their solutions path. Examining the differences between 

the two traces, it is argued would enable the user to build up a set of good heuristics and 

refine their own solution process and consequently their own problem-solving strategies.

TSEARCH offers two other important facilities. A command NEW-PROBLEM allows the 

teacher-user to specify a new task for the student-user. Also, TSEARCH keeps a 

transformation matrix for each user on each task. The matrix records for each step in the 

task the transformation chosen by the student and that chosen by the system. Entries on 

the diagonal of the matric indicated that the student and TSEARCH chose the same 

transformation and non-diagonal entries indicate that the student selected what the 

algorithm thought was a non-optimal move. In addition to this matrix, the systems keeps 

a cumulative matrix that records for every student the transformations that the student 

applied across all the tasks carried out In effect, these two transformation matrices can 

be viewed as student models. Associated with each off-diagonal entry in the matrix can 

be, TSEARCH’s authors suggest, remedial material in the form of either procedural 

attachments or comments.

The authors of TSEARCH identified four major shortcomings with their implemented 

system: First, its response time is long especially when a request for HELP is made 

because it involves expanding a large number of nodes in the solution tree. Second, it can
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prove to be a very passive learning tool for students because the HELP facility is 

available at all the stages of the transformation process. Third, the task selection process 

does not utilise the information in the transformation matrix when selecting tasks for the 

user. Finally, although the transformation matrices provide valuable information about 

both the user’s and TSEARCH’s solution paths the system never points out a "better" 

solution path than those chosen by the user.

3.2.5 Micro-SEARCH

Micro-SEARCH, implemented in Rutgers Lisp, is the IBM PC version of TSEARCH. 

With the development of Micro-SEARCH, its authors addressed the first of the 

shortcomings raised in the previous paragraph, that of the response time and thus of 

processing speed. Furthermore, in implementing micro-SEARCH, several additional 

changes were made. First, instead of using all the rules for each type of task, only those 

that are relevant are used. As a result, the rule set was segmented.

Second, the system now has two phases, an off-line phase that creates the complete 

solution space of correct paths (complete up to some predefined point) in tree structure 

prior to any interaction taking place, and an on-line phase that accesses the solution space 

and interacts with the student. This separation is possible because the set of possible 

transformations can be predefined.

In TSEARCH the complete solution tree was an embedded list. The nodes in micro- 

SEARCH are in a record structure with three fields: the names of parent nodes which 

could be more than one, the names of its children nodes and the expression itself. Later 

micro-SEARCH’s authors suggested a fourth field to be included in the record, namely.
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the list of all applicable transformations. Each node is given a symbolic name and stored 

on a property list structure. This allows a uniform and rapid access to all the nodes in the 

solution tree.

Figure 3.9 shows the complete layout of the screen at the beginning of a trigonometric 

transformation, with the first transformation made. At each stage the screen displays the 

list of possible transformations, together with initial and final goals and current states. 

Figure 3.10 shows an intermediate step in solving a Boolean Algebra task.

Chapter 3 introduced two, of the very few that are available. Knowledge Based Tutoring 

Systems, namely PROUST and micro-SEARCH, that are used as pilot systems in the 

study. In particular, it gave a detailed account of their architecture and resulting 

functionality. In the next Chapter, the thesis presents an evaluation of both systems against 

Wenger’s [1988] model of a didactic operation. The evaluation aims to unveil the 

requirements for interrelatedness and interconnectedness in Knowledge Based Tutoring 

Systems in order to be able to support full-scale didactic operations. This would help 

examine the limitations of existing Knowledge Based Tutoring Systems with respect to 

these requirements. The functionality of both systems, as presented in this Chapter, will 

be used in the evaluation exercise in Chapter 4.
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Problem : 1 C urrent S tep: 0 Maximum S tep s: 7

Transform ations:
1 :T A N X ->1 /(CO TX )
2: A /(C O S X )-> A *(SE C X )
3: COTX -> (COS X )/(SIN  X)

4:T A N X ->  (SIN X) / (COS X)
5: A + A -> 2 * A 
6 :1  * A -> A 
7: A /1  ->A
8: A /( B /C ) - > ( A * C ) /B  

Initial S tate:TA N  X + 1 /(C O T X )

Goal S tate: 2 * ((SIN X) * (SEC X))

C urrent S tate: TAN X + 1 / (COT X)

HELP - prin ts th is out 

NEXT - g o es  to  next problem  

QUIT - e x i t s ...

0K >1

Apply transform ation to  TAN X +1 / (COT X)

A nsw er Y or N - Y

Problem : 1 C urrent S tep: 1 Maximum S teps: 7

T ransform ations:
1 :T A X X ->1 /(CO TX )
2: A /(C O S X )-> A *(SE C X )
3 :C 0 T X ->  (COS X )/(SIN  X)
4:T A N X -> (SIN X) / (COS X)
5: A + A ■> 2 * A 
6 :1  * A - > A  
7: A / 1  ->A
8 : A / ( B / C ) - > ( A * C ) / B  

Initial S tate: TAN X + 1 /  (COT X)

Goal S tate: 2 * ((SIN X) * (SEC X))

C urrent S tate: 1 / (COT X) +1 / (COT X)
0K>

Figure 3.9: Screen layout at the beginning of a trigonometric transformation
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Problem : 2 C urrent S tep: 3 Maximum S tep s: 6 

T ransform ations:
1 : T AND P -> P 9: P AND (NOT P) -> F
2: T OR P -> T 10: P OR (NOT P) ■> T
3: F AND P -> F 1 1 : P A N D P - > P
4: F OR P -> P 12: P OR P P
5: NOT (NOT P) -> P
6: P OR (0  AND R) -> (P OR Q) and  (P OR R)
7: NOT (P AND 0 )  -> (NOT P) OR (NOT 0 )
8: NOT (P OR 0 )  -> (NOT P) and  (NOT 0 )

Initial S tate: A OR (NOT (A OR (NOT B)))

Goal S tate: A OR B

C urrent S tate: (A OR (NOT A)) and  (A OR B)

OK>10

Apply transform ation to  (A OR (NOT A)) and  (A OR B) 

Answ er Y or N - Y

Problem : 2 C urrent S tep: 4 Maximum S tep s: 6

Transformations:
1 : T A N D P - > P
2 : T 0 R P - > T
3: F AND P -> F 11 : P AND P -> P
4: F OR P -> P 1 2 : P 0 R P - > P
5: NOT (NOT P) -> P
6: P OR (0  AND R) -> (P OR 0 )  and  (P OR R)
7: NOT (P AND 0 )  -> (NOT P) OR (NOT Q)
8: NOT (P OR 0 ) -> (NOT P) and (NOT 0 )

Initial S tate: A OR (NOT (A OR (NOT B)))

Goal S tate: A OR B

C urrent S tate: T AND (A OR B)
0K>

Figure 3.10: Screen layout at intermediate step in solving a Boolean Algebra task
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CHAPTER 4: EVALUATION OF DIDACTIC OPERATIONS IN 

KNOWLEDGE BASED TUTORING SYSTEMS: THE CASE OF 

PROUST AND micro-SEARCH

In this Chapter, the thesis unveils the requirements for interrelatedness and 

interconnectedness in existing Knowledge Based Tutoring Systems with respect to the full- 

scale didactic operation, as discussed in Chapter 2, and discusses their limitations with 

respect to these requirements. The thesis achieves these aims through an evaluation of 

PROUST and micro-SEARCH against Wenger’s [1988] model of a didactic operation by 

addressing the question. What should the relationship between a system's behaviour and 

its architecture be with respect to the didactic operation?

In the first part, the chapter discusses the evaluation of Intelligent Tutoring Systems 

followed by the evaluation of PROUST and micro-SEARCH against Wenger’s [1988] 

model. The Chapter then examines the requirements for interrelatedness and 

interconnectedness in existing Knowledge Based Tutoring Systems with respect to a full- 

scale didactic operation followed by an investigation of their limitations with respect to 

these requirements.

4.1 EVALUATION OF INTELLIGENT TUTORING SYSTEMS

It is generally accepted by most Intelligent Tutoring Systems researchers that evaluation 

of any sort is a neglected practice [Nwana, 1990b]. Nwana [1990b] takes this further by 

arguing that this largely applies to the Artificial Intelligence domain as a whole. The pay 

off of evaluation would be in helping to answer two questions that are central to cognitive 

science, artificial intelligence and education [Littman and Soloway, 1988]:
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[1]. What is the educational impact of an Intelligent Tutoring System on students?

[2]. What is the relationship between the architecture of an Intelligent Tutoring 

System and its behaviour?

Addressing the two evaluation questions leads to a different perspective on evaluation 

from that of traditional educational evaluation. Traditional educational evaluation consists 

of two main categories, formative and summative evaluation [Clegg et al, 1988]. 

Designers of Educational Technology use formative evaluation to define and refine their 

goals and methods during the design process. They use summative evaluation to determine 

whether a finished educational product is effective after it has been built

Because building Intelligent Tutoring Systems is still somewhat of an art, and because 

there are few Intelligent Tutoring Systems that can be called finished [Littman and 

Soloway, 1988], designers of Intelligent Tutoring Systems are currently more concerned 

with usefully guiding the development of their systems than with determining whether 

they, or can be, effective educational end products. At least for the time being, as Littman 

and Soloway [1988] claim, the idea of a formative evaluation seems more appropriate for 

Intelligent Tutoring Systems designers than does the idea of summative evaluation. Hence 

the two evaluation questions are mainly focused on the development of Intelligent 

Tutoring Systems rather than on determining whether they are effective educational end 

products.

Unfortunately, there is no standard set of evaluation methods for addressing either of the 

two evaluation questions. Nevertheless, Littman and Soloway [1988], in evaluating 

PROUST, have defined two classes of evaluation guidelines that are useful for this
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purpose. The first class of evaluation guidelines, which addresses question 1 and is called 

external evaluation^ assesses an effect external to the Intelligent Tutoring System (i.e. the 

student’s learning), by way of examining how an Intelligent Tutoring System affects 

students and changes their knowledge and problem solving skills.

The second class of evaluation guidelines, which addresses question 2 and is called

internal evaluation, assesses an effect internal to the Intelligent Tutoring System (i.e. the 

inner workings of an Intelligent Tutoring System), by constructing a picture of the 

architecture of an Intelligent Tutoring System and its relationship to its behaviour. The 

answers the two resulting classes of evaluations provide to these questions highlight those 

aspects of a tutoring system that have particular effects on its behaviour and how the

design and implementation of the tutoring system lead to its behaviour.

4.1.1 External Evaluation: The Cognitive Perspective

Recent progress in Cognitive Science and Artificial Intelligence has provided the field of 

Intelligent Tutoring Systems with a tool, process-based student models, for representing 

student’s knowledge and problem solving-skills [Littman and Soloway, 1988]. With early 

tutoring systems these tools were not available. Nevertheless, the reasonable and 

pragmatic assumption was made by early tutoring systems developers that the students’ 

answers to test questions reflected their mental processes.

As a result, the goal in evaluating early tutoring systems has been primarily to determine 

whether students can correctly respond to test questions. With the advent of process-based 

student models, however, the goal of evaluating Intelligent Tutoring Systems is to 

determine how well the Intelligent Tutoring System teaches students the knowledge and
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skills that support the cognitive processes required for solving problems in the content 

domain of the Intelligent Tutoring System. Thus the cognitive perspective on external 

evaluation was made possible by the advent of student modelling in Intelligent Tutoring 

Systems [Littman and Soloway, 1988].

As an Intelligent Tutoring System interacts with a student, it builds up a model of the 

student, that is an understanding of the student’s knowledge and skills, which it uses to 

interpret the student’s behaviour and to guide its own actions. This is achieved via 

methods for reasoning about the students’ problem-solving in the domain of instmction. 

Many student modelling techniques have been proposed but all these techniques can be 

grouped under two major cognitive categories: those methods that are based on process 

models of problem solving and those that are not.

Student modelling techniques based on process models solve problems in a supposedly 

humanlike way. For example, the student modelling component in the Lisp Tutor is based 

on a process model of how students write simple Lisp programs and is embodied in their 

GRAPES simulator [Anderson and Reiser, 1985]. The Lisp Tutor uses the GRAPES 

simulator to simulate the problem solving of novice Lisp programmers when they write 

simple Lisp programs. The student model is thus represented in terms of what the 

GRAPES process model did to solve the problem.

Student models that are not based on comprehensive process modelling do not solve 

problems as humans do. For example, in WUSOR, the tutor for the discovery game 

WUMPUS [Goldstein, 1982], the student model consist of the skills that have been 

checked off in WUSOR’s representation of skills. WUSOR does not try to play
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WUMPUS as a student would in order to build its student model and thus it does not use 

process models.

Whether or not student models actually have process models that simulate students’ 

behaviour, they can be used to assess how well the Intelligent Tutoring System teaches 

students skills and knowledge for solving problems that are like the problems encountered 

during learning. Student modelling techniques can also guide the construction of new 

problems for testing the student. Because these techniques require explicit representations 

of problem solving knowledge and skills, and possibly the actual process of problem 

solving, they can be used to predict how well the student will perform on the new 

problems and thus which problems should lead to effective problem solving and which 

to ineffective problem solving.

Because student modelling techniques capture how students solve problems and not 

merely that they can solve problems, they can be used to identify problems that the 

student should be able to solve. Student modelling techniques that are not based on 

process models can still be used to predict some of the knowledge and skills the student 

will use to solve problems. Process-based techniques can be used to predict the actual 

process the student will go through to solve problems. Therefore, the evaluation of early 

tutoring systems which focused on correct and incorrect answers is different from the 

evaluation of Intelligent Tutoring Systems which assess the reasons that students give 

correct and incorrect answers.

Consequently, the focus of the external evaluation of an Intelligent Tutoring System is the 

degree of completeness or comprehensiveness of the process model underlying the
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Intelligent Tutoring System. In the external evaluation of the Intelligent Tutoring System 

the criterion is not how many of the students’ answers are correct but the underlying fine­

grained skills that have been learned.

4.1.2 Internal Evaluation: The Architecture Perspective

The goal of internal evaluation is to provide a clear picture of the architecture and its 

relationship to behaviour. To clarify this relationship it is necessary to characterise the 

Intelligent Tutoring System in terms of answers to three key questions [Littman and 

Soloway, 1988]:

[1]. What does the Intelligent Tutoring System know? The question is addressed by an 

analysis of what the Intelligent Tutoring System can possibly do based on what it knows.

[2]. How does the Intelligent Tutoring System do what it does? This requires analysing 

the Intelligent Tutoring System to determine how the algorithms use available knowledge 

to produce the observed behaviour of the Intelligent Tutoring System.

[3]. What should the Intelligent Tutoring System do? This question is answered by 

clarifying the areas of the tutoring domain that the Intelligent Tutoring System is 

responsible for teaching.

According to Littman and Soloway [1988], knowledge engineering can help answer all 

three questions by performing Knowledge Level Analysis, Program Process Analysis and 

Tutorial Domain Analysis.
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Knowledge Level Analysis attempts to characterise the knowledge in the Intelligent 

Tutoring System and thus answers the first question: What does the Intelligent Tutoring 

System knowl It provides useful information about whether the program knows enough 

to perform the intended tasks. It is concerned not with how the program accomplishes the 

tasks but with what the program can conceivably do and with whether the program has 

the competence to perform certain tasks. In other words, it focuses on whether the 

program has enough of the right kinds of knowledge to meet the requirements that were 

set for it.

Program Process Analysis answers the second question: How does the Intelligent Tutoring 

System do what it does! It consists of evaluating whether the program does what it does 

in the right way. In contrast to Knowledge Level Analysis, which asks whether the 

program is able to perform certain input-output tasks. Program Process Analysis looks just 

at how a program uses its knowledge in the process of going from input to output. In 

other words, it focuses on the control structure of processing the knowledge.

Tutorial Domain Analysis answers the third question. What should the Intelligent 

Tutoring System do! by highlighting any lack of tutorial abilities on the domain to be 

tutored.

The underlying multi-disciplinary nature of the Intelligent Tutoring System cannot lend 

itself to a single evaluation philosophy [Littman and Soloway, 1988]. Intelligent Tutoring 

Systems evaluation calls for an evaluation approach borrowed partly from educational 

technology, partly from Computer Science, partly from Artificial Intelligence and partly 

from cognitive science. To unveil the requirements for interrelatedness and
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interconnectedness in existing Knowledge Based Tutoring Systems with respect to the full- 

scale didactic operation, this thesis is concerned only with the second question which 

seeks to examine the relationship between a system’s architecture and its behaviour. The 

evaluation of the two systems against Wenger’s model of a didactic operation proceeds 

with a Tutorial Domain Analysis.

4.2 THE INTERNAL EVALUATION OF PROUST AND micro-SEARCH

Wenger’s [1988] model of a didactic operation provided the context for the Tutorial 

Domain Analysis. Nevertheless, Nwana’s [1990b] Intelligent Tutoring Systems 

development principles. Self’s [1985] subject-independent model of intelligent behaviour, 

and O’Shea’s et al [1984] thirteen pillars of Intelligent Tutoring Systems Design also 

contributed towards completing this context The result is a set of pertinent (to the model 

of a didactic operation) questions that seek to examine the relationship between the system 

architecture and its behaviour. This can then help uncover and understand what is required 

of a Knowledge Based Tutoring System in order to support a full-scale didactic operation, 

as described in Chapter 2 of the thesis.

The evaluation strategy used involved setting up a laboratory experiment in which a group 

of students used both systems for a period of one week, at the end of which they were 

interviewed with the assistance of a questionnaire handed out to them at the beginning of 

the experiment. The evaluation strategy then involved answering for both systems all the 

questions about the model of a didactic operation with respect to their architecture and 

functionality as explained in Chapter 3 of the thesis and results obtained from the 

laboratory experiment
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4.2.1 Evaluation against real users

For the purpose of evaluating PROUST and micro-SEARCH, the following Laboratory 

Experiment has been set up [Alessi and TroUip, 1985]:

1. Run a controlled experiment in a classroom in order to determine 

the relative effectiveness of teaching Pascal using PROUST and 

Trigonometry, Algebra and Boolean Algebra using micro-SEARCH.

Both systems are used as classroom aids.

2. Determine the effectiveness of both Intelligent Tutoring Systems on 

individuals, probing students’ factual and procedural understanding 

of what the two systems are trying to teach by means of individual 

clinical interviews after the end of the experiment.

3. Use PROUST and micro-SEARCH as a test-bed for asking how a

more individualised set of tasks, discussion of issues, and control 

over the availability of on-line HELP and ADVICE would affect 

student performance.

4. Probe the extent to which students have acquired a notion of the

various techniques for solving a certain class of tasks.

A group of 10 M.Sc. ADMIS students at the LSE used both systems for a period of one 

week in August 1991. Both systems were installed on the LSE’s Ethernet network and the 

students gained access to them from an LSE public computer room which was exclusively
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reserved for this purpose. I supervised most of the sessions the students had with the two 

systems, in order to give them a sense of direction and also to provide them with some 

help if they got confused or stuck, whilst making every effort not to bias the experiment 

in any way. All students who used the two systems had some prior knowledge of 

programming and mathematical transformations. A larger evaluation with more students 

would have been preferable but there were practical difficulties with issues of time and 

resources.

Although I handed all the participants a questionnaire (see Appendix B) which I expected 

them to fill out after they mastered the use of the two systems by going through a set of 

prescribed exercises, I encouraged them to voice their opinions during the course of 

interaction. The questionnaire was intended to unravel issues relating to the two systems 

tutoring behaviour. At the end of the questionnaire, I invited the students to write their 

own comments, regarding any aspect of the two systems. I then discussed individually 

with each of the 10 students the context of their answers to the questions.

Although the experiment was not set to check the student-user*s knowledge and skills 

before and after a successful use of the systems, some students reported acquiring little 

additional knowledge from the two systems, while others reported mainly to have slightly 

improved on their current skills. There were also the odd cases who reported zero gains 

from either of the two systems. The results are by no means conclusive: the students who 

reported gains either in their current knowledge or sldlls, argued that they could have 

improved a lot more if they were taught by a human teacher for a period of one week the 

art Pascal programming and mathematical transformations.
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Some initial fears that the two systems would be impossible for students to use proved 

to be unfounded. Apart from the few occasions when they needed help, especially during 

the initial stages, they were observed to be getting ‘carried away’ with the two systems.

The students found the two systems lacking in any real motivation. This was partly 

because of the inability of the two systems to solve, during the course of interaction, a 

problem which they set for the student and also explain the solution and partly because 

of their inability to allow the user-leamers to "dream up" their own problem and watch 

over students while solving the problem. One of the aspects which was criticised heavily 

in both systems, was the lack of proper explanations of micro-SEARCH’s step-by-step 

solution to a problem and PROUST’s incomprehensible results during the actual process 

of Pascal code analysis and its inaccuracy of bug diagnosis in certain cases. All the 

students were very disappointed with the systems’ inability to detect errors and provide 

them with some guidance and tutoring about some knowledge and skills, they were having 

problems with. The students were largely frustrated with the systems’ "canned" text 

explanations and black box diagnostics! The most appalling feature to the students was 

their system interface which they found too elementary, inflexible and lacking in many 

respects.

4.2.2 Evaluation against Wenger’s model of a didactic operation 

PROUST*s and micro-SEARCH*s didactic plans of action

Ql. What didactic plan of action do the systems follow? Didactic episodes of actions 

or goals, or one based on diagnostic expectations? Are their didactic plans of 

action prefabricated during system design or are such decisions made by the 

system during the course of interaction?
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Neither system is able to perform student diagnosis, thus at its best, both systems’ plan 

of action would be one of a didactic episode where either a goal has to be met or an 

action be performed. PROUST’s plan of action is a didactic episode of a single action, 

generated by the problem description submitted by the instructional designer to PROUST. 

In this "episode", the student submits his Pascal code for error analysis. PROUST has 

different plans in its knowledge base for implementing the goals in the problem 

description whose descriptions also appear in PROUST’s knowledge base. PROUST first 

parses the student’s Pascal code to a parse tree on which all the subsequent analysis is 

then performed. Then it selects a goal from the problem description, retrieves all the plans 

for each goal from its knowledge base and makes a comparison of these plans against the 

parse tree to determine which plan fits best the student’s Pascal program. Once PROUST 

selects the best match, any differences between the plan and the student code are 

interpreted as bugs. The student-user may choose to watch PROUST performing the 

analysis of his code, in which case PROUST displays the results of this analysis, which 

the real students who used the system found hard to follow. In these didactic episodes, 

PROUST takes the student through a learning path expecting the student to develop 

enough Pascal knowledge and expertise so that he advances from being a novice beginner 

to an experienced beginner.

Micro-SEARCH capitalises on the assumption that all possible mathematical 

transformations can be accurately predefined, thus prior to any interaction taking place 

with the student, the system creates the complete solution space of correct paths as a tree 

structure. During interaction the student traverses this tree by applying a series of 

transformations that take him from node to node towards the goal node which has been 

set by the system. Thus micro-SEARCH’s plan of action is that of a series of didactic
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"episodes" during each of which the user has to achieve a goal. Each and every node the 

user visits in this tree is the goal that defines the context of a didactic episode. Solution 

paths whose lengths are greater than the best solution path by a certain path length are 

rejected by micro-SEARCH.

The user is given the initial state, the current state, the goal state and a set of 

transformations. While at the initial node, the person solving the task is assumed to know 

that out of the complete set of transformations only certain transformations are applicable, 

but would not know which, if any, would lead to the goal. So a strategy to solve such 

tasks is to apply each of the transformations in turn and after each node in the search tree 

has been expanded, to check to see if the goal has been achieved. If the goal has not been 

achieved the tree is expanded further, by the user selecting the next transformation to 

apply. The system intervenes to warn the user if a transformation option he has selected 

would put him on a longer path to the solution but it would not prevent him from 

applying it. The system performs the transformation for the user, and modifies the current 

state of transformation. These interventions and any associated advice are predefined by 

the instructional designer. At all times, the student has access to a pictorial representation 

of the tree which encompasses the complete set of solutions. Through these "didactic" 

episodes, the system assumes that the student-user has, or will acquire knowledge, of the 

necessary domain operators and how to apply them. Nevertheless, this elementary form 

of Human Computer Interaction does not address the difficulty students may have in 

deciding when the operators should be applied and thus the difficulty in deciding on a 

solution strategy.

Although neither system has an explicit representation of a plan of action to follow.

109



nevertheless, both systems entail some form of a primitive didactic plan. However, in both 

systems these are exclusively used for monitoring problem solving and not for guiding the 

unfolding of any pedagogical activity. Both systems have an implicit curriculum of 

ordered topics and associated assignments that the interaction is expected to cover. Both 

systems’ primitive plans have been prefabricated during system design. Neither system 

is capable of "making" any decisions about the course of their plan of action during the 

course of interaction. In principle, both systems’ decision tree is defined by their 

knowledge representation and determines the action in the case of PROUST or the next 

goal in the case of micro-SEARCH. To go to another branch would involve in the case 

of micro-SEARCH to undo the last transformation (s) and to change the initial code in 

the case of PROUST. There is no branching in neither of the two systems other than what 

is precisely defined by the tree. This and the lack of student diagnosis do not allow for 

an opportunistic didactic plan.

Q2. Do the systems enable the student to communicate his plans (Le, intentions) 

prior to executing them?

A positive answer to this question would expose the many situations where students 

attempt to perform a wrong operation at a particular stage, in other words it would reveal 

those concepts which the student knows how to perform but does not understand when 

or where to perform them. This would make diagnosis and remediation easier. PROUST 

does not facilitate this at all. The student-user must have in hand a solution to the 

programming assignment given by the system prior to entering the system. Although 

PROUST has knowledge about how to write Pascal programs, it does not provide the user 

with an on-line editor with which to create or modify his Pascal code. Instead the student- 

user has to use a conventional Pascal editor to do so. Thus the student executes any plans
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which he may have about how to solve his programming assignment before entering 

PROUST. Therefore, the answer to this question for PROUST is no. Micro-SEARCH, on 

the other hand, allows the user to communicate his intentions, that is which transformation 

he is thinking of applying, prior to the system executing it

PROUST*s and micro-SEARCH*s pedagogical contexts

Q3. What kind of pedagogical strategy do the systems follow to exercise control over 

the shape of the tutorial sequence? Opportunistic, plan-based or a mixed 

strategy?

The lack of student diagnosis leading to a student model does not allow either system to 

take advantage of any opportunities that may arise in the context of the problem solving 

episodes they engage the user in. Consequently, neither system can follow any 

opportunistic strategy for tutoring. Both systems are strictly plan-based as defined by their 

decision trees rather than by a didactic model. The lack of a proper pedagogical plan of 

action and consequently pedagogical goals restrict both systems in taking advantage of 

any plan-based opportunities that may also arise while the user is engaged in a problem 

solving episodes. The student-user’s activities or statements would have provided a focus 

for diagnosis and for the content of tutorial interventions. Therefore, neither system 

follows any form of pedagogical strategy according to the model of didactic operations. 

Their strategy is purely a problem solving strategy.

In the case of micro-SEARCH, opportunities arises when the student selects a 

transformation to apply on the current state of a mathematical expression during the 

course of which the system could take the opportunity to provide explanation or remedial 

action, as a result of local monitoring of the student, or generate a new didactic episode.
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Instead the only help the system provides are "canned" pieces of text, prefabricated by the 

author of the problem during problem design. These explanations refer only to the current 

state of the transformation and not to any past or future ones since the system lacks an 

explicit plan of action that would enable the system to trace forward a user-selected option 

or to backtrack. In the case of PROUST, opportunities arise when the student submits his 

Pascal code to PROUST for bug identification. After PROUST analyses the student’s 

Pascal code, it generates a report in which it could have provided the student with some 

useful explanation as to how some of his bugs arose in the first place, and in some cases 

how some bugs can be corrected. Although PROUST allows the user to watch the system 

perform the actual process of code analysis where PROUST’s results are displayed on to 

the screen for the user to read these results are computer jargon with little pedagogical 

value. Both the students who used the system and myself found them hard to read and 

follow.

Both systems have been programmed to intervene when the user-leamer input is not the 

expected one. Although this intervention may exhibit some of the basic characteristics of 

an opportunistic strategy neither system has an explicit representation of such a strategy 

nor do they have any control over how the organisation of their instructional sessions 

communicate the subject matter to the student. The student-user’s learning is entirely left 

up to him. Although as argued in the previous section, both systems include some very 

primitive form of a didactic plan of action, this is for guiding the problem solving process 

and not for planning any global or local learning events as would have been the case with 

a plan-based context.

Q4. Do the systems maintain control over the whole tutoring endeavour or do they
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leave part or all of the initiative to the student?

Both systems maintain control of the interaction, with very little choice left to the student. 

Nevertheless, the initiative for learning lies very much with the student-user. In that 

respect both systems are very passive teaching tools. If any learning takes place then this 

is the result of the user-leamer’s activities and not of an active teaching aid. The student 

has the choice of subject area in micro-SEARCH and of the programming assignment in 

PROUST. Furthermore, in micro-SEARCH he has the choice of a transformation from a 

list of given transformations. The user is not allowed to invent his own transformation but 

only to select one from the given list. The tree representation of the complete solution 

space which is placed at the disposal of the student is solely for visual inspection and 

does not provide any explanation about it

In PROUST, there are not really any options: the user submits his Pascal code, PROUST 

analyses it and produces a bug report, and the student can browse through the report, 

without being able to ask any questions about it. The student-user traverses both systems 

through the use of very restrictive push-button menu-based interfaces. If the system was 

a full-scale knowledge communication system, had a set of pedagogical goals to attain, 

had a plan of how to attain those goals then the system would have been an active 

teaching aid. It might then be in control of the whole tutoring endeavour most of the time 

and at the same time it would allow more flexibility to the user in order to be able to 

fulfil its diagnostic tasks and apply his plan of action. As both systems currently stand 

they can offer very little choice to user because of the lack of these two components.

Q5. Do the systems motivate and support a flexible style o f tutoring?

Neither system can be classified as a full scale intelligent tutoring system because both

113



systems lack a tutoring strategy centred around a student model, which they also lack. 

Neither system is able to support various idiosyncratic user solutions, or various tutoring 

strategies, or various idiosyncratic inputs, nor can they turn a problem solving episode into 

private tutoring. If the systems diagnosed a model of the student’s knowledge from which 

the most productive teaching strategy for the student could be determined and the systems 

incorporated some computational teaching strategies and pedagogical goals to attain, then 

the systems could adapt their instruction by selecting from their pool of teaching strategies 

the "best" one to ease and accelerate the communication of ideas from the domain expert 

model of the system to the user. In addition such a system could use the knowledge of 

the student in the student model (about local goals) to individualise even further the 

instruction and decide which goal should be attained next.

Having this flexibility in tutoring may not be important for good students who may only 

want to use a system as a problem solving tool or for undertaking reinforcement exercises, 

but it may be of great importance to weak students because they can use the system in 

their own time to master their knowledge and/or skills, their mistakes can be private, they 

can ask clarifying questions, etc. The students who used the two systems reported that 

after a little while they got very bored with using the systems. Neither of the two systems 

makes any attempt at, nor is able to, motivate the student-users, for instance, praise and 

reward the user-leamer, if he gets an answer right The worse system of two in this 

respect seems to be micro-SEARCH which supports a very inflexible style of tutoring. 

Some students who used the systems argued that it is more like an exercise book with a 

problem solving ability while others suggested that the system should be used only as a 

revision tool by students who want to practice their mathematical transformations skills.
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PROUST, on the other hand, does enable the user to feel some motivation as his actions 

are automatically reported upon. An editor would prove to be useful in this respect 

because students are currently discouraged by having to exit PROUST and go their Pascal 

editor and "fix" their program and come back and resubmit, and start all over again. All 

the students who used the system reported in one way or another that the systems’ 

interfaces are also a major source of discouragement and boredom.

Q6. Do the systems provide an environment in which the interaction between it and 

the student is close to reality?

Both systems exhibit a number of shortcomings with respect to how realistic their 

instructional environment is. Although PROUST takes as input the Pascal program which 

the student authored, and delivers as output a bug report which contains the results of 

PROUST’s diagnosis on the student’s code as specific syntactic and semantic bugs in the 

student’s code, it does not enable the student to modify his code while in PROUST. The 

system is unable to provide local monitoring of student activities. The student has to exit 

PROUST, go back to his Pascal editor, do the changes and return back to PROUST to 

resubmit his code and reiterate through the process. PROUST entails knowledge about 

Pascal syntax errors, how to write programs and planning descriptions of the assignments 

it sets to the student which it can use to reconstruct several solutions, all of which it could 

use to help the user to correct his code and provide tutoring where necessary. In addition 

to this shortcoming, the student cannot pose any questions to PROUST regarding the 

contexts of the generated report. This is partly because of the lack of an enabling 

interface, like a natural language interface, with which to pose questions regarding some 

aspects of the systems’ functionality and output, and partly because the two systems are 

basically problem solving tools that do not set out to allow the users to interrogate their
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knowledge representations.

All the students who used the two systems reported that the menu-based system interfaces 

of both systems were very restrictive and suggested that they should be further improved. 

In addition, both systems lack proper explanation facilities. Although there is a help 

function key in both systems, the only purpose this serves is to display a list of all the 

available function keys in the systems and their purpose.

Micro-SEARCH, on the other hand, lacks both in input and output terms. Although the 

user interacts with the system in order to improve his transformation skills, the system 

does not allow the user to type in himself the transformation which he wants to apply to 

a current mathematical expression. Instead he is given a list of transformation options to 

choose from. When he chooses a transformation the system will perform the 

transformation operation for him and display the result In other words the system does 

not enable the student to solve problems as they would on paper. Furthermore, micro- 

SEARCH does not record anywhere the transformation steps which the student went 

through in order to arrive at the current result or the goal state. When students use pencil 

and paper, they write in the intermediate steps until they arrive at the correct answer. The 

student has to resort to the tree diagram to do so where he is left unaided.

In addition, the system lacks in terms of graphics abilities in order to display fractions 

and powers as they would appear naturally on a piece of paper. Instead the systems 

developers used some conventions which complicates the expressions. This confused quite 

a number of students who used the system. Furthermore, the system developers reversed 

the polarity of the up and down, left and right, pageup and pagedown keyboard function
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keys while browsing through the tree diagram. Left arrow takes you right and right arrow 

takes you left, up arrow takes you down and down arrow takes you up. If you press 

pageup then you move down a page and if you pagedown then you move up a page. This 

frustrated the students who used the system because every time they were browsing the 

tree diagram they also had to spend some effort thinking about how to use the interface. 

Some students argued that interaction with the two systems is very much a one-way 

interaction mainly because student-users are not allowed to ask any questions, let alone 

ask ad hoc questions.

Q7. Do the systems teach prerequisite skills?

Neither system teaches prerequisite skills and/or concepts that are necessary for a student 

to have prior to interacting with the system nor during a session where the student-users 

consistently exhibited a lack of certain skills. Tutoring of these skills is done by 

exposition, examples, and testing [Nwana, 1990b]. Both systems assume that any potential 

user-learner to have the necessary skills in the subject area before they start using the 

systems. Thus they progress through the tutoring of students with different aptitudes 

similarly. Although is quite clear what the target user group and the necessary prerequisite 

skills are in the case of PROUST, with micro-SEARCH it was very difficult to determine 

precisely either the target user group or the necessary prerequisite skills. In addition to 

this, a lot of the students felt that both systems assume intelligent user-leamers, who may 

not be in need of tutoring aids after all. Although both systems have as an optional user 

facility, a tutorial introduction in the form of text pages dumped on the screen, the 

students found these to be of little use.

The prerequisite skills problem could have been eradicated had the system included an
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initial model of student user requirements for the student to match his knowledge against. 

In addition this could serve as a testing mechanism for those students who complete their 

interaction with the system and wish to know their level of attainment regarding the 

necessary skills for achieving success with the problems the systems set to the students. 

However, this requires student modelling abilities which neither systems possess.

Q8. Do the systems monitor the student step by step?

Although PROUST has knowledge about how to write a Pascal program and is able to 

diagnose both syntactic and semantic bugs in a Pascal code, it does not monitor the 

student during the problem solving process step by step because it does not enable the 

student to write his Pascal code on-line. Instead the user has to write his code off-line by 

using a conventional Pascal editor, which he then submits to PROUST to analyse. The 

reason for this is the lack of on-line student diagnosis that would enable PROUST to 

perform local monitoring of the student and also keep in track with the pedagogical goals 

the didactic plan of multiple actions (not of a single action) must help the student attain.

micro-SEARCH monitors the student during the problem solving process step by step by 

checking to ensure that his choice of transformation is the right one for the situation in 

hand, or an acceptable one (i.e. it would still lead to a solution although it would take 

longer), or an incorrect one in which case it prompts the user to select another 

transformation. One disadvantage of micro-SEARCH is that it does not keep track of the 

user-selected transformation so far in the process for the use of the student, and it also 

does not prevent the user from selecting the wrong transformation twice. Again, micro- 

SEARCH suffers from the lack of student knowledge and a proper didactic plan of action. 

The system can only present a range of possible answers but cannot explain them or relate
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them to any local goals that it indirectly tries to achieve.

To be able to perform step by step monitoring, it would require a set of local teaching 

goals for every step and the creation of a local student model to both record the results 

of monitoring and also to determine the next step to perform. It would also require a set 

of appropriate teaching strategies that would have been suitable for tutoring with these 

goals.

Q9. Do the systems test the students understanding?

Testing the student’s understanding involves testing for all sort of goals, for example, 

testing for knowledge of how to use a concept, testing for knowledge of when to use a 

concept, testing to determine whether the student can handle problems of a particular 

difficulty level, etc. Neither of the two systems tests a student-user’s understanding or his 

programming or transformation skills overall or subskills, nor his ability to apply these 

skiUs. With micro-SEARCH this kind of testing is far from possible. There are many 

reasons for this. First, the system has no explicit representation of a syllabus to follow 

other than the sets of randomly prefabricated problems which it uses. Second, it does not 

have a student diagnostic module that constructs a student model and thus cannot use this 

to infer any missing conceptions by comparing this to the syllabus or misconceptions by 

matching these against a library of bugs about the syllabus. Thirdly, its diagnostic 

techniques are very primitive. They entail only deviations from a problem solving path 

that leads to the solution.

PROUST, on the other hand, has most of the necessary ingredients to perform this form 

of testing. It has a knowledge base on Pascal and how to write Pascal programs and is
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able to diagnose misconceptions in the user-leamer’s code. However, PROUST’s diagnosis 

of misconceptions is not based on a bug library. PROUST’s diagnosed misconceptions are 

deviations from the correct Pascal program design. Therefore, PROUST is not able to 

report about their origin or how these can be corrected nor does it attempt to relate these 

to any missing conceptions because its diagnosis is not proper student diagnosis. Thus it 

suffers, but only partly, from the same shortcomings as micro-SEARCH.

QIO. Do the systems provide remedy in a problem-solving context?

Providing a remedy in a problem solving context takes many forms, for example, 

diagnosing an error, instructing the student on what to do, etc. and a system should come 

to their rescue when they get stuck, confused, etc. For remedy to work both in local or 

global terms, (i.e. a problem solving episode or in more general terms), it assumes a bugs 

library which neither systems possesses, a student model in the context of which to place 

the bug, which neither system attempts to construct, a student diagnostic module to trace 

the misconception and build the model which again neither system entails, and finally a 

problem solving diagnostic tool which is the only form of diagnosis both system have. If 

the problem solving diagnostic tool detects that the student answer is incorrect, the student 

diagnosis should take over to detect the misconception by reference to the bug library, 

update the student model and then take remedial action. Both system do not go beyond 

the first step, that is diagnosing that the student answer is incorrect.

Micro-SEARCH attempts to remedy in a problem solving context, by complying to its 

own rules and conditions, nevertheless, the student-users found this not to be very 

effective. As explained before, if the user-leamer chooses to apply a wrong 

transformation, then the system intervenes to warn the user about it but is not able to
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explain to the user why his choice of transformation is inapplicable in the current 

situation, for instance, why he may have to apply more transformations to get to the goal 

state, why it may take him in circles, why it does not lead to the solution, etc. The lack 

of proper student diagnostic abilities and consequently a student model, does enable the 

system to detect all these reasons and why a student got stuck or confused and why he 

cannot decide on the right transformation to apply.

PROUST, on the other hand, provides some remedial text material in the bug report which 

it generates after it has analysed a student’s Pascal code. It suggests why the syntactic and 

semantic errors which appear in the student’s code arose in the first place. Nevertheless, 

the bugs are not actual misconceptions, as explained before but deviations from the correct 

code, which may not be bugs at all but superior student solutions methods which the 

designer of the system did not anticipate. Such abilities would be extremely useful to 

represent in the student model and also for the system to adapt them in its knowledge 

base and resulting representation. Furthermore, the system does not allow the user to 

question its diagnostic abilities or ask for further clarification about these bugs, especially 

if these are unclear, as it sometimes happens when the system is unable to parse and 

analyse the student code completely. PROUST’s remedial text is very much an off-line 

process, since the student’s next step after the bug report is generated, is to leave the 

system and go back to his Pascal editor and correct his code.

PROUST^s and micro~SEARCH*s Decision Base

Q ll. Do the systems have explicit representations of tutoring, domain and student 

knowledge?

According to the model of a didactic operation, an Intelligent Tutoring System must be
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able to represent explicitly knowledge about its tutoring goals and strategies, about its 

domain knowledge and about its student-user as three independent models. The 

importance of having these three pieces of knowledge as three independent modules is 

that they can be inspected modified, traced and reused for some other domain. Neither of 

the two systems has any explicit or implicit form of tutoring knowledge nor do they 

attempt to diagnose student knowledge. Both systems*s tutoring strategy is a problem 

solving one where the only output of diagnosis is a deviation from the correct answer. 

Nevertheless, as was argued before, PROUST has the potential to perform student 

diagnosis. With respect to domain knowledge PROUST, as a Knowledge Based Tutoring 

System, has an explicit representation of knowledge of Pascal syntax, of Pascal 

programming skills, and of knowledge about the problems it sets for the student to solve. 

The system’s diagnostic abilities are responsible for detecting anomalies in the student 

code by reference to all these three sources of Pascal knowledge and skills. It checks to 

ensure that the code is syntactically correct by reference to Pascal syntax knowledge and 

programming skills, and if it is semantically correct by reference to the solution plan of 

the problem. Micro-SEARCH, on the other hand, has no diagnostic abilities, nor any 

domain knowledge. It has a simple black box problem solving tool which is used to build 

the complete set of solution paths for a given problem, prior to the course of interaction 

with the user-leamer. Thus it can only support surface level tutoring. micro-SEARCH’s 

tree is stored in a basic tree structure which is placed at the disposal of the student in 

pictorial form in order to browse through it. Student answers are evaluated against this 

tree.

Q12. What didactic constraints and resources affect tutoring: pedagogical goals, 

domain-independent tutoring strategies, domain-specific tactics, material
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sequencing, student monitoring and diagnosis?

Both systems have one knowledge source of constraints and resources: their domain 

knowledge model and the corresponding domain knowledge process model. Neither 

system attempts to build a formal student model to be used as a diagnostic source in the 

context of tutorial interventions and to enable the system to generate problem-solving 

episodes, nor do they have a tutoring model (i.e. they do not follow any formal teaching 

strategies), nor do they attempt to attain any pedagogical goals, or sequence any material. 

Both systems’ only didactic resource, which is also their constraint, is a single pre­

programmed domain-specific problem-solving strategy that involves diagnosing deviations 

in the user-leamer’s answer from "a" known solution path and invoking a prefabricated 

intervention accompanied with some form explanation. This results in both systems being 

rigid and not adaptable to reflect the user-leamer needs. Both systems’ strategy works 

through the domain-specific knowledge, the tree representation of the complete set of 

solution paths in the case of micro-SEARCH, and the frame-based goals and plans in the 

case of PROUST. This strategy is not a formal teaching strategy.

Although both systems perform some elementary diagnosis as part of their problem 

solving strategy and some feedback is given to the user, immediately after the user has 

selected a transformation in the case of micro-SEARCH, and in the bug report in the case 

of PROUST, this has no purpose other than to warn the user-leamer that his answer is not 

the correct one. This feedback which is entirely prefabricated and not the product of 

diagnosis in the case of micro-SEARCH and constructed during the student’s Pascal code 

analysis in the case of PROUST, is not used by either of the two systems as a source of 

constraints for generating remedial action. There is no material sequencing during the 

course of interaction, because both systems lack in communication skills (i.e. they entail
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no formal teaching strategies), there is no recipient of communication (i.e. there is no 

student model) and the domain knowledge is only used as a problem solving source and 

not as a source for material to be sequenced. Furthermore, both systems’ only goal is to 

"help" the student reach a goal state in the case of micro-SEARCH or provide the correct 

Pascal code in the case of PROUST.

