A GRAPHICS DRIVEN APPROACH TO

DISCRETE EVENT SIMULATION

GRACE AU

The London School of Economics

Thesis submitted in fulfillment of the requirement
for the degree of Doctor of Philosophy at
the London School of Economics,
University of London.

April 1990

UMI Number: U055379

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

Dissertation Publishing

UMI U055379
Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346

FCLIT5CAL

e> 107
or'K

ABSTRACT

This thesis investigates the potential of computer graphics in providing for a
graphics driven specification system that gives sufficient structure and content to form
the simulation model itself. The nature of discrete event simulation modelling, the
diagramming method of activity cycle diagrams which underpinned this research, the
three phase simulation model structure, and the trend of visual simulation modelling are
discussed as the basis for the research. Some current existing simulation languages and
packages are reviewed, which gives insight into the essential features of an ideal

computer simulation environment.

The basic research method adopted was to build systems that exemplified the
state of thinking at the time. The purpose of this method was to enable ideas to be
developed, discarded and enhanced, and for new ideas to emerge. The research has
undergone a series of application developments on the Apple Macintosh to examine the

advantages and limitations of such systems.

The first system developed during the research, MacACD, provides the basis
for proposals concerning the enhancement of the ACD diagramming method in a
computer-aided environment. However, MacACD demonstrated the limitations of an
ACD interface and the need for a more flexible specification system. HyperSim, a
simulation system developed using Hypercard, has all the power of interconnectivity
demonstrated as a need by MacACD, but has severe limitations both in terms of
security of system development, and an inability to provide a running model directly
due to lack of speed. However, the power of an icon-based interconnected textual and
diagrammatic based system were demonstrated by the construction of this system
during this research, and led to the development of the final system described in this
thesis : MacGraSE. The development of this system during this research incorporates
many innovations. The main input device is a picture representing the problem,
including a background display. This system allows for dynamic icon based visual
model running, as well as code generation for complete model embellishments,

interactive report writing, and representational graphics outputs.

ACKNOWLEDGEMENTS

I would like to thank Dr. Ray Paul
for his excellent supervision and constant encouragement

throughout this research.

I would like to thank Lizza Domingo and Jean Mak

for their wonderful friendship and loving care.

I would like to thank my parents,

whose love is the force behind everything I work for.

Thank God for all the blessings and gifts.

Thanks for being there to watch over me.

CHAPTER 1.

1.1.

1.2.

1.3.

1.4.

1.5.

1.6.

CHAPTER 2.

2.1.

Contents

CONTENTS

INTRODUCTION

Simulation Modelling

1.1.1. Computer Simulation Modelling

1.1.2. The Process of Computer Simulation

1.1.3. A Detailed Life Cycle of a Simulation Study

Activity Cycle Diagrams

1.2.1. The ACD Methodology

1.2.2. The Pub Example

1.2.3. The Launderette Example

1.2.4. The Steelworks Example

1.2.5. The Port Example

1.2.6. Advantages and Disadvantages of ACDs

Simulation Modelling Structure
1.3.1. The Process Flow Method
1.3.2. The Event-based Method
1.3.3. The Three Phase Method

Visual Interactive Simulation
1.4.1. The Nature of VIS

1.4.2. The Use of VIS

1.4.3. The Future of VIS

Research Objectives

Outline of the Thesis

LITERATURE SURVEY

CASM at the L.S.E.
2.1.1. CASM's View of a Simulation Environment
2.1.2. CASM Research

AN B WD

10
11
13
14

14
14
15
16

17
18
19
20 -
20

22

24

24
25
26

2.2,

2.3.

2.4'

2.5.

Graphics in Simulation Modelling
2.2.1. The Use of Graphics in Specification
2.2.2. Visual Simulation

2.2.3. Graphical Output

Simulation Languages

Modern Simulation Systems
2.4.1. Generic models

2.4.2. Program Generators
2.4.3. Pseudocode

2.4.4. Handcrafting

Summary

CHAPTER 3. MACACD, DIAGRAMMING TECHNIQUES

3.1.

3.2.

& COMPUTER-AIDED ACD

MacACD
3.1.1. An Overview of MacACD
3.1.2. The MacACD Interface Design

Experience gained from MacACD
3.2.1. Advantages of MacACD
3.2.2. Limitations of MacACD
3.2.3. The Apple Macintosh

3.3. Diagramming Techniques

3.4.

Contents

3.3.1. Diagramming Techniques and Software Engineering
3.3.2. Current Diagramming Techniques

3.3.3. Computer Graphics Tool

3.3.4. Properties of a Good Diagramming Technique

Computer-Aided ACDS

3.4.1. Actvites
3.4.2. Queues

29
29
30
31

31

33
33
34
35
36

36

38

38
39
40

44
44
45
45

47

48
50
51

53
53
53

ii

3.4.3. Life Paths of Entities

3.4.4. Layered ACD

3.4.5. Code Generation

3.4.6. Iconic Representation of an ACD

3.5. Summary

CHAPTER 4. HYPERCARD AND HYPERSIM

4.1. Hypertext and Hypercard
4.1.1. The Concepts of Hypertext
4.1.2. Hypercard as a Hypertext System

4.2. The HyperSim System
4.2.1. An Overview of HyperSim
4.2.2. The Design of HyperSim

4.3. Experience gained from HyperSim
4.3.1. Advantages of HyperSim
4.3.2. Limitations of HyperSim

4.4. Summary

CHAPTER 5. DESIGN OF THE GRAPHICAL
SIMULATION MODELLING ENVIRONMENT

5.1. Design Objectives

5.2. Components of the Graphical Simulation System
5.2.1. Background Picture
5.2.2. Objects on Screen
5.2.3. Generation of ACD
5.2.4. Logical Description of Data
5.2.5. Program Generation
5.2.6. Visual Simulation
5.2.7. Simulation Run : Output Display

Contents

54
55
55
56

56

57

57
58

61
61
62

72
73
74

75

77

78
79
81
82
82
83
83
84

iii

5.3.

5.4.

CHAPTER 6.

6.1.

6.2.

6.3.

6.4.

6.5.

Contents

5.2.8. Simulation Run : Text Display
5.2.9. Report Generation
5.2.10. Built-in Macro Language

The MacGraSE Application
5.3.1. The Interface

5.3.2. The Main Menu

5.3.3. The Formulation Mechnism

Summary

IMPLEMEMTATION OF THE GRAPHICAL
SIMULATION MODELLING ENVIRONMENT

MacGraSE Data Structures

6.1.1. Entity
6.1.2. Activity
6.1.3. Attribute

Data Input Interface

6.2.1. Background Drawing Facilities
6.2.2. Entity Information

6.2.3. Activity Information

6.2.4. Queue Information

6.2.5. Atribute Information

6.2.6. Activity Cycle Diagram Generation

Program Generation

The Run Module
6.2.1. Visual Run
6.2.2. TextRun
6.2.3. Screen Run

The Output Module
6.5.1. The Report Generator
6.5.2. The Entity Utilisation Time Chart

85
85
85

86
86
89
92

96

97

97

100
101
102

103
103
105
107
109
110
112

113

114
114
115
116

116

117
117

iv

6.6.

6.7.

CHAPTER 7.

7.1.
7.2.
7.3.
7.4.

Appendix A.
Appendix B.
Appendix C.
Appendix D.
Appendix E.
Appendix F.

Appendix G.

REFERENCES

Contents

6.5.3. The Activity Count Chart
6.5.4. The System Values Table
6.5.5. Histograms
6.5.6. Time Series

Experience gained from MacGraSE
6.6.1. Advantages of MacGraSE
6.6.2. Limitations of MacGraSE

Summary

CONCLUSIONS AND FURTHER RESEARCH

Summary
Conclusions
The Apple Macintosh

Further Research

Three-Phase Simulation Program Structures in Pascal

MacSim.Lib : A Macintosh Simulation Library
An Example Walkthrough with MacACD
The Use of Diagramming Techniques

How to use HyperSim

Using MacGraSE

Inside MacGraSE

118
119
119
120
120
120
121

122

123

123
124
127
128

131

152

170

184

185

203

232

242

CHAPTER 1

INTRODUCTION

" Simulation is a two-edged sword. It can cut both ways. In the wrong hands

it can do great damage. How can we assure that it is used only for good 7 "
The Society for Computer Simulation Journal

Simulation is a broad subject. In this research, we are only concerned with
dynamic systems, i.e. those that change with time. And the type of simulation we are
interested in is discrete-event simulation modelling (Adelsberger et. al. 87, Pidd 84,
Pidd 88). A model based on a discrete system changes at specific points.in time and is
only concerned with state changes at these events. Discrete systems are the opposite of
continuous systems. The latter systems are usually represented by differential equations
or some equivalent approximation, and consequently they have an entirely different

mode of solution.

Simulation is becoming more and more widely used in the area of operational
research and will continue to be one of the most useful techniques for helping analysts
and users understand their system better and to make decisions for improving their

system. Here is an abstract of a simulation article by McLeod (88) :

On 11 April 1970, Apollo 13 was launched. At first the mission went flawlessly.
Injection into moon orbit took place as planned. Then, on the evening of the third
day, there was a loud "bang.” Working with a preflight simulation, the NASA
ground crew not only diagnosed the problem as an explosion of one of two oxygen
storage tanks in the service module, but devised and transmitted to the flight crew
instructions as to how to cope with the situation and make a safe return and

landing on the earth !

Chapter 1. Introduction 1

Simulation can be defined as the use of models as surrogates for the study of
existing or hypothesized systems. It is the process of building up an artificial model
which resembles the real world system. This model is then used to perform
experiments to find out the relationships between the different factors of production and
the system output. For example, a simulation model can be built for a steelworks to
investigate the number of each type of resource which is required to increase the

throughput of the system.

This is an introductory chapter to the thesis. The nature of computer
simulation modelling and the process of simulation are discussed in section 1.1. Much
of this research is focused on a diagramming technique called Activity Cycle Diagrams.
Its methodology is discussed in section 1.2. In section 1.3, we look at different
approaches to modelling structure, with a detailed description of the three phase method
in particular, and explain why we have chosen this method in our research. Visual
interactive simulation modelling (an essential component of this research) is discussed
in section 1.4. The research objectives and the outline of this thesis are given in

sections 1.5 and 1.6 respectively.

1.1. SIMULATION MODELLING

Simulation modelling is a powerful method for modelling problems, and one
which would be more widely used if it were cheaper and easier to use (Balmer & Paul
86). Simulation is a powerful tool for understanding, which is a prerequisite for
solving any kind of problem, and a catalyst by which new policy rules have been

articulated. Understanding is often necessary in order to know what the problem is.

There are many ways to build up a simulation model. Since a popular tool for
studying dynamic systems is by using computer models, we are only concerned with

computer simulation modelling (section 1.1.1) in this research. The general process of

Chapter 1. Introduction 2

simulation is discussed in section 1.1.2 and a more detailed life cycle of a simulation

study is described in section 1.1.3.

11.1. Computer Simulation Modelling

Computer Simulation involves the careful planning of a model of a real world
environment or system of interest, for example, a steelworks (Paul & Balmer 89) or a
port (El Sheikh 87). A computer is used as a vehicle to develop an artificial or
hypothetical model which imitates the system's behaviour when subject to a variety of
operating policies. The computerized model incorporates as much detail as necessary so
as to provide a realistic representation of the real world system. This model also allows
the user to perform a variety of experiments, say, by changing certain conditions in the
system, or by using different combinations of resources, or by applying different
operating policies. In general, the computerized model acts as a vehicle for
experimentation, often in a trial and error way, to demonstrate the likely effects of
various conditions and policies. The results of the analysis may then be used to provide
assistance for management decisions. The nature of simulation modelling is further

discussed in Paul & Balmer (89), Pidd (84, 88), and Szymankiewicz et. al. (88).

Digital computers are now fast enough to simulate most real systems in real
time, and computational results can be made accurate to any desired degree. Modern
digital computers and software are excellent for handling communications with the
modeller, with the customer, and with other digital systems, local or remote. Icons can
be pictured on the screen of a digital work-station and moved with a pointing device
across the screen to construct a pictorial representation of the simulation model. Then
the computer will program itself to simulate the real world system. To communicate
with the customer who wants to study the operation of a system, a diagram of a job-
shop, a traffic intersection, or other kind of system can be dynamically displayed to

show what is going on with the simulation picture in real time or faster, or slower.

Chapter 1. Introduction 3

1.1.2. The Process of Computer Simulation

The process of computer simulation modelling includes at least three phases :
Modelling, Programming and Experimentation (Paul & Baimer 89, Pidd 88). Figure

1.1 presents the general simulation process.

Figure 1.1. The Process of Simulation

WmL©

Discussion with experts
Definition of problem logic
~ Data collection & analysis

FORMAL SIMULATION MODEL]

Computerlanguage
&packages

Program generators "
| COMPUTERISED SIMULATION MODEL]
irification]
alidation *

OPERATIONAL SIMULATION MODEL |

Experimental design
and implementation

EXPERIMENTAL OUTPU LEGEND
1 1 PRODUCT
Q Analysis of output »
() ACTIONS
italic 10015

The Modelling Phase

This phase can be subdivided into two stages - building up an informal model

and building up a formal model.

An informal model formulation requires the analyst to discuss with the

customer and the system experts the different aspects of the system, and to examine

Chapter 1. Introduction

written accounts of historic or proposed system operation. It is important that the
analyst should understand how the real world system operates and the requirements of
the model. Statistical analysis of numerical data on the system and some further

investigation of the system may be involved.

A formal model is the use of a standard notation and a set of rules by the
analyst to depict the problem logic in a systematic way. The formulation of the problem
and the definition of the model logic can be specified by means of flow charts, an
Activity Cycle Diagram (Paul & Balmer 89, Pidd 88), an Activity Diagram (Davies &
O'Keefe 89) or using special symbols as in GPSS (Shriber 74). In this research, we
are mainly concerned with activity cycle diagrams, which are further discussed in
section 1.2. Attempts have been made to use expert systems in the simulation

formulation process (Doukidis 85, Doukidis & Paul 86).

The Programming Phase

The formal model is used as the backbone for a simulation program to be
developed. This phase is sometimes accelerated by the use of generic software systems,
for example PROPHET (Manufacturing Management Ltd.) or HOCUS
(Szymankiewicz et. al. 88), which takes data defining the user's particular problem as
the basis for running the model. Code generators can also be used in this phase (Chew
86, Paul & Chew 87). After verification and validation tests (Balmer 85a) on the

computerized model, the operational simulation model is ready for the next phase.

The Experimentation Phase

In this phase, experiments are carried out to discover, reinforce or quantity

appropriate management action, subject to the needs of the system users. The output

Chapter 1. Introduction 5

can be used to determine correctness of the model logic, and of the computer program.
Representational graphics, for example, histograms and time series charts, are often
produced to emulate the simulation model output dynamically. Careful planning of

experimental design is required in this phase (Balmer 86, Balmer 87b).

The simulation process described is applicable to systems where the problem
and the model logic can be easily identified. Recent research and practice in simulation
modelling suggests that as the complexity of the model increases, more steps have to be
taken and the above process seems to be too simple and "one-way". Simulation is an on
going process. Real world systems always involve the participation of different groups
of interests. Since the problem is user-defined, the end product is very much a
compromise for these groups. Poor communications and different opinions between
different groups often makes the definition process more complicated. This fact is
further emphasised in Paul (88c). A more detailed simulation study is discussed in the

next section.

1.1.3. A Detailed Life Cycle of a Simulation Study

Simulation is often regarded as a decision-aiding tool. A less established role
that today's simulation modelling plays is its power in helping the customer and the
analyst understand the problem and the system more thoroughly. It also helps to
narrow the communication gap between different parties of interest who are involved in
the system since they are given a chance to understand what other components of the
system do. Because of the complexity of the definition stage, a flexible specification
system is necessary for allowing efficient updating of data and logic in the model. The
aim of our research is to design and implement such a flexible system. A diagram of the

life cycle of a simulation study which originated from Balci (86) is shown in figure 1.2.

Chapter 1. Introduction 6

Figure 1.2, The Life Cycle of a Simulation Study (Balci 86)

IRgail W@ [LD [P~g)[L§lifl

Problem Formulation Formulated Problem Verfication
FORMULATED
PROBLEM
System Investigation System & Objectives Definition Verification
Acceptability SYSTEM & OBJECTIVES .
of Results DEFINITION Model Formulation
Model
INTEGRATED Qualification
DECISION
SUPPORT
Redefinition CONCEPTUAL MODEL
Presentation Presentation
of Results Verification Communicative Model
Model Representation
Verification s
MODEL RESULTS Model Data COMMUNICATIVE MODEL
Validation Validation
Programmed
Model Programming

Verification

PROGRAMMED MODEL

Experimentation
Experiment

Design

Credibility Verification

Assessment

of Model Results Experimental Design
EXPERIMENTAL MODEL

For large and complex systems, it is often the case that an agreement on the
specification of the model must be obtained from different groups of interests that are
involved in the real world system. New information about the model logic may be
explored. Existing information may be found to be incorrect during the definition
process or the actual building up of the computer model. Hence, an immediate path
between the specification model and the computer model is desirable for an efficient
simulation system. Constant redefinition of the model can be vital to the analyst and the

customer.

Chapter 1. Introduction

1.2, ACIIVITY CYCLE DIAGRAMS

Activity Cycle Diagrams (ACDs) are presented here, as they are an important
component of this research. ACDs are a popular diagramming technique used in
specifying a simulation model. An ACD provides the means of describing the logic of a
simulation model. The methodology of ACDs is given in section 1.2.1 with examples
of the pub model, the launderette, the steelworks model and the port model described in
sections 1.2.2 to 1.2.5 respectively. The advantages and the disadvantages of the ACD

method are discussed in section 1.2.6.

1.2.1. The ACD Methodology

A formal representation of a simulation model can be specified by an ACD,
which is a means of describing the logic of a simulation model. It is a way of modelling
the interactions of system objects and is particularly useful for systems with a strong
queuing structure. The graphics represent the model in terms of the life cycles of the
entities or objects it comprises. ACDs consist of activities (rectangles), queues (circles)
and life cycles of entities (using arrows). A summary of the symbols used in an ACD is
shown in figure 1.3. More extensive descriptions of ACDs are given in Pidd (88) and

Szymankiewicz et. al. (88).

Figure 1.3. Summary ofthe symbols used in an ACD

Summary of the symbols used in an Activity Cycle Diagram

An Entity is any component of the model which can be imagined to retain its identity
through time. Entities are either idle in queues, or active, engaged with other entities
in time consuming activities. Their life cycle is represented by arrows.

*CZK An Activity usually involves the cooperation of different classes of entity. It is

represented by a rectangle. The duration of an activity can be determined in advance,
usually by sampling from a probability distribution for stochastic models.

A Queue involves no cooperation between different classes of entity and is a state in
- O which the entity waits for something to happen. The queuing time cannot be determined

in advance as it depends on the conditions for the next activity to start.

A queue is represent by a circle in an ACD. A Source/Sink queue, where a temporary

A% entity is created and destroyed, is represented by two overlapping circles.

Chapter 1. Introduction

1.2.2. The Pub Example

A pub comprises the following entities : customers, glasses, barmaids and a
door. A customer enters the pub through the door (activity 'Arrive') and waits for a
barmaid to pour a drink for him with a clean glass (activity 'Pour'). After he finishes
his drink (activity 'Drink'), he either leaves the pub or waits for another drink to be
served, depending on his desire for drinks. This desire for drink (need) is an attribute
belonging to the customer. The barmaid either serves a customer with a clean glass
(activity 'Pour’) or cleans a dirty glass (activity 'Wash'). The way the entities behave in
the pub is shown by the ACD in figure 1.4. From this logic model, plus the duration of
each activity, a program can be constructed and run to simulate the behaviour of the pub
over time. Parameters such as the number of entities may be varied. The behaviour and
output of the model can then be compared to find, say, the maximum number of

barmaids needed to maximize throughput.

Figure 1,4. Activity Cycle Diagram ofthe Pub

(closed
DOOR

ARRIVE
Negexp(10)

CUSTOMER
wait outside

need > 0
need =0

Normal(6,1 Uniform(5,8)
POUR ready DRINK

full GLASS

clean bidle dirty

BARMAID

WASH

Chapter}. Introduction

1.2.3.

The Launderette Example

The launderette comprises of the following entities

: customers, washing

machines, driers and baskets. After the customer arrives in the launderette (activity

'Arrive'), he starts washing the clothes when there is a washing machine available

(activity 'LoadWash'). After washing, the customer unloads the machines contents into

a basket (activity 'UnloadWash'). He then transports the basket to the drier (activity

'Transport') and waits to load the clothes into the drier (activity 'LoadDrier"). The

customer must wait for the drier to do its job (activity 'Dry') and then leave the

launderette. A typical objective of the simulation is to measure the average time the

customer spends in the launderette. Figure 1.5 shows the ACD of the launderette.

Figure 7.5. Activity Cycle Diagram ofthe Launderette

washq

LOADWASH
WASH

25 MAC

unldqg 1 (wuldq widle

r4% UNLOADWASH

Uniform(1,4)

trptq

btrptq

Chapter 1. Introduction

eidle 1

DOOR
ARRIVE
Negexp(10)

CUSTOMER

) DRIER

didle ddq

TRANSPORT w
Uniform(3,5)

BASKET

bidle

o

utside

DRY

Normal(l 0,4)

dryq

LOADDRIER

dryq

bdryq

10

1.2.4. The Steelworks Example

The steelworks comprises the following entities : blast furnaces, torpedoes,
cranes, steel furnaces and a pit. The steelworks commences with the blast furnace
producing molten iron (activity 'Melt’). A 'cast' is the amount of molten iron it
produces and is sampled from a normal distribution. The blast furnace then empties its
cast into the minimum number of torpedoes required (activity 'Blow'). Each torpedo
can hold up to 300 tonnes of molten iron. If the number of torpedoes cannot
accommodate the full amount of cast produced during activity 'Blow', the remainder is
considered as 'waste'. This waste is accumulated during the modelling process and its
minimisation provides an objective for the analyst. After activity 'Blow', the blast
furnace begins activity 'Melt'. All torpedoes containing molten iron, including partially
full torpedoes, then proceed to the queue 'pitq'. It takes 4 minutes for a return journey
(activity 'Return’). When a torpedo is in the queue 'pitq’, a gantry crane's ladle may be
filled from one torpedo at a time (activity 'Fill'). The crane can hold up to 100 tonnes of
molten iron. If the contents of a torpedo (‘tcast’) are not emptied after filling, then the
torpedo returns to the front of the queue 'pitq’ and waits for another fill. The torpedoes
then start their return journey (activity 'Return’). After 100 tonnes of molten iron have
been loaded into the crane, it proceeds to the queue 'cready’ and when a steel furnace is
available, it transfers its load (‘ccast’) into the steel furnace (activity 'Loadin’). "Travel
is the activity when the crane travels back to the pit. The ACD of the steelworks is

shown in figure 1.6.

Chapter 1. Introduction 11

Figure 1.6. Activity Cycle Diagram ofthe Steelworks

Normal(110,1 5)

MELT

BLAST FURNACE

BLOW
Tbiowq
TORPEDO
RETURN
Poisson(1 0,2)
, (Cready) Craneq]"'11"
CRANE
LOADIN TRAVEL
STEEL
FURNACE

50+Negexp(10)

Chapter 1. Introduction 12

1.2,5. The Port Example

The port (El. Sheikh et. ai. 87) is comprised of the following entities : ships
and berths. The port considered has a total length of ship-berth space which can
accommodate between 20-25 ships at any one time, depending on the ships' lengths.
Part of this berth space is dedicated to a number of single categories of cargo such as
coal, iron ore, etc. In addition to general cargo ships, there were five other clearly
identifiable categories of ships that loaded at the port, and 21 categories of ships that
discharged at the port. The arrival-time and service-time patterns for the various ship
categories are different and the ships are clearly restricted to one or two berths owing to
their cargo. Many ships categories can only use a subset of the berths. Within this
subset of berths, some ship categories may have preferences for some berths over
others if there is a choice. The ACD of the port is shown in figure 1.7. The objective of
the simulation is to estimate the number of berths required in the short and medium

term, and to examine the impact of proposed handling improvements.

Figure 1.7. Activity Cycle Diagram ofthe Port

ARRIVE

SHIP
wait 10utside

SERVICE

BERTH

idle

Chapter 1. Introduction 13

1.2.6. Advantages and Disadvantages of ACDs

The main advantage of ACDs lies in its simple structure which allows the
analyst to depict the model logic of the system of interest. The technique can be easily
understood by the user of the system. In the pub and the launderette examples, the

ACD is an ideal tool to show all the model details.

However, it can be seen from the above examples that the ACD is not capable
of handling all the model details in a structured way. In the steelworks example, the
ACD cannot depict the conditional assignments of attribute values. As a model's
complexity increases, the ACD becomes more limited in providing a full description. In
the port example, the ACD cannot show the matching of ships and berths in the activity
'Service'. The inadequacy of the ACD method has led us to investigate other
diagramming techniques which can be used to specify the model. Chapter 3 of this
thesis summarizes this investigation and suggests the use of a computer-aided ACD so

as to increase the depth of model specification that an ACD can achieve.

1.3. SIMULATION MODELLING STRUCTURE

There are three major approaches to simulation modelling structure (Paul 89a,
Pidd 88) - the process flow method, event-based method and the three phase method.
The following sections contain a brief description of the process flow method and the
event-based method. The three phase method is described in detail since it is the

modelling structure that has been adopted for this research.

1.3.1. The Process Flow Method

This method has characteristics that are similar to object oriented

Chapter 1. Introduction 14

programming. The program code emulates the flow of an object through the system.
This flow describes in sequence all the states the object can be in the system. Each of
the processes in the system is programmed as a separate and independent routine in
program code and the processes communicate through an executive which controls their
execution. The process structure of SIMULA (Birtwhistle _79) was the original
implementation. Later versions of SIMSCRIPT (CACI 83) also have this Process’

feature.

The main advantage of the process flow method is its simple structure so that
a non-technical user can easily understand it. However, it requires careful thinking by
the analyst about the model structure so as to get the interrupts and delays correctly
registered. Model amendments also tend to affect all parts of the system, which tends to

make such amendments slow and expensive.

1.3.2. The Event-based Method

This method is more widely used in the U.S.A. than in the U.K. Time is
advanced to when something next happens and activities are examined to see if any can
now start as a consequence. Mathewson (89a) describes the procedure as to : 'Identify
the next event and complete all changes that are dependent on that event. Review the
subset of activities who use resources released by that event, and where possible

schedule future events using the newly available resources.'.

Comoputer efficiency (in terms of CPU time) is the main advantage of this
method. However, a problem occurs when several events end at the same time. This
method allocates the resources that are released by each event in turn before one knows
what other resources are going to be released by the other events that occur at that time.
Moreover, complications occur in the model structure when there is some priority in

allocation of resources within the system. As for the process flow method, model

Chapter 1. Introduction 15

amendments tend to affect all parts of the system.

1.3.3. The Three Phase Method

The first phase is time advance. Time is advanced until there is a state change
in the system or until something next happens. At this time the system is examined to
find out all the events that take place at this time. Hence, the second phase is to release
those resources scheduled to end their activities at this time. Only when all resources
that are due to be released at this time have been released, is the reallocation of these
resources into new activities started in the third phase of the simulation, i.e. to start
activities given the global picture about the resource availability. A three phase

executive is shown in figure 1.8.

The three phase approach is the most commonly used in Britain. This method
is further discussed in Crookes et. al. (87), Paul (89a), Pidd (84), and Pidd (88). The
advantage of this method is that it gives maximum control of the model, the
experimental tool for simulation, to the analyst. Decisions as to priority over resource
allocations are more readily made within this structure. Moreover, it offers a well-
defined and transparent program structure, and is particularly robust to changing
specifications. These advantages of the three phase method are the reasons that we have
adopted this method in our research instead of the other two methods. On the other
hand, the disadvantage of this method is that in computing terms it can be slightly
inefficient to run. Every time there is a time advance, resources are released and then
one searches through all possible activity starts. However, with recent technology, this
problem can be overcome by using more advanced computer hardware. Software
solutions have also been proposed (Spinelli de Carvahlo & Crookes 76). The accuracy

of the modelling structure is more important in the building of a good simulation model.

In this research, we are using a three-phase structure simulation library called

Chapter 1. Introduction 16

MacSim.Lib (see Appendix B), written in Turbo Pascal on the Apple Macintosh. A

three phase skeleton simulation program and the program listings of the three example

models discussed in sections 1.2.2 to 1.2.4 are shown in Appendix A of this thesis.

Figure 1.8. A Three Phase Executive

Start

INITIALIZATION

TIME SCAN

EXECUTE B EVENTS DUE NOW

ATTEMPT ALL POSSIBLE C EVENTS

CHECK FOR INTERRUPT OR FINISH

Yes

REPORT

Stop

14. VISUAL INTERACTIVE SIMULATION

A Phase

B Phase

C Phase

Visual Interactive Simulation (VIS) is an important area of this research. It is

an increasingly popular method of problem solving. The recent, and increasing, use of

computer graphics is having a significant impact on simulation modelling. Animated

computer graphics is commonly an integral part of a simulation project. The nature, the

use and the future of VIS are discussed in sections 1.4.1, 1.4.2 and 1.4.3 respectively.

Chapter 1. Introduction

17

1.4.1. The Nature of VIS

Different methodologies on the use of simulation graphics have emerged from
North America and the UK. Visual Interactive Simulation (VIS), discussed by Hurrion
& Secker (78) is the method that has become common practice within the UK. VIS
refers to the use of graphics to animate a model as it is running and at the same time
allows the user to interact during the execution of the model. The advantage of this
technique is apparent during the initial stages of a project when both the client and the

analyst are searching for a suitable simulation model to represent the original problem.

There are a wide variety of graphical symbolisms, movement representations
and screen layouts available. Bell (86) described two types of modelling using graphics
- representational and iconic graphics. Representational graphics are used to summarise
and display data from a mathematical model or component (e.g. histograms, charts,
time series). Iconic graphics, which are the main interest of this research, are used to
describe the modelled system using pictures. The display is intended to represent the

modelled system.

Hurrion (89) further identified two types of iconic graphics animation used
for discrete event simulation - character graphics and high resolution bit-mapped
graphics. The former refers to the use of keyboard characters to represent model objects
where the repeated drawing and erasing of text at slightly different locations will give
the impression of elements moving. With bit-mapped graphics, the display screen is
made up of pixels (a Macintosh screen is made up of 175,104 pixels, 512 across and
342 down) in which each pixel can be displayed by one colour, depending on the
colour configuration of the hardware system. The cost of using bit-mapped graphics is
sometimes higher than that of character graphics in terms of programming time and
hardware specification. However, a more sophisticated animation picture can be

obtained by using high-resolution bit-mapped graphics.

Chapter 1. Introduction 18

1.4.2. The Use of VIS

Visual interactive simulation is like a voyage of discovery (Fiddy et. al. 81).
The client has his own perception of the target system. The analyst, who is employed to
build a formal model will establish his own perceptions of the problem via interviews
and observations. The VIS model thus acts as an interpreter between these different
cultures. The major contribution that interactive graphics has is the ability to improve
the communications and language barriers which exist between different management
and professional staff for an application, so that both have an improved understanding

of the problem.

Paul (89b) emphasised that : "The advantage of visual simulation is further
enhanced if the systems used are flexible and fast, so that rapid visual prototyping in
collaboration with the customer becomes a possibility. Although visual modelling is a
powerful complement to an analyst's problem solving capabilities, it has new problems
to ovefcome as well. The problems of visual simulation includes the fact that vision is
interpreted by the brain which does not remember all the visual detail. Moreover, the
customer is required to understand the simulation in order to understand what the visual
simulation represents. Also, visual simulation is time consuming and it is impossible to
test all model interactions visually for a complex model. The most important potential
benefit of visual simulation is the increasing ability to help a decision maker by working

together in a collaborative effort." -

Visual simulation should not be misused or overused. For large and complex
models, a simulation picture running on the screen might cause misunderstandings
unless the monitor is large and clear. It might mean absolutely nothing to the user
unless he understands what the picture represents. Visual simulation is a very useful
tool to help the customer understand the system if explained properly. It is also a
convincing tool to show that the model is working correctly according to the final user-

defined specification. Once the customer is convinced that the computer model satisfies

Chapter 1. Introduction 19

his needs, his interest will switch from an impressive running picture on the screen to
the results that are produced from performing experiments on the model. Therefore,
any system that provides the user with visual simulation should also allow the user to
switch off this option and choose to extract only results from the simulation run since

running a picture on the screen is time consuming.

1.4.3. The Future of VIS

Hurrion (89) pointed out that the main difficulty of the method is the fact that
an interactive simulation model will be used by an experienced manager but there is no
method within the current visual interactive framework by which this expertise can be
retained by the model for future use. The addition of an expert interactive component to
a VIS model hence forms the next generation of visual interactive model. This is further

described by Flitman and Hurrion (87), and Taylor and Hurrion (88).

Visual interactive simulation modelling will continue its role of improving
communications between the analyst and the user, if used properly. With the advent of
powerful personal computers and the decline of the price of computer hardware, it is
now cost-effective to use graphics in the form of an animated display to show the
dynamics of a simulation model. The trend of having better graphical displays at a

lower cost will undoubtedly be continued.

1.5. RESEARCH OBJECTIVES

The main objective of this research is to investigate the role of computer
graphics in simulation modelling, especially in the specification stage; and to design and

implement an ideal graphics based simulation system.
Consider the case where a client (with limited experience in simulation

Chapter 1. Introduction 20

modelling techniques) who has her own perception of the target system, is employing
an analyst to build a simulation model for aiding her decision-making process. Through
interviews and observations, the analyst will translate the client's verbal description of
the model into a structural form, very often in terms of a diagramming technique in

which the analyst is familiar with. This is shown in figure 1.9.

Figure 1.9. Between Client and Analyst

The heart of this research is to design and implement a visual interactive
simulation system which will encourage the client and analyst to build up a model in a
collaborate effort. The concept is to allow the user to define their problem by drawing a
picture and to be able to run this picture directly on the screen. The pictorial
specification of the model will allow the user to reconstruct the model logic constantly
throughout the modelling process. The client and analyst can test run the model,
repeatedly change the model specification and test run again until the final formal model
is obtained. Once they are happy with the model, they can then switch off the option of

a visual run and choose to design their output screen on which the results are displayed

Chapter 1. Introduction 21

during a simulation run.

The work of the CASM (Computer Aided Simulation Modelling) research
team at the L.S.E., further discussed in Chapter 2 of the thesis, has formed a very
strong basis for such a flexible graphical simulation system to be developed. However,
whereas most of the recent work of the team is done on the IBM/PCs machines, this
Iparticular simulation system is developed on the Apple Macintosh. The main virtue of
using the Apple Macintosh in this research lies in the remarkable graphics facilities and

its user-friendly interface.

1.6. OUTLINE OF THE THESIS
There are seven chapters in this thesis.

Chapter 1. Introduction : is a brief introduction to computer simulation
modelling and the process of simulation. The Activity Cycle Diagram methodology and
the simulation modelling approaches are explained. The use of Visual Interactive
Modelling in simulation is discussed. The research objectives and the outline of the

thesis are given in this chapter.

Chapter 2. Literature Survey : discusses general simulation environments and
describes the philosophy and work of the Computer Aided Simulation Modelling
(CASM) Research Team at the L.S.E. A general view of the role of graphics in
simulation modelling is given. Furthermore, the current trends in simulation package

development are also discussed.

Chapter 3. MacACD, Diagramming Techniques and Computer-Aided ACDs :
gives an overview of MacACD and its mechanism. MacACD was the first system
developed during this research, and which enabled experimentation with the basic ACD

ideas. A study of other existing diagramming techniques is presented. Finally, a

Chapter 1. Introduction 22

proposed computer-aided ACDs methodology is suggested in the chapter.

Chapter 4. Hypercard and HyperSim : discusses the flexible simulation model
specification system HyperSim which is based on ACDs, and which was developed
during this research using the Hypertext system - Hypercard. This chapter outlines the
philosophy behind such a flexible specification system and discusses how this gives us

an insight into the final part of this research.

Chapter 5. Design of the Graphical Simulation Modelling Environment :
discusses the design principles behind our ideal graphics-driven simulation
environment. A Macintosh application called 'MacGraSE' which incorporates these

design principles, developed during this research, is presented in this chapter.

Chapter 6. Implementation of the Graphical Simulation Modelling
Environment : gives the internal data structure and the mechanism inside the application

MacGraSE.

Chapter 7. Conclusions and Further Research : contains a summary and
review of the findings of this research, the three developed simulation systems, and

suggests further research opportunities.

Chapter 1. Introduction 23

CHAPTER 2

LITERATURE SURVEY

This chapter presents a literature survey for the research. The view of an ideal
simulation environment and some of the important research projects of the Computer
Aided Simulation Modelling (CASM) research group at the L.S.E. are discussed in
section 2.1. In section 2.2 we look at the role of graphics in simulation modelling,
which forms the theme of this research. Some of the current commercially available
simulation languages and some of the modern simulation systems are discussed in

section 2.3 and 2.4 respectively. A summary of this chapter is given in section 2.5.

2.1. CASM AT THE L.S.E.

The Computer Aided Simulation Modelling (CASM) Research Project Group
at the London School of Economics have been researching into discrete event
simulation modelling since 1982 (Balmer & Paul 86). The CASM research objectives
are to develop computer based systems that act as tools for the analyst in the process of
simulation modelling. So for example, the research group have produced an interactive
simulation program generator called AutoSim (Paul & Chew 87) which enables a
specification of the simulation model to be turned into program code automatically. The
group has also worked on a variety of methods that assist in problem formulation
(Doukidis & Paul 85, Paul & Doukidis 86). Current on going projects include the use
of formal methods in simulation specification (Domingo & Paul 90) and the use of
system dynamics in discrete event simulation modelling (Mak & Paul 90). Section
2.1.1. discusses one of the CASM's views of a simulation environment, and a brief

description of the research work done by the team is given in section 2.1.2.

Chapter 2. Literature Survey 24

2.1.1. CASM's View of a Simulation Environment

One of CASM's views of a simulation environment is seen in figure 2.1.
Activity cycle diagrams (Pidd 88), flowchart or symbols in GPSS (Shriber 74) can be
used in the formulation of the problem and the definition of the model logic. The model
specification can be fed into an interactive simulation program generator (ISPG) from
which a data file representing the logic is produced. The use of an ISPG has two main
potential benefits : speed and transparency. It is an important aid in the formulation of a
complex model. Further discussions and developments of ISPGs can be found in
Balmer & Paul (86), Chew (86), Crookes (87), Paul (88¢) and Paul & Chew (87). The
program generator, making use of the data file, writes the simulation program using
some software subsystems. This model is then ready to be run and output produced.
The output, including representational graphics (e.g. histograms, time series, etc.) can

be used to determine the correctness of the model logic, and of the computer program.

Figure 2.1. CASM's View of a Simulation Environment

Interactive Simulation Program Generator (ISPG)

Documentation

Data file
of model logic

D/ff equations Software

. subsystems
Econometrics

Con/rol theory Simulation

Syste n dynamics Model

Queue ng

Model
logic

Graphics

Analyst Problem

Customer formulator Output

Output
analyser

Chapter 2. Literature Survey 25

An attempt to bridge the gap between an understanding of the model proposed
by the end-user and the analyst is by using an artificial intelligence system (Balmer 85b,
Doukidis 85, Doukidis & Paul 85, Doukidis & Paul 87b). With the introduction of an
Artificial Intelligence (AI) system to aid the analyst in formulating the problem and
experimenting with the model with the customer, the simulation environment is
depicted as a continuous loop of activity. This enables model development in small,
easily checked stages, model correction in the light of program output, and
determination of the running conditions and the run lengths of the simulation model.

The main benefit is that the customer can also participate in the modelling process.

Graphics was originally seen as a tool for emulating the simulation model
output dynamically. However, as shown in figure 2.1, graphics might be used in
conjunction with a problem formulator. By means of a graphics screen, the problem
can be described and thereby formulated, with the rest of the system driven as before.
The simulation model would run the screen dynamically over time, with interrupt and
amend capabilities. With graphics editing, the process of development, correction and
obtaining model confidence is greatly enhanced. The use of graphics enables the end-
user to see what is going on in the system and respond to it dynamically, rather than to
respond to occasional events as presented by the analyst. Note that this environment
assumes that the problem to be solved needs to be formulated as a simulation model.

The objective of this research is to look into such a graphical simulation environment.

2.1.2. CASM Research

The CASM team adopted a three-phase set of Pascal simulation routines
developed at the University of Lancaster and described by Crookes et. al. (86). These
routines were originally written for an Apple II microcomputer. They have been

amended and extended to other microcomputers, such as IBM and Apricot as well as to

Chapter 2. Literature Survey 26

a VAX computer. These routines are collectively known as the extended Lancaster
Simulation Environment (¢LSE), and have been used to solve simulation problems

(Holder & Gittins 89, Williams et. al. 89).

