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ABSTRACT

This thesis investigates the potential of computer graphics in providing for a 

graphics driven specification system that gives sufficient structure and content to form 

the simulation model itself. The nature of discrete event simulation modelling, the 

diagramming method of activity cycle diagrams which underpinned this research, the 

three phase simulation model structure, and the trend of visual simulation modelling are 

discussed as the basis for the research. Some current existing simulation languages and 

packages are reviewed, which gives insight into the essential features of an ideal 

computer simulation environment.

The basic research method adopted was to build systems that exemplified the 

state of thinking at the time. The purpose of this method was to enable ideas to be 

developed, discarded and enhanced, and for new ideas to emerge. The research has 

undergone a series of application developments on the Apple Macintosh to examine the 

advantages and limitations of such systems.

The first system developed during the research, MacACD, provides the basis 

for proposals concerning the enhancement of the A CD diagramming method in a 

computer-aided environment. However, MacACD demonstrated the limitations of an 

ACD interface and the need for a more flexible specification system. HyperSim, a 

simulation system developed using HyperCard, has all the power of interconnectivity 

demonstrated as a need by MacACD, but has severe limitations both in terms of 

security of system development, and an inability to provide a running model directly 

due to lack of speed. However, the power of an icon-based interconnected textual and 

diagrammatic based system were demonstrated by the construction of this system 

during this research, and led to the development of the final system described in this 

thesis : MacGraSE. The development of this system during this research incorporates 

many innovations. The main input device is a picture representing the problem, 

including a background display. This system allows for dynamic icon based visual 

model running, as well as code generation for complete model embellishments, 

interactive report writing, and representational graphics outputs.
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CHAPTER 1

INTRODUCTION

" Simulation is a two-edged sword. It can cut both ways. In the wrong hands 

it can do great damage. How can we assure that it is used only for good ? "

The Society for Computer Simulation Journal

Simulation is a broad subject. In this research, we are only concerned with 

dynamic systems, i.e. those that change with time. And the type of simulation we are 

interested in is discrete-event simulation modelling (Adelsberger et. al. 87, Pidd 84, 

Pidd 88). A model based on a discrete system changes at specific points in time and is 

only concerned with state changes at these events. Discrete systems are the opposite of 

continuous systems. The latter systems are usually represented by differential equations 

or some equivalent approximation, and consequently they have an entirely different 

mode of solution.

Simulation is becoming more and more widely used in the area of operational 

research and will continue to be one of the most useful techniques for helping analysts 

and users understand their system better and to make decisions for improving their 

system. Here is an abstract of a simulation article by McLeod (88) :

On 11 April 1970, Apollo 13 was launched. At first the mission went flawlessly.

Injection into moon orbit took place as planned. Then, on the evening of the third 

day, there was a loud "bang." Working with a prefiight simulation, the NASA 

ground crew not only diagnosed the problem as an explosion of one of two oxygen 

storage tanks in the service module, but devised and transmitted to the flight crew 

instructions as to how to cope with the situation and make a safe return and 

landing on the earth !
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Simulation can be defined as the use of models as surrogates for the study of 

existing or hypothesized systems. It is the process of building up an artificial model 

which resembles the real world system. This model is then used to perform 

experiments to find out the relationships between the different factors of production and 

the system output. For example, a simulation model can be built for a steelworks to 

investigate the number of each type of resource which is required to increase the 

throughput of the system.

This is an introductory chapter to the thesis. The nature of computer 

simulation modelling and the process of simulation are discussed in section 1.1. Much 

of this research is focused on a diagramming technique called Activity Cycle Diagrams. 

Its methodology is discussed in section 1.2. In section 1.3, we look at different 

approaches to modelling structure, with a detailed description of the three phase method 

in particular, and explain why we have chosen this method in our research. Visual 

interactive simulation modelling (an essential component of this research) is discussed 

in section 1.4. The research objectives and the outline of this thesis are given in 

sections 1.5 and 1.6 respectively.

1.1. SIMULATION MODELLING

Simulation modelling is a powerful method for modelling problems, and one 

which would be more widely used if it were cheaper and easier to use (Baimer & Paul 

86). Simulation is a powerful tool for understanding, which is a prerequisite for 

solving any kind of problem, and a catalyst by which new policy rules have been 

articulated. Understanding is often necessary in order to know what the problem is.

There are many ways to build up a simulation model. Since a popular tool for 

studying dynamic systems is by using computer models, we are only concerned with 

computer simulation modelling (section 1.1.1) in this research. The general process of

Chapter 1. Introduction 2



simulation is discussed in section 1.1.2 and a more detailed life cycle of a simulation

study is described in section 1.1.3.

1.1.1. Computer Simulation Modelling

Computer Simulation involves the careful planning of a model of a real world 

environment or system of interest, for example, a steelworks (Paul & Baimer 89) or a 

port (El Sheikh 87). A computer is used as a vehicle to develop an artificial or 

hypothetical model which imitates the system's behaviour when subject to a variety of 

operating policies. The computerized model incorporates as much detail as necessary so 

as to provide a realistic representation of the real world system. This model also allows 

the user to perform a variety of experiments, say, by changing certain conditions in the 

system, or by using different combinations of resources, or by applying different 

operating policies. In general, the computerized model acts as a vehicle for 

experimentation, often in a trial and error way, to demonstrate the likely effects of 

various conditions and policies. The results of the analysis may then be used to provide 

assistance for management decisions. The nature of simulation modelling is further 

discussed in Paul & Baimer (89), Pidd (84, 88), and Szymankiewicz et. al. (88).

Digital computers are now fast enough to simulate most real systems in real 

time, and computational results can be made accurate to any desired degree. Modem 

digital computers and software are excellent for handling communications with the 

modeller, with the customer, and with other digital systems, local or remote. Icons can 

be pictured on the screen of a digital work-station and moved with a pointing device 

across the screen to construct a pictorial representation of the simulation model. Then 

the computer will program itself to simulate the real world system. To communicate 

with the customer who wants to study the operation of a system, a diagram of a job- 

shop, a traffic intersection, or other kind of system can be dynamically displayed to 

show what is going on with the simulation picture in real time or faster, or slower.

Chapter 1. Introduction 3



1.1.2. The Process of Computer Simulation

The process of computer simulation modelling includes at least three phases : 

Modelling, Programming and Experimentation (Paul & Baimer 89, Pidd 88). Figure

1.1 presents the general simulation process.

Figure 1.1. The Process of Simulation
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The Modelling Phase

This phase can be subdivided into two stages - building up an informal model 

and building up a formal model.

An informal model formulation requires the analyst to discuss with the 

customer and the system experts the different aspects of the system, and to examine
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written accounts of historic or proposed system operation. It is important that the 

analyst should understand how the real world system operates and the requirements of 

the model. Statistical analysis of numerical data on the system and some further 

investigation of the system may be involved.

A formal model is the use of a standard notation and a set of rules by the 

analyst to depict the problem logic in a systematic way. The formulation of the problem 

and the definition of the model logic can be specified by means of flow charts, an 

Activity Cycle Diagram (Paul & Baimer 89, Pidd 88), an Activity Diagram (Davies & 

O'Keefe 89) or using special symbols as in GPSS (Shriber 74). In this research, we 

are mainly concerned with activity cycle diagrams, which are further discussed in 

section 1.2. Attempts have been made to use expert systems in the simulation 

formulation process (Doukidis 85, Doukidis & Paul 86).

The Programming Phase

The formal model is used as the backbone for a simulation program to be 

developed. This phase is sometimes accelerated by the use of generic software systems, 

for example PROPHET (Manufacturing Management Ltd.) or HOCUS 

(Szymankiewicz et. al. 88), which takes data defining the user's particular problem as 

the basis for running the model. Code generators can also be used in this phase (Chew 

86, Paul & Chew 87). After verification and validation tests (Baimer 85a) on the 

computerized model, the operational simulation model is ready for the next phase.

The Experimentation Phase

In this phase, experiments are carried out to discover, reinforce or quantity 

appropriate management action, subject to the needs of the system users. The output
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can be used to determine correctness of the model logic, and of the computer program. 

Representational graphics, for example, histograms and time series charts, are often 

produced to emulate the simulation model output dynamically. Careful planning of 

experimental design is required in this phase (Balmer 86, Baimer 87b).

The simulation process described is applicable to systems where the problem 

and the model logic can be easily identified. Recent research and practice in simulation 

modelling suggests that as the complexity of the model increases, more steps have to be 

taken and the above process seems to be too simple and "one-way". Simulation is an on 

going process. Real world systems always involve the participation of different groups 

of interests. Since the problem is user-defined, the end product is very much a 

compromise for these groups. Poor communications and different opinions between 

different groups often makes the definition process more complicated. This fact is 

further emphasised in Paul (88c). A more detailed simulation study is discussed in the 

next section.

1.1.3. A Detailed Life Cycle of a Simulation Study

Simulation is often regarded as a decision-aiding tool. A less established role 

that today's simulation modelling plays is its power in helping the customer and the 

analyst understand the problem and the system more thoroughly. It also helps to 

narrow the communication gap between different parties of interest who are involved in 

the system since they are given a chance to understand what other components of the 

system do. Because of the complexity of the definition stage, a flexible specification 

system is necessary for allowing efficient updating of data and logic in the model. The 

aim of our research is to design and implement such a flexible system. A diagram of the 

life cycle of a simulation study which originated from Balci (86) is shown in figure 1.2.
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Figure 1.2, The Life Cycle of a Simulation Study (Balci 86)
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For large and complex systems, it is often the case that an agreement on the 

specification of the model must be obtained from different groups of interests that are 

involved in the real world system. New information about the model logic may be 

explored. Existing information may be found to be incorrect during the definition 

process or the actual building up of the computer model. Hence, an immediate path 

between the specification model and the computer model is desirable for an efficient 

simulation system. Constant redefinition of the model can be vital to the analyst and the 

customer.
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1.2, ACllVITY CYCLE DIAGRAMS

Activity Cycle Diagrams (ACDs) are presented here, as they are an important 

component of this research. ACDs are a popular diagramming technique used in 

specifying a simulation model. An ACD provides the means of describing the logic of a 

simulation model. The methodology of ACDs is given in section 1.2.1 with examples 

of the pub model, the launderette, the steelworks model and the port model described in 

sections 1.2.2 to 1.2.5 respectively. The advantages and the disadvantages of the ACD 

method are discussed in section 1.2.6.

1.2.1. The ACD Methodology

A formal representation of a simulation model can be specified by an ACD, 

which is a means of describing the logic of a simulation model. It is a way of modelling 

the interactions of system objects and is particularly useful for systems with a strong 

queuing structure. The graphics represent the model in terms of the life cycles of the 

entities or objects it comprises. ACDs consist of activities (rectangles), queues (circles) 

and life cycles of entities (using arrows). A summary of the symbols used in an ACD is 

shown in figure 1.3. More extensive descriptions of ACDs are given in Pidd (88) and 

Szymankiewicz et. al. (88).

Figure 1.3. Summary o f the symbols used in an ACD
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1.2.2. The Pub Example

A pub comprises the following entities : customers, glasses, barmaids and a 

door. A customer enters the pub through the door (activity 'Arrive') and waits for a 

barmaid to pour a drink for him with a clean glass (activity 'Pour'). After he finishes 

his drink (activity 'Drink'), he either leaves the pub or waits for another drink to be 

served, depending on his desire for drinks. This desire for drink (need) is an attribute 

belonging to the customer. The barmaid either serves a customer with a clean glass 

(activity 'Pour') or cleans a dirty glass (activity 'Wash'). The way the entities behave in 

the pub is shown by the ACD in figure 1.4. From this logic model, plus the duration of 

each activity, a program can be constructed and run to simulate the behaviour of the pub 

over time. Parameters such as the number of entities may be varied. The behaviour and 

output of the model can then be compared to find, say, the maximum number of 

barmaids needed to maximize throughput.

Figure 1,4. Activity Cycle Diagram o f the Pub
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1.2.3. The Launderette Example

The launderette comprises of the following entities : customers, washing 

machines, driers and baskets. After the customer arrives in the launderette (activity 

'Arrive'), he starts washing the clothes when there is a washing machine available 

(activity 'LoadWash'). After washing, the customer unloads the machines contents into 

a basket (activity 'UnloadWash'). He then transports the basket to the drier (activity 

'Transport') and waits to load the clothes into the drier (activity 'LoadDrier'). The 

customer must wait for the drier to do its job (activity 'Dry') and then leave the 

launderette. A typical objective of the simulation is to measure the average time the 

customer spends in the launderette. Figure 1.5 shows the ACD of the launderette.

Figure 7.5. Activity Cycle Diagram o f the Launderette
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1.2.4. The Steelworks Example

The steelworks comprises the following entities : blast furnaces, torpedoes, 

cranes, steel furnaces and a pit. The steelworks commences with the blast furnace 

producing molten iron (activity ’Melt'). A 'cast' is the amount of molten iron it 

produces and is sampled from a normal distribution. The blast furnace then empties its 

cast into the minimum number of torpedoes required (activity ’Blow ). Each torpedo 

can hold up to 300 tonnes of molten iron. If the number of torpedoes cannot 

accommodate the full amount of cast produced during activity ’Blow’, the remainder is 

considered as ’waste’. This waste is accumulated during the modelling process and its 

minimisation provides an objective for the analyst. After activity ’Blow’, the blast 

furnace begins activity ’Melt’. All torpedoes containing molten iron, including partially 

full torpedoes, then proceed to the queue ’pitq’. It takes 4 minutes for a return journey 

(activity ’Return’). When a torpedo is in the queue ’pitq’, a gantry crane’s ladle may be 

filled from one torpedo at a time (activity ’Fill'). The crane can hold up to 100 tonnes of 

molten iron. If the contents of a torpedo (’tcast’) are not emptied after filling, then the 

torpedo returns to the front of the queue ’pitq’ and waits for another fill. The torpedoes 

then start their return journey (activity ’Return’). After 100 tonnes of molten iron have 

been loaded into the crane, it proceeds to the queue ’cready’ and when a steel furnace is 

available, it transfers its load (’ccast’) into the steel furnace (activity ’Loadin’). 'Travel' 

is the activity when the crane travels back to the pit. The ACD of the steelworks is 

shown in figure 1.6.
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Figure 1.6. Activity Cycle Diagram o f the Steelworks 
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1.2,5. The Port Example

The port (El. Sheikh et. ai. 87) is comprised of the following entities : ships 

and berths. The port considered has a total length of ship-berth space which can 

accommodate between 20-25 ships at any one time, depending on the ships' lengths. 

Part of this berth space is dedicated to a number of single categories of cargo such as 

coal, iron ore, etc. In addition to general cargo ships, there were five other clearly 

identifiable categories of ships that loaded at the port, and 21 categories o f ships that 

discharged at the port. The arrival-time and service-time patterns for the various ship 

categories are different and the ships are clearly restricted to one or two berths owing to 

their cargo. Many ships categories can only use a subset of the berths. Within this 

subset of berths, some ship categories may have preferences for some berths over 

others if there is a choice. The ACD of the port is shown in figure 1.7. The objective of 

the simulation is to estimate the number of berths required in the short and medium 

term, and to examine the impact of proposed handling improvements.

Figure 1.7. Activity Cycle Diagram o f the Port
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1.2.6. Advantages and Disadvantages of ACDs

The main advantage of ACDs lies in its simple structure which allows the 

analyst to depict the model logic of the system of interest. The technique can be easily 

understood by the user of the system. In the pub and the launderette examples, the 

ACD is an ideal tool to show all the model details.

However, it can be seen from the above examples that the ACD is not capable 

of handling all the model details in a structured way. In the steelworks example, the 

ACD cannot depict the conditional assignments of attribute values. As a model's 

complexity increases, the ACD becomes more hmited in providing a full description. In 

the port example, the ACD cannot show the matching of ships and berths in the activity 

'Service'. The inadequacy of the ACD method has led us to investigate other 

diagramming techniques which can be used to specify the model. Chapter 3 of this 

thesis summarizes this investigation and suggests the use of a computer-aided ACD so 

as to increase the depth of model specification that an ACD can achieve.

1.3. SIMULATION MODELLING STRUCTURE

There are three major approaches to simulation modelhng stmcture (Paul 89a, 

Pidd 88) - the process flow method, event-based method and the three phase method. 

The following sections contain a brief description of the process flow method and the 

event-based method. The three phase method is described in detail since it is the 

modelling stmcture that has been adopted for this research.

1.3.1. The Process Flow Method

This method has characteristics that are similar to object oriented
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programming. The program code emulates the flow of an object through the system. 

This flow describes in sequence all the states the object can be in the system. Each of 

the processes in the system is programmed as a separate and independent routine in 

program code and the processes communicate through an executive which controls their 

execution. The process structure of SIMULA (Birtwhistle 79) was the original 

implementation. Later versions of SIMSCRIPT (CACI 83) also have this 'Process' 

feature.

The main advantage of the process flow method is its simple structure so that 

a non-technical user can easily understand it. However, it requires careful thinking by 

the analyst about the model structure so as to get the interrupts and delays correctly 

registered. Model amendments also tend to affect all parts of the system, which tends to 

make such amendments slow and expensive.

1.3.2. The Event-based Method

This method is more widely used in the U.S.A. than in the U.K. Time is 

advanced to when something next happens and activities are examined to see if any can 

now start as a consequence. Mathewson (89a) describes the procedure as to : 'Identify 

the next event and complete all changes that are dependent on that event. Review the 

subset of activities who use resources released by that event, and where possible 

schedule future events using the newly available resources.'.

Computer efficiency (in terms of CPU time) is the main advantage of this 

method. However, a problem occurs when several events end at the same time. This 

method allocates the resources that are released by each event in turn before one knows 

what other resources are going to be released by the other events that occur at that time. 

Moreover, complications occur in the model structure when there is some priority in 

allocation of resources within the system. As for the process flow method, model
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amendments tend to affect all parts of the system.

1.3.3. The Three Phase Method

The first phase is time advance. Time is advanced until there is a state change 

in the system or until something next happens. At this time the system is examined to 

find out all the events that take place at this time. Hence, the second phase is to release 

those resources scheduled to end their activities at this time. Only when all resources 

that are due to be released at this time have been released, is the reallocation of these 

resources into new activities started in the third phase of the simulation, i.e. to start 

activities given the global picture about the resource availability. A three phase 

executive is shown in figure 1.8.

The three phase approach is the most commonly used in Britain. This method 

is further discussed in Crookes et. al. (87), Paul (89a), Pidd (84), and Pidd (88). The 

advantage of this method is that it gives maximum control of the model, the 

experimental tool for simulation, to the analyst. Decisions as to priority over resource 

allocations are more readily made within this structure. Moreover, it offers a well- 

defined and transparent program structure, and is particularly robust to changing 

specifications. These advantages of the three phase method are the reasons that we have 

adopted this method in our research instead of the other two methods. On the other 

hand, the disadvantage of this method is that in computing terms it can be slightly 

inefficient to run. Every time there is a time advance, resources are released and then 

one searches through all possible activity starts. However, with recent technology, this 

problem can be overcome by using more advanced computer hardware. Software 

solutions have also been proposed (Spinelli de Carvahlo & Crookes 76). The accuracy 

of the modelling structure is more important in the building of a good simulation model.

In this research, we are using a three-phase structure simulation library called 
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MacSim.Lib (see Appendix B), written in Turbo Pascal on the Apple Macintosh. A 

three phase skeleton simulation program and the program listings of the three example 

models discussed in sections 1.2.2 to 1.2.4 are shown in Appendix A of this thesis.

Figure 1.8. A Three Phase Executive
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1.4. VISUAL INTERACTIVE SIMULATION

Visual Interactive Simulation (VIS) is an important area of this research. It is 

an increasingly popular method of problem solving. The recent, and increasing, use of 

computer graphics is having a significant impact on simulation modelling. Animated 

computer graphics is commonly an integral part of a simulation project. The nature, the 

use and the future of VIS are discussed in sections 1.4.1, 1.4.2 and 1.4.3 respectively.
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1.4.1. The Nature of VIS

Different methodologies on the use of simulation graphics have emerged from 

North America and the UK. Visual Interactive Simulation (VIS), discussed by Hurrion 

& Seeker (78) is the method that has become common practice within the UK. VIS 

refers to the use of graphics to animate a model as it is running and at the same time 

allows the user to interact during the execution of the model. The advantage of this 

technique is apparent during the initial stages of a project when both the client and the 

analyst are searching for a suitable simulation model to represent the original problem.

There are a wide variety of graphical symbolisms, movement representations 

and screen layouts available. Bell (86) described two types of modelling using graphics 

- representational and iconic graphics. Representational graphics are used to summarise 

and display data from a mathematical model or component (e.g. histograms, charts, 

time series). Iconic graphics, which are the main interest of this research, are used to 

describe the modelled system using pictures. The display is intended to represent the 

modelled system.

Hurrion (89) further identified two types of iconic graphics animation used 

for discrete event simulation - character graphics and high resolution bit-mapped 

graphics. The former refers to the use of keyboard characters to represent model objects 

where the repeated drawing and erasing of text at slightly different locations will give 

the impression of elements moving. With bit-mapped graphics, the display screen is 

made up of pixels (a Macintosh screen is made up of 175,104 pixels, 512 across and 

342 down) in which each pixel can be displayed by one colour, depending on the 

colour configuration of the hardware system. The cost of using bit-mapped graphics is 

sometimes higher than that of character graphics in terms of programming time and 

hardware specification. However, a more sophisticated animation picture can be 

obtained by using high-resolution bit-mapped graphics.
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1.4.2. The Use of VIS

Visual interactive simulation is like a voyage of discovery (Fiddy et. al. 81). 

The client has his own perception of the target system. The analyst, who is employed to 

build a formal model will establish his own perceptions of the problem via interviews 

and observations. The VIS model thus acts as an interpreter between these different 

cultures. The major contribution that interactive graphics has is the ability to improve 

the communications and language barriers which exist between different management 

and professional staff for an application, so that both have an improved understanding 

of the problem.

Paul (89b) emphasised that : "The advantage of visual simulation is further 

enhanced if the systems used are flexible and fast, so that rapid visual prototyping in 

collaboration with the customer becomes a possibility. Although visual modelling is a 

powerful complement to an analyst’s problem solving capabilities, it has new problems 

to overcome as well. The problems of visual simulation includes the fact that vision is 

interpreted by the brain which does not remember all the visual detail. Moreover, the 

customer is required to understand the simulation in order to understand what the visual 

simulation represents. Also, visual simulation is time consuming and it is impossible to 

test all model interactions visually for a complex model. The most important potential 

benefit of visual simulation is the increasing ability to help a decision maker by working 

together in a collaborative effort."

Visual simulation should not be misused or overused. For large and complex 

models, a simulation picture running on the screen might cause misunderstandings 

unless the monitor is large and clear. It might mean absolutely nothing to the user 

unless he understands what the picture represents. Visual simulation is a very useful 

tool to help the customer understand the system if explained properly. It is also a 

convincing tool to show that the model is working correctly according to the final user- 

defined specification. Once the customer is convinced that the computer model satisfies
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his needs, his interest will switch from an impressive running picture on the screen to 

the results that are produced from performing experiments on the model. Therefore, 

any system that provides the user with visual simulation should also allow the user to 

switch off this option and choose to extract only results from the simulation run since 

running a picture on the screen is time consuming.

1.4.3. The Future of VIS

Hurrion (89) pointed out that the main difficulty of the method is the fact that 

an interactive simulation model will be used by an experienced manager but there is no 

method within the current visual interactive framework by which this expertise can be 

retained by the model for future use. The addition of an expert interactive component to 

a VIS model hence forms the next generation of visual interactive model. This is further 

described by Flitman and Hurrion (87), and Taylor and Hurrion (88).

Visual interactive simulation modelling will continue its role of improving 

communications between the analyst and the user, if used properly. With the advent of 

powerful personal computers and the decline of the price of computer hardware, it is 

now cost-effective to use graphics in the form of an animated display to show the 

dynamics of a simulation model. The trend of having better graphical displays at a 

lower cost will undoubtedly be continued.

1.5. RESEARCH OBJECTIVES

The main objective of this research is to investigate the role of computer 

graphics in simulation modelling, especially in the specification stage; and to design and 

implement an ideal graphics based simulation system.

Consider the case where a client (with limited experience in simulation
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modelling techniques) who has her own perception of the target system, is employing 

an analyst to build a simulation model for aiding her decision-making process. Through 

interviews and observations, the analyst will translate the client's verbal description of 

the model into a structural form, very often in terms of a diagramming technique in 

which the analyst is familiar with. This is shown in figure 1.9.

Figure 1.9. Between Client and Analyst

The heart of this research is to design and implement a visual interactive 

simulation system which will encourage the client and analyst to build up a model in a 

collaborate effort. The concept is to allow the user to define their problem by drawing a 

picture and to be able to run this picture directly on the screen. The pictorial 

specification of the model will allow the user to reconstruct the model logic constantly 

throughout the modelling process. The client and analyst can test run the model, 

repeatedly change the model specification and test run again until the final formal model 

is obtained. Once they are happy with the model, they can then switch off the option of 

a visual run and choose to design their output screen on which the results are displayed
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during a simulation run.

The work of the CASM (Computer Aided Simulation Modelling) research 

team at the L.S.E., further discussed in Chapter 2 of the thesis, has formed a very 

strong basis for such a flexible graphical simulation system to be developed. However, 

whereas most of the recent work of the team is done on the IBM/PCs machines, this 

particular simulation system is developed on the Apple Macintosh. The main virtue of 

using the Apple Macintosh in this research lies in the remarkable graphics facilities and 

its user-friendly interface.

1.6. OUTLINE OF THE THESIS

There are seven chapters in this thesis.

Chapter 1. Introduction : is a brief introduction to computer simulation 

modelling and the process of simulation. The Activity Cycle Diagram methodology and 

the simulation modelling approaches are explained. The use of Visual Interactive 

Modelling in simulation is discussed. The research objectives and the outline of the 

thesis are given in this chapter.

Chapter 2. Literature Survey : discusses general simulation environments and 

describes the philosophy and work of the Computer Aided Simulation Modelling 

(CASM) Research Team at the L.S.E. A general view of the role of graphics in 

simulation modelling is given. Furthermore, the current trends in simulation package 

development are also discussed.

Chapter 3. MacACD, Diagramming Techniques and Computer-Aided ACDs : 

gives an overview of MacACD and its mechanism. MacACD was the first system 

developed during this research, and which enabled experimentation with the basic ACD 

ideas. A study of other existing diagramming techniques is presented. Finally, a
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proposed computer-aided ACDs methodology is suggested in the chapter.

Chapter 4. HyperCard and HyperSim : discusses the flexible simulation model 

specification system HyperSim which is based on ACDs, and which was developed 

during this research using the Hypertext system - HyperCard. This chapter outlines the 

philosophy behind such a flexible specification system and discusses how this gives us 

an insight into the final part of this research.

Chapter 5. Design of the Graphical Simulation Modelling Environment : 

discusses the design principles behind our ideal graphics-driven simulation 

environment. A Macintosh application called 'MacGraSE' which incorporates these 

design principles, developed during this research, is presented in this chapter.

Chapter 6. Implementation of the Graphical Simulation Modelling 

Environment : gives the internal data structure and the mechanism inside the application 

MacGraSE.

Chapter 7. Conclusions and Further Research : contains a summary and 

review of the findings of this research, the three developed simulation systems, and 

suggests further research opportunities.
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CHAPTER 2

LITERATURE SURVEY

This chapter presents a literature survey for the research. The view of an ideal 

simulation environment and some of the important research projects of the Computer 

Aided Simulation Modelling (CASM) research group at the L.S.E. are discussed in 

section 2.1. In section 2.2 we look at the role of graphics in simulation modelling, 

which forms the theme of this research. Some of the current commercially available 

simulation languages and some of the modem simulation systems are discussed in 

section 2.3 and 2.4 respectively. A summary of this chapter is given in section 2.5.

2.1. CASM AT THE L.S.E.

The Computer Aided Simulation Modelling (CASM) Research Project Group 

at the London School of Economics have been researching into discrete event 

simulation modelling since 1982 (Balmer & Paul 86). The CASM research objectives 

are to develop computer based systems that act as tools for the analyst in the process of 

simulation modelling. So for example, the research group have produced an interactive 

simulation program generator called AutoSim (Paul & Chew 87) which enables a 

specification of the simulation model to be turned into program code automatically. The 

group has also worked on a variety of methods that assist in problem formulation 

(Doukidis & Paul 85, Paul & Doukidis 86). Current on going projects include the use 

of formal methods in simulation specification (Domingo & Paul 90) and the use of 

system dynamics in discrete event simulation modelling (Mak & Paul 90). Section

2.1.1. discusses one of the CAS M's views of a simulation environment, and a brief 

description of the research work done by the team is given in section 2.1.2.
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2.1.1. CASM's View of a Simulation Environment

One of CASM's views of a simulation environment is seen in figure 2.1. 

Activity cycle diagrams (Pidd 88), flowchart or symbols in GPSS (Shriber 74) can be 

used in the formulation of the problem and the definition of the model logic. The model 

specification can be fed into an interactive simulation program generator (ISPG) from 

which a data file representing the logic is produced. The use of an ISPG has two main 

potential benefits : speed and transparency. It is an important aid in the formulation of a 

complex model. Further discussions and developments of ISPGs can be found in 

Balmer & Paul (86), Chew (86), Crookes (87), Paul (88c) and Paul & Chew (87). The 

program generator, making use of the data file, writes the simulation program using 

some software subsystems. This model is then ready to be run and output produced. 

The output, including representational graphics (e.g. histograms, time series, etc.) can 

be used to determine the correctness of the model logic, and of the computer program.

Figure 2.1. CASM's View of a Simulation Environment
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An attempt to bridge the gap between an understanding of the model proposed 

by the end-user and the analyst is by using an artificial intelligence system (Balmer 85b, 

Doukidis 85, Doukidis & Paul 85, Doukidis & Paul 87b). With the introduction of an 

Artificial Intelligence (AI) system to aid the analyst in formulating the problem and 

experimenting with the model with the customer, the simulation environment is 

depicted as a continuous loop of activity. This enables model development in small, 

easily checked stages, model correction in the light of program output, and 

determination of the running conditions and the run lengths of the simulation model. 

The main benefit is that the customer can also participate in the modelling process.

Graphics was originally seen as a tool for emulating the simulation model 

output dynamically. However, as shown in figure 2.1, graphics might be used in 

conjunction with a problem formulator. By means of a graphics screen, the problem 

can be described and thereby formulated, with the rest of the system driven as before. 

The simulation model would run the screen dynamically over time, with interrupt and 

amend capabilities. With graphics editing, the process of development, correction and 

obtaining model confidence is greatly enhanced. The use of graphics enables the end- 

user to see what is going on in the system and respond to it dynamically, rather than to 

respond to occasional events as presented by the analyst. Note that this environment 

assumes that the problem to be solved needs to be formulated as a simulation model. 

The objective of this research is to look into such a graphical simulation environment.

2.1.2. CASM Research

The CASM team adopted a three-phase set of Pascal simulation routines 

developed at the University of Lancaster and described by Crookes et. al. (86). These 

routines were originally written for an Apple II microcomputer. They have been 

amended and extended to other microcomputers, such as IBM and Apricot as well as to
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a VAX computer. These routines are collectively known as the extended Lancaster 

Simulation Environment (eLSE), and have been used to solve simulation problems 

(Holder & Gittins 89, Williams et. al. 89).

AUTOSIM

An important development of the CASM team is the ISPG AUTOSIM 

described by Chew (86), and Paul and Chew (87). AUTOSIM uses a library of Pascal 

routines called LIBSIM to generate a Pascal simulation program written in a three-phase 

structure. It requires as input a model specification based on an ACD, and produces a 

simulation program written in Pascal and supported by LIBSIM. AUTOSIM is 

currently available on the VAX and IBM/PCs. AUTOSIM uses an interactive session to 

obtain information from the user by means of a description of the problem ACD. 

Alternatively, it can accept data files of certain formats specified for the generator.

LIBSIM

LIBSIM, originally described by Crookes et. al. (86), is a later development 

of a suite of Pascal routines that were created at Lancaster University and subsequently 

modified at the L.S.E. Some representational graphics routines (for example, routines 

for producing histograms in the simulation output) are also included in LIBSIM.

SPIF

A first attempt at using an expert system as a problem formulator was 

described by Doukidis and Paul (85). However, it was found that expert systems were 

inappropriate for handling the natural language understanding problem. The research
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was then directed towards a natural language understanding system (NLUS). A NLUS 

called SPIF was developed (Doukidis 85). The NLUS captures the essential structure 

of an ACD for the problem, with the participation of the decision-maker, and under the 

guidance of the analyst (Doukidis 87).

Database Systems

Research was undertaken into the production of a simulation system within 

the relational database package INGRES (El Sheikh 87, El Sheikh & Paul 88a). A 

system called INGRES SIM (El Sheikh & Paul 88b) was produced. This system 

allowed the analyst to specify the problem, set the initial conditions, and run the 

simulation all within INGRES SIM. The system was extended by Mashhour (89), who 

showed how INGRES SIM will be used to specify a model, to which a program 

generator would then be applied. The resultant Pascal program, when run, would 

automatically return results to INGRESSIM. This package was called DBSIM.

MacACD

An ACD represents, in a concise clear form, the flow of control within a 

simulation model. Since ACDs have proved to be a reasonable, if not comprehensive 

method, of describing the formal logic of the simulation model, the CASM group have 

spent some of their research effort on developing an ACD based software system which 

can be used with AUTOSIM. This research was done on the Apple Macintosh since the 

graphics facilities on the Macintosh provide an ideal environment for producing a 

graphics orientated simulation system. MacACD, described by Au (87) and Au & Paul 

(89), is a visual interactive interface for specifying a simulation model logic by drawing 

an ACD on the screen. A text file using the AUTOSIM data file format can be generated 

by MacACD. This application is further discussed in Chapter 3 of the thesis.

Chapter!. Literature Survey 28



HyperSim

HyperSim is an attempt to develop a flexible specification interface for a 

simulation program to be generated using HyperCard on the Apple Macintosh (Au & 

Paul 89). This application is further discussed in Chapter 4 of the thesis.

2.2. GRAPHICS IN SIMULATION MODELLING

The concept of linking graphics with discrete event simulation began in the 

mid-1970s and became common practice by the mid-1980s. Today, computer graphics 

assist in all phases of a simulation project, from its initial problem specification to final 

project implementation (Hurrion 89). There are now numerous graphical systems both 

for the development of the models and the presentation of results. Graphics are 

generally applied in three main areas of simulation modelling - model specification, 

visual simulation and output display. We discuss how graphics are used in each of 

these areas in the following sections.

2.2.1. The Use of Graphics in Specification

Most of the specification methods require the use of a diagramming technique. 

The most commonly used in three phase modelling is activity cycle diagrams (see 

section 1.2). A variation of the ACD method, called the activity diagram is discussed in 

Davies and O'Keefe (89). The successes of HOCUS (Szymankiewicz et. al. 88) and 

SLAM (Pritsker 79) illustrate that flow diagram systems have a broader appeal than 

text-based ones.

Not all the current existing simulation packages have a graphical front end for 

model specification. Most data-driven simulation packages require the user to translate
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the image of his perceptual model into some form of structured diagram before the 

actual model building process on the computer. The input session of DRAFT 

(Mathewson 87) is a series of responses to prompts. The model expressed as an entity 

cycle diagram is input via a terminal. DRAFT/DRAW then allows the user to display 

the input entity cycle diagram either in its original form, with the software managing the 

layout, or in a representational form which mimics the perceived system and omits 

artificial devices used for programming purposes.

A less established area in using graphics in simulation specification is the 

direct application of pictures to describe the model logic. This research is aiming to 

achieve a graphics driven interface for the user to draw the invisible image of the real 

world system inside his brain during the construction process and to be able to model 

the logic within such an environment.

2.2.2. Visual Simulation

Visual simulation is commonly considered as an essential part of a simulation 

system. Its importance can be seen from the fact that nearly all the latest versions of the 

current simulation packages have added a visual simulation component to their systems. 

Visual simulation allows the user to watch the dynamics of a model unfold in the form 

of a semi-pictorial silent film. Not only can visual graphics narrow the gap between the 

client and the analyst, it also helps the user to gain confidence in the use of the model.

Most simulation packages require the user to pre-specify the model in a text 

descriptive format and provide the interface for developing a visual picture for the 

model from this formulation. The animation represents a final polish to the model- 

building process. PCMODEL (Simsoft 86) on an IBM/PC uses the colour monitor 

display to provide a direct character-based, graphics animation of the model. A graphics 

editor is supplied to build the overlay. The model is set up with statements describing
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the route of the modelled object and its delays. The logic of the conditional transaction 

movement is specified as a mnemonic.

This research aims to design an environment which allows the user to 

combine the specification of the model and the display of a visual representation of the 

model in one step. The specification picture is by itself a picture which can be used for 

running a visual simulation.

2.2.3. Graphical Output

Computer graphics are now replacing the more traditional printed report as a 

presentation medium. Business graphics use charts, pie diagrams, graphs and 

histograms to display information, while in education and entertainment computer­

generated animation files are becoming common (Hurrion 89). Presentation of model 

results is an important stage of simulation modelling. The popularity of existing 

sophisticated presentation packages, for example. Freelance on the IBM/PC and 

PowerPoint on the Apple Macintosh, show that there is a requirement for high standard 

graphical output by top management. Nevertheless, it is always the final simulation 

output that will reach the decision-making management team directly, and which is the 

product of the simulation study on which decisions will be based.

Three-dimensional graphics are popular but should not be overused. 

Structured graphics in terms of charts or graphs must be clear and precise since over­

emphasised fancy graphics might be misleading.

2.3. SIMULATION LANGUAGES

Mathewson (89a) describes some of the most commonly used simulation 

languages. The simulation languages adopt either the three-phase, event-based or the
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process simulation structures. The use of object-oriented simulation languages is 

becoming more and more popular in the simulation industry.