Lack of a formal tutoring model in any Intelligent Tutoring System gives rise to a lot of 

shortcomings. The student does not receive any sort of formal training with the concepts 

that he is exposed to because there is a lack of teaching strategies. The system cannot 

deduce a teaching strategy that suits best the student needs, and therefore it cannot 

individualise its instruction. The system does not have any means for helping the student 

with remedial action or to attain any pedagogical goals. Finally, concepts in the domain 

knowledge cannot be communicated directly to user-leamer other than indirectly through 

problem solving.

Although both systems lack explicit didactic knowledge, some basic, nevertheless, 

unintentional tactics have been programmed into the two systems when they perform an 

intervention or trigger an explanation.

Q13. What diagnostic constraints and resources affect tutoring? missing conceptions, 

misconceptions, the systems* understanding of student behaviour?

In the context of a didactic plan of action is very useful to make a distinction between 

local and global levels of decisions. At the local level the tutoring system monitors the 

progress of the student in carrying out the task set out by the didactic episode via student 

diagnosis and also defines the context of the system’s intervention by resorting to the
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domain knowledge, if as a result of student diagnosis this is deemed to be necessary. This 

can certainly not happen in either of the two systems due to the lack of a student 

diagnostic model. Both systems’ diagnostic tools detect deviations from the correct answer 

but cannot attribute these deviations to any missing conceptions in the student model or 

any misconceptions. At the global level, a system should, through a pedagogical process 

model, take decisions about subject material sequencing. If what is needed is remedial 

action, the student model is interrogated and then the system resorts to the domain 

knowledge to retrieve those concepts that are either missing from the student model or are 

the source of misconceptions, and generate a didactic episode to teach these concepts. If 

what is needed is to attain the next goal, then the next didactic episode is generated by 

resorting to domain knowledge to provide material for it.

Both systems perform some form of domain-specific diagnosis, but this does not serve to 

reveal missing conceptions or misconceptions in weak areas in the student’s knowledge. 

Although micro-SEARCH builds some form of an internal representation of the workings 

of its student-user on each task, this is only the system’s mechanism for detecting whether 

or not the student’s answer is a viable transformation proposition. PROUST diagnoses 

syntactic and semantic errors in the student-user’s Pascal code from "a” correct solution 

plan. PROUST "hypothesises" an origin of these errors and "suggests" how they can be 

corrected. The use of diagnostic information as constraints and resources for constructing 

didactic operations usually requires the system to inspect large portions of the student 

model. Both systems lack student modelling capabilities which is the main reason why 

they cannot be probed to understand the student-user behaviour or knowledge states and 

thus adapt both instruction and subject material to reflect the needs of the student. 

Diagnosis with both systems does not stretch beyond checking the correctness of a
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student-user’s input and what can be derived from it, with reference to the systems’s 

knowledge and skills.

The tutorial interventions of both systems are based solely on the local diagnostic 

information provided by the match or the absence of a match between the student-user’s 

answer and the expected answer. The lack of a student model results into some rigid 

explanations being delivered to the student. Such explanations neither satisfy any didactic 

principles nor is their content tailored to individual student’s existing knowledge. This 

results in expertise-oriented demonstrations in both systems, such as the tree diagram in 

micro-SEARCH and the Pascal program diagnostics in PROUST. Although PROUST’s 

reconstruction of a program’s goal structure allows remediation to situate the descriptions 

of errors relative to the student’s intentions, it only suggests how the errors arose in the 

first place and not how they can be corrected or how the student’s misconceptions arose 

in the first place and how they manifested themselves in problem solving. Thus errors 

only, and not misconceptions, are reduced to processes the student recognises as incorrect. 

Micro-SEARCH’s lack of a link between explanations and associated diagnostic expertise 

does not allow remediation to situate any error description relative to the student-user’s 

intentions.

The absence of proper student modelling capabilities and the fact that diagnosis is 

performed to detect a deviation from a student answer and without any recording, does 

not enable either of the two systems to use the results of diagnosis as a source in 

performing global means-ends analysis or as a source for constraints about the student- 

user’s relative strengths and weaknesses.
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Q14. What domain constraints and resources affect tutoring: Nature and structure of 

knowledge and expertise, explanations, content of tutorial intervention, material 

sequencing?

Both systems are just problem solvers. Their problem-solving-oriented strategy is centred 

around the context and structure of domain-specific knowledge by using the systems*s 

representational syntax as an anchor in performing the system intervention and in 

providing explanations. In the case of micro-SEARCH, the strategy is centred around the 

complete set of solutions represented as a tree. Micro-SEARCH’s strategy takes the 

student on a didactic "trip” from branch to branch in the tree. The predefined paths of the 

fixed decision tree allows the system to foresee all the ways in which a student may reach 

the goal state from the current state, both short, long and "no" paths. Consequently, micro- 

SEARCH s explanations are not the product of any diagnostic expertise but are entirely 

produced by means of some predefined textual frame structures instantiated during 

problem design. This reduces micro-SEARCH’s interventions into giving some problem 

solving hints. In the case of PROUST, the system’s tactics evolve around the frame-based 

representation of both programming goals, and their plans of implementation. PROUST 

parses the student-user’s code into a parse tree and then performs an analysis of this parse 

tree by matching it against goals in its problem description and the equivalent goals and 

their plans in its knowledge base. The student may choose to let PROUST take him 

through the analysis of his code, step by step, in which case the system displays the 

"results" in some frame-based notation (which the students found hard to read). The bug 

report which PROUST generates is a piece of normal text, which is the product of explicit 

chains of reasoning, with the explanations assembled, being directly associated with the 

system’s diagnostic expertise.

127



As it stands, domain-specific knowledge is not a source for constraints about the relative 

importance of topics for either of the two systems, since there is no material sequencing 

process in any of the two systems. Neither of the two systems is capable of adapting to 

the user needs in terms of its instructional approach or in terms of domain context. There 

are no links between topics, and material sequencing is a simple linear selection process 

which the student is always in absolute control of. Nevertheless, the authors of problems 

contained within both systems can arrange assignments as a series of increasingly complex 

versions of problems, as happens with PROUST’s assignments, where each problem 

evolves around a new problem requirement with which the student must comply with. 

This would constitute a natural global teaching sequence of learning experiences with the 

structure of the domain dominating the course of interaction.

In both systems, their only knowledge source is their domain knowledge, which due to 

the lack of a tutoring model and a student model can only serve as a source of problem­

solving expertise. As a result this limits their abilities as computer tutors. The student- 

users master Pascal programming and transformation concepts and skills not by being 

directly exposed to these in the context of a didactic episode during which any 

misconceptions are cleared away by the system, but by being indirectly exposed to these 

through practising their current knowledge and skills in a problem-solving episode.

PROUST*s and micro-SEARCH*s target level

Q15. What is the target level of the systems* didactic operation: Behavioural, 

epistemic, or individual?

The fact that micro-SEARCH does not address any internalised knowledge about 

mathematical transformations and expressions or Boolean Algebra or ordinary Algebra or
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Trigonometry, that it does not seek to modify the user’s knowledge states, and that it also 

capitalises on the fact that performing a transformation task and being exposed to such 

an environment constitutes a good learning context which provides students with ample 

raw material for actively forming their own interpretation and conceptualisation of the 

mathematical transformation domains, indicate that micro-SEARCH’s didactic operation 

target level is exclusively the behavioural.

PROUST’s didactic operation target level, on other hand, is largely epistemic. PROUST’s 

didactic operation seeks to modify the user’s knowledge state via practice by organising 

specific experiences (i.e. sequences of Pascal programming assignments), to expose the 

student to and thus cause changes (i.e. promote the novice programmer to an experienced 

programmer). In addition, PROUST addresses internalised knowledge, that is knowledge 

about Pascal syntax, about how to write programs and about problem descriptions, in a 

direct and organised way in order to provide some explanations which supply some 

interpretation of the domain and help towards the articulation of knowledge.

Q16. Do the systems provide hints, pieces of advice, corrections, remedial 

demonstrations, traces of reasoning, interpretations, explanations, simulations, 

motivation? At what level?

The students who used PROUST and micro-SEARCH claimed that neither of the two 

systems motivated them in any way. This is because of the very inflexible style of 

tutoring, lack of a set of formal teaching strategies to choose from in order to 

individualise instruction and the rigidity created by their very restrictive interfaces. 

PROUST, in its bug report, provides some explanations as how the identified bugs arose. 

The students, however, did not find these adequate, because of the lack of provision of
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remedial action as to how these can be corrected, either in the form of advice given to the 

student or in the form of a remedial didactic episode generated by the system, or by 

performing a remedial demonstration for the user, or do the corrections for the user. 

Furthermore, the system does not provide the user with the facilities to do the corrections 

while in PROUST or trace the system’s reasoning or ask a question. Nor has it the ability 

to provide an interpretation of its bug report. All it can do is give the user the choice to 

watch PROUST performing the Pascal code analysis which the students found extremely 

hard to follow.

Micro-SEARCH does not offer any real explanations about the reasons why certain 

transformations would be an "incorrect" choice of transformation to apply on the 

mathematical expression in hand. Explanation facilities in micro-SEARCH are nothing but 

pieces of "canned" text associated with each possible entry transformation which have 

been prefabricated during problem design. During the course of the interaction, micro- 

SEARCH cannot explain what the consequences would be if the student applies a 

transformation. Although these "tips", which the system provides to the user-leamers, are 

based entirely on the tree diagram of the complete set of possible solutions, they are not 

the product of diagnosis like the bug report of PROUST and thus cannot serve as a real 

guidance to future transformation actions. Furthermore, the student is neither allowed to 

trace the system’s reasoning nor ask for further interpretations of the system’s actions. The 

system remains pretty much a black box throughout the interaction. Micro-SEARCH 

certainly does not make any corrections to the user input, largely because it does not 

allow for any big mistakes to occur- it knows which is the correct answer- and partly 

because it has not been endowed with such abilities. Consequently, it does not support any 

remedial demonstrations.
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Neither of the two systems facilitate any form of simulation. The two systems provide all 

their facilities at the behavioural level. The problem of the two systems as regards the 

provision of individualised tuition is that both systems lack a set of formal teaching 

strategies from which to choose the best for an individual student and record this in the 

student model, and then apply this strategy in order to convey missing concepts or focus 

instruction on misconceptions. Another problem is the lack of a student model that records 

student misconceptions and links these to the domain knowledge so that the system can 

focus on these bugs and clear them away indirectly by generating a didactic episode or 

by advising directly the student how to do it. Alternatively, if the system knows what the 

student’s bugs are (by examining the student model) and it knows to what part of the 

domain knowledge they relate to, then it can correct them in a SOPHIE-like style which 

involves doing the corrections itself while the student is watching, or it can simply 

demonstrate how these can be done by using its domain knowledge in another example. 

If the source of the problem is missing conceptions in the student model then the system 

can focus instruction on these and generate didactic episodes to fill these gaps. Student 

diagnosis can provide an indication of what is going wrong with the student, follow the 

links to the domain knowledge and record this bug in the student model so that the 

didactic operation can focus instruction on it.

Q17. Do the systems perform student diagnosis?

Neither of the two systems performs student diagnosis in a problem solving context for 

the purpose of student modelling nor do they attempt to develop a working model of the 

student-user. Nevertheless, both systems, PROUST more so than micro-SEARCH, are 

equipped with some diagnostic capabilities. PROUST is able to diagnose interactively 

deviations of a student’s Pascal code from the system’s "correct" solution plan and
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generate a bug report where it lists all the bugs and how they arose in the first place. 

These, as was previously stated, are deviations from a correct design plan and not the 

product of student diagnosis against a bugs library. PROUST does not attempt to construct 

a student model, although it has the capability of producing a student model had it been 

endowed with a bugs library.

Micro-SEARCH, on the other hand, although it is able to detect deviations from a 

prefabricated set of solution paths, is completely unable to trace individual errors, why 

they arose in the first place or how they can be remedied. This is largely because micro- 

SEARCH’s domain knowledge is largely compiled (it is a black box model of expertise). 

The only action it can take to safeguard the student from entering an incorrect solution 

path is to prevent him from applying the transformation of his choice or to warn him that 

the transformation of his choice would take him off a "short" solution path.

Q18. Do the systems pre-model the user?

Neither of the two systems pre-model the user. This would be a useful start for the 

individual tuition which an Intelligent Tutoring System seeks to achieve, when a student 

logs on to the tutoring system for the first time. Although this facility may not be 

necessary for advanced students, it would be particularly useful for the weaker students 

with whom instruction can begin with teaching some necessary and prerequisite skills and 

or concepts which they appear to lack, after a close examination of this preliminary 

student model.

Q19. Do the systems model the user?

As Nwana [1990b] argues, a tutoring system would hardly deserve the prefix "intelligent".
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if it did no do student modelling. Neither micro-SEARCH nor PROUST attempt to 

diagnose and model the student-user, in order to record a belief in the lack of knowledge 

of the task which a student-user has undertaken and try and warrant a counterbelief, 

according to Wenger [1988] by generating remedial action, for instance, in the form of 

a didactic episode. As a result, as the students who used the systems noted, both systems 

fail to individualise instruction: the same teaching rules are applied to all student 

regardless of a student’s level of understanding and competence. PROUST, more so than 

micro-SEARCH, is able to diagnose interactively a variety of non-prefabricated deviations 

from "a" correct solution which it does not attempt to reconstruct for addition to a student 

model, although it has the capability for doing so. Even so, it does not attempt to model 

the user although in effect, what is actually performing while matching a student’s code 

against its own solution plan, is the production of an overlay model which is almost half 

the effort, in the student modelling problem.

On the other hand, micro-SEARCH which constructs off-line a complete set of problem 

solution paths which it places at the disposal of the student-user during interaction, does 

not perform any diagnosis like PROUST does. This is because it lacks essential 

knowledge about its subject matters that would enable the system to identify student errors 

and to provide an explanation as to why they arose in the first place and how they can 

be remediated. micro-SEARCH is a tutoring system targeted exclusively at the behavioural 

level of operations, that is the evolution of skills. The system keeps a transformation 

matrix for each user on each task. The matrix records each step in the task the 

transformation chosen by the student and that chosen by the system. Entries on the 

diagonal of the matrix indicated that the student and the system chose the same 

transformation and non-diagonal entries indicate that the student selected what the
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computer algorithm thought was a non-optimal move. In addition to this matrix, the 

systems keeps a cumulative matrix that records for every student the transformations that 

the student applied across all the tasks carried out In effect, these two transformation 

matrices can be viewed as student models. Associated with each off-diagonal entry in the 

matrix could have been, remedial material in the form of either procedural attachments 

or comments.

Q20. Do the systems support the various idiosyncratic ways which a student might 

choose to solve a problem?

Both systems support, within the boundaries of the problems which they set (i.e. structure, 

syntax and context), the various idiosyncratic ways which a student might choose to use 

to solve the problem. This is particularly true of PROUST which allows the student-user 

to write his code free of any restrictions as long as the resulting Pascal program is 

syntactically and semantically correct, it addresses the problem in hand and remains within 

the problem bounds.

Micro-SEARCH on the other hand, levies a lot of restrictions on the user-leamer. It does 

not allow the user any freedom other than that of selecting from a list of transformation 

options and even then, it would not let him apply his choice of transformation if that 

would take him out of a known solution path. As indicated before, it would not even 

attempt to explain why that particular transformation does not lead to the solution because 

it does not have the facility to trace the result of the application of this transformation 

would be. Nevertheless, micro-SEARCH would let the student go down a long path that 

would still lead to the solution.
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The functionality of both systems, as described in Chapter 3, and the above evaluation 

suggest that both PROUST and micro-SEARCH could only be classified as knowledge 

presentation systems because they only possess a domain expert model of very limited 

scope as our investigation demonstrated. They incorporate neither any form of explicit 

didactic knowledge nor do they perform any real student diagnosis leading to the 

uncovering of a student’s knowledge. Lack of didactic knowledge means that the system 

does not have a didactics process model, that is a pool of explicit computational teaching 

strategies to apply with the domain knowledge in order to satisfy some goals, other than 

some implicit operation which the system follows in aU student cases- which can hardly 

be described as didactic. Lack of student diagnosis other than user input validation leads 

to the lack of student knowledge that would influence the course of interaction. 

Furthermore, the lack of both tutoring and student knowledge means that the system lacks 

any form of pedagogical control over the user-leamer’s activities and there in no material 

sequencing, no local student monitoring with goals and tactics.

This raises an important question: If all major schools of thought agree that a system can 

only be classified as a tutoring system, if and only if it possesses all three forms of 

knowledge (domain, student and didactic), why then aren’t these two forms of knowledge 

included in PROUST and micro-SEARCH? Why are they simply knowledge presentation 

systems? Wenger [1988] claims that very few (finished) systems can be classified as 

knowledge communication systems.

4.3 DIDACTIC OPERATIONS IN KNOWLEDGE BASED TUTORING SYSTEMS

This evaluation of PROUST and micro-SEARCH against Wenger’s model of a didactic 

operation highlights some important aspects about the three knowledge models (domain.
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student and tutoring) and their interrelatedness and interconnectedness in Knowledge 

Based Tutoring Systems.

4.3.1 Requirements for the development of an Intelligent Knowledge Based Tutoring 

System with a full-scale didactic operation

There are four requirements for the development of an Intelligent Tutoring System with 

a full-scale didactic operation:

[1]. The system incorporates all three knowledge models.

[2]. The three knowledge models are independent but may reference

information within each other.

[3]. The system may branch the student anywhere in the domain knowledge 

structure as part of an alternative didactic plan of action.

[4]. The system has the ability to create additional domain knowledge from its 

existing domain knowledge and therefore establish additional didactic plans 

of action.

Implementation of a full didactic operation in a tutoring system assumes the existence of 

all three forms of knowledge and their corresponding process models. At the local 

decision making level, that is within the context of a single didactic episode, the didactic 

operation assumes access to the domain knowledge to provide the content for a tutorial

intervention that it would deem necessary. It also assumes access a set of local tactics or

teaching strategies that it would deem appropriate to perform the tutorial intervention and 

also to guide the student’s problem solving step by step. Finally, it assumes access to a 

diagnostic toolkit that would diagnose and record any missing concepts or skills or any
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misconceptions in the student’s knowledge or behaviour and call for remedial action either 

to fill the gap created by missing concepts or remedy misconceptions.

At the globed decision making level, the didactic operation assumes access to the domain 

knowledge that serves as the source for material sequencing (i.e. enable the plan of 

didactic action to traverse the knowledge structure), and also to indicate the relative 

importance of topics. It also assumes access to a didactic model that can serve as the 

source of a set of teaching strategies for sequencing material and for guiding the student 

through didactic episodes. The didactic model observes the global goals that the system 

sets for the student to attain. Thus, the didactic model defines the pedagogical principles 

by which the system would tutor the user-leamer. Finally, the system, needs access to the 

student diagnostic model to provide a means-ends analysis of the student which involves 

determining to which extent the student has met these goals and how the student can be 

classified as a user-leamer, for instance, as a novice, advance beginner, competent, etc. 

This helps to unravel the relative strengths and weaknesses of the student and as a result 

of the student being classified, some additional information can be assumed for the 

student.

The use of the three components in the system’s didactic operation, assumes that the three 

components are developed independently from each other. Nevertheless, their use in the 

context of a didactic episode or at a global level suggests that they are interlinked. For 

instance, the expertise process model should be able to infer from the domain knowledge 

either a correct answer or be able to trace the solution path to a correct answer without 

any interference any from the other process models or their knowledge. This suggests that 

the expertise process model should be able to act as a problem solver with its own
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knowledge. The diagnostics process model should be able to infer the student’s current 

knowledge status and be able to call for remedial action without any references to the 

domain or tutoring knowledge. The didactics process model should be able to infer which 

is the best teaching strategy for attaining a goal from an educational point of view, and 

not which is the "best" for the student. Furthermore, it is good practice not to mix the 

three forms of knowledge for practical reasons, such as knowledge elicitation, 

modifications, extensibility, inspection and also the development of the corresponding 

process model is easier and the end result is actually what its name suggests.

Nevertheless, the three components must work together. For instance, the contents of the 

student model should point to the "best" for the student teaching strategy in the tutoring 

knowledge model and to those goals that have been attained by the student and those that 

are yet to be attained. This would enable the didactic operation to generate a didactic 

episode to satisfy the next goal, or try and satisfy the next goal, within the context of the 

current episode. The student model should also point to those domain knowledge parts 

that have been mastered by the student, including a measure on the level of mastery 

perhaps through an overlay model. This would help the didactic operation to focus 

instruction on those parts that have not been mastered by the student, or improve the 

mastery of current knowledge. The student model should also point to those domain 

knowledge parts that are the source of misconceptions for the student. This would enable 

the didactic operation to break away from its plan of action and generate or regenerate 

episodes to clear away these misconceptions. In the contents of the model of the tutoring 

knowledge, goals which the didactic operation will try to attain should point to that part 

of the domain knowledge that contains domain knowledge relevant to the goal, along with 

a pool of appropriate teaching strategies that would enable this.
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The outcome of student diagnosis, may result in the didactic operation breaking away 

from the didactic plan of action in order to pursue a "remedial" plan of action that, in 

theory, may take the student anywhere in the domain knowledge structure. After the 

student has been diagnosed as having resolved the misconception then the didactic 

operation resumes its proper didactic plan of action. Similarly, the didactic plan of action 

may follow a different route to fill some missing conceptions that are diagnosed to be a 

source of problems for the student. In another instance, the system may "jump ahead" in 

its plan of action, if the student is diagnosed as an expert in a particular domain area.

The scrambled textbook approach suggested above assumes that the didactic operation 

should be able to pursue alternative didactic plans of action that may have not been 

incorporated in the system. This would impose an extra requirement on the system: the 

system must use its existing knowledge to form additional knowledge parts in the domain 

knowledge. This is because of the wide range of outcomes from a diagnostic process 

model which cannot possibly be predicted during the course of the design of the system. 

If a system is endowed with such a facility then this would remove a lot of restrictions 

from the instructional designer because, in theory, the designer would not have to 

anticipate all possible paths in the didactic plan a user or the system may follow during 

the course of interaction. The didactic operation may resort to its domain and student 

knowledge to construct interactively any "remedial" or other plans that it would deem 

necessary.

When these requirements are translated into a Knowledge Based Tutoring Systems 

context, they yield an equal number of requirements for the development of an Intelligent 

Knowledge Based Tutoring System with a full-scale didactic operation:
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[1]. The system incorporates domain, student and tutoring knowledge 

representations.

[2]. There are explicit and direct links within, and between related knowledge 

parts of, the three knowledge representations.

[3]. The links include both hierarchical and non-hierarchical links.

[4]. The system is able to generate additional domain knowledge from, and link 

this to, its existing domain knowledge representation.

The existence of all three forms of knowledge and their independence assumes the 

existence of at least three knowledge representations: one for the domain knowledge, one 

for the student knowledge and one for the tutoring knowledge. This also assumes the 

existence of their equivalent process model: the expertise process model for reasoning 

with the domain knowledge, the diagnostic process model for reasoning with the student 

knowledge, and the didactics process model for reasoning the tutoring knowledge.

The knowledge interconnectedness assumes explicit and direct links between related 

knowledge parts of the three knowledge representations. For example, associated with a 

given domain knowledge part there should be an equivalent student knowledge part and 

a set of goals and teaching strategies. These links will have either been preset by the 

instructional designer or will have been inferred once during the course of interaction and 

persist thereafter. These links are necessary in order to avoid including, for instance, 

tutoring knowledge in the domain knowledge and at the same time enable a process model 

to work in synergy with the other process models by accessing information from other 

knowledge sources.
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In addition to any hierarchical knowledge decompositions in the three knowledge bases 

that would allow for a variety of hierarchical didactic plans of actions to be implemented, 

there will also be non-hierarchical, explicit and direct links between different parts of the 

same knowledge that would enable the system to pursue as a result of some remedial 

action a different plan of action, for instance, a remedial one. Again as before, these paths 

will either be preset by the instructional designer or once inferred by the system will 

persist and will no longer need to be inferred again.

The system may not necessarily have access to a complete set of didactic plans of action 

(this may not be possible especially for large domains) but be able to generate additional 

didactic plans, during the course of interaction, by pursuing links in its three knowledge 

representations. This may be the result of a student request or the outcome of local 

monitoring of the student during a didactic episode. This consolidates the need for explicit 

and direct links to other knowledge parts anywhere within the knowledge which would 

otherwise need to be inferred globally- which may not be as successful as when these are 

generated in the context of a didactic episode- in order for this generative behaviour to 

take place. In addition, the system having generated a didactic episode or a series of these, 

should be able to link them to its knowledge representation for future reference.

4.3.2 Limitations of existing Knowledge Based Tutoring Systems with respect to the 

requirements for the development of an Intelligent Knowledge Based Tutoring 

System with a full-scale didactic operation

With respect to the above requirements, there are a number of limiting characteristics of 

the Knowledge Based Systems approach to developing a tutoring system with a full-scale 

didactic operation:
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[1]. Knowledge decomposition, representation and inferencing is strictly 

hierarchical.

[2]. Knowledge decomposition and organisation is made from a single 

viewpoint which is then inflicted on the user. Reorganising a knowledge 

base from another viewpoint during the course of interaction is not 

currently feasible.

[3]. Reasoning requires that all necessary knowledge be made available to the 

inferencing mechanism prior to any interaction.

[4]. Lack of explicit information linking- all relationships are established 

through reasoning.

Artificial Intelligence knowledge representation techniques allow only for hierarchical 

knowledge decompositions and representations. In order to perform logical inferences in 

a domain, a knowledge-based system requires access to a knowledge representation of 

facts about the subject domain. The knowledge in this knowledge base could be 

represented using one of the many Artificial Intelligence knowledge representation 

techniques or a combination of one or more of these. With all these knowledge 

representation techniques knowledge about the subject domain is decomposed into its 

hierarchical constituents from a single viewpoint and one-way hierarchical trees or 

networks are built.

Consequently logical inferencing involves some form of depth-first (backward-chaining) 

or breadth-first (forward-chaining) searching or at its best some form of one-way 

branching (heuristic-chaining) through a tree or a network in a hierarchical fashion. Every 

time a new inference has to be performed the whole of the entire tree or network has to
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be searched from the beginning to the end or vice versa, in order for a goal to be inferred. 

Knowledge-based systems do not facilitate non-hierarchical knowledge representation and 

consequently non-hierarchical inferencing. Therefore, we are not able to represent non- 

hierarchical relationships between constituents of the domain knowledge unless we can 

establish some form of hierarchical relationship between them. Furthermore, the 

inferencing procedure has to perform one-way searching through the entire tree or network 

in order to establish a goal or infer a fact. Figure 4.1 below illustrates a portion of the 

Domain Knowledge of a Tutoring System for the Geography of Planet Earth in such a 

hierarchy.
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M ountains: S n o w d o n ia ,... N dghboura-by-sea: UK,... M ountains: R o ck ies ,._
Rivera: T h a m e s ,... O ceans; PacM c, A dandc
O ceans: Atlantic N elghbours-by-sea: 0
N elghbours-by-sea: Ireland, F ra n c e ,... N etghboura-by-land; USA
Nelgfiboura-by-land: 0

Figure 4.1: A Frame-based representation of a portion of Domain Knowledge

Knowledge in the above example, has been hierarchically decomposed and represented 

in the knowledge base as frames. The viewpoint that has been imposed on this 

representation is that of physical boundaries (i.e. both continental and country borders). 

For instance, two ostensibly unrelated countries like the UK and Canada, which are
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members of different continents have at least one visible relationship: they are both wet 

by the Atlantic Ocean. How does one represent this non-hierarchical relationship without 

having to introduce another frame about the Atlantic Ocean which would be out of the 

scope of the current viewpoint?

As a result of this limitation, it would not be able to satisfy the second requirement, that 

is interconnectedness between related parts in the three knowledge components of the 

system, because it cannot cater for non-hierarchical links. For instance in Figure 4.2, how 

does one link the three frames from the three knowledge representations and at the same 

time denote the relationship between related parts?

Teaching Strategy 1
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1. (Haplay graphlea/taxt (It any)
2. Aak goal (I) quaaUon Q)

Strategy:
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Rules:
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THEN provide anawer 
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R ule l:
IF atudan t m akea falae ata tem eni 
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provide hlnta 
Rule2:
IF a tudant omita to  a late wftat he 

know a abou t goal Q)
THEN aak atuden t wftal he knowa 

ab o u t goal Û).
Rules :
IF atuden t overatalea w hat he knowa 

ab o u t goal (D 
THEN aak a tudent w hat he know a 

abou t goal (k)
Rule4;

Europe Frame Teaching Goals 
Part-of: Confinants Frama Teaching Goais 
Goal-1: What is Europe

stra tegy : Teachlng-Strategy 1 
Taaehlng-Stralegy-2

Goal-2: European Countries
s trategy : Teachlng-Strategy-1

Goal-3: Size of Europe
stra tegy : Teachlng-Strategy-2 

Teachlng-Stretegy-1

Goal-4: European Mountains
s trategy : Teaehlng-8lratagy-S

Goal-5: European Seas
s trategy : Teachlng-Strategy S

Goal-6: European Rivers
s trategy : Teachlng-Slrategy-S

Student Europe Frame
Part-of: Student Continents Frame
Specialisation-of: Continent

Best: Teaching-Strategy-2 
Misconception: Country 

Part-of: Continents
Best: Teaching-Strategy-1 

Contries: UK, France, Germany 
Best: Teaching-Strategy-2 
Misconception: Turkey, Australia 

Seas:
Best:
Misconception: Red-Sea

\P o r t io n  from student knowledge

Portion from tutoring knowledge
Europe Frame
Specialisation-of: Continent 
Part-of: Continents
Contries: UK, France, Germany, Netherlands, Italy, Belgium, 
Size: x
Seas: Meditteranean, Adriatic, Aegian,...
Mountains: Alps, Olympos, Snowdonia,...

Portion from domain knowledge

Figure 4.2: Portions from the three Knowledge Bases

There are two ways to overcome this problem but they are also susceptible to problems. 

One is to attempt to mix knowledge parts but this would lead to information redundancy 

within the system, and the resulting knowledge bases would lose their identity as domain
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or student or tutoring knowledge. The other is to develop complex process models for 

inferencing with their equivalent knowledge, but this would require that the system 

performs inferences every time before making any kind of decision. These inferencing 

procedures would have to be performed not on selective parts of the knowledge 

representation but on the entire knowledge representation because of the knowledge’s 

hierarchical structure.

In addition, because such a system can only support hierarchical plans of action it would 

be inconceivable, for example, to establish a remedial plan of action through a hierarchical 

knowledge representation by pursuing non-hierarchical links. This conflicts with the third 

requirement which assumes that the system is able to follow alternative plans of action 

which have not necessarily been depicted by the instructional designer. For instance, with 

Figure 4.1 the basic didactic plan of action would be to traverse the tree of frames by 

inferring and following the implicit hierarchical links. Every frame would provide the 

context for a didactic episode. The only deviation from this hierarchical plan the system 

is able to offer, is basically a change in the mode of node traversal. This involves the 

system switching from forward chaining (breadth-first searching) to backward chaining 

(depth-first searching) and visit the same frames but in different order.

Such a change in the mode of node traversal does not constitute a change in viewpoint 

or generative behaviour. To have real alternative plans of action the inferencing 

mechanism must be able to explore hierarchical links and alternative links, that is non- 

hierarchical links, and establish or generate a plan of action which may not be entirely 

hierarchical. This conflicts with the fourth requirement: the system’s generative behaviour 

is considerably diminished because the system can only follow hierarchical plans of action
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as depicted by its knowledge structure. The fact that the system is not able to deviate from 

its hierarchical knowledge organisation when making an inference, lessens considerably 

its abilities as a generative system. The only form of generative behaviour stems from its 

hierarchical inferential abilities which does not result to an interesting combination of 

problems.

The second limitation of Knowledge Based Tutoring Systems is that for inferencing with 

a traditional knowledge representation to be successful, all available knowledge and any 

resulting knowledge combinations must all be made available to the inferencing 

mechanism prior to the interaction because during the course of interaction the system can 

only infer hierarchical relationships that are deducible from the knowledge structure. 

Therefore, the inferencing mechanism can only make strictly hierarchical decisions based 

on a complete knowledge structure.

The third limitation is that knowledge decomposition and organisation in the knowledge 

base takes place from a single viewpoint, and hence that the system can only impose that 

particular view of the domain (knowledge) on the system user. If the user wishes, or the 

systems infers directly or indirectly, that the viewpoint ought to change, then this assumes 

reorganising the knowledge base, a task which is far from possible to achieve during the 

course of interaction because it would involve breaking the hierarchical structure and 

constructing a new one from a different point of view. However, had the system included 

non-hierarchical links, the knowledge representation might be able to offer a number of 

alternative didactic plans of actions that would not necessarily assume reorganising the 

knowledge base because it would endow the system with generative behaviour.
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If a system needs to have encoded all knowledge that is required for making a decision 

because it cannot generate additional knowledge from its existing knowledge structure, 

and can only impose a single view then how, for instance, in Figure 4.3, can the system 

engage the user-leamer in a didactic episode where he is taught about those German­

speaking countries of Europe? To achieve this, it would either require the system to 

generate the knowledge for such a didactic episode and link this to existing knowledge 

via non-hierarchical links, or restructure the knowledge base from another viewpoint, that 

of language boundaries.

C entlnants
Q o n lrtu : UK, Franca, Qcrmany, SaHtzarland, Italy, AuaMa, ... 
S k a :  x \
S ^ :  Madh^^ranean, Adriatic, Aaglan,
M ountalna: A l|y , Olympoa, S now don ia ,...

'A u s tria  Frame 
Spaelallsatlon-ot; Country 
Part-of: Europe 
Capital: Vienna 
C ities: Vienna, S alzburg ,...
L anguages: Oermen 
M ountains: A lp s ,...
Rivers:
O ceans: 0 
Nelghbours-by-sea:
Nelghbours-by-land: Qermeny, Norway Germany Frame

S pedallsatlorvof: Country \
Part-of: Europe \
Capital: Berlin
Cities: Berlin, Hamburg, Hagen 
L anguages: German 
M ountains: A lp s ,...
Rivers:
O c e a n a :0 
N elghbours-by-sea:
Nelghbours-by-land: Switzerland, AuaMi Switzerland Frame

S pedailsatlon-of: Country
Part-of: Europe
Capllal: G eneva
a t i s s :  G eneva, Z u ric h ,...
Languages: G erm an, F rench , Italian
M ountains: A lp s ,...
Rivers:
O c e a n a :0
N alghbours-by-aaa:
N elghbours-by-land: F rance, Italy ,...

Figure 4.3: Alternative Viewpoints and Generative Behaviour

Finally, information linking with Knowledge Based Tutoring Systems is strictly and 

exclusively implicit. Therefore, in order for a system to establish relationships between 

parts in any of its knowledge representations, it has to perform reasoning. Furthermore, 

the same chain of reasoning will have to be performed over and over again every time the 

relationship has to be established. This adds to the complexity of the interconnectedness
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between related parts in the three knowledge representations. For instance, how can one 

directly describe the relationship between the knowledge of a student in the student model 

and its equivalent in the domain model? Or how can one depict the connection between 

a teaching goal and the relevant part in the domain knowledge representation?

Implicit-only information linking also adds to the complexity of the inference mechanism. 

Since the inferencing mechanism can only follow hierarchical links, the absence of 

explicit information links, especially non-hierarchical links, assume a very sophisticated 

inference mechanism in order to either follow or generate alternative plans of action not- 

defined by the knowledge hierarchical stmcture.

For instance, in Figure 4.4 below, how does one represent, first, that there is a 

misconception about Turkey in the Student Europe Frame other than by inserting the word 

Turkey in the Student Europe Frame, and second, what is the context of this 

misconception, and the relationship between this misconception and the Student Turkey 

Frame? Furthermore, how does one represent subset relationships, for instance, the Student 

UK Frame to the Student Europe Frame, and at the same time depict their relationship as 

a measure of the student’s level of mastery of this subset relationship as, for instance, an 

overlay statistic? Or furthermore how does one represent non-hierarchical relationships 

established in the student’s knowledge and at the same time provide a measure of the 

level of mastery of that relationship as an overlay statistic?

The evaluation of PROUST and micro-SEARCH in this Chapter unravelled four 

requirements about the interrelatedness and interconnectedness between the three 

knowledge models in order for a Knowledge Based Tutoring System to support a full-
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Figure 4.4: Representation of a portion of student knowledge

scale didactic operation:

[1]. The system incorporates domain, student and tutoring knowledge 

representations.

[2]. There are explicit and direct links within, and between related knowledge 

parts of, the three knowledge representations.

[3]. The links include both hierarchical and non-hierarchical links.

[4]. The system is able to generate additional domain knowledge from, and link 

this to, its existing domain knowledge representation.

However, these requirements yield a number of limitations with respect to the knowledge 

based systems approach to developing a tutoring system with a full-scale didactic 

operation:

149



[1], Knowledge decomposition, representation and inferencing is strictly 

hierarchical.

[2]. Knowledge decomposition and organisation is made from a single 

viewpoint which is then inflicted on the user. Reorganising a knowledge 

base from another viewpoint during the course of interaction is not 

currently feasible.

[3]. Reasoning requires that all necessary knowledge be made available to the 

inferencing mechanism prior to any interaction.

[4]. Lack of explicit information linking- all relationships are established 

through reasoning.

Explicit hierarchical and non-hierarchical information organisation and linking, and 

consequently generative ability, are considered to be the foremost advantages of hypertext 

[PiroUi, 1991]. Nevertheless, hypertext on its own does not constitute a framework for 

developing an Intelligent Tutoring System because it lacks the logical inferencing abilities 

of Artificial Intelligence [Bonar, 1991]. Chapter 5 presents various hybrid models that 

integrate logical inferencing techniques from Artificial Intelligence with information nodes 

and linking from hypertext, and proposes one such model that promises to overcome the 

limitations of Knowledge Based Tutoring Systems that were discussed in this chapter.
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CHAPTER 5: TOWARDS A HYBRH) MODEL OF ARTIFICIAL 

INTELLIGENCE AND HYPERTEXT

Recent research and development on Artificial Intelligence has focused on hybrid models 

that are made up of Artificial Intelligence and Hypertext [PiroUi, 1991]. Several attempts 

have been made to create such models, but aU these seem to have been made by 

individuals working in isolation and with no particular problem to solve in mind [Bonar,

1991]. These models utiUse hypertext’s information nodes and explicit hierarchical and 

non-hierarchical information linking abiUties with Artificial InteUigence’s logical 

inferencing techniques. None of these models have been specificaUy designed for 

Intelligent Tutoring Systems Development [Redfield and Steuck, 1991]. This Chapter 

briefly introduces hypertext, and then presents various such hybrid models, and proposes 

one such model. Hyperframes, that integrates Minsky’s Frames with Hypertext’s 

information nodes and links. The model is evaluated as a way to overcome the limitations 

of the Knowledge Based Tutoring Systems discussed in Chapter 4.

5.1 HYPERTEXT

[Please note that the term "hypertext" refers to hypertext the concept and the term "a 

hypertext" refers to a hypertext document].

A good way to understand hypertext is to read through the foUowing: "Imagine walking 

into a public library and picking up a book on Mozart. You begin to read and learn that 

Mozart was an Austrian composer in the late 1700s. You wonder what else was happening 

in Austria then, so you go to the card catalogue, find a book on Austrian history, go to 

the stacks, locate the volume, and read it before you continue. In this last book, you find
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a reference to Salzburg, and you wonder what it looked like. Back to the card catalogue, 

and the stacks, to find a book with images from that time. Finally, you get back to Mozart 

and read of a piano concerto you have never heard. This time you head for the library’s 

record collection and listening room. This process continues until you have either satisfied 

your desire for knowledge on the subject or worn yourself out searching for it.

Now imagine sitting at your computer and bringing up an electronic text system on music. 

You begin to read about Mozart. When you wonder about Austrian history, you simply 

highlight the text and request more information with a mouse click or a few keystrokes. 

To find images of old Salzburg, you use the same process. And to hear the piano 

concerto? The same. The only restriction to this seemingly endless fountain of knowledge 

is that the author of this electronic text system had to establish the connections for you 

to follow and provide the additional knowledge for you to retrieve." [Byte, 1988].

Another way to define hypertext is to contrast it with traditional text. Traditional fiat text 

binds us to writing and reading chunks of text (i.e. paragraphs), in a linear sequence since 

all traditional text is sequential. This means that [Nielsen, 1990a] there is a single linear 

sequence defining the order in which the text is to be read. There are tricks for signalling 

branching in the flow of thought when necessary: parenthetical comments, footnotes, 

intersectional references, bibliographic references, and sidebars. All these tricks allow the 

author to say "here is a related thought, in case you are interested". There are also many 

rhetorical devices for indicating that ideas belong together as a set but are being presented 

in linear sequence. But these are rough tools at best and often do not provide the degree 

of precision or the speed and convenience of access that we would like.
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Conklin [1987] argues that hypertext allows and even encourages the writer to make such 

references, and allows the readers to make their own decisions about which links to follow 

and in what order. Therefore, hypertext eases the restrictions on the thinker and the writer. 

Hypertext does not force a strict decision about whether any given idea is either within 

the flow of a paper’s stream of thought or outside of it. Hypertext also allows annotations 

on a text to be saved separately from the reference document, yet still be tightly bound 

to the referent Begoray [1990] argues that hypertext is nonsequential, meaning that there 

is no single order in which the text is to be read. Figure 5.1 is an example of a hypertext 

document.

Figure 5.1: A Hypertext structure with six nodes and nine links

Hypertext presents several different options to the readers and the individual reader 

determines which of them to follow at the time of reading the text. This means that the 

author of the text has set up a number of alternatives for readers to explore rather than 

a single stream of information [Smith and Weiss, 1988].

153



Both Conklin [1987] and Nielsen [1990b] argue that much of hypertext’s power is due 

to its linkedness, that is, the machine processible links between textual information which 

extend the text beyond the single dimension of linear flow, and its nodedness, that is the 

machine processible nodes of information which the hypertext user may use to build 

flexible networks which model a problem or solution. The information nodes may be 

[Frisse, 1988] objects relating to real-world objects, textual information, icons, etc. The 

links form the "glue" that holds the nodes together, but the emphasis with hypertext is or 

should be on the contents of the nodes. Hypertext nodes are normally illustrated as 

computer screens but they can also be scrolling windows, files, or smaller fragments of 

information [Begeman and Conklin, 1988], e.g. GUIDE III. The number of links is 

normally not fixed in advance but wdl depend on the content of each node. Some nodes 

are related to many others and will therefore have many links, while other nodes serve 

only as destinations for links but have no outgoing links of their own.

Figure 5.1 shows that the entire hypertext structure forms a network of nodes and links. 

Readers move about this network in an activity that is often referred to as browsing or 

navigating rather than reading, to emphasise that users must actively determine the order 

in which they read the nodes. For instance, if the hypertext-reader is going through 

document A then when he arrives at the point in the hypertext where there is a reference 

and a link to document B, he may follow this link and jump to document B without 

necessarily having finished document A. While in document B he can follow the link to 

document E, then to D, etc.

Thus hypertext can be defined as the computer supported, non-linear viewing of 

information where the reader or browser of the hypertext chooses what information to
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view [Smeaton, 1991]. A hypertext information space is made up of a number of 

fragments or nodes of information in which each node represents independent and 

autonomous pieces of information assembled into a network of nodes and links [ScuUey, 

1989]. Normally, the hypertext reader sees only the current node. It is normally impossible 

to draw a graphic representation of the entire hypertext on a computer screen since a 

typical hypertext may contain numerous nodes. Normally, the hypertext network is 

displayed, if at all, for the local neighbourhood surrounding the user’s current location.

The "information" content of a hypertext document is greater than the sum of the 

information in all nodes as nodes are linked together via specially authored information 

links [Fiderio, 1988]. Links can be uni-directional or bi-directional. A given node can 

point to any number of other nodes, or none at all. The information links from a node 

represent pointers to related information and this binds or cements the whole information 

space together. By acting as the binding, the links themselves are an information resource. 

Nielsen [1990b] claims that nearly all hypertext systems are limited to providing one- 

directional links which means that the system can only show the user the links that have 

the current node as their departure point but not the ones that have it as their arrival point. 

This means that the system will tell a user where he can go next but not in what 

alternative ways he might have arrived at where he is now.

A user reads a hypertext document by doing a simple search on the contents of the nodes, 

often a string search or a search for boolean combination of word occurrences [Han et al,

1992]. This provides a node or a set of nodes which are a starting location for browsing 

and effectively jumps the user into the hypertext [Foss, 1989]. From then on the user is 

completely in control of the information being presented and can browse around the
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information space, freely following information links until he feels his original information 

needs have been satisfied.