AUTOSIM

An important development of the CASM team is the ISPG AUTOSIM
described by Chew (86), and Paul and Chew (87). AUTOSIM uses a library of Pascal
routines called LIBSIM to generate a Pascal simulation program written in a three-phase
structure. It requires as input a model specification based on an ACD, and produces a
simulation program written in Pascal and supported by LIBSIM. AUTOSIM is
currently available on the VAX and IBM/PCs. AUTOSIM uses an interactive session to
obtain information from the user by means of a description of the problem ACD.

Alternatively, it can accept data files of certain formats specified for the generator.

—
&
2

LIBSIM, originally described by Crookes et. al. (86), is a later development
of a suite of Pascal routines that were created at Lancaster University and subsequently
modified at the L.S.E. Some representational graphics routines (for example, routines

for producing histograms in the simulation output) are also included in LIBSIM.

A first attempt at using an expert system as a problem formulator was
described by Doukidis and Paul (85). However, it was found that expert systems were

inappropriate for handling the natural language understanding problem. The research

Chapter 2. Literature Survey 27

was then directed towards a natural language understanding system (NLUS). A NLUS
called SPIF was developed (Doukidis 85). The NLUS captures the essential structure
of an ACD for the problem, with the participation of the decision-maker, and under the

guidance of the analyst (Doukidis 87).

Database Systems

Research was undertaken into the production of a simulation system within
the relational database package INGRES (El Sheikh 87, El Sheikh & Paul 88a). A
system called INGRESSIM (El Sheikh & Paul 88b) was produced. This system
allowed the analyst to specify the problem, set the initial conditions, and run the
simulation all within INGRESSIM. The system was extended by Mashhour (89), who
showed how INGRESSIM will be used to specify a model, to which a program
generator would then be applied. The resultant Pascal program, when run, would

automatically return results to INGRESSIM. This package was called DBSIM.

MacACD

An ACD represents, in a concise clear form, the flow of control within a
simulation model. Since ACDs have proved to be a reasonable, if not comprehensive
method, of describing the formal logic of the simulation model, the CASM group have
spent some of their research effort on developing an ACD based software system which
can be used with AUTOSIM. This research was done on the Apple Macintosh since the
graphics facilities on the Macintosh provide an ideal environment for producing a
graphics orientated simulation system. MacACD, described by Au (87) and Au & Paul
(89), is a visual interactive interface for specifying a simulation model logic by drawing
an ACD on the screen. A text file using the AUTOSIM data file format can be generated

by MacACD. This application is further discussed in Chapter 3 of the thesis.

Chapter 2. Literature Survey 28

HyperSim

HyperSim is an attempt to develop a flexible specification interface for a
simulation program to be generated using Hypercard on the Apple Macintosh (Au &

Paul 89). This application is further discussed in Chapter 4 of the thesis.

2.2, GRAPHICS IN SIMULATION MODELLING

The concept of linking graphics with discrete event simulation began in the
mid-1970s and became common practice by the mid-1980s. Today, computer graphics
assist in all phases of a simulation project, from its initial problem specification to final
project implementation (Hurrion 89). There are now numerous graphical systems both
for the development of the modeis and the presentation of results. Graphics are
generally applied in three main areas of simulation modelling - model specification,
visual simulation and output display. We discuss how graphics are used in each of

these areas in the following sections.

2.2.1. The Use of Graphics in Specification

Most of the specification methods require the use of a diagramming technique.
The most commonly used in three phase modelling is activity cycle diagrams (see
section 1.2). A variation of the ACD method, called the activity diagram is discussed in
Davies and O'Keefe (89). The successes of HOCUS (Szymankiewicz et. al. 88) and
SLAM (Pritsker 79) illustrate that flow diagram systems have a broader appeal than

text-based ones.

Not all the current existing simulation packages have a graphical front end for

model specification. Most data-driven simulation packages require the user to translate

Chapter 2. Literature Survey 29

the image of his perceptual model into some form of structured diagram before the
actual model building process on the computer. The input session of DRAFT
(Mathewson 87) is a series of responses to prompts. The model expressed as an entity
cycle diagram is input via a terminal. DRAFT/DRAW then allows the user to display
the input entity cycle diagram either in its original form, with the software managing the
layout, or in a representational form which mimics the perceived system and omits

artificial devices used for programming purposes.

A less established area in using graphics in simulation specification is the
direct application of pictures to describe the model logic. This research is aiming to
achieve a graphics driven interface for the user to draw the invisible image of the real
world system inside his brain during the construction process and to be able to model

the logic within such an environment.

2.2.2. Visual Simulation

Visual simulation is commonly considered as an essential part of a simulation
system. Its importance can be seen from the fact that nearly all the latest versions of the
current simulation packages have added a visual simulation component to their systems.
Visual simulation allows the user to watch the dynamics of a model unfold in the form
of a semi-pictorial silent film. Not only can visual graphics narrow the gap between the

client and the analyst, it also helps the user to gain confidence in the use of the model.

Most simulation packages require the user to pre-specify the model in a text
descriptive format and provide the interface for developing a visual picture for the
model from this formulation. The animation represents a final polish to the model-
building process. PCMODEL (Simsoft 86) on an IBM/PC uses the colour monitor
display to provide a direct character-based, graphics animation of the model. A graphics

editor is supplied to build the overlay. The model is set up with statements describing

Chapter 2. Literature Survey) 30

the route of the modelled object and its delays. The logic of the conditional transaction

movement is specified as a mnemonic.

This research aims to design an environment which allows the user to
combine the specification of the model and the display of a visual representation of the
model in one step. The specification picture is by itself a picture which can be used for

running a visual simulation.

2.2.3. Graphical Output

Computer graphics are now replacing the more traditional printed report as a
presentation medium. Business graphics use charts, pie diagrams, graphs and
histograms to display information, while in education and entertainment computer-
generated animation files are becoming common (Hurrion 89). Presentation of model
results is an important stage of simulation modelling. The popularity of existing
sophisticated presentation packages, for example, Freelance on the IBM/PC and
PowerPoint on the Apple Macintosh, show that there is a requirement for high standard
graphical output by top management. Nevertheless, it is always the final simulation
output that will reach the decision-making management team directly, and which is the

product of the simulation study on which decisions will be based.

Three-dimensional graphics are popular but should not be overused.
Structured graphics in terms of charts or graphs must be clear and precise since over-

emphasised fancy graphics might be misleading.

2.3. SIMULATION LANGUAGES

Mathewson (89a) describes some of the most commonly used simulation

languages. The simulation languages adopt either the three-phase, event-based or the

Chapter 2. Literature Survey 31

process simulation structures. The use of object-oriented simulation languages is

becoming more and more popular in the simulation industry.

ECSL (Clementson 85) and SIMON (Mathewson 77) are three-phase based
simulation routines. ECSL is written in FORTRAN but the user is not required to know
FORTRAN, nor is the code translated into FORTRAN. The authors claim that it
successfully implements the 'cell structure' developed at Lancaster University (Spinelli
de Carvahlo and Crookes 76) and also incorporates visual interactive modelling.
SIMON provides facilities for queue handling and for activity scheduling and event
identification, including analysis tools for variance reduction and interval estimation.
The most recent library SIMONG (Mathewson 85) has been extended to incorporate

graphics drivers for model animation.

SIMSCRIPT I1.5 (CACI 83) and GASP II (Pritsker and Kiviat 69) are event-
based simulation routines. SIMSCRIPT is represented as having a number of levels
which enable it to form an easy introduction to computer programming. The language
consists of two extensions - PROCESSES which permits sequences of events to be
specified and SIMANIMATION which allows the user to add graphics animation
commands to the SIMSCRIPT IIL.5 text. GASP II was the first well-documented
release, followed by GASP IV which provides mixed discrete/continuous simulation.

Both systems provide a library of FORTRAN routines for writing a FORTRAN model.

SIMULA (Birtwhistle et. al. 79) is the original language which implemented
the process modelling approach. The language is operated by defining system ‘classes'’
which provide event scheduling and queue manipulation. Other process type simulation
languages in Pascal includes Micro-PASSIM (Barnett 86), PASCAL-SIM (O'Keefe
86), SIMPAS (Bryant 80) and SIMTOOLS (Seila 86).

Chapter 2. Literature Survey 32

24. MODERN SIMULATION SYSTEMS

A survey of the range of methodologies and systems available in simulation is
given by Mathewson 89b. Paul 89a pointed out that simulation support environments
can be broadly classified into four groups - data driven systems or generic models,
program generators, pseudo-code or macro-statements, and bespoke modelling or
handcrafting. Some simulation packages consist of a combination of the features of

these different groups. Each type of environment is discussed in the following sections.

24.1. Generic models

These packages are general purpose simulation systems which take data
defining the user's particular problem as the basis for running the general model. The
advantage is that no programming is required by the user. The disadvantage is that one
can only do whatever the package is designed to do. There is usually no program code

for the model to be edited.

HOCUS, Hand Or Computer Universal Simulator (Szymankiewicz et. al. 88)
is a generic data driven system based on activity cycle diagrams from which the data is
input into the package in a structured way. There is no generated code from HOCUS.
The system automatically generates a trace of the operation of the model by calling and
combining standard FORTRAN subroutines. These are then compiled and executed but
they are not available for modification by the analyst. The package is supported by a
textbook by Szymankiewicz et. al. (88). The advantage of HOCUS is that it is simple
to understand and requires no knowledge of computing. However, HOCUS provides
only the model description program. The model is expressed completely within the
structure of the diagram and therefore suffers from severe restrictions in the scope of
the detail which can be represented. As the user is not allowed to edit the FORTRAN

code, some complexities are likely to be difficult to model.

Chapter 2. Literature Survey 33

WITNESS (Istel Ltd.) is a data-driven system originally written in SEE-
WHY. This is a menu-driven simulation created for the study of manufacturing
systems. WITNESS can also be integrated with SEE-WHY submodels if its internal
capabilities are insufficient for a particular task. The modelling elements of WITNESS
are related to the factory - parts, machines, buffers, conveyors and labour. The
interface design can progress in parallel and independently of the parent model. It is
tﬁerefore attractive to the management of system design houses, as it gives them more
flexibility in the provision of enhancements to the system. It is possible to add code to
the system. The disadvantage is that the modeller is required to learn how to use the

package and it is not an easy package to learn. It is also an expensive package.

SIMFACTORY (CACI Ltd.) is a general purpose simulation system for
factory design and production analysis. Models are designed by entering factory layout
information & production parameters. The user interface is provided as a menu-driven
editor. There are twelve functional menus with on-line help. Through these menus the
data set can be assembled. The display is created by selecting elements and positioning
them under cursor control. An animated representation of the factory and an interrupt
facility is provided. The generic model is written in SIMSCRIPT IL.5 and the

application-specific features are selected by input data.

Other examples are EPSIM (Epsim Ltd.) and PROPHET (Manufacturing
Management Ltd.). The former is a discrete event generic simulation model of a
manufacturing environment with financial analysis and the latter is a data driven generic

system models batch manufacturing processes controlled by material requirements.

24.2. Program Generators

The user specifies his problem either in data or graphical form. The system

then automatically produces program code in a programming language which the

Chapter 2. Literature Survey 34

analyst can access. It allows the analyst to have greater flexibility in what sort of model
might be produced. However, the analyst must be able to understand this generated
program code. The advantage of using a program generator is that it shields the user

from the intrinsic difficulties of general simulation languages.

CAPS (Clementson 85) is an interactive simulation program generator for
discrete event simulation modelling. It is the front end to ECSL and generates ECSL
code. CAPS is designed to run interactively and it conventionally prompts the user in a
way that allows the user to define a simulation model based on an activity cycle

diagram. After the definition of a model, an ECSL source program is generated.

DRAFT (Mathewson 87) is an automatic program generator producing
FORTRAN code. DRAWER permits computer assisted development of interactive
animation for models produced by DRAFT. SSIM uses a pictorial activity diagram
input as a preprocessor for the program generator. Although the structure of DRAFT
has been carefully designed, the diversity of information in simulation models
represented by their activity cycle diagrams has not been fully attended. Therefore,
DRAFT is only suitable for complete entry of very simple cycles. More complicated
cycles need much time and effort to modify their DRAFT generated programs to
represent the system fully. With DRAFT, the objects within an ACD are to be

numbered in order to go through the interactive input session.

24.3. Pseudo code

These packages use pseudo code or macro statements to enable the analyst to
write a model in shorthand form. The analyst has greater control over the model
representation since the model is represented in code form. The disadvantage is that one
has to learn another programming language in order to write code in the system. Some

packages include a graphics interface to aid the analyst in formulation of the problem.

Chapter 2. Literature Survey 35

One example of this type of packages is ECSL. The production of ECSL code
is the major limitation of CAPS/ECSL. ECSL is a special purpose language and has its
own neat and concise style. A skilled ECSL programmer is not easy to find. As a non-
compiled language, ECSL is relatively slow running and does not offer the benefit of
an interpreted language. Partial programs cannot easily be run for testing because of the
compilation and execution time delays. Moreover, it does not have a dynamic entity

type due to its static storage management.

Another commonly used simulation system which allows the user to write
macros is SIMSCRIPT IL5 - a macro programming language with English-like
program code which allows the user to read the simulation program like a description of
the system that is being studied. Typical applications include military planning,
manufacturing, communications, logistics and transportation. SYSMOD (Systems
Designers Scientific) is a language which is similar to Pascal & Ada in syntax and

which is used for defence simulation models.

24.4. Handcrafting

This implies writing the simulation model from scratch in some programming
language. Although this seems to be a weak method to undertake, its popularity is
possibly due to the freedom and complete control the analyst has over the simulation

model, and, to a certain extent, because simulation packages are too expensive to use.

2.5. SUMMARY

'A Simulation environment provides tools for specifying the processes in a
simulation and generating debug and production models automatically from these

specifications.' (Birtwhistle 85). The CASM team at the L.S.E. is a research program

Chapter 2. Literature Survey 36

which aims to provide aids for problem formulation, program generation and output
analysis in simulation modelling. The CASM research project has provided a very

strong backbone to this piece of research.

This chapter has described current trends in simulation systems, and the
popular methods of assisting the process. The following conclusions are directly
derived from this literature search and the proposed needs for simulation modelling set

out in Chapter 1.

A data-driven or generic package should be user-friendly so that data can be
updated very easily. If a program generator is provided with the package, the code
should be easy to understand so that the user can easily find the part of the code to be

edited during the modification of the program.

Graphics should be the front end to the formulation of the problem and not as
an additional way of representing the model logic from the textual description. Visual
simulation should be a vital part of the package so that animation of the model can be
seen on the screen and picture running should be available. The user should be able to

design his own output screens for use in a simulation run.

Graphics and modern software interfaces will enhance the process of
translating the formulation into code. Subsequent modifications to problem definitions
will be readily facilitated and interface design will ensure the logical rigour of the
definition. Furthermore, graphics may be used to supplement or replace the traditional
problem definition techniques. The use of graphical input techniques may provide a
means for automating the formulation process. Colour graphics are and will continue to

play an important role in model construction and development.

Chapter 2. Literature Survey 37

CHAPTER 3

MACACD, DIAGRAMMING TECHNIQUES

AND COMPUTER-AIDED ACDS

The first section of this chapter discusses the first development of this
research, the MacACD application (Au 87, Au & Paul 89) on the Apple Macintosh
computer. Experience gained from developing MacACD is given in section 3.2. Since
most CASM research is based on a diagramming technique known as activity cycle
diagrams, other existing diagramming techniques are also examined. The results of this
study are given in section section 3.3. With the developing experience of MacACD and
the study of other diagramming techniques, the computer-aided activity cycle diagrams
methodology is proposed in section 3.4. A summary of this chapter is given in section

3.5.

3.1 MacACD

MacACD is a simulation specification system that uses the graphical methods
of activity cycle diagrams, developed on the Apple Macintosh computer. This system
can be combined with other simulation tools developed by members of the CASM
research group to enable the automatic generation of a simulation program with a visual
iconic display. An overview of the software is given in section 3.1.1. and some of the
design aspects are discussed in section 3.1.2. The experience gained from this research
project are discussed in section 3.2. An example of the way in which MacACD
achieves its task using the ubiquitous simulation example of a pub (described in section

1.2.2) is given in Appendix C.

Chapter 3. MacACD, Diagramming Techniques, and Computer-aided ACDs 38

3.1.1. An Overview of MacACD

MacACD is a user-friendly application which allows the user to specify a
simulation model by drawing an activity cycle diagram on the computer screen. The
user can enter the details of the parameters of the model by means of dialogue boxes.
These dialogue boxes are evoked by the action of the user. MacACD allows the user to
generate a text file from the ACD specification. This text file can be passed down to
VAX and read by a program generator AutoSim (Chew 86) so that a three-phase

simulation program can be generated.

A more detailed description of how to use the MacACD application is given in
Appendix C of this thesis. Figure 3.1. shows the appearance of the interface of

MacACD.

Figure 3.1. The MacACD Application

~ ¢é File Edit Style Format Activity Queue Entity Generate

ACD
&
@)
G)
0
S1 a

Chapter 3. MacACD, Diagramming Techniques, and Computer-aided ACDs 39

3.1.2. ' The MacACD Interface Design

MacACD consists of nine pull-down menus and an iconic menu with thirteen
palette choices. The pull-down menus handle all the file management and data recording

whereas the iconic menu mainly deals with the creation of graphics on the screen.

The application is designed so that the user can choose to do anything (for
example, creating an entity type, creating an activity, editing an existing activity,
creating a queue, or drawing part of the life cycle of an entity type, etc.) at any time
during the model construction process. The aim was to produce a user-friendly

interactive environment for the user to build up the logic of a simulation model.

Objects on the screen

There can be three types of objects on the screen. Firstly, rectangles which
represent activities. Secondly, a circle or two overlapping circles which represent
queues and source/sink queues respectively. Finally, line arrows which represent life
paths of an entity type. These objects can be created using commands in the iconic
menu. For example, to create an entity type, just click at any one of the line arrow mode
boxes. MacACD will then prompt the user for information about this entity type by
means of an entity dialogue box as shown in figure 3.2. The objects on screen can be
resized and moved within the main window so that the user can easily arrange the ACD

in a structured way.

Entities

The information about an entity is obtained by means of an entity dialogue

box as shown in figure 3.2. MacACD distinguishes three types of entities - temporary,

Chapter 3. MacACD, Diagramming Techniques, and Computer-aided ACDs 40

permanent and facility entities. Attributes can be created for an entity type. An entity can
have up to three types of attribute. The user can just click at the desired number of

attribute types that are to be created and type in the attribute name in the appropriate text

box.
[1) L
Fiawed.2, Thediiiy Dialogue Box
name of entity
iP i Dialog item list ID = 1003 from MacflCD.Rsr
IENTITV NAME : No. number
of entity
number of O permanent O temporary o facility } nature of
attributes the entity
belonging -innRIBUTES:! 00 O 102 03

to the entity
lattribité #1 1
oK)
iattHbite #2

iQttribiité #3 CRNCEL

names of
the attributes

The creation of an entity type is not complete until the user clicks the 'OK'
button. The name of the entity is then appended to the Entity pull-down menu. The user

can subsequently select any entity from the menu and edit its information.

Activities

The information about an activity is obtained by means of an activity dialogue
box as shown in figure 3.3. The dialogue box enables the user to choose the entities
that are required in order to start the activity. The Entities column displays the full list of
entities declared by the user. The Min and Max columns are for recording the minimum
and maximum number of the corresponding entity type that is required in the activity.

The default is set to one for each Min and Max entry.

Chapter 3. MacACD, Diagramming Techniques, and Computer-aided ACDs 41

Figure 3.3. The Activity Dialogue Box

name of tifgractivity ~ formulation of the duration
of the activity

Dialog iteif list ID - 10)l from MacflCD.Rsrc

ACTIUITY NRMEt ntities ® EI«H]) mi ni mum
purationg O r;x:i;ﬁibnel:r(r’lf
i D the corr.
lattribute formula | O entity
alist required
O D Of for this
0 D entities activity
aliai of
attri- Y D
bute) 0 D
, 0 o J
OK] [CANCEL] It

G

formula of the attribute evaluated at this activity

Since attributes can have different formulae in different activities, the list of
attributes declared by the user is always displayed. The user can type in a formula for

the appropriate attribute that is being evaluated in that activity.

The creation of an activity is not complete unless the 'OK' button is clicked.
The name of the activity is then appended to the Activity pull-down menu. The user can
subsequently select an activity from the menu in order to look at a summary, or to edit

the relevant information for the activity.

Queues

MacACD distinguishes three types of queue - a source/sink queue, a normal
queue and a dummy queue. A source/sink queue is represented by two overlapping
circles while the normal queue by a circle. The dummy queue is not drawn on the

diagram.

The information for a queue is obtained by means of a queue dialogue box as

shown in figure 3.4. The dialogue box displays a list of entities which the user has

Chapter 3. MacACD, Diagramming Techniques, and Computer-aided ACDs 42

declared and the user can choose the entity that the queue belongs to. The user can also

define a histogram to record the queue lengths of the queue during a simulation run.

Figure 3.4. The Queue Dialogue Box

Dialog Item list ID- 1002 from MacflCD.Rsrc i

neme of

IQUEUE NAME the queue
IE mitg . neme of the
o histogram histogram
O it required
O jeell width |))
O information
O I 1 for the
nitial base vaiue histogram
ellst of O £
entitles S
0 j Initial no. of initial number
D . . of the entity
(entity in queue to which the
O queue belongs
D OK CANCEL in the queue

fa

The creation of a queue is not complete until the user clicks the 'OK' button.

The name of the queue is then appended to the Queue pull-down menu.

Life Cycles of Entities

When an entity is created, a line pattern is assigned to it. The user can then
just click at the line arrow mode box which represents the selected entity type and draw
its life path in the ACD. Moreover, MacACD uses straight lines for representing the life

paths of the temporary and permanent entities and arcs for that of the facility entities.

The life paths of a permanent or temporary entity can be drawn by moving the
mouse from an activity to a destination queue, or from a queue to a destination activity,
or from an activity to another destination activity. Whenever MacACD detects two
activities being linked together, it will automatically produce a dummy queue.
Whenever MacACD detects that there is an activity which goes to more than one queue,
a condition dialogue box (figure 3.5) appears. The user is prompted for the condition

that is required to place the entity in the first queue that the user selected.

Chapter 3. MacACD, Diagramming Techniques, and Computer-aided ACDs 43

Fjgur¢ Th¢ Cendifion Diahgrn Box
the queue to which this condition has effect

iP 1 Dialog Item list ID - 1007 from MacfICD.Rsrc

O JCONDITION on;
CfINCEL

fa

the condition

For a facility entity, the user only needs to move the mouse to the activities
that the entity type is involved in. However, the user is required to create an idle queue

for the facility entity before the life paths can be drawn.

3.2. EXPERIENCE GAINED FROM MacACD

This section looks at the advantages of MacACD in model specification, and
the limitations of such an application. The potential of using the Apple Macintosh in

developing a graphics-orientated application is also discussed.

3.2.1. Advantages of MacACD

The MacACD application has demonstrated the power of modern graphics
based interfaces as provided by the Apple Macintosh for inputting graphical

specifications for simulation models.

The application is event-driven, i.e. the user has full control over the model
building exercise. Moreover, the direct input of a diagram minimises the errors that can
occur if the user is required to translate the diagram into a textual description. Diagrams

are always a more appealing communicative media than text.

Chapter 3. MacACD, Diagramming Techniques, and Computer-aided ACDs 44

The translation from the diagram to a data file which represents the model

logic is the first step towards the generation of code.

3.2.2. Limitations of MacACD

One of the limitations of MacACD is that it does not allow the user to run the
computer simulation model directly from the flow diagram. The lack of colour on a

Macintosh plus screen might also discourage the use of such a system.

An ACD is insufficient to model all complex real world systems. New ways
of formulating the model logic are constantly being explored. Recent research on
graphics is concentrated on providing an interface which allows the user to draw the
entities on the computer screen, and to describe the movement of the entities directly on
the screen. There are a lot of diagramming techniques such as decision trees or semantic
networks which might be appropriate in simulation modelling. The result of an

investigation into these is given in section 3.3.

3.2.3. The Apple Macintosh

Most CASM developments have been on an IBM/PC. Au (87) and Au & Paul
(89) outline the general differences between the Macintosh and the IBM/PC, as well as
their different graphics facilities. The main differences include the use of mouse, the

graphics facilities, the structure of the ROM and the user interface.

A graphics-based visual system does require some sort of pointing device,
and the mouse works as well as, or better than, most. The advantage of having a
mouse, as shown by the success of the Macintosh, has led to its rapid acceptance on

other systems.

Chapter 3. MacACD, Diagramming Techniques, and Computer-aided ACDs 45

The bit-mapping graphics display (512 pixels each line, 342 lines) on the
Macintosh enables the marriage of graphics and text and the ability to manipulate both
on the same display. On an IBM/PC machine the screen is made up of 25 lines of 80
characters each, and one has to choose between a text or graphics mode. One of the
disadvantages of the Macintosh family is that the Plus and SE range only come with

monochrome graphics. Only the Macintosh II has colour graphics facilities.

Another important difference between a Macintosh and an IBM/PC is in the
ROM of the machine. The IBM/PC puts some low-level portions of the system in ROM
and then loads in more of the operating system PC-DOS when the system is started up.
The Macintosh has relatively more of the operating system, the Macintosh Operating
System (MOS), in the ROM. The MOS takes up only a fraction of the ROM. There is a
User Interface Toolbox (UIT) in the ROM which consists of hundreds of callable

routines that are used to implement the standard Macintosh application interface.

The Macintosh provides a standard visual user-friendly interface based on
menus, icons, windows and a mouse as the input device. A similar interface can be
produced on an IBM/PC, but the developer has to write all the procedures to
incorporate these features. This might cut down the running speed of the application
tremendously, and a much greater amount of memory would be required by the

software.

The main advantage in using graphics on a Macintosh is its speed in drawing.
Quickdraw, the magician artist in the ROM of the Macintosh allows one to draw
complicated graphics at a very high speed. Another advantage concerns its ability to
store resources separately from the the application code. Also, Macintosh supports the
use of icons. Using icons is an ideal way of representing an entity on the screen.
Because of the high resolution, the movement of the entity can be very smooth and
well-presented. Moreover, the capability of having multiple-windows is another

important aspect of the Macintosh. This allows the ACD to be divided into a hierarchy

Chapter 3. MacACD, Diagramming Techniques, and Computer-aided ACDs 46

of levels. A complex system might have a lot of activities and queues in which some of
them may be grouped into an overall activity in general. Therefore, inside this activity,

there will be another ACD.

3.3. DIAGRAMMING TECHNIQUES

Diagramming is a form of language, beneficial both for clear thinking and for
human communication. It is desirable to provide the analyst with a set of diagramming
techniques in which to conceptualize, analyze, and design. These techniques can act as

an aid to clear thinking.

The role of diagramming techniques in software engineering is discussed in
section 3.3.1. Section 3.3.2 gives a brief overview of the current existing diagramming
techniques and their main functions. A summary table of the different areas where these
diagramming techniques are applicable is given in Appendix D. Some commonly used
computer graphics tools are discussed in section 3.3.3, conclusions concerning the

properties of a good diagramming technique are given in section 3.3.4.

3.3.1. Diagramming Techniques and Software Engineering

Diagramming techniques are one of the system specification methods and can
be used in conjunction with other specification methods, for example, mathematical
logic. They are also widely used in system design. When an analyst is designing a
system, the use of diagrams can be an aid to clear thinking. When a number of people
are working on a system, the diagrams becomes an essential communication tool. A
formal diagramming technique is needed to enable the developers to interchange ideas
and to make their separate components fit together with precision. Clear diagrams are

also an essential aid to system maintenance since they enable the programmers to

Chapter 3. MacACD, Diagramming Techniques, and Computer-aided ACDs 47

understand the consequential effects of changes they make. They are a highly valuable
tool for understanding how the programs ought to work, and tracking down what
might be wrong. The diagrams should be user-friendly, and should be designed to

encourage user understanding, participation and sketching.

3.3.2. Current Diagramming Techniques

This section, following from Martin & McClure (85), contains a brief

description of some of the diagramming methods most commonly in use.

Decomposition diagrams are a simple means of diagramming the structure of
organizations and complex processes. The user can easily understand and draw

decomposition tree structures.

Data flow diagrams (DFDs) are tools for understanding the flows of
documents and data among processes. The technique is simple and easy to learn. DFDs
are not ideal for drawing program architectures and should be tightly linked to data

models.

Dependency diagrams are a replacement for data flow diagrams with a similar
ability to represent the flow of data among processes, but designed to be automatically
convertible to action diagrams. There are notations to represent optionality, conditions,

cardinality, mutual exclusivity and inclusivity.

Entity-relationship diagrams are tools which provides a logical overview of
data needed for running an operation. They are an essential part of strategic data
planning. The user can be quickly taught to read, check and draw entity-relationship
diagrams. A data structure diagram is an expansion of an entity-relationship diagram

into detail showing data items.

Chapter 3. MacACD, Diagramming Techniques, and Computer-aided ACDs 48

Data navigation diagrams are simple tools for designing database navigation

and are also useful with file systems.

Structure charts are used for showing program hierarchy used in conjunction
with data flow diagrams and pseudocode. The chart itself does not give complete

control structure information and prevents rather than assists in automated verification.

HIPO diagrams show the input, output, and functions of a system or
program. Data flow diagrams or dependency diagrams give a much more compact and
easy-to-read view of the flows of data than HIPO diagrams. A high-level HIPO
diagram does not give complete control structure information whereas a detail-level

HIPO diagram is limited to defining procedural components.

Warnier-Orr diagrams are used for showing functional decomposition and
hierarchical data structures. They are easy to read, draw and change. The chart shows
sequence, selection and repetition, but not conditions, control variables, case or loops.
They do not show input and output data for procedural components and do not facilitate
automated checking. There is no direct link to a data model or a data dictionary and they

are not database oriented.

The Michael Jackson diagram methodology requires the user to design the
data first and then derive the program structure from them. They are not user-friendly
and are the most difficult of the methodologies to learn and use correctly. They are
oriented to file, and not database operations. They show sequence, selection and
repetition, but not conditions, control variables, case of loops. Only hierarchical data

structures are represented.

A flowchart is not a structured technique and it leads to unstructured code
which is difficult to maintain. It should be avoided in favour of structured diagramming

techniques.

Chapter 3. MacACD, Diagramming Techniques, and Computer-aided ACDs 49

Nassi-Shneiderman charts only show detailed logic and not program
architecture nor functional decomposition. Although they are easy to read and teach,
and are graphically appealing, they are too time-consuming to draw and change. The
chart is not linked to a data dictionary or data model and shows neither high-level

program structure nor low-level degeneration into code.

Action diagrams are a simple and elegant technique designed to overcome
many deficiencies in earlier techniques. They are quick to draw, easy to read, teach and
computerize. It is a technique that extends all the way from the highest-level functional
decomposition to the lowest-level logic and coding. Action diagrams can be
decomposed into executable code. They enforce correct control structures and show

nonprocedual database operations.

Decision trees and decision tables are used to represent complex sets of
conditions or rules and the resulting actions. The users can be taught to check decision

tables for complex sets of rules or conditions.

State-transition diagrams are used for certain types of complex logic where

multiple transitions among states occur.

HOS charts are mathematically based so that designs which are provably
correct are created. Program code can be automatically converted. They are not user-
friendly and require a commitment to learn a technique substantially different from

traditional techniques.

3.3.3. Computer Graphics Tool

Interactive diagramming on a computer screen speeds up the drawing process
greatly. The advantages of using computer graphics tools include significant cost and

time savings, great reduction in work needed to redraft graphics during development

Chapter 3. MacACD, Diagramming Techniques, and Computer-aided ACDs 50

and maintenance effort, elimination of both proof-reading and the potential for error
introduction on diagram updates, and the capability to produce very large diagrams.
Computer-aided drawings enforce standard and discipline. Checks can be applied to
what is being created by the user. Different types of cross-checking, calculations and
validity checks can be applied. Computer-aided drawings replace volumes of text with

powerful computable symbolic design.

General drawing applications includes PCPaint on the IBM/PC, MacDraw II
(Claris UK Ltd.), MacPaint 2.0 (Claris UK Ltd.), PixelPaint 2.0 (Principal
Distribution Ltd.), SuperPaint (Persona-TMC), and Studio/8 (Electronic Arts) on the
Apple Macintosh. These applications allow the user to draw any static picture on a
computer screen, without any built-in mechanism. Tools for dynamic drawings include
Excelerator (Index Technology) and computer-aided design (CAD) software like
ClarisCAD (Claris UK Ltd.) and ArchiCAD (Desktop Engineering Systems). Dynamic
drawing defines linkages between components or relationship between icons. MacCadd
(Logica) on the Apple Macintosh is an application which incorporates some of the
existing methodologies, for example data flow diagrams, structure charts and Jackson
diagrams. Use-it (High Order Software Inc.) is one of the new methodologies designed
to take advantage of the computer facility. The application Visual Interactive
Programming (The MacSerious Company) on the Apple Macintosh is an example of a
tool for generating executable code from graphics design. This type of application may
be linked to an interpreter or optimizing compiler, or may create code in a fourth

generation language which has its own interpreter or compiler.

3.3.4. Properties of a Good Diagramming Technique

Martin & McClure (85) outline the properties of a good diagramming
technique. In general, a good computer-aided diagramming technique should possess

the following functions :

Chapter 3. MacACD, Diagramming Techniques, and Computer-aided ACDs 51

- It should be an aid to clear thinking.
- It enables precise communication between development team members.
- It can be manipulated easily on a computer graphics screen.

- The end-users can learn to read, critique and draw the diagrams quickly, so
that the diagrams form a good basis for communication between users and

analysts.

- Whilst hand-drawn diagrams are designed for speed of drawing, computer-

aided diagrams can have more lines and elaboration.

- The technique should use constructs that are obvious in meaning, and avoid

mnemonics and symbols that are not explained in the diagram.
- The diagram can be printed on A4-sized paper.

- Complex diagrams are structured so that they can be subdivided into easy-

to-understand components.

- An overview diagram can be decomposed into detail.

- The diagram should reflect the concept of structured techniques.
- It should be an aid to teaching of computer methods.

- There must be a consistency of notation among all different types of

diagrams that an analyst needs.

- The technique should be a basis for computer-aided design and code

generation.

This advice certainly appears pertinent to simulation as well as to general

systems development.

Chapter 3. MacACD, Diagramming Techniques, and Computer-aided ACDs 52

3.4. COMPUTER-AIDED ACDS

ACDs have many of the characteristics required of a diagramming technique.
Having examined the conventions and methodologies of the current existing
diagramming techniques, some enhancements can be made to the activity cycle diagram

method in a computer-aided environment.

3.4.1. Activities

The existing diagramming techniques distinguish the use of round-cornered
and square-cornered rectangles. Data-entity types or record types are normally drawn as
square-cornered boxes while functions, processes, procedures, or activities in general
are drawn as round-cornered rectangles. Therefore, an activity should be represented
by a round-cornered rectangles. Moreover, besides containing just the activity name
inside the activity box, the user should have the option of displaying the formula for the

activity duration in the box.

Matching of entities sometimes occurs when testing the possibility of an
activity start. This can be indicated by putting an asterisk *' besides the activity name.
The rules of the matching process, which is usually achieved by comparing certain

attributes of different entity classes, can be described in text form.

3.4.2. Queues

The advantage of displaying queues in an ACD is that the picture is more
clearly and logically represented, since, after an activity has finished, the entity should
be placed somewhere in the system so as to wait for the next activity to start. However,

for a system which involves a large number of different entity classes, the ACD will be

Chapter 3. MacACD, Diagramming Techniques, and Computer-aided ACDs 53

full of queues and the diagram looks more complicated and less precise. Also, some
queues inside the system are dummy queues which do not need to be displayed. These
queues are imaginary since the entities can start the next activity immediately after the

finishing the current activity.

Therefore, the user should have the option of whether or not to display the
queues belonging to an entity class in the computer-aided ACD. In computer-aided
diagrams, the queues should be automated. This can be achieved by tracing the
movement of the user. When he links one activity to another, a queue is automatically

generated for the selected entity class.

3.4.3. Life Paths of Entities

A line arrow is used to represent a life path of an entity class. In a
monochrome system, different line patterns can be used for different entity types,
whereas in a colour system, different colours can be used. For complex systems which
have different groups within an entity class, this would traditionally be regarded as
having different classes of entity. However, in modern graphics environments, this
grouping classification can be represented by using one colour for the entity class, but

with different patterns for different groups within the class.

A conditional line path can be introduced for indicating that an entity only uses
this path when certain conditions in the system are satisfied. The appearance of a
conditional line path is identical to an ordinary line arrow except that there should be a

square somewhere along the arrow.

Optionality is necessary when the entity has a choice whether to go through an
activity or not at some point in time during its life cycle. This can be indicated by a
small empty circle on the line arrow which goes to this activity. Mutual exclusivity is

necessary when the entity has the option of going to one of different activities at some

Chapter 3. MacACD, Diagramming Techniques, and Computer-aided ACDs 54

point in time during its life cycle. This can be indicated by putting a dot on the line
arrow which branches out to different activities. A summary table of different arrow

conventions is given in figure 3.6.

Figure 3.6. A Summary Table of Different Arrow Conventions

normal path conditional path optional path mutually exclusive path

344. Layered ACD

For large and complex systems which involve a lot of activities, some
activities can be refined into another ACD. In a computer-aided environment, this
representation can be depicted by using a shaded activity box which indicates that there
is another ACD within this activity. A simple ACD can be regarded as a first level or a
skeleton of a simulation system. Within this skeleton, some activities might contain
another ACD; and within some activities involved in these individual ACDs, there
might be another ACD; and so on. This layering of ACDs can be clearly structured in a

computer-aided environment by using multiple windows.

3.4.5. Code Generation

The computer-aided ACD represents the model logic and contains information
about the parameters of the simulation. However, the variety of human endeavour
suggests that an all-embracing specification method is not completely achievable. It is
desirable, therefore, to allow the user to generate a simulation program directly from a
graphical description of the problem and thereby make the necessary small but intricate

amendments to derive the final model.

Chapter 3. MacACD, Diagramming Techniques, and Computer-aided ACDs 55

3.4.6. Iconic Representation of an ACD

An entity type should be associated with at least one icon. An iconic display
of an ACD can be easily translated. If the system allows visual simulation, then the

picture can be used for a graphical simulation run.

3.5. SUMMARY

In this chapter, we have introduced the MacACD application which is a
specification system that allows an activity cycle diagram to be drawn on the computer
screen. The parameter input is via dialogue boxes within a windowing environment,
with pull-down menus and an iconic interface. The automatic generation of code is

achieved by the generation of a text file which can be fed into a program generator.

After looking at some current existing diagramming techniques and
experimenting by applying some to simulation modelling, we concluded that activity
cycle diagrams are an appropriate method for illustrating the logic of a discrete-event
simulation model, although they become unable to incorporate the relevant detail as the
model becomes more complex. Some enhancements to the activity cycle diagrams
methodology are therefore prepared for a computer-aided environment. The most
important ideas are the possibility of layered activity cycle diagrams and automatic code

generation.

The Apple Macintosh has proved to be an ideal computer system for a
graphics oriented application to be developed. The main merits are its user-friendly
interface and the speed of drawing. The development of MacACD has given an insight
into the need of a flexible simulation system which allows the user to specify a
simulation model either in graphical or textual format, or a combination of both.

Chapter 4 presents the development of this flexible system on the Macintosh.

Chapter 3. MacACD, Diagramming Techniques, and Computer-aided ACDs 56

CHAPTER 4

HYPERCARD AND HYPERSIM

Simulation modelling is often applied to ill-defined problems, so that the
model specification is constantly under review. There is a need, in such cases, for a
flexible method of model specification. The previous chapter proposed the
characteristics and advice of such a system. Given the strong interlinking connections
between the components of a simulation model, it was decided to attempt an
implementation of these ideas using the Hypertext approach. This chapter describes a
mixed graphical textual system, HyperSim, based on activity cycle diagrams using
Hypercard. Such a system enables rapid model development using either graphical or

textual editing or both.

A brief history of the Hypertext concept and the Hypercard application is
discussed in section 4.1. In section 4.2, an overview and the design of the HyperSim
specification system is given. Section 4.3 discusses the advantages and disadvantages
of this approach. Section 4.4 summarises the result of this research development and
describes how it gives insight into the development of a complete graphical simulation

system.