ECSL (Clementson 85) and SIMON (Mathewson 77) are three-phase based 

simulation routines. ECSL is written in FORTRAN but the user is not required to know 

FORTRAN, nor is the code translated into FORTRAN. The authors claim that it 

successfully implements the 'cell structure' developed at Lancaster University (Spinelli 

de Carvahlo and Crookes 76) and also incorporates visual interactive modelling. 

SIMON provides facilities for queue handling and for activity scheduling and event 

identification, including analysis tools for variance reduction and interval estimation. 

The most recent library SIMONG (Mathewson 85) has been extended to incorporate 

graphics drivers for model animation.

SIMSCRIPT II.5 (CACI 83) and GASP II (Pritsker and Kiviat 69) are event- 

based simulation routines. SIMSCRIPT is represented as having a number of levels 

which enable it to form an easy introduction to computer programming. The language 

consists of two extensions - PROCESSES which permits sequences of events to be 

specified and SIMANIMATION which allows the user to add graphics animation 

commands to the SIMSCRIPT II.5 text. GASP II was the first well-documented 

release, followed by GASP IV which provides mixed discrete/continuous simulation. 

Both systems provide a library of FORTRAN routines for writing a FORTRAN model.

SIMULA (Birtwhistle et. al. 79) is the original language which implemented 

the process modelling approach. The language is operated by defining system 'classes' 

which provide event scheduling and queue manipulation. Other process type simulation 

languages in Pascal includes Micro-PASSIM (Barnett 86), PASCAL-SIM (O'Keefe 

86), SIMPAS (Bryant 80) and SIMTOOLS (Seila 86).
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2.4. MODERN SIMULATION SYSTEMS

A survey of the range of methodologies and systems available in simulation is 

given by Mathewson 89b. Paul 89a pointed out that simulation support environments 

can be broadly classified into four groups - data driven systems or generic models, 

program generators, pseudo-code or macro-statements, and bespoke modelling or 

handcrafting. Some simulation packages consist of a combination of the features of 

these different groups. Each type of environment is discussed in the following sections.

2.4.1. Generic models

These packages are general purpose simulation systems which take data 

defining the user's particular problem as the basis for running the general model. The 

advantage is that no programming is required by the user. The disadvantage is that one 

can only do whatever the package is designed to do. There is usually no program code 

for the model to be edited.

HOCUS, Hand Or Computer Universal Simulator (Szymankiewicz et. al. 88) 

is a generic data driven system based on activity cycle diagrams from which the data is 

input into the package in a structured way. There is no generated code from HOCUS. 

The system automatically generates a trace of the operation of the model by calling and 

combining standard FORTRAN subroutines. These are then compiled and executed but 

they are not available for modification by the analyst. The package is supported by a 

textbook by Szymankiewicz et. al. (88). The advantage of HOCUS is that it is simple 

to understand and requires no knowledge of computing. However, HOCUS provides 

only the model description program. The model is expressed completely within the 

structure of the diagram and therefore suffers from severe restrictions in the scope of 

the detail which can be represented. As the user is not allowed to edit the FORTRAN 

code, some complexities are likely to be difficult to model.
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WITNESS (Istel Ltd.) is a data-driven system originally written in SEE- 

WHY. This is a menu-driven simulation created for the study of manufacturing 

systems. WITNESS can also be integrated with SEE-WHY submodels if its internal 

capabilities are insufficient for a particular task. The modelling elements of WITNESS 

are related to the factory - parts, machines, buffers, conveyors and labour. The 

interface design can progress in parallel and independently of the parent model. It is 

therefore attractive to the management of system design houses, as it gives them more 

flexibility in the provision of enhancements to the system. It is possible to add code to 

the system. The disadvantage is that the modeller is required to leam how to use the 

package and it is not an easy package to leam. It is also an expensive package.

SIMFACTORY (CACI Ltd.) is a general purpose simulation system for 

factory design and production analysis. Models are designed by entering factory layout 

information & production parameters. The user interface is provided as a menu-driven 

editor. There are twelve functional menus with on-line help. Through these menus the 

data set can be assembled. The display is created by selecting elements and positioning 

them under cursor control. An animated representation of the factory and an interrupt 

facility is provided. The generic model is written in SIMSCRIPT II 5 and the 

application-specific features are selected by input data.

Other examples are EPSIM (Epsim Ltd.) and PROPHET (Manufacturing 

Management Ltd.). The former is a discrete event generic simulation model of a 

manufacturing environment with financial analysis and the latter is a data driven generic 

system models batch manufacturing processes controlled by material requirements.

2.4.2. Program Generators

The user specifies his problem either in data or graphical form. The system 

then automatically produces program code in a programming language which the
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analyst can access. It allows the analyst to have greater flexibility in what sort of model 

might be produced. However, the analyst must be able to understand this generated 

program code. The advantage of using a program generator is that it shields the user 

from the intrinsic difficulties of general simulation languages.

CAPS (Clementson 85) is an interactive simulation program generator for 

discrete event simulation modelling. It is the front end to ECSL and generates ECSL 

code. CAPS is designed to run interactively and it conventionally prompts the user in a 

way that allows the user to define a simulation model based on an activity cycle 

diagram. After the definition of a model, an ECSL source program is generated.

DRAFT (Mathewson 87) is an automatic program generator producing 

FORTRAN code. DRAWER permits computer assisted development of interactive 

animation for models produced by DRAFT. SSIM uses a pictorial activity diagram 

input as a preprocessor for the program generator. Although the structure of DRAFT 

has been carefully designed, the diversity of information in simulation models 

represented by their activity cycle diagrams has not been fully attended. Therefore, 

DRAFT is only suitable for complete entry of very simple cycles. More complicated 

cycles need much time and effort to modify their DRAFT generated programs to 

represent the system fully. With DRAFT, the objects within an ACD are to be 

numbered in order to go through the interactive input session.

2.4.3. Pseudo code

These packages use pseudo code or macro statements to enable the analyst to 

write a model in shorthand form. The analyst has greater control over the model 

representation since the model is represented in code form. The disadvantage is that one 

has to leam another programming language in order to write code in the system. Some 

packages include a graphics interface to aid the analyst in formulation of the problem.
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One example of this type of packages is ECSL. The production of ECSL code 

is the major limitation of CAPS/ECSL. ECSL is a special purpose language and has its 

own neat and concise style. A skilled ECSL programmer is not easy to find. As a non­

compiled language, ECSL is relatively slow running and does not offer the benefit of 

an interpreted language. Partial programs cannot easily be run for testing because of the 

compilation and execution time delays. Moreover, it does not have a dynamic entity 

type due to its static storage management

Another commonly used simulation system which allows the user to write 

macros is SIMSCRIPT II.5 - a macro programming language with English-like 

program code which allows the user to read the simulation program like a description of 

the system that is being studied. Typical applications include military planning, 

manufacturing, communications, logistics and transportation. SYSMOD (Systems 

Designers Scientific) is a language which is similar to Pascal & Ada in syntax and 

which is used for defence simulation models.

2.4.4. Handcrafting

This implies writing the simulation model from scratch in some programming 

language. Although this seems to be a weak method to undertake, its popularity is 

possibly due to the freedom and complete control the analyst has over the simulation 

model, and, to a certain extent, because simulation packages are too expensive to use.

2.5. SUMMARY

'A Simulation environment provides tools for specifying the processes in a 

simulation and generating debug and production models automatically from these 

specifications.' (Birtwhistle 85). The CASM team at the L.S.E. is a research program
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which aims to provide aids for problem formulation, program generation and output 

analysis in simulation modelling. The CASM research project has provided a very 

strong backbone to this piece of research.

This chapter has described current trends in simulation systems, and the 

popular methods of assisting the process. The following conclusions are directly 

derived from this literature search and the proposed needs for simulation modelling set 

out in Chapter 1.

A data-driven or generic package should be user-friendly so that data can be 

updated very easily. If a program generator is provided with the package, the code 

should be easy to understand so that the user can easily find the part of the code to be 

edited during the modification of the program.

Graphics should be the front end to the formulation of the problem and not as 

an additional way of representing the model logic from the textual description. Visual 

simulation should be a vital part of the package so that animation of the model can be 

seen on the screen and picture running should be available. The user should be able to 

design his own output screens for use in a simulation run.

Graphics and modern software interfaces will enhance the process of 

translating the formulation into code. Subsequent modifications to problem definitions 

will be readily facilitated and interface design will ensure the logical rigour of the 

definition. Furthermore, graphics may be used to supplement or replace the traditional 

problem definition techniques. The use of graphical input techniques may provide a 

means for automating the formulation process. Colour graphics are and will continue to 

play an important role in model construction and development.
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CHAPTER 3

MACACD. DIAGRAMMING TECHNIQUES

AND COMPUTER-AIDED ACDS

The first section of this chapter discusses the first development of this 

research, the MacACD application (Au 87, Au & Paul 89) on the Apple Macintosh 

computer. Experience gained from developing MacACD is given in section 3.2. Since 

most CASM research is based on a diagramming technique known as activity cycle 

diagrams, other existing diagramming techniques are also examined. The results of this 

study are given in section section 3.3. With the developing experience of MacACD and 

the study of other diagramming techniques, the computer-aided activity cycle diagrams 

methodology is proposed in section 3.4. A summary of this chapter is given in section

3.5.

3.1. MacACD

MacACD is a simulation specification system that uses the graphical methods 

of activity cycle diagrams, developed on the Apple Macintosh computer. This system 

can be combined with other simulation tools developed by members of the CASM 

research group to enable the automatic generation of a simulation program with a visual 

iconic display. An overview of the software is given in section 3.1.1. and some of the 

design aspects are discussed in section 3.1.2. The experience gained from this research 

project are discussed in section 3.2. An example of the way in which MacACD 

achieves its task using the ubiquitous simulation example of a pub (described in section 

1.2.2) is given in Appendix C.
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3.1.1. An Overview of MacACD

MacACD is a user-friendly application which allows the user to specify a 

simulation model by drawing an activity cycle diagram on the computer screen. The 

user can enter the details of the parameters of the model by means of dialogue boxes. 

These dialogue boxes are evoked by the action of the user. MacACD allows the user to 

generate a text file from the ACD specification. This text file can be passed down to 

VAX and read by a program generator AutoSim (Chew 86) so that a three-phase 

simulation program can be generated.

A more detailed description of how to use the MacACD application is given in 

Appendix C of this thesis. Figure 3.1. shows the appearance of the interface of 

MacACD.

Figure 3.1. The MacACD Application 
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3.1.2. The MacACD Interface Design

MacACD consists of nine pull-down menus and an iconic menu with thirteen 

palette choices. The pull-down menus handle all the file management and data recording 

whereas the iconic menu mainly deals with the creation of graphics on the screen.

The application is designed so that the user can choose to do anything (for 

example, creating an entity type, creating an activity, editing an existing activity, 

creating a queue, or drawing part of the life cycle of an entity type, etc.) at any time 

during the model construction process. The aim was to produce a user-friendly 

interactive environment for the user to build up the logic of a simulation model.

Objects on the screen

There can be three types of objects on the screen. Firstly, rectangles which 

represent activities. Secondly, a circle or two overlapping circles which represent 

queues and source/sink queues respectively. Finally, line arrows which represent life 

paths of an entity type. These objects can be created using commands in the iconic 

menu. For example, to create an entity type, just click at any one of the line arrow mode 

boxes. MacACD will then prompt the user for information about this entity type by 

means of an entity dialogue box as shown in figure 3.2. The objects on screen can be 

resized and moved within the main window so that the user can easily arrange the ACD 

in a structured way.

Entities

The information about an entity is obtained by means of an entity dialogue 

box as shown in figure 3.2. MacACD distinguishes three types of entities - temporary,
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permanent and facility entities. Attributes can be created for an entity type. An entity can 

have up to three types of attribute. The user can just click at the desired number of 

attribute types that are to be created and type in the attribute name in the appropriate text 

box.
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The creation of an entity type is not complete until the user clicks the 'OK' 

button. The name of the entity is then appended to the Entity pull-down menu. The user 

can subsequently select any entity from the menu and edit its information.

Activities

The information about an activity is obtained by means of an activity dialogue 

box as shown in figure 3.3. The dialogue box enables the user to choose the entities 

that are required in order to start the activity. The Entities column displays the full list of 

entities declared by the user. The Min and Max columns are for recording the minimum 

and maximum number of the corresponding entity type that is required in the activity. 

The default is set to one for each Min and Max entry.
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Since attributes can have different formulae in different activities, the list of 

attributes declared by the user is always displayed. The user can type in a formula for 

the appropriate attribute that is being evaluated in that activity.

The creation of an activity is not complete unless the 'OK' button is clicked. 

The name of the activity is then appended to the Activity pull-down menu. The user can 

subsequently select an activity from the menu in order to look at a summary, or to edit 

the relevant information for the activity.

Queues

MacACD distinguishes three types of queue - a source/sink queue, a normal 

queue and a dummy queue. A source/sink queue is represented by two overlapping 

circles while the normal queue by a circle. The dummy queue is not drawn on the 

diagram.

The information for a queue is obtained by means of a queue dialogue box as 

shown in figure 3.4. The dialogue box displays a list of entities which the user has
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declared and the user can choose the entity that the queue belongs to. The user can also 

define a histogram to record the queue lengths of the queue during a simulation run.

Figure 3.4. The Queue Dialogue Box
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The creation of a queue is not complete until the user clicks the 'OK' button. 

The name of the queue is then appended to the Queue pull-down menu.

Life Cycles of Entities

When an entity is created, a line pattern is assigned to it. The user can then 

just click at the line arrow mode box which represents the selected entity type and draw 

its life path in the ACD. Moreover, MacACD uses straight lines for representing the life 

paths of the temporary and permanent entities and arcs for that of the facility entities.

The life paths of a permanent or temporary entity can be drawn by moving the 

mouse from an activity to a destination queue, or from a queue to a destination activity, 

or from an activity to another destination activity. Whenever MacACD detects two 

activities being linked together, it will automatically produce a dummy queue. 

Whenever MacACD detects that there is an activity which goes to more than one queue, 

a condition dialogue box (figure 3.5) appears. The user is prompted for the condition 

that is required to place the entity in the first queue that the user selected.
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For a facility entity, the user only needs to move the mouse to the activities 

that the entity type is involved in. However, the user is required to create an idle queue 

for the facility entity before the life paths can be drawn.

3.2. EXPERIENCE GAINED FROM MacACD

This section looks at the advantages of MacACD in model specification, and 

the limitations of such an application. The potential of using the Apple Macintosh in 

developing a graphics-orientated application is also discussed.

3.2.1. Advantages of MacACD

The MacACD application has demonstrated the power of modern graphics 

based interfaces as provided by the Apple M acintosh for inputting graphical 

specifications for simulation models.

The application is event-driven, i.e. the user has full control over the model 

building exercise. Moreover, the direct input of a diagram minimises the errors that can 

occur if the user is required to translate the diagram into a textual description. Diagrams 

are always a more appealing communicative media than text.

Chapter 3. M acACD, D iagram ming Techniques, and Com puter-aided A C D s  44



The translation from the diagram to a data file which represents the model 

logic is the first step towards the generation of code.

3.2.2. Limitations of MacACD

One of the limitations of MacACD is that it does not allow the user to run the 

computer simulation model directly from the flow diagram. The lack of colour on a 

Macintosh plus screen might also discourage the use of such a system.

An ACD is insufficient to model all complex real world systems. New ways 

of formulating the model logic are constantly being explored. Recent research on 

graphics is concentrated on providing an interface which allows the user to draw the 

entities on the computer screen, and to describe the movement of the entities directly on 

the screen. There are a lot of diagramming techniques such as decision trees or semantic 

networks which might be appropriate in simulation modelling. The result of an 

investigation into these is given in section 3.3.

3.2.3. The Apple Macintosh

Most CASM developments have been on an IBM/PC. Au (87) and Au & Paul 

(89) outline the general differences between the Macintosh and the IBM/PC, as well as 

their different graphics facilities. The main differences include the use of mouse, the 

graphics facilities, the structure of the ROM and the user interface.

A graphics-based visual system does require some sort of pointing device, 

and the mouse works as well as, or better than, most. The advantage of having a 

mouse, as shown by the success of the Macintosh, has led to its rapid acceptance on 

other systems.
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The bit-mapping graphics display (512 pixels each line, 342 lines) on the 

Macintosh enables the marriage of graphics and text and the ability to manipulate both 

on the same display. On an IBM/PC machine the screen is made up of 25 lines of 80 

characters each, and one has to choose between a text or graphics mode. One of the 

disadvantages of the Macintosh family is that the Plus and SE range only come with 

monochrome graphics. Only the Macintosh II has colour graphics facilities.

Another important difference between a Macintosh and an IBM/PC is in the 

ROM of the machine. The IBM/PC puts some low-level portions of the system in ROM 

and then loads in more of the operating system PC-DOS when the system is started up. 

The Macintosh has relatively more of the operating system, the Macintosh Operating 

System (MOS), in the ROM. The MOS takes up only a fraction of the ROM. There is a 

User Interface Toolbox (UIT) in the ROM which consists of hundreds of callable 

routines that are used to implement the standard Macintosh application interface.

The Macintosh provides a standard visual user-friendly interface based on 

menus, icons, windows and a mouse as the input device. A similar interface can be 

produced on an IBM/PC, but the developer has to write all the procedures to 

incorporate these features. This might cut down the running speed of the application 

tremendously, and a much greater amount of memory would be required by the 

software.

The main advantage in using graphics on a Macintosh is its speed in drawing. 

Quickdraw, the magician artist in the ROM of the Macintosh allows one to draw 

complicated graphics at a very high speed. Another advantage concerns its ability to 

store resources separately from the the application code. Also, Macintosh supports the 

use of icons. Using icons is an ideal way of representing an entity on the screen. 

Because of the high resolution, the movement of the entity can be very smooth and 

well-presented. Moreover, the capability of having multiple-windows is another 

important aspect of the Macintosh. This allows the ACD to be divided into a hierarchy
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of levels. A complex system might have a lot of activities and queues in which some of 

them may be grouped into an overall activity in general. Therefore, inside this activity, 

there will be another ACD.

3.3. DIAGRAMMING TECHNIQUES

Diagramming is a form of language, beneficial both for clear thinking and for 

human communication. It is desirable to provide the analyst with a set of diagramming 

techniques in which to conceptualize, analyze, and design. These techniques can act as 

an aid to clear thinking.

The role of diagramming techniques in software engineering is discussed in 

section 3.3.1. Section 3.3.2 gives a brief overview of the current existing diagramming 

techniques and their main functions. A summary table of the different areas where these 

diagramming techniques are applicable is given in Appendix D. Some commonly used 

computer graphics tools are discussed in section 3.3.3, conclusions concerning the 

properties of a good diagramming technique are given in section 3.3.4.

3.3.1. Diagramming Techniques and Software Engineering

Diagramming techniques are one of the system specification methods and can 

be used in conjunction with other specification methods, for example, mathematical 

logic. They are also widely used in system design. When an analyst is designing a 

system, the use of diagrams can be an aid to clear thinking. When a number of people 

are working on a system, the diagrams becomes an essential communication tool. A 

formal diagramming technique is needed to enable the developers to interchange ideas 

and to make their separate components fit together with precision. Clear diagrams are 

also an essential aid to system maintenance since they enable the programmers to
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understand the consequential effects of changes they make. They are a highly valuable 

tool for understanding how the programs ought to work, and tracking down what 

might be wrong. The diagrams should be user-friendly, and should be designed to 

encourage user understanding, participation and sketching.

3.3.2. Current Diagramming Techniques

This section, following from Martin & McClure (85), contains a brief 

description of some of the diagramming methods most commonly in use.

Decomposition diagrams are a simple means of diagramming the structure of 

organizations and complex processes. The user can easily understand and draw 

decomposition tree structures.

Data flow diagrams (DFDs) are tools for understanding the flows of 

documents and data among processes. The technique is simple and easy to learn. DFDs 

are not ideal for drawing program architectures and should be tightly linked to data 

models.

Dependency diagrams are a replacement for data flow diagrams with a similar 

ability to represent the flow of data among processes, but designed to be automatically 

convertible to action diagrams. There are notations to represent optionality, conditions, 

cardinality, mutual exclusivity and inclusivity.

Entity-relationship diagrams are tools which provides a logical overview of 

data needed for running an operation. They are an essential part of strategic data 

planning. The user can be quickly taught to read, check and draw entity-relationship 

diagrams. A data structure diagram is an expansion of an entity-relationship diagram 

into detail showing data items.
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Data navigation diagrams are simple tools for designing database navigation 

and are also useful with file systems.

Structure charts are used for showing program hierarchy used in conjunction 

with data flow diagrams and pseudocode. The chart itself does not give complete 

control structure information and prevents rather than assists in automated verification.

HIPO diagrams show the input, output, and functions of a system or 

program. Data flow diagrams or dependency diagrams give a much more compact and 

easy-to-read view of the flows of data than HIPO diagrams. A high-level HIPO 

diagram does not give complete control structure information whereas a detail-level 

HIPO diagram is limited to defining procedural components.

Wamier-Orr diagrams are used for showing functional decomposition and 

hierarchical data structures. They are easy to read, draw and change. The chart shows 

sequence, selection and repetition, but not conditions, control variables, case or loops. 

They do not show input and output data for procedural components and do not facilitate 

automated checking. There is no direct link to a data model or a data dictionary and they 

are not database oriented.

The Michael Jackson diagram methodology requires the user to design the 

data first and then derive the program structure from them. They are not user-friendly 

and are the most difficult of the methodologies to learn and use correctly. They are 

oriented to file, and not database operations. They show sequence, selection and 

repetition, but not conditions, control variables, case of loops. Only hierarchical data 

structures are represented.

A flowchart is not a structured technique and it leads to unstructured code 

which is difficult to maintain. It should be avoided in favour of structured diagramming 

techniques.
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Nassi-Shneiderman charts only show detailed logic and not program 

architecture nor functional decomposition. Although they are easy to read and teach, 

and are graphically appealing, they are too time-consuming to draw and change. The 

chart is not linked to a data dictionary or data model and shows neither high-level 

program structure nor low-level degeneration into code.

Action diagrams are a simple and elegant technique designed to overcome 

many deficiencies in earlier techniques. They are quick to draw, easy to read, teach and 

computerize. It is a technique that extends all the way from the highest-level functional 

decomposition to the lowest-level logic and coding. Action diagrams can be 

decomposed into executable code. They enforce correct control structures and show 

nonprocedual database operations.

Decision trees and decision tables are used to represent complex sets of 

conditions or rules and the resulting actions. The users can be taught to check decision 

tables for complex sets of rules or conditions.

State-transition diagrams are used for certain types of complex logic where 

multiple transitions among states occur.

HOS charts are mathematically based so that designs which are provably 

correct are created. Program code can be automatically converted. They are not user- 

friendly and require a commitment to leam a technique substantially different from 

traditional techniques.

3.3.3. Computer Graphics Tool

Interactive diagramming on a computer screen speeds up the drawing process 

greatly. The advantages of using computer graphics tools include significant cost and 

time savings, great reduction in work needed to redraft graphics during development
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and maintenance effort, elimination of both proof-reading and the potential for error 

introduction on diagram updates, and the capability to produce very large diagrams. 

Computer-aided drawings enforce standard and discipline. Checks can be applied to 

what is being created by the user. Different types of cross-checking, calculations and 

validity checks can be applied. Computer-aided drawings replace volumes of text with 

powerful computable symbolic design.

General drawing applications includes PCPaint on the IBM/PC, MacDraw II 

(Claris UK Ltd.), MacPaint 2.0 (Claris UK Ltd.), PixelPaint 2.0 (Principal 

Distribution Ltd.), SuperPaint (Persona-TMC), and Studio/8 (Electronic Arts) on the 

Apple Macintosh. These applications allow the user to draw any static picture on a 

computer screen, without any built-in mechanism. Tools for dynamic drawings include 

Excelerator (Index Technology) and computer-aided design (CAD) software like 

ClarisCAD (Claris UK Ltd.) and ArchiCAD (Desktop Engineering Systems). Dynamic 

drawing defines linkages between components or relationship between icons. MacCadd 

(Logica) on the Apple Macintosh is an application which incorporates some of the 

existing methodologies, for example data flow diagrams, structure charts and Jackson 

diagrams. Use-it (High Order Software Inc.) is one of the new methodologies designed 

to take advantage of the computer facility. The application Visual Interactive 

Programming (The MacSerious Company) on the Apple Macintosh is an example of a 

tool for generating executable code from graphics design. This type of application may 

be linked to an interpreter or optimizing compiler, or may create code in a fourth 

generation language which has its own interpreter or compiler.

3.3.4. Properties of a Good Diagramming Technique

Martin & McClure (85) outline the properties of a good diagramming 

technique. In general, a good computer-aided diagramming technique should possess 

the following functions :
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- It should be an aid to clear thinking.

- It enables precise communication between development team members.

- It can be manipulated easily on a computer graphics screen.

- The end-users can leam to read, critique and draw the diagrams quickly, so 

that the diagrams form a good basis for communication between users and 

analysts.

- Whilst hand-drawn diagrams are designed for speed of drawing, computer- 

aided diagrams can have more lines and elaboration.

- The technique should use constructs that are obvious in meaning, and avoid 

mnemonics and symbols that are not explained in the diagram.

- The diagram can be printed on A4-sized paper.

- Complex diagrams are structured so that they can be subdivided into easy- 

to-understand components.

- An overview diagram can be decomposed into detail.

- The diagram should reflect the concept of structured techniques.

- It should be an aid to teaching of computer methods.

- There must be a consistency of notation among all different types of 

diagrams that an analyst needs.

- The technique should be a basis for computer-aided design and code 

generation.

This advice certainly appears pertinent to simulation as well as to general 

systems development.
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3.4. COMPUTER-AIDED ACDS

ACDs have many of the characteristics required of a diagramming technique. 

Having examined the conventions and methodologies of the current existing 

diagramming techniques, some enhancements can be made to the activity cycle diagram 

method in a computer-aided environment.

3.4.1. Activities

The existing diagramming techniques distinguish the use of round-cornered 

and square-cornered rectangles. Data-entity types or record types are normally drawn as 

square-cornered boxes while functions, processes, procedures, or activities in general 

are drawn as round-cornered rectangles. Therefore, an activity should be represented 

by a round-cornered rectangles. Moreover, besides containing just the activity name 

inside the activity box, the user should have the option of displaying the formula for the 

activity duration in the box.

Matching of entities sometimes occurs when testing the possibility of an 

activity start. This can be indicated by putting an asterisk besides the activity name. 

The rules of the matching process, which is usually achieved by comparing certain 

attributes of different entity classes, can be described in text form.

3.4.2. Queues

The advantage of displaying queues in an ACD is that the picture is more 

clearly and logically represented, since, after an activity has finished, the entity should 

be placed somewhere in the system so as to wait for the next activity to start. However, 

for a system which involves a large number of different entity classes, the ACD will be
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full of queues and the diagram looks more complicated and less precise. Also, some 

queues inside the system are dummy queues which do not need to be displayed. These 

queues are imaginary since the entities can start the next activity immediately after the 

finishing the current activity.

Therefore, the user should have the option of whether or not to display the 

queues belonging to an entity class in the computer-aided ACD. In computer-aided 

diagrams, the queues should be automated. This can be achieved by tracing the 

movement of the user. When he links one activity to another, a queue is automatically 

generated for the selected entity class.

3.4.3. Life Paths of Entities

A line arrow is used to represent a life path of an entity class. In a 

monochrome system, different line patterns can be used for different entity types, 

whereas in a colour system, different colours can be used. For complex systems which 

have different groups within an entity class, this would traditionally be regarded as 

having different classes of entity. However, in modem graphics environments, this 

grouping classification can be represented by using one colour for the entity class, but 

with different patterns for different groups within the class.

A conditional line path can be introduced for indicating that an entity only uses 

this path when certain conditions in the system are satisfied. The appearance of a 

conditional line path is identical to an ordinary line arrow except that there should be a 

square somewhere along the arrow.

Optionality is necessary when the entity has a choice whether to go through an 

activity or not at some point in time during its life cycle. This can be indicated by a 

small empty circle on the line arrow which goes to this activity. Mutual exclusivity is 

necessary when the entity has the option of going to one of different activities at some
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point in time during its life cycle. This can be indicated by putting a dot on the line 

arrow which branches out to different activities. A summary table of different arrow 

conventions is given in figure 3.6.

Figure 3.6. A Summary Table of Different Arrow Conventions
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3.4.4. Layered ACD

For large and complex systems which involve a lot of activities, some 

activities can be refined into another ACD. In a computer-aided environment, this 

representation can be depicted by using a shaded activity box which indicates that there 

is another ACD within this activity. A simple ACD can be regarded as a first level or a 

skeleton of a simulation system. Within this skeleton, some activities might contain 

another ACD; and within some activities involved in these individual ACDs, there 

might be another ACD; and so on. This layering of ACDs can be clearly structured in a 

computer-aided environment by using multiple windows.

3.4.5. Code Generation

The computer-aided ACD represents the model logic and contains information 

about the parameters of the simulation. However, the variety of human endeavour 

suggests that an all-embracing specification method is not completely achievable. It is 

desirable, therefore, to allow the user to generate a simulation program directly from a 

graphical description of the problem and thereby make the necessary small but intricate 

amendments to derive the final model.
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3.4.6. Iconic Representation of an ACD

An entity type should be associated with at least one icon. An iconic display 

of an ACD can be easily translated. If the system allows visual simulation, then the 

picture can be used for a graphical simulation run.

3.5. SUMMARY

In this chapter, we have introduced the MacACD application which is a 

specification system that allows an activity cycle diagram to be drawn on the computer 

screen. The parameter input is via dialogue boxes within a windowing environment, 

with pull-down menus and an iconic interface. The automatic generation of code is 

achieved by the generation of a text file which can be fed into a program generator.

After looking at some current existing diagramming techniques and 

experimenting by applying some to simulation modelling, we concluded that activity 

cycle diagrams are an appropriate method for illustrating the logic of a discrete-event 

simulation model, although they become unable to incorporate the relevant detail as the 

model becomes more complex. Some enhancements to the activity cycle diagrams 

methodology are therefore prepared for a computer-aided environment. The most 

important ideas are the possibility of layered activity cycle diagrams and automatic code 

generation.

The Apple Macintosh has proved to be an ideal computer system for a 

graphics oriented application to be developed. The main merits are its user-friendly 

interface and the speed of drawing. The development of MacACD has given an insight 

into the need of a flexible simulation system which allows the user to specify a 

simulation model either in graphical or textual format, or a combination of both. 

Chapter 4 presents the development of this flexible system on the Macintosh.
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CHAPTER 4

HYPERCARD AND HYPERSIM

Simulation modelling is often applied to ill-defined problems, so that the 

model specification is constantly under review. There is a need, in such cases, for a 

flexible method of model specification. The previous chapter proposed the 

characteristics and advice of such a system. Given the strong interlinking connections 

between the components of a simulation model, it was decided to attempt an 

implementation of these ideas using the Hypertext approach. This chapter describes a 

mixed graphical textual system, HyperSim, based on activity cycle diagrams using 

HyperCard. Such a system enables rapid model development using either graphical or 

textual editing or both.

A brief history of the Hypertext concept and the HyperCard application is 

discussed in section 4.1. In section 4.2, an overview and the design of the HyperSim 

specification system is given. Section 4.3 discusses the advantages and disadvantages 

of this approach. Section 4.4 summarises the result of this research development and 

describes how it gives insight into the development of a complete graphical simulation 

system.

4.1. HYERTEXT AND HYPERCARD

Bush (45) envisaged and described a virtual system which relied heavily on 

the intricate web of connections which can be made by the human mind - an 

information system which would allow non-linear access for the user and become 'an 

enlarged intimate supplement to his memory'. These ideas were taken up by people like 

Douglas Engelbart, Ted Nelson, Alan Kay and others during the 1960s but the
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mushrooming of interest forseen by Nelson (72) was only evident during the last six 

months of 1988.

Some of the basic concepts behind Hypertext are looked at in section 4.1.1. A 

brief introduction to the Apple HyperCard system is given in section 4.1.2.

4.1.1. The Concepts of Hypertext

Hypertext, at its most basic level, is a DBMS (database management system) 

that lets the user connect screens of information using association links. At its most 

sophisticated level. Hypertext is a software environment for collaborative work, 

communication, and knowledge acquisition. Hypertext products mimic the brain's 

ability to store and retrieve information by referential links for quick and intuitive 

access.

Hypertext programs, and the free-flowing databases that are their trademark, 

have been adapted for electronic publishing, project management, systems analysis, 

software development, and CAD. Typical Hypertext software consists of a text editor, 

a graphics editor, a database, and a browsing tool for three-dimensional viewing. Bit­

mapped displays, a mouse, windows, icons, and pull-down menus are all standard 

Hypertext tools. Some of the terminology used in the Hypertext environment includes 

nodes, links, pointers (or buttons) and browser are discussed below.

Nodes

To use a Hypertext system, the user must get used to parsing the information 

into small discrete units, or nodes, which consist of a single concept or idea. In theory, 

nodes are both semantically and syntactically discrete. The information contained in a 

node can usually be displayed on one computer screen. Nodes can come in two
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varieties : typed and untyped. An untyped node is a box for information. It has no label 

or descriptor, so that it can be filled with anything. A typed node is labelled, and the 

description helps to determine the style of information contained in the node. Types 

help in classifying nodes and defining specialized operations. They are also helpful in 

browsing through a database looking for a particular area of interest.

Composite nodes can be formed by combining nodes. These are composed of 

related subnodes that can be handled as a single object or broken out into individual 

elements. Icons can be created to reflect the contents of a composite node for easy 

access. Subnodes can also be rearranged if needed.

Links

In general, links are used to connect the nodes. They are the mode of 

transportation in a Hypertext network. One follows them to move about between 

various nodes. One can usually embed them in text and then edit and review them to 

ensure that they are valid. Link attributes can also be created, deleted or changed. Links 

must have two qualities : the computer must be able to trace or follow them, and they 

must be able to transport the user quickly from one node to another. However, links 

can do more than just connect two nodes. Depending on the Hypertext system, links 

can connect annotations to a document and provide organizational information, such as 

where the text fits in a table of contents or where it originated. Therefore, links can help 

define the node's relationship to other nodes within the database. Links may also clarify 

the contents of charts and graphics by connecting the graphics to explanatory 

information such as longer descriptions. Links usually originate at a single point, called 

a link reference. Their destination, called a link referent^ is usually a node, a chunk or 

region of text.
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Points and Buttons

A point is a single character, token, or icon that points out a link in a 

document. It is usually identified by either the name of the destination node, the link or 

an arbitrary string, and by whether it is a source or destination point. HyperCard refers 

to points as buttons. Buttons can trigger the display of additional information, traverse 

a link, or activate a program. They can be represented by text or icons.

Browser

The graphical browser is a node that contains a structural diagram of a 

network of nodes. Browsers usually supply a global map of the network. The browser 

can be used to orient yourself or to move directly into an area of interest by selecting the 

appropriate point on the screen with a mouse. While not all systems provide a graphical 

browser, most attempt to provide some type of overview system that helps you stay 

oriented in the network and visualize how information is linked.

4.1.2. HyperCard as a Hypertext System

This section gives a brief introduction to HyperCard and Hypertalk. More 

details of HyperCard can be found in Apple Computer (87, 88) and Shafer (88).

HyperCard, available for the Mac II, the Mac SE and the Mac Plus, is a 

personal organization tool and a simple database manager. It is also a commercial 

software developer's tool and is in use in some corporations as a front-end to the 

mainframe database. This system uses screen-size cards (or window-size cards on the 

Mac II) organized into topic-related stacks to create simple databases. One card is
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displayed at a time. Touching the mouse cursor to a button on a card executes a script 

written in Hypertalk, HyperCard's programming language.

HyperCard is also a user-friendly application generator and viewer. It may be 

described as an information organizer and its main benefits are power and simplicity. 

Written for the Macintosh and utilizing its famous bit-mapped graphics capabilities, 

HyperCard organizes data and activities around logical "Card Stacks". Each card in a 

stack has similar structure and functions. It can contain card buttons, card fields and at 

least one background which can also contain background buttons or fields that are 

common to all cards in the stack. A card can contain textual, numeric and graphical data 

and also instructions (scripts) written in Hypertalk. Objects that exist in Hypertalk are 

stacks, cards, background, buttons and fields; each of which can send and receive 

"messages". A script is associated with an object enabling it to respond in a specific 

manner to a message, depending on the instructions given by the user. The user can 

browse through already-created stacks, create new cards and stacks, and write and edit 

Hypertalk scripts.

4.2. THE HYPERSIM SYSTEM

HyperSim is a flexible simulation specification system developed using the 

Apple HyperCard system. An overview of the HyperSim application is given in section

4.2.1. and the design of the system is discussed in section 4.2.2. An illustrative 

example of using HyperSim to build up a simulation model is given in Appendix E.

4.2.1. An Overview of HyperSim

HyperSim is a system which allows constant redefinition of the model 

specification by text, graphics, or a mixture of both. Whichever method of input is
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used, both a graphical and a textual specification are held by the system. These 

descriptions are structured into a number of stacks. These stacks contain information 

concerning for example, the model entities or objects, the activities they engage in, the 

queues they rest in whilst waiting for an activity start, the assignment of entity attributes 

representing numerical textual or logical characteristics of the entities, and icons used 

for visual display of the entities.

HyperSim contains a stack which allows the user to specify the simulation 

model by drawing an activity cycle diagram. Each object in the diagram is linked with a 

specification card which the user can access by clicking on the object. Moreover, 

HyperSim allows the user to generate a simulation program based on the three-phase 

modelling technique from the specification given by the user. This program can then be 

modified, linked with the simulation library (called MacSim.Lib on the Macintosh) and 

run under Turbo Pascal on the Macintosh.