Hypertext as a way of organising information has found numerous application areas 

[Nielsen, 1990a]. These include on-line manuals, education and computer-aided 

instruction, software engineering, computer-supported cooperative work, reference 

materials such as dictionaries and encyclopedias, etc. Often users are used to having vague 

information requirements, and to want to use a hypertext to explore the relationships 

between concepts which would have to be presented using conventional teaching in a 

linear fashion. By exploring or browsing a hypertext document, students can discover 

concepts, and how concepts are related, in the order that interests them. At other times, 

student-users may be precise in their requirements when seeking information from specific 

areas of the hypertext where they want to clarify their understanding of some concepts or 

of some concept relationships. Sometimes they want to get some comprehension of an 

overall picture of information from a hypertext when they would have a vague 

information need. The point here is that end users who use a hypertext for educational 

purposes have many types of information requirements corresponding to the many stages 

of learning.

Hypertext has been identified as a useful method of organising and manipulating 

information [Smeaton, 1991]. Information links can reflect either hierarchical or non- 

hierarchical structure of information. Other information links may represent semantic 

connections between nodes with similar contents. Retrieving information from hypertext 

is achieved through the various hypertext links, be it semantic links or simply structural 

links, by using information retrieval techniques.
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To date there are no agreed-upon principles as to what actually makes a good hypertext 

document, in other words, what makes well-authored information links and node contents. 

However, there are a number of key attributes that seem to be necessary for hypertext 

usage to be useful to a population of users. Shneiderman and Kearsley [1989] have 

proposed what they call the three golden rules of hypertext;

[1]. A large body of information is organised into numerous fragments.

[2]. The fragments relate to each other.

[3]. The user needs only a small fraction at any time.

Once a hypertext has been developed, there are usually more problems encountered with 

actually using it. There is the cognitive effort required from users as they actually browse 

the hypertext. Related to this is the problem of disorientation. Since each node in the 

hypertext offers a number of possible directions in which to go by following given 

information links, users have to make a choice of direction. Often, they may wish to go 

in two or more directions from the same node, so they must choose one direction and 

remember to come back and follow other information links at a later stage. A hypertext- 

user may follow links taking him in a full circle that may result in re-visiting a node 

already viewed. All these may cause confusion to the hypertext-users who must try and 

maintain a cognitive map or picture of where they are in terms of the overall hypertext, 

where they have been, where they want to go next and at the same time assimilate the 

information presented as well.

A popular method that hypertext authors use to help the hypertext-users with navigation 

in browsing is to create guided tours or specially authored paths or recommended routes
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through the hypertext. These have the advantage that the readers of the hypertext can 

follow the authored route if they desire, and leave the route to return later if a node not 

on the recommended tour looks interesting. The disadvantage of the static authored tour 

is that it cannot cater for dynamic individual hypertext-user needs. The author of the 

hypertext is supposing or guessing at the reader’s information needs. Satisfying a specific 

type of information need which is pre-defined in nature, can be done by authored guided 

tours but it is not the answer for users who have a vague information need or who want 

to get more of an overview of information.

For a hypertext-user who has an information need which is not satisfiable by a guided 

tour and who does not want to wander and browse around the hypertext information space 

but, nevertheless, wants to be guided in some way, a hypertext system should be able to 

provide explicit retrieval of explicit information from the hypertext while still preserving 

the browsing facility in some way.

5.1.1 A Hypertext Architecture

As Conklin [1987] and Nielsen [1990a] argue, although hypertext is both a database 

method providing a novel way of directly accessing data and a knowledge representation 

scheme, a kind of semantic network which mixes informal textual material with more 

formal and mechanised operations and processes, hypertext is fundamentally different 

from traditional databases from a user perspective. A normal database has an extremely 

regular structure defined by a high-level data definition language. All of the data follow 

this single structure where all the records have the same fields. In contrast, a hypertext 

information base has no central definition and no regular structure. Some of the nodes 

may be very extensive, with large amounts of information, and some of the nodes narrow
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with very small amounts of information. Furthermore, the links are put in because it 

makes sense in terms of the semantic contents of the nodes they connect and not because 

of some global decision. In addition, they argue that hypertext is an interface modality 

that features control buttons (link icons) which can be arbitrarily embedded within the 

content material by the hypertext user. As Conklin [1987] suggests, all these are 

metaphors for a functionality that is an essential union of all three. Nielsen [1990a] argues 

that in theory one can distinguish three levels in a hypertext system:

[1]. Presentation Level: user interface.

[2]. Hypertext Abstract Machine (HAM) Level: nodes and links.

[3]. Database level: storage, shared data, and networked access.

However, he goes on to suggest that no current hypertext system follows this model in 

its internal structure because they are a confused mix of features. This serves for 

providing a standard. The existence of this architecture wül be assumed later in this 

Chapter but the precise functionality suggested by this architecture is beyond the scope 

of this thesis.

The database is at the bottom of the three-level model and deals with all the traditional 

issues of information storage that do not really have anything specifically to do with 

hypertext. It is necessary to store large amounts of information on various computer 

storage devices like hard disks, optical disks, etc. and it may be necessary to keep some 

of the information stored on remote servers accessed through a network. No matter how 

the information is stored it should be possible to retrieve a specified small chunk of it in 

a very short time. As Nielsen [1990a] claims, this is no different from a specification for
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a database. The database level should also handle other traditional database issues like 

multi-user access to the information and various security considerations, including backup. 

It will be the database level’s responsibility to enforce the access controls which may be 

defined at the upper levels of the architecture. As far as the database is concerned, the 

hypertext nodes and links are just data objects with no particular meaning. Each of them 

forms a unit that only the user can view and modify at the same time and that takes up 

so many bits of storage space. A database level which has more information about its data 

objects is able to manage its storage space more efficiently and may be able to provide 

a faster response.

The HAM lies between the database and user interface levels. At this level hypertext 

determines the basic nature of its nodes and links and it maintains the relations among 

them. The HAM would have knowledge of the form of the nodes and links, and would 

also know what attributes were related to each, for instance, the node owner attribute or 

the last upgrade attribute. Links may be typed (i.e. they are textual), or may be plain 

pointers (i.e. they inform the user of the existence of a link). The HAM could serve for 

standardisation of import-export formats for information interchange in hypertexts since 

the database level has to be heavily machine-dependent in its storage format and the user 

interface level is different from one hypertext system to the next [Campbell and Goodman, 

1988]. This would be particularly useful for interchanging hypertexts, which is more 

difficult than interchanging the component data in the nodes, since it also involves the 

transfer of linking information.

The User Interface level deals with the presentation of the information in the HAM, 

including such issues as what commands should be made available to the user, how to
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show nodes and links, and whether to include overview diagrams or not. The HAM level 

defines the links as being typed or simply being plain. The user interface level might 

decide not to display that information at all to some novice users, and to make typing 

information available only in an authoring mode, that is in a mode that allows the user 

to input his own information.

The distinction between reading and writing is one of the basic user interface issues. If 

the user interface level is to display the link typing to the user then it may introduce 

special notation for various forms for anchors, it may display an overview diagram, use 

different colours, etc. Nevertheless, this decision cannot be made at the user interface level 

without considering the likely form of the data in the HAM level. Icons could support 

hypertexts with more link types but a hypertext with hundreds of links types would 

probably require the use of the type names in the interface.

5.1.2 Hypertext Nodes

Conklin [1987] argues that although the power of hypertext lies in its machine-supported 

links, hypertext nodes also contribute to defining the operations that a hypertext system 

can perform. Nielsen [1990b] argues that nodes are the fundamental unit of hypertext but 

there is no agreement as to what constitutes a node. Hypertext nodes express a single 

concept or idea, hence they are much smaller than traditional files. Consequently hypertext 

introduces an intermediate level of machine support between characters and files, a level 

which has the vaguely semantic aspect of being oriented to the expression of ideas.

Hypertext invites the writer to modularise ideas into units in a way that allows, firstly, an 

individual idea to be referenced elsewhere and, secondly, alternative successors of a unit
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to be offered to the reader, for instance, further details, examples, bibliographic references, 

or the ‘logical’ successor. Normally, a hypertext node tends to be a strict unit which does 

not necessarily bear any kind of relationship with its neighbour nodes. The boundaries 

around nodes are always discrete and require sometimes difficult judgements about how 

to break the subject matter into suitable chunks. The process of building a semantic unit, 

such as an idea or a concept, with a syntactic unit such as a text paragraph or a hypertext 

node is a characteristic of hypertext.

Hypertext can enforce information hiding [Smeaton, 1991]. Sometimes the only clue a 

hypertext user has about the contents of a destination node is the name of the link or the 

name of the node. The hypertext author no longer makes all the decisions about the flow 

of the text; the reader continuously decides which links to follow. Since both the author 

and the reader have the option of branching in the flow of text, they both have to be 

process aware. Consequently, hypertext is suited for applications which require these kinds 

of judgements since it offers a way by which to act directly on these judgements and see 

the results quickly and graphically.

Hypertext supports reifying the expression of ideas into discrete objects that can be linked, 

moved and changed as independent entities. This offers enhanced retrieval and recognition 

because, to a much greater degree, abstract objects are directly associated with perceptual 

objects, like the windows and icons on the screen. Hypertext nodes that express individual 

ideas provide a vehicle which supports people’s thinking and working in terms of ideas, 

facts, and evidence. According to Conklin [1987] there are four types of information 

nodes: Typed, Semistructured, Composite, and Computed nodes.
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Typed nodes are "free text" nodes containing textual information. This kind of node can 

be extremely useful, particularly if one is considering giving them some internal structure, 

since different kinds of nodes may be used to differentiate the various structural forms. 

Typed nodes can be used almost for everything: to record Notes  ̂ to denote goals and 

constraints, to represent artifacts, to record decisions.

Semistructured nodes are nodes which contain labelled fields and spaces for field values. 

They are very similar to records in the Pascal programming language. Therefore, this kind 

of node is not the structureless blank state into which one may place a word, sentence or 

a whole document. The purpose of providing a template for node contents is to assist the 

user in being complete and to assist the computer in processing the nodes. The less that 

the content of a node is undifferentiated natural language text, the more likely is that the 

computer can do some kinds of limited processing and inference on the textual sublinks. 

Some information elements must always occur together, while others may occur together 

or not, depending on how related they are in a given context and how important is to 

present them as distinct from surrounding information elements. Nevertheless, an 

information element that is atomic at one level may contain many components some of 

which are clustered together.

Composite nodes are used for aggregating related information in hypertext. Several 

hypertext nodes are affixed together and the collection is treated as a single node, with 

its own name, types, versions, etc. A composite node may be a collection of typed or 

semi-structured nodes or a collection of both. Composite nodes are most useful for 

situations in which separate items in a list or entries in a table are distinct nodes but also 

cohere into a higher level stmcture such as a list or table. A composite node allows a
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group of nodes to be treated as a single node. The composite node can be moved and 

resized and attached to a suitable icon reflecting its contents. The subnodes are separable 

and rearrangeable. The most flexible means of displaying a composite node is to use a 

constraint language which describes the subnodes as panes in the composite node window 

and specifies the interpane relationships as dynamic constraints on size and configuration. 

Composite nodes can be effective means of managing the problem of having a large 

number of named objects in a computer environment. Nevertheless, Conklin [1987] argues 

that as the member nodes grows and change, the aggregation may become misleading or 

incorrect.

Computed nodes are only available in computational hypertext systems with an embedded 

programming language. Such nodes are generated for the reader by the system. These may 

be typed, semi-structured or composite nodes.

5.1.3 Hypertext Links

The most distinguishing characteristic of hypertext is its machine support for the tracing 

of references. The issues here are, first, what constitutes a particular reference-tracing 

device as a link and, second, how much effort is permissible on the part of a user who 

is attempting to trace a reference. To qualify as hypertext, the system interface must 

provide links which move the user quickly and easily to a new place in the hyperspace.

An essential characteristic of hypertext is the speed with which the system responds to 

referencing requests. Often the reader does not know if he wants to pursue a link 

reference until he has had a cursory look at the referenced node. Sometimes, not all link 

traversals can be instantaneous. Providing cues to the user about the possible delay that
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a given query or traversal might entail is important. For instance, some visual feature of 

the link icon could indicate whether the destination node is in memory or on the disk, 

somewhere else on the network or archived offline. As Nielsen [1990b] argues hypertext 

links are frequently associated with specific parts of the nodes they connect rather than 

with the nodes as a whole. As illustrated in Figure 5.1 links are anchored at specific 

locations in the departure node while their destinations are the entire arrival node. Links 

provide the user with some explicit object to activate in order to follow the link. This 

anchoring takes the form of embedded menus where part of the primary text or graphics 

does double duty as being both information in itself and being the link anchor.

Links can be used for several functions [Conklin, 1987]. They can connect a document 

reference to the document itself, they can connect a comment or annotation to the text 

about which it is written, they can provide organisational information (for instance, 

establish the relationship between two pieces of text or between a table of contents entry 

and its section), they can connect two successive pieces of text, or a piece of text and all 

of its immediate successors, they can connect entries in a table or figure to longer 

descriptions, or to other tables or figures.

Links are explicit [Nielsen, 1990a] since they have been defined by someone to connect 

the departure node with the arrival node. Some hypertext systems also provide implicit 

links which are not defined as such but follow from various properties of the information. 

A hypertext system should make clear to the user why the destination for a link was an 

interesting place to jump to by relating it to the point of departure and following a set of 

conventions for the process of arrival. This calls for cues and conventions in hypertext 

notation.
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Links have names and types. They can have a rich set of properties. Some systems allow 

the display of links to be turned on and off (that is, removed from the display so that the 

document appears as ordinary text). Hypertext links assume a set of mechanisms for 

creating new links, deleting links, changing links names or attributes, listing links, etc. 

Bielawski and Lewand [1991] argue that hypertext information links can be defined from 

a conceptual point of view or from a functional point of view. Although many taxonomies 

have been proposed for labelling functional linkSy there are two types of dominant 

functional links [Nielsen, 1990a]: Associative or referential links and annotations. With 

respect to conceptual links, there is one type of dominant conceptual link [Nielsen, 

1990a]: organisational links. Some additional forms of hypertext information linking is 

by computation, and by keyword.

Organisational links differ from referential links (see below) in that they connect 

explicitly hierarchical information. They connect a parent node with its children and thus 

form a strict tree subgraph within the hypertext network graph. They correspond to the 

hierarchical ISA links of Semantic Networks. By being configured as a Semantic Network, 

hypertext defines a set of possible relationships between the units of information contained 

in the system. Having established organisational links in the hypertext, the functional 

dimension of these links may then be considered.

Associative/Referential links connect non-hierarchical information. Referential links are 

the kind of link that most clearly distinguishes hypertext. They generally have two ends, 

and are usually directed. The origination of the link is called the link source, the link 

source node is called the anchor node or the departure node and usually acts as the 

reference. The source can logically be either a single point or a region of text. At the
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other end, the destination node of the link is called the arrival node and it usually 

functions as the referent and can also be either a link point or a link region. A link point 

is some icon indicating the presence of the link. It usually shows the link’s name and 

perhaps also its type. Or it may show the name and or type of the destination node. 

Sometimes, the display of links can be suppressed, so that the document appears linear. 

A link region is a set of contiguous characters which is displayed as a single unit, 

normally, an entire node of text and or graphics. This suggests that a chunk of text, the 

link region, can be referenced by a smaller chunk, for example, a sentence or even a 

word. Normally, the link region does not show the name of the link unless it is an entire 

node in which case the name of the node is displayed.

Annotations is a special link type which points to a small additional amount of 

information. The reading of an annotation typically takes the form of a temporary 

excursion from the primary material to which the reader returns after having finished with 

the annotation. Annotative links establish a part-to-whole relationship between units of 

information. Hypertext annotations are less intrusive because they may not be necessarily 

shown unless the reader asks for them. Many hypertext systems allow readers to add new 

annotations to the primary material even when they do not allow the reader to change the 

original nodes and links. Readers can use these facilities to customise the information 

space to their own needs.

Computed links are determined by the system while the hypertext-user is reading through 

the hyperdocument instead of being statically determined in advance by the author.

Keyword links occurs through the use of keywords. Hypertext entails mechanisms for
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allowing scanning of their content in search of selected keywords which can apply to 

nodes, links or regions or for arbitrary embedded strings. Link following and searching 

are similar. Each is a way to access destination nodes that are of possible interest. Link 

following usually yields a single node, whereas search can yield many. This makes a 

keyword link a kind of computed link.

SuperLinks cormect a large number of nodes. There are several ways for dealing with 

having a single anchor connected to several destinations: show a menu of the links, go to 

all the destinations at the same time, or have the system choose for the user in some way 

based on the system’s model of the user or simply by making a random decision.

Cluster Links can connect more than two nodes. Cluster links can be useful for referring 

to several annotations with a single link and for providing specialised organisational 

structures among nodes. One useful way to extend the basic link is to place attribute-value 

pairs on links and to query the network for them. Coupled with specialised routines, 

attributes lists allow the users to customise links in several ways, including devising their 

own type system for links and performing high-speed queries on the types. It is also 

possible to associate procedural attachments with a link so that traversing the link also 

performs some user-specified side-effect, such as customising the appearance of the 

destination node.

On the question of how sufficient hierarchical structures are, the answer is that they 

appear to be the most natural structures for organising different levels of abstraction which 

is a fundamental cognitive process. However, there may be cases where cross-hierarchical 

structures are required. For strictly tree-oriented hypertext navigation is very simple: from
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any node, the most one can do is to go to the parent, a sibling or a child. This diminishes 

the disorientation problem because of the simpler cognitive model of the information 

space. However, there may be cases where information elements need to be structured into 

multiple, interlinked hierarchies which hypertext can support with either hierarchical or 

non-hierarchical information links or with both.

5.1.4 Navigating through Hypertext

As Nielsen [1990a] explains there have been many approaches to navigation through a 

hyperspace. The simplest approach for navigation is to provide guided tours through the 

hypertext. A guided tour may be thought of as a superlink that connects a string of nodes 

instead of just two nodes. As long as users stay on the guided tour, they can just issue a 

next node command to see further information. With guided tours the reader can leave the 

guided tour at any spot and continue browsing along any other links that seem interesting. 

When the reader wants to get back on the tour, it suffices to issue a single command to 

be taken back to the point where the tour was suspended. Even though guided tours 

provide the option of side trips, they cannot serve as the only navigation facility since the 

purpose of hypertext is to provide an open exploratory information environment for the 

reader.

Another navigation facility is the backtrack, which takes the user back to the previous 

node. The great advantage of backtracking is that it serves as a lifeline for the user who 

can do anything in the hypertext and still be certain to be able to get back to familiar 

territory by using the backtrack. Backtracking is an essential for hypertext and it must 

always be activated in the same way. Furthermore, it should, in principle, be possible for 

the user to backtrack enough steps to be returned back to the very first node.
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There have been other general ‘history’ mechanisms than the simple backtrack 

[Marchionini and Shneiderman, 1988]. The History list allows the users direct access to 

any previously visited node. Since users may want to return to nodes they have visited 

recently, it is also possible to use a visual cache where a small number of nodes are kept 

visible on the primary screen either by using icons or by simply displaying the names of 

the nodes.

Alternatively Hypertext may allow users to define bookmarks at nodes they may want 

to return to later. The difference between bookmarks and history lists is that a node gets 

put on the bookmark list only if the user believes that there might be a later need to return 

to it. A bookmark list is smaller and more manageable. However, it will not include 

everything of relevance. When the user defines a bookmark, the system may put the 

node’s name on the bookmark list or it may prompt the user for a small text to remember 

the node by. Bookmarks would allow the user to resume the session with a hypertext 

system after an interruption and keep the state of the hypertext unchanged.

Hypertext may put overview maps at the disposal of the reader in order to ease 

navigation since the readers are expected to find their own way around the hyperspace. 

Since the information space will normally be too large for every node and link to be 

shown on a single map, a hypertext system may provide overview diagrams to show 

various levels of detail or provide in and out zooms to allow the users to see more or 

less detail.

Alternatively a hypertext system may provide a fisheye view and show the entire 

information space on a single overview diagram but in varying levels of detail. A fisheye
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view shows a great detail for those parts that are progressively further away. A fisheye 

view requires to being able to estimate the distance between a given location and the 

reader’s current focus of interest and to be able to display the information at several levels 

of details. These conditions are easily met for hierarchical structures but they are harder 

to meet for non-hierarchical ones. Overview diagrams in general serve to help users 

understand their current location and their own movements by usually displaying the 

reader’s footprints on the map to indicate both the current location and the previous ones.

Another navigation facility is the use of landmarks in the form of predominant nodes that 

denote special regions in the information space which may stand out in the overview 

diagram. It may be made possible for the hypertext system to define landmarks 

automatically by the use of connectivity measures but normally landmarks is the work of 

the hypertext author.

Another example of structured hypertext mechanisms is the use of link inheritance to 

allow simplified views of an information space without having to show all the links. In 

Figure 5.2, link inheritance replaces the individual links between nodes in an overview 

diagram with lines connecting clusters of nodes, thus simplifying considerably the 

diagram.

In general, there are two navigational dimensions: backward and forward moves among 

a given node and hypertext jumps. Moving back and forth within a node is seen as a 

linear left-right dimension like orthogonal left-right page turning while reading a book.

A search for information in hyperspace may be performed purely by navigation but this
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7

igure 5.2: Link inheritance with structured Hypertext

is only best for information spaces that are small enough to be covered exhaustively and 

familiar enough to the readers to let them find their way around. Some hypertext systems 

make it possible for the user to have the computer find things through various search 

mechanisms. The simplest query principle is the full text search which finds the 

occurrences of words specified by the user. Some hypertext systems simply take the user 

to the first occurrence of the search term and some display a menu of the hits. Some 

hypertext systems integrate the search results with the overview diagram by highlighting 

those nodes that contain "hits". Some hypertext systems take this further by constructing 

a fisheye view since the number of hits in a given region of the information space would 

indicate how interesting that region might be to the user.

Some hypertext systems incorporate some sophisticated methods from the field of 

information retrieval [Smithson, 1991]. In a case where we have a hypertext available
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in which the links have already been constructed, one should be able to utilise the 

information inherent in the linking structure to perform more semantically meaningful 

searches than just plain full text searches. If a node matches a search, then one should 

also assign a higher score for the other nodes it is linked to, since the belief that the 

connected nodes are related justifies the propagation of scores among them Nielsen 

[1990a] suggests that one way of calculating this score is by assigning the final search 

result for a node as the sum of the number of hits in the node itself- the intrinsic score- 

and some weighted average of the scores for the nodes it is linked to- the extrinsic score.

Query mechanisms can also be used to filter the hypertext so that only relevant links are 

made active and only relevant nodes are shown in overview diagrams which yields in 

much more navigable sub-hypertext. Finally, it could also be possible to filter a hypertext 

based on relevance feedback from other users in a kind of voting filter. Hypertext 

readers may choose only to see hypertext elements judged relevant by many previous 

readers.

5.2 HYBRID MODELS OF ARTIFICIAL INTELLIGENCE AND HYPERTEXT

Halasz [1988] argues that research into the next generation of hypertext systems must 

address seven key issues which, he argues, are the major weaknesses of current hypertext 

systems. These seven items are. Search and Query, Composition, Virtual Structure, 

Computation, Versioning, Collaborative Support, and Extensibility and Tailorability. 

Halasz [1988] foresaw that these needs could be best met by adding some "intelligence" 

to hypertext. He claimed that hypertext and Intelligent Knowledge Based Systems would 

be a "natural fit". There have been several attempts towards integrating Artificial 

Intelligence features into hypertext and vice versa but it appears that most of these have
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been the product of an individual’s research and development within a single project, 

which often lead to conflicting views. Consequently, there is lack of consensus among 

members of both research communities about any potential integration of hypertext into 

Artificial Intelligence systems and vice versa.

Woodhead [1991] claims that in Artificial Intelligence systems decision making in a 

dynamic context rests with the system rather than the user. This results in a context- 

sensitive guidance by the system as opposed to the undirected navigation or browsing by 

the user in hypertext. On the other hand, in hypertext systems decision making in a 

dynamic context rests with the user who must make the decision about which node to visit 

next. Artificial Intelligence systems cannot use the real-world knowledge which their users 

have, thus their decisions will only be valid for specific structured information, governed 

by a set of rules which depict their machine intelligence. With hypertext systems, on the 

other hand, strategic decision making rests with users and this process is governed by the 

user’s human intelligence. However, as the amount of available hypertext information 

increases, there will be an ever increasing need for additional means to reduce the 

apparent complexity to manageable presentation of information, to orientate and to 

navigate.

Bielawski and Lewand [1991] claim that the critical features of Artificial Intelligence to 

take into account when considering the integration of Hypertext and Artificial Intelligence, 

are knowledge representation, inferencing, and nonlinear association of information. They 

claim that neither Artificial Intelligence or hypertext alone are sufficient to integrate these 

functions efficiently. Artificial Intelligence and hypertext systems may have a synergistic 

relationship whereby they combine structure, control, knowledge representation.
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inferencing capability and problem-solving with flexible non-linear access to information 

and conceptual relationships and program navigation.

Information (or knowledge) in an Artificial Intelligence system is coded in a machine- 

readable knowledge base and requires the assistance of the knowledge engineer for 

updates. A hypertext is under the control of the user who can customise it by adding links 

and annotations. Rada [1991] argues that one way to integrate Artificial Intelligence 

capabilities in hypertext systems is to embed knowledge in links and to allow these links 

to trigger arbitrary computations. By doing so, he claims, human expertise is integrated 

into the system.

Diaper and Rada [1991] suggest where there is a certain degree of complementarity 

between hypertext and Artificial Intelligence. The differences between the use of semantic 

networks to support knowledge representation in Artificial Intelligence systems, and as a 

model of documents in hypertext lie in the nature of what constitutes the node content and 

in the properties of the labelling relations, that is the links. The nodes are semantically 

rich in hypertext since they are basically natural language text and relatively drained in 

Artificial Intelligence systems because the nodes contain a formal knowledge specification, 

for instance, as rules or semantic networks. The problem with Artificial Intelligence 

systems is that they are domain knowledge restricted. In contrast, the links are (implicitly) 

specified for Artificial Intelligence systems whereas they are virtually unspecified 

semantically in hypertext. The problem of hypertext links is that they are very rich in 

meaning and as such they may not be very well received by the reader.

In contrast to Artificial Intelligence, hypertext specifies default paths for navigating
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through information, but much of the decision making is left to the user. The 

representation is not structured enough to be interpreted by a machine rule base alone. 

However, an Artificial Intelligence system’s structure is no more rigid than that of a 

hypertext to support hypertext-like interrogation of the knowledge base. Artificial 

Intelligence systems are usually required to provide explanations of their recommendations 

to users. Interrogation of the Artificial Intelligence system by the user is quite similar to 

browsing. Directionality in the hypertext system is more arbitrary. At each node in the 

hypertext system, information is linearly structured as flat text. The textual and graphic 

forms used in hypertext are typically more familiar to end users than the internal 

representations used by the Artificial Intelligence system. In addition, there is a non-linear 

structure of document links. The contrast between primary purposes of hypertext and 

Artificial Intelligence systems is given in the table below.

System Primary Purpose

Artificial Intelligence system Symbolic Reasoning 

(limited or expensive explanations)

Hypertext Symbolic Annotation 

(limited or expensive calculation)

The provision of both facilities can be complementary, without becoming redundant 

argues Garg and Scacchi [1989]. Artificial Intelligence provide the means to proceduralise, 

to control. There are many domains where the necessary or available knowledge is so 

great in quantity, or complexity, that is not feasible for humans to make effective 

decisions. Providing Artificial Intelligence systems functionality either in the form of 

automated reasoning strategies or in the form heuristics, can make these domains tractable.
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Hypertext, in turn, allows freedom to the user to explore beyond the rather narrow 

channels of rule-based information. In the remainder of this section several of the 

proposed hybrid models of Artificial Intelligence systems and Hypertext are presented.

5.2.1 Hypertext and Semantic Networks

A Semantic Network consists of nodes interconnected by various kinds of associative 

links. Links from one concept node point to other concepts which collectively form a 

definition of the original concept. These concepts are formal objects used to represent 

objects, attributes and relationships of the domain being modelled. A concept normally 

represents an intensional object and no concepts are used to represent directly extensional 

objects. Generic concepts represent classes of individuals by describing stereotypical 

members of the class and individual concepts are represented by relationships to more 

general concepts. Objects in the world have complex relational structure and thus they 

cannot be usefully taken as atomic entities or mere lists of properties. A concept must 

therefore account for this internal structure as well as for the object as a holistic entity. 

An intersection search is conducted as a spreading activation, breadth-first search of the 

nodes surrounding two concepts. The search spreads out by following links from the 

original two concept nodes until a point of intersection is found between the two concept 

nodes. The resulting path would indicate a potential relationship between these two 

concepts. Thus implicit relationships may be inferred from the explicit defined network.

Conklin [1987] suggests that building a directed graph of informal textual elements is 

similar to the Artificial Intelligence concept of semantic networks. Jonassen [1990] argues 

that a hypertext engine is primarily associative, enabling users to navigate through an 

associative network of ideas. The types of relationships denoted by the link structures may
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vary, though typically they are based upon associative relationships between the two nodes 

that they are connecting. Jonassen [1990] claims that hypertext structures are able to 

represent knowledge declaratively.

However, as Conklin [1987] suggests, what distinguishes a semantic network as a 

knowledge representation scheme is that concepts in the representation are indexed by 

their semantic content rather than by some arbitrary ordering as happens with hypertext. 

One benefit of semantic networks is that they are natural to use, since related concepts 

tend to cluster together in the network. In addition to this, an incompletely or 

inconsistently defined concept is easy to locate since a meaningful context is provided by 

those neighbouring concepts to which is linked. Woodhead [1991] claims that hypertext 

tends to have a relatively sparse control stmcture, and less density of attributes than 

semantic networks.

The analogy to hypertext is as follows: Hypertext nodes can be thought of as representing 

single concepts or ideas, intemode links as representing the semantic interdependencies 

among these ideas, and the process of building a hypertext network as a kind of informal 

knowledge engineering. The difference [Schlumberger, 1989] is that Artificial Intelligence 

Knowledge Engineers are usually striving to build representations which can be 

mechanically interpreted, whereas the goal with the hypertext is to capture a collection 

of ideas without regard to their machine interpretability.

The computer can exploit the pattern of links in a hypertext and give the user different 

perspectives on the hypertext. The user may express an interest in causes and the system 

would organise information so as to emphasise the causal links. Rada [1991] also claims
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that the nodes and links of hypertext may be viewed as a semantic network. A link 

attributes meaning to the pair of nodes it connects, and a node may have more than one 

meaning, when it participates in relations of different types. Inheritance properties along 

hierarchical links and spreading activation in a semantic network, would both take 

advantage of hypertext’s semantic network-like structure.

5.2.2 Hypertext and Minsky’s Frames

Frames [Minsky, 1986] are formal models of knowledge representation which have a 

degree of psychological appeal as metaphors for reducing semantic complexity. Semantics 

is the key word; content nodes are the main features and the closer the similarities 

between nodes, the greater the physical proximity between them in the frames network. 

The nodes in this generalised structure of a semantic network are organised hierarchically 

so that properties can be inherited by nodes lower in the hierarchy. Nodes in the network 

of frames are linked by typed arcs but individual nodes have attribute slots at each node. 

These hold default values at their creation, or they may be instantiated with specific 

occurrence values or they may have executable procedures or methods attached to them, 

which are tested whenever a value is accessed or changed. Nodes normally denote 

concepts or specific instances of concepts.

Frame-based systems are formally more rigorous than the linking structures in hypertext 

They are designed to be used in conjunction with automated procedures, whereas 

automated hypertext is still a research idea [Woodhead, 1991]. Only a handful of 

hypertext systems have implemented typed links as in frames or semantic networks. 

Another difference between hypertext and frame representations is in the number of links 

relative to the actual amount of information stored at the nodes.
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Declarative representations have a particular useful property: they can be used to generate 

additional information by means of heuristic procedures. In addition, frame classification 

and inheritance provides useful object-oriented features to the system. If frames are used 

to implement a hypertext [Carlson and Ram, 1990], each hypertext information node in 

the hypertext would be represented as a single frame. Hypertext links to other nodes 

would be the slots within each frame, thus semantic information would be carried by the 

link names. This frame based hypertext system, would then support inheritance, default 

values for slots, and inference engines and reasoning. Specific link names would set up 

the (semantic) hypertext network of nodes an links. If frames are used strictly in their 

context, that is frames are linked to other frames in a hierarchical fashion, then the 

resulting hypertext network structure would be a hierarchical one. If this is overlooked, 

that is frames are linked to other frames with which they do not necessarily relate 

hierarchically, then, in principle, the resulting network structure would not be a 

hierarchical one.

5.2.3 Expert Systems with Hypertext support

This model of Hybrid Systems is primarily an Expert System that utilises hypertext 

features in accomplishing its problem solving tasks. The desired application of this hybrid 

model is to solve problems or provide decision support as opposed to locating retrieving 

and linking information in a nonlinear way which is the object of the next model of 

integration of the two technologies.

With this system model the Expert System component may contribute the following 

features to the overall design of the system [Bielawski and Lewand, 1991], [Gaines and 

Linster, 1990]:
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[1]. Knowledge Acquisition and Representation Techniques for 

prototyping the knowledge base.

[2]. Knowledge Inferencing Techniques for providing an advisory role 

based on the knowledge base.

[3]. Techniques for dealing with Uncertainty.

[4]. An on-line validation facility for the domain knowledge.

These Expert System features may be coupled with the following features which the 

hypertext component may contribute to the overall design of the system [Bielawski and 

Lewand, 1991], [Gaines and Linster [1990]:

[1]. A programmable user interface to the Expert System that would 

allow the reader to extend knowledge and explanations in the 

Expert System knowledge base with further nodes.

[2]. A way of linking, locating and retrieving critical information either 

in the knowledge base and or in the hypertext information base.

[3]. A alternative method of explaining the system’s reasoning.

[4]. An Annotation facility allowing background knowledge and 

explanations to be captured from the expert that would otherwise 

be entered in the structured knowledge base of the Expert System 

or that would not fit in the computational framework of the Expert 

System.

In this model of combination the Expert System’s problem solving function dominates the 

overall system design and ensures procedural control or progression through the system
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[Whitley, 1990]. The Expert System, being the dominant part, accomplishes its goal 

through formal mechanisms for knowledge representation and inference, such as 

production rules, decision trees, etc. Hypertext, however, also facilitates the problem 

solving process. The knowledge and inference that represent the core of the system can 

be obtained through traditional knowledge engineering techniques. Once this portion of 

the Expert System is constructed, the hypertext component can then augment the Expert 

System in any number of ways, from providing a user friendly interface, to locating 

pertinent information, to improving navigation and even to helping to extend the Expert 

System task by bringing forward procedural information contained within on-line texts.

With such a combination the system would use the heuristics based on the Expert 

System’s rules to guide the user through the many decisions leading to a particular goal, 

and it would use hypertext to extend the communicative power of the Expert System in 

giving its results, by incorporating hypertext as an interactive front-end or an interface to 

the Expert System component. A hypertext interface would serve a much better purpose 

in communicating with the user, in accessing help, in acquiring critical information, 

providing explanation of the system’s reasoning process, or narrowing the system’s 

working domain. The hypertext component with its search and query techniques can then 

help reduce the amount of knowledge or information the system needs in order to reach 

a result or provide advice.

This hybrid model highlights an Expert System approach to problem solving, while using 

a hypertext component to increase functionality, efficiency or non-linear access to 

information [Rada, 1991]. The model deals primarily with systems that are intended to 

solve problems, offer advice, predict or behave in other ways like classical Expert
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Systems. In a typical data-driven or goal-driven rule based Expert System that deals with 

a problem for which the data is incomplete, which involves uncertainty, for which there 

are many ways to reaching a solution, many variables or for which solution to the 

problem calls for procedural knowledge, hypertext may add to the functionality to 

accomplish a diagnostic task by providing textual or graphical information to the end-user. 

When diagnostic or problem-solving procedures are stored in on-line documents that are 

organised and presented via hypertext, it may be possible to develop a hybrid system that 

behaves like an Expert System but in which the knowledge based components may be 

explicitly linked via hypertext information links thus allowing the hypertext engine also 

to process the linked information.

With respect to the user interface, hypertext would offer an alternative method for user 

input into the system and would provide a means for creative dialogue-like interactions 

to take place. In most cases, a hypertext interface would allow a user to simply make 

choices among screen options. For instance, graphics can also be used for user input. The 

user’s hypertext response would directly apply to the system rules (or decision trees, or 

frames, etc.) and cause specific actions to occur.

With respect to the linking, locating and retrieving of information in the knowledge base 

component of the system, hypertext would provide a way of improving an individual’s 

access to information needed during the consultation process with the Expert System 

[Rada, 1991]. In some cases, the user may not be able to provide an answer in response 

to a question without resorting to additional information. In such a case, hypertext 

augments the knowledge representation and inferencing processes by replacing additional 

sets of rules, decision tress, etc. intended for naive users, with hypertext information. In
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some other cases, the hypertext engine may process hypertext information links into the 

knowledge base to locate and retrieve information in place of the Expert System inference 

engine.

With respect to explaining reasoning and providing on-line help, hypertext would offer 

triggering devices, such as buttons, that can be attached to rules or conclusions to retrieve 

specific textual and or graphical representations in order to help explain a system’s 

reasoning process or to provide a degree of context-free sensitive help. In a similar 

fashion, any question or advice posed by the system to the user may entail a hypertext 

help facility which links to the system’s knowledge bases or libraries. Such a form of help 

would yield a highly context-sensitive response by the system.

5.2.4 Hypertext with Expert Systems support

This model of a Hybrid System is primarily a hypertext information access system 

containing an integrated or embedded Expert System component [Rada, 1991]. In this 

model of combination, the hypertext features dominate the overall system design by 

providing the source materials and organisational structure for the system, leaving the 

Expert System component to provide specialised functions or assist in navigation. As a 

result, the system is a large depository of information, an on-line document, a collection 

of related graphics, or other type of linked information.

With this model of a Hybrid system the hypertext component provides a means of linking 

related text units in a conceptual, non-linear way. The Expert System component is 

embedded within the system to provide an alternative approach to finding information 

contained in the document, as well as additional information from related passages of text
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and graphics that are not found in the original documents. In such a system the two 

technologies work together to retrieve critically needed information to assist end-users in 

decision making processes. This model of the Hybrid System is then essentially an 

Intelligent Information Retrieval System. Rada [1991] argues that hypertext appeals 

because of its intuitive and graphic faculties, whereas Expert Systems appeal because of 

their formal, logical inferencing faculties.

Such systems usually originate with the text of original documents or a collection of 

graphics. These information sources often provide the backbone of the system, while the 

Expert System component would provide specialised local functions. This model of the 

hybrid system does not normally require the application of knowledge engineering since 

information in the system is mainly "text based" rather than "knowledge based". Although 

hypertext systems deal primarily with relational knowledge. Expert Systems representing 

procedural knowledge may be integrated into the overall system design. With this hybrid 

system model, there are two possibilities for integrating Expert Systems within the 

hypertext: to use procedural knowledge to help in locating pertinent information or to 

introduce applied knowledge and inference abilities that cannot be represented in the 

hypertext engine alone.

In this model, the Expert system component would provide its inference techniques for 

locating information in hyperspace by narrowing down the search domain or pointing to 

information that is used functionally as, for instance, in a problem-solving process. 

Hypertext as an information retrieval tool is useful only when the reader knows what he 

is looking for and can identify the information by its link or by how is labelled within the 

system. The Expert System component can take over the information retrieving task by
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asking the user questions about the information use. The Expert System can then apply 

a set of rules to separate what information might be useful from what might not and 

therefore, narrow the search domain based on the user’s needs. Rada [1991] argues that 

better navigation of hypertext can be achieved by using the Expert System inference 

engine to construct paths in the hypertext in response to user queries. Sections of the 

hypertext may be used to illuminate the rules across which logical inferencing has arrived 

at particular conclusions. In explaining how a particular conclusion has been reached the 

inference engine interacts with the hypertext and highlights the textual sources for the 

various inferences. The facts utilised by the rules are available in an expanded and more 

accessible within the hypertext.

The Expert System component may also be used to integrate procedural knowledge into 

hypertext for solving problems, such as diagnosis, configuration, classification, etc., in 

which case the hypertext author may associate Expert System capability with any given 

node with hypertext. The Expert System would work in synergy with hypertext, 

communicating important information back and forth to hypertext

Diaper and Rada [1991] suggest that an obvious combination is to use the semantically 

rich nodes of hypertext with the well specified, computable links of Expert Systems. They 

argue that the opposite combination of a weak knowledge representation within nodes and 

a rich but incomputable set of links is almost certainly disastrous as the users of such a 

hypothetical system would have problems understanding both the nodes and the links. 

They claim that a potentially useful Expertext system would have nodes that are readily 

understandable by users and rich because they would constitute natural language text, 

diagrams, figures, tables, photos, etc. Then by having well specified computable links that
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can be operated on by an inference engine, the Expertext user can be advised or guided 

as to the order of node presentation and thus the human navigation problems associated 

with hypertext may be considerably reduced or eliminated.

This is not to say that Expert Systems would provide better support for information 

linking as opposed to hypertext. The rules on which an Expert System is based are often 

inadequate when the Expert System attempts to explain its decisions to users. Hypertext 

can be integrated in an Expert System so that by working in synergy with hypertext the 

Expert System can explain better its decisions by offering hypertext information to the 

user when the Expert System is questioned.

Expertext would offer a textual description of the rules being activated by the Expert 

System component and the reader would have the ability to influence the traversal of the 

underlying semantic network during run time. The reader would guide the Expert System 

because he would be able to understand what the Expertext was attempting. The Expertext 

would potentially be less domain restricted than a traditional Expert System since the 

reader would detect inappropriate activation of rules at run time and could, in effect, 

suggest more efficient strategies of traversing the network, without having to be concerned 

with the low level complexities of such traversals.

Hypertext links are often difficult to follow. An Expert System can be integrated in 

hypertext to help the user find relevant information. Guidance may involve providing 

automatically the next section of text, or a set of suggestions listed according to some 

degree of priority for what the reader should see next, backtracking with non previously 

visited side path options, information about previously visited paths.
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5.2.5 Automating Search, Linking and Inference in Hypertext

Rules in Artificial Intelligence Systems are often conditional match-execute pairs that are 

themselves based upon a considerable amount of knowledge. If a fact condition 

comprising the first half of a rule is positively matched, then the second half of the rule, 

often an action, is fired. In declarative representations facts and rules take broadly the 

same form. Rules do not normally operate in isolation. Instead they are nested or linked 

together into inference chains- which are actually paths through the decision tree 

composed of all possible rule combinations. In some Expert Systems, special meta rules 

are sometimes invoked. These may add new facts to the knowledge base, or modify the 

rule base.

In hypertext the function of the meta-control is normally the responsibility of the user. 

However, there are two areas in which Artificial Intelligence techniques may lend 

themselves to hypertext: the knowledge representation and the user interface. A loosely 

structured knowledge base will require greater development of interface facilities for a 

non-expert user to achieve an acceptable solution with the same degree of ease.

A further problem with hypertext is the speed with which links can be created between 

nodes. Although hypertext systems have sophisticated text search facilities across some 

or all the nodes, it is still necessary for the user to initiate the linking of nodes manually, 

at a local level. Currently, hypertext systems provide little or no computational power to 

provide new group solutions, for instance, to generate new links from a batch of dynamic 

data items.

The approach followed by many hypertext systems is very basic: the user can choose
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which paths to explore, to what depth, and how to backtrack. Very few hypertext systems 

provide filtering mechanisms which combine criteria and operators, similar to certainty 

factors found in Expert Systems, that can be shifted to produce either a set of close-fit 

alternatives or a single best-fit solution from the set of the existing explicit paths.

What would reduce the expensive activity of manual searching or linking in those cases 

where a path has not been found is some means by which the hypertext system could 

spread its network more widely. The system would be able to anticipate the reader’s likely 

requirement at run-time, from some combination of attributes of the network structure or 

of the search criteria so far.

Artificial Intelligence Search Techniques, like best-first search and heuristic search, can 

be welded into hypertext to take over this computational task searching [Woodhead, 

1991]. These are semantic filtering techniques which use heuristic rules for searching or 

for linking new concepts in hypertext by making use of the hierarchical inheritance of 

attributes or properties of objects in the domain knowledge as opposed to the purely 

mechanistic searching techniques currently employed in hypertext systems. Such semantic 

filtering techniques would use any knowledge which is available about the problem of 

direct searching, although they do not actually require a complete problem description.

With these techniques the solution does not necessarily have to exist in hyperspace, it may 

have to be generated from existing information using inference rules by creating ad hoc 

implicit links. These techniques would apply inference rules to the problem knowledge 

to determine which direction, from the present position, offers the most promising chance 

of a solution. This may involve abandoning some branches of the tree or problem space
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only to return to them as other possibilities are themselves exhausted or become unlikely 

to yield an acceptable result The solution will be an optimal or best fit within constraints 

designed to limit a combinatorial explosion of possible generated solutions, in other 

words, it may not be a perfect match. These techniques may be used within a framework 

of natural language querying or in combination with standard Boolean criteria, such as the 

operators AND, OR NOT.