4.1. HYERTEXT AND HYPERCARD

Bush (45) envisaged and described a virtual system which relied heavily on
the intricate web of connections which can be made by the human mind - an
information system which would allow non-linear access for the user and become 'an
enlarged intimate supplement to his memory'. These ideas were taken up by people like

Douglas Engelbart, Ted Nelson, Alan Kay and others during the 1960s but the

Chapter 4. HyperCard and HyperSim 57

mushrooming of interest forseen by Nelson (72) was only evident during the last six

months of 1988.

Some of the basic concepts behind Hypertext are looked at in section 4.1.1. A

brief introduction to the Apple Hypercard system is given in section 4.1.2.

4.1.1. The Concepts of Hypertext

Hypertext, at its most basic level, is a DBMS (database management system)
that lets the user connect screens of information using association links. At its most
sophisticated level, Hypertext is a software environment for collaborative work,
communication, and knowledge acquisition. Hypertext products mimic the brain's
ability to store and retrieve information by referential links for quick and intuitive

accCess.

Hypertext programs, and the free-flowing databases that are their trademark,
have been adapted for electronic publishing, project management, systems analysis,
software development, and CAD. Typical Hypertext software consists of a text editor,
a graphics editor, a database, and a browsing tool for three-dimensional viewing. Bit-
mapped displays, a mouse, windows, icons, and pull-down menus are all standard
Hypertext tools. Some of the terminology used in the Hypertext environment includes

nodes, links, pointers (or buttons) and browser are discussed below.

Nodes

To use a Hypertext system, the user must get used to parsing the information
into small discrete units, or nodes, which consist of a single concept or idea. In theory,
nodes are both semantically and syntactically discrete. The information contained in a

node can usually be displayed on one computer screen. Nodes can come in two

Chapter 4. HyperCard and HyperSim 58

varieties : typed and untyped. An untyped node is a box for information. It has no label
or descriptor, so that it can be filled with anything. A typed node is labelled, and the
description helps to determine the style of information contained in the node. Types
help in classifying nodes and defining specialized operations. They are also helpful in

browsing through a database looking for a particular area of interest.

Composite nodes can be formed by combining nodes. These are composed of
related subnodes that can be handled as a single object or broken out into individual
elements. Icons can be created to reflect the contents of a composite node for easy

access. Subnodes can also be rearranged if needed.

In general, links are used to connect the nodes. They are the mode of
transportation in a Hypertext network. One follows them to move about between
various nodes. One can usually embed them in text and then edit and review them to
ensure that they are valid. Link attributes can also be created, deleted or changed. Links
must have two qualities : the computer must be able to trace or follow them, and they
must be able to transport the user quickly from one node to another. However, links
can do more than just connect two nodes. Depending on the Hypertext system, links
can connect annotations to a document and provide organizational information, such as
where the text fits in a table of contents or where it originated. Therefore, links can help
define the node's relationship to other nodes within the database. Links may also clarify
the contents of charts and graphics by connecting the graphics to explanatory
information such as longer descriptions. Links usually originate at a single point, called
a link reference. Their destination, called a link referent, is usually a node, a chunk or

region of text.

Chapter 4. HyperCard and HyperSim 59

Points and Buttons

A point is a single character, token, or icon that points out a link in a
document. It is usually identified by either the name of the destination node, the link or
an arbitrary string, and by whether it is a source or destination point. Hypercard refers
to points as buttons. Buttons can trigger the display of additional information, traverse

a link, or activate a program. They can be represented by text or icons.

Browser

The graphical browser is a node that contains a structural diagram of a
network of nodes. Browsers usually supply a global map of the network. The browser
can be used to orient yourself or to move directly into an area of interest by selecting the
appropriate point on the screen with a mouse. While not all systems provide a graphical
browser, most attempt to provide some type of overview system that helps you stay

oriented in the network and visualize how information is linked.

4.1.2. Hypercard as a Hypertext System

This section gives a brief introduction to Hypercard and Hypertalk. More

details of Hypercard can be found in Apple Computer (87, 88) and Shafer (88).

Hypercard, available for the Mac II, the Mac SE and the Mac Plus, is a
personal organization tool and a simple database manager. It is also a commercial
software developer's tool and is in use in some corporations as a front-end to the
mainframe database. This system uses screen-size cards (or window-size cards on the

Mac II) organized into topic-related stacks to create simple databases. One card is

Chapter 4. HyperCard and HyperSim 60

displayed at a time. Touching the mouse cursor to a button on a card executes a script

written in Hypertalk, Hypercard's programming language.

Hypercard is also a user-friendly application generator and viewer. It may be
described as an information organizer and its main benefits are power and simplicity.
Written for the Macintosh and utilizing its famous bit-mapped graphics capabilities,
Hypercard organizes data and activities around logical "Card Stacks". Each card in a
stack has similar structure and functions. It can contain card buttons, card fields and at
least one background which can also contain background buttons or fields that are
common to all cards in the stack. A card can contain textual, numeric and graphical data
and also instructions (scripts) written in Hypertalk. Objects that exist in Hypertalk are
stacks, cards, background, buttons and fields; each of which can send and receive
"messages”. A script is associated with an object enabling it to respond in a specific
manner to a message, depending on the instructions given by the user. The user can
browse through already-created stacks, create new cards and stacks, and write and edit

Hypertalk scripts.

4.2, THE HYPERSIM SYSTEM

HyperSim is a flexible simulation specification system developed using the
Apple Hypercard system. An overview of the HyperSim application is given in section
4.2.1. and the design of the system is discussed in section 4.2.2. An illustrative

example of using HyperSim to build up a simulation model is given in Appendix E.

4.21. An Overview of HyperSim

HyperSim is a system which allows constant redefinition of the model

specification by text, graphics, or a mixture of both. Whichever method of input is

Chapter 4. HyperCard and HyperSim 61

used, both a graphical and a textual specification are held by the system. These
descriptions are structured into a number of stacks. These stacks contain information
concerning for example, the model entities or objects, the activities they engage in, the
queues they rest in whilst waiting for an activity start, the assignment of entity attributes
representing numerical textual or logical characteristics of the entities, and icons used

for visual display of the entities.

HyperSim contains a stack which allows the user to specify the simulation
model by drawing an activity cycle diagram. Each object in the diagram is linked with a
specification card which the user can access by clicking on the object. Moreover,
HyperSim allows the user to generate a simulation program based on the three-phase
modelling technique from the specification given by the user. This program can then be
modified, linked with the simulation library (called MacSim.Lib on the Macintosh) and

run under Turbo Pascal on the Macintosh.

4.2.2. The Design of HyperSim

The main aim of developing HyperSim is to provide the user with a graphical
and textual specification option so that he can choose to define the model logic either
textually, graphically, or a mixture or both. This is achieved by allowing the user to
move around different stacks and constantly update the information that is being entered
by the user. If the user makes any changes in one stack, the corresponding entry in any

other stacks is automatically updated.

HyperSim maintains a set of global variables which is not seen by the user. It
is this set of global variables that enables the user to add any information at any time
and place during the building up of the model, with constant updating of the rest of the

system in which the new additional piece of information is concerned.

Chapter 4. HyperCard and HyperSim 62

HyperSim contains a set of conventional buttons which is local to the system,

appearing in different stacks. Here's the list of buttons which HyperSim supports :

A & CB I~ I ICode I (7)

uNew Delete ‘New ‘Delete ’Gotolcon’ Goto ACD’ GotoCode’ 'Help’ Home’
Entity* Entity ° Activity’ Activity’ button button button button button
button button button button

The triangular shape button with a letter 'F in the middle is called 'New
Entity' button and is used for creating a new entity type in the model. The same shape
button but with a cross in front is the 'Delete Entity' button which allows the user to
delete an entity type specified in the system. Similarly, the rectangle shape button with a
letter 'A' in the middle is called 'New Activity' button and is used for creating a new
activity in the model. The same shape button but with a cross in front is the 'Delete

Activity' button.

Other common buttons include : the 'GotoACD' button which takes the user
to the ACD stack; the 'Gotolcon' button which takes the user to the Icon stack; the
GotoCode' button which takes the user to the Code stack where a simulation program
can be generated; the 'Help' button which takes the user to the 'Reference’ stack; and
the Home' button which takes the user to the Home stack of HyperCard. These
common buttons contribute to the flexibility of the HyperSim system, so that the user
can do anything - create new data or edit old data of the model - at any time during the

specification of the model.

The HyperSim system is made up of nine stacks - the Reference stack, the
Model stack, the ACD stack, the Entities stack, the Icon stack, the Activities stack, the
Queues stack, the Attributes stack and the Code stack. Here is a summary of the

purpose of each of the nine stacks in HyperSim :

Chapter 4. HyperCard and HyperSim 63

Reference Stack

This is a tutorial stack designed to help the user to understand some of the
basic principles of computer simulation modelling and to use the HyperSim system.
The function of the Reference stack is to offer an on-line help system to assist the user.
The user can choose a topic he wants to view by clicking on the corresponding button.
If he clicks the 'Start Modelling' button, HyperSim will take him into the Model stack.

Figure 4.1 shows the appearance of the Reference stack.

Figure 4.1. The Reference Stack

Discrete Euent Simulation
Activity Cycle Diagrams
Three Phase Modeiiin

HYPERS M introduction to HuperSim

Model

Ent t es
Activities
Queues

Attributes

Code

Model Stack

This is the heart of the specification system which allows the user to create
new models and edit old models. The user should go to this stack first and select a
model that he would like to work on. There is a table showing the names of the entities,
activities and queues the model possesses. The user can go to any entity, activity or

queue by clicking its name in the table. This stack also allows the user to go to the Icon

Chapter 4. HyperCard and HyperSim 64

stack and the ACD stack. The Code stack can only be accessed via this stack. Figure

4.2 shows the appearance of the Pub model card in the Model stack.

Figure 4.2. The Model Stack

alSI,# MODEL: s n ICode) (2) jSfe
ErMies Adivlles Ojeues
System Arrive outs Ide
Customer Pour didle
Door Dr Ink bidle
Borma id UashUp RrrCusPou
Glass PouCusDrl
UasGlaPou
PouGIloDrl
DrIGlaUas
JIA.
ACD Stack

This stack contains a graphical description of the model. The simulation
model can be specified by means of an activity cycle diagram in this stack. An ACD
card is automatically created by the system whenever a new model is created. There is
an iconic menu in this stack which helps the user to develop an ACD for the model and

to input the data for the entities, activities and queues (see figure 4.3).

There are four buttons in the Activity iconic menu. The first button is the
'Select Display Activity' button in which the user can select any one of the activities in
the activity list to be displayed on the screen. The second button is the 'Display All
Activities' button which allows the user to display all the activities in the model on the

screen. The third button is the 'Delete Display Activity' button. The last button is the

Chapter 4. HyperCard and HyperSim 65

'Activity Information' button in which the user can click at the desired activity in the

ACD and go to the appropriate Activity card in the Activity stack.

Figure 4.3. The ACD Stack

EACurrenl Entity

There are three buttons in the Entity iconic menu. The first button is the
'Select Entity' button which allows the user to import the entity icon onto the screen.
The second button is the 'Import Life Cycle' button which is used for importing the life
cycle of an entity type which has previously been defined in the system. The last button
is the 'Queue Information' button. When this button is selected, all the queues in the
model are displayed on the screen. The user can then select any one by clicking on the

queue circle and thereby going to the appropriate Queue card in the Queue stack.

There are four buttons in the Cycle iconic menu. The first button is the 'Path'
button which is used for drawing life paths of an entity type. The user can click at the
activity from which the entity starts and click again at the activity where the entity goes
to. A path will be formed and a queue joining these two activities is automatically
created by the system. The second button is the 'Facility Path' button which is used for

drawing life paths of a facility entity. The user is required to click once at where he

Chapter 4. HyperCard and HyperSim 66

wants to place the idle queue for the facility entity, and then select which activity or
activities that this entity type is involved in. The third button is the 'Delete Path' button.
The last button is the 'Conditional Path' button, which is used for creating a conditional
path for an entity type. The user will be prompted for the condition which is required

for the path to be chosen.

Each object that is created on the screen has a card associated with it. For
example, a rounded-corner rectangle is associated with an activity card in the Activity

stack, and a circle is associated with a queue card in the Queue stack.

Entities Stack

Each card in this stack contains information of an entity type defined by the
user - the name, the number, attributes involved, whether it has a source queue (for
temporary entities) or a common queue (for facility entities), the queues involved, and
the activities involved. It also shows the life cycle of the entity type and allows the user
to add in any conditional paths within its life cycle. When a new model is created, a
System entity is automatically created for the model. This system entity is a device for
enabling the user to specify attributes for the system. These are global counters or
variables that might be used throughout the model. Figure 4.4 shows the appearance of

the Entities stack.

This stack can be used to define the life cycle of an entity type in the model. If
the user clicks at the 'Activities Involved' button on the right-hand side of the entity
card, HyperSim will show the list of activities that have previously been defined by the
user. The user can then select the initial activity in which the entity is involved. This
selected activity will then appear in the 'Activities Involved' table. The chain of

activities can be added to until the user selects the initial activity again to close the cycle.

Chapter 4. HyperCard and HyperSim 67

When the list of activities for the entity is completed, the user can click at the
'Life Cycle of Entity' button in which the entity's life cycle will be drawn automatically
on the screen. The 'Conditional Arrow' (an arrow with a rectangular box in the middle)
button can be used to add a conditional path in the entity's life cycle. This can be done
by first clicking at the queue where the conditional paths starts from, and then clicking
at the activity where the path goes to. HyperSim will then prompt the user for the
condition which is required for the path to be chosen. The path will then be shown in

the diagram when the user clicks 'OK' from the condition dialog box.

Fisurc44, The Enum Stack

.

Non*

Attribiitas Life Cycle af Entity Acti'vitias Involvad Ordar Mn,Max

Qiiauas Involved

Icon Stack

This stack contains cards of icons and allows the user to create new or edit old
icons. An icon can be selected for an entity by clicking the 'Select Icon' button and then
by clicking anywhere inside a chosen icon rectangle. Once an icon is chosen for an
entity, the icon will appear in the right hand comer of the corresponding entity card in

the Entity stack. Figure 4.5 shows a card from the Icon stack.

Chapter 4. HyperCard and HyperSim 638

Figure 4,5. The Icon Stack

spuh B Ertfv: Customer mSelect IconnB

tTa hCSdT » an r~6b
11 ¢

T

LS e T 11 s s s 0 v
¥ % o 1t 9 BS © A = A
T 1 « T i

Agtjvingi-Smck

Each card in this stack contains information about an activity defined by the
user - the name, the formula for the duration, the entities involved and the assignments

involved in the activity. Figure 4.6 shows the appearance of the Activities stack.

The model logic can be defined by using the Activities stack. However, this
method does not support the automation of queues. The user is required to create
queues when an entity is selected for the activity. If the user clicks at the 'Entities
Involved' button, then a list of entities that have previously been defined by the user
will appear. After the user has selected the entity that is involved in the activity,
HyperSim will prompt the user to enter the name of the queue where the entity comes
from, and the name of the queue where the entity goes to after the activity is finished.
In this stack, an entity can be selected more than once since there might be more than

one possible path that the entity can go to after the activity is finished, depending on the

Chapter 4. HyperCard and HyperSim 69

condition. The system will prompt the user for the condition and the queue that the

entity goes to when it detects that an entity is selected more than once.

Figure 4.6. The Activities Stack

1
ACTIVnYdflrr ive | DLK* X1 I
Entity Mirn>lax ~ RimnOueue CandRlen ToQueue
Attribute Index Condition Assignment

Eigurs. 4J. Thg Attributes Stack

ATTRIBUTE : need oner Number :
Index Locetion Condition

Index CeU Width, Base Value
HISTOGRAMS

Chapter 4. HyperCard and HyperSim 70

Attributes Stack

Each card in this stack contains information about an attribute defined by the
user - the name, the entity type that it belongs to, the assignments of the attribute, and
information about the histograms that are recorded for the attribute. Figure 4.7 shows

the appearance of the Attributes stack.

Queues Stack

Each card in this stack (figure 4.8) contains information about the queues
which are automatically produced by HyperSim - the name, the entity type that it
belongs to, the number of entities in the queue, the activity from which an entity comes,
the activity to which an entity in the queue goes, the assignment of any attributes, and

the histograms that are recorded in the queue.

Figure 4,8. The Queues Stack

QUEUE: EMMy: Customer FIFO
From :
To :
QLvngth Cell Width, Bos# Velum
HISTOGRAMS QTIrn. Cell Width, Bas# Valu#
Tim# S#ri#s Intmrval, Min, Max
Attribute Index Condition Aeoionment

Chapter 4. HyperCard and HyperSim 71

Code Stack

This stack allows the user to generate a three-phase simulation program from
the specification of the model by using the 'Generate' button. The user can modify the
generated program which is shown on the screen. The program can be exported as a
text file by using the 'Export' button. The Turbo' button takes the user to the Turbo
Pascal application, where the program can be run when linked with the simulation
library unit MacSim.Lib on the Macintosh. Figure 4.9 shows the appearance of the
Code stack.

Figure 4.9, The Code Stack

non, Jun 26, 1989 Export iGeneraiei Turbo HHyperSi

Program Pub;
($U nocSIm.LIb)
Uses
($S nOlob) neATgpes,Quickdra«,0SIntf,Toollntf,Packintf,nSimGlobol,
<$S nSamp) nSimSample,
($S mode) MSImModel,
{$S MOutp) MSimOutput;

Uor
System,Customer,Door,Barmaid,Glass : entity;
Arrive,Pour,Drink,WoshUp : activity;
didle,bidle,ArrCusPou,PouCusOri,WasGiaPou,PouGioDri,DriGioWas : queue;
outside : source;

Procedure BuiidModel ;

begin
MokeEnt (SystemEnt, 'SystemEnt*);
nakeEntCCustomer, Customer');
MokeEntCDoor, Door’);
MakeEnt(Barmaid,'Barmaid");
MakeEnt(Glass,'Glass'>;
nakeAttr<Customer,'desire'>;
MakeAct(mrrive,'Arrive'>;
MakeAct(Pour, Pour');

4.3. EXPERIENCE GAINED FROM HyperSim

This section discusses the advantages of the HyperSim system (section 4.3.1)

and its limitations (section 4.3.2).

Chapter 4. HyperCard and HyperSim 72

4.3.1.. Advantages of HyperSim

The flexibility of allowing the user to specify the model interactively either by
textual or graphical description, or a mixture of both, is the main advantage of
HyperSim. The user can look at the model logic from different points of view. He can
either look at the overall structure of the model, or at information on individual entities,

or on individual activities.

The user can change information in any place at any time, and the system will
automatically update the corresponding information in different stacks in which this

piece of information is concerned.

HyperSim is so user-friendly that it could take a new user less than an hour to
master the system. The building up of the model is entirely dependent upon the user's
action. However, the system constantly carries out checks which aids the user in

providing the correct type of information in the corresponding entry.

The entry of the model logic is not required in a systematic way. The user can
define new entities and new activities at any point during the building up of the model

in the system. He can also edit existing information in any stack at any time.

HyperSim is very useful for developing a first trial model in a very short
period of time. This trial model can then be easily updated until the user is satisfied with
the model logic and the data entered. The code generator in HyperSim allows the user
to generate a simulation model by just the touch of a button. This generated program
can be modified inside HyperSim, and transported into Turbo Pascal on the Macintosh.
It can be compiled with the simulation library MacSim.Lib so that simulation runs can

be performed.

Chapter 4. HyperCard and HyperSim 73

4.3.2, Limitations of HyperSim

The main disadavantage of using HyperSim is its lack of robustness when
data is being updated between stacks. This is a general deficiency in all Hypercard
applications. A Hypercard application runs more efficiently on the more advanced
Macintosh models - SE/30 and Ilci. Moreoever, for such a system to be effective, large

amounts of memory space are required.

A danger in using the HyperSim system is that the user might easily get lost in
the system if he accidentally clicks at the wrong button. There are many buttons on the
screen which might become traps for the user. In order to minimise this error, a set of
conventional buttons is adopted throughout the design of the system, i.e. buttons that
perform the same function have the same appearance in different stacks so as to avoid

confusion and misunderstanding.

Another disadvantage of Hypercard is its limitation on the size of the card.
The screen is non-scrollable. To create an activity cycle diagram that is larger than the
size of a card, special programming is required so as to link different cards together to

form a big picture.

Hypertalk programming is simple but it is easy to lose control. In order to
maintain the flexibility and mobility between different stacks, one has to keep track of
global variables manually. Moreover, it does not support dynamic memory allocations,
i.e. pointers or handles. Hence, for large models, searching through records and code

generation is slow.

The HyperSim system does not allow the user to run the simulation model
directly from the specification. In order to achieve this, external procedures and
functions must be linked to the HyperSim system so that the simulation model can be

run at a reasonable speed.

Chapter 4. HyperCard and HyperSim 74

4.4. SUMMARY

Hypercard is well recognized as a powerful organizer tool. The idea behind
Hypercard is simple - to allow the user to develop useful applications easily by creating
buttons and fields in backgrounds or cards. Hypercard suggests a new method of file
management. Instead of organizing data in files, cards which contain similar
information are grouped together in a stack. Moreover, stacks can be linked together so

that large applications can be easily developed.

There are a lot of advantages in uéing Hypercard to develop a system like
HyperSim. Firstly, a high degree of mobility between stacks is easily achieved by
using buttons and fields. Different stacks can be linked together to allow easy assess
for the user just by a click of the button. Secondly, new stacks can be continuously
added to the‘ application without extensive alterations to the rest of the stacks in the
system. This allows large applications to be developed very easily. Thirdly, good
graphics facilities allow pictures to be drawn easily at a reasonable speed. The
developer can make use of the graphics facilities available in Hypercard and is not
required to write a set of graphical routines. Lastly, Hypertalk programming is simple
and easy to learn. Its object-orientated nature allows the user to develop applications

and prototypes very quickly.

However, Hypertext is an immature technology with many problems yet to
resolve. Perhaps the most difficult part of creating a Hypertext system is not the
building of the user interface, but the creation of sound underlying data models that can
be maintained. Since Hypertext systems need to be maintained, we have to watch for
uncontrolled linkages which will become maintenance problems. Just as large software
programs with many patches can turn into spaghetti code, so a Hypertext system can
turn into a morass of meaningless, obscure connections and references. Another
problem for some users is that some Hypertext systems give you control, when in fact,

one might need guidance.

Chapter 4. HyperCard and HyperSim 75

The HyperSim application has demonstrated the power of modern
graphical/textual based interfaces as provided by the Apple Macintosh, for inputting

graphical specifications for simulation models.

On the other hand, simulation models require extensive runs to determine the
result of what is essentially a stochastic experiment. Hypercard does not provide the
speed of execution required for such experiments. Hence, HyperSim forms the basis
for an automatic simulation program generator. This generated HyperSim simulation
program can be run in conjunction with the simulation library ‘MSim.Lib' using Turbo
Pascal on the Macintosh. Such a generated problem enables the desirable rapid
processing of a simulation experiment. Storing, browsing and searching the contents
of the output from a simulation model is laborious using current methods. Therefore, it
is theoretically possible to return the experimental results to HyperSim to gain the
advantage of a Hypertext system for these purposes. This latter work has not been
implemented since a new system, described in the following chapter, and based on the

experience of developing HyperSim, has replaced HyperSim.

The main advantage of using computer graphics is to break the
communication gap between the analyst and the end-user. It also provides a means of
understanding the simulation model and easy interpretation of the results. This research
has given an insight into the production of a graphical interface that enables the analyst
to formulate a client’s problem with the client. This would be more than a specification
system. A specification would be the product of the analyst-client system session. But
the graphical interface would have the versatility to enable, in a non-technical way, the

problem to be described in the user’s terms.

Chapter 4. HyperCard and HyperSim 76

CHAPTER 5

DESIGN OF THE GRAPHICAL SIMULATION

MODELLING ENVIRONMENT

With the rapid development of computer hardware in recent years, the
possibility and the flexibility which allows the development of intelligent user-friendly
graphics oriented software has genuinely increased. The increasing use of computer
graphics is having a significant impact in the area of simulation. Visual modelling is

now regarded as a powerful component to an analyst's problem solving capabilities.

In this chapter, we discuss the design of an ideal graphical simulation system
which allows the user to formulate the problem in a pictorial format. The design
objectives of our graphical simulation system are given in section 5.1. The components
of the proposed system are outlined in sections 5.2. In order to demonstrate our
proposed intelligent graphical simulation system, we have developed an application
called MacGraSE (Macintosh Graphical Simulation Environment) on the Apple
Macintosh. This application is introduced in section 5.3. Section 5.4 summarises this
chapter. An example of how to use the MacGraSE application using the steelworks

model (discussed in section 1.2.4) is given in Appendix F of this thesis.

51. DESIGN OBJECTIVES

The existing simulation specification methods normally require a translation
process inside the human brain from the modeller's visualisation of the real world
system to a logical representation of the model (for example, in terms of diagramming

techniques or macro languages). This research aims to design a simulation environment

Chapter 5. Design of the Graphical Simulation Modelling Environment 71

which ideally allows the client and the analyst to build up a simulation model in a
collaborate manner. Such a system enables constant reconstruction of the model and, at
the same time, aids the user in creating a more clear picture of his problem during the

model building process.

The concept behind the proposed system is simple. This is an evironment
which allows the user to draw what they think directly on the computer screen during
the building up of the model, without the need to translate the modeller's thoughts to an
initial logical structured form. However, the system should be able to help the user to

organise their information in a structured format during the construction process.

The objective of the system is to allow the user to draw a pictorial
representation of the real world system and then formulate the model logic within such
an environment. The system should enable the user to update his specification of the
model constantly, so that he can repeatedly test run it and change the appropriate data,
until the final experimental model is obtained. The pictorial description of the model can
be used for running a visual simulation. The user should be able to select either a visual
run or a text run. He should be able to design his desired output screens (in terms of
pictures, graphs or charts) so that he can watch the dynamics of the model during a

simulation run on selected parameters.

5.2, COMPONENTS OF THE GRAPHICAL SIMULATION SYSTEM

In this section, the term 'user' refers to the one who is using the graphical
simulation system to build a simulation model. The role of the user here includes the
role of the modeller and that of the end user of the system. A general view of the design
components of this proposed simulation environment and their functions are given in

this section.

One way that the human mind tries to model a real world system is by a

Chapter 5. Design of the Graphical Simulation Modelling Environment 78

dynamic picture, i.e. an imaginative image of how entities move and interact in the
system. The user attempts to translate this image into a diagrammatic or textual
description. This description is then used as a means of communication between parties
of interest who are involved in the model building project. For a large and complex
system, the user might have to go through a great number of amendments to the
formulation description before the final model definition sychronizes with the image in
his mind. If the user can see the image of the real world system in front of the computer
screen, he might easily draw the dynamic picture that is inside his mind with the right

software support tools.

The following sub-sections describe the components of a system that allows

the user to draw such a picture.

5.2.1. Background picture

Any picture will probably have a fixed background that provides context for
the dynamic picture. Figure 5.1 shows two types of background picture that can be
drawn on the screen. Figure 5.1a is a three-dimensional picture of the pub and figure

5.1b is a factory layout diagram of the steelworks.

The facility of having a background picture in our proposed graphics driven
simulation system is to enable the user to depict what is inside his mind visually on the
screen. Once a pictorial description of the real world system is drawn, it is like a
background that is being stuck on the back of the computer screen. The user can then
easily define the movement of entities that are involved in the system by moving the
icons which represents individual entity types on the screen, but without altering the
appearance of the background picture. On the other hand, he can redraw the
background picture in any way he wants, without altering the model definition that he

has previously described.

Chapter 5. Design of the Graphical Simulation Modelling Environment 79

Fmr¢”™Ja, The PulpPicmrg

Figure 5.1h. The Steelworks Picture

Steel Furnaces
Blast Furnace melting area

Crane area

Railway line for torpedo

Pit arca

Chapter 5. Design of the Graphical Simulation Modelling Environment

5.2.2. Objects on Screen

There should be at least two types of objects on screen - icons which indicate
entities and rectangles which indicate activities. The display of queues and attributes are
optional. Queues are represented by circles. Attributes can be represented by means of

any polygon. In our case, we use a cloud symbol to represent attributes.

Entities refer to any component of the model which can be imagined to retain
its identify through time. In other words, they are the main input resources of the
system. The way entities move about in the system forms the basic model logic. In
order to make the pictorial description look as close possible to the real life picture of
the system, each entity type should have its own iconic representation in the model. The
model logic can then be defined by using these icons on the screen. The use of icons
makes the visual simulation more vivid and is a better representation than character

graphics.

An activity involves the interaction of different entity types. It is represented
by a rectangle on the screen. The user should be able to expand or shrink the size of the
rectangle so that entity icons can be placed within the rectangle to indicate that they are
involved in the appropriate activity. An activity can also be represented by an action

picture which can be used during a simulation run.

A queue represents the idle state of an entity type during its life cycle in the
system. It is represented by a circle on the screen. The automation of queues is
desirable since it minimises input error and guarantees that all of the life cycles are
closed. A dimmed icon of an entity type can also be used to indicate its idle state. The

user can select the option of displaying the iconic idle state during a simulation run.

If attributes are represented on the screen, the user will be able to see how the
assignments of attributes flow through different activities of the system. This option is

useful when the simulation model is heavily attribute-based.

Chapter 5. Design of the Graphical Simulation Modelling Environment 81

5.2.3. Generation of ACD

Although an activity cycle diagram is incapable of depicting all the details for
large and complex system, it is a most precise way of displaying the model logic for
most discrete event simulation models. The ideal system should support the automatic
generation of an activity cycle diagram from the pictorial description of the model. The
generated ACD can be used to verify the model logic and act as a means of parameter
input. Moreover, the user should be able to run a simulation model in its flow diagram

form, if preferred.

The option of generating an ACD shows that a structured diagram can be
directly translated from the pictorial description of the model. It is worthwhile to
mention that it is possible to generate other structured diagrams, for example, entity
cycle diagrams (Pidd 88) and activity diagrams (Davies & O'Keefe 89), from this
pictorial model definition. Each diagramming techniques has its own methodology,
definition and emphasis. However, the pictorial description is common to human

thinking since it represents what is happening in the real world system.

5.2.4. Logical Description of Data

The structured form of the model formulation should be automatically
generated by the system so that the user can view the logical form of the data input at
any time during the construction process. For example, a flow diagram showing how
an attribute is evaluated throughout the system among different activities. Alternatively,
the user might want to see a structured diagram which shows how different attributes
are evaluated within an activity. The system should thereby provide this kind of data
display so that the user can enter formulae or evaluation rules in a structured fashion, if

required. This component is particularly useful when the system is large and complex.

Chapter 5. Design of the Graphical Simulation Modelling Environment 82

5.2.5. Program Generation

The automatic coding of a model from a system specification reduces the need
for error-checking. However, simulation models are user-defined. No existing generic
simulation packages can accomodate all the details that the modeller wants to specify in
the model. This is the tradeoff between using a general purpose simulation package and
building a tailor-made simulation program specified to the problem. A program
generator, used in conjunction with a set of transparent library routines, can be used to
compensate for this dilemma. For the higher-end users who require complex
specification rules of the model, the system can be used to construct a first basic model.
Any other details that are not covered by the specification system can be added to the
generated program. For the lower-end users who just want to build a simple model, the
generated code will tell the story about 'how things actually work inside the system'

and thereby increase the simulation modelling knowledge of the user.

5.2.6. Visual Simulation

Visual simulation is an essential part of a simulation system. Although one
might argue that no one will actually sit in front of a computer screen and watch the
visual simulation run once the final model is obtained, the system should provide the

user with the option of visual running.

In this context, we distinguish two types of visual simulation run - a state
simulation run and an animation run. The former refers to a state change display in a
pictorial form, for example, where the run screen shows the start or completion of an
activity. Animation refers to the actual physical movement of each entity that is present
during the simulation run. Although an animation run shows a clearer picture of the
dynamic movements within the system, it is time consuming and should only be used

for verification of the model.

Chapter 5. Design of the Graphical Simulation Modelling Environment 83

Visual simulation is a very useful tool to aid the customer understand the
system if explained properly. A short running period with a reasonably low speed is a
convincing tool to show that the model is working correctly according to the final user-
defined specification. Moreover, with the presence of the background picture behind
the movement of entities, visual simulation looks more real and alive. Any error in the

definition of model logic can thus be easily detected in such an environment.

5.2.7. Simulation Run : Output display

Once the computer model is verified, assuming all parties of interest agree to
this final version of the computer model, the next stage is to collect experimental data so
that data analysis can be performed. At this point of the simulation process, the user of
the simulation model is concentrating only on the output results (for example, how
resource usage varies during the simulation run). Very often the user prefers to see a
graphical representation of the data distribution by means of a line graph, bar chart,
scatter plot or histogram, than to see numerical output. Interactive graphical output
during a simulation run might be an attractive tool to the modeller so that he can see
how the data accumulates during the running process. Visual simulation cannot satisfy
this type of data requirement efficiently since it is impossible for the human mind to

capture all the details during a simulation run visually.

In our design of a complete graphics driven simulation environment, the user
should be able to select the output he wants to see during a simulation run by means of
an output screen. This output screen option of the system also enables the user to check
the logic of a particular part of the system by looking at the corresponding data that is
generated during the running process. Due to the restriction of the size of the computer
screen, it seems almost impossible for the user to display all the output he would like to

view on one screen. Hence, the system should enable the user to design different

Chapter 5. Design of the Graphical Simulation Modelling Environment 84

screens so that he can switch to the desired screen during a simulation run in order to

see what is happening in another part of the system.

5.2.8. Simulation Run : Text display

A simulation run with text display, indicating which activities start and end at
each time advance, is another useful tool in the verification of the computer model. If
the entities of each entity type are labelled with an index, the user can check which

entity of the entity type is actually taking part in the activity during a simulation run.

When the user is only interested in the final output of the simulation run, the
option of switching off all the displays on the screen during the running process can be
exercised. This will increase the speed of running proportionally, especially with a long

running period. The user can then collect the report that is generated after the run.

5.2.9. Report Generation

Simulation reports are the output of the whole simulation process, and will be
handed over to the management decision making team of the organisation for which the
simulation model was built. The results presented in the report will help the decision
maker in the decision making process and should therefore be presented in a clear and
accurate format. The ideal system allows the user to design the format of the report so
that it will contain the appropriate level of detail according to the requirement of the

management team.

5.2.10. Built-in Macro Language
A built-in macro language is often used for incorporating user-defined

Chapter 5. Design of the Graphical Simulation Modelling Environment 85

routines or procedures that are not covered by the specification system. For example,
the user might want to write a procedure for calculating the duration time of an activity,
or he might want to add in a form of output that is not automatically produced by the
system. Macro language allows the user to write this type of coding inside the system.
The system will then act as an interpreter so that this level of detail is included in the
simulation run. This will not require the user to modify the generated coding outside the
system in a high-level language such as Pascal or C. The macro language should be
simple to use, preferrably in a structured English format, so that the user who has a

limited amount of programming knowledge can use it with little difficulty.

5.3. THE MACGRASE APPLICATION

MacGraSE (Macintosh Graphical Simulation Environment) is a graphical
simulation system developed on the Apple Macintosh, incorporating most of the design
structures described above. The application can be opened by double-clicking on its
application icon or selecting the Open command from the File menu on the Macintosh
desktop. The system uses the three phase modelling structure, discussed by Crookes
et. al. (87), Paul (89a), Pidd (84) and Pidd (88). The interface design of the MacGraSE
application is given in section 5.3.1, and a description of the main menus is given in
section 5.3.2. The formulation mechanism is described in section 5.3.3. An example

walkthrough of the application can be found in Appendix F.

5.3.1. The Interface

Once the MacGraSE application is opened, three windows will appear on the
screen (figure 5.2). The top left window is the mode box window which consists of six
palette buttons (figure 5.2a) that are used for modelling. The bottom left window is the

tool box window which contains all the tools palette buttons (figure 5.2b) that are used

Chapter 5. Design of the Graphical Simulation Modelling Environment 86

for drawing the background picture. The window labelled 'Untitled' is the application
window or main window where a model can be constructed. Figure 5.3 summarises

the appearance of different objects on the screen.

Figure 52. The MacGraSE Application

A

AU File Edit Model Draiu Options Run
M ID (untitled)

a

0o

0o

O a

n 'S

6 A

. 0
1 loig]

Figure 5,2a, The Palette Buttons in the Mode Box Window

A (Z1 m ©

Select Entity Duplicate Entity Select Activity Select Attribute Select queue Conditional path

Figure 5.2b. The Palette Buttons in the Tool Box Window

Selecting Pencil Eraser Brush Spray Fill area Text

an object drawing

straight Rectangle Round-corner Ovals Curved Hexagon Polygon
rectangle object

Chapter 5. Design ofthe Graphical Simulation Modelling Environment 87

Figure 5.3, Objects inside the MacGraSE application

A NglwQr.K-gf Entity I¢gn? An gmpty Activity Entity Attribute
Name

cuUD

An Activity with entities

Arrive System Attribute

“des Ir<
| a 1 y

There are six palette choices in the mode box window. Once the 'Select entity'
button is selected, MacGraSE will redraw the screen by showing all the entity icons that
are present in the model. Each entity icon is surrounded by a square frame (25 x 25

pixels).

The 'Duplicate entity' button is used for duplicating entity icons of an entity
type. The icons list on the screen is used to indicate the life path of the entity type inside

the system.

The application will redraw the screen by showing all the activities that have
been defined in the model if the 'Select activity' button is selected. The user can then
move or resize the activity rectangle anywhere within the main window. He can also
specify information for the activity by double-clicking on the activity rectangle and

entering the relevant information in the activity dialog box.

The 'Select attribute' button is used for modelling the attributes of the system.
Once this button is selected, the application will redraw the screen, including all the
attribute evaluations that are linked to each activity. If it is an attribute that belongs to an
entity type, the user can link the attribute object to an entity icon on the screen. If it is a

system attribute, then the user can link the attribute object to an activity object on the

Chapter 5. Design ofthe Graphical Simulation Modelling Environment 8

screen. Duplicate attribute objects of an attribute type can also be created so as to

indicate the evaluation flow among and within activities in the model.

The 'Select queue' button is used for displaying the queues that are
automatically generated by the application. The user can then move the position of the

queues and enter the relevant information by double-clicking on the selected queue.

The 'Conditional path’ button is used for adding conditional paths within an
entity life cycle. Once the button is selected, the application will redraw the model
picture with the generated queues. The user can create conditional paths by moving the
mouse to an entity icon, click to select it, and then by dragging the mouse to the
destination queue and releasing the mouse button. A line linking the selected queue and
activity will be drawn, and the condition for the path can be entered by clicking at the

small box on the line.

5.3.2. The Main Menu

There are seven menus in the main menu bar of the application, excluding the
standard apple desk accessories menu (®). A diagram showing the appearance of the

menus inside the MacGraSE application is shown in figure 5.4.

Like a conventional Macintosh application, MacGraSE contains the typical

File and Edit menus.

The File menu handles all the filing procedures within the application,
including creating new files and editing existing files, printing and quitting the

application.

The Edit menu contains the cut, copy and paste command to aid the editing of
the background picture and textual data input. The user can also select the drawing size

of the model and delete the selected components of the model.

Chapter 5. Design of the Graphical Simulation Modelling Environment 89

Figure 5.4. The Main Menu of MacGraSE

mi\rm Edit Model Draw Options Model Drai mariiiraw Draw Options

Neiu XN Undo IFF New Entity... X1

Open... X0 New Activity.. X2

Cut #K New Attribute... X3

Close XIU K))% #[

Saue #S Poste #U lintitg |

Sai*e fis... Cfeor Retii*itg >

Ri>uert Sele< t HU 1Utrlbute >

Page Setup... Shoiu Clipboard Shoii* Mode...
masumam saE i Picture Show Paths

Print... Summary Draining Size...

BCD diagram Shell* leeli... Animation
Quit XO Screen ACD...
Report Delete...
[Print All
Options Run Options Run Out Drauj Options Run Output
import Point... XI Edit Report... MPilJ C Language
‘ MPIU Pascal Gel‘n‘erate...
Preferences... Ne}l] Screen... Mac Turbo Pascal Shoii» Program...
Edit Screen IBM Turbo C

Reduce To Fit
Normal Size

Tent Options..

Tile Screens

Clock...
Model Picture...

IBM Turbo Pascal

Check Logic...
Model Summary...

Screen Run...

Fill Pattern... Hctiuity Duration. Ulsual Run...

Line Pattern.. Hctiuity Counts... Text Run...

Line Size... Utilisation Time...

Brush Shape.. Attributes Uaiue.. Go XG

Histogram...
ime Series...

Shoii» Result File...
Shell* Repoil File...