4.2.2. The Design of HyperSim

The main aim of developing HyperSim is to provide the user with a graphical 

and textual specification option so that he can choose to define the model logic either 

textually, graphically, or a mixture or both. This is achieved by allowing the user to 

move around different stacks and constantly update the information that is being entered 

by the user. If the user makes any changes in one stack, the corresponding entry in any 

other stacks is automatically updated.

HyperSim maintains a set of global variables which is not seen by the user. It 

is this set of global variables that enables the user to add any information at any time 

and place during the building up of the model, with constant updating of the rest of the 

system in which the new additional piece of information is concerned.
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HyperSim contains a set of conventional buttons which is local to the system, 

appearing in different stacks. Here's the list of buttons which HyperSim supports :

A &  CB I ^  I I C ode I (? )
■New Delete ‘New ’Delete ’Goto Icon’ Goto ACD’ GotoCode’ ’Help’ Home’

Entity* Entity ’ A ctiv ity ’ Activity ’ button button button button button
button button button button

The triangular shape button with a letter 'F  in the middle is called 'New 

Entity' button and is used for creating a new entity type in the model. The same shape 

button but with a cross in front is the 'Delete Entity' button which allows the user to 

delete an entity type specified in the system. Similarly, the rectangle shape button with a 

letter 'A' in the middle is called 'New Activity' button and is used for creating a new 

activity in the model. The same shape button but with a cross in front is the 'Delete 

Activity' button.

Other common buttons include : the 'GotoACD' button which takes the user 

to the ACD stack; the 'Gotolcon' button which takes the user to the Icon stack; the 

GotoCode' button which takes the user to the Code stack where a simulation program 

can be generated; the 'Help' button which takes the user to the 'Reference' stack; and 

the Home' button which takes the user to the Home stack of HyperCard. These 

common buttons contribute to the flexibility of the HyperSim system, so that the user 

can do anything - create new data or edit old data of the model - at any time during the 

specification of the model.

The HyperSim system is made up of nine stacks - the Reference stack, the 

Model stack, the ACD stack, the Entities stack, the Icon stack, the Activities stack, the 

Queues stack, the Attributes stack and the Code stack. Here is a summary of the 

purpose of each of the nine stacks in HyperSim :
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Reference Stack

This is a tutorial stack designed to help the user to understand some of the 

basic principles of computer simulation modelling and to use the HyperSim system. 

The function of the Reference stack is to offer an on-line help system to assist the user. 

The user can choose a topic he wants to view by clicking on the corresponding button. 

If he clicks the 'Start Modelling' button, HyperSim will take him into the Model stack. 

Figure 4.1 shows the appearance of the Reference stack.

Figure 4.1. The Reference Stack
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Model Stack

This is the heart of the specification system which allows the user to create 

new models and edit old models. The user should go to this stack first and select a 

model that he would like to work on. There is a table showing the names of the entities, 

activities and queues the model possesses. The user can go to any entity, activity or 

queue by clicking its name in the table. This stack also allows the user to go to the Icon
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stack and the ACD stack. The Code stack can only be accessed via this stack. Figure 

4.2 shows the appearance of the Pub model card in the Model stack.

Figure 4.2. The Model Stack
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ACD Stack

This stack contains a graphical description of the model. The simulation 

model can be specified by means of an activity cycle diagram in this stack. An ACD 

card is automatically created by the system whenever a new model is created. There is 

an iconic menu in this stack which helps the user to develop an ACD for the model and 

to input the data for the entities, activities and queues (see figure 4.3).

There are four buttons in the Activity iconic menu. The first button is the 

'Select Display Activity' button in which the user can select any one of the activities in 

the activity list to be displayed on the screen. The second button is the 'Display All 

Activities' button which allows the user to display all the activities in the model on the 

screen. The third button is the 'Delete Display Activity' button. The last button is the
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'Activity Information' button in which the user can click at the desired activity in the 

ACD and go to the appropriate Activity card in the Activity stack.

Figure 4.3. The ACD Stack
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There are three buttons in the Entity iconic menu. The first button is the 

'Select Entity' button which allows the user to import the entity icon onto the screen. 

The second button is the 'Import Life Cycle' button which is used for importing the life 

cycle of an entity type which has previously been defined in the system. The last button 

is the 'Queue Information' button. When this button is selected, all the queues in the 

model are displayed on the screen. The user can then select any one by clicking on the 

queue circle and thereby going to the appropriate Queue card in the Queue stack.

There are four buttons in the Cycle iconic menu. The first button is the 'Path' 

button which is used for drawing life paths of an entity type. The user can click at the 

activity from which the entity starts and click again at the activity where the entity goes 

to. A path will be formed and a queue joining these two activities is automatically 

created by the system. The second button is the 'Facility Path' button which is used for 

drawing life paths of a facility entity. The user is required to click once at where he

C hapter 4. H yperC ard and HyperSim 66



wants to place the idle queue for the facility entity, and then select which activity or 

activities that this entity type is involved in. The third button is the 'Delete Path' button. 

The last button is the 'Conditional Path' button, which is used for creating a conditional 

path for an entity type. The user will be prompted for the condition which is required 

for the path to be chosen.

Each object that is created on the screen has a card associated with it. For 

example, a rounded-comer rectangle is associated with an activity card in the Activity 

stack, and a circle is associated with a queue card in the Queue stack.

Entities Stack

Each card in this stack contains information of an entity type defined by the 

user - the name, the number, attributes involved, whether it has a source queue (for 

temporary entities) or a common queue (for facility entities), the queues involved, and 

the activities involved. It also shows the life cycle of the entity type and allows the user 

to add in any conditional paths within its life cycle. When a new model is created, a 

System entity is automatically created for the model. This system entity is a device for 

enabling the user to specify attributes for the system. These are global counters or 

variables that might be used throughout the model. Figure 4.4 shows the appearance of 

the Entities stack.

This stack can be used to define the life cycle of an entity type in the model. If 

the user clicks at the 'Activities Involved' button on the right-hand side of the entity 

card, HyperSim will show the list of activities that have previously been defined by the 

user. The user can then select the initial activity in which the entity is involved. This 

selected activity will then appear in the 'Activities Involved' table. The chain of 

activities can be added to until the user selects the initial activity again to close the cycle.
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When the list of activities for the entity is completed, the user can click at the 

'Life Cycle of Entity' button in which the entity's life cycle will be drawn automatically 

on the screen. The 'Conditional Arrow' (an arrow with a rectangular box in the middle) 

button can be used to add a conditional path in the entity's life cycle. This can be done 

by first clicking at the queue where the conditional paths starts from, and then clicking 

at the activity where the path goes to. HyperSim will then prompt the user for the 

condition which is required for the path to be chosen. The path will then be shown in 

the diagram when the user clicks 'OK' from the condition dialog box.
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Icon Stack

This stack contains cards of icons and allows the user to create new or edit old 

icons. An icon can be selected for an entity by clicking the 'Select Icon' button and then 

by clicking anywhere inside a chosen icon rectangle. Once an icon is chosen for an 

entity, the icon will appear in the right hand comer of the corresponding entity card in 

the Entity stack. Figure 4.5 shows a card from the Icon stack.
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Figure 4,5. The Icon Stack

s p u h  B Ertfv: Customer m S e le c t  I c o n n B

t T a h C 5 d ☆ » f A a r~ 6b
I Æ. SÊ. * IIII 1 1 ë T

u S g T Î1 S ' s s 0 V

¥ % ♦ -1 t 9 BS “ A ■ A

J l « T i

Açtjvingi-Smçk

Each card in this stack contains information about an activity defined by the 

user - the name, the formula for the duration, the entities involved and the assignments 

involved in the activity. Figure 4.6 shows the appearance of the Activities stack.

The model logic can be defined by using the Activities stack. However, this 

method does not support the automation of queues. The user is required to create 

queues when an entity is selected for the activity. If the user clicks at the 'Entities 

Involved' button, then a list of entities that have previously been defined by the user 

will appear. After the user has selected the entity that is involved in the activity, 

HyperSim will prompt the user to enter the name of the queue where the entity comes 

from, and the name of the queue where the entity goes to after the activity is finished. 

In this stack, an entity can be selected more than once since there might be more than 

one possible path that the entity can go to after the activity is finished, depending on the
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condition. The system will prompt the user for the condition and the queue that the 

entity goes to when it detects that an entity is selected more than once.

Figure 4.6. The Activities Stack
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Attributes Stack

Each card in this stack contains information about an attribute defined by the 

user - the name, the entity type that it belongs to, the assignments of the attribute, and 

information about the histograms that are recorded for the attribute. Figure 4.7 shows 

the appearance of the Attributes stack.

Queues Stack

Each card in this stack (figure 4.8) contains information about the queues 

which are automatically produced by HyperSim - the name, the entity type that it 

belongs to, the number of entities in the queue, the activity from which an entity comes, 

the activity to which an entity in the queue goes, the assignment of any attributes, and 

the histograms that are recorded in the queue.

Figure 4,8. The Queues Stack
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Code Stack

This stack allows the user to generate a three-phase simulation program from 

the specification of the model by using the 'Generate' button. The user can modify the 

generated program which is shown on the screen. The program can be exported as a 

text file by using the 'Export' button. The Turbo' button takes the user to the Turbo 

Pascal application, where the program can be run when linked with the simulation 

library unit MacSim.Lib on the Macintosh. Figure 4.9 shows the appearance of the 

Code stack.

Figure 4.9, The Code Stack
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ou ts ide  : source;

Procedure Bu i i dModeI ; 
begin

MokeEn t ( Sys temEn t , 'System Ent*); 
nakeEntCCustomer, Customer' ) ;
MokeEntCDoor, D o o r ');
M a k e E n t ( B a r m a i d , ' B a r m a i d ' );
M a ke E n t(G la s s ,'G la ss '>; 
n a k e A ttr< C u s to m e r,'d e s ire '>;
M a k e A c t(m rr iv e , 'A r r iv e '>;
MakeAct(Pour, P o u r ');

4.3. EXPERIENCE GAINED FROM HyperSim

This section discusses the advantages of the HyperSim system (section 4.3.1) 

and its limitations (section 4.3.2).
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4.3.1. Advantages of HyperSim

The flexibility of allowing the user to specify the model interactively either by 

textual or graphical description, or a mixture of both, is the main advantage of 

HyperSim. The user can look at the model logic from different points of view. He can 

either look at the overall stmcture of the model, or at information on individual entities, 

or on individual activities.

The user can change information in any place at any time, and the system will 

automatically update the corresponding information in different stacks in which this 

piece of information is concerned.

HyperSim is so user-friendly that it could take a new user less than an hour to 

master the system. The building up of the model is entirely dependent upon the user's 

action. However, the system constantly carries out checks which aids the user in 

providing the correct type of information in the corresponding entry.

The entry of the model logic is not required in a systematic way. The user can 

define new entities and new activities at any point during the building up of the model 

in the system. He can also edit existing information in any stack at any time.

HyperSim is very useful for developing a first trial model in a very short 

period of time. This trial model can then be easily updated until the user is satisfied with 

the model logic and the data entered. The code generator in HyperSim allows the user 

to generate a simulation model by just the touch of a button. This generated program 

can be modified inside HyperSim, and transported into Turbo Pascal on the Macintosh. 

It can be compiled with the simulation library MacSim.Lib so that simulation runs can 

be performed.
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4.3.2. Limitations of HyperSim

The main disadavantage of using HyperSim is its lack of robustness when 

data is being updated between stacks. This is a general deficiency in all HyperCard 

applications. A HyperCard application runs more efficiently on the more advanced 

Macintosh models - SE/30 and Ilci. Moreoever, for such a system to be effective, large 

amounts of memory space are required.

A danger in using the HyperSim system is that the user might easily get lost in 

the system if he accidentally clicks at the wrong button. There are many buttons on the 

screen which might become traps for the user. In order to minimise this error, a set of 

conventional buttons is adopted throughout the design of the system, i.e. buttons that 

perform the same function have the same appearance in different stacks so as to avoid 

confusion and misunderstanding.

Another disadvantage of HyperCard is its limitation on the size of the card. 

The screen is non-scrollable. To create an activity cycle diagram that is larger than the 

size of a card, special programming is required so as to link different cards together to 

form a big picture.

Hypertalk programming is simple but it is easy to lose control. In order to 

maintain the flexibility and mobility between different stacks, one has to keep track of 

global variables manually. Moreover, it does not support dynamic memory allocations, 

i.e. pointers or handles. Hence, for large models, searching through records and code 

generation is slow.

The HyperSim system does not allow the user to run the simulation model 

directly from the specification. In order to achieve this, external procedures and 

functions must be linked to the HyperSim system so that the simulation model can be 

run at a reasonable speed.
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4.4. SUMMARY

HyperCard is well recognized as a powerful organizer tool. The idea behind 

HyperCard is simple - to allow the user to develop useful applications easily by creating 

buttons and fields in backgrounds or cards. HyperCard suggests a new method of file 

management. Instead of organizing data in files, cards which contain similar 

information are grouped together in a stack. Moreover, stacks can be linked together so 

that large applications can be easily developed.

There are a lot of advantages in using HyperCard to develop a system like 

HyperSim. Firstly, a high degree of mobility between stacks is easily achieved by 

using buttons and fields. Different stacks can be linked together to allow easy assess 

for the user just by a click of the button. Secondly, new stacks can be continuously 

added to the application without extensive alterations to the rest of the stacks in the 

system. This allows large applications to be developed very easily. Thirdly, good 

graphics facilities allow pictures to be drawn easily at a reasonable speed. The 

developer can make use of the graphics facilities available in HyperCard and is not 

required to write a set of graphical routines. Lastly, Hypertalk programming is simple 

and easy to leam. Its object-orientated nature allows the user to develop applications 

and prototypes very quickly.

However, Hypertext is an immature technology with many problems yet to 

resolve. Perhaps the most difficult part of creating a Hypertext system is not the 

building of the user interface, but the creation of sound underlying data models that can 

be maintained. Since Hypertext systems need to be maintained, we have to watch for 

uncontrolled linkages which will become maintenance problems. Just as large software 

programs with many patches can turn into spaghetti code, so a Hypertext system can 

turn into a morass of meaningless, obscure connections and references. Another 

problem for some users is that some Hypertext systems give you control, when in fact, 

one might need guidance.
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The HyperSim application has demonstrated the power of modern 

graphical/textual based interfaces as provided by the Apple Macintosh, for inputting 

graphical specifications for simulation models.

On the other hand, simulation models require extensive runs to determine the 

result of what is essentially a stochastic experiment. HyperCard does not provide the 

speed of execution required for such experiments. Hence, HyperSim forms the basis 

for an automatic simulation program generator. This generated HyperSim simulation 

program can be run in conjunction with the simulation library 'MSim.Lib' using Turbo 

Pascal on the Macintosh. Such a generated problem enables the desirable rapid 

processing of a simulation experiment. Storing, browsing and searching the contents 

of the output from a simulation model is laborious using current methods. Therefore, it 

is theoretically possible to return the experimental results to HyperSim to gain the 

advantage of a Hypertext system for these purposes. This latter work has not been 

implemented since a new system, described in the following chapter, and based on the 

experience of developing HyperSim, has replaced HyperSim.

The main advantage of using computer graphics is to break the 

communication gap between the analyst and the end-user. It also provides a means of 

understanding the simulation model and easy interpretation of the results. This research 

has given an insight into the production of a graphical interface that enables the analyst 

to formulate a client’s problem with the client. This would be more than a specification 

system. A specification would be the product of the analyst-client system session. But 

the graphical interface would have the versatility to enable, in a non-technical way, the 

problem to be described in the user’s terms.
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CHAPTER 5

DESIGN OF THE GRAPHICAL SIMULATION

MODELLING ENVIRONMENT

With the rapid development of computer hardware in recent years, the 

possibility and the flexibihty which allows the development of intelligent user-friendly 

graphics oriented software has genuinely increased. The increasing use of computer 

graphics is having a significant impact in the area of simulation. Visual modelling is 

now regarded as a powerful component to an analyst's problem solving capabilities.

In this chapter, we discuss the design of an ideal graphical simulation system 

which allows the user to formulate the problem in a pictorial format. The design 

objectives of our graphical simulation system are given in section 5.1. The components 

of the proposed system are outlined in sections 5.2. In order to demonstrate our 

proposed intelligent graphical simulation system, we have developed an application 

called MacGraSE (Macintosh Graphical Simulation Environment) on the Apple 

Macintosh. This application is introduced in section 5.3. Section 5.4 summarises this 

chapter. An example of how to use the MacGraSE application using the steelworks 

model (discussed in section 1.2.4) is given in Appendix F of this thesis.

5.1. DESIGN OBJECTIVES

The existing simulation specification methods normally require a translation 

process inside the human brain from the modeller's visualisation of the real world 

system to a logical representation of the model (for example, in terms of diagramming 

techniques or macro languages). This research aims to design a simulation environment
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which ideally allows the client and the analyst to build up a simulation model in a 

collaborate manner. Such a system enables constant reconstruction of the model and, at 

the same time, aids the user in creating a more clear picture of his problem during the 

model building process.

The concept behind the proposed system is simple. This is an evironment 

which allows the user to draw what they think directly on the computer screen during 

the building up of the model, without the need to translate the modeller's thoughts to an 

initial logical structured form. However, the system should be able to help the user to 

organise their information in a structured format during the construction process.

The objective of the system is to allow the user to draw a pictorial 

representation of the real world system and then formulate the model logic within such 

an environment. The system should enable the user to update his specification of the 

model constantly, so that he can repeatedly test run it and change the appropriate data, 

until the final experimental model is obtained. The pictorial description of the model can 

be used for running a visual simulation. The user should be able to select either a visual 

run or a text run. He should be able to design his desired output screens (in terms of 

pictures, graphs or charts) so that he can watch the dynamics of the model during a 

simulation run on selected parameters.

5.2. COMPONENTS OF THE GRAPHICAL SIMULATION SYSTEM

In this section, the term 'user' refers to the one who is using the graphical 

simulation system to build a simulation model. The role of the user here includes the 

role of the modeller and that of the end user of the system. A general view of the design 

components of this proposed simulation environment and their functions are given in 

this section.

One way that the human mind tries to model a real world system is by a 
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dynamic picture, i.e. an imaginative image of how entities move and interact in the 

system. The user attempts to translate this image into a diagrammatic or textual 

description. This description is then used as a means of communication between parties 

of interest who are involved in the model building project. For a large and complex 

system, the user might have to go through a great number of amendments to the 

formulation description before the final model definition sychronizes with the image in 

his mind. If the user can see the image of the real world system in front of the computer 

screen, he might easily draw the dynamic picture that is inside his mind with the right 

software support tools.

The following sub-sections describe the components of a system that allows 

the user to draw such a picture.

5.2.1. Background picture

Any picture will probably have a fixed background that provides context for 

the dynamic picture. Figure 5.1 shows two types of background picture that can be 

drawn on the screen. Figure 5.1a is a three-dimensional picture of the pub and figure 

5.1b is a factory layout diagram of the steelworks.

The facility of having a background picture in our proposed graphics driven 

simulation system is to enable the user to depict what is inside his mind visually on the 

screen. Once a pictorial description of the real world system is drawn, it is like a 

background that is being stuck on the back of the computer screen. The user can then 

easily define the movement of entities that are involved in the system by moving the 

icons which represents individual entity types on the screen, but without altering the 

appearance of the background picture. On the other hand, he can redraw the 

background picture in any way he wants, without altering the model definition that he 

has previously described.
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5.2.2. Objects on Screen

There should be at least two types of objects on screen - icons which indicate 

entities and rectangles which indicate activities. The display of queues and attributes are 

optional. Queues are represented by circles. Attributes can be represented by means of 

any polygon. In our case, we use a cloud symbol to represent attributes.

Entities refer to any component of the model which can be imagined to retain 

its identify through time. In other words, they are the main input resources of the 

system. The way entities move about in the system forms the basic model logic. In 

order to make the pictorial description look as close possible to the real life picture of 

the system, each entity type should have its own iconic representation in the model. The 

model logic can then be defined by using these icons on the screen. The use of icons 

makes the visual simulation more vivid and is a better representation than character 

graphics.

An activity involves the interaction of different entity types. It is represented 

by a rectangle on the screen. The user should be able to expand or shrink the size of the 

rectangle so that entity icons can be placed within the rectangle to indicate that they are 

involved in the appropriate activity. An activity can also be represented by an action 

picture which can be used during a simulation run.

A queue represents the idle state of an entity type during its life cycle in the 

system. It is represented by a circle on the screen. The automation of queues is 

desirable since it minimises input error and guarantees that all of the life cycles are 

closed. A dimmed icon of an entity type can also be used to indicate its idle state. The 

user can select the option of displaying the iconic idle state during a simulation run.

If attributes are represented on the screen, the user will be able to see how the 

assignments of attributes flow through different activities of the system. This option is 

useful when the simulation model is heavily attribute-based.
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5.2.3. Generation of ACD

Although an activity cycle diagram is incapable of depicting all the details for 

large and complex system, it is a most precise way of displaying the model logic for 

most discrete event simulation models. The ideal system should support the automatic 

generation of an activity cycle diagram from the pictorial description of the model. The 

generated ACD can be used to verify the model logic and act as a means of parameter 

input. Moreover, the user should be able to run a simulation model in its flow diagram 

form, if preferred.

The option of generating an ACD shows that a structured diagram can be 

directly translated from the pictorial description of the model. It is worthwhile to 

mention that it is possible to generate other structured diagrams, for example, entity 

cycle diagrams (Pidd 88) and activity diagrams (Davies & O'Keefe 89), from this 

pictorial model definition. Each diagramming techniques has its own methodology, 

definition and emphasis. However, the pictorial description is common to human 

thinking since it represents what is happening in the real world system.

5.2.4. Logical Description of Data

The structured form of the model formulation should be automatically 

generated by the system so that the user can view the logical form of the data input at 

any time during the construction process. For example, a flow diagram showing how 

an attribute is evaluated throughout the system among different activities. Alternatively, 

the user might want to see a structured diagram which shows how different attributes 

are evaluated within an activity. The system should thereby provide this kind of data 

display so that the user can enter formulae or evaluation rules in a structured fashion, if 

required. This component is particularly useful when the system is large and complex.
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5.2.5. Program Generation

The automatic coding of a model from a system specification reduces the need 

for error-checking. However, simulation models are user-defined. No existing generic 

simulation packages can accomodate all the details that the modeller wants to specify in 

the model. This is the tradeoff between using a general purpose simulation package and 

building a tailor-made simulation program specified to the problem. A program 

generator, used in conjunction with a set of transparent library routines, can be used to 

compensate for this dilemma. For the higher-end users who require complex 

specification rules of the model, the system can be used to construct a first basic model. 

Any other details that are not covered by the specification system can be added to the 

generated program. For the lower-end users who just want to build a simple model, the 

generated code will tell the story about 'how things actually work inside the system' 

and thereby increase the simulation modelling knowledge of the user.

5.2.6. Visual Simulation

Visual simulation is an essential part of a simulation system. Although one 

might argue that no one will actually sit in front of a computer screen and watch the 

visual simulation run once the final model is obtained, the system should provide the 

user with the option of visual running.

In this context, we distinguish two types of visual simulation run - a state 

simulation run and an animation run. The former refers to a state change display in a 

pictorial form, for example, where the run screen shows the start or completion of an 

activity. Animation refers to the actual physical movement of each entity that is present 

during the simulation run. Although an animation run shows a clearer picture of the 

dynamic movements within the system, it is time consuming and should only be used 

for verification of the model.
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Visual simulation is a very useful tool to aid the customer understand the 

system if explained properly. A short running period with a reasonably low speed is a 

convincing tool to show that the model is working correctly according to the final user- 

defined specification. Moreover, with the presence of the background picture behind 

the movement of entities, visual simulation looks more real and alive. Any error in the 

definition of model logic can thus be easily detected in such an environment.

5.2.7. Simulation Run : Output display

Once the computer model is verified, assuming all parties of interest agree to 

this final version of the computer model, the next stage is to collect experimental data so 

that data analysis can be performed. At this point of the simulation process, the user of 

the simulation model is concentrating only on the output results (for example, how 

resource usage varies during the simulation run). Very often the user prefers to see a 

graphical representation of the data distribution by means of a line graph, bar chart, 

scatter plot or histogram, than to see numerical output. Interactive graphical output 

during a simulation run might be an attractive tool to the modeller so that he can see 

how the data accumulates during the running process. Visual simulation cannot satisfy 

this type of data requirement efficiently since it is impossible for the human mind to 

capture all the details during a simulation run visually.

In our design of a complete graphics driven simulation environment, the user 

should be able to select the output he wants to see during a simulation run by means of 

an output screen. This output screen option of the system also enables the user to check 

the logic of a particular part of the system by looking at the corresponding data that is 

generated during the running process. Due to the restriction of the size of the computer 

screen, it seems almost impossible for the user to display all the output he would like to 

view on one screen. Hence, the system should enable the user to design different
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screens so that he can switch to the desired screen during a simulation run in order to 

see what is happening in another part of the system.

5.2.8. Simulation Run : Text display

A simulation run with text display, indicating which activities start and end at 

each time advance, is another useful tool in the verification of the computer model. If 

the entities of each entity type are labelled with an index, the user can check which 

entity of the entity type is actually taking part in the activity during a simulation run.

When the user is only interested in the final output of the simulation run, the 

option of switching off all the displays on the screen during the running process can be 

exercised. This will increase the speed of running proportionally, especially with a long 

running period. The user can then collect the report that is generated after the run.

5.2.9. Report Generation

Simulation reports are the output of the whole simulation process, and will be 

handed over to the management decision making team of the organisation for which the 

simulation model was built. The results presented in the report will help the decision 

maker in the decision making process and should therefore be presented in a clear and 

accurate format. The ideal system allows the user to design the format of the report so 

that it will contain the appropriate level of detail according to the requirement of the 

management team.

5.2.10. Built-in Macro Language

A built-in macro language is often used for incorporating user-defined 
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routines or procedures that are not covered by the specification system. For example, 

the user might want to write a procedure for calculating the duration time of an activity, 

or he might want to add in a form of output that is not automatically produced by the 

system. Macro language allows the user to write this type of coding inside the system. 

The system will then act as an interpreter so that this level of detail is included in the 

simulation run. This will not require the user to modify the generated coding outside the 

system in a high-level language such as Pascal or C. The macro language should be 

simple to use, preferrably in a structured English format, so that the user who has a 

limited amount of programming knowledge can use it with little difficulty.

5.3. THE MACGRASE APPLICATION

MacGraSE (Macintosh Graphical Simulation Environment) is a graphical 

simulation system developed on the Apple Macintosh, incorporating most of the design 

structures described above. The application can be opened by double-clicking on its 

application icon or selecting the Open command from the File menu on the Macintosh 

desktop. The system uses the three phase modelling structure, discussed by Crookes 

et. al. (87), Paul (89a), Pidd (84) and Pidd (88). The interface design of the MacGraSE 

application is given in section 5.3.1, and a description of the main menus is given in 

section 5.3.2. The formulation mechanism is described in section 5.3.3. An example 

walkthrough of the application can be found in Appendix F.

5.3.1. The Interface

Once the MacGraSE application is opened, three windows will appear on the 

screen (figure 5.2). The top left window is the mode box window which consists of six 

palette buttons (figure 5.2a) that are used for modelling. The bottom left window is the 

tool box window which contains all the tools palette buttons (figure 5.2b) that are used
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for drawing the background picture. The window labelled 'Untitled' is the application 

window or main window where a model can be constructed. Figure 5.3 summarises 

the appearance of different objects on the screen.

Figure 52. The MacGraSE Application 
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Figure 5.3, Objects inside the MacGraSE application
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There are six palette choices in the mode box window. Once the 'Select entity' 

button is selected, MacGraSE will redraw the screen by showing all the entity icons that 

are present in the model. Each entity icon is surrounded by a square frame (25 x 25 

pixels).

The 'Duplicate entity' button is used for duplicating entity icons of an entity 

type. The icons list on the screen is used to indicate the life path of the entity type inside 

the system.

The application will redraw the screen by showing all the activities that have 

been defined in the model if the 'Select activity' button is selected. The user can then 

move or resize the activity rectangle anywhere within the main window. He can also 

specify information for the activity by double-clicking on the activity rectangle and 

entering the relevant information in the activity dialog box.

The 'Select attribute' button is used for modelling the attributes of the system. 

Once this button is selected, the application will redraw the screen, including all the 

attribute evaluations that are linked to each activity. If it is an attribute that belongs to an 

entity type, the user can link the attribute object to an entity icon on the screen. If it is a 

system attribute, then the user can link the attribute object to an activity object on the
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screen. Duplicate attribute objects of an attribute type can also be created so as to 

indicate the evaluation flow among and within activities in the model.

The ’Select queue' button is used for displaying the queues that are 

automatically generated by the application. The user can then move the position of the 

queues and enter the relevant information by double-clicking on the selected queue.

The 'Conditional path' button is used for adding conditional paths within an 

entity life cycle. Once the button is selected, the application will redraw the model 

picture with the generated queues. The user can create conditional paths by moving the 

mouse to an entity icon, click to select it, and then by dragging the mouse to the 

destination queue and releasing the mouse button. A line linking the selected queue and 

activity will be drawn, and the condition for the path can be entered by clicking at the 

small box on the line.

5.3.2. The Main Menu

There are seven menus in the main menu bar of the application, excluding the 

standard apple desk accessories menu (#). A diagram showing the appearance of the 

menus inside the MacGraSE application is shown in figure 5.4.

Like a conventional Macintosh application, MacGraSE contains the typical 

File and Edit menus.

The File menu handles all the filing procedures within the application, 

including creating new files and editing existing files, printing and quitting the 

application.

The Edit menu contains the cut, copy and paste command to aid the editing of 

the background picture and textual data input. The user can also select the drawing size 

of the model and delete the selected components of the model.
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Figure 5.4. The Main Menu o f MacGraSE
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The Model menu contains all the commands for building up a simulation 

model. New components - entity, activity or attribute, can continuously be added to the 

model by using the 'New Entity', 'New Activity' and the 'New Attribute' menu items 

respectively. These components will be appended to the appropriate submenu (Entity, 

Activity and Attribute) within the Model menu. The user can view and edit information 

for each individual component by selecting the item in the submenu. Other options 

include setting the 'Show Path' mode on, so that the paths (in terms of straight lines) of
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the entity type that the user is constructing are seen on screen; generation of an ACD 

which allows the user to manipulate data via an activity cycle diagram; and the 

animation command, which allows an animation run where the user can see the actual 

movement of individual entities that move inside the system during a simulation run.

The Draw menu is used to aid the drawing of the background picture. The 

user can set the pen size, pen pattern, fill pattern or text options by using the 

appropriate commands inside the menu. It includes an 'Import Paint' command in 

which the user can import a picture that is drawn in other Macintosh drawing 

applications in 'Piet' format, instead of using the drawing facilities inside MacGraSE.

The Options menu has two main functions. The first function is report 

editing, so that the user can edit the report format to produce a desired report after a 

simulation run. The second function is screen editing in which the user can create 

multiple output screens for a simulation mn. The objects that can be put in a screen are 

mainly the simulation clock, utilisation time table, activity count table, histograms, time 

series, numerical statistics, attribute values and status of an entity type.

The Run menu is used for performing simulation runs on the model. The user 

can use the 'Generate' command to generate a three-phase simulation program in the 

selected language choosen in the 'Language' command. The program can be viewed 

within the application by using the 'Show Program' command. The user can also check 

the model logic and see a textual description of the current state of the model by the 

'Check Logic' and 'Model Summary' command respectively. There are three options 

for a simulation run - Screen, Visual and Text. When the parameters inside each option 

are entered, the user can select the Go command to process the simulation run. In each 

case, the user can select the options of saving the result file and the report file of a 

simulation run. The result file can be viewed after a simulation run by using the Show 

Result command, whereas the report file can be viewed using the Show Report 

command in the Options menu.
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The Output menu is only appended to the menu bar when a simulation run is 

executed by the user. Any specified histograms, time series or graphs are added to this 

menu, so that the user can select the output to be reviewed after a simulation run. The 

default setting of this menu includes the utilisation time table and the activity count 

table.

5.3.3. The Formulation Mechanism

The proposed simulation system models three types of objects on the screen - 

entity, activity, and attribute. An entity can either be active, i.e. taking part in an 

activity, or inactive, i.e. waiting for an activity to start. An activity usually involves the 

cooperation of different classes of entity. The term 'queue' is used to refer to the idle 

state of the entity, i.e. a state in which the entity waits for something to happen. Hence, 

a queue involves no cooperation between different classes of entity.

Each entity type has its own life cycle pattern which is made up of a sequence 

of activities in which it participates in the system. An entity life cycle must be closed 

unless the entity is of temporary type, in which case the entity is created when it enters, 

and destroyed when it leaves during a simulation run. We also distinguish between 

permanent and facility entities. The former has its own individual different waiting 

point before an activity that it is involved in starts; whereas the latter has a common 

resting place before any of its associated activities starts. Some paths of an entity type's 

life cycle may be conditional, i.e. there is a certain condition which controls the 

feasibility of the path. A condition is usually the value of a certain 'attribute' that is 

possessed by the corresponding entity type. An entity type can have more than one 

attribute and its attributes can be evaluated at any point along its life cycle.
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Entity Life Cvcle

A new entity type can be created by using the 'New Entity' command in the 

Model menu. An entity type is represented by an icon within a square frame (25 x 25 

pixels). Each entity type has one and only one main icon and multiple 'ghost' icons 

which are images of the movement of the entity within the system. Ghost icons are 

indexed by the number that is just above the top-right hand comer of the icon frame. A 

ghost icon of an entity type can be duplicated from the main icon, or another preceeding 

ghost icon of the same entity type. The entity life cycle can be constructed by 

duplicating icons of the entity type and then placing each icon into an activity in the 

system. Figure 5.5 shows the duplication of icons for an entity type.

m

Figure Duplm n o n  o fE n m  k o n s

R elea se  the 
m o u se  button

— _

Click a t the  so u rc e  icon, 
hold the  m o u se  button  down 
a n d  m ove the  m o u se  to the 
d estin a tio n  position  of the  
d u p lic a ted  icon.

Sim ilarly, to d u p lic a te  an  icon 
taetw een 1 a n d  3, ju s t click on 
icon 1, m ove  to th e  destin a tio n  
position  of th e  d u p lica ted  icon, 
a n d  re le a se  the  m o u se  button. 
T he  new  icon will h a v e  a n  index 
of 2 a n d  the  icon th a t h ad  an  
index of 2 will now  b e c o m e  3.

Specifving an Activity

Each icon on the screen should be placed within an activity and should not be 

allowed to wander around in the system. A new activity can be created by selecting the 

'New Activity' command from the Model menu. An activity is represented by a round- 

cornered rectangle on the screen. Entity icons that lie within the boundary of the 

rectangle represent the different entity types that are involved in the corresponding
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activity. There are two ways of specifying an entity that takes part in an activity. The 

first method is by moving the entity icon into the activity rectangle, and the second 

method is to pick up an entity icon by moving the activity rectangle over an entity icon. 

Figure 5.6 shows how to specify entities that are involved in an activity.

An em pty  activity.

Figure 5.6. Specifving an Activity

flrr ive Arrive flrr i ve

Click a t the  door icon, hold the  
m o u se  button until it is inside 
th e  re c tan g le  of activity arrive . 
R e lease  the  m ouse button. 
Similarly for the  cu sto m er icon.

Activity 'A rrive ' in v o lv es  
th e  co-opera tion  of th e  
entity door and  cu stom er.

Editing Queues

Queues are automatically produced when a ghost entity icon is duplicated 

from the source icon. This is because an entity icon on the screen is always assumed to 

be always placed inside an activity. Thus a queue is associated with every entity icon on 

the screen which indicates where the entity icon comes from before entering the activity 

that it is involved in. For both temporary and permanent entities, one queue is generated 

for every duplicate icon and the last entity icon of an entity type is always linked to the 

queue associated with the first original icon of the same type. This is to ensure that the 

life cycle is always closed. For facility entities, only one queue is generated for an 

entity type.

The generated queues are initially invisible. However, the user is able to see 

the queues in the diagram (represented by circles) by using the 'Select queue' button in 

the mode box window. Information about the queue can be entered if the user double­
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clicks at the selected queue. He can enter the number of the entities that are present in 

the queue, or create any histograms or time series that are required in a simulation run.

Attribute Assignments

A new attribute can be created by selecting the 'New Attribute' command in 

the Model menu. An attribute is represented by a cloud shaped object on the screen. For 

attributes which are evaluated at more than one activity within the system, an image of 

the attribute can be duplicated so that the user can enter a different formula. Figure 5.7 

shows how an entity attribute object can be duplicated in the model. There are two 

indices inside an attribute cloud. The left-hand corner index indicates the rank of the 

cloud among all its associate duplicates, whereas the right-hand comer index indicates 

the order of attribute evaluations within the activity in which the cloud is linked. In 

figure 5.7 it can be seen that the left-hand comer index of the duplicate attribute cloud 

carries an index of '2', whereas the original attribute cloud carries an index of '!'. The 

right-comer indices of both clouds are 'O' since their associated entity icons are not yet 

placed in an activity.

Figure 57. Duplicating an Entity Attribute object
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a p p ea r  on icon 2.

'des i re

n

Attributes can be classified into two types : system and entity attributes. 
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System attributes are attributes that belong to the system and can be evaluated at any 

event that is happening in the system. Entity attributes are ones that belong to an entity 

type and can only be evaluated at the event that the entity type is involved in. A system 

attribute is represented by a cloud object drawn with a thicker pen, whereas an entity 

attribute is represented by a cloud object drawn with a thinner pen.