Searching and linking are bound up with each other in hypertext. Some form of the 

searching, whether automated or user-driven, is necessary prior to information linking. 

With automated information indexing in hyperspace, linking results in a key index. This 

precedes and facilitates individual term searches. This yields to a double problem. Firstly, 

recall measure; a search mechanism needs to be able to access a high percentage of 

relevant items for any given search criterion. Secondly, precision measure; of the items 

retrieved, a high percentage need to be relevant to the search criterion. Unfortunately, the 

two measures tend to be inversely related in automated systems. To encompass a high 

percentage of relevant items, it is likely that search criteria will have to be fuzzy. This in 

turn means that items will also be retrieved which are not themselves relevant to the 

search for a given term. Approaches such as term weighting that increase the precision 

measure of a search also run the risk of being too specific [Smithson, 1989]. All items 

may be relevant, but they may be only a subset of relevant material. Term weighting 

presupposes certain a priori conclusions about relevance.

Combinations of searching and linking may lead to a compromise, more closely 

approximating the ideal or retrieving all and only those items corresponding to the search 

criteria. A typical solution to this problem would be the integration of a bi-directional
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chaîner to help hypertext converge on optimum solutions. With this hybrid model of a 

hypertext system, the forward chaîner would establish a high recall measure, being able 

to treat fuzzy search criteria, and thus access a high percentage of search material before 

converging, and the backward chaîner would establish a high precision measure, being 

able to focus only on relevant search material.

5.2.6 Artificial Intelligence techniques for dealing with Uncertainty in hypertext

The techniques employed within Artificial Intelligence Systems to deal with uncertainty 

can be broadly divided into those methods which seek to reduce the search space 

(tree/graph pruning) or direct search along a single path, and those which calculate the 

degree of uncertainty accompanying the eventual solution. The techniques can also be 

divided according to the means with which they achieve their goals: probabilistic and 

heuristic methods. Sometimes there is an overlap between probabilistic and heuristic 

categories, probabilistic reasoning often underlies the implementation of fuzzier or more 

relativistic representations.

With Artificial Intelligence Systems raw data and/or rules are used to compare incremental 

possibilities, and perhaps to generate new information. Most Artificial Intelligence 

Systems are structured to produce a single answer or limited range of answers to a user 

query, for example, a diagnosis, although a few more sophisticated environments give 

their user the options to develop parallel models, for instance, to generate and explore 

alternative worlds [Woodhead, 1991].

With an Expert System, for instance, the goal may be to estimate the most likely outcome 

(i.e. the match of a result against a starting position and conditions) given uncertainty.
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lack of sufficient information to produce an exact answer, or because testing all 

possibilities is infeasible. Similarly, users of hypertext usually encounter problems of 

uncertainty, disorientation in hypertext terms, as to where they are in the hyperspace, as 

to where they can find something which they are looking for, as to where is the best place 

to find something which can be of interest to them, as to which direction will be the most 

promising one, etc. As with the Expert System, the user is likely to be seeking a relatively 

small number of possible and/or acceptable solutions for each new situation encountered.

To reduce the problem of having to manually search through the entire hyperspace, 

hypertext could incorporate certainty factors with nodes and apply uncertainty techniques 

which would calculate the degree of uncertainty accompanying possible solution paths and 

attach certainty weights to the links to indicate how likely the path is to lead to the 

desired goal. This would help reduce the search space by eliminating all those paths that 

are unlikely to lead the user to the goal, and then direct the user search along those paths 

which are likely to lead to the solution. Alternatively, it could just calculate the degree 

of uncertainty accompanying possible solution paths and let the user make the decision 

as to which paths to eliminate, if any. Both the probabilities and the heuristics techniques 

could then be used to carry out the process of calculating certainty weights and select 

those paths which most likely lead to the user desired goal.

5.2.7 Expert Help in Hypertext

Correlating Expert Information according to common themes, and eventually organising 

it into a hierarchical rule-base or decision tree is an enormous task without the use of 

automated tools. A number of Artificial Intelligence toolkits now include hypertext-based 

tools, [Woodhead, 1991], for transcript analysis and even induction mechanisms for
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finding patterns or rules in the data. These patterns or rules may be used in two ways. 

Firstly, to help authors structure their materials and, secondly, to construct a dynamic user 

model rather than rely on the kind of limited stereotype or average model implicit in most 

Knowledge Based Systems.

In addition, hypertext materials may need to be structured so that naive users can easily 

query the finished, self-contained system. This is desirable both to train new experts and 

because is highly dubious whether even the most subtle Expert System could ever be 

allowed to make unsupervised decisions. Thus users must be able to ask for justification. 

In many cases, these requests are likely to be ad hoCy unforeseen by the system designers 

[Whitley, 1990].

Hypertext mechanisms have the power to provide such a conceptually simple overview 

of the system’s concepts and dialogue interactions. This is a less formal approach than 

that of conventional Help facilities or of the Explain Decision option available in many 

Expert Systems. Indeed, very few Expert Systems allow their users to browse through 

their knowledge bases or rule bases in an hoc fashion [Whitley, 1990] as distinct from 

their active decision-making nodes.

5.2.8 Natural Language Processing Interfaces in Hypertext

Textual information is the most crucial content of most hypertext applications. To be 

useful to the broad community of end-users, information ideally would be represented in 

natural language. Artificial Intelligent approaches to Natural Language Processing are 

attractive in that they offer a seamless transition from interface control to node content.
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Nevertheless, one of the major drawbacks against Natural Language Processing is 

ambiguity, either structural or referential, which does not allow the fine level of 

granularity required by hypertext to explore the microlevel structure in individual 

sentences and relations among sentences. In addition, Artificial Intelligence Techniques 

deal predominately with the structure of the system and information at the node level and 

above.

In the next section, the thesis proposes a hybrid model, Hyperfirames, that integrates 

Minsky’s Frames with Hypertext’s information nodes and links. The resulting model is 

presented as an alternative knowledge representation scheme that promises to resolve the 

shortcomings of Knowledge Based Tutoring Systems with respect to a full-scale didactic 

operation.

5.3 HYPERFRAMES: A KNOWLEDGE REPRESENTATION SCHEME THAT 

INTEGRATES MINSKY’S FRAMES WITH HYPERTEXT INFORMATION 

NODES AND LINKS

The basic knowledge unit in this knowledge representation scheme is the frame. A frame 

has attribute slots which either have default values, may be instantiated with specific 

occurrence values. They may also have procedural attachments which are executed 

whenever a value is needed or changed. The frame is stored in a "semistructured" 

hypertext information node. The semi-structured kind of node is chosen because of its 

ability to allow labelled fields and their values to be stored inside the node which is very 

similar to the frame attribute slots and values. The labelled fields in the semi-structured 

node will be the frame attribute slots and the labelled field values (when a frame is filled) 

will be the slot values. Therefore, a hypertext information node will represent a single
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frame. We call this unit of representation a HyperFrame. See Figure 5.3, for an example 

of such a Hyperframe.

^Europe Frame 

I  Speclallsatlon-of: I  continent

§  Part’Of: i  Continents

 ̂Countries: ^UK,  ËFrance, iGermany, iN etheriands, I  Italy,

iS /ze ; I  200SM

I  Seas: I  M editerranean,! Adriatic, I  Aeglan, |  Baltic,

^Mountains: i  Alps, io iy m p o s , iSnow donIa,...

Figure 5.3: An example of a HyperFrame

The hyperframes is linked to other hyperffames with which they are related by a class- 

instance relationship. This establishes a semantic network of hyperframes which are 

organised hierarchically so that properties can be inherited from generic hyperframes (i.e. 

hyperframes higher in the hierarchy) to hyperffames lower in the hierarchy. Thus, a 

hyperframe which represents a concept will be decomposed in its hierarchical constituents, 

and allow these to inherit all its properties. A composite node may be used to aggregate 

related hyperframes. Links to other hyperframes with which a given hyperframe is 

hierarchically related in this hierarchical network, will be the slot values within this 

hyperframe. These links will be set up as "organisational" hypertext information links to 

connect a parent hyperframe with its children and thus establish a hierarchical tree in this 

hypertext network.
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Hyperframes are also linked to other hyperframes with which they are not hierarchically 

related via "referential" hypertext information links and thus establish a non-hierarchical 

structure in this network. Any information related to a hyperframe which cannot be 

included in the hyperframe structure, will be "annotated" to the hyperframe as a "typed" 

hypertext information node, if it is text, or as a "graphical" hypertext information node, 

if it is an image, via an "annotation" link. This will establish a part-to-whole relationship 

with a given hyperframe. Within this annotation, there may be further referential, keyword 

or annotation links to hyperframes which the annotation may relate to. Finally, a 

hyperframe may be linked to another hyperframe by a "keyword" link, if two hyperffames 

have the same value for a given attribute slot. The link names will carry semantic 

information. Figure 5.4 below is an extract from a knowledge representation on the 

geography of planet Earth.

Get-Weùbŷ Alfàniic-Ocesm

EUROPE MAP ►vS

UK MAP

O rganlM tlonal Link 

-E S s*  R#*#r#nlW U nk 

A nnotation 

Koyword Unk

Part-of ConkMni* Aam*

Bbrt*

irf- -- ■OOnatMntK a tnm fIm B  l in lw ij JktiÊ, WUrtm

V BM*:

BMVmMmA*: B M è,

B W # g 3?B UK, BAwm, BOMnqr, «..B»*. _

BOW: B im m

B*## B J  MiMk. B )W",B aMt, _

pèrt-of

B Cm Um m

B C o w iM m ; B 

Oatw;

B Oe— n*. i  M f e .B A U H k .-  

B M e w i M * i« ;B M l> . -

_ JV< ighbours-by-sea

B R » M M M « o n .o f t  B O w ttiy  

BAWVoft B b n * .

B C ^ M ; Bm

BCW m ; B Bu m , BmW , Btin iM ii ,  -

B N W B 0 0 o w r » O |W :  B U K .-

Figure 5.4: A knowledge representation based on hyperframes

The five hyperframes in this knowledge representation segment utilise all four kinds of
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links presented above. First, there are organisational types of links that set up inheritance 

hierarchies, for instance, the part-of Virk. from the UK frame to the EUROPE Frame, the 

part-of links from the EUROPE frame and the AMERICA frame to the CONTINENTS 

frame. Second, there are referential type of links that link hyperframes that are not 

hierarchically related with respect to the viewpoint with which hierarchical decomposition 

that resulted in the knowledge representation took place. An example of such a link is the 

Neighbours-by-sea link from the UK frame to the FRANCE frame. Third, there are 

keyword links between hyperframes that have the same value for a common attribute slot, 

for instance, the Get-wet-by-Atlantic-Ocean bi-directional link between the UK frame and 

the AMERICA frame.

Finally, there are two graphical hypertext information nodes annotated to two of the 

hyperframes via an annotation link called map: the EUROPE MAP is annotated to the 

EUROPE frame and the UK MAP is annotated to the UK frame. As was indicated before, 

from within an annotation there may be any type of links (except organisational links) to 

related hypertext information nodes. For instance, the Is referential link from that part of 

the EUROPE MAP annotation that portrays UK to the UK frame and the value UK in the 

Countries slot of the EUROPE frame. Similarly, the Is referential link from that part of 

the UK MAP that portrays London to the value London in the Capital slot and the Cities 

slot in the UK frame. If a hyperframe for London exists, then there would also be a 

referential link from the UK MAP to it.

The resulting knowledge representation system would allow three modes of reasoning: 

logical inferencing with some hypertext support, hypertext browsing with some support 

by automated procedures used with hyperframes, or a mixture of logical inferencing and
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hypertext browsing as described in section 5.2.5.

By being a declarative knowledge representation system, that is a frame-based system, it 

can then infer additional information for a given hyperframe by means of logical 

inferencing. Automated inferencing procedures can be applied to infer information from 

hyperframes the given hyperframe is hierarchically linked to. Thus this knowledge 

representation scheme can support inheritance and defaulting of slot values for a given 

hyperframe. In addition, the advantage of a frame-based system is that if hierarchical 

inferencing fails to produce any results, any procedural attachments to a given hyperframe 

may be executed. Once a value has been produced for the hyperframe slot, the hypertext 

engine is then called to create information links between the slot value and any related 

hyperframes. If there is a hyperframe describing this value, then if the value sets up an 

inheritance hierarchy with this retrieved hyperframe then an organisational hypertext 

information link is created between the slot value and this conceptually higher hyperframe.

If the value does not set up an inheritance hierarchy then a referential hypertext 

information link is created between the slot and the hyperframe. The hypertext engine will 

then generate a keyword or string search in order to find other hyperframes which include 

this value. The hypertext engine then creates keyword links between these values. Because 

of the inferential abilities of the frame based component, the hypertext engine can support 

computed links in addition to those statically determined by the author of the system. This 

removes the restriction of having to generate all the necessary links prior to interaction. 

Similarly, since a hyperframe may contain several default values for an attribute slot, this 

suggests that several instances of this hyperframe can be produced and be linked to this 

hyperframe. This will give the hypertext engine the ability to create computed nodes in
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which to store these frames and also create any organisational and referential links. These 

computed nodes will also be semistructured hypertext information nodes.

By being a hypertext system such a system, it can support hypertext information retrieval, 

that is browse through "selected" hypertext information nodes by following hypertext 

information links to these nodes and infer additional information from these nodes for a 

given hyperframe. The frame based component of the system can only infer additional 

information via inferencing with hierarchical links. It does not have the ability to explore 

non-hierarchical information links. The hypertext engine can follow both organisational 

and referential links from a given hyperframe and infer additional information either from 

hyperframes with which this hyperframe sets up an inheritance hierarchy or from 

hyperframes with which the hyperframe is linked to with referential links. In addition, the 

hypertext engine can follow keyword links to other hyperframes. Alternatively, the 

hypertext engine can issue a keyword search or, since the hypertext nodes are semi­

structured, a database-like query.

Alternatively, the system may follow an inference mechanism that is partly based on 

hypertext browsing and partly based on logical inferencing. With this reasoning approach 

the hypertext engine establishes a path consisting of hyperframes related to a given 

hyperframe, by following organisational, referential and keyword links from this 

hyperframe. This path of hyperframes may be linked with a superlink or the nodes 

containing the hyperframes may be linked to a temporary composite node. Once the 

superlink path or the composite node is created then logical inferencing may commence 

in order to infer an additional value. If that fails to provide an answer then procedural 

attachments are instantiated with information from this set of related hyperframes and then
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executed.

5.3.1 Resolving the Limitations with Knowledge Based Tutoring Systems

The knowledge representation scheme that results from linking Minsky’s Frames with 

Hypertext Information nodes and links resolves the limitations of Knowledge Based 

Tutoring Systems with respect to a full-scale didactic operation.

The use of organisational, referential and keyword hypertext information links and 

annotations to link related hyperframes, as opposed to the hierarchical-only links and 

inferencing allowed by Minsky’s frames, resolves the first shortcoming of Knowledge 

Based Tutoring Systems, that of the hierarchical-only knowledge decompositions, 

representations and inferencing with a domain knowledge base. Organisational links are 

used to set up the traditional inheritance hierarchies that are inherent in all knowledge 

representation schemes, but referential and keyword links as well as annotations are used 

to link non-hierarchically related frames. This has been demonstrated in Figure 5.4 above.

The use of hierarchical as well as non-hierarchical links between hyperframes facilitates, 

as explained in the previous section, different modes of reasoning and inferencing with 

this network of hyperframes, as opposed to the single and exclusively hierarchical mode 

of reasoning and inference which is used with traditional frames. Firstly, the use of 

organisational hypertext information links facilitate hierarchical inferencing with 

hyperframes. In this case, the automated procedures used with hyperframes establish 

inheritance hierarchies paths through the network of hyperframes, with the following of 

the links that set up these paths performed by the hypertext engine. Secondly, the use of 

hypertext information links facilitates browsing through the network of hyperframes in any
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fashion, either hierarchical or non-hierarchical. In this case, the hypertext engine 

establishes hierarchical and non-hierarchical pathways through the network of hyperffames 

and calls the automated procedures used with hyperframes to perform reasoning and 

inferencing along those paths. This second mode of reasoning and inference eliminates the 

need to perform one-way inference searchings through the entire tree or network every 

time the inferencing procedure has to establish a goal or infer a fact. The hypertext engine 

can simply follow links in the network of hyperframes to this goal or fact and thus 

establish a pathway without necessarily having to call automated procedures to perform 

inference. Thirdly, a mixture of logical inferencing and hypertext browsing can be used 

to deduce a fact from the network of hyperframes.

Because the knowledge representation scheme supports both computed links and nodes 

and consequently computed hyperframes, this resolves both the second and third 

limitations of Knowledge Based Tutoring Systems, namely that of the inference 

mechanism needing to have access to a complete knowledge representation of facts about 

the domain, and that of the system imposing a single viewpoint on its user. This 

"generative" behaviour (i.e. the ability to compute links and hyperframes) removes the 

need to have access to a complete knowledge representation of facts because any 

additional links or hyperframes can be generated during the course of interaction. This 

eases the restriction posed on the designer of the tutoring system to predict and 

prefabricate every single path the system or the user may follow during the course of 

interaction.

In addition, generative behaviour can sustain alternative viewpoints to the domain 

knowledge without having to reorganise the knowledge representation in a way that would
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involve breaking the hierarchical structure. Figure 5.5 below gives an example of 

generative behaviour from an alternative viewpoint.
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Figure 5.5: Example of generative behaviour from an alternative viewpoint

In Figure 5.5, following a request either by the user or the system to find all European 

countries with German as one of their languages, the hypertext engine issues a search in 

all hyperffames to find which hyperframes for European Countries have "German" as part 

of their value in their language attribute slot. Once the hypertext engine has found these 

countries, Austria, Germany and Switzerland, automated procedures used with frames are 

called to construct a frame. The frame is called "German speaking Countries Frame" and 

several slots are created. An obvious slot is the "Countries" whose values are the names 

of the three countries. Another slot is a "language" slot whose value is "German". A "part- 

of" slot is created that would link this frame to the network of hyperframes. Since this is 

part of Europe, "Europe" is set as its value. If the three countries have other features in 

common, then additional attribute slots are created in this frame. The "part-of ' slots in the
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hyperframes for the three countries are also updated to include "German-speaking- 

countries" as their value.

The hypertext engine would then store this frame in a semi-structured hypertext node and 

would then establish hypertext information links between this new hyperframe and any 

related hyperframes. Organisational links from the "German-speaking-countries" value in 

the "part-of slot of the three hyperframes depicting Austria, Germany and Switzerland 

to the "German-speaking-countries" hyperframe are established. An organisational link 

from the "Europe" value in the "part-of slot of this newly created hyperframe to the 

"Europe" hyperframe is also established. Referential links from each of the values in the 

"countries" slot of the new hyperframe to the hyperframes depicting these values are also 

established. Similarly, annotations, keyword links or any additional referential links from 

this new frame to any related frames are also established by the hypertext engine.

In addition to generative behaviour. Figure 5.5 also exemplifies the creation of a 

hyperframe from a different viewpoint and its linkage to existing hyperframes without 

having to reorganise the knowledge representation. The viewpoint with the original 

knowledge representation is that of physical borders between countries whereas the 

viewpoint with this new frame is that of language boundaries.

The use of hypertext information links resolves the fourth limitation of Knowledge Based 

Tutoring Systems, namely that of strictly and exclusively implicit information linking 

within the knowledge base. Hypertext information links are exclusively explicit Therefore, 

as suggested in the previous section semantic information can be carried by names given 

to links and thus specific link names will set up a semantic hypertext network of nodes
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as in Figures 5.4 and 5.5. Explicit hypertext information links eliminate the need to 

perform reasoning in order to infer any relationships between knowledge representation 

parts which also eliminates the need to perform the same chain of reasoning every time 

a given relationship has to be established. For instance, in Figure 5.4 and Figure 5.5, 

hypertext information links serve the double purpose of establishing explicit information 

links between hyperffames and depicting the relationship between the hyperframes by 

giving the link a name that describes the relationship.

Chapter 5 introduced a hybrid model of Artificial Intelligence and Hypertext, 

Hyperframes, that integrates Minsky’s Frames with Hypertext’s information nodes and 

links. The use of Hyperframes overcomes the limitations of Knowledge Based Tutoring 

Systems with respect to the requirements for the development of a full-scale didactic 

operation.

Chapter 6 will show how to use hyperfirames to design a generic model for the 

architecture of an Intelligent Tutoring System which is able to support a full-scale didactic 

operation. At first, the Chapter is concerned with the development of the Decision Base 

which entails the three necessary knowledge representations (i.e. domain, student and 

tutoring). In doing so, it pays particular attention to the interconnectedness of the three 

knowledge representations and the resulting generative ability of the system. Then the 

Chapter examines how the didactic operation would function with such a decision base 

in the context of a specific domain of discourse, by examining the resulting didactic plan 

of action, the pedagogical context of the didactic operation and the target level of the 

student model.
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CHAPTER 6: USING HYPERFRAMES TO DESIGN A GENERIC 

MODEL FOR THE ARCHITECTURE OF AN INTELLIGENT 

KNOWLEDGE BASED TUTORING SYSTEM WITH A FULL- 

SCALE DIDACTIC OPERATION

This chapter proposes the use of hyperffames, introduced in chapter 5, for the design of 

a generic model for the architecture of an Intelligent Knowledge Based Tutoring System 

according to the requirements set out in chapter 4, that will support the full-scale didactic 

operation described in chapter 2. The architecture follows Wenger’s model of an 

Intelligent Tutoring Systems architecture as described in Chapter 2 of the thesis.

The purpose of this model is not to promote a particular tutoring strategy nor to advocate 

a specific Intelligent Tutoring Systems design. The purpose is to offer an architecture that 

allows for a variety of system components, teaching styles, and intervention strategies to 

be combined into a single model. Within such a model, the Intelligent Tutoring System 

will reason about its own choice of intervention method; switch between teaching 

strategies to suit different student learning styles; use a variety of tactics and teaching 

approaches; make decisions about the most useful method for managing one-to-one 

tutoring; allow the student enough freedom to influence interaction by being able to 

modify the process of instruction should the need arise.

An Intelligent Tutoring System built with this model might be called a Hybrid Guided- 

Discovery Generative Instructional Environment. It will be hybrid because it would 

incorporate two different technologies, namely. Artificial Intelligence and Hypertext. By 

exploiting hypertext, the system can be a discovery learning environment, and since there
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is support from Artificial Intelligence techniques and the system can guide the student- 

user’s learning, the system will be a guided-discovery system. Finally, since an attribute 

of the model is to exhibit generative behaviour, this instructional environment will a 

generative one.

The model will be explained in the context of the didactic operation for a specific domain 

of discourse. The domain of discourse chosen is that of the geography of the planet 

Earth. The goal of this system is to help the student-users review their knowledge on the 

geography of planet Earth in a context which can be as general as, for instance, geography 

of Europe as a whole or as specific as, for instance, mountains in Britain.

6.1 DEVELOPING THE DECISION BASE: DOMAIN EXPERT, STUDENT AND 

TUTOR KNOWLEDGE AND PROCESS MODELS

The first requirement states that a full-scale didactic operation must have access to three 

knowledge representations (i.e. domain, student and tutoring) and their corresponding 

process models:

[1]. It requires access to the domain knowledge which will both serve as a 

source for material sequencing and for providing the content for a tutorial 

intervention.

[2]. It requires access to the tutoring knowledge including a set of global goals 

that the system sets for the student to attain during the course of 

interaction, a set of intervention-specific goals that instruct the system what 

to do with the domain knowledge in the context of a tutorial intervention, 

and also a set of teaching strategies with which it will perform the tutorial 

intervention.
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[3]. It requires access to the student knowledge which will both serve as a 

source for means-ends analysis of the student, that is to determine to which 

extent the student has met the global goals and how the student can be 

classified as an end-user (e.g. novice, advanced beginner, competent, etc.) 

and also as a diagnostic toolkit that would diagnose and record any missing 

concepts or misconceptions in the student’s knowledge or behaviour and 

call for remedial action either to fill the gap created by missing concepts, 

or simply to remedy misconceptions.

The second requirement states that although the use by the tutoring system’s didactic 

operation of aU three forms of knowledge suggests that these are interlinked, the three 

knowledge components are developed independently from each other. For instance, the 

expertise process model should be able to infer from the domain knowledge either a 

correct answer or be able to trace the solution path to a correct answer without any 

interference from any of the other process models or their knowledge. This suggests that 

the expertise process model should be able to act as a problem solver with its own 

knowledge. The diagnostics process model should be able to infer the student’s current 

knowledge status and be able to call for remedial action. The didactics process model 

should be able to infer which is the best teaching strategy for attaining a goal, not which 

is the best for the current student-user.

In order to satisfy the first two requirements, the design of the decision base proceeds on 

the basis that all three kinds of knowledge are kept separately as three distinct ‘knowledge 

representations’.
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6.1.1 The Domain Expert Knowledge Model

The first task in developing the domain model is to decide on the different global goals 

the tutoring system will try and help the student achieve with its domain knowledge. The 

next task is to acquire and organise domain knowledge around these goals. Organising the 

domain knowledge around these goals involves decomposing the domain knowledge, from 

a default viewpoint, into different hierarchical and non-hierarchical knowledge units 

whose level of domain detail depends on their position in the hierarchical structure.

Each knowledge unit in this hierarchical decomposition will be represented using a 

hyperframe. The context of these hyperframes is exclusively domain knowledge. It 

contains neither any knowledge about the student or what to do with this knowledge (i.e. 

tutoring knowledge). The domain hyperframe in Figure 6.1 is an example of such a 

knowledge unit.

^Europe Frame 
MSpeclallsatlon~of:m Continent 

■ Part-of: ■ Continents

M Countries: iU K ,iF rance,C erm any,ri4etherlandsJilta ly ,...

■ S/ze; X

■ Seas: iM edltteraneanp A driatic,lA eglan,...

■ ̂ 0£i/ifa//7s:iA lpspO lym pospSnow donla,...

Figure 6.1: A hyperframe from the Domain Expert Knowledge
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A hyperframe may be linked with any other hyperframe via an organisational hypertext 

information link, if there is a hierarchical relationship between the two hyperframes, via 

a referential hypertext information link, if the two hyperframes are non-hierarchically 

related under the current viewpoint, via a keyword hypertext information link if they share 

the same attribute, and finally via an annotation, if additional information about a 

hyperframe cannot be included in its context, for example, graphs. By being explicit, a 

typed hypertext information link carries a name which designates the relationship between 

the two hyperffames it links.

The resulting network of hyperffames can express relationships between topics such as 

prerequisites, corequisities. It is important to note that the network is declarative (i.e. it 

contains a structured space of concepts) but does not assume any particular order for 

traversal of this space. Figure 6.2 is a portion from the Domain Knowledge representation 

of an Intelligent Tutoring System on the geography of planet Earth.

In Figure 6.2, the organisational links "part-of" and "specialisation-of ' set up hierarchical 

relationships, for instance, the UK Frame to the EUROPE Frame and the COUNTRY 

Frame to the CONTINENT Frame. The referential link "is" sets up non-hierarchical 

relationships, for instance, between the EUROPE Frame and the SNOWDONIA Frame. 

The bi-directional link "OceansiAtlantic" between the UK Frame and the CANADA 

Frame is an example of a keyword link between the two countries that denotes that the 

two countries although they are in different parts of the hierarchy they share the same 

attribute slot value.

As with domain expert knowledge, both tutoring and student knowledge will also be
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Figure 6.2: Representation of a portion of the Domain Knowledge

represented using hyperframes. Although these are kept in two separate knowledge 

representations and hence during the course of interaction form their own hierarchical 

structures, the contents of either a student or a tutoring hyperframe is determined by the 

context of a corresponding domain knowledge hyperframe.

6.1.2 The Tutoring Knowledge Model

Tutoring knowledge comprises a set of global goals underlying system development, that 

the system will try and help the student to attain, a set of local teaching goals for each 

and every domain expert hyperffame, and a pool of teaching strategies for tutoring with 

a domain expert hyperframe. The global goals that the system sets for the student-user are 

a set of conditions for terminating interaction with the system. These are universal goals 

and are not included in the tutoring knowledge representation. What is kept in the tutoring 

knowledge representation are the sets of teaching goals and the teaching strategies.
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Teaching goals are stored in hyperframes. A teaching goals hyperframe contains attribute 

slots whose values are the local goals which the system will try to attain during the course 

of interaction with a corresponding domain expert hyperframe. All hyperframe attribute 

slots also contain the names of those teaching strategies that are suitable for attaining the 

goal. Which of these teaching strategies will be applied is decided either by reference to 

the student model or by the user, during the course of interaction.

A teaching strategy is a rule-based implementation of a particular teaching strategy used 

by human teachers, for example, coaching, questions/answering, evaluation of student 

responses, etc. This rule-based implementation contains tutoring knowledge about material 

presentation, for formulating tasks/responses to the student-user, for student evaluation and 

for remedial action. This is the local mechanism that provides tutoring with the contents 

of a domain expert hyperframe. This rule-based implementation of a teaching strategy is 

stored in a "typed" hypertext information node. A "typed" hypertext information node is 

neither part of any form of hierarchy nor does it contain any hypertext information links 

to any other hypertext information nodes. Figure 6.3 illustrates a teaching goals 

hyperframe and two "typed" hypertext information nodes each containing extracts from 

a rule-based implementation of a teaching strategy.

As with the domain expert model, a teaching goals hyperframe is linked with 

organisational hypertext information links to other teaching goals hyperframes. This sets 

up a hierarchical structure of teaching goals hyperframes as in Figure 6.4 below. Since 

a teaching goals hyperframe is designated for a specific domain expert hyperframe, there 

can be no referential or keyword hypertext information links from a teaching goals 

hyperframe to another. However, there are annotations from each and every attribute slot
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Figure 6.3: Teaching Goals and Teaching Strategies

(i.e. a goal) to all teaching strategies that are suitable for attaining the goal denoted by the 

slot as illustrated in Figure 6.4 below. A specific teaching strategy can be used by 

hyperframes which are at different hierarchical levels. As stated above, teaching strategies 

are not part of any hierarchical structure.

6.1.3 The Student Knowledge Model

The student model, unlike the domain expert model and the tutor model, is constructed 

during the course of interaction as an overlay model of the domain expert model, 

including diagnosed misconceptions. For each and every domain expert hyperframe that 

the system uses for tutoring, a corresponding student hyperframe is constructed, the 

contexts of which are determined by the context of the domain expert hyperffame. The 

attribute slots of the student hyperffame are a copy of the attribute slots of the 

corresponding domain expert hyperffame with the inclusion of some additional attribute
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Figure 6.4: Representation of a portion of the Tutoring Knowledge

slots to indicate the different paths that lead to the domain expert hyperffame (e.g. as part 

of the regular didactic plan of action or as part of a remedial action), how the domain 

expert hyperframe was used (e.g. to clarify the content of an attribute slot), and various 

teaching strategies that have been successfully or unsuccessfully applied with the domain 

expert hyperframe. The values in the attribute slots of the student hyperframe are the 

student input obtained during the course of interaction. Figure 6.5 represents the student 

Europe hyperframe for the corresponding domain expert hyperframe.

Since student hyperframes are constructed during the course of the tutoring process, any 

resulting hypertext information links are computed at the same time. Nevertheless, the end 

result will be, as with the domain expert model and the tutoring model, a network of 

student hyperframes that includes the student model’s hierarchical structure.
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■ student Europe Frame
■ Paths: (Continents Frame, UK Frame)(Turkey Frame, Turkey Frame)
■ Uses: Plan, Misconception: Student thinks Turkey Is part of Europe
■ Part-of: ■ Student Continents Frame
■ Specialisation-of: ■ Continent

Best: ■ Teachlng-Strategy-2 
Applied: ■ Teach lng-Strategy-1
Misconception: ■ Country

■ Part-of: ■ Continents
Best: ■ Teachlng-Strategy-2

■  Countries: M UK, ■ France, ^Germany
Best: ■ Teachlng-Strategy-2 
Misconception: ■ Turkey

■ Seas:

Best:
Misconception: ■ Red-Sea

Figure 6.5: A student hyperframe

A student hyperframe may be linked with organisational hypertext information links to 

other student hyperffames. These organisational hypertext information links set up a 

hierarchical structure of student hyperframes. These links, however, have an overlay 

statistic attached to the name which they carry that indicates the level of mastery of the 

concept relationship implied by the link. For instance, a negative value suggests that the 

student does not comprehend the concept implied by the link, a positive value suggests 

that some degree of mastery has been achieved by the student and a 0 value suggests that 

no attempt has been made by the student to perceive the concept implied by the link. 

These links, in addition to the hierarchical structure which they delineate, also define the 

overlay model of the student-user. The numerical figure is a standard yardstick of 

measurement in overlay models. There may be referential or keyword hypertext 

information links drawn from one student hyperframe to another, if the student-user 

establishes a non-hierarchical relationship between two domain expert hyperffames or if
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two domain expert hyperframes share the same attribute slot value. As with organisational 

links, overlay statistics designate the level of mastery of the concept implied by the link.

With every attribute slot there may be a set of associated misconceptions. Every time the 

student-user gives an answer which is not recognised by the system as the correct one, the 

system checks through the Bugs Library to see if the student answer is a known bug. See 

Figure 6.6 for an extract from a Bugs Library.

Mal-Rule 34: student thinks (? continent) Is a country 
IF
speclallsatlon-of (? continent) = continent
and student reply speclallsatlon-of (? continent) = country
THEN
studen t thinks that (? continent) Is a country

Mal-Rule 58: student thinks (? country) part of (? Continent) 
IF
part-of (? country) <> (? Continent)
and student reply part-of (? countiy) = (? Continent)

student thinks that (? country) part of (? continent)

Figure 6.6: Extracts from the Bugs Library

If this is the case, the system would insert the student answer in the attribute slot as a 

student misconception and create a referential link from it to the student hyperffame that 

describes the misconception. The name of the rule that proves that the answer is a known 

misconception is set as the name of the referential link.

Finally, from each and every attribute slot that has been filled with a value (i.e. the
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student has attempted to acquire the knowledge contained in the corresponding domain 

expert hyperframe attribute slot and thus tried to attain the goal described by the 

corresponding teaching goals hyperframe attribute slot) there are annotations to the best 

teaching strategy for acquiring the knowledge and achieving the goal and also to those 

teaching strategies that have been tried unsuccessfully. Figure 6.7 below represents a 

portion from the student model.
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Figure 6.7: A portion from the Student Model

The "part-of and "specialisation-of links set up the hierarchical structure in the student 

model network, for instance, the "part-of" link from the Student Europe Frame to the 

Student Continents Frame and the "specialisation-of link from the Student France Frame 

to the Student Country Frame. The "Continent" and "Country" are two examples of 

referential links that link hyperframes which are not hierarchically related under the 

current viewpoint. The link names also carry a numerical figure which sets up the student 

overlay model. A special referential link is one whose name is a diagnosed student
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misconception, for example, the "Turkey part-of Europe" link. The name of the link is the 

name of the rule that proves the misconception. This link connects the incorrect student 

answer (i.e. the misconception) from the attribute slot in which it was raised to the Frame 

whose name is the same as the student answer, for instance, from the "Countries" slot in 

the Student Europe Frame to the Student Turkey Frame. In addition, to the referential 

links there are keyword links that link two frames that either have the same value for the 

same attribute slot, or for a given attribute slot they contain each other’s name, for 

instance, the UK Frame is linked to the France Frame via a keyword link called 

"Neighbours-by-sea". The name of the link is the name of the attribute slot. Finally, there 

are "annotated" teaching strategies for each and every attribute slot that is filled with a 

value as a result of a student answer.

6.1.4 Knowledge Models Interconnectedness

The second requirement for the development of a full-scale didactic operation states that 

although the three knowledge components are developed independently, they must, 

nevertheless, work in synergy. Although student and tutoring knowledge form their own 

network data structure, inclusive of a hierarchical tree structure, the contents of both of 

these knowledge structures are determined by the domain knowledge: associated with each 

and every domain knowledge hyperframe there is a corresponding student knowledge 

hyperframe as a local overlay student model of the domain expert knowledge hyperframe 

that registers acquired student knowledge exhibited by the student. There is also a 

teaching goals hyperframe that designates the use of the knowledge in the domain 

hyperframe, and there is a set of teaching strategies and finally there may be annotated 

hypertext information nodes containing information that cannot be included in any of the 

three semi-structured hypertext information nodes, for instance, graphs.
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This interconnectedness of the three knowledge models as stated by the second 

requirement assumes explicit and direct links between related parts of the three knowledge 

representations (i.e. the three hyperframes), the teaching strategies and any annotated 

hypertext information nodes containing, in addition to the links that have already been 

used to set up the three networks independently. These links will have either been 

statically determined by the knowledge models designer or once dynamically computed 

by the system during the course of interaction will be maintained thereafter. As explained 

in chapter 4, these links will also help to avoid mixing of the three forms of knowledge 

and also help a knowledge process model to access information from other knowledge 

models without having to distinguish between knowledge. All these links will be set up 

as referential hypertext information links.

With respect to tutoring knowledge, every teaching goal which the system will try to 

attain with a particular domain hyperframe, should be linked to those attribute slots of the 

domain knowledge hyperffame. It may not necessarily be a one-to-one correspondence. 

In those cases, where a domain knowledge attribute slot holds several values, the 

corresponding teaching goal has a number attached to it that indicates the number of 

values the student must get right before moving on to the next goal. For example, in 

Figure 6.3, the student must name at least 10 European countries, 7 European Rivers, 5 

European mountains and 5 European seas. Also, each and every goal should point to a set 

of teaching strategies that are deemed appropriate for tutoring with the goal. It should also 

include links to any annotated hypertext information nodes that contain additional 

information about the goal that cannot be included in the domain hyperframe. All these 

links will need to have been set up by the knowledge models designer.
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With respect to student knowledge, all the links will be computed, as before, during the 

course of interaction. From each and every attribute slot that has been filled with a value, 

there should be a link to the corresponding attribute slot in the domain hyperframe 

containing this knowledge. This would provide an explicit indication of the current 

knowledge state of the student and also an "orthogonal" projection of the student overlay 

model onto the domain knowledge. The names of these links also carry a measurement 

of the mastery of the knowledge contained in the attribute slot of the student hyperframe. 

Then, from each and every attribute slot that has been filled with a value, there should 

also be a link to the teaching goal that is satisfied by filling the attribute slot in the 

student hyperframe. This link should be bidirectional to enable the system to check in the 

teaching goals hyperframe which teaching goals have been met and thus allow issue 

tutoring for those that are yet to be satisfied, or if all have been satisfied, progress on to 

the next domain hyperframe. Finally, there should be a link to the teaching strategy that 

proved to be the best for a student-user for meeting a goal, along with links to those 

teaching strategies that have been applied with the goal.

The resulting system is a large collection of instruction knowledge units which hold 

specific local domain knowledge, student diagnostic knowledge and teaching goals. 

Associated with each instruction unit will be a set of domain-independent teaching 

strategies provided as a set of general rules, for tutoring with the unit’s knowledge. 

Associated teaching strategies, for instance, coaching, question/answering, etc., that are 

used to tutor with the unit’s knowledge, are represented as production rules and are 

triggered through an expert system. Every instruction knowledge unit has access to the 

bugs library of common bugs or misconceptions in the field. These are also represented 

as production rules. Figure 6.8 is an example of such an instruction knowledge unit. The
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unit in this case is about Europe as a continent.
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Figure 6.8: An instruction knowledge unit

Every teaching goal in the teaching goals hyperframe is linked to those attribute slots of 

the domain knowledge hyperframe that contain relevant domain knowledge, for instance, 

Goal-1 is linked to the "Specialisation-of" and "Part-of" slots, Goal-2 is linked to the 

"Countries" slot, etc. In the case of Goal-1, where the corresponding domain knowledge 

attribute slot has several values, there is the number 10 associated with the goal, which 

designates that to satisfy this goal the student must name at least 10 European countries. 

Consequently, this number overwrites the overlay statistic which in this case, is not any 

longer between -2 and 2 but a number out of 10. From within each and every goal slot 

there are links to teaching strategies that are appropriate for tutoring with the goal. The 

teaching goals hyperframe in our case has a link to an annotated typed hypertext 

information node that contains the map of Europe. Finally, there are bidirectional links 

to those slots in the student hyperframe that have been filled with values. This would
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enable the system to check which goals still remain to be satisfied with the current 

domain knowledge hyperfi-ame.

From each and every attribute slot in the student hyperframe that has been filled with a 

value, there is a link to the corresponding attribute slot in the domain hyperframe 

containing this knowledge, for instance, the "countries" link to the domain hyperframe. 

The name of the link also carries an overlay statistic that indicates the mastery of the 

concept by the student. This link is necessary for overlay modelling. Also from each and 

every attribute slot filled with a value, there is a link to the teaching goal that is satisfied, 

for example, the link between Goal-1 and the "Specialisation-of" and "Part-of slots. 

Finally, there are links, first, to the best teaching strategy for filling an attribute slot and, 

second, to those teaching strategies that have been applied with a goal.

Figure 6.9 illustrates how all the different data stmctures for the system would look when 

they are linked with hypertext information links. The instruction knowledge unit 15 in this 

Figure is an example of a unit with its explicit hypertext information links between the 

different knowledge parts of the same unit (i.e. the student knowledge, the domain 

knowledge, and the tutoring knowledge), and where each knowledge hyperframe of the 

unit is explicitly linked hierarchically and non-hierarchically, as is the case with domain 

and student knowledge hyperframes, to other hyperframes higher or lower in its hierarchy.

With each instruction knowledge unit there is an associated substance node which 

contains all the user tools such as such graphical browsers, graphical slots to be filled with 

annotated graphical information nodes and hypertext icons that act as buttons to generate 

tutoring actions with the instruction knowledge unit.

221



D om ain K now ledge H yperfram e 

O rganieational Dom ain K now ledge Link 

-  R eferential D om ain K now ledge Link

S tu d e n t K now ledge H yperfram e

O rgan isa tional S tu d e n t K now ledge Link 

-g Z » - R eferential S tu d e n t K now ledge Link

T ea ch in g  G o a ls  H yperfram e

O rgan isa tional T each ing  Goal link

T ea ch in g  S tra teg y  ty p ed  n o d e

R eferential Link to  te a c h in g  s tra te g y

K now ledge to  K now ledge Link

Figure 6.9: A hypertext view of the Tutoring System’s data structure

As explained before, the system is not intended to be coupled to any particular design 

methodology and consequently may be developed in a variety of forms, each tailored to 

the specific needs or interests of its users. The hypertext nodes may be implemented as 

hypercards which can be used to encode either the domain knowledge hyperframes, the 

student knowledge frames, the teaching goals frames, the production rules of the various 

teaching strategies, or the bug library. The hypertext links may be implemented as link 

icons that link component cards together by subcomponent links in a hierarchical 

structure or in a non-hierarchical structure. The icon links represent links to other cards 

which the system may either suggest to the student to follow up or pull them up for the 

student in order to attain a certain goal. Although the user will eventually be given enough 

freedom to follow links, the system provides an implicit default structure which will try 

to take the student-user through.
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6.1.5 Generative Behaviour

The third requirement for the development of a full-scale didactic operation states that in 

addition to hierarchical knowledge decompositions in the three knowledge structures, that 

would allow for a variety of hierarchical paths to be followed through, there will also be 

non-hierarchical explicit and direct paths between different parts of the same knowledge 

stmcture that would enable the system to follow as a result of some breakdown in the 

tutoring process, for instance, the need to pursue a remedial path.

This third requirement states that these paths wiU either be statically preset by the 

instructional designer or dynamically computed by the system. With respect to the former, 

the tutoring system’s data structure supports both hierarchical and non-hierarchical explicit 

paths through the network. This is achieved through the use of organisational information 

links for hierarchical paths and referential and keyword information links and annotations 

for non-hierarchical paths. Hypertext information links are by default explicit A hypertext 

information link between two nodes has to be explicitly established either by the user or 

computed by the hypertext engine. Hypertext information links may be made visually 

explicit to the user with the use of graphical browsers or link icons.

The latter (i.e. links computed and established by the system during the course of 

interaction), imposes a fourth requirement for the development of a full-scale didactic 

operation: following a student request, or as a result of the outcome of the student 

diagnostic process model the tutoring system must pursue hypertext information links in 

its three knowledge representations, in order to generate either alternative paths or 

additional domain knowledge from a different viewpoint This is necessary because of the 

wide range of outcomes from the student diagnostic process model, all of which cannot
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be precisely anticipated by the instructional designer, because the tutoring system may not 

have access to a complete domain knowledge representation and because information is 

required from a different viewpoint. A tutoring system with generative behaviour would 

result in the instructional designer not having to anticipate all possible paths a user or the 

tutoring system may follow during interaction, a domain knowledge structure that may not 

necessarily be complete and also provide alternative viewpoints on the domain knowledge.