Actluity Count Table
Utilisation Time Table

The Model menu contains all the commands for building up a simulation
model. New components - entity, activity or attribute, can continuously be added to the
model by using the New Entity', 'New Activity' and the "New Attribute' menu items
respectively. These components will be appended to the appropriate submenu (Entity,
Activity and Attribute) within the Model menu. The user can view and edit information
for each individual component by selecting the item in the submenu. Other options

include setting the 'Show Path' mode on, so that the paths (in terms of straight lines) of

Chapter 5. Design ofthe Graphical Simulation Modelling Environment 90

the entity type that the user is constructing are seen on screen; generation of an ACD
which allows the user to manipulate data via an activity cycle diagram; and the
animation command, which allows an animation run where the user can see the actual

movement of individual entities that move inside the system during a simulation run.

The Draw menu is used to aid the drawing of the background picture. The
user can set the pen size, pen pattern, fill pattern or text options by using the
appropriate commands inside the menu. It includes an 'Import Paint' command in
which the user can import a picture that is drawn in other Macintosh drawing

applications in 'Pict' format, instead of using the drawing facilities inside MacGraSE.

The Options menu has two main functions. The first function is report
editing, so that the user can edit the report format to produce a desired report after a
simulation run. The second function is screen editing in which the user can create
multiple output screens for a simulation run. The objects that can be put in a screen are
mainly the simulation clock, utilisation time table, activity count table, histograms, time

series, numerical statistics, attribute values and status of an entity type.

The Run menu is used for performing simulation runs on the model. The user
can use the 'Generate' command to generate a three-phase simulation program in the
selected language choosen in the 'Language' command. The program can be viewed
within the application by using the 'Show Program' command. The user can also check
the model logic and see a textual description of the current state of the model by the
‘Check Logic' and 'Model Summary' command respectively. There are three options
for a simulation run - Screen, Visual and Text. When the parameters inside each option
are entered, the user can select the Go command to process the simulation run. In each
case, the user can select the options of saving the result file and the report file of a
simulation run. The result file can be viewed after a simulation run by using the Show
Result command, whereas the report file can be viewed using the Show Report

command in the Options menu.

Chapter 5. Design of the Graphical Simulation Modelling Environment 91

The Output menu is only appended to the menu bar when a simulation run is
executed by the user. Any specified histograms, time series or graphs are added to this
menu, so that the user can select the output to be reviewed after a simulation run. The
default setting of this menu includes the utilisation time table and the activity count

table.

5.3.3. The Formulation Mechanism

The proposed simulation system models three types of objects on the screen -
entity, activity, and attribute. An entity can either be active, i.e. taking part in an
activity, or inactive, i.e. waiting for an activity to start. An activity usually involves the
cooperation of different classes of entity. The term 'queue’ is used to refer to the idle
state of the entity, i.e. a state in which the entity waits for something to happen. Hence,

a queue involves no cooperation between different classes of entity.

Each entity type has its own life cycle pattern which is made up of a sequence
of activities in which it participates in the system. An entity life cycle must be closed
unless the entity is of temporary type, in which case the entity is created when it enters,
and destroyed when it leaves during a simulation run. We also distinguish between
permanent and facility entities. The former has its own individual different waiting
point before an activity that it is involved in starts; whereas the latter has a common
resting place before any of its associated activities starts. Some paths of an entity type's
life cycle may be conditional, i.e. there is a certain condition which controls the
feasibility of the path. A condition is usually the value of a certain 'attribute’ that is
possessed by the corresponding entity type. An entity type can have more than one

attribute and its attributes can be evaluated at any point along its life cycle.

Chapter 5. Design of the Graphical Simulation Modelling Environment 92

Entity Life Cvcle

A new entity type can be created by using the 'New Entity' command in the
Model menu. An entity type is represented by an icon within a square frame (25 x 25
pixels). Each entity type has one and only one main icon and multiple 'ghost' icons
which are images of the movement of the entity within the system. Ghost icons are
indexed by the number that is just above the top-right hand comer of the icon frame. A
ghost icon of an entity type can be duplicated from the main icon, or another preceeding
ghost icon of the same entity type. The entity life cycle can be constructed by
duplicating icons of the entity type and then placing each icon into an activity in the

system. Figure 5.5 shows the duplication of icons for an entity type.

Figure Duplmnon ofEnm kons

Release the
mouse button

m

Click at the source icon, Similarly, to duplicate an icon
hold the mouse button down tactween 1 and 3, just click on
and move the mouse to the icon 1, move to the destination
destination position of the position of the duplicated icon,
duplicated icon. and release the mouse button.

The new icon will have an index
of 2 and the icon that had an
index of 2 will now become 3.

Specifving an Activity

Each icon on the screen should be placed within an activity and should not be
allowed to wander around in the system. A new activity can be created by selecting the
New Activity' command from the Model menu. An activity is represented by a round-
cornered rectangle on the screen. Entity icons that lie within the boundary of the

rectangle represent the different entity types that are involved in the corresponding

Chapter 5. Design of the Graphical Simulation Modelling Environment 93

activity. There are two ways of specifying an entity that takes part in an activity. The
first method is by moving the entity icon into the activity rectangle, and the second
method is to pick up an entity icon by moving the activity rectangle over an entity icon.

Figure 5.6 shows how to specify entities that are involved in an activity.

Figure 5.6. Specifving an Activity

flrr ive Arrive flrr ive
An empty activity. Click at the door icon, hold the Activity 'Arrive' involves
mouse button until it is inside the co-operation of the
the rectangle of activity arrive. entity door and customer.

Release the mouse button.
Similarly for the customer icon.

Editing Queues

Queues are automatically produced when a ghost entity icon is duplicated
from the source icon. This is because an entity icon on the screen is always assumed to
be always placed inside an activity. Thus a queue is associated with every entity icon on
the screen which indicates where the entity icon comes from before entering the activity
that it is involved in. For both temporary and permanent entities, one queue is generated
for every duplicate icon and the last entity icon of an entity type is always linked to the
queue associated with the first original icon of the same type. This is to ensure that the
life cycle is always closed. For facility entities, only one queue is generated for an

entity type.

The generated queues are initially invisible. However, the user is able to see
the queues in the diagram (represented by circles) by using the 'Select queue' button in

the mode box window. Information about the queue can be entered if the user double-

Chapter 5. Design ofthe Graphical Simulation Modelling Environment 94

clicks at the selected queue. He can enter the number of the entities that are present in

the queue, or create any histograms or time series that are required in a simulation run.

Attribute Assignments

A new attribute can be created by selecting the 'New Attribute' command in
the Model menu. An attribute is represented by a cloud shaped object on the screen. For
attributes which are evaluated at more than one activity within the system, an image of
the attribute can be duplicated so that the user can enter a different formula. Figure 5.7
shows how an entity attribute object can be duplicated in the model. There are two
indices inside an attribute cloud. The left-hand corner index indicates the rank of the
cloud among all its associate duplicates, whereas the right-hand comer index indicates
the order of attribute evaluations within the activity in which the cloud is linked. In
figure 5.7 it can be seen that the left-hand comer index of the duplicate attribute cloud
carries an index of '2', whereas the original attribute cloud carries an index of '!". The
right-comer indices of both clouds are 'O since their associated entity icons are not yet

placed in an activity.

Figure 57. Duplicating an Entity Attribute object

desire 'desire
140

'desire

To duplicate an attribute cloud,

click at the attribute cloud, hold n
the mouse button down and move

the mouse until it is inside the

frame of icon 2.

Release the mouse.

A duplicate attribute cloud will

appear on icon 2.

Attributes can be classified into two types : system and entity attributes.

Chapter 5. Design ofthe Graphical Simulation Modelling Environment 95

System attributes are attributes that belong to the system and can be evaluated at any
event that is happening in the system. Entity attributes are ones that belong to an entity
type and can only be evaluated at the event that the entity type is involved in. A system
attribute is represented by a cloud object drawn with a thicker pen, whereas an entity

attribute is represented by a cloud object drawn with a thinner pen.

5.4. SUMMARY

In this chapter, we have discussed the design principles that lie behind our
ideal graphical simulation system. The key feature of our system is to allow the user to
specify a logical pictorial description of the model, and to be able to use this picture
directly for a visual simulation run. The ideal system should have a program generator,
so that any level of details that are not covered by the specification interface can be
added to the generated code. A report generator is an important component of the
system, so that user-defined simulation reports can be generated from a simulation run.
A built-in macro language is desirable since this will allow the user to add user-defined

routines within the application itself. This will increase the flexibility of the system.

We have also introduced part of the application MacGraSE (Macintosh
Graphical Simulation Environment) which lies within the scope of our design
guidelines. The interface design and the formulation mechanism allow the user to
construct and build a simulation model in a very simple and quick way. The client is
able to discuss the specification of the simulation model with the analyst and, at the
same time, construct an initial basic model showing the logic of the system. The system
allows the user to see a visual imitation picture of the real world system on the

computer screen, and to formulate the model logic within such an environment.

In the next chapter, we discuss MacGraSE in greater depth - the data

structures and the data input mechanism within the application.

Chapter 5. Design of the Graphical Simulation Modelling Environment 96

CHAPTER 6
IMPLEMENTATION OF THE GRAPHICAL SIMULATION

MODELLING ENVIRONMENT

This chapter looks at the internal structure of the MacGraSE application. The
data structures within the application are given in section 6.1. Section 6.2 discusses the
data input interface of the application. The program generator module is discussed in
section 6.3. The modules that handle the running of a simulation model, and that handle
the simulation outputs, are described in sections 6.4 and 6.5 respectively. Section 6.6
discusses the experience gained from this research development. Section 6.7 gives a
summary of this chapter. A summary of all the MacGraSE units which were written in

MPW (Macintosh Programming Workshop) Pascal can be found in Appendix G.

6.1. MACGRASE DATA STRUCTURES

The data structures within the MacGraSE application are shown in figure 6.1.
The type definitions of entity, activity, and attribute are further discussed in sections

6.1.1, 6.1.2, and 6.1.3 respectively.

Figure 6.1, Dat, TUr MacGraSE

quehistrec = record
nam i strl0;
base,width : integer;
tflag i longint;
total : longint;
sosq i real;
count : longint;
id : integer;
data : arrayl0..16] of integer;

end;
quehistptr = “quehistrec;
quehisthdl = “quehistptr;

Chapter 6. Implementation of the Graphical Simulation Modelling Environment 97

tserieshdl
tseriesptr
tseriesrec

modenthdl

queobjrec

queobjptr
queobjhd]

entity

entobjhdl
entobjptr
entobjrec

entityptr
entityrec

activity
activityptr
activityrec

= “tseriesptr;
= “tseriesrec;
= pecord

nam

int

count

plot

tflag

id

data
end;

“modentptr;

= precord
loc
nam
num
al, qt
ts
fromact
acdloc
qnum
modent
end;
= “queobjrec;
= “queobjptr;

= “entityptr;

= “entobjptr;
= “entobjrec;
= precord

id

ent

loc

que

act

min,max

next,nact
end;

“entityrec;

record
id
nam
num
etype
icon
display
mobile
pat
utime
oent
next

end;

= “activityptr;
“activityrec;
record

id

nam

dur

str10;
integer;
integer;
integer;
longint;
integer;
arrayl0..449]

point;
stri0;
strS;
quehisthdl;
tserieshdl;
integer;
point;
integer;
modenthdl;

integer;
entity;
point;
queobjhdl;
integer;
char;
entobjhdl;

integer;
stri0;
str3;
integer;
char;
integer;
boolean;
integer;
real;
entobjhdl;
entity;

integer;
strl0;
str30;

Chapter 6. Implementation of the Graphical Simulation Modelling Environment

of

integer;

98

dist,a,b,c,d,e integer;
ref str30;
rec rect;
acdlioc paint;
anum : integer;
count ¢ integer;
inv : entobjhdl;
next activity;
end;
attcalhdl = “attcalptr;
attcalptr = “attcalrec;
attcalrec = pecord
arg ¢ integer;
con i str30;
cal : str30;
end;
attobjhdl = “attobjptr;
attobjptr = “attobjrec;
attobjrec = precord
id,aid integer;
rec . rect;
atcai : attcalhdl;
ent entobjhdl;
act i activity;
next : attobjhdl;
end;
atthistrec = record
nam strl0;
base,width : Integer;
totai ¢ longint;
so0sq i real;
count iongint;
id integer;
data arrayl0..16] of integer;
end;
atthistptr = “atthistrec;
atthisthdi = “atthistptr;
attribute = “attributeptr;
attributeptr= “attributerec;
attributerec= record
id i integer;
nam ¢ strl0;
ent i integer;
glo : booiean;
hist atthisthdl;
oatt attobjhdl;
next attribute;
end;
conobjhdl “conobjptr;
conobjptr = “conobjrec;
conobjrec = precord
entl,ent2 entobjhdl;
con : str30;
next conobjhdl;
end;
modatthdl = “modattptr;
modattptr = “modattrec;

Chapter 6. Implementation of the Graphical Simulation Modelling Environment 99

modattrec = pecord

att ¢ attribute;
val : longint;
next : modatthdl;
end;
modentptr = “modentrec;
modentrec = pecord
id i integer;
st : longint;
matt : modatthdl;
next : modenthdl;
end;

6.1.1. Entity

Entity is defined as a handle to the record entityrec which contains all the
information about an entity type. nam and num are the entity name and number of
entities respectively. Since all the dialogue boxes accept data in the form of strings,
num is regarded as a string variable. It will be converted to an integer variable when
necessary. The entity type can be specified using the etype parameter where '1' stands
for permanent entity, '2' stands for temporary entity, and '3' stands for facility entity.
The icon that represents an entity type is stored as a character in the record referenced
by icon. The mobility of the entity is set by using the parameter mobile. utime is a
variable which is used to record the utilisation time of an entity type during a simulation

run. The next entity record in the entity link list is referred to by next.

The duplication of entity icons in our formulation mechanism is recorded by
using the parameter oent in the entity record. This contains the list of entity icons on
screen that belongs to the entity type. oent is a handle to the record type entobjrec.
entobjrec contains information about each entity icon on the screen, including the index
of the icon (id), the entity to which it belongs (ent), the location on the screen (loc), the
activity in which it is placed (act), the minimum (min) and the maximum (max) number
of entities that are required to start the activity, and the next icon in the entity icon list
(next). The handle nact is a handle to the next entity icon of a different entity type which

is involved in the activity and is only used in a simulation run.

Chapter 6. Implementation of the Graphical Simulation Modelling Environment 100

In the case of permanent and temporary entities, the automation of queues in
our formulation mechanism is achieved by creating a handle que for the record type
queobjhdl for every duplicate entity icon. Since only one queue handle is created for a
facility entity, the parameter que of any duplicate entity icons points to the same handle.
A queue record contains information about the name of the queue (nam), the number of
entities in the queue (num), the queue location (loc), the queue location in its associate
activity cycle diagram (acdloc), the index of the activity preceding the queue (fromact),
a handle to the queue length histogram (g/), a handle to the queueing time histogram
(gt) and a handle to the time series (zs). The parameter gnum is used to record the
number of entities in the queue during a simulation run. modent is a list of model
entities which is attached to the queue and is used during a simulation run. Each entity
in the simulation model, except temporary entities, is labelled before a simulation run.
The modentrec record contains information about the index of the entity and the time
when the entity enters the queue (sr) during a run. next is a handle to the next model
entity in the list. mart is a handle to the list of entity attributes that is being evaluated

during the simulation run and is used to store the value of the attribute during a run.

A conditional path in the life cycle of an entity type is recorded by using the
handle conobjhdl. The information in the record includes the addresses of the handles
of the entity icon records in which the path comes from and that for the record in which
the path goes to. The condition is recorded by using the parameter con. next is the

handle that points to the next conditional path record in the list.

6.1.2. Activity

Activity is defined as a handle to the record type activityrec which contains all
the information about an activity. nam and id are the name and index of the activity

respectively. The textual form of the duration formula is stored in the parameter dur.

Chapter 6. Implementation of the Graphical Simulation Modelling Environment 101

dist, a, b, c, d and e are used to identify the distribution function and its associate
parameters for the activity. ref is used to store the comment that the user enters in the
activity dialogue box. The activity rectangle on the screen is referenced by rec. The
location of the activity rectangle in its associated activity cycle diagram is recorded by
acdloc. anum is used to record the number of attribute assignments that are present in
the activity. The parameter count is used to record the number of times that the activity
successfully starts in a simulation run. inv is a list of entity icons records entobjhdl
which are involved in the activity. next is a handle to the next activity in the activity link

list.

6.1.3. Attribute

Attribute is a handle to the record type attributerec which holds all the
information about an attribute defined in the model. nam and id are the name and index
of the attribute respectively. The entity to which the attribute belongs is referenced by
ent. The boolean variable glo is set to true if the attribute is a system attribute. Aist is a
handle to an attribute histogram, if any. The next attribute in the attribute link list is

referenced by next.

The duplication of attribute objects on screen is recorded by using the
parameter oatt which is a handle to the record type attobjrec. Each attobjrec record
contains information about the index of the cloud among all of its associated attribute
objects (id), the index of the attribute assignment within an activity (aid), the rectangle
of the cloud (rec), the entity icon to which the attribute cloud is linked (ent), the activity
in which the attribute cloud is evaluated (acr), and the next attribute cloud in the list
(next). Each attribute cloud is associated with one evaluation record referenced by arcal.
The parameter atcal is a handle to the record which contains information about the
argument of the attribute being evaluated (arg), the condition of the assignment (con),

and the evaluation formula (cal).

Chapter 6. Implementation of the Graphical Simulation Modelling Environment 102

6.2. DATA INPUT INTERFACE

This section discusses the data input interface of the MacGraSE application.
The drawing facilities are described in section 6.2.1. The parameter details of the model
components are entered in the application via dialogue boxes. The structure of the
entity, activity, queue and attribute information dialogue boxes are given in sections
6.2.2 to 6.2.5 respectively. Section 6.2.6 discusses the generation of an activity cycle

diagram.

6.2.1. Background Drawing Facilities

MacGraSE supports the general drawing environment of a Macintosh
application. The user can select the drawing size of the model by using the Drawing
Size command in the Edit menu. The drawing size dialogue box is shown in figure 6.2.
The palette buttons in the tool box window allows the user to draw any items on the

screen. A summary of the functions of the palette buttons is given in figure 6.3.

Figure 6,2, The Drawing Size Dialogue Box

Draining Size
m g g mj

[Cancel) [(__O0K__1)

Figure 6.3, A Summary ofthe Palette Buttons inside the Tool Box Window

" h A

Pencil Eraser Brush Spray Fill area Text
drawing
O a CF a
Rectangle Round-corner Ovals
lines rectangle object

Chapter 6. Implementation ofthe Graphical Simulation Modelling Environment 103

Apart from being able to draw the background picture inside the application,
the user can also import a picture from other Macintosh drawing applications by using
the Import Paint command in the Draw menu. The user can set the pen size (figure
6.4), pen pattern (figure 6.5), fill pattern (figure 6.6) and brush shape (figure 6.7) by
using the appropriate commands in the draw menu. The dialogue box used for setting

the appearance of the text on screen is shown in figure 6.8.

Figure M . TM F"n Dialogm Box

Line Size

Cancel

Figure 6,5,. The P ai Pattern Dialogue Box

Line Pattern

M B m g m

s o0 S O
0 Hillm JJg 0 11H
OEO0Ogaa2g 1

[Cancel | I(OK

Figure 6.6. The Fill Pattern Dialogue Box

Fill Pattern

Cancel J

Chapter 6. Implementation ofthe Graphical Simulation Modelling Environment 104

Figure 6.7. The Brush Shave Dialogue Box

Brush Shape

Cancel)]I (I()1

Figure 6.S. The Text Edit Dialogue Box

Font Size Style
Athens ® 9 point o Plain
Chicago O 10 point o Bold
Cairo . .
Courier O 12 point o Italic
Geneua O 14 point o Underline
Heliietica O 18 point o Outline
London O 20 point o Shadow
Mobile
Monaco . . .

Alignment Line Spacing
New York
Times (S Left (# Single

O Right O Double

O Center

a [Cancel

6.2.2. Entity Information

A new entity type can be created by using the New Entity command in the
Model menu. The entity dialogue box is shown in figure 6.9. The user can enter the
name of the entity type, the number of entities present in the system and the entity
classification (permanent, temporary or facility). He can also choose to display all the
entities of the selected entity type or just use one icon to represent all its associate

members. The entity type can be either mobile or non-mobile. A mobile entity type

Chapter 6. Implementation ofthe Graphical Simulation Modelling Environment 105

moves from one place to another in a simulation run whereas a non-mobile entity

remains stationary.
Fjgur¢ ™9, The Entity PialQgm

Entity Information

Name : Man Number :
Display: 0 One (QHW Icon Attribute
O
Type: O Permanent
® Temporary
O facility ~ Mobile
[Cancel] [Life Cycle...) (Icon...] [[OK ~

The 'Icon' button is used to select an icon for the entity type. Figure 6.10

shows the icon dialogue box where the user can select an entity icon by clicking at the

appropriate position.

Figure 6.10, The Icon Dialogue Box

AT 8§ ®
f I »m £ Q s s a
i § HO
VO m C Il §lEDwirS®
I A
1 i ~t A

(QIQ)

S °T i Ci <2>ly?DIL=3
DilieAeai Xi0 * @%
(None)

[Cancel) [More]

A flow diagram of the life cycle of an entity type will be shown in the life

cycle window (figure 6.11) if the user clicks at the 'Life Cycle' button.

Chapter 6. Implementation ofthe Graphical Simulation Modelling Environment 106

Figure 6.11. The Life C\cle Window

Life Cycle

LOADWASH

JLav at ilvashi

UNLOADWASH

6.2.3. Activity Information

A new activity can be defined by selecting the New Activity command from
the Model menu. The activity dialogue box is shown in figure 6.12. The user can

specify the name of the activity and enter its duration formula via the duration dialogue

box (figure 6.13).

Figure 6.12, The Activity Dialogue Box

nctiulty Information

Name : UnloadlUash [Comment]

Duration :

Entities Inuoiued :

flan #1,1 LoaflanUnL # UnLflanflrr
Uashfloc #1,1 LoaUasUnL # UnLUasLoa
Basket #1,1 UnLBasUnL # UnLBaaUnL
0
Assigned Attributes :

Cancel | [Duration...) (Code...) [Edit Info...] [Picture...] [OK |

Chapter 6. Implementation ofthe Graphical Simulation Modelling Environment 107

Figure 6.13. The Duration Dialogue Box

Functions : 0 mean : 10
Bernoulli(pr,k,seed)
Binomlal(pr,k,seed)
Erlang(a,mean,seed)
Lognormal(mean,sd,seed)
Negeupl mean.seed)
Narmal(mean,sd,seed)
Poisson(mean,seed) (O seed 1..20 : [6~

Duration : NegeKp(10,6)
Louier limit : Upper limit : o Line graph

Hectiuity : Hrriue [fldd Distribution) [Cancel) |[(OK j)

The entities involved table in the activity dialogue box shows the list of
entities that are involved in the activity defined by the user and the attributes evaluation

table shows the list of attributes that are evaluated at the activity.

The 'Picture' button is used to invoke the activity picture dialogue box (figure
6.14) in which a picture that represents the happening of the activity can be drawn. This
picture can then be used for a simulation run. The 'Edit Info' button allows the user to
see a structured flow diagram representation of the selected activity in the activity

information window (figure 6.15).

Figure 6.14. The Activity Picture Dialogue Box

flctPicture

Chapter 6. Implementation ofthe Graphical Simulation Modelling Environment 108

Figure 6,15, The Activity Information Dialogue Box

EditRctInfo
Customer
EE 11
WashMac I UNLOADWASH
Basket
11

6.2.4. Queue Information

Queues are automatically produced in the MacGraSE specification system.
The algorithm used is to generate a queue record whenever a ghost image of an entity
icon is duplicated for permanent and temporary entities, and one common queue record
for each facility entity type. Since an entity icon on the screen is assumed to be
associated with an activity, the queue that is generated represents where the entity
comes from before the activity begins. For permanent and temporary entities, a closed
loop structure is always ensured by linking the last duplicated entity icon to the queue
of the first original icon of the entity type. For facility entities, a duplicated entity icon

always goes back to the common queue of the entity type.

The queues within the model can be reviewed by selecting the 'Select queue’
palette button from the mode box window. The queue dialogue box shown in figure
6.16 can be invoked by clicking at the desired queue. The name of the queue is
automatically created by a combination of the first three characters of each of the

preceding activity, the name of the entity and the succeeding activity. The user can

Chapter 6. Implementation ofthe Graphical Simulation Modelling Environment 109

specify a queue length histogram, a queuing time histogram and a time series for the
queue. The dialogue box also shows the activity from which the entity comes and that

to which the entity goes.

Figure 616, Th® OQ.m m Diahgm Box

Name : |[DryManRrr Entity : Man E Source/Sink

o Uislble
Number : To : Rrriue
o ShOLU icon

From : Dryiny

Histograms :
0 QLength
o QTime
Time Series :

o T-Series

[Cancel] OK

flQure 6.17. The Attribute Dialogue Box

" m attribute Information
Name : desire Entity : None o Global attribute
Evaluations :
(O)
A Histogram dhist cell width :|1 |base ualue
[Cancel | [Edit Info... [Code] Il OK

6.2.5. Attribute Information

A new attribute can be created by using the New Attribute command from the

Model menu. The attribute dialogue box is shown in figure 6.17. The user can specify

Chapter 6. Implementation ofthe Graphical Simulation Modelling Environment 110

the name of the attribute and decide whether it is an entity attribute or a system attribute.
A histogram can also be defined by the user. The evaluation table shows the list of
calculations for the attribute that are defined in the model. The 'Edit Info' button allows
the user to see a structured logical diagram of the status of the attribute in the attribute
information window (figure 6.18). The evaluation formula of an attribute object can be
entered via the attribute evaluation dialogue box (figure 6.19). This dialogue box is

invoked when the user double-clicks at the selected attribute cloud on the screen.

Figure 6.18. The Attribute Information Window

Editflttlnfo
desire ,= uniform(1,4,9)
DRINK desire .=desire - |

Figure 6.19. The Attribute Evaluation Dialogue Box

Attribute : desire Hctiuity : Rrriue IndeK : 0

Comparison Field : >< -
O Evaluated at : ® Start Q End

> Ualue :
>=
< Condition :
<
Formulation :
Constant O
Bernoulli(pr,k,seed)
Binomial(pr,k,seed) Eualuation :

Erlang(a,m,seed)
Lognormal(mean,sd,seed)
Negexptmean.seed)

Normal(mean,sd,seed) Cancel OK

Chapter 6. Implementation ofthe Graphical Simulation Modelling Environment 111

6.2.6.

Activity Cycle Diagram Generation

MacGraSE supports the generation of an ACD from the pictorial description

of the model. This allows the user to look at the model in a more structured manner.

The parameters can be entered via the ACD. Since the initial positions of the activities

and queues are set using their relevant positions within this pictorial description of the

model, the first generated ACD might look cluttered on the screen (figure 6.20a).

However, a clear diagram can be obtained by changing the positions of the objects

(figure 6.20Db).

Chapter 6.

Fjgur¢ 6,20a, A First C¢neraied Activity Cycle Diagram

flrrive

LoodUash
Transport

Lof iry

InL .
aManTni

UnLoodUosh TroB(LoodDrler

Figure 620b, An Activity Cycle Diagram after modifications

(untitled)
[flrrive
2~ - §
LoodUasb Drying
Transport J
UnlLUaslLoa
TroBa
UnLoadUash LoadDrler J

Implementation ofthe Graphical Simulation Modelling Environment 112

6.3. PROGRAM GENERATION

MacGraSE has a built-in program generator within the application. A selection

of languages is found in the Language submenu of the Run menu. The user can select a

language and use the Generate command to generate a three-phase simulation program.

If the Generate command is selected, the system will prompt the user to give a name for

the generated program (figure 6.21). A program will then be generated if the user clicks

the 'OK' button. The user can see the generated code by selecting the 'Show Program'

command in the Run menu. The program generator for Turbo Pascal was developed

during this research and an example of the generated code is shown in figure 6.22.

Figure 6.21. The Generate Dialogue Box

Saue the file of the generated program as
juntltled

Generate Options :

o Include Graphics

o Include Screen

o Include Report

Cancel

Figure 6.22. The Program Code generated by MacGraSE in Turbo Pascal

Program Pub;

{su

MSim.Lib}

WIS+)

Us«s

C

($S MGlob} MemTyf>€s,Quickdra(M,0SIntf,Tooiintf,MSimGlobal,
<$S MSamp) MSimSample,
($S MMode) MSImModel,
(S Moutp) MSimOutput,

System ,Customer,Door,Barmaid,GIOSS : E ntity;
flrr lue. Pour, Drink., Uash ; flctlw Ity;
flrrCusPou,PouCusDrl,Dooldle,Borldle,UasGloPou,PouGloDrl,DrIGloWas : Que

DriCusflrr : Source;

ancel OK

Chapter 6. Implementation ofthe Graphical Simulation Modelling Environment

113

6.4. THE RUN MODULE

MacGraSE supports three types of simulation run - visual run, text run and
screen run, discussed in sections 6.4.1, 6.4.2, and 6.4.3 respectively. The algorithm
behind the simulation run in the three modes is the same. Time is initially set to zero.
The conditions for starting an activity are checked throughout the entire activity list in
the model. Any activity that can start is added to the event queue defined in the run
module. The time that the activity ends and a list of the model entities that are involved
are recorded. Time is then set to the next earliest time that an activity ends in the event
queue. The associated resources that are scheduled to end at this time are released to
their corresponding queues. A scanning of the activities is repeated and the event queue
is updated. Time is then reset. This procedure repeats until the time of the simulation

clock is equal to the duration of the simulation run.

6.4.1. Visual Run

A visual run displays the dynamics of a simulation model in terms of its
pictorial description. During a visual run, the start of an activity is represented by a
redrawing the activity rectangle containing its associated entity icons. The value of the
activity count, i.e. the number of times that the activity has successfully started during
the run, is also shown. Overlapping rectangles are used whenever there is more than
one activity of the same kind happening at an instant of time during the run. The ending
of an activity is shown by moving the entity icons to the corresponding position of the
queues. The entity icon is drawn inside a circular frame to indicate that it is in the

process of entering a queue.

Figure 6.23 shows the visual run dialogue box. The user can specify the
duration, the run-in period and the speed of the simulation run. A report file and a result

file can also be specified.

Chapter 6. Implementation of the Graphical Simulation Modelling Environment 114

Figure 6.23. The Visual Run Dialogue Box

Duration : 100
Run-In Period :

Speed :
Ofost ® medium O S$lour O step

o Saue Report

o Saue Result

Cancel

Another type of visual simulation that is supported by MacGraSE is model
animation, which shows the movements and information concerning individual active
entities during a run. This option is mainly intended use for model verification. A long

duration run is not recommended.

6.4.2. Text Run

Figure 6.24 shows the text run dialogue box. The user can specify the
duration, the run-in period and the speed of the simulation run. The user can also
choose to display a text run table, which shows a textual description of what happens at
every time advance in a table, or to display only the simulation clock. A report file and a

result file can be specified in the dialogue box.

Figure 6.24. The Text Run Dialogue Box

Duration : 100
Run-In Period : 0

Speed :
Otast ® medium Q slom O step

Options :
(g) Time display O Tent run table

Saue Report Untitled
Saue Result Untitled

Cancel I «]I

Chapter 6. Implementation ofthe Graphical Simulation Modelling Environment 115

6.4.3. Screen Run

A screen run allows the user to run the simulation model by using the
predefined output screens. An output screen is mainly made up of charts, graphs,
histograms and time series. The user can design an output screen by arranging the

position of the selected components within the screen window.

Figure 6.25 shows the screen run dialogue box. The user can specify the
duration, the run-in period and the speed of the simulation run. The switching of
screens can be preprogrammed by setting the time interval that a selected screen will

appear during a simulation run. A report file and a result file can be specified.

Fjgurg The¢ “¢reen Run P jalQgug Box
Duration: |10Q Run-in Period : 0
Screen :
O From Time :
To Time :
O Speed 0..9 :
O
o Saue Report
o Saue Result [Cancel)[[OK)

6.5. THE OUTPUT MODULE

The report generation facility of the MacGraSE application is discussed in
section 6.5.1. Apart from the simulation result file, which contains textual description
of the events that occured during a simulation run, there are five types of output data

that can be specified in the model - the entity utilisation time chart, the activity count

Chapter 6. Implementation ofthe Graphical Simulation Modelling Environment 116

table, the system values table, histograms and time series (discussed in sections 6.5.2
to 6.5.6 respectively). The first two items are automatically recorded during a

simulation run, others are specified by the actions of the user.

6.5.1. The Report Generator

The format of the simulation report can be edited by using the report dialogue
box as shown in figure 6.26. The user can select the data recording items (activity
count table, utilisation time chart, histograms, time series, system value table, activity
duration time graph, text run results, and the model picture) that are specified in the
model and reorder the report sequence. Other editing facilities include insertion of a

page break, text string, straight line and empty line between items.

FigurQ 02Q Thg Rep ort Dialogue Bar¢

Name ; Untitled.Rep (# Retlultles Table
Report Content O utilisation Times
O Histograms
QTime Series
O System Ualues
O Duration Times
Q Te«t run result
O Model Picture
O Page Break
QTeat String
O Line

Message

& O Empty Line

Cancel) [(OK il

6.5.2. The Entity Utilisation Time Chart

The utilisation time chart records the proportion of the time that the permanent

entities in the system are engaged in activities. Temporary entities are not recorded in

Chapter 6. Implementation ofthe Graphical Simulation Modelling Environment 117

this way since they are only in the system for a limited duration. Figure 6.27 shows an

example of a utilisation time chart.

Figure 627. An Entity Utilisation Time Chart

ENTITY UTILISATION TIME CHART

Customer
Door t.050
Bormold 0 940

0. 184

6.5.3. The Activity Count Chart

The activity count chart records the number of times each activity was
successfully started during the simulation run. Figure 6.28 shows an example of an

activity count chart.

Figure 0,23.. AnAciivjfy Count Chart

ACTIVITY FREQUENCY CHART

firriue 21 ""\'IIIIII

Drink

Wash

Chapter 6. Implementation ofthe Graphical Simulation Modelling Environment 118

6.5.4. The System Values Table

The system values table gives the last value of all the attributes of the system.

This will be of particular use if the attribute defined by the user was designed to

calculate some global variable of interest.

6.5.5. Histograms

There are two types of histograms which the user can specify - queue

histograms and attribute histograms. A queue histogram can be sub-divided into a

queue length histogram, which records the average length of the queue, and a queuing

time histogram, which records the length of time that each entity of that entity type

spends in the queue. Some basic statistical results include the mean, the standard

deviation, the variance, the total number of frequencies, and the sum of each frequency

multiplied by the number of observations. An example of a histogram produced by

MacGraSE is given in figure 6.29.

Figure 629. A Histogram

HISTOGRAM : saitql

Cel 1 Frequei
<0 0
0 -0 8
1 1 6
2 2 5
3 3 0
4 4 0
5 5 0
6 6 0
7 7 0
8 8 0
9 -9 0
10 - 10 0
11 -1 0
12 - 12 0
13 - 13 0
14 - 14 0
> 14 0
Mean 0. 842 Sum of (freq*obs) 16
S.d. 0 834 Total no. of frequency : 19

Uariance : 0,695

Chapter 6. Implementation ofthe Graphical Simulation Modelling Environment

OK

119

6.5.6. Time Series Chart

A time series chart records the queue length in a queue with respect to time
during a simulation run. The drawing of a time series is automated and the user can
specify the time series chart to be drawn in either one of three modes - a bar, a line or a
scatter plot. An example of a line time series chart produced by MacGraSE is given in

figure 6.30.

Figure 6.30. A Time Series Chart

Time Series : waltts

0
0 450
Interval I

6.6. EXPERIENCE GAINED FROM MACGRASE

The advantages and limitations of MacGraSE are discussed in section 6.6.1

and 6.6.2 respectively.

6.6.1. Advantages of MacGraSE

The main advantage of using an application such as MacGraSE is its user-

friendly visual interactive interface. Macintosh programs are all event-driven, i.e. the

Chapter 6. Implementation ofthe Graphical Simulation Modelling Environment 120

application is programmed to respond to the actions of the computer user. With this
interface, the user has complete control over the application during the construction of
the simulation model. Moreover, the formulation mechanism allows the user to
reconstruct the model continuously throughout the model building process. The tight
indexing of entity icons is so apparent that the user can easily modify an existing path
or create an additional path anywhere within its life cycle. For simulation models that
are heavily attribute-based, the user can easily model movements of attribute evaluation
in the system. The main benefit of MacGraSE is to aid a user to construct the model

logic in a stimulating environment.

MacGraSE is easy to use. The iconic menus provided by the system allow the
user can to familiar with the application very quickly. All that is required from the user
is an ability to draw, not necessarily as skilful as a painter, but to draw some

resemblance to the real world system.

6.6.2. Limitations of MacGraSE

Although MacGraSE is a powerful simulation system, it suffers the same
deficiency that most data-driven packages have - one can only specify the logic which
the simulation system is programmed to accept. Any other logic that a user wants to
specify, and which is not included in the system, requires the user to add code to the

generated program.

MacGraSE is Macintosh-specific. It is written by using the routines inside the
ROM of the Macintosh and cannot therefore be translated onto other machines. On the
other hand, if the application is developed on other non-graphics orientated machines,
the final system might not be as impressive, and the drawing routines and the speed of
drawing are always a problem . Another disadvantage of the application is that it is

memory-dependent. The user has to make sure there is enough RAM on the machine to

Chapter 6. Implementation of the Graphical Simulation Modelling Environment 121

run the application, especially if a long simulation run is required.

It is inevitable that not all the real world systems can be drawn. For a large
and complex system, different levels of diagrams might be required. MacGraSE does
not allow the user to create a pictorial description within another pictorial description

but it is one of the area that will be further researched into.

6.7. SUMMARY

This chapter looks at the technical aspects of the MacGraSE application. The
program is still undergoing further improvements and refinements so as to increase the

code efficiency and thereby reduce the running time of the application.

The users of MacGraSE include both inexperienced simulation modellers and
intelligent modellers. It also provides the right environment for the client and the analyst
to formulate the problem in a collaborate manner. The client is not required to
understand any diagramming techniques since what she sees on the computer screen is
a self-explanatory picture of the real world system, with indexed entity images

indicating the movement of different entity types within the system.

MacGraSE can be used for building prototypes of simulation models. For
complicated simulation models, prototyping can help to narrow the gap between the
client and the analyst. MacGraSE is a complete simulation environment since it allows
the user to perform experiments on the model and generate reports from the simulation
run. It is also a very good tool for simulation beginners to learn about simulation

techniques.

Chapter 6. Implementation of the Graphical Simulation Modelling Environment 122

CHAPTER 7

CONCLUSIONS & FURTHER RESEARCH

This is the final chapter of the thesis. Section 7.1 summarises the thesis and
section 7.2 draws conclusions from the research. Section 7.3 draws some conclusions
concerning the extensive experience gained using the Apple Macintosh microcomputer
during this research. Section 7.4 discusses research that can be pursued in the near

future on the basis of research reported in this thesis.

7.1 SUMMARY

This thesis has investigated the potential of computer graphics in providing a
graphics driven specification system that contains sufficient structure and content to
form the simulation model itself. Chapter 1 set the scene on the research, describing the
nature of discrete event simulation modelling, the diagramming method of activity cycle
diagrams which underpinned this research, the three phase simulation model structure,
and a discussion about visual simulation modelling. These approaches were combined
in this research endeavour, having been put into perspective with respect to other

published research work in Chapter 2.

The basic research method adopted was to build systems that exemplified the
state of thinking at the time. The purpose of this method was to enable ideas to be
developed, discarded and enhanced, and for new ideas to emerge. Chapter 3 discussed
the first development, MacACD, which gave experience in the construction of such
systems on an Apple Macintosh. Apart from providing the basis for proposals

concerning the enhancement of ACD rules of construction, MacACD demonstrated the

Chapter 7. Conclusions & Further Research 123

limitations of an ACD interface and the need for a more intricate connectivity between

textual and diagrammatic modes of model specification.

Chapter 4 described the development of HyperSim, a simulation system
developed using Hypercard. This system has all the power of interconnectivity
demonstrated as a need by MacACD, but has severe limitations both in terms of
security of system development, and an inability to provide a running model directly
due to lack of speed. However, the power of an icon based interconnected textual and
diagrammatic based system was demonstrated, and led to the development of the final

system described in this thesis : MacGraSE.

Chapter 5 sets out the basic requirements of a graphics driven specification
and modelling system, based on the research experiences described in the previous
chapters. Whilst textual and ACD interfaces are major interconnected parts of
MacGraSE, the main input device is a picture representing the problem, including a
background display. This system allows for dynamic icon based visual model running,
as well as code generation for complete model embellishments, interactive report
writing, and representational graphics outputs. Chapter 6 describes the methods by
which the design of MacGraSE was implemented on the Apple Macintosh

microcomputer.