5.4. SUMMARY

In this chapter, we have discussed the design principles that lie behind our 

ideal graphical simulation system. The key feature of our system is to allow the user to 

specify a logical pictorial description of the model, and to be able to use this picture 

directly for a visual simulation mn. The ideal system should have a program generator, 

so that any level of details that are not covered by the specification interface can be 

added to the generated code. A report generator is an important component of the 

system, so that user-defined simulation reports can be generated from a simulation mn. 

A built-in macro language is desirable since this will allow the user to add user-defined 

routines within the application itself. This will increase the flexibility of the system.

We have also introduced part of the application MacGraSE (Macintosh 

Graphical Simulation Environment) which lies within the scope of our design 

guidelines. The interface design and the formulation mechanism allow the user to 

constmct and build a simulation model in a very simple and quick way. The client is 

able to discuss the specification of the simulation model with the analyst and, at the 

same time, constmct an initial basic model showing the logic of the system. The system 

allows the user to see a visual imitation picture of the real world system on the 

computer screen, and to formulate the model logic within such an environment.

In the next chapter, we discuss MacGraSE in greater depth - the data 

stmctures and the data input mechanism within the application.
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CHAPTER 6

IMPLEMENTATION OF THE GRAPHICAL SIMULATION

MODELLING ENVIRONMENT

This chapter looks at the internal structure of the MacGraSE application. The 

data structures within the application are given in section 6.1. Section 6.2 discusses the 

data input interface of the application. The program generator module is discussed in 

section 6.3. The modules that handle the mnning of a simulation model, and that handle 

the simulation outputs, are described in sections 6.4 and 6.5 respectively. Section 6.6 

discusses the experience gained from this research development. Section 6.7 gives a 

summary of this chapter. A summary of all the MacGraSE units which were written in 

MPW (Macintosh Programming Workshop) Pascal can be found in Appendix G.

6.1. MACGRASE DATA STRUCTURES

The data structures within the MacGraSE application are shown in figure 6.1. 

The type definitions of entity, activity, and attribute are further discussed in sections

6.1.1, 6.1.2, and 6.1.3 respectively.

Figure 6,L Data Structures of MacGraSE
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6.1.1. Entity

Entity is defined as a handle to the record entityrec which contains all the 

information about an entity type, nam and num are the entity name and number of 

entities respectively. Since all the dialogue boxes accept data in the form of strings, 

num is regarded as a string variable. It will be converted to an integer variable when 

necessary. The entity type can be specified using the etype parameter where T' stands 

for permanent entity, '2' stands for temporary entity, and '3’ stands for facility entity. 

The icon that represents an entity type is stored as a character in the record referenced 

by icon. The mobility of the entity is set by using the parameter mobile, utime is a 

variable which is used to record the utilisation time of an entity type during a simulation 

run. The next entity record in the entity link list is referred to by next.

The duplication of entity icons in our formulation mechanism is recorded by 

using the parameter oent in the entity record. This contains the list of entity icons on 

screen that belongs to the entity type, oent is a handle to the record type entobjrec. 

entobjrec contains information about each entity icon on the screen, including the index 

of the icon {id)  ̂the entity to which it belongs {ent), the location on the screen {loc), the 

activity in which it is placed {act), the minimum {min) and the maximum {max) number 

of entities that are required to start the activity, and the next icon in the entity icon list 

{next). The handle nact is a handle to the next entity icon of a different entity type which 

is involved in the activity and is only used in a simulation run.
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In the case of permanent and temporary entities, the automation of queues in 

our formulation mechanism is achieved by creating a handle que for the record type 

queobjhdl for every duplicate entity icon. Since only one queue handle is created for a 

facility entity, the parameter que of any duplicate entity icons points to the same handle. 

A queue record contains information about the name of the queue {nam\ the number of 

entities in the queue (num), the queue location (loc), the queue location in its associate 

activity cycle diagram (acdloc), the index of the activity preceding the queue (fromact), 

a handle to the queue length histogram (qT), a handle to the queueing time histogram 

(qt) and a handle to the time series (ts). The parameter qnum is used to record the 

number of entities in the queue during a simulation run. modent is a list of model 

entities which is attached to the queue and is used during a simulation run. Each entity 

in the simulation model, except temporary entities, is labelled before a simulation run. 

The modentrec record contains information about the index of the entity and the time 

when the entity enters the queue (st) during a run. next is a handle to the next model 

entity in the list, matt is a handle to the list of entity attributes that is being evaluated 

during the simulation run and is used to store the value of the attribute during a run.

A conditional path in the life cycle of an entity type is recorded by using the 

handle conobjhdl. The information in the record includes the addresses of the handles 

of the entity icon records in which the path comes from and that for the record in which 

the path goes to. The condition is recorded by using the parameter con. next is the 

handle that points to the next conditional path record in the list.

6.1.2. Activity

Activity is defined as a handle to the record type activityrec which contains all 

the information about an activity, nam and id are the name and index of the activity 

respectively. The textual form of the duration formula is stored in the parameter dur.
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dist, a, b, c, d  and e are used to identify the distribution function and its associate 

parameters for the activity, r ^ is  used to store the comment that the user enters in the 

activity dialogue box. The activity rectangle on the screen is referenced by rec. The 

location of the activity rectangle in its associated activity cycle diagram is recorded by 

acdloc. anwn is used to record the number of attribute assignments that are present in 

the activity. The parameter count is used to record the number of times that the activity 

successfully starts in a simulation run. mv is a list of entity icons records entobjhdl 

which are involved in the activity, next is a handle to the next activity in the activity link 

list.

6.1.3. Attribute

Attribute is a handle to the record type attributerec which holds all the 

information about an attribute defined in the model, nam and id are the name and index 

of the attribute respectively. The entity to which the attribute belongs is referenced by 

ent. The boolean variable glo is set to true if the attribute is a system attribute, hist is a 

handle to an attribute histogram, if any. The next attribute in the attribute link list is 

referenced by next.

The duplication of attribute objects on screen is recorded by using the 

parameter oatt which is a handle to the record type attobjrec. Each attobjrec record 

contains information about the index of the cloud among all of its associated attribute 

objects (id), the index of the attribute assignment within an activity (aid), the rectangle 

of the cloud (rec), the entity icon to which the attribute cloud is linked (ent), the activity 

in which the attribute cloud is evaluated (act), and the next attribute cloud in the list 

(next). Each attribute cloud is associated with one evaluation record referenced by atcal. 

The parameter atcal is a handle to the record which contains information about the 

argument of the attribute being evaluated (arg), the condition of the assignment (con), 

and the evaluation formula (cat).
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6.2 . DATA INPUT INTERFACE

This section discusses the data input interface of the MacGraSE application. 

The drawing facilities are described in section 6.2.1. The parameter details of the model 

components are entered in the application via dialogue boxes. The structure of the 

entity, activity, queue and attribute information dialogue boxes are given in sections 

6.2.2 to 6.2.5 respectively. Section 6.2.6 discusses the generation of an activity cycle 

diagram.

6.2.1. Background Drawing Facilities

MacGraSE supports the general drawing environment of a Macintosh 

application. The user can select the drawing size of the model by using the Drawing 

Size command in the Edit menu. The drawing size dialogue box is shown in figure 6.2. 

The palette buttons in the tool box window allows the user to draw any items on the 

screen. A summary of the functions of the palette buttons is given in figure 6.3.

Figure 6,2, The Drawing Size Dialogue Box
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Apart from being able to draw the background picture inside the application, 

the user can also import a picture from other Macintosh drawing applications by using 

the Import Paint command in the Draw menu. The user can set the pen size (figure 

6.4), pen pattern (figure 6.5), fill pattern (figure 6.6) and brush shape (figure 6.7) by 

using the appropriate commands in the draw menu. The dialogue box used for setting 

the appearance of the text on screen is shown in figure 6.8.

Figure M . TM F^n Dialogm Box
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Figure 6.6. The Fill Pattern Dialogue Box
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Figure 6 . 7 . The Brush Shave Dialogue Box
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Figure 6.S. The Text Edit Dialogue Box
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6.2.2. Entity Information

A new entity type can be created by using the New Entity command in the 

Model menu. The entity dialogue box is shown in figure 6.9. The user can enter the 

name of the entity type, the number of entities present in the system and the entity 

classification (permanent, temporary or facility). He can also choose to display all the 

entities of the selected entity type or just use one icon to represent all its associate 

members. The entity type can be either mobile or non-mobile. A mobile entity type
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moves from one place to another in a simulation run whereas a non-mobile entity 

remains stationary.
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The 'Icon' button is used to select an icon for the entity type. Figure 6.10 

shows the icon dialogue box where the user can select an entity icon by clicking at the 

appropriate position.

Figure 6.10, The Icon Dialogue Box
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A flow diagram of the life cycle of an entity type will be shown in the life 

cycle window (figure 6.11) if the user clicks at the 'Life Cycle' button.
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Figure 6.11. The Life C \c le  Window
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6.2.3. Activity Information

A new activity can be defined by selecting the New Activity command from 

the Model menu. The activity dialogue box is shown in figure 6.12. The user can 

specify the name of the activity and enter its duration formula via the duration dialogue 

box (figure 6.13).

Figure 6.12, The Activity Dialogue Box
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Figure 6.13. The Duration Dialogue Box
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The entities involved table in the activity dialogue box shows the list of 

entities that are involved in the activity defined by the user and the attributes evaluation 

table shows the list of attributes that are evaluated at the activity.

The 'Picture' button is used to invoke the activity picture dialogue box (figure 

6.14) in which a picture that represents the happening of the activity can be drawn. This 

picture can then be used for a simulation run. The 'Edit Info' button allows the user to 

see a structured flow diagram representation of the selected activity in the activity 

information window (figure 6.15).

Figure 6.14. The Activity Picture Dialogue Box
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Figure 6,15, The Activity Information Dialogue Box
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6.2.4. Queue Information

Queues are automatically produced in the MacGraSE specification system. 

The algorithm used is to generate a queue record whenever a ghost image of an entity 

icon is duplicated for permanent and temporary entities, and one common queue record 

for each facility entity type. Since an entity icon on the screen is assumed to be 

associated with an activity, the queue that is generated represents where the entity 

comes from before the activity begins. For permanent and temporary entities, a closed 

loop structure is always ensured by linking the last duplicated entity icon to the queue 

of the first original icon of the entity type. For facility entities, a duplicated entity icon 

always goes back to the common queue of the entity type.

The queues within the model can be reviewed by selecting the 'Select queue' 

palette button from the mode box window. The queue dialogue box shown in figure 

6.16 can be invoked by clicking at the desired queue. The name of the queue is 

automatically created by a combination of the first three characters of each of the 

preceding activity, the name of the entity and the succeeding activity. The user can
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specify a queue length histogram, a queuing time histogram and a time series for the 

queue. The dialogue box also shows the activity from which the entity comes and that 

to which the entity goes.
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flQure 6.17. The Attribute Dialogue Box
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6.2.5. Attribute Information

A new attribute can be created by using the New Attribute command from the 

Model menu. The attribute dialogue box is shown in figure 6.17. The user can specify
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the name of the attribute and decide whether it is an entity attribute or a system attribute. 

A histogram can also be defined by the user. The evaluation table shows the list of 

calculations for the attribute that are defined in the model. The 'Edit Info' button allows 

the user to see a structured logical diagram of the status of the attribute in the attribute 

information window (figure 6.18). The evaluation formula of an attribute object can be 

entered via the attribute evaluation dialogue box (figure 6.19). This dialogue box is 

invoked when the user double-clicks at the selected attribute cloud on the screen.

Figure 6.18. The Attribute Information Window
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Figure 6.19. The Attribute Evaluation Dialogue Box
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6.2.6. Activity Cycle Diagram Generation

MacGraSE supports the generation of an ACD from the pictorial description 

of the model. This allows the user to look at the model in a more structured manner. 

The parameters can be entered via the ACD. Since the initial positions of the activities 

and queues are set using their relevant positions within this pictorial description of the 

model, the first generated ACD might look cluttered on the screen (figure 6.20a). 

However, a clear diagram can be obtained by changing the positions of the objects 

(figure 6.20b).

Fjgurç 6,20a, A First Ççneraîed Activity Cycle Diagram
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6.3. PROGRAM GENERATION

MacGraSE has a built-in program generator within the application. A selection 

of languages is found in the Language submenu of the Run menu. The user can select a 

language and use the Generate command to generate a three-phase simulation program. 

If the Generate command is selected, the system will prompt the user to give a name for 

the generated program (figure 6.21). A program will then be generated if the user clicks 

the 'OK' button. The user can see the generated code by selecting the 'Show Program' 

command in the Run menu. The program generator for Turbo Pascal was developed 

during this research and an example of the generated code is shown in figure 6.22.

Figure 6.21. The Generate Dialogue Box
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Figure 6.22. The Program Code generated by MacGraSE in Turbo Pascal
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6.4. THE RUN MODULE

M acGraSE supports three types o f simulation run - visual run, text run and 

screen run, discussed in sections 6.4.1, 6.4.2, and 6.4.3 respectively. The algorithm 

behind the simulation run in the three modes is the same. Time is initially set to zero. 

The conditions for starting an activity are checked throughout the entire activity list in 

the model. Any activity that can start is added to the event queue defined in the run 

module. The time that the activity ends and a list o f the model entities that are involved 

are recorded. Time is then set to the next earliest time that an activity ends in the event 

queue. The associated resources that are scheduled to end at this tim e are released to 

their corresponding queues. A scanning o f the activities is repeated and the event queue 

is updated. Time is then reset. This procedure repeats until the time o f the simulation 

clock is equal to the duration of the simulation run.

6.4.1. Visual Run

A  visual run displays the dynam ics o f a sim ulation m odel in terms o f its 

pictorial description. During a visual run, the start o f an activity is represented by a 

redraw ing the activity rectangle containing its associated entity icons. The value of the 

activity count, i.e. the number o f times that the activity has successfully started during 

the run, is also shown. Overlapping rectangles are used whenever there is more than 

one activity of the same kind happening at an instant o f time during the run. The ending 

o f an activity is shown by moving the entity icons to the corresponding position o f the 

queues. The entity icon is drawn inside a circular fram e to indicate that it is in the 

process o f entering a queue.

Figure 6.23 shows the visual run dialogue box. The user can specify the 

duration, the run-in period and the speed of the simulation run. A report file and a result 

file can also be specified.
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Figure 6.23. The Visual Run Dialogue Box

Dura t ion  : 100

R u n - I n  Pe r iod  :

S pe e d  :

O f o s t  ®  m e d i u m  O  $Iouj O  s t e p

□  Sa u e  Re por t

□  S au e  Resu l t

Cancel

Another type of visual simulation that is supported by MacGraSE is model 

animation, which shows the movements and information concerning individual active 

entities during a run. This option is mainly intended use for model verification. A long 

duration run is not recommended.

6.4.2. Text Run

Figure 6.24 shows the text run dialogue box. The user can specify the 

duration, the run-in period and the speed of the simulation run. The user can also 

choose to display a text run table, which shows a textual description of what happens at 

every time advance in a table, or to display only the simulation clock. A report file and a 

result file can be specified in the dialogue box.

Figure 6.24. The Text Run Dialogue Box
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6.4.3. Screen Run

A screen run allows the user to run the simulation model by using the 

predefined output screens. An output screen is mainly made up of charts, graphs, 

histograms and time series. The user can design an output screen by arranging the 

position of the selected components within the screen window.

Figure 6.25 shows the screen run dialogue box. The user can specify the 

duration, the run-in period and the speed of the simulation run. The switching of 

screens can be preprogrammed by setting the time interval that a selected screen will 

appear during a simulation run. A report file and a result file can be specified.
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6.5. THE OUTPUT MODULE

The report generation facility of the MacGraSE application is discussed in 

section 6.5.1. Apart from the simulation result file, which contains textual description 

of the events that occured during a simulation run, there are five types of output data 

that can be specified in the model - the entity utilisation time chart, the activity count
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table, the system values table, histograms and time series (discussed in sections 6.5.2 

to 6.5.6 respectively). The first two items are automatically recorded during a 

simulation run, others are specified by the actions of the user.

6.5.1. The Report Generator

The format of the simulation report can be edited by using the report dialogue 

box as shown in figure 6.26. The user can select the data recording items (activity 

count table, utilisation time chart, histograms, time series, system value table, activity 

duration time graph, text run results, and the model picture) that are specified in the 

model and reorder the report sequence. Other editing facilities include insertion of a 

page break, text string, straight line and empty line between items.

FigurQ_02Q, Thç Report Dialogue Bqpç
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6.5.2. The Entity Utilisation Time Chart

The utilisation time chart records the proportion of the time that the permanent 

entities in the system are engaged in activities. Temporary entities are not recorded in
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this way since they are only in the system for a limited duration. Figure 6.27 shows an 

example of a utilisation time chart.

Figure 627 . An Entity Utilisation Time Chart
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6.5.3. The Activity Count Chart

The activity count chart records the number of times each activity was 

successfully started during the simulation run. Figure 6.28 shows an example of an 

activity count chart.

Figure 0,23.. AnAcîivjfy Count Chart
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6.5.4. The System Values Table

The system values table gives the last value of all the attributes of the system. 

This will be of particular use if the attribute defined by the user was designed to 

calculate some global variable of interest.

6.5.5. Histograms

There are two types of histograms which the user can specify - queue 

histograms and attribute histograms. A queue histogram can be sub-divided into a 

queue length histogram, which records the average length of the queue, and a queuing 

time histogram, which records the length of time that each entity of that entity type 

spends in the queue. Some basic statistical results include the mean, the standard 

deviation, the variance, the total number of frequencies, and the sum of each frequency 

multiplied by the number of observations. An example of a histogram produced by 

MacGraSE is given in figure 6.29.

Figure 629. A Histogram
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6.5.6. Time Series Chart

A time series chart records the queue length in a queue with respect to time 

during a simulation run. The drawing of a time series is automated and the user can 

specify the time series chart to be drawn in either one of three modes - a bar, a line or a 

scatter plot. An example of a line time series chart produced by MacGraSE is given in 

figure 6.30.

Figure 6.30. A Time Series Chart
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6.6. EXPERIENCE GAINED FROM MACGRASE

The advantages and limitations of MacGraSE are discussed in section 6.6.1 

and 6.6.2 respectively.

6.6.1. Advantages of MacGraSE

The main advantage of using an application such as MacGraSE is its user- 

friendly visual interactive interface. Macintosh programs are all event-driven, i.e. the
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application is programmed to respond to the actions of the computer user. With this 

interface, the user has complete control over the application during the construction of 

the simulation model. Moreover, the formulation mechanism allows the user to 

reconstruct the model continuously throughout the model building process. The tight 

indexing of entity icons is so apparent that the user can easily modify an existing path 

or create an additional path anywhere within its life cycle. For simulation models that 

are heavily attribute-based, the user can easily model movements of attribute evaluation 

in the system. The main benefit of MacGraSE is to aid a user to construct the model 

logic in a stimulating environment.

MacGraSE is easy to use. The iconic menus provided by the system allow the 

user can to familiar with the application very quickly. All that is required from the user 

is an ability to draw, not necessarily as skilful as a painter, but to draw some 

resemblance to the real world system.

6.6.2. Limitations of MacGraSE

Although MacGraSE is a powerful simulation system, it suffers the same 

deficiency that most data-driven packages have - one can only specify the logic which 

the simulation system is programmed to accept. Any other logic that a user wants to 

specify, and which is not included in the system, requires the user to add code to the 

generated program.

MacGraSE is Macintosh-specific. It is written by using the routines inside the 

ROM of the Macintosh and cannot therefore be translated onto other machines. On the 

other hand, if the application is developed on other non-graphics orientated machines, 

the final system might not be as impressive, and the drawing routines and the speed of 

drawing are always a problem . Another disadvantage of the application is that it is 

memory-dependent The user has to make sure there is enough RAM on the machine to
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run the application, especially if a long simulation run is required.

It is inevitable that not all the real world systems can be drawn. For a large 

and complex system, different levels of diagrams might be required. MacGraSE does 

not allow the user to create a pictorial description within another pictorial description 

but it is one of the area that will be further researched into.

6.7. SUMMARY

This chapter looks at the technical aspects of the MacGraSE application. The 

program is still undergoing further improvements and refinements so as to increase the 

code efficiency and thereby reduce the running time of the application.

The users of MacGraSE include both inexperienced simulation modellers and 

intelligent modellers. It also provides the right environment for the client and the analyst 

to formulate the problem in a collaborate manner. The client is not required to 

understand any diagramming techniques since what she sees on the computer screen is 

a self-explanatory picture of the real world system, with indexed entity images 

indicating the movement of different entity types within the system.

MacGraSE can be used for building prototypes of simulation models. For 

complicated simulation models, prototyping can help to narrow the gap between the 

client and the analyst. MacGraSE is a complete simulation environment since it allows 

the user to perform experiments on the model and generate reports from the simulation 

run. It is also a very good tool for simulation beginners to learn about simulation 

techniques.
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CHAPTER 7

CONCLUSIONS & FURTHER RESEARCH

This is the final chapter of the thesis. Section 7.1 summarises the thesis and 

section 7.2 draws conclusions from the research. Section 7.3 draws some conclusions 

concerning the extensive experience gained using the Apple Macintosh microcomputer 

during this research. Section 7.4 discusses research that can be pursued in the near 

future on the basis of research reported in this thesis.

7.1. SUMMARY

This thesis has investigated the potential of computer graphics in providing a 

graphics driven specification system that contains sufficient structure and content to 

form the simulation model itself. Chapter 1 set the scene on the research, describing the 

nature of discrete event simulation modelling, the diagramming method of activity cycle 

diagrams which underpinned this research, the three phase simulation model structure, 

and a discussion about visual simulation modelling. These approaches were combined 

in this research endeavour, having been put into perspective with respect to other 

published research work in Chapter 2.

The basic research method adopted was to build systems that exemplified the 

state of thinking at the time. The purpose of this method was to enable ideas to be 

developed, discarded and enhanced, and for new ideas to emerge. Chapter 3 discussed 

the first development, MacACD, which gave experience in the construction of such 

systems on an Apple Macintosh. Apart from providing the basis for proposals 

concerning the enhancement of ACD rules of construction, MacACD demonstrated the
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limitations of an ACD interface and the need for a more intricate connectivity between 

textual and diagrammatic modes of model specification.

Chapter 4 described the development of HyperSim, a simulation system 

developed using HyperCard. This system has all the power of interconnectivity 

demonstrated as a need by MacACD, but has severe limitations both in terms of 

security of system development, and an inability to provide a running model directly 

due to lack of speed. However, the power of an icon based interconnected textual and 

diagrammatic based system was demonstrated, and led to the development of the final 

system described in this thesis : MacGraSE.

Chapter 5 sets out the basic requirements of a graphics driven specification 

and modelling system, based on the research experiences described in the previous 

chapters. Whilst textual and ACD interfaces are major interconnected parts of 

MacGraSE, the main input device is a picture representing the problem, including a 

background display. This system allows for dynamic icon based visual model running, 

as well as code generation for complete model embellishments, interactive report 

writing, and representational graphics outputs. Chapter 6 describes the methods by 

which the design of MacGraSE was implemented on the Apple Macintosh 

microcomputer.

7.1. CONCLUSIONS

The qualities of graphics and the ease of using graphics in an application will 

continuously advance with the current rapid growth in technology. Graphics has 

become an essential component in every type of application software in recent years. 

High quality and well-presented graphics facilitates human understanding and helps to 

break the communication gap between parties of different interests.
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The popularity of visual simulation modelling has rapidly increased recently. 

It is commonly an integral part of a simulation system. However, the pros and cons of 

using visual simulation modelling are debatable. Visual simulation should not be 

misused or overused. For large and complex models, an animation picture running on 

the screen might cause misunderstandings unless the monitor is large and clear. It might 

mean absolutely nothing to the user unless he understands what the picture represents. 

Paul (89b) emphasised that : "Although visual modelling is a powerful complement to 

an analyst's problem solving capabilities, it has new problems to overcome as well. 

The problems of visual simulation includes the fact that vision is interpreted by the 

brain which does not remember all the visual detail. Moreover, the customer is required 

to understand the simulation in order to understand what the visual simulation 

represents. Also, visual simulation is time consuming and it is impossible to test all the 

model interactions visually for a complex model. The most important potential benefit 

of visual simulation is the increasing ability to help a decision maker by working 

together in a collaborative effort. Graphics is the way forward. Humans think 

'visually'. Text is a poor approximation, and is even more unreliable."

The practical side of this research started with the production of a graphical 

specification system in which the user can define a simulation model by drawing an 

activity cycle diagram on the screen. The parameters are input via dialogue boxes that 

are evoked by actions of the user. The application produces a text file from the 

specification model which can be passed down to a VAX computer and read by the 

program generator AUTOSIM (Chew 86) to produce a three-phase simulation program. 

It was a successful system and proved the usefulness of such a diagramming 

specification system and the potential of the Apple Macintosh in producing graphical 

simulation applications.

At this point in the research, we felt the need to look into other diagramming 

techniques and see if there is a better technique than the activity cycle diagram method.
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We found that although the ACD method is not able to accommodate all the details of 

the model, especially in the assignment of attributes, it is the most clear and precise way 

of displaying the model logic in a discrete-event simulation model. Other diagramming 

techniques cannot provide such a simple but logical view of the model of interest. We 

further proposed that the conventional activity cycle diagram method can be further 

enhanced in a computer-aided environment.

The nature of Hypertext gave insight into how to produce a flexible 

specification system. Research progressed into the HyperCard environment on the 

Apple Macintosh. With its magnificent web-structure between different stacks, we 

produced a flexible textual/graphical specification system with a built-in program 

generator. This research highlights the usefulness of such a flexible specification 

system and how the ideas can be carried forward to produce a complete graphical 

simulation environment.

The last part of the research developed a graphical simulation environment 

which allows the user to define the model logic by drawing a picture on the screen, 

entering the details of the parameters by some textual description, and then directly 

running this picture on the screen. The user can interrupt at any point during the 

simulation run, alter the parameters and continue the run. The user can also design the 

output screen where the results of the simulation run can be displayed.

Graphics is an invaluable tool to both the modeller and the client of the system 

in simulation modelling. The universal use of diagramming techniques as a means of 

developing an informal simulation model are because diagrams are beneficial both for 

clear thinking and human communication. Although different diagramming techniques 

have their own conventions and definitions, the system that diagrams represent and 

which is drawn using different diagramming methods, is the same. These diagrams are 

all drawn from the unseen imaginative picture of the real world system that is inside the 

human mind. The breakthrough of the research in this thesis is the possibility of
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bringing the user image directly onto the computer screen and to allow the user to 

reconstruct the model logic within his own thinking environment.

In an industrial environment, the objective of a simulation user is to improve 

the quality of decision-making. High-level languages, program generators and generic 

modelling software have only the partial goal of aiding model coding, and so they 

naturally omit important features. They do not adequately direct experimental 

procedures, they do not invoke the appropriate statistical tools, and they do not provide 

output in several styles appropriate to a broad user hierarchy. Such tools shorten the 

coding cycle, they do not guide the user or reduce the experimental task. We should 

always take a longer-term view than the practitioner or consultant. The CASM research 

team at the LSE is aiming to provide aids for problem formulation, program generation 

and output analysis.

7.3. THE APPLE MACINTOSH

The Apple Macintosh provides a visual user interface based on menus, icons, 

windows, and a mouse as the input device. A graphics-based visual system does 

require some sort of pointing device, and the mouse works as well as, or better than, 

most. Among the different models of Macintoshes, only the Macintosh II supports 

colour graphics. The more popular models (Plus and SE) only have monochrome 

graphics. This is often seen as the biggest disadvantage of the Macintosh when a colour 

simulation system is preferred. The disadvantage of having a small size 8" screen can 

be overcome by connecting the main unit to a ‘Megascreen’ (A4 or A3 size screen) via 

the SCSI port. For simulation modelling, it is ideal to have a large screen and a colour 

system so as to display the full picture of the dynamics of the simulation run. Despite 

these deficiencies, the Macintosh is extremely flexible in producing high-quality 

graphics and sophisticated representational graphical output.
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The Macintosh uses the Macintosh Operating System (MGS). The MGS takes 

up only a fraction of the ROM. There is also a User Interface Toolbox (UIT) which 

consists of hundreds of callable routines that are used to implement the standard 

Macintosh application interface. Since graphic operations tend to be memory intensive, 

most developers on the Macintosh will not have enough memory to perform their own 

sophisticated graphics. However, they can always get access to the libraries of 

procedures and functions found in the toolbox and in the operating system itself.

The main advantage in using graphics on a Macintosh is its speed in drawing. 

QuickDraw, the magician artist in the RGM of the Macintosh, allows you to draw 

complicated graphics at a very high speed. Another advantage concerns its ability to 

store resources separate from the application code.

Macintosh supports the use of icons and bit-mapped graphics. Using icons is 

an ideal way of representing an entity on the screen. Because of its high resolution, the 

movement of the entity can be very smooth and well-presented. Applications which 

allow visual simulation to be run on the screen are more appropriately developed in this 

type of environment. The use of bit-mapped graphics allows the marriage of graphics 

and text, and the ability to manipulate both on the same display. This gives tremendous 

flexibility in how that text is presented, in terms of size, style, and font design, and in 

mixing text with graphics. In addition, any of these elements can be changed and 

redisplayed on the screen countless times.

7.4. FURTHER RESEARCH

There is a lot of work that can be done to improve the MacGraSE application. 

The multiple windowing interface of the Macintosh has made a layering pictorial 

description possible. For large and complex system, the user should ideally be able to
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integrate the entire system into subsystems so that each has a pictorial description of its 

own. A large scale model can then be built in such an environment.

Colour capabilities should be included as one of the options available in the 

application. Visual simulation can be more attractively displayed. The generated ACD 

can then be drawn in different colours so that each colour represents the life cycle of 

one entity type. Although only ACDs can be generated from MacGraSE, the pictorial 

description can be used as a basis for generating other logical structured diagrams.

The recent version of MacGraSE does not have a built-in macro language. 

The use of macros in an application will increase its specification flexibility since the 

user can write user-defined procedures to meet his own specification requirement. The 

language must be simple to use, with easy-to-understand syntax so that users with 

limited programming experience will find it easy to comprehend. The main benefit of 

macros is to allow the user to add his own routines to the model and to be able to run 

the modified model within the system. In this case, the user does not need to modify 

the generated code outside the system.

The output analysis facility is another area in which further improvements can 

be made. More statistical analysis, for example regression or analysis of variance, 

should be available in the application. Statistical tests can then be performed within the 

simulation environment without the need to export data into other statistical packages.

The interaction facility of current visual interactive models is passive (Hurrion 

89). The user must decide when to interact, what action to take, and when to accept the 

validity of the results. The expertise of the user is lost and not retained by the 

simulation system. The ideal interactive facility should be 'two-way'. The user may 

interrupt the execution of a model, or an advisory and monitoring function within the 

model can interrupt its own execution and suggest to the user alternative model 

parameters or experiments. The possibility of giving visual interactive models a
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learning and intelligence aspect is due to recent advances in artificial intelligence (further 

discussed in Filtman & Hurrion 87, Doukidis & Paul 85, 86, and Paul 89c, 89d).

The next generation of visual interactive models will probably include an 

expert element, i.e. the model itself will take an active role in the search for a solution. 

The addition of artificial intelligence methods to simulation is the next possible quantum 

advance for simulation.
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PROGRAM STRUCTURES IN PASCAL
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A . 2. THE PUB PROGRAM 

A . 3. THE LAUNDERETTE PROGRAM 

A . 4. THE STEELWORKS PROGRAM
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This appendix is divided into four sections. Section A. 1 shows a skeleton three- 

phase structure simulation program. Listings of simulation programs for the example 

models in this thesis are given in sections A.2, A.3 and A.4 respectively.

A . I .  The Skeleton Program

A Macintosh Turbo Pascal three-phase simulation program requires the use of 

the precompiled library MacSim.Lib (see Appendix B) in the same directory as that of 

the program. The listing of the skeleton program is shown as follows :

PROGRAM anynant e ;

{ $U M a c S I m . L i b )
{ $ R+ >
{ $ S + }

U a e a
{ $ S  MGl ob}  Me mType s  , Qu i c k d r  aui , OS I nt  f  j Too  I I nt  f , P a c k  I n t  f j

M S i m G l o b o l ,
{ $ S  MSomp} MS i m S a mp I e j
{ $S MMode} MS i m Mo d e l ,
{ $ S  MOut p)  MS i m O u t p u t ;

UAR
SYSTEM_ENT : E n t i t y ;

p r o c e d u r e  B u l l d _ M o d e l ;
b e g i n
e n d  ;

p r o c e d u r e  C _ p h o s e  ; f  or i uar d ;

p r o c e d u r e  G r e a t e _ R e c o r d i n g ;
b e g i n
e n d  ;

p r o c e d u r e  C 9 _ i n _ p r o g r e a 9 ;
b e g i n
e n d  ;

p r o c e d u r e  S t a r t u p ;  
b e g i n

I n i t  U a r 9 ;
9 e t _ S V S T E M_ E N T ( S Y S T E M_ E N T ) ;
I n p u t _ F i  I I Q u e ( ' a n y n a m e . Q U E ' ) ;
G r e a t  e _ R e c o r d  i n g ;
G e _ i n _ p r o g r e 9 9 ;
G _ p h a e e ; 

e n d  ;
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p r o c e d u r e  R e p o r t ;
b e g i n
e n d  ;

p r o c e d u r e  C _ o c t  i v i t  y ;
b e g i n
e n d  ;

p r o c e d u r e  B 1 _ e n d _ o c t i  v i t y _ e n t i  t y ;
b e g i n
e n d  ;

p r o c e d u r e  B 2 _ e n d _ o c t i  v i t y _ e n t i  t y ;
b e g i n
e n d  ;

p r o c e d u r e  En d Ru n I n ;  
b e g i n

G r e a t  e _ R e c o r d  i ng j 
e n d  ;

f u n c t i o n  f l _ p h a s e : b o o  I e o n  ; 
b e g i n

i n c r e a s e _ t  i me ;
R_ p h a e e  := (TIM <= D u r a t i o n ) ;  

e n d  ;

p r o c e d u r e  B _ p h a e e ;  
b e g i n

w h i l e  ( C u r r e n t _ t i m e ( T I M ) )  do 
b e g i n

w h i l e  ( G e t _ n e x t _ b e v e n t )  do 
b e g i n

c a s e  B e v e n t _ n u m o f
1 : B 1 _ e n d _ o c t  i v  i t y _ e n t  i t y ;
2 : B 2 _ e n d _ o c t  i v  i t y _ e n t  i t y ;  
127  : EndRunI n;

e n d  ; 
e n d  ; 

e n d  ; 
e n d  ;

p r o c e d u r e  C _ p h o s e ; 
b e g i n

C _ a c t i v i t y ;  
e n d  ;

p r o c e d u r e  E x e c u t e  ; 
b e g i n

O p e n _ F i l e ( ' a n y n a m e . R S T ' ) ;
S t a r t u p ;
i f  ( R u n _ l n _ P e r  i od <> 0 )  t h e n

l n i t _ R e s t a r t ( 1 2 7 j R u n _ l n _ P e r  i o d ) ;  
w h i l e  ( f l _ p h a s e )  do 
b e g i n

B _ p h a s e ;
C _ p h a s e ; 

e n d  ;
R e p o r t  ;
C I o s e _ F i l e ( ' a n y n a m e . R S T ' ) ;  

e n d  ;
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BEGI N { mai n pr o g r a m }
I n i t i a l ! s e _ m o d e I ( f a  I s e ) ;
Bu i l d _ m o d e I  ; 
r e p e a t

I n p u t _ O u r a t I  on  ;
i f  ( D u r a t i o n  > 0 ) t h e n  E x e c u t e  ; 

u nt  i I  ( D u r â t i on< = 0 ) ;
END .