This last requirement stresses the need for explicit and direct links to other knowledge 

parts anywhere within a knowledge representation and within the tutoring system’s overall 

data structure (see Figure 6.15) which would otherwise need to be inferred by the system. 

The tutoring system when generating additional domain knowledge would link these to 

its existing knowledge representations for further use.

The system can generate additional domain knowledge hyperframes from its domain 

knowledge representation during the course of interaction, either if such a need arises or 

as a response to a student-user request. In either case, the system is in control of the 

generating process so it can tailor the area of emphasis to suit the individual student. 

Figure 6.10 is an example of such generative behaviour.

In the example in Figure 6.10, the student-user asked the system for all the 

German-Speaking European Countries and the system responded by searching its network 

of Domain knowledge hyperframes for countries whose languages attribute slot includes 

German, produced a "German Speaking European Countries" hyperframe and placed 

Austria, Germany, and Switzerland as values in the "countries" attribute slot in the 

hyperframe. The syntax and semantics of the hyperframe are determined by the system
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Figure 6.10: Example of Generative Behaviour 

in accordance with the rest of the hyperframes.

The system will also generate the local student hyperframe corresponding to the domain 

knowledge hyperframe it creates and also the teaching goals hyperframe for this domain 

hyperframe in which to include teaching strategies by searching for the best overall 

teaching strategy for the student-user in the whole of the student model. The same 

diagnostic routines applied with the rest of the hyperframes can now be applied with this 

generated hyperframe.

The system’s generative behaviour has many advantages. First, it increases the range of 

issues on which the system can offer tutoring. Second, it solves partly the problem of 

designing additional necessary instructional material during the course of interaction. 

Third, it eliminates the need to prestore all possible hyperframe combinations, especially
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those arising from different viewpoints. Fourth, it has virtually unlimited resource 

material, as much as the system can produce combinations of. Finally, it allows the system 

and the student-user to generate as many hyperframes as needed in order to attain the 

educational objectives of the system.

With respect to the last advantage, the system may use its generative abilities to generate 

tasks for the student, as part of its testing of the student-user’s understanding of the 

subject material after the system has completed tutoring with a group of instruction 

knowledge units, for instance, the Europe Branch on the domain tree. Or it may use the 

hypertext engine to issue a search for all those European countries whose first language 

is German, and ask the student to name them. Of course, the difficulty of the task needs 

to be directly related to the classification of the student-user.

6.1.6 User Interface

During instruction delivery, the system takes the student-user through different sequences 

of instmction knowledge units where the different paths underlie the structure of the 

domain knowledge structure. In addition, the system allows experienced users to drive 

hdr way through the system. Which instruction knowledge unit or group of instruction 

mowledge units to visit next is determined by the pedagogical process model.

With every instruction knowledge unit that the user visits or is taken to, the user 

communicates with the tutoring system via a user interface which is a combination of a 

Hypertext Interface (HI), a Graphical User Interface (GUI) and a Restricted Natural 

Language Processor (RNLP). The system provides a graphical browser whose purpose 

is to collect hyperframes specified by the user, then link these hyperfitames to a source
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hyperframe and finally display this network graphically. Hyperframes are normally 

represented as boxes and hypertext links as directed lines between these boxes. Hypertext 

browsers usually come with a set of editing tools that allow the user to rapidly access, 

modify, and extend the depicted network structure. The system has a searcher whose 

purpose is to find and collect hyperframes meeting certain conjunctive or disjunctive 

specifications of field information. The system has a collection tool whose purpose is to 

look for hyperframes of a specific type that emanate certain kinds of hypertext 

information links. Cluster tools identify similar sets of hyperframes according to some 

metric provided by the user. The link follower traverses a network along links of a 

specified type, displaying (if requested) encountered hyperframes in the order that have 

been encountered and allowing the user to select among choices where the network 

branches.

The user interface performs a set of management tasks: it displays "annotated" hyperframe 

text or graphics from the domain hyperframe and places any link icons in their place, all 

goals the user has to attain during interaction within the unit, all available teaching 

strategies, the teaching goal selected by the tutor process model, the teaching strategy 

selected by the tutor model with which to attain the goal, creates the relevant graphical 

browser to and from the domain hyperframe of the instruction knowledge unit, and 

prompts the user for input. Figures 6.11 and 6.12 depict protocols of interaction with a 

student-user.

Although the system is following a certain plan of action, within an instruction knowledge 

unit the student-user is allowed, always with the approval of the system, to change the 

mode of interaction: switch between different teaching strategies, change to a different
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T A S K

Name a European Country, and click on its position on the 
Europe map.

S Y S T E M 'S  O U T P U T

UK is European country, and the location is correct. Let us 
visit UK.

U S E R  IN P U T

UK

Figure 6.11: A protocol of interaction with the tutoring system

teaching goal, visit another unit with the help of the graphical browser, retrieve 

information using the searcher and follow this information, follow hypertext information 

links using the link follower, use the RNLP to pose a task or question to the system, 

generate a hyperframe.

The more experienced a user becomes (i.e. the range of missing conceptions in their 

overlay model is increasingly reduced, misconceptions have been cleared out and the 

student-user has been exposed to most of the material preset by the instructional designer), 

the more freedom the system allows to the student to explore this environment. That is 

when the student may choose to test the system’s generative behaviour and discover any 

hidden curriculums. Obviously, the student-user does not have to terminate the interaction 

with the system after the system has taken him through its entire material. The student 

may continue exploring, in which case the system takes a more silent and passive role.
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Birmingham □ Coventry □
Aberdeen □ Manchester □
Bangor □ Luton □
Southampton □ Leeds □
London B Nottingham □

Figure 6.12: A Protocol of interaction with the tutoring system

6.1.7 The Domain Knowledge Process Model: Expertise

The inherent hierarchy of the domain knowledge model does not designate the relative 

importance of the tutorial topics but is merely one way of ordering domain knowledge 

from a particular viewpoint, in our case that of physical boundaries (i.e. country borders). 

A different viewpoint may result in a different top-level domain hyperframe. At the global 

level, the domain knowledge process model is responsible for material sequencing, that 

is for retrieving the next domain hyperframe. For example, if the system is providing 

tutoring with the instruction knowledge unit on Europe and the system will proceed to 

provide tutoring on the UK, then the process model is responsible for accessing the UK 

hyperframe for this purpose.

At the local level (i.e. within the context of an instruction knowledge unit), the process
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model is responsible for the content of tutorial interventions. For example, if within the 

context of the instruction knowledge unit on the UK, the system is trying to satisfy the 

local teaching goal, "Capital of the UK" then the domain process model is responsible for 

retrieving the correct answer for this question.

6.1.8 The Student Knowledge Process Model: Diagnostics

The student knowledge model depicts the relative strengths (e.g. with topics, with teaching 

strategies, etc.) and weaknesses of the student-user (e.g. misconceptions and missing 

concepts). At the global level, the student knowledge process model is responsible for 

providing a means-ends analysis of the user. This involves examining the student overlay 

model for missing concepts and for misconceptions in order to classify the user-leamer, 

for instance, as a novice, or advance beginner or competent, etc. The resulting 

classification serves as an alternative terminating condition and also provides a yardstick 

for designating the decree of freedom to explore that will be granted to the student-user.

At the local level, the process model is responsible for integrating acquired student 

knowledge in the corresponding student hyperframe by filling the attribute slots with 

values, best and applied teaching strategies, the tutoring path and the reason that lead to 

this domain hyperframe (e.g. didactic plan, remedial plan). In addition to merely 

integrating information in the student hyperframe, the process model is also responsible 

for diagnosing misconceptions and thus signalling appropriate remedial action. For 

example, if the student gave Turkey as a reply to the query "Name ten European 

countries", then the process model may instruct the system to provide tutoring on Turkey 

or on Asia, in order to clear away the misconception. Misconceptions are permanently 

recorded in the student hyperframe of the instruction knowledge unit in which they occur.
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The reason for this, is that a series of related diagnosed misconceptions may result from 

missing concepts and thus the process model may signal additional remedial action. For 

instance, if the student repeatedly gives the names of African countries as Asian countries 

then the process model may instruct the system to provide remedial action by providing 

tutoring on Africa or Asia, or diagnose which missing concepts (if any) in the student 

Africa or Asia hyperframe may be the cause of these misconceptions. The process model 

assesses the effectiveness of the user of applying a particular teaching strategy with a 

specific teaching goal against a set of independent set of criteria, for instance 2s scored, 

time taken to reply, chosen by the student, etc.

Diagnosis of misconceptions is performed as follows. When the student provides an 

answer to a question, then the process model checks whether this is an acceptable value 

by looking in the set of values in the corresponding domain hyperframe attribute slot. If 

it is, then the process model adds the user input in the corresponding student hyperframe 

attribute slot. If not then the process model checks this value against the bugs library to 

see if this is a known misconception.

Since the bugs library has been represented as a set production rules, where each and 

every misconception is a production rule, the process model uses data-driven forward 

chaining to traverse the rules, with the data being the user input When the forward 

chainer finds a rule that describes the misconception then the action suggested by the rule 

is the output of the process model. If this would involve visiting another instruction 

knowledge unit, then a referential link is created from the current student hyperframe to 

the student hyperframe of that unit and the name of the rule depicting the misconception 

is given as the name of the link.
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6.1.9 The Tutor Knowledge Process Model: Didactics

The tutoring knowledge model comprises of the pedagogical principles that underlie the 

tutorial interaction with the tutoring system. At the local level, the process model is 

responsible for the tutoring tactics. This involves selecting the next teaching goal to be 

satisfied from the teaching goals hyperframe and applying an appropriate teaching strategy 

for attaining this goal. Once a teaching strategy has been applied, the process model uses 

the user input as the data for a data-driven forward chainer that traverses the rule-based 

comprising the teaching strategy, in order to interpret the user input.

At the global level, didactic decisions are taken solely by the pedagogical process model 

which is responsible for the system’s pedagogical strategy that is carried through the 

system’s didactic operation. The pedagogical process model is also responsible for 

controlling the flow of interaction between the three knowledge process models in order 

to support the tutoring system’s didactic operation both at the local level and at the global 

level.

The role of the pedagogical process model at the local level is to coordinate the 

interaction of the three knowledge process models in order to satisfy the local teaching 

goals. It involves instructing the tutor knowledge process model to select the next teaching 

goal and an appropriate teaching strategy, and the domain expert knowledge process 

model to provide the relevant knowledge for tutoring with the goal. It also involves 

instructing the student knowledge process model to check the user input for correctness, 

and instructing the tutor model to break away from the tutorial plan and visit a particular 

instruction knowledge unit, if the student knowledge process model calls for remedial 

action.
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At the global level, by working in synergy with the three knowledge process models, the 

pedagogical process model coordinates material sequencing. This results in advancing the 

user to the next instruction knowledge unit, selecting the best teaching strategy overall for 

the current user and performing means-ends analysis at regular intervals by evaluating the 

learner’s overall knowledge status and consequently to classifying the learner as an end- 

user.

The user classification helps the pedagogical process model decide on learner control. The 

flow of interaction is by default under the continuous control of the pedagogical process 

model. However, as the user becomes more experienced, the system eases the amount of 

control it exercises on the user-leamer and allows more freedom to the student to navigate 

through the hyperspace by pursuing links, initiating searches, involves the system’s 

generative behaviour, etc. A more precise examination of the functional role of the 

pedagogical process model will be unravelled in the context of the rest of the didactic 

operation.

6.2 THE DIDACTIC PLAN OF ACTION

The organisation and hierarchical structure of the domain knowledge defines a default, 

nevertheless, explicit didactic plan of action for the didactic operation of this tutoring 

system. This default plan involves taking the student through a succession of instruction 

knowledge units by following the organisational links of the domain knowledge. Traversal 

of this hierarchical tree is arranged by the pedagogical process model working in synergy 

with the domain expert knowledge process model.

The pedagogical process model defines the way the domain knowledge tree is to be
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traversed, and the domain expert knowledge process model specifies the domain 

hyperframe to be retrieved. If the domain hyperframe to be retrieved is not the top level 

one, then the domain expert knowledge process model retrieves the name of the domain 

hyperframe from the current domain hyperframe in which it appears as an attribute slot 

value. The hypertext engine then retrieves the hypertext node in which this domain 

hyperframe is stored. The pedagogical process model then advances the student to the 

instruction knowledge unit part of which is the retrieved domain hyperframe.

Traversal of the domain tree may be performed in a number of ways. It may be traversed, 

breadth first, which in terms of our domain of discourse means that the domain expert 

knowledge process model wiU first take the student through the top level instruction 

knowledge unit (i.e. the Continents unit), then through each and every instruction 

knowledge unit in the first level, first the Europe unit, then the America unit, then the 

Australia unit, then the Asia unit and finally the Africa unit. Then it will take the student 

to the second level and offer tutoring first with European countries (e.g. take the student 

to the UK unit, then the France unit, etc.), then with American countries (e.g. take the 

student through the USA unit, then the Canada unit, etc.). Alternatively, the hierarchical 

tree of units defined by the domain tree may be traversed depth-first which means that the 

domain expert knowledge process model will first take the student through the top level 

instruction knowledge unit (i.e. the Continents unit), then to the Europe unit on the second 

level, then through the UK unit on the third level, eventually to go back to the top level 

unit and visit the second leftmost leaf of the domain tree (i.e. the America Unit). These 

"default" global level operations define the teaching curriculum and the student’s learning 

path through it.
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In the context of each instruction knowledge unit that the domain expert knowledge 

process model takes the student to, the pedagogical process model generates a didactic 

episode in which the goals in the teaching goals hyperframe must be fulfilled. Once within 

the instruction knowledge unit, the first task of the tutor knowledge process model is to 

retrieve the first available teaching goal from the teaching goals hyperframe. Goal 

selection is achieved with the assistance of the hypertext engine. The hypertext engine 

goes through the attribute slots that depict the teaching goals one by one and retrieves the 

first attribute slot from which there is no bidirectional link to the student hyperframe. 

Absence of a bidirectional link, as was previously explained, means that the goal has not 

been attempted yet by the student. Once the hypertext engine delivers an attribute slot, the 

tutor knowledge process model will retrieve the context of the slot (i.e. the teaching goal). 

The second task of the tutor knowledge process model is to retrieve the names of the 

teaching strategies that are appropriate for tutoring with the goal. The hypertext engine 

will follow the links from the attribute slot to the teaching strategies and retrieve them. 

For example, if the instruction knowledge unit is the one on Europe (see Figure 6.8) and 

the unit is visited for the first time, that is there are no bidirectional links to and from any 

of the teaching goals to the student hyperframe, then the tutor knowledge process model 

will retrieve the first available teaching goal (i.e. "What is Europe") along with teaching 

strategies 1 and 2.

The pedagogical process model then calls the hypertext engine to follow the information 

links from the teaching goal to the corresponding domain hyperframe attribute slots. Once 

the hypertext engine retrieves these slots, the domain expert knowledge process model 

then retrieves the context of these attribute slots. Therefore, for the goal, "What is Europe" 

the domain expert knowledge process model retrieves, "part-of: continents" and
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"specialisation-of: continent".

The pedagogical process model then calls the student knowledge process model to retrieve 

the best teaching strategy, so far, for tutoring the student with this type of goal and use 

it for tutoring with the current goal, if this is a member of the set of strategies that have 

been retrieved with the selected teaching goal. If this is not a member of the set of 

teaching strategies that have been retrieved with the goal or if an overall or attribute- 

specific "best" teaching strategy has not been recorded yet, then the first of the teaching 

strategies associated with the goal will be used for tutoring with the goal. Once the 

strategy has been selected then, if, for instance, the teaching strategy is 

"Question/Answering" then the teaching goal is incorporated in a question which is posed 

to the student to answer it. If the teaching strategy is "Evaluation of Student Response" 

then the student is asked to state what he knows about the goal.

When the student provides an answer, the pedagogical process model then calls the 

student knowledge process model to check the user input for correctness. The student 

knowledge process model compares the user input against the domain expert knowledge 

retrieved by the domain expert knowledge process model. If it matches the domain expert 

knowledge then the student knowledge process model records the user input in the 

corresponding student hyperframe attribute slot. If the student hyperframe does not exist, 

the hypertext engine is called to create it, as explained earlier on in this chapter. The 

student knowledge process model then calls the hypertext engine to create a bidirectional 

referential link from the student attribute slot that has just been filled, to the 

corresponding attribute slot in the teaching goals hyperframe, holding the teaching goal. 

This will designate to the tutor knowledge process model that this teaching goal has been
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satisfied with the current instruction knowledge unit, in order not to be selected again 

when the pedagogical process model calls for the next teaching goal. It also indicates to 

the student process model which teaching goals have been satisfied so far.

It then calls the hypertext engine to create a referential link from the value that has just 

been added in the attribute slot in the student hyperframe, to the corresponding attribute 

slot in the domain hyperframe. If a domain attribute slot corresponding to the selected 

teaching goal contains several values of which a certain number, indicated by the teaching 

goal, are required for mastery of the goal, then the name of this referential link carries the 

number scored so far by the student This link will help the student knowledge process 

model match the student model against the domain model and thus calculate how close 

the student overlay model is to the domain model.

For example, if teaching strategy 1 is selected for tutoring with the selected goal then the 

question, "What is Europe?" is posed to the student. If the student answers that "Europe 

is a continent" which is correct then the student knowledge process model, will insert 

"continent" in the "specialisation-of" slot of the student hyperframe and "continents" in 

the "part-of slot. It will then call the hypertext engine to create bidirectional referential 

links from both of these slots to the corresponding attribute slots in the teaching goals 

hyperframe and name both of these links Goal-1 and also to the corresponding attribute 

slots in the domain hyperframe and give as names to these links the name of the attribute 

slot

Attribute slot values in the domain hyperframe that have their own hyperframes are linked 

to these with information links. Therefore, if an attribute slot in the student hyperframe
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has been filled with such a value, then a copy of the information link in the domain 

hyperframe is created by the hypertext engine, from the student hyperframe attribute slot 

value to the corresponding student hyperframe. In addition, an overlay statistic is added 

to the name of this computed link to indicate mastery of the concept-to-concept 

relationship. The value of the statistic is between the range of -2 to 2 where 2 indicates 

correctness, 1 indicates correctness after assistance, -1 indicates incorrectness, -2 indicates 

incorrectness after assistance and 0 indicates that the user has not provided the system 

with input about it. Similarly, the best teaching strategy for satisfying the goal has to be 

recorded in the attribute slot of the student hyperframe and a link created by the hypertext 

engine to this "best" teaching strategy. In our example, if applying teaching strategy 1 

ended in success with tutoring with "What is Europe" (i.e. the student scored 2s) then the 

name of this teaching strategy is added in the attribute slot of the student hyperframe, and 

the hypertext engine creates a link from this value to the corresponding node holding the 

strategy. The name of the strategy is also recorded as a best teaching strategy for tutoring 

with this kind of goal.

If the student knowledge process model diagnoses a misconception in the student answer, 

that is the student answer was not in the values retrieved from the domain hyperframe and 

when the student knowledge process model checked the misconceptions rules in the bugs 

library the expert system came up with a rule that described the misconception, then it 

calls for the remedial action, suggested by the misconception, to be taken. In this case, 

the pedagogical process model breaks away from the "default" plan of action and assumes 

a remedial plan. This involves taking the student to an instruction knowledge unit that was 

not part of the didactic plan. For example, if the teaching goal selected by the tutor 

knowledge process model was "European countries (10)", the teaching strategy selected
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was Evaluation of Student Response, the student was asked to "Name ten European 

Countries", and the student stated "Turkey" as one of these, then when the student 

knowledge process model checks this against the values retrieved from the corresponding 

attribute slot in the domain hyperframe, then this is a clear case of misconception.

The student knowledge process model records Turkey as a misconception in the 

appropriate attribute slot of the student hyperframe, displays the diagnostic message, 

"Turkey is not part of Europe", calls for remedial action which involves taking the student 

to the instruction knowledge unit for Turkey. The pedagogical process model calls the 

domain expert knowledge process model to specify the name of the domain hyperframe 

to visit and calls the hypertext engine to retrieve this domain hyperframe and also create 

a referential link from Turkey in the student hyperframe attribute slot to the Student 

Turkey hyperframe. The hypertext engine names this referential link with the name of the 

rule that proved the misconception. Once the instruction knowledge unit is retrieved, 

tutoring proceeds as before.

In addition to the diagnostic message delivered, the system according to how has the user 

been classified during the last means-ends analysis, may tell him which continent Turkey 

is part of. For instance, if the user is a novice then the student knowledge process model 

calls the domain expert knowledge process model to retrieve the continent Turkey is part 

of and thus display instead, "Turkey is not part of Europe, but of Asia".

The pedagogical process model may also break away from its didactic plan of action, by 

pursuing non-organisational information links. For instance, if the system is following a 

depth first traversal and is tutoring about Greece as part of the "European countries"
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teaching goal in the Europe unit, and there is the Neighbours-by-land keyword link from 

the Greece hyperframe to the Turkey hyperframe, then although Turkey is not part of 

Europe and thus not currently part of the didactic plan, the pedagogical process model 

may instruct the domain expert knowledge process model to take the student to the 

Turkey hyperframe and issue tutoring. The instructional designer may provide a variety 

of circumstances during which this may happen.

At the global level, the didactic operation must perform another two tasks: first, to signal 

the end of tutoring, and thus leave the student to explore the environment at his own pace, 

and second, to classify the user according to his performance. With respect to the former, 

tutoring will inevitably terminate when all, or the majority of, teaching goals in all 

teaching frames have been successfully satisfied. However, because of the generative 

behaviour of the system, discovery learning may thereafter continue, as there are virtually 

unlimited number of viewpoints the user may explore with the system. For instance, the 

user may search for all German-speaking countries, all countries crossed by Alps, all 

countries that get wet by the Atlantic Ocean, visit aU European countries which he did not 

visit, etc.

With respect to the latter, the user is classified as a learner according to the current status 

of missing concepts from his overlay model and the number and nature of his 

misconceptions. In terms of the missing concepts, the pedagogical process model calls the 

hypertext engine to retrieve the bidirectional links from all the domain hyperframes 

attribute slots to the student hyperframes attribute slots. Missing bidirectional links are 

interpreted as missing concepts. In those cases where the student is asked to give only a 

fraction of the values and thereby engage in tutoring with the units of these values only.
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for example, European countries (10), the name of the bidirectional link from the domain 

hyperframe attribute slot to the corresponding student hyper&ame attribute slot in the unit, 

designates how many of these values the student has named and which domain 

hyperframes from this group of domain hyperframes he is expected to have visited, so the 

rest can be ignored.

In the above example, the student is expected to have named at least ten European 

countries and thus engaged in tutoring with only these. Absence of bidirectional links 

from the rest of European countries is not taken as missing concepts. According to how 

many missing concepts the student has and how many misconceptions and the nature of 

these misconceptions, he will be classified as a novice, advanced beginner, competent, 

proficient, expert, master, etc. This classification will then be used by the system to make 

decisions such as how many tries to allow the user, for example, at a question before 

giving a hint or even the correct answer, increase the number of European countries 

required in the Europe unit from 10 to 20, how much explanation to provide, etc., and 

finally the amount of freedom to explore the environment, for instance, change the 

teaching strategy at will, change the teaching goal, engage the system’s generative ability, 

visit an instruction unit which is not part of the current didactic plan, etc.

6.3 THE PEDAGOGICAL CONTEXT

The "default" pedagogical context for the application of the system’s didactic operation 

is that defined by the plan of action. It is plan-based since the pedagogical process model 

manipulates the sequences of experiences, that is the didactic episodes, through which the 

student is expected to acquire the target expertise. The teaching goals predominate during 

interaction. The pedagogical process model plans the interaction both at the local level
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which involves attaining all, or the majority of, the teaching goals in the current 

instruction knowledge unit, and at the global level which involves proceeding with 

instruction with the next instruction knowledge unit in this hierarchal planning until the 

student model has no or very few missing concepts. Within this plan the student has as 

much freedom as the learner performance evaluation allows to the student.

However, the student knowledge process model plays a central role with tutoring as it 

does not just monitor the unfolding of the didactic plan and fill the student data bank, but 

it may trigger such interventions as a result of student diagnosis of misconceptions, that 

may cause the pedagogical process model to call the didactic operation to deviate from 

this default plan and take a remedial action. This results in the pedagogical process model 

monitoring the unfolding of an opportunistic plan. This would involve advancing the 

student to instruction knowledge units that are not part of the didactic plan of action and 

engage him in tutoring. The pedagogical process model will pursue this "remedial path" 

and once the student misconception or subsequent misconceptions have been cleared 

away, the pedagogical process model calls the didactic operation to resume its plan.

Pursuing an opportunistic plan can also be the result of the student engaging the system’s 

generative ability in an information-rich and highly structured environment. Pursuing 

opportunistic plans may also be the result of switching between different teaching 

strategies in the context of an instruction knowledge unit. Initially, the pedagogical 

process model will issue tutoring in a strictly plan-based context and as the user moves 

up the classification scale, the pedagogical process model will give the student more 

freedom to explore opportunistic plans. Once the pedagogical process model has achieved 

its target goals and the student model has no, or very few, missing concepts then if the
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user wishes to interact with the system, the pedagogical context of the didactic operation 

will be exclusively opportunistic. In such a case, the pedagogical process model will 

provide tutorial help only if the student asks for it or when the student knowledge process 

model diagnoses a misconception as a result of this request.

6.4 THE TARGET LEVEL

By organising a didactic episode with each and every instruction knowledge unit that the 

pedagogical process model takes the student to, the objective of the didactic operation is 

to modify the knowledge state of the student-user either directly, through communication 

of knowledge, or indirectly, through practice. The student hyperframe attribute slots are 

filled with factual knowledge, and the overlay statistics that are part of the names of the 

links from the knowledge in these attribute slots to other student hyperframes, provide an 

indication of the level of mastery of the concept-to-concept relationship or an indication 

of the misconception encountered. This suggests that the target level of the didactic 

operation is epistemic.

Nevertheless, although the target level of the didactic operation is epistemic, the contents 

of the student hyperframe also includes behavioural and individual aspects of the actual 

user-leamer, at least those which are necessary to support a full-scale didactic operation 

at the epistemic level: Pathways to from an instruction unit (e.g. Europe to France), use 

of the instruction unit (e.g. "plan", "misconception: student thinks Turkey is part of 

Europe"), "best" teaching strategy and "applied" teaching strategies, explanation requests 

and non-organisational links to and from a student hyperframe are expositions of a 

behavioural aspect of a student hyperframe, and the student model overall. These denote 

user performance within an instruction knowledge unit without directly addressing domain
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knowledge.

6.5 AN INTERACTION PROTOCOL WITH THE TUTORING SYSTEM

The first tutoring task of the pedagogical process model is to take the student to the top 

level instruction knowledge unit (i.e. the Continents unit), and start tutoring within it. The 

hypertext engine creates an empty semi-structured hypertext information node, names it 

"Student Continents Frame" as in Figure 6.13, and creates the "paths" and "uses" attribute 

slots. Then the pedagogical process model calls the domain expert knowledge process 

model to supply the names of the remaining attribute slots, free of values, for the student 

hyperframe. The hypertext engine then creates attribute slots in the student hyperframe 

with these names. Figure 6.13 shows the Continents instruction knowledge unit prior to 

any interaction taking place within it.
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Figure 6.13: The Continents instruction knowledge unit prior to any interaction 

The next task of the pedagogical process model is to update the user interface. For this
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purpose, it calls the tutor knowledge process model to provide to the user interface for 

display the teaching goals that have to be attained with the current instruction knowledge 

unit, the teaching strategies that are appropriate for tutoring with these goals, the first goal 

to be attained, "Continents", and the teaching strategy that is to be applied to attain the 

goal. It then calls the hypertext engine to provide to the user interface for display any 

annotated graphics or text to the domain hyperframe. Then, according to the context of 

the teaching strategy, it prompts the user for input. In Figure 6.14 below, the teaching 

strategy that has been selected by the tutor knowledge process model and retrieved by the 

hypertext engine is that of the "Evaluation of student response". With this strategy the 

user is asked to state what he knows about the goal, so the prompt, "name a continent, 

and click on its position on the World Map". The user in the case, names Europe and 

clicks correctly with a pointing device on its position on the map. The user input is 

correct thus the system’s output is appropriately given.

WORLD MAP

E U R O P E

T E A C H IN G  M O D E S

Q u e s tio n /A n s w e r in g  i  Evaluation of R esponses ^  ^

T E A C H IN G  G O A L S

N a m e  th e  C o n t in e n ts  s /  B

c o n tin e n t

N a m e  th e  s m a lle s t  In  s iz e  
c o n t in e n t

G R A P H IC A L  B R O W S E R  i  T O O L S

T U T O R IN G  S T A T U S

G O A L : N a m e  th e  c o n tin e n ts

T E A C H IN G  S T R A T E G Y : E v a lu a t io n  o f  R e s p o n s e s

T A S K

Name a Continent, and cbck on its position on the m ^ .

S Y S T E M 'S  O U T P U T

Europe is a continent and the location is correct Let us visit 
E u ro p e .

U S E R  IN P U T

Europe

Figure 6.14: Man-Machine interaction with the Continents instruction knowledge unit
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The pedagogical process model co-ordinates a number of actions, before it arrives at the 

system’s outcome. First, it calls the hypertext engine to follow the links from the teaching 

goal to the corresponding attribute slots in the domain hyperframe, and then calls the 

domain expert knowledge process model to retrieve the contents of these attribute slots. 

Then it calls the student knowledge process model to compare the user input with the 

knowledge retrieved from the domain hyperframe. In our case, the user input is correct 

therefore, the student knowledge process model fills the corresponding attribute slots in 

the student hyperframe. The attribute slot "Continents" in the student hyperframe is filled 

with the "Europe". The student knowledge process model then calls the pedagogical 

process model to continue with the plan of action.

However, before continuing with the plan of action, the hypertext engine is called by the 

pedagogical process model to create a referential bi-directional link from the teaching goal 

that has been attained in the teaching goals hyperframe, to the corresponding attribute slot 

in the student hyperframe (see Figure 6.15). As explained before, this is to aid the tutor 

knowledge process model to choose the next goal now or in a future interaction with this 

instruction knowledge unit. It also creates a referential link from the student attribute slot 

that has been filled to the corresponding domain hyperframe attribute slots. This is to help 

assess the current state of the student overlay model, that is how much of the domain 

knowledge has been acquired by the student and consequently classify the user 

accordingly.

Finally, if there is a domain hyperframe for the value which the student attribute slot has 

been filled with, the hypertext engine creates the student hyperframe for it. In our case, 

the hypertext engine creates a semi-structured hypertext information node which it names
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Figure 6.15: The Continents instruction knowledge unit after interaction

"Student Europe Frame" and also creates a referential link to it from the value "Europe" 

in the corresponding student continents hyperframe attribute slot. Figure 6.16 represents 

the current state of the student knowledge model.

Let us assume that the pedagogical process model instructed a depth-first domain tree 

traversal. In this case, the pedagogical process model calls the hypertext engine to follow 

an organisational hypertext information link from the continents unit to the next level in 

this hierarchical tree. Since the user has answered Europe, the hypertext engine follows 

the link to the Europe Hyperframe which the pedagogical process model calls the domain 

expert knowledge process model to retrieve.

Before leaving the Continents unit, the student knowledge process model fills the "path" 

attribute slot in the student continents hyperframe with "(, Europe Frame) and the "uses"
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-•lratogy-1

T o  E u ro p e  Fra|
C o n t in e n t

T -S -1

Figure 6.16: The current state of the student overlay knowledge model

attribute slot with "plan" to denote that the didactic operation is advancing the user from 

the Continents frame to the Europe frame as part of the didactic plan. In both Figures 6.15 

and 16 the hypertext information links within the student model carry an overlay statistic 

that represents the level of mastery of a concept or a relationship. The bidirectional link 

from the teaching goal to the student attribute slot also carries an indication of the level 

of achievement of the student. For instance, 1 of 5 suggests that the student has named 

correctly one continent so far.

Once in the Europe Unit, the pedagogical process model calls the hypertext engine to 

create the "paths" and "uses" attribute slots in the student hyperframe. Then the 

pedagogical process model calls the domain expert knowledge process model to supply 

the names of the remaining attribute slots for the student Europe hyperffame. The 

hypertext engine then creates attribute slots with these names in the student Europe
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hyperframe. Figure 6.17 shows the Europe instruction knowledge unit prior to any 

interaction taking place within it.
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Figure 6.17: The Europe instruction knowledge unit prior to any interaction

The next task of the pedagogical process model is to update the user interface. For this 

purpose, it calls the tutor knowledge process model to display the teaching goals that have 

to be attained with the current instruction knowledge unit, the teaching strategies that are 

appropriate for tutoring with these goals, the first goal to be attained, "European 

countries", and the teaching strategy that is to be applied to attain this goal. It then calls 

the hypertext engine to provide to the user interface for display any annotated graphics 

or text to the domain hyperffame. Then, according to the context of the teaching strategy, 

it prompts the user for input. In Figure 6.18 below the teaching strategy that has been 

selected by the tutor knowledge process model and retrieved by the hypertext engine is 

that of the "Evaluation of student response". With this strategy the user is asked to state 

what he knows about the goal, so the prompt, "Name a European country, and click on
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its position on the Map of Europe". The user in the case, names the UK and clicks 

correctly with a pointing device on its position on the map. The user input is correct thus 

the system’s output is appropriately given.
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UK is European country, and the location is correct. Let us 
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U S E R  IN P U T

UK

Figure 6.18: Man-machine interaction with the Europe instruction knowledge unit

As before, the pedagogical process model co-ordinates a number of activities, in order to 

arrive at the system’s outcome. First, it calls the hypertext engine to follow the links from 

the teaching goal to the corresponding attribute slots in the domain hyperframe, and then 

calls the domain expert knowledge process model to retrieve the contents of these attribute 

slots. Then it calls the student knowledge process model to compare the user input with 

the knowledge retrieved from the domain hyperframe. In this case, the user input is 

correct, and therefore, the student knowledge process model fills the corresponding 

attribute slots in the student hyperframe, that is the attribute slot "Countries" in the student 

hyperframe is filled with "UK". The student knowledge process model then calls the 

pedagogical process model to continue with the plan of action.
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However, before continuing with the plan of action, the hypertext engine, as before, is 

called by the pedagogical process model to create a referential bi-directional link from the 

teaching goal that has been attained in the Europe teaching goals hyperffame, to the 

corresponding attribute slot in the student hyperframe (see Figure 6.19). This is to assist 

the tutor knowledge process model to choose the next goal now or in a future interaction 

with this instruction knowledge unit. It also creates a referential link from the student 

attribute slot that has been filled with knowledge, to the corresponding domain hyperframe 

attribute slots. This is to help assess the current state of the student overlay model, that 

is how much of the domain knowledge has been acquired by the student and thus classify 

the user accordingly.
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Figure 6.19: The Europe instruction knowledge unit after interaction

Finally, if there is a domain hyperffame for the value which the student attribute slot has 

been filled with, the hypertext engine creates the student hyperffame for it. In our case, 

the hypertext engine creates a semi-structured hypertext information node which it names
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"Student UK Frame" and also creates a referential link to it from the value "UK" in the 

corresponding student Europe hyperframe attribute slot. Figure 6.20 represents the current 

state of the student knowledge model.

To Continents Teacl Frame

To Continents Frame

Continent

■ontinents (2) T-S-1

To Euroi

T-S-2

Figure 6.20: The current state of the student overlay knowledge model

The pedagogical process model following its depth-first domain tree traversal calls the 

hypertext engine to follow an organisational hypertext information link from the Europe 

unit to the next level in this hierarchical tree. Since the user has answered UK, the 

hypertext engine follows the organisational link to the UK Hyperframe which the 

pedagogical process model calls the domain expert knowledge process model to retrieve 

it.

Before leaving the Europe unit, the student knowledge process model fills the "path" 

attribute slot in the Student Europe hyperframe with "(Continents Frame, UK Frame)" and 

the "uses" attribute slot with "plan" to denote that the didactic operation is advancing the
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user to the UK frame as part of the didactic plan. In both Figures 6.19 and 6.20 the 

hypertext information links within the student model carry an overlay statistic that 

represents the level of mastery of a concept or a relationship. The bidirectional link from 

the teaching goal to the student attribute slot that has been filled also carries an indication 

of the level of achievement of the student. For example, 1 of 10 suggests that the user has 

named correctly one European country so far.

Once in the UK Unit, the pedagogical process model calls the hypertext engine to create 

the "paths" and "uses" attribute slots in the student hyperframe. Then the pedagogical 

process model calls the domain expert knowledge process model to supply the names of 

the remaining attribute slots for the student UK hyperframe. The hypertext engine then 

creates attribute slots with these names in the student UK hyperframe. Figure 6.21 shows 

the UK instruction knowledge unit prior to any interaction taking place within it.
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Figure 6.21: The UK instruction knowledge unit prior to any interaction
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The next task of the pedagogical process model is to update the user interface. For this 

purpose, it calls the tutor knowledge process model to display the teaching goals that have 

to be attained with the current instruction knowledge unit, the teaching strategies that are 

appropriate for tutoring with these goals, the first goal to be attained, "UK Capital", and 

the teaching strategy that is to be applied to attain this goal. It then calls the hypertext 

engine to provide to the user interface for display any annotated to the domain hyperframe 

graphics or text. Then, according to the context of the teaching strategy, it prompts the 

user for input. In Figure 6.22 below, the teaching strategy that has been selected by the 

tutor knowledge process model and retrieved by the hypertext engine is that of the 

"Multiple Choice". With this strategy the user is asked to choose from a list of options 

the capital of the UK, by clicking with a pointing device on what he thinks is the correct 

answer and then "click on its position on the UK Map". The user, in this case, chooses 

London and clicks correctly with a pointing device on its position on the map. The user 

input is correct thus the system’s output is appropriately given.

As before, the pedagogical process model co-ordinates a number of activities, in order to 

arrive at the system’s outcome. First, it calls the hypertext engine to follow the links from 

the teaching goal to the corresponding attribute slots in the domain hyperframe, and then 

calls the domain expert knowledge process model to retrieve the contents of these attribute 

slots. Then it calls the student knowledge process model to compare the user input with 

the knowledge retrieved from the domain hyperframe. In this case, the user input is 

correct, and therefore, the student knowledge process model fills the corresponding 

attribute slots in the student hyperffame, that is the attribute slot "UK Capital" in the 

student hyperframe is filled with "London". The student knowledge process model then 

calls the pedagogical process model to continue with the plan of action. With this teaching
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Figure 6.22: Man-machine interaction with the UK instruction knowledge unit

strategy the Domain Expert knowledge process model also retrieves additional names of 

UK cities which it provides for the user interface to display. The Domain Expert 

Knowledge process model retrieves the names of these cities from its "Cities" attribute 

slot part of which is also London.

Before continuing with the plan of action, the hypertext engine, as before, is called by the 

pedagogical process model to create a referential bi-directional link from the teaching goal 

that has been attained in the UK teaching goals hyperframe, to the corresponding attribute 

slot in the student UK hyperframe (see Figure 6.23). This is to assist the tutor knowledge 

process model to choose the next goal now or in a future interaction with this instruction 

knowledge unit. It also creates a referential link from the student attribute slot that has 

been filled with knowledge, to the corresponding domain hyperframe attribute slots. This 

is to help assess the current state of the student overlay model, that is how much of the
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domain knowledge has been acquired by the student and thus classify the user 

accordingly.
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Figure 6.23: The UK instruction knowledge unit after interaction

Finally, if there is a domain hyperframe for the value which the student attribute slot has 

been filled with, the hypertext engine creates the student hyperframe for it Let us assume 

that the individual country hyperframes are at the bottom level of the domain tree. Figure 

6.24 represents the current state of the student knowledge model.

The pedagogical process model following its depth-first domain tree traversal calls the 

domain expert knowledge process model to retrieve the Europe hyperframe so it can take 

the user back to the Europe unit. Before leaving the UK unit, the student knowledge 

process model fills the "path" attribute slot in the student Europe hyperframe with 

"(Europe Frame, Europe Frame)" and the "uses" with "plan" to denote that the didactic 

operation is taking the user back to the Europe frame as part of the didactic plan. In both
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Figure 6.24: The current state of the student overlay knowledge model

Figures 6.23 and 6.24 the hypertext information links within the student model carry an 

overlay statistic that represents the level of mastery of a concept or a relationship.

Once back in the Europe Hyperframe the pedagogical process model updates the user 

interface. For this purpose, it calls the tutor knowledge process model to display the 

teaching goals that have to be attained with the current instruction knowledge unit, the 

teaching strategies that are appropriate for tutoring with these goals, the goal to be 

attained, "European countries", and the teaching strategy that is to be applied to attain this 

goal. It then calls the hypertext engine to provide to the user interface for display any 

annotated graphics or text to the domain hyperffame. Then, according to the context of 

the teaching strategy, it prompts the user for input. In Figure 6.25 below, the teaching 

strategy that has been selected by the tutor knowledge process model and retrieved by the 

hypertext engine is that of the "Evaluation of student response". With this strategy the
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user is asked to state what he knows about the goal, so the prompt, "Name another 

European country, and click on its position on the Map of Europe". The user in the case, 

answers Turkey, which is incorrect thus the system’s output is appropriately given. See 

Figure 6.25.
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Figure 6.25: Man-machine interaction with the Europe instruction knowledge unit

As before, the pedagogical process model co-ordinates a number of activities, in order to 

arrive at the system’s outcome. First, it calls the hypertext engine to follow the links from 

the teaching goal to the corresponding attribute slots in the domain hyperffame, and then 

calls the domain expert knowledge process model to retrieve the contents of these attribute 

slots. Then it calls the student knowledge process model to compare the user input with 

the knowledge retrieved from the domain hyperframe. In this case, the user input may be 

incorrect since is not included in the "countries" attribute slot of the domain hyperframe.

In this case, the pedagogical process model calls the hypertext engine and the domain
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expert knowledge process model to check which continent Turkey is part of. The 

hypertext engine issues a keyword search for a hyperframe called "Turkey Frame". If we 

assume that there is one, the hypertext engine will follow links to this hyperframe and the 

domain expert knowledge process model will retrieve the contents of the part-of attribute 

slot In this case, the domain expert knowledge process model will retrieve that Turkey 

is part of Asia. This information will confirm that the student knowledge process model 

diagnosed a misconception.

In this case, the student knowledge process model will place Turkey in the "countries" 

attribute slot of the student Europe hyperffame but marked as a misconception. The 

student knowledge process model using the user input, Turkey, and Europe as its data will 

call the expert system to traverse the bugs library and select a mal-rule that describes the 

nature of the misconception and that also provides details of the remedial action to be 

taken. In this case, it will select "mal-rule 58: Student thinks Turkey is part of Europe". 

The student knowledge process model calls for tutoring with the instruction knowledge 

unit on Turkey. Therefore, the pedagogical process model will temporarily break away 

from its didactic plan of action and pursue tutoring with the Turkey unit

To achieve this, the pedagogical process model, will call the hypertext engine to create 

a referential link from the misconception value "Turkey" in the "countries" attribute slot 

of the student Europe frame to the student Turkey frame. The name of the referential link 

will be the name of the rule that proves the misconception, "Student thinks Turkey is part 

of Europe". Also an overlay statistic of -2 will be attached to this link to denote a 

misconception. Figure 6.26 represents the current state of the student overlay knowledge 

model after the diagnosis and representation of the misconception. Once this opportunistic
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tutoring with the Turkey unit is over the didactic operation will resume its default didactic 

plan of action.
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Figure 6.26: The current state of the student overlay knowledge model

6.5.1 An interaction protocol involving the tutoring system’s generative behaviour

Let us assume that at some stage of the man-machine interaction, the system’s generative 

ability has been invoked as a result of either the student being classified such that the 

tutoring system allows him to explore the environment or the system is testing the user 

after the completion of tutoring with a group of units, for instance, Europe and its 

constituents which results to Figure 6.10.

The next task of the pedagogical process model is to create the rest of the instruction unit 

for the "German Speaking European Countries Frame". It calls the hypertext engine to 

create a semi-structured hypertext information node which it names "German Speaking
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European Countries Frame Teaching Goals". It then makes this hyperframe part of the 

Europe Frame Teaching Goals hyperframe by creating a "Part-of attribute slot in it and 

placing Europe as the value and by creating an organisational information link to the 

Europe Frame Teaching Goals. It then creates an attribute slot called "Goal-1" in which 

it places "German Speaking European Countries (3)" as the value/goal and links the 

attribute slot with a referential link to the "Countries" attribute slot in the generated 

domain hyperframe.