7.1 CONCLUSIONS

The qualities of graphics and the ease of using graphics in an application will
continuously advance with the current rapid growth in technology. Graphics has
become an essential component in every type of application software in recent years.
High quality and well-presented graphics facilitates human understanding and helps to

break the communication gap between parties of different interests.

Chapter 7. Conclusions & Further Research : 124

The popularity of visual simulation modelling has rapidly increased recently.
It is commonly an integral part of a simulation system. However, the pros and cons of
using visual simulation modelling are debatable. Visual simulation should not be
misused or overused. For large and complex models, an animation picture running on
the screen might cause misunderstandings unless the monitor is large and clear. It might
mean absolutely nothing to the user unless he understands what the picture represents.
Paul (89b) emphasised that : "Although visual modelling is a powerful complement to
an analyst's problem solving capabilities, it has new problems to overcome as well.
The problems of visual simulation includes the fact that vision is interpreted by the
brain which does not remember all the visual detail. Moreover, the customer is required
to understand the simulation in order to understand what the visual simulation
represents. Also, visual simulation is time consuming and it is impossible to test all the
model interactions visually for a complex model. The most important potential benefit
of visual simulation is the increasing ability to help a decision maker by working
together in a collaborative effort. Graphics is the way forward. Humans think

'visually'. Text is a poor approximation, and is even more unreliable.”

The practical side of this research started with the production of a graphical
specification system in which the user can define a simulation model by drawing an
activity cycle diagram on the screen. The parameters are input via dialogue boxes that
are evoked by actions of the user. The application produces a text file from the
specification model which can be passed down to a VAX computer and read by the
program generator AUTOSIM (Chew 86) to produce a three-phase simulation program.
It was a successful system and proved the usefulness of such a diagramming
specification system and the potential of the Apple Macintosh in producing graphical

simulation applications.

At this point in the research, we felt the need to look into other diagramming

techniques and see if there is a better technique than the activity cycle diagram method.

Chapter 7. Conclusions & Further Research 125

We found that although the ACD method is not able to accommodate all the details of
the model, especially in the assignment of attributes, it is the most clear and precise way
of displaying the model logic in a discrete-event simulation model. Other diagramming
techniques cannot provide such a simple but logical view of the model of interest. We
further proposed that the conventional activity cycle diagram method can be further

enhanced in a computer-aided environment.

The nature of Hypertext gave insight into how to produce a flexible
specification system. Research progressed into the Hypercard environment on the
Apple Macintosh. With its magnificent web-structure between different stacks, we
produced a flexible textual/graphical specification system with a built-in program
generator. This research highlights the usefulness of such a flexible specification
system and how the ideas can be carried forward to produce a complete graphical

simulation environment.

The last part of the research developed a graphical simulation environment
which allows the user to define the model logic by drawing a picture on the screen,
entering the details of the parameters by some textual description, and then directly
running this picture on the screen. The user can interrupt at any point during the
simulation run, alter the parameters and continue the run. The user can also design the

output screen where the results of the simulation run can be displayed.

Graphics is an invaluable tool to both the modeller and the client of the system
in simulation modelling. The universal use of diagramming techniques as a means of
developing an informal simulation model are because diagrams are beneficial both for
clear thinking and human communication. Although different diagramming techniques
have their own conventions and definitions, the system that diagrams represent and
which is drawn using different diagramming methods, is the same. These diagrams are
all drawn from the unseen imaginative picture of the real world system that is inside the

human mind. The breakthrough of the research in this thesis is the possibility of

Chapter 7. Conclusions & Further Research 126

bringing the user image directly onto the computer screen and to allow the user to

reconstruct the model logic within his own thinking environment.

In an industrial environment, the objective of a simulation user is to improve
the quality of decision-making. High-level languages, program generators and generic
modelling software have only the partial goal of aiding model coding, and so they
naturally omit important features. They do not adequately direct experimental
procedures, they do not invoke the appropriate statistical tools, and they do not provide
output in several styles appropriate to a broad user hierarchy. Such tools shorten the
coding cycle, they do not guide the user or reduce the experimental task. We should
always take a longer-term view than the practitioner or consultant. The CASM research
team at the LSE is aiming to provide aids for problem formulation, program generation

and output analysis.

7.3. THE APPLE MACINTOSH

The Apple Macintosh provides a visual user interface based on menus, icons,
windows, and a mouse as the input device. A graphics-based visual system does
require some sort of pointing device, and the mouse works as well as, or better than,
most. Among the different models of Macintoshes, only the Macintosh II supports
colour graphics. The more popular models (Plus and SE) only have monochrome
graphics. This is often seen as the biggest disadvantage of the Macintosh when a colour
simulation system is preferred. The disadvantage of having a small size 8" screen can
be overcome by connecting the main unit to a ‘Megascreen’ (A4 or A3 size screen) via
the SCSI port. For simulation modelling, it is ideal to have a large screen and a colour
system so as to display the full picture of the dynamics of the simulation run. Despite
these deficiencies, the Macintosh is extremely flexible in producing high-quality

graphics and sophisticated representational graphical output.

Chapter 7. Conclusions & Further Research 127

The Macintosh uses the Macintosh Operating System (MOS). The MOS takes
up only a fraction of the ROM. There is also a User Interface Toolbox (UIT) which
consists of hundreds of callable routines that are used to implement the standard
Macintosh application interface. Since graphic operations tend to be memory intensive,
most developers on the Macintosh will not have enough memory to perform their own
sophisticated graphics. However, they can always get access to the libraries of

procedures and functions found in the toolbox and in the operating system itself.

The main advantage in using graphics on a Macintosh is its speed in drawing.
QuickDraw, the magician artist in the ROM of the Macintosh, allows you to draw
complicated graphics at a very high speed. Another advantage concerns its ability to

store resources separate from the application code.

Macintosh supports the use of icons and bit-mapped graphics. Using icons is
an ideal way of representing an entity on the screen. Because of its high resolution, the
movement of the entity can be very smooth and well-presented. Applications which
allow visual simulation to be run on the screen are more appropriately developed in this
type of environment. The use of bit-mapped graphics allows the marriage of graphics
and text, and the ability to manipulate both on the same display. This gives tremendous
flexibility in how that text is presented, in terms of size, style, and font design, and in
mixing text with graphics. In addition, any of these elements can be changed and

redisplayed on the screen countless times.

74. FURTHER RESEARCH

There is a lot of work that can be done to improve the MacGraSE application.
The multiple windowing interface of the Macintosh has made a layering pictorial

description possible. For large and complex system, the user should ideally be able to

Chapter 7. Conclusions & Further Research 128

integrate the entire system into subsystems so that each has a pictorial description of its

own. A large scale model can then be built in such an environment.

Colour capabilities should be included as one of the options available in the
application. Visual simulation can be more attractively displayed. The generated ACD
can then be drawn in different colours so that each colour represents the life cycle of
one entity type. Although only ACDs can be generated from MacGraSE, the pictorial

description can be used as a basis for generating other logical structured diagrams.

The recent version of MacGraSE does not have a built-in macro language.
The use of macros in an application will increase its specification flexibility since the
user can write user-defined procedures to meet his own specification requirement. The
language must be simple to use, with easy-to-understand syntax so that users with
limited programming experience will find it easy to comprehend. The main benefit of
macros is to allow the user to add his own routines to the model and to be able to run
the modified model within the system. In this case, the user does not need to modify

the generated code outside the system.

The output analysis facility is another area in which further improvements can
be made. More statistical analysis, for example regression or analysis of variance,
should be available in the application. Statistical tests can then be performed within the

simulation environment without the need to export data into other statistical packages.

The interaction facility of current visual interactive models is passive (Hurrion
89). The user must decide when to interact, what action to take, and when to accept the
validity of the results. The expertise of the user is lost and not retained by the
simulation system. The ideal interactive facility should be 'two-way'. The user may
interrupt the execution of a model, or an advisory and monitoring function within the
model can interrupt its own execution and suggest to the user alternative model

parameters or experiments. The possibility of giving visual interactive models a

Chapter 7. Conclusions & Further Research 129

learning and intelligence aspect is due to recent advances in artificial intelligence (further

discussed in Filtman & Hurrion 87, Doukidis & Paul 85, 86, and Paul 89¢c, 89d).

The next generation of visual interactive models will probably include an
expert element, i.e. the model itself will take an active role in the search for a solution.
The addition of artificial intelligence methods to simulation is the next possible quantum

advance for simulation.

Chapter 7. Conclusions & Further Research . 130

APPENDIX A

THREE-PHASE SIMULATION

PROGRAM STRUCTURES IN PASCAL

A.1. THE SKELETON PROGRAM

A.2. THE PUB PROGRAM

A.3. THE LAUNDERETTE PROGRAM

A.4. THE STEELWORKS PROGRAM

Appendix A. Three-Phase Simulation Program Structures in Pascal 131

This appendix is divided into four sections. Section A.1 shows a skeleton three-

phase structure simulation program. Listings of simulation programs for the example

models in this thesis are given in sections A.2, A.3 and A.4 respectively.

A.1. The Skeleton Program

A Macintosh Turbo Pascal three-phase simulation program requires the use of

the precompiled library MacSim.Lib (see Appendix B) in the same directory as that of

the program. The listing of the skeleton program is shown as follows :

PROGRAM anyname;
{$U HMacSim.Lib}
{$R+)
{$S+}
Uses
{$S MGlob)} HMemTypes,Quickdraw,0SIntf,Toollntf,Packlintf,
HSimGlobal,
{$S MHSamp} MNSimSample,
{$S MMode} HMHSimModel,
{$S MOutp} HSimOutput;
UAR
SYSTEN_ENT Entity;
procedure Bulld_Model;
begin
end;
procedure C_phase;forward;
procedure Create_Recording;
begin
end;
procedure Cs_in_progress;
begin
end;
procedure Startup;
begin
InitUars;

set_SYSTEN_ENT(SYSTEM_ENT);
Input_FillQue('anyname.QUE"');
Create_Recording;
Cs_in_progress;

C_phase;

end;

Appendix A. Three-Phase Simulation Program Structures in Pascal 132

procedure Report;
begin
end;

procedure C_activity;
begin
end;

procedure Bl_end_activity_entity;
begin
end;

procedure B2_end_activity_entity;
begin
end;

procedure EndRunin;
begin

Create_Recording;
end;

function A_phase:boolean;
begin

increase_time;

A_phase := (TIM <= Duration);
end;

procedure B_phase;
begin
vhile (Current_time(TIN)) do
begin
while (Get_next_bevent) do
begin
case Bevent_num of
1 : Bl_.end_activity_entity;
2 : B2_end_.activity_entity;
127 : EndRunlin;
end;
end;
end;
end;

procedure C_phase;
begin

C_activity;
end;

procedure Execute;
begin
Open_File('anyname.RST');
Startup;
if (Run.ln_Period <> 0) then
Init_Restart(127,Run_In_Period);
vhile (A_phase) do
begin
B_phase;
C_phase;
end;
Report;
Close_File('anyname.RST"');
end;

Appendix A. Three-Phase Simulation Program Structures in Pascal 133

BEGIN { main program }
Initialise_model(false);
Build_model;
repeat
Input_Duration;
if (Duration > 0) then Execute;
until (Duration<=0);
END.

A.2. The Pub Program

Program PUB;

{$U MacSim.Lib}
{$R+)
{$S+)

Uses
{$S HGlob} HMemTypes,Quickdraw,0SIntf,ToollIntf,Packlntf,
HSimGlobal,
{$S HSamp} MSimSample,
{$S MMode} MHSimModel,
{$S MOutp} MNSimOutput;

var
CUSTOHER,BARMAID,GLASS,D00R,SYSTEN_ENT : Entity;
WAIT,CLOSED,READY, IDLE,CLEAN,FULL,DIRTY : Queue;
ARRIVE,POUR,DRINK,HASHUP : Activity;

OUTSIDE : Source;

praocedure Build_Model;

begin
MakeEnt (SYSTEM_ENT, 'SYSTEM_ENT');
MakeAtt (SYSTEM_ENT, 'TDESIRE');
MakeEnt (CUSTOMER, 'CUSTOMER');
MakeAtt (CUSTOMER, 'DESIRE');
MakeEnt (BARMAID, 'BARMAID"');
MakeEnt (GLASS, 'GLASS');
MakeEnt (DOOR, 'DOOR"');
MakeAttHist (CUSTOMER, 'DESIRE', 'DHIST',1,0);
MakeSou(CUSTOMER,OUTSIDE, 'OUTSIDE');
MHakeQue (CUSTOMER,UAIT, 'URIT"');
MakeQLenHist (WAIT, 'UAITTIME',1,0);
MakeQTimHist (UAIT, 'HAITLENGTH',1,0);
MHakeTSeries(UAIT, 'HAITTS',2);
MakeQue(DOOR,CLOSED, 'CLOSED"');
MakeQue(CUSTOMER,READY, 'READY"');
MakeQue (BARMAID, IDLE, ' IDLE"');
MakeQue(GLASS,CLEAN, 'CLEAN');
MakeQue(GLASS,FULL, 'FULL"');
MakeQue(GLASS,DIRTY, 'DIRTY"');
MakeAct (RRRIVE, '‘ARRIVE');
MakeAct (POUR, 'POUR');
MakeAct (DRINK, 'DRINK"®);

MakeAct (WASHUP, 'UASHUP');

end; :

Appendix A. Three-Phase Simulation Program Structures in Pascal 134

procedure C_Phase;forward;

procedure Create_Recording;
begin

Init_Utimes;

Init_Nacts;

Init_Hist;

Init_TSeries;
end;

procedure Cs_In_Progress;
begin
end;

procedure StartUp;

begin
InitUars;
Set _SYSTEM_ENT(SYSTEM_ENT);
Input_FillQue('PUB.QUE");
Create_Recording;
Cs_In_Progress;

C_Phase;

end;

procedure Report;

begin
Open_Report_File('PUB.REP');
Display_Act_Ntimes;
Display_Ent_Utimes;
Display_Sys_Ualues;
Display_Histograms;
Display_Time_Series;

Close_Report_File('PUB.REP');

end;

procedure C_ARRIVE;

var Count:integer;
MHent :mod_ent;
Name:str10;
Uaiue:real;
Desirel:real;

begin
whiie (Qsize(CLOSED) »>= 1)
do
begin

ActTime:=NEGEXP(10,3);
for count:=1 to 1 do

begin
{ Evaluation of DESIRE)
Ment := NuminSource(OUTSIDE,count);
Name := 'DESIRE';
Ualue := TRUNC(1+4*RND(5));

Assign_Attribute(Ment,Name,Value);

{ End of Evaluation of DESIRE)

LogAttData(NuminSource(OUTSIDE,count),Name, 'DHIST');
end;

{ Evaluation of TDESIRE }

MHent := SYSTEM_MOD_ENT;

Name := °'TDESIRE’;

Desirel :=
Evaluate_Attribute(NuminSource(OUTSIDE,1), 'DESIRE"');

Appendix A. Three-Phase Simulation Program Structures in Pascal 135

Ualue := Evaluate_Attribute(SYSTEM_MOD_ENT,Name);
Ualue := Ualue + Desirel;
Assign_Attribute(Ment,Name,VUalue);

{ End of Evaluation of TDESIRE }

Start_ScheduleB(ARRIVUE);
ScheduleB(1,TakeFromFront (CLOSED));
ScheduleB(2,TakeFromSource(OUTSIDE));
End_ScheduleB;
end;
end;

procedure BI1_End_ARRIUVE_DOOR;
- begin
AddToBack(Current_.ent,CLOSED);
end;

procedure B2_End_ARRIVE_CUSTOHER;
begin

LogQueData(UAIT, 'UAITLENGTH');
AddToBack(Current_ent ,URIT);
end;

procedure C_POUR;
begin
while (Qsize(CLEAN) »>= 1)
and (Qslze(UAIT) »>= 1)
and (Qsize(IDLE) »>= 1)
do
begin
ActTime:=NORHAL(6,1,7);
Start_ScheduleB(POUR);
ScheduleB(3,TakeFromFront (CLEAN));
LogQueData(UAIT, '"UAITLENGTH");
ScheduleB(4,TakeFromFront(UAIT));
ScheduleB(5,TakeFromFront ({DLE));
End_ScheduleB;
end;
end;

procedure B3_End_POUR_GLASS;
begin

AddToBack{(Current_ent, FULL);
end;

procedure B4_End_POUR_CUSTOHNER;
begin

AddToBack(Current_ent ,READY);
end;

procedure BS_End.POUR_BARHAID;
begin

AddToBack(Current_ent, IDLE);
end;

procedure C_DRINK;
var Hent:mod_ent;
Name:str10;
Ualue:real;
Deslret:real;
begin
while (Qsize(FULL) »= 1)
and (Qsize(READY) »>= 1)

Appendix A. Three-Phase Simulation Program Structures in Pascal 136

do
begin
ActTime:=UNIFORM(5,10,17);

{ Evaluation of DESIRE }
Ment := MNuminQue(READY,1);
Name := 'DESIRE';
Desirel := Evaluate_Attribute(NumInQue(RERDY,1),Name);
Ualue := Desirel - 1;
Assign_Attribute(flent,Name,Value);
{ End of Evaluation of DESIRE }

Start_ScheduleB(DRINK);
ScheduleB(6,TakeFromFront (FULL));
ScheduleB(?,TakeFromFront (READY));
End_ScheduleB;
end;
end;

procedure B6_End_DRINK_GLASS;
begin

AddToBack(Current_ent ,DIRTY);
end;

pracedure B7_End_DRINK_CUSTONER;
var Condition:boolean;
Desire:real;
begin
Desire := Evaluate_attribute(Current_Ent, 'DESIRE');
Condition := Desire>0;
if condition then
begin
LogQueData(UAIT, '"URITLENGTH');
AddToBack{(Current_ent ,URIT);
end else
begin
Sink(Current_ent);
end;
end;

procedure C_UASHUP;
var Count:integer;
begin
vhile (Qsize(DIRTY) »>= 1)
and (Qsize(IDLE) »>= 1t)
do
begin
ActTime:=5;
Start_ScheduleB(UASHUP);
for count:=1 to MINGF(3,QSI12E(DIRTY)) do
begin
ScheduleB(8,TakeFronFront (DIRTY));
end;
ScheduleB(9,TakeFromFront (IDLE));
End_ScheduleB;
end;
end;

procedure B8_End_URSHUP_GLASS;
begin

AddToBack(Current_ent,CLERN);
end;

Appendix A. Three-Phase Simulation Program Structures in Pascal 137

procedure B9_End_UASHUP_BARHAID;
begin

AddToBack(Current_ent, IDLE);
end;

procedure EndRunlin;
begin

Create_Recording;
end;

function A_Phase:boolean;
begin
increase_Tinme;
A_Phase := (TIN <= Duration);
end;

procedure B_Phase;
begin
while (Current_Time(TIN)) do
begin
while (Get_Next_Bevent) do
begin
case Beuvent_Num of
: BI1_End_ARRIVE_DOQR;
B2_End_ARRIVE_CUSTONER;
B3_End_POUR_GLASS;
B4_End_POUR_CUSTOMER;
B5_.End_POUR_BARMAID;
B6_End_DRINK_GLASS;
B?7_End_DRINK_CUSTOHER;
B8_End_UASHUP_GLASS;
i B9_End_UASHUP_BARMAID;
127 : EndBRunlin;
end;
end;
end;
end;

VOO WN —

procedure C_Phase;
begin
C_ARRIVE;
C_POUR;
C_DRINK;
C_UASHUP;
end;

procedure Execute;
begin
Open_File('PUB.RST"');
Startlp;
if (Run_In_Period <> 0) then
Init_Restart(127,Run_In_Period);
while (A_Phase) do

begin
B_Phase;
C_Phase;
end;
Report;
Close_File('PUB.RST');
end;
begin (* main program *)

Initialise_Model(false);

Appendix A. Three-Phase Simulation Program Structures in Pascal 138

Build_Model;
repeat
Input_Duration;
if (Duration > 0) then Execute;
until (Duration<=0);
end.

A.3. The Launderette Program

Program LAUNDERETTE;

{$U MacSim.Lib)}
{$R+)
{$s+)

Uses
{$S MNGlob} HMemTypes,Quickdraw,0SIntf,Toollntf,Packintf,
HSimGlobal,
{$S MSamp} MNSimSample,
{$S MHMode} MNSimModel,
{$S MOutp} MSimOutput;

var
CUSTOMER,UWASH_HAC,BASKET,DRIER,ENTRANCE,SYSTEN_ENT : Entity;
UASHQ,EIDLE,UNLDQ,WIDLE,HULDQ,TRPTQ,BIDLE,
BTRPTQ,DRYQ,BDRYQ,DQ,DIDLE,DDQ : Queue;
ARRIVE,LOADUASH,UNLOADUWASH, TRANSPORT,LOADDRIER,
DRY: ARctivity;
OUTSIDE : Source;

procedure Build_ltodel;

begin
MakeEnt (SYSTENM_ENT, 'SYSTEM_ENT');
MakeEnt (CUSTOMER, 'CUSTOMER');
MakeEnt (WASH_MAC, 'UASH_MAC');
MakeEnt (BASKET, 'BASKET');
MakeEnt (DRIER, 'DRIER');
MakeEnt (ENTRANCE, 'ENTRANCE');
MakeSou(CUSTOMER,OUTSIDE, 'OUTSIDE');
MakeQue (CUSTOMER, WASHQ, 'UASHQ ') ;
MakeQue (ENTRANCE,EIDLE, 'EIDLE");
MakeQue (CUSTOMER, UNLOADQ, 'UNLOADQ');
MakeQue (UASH_MAC,UIDLE, 'UIDLE"');
MakeTSeries(UIDLE, 'UIDLETS',2);
MakeQue(UASH_MAC,UUNLOADQ, ‘UUNLOADQ"');
MakeQue (CUSTOMER, TRANSPORTQ, ' TRANSPORTQ');
MakeQue(BASKET,BIDLE, 'BIDLE');
MakeQLenHist (BIDLE, 'BIBLELEN',1,0);
MakeQue (BASKET,BTRANSPORT, 'BTRANSPORT');
MNakeQue (CUSTOMER,DRYQ, 'DRYQ"');
MakeQue (BASKET,BDRYQ, 'BDRYQ');
MakeQue(CUSTOMER,DQ, 'DQ"');
MakeQue(DRIER,DIDLE,'DIDLE"');
MakeQue(DRIER,DDQ, 'DDQ"');
MakeAct (ARRRIVE, 'ARRIVE');
MakeAct (LOADWUASH, 'LOADUASH');
MakeAct (UNLOADWASH, 'UNLOADUARSH');

Appendix A. Three-Phase Simulation Program Structures in Pascal 139

MakeAct (TRANSPORT, ' TRANSPORT');
MakeAct (LOADDRIER, 'LOADDRIER"');
MakefAct (DRY, ‘'DRY');

end;

procedure C_Phase;forward;

procedure Create_Recording;
begin

Init_Utimes;

Init_Nacts;

Init_Hist;

Init_TSeries;
end;

procedure Cs_In_Progress;
begin
end;

procedure StartUp;

begin
InitUars;
Set _SYSTEM_ENT(SYSTEN_ENT);
Input_FillQue('LAUNDERETTE.QUE"');
Create_Recording;
Cs_In_Progress;
C_Phase;

end;

procedure Report;

begin
Open_Report_File('LAUNDERETTE.REP');
Display_Act_Ntimes;
Display_Ent_Utimes;
Display_Sys_Ualues;
Display_Histogranms;
Display_Time_Series;
Close_Report_File('LAUNDERETTE.REP');

end;

procedure C_ARRIVE;

begin
whiie (Qsize(EIDLE) »>= 1)
do
begin

ActTime:=NEGEXP(10,7);
Start_ScheduleB(ARRIVE);
ScheduleB(1,TakeFromSource(QUTSIDE));
ScheduleB(2,TakeFromFront (EIDLE));
End_ScheduleB;
end;
end;

procedure B1_End_ARRIVE_CUSTONER;
begin

AddToBack(Current_ent ,UASHQ);
end;

procedure B2_End_ARRIVE_ENTRANCE;
begin

AddToBack(Current_ent ,EIDLE);
end;

Appendix A. Three-Phase Simulation Program Structures in Pascal 140

procedure C_LORDUASH;
begin
while (Qsize(UASHQ) »>= 1)
and (Qsize(UIDLE) »>= 1)
do
begin
ActTime:=25;
Start_ScheduleB(LOADUASH);
ScheduleB(3,TakeFromFront (HUASHQ));
ScheduleB(4,TakeFromFront(UIDLE));
End_ScheduleB;
end;
end;

procedure B3_End_LOADUASH_CUSTOMER;
begin

AddToBack(Current_ent ,UNLGADQ);
end;

procedure B4_End_LOADUASH_UASH_HAC;
begin

AddToBack(Current_ent,JUNLOADQ);
end;

procedure C_UNLOADUWASH;
begin
while (Qsize(UNLOADQ) »>= 1)
and (Qsize(UUNLOADQ) »>= 1)
and (Qsize(BIDLE) »>= 1)
do
begin
ActTime:=UNIFORN(1,4,8);
Start_Schedul eB(UNLOADWASH);
ScheduleB(S5,TakeFromFront (UNLOADQ));
ScheduleB(6,TakeFromFront (WUNLOADQ));
ScheduleB(7,TakeFromFront (BIDLE));
End_ScheduleB;
end;
end;

procedure BS_End_UNLOARDUASH_CUSTOMER;
begin

AddToBack(Current_ent, TRANSPORTQ);
end; ’

procedure B6_End_UNLOADHASH_HASH_MAC;
begin

AddToBack(Current_ent,HIDLE);
end;

procedure B7_End_UNLOADUASH_BASKET;
begin

AddToBack(Current_ent,BTRANSPORT);
end;

procedure C_TRANSPORT;
begin
while (Qsize(TRANSPORTQ) »>= 1)
and (Qsize(BTRANSPORT) »>= 1)
do
begin .
ActTime:=UNIFORM(1,4,9);
Start_ScheduleB(TRANSPORT);

Appendix A. Three-Phase Simulation Program Structures in Pascal 141

ScheduleB(8,TakeFromFront (TRANSPORTQ));
ScheduleB(9,TakeFromFront (BTRANSPORT));
End_ScheduleB;
end;
end;

procedure B8_End_TRANSPORT_CUSTOMER;
begin

AddToBack(Current_ent,DRYQ);
end;

procedure B9_End_TRANSPORT_BASKET;
begin

AddToBack(Current_ent,BDRYQ);
end;

procedure C_LOADDRIER;
begin
vhile (Qsize(DRYQ) »>= 1)
and (Qsize(BDRYQ) »>= 1)
and (Qslze(DIDLE) »>= 1)
do
begin
ActTime:=2;
Start_Schedul eB(LOADDRIER);
ScheduleB(10,TakeFromFront (DORYQ));
ScheduleB(11,TakeFromFront (BDRYQ));
ScheduleB(12,TakeFromFront(DIDLE));
End_ScheduleB;
end;
end;

procedure BI10_End_LOARDDRIER_CUSTOHNER;
begin

AddToBack(Current_ent,DQ);
end;

procedure BI11_End_LOADDRIER_BASKET;
begin

AddToBack(Current_ent,BIDLE);
end;

procedure B12_End_LOARDDRIER_DRIER;
begin

AddToBack(Current_ent,DDQ);
end;

procedure C_DRY;
begin
while (Qsize(DQ) »>= 1)
and (Qsize(DDQ) »>= 1)
do
begin :
ActTime:=NORMAL(6,1,5);
Start_ScheduleB(DRY);
ScheduleB(13,TakeFromFront (0Q));
ScheduleB(14,TakeFromFront (DDQ));
End_ScheduleB;
end;
end;

procedure B13_End_DRY_CUSTOHER;
begin

Appendix A. Three-Phase Simulation Program Structures in Pascal 142

Sink(Current_ent);
end;

procedure B14_End_DRY_DRIER;
begin

AddToBack(Current_ent ,DIDLE);
end;

procedure EndRunlin;
begin

Create_Recording;
end;

function A_Phase:boolean;
begin

Increase_Time;

A_Phase := (TIM <= Duration);
end;

procedure B_.Phase;

begin
vhile (Current_Time(TIN)) do
begin
while (Get_Next_Bevent) do
begin
case Bevent_Num of
1 : BI_End_ARRIUVE_CUSTOMER;
2 B2_End_ARRIVE_ENTRANCE;
3 B3_End_LOADUASH_CUSTONER;
4 B4_End_LOARDUASH_HASH_HAC;
) BS_End_UNLOADUASH_CUSTOMER;
6 B6_End_UNLOARDUASH_WUASH_HAC;
7 B7_End_UNLOADUASH_BASKET;
8 B8_End_TRANSPORT_CUSTOMNER;
9 : B9_End_TRANSPORT_BASKET;
10 : B10_End_LOADDRIER_CUSTOHNER;
11 : B11_End_LOADDRIER_BASKET;
12 : B12_End_LOADDRIER_DRIER;
13 : B13_End_DRY_CUSTOHER;
14 : B14_End_DRY_DRIER;
127 : EndRunin;
end;
end;
end;
end;

procedure C_Phase;
begin
C_ARRIVE;
C_LOADUWASH;
C_UNLOADUASH;
C_TRANSPORT;
C_LOADDRIER;
C_DRY;
end;

procedure Execute;
begin
Open_File('LAUNDERETTE.RST"');
StartUp;
if (Run_in_Period <> 0) then
Init_Restart(127,Run_In_Period);
while (A_Phase) do

Appendix A. Three-Phase Simulation Program Structures in Pascal

143

A.4.

begin

B_Phase;

C_Phase;
end;
Report;
Close_File('LAUNDERETTE.RST');
end; -

begin { main program)}
Initialise_Model(false);
Bui ld_Model;
repeat
Input_Duration;
if (Duration > 0) then Execute;
until (Duration<=0);
end. «

The Steelworks Program

Program STEELUWORKS;

{$U MacSim.Lib)
{$R+)
{$5+)

Uses
{$S MNGlob} MemTypes,Quickdrauw,0SIntf,Toollntf,Packintf,
HSimGlobal,
{$S HSamp)} HSimSample,
{$S MNMHode} HSimModel,
{$S MOutp} MSimOutput;

var
BLASTF,TORPEDO,PIT,CRANE,STEELF,SYSTEN_ENT : Entity;
A,B,TBLOUWQ,C,PITQ,CRANEQ,CREADY,QD,G,QE,LCADQ,QF : Queue;
MELT,BLOW,GOING,FILL,LOADIN,REFINE, TRAUEL,RETURN : Activity;

procedure Build_Nodel;

begin
MakeEnt (SYSTEM_ENT, 'SYSTEM_ENT');
MakeAtt (SYSTEM_ENT, 'UASTE"');
MakeAtt (SYSTENM_ENT, 'TRANSFER');
MakeEnt (BLASTF, 'BLASTF');
MakeAtt (BLASTF, 'BCAST');
MakeEnt (TORPEDO, 'TORPEDO');
MakeAtt (TORPEDO, 'TCARST');
MakeEnt (PIT,'PIT"');
MakeEnt (CRANE, 'CRANE');
MakeAtt (CRANE, 'CCRST');
MakeEnt (STEELF, 'STEELF');
MakeQue(BLASTF,A, 'A');
MakeQue(BLASTF,B, 'B');
MakeQue(TORPEDO, TBLOWQ, 'TBLOUQ');
MakeQLenHist (TBLOUWQ, 'TBLOWQLEN', 1,
MakeQTimHist (TBLOWQ, 'TBLOUWQTIN',S,
MakeTSeries(TBLOUQ, 'TBLOWQTSER',1)
MakeQue (TORPEDO,C, 'C');

0);
0);

Appendix A. Three-Phase Simulation Program Structures in Pascal 144

HakeQue(TORPEDO,PITQ,"PITQ"');
MHakeQue (CRANE,CRANEQ, 'CRANEQ');
MHakeQue(CRANE,CREADY, 'CREADY');
HakeQue(TORPEDO,QD, 'QD"');
MakeQue(PIT,G,'G');
MakeQue(CRANE,QE, 'QE');
MakeQue(STEELF,LOADQ, 'LOADQ"');
MakeQue(STEELF,QF, 'QF');
MakeAct (MELT, "MELT');

MakeAct (BLOW, 'BLOU');

MakeAct (GOING, 'GOING');
MakeRct(FILL,'FILL');

MakeAct (LOADIN, 'LOADIN');
MakeRct (REFINE, 'REFINE"');
MakeRct (TRAVEL, 'TRAVEL');
MakeARct (RETURN, 'RETURN');

end;

procedure C_Phase;forward;

procedure Create_Recording;
begin

Init_Utimes;

Init_Nacts;

Init_Hist;

Init_TSerles;
end;

procedure Cs_In_Progress;
begin
end;

procedure StartUp;

begin
InitUars;
Set _SYSTEM_ENT(SYSTEM_ENT);
Input_FillQue('STEELWORKS.QUE"');
Create_Recording;
Cs_In_Progress;

C_Phase;

end;

procedure Report;

begin
Open_Report_File('STEELUORKS.REP');
Display_Act_Ntimes;
Display_Ent_Utimes;
Display_Sys_Values;
Display_Histograns;
Display_Time_Series;

Close_Report_File('STEELWORKS.REP');

end;

procedure C_MELT;

var Nent:mod_ent;
Name:str10;
Ualue:real;

begin
while (Qsize(R) >= 1)
do
begin

ActTime:=NORMAL(110,15,1);
{ Evaluation of attribute ‘'BCAST' }

Appendix A. Three-Phase Simulation Program Structures in Pascal 145

Ment := NuminQue(A,1);
Name := 'BCAST';
Ualue := NORMAL(360,50,2);
Assign_Attribute(Ment,Name,Value);
{ End of Evaluation of attribute 'BCAST' }
Start_ScheduleB(HELT);
ScheduleB(1,TakeFromFront(A));
End_ScheduleB;
end;
end;

procedure BI1_End_MELT_BLASTF;
begin

AddToBack(Current_ent,B);
end;

procedure C_BLOUW;

var Count:integer;
Condition:boolean;
Ment :mod_ent;
Name:str10;
Ualue:real;
Bcastl!l:real;

begin

while (Qsize(TBLOUQ) >= 0)

and (Qsize(B) »>= 1)

do
begin
ActTime:=10;
Condition := QSIZ2E(TBLOUQ)>=2;
if Condition then
begin

{ Evaluation of attribute TCAST! }

Ment := NumInQue(TBLOWQ,1);

Name := 'TCAST';

Ualue := 300;
Assign_Attribute(Ment,Name,Value);

{ End of Evaluation of attribute TCAST! }

{ Evaluation of attribute TCAST2)}
Ment := NuminQue(TBLOWQ,2);

Name := ‘TCAST';
Bcast! := Evaluate_Attribute(NuminQue(B,1), 'BCAST');
Ualue := Beastt - 300;

Assign_Attribute(Ment,Name,VUalue);
{ End of Evaluation of attribute TCAST2)}

end;

Condition := QSIZE(TBLOUQ)=1;
If Condition then

begin

{ Evaluation of attribute TCAST! }

Hent = NuminQue(TBLOUQ,1);
Name := ‘'TCAST';
Ualue := 300;

Assign_Attribute(Ment ,Name,Value);
{ End of Evaluation of attribute TCAST! }

{ Evaluation of attribute WASTE }

Appendix A. Three-Phase Simulation Program Structures in Pascal 146

Hent := SYSTEM_MOD_ENT;
Name := ‘UASTE';

Bcast! := Evaluate_Attribute(Num!inQue(B,1), 'BCAST"');
Ualue := Evaluate_Attribute(SYSTEM_MOD_ENT, 'UASTE');

Ualue := Ualue + Bcast!l - 300;
Assign_Attribute(Ment ,Name,VUalue);
{ End of Evaluation of attribute WASTE }

end;

Condition := QSIZE(TBLOWQ)=0;
if Conditlon then
begin

{ Evaluation of attribute WASTE }
MHent := SYSTEN_MOD_ENT;
Name := 'UASTE';

Bcast! := Evaluate_Attribute(NumInQue(B,1), 'BCAST');
Ualue := Evaluate_Attribute(SYSTEM_MOD_ENT, 'URSTE');

Ualue := Ualue + Bcastl;
Assign_Attribute(Ment,Name,Value);
{ End of Evaluation of attribute WASTE }

end;

Start_ScheduleB(BLOU);

for count:=1 to MINOF(2,QSI2E(TBLOWQ)) do

begin
LogQueData(TBLOUWQ, 'TBLOUGLEN"');
ScheduleB(2,TakeFromFront (TBLOWQ));

end;

ScheduleB(3,TakeFromFront(B));

End_ScheduleB;

end;
end;

procedure B2_End_BLOU_TORPEDO;
begin

AddToBack(Current_ent,C);
end;

procedure B3_End_BLOW_BLASTF;
begin

AddToBack(Current_ent,A);
end;

procedure C_GOING;

var Count:integer;

begin
while (Qsize(C) >= 1)
do
begin

ActTime:=POISSON(10,3);
Start_ScheduleB(GOING);
for count:=1 to MINOF(2,QSI2E(C)) do

begin
ScheduleB(4,TakeFromFront(C));
end;
End_ScheduleB;
end;

end;

procedure B4_End_GOING_TORPEDO;

Appendix A. Three-Phase Simulation Program Structures in Pascal

147

begin
AddToBack(Current_ent ,PITQ);
end;

procedure C_FILL;
var Hent :mod_ent;
Name:stri10;
Ualue:real;
Tcastl:real;
Ccastli:ireal;
Transfer:real;
begin
while (Qsize(CRANEQ) »>= 1)
and (Qsize(PITQ) »>= 1)
and (Qsize(G) >= 1)
do
begin
ActTime:=10;

{ Evaluation of TRANSFER }
Hent := SYSTEN_MOD_ENT;
Name := 'TRANSFER';
Tcastl := Evaluate_Attribute(NuminQue(PITQ,1), 'TCAST');
Ccastl := 100-
Evaluate_Attribute(NumlinQue(CRANEQ, 1), 'CCAST');
Ualue := MINOF(Tcastl,Ccastl);
Assign_.Attribute(fent,Name,Value);
{ End of Evaluation of TRANSFER }

{ Evaluation of TCAST }

Ment := HNumInQue(PITQ,1);

Name := ‘'TCAST';

Tcastl := Evaluate_Attribute(NumInQue(PITQ,1), 'TCAST');

Transfer ;=
Evaluate_Attribute(SYSTEM_MOD_ENT, 'TRANSFER');

Ualue := Tcastl - Transfer;

Assign_Attribute(Ment,Name,Value);

{ End of Evaluation of TCAST }

{ Evaluation of CCAST }

Hent := NumlnQue(CRANEQ,1);

Name := 'CCAST';

Ccast! := Evaluate_Attribute(NumlnQue(CRANEQ,1), 'CCAST');

Transfer :=
Evaluate_Attribute(SYSTEM_MOD_ENT, 'TRANSFER');

Ualue := Ccast! + Transfer;

Assign_Attribute(Ment,Name,Ualue);

{ End of Evaluation of CCAST)}

Start_ScheduleB(FILL);
ScheduleB(5,TakeFromFront (CRANEQ));
ScheduleB(6,TakeFromFront(PITQ));
ScheduleB(7?,TakeFromFront(G));
End_ScheduleB;
end;
end;

procedure BS_End_FILL_CRANE;
var Condition:boolean;
Ccast:real;
begin
Ccast := Evaluate_attribute(Current_Ent, 'CCAST');
Condition := Ccast<100;

Appendix A. Three-Phase Simulation Program Structures in Pascal 148

if Condition then
begin
AddToFront (Current_ent,CRANEQ);
end else
begin
AddToBack(Current_ent ,CREADY);
end;
end;

procedure B6_End_FILL_TORPEDO;
var Condition:boolean;
Tcast:real;
begin
TCast := Evaluate_attribute(Current_Ent, 'TCAST');
Condition := Tcast>0;
If Condition then
begin
AddToFront (Current_ent,PiTQ);
end else
begin
AddToBack{(Current_ent,QD);
end;
end;

procedure B7_End_FILL_PIT;
begin

AddToBack(Current_ent,G);
end;

procedure C_LOADIN;
var Hent :mod_ent;
Name:str10;
Ualue:real;
begin
while (Qsize(CREADY) »>= 1)
and (Qsize(LOADQ) »>= 1)
do
begin
ActTime:=10;

{ Evaluation of Ccast }

Ment := NumlinQue(CREADY,1);

Name := 'CCAST';

Ualue := 0;
Assign_Attribute(Ment,Name,VUalue);
{ End of Evaluation of Ccast }

Start_ScheduleB(LOADIN);
ScheduleB(8,TakeFromFront (CREADY));
ScheduleB(9,TakeFromFront (LOADQ));
End_ScheduleB;
end;
end;

procedure B8_End_LOADIN_CRANE;
begin

AddToBack{Current_ent,QE);
end;

procedure BY9_End_LOADIN_STEELF;
begin
AddToBack(Current_ent,QF);
end;

Appendix A. Three-Phase Simulation Program Structures in Pascal 149

procedure C_REFINE;

begin
while (Qsize(QF) >= 1)
do
begin

RctTime:=SO0+NEGEXP(10,4);
Start_ScheduleB(REFINE);
ScheduleB(10,TakeFromFront(QF));
End_ScheduleB;
end;
end;

procedure BI10_End_REFINE_STEELF;
begin

AddToBack{(Current_ent,LOADQ);
end;

procedure C_TRAUEL;

begin
while (Qsize(QE) »>= 1)
do
begin
ActTime:=2;

Start_ScheduleB(TRAVEL);
ScheduleB(11,TakeFromFront (QE));
End_ScheduleB;
end;
end;

procedure B11_End_TRAUEL_CRANE;
begin
AddToBack(Current_ent, CRRNEQ);
end;

procedure C_RETURN;

begin
vhile (Qsize(QD) >= 1)
do
begin

ActTime:=4;
Start_ScheduleB(RETURN);
ScheduleB(12,TakeFromFront(QD));
End_ScheduleB;
end;
end;

procedure B12_End_RETURN_TORPEDO;
begin
LogQueData(TBLOUQ, 'TBLOUQLEN');
AddToBack(Current_ent, TBLOUWQ);
end;

procedure EndRunin;
begin

Create_Recording;
end;

function A_Phase:boolean;
begin

Increase_Time;

A_Phase := (TIN <= Duration);
end;

Appendix A. Three-Phase Simulation Program Structures in Pascal 150

procedure B_Phase;

begin
while (Current_Time(TINMN)) do
begin
while (Get_Next_Bevent) do
begin
case Beuvent_Num of
1 : BI_End_MELT_BLASTF;
2 : B2_End_BLOW_TORPEDG;
3 : B3_End_BLOU_BLASTF;
4 : B4_End_GOING_TORPEDO;
S : BS_End_FILL_CRANE;
6 : B6_End_FILL_TORPEDO;
7 B?7_End_FILL_PIT;
8 B8_End_LOARDIN_CRANE;
9 : B9_End_LOARDIN_STEELF;
10 : B10_End_REFINE_STEELF;
11 : B11_End_TRAVEL_CRANE;
12 : B12_End_RETURN_TORPEDO;
12?7 : EndRunin;
end;
end;
end;
end;

procedure C_Phase;

begin
C_MELT;
C.BLOU;
C_GOING;
C_FILL;
C_LORADIN;
C_REFINE;
C_TRAVEL;
C_RETURN;

end;

procedure Execute;
begin
Open_File('STEELUORKS.RST');
StartUp;
if (Run_lIn_Period <> 0) then
Init_Restart(127,Run_in_Period);
while (R_Phase) do

begin
B_Phase;
C_Phase;
end;
Report;
Close_File('STEELUORKS.RST');
end;
begin { main program }

Initialise_Model(false);
Build_Hodel;
repeat
Input_Duration;
if (Duration > 0) then Execute;
until (Duration<=0);
end.