A.2.  The Pub Program

P r o g r a m PUB;

{$U M a c S i m . L i b }
( $ R + )
( $ S + )

U s e s
<$S MGl ob)

($s MSomp)
($s MMode)
($s MOutp)

M e m T y p e a , Q u i c k d r a w , O S I n t f , T o o l  I n t  f , P a c k l n t f ,  
M S i m G l o b a l ,
MS i mSamp I e ,
MS i m Mo d e l ,
MS I mOut  p u t  ;

V a r
CUSTOMER, Bf l RMf l ID, GLASS, DOOR, SVSTEM_ENT E n t i t y ;
WAI T, CLOSED, READY, I  OLE, CLEAN, FULL, DI RTY Qu e u e ;
ARRI UE, POUR, DRI NK, UASHUP A c t i v i t y ;
OUTSIDE : S o u r c e ;

p r o c e d u r e  B u i l d _ M o d e l ;  
b e g i n

M a k e E n t ( S Y S T E M _ E N T , ' SYSTEM_ ENT’ ) ;
M a k e A t t ( S Y S T E M _ E N T , ' T D E S I R E ' ) ;
Ma k e E n t ( C U S T O ME R , ' C U S T O ME R ' ) ;
M a k e A t t ( C U S T O M E R , ' D E S I R E ' ) ;
Ma k e E n t ( B A R MA I D , ' B A R MA I D * ) ;
M a k e E n t ( G L A S S ,  ' G L A S S ' ) ;
Ma k e E n t ( D OO R ,  ' DOOR ' ) ;
M a k e A t t H i  S t ( CUS TOMER,  ' DES I R E ' ,  ' DM I ST ' , 1 , 0  ) ; 
M a k e S o u ( C U S T O M E R , O U T S I D E , ' O U T S I D E ' ) ; 
M a k e Q u e ( C U S T O ME R , U A I T , ' WA I T ' ) ;
M a k e Q L e n H i s t ( U A I T ,  ' UAI TT I ME' , 1 , 0 ) ;
M a k e Q T i m H i s t ( U A I T , ' U A I T L E N G T H ' , 1 , 0 ) ;
M a k e T S e r i e s ( U A I T , ' U A I T T S ' , 2 ) ;
Ma k e Q u e ( D O O R , C L O S E D , ' C L O S E D ' ) ;
Ma k e Qu e ( C U S T OME R , R E A D Y , ' R E A D Y ' ) ;
M a k e Q u e ( B A R M A I D , I D L E , ' I D L E ' ) ;
Ma k e Qu e ( GL A S S , C L E A N ,  ' CLEAN'  ) ;
M a k e Q u e ( G L A S S , F U L L , ' F U L L ' ) ;
M a k e Q u e ( G L A S S , D I R T Y , ' D I R T Y ' ) ;
M a k e A c t ( A R R I U E , ' A R R I U E ' ) ;
M a k e A c t ( P O U R , ' P O U R ' ) ;
M a k e A c t ( D R I N K , ' D R I N K ' ) ;
M a k e A c t ( U A S H U P , ' U A S H U P ' ) ; 

e n d  ;
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p r o c e d u r e  C_Phase ; f oruiord j

p r o c e d u r e  G r e a t e _ R e c o r d i n g j  
b e g i n

I n 11 _U t I ID e 9 j 
I n I t _ N a c t  9 j 
I n I t _ H I 9 l J  
I n I t _ T S e r I  9 9  J 

e n d  J

p r o c e d u r e  C 9 _ l n _ P r o g r e 9 9 ;
b e g i n
e n d  ;

p r o c e d u r e  S t o r t U p ;  
b e g i n

In i I U a r 9 ;
S e t _ S Y S T E M_ E N T ( S YS T E M_ E N T ) ;  
l n p u t _ F i I I Q u e ( ' P U B . Q U E ' ) ;
G r e a t  e _ R e c o r d  i n g ;
G 9 _ i n _ P r o g r e 9 9 ;
G _ P h a 9 9 ; 

e n d  ;

p r o c e d u r e  R e p o r t ;  
b e g i n

O p e n _ R e p o r t _ F i I e ( ' P U B . R E P ' ) j  
D i e p i o y _ A c t _ N t i  roe9 ;
D i 9 p I o y _ E n t _ U t i  roe9;
D i 9 p I a y _ S y 9 _ U o I u e 9 ;
D i 9 p I a y _ H i 9 t o g r o r o 9 ;
D i 9 p I o y _ T i r o e _ S e r i  e e ;
G l o 9 e _ R e p o r t _ F i I e ( ' P U B . R E P ' ) ;  

e n d  ;

p r o c e d u r e  G_ARRI UE;
V o r  G o u n t :  i n t e g e r ;

Me nt  : r o o d _ e n t ;
N o r o e : 9 t r 1 0 ;
Uo i ue  ; r e o  I ;
O e e i r e l  : r e o l ;

b e g i n
l uh i i e  ( Qe i ze ( GLOSED)  >= 1 )
d 0
b e g i n

A c t T i r o e : = N E G E X P ( 1 0 , 3 ) ;  
f o r  c o u n t  : = 1 t o  1 do 
b e g i n

{ Eva I uo t  i on o f  DESIRE }
Ment  := N u r o i n S o u r c e ( O U T S i D E , c o u n t ) ;
Noroe : = ' DES I RE' ;
U a l u e  := TRUNG( 1+4*RND( 5)  ) ;
A9 9 i g n _ A t t r i b u t e ( M e n t , N o r o e , U o l u e ) ;
{ End o f  E v a l u a t i o n  o f  DESIRE }
L o g A t t D a t a ( N u r o l n S o u r c e ( O U T S I D E , c o u n t ) , N a m e ,  ' D H i S T ' ) ;  

e n d  ;

{ E v a l u a t i o n  o f  TDESIRE }
Ment  := SYSTEM_MOD_ENT;
Nome : = ' TDESI RE' ;
D e e i r e l  :=

E v o l u â t  e _ A t t r i b u t e ( N u r o l n S o u r c e ( O U T S I D E ,  1 ) , ' D E S I R E '  ) ;
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U a l u e  := Eva I u o t  e _ At  t r  i bu t  e ( SYSTEM_MOD_ENT, No me ) ;
U a l u e  := U a l u e  + D e s l r e l j
f l a s I g n _ A t t r I  b u t e ( M e n t , N a m e , U a l u e ) j
{ End o f  E v a l u a t i o n  o f  TDESIRE }

S t a r t _ S c h e d u l e B ( f l R R I U E ) ;
S c h e d u l e B ( l , T a k e F r o m F r o n t ( C L O S E D ) ) ; 
S c h e d u l e B ( 2 , T a k e F r o m S o u r c e ( 0 U T S I D E ) ) ;
E n d _ S c h e d u l e B ;  

e n d  ; 
e n d  J

p r o c e d u r e  B 1_End_RRRI UE_DOOR] 
b e g i n

A d d T o B o c k ( C u r r e n t _ e n t , C L O S E D ) ;  
e n d  ;

p r o c e d u r e  B2_End_ARRI UE_CUSTOMER; 
b e g i n

L o g Q u e D a t a C U A I T , ' U A I T L E N G T H * ) ; 
A d d T o B a c k ( C u r r e n t _ e n t , U A I T ) ;  

e n d  ;

p r o c e d u r e  C_POUR;  
b e g i n

w h i l e  ( Qa i z e ( CLEAN)  >= I ) 
and ( Qa l z e ( U A I T )  >■ 1 )
and ( Q a I z e ( I  OLE) >= 1 )

d o
b e g i n

A c t T i m e : - N 0 R M A L ( 6 , 1 , 7 ) ;
S t a r t _ S c h e d u l e B ( P O U R ) ;  
S c h e d u l e B ( 3 , T a k e F r o m F r o n t ( C L E A N ) ) ;
L o g O u e D a t a ( U A I T ,  ' U AI T L E NGT H' ) ;
S c h e d u l e B ( i , T a k e F r o m F r o n t ( U A I T ) ) ;
S c h e d u l e B ( 5 , T a k e F r o m F r o n t ( I D L E ) ) ;
E n d _ S c h e d u l e B ;  

e n d  ; 
e n d  ;

p r o c e d u r e  B3_ End_ P0 UR_ GLASS;  
b e g i n

A d d T o B o c k ( C u r r e n t _ e n t , F U L L ) ;  
e n d  ;

p r o c e d u r e  B4_End_P0UR_CUST0MER;  
b e g i n

A d d T o B a c k ( C u r r e n t _ e n t , R E A D V ) ;  
e n d  ;

p r o c e d u r e  B5_End_P0UR_BARMAI D;  
b e g i n

A d d T o B o c k ( C u r r e n t _ e n t , I DLE) ;  
e n d  ;

p r o c e d u r e  C_DRINK;  
v o r  Me nt  : m o d _ e n t ;

Name : a t  r 10 ;
U a l u e : r e a l  ;
D e a l  r e  1 : r e a l ;

b e g i n
w h i l e  ( Qa i z e ( FULL)  >= 1 )

and ( Qa i ze ( READY)  >= 1 )
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d 0
b e g i n

A c t T i m e : « U H I F 0 R M ( 5 , 1 0 , 1 7 ) ;

{ Eva I u a t I  on o f  DESIRE } 
rient  :* Hum I nQue(RERDV,  1)  ;

Nome :■ ' DESI RE' ;
De e  I r e  1 :■ Eva I u a t e _ f l t t r I  b u t e ( Nu mI n Ou e ( R E RD V, 1 ) , N o m e ) ;

Ua l u e  ;■ D e s l r e l  -  1;
f l ee I g n _ f l t t r I b u t e ( H e n t , N a m e , U a I u e ) ;

{ End o f  E v a l u a t i o n  o f  DESIRE }

S t a r t _ S c h e d u l e B ( D R I H K )  ;
S c h e d u l e B ( 6 , T a k e F r o m F r o n t ( F U L L ) ) ;
S c h e d u l e B ( 7 , T a k e F r o m F r o n t ( R E f l D V ) ) ;
E n d _ S c h e d u l e B ;  

e n d  ; 
e n d  ;

p r o c e d u r e  B6 _ End_ DRI NK_ GLf l SS; 
b e g i n

f l d d T o B o c k ( C u r r e n t _ e n t , D I R T V ) ;  
e n d  ;

p r o c e d u r e  B7_End_DRI NK_CUSTOMER; 
v o r  C o n d i t i o n : b o o l e o n ;

D e e  i r e : r e o I  ;
b e g i n

De e  i r e  := Eva I u o t e _ o t t r i b u t e ( C u r r e n t _ E n t , ' DES I RE ' ) ; 
C o n d i t i o n  :■ Dee  i r e > 0 ;  
i f  c o n d  i t  i o n  t h e n  
b e g i n

L o g Q u e D o t a ( U f l I T ,  'UR I TLENGTH' ) ;  
R d d T o B a c k ( C u r r e n t _ e n t , U R I T ) ; 

e nd  e l e e  
b e g i n

S i n k ( C u r r e n t _ e n t ) ; 
e n d  ; 

e n d  ;

p r o c e d u r e  C_UflSHUP;  
v o r  C o u n t  : i n t e g e r ;  
b e g i n

w h i l e  ( Qe i z e ( DI RTV)  >* I ) 
and ( Os i z e ( I  DIE)  >■ I )

d o
b e g i n

Re t  T i me : = 5  ;
S t a r t _ S c h e d u l e B ( U R S H U P ) ;
f o r  c o u n t  : = I t o  III NOF( 3 ,  QS I ZE(D I RTV) ) do
b e g i n

S c h e d u l e B ( 8 , T o k e F r o m F r o n t ( D I R T V ) ) ;  
e n d  ;
S c h e d u l e B ( 9 , T a k e F r o m F r o n t ( I D L E ) ) ;
E n d _ S c h e d u I e B ; 

e n d  ; 
e n d  ;

p r o c e d u r e  B8 _ En d_ URSHUP_ GLRSS; 
b e g i n

R d d T o B a c k ( C u r r e n t _ e n t , C L E R N ) ;  
e n d  ;
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p r o c e d u r e  B9_End_UASHUP_BARMAI 0 ; 
b e g i n

A d d T o B o c k ( C u r r e n t _ e n t , I DLE) ;  
e n d  ;

p r o c e d u r e  E n d Ru n I n ;  
b e g i n

G r e a t  e _ R e c o r d  i ng  ; 
e n d  ;

f u n c t i o n  A . P h o e e ; b o o  I e o n  ; 
b e g i n

i n c r e o « e _ T  i me ;
A_ P h a s e  :■ ( Ti l l  <= D u r a t i o n ) ;  

e n d  ;

p r o c e d u r e  B _ P h a a e ;  
b e g i n

w h i l e  ( C u r r e n t _ T  i me( TI M)  ) do 
b e g i n

w h i l e  ( G e t _ H e x t _ B e v e n t ) do 
b e g i n

c a s e  Be v e n t _ Nu m o f
B1_End_ARRI UE_D00R;
B2_End_ARR i UE_CUSTOMER;
B3_End_P0UR_GLASS;
Bi _End_POUR_CUSTOMER;
B5_End_P0UR_BARMAi D;
B6_End_DRI NK_GLASS;
B7_End_DRIHK_CUST0MER;
B8_End_UASHUP_GLASS;
B9_End_UASHUP_BARMAID;

127  : EndRunI n;
e n d  ; 

e n d  ; 
e n d  ; 

e n d  ;

p r o c e d u r e  C _ P h a s e ;  
b e g i n

C_ ARRi UE;
C_POUR;
C_DRINK;
C_UASHUP;

e n d  ;

p r o c e d u r e  E x e c u t e  ; 
b e g i n

Op e n _ F  i l e (  ' P U B . R S T * ) ;
S t a r t u p ;
i f  ( Run_i  n _ P e r  i od <> 0 ) t h e n

l n i t _ R e s t a r t ( 1 2 7 , R u n _ i n _ P e r  i o d ) ;  
w h i l e  ( A _ P h a s e )  do 
b e g i n

B _ P h a s e ;
C _ P h a s e ; 

e n d  ;
R e p o r t  ;
C l o s e _ F i I e ( ' P U B . R S T ' ) ;  

e n d  ;

b e g i n  ( ♦  mai n pr ogr am *)
I n i t  i a I i s e _ M o d e I ( f a  I s e ) ;
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Bu i I d _ H o d e I  ; 
r e p e a t

I n p u t _ D u r o t  i on ;
i f  ( Dur â t  I on > 0 ) t h e n  E x e c u t e ;  

unt  I I ( Dur â t  Ion<=Ü ) ;
e n d  .

A.3.  The Launderette Program

P r o g r a m LAUNDERETTE;

{$U M a c S i m . L i b )
( $ R + )
{ $ S + }

U s e d
{ $ s MGl ob) Me m T y p e s , Q u i c k d r a u i , O S I  nt  f , Too  

M S i m G l o b a l ,
( $S MSomp) MS i mSamp 1 e ,
{ $ s MMode) MS i m Mo d e l ,
{ $S MOutp) M S i m O u t p u t ;

v a r
CUSTOMER, UASH_MAC, BASKET, DR 1 E R , ENTRANCE, SYSTEM. ENT 
U A S H Q, E I D L E , U NL DQ, UI DL E , UU L D Q, T R P T Q, B I DL E ,  
BTRPTQ, DRVQ, BDRYO, DQ, DI DLE, DDQ Qu e u e ;
AAR I UE, LGADUASH, UNLGADUASH, TRANSPORT, LGA DDR 1ER,  
DRY : Ac t  i v i t y ;
OUTSIDE : S o u r c e  ;

E n t i  t y ;

p r o c e d u r e  Bu i I d _ Mo d e I  ; 
b e g i n

M a k e E n t ( S Y S T E M _ E N T , ' S Y S T E M _ E N T ' ) ;
Ma k e E n t ( C US T OME R , ' C US T OME R ' ) ;
M a k e E n t ( U A S H . M A C , ' U A S H _ M A C ' ) ;
M a k e E n t ( B A S K E T , ' B A S K E T ' ) ;
Ma k e E n t ( D R  1ER,  ' D R I E R ' ) ;
Ma k e E n t ( E N T R A N C E , ' E N T R A N C E ' ) ;  
Ma k e S o u ( CUS T OMER, OUT S I DE ,  ' OUTS I DE'  ) ;  
Ma k e Qu e ( C U S T OME R , U A S H Q, ' U A S HQ ' ) ;  
M a k e Q u e ( E N T R A N C E , E I D L E , ' E I D L E ' ) ;
M a k e Q u e ( CUSTOMER, UNLOADQ, ' UNLOADQ' ) ;  
M a k e Q u e ( U A S H _ M A C , U I D L E , ' U I D L E ' ) ;  
M a k e T S e r i e a ( U I D L E ,  ' U I DI ETS ' , 2 ) ;
Ma k e Qu e ( UAS H_ MAC, UUNLOADQ, ' UUNLOADQ' ) ;  
Ma k e Qu e ( CUS TOMER, TRANS P ORTQ, ' TRANSPORTQ' ) ;  
M a k e Q u e ( B A S K E T , B I D L E , ' B I D L E ' ) ;  
M a k e Q L e n H i e t ( B I D L E , ' B I B L E L E N ' , 1 , 0 ) ;
Ma k e Qu e ( BAS KET, BTRANS P ORT,  ' BTRAN SPORT'  ) ;  
Ma ke Que ( CUSTOMER, DRYQ,  ' DRYQ'  ) ;  
Ma k e Q u e ( B A S K E T , B D R Y Q , ' B D R Y Q ' ) ;  
Ma k e Qu e ( CUS TOMER, DQ,  ' DQ'  ) ;  
Ma k e Q u e ( D R i E R , D I D L E ,  ' D i D L E '  ) ;
M a k e Q u e ( D R I E R , D D Q , ' DDQ' ) ;
M a k e A c t ( A R R I U E , ' A R R I V E ' ) ;
M a k e A c t ( LOADUASH,  ' LOADUASH'  ) ;
Ma k e Ac t ( UNLOADUAS H,  ' UNLOADUASH' ) ;
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M a k e A c t ( T R A N S P O R T , ' T R AN S P OR T ' ) ;
M a k e A c t ( L O A D D R I E R , ' LOADDRI ER' ) J 
M a k e A c t ( D R Y , ' D R V ' ) ;  

e n d  ;

p r o c e d u r e  C _ P h a e e ; f o r w a r d ;

p r o c e d u r e  G r e a t  e _ R e c o r d  I n g ; 
b e g i n

I n l t - U t l m e e ;
I n I t _ N a c t  3 ;
I n I t _ H I S t  J
I n I t _ T S e r I  e s  ; 

e n d  ;

p r o c e d u r e  C s _ l n _ P r o g r e s s ;
b e g i n
e n d  ;

p r o c e d u r e  S t a r t U p ;  
b e g i n

I n i t U o r s ;
S e t _ S V S T E M_ E N T ( S VS T E M_ E N T ) ;  
l n p u t _ F i I I O u e ( ' L A U N D E R E T T E . Q U E ' ) ;
G r e a t e _ R e c o r d  i n g ;
G s _ I n _ P r o g r e s s  J 
G _ P h a s e ; 

e n d  ;

p r o c e d u r e  R e p o r t  ; 
b e g i n

O p e n _ R e p o r t _ F i l e ( ' LAUNDERETTE . REP ' ) ;  
D i s p I a y _ A c t _ N t i  me s  ;
D i s p I a y _ E n t _ U t i  me s  ;
D i s p I a y _ S y s _ U a l u e s ;
D i s p I a y _ H  i s t o g r o m s ;
D i s p I o y _ T i m e _ S e r i  e s  ;
G I o s e _ R e p o r t _ F i l e ( ' L A U N D E R E T T E . R E P ' ) ;  

e n d  ;

p r o c e d u r e  G_ARRI UE; 
b e g i n

w h i i e  ( Q s i z e ( E I D L E )  >* 1 )
d 0
b e g i n

A c t T i m e : = N E G E X P ( 1 0 , 7 ) ;
S t a r t _ S c h e d u i e B ( A R R I U E )  ;
S c h e d u  I e B ( 1 , T a k e F r o m S o u r c e ( O U T S I  D E ) ) ; 
S c h e d u l e B ( 2 , T a k e F r o m F r o n t ( E I D L E ) ) ;  
E n d _ S c h e d u l e B ;  

e n d  ; 
e n d  ;

p r o c e d u r e  B 1_End_ARRI UE_GUSTOMER;  
b e g i n

A d d T o B a c k ( G u r r e n t _ e n t , U A S H Q ) ;  
e n d  ;

p r o c e d u r e  B2_End_ARRI UE_ENTRANGE; 
b e g i n

A d d T o B a c k ( G u r r e n t _ e n t , E I D L E ) ;  
e n d  ;
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p r o c e d u r e  C_LOflDUflSH;  
b e g i n

w h i l e  ( Qe i z e ( UASHQ)  >= 1 )
and ( Qe i z e d J I D L E )  >■ 1 )

d o
b e g i n

fl c  t  T i » e : ■ 2 5 j
S t a r t _ S c h e d u l e B ( L O R D U R S H ) j  
S c h e d u l e B ( 3 , T a k e F r o n i F r o n t ( U R S H Q ) ) j  
S c h e d u l e B ( 4 , T o k e F r o m F r o n t ( U i D L E ) ) ;  
E n d _ S c h e d u I e B ; 

e n d  ; 
e n d ;

p r o c e d u r e  B3_End_L0RDURSH_CUST0MER;  
b e g i n

R d d T o B a c k ( C u r r e n t _ e n t j U H L O R D Q ) ;  
e n d  ;

p r o c e d u r e  B4_End_L0RDURSH_URSH_MRC;  
b e g i n

R d d T o B a c k ( C u r r e n t _ e n t , UUNLORDQ) ; 
e n d  ;

p r o c e d u r e  C_UNLORDURSH; 
b e g i n

w h i l e  ( Qe i ze ( UNLORDQ)  >■ 1 )
and ( Qs I ze(UUNLORDQ) >= 1 ) 
and ( Qs i z e ( B I D L E )  >* 1 )

d 0
b e g i n

R c t T i r o e ; * U H I F O R n ( 1 , 4 , 8 ) ;
S t a r t - S c h e d u l e B ( UNLORDURSH) ; 
S c h e d u l e B ( 5 , T a k e F r o » F r o n t ( U N L 0 R D Q ) ) ;  
S c h e d u  I e B ( 6 , T a k e F r o i n F r o n t  ( UUNLORDQ) ) ;  
S c h e d u l e B ( 7 , T a k e F r o m F r o n t ( B I D L E ) ) ;  
E n d _ S c h e d u I e B ; 

e n d  ; 
e n d  ;

p r o c e d u r e  B5_End_UNL0RDURSH_CUST0MER;  
b e g i n

R d d T o B a c k ( C u r r e n t _ e n t , T R R N S P O R T Q ) ;  
e n d  ;

p r o c e d u r e  B6_End_UNL0RDURSH_URSH_MRC;  
b e g i n

R d d T o B a c k ( C u r r e n t _ e n t , U I D L E ) ;  
e n d  ;

p r o c e d u r e  B7_End_UNL0RDURSH_BRSKET; 
b e g i n

R d d T o B a c k ( C u r r e n t _ e n t , B T R R N S P O R T ) ;  
e n d  ;

p r o c e d u r e  C_TRRNSPORT;  
b e g i n

w h i l e  ( Qs i ze ( TRRNSPORTQ)  >= 1 )
and ( Qai ze ( BTRRNSPORT)  >= 1 )

d 0
b e g i n

R c t T i m e : = U N I F 0 R M ( 1 , 4 , 9 ) ;
S t a r t _ S c h e d u l e B ( T R R N S P O R T ) ;
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S c h e d u I e B ( 8 , T a k e F r o m F r o n t ( T R f l N S P O R T Q ) ) J 
S c h e d u l e B ( 9 , T a k e F r o i n F r o n t ( B T R f l N S P 0 R T ) ) j  
E n d _ S c h e d u I e B ; 

e n d  ; 
e n d  J

p r o c e d u r e  B8_End_TRRNSP0RT_CUST0MER;  
b e g i n

A d d T o B a c k ( C u r r e n t _ e n t , D R Y Q ) ;  
e n d  ;

p r o c e d u r e  B9 _ End_ TRANSP0 RT_ BRSKET; 
b e g i n

A d d T o B a c k ( C u r r e n t _ e n t , B O R Y Q ) ;
e n d ;

p r o c e d u r e  C_LOADORi ER;  
b e g i n

w h i l e  ( Qe i z e f DRYQ)  >» 1 )
and ( Qai z e ( BDRYQ)  >» 1 ) 
and ( Qs i z e ( O i D L E )  >» 1 )

d o
b e g i n

A c t T i m e : = 2 ;
S t a r t _ S c h e d u i e B ( L O A D D R i E R )  ;
S c h e d u I e B ( 1 0 , T a k e F r o m F r o n t ( O R Y Q ) ) ;  
S c h e d u i e B ( 1 1 , T a k e F r o m F r o n t ( B O R Y Q ) ) ; 
S c h e d u i e B ( 1 2 , T a k e F r o m F r o n t ( D i O L E ) ) ;  
E n d _ S c h e d u i  e B ; 

e n d  ; 
e n d  ;

p r o c e d u r e  B 1 0 _ En d _ L0 AD0 R i ER_CUSTOMER;  
b e g i n

AddT o B o c k ( C u r r e n t _ e n t , D Q ) ; 
e n d  ;

p r o c e d u r e  B 11 _End_LOADDR i ER_BASKET; 
b e g i n

A d d T o B a c k ( C u r r e n t _ e n t , B I D L E ) ;  
e n d  ;

p r o c e d u r e  B 1 2_End_L0ADDR i ER_DR1ER;  
b e g i n

A d d T o B a c k ( C u r r e n t _ e n t , D O Q ) ;  
e n d  ;

p r o c e d u r e  C_DRY;  
b e g i n

w h i i e  ( Qs i z e ( DQ)  >= 1 )
and ( Os i z e ( DDQ)  >= 1 )

d 0
b e g i n

A c t T i m e : = N 0 R M A L ( 6 , 1 , 5 ) ;  
S t a r t _ S c h e d u l e B ( D R Y ) ;
S c h e d u i e B ( 1 3 , T a k e F r o m F r o n t ( O Q ) ) ;
S c h e d u i e B ( 1 4 , T a k e F r o m F r o n t ( O D Q ) ) ;  
E n d _ S c h e d u I e B ; 

e n d  ; 
e n d  ;

p r o c e d u r e  B13_End_DRY_CUST0MER;  
b e g i n
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S i n k ( C u r r e n t _ e n t ) j  
e n d  J

p r o c e d u r e  B M_ En d _ DRV_ DRI ERj  
b e g i n

f l d d T o B a c k ( C u r r e n t _ e n t , D I D L E ) ;  
e n d  ;

p r o c e d u r e  E n d Ru n l n j  
b e g i n

G r e a t  e _ R e c o r d  i ng  j
e n d ;

f u n c t i o n  R _ P h a e e : b o o  l e a n ;  
b e g i n

I n c r e a e e _ T i  me ;
f l _ Pha s e  := (TIM <= D u r a t i o n ) ;  

e n d  ;

p r o c e d u r e  B _ P h a s e ;  
b e g i n

w h i l e  ( C u r r e n t _ T i me ( T I M)  ) do 
b e g i n

w h i l e  ( G e t _ N e x t _ B e v e n t )  do 
b e g i n

c o s e  Be v e n t _ Num o f
1
2
3
1
5
6
7
8
9
10 
1 1 
1 2  

13 
M

B1_End_RRRIUE_CUST0MER;
B2_End_RRRIUE_ENTRRNCE;
B3_End_L0f l DUf l SH_CUSTGMER;
Bi _End_LORDUmSH_URSH_MRC;
B5_End_UNLÜfl DUf l SH_CUSTÛMER;
B6_End_UNL0RDUASH_URSH_MRC;
B7_End_UNL0ADUASH_BASKET;
B8_End_TRAMSP0RT_CUST0MER;
B9_End_TRRNSP0RT_BASKET;

B10_End_L0ADDRI ER_CUSTGMER; 
B11_End_LGADDRIER_BASKET;  
B12_End_LGADDRI ER_DRI ER; 
B13_End_DRY_CUSTGMER;  
B14_End_DRV_DRI ER;

127  EndRunI n;  
e n d  ; 

e n d  ; 
e n d  ; 

e n d  ;

p r o c e d u r e  C _ P h a s e ;  
b e g i n

C_ARRI UE;
C_LGADUASH;
C. UNLGADUASH;
C_TRANSPGRT;
C_LGADDRI ER;
C_DRV;  

e n d  ;

p r o c e d u r e  E x e c u t e ;  
b e g i n

G p e n _ F i I e ( " L A U N D E R E T T E . R S T ' ) ;  
S t a r t u p ;
i f  ( R u n _ l n _ P e r  i od <> G ) t h e n

l n i t _ R e e t a r t ( 1 2 7 , R u n _ l n _ P e r i  o d ) ;  
w h i l e  ( A _ P h a e e )  do
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b e g i n
B - P h o s e ;
C _ P h a s e  ; 

e n d  ;
R e p o r t  ;
C l o e e - F i I e C L A U N D E R E T T E  . R S T ' )  ; 

e n d  ;

b e g i n  { mai n pr o g r a m }
In i 1 i a l i  e e _ M o d e I ( f a I e e ) ;

Bu i I d _ Mo de I  ; 
r e p e a t

I n p u t . D u r a t i o n ;
i f  ( D u r a t i o n  > 0 ) t h e n  E x e c u t e ;  

unt  i I  ( Dur â t  i o n < = 0  ) ; 
e n d .

A 4. The Steelworks Program

P r o g r a m STEELWORKS;  

{ $U M a c S i m . L i b }
{ $ R+>
( $ S + )

U 3 3 3
{ $ s MGl ob)

{ $ s MSomp)
{ $ s MMode}
{ $S MOut p)

M e m T y p e 3 , Q u i c k d r a w , 0 S l n t f , T o o l l n t f , P a c k l n t f ,  
M S i m G I o b a I ,
M S i m S a m p l e ,
M S i m M o d e I ,
M S i m O u t p u t ;

v a r
BLASTF, TORPEDO, PI T, CRRNE, STEELF, SYSTEM_ ENT E n t i t y ;  
f l , B, TBLOU0 , C, PI TQ, CRRNEQ, CREf l DV, QD, G, QE, LORDQ, QF Qu e u e ;
MELT, BLOW, GOI NG, F ILL, LOAD I N, REF I N E , TRAVEL, RETURN A c t i v i t y ;

p r o c e d u r e
b e g i n

Mo k e E n t
Mo k e A t t
Mo k e A t t
Mo k e E n t
Mo k e A t t
Mo k e E n t
Mo k e A t t
Mo k e E n t
Mo k e E n t
Mo k e A t t
Mo k e E n t
Mo k e Qu e
Mo k e Qu e
Mo k e Qu e

Bu i I d . M o d e I

SVSTEM. ENT  
WASTE") ;  
TRANSFER" )

( S VS TEM. ENT,  
( S VS TEM. ENT,  
( S VS TEM. ENT,
( B L A S T F , " B L A S T F " ) ;  
( B L AS T F ,  "BOAST") ;  
( TORPEDO, " TORPEDO" ) 
( T ORP EDO, " T OAS T " ) ;
( P I T ,  "PIT" ) ;
( ORANE,  "ORANE") ;
( ORANE,  "OOAST")
( S T E E L F ,  "STEELF  
( B L A S T F , A , " A " ) ;
( B L A S T F , B ,  " B" ) ;  
( TORPEDO, TBLOWQ, "TBLOWQ 

Mo k e Q L e n H l 3 t ( T B L 0 WQ ,  "TBLOWQLEN 
Mo k e QTi mHl 3 t ( TBLOWQ, " TBLOWQTI M 
M o k e T S e r i e 3 ( T B L 0 W Q ,  "TBLOWQTSER 
Mo k e Q u e ( T O R P E D O , 0 , " 0 " ) ;

) ;

);

)j
, 1 , 0 ) ;
, 5 , 0 ) ;
, 1 ) ;
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M a k e Q u e ( T O R P E O O , P I T 0 , ' P I T Q ' ) ;  
n a k e Q u e ( C R f l N E , C R f l N E Q , ’ CRf l NEQ' ) J 
O a k e O u e ( CRANE , CRE ADV, ' CRE AOV' ) j 
n a k e O u e ( T O R P E D O , Q D , ' Q D ' ) ;  
n a k e Q u e ( P I T , G , ' G '  ) j 
n a k e Q u e ( C R A N E , O E , ' Q E ' ) ;
N a k e O u e ( S T E E L F , L ÜA DO, ' LOAOQ' ) ;  
n a k e Q u e ( S T E E L F , O F , ' Q F ' ) ;  
M a k e A c t ( M E L T , ' M E L T ' ) ; 
M a k e A c K B L O U ,  ' B L OW' ) ;
M a k e A c t ( G O I N G , ' G O I N G ' ) ;  
M a k e A c K F I L L ,  ' F I L L ' ) ;
Ma k e A c t ( L OA D  IN,  ' L O A D I N ' )
Ma k e A c t ( R E F  I NE,  ' R E F I N E ' )
M a k e A c t ( T R A V E L , ' T R A V E L ' )
Ma k e A c t ( R E T U R N , ' R E T V R N ' )  

e n d  ;

p r o c e d u r e  C_P h a a e ; f o r w a r d ;

p r o c e d u r e  G r e a t e _ R e c o r d I n g ; 
b e g i n

I n I t _ U t I  me s  ;
I n l t - N a c t e ;
I n I t _ H 1 s t ;  
l n l t _ T S e r l e a ;  

e n d  ;

p r o c e d u r e  
b e g i n  
e n d  ;

C a _ l n _ P r o g r e a a ;

p r o c e d u r e  S t a r t V p ;  
b e g i n

i n i t V a r a ;
S e t _ S V S T E M_ E N T ( S VS T E M_ E N T ) ;  
i n p u t _ F i i I Q u e ( ' S T E E L W O R K S . Q U E ' ) ;  
G r e a t  e _ R e c o r d i  ng ;
G a _ I n _ P r o g r e a a ;
G _ P h a a e ; 

e n d  ;

p r o c e d u r e  R e p o r t  ; 
b e g i n

O p e n _ R e p o r t _ F i i e ( ' S T E E L W O R K S . R E P ' ) ;  
D i a p l a y _ A  c t _ N t i m e a ;
D i a p I a y _ E n t _ V t i m e a ;
D i a p i a y _ S y a _ V a i u e a ;
D i a p I a y _ H i a t o g r a m a ;
D i a p i a y _ T i m e _ S e r l e a ;
G l o a e _ R e p o r t _ F i  I e ( ' S T E E L WO R K S . R E P ' ) ;  

e n d  ;

p r o c e d u r e  G_MELT;  
v a r  Me nt  : m o d _ e n t ;

N a m e : a t r 1 0 ;
Va l u e : r e a l  ;

b e g i n
w h i i e  ( Q a i z e ( A )  >= 1 )
d 0
b e g i n

A c t T  i roe : - NORMALd  1 0 , 1 5 , 1 ) ;
{ E v a l u a t i o n  o f  a t t r i b u t e  'BGAST'
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Ment  : -  Hum I n Q u e ( A , 1) ;
Name :■ ' BCflST' ;
V a l u e  N0RMf l L( 360 , 5 0 , 2 )  j 

f l s 3 I g n _ f l t t r I b u t e ( M e n t , N a m e , V a l u e ) ;
{ End o f  E v a l u a t i o n  o f  a t t r i b u t e  'BCflST'  }
S t a r t _ S c h e d u l e B ( M E L T ) ;
S c h e d u I e B ( 1 , T a k e F r o m F r o n t ( f l ) ) ;
E n d _ S c h e d u I e B ; 

e n d  ; 
e n d  ;

p r o c e d u r e  B1_End_MELT_BLf l STF;  
b e g i n

f l d d T o B a c k ( C u r r e n t _ e n t , B ) ; 
e n d  J

p r o c e d u r e  C_BLOU;  
v a r  C o u n t  : I n t e g e r ;

C o n d i t I o n : b o o l e o n ;
M e n t : m o d _ e n t ;
N a m e : 3 t r 1 0 ;
Vo l u e : r e a l  ;
B c a e t 1 : r e a  I ;

b e g i n
w h i l e  ( Q3I ze ( TBLOUQ)  >» 0 )

and ( O s i z e ( B )  1 )
d 0
b e g i n

f l c t T i m e : * 1 G ;

C o n d i t i o n  := QSI ZE( TBL0 UQ) >=2 ;
i f  C o n d i t i o n  t h e n
b e g i n

{ E v a l u a t i o n  o f  a t t r i b u t e  TCflSTl  }
Ment  : * NumI nQue ( TBLOUQ,1 ) ;
Name :■ ' TCf l ST' ;
V a l u e  := 3 0 0 ;
f l 3 3 i g n _ f l t t r i b u t e ( M e n t , N a m e , V a l u e ) ;
{ End o f  E v a l u a t i o n  o f  a t t r i b u t e  TCflSTl  }

{ E v a l u a t i o n  o f  a t t r i b u t e  TCAST2 }
Ment  : *  Nu mI n Qu e ( TBLOUQj 2 ) ;
Name := ' TCf l ST' ;
B c a e t l  := Eva  I u a t e _ f l t t r i b u t e ( N u m l n Q u e ( B , 1 ) ,  ' BCf l S T' ) ;  
V a l u e  := B c a e t l  -  3 0 0 ;  
f l 3 3 i g n _ f l t t r i b u t e ( M e n t , N a m e , V a l u e ) ;
{ End o f  E v a l u a t i o n  o f  a t t r i b u t e  TCflST2 }

e n d  ;

C o n d i t i o n  := QSI ZE( TBL0 UQ) =1 ;
I f Cond i t  i o n  t h e n  
b e g i n

{ E v a l u a t i o n  o f  a t t r i b u t e  TCflSTl  }
Ment  := Nu mI n Qu e ( TBLOUQ, 1 ) ;
Name : = ' TCf l ST' ;
V a l u e  := 300 ;
f l 3 3 I g n _ f l t t r i b u t e ( M e n t , N a m e , Va l u e ) ;
{ End o f  E v a l u a t i o n  o f  a t t r i b u t e  TCflSTl  }

{ E v a l u a t i o n  o f  a t t r i b u t e  UflSTE }
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Ment  SYSTEM_MOD_ENT;
Name := ' WASTE' ;
B c c d t l  := E u o I u o t e _ R t t r i b u t e ( NumI n Q u e ( B J 1 ) J ' BCflST ' ) ; 
U o l u e  := E v a I u a t e _ f l t t r i b u t e ( SVSTEM_MOD_ENT, ' Uf l STE' ) J 
V a l u e  :» V a l u e  + B c a s t i  -  3 0 0 ;
f l ea I g n _ f l t  t  r l b u t e ( M e n t , N a m e , Va l u e ) ;
{ End o f  E v a l u a t i o n  o f  a t t r i b u t e  UflSTE }

e n d  ;

C o n d i t i o n  : * QSI ZE( TBL0 UQ) =0 ;
I f C o n d I t  Ion t h e n
b e g i n

{ E v a l u a t i o n  o f  a t t r i b u t e  UflSTE }
Ment  : »  SYSTEM_MOD_ENT;
Name ' Uf l STE' ;
B c a s t i  : *  E v a I u a t e _ f l t t r I  b u t e ( N u mI n Qu e ( B , 1 ) , ' BCf l ST' )  ; 
V a l u e  : * E v a I u a t e _ f l t t r i b u t e ( SYSTEM_MOD_ENT, ' Uf l STE' ) ;
V a l u e  :* V a l u e  + B c a s t i ;
f l s s l g n _ f l t t r l b u t e ( M e n t , N a m e , V a l u e ) ;
{ End o f  E v a l u a t i o n  o f  a t t r i b u t e  UflSTE }

e n d  ;