The pedagogical process model then calls the student knowledge process model to retrieve 

the name of the overall best teaching strategy for the student. It then calls the hypertext 

engine to include the name of this teaching strategy in the Goal-1 attribute slot of the 

teaching goals frame, and also create a referential link from it to the hypertext node that 

contains the teaching strategy. The pedagogical process model also retrieves from the 

Europe map the maps of the three countries and annotates these to the generated domain 

hyperframe as a single map. Finally it creates, the corresponding student hyperframe, free 

of values. The resulting instruction knowledge unit on German speaking European 

Countries is given in Figure 6.27 below.

The next task of the pedagogical process model is to update the user interface. For this 

purpose, it calls the tutor knowledge process model to provide to the user interface for 

display the teaching goals that have to be attained with the current instruction knowledge 

unit, the teaching strategies that are appropriate for tutoring with these goals, the first (and 

only) goal to be attained, "German Speaking European countries", and the teaching 

strategy that is to be applied to attain this goal. It then calls the hypertext engine to 

provide to the user interface for display the annotated to the domain hyperframe graphics
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Figure 6.27: The instruction knowledge unit for German Speaking European Countries

and text. Then, according to the context of the teaching strategy, it prompts the user for 

input. In Figure 6.28 below the teaching strategy that has been selected by the tutor 

knowledge process model and retrieved by the hypertext engine is that of the "Evaluation 

of student response". With this strategy the user is asked to state what he knows about the 

goal, so the prompt, "Name the German Speaking European countries", and click on their 

position on the Map". The user in the case, names correctly the three countries and clicks 

correctly with a pointing device on their position on the map.

As before, the pedagogical process model co-ordinates a number of activities, in order to 

arrive at the system’s outcome. First, it calls the hypertext engine to follow the links from 

the teaching goal to the corresponding attribute slots in the domain hyperframe, and then 

calls the domain expert knowledge process model to retrieve the contents of these attribute 

slots. Then it calls the student knowledge process model to compare the user input with
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Figure 6.28: Man-machine interaction with the generated unit

the knowledge retrieved from the domain hyperframe. In this case, the user input is 

correct, and therefore, the student knowledge process model fills the corresponding 

attribute slots in the student hyperframe. The attribute slot "Countries" in the student 

hyperframe is filled with "Germany, Austria, Switzerland". The hypertext engine, as 

before, is called by the pedagogical process model to create a referential bi-directional link 

from the teaching goal that has been attained in the German Speaking European Countries 

teaching goals hyperframe, to the corresponding attribute slot in the student hyperframe 

(see Figure 6.29). It also creates a referential link from the student attribute slot that has 

been filled with knowledge, to the corresponding domain hyperframe attribute slots. 

Finally, since there are domain hyperframes for the three values which the student 

attribute slot has been filled with, the hypertext engine creates referential links to these 

from the corresponding values in the student hyperframe "countries" attribute slot. Before 

leaving the unit, the student knowledge process model fills the "path" and uses attribute
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Figure 6.29: The generated instruction knowledge unit after the interaction 

slots in the student hyperframe.

Chapter 6 showed how to use hyperframes to design a generic model of an Intelligent 

Tutoring System with a full-scale didactic operation. The model caters for the design of 

an open and scalable Decision Base that allows for a variety of system components, like 

domain, student and tutoring knowledge, to be combined into a single model.
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CHAPTER 7: SUMMARY AND CONCLUSIONS

This chapter summarises the research presented in this thesis and discusses its 

contributions to knowledge. It also describes a number of consequences of the research, 

linking them to ideas for further research.

7.1 SUMMARY

This thesis investigates architectures embracing three knowledge models: that of the 

domain, the student and the tutor, that make up an Intelligent Knowledge Based Tutoring 

System. In particular it investigates the interrelatedness and interconnectedness of the three 

knowledge models.

Chapter 1 overviews these knowledge models by explaining what they are, and the 

purpose they serve during the course of interaction and what techniques have been used 

to implement them in Intelligent Tutoring Systems. The investigation reveals that the vast 

majority of Intelligent Tutoring Systems in the past decade have been developed as 

knowledge based systems. As a result, the examination of interrelatedness and 

interconnectedness between the three knowledge models are in the context of Intelligent 

Knowledge Based Tutoring Systems.

Chapter 2 presents Wenger’s model of a didactic operation which provides a framework 

in which the interrelatedness and interconnectedness of the three knowledge models is 

examined. The model of didactic operations assumes firstly the existence of domain, 

student and tutoring knowledge which constitute, along with their equivalent process 

models, the system’s Decision Base. Secondly, the organisation, structure and nature of
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the domain knowledge and the presence of a student model assumes a target level for the 

didactic operation either at the behavioural level, the epistemic level or the individual 

level or some combination of these levels. Thirdly, the underlying organisation, structure 

and nature of the domain and tutoring knowledge, and the target level of the didactic 

operation, conjecture a pedagogical context for the application of the didactic operation 

(i.e. the context and the nature of the man-machine interaction). Finally, the underlying 

organisation, structure and nature of the domain and tutoring knowledge and the 

diagnostic ability of the tutoring system constitute an explicit didactic plan of action 

which defines the flow of tutorial interaction.

This model does not explicitly state what the nature of interaction between the three 

components should be. It only serves to explain the behaviour of an Intelligent Tutoring 

System that follows a full-scale didactic operation. At this stage the thesis suggests that 

to continue the investigation, an evaluation strategy that examines the relationship between 

such a system behaviour and its architecture is required. This would unravel the 

requirements for interrelatedness and interconnectedness between the three knowledge 

models in the context of the didactic operation. This calls for a study of existing 

knowledge based tutoring systems in which the relationship between their behaviour and 

architecture with respect to the didactic operation is examined.

Chapter 3 introduces two of the very few available Knowledge Based Tutoring Systems, 

namely PROUST and micro-SEARCH. These are used as pilot systems in the study. The 

Chapter gives a detailed account of their architecture and resulting functionality.

Chapter 4 presents an evaluation of PROUST and micro-SEARCH. By attempting to
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answer the question: What should the relationship between a system's behaviour and its 

architecture be with respect to the didactic operation? the evaluation of the two systems 

highlights four requirements about the interrelatedness and interconnectedness between the 

three knowledge models with respect to a full-scale didactic operation:

[1]. The system incorporates all three knowledge models.

[2]. The three knowledge models be independent but need to reference 

information within each other.

[3]. The system may branch the student anywhere in the domain knowledge 

stmcture as part of an alternative didactic plan of action.

[4]. The system has the ability to create additional domain knowledge from its 

existing domain knowledge and therefore establish additional didactic plans 

of action.

When these requirements are translated into a Knowledge Based Tutoring Systems 

context, they yield an equal number of requirements for the development of an Intelligent 

Knowledge Based Tutoring System with a full-scale didactic operation:

[1]. The system incorporates domain, student and tutoring knowledge 

representations.

[2]. There are explicit and direct links within, and between related knowledge 

parts of, the three knowledge representations.

[3]. The links include both hierarchical and non-hierarchical links.

[4]. The system is able to generate additional domain knowledge from, and link 

this to, its existing domain knowledge representation.
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Finally Chapter 4 discusses a number of limitations with the knowledge based systems 

approach to developing a tutoring system with a full-scale didactic operation:

[1]. Knowledge decomposition, representation and inferencing is exclusively 

hierarchical. This conflicts with the third requirement.

[2]. The reasoning mechanism requires that all necessary knowledge be 

encoded prior to interaction. This conflicts with the fourth requirement.

[3]. A single viewpoint of the domain knowledge is inflicted on the user since 

reorganising the knowledge base during the course of interaction from 

another viewpoint is not yet feasible. This conflicts with the fourth 

requirement.

[4]. Knowledge based systems lack explicit information linking since all 

relationships are established through reasoning. This conflicts with the 

second requirement

The last limitation raises a serious problem with respect to the interconnectedness of the 

knowledge models. For instance, how can the relationship between the student knowledge 

in the student model and the equivalent in the domain model or the relationship between 

a teaching goal and the equivalent knowledge in the domain model be directly described? 

Or how does one represent non-hierarchical and thus non-inferentiable relationships 

established in the student’s knowledge?

Explicit hierarchical and non-hierarchical information linking and consequently generative 

behaviour are considered to be the foremost advantages of hypertext. Nevertheless, 

hypertext on its own does not constitute a framework for developing an Intelligent
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Tutoring System because it lacks the logical inferencing mechanisms provided by 

Artificial Intelligence Techniques. Recent research and development on Artificial 

Intelligence has focused on hybrid models that are made up of Artificial Intelligence and 

Hypertext. These models utilise hypertext’s hierarchical and non-hierarchical information 

linking abilities with Artificial Intelligence’s logical inferencing techniques. Although none 

of these models have been proposed for Intelligent Tutoring Systems Development, 

Chapter 5 discusses various such hybrid models and proposes a new model, Hyperframes, 

that integrates Minsky’s Frames with Hypertext’s information nodes and links, and which 

promises to overcome the limitations of the Knowledge Based Tutoring Systems, is 

introduced.

Chapter 6 shows how to use hyperffames to design a generic model of an Intelligent 

Tutoring System with a full-scale didactic operation. The model caters for the design of 

an open and scalable Decision Base that allows for the system components: domain, 

student and tutoring knowledge, to be combined into a single model.

7.2 CONCLUSIONS

This thesis contributes the following to the field of Intelligent Tutoring Systems:

(a) The requirements for the development of an Intelligent Knowledge Based Tutoring 

System with a full-scale didactic operation:

(i) The system incorporates domain, student and tutoring 

knowledge representations.

(ii) There are explicit and direct links within, and between 

related knowledge parts of, the three knowledge 

representations.
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(iii) The links include both hierarchical and non-hierarchical

links.

(iv) The system is able to generate additional domain knowledge

from, and link this to, its existing domain knowledge 

representation.

(b) Hyperframes: A knowledge representation scheme that integrates Minsky’s Frames 

with Hypertext’s information nodes and links.

(c) A (scalable and open) generic model for the architecture of an Intelligent 

Knowledge Based Tutoring System with a full-scale didactic operation.

The last two contributions are discussed in greater detail in the following two sections.

7.2.1 Hyperframes

The concept of a "Hyperframe" is the basis for a solution to the shortcomings of a 

knowledge based systems approach to developing an Intelligent Tutoring System with a 

full-scale didactic operation. A hyperframe integrates Minsky’s Frames and Hypertext’s 

nodes and links. With this alternative knowledge representation scheme, a frame with its 

attribute slots and values is stored in a semi-structured hypertext information node, where 

the node’s labelled fields are made to be the frame’s attribute slots and the labelled fields’ 

values are made to be the values of the frame’s attribute slots.

Hyperframe to hyperframe relationships are installed by explicit hypertext information 

links. An organisational hypertext information link denotes a hierarchical relationship 

between two hyperframes and a referential hypertext information link denotes a non- 

hierarchical relationship between two hyperffames. A keyword link links two hyperframes 

which share the same value for an attribute slot. Any information which is relevant to a
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hyperframe but could not be included in the hyperframe may be annotated with an 

annotation link to the hyperframe as a typed or graphical hypertext information node. 

From within this annotated node there may be referential, keyword or annotation links to 

other hyperframes. The names of the hypertext information links carry semantic 

information.

This knowledge representation scheme allows three reasoning strategies: logical 

inferencing, hypertext information retrieval, or a combination of both. Logical inferencing 

can support inheritance and defaulting of slot values for a hyperframe and execution of 

any attached procedural attachments by examining other hyperframes that the given 

hyperframe is hierarchically linked to. The hypertext engine is responsible for inserting 

the value in the appropriate attribute slot and for creating any information links between 

the slot value and any related hyperffames. Since the system can support computed 

hypertext information links (and nodes) through the hypertext engine, there is no need to 

generate all hypertext information links (and nodes) prior to interaction. Hypertext 

information retrieval can support browsing through hypertext information nodes by 

pursuing hypertext information links (all kinds of links as opposed to hierarchically only 

supported by logical inferencing) and retrieval of information from these nodes for a given 

node (i.e. a hyperframe). The reasoning strategy may be a blend of hypertext information 

retrieval and logical inferencing, with the hypertext engine establishing a path of 

hyperframes by pursuing organisational, referential and keyword links from a given 

hyperframe and the logical inferencing either activating automated inferencing procedures 

to infer values or executing procedural attachments, otherwise known as demons.

The application of different hypertext information links settles the first shortcoming of a
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knowledge based systems approach in developing an Intelligent Tutoring System with a 

full-scale didactic operation (i.e. exclusively hierarchical knowledge decompositions, 

representations and inferencing with the domain knowledge). Organisational links set up 

inheritance hierarchies, but all other links set up non-hierarchical relationships, and thus 

provide material for non-hierarchical reasoning strategies. Non-hierarchical reasoning 

eliminates the need to perform one-way logical inference searchings through the entire 

tree or network.

The support for computed links and nodes which this knowledge representation scheme 

supports, is the answer to both the second and third shortcomings of a knowledge based 

systems approach (i.e. a complete knowledge base of facts from a single viewpoint, and 

generative behaviour). Computed links and nodes constitutes the scheme’s generative 

ability which removes the necessity for a complete knowledge base of facts since 

additional information or hyperframes can be generated during the course of interaction. 

At the same time, the system’s generative ability can be used to sustain alternative 

viewpoints to the domain knowledge, not by breaking the hierarchical structure and 

reorganising the knowledge base, but by retrieving information and creating other 

hyperframes.

The use of hypertext information links, which are exclusively explicit, settles the fourth 

limitation of a knowledge based systems approach (i.e. exclusively implicit information 

linking in the domain knowledge base). As a result, information links carry semantic 

information which also eradicates the need to perform logical reasoning in order to infer 

any direct, at least, relationships between related parts in a knowledge base or related 

knowledge bases.
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7.2.2 A (scalable and open) generic model for the architecture of an Intelligent 

Knowledge Based Tutoring System with a full-scale didactic operation

This section describes the second contribution of the thesis which is a (scalable and open) 

generic model for the architecture of an Intelligent Knowledge Based Tutoring System 

that fully supports a didactic operation. The generic model to be described in this section 

has been developed to overcome the problems that arise when a knowledge based systems 

approach is used to develop an Intelligent Tutoring System with a full-scale didactic 

operation. The solution has been developed from an understanding of the nature of the 

requirements for the development of such an Intelligent Tutoring System. In doing so, the 

research has emphasised the need to design around likely problems of the knowledge 

based systems approach in developing intelligent tutoring systems, rather than simply 

responding to these problems with more expert systems code.

The Decision Base

To satisfy the first two requirements, the Decision Base is designed on the basis that all 

three kinds of knowledge are kept separately as three distinct knowledge bases. 

Hyperframes is the knowledge representation technique that is used to represent the 

knowledge in each and every one of these knowledge bases. The contents of the student 

and the tutoring knowledge base are determined by the context of the domain knowledge 

base.

The domain knowledge in the domain knowledge base is decomposed from a default 

viewpoint into different hierarchical and non-hierarchical domain knowledge units whose 

level of knowledge detail depends on their position in the inherent hierarchical domain 

structure. Each knowledge unit in this hierarchical decomposition is represented using a

273



hyperframe. A domain hyperframe is linked with other hyperframes via different hypertext 

information links: Organisational (for hierarchical relationships), referential (for non- 

hierarchical relationships), keyword (if they share the same attribute) and annotation (for 

example, graphs). Links carry names that denote the relationship. The resulting network 

may be declarative but it does not assume any particular order for traversal.

The tutoring knowledge in the tutoring knowledge base is comprised of a set of teaching 

goals and strategies for each domain hyperframe. The teaching goals for each domain 

hyperframe are stored in a hyperframe and the teaching strategies which are rule-based 

implementations of known teaching strategies are stored in "typed" hypertext information 

nodes. The typed hypertext information nodes containing the teaching strategies do not 

form any kind of hierarchy nor do they contain any form of hypertext information links 

to any other hypertext information nodes. However, a teaching goals hyperframe is linked 

with other teaching goals hyperframes via the following hypertext information links: 

Organisational information links for hierarchical relationships and annotations from each 

teaching goal to those teaching strategies that are suitable for helping a student to attain 

the goal.

The student knowledge in the student knowledge base is created during interaction. For 

each domain hyperframe, a student hyperframe is built as an overlay model of the domain 

hyperframe including diagnosed misconceptions. The context of a student hyperframe is 

a subset or at its best an exact copy of the corresponding domain hyperframe. In addition 

to this purely epistemic knowledge, the student model also contains behaviour knowledge 

such as paths to and from a student hyperframe, the reasons why the path was followed, 

etc. Similarly, hypertext information links to and from a student hyperframe are also
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computed during interaction. A student hyperframe may be linked with other student 

hyperframes via different hypertext information links: Organisational (for established 

hierarchical relationships), referential (for established non-hierarchical relationships and 

misconceptions), keyword (for hyperframes sharing the same information) and annotations 

to the best teaching strategies. Link names carry either an overlay statistic or they denote 

a misconception if the link was set up for this purpose.

To satisfy the interconnectedness suggested by the second requirement, the three 

knowledge models for each domain knowledge unit are integrated in the concept of an 

instruction knowledge unit. The tutoring system is a collection of instruction knowledge 

units each of which holds domain knowledge, student knowledge and teaching goals and 

associated domain-independent teaching strategies suitable for tutoring with the unit’s 

domain knowledge. Each instruction knowledge unit has access to the system’s bug library 

of common bugs or misconceptions.

The instruction knowledge unit is implemented through the use of hypertext information 

links that link together the unit’s three hyperframes: domain, student and teaching goals 

and associated teaching strategies and annotated nodes containing graphs, animations, etc. 

in addition to the hypertext information links that have already been used to set up the 

three knowledge structures independently. During instruction delivery, the system takes 

the student-user through different sequences of instruction knowledge units. Which 

instruction knowledge unit or group of instruction knowledge units to visit next is 

determined on the basis of the default didactic plan of action or any diagnosed 

misconceptions.
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Within an instruction knowledge unit, every teaching goal is linked to the corresponding 

knowledge in the domain hyperframe which is necessary to meet the goal, to those 

teaching strategies that are suitable for tutoring with the goal, and to those parts of the 

student knowledge hyperframe that satisfy teaching goals. From established knowledge 

in the student hyperframe there are links to the corresponding knowledge in the domain 

hyperframe as part of the student overlay model, to the teaching goals that are satisfied 

with acquired knowledge and to that teaching strategy that proved to be the most effective 

for meeting a teaching goal. Should another model other than the domain, student or 

tutoring model be included in the instruction knowledge unit, then the principle of 

integrating this with existing unit models is the same as with the other models.

The use of hypertext information links between hyperframes allows for various 

hierarchical and non-hierarchical explicit paths to be established through the domain 

network. Hypertext information links are by default explicit since they carry a name which 

also denotes what the relationship is between the concepts it links, and can be made 

visually explicit to the user, for instance as link icons. The nature and use of hypertext 

information links satisfies the third requirement.

With respect to generative ability posed by the last requirement, pursuing the various 

hypertext information links in the three knowledge structures allows the system to 

generate alternative paths or additional domain knowledge parts as domain hyperframes, 

from different viewpoints. It has been demonstrated that the system is already capable of 

generating student hyperframes, which in effect are some form of domain knowledge. The 

generative ability eases the need for a complete domain knowledge base and also allows 

knowledge base restructuring from alternative viewpoints. A further use of hypertext
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information links is to link generated domain hyperframes to the existing domain 

knowledge base. In addition to generating a domain hyperframe, the system will also 

generate the equivalent student and teaching goals hyperframes and decide on suitable 

teaching strategies.

The generative ability increases the range of issues the system can provide tutoring on, 

solves the problem of having to design additional instructional material during interaction, 

eliminates the need for a complete domain hyperframe, has virtually unlimited resource 

material and allows the system and the student-user to generate as much material as 

necessary to accomplish the educational objectives set by the instructional designer.

The Didactic Plan of Action

The default, but explicit, didactic plan of action is what is defined by the organisational 

and hierarchical structure of the domain knowledge. The plan involves taking the student 

through instmction knowledge units by following the organisational links of the domain 

knowledge. The pedagogical process model working in synergy with the domain model 

defines how this hierarchical tree of instruction knowledge units is to be traversed, for 

instance breadth-first, depth-first, best-first, etc. This defines the teaching curriculum and 

the student’s learning path through it.

In each instruction knowledge unit the pedagogical process model generates a didactic 

episode in which the goals in the teaching goals hyperframe must be fulfilled by applying 

one of many teaching strategies on the equivalent knowledge contained in the domain 

hyperframe. The corresponding student hyperframe is created by the hypertext engine 

along with any necessary hypertext information links. When a misconception is diagnosed
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in the user input, the pedagogical process model may break away from the "default" plan 

of action to assume a remedial plan of action, if this is what is the action suggested for 

remedying the bug. This may involve taking the student to an instruction knowledge unit 

that is not part of the default didactic plan. The hypertext engine creates the appropriate 

link to this instruction knowledge unit and tutoring proceeds in the context of i t  In 

another instance, the pedagogical process model may break away from its default didactic 

plan of action, by pursuing non-organisational information links.

The didactic operation has another two tasks to perform: First, to signal the end of 

tutoring and thus leave the student with the choice to quit or explore this information-rich 

environment at his own pace and second, to classify the user as a learner according to his 

performance. Because of the generative ability, discovery learning may continue, since 

there can be many viewpoints to be exploited. With respect to classifying the user, the 

degree of freedom allowed to the user-leamer may be defined accordingly.

The Pedagogical Context

The default pedagogical context in this program design is plan-based, since the 

hierarchical planning of domain knowledge and the teaching goals drive interaction. 

However, the student knowledge process model may trigger such interventions as a result 

of some student diagnosis of misconceptions which may cause the pedagogical process 

model to call for, and monitor an opportunistic plan of action. Pursuing opportunistic 

plans may result from the student directly using the system’s generative ability or from 

switching between different teaching strategies in the context of an instruction knowledge 

unit. The freedom to pursue opportunistic plans will be gradually given as the student 

moves up the classification ladder.
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The Target Level

The objective of the didactic operation is to modify the student’s knowledge state through 

either direct communication of knowledge or practice which makes the target level of the 

didactic operation epistemic. Nevertheless, a student hyperframe includes behavioural and 

individual aspects of the user-leamer, like pathways to and from an instruction unit, uses 

of the instruction unit, best teaching strategy, applied teaching strategies and explanation 

requests.

7.3 FUTURE RESEARCH AND DEVELOPMENT

The thesis has shown the possibility of using Hypertext to support Artificial Intelligence 

techniques in developing an Intelligent Tutoring System that supports a full-scale didactic 

operation. As was noted earlier, the model, being generic, can incorporate more 

knowledge models in order to increase the system complexity. One such component can 

be a multimedia element to enable electronic information in various modes like images, 

text, data, video and sound, simulation and animation to be combined in new interactive 

applications where appropriate. As was explained in Chapter 6, the thesis does not attempt 

to promote a particular design methodology nor propose a new one. One area for further 

research and development would be to examine the validity of using different 

conventional design methodologies to develop an Intelligent Tutoring System using the 

generic model.

A pragmatic reason for choosing a hybrid model to implement the generic model is that 

on the one hand, existing hypertext tools such as HyperCard II, Guide IQ or even 

KnowledgePro could not support the development of the generic model on their own 

because they are exclusively hypertext-oriented tools and they lack the logical inferencing
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abilities of Artificial Intelligence techniques. On the other hand, it may be a waste of time 

to attempt to redesign existing knowledge based systems to deal with explicit information 

linking when there are already tools that perform this function very efficiently. Therefore, 

one area for further development would be tools that facilitate logical inferencing with 

hypertext knowledge representations. The direction this research may take could be to 

develop an Intelligent Tutoring System both as a Knowledge Based Expert System and 

as a Hypertext System, and then perform a comparative evaluation of the two systems in 

order to uncover the advantages and shortcomings of both approaches which would 

highlight the areas for potential integration.

Although the hyperframe model contributes an alternative knowledge representation 

scheme, the thesis has not been concerned with studying different knowledge 

representations because none of the existing knowledge representation schemes cater for 

explicit hierarchical and non-hierarchical information linking. Logical inferencing with all 

knowledge representation schemes involves traversing a hierarchical tree or network in 

order to establish a relationship. Any attempts to endow existing knowledge 

representations schemes with explicit information linking abilities would be a waste of 

time because they would result in re-inventing hypertext. Rather, further research and 

development needs to focus on endowing hypertext tools with logical inferencing facilities 

beyond keyword searching. The reason why Minsky’s Frames have been selected for 

integration with hypertext instead of some other knowledge representation technique is 

because of the similarity of their representation with semi-structured hypertext information 

nodes.

The knowledge of the domain of discourse, in the context of which the generic model is
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discussed in Chapter 6, is declarative, therefore suggesting that the generic model may be 

applicable only for expository tutors. Further research be undertaken on the application 

of the generic model to procedural knowledge. Procedural knowledge can be subdivided 

into two subcategories: flat and hierarchical. Hierarchical representations allow for 

subgoaling, so for example, if the goal is to win a game of chess, a subgoal may be to 

take the opponent’s Queen, a subgoal of which is to make a certain piece move. This 

procedural knowledge may then be represented as a hierarchical tree where each branch 

of the tree is thought of as a skill which the user-leamer has to acquire and which may, 

as in the above example, be decomposed into subskills. Flat representations can also be 

thought of as a hierarchical tree of a single level, where each and every task on this level, 

although independent from the other tasks, contributes towards acquiring a certain skill 

(e.g. arithmetic subtraction skills). With procedural knowledge the pedagogical process 

model may be more strict regarding tree traversal because of the order of skill and 

subskill acquisition.

Furthermore, providing the full context of the rule bases that denote the bugs library and 

the teaching strategies that the system may use or the precise conditions for the didactic 

and opportunistic plans that the system may pursue is beyond the scope of this thesis. 

Nevertheless, investigating different plan-based or opportunistic strategies in relation with 

the generic model may serve as an area for further research and development.

Finally, addressing the problem of the authoring of instructional material for either the 

proposed system or for any of the systems discussed is beyond the scope of this thesis. 

However, investigating authoring either in the context of the proposed system or in more 

general terms may serve as an area for further research and development. As Nielsen
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[1990a] argues that unlike conventional Knowledge Based Systems, one of the greatest 

advantages of current hypertext tools is the ease of authoring hypertext material.
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APPENDIX A: GENERIC CATEGORIES OF INTELLIGENT 

TUTORING SYSTEMS

Intelligent Tutoring Systems have been implemented using many programming languages 

that run on many different sizes of computers. However, the bulk of Intelligent Tutoring 

Systems implementation has been done in exploratory programming environments like the 

various Lisp programming environments like interLISP, zetaLISP and muLISP [Doukidis, 

Shah and Angelides, 1988] and Expert System shells like Xi+ and Insight [Doukidis and 

Whitley, 1988] originally developed for Artificial Intelligence research and development.

These programming environments seek to minimise the time and effort required to go 

from an idea to its implementation and to minimise the difficulty of modifying the 

implementation as the idea changes. As a result the designer is encouraged to perform 

formative evaluations to actually get and use feedback by trying out early Intelligent 

Tutoring Systems to improve later ones. Burton [1988] argues that during the next period 

of Intelligent Tutoring Systems development, it will be critical to modify existing 

Intelligent Tutoring Systems quickly in order to respond to shortcomings discovered by 

their being placed in the field.

There have been many programming conventions used in developing Intelligent Tutoring 

Systems. Nevertheless, the Intelligent Tutoring Systems community classifies existing 

Intelligent Tutoring Systems in two broad categories: Intelligent Tutoring Systems 

developed with the Knowledge Based Systems Engineering Paradigm and those Intelligent 

Tutoring Systems developed with other programming conventions like procedural 

programming, simulations, object-oriented programming, etc. Following precedence,
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existing Intelligent Tutoring Systems will be presented in this fashion, starting first with 

the latter category.

The most popular way among Intelligent Tutoring Systems researchers for classifying 

existing pre-Knowledge Based Systems Intelligent Tutoring Systems in generic categories 

is by the approach which they follow in tutoring a certain topic: Tutorial Dialogues, 

Drills, Simulation and Instructional Games. In very broad terms, an Intelligent Tutoring 

System becomes an effective instructional tool if it cycles through the following four 

phases: presenting information, guiding the student, practising and assessing student 

leaming. The four generic categories of Intelligent Tutoring Systems are discussed in 

relation to the cycle and then existing Intelligent Tutoring Systems classified under each 

generic category are presented.

A.1 Tutorial Dialogues

Tutorial Dialogues are the most basic form of an Intelligent Tutoring System. Such 

Intelligent Tutoring Systems tutor by carrying on a dialogue with the student They would 

normally present information, ask the student questions or answer questions posed by the 

student and then make tutoring decisions whether to move on to new information or to 

engage in review, based on the student’s comprehension. Most of the early Intelligent 

Tutoring Systems were developed along this theme of instruction. Such Intelligent 

Tutoring Systems do not normally engage in extended practice or assessment of learning 

[Alessi and Trollip, 1985].

Alessi and Trollip [1985] argue that Tutorial Dialogues are appropriate for presenting 

factual information, for leaming rules and principles, or for leaming problem-solving
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strategies. As such they satisfy only the first two phases of instruction: Presenting 

Information, and Guiding the student. Figure A.l shows the general structure and 

sequence followed by a Tutorial Dialogue.

Introductory Section

Closing

Present Information

Judge R esponse

Question and R esponse

Feedback or Remediation

Figure A.1: The general structure and flow of a Tutorial Dialogue

An effective Tutorial Dialogue begins with an introductory section that informs the 

student of the purpose and nature of the tutorial. After that a form of a cycle begins: 

Information is presented and elaborated, questions are asked by or posed to the Intelligent 

Tutoring System, the Intelligent Tutoring System judges the response to assess student 

comprehension, the student is given feedback to improve comprehension and future 

performance, the Intelligent Tutoring System makes a sequencing decision to determine 

what information should be treated when the cycle begins again. The cycle continues until 

the lesson is terminated by either the student or the Intelligent Tutoring System. At this 

point there may be a summary and closing remarks.
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SCHOLAR

SCHOLAR [Carbonell, 1970] is an Intelligent Tutoring System that can hold mixed- 

initiative tutorial dialogues with the students, responding to their questions by traversing 

a semantic network and asking them questions in order to convey the contents of the 

network to them interactively in a way a human teacher uses his own knowledge 

representation to generate tutorial sessions of explanations and questions.

s c h o l a r ’s knowledge of its subject matter, the geography of South America, is 

represented in a semantic network whose nodes stand for geographical objects and 

concepts organised in a partial hierarchy with their relations. Inferences can be made by 

propagation of inherited properties via these hierarchical links. For instance, SCHOLAR 

can conclude that Santiago is in South America since Santiago is in Chile which is in 

South America. In addition, the system can determine the semantic relation between two 

nodes by following their respective paths up the hierarchy until a common node is found. 

For instance, it can find that Santiago and Buenos Aires are both South American cities.

Typical of Tutorial Dialogues, SCHOLAR does not attempt to produce a model of the 

student, other than an oversimplified overlay model. SCHOLAR starts with the complete 

network to model the perfect student and progressively perturbs it to reflect the student’s 

actual performance, deleting and even modifying nodes and links.

s c h o l a r ’s tutorial strategies are fairly primitive, consisting mainly of local topic 

selections. For instance, the student is allowed to ask vague questions such as "TeU me 

something about Peru". Since this type requires more than straight retrieval and inference, 

s c h o l a r  must be able to determine which information is most relevant. The notion of
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distance between nodes in the network gives some indication of relevance and for this 

purpose numerical tags are attached to individual nodes and to their various attributes. 

These relevance tags provide some guidance to SCHOLAR in selecting topics, for 

instance in formulating questions, when the system is given the initiative.

The linguistic capabilities of the system’s interface are restricted to a subset of English, 

which is limited to simple sentences. Text is generated by sentence and question templates 

that are filled in with information from the network. The parsing of student questions 

follows the same principle in reverse order, whereas the parsing of student answers is 

done by symbolic pattern matching against a list generated from the semantic network.

In general, with SCHOLAR there were two areas that need further improvement. First, 

was the extent of the inferences and diagnosis SCHOLAR was able to make within the 

representational framework of semantic nets, especially with incomplete knowledge. For 

instance, student diagnosis with SCHOLAR is exclusively by a means of a simplified 

overlay model with which SCHOLAR is not able to distinguish wrong answers. Second, 

is the lack of tutorial strategies necessary to conduct a coherent and effective dialogue. 

Figure A.2 shows an interaction protocol with SCHOLAR.

Carbonell [1973] proposed extensions for SCHOLAR. First, modifying the reasoning 

strategy to work with an open semantic network thus deal with incomplete knowledge. 

Second, contradictory concepts and object to be denoted, for instance, city and river, in 

order to facilitate negative inferences. Third, making assumptions, for example, if the 

language of a country is Spanish, then it cannot be French. Fourth, an inverse induction 

strategy, or lack-of-knowledge strategy, for instance, if Uruguay’s product list does not
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WHAT’S CHILE?
*A COUNTRY*
THAT’S FINE.
SELECT AN ALTERNATIVE FROM THE LIST:
214000.
800300.
49883.
63690.
FOR THE QUESTION:

APPROX WHAT IS THE AREA OF CHILE?
*800300*
YOUR ANSWER IS INCORRECT.
THE CORRECT ANSWER IS: 214000.
THE POPULATION OF CHILE IS APROXIMATELY 8500000. PEOPLE. 
TRUE OR FALSE?

*TRUE*
YOU ARE CORRECT.
USE ONE OF THE FOLLOWING:
SUCRE
FRENCH
ARGENTINA
SPANISH
TO ANSWER THE QUESTION:

WHAT IS THE LANGUAGE IN CHILE?
*

YOU ARE TAKING TOO MUCH TIME...
*SPANICH*
YOU SOULD HAVE WRITTEN "SPANISH".
VERY GOOD.
THE CAPITAL IN CHILE IS SANTIAGO.
CORRECT OR INCORRECT?

*CORRECT*
THAT’S RIGHT.

IS IT CORRECT TO SAY THAT THE CITIES IN BRAZIL ARE
SAO PAOLO, RIO DE JANEIRO, BRAZILIA, PORTO ALEGRE, BAHIA
RECIFE, SANTOS, MANAOS, AND BELEM?

*YES*
THAT’S FINE.
THE CITIES IN BOLOVIA ARE— .

*LA PAZ, SUCRE, BOGOTA, AND ACONGAGUA*
AT LASTI ANYWAY, LET US SEE WHAT YOU HAVE JUST WRITTEN. 
HAVEN’T YOU INCORRECTLY USED "BOGOTA" AND "ACONGAGUA"? 
ON THE OTHER HAND "LA PAZ" AND "SUCRE" IS CORRECT.
THE COMPLETE ANSWER ALSO INCLUDES POTOSI, COCHABAMBA, 
AND SANTA CRUZ.

Figure A.2: An interaction protocol with SCHOLAR [Carbonell, 1970]

include oil, this does not mean that the country does not produce oil. Fifth, uncertainty
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tags would present levels of certainty through the inference process. Finally, a functional 

analysis that would be responsible for analysing the factors on which a hypothesis would 

depend like infer a region’s climate by considering its location. While the first version 

relies heavily on randomness, this second version includes heuristic rules to direct this 

selection. An important extension is some capability to parse and discuss errors. In the 

new version of SCHOLAR, a separate module handles detected errors by reporting factors 

that distinguish the student’s answer from the correct one. Figure A.3 shows an interaction 

protocol with the new version of SCHOLAR.

SCHOLAR: The eastern and central plain of Argentina is -  
Student: Chaco.

SCHOLAR: No.
The northern plain of Argentina is the Chaco. The 
eastern and central plain of Argentina is the Pam pas. 

Student: Is the Chago In Chile?
SCHOLAR: No.

The Chaco Is in Argentina, Paraguay, and Bolivia, not 
in Chile.

Student: Are the Andes a region in Chile?
SCHOLAR: Well, you're almost right.

More specifically, a region of Chile Is the Southern 
Andes.

Figure A.3: An interaction protocol with the new version of SCHOLAR [Carbonell, 1973 

WHY

The new version of SCHOLAR led to the Socratic Method for teaching through Tutorial 

Dialogues. With the Socratic Method, the Intelligent Tutoring System does not teach a 

subject by direct exposition, but leads the student by successive questions to formulate
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general principles on the basis of individual cases, to examine the validity of his own 

hypotheses, to discover contradictions, and finally to extract correct inferences firom the 

facts he knows. A Socratic Tutor achieves its goal through a succession of local decisions 

which aim at inducing the formulation of hypotheses and the testing of these hypotheses 

in a predictive fashion.

A typical Socratic rule has for condition the student response in relation to the tutor’s 

knowledge, and as action what the tutor should ask or propose next The Socratic Method 

leads the student to find errors or contradictions by entrapping him in the consequences 

of his own conclusions. If the student agrees with the overgeneral rule presented, the tutor 

will then come up with a known counterexample, thus forcing the student to correct the 

course of his reasoning by considering other factors. If the student does not agree with the 

over general rule, the same effect will be achieved by asking him why he disagrees.

WHY [Stevens and Collins, 1977] is an Intelligent Tutoring System for tutoring on 

rainfall processes using the Socratic Method. The domain knowledge about processes is 

stored in a hierarchy of Scripts which represent stereotypical instances of events because 

semantic networks cannot hold procedural knowledge. The generation of questions and 

the evaluations of student answers are based on these scripts. The nested script hierarchy 

provides an organised view of the knowledge, which the Intelligent Tutoring System can 

exploit thus giving sequences of events ranging from general understanding to detailed 

description of the process. Figure A.4 shows an interaction protocol with WHY. Again 

typical of Tutorial Dialogues WHY does not assess student learning by building a student 

model other than evaluations of responses.

300



WHY: Do you think the AMAZON Jungle h as  heavy rainfall or light rainfall? 
(Ask for a  prediction about a  particular case)

STUDENT : Heavy rainfall.

WHY: Why d o es  the  Amazon have heavy rainfall?
(Ask for prior cause)

STUDENT: B ecause It's near the  Atlantic.

WHY: Yes, th e  AMAZON jungle Is near the  equatorial Atlantic.
How d o es  th a t affect the  rainfall In th e  Amazon Jungle?
(Ask for Interm ediate cause)

STUDENT: The water In the  curren t Is warm.

WHY: Do you think that any place with m ountains h as  heavy rainfall? 
(Form a  general rule for Insufficient cause)

STUDENT: Yes.

WHY: Southern California h as  m ountains.
Why d o esn ’t Southern California have heavy rainfall?
(Pick a  counter-exam ple for an  Insufficient cause)

Figure A.4: An interaction protocol with WHY [Stevens and Collins, 1977]

In general with WHY, there were two areas that needed improvement. First, the global 

tutorial goals were ignored in the local applicability conditions of the tutorial rules. 

Second, the knowledge presentation was not enough to explain the mechanisms involved 

in the reasoning process or to diagnose and correct the student’s misconceptions.

With respect to the first point, Stevens and Collins [1979] argue that diagnosing and 

correction would be the key solution. Diagnosis would trace surface errors to deep 

misconceptions and Correction would not only help remedy these but also classify 

different categories of errors. With respect to the second point, they propose incorporating 

functional analysis into WHY that would consider the various elements, which they call 

actors, involved in the processes, and their functions, which they call roles, in the 

interactions that give rise to various events. Also they argue that these actors have factors 

influencing the extent to which the roles of actors are manifested. Finally, functional 

relations hold between factors, and explain the results of processes. They argue that scripts
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control mainly the sequencing of major teaching episodes, functionality guides local 

interactions.

A.2 Drills

With Drills a selection of questions or problems is presented repeatedly until the student 

answers or solves them all at some predetermined level of proficiency. Alessi and TroUip 

[1985] argue that Drills are appropriate for the third phase of instruction only: practising. 

As such, Drills are not intended to tutor but merely practice with the assumption that the 

student is already familiar with the information to some degree. Therefore, assuming that 

initial information presentation and guidance have already occurred the function of Drills 

is merely to provide a means for practice. Figure A.5 shows the general procedure of a 

Drill.

Select ItemIntroductory Section

Closing

Question and R esponse

Judge R esponseFeedback

Figure A.5: The general structure and flow of a Drill

An effective Drill begins with an introductory section that informs the student of the
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purpose and nature of the Drill followed by a cycle that is repeated many times. Each 

time the cycle is repeated the following actions generally take place: An item is selected, 

the item is displayed, the student responds, the program judges the response, the student 

receives feedback about the response. Item selection may be in a specific order or random 

to increase variety. Termination may finish based upon a number of factors: number of 

items, time, level of quality of student performance.

The INTEGRATION Tutor

The INTEGRATION Tutor [Kimball, 1982] is an Intelligent Tutoring System for tutoring 

symbolic integration. Its main feature was in its use of an interaction between domain 

knowledge and a student model to guide the construction of a teaching sequence. The 

objective of the tutor was to communicate its judgemental knowledge while the student 

is solving a sequence of example problems selected by the INTEGRATION Tutor firom 

a fixed archive.

Domain expertise is represented as a matrix that relates all problem classes to all solution 

methods. Each matrix element is a value indicating the probability of applying a given 

problem-solving approach to a given problem class. The underlying assumption is that the 

student uses the same classification for problems as the expert, an that the student knows 

the different approaches, for instance, integration by parts. The matrix representing 

expertise denotes an explicit characterisation of the teaching goal. The student’s state of 

knowledge is represented as a similar matrix, whose values can readily be compared to 

those of the expert.

New problems are selected via differential modelling between the student model and the
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domain model in a breadth-first fashion rather than a focused fashion. The tutor can only 

give advice according to its own approach probabilities. Figure A.6 shows an interaction 

protocol with the INTEGRATION Tutor.

Tutor: Ok, Ruth, our integral Is J(log(X)dX. What shall we do to solve It? 
Student: sub

Tutor: Can you think of a substitution? (Yes, Help or Exit)
Student: yes 

Tutor: Let U =
Student: log(X)

Tutor: Ok, Ruth, we will let U = log(X). Thus X = ^ a n d  dX = e^dU 
which we substituted Into the Intergrand. Our new Integral

Is now .Ale^Uu. Please type Good, Bad, or GIveup:
Student: bad

Tutor: Can you think of a substitution? (Yes, Help or Exit)
Student: help 

Tutor: I can’t find a suitable substitution. Will e x it ...

Ok, Ruth, our Integral Is .^log(X)dX. What shall we do to solve It? 
Student: help

Tutor: I suggest you try Integration by parts. What shall we do to  solve It? 
Student: parts 

Tutor: Integration by parts! We shall use the notation
y^UdV = U V -^ d U . Can you think of a choice for U? (Yes, help or Exit) 

Student: help
Tutor: How about letting U = log(X)

Figure A.6: An interaction protocol with the INTEGRATION Tutor [Kimball, 1982]

The simple language interface basically consists of multiple choice questions. For 

diagnosis, the system simply updates the probabilities in the student’s matrix with methods 

from a probability theory with some ad hoc heuristics for generating a seed probability. 

A unique feature of the INTEGRATION Tutor is that its domain expertise can improve 

in the course of a tutorial session. If the student’s approach leads to a better solution than 

the trace stored in the expert’s archive, the system adopts the student’s solution as its 

standard thus the label self-improving is attached to this tutor. Kimball’s matrices may 

model the external behaviour manifested by knowledge in the domain, nevertheless, the 

probabilistic values are totally ignorant of the large sets of reasons and beliefs they 

summarise. In some ways, these reasons and beliefs are more important for real expertise
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than the behaviour they generate.

The QUADRATIC Tutor

The QUADRATIC Tutor [O’Shea, 1982] is an Intelligent Tutoring System on the domain 

of solving simple quadratic equations of the form + c = bx whose answer can be 

obtained by clever guesses and with the help of a few rules. These rules are simple 

applications of the general root theorem, which states that b is the sum of the equation’s 

two solutions and that c is their product The tutor presents example problems on the basis 

of which students are to discover and master the rules. The QUADRATIC Tutor was an 

attempt at giving an Intelligent Tutoring System some ability to set up experiments using 

variations of its strategies and to adopt those that seem to produce the best results.

The QUADRATIC tutor has two tasks: it must select appropriate examples from an 

archive of problems, then tutor the student by providing him with comments and hints, 

and possibly by interrupting him if he takes too long. For these tasks, the system 

considers three sources of information: its task difficulty matric, its student model, and 

its tutorial strategies. The task difficulty matrix is used in the selection of new problems. 

It relates specific features in a problem to well-defined teaching goals. The student model 

is a set of hypotheses about the student’s current mastery of each of the rules he must 

learn plus some combinations of them in an overlay model fashion. The teaching 

strategies are the core of the tutor, and they are represented as a set of production rules. 

Self improvement with the QUADRATIC Tutor deal is focused exclusively on the 

teaching strategies by experimenting with modifications of the teaching strategies.