Appendix A. Three-Phase Simulation Program Structures in Pascal

151

MACSIM.LIB : THE MACINTOSH SIMULATION LIBRARY

APPENDIX B

B.1.

B.3.

THE MSIMGLOBAL UNIT

B.1.1. Type Definition
B.1.2. Global Variables

. THE MSIMSAMPLE UNIT

B.2.1. Sampling Routines
B.2.2. Distribution Functions

B.2.3. Arithematic Functions
THE MSIMMODEL UNIT

B.3.1. Initialisation Routines

B.3.2. Model Setup Routines

B.3.3. Recording and Assigning Routines
B.3.4. C Event Routines

B.3.5. Increasing Time Routines

B.3.6. B Event Routines

B.3.7. Interface Routines

. THE MSIMOUTPUT UNIT

B.4.1. Displaying Routines
B.4.2. Filing Routines

Appendix B. MacSim.Lib : The Macintosh Simulation Library

152

This appendix describes the syntax and the functions of MacSim.Lib - the set of

simulation library routines which was written in Turbo Pascal on the Apple Macintosh.

MacSim.Lib was written in four units - MSimGlobal, MSimSample, MSimModel, and

MSimOutput. These units are discussed in sections B.1, B.2, B.3 and B.4

respectively.

B.1. The MSimGlobal Unit

This is the declaration unit of the program. The type definition and the global

variables in the simulation library are shown in figure B.1.

Figure B.1, The MSi

Unit MNSimGlobal(1);

{$0 MacSim.Lib}

interface

Uses HemTypes,QuickDraw,0SIntf,ToollIntf,Packlntf;

Type
str10

histogranm
histptr
histrec

attribute
attptr
attrec

entity

Appendix B. MacSim Lib : The Macintosh Simulation Library

stringl10];

= “histptr;

= “histrec;

= precord
name
htype
base,
width,
count,
tflag
total,
so0sq
data

end;

= “attptr;

= “attrec;

= pecord
name
hist
next

end;

= “entptr;

stri0;
integer;

longint;

real;
arrayl[0..16] of

strl0;
histogran;
attribute;

longint;

153

entptr
entrec

tseries
tseriesptr
tseriesrec

modent
modentptr

queue
queptr
querec

source
souptr
sourec

activity
actptr
actrec

modatt
modattptr
modattrec

= “entrec;
= pecord
name
num
att
utime
next
end;

= “tseriesptr;

= “tserliesrec;

record
name
interval
data
count
plat
tflag

end;

“modentptr;
“modentrec;

= “queptr;

= “querec;

= precord
name
ent
ment
count
qlhist
qthist
ts
next

end;

= “souptr;

= “sourec;

= pecord
name
ent
buffer
count
buffercount
next

end;

“actptr;

= “actrec;

= pecord
name
count
next

end;

= “modattptr;

= “modattrec;
= precord
att
value
next
end;

Appendix B. MacSim.Lib : The Macintosh Simulation Library

str10;
integer;
attribute;

real;
entity;

stri0;
longint;
arrayl0..449]
integer;
integer;
longint;

of

str10;
entity;
modent ;
integer;
histogranm;
histogranm;
tseries;
queue;

stri10;

entity;
modent ;
integer;
integer;
source;

str10;
integer;
activity;

attribute;
reai;
modatt;

integer;

154

modentrec = pecord

ent i entity;
index : integer;
matt ¢ modatt;
bnum : integer;
clock : longint;
next ¢ modent;
end;
Uar

TINH,

Duration,

Run_in_period,

ActTime : longint;

Hainent i entity;

Mainact : activity;

Hainque ! queue;

Hainsou { source;

Current_ent,

SYSTEH_modent : modent;

Bevent_num : integer;

Fileset i boolean;

F,RF ¢ text;

No fRun : integer;

B.1.1. Type Definition

Entity is a handle to the record type entrec which contains information about an
entity type that is specified in the simulation program. The field name is the name of the
entity type. num is the number of entities of an entity type that are present in the
system. azt is a handle to the list of attributes that belongs to the entity type. The field
utime is used for accumulating the units of time that the members of an entity type have
been involved in activities during a simulation run. next is a handle to the next entity in

the entity link list.

Attribute is a handle to the record type attrec which contains information about
an attribute which belongs to an entity type. Each attribute is assigned to an entity type

in the model. The field name is the name of the attribute. hist is a handle to the

Appendix B. MacSim.Lib : The Macintosh Simulation Library 155

histogram that belongs to the attribute. If the attribute does not have a histogram, hist is

set to 'nil'. next is the next attribute in the attribute list.

Activity is a handle to the record type actrec which contains information about
an activity that is specified in the program. The field name is the name of the activity.
Count is a counter variable to indicate how many times the activity has taken place

during a simulation run. next is a handle to the next activity in the activity link list.

Queue is a handle to the record type querec which contains information about a
queue that is specified in the program. The field name is the name of the queue. The
entity handle ent is a handle to the entity to which the queue belongs. ment is the list of
model entities (modents) that are present in the queue during a simulation run. count is
used for recording the size of the queue during a simulation run. glhist and qthist are
histogram handles of type queue length and queueing time respectively. £s is a handle to
the time series of the queue, if any. next is a handle to the next queue in the queue link

list.

Source is a handle to the record type sourec which contains information about a
source/sink queue that is specified in the program. The field name is the name of the
source/sink queue. ent is a handle to the entity to which the queue belongs. buffer is the
model entity that is present in the queue during a simulation run. count is used for
recording the size of the queue during a simulation run. buffercount is a counter to
record the number of temporary entities that has been created from the source buffer.

next is a handle to the next source/sink queue in the list.

Histogram is a handle to the record type histrec which contains information
about a histogram, belonging either to a queue or an attribute. The field name is the
name of the histogram. Atype can either be of value 1, 2 or 3. The value '1' indicates
that the histogram is of type queue length whereas '2' indicates that it is of type
queueing time. A value of '3', indicates that the histogram is an attribute histogram.

The field base and width are the base value and the cell width of the histogram

Appendix B. MacSim.Lib : The Macintosh Simulation Library 156

respectively. data is the array of data that holds the frequency count of the appropriate
cell during a simulation run. count is the number of times recording has taken place
during a run. #flag is used by a queueing time histogram to store the last time that the
histogram was recorded before a new reading takes place. total is the summation of all
the individual cell value multipled by its appropriate frequency count. sosq is the sum

of squares of cell values multipled by its frequency count.

Tseries is a handle to the record type tseriesrec which contains information
about a time series specified for a queue. The field name is the name of the time series.
Interval is the interval of the time axis of the time series, i.e. the gap between two
consecutive recordings. count is the number of times recording has taken place during a
simulation run. #flag is used for storing the last time that the recording has taken place
before a new reading is taken. plot is used for specifying the drawing mode of the time
series. A value of '1', '2', or '3' indicates that the output time series takes the form of a
bar chart, line plot or scatter plot respecitively. data is the array of data that holds the

reading of queue length during a simulation run.

Modent is a handle to the record type modentrec which contains information
about an entity that is being scheduled during a simulation run. The field ent is a handle
pointing to the entity to which this copy of modent bélongs. modatt is the list of model
attributes which the model entity possesses and is used during a simulation run. index
is the rank of the model entity among all its associate members of the same entity type.
Each model entity carries a clock which is used for recording the time that the entity

enters a queue. next is a handle to the next modent in the list.

Modatt is a handle to the record type modattrec which contains the value of an
attribute belonging to a model entity during a simulation run. The field art is a handle
pointing to the attribute to which this copy of modatt belongs. value is the variable that
stores the current value of the modatt during a simulation run. next is a handle to the

next modatt in the list.

Appendix B. MacSim.Lib : The Macintosh Simulation Library 157

B.1.2. Global Variables

TIM is the time of the simulation clock during a simulation run.

Duration is the duration of the simulation run defined by the user.

Run_in_period is the run-in period (i.e. the time elapsed before the actual

recording of data takes place) of the simulation run defined by the user.

ActTime is the activity duration of the activity of interest during a simulation

run.

Mainent is the global variable that holds the information about all the different

entity types that exist in the program.

Mainact is the global variable that holds the information about all the activities

specified in the program.

Mainque is the global variable that holds the information about all the queues

that are defined in the program.

Mainsou is the global variable that holds the information about all the

source/sink queues that are defined in the program.

Current_ent is a handle to the current model entity that is being scheduled in the

event loop during a simulation run.

System_modent is a handle to the system model entity that is being scheduled in

the event loop during a simulation run.

Bevent_num is an index to each of the B event procedures that are present in the

simulation program.

Fileset is a boolean value used for checking the existence of a specified file used

Appendix B. MacSim.Lib : The Macintosh Simulation Library 158

by the program.

F and RF are the global variables for the result file and the report file specified
in the program respectively.

NofRun is the counter for the number of successive runs that are being

executed by the user.

B.2. The MSimSample Unit

This unit contains all the sampling routines that can be called by the simulation
program. The declaration part of the unit is shown in figure B.2. Any user-defined
arithematic or statistical routines that are used for determining the activity duration of an

activity or for assigning values to an attribute should be amended in this unit.

Figure B2, The MSimSample Unit

Unit MNMSimSample(2);

{$U nMacSim.Lib}
{$0 MacSim.Lib}

Interface

uses HemTypes,QuickDraw,0SIntf,Toollntf,Packlintf,

HSimGlobal;
const dsize = 20; (* sampling ¥)
streamnum = 20;

type Stre = 1.,.streamnum;
distdata = array [1..dslze]l of real;
distribution = “distrec;
distrec = pecord
X,y : distdata;
streanm : Stre;
end;
var seedx,origseedx,

seedy,origseedy,
seedz,origseedz

{===============
Procedure
Procedure

InitSam;

SAMPLING ROUTINES

MakeDist (var

array[Stre]l of integer;

============='==)

dist:distribution; s:Stre;

Appendix B. MacSim.Lib : The Macintosh Simulation Library

159

xx:distdata;yy:distdata);

Functian Rnd(s:Stre):Real;

Function Sample(dist:distribution):Real;
{========zecx==== DISTRIBUTION FUNCTIiONS ===s====z=sz=z====z)
Function Bernoulli(pr:real; s:stre):integer;

Function Binomial(pr:real; k:integer; s:stre):integer;
Function Erlang(ei:integer; m:real; s:stre):integer;
Function LogNormal(m,sd:real;s:stre):integer;

Function Negexp(m:Real;s:Stre):integer;

Function Normal(m,sd:real;s:stre):integer;

Function Poisson(m:Real;s:stre):integer;

Function Uniform(a,b:integer;s:stre) : integer;
Function Uelbuli(a,b:real;s:stre):integer;
{=======z====z===== ARITHENMATIC FUNCTIGONS ===ss==xzz=z=s===z=z=)
Function Minof(a,b:Real):integer;

Function Maxof(a,b:Real):integer;

B.2.1. Sampling Routines

InitSam is a procedure to initialise the variables that are used for generating a

random number in the Rnd procedure.

MakeDist is a procedure for creating a distribution by specifying the stream
number in the parameter s, the distdata in the parameter xx and yy respectively. The

distribution is returned in the variable dist.

Rnd is a procedure used for generating a random number between 0 and 1 by

using the specified stream number s.

Sample is a function that returns a real number from the given distribution

referenced by dist.

B.2.2. Distribution Functions

Bernoulli returns an integer value of either 0 or 1 from a bernoulli distribution

specified by the given parameter pr and the stream number s.

Appendix B. MacSim.Lib : The Macintosh Simulation Library 160

Binomial returns an integer value from a binomial distribution specified by the

given parameter pr and k, and the stream number s.

Erlang returns an integer value from an erlang distribution specified by the

given parameter ei, with mean m and stream number s.

LogNormal returns an integer value from a lognormal distribution with mean m,

standard deviation sd and stream number s.

Negexp returns an integer value from a negative exponential distribution with

mean m and stream number s.

Normal returns an integer value from a normal distribution with mean m,

standard deviation sd, and stream number s.

Poisson returns an integer value from a Poisson distribution with mean m and

stream number s.

Uniform returns an integer value that is uniformly distributed between

parameter a and b, with stream number specified in s.

Weibull returns an integer value from a weibull distribution specified by

parameter a and b, with stream number s.

B.2.3. Arithematic Functions

Minof is a function which returns the minimal of two values specified in

parameter g and b.

Maxof is a function which returns the maximal of two values specified in

parameter g and b.

Appendix B. MacSim.Lib : The Macintosh Simulation Library 161

B.3. The MSimModel Unit

This unit handles all the modelling routines in the simulation program. The

declaration part of the unit is shown in figure B.3.

reB3 T mM

unit HSimModel(3);

{$U MacSim.Lib}
{$0 MacSim.Lib}

Interface

uses HMemTypes, QuickDraw, O0SiIntf, Toollntf, Packlntf,
HSimGlobal, MSimSample;

{s=====zz==a=z== INITIALISATION ROUTINES s==s=s=zsx===)
procedure Init_Utimes;

procedure Init_Nacts;

procedure Init_Hist;

procedure Init_Tseries;

Procedure InitUars;

(===x======:8-= nODEL SETUP ROUTIHES s====x=====x:===}

procedure
procedure
procedure
procedure
procedure
procedure
procedure

procedure
procedure

procedure

HakeEnt(var nent:entity; nam:stri0);
HakeAtt(var nent:entity; nam:striQ);
MakeAct (var ac:activity;anam:striQ);
MakeSou(nent:entity; var sou:source; snam:stri0);
MakeQue(nent:entity; wvar que:queue; qnam:stri0);
Set_SYSTEM_ENT(sent : entity);
MakeAttHist(var nent:entity; anam,hnam:str10;
wid,bas:longint);

MakeQLenHist(var que:queue; hnam:stri0;

wid,bas: longint);
MakeQTimHist(var que:queue; hnam:stri0;

wid,bas: longint);
MakeTseries(uar que:queue; tnam:stri0; d:integer);

{z=====z==z===== RECORDING & HASSIGNING ROUTINES ====s========)

function Qsize(que:queue):integer;

procedure LogQueData(que:queue; hnam:striQ);

procedure LogAttData(ment:modent; anam:str10; hnam:stri0);

functlon Evaluate_attribute(cent:modent; anam:str10):real;

procedure Assign_attribute(cent:modent; anam:stri0;
val:real);

{=======z====za= C EUENTS ROUTINES =====s===s=ss====x}

function FirstInQue(que:queue):modent;

function LastInQue(que:queue):modent;

function Takefromfront{que:queue):modent;

function Takefromback(que:queue) :modent;

function TakefromSource(sou:source) :modent;

procedure Start_ScheduleB(sact:activity);

procedure ScheduleB(b:integer;ment:modent);

procedure End_scheduleB;

Appendix B. MacSim.Lib : The Macintosh Simulation Library 162

procedure DescheduleB(act:activity);

{===========2=== INCREASING TIME ROUTINES s==s==s==========)
function Current_time(t:longint):boolean;

function Get_next_bevent:boolean;

procedure Increase_tinme;

procedure Init_Restart(bnum,runin:integer);

{:====::s====ss B EUENTS ROUTINES n::-s===s==:=:=}

procedure Rddtoback(cent :modent; wvar que:queue);
procedure Rddtofront(cent:modent; wvar que:queue);
function NuminQue(que:queue;num:integer):modent;
function NuminSource(sou:source;num:integer):madent;
procedure Slink(cent :modent);

(====czsszszzza=a INTERFACE sssssssszzsz===x=)
procedure Select_Mode;

procedure Initialise_model(on:boolean);

Procedure Input_FillQue(fname:str255);

procedure Input_duration;

B.3.1. Initialisation Routines

Init_Utimes is a procedure used to initialise the utime field in each entity type

record in the entity link list to '0.0' before a simulation run.

Init_Nacts is a procedure used to initialise the count field in each activity record

in the activity link list to '0’ before a simulation run.

Init_Hist is a procedure used to initialise the fields used for recording in each

histogram record before a simulation run.

Init_Tseries is a procedure used to initialise the fields used for recording in each

time series record before a simulation run.

InitVars is a procedure used to initialise the timing tree and empty all the queues

before a simulation run.

Appendix B. MacSim.Lib : The Macintosh Simulation Library 163

B.3.2. Model Setup Routines

MakeEnt is used to create a dynamic allocation for the entity record nent with

name nam. This variable is then linked to the Mainent link list.

MakeAtt is used to create a dynamic allocation for the attribute record belong to
the entity variable nent with name nam. This attribute is then linked to the att field

within the entity record nent.

MakeAct is used to create a dynamic allocation for the activity record ac with

name anam. This variable is then linked to the Mainact link list.

MakeSou is used to create a dynamic allocation for the source/sink queue record
sou with name snam, belonging to the entity referenced by nent. This variable is then

linked to the Mainsou link list.

MakeQue is used to create a dynamic allocation for the queue record que with
name gnam, belonging to entity referenced by nent. This variable is then linked to the

Mainque link list.
Set_System_Ent is used to set up the system entity specified by sent.

Make_Att_Hist is used to create a dynamic allocation for the histogram record
with name hnam, cell width wid and base value bas, belong to the attribute referenced

by name anam of the entity nent.

Make _QLenHist is used to create a dynamic allocation for a queue length
histogram record with name hnam, cell width wid and base value bas, belonging to the

queue que.

Make QTimHist is used to create a dynamic allocation for a queueing time
histogram record with name snam, cell width wid and base value bas, belonging to the

queue que.

Appendix B. MacSim.Lib : The Macintosh Simulation Library 164

Make _Tseries is used to create a dynamic allocation for the time series record

with name tnam, drawing mode d, belonging to the queue gue.

B.3.3. Recording and Assigning Routines

QSize is a function that returns the number of entities that are in the queue que.

LogQueData is a procedure used for recording the length of the queue que for

the histogram with name Anam.

LogAttData is a procedure used for recording the value of the attribute with

name anam which belong to the model entity ment, for the histogram with name hnam.

Evaluate_attribute is a function that returns a real number from the value field of
the modatt record specified by the name of the attribute anam and the model entity cent

to which the modatt belongs.

Assign_attrobute is a function that assigns a value val to the value field of a
modatt record specified by the name of the attribute anam and the model entity cent to

which the modatt belongs.

B.3.4. C Event Routines
FirstInQue returns the first modent that is present in the queue que.
LastInQue returns the last modent that is present in the queue gue.

TakefromFront returns the first member in the queue que and removes it from

the front of the queue.

TakefromBack returns the last member in the queue que and removes it from the

Appendix B. MacSim.Lib : The Macintosh Simulation Library 165

back of the queue.

TakefromSource creates a model entity from the source/sink queue sou and

removes it from the source/sink queue.
Start ScheduleB prepares the activity sact to be scheduled in the simulation run.
ScheduleB schedules the B event referenced by b with the model entity ment.
End_ScheduleB marks the end of the scheduling process of the activity.

DescheduleB deschedules the activity act by removing the activity from the

timing tree during a simulation run.

B.3.5. Increasing Time Routines

Current_time is a boolean function that checks the current time Tim of the
simulation clock in a simulation run. It returns 'true' if the current time is less than the

duration of the run and 'false' otherwise.

Get_Next_Bevent is a boolean function that checks the next B events that are
due to occur in a simulation run. It returns 'true' if there is a B event available in the
event queue and 'false’' otherwise. The value of the next B event is returned in

Bevent _num.

Increase_time is a procedure used to move the simulation clock to when

something next happens in the system, according to the timing tree.

Init_Restart is used at the end of the run-in period during a simulation run to

prepare the system for actual recording to begin.

Appendix B. MacSim.Lib : The Macintosh Simulation Library 166

B.3.6. B Event Routines
AddtoBack adds the model entity cent to the back of the queue que.
AddtoFront adds the model entity cent to the front of the queue gue.
NumiInQue returns the numth model entity in the queue que.
NumlnSou returns the numth model entity in the source/sink queue sou.

Sink adds the model entity cent to its associated source/sink queue and change

its identity for later use.

B.3.7. Interface Routines

Select Mode is a procedure which allows the user to select the run options, to
enter the simulation environment and to quit the program. There are three run options
available : text run, visual run or no-display run. The user can also turn the result file

option on if it is required to look at the events that happen at every time advance.

Initialise_Model is a procedure for initialising all the variables in the system.
The parameter on should be set to 'true’ if visual run is available in the simulation

program. The default value of on is 'false’.

Input_FillQue is a procedure used for reading the '.QUE' file, i.e. the file
which stores the location and number of entities of each entity type that are present in

the system. The model entities are also prepared for scheduling within this procedure.

Input _duration is a procedure used to accept the duration, run-in-period and the

running speed specified by the user before a simulation run.

Appendix B. MacSim.Lib : The Macintosh Simulation Library 167

B.4. The MSimOutput Unit

This unit contains the displaying results routines after a simulation run and the
filing routines in the system. The declaration part of the unit is shown in figure B.4.

Any additional displaying or filing routines should be amended in this unit.
re B.4

Unit MNSimOutput(4);

{$U MacSim.Lib)
{$0 HMacSim.Lib}

Interface

uses MemTypes, QuickDraw, O0SIntf, Toollntf, Packlintf,
HSimGlobal, HSimSample, HMNSimModel;

(::::::-:x::sll- DISPLAYING ROUTINES ==============:}

procedure Display_act_ntimes;

procedure Display—_ent_utimes;

procedure Display_sys_values;

procedure Display_hist(h:histogradam);
procedure Oisplay_histogranms;

procedure Display_tserles(q:stri0;t:tseries);
procedure Display_time_series;

Ezzzz=z=z=z====xT== FILING ROUTINES =:=============}

procedure Open_File(fname:str255);
procedure Close_File(fname:str255);
procedure Open_Report_File(fname:str255);
procedure Close_Report_File(fname:str255);

B.4.1. Displaying Routines

Displaying act_ntimes is a procedure used for displaying the activity count table
which indicates the number of times each activity has successfully started during a

simulation run.

Displaying ent utimes is a procedure used for displaying the entity utilisation
time chart which indicates the proportion of time that each individual entity type has

been involved in activities during a simulation run.

Appendix B. MacSim.Lib : The Macintosh Simulation Library 168

Displaying hist is a procedure which handles the drawing of a histogram
specified by the parameter # and produces some basic statistics including the mean,

standard deviation and variance of the histogram.

Displaying histograms is a procedure which displays all the histograms (one
after another) that are specified in the simulation program.

Displaying tseries is a procedure which draws the time series referenced by the

parameter ¢ and q - the name of the queue to which the time series belongs.

Displaying time_series is a procedure which displays all the time series (one

after another) that are specified in the simulation program.

B.4.2. Filing Routines

Open_File rewrites a file referenced by the global variable F, specified by the

file name frname so that simulation results can be written to this file.
Close_File closes the result file F, specified by the file name frname.

Open_Report_File rewrites a file referenced by the global variable RF, specified

by the file name frname. The resulting output after a simulation run is written to this file.

Close_Report File closes the result file RF, specified by the file name fname.

Appendix B. MacSim.Lib : The Macintosh Simulation Library 169

APPENDIX C

AN EXAMPLE WALKTHROUGH WITH MACACD

C.1. CREATING ENTITIES

C.2. CREATING ACTIVITIES

C.3. CREATING QUEUES

C.4. DRAWING LIFE PATHS OF AN ENTITY

C.5. EDITING OBJECTS ON THE SCREEN

C.6. GENERATING A TEXT FILE FOR AUTOSIM

C.7. THE PULL-DOWN MENUS IN MACACD

C.7.1.
C.7.2.
C.7.3.
C.74.
C.7.5.
C.7.6.
C.7.7.
C.7.8.
C.7.9.

The Apple Menu
The File Menu
The Edit Menu
The Format Menu
The Style Menu
The Entity Menu
The Activity Menu
The Queue Menu

The Generate Menu

Appendix C. An Example Walkthrough with MacACD

170

This appendix shows how to use the application MacACD with an illustrative
example of the Pub model (see section 1.2.1). Section C.1, C.2 and C.3 shows how
an entity, an activity and a queue can be created respectively. The mechanism for
drawing the life paths of an entity type is given in section C.4. Section C.5 shows how
to edit objects on screen. The generation of a data file that can be fed into AutoSim is

discussed in section C.6. Section C.7 is a menu reference for the MacACD application.

MacACD consists of 9 pull-down menus and 13 iconic menus. Figure C.I
shows the interface of MacACD. The pull-down menu is across the top of the screen
and the iconic menu is on the left hand side of the screen. The pull-down menu handles
all the file management and data recording procedures whilst the iconic menu mainly

deals with the creation of graphics on the screen.

Figure C.L The MacACD Application

A

¢ File Edit Style Format Rctiuity Queue Entity Generate
RCD

CD

ST !

Appendix C. An Example Walkthrough with MacACD 171

c.l. Creating Entities

The first step in creating an ACD in MacACD is to assign the arrow mode boxes
in the iconic menu to different entity types in the system. There are 8 arrow mode boxes

altogether, each of which can be assigned to an entity type.

An entity type can be created by firstly clicking in one of the arrow mode boxes
in the iconic menu and then entering the information in the entity dialogue box. Figure
C.2 shows the dialogue box when a new entity type CUSTOMER is created in the Pub

example :

Figure C,2, Crm m QOn Entity

A ¢ File Edit Style Format Rectiuity Queue Entity Generate

NewRCD

ENTITY NAME : Customer
Ol

O permanent N temporary o facility
0]

ATTRIBUTES: QO ® 102 Q3
Q) attribute #1 need OK

CANCEL

The OK' button in the dialogue box fixes the entity to the arrow mode box of
entry, and so the arrow mode box is filled with the line pattern that belongs to the
entity. The 'CANCEL' button cancels the entry. This pattern is used for drawing the

life cycle of that entity type.

Appendix C. An Example Walkthrough with MacACD 172

Any newly created entity is appended to the Entity menu. The following

diagram shows the appearance of the Entity Menu after all the entities have been created

in the Pub example :

EignrL. CJ. The

File Edit Style Format Rctiuity Queue Entity Generate
NeujRCD CUSTOMERI
GLRSS
BRRMRID
DOOR

Wi >l Wil di it i i e sp

Information about an entity type can be viewed and edited by selecting its name
from the Entity menu. When an entity is selected, the dialogue box of the entity type
will appear, allowing the information to be edited. Figure C.4 shows the dialogue box

for the entity type CUSTOMER when Customer is selected from the Entity menu :

Figure CA. The Entity Dialogue Box

This is entity CUSTOMER o PiaTDF

There are of this type of entity

Pattern used for its life cycle H

11 Iattribute/s belong to this entity :

need

[OK CANCEL

Appendix C. An Example Walkthrough with MacACD 173

€.2. Creating Activities

An activity can be created by using the rectangle mode box in the iconic menu.
After a rectangle is drawn, the current iconic menu will return to the Find icon (?).
The information about an activity can then be entered by double-clicking on the

rectangle. Figure C.5 shows the activity dialogue box.

Figun Antm ng an M ny.isx
the minimum &
click in the check box maximum no. of
for the entities which entities of that type
are required to start that are required
the activity to start the activity
RCTIUITY NRME RRRIUE Entities Min Max
duration . E CUSTOMER
of the -Duration nege»p(10,2)
activity o GLRSS
attribute formula o BRRMRID

if the button
is highlighted, need 1+4*rnd(11)| * DOOR
the formula
box appears

[OK ~» [CRNCEL]

the information inside clicking the
the dialog box is only button will
recorded if the OK cancel the
button is clicked dialog box

Suppose all the entity types in the Pub example have already been created. The
user can click at its associated check box to select the entities that are involved in this

activity. The name, the activity duration and any attribute assignment can be entered.

An activity will be added to the system only if the 'OK' button is clicked. The
activity will not be added to the system if the user clicks the 'CANCEL' button. If the
OK' button is clicked, the information for the activity is stored and the name of the
activity will appear inside its associated rectangle on the underlying screen. Any newly
created activity will be appended to the Activity menu. Figure C.6 shows the Activity

menu when all the activities has been created in the pub example.

Appendix C. An Example Walkthrough with MacACD 174

Figure C.6. The Activity Menu

¢ File Edit Style

Format Queue Entity Generate

'o RRRIUE
DRINK o
POUR ,
ARRIVE]

G)

POUR DRINK
1 WASH
ST

B a

Activity information can be viewed and edited by selecting its name from the

Activity menu. Figure C.7 shows the dialogue box when the activity POUR is selected

from the Activity menu :

Figure C.7. The Activity Dialogue Box

This is RCTIUITY POUR

Its duration is yiuen by normal(6,1,5)

It requires : Entity Min# Max#
CUSTOMER 1 1
GLRSS 1 1
BRRMRID 1

1

The attribute/s being eualuated at this activity is/are

Rttribute Formula

OK]

CANCEL

Appendix C. An Example Walkthrough with MacACD 175

¢.3. Creating Queues

A queue can be created by using the circle mode box. After a circle is drawn,
the iconic menu will return to the Find icon (?). Queue information can be edited by
double-clicking on the circle. Similarly, a source/sink queue can be created by using the
overlapping circles mode box. Figures C.8 and C.9 shows the queue dialogue boxes

when the queue WAIT and the source/sink queue OUTSIDE are created respectively.

Figurg Crmm a OMMF

QUEUE NAME malt

histogram
Entity E histogram malting of the queue
click in the wait
entity to -E CUSTOMER cell midth 1
which the
queue belongs o GLASS Initial base ualue 0
o BARMAID Initial ¢ initial no. of
DOOR nitial no. o entities in the
= entity In queue queue wait
OK CANCEL
click OK if click Cancel to
the queue is remove the
being added dialog box
to the ACD

Fi2ure C.9, Creating a SourcelSink Queue

QUEUE NAME outsldej

Appendix C.

click in the Entity o histogram the histogram
entity to CUSTOMER cannot be
which the cell midth -recordeld _fc:(r
ueue belongs o source/sin
d 9 o GLASS Initial base ualue queues
o BARMAID
o DOOR

oK ~»

click OK if
you want to
add the queue

in the AGO

An Example Walkthrough with MacACD

[CRNCEL)

click Cancel
to cancel the
dialog box

If the 'OK' button is clicked, the queue is added to the Queue menu. If it is a

source /sink queue, there will be an asterisk "*' besides the name of the queue. Any

newly created queue is appended to the Queue menu. Figure C.IO shows the Queue

menu when all the queues are created for the Pub example.

Figure CIO. The Queue Menu

¢ File Edit Style Format flctiuitu W ueue Entity Generate

(O thePub outside*
n 1UQIt
clean
O dirty
ARRIVE bidle
wait outside
a PR DRINK
clean bidle dirty
WASH

W oIl

Queue information can be viewed and edited by selecting it from the menu.

Fig.C.I1 shows the queue dialogue box for the queue CLEAN.

Figure €.11. The Queue Dialogue Box

This is QUEUE jclean
It belongs to entity
GLRSS
Initial no. in the queue - 100
E histogram jcleaning
cell width Q I &K 1
initial

base ualue [CANCEL 1

Appendix C. An Example Walkthrough with MacACD

177

c.4. Drawing Life Paths for an Entity Type

The life paths for an entity type can be drawn by using the corresponding line
pattern mode box in the iconic menu (i.e. the assigned arrow mode box). To draw the
life cycles of the temporary and permanent entities, choose a starting queue, then hold
the mouse button down and move the cursor from the starting queue to the desired
activity. A line connecting the pair of shapes on the screen will then appear with an
arrow indicating the direction of movement of the mouse. Figure C.12 shows how to

create a path between a queue and an activity.

Figure C.12 Creating a Path

©

hold down the move to activity box
mouse button and release button
ARRIVE ARRIVE ARRIVE

The linking procedure can then be continued until the starting queue is equal to
the final queue where the cycle ends. When two activities are connected, MacACD will
create a dummy queue between the two activities. When the same activity is connected
to more than one queue consecutively, (i.e. the entity can move to either one of the
queues after the activity is finished), MacACD will ask for the conditions required to go

to the different queues.

MacACD cannot automatically produce a dummy queue for a facility entity - an
entity which facilitates several activities, but only has one queue. The user has to create
an idle queue for a facility entity. To draw the life cycle of a facility entity, move the
cursor from the idle queue to the activity that requires the entity. A pair of arcs will

automatically branch out from, and into, the activity so that there is a cycle for the

Appendix C. An Example Walkthrough with MacACD 178

entity. If the entity has more than one activity, the procedure is repeated. Figure C .13

shows how to create a path for a facility entity.

Eigw: & CJ3. Crming a Pathfyr Fg¢Uity Entity

hold down the move to activity box
mouse button and release button
POUR POUR POUR

C.5. Editing Objects on the screen

The size and position of the objects on the screen can be varied by means of the
select mode box, which takes the shape of a question mark in the iconic menu. When
clicking on an object, four small boundary rectangles will appear on the four comers of
the object. By clicking inside the object and then dragging the mouse to a new location,
the object will move. By clicking on one of the four small boundary rectangles of an
object and dragging the mouse to a new location, the object will either shrink or
expand, according to the direction of the movement of the mouse. Figure C.14 shows

the sizing of a rectangle on the screen.

Figure CJ4, Edim g an Object on S¢r¢m

shrinking =
I I— 1

expanding

Apart from changing the size of the object on screen, the user can also invoke
an activity or queue information dialogue box by double-clicking at the desired object

on the screen.

Appendix C. An Example Walkthrough with MacACD 179

C.6. Generating a Text file for AutoSim

A text file, which can be fed into AutoSim, can be created by using the Go

command in the Generate menu. A generated file for the Pub model is shown in figure

C.15.
Figure C.1 File P r] Pub E.

Pub.Dat Pub.Dat (cont.) Pub.Dat (cont.) Pub.Dat (cont.)
CUSTOMER qclean negexp(10,2) waiting
i aPOUR normal(6,1,5) 1
GLASS gbidle 5+4*md(7) 0
100 aDRINK 5 y
BARMAID qdirty ARRIVE clean
5 aWASH DRINK cleaning
RN mkan Hununnnnnn 1
qoutside y 1+4*rnd(1) 0
aARRIVE gbidle need-1 y
qwait aWASH n bidle
aPOUR gbidle y barhist
gbidle aPOUR need 1
aDRINK gbidle ARRIVE 0
qwait y needhist n
cneed>0 n 1 n
outside n 0
i n n 100
outside n y 5
y n wait 0

C.7. The Pull-down Menus in MacACD

There are altogether nine pull-down menus in MacACD.

C.7.1. The Apple Menu

The Apple Menu contains desk accessories that are present in the Macintosh

system file.

Appendix C. An Example Walkthrough with MacACD 180

C.7.2. The File Menu

The File menu consists of the following commands - New is used for creating a
a new model; Open opens any existing MacACD file which has been saved on the disk;
Close closes the current active window; Save saves the activity cycle diagram in the
current window and all the user-defined information to a file; Save As allows the user
to save the current file under another name; PageSetup allows the user to select the type
setting of the paper; Print prints the ACD;Quit quits the application and returns the

user to the Finder.

C.7.3. The Edit Menu

The commands in the Edit menu can be used to assist in the drawing of objects
on the screen. Undo retrieves the picture just before the last change was made. Cut
deletes a selected object and copies it to the Clipboard file. Copy copies the selected
object to the Clipboard file. Paste copies the object from the Clipboard file onto the

window.

C.7.4. The Style Menu

Text can be added to the screen by using the 'A to Z' mode box in the icon
menu. The text can be modified by using the Style menu. Point allows the user to
choose the desire point size (9, 10, 12, 14) for the selected text. Plain writes the
selected text in plain style. Bold writes the selected text in bold style. Italic writes the
selected text in italic style. Underline underlines the selected text. Outline outlines

the selected text. Shadow shadows the selected text.

Appendix C. An Example Walkthrough with MacACD 181

C.7.5. The Format Menu

The Format menu consists of the following commands - Reduce reduces the
diagram to fit the screen; Normal returns the normal size of the diagram; AutoDraw
allows the user to draw a rectangle of predefined size automatically; Manual allows the
user to draw a rectangle of any size freely; Chopper is used for deleting the life cycle

of an entity.

C.7.6. The Activity Menu

Whenever an activity is added to the model, the activity name will be appended
to this menu. The user can then select any activity from the menu and look at the

summary information of the selected activity in the Activity dialogue box (figure C.7).

C.7.7. The Queue Menu

Whenever a queue is added to the model, the activity name will be appended to
this menu. The user can then select any queue from the menu and look at the summary

information of the selected queue in the Queue dialogue box (figure C.11).

C.7.8. The Entity Menu

Whenever an entity is added to the model, the entity name will be appended to
this menu. The user can then select any entity from the menu and look at the summary

information of the selected entity in the Entity dialogue box (figure C.4).

Appendix C. An Example Walkthrough with MacACD 182

C.7.9. The Generate Menu

Go is used to generate a text file from the ACD. The system will ask for the
name of the file in which the data is to be saved. The default name of the text file is
<filename.DAT>. ShowTFile allows the generated code to be shown in another

window.

Appendix C. An Example Walkthrough with MacACD 183

APPENDIX D

THE USE OF DIAGRAMMING TECHNIQUES

This appendix shows a summary table of the areas in which some of the current

diagramming techniques are applied.