S t a r t _ S c h e d u l e B ( B L O U ) ;
f o r  c o u n t :=1 t o  MINOF( 2 , QSI 2E( TBLOUQ) )  do
b e g i n

L o g Q u e O a t a ( T B L O U Q , ' TBLOUQLEN' ) ;
S c h e d u I e B ( 2 , T a k e F r o m F r o n t ( T B L O U Q ) ) ; 

e n d  ;
S c h e d u l e B ( 3 , T a k e F r o m F r o n t ( B ) ) ;
E n d _ S c h e d u I e B  ; 

e n d  ; 
e n d  ;

p r o c e d u r e  B2 _ En d _ BL0 U_ T0 f l P E0 0 ;  
b e g i n

f l d d T o B a c k ( C u r r e n t _ e n t , C ) ;  
e n d  ;

p r o c e d u r e  B3 _ En d _ BL0 U_ BLf l S TF ; 
b e g i n

f l d d T o B a c k ( C u r r e n t _ e n t , f l ) ;  
e n d  ;

p r o c e d u r e  C_GOING;  
v a r  C o u n t  : I n t e g e r ;  
b e g i n

w h i l e  ( Q s l z e ( C )  >= 1 )
d 0
b e g i n

f l c t T I me : =P0  I S S O N ( 1 0 , 3 ) ;
S t a r t _ S c h e d u I e B ( G O I N G )  ;
f o r  c o u n t : = 1  t o  MI N 0 F ( 2 , QS I 2 E ( C ) ) do
b e g i n

S c h e d u  I e B ( 4 ,  T a k e F r o m F r o n t  ( O ) ;  
e n d  ;
E n d _ S c h e d u I e B  ; 

e n d  ; 
e n d  ;

p r o c e d u r e  B1 _ End_ G0 I NG_ TORPEDO;
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b e g i n
f l d d T o B a c k ( C u r r e n t _ e n t j P I T Q ) j

e n d ;

p r o c e d u r e  C_FI LL;  
v a r  M e n t : m o d _ e n t ;

Name : s t  r 10;
V a l u e : r e a I  ;
T c a e t l : r e a I ;
C c a s t i : r e a l ;
T r a n s  f  e r ; r e a I  ;

b e g i n
w h i l e  ( 0 3 i z e ( CRf l NE0 )  >-  1 )

and ( Q s i z e ( P I T Q )  >-  1 )
and ( Qs i z e ( G )  >* 1 )

d 0
b e g i n

fl c  t T i ro e : * 1 0 ;

{ E v a l u a t i o n  o f  TRflNSFER }
Ment : -  SVSTEM_MOO_ENT;

Nome : * ' TRflNSFER ' ;
T c a e t l  :** Eva  I u a t  e_f l t  t  r i b u t  e ( Num i nQue  ( P I TQ , 1 ) ,  ' TCflST ' ) ; 
C c a e t l  : * 1 0 0 -

Ev a  I u a t  e _ f l t t r i b u t e ( N u m l n Q u e ( C R f l N E O , 1 ) ,  ' C C f l S T ' ) ;  
V a l u e  := MI NOF( Toas t  1 , C c a e t 1 ) ;  

f l s s i g n _ f l t t r i b u t e ( M e n t , N a m e , V a l u e ) ;
{ End o f  E v a l u a t i o n  o f  TRflNSFER }

{ E v a l u a t i o n  o f  TCflST }
Ment  : *  N u mI n Q u e ( P I T Q , 1 ) ;
Name ;■ ' TCf l ST' ;
T o a s t  1 :■ Eva  I u a t e _ f l t t r i b u t e ( N u mI n Q u e ( P I T Q j 1 ) j ' TCf l ST' ) ;
T r a n s f e r  :■

Eva  I u a t e _ f l t t r i b u t e ( S Y S T E M _ M O O _ E N T ,  ' T R A N S F E R ' ) ;  
V a l u e  :* T o a s t  1 -  T r a n s f e r  ;
f l s 3 i g n _ f l t t r i b u t e ( M e n t , N a m e , V a l u e ) ;
{ End o f  E v a l u a t i o n  o f  TCflST }

{ E v a l u a t i o n  o f  CCflST }
Ment  := NumI n Que ( CRflNEQ, 1 ) ;
Name := ' CCf l ST' ;
C o a s t  1 : -  Eva  I u a t e _ f l t t r i b u t e ( N u mI n Qu e ( CRf l NEQJ1 ) , ' CCf l ST' )  ;
T r a n s f e r  : =

E v a l u a t e _ f l t t r i b u t e ( S Y S T E M _ M O O _ E N T , ' T R A N S F E R ' ) ;  
V a l u e  ! -  C c a s t i  +  T r a n s f e r ;  
f l s s I g n _ f l t t r i b u t e ( M e n t , N a m e , V a l u e ) ;
{ End o f  E v a l u a t i o n  o f  CCflST }

S t a r t _ S o h e d u l e B ( F I L L ) ;
S o h e d u I e B ( 5 , T a k e F r o m F r o n t ( C R f l N E Q ) ) ;
S o h e d u I e B ( 6 , T a k e F r o m F r o n t ( P I T Q ) ) ;
S o h e d u I e B ( 7 , T a k e F r o m F r o n t ( G ) ) ;
E n d _ S o h e d u I e B ; 

e n d  ; 
e n d  ;

p r o c e d u r e  B5 _ End _ FI LI  CRANE;
v a r  C o n d 1 1 i o n  : b o o  I e a n ;

C o a s t  : r e a  I ;
b e g i n

C o a s t  := Eva  I u a t e _ a t t r i b u t e ( C u r r e n t _ E n t C C f l S T ' ) ;
C o n d i t i o n  : * C o a s t  <1 0 0 ;
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i f Cond i t  i o n  t h e n  
b e g i n

f l d d T o F r o n t ( C u r r e n t _ e n t , C R f l N E Q ) j  
e nd  e l s e  
b e g i n

f l d d T o B a c k ( C u r r e n t _ e n t , C R E f l D Y ) ;  
e n d ;  

e n d  ;

p r o c e d u r e  B6 _ En d _ F  i Li TORPEOOj
v a r  C o n d i t i o n  : b o o I e a n ;

T o a s t  : r e a  I ;
b e g i n

T Ca s t  :■ E v a I u a t e _ a t t r i b u t e ( C u r r e n t _ E n t T C f l S T ' ) ;  
C o n d i t i o n  : * T c a s t  >0;  
i f  Cond i t  i o n  t h e n  
b e g i n

f l d d T o F r o n t ( C u r r e n t _ e n t , P i T Q ) ; 
e nd  e l s e  
b e g i n

f l d d T o B a c k ( C u r r e n t _ e n t , Q D ) ; 
e n d  j 

e n d  ;

p r o c e d u r e  B7 _ End _ FI LI  PI T;
b e g i n

f l d d T o B a c k ( C u r r e n t _ e n t , G ) ;  
e n d  ;

p r o c e d u r e  C_LOflD i N; 
v a r  M e n t : m o d _ e n t ;

N a m e i s t r I O ;
V a l u e : r e a l ;

b e g i n
w h i l e  ( Qs i ze(CREf l DY)  >* 1 )

and ( Qs i ze ( LOf l DQ)  >= 1 )
d 0
b e g i n

f l c t T i m e : = 1 0 ;

{ E v a l u a t i o n  o f  Co a s t  }
Ment  := Nu mi n Qu e ( CREfl üY, 1 ) ;
Name : ■ ' CCfl ST' ;
V a l u e  := 0;
f l s s i g n _ f l t t r i  b u t e ( M e n t , N a m e , Va l u e ) ;
{ End o f  E v a l u a t i o n  o f  Co a s t  }

S t a r t _ S c h e d u I e B ( L Of l Di N)  ;
S c h e d u i e B ( 8 , T a k e F r o m F r o n t ( CREf l DY) ) ;
S c h e d u i e B ( 9 , T a k e F r o m F r o n t ( L O f l D Q ) ) ;
E n d _ S c h e d u I e B ; 

e n d  ; 
e n d  ;

p r o c e d u r e  B8_End_L0f l DI N_CRf l NE;  
b e g i n

R d d T o B a c k ( C u r r e n t _ e n t , Q E ) ;  
e n d  ;

p r o c e d u r e  B 9 _ En d _ L0 f l DI N_ S TEELF ; 
b e g i n

f l d d T o B a c k ( C u r r e n t _ e n t , Q F ) ; 
e n d  ;
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p r o c e d u r e  C_REFINEj  
b e g i n

w h i l e  ( Qe i z e ( QF )  >= 1 )
d 0
b e g i n

A c t T i m e : - 5 0 + H E G E X P ( 1 0 , 4 ) ;
S t a r t _ S c h e d u l e B ( R E F I N E ) j  
S c h e d u I e B ( 1 0 , T o k e F r o m F r o n t ( Q F ) ) ;  
E n d _ S c h e d u I e B ; 

e n d ;  
e n d  ;

p r o c e d u r e  B 10 _ E n d _ RE F I NE_ S T E EL F ; 
b e g i n

A d d T o B a c k ( C u r r e n t _ e n t , L O A O Q ) ; 
e n d  ;

p r o c e d u r e  C_TRflUEL;  
b e g i n

w h i l e  ( Qe i z e ( QE )  >* 1 )
d o
b e g i n

fl c t  T i m e : * 2 ;
S t a r t _ S c h e d u l e B ( T R f l U E L ) ;
S c h e d u I e B ( 1 1 , T a k e F r o m F r o n t ( Q E ) ) ;  
E n d _ S c h e d u  i e B ; 

e n d  ; 
e n d  ;

p r o c e d u r e  B1l _End_TRf l UEI  CRANE;
b e g i n

A d d T o B a c k ( C u r r e n t _ e n t , C R A N E Q ) ;  
e n d  ;

p r o c e d u r e  C_RETURN;  
b e g i n

w h i l e  ( Qe i z e ( QD)  >= 1 )
d 0
b e g i n

R e t  T i me : “ 4 ;
S t a r t _ S c h e d u i e B ( R E T U R N ) ;
S c h e d u I e B ( 1 2 , T a k e F r o m F r o n t ( Q D ) ) ;  
E n d _ S c h e d u I e B ; 

e n d  ; 
e n d  ;

p r o c e d u r e  B 1 2 _ En d_ RETURN_ T0 RPED0 ; 
b e g i n

L o g Q u e D o t a ( T B L O U Q , ' T B L O U Q L E N ' ) ;  
R d d T o B a c k ( C u r r e n t _ e n t , T B L O U Q ) ;  

e n d  ;

p r o c e d u r e  E n d Ru n I n ;  
b e g i n

C r e a t e _ R e c o r d i n g ;  
e n d  ;

f u n c t i o n  A _ P h a s e : b o o  l e a n ;  
b e g i n

i n c r e a e e _ T i  me ;
R_ P h a s e  := (TIM <= D u r a t i o n ) ;  

e n d  ;
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p r o c e d u r e  B _ P h a s e j  
b e g i n

w h i l e  ( C u r r e n t _ T  i tne(T I n)  
b e g i n

w h i l e  ( G e t - N e x t _ B e v e n t )  
b e g i n

) do

do

B e v e n t - N u m o f
BI - End- NELT- BLf l STFj  
B2- End_BL0U_T0RPED0;  
B3- End_BL0U- BLf l STFj  
B4_End_G0ING_T0RPED0j  
B5_End- FI LL_CRRNEj  
B6- End_FI LL_TGRPED0;  
B7 _ En d _ F I L L _ P I T ;  
B8- End-L0f l DIN_CRf l NEj  
B9_End_L0f l DI N_STEELFj  

Bl O- En d - RE F I NE- S TE E L F;  
B1l - End- TRRUEL- CRRNE;  
B12_End_RETURN-T0RPEDGj  
E n d R u n I n ;

c o s e  
1 
2
3
4
5
6
7
8 
9
1G 
1 1 
1 2  

127  
e n d ;  

e n d  ; 
e n d  ; 

e n d  ;

p r o c e d u r e  C _ P h o s e ;  
b e g i n

C- MELT;
C- BLGU;
C_GGI NG;
C - F I L L ;
C- LGRDI N;
C- RE F I NE ;
C- TRRUEL;
C- RETURN;  

e n d  ;

p r o c e d u r e  E x e c u t e ;  
b e g i n

G p e n _ F i I e ( ' STEELUGRKS. R S T ’ ) ;
S t a r t u p ;
i f  ( Run—I n _ P e r i o d  <> G ) t h e n

l n i t - R e 3 t a r t ( 1 2 7 , R u n - l n - P e r i o d ) ;  
w h i l e  ( f l - P h o s e )  do 
b e g i n

B - P h a s e ;
C - P h o a e ; 

e n d  ;
R e p o r t  ;
C l o s e - F i  l e ( ' S T E E L U G R K S . R S T ' ) ;  

e n d  ;

b e g i n  { mai n pr o g r a m }
i n i t i a l  i s e - M o d e I ( f a  I s e ) ;
B u l l d - M o d e I  ; 
r e p e a t

I n p u t - D u r a t i o n ;
i f  ( D u r a t i o n  > G ) t h e n  E x e c u t e  ; 

unt  i I ( Du r â t  i on<=G ) ;
e n d  .

Appendix A. Three-Phase Simulation Program Structures in Pascal 151



APPENDIX B

MACSIM.LIB : THE MACINTOSH SIMULATION LIBRARY

B . l .  THE MSIMGLOBAL UNIT

B.1.1. Type Definition 

B.1.2. Global Variables

B. 2 .  THE MSIMSAMPLE UNIT

B.2.1. Sampling Routines 

B.2.2. Distribution Functions 

B.2.3. Arithematic Functions

B. 3 .  THE MSIMMODEL UNIT

B.3.1. Initialisation Routines

B.3.2. Model Setup Routines

B.3.3. Recording and Assigning Routines

B.3.4. C Event Routines

B.3.5. Increasing Time Routines

B.3.6. B Event Routines

B.3.7. Interface Routines

B. 4 .  THE MSIMOUTPUT UNIT

B.4.1. Displaying Routines 

B.4.2. Filing Routines
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This appendix describes the syntax and the functions of MacSim.Lib - the set of 

simulation library routines which was written in Turbo Pascal on the Apple Macintosh. 

MacSim.Lib was written in four units - MSimGlobal, MSimSample^ MSimModel, and 

M Sim O utpu t. These units are discussed in sections B .l, B.2, B.3 and B.4 

respectively.

B .l. The MSimGlobal Unit

This is the declaration unit of the program. The type definition and the global 

variables in the simulation library are shown in figure B.l.

Figure B .L  The MSimGlobal Unit

U n i t  MS i m G I o b a 1 ( 1 ) ;

{ $ 0  MacS i m. L i b } 

i n t e r f a c e

U s e s  M e m T y p e s , Q u i c k D r a w , O S i n t f , T o o  I i n t f , P a c k l n t f ;  

T y p e
3 t r 1  0

h i s t o g r a m
h i a t p t r
h i s t r e c

a t t r i b u t e
a t t p t r
a t t r e c

e n t  i t y

= e t r  i n g [ 10] ;

= ^ h i s t p t r ;
= ^ h i s t r e c ;
= r e c o r d  

name 
h t ype  
b a s e ,  
width, 
c o u n t , 
t  f l ag 
t o t a l , 
eosq 
d a t a

e n d  ;

= ' ‘a t t p t r ;
= ' ‘a t t r e c ;
= r e c o r d

name 
h i 3t
next

e n d  ;

= ' ‘e n t p t r ;

3 t r 10;
I n t e g e r ;

Iong i n t ;

r e a  I ;
a r r a y [ 0 . . 1 6 ]  o f  I ong i n t ;

3 t r 10;  
h i 3t  ogr am; 
a t t r  i b ut e ;
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e n t p t r
e n t r e e

t e e r l e s  
t s e r i e s p t  r 
t e e r i e s r e c

modent
m o d e n t p t r

= ' ' e n t r e c j  
= r e c o r d

nome 
num 
a t t  
ut  i me 
n e x t

e n d ;

= '‘t s e r i e a p t r  J 
= ''t e e r  i e s r e c  ;
= r e c o r d  

nome
i n t e r v o I  
d a t a  
c o u n t  
p l o t  
t f  l og

e n d  ;

= ^ m o d e n t p t r ; 
" ' mo d e n t r e c ;

s t r l 0;
I n t e g e r ;  
a t t r i b u t e ;  

r e a  I ; 
e n t I t y ;

s t r l 0;
I o ng  I n t ; 
a r r a y [ 0 . . 4 4 9 ]  
I n t e g e r ;
I n t e g e r ;
I o ng  I n t ;

o f  I n t e g e r ;

q u e u e
q u e p t r
q u e r e c

s o u r c e  
s o u p t  r 
s o u r e c

'“q u e p t r ;  
'“q u e r e c ;  
r e c o r d  

n o me  
e n t  
ment  
c o u n t  
qI h I s t  
q t h I s t  
t s
n e x t

end

“' s o u p t r ;
'“s o u r e c ;
r e c o r d

nome
e nt
b u f f e r
c o u n t
bu f f  e r c o u n t  
n e x t

s t r l 0;  
e n t I t y ;  
m o d e n t ;
I n t e g e r ;  
h I s t  o g r a m ; 
h I s t  o g r a m ; 
t s e r I  e s  ; 
q u e u e ;

s t r l 0;  
e n t I t y ;  
m o d e n t ;
I n t e g e r ;  
I n t e g e r ;  
s o u r c e  ;

end

a c t i v i t y
a c t p t r
a c t r e c

= '“a c t p t r ;  
= ^ a c t r e c ;  
= r e c o r d  

nome  
c o u n t  
n e x t

e n d  ;

St  r 10 ;
I n t e g e r ;  
a c t  I V I t y ;

mo da t t  
modat  t p t r  
modat  t r e e

= '“m o d a t t p t r  ; 
= '“m o d a t t r e c ;  
= r e c o r d  

a t t  
va I ue  
n e x t

e n d  ;

a t t r I  b u t e  ; 
r e a  I ; 
modat  t ;
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m o d e n l r e c

Ua r

= r e c o r d  
e n t
i nde x  
mat t  
bourn 
c I ock  
n e x t

e n d  J

TI M,
D u r â t  I o n ,
R u n _ l n _ p e r l e d .  
R o l l  1 me : 1o n g I n t ;

Ma I n e n l : e n t i t y ;

Ma 1n a c t : a c t I v l t y

Ma 1nque : q u e u e ;

Ma 1naou : s o u r c e ;

C u r r e n t _ e n t , 
SVSTEM_roodent : mo d e n t ;

Be ue nt _num : I n t e g e r ;

F 11e a e t : b o o l e a n ;

F, RF : t e x t ;

No fRun : I n t e g e r ;

e n t  i t y ;  
i n t e g e r ; 
modat  t ;
I n t e g e r ;  
I o n g I n t ; 
m o d e n t ;

B.1.1. Type Definition

Entity is a handle to the record type entree which contains information about an 

entity type that is specified in the simulation program. The field name is the name of the 

entity type, num is the number of entities of an entity type that are present in the 

system, att is a handle to the list of attributes that belongs to the entity type. The field 

utime is used for accumulating the units of time that the members of an entity type have 

been involved in activities during a simulation run. next is a handle to the next entity in 

the entity link list.

Attribute is a handle to the record type attrec which contains information about 

an attribute which belongs to an entity type. Each attribute is assigned to an entity type 

in the model. The field name is the name of the attribute, hist is a handle to the
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histogram that belongs to the attribute. If the attribute does not have a histogram, hist is 

set to 'nil', next is the next attribute in the attribute list.

Activity is a handle to the record type actrec which contains information about 

an activity that is specified in the program. The field name is the name of the activity. 

Count is a counter variable to indicate how many times the activity has taken place 

during a simulation mn. next is a handle to the next activity in the activity link list.

Queue is a handle to the record type querec which contains information about a 

queue that is specified in the program. The field name is the name of the queue. The 

entity handle ent is a handle to the entity to which the queue belongs, ment is the list of 

model entities (modents) that are present in the queue during a simulation run. count is 

used for recording the size of the queue during a simulation run. qlhist and qthist are 

histogram handles of type queue length and queueing time respectively, ts is a handle to 

the time series of the queue, if any. next is a handle to the next queue in the queue link 

list.

Source is a handle to the record type sourec which contains information about a 

source/sink queue that is specified in the program. The field name is the name of the 

source/sink queue, ent is a handle to the entity to which the queue belongs, buffer is the 

model entity that is present in the queue during a simulation run. count is used for 

recording the size of the queue during a simulation run. buffercount is a counter to 

record the number of temporary entities that has been created from the source buffer. 

next is a handle to the next source/sink queue in the list.

Histogram is a handle to the record type histrec which contains information 

about a histogram, belonging either to a queue or an attribute. The field name is the 

name of the histogram, htype can either be of value 1, 2 or 3. The value '!' indicates 

that the histogram is of type queue length whereas '2' indicates that it is of type 

queueing time. A value of '3', indicates that the histogram is an attribute histogram. 

The field base and width are the base value and the cell width of the histogram
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respectively, data is the array of data that holds the frequency count of the appropriate 

cell during a simulation run. count is the number of times recording has taken place 

during a run. tflag is used by a queueing time histogram to store the last time that the 

histogram was recorded before a new reading takes place, total is the summation of all 

the individual cell value multipled by its appropriate frequency count, sosq is the sum 

of squares of cell values multipled by its frequency count

Tseries is a handle to the record type tseriesrec which contains information 

about a time series specified for a queue. The field name is the name of the time series. 

Interval is the interval of the time axis of the time series, i.e. the gap between two 

consecutive recordings, count is the number of times recording has taken place during a 

simulation run. tflag is used for storing the last time that the recording has taken place 

before a new reading is taken, plot is used for specifying the drawing mode of the time 

series. A value of T', '2', or '3' indicates that the output time series takes the form of a 

bar chart, line plot or scatter plot respecitively. data is the array of data that holds the 

reading of queue length during a simulation run.

Modent is a handle to the record type modentrec which contains information 

about an entity that is being scheduled during a simulation run. The field ent is a handle 

pointing to the entity to which this copy of modent belongs, modatt is the list of model 

attributes which the model entity possesses and is used during a simulation run. index 

is the rank of the model entity among all its associate members of the same entity type. 

Each model entity carries a clock which is used for recording the time that the entity 

enters a queue, next is a handle to the next modent in the list.

Modatt is a handle to the record type modattrec which contains the value of an 

attribute belonging to a model entity during a simulation run. The field att is a handle 

pointing to the attribute to which this copy of modatt belongs, value is the variable that 

stores the current value of the modatt during a simulation run. next is a handle to the 

next modatt in the list
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B.1.2. Global Variables

TIM is the time of the simulation clock during a simulation run.

Duration is the duration of the simulation run defined by the user.

Run in_period is the run-in period (i.e. the time elapsed before the actual 

recording of data takes place) of the simulation run defined by the user.

ActTime is the activity duration of the activity of interest during a simulation

run.

Mainent is the global variable that holds the information about all the different 

entity types that exist in the program.

Mainact is the global variable that holds the information about all the activities 

specified in the program.

Mainque is the global variable that holds the information about all the queues 

that are defined in the program.

M ainsou  is the global variable that holds the information about all the 

source/sink queues that are defined in the program.

Current ent is a handle to the current model entity that is being scheduled in the 

event loop during a simulation run.

Systemjnodent is a handle to the system model entity that is being scheduled in 

the event loop during a simulation run.

Beventjium  is an index to each of the B event procedures that are present in the 

simulation program.

Fileset is a boolean value used for checking the existence of a specified file used 
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by the program.

F  and RF are the global variables for the result file and the report file specified 

in the program respectively.

N  o f  Run  is the counter for the number of successive runs that are being 

executed by the user.

B.2. The MSimSample Unit

This unit contains all the sampling routines that can be called by the simulation 

program. The declaration part of the unit is shown in figure B.2. Any user-defined 

arithematic or statistical routines that are used for determining the activity duration of an 

activity or for assigning values to an attribute should be amended in this unit.

Figure B.2. The MSimSample Unit

U n i t  US I mS o mp I e ( 2 ) j

{ $U Mo c S i m . L I b )
{ $ 0  Mo c S I m. L I b )

I n t e r f a c e

u s e s  M e m T y p e s , Q u i c k D r a w , O S  I n t f , T o o  I l n t f , P a c k l n t f ,
M S i m G l o b a l  ;

c o n s t  d s l z e  * 20;  ( *  s a m p l i n g  *)
s t r e a m n u m  * 20;

t y p e  S t r e  = 1 . .  s t r e a m n u m ;
d i s t d a t a  = a r r a y  [ 1 . . d s l z e ]  o f  r e a l ;
d i s t r i b u t i o n  = '‘d i s t r e c ;
d i s t r e c  * r e c o r d

X , y : d I s t d a t o ;
s t r e a m  S t r e ;

e n d  ;

v a r  s e e d x , o r  I g s e e d x , 
s e e d y , o r  I g s e e d y ,
s e e d z , o r  I g s e e d z  a r r a y [ S t r e ]  o f  I n t e g e r ;

{ = = = = = = = = = = = = = = =  SflMPLING ROUTINES = = = = = = = = = = = = = = = = }
P r o c e d u r e  I n 1 1  Sam ;
P r o c e d u r e  M o k e D I s t ( v a r  d I s t : d I s t r I  bu t  I on;  s : S t r e ;
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x x : d i 3 t d a t a j y y : d i s t d a t a ) ;
F u n c t i o n  R n d ( 3 : S t r e ) : R e a l j
F u n c t i o n  S a m p l e ( d i 3 t ; d i 3 t r i b u t i o n ) : R e a i  j

{ » =  = = * * * * “ = **  = = * 0 ISTR i BUT I ON FUNCTi ONS = = = = = = = = = = = = = = = }
F u n c t i o n  B e r n o u I  I i ( p r ; r e a i  ; 3 : 3 t r e ) :  i n t e g e r ;
F u n c t i o n  B i n o mi a i ( p r : r e a  I ; k : i n t e g e r ;  e : 3 t r e ) : i n t e g e r ;
F u n c t i o n  E r l a n g ( e i : i n t e g e r ;  m : r e a i ;  3 : 3 t r e ) : i n t e g e r ;  
F u n c t  i o n  L o g N o r m a I ( m , 3 d : r e a I ; e : 3 t r e ) :  i n t e g e r ;
F u n c t  i o n  N e g e x p ( m : R e a l ; 3 : S t r e ) : i n t e g e r ;
F u n c t i o n  N o r m a l ( m , 3 d : r e a l ; 3 : 3 t r e ) : i n t e g e r ;
F u n c t i o n  P o i 3 3 o n ( m : R e a l ; 3 : 3 t r e ) : i n t e g e r ;
F u n c t i o n  U n i f o r m ( a , b : i n t e g e r ; e : 3 t r e )  : i n t e g e r ;
F u n c t i o n  U e i b u i  I ( a , b : r e a i ; 3 : 3 t r e ) : i n t e g e r ;

{ * = = = = = = = = “ * = = = * »  RRITHEHRTi C FUNCTi ONS = = = = = = = = = = = = = = = = }
F u n c t i o n  M i n o f ( a , b : R e a l ) : i n t e g e r ;
F u n c t i o n  M a x o f ( a , b : R e a l ) : i n t e g e r ;

B.2.1. Sampling Routines

InitSam is a procedure to initialise the variables that are used for generating a 

random number in the Rnd procedure.

MakeDist is a procedure for creating a distribution by specifying the stream 

number in the parameter the distdata in the parameter xx and yy respectively. The 

distribution is returned in the variable dist.

Rnd is a procedure used for generating a random number between 0 and 1 by 

using the specified stream number s.

Sample is a function that returns a real number from the given distribution 

referenced by dist.

B.2.2. Distribution Functions

Bernoulli returns an integer value of either 0 or 1 from a bemoulli distribution 

specified by the given parameter pr and the stream number s.
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Binomial returns an integer value from a binomial distribution specified by the 

given parameter pr and k, and the stream number s.

Erlang returns an integer value from an erlang distribution specified by the 

given parameter e/, with mean m and stream number s.

LogNormal returns an integer value from a lognormal distribution with mean m, 

standard deviation sd and stream number s.

Negexp returns an integer value from a negative exponential distribution with 

mean m and stream number s.

Normal returns an integer value from a normal distribution with mean m, 

standard deviation sd, and stream number s.

Poisson returns an integer value from a Poisson distribution with mean m and 

stream number s.

Uniform returns an integer value that is uniformly distributed between 

parameter a and b, with stream number specified in s.

Weibull returns an integer value from a weibull distribution specified by 

parameter a and b, with stream number s.

B.2.3. Arithematic Functions

M inof is a function which returns the minimal of two values specified in 

parameter a and b,

M axof is a function which returns the maximal of two values specified in 

parameter a and b.
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B.3. The MSimModel Unit

This unit handles all the modelling routines in the simulation program. The 

declaration part of the unit is shown in figure B.3.

Figure B.3. The MSimModel Unit

u n i t  MS I mMode 1 ( 3 ) ;

( $U Mo c S I m. L I b }
{ $ 0  Mo c S I m. L I b }

I n t e r f a c e

u s e s  Me mTy p e s , Qu i c k Dr a w,  OS I nt  f , T o o l l n t f ,  P a c k l n t f ,  
M S i m G l o b a l ,  MS i mS a mp l e ;

^b s z s b k e k :
p r o c e d u r e
p r o c e d u r e
p r o c e d u r e
p r o c e d u r e
P r o c e d u r e

p r o c e d u r e
p r o c e d u r e
p r o c e d u r e
p r o c e d u r e
p r o c e d u r e
p r o c e d u r e
p r o c e d u r e

p r o c e d u r e

p r o c e d u r e

p r o c e d u r e

f u n c t I  on 
p r o c e d u r e  
p r o c e d u r e  
f u n c t  I on 
p r o c e d u r e

f u n c t I  on 
f u n c t I  on 
f  u n c t I  on 
f  u n c t I  on 
f u n c t I  on 
p r o c e d u r e  
p r o c e d u r e  
p r o c e d u r e

INI TI ALI SATI ON 
I n I t _ U t I  me s  ;
I n I t - N o c t  s ;
l n l t _ H l s t ;
l n l t _ T s e r l e s ;
I n 1 1  U a r s ;

ROUTINES ' = }

MODEL SETUP ROUTINES » = * » * * = *
M a k e E n t ( v a r  n e n t : e n t 1 1  y ; n a m : s t r l 0 ) ;
MakeAt  t ( v a r  n e n t : e n t I t y ;  n a m i s t r l O ) ;
M a k e A c t ( v a r  a c i a c t I v l t y ; a n a m : s t r l O ) ;
Ma k e S o u ( n e n t : e n t 1 1 y ; v a r  s o u : s o u r c e ;
Mo k e Qu e ( n e n t : e n t 1 1 y ; v a r  q u e : q u e u e ;
S e t _ S YS T E M_ E NT ( s e n t  e n t i t y ) ;
M a k e A t t H I s t ( v a r  n e n t : e n t I t y ;  a n a m , h n a m : s t r 10 ;

«II d,  b a s  : I ong  I nt  ) ;
que  : q u e u e  ;

s n o m : s t r 1 0 ) ;  
q n o m: s t  r 1 0 ) ;

Mo k e Q L e n H I s t ( v o r  

Mo k e QT I mHI s t ( v o r  

M o k e T s e r I e s ( v o r

que  : q u e u e

q u e  : q u e u e

h n a m : s t r l 0;  
w i d , b a s  : I o n g I n t ) ;

h n a m : s t r 10;  
m i d , b a s  : I o n g I n t ) ;  
t n o m : s t r 1 0 ;  d : I n t e g e r ) ;

=* RECORDING S. ASSIGNING ROUTINES =============}
Q s l z e ( q u e : q u e u e ) : I n t e g e r ;
L o g Q u e D a t o ( q u e : q u e u e ;  hnam:  s t r l 0 ) ;
L o g A t t D o t  a ( me nt  : m o d e n t ; a n a m : s t r l 0;  h n a m : s t r l 0 ) ;  
Eva  I u a t  e _ a t  t r l b u t e ( c e n t : m o d e n t ;  a n o m : s t r 1 0 ) : r e o l ; 
A s s  I g n _ o t  t r l b u t e ( c e n t : m o d e n t ;  a n a m : s t r l 0;

v a  I : r e a I  ) ;

C EUENTS ROUTINES 
F i r s t l n Q u e ( q u e : q u e u e ) : m o d e n t ;
L o s t  I n Q u e ( q u e : q u e u e ) : m o d e n t  ; 
T o k e f r o m f r o n t ( q u e  : q u e u e ) : m o d e n t  ; 
T o k e f r o m b a c k ( q u e : q u e u e ) : m o d e n t ;  
T o k e f r o m S o u r c e ( s o u : s o u r c e ) : m o d e n t  
S t a r t _ S c h e d u l e B ( s o c t : a c t I v l t y ) ; 
S c h e d u I e B ( b :  I n t e g e r ; me nt  : m o d e n t ) ;  
E n d _ s c h e d u I e B ;

}
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p r o c e dur e  O e e c h e d u l e B f o c t ; a c t  I v l t y ) ;

{ = = = = = = = = = = = = = =  INCREASING TIME ROUTINES === = = = = = = = = = = = }
f u n c t i o n  C u r r e n t _ t l m e ( t :  I o n g I n t ) : b o o  I e o n ;
f u n c t i o n  G e t _ n e x t _ b e v e n t  : b o o  I e o n ;
p r o c e d u r e  I n c r e o s e _ t I  me ;
p r o c e d u r e  l n l t _ R e 9 t o r t ( b n u m , r u n l n : I n t e g e r ) ;

{ * * = = * ■ * ■ * ■ » » ■ *  B EUENTS ROUTINES = ■ ■ « » » = * * = ■ « « ■ * }  
p r o c e d u r e  R d d t o b a c k ( c e n t : m o d e n t ; v o r  q u e : q u e u e ) ;
p r o c e d u r e  R d d t o f r o n t ( c e n t  : m o d e n t ; v o r  q u e : q u e u e ) ;
f u n c t i o n  N u m l n Q u e ( q u e : q u e u e ; n u m : I n t e g e r ) : m o d e n t ;
f u n c t i o n  N u m I n S o u r c e ( s o u : s o u r c e ; n u m : I n t e g e r ) : m o d e n t ;
p r o c e d u r e  S I n k ( c e n t  : m o d e n t  ) ;

^KSKSBSaKKBSX■BK■ INTERFACE BBBBSBEBBBBBBBSSJ
p r o c e d u r e  S e l e c t _ M o d e ;
p r o c e d u r e  I n i t i a l  I e e _ m o d e I ( o n : b o o  I e o n ) ;
P r o c e d u r e  l n p u t _ F I  I I Q u e ( f n a me  : s t r 2 5 5  ) ;
p r o c e d u r e  I n p u t _ d u r a t I  o n ;

B.3.1. Initialisation Routines

InitJJtimes is a procedure used to initialise the utime field in each entity type 

record in the entity link list to '0.0' before a simulation run.

Init_Nacts is a procedure used to initialise the count field in each activity record 

in the activity link list to 'O' before a simulation run.

Init Hist is a procedure used to initialise the fields used for recording in each 

histogram record before a simulation run.

InitJTseries is a procedure used to initialise the fields used for recording in each 

time series record before a simulation run.

InitVars is a procedure used to initialise the timing tree and empty all the queues 

before a simulation run.
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B.3.2. Model Setup Routines

MakeEnt is used to create a dynamic allocation for the entity record nent with 

name nam. This variable is then linked to the Mainent link list.

MakeAtt is used to create a dynamic allocation for the attribute record belong to 

the entity variable nent with name nam. This attribute is then linked to the att field 

within the entity record nent.

MakeAct is used to create a dynamic allocation for the activity record ac with 

name anam. This variable is then linked to the Mainact link list.

MakeSou is used to create a dynamic allocation for the source/sink queue record 

sou with name snam, belonging to the entity referenced by nent. This variable is then 

linked to the Mainsou link list.

MakeQue is used to create a dynamic allocation for the queue record que with 

name qnam^ belonging to entity referenced by nent. This variable is then linked to the 

Mainque link list.

Set_System_Ent is used to set up the system entity specified by sent.

Make_Att_Hist is used to create a dynamic allocation for the histogram record 

with name hnam, cell width wid and base value bas, belong to the attribute referenced 

by name anam of the entity nent.

Make QLenHist is used to create a dynamic allocation for a queue length 

histogram record with name hnam, cell width wid and base value has, belonging to the 

queue que.

Make QTimHist is used to create a dynamic allocation for a queueing time 

histogram record with name hnam, cell width wid and base value bas, belonging to the 

queue que.
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Make ̂ s e r ie s  is used to create a dynamic allocation for the time series record 

with name tnam, drawing mode d, belonging to the queue que.

B.3.3. Recording and Assigning Routines

QSize is a function that returns the number of entities that are in the queue que.

LogQueData is a procedure used for recording the length of the queue que for 

the histogram with name hnam.

LogAttData is a procedure used for recording the value of the attribute with 

name anam which belong to the model entity ment, for the histogram with name hnam.

Evaluate_attribute is a function that returns a real number from the value field of 

the modatt record specified by the name of the attribute anam and the model entity cent 

to which the modatt belongs.

Assign_attrobute is a function that assigns a value val to the value field of a 

modatt record specified by the name of the attribute anam and the model entity cent to 

which the modatt belongs.

B.3.4. C Event Routines

FirstlnQue returns the first modent that is present in the queue que.

LastlnQue returns the last modent that is present in the queue que.

TakefromFront returns the first member in the queue que and removes it from 

the front of the queue.

TakefromBack returns the last member in the queue que and removes it from the 
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back of the queue.

TakefromSource creates a model entity from the source/sink queue sou and 

removes it from the source/sink queue.

Start ScheduleB prepares the activity sact to be scheduled in the simulation run.

ScheduleB schedules the B event referenced by b with the model entity ment.

End ScheduleB marks the end of the scheduling process of the activity.