With the representation of tutorial strategies in the form of rules rather than general
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didactic principles learning is empirical because it is impossible to reason about rules 

without knowing the principles which they embody. Thus its inability to detect interaction 

between experiments that have been setup to test different teaching strategies.

A.3 Simulations

Simulations imitate or replicate a phenomenon in order to tutor the student about it. 

Simulations do not tutor in the way a Tutorial Dialogue does by both presenting 

information and requiring student activity through appropriate question-answering 

techniques, but simply show the student something who is expected to leam by actually 

performing the activities to be learned in a context that is similar to the real world. In this 

simplified world, the student solves problems, learns procedures, comes to understand the 

characteristics of phenomena and how to control them, or leam what actions to take in 

different situations. The purpose is to help the student build a useful mental model of part 

of the world, and to provide an opportunity to test it safely and efficiently.

Simulations, in contrast to Tutorial Dialogues and Drills may be used with all four phases 

of instruction. In other words, simulations may serve for initial presentation, for guiding 

the learner, for practice, for assessing learning, or for any combination of these. Figure 

A.7 shows the flow of a simulation.

An effective simulation follows the following cycle: a scenario is presented, the student 

is required to react, the student reacts, the system changes in response to this action. The 

frequency of the simulation is dependent on the nature of the simulation. Simulations are 

further subdivided into four main categories: Physical, Procedural, Situational and Process.
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Introductory Section Present Scenario

Closing Student Acts

Action Required

System Updates

Figure A.7: The general structure and flow of Simulation

In an Intelligent Tutoring System encompassing a physical simulation, a physical object 

is displayed on the screen, giving the student an opportunity to use it or leam about it. 

Typical examples are a machine that the student must leam to operate, or some laboratory 

equipment to be used in an experiment. For example, in a Flight Simulator Training 

Program, the trainee may see simplified versions of the plane’s instruments and, perhaps, 

the view through the cockpit window. The purpose of the simulation may be for the 

student to learn the relationship between instrument readings and the plane’s passage 

through the air. The student may operate simulated controls to see how the instrument 

readings or the view through the window change in response to control inputs. Physical 

simulations are often used to depict experiments. For instance, on the screen the student 

may see laboratory equipment, such as the apparatus required to perform steam plant 

operations. In laboratory simulations like these, the student observes and uses equipment, 

water, instmments and various energy sources.
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Alessi and Trollip [1985] argue that in most simulation-based Intelligent Tutoring Systems 

physical simulations play a secondary role to procedural simulations. That is, the physical 

simulations exists only as a vehicle for the procedural content Thus, the student learns 

about how the simulated machine works, not as an end in itself, but rather as a means for 

acquiring the skills and actions needed to operate it. For example, the Flight Simulator 

Training Program that simulates the important flight instruments of an airplane, for 

example, is more likely to be used primarily to teach procedures of flying rather than how 

the instruments work.

The purpose of most procedural simulations is to teach a sequence of actions that 

constitute a procedure, for example, diagnosing an equipment malfunction like an 

electronic circuit. Many physical simulations are also procedural simulations, for not only 

is the physical entity imitated, but also the student’s performance must imitate the actual 

procedures of operating or manipulating it. In fact, the primary focus of a simulation is 

usually procedural, and the simulation of the various physical objects is therefore 

necessary to meet the procedural requirements. The important feature with procedural 

simulations is diagnosis: the student is presented with a problem to solve, and must follow 

a set of procedures to determine the solution. For example, in diagnosing electronic faults 

the student applies the correct sequence of tests to determine the nature and composition 

of the circuitry, locate the fault, and then repair it.

With procedural simulations, whenever the student acts, the computer reacts, providing 

information or feedback about the effects the action would have in the real world. Based 

on this new information, the student takes successive actions and each time obtains more 

information. The primary characteristic of procedural simulations is that there is usually
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a correct or preferred sequence of steps that the student should leam to perform.

Situational simulations deal with the attitudes and behaviours of people in different 

situations, rather than with skilled performance. In other words, it is some form of a role 

playing simulation. Unlike procedural simulations, which teach sets of rules, situational 

simulations usually allow the student to explore the effects of different approaches to a 

situation, or to play different roles in it. In virtually all situational simulations, the student 

is an integral part of the simulation, taking one of the major roles. The other roles may 

be performed by students who interact with the same Intelligent Tutoring System, or by 

the Intelligent Tutoring System playing the role of a person. By going through the 

simulation a number of times, the student learns a set of behaviours that result to different 

approaches to various situations.

With process simulations, the user selects values of various parameters at the beginning 

of the simulation, and then watches the process occur without intervention. The student 

neither participates in the simulation as with situational simulations, nor constantly 

manipulates it as in physical or procedural simulations. Learning from such simulations 

occurs by repeating the process a number of times with different starting values and 

comparing the results. Alessi and Trollip [1985] argue that process simulations are 

accelerated or slowed-down versions of the real process. That is they alter the rate at 

which the process occurs in real life to one that enhances the learning process.

The METEOROLOGY Tutor

The METEOROLOGY Tutor [Brown, Burton and Bell, 1973] is a mixed-initiative 

Intelligent Tutoring System for tutoring on meteorology on the basis of a simulation-based
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representational scheme. The causal knowledge about processes is represented in finite- 

state automata in which sequences of events is a simulation of transitions between states. 

Individual automata representing different meteorological processes are captured in a 

process model and transition conditions are augmented with global predicates that refer 

explicitly to assumptions constituting the context of questions. Hence, the automata look 

like augmented transition networks. Factual information is contained in a semantic 

network, which is used to answer questions in a SCHOLAR style. Figure A.8 shows an 

interaction protocol with the METEOROLOGY Tutor.

Factual Question:
Question: Is It true that fog Is a form of precipitation?

Answer: No, fog Is an example of condensation.
Q uestions about processes:

Question: (What happens If the air tem perature d ecreases to  20 
degrees and there are no condensation nuclei)

Answer: The (humidity of saturation) (decrease) from 24 to  17 mm Hg 
because (air temperature) (decrease). The (relative humidity)
(Increase) form 100 to 180% because (humidity of saturation)
(decrease) and gradient of change) (sudden). The (water temperature) 
(decrease from 25 to  20 degrees because (air tem perature) (decrease).
The (rate of evaporation) (decrease) from 24 to 17 mm Hg because 
(Water temperature) (decrease). Then the (air condition) (supersaturated) 
because (rate of evaporation) (decrease) and gradient of change) (sudden). 

Question: Suppose the pressure decrease gradually)
Answer: The (absolute humidity) (decrease) b e c a u se ...

Figure A.8: An interaction protocol with the METEOROLOGY Tutor [Brown et al, 1973

For the generation of answers to questions about processes, small units of text are 

associated with each state in the various automata and sentences are constructed by simple 

concatenation of the text elements. The simulation is a qualitative one based on state 

transitions. Quantitative information is introduced after some computations. Figure A.9 

shows an example of an automaton used by the tutor.
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[air condition] [...] = autom ata
= s ta tes  

italic = global factors 
[rate of evaporation] increases' OR [rate of evaporation] decreases ' OR
[rate of condensation] decreases ' [rate of condensation] increases'

AND AND
grade of change is 'sudden ' grade of change is sudden '

saturatedunsaturated supersaturated

[process] is net evaporation' [process] is net condensation ' 
AND AND

[rate of condensation] increases' [rate of condensation] decreases '

Figure A.9: An automaton for the condition of the air

These causal descriptions are based on an inference tree built dynamically by simulation 

of the question on the model. The state of the appropriate automaton is set to reflect the 

question. The enable transitions are propagated throughout the model, and recorded in the 

inference tree.

SOPHIE

SOPHIE (SOPHisticated Instructional Environment) [Brown, Burton and Bell, 1975] is 

an Intelligent Tutoring System for tutoring on troubleshooting of electronic circuits. Since 

the problem solving activity revolves around a model of a circuit whose components can 

be faulted, troubleshooting involves performing a series of measurements to propose and 

test hypotheses concerning the location and nature of the fault. The student has then the 

chance to apply his theoretical knowledge of electronic laws to understanding the causality 

underlying circuit mechanisms and also to acquire troubleshooting strategies. Therefore,
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the pedagogical purpose with SOPHIE is not to imitate a dialogue with a human teacher 

but to provide a reactive learning environment, a simulated laboratory, in which the 

student can apply his knowledge and receive informed feedback.

A major attraction the development of SOPHIE achieved was the joint application of 

Semantic Grammars and Semantic Augmented Transition Networks to the development 

of its natural language interface. Nevertheless, the introduction of semantic information 

into the parsing mechanisms meant, at that time, that the domain of tutoring be limited 

and well-defined. The internal meaning of all sentences consists of operations of 

operations to be performed, expressed as functions with arguments. The interface could 

handle incomplete, nevertheless, contextually meaningful questions. Figure A. 10 shows 

an interaction protocol with SOPHIE.

Student: Now what is the outpt?
SOPHIE: (outpt => output) The output voltage Is 1.2 volts.

If you are not sure whether a value Is correct, you can ask  
“Is that value correct?"

Student: Is that right?
SOPHIE: In a working circuit the output voltage Is 30.1 volts. That value Is Incorrect. 
Student: What Is the voltage between the currect limiting transistor and the 

constan t current source?
SOPHIE: The voltage between N4 and N5 is 1.28 volts.
Student: Is there any ripple In the voltage at the base of 0 4 ?
SOPHIE: I’m sorry. I do not handle AC characteristics.
Student: What Is the base current of 03?
SOPHIE: 12 microamps.
Student: Thru the emitter?
SOPHIE: The emitter current of 03  Is -.26 mllllamps.
Student: 04  
SOPHIE: -.26 mllllamps
Student: If 02 were leaky, what would the voltage ac ro ss  It be?

Figure A.10: An interaction protocol with SOPHIE [Brown et al, 1975]
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SOPHIE!

SOPHIE-I [Brown and Burton, 1975] was an extension to SOPHIE. The difference with 

SOPHIE-I is in its use of multiple simulation-based representations of its domain 

knowledge including a mathematical model of the circuit both procedural and declarative. 

SOPHIE-I is not meant to function as a complete source of instruction, but rather as an 

automated lab around a simulated circuit, with an instructor providing intelligent critiques. 

It does not take any pedagogical initiatives since there are almost no pedagogical 

expertise. Furthermore, it does not make any attempts to build a student model, nor does 

it possess an explicit knowledge of active troubleshooting strategies.

Once a fault has been inserted into the circuit to debug it, the procedural model answers 

specific requests and queries by setting up appropriate experiments on a general circuit 

simulator based on the circuit’s mathematical model. The procedural model has four tasks: 

answer hypothetical questions about the consequences of an action or event, evaluate 

hypotheses although the SOPHIE-I knows the correct answer, provide a list of all possible 

hypotheses consistent with the set of measurements performed so far, and evaluate a new 

measurement proposed by the student. Figure A. 11 for an interaction protocol with 

SOPHIE-I.

For tutoring purposes, the main drawback of quantitative simulation is its inability to give 

a full account of the causality underlying its inferences. Causality is pedagogically 

important because it is the main ingredient of the kinds of explanations human students 

can understand. In a troubleshooting context, causality, more than information content, 

drives the diagnostic reasoning and the decision to perform measurements.
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s tuden t: What could be wrong?
SOPHIE: Here are som e faults which explain the m easurem ents you observed: 

the beta of 0 3  is low 
the beta of 0 4  is iow 
or R22 has the wrong resistance

Student: What wouid the output voitage be if the beta of 0 3  were 8?
SOPHIE: If the beta of 03  were 8 under the present setting, the output voltage 

would be 10.5 volts. In a working circuit it is 19.9 voits.
Student: Is the emitter current of 0 4  correct?
SOPHIE: The emitter current of 04  is -61 miliiamps. in a working circuit the

emitter current of 0 4  is -49 miliiamps. That value seem s to be incorrect.
S tudent: Could R22 be low?
SOPHIE: Is it OK if I u se  25 ohm s for the  resistance of R22?
Student: Yes
SOPHIE: That fault agrees with ali of the m easurem ents you have made.

Figure A.11: An interaction protocol with SOPHIE-I [Brown and Burton, 1975] 

SOPHIE-n

SOPHIE-II was an attempt to improve the pedagogical setup in which SOPHIE-I’s 

simulated lab was used. SOPHIE-I did not take any didactic initiatives. In SOPHIE-II a 

troubleshooting expert is added to the simulated lab who can demonstrate troubleshooting 

strategies, given a fault in the circuit in a function part of the circuitry which the student 

has selected. He can then watch the expert reason out the location of the fault. Figure 

A. 12 shows an interaction protocol with SOPHIE-II.

The student is involved in the process by the questions the expert asks as it demonstrates 

its troubleshooting strategies. A referee makes explicit use of SOPHfE-Fs simulated lab 

to rectify incorrect predictions made by the student. The troubleshooting expert reasons 

qualitatively making causally meaningful measurements and explaining its strategic 

decisions. SOPHIE-II pedagogical significance is that the student’s personal
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SOPHIE-II: How does the OUTPUT CURRENT of the CONSTANT CURRENT SOURCE 
com pare with a working circuit?

Student: OK
SOPHIE-II: The current source Is working then. The modules now left are CL, VL,

OPF, and DARL. I think i will make my next m easurem ent on the Darlington 
amplifier. I want to know whether the BASE CURRENT of 0 4  is OK.

Student: HELP
Referee: Let’s  use SOPHIE to find the answer.

»  is the base  current of 04  OK?
SOPHIE-I: The base  current of 04  is 0.0 amps, which seem s to  be incorrect 

because in a working circuit it is .031 miliiamps.
Referee: So, you see, the BASE CURRENT of 0 4  is LOW in the faulted circuit.

Let’s  go o n ...
SOPHIE-ii: Low input current to  the Darlington amplifier wouid certainly result

in lower than normaivoitage at its output under m oderate current loads.
I think then, the Darlington amplifier is OK, since it is following its input. 
Now, since we have already seen that the CCS output current is OK, perhaps 
either the current limiter or the voitage limiter m ust be drawing 
excessive current from the C C S....

Figure A.12: An interaction protocol with SOPHIE-II

experimentation alternates with observation of expert behaviour actively involving his 

understanding of the circuit.

SOPHIE-m

SOPHIE-in, a proposed extension to SOPHIE-I, was designed to provide a pedagogically 

active environment organised around a quantitative simulation, which centres on the 

learning needs of the student by supporting coaching and student modelling while 

allowing the student to take the initiative. SOPHIE-m was an effort to give SOPHLE-Ps 

inferential abilities a humanlike reasoning flavour, the kind of causal reasoning performed 

by human troubleshooters. Of the SOPHIE-m project out came the BLOCKS Tutor, 

BUGGY, and WEST each dealing with a different problem, the designers of SOPHIE-m 

had to tackle. Coaching of problem-solving in WEST, student modelling in BUGGY, and 

troubleshooting strategies in the BLOCKS Tutor. It is worth mentioning that SOPHIE-m
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was never developed.

SOPHIE-in was meant to encompass a troubleshooting expert (a glass box system) 

accessible for tutorial purposes working on top of an electronics expert which propagates 

quantitative information about voltages and currents across components which are 

translated into qualitative information for a rule-based expert system that infers the 

behaviour of the circuit’s modules which are in turn used to analyses the circuit in terms 

of the behaviour of its logical modules. The aim of the SOPHIE-in project arose from the 

need to understand an electronic circuit where each component has some known 

properties, and where the function of the whole circuit results from the structural relations 

between those components.

In trying to achieve this aim, SOPHJE-UI’s designers questioned the cognitive 

assumptions of the knowledge and the reasoning that pertained the representation and the 

representation itself. Furthermore, student modelling with the whole of the SOPHIE 

project did not go any further than the development of simple overlay models. This gave 

rise to their proposal of the ENVISION project. Nevertheless, the student modelling is still 

not addressed. From a pedagogical point, the emphasis was on the production of 

explanations, which was the major weakness of quantitative simulation but from a 

descriptive standpoint: student modelling was still at its best an overlay model with no 

concern at all of misconceptions diagnosis.

STEAMER

STEAMER [Williams, Hollan and Stevens, 1981] is an interactive, inspectable simulation 

based Intelligent Tutoring System for training engineers who will operate large ships.
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specifically the steam propulsion plants of these ships. The object of such training is to 

leam to perform the vast collection of procedures associated with both normal and 

abnormal operating conditions.

s t e a m e r ’s attraction is in its display of a mnning model of the propulsion plant using 

a language of animated icons, which allow the student to form a mental model and to 

leam procedures by manipulating this simulated plant. The various indicators appearing 

in the display are connected to an underlying quantitative model and are updated as the 

simulation proceeds. They amy also be set to specific values by the student, who can then 

observe the consequences of his manipulations. A hierarchical decomposition of the model 

allows the student to explore subsystems in further details. This is enabled by an object- 

oriented graphics editor that manipulates icons representing objects such as gauges, pipes 

and flows. There are facilities for connecting these objects to the variables of an 

underlying quantitative model and for associating procedures with objects.

s t e a m e r ’s pedagogical capabilities covering plant operating procedures, basic 

engineering principles, and explanations about plant functioning are the result of a tutor 

module that provides feedback during the execution of known procedures and a minilab 

for exploring the stmcture of specific components. However, it still shares many of 

SOPHIE’S pedagogical limitations particularly with respect to causal explanations with 

quantitative simulations. Nevertheless, the graphic interface of STEAMER makes the 

mental model of a complex steam plant inspectable for instructional purposes which 

provides a realistic experience that, for example, the cost, availability, safety and training 

site [Angelides and Doukidis, 1990] may prohibit.
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QUEST

QUEST (Qualitative Understanding of Electrical System Troubleshooting) [White and 

Frederiksen, 1985] is an Intelligent Tutoring System which shares with STEAMER the 

same practical goal of building a learning environment centred around a graphic 

simulation for instruction about physical devices in which the student can solve circuit 

problems. Graphic simulations and causal explanations of circuit behaviour play a 

prominent role because of the emphasis placed on supporting the student’s development 

of executable models of electrical circuits. The goal is for the student to understand the 

general principles governing the behaviour of these circuits so ass to be able to predict 

the states of components and perform a small set of troubleshooting operations.

With QUEST explanations based on qualitative models find direct application in a 

learning environment centred on a simulated circuit. The simulation is basically 

component-oriented, but it does provide some of the advantages of process-oriented 

simulations by incorporating some higher-level concepts with which to guide the 

evaluations of component states.

A.4 Instructional Games

The purpose of both simulations and games is to provide an environment that facilitates 

learning or the acquisition of skills. Simulations do so by mimicking reality and games 

by providing the student with entertaining challenges. The purpose of Instructional Games 

is to tutor and as such they convey a variety of information like facts and principles, 

processes, the structure and dynamics of systems, skills such as problem solving, decision 

making or strategy formulating, social skills such as communication and attitudes and a 

variety of identical skills such as the nature of competition, how people cooperate, the

318



dynamics of social systems, the role of chance, and the fact the penalties often have to 

be paid for just or unjust reasons.

Alessi and Trollip [1985] argue that games tend to motivate students and focus their 

attention on the goal of the game and enhance the learning environment because the 

teacher plays a less dominant role and is not the only judge of performance. Figure A. 13 

shows the flow of a game. A game has basically the same cyclic nature as a Simulation. 

The only difference is the addition of an optional input by an opponent.

Present ScenarioIntroductory Section Action Required

Student ActsClosing

Opponent Reacts

System Updates

Figure A.13: The general structure and flow of an Instructional Game 

WEST

WEST is an Intelligent Tutoring System for coaching with the computer game "How the 

WEST was won" developed for the PLATO project. The project came out of the research 

Brown and Burton were doing for SOPHIE-III in the mid 1970s thus keeping in place
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with the concept of reactive learning environments which was a central theme to the 

whole of the SOPHIE project. The purpose of the game is to exercise arithmetic skills. 

Players are involved in a race to their home town. When their turn comes, they are given 

three random numbers by spinners. With these numbers, they have to compose an 

arithmetic expression that involves two different operators and that determines the number 

of spaces they can move. However, getting the largest number is not always the best 

strategy, because of shortcuts and the possibility of bumping backward an opponent who 

is not in a town. As a result players are encouraged to explore different ways of 

combining the numbers with arithmetic operators.

With WEST Burton and Brown [1976] proposed the issues paradigm. With this paradigm, 

the knowledge to be conveyed is described as a set of issues, which are presented to the 

student as they become relevant to the game along with his moves. Finding relevant issue 

is achieved with differential modelling. However, because of the game’s randomness, it 

is not possible to predict which skills will be necessary ahead of a move.

When it is the student’s turn to play, the expert generates an ordered list of all the 

possible moves. If the student’s expression does not yield the expert’s optimal move, the 

diagnostic process starts. First, the student’s move is analysed by the issue recognisers to 

determine which issues are used. Then, all the expert’s moves that are better than the 

student’s are also analysed by the same recognisers, to produce a list of issues the student 

failed to apply. Finally, these issues are evaluated in the existing differential student 

model to find one in which the student is known to be weak. If one such issue is found, 

it can be presented to the student: both abstractly, using a piece of prestored text and 

concretely using the expert’s better move as an example. Figure A. 14 shows an interaction
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protocol with WEST.

Bob is at 54 -  the com puter Is a t 40.
WEST: It's MY turn ... Spinners are 2 4 2 My expression Is:

2 + (4/2) which gives ME 4 
I took a SHORTCUT 
I bumped YOU
the COMPUTER Is at 54 -  Bob Is at 40.

WEST: It’s  your tu rn ... Spinners are: 1 2  2 What arithmetic 
expression did you form?

Student: 1 + 2*2 
WEST : What number does that give you?

Student: 5
WEST: You don’t seem  to be bumping very much. Bumps are hard to 

get bu they are usually a good Idea. One good example 
would be the expression: (1*2) + 2, which would give you a 
SHORTCUT and a BUMP!! So you could have been at 54 while 
I would have ended up at 40. Bob Is at 45 -  the COMPUTER Is at 54.

Figure A.14: An interaction protocol with WEST [Burton and Brown, 1976]

In addition to helping select relevant topics, the differences between the lists of issues 

respectively applied by the student and the expert also provide information for updating 

the student model. Pedagogically WEST adopts a cautious attitude and intervenes only 

when there is good evidence for a weakness. WEST’s expert needs a global strategy to 

determine optimality when ordering moves but does not need to use the issues, or even 

to know about them, since its moves are analysed by the same diagnostic procedures as 

are the student’s.

WUSOR

WUSOR [Goldstein and Carr, 1977] is an Intelligent Tutoring System for coaching with 

the computer game WUMPUS [Yob, 1975]. WUMPUS takes the player through 

successive caves in a warren where the terrible Wumpus is hiding. In addition to

321



Wumpus, other dangers are lurking: deadly pits, and bats that grab the player and drop 

him in a random cave. Whenever the player reaches a new cave, he is given a list of the 

neighbouring caves. He also receives some warnings when applicable: a draft or a squeak 

reveals the presence of a pit or a bat respectively in an unspecified neighbouring cave. 

The Wumpus itself can be smelled up to two caves away. The player moves by selecting 

the neighbouring cave he wants to visit next. To win the game, he must shoot one of his 

five arrows into the WUMPUS lair. He looses if he falls into a pit, by walking into the 

WUMPUS lair or by using up his arrows without scoring any hits. In deciding which 

neighbouring cave to visit next, the player must exercise logical and probabilistic 

reasoning to draw inferences from the signals she has received so far within a time-limit.

WUSOR-I [Stanfield, Carr and Goldstein, 1976] consists of an expert and an advisor. In 

the expert, the domain knowledge is represented in the form of production rules (unlike 

w e s t ’s black box system) which are organised into different danger specialists which 

cooperate to classify all possible moves and select the best one. The expert keeps a record 

of the information gather so far. The expertise consists of heuristic rules for approximate 

probabilities. The advisor intervenes each time the student has not chosen the optimal 

move according to the expert’s classification with the appropriate explanation given. The 

advisor does not maintain a student model nor does it attempt to diagnose the student’s 

state of knowledge and thus adapt its interventions accordingly. The players are asked to 

rate themselves, a rate which is seriously taken into account by the coach in preparing the 

material complexity.

WUSOR-I was updated to WUSOR-II by the incorporation of the overlay theory into its 

student modelling. This was a move towards a learner-oriented tutor, both for the student
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model and for the representation of expertise. The student knowledge is represented as an 

overlay model and his learning preferences are represented as a set of three registers 

indicating his need for repetition, his degree of forgetfulness and his receptivity to advice. 

Game expertise is organised into five successive phases ranging from basic rules of the 

game to logical and finally to probabilistic rules. The student will not be allowed to 

proceed to the next phase before he has mastered required skills in the current one. Figure 

A. 15 shows an interaction protocol with WUSOR-II.

WUSOR: Hi Mary. There are 15 caves, 2 bats, 2 pits and 1 W umpus.
You are now at cave 15 with neighbours 4 ,14, and 0. Brrr!
There is a draft. Your are near a  pit. What a  stench! The 
W umpus is near! What now?

Student: 4
WUSOR: You are now at cave 4 with neighbours 15,14, and 2. Brrr!

There is a draft. Squeak! A bat is near. What now?
Student: 14
WUSOR: Mary, it isn 't necessary  to take such  large risks with pits.

One of caves 2 and 14 contains a pit. Likewise, one of caves 
0 and 14 contains a pit. This is muitipie evidence of a pit in cave 14 
which m akes it likeiy that cave 14 contains a pit. It is less likely that 
cave 0 contains a pit. Hence, MAry, we might want to expiore cave 
0 instead. Do you want to take back your move?

Figure A.15: An interaction protocol with WUSOR-II [Goldstein, 1982]

WUSOR-n was updated to WUSOR-m [Goldstein, 1982] by the incorporation of the 

genetic graph to combine the concept of overlay on a rule-based representation of domain 

knowledge with a learner-oriented set of links. The genetic graph represents elementary 

subskills as nodes connected by links representing their evolutionary relations, such as 

generalisation or analogy. With WUSOR HI the student’s knowledge can be represented 

as an overlay on the nodes of the genetic graph, including correct and incorrect rules and
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his learning history as an overlay on the links of the genetic graph. The overlay on the 

links then supports pedagogical actions that view learning as a process of building upon 

existing knowledge. WUSOR-IH was never fully implemented with much of the genetic 

graph remaining an idea.

BUGGY

BUGGY [Burton, 1982] is an Intelligent Tutoring System for tutoring arithmetic skills. 

The BUGGY project that came out of SOPHIE-in was centred around the design of a 

student diagnostic model: that is a model of the student’s current skills that would reflect 

its exact composition of correct and incorrect elementary subskills. The skills in the 

diagnostic model were represented as a black box procedural hierarchical network which 

is a decomposition of that skill into subprocedures which are linked together in a lattice 

of subgoals. The procedural network is executable and thus it can be used to on a set of 

problems to model the skill that it represents. Its structure is also inspectable.

The most important feature of the procedural network is that it is possible to include in 

the hierarchical structure all the possible buggy variants of each subskill. It achieves this 

by performing a generate-and-test diagnosis. It replaces an individual subskill in the 

procedural network by one of its bugs, and thus attempt to reproduce a student’s incorrect 

behaviour. If such a faulted network does obtain the same answers as the student on a 

sufficient set of problems, the bugs that have replaced the correct subskills in the network 

are then claimed to be possessed by the student. This deterministic deep-structure model 

explains the student’s incorrect behaviour in terms of a set of exact internalised errors. 

The limitations of this approach to pedagogical instruction is the in-depth analysis of the 

domain and of actual performances by students and then the lack of explanation of the
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bugs. BUGGY was developed as a game. Figure A. 16 shows an interaction protocol with 

BUGGY in the domain of addition.

BUGGY: Welcome to BUGGY. I have chosen a  bug. Here is an example of the bug.

17

13

Now you can give me problems to  determine the bug.

Team: 18 43

+ 6 +79

BUGGY: 15 23

Team: Got the bug! Student adds the number to be carried in the last column worked in. 

BUGGY: Here are some probiems to test your theory about the bug. What is:

21 

+ 39

Team: 51

BUGGY: That's not the bug i have. Using my bug:

21 

+ 39 

15

Try giving me more exam ples...

Team: 51 99 68

+1707 + 99 +9 

BUGGY: 21 36 23

Team: Got the bug! The student is adding all the digits together.
BUGGY: Very good. My description of the bug is: The student aiways sum s up ail 

the digits, with no regard to coiumns.

Figure A.16: An interaction protocol with BUGGY [Burton, 1982]

The BUGGY model was extended to a sophisticated off-line diagnostic system for dealing
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with multiple bugs, DEBUGGY which analyses tests taken by students and an on-line 

version IDEBUGGY which diagnoses the student’s procedure incrementally while he is 

involved in problem-solving.

In their efforts to address the inability of BUGGY to automatically derive primitive bugs 

from correct skills, Brown and VanLehn [1980] proposed the REPAIR Theory as an 

information-processing model of the rational genesis of bugs. The theory builds on 

b u g g y ’s extensive data to achieve the explanatory power the BUGGY’s diagnostic 

models were lacking. The BUGGY model diagnosed systematic errors that students are 

observed to make, while the REPAIR Theory provides procedures and constraints that will 

account for the appearance of the bugs observed. The use of the REPAIR Theory did help 

BUGGY predict several unobserved bugs.

VanLehn [1983] proposed the STEP Theory to be coupled with the REPAIR Theory in 

an effort to address the inability of the REPAIR Theory to explain or model the genesis 

of an incorrect procedure by the student that gave rise to a bug and instead of trying to 

overwrite this procedure through relevant problem-solving to try and correct the 

procedure. The STEP Theory through successive lessons transforms functional subsets of 

the skill into correct and complete versions.

A S Knowledge Based Tutoring Systems

There have been many good reasons why existing Knowledge Based Expert Systems seem 

to offer an ideal basis on which to build Intelligent Tutoring Systems, other than the 

obvious fact that they embody large amounts of expert knowledge! One advantage of 

these systems is the usual separation of a knowledge base of (usually) production rules
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from the procedural interpreter that uses them. This allows access to modular pieces of 

knowledge, which are expressed declaratively and can often be understood independently. 

In addition, explanation facilities have been developed to justify the behaviour of some 

systems. They can trace the chains of inferences, thus offering explanations of both how 

the reasoning has led to the conclusions the system proposes and why the system needs 

certain pieces of information when it requests data from the user. A Knowledge Based 

Expert System with good explanation capabilities, can only justify its actions passively. 

To be able to present knowledge actively, it is acknowledged that an Intelligent Tutoring 

System must be endowed with the ability to select instructional material, to be sensitive 

to the student and to conduct an effective interaction.

The application of Knowledge Based Systems in Intelligent Tutoring System was sparked 

when Clancey [1982] undertook the task of building an Intelligent Tutoring System on top 

of MYCIN. At that time, the domain independent infrastructure of MYCIN, its reasoning 

engine had been extracted and made into the generic system EMYCIN, which had been 

tested for applicability in various domains. The developers of EMYCIN hoped that a tutor 

built for MYCIN would be able to handle any EMYCIN domain with a minimum of 

modifications, and that the principles underlying such a tutor would even be applicable 

to Knowledge Based Expert Systems in general. In the rest of this section, we examine 

Intelligent Tutoring Systems which have been developed using the Knowledge Based 

Systems Engineering paradigm.

PROUST

PROUST [Johnson and Soloway, 1985] is an Intelligent Tutoring System for Pascal 

Programs Analysis. It came out of the MENO Project which was an attempt to built an
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Intelligent Tutoring System for novice Pascal Programmers. The objective with PROUST 

was to reconstruct a plausible program-design process so as to provide a problem-specific 

context for the recognition and discussion of bugs rather than explaining the origins of 

misconceptions in programming knowledge with a generative theory of bugs.

The argument in developing PROUST is that diagnostic methods that look for bugs in 

computer programs merely inspecting the code cannot cope with a wide variety of 

programs. Such methods fail to recognise that nonsyntactic bugs are not an intrinsic 

property of the fault program, but reside in the relation between the programmer’s 

intentions and their realisation in the code. This makes code inspection insufficient and 

plan-recognition techniques, when used in isolation are easily thrown off by faulty code 

and by complex interactions between various goals and between different plans that 

implement them. PROUST intention-based program analysis is a comparison of intended 

functions and structures to actual ones. PROUST diagnosis approach distinguishes 

between three levels: problem specifications give rise to an agenda of goals and subgoals, 

which in turn lead to the selection of plans, which are finally implemented as code. The 

exact set of intentions underlying a program is usually not available as data, but must be 

reconstructed on the basis of evidence provided by the problem specifications given to the 

programmer and by the program proposed as a solution. The rainfall problem in Figure 

A. 17 is an example of the programming assignments that PROUST can deal with.

Included in the figure is the formal description of the problem given to PROUST as input 

along with the student program to be analysed. PROUST would then search for the most 

plausible interpretation of the program with respect to these specifications. PROUST needs 

to infer a plausible design process that reproduces the programmer’s intentions in an
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Original Problem statem ent
Noah needs to  keep track of rainfall In the New Haven are In order to  determ ine 
when to launch his ark. Write a Pascal program that will help him to do this.
The program should prompt the user to input num bers from the terminal; each 
input s tan d s  for the am ount of rainfall in New Haven for one day. Note: since 
rainfall cannot be negative, the program should reject negative input. Your 
program should com pute the follwoing statistics from this data:

1. the average rainfall per day;
2. the number of rainy days;
3. the number of valid inputs (excluding any invalid data that might have beenread in);
4. the maximum am ount of rain that fell on any one day.

The program should read data until the user types 99999; th is is a sentinel 
value signaling the end of input. Do not included the 99999 in the calculations.
A ssum e that if the input value is non-negative and not equal to 99999, then it 
is valid input data.
Problem statem ent a s  input to  PROUST (slightly simplified for readability)
Objects: ?DailyRain is of the c lass  "scalar m easurem ent"
Goals: Sentinel-controlled input sequence (?DailyRain, 99999)

Loop input validation (?DailyRain, ?DailyRain < 0)
Output (Average (?DailyRain))
Output (Count (?DailyRain))
Output (Guarded count (?DailyRain))
Output (Maximum (?DailyRain)) ________________________

Figure A.17: A programming assignment for PROUST [Johnson and Soloway, 1985]

analysis by synthesis theme. The method combines reconstruction of intentions with 

detection of bugs together, because bugs can lead to misinterpretations of intentions, and 

intentions are necessary to distinguish bugs from unusual but correct code.

PROUST as a Knowledge Based System relies on a detailed knowledge base that provides 

information about the types of program expected to encounter. The knowledge base is not 

an attempt to reproduce the design process that novices follow. It combines expert 

knowledge about programming with knowledge about programming errors.The 

components of PROUST’s knowledge base are:

Goals and object classes for problem specifications and the ways in which they can be 

implemented or reformulated, implicit goals and objects that have to be inferred and can 

sometimes be omitted in the problem statement along with heuristics rules that can detect
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goal interactions and generate new goal expectations in connection with certain errors.

Plans list indexed by the goals they achieve including information about incorrect 

applications of plans along with some buggy plans.

Code consists of two types of rules to deal with plan differences: transformation rules 

which check for equivalence between two versions of a piece of code and bug rules that 

explain mismatches by hypothesising a bug of a known type.

With this knowledge, PROUST tries to construct an interpretation for the program to be 

analysed. Starting with a goal agenda derived from the problem specifications, PROUST 

selects successive goals for analysis and after performing any applicable reformulation or 

decomposition in terms of other goals, PROUST searches for corresponding 

implementations for which there is evidence in the code. Hypothesised plans are then 

evaluated according to how well they match the code and how well they fit in the context 

of the overall interpretation. Transformation and bugs rules are then applied on the code. 

Competing hypotheses are compared to one another to examine how much code they can 

explain and how bad the students misconceptions are. Figure A. 18 shows an example of 

a program report generated by PROUST.

After PROUST has converged on one interpretation, it evaluates its reliability by 

measuring how fully it accounts for elements of the code and the specifications by 

detecting any flaws. It may discard parts of its analysis and thus warn the student about 

the completeness of its interpretation. The it sorts bugs to be reported, trying to group 

them so that it can point to common underlying misconceptions. Figure A. 19 shows
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dporting MINOR bug In the SETUP part of your program: The 
ilsatlon at line 7 appears to be unnecessary. The statem ent in question is :

XAiN := 0
J o  continue, please p ress  carriage return)

r : Now reporting CRITICAL bug in the CONTROL part of your program:
You used a while statem ent at line 19 where you should have used  an IF. 
WHILE and IF are not equivalent in th is context; using WHILE in place of IF 
resu lts in an infinite loop. The statem ent in question is:

WHILE RAIN <> 99999 DO ...

(To continue, please p ress  carriage return)

Figure A.18: A program report generated by PROUST [Johnson and Soloway, 1985] 

another interaction protocol with PROUST.

MENO-TUTOR

MENO-TUTOR [Woolf and MacDonald, 1984] complements the diagnostic abilities of 

PROUST by addressing the issue of remediation. MENO-TUTOR uses a domain- 

independent discourse strategy represented as a discourse management network, a kind of 

augmented transition network, which is to be coupled with a domain-dependent langauge 

generator that implements strategic decisions from the domain knowledge base, in this 

case PROUST’s knowledge base. The nodes or states in this network correspond to 

tutorial actions. These states are hierarchically organised into three strategic layers that 

make the pedagogical decision process transparent. The links indicate hierarchical 

dependencies whereby actions at one level are possible refinements of the actions at the 

level above. The arcs of the network define the sequences of states normally traversed by
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Here Is a programming exercise called the averaging problem: 
Write a program that reads In a sequence of positive num bers, 
stopping when 99999 Is read. Compute the average of these  
num bers. Do not Include the 99999 In the average. Be su re to 
reject any Input that Is not positive.

(a) S tudent's answer:

01 PROGRAM Average (Input, Output);
02 VAR Sum, Count, Va I, Avg: REAL;
03 BEGIN
04 Sum := 0;
05 Count := 0;
06 Writein (E nter Value:’);
07 Read (Val);
08 WHILE Val <> 99999 DO
09 BEGIN
10 WHILE Val <= 0 DO
11 BEGIN
12 WrIteIn ( Invalid entry reenter );
13 Read (Val);
14 END;
15 Sum := Sum + Val;
16 Count := Count + 1 ;
17 Writein ( Enter Value:’);
18 Read (Val);
19 END;
20 IF Count > 0 THEN Writein (’No data entered ) ELSE
21 BEGIN
22 Avg := Sum/Count;
23 Writein ( The average Is ,Avg);
24 END;
25 END.

(b) PROUST’s  output:

You are missing a sentinel test. If a sentinel value Is Input 
Immediately following a non-posltlve value, your program will 
treat It as  valid data.

To see  this, try the following data In your program:
5 -5 99999

Figure A.19: An interaction protocol with PROUST [Johnson and Soloway, 1985]

the tutor. Figure A.20 shows a dialogue produced by the MENO-TUTOR for the buggy
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program on the average problem traced by PROUST in Figure A.19.

Tutor: Do you know that DATA, In line 8, Is a control variable for the WHILE loop? 
Student: Yes
Tutor: Does that mean that DATA should be

a) Initiated before the loop?
b) Added Into sum within the loop?
0) Modified within the loop?
d) Both a) and c)

Student: C
Tutor: You seem to understand about the control variable of the WHILE loop.

Now let us talk about some other command statements. What do you think 
READ (DATA) In line 7 does with the value of DATA?

a) Reads all the values of DATA at one time.
b) Reads In a single value of DATA.
c) Assigns several new Input values to DATA.

Student: A
Tutor: Then do you think that DATA := DATA + 1 updates the next of those values? 

Student: Yes
Tutor: There Is your misconception. Adding one Is a common way to step through a

range of values. But It cannot apply here because your READ Instruction In line 
7 retrieves only a single value. You should replace line 12 by a second call to 
READ (DATA).

Figure A.20: Interaction protocol with the MENO-TUTOR [Woolf and MacDonald, 1984

The main purpose of the MENO-TUTOR is to serve as a generic tool for exploring 

tutoring strategies. The hierarchical network provides a set of tutoring primitives with 

default sequences, so that a variety of pedagogical approaches can be generated.

GUIDON

GUIDON [Clancey, 1987] is a tutor build on top of MYCIN, with the following goals: 

assessing the pedagogical usefulness of MYCIN’s knowledge base, uncovering the 

additional knowledge a tutoring system would require and attempting to express tutorial 

strategies in domain-independent terms. For the first version of GUIDON, Clancey did not 

modify MYCIN. The rule base and the consulting facilities serve as a core, which is 

extended with new capabilities and other augmentations to produce an active tutor. The 

central theme of GUIDON was the complete separation of domain knowledge from
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pedagogical knowledge. The separation allowed for various experiments with different 

strategies. This also makes the tutor easily adaptable to other domains. The pedagogical 

goal of GUIDON is to impart MYCEN’s rules to a student and thus its medical expertise.

The pedagogical strategy adopted for GUIDON’S presentation is the case method, a 

mixed-initiative dialogue which concentrates on successive specific cases so as to convey 

MYCIN’s knowledge to students in a realistic problem-solving context. This mixed- 

initiative dialogue resembles partly the Socratic method used in WHY and partly the 

issues and examples used in WEST. GUIDON’S purpose was to guide the student’s 

reasoning as a Socratic Tutor does using MYCIN’s rules as issues for discussion in the 

context of examples. Once a case has been selected and described by GUIDON, the 

student acting as a diagnostician, asks questions to gather important data and proposes 

hypotheses. By applying differential modelling, the student’s behaviour is compared to the 

expert behaviour (i.e. MYCIN’s). The tutorial program intervenes when the student asks 

for help or when his actions are suboptimal. Figure A.21 shows an interaction protocol 

with GUIDON.

For tutoring, GUIDON needed the final conclusions from MYCIN and also information 

about its entire reasoning process. MYCIN serves as the domain model for GUIDON. This 

was communicated to GUIDON in the form a tree which also contained the goals 

accomplished by each rule. This formed the basis for the tutorial dialogue (as seen in 

Figure A.21). The tutor follows its tutoring strategies to select issues it wants to bring to 

the attention of the student for discussion. Furthermore, to support explanations given by 

GUIDON, pieces of canned text justifying inferences or references were attached to 

individual rules in MYCIN. Also metarules, which are rules about how to use rules, in the
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Student: I think that the organisms present are Diplococcus-pneumoniae, 
Pseudomonas-aeruginosa, and Neisseria-meningitidis.

GUIDON: Good. The age of the patient gives evidence for concluding that 
Diplococcus-pneumoniae might be present (Rule 507). The fact 
that the patient has been seriously burned is good reason to 
supsect Pseudomonas-aeruginosa (Rule 578). Both conclusions 
apply because the infection which requires therapy is meningitis 
no organisms were seen on a gram stain of the culture, and the 
type of infection is bacterial.
The age of the patient also leads one to suspect Neisseria- 
meningitidis (Rule 507). Do the fact that the infection was 
acquired while the patient was hospitalised and information 
about diseases to which the patient has been exposed support 
this conclusion?

Student: No.
GUIDON: Right. This would be a good reason to rule out Neisseria-

meningitidis (Rule 561). What facts about this case tell you that 
the organisms which might be present are E. coli and 
Klebsiella-pneumoniae?

Student: Help 
GUIDON: Choose from:

1. The patient does not have a TB risk factor and the patient’s 
x-ray is not abnormal

2. Ottidis-media and Epigolottitis are not among the diagnoses
consistent with the patient’s  clinical history

3. The white count (WBC) from the patient’s  peripheral CBC is
less than 2.5 thousand

4. The infection was acquired while the patient was hospitalised
5. The patient was seriously burned
6. None of these 

Student: 13  4
GUIDON: You’re right about the WBC (rule 557) and the evidence gained 

from the fact that the infection was acquired while the patient 
was hospitalised (Rule 545). However, the lack of a TB risk factor 
and a normal x-ray is weak evidence that Mycobacterium-TB is 
not one of the organisms which might be present (Rule 160).

Figure A.21: An interaction protocol with GUIDON [Clancey, 1987] 

form of metaknowledge were also added to MYCIN.

g u id o n ’s tutoring model is also a rule-based expert system with structure similar to
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MYCIN, however, its rules never mention any fact specific to MYCIN’s domain. Its 

domain expertise is the management of a tutorial interaction following the case method. 

To adapt the dialogue to the specific needs of a given teaching session, the tutor 

production system maintains and refers to a separate database of facts relevant to the 

interaction. This database which Clancey calls the communication model encompasses 

three different parts: the student model, the case syllabus and the focus record.

The student model is a simple overlay model. GUIDON does not model misconceptions, 

thus it does not use bug or bug part libraries and thus no buggy rules to interpret the 

student’s actions or model his behaviour. GUIDON’s overlay uses three values per rule 

to indicate, the certainty of the rule, its belief that the student could apply the rule in a 

given circumstance and its belief that he did apply it to produce his current statements. 