Entity-relationship diagram

Data structure diagram

Data structure diagram
Jackson diagram
Warnier-Orr diagram

Data structure diagram
Jackson diagram

DATA ACTIVITIES
Decomposition diagram
Action diagram
Strategle Strategle Warnier-Orr diagram
overview of| overview of
corporate corporate
data functions
Decomposition diagram
Action diagram
Detalled Loglcal Warnier-Orr diagram
loglcal relationship .
Dependency diagram
data model among .
rocesses Data flow diagram
P HIPO diagram
HOS chart
State-transition diagram
Action diagram
Program Overall Data pawgat:oq diagram
Warnier-Orr diagram
level view program .
HIPO diagram
of data structure
Structure chart
HOS chart
Jackson diagram
Action diagram
Program Detalled Data navigation diagram
usage rogram Flowchart
9 prog Nassi-Shneiderman chart
of data loglc

Appendix D. The Use of Diagramming Techniques

HOS chart
Decision tree & table

. 184

APPENDIX E

HOW TO USE HYPERSIM

E.1. CREATING A NEW MODEL

E.2. CREATING ENTITIES

E.3. SELECTING AN ICON FOR AN ENTITY TYPE

E.4. CREATING ACTIVITIES

E.5. DRAWING LIFE CYCLES OF AN ENTITY TYPE

E.5.1. Using the Entities Stack
E.5.2. Using the Activities Stack
E.5.3. Using the ACD Stack

E.6. CREATING AND ASSIGNING ATTRIBUTES

E.7. GENERATING A SIMULATION PROGRAM

Appendix E. How to use HyperSim 185

This appendix is a brief guide to HyperSim, with an illustrative example using
the Launderette model (section 1.2.1). Section E.1 shows how a new model can be
created. The creation of a new entity type and the selection of entity icons are discussed
in sections E.2 and E.3 respectively. Section E.4 shows how to create an activity for
the model. The mechanisms used for specifying the life paths of entities is given in
section E.5. Section E.6 shows how to create and assign attributes in HyperSim. The

generation of a three-phase simulation program is discussed in section E.7.

E.1. Creating a New Model

HyperSim is made up of nine stacks. The first stack that the user should go to is
the Model stack where a new model can be created or an existing model can be selected.
The Model stack can be opened by either double-clicking the icon on the Macintosh

desktop or by clicking the 'Start Modelling' button in the Reference stack.

Assume that the Model stack has been opened. A new model can be created by
clicking at the 'N' button on the left-hand corner of the card. The system will prompt
the user for a model name. If the user types in the model name and clicks 'OK’, a new
model card will be added to the Model stack. Moreover, an ACD card in the ACD stack
and a system entity card in the Entity stack will be automatically generated for the new
model. An existing model can be opened by clicking the 'Q’ button and select a model
by clicking at the name of the model in the model list table. The user can also scan
through the model cards by using the left and right arrow buttons located at the bottom
sides of the card. The "D’ button is used for deleting an existing model. The user can
select the model that is to be deleted from the model list table. All the cards that belongs
to the selected model inside all the HyperSim stacks will then be deleted after further

confirmation from the user.

Appendix E. How to use HyperSim 186

For example, to create a new model called 'Launderette', click the 'N' button,
type Launderette' and click 'OK'. An ACD card and a system entity card are then
automatically generated. The word 'System' will appear in the Entity column of the
summary table. Figure E.l shows the Model card when the Launderette model is
created. The user can either create entities by clicking at the 'New Entity' button, create
activities by clicking at the 'New Activity' button, create system attributes for the

System' entity in the Entity stack, or create icons in the Icon stack.

Figure E.L Creating the Launderette Model in the Model Stack

ijli|ijiP|[iljiiji] MODEL : Launderette A 1 COCIBJ 2]
& tlies Acliviies ajeues

System

<> (S' A & m Cx)

E.2. Creating Entities

An entity type can be created anywhere in the system if there is a 'New Entity'
button in the stack where the user is working. To create a new entity type, select the
'New Entity' button, type the name of the new entity type in the dialogue box and click
'OK'. A new card in the Entity Stack will be created where the user can enter any

relevant information about the newly defined entity type. In the Entity stack, the user

Appendix E. How to use HyperSim 187

can either create attributes (see section E.6), select an icon (see section E.3), or create a

source/sink or facility queue for an entity type in the Entity stack.

For example, a new entity type 'Customer' can be created by clicking the 'New
Entity' button, type in the name 'Customer' and click 'OK'= A new card called
Customer' is then created in the Entity stack. Figure E.2 shows the Entity card when
the entity type 'Customer' is created. The user can look at the entity list table by
clicking at the 'Entity' button in an entity card. He can go to the appropriate entity card

by clicking at the corresponding entity name in the entity list table.

Figure E.2. Creating an Entitv type 'Customer' in the Launderette Model

E IY: Cust 2 Source Queue : INone Pattern : |2 | n
¢ Customer Fecilily Queue : INone Number : |-
Attributes Life Cycle of Entity Activities Involved Order Mn.Max

Queues Involved

Laundenet te

Let us look at the creation of a source/sink queue for an entity type. Since
Customer' is a temporary entity in the Launderette model, we can create a source/sink
queue for this entity type. Click at the 'Source' field in the entity card of the
'Customer', type 'outside' in the dialogue box and click 'OK'. A new card in the
Queue stack called 'outside' will be created. The word 'outside' will appear in the
Queues Involved' table in the 'Customer' entity card. To go to a queue card from the

Entity stack, just click at its corresponding name in the 'Queues Involved' table. Figure

Appendix E. How to use HyperSim 188

E.3a and E.3b shows the queue card 'outside' and the entity card 'Customer' after a

source/sink queue has been created.

!

Figure E.3a. The Queue card for sourcelsink queue 'outside’ for entity 'Customer

Type: Source

QUEUE ; outs ide Customer DiscAfcie: FIFO
From :
QLengtti Cell Uidtti, Base Ualue
HISTOGRAMS QTime : Cell Uidth, Base Ualue
Time Serl eg . o interval, Min, Max & ==
Attribute Index Condition Assignment

Launderette

Figure EJb. The Entitv card 'Customer’ after a sourcelsink queue is created

2 Source Queue : [outside Pattern : 12 | Q

TY: Customer Facility Queue : Mone

Attributes Life Cycle of Entity Activities Involved Order Mn.Max

Queues Involved

outs ide

Launderette

Appendix E. How to use HyperSim 189

Similarly, a facility queue can be created for a facility entity, for example, the

Door, by clicking at the 'Facility queue' field in the entity card of the 'Door".

E.3. Selecting an Icon for an Entity type

By clicking the 'Gotolcon' button at the bottom of the card, HyperSim will take
the user to the Icon stack. The Icon stack is shown in figure E.4a. The user can either
create a new icon or edit an existing icon in any one of the 135 rectangles in an icon
card. To select an icon, make sure the name of the entity in the 'Entity' field is the one
you want the selected icon to be transported to. Click at the 'Select Icon' button and
click anywhere inside the rectangle where the selected icon is enclosed by. The user
will then be taken back to the corresponding entity card in the Entity stack with the
selected icon pasted onto the top-right rectangle in the card. Figure E.4b shows how the

entity card for 'Customer' after an icon has been selected from the Icon stack.

Figure EAa. Selecting an Icon for Entity 'Customer’ in the Launderette model

Lindenette rtly: Cuatome r 3 I
u
t T i (1] » A -m- . a r~ 6a

i . 1 gL+ 4 U Hi A
S A T TT S a |U| \%
1=A
tf % t 0 o« ¢ fffl A 1 A
Ji g T

Appendix E. How to use HyperSim 190

Figure EAb. The Entit\ Card 'Customer after an Icon has been selected

. 2 Source Queue : |outside | Pattern : 12 | wl
ENIHY: Customer Facility Queue : [None Number : “
Attributes Life Cycle of Entity Activities Involved Order Mn,Max

Queues involved

outs ide

Launderette

E.4. Creating Activities

An activity can be created anywhere in the system if there is a 'NewActivity'
button in the stack in which the user is working with. To create a new activity, click the
"NewActivity' button, type the name of the new activity in the dialogue box and click
'OK'. A new card in the Activity Stack will be created where the user can enter any
relevant information about the new activity. Only if the user creates an activity in the
ACD stack will HyperSim go back to the ACD stack after an activity is created. This

enables the user to draw the complete ACD before entering information for an activity.

For example, activity 'Arrive' can be created by clicking the 'NewActivity'
button, type 'Arrive' and click 'OK'. An activity card called 'Arrive' will be created.

Figure E.5 shows how to create an activity 'Arrive’ for the Launderette model.

Appendix E. How to use HyperSim 191

The formula of the activity time can entered in the 'Duration' field. If the user
clicks at the word 'Duration', a table containing all the distribution formulae will
appear. The user can select any one of them by clicking at the appropriate line in the
table and then enter the required parameters. Attributes can be evaluated in the Activity

stack (see following section Creating and Assigning Attributes).

Figure E5. Creating activity 'Arrive'in the Launderette model

ACTIVITY Negexp(10,4)
Entity Min"Max FromQueue Condition
1 Attribute Index Condition Assignment
........................... Vi Seesessssseesessssttesettstasttittrtsatatatetnstatetaanttrannns
Launderette T m p 1

E.5. Drawing Life Cycles of Entities

HyperSim offers the user three ways of specifying the model logic. Firstly, by
entering the life cycle of individual entity types in the Entity stack. Secondly, by
selecting entity types that are involved in an activity in the Activity stack, and finally by
drawing an activity cycle diagram in the ACD stack. Queues are automated in the first
and the last method of specifying whereas in the second method, the user has to enter
the name of the queues manually. The author of HyperSim is currently working on total

flexibility among these three methods of specification, i.e. allowing the user to specify

Appendix E. How to use HyperSim 192

a model by any combination of the three methods described. Meanwhile, any one
method used to define the model logic will automatically update the corresponding

information in different stacks.

In this section, we assumed that the following entity types for the Launderette
model have been created - System, Customer, Door, Washing Machine, Drier and
Basket. We also assume that activities - Arrive, LoadWash, UnLoadWash, Transport,
LoadDrier and Dry have been created. However, it should be pointed out that
HyperSim allows the user to add new entity types or new activities after part of or all of

the entities' life cycles is drawn.

E.5.1. Using the Entity Stack

This is the simplest method of all, but is only appropriate for simple simulation
models where the life cycle of individual entity types can easily be identified. This
method does not allow the user to see an overall view of the model during the

construction of the model logic.

For ekample, let us define the life cycle of entity type '‘Customer'. From the
activity cycle diagram of the Launderette (see figure 1.5) the order of activities for a
customer is - 'Arrive’, 'LoadWash', 'UnLoadWash', 'Transport', 'LoadDrier' and
Dry'. To enter this cycle is simple. Click once at the word 'Activities Involved' in the
'Activities Involved' table and select 'Arrive' from the activity list table. The word
‘Arrive' will then appear in the first line of the 'Activities Involved' table with '1' and
'1,1' in the same line under field 'Ordcr; (order of the activity) and 'Min,Max’ (the
minimum and maximum number of entities of that entity type required for the activity)
respectively. Similarly, activity '‘LoadWash' can be added to the 'Activities Involved'
table. When activity 'LoadWash' is added, a queue 'ArrCusLoa’ connecting 'Arrive'

and 'LoadWash' is automatically created for 'Customer'. (The default name of the

Appendix E. How to use HyperSim 193

queue is set by combining the first three characters of the first activity name, the first
three characters of the entity name, and the first three characters of the second activity
name.) This queue is added to the Queues Involved' table in the entity card of the
customer. Finally when activity 'UnLoadWash* is added, a queue 'LoaCusUnl'
connects LoadWash' and 'UnLoadWash'. Similarly, add the rest of the activities in the

life cycle. To indicate that the cycle is completed, select 'Arrive' again.

On completion of the life cycle of an entity, click at the Life Cycle of Entity'
button. A life cycle diagram of the 'Customer' is drawn. A conditional path for an
entity type can be specified by selecting the 'Conditional Arrow' button (an arrow with
a box in the centre), click anywhere inside the activity rectangle which the conditional
path starts from and then click anywhere inside the queue where the path goes to. The
user will then be asked to enter the condition for the entity to go from the original
activity 'Drink' to the destination queue. After the user types in the condition and clicks
'OK, the conditional path will be drawn in the life cycle diagram for the entity. Figure

E.6 shows the completed entity card for entity type 'Customer'.

Figure E.6. The Entity card 'Customer’

Source : (outside | Pettem : (2 | [77]
ENITIY: Customer Common Queue : None Number : «
Attributes Life Cycle of Entity Activities Involved Order Mn.Mex
Rrrive
ILoaduash * """cusLoc Rrrive LoadUash
UnLoadUash
LoaCusUnL outside Transport
Queues Involved LoadDr ier
outs ide UnLoadUash Dry
flrrCusLoo Rrrive
LoaCusUnL UnLCusTra LoaCusDry
UnLCusTro
TroCusLoo Transport LoadDrler
LoaCusDry
TraCuslLoa
Launderette

Appendix E. How to use HyperSim 194

The life cycle for a facility entity can be defined in a similar manner except that
the user does not have to close the cycle by selecting the starting activity again. All he
has to do is to select the activities that the facility entity are involved in and when
finished, click the 'Life Cycle of Entity' button. However, the user has to define a

facility queue before the life cycle is defined.

Information of this specification of life cycles of entities is updated in the
‘Entities Involved' table in the Activity stack. The user can re-specify conditions in the

'Condition' field of a path in the corresponding row.

E.5.2. Using the Activity Stack

This method allows the user to define the model logic by selecting the entities
that are involved in each activity. Again, this method does not allow the user to obtain

an overview of the model during the construction of the model logic.

For example, let us define the activity 'Arrive’ which takes place when there is a
customer in the source/sink queue 'outside’ and a door in the queue 'didle’. By clicking
at the word 'Entities Involved', the user can select the entity type 'Customer’ from the
entity list table. He will then be asked to enter the name of the queue where the
customer comes from (queue in) before 'Arrive' begins and the name of the queue
where the customer goes to (queue out) after commencing 'Arrive'. In the 'queue in
and queue out dialogue box', 'outside’ appears as the queue in (since 'Arrive' is the
first activity that a customer is involved in) and 'newqueue’ appears as the queue out.
The user must type in a name to replace ‘newqueue’. If the user types 'wait', then a
queue card called 'wait' will be generated. The user can continue to select the facility
entity type 'Door’ for activity 'Arrive'. There is no need to specify queue in and queue
out for 'Door’ since both queues are assigned to 'didle' by default. Figure E.7 shows

the completed activity card for activity 'Arrive'.

Appendix E. How to use HyperSim 195

Fjgur¢ EJ, Thg Actmfy ¢grd 'Arrjve’

ACTivnY : flrriue Negexp(10,4)
Entity Min,Max RomQueue Condition ToQueue
Customer 1J outs ide de f ddshq.eeennennnnn..
Door wdddleininennnnne def didle .eveeeenes
Attribute Index Condition Assignment

& o jzr

In order to help the user keep track of the queues associated with an activity for
an entity type, the default queue in for an activity is set to be the queue out from the
previous activity which the entity is involved in. For example, if activity 'LoadWash' is
defined next and entity 'Customer' is selected, then the default queue in would be

'washq'.

E.5.3. Using the ACD Stack

This method allows the user to build up the model logic with an overall view.
There are three types of objects that can be drawn inside the drawing area - rectangles
(activities), circles (queues) or straight lines (life paths of entities). Selecting an object
in the drawing area can be done by clicking anywhere inside the object. The ACD stack

contains an iconic menu which aids the user in drawing an ACD.

Appendix E. How to use HyperSim 196

Displaying Activities

The user can either select an activity to be placed (using the 'Select Display
Activity' button) or display all the activities (using the 'Display All Activities' button)
in the drawing area. Objects that have been placed can be moved around. For example,
to move activity 'UnLoadDry' further to the right can be done by first clicking the
vertical 'Activity' button, select the activity "UnLoadDry' and finally by clicking at the

final position where you want the activity to be placed.

Entering Information for Activities and Queues

Each of the displayed activity rectangles is linked with an activity card in the
Activity stack. The user can go to the appropriate activity card to enter information by
first clicking at the 'Activity Information' button and then selecting the desired activity.
Similarly, each of the displayed queue circles is linked with a queue card in the Queue
stack. The user can go to the appropriate queue card to enter information by first

clicking at the 'Queue Information' button and then selecting the desired queue.

Drawing Life Paths for an Entity type

Before drawing life paths for an entity, an entity type must be selected by first
clicking at the 'Select Entity' button and then selecting the appropriate entity type from

the entity list table.

Drawing a life cycle for a facility entity is simple. For example, to define the life
cycle for the entity type Door’, select the 'Facility Path' button. First click anywhere in
the drawing area where you want the facility queue for 'Door’ - 'didle’ to be placed.

The queue 'didle’ will then be drawn automatically. If however the user has forgotten

Appendix E. How to use HyperSim 197

to define a facility queue for 'Door' and has selected the 'Facility Path' button, he will
be prompted for the name of the facility queue. If he types 'didle' and clicks 'OK', a
queue card called 'didle’ will be created. The user can then select activity 'Arrive’. Two
paths - one going from 'didle' to 'Arrive' and one from 'Arrive' to 'didle' are then
drawn. If there is more than one activity involved for the facility entity, just select the
Facility Path' button again and click at another activity in which the entity is involved

in. The paths will be automatically drawn.

Figure E.8. The ACD card for the Launderette Model

DooFa
ftrrCusLoa firr ive -louts ide
LoadUash
O LoaUasUnl LoaCusUnl UnlUasLoa LoaDriDry LoaCusDry DryDriLoa
v/
UnLoadUash LoaBasUnl LoadDrier
UniCusTra <ATransport * »TraCusLoa
UniBasTra rTraBasLoa
Launderette fiJHi® Current Entity : Door

Drawing life cycles for temporary and permanent entities is the same except that
the source/sink queue for a temporary entity takes the shape of an overlapping circle.
For example, to draw the life cycle of the entity type 'Customer’, first select the 'Path’
button and click anywhere in the drawing area where you want the queue 'outside' to
be placed. The queue will then be automatically drawn. The user can then select activity
'Arrive’. A path is drawn from 'outside' to 'Arrive. The life cycle can be drawn
continually by selecting activity 'LoadWash'. A queue 'AriCusLoa' which links

Arrive' and 'LoadWash' for 'Customer' is automatically created. Similarly, the queue

Appendix E. How to use HyperSim 198

'"LoaCusUnl' is created when 'UnLoadWash' is selected next. Similarly, the rest of the
activities can be selected by the same manner. Finally, select activity 'Arrive' so as to
complete the cycle. The cycle does not have to be completed all in one go. The user can
draw paths at different times during the construction of the model logic. Conditional
paths can be added by selecting the 'Conditional Path' button which works in the same
way as described in the first method of defining the model logic by using the Entity

stack. Figure E.8 shows the complete activity cycle diagram for the Launderette model.

E.6. Creating and Assigning Attributes

An attribute can only be created inside the Entity stack. To create a new
attribute, click the word 'Attribute' at the top of the attribute table in an entity card, type
in the name and click 'OK'. An attribute card will be created in the Attribute stack.
Figure E.9a and E.9b shows the attribute card 'cusatt' for the entity type 'Customer’

and the entity card 'Customer' after the attribute has been specified respectively.

Fjgwe¢ E,9a, ThE Aurlbm Card Vum f for mity

ATIRIBU :|cu8Qtt Customer Number : -
Index Location Condition Fonnuia
Index Name Cell Width, Base Value
HISTOGRAMS
Launderette

Appendix E. How to use HyperSim 199

Figure E.9b. The Entitv Card 'Customer' after an attribute has been created

2 Source Queue : outside
ENTTIY: Customer -
Fecility Queue : None

Attributes Life Cycle of Entity
cusatt

Activities involved Order Mn.Max

Queues involved

outs ide

Launderette

Figure E1O. Assignment of Attribute 'cusatt' in Activity 'Arrive’

ACTMIY: flrrive DtrzAon; Negexp(10,4)

Fntity Min,Mux FromQueue Condition ToQueue
Customer 17J ... outs ide de.fenen washq

Door d,1..... didle.. des Ire>0 didle
Attribute Index Condition Assignment

cusatt 1 def 1+3*Rnd(2)

Launderette

Appendix E. How to use HyperSim 200

An attribute can be evaluated either in an activity or in a queue. To assign an
attribute in an activity, go to the appropriate activity card. Click once at the word
'Attribute’ and select an attribute from the attribute list table by clicking at its name.
The user will be prompted for the value of the argument of the attribute. After typing in
the value and click 'OK', HyperSim will set the condition of the assignment to 'def’,

i.e. default, and the user can type in the formula of the assignment.

For example, if the attribute 'cusatt' is evaluated in activity 'Arrive', click once
at the word 'Attribute’, enter '1' for the argument value and click 'OK'. Type in
'1+4*Rnd(2)' in the assignment field. Figure E.10 shows how to assign attribute
'desire’ in activity 'Arrive'. Similarly, attributes can be assigned in the same way in a

queue.

E.7. Generating a Simulation Program

After the specification is completed, the user can return to the model card
'Launderette’ and select the 'Code’ button. The system will take the user to the Code
stack where a simulation program can be generated. For example, a program for the
Launderette model can be generated by clicking the 'Generate' button on the card. Lines
of code will appear in the scrolling field on the card. Figure E.11 shows the appearance
of the Launderette code card in the Code stack. Modifications of code can be done by
editing the program text in the card. The program can also be exported as a text file by
using the 'Export’ button. The user can go directly into Turbo Pascal by clicking at the
"Turbo' button. However, he should make sure that there is a copy of Turbo Pascal

available on the hard disk of the machine.

To run the simulation program, a copy of the Turbo Pascal application and the

simulation library -MacSim.Lib should be available on the Macintosh.

Appendix E. How to use HyperSim 201

Figure E.li. The Code Stack ofthe Launderette Model

Program Launderette;
{$U MacSim.Lib)
Uses
{$S MGIOb) MemTypes,Qu ickdratu, OSIntf,ToolIntf,PackIntf,MSimGlobal
($S MSamp) MSiffiSample,
<$S MMode) MSimModel,
<$S MOutp) MSimOutput;

Var
System,Customer,UashMac,Basket,Drier,Door ; entity;
flrrive,LoadUash,UnLoadUash, Transport,LoadDrier,Dry ; activity;
flrrCusLoa, LoaCusUnL,UnLCusTra, TraCusLoa,LoaCusDry, DooFoc ; queue;
outside : source;

Procedure BuildModel;
begin
MakeEntCSystemEnt,‘SystemEnt’ >;
MakeEntCCustomer,'"Customer’);
MakeEnt(UashMac,'UashMac'>;
MakeEnt(Basket, Basket');
MakeEntCDrier,'Drier'>;
MakeEntCDoor,'Door');
MakeflctCflrrive,'flrrive');
Makeflct<LoadUash,'LoadUash' >; 0

Appendix E. How to use HyperSim 202

APPENDIX F

USING MACGRASE

F.1. DRAWING THE BACKGROUND PICTURE

F.2. CREATING AN ENTITY TYPE

F.3. CREATING AN ACTIVITY

F.4. CREATING AN ATTRIBUTE

F.5. FORMULATING THE MODEL LOGIC

F.5.1.
F.5.2.
F.5.3.
F.54.
F.5.5.

F.6. GENERATING AN ACTIVITY CYCLE DIAGRAM

F.7. GENERATING A SIMULATION PROGRAM

Duplicating Entity Icons
Specifying an Activity
Attribute Assignments
Editing Queue Information

Adding a Conditional Path

F.8. RUNNING THE SIMULATION MODEL

F.8.1.
F.8.2.
F.8.3.

Visual Run
Text Run

Screen Run

F.9. DISPLAYING RESULTS

F.10. THE MENU REFERENCE

Appendix F. Using MacGraSE

203

This appendix shows how to use the Macintosh application MacGraSE with an
illustrative example using the steelworks model. Section F.1 shows how a background
picture can be drawn in the application. The procedures in creating an entity type, an
activity, and an attribute are given in sections F.2, F.3, and F.4 respectively. Section
F.5 shows how to specify information for a generated queue. The generation of an
activity cycle diagram and a simulation program is discussed in sections F.6 and F.7

respectively. Section F.8 gives a brief description in how to run the simulation model.

F.1. Drawing a Background Picture

The drawing of a background picture is managed by using the palette buttons

inside the tool box window. Figure F.l summarises the functions of the buttons.

Figure F.l. The Palette Buttons in the Tool Box Window

a A

e
Selecting Pencil Eraser Brush Spray Fill area Text
an object drawing
0 O 0 a
O
Straight Rectangle Ovals Curved Hexagon Polygon
lines rectangle object

For example, to draw a rectangle on the screen to indicate the production area of
the blast furnace, we first set the condition of the drawing pen. This can be done by
selecting the line size in the line size dialogue box (figure F.2), then selecting the pen
pattern in the line pattern dialogue box (figure F.3), and finally selecting the fill pattern
in the fill pattern dialogue box (figure F.4). To draw a rectangle on the screen, select
the 'Rectangle’ button in the tool box window. Click at the desired position of the top-
left corner of the rectangle, then hold the mouse button down and drag to the desired

position of the bottom-right corner of the rectangle. Release the mouse button. A

Appendix F. Using MacGraSE 204

rectangle then appears on screen using the current drawing pen. Figure F.5 shows this
drawing process. Other objects can be drawn in a similar manner. A complete

background diagram for the steelworks model is shown in figure F.6.

Figur¢ F,2, The¢ Ljng Dlal¢gm Bex

Line Size

Cancel A

Figure F3, The Line Pattern Dialo}"ue Box

Line Pattern

Figure FA. The Fill Pattern Dialogue Box

Fill Pattern

o]
o]

m
0

[}

/]
m
(3
nt

O v =
=
=

tje
[E—

Cancel OK
1 1

Appendix F. Using MacGraSE 205

Figure F.5. Drawing a Rectangle on the screen

Click at the desired position

of the top-left corner of the rectangle

v,

'
X'XX
XX
Drag the mouse to the desired
position of the bottom-right n
corner of the rectangle.

Release the mouse.

Figure F.6. A Background Diagram of the Steelworks Model

Steel Furnaces
Blast Furnace melting area

Crane area

Railway line for torpedo ?

Pit area

F.2. Creating an Entity Type

To create a new entity type, select the New Entity command from the Model
menu. The entity dialogue box is shown in figure F.7. For example, to create the entity
type blast furnace in the steelworks model, enter 'BLASTF' in the name field and '2' in

the number field. Since blast furnace is a permanent entity in the model, the radio

Appendix F. Using MacGraSE 206

button 'permanent' should be selected. Once the 'OK' button is clicked, the data for the
entity type 'BLASTF' is added to the model. The name 'BLASTF' is appended to the
Entity submenu in the Model menu. Figure F.8 shows the appearance of the Entity
submenu after all the steelworks entity types have been added to the model. The
information for each entity type can be reviewed and edited by selecting the appropriate

entity in the Entity submenu.

Figure F.7. Creating the Entitv Type 'BLASTF'

Entity Information

Name : Blastf Number :
Display : ® One O All Icon Attribute
0)
Type : (*) Permanent
O Temporary
O Facility Mobile 0)
Cancel Life Cycle... Icon... 1 OK 1

Figure F.8. The Entitv Menu of the Steelworks Model

Model Draiu Options Run Out

Nem Entity... §€1 ntitled) M

Neiu Rctiuity... §§2

Neio Attribute... §€3

Entity BlastF

Ad linty Torpedo

Attribute Crane
Pit

Sbdiu Mode... SteelF

Shorn Paths
Animation

ACD...

The first icon of an entity type is always automatically created on screen when
the entity type is created. If an icon is not selected for the entity type, an empty square

frame with an index o ff will appear at the top-left hand corner of the main window.

Appendix F. Using MacGraSE 207

To select an icon that represents the entity type, click at the 'Icon' button inside the
entity dialogue box. Figure F.9 shows the selection of an icon for the entity type
'TORPEDO' in the steelworks model. The user can select an icon by clicking at the

appropriate choice displayed in the icon palette.

Figure F.9, Selecting an Icon for the entitv type TORPEDO'

9011 U
A N A K
A+ @%
Cancel More] [None] OK

Once the OK' button inside the icon dialogue box is clicked, the entity icon will
appear at the top-left hand corner of the main window (figure F.IO) for the newly
created entity type. An icon can be changed in the same manner, and any associated
icons on the screen belonging to the entity type will be redrawn using the newly

selected icon.

Figure FAQ, The Main Window - gfter an icon is selectedfor TORPEDO'

(untitled)

Appendix F. Using MacGraSE 208

F.3. Creating an Activity

To create an activity in the model, select the New Activity command from the
Model menu. The activity dialogue box is shown in figure F.1 1. For example, to create
an activity BLOW which represents the process of emptying the molten iron produced
in the blast furnace into the torpedoes in the model, enter BLOW in the name field and
any comments in the comment field. The activity will be added to the model if the user
clicks the 'OK' button in the dialogue box. The name of the activity is then added to the
Activity submenu in the Model menu so that the user can review and edit the
information by selecting the appropriate activity in the menu. Figure F.12 shows the

appearance of the Activity menu when all the activities are defined in the model.

Figure F.l11. Creating the Activitv 'BLOW'
Activity Information
Name : Bioiu emtpy molten iron from blastf to torpedoj
Duration : 10

Entities Inuolued

Assigned Attributes :

o

[Cancel] [OurationTT] [Code...] [Edit Info...] [Picture..? [[OK |

If the duration of an activity is a constant, the value can be added directly to the
duration field. The duration formula can also be entered via the 'Duration' button in the
activity dialogue box. The duration dialogue box is shown in figure F.13. For example,
to specify the duration formula for activity 'MELT, which is normally distributed with

a mean of 110 and standard deviation of 15, the user clicks at the cell labelled

Appendix F. Using MacGraSE 209

‘Normal(mean, sd, seed)' in the distribution table. The dialogue box will prompt the
user for the corresponding parameters. The duration formula is recorded when the user

clicks the 'OK' button in the dialogue box.

Figure F.12. The Activitv Menu of the Steelworks Model

gggigg Dram Optionsi Run Oi

New Entity... 301 ntitled) 1

New Rctiuity... 9€2

Nem Attribute... §€3

lint ity L2

m m m “m EEE a Mel

[Utril)uti> > BloLu
Return

Sham Mode... Going

Shorn Paths Fill
Trauel

Animation Loadin

ACD... Refine

Figure F.13. Entering the Duration formula for activity '"MELT

Functions : 0] mean ° 110
Bernoulll(pr,k,$eed)
Binomlal(pr,k,seed) s.d. -
Erlang(a,mean,seed)
Lognormal(mean,sd,seed)
NegeKp(mean,seed)
Notmallmean.sd,seed)
Pol$son(mean,$eed) seed 1..20 :

Duration : Normald 10,15,7)
Louier limit ; 0 Upper limit : o Line graph

Retiuity : Melt [Add Distribution] [Cancel] | OK \

After an activity has been successfully added to the model, a round-cornered
rectangle labelled with the name of the activity above the rectangle will appear at the
top-left hand corner of the main window. Figure F.14 shows the main window after

the activity 'BLOW has been added to the model.

Appendix F. Using MacGraSE 210

Figure F.14. The Main Window - after activitv 'BLOW is created

(untitled)

F.4. Creating an Attribute

A new attribute can be created by selecting the New Attribute command in the
Model menu. For example, to create an attribute 'BCAST' (i.e. the amount of molten
iron that the blast furnace produced in activity 'MELT), enter 'BCAST in the name
field and click the 'OK' button. A histogram can be specified in the attribute dialogue
box (figure F.15) by clicking at the histogram check box. The attribute BCAST is
added to the model and the name of the attribute is appended to the Attribute submenu
in the Model menu. Figure F .16 shows the Attribute menu when attributes 'BCAST
and CCAST are added. The user can review and edit attribute information by selecting

the appropriate item in the Attribute submenu.

Figure F.15. Creating an Attribute 'BCAST

Attribute Information

Name : Beast Entity : None o Global attribute
Evaluations :
O
0]
o Histogram cell midth : base ualue :
Cancel Edit Info.Z] (Code] \ OK

Appendix F. Using MacGraSE 211

Figure F.16. The Attribute Menu ofthe Steelworks Model

Model Dram

Options Run (

Nem Entity... ntitled)

Nem Rctiuity.. §€2

Neui Attribute... §€3

Cnlily

Rctiuity r

Attribute Beast
CCast

Sbon» Mode,
Shorn Paths

Animation
ACD...

After an attribute is created, its first attribute cloud appears in the top-left hand

corner of the main window as shown in figure F.1 7. A newly created entity attribute is

not linked to an entity in the model. The user has to identify the relationship by

selecting the attribute cloud, and dragging the mouse button to the appropriate entity

icon on the screen. When the user releases the mouse, a line will be drawn between the

attribute cloud and the entity icon. Similarly, a link can be established between a system

attribute and an activity in the same manner.

Figure F.17. The Main Window - after the attribute 'BCAST is created

least

F.5. Formulating the Model Logic

(untitled)

The formulating mechanism of the system is manipulated by using the six

Appendix F. Using MacGraSE

212

palette buttons inside the mode box window of the application. Figure F .18 shows the

functions of the buttons used in modelling.
Figure F.18. The Palette Buttons inside the Mode Box Window

A m ©

Select Entity Duplicate Entity Select Activity Select Attribute Select queue Conditional path

F.5.1. Duplicating Entitv Icons

The life cycle of an entity type is depicted by using chains of entity icons created
in the main window. These entity icons are indexed. The user can either create a ghost
icon from an existing icon within the entity icon chain, or delete an existing ghost icon

from the chain. Each entity icon on screen should be placed inside an activity.

The ‘Select entity’ button in the mode box window is used to move the position
of the entity icons on screen. Once the button is clicked, the application will redraw the
screen using square frames and indices for each individual entity icon. The user can
select an entity icon by clicking anywhere within its frame and moving the icon to the
desired position. To duplicate an entity icon, the ‘Duplicate entity’ button is used.

Figure F.19 shows how to duplicate icons for the entity type ‘TORPEDO".

Figure F.19. Duplicating entitv icons for the entitv type TORPEDO’

Release the
mouse button

Click at the source icon, Similarly, to duplicate an icon
hold the mouse button down between 1 and 3, just click on
and move the mouse to the icon 1, move to the destination
destination position of the position of the duplicated icon,
duplicated icon. and release the mouse button.

The new icon will have an index
of 2 and the icon that had an
index of 2 will now become 3.

Appendix F. Using MacGraSE 213

A ghost entity icon can be deleted by moving the entity icon to be deleted
towards its proceeding member in the chain (figure F.20). For example, to delete the
third torpedo icon in its entity chain, first click at the entity icon and then drag the
mouse towards the position of the second torpedo icon. The third torpedo icon will then

be deleted and the indices of all its succeeding members will be updated.

Figure F20. Deleting an entitv icon from its entitv chain

Release

mouse

button.
Click at the third icon, drag the mouse until the The original Icon with an Index 3' disappears.
arrow is Inside the (rame of the second Icon. The Indices of the succeeding Icons are updated.

F.5.2. Specifying an Activity

There are two ways of specifying the entities that are involved in an activity :
either by moving the entity icons into the activity rectangle (figure F.21a) or by moving

the activity rectangle over the icons (figure F.21b).

Figure F.2la. Specifying activity FILL’ in the Steelworks Model

Blo1n
Fi Il
1
Fill
Going
Activity Fill involves the
Click at the torpedo icon, hold the co-operation of the entity
mouse button until it is inside torpedo, pit and crane.

the rectangle of activity Fill.
Release the mouse button.
Similarly for the crane icon and
the pit icon.

Appendix F. Using MacGraSE 214

Figure F.21b. Specifying activity BLOW’ in the Steelworks Model

Bloi
riel®

Initial position of
of tfie rectangle
of activity Blow.

Drag tfie mouse until
it is inside tfie frame
of tfie second blast

furnace icon.

1

BIOI

Tfie Blow activity rectangle
is stretcfied to a bigger size

BIO

Click at tfie activity Blow
rectangle and drag tfie
mouse until it is inside tfie
torpedo icon.

Bl

After resizing tfie
activity rectangle

. and repositioning

tfie entity icons.

Blow

1

Y

The status of the model picture is constantly updated after each user’s action so

that information about an activity or an entity can be instantly reviewed. For example,

figure F.22a and F.22b show the Dialogue box of activity Blow before and after the

torpedo entity is added to the activity.

Figure F.22a. The Blow Activitv Dialogue Box - before torpedo is added

Name : Bloiu

Duration : 10

Entities inuolued :

Blastf #1,1 # nelBloBlo

Assigned Attributes :

Cancel) [Duration...)

Appendix F. Using MacGraSE

[Comment!

¢ BloBloMe

O

[code...] [Edit Info...] [Picture...] [[*"_OK"]j

215

Figure F.22b. The Blow Activity Dialogue Box - after torpedo is added

Activity Information

Name : Bloiu [Comment]

Duration : 10

Entities inuolued :

Blast f *1,1 # MelBloBlo * BloBloMel 0
Torpedo *1,1 ¢ GolTorBlo < BloTorGoi

Assigned Attributes :

Cancel] [Duration...] [Code...] [Edit Info...] [Picture...] [[OK |

F.5.3. Attribute Assignments

A newly created entity attribute should be linked to an entity and a system
attribute should be linked to an activity. Figure F.23 shows how to link the attribute
'BCAST' to the entity blast furnace. Once the attribute is linked to an entity or an
activity, the user can enter the evaluation formula by double-clicking at the attribute

cloud on the screen. The attribute evaluation Dialogue box is shown in figure F.24.

Figure F.23. Linking Attribute 'BCAST to Entity 'BLASTF"'

leas
Melt Melt Melt

The right-hand corner index of the cloud A line is drawn between the N.B. The right-hand corner
is '0' as it is not placed in an activity. beast attribute cloud and the index of the Beast attribute
Click at the Beast attribute cloud, blast furnace icon. cloud is 'T since it is the
drag the mouse until it is inside Click at the cloud and move it first attribute evaluation
the frame of the blast furnace icon. to the right hand side of the inside the activity Melt.
Release the mouse button. fvlelt activity rectangle.

Appendix F. Using MacGraSE 216

Figure F.24. The Attribute Evaluation Dialogue Box for Attribute 'BCAST

Attribute : Beast Rctiuity : Melt IndeK : O
Comparison Field : >< =
0) o Eualuated at : ® Start O End
> Ualue :
>= . .
Condition :

<

<= 9
Formulation

mean : 380 s.d. : 50 $: 9
Bernoulli(pr,k,seed)
BInomial(pr,k,seed) Evaluation
Eriang(a,m,seed)

Nirmal(380,50,9)

Lognormal(mean,sd,seed)

NegeKp(mean,seed)

Notmallmean.sd,seed I f Cancel OK

If there is more than one evaluation of the attribute either among the other
activities, or within the same activity in the model, cloud images can be duplicated for
the attribute type. For example, figure F.25 shows how an attribute cloud of a system
attribute TOTAL', which is evaluated at both activities 'MELT' and 'BLOW, can be

duplicated.

Figure F.25. Duplicating an Attribute Cloud

Click at the Total attribute cloud
'"totals Initial position of the attribute cloud drag the mouse until it is inside

for the system attribute Total. the Blow activity

Click at the attribute cloud Total, rectangl(?.
drag the mouse until Mel t Blp»
It is inside the Melt e .
activity rectangle. . Qim[l
.o Bio*
usiJL d
Q The first attribute cloud of Total is linked to

activity Melt. Notice that the right-hand corner
index of the cloud is 2' since it is the second
attribute evaluation within the activity Melt.

The duplicate attribute cloud of
system attribute Total has a
left-hand corner index of '2' and a
g right-hand corner index of 'V (first
evaluation inside activity Blow).

Appendix F. Using MacGraSE 217

Like the duplication of entity icons mechanism, a cloud object in an attribute
cloud chain can be deleted in the same manner. For example, if the third cloud member
is to be deleted, click at this cloud, drag the mouse until it is inside the second cloud of
the attribute chain, and then release the mouse. The original cloud with a left-hand
corner index of '3' will disappear and the indices of its succeeding members in the

attribute cloud chain will be updated.

F.5.4 Specifying Queue Information

All the queues are generated automatically by the MacGraSE application. They
are initially invisible to the user. To see the picture with queues, click at the 'Select
queue' button in the mode box window. The application will then redraw the pictorial
model with queues between entity icons. Figure F.26 shows the picture model when
the 'Select queue' button inside the mode box window is selected after the life cycle of

the torpedo is completed.

Figure F.26. A Model Picture with Queues

(untitled) 101

Return

Appendix F. Using MacGraSE 218

To edit information for a queue, just double-click at its appropriate location in
the model picture. The queue Dialogue box is shown in figure F.27. The user can
change the default name of the queue in the name field, enter the number of entities in
the queue in the number field, and create histograms and time series for the queue by
clicking the appropriate check box inside the queue Dialogue. Any histograms or time

series specified are appended to the Output menu.

Figure F.28 shows the appearance of the Output menu after a queue length
histogram, a queuing time histogram, and a time series histogram have been created for
queue 'RETTORBLO'. This Output menu allows the user to select the results to be

reviewed after completing a simulation run.
Egur"E27, The Dialogue Box

Name : RetTorBlo Entity : Torpedo o Source/Sink

o Uisible
Number : To : Bloiu
o Shorn icon

From : Return

Histograms :
E 0 Length tbIoLugl cell width : base ualue : 0

E QTime tbiomqt cell width ; base ualue :

Time Series :

E T-Series tblomtsj Plot: Bar O Line O Scatter

VK J

[Cancel J

~.