DescheduleB deschedules the activity act by removing the activity from the 

timing tree during a simulation run.

B.3.5. Increasing Time Routines

Current time is a boolean function that checks the current time Tim of the 

simulation clock in a simulation run. It returns 'true' if the current time is less than the 

duration of the run and 'false' otherwise.

Get Next Bevent is a boolean function that checks the next B events that are 

due to occur in a simulation run. It returns 'true' if there is a B event available in the 

event queue and 'false' otherwise. The value of the next B event is returned in 

B eventnum .

Increase time is a procedure used to move the simulation clock to when 

something next happens in the system, according to the timing tree.

Init Restart is used at the end of the run-in period during a simulation run to 

prepare the system for actual recording to begin.
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B.3.6. B Event Routines

AddtoBack adds the model entity cent to the back of the queue que.

AddtoFront adds the model entity cent to the front of the queue que.

NumlnQue returns the nw n^  model entity in the queue que.

NumlnSou returns the nunfi^ model entity in the source/sink queue sou.

Sink adds the model entity cent to its associated source/sink queue and change 

its identity for later use.

B.3.7. Interface Routines

Select Mode is a procedure which allows the user to select the run options, to 

enter the simulation environment and to quit the program. There are three run options 

available : text run, visual run or no-display run. The user can also turn the result file 

option on if it is required to look at the events that happen at every time advance.

Initialise_Model is a procedure for initialising all the variables in the system. 

The parameter on should be set to 'true' if visual run is available in the simulation 

program. The default value of on is 'false'.

Input_FillQue is a procedure used for reading the '.QUE' file, i.e. the file 

which stores the location and number of entities of each entity type that are present in 

the system. The model entities are also prepared for scheduling within this procedure.

Inputjduration is a procedure used to accept the duration, run-in-period and the 

running speed specified by the user before a simulation run.
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B.4. The MSimOutput Unit

This unit contains the displaying results routines after a simulation run and the 

filing routines in the system. The declaration part of the unit is shown in figure B.4. 

Any additional displaying or filing routines should be amended in this unit.

Figure BA. The MSimOutput Unit

U n i t  nS I m O u t p u l ( 4 ) ;

( $U M a c s i m . L i b )
{ $ 0  MocS i m . L i b )

I n t e r f a c e
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B.4.1. Displaying Routines

Displaying_act_ntimes is a procedure used for displaying the activity count table 

which indicates the number of times each activity has successfully started during a 

simulation run.

Displaying_ent_utimes is a procedure used for displaying the entity utilisation 

time chart which indicates the proportion of time that each individual entity type has 

been involved in activities during a simulation run.
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Displaying_hist is a procedure which handles the drawing of a histogram 

specified by the parameter h and produces some basic statistics including the mean, 

standard deviation and variance of the histogram.

Displaying histograms is a procedure which displays all the histograms (one 

after another) that are specified in the simulation program.

Displaying tseries is a procedure which draws the time series referenced by the 

parameter t and q - the name of the queue to which the time series belongs.

Displaying_time_series is a procedure which displays all the time series (one 

after another) that are specified in the simulation program.

B.4.2. Filing Routines

Open File rewrites a file referenced by the global variable F, specified by the 

file m m tfnam e  so that simulation results can be written to this file.

Close File closes the result file F, specified by the file nomQ fname.

Open Report File rewrites a file referenced by the global variable FF, specified 

by the file name fname. The resulting output after a simulation run is written to this file.

Close Report File closes the result file FF, specified by the file fname.
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APPENDIX C

AN EXAMPLE WALKTHROUGH WITH MACACO

C . l .  CREATING ENTITIES

C. 2 .  CREATING ACTIVITIES

C .3 . CREATING QUEUES

C. 4 .  DRAWING LIFE PATHS OF AN ENTITY

C. 5 .  EDITING OBJECTS ON THE SCREEN

C. 6 .  GENERATING A TEXT FILE FOR AUTOSIM

C. 7 .  THE PULL DOWN MENUS IN MACACD

C.7.1. The Apple Menu

C.7.2. The File Menu

C.7.3. The Edit Menu

C.7.4. The Format Menu

C.7.5. The Style Menu

C.7.6. The Entity Menu

C.7.7. The Activity Menu

C.7.8. The Queue Menu

C.7.9. The Generate Menu
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This appendix shows how to use the application MacACD with an illustrative 

example of the Pub model (see section 1.2.1). Section C .l, C.2 and C.3 shows how 

an entity, an activity and a queue can be created respectively. The mechanism for 

drawing the life paths of an entity type is given in section C.4. Section C.5 shows how 

to edit objects on screen. The generation of a data file that can be fed into AutoSim is 

discussed in section C.6. Section C.7 is a menu reference for the MacACD application.

MacACD consists of 9 pull-down menus and 13 iconic menus. Figure C .l 

shows the interface of MacACD. The pull-down menu is across the top of the screen 

and the iconic menu is on the left hand side of the screen. The pull-down menu handles 

all the file management and data recording procedures whilst the iconic menu mainly 

deals with the creation of graphics on the screen.

Figure C.L The MacACD Application

^  é  File Edit S ty le  Form at R ctiuity Queue Entity G en e ra te
RCD
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CD
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c.l.  Creating Entities

The first step in creating an A CD in MacACD is to assign the arrow mode boxes 

in the iconic menu to different entity types in the system. There are 8 arrow mode boxes 

altogether, each of which can be assigned to an entity type.

An entity type can be created by firstly clicking in one of the arrow mode boxes 

in the iconic menu and then entering the information in the entity dialogue box. Figure

C.2 shows the dialogue box when a new entity type CUSTOMER is created in the Pub 

example :

Figure C,2, Ç r m m  Qn Entity 

 ̂ é  Fi le  Ed i t  S t y l e  F o r m a t  R c t i u i t y  Q u e u e  E n t i t y  G e n e r a t e  ^

NewRCD

9
□
O

Q )

C u s t o m e rENTITY NAME :

□  p e r m a n e n t  ^  t e m p o r a r y  

ATTRIBUTES: Q O  ®  1 0 2  Q 3

□  f a c i l i t y

a t t r i b u t e  # 1 n e e d OK

CANCEL

o
a

The OK' button in the dialogue box fixes the entity to the arrow mode box of 

entry, and so the arrow mode box is filled with the line pattern that belongs to the 

entity. The 'CANCEL' button cancels the entry. This pattern is used for drawing the 

life cycle of that entity type.
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Any newly created entity is appended to the Entity menu. The following 

diagram shows the appearance of the Entity Menu after all the entities have been created 

in the Pub example :

Eignr£. C J . The

File Edit S ty le  Format Rctiuity Queue Entity
NeujRCD

O

G )

G en era te  
CÜSTOMËrI  
GLRSS 
BRRMRID 
DOOR

t>}i i{>t tiint tin i ti tih ii >1 t t] | > in 11 ; t|ü  tU { i i {{ : :| t t{ > i|i t{ > i{i di t ti> t i< >t{ i !{t> > p  >!

Information about an entity type can be viewed and edited by selecting its name 

from the Entity menu. When an entity is selected, the dialogue box of the entity type 

will appear, allowing the information to be edited. Figure C.4 shows the dialogue box 

for the entity type CUSTOMER when Customer is selected from the Entity menu :

Figure CA. The Entity Dialogue Box

This is e n t i ty  CUSTOMER 

There are

□ PiaTDF
o f  th is  t y p e  o f  e n t i ty
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11 I a t t r i b u t e / s  b e lo n g  to  th is  e n t i t y  :

n e e d

[ OK CANCEL
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c.2. Creating Activities

An activity can be created by using the rectangle mode box in the iconic menu. 

After a rectangle is drawn, the current iconic menu will return to the Find icon ( ?  ). 

The information about an activity can then be entered by double-clicking on the 

rectangle. Figure C.5 shows the activity dialogue box.

Figun ^ntm ng an M ny.isx

click in the check box 
for the entities which 
are required to s ta r t  

the activity

the minimum & 
maximum no. of 

entities of that type 
that are  required 

to  s ta r t  the activity

duration 
o f the 

activity

if  the button 
is highlighted, 
the formula 
box appears

RRRIUE

n e g e » p ( 1 0 , 2 )

RCTIUITY NRME 

-D u ra t io n  

a t t r i b u t e  fo r m u la  

n e e d l + 4 * r n d ( l l ) |

E n t i t i e s  Min

E  CUSTOMER

□  GLRSS

□  BRRMRID 

^  DOOR

M a x

[ OK ^  [ CRNCEL]

the information inside clicking the 
the dialog box is only button will

recorded if  the OK cancel the
button is clicked dialog box

Suppose all the entity types in the Pub example have already been created. The 

user can click at its associated check box to select the entities that are involved in this 

activity. The name, the activity duration and any attribute assignment can be entered.

An activity will be added to the system only if the 'OK' button is clicked. The 

activity will not be added to the system if the user clicks the 'CANCEL' button. If the 

OK' button is clicked, the information for the activity is stored and the name of the 

activity will appear inside its associated rectangle on the underlying screen. Any newly 

created activity will be appended to the Activity menu. Figure C.6 shows the Activity 

menu when all the activities has been created in the pub example.
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Figure C.6. The Activity Menu 
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Activity information can be viewed and edited by selecting its name from the 

Activity menu. Figure C.7 shows the dialogue box when the activity POUR is selected 

from the Activity menu :

Figure C.7. The Activity Dialogue Box

This  is RCTIUITY POUR

I t s  d u r a t i o n  is  y i u e n  b y  n o r m a l ( 6 , 1 ,5)

I t  r e q u i r e s  : E n t i t y M i n # M a x #

CUSTOMER 1 1

GLRSS 1 1

BRRMRID 1 1

T h e  a t t r i b u t e / s  b e i n g  e u a l u a t e d  a t  t h i s  a c t i v i t y  i s / a r e  : 

R t t r i b u t e  F o r m u l a

OK ]

CANCEL

A ppendix C. An Example Walkthrough with M acACD 175



c.3.  Creating Queues

A queue can be created by using the circle mode box. After a circle is drawn, 

the iconic menu will return to the Find icon ( ? ). Queue information can be edited by 

double-clicking on the circle. Similarly, a source/sink queue can be created by using the 

overlapping circles mode box. Figures C.8 and C.9 shows the queue dialogue boxes 

when the queue WAIT and the source/sink queue OUTSIDE are created respectively.
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Fi2ure C.9, Creating a SourcelSink Queue
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If the 'OK' button is clicked, the queue is added to the Queue menu. If it is a 

source /sink queue, there will be an asterisk '*' besides the name of the queue. Any 

newly created queue is appended to the Queue menu. Figure C.IO shows the Queue 

menu when all the queues are created for the Pub example.

Figure C.IO. The Queue Menu
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Queue information can be viewed and edited by selecting it from the menu. 

Fig.C.Il shows the queue dialogue box for the queue CLEAN.

Figure €.11. The Queue Dialogue Box
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c .4 .  Drawing Life Paths for an Entity Type

The life paths for an entity type can be drawn by using the corresponding line 

pattern mode box in the iconic menu (i.e. the assigned arrow mode box). To draw the 

life cycles of the temporary and permanent entities, choose a starting queue, then hold 

the mouse button down and move the cursor from the starting queue to the desired 

activity. A line connecting the pair of shapes on the screen will then appear with an 

arrow indicating the direction of movement of the mouse. Figure C.l2 shows how to 

create a path between a queue and an activity.

Figure C.12 Creating a Path

©
hold down the 
m ouse button

m o v e  to a c t iv i ty  box  
and r e le a s e  button

ARRIVE ARRIVE ARRIVE

The linking procedure can then be continued until the starting queue is equal to 

the final queue where the cycle ends. When two activities are connected, MacACD will 

create a dummy queue between the two activities. When the same activity is connected 

to more than one queue consecutively, (i.e. the entity can move to either one of the 

queues after the activity is finished), MacACD will ask for the conditions required to go 

to the different queues.

MacACD cannot automatically produce a dummy queue for a facility entity - an 

entity which facilitates several activities, but only has one queue. The user has to create 

an idle queue for a facility entity. To draw the life cycle of a facility entity, move the 

cursor from the idle queue to the activity that requires the entity. A pair of arcs will 

automatically branch out from, and into, the activity so that there is a cycle for the
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entity. If the entity has more than one activity, the procedure is repeated. Figure C .l3 

shows how to create a path for a facility entity.

Eigw:& CJ3. Crm ing a Path fyr FgçUity Entity

hold down the  
m ouse button

POUR

m o v e  to a c t iv i ty  box  
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POUR POUR

C . 5 .  Editing Objects on the screen

The size and position of the objects on the screen can be varied by means of the 

select mode box, which takes the shape of a question mark in the iconic menu. When 

clicking on an object, four small boundary rectangles will appear on the four comers of 

the object. By clicking inside the object and then dragging the mouse to a new location, 

the object will move. By clicking on one of the four small boundary rectangles of an 

object and dragging the mouse to a new location, the object will either shrink or 

expand, according to the direction of the movement of the mouse. Figure C.14 shows 

the sizing of a rectangle on the screen.

Figure ÇJ4, Edim g an Object on Sçrçm

expanding

shrinking ■

I I— 1

Apart from changing the size of the object on screen, the user can also invoke 

an activity or queue information dialogue box by double-clicking at the desired object 

on the screen.
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c . 6 .  Generating a Text file for AutoSim

A text file, which can be fed into AutoSim, can be created by using the Go 

command in the Generate menu. A generated file for the Pub model is shown in figure 

C.15.

Figure C .l5. The Text File Pub.Pat Generated in the Pub Example
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C.7. The Pull-down Menus in MacACD

There are altogether nine pull-down menus in MacACD.

C.7.1. The Apple Menu

The Apple Menu contains desk accessories that are present in the Macintosh 

system file.
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c.7.2. The File Menu

The File menu consists of the following commands - New is used for creating a 

a new model; Open opens any existing MacACD file which has been saved on the disk; 

Close closes the current active window; Save saves the activity cycle diagram in the 

current window and all the user-defined information to a file; Save As allows the user 

to save the current file under another name; PageSetup allows the user to select the type 

setting of the paper; Print prints the ACD;Quit quits the application and returns the 

user to the Finder.

C.7.3. The Edit Menu

The commands in the Edit menu can be used to assist in the drawing of objects 

on the screen. Undo retrieves the picture just before the last change was made. Cut 

deletes a selected object and copies it to the Clipboard file. Copy copies the selected 

object to the Clipboard file. Paste copies the object from the Clipboard file onto the 

window.

C.7.4. The Stvle Menu

Text can be added to the screen by using the 'A to Z' mode box in the icon 

menu. The text can be modified by using the Style menu. Point allows the user to 

choose the desire point size (9, 10, 12, 14) for the selected text. Plain writes the 

selected text in plain style. Bold writes the selected text in bold style. Italic writes the 

selected text in italic style. Underline underlines the selected text. Outline 

the selected text. Shadow shadows the selected text.
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c.7.5. The Format Menu

The Format menu consists of the following commands - Reduce reduces the 

diagram to fit the screen; Normal returns the normal size of the diagram; AutoDraw 

allows the user to draw a rectangle of predefined size automatically; Manual allows the 

user to draw a rectangle of any size freely; Chopper is used for deleting the life cycle 

of an entity.

C.7.6. The Activity Menu

Whenever an activity is added to the model, the activity name will be appended 

to this menu. The user can then select any activity from the menu and look at the 

summary information of the selected activity in the Activity dialogue box (figure C.7).

C.7.7. The Queue Menu

Whenever a queue is added to the model, the activity name will be appended to 

this menu. The user can then select any queue from the menu and look at the summary 

information of the selected queue in the Queue dialogue box (figure C.ll).

C.7.8. The Entitv Menu

Whenever an entity is added to the model, the entity name will be appended to 

this menu. The user can then select any entity from the menu and look at the summary 

information of the selected entity in the Entity dialogue box (figure C.4).
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c.7.9. The Generate Menu

Go is used to generate a text file from the ACD. The system will ask for the 

name of the file in which the data is to be saved. The default name of the text file is 

<filename.DAT>. ShoWTFile allows the generated code to be shown in another 

window.
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APPENDIX D

THE USE OF DIAGRAMMING TECHNIQUES

This appendix shows a summary table of the areas in which some of the current 

diagramming techniques are applied.

DATA A C TIV IT IES

Entity-relationship diagram

Strategic 
overview of 

corporate 
data

Strategic 
overview of 

corporate 
functions

Decomposition diagram 
Action diagram 
Warnier-Orr diagram

Data structure diagram

D eta iled  
logical  

data model

Logical
re la t io n sh ip

among
processes

Decomposition diagram 
Action diagram 
Warnier-Orr diagram 
Dependency diagram 
Data fiow diagram 
HiPO diagram 
HOS chart
State-transition diagram

Data structure diagram 
Jackson diagram 
Warnier-Orr diagram Program  

level view 
of data

O v e ra l  1 
program 

s t r u c tu re

Action diagram 
Data navigation diagram 
Warnier-Orr diagram 
HIPO diagram 
Structure chart 
HOS chart 
Jackson diagram

Data structure diagram 
Jackson diagram Program 

usage 
of data

D eta iled
program

logic

Action diagram
Data navigation diagram
Flowchart
Nassi-Shneiderman chart 
HOS chart
Decision tree & table
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APPENDIX E

HOW TO USE HYPERSIM

E . l .  CREATING A NEW MODEL 

E .2 . CREATING ENTITIES

E .3 . SELECTING AN ICON FOR AN ENTITY TYPE 

E .4 . CREATING ACTIVITIES

E .5 . DRAWING LIFE CYCLES OF AN ENTITY TYPE

E.5.1. Using the Entities Stack 

E.5.2. Using the Activities Stack 

E.5.3. Using the ACD Stack

E .6 . CREATING AND ASSIGNING ATTRIBUTES

E .7 . GENERATING A SIMULATION PROGRAM
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This appendix is a brief guide to HyperSim, with an illustrative example using 

the Launderette model (section 1.2.1). Section E.l shows how a new model can be 

created. The creation of a new entity type and the selection of entity icons are discussed 

in sections E.2 and E.3 respectively. Section E.4 shows how to create an activity for 

the model. The mechanisms used for specifying the life paths of entities is given in 

section E.5. Section E.6 shows how to create and assign attributes in HyperSim. The 

generation of a three-phase simulation program is discussed in section E.7.

E .l. Creating a New Model

HyperSim is made up of nine stacks. The first stack that the user should go to is 

the Model stack where a new model can be created of an existing model can be selected. 

The Model stack can be opened by either double-clicking the icon on the Macintosh 

desktop or by clicking the 'Start Modelling' button in the Reference stack.

Assume that the Model stack has been opened. A new model can be created by 

clicking at the 'N' button on the left-hand comer of the card. The system will prompt

the user for a model name. If the user types in the model name and clicks 'OK', a new 

model card will be added to the Model stack. Moreover, an ACD card in the ACD stack 

and a system entity card in the Entity stack will be automatically generated for the new 

model. An existing model can be opened by clicking the 'O' button and select a model

by clicking at the name of the model in the model list table. The user can also scan 

through the model cards by using the left and right arrow buttons located at the bottom 

sides of the card. The 'D' button is used for deleting an existing model. The user can

select the model that is to be deleted from the model list table. All the cards that belongs 

to the selected model inside all the HyperSim stacks will then be deleted after further 

confirmation from the user.
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For example, to create a new model called 'Launderette', click the 'N' button, 

type Launderette' and click 'OK'. An ACD card and a system entity card are then 

automatically generated. The word 'System' will appear in the Entity column of the 

summary table. Figure E .l shows the Model card when the Launderette model is 

created. The user can either create entities by clicking at the 'New Entity' button, create 

activities by clicking at the 'New Activity' button, create system attributes for the 

System' entity in the Entity stack, or create icons in the Icon stack.

Figure E.L Creating the Launderette Model in the Model Stack
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E.2. Creating Entities

An entity type can be created anywhere in the system if there is a 'New Entity' 

button in the stack where the user is working. To create a new entity type, select the 

'New Entity' button, type the name of the new entity type in the dialogue box and click 

'OK'. A new card in the Entity Stack will be created where the user can enter any 

relevant information about the newly defined entity type. In the Entity stack, the user
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can either create attributes (see section E.6), select an icon (see section E.3), or create a 

source/sink or facility queue for an entity type in the Entity stack.

For example, a new entity type 'Customer' can be created by clicking the 'New 

Entity' button, type in the name 'Customer' and click 'OK'. A new card called 

Customer' is then created in the Entity stack. Figure E.2 shows the Entity card when 

the entity type 'Customer' is created. The user can look at the entity list table by 

clicking at the 'Entity' button in an entity card. He can go to the appropriate entity card 

by clicking at the corresponding entity name in the entity list table.

Figure E.2. Creating an Entitv type 'Customer' in the Launderette Model

ENTTIY: Customer
2 Source Q ueue : I None

F ecilily  Q ueue : I None
Pattern : |2  | n
Number : | -

A ttributes

Q u eu es Involved

Life C ycle of Entity

Laundenet t e

A ctiv ities Involved Order Mn.Max

Let us look at the creation of a source/sink queue for an entity type. Since 

Customer' is a temporary entity in the Launderette model, we can create a source/sink 

queue for this entity type. Click at the 'Source' field in the entity card of the 

'Customer', type 'outside' in the dialogue box and click 'OK'. A new card in the 

Queue stack called 'outside' will be created. The word 'outside' will appear in the 

Queues Involved' table in the 'Customer' entity card. To go to a queue card from the 

Entity stack, just click at its corresponding name in the 'Queues Involved' table. Figure
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E.3a and E.3b shows the queue card 'outside' and the entity card 'Customer' after a 

source/sink queue has been created.

Figure E.3a. The Queue card for sourcelsink queue 'outside' for entity 'Customer'
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Figure EJb. The Entitv card 'Customer' after a sourcelsink queue is created
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Similarly, a facility queue can be created for a facility entity, for example, the 

Door, by clicking at the 'Facility queue' field in the entity card of the 'Door'.

E.3. Selecting an Icon for an Entity type

By clicking the 'Gotolcon' button at the bottom of the card, HyperSim will take 

the user to the Icon stack. The Icon stack is shown in figure E.4a. The user can either 

create a new icon or edit an existing icon in any one of the 135 rectangles in an icon 

card. To select an icon, make sure the name of the entity in the 'Entity' field is the one 

you want the selected icon to be transported to. Click at the 'Select Icon' button and 

click anywhere inside the rectangle where the selected icon is enclosed by. The user 

will then be taken back to the corresponding entity card in the Entity stack with the 

selected icon pasted onto the top-right rectangle in the card. Figure E.4b shows how the 

entity card for 'Customer' after an icon has been selected from the Icon stack.

Figure EAa. Selecting an Icon for Entity 'Customer' in the Launderette model
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Figure EAb. The Entit\ Card 'Customer after an Icon has been selected
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E.4. Creating Activities

An activity can be created anywhere in the system if there is a 'NewActivity' 

button in the stack in which the user is working with. To create a new activity, click the 

'NewActivity' button, type the name of the new activity in the dialogue box and click 

'OK'. A new card in the Activity Stack will be created where the user can enter any 

relevant information about the new activity. Only if the user creates an activity in the 

ACD stack will HyperSim go back to the A CD stack after an activity is created. This 

enables the user to draw the complete ACD before entering information for an activity.

For example, activity 'Arrive' can be created by clicking the 'NewActivity' 

button, type 'Arrive' and click 'OK'. An activity card called 'Arrive' will be created. 

Figure E.5 shows how to create an activity 'Arrive' for the Launderette model.
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The formula of the activity time can entered in the 'Duration' field. If the user 

clicks at the word 'Duration', a table containing all the distribution formulae will 

appear. The user can select any one of them by clicking at the appropriate line in the 

table and then enter the required parameters. Attributes can be evaluated in the Activity 

stack (see following section Creating and Assigning Attributes).

Figure E5. Creating activity 'Arrive' in the Launderette model
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E.5. Drawing Life Cycles of Entities

HyperSim offers the user three ways of specifying the model logic. Firstly, by 

entering the life cycle of individual entity types in the Entity stack. Secondly, by 

selecting entity types that are involved in an activity in the Activity stack, and finally by 

drawing an activity cycle diagram in the ACD stack. Queues are automated in the first 

and the last method of specifying whereas in the second method, the user has to enter 

the name of the queues manually. The author of HyperSim is currently working on total 

flexibility among these three methods of specification, i.e. allowing the user to specify
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a model by any combination of the three methods described. Meanwhile, any one 

method used to define the model logic will automatically update the corresponding 

information in different stacks.

In this section, we assumed that the following entity types for the Launderette 

model have been created - System, Customer, Door, Washing Machine, Drier and 

Basket. We also assume that activities - Arrive, LoadWash, UnLoadWash, Transport, 

LoadDrier and Dry have been created. However, it should be pointed out that 

HyperSim allows the user to add new entity types or new activities after part of or all of 

the entities' life cycles is drawn.

E.5.1. Using the Entitv Stack

This is the simplest method of all, but is only appropriate for simple simulation 

models where the life cycle of individual entity types can easily be identified. This 

method does not allow the user to see an overall view of the model during the 

construction of the model logic.

For example, let us define the life cycle of entity type Customer'. From the 

activity cycle diagram of the Launderette (see figure 1.5) the order of activities for a 

customer is - 'Arrive', 'LoadWash', 'UnLoadWash', 'Transport', 'LoadDrier' and 

'Dry'. To enter this cycle is simple. Click once at the word 'Activities Involved' in the 

'Activities Involved' table and select 'Arrive' from the activity list table. The word 

'Arrive' will then appear in the first line of the 'Activities Involved' table with '1' and 

'1,1' in the same line under field 'Order' (order of the activity) and 'Min,Max' (the 

minimum and maximum number of entities of that entity type required for the activity) 

respectively. Similarly, activity 'LoadWash' can be added to the 'Activities Involved' 

table. When activity 'LoadWash' is added, a queue 'ArrCusLoa' connecting 'Arrive' 

and 'LoadWash' is automatically created for 'Customer'. (The default name of the
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queue is set by combining the first three characters of the first activity name, the first 

three characters of the entity name, and the first three characters of the second activity 

name.) This queue is added to the ’Queues Involved' table in the entity card of the 

customer. Finally when activity 'UnLoadWash* is added, a queue 'LoaCusUnl' 

connects LoadWash' and 'UnLoadWash'. Similarly, add the rest of the activities in the 

life cycle. To indicate that the cycle is completed, select 'Arrive' again.

On completion of the life cycle of an entity, click at the Life Cycle of Entity' 

button. A life cycle diagram of the 'Customer' is drawn. A conditional path for an 

entity type can be specified by selecting the 'Conditional Arrow' button (an arrow with 

a box in the centre), click anywhere inside the activity rectangle which the conditional 

path starts from and then click anywhere inside the queue where the path goes to. The 

user will then be asked to enter the condition for the entity to go from the original 

activity 'Drink' to the destination queue. After the user types in the condition and clicks 

'OK', the conditional path will be drawn in the life cycle diagram for the entity. Figure 

E.6 shows the completed entity card for entity type 'Customer'.

Figure E.6. The Entity card 'Customer'
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The life cycle for a facility entity can be defined in a similar manner except that 

the user does not have to close the cycle by selecting the starting activity again. All he 

has to do is to select the activities that the facility entity are involved in and when 

finished, click the 'Life Cycle of Entity' button. However, the user has to define a 

facility queue before the life cycle is defined.

Information of this specification of life cycles of entities is updated in the 

'Entities Involved' table in the Activity stack. The user can re-specify conditions in the 

Condition' field of a path in the corresponding row.

E.5.2. Using the Activitv Stack

This method allows the user to define the model logic by selecting the entities 

that are involved in each activity. Again, this method does not allow the user to obtain 

an overview of the model during the construction of the model logic.

For example, let us define the activity 'Arrive' which takes place when there is a 

customer in the source/sink queue 'outside' and a door in the queue 'didle'. By clicking 

at the word 'Entities Involved', the user can select the entity type 'Customer' from the 

entity list table. He will then be asked to enter the name of the queue where the 

customer comes from (queue in) before 'Arrive' begins and the name of the queue 

where the customer goes to (queue out) after commencing 'Arrive'. In the 'queue in 

and queue out dialogue box', 'outside' appears as the queue in (since 'Arrive' is the 

first activity that a customer is involved in) and 'newqueue' appears as the queue out. 

The user must type in a name to replace 'newqueue'. If the user types 'wait', then a 

queue card called 'wait' will be generated. The user can continue to select the facility 

entity type 'Door' for activity 'Arrive'. There is no need to specify queue in and queue 

out for Door' since both queues are assigned to 'didle' by default. Figure E.7 shows 

the completed activity card for activity 'Arrive'.
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In order to help the user keep track of the queues associated with an activity for 

an entity type, the default queue in for an activity is set to be the queue out from the 

previous activity which the entity is involved in. For example, if activity 'LoadWash' is 

defined next and entity 'Customer' is selected, then the default queue in would be 

'washq'.

E.5.3. Using the ACD Stack

This method allows the user to build up the model logic with an overall view. 

There are three types of objects that can be drawn inside the drawing area - rectangles 

(activities), circles (queues) or straight lines (life paths of entities). Selecting an object 

in the drawing area can be done by clicking anywhere inside the object. The ACD stack 

contains an iconic menu which aids the user in drawing an ACD.
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D isplaying Activities

The user can either select an activity to be placed (using the 'Select Display 

Activity' button) or display all the activities (using the 'Display All Activities' button) 

in the drawing area. Objects that have been placed can be moved around. For example, 

to move activity 'UnLoadDry' further to the right can be done by first clicking the 

vertical 'Activity' button, select the activity UnLoadDry' and finally by clicking at the 

final position where you want the activity to be placed.

Entering Irformation for Activities and Queues

Each of the displayed activity rectangles is linked with an activity card in the 

Activity stack. The user can go to the appropriate activity card to enter information by 

first clicking at the 'Activity Information' button and then selecting the desired activity. 

Similarly, each of the displayed queue circles is linked with a queue card in the Queue 

stack. The user can go to the appropriate queue card to enter information by first 

clicking at the 'Queue Information' button and then selecting the desired queue.

Drawing Life Paths for an Entity type

Before drawing life paths for an entity, an entity type must be selected by first 

clicking at the 'Select Entity' button and then selecting the appropriate entity type from 

the entity list table.

Drawing a life cycle for a facility entity is simple. For example, to define the life 

cycle for the entity type Door', select the 'Facility Path' button. First click anywhere in 

the drawing area where you want the facility queue for Door' - 'didle' to be placed. 

The queue 'didle' will then be drawn automatically. If however the user has forgotten
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to define a facility queue for 'Door' and has selected the 'Facility Path' button, he will 

be prompted for the name of the facility queue. If he types 'didle' and clicks 'OK', a 

queue card called 'didle' will be created. The user can then select activity 'Arrive'. Two 

paths - one going from 'didle' to 'Arrive' and one from 'Arrive' to 'didle' are then 

drawn. If there is more than one activity involved for the facility entity, just select the 

Facility Path' button again and click at another activity in which the entity is involved 

in. The paths will be automatically drawn.

Figure E.8. The ACD card for the Launderette Model
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Drawing life cycles for temporary and permanent entities is the same except that 

the source/sink queue for a temporary entity takes the shape of an overlapping circle. 

For example, to draw the life cycle of the entity type 'Customer', first select the 'Path' 

button and click anywhere in the drawing area where you want the queue 'outside' to 

be placed. The queue will then be automatically drawn. The user can then select activity 

'Arrive'. A path is drawn from 'outside' to 'Arrive. The life cycle can be drawn 

continually by selecting activity 'LoadWash'. A queue 'AriCusLoa' which links 

Arrive' and 'LoadWash' for 'Customer' is automatically created. Similarly, the queue
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'LoaCusUnl' is created when 'UnLoadWash' is selected next. Similarly, the rest of the 

activities can be selected by the same manner. Finally, select activity 'Arrive' so as to 

complete the cycle. The cycle does not have to be completed all in one go. The user can 

draw paths at different times during the construction of the model logic. Conditional 

paths can be added by selecting the 'Conditional Path' button which works in the same 

way as described in the first method of defining the model logic by using the Entity 

stack. Figure E.8 shows the complete activity cycle diagram for the Launderette model.

E.6. Creating and Assigning Attributes

An attribute can only be created inside the Entity stack. To create a new 

attribute, click the word 'Attribute' at the top of the attribute table in an entity card, type 

in the name and click 'OK'. An attribute card will be created in the Attribute stack. 

Figure E.9a and E.9b shows the attribute card 'cusatt' for the entity type 'Customer' 

and the entity card 'Customer' after the attribute has been specified respectively.
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Figure E.9b. The Entitv Card 'Customer' after an attribute has been created
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Figure E.IO. Assignment of Attribute 'cusatt' in Activity 'Arrive'
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An attribute can be evaluated either in an activity or in a queue. To assign an 

attribute in an activity, go to the appropriate activity card. Click once at the word 

'Attribute’ and select an attribute from the attribute list table by clicking at its name. 

The user will be prompted for the value of the argument of the attribute. After typing in 

the value and click 'OK', HyperSim will set the condition of the assignment to 'def, 

i.e. default, and the user can type in the formula of the assignment.

For example, if the attribute 'cusatt' is evaluated in activity 'Arrive', click once 

at the word 'Attribute', enter '! ' for the argument value and click 'OK'. Type in 

'l+4*Rnd(2)' in the assignment field. Figure E.IO shows how to assign attribute 

'desire' in activity 'Arrive'. Similarly, attributes can be assigned in the same way in a 

queue.

E.7. Generating a Simulation Program

After the specification is completed, the user can return to the model card 

'Launderette' and select the Code' button. The system will take the user to the Code 

stack where a simulation program can be generated. For example, a program for the 

Launderette model can be generated by clicking the 'Generate' button on the card. Lines 

of code will appear in the scrolling field on the card. Figure E. 11 shows the appearance 

of the Launderette code card in the Code stack. Modifications of code can be done by 

editing the program text in the card. The program can also be exported as a text file by 

using the Export' button. The user can go directly into Turbo Pascal by clicking at the 

'Turbo' button. However, he should make sure that there is a copy of Turbo Pascal 

available on the hard disk of the machine.

To run the simulation program, a copy of the Turbo Pascal application and the 

simulation library -MacSim.Lib should be available on the Macintosh.
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F igure E .l î .  The Code Stack of the Launderette Model
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This appendix shows how to use the Macintosh application MacGraSE with an 

illustrative example using the steelworks model. Section F.l shows how a background 

picture can be drawn in the application. The procedures in creating an entity type, an 

activity, and an attribute are given in sections F.2, F.3, and F.4 respectively. Section 

F.5 shows how to specify information for a generated queue. The generation of an 

activity cycle diagram and a simulation program is discussed in sections F.6 and F.7 

respectively. Section F.8 gives a brief description in how to run the simulation model.

F . l .  Drawing a Background Picture

The drawing of a background picture is managed by using the palette buttons 

inside the tool box window. Figure F.l summarises the functions of the buttons.

Figure F.l. The Palette Buttons in the Tool Box Window
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For example, to draw a rectangle on the screen to indicate the production area of 

the blast furnace, we first set the condition of the drawing pen. This can be done by 

selecting the line size in the line size dialogue box (figure F.2), then selecting the pen 

pattern in the line pattern dialogue box (figure F.3), and finally selecting the fill pattern 

in the fill pattern dialogue box (figure F.4). To draw a rectangle on the screen, select 

the 'Rectangle' button in the tool box window. Click at the desired position of the top- 

left corner of the rectangle, then hold the mouse button down and drag to the desired 

position of the bottom-right corner of the rectangle. Release the mouse button. A
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rectangle then appears on screen using the current drawing pen. Figure F.5 shows this 

drawing process. Other objects can be drawn in a similar manner. A complete 

background diagram for the steelworks model is shown in figure F.6.
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Figure F.5. Drawing a Rectangle on the screen
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Figure F.6. A Background Diagram o f  the Steelworks Model
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F .2 . Creating an Entity Type

To create a new entity type, select the New Entity command from the Model 

menu. The entity dialogue box is shown in figure F.7. For example, to create the entity 

type blast furnace in the steelworks model, enter 'BLASTF' in the name field and '2' in 

the number field. Since blast furnace is a permanent entity in the model, the radio
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button 'permanent' should be selected. Once the 'OK' button is clicked, the data for the 

entity type 'BLASTF' is added to the model. The name 'BLASTF' is appended to the 

Entity submenu in the Model menu. Figure F.8 shows the appearance of the Entity 

submenu after all the steelworks entity types have been added to the model. The 

information for each entity type can be reviewed and edited by selecting the appropriate 

entity in the Entity submenu.

F igure F.7. Creating the Entitv Type 'BLASTF'
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Figure F.8. The Entitv Menu o f the Steelworks Model
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The first icon of an entity type is always automatically created on screen when 

the entity type is created. If an icon is not selected for the entity type, an empty square 

frame with an index o f f  will appear at the top-left hand corner of the main window.
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To select an icon that represents the entity type, click at the 'Icon' button inside the 

entity dialogue box. Figure F.9 shows the selection of an icon for the entity type 

'TORPEDO' in the steelworks model. The user can select an icon by clicking at the 

appropriate choice displayed in the icon palette.

Figure F.9, Selecting an Icon for the entitv type TORPEDO'

C a n c e l

f  I  # =  f  ,9  &

9 0 1 I Û

#  A  ^  ^  -K

A  +  @ %

M o r e  ] [ N o n e  ] OK

Once the OK' button inside the icon dialogue box is clicked, the entity icon will 

appear at the top-left hand corner of the main window (figure F.IO) for the newly 

created entity type. An icon can be changed in the same manner, and any associated 

icons on the screen belonging to the entity type will be redrawn using the newly 

selected icon.