The case syllabus contains information about the relative importance of topics and thus 

serves to determine the future topics to be covered. The focus record keeps track of the 

global context of the dialogue in a set of registers so as the ensure of a certain continuity. 

g u id o n ’s tutorial rules embody knowledge about discourse procedures and dialogue 

patterns, and about updating processes for the communication model. Tutorial rules 

address the basic issues of finding opportunities to intervene, selecting relevant 

information, and presenting it. Also, they respond to the student’s hypotheses and guide 

him towards understanding how they fit with known information. GUIDON updates the 

student model with sophisticated (at that time) diagnostic reasoning.

g u id o n ’s limitations are its first its inability to manage the dialogue when a student 

follows a diagnostic strategy different from MYCIN’s. This would lead to MYCIN 

rejecting reasonable hypotheses by the student. Second, the complexity of MYCIN’s rules
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especially the strategies and knowledge organisation which they embody, made MYCIN’s 

rules hard to understand and remember especially for experimental work. Clancey [1987] 

addressed these problems by reconfiguring MYCIN’s compiled rules in order to obtain 

an explicit model of diagnostic thinking. This gave birth to NEOMYCIN.

With NEOMYCIN strategic knowledge is now separated for from domain facts and rules. 

MYCIN’s black-box backward chaîner is replaced by an explicit control structure which 

is domain-independent set of metarules that explicitly represent a hierarchically organised 

reasoning strategy for medical diagnosis which Clancey calls metastrategy. This 

metastrategy is another rule-based expert system in the strategic domain used to control 

an expert system in the object domain. With NEOMYCIN, all domain inferences and data 

requests take place under the control of the metastrategy, which fires domain rules itself 

using forward chaining. In addition to the MYCIN interpreter being expressed in terms 

of an explicit reasoning strategy, the knowledge base containing the rules is also 

reconfigured so that its structure provides the type of information required for the 

metastrategy. With NEOMYCIN, strategic information embedded in the form of If-Then 

clauses in MYCIN’s production rules become explicit reasoning strategies. Domain 

knowledge is organised into coherent epistemic categories like principles, facts, causal 

relations, heuristic rules, etc.

The GUIDON project is regarded by the Intelligent Tutoring Systems community as one 

of the most sophisticated Tutoring System ever built. GUIDON came very close to being 

described as a full-scale knowledge communication system because its representation of 

knowledge and processes reflects the human approach to the domain. It is worth 

mentioning that the GUIDON project provided the basis for Wenger model of Knowledge
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Communication Systems. In his effort, to develop a generic tutoring paradigm, Clancey 

launched the GUID0N2 project which aims to provide domain-independent tutor modules 

for the whole class of problem-solvers typified by NEOMYCIN. Out of NEOMYCIN, 

came HERACLES, a generic system that captures the domain independent mechanisms 

of NEOMYCIN. This includes a reasoning strategy and a language of relations between 

objects which organise domain knowledge so that it can be reasoned about. Two 

Intelligent Tutoring Systems developed with HERACLES are IMAGE and ODYSSEUS.

Clancey’s aim with HERACLES was to create a family of complementary instructional 

modules. Out came in 1985 GUTDON-WATCH, a graphic animation interface with 

multiple windows running on workstations in order to make the reasoning strategy of 

HERACLES inspectable by the student. In 1986, out came GUIDON-MANAGE, a 

problem-solving environment where the student manipulates a set of operators whose 

detailed problem-solving effects are implemented by the system. These operators are 

expressed in terms of a patient-specific model, a causal graph linking conclusions to 

findings. Finally, in 1987 out came GUDDON-DEBUG, a module that allows the student 

to modify the knowledge base by criticising problem-solving sessions through the 

ODYSSEUS interface. The student is able to appreciate how domain knowledge is 

organised to support instantiations of the reasoning strategy and how it affects the course 

of the diagnostic process. By introducing bugs into the domain knowledge base which the 

system invites the student to correct, learning of specific pieces of coded knowledge takes 

place.

The LISP and GEOMETRY Tutors

John Anderson’s Adaptive Control of Thought (ACT*) Theory of Cognition that levies a
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great deal of emphasis on skill acquisition provided a theoretical ground for the validity 

of their proposed Advanced Computer Tutoring Principles (ACT?). The application of 

these principles in the domain of Lisp Programming and Geometry saw the development 

of the Intelligent Tutoring Systems classics, The LISP and GEOMETRY Tutors 

[Anderson, Boyle and Yost 1985] [Anderson and Reiser, 1985].

The ACT* Theory’s first assumption is that cognitive functions can be represented as sets 

of production rules. To this end, Anderson and his colleagues at Camegie-Mellon 

University developed GRAPES [Anderson and Reiser, 1985], the Goal-Restricted 

Architecture for Production Expert Systems. GRAPES productions are strictly interpreted 

within a hierarchical goal structure. This means that the use of a production rule is 

determined both by the state of the system and by the goals.

The second assumption concerns the mechanisms of the learning model. According to the 

theory, knowledge is acquired declaratively through instruction and it has to be converted 

and reorganised into procedures through experience. The learning mechanism is called 

knowledge compilation, which comes in two forms: proceduralisation, in which a general 

piece of knowledge is converted into a specific production to apply to a special class of 

cases, and rule composition in which a few rules used in sequence to achieve a goal are 

collapsed into a single rule that combines their effects.

The third assumption for teaching concerns the size of memories. Since the individual 

rules do not disappear after they participate in composition, there is, therefore, no limit 

on the size of long-term memory.
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Both the LISP and GEOMETRY Tutors function as individualised problem-solving 

guides. The tutors communicate with the student in terms of the various tasks required for, 

for instance, constructing a proof in the GEOMETRY tutor or designing a computer 

program in the LISP tutor. These tasks are viewed as different problem-spaces in which 

production rules must be selected for following and guiding the student. The LISP Tutor 

can function in four distinct problem spaces to cover issues of design and of coding: 

means-end analysis for sequences of operations, problem decomposition, case analysis, 

and Lisp coding. The first three combined are what the developers of the LISP Tutor call 

Planning.

The production rules of the GRAPES model of Lisp programming are the units of 

knowledge the tutor is trying to communicate. With GRAPES the production rules are a 

modular representation language that encodes cognitive processes. In addition to the ideal 

model represented by correct rules, the tutor’s knowledge base also contains a buggy 

model whose mal-rules are buggy variants of the ideal model’s rules. This enables a 

simulation of a wide variety of correct and incorrect behaviours for the domain. With both 

tutors, each lesson makes use of a different rule set, especially tailored to the needs of its 

specific level. Therefore, each set of rules is limited to the expertise of the ideal student 

at the corresponding level. The explicit goal stmcture of GRAPES production rules allows 

the tutor, at the local level, to relate its explanations to the current situation and to present 

the rules in a context where their relevance to problem-solving goals is clear and it also 

allows the tutor, at the global level, to decompose the problem into a hierarchy of explicit 

goals and subgoals thus enabling the student to remember it along with the actual form 

of the resulting Lisp function.
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The mechanism of knowledge compilation is triggered by the successful application of 

productions in the achievement of a goal, it does not support useful learning during 

explorations of erroneous paths. This lead the authors of the LISP and GEOMETRY 

Tutors to incorporate in the GRAPES model the ability to provide immediate feedback 

on errors. To this end, the tutors monitor every keystroke by the student and intervene as 

soon as they perceive a meaningful error. Nevertheless, both tutors will leave the student 

explore correct but fruitiess paths of inference before any tutorial intervention. Tutoring 

rules associated with ideal and buggy rules provide the student with various levels of 

explanation. Both tutors use the expertise of their problem solver to predict the steps the 

student wül take. While a student is working on a problem, the problem solver generates 

all the possible next steps, correct and incorrect according to its rules. These are compared 

to the student’s step and the rule that matches is selected as an interpretation of the 

student’s action. If the tutors cannot find such a rule then their ability to continue tutoring 

deteriorates dramatically. They both resort to usual prompt of "I do not understand the last 

input" and after a few trials, it suggests the best next step according to its ideal model. 

This is the model tracing technique which makes the student follow the system’s model 

quite closely. Model tracing makes sure that the student never strays far from a correct 

solution path. The problem is that the student model is always limited to one rule local 

rule or mal-rule whose output match the student step. The resulting student model with 

both tutors is at its best an incremental overlay on the ideal and buggy models of the 

student’s knowledge.

In trying to minimise the load on human working memory and thus allow the student to 

concentrate all his efforts on problem-solving, both tutors maintain plenty of contextual 

information on the screen, inspect his student model, knowledge to which he has been
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exposed to, previous problem solving episodes, etc. For an interaction protocol with the 

LISP Tutor see Figures A.22a and A.22b.

In the new versions of the LISP Tutor, the problem-solving models are based on a new 

architecture, the PUPS (Penultimate Production System) production system whose control 

mechanisms are more flexible than those of the GRAPES model. The system does not 

impose a programming approach upon the student but allows the student to move around 

the program to expand any unfinished portion. The PUPS problem-solver is presented with 

a programming exercise and uses its correct and buggy rules to generate a solution trace 

that the model can possibly recognise for the given exercise.
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Define rightp. It takes 3 arguments, sidel, slde2, sIdeS, which 
represent the lengths of the three sides of a given triangle, 
where sideS is the longest side, rightp tests whether the three 
sides form a right triangle, in a right triangle, the sum of the 
squares of sidel and side2 is equal to the square of sideS.
However, your function should allow for a measurement error of 2 
percent. In other words, your function should return t if the sum 
of the squares of the first two sides is within 2 percent of the 
square of the third side.

For example (rightp 3 4 5.01) = t, because 3 squared + 4 squared 
= 25, which is within 2 percent of 5.01 squared.

1. (defun rightp (sidel side2 side3) (cond))

Yes, you could use cond here, but there is a much easier way 
to test if the sum of the squares of the first two sides is 
within 2 percent of the square of the third. You can use a 
predicate, since we only have one test to do.

2. (defun rightp (sidel side2 side3)
(iessp (difference) <NUM2>))

You want to code the amount of difference between the sum of 
the squares of the first two sides and the square of the third 
side, and you don't care which of those two numbers is larger.
So we want to take the absolute value of the their difference.

3. (defun rightp (sidel side2 side3)
(iessp (abs (difference <NUM3> <NUM4>)) <NUM2>))

Which do you want to do first?
PRESS: IF YOU WANT TO:
1 Write code to get the sum of squares of the first two sides
2 Write code to get the square of the third side.
Menu choice: 1

4. (defun rightp (sidel side2 side3)
(Iessp (abs (difference (plus) <NUM4>)) <NUM2>))

No. You should create a helping function for this code, rather 
that coding it directly. Our function, rightp, is now 4 levels 
of embedding deep, and the relation we are about to code -the 
sum of squares of two numbers -would be a useful helping 
function. Thus, let’s  code the sum of the squares of the first 
two sides using a helping function.

5. (defun rightp (sidel side2 side3)
(iessp (abs (difference (sumsq <ARGUMENTS>) <NUM4>)) <NUM2>))

What do you want the helping function sumsq to do?
PRESS: IF YOU WANT TO:
1 Take 2 arguments, the square of the first side and the 

square of the second side. Compute their sum.
2 Take 2 arguments, the first side and the second side.

Compute the sum of the squares of these numbers.
3 Have the tutor choose.
Menu choice: 1

Figure A.22a: An interaction protocol with the LISP Tutor [Anderson and Reiser, 1985
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No. We wouldn’t need a helping function just to compute the 
sum of two numbers. You should create your helping function so 
that It does more than just a sum. It would be better to 
define sumsq so that it takes two arguments, in this case. [1] 
the first side, and [2] the second side, and computes the sum 
of the squares of these numbers.

Menu choice: 2

6. (defun rightp (sidel side2 sideS)
(Iessp (abs (difference (sumsq sidel side2) (times))) <NUM2>))

You should use a helping function that you have already coded, 
square. Since this function computes the square of a number, 
you can use it to code the square of the third side.

7. (defun rightp (sidel side2 sideS)
(iessp (abs (difference (sumsq sidel side2) (square sideS))) 
(plus)))

I don’t understand that, Rob. How are you going to code 2 
percent of the square of the third side?

[EXPLAIN]

OK. I’ll explain what I wanted. You could either code this 
directly or create a helping function here to code 2 percent 
of the square of the third side. Let’s  create a helping 
function just to make things easier. We’ll call this helping 
function percentage. We will define percentage when we are 
finished coding rightp.

What do you want the helping function percentage to do? 
PRESS: IF YOU WANT TO:
1 Take 2 arguments, one hundreth of 2 and the square of the 

third side. Compute their product
2 Take 2 arguments, 2 and the third side. Compute the given 

percentage of the square of its second argument.
3 Take 2 arguments, 2 and the square of the third side.

Compute the given percentage of its second argument
4 Take 1 argument, the square of the third side. Compute 2 

percent of its argument
5 Have the tutor choose.
Menu choice: 3.

Very good.

8. (defun rightp (sidel side2 side3)
(iessp (abs (difference (sumsq sidel side2) (square 3))) 
(percentage 2 (square side3))))

OK. Now we have finished coding the function rightp.

Figure A.22b: An interaction protocol with the LISP Tutor [Anderson and Reiser, 1985

344



APPENDIX B: QUESTIONNAIRE

PART A

Subject knowledge

Ql. Can the systems answer arbitrary questions from the user about the subject?

Q2. Can the systems give an explanation of a problem solution (including one of a 

problem posed by the user)?

Q3. Can the systems give alternative explanations, perhaps using analogy?

Q4. Can the systems answer hypothetical questions, that is, questions not about the 

present situation but about some imagined situation relating to it?
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Student knowledge

Q5. Could the systems give a report on the student’s level of understanding?

Q6. Are the systems’ explanations tailored to the user?

Q7. Do the systems provide informative feedback?

Q8. Are the problems presented by the system adapted to the users’ needs?
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Student control

Q9. Do the systems teach prerequisite skills?

QIO. Do the systems maintain control over the whole tutoring endeavour or does it 

leave part or aU of the initiative to the student?

Q ll. Do the systems "actively" engage the user?

Q12. Do the systems enable the student to communicate his plans (i.e. intentions) prior 

to executing them?
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Q13. Do the systems motivate and support a flexible style of tutoring?

Q14. Can the user initiate some new area of investigation?

Q15. Do the systems support the various idiosyncratic ways which the student might 

choose to solve a problem?

Q16. Do the systems monitor the student step by step?

Q17. Do the systems monitor such proposed changes, and comment upon them if they 

seem to be unwise?
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Q18. Do the systems intervene if the user appears to be having difficulty?

Q19. Do the systems remedy in a problem-solving context?

Q20. Do the systems provide hints, pieces of advice, corrections, remedial 

demonstrations, traces of reasoning, interpretations, explanations, simulations, 

motivation?
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Mode of communication

Q21. Do the systems provide an environment in which the interaction between it and 

the student is close to reality?

Q22. Can the user express his inputs to the system in whatever way is most natural?

Q23. Do the systems help if the users’ input is not understandable by the systems?

Q24. Are the systems’ outputs natural?
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PART B 

General

Q25. Are the systems robust, especially with respect to user input?

Q26. Are the systems helpful, especially when the user gets stack?

Q27. Are the systems simple to use?

Q28. Are the systems perspicuous or do they provide the user with mystifying choices?
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Q29. Are the systems "powerful" enough in terms of graphics facilities, explanations, 

etc.?

Q30. Are the systems navigable or can the users easily get lost?

Q31. Are the systems consistent or do they behave differently in different situations?

Q32. Are the systems transparent, especially with respect to the effect of students’ 

actions?

Q33. Are the systems flexible enough to accommodate tutoring for different classes of 

users?
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Q34. Do the systems enable redundancy, that is different views of the subject material?

Q35. Are the systems sensitive to the individual student needs with respect to tutoring?

Q36. Are the systems omniscient enough to lead the users sometimes "by the hand"?

Q37. Are the system docile or are the users sometimes in command?
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PLEASE FEEL FREE TO MAKE ANY ADDITIONAL COMMENTS

Thank you for answering this questionnaire. Now, please, come and have a chat with 

me about the two systems.

Marios Angelides
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APPENDIX C: A NOVICE’S GUIDE TO INTELLIGENT 

TUTORING SYSTEMS

C .l Leading experts’ definitions

Given below are leading experts’ definitions on what an Intelligent Tutoring System 

should be and what it should do.

Intelligent Tutoring Systems are educational devices which by incorporating Artificial 

Intelligence understand what, whom and how they are teaching and can therefore tailor 

content and method to the needs of an individual learner without being limited to a 

repertoire of prespecified responses as happens with conventional computer assisted 

instruction systems. [Dede, 1986].

Intelligent Tutoring Systems are instructional programs that use Artificial Intelligence 

techniques to incorporate well-prepared course material in lessons optimised for each 

individual student. [Clancey, 1987].

Intelligent Tutoring Systems are computer programs that use Artificial Intelligence 

techniques to help a person learn a topic. [Kearsley, 1987].

An Intelligent Tutoring System has a well-articulated curriculum that embodies units of 

domain expertise and an explicit theory of instruction represented by its tutoring strategies. 

This completeness permits an Intelligent Tutoring System to package existing expertise 

and focus on the novelty, with the use of its mechanically embodied sets of rules as a tool 

for instruction. [Lawler and Yazdani, 1987], [Yazdani and Lawler 1991].
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Intelligent Tutoring Systems are concerned with the provision of situated help via models 

which support local or "real-time" assessment of the actions of the computer user. The 

primary objective of such systems is to infer the user’s knowledge and misconceptions 

about the system by observing his actions, rather than relying on either error conditions 

or explicit requests for help. [Suchman, 1987].

Intelligent Tutoring Systems are Artificial Intelligence based Knowledge Communication 

Systems which possess the ability to cause and/or support the acquisition of one’s 

knowledge by someone else via a restricted set of communication operations. [Wenger, 

1987]

Intelligent Tutoring Systems are computer systems developed to provide the student with 

the same instructional advantage that a sophisticated human tutor can provide. A good 

human tutor understands the student and responds to the student’s special needs. 

[Anderson, 1988].

An Intelligent Tutoring System is able to analyze a wide range of student responses, 

model the student’s current knowledge state (including misconceptions), teach in a variety 

of ways, diagnose and/or determine what and when to teach, and is able to engage in 

appropriate interactive conversations. [Brecht and Jones, 1988].

Intelligent Tutoring Systems are a form of computer-based learning which incorporates 

Artificial Intelligence Techniques such as knowledge representation and natural language 

processing in order to adapt better the computer instruction to the needs and interests of 

the students. [Duchastel and Imbeau, 1988].
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Intelligent Tutoring Systems are systems that can make inferences about student 

knowledge and can interact intelligently with students based upon individual 

representations of what those students know. [Mandle and Lesgold, 1988]

An Intelligent Tutoring System is a computer-based system intended to provide effective, 

appropriate, and flexible instruction through the application of Artificial Intelligence 

techniques and Knowledge Representations. An Intelligent Tutoring System is 

distinguished from a traditional computer-based training system by its use of Artificial 

Intelligence Techniques and Knowledge Representations. [Murray, 1988].

Intelligent Tutoring Systems are computer-based learning programs in which Artificial 

Intelligence Techniques have been used to represent or reason about topic matter, students 

or teaching strategies. [Sleeman and Ward, 1988]

Intelligent Tutoring Systems are systems which can adapt their instruction based on a 

student model derived firom an analysis of the standard errors that students make. By 

running the student model on an actual student’s response it becomes possible to predict 

aspects of the student’s current state of understanding and hence to offer appropriate 

problems, remediation or exposition. [O’Shea, 1989].

Successful Intelligent Tutoring Systems are successful not because they enable a learner 

to ingest performed knowledge in some optimal way, but rather, because they provide 

initially undetermined, threadbare concepts to which, through conversation, negotiation, 

and authentic activity, a learner adds texture. Learning is much more an evolutionary, 

sense-making, experimental process of development than of simple acquisition. One must.
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therefore, attempt to use the intelligence in the learning environments to reflect and 

support the learner’s or user’s active creation or co-production, in situ, of idiosyncratic, 

highly textured models and concepts, whose texture is developed between the leamer/user 

and the activity in which the technology is embedded. [Brown, 1990].

C.2 A simple guide to the functionality and components of Intelligent Tutoring 

Systems

Intelligent Tutoring Systems are instructional software systems endowed with the 

capabilities of a human teacher working on a one-to-one basis with the student, carefully 

diagnosing what the student knows, how the student reasons, and what kinds of 

deficiencies exist in his ability to apply his knowledge. The system then uses this inferred 

knowledge of the student to determine how best to teach a subject to the student [Brown 

and Burton, 1978]. Given below are some desirable properties of a human tutor that the 

Intelligent Tutoring System should also possess [Gable and Page, 1980]:

[1]. The tutor causes the problem solving heuristics of the student to converge to those 

of the tutor.

[2]. The tutor will leam and adopt student solution methods if they are superior.

[3]. The tutor chooses appropriate examples and problems for the student.

[4]. When the student needs help, the tutor can recommend solution scheme choices 

and demonstrate how to apply techniques.

[5]. The tutor can work arbitrary examples chosen by the student.

[6]. The tutor is able to adjust to different student backgrounds.

[7]. The tutor is able to measure the student’s progress.

[8]. The tutor can review previously learned material with the student as the need
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anses.

[9]. The tutor will give immediate feedback on errors while allowing the student a free 

hand in deciding how to solve a problem.

[10]. After the student solves a problem, the tutor may point out more direct solutions 

or ones that use recently learned theorems or techniques.

Intelligent Tutoring Systems embody knowledge of what is being taught, who is to be 

taught, and how is to be taught [Nwana and Coxhead, 1988]. Intelligent Tutoring Systems 

have an explicit representation of the domain-specific knowledge and the problem solving 

knowledge of the topic, which they try to teach to the user. This enables for a comparison 

to be made between the behaviour of the user against that of the ‘expert*. They are also 

equipped with teaching expertise [Yazdani, 1988]. They also facilitate diagnosis of the 

user’s performance, competence, and learning preferences. They are capable to explore 

and understand the user strengths and weaknesses and respond to these accordingly. This 

provides for a high level of individualization. They are also equipped with the knowledge 

and ability to help the students clear away any misconceptions. All these three sources of 

knowledge will be used by the system to build a representation of the user in an effort to 

individualize teaching or training.

The Knowledge Based Systems approach is by far the most popular approach in 

developing Intelhgent Tutoring Systems. Being a Knowledge Based System, one expects 

to find some characteristics which are common to all Knowledge Based Systems 

[Duchastel and Imbeau, 1988]; a knowledge base which contains the knowledge about the 

domain being learned (i.e. the domain model), some form of natural language processing 

ability in the form of an user interface which opens up the human-computer interaction
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beyond short-answer or menu-driven interactions and finally, some kind of inference 

mechanisms to drive the reasoning process with the domain model.

In addition, an Intelligent Tutoring System builds a working model both of the student 

(i.e. the student model) in respect to the domain being learned and of the teaching process 

itself (i.e. the tutor model). The model of the student must include his knowledge about 

the domain, errors made by the student during the interaction and the student’s 

misconceptions about the domain knowledge. This helps the tutor model to adjust its 

tutoring to the level of the student. The tutor model by using a set of tutorial rules 

provides instruction to the student. Finally, the last component of an Intelligent Tutoring 

System is a bugs library which contains a list of possible, expected errors and 

misconceptions about the domain being learned. Given below is what each component of 

the Intelligent Tutoring System is expected to do in greater detail.

The Domain Model holds the domain-specific knowledge that the system will try and 

impart to the student either by direct exposition or through problem-solving. When this 

knowledge is combined with inference mechanisms, it enables the system to employ it in 

problem solving situations. The domain model is the source for material for problems that 

the system will prompt the student to go through and solve. It is also the source of 

examples, associated explanations and remedial material should the user is diagnosed to 

suffer from some kind of misconception. The domain model must be able to solve all the 

problems that has generated for the student, in several ways. The correctness of the 

student’s solutions can be evaluated by reference to the domain model’s own solutions. 

Ideally, the domain model possesses the ability to adopt its solution to students’ solution 

methods and leam from them should they be superior to its own methods of solving a
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problem.

The Student Model represents the student’s understanding of the material to be taught The 

model must be able to represent knowledge, concepts and skills which the student has 

acquired, as well as those which the student has been exposed to and for which the 

student has shown some understanding. The model must be able to represent 

misconceptions, bugs or erroneous information which the student has been seen or 

suspected to have acquired. The model must be able to represent the most suitable 

teaching strategy for the student. All this information is inferred by inference mechanisms 

from the student’s answers and the student’s problem solving behaviour with reference 

to the domain model and the bugs library. Therefore, the model represents a history of the 

student’s responses and problem solving behaviour.

The Tutor Model is responsible for providing instruction to the student. It must be able 

to vary the teaching method for different students and topics. Therefore, the tutor model 

must have access to knowledge of how to teach, knowledge of what is being taught and 

knowledge of who is being taught. The domain model provides the knowledge of what 

is being taught and the student model provides the knowledge of who is being taught and 

how is to be taught. The most commonly employed teaching strategies in a tutoring 

system are [Brecht and Jones, 1988]:

[1]. Coaching the student within a particular activity. The tutor manipulates the 

environment and the coaching so that the student acquires the correct and right set 

of skills and problem solving ability.

[2]. Questioning the student in order to encourage reasoning about current knowledge
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and in order to modify or formulate concepts. The student is offered more 

flexibility and initiative to manipulate the environment.

[3]. Providing tasks for the student and evaluating the student responses in order to 

detect the student’s misconceptions.

The tutor model must be able to intervene and provide the student with help and 

explanations when this is asked or when there is a call for them as a result of an error or 

detection of misconceptions. This is the model, as mentioned by Bumbaca [1988], that 

communicates with the student through the user interface, selects problems for the student 

to solve, monitors and criticizes the student performance, provides assistance upon request, 

selects remedial action, simply knows how to teach, knows when it is appropriate to offer 

the student a hint, how far the student should be allowed to go down the wrong path. The 

tutor has specific goals and teaching tactics and follows certain plans to meet the goals. 

The tutor may be given a flexible character profile which is adjusted depending on the 

character of the student as represented in the student model.

The Bugs Library is a library of common misconceptions and errors in the domain. These 

are the possible deviations a student can make from the domain knowledge. The student’s 

answers and the student’s problem solving behaviour are checked for correctness against 

this library.

The User Interface is responsible for the interaction between the student and the system, 

preferably in the student’s own language. The user interface is the front-end to the system 

and stands between the system and the student
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The interaction between the system and the teacher is usually necessary at least at the 

following three levels [Carbonell, 1970]:

[1]. Preparation of the domain knowledge base or database.

[2]. Setting the conditions for student/computer interaction, that is define the system 

parameters necessary to stimulate the conditions of the interaction.

[3]. Collection of results, in the form of scores, statistics, and general history of the 

student/computer interaction after it has taken place by examining the student 

models.

There is a fourth role for the human teacher: that of a supervisor in real time of the actual 

operation of a system. Instead of the typical "Sorry, I do not know", the system can ask 

the supervisor for an answer. It may be necessary in this case for the system to trace back 

and record how such a case arises and provide the supervisor with the information.
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GLOSSARY OF INTELLIGENT TUTORING SYSTEMS TERMS

Advancement. The use of an algorithm to determine whether to advance the student to 

the next curriculum topic.

Apprenticeship Teaching System. A situated learning environment in which a novice is 

given the opportunity of learning by doing with an expert providing feedback and 

motivation.

Artificial Intelligence. The study of techniques and principles for applying computers to 

issues normally reserved for human intelligence. Artificial Intelligence systems typically 

exhibit some characteristics of human intelligence (including silly errors) when learning, 

reasoning, simulating, or understanding natural language.

Authoring system. A domain-independent component of an Intelligent Tutoring System 

that allows the developer to enter specific domain knowledge into the tutor’s knowledge 

base.

Backward Chaining. A pattern matching technique that tries to prove the condition part 

of rules whose actions match the conditions of proven rules. (See Forward Chaining).

Bandwidth. The amount of the student’s activity available to the diagnostic model. The 

three categories of bandwidth in Intelligent Tutoring Systems, from low to high are: final 

states, intermediate states, and mental states.
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Black box expert system. A procedure that generates correct behaviour over a range of 

tasks in the domain, but whose mechanism is inaccessible to the Intelligent Tutoring 

System. (See glass box expert system).

Bug catalogue. A set of well-analyzed and carefully collected patterns of typical errors. 

(See also bug library).

Bug library technique. A student-expert difference model that represents misconceptions. 

It augments an expert model with a list of bugs.

Bug part library. A student-expert difference model that generates bugs from fragments 

of valid rules.

Bugs. Student misconceptions in declarative or procedural knowledge.

Case-Based Reasoning. Problem solving based on a collection of individual experiences 

rather than general rules.

Causal Stories. Causal stories, in troubleshooting context, are elaborate knowledge 

structures (and narratives drawn from those structures) that relate observable evidence and 

symptoms to causes of faults through various models and knowledge about the device in 

question.

Coach. A form of student modelling in which the Intelligent Tutoring System intervenes 

only when it is fairly sure the student is doing something wrong. The intervention is with
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graduated hints and examples.

Coarse-grained student model. A student model that does not describe cognitive 

processes at a detailed level.

Cognitive fidelity. The measure of correlation between the cognitive model and actual 

human problem solving strategy.

Cognitive model. A representation of human cognitive processes in a particular domain.

Computer Based Instruction. The use of computers in instruction and training. Generally 

this refers to instruction in which no expert system or production rules are used to order 

the sequence of information presented. It often results in linear sequences, or chains, of 

presented material. (However, see Microworlds).

Concept Hierarchy. A graph of more and less general topics or ideas.

Condition induction. A diagnostic technique used in the student model for constructing 

buggy rules for bug part libraries, a student-expert difference model. (See bug part 

library).

Constructivism. A pedagogical philosophy that views learning as constructing knowledge, 

rather than absorbing it.

Curriculum module. The component of an Intelligent Tutoring System that selects and
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orders the material to be presented to the student.

Curriculum selection techniques. Techniques that deal with selecting problems to 

exercise those areas in the curriculum where the student is weak.

Decision tree technique. A diagnostic technique used in the student model that creates 

a tree of paths. Each diagnosis corresponds to a path from the root to some leaf.

Declarative knowledge. Knowledge represented as basic principles and facts of a domain. 

It is usually portrayed as static and structural, for instance, as frames, production rules or 

semantic networks. Declarative knowledge is usually contrasted with knowing how to use 

facts, that is, procedural knowledge (although the distinction is not always useful).

Deep-level tutoring. Tutoring that can provide explanation of the internal reasoning of 

its expert module.

Demons. Rules that actively wait for their conditions to become true and fire in dynamic 

systems.

Diagnostic module. The component (a process) of an Intelligent Tutoring System that 

infers and manipulates the student model. The selection of a diagnostic algorithm is 

dependent on the bandwidth of the system.

Didactic Operation. A unit of decision in the tutoring process. It is more general than 

a didactic intervention, in that it does not necessarily correspond to actions visible to the
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student. A didactic operation has four characteristic aspects: the plan of action that enacts 

a didactic operation, the strategic context in which the operation is triggered, the decision 

base, that provides constraints and resources for the construction of the operation, and the 

target level of the student model at which the operation is aimed.

Direct manipulation interface. See first person interface.

Direct Manipulation. An interface approach that provides simulations (usually visual) 

that can be altered (visually) to produce corresponding changes in the underlying symbolic 

representation.

Divergence principle. A curriculum principle that states that there should be a broad 

representative sampling of exercises and examples in curricula for procedural tutors.

Dynamic Systems. Complex mechanisms that require swift and effective interactions, so 

that instruction and tutoring must be terse and to the point, and more lengthy instruction 

delayed to a later debriefing.

Enabling objectives. An instructional objective’s immediate prerequisite.

Environment. The component of an Intelligent Tutoring System that specifies or supports 

the activities that the student does and the methods available to accomplish those 

activities.

Explanation Based Simulations. Simulations or models whose design are predominantly
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driven by the need to provide explanations to students about device functions. Veridicality 

is subordinated to simplicity of explanations.

Expert module. The module of an Intelligent Tutoring System that provides the domain 

expertise, in other words, the knowledge that the system is trying to teach.

Expert system. A computer program that uses a knowledge base and inference procedures 

to act as an expert in a specific domain. It is able to reach conclusions very similar to 

those reached by a human expert.

Expository tutor. A tutor that is concerned with declarative knowledge. Usually 

interactive dialogue is the instructional tool used in this type of tutor.

External evaluation. Evaluation of an Intelligent Tutoring System that focuses on the 

impact of the Intelligent Tutoring System on students’ knowledge and problem solving.

External-international task mapping problem. A problem in the human-computer 

interaction component of an Intelligent Tutoring System. It is a gap between what the user 

wants, the goal of the interaction, and the actions the user must make to achieve the goal.

Fault Diagnosis. A problem-solving technique used to uncover the source of system 

malfunction.

Felicity conditions. Principles of instruction that facilitate ease of learning, such as 

presenting only one new step in a procedure per lesson.
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Fidelity. A measure of how closely the simulated environment in an Intelligent Tutoring 

System matches the real world. There are four kinds of fidelity: physical, display, 

mechanistic, and conceptual.

Fine-grained student model. A student model that describes cognitive processes at a high 

level detail.

First-person interface. A type of user interface where the actions and objects relevant 

to the task and domain map directly to actions and objects in the interface. With this 

interface the user has a feeling of working directly with the domain. An example of this 

type of interface is the icon.

Flat procedural knowledge. Procedural knowledge that is not organized by subgoals, in 

other words, an undifferentiated set of production rules.

Forward Chaining. A pattern matching technique that tries to prove the condition part 

of rules whose actions are then used to prove other rules. (See Backward Chaining),

Generate and test A diagnostic technique used in the student model that generates bug 

combinations (sets of bugs) dynamically and tests these for validity against student 

performance.

Glass-box expert systems. An expert system that contains human-like representation of 

knowledge. This type of expert system is more amenable to tutoring than a black box 

expert system because it can explain its reasoning.
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Goal-factored production system. A rule-based system that makes explicit references to 

goals in the conditional part of its rules.

Graduated Models. Qualitative models whose power and extension grow in some sort 

of correspondence with the capabilities of students using them.

Grain-size of diagnosis. The level of detail used by the diagnostic technique for 

processing student models. Closely related to bandwidth.

Heuristics. Rules of thumb that are practical and often work, but are not based on a 

principled, theoretical understanding and therefore are not guaranteed to work.

Hierarchical procedural knowledge. Procedural knowledge with subgoals.

Hypertext. A text-based system that goes beyond text to include graphics, video, and 

sound (hypermedia) as well as links, crossreferences, and hierarchical structures. It is 

interactive so that one word can be expanded on command into other media (hypermedia). 

The term was coined by Ted Nelson.

Increasingly Complex Microworld framework. A pedagogical technique of exposing 

the student to a sequence of increasingly complex microworlds that provide intermediate 

experiences such that within each microworld the student can see a challenging but 

attainable goal.

Individualization. A curriculum principle that states that exercises and examples should
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be chosen to fit the pattern of skills and weaknesses that characterize the student at the 

time of exercise or example is chosen.

Instruction. Actual presentation of curriculum material to the student.

Instructional Amplifier. A computer used to enlarge the scope and powers to teachers 

for instmction, that lets teachers personalize instruction more than they now can.

Instructional Design. A process of organizing knowledge and selecting frameworks for 

effective instruction.

Instructional Environment. See environment.

Instructional Strategy. A general approach toward teaching or training, including 

objectives, plans and teaching style.

Instructional Systems Design. A systems engineering approach to the analysis, design, 

development, delivery, and evaluation of instruction.

Intelligent Computer Assisted Instruction. Synonym for Intelligent Tutoring System.

Intelligent Tutoring System. A computer program that (a) is capable of competent 

solving in a domain, (b) can infer a learner’s approximation of competence, and (c) is able 

to reduce the difference between its competence and the student’s through application of 

various tutoring strategies. It tries to individualize instruction by creating a computer-
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based learning environment that acts as a good teacher, correcting mistakes, offering 

advice, suggesting new topics, and sharing curriculum control. It should have the ability 

to analyze student responses, develop a history of the learner’s preferences and skills, and 

tailor the material to suit the trainee. Some important subtopics for Intelligent Tutoring 

System are knowledge representation, simulation, natural language, expert systems, and 

induction.

Intelligent Tutoring System Architectures. A systematic approach to structuring the 

many components that comprise an effective, working Intelligent Tutoring System. 

Usually these consist of a student model, an organized domain of knowledge, instructional 

principles, and a tutorial interface.

Interactive diagnosis. A diagnostic technique used in the student model that does not use 

a fixed list of text items.

Internal evaluation. Evaluation of an Intelligent Tutoring System that focuses on the 

relationship between the architecture of the system and its actual behaviour.

Issue-oriented methodology. A methodology for building an Intelligent Tutoring System 

that relies on access to intermediate states of cognitive processing. These intermediate 

states are used to identify instructionally useful issues characteristic of differences between 

expert and student performance.

Issue-oriented recognizes. Methods that note in student behaviour the presence or 

absence of issues or characteristic traits of expert performance.
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Issue-oriented tutoring. A type of tutoring that bases instruction on patterns of 

differences in the intermediate cognitive processes underlying student and expert 

behaviour.

Issue tracing. A diagnostic technique used to construct a student model. A variant of 

model tracing that relies on access to intermediate states of student performance rather 

than on access to a highly detailed cognitive process model.

Knowledge Base. Codified knowledge (usually represented on a computer) of a domain 

or subject matter.

Knowledge Acquisition. The fundamental bottleneck in instructional design for informal 

systems: How does one acquire and organize the subject matter or knowledge base?

Knowledge level analysis. An internal evaluation method; it attempts to characterize the 

knowledge in the Intelligent Tutoring System and thus answers the question: What does 

the Intelligent Tutoring System know?

Knowledge Representation. Computer-based techniques for storing and retrieving 

knowledge organized according to specific principles. Prominent techniques include 

frames, semantic networks, and object oriented techniques.

Link. An arc that joins nodes in a graph.

Manageability. A curriculum principle that states that every exercise should be workable
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and every example should be comprehensible to students who have completed previous 

parts of the curriculum. Manageability applies to procedural tutors.

Matching principle. A curriculum principle that states that both positive and negative 

instances of concepts, procedures, or principles should be presented.

Mental Model. A popular theoretical construct for a knowledge representation form that 

supposes that people simulate their environments with models of the world that they are 

able to run in their minds. These executable mental models can be used to predict the 

outcomes of thought experiments using novel conditions. Mental models can also be used 

to trace the causal connections of events and devices in the world.

Microworlds. Computer-based learning environments in which trainees are free to explore 

and discover the limits of their own understanding. The computer provides little direction 

or guidance, but it does narrow and constrain the topics for search to those that are valid 

within the current world. The environments can also raise sharply focused contrasts 

between alternative hypotheses about the world to facilitate insight and discovery.

Misconception. An item of knowledge that the student has and the expert does not have. 

A type of student-expert difference. A bug.

Missing conception. An item of knowledge that the expert has and the student does not 

have. A type of student-expert difference. See overlay model.

Mixed Initiative Dialogue. An Intelligent Tutoring System environment that accepts and
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responds in natural language to both solicited and unsolicited natural language input from 

the student.

Model-tracing. A diagnostic technique used to build a student model, it uses the student’s 

surface behaviour to infer the sequences of rules fired in a rule-based model of 

performance; that is, the student’s actions traced a path through the rule base.

Node. An entry in a graph that is usually labelled and boxed. Often it is a concept or a 

relation of some sort

Novices. Students or trainees learning a knowledge domain.

Overlay model. A student-expert difference model that represents missing conceptions, 

usually implemented as either an expert model annotated for those items that are missing 

or an expert model with weights assigned to each element in the expert knowledge base.

Path finding. A diagnostic technique used to find a path from one state to the next, which 

is a chain of rule applications. This is a way of representing the student’s mental state 

sequence. The path is given to the model tracer.

Plan recognition. A diagnostic technique used in student models that represent 

hierarchical procedural knowledge. It is similar to path finding in that it is a front end to 

model tracing.

Predicate. A relation defined for a set of concepts. For instance, for "If an apple is red".
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an appropriate predicate that links "apple" and "red" could be called "colour".

Procedural Knowledge. A form of knowledge representation distinct from Declarative 

knowledge (although the distinction is not always useful) in which the knowledge is 

portrayed as active and functional, for instance, functions, objects, demons, and 

algorithms. Sometimes production systems are viewed as a procedural form of knowledge 

to distinguish them from the organized declarative stmctures of semantic networks. 

Procedural knowledge is usually domain-dependent knowledge about how to perform a 

specific task.

Procedural tutor. A type of tutor that teaches procedural knowledge, like skills and 

procedures. Usually exercises and examples are used by procedure tutors.

Process model. A model that reveals the mechanism behind behaviour.

Production rule. A rule of the form condition(s) imply action(s), used in model cognitive 

behaviour. A set of production rules and an interpreter for processing them is termed a 

production system.

Program process analysis. An internal evaluation method; it attempts to answer the 

question: How does the Intelligent Tutoring System do what it does?

Propaedeutics. Knowledge that is needed for learning but not for proficient performance.

Qualitative Approximation. Qualitative approximation is a term designated by T.
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Govindaraj to refer to the use of difference equation modelling techniques and other good 

engineering practices to create efficient working models of devices as simulation 

components of Intelligent Training Systems.

Qualitative Models. A computer-based simulation composed of ordinal or even nominal 

metrics, such as "good" and "better", rather than higher-order mathematical models.

Qualitative process model. A type of cognitive model, concerned with reasoning about 

the causal structure of the world; the simulation of dynamic processes in the mind. It is 

an important facet of troubleshooting behaviour.

Reify. To make concrete and experiential. Within the context of Intelligent Tutoring 

System, to make something inspectable and interactive.

Repair theory. A generative theory of bugs; a method of deriving bug libraries directly 

from correct procedures, reducing the need to collect bugs through empirical observation.

Rule-based model. An expert module of an Intelligent Tutoring System that is 

implemented with a rule-based (production) systems. (Also called a "production model.")

Second-person interface. A type of user interface where the user gives commands to a 

second party. Examples of this type of interface are command languages, menus, and 

(limited) natural language interfaces.

Semantic Networks. A graph structure that links concepts with conventional links such
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as "part-of"isa", "instance", "super", "class", etc. Often seen as a Declarative form of 

knowledge. (See Concept Hierarchy).

Situated Learning. The context or situation of much expert activity directly supports 

(learning) the skills the expert has. These skills are otherwise rarely invoked. The result 

is that learning by doing is cued and accelerated by the environment.

Step theory. A theory that states that curriculum should be divided into discrete lessons, 

each of which adds a single decision point or step in the procedure to be learned. (See 

felicity conditions).

Structural transparency. A curriculum principle that states that the sequence of exercise 

and examples should reflect the structure of the procedure being taught and should thereby 

help the student induce the target procedure.

Student-expert difference. The difference between the expert’s knowledge and the 

student’s knowledge. There are two basic types of student-expert difference; missing 

conceptions and misconceptions. The three models used to represent student-expert 

differences are: overlay model, bug library technique, and library of bug parts.

Student model. The component (a data structure) of an Intelligent Tutoring System that 

represents the student’s current state of knowledge (mastery) of the domain. This is a 

detailed model of student cognition. Various student modelling systems have been 

proposed: bug catalogs, overlay models, issue oriented models, coaching systems, and 

psychometric systems.
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Subject Matter Experts. Subject Matter Experts are knowledgeable in a domain and 

possess a fragmented, self-imposed organization of things that has considerable pragmatic 

value in dealing with everyday problems.

Surface-level tutoring. Tutoring that can be implemented with issue-oriented recognisers. 

Access to the internal reasoning of the expert module is not available.

Target knowledge type. The type of knowledge that is represented in the expert and 

student model modules. Knowledge representation can be categorized into three types: 

procedural (both flat and hierarchical), declarative, and qualitative process model.

Technical Manuals. Written descriptions of complex systems, outlining system operation 

and troubleshooting.

Temporal Fidelity. The degree of veridicality with which the propagation of effects of 

a change (including failures) in a simulation over time approximates the temporal 

sequence of changes in the real system.

Tutorial domain analysis. An internal evaluation method for iteratively adding and 

subtracting requirements of the Intelligent Tutoring System design.

User Interface Management System. A strategy that attempts to separate the interface 

component of an application program from the computational part.

Web teaching. A curriculum approach where selection of materials is guided by two
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principles: relatedness (priority is given to concepts that are closely related to existing 

knowledge), and generality (discuss generalities before specifics). Web teaching applies 

to expository tutors.

Wizard-of-Oz system. Semiautomated tutors where a human tutor replaces some or all 

of the instructional functions of an automated tutor. Used in research and development of 

Intelligent Tutoring Systems.
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