Figure F.28. The Output Menu

Output

Rctiuity Count Table
Utilisation Time Table
Histogramitblowql
Histogram:tblowqt
TSeriesitblowts

Appendix F. Using MacGraSE 219

F.5.5. Adding a Conditional Path

A conditional path for an entity life cycle can be created by using the
'Conditional path' button inside the mode box window. Once the button is selected, the
system will redraw the model picture with queues between entity icons. To create a
conditional path, click at the entity icon from which the path originate and then drag the
mouse into the destination queue. The system will redraw the life cycle with the new
conditional path (a line with a small square in the middle). To enter the condition for the

path, click at the small square to invoke the condition dialogue box (figure F.30).

Figure F29. Creating a Conditional Path

Return
Drag the mouse to the ... Click at the entity icon from which
destination queue and the conditional path originates.
release the mouse.
Return
\ []

A new path is drawn with a small square
along its line indicating it is a conditional path.

Figure F30, The Condition Dialogue Box

Entity : Torpedo (S)FIFO OLIFO
From Rectiuity : Fill To Queue ; GoiTorFil
Comparison Field : ><=
= o Ualue :
>
<
Condition :
>
a i TCasKIOOj
Cancel Delete

Appendix F. Using MacGraSE 220

F.6. Generating an Activity Cycle Diagram

An activity cycle diagram of the model can be generated on screen by selecting
the '"ACD' command in the Model menu. Since the initial positions of the activities and
queues are set by using the corresponding locations in the model picture, overlapping
of objects often occurs for the first generated ACD. However, the objects can be easily
rearranged and the new locations are recorded. Any additional components to the model
will not affect the user-defined positions of the original existing objects. These added
components will be drawn by using their default positions and the user can reposition
them if preferred. Figures F.31a and F.31b show the original generated ACD and the

revised ACD after rearranging the objects for the steelworks model.

Apart from being a flow diagram that represents the logic of the model, the user
can also enter the information of activities and queues within the ACD. To enter the
information of an activity, double-click at the appropriate activity rectangle in the ACD.
The activity Dialogue box is then invoked and the user can edit the information of the

selected activity. Similarly, the information of a queue can be edited in the same way.

Figure F.31a. The Original Generated ACD of Steelworks

1D! (untitled)
o
[Refine]
LogSteRef
I LoadlIn 1
CT\
FilPi tFi |
Return
RetTorBTo
RInTnrPiffi
Coing Travel
GoiTorF il
E s

Appendix F. Using MacGraSE 221

Figure F.31b. The Revised ACD of Steelworks

(untitled) m
Ine
LogSteRef RefSteLoa
helB
Load In
RetTorBlo
TrgCralLoa
Return
GoiTorFi Travel

F.7. Generating a Simulation Program

Turbo Pascal is the default language. The user can select the desired language in
the Language submenu of the Run menu. To generate a simulation program, select the
Generate command in the Run menu. The application will prompt the user for the name
of the generated files and allow the user to select some options for program generation
via the generate Dialogue box (figure F.32). The program will not be generated until the

'OK' button is clicked.

Figure F32. The Generate Dialogue Box

Saue the file of the generated program a$:

Steeluiorksj

Generate Options :
o Include Graphics
n Include Screen
o Include Report

[Cancel] fl IK 1

Appendix F. Using MacGraSE 222

To see the generated program within the application, select the Show Program
command from the Run menu. The program is then displayed in the Dialogue box as

shown in figure F.33.
Figure F.33. The Show Program Dialogue Box

Program Stee Iworks;

{$U MSim.Lib)

($S+)

Uses
<$s nOlob) MemTypes,Quickdraw,0SIntf,Toollntf,MSimOlobal,
{$S MSamp) MSimSample,
{$S MMode) MSimModel,
{$S Moutp) MSimOutput,

Uor
System,Blastf,Torpedo,Pi t,Crone,Steelf : Entity;
Melt,Blow,Going,Fi Il,Return,Travel,LoadIn,Refine ; Activity,

BloBloMe;,MelBloBlo,PetTor3lo,BloTorGoi,GoiTorFIlI,F=ITorRet,F'IPitFil,L

Procedure BuildModel ; 0

Cancel] OK |

F.8. Running the Simulation Model

The MacGraSE application supports three types of simulation mn - a visual run,
a text run, and a screen run. In each case, the duration, the run-in period and the speed

can be specified.

F.8.1. Visual Run

A visual run is executed by selecting the Visual Run command from the Run
menu. The visual run Dialogue box is shown in figure F.34. The visual run can be

proceeded by selecting the Go command from the Run menu.

Appendix F. Using MacGraSE 223

Figure F,34, The Visual Run Dialogue Box

Duration : [100
Run-In Period : 0

Speed :
<) medium O sloiu O step

o Saue Report

o Saue Result

Cancel Il "K 1

The model picture of the steelworks model is shown in figure F.35. The
dynamics of the model during a simulation run is shown by displaying the start and
completion of activities at each time advance in the model picture. The start of an
activity is shown by drawing the activity rectangle with the icons of the entity types that
are involved in the activity. The number of times that the activity has started since the
beginning of the simulation run is also shown. The completion of an activity for an
entity is shown by drawing the entity icon within a circular frame at the location of the
queue where the entity enters after the activity. Lines are also drawn during a visual run

to indicate where the entity comes from and where it goes to.

Figure F35, The Visml Picture

(untitled) Hi

Refi ne

SEE
Load In
Return
Fill

SolIng Travel
0
a a

Appendix F. Using MacGraSE 224

F.8.2. Text Run

A text run is executed by selecting the Text Run command from the Run menu.
The text run Dialogue box is shown in figure F.36. The user can select the option of
displaying either a text run table, or a simulation clock during the simulation run. The

text run table is shown in figure F.37.

Figure F.36. The Text Run Dialogue Box

Duration : 100
Run-In Period : 0

Speed :
Otast (§y medium O sioii" Ostep

Options :
® Time display O Tent run table

Saue Report Untitled
Saue Result Untitled

[Cancel

Figure F,37. The Text Run Table

Time : 0
End of Actlvities Start of Activilies
Activity Count Entity Activi ty Count Entity

Mel t 1 Blastf 1

The text run table is divided into two main columns - the End of Activities
column and the Start of Activities column. Each column is then subdivided into three
subsections to display the name of the activity, the index indicating the rank of the

activity, and the name and index of the entity that is involved in the activity.

Appendix F. Using MacGraSE 225

F.8.3. Screen Run

A screen run for a predefined screen in the model is executed by selecting the
Screen Run command from the Run menu. The screen run Dialogue box is shown in
figure F.38. After setting the options in the Dialogue box, the user can proceed the
simulation run by selecting the Go command from the Run menu. Figure F.39 displays
an example of the appearance of a screen which contains a time series of a queue during

a simulation run.

Figur¢ FJ8. The “cr¢cen Run PiglogHC Bpx

Duration: [100 Run-in Period : 0

Screen :

From Time :

To Time :
Speed 0..9 :
o Saue Report
o Saue Result [Cancel]f(OK)]

Figure F.39. An Output Screen

Time : 250

TBLOUTS

900

Appendix F. Using MacGraSE 226

F.9. Displaying Results

The output results can be reviewed by selecting the menu items inside the

Output menu. Figures F.40 to F.43 show the display of some of the results after a

simulation run of 900 time units for the steelworks model.

Mel t

B 1out

Going

Fill

Return

Trave1

Load 1n

Refine

Blastf

Torpedo

Crane

Steelf

Figure FAQ, The Activity Count Chart

ACT IUITY FREQUENCY CHART

16
14
9
41
13
28
29
28
fill'.......... I 1
Figure F,41, The Entity Utilisation Chart
ENTITY UTILISATION TIME CHART
1.007
0.270
0.832
It 1 1 11rt TIrerrinrn 11 it
0.451
0.415

Appendix F. Using MacGraSE

4

(CZ~j

111

Figure F.42. The 'RETTORBLO’' Queue Length Histogram : TBLOWOL'

HISTOGRfIn : tbiovqt

Cel 1 Frequency
<0 0
0 -0 361
1 -1 313
2 -2 95
3 -3 101
4 - 4 0
5 - 5 0
6 - 6 0
7 - 7 0
8 - 8 0
9 -9 0
10 - 10 0
11 - N 0
12 - 12 0
13 - 13 0
14 - 14 0
> 14 0
Mean ; 0 926 Sum of <freq*obs>
S.d. : 0 992 Total no. of frequency

Uariance : 0 984

Figure F.43. The 'RETTORBLO' Time Series : TBLOWTS'

Interval : 2

Appendix F. Using MacGraSE

OK

228

F.I0. The Menu Reference

There are seven menus in the MacGraSE application, excluding the standard

apple desk accessories menu (#). Some of the menu items have hierarchical menus.

Figure F.44 shows the appearance of the main menu.

Figure FA4, The Main Menu ofMacGraSE

Reduce To Fit
Normal Size

Text Options...
Fill Pattern...
Line Pattern...
Line Size...
Brush Shape...

Output
Rectiuity Count Table

Tile Screens

Clock...
Model Picture...

Rctiuity Duration..

Rctiuity Counts...

Utilisation Time...
Rttributes Ualue...

Histogram...
Time Series...

Utilisation Time Table

IBM Turbo Pascal

Edit Model Draiu Options Model Oral mgriiiraB Dram Options
Neiu %N (ur finitl) Nem Entity... XI
Open... %0 Nem Rectiuity.. X2
iut #R Nem Rttribute... X3
Close 9%€uJ opy #1:
Saue #S Paste #ii lintitg | 2
Saue fls... [leur Rctiuitg >
Reuerl Selec t nil #R Rttribute >
Page Setup... Shorn Clipboard Shoiu Mode...
Print Options Picture Shom Paths
Print... Summary Oraming Size...
RCO diagram 1 Shoiu TooU. Rnimation
Quit [‘Q Screen ACD...
Report 1 Delete...
Print Rl
Biitf-.im Options Run Options Run Out Dram Options Output
Import Paint... XI Edit Report... MPUJ C
. MPIU Pascal Generate...
Preferences... Ne}]] Screen... Mac Turbo Pascal Shou» Program...
Edit Screen IBM Turbo C

Check Logic...
Model Summary.

Screen Run...
Uisual Run...
Text Run...

Go a€G
Shou' Result Iile...
Stiou' Report File...

The File menu handles all the filing procedures within the application. New is

used for creating a new MacGraSE file. Open is used for opening an existing file.

Appendix F. Using MacGraSE 229

Close is used for closing the application window. Save and Save As is used for saving
the working file. Revert allows the user to revert to the last copy of the file before any
changes is made. Page SetUp is used for setting the options of the paper size in
printing. Print Options is a hierarchical menu which allows the user to select the option
of different representations of the model to be printed. Print is used for printing the

working file. Quit is used to quit the application.

The Edit menu contains the Cut, Copy and Paste commands to aid the editing
of the background picture and textual data input. Drawing Size allows the user to select
the drawing size of the model. Delete is used for deleting the selected components of
the model. The tool box window can be hidden and shown on the screen by using the

Show Tools command.

The Model menu contains all the commands for building up a simulation
model. New components - entity, activity or attribute, can continuously be added to the
model by using the New Entity, New Activity and the New Attribute menu items
respectively. These components will be appended to the appropriate submenu (Entity,
Activity and Attribute) within the Model menu. The user can view and edit information
for each individual component by selecting the item in the submenu. Show Path allows
the user to display the path (in terms of straight lines) of the entity type thatis being
constructed on screen. ACD is used for generating an activity cycle diagram. The user
can also manipulate data via the generated ACD. Animation is used to execute an
animation run so that the user can see the actual movement of individual entities that

move inside the system during a simulation run.

The Draw menu is used to aid the drawing of the background picture.
Preferences is used for setting the appearance of the ruler and grid inside the main
window. Line Size, Line Pattefn, and Fill Pattern are used to select the pen Sizc, pen
pattern, and fill pattern of the drawing pen. The appearance of the text is set by using

the Text Options command. Import Paint allows the user to import a picture that is

Appendix F. Using MacGraSE 230

drawn in other Macintosh drawing applications.

The Options menu has two main functions. The first function is report
editing, so that the user can edit the report format to produce a desired report after a
simulation run. This is achieved by using the Edit Report command. The second
function is screen editing in which the user can create multiple output screens for a
simulation run. New Screen is used to create a new output screen in the model. Edit
Screen is used in specifying the objects inside a selected screen. The objects that can be
put in a screen are mainly the simulation clock, utilisation time table, activity count
table, histograms, time series, numerical statistics, attribute values and status of an
entity type. Tile Screens allows the user to display all the designed screen in a tiling

format on the computer desktop.

The Run menu is used for performing simulation runs on the model.
Language is a hierarchical menu which allows the user to select the language for the
generated program. Generate is used for generating a three-phase simulation program.
Show Program displays the generated program in a Dialogue box. Check Logic is used
for checking the logic of the model. A textual description of the current state of the
model can be reviewed by using the Model Summary command. There are three
options for a simulation run - Screen Run, Visual Run, and Text Run. When the
parameters inside each option are entered, the user can select the Go command to
process the simulation run. In each case, the user can select the options of saving the
result file and the report ﬁle\of a simulation run. Show Result and Show Report display

the result file and the report file in a Dialogue box respectively.

The Output menu is only appended to the menu bar when a simulation run is
executed by the user. Any specified histograms, time series or graphs are added to this
menu, so that the user can select the output to be reviewed after a simulation run. The
default setting of this menu includes the Utilisation Time Table and the Activity Count

Table.

Appendix F. Using MacGraSE 231

G.1.

G.2.

G.3.

G.4.

G.5.

G.6.

G.7.

G.8.

APPENDIX G

INSIDE MACGRASE

THE INTERFACE UNITS
THE FILE MENU UNITS
THE EDIT MENU UNITS
THE MODEL MENU UNITS
THE DRAW MENU UNITS
THE OPTIONS MENU UNITS
THE RUN MENU UNITS

THE OUTPUT MENU UNITS

Appendix G. Inside MacGraSE

232

This appendix shows the structure of the Macintosh application MacGraSE
program. MacGraSE was written in 60 units, used in conjunction with the AppMaker
library which handles most of the interface part of the application The program was
written by using the Macintosh Programming Workshop Pascal Compiler. The make
file of the MacGraSE application is shown in figure G.1.

jgure G 1. The MacGraSE M, or MPW Pas
b File: HacGraSE.make
8 Target: MacGraSE

LinkFiles = 2
ResourceDefs.p.o 2
Globals.p.o 2
ShowMode.p.o 2
ShowTools.p.o 2
Hainlindow.p.o 2
HainHenu.p.o 2
Filing.p.o 2
Edit.p.o 2
Language.p.o 2
Condition.p.o 2
NewEntity.p.o 2
MEntity.p.o 2
NewActivity.p.o 2
MActivity.p.o
MAttribute.p.o 2
RttCalculation.p.o 2
NewAttribute.p.o
Hodel .p.o 2
Draw.p.o 2
Options.p.o 2
Run.p.o 2
PrintOptions.p.o 2
Qutput.p.o 2
EditScreen.p.o 2
BrushShape.p.o 2
TextOptions.p.o 2

FillPattern.p.o
LinePattern.p.o 2
LineSize.p.o 2
Generate.p.o
DrawingSize.p.oc 2
Preferences.p.o

ScreenBRun.p.o 2
EditReport.p.o 2
HSummary.p.o 2
UisualRun.p.o 2
TextRun.p.o
NewScreen.p.o 2
Delete.p.o 2
Show.p.o 2
ImportPaint.p.o 2
Entlicon.p.o 2

Appendix G. Inside MacGraSE 233

Distributions.p.o 2
Histogram.p.o 2
TimeSeries.p.o 0
Quelnfo.p.o
ACDRect.p.o 2
ACOLine.p.o 2
ACDQue.p.o 2
Priority.p.o 2
ActDuration.p.o 2
Code.p.o 2
LifeCycle.p.o 2
ActPicture.p.o
EditActInfo.p.o 2
EditAttinfo.p.0o 2
ChecklLogic.p.o 2
ShowReport.p.o 2
Animation.p.o
Dispatcher.p.o
"{HPU}ANLibraryP:"ANLib.o

"MacGraSE' ff {LinkFiles)

Link -w -t APPL -c XXXX 2
{LinkFiles} 2
*{Libraries}"Interface.o 2
"{Libraries}"Runtime.0 2
"{PLibraries}"PasLib.o 2
*{PLibraries}"SANELib.o 2

b -1 ~-1If > 'HacGraSE.map' 2
-0 'HacGraSE’

G.1. The Interface Units

Globals This unit contains all the global declarations of the program,

including all the simulation modelling data structures and variables.

ResourceDefs This unit contains named constants for all named resources and

all menus and menu items and contains menu handles for all of the menu resources.

MainWindow This is the unit that controls the appearance of the main window
on screen in response to the user's actions. It contains procedures for drawing the
background pictures and routines for modelling the objects on screen. Procedures for

scrolling, updating, activating and sizing of the main window can also be found.

MainMenu This module contains code to initialise the menus, to choose

from the menu, and to update the menu - to enable/disable menu items, for example.

Appendix G. Inside MacGraSE 234

Dispatcher ~ The dispatcher routine is called by other units for window or
modeless dialog-related activities. It determines which window or dialog is involved

and branches to the appropriate module.

G.2. The File Menu Units

Filing The Filing module contains code to handle the File menu items.
It handles New, Open, Close, Save, Save As, Revert, PageSetup, Print, and Quit. It

also contains procedures for the actual reading and writing of a file.

PrintOptions This is a hierarchical menu module which handles the selection
of menu items from the Print Options menu. The Print Options menu allows the user to

choose which representation of the model to be printed on paper.

G.3. The Edit Menu Units

Edit The Edit module contains code to handle the Edit menu items.

DrawingSize This is a modal dialog box module which handles the selection

of the size of the drawing area for the model being constructed.

ShowTools This is a modeless dialog box module which handles the
selection of the palette choices inside the tool box window. The tool box window is

used to facilitate the drawing of the background picture of the model.

Delete This is a modal dialog box module which handles the deletion of

simulation data structures that are predefined by the user.

Appendix G. Inside MacGraSE 235

G.4. The Model Menu Units

Model The Model module contains code to handle the Model menu

items. The Model menu is used for the modelling of the simulation problem.

NewEntity This is a modeless dialog box module which handles the user's
interaction with the entity dialog box when either a new entity type is being created or

information about an existing entity type is being reviewed.

Entlcon This is a modal dialog box which handles the selection of an

entity icon for an entity type.

LifeCycle This unit handles the drawing of an individual entity life cycle

when the 'Life Cycle' button inside the entity dialog box is clicked.

Condition This is a modal dialog box module which is used for accepting

the condition on a conditional path which is created by the user in the model.

NewActivity This is a modeless dialog box module which handles the user's
interaction with the activity dialog box when either a new activity is being created or

information about an existing activity is being reviewed.

ActDuration This is a modal dialog box module which contains routines for
helping the user enter the duration formula for an activity when the 'Duration’ button

inside the activity dialog box is clicked.

ActPicture This is a modeless dialog box module which contains drawing
routines for creating an action picture for an activity when the 'Picture’ button inside the

activity dialog box is clicked.

EditActInfo This unit handles the drawing of a flow diagram which shows
the current status of an activity in the model when the 'Edit Info' button inside the

activity dialog box is clicked.

Appendix G. Inside MacGraSE 236

Code This is a modal dialog box module which handles the generation
of simulation code for an activity when the 'Code’ button inside the activity dialog box

is clicked.

Priority This is a modal dialog box module which contains routines for

switching the priorities of activities defined in the model.

NewAntribute This is a modeless dialog box module which handles the user's
interaction with the attribute dialog box when either a new attribute is being created or

information about an existing attribute is being reviewed.

AntCalculation This is a modal dialog box module which contains routines for

helping the user enter the evaluation formula for an attribute object on screen.

EditAttinfo This unit handles the drawing of a flow diagram which shows
the current status of an attribute in the model when the 'Edit Info' button inside the

attribute dialog box is clicked.

Quelnfo This is a modal dialog box module which contains information
about a queue that is generated by the application. It also contains procedures for

defining histograms and time series for the queue.

MEntity This is a hierarchical menu module which handles the selection
of an entity type that is defined in the model. This invokes the entity dialog box and the
data for the selected entity type will be fed into the appropriate entries inside the dialog

box.

MActivity This is a hierarchical menu module which handles the selection
of an activity that is defined in the model. This invokes the activity dialog box and the
data for the selected activity will be fed into the appropriate entries inside the dialog

box.

Appendix G. Inside MacGraSE 237

MAnribute This is a hierarchical menu module which handles the selection
of an attribute that is defined in the model. This invokes the attribute dialog box and the
data for the selected attribute will be fed into the appropriate entries inside the dialog

box.

ShowMode This is a modeless dialog box module which handles the
selection of the palette choices inside the mode box window. The mode box window is

used to facilitate the construction of the simulation model.
Animation This unit contains routines used for model animation.

ACD This unit contains routines used for the generation of an activity

cycle diagram representation of the model.

ACDRect This is a modal dialog box which contains routines used to

control the appearance of activity rectangles in an activity cycle diagram.

ACDLine This is a modal dialog box which contains routines used to

control the appearance of life paths in an activity cycle diagram.

ACDQue This is a modal dialog box which contains routines used to

control the appearance of queue circles in an activity cycle diagram.

G.5. The Draw Menu Units

Draw The Draw module contains code to handle the Draw menu items.

The Draw menu is used to facilitate the drawing of the background picture.

ImportPaint This unit contains procedures used for importing other pictures

that are drawn in other Macintosh applications.

Preferences This is a modal dialog box module that allows the user to select

Appendix G. Inside MacGraSE 238

the options (ruler and grid) he prefers during drawing of the background picture.

TextOptions This is a modal dialog box module which contains routines for

controlling the appearance of text on screen.

FillPattern This is a modal dialog box module which contains routines for

selecting the pattern that is used to fill an object on screen.

LinePattern This is a modal dialog box module which contains routines for

selecting the pen pattern that is used to draw an object on screen.

LineSize This is a modal dialog box module which contains routines for

selecting the size of the pen that is used to draw an object on screen.

BrushShape This is a modal dialog box module which contain routines for

selecting the brush shape that is used to paint on screen.

G.6. The Options Menu Units

Options The Options module contains code to handle the Options menu

items.

EditReport This is a modal dialog box which is used for setting the format

of the simulation report.

NewScreen This unit is used for generating a new output screen used in

running a simulation.

EditScreen This unit contains routines used for selecting and editing a

predefined output screen in the model.

Histogram This is a modal dialog box module which is used for selecting a

predefined histogram that is to be placed onto an output screen.

Appendix G. Inside MacGraSE 239

TimeSeries This is a modal dialog box module which is used for selecting a

predefined time series that is to be placed onto an output screen.

G.7. The Run Menu Units

Run The Run module contains code to handle the Run menu items.

The Run menu contains routines that control the running of the simulation model.

Language This is a hierarchical menu module which contains routines for

selecting the language to be used when generating a three-phase simulation program.

Generate This is a modal dialog box which contains code allowing the

user to specify the name of the generated file and to generate the simulation program.

CheckLogic This unit checks the logic of the model defined by the user and

reports any errors that are detected.

MSummary This is a modal dialog box module which is used to present the

simulation model in a textual format.

Distributions This unit contains all the functions that are used for evaluating

the duration of an activity and the value of an attribute during a simulation run.

ScreenRun This is a modal dialog box module which sets the screen run
mode on and allows the user to specify the duration, the run-in period, and the speed of

the simulation run. The user can also specify a result file and a report file for the run.

VisualRun This is a modal dialog box module which sets the visual run
mode on and allows the user to specify the duration, the run-in period, and the speed of

the simulation run. The user can also specify a result file and a report file for the run.

TextRun This is a modal dialog box module which sets the text run mode

Appendix G. Inside MacGraSE 240

on and allows the user to specify the duration, the run-in period, and the speed of the

simulation run. The user can also specify a result file and a report file for the run.

Show This unit allows the user to review the result file or the report file

in a modal dialog box after the completion of a simulation run.

G.8. The Output Menu Units

Output The Output module contains code to handle the Output menu
items. The Output menu contains all the user-specified data recording items, for

examples, histograms and time series.

ShowReport The Show module invokes a modal dialog box in which the

selected data recording item is displayed after the completion of a simulation run.

Appendix G. Inside MacGraSE 241

REFERENCES

Adelsberger, H.H. and F. Broeckx. 1987
Discrete Event Simulation and Operations Research.

The Society for Computer Simulation, San Diego, USA.

AppMaker. 1989
AppMaker The Application Generator.
Bowers Development Corporation, USA.

Apple Computer, Inc. 1985
68000 Development System User's Manual.
Addison Wesley.

Apple Computer, Inc. 1985-88
Inside Macintosh Volumn I- V.
Addison Wesley.

Apple Computer, Inc. 1987-89
Macintosh Programmer's Workshop Reference.
APDA, London.

Apple Computer, Inc. 1987-89
Macintosh Programmer's Workshop C Reference.
APDA, London.

Apple Computer, Inc. 1987-89
Macintosh Programmer's Workshop Pascal Reference.
APDA, London.

Apple Computer, Inc. 1988
HyperCard's Script Language Guide.
Addison Wesley.

Apple Computer, Inc. 1987
HyperCard's User Guide.
Addison Wesley.

References

2442

Au, G. 1987
System Specification in Simulation using Graphics on the Apple Macintosh.
Unpublished M.Sc. Project Report, L.S.E.

Au, G. and R.J. Paul. 1989
" Graphical Simulation Model Specification based on Activity Cycle Diagrams. "
Accepted by Computers and Industrial Engineering.

Au, G. and R.J. Paul. 1989
" Flexible Simulation Model Specification Using a HyperCard Implementation of
Activity Cycle Diagrams. "
CASM Research Report. Dept. of Stats, L.S.E.

Au, G. and R.J. Paul. 1990
" A Complete Graphical Discrete Event Simulation Modelling Environment. "
Paper presented at the Young OR Conference 1990, University of Warwick.

Balci, O. 1986
" Credibility Assessment of Simulation Results. "
Proc. 1986 Winter Simulation Conference : 38-43.

Balmer, D.W. 1985a
" Validation using Simulation. "
Paper presented at the 7th European Congress of Operational Research
for EURO 1V, Bologna (16-19 June).

Balmer, D.W. 1985b
" An Intelligent Environment for Simulation. "
Paper presented at the 7th European Congress of Operational Research
for EURO 1V, Bologna (16-19 June).

Balmer, D.W. 1986
" Statistical Analysis of Simulation Output. "

CASM Research Report, Dept. of Statistics, L.S.E.

Balmer, D.W. 1987a
" Software Support for Hierarchical Modelling. "

References 243

Paper presented at the Conference on Methodology and Validation
Orlando, USA (6-9 April).

Balmer, D.W. 1987b
" Polishing the Analysis of the Statistical Output of Comparative Simulation
Experiments. "
Simulation 49 : 123-126.

Balmer, D.W. 1987¢
" Hierarchical Modelling for Discrete Event Simulation. "
In the Proceedings of the 1987 United Kingdom Simulation Conference, Bangor.

Balmer, D.W. 1987d
" Modelling Styles and their Support in the CASM Environment. "
In the Proceedings of the 1987 Winter Simulation Conference.

Balmer, D.W. and R.J. Paul. 1986
" CASM - The Right Environment for Simulation. "
Journal of the Operational Research Society 37 : 443-452.

Barnette, C.C. 1986
" Simulation in Pascal with Micro-PASSIM. "
Proc. 1986 Winter Simulation Conference : 151-155, Washington DC, New Jersey.

Bell, P.C. 1985
" Visual Interactive Modelling in Operational Research : Successes and

Opportunities. "
Journal of the Operational Research Society 36 : 975-982.

Bell, P.C. 1986
" Visual Interactive Modelling in 1986. "
In Recent Developments in Operational Research (V. Belton & R.M. O'Keefe Eds.)
Pergammon Press, Oxford, 1986

Bell, P.C. and R.M. O'Keefe. 1987

" Visual Interactive Simulation - History, Recent Developments, and Major Issues."
Simulation 49 : 109-116.

References 244

Birtwhistle, G.M. 1979
DEMOS - Discrete Event Modelling on SIMULA.
Macmillan, London.

Birtwhistle, G.M. 1985
Al, Graphics and Simulation.
The Society for Computer Simulation, San Diego, USA.

Borland International.
Turbo Pascal Macintosh.
Borland, USA.

Bryant, R.W. 1981
SIMPAS User Manual.
Technical Report, Computer Science Dept., University of Wisconsin-Madison.

Bush, Vannevar. 1945
" As we may think. "
Atlantic Monthly : 176, 101-108.

CACI. 1983

SIMSCRIPT IL5 User Manual.
CACL Ltd.

CACI. Ltd.
SIMFACTORY Simulation Package.

CAP Scientific Ltd.
SLAM II Simulation Package.

Claris UK Ltd.
ClarisCAD (CAD software).

Claris UK Ltd.
MacDraw II (graphics application).

Claris UK Ltd.
MacPaint 2.0 (graphics application).

References 245

Clementson, A.T. 1985
ECSL - Extended Control and Simulation Users Manual.
Cle. Com Ltd., Birmingham, England.

Chew, S.T. 1986
Program Generators For Discrete Event Digital Simulation Modeling.
Unpublished Ph.D. Thesis, University of London, England.

Crookes, J.G. 1987
" Generators, Generic Models and Methodology. "
Journal of the Operational Research Society 38 : 765-768.

Crookes, J.G., D.W. Balmer, S.T. Chew and R.J. Paul. 1986
" A Three Phase Simulation Systems written in Pascal. "
Journal of the Operational Research Society 37 : 603-618.

Davies, R.M. and R.M. O'Keele. 1989
Simulation Modelling with Pascal.
Prentice Hall, London.

Desktop Engineering Systems
ArchiCAD (CAD software).

Domingo, L.T. and R.J. Paul. 1990
" An Introduction to Simulation Specification Using Formal Methods. "

Paper presented at the Young OR Conference 1990, University of Warwick.

Doukidis, G.I. 1985
Discrete Event Simulation Model Formulation using Natural Language
Understanding Systems.
Unpublished Ph.D. Thesis, University of London, England.

Doukidis, G.I. 1987 :
" An Anthology on the Homogy of Simulation with Artificial Intelligence. "

Journal of the Operational Research Society 37 : 701-712.

Doukidis, G.I. and R.J. Paul. 1985

References

246

" Research into Expert Systems to Aid Simulation Model Formulation. "
Journal of the Operational Research Society 36 : 319-325.

Doukidis, G.I. and R.J. Paul. 1986
"Experiences in Automating the Formulation of Discrete Event Simulation Models."
in AI Applied to Simulation (E.J.H. Kerckhoffs, G.C. Vansteenkiste & B.P.
Zeigler, Eds.), Simulation Series Vol. 18, no. 1 (February) : 79-90.
The Society for Comupter Simulation, San Diego, USA.

Doukidis, G.I. and R.J. Paul. 1987a
" ASPES : A Skeletal Pascal Expert System. "
in Expert Systems and Artificial Intelligence in Decision Support Systems
(H.G. Sol et. al., Eds.), D. Reidel, Dordrecht, Holland. pp. 227-246.

Doukidis, G.I. and R.J. Paul. 1987b
" Artificial Intelligence Aids in Discrete Event Digital Simulation Modelling. "
IEE Proceedings, Vol. 134, Pt. D, no. 4 (July) : 278-286.

Doukidis, G.I. and R.J. Paul. 1988
" SIPDES : A Simulation Program Debugger using an Expert System. "
Accepted by Expert Systems with Applications, Vol.2.

El Sheikh, A.A.R. 1987
Simulation Modelling using a Relational Database Package.
Unpublished Ph.D. Thesis, University of London, England.

El Sheikh, A.A.R. and R.J. Paul. 1988a
" Discrete Event Simulation Modelling using a Relational Database Package. "
CASM Research Report, Dept. of Statistics, L.S.E. In preparation.

El Sheikh, A.A.R. and R.J. Paul. 1988b
" INGRESSIM : Simulation Modelling using the Relational Database Package
INGRES. "
CASM Research Report, Dept. of Statistics, L.S.E. In preparation.

El Sheikh, A.A.R., R.J. Paul, A.S. Harding and D.W. Balmer. 1987

" A Microcomputer Based Simulation Study of a Port. "
Journal of the Operational Research Society 37 : 673-681.

References 247

Electronic Arts.
Studio/8 1.1 (graphics application).

Epsim Ltd.
EPSIM Simulation Package.
Epsim Ltd., Bristol, UK.

Fiddy, E., Bright, J.G. and Hurrion, R.D. 1981
" See-why : Interactive Simulation on the Screen. "
Proc. Institute of Mechanical Engineers, C293/81 : 167-172.

Flitman, A.M. and Hurrion R.D. 1987
" Linking Discrete-Event Simulation Models with Expert Systems. "
Journal of the Operational Research Society 38 : 723-733.

Goodman, D.H., D.W. Balmer and G.I. Doukidis. 1987
" Interfacing Expert Systems and Simulation for Job-Shop Production Scheduling.'

in proceedings of the Third International Expert Systems Conference (June)
Learned Information Ltd., Oxford, England.

High Order Software Inc.
Use-it software.

Holder, R.D. and R.P. Gittins 1989
" The Effects of Warship and Replenishment Ship Attrition on War Arsenal
Requirements. "
Journal of the Operational Research Society 40 : 155-166.

Hurrion, R.D. and Secker, R.J.R. 1978
" Visual Interactive Simulation, and aid to decision making. "
Omega, 6(5) : 419-426.

Hurrion, R.D. 1989
" Graphics and Interaction. "

in Computer Modelling for Discrete Simulation (M. Pidd, Ed.), Wiley, London.

Index Technology
Excelerator software.

References 248

Insight International Ltd.
GENETIK Simulation Package.

Istel Ltd.
WITNESS Simulation Package.
Istel Ltd., Worcs., UK.

Knaster, S. 1986
How to Write Macintosh Software.
Hayden Books.

Krantz, D. & J. Stanley. 1986
68000 Assembly Language Techniques for Building Programs.
Addison Wesley.

Ledgards, H. and A. Singer. 1986
Pascal for the Macintosh.
Addison Wesley.

Mak, J. and R.J. Paul. 1990
" Combining Discrete-Event Simulation and Systems Dynamics. "

Paper presented at the Young OR Conference 1990, Unversity of Warwick.

Manufacturing Management Ltd.
PROPHET Simulation Package.

Martin, J. & C. McClure 1985
Diagramming Techniques for Analysts and Programmers.

Mashhour, A. 1989
" Automated Simulation Program Generation using a Relational Database
Simulation System. "
Unpublished Ph.D. Thesis, University of London, England.

Mathewson, S.C. 1977

" A Programming Language for SIMON Simulation in Fortran. "
Imperial College, London.

References

249

Mathewson, S.C. 1985
" Simulation Program Generators : Code and Animation on a PC. "
Journal of Operational Research Society 36 : 538-539.

Mathewson, S.C. 1987
" Draft/Draw/SSIM - an Integrated Network based Toolkit for Simulation. "
U.K. Simulation Conference, Bangor.

Mathewson, S.C. 1989a
" The Implementation of Simulation Languages. "

in Computer Modelling for Discrete Simulation (M. Pidd, Ed.), Wiley, London.

Mathewson, S.C. 1989b
" Simulation Support Environments. "

in Computer Modelling for Discrete Simulation (M. Pidd, Ed.), Wiley, London.

McLeod, J. 1988
" Simulation : The Formulative Years. "
The Society for Computer Simulation International Journal.

Nelson, T. 1972
" As we will think. "
In Proceedings of Online 1972, Uxbridge : Brunel University.

O'Keefe, R.M. 1986
" Simulation with Pascal-Sim. "
Winter Simulation Conference 1986.

O'Keefe, R.M. and J.W. Roach. 1987
" Artificial Intelligence Approaches to Simulation. "
Journal of Operational Research Society 38 : 713-722.

P-E Inbucon Ltd.
HOCUS Simulation Package.
P-E Inbucon Ltd., Surrey, UK.

Paul, R.J. 1987
" A.L. and Stochastic Process Simulation. "

References

250

in Interactions in Artificial Intelligence and Statistical Methods, (B. Phelps Ed.)
Gower Technical Press : 85-98.

Paul, R.J. 1988a
" Simulation Model Formulation using an Intelligent Graphical Approach. "
CASM Research Report, Dept. of Statistics, L.S.E.

Paul R.J. 1988b
" The Three-Phase Discrete Event Modelling Approach. "
CASM Research Report, Dept. of Statistics, L.S.E.

Paul, R.J. 1988c¢
" Simulation Modelling : The CASM Project. "
Accepted by Journal of the Brazilian Operations Research Society.

Paul, R.J. 1989a
" Recent Developments in Simulation Modelling. "
Accepted by Journal of the Operational Research Society.

Paul, R.J. 1989b
" Visual Simulation : Seeing is Believing. "
In Impacts of Recent Computer Advances on Operations Research,
Publications in Operations Research Series Vol.9 (R. Sharda, B.L. Golden, E.
Wasil, O. Balci, and W. Stewart Eds.), North-Holland, New York.

Paul, R.J. 1989¢
" Artificial Intelligence and Simulation Modelling. "
In Computer Modelling for Discrete Simulation (M. Pidd, Ed.), Wiley, London.

Paul, R.J. 1989d

" Combining Artificial Intelligence and Simulation. "

In Computer Modelling for Discrete Simulation (M. Pidd, Ed.), Wiley, London.
Paul, R.J. and D.W. Balmer. 1989

Simulation Modelling.

In press. Chartwell-Bratt Student-Text Series

Paul, R.J. and S.T. Chew. 1987

References 251

" Simulation Modelling using an Interactive Simulation Program Generator. "
Journal of Operational Research Society 38 : 735-752.

Paul, R.J. and G.I. Doukidis. 1986
" Further Developments in the Use of Artificial Intelligence Techniques which
Formulate Simulation Problems. "
Journal of the Operational Research Society 37 : 787-810.

Paul, R.J. and E. Saliby. 1988
" Adaptable Simulation Support Environments : a case study. "
CASM Research Report, Dept. of Statistics, L.S.E. In preparation.

Persona-TMC.
SuperPaint 2.0 (graphics application).

Pidd, M. 1984
" Computer Simulation for Operational Research in 1984. "
In Developments in Operational Research (R.W. Eglese and G.K. Rand, Eds.)
Pergamon Press, Oxford.

Pidd, M. 1988
Computer Simulation in Management Science. 2nd Edition.
Wiley, London.

Pidd, M. 1989
Computer Modelling for Discrete Simulation.
Wiley, London.

Pressman, R.S. 1987
Software Engineering : A Practitioner's Approach.
McGraw Hill, London.

Principal Distribution Ltd.
PixelPaint 2.0 (graphics application).

Pritsker, A.A.B. 1979

Introduction to Simulation and SLAM.
John Wiley & Sons, New York.

References 252

Pritsker, A.A.B. and P. Kiviat. 1969
Simulation with GASP II : A Fortran-based Simulation Language.
John Wiley & Sons, New York.

Saliby, E. and R.J. Paul. 1988
" How to Implement Descriptive Sampling in a Simulation Software System."
CASM Research Report, Dept. of Statistics, L.S.E. In preparation.

Seila, A.F. 1988
" SIMTOOLS : A Software Tool Kit for Discrete Computer Simulation in Pascal. "
Simulation 50 : 93-99.

Shafer, D. 1988
HyperTalk Programming.
Hayden Books.

Shriber T. 1974
Simulation Using GPSS.
Wiley, London.

Simsoft. 1986
PCModel Manual.
Simsoft, San José, California, USA.

Spinelli de Carvahlo, R. and J.G. Crookes. 1976
" Cellular Simulation. "
Journal of Operational Research Society 29 : 31-40.

Systems Designers Scientific.
SYSMOD Simulation Package.

Szymankiewicz, J., J. McDonald and K. Turner. 1988.
Solving Business Problems by Simulation. 2nd Edition.

McGraw Hill, London

Talyor, R.P. and Hurrion, R.D. 1988
" An Expert Advisor for Simulation Experimental Design and Analysis. "

References 253

Proc. Multi-Conference on Artificial Intelligence and Simulation, (T. Henson ed.)
SCS International, San Deigo, California.

The MacSerious Company.
Visual Interactive Programming (programming application).
The MacSerious Company.

Williams, T.M., R.P. Gittins & D.M. Burke. 1989

“ Replenishment at Sea. “
Journal of Operational Research Society 40 : 881-887.

References 254