Figure FAQ, The Main Window - qfter an icon is selected for TORPEDO'

( u n t i t l e d )
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F .3 . Creating an Activity

To create an activity in the model, select the New Activity command from the 

Model menu. The activity dialogue box is shown in figure F .l 1. For example, to create 

an activity BLOW  which represents the process of emptying the molten iron produced 

in the blast furnace into the torpedoes in the model, enter BLOW  in the name field and 

any comments in the comment field. The activity will be added to the model if the user 

clicks the 'OK' button in the dialogue box. The name of the activity is then added to the 

Activity submenu in the Model menu so that the user can review and edit the 

information by selecting the appropriate activity in the menu. Figure F.12 shows the 

appearance of the Activity menu when all the activities are defined in the model.

Figure F.l I. Creating the Activitv 'BLOW' 

Activity Information

Name : Bioiu

Duration : 10

Entities Inuolued

emtpy molten iron from blastf to torpedoj

O
Assigned Attributes :

O

[ Cancel ] [OurationTT] [Code...] [Edit Info ...]  [ Picture..? [[ OK \

If the duration of an activity is a constant, the value can be added directly to the 

duration field. The duration formula can also be entered via the 'Duration' button in the 

activity dialogue box. The duration dialogue box is shown in figure F .l3. For example, 

to specify the duration formula for activity 'M ELT, which is normally distributed with 

a mean of 110 and standard deviation of 15, the user clicks at the cell labelled
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'Normal(mean, sd, seed)' in the distribution table. The dialogue box will prompt the 

user for the corresponding parameters. The duration formula is recorded when the user 

clicks the 'OK' button in the dialogue box.

Figure F.12. The Activitv Menu of the Steelworks Model

g g g i g g  D r a m  O p t i o n s i Run Oi
N e w  E n t i t y . . .  301 
N e w  R c t i u i t y . . .  9€2 
N e m  A t t r i b u t e . . .  §€3

n t i t l e d )  1

l i n t  i t  y  >
m m m ^ m Ê Ê Ê a M e l t

I U t r i l ) u t i >  > B I o l u

R e t u r n
Going
Fill
T r a u e l
L o a d i n
R e f i n e

S h a m  M o d e . . .  
S h o rn  P a t h s

A n i m a t i o n
ACD...

Figure F.13. Entering the Duration formula for activity 'MELT

F u n c t i o n s  :
B e r n o u l l l ( p r , k , $ e e d )
B i n o m l a l ( p r , k , s e e d )
E r l a n g ( a , m e a n , s e e d )
L o g n o r m a l ( m e a n , s d , s e e d )
N e g e K p ( m e a n , s e e d )
Not  m a l l  m e a n . s d , s e e d )
P o l $ s o n ( m e a n , $ e e d )

O m e a n  : 

s . d .  :

110

s e e d  I . . 2 0  :

D u r a t i o n  : 

L o u i e r  l i m i t  ; 

R c t i u i t y  : M e l t

N o r m a l d  1 0 , 1 5 , 7 )

0 U p p e r  l i m i t  : □  L in e  g r a p h

[Add D i s t r i b u t i o n ]  [ C a n c e l  ] |  OK |

After an activity has been successfully added to the model, a round-cornered 

rectangle labelled with the name of the activity above the rectangle will appear at the 

top-left hand corner of the main window. Figure F .l4 shows the main window after 

the activity 'BLOW  has been added to the model.
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Figure F.14. The Main Window  -  after activitv 'BLOW is created

( u n t i t l e d )

F .4 . Creating an Attribute

A new attribute can be created by selecting the N ew  Attribute command in the 

M odel menu. For exam ple, to create an attribute 'BCAST' (i.e. the amount o f  molten 

iron that the blast furnace produced in activity 'M ELT), enter 'B C A ST  in the name 

field  and click  the 'OK' button. A histogram can be specified in the attribute dialogue 

box (figure F . l5) by clicking at the histogram check box. The attribute B C A S T  is 

added to the model and the name o f the attribute is appended to the Attribute submenu 

in the M odel menu. Figure F . l6 shows the Attribute menu when attributes 'B C A ST  

and C C A ST  are added. The user can review and edit attribute information by selecting 

the appropriate item in the Attribute submenu.

Figure F.15. Creating an Attribute 'BCAST

A t t r i b u t e  I n f o r m a t i o n

N a m e  : B e a s t

E v a l u a t i o n s  :

En t i t y  : N on e □  Global  a t t r i b u t e

O

O

□  H i s t o g r a m

Can ce l

ce l l  m id th  : b a s e  u a l u e  :

Edit I n f o . Z ]  ( Code  ] | OK
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Figure F.l 6. The Attribute Menu of the Steelworks Model 

D r a m  O p t i o n s  Ru n  (M o d e l
N e m  E n t i t y . . .
N e m  R c t i u i t y . . .  §€2 
N e u i  A t t r i b u t e . . .  §€3

Cnlily
R c t i u i t y
A t t r i b u t e

S'bon» M o d e ,  
S ho rn  P a t h s

r

n t i t l e d )

B e a s t
C C a s t

A n i m a t i o n
ACD...

After an attribute is created, its first attribute cloud appears in the top-left hand 

corner of the main window as shown in figure F.l 7. A newly created entity attribute is 

not linked to an entity in the model. The user has to identify the relationship by 

selecting the attribute cloud, and dragging the mouse button to the appropriate entity 

icon on the screen. When the user releases the mouse, a line will be drawn between the 

attribute cloud and the entity icon. Similarly, a link can be established between a system 

attribute and an activity in the same manner.

Figure F.17. The Main Window - after the attribute 'BCAST is created

( u n t i t l e d )

least

F .5 . Formulating the Model Logic

The formulating mechanism of the system is manipulated by using the six
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palette buttons inside the mode box window of the application. Figure F . l8 shows the 

functions of the buttons used in modelling.

Figure F.18. The Palette Buttons inside the Mode Box Window

A m ©
S e lec t  Entity Duplicate Entity Select  Activity Select Attribute S e lect  queue Conditional path

F.5.1. Duplicating Entitv Icons

The life cycle of an entity type is depicted by using chains of entity icons created 

in the main window. These entity icons are indexed. The user can either create a ghost 

icon from an existing icon within the entity icon chain, or delete an existing ghost icon 

from the chain. Each entity icon on screen should be placed inside an activity.

The ‘Select entity’ button in the mode box window is used to move the position 

of the entity icons on screen. Once the button is clicked, the application will redraw the 

screen using square frames and indices for each individual entity icon. The user can 

select an entity icon by clicking anywhere within its frame and moving the icon to the 

desired position. To duplicate an entity icon, the ‘Duplicate entity’ button is used. 

Figure F.19 shows how to duplicate icons for the entity type ‘TORPEDO’.

Figure F.19. Duplicating entitv icons for the entitv type ‘TORPEDO’

R e le a s e  th e  
m o u s e  b u tto n

C lick a t  th e  s o u rc e  icon , 
h o ld  th e  m o u s e  b u tto n  d ow n  

a n d  m o v e  th e  m o u s e  to  th e  
d e s t in a t io n  p o s itio n  of th e  
d u p l ic a te d  icon .

S im ila rly , to  d u p lic a te  a n  ico n  

b e tw e e n  1 a n d  3, ju s t  click on  
ico n  1, m o v e  to  th e  d e s tin a tio n  
p o s itio n  of th e  d u p lic a te d  icon , 
a n d  r e le a s e  th e  m o u s e  b u tto n . 
T h e  n e w  ico n  will h a v e  a n  in d ex  
of 2 a n d  th e  icon  th a t h a d  a n  
in d ex  of 2 will no w  b e c o m e  3.
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A ghost entity icon can be deleted by moving the entity icon to be deleted 

towards its proceeding member in the chain (figure F.20). For example, to delete the 

third torpedo icon in its entity chain, first click at the entity icon and then drag the 

mouse towards the position of the second torpedo icon. The third torpedo icon will then 

be deleted and the indices of all its succeeding members will be updated.

Figure F20. Deleting an entitv icon from its entitv chain

Release
mouse
button.

Click at the third icon, drag the mouse until the 
arrow is Inside the (rame of the second Icon.

The original Icon with an Index 3' disappears. 
The Indices of the succeeding Icons are updated.

F.5.2. Specifying an Activity

There are two ways of specifying the entities that are involved in an activity : 

either by moving the entity icons into the activity rectangle (figure F.2 la) or by moving 

the activity rectangle over the icons (figure F.21 b).

Figure F.2 la. Specifying activity ‘FILL’ in the Steelworks Model

B I O I

1

Going

F i  I I

Click at the  torpedo  icon, hold th e  
m ouse  button until it is inside 
th e  rec tang le  of activity Fill. 
R elease  the  m ouse button.
Similarly for the  c ran e  icon and 
th e  pit icon.

F i  I I

Activity Fill involves the  
co -opera tion  of th e  entity 
torpedo, pit and crane.
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Figure F.21b. Specifying activity ‘BLOW’ in the Steelworks M odel

B I OI

Bloi

Initial p osition  of 
of tfie re c ta n g le  
of activ ity  Blow.

riel^

D rag tfie m o u se  until 
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of tfie se c o n d  b last 
fu rn ac e  icon.

1

Tfie Blow activity  re c ta n g le  
is s tre tc fied  to a  b ig g er s ize

B I OI

Click a t tfie activity  Blow 
rec tan g le  a n d  d rag  tfie 
m o u se  until it is inside tfie 
to rpedo  icon.

BI OI

After re s iz in g  tfie 
activ ity  re c ta n g le  

. a n d  reposition ing  
*  tfie en tity  icons.

Blow
1

W

The status of the model picture is constantly updated after each user’s action so 

that information about an activity or an entity can be instantly reviewed. For example, 

figure F.22a and F.22b show the Dialogue box of activity Blow before and after the 

torpedo entity is added to the activity.

Figure F.22a. The Blow Activitv Dialogue Box - before torpedo is added

N a m e  : Bloiu [ C o m m e n t !

D u r a t i o n  : 10

E n t i t i e s  i n u o l u e d  :

Bl as t f  #1,1 # nelBIoBIo • BIoBIoMe O

o
A s s i g n e d  A t t r i b u t e s  :

O

O

C a n c e l  ) [ D u r a t i o n . . . ) [ c o d e . . . ]  [Ed i t  I n f o . . . ]  [ P i c t u r e . . . ] [ [ ^ _ O K ^ ] j
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Figure F.22b. The Blow Activity Dialogue Box -  after torpedo is added

Activi ty  I n f o r m a t i o n

N a m e  : B lo iu [ C o m m e n t ]

D u r a t i o n  : 10

E n t i t i e s  i n u o l u e d  :

B 1a s t  f * 1 , 1  # Me 1B 1o B 10 * B l o B I o Me 1 o
Torpedo • 1 , 1  •  Go I To r B10 •  Bl oTorGoi

A s s i g n e d  A t t r i b u t e s  :

C a n c e l  ] [ D u r a t i o n . . . ] [ C o d e . . . ]  [ Edi t  I n f o . . . ]  [ P i c t u r e . . . ] [[ OK |

F.5.3. Attribute Assignments

A newly created entity attribute should be linked to an entity and a system 

attribute should be linked to an activity. Figure F.23 shows how to link the attribute 

'BCAST' to the entity blast furnace. Once the attribute is linked to an entity or an 

activity, the user can enter the evaluation formula by double-clicking at the attribute 

cloud on the screen. The attribute evaluation Dialogue box is shown in figure F.24.

Figure F.23. Linking Attribute 'BCAST to Entity 'BLASTF'

l e a s

M e l t M e l t

T he right-hand corner index of the cloud 
is 'O' a s  it is not placed in an  a c tiv ity . 
Click at the B east attribute cloud, 
drag the m ouse until it is inside 
the fram e of the blast furnace icon. 
R elease  the m ouse button.

A line is drawn betw een the 
beast attribute cloud and the 
blast furnace icon.
Click at the cloud and move it 
to the right hand side of the 
fvlelt activity rectangle.

M e l t

N.B. The right-hand corner 
index of the B east attribute 
cloud is 'T  since it is the 
first a ttribu te  evaluation  
inside the  activity Melt.
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Figure F.24. The Attribute Evaluation Dialogue Box for Attribute 'BCAST
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If there is more than one evaluation of the attribute either among the other 

activities, or within the same activity in the model, cloud images can be duplicated for 

the attribute type. For example, figure F.25 shows how an attribute cloud of a system 

attribute TOTAL', which is evaluated at both activities 'MELT' and 'BLOW , can be 

duplicated.

Figure F.25. Duplicating an Attribute Cloud

' " t o t a ls  Initial position of the attribute cloud 
for the system attribute Total.

Click at the attribute cloud Total, 
drag the mouse until 
It is inside the Melt 
activity rectangle.

üsiJL Bio*

Q

Mel t

Click at the Total attribute cloud 
drag the mouse until it is inside 

the Blow activity 
rectangle.

Bip»

a
cüTïtni

The first attribute cloud of Total is linked to 
activity Melt. Notice that the right-hand corner 
index of the cloud is 2' since it is the second 
attribute evaluation within the activity Melt.

g
The duplicate attribute cloud of 
system attribute Total has a 
left-hand corner index of '2 ' and a 
right-hand corner index of 'V  ( f irs t 
evaluation inside activity Blow).
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Like the duplication of entity icons mechanism, a cloud object in an attribute 

cloud chain can be deleted in the same manner. For example, if the third cloud member 

is to be deleted, click at this cloud, drag the mouse until it is inside the second cloud of 

the attribute chain, and then release the mouse. The original cloud with a left-hand 

corner index of '3' will disappear and the indices of its succeeding members in the 

attribute cloud chain will be updated.

F .5.4 Specifying Queue Information

All the queues are generated automatically by the MacGraSE application. They 

are initially invisible to the user. To see the picture with queues, click at the 'Select 

queue' button in the mode box window. The application will then redraw the pictorial 

model with queues between entity icons. Figure F.26 shows the picture model when 

the 'Select queue' button inside the mode box window is selected after the life cycle of 

the torpedo is completed.

Figure F.26. A Model Picture with Queues

( u n t i t l e d ) 101

R e t u r n

o
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To edit information for a queue, just double-click at its appropriate location in 

the model picture. The queue Dialogue box is shown in figure F.27. The user can 

change the default name of the queue in the name field, enter the number of entities in 

the queue in the number field, and create histograms and time series for the queue by 

clicking the appropriate check box inside the queue Dialogue. Any histograms or time 

series specified are appended to the Output menu.

Figure F.28 shows the appearance of the Output menu after a queue length 

histogram, a queuing time histogram, and a time series histogram have been created for 

queue 'RETTORBLO'. This Output menu allows the user to select the results to be 

reviewed after completing a simulation run.

Eigur̂  F.27, The Dialogue Box

N a m e  : R e tT o r B lo

N u m b e r  :

E n t i t y  : T o r p e d o  
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H i s t o g r a m s  : 

E  0 L e n g t h  

E  Q T i m e

tb IoLuql

t b i o m q t

T i m e  S e r i e s  :

E  T - S e r i e s  t b l o m t s j

[ C a n c e l  J

□  S o u r c e / S i n k

□  Ui s ib le

□  S h o rn  i c o n

ce l l  w i d t h  : 

ce l l  w i d t h  ;

b a s e  u a l u e  : 

b a s e  u a l u e  :

0

P l o t :  B a r  O  L ine  O  S c a t t e r

i  "K Jj

Figure F.28. The Output Menu
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H i s t o g r a m : t b l o w q t  
T S e r i e s i t b l o w t s
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F.5.5. Adding a Conditional Path

A conditional path for an entity life cycle can be created by using the 

'Conditional path' button inside the mode box window. Once the button is selected, the 

system will redraw the model picture with queues between entity icons. To create a 

conditional path, click at the entity icon from which the path originate and then drag the 

mouse into the destination queue. The system will redraw the life cycle with the new 

conditional path (a line with a small square in the middle). To enter the condition for the 

path, click at the small square to invoke the condition dialogue box (figure F.30).

Figure F29. Creating a Conditional Path

R e t u r n

Drag the m o u se  to the 
destination  q u e u e  and

... Click a t the  entity icon from which 
the conditional pa th  o rig inates.

re le a se  the  m ouse.

R e t u r n
JFIjJ L

\ 1 ■

1
A new  path  is draw n with a  sm all s q u a re  
along  its line indicating it is a  conditional path.

Figure F30, The Condition Dialogue Box
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F .6. Generating an Activity Cycle Diagram

An activity cycle diagram of the model can be generated on screen by selecting 

the 'ACD' command in the Model menu. Since the initial positions of the activities and 

queues are set by using the corresponding locations in the model picture, overlapping 

of objects often occurs for the first generated ACD. However, the objects can be easily 

rearranged and the new locations are recorded. Any additional components to the model 

will not affect the user-defined positions of the original existing objects. These added 

components will be drawn by using their default positions and the user can reposition 

them if preferred. Figures F.31a and F.31b show the original generated ACD and the 

revised ACD after rearranging the objects for the steelworks model.

Apart from being a flow diagram that represents the logic of the model, the user 

can also enter the information of activities and queues within the ACD. To enter the 

information of an activity, double-click at the appropriate activity rectangle in the ACD. 

The activity Dialogue box is then invoked and the user can edit the information of the 

selected activity. Similarly, the information of a queue can be edited in the same way.

Figure F.31a. The Original Generated ACD of Steelworks
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F igure F .3 lb .  The R e v ise d  A C D  o f  S tee lw o rk s
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F .7 . Generating a Simulation Program

Turbo Pascal is the default language. The user can select the desired language in 

the Language submenu of the Run menu. To generate a simulation program, select the 

Generate command in the Run menu. The application will prompt the user for the name 

of the generated files and allow the user to select some options for program generation 

via the generate Dialogue box (figure F.32). The program will not be generated until the 

'OK' button is clicked.

Figure F32. The Generate Dialogue Box

Saue t he  file o f  t h e  g e n e r a t e d  p r o g r a m  a$ :

Steeluiorksj

G e n e r a t e  Options :
□  Include Graphics
n  Include Screen
□  Include Repor t

[ Cancel  ] fl IK j1
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To see the generated program within the application, select the Show Program 

command from the Run menu. The program is then displayed in the Dialogue box as 

shown in figure F.33.

Figure F.33. The Show Program Dialogue Box
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M e l t , B l o w , G o i n g , F i  I I , R e t u r n , T r a v e I , Load I n , R e f i ne ; A c t  i v i t y ,  

B l o B l o M e ; , M e l B l o B l o , P e t T o r 3 l o , B l o T o r G o i , G o i T o r F I I , F = I T o r R e t , F ' I P i t F i I , L

P ro c e d u r e  B u i Id M o d e I  ; o
C a n c e l  ] |  OK |

F .8 . Running the Simulation Model

The MacGraSE application supports three types of simulation mn - a visual run, 

a text run, and a screen run. In each case, the duration, the run-in period and the speed 

can be specified.

F.8.1. Visual Run

A visual run is executed by selecting the Visual Run command from the Run 

menu. The visual run Dialogue box is shown in figure F.34. The visual run can be 

proceeded by selecting the Go command from the Run menu.
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Figure F,34, The Visual Run Dialogue Box

D u r a t i o n  : | 100
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The model picture of the steelworks model is shown in figure F.35. The 

dynamics of the model during a simulation run is shown by displaying the start and 

completion of activities at each time advance in the model picture. The start of an 

activity is shown by drawing the activity rectangle with the icons of the entity types that 

are involved in the activity. The number of times that the activity has started since the 

beginning of the simulation run is also shown. The completion of an activity for an 

entity is shown by drawing the entity icon within a circular frame at the location of the 

queue where the entity enters after the activity. Lines are also drawn during a visual run 

to indicate where the entity comes from and where it goes to.

Figure F35, The Visml Picture
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F.8.2. Text Run

A text run is executed by selecting the Text Run command from the Run menu. 

The text run Dialogue box is shown in figure F.36. The user can select the option of 

displaying either a text run table, or a simulation clock during the simulation run. The 

text run table is shown in figure F.37.

Figure F.36. The Text Run Dialogue Box

Dura t ion  : 100

Run- In  Per iod  : 0

Speed  :
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®  Time di sp l ay  O Tent  run  t a b l e
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Saue  Resul t

Unt i t l ed

Unt i t l ed

[ Cancel

Figure F,37. The Text Run Table

TI me : 0
End o f  A c t I v l t i e s S t a r t  o f  Act i v111 es
A c t i v i t y  Count E n t i t y A c t i v i  ty Count E n t i t y

Mel t 1 B l a s t f  1

The text run table is divided into two main columns - the End of Activities 

column and the Start of Activities column. Each column is then subdivided into three 

subsections to display the name of the activity, the index indicating the rank of the 

activity, and the name and index of the entity that is involved in the activity.
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F.8.3. Screen Run

A screen run for a predefined screen in the model is executed by selecting the 

Screen Run command from the Run menu. The screen run Dialogue box is shown in 

figure F.38. After setting the options in the Dialogue box, the user can proceed the 

simulation run by selecting the Go command from the Run menu. Figure F.39 displays 

an example of the appearance of a screen which contains a time series of a queue during 

a simulation run.

Figurç F J 8 .  The ^crçen Run PiglogHÇ Bpx

D u r a t i o n :  | 1 0 0 R u n - i n  P e r i o d  : 0

S c r e e n  :

F r o m  T i m e  : 

To T i m e  :

S p e e d  0 . . 9  :

□  S a u e  R e p o r t

□  S a u e  R e s u l t [ C a n c e l  ] f( OK ])

Figure F.39. An Output Screen

Time : 250

TBLOUTS

900

Appendix F. Using MacGraSE 226



F .9. Displaying Results

The output results can be reviewed by selecting the menu items inside the 

Output menu. Figures F.40 to F.43 show the display of some of the results after a 

simulation run of 900 time units for the steelworks model.

Figure FAQ, The Activity Count Chart
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Figure F,41, The Entity Utilisation Chart
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Figure F .42. The 'RETTORBLO' Queue Length Histogram : TBLOWOL'
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Figure F.43. The 'RETTORBLO' Time Series : TBLOWTS'
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F.IO. The Menu Reference

There are seven menus in the MacGraSE application, excluding the standard 

apple desk accessories menu (#). Some of the menu items have hierarchical menus. 

Figure F.44 shows the appearance of the main menu.

Figure F A4, The Main Menu of MacGraSE 
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ACD...

B iitf- . im  Options Run
Im p o rt  P a int . . . XI

P r e f e r e n c e s . . .

R e d u ce  To Fit
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Line S ize . . .
Brush S h a p e . . .

Run OutOptions
Edit R eport. . .

Neuj S creen . . .  
Edit S creen  
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Output
R ctiu ity  Count Table  
U ti l isa t ion  Time Table

Clock.. .
M odel P ic ture . . .  
Rctiuity Duration..  
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U til isa t ion  Time.. . 
R ttr ib u te s  Ualue... 
H istogram .. .
Time S er ies . . .

Dram Options

MPUJ C 
MPIU P asca l  
Mac Turbo P a sca l  
IBM Turbo C 
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Output
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Uisual Run... 
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The File menu handles all the filing procedures within the application. New is 

used for creating a new MacGraSE file. Open is used for opening an existing file.
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Close is used for closing the application window. Save and Save As is used for saving 

the working file. Revert allows the user to revert to the last copy of the file before any 

changes is made. Page SetUp is used for setting the options of the paper size in 

printing. Print Options is a hierarchical menu which allows the user to select the option 

of different representations of the model to be printed. Print is used for printing the 

working file. Quit is used to quit the application.

The Edit menu contains the Cut, Copy and Paste commands to aid the editing 

of the background picture and textual data input. Drawing Size allows the user to select 

the drawing size of the model. Delete is used for deleting the selected components of 

the model. The tool box window can be hidden and shown on the screen by using the 

Show Tools command.

The Model menu contains all the commands for building up a simulation 

model. New components - entity, activity or attribute, can continuously be added to the 

model by using the New Entity, New Activity and the New Attribute menu items 

respectively. These components will be appended to the appropriate submenu {Entity, 

Activity and Attribute) within the Model menu. The user can view and edit information 

for each individual component by selecting the item in the submenu. Show Path allows 

the user to display the path (in terms of straight lines) of the entity type that is being 

constructed on screen. ACD is used for generating an activity cycle diagram. The user 

can also manipulate data via the generated ACD. Animation is used to execute an 

animation run so that the user can see the actual movement of individual entities that 

move inside the system during a simulation run.

The Draw menu is used to aid the drawing of the background picture. 

Preferences is used for setting the appearance of the ruler and grid inside the main 

window. Line Size, Line Pattern, and Fill Pattern are used to select the pen size, pen 

pattern, and fill pattern of the drawing pen. The appearance of the text is set by using 

the Text Options command. Import Paint allows the user to import a picture that is
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drawn in other Macintosh drawing applications.

The Options menu has two main functions. The first function is report 

editing, so that the user can edit the report format to produce a desired report after a 

simulation run. This is achieved by using the Edit Report command. The second 

function is screen editing in which the user can create multiple output screens for a 

simulation run. New Screen is used to create a new output screen in the model. Edit 

Screen is used in specifying the objects inside a selected screen. The objects that can be 

put in a screen are mainly the simulation clock, utilisation time table, activity count 

table, histograms, time series, numerical statistics, attribute values and status of an 

entity type. Tile Screens allows the user to display all the designed screen in a tiling 

format on the computer desktop.

The Run menu is used for performing simulation runs on the model. 

Language is a hierarchical menu which allows the user to select the language for the 

generated program. Generate is used for generating a three-phase simulation program. 

Show Program displays the generated program in a Dialogue box. Check Logic is used 

for checking the logic of the model. A textual description of the current state of the 

model can be reviewed by using the Model Summary command. There are three 

options for a simulation run - Screen Run, Visual Run, and Text Run. When the 

parameters inside each option are entered, the user can select the Go command to 

process the simulation run. In each case, the user can select the options of saving the 

result file and the report file of a simulation run. Show Result and Show Report display 

the result file and the report file in a Dialogue box respectively.

The Output menu is only appended to the menu bar when a simulation run is 

executed by the user. Any specified histograms, time series or graphs are added to this 

menu, so that the user can select the output to be reviewed after a simulation run. The 

default setting of this menu includes the Utilisation Time Table and the Activity Count 

Table.
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A PPEN D IX  G

INSIDE MACGRASE

G . I.  THE INTERFACE UNITS

G.2. THE FILE MENU UNITS

G.3.  THE EDIT MENU UNITS

G.4. THE MODEL MENU UNITS

G.5. THE DRAW MENU UNITS

G.6. THE OPTIONS MENU UNITS

G.7. THE RUN MENU UNITS

G.8. THE OUTPUT MENU UNITS
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This appendix shows the structure of the Macintosh application MacGraSE 

program. MacGraSE was written in 60 units, used in conjunction with the AppMaker 

library which handles most of the interface part of the application The program was 

written by using the Macintosh Programming Workshop Pascal Compiler. The make 

file of the MacGraSE application is shown in figure G.l.

Figure G.l. The MacGraSE Make file for MPW Pascal

Fi l e ;  
Ta r g e t

LI nkP i l e a  = d

MacGr aSE. make  
MacGraSE

R e e o u r c e D e  f 3 . p . o 
G l o b a l s . p . o  d 
S h o u i Mo d e . p . o  d 
S h o v i T o o l s . p . o  d 
Ma I nU i ndoui . p . o < 
Ma I n Me n u . p . o d 
F i I I n g . p . o d 
Ed 1 1 . p . 0  d 
L a n g u a g e . p . 0  d 
C o n d i t i o n . p . 0 d 
NeuiEnt  11 y . p . 0 d 
MEnt 11 y . p . 0  d 
Neui fl ct  I V 11 y . p . 0 
Mflct I V 11 y . p . 0 d 
Mflt t rI  but  e . p . 0 I  
At t  Co I c uI  a t  I on . p 
Neiuflt t  r I b u t  e . p . o 
Mode I . p . 0  d 
D r a w . p . 0 d 
Opt I o n s . p . 0  d 
R u n . p . 0  d 
P r i n t  Opt  I o n a . p . 0 
O u t p u t . p . 0  d 
E d I t S c r e e n . p . o  I  
B r u s h S h a p e . p . o I  
T e x t  Opt  I o n s . p . o 
F i l l  P a t t e r n . p . 0  
L I n e P a t t  e r n  . p . 0 
L I n e S I z e . p . 0  d 
G e n e r a t e . p . 0 d 
Draw I n g S I z e  . p . 0  
P r e  f e r e n c e s  . p . o 
S c r e e n R u n . p . o  d 
E d i t  R e p o r t . p . 0 I  
MSummary, p . o d 
U I s u o I  R u n . p . 0  d 
Te x t  R u n . p . 0  d 
N e w S c r e e n . p . o  d 
De I e t e . p . 0  d 
S h o w . p . 0  d 
I mp o r t  Pa I n t . p . o 
Ent I  c o n . p . o d

Appendix G. Inside MacGraSE 233



D i s t r i b u t i o n s . p . 0 d
H i s t o g r a m . p . o  d
T i me S e r  i e s . p . 0  d
Que In f o . p . 0  d
f l CD Re c t . p . o d
ACDLi  n e . p . 0  d
ACOQu e . p . o  d
Pr  i o r  i t y . p . 0  d
Ac t  D u r â t i  o n . p . o d
C o d e . p . 0  d
L i f e C y c I e . p . 0  d
Ac t P  i c t u r e . p . o d
E d i t A c t I n f o . p . o  d
E d i t A t t I n f o . p . o  d
C h e c k L o g  i c . p . o d
Sho u i Re p o r t  . p . o d
An i mâ t  i o n . p . o d
DI s p o t  c h e r . p . 0  d
" { n P U } A M L i b r a r y P :  " A ML i b . o

' Ma c Gr a S E ' f f  { L i n k F i l e s }
Li nk  - V I  - t  APPL - c  XXXX d 

{ L i n k F i l e s )  d  
" { L i b r a r i e s } " I n t e r f a c e . o  < 
" { L i b r a r i e s ) " R u n t  i m e . o  d  
" { P L i b r a r i e s } " P a s L i b  . 0 d 
" { P L i b r a r i e s ) " S A N E L i b . o  d

•  - I  - I f  > ' Mac Gr aSE. ma p ' d
- 0  ‘ Ma c Gr a S E '

G . l .  The Interface Units

Globals This unit contains all the global declarations of the program, 

including all the simulation modelling data structures and variables.

ResourceDefs This unit contains named constants for all named resources and 

all menus and menu items and contains menu handles for all of the menu resources.

MainWindow This is the unit that controls the appearance of the main window 

on screen in response to the user's actions. It contains procedures for drawing the 

background pictures and routines for modelling the objects on screen. Procedures for 

scrolling, updating, activating and sizing of the main window can also be found.

MainMenu This module contains code to initialise the menus, to choose 

from the menu, and to update the menu - to enable/disable menu items, for example.
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Dispatcher The dispatcher routine is called by other units for window or 

modeless dialog-related activities. It determines which window or dialog is involved 

and branches to the appropriate module.

G.2. The File Menu Units

Filing The Filing module contains code to handle the File menu items.

It handles New, Open, Close, Save, Save As, Revert, PageSetup, Print, and Quit. It 

also contains procedures for the actual reading and writing of a file.

PrintOptions This is a hierarchical menu module which handles the selection 

of menu items from the Print Options menu. The Print Options menu allows the user to 

choose which representation of the model to be printed on paper.

G. 3 .  The Edit Menu Units

Edit The Edit module contains code to handle the Edit menu items.

DrawingSize This is a modal dialog box module which handles the selection 

of the size of the drawing area for the model being constructed.

ShowTools This is a modeless dialog box module which handles the 

selection of the palette choices inside the tool box window. The tool box window is 

used to facilitate the drawing of the background picture of the model.

Delete This is a modal dialog box module which handles the deletion of

simulation data stmctures that are predefined by the user.
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G.4. The Model Menu Units

Model The Model module contains code to handle the Model menu

items. The Model menu is used for the modelling of the simulation problem.

NewEntity This is a modeless dialog box module which handles the user's 

interaction with the entity dialog box when either a new entity type is being created or 

information about an existing entity type is being reviewed.

Entlcon This is a modal dialog box which handles the selection of an 

entity icon for an entity type.

LifeCycle This unit handles the drawing of an individual entity life cycle 

when the 'Life Cycle' button inside the entity dialog box is clicked.

Condition This is a modal dialog box module which is used for accepting 

the condition on a conditional path which is created by the user in the model.

New Activity This is a modeless dialog box module which handles the user's 

interaction with the activity dialog box when either a new activity is being created or 

information about an existing activity is being reviewed.

ActDuration This is a modal dialog box module which contains routines for 

helping the user enter the duration formula for an activity when the 'Duration' button 

inside the activity dialog box is clicked.

ActPicture This is a modeless dialog box module which contains drawing 

routines for creating an action picture for an activity when the 'Picture' button inside the 

activity dialog box is clicked.

EditActlnfo This unit handles the drawing of a flow diagram which shows 

the current status of an activity in the model when the 'Edit Info' button inside the 

activity dialog box is clicked.
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Code This is a modal dialog box module which handles the generation

of simulation code for an activity when the 'Code' button inside the activity dialog box 

is clicked.

Priority This is a modal dialog box module which contains routines for 

switching the priorities of activities defined in the model.

NewAttribute This is a modeless dialog box module which handles the user's 

interaction with the attribute dialog box when either a new attribute is being created or 

information about an existing attribute is being reviewed.

AttCalculation This is a modal dialog box module which contains routines for 

helping the user enter the evaluation formula for an attribute object on screen.

EditAttlnfo This unit handles the drawing of a flow diagram which shows 

the current status of an attribute in the model when the 'Edit Info' button inside the 

attribute dialog box is clicked.

Quelnfo This is a modal dialog box module which contains information

about a queue that is generated by the application. It also contains procedures for 

defining histograms and time series for the queue.

MEntity This is a hierarchical menu module which handles the selection

of an entity type that is defined in the model. This invokes the entity dialog box and the 

data for the selected entity type will be fed into the appropriate entries inside the dialog 

box.

MActivity This is a hierarchical menu module which handles the selection

of an activity that is defined in the model. This invokes the activity dialog box and the 

data for the selected activity will be fed into the appropriate entries inside the dialog 

box.
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MAttribute This is a hierarchical menu module which handles the selection 

of an attribute that is defined in the model. This invokes the attribute dialog box and the 

data for the selected attribute will be fed into the appropriate entries inside the dialog 

box.

ShowMode This is a modeless dialog box module which handles the 

selection of the palette choices inside the mode box window. The mode box window is 

used to facilitate the construction of the simulation model.

Animation This unit contains routines used for model animation.

ACD This unit contains routines used for the generation of an activity

cycle diagram representation of the model.

ACDRect This is a modal dialog box which contains routines used to 

control the appearance of activity rectangles in an activity cycle diagram.

ACDLine This is a modal dialog box which contains routines used to 

control the appearance of life paths in an activity cycle diagram.

ACDQue This is a modal dialog box which contains routines used to 

control the appearance of queue circles in an activity cycle diagram.

G.5. The Draw Menu Units

Draw The Draw module contains code to handle the Draw menu items.

The Draw menu is used to facilitate the drawing of the background picture.

ImportPaint This unit contains procedures used for importing other pictures 

that are drawn in other Macintosh applications.

Preferences This is a modal dialog box module that allows the user to select 
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the options (ruler and grid) he prefers during drawing of the background picture.

TextOptions This is a modal dialog box module which contains routines for 

controlling the appearance of text on screen.

FillPattem This is a modal dialog box module which contains routines for 

selecting the pattern that is used to fill an object on screen.

UnePattem This is a modal dialog box module which contains routines for 

selecting the pen pattern that is used to draw an object on screen.

LineSize This is a modal dialog box module which contains routines for 

selecting the size of the pen that is used to draw an object on screen.

BrushShape This is a modal dialog box module which contain routines for 

selecting the brush shape that is used to paint on screen.

G.6. The Options Menu Units

Options The Options module contains code to handle the Options menu

items.

EcUtReport This is a modal dialog box which is used for setting the format 

of the simulation report.

NewScreen This unit is used for generating a new output screen used in 

running a simulation.

EditScreen This unit contains routines used for selecting and editing a

predefined output screen in the model.

Histogram This is a modal dialog box module which is used for selecting a

predefined histogram that is to be placed onto an output screen.
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TimeSeries This is a modal dialog box module which is used for selecting a 

predefined time series that is to be placed onto an output screen.

G.7. The Run Menu Units

Run The Run module contains code to handle the Run menu items.

The Run menu contains routines that control the running of the simulation model.

Language This is a hierarchical menu module which contains routines for 

selecting the language to be used when generating a three-phase simulation program.

Generate This is a modal dialog box which contains code allowing the 

user to specify the name of the generated file and to generate the simulation program.

CheckLogic This unit checks the logic of the model defined by the user and 

reports any errors that are detected.

MSummary This is a modal dialog box module which is used to present the 

simulation model in a textual format.

Distributions This unit contains all the functions that are used for evaluating 

the duration of an activity and the value of an attribute during a simulation run.

ScreenRun This is a modal dialog box module which sets the screen run 

mode on and allows the user to specify the duration, the run-in period, and the speed of 

the simulation run. The user can also specify a result file and a report file for the run.

VisualRun This is a modal dialog box module which sets the visual run 

mode on and allows the user to specify the duration, the run-in period, and the speed of 

the simulation run. The user can also specify a result file and a report file for the run.

TextRun This is a modal dialog box module which sets the text run mode 
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on and allows the user to specify the duration, the run-in period, and the speed of the 

simulation run. The user can also specify a result file and a report file for the run.

Show  This unit allows the user to review the result file or the report file

in a modal dialog box after the completion of a simulation run.

G.8. The Output Menu Units

Output The Output module contains code to handle the Output menu

items. The Output menu contains all the user-specified data recording items, for 

examples, histograms and time series.

ShowReport The Show module invokes a modal dialog box in which the 

selected data recording item is displayed after the completion of a simulation run.
